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Preface

The contents of this book are based upon manuscripts prepared for both under-
graduate courses of Kyoto Institute of Technology by the author entitled “Polymer
Nanomaterials Engineering” and ‘“Photonics Physical Chemistry” and a master’s
course lecture of Kyoto Institute of Technology by the author entitled “Solid-State
Polymers Engineering.”

This book is intended for graduate and undergraduate students, especially those
who major in chemistry and, at the same time, wish to study mathematical physics.
Readers are supposed to have basic knowledge of analysis and linear algebra.
However, they are not supposed to be familiar with the theory of analytic functions
(i.e., complex analysis), even though it is desirable to have relevant knowledge
about it.

At the beginning, mathematical physics looks daunting to chemists, as used to be
the case with myself as a chemist. The book introduces basic concepts of mathe-
matical physics to chemists. Unlike other books related to mathematical physics,
this book makes a reasonable selection of material so that students majoring in
chemistry can readily understand the contents in spontaneity. In particular, we stress
the importance of practical and intuitive methodology. We also expect engineers
and physicists to benefit from reading this book.

In Part I and Part II, the book describes quantum mechanics and electromag-
netism. Relevance between the two is well considered. Although quantum
mechanics covers broad field of modern physics, in Part I we focus on a harmonic
oscillator and a hydrogen (like) atom. This is because we can study and deal with
many of fundamental concepts of quantum mechanics within these restricted topics.
Moreover, knowledge acquired from the study of the topics can readily be extended
to practical investigation of, e.g., electronic sates and vibration (or vibronic) states
of molecular systems. We describe these topics both by analytic method (that uses
differential equations) and operator approach (using matrix calculations). We
believe that the basic concepts of quantum mechanics can be best understood by
contrasting the analytical and algebraic approaches. For this reason, we give matrix
representations of physical quantities whenever possible. Examples include energy
eigenvalues of a quantum-mechanical harmonic oscillator and angular momenta of
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a hydrogen-like atom. At the same time, these two physical systems supply us with
a good opportunity to study classical polynomials, e.g., Hermite polynomials,
(associated) Legendre polynomials, Laguerre polynomials, Gegenbauer polyno-
mials, and special functions, more generally. These topics constitute one of
important branches of mathematical physics. One of the basic concepts of the
quantum mechanics is that a physical quantity is represented by an Hermitian
operator or matrix. In this respect, the algebraic approach gives a good opportunity
to get familiar with this concept. We present tangible examples for this. We also
emphasize the importance of notion of Hermiticity of a differential operator. We
often encounter unitary operator or unitary transformation alongside of the notion
of Hermitian operator. We show several examples of the unitary operators in
connection with transformation of vectors and coordinates.

Part II describes Maxwell’s equations and their applications to various phe-
nomena of electromagnetic waves. These include their propagation, reflection, and
transmission in dielectric media. We restrict ourselves to treating those phenomena
in dielectrics without charge. Yet, we cover a wide range of important topics. In
particular, when two (or more) dielectrics are in contact with each other at a plane
interface, reflection and transmission of light are characterized by various important
parameters such as reflection and transmission coefficients, Brewster angles, and
critical angles. We should have a proper understanding not only from the point of
view of basic study, but also to make use of relevant knowledge in optical device
applications such as a waveguide. In contrast to a concept of electromagnetic
waves, light possesses a characteristic of light quanta. We present semiclassical and
statistical approach to blackbody radiation occurring in a simplified system in
relation to Part I. The physical processes are well characterized by a notion of
two-level atoms. In this context, we outline the dipole radiation within the frame-
work of the classical theory. We briefly describe how the optical processes
occurring in a confined dielectric medium are related to a laser that is of great
importance in fundamental science and its applications. Many of basic equations of
physics are descried as second-order linear differential equations (SOLDE:s).
Different methods were developed and proposed to seek their solutions. One of the
most important methods is that of Green’s functions. We present introductory
theory of the Green’s functions accordingly. In this connection, we rethink the
Hermiticity of a differential operator.

In Par III and Part IV, we describe algebraic structures of mathematical physics.
Their understanding is useful to studies of quantum mechanics and electromag-
netism whose topics are presented in Part I and Part II. Part III deals with theories of
linear vector spaces. We focus on the discussion on vectors and their transforma-
tions in finite-dimensional vector spaces. Generally, we consider the vector trans-
formations among the vector spaces of different dimensions. In this book, however,
we restrict ourselves to the case of the transformation between the vector spaces of
same dimension, i.e., endomorphism of the space (V" — V"). This is not only
because this is most often the case with many of physical applications, but because
the relevant operator is represented by a square matrix. Canonical forms of square
matrices hold an important position in algebra. These include a triangle matrix,



Preface ix

diagonalizable matrix as well as a nilpotent matrix and idempotent matrix. The most
general form will be Jordan canonical form. We present its essential parts in detail
taking a tangible example. Next to the general discussion, we deal with an inner
product space. Once an inner product is defined between any couple of vectors, the
vector space is given a fruitful structure. An example is a norm (i.e., “length”) of a
vector. Also we gain a clear relationship between Part III and Part I. We define
various operators or matrices that are important in physical applications. Examples
include normal operators (or matrices) such as Hermitian operators, projection
operators, and unitary operators. Once again, we emphasize the importance of the
Hermitian operators. In particular, two commutable Hermitian matrices share
simultaneous eigenvectors (or eigenstates) and, in this respect, such two matrices
occupy a special position in quantum mechanics.

Finally, Part IV describes the essence of group theory and its chemical appli-
cations. Group theory has a broad range of applications in solid-state physics,
solid-state chemistry, molecular science, etc. Nonetheless, the knowledge of group
theory does not seem to have fully prevailed among chemists. We can discover an
adequate reason for this in a preface to the first edition of “Chemical Applications of
Group Theory” written by F. A. Cotton. It might well be natural that definition and
statement of abstract algebra, especially group theory, sound somewhat pretentious
for chemists, even though the definition of group is quite simple. Therefore, we
present various examples for readers to get used to notions of group theory. Notion
of mapping is important as in the case of the linear vector spaces. Aside from being
additive with calculation for a vector space and multiplicative for a group, the
fundamentals of calculation regulations are pretty much the same regarding the
vector space and group. We describe characteristics of symmetry groups in detail
partly because related knowledge is useful for molecular orbital (MO) calculations
that are presented in the last Section of the book. Representation theory is probably
one of the most daunting notions for chemists. Practically, however, the repre-
sentation is just homomorphism that corresponds to a linear transformation in a
vector space. In this context, the representation is merely denoted by a number or a
matrix. Basis functions of representation correspond to basis vectors in a vector
space. Grand orthogonality theorem (GOT) is a “nursery bed” of the representation
theory. Therefore, readers are encouraged to understand its essence apart from the
rigorous proof of the theorem. In conjunction with Part III, we present a variety of
projection operators. These are very useful to practical applications in, e.g.,
quantum mechanics and molecular science. The final parts of the book are devoted
to applications of group theory to problems of physical chemistry, especially those
of quantum chemistry, more specifically molecular orbital calculations. We see how
symmetry consideration, particularly use of projection operators, saves us a lot of
labor. Examples include aromatic hydrocarbons and methane.

The above is the constitution of this book. Readers may start with any Part and
go freely back and forth. This is because contents of many Sections are interrelated.
For example, we stress the importance of Hermiticity of differential operators and
matrices. Also projection operators and nilpotent matrices appear in many Sections
along with their tangible applications to individual topics. Hence, readers are
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recommended to carefully examine and compare the related contents throughout the
book. We believe that readers, especially chemists, benefit from a writing style of
this book, since it is suited to chemists who are good at intuitive understanding.

The author would like to thank many students for their valuable suggestions and
discussions at the lectures. The author also wishes to thank Dr. Shin’ichi Koizumi,
Springer for giving him an opportunity to write this book.

Kyoto, Japan Shu Hotta
October 2017
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Part I
Quantum Mechanics

Quantum mechanics is clearly distinguished from classical physics whose major
pillars are Newtonian mechanics and electromagnetism established by Maxwell.
Quantum mechanics was first established as a theory of atomic physics that handled
microscopic world. Later on, quantum mechanics was applied to macroscopic
world, i.e., cosmos. A question on how exactly quantum mechanics describes the
natural world and on how far the theory can go remains yet problematic and is in
dispute to this day.

Such an ultimate question is irrelevant to this monograph. Our major aim is to
study a standard approach to applying Schrodinger equation to selected topics. The
topics include a particle confined within a potential well, a harmonic oscillator, and
a hydrogen-like atoms. Our major task rests on solving eigenvalue problems of
these topics. To this end, we describe both an analytical method and algebraic (or
operator) method. Focusing on these topics, we will be able to acquire various
methods to tackle a wide range of quantum-mechanical problems. These problems
are usually posed as an analytical equation (i.e., differential equation) or an
algebraic equation. A Hamiltonian is constructed analytically or algebraically
accordingly. Besides Hamiltonian, physical quantities are expressed as a differential
operator or a matrix operator. In both analytical and algebraic approaches,
Hermitian property (or Hermiticity) of an operator and matrix is of crucial
importance. This feature will, therefore, be highlighted not only in this part but also
throughout this book along with a unitary operator and matrix.

Optical transition and associated selection rules are dealt with in relation to
the above topics. Those subjects are closely related to electromagnetic phenomena
that are considered in Part II.



Chapter 1
Schrodinger Equation and Its Application

Quantum mechanics is an indispensable research tool of modern natural science
that covers cosmology, atomic physics, molecular science, materials science, and so
forth. The basic concept underlying quantum mechanics rests upon Schrodinger
equation. The Schrédinger equation is described as a second-order linear differential
equation (SOLDE). The equation is analytically solved accordingly. Alternatively,
equations of the quantum mechanics are often described in terms of operators and
matrices, and physical quantities are represented by those operators and matrices.
Normally, they are non-commutative. In particular, the quantum-mechanical for-
malism requires the canonical commutation relation between position and mo-
mentum operators. One of the great characteristics of the quantum mechanics is that
physical quantities must be Hermitian. This aspect is deeply related to the
requirement that these quantities should be described by real numbers. We deal with
the Hermiticity from both an analytical point of view (or coordinate representation)
relevant to the differential equations and an algebraic viewpoint (or matrix repre-
sentation) associated with the operators and matrices. Including these topics, we
briefly survey the origin of Schrédinger equation and consider its implications. To
get acquainted with the quantum-mechanical formalism, we deal with simple
examples of the Schrédinger equation.

1.1 Early-Stage Quantum Theory

The Schrédinger equation is a direct consequence of discovery of quanta. It
stemmed from the hypothesis of energy quanta propounded by Max Planck (1900).
This hypothesis was further followed by photon (light quantum) hypothesis pro-
pounded by Albert Einstein (1905). He claimed that light is an aggregation of light
quanta and that individual quanta carry an energy E expressed as Planck constant &
multiplied by frequency of light v, i.e.,

© Springer Nature Singapore Pte Ltd. 2018 3
S. Hotta, Mathematical Physical Chemistry,
https://doi.org/10.1007/978-981-10-7671-8_1



4 1 Schrodinger Equation and Its Application

E = hv = ho, (L.1)

where 7i = h/2n and » = 2nv. The quantity o is called angular frequency with v
being frequency. The quantity 7 is said to be a reduced Planck constant.

Also, Einstein (1917) concluded that momentum of light quantum p is identical
to the energy of light quantum divided by light velocity in vacuum c. That is, we
have

p=E/c="hw/c = hk, (1.2)

where k = 2n// (A is wavelength of light in vacuum) and £ is called wavenumber.
Using vector notation, we have

p = hk, (1.3)

where k = 27"n (n: a unit vector in the direction of propagation of light) is said to be
a wavenumber vector.

Meanwhile, Arthur Compton (1923) conducted various experiments where he
investigated how an incident X-ray beam was scattered by matter (e.g., graphite,
copper, etc.). As a result, Compton found out a systematical redshift in X-ray
wavelengths as a function of scattering angles of the X-ray beam (Compton effect).
Moreover, he found that the shift in wavelengths depended only on the scattering
angle regardless of quality of material of a scatterer. The results can be summarized
in a simple equation described as

I (1 —cos®), (1.4)

MeC

A)u =

where A/ denotes a shift in wavelength of the scattered beam; m, is a rest mass of
an electron; 0 is a scattering angle of the X-ray beam (see Fig. 1.1). A quantity m%c
has a dimension of length and denoted by Z.. That is,

Je = h/mec. (1.5)

In other words, /. is equal to the maximum shift in the wavelength of the
scattered beam; this shift is obtained when 6 = /2. The quantity A, is called an
electron Compton wavelength and has an approximate value of 2.426 x 10~'% (m).

Let us derive (1.4) on the basis of conservation of energy and momentum. To
this end, in Fig. 1.1 we assume that an electron is originally at rest. An X-ray beam
is incident to the electron. Then the X-ray is scattered and the electron recoils as
shown. The energy conservation reads as

hoo + mec® = hot' + \/p2c? +mic4, (1.6)
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(a) recoiled electron (p)
(b)
—hk
incident X-ray (hk) rest electron
o hk' p

scattered X-ray (hk')

Fig. 1.1 Scattering of an X-ray beam by an electron. a 0 denotes a scattering angle of the X-ray
beam. b conservation of momentum

where w and «’ are initial and final angular frequencies of the X-ray; the second term
of RHS is an energy of the electron in which p is a magnitude of momentum after
recoil. Meanwhile, conservation of the momentum as a vector quantity reads as

ik = hk' +p, (1.7)

where k and k' are wavenumber vectors of the X-ray before and after being scat-
tered; p is a momentum of the electron after recoil. Note that an initial momentum
of the electron is zero since the electron is originally at rest. Here, p is defined as

p = mu, (1.8)

where u is a velocity of an electron and m is given by [1]

mme/\/l — |u)?/c2. (1.9)

Figure 1.1 shows that —7ik, ik, and p form a closed triangle.
From (1.6), we have

[mec® + h(w — o)) = p*2 +m2c*. (1.10)
Hence, we get
2meh(w — o) + (0 — ') = p*c2. (1.11)
From (1.7), we have

PP =12k — k) = 1 (K + k? — 2k cos 0)
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h2
:C—z(w2+a)'2 — 2w’ cos ), (1.12)

where we used the relations « = ck and @’ = ck’ with the third equality. Therefore,
we get

p’c =1 (0’ + o — 200 cosb). (1.13)
From (1.11) and (1.13), we have
2mec* (o — o) + 1 (0 — o) = 1 (0® + 0 = 200 cos 0). (1.14)

Equation (1.14) is simplified to the following:

2mec*h(ow — o) — 2P w0’ = =2 0w’ cos .
That is,
mec*(w — ') = how'(1 — cos 0). (1.15)
Thus, we get
o—o 1 1 1 h
ww' o w 27‘[6‘( ) MeC? (1 —cos0), ( )

where / and A’ are wavelengths of the initial and final X-ray beams, respectively.
Since /' — /. = A, we have (1.4) from (1.16) accordingly.

We have to mention another important person, Louis Victor de Broglie (1924) in
the development of quantum mechanics. Encouraged by the success of Einstein and
Compton, he propounded the concept of matter wave, which was referred to as the
de Broglie wave afterward. Namely, de Broglie reversed the relationship of (1.1)
and (1.2) such that

w=E/h, (1.17)
and
k=p/hori=h/p, (1.18)

where p equals |p| and A is a wavelength of a corpuscular beam. This is said to be
the de Broglie wavelength. In (1.18), de Broglie thought that a particle carrying an
energy E and momentum p is accompanied by a wave that is characterized by an
angular frequency w and wavenumber k (or a wavelength A = 2n/k). Equation
(1.18) implies that if we are able to determine the wavelength of the corpuscular
beam experimentally, we can decide a magnitude of momentum accordingly.
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In turn, from squares of both sides of (1.8) and (1.9), we get

= P . (1.19)

mey/ 1+ (p/mec)2

This relation represents a velocity of particles of the corpuscular beam. If we are
dealing with an electron beam, (1.19) gives the velocity of the electron beam. As a
non-relativistic approximation (i.e., p/mec < 1), we have

D = M.

We used a relativistic relation in the second term of RHS of (1.6), where energy
of an electron E, is expressed by

E. = y/p*c® +mlc*. (1.20)

In the meantime, deleting u? from (1.8) and (1.9), we have

mc* = \/p2c? +mict,

Namely, we get [1]
E. = mc?. (1.21)

The relation (1.21) is due to Einstein (1905, 1907) and is said to be the
equivalence theorem of mass and energy.

If an electron is accompanied by a matter wave, that wave should be propagated
with a certain phase velocity v, and a group velocity ve. Thus, using (1.17) and
(1.18), we have

vp = w/k=Ec/p=\/[p*+mict/p>c,
vg = 0w/0k = OE./Op = ’p/\/p>c* +mic* <c, (1.22)

_ 2
VpVg = C".

Notice that in the above expressions, we replaced E of (1.17) with E. of (1.20).
The group velocity is thought to be a velocity of a wave packet and, hence, a
propagation velocity of a matter wave should be identical to v. Thus, v, is con-
sidered as a particle velocity as well. In fact, v, given by (1.22) is identical to u
expressed in (1.19). Therefore, a particle velocity must not exceed c. As for photons
(or light quanta), v, = v = ¢ and, hence, once again we get vpvy = 2. We will
encounter the last relation of (1.22) in Part II as well.
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The above discussion is a brief historical outlook of early-stage quantum theory
before Erwin Schrodinger (1926) propounded his equation.

1.2 Schrédinger Equation

First, we introduce a wave equation expressed by

1 %y

2 —_——
vwivzfﬂﬂ’

(1.23)
where V/ is an arbitrary function of a physical quantity relevant to propagation of a
wave; v is a phase velocity of wave; V2 called Laplacian is defined below

”* 7

2_— RN _
v T Ox2 9y? +8zz'

(1.24)

One of special solutions for (1.24) called a plane wave is well studied and
expressed as

Y = e ®xen, (1.25)
In (1.25), x denotes a position vector of a three-dimensional Cartesian coordinate

and is described as

x = (ejeze3) (1.26)

N =

where e}, e, and e; denote basis vectors of an orthonormal base pointing to positive
directions of x-, y-, and z-axes. Here, we make it a rule to represent basis vectors by
a row vector and represent a coordinate or a component of a vector by a column
vector; see Sect. 9.1.

The other way around, now we wish to seek a basic equation whose solution is
described as (1.25). Taking account of (1.1)—(1.3) as well as (1.17) and (1.18), we
rewrite (1.25) as

p = e H), (1.27)
Px

where we redefine p = (ejeze3) | py | and E as quantities associated with those of
Pz

matter (electron) wave. Taking partial differentiation of (1.27) with respect to x, we
obtain



1.2 Schrédinger Equation 9

Ty =—p . 1.2

ax hpxlpoe hpxlp ( 8)
Rewriting (1.28), we have

hoy

Similarly, we have

h oy h oy

B S B . 1.

i Dy py‘// and i 0z PV ( 30)

Comparing both sides of (1.29), we notice that we may relate a differential
operator 00; to py. From (1.30), similar relationship holds with the y and z com-

ponents. That is, we have the following relations:

ho no no

T a. X . o y e 1.31
iox P l@pryzﬁz(_)pz ( )

Taking partial differentiation of (1.28) once more,

0? i . 1
ékgﬁz ( ) Yol ) ——piv. (1.32)
Hence,
2P,

Similarly, we have

oy Oy

—#az_ﬁwmd—WET—mw (1.34)
As in the above cases, we have
? ? ?
_hza ) p hzmH hzm (—)1)37 (135)

Summing both sides of (1.33) and (1.34) and then dividing by 2m, we have

2
e w——n// (1.36)

2m
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and the following correspondence

hz p2
f%vzH%, (1.37)

where m is the mass of a particle.
Meanwhile, taking partial differentiation of (1.27) with respect to ¢, we obtain

oy i
____E i(ke—fr) — _ LRy, 1.38
o Uoe EY (1.38)
That is,
e
=EVy. 1.39
As the above, we get the following relationship:
0
ih— < E (1.40)

ot

Thus, we have relationships between c-numbers (classical numbers) and
g-numbers (quantum numbers, namely, operators) in (1.35) and (1.40). Subtracting
(1.36) from (1.39), we get

h%—w+—V21// <E%>w. (1.41)
Invoking the relationship on energy
(Total energy) = (Kinetic energy) + (Potential energy), (1.42)
we have
P +V, (1.43)
2m

where V is a potential energy. Thus, (1.41) reads as

e

har +—V2¢ V. (1.44)

Rearranging (1.44), we finally get

|- L
<—%v +v)¢_zh5. (1.45)
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This is the Schrédinger equation, a fundamental equation of quantum mechanics.
In (1.45), we define a following Hamiltonian operator H as

— _ "
H= V4V, (1.46)

Then we have a shorthand representation such that

L Oy
HYy =ih o (1.47)

On going from (1.25) to (1.27), we realize that quantities k and  pertinent to a
field have been converted to quantities p and E related to a particle. At the same
time, whereas x and ¢ represent a whole space-time in (1.25), those in (1.27) are
characterized as localized quantities.

From a historical point of view, we have to mention a great achievement
accomplished by Werner Heisenberg (1925) who propounded matrix mechanics.
The matrix mechanics is often contrasted with the wave mechanics Schrodinger
initiated. Schrédinger and Pau Dirac (1926) demonstrated that wave mechanics and
matrix mechanics are mathematically equivalent. Note that the Schrodinger equa-
tion is described as a non-relativistic expression based on (1.43). In fact, kinetic
energy K of a particle is given by [1]

2
K =—87——=—mcc

L= (u/c)®

As a non-relativistic approximation, we get

2

1 /u\2 1 p
K ~ 621 —(—) —62:—62z ,
mc{—i—zc MmeC 2mu e

where we used p ~ m.u again as a non-relativistic approximation; also, we used

1

1—x

1—|—1
~ =X
2

when x( > 0) corresponding to (%)2 is enough small than 1. This implies that in the
above case, the group velocity u of a particle is supposed to be well below light
velocity c¢. Dirac (1928) formulated an equation that describes relativistic quantum
mechanics (the Dirac equation).

In (1.45), y varies as a function of x and 7. Suppose, however, that a potential V
depends only upon x. Then, we have
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[—f—mvz + V(x)]lﬁ(x,t) = ihw. (1.48)

Now, let us assume that separation of variables can be done with (1.48) such that

Y(x,1) = ¢(x)E(0). (1.49)
Then, we have
2
{—j—mvz + V(x)] Sx)E(r) = ih%. (1.50)
Accordingly, (1.50) can be recast as
2
5V V) o0 =250 /et (151)

For (1.51) to hold, we must equate both sides to a constant E. That is, for a
certain fixed point xo we have

2
5 V) ol x0) = i

/¢(0), (1.52)
where ¢(xo) of a numerator should be evaluated after operating V2, while with
¢(xo) in a denominator, ¢(xo) is evaluated simply replacing x in ¢(x) with x.
Now, let us define a function ®(x) such that

hZ
D(x) = {—%W + V(x)] d(x)/P(x). (1.53)
Then, we have
D(xp) = zh%(;)/f(z). (1.54)

If RHS of (1.54) varied depending on ¢, ®(x() would be allowed to have various
values, but this must not be the case with our present investigation. Thus, RHS of
(1.54) should take a constant value E. For the same reason, LHS of (1.51) should
take a constant.

Thus, (1.48) or (1.51) should be separated into the following equations:

Ho(x) = Ep(x), (1.55)
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L OL(t)
ih—> = E(1). (1.56)

Equation (1.56) can readily be solved. Since (1.56) depends on a sole variable t,
we have

d¢ E E
%%:%mmmwm:%m. (1.57)

Integrating (1.57) from zero to ¢, we get

() Et
lnm— o (1.58)
That is,
E(r) = £(0) exp(—iEt/h). (1.59)

Comparing (1.59) with (1.38), we find that the constant E in (1.55) and (1.56)
represents an energy of a particle (electron).

Thus, the next task we want to do is to solve an eigenvalue equation of (1.55).
After solving the problem, we get a solution

Y(x,1) = ¢(x)exp(—iEt/h), (1.60)

where the constant £(0) has been absorbed in ¢(x). Normally, ¢(x) is to be
normalized after determining the functional form (vide infra).

1.3 Simple Applications of Schrodinger Equation

The Schrodinger equation has been expressed as (1.48). The equation is a
second-order linear differential equation (SOLDE). In particular, our major interest
lies in solving an eigenvalue problem of (1.55). Eigenvalues consist of points in a
complex plane. Those points sometimes form a continuous domain, but we focus on
the eigenvalues that comprise discrete points in the complex plane. Therefore in our
studies, the eigenvalues are countable and numbered as, e.g., 1, (n = 1,2,3,...).
An example is depicted in Fig. 1.2. Having this common belief as a background, let
us first think of a simple form of SOLDE.

Example 1.1 Let us think of a following differential equation:
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Fig. 1.2 Eigenvalues
In(n=1,2,3,...) ona o 2 z
complex plane ° .
A
i [ L]
1
0 1
) A3 .
&y (x)
02 + Ay(x) =0, (1.61)

where x is a real variable; y may be a complex function of x with 4 possibly being a
complex constant as well. Suppose that y(x) is defined within a domain
[-L,L] (L > 0). We set boundary conditions (BCs) for (1.61) such that

y(L) =0and y(—L) =0 (L > 0). (1.62)
The BCs of (1.62) are called Dirichlet conditions. We define the following
differential operator D described as

d2
Then rewriting (1.61), we have
Dy(x) = Ay(x). (1.64)

According to a general principle of SOLDE, it has two linearly independent
solutions. In the case of (1.61), we choose exponential functions for those solutions
described by

e and e (k # 0).

This is because the above functions do not change a functional form with respect
to the differentiation and we ascribe solving a differential equation to solving an
algebraic equation among constants (or parameters). In the present case, A and k are
such constants.

The parameter k could be a complex variable, because 4 is allowed to take a
complex value as well. Linear independence of these functions is ensured from a
nonvanishing Wronskian, W. That is,
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eikx —ikx

W= ke —jke ik

eikx efikx ’

(eikx)’ (e—ikx)’

= —ik — ik = —2ik. (1.65)
If k # 0, W # 0. Therefore, as a general solution, we get
y(x) = ae™ + be *(k # 0), (1.66)

where a and b are (complex) constant. We call two linearly independent solutions
e and e ™ (k # 0) a fundamental set of solutions of a SOLDE. Inserting (1.66)
into (1.61), we have

(A= &%) (ae™ +be ™) = 0. (1.67)
For (1.67) to hold with any x, we must have
J—k =0ield =k (1.68)
Using BCs (1.62), we have
ae™ 4 be " = 0 and ae " + be™t = 0. (1.69)

Rewriting (1.69) in a matrix form, we have

(50 - () a0

For a and b in (1.70) to have nonvanishing solutions, we must have

eikL efikL

il i | =0 ieelt—eE =0, (1.71)

It is because if (1.71) were not zero, we would have a = b =0 and y(x) = 0.
Note that with an eigenvalue problem, we must avoid having a solution that is
identically zero. Rewriting (1.71), we get

(eikL +e—ikL) (eikL _ e—ikL) —o. (1.72)

That is, we have either

el p el =0 (1.73)

or
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ekl — e — 0, (1.74)
In the case of (1.73), inserting this into (1.69), we have
e*t(a —b) = 0. (1.75)
Therefore,
a=b, (1.76)

where we used the fact that e is a nonvanishing function for any ikL (either real or

complex). Similarly, in the case of (1.74), we have

a=—b. (1.77)
For (1.76), from (1.66), we have
y(x) = a(e® +e ™) = 2a cos kx. (1.78)
With (1.77), in turn, we get
y(x) = a(e™ — e ™) = 2ia sin kx. (1.79)

Thus, we get two linearly independent solutions (1.78) and (1.79).
Inserting BCs (1.62) into (1.78), we have

coskL = 0. (1.80)

Hence,
kL:ngmn(m:O,il,:I:Z,...). (1.81)
In (1.81), for instance, we have k = T3 for m =0 and k = —5r for m = —1.
Also, we have k = 37 for m = 1 and k = —37 for m = —2. These cases, however,

individually give linearly dependent solutions for (1.78). Therefore, to get a set of
linearly independent eigenfunctions, we may define k as positive. Correspondingly,
from (1.68), we get eigenvalues of

2= (2m+ 172 /4* (m=0,1,2,...). (1.82)

Also, inserting BCs (1.62) into (1.79), we have
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sinkL = 0. (1.83)
Hence,
kL=nn(n=1,2,3,...). (1.84)
From (1.68), we get
A=n’m?/1? = (2n)*7? /AL (n = 1,2,3,...), (1.85)

where we chose positive numbers n for the same reason as the above. With the
second equality of (1.85), we made eigenvalues easily comparable to those of
(1.82). Figure 1.3 shows the eigenvalues given in both (1.82) and (1.85) in a unit of
n? /4L

From (1.82) and (1.85), we find that A is positive definite (or strictly positive),
and so from (1.68), we have

k= . (1.86)

The next step is to normalize eigenfunctions. This step corresponds to appro-
priate choice of a constant a in (1.78) and (1.79) so that we can have

L L
1= [ y(x)y()de = [ |y(x)Pdc=1. (1.87)
—L —L
That is,
L L 1
1 =4al / cos’kxdx = 4|al* / 5 (1+ cos 2kx)dx
-L -L (1.88)

1 L
=2|al* |:X+ Z_kSin ka} = 4L|al*.
-L

Combining (1.87) and (1.88), we get

la| = ;\ﬁ (1.89)

(x 2 /4L?)
1 +w
01 4 9 16 25 e

Fig. 1.3 Eigenvalues of a differential Eq. (1.61) under boundary conditions given by (1.62). The
eigenvalues are given in a unit of 72/4L? on a real axis



18 1 Schrodinger Equation and Its Application

_1 1 i0
a_E\/ze , (1.90)

where 0 is any real number and e is said to be a phase factor. We usually set

Thus, we have

e = 1. Then, we have a = % \/% Thus for a normalized cosine eigenfunctions, we

get

y(x)\@coskx[kLg+mn (m:O,l,Z,...)} (1.91)

that corresponds to an eigenvalue 4= (2m+1)*n?/4L? (m=0,1,2,...). For
another series of normalized sine functions, similarly, we get

y(x) = \/%sinkx[kL =nn(n=1,2,3,...)] (1.92)

that corresponds to an eigenvalue 4 = (2n)°n%/4L* (n = 1,2,3,...).

Notice that arranging 4 in ascending order, we have even functions and odd
functions alternately as eigenfunctions corresponding to 4. Such a property is said
to be parity. We often encounter it in quantum mechanics and related fields. From
(1.61), we find that if y(x) is an eigenfunction, so is c¢y(x). That is, we should bear
in mind that the eigenvalue problem is always accompanied by an indeterminate
constant and that normalization of an eigenfunction does not mean the uniqueness
of the solution (see Chap. 8).

Strictly speaking, we should be careful to assure that (1.81) holds on the basis of
(1.80). It is because we have yet the possibility that k is a complex number. To see
it, we examine zeros of a cosine function that is defined in a complex domain. Here,
the zeros are (complex) numbers to which the function takes zero. That is, if
f(z0) =0, z¢ is called a zero (i.e., one of zeros) of f(z). Now, we have

1

coszEE(e"z+e’iz);z:x+iy(x,y:real). (1.93)

Inserting z = x + iy in cos z and rearranging terms, we get
1 - . _
cosz = E[cosx(e" +e ) +isinx(e” —e)]. (1.94)

For cosz to vanish, both its real and imaginary parts must be zero. Since
e’ +e7” > 0 for all real numbers y, we must have cosx = 0 for the real part to
vanish, i.e.,
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x:g+mn(m:0,j:1,ﬁ:2,...). (1.95)

Note in this case that sinx = %1 (3 0). Therefore, for the imaginary part to
vanish, e™ — e’ = 0. That is, we must have y = 0. Consequently, the zeros of cos z
are real numbers. In other words, with respect to zy that satisfies cos zp = 0, we have

ZO:ngmn(m:o,ﬂ,iz,...). (1.96)

The above discussion equally applies to a sine function as well.

Thus, we ensure that k is a nonzero real number. Eigenvalues A are positive
definite from (1.68) accordingly. This conclusion is not fortuitous but a direct
consequence of the form of a differential equation we have dealt with in combi-
nation with the BCs we imposed, i.e., the Dirichlet conditions. Detailed discussion
will follow in Sects. 1.4, 8.3, and 8.4 in relation to the Hermiticity of a differential
operator.

Example 1.2 A particle confined within a potential well.

The results obtained in Example 1.1 can immediately be applied to dealing with
a particle (electron) in a one-dimensional infinite potential well. In this case, (1.55)
reads as

7 d*y(x)
2m  dx?

+EY(x) =0, (1.97)

where m is a mass of a particle and E is an energy of the particle. A potential V is
expressed as

_ [0(-L<x<L),
V(x) = { oo (=L > x;x > L).
Rewriting (1.97), we have

2W(x m
ddli(z ) +2h—2Elﬂ(x):O (1.98)
with BCs
Y(L) =y(-L) =0. (1.99)

If we replace 4 of (1.61) with ZZ—QE, we can follow the procedures of Example. 1.1.
That is, we put
"
E —

T 2m

(1.100)
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with A = &2 in (1.68). For k, we use the values of (1.81) and (1.84). Therefore, with
energy eigenvalues, we get either

R (2m+1)7
E=— """ (m=0,1,2,... 1.101
. i (m=0,12.), (1.101)

to which y(x) = \/%coskx[kL =Z4+mn(m=0,1,2,...)] corresponds or

2 (2n)*n2
E=—-
2m AL

(n=1,2,3,...), (1.102)

to which y(x) = \/%sin kx[kL = nm (n = 1,2,3,...)] corresponds.

Since the particle behaves as a free particle within the potential well
(-L<x<L) and p = hik, we obtain

2 2
=P e
2m  2m
where
[ @Cm+1)n/2L (m=0,1,2,...),
~ | 2nm/2L (n=1,2,3,...).

The energy E is a kinetic energy of the particle.
Although in (1.97), ¥(x) =0 trivially holds, such a function may not be

regarded as a solution of the eigenvalue problem. In fact, considering that |y (x)|?
represents existence probability of a particle, ¥(x) = 0 corresponds to a situation
where a particle in question does not exist. Consequently, such a trivial case has
physically no meaning.

1.4 Quantum-Mechanical Operators and Matrices

As represented by (1.55), a quantum-mechanical operator corresponds to a physical
quantity. In (1.55), we connect a Hamiltonian operator to an energy (eigenvalue).
Let us rephrase the situation as follows:

PY =p¥. (1.103)

In (1.103), we are viewing P as an operation or measurement on a physical
system that is characterized by the quantum state . Operating P on the physical
system (or state), we obtain a physical quantity p relevant to P as a result of the
operation (or measurement).
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A way to effectively achieve the above is to use a matrix and vector to represent
the operation and physical state, respectively. Let us glance a little bit of matrix
calculation to get used to the quantum-mechanical concept and, hence, to obtain
clear understanding about it. In Part III, we will deal with matrix calculation in
detail from a point of view of a general principle. At present, a (2,2) matrix suffices.
Let A be a (2,2) matrix expressed as

A= <‘c‘ z) (1.104)

Let |/) be a (2,1) matrix, i.e., a column vector such that

W) = <;> (1.105)

Note that operating (2,2) matrix on a (2,1) matrix produces another (2,1) matrix.

Furthermore, we define an adjoint matrix AT such that

a c*
AT:<b* d*>, (1.106)

where a* is a complex conjugate of a. That is, Al isa complex conjugate transposed

matrix of A. Also, we define an adjoint vector (| or |z//)Jr such that

Wl =)= (). (1.107)

In this case, |1//>Jr also denotes a complex conjugate transpose of |y). The
notation |) and (| are due to Dirac. He named (/| and |¢) a bra vector and ket
vector, respectively. This naming or equivoque comes from that (/| - |@) = (Y | @)
forms a bracket. Thisis a (1,2) x (2,1) = (1, 1) matrix, i.e., a c-number (including
a complex number) and (i | @) represent an inner product. These notations are
widely used nowadays in the field of mathematics and physics.

Taking another vector |£) = (i

atwy =ty = (0 5 (5) = (meiad) s

According to the definition (1.107), we have

) and using a matrix calculation rule, we have

’AJW}T - <AT1//‘ = (ae* +cf*be* + df*). (1.109)
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Thus, we get

<AT¢‘ > (ae” +cf be” +df* )( ) = (ag +bh)e" + (cg+dh)f*. (1.110)

Similarly, we have

(| AS) = (e*f*)(i Z) <fl) = (ag+bh)e* + (cg + dh)f™. (1.111)

Comparing (1.110) and (1.111), we get
<AT¢ ’ 5> () | A8). (1.112)

Also, we have

(W | AG)" = (AL | ¥). (1.113)
Replacing A with At in (1.112), we get
<(AT) é> = <t// ’AT6>- (1.114)

From (1.104) and (1.106), obviously we have

(ahT = a. (1.115)
Then from (1.114) and (1.115), we have
Ay | ¢ = <tﬁ ‘ AT5> (€AY, (1.116)

where the second equality comes from (1.113) obtained by exchanging y and &
there. Moreover, we have a following relation:

aB) = BiaAT. (1.117)
The proof is left for readers. Using this relation, we have
(vl = ap)T= )] T= wyTat = ial = (ya | (1.118)

Making an inner product by multiplying |&) from the right of the leftmost and
rightmost sides of (1.118) and using (1.116), we get
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18 = (pal | &) = (w]afe).

This relation may be regarded as the associative law with regard to the symbol
of the inner product. This is equivalent to the associative law with regard to the
matrix multiplication.

The results obtained above can readily be extended to a general case where
(n,n) matrices are dealt with.

Now, let us introduce a Hermitian operator (or matrix) H. When we have

ccl”

H =H, (1.119)

H is called a Hermitian matrix. Then, applying (1.112) to the Hermitian matrix
H, we have

(Hty | &)= wime = (w |l ortay 1) = (y | Hle) = w1 me)
(1.120)

Also, let us introduce a norm of a vector |/) such that

Wl = v ). (1.121)

A norm is a natural extension for a notion of a “length” of a vector. The norm
||| is zero, if and only if |/) = O (zero vector). For, from (1.105) and (1.107), we
have

W)= lef + £

Therefore, (Y |Y) =0 e=f=0, ie.]yy) =0.
Let us further consider an eigenvalue problem represented by our newly intro-
duced notation. The eigenvalue equation is symbolically written as

HI) = Aly), (1122)

where H represents a Hermitian operator and |y/) is an eigenfunction that belongs to
an eigenvalue 4. Operating (/| on (1.122) from the left, we have

WIHY) = (blAl) = 2 | ) = 2, (1.123)

where we assume that |i) is normalized; namely (y | ) = 1 or ||| = 1. Notice
that the symbol “” in an inner product is of secondary importance. We may

disregard this notation as in the case where a product notation “x” is omitted by
denoting ab instead of a x b.
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Taking a complex conjugate of (1.123), we have
(W | Hyp)'= 7. (1.124)

Using (1.116) and (1.124), we have
7= myy= (v | ) = Hy) =2, (1.125)

where with the third equality we used the definition (1.119). The relation A* = 4
obviously shows that any eigenvalue / is real, if H is Hermitian. The relation
(1.125) immediately tells us that even though |¢) is not an eigenfunction, ( | Hy)
is real as well, if H is Hermitian. The quantity ( | Hy) is said to be an expectation
value. This value is interpreted as the most probable or averaged value of H
obtained as a result of operation of H on a physical state |{/). We sometimes denote
the expectation value as

(H) = {y | HY), (1.126)

where |¢/) is normalized. Unless |¢) is not normalized, it can be normalized on the
basis of (1.121) by choosing |®) such that

@) = [¥)/[[w]- (1.127)

Thus, we have an important consequence; if a Hermitian operator has an
eigenvalue, it must be real. An expectation value of a Hermitian operator is real as
well. The real eigenvalue and expectation value are a prerequisite for a physical
quantity.

As discussed above, the Hermitian matrices play a central role in quantum
physics. Taking a further step, let us extend the notion of Hermiticity to a function
space.

In Example 1.1, we have remarked that we have finally reached a solution where
A is a real (and positive) number, even though at the beginning we set no restriction
on /. This is because the SOLDE form (1.61) accompanied by BCs (1.62) is
Hermitian, and so eigenvalues 4 are real.

In this context, we give a little bit of further consideration. We define an inner
product between two functions as follows:

b

1f) = / ¢(0)"F)dr, (1.128)

a

where g(x)* is a complex conjugate of g(x); x is a real variable and an integration
range can be either bounded or unbounded. If @ and b are real definite numbers, [a,
b] is the bounded case. With the unbounded case, we have, e.g.,
(=00, 00), (=00, c),and (¢, 00), etc. where ¢ is a definite number. This notation
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will appear again in Chap. 8. In (1.128), we view functions f and g as vectors in a
function space, often referred to as a Hilbert space. We assume that any function f

is square-integrable, i.e., |f|* is finite. That is,

b
/V(X)\zdx<oo. (1.129)

Using the above definition, let us calculate (g | Df), where D was defined in
(1.63). Then, using the integration by parts, we have

(¢| Df) = /hg(X)* {d?x(;c)}dx g1+ /bg*/f’dx

a a

b

b
= —[g'/To+1g"fla— / g"fdv = [¢"f — g*f')l + / (—&""f)dx

a

= [g'f — &'/ +(Dg | ).

(1.130)
If we have BCs such that
£(b) =f(a) = 0and g(b)" = g(a)" = Oi.c.,g(b) = g(a) =0, (1.131)
we get
(¢ Df) = (Dg|f)- (1.132)

In light of (1.120), (1.132) implies that D is Hermitian. In (1.131), notice that the
functions f and g satisfy the same BCs. Normally, for an operator to be Hermitian
assumes this property. Thus, the Hermiticity of a differential operator is closely
related to BCs of the differential equation.

Next, we consider a following inner product:

b b
f1Df) = /ff”dx [f*f’]2+/f*’f’dxz—[f*f’]§+/|f’|2dx. (1.133)

Note that the definite integral of (1.133) cannot be negative. There are two
possibilities for D to be Hermitian according to different BCs.

(i) Dirichlet conditions: f(b) = f(a) = 0. If we could have f' = 0, (f | Df) would
be zero. But, in that case, f should be constant. If so, f(x) = 0 according to
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BCs. We must exclude this trivial case. Consequently, to avoid this situation,
we must have

/[f’|2dx>00r<f|Df> > 0. (1.134)

In this case, the operator D is said to be positive definite. Suppose that such a
positive-definite operator has an eigenvalue A. Then, for a corresponding eigen-
function y(x), we have

Dy(x) = Ay(x). (1.135)

In this case, we state that y(x) is an eigenfunction or eigenvector that corre-
sponds (or belongs) to an eigenvalue A. Taking an inner product of both sides, we
have

1 Dy) = | ay) = Ay | y) = 2Iy]I* or 2= (v | Dy)/IIyII*. (1.136)

Both (y | Dy) and ||y||* are positive and, hence, we have A > 0. Thus, if D has an
eigenvalue, it must be positive. In this case, 4 is said to be positive definite as well,
see Example 1.1.

(ii) Neumann conditions: f(b) = f’(a) = 0. From (1.130), D is Hermitian as well.
Unlike the condition (i), however, f may be a nonzero constant in this case.
Therefore, we are allowed to have

b
/V’\zdxzoor(f|Df>:O. (1.137)

For any function, we have
{f 1 Df) =0. (1.138)

In this case, the operator D is said to be nonnegative (or positive semi-definite).
The eigenvalue may be zero from (1.136) and, hence, is called nonnegative
accordingly.

(iii) Periodic conditions: f(b) = f(a) and f'(b) = f'(a). We are allowed to have
(f | Dfy >0 as in the case of the condition (ii). Then, the operator and
eigenvalues are nonnegative.

Thus, in spite of being formally the same operator, that operator behaves dif-
ferently according to the different BCs. In particular, for a differential operator to be
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associated with an eigenvalue of zero produces a special interest. We will encounter
another illustration in Chap. 3.

1.5 Commutator and Canonical Commutation Relation

In quantum mechanics, it is important whether two operators A and B are com-
mutable. In this context, a commutator between A and B is defined such that

[A, B] = AB — BA. (1.139)

If [A, B] = 0 (zero matrix), A and B are said to be commutable (or commutative).
If [A,B]#0, A and B are non-commutative. Such relationships between two
operators are called commutation relation.

We have canonical commutation relation as an underlying concept of quantum
mechanics. This is defined between a (canonical) coordinate g and a (canonical)
momentum p such that

9. p] = ih, (1.140)
where the presence of a unit matrix E is implied. Explicitly writing it, we have,
[q,p] = ihE. (1.141)

The relations (1.140) and (1.141) are called the canonical commutation relation.
On the basis of a relation p = %Z)%’ a brief proof for this is as follows:

ho ho ho ho
0.01) = (oo = plv) = (a5 =2 a) ) = g ) =2 o)
_ o) noq . b OW) R
=TT~ Ta T = ) = i)
(1.142)
Since |y) is an arbitrarily chosen vector, we have (1.140).
Using (1.117), we have
4, B = (4B — BA) = BTaT — ATBT. (1.143)

If in (1.143) A and B are both Hermitian, we have

A, B =BA —aB=—[A,B]. (1.144)



28 1 Schrodinger Equation and Its Application

If we have an operator G such that

' = —¢, (1.145)

G is said to be anti-Hermitian. Therefore, [A, B] is anti-Hermitian, if both A and
B are Hermitian. If an anti-Hermitian operator has an eigenvalue, the eigenvalue is
zero or pure imaginary. To show this, suppose that

Gly) = 2l¥), (1.146)

where G is an anti-Hermitian operator and |i/) has been normalized. As in the case
of (1.123), we have

WIGly) = A0 [ ) = 2. (1.147)
Taking a complex conjugate of (1.147), we have
(Y | Gy)Y'= A" (1.148)

Using (1.116) and (1.145) again, we have

7 =wlew'=(v|clw) = —wi6w = (1.149)

This shows that / is zero or pure imaginary.

Therefore, (1.142) can be viewed as an eigenvalue equation to which any
physical state [j/) has a pure imaginary eigenvalue i7i with respect to [g, p]. Note
that both ¢ and p are Hermitian (see Sect. 8.2, Example 8.3), and so [g, p] is anti-
Hermitian as mentioned above. The canonical commutation relation given by
(1.140) is believed to underpin the uncertainty principle.

In quantum mechanics, it is of great importance whether a quantum operator is
Hermitian or not. A position operator and momentum operator along with an an-
gular momentum operator are particularly important when we constitute
Hamiltonian. Let f and g be arbitrary functions. Let us consider, e.g., a following
inner product with the momentum operator.

b
o) = [ o d L lax (1.150)

a

where the domain [a, b] depends on a physical system; this can be either bounded or
unbounded. Performing integration by parts, we have



1.5 Commutator and Canonical Commutation Relation 29

oo
S
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oo’
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*
=
K
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0o’
=
=
|
=
=
&

, (1.151)

=2150)70) ~ s+ [ |7 6] sa

a

If we require f(b) = f(a) and g(b) = g(a), the first term vanishes and we get

b
lon = [ [352e0] roaa=we 1. (1152)

a

Thus, as in the case of (1.120), the momentum operator p is Hermitian. Note that
a position operator g of (1.142) is Hermitian as a priori assumption.

Meanwhile, the angular momentum operator L, is described in a polar coordinate
as follows:

Lo

e (1.153)

where ¢ is an azimuthal angle varying from O to 2z. The notation and implication
of L, will be mentioned in Chap. 3. Similarly as the above, we have

2n
(¢ 1) = eCrys2m) - 20O+ [ [4e00] s06. (115
0

Requiring an arbitrary function f to satisfy a BC f(27) = f(0), we reach

(8 | Lf) = (Lg | £)- (1.155)

Note that we must have the above BC, because ¢ = 0 and ¢p = 27 are spatially
the same point. Thus, we find that L, is Hermitian as well on this condition.

On the basis of aforementioned argument, let us proceed to quantum-mechanical
studies of a harmonic oscillator. Regarding the angular momentum, we will study
their basic properties in Chap. 3.

Reference

1. Mgller C (1952) The theory of relativity. Oxford University Press, London



Chapter 2
Quantum-Mechanical Harmonic
Oscillator

Quantum-mechanical treatment of a harmonic oscillator has been a well-studied
topic from the beginning of the history of quantum mechanics. This topic is a
standard subject in classical mechanics as well. In this chapter, first we briefly
survey characteristics of a classical harmonic oscillator. From a quantum-
mechanical point of view, we deal with features of a harmonic oscillator through
matrix representation. We define creation and annihilation operators using position
and momentum operators. A Hamiltonian of the oscillator is described in terms of
the creation and annihilation operators. This enables us to easily determine energy
eigenvalues of the oscillator. As a result, energy eigenvalues are found to be
positive definite. Meanwhile, we express the Schrodinger equation by the coordi-
nate representation. We compare the results with those of the matrix representation
and show that the two representations are mathematically equivalent. Thus, the
treatment of the quantum-mechanical harmonic oscillator supplies us with a firm
ground for studying basic concepts of the quantum mechanics.

2.1 Classical Harmonic Oscillator
Classical Newtonian equation of a one-dimensional harmonic oscillator is expres-
sed as

dzx(t)
dr?

= —sx(), (2.1)

m

where m is a mass of an oscillator and s is a spring constant. Putting s/m = w?, we
have
d*x(1) 2
+ wx(t) = 0. 2.2
o+ o) 22)
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In (2.2), we set w positive, namely
o =/s/m, (2.3)

where o is called an angular frequency of the oscillator.

If we replace w® with A, we have formally the same equation as (1.61). Two
linearly independent solutions of (2.2) are the same as before (see Example 1.1); we
have €' and e (w # 0) as such. Note, however, that Example 1.2 we were
dealing with a quantum state related to existence probability of a particle in a
potential well. In (2.2), on the other hand, we are examining a position of harmonic
oscillator undergoing a force of a spring. We are thus considering a different
situation.

As a general solution, we have

x(t) = ae™ + be ", (2.4)

where a and b are suitable constants. Let us consider BCs different from those of
Examples 1.1 or 1.2 this time. That is, we set BCs such that

x(0) = 0 and X' (0) = vo (vo > 0). (2.5)

Notice that (2.5) gives initial conditions (ICs). Mathematically, ICs are included
in BCs (see Chap. 8). From (2.4), we have

x(t) =a+b=0and ¥(0) = iw(a — b) = vy. (2.6)

Then, we get a = —b = vy /2iw. Thus, we get a simple harmonic motion as a
solution expressed as

x(1) = 2\:% (e — ™) = vaosin wt. (2.7)

From this, we have
[
E:K—&—V:Emvo. (2.8)

In particular, if vy = 0, x(¢) = 0. This is a solution of (2.1) that has the meaning
that the particle is eternally at rest. It is physically acceptable as well. Notice also
that unlike Examples 1.1 and 1.2, the solution has been determined uniquely. This
is due to the different BCs.

From a point of view of a mechanical system, mathematical formulation of the
classical harmonic oscillator resembles that of electromagnetic fields confined
within a cavity. We return this point later in Sect. 7.6.
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2.2 Formulation Based on an Operator Method

Now let us return to our task to find quantum-mechanical solutions of a harmonic
oscillator. Potential V is given by

1 1
V(g) = 554" = smo’q, (2.9)
where ¢ is used for a one-dimensional position coordinate. Then, we have a clas-
sical Hamiltonian H expressed as

2 2
14 p L 5,
H="—+V(g) =—+ = . 2.10
o TV (@) =5+ smw’q (2.10)
Following the formulation of Sect. 1.2, the Schrédinger equation as an eigen-
value equation related to energy E is described as

Hy(q) = Ey(q) or

H2 ) 1 - (2.11)
__ — =F .

2 VU (9) + 5morqylq) = Ev(q)

This is a SOLDE and it is well known that the SOLDE can be solved by a power
series expansion method.

In the present studies, however, let us first use an operator method to solve the
eigenvalue Eq. (2.11) of a one-dimensional oscillator. To this end, we use a
quantum-mechanical Hamiltonian where a momentum operator p is explicitly
represented. Thus, the Hamiltonian reads as

p2

1
H ="+ -mo*q. 2.12
3 T MO (2.12)
The equation of (2.12) is formally the same as (2.10). Note, however, that in
(2.12) p and g are expressed as quantum-mechanical operators.
As in (1.126), we first examine an expectation value (H) of H. It is given by

1) = i) = (00 ) + (gt
s

= o (ptulpw )+ ymo? (qhwlaw) = 5 (pwlpw) + S me(aylan)

1 1
=5 IpYIP + Smo?aw|* >0, (2.13)
where again we assumed that |\/) has been normalized. In (2.13), we used the

notation (1.126) and the fact that both ¢ and p are Hermitian. In this situation, (H)
takes a nonnegative value.



34 2 Quantum-Mechanical Harmonic Oscillator

In (2.13), the equality holds if and only if |py/) = 0 and |gy) = 0. Let us specify
a vector |i,) that satisfies these conditions such that

Ip¥o) = 0 and |gy) = 0. (2.14)

Multiplying g from the left on the first equation of (2.14) and multiplying p from
the left on the second equation, we have

qple) = 0 and pq|g) = 0. (2.15)

Subtracting the second equation of (2.15) from the first equation, we get

(ap — Pa) o) = iil,) =0, (2.16)

where with the first equality we used (1.140). Therefore, we would have
[Wo(q)) = 0. This leads to the relations (2.14). That is, if and only if |/,(g)) = 0,
(H) = 0. But, since it has no physical meaning, |,(q)) = 0 must be rejected as
unsuitable for the solution of (2.11). Regarding a physically acceptable solution of
(2.13), (H) must take a positive-definite value accordingly. Thus, on the basis of the
canonical commutation relation, we restrict the range of the expectation values.

Instead of directly dealing with (2.12), it is well known to introduce following
operators [1]:

mo i
a=/—q+ 2.17
Vit ot (2.17)
and its adjoint (complex conjugate) operator
t_ mo i
a' = |=—q— . 2.18
TAA w4 (2.18)

Notice here again that both g and p are Hermitian. Using a matrix representation
for (2.17) and (2.18), we have

<‘1T) _(VE T (q> (2.19)
a ’;_%) _\/Zrlnhw p

Then, we have

ata = (2mhiw) ™ (mwq — ip)(moq + ip)
= (2mho) ! M’ o’ + p* + imo(gp — pq)]

1 1 1 1
= (hw)™" [zmwzq2 + %pz + 2iwih} = (hw)™! <H — 2hw), (2.20)
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where the second last equality comes from (1.140). Rewriting (2.20), we get

1
H = fhoala+ Sho. (2.21)

Similarly, we get

H = hoaal — %hw (2.22)
Subtracting (2.22) from (2.21), we have
0 = hwala — hwaa® + no. (2.23)
That is,
[a,aw =1lor [a,aw =E. (2.24)

Furthermore, using (2.21), we have

[H, aw = hw [aTa + %,aq = ha)(aJraa]L — aTaTa) = hwaJr {a, aw = hwaT.
(2.25)

Similarly, we get
[H,a] = —hwa. (2.26)

Next, let us calculate an expectation value of H. Using a normalized function
[y/), from (2.21), we have

WIHIY) = Wlhoata+ Sholy) = hotla ) + 3 holy) .
= holay|ap) + %hco = hollay|* + %hw > %ha) '

Thus, the expectation value is equal to or larger than %hw This is consistent with
that an energy eigenvalue is positive definite as mentioned above. Equation (2.27)
also tells us that if we have

lap,) =0, (2.28)

we get

WolHg) = 30, (2.29)
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Equation (2.29) means that the smallest expectation value is %h(u on the con-
dition of (2.28). On the same condition, using (2.21), we have

Hlfo) = hooalalfo) + 3 ol = 5 holiy). (230)

Thus, [y,) is an eigenfunction corresponding to an eigenvalue o = Eo, which
is identical with the smallest expectation value of (2.29). Since this is the lowest
eigenvalue, |i/,) is said to be a ground state. We ensure later that |y, is certainly an
eligible function for a ground state.

The above method is consistent with the variational principle [2] which stipu-
lates that under appropriate BCs an expectation value of Hamiltonian estimated
with any arbitrary function is always larger than or equal to the smallest eigenvalue
corresponding to the ground state.

Next, let us evaluate energy eigenvalues of the oscillator. First we have

1
HlYy) = Ehww/o) = Eolo)- (2.31)
Operating al on both sides of (2.31), we have
atHlyo) = a Eolyy). (232)
Meanwhile, using (2.25), we have
aTHly) = (Hal = noal ) ). (2.33)
Equating RHSs of (2.32) and (2.33), we get
Hal o) = (o + oo)a | s). (2.34)

This implies that aTWO) belongs to an eigenvalue (Ey + hiw), which is larger

than Ej as expected. Again multiplying al on both sides of (2.34) from the left and
using (2.25), we get

H(a o) = (Eo +2h00)(al )|hy). (2.35)

This implies that (aT)2|xﬁ0) belongs to an eigenvalue (E+ 2fiw). Thus,
repeatedly taking the above procedures, we get

H(a)"|o) = (Eo +nhaor) (@) ). (2.36)
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Thus, (aT)"|lﬁ0> belongs to an eigenvalue
1
E, = (Ey+nhow) = (n + 5) ho, (2.37)

where E, denotes an energy eigenvalue of the nth excited state. The energy
eigenvalues are plotted in Fig. 2.1.

Our next task is to seek normalized eigenvectors of the nth excited state. Let ¢,
be a normalization constant of that state. That is, we have

W) = ealal)" W), (2.38)

where |i),) is a normalized eigenfunction of the nth excited state. To determine c,,

let us calculate a|i),,). This includes a factor a(aT)". We have

“(aT)n = (aaT - aTa) (aJr)”_l +aTa(aT)"—l
a,an(
n—1

= [ al)y'! JraTa(aT)’h1 = (aT)n*1 +aTa(aT)"7l
~ (afy-
2
2

)

Tyt yqf [a, aT} @2+ (ah)a(aty 2
(al)'™" + (@) a(al)"

=2(al)"" + (@l [a,al| (@) + (@) a(al ™
3(al)" !+ (afYa(al)?

(2.39)

n—
n—

+(

In the above procedures, we used {a, aw = 1. What is implied in (2.39) is that a

coefficient of (aJr)"*1 increased one by one with a transferred toward the right one
by one in the second term of RHS. Notice that in the second term a is sandwiched

such that (aT)ma(aT)n_m (m=1,2,...). Finally, we have

a(aT)" = n(ajf)"_1 + (aT)"a. (2.40)

Fig. 2.1 Energy eigenvalues (x hw)
of a quantum-mechanical
harmonic oscillator on a real

axis

N =
N w
N Ul
|
N O
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Thus, we get

al,) = caalal)' o) = eu|n(a )" + (al)'a jyo) = cun(al )" o)

(2.41)
=n (@) o) = n ),

where the third equality comes from (2.28).
Next, operating a on (2.40), we get
az(aT)" = na(a]L)"_1 +a(aT)"a
—n [(n D+ (aT)"*la} +a(al)a (2.42)
=n(n — 1)(aT)"72 + n(aT)"fla —|—a(aT)na.

Operating another a on (2.42), we get

a (aT)" =n(n— l)a(aT)’“2 + na(aT)"fla + az(aT)"a
=nn—1)|(n— 2)(a]L)"_3 + (aT)"_za} + na(aT)"_la +d° (aT)"a

=n(n—1)(n— 2)(aJr)"73 +n(n— 1)(aJr)"72a —i—na(aT)"*la +a2(aT)"a

(2.43)

To generalize the above procedures, operating @ on (2.40) m(<n) times, we get
am(aT)" =nn—1)(n—-2)...(n—m+ 1)(aT)'H" +f(a,aT)a, (2.44)

where m<n and f(a,aT) is a polynomial of al that has a power of a as a

coefficient. Further operating (| and |i/,) from the left and right on both sides of
(2.44), respectively, we have

(Wola™ (@) o) = n(n — 1)(n = 2)....(n — m+ 1) (ol (@)™ o)
+ (ol (aa" ) aly) (245)
— n(n—1)(n —2)...(n — m+ 1) {Wol(a )" W),

Note that in (2.45) <lp0[f(a, aT)a|¢o> vanishes because of (2.28).
Meanwhile, taking adjoint of (2.28), we have
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(hola’ = 0. (2.46)
Operating af (n —m — 1) times from the right of LHS of (2.46), we have

(Wol(ah) ™ = 0.

Further operating |y,) from the right of the above equation, we get
(Wol(al )" ") = 0.
Therefore, from (2.45), we get
(Wola" (al)" i) = 0. (2:47)
Taking adjoint of (2.47) once again, we have

(Wola"(a)" o) = 0. (2.48)

Equation (2.48) can be obtained by repeatedly using (1.117). From (2.45) and
(2.48), we get

Wola™ (@Y o) = 0, whenm # n. (2.49)

If m = n, from (2.45), we get

(Wola" (@) o) = nl{Wolo)- (2.50)
If we assume that |i),) is normalized; i.e., (Y|} = 1, (2.50) is expressed as
(Wola" (@l o) = ! (2.51)

From (2.51), if we put

.
) = —=(al)o), (2.52)
then we have
1
W, | = \/—77!<lﬁo|a”-

Thus, from (2.49) and (2.52), we get



40 2 Quantum-Mechanical Harmonic Oscillator

At the same time, for ¢, of (2.38), we get

1
G =—=. 2.54
= (2.54)
Notice here that an undetermined phase factor e (0 : real) is intended such that
L o
Cp =—=¢
vn!

But, ¢’ is usually omitted for the sake of simplicity. Thus, we have constructed a
series of orthonormal eigenfunctions |i/,,).
Furthermore, using (2.41) and (2.54), we get
a‘lpn> = \/ﬁ|lpn71>' (255)
From (2.36), we get
H|y,) = (Eo +nhw)|,). (2.56)

Meanwhile, from (2.21), we have
HY,) = (hwaTa +E0> ). (2.57)
Equating RHSs of (2.56) and (2.57), we get
alaly,) = nly,). (2.58)

Thus, we find that an integer » is an eigenvalue of ala when it is evaluated with

respect to |y,,). For this reason, alais called a number operator. Notice that atais
Hermitian because we have

(aJra)Jr = aJr(a]L)Jr = aTa, (2.59)

where we used (1.115) and (1.117).
Moreover, from (2.55) and (2.58),

dlaly,) = Vnal|,,) = nlw,). (2.60)

Thus,

'Y, 1) = val,). (2.61)
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Or replacing n with n+ 1, we get

ally,) = VAt 1y, ). (2:62)

As implied in (2.55) and (2.62), we find that operating a on |,) lowers an
energy level by one and that operating al on [,,) raises an energy level by one. For

this reason, a and al are said to be an annihilation operator and creation operator,
respectively.

2.3 Matrix Representation of Physical Quantities

Equations (2.55) and (2.62) clearly represent the relationship between an operator
and eigenfunction (or eigenvector). The relationship is characterized by

(Matrix) x (Vector) = (Vector). (2.63)

Thus, we are now in a position to construct this relation using matrices.
From (2.53), we should be able to construct basis vectors using a column vector
such that

) = (2.64)

I eNoBaolollS
I eNeNel =
I eNel S =]

Notice that these vectors form a vector space of an infinite dimension. The

orthonormal relation (2.53) can easily be checked. We represent a and al so that
(2.55) and (2.62) can be satisfied. We obtain

01 0 0 0
00 V2 0 0
00 0 V30

a=1 000 0 2 (2.65)
000 00
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Similarly,
0O 0 0 00
1 0 0 0O
i 0 v2 0 0 0
a' = 0 0 \/§ 0 0 (2.66)
00 0 20

Note that neither @ nor ! is Hermitian.
Since a determinant of the matrix of (2.19) is —i/% # 0, using its inverse matrix
we get

q , . a

2maw 2mae
( ) _ ;V . <aT ) (2.67)
That is, we have

q= ZZw(a +aJ[) and p = %\/m—zg(a - aT). (2.68)

With the inverse matrix, we will deal with it in Part III. Note that g and p are
both Hermitian. Inserting (2.65) and (2.66) into (2.68), we get

01 0 0 0
1 0 V2 0 0
10 V2 0 V30
00 0 2 0
0 -1 0 0 0
1 0 =2 0 0
mho | 0 V2 0 —V/3 0 -
p= 5 00 V3 0o -2 ... |- (2.70)
00 0

Equations (2.69) and (2.70) obviously show that g and p are Hermitian. We can
derive various physical quantities from these equations. For instance, following
matrix algebra Hamiltonian H can readily be calculated. The result is expressed as
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10 0 0 O
03 0 0 O
2
p 1 ,, ho| 0 0O 5 0 O
0O 0 0 0 9

Looking at (2.69-2.71), we immediately realize that although neither g or p is
diagonalized, H is diagonalized. The matrix representation of (2.71) is said to be a
representation that diagonalizes H. This representation is of great practical use. In
fact, using (2.64), we get, e.g.,

100 00 0 0 0
030 00 0 0 0

sl 005 00 B B I R
H) =510 00 7 0 ol=2 o2 |0
000 009 0 0 0

=200 = (5 +2) ol
(2.72)

This clearly means that the second-excited state |y,) has an eigenenergy
(% +2)hw. More generally, we find that |y,) has an eigenenergy (% —|—n)hw as
already shown in (2.36) and (2.56).

Furthermore, let us confirm the canonical commutation relation of (1.140).
Using (2.68), we have

qp — pq = % \/%\/mzz{(a+cﬁ) (a — aT) - (a - aT> (a+aT)} (2.73)
_ % (~2) - (aaT _ ana) —in {a,aw = ih = ihE,

where with the second last equality we used (2.24) and the identity matrix of an
infinite dimension E is given by

&)
Il

(2.74)

N eNoloNall S
N eNoh o)
OO~ OO
SO~ O OO
= OO0 OO
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Thus, the canonical commutation relation holds with the quantum-mechanical

harmonic oscillator. This can be confirmed directly from (2.69) and (2.70). The
proof is left for readers as an exercise.

2.4 Coordinate Representation of Schriodinger Equation

The Schrodinger equation has been given in (1.55) or (2.11) as a SOLDE form. In
contrast to the matrix representation, (1.55) and (2.11) are said to be coordinate
representation of Schrodinger equation. Now, let us derive a coordinate represen-
tation of (2.28) to obtain an analytical solution.

On the basis of (1.31) and (2.17), a is expressed as

g fme _\/@+ i Eé_\/m_'w+,/h§
N2 et N 20T amreiog - N 20T\ 2mewdg
(2.75)

Thus, (2.28) reads as a following first-order linear differential equation (FOLDE):

<\/:/—a—>w<> 276)

Or
ma h alﬁo(‘l)_
V3 a0@) g =0 @)
This is further reduced to
Nylg) | mo _
5a T awala) = 0. (278)

From this FOLDE form, we anticipate the following solution:

Wo(q) = Noe ™7, (2.79)

where Ny is a normalization constant and o is a constant coefficient. Putting (2.79)
into (2.78), we have

(—2g+ mqu)Noe*“qz —0. (2.80)
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Hence, we get
o0=—". (2.81)

Thus,

_mao

Yo(q) = Noe 57 (2.82)

The constant Ny can be determined by the normalization condition given by
/ Wo(q)|*dg = 1 or Ng / e T dg = 1. (2.83)
oo %

Recalling the following formula:

7 e dg = \/f (c>0), (2.84)

we have
r 7
0 g = (| L 2.85
[ etrag= (2.85)

To get (2.84), putting [ = [*_e~*¢dq, we have

o0

o0 o0 oo

I’ = /e_c"qu /e_”zds = / e"'(qzﬂz)dqu

—00 —00 —00

00 2n 00 2n
z/e*crzrdr/dHZ /e*ﬂRdR/dgzg,
0 0 0 0

where with the third equality we converted two-dimensional Cartesian coordinate to
polar coordinate; take ¢ = r cos ), s = r sinf and convert an infinitesimal area
element dgds to dr - rdf. With the second last equality of (2.86), we used the
variable transformation of 7> — R. Hence, we get [ = \/¥

(2.86)

N —

Thus, we get

maw ma

No = (E) v and Y, (q) = (E) 1/467%(]2. (2.87)



46 2 Quantum-Mechanical Harmonic Oscillator

Also, we have

Tf mw - w i b
V2 ? w/—zmhwp V20! e 1861 \/ Vzm
2 88)

From (2.52), we get

bule) ==l Yl = (@ Sy &]) olg

(2.89)
- (5" (q - m—wa—q) Vo(a).
Putting
= /mo/hand & = pg, (2.90)

we rewrite (2.89) as

) =v(5) = (%)/ (¢~ 52) wota
Y

V) ()

Comparing (2.81) and (2.90), we have

=" (2.92)

Moreover, putting

_ 1 /mow 1/4_ B
M = 2nn!(ﬁ) _\/E (2.93)

we get

v (E/B) = (é - %)"e-%fz. (2.94)
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We have to normalize (2.94) with respect to a variable £. Since y,(q) has
already been normalized as in (2.53), we have

/ W, (q)Pdg = 1. (2.95)

Changing a variable ¢ to &, we have

1

; / Wa(E/B)RdE = 1. (2.96)

—00

Let us define %(é) as being normalized with ¢. In other words, ¥,(q) is

converted to 1, (£) by means of variable transformation and concomitant change in
normalization condition. Then, we have

¥, (8] d&=1. (2.97)

Comparing (2.96) and (2.97), if we define %(f) as

W, (6) = \ﬁwn@/m, (2.98)

wNn(é) should be a proper normalized function. Thus, we get

— o N e o~ [ 1
Wn(f):Nn(f—a—é> e with N, = PRy TeeE (2.99)

Meanwhile, according to a theory of classical orthogonal polynomial, the
Hermite polynomials H,(x) are defined as [3]

a

Hn(x) = (_l)nexz Ao

(e—xz) (n>0), (2.100)

where H,(x) is a nth-order polynomial. We wish to show the following relation on
the basis of mathematical induction:

W, (&) = NyHy(E)e ™. (2.101)
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Comparing (2.87), (2.98), and (2.99), we make sure that (2.101) holds with
n =0. When n = 1, from (2.99), we have

~ d N (2.102)
=R G (7)o = e ¥

Then, (2.101) holds with n = 1 as well.
Next, from supposition of mathematical induction, we assume that (2.101) holds
with n. Then, we have

) ¥ e R
J(”—">( -5 (o]
(é ([ T )]
n+1 (5__””;; }
n+1 {%dé”< ) [ ;;(efézﬂ}
Sl

NTE { az 7) - ddf" (%)~ ;;Tl (ef)}

— 1 122 d _
J— N o (e)
dn+l ) ) o B
:Nn+1 |:< 1)"+1ecz f"+1 <Ci€2):|ei%§2 - n+IH”+l(x)eiégz'

(2.103)
This means that (2.101) holds with n + 1 as well. Thus, it follows that (2.101) is

true of n that is zero or any positive integer.
Orthogonal relation reads as

/ Y (&) Y ()AE = Sy, (2.104)

Placing (2.98) back into the function form ¥, (¢), we have

q) = /B, (Bq). (2.105)
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Using (2.101) and explicitly rewriting (2.105), we get

mon 1/4 1 mo o 2
=(— - g e 5 (n =
Vu(q) = ( ; ) ‘/nl/zznn!H”O/ - q)e H(n=0,1,2,...).  (2.106)

We tabulate first several Hermite polynomials H,(x) in Table 2.1, where the
index n represents the highest order of the polynomials. In Table 2.1, we see that
even functions and odd functions appear alternately (i.e., parity). This is the case
with 1, (¢) as well, because ¥, (q) is a product of H,,(x) and an even function e %4 .

Combining (2.101) and (2.104), the orthogonal relation between

%(5) (n=0,1,2,...) can be described alternatively as [3]

oo

/ e Hyy(E)H, (E)dE = /72" 1S . (2.107)

—00

Note that H,,(¢) is a real function, and so H,,(¢)* = H,,(&). The relation (2.107)

is well known as the orthogonality of Hermite polynomials with e~ taken as a
weight function [3]. Here, the weight function is a real and nonnegative function
within the domain considered [e.g., (—oo, +00) in the present case] and inde-
pendent of indices m and n. We will deal with it again in Sect. 8.4.

The relation (2.101) and the orthogonality relationship described as (2.107) can
more explicitly be understood as follows: From (2.11), we have the Schrodinger
equation of a one-dimensional quantum-mechanical harmonic oscillator such that

R dulg) 1,5,
Tom dg? + Fmo'q u(q) = Eu(q). (2.108)

Changing a variable as in (2.90), we have

- dzui(f) +Eu(E) = 2o u(e). (2.109)
Defining a dimensionless parameter
2E
A= T (2.110)
Table 2.1 First six Hermite X =1
polynomials ) —2x
x) =4x% -2

8
= 16x* — 48x* + 12
32x° — 160x° + 120x
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and also defining a differential operator D such that
D=——+&, (2.111)
we have a following eigenvalue equation:
Du(&) = Au(&). (2.112)
We further consider a following function v(&) such that
u(&) = v(&)e 72, (2.113)

Then, (2.109) is converted as follows:

d*v(¢ dv()] 2 2
. d"é} +2e e = o e, (2.114)

Since e~ does not vanish with any &, we have

3 dzv(é)
de?

428 dfi(f) — (= )@, (2.115)

If we define another differential operator D such that

~ d d

D=—— +26—, 2.116
we have another eigenvalue equation

Dv(&) = (4 —1)w(&). (2.117)

Meanwhile, we have a following well-known differential equation:

d*H, (&)
de?

dH, (&)

—2¢ iz

+2nH,(¢) = 0. (2.118)

This equation is said to be Hermite differential equation. Using (2.116), (2.118)
can be recast as an eigenvalue equation such that

DH, (&) = 2nH,(&). (2.119)
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Therefore, comparing (2.115) and (2.118) and putting
A=2n+1, (2.120)
we get
V(&) = cHu($), (2.121)

where c is an arbitrary constant. Thus, using (2.113), for a solution of (2.109), we
get

up(&) = cHy(6)e <72, (2.122)

where the solution u(¢) is indexed with n. From (2.110), as an energy eigenvalue,

we have
E —1—1 h
= (n+ = ho.
2

Thus, (2.37) is recovered. A normalization constant ¢ of (2.122) can be decided
as in (2.106).

As discussed above, the operator representation and coordinate representation
are fully consistent.

2.5 Variance and Uncertainty Principle

Uncertainty principle is one of most fundamental concepts of quantum mechanics.
To think of this conception on the basis of a quantum harmonic oscillator, let us
introduce a variance operator [4]. Let A be a physical quantity and let (A) be an
expectation value as defined in (1.126). We define a variance operator as

((@ay),
where we have
A=A — (A). (2.123)

In (2.123), we assume that (A) is obtained by operating A on a certain physical
state |/). Then, we have

<(AA)2> = <(A - <A>)2> = <A2 —2(A)A+ (A)2> = (AY—(A)%. (2.124)



52 2 Quantum-Mechanical Harmonic Oscillator

If A is Hermitian, AA is Hermitian as well. This is because

(AA)T :AT — (A=A — (A) = AA, (2.125)
where we used the fact that an expectation value of an Hermitian operator is real.
Then, <(AA)2> is nonnegative as in the case of (2.13). Moreover, if |i) is an

eigenstate of A, <(AA)2> = 0. Therefore, <(AA)2> represents a measure of how

large measured values are dispersed when A is measured in reference to a quantum
state [}). Also, we define a standard deviation 0A as

A = <(AA)2>. (2.126)
We have a following important theorem on a standard deviation JA [4].
Theorem 2.1 Let A and B be Hermitian operators. If A and B satisfy
[A, B] = ik (k : non-zero real number), (2.127)
then we have
0A - OB > |k|/2 (2.128)
in reference to any quantum state ).
Proof We have
[AA,AB] = [A — (|AlY), B — (Y|B|Y)] = [A, B] = ik. (2.129)

In (2.129), we used the fact that (|A|y) and (¥|B|y) are just real numbers and
those commute with any operator. Next, we calculate a following quantity in
relation to a real number A:

1(AA +iZAB) W) ||* = (|(AA — i2AB)(AA +idA) )

2.130
= (V[(AA)* 1Y) — KA+ (Y|(AB)*|9) 2%, 2120

where we used the fact that AA and AB are Hermitian. For the above quadratic form
to hold with any real number A, we have

(—K)* — 4| (AA) [Y) (W (AB)*|y) <. (2.131)

Thus, (2.128) will follow.
On the basis of Theorem 2.1, we find that both 6A and B are positive on
condition that (2.127) holds. We have another important theorem.
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Theorem 2.2 Let A be an Hermitian operator. The necessary and sufficient con-
dition for a physical state |\y,) to be an eigenstate of A is 0A = 0.

Proof Suppose that [/,) is a normalized eigenstate of A that belongs to an
eigenvalue a. Then, we have

<¢0|A2¢0> = a(Yo|Ay) = 2<‘P0|‘//0> =a’,

2.132
WolAdo)? = lalolfo) = (2.132)

From (2.124) and (2.126), we have
<1p0|(AA)2¢0> —0 ie dA=0. (2.133)

Note that JA is measured in reference to |i,). Conversely, suppose that 0A = 0.
Then,

=/ (Wol(B4) o ) = /(AL [AAY) = (Ao, (2.134)

where we used the fact that AA is Hermitian. From the definition of norm of (1.121),
for 0A = 0 to hold, we have

AAYy = (A= (A)y =0 ie. Ay = (A)hg. (2.135)

This indicates that v, is an eigenstate of A that belongs to an eigenvalue (A).
This completes the proof.

Theorem 2.1 implies that (2.127) holds with any physical state |\/). That is, we
must have dA > 0 and 0B > 0, if JA and JB are evaluated in reference to any |)
on condition that (2.127) holds. From Theorem 2.2, in turn, it follows that eigen-
states cannot exist with A or B under the condition of (2.127).

To explicitly show this, we take an inner product of (2.127). That is, with
Hermitian operators A and B, consider the following inner product:

(WA, Bll) = (blikly) e (V|AB — BA) = ik, (2.136)

where we assumed that |1y) is arbitrarily chosen normalized vector. Suppose now
that |y,) is an eigenstate of A that belongs to an eigenvalue a. Then, we have

Alho) = aliby). (2.137)
Taking an adjoint of (2.137), we get
(WolAT = (Wola = (Wola" = alo]. (2.138)

where the last equality comes from the fact that A is Hermitian. From (2.138), we
would have
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(YolAB — BA|yg) = (YolAB[o) — (ol BA|Yy)
= (YolaBlyo) — (Yo|Balhy) = a{yro|Blg) — aliby|Blrg) = 0.

This would imply that (2.136) does not hold with |), in contradiction to
(2.127), where ik # 0. Namely, we conclude that any physical state cannot be an
eigenstate of A on condition that (2.127) holds. Equation (2.127) is rewritten as

(W|BA — ABJY) = —ik. (2.139)

Suppose now that |¢@,) is an eigenstate of B that belongs to an eigenvalue b.
Then, we can similarly show that any physical state cannot be an eigenstate of B.

Summarizing the above, we restate that once we have a relation
[A,B] = ik (k # 0), their representation matrix does not diagonalize A or B. Or,
once we postulate [A, B] = ik(k # 0), we must abandon an effort to have a repre-
sentation matrix that diagonalizes A and B. In the quantum-mechanical formulation
of a harmonic oscillator, we have introduced the canonical commutation relation
(see Sect. 2.3) described by [g,p] = ifi (1.140). Indeed, neither ¢ nor p is diago-
nalized as shown in (2.69) or (2.70).

Example 2.1 Taking a quantum harmonic oscillator as an example, we consider
variance of ¢ and p in reference to |{,) (n =0,1,...). We have

((A0)°) = (Wl lvs) = (i laly,) (2.140)
Using (2.55) and (2.62) as well as (2.68), we get

h
Walglt,) = /(W la+ally,)
! 2me (2.141)

= h—n<‘//n71|wn>+ h(n+1)<¢n|wn+l> :Oa

2mo 2mm

where the last equality comes from (2.53). We have

h h
2_ " T2 —
1 me(a+a) 2mw

[az +E+2ata+ (aT)z}, (2.142)

where E denotes a unit operator and we used (2.24) along with the following
relation:

aad’ = aa’ —ala+ala= [a, aw tala=E+dla (2.143)
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Using (2.55) and (2.62), we have

Wl = 5o [Wal) + 200 ala, ] = 5 —(an+ 1), (2144

where we used (2.60) with the last equality. Thus, we get

((8aP) = la,) — Wlal)P= 5 (20 1),

Following similar procedures to those mentioned above, we get

mhw

(Walpla) = 0 and (g, [p*|W,) === (2n+1). (2.145)

Thus, we get

mhw

()} = WP} = "2 (2n+1),

Accordingly, we have

5q-op = \/<(Aq)2> : \/<(Ap)2> = g(Zn—i— 1)> Z (2.146)

The quantity dq - dp is equal to % for n = 0 and becomes larger with increasing n.
The above example gives a good illustration for Theorem 2.1. Note that putting
A = g and B = p along with k = & in Theorem 2.1, we should have from (1.140)

0q - op>

I\)IN

This is indeed the case with (2.146) for the quantum-mechanical harmonic
oscillator. This example represents uncertainty principle more generally.

In relation to the aforementioned argument, we might well wonder if in
Examples 1.1 and 1.2 have an eigenstate of a fixed momentum. Suppose that we

chose for an eigenstate y(x) = ce’™, where c is a constant. Then, we would have

’?dgx = hiky(x) and get an eigenvalue ik for a momentum. Nonetheless, such y(x)

does not satisfy the proper BCs; i.e., y(L) = y(—L) = 0. This is because e** never

vanishes with any real numbers of k or x (any complex numbers of k or x, more
generally). Thus, we cannot obtain a proper solution that has an eigenstate with a
fixed momentum in a confined physical system.
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Chapter 3
Hydrogen-like Atoms

In a history of quantum mechanics, it was first successfully applied to the motion of
an electron in a hydrogen atom along with a harmonic oscillator. Unlike the case of
a one-dimensional harmonic oscillator we dealt with in Chap. 2 however, with a
hydrogen atom we have to consider three-dimensional motion of an electron.
Accordingly, it takes somewhat elaborate calculations to constitute the
Hamiltonian. The calculation procedures themselves, however, are worth following
to understand underlying basic concepts of the quantum mechanics. At the same
time, this chapter is a treasure of special functions. In Chap. 2, we have already
encountered one of them, i.e., Hermite polynomials. Here, we will deal with
Legendre polynomials associated Legendre polynomials, etc. These special func-
tions arise when we deal with a physical system having, e.g., the spherical sym-
metry. In a hydrogen atom, an electron is moving in a spherically symmetric
Coulomb potential field produced by a proton. This topic provides us with a good
opportunity to study various special functions. The related Schrodinger equation
can be separated into an angular part and a radial part. The solutions of angular
parts are characterized by spherical (surface) harmonics. The (associated) Legendre
functions are correlated with them. The solutions of the radial part are connected to
the (associated) Laguerre polynomials. The exact solutions are obtained by the
product of the (associated) Legendre functions and (associated) Laguerre polyno-
mials accordingly. Thus, to study the characteristics of hydrogen-like atoms from
the quantum-mechanical perspective is of fundamental importance.

3.1 Introductory Remarks

The motion of the electron in hydrogen is well-known as a two-particle problem (or
two-body problem) in a central force field. In that case, the coordinate system of the
physical system is separated into the relative coordinates and center-of-mass
coordinates. To be more specific, the coordinate separation is true of the case where

© Springer Nature Singapore Pte Ltd. 2018 57
S. Hotta, Mathematical Physical Chemistry,
https://doi.org/10.1007/978-981-10-7671-8_3



58 3 Hydrogen-like Atoms

two particles are moving under control only by a force field between the two
particles without other external force fields [1].

In the classical mechanics, equation of motion is separated into two equations
related to the relative coordinates and center-of-mass coordinates accordingly. Of
these, a term of the potential field is only included in the equation of motion with
respect to the relative coordinates.

The situation is the same with the quantum mechanics. Namely, the Schrodinger
equation of motion with the relative coordinates is expressed as an eigenvalue
equation that reads as

{‘%V”V(’)}”:E‘”’ (3.1)

where p is a reduced mass of two particles [1], i.e., an electron and a proton; V(r) is
a potential with r being a distance between the electron and proton. In (3.1), we
assume the spherically symmetric potential; i.e., the potential is expressed only as a
function of the distance r. Moreover, if the potential is coulombic,

? 2
(_ ﬂv a 4nsor> V=E) (32)

where ¢ is permittivity of vacuum and e is an elementary charge.
If we think of hydrogen-like atoms such as He*, Li**, Be’", etc., we have an

equation described as
" Ze?
—_v2_ =E 33

( 2u 4n60r> 4 4 (33)

where Z is an atomic number and u is a reduced mass of an electron and a nucleus
pertinent to the atomic (or ionic) species. We start with (3.3) in this chapter.

3.2 Constitution of Hamiltonian

As explicitly described in (3.3), the coulombic potential has a spherical symmetry.
In such a case, it will be convenient to recast (3.3) in a spherical coordinate (or polar
coordinate). As the physical system is of three-dimensional, we have to consider
orbital angular momentum L in Hamiltonian.

We have

L= (erezes)

O
W
ES

o
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where e, e;,ande; denote an orthonormal basis vectors in a three-dimensional
Cartesian space (RS); L,, Ly, and L, represent each component of L. The angular
momentum L is expressed in a form of determinant as

(3] e e3
L=xxp=|x 'y 2z|,
Px Py Pz

where x denotes a position vector with respect to the relative coordinates x, y, and
z. That is,

x = (ejeze3) (3.5)

N R

The quantity p denotes a momentum of an electron (as a particle carrying a
reduced mass p) with py, py, and p, being their components; p is denoted similar to
the above.

As for each component of L, we have, e.g.,

Lc = yp: — zpy. (3.6)

To calculate L?, we estimate L)%, Li, and L? separately. We have

Ly = (p: —2py) - 0z — 1)
= YPYPz — YPZPy — Wy¥Pz — PyZPy
= Y'P2 —Wp:apy — D+ 7D,
= Vp? — y(zp: — ih)py — z2(3py — ih)p. +2°p;
= VP2 +2°p; — yappy — 2pyp= + ih(ypy + 2ps),
where we have used canonical commutation relation (1.140) in the third equality. In

the above calculations, we used commutability of, e.g., ¥y and p.; z and p,. For
example, we have

el =2 (2 -y 2y = (v -, 2 -

Since |) is arbitrarily chosen, this relation implies that p, and y commute. We
obtain similar relations regarding Lg and Lf as well. Thus, we have
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L =L +L+1L
2.2 2.2 2.2 2 2.2 2.2
= (PP + 2P + 2P + Xl + 5P, +p})
+(Pp; — Xpy VP, — VP + 7P — 2p7)
- (yszpy + 2YPyPz + DXPAPz + XZPPx + XYPyPx + yxpxl’y)
+ ihi(ypy + zp; + 2p; + Xpx + XD + YDy)
= (y2p§ + zzpi + zzp,% + x2p§ + xzpi + yzp,zc
+XpL VP +2pl) — (Cpi+Yp + 2]
+VZpDy + PPz + PPz + XZPDx + XYPyPx + YXPaDy)
+ih(ypy + 2P + 2P + Xpx + AP +Ipy)
=r*-p’ —r(r-p)-p+2i(r-p)
In (3.7), we are able to ease the calculations by virtue of putting a term

(Cp} — ¥p; +p; — Vp; +p2 — 2°p?). As aresult, for the second term after the
second to the last equality we have

— (i +y'p; + 7P

+ YZp2py + 2YPyD: + PP + XZP Py + XYPyPx + YXPPy)
= — [x(xpx + 3Py + 22)Px + Y (XPx + YDy + 2P )Py + 2(Xpx + Ypy + 202 )Pz
= —r(r-p)-p.

The calculations of r2 - p? [the first term of (3.7)] and r - p (in the third term) are
straightforward.
In a spherical coordinate, momentum p is expressed as

p= p,~e(r) —|—p0e(9) +p e?), 3.8
¢

where p,, py, and py are components of p; e, e and e'?) are orthonormal basis
vectors of R? in the direction of increasing r, 0, and ¢, respectively (see Fig. 3.1).
In Fig. 3.1b, (%) is perpendicular to the plane shaped by the z-axis and a straight
line of y=xtan¢. Notice that the said plane is spanned by e and e(®).
Meanwhile, the momentum operator is expressed as [2]

h
p=-V
i
(3.9)
_w 9 L0l e L 9|
i or rof rsin 6 0¢

The vector notation of (3.9) corresponds to (1.31). That is, in the Cartesian
coordinate, we have
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(a) (b)

e(r)/,w" z e

@)

0/ o )

e

X

Fig. 3.1 Spherical coordinate system and orthonormal basis set. a Orthonormal basis vectors e("),
e?, and e®) in R®. b The basis vector e(?) is perpendicular to the plane shaped by the z-axis and a
straight line of y = xtan ¢

—EV—E eg—i—eg—i—eg
P=3V=7\""ox " 29 %0 )

where V is said to be nabla (or del), a kind of differential vector operator.
Noting that

r=re", (3.10)
and using (3.9), we have
h no
p=r--V=r[-—=1). 11
rp=rgV r(i&) G.11)
Hence,
_ ho RO\ 5, o
r(r-p) 'p—’"|: <7E):| (;E) =—hr 92 (3.12)
Thus, we have
& 0 0 0
12 =2t o2t Y o, Y 2 29 (29 1
TP E)r2Jr "or TPt ar\" or (3.13)

Therefore,
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o (,0\, L
2 2
-—__ = —- —. 3.14
P r? Or (r 8r> * r? (3.14)

Notice here that L? does not contain r (vide infra); i.e., L> commutes with 2, and
so it can freely be divided by 2. Thus, the Hamiltonian H is represented by

2
H=" 1v@)

2p
3.15
L[ o (,0\ L 2z (3.15)
=-S5 (P=)+ 5 - —.
2u| r2or or r? 4megr

Thus, the Schrodinger equation can be expressed as

1 [ ®a[f,0\ L z&
{zﬂ—ﬁa<ra>+ﬁ}‘ﬁ%ﬁw—Ew (3.16)

Now, let us describe L? in a polar coordinate. The calculation procedures are
somewhat lengthy, but straightforward. First, we have

x = rsinfcos ¢,
y = rsin0sin ¢, (3.17)
z=rcos0,

where we have 0 < 0 < m and 0 < ¢ <2x. Rewriting (3.17) with respect to r, 0, and
¢, we get

r= @+ +2)%

0 = tan—! 22" (3.18)
Z b
¢ =tan"'2.
Thus, we have
. 0] 0
L, =xpy — yp: = —1h<xa—y—y5), (3.19)

9 _ord 000 09 0

ox oxor T oxo0 T x99 (3.20)

In turn, we have
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%:)—::sin(Jcosqﬁ,
a0 1 (2 +y2) 2 2x z x cos 0 cos ¢
o 1+(2+y2)/2 2z :x2+y2+z2.(x2+y2)%: ro
o 1 1 sin ¢
E:m”(_ﬁ> T rsin6

(3.21)

In calculating the last two equations of (3.21), we used the differentiation of an

arc tangent function along with a composite function. Namely,

1

tan”'x) = :
(tan™"x) e

Inserting (3.21) into (3.20), we get

0 cos@cosqﬁg sing 9

9 gnbcosp L + - =
ox mUCOSeH, r 90 rsin0d¢

Similarly, we have

cos@sinqbg_i_ cosq&i
r 00  rsinfd¢’

%:sinﬁsindb% +

(3.22)

(3.23)

Inserting (3.22) and (3.23) together with (3.17) into (3.19), we get

. 0
LZ = 7lh%

In a similar manner, we have

o oro 000 0 sin0 9

o ozor T ozo0 Ve a0

Combining this relation with either (3.23) or (3.22), we get

L, = ih(sinqﬁ% + cot@cosd)%),

L, = —ih(cosq’)%—cot@sindbaﬁ).

(3.24)

(3.25)

(3.26)
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Now, we introduce following operators:
L) =L, +iL, and L) = L, — iL,. (3.27)

Then, we have

e, 0
(+) — pei? il (=) — it - L il
L he <8e+lcot08¢> and L fie < 60+lcot08¢) (3.28)

Thus, we get

(0 0 0
(H)7 (=) — p2eit —i¢p
L'L h-e (80+w0t66¢) < 8g—i-lcotead)>
; lia 1 ?
:hz i —i¢p . 0
) { [ o ( sin20> a6 T1 aoaqs}

+e @ cotd| — 0 +lcot0 +ie " cot0 o +icot— >
a0 0¢ 090 d¢?
2 0 0 5?
— (2 — 20
= h( 2+00t080+8¢+cm 8¢>
(3.29)

In the above calculation procedure, we used differentiation of a product function.
For instance, we have

0 0 Ocotd 0 o2

80(zcot08¢)z< 50 8(1)+ t0898¢)
A )
'K sm29>%“°t aeadj'

Note also that 330 s 0;30. This is because we are dealing with continuous and

differentiable functions.
Meanwhile, we have following commutation relations:

[Le,Ly) = iiL., [Ly, L.] = iL,, and [L., L] = iAiL,. (3.30)

This can easily be confirmed by requiring canonical commutation relations. The
derivation can routinely be performed, but we show it because the procedures
include several important points. For instance, we have
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L, Ly) = LiLy — LyL,
= (W — py)(@px — xp2) — (apx — xp2) VP: — 2py)
= YP2Px — YPAP: — Py IPx T IPAP:
— ZPYP: + 2Py XDYP: — XD 2Py
= (WpxP:z — yP2) + (2pyXp: — Xp2py)
+ (XpyPz — YP2XP2) + (2Pxzpy — 2pyaps)
= —ypx(2pz — p2) +apy(zp; — pez) = ih(xpy — ypx) = kL,

In the above calculations, we used the canonical commutation relation as well as
commutability of, e.g., y and p,; y and z; p, and p,. For example, we get

B 20 00\, Ply) W)Y _
[pepy] ) = 1 (ga—y_g_ya)‘m - _h2<8x8y - 8y8x> -0

In the above equation, we assumed that the order of differentiation with respect
to x and y can be switched. It is because we are dealing with continuous and
differentiable normal functions. Thus, p, and p, commute.

For other important commutation relations, we have

[L.,L*] =0, [L,,L*] =0, and [L,L*]=0. (3.31)
With the derivation, use
[A,B+C] =[A,B]+[A,C].

The derivation is straightforward and it is left for readers. The relations (3.30)
and (3.31) imply that a simultaneous eigenstate exists for L? and one of L., Ly, and
L,. This is because L? commute with them from (3.31), whereas L, does not
commute with L, or L,. The detailed argument about the simultaneous eigenstate
can be seen in Part III.

Thus, we have

LY = 12+ L2 +i(LyL, — LiLy) = L} + L} +i[Ly, L]
= L;+ L] +hL..

Notice here that [Ly, L,|= —[L.,L,| = —iliL.. Hence,
=105 412 —hL,. (3.32)

From (3.24), we have
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82
L} =-1*—. (3.33)
Finally, we get
0? 0 1 &
L* = -1 <—2 + cot0— + ——) or
00 in’ ?
a0 sin“0 0¢ (3.34)

1 0 0 1 &
L2 - _ 2 . ] _ .
g Lin 000 (Sm Haa) T S0 &A
Replacing L? in (3.15) with that of (3.34), we have
Ww[o/[(,0 1 0 ) 1 0 Ze?
H=- — | rr= —— [ sin0— — —— .
2 {8r <r ar) t Sin0 0 (Sm 60) +in%o a(zﬁ] dmagr )
Thus, the Schrédinger equation of (3.3) takes a following form:

2o (,0 1 9/, .0 1 ]z
{‘ 2P {a < E) 020 (S‘“0%> i sinzeaTsZ] B 4neor}‘” -

(3.36)

3.3 Separation of Variables

If the potential is spherically symmetric (e.g., a Coulomb potential), it is
well-known that the Schrodinger equations of (3.1-3.3) can be solved by a method
of separation of variables. More specifically, (3.36) can be separated into two
differential equations one of which only depends on a radial component r and the
other of which depends only upon angular components 0 and ¢.

To apply the method of separation of variables to (3.36), let us first return to
(3.15). Considering that L? is expressed as (3.34), we assume that L? has eigen-
values 7 (at any rate if any) and takes eigenfunctions Y (6, ¢) (again, if any as well)
corresponding to y. That is,

L*Y(0,¢) = Y(0, ), (3.37)
where Y(0, ¢) is assumed to be normalized. Meanwhile,
L =L+L+L. (3.38)

From (3.6), we have
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Lf = op. —ap) T = phyf - vazT =py =Pz =Yp.— Py =Le.  (3.39)

Note that p, and y commute, so do p, and z. Therefore, L, is Hermitian, so is L2
More generally if an operator A is Hermitian, so is A" (n: a positive integer);
readers, please show it. Likewise, L, and L, are Hermitian as well. Thus, L? is
Hermitian, too.

Next, we consider an expectation value of L?,ie., <L2>. Let |) be an arbitrary
normalized nonzero vector (or function). Then,

(L) =y | LY)
= [ L)+ (W [ L) + (v | L)
= (LY | Lap) + (LI | L) + (LT | Ly) (3.40)

(
= (Lo | L) + (L | L) + (Leyy | L)
= Ly I” + || Ly ||* + 1L > 0.

Notice that the second last equality comes from that L., L,, and L, are Hermitian.
An operator that satisfies (3.40) is said to be nonnegative (see Sects. 1.4 and 2.2,
etc., where we saw the calculation routines). Note also that in (3.40) the equality

holds only when the following relations hold:

L) = |Lyp) = |Lp) = 0. (3.41)
On this condition, we have

L2y = (L} + Ly + L2)y) = |L) + [Ly) + [L2y)

(3.42)
= Llexlp> +L}’|Ly‘//> +LZ|LZW> =0.

The eigenfunction that satisfies (3.42) and the next relation (3.43) is a simul-
taneous eigenstate of Ly, Ly, L;, and L?. This could seem to be in contradiction to
the fact that L, does not commute with L, or L,. However, this is an exceptional
case. Let |,) be the eigenfunction that satisfies both (3.41) and (3.42). Then, we
have

ILabo) = |LyWo) = |Loho) = |L2'//0> =0. (3.43)

As can be seen from (3.24) to (3.26) along with (3.34), the operators L, L,, L.,
and L? are differential operators. Therefore, (3.43) implies that |i/,) is a constant.
We will come back this point later. In spite of this exceptional situation, it is
impossible that all L, L,, and L as well as L? take a whole set of eigenfunctions as
simultaneous eigenstate.s. We briefly show this as below.
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In Chap. 2, we mention that if [A,B] = ik, any physical state cannot be an
eigenstate of A or B. The situation is different, on the other hand, if we have a
following case

A, B] = iC, (3.44)

where A, B, and C are Hermitian operators. The relation (3.30) is a typical example
for this. If C|y) =0 in (3.44), |) might well be an eigenstate of A and/or B.
However, if C|¥) = c|[y)(c # 0), |) cannot be an eigenstate of A or B. This can
readily be shown in a fashion similar to that described in Sect. 2.5. Let us think of,
e.g., [Ly,Ly] = ihL,. Suppose that for 2\, we have L |i},) = 0. Taking an inner
product using |, from (3.30) we have

(W | (LiLy — LyL)g) = 0.

In this case, moreover, even if we have |L,,) = 0 and {Lyl//0> = 0, we have no
inconsistency. If, on the other hand, L.|y) = m|y)(m # 0), |) cannot be an
eigenstate of L, or L, as mentioned above. Thus, we should be careful to deal with a
general situation where we have [A, B] = iC.

In the case where [A, B] = 0; AB = BA, namely A and B commute, we have a
different situation. This relation is equivalent to that an operator AB — BA has an
eigenvalue zero for any physical state [ff). Yet, this statement is of less practical
use. Again, regarding details we wish to make a discussion in Sect. 12.6 of Part III.

Returning to (3.40), let us replace  with a particular eigenfunction Y (0, ¢).
Then, we have

(Y|L?Y) = (Y |Y)=9(Y | Y) =y>0. (3.45)

Again, if L? has an eigenvalue, the eigenvalue should be nonnegative. Taking
account of the coefficient 7 in (3.34), it is convenient to put

y=h*A(1>0). (3.46)
On ground that the solution of (3.36) can be described as
V(r,0,¢) =R(r)Y(0,¢), (3.47)

the Schrédinger equation (3.16) can be rewritten as

{1 [ w20 (z 8> +L_2] ze? }R(r)y(0,¢) — ER(1Y(0,¢). (3.48)

2ul rror " or 2| Aner

That is,
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1 [ B0 (,0R(r) L’v(0,¢) ze?

2u [_55 (r2 or )Y(H’ ¢)+ TR(r)} - 47I80VR(r)Y(9’ ¢) (3.49)
= ER(r)Y(0, $).

Recalling (3.37) and (3.46), we have

| 2o OR Y 0, Ze?
o [_r_za <r2 #) Y(0,¢)+ #}R(’”) - 477:20rR(r)Y((97 ¢) (3.50)

= ER(r)Y (0, ¢).

Dividing both sides by Y (0, ¢), we get a SOLDE of a radial component as

2 r 29 82
% [_%% (rz 31;_9) N %}R(r) - 4i80rR(r) — ER(). (3.51)

Regarding angular components 6 and ¢, using (3.34), (3.37), and (3.46), we have

L*Y(0,¢) = —hz[ L 0 (sin02> + Lo ]Y(0,¢):h2/w(0,¢).

sin 0 90 00 sin208f452
(3.52)
Dividing both sides by /%, we get
1 0. 0 1 0 ,

Notice in (3.53) that the angular part of SOLDE does not depend on a specific
form of the potential.

Now, we further assume that (3.53) can be separated into a zenithal angle part 0
and azimuthal angle part ¢ such that

Y(0,¢) = O(0)D(). (3.54)

Then, we have

10 (. 000 1 P0($) B
—Lin 980<sm0%>®(¢)+8m29 59 }@(0)1@(0)@(@. (3.55)

Multiplying both sides by sin>0/@©(0)®(¢) and arranging both the sides, we get

1 P0(p) sin®0f 1 0

) { o[ 98(0)
() a¢>  ©O(0) |sin600

[sin OW] +0(0) } (3.56)
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Since LHS of (3.56) depends only upon ¢ and RHS depends only on 6, we must
have

LHS of (3.56) = RHS of (3.56) = n (constant). (3.57)

Thus, we have a following relation of LHS of (3.56):

1 do(g)
o(¢) dqb2 =1. (3.58)
Putting D = —dd—;, we get
DO(¢) = nd(¢). (3.59)

The SOLDEs of (3.58) and (3.59) are formally the same as (1.61) of Sect. 1.3,
where boundary conditions (BCs) are Dirichlet conditions. Unlike (1.61), however,
we have to consider different BCs; i.e., the periodic BCs.

As in Example 1.1, we adopt two linearly independent solutions. That is, we have

e™®  and e ™ (m #0).
As their linear combination, we have
O(¢) = ae™? 4 be=™M?, (3.60)
As BCs, we consider @(0) = ®(2r) and @'(0) = @'(2n); i.e., we have
a+b = ae”™ 4 pe ™" (3.61)
Meanwhile, we have
D' (¢) = aime™? — bime™™?. (3.62)

Therefore, from BCs we have

i2nm —i2nm

aim — bim = aime — bime

Then,
a—b = ae®™™ — pe ™, (3.63)

From (3.61) to (3.63), we have

2a(1 —e?™) =0, and 2b(1 —e ™) =0.
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If a #0, we must have m =0,+1,£2,.... If a =0, we must have b # 0 to
avoid having ®(¢$) = 0 as a solution. In that case, we have m = 0,+1,+2,... as
well. Thus, it suffices to put ®(¢) = ce™?(m = 0,41,42,...). Therefore, as a
normalized function ®(¢), we get

O(¢h) :\/%eim‘f’(mzo,il,iz,...). (3.64)

Inserting it into (3.58), we have
mre"m? = ne""“".
Therefore, we get
n=m*(m=0,+1,42,...). (3.65)

From (3.56) to (3.65), we have

1 d {Si 9“’@(0)} m*0(0)

S =200)(m=0,£1,£2,...). .
| et = Ae(0)m = 0,1, £, (3.66)

sin 0 d0

In (3.64) putting m = 0 as an eigenvalue, we have ®(¢$) = 1/+/2xn as a corre-
sponding eigenfunction. Unlike Examples 1.1 and 1.2, this reflects that the differ-

2

ential operator — e accompanied by the periodic BCs is a nonnegative operator

that allows an eigenvalue of zero. Yet, we are uncertain of a range of m. To clarify
this point, we consider generalized angular momentum in the next section.

3.4 Generalized Angular Momentum

We obtained commutation relations of (3.30) among individual angular momentum

components Ly, Ly, and L,. In an opposite way, we may start with (3.30) to define

angular momentum. Such a quantity is called generalized angular momentum.
Let J be a generalized angular momentum as in the case of (3.4) such that

J = (ejeze3) (3.67)

S zg&ubr

For the sake of simple notation, let us define J as follows so that we can
eliminate % and deal with dimensionless quantities in the present discussion:
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J. /R Jx
J=J/h=(eiezes)| T, /0 | = (ere2e3) | J, |.
[h=(ereze5) | J,/ (ere2e3) | Jy (3.68)
J,/h J;
P =TT+
Then, we require following commutation relations:
Ve By = iz, Iy, J2]) = iJy, and [J;, J,] = iJ;. (3.69)

Also, we require Jy, Jy, and J; to be Hermitian. The operator J? is Hermitian
accordingly. The relations (3.69) lead to

Ve, J?] = 0,J,,J?] =0, and [J,,J?] = 0. (3.70)

This can be confirmed as in the case of (3.30).
As noted above, again a simultaneous eigenstate exists for J? and one of i Jy,

and J,. According to the convention, we choose J* and J, for the simultaneous
eigenstate. Then, designating the eigenstate by |{, i), we have

JNpy =LEpy and T ) = pld, w). (3.71)

The implication of (3.71) is that |, i) is the simultaneous eigenstate and that u is
an eigenvalue of J, which |¢, u) belongs to with { being an eigenvalue of J> which
|(, 1) belongs to as well.

Since J, and J? are Hermitian, both u and { are real (see Sect. 1.4). Of these,
{ >0 as in the case of (3.45). We define following operators J (+) and J) as in the
case of (3.27):

JH =y +i), and IO =J, —iJ,. (3.72)
Then, from (3.69) to (3.70), we get
[J”),Jz} - {JH,JZ} —0. (3.73)
Also, we obtain following commutation relations:
[JZ,J(”} —J), [JZ,JH} — _JO). [JW,JH] —2J.. (3.74)
From (3.70) to (3.72), we get

TION ) =IOy = 01w,

3.75
PION )y = TP 1) = TN ). o
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Equation (3.75) indicates that both J(*)|¢, i) and J)|(, u) are eigenvectors of
J? that correspond to an eigenvalue (.
Meanwhile, from (3.74) we get

+>|c w = <+>(, + D[ = (u+ 1IN ),

3.76
ey =0 = DI = (= 1IN ). 370

The relation (3.76) means that J(* |C ) is an eigenvector of J, corresponding to
an eigenvalue (u+ 1), while J()|¢, ) is an eigenvector of J, corresponding to an
eigenvalue (u — 1). This implies that J (+) and J) function as raising and lowering

operators (or ladder operators) that have been introduced in this chapter. Thus,

using undetermined constants (or phase factors) aﬁf) and a,(,_), we describe

NG =a G p+1) and SO g = a7 G p = 1), (3.77)
Next, let us characterize eigenvalues p. We have
2, 12 2_ g2
S+, =0 —J;. (3.78)
Therefore,
(2 +INIG ) = P = T)[E ) = (= @)]E ). (3.79)

Since (J2 +JV2) is a nonnegative operator, its eigenvalues are nonnegative as
well, as can be seen from (3.40) to (3.45). Then, we have

{—12>0. (3.80)
Thus, for a fixed value of nonnegative {, p is bounded both upward and

downward. We define then a maximum of u as j and a minimum of u as j.
Consequently, on the basis of (3.77), we have

iy =0 and JOLS) = (3.81)

This is because we have no quantum state corresponding to |{,j+ 1) or
|¢,j — 1). From (3.75) to (3.81), possible numbers of u are

Ji=1,j=2,...j. (3.82)
From (3.69) to (3.72), we get
JOgH) = g2 _jzz —J, JHE = _jz?+]z, (3.83)

Operating these operators on |{,j) or |{,j) and using (3.81) we get
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JOTN )y = (P = T2 = 1)IE)) = (=7 =DIE)) =0,

ST = P = 2+ L)L) = =2+ =0. .
Since |{,j) # 0 and |{,j') # 0, we have
(-F—j=(=-/*+]=0. (3.85)
This means that
{=ji+1) =G -1 (3.86)
Moreover, from (3.86) we get
Ji+1D) =i =) =(+/)G-j+1) =0 (3.87)
Asj>j,j—j+1>0. From (3.87), therefore, we get
jt+ji=0o0rj=—j. (3.88)

Then, we conclude that the minimum of u is —j. Accordingly, possible values of
u are

:u:jvj_lvj_za"'a_j_lv_j' (389)

That is, the number p can take is (2j+1). The relation (3.239) implies that
taking a positive integer £,

j—k=—jorj=k/2. (3.90)

In other words, j is permitted to take a number zero, a positive integer, or a
positive half-integer (or more precisely, half-odd-integer). For instance, if j = 1/2,
wcanbe 1/2 or —1/2. When j = 1, pt can be 1,0,0r — 1.

Finally, we have to decide undetermined constants a,(f) and a,(t_>. To this end,

multiplying ({, u — 1| on both sides of the second equation of (3.77) from the left,
we have

Gu=1ONwy =a T (Gu—1Lu—1) =a”, (3.91)
where the second equality comes from that |, 4 — 1) has been normalized; i.e.,

[I|1¢, « — 1)|| = 1. Meanwhile, taking adjoint of both sides of the first equation of
(3.77), we have

€t = [“i”r“’“ 1. (3.92)

But, from (3.72) and the fact that J, and J, are Hermitian,
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ot = o, (3.93)
Using (3.93) and replacing u in (3.92) with u — 1, we get
(€r— 10 = 1] @l (3.94)

Furthermore, multiplying |{, 1) on (3.94) from the right, we have

(o= WO ) = [ 5] (Cnl G = [al1]] (3.95)
where again |{, u) is assumed to be normalized. Comparing (3.91) and (3.95), we get

al) = [a(“} " (3.96)

u u—1

Taking an inner product regarding the first equation of (3.77) and its adjoint,

* 2
(Gl TG 1) = [af ] al NG L Gy = | (3.97)

Once again, the second equality of (3.97) results from the normalization of the
vector.
Using (3.83) as well as (3.71) and (3.86), (3.97) can be rewritten as

(Cull? =2 = F|C )
= ({CuliG+1) — 1 = ) = (| LG — wG+u+1) = oD P
(3.98)

Thus, we get

al(f) = em\/(j — )+ u+1) (J:an arbitrary real number), (3.99)

where e” is a phase factor. From (3.96), we also get
al?) =e /(= p+ 1)+ p). (3.100)
(+) (=)

In (3.99) and (3.100), we routinely put 6 =0 so that a, ’ and a, ’ can be
positive numbers. Explicitly rewriting (3.77), we get

TN =V — Wi+ e+ DG p+1),
TN W =G —u+ DG+l u—1),

(3.101)
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where j is a fixed given number chosen from among zero, positive integers, and
positive half-integers (or half-odd-integers).

3.5 Orbital Angular Momentum: Operator Approach

In Sect. 3.4, we have derived various important results on angular momenta on the
basis of the commutation relations (3.69) and the assumption that Jy, J,, and J, are
Hermitian. Now, let us return to the discussion on orbital angular momenta we dealt
with in Sects. 3.2 and 3.3. First, we treat the orbital angular momenta via operator
approach. This approach enables us to understand why a quantity j introduced in
Sect. 3.4 takes a value zero or positive integers with the orbital angular momenta. In
the next section (Sect. 3.6), we will deal with the related issues by an analytical
method.

In (3.28), we introduced differential operators L(*) and L(*). According to
Sect. 3.4, we define following operators to eliminate /i so that we can deal with
dimensionless quantities:

M,
M=L/h= (eexe3)| M, |,
M. (3.102)
M? =L’ /W* = M} +M; + M.
Hence, we have
M,=L./hM,=L,/h, and M,=L,/h. (3.103)
Moreover, we define following operators:
MF) =M, +iM, = L7 /h = 0 +zcot9i (3.104)
’ a0 op)’
MO =L h=e"( - 0 +zcot6 (3.105)
a0 ap)
Then, we have
1 0 0 1 &
M = —|—— 0 —— - 3.106
Linoao (Sm aa) 20 &A (3.106)

Here, we execute variable transformation such that
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E=cos0(0<0<m)or sind = \/1—52. (3.107)
Noting, e.g., that
0 0&0 .0 5 0 ) 8__ o
36= 200¢ —sm@a—(Z l—éa—gsmﬂ— —sm@a—é (1 6)65
(3.108)
we get
, 0 19 0
(F) it | /122
M7 =¢ ( 1 f + \/_a¢>
_ i 0 ¢
(=) — o—i¢ _gpY 3.109
M) =e <1 & +\/“?a¢> (3.109)
2_ O 0] 1 &
M= aé[(l 5)86] 1—&0¢*

Although we showed in Sect. 3.3 that m = 0,£1,+2, ..., the range of m was
unclear. The relationship between m and / in (3.66) remains unclear so far as well.
On the basis of a general approach developed in Sect. 3.4, however, we have
known that the eigenvalue u of the dimensionless z-component angular momentum
J; is bounded with its maximum and minimum being j and —j, respectively see
(3.89), where j can be zero, a positive integer, or a positive half-odd-integer.
Concomitantly, the eigenvalue { of J* equals j(j+ 1).

In the present section, let us reconsider the relationship between m and 4 in
(3.66) in light of the knowledge obtained in Sect. 3.4. According to the custom, we
replace u in (3.89) with m to have

At the moment, we assume that m can be a half-odd-integer besides zero or an
integer [3].
Now, let us define notation of Y (0, ¢) that appeared in (3.37). This function is

eligible for a simultaneous eigenstate of M? and M. and can be indexed with j and
m as in (3.110). Then, let Y (0, ¢) be described accordingly as

Yj’"(f), $) =Y(0,p). (3.111)
From (3.54) to (3.64), we have

Y7 (0, ¢) oc ™.
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Therefore, we get

m i 8 é m
My, <0,¢>)=e¢<— 1—@23—5—\/?—?>Yj<0,¢)

() 3 [) o]
T
S en) )
(i)
3[(4577) o] -w(2) e

ARLA)
H(Vi-e)

(3.112)

(3.113)

Similarly, we get

2 0 m¢

% ﬁ—"5> ey
() [ )]

Let us derive the relations where M(*) or M- is successively operated on
Y"(0, ). In the case of M), using (3.109) we have

MO0, 6) = <—1>"ef"¢<\/@>m+" z [(\/@) Ty, ¢>}

(3.115)

MY (0, ¢) = e""”( 1-¢
(3.114)

We confirm this relation by mathematical induction. We have (3.112) by
replacing n with 1 in (3.115). Namely, (3.115) holds when n = 1. Next, suppose
that (3.115) holds with n. Then, using the first equation of (3.109) and noting
(3.64), we have
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[M(+)}"+1Y;n(9, ¢) = M”){[M(*)]"Y;”(H"f’)}
ol TR0 &
=e ( \/ﬁag“ﬂ%)

« (_l)nein(/>( 1— éz>m+naagn |:( . 52) —myjm(g’ ¢):|

(1)l 1 [_ | 0  <(n+m)

() (A7) )

:(_1)"ef("+1>¢{—\/r——¢5 (m+n)< 1_52>m+"1%< 1_52>1(_2¢)1
R () )
e () | (Vi=2) Mo

n+1 in+1 2 ) ot 2\ "
s = (e |

(3.116)

Notice that the first and third terms in the second last equality canceled each
other. Thus, (3.115) certainly holds with (n+ 1). Similarly, we have [3]

Oryr.0) =t (11 ) e (Vi-2) e
(3.117)

Proof of (3.117) is left for readers.

From the second equation of (3.81) and (3.114) where m is replaced with —j, we
have

MOY (0, 4) = (M)m({% l(\/@)jyfjw’d))] o

(3.118)
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—j X
This implies that (\/1 — é2> Y;7(0,¢) is a constant with respect to £. We

describe this as

<\/ 1- 52) _]Y;j(ﬂ, ¢) = ¢ (c : constant with respect to &). (3.119)

Meanwhile, putting m = —j and n = 2j 4 1 in (3.115) and taking account of the
first equation of (3.77) and the first equation of (3.81), we get

[M<+)]2j+le_j(9, d))

i+1 a2 j
= e (img ) A [(\/ 1-2) 170 ¢>>] ~o
(3.120)

This means that

i
<\/ - 52) Y;7(0, ¢) = (atmosta2j-degree polynomial with &). (3.121)

Replacing ij(()7 ¢) in (3.121) with that of (3.119), we get

T s T

= (atmost a 2j-degree polynomial with &).

Here, if j is a half-odd-integer, ¢(1 — éz)j of (3.122) cannot be a polynomial. If
on the other hand j is zero or a positive integer, ¢(1 — fz)J is certainly a polynomial
and, to top it all, a 2j-degree polynomial with respect to &, so is

7\ i
(VI=2)v70.9).
According to the custom, henceforth we use [ as zero or a positive integer instead
of j. That is,

Y(0,¢) =Y"(0,¢) (I:zero or a positive integer). (3.123)

At the same time, so far as the orbital angular momentum is concerned, from
(3.71) to (3.86) we can identify { in (3.71) with [(I+ 1). Namely, we have

{=11+1).

Concomitantly, m in (3.110) is determined as
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m=11-1,1—-2,..1,0,—1,...—1+1,—L (3.124)

Thus, as expected m is zero or a positive or negative integer. Considering (3.37)
and (3.46), { is identical with A in (3.46). Finally, we rewrite (3.66) such that

1 d[.  de0)] m*e()
‘m@[“‘“’ a0 ] Sin20

=1+ 1)0(0), (3.125)

where [ is equal to zero or positive integers and m is given by (3.124).
On condition of ¢ = cos 0 (3.107), defining the following function

Py(¢) = ©(0), (3.126)
and considering (3.109) along with (3.54), we arrive at the next SOLDE described as

d 2 dpm(é) m2 7 —
d—é[(l—é )é—é]—i—[l(H—l)—l_éz]P, (&) =0. (3.127)

The SOLDE of (3.127) is well-known as the associated Legendre differential
equation. The solutions P}"(¢) are called associated Legendre functions.

In the next section, we characterize the said equation and functions by an ana-
Iytical method. Before going into details, however, we further seek characteristics
of P}*(&) by the operator approach.

Adopting the notation of (3.123) and putting m = [ in (3.112), we have

MIYHO, p) = —e™® <\/1 - 52)I+l% [(\/1 - 52> JY}((), ¢)]. (3.128)

Corresponding to (3.81), we have M(*)Y!(0, $) = 0. This implies that
-1
( 1- §2> Y!(0,¢) = c (c : constant with respect to, &). (3.129)

From (3.107) to (3.64), we get
Y}(0, ¢) = r;sin'0e™?, (3.130)

where k; is another constant that depends on /, but is independent of 6 and ¢. Let us
seek x; by normalization condition. That is,

TE

2n T
/d¢/sm9deyY{(9, o) :2n-y;c,|2/sin2’“0d0: 1, (3.131)
0 0

0
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where the integration is performed on a unit sphere. Note that an infinitesimal area
element on the unit sphere is represented by sin 0d0de.
We evaluate the above integral denoted as

n

1= / sin? *10do. (3.132)
0
Using integration by parts,

I= /(— cos 0)'sin?0d0

0
= [(— cos 0)sin® 0]} +/c0s9 -2l - sin*'0 cos 0d0 (3.133)
0

=2l / sin?~10d0 — 21 / sin? T10d0.
0 0

Thus, we get a recurrence relation with respect to 7 (3.132) such that

n

- 211
= — 6do. 3.134
TR sin ( )
0

Repeating the above process, we get

A 2A-2 2 2041 ()2
- - = = in0df = —~ . 3.135

20+1 20— 1 3/3‘“ QI+ 1) (3.135)
0

Then,

1 [@r+1)! /2z+1
|:ﬁ i oK 211' (y : real), (3.136)

where e is an undetermined constant (phase factor) that is to be determined below.
Thus we get

I (ZZJFI) I il
V0, 6) = Sy sinl0 e, (3.137)
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Meanwhile, in the second equation of (3.101) replacing J(=), j, and x in (3.101)
with M), [, and m, respectively, and using Y;"(0, ¢) instead of |{, u), we get

1
Y" 10, ) = -y, ¢). 3.138
P00 = e O (a3)
Replacing m with [ in (3.138), we have
1
Y H0, ¢) = —=MYH0, §). 3.139

Operating M=) (I — m) times in total on Y!(0, ¢) of (3.139), we have

3 = ! (—)l=myd
Y 0,¢) = \/2[(2[ —1)...(I+m+1 \/1 5 [M ] Yl(07¢)
=\ .0,

(3.140)

Meanwhile, putting m = I, n =1 —m, and j = [ in (3.117), we have

MO0, ¢) = e i-mo (\/1 - 52) B (fi [(\/1 - éZ)IY/(H, ¢>] |

(3.141)

Further replacing [M()]""Y!(6, ¢) in (3.140) with that of (3.141), we get

0.0) = [ e (- &) 2D [(\/1 ~&) o, ¢>] .

(3.142)

Finally, replacing Y/(0, ¢) in (3.142) with that of (3.137) and converting 0 to ¢,
we arrive at the following equation:

nm). . 2 f=m [
S a1 = R Y] (3

(0 ¢) 8él—m

Now, let us decide e”. Putting m = 0 in (3.143), we have
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i (_ l /

Y0, )

where we put (—1)l on both the numerator and denominator. In RHS of (3.144),

(-1 &

> a_gl[(l - =po). (3.145)

Equation (3.145) is well-known as Rodrigues formula of Legendre polynomials.
We mention characteristics of Legendre polynomials in the next section. Thus,

er  J(21+1)
Vo

Y (0.) = Pi(). (3.146)

According to the custom [2], we require Y} (0, ¢) to be positive. Noting that
0 = 0 corresponds to ¢ = 1, we have

et [2i+1) et [(21+1)

SV P(1) = , (3.147)

Ylo(07 ¢) = Ar

|
—
|
—_
=
<

where we used P;(1) = 1. For this important relation, see Sect. 3.6.1. Also noting

e
that ‘(71)1

= 1, we must have

el
(-1

=1ore”=(-1) (3.148)

so that Y(0, ¢) can be positive. Thus, (3.143) is rewritten as

(1) @i+ 1) (I +m)!
21 4n(l — m)!

[—m
—m/2 0

eimd)(l _ 62) aél,m

Y0, ¢) = [(1-¢)] (3.149)

In Sect. 3.3, we mentioned that |i/,) in (3.43) is a constant. In fact, putting
[ =m =0 in (3.149), we have

Y9(0, ) = \/1/4n. (3.150)

Thus, as a simultaneous eigenstate of all L,, L, L;, and L? corresponding to
[ =0andm = 0, we have

o) = Y500, ).

The normalized functions Y;"(0, ¢) described as (3.149) define simultaneous

eigenfunctions of L? (or M?) and L, (or M.). Those functions are called spherical
surface harmonics and frequently appear in various fields of mathematical physics.
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As in the case of Sect. 2.3, matrix representation enables us to intuitively grasp
the relationship between angular momentum operators and their eigenfunctions (or
eigenvectors). Rewriting the relations of (3.101) so that they can meet the present
purpose, we have

M m)y = /(L= m+ 1) (I +m)|l,m — 1),
ML m)y =/ (I—m)(I+m+1)|,m+1),

(3.151)

where we used [ instead of { to designate the eigenstate.

Now, we know that m takes (2/+ 1) different values that correspond to each /.
This implies that the operators can be expressed with (24 1,2/4 1) matrices. As
implied in (3.151), M") takes the following form:

0 V2i-1
0 2i—1)-2

0

M) — 0 VQ@I—k+1)-k

0 VI
0
(3.152)

where diagonal elements are zero and a (k,k+ 1) element is /(2] —k+1) - k.
That is, nonzero elements are positioned just above the zero diagonal elements.
Correspondingly, we have

0
V201 0
2[-1)-2 0
0
M) — l—k+1)-k 0 7
0
' 0
V121 0
(3.153)

where again diagonal elements are zero and a (k+1,k) element is
(21 — k+ 1) - k. In this case, nonzero elements are positioned just below the zero
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diagonal elements. Notice also that M=) and M(*) are adjoint to each other and
that these notations correspond to (2.65) and (2.66).

Basis functions Y;"(0, ¢) can be represented by a column vector, as in the case of
Sect. 2.3. These are denoted as follows:

1 0 0 0
1 0 0
TR L R B ni—n=|: ="
) - E b ) - E PR B R} - O b A - 0 b
0 0 1 0
0 0 1
(3.154)

where the first number [ in |I, —1I), |, =+ 1), etc., denotes the quantum number
associated with A =1I(I+ 1) of (3.124) and is kept constant; the latter number
denotes m. Note from (3.154) that the column vector whose kth row is 1 corre-
sponds to m such that

m=—l+k—1. (3.155)

For instance, if k =1, m = —[; if k =2]4+1, m = [, etc.

The operator M=) converts the column vector whose (k + 1)th row is 1 to that
whose kth row is 1. The former column vector corresponds to |/,m+ 1) and the
latter corresponding to |/,m). Therefore, using (3.152), we get the following
representation:

MINLm+1) = /@ —k+1) -kll,m) = /(I —m)(I+m+1)|l,m), (3.156)

where the second equality is obtained by replacing k£ with that of (3.155), i.e.,
k=1+m+1. Changing m to (m—1), we get the first equation of (3.151).
Similarly, we obtain the second equation of (3.151) as well. That is, we have

ML my = /@2 —k+ 1) - kllm+1) = /([ —m)(+m+ 1)|,m+1).
(3.157)

From (3.32), we have
M =M M) + M — M.

In the above, M(*)M() and M, are diagonal matrices and, hence, MZ2 and M?
are diagonal matrices as well such that
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-1
—I+1
—[+2

121
(3.158)

where k— 1 and (21 —k—+1)-k represent (k+ 1,k+ 1) elements of M, and
M), respectively. Therefore, (k+ 1,k + 1) element of M? is calculated as

20 —k+1) k+ (k=17 — (k=1 =11+1).

As expected, M* takes a constant value [(/+1). A matrix representation is
shown in (3.159) such that

I(1+1)
I(1+1)

M? = ' I(14+1) . (3.159)

I(1+1)
I(1+1)

These expressions are useful to understand how the vectors of (3.154) constitute
simultaneous eigenstates of M? and M. . In this situation, the matrix representation
is said to diagonalize both M? and M,. In other words, the quantum states repre-
sented by (3.154) are simultaneous eigenstates of M> and M, .
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The matrices (3.152) and (3.153) that represent M (=) and M), respectively, are
said to be ladder operators or raising and lowering operators, because operating
column vectors those operators convert |m) to |m F 1) as mentioned above. The
operators M) and M(+) correspond to a and aT given in (2.65) and (2.66),
respectively. All these operators are characterized by that the corresponding
matrices have diagonal elements of zero and that nonvanishing elements are only
positioned on “right above” or “right below” relative to the diagonal elements.
These matrices are a kind of triangle matrices, and all their diagonal elements are
zero. The matrices are characteristic of nilpotent matrices. That is, if a suitable
power of a matrix is zero as a matrix, such a matrix is said to be a nilpotent matrix
(see Part III). In the present case, (2 + 1)th power of M(~) and M(*) becomes zero
as a matrix.

The operator M~ and M(*) can be described by the following shorthand
representations:

My =2 —k+1) kdq1y (1<k<21). (3.160)

If (=0, M,= MEIME) =M?=0. This case corresponds  to
Y3(0, ) = \/1/4n, and we do not need the matrix representation. Defining

ar =+/(2l—k+1) -k,
we have for instance

{[M(*)}z}kj — Zp Ok 4+ 1,p0p0p 4 1j = Akl +10k+2,

(3.161)
=@ —k+1) k2l = (k+ 1)+ 1] (k+ 1)dt 12,

where the summation is nonvanishing only if p = k + 1. The factor J;,; implies
that the elements are shifted by one toward upper right by being squared. Similarly,
we have

[M(+)]k;:ak—15kj+1 (I<k<2041). (3.162)
In (3.158), MM s represented as follows:

[MH)M(’)},(J. = Zakflék‘p+lap5p+l.j = @10 10 = (ax_1)*0x;
P

=2l — (k= 1)+1]- (k= 1)d; = (2 — k+2)(k — 1)y
(3.163)

Notice that although aq is not defined, d, 4 = 0 for any j, and so this causes no
inconvenience. Hence, [M (Hpm H} ;i of (3.163) is well-defined with 1 <k <21+ 1.
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Important properties of angular momentum operators examined above are based
upon the fact that those operators are ladder operators and represented by nilpotent
matrices. These characteristics will further be studied in Part III.

3.6 Orbital Angular Momentum: Analytic Approach

In this section, our central task is to solve the associated Legendre differential
equation expressed by (3.127) by an analytical method. Putting m = 0 in (3.127),
we have

%{aﬁfﬁgq+w+mﬁu)(x (3.164)

where we use a variable x instead of &. Equation (3.164) is called Legendre dif-
ferential equation, and its characteristics and solutions have been widely investi-
gated. Hence, we put

P)(x) = Py(x), (3.165)

where Pj(x) is said to be Legendre polynomials. We first start with Legendre
differential equation and Legendre polynomials.

3.6.1 Spherical Surface Harmonics and Associated
Legendre Differential Equation

Let us think of a following identity according to Byron and Fuller [4]:
2 d 241 N
(1—x)d—x(l—x) = —2Ix(1 — x°), (3.166)

where [ is a positive integer. We differentiate both sides of (3.166) (I+ 1) times.
Here, we use the Leibniz rule about differentiation of a product function that is
described by

n

n n' m n—m
d"(uv) = E)md ud™™"y, (3.167)

where

d"u/dx" = d"u.
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The above shorthand notation is due to Byron and Fuller [4]. We use this
notation for simplicity from place to place.

Noting that the third-order and higher differentiations of (1 — x?) vanish in LHS
of (3.166), we have

LHS = d'"*'[(1 — 2)d(1 — )]
=(1-2)d* 21— =20+ Dxd" (1 — 52)
— 11+ 1)d'(1 — %)

Also noting that the second-order and higher differentiations of 2/x vanish in
LHS of (3.166), we have

RHS = —d' " 12ix(1 — x?)]]
= —2ixd (1 — ) =201+ 1)d' (1 — #2).

Therefore,

LHS — RHS

= (1 =) d 21 =) —2d 11 =) + 11+ 1)d' (1 — 2 = 0.
We define P;(x) as

_ (=

1(x) = e (=), (3.168)

1
where a constant % is multiplied according to the custom so that we can explicitly

represent Rodrigues formula of Legendre polynomials. Thus, from (3.164) P;(x)
defined above satisfies Legendre differential equation. Rewriting it, we get

2
(1-22)8 iigx) - 2ded’)(Cx) I+ 1)Py(x) = 0. (3.169)

Or equivalently, we have
% {(1 - xz)dlzx(x)] + (14 1)Py(x) = 0. (3.170)

Returning to (3.127) and using x as a variable, we rewrite (3.127) as

%[(1 _xz)%x(x)} - [z(z+ - 1rf2x2]Pr(x) o0, (3.171)
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where [ is a nonnegative integer and m is an integer that takes following values:
m=10Ll-11-2,...1,0,—-1,---—1+1,-L

Deferential equations expressed as

d [p(X) D)

dx dx

} +e(@)y(x) =0

are of particular importance. We will come back to this point in Sect. 8.3.

Since m can be either positive or negative, from (3.171) we notice that P}*(x) and
P;™(x) must satisfy the same differential equation (3.171). This implies that P}’ (x)
and P, (x) are connected, i.e., linearly dependent. First, let us assume that m > 0.
In the case of m <0, we will examine it later soon.

According to Dennery and Krzywicki [5], we assume

P (x) = k(1 — )" C(x), (3.172)

where x is a constant. Inserting (3.172) into (3.171) and rearranging the terms, we
obtain

2

1o

e 2(m+1)x(iac+(l—m)(l+m+1)C:0(0§m§l). (3.173)

Recall once again that if m = 0, the associated Legendre differential equation
given by (3.127) and (3.171) is exactly identical to Legendre differential equation of
(3.170). Differentiating (3.170) m times, we get

d> /d"p d (d"P d"p
(1 —xz)@ (dx—’> = 2(m+x <Wl) +(—=m)(I+m+1) dx”’ =0,
(3.174)

where we used the Leibniz rule about differentiation of (3.167). Comparing (3.173)
and (3.174), we find that

dﬂlPl
Cx) =«
) =¥ o

where ' is a constant. Inserting this relation into (3.172) and setting k' = 1, we
get

P = (1 —xz)"’/z‘lz—;@ O<m<I). (3.175)
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Using Rodrigues formula of (3.168), we have

(_l)l m dl+m
o (1=) 8 prElS

Pl(x) = -2 (3.176)
Equation (3.175) defines the associated Legendre functions. Note, however, that
the function form differs from literature to literature [2, 5, 6].
Amongst classical orthogonal polynomials, Gegenbauer polynomials C7(x)
often appear in the literature. The relevant differential equation is defined by

., d ’ s 1
(3.177)
Setting n =1 —m and A = m+  in (3.177) [5], we have
d m+L d m+1
1-— C .’ 2m+1)x—C,_,°
(1 =) 35 O ) = 2m+ D€ ) -
YU —m)(I+m+1)C ) = 0.
Once again comparing (3.174) and (3.178), we obtain
de m-+s
dxln(lx) = constant - C,_;é(x)(o <m<lI). (3.179)

Next, let us determine the constant appearing in (3.179). To this end, we con-
sider a following generating function of the polynomials Cﬁ' (x) defined by [7]

1
1 — 204 7) E 5 -—= . 3.180
( X+ Ci( < > 2) ( )
To calculate (3.180), let us think of a following expression for x and A( > — %)
—A _ > —A 1
(14x) —mE_O( m >x”, (3.181)

where /A is an arbitrary real number and we define (;j‘) as

(;z) = —A(~A—1)(=4=2)..(~A—m+1)/m! and (—()2) .,
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Notice that (3.182) is an extension of binomial theorem. Putting —4 = n, we

have
(2) :(n”i’;)'m' and (8) — 1.

We rewrite (3.181) using gamma functions I'(z) such that

(1+x) "= ;)m!ri(_j“_t’:ll)x"z (3.183)

where I'(z) is defined by integral representation as

I(z) = / e ' !dt(Re z > 0). (3.184)
0

Changing variables such that ¢ = u?, we have
I'(z) = 2/ e u¥ 'du(Re z > 0). (3.185)
0

Note that the above expression is associated with the following fundamental
feature of the gamma functions:

I(z+1)=zI(z), (3.186)

where z is any complex number.
Replacing x with —#(2x — ¢) and rewriting (3.183), we have

< [(=i+1)

1—2tx4+72) " =
(=204 8) =3 = mr 1)

(—1)"(2x — 1)". (3.187)

Assuming that x is a real number belonging to an interval [—1, 1], (3.187) holds
with ¢ satisfying |7| <1 [8]. The discussion is as follows: When x satisfies the above
condition, solving 1 — 2¢x+ > = 0 we get solution 7. such that

ty =xtivV1 —x%
Defining r as

r=min{|t |,z |},
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(1 —2tx+72) ™", regarded as a function of 7, is analytic in the disk |¢| <r. But,
we have

|l‘i| =1.

Thus, (1 — 2tx+7%)"* is analytic within the disk |f|<1 and, hence, it can be
expanded in a Taylor series.

Continuing the calculation of (3.187), we have

(1 =2+~

_ S r(_i—’—l) _1\mm - m! m— k
*;Om!r(—z—mﬁ)( A ,;k(m PR SUES

oo m m+k _ 3.188
_ ZZ (=1 [(=A+1) ik gk g+ k ( )
2 (m — )\ T(—i—m+1)

_ Zoc:i ( 1 ik (_1)”11—‘(/1_’_’,”) 2mkamfktm+k
— I'(4) ’

where the last equality results from that we rewrote gamma functions using (3.186).
Replacing (m + k) with n, we get

00 [n/Z] n—2k
—1) 2 I'A+n—k
(1-2mx+7)7" =) E 0 (F(Z) ) o2ty
n=0 k=l

, (3.189)

where [n/2] represents an integer that does not exceed n/2. This expression comes
from a requirement that an order of x must satisfy the following condition:

n—2k>0or k<n/2. (3.190)

That is, if n is even, the maximum of k = n/2. If n is odd, the maximum of
k = (n—1)/2. Comparing (3.180) and (3.189), we get [8]

[n/2] kon—2k T°(
ArN (=D2" " T(A4+n—k) , 5
CHx) = ;k!(n T P (3.191)

Comparing (3.164) and (3.177) and putting A = 1/2, we immediately find that
the two differential equations are identical [7]. That is,

C2(x) = P,(x). (3.192)

Hence, we further have
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— A (_1)]{2”72]{ F(% +n— k) xnf2k

P,(x) = (3.193)
= k!(n — 2k)! r3)
Using (3.186) once again, we get [8]
/2] vkgn, A
Pu(x) = (1) Cn =20 oo (3.194)

£ 2"kl(n — k)!(n — 2k)!
It is convenient to make a formula about a gamma function. In (3.193),

n—k > 0, and so let us think of I'(} +m) (m : positive integer). Using (3.186), we
have

o) (Do) (- Do)
(o)) Q) =2 on-vom-v )

(3.195)

Notice that (3.195) still holds even if m = 0. Inserting n — k into m of (3.195),
we get

FG +n— k) = 27 2(n=k) %r G) . (3.196)

Replacing F(% +n— k) of (3.193) with RHS of the above equation, (3.194) will
follow. A gamma function 1"(%) often appears in mathematical physics. According
to (3.185), we have

For the derivation of the above definite integral, see (2.86) of Sect. 2.4. From
(3.184), we also have

r(1) =1.

In relation of the discussion of Sect. 3.5, let us derive an important formula
about Legendre polynomials. From (3.180) to (3.192), we get
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(1—2;x+72) 2 = ipn(x)t". (3.197)
Assuming |z] <1, when we put x = 1 in (3.197), we have
(1= 2x+7) %:% it”:f:Pn(l)t". (3.198)
n=0 n=0
Comparing individual coefficients of #* in (3.198), we get
Pa(1)=1.

See the related parts of Sect. 3.5.
Now, we are in the position to determine the constant in (3.179). Differentiating
(3.194) m times, we have

) a2 =2k —2k)1—2k—1)...(01 =2k —m+1) ; 5 .
d"Py(x)/dx" = Z 2L (1 — k)1 — 2k)! o

k=0

_ [(1—m)/2] (—=1)k(21 — 2k)! -2k
2K — k)l — 2k — m)! '

k=0
(3.199)
Meanwhile, we have
| [(1=m)/2] l)k21—2k—m r‘(l+ 1_ k)
Clrix) = 2 2k, (3.200)
! £~ K\l —2k—m)! T(m+3)
Using (3.195) and (3.196), we have
C(+5—k) 5-2(-k-m) 2L = 2)! m!
Cim+1) (=K (2m)l
Therefore, we get
[(1—m)/2] k m
m —1)"(21 — 2k)! 2" 1
i) = ; S ) (m + )xl‘z"—"ﬂ (3.201)
e 2k — k)W =2k —m)! T(2m+1)

where we used m! =T'(m+1) and (2m)! = I'(2m+ 1). Comparing (3.199) and
(3.201), we get
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d"Pi(x)  T@m+1) m+l

den T 2mT(m+1) ™

(x). (3.202)

Thus, we find that the constant appearing in (3.179) is %

(3.202), we have P(x) = C, 11 /2 (x). Therefore, (3.192) is certainly recovered. This
gives an easy checkup to (3.202).
Meanwhile, Rodrigues formula of Gegenbauer polynomials [5] is given by

. Putting m = 0 in

(—1)"T(n+24)T(A+ 1)
2l (n+ 2+ HI(22)

(1 -7 d

Clx) = i

n

[(1 2L (3.203)

Hence, we have

mit, o (=DT"Tm+ )I(m+ 1) S
') = ST e ) ) ad

C [(1—x3)1. (3.204)

Inserting (3.204) into (3.202), we have

d"Pi(x)  (=1)""T(I+m+1) yo d b
g = =m0 -
(=D m)! ey dE " '
n 2ll'(l - m)’ (1 * ) dxl—m [(1 x ) ]
Further inserting this into (3.175), we finally get
oo (DT m)! oy A "
P (X)*W(lfx) w[(lfx)]. (3.206)
When m = 0, we have
-1 d
P?(x) = (ZIII) @[(1 _xz)l] = Py(x). (3.207)

Thus, we recover the functional form of Legendre polynomials. The expression
(3.206) is also meaningful for negative m, provided |m|<I, and permits an
extension of the definition of P"(x) given by (3.175) to negative numbers of m [5].

Changing m to —m in (3.206), we have

(=11 —m)!
211+ m)!

/2 dl+m

P (x) = (1 —x%) g (1=, (3.208)

Meanwhile, from (3.168) to (3.175),
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(_ )l di+m

PP(x) = (1 — )" la — )] 0<m<i). (3.209)
Comparing (3.208) and (3.209), we get
Py (x) = Mp;"(x) (—1<m<l). (3.210)

(I4+m)!

Thus, as expected earlier, P}"(x) and P;™(x) are linearly dependent.
Now, we return back to (3.149). From (3.206) we have

" dlfm

I—m
(1*XZ)TW[(1 D21 — m)!

n_ (=1
—)]= (I+m)!

P/ (x). (3.211)
Inserting (3.211) into (3.149) and changing the variable x to &, we have

21+ 1)(1 — m)!

Y0, ¢) = (—-1)" I+ )] ) Pr(E)e™ (¢ = cos0;0<0<7m). (3.212)

The coefficient (—1)" appearing (3.212) is well-known as Condon—-Shortley
phase [7]. Another important expression obtained from (3.210) to (3.212) is

Y0, ¢0) = (=1)"[¥]"(0,9)]". (3.213)

Since (3.208) or (3.209) involves higher order differentiations, it would some-
what be inconvenient to find their functional forms. Here, we try to seek the
convenient representation of spherical harmonics using familiar cosine and sine
functions. Starting with (3.206) and applying Leibniz rule there, we have

(=)™ +m)!

Pl(x) = 0] (1 4x) (1 = x) /2
) S 1
- 213' l—l;)rln 'lrzmrv(z - _lr 'l (l(j_x)rl)_,r_%(71)1_"1_(::5:5!@'”“‘%
_l.(l;’m)!liér!(l( )fr)flﬁf’:f%“(;ff (3.214)

Putting x = cos 6 in (3.214) and using a trigonometric formula, we have

I—m r 201=2r—m (0\ o3 2r+m (0
gy (=1)"  cos (3) sin™ " (3)
P (x)_l!(l+m)!;r!(l—m—r)! (=l (m+r)

(3.215)
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Inserting this into (3.212), we get
) 1 — —m —1 r+m 21 2r—m (0 2r+m (0
4n rli(l— —r) (I—=nr)(m+r)!
(3.216)

r=0

Summation domain of r must be determined so that factorials of negative
integers can be avoided [6]. That is,

) tm>0,0<r<l—m; (Il—m+1) terms,
(i) m<0, |m| <r<lIl; (I—|m|+1) terms.

For example, if we choose / for m, putting » = 0 in (3.216) we have

l L0\ ainl (0 [SEN
1 _ @Dy (D) cos' (§)sin'(5) Q21+ 1)! 4, (—1)sin'0
1(0,9) = 4n 1 B 4n g (3:217)

In particular, we have Y3(0, ¢) = \/% to recover (3.150). When m = —I, put-
ting r =1 in (3.216) we get
(21+1)! _,c08' (§)sin’(5) 2L+ 1)! ,sin'0

0, ¢) = e = e . 3.218
(6, ¢) 4x T 4n 2 ( )

For instance, choosing I = 3 and m = 43 and using (3.217) or (3.218), we have

[35 . [35 s
Y3(0,9) = — 64n P5in®0, Y53 (0, ¢) = A 3%sin0).

For the minus sign appearing in Y;’(O7 ¢) is due to the Condon—Shortley phase.
For [ = 3 and m = 0, moreover, we have

Y90, ) = 31 /7-3!- 3'23: (—1)"cos®=?" (Z)sin*" ()
— r'3-n)!3-n'!
)

- 18\/2[0!3!3(!%)! cos' GJsin ) 4+ *(g)sin(3)  sin (2)]

11212111 21111120 31010!3!
=18 7{0056 (g) — sin® (g) n cos? (g) sin’ (g) [sin2 (g) — cos? (g)]}
T 36 4

= \/Z(%COS36 — %cos 0),

where in the last equality we used formulae of elementary algebra and trigonometric
functions. At the same time, we get
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Y30, ¢) = \/%

This is consistent with (3.147) in that ¥3(0, ¢) is positive.

3.6.2 Orthogonality of Associated Legendre Functions

Orthogonality relation of functions is important. Here, we deal with it, regarding the
associated Legendre functions.

Replacing m with (m — 1) in (3.174) and using the notation introduced before,
we have

(1 —xA)d" ' Py — 2mxd™ Py 4 (14+m)(I — m + 1)d" ' P; = 0. (3.219)

Multiplying both sides by (1 —x2)""", we have

(1 —x3)"d" 1Py — 2mx(1 — )™ 'd" P,
+(I+m)(l—m+1)(1 —x>)"'a" P, =0.

Rewriting the above equation, we get
d[(1 —2)"d"P)) = —(I+m)(I —m+1)(1 — )" 'd" ' P,. (3.220)

Now, let us define f(m) as follows:

f(m) = /11 (1 —x*)"(d"P))d"Ppdx (0<m<L1). (3.221)

Rewriting (3.221) as follows and integrating it by parts, we have
1

Flm) = / (1 — 2)"d(d"1P,)d" Pydx

= [(d"'P)(1 = 2)"d"Py)L, - / (@"'P)d[(1 — x*)"d"Pildx

l (3.222)
:—/(d’”’le)d[(l—xz)mdep}dx

-1
1

_ / (@ PYT +m)(I —m+1)(1 — 2" d" ' Pydx
={'+m)(' =m+1)f(m - 1),
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where with the second equality the first term vanished and with the second last
equality we used (3.220). Equation (3.222) gives a recurrence formula regarding
f(m). Further performing the calculation, we get

Fm) = +m)(I +m—1)- (= m+2)( = m+ Df(m —2)

={l'+m)'+m—1)...('+1)-I'...(0' —=m+2)(I' —m+1)f(0)
!

— o)
(3.223)
where we have
f(0) = / Py(x)Py(x)dx. (3.224)

-1

Note that in (3.223) a coefficient of f(0) comprises 2m factors.
In (3.224), P;(x) and Py(x) are Legendre polynomials defined in (3.165). Then,
using (3.168) we have

! vl
foy =0 (;?, / [d(1 — )" (1 — ) dx. (3.225)

2!

To evaluate (3.224), we have two cases; i.e., (i) I # I’ and (ii) [ = I'. With the
first case, assuming that [ > I’ and taking partial integration, we have

1

1= [H0—2) ) =) e
= [ a2y ara -2y (3.226)

—/m“u—fﬂW“u—fﬁw
21

In the above, we find that the first term vanishes because it contains (1 — x?) as a
factor. Integrating (3.226) another I’ times as before, we get

I=(-1)"! / [N = [ (1 — ) . (3.227)

-1
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In (3.227) 0<I—1 —1<2l, and so d~"~'(1 —x)" does not vanish, but

(1- xz)l/ is an at most 2/'-degree polynomial and, hence, d* *'(1 — xz)Z, vanishes.
Therefore,

£(0) =0. (3.228)

If /<7, changing P;(x) and Py(x) in (3.224), we get (0) = 0 as well.
In the second case of [ = I, we evaluate the following integral:

1
1= / [d'(1 — )] dx. (3.229)
-1
Similarly integrating (3.229) by parts [ times, we have
1 1
) / (1 — ) )dx = (=1)* (21! / (1 —x)dx.  (3.230)
~1 1

In (3.230), changing x to cos 6, we have

T

1
/ (1—x%)dx = /sin2’+‘9d0. (3.231)
—1 0
We have already estimate this integral in (3.132) to have ﬁ Therefore,
(=D@pr22+a? 2
0) = = . 3.232
£(0) 221(”)2 i+1)!  20+1 ( )
Thus, we get
_ (I+m)! _(4m) 2
Fom) ==V O = i (3:233)
From (3.228) to (3.233), we have
1 (+m) 2
+m)!
Pl (x)P}(x)dx = — 0. 3.234
[ rerp = {2 (3234

Accordingly, putting
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A = [ E e ) (3.23)

we get

—

P (x) P (x)dx = Sy (3.236)

-1

Normalized Legendre polynomials immediately follow. This is given by

o 1
P,(x)z,/yzilp,(x):(zl;!) @%[(1—%)’}. (3.237)

Combining a normalized function (3.235) with JLz—neimqs, we recover

21+ 1)(I —m)

! .
Y0, ) = dnl+m)! P (x)e™? (x = cos ;0 <0 <m). (3.238)

Notice in (3.238), however, we could not determine Condon—Shortley phase
(—1)"; see (3.212).

Since Pf"(x) and P;™(x) are linearly dependent as noted in (3.210), the set of the
associated Legendre functions cannot define a complete set of orthonormal system.
In fact, we have

(-D)"I—m)!(I+m)! 2 2(-1)"
(I+m)!  (I—-m)!2l4+1 20+1°

1
[ Prp e (3.239)

This means that P*(x) and P;"™(x) are not orthogonal. Thus, we need e™? to
constitute the complete set of orthonormal system. In other words,

2n

1
/ de / d(cos 0)[Y" (0, )] Y™ (0, d) = S S - (3.240)
0 -1

3.7 Radial Wave Functions of Hydrogen-like Atoms

In Sect. 3.1 we have constructed Hamiltonian of hydrogen-like atoms. If the
physical system is characterized by the central force field, the method of separation
of variables into the angular part (0, ¢) and radial (r) part is successfully applied to
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the problem and that method allows us to deal with the Schrodinger equation
separately. The spherical surface harmonics play a central role in dealing with the
differential equations related to the angular part. We studied important properties of
the special functions such as Legendre polynomials and associated Legendre
functions, independent of the nature of the specific central force fields such as
Coulomb potential and Yukawa potential. With the Schrédinger equation pertinent
to the radial part, on the other hand, its characteristics differ depending on the nature
of individual force fields. Of these, the differential equation associated with the
Coulomb potential gives exact (or analytical) solutions. It is well-known that the
second-order differential equations are often solved by an operator representation
method. Examples include its application to a quantum-mechanical harmonic
oscillator and angular momenta of a particle placed in a central force field.
Nonetheless, the corresponding approach to the radial equation for the electron has
been less popular to date. The initial approach, however, was made by Sunakawa
[3]. The purpose of this chapter rests upon further improvement of that approach.

3.7.1 Operator Approach to Radial Wave Functions

In Sect. 3.2, the separation of variables leaded to the radial part of the Schrodinger
equation described as

-l NG hzﬂze(r) RO =ERD. ()

2w 2o o )T A R dner

We identified A with /(I + 1) in (3.124). Thus, rewriting (3.51) and indexing R(r)
with /, we have

W d [rzde(r)} {hzl(lJrl) Ze?

S 2urkdr dr }Rl(") = ERy(r) (3.241)

2urr  dmer

where R;(r) is a radial wave function parametrized with [; u, Z, &, and E denote a
reduced mass of hydrogen-like atom, atomic number, permittivity of vacuum, and
eigenvalue of energy, respectively. Otherwise we follow conventions.

Now, we are in position to solve (3.241). As in the cases of Chap. 2 of a
quantum-mechanical harmonic oscillator and the previous section of the angular
momentum operator, we present the operator formalism in dealing with radial wave
functions of hydrogen-like atoms. The essential point rests upon that the radial
wave functions can be derived by successively operating lowering operators on a
radial wave function having a maximum allowed orbital angular momentum
quantum number. The results agree with the conventional coordinate representation
method based upon power series expansion that is related to associated Laguerre
polynomials.
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Sunakawa [3] introduced the following differential equation by suitable trans-
formations of a variable, parameter, and function:

Syylp) | [U+1) 2
- 42 + 7 —; Yi(p) = e(p), (3.242)
where p =%, ¢ = 34 (%)2E, and y,(p) = pR;(r) with a (= 4negh? / ue®) being Bohr
radius of a hydrogen-like atom. Note that p and e are dimensionless quantities. The
related calculations are as follows: We have

dr, _ d(y/p)dp (d‘ﬁz 1 lﬁz) Z

dr~ dp dr \dpp p?)a
Thus, we get
dr, d d [ ,dR d?
rz_l:ﬂr_ﬁwh (28 _ lpz(P)p
dr dp Z dr dr dp?
Using the above relations, we arrive at (3.242).
Here, we define the following operators:
d [ 1
b =— ——=). 3.243
S (p I ) (324
Hence,
d I 1
b]L =—— ——= 3.244
—-o+ (p ,), (3.244)

where the operator bl]L is an adjoint operator of b;. Notice that these definitions are
different from those of Sunakawa [3]. The operator d% (=A) is formally an

anti-Hermitian operator. We have mentioned such an operator in Sect. 1.5. The
second terms of (3.243) and (3.244) are Hermitian operators, which we define as

H. Thus, we foresee that b; and b,]L can be denoted as follows:

bp=A+H and b;[ =—-A+H.

These representations are analogous to those appearing in the operator formalism
of a quantum-mechanical harmonic oscillator. Special care, however, should be
taken in dealing with the operators b; and blT. First, we should carefully examine
whether d% is in fact an anti-Hermitian operator. This is because for d% to be

anti-Hermitian, the solution ,(p) must satisfy boundary conditions in such a way
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that y,(p) vanishes or takes the same value at the endpoints p — 0 and co. Second,
the coordinate system we have chosen is not Cartesian coordinate but the polar
(spherical) coordinate, and so p is defined only on a domain p > 0. We will come
back to this point later.

Let us proceed on calculations. We have

b,bf-[W(f—;)]{—i#-%ﬂ

2 2
__d ! 2,1 (3.245)
dp 1 P p P
& 1 N 2 2 1 d2 (-1 2 1
W E R BT T ap P’ p B

Also, we have

I+ 2 1
— -S4+ 3.246
dp? 0> p + 2 ( )

bib =

We further define an operator H) as follows:

HO @ {l(lJrl) 2}

dp? r pl

Then, from (3.243) to (3.244) as well as (3.245) and (3.246) we have
HY = b, lbLl +e0(1>0), (3.247)

) =
where &Y = (1+ 0 Alternatively,

D= b;fb, +e=Va>1). (3.248)

If we put/ = n — 1 in (3.247) with n being a fixed given integer larger than [/, we
obtain

HOD = p,bl 460D, (3.249)

We evaluate the following inner product of both sides of (3.249):

(x

) V>= (babl 1) + 677D ()
<bTy|bT >+8" Dy

— 1B} 11112+ £ (x])
28<n71)

1) (3.250)
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Here, we assume that y is normalized. On the basis of the variational principle
[9], the above expected value must take a minimum 1) g0 that y can be an
eigenfunction. To satisfy this condition, we have

by > =0. (3.251)
In fact, if (3.251) holds, from (3.249) we have
H" Dy =gy, (3.252)
We define such a function as below
v =1 (3.253)
From (3.247) to (3.248), we have the following relationship:
H, | = b HITD(1>0). (3.254)
Meanwhile, we define the functions as shown below
WO = by sy ibusin. . ba " (2<s<n). (3.255)

With these functions (s — 1), operators have been operated on l,b(") Note that if

n—1-
s took 1, no operation of b; would take place. Thus, we find that b; functions upon
the I-state to produce the (I — 1)-state. That is, b; acts as an annihilation operator.
For the sake of convenience, we express

H™) = =), (3.256)
Using this notation and (3.254), we have

H<n.s>lp,<1nf>s = H(n"s)bn—s-i— lbn—s+2~ . -bn—llpn@l

= bnferlH(n’s_l)bnferZ' . .bn,1¢2@1
=by sy lbn—s+2H<n1S72)' . 'bn—lwfzri)l

= byyi 1byeyiae HOPb, (3.257)
= by 1bus s 2o by HODYY,

= byt b2 buye" YL

=" Vb, ibygin.. -bnfllﬂ,(gl

— Dy
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Thus, total n functions lﬂfﬁ)s (1<s<n) belong to the same eigenvalue &~ 1.

Notice that the eigenenergy E, corresponding to ¢! is given by
R (Z\*1
E,=—— (—> - (3.258)
2u\a/ n
If we define / = n — s and take account of (3.252), total n functions tﬁl(") (=0,
1,2, ..., n— 1) belong to the same eigenvalue gln=1),

The quantum state w;m is associated with the operators H"). Thus, the solution

of (3.242) has been given by functions lﬁl(") parametrized with » and [ on condition
that (3.251) holds. As explicitly indicated in (3.255) and (3.257), b; lowers the

parameter [ by one from [ to [ — 1, when it operates on xpE"). The operator by cannot
be defined as indicated in (3.243), and so the lowest number of / should be zero.
Operators such as b; are known as a ladder operator (lowering operator or anni-
hilation operator in the present case). The implication is that the successive oper-

ations of b; on wfﬁ)l produce various parameters / as a subscript down to zero, while
retaining the same integer parameter n as a superscript.

3.7.2 Normalization of Radial Wave Functions

Next, we seek normalized eigenfunctions. Coordinate representation of (3.251) takes

(n)
dl// 1 n 1 (n)
Pl (T2 =0. 3.259
dp (p n) Vi1 ( )

The solution can be obtained as

Y = ple (3.260)

n—

where ¢, is a normalization constant. This can be determined as follows:
o0
/ " Pdp = 1. (3.261)
0
Namely,

leal? / pPe 2/dp = 1. (3.262)
0
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Consider the following definite integral:

I 1
[ =5
0

Differentiating the above integral 2n times with respect to & gives
x ) 1\ 20 +1
/ pPe~2¢dp = (E) (2n)1E= 2+ D), (3.263)
0

Substituting 1/n into &, we obtain

® 2n+1
/ pPle 2 ndp = <§> (2n)In®1 D), (3.264)
0

Hence,

o = (%)H%/ Gl (3.265)

To further normalize the other wave functions, we calculate the following inner
product:

(yy"

From (3.247) to (3.248), we have

./,§">> - <x//fl”_>lb:[_l...bj+2b;r+l ‘ bl+1b1+2...bn,1lp£ln_>l>. (3.266)

b;rb;—ks(l’l) = b,Hb)L+1 +e0 (1>1). (3.267)

Applying (3.267-3.266) repeatedly and considering (3.251), we reach the fol-
lowing relationship:

(ut” [ i)
— [8<n—1> _ 8(:1—2)] {gn—l) _ .g<"—3>} . [8<n—1> _ 8(1)} <¢}<1n_>1 ’ wﬁ")1>.

(3.268)

(n)

To show this, we use mathematical induction. We have already normalized v,

in (3.261). Next, we calculate <lpf1"_>2 ‘ xpfl”_)2> such that
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(i i) = (w il b)) = (ui bl by
<lp { bT+8nl 8(n72)}lpin_>l>
=

s bbm )+ [ =] (g | )

= [ = [ ),

With the third equality, we used (3.267) with [ = n — 1; with the last equality we
used (3.251). Therefore, (3.268) holds with [ = n — 2. Then, it suffices to show that

(3.269)

assuming that (3.268) holds with ("), ’¢§'21>, it holds with (u{" | y{") as
well.
Let us calculate <lﬁ§") (")>, starting with (3.266) as below:
<l//1(n)|*//z(n)> = <‘// b,]: - sz+zbz]L+1|bl+1bl+2~--bnfll//i'i)1>
=<l// 119]L ‘b;r+z(b;r+1bl+1)bl+z--»bn—ll//,(fi)1>
= <1// bl b;r+2[bz+2bj+2+8(l“> fs(l)}b,+2...bn_11//fl’?l>
- <l//f;?lb3:,1. b} brsa(bl brsa). .b,,,ll//f[’jl>
+ [0 - 0]y b bl b b))
= (W0l b b))
n [sml ]<¢Hl|¢ln+l> (3.270)

In the next step, using b;r+ biyo = bz+3b]L +e+2) _ ¢(+1) e have

1+3
(yy"

lﬁgn>> - <¢fﬁ> bl ~~-sz+zbl+2bl+3sz+3bl+3'"b"*”p'(gl>

+ {SUH }<¢111 ‘ ‘pz+1> { 2 — 3<Z+1)} <‘p§1)1 ‘ ‘pg'jr)1>‘
(3.271)

Thus, we find that in the first term the index number of b,T 13 has been increased

by one with itself transferred toward the right side. On the other hand, we notice
that with the second and third terms ¢! +1)<zp,<”+)1 ‘ n,b,(”j1> cancels out. Repeating

the above processes, we reach a following expression:
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<wln pn > = <‘//nn 1b1 1 b;r+2bl+2- : -bn—lbi—l r(;?l>
+ [8(’1_1) — g2 ] <'//§n+>1 ‘ ‘//1(1)1> + [g(n—z) - 3<n_3)} <‘p1(n+)1 ’ ‘//1(’21> +
[ = I () [ )+ [0 = o (it i)

= [S(n Y ]<'//li1 ‘!//l+1>

(3.272)

In (3.272), the first term of RHS vanishes because of (3.251); the subsequent

term produces <¢§’Ql ’ lp,(’ﬂ 1> whose coefficients have canceled one another except

for [¢n=1) — &0].
Meanwhile, from assumption of the mathematical induction we have

(il [wit)

_ [8(%1) _ 8(n72):| [8(%1) _ 8(n73):| . [8(%1) _ 8(z+1)} <‘/’,(;1)1 ’ WE;?1>~

Inserting this equation into (3.272), we arrive at (3.268). In other words, we have
shown that if (3.268) holds with [ =1+ 1, (3.268) holds with [ = [ as well. This

completes the proof to show that (3.268) is true of <1//§") ;")> with [ down to 0.

The normalized wave functions z%") are expressed from (3.255) as
n -1 7 (n
l//( ) — K(n l) by 1bpyo. . .bnfll//i_)l, (3273)
where x(n,[) is defined such that
Kk(n, 1) = "D — s(”_z)} : [8(’"1) - s<”_3)} e [s<”_l) - s(l)}, (3.274)
with [ <n — 2. More explicitly, we get

(2n— D(n—1— D)

k(n,l) = D2 (3.275)
In particular, from (3.265) we have
- (n 2 n+% 1 . —oln
g = (Z) (Zn)|p e/, (3.276)

From (3.272), we define the following operator:
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= [S(nfl) _ 8(1*1)]_%[)1. (3.277)

Then, (3.273) becomes

U =Dy by g by ™, (3.278)

n

3.7.3 Associated Laguerre Polynomials

It will be of great importance to compare the functions l%'” with conventional wave
functions that are expressed using associated Laguerre polynomials. For this pur-

pose, we define the following functions (I)I(")(p) such that

N m—1-1) 2p
o™ () = (2 W=tz ety 2Py 3.279
1 (p) <n) 2n(n—|—l)' e np n—l—l( I’l) ( )

The associated Laguerre polynomials are described as

, L,
L(x)=—=x"¢"—

ST o (¢ e ), (v > — 1), (3.280)

In a form of power series expansion, the polynomials are expressed for integer
k > 0as

L) = Zn:(n (—_;))'((:in]?)"m'xm (3.281)

m=0
Notice that “Laguerre polynomials” L, (x) are defined as
L,(x) = L, (x).

Hence, instead of (3.280) and (3.281), the Rodrigues formula and power series
expansion of L, (x) are given by [2, 5]

1 .d
S0) = et T (e,

The function (I)E") (p) contains multiplication factors e~ and p!*!. The function
| (2—p) is a polynomial of p with the highest order of p"~/~!. Therefore, <Dl(n) (p)

n—Il—1\n
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consists of summation of terms containing e sp’, where ¢ is an integer equal to 1 or
larger. Consequently, (I)l<">(p) — 0 when p — 0 and p — oo (vide supra). Thus, we
have confirmed that (Dl(")(p) certainly satisfies proper BCs mentioned earlier and,

hence, the operator % is indeed an anti-Hermitian. To show this more explicitly, we

define D = d%. An inner product between arbitrarily chosen functions f and g is

(f | Dg) = /0 f*Dgdp

e [ e 3.282
— iy = [ o (3.282)
=[f"gly + < —Dflg),
where f* is a complex conjugate of f. Meanwhile, from (1.112) we have
(fIDg) = <DTf |g> (3.283)

Therefore if the functions f and g vanish at p — 0 and p — oo, pf=-bD by
equating (3.282) and (3.283). This means that D is anti-Hermitian. The functions

<1§l(">( p) we are dealing with certainly satisfy the required boundary conditions. The

operator H) appearing in (3.247) and (3.248) is Hermitian accordingly. This is
because

b;rb, = (~A+H)(A+H) = H* — A> — AH + HA, (3.284)

o)t = @)t = @) - mtal falmt = @ty - (afy? - mfal s atal
—H— (“A —H(-A)+ (—A)H = H* — A> + HA— AH = b .
(3.285)

The Hermiticity is true of b;bl]L as well. Thus, the eigenvalue and eigenstate (or
wave function) which belongs to that eigenvalue are physically meaningful.
Next, consider the following operation:

IBI(DZ(H) (p)

N [—1-1)I[d 11 , 2p
— (n—1) _ (-3 = w=r= = Lz —L I+1p2041 [ 2K
e e () 2n(n+ D) [dﬁ(p l)He , L""‘1<n>}’

(3.286)

where
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g g 3.287
| N E [ 250

Rewriting Lﬁlflll(%”) in a power series expansion form using (3.280) and
rearranging the result, we obtain

59" (p)

- (%)l+%Jw+’Xm¢2n(n+l>!<ln —1=1! % ’ (% m

dn -1
p/n I n+1,-2p/n
[e P g )} (3.288)

2

N )

xe—n/n"prumﬂ 2\" (n-1-1)
— (2l+m+1)! n) mn—l—m—1)

where we used well-known Leibniz rule of higher order differentiation of a product

n—I-1
function, i.e., ci;"f'fl (p"+le=?/"). To perform further calculation, notice that d%

does not change a functional form of e P/ whereas it lowers the order of ,0”’”+1

by one. Meanwhile, operation of L1owers the order of p'*”*! by one as well. The

factor 2 “ in Eq. (3.289) results from these calculation processes. Considering these
charactenstlcs of the operator, we get

O (p) = 2\ g nl 1 o/n
TUW=\) A =\ 2+ Dl —1— )P

n—I—1 (71>m+1(n+l)! (I’l*l* 1)' - % m+1
x{ ) ()

— Q2ltm+1)! mi(n—1—m-— n

n—Il— 1 m
"h+l-1)! (n—1-1)! 2
21 "l =
* mz: 21+m m!(n—l—m—l)!p n

(3.289)

In (3.289), calculation of the part {- - -} next to the multiplication sign for RHS is
somewhat complicated, and so we describe the outline of the calculation procedure
below.

{---} of RHS of (3.289)
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L (—1)"(n+ (n—1—1)! (2)’"

; 2l+m)' m—Dln—1—m)1” \n
"1 +171) (n—1-1)!  (2\"
+2l;) 2l+m)' m!(n—l—m—l)!p (;)
"1 () (=1 - 1)) (n+1 - 1) n+l 21
Z QI+ m)! {(mfl)(nflf TR sy p—
wt {20\ (n1—1)
s (7))
:"Zl:‘( D"CO (n— 1= Din+1-1! m—1)!n—1—m—1)!2l+m)(n—1)
— 21+ m)! m—Dn—Il—m)m!(n—1—m—1)!
w20\ (n+1—=1)
+(=1) I(?) MG

(=1)" )" (n = Dl (n+1—1)! w20\ (n1—1)
Ql+m—1)!(n—1—m)m! +(=1 ](7) SNCTEEY]
(D)) (n w120\ (n4l—1)!

l)'{z(21+m—1)'(n—l—m)'m'+(_l) R (7) BTN

l n—l ( 1)771(2[})'"(}1_"_1_1)
B Z(Zl+mfl n—1—m)m!

— (n— 2! (27”)

MN

m=1

(3.290)

Notice that with the second equality of (3.290), the summation is divided into
three terms, i.e., | <m<n —1[1— 1, m = n — [ (the highest-order term), and m = 0
(the lowest-order term). Note that with the second last equality of (3.290), the
highest-order (n — [) term and the lowest-order term (i.e., a constant) have been
absorbed in a single equation, namely an associated Laguerre polynomial.
Correspondingly, with the second last equality of (3.290) the summation range is
extended to 0<m<n— L.

Summarizing the above results, we get

bio)" (p)

2\l nl(n— 1) epin a1 (2P
n 2l \/n+D(n—1 2n(n—|—l'(n—l—1)' P St n
1+1
= (n—1)! e P/ plp2 1 2p
2n(n+1—1)! =\ n

_ 3
(-1)+3 we 2 p(1=1)+1 20D+ 1 2,0 = o (p)
2+ (- 1] vt e ) T

S N

S N

(3.291)
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Thus, we find out that (I);") (p) behaves exactly like t%"). Moreover, if we replace
[ in (3.279) with n — 1, we find

o™ (p) =y . (3.292)
Operating b,_1 on both sides of (3.292), we get
a(e) = Uy (3.293)

Likewise successively operating b; (1 <I<n — 1), we get

o (p) = 1" (p), (3.204)

with all allowed numbers of [ (i.e., 0 <I<n — 1). This permits us to identify

0" (p) = §" (p). (3.295)

Consequently, it is clear that the parameter n introduced in (3.249) is identical to
a principal quantum number and that the parameter / (0 </<n — 1) is an orbital

angular momentum quantum number. The functions CI)I(")(p) and ;Nbl(")(p) are
identical up to the constant ¢, expressed in (3.265). Note, however, that a complex
constant with an absolute number of 1 (phase factor) remains undetermined, as is
always the case with the eigenvalue problem.

The radial wave functions are derived from the following relationship as
described earlier:

R (r) =" /p. (3.296)

To normalize Rl(">(r), we have to calculate the following integral:

o0

> n 1 ~(n a 2a T a 3
| RO = [ (Ge) G = (5) [ W Par = (5)"
0 0

(3.297)

Accordingly, we choose the following functions Rg") (r) for the normalized radial
wave functions:

R"(r) =/ (2/a)*R" (r). (3.298)

Substituting (3.296) into (3.298) and taking account of (3.279) and (3.280), we
obtain
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0B SR ) () oo

Equation (3.298) is exactly the same as the normalized radial wave functions

that can be obtained as the solution of (3.241) through the power series expansion.
—E 2z
2u n?

a
In summary of this section, we have developed the operator formalism in dealing
with radial wave functions of hydrogen-like atoms and seen how the operator
formalism features the radial wave functions. The essential point rests upon that the
radial wave functions can be derived by successively operating the lowering

All these functions belong to the same eigenenergy E, =

operators b; on x/N/,(;?l that is parametrized with a principal quantum number n and an
orbital angular momentum quantum number [ = n — 1. This is clearly represented
by (3.278). The results agree with the conventional coordinate representation
method based upon the power series expansion that leads to associated Laguerre
polynomials. Thus, the operator formalism is again found to be powerful in
explicitly representing the mathematical constitution of quantum-mechanical
systems.

3.8 Total Wave Functions

Since we have obtained angular wave functions and radial wave functions, we
(n)

1Lm

of the angular part and radial part such that

describe normalized total wave functions A,") of hydrogen-like atoms as a product

AL = Y70, p)R" (). (3.300)

Let us seek several tangible functional forms of hydrogen (Z = 1) including
angular and radial parts. For example, we have

7 )
$(15) = Y3 (0, p)R (1) = \/%a”2 (%) = \éame"/“, (3.301)

where we used (3.276) and (3.295).
For ¢(2s), using (3.277) and (3.278) we have

$(2s) = Y20, )R (r) = 4\}ﬂa_% e % (2 - 2) (3.302)

For ¢(2p,), in turn, we express it as
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$(2p:) = Y7 (0, )R (r) = f( 9>7a et

1 3 - 3r _rZ 1 5 _r
a2-excosh) = 1—e - =——q 2e 2z (3.303)

= a
427 a 4\/ 2n a r  442n

For ¢(2p,+iy). using (3.217) we get

- 1 3

O(2psyiy) = Yll(ﬁ, d))Rgz)(r) = —ma 226 % sin fe'?
1 , 1 ,

= a3l CRAR ———ua 2e’ﬂ()c—i—iy).

8V a r_8\/_

In (3.304), the minus sign comes from the Condon—Shortley phase. Furthermore,
we have

(3.304)

_ ~ 3r i
$(2pe i) = 170, 9)RY (1) = V“ e Ssinge”

1 sr _yx—iy 1

276 2a

:ﬁa p . 8\/— e u(x — iy).

Notice that the above notations ¢(2py ;) and ¢(2p,_;y) differ from the custom
that uses, e.g., ¢(2p,) and ¢(2p,). We will come back to this point in Sect. 4.3.

(3.305)
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Chapter 4
Optical Transition and Selection Rules

In Sect. 1.2, we showed the Schrédinger equation as a function of space coordinates
and time. In subsequent sections, we dealt with the time-independent eigenvalue
problems of a harmonic oscillator and a hydrogen-like atoms. This implies that the
physical system is isolated from the outside world and that there is no interaction
between the outside world and physical system we are considering. However, by
virtue of the interaction, the system may acquire or lose energy, momentum, an-
gular momentum, etc. As a consequence of the interaction, the system changes its
quantum state as well. Such a change is said to be a transition. If the interaction
takes place as an optical process, we are to deal with an optical transition. Of
various optical transitions, the electric dipole transition is common and the most
important. In this chapter, we study the optical transition of a particle confined in a
potential well, a harmonic oscillator, and a hydrogen using a semiclassical
approach. A question of whether the transition is allowed or forbidden is of great
importance. We have a selection rule to judge it.

4.1 Electric Dipole Transition

We have a time-dependent Schrédinger equation described as

N
Hy = ih—. 1.47
v =iy (147)
Using the method of separation of variables, we obtained two equations
expressed below.

Ho(x) = Ep(x), (1.55)

© Springer Nature Singapore Pte Ltd. 2018 119
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. 0¢(1)
ih R E&(r). (1.56)
Equation (1.55) is aneigenvalue equation of energy, and (1.56) is an equation
with time. So far we have focused our attention upon (1.55) taking a
one-dimensional harmonic oscillator and hydrogen-like atoms as an example. In
this chapter, we deal with a time-evolved Schrodinger equation and its relevance to
an optical transition. The optical transition takes place according to selection rules.
We mention their significance as well.
We showed that after solving the eigenvalue equation, the Schrodinger equation
is expressed as

V(x,1) = ¢(x) exp(—iEt/R). (1.60)

The probability density of the system (i.e., normally a particle such as an
electron, a harmonic oscillator) residing at a certain place x at a certain time ¢ is
expressed as

W (x, Y (x,1).

If the Schrodinger equation is described as a form of separated variables as in the
case of (1.60), the exponential factors including ¢ cancel out and we have

Vi (x, 0 (x,1) = 7 (x)P(x). (4.1)

This means that the probability density of the system depends only on spatial
coordinate and is constant in time. Such a state is said to be a stationary state. That
is, the system continues residing in a quantum state described by ¢ (x) and remains
unchanged independent of time.

Next, we consider a linear combination of functions described by (1.60). That is,
we have

Y(x,1) = c1 (x) exp(—iEit/h) + c2p (x) exp(—iEat/ ), (4.2)

where the first term is pertinent to the state 1 and second term to the state 2; ¢; and
¢, are complex constants with respect to the spatial coordinates but may be weakly
time-dependent. The state described by (4.2) is called a coherent state. The prob-
ability distribution of that state is described as

U, W (x,1) = el + leal* sl + ceadipoe ™ +cre1 3™, (4.3)
where o is expressed as

This equation shows that the probability density of the system undergoes a
sinusoidal oscillation with time. The angular frequency equals the energy difference
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between the two states divided by the reduced Planck constant. If the system is a
charged particle such as an electron and proton, the sinusoidal oscillation is
accompanied by an oscillating electromagnetic field. Thus, the coherent state is
associated with the optical transition from one state to another, when the transition
is related to the charged particle.

The optical transitions result from various causes. Of these, the electric dipole
transition yields the largest transition probability, and the dipole approximation is
often chosen to represent the transition probability. From the point of view of
optical measurements, the electric dipole transition gives the strongest absorption or
emission spectral lines. The matrix elementof the electric dipole, more specifically a
square of an absolute value of the matrix element, is a measure of the optical
transitionprobability. Labeling the quantum states as a, b, etc. and describing the
corresponding state vector as |a), |b), etc., the matrix element Py, is given by

Ppy = (b|ee - Pla), (4.5)

where &, is a unit polarization vector of the electric field of an electromagnetic wave
(i.e., light). Equation (4.5) describes the optical transition that takes place as a result
of the interaction between electrons and radiation field in such a way that the
interaction causes electrons in the system to change the state from |a) to |b). That
interaction is represented by & - P. The quantum states |a) and |b) are referred to as
an initial state and final state, respectively.

The quantity P is the electric dipole moment of the system, which is defined as

P= erj’ (46)

where e is an elementary charge (¢ <0) and x; is a position vector of the jth electron.
Detailed description of & and P can be seen in Chap. 5. The quantity Py, is said to
be transition dipole moment, or more precisely, transition electric dipole moment
with respect to the states |a) and |b). We assume that the optical transition occurs
from a quantum state |a) to another state |b). Since Py, is generally a complex
number, |Py,|* represents the transition probability.

If we adopt the coordinate representation, (4.5) is expressed by

Poa = [y - Pyt (4.7)

where 1 denotes an integral range of a space.

4.2 One-dimensional System

Let us apply the aforementioned general description to individual cases of
Chaps. 1-3.
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Example 4.1 A particle confined in a square-well potential

This example was treated in Chap. 1. As before, we assume that a particle (i.e.,
electron) is confined in a one-dimensional system [—L <x < L(L > 0)].

We consider the optical transition from the ground state ¢, (x) to the first excited
state ¢,(x). Here, we put L = n/2 for convenience. Then, the normalized coherent
state Y(x) is described as

1

5 [#1(x) exp(—iEvt/1) + 5 (x) exp(—iEat/R)], (4.8)

Y(x1)

N

where we put ¢ = ¢, = % in (4.2). In (4.8), we have

o1(x) = \/%cosx and ¢,(x) = \/%sin 2x. (4.9)

Following (4.3), we have a following real function called a probability distri-
bution density:

1
(e Y (x, 1) = p [cos® x -+ sin” 2x + (sin 3x + sinx) cos i, (4.10)

where o is given by (4.4) as
o = 3h/2m, (4.11)

where m is a mass of an electron. Rewriting (4.10), we have
. 1 1 . .
U (x Op(x, ) == |1+ 3 (cos2x — cos4x) + (sin3x+ sinx)coswt|. (4.12)
n

Integrating (4.12) over [— Z %], a contribution from only the first term is non-

vanishing to give 1, as anticipated (because of the normalization).

Putting r = 0 and integrating (4.12) over a positive domain [O, g] , we have
n/2
. 1 4
W (x, 0)(x,0)dx = = + —— ~ 0.924. (4.13)
2 3z
0

Similarly, integrating (4.12) over a negative domain [—%,0], we have

1

0
' L
/ Y7 (x, 00y (x, 0)dx = 5 — = ~ 0.076. (4.14)
—n/2
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Thus, 92% of a total charge (as a probability density) is concentrated in the
positive domain. Differentiation of ™ (x,0)y(x,0) gives five extremals including
both edges. Of these, a major maximum is located at 0.635 rad that corresponds to
about 40% of n/2. This can be a measure of the transition moment. Figure 4.1
demonstrates these results (see a solid curve). Meanwhile, putting r = n/w (i.e.,
half period), we plot " (x,7/w)y(x,t/®). The result shows that the graph is
obtained by folding back the solid curve of Fig. 4.1 with respect to the ordinate
axis. Thus, we find that the charge (or the probability density) exerts a sinusoidal
oscillation with an angular frequency 3%/2m along the x-axis around the origin.

Let e; be a unit vector in the positive direction of the x-axis. Then, the electric
dipole P of the system is

P = ex = exey, (4.15)

where x is a position vector of the electron. Let us define the matrix element of the
electric dipoletransition as

Py1 = (¢, (x)ler - Pl (x)) = (dy(x)]ex|; (x)). (4.16)

Notice that we only have to consider that the polarization of light is parallel to
the x-axis. With the coordinate representation, we have

n/2 /2
2 2
Py = / 5 (x)exdp (x)dx = / \/‘(cosx)ex\/»sin 2xdx
T T
-n/2 —m/2
n/2 n/2
2
=e= / X cos x sin2xdy = & / x(sinx+ sin 3x)dx (4.17)
T T
—n/2 —n/2
n/2 ,
1 16
= % / {x(cosx)' +x(§cos3x) }dx = 9—7:,
—mn/2

Fig. 4.1 Probability
distribution density

W™ (x, ) (x,1) of a particle
confined in a square-well
potential. The solid curve and
broken curve represent the
density of t =0 and 1 = 7/w
(i.e., half period), respectively

P (x,0)1(x, 0)

—r/2 0 /2
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where we used a trigonometric formula and integration by parts. The factor 16/97
in (4.17) is about 36% of 7/2. This number is pretty good agreement with 40% that
is estimated above from the major maximum of ¥*(x, 0)y(x, 0).

Note that the transition moment vanishes if the two states associated with the
transition have the same parity. In other words, if these are both described by sine
functions or cosine functions, the integral vanishes.

Example 4.2 One-dimensional harmonic oscillator

Second, let us think of an optical transition regarding a harmonic oscillator that
we dealt with in Chap. 2. We denote the state of the oscillator as |n) in place of
[¥,) (n=0,1,2,...) of Chap. 2. Then, a general expression (4.5) can be written as

Py = (k|e. - P|I). (4.18)

Since we are considering the sole one-dimensional oscillator,
&e=qand P = eq, (4.19)

where ¢ is a unit vector in the positive direction of the coordinate g. Therefore,
similarly to the above we have

&P =eq. (4.20)
That is,
Pkl = e<k|q\l> (421)
Since ¢ is an Hermitian operator, we have
Py = e(llqTk) = elllqlk) = P, (4.22)

where we used (1. 116). Using (2. 68), we have

Py = e\/;mi;<k|a+aT|z> - %[mam + <k|aT|z>] (4.23)

Taking the adjoint of (2.62) and modifying the notation, we have
(kla = Vk+1{(k+1]. (4.24)
Using (2.62) once again, we get

Py = e,/%[wﬁ1<k+1|z>+\/z+1<k|z+1> . (4.25)

Using orthonormal conditions between the state vectors, we have
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| h
Pkl:e M[Vk+lék+l7l+ vl+15k,1+1:|. (426)

Exchanging k and [ in the above, we get
Py = Py.

The matrix element Py is symmetric with respect to indices k and [. Notice that
the first term does not vanish only when k + 1 = I. The second term does not vanish
only when k = [+ 1. Therefore, we get

rl+1) hk+1
Pkk+1—e\/ aUdPZHI—e\/ <0rPk+1k—€ (2 )>
mo

(4.27)
Meanwhile, we find that the transition matrix P is expressed as
0 1 0 0 O
1 0 v2 0 0
b ' 0 V2 0 V3 0
=eqg=c¢e mw(a—i—a) e —mw 0 0 \/g 0 2 R
0O 0 O 2 0
(4.28)

where we used (2. 68). Note that a real Hermitian matrix is a symmetric matrix.

Practically, it is a fast way to construct a transition matrix (4.28) using (2.65) and
(2.66). It is an intuitively obvious and straightforward task. Having a glance at the
matrix form immediately tells us that the transition matrix elements are nonvanishing
with only (k,k+ 1) and (k+ 1,k) positions. Whereas the (k, k + 1)-element repre-
sents transition from the kth excited state to (k — 1)-th excited state accompanied by
photoemission, the (k+ 1,k)-element implies the transition from (k — 1)-excited
state to kth excited state accompanied by photoabsorption. The two transitions give
the same transition moment. Note that zeroth excited state means the ground state;
see (2.64) for basisvector representations.

We should be careful about “addresses” of the matrix accordingly. For example,
Py in (4.27) represents a (1,2) element of the matrix (4.28); P, stands for a (3,2)
element.

Suppose that we seek the transition dipole moments using coordinate repre-
sentation. Then, we need to use (2.106) and perform definite integration. For
instance, we have
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oo

c / bola)aw (a)dg

—00

that corresponds to (1,2) element of (4.28). Indeed, the above integral gives e /%.

The confirmation is left for the readers. Nonetheless, to seek a definite integral of
product of higher excited-state wave functions becomes increasingly troublesome.
In this respect, the operator method described above provides us with a much better
insight into complicated calculations.

Equations (4.26—4.28) imply that the electric dipole transition is allowed to
occur only when the quantum number changes by one. Notice also that the tran-
sition takes place between the even function and odd function; see Table 2.1 and
(2.101). Such a condition or restriction on the optical transition is called a selection
rule. The former equation of (4.27) shows that the transition takes place from the
upper state to the lower state accompanied by the photonemission. The latter
equation, on the other hand, shows that the transition takes place from the lower
state to the upper accompanied by the photonabsorption.

4.3 Three-dimensional System

The hydrogen-like atoms give us a typical example. Since we have fully investi-
gated the quantum states of those atoms, we make the most of the related results.

Example 4.3 An electron in a hydrogen atom

Unlike the one-dimensional system, we have to take account of an angular
momentum in the three-dimensional system. We have already obtained explicit
wave functions. Here we focus on 1s and 2p states of a hydrogen. For their nor-
malized states, we have

1 —r/a
¢(1s) = P e, (4.29)
1 I 7 _
é(2p.) =i\ 34t /24 cos 0, (4.30)
1 1 r —r/2a o; i
¢<2px+iy) _g EZC sin fe s (431)
1 1 r —2a i
¢<2przy) = g ﬁ;e sin Oe s (432)
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where adenotes Bohr radius of a hydrogen. Note that a minus sign of ¢(2px+ ,-y) is
due to the Condon—Shortley phase. Even though the transition probability is pro-
portional to a square of the matrix element and so the phase factor cancels out, we
describe the state vector faithfully. The energy eigenvalues are

i i
) ,E(sz) = E(sz+iy) = E(sz—iy) =9 3 (433)

E(ls) = ———
(s) 2ua Sua?’

where u is a reduced mass of a hydrogen. Note that the latter three states are
degenerated.

First, we consider a transition between ¢(1s) and ¢(2p,) states. Suppose that the
normalized coherent state is described as

W(x,1) = \%{WU) exp[—iE(Ls)t/h] + $(2p:) exp[—iE(2p:)t/h]}.  (4.34)

As before, we have

U (e, 0 (x, 1) = (e, )

4.35
:%{[45(15)]24—[qﬁ(ZpZ)}z—|—2q§(1s)q§(2pz)cosa)t}, (4.35)

where o is given by
o = [E(2p.) — E(15)]/h = 3h/8ud>. (4.36)

In virtue of the third term that contains a cos wt term, the charge distribution
undergoes a sinusoidal oscillation along the z-axis with an angular frequency
described by (4.36). For instance, wt = 0 gives +1 factor to (4.35) when ¢ = 0,
whereas it gives —1 factor when wt = 7, i.e. t = 8nua®/3h.

Integrating (4.35), we have

T (e, O (x, t)de = (| (x,1)Pde

=5 [ {10092 + (6o e

+ coswt/d)(ls)qS(sz)dr: +-=1

N =

where we used normalized functional forms of ¢(1s) and ¢(2p,) together with
orthogonality of them. Note that both of the functions are real.

Next, we calculate the matrix element. For simplicity, we denote the matrix
element simply as P%) only by designating the unit polarization vector . Then, we
have
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P& = (¢(1s)]ec - Pl¢p(2p2)), (4.37)

where

P =ex =e(ejeze3) (4.38)

N o=

We have three possibilities of choosing &, out of ey, e;, and e;. Choosing ez, we
have

PO = eld(15)lld(2p.)

2n

272

__ ¢ / r4e’3’/2”dr/ cos?0sin 6d0/ d¢ = —5\/_60 ~ 0.745¢a.
4/2mat ) , ) 3

(4.39)

In (4.39), we express the matrix element as Piﬁ;)»

position vector and to explicitly show that ¢(2p,) state is responsible for the
transition. In (4.39), we used z = r cos . We also used a radial part integration

such that
x® 5
/ rre 32qr = 24 (%;) .
0

Also we changed a variable cos  — ¢ to perform the integration with respect to
0. We see that a “leverage” length of the transition moment is comparable to Bohr
radius a.

to indicate the z-component of

With the notation Pie‘; >,> we need some explanation for consistency with the latter

description. Equation (4.39) represents the transition from |¢(2p,)) to |¢(1s)) that
is accompanied by the photonemission. Thus, |p;) in the notation, means that
|¢(2p,)) is the initial state. In the notation, in turn, (e3) denotes the polarization
vector and z represents the electric dipole.

In the case of photonabsorption where the transition occurs from |¢(1s)) to
|#(2p;)), we use the following notation:

P = e(p(2p,)lel(19)). 4.40)

Since all the functions related to the integration are real, we have
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(e3) (e3)
P oy = Prjp
Meanwhile, if we choose e; for g to evaluate the matrix element P,, we have

P = e(p(1s)x]p(2p.))

00 n 2n

_ € 4 —3r/2a / ) / _
= re dr [ sin“0 cos0dO | cos¢pdep =0,
4\/§na40/ ) ) ¢dé

(4.41)

where cos ¢ comes from x = r sin 6 cos ¢ and an integration of cos ¢ gives zero.
In a similar manner, we have

P = elg(15) 1 (2p.)) = 0. (4.42)

Next, we estimate the matrix elements associated with 2p, and 2p,. For this
purpose, it is convenient to introduce the following complex coordinates by a
unitary transformation:

1 i
x v O\ (nm w0 (x
= i i 1 i
(ere2e3) | ¥ (ere2e3) 5 5 0 7 55 0 y
z
0 0 0 l 0 1 (4.43)
| X %(X—Hy)
= (ﬁ(€1i82)\/§(81+i82)83> \/%(x iy) |
z

where a unitary transformation is represented by a unitary matrix defined as
vtu=uvut =E. (4.44)

We will investigate details of the unitary transformation and matrix in Parts III
and IV.
We define e, and e_ as follows [1]:

(e;+iex) and e_ = (4.45)

0. = L Lo —ie)
+—\/§ \/El 2)s

where complex vectors e, and e_ represent the left-circularly polarized lightand
right-circularly polarized light that carry an angular momentum 7 and —#,
respectively. We will revisit the characteristics and implication of these complex
vectors in Sect. 5.4.
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We have

(x+iy)
(x—1iy) |- (4.46)
b4

2

sk

(ereze3) =(e_e e3)

N =

Note that e ,e_ and e3 are orthonormal. That is,
(eiler)=1,(eile-) =0,etc. (4.47)

In this situation, e, ,e_, ande; are said to form an orthonormal basis in a
three-dimensional complex vector space (see Sect. 11.4).
Now, choosing e ;. for &, we have [2]

Pi"’_*l;‘p+> = e<¢(ls)| % (x — iy)¢(2px+,-y)>, (4.48)

where |p ) is a shorthand notation of ¢(2px+iy); x — Iy represents a complex
electric dipole. Equation (4.48) represents an optical process in which an electron
causes transition from ¢(2px+ iy) to ¢(Ls) to lose an angular momentum 7, whereas
the radiation field gains that angular momentum to conserve a total angular

momentum /4. The notation P(e:.)
x—iy|p+)

representation, we rewrite (4.48) as

reflects this situation. Using the coordinate

oo T 2n 7\/_
b 2/4/2
P(,ef? = re=¥2qr | sin0do e Ye?dp = — ea,
x—=iy,[p+) 8v/2na 35
0 0 0
(4.49)
where we used

x — iy =rsin fe 9. (4.50)

In the definite integral of (4.49), e * comes from x — iy, while e’ comes from
qb(2px+,~y). Note that from (3.24) ¢/? is an eigenfunction corresponding to an an-

gular momentumeigenvalue /. Notice that in (4.49), exponents e ¢ and e¢/® cancel
out and that an azimuthal integral is nonvanishing.
If we choose e_ for &, we have

Py = e $09) S5 (et 10 Cores) ) (451)
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00 n 2n

_ € 4 ,.—3r/2a / -3 / Qi 44
= re dr [ sin’0d0 [ e7?d¢ =0, 4.52
8v2nat / ) ¢ ( )

0 0

where we used
X+ iy =r sin 0e'®.

With (4.52), a factor ¢?? results from the product ¢(2pys)(x+iy) which
renders the integral (4.51) vanishing. Note that the only difference between (4.49)
and (4.52) is about the integration of ¢ factor. For the same reason, if we choose e3

for &, the matrix element vanishes. Thus, with the qS(prHy)-related matrix ele-
ment, only PJ(C‘:.>
:lp+

only Pie;)imp,) survives. Notice that [p_) is a shorthand notation of ¢ (2p,_; ). That

is, we have, e.g.,

) survives. Similarly, with the (;')(pr,iy) -related matrix element,

Y 1 . 272
P)(CJJI.%‘%> = e<d)(ls)| % (x+ ly)|¢(2pxiy)> = 3—\5/—“17

1 (4.53)
P = e<¢(ls)| % (x— iy)¢(2px_iy)> —0.
Taking complex conjugate of (4.48), we have
. + 1 _ 2'V2
P =e(oo) s armions ) = -2 sy

Here recall (1.116) and (x — iy)Jr = x+ iy. Also note that since Pfﬁy)_\m) is real,

[P(ef> T is real as well so that we have
x=iy,[p+)
(e+) Y pley) _ ple)
[Pxfiy‘lpﬁ] - Pxfiy«,\m) - Pxﬂy,(m\' (4.55)

Comparing (4.48) and (4.55), we notice that the polarization vector has been
switched from e ;. to e_ with the allowed transition, even though the matrix element
remains the same. This can be explained as follows: In (4.48), the photonemission
is occurring, while the electron is causing a transition from qb(2px+ iy) to ¢(1s). As
a result, the radiation field has gained an angular momentum by 7 during the
process in which the electron has lost an angular momentum /. In other words, 7 is
transferred from the electron to the radiation field and this process results in the
generation of left-circularly polarized light in the radiation field.

In (4.54), on the other hand, the reversed process takes place. That is, the
photonabsorption is occurring in such a way that the electron is excited from ¢(1s)
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t0 ¢ (2py44y). After this process has been completed, the electron has gained an
angular momentum by %, whereas the radiation field has lost an angular momentum
by 7. As a result, the positive angular momentum 7 is transferred to the electron
from the radiation field that involves left-circularly polarized light. This can be
translated into the statement that the radiation field has gained an angular
momentum by —#. This is equivalent to the generation of right-circularly polarized
light (characterized by e_) in the radiation field. In other words, the electron gains
the angular momentum by % to compensate the change in the radiation field.

The implication of the first equation of (4.53) can be interpreted in a similar
manner. Also we have

(e-) *_ ple) _ ples) _ 1 .
{Px:iya\pﬁ} - Pxe+iy~,\P7> - Pxiiy,(ﬁfl - e<¢(2pxiy> | 75(’5 - zy)|q’>(ls)>
2y

= —F-—¢éa
35

Notice that the inner products of (4.49) and (4.53) are real, even though oper-

ators x+ iy and x — iy are not Hermitian. Also note that P)((e_*l.y?‘p” of (4.49) and
Pie;)iv py Of (4.53) have the same absolute value with minus and plus signs,

respectively. The minus sign of (4.49) comes from the Condon—Shortley phase. The
difference, however, is not essential, because the transition probability is propor-
tional to |P)(f+)iy“p7> I* or |PJ(ce—‘iv),\p+> *. Some literature [3, 4] uses — (x4 iy) instead of
x + iy. This is because simply of the inclusion of the Condon—Shortley phase; see
(3.304).

Let us think of the coherent state that is composed of ¢(1s) and q5(2px+iy) or

¢ (2px—iy). Choosing ¢ (2py i), the state (x,7) can be given by

Ylx,1) = [¢(1S) exp(—iE(1s)t/h) + ¢(2px+iy) exp(_iE(sz-&-iy)t/h)} )

(4.56)

1
V2

where ¢(1s) is described by (3.301) and ¢ (2p, ) is expressed as (3.304). Then
we have

e, (e, 1) =[x, 1)
{\(j)(ls)|2 + |q5(2px+,~y) |2 + ¢(1s)R(2pa+ i) [ei<¢_w’) —b—e_i(‘f’_w’)} }

{‘¢(1€)|2 + |¢(2px+iy) |2 + 2¢(1‘9)§R(2px+iy) COS(¢ - a)t)},
(4.57)

N = N =

where using R(2py 4 i), we denote ¢ (2py+. ) as follows:
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(2psiiy) = 8%(zl’xﬂ'y)eid)' (4.58)

That is, §R(2px+iy) represents a real component of d)(Zp“Hiy) that depends only
on r and 6. The third term of (4.57) implies that the existence probability density of
an electron represented by | (x, t)\2 is rotating counterclockwise around the z-axis
with an angular frequency of . Similarly, in the case of ¢(2p;_y), the existence
probability density of an electron is rotating clockwise around the z-axis with an
angular frequency of w.

Integrating (4.57), we have

/W*(x,t)tp(x,t)dr:/W(x,t)|2dr

=5 [ {16015 +[9(2p1- ) P ar

+/rzdr/sianGd)(ls)ﬂ?(prHy)
0 0

2n

/dqﬁcos(qﬁ—wt):%Jr%:l,

0

where we used normalized functional forms of ¢(1s) and qb(2px+,-y); the last term
vanishes because

2n

/ d¢ cos(¢p — wt) = 0.

0

This is easily shown by suitable variable transformation.
In relation to the above discussion, we often use real numbers to describe wave
functions. For this purpose, we use the following unitary transformation to trans-

form the orthonormal basis of e*? to cos m¢ and sin me. That is, we have

( 1 ¢ 1 (/)) ((—l)m e 1 ) ¢> (_\/gm _(—\}%mi
—=cosm¢p—=sinm¢ | = e’ ——e™™ . ,
VR R

(4.59)

where we assume that m is positive so that we can appropriately take into account
the Condon—Shortley phase. Alternatively, we describe it via unitary transformation
as follows:



134 4 Optical Transition and Selection Rules

((—l)m i 1 e_imd)> ( 1 cos ¢ 1 sin ¢> ( (,\/1%”1 % > (4 60)
= | —F= m in m )" ; y .
V 27‘5 \/ \/“ \/. \/E — 75

In this regard, we have to be careful about normalization constants; for
trigonometric functions, the constant should be \/LE’ whereas for the exponential

representation, the constant is \/— At the same time, trigonometric functions are

expressed as a linear combination of e™? and e ™? and so if we use the
trigonometric functions, information of a magnetic quantum number is lost.

In Sect. 3.7, we showed normalized functions ;lf':,), =Y"(0, (f))i?;”)(r) of the
()

hydrogen-like atom. Noting that ¥7"(0, ¢) is proportional to e*"?, /~1,7m can be
described using cos m¢ and sin m¢ for the basis vectors. We denote two linearly

independent vectors by Z;ZLSWP and ;11(2“ m¢- Then, these vectors are expressed as

Oy
~(n) ~(n) =~ (1) ~(n) v v
(Al,cusmqb/ll,sinmd)) = (AlmAl m)( ; %/.\/5 >a (461>
2 2

where we again assume that m is positive. In chemistry and materials science, we
normally use real functions of }1,(’2%,,14, and A}’anmd). In particular, we use the

) ~(2)

notations of, e.g., ¢(2p,) and ¢ (2p,) instead of A, cosp and Ay g, . respectively. In

that case, we explicitly have a following form:

S U
(6206 (2p))) = (af;a%)( . “f)
VZoV2

L i

= (¢(2Px+iy)¢(2pxiy))< L\/E f)

V2 V2

1 3r s 1 i r .
= a 2—e 2sin 0 cos a 2—e 2sin 0 sin .

(4\/ 2n a ¢ 4+/27 a ¢>
(4.62)

Thus, the Condon—Shortley phasefactor has been removed.
Using this expression, we calculate matrix elements of the electric dipole tran-
sition. We have

P(e‘g e(p(Ls)]x|d(2px))

oo T 2n

7 (4.63)
—_ ¢ /r4e’3’/2“dr/sin36d9/ cos’pdep = 2 \/_ .
4/2na* ) ), )
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Thus, we obtained the same result as (4.49) apart from the minus sign. Since a
square of an absolute value of the transition moment plays a role, the minus sign is
again of secondary importance. With P;”), similarly we have

PiDy = e(d(1s)b1o(2p))

o0 i (4.64)

7
- ¢ / 4 _”/Z“dr/sm30d9/ sin’¢ d¢ —i ea.
4 2rat ) )

Comparing (4.39), (4.63), and (4.64), we have

;
() _ ple) _pley _2'V2
Py = Fapy =B, wn) T 35t
In the case of P< P(e') and Piez,z,y the optical transition is said to be

olp:) " xlpe)?
polarized along the z-, x-, and y-axes, respectively, and so linearly polarized lights
are relevant. Note moreover that operators z, x, and y in (4.39), (4.63), and (4.64)
are Hermitian and that ¢(2p.), ¢(2px), and ¢ (2p,) are real functions.

4.4 Selection Rules

In a three-dimensional system such as hydrogen-like atoms, quantum states of
particles (i.e., electrons) are characterized by three quantum numbers; principal
quantum numbers, azimuthal quantum numbers (or orbital angular momentum
quantum numbers), and magnetic quantum numbers. In this section, we examine
the selection rules for the electric dipole approximation.

Of the three quantum numbers mentioned above, angular momentum quantum
numbers are denoted by / and magnetic quantum numbers by m. First, we examine
the conditions on m. With the angular momentum operator L and its corresponding
operator M, we get the following commutation relations:

) =1 ¢ =iz
[Mz x] iy, [M ys < } X, [Mmy}? 1z3

4.65
M, iy] = x, [My, zx] =z, [My, iz) = y;etc. ( )

Notice that in the upper line, the indices change cyclic like (z,x,y), whereas in
the lower line they change anticyclic such as (z,y,x). The proof of (4.65) is left for
the reader. Thus, we have, e.g.,

(M, x+iy| = x+iy, [M,, x — iy] = —(x — iy), etc. (4.66)
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Putting
Ot =x+iyand O = x — iy,
we have
M,Q"]=0",[M., 0] =-0". (4.67)
Taking an inner product of both sides of (4.67), we have

(m'|[M, 0" lm) = (m|M.Q" — Q" M |m) = m/(m/|Q™ |m) — m(m'|Q |m)
= (m'|Q" |m),
(4.68)

where the quantum state |m) is identical to |I,m) in (3.151). Here we need no
information about /, and so it is omitted. Thus, we have, e.g., M;|m) = m|m).

Taking its adjoint, we have <m|MZ]L = (m|M, = m(m|, where M, is Hermitian. These
results lead to (4.68). From (4.68), we get

(m' —m—1)m'|Q" |m) = 0. (4.69)
Therefore, for the matrix element (m'|Q* |m) not to vanish, we must have
m—m—1=0o0r Am=1(Am=m' —m).

This represents the selection rule with respect to the coordinate Q.
Similarly, we get

(m' —m+1)(m'|Q"|m) = 0. (4.70)
In this case, for the matrix element (m’|Q~|m) not to vanish, we have
m —m+1=0o0r Am= —1.

To derive (4.70), we can alternatively use the following: Taking the adjoint of
(4.69), we have

(m' —m —1)(m|Q" |m') = 0.
Exchanging m' and m, we have
(m—m' — 1) Q" |m) =0or (m —m+1)(m'|Q"|m) = 0.

Thus, (4.70) is recovered.
Meanwhile, we have a commutation relation



4.4 Selection Rules 137

M,,z] =0. (4.71)
Similarly, taking an inner product of both sides of (4.71), we have
(' — m)(nd|z|m) = .
Therefore, for the matrix element (m'|z|m) not to vanish, we must have
m —m=0or Am=0. (4.72)

These results are fully consistent with Example 4.3 of Sect. 4.3. That is, if
circularly polarized light takes part in the optical transition, Am = +1. For instance,
using the present notation, we rewrite (4.48) as

7
(6091 e 16 Crss) ) =001y = -2 %0

If linearly polarized light is related to the optical transition, we have Am = 0.
Next, we examine the conditions on /. To this end, we calculate a following
commutator [5]:

[M?,2] = [M§ +M; +M§,z} = [M},z] + [Mf,z}
= M,(Mz — zM,) + M,zM, — zM?
+ My (Myz — 2My) + MyzM,y, — M
= M[M,,z] + [My, z]M, + M, [M,,z] + [M,,z] M,
= i(Myx +xMy, — My — yM,)
= i(Mxy — YM, — Myx +xM, + 2Mx — 2Mxy)
i(2iz42Myx — 2M,y) = 2i(Myx — Myy + iz).

(4.73)

In the above calculations, (i) we used [M,,z] =0 (with the second equality);
(i) RHS was modified so that the commutation relations can be used (the third
equality); (iii) we used —M,y = M,y — 2M,y and M,x = —M,x + 2M,x so that we
can use (4.65) (the second last equality). Moreover, using (4.65), (4.73) can be
written as

[M?, 7] = 2i(xM, — Myy) = 2i(M,x — yM,).

Similar results on the commutator can be obtained with [M?,x] and [M?,y]. For
further use, we give alternative relations such that
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[M?,x] = 2i(yM, — Myz) = 2i(M.y — zM,),

) (4.74)
[M?,y] = 2i(zM, — M.x) = 2i(M,z — xM.).
Using (4.73), we calculate another commutator such that

(002, (02,2 = 2 (M2 ] — [P b +-iD00°, ]}
= 2i{M,[M? x] — M [M? ] +i[M?,z]}
= 2i{2iM, (yM, — Myz) — 2iM(Myz — xM.,) + i[M?, 7] }
= —2{2(Mxx+Myy+Mzz)MZ - 2<M§ + M, +M§)z+M2z - zM2}
=2(M*z+2M°).
(4.75)

In the above calculations, (i) we used [Mz, My} = [M2, MX] = 0 (with the second
equality); (ii) we used (4.74) (the third equality); (iii)) RHS was modified so that we
can use the relation M 1 x from the definition of the angular momentum operator,
ie., Mx+ M,y + M,z = 0 (the second last equality). We used [M,, z] = 0 as well.
Similar results are obtained with x and y. That is, we have

[M?, [M?,x]] = 2(M*x +xM?), (4.76)
[M?, [M?,y]] =2(M*y+yM?). (4.77)

Rewriting, e.g., (4.75), we have
Mz — 2MPeMP + M = 2(MPz+2MP). (4.78)
Using the relation (4.78) and taking inner products of both sides, we get, e.g.,
(I'\M*z = 2M°:M? + MO |1y = (I'2(MPz + 2MP)|1). (4.79)

That is,

(I\M*z — 2M*zM? + M |l) — (1'[2(MPz+ zMP)|l) = 0.

Considering that both terms of LHS contain a factor (/|z|l) in common, we have

[1’2(1’ P12 =200+ D)1+ 1) + P+ 1) =20 +1) — 210(1+ 1)}
x(l'|z|l) = 0, (4.80)

where the quantum state |/} is identical to |/,m) in (3.151) with m omitted.
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To factorize the first factor of LHS of (4.80), we view it as a quartic equation
with respect to I'. Replacing I’ with —/, we find that the first factor vanishes, and so
the first factor should have a factor (I’ +1). Then, we factorize the first term such
that. The first factor of LHS of (4.80)

=(I'+0*(I' =1)* 42 l’+l) (I =114+ B) = 2011 +1) = 2(I' +1) — (I +1)}
:(z’+l)[(z’+l) (2 - 11+ P) - 21’1727(141)]
:(l’+l)[(l’+l) 217 =21+ P) - (l’+l+z)}
= (D[ DT =D+ 20 = 1P +1+2)]
= +0d( =DM +1)+2] (z’+z+z)}
={l'+0{I'+1+2)(' =1+ )" —1-1).
(4.81)

Thus rewriting (4.80), we get

U+ +1+2)(1 =1+ D)l =1 - 1){|z]I) = 0. (4.82)

We have similar relations with respect to (I'|x|l) and (!'|y|l) because of (4.76) and
(4.77). For the electric dipole transition to be allowed, among ('|x|l), (I'|y|l), and
(I'|z|l), at least one term must be nonvanishing. For this, at least one of the four
factors of (4.81) should be zero. Since I' +1+2 > 0, this factor is excluded.

For I’ +1 to vanish, we should have ' = [ = 0; notice that both ! and [ are
nonnegative integers. We must then examine this condition. This condition is
equivalent to that the spherical harmonics related to the angular variables 0 and ¢
take the form of Yg(@, o)=1/ V4T, ie., a constant. Therefore, the O-related inte-
gral for the matrix element (/'|z|!) only consists of a following factor:

T n

/COSG sin6df = %/sinZ@dG = f%[cos 20]5=0,
0 0

where cosf comes from a polar coordinate z =r cosf; sinf is due to an
infinitesimal volume of space, i.e., 7*sin0drdfd¢. Thus, we find that (/|z|l)
vanishes on condition that / =1=0. As a polar coordinate representation,
x=rsin0 cos¢ and y = r sin0 sin ¢, and so the ¢-related integral (/'|x|/) and
(I'ly|l) vanishes as well. That is,

2n

2
/cos¢d¢:0/sin¢)dq’>:0.

0
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Therefore, the matrix elements relevant to I/ = [ = 0 vanish with all the coor-
dinates; i.e., we have

{I'xty = ('Iyly = (T'lz]1) = 0. (4.83)

Consequently, we exclude (I + [)-factor as well, when we consider a condition
of the allowed transition. Thus, regarding the condition that should be satisfied with
the allowed transition, from (4.82) we get

I'—l+1=0o0rl'—1—-1=0. (4.84)
Or defining Al =I' — I, we get
Al = £1. (4.85)

Thus, for the transition to be allowed, the azimuthal quantum number must
change by one.

4.5 Angular Momentum of Radiation [6]

In Sect. 4.3, we mentioned circularly polarized light. If the circularly polarized light
acts on an electron, what can we anticipate? Here we deal with this problem within
a framework of a semiclassical theory.

Let E and H be electric and magnetic fields of a left-circularly polarized light.
They are expressed as

1 ) .
E= ﬁEO(el +iey) expi(kz — wt), (4.86)
H ! Hy(e, — iey) expi(kz — wt) L E (e, —iey) expi(kz — wt). (4.87)
=— —1 i(kz — =——(ey— i i(kz — o). .
NG ole2 1) €Xp N 2 1) €Xp

Here we assume that the light is propagating in the direction of the positive z-
axis. The electric and magnetic fields described by (4.86) and (4.87) represent the
left-circularly polarized light. A synchronized motion of an electron is expected, if
the electron exerts a circular motion in such a way that the motion direction of the
electron is always perpendicular to the electric field and parallel to the magnetic
field (see Fig. 4.2). In this situation, magnetic Lorentz force does not affect the
electron motion.

Equation (4.86) can be rewritten as
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Fig. 4.2 Synchronized ¥
motion of an electron under a
left-circularly polarized light

electron motion
Y

electron

1
E = —Eyle; cos(kz — wt) — e, sin(kz — wt)]

V2

1
+i—=Eyle; cos(kz — wr) + ey sin(kz — wt)].

V2

Suppose that the electron exerts the circular motion in a region narrow enough
around the origin and that the said electron motion is confined within the xy-plane
that is perpendicular to the light propagation direction. Then, we can assume that
z~ 0 in (4.88). Ignoring kz in (4.88) accordingly and taking a real part, we have

(4.88)

1
E = —Ey(e| cos wt+ e, sin wt). 4.89
7 (el 2 ) (4.89)

Thus, a force F exerting the electron is described by
F = ¢E, (4.90)

where e is an elementary charge (e <0). Accordingly, an equation of motion of the
electron is approximated such that

mi = ¢E, (4.91)

where m is a mass of an electron and x is a position vector of the electron. With
individual components of the coordinate, we have

1 1
mx = —eEy cos wt and my = —eEy sin wt. (4.92)

V2 V2

Integrating (4.92) two times, we get
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eE()
V202

coswt+ Ct+ D, (4.93)

mx — —

where C and D are integration constants. Setting x(0) = — \/gfn(:ﬂ and X' (0) = 0, we

have C = D = 0. Similarly, we have

eEO . ’ ,
my = — sinwt+Ct+ D', 4.94
V= (4.94)
where C’ and D’ are integration constants. Setting y(0) = 0 and y'(0) = — \/%i(l’w, we

have C' = D' = 0. Thus, making ¢ a parameter, we get

2
x2+y2—( eFo ) . (4.95)
V2mw?

This implies that the electron is exerting a counterclockwise circular motion with

a radius — \/gfl‘}(ﬂ under the influence of the electric field. This is consistent with a
(L

motion of an electron in the coherent state of ¢(1s) and ¢ (2px+ iy) as expressed in
(4.57).
An angular momentum the electron has acquired is

ek mekE ezE(z)
¥XP =Py TP < \/Emaﬂ) ( ﬁmw) 2mae? (4.96)

Identifying this with 7, we have

e’E;
= 4.97
2ma? (4.97)
In terms of energy, we have
eZE(Z)
= ho. 4.98
2mw? @ (4.98)

Assuming a wavelength of the light is 600 nm, we need a left-circularly
polarized light whose electric field is about 1.5 x 101V /m.
A radius « of a circular motion of the electron is given by

eE()

o= )
V2ma?

(4.99)

Under the same condition as the above, « is estimated to be ~ 2A.
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Part 11
Electromagnetism

Electromagnetism is one of pillars of modern physics, even though it belongs to
classical physics along with Newtonian mechanics. Maxwell’s equations describe
and interpret almost all electromagnetic phenomena and are basis equations of
classical physics together with Newton equation. Although after the discovery of
relativistic theory Newton equation needed to be modified, Maxwell’s equations did
not virtually have to be changed. In this part, we treat characteristics of
electromagnetic waves that are directly derived from Maxwell’s equations.

Electromagnetism becomes connected to quantum mechanics, especially
when we deal with emission and absorption of light. In fact, the experiments
performed in connection with the blackbody radiation led to discovery of light
quanta and establishment of quantum mechanics. These accounts are not only of
particular interest from a historical point of view but of great importance in
understanding modern physics. To understand the propagation of electromagnetic
waves in a dielectric medium is important from a basic aspect of electromagnetism.
Moreover, it is deeply connected to optical applications including optical devices
such as waveguides and lasers.

The motion of particles as well as spatial and temporal change in, e.g.,
electromagnetic fields is very often described in terms of differential equations. We
describe introductory methods of Green’s functions in order to solve those
differential equations.



Chapter 5
Maxwell’s Equations

Maxwell’s equations consist of four first-order partial differential equations. First
we deal with basic properties of Maxwell’s equations. Next we show how equations
of electromagnetic wave motion are derived from Maxwell’s equations along vector
analysis. It is important to realize that the generation of the electromagnetic wave is
a direct consequence of the interplay between the electric field and magnetic field
that both change with time. We deal with behaviors of electromagnetic waves in
dielectric media where no true charge exists. At a first glance, this restriction seems
to narrow a range of application of principles of electromagnetism. In practice,
however, such a situation is universalistic; topics cover a wide range of electro-
magnetic phenomena, e.g., light propagation in dielectrics including water, glass,
polymers. Polarized properties characterize the electromagnetic waves. These
include linear, circular, and elliptic polarizations. The characteristics are important
both from a fundamental aspect and from the point of view of optical applications.

5.1 Maxwell’s Equations and Their Characteristics

In this chapter, we first represent Maxwell’s equations as vector forms. The
equations are represented as a differential form that is consistent with a viewpoint
based on “action trough medium.” The equation of wave motion (or wave equation)
is naturally derived from these equations.

Maxwell’s equations of electromagnetism are expressed as follows:

divD = p, (5.1)
divB =0, (5.2)
© Springer Nature Singapore Pte Ltd. 2018 147
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OB

TOtE+ E = O7 (53)
oD

rOtH—E—l. (54)

In (5.3), RHS denotes a zero vector. Let us take some time to get acquainted with
physical quantities with their dimension as well as basic ideas and concepts along
with definitions of electromagnetism.

The quantity D is called electric flux density [

ment); p is electric charge density [%] . We describe vector quantities V as in (3.4).

‘IA‘WS = %] (or electric displace-

Vi
V = (eieze3) | V, (5.5)
V:
The notation div denotes a differential operator such that
ov, 9V, 9V,
divV = + =2+ = (5.6)

ox Oy 0z

Thus, the div operator converts a vector to a scalar. The quantities D and the
electric field E [V/m] are associated with the following expression:

D =¢E, (5.7)

CZ
Nm’
medium. The dimension can be understood from the following Coulomb’s law that
describes a force exerted between two charges:

where ¢ [ } is called a dielectric constant (or permittivity) of the dielectric

_1.9¢

Cdme 2

(5.8)

where F is the force; Q and Q' are electric charges of the two charges; r is a distance
between the two charges. Equation (5.1) represents Gauss’ law of electrostatics.

The electric charge of 1 C (1 [C]) is defined as follows: Suppose that two point
charges having the same electric charge are placed in vacuum 1 m apart. In that
situation, if a force F between the two charges is

F=&/10'|N],

where ¢ is a light velocity, then we define the electric charge which each point
charge possesses as 1 [C]. Here, note that ¢ is a dimensionless number related to the
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light velocity in vacuum that is measured in a unit of [m/s]. Notice also that the light
velocity ¢ in vacuum is defined as

¢ =299,792,458 [m/s] (exact number).

Thus, we have
¢ = 299,792,458 (dimensionless number).

Vacuum is a kind of dielectric media. From (5.8), its dielectric constant &; is
defined by

2

107 [ C?
m

c’
= | = | ~ 8854 x 1072 —|. .
=7 2] 8.854 x 10 [ ] (5.9)

Meanwhile, 1 s (second) has been defined from a certain spectral line emitted
from !'3Cs. Thus, 1 m (meter) is defined by

(distance along which light is propagated in vacuum during 1 s)/299792458.

The quantity B is called magnetic flux density [% = %b} Equation (5.2)
represents Gauss’s law of magnetostatics. In contrast to (5.1), RHS of (5.2) is zero.
This corresponds to the fact that although a true charge exists, a true “magnetic
charge” does not exist. (More precisely, such charge has not been detected so far.)

The quantity B is connected with magnetic field H by the following relation:

where u [%} is said to be permeability (or magnetic permeability). Thus, H has a

dimension {%} Permeability of vacuum y, is defined by
N
o = 4m/10 [P} (5.11)
Also we have
togo = 1/¢*. (5.12)

We will encounter this relation later again. Since the quantities ¢ and ¢y have a
defined magnitude, so does f, from (5.12).

We often make an issue of a relative magnitude of dielectric constant and
magnetic permeability of a dielectric medium. That is, relative permittivity ¢, and
relative permeability p, are defined as follows:
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& =¢/eg and  p, = p/u. (5.13)

Note that both ¢, and u, are dimensionless quantities. Those magnitudes are
equal to 1 (in the case of vacuum) or larger than 1 (with any other dielectric media).

Equations (5.3) and (5.4) deal with the change in electric and magnetic fields
with time. Of these, (5.3) represents Faraday’s law of electromagnetic induction due
to Michael Faraday (1831). He found that when a permanent magnet was thrust into
or out of a closed circuit, the transient current flowed. Moreover, that experiment
implied that even without the closed circuit, an electric field was generated around
the space that changed the position relative to the permanent magnet.
Equation (5.3) is easier to understand if it is rewritten as follows.

OB
rotE = 5 (5.14)
That is, the electric field E is generated in such a way that the induced electric
field (or induced current) tends to lessen the change in magnetic flux (or magnetic
field) produced by the permanent magnet (Lenz’s law). The minus sign in RHS
indicates that effect.
The rot operator appearing in (5.3) and (5.4) is defined by

(2] e e3

rotV=vxVvV=4 & &
Vi Vo V. (5.15)

v, oV, n oV, 0V, n v, 9V,
=|—=——F=|e ——— e - — es.
oy o0z )" 9z ox )7’ Ox Oy 3
The operator V has already appeared in (3.9). This operator transforms a vector
to a vector. Let us think of the meaning of the rot operator. Suppose that there is a
vector field that varies with time and spatial positions. Suppose also at some instant

the spatial distribution of the field varies as in Fig. 5.1, where a spiral vector field V
is present. For a z-component of rot V around the origin, we have

Loy, v [V, - (), (V) (Va),
oY) = " A T A A

In the case of Fig. 5.1, (Vi), — (V3), > 0 and (V2), — (V4), <0 and, hence, we

find that rot V has a positive z-component. If V, =0 and Wy — M — 0, we find

0z 0z
from (5.15) that rot V possesses only the z-component. The equation 08‘; = 66‘;* =0

implies that the vector field V is uniform in the direction of the z-axis. Thus, under
the above conditions, the spiral vector field V is accompanied by the rot V vector
field that is directed toward the upper side of the plane of paper (i.e., the positive
direction of the z-axis).
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Fig. 5.1 Schematic y
representation of a spiral
vector field V that yields rot V

V, e—1

(-40/2,0)/ 0 x

© i
. (Ax/2, 0)
Vs I B v,
(0, —A/2)
Equation (5.4) can be rewritten as
oD

tH =i+ —. 5.16
10 i+ o (5.16)

A

Notice that %—’f has the same dimension as [ﬂ] and is called displacement

current. Without this term, we have
rotH = 1. (5.17)

This relation is well known as Ampere’s law or Ampere’s circuital law (André-
Marie Ampére: 1827), which determines a magnetic field yielded by a stationary
current. Again with the aid of Fig. 5.1, (5.17) implies that the current given by i
produces spiral magnetic field.

Now, let us think of a change in amount of charges with time in a part of
three-dimensional closed space V surrounded by a closed surface S. It is given by

d )
- pdV:/éjdV:7/i~ndS:f/dividV, (5.18)
|4 \%4 N \%4

where n is an outward-directed normal unit vector; with the last equality, we used
Gauss’s theorem. The Gauss’s theorem is described by

/dividV:/i~ndS.
v s

Figure 5.2 gives an intuitive diagram that explains the Gauss’s theorem. The
diagram shows a cross section of the closed space V surrounded by a surface S. In
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Fig. 5.2 Intuitive diagram H H H
that explains the Gauss’s
theorem
4
H ; S
v 4
P S P L >
— DY
| A&
} ;
PP >
DU PP
V
v é v

this case, imagine a cube or a hexahedron as V. The periphery is the cross section of
the closed surface accordingly. Arrows in the diagram schematically represent div i
on individual fragments; only those of the center infinitesimal fragment are shown
with solid lines. The arrows of adjacent fragments cancel out each other, and only
the components on the periphery are nonvanishing. Thus, the volume integration of
divi is converted to the surface integration of i. Readers are referred to the
appropriate literature with the vector integration [1].
Consequently, from (5.18) we have

dp . _
/ (E —I—dlw) dv =0. (5.19)
v

Since V is arbitrarily chosen, we get
dp
— +divi =0. 5.20
B +divi (5.20)

The relation (5.20) is called a current continuity equation. This relation repre-
sents law of conservation of charge.
Meanwhile, taking div of both sides of (5.17), we have

divrotH = divi. (5.21)

The LHS of (5.21) reads
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divroch — 2. <6HZ aHy) L0 (8Hx 8HZ> . aﬁ (% - (’)Hx)
Z

ox\ady dz) ay\oz o ox Oy
2 2 2 2 2 2
:8_8_HZ+8_8 HX+6_3Hy
Oxdy  Oyox Oy0z  0z0y 0z0x  0x0z
=0.
(5.22)
With the last equality of (5.22), we used the fact that if, e.g., gi—gv and gigx are

. . . . . . 52 52 .
continuous and differentiable in a certain domain (x, y), gxg'; = gvgx That is, we

assume “ordinary” functions for H;, H,, and H,. Thus from (5.21), we have

div i =0. (5.23)
From (5.20), we also have
dp(x, 1)
=0 5.24
8t Y ( )

where we explicitly show that p depends upon both x and z. Note that x is a position
vector described as (3.5). Therefore, (5.24) shows that p(x, ¢) is temporally constant
at a position x, consistent with the stationary current.

Nevertheless, we encounter a problem when p(x,7) is temporally varying. In
other words, (5.17) goes against the charge conservation law, when p(x,7) is
temporally varying. It was James Clerk Maxwell (1861-1862) that solved the
problem by introducing a concept of the displacement current. In fact, taking div of
both sides of (5.16), we have

odivD

)
divrotH = divi + divi+ % —0, (5.25)

where with the first equality, we exchanged the order of differentiations with respect
to ¢ and x; with the second equality, we used (5.1). The last equality of (5.25) results
from (5.20). In other words, in virtue of the term of %—[t’, (5.4) is consistent with the
charge conservation law. Thus, the set of Maxwell’s equations (5.1)—(5.4) supply us
with well-established base in natural science up until the present.

Although the set of these equations describes spatial and temporal changes in
electric and magnetic fields in vacuum and matter including metal, in Part IT we
confine ourselves to the changes in the electric and magnetic fields in a uniform
dielectric medium.
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5.2 Equation of Wave Motion

If we further confine ourselves to the case where neither electric charge nor electric
current is present in a uniform dielectric medium, we can readily obtain equations
of wave motion regarding the electric and magnetic fields. That is,

divD =0, (5.26)
divB =0, (5.27)
OB
tE+ —=0 5.28
rotE + % ) (5.28)
oD
H——=0. 2
rot % 0 (5.29)

The relations (5.27) and (5.28) are identical to (5.2) and (5.3), respectively.
Let us start with a formula of vector analysis. First, we introduce a grad operator.
We have

7] 0 7]
gradf = Vf = %el + %62 + 5283.

That is, the grad operator transforms a scalar to a vector. We have a following
formula:

rotrot V = graddivV — V2V, (5.30)

The operator V2 has already appeared in (1.24). To show (5.30), we compare an
x-component of both sides of (5.30). That is,

o [0V, OV,\ O [0V, V.
_ 9 (9 _9 _9%). 31
[rotrot V], B ( Ep 8y) B ( oz 8x> (5.31)
a [0V, o9V, V. Vv, 0V, OV
: _ 72 _ X Y z) x X X
[graddivV — V], = o ( ox oy (9z> a2 By op
o [0V, oV.\ O*V, OV,
Ox ( dy * 0z ) o2 0 (5:32)

. . >V, _ PV, PV, _ PV,
Again assuming that Dok = oy and 75t = 555, we have

[rotrot V], = [grad divV — V*V].. (5.33)
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Regarding y- and z-components, we have similar relations as well. Thus (5.30)
holds.
Taking rot of both sides of (5.28), we have

tB ’E
L. Bt

OB
rotrotE + rot? = graddivE — V’E + o

where with the first equality, we used (5.30) and for the second equality, we used
(5.7), (5.10), and (5.29). Thus we have

OPE

V’E = pe— 57 (5.35)
Similarly, from (5.29) we get
O°H
V’H = HE— (5.36)

Equations (5.35) and (5.36) are called equations of wave motions for the electric
and magnetic fields.

To consider implications of these equations, let us think of for simplicity a
following equation in a one-dimensional space.

0%y (x, t) _ i(?zy(x, 1)
Ox2 voooe

(5.37)

where y is an arbitrary scalar function that depends on x and #; v is a constant. Let
f(x, r) and g(x, 1) be arbitrarily chosen functions. Then, f(x — v¢) and g(x+ vt) are
two solutions of (5.37). In fact, putting X = x — v, we have

o _ofox _of of [0 (or\]ox _Of (5.38)
Ox O0Xdx 9X' ox2 ax ox)| ox  ox2’ ‘

of of >f
Vax gz = ) [ax (ax)} o= g (639

From the second equations of (5.38) and (5.39), we recover

of _ of X _
ot O0X or

O  10f

e on (5.40)



156 5 Maxwell’s Equations
Similarly, we get

g 10%
ZS5__Z°o. 541
oxr v?or (5.41)

Therefore, as a general solution, we can take a superposition of f(x, ) and
g(x, t). That is,

y(x, 1) = f(x — vt) + g(x + vr). (5.42)

The implication of (5.42) is as follows: (i) The function f(x —vf) can be
obtained by parallel translation of f(x) by v in a positive direction of x-axis. In
other words, f(x — vt) is obtained by translating f(x) by v in a unit of time in a
positive direction of x-axis, or the function represented by f(x) is translated at a rate
of v with its form unchanged in time. (ii) The function g(x+ vt), on the other hand,
is translated at a rate of —v with its form unchanged in time as well. (iii) Thus,
¥(x, 1) of (5.42) represents two “waves”, i.e., a forward wave and a backward wave.
Propagation velocity of the two waves is |v| accordingly. Usually, we choose a
positive number for v, and v is called a phase velocity.

Comparing (5.35) and (5.36) with (5.41), we have

pe = 1/v2. (5.43)

In particular, in a vacuum we recover (5.12).

Notice that f and g can take any functional form and, hence, they are not
necessarily a periodic wave. Yet, what we are mostly concerned with is a periodic
wave such as sinusoidal waves. Thus, we arrive at a following functional form:

flx—vt) = Ae'™™), (5.44)

where A is said to be an amplitude of the wave. The constant A usually takes a
positive number, but it may take a complex number including a negative number.
An exponent of (5.44) contains a number having a dimension [m]. To make it a
dimensionless number, we multiply (x — v¢) by a wave number k that has been
introduced in (1.2) and (1.3). That is, we have

f[k(x _ Vt)] :Aeik(X7Vt) :Aei(kxfkvt) :Aei(kX7wt), (545)

where f shows the change in the functional from according to the variable trans-
formation. In (5.45), we have

kv =kiv= (2n/2)Av =2nv = o, (5.46)
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where v and o are said to be frequency and angular frequency, respectively. For a
three-dimensional wave f of a scalar function, we have a following form:

f = Ae**=0 = Alcos(k - x — wt) +i sin(k - x — wt)], (5.47)
where k is said to be a wave number vector. In (5.47),
K =1 =k +k +k. (5.48)

Equation (5.47) is virtually identical to (1.25). When we deal with a problem of
classical electromagnetism, we usually take a real part of the results after relevant
calculations.

Suppose that (5.47) is a solution of a following wave equation:

1 0*f
20
Substituting LHS of (5.47) for f of (5.49), we have
. 1 .
A(_k2)el(k'x7wt) — Av72 (_wZ)et(k»xfwt)‘ (550)
Comparing both sides of (5.50), we get
v =o® or kv=o. (5.51)

Thus, we recover (5.46).
Here we introduce a unit vector n as in (1.3) whose direction parallels that of
propagation of wave such that

2 "
k=kn= Tnn, n=(eees)| ny |, (5.52)
nZ

where n,, n,, and n, define direction cosines. Then (5.47) can be rewritten as
f = Aelthmx—on, (5.53)
where an exponent is called a phase. Suppose that the phase is fixed at zero. That is,

kn-x — wt = 0. (5.54)
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Since w = kv, we have
n-x—vt=0. (5.55)

Equation (5.55) defines a plane in a three-dimensional space and is called a
Hesse’s normal form. Figure 5.3 schematically represents a plane wave of the field
f- The field has the same phase on a plane P. A solid arrow x represents an arbitrary
position vector on the plane and » is a unit vector perpendicular to the plane P (i.e.,
parallel to a normal of the plane P). The quantity v¢ defines a length of a perpen-
dicular that connects the origin O and plane P (i.e., the length of the perpendicular
from the origin and a foot of the perpendicular) at a given time .

In other words, (5.54) determines a plane in such a way that the wave f has the
same phase (zero) at a given time ¢ at position vectors x on the plane determined by
(5.54) or (5.55). That plane is moving in the direction of n at a phase velocity v.
From this situation, a wave f described by (5.53) is called a plane wave.

A refractive index n of a dielectric media is an important index that characterizes
its dielectric properties. It is defined as

n=c/v=-/uelyeo = /1, (5.56)

In a non-magnetic substance such as glass and polymer materials, we can assume
that u. ~ 1. Thus, we get an approximate expression as follows:

n~ e (5.57)

5.3 Polarized Characteristics of Electromagnetic Waves

As in (5.47), we assume a similar form for a solution of (5.35) such that

E = Eoei(kxfwt) _ Eoei<kn-x7wt), (558)

Fig. 5.3 Schematic z
representation of a plane
wave. The field has the same
phase on a plane P. A solid
arrow x represents an
arbitrary position vector on

the plane and n is a unit /

vector perpendicular to the el

plane P (i.e., parallel to a Tt P

normal of the plane P). The dl y
quantity v is a phase velocity (0]

of the plane wave
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where with the second equality we used (5.52). Similarly, we have
H = Hoei(k-x—(/)t) — Hoei(kn-x—wt)- (559)

In (5.58) and (5.59), Ey and H, are constant vectors and may take a complex
magnitude. Substituting (5.58) for (5.28) and using (5.10) as well as (5.43) and
(5.46), we have

ikn x Eoei(kn.xfwt) _ 7(7l'(1))‘[1.H()ei(kn'x7w[) _ ivk,uHOei(kn-xfwt)

— ik /'u/gHOei(kmxfwt).

Comparing coefficients of the exponential functions of the first and last sides, we
get

Ho=nx Eo/( u/g). (5.60)
Similarly, substituting (5.59) for (5.29) and using (5.7), we get

Ey = (M)HO x . (5.61)

From (5.26) and (5.27), we have
l’l'Eo:n'Ho:O. (562)

This indicates that E and H are both perpendicular to n; i.e., the propagation
direction of the electromagnetic wave. Thus, the electromagnetic wave is charac-
terized by a transverse wave. The fields E and H have the same phase on P at an
arbitrary given time. Taking account of (5.60)—(5.62), E, H, and n are mutually
perpendicular to one another. We depict a geometry of E, H, and n for the elec-
tromagnetic plane wave in Fig. 5.4, where a plane P is perpendicular to n.

Fig. 5.4 Mutual geometry of z
E and H for an

electromagnetic plane wave in
P. E and H have the same P
phase on P at an arbitrary
given time. The unit vector n E n
is perpendicular to P
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We find that (5.60) is not independent of (5.61). In fact, taking an outer product
from the right with respect to both sides of (5.60), we have

Hoxn:anoxn/<\/u_/e)=Eo/< ﬂ/8>7

where we used (5.61) with the second equality. Thus, we get
n x Ey x n = Ey. (5.63)

Meanwhile, vector analysis tells us that [1].

Cx(AxB)=AB-C)—B(C-A).
In the above, putting B = C = n, we have

nx(Axn)=Am-n)—n(n-A).
That is, we have

A=n(n-A)+nx (A xn).

This relation means that A can be decomposed into a component parallel to n
and that perpendicular to n. Equation (5.63) shows that Ey has no component
parallel to n. This is another confirmation that E is perpendicular to n.

In (5.60) and (5.61), y/1t/¢ has a dimension [Q]. Make sure that this can be

confirmed by (5.9) and (5.11). Hence, +/p/¢ is said to be characteristic impedance
[2]. We denote it by

Z=/uje. (5.64)

Thus, we have
HO = (i‘l X Eo)/z

In vacuum, we have

Z() =\ ,uo/so ~ 3767[9]

For the electromagnetic wave to be the transverse wave means that neither E nor
H has component along n. Choosing the positive direction of the z-axis for » and
ignoring components related to partial differentiation with respect to x and y (i.e.,
the component related to 9/0x and 9/dy), we rewrite (5.28) and (5.29) for indi-
vidual Cartesian coordinates as
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OE, 0B, oD, OH,
_3_z+3t_0 or o, K a

8E)W—%:O or 8Dx+#8%=07

0z ot 0z ot (5.65)
7%78DX70 or ,%f 8@70 .

0z or o Mo T

oH, oD, 0B OE

oz o oz Mo T

We differentiate the first equation of (5.65) with respect to z to get

OPE, O’B,
—_ 24— = 0
02 0z0t
Also differentiating the fourth equation of (5.65) with respect to ¢ and multi-
plying both sides by —pu, we have
O°H, N oD, 0
How: "1 or =

Summing both sides of the above equations and arranging terms, we get

OPE,  O%E,
o2~ Mo

In a similar manner, we have

O’E, O’E,
o2~ Man

Similarly, for the magnetic field, we also get

FH._ FH - PH,_ PH,
o2~ Mae M o T Mo

From the above relations, we have two plane electromagnetic waves polarized
either the x-axis or y-axis.

What is implied in the above description is that as solutions of (5.35) and (5.36),
we have a plane wave characterized by a specific direction defined by E, and Hj.
This implies that if we observe the electromagnetic wave at a fixed point, both E
and H oscillate along the mutually perpendicular directions Ey and H,. Hence, we
say that the “electric wave” is polarized in the direction E and that the “magnetic
wave” is polarized in the direction H.
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To characterize the polarization of the electromagnetic wave, we introduce
following unit polarization vectors & and &, (with indices e and m related to the
electric and magnetic field, respectively) [3].

&e :Eo/EO and &m :Ho/H();H() :E()/Z, (566)
where Ey and H, are said to be amplitude and may be again complex. We have
g X &n = M. (5.67)

We call & and &, a unit polarization vector of the electric field and magnetic
field, respectively. As noted above, &, &y, and n constitute a right-handed system in
this order and are mutually perpendicular to one another.

The phase of E in the plane wave (5.58) and that of H in (5.59) are individually
the same on all the points of P. From the wave equations of (5.35) and (5.36),
however, it is unclear whether E and H have the same phase. Suppose that E and H
would have a different phase such that

E = Epe!**®)  and

H— Hoei(k<x7wt+5) — Hoeiéei(k»xfwt) — Hoei(k»xfwt)

)

where Ho(= Hoe®) is complex and a phase factor e in the exponent is unknown.
This factor, however, can be set at zero. To show this, let us make qualitative
discussion using Fig. 5.5. Figure 5.5 shows the electric field of the plane wave at
some instant as a function of phase ®. Suppose that @ is taken in the direction of n
in Fig. 5.4. Then, from (5.53) we have

O=kn-x—wt=kn-pn— ot =kp — wt,
where p is distance from the origin. Also we have

E = Eoei<k'x7wt) = E()Seei(kpiwt) (E() > 0)

Fig. 5.5 Electric field of a
plane wave at some instant as Eo
a function of phase. The
sinusoidal curve representing
the electric field is shifted
with time from left to right
with its form unchanged

Electric field
o

0
Phase @
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Suppose furthermore that the phase is measured at # = 0 and that the electric
field is measured along the &, direction. Then, we have

®=kp and E = |E|= Epe**. (5.68)

In Fig. 5.5, areal part of E is shown with E = Ej at p = 0. The sinusoidal curve
representing the electric field in Fig. 5.5 is shifted with time from left to right with
its form unchanged.

In this situation, the electric field is to be strengthened with a negative value at a
phase P, with time according to (5.68), whereas at another phase P, the electric
field is to be strengthened with a positive value with time. As a result, in a region
tucked between P; and P, a spiral magnetic field is generated toward the &p
direction; i.e., upper side of a plane of paper. The magnitude of the magnetic field is
expected to be maximized at a center point of PP, (i.e., the origin of the coordinate
system) where the electric field is maximized as well. Thus, we conclude that E and
H have the same phase. It is important to realize that the generation of the elec-
tromagnetic wave is a direct consequence of the interplay between the electric field
and magnetic field that both change with time. It is truly based upon the nature of
the electric and magnetic fields that are clearly represented in Maxwell’s equations.

Next, we consider the situation where two electromagnetic waves are propagated
in the same direction but with a different phase. Notice again that we are consid-
ering the electromagnetic wave that is propagated in a uniform and infinite
dielectric media without BCs.

5.4 Superposition of Two Electromagnetic Waves

Let E, and E, be two electric waves described such that
E, = Elelei(sz(ut) and E, = Ezezei(szwﬂré)’

where E;( > 0) and E,( > 0) are amplitudes and e; and e, represent unit polar-
ization vectors in the direction of positive x-axis and y-axis; we assume that two
waves are being propagated in the direction of the positive z-axis; ¢ is a phase
difference. The total electric field E is described as the superposition of E; and E,
such that

E = E\+E, = Eje;e' ) 4 Eye el +9) (5.69)

Note that we usually discuss the polarization characteristics of electromagnetic
wave only by considering electric waves. We emphasize that an electric wave and
concomitant magnetic wave share the same phase in a uniform and infinite
dielectric media. A reason why the electric wave represents an electromagnetic
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wave is partly because optical application is mostly made in a non-magnetic sub-
stance such as glass, water, plastics, and most of semiconductors.

Let us view temporal change of E at a fixed point x = 0;x =y = z = 0. Then,
taking a real part of (5.69), x- and y-components of E; i.e., E, and E, are expressed
as

E.=E cos(—wt) and E, = E;cos(—wt+9). (5.70)

First, let us briefly think of the case where 6 = 0. Eliminating ¢, we have
E, = —E,. (5.71)

This is an equation of a straight line. The resulting electric field E is called a
linearly polarized light accordingly. That is, when we are observing the electric field
of the relevant light at the origin, the field is oscillating along the straight line
described by (5.71) with the origin centrally located of the oscillating field. If
0 = m, we have

This gives a straight line as well. Therefore, if we wish to seek the relationship
between E, and E,, it suffices to examine it as a function of 6 in a region of
SEELEE

(1) Case I: E| # E».

Let us consider the case where 0 # 0 in (5.70). Rewriting the second equation of
(5.70) and inserting the first equation into it so that we can eliminate ¢, we have

E E?
E, = E>(coswt cos d + sinwt sind) = E» (cos 5E_x £ sindy /1 — E_;> .
1 1

Rearranging terms of the above equation, we have

E, E, _ E?
5 (cosd) £ +(sind)y /1 — E_f (5.72)

Squaring both sides of (5.72) and arranging the equation, we get

E? 2(cos 0)E,E, E}
E’sin*d  EjEpsin®d E3sin®o

=1 (5.73)
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Using a matrix form, we have

L e
(E, Ey)< Fisin 0 E{zﬂﬂ“b)(g)—L (5.74)
)

" EiE>sin®o E2 sin%d

Note that the above matrix is real symmetric. In that case, to examine properties
of the matrix, we calculate its determinant along with principal minors. The prin-
cipal minor means a minor with respect to a diagonal element. In this case, two

. . 1 1
principal minors are Bsins and Fsins” Also we have

1 oY) 1
E2sin®s E Esin?d
1 L . — (5.75)
__ cosd 1 EZEZSiIlZé
E\E,sin®d E%sinzf)" 1=2

Evidently, two principal minors as well as a determinant are all positive (6 # 0).
In this case, the (2, 2) matrix of (5.74) is said to be positive definite. The related
discussion will be given in Part III. The positive definiteness means that in a
quadratic form described by (5.74), LHS takes a positive value for any real number
E, and E, except a unique case where E, = E, = 0, which renders LHS zero. The
positive definiteness of a matrix ensures the existence of positive eigenvalues with
the said matrix.

Let us consider a real symmetric (2, 2) matrix that has positive principal minors
and a positive determinant in a general case. Let such a matrix M be

where a,b > 0 and det M > 0; i.e., ab — c* > 0. Let a corresponding quadratic
form be Q. Then, we have

2.,2

2
o=t (7 ) () et el (4 ) -G )

—o|(+ ) L@ -a)].

Thus, Q >0 for any real numbers x and y. We seek a condition under which
0 = 0. We readily find that with M that has the above properties, only x =y =0
makes Q = 0. Thus, M is positive definite. We will deal with this issue from a more
general standpoint in Part II1.

In general, it is pretty complicated to seek eigenvalues and corresponding
eigenvectors in the above case. Yet, we can extract important information from
(5.74). The eigenvalues A are estimated as follows:
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, E}+E3 & \/(E% + E2)? — 4E3E3sin’o
B 2E2E2sin’0

. (5.76)

Notice that 4 in (5.76) represents two different positive eigenvalues. It is because
an inside of the square root is rewritten by

(E? — E2)? + 4E*E2c0s?0 > 0(0 # +7/2).

Also we have

E}+E; > \/ (E? + E2)* — 4E2EZsin’).

These clearly show that the quadratic form of (5.74) gives an ellipse (i.e., el-
liptically polarized light). Because of the presence of the second term of LHS of
(5.73), both the major and minor axes of the ellipse are tilted and diverted from the
x- and y-axes.

Let us inspect the ellipse described by (5.74). Inserting E, = E; obtained at
t = 0in (5.70) into (5.73) and solving a quadratic equation with respect to E,, we
get E, as a double root such that

E, = E>cos 9.
Similarly putting E, = E; in (5.73), we have
E, = E|cosé.

These results show that an ellipse described by (5.73) or (5.74) is internally
tangent to a rectangle as depicted in Fig. 5.6a. Equation (5.69) shows that the
electromagnetic wave is propagated toward the positive direction of the z-axis.
Therefore, in Fig. 5.6a, we are peeking into the oncoming wave from the bottom of
a plane of paper at a certain position of z = constant. We set the constant = 0.
Then, we find that at + =0 the electric field is represented by the point P
(Ex = Ei,Ey = E> cos 0); see Fig. 5.6a. From (5.70), if 6 > 0, P traces the ellipse
counterclockwise. It reaches a maximum point of E, = E, at t = §/2w. Since the
trace of electric field forms an ellipse as in Fig. 5.6, the associated light is said to be
an elliptically polarized light. If <0 in (5.70), on the other hand, P traces the
ellipse clockwise.

In a special case of 6 = ©/2, the second term of (5.73) vanishes and we have a
simple form described as

2 E?
Z+=2=1 (5.77)
E}  E
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Fig. 5.6 Trace of an electric E,
field of an elliptically

polarized light. a The trace is (a)
internally tangent to a

rectangle of 2E; x 2E,. In the

case of ¢ > 0, starting from P

at t = 0, the coordinate point Ejcosd
representing the electric field

E;ycosd E; Ey

traces the ellipse
counterclockwise with time.
b The trace of an elliptically
polarized light for 6 = /2
E
(b) Y
Ey
P
El Ex

Thus, the principal axes of the ellipse coincide with the x- and y-axes. On the
basis of (5.70), we see from Fig. 5.6b that starting from P at ¢t = 0, again the
coordinate point representing the electric field traces the ellipse counterclockwise
with time; see the curved arrow of Fig. 5.6b. If § <0, the coordinate point traces the
ellipse clockwise with time.

(i) Case II: E| = E;.

Now, let us consider a simple but important case. When E; = E,, (5.73) is
simplified to be

E? — 2 cos OE,E, —|—Ey2 = EZsin%9. (5.78)

Using a matrix form, we have

1 —cosd E, 2.9
E. E = E7sin“d. 5.79
( y)(—cosé 1 )(Ey> 1 ( )
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We obtain eigenvalues /A of the matrix of (5.79) such that

A=1=%|cosd|. (5.80)

Setting —Z <6 < %, we have

/=1 coso. (5.81)

The corresponding normalized eigenvectors v; and v, (as a column vector) are

1 1
v1< vz ) and v2<‘{§>. (5.82)
V2 V2

Thus, we have a diagonalizing unitary matrix P such that

n 1
P:(_fi f) (5.83)
Z V2

Defining the above matrix appearing in (5.79) as A such that

1 —cos o
A (_COS(S ‘ ) (5.84)
we obtain
1, _ (14 cosd 0
P AP = < 0 1 - coss |- (5.85)

Notice that eigenvalues (1+ cosd) and (1 —cosd) are both positive as
expected.
Rewriting (5.79), we have

(E. E, )PP 1 — 080 pp-1 E,

’ —cos 9 1 E, (5.86)
_(E E)p(!Tcos? O Vp1( B — pins .
S 0 1 —cosd E, ) 1 '

Here, let us define new coordinates such that

<Lv‘> EPl(gj>. (5.87)
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This coordinate transformation corresponds to the transformation of basis vec-
tors (eje,) such that

(elez)@;f) — (e1e5)PP"! <§)> — (e,¢)) (j) (5.88)

: L :
where new basis vectors (e}e}) are given by

(ie)) = (e1e2)P = <%e1 - %ez %el + \%ez). (5.89)

The coordinate system along with the basis vectors are depicted in Fig. 5.7. The
relevant discussion will again appear in Part III.
Substituting (5.87) for (5.86) and rearranging terms, we get

u? v?

E3(1 — cos ) + E3 (14 cosd)

= 1. (5.90)

Equation (5.90) indicates that a major axis and minor axis are Ej+/1 + cos  and
E V1 — cos 9, respectively. When 6 = £+7/2, (5.90) becomes

w2

— 4+ ==1 5.91
E} * E} (5:91)

This represents a circle. For this reason, the wave described by (5.91) is called a
circularly polarized light. In (5.90) where 6 # +n/2, the wave is said to be an
elliptically polarized light. Thus, we have linearly, elliptically, and circularly
polarized lights depending on a magnitude of J.

Fig. 5.7 Relationship

between the basis vectors E y
(e1e2) and (e’le’z) in the case 2
of E| = E»; see text
e, Q-
C)
€1 E,
-
7
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Let us closely examine characteristics of the elliptically and circularly polarized
lights in the case of E; = E;. When ¢t = 0, from (5.70) we have

E.=E, and E,=E coso. (5.92)

This coordinate point corresponds to A; whose E, coordinate is E; (see
Fig. 5.8a). In the case of At = 6/2w, E, = E, = E; cos(+6/2). This point corre-
sponds to A; in Fig. 5.8a. We have

\VEF+HE:= V2E; cos(8/2) = E\V/1 + cosd. (5.93)

This is equal to the major axis as anticipated. With 7 = At,

E, =E cos(—wAr) and E, = E cos(—wAr+9). (5.94)

Fig. 5.8 Polarized feature of (a) E 2
light in the case of £, = E. E
a If § > 0, the electric field 1 A
traces an ellipse from A; via
A; to Az (see text). b If J— S
8 = 7/2, the electric field E1V1—cosd
traces a circle from C; via C,
to C3 (left-circularly polarized Eq E,
light)

6§>0

(b) Ey

6=m/2
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Notice that E, takes a maximum E; when Az = §/w. Consequently, if 0 takes a
positive value, E, takes a maximum E,; for a positive Az, as is similarly the case
with Fig. 5.6a. At that time, E, = E| cos(—d) <Ej. This point corresponds to A3 in
Fig. 5.8a. As a result, the electric field traces the ellipse counterclockwise with
time, as in the case of Fig. 5.6. If J takes a negative value, on the other hand, the
field traces the ellipse clockwise.

If 6 = +7/2, in (5.94) we have

E,=E cos(—wt) and E,=E, cos(—wt + g) (5.95)

We examine the case of 0 = /2 first. In this case, when + =0, E, = E; and
E, =0 [Point C, in Fig. 5.8b]. If wr=n/4, E,=E, = 1/\/5 [Point C, in
Fig. 5.8b]. In turn, if wr = n/2, E, = 0 and E, = E; (Point C3). Again the electric
field traces the circle counterclockwise. In this situation, we see the light from
above the z-axis. In other words, we are viewing the light against the direction of its
propagation. The wave is said to be left-circularly polarized and have positive
helicity. In contrast, when 6 = —n/2, starting from Point C}, the electric field traces
the circle clockwise. That light is said to be right-circularly polarized and have
negative helicity.

With the left-circularly polarized light, (5.69) can be rewritten as

E = E1 +E2 = E1 (e1 + ieg)ei(kz_“”). (596)

Therefore, a complex vector (e; +iey) characterizes the left-circular polariza-
tion. On the other hand, (e; — ie;) characterizes the right-circular polarization. To
normalize them, it is convenient to use the following vectors as in the case of
Sect. 4.3 [3].

1 1
e, =——(e;+iey) and e_ =—=(e; —iey), (4.45)

V2 V2

In the case of 6 = 0, we have a linearly polarized light. For this, the points Ay,
A, and A3 coalesce to be a point on a straight line of E, = E.
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Chapter 6
Reflection and Transmission

of Electromagnetic Waves in Dielectric
Media

In Chap. 5, we considered the propagation of electromagnetic waves in an infinite
uniform dielectric medium. In this chapter, we think of a situation where two (or
more) dielectrics are in contact with each other at a plane interface. When two
dielectric media adjoin each other with an interface, propagating electromagnetic
waves are partly reflected by the interface and partly transmitted beyond the in-
terface. We deal with these phenomena in terms of characteristic impedance of the
dielectric media. In the case of an oblique incidence of a wave, we categorize it into
a transverse electric (TE) wave and transverse magnetic (TM) wave. If a thin plate
of a dielectric is sandwiched by a couple of metal sheets, the electromagnetic wave
is confined within the dielectric. In this case, the propagating mode of the wave
differs from that of a wave propagating in a free space (i.e., a space filled by a
three-dimensionally infinite dielectric medium). If a thin plate of a dielectric having
a large refractive index is sandwiched by a couple of dielectrics with a smaller
refractive index, the electromagnetic wave is also confined within the dielectric with
a larger index. In this case, we have to take account of the total reflection that causes
a phase change upon the reflection. We deal with such specific modes of the
electromagnetic wave propagation. These phenomena are treated both from a basic
aspect and from a point of view of device application. The relevant devices are
called waveguides in optics.

6.1 Electromagnetic Fields at an Interface

We start with examining a condition of an electromagnetic field at the plane in-
terface. Suppose that two semi-infinite dielectric media D1 and D2 are in contact
with each other at a plane interface. Let us take a small rectangle S that strides the
interface (see Fig. 6.1). Taking a surface integral of both sides of (5.28) over the
strip, we have
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Al
DI f |

Ah

D2

Fig. 6.1 A small rectangle S that strides an interface formed by two semi-infinite dielectric media
of D1 and D2. Let a curve C be a closed loop surrounding the rectangle S. A unit vector n is
directed to a normal of S. Unit vectors #; and ¢, are directed to a tangential line of the interface
plane

/rotE~ndS+/%—f~ndS:O, (6.1)
s s

where n is a unit vector directed to a normal of S as shown. Applying Stokes’
theorem to the first term of (6.1), we get

7{15 Ldl+ %—’f -nAIAh = 0. (6.2)

C

With the line integral of the first term, C is a closed loop surrounding the
rectangle S and dl = ¢dl, where ¢ is a unit vector directed toward the tangential
direction of C (see t; and ¢, in Fig. 6.1). The line integration is performed such that
C is followed counterclockwise in the direction of t.

Figure 6.2 gives an intuitive diagram that explains Stokes’ theorem. The diagram
shows an overview of a surface S encircled by a closed curve C. Suppose that we have
a spiral vector field E represented by arrowed circles as shown. In that case, rot E is
directed toward the upper side of the plane of paper in the individual fragments.
A summation of rotE - ndS forms a surface integral covering S. Meanwhile, the
arrows of adjacent fragments cancel out each other and only the components on the
periphery (i.e., the curve C) are nonvanishing (see Fig. 6.2). Thus, the surface integral
of rot E is equivalent to the line integral of E. Accordingly, we get Stokes’ theorem
described by [1]

000® ¢
OB
Slelelel

Fig. 6.2 Diagram that intuitively explains Stokes’ theorem. In the diagram, a surface S is
encircled by a closed curve C. An infinitesimal portion of C is denoted by dl. The surface S is
pertinent to the surface integration. Spiral vector field E is present on and near S
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/rotE~ndS = %E -dl. (6.3)

S C

Returning back to Fig. 6.1 and taking Ah — 0, we have %—If -nAIAh — 0. Then,
the second term of (6.2) vanishes and we get

fE'dl:O.

C
This implies that
Al (E1 -t1 +E, -tz) =0,

where E;| and E; represent the electric field in the dielectrics D1 and D2 close to the
interface, respectively. Considering #, = —¢; and putting ¢, = ¢, we get

(El — E2) -t=0, (64)

where ¢ represents a unit vector in the direction of a tangential line of the interface
plane. Equation (6.4) means that the tangential components of the electric field are
continuous on both sides of the interface. We obtain a similar result with the
magnetic field. This can be shown by taking a surface integral of both sides of (5.29)
as well. As a result, we get

(H, — Hy) -t =0, (6.5)

where H| and H represent the magnetic field in D1 and D2 close to the interface,
respectively. Hence, from (6.5) the tangential components of the magnetic field are
continuous on both sides of the interface as well.

6.2 Basic Concepts Underlying Phenomena

When an electromagnetic wave is incident upon an interface of dielectrics, its
reflection and transmission (refraction) take place at the interface. We address a
question of how the nature of the dielectrics and the conditions dealt with in the
previous section are associated with the optical phenomena. When we deal with the
problem, we assume non-absorbing media. Notice that the complex wavenumber
vector is responsible for an absorbing medium along with a complex index of
refraction. Nonetheless, our approach is useful to discuss related problems in the
absorbing media. Characteristic impedance plays a key role in the reflection and
transmission of light.
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We represent a field (either electric or magnetic) of the incident, reflected, and
transmitted (or refracted) waves by F;, F,, and F,, respectively. We call a dielectric
of the incidence side (and, hence, reflection side) D1 and another dielectric of the
transmission side D2. The fields are described by

F,’ = Fiﬁiei(k'”xiwl), (66)
F, = F,ge/krx=on) (6.7)
F, = Fgeltx—on, (6.8)

where F;, F,, and F; denote an amplitude of the field; ¢;, ¢,, and & represent a unit
vector of polarization direction, i.e., the direction along which the field oscillates;
k;, k., and k, are wavenumber vectors such that k; | g;, k. L ¢, and k; L &. These
wavenumber vectors represent the propagation directions of individual waves. In
(6.6) to (6.8), indices of i, r, and ¢ stand for incidence, reflection, and transmission,
respectively.

Let x; be an arbitrary position vector at the interface between the dielectrics.
Also, let ¢ be a unit vector paralleling the interface. Thus, tangential components of
the field are described as

Fi, = Fi(t - g;)e/ ko0, (6.9)
F,, = Fr(t ) sr)ei(k,.-x.,.—wt)’ (610)
F, = F/(t - &)/, (6.11)

Note that F;, and F,, represent the field in D1 just close to the interface and that
F; denotes the field in D2 just close to the interface. Thus, in light of (6.4) and
(6.5), we have

F,+F, =F,.

z

(6.12)

Notice that (6.12) holds with any position x; and any time ¢.

Let us think of elementary calculation of exponential functions or exponential
polynomials and the relationship between individual coefficients and exponents.
With respect to two functions e’ and e, we have two alternatives according to a
value Wronskian takes. Here, Wronskian W is expressed as

eikx eik’x

. | = ik — K kT K)x, 1
(ezk)c)’ (ezkx)’ l(k k)e (6 3)

W:
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(i) W # 0 if and only if k # k. In this case, ¢** and e** are said to be linearly
independent. That is, on condition of k # k', for any x we have

ae® + b =0 a=b=0. (6.14)
(i) W =0 if k = k. In that case, we have

ae™ + be®™ = (a+b)e™ =0 a+b=0.

Notice that e** never vanishes with any x. To conclude, if we think of an
equation of an exponential polynomial

. -
aezkv +beth — 07

we have two alternatives regarding the coefficients: One is a trivial case of
a=>b =0, and the otheris a+b = 0.
Next, with respect to e*1*, and e**, and e’*, similarly we have

eiklx eikz)c eik})(
W = (eiklx)’ (eikzx)’ (eik3x)/
(eiklx)// (eikzx)// (eik3x)”

= —i(ki — ko) (ko — k3) (ks — ky )1 HRHh),

(6.15)

where W # 0 if and only if k| # ko, k» # k3, and k3 # k. That is, on this condition
for any x we have

ae®* 4 pe™* 4 e =0 a=b=c=0. (6.16)
If the three exponential functions are linearly dependent, at least two of &y, ks,
and k3 are equal to each other, and vice versa. On this condition, again consider a
following equation of an exponential polynomial:
ae™* 4 pe*>¥ 4 cer = 0, (6.17)
Without loss of generality, we assume that k; = k,. Then, we have
aeiklx +beikzx +Ceik3x _ (aer)eik‘x +Ceik3x = 0.
If k; # k3, we must have

a+b=0 and c=0 (6.18)
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If, on the other hand, k; = k3, i.e., k; = ko = k3, we have
aeik;x +beik2x +Ceik3x —_ (a +b+c)eik1x =0.
That is, we have
a+b+c=0. (6.19)

Consequently, we must have k; = k, = k3 so that we can get three nonzero
coefficients a, b, and c.
Returning to (6.12), its full description is

Fi(t . si)ei(k,uxs—wt) +Fr(t . sr)ei(kr-xxfwt) _ Ft(t . st)ei(k,'xxfwt) —0. (620)

Again, (6.20) must hold with any position x; and any time ¢. Meanwhile, for
(6.20) to have a physical meaning, we should have

Fi(t-&)#0,F.(t-&)#0and F,(¢- &) # 0. (6.21)

On the basis of the above consideration, we must have the following two
relations:

ki-x;—wt=k, - x;—wt=k,-x;,—wt or
(6.22)
ki'xs‘:kr'xs:kt'xs‘v

and

Fi(t-&)+F,(t-g)—Fi(t-g&)=0 or (6.23)
Fi(t-&)+F.(t-&)=Fit &).

In this way, we are able to obtain a relation among amplitudes of the fields of
incidence, reflection, and transmission. Notice that we get both the relations
between exponents and coefficients at once.

First, let us consider (6.22). Suppose that the incident light (k;) is propagated in a
dielectric medium D1 in parallel to the zx-plane and that the interface is the xy-plane
(see Fig. 6.3). Also suppose that at the interface the light is reflected partly back to
D1 and transmitted (or refracted) partly into another dielectric medium D2. In
Fig. 6.3, k;, k,, and, k, represent the incident, reflected, and transmitted lights that
make an angle 0, ¢, and ¢ with the z-axis, respectively. Then we have

k; sin 0
k,’ = (6’1 (%) 83) 0 s (624)
—k; cos 0
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z
.68 k,
(| D1 x
D2
0 k,
¢
kl‘

Fig. 6.3 Geometry of the incident, reflected, and transmitted lights. We assume that the light is
incident from a dielectric medium D1 toward another medium D2. The wavenumber vectors k;, k.,
and k, represent the incident, reflected, and transmitted (or refracted) lights with an angle 0, 0', and
¢, respectively. Note here that we did not assume the equality of 0 and 0’ (see text)

x; = (e; €2 €3) (6.25)

O < =

where 0 is said to be an incidence angle. A plane formed by k; and a normal to the
interface is called a plane of incidence (or incidence plane). In Fig. 6.3, the zx-plane
forms the incidence plane. From (6.24) and (6.25), we have

ki -x; = kix sin 0, (6.26)
ky-x; =k, x+ky, (6.27)
k[ Xy = ktxx + ktyy’ (6.28)

where k; = |k;|; k,, and k,'v are x and y components of k,; similarly, £, and k,y are
x and y components of k.
Since (6.22) holds with any x and y, we have

ki sin 0=k, =k, (6.29)
ke, = ki, = 0. (6.30)

From (6.30), neither k, nor k, has a y component. This means that k;, k,, and k;,
are coplanar. That is, the incident, reflected, and transmitted waves are all parallel to
the zx-plane. Notice that at the beginning we did not assume the coplanarity of those
waves. We did not assume the equality of 0 and ' either (vide infra). From (6.29)
and Fig. 6.3, however, we have
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k; sin 0 =k, sin 0/ =k, sin ¢, (6.31)

where k, = |k,| and k, = |k;|; 0 and ¢ are said to be a reflection angle and a
refraction angle, respectively. Thus, the end points of k;, k,, and k, are connected
on a straight line that parallels the z-axis. Figure 6.3 clearly shows it.

Now, we suppose that a wavelength of the electromagnetic wave in D1 is /; and
that in D2 is Z,. Since the incident light and reflected light are propagated in D1, we
have

ki =k, = 21/ ). (6.32)
From (6.31) and (6.32), we get
sin 0 = sin 0. (6.33)
Therefore, we have either 0 = 0 or 0 = 1 — 0. since 0<0, 0’ <n/2, we have
0=0. (6.34)
Then, returning back to (6.31), we have
ki sin @ = k, sin 6 = k; sin ¢. (6.35)

This implies that the components tangential to the interface of k;, k,, and k; are
the same.
Meanwhile, we have

k= 2m/ 7. (6.36)

Also we have

Cc = /10\1, vV = )nlv, V) = /12\), (637)

where v; and v, are phase velocities of light in D1 and D2, respectively. Since v is
common to D1 and D2, we have

c/lo=vi/l1 =v/l or

6.38
C/V] :)\,O/A,]:nl’ C/sz/l()/),zznz, ( )

where / is a wavelength in vacuum; n; and n, are refractive indices of D1 and D2,
respectively. Combining (6.35) with (6.32), (6.36), and (6.38), we have several
relations such that

N E) (6.39)
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where n is said to be a relative refractive index of D2 relative to D1. The relation
(6.39) is called Snell’s law. Notice that (6.39) reflects the kinematic aspect of light
and that this characteristic comes from the exponents of (6.20).

6.3 Transverse Electric (TE) Waves and Transverse
Magnetic (TM) Waves

On the basis of the above argument, we are now in the position to determine the
relations among amplitudes of the electromagnetic fields of waves of incidence,
reflection, and transmission. Notice that since we are dealing with non-absorbing
media, the relevant amplitudes are real (i.e., positive or negative). In other words,
when the phase is retained upon reflection, we have a positive amplitude due to
e = 1. When the phase is reversed upon reflection, on the other hand, we will be
treating a negative amplitude due to e™ = —1. Nevertheless, when we consider the
total reflection, we deal with a complex amplitude (vide infra).

We start with the discussion of the vertical incidence of an electromagnetic wave
before the general oblique incidence. In Fig. 6.4a, we depict electric fields E and
magnetic fields H obtained at a certain moment near the interface. We index, e.g.,
E; for the incident field. There we define unit polarization vectors of the electric
field &, &,, and &, as identical to be e; (a unit vector in the direction of the x-axis). In
(6.6), we also define F; (both electric and magnetic fields) as positive.

We have two cases about a geometry of the fields (see Fig. 6.4). The first case is
that all E;, E,, and E, are directed in the same direction (i.e., the positive direction
of the x-axis) (see Fig. 6.4a). Another case is that although E; and E; are directed in
the same direction, E, is reversed (Fig. 6.4b). In this case, we define E, as negative.
Notice that E; and E, are always directed in the same direction and that E, is
directed either in the same direction or in the opposite direction according to the
nature of the dielectrics. The situation will be discussed soon.

(@ Z| Incidence light (b) Z| Incidence light
H; o E; H;, ® E;
B —
H. ® E, H o E
- D1 X " . X
e e
Ho |“ E D2 Ho | E
e

Fig. 6.4 Geometry of the electromagnetic fields near the interface between dielectric media D1
and D2 in the case of vertical incidence. a All E;, E,, and E, are directed in the same direction e;
(i.e., a unit vector in the positive direction of the x-axis). b Although E; and E, are directed in the
same direction, E, is reversed. In this case, we define E, as negative
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Meanwhile, unit polarization vectors of the magnetic fields are determined by
(5.67) for the incident, reflected, and transmitted waves. In Fig. 6.4, the magnetic
fields are polarized along the y-axis (i.e., perpendicular to the plane of paper). The
magnetic fields H; and H, are always directed to the same direction as in the case of
the electric fields. On the other hand, if the phase of E, is conserved, the direction of
H, is reversed and vice versa. This converse relationship with respect to the electric
and magnetic fields results solely from the requirement that E, H, and the propa-
gation unit vector n of light must constitute a right-handed system in this order.
Notice that n is reversed upon reflection.

Next, let us consider an oblique incidence. With the oblique incidence, elec-
tromagnetic waves are classified into two special categories, i.e., transverse electric
(TE) waves (or modes) or transverse magnetic (TM) waves (or modes). The TE
wave is characterized by the electric field that is perpendicular to the incidence
plane, whereas the TM wave is characterized by the magnetic field that is per-
pendicular to the incidence plane. Here, the incidence plane is a plane that is formed
by the propagation direction of the incident light and the normal to the interface of
the two dielectrics. Since E, H, and n form a right-handed system, in the TE wave
H lies on the incidence plane. For the same reason, in the TM wave E lies on the
incidence plane.

In a general case where a field is polarized in an arbitrary direction, that field can
be formed by superimposing two fields corresponding to the TE and TM waves. In
other words, if we take an arbitrary field E, it can be decomposed into a component
having a unit polarization vector directed perpendicular to the incidence plane and
another component having the polarization vector that lies on the incidence plane.
These two components are orthogonal to each other.

Example 6.1: TE wave In Fig. 6.5 we depict the geometry of oblique incidence of a
TE wave. The xy-plane defines the interface of the two dielectrics, and ¢ of (6.9) lies
on that plane. The zx-plane defines the incidence plane. In this case, E is polarized
along the y-axis with H polarized in the zx-plane. That is, regarding E, we choose
polarization direction g, &, and & of the electric field as e, (a unit vector toward the
positive direction of the y-axis that is perpendicular to the plane of paper). In
Fig. 6.5, the polarization direction of the electric field is denoted by a symbol ®.
Therefore, we have

82-8[282'8,282'8,:1. (640)

For H we define the direction of unit polarization vectors &;, ., and g so that their
direction cosine relative to the x-axis can be positive (see Fig. 6.5). Choosing e; (a
unit vector in the direction of the x-axis) for ¢ of (6.9) with regard to H, we have

e;-&g =-cosl0,e; -& =cos0, and e - & = cos ¢. (6.41)

Accordingly as H, is directed to the same direction as &, or the opposite direction
to &, the amplitude is defined as positive or negative, as in the case of the vertical
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Fig. 6.5 Geometry of the electromagnetic fields near the interface between dielectric media D1
and D2 in the case of oblique incidence of a TE wave. The electric field E is polarized along the y-
axis (i.e., perpendicular to the plane of paper) with H polarized in the zx-plane. Polarization
directions ¢, &, and & are given for H. To avoid complication, neither H nor H, is shown

incidence. In Fig. 6.5, we depict the case where the amplitude H, is negative. That
is, the phase of the magnetic field is reversed upon reflection and, hence, H, is in an
opposite direction to &, in Fig. 6.5. Note that H; and H, are in the same direction as
g and g, respectively. To avoid complication, neither H; nor H, is shown in
Fig. 6.5. Applying (6.23) to both E and H, we have

Ei+E, = E, (6.42)
H;cos 0+ H,cos = H, cos ¢. (6.43)

To derive the above equations, we choose ¢ = e, with E and ¢ = e; with H for
(6.23). Because of the above-mentioned converse relationship with E and H, we
have

EH, <0. (6.44)

Suppose that we carry out an experiment to determine six amplitudes in (6.42)
and (6.43). Out of those quantities, we can freely choose and fix E;. Then, we have
five unknown amplitudes, i.e., E,, E;, H;, H,, and H,. Thus, we need three more
relations to determine them. Here, information about the characteristic impedance
Z is useful. It was defined as (5.64). From (6.6) to (6.8) as well as (6.44), we get

Zy =/ /e = Ei/H; = —E,/H,, (6.45)
Z, = +\/1n/e = E,/H,, (6.46)

where ¢ and y; are permittivity and permeability of D1, respectively; ¢, and p, are
permittivity and permeability of D2, respectively. As an example, we have
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Hi =n X Ei/Zl =n X Eisiﬂe ei(k,‘-xfwt) /Zl = E,'S,'_’m e"<k""‘*“’t>/Z1

6.47
=H;&; ei(ki-xfmt), ( )
where we distinguish polarization vectors of electric and magnetic fields. Note in
the above discussion, however, we did not distinguish these vectors to avoid
complication. Comparing coefficients of the last relation of (6.47), we get

E;/Z, = H;. (6.48)

On the basis of (6.42) to (6.46), we are able to decide E,, E;, H;, H,, and H,.
What we wish to determine, however, is a ratio among those quantities. To this
end, dividing (6.42) and (6.43) by E; ( > 0), we define following quantities:

Ri =E,/E; and Tz =E,/E;, (6.49)

where R and T4 are said to be a reflection coefficient and transmission coefficient
with the electric field, respectively; the symbol | means a quantity of the TE wave
(i.e., electric field oscillating vertically with respect to the incidence plane). Thus
rewriting (6.42) and (6.43) and using ng and Tz, we have

Ry — Ty =—1,
Rg MEJF Tbg cos ¢ __ cos 0 } (6.50)
Z Z Z "
Using Cramer’s rule of matrix algebra, we have a solution such that
-1 -1
RL — %’ % 7, cosO —Z; cos ¢ 65
E= = : (6.51)
1 Z, cos0+Z; cos¢
cosl cos¢
Z 7
1 -1
7L _ C%Slg %) B 27, cos 6.5
E 1= : (6.52)
1 1 Z; cosO+Z; cos ¢
cos cos¢
Z 7
Similarly, defining
R; =H,/H; and Ty =H,/H;, (6.53)

where Rﬁ and Tﬁ are said to be a reflection coefficient and transmission coefficient
with the magnetic field, respectively, we get
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_Zy cos¢ — 7 cosl

Ry = 6.54

B 7, cos0+Zicos¢p’ ( )
27 0

T: 1 €08 (6.55)

:Zz cosO+Z cosg’

In this case, rewrite (6.42) as a relation among H;, H,, and H; using (6.45) and
(6.46). Derivation of (6.54) and (6.55) is left for readers. Notice also that

Ri = —Rj. (6.56)

This relation can easily be derived by (6.45).

Example 6.2: TM wave In a manner similar to that described above, we obtain
information about the TM wave. Switching a role of E and H, we assume that H is
polarized along the y-axis with E polarized in the zx-plane. Following the afore-
mentioned procedures, we have

E; cosO+E, cosl0 = E; cos ¢, (6.57)
H;+H, = H,. (6.58)

From (6.57) and (6.58), similarly we get
Z> cos ¢ — Z; cosb

Il
R! — 6.59
E™ 7 cos0+2, cos¢’ ( )
I _ 27, cos 0 6.60
E™ 7 cos0+2, cosp’ (6.60)
Also, we get
| Zicost—Z; cos I
A 7, cos0+Z, cos ¢ £ (6.61)
7! 27, cos O (6.62)

H= 7 cos0+2, cosp’

In Table 6.1, we list the important coefficients in relation to the reflection and
transmission of electromagnetic waves along with their relationship.

In Examples 6.1 and 6.2, we have examined how the reflection and transmission
coefficients vary as a function of characteristic impedance as well as incidence and
refraction angles. Meanwhile, in a non-magnetic substance a refractive index n can
be approximated as

n =/, (5.57)
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Table 6.1 Reflection and transmission coefficients of TE and TM waves

L Incidence (TE) || Incidence (TM)
Rl _ Zcos 0—Z, cos ¢ RH __ Zy cos¢—Z; cos0
E Z> cos0+Z, cos ¢ E ™ Z cosO0+ 2, cos
1 _ Zicos¢p—Zycos _  pl I _ ZicosO0—Zycosp __ Il
RH T ZycosO+Zicosp RE RH ~ ZycosO0+Zrcosp _RE
Tl _ 27, cos 0 T“ _ 27, cos ()
E Z cos 0+Z cos E ™ Zjcos0+2Z, cos ¢
TL — 27 cos 8 TII _ 27, cos 0
H Z; cos 0+ Z; cos ¢ H = Z,cos0+Z, cos
_plpl Lplcosd L L _ Il pll |7l cos ¢ —
ReRy+TpTiog =1 (R +T-=1) —ReRy +TpTy g =1 (RI+T'=1)

assuming that y, ~ 1. In this case, we have

Z =/ p/e = i/ ereo = Zo/er = Zo/n.

Using this relation, we can readily rewrite the reflection and transmission co-
efficients as a function of refractive indices of the dielectrics. The derivation is left
for the readers.

6.4 Energy Transport by Electromagnetic Waves

Returning to (5.58) and (5.59), let us consider energy transport in a dielectric medium
by electromagnetic waves. Let us describe their electric (E) and magnetic (H)
fields of the electromagnetic waves in a uniform and infinite dielectric medium such
that

E = Eg.emx=o1) (6.63)
H = Hepe'fmx=on, (6.64)

where g and &, are unit polarization vector; we assume that both £ and H are
positive. Notice again that &, &;,, and rn constitute a right-handed system in this
order.

The energy transport is characterized by a Poynting vector S that is described by

S=ExH. (6.65)

Since E and H have a dimension {M} and {%}, respectively, S has a dimension

m
{E

mZ
respect to the propagation direction. For simplicity, let us assume that the elec-
tromagnetic wave is propagating toward the z-direction. Then, we have

] Hence, S represents an energy flow per unit time and per unit area with
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E = Ege'&=1), (6.66)
H = Hepe' ), (6.67)

To seek a time-averaged energy flow toward the z-direction, it suffices to mul-
tiply real parts of (6.66) and (6.67) and integrate it during a period T at a point of
z = 0. Thus, a time-averaged Poynting vector S is given by

T
- EH
S=e; ?/ cos? wr dt, (6.68)
0
where T = 1/v = 2n/w. Using a trigonometric formula

1
cos®> wt = 3 (14 cos 2 wt), (6.69)

the integration can easily be performed. Thus, we get

- 1
S = 5EH€3. (6.70)
Equivalently, we have
= 1
S:EExH*. (6.71)

Meanwhile, an energy density W is given by

1
W= (E-D+H-B) (6.72)

where the first and second terms are pertinent to the electric and magnetic fields,

respectively. Note in (6.72) that the dimension of E - D is [% : %} = {%] and

that the dimension of H - B is [&-W8| = [Ws| = [ L], Using (5.7) and (5.10),

we have

W == (¢E* + uH?). (6.73)

N =

As in the above case, estimating a time-averaged energy density W, we get

— 1/ 1 1 1
W == |=¢E*+ ~uH? )| = —¢E> + ~ uH>. 6.74
2 (2‘0 ok ) PRI (6.74)
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We also get this relation by integrating (6.73) over a wavelength A at a time of
t = 0. Using (5.60) and (5.61), we have

eE? = uH>. (6.75)

This implies that the energy density resulting from the electric field and that due
to the magnetic field have the same value. Thus, rewriting (6.74) we have

1 1
W == ¢E? = = uH>. 6.76
5 ¢ 5 H (6.76)

Moreover, using (5.43), we have for an impedance
Z=E/H=+/u/e=p or E=pvH. (6.77)

Using this relation along with (6.75), we get

- 1 1
S == veE%e3 = = vuH’es. (6.78)
2 2
Thus, we have various relations among amplitudes of electromagnetic waves and
related physical quantities together with constant of dielectrics.
Returning to Examples 6.1 and 6.2, let us further investigate the reflection and

transmission properties of the electromagnetic waves. From (6.51) to (6.55) as well
as (6.59) to (6.62), we get in both the cases of TE and TM waves

—RLR:-+THTE cosd _ 1 6.79

E **H E *“H COSO ) ( )
I ol |l €08 ¢

—RLRL+T.T =1. 6.80
E H+ E'H COS@ ( )

In both the TE and TM cases, we define reflectance R and transmittance T such
that

R= —RgRy = Ry =2|S.|/2[S:| = [S.|/|Si], (6.81)

where S, and S; are time-averaged Poynting vectors of the reflected wave and
incident waves, respectively. Also, we have

cosp 2|§,| cos¢p ‘gz‘ cos ¢
cosl 2|S;| cos 0 N |S;| cos 0’

where S, is a time-averaged Poynting vector of the transmitted wave. Thus, we have

R+T=1. (6.83)
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The relation (6.83) represents the energy conservation. The factor Z‘;Z}f can be

understood by Fig. 6.6 that depicts a luminous flux near the interface. Suppose that
W
m2
zx-plane. Notice that I has the same dimension as a Poynting vector.

Here, let us think of the luminous flux that is getting through a unit area (i.e., a
unit length square) perpendicular to the propagation direction of the light. Then, this

flux illuminates an area on the interface of a unit length (in the y-direction) mul-

tiplied by a length of Ccf;‘g (in the x-direction). That is, the luminous flux has been

we have an incident wave with an irradiance / [ ] whose incidence plane is the

widened (or squeezed) by Cczi‘g’ times after getting through the interface. The irra-

diance has been weakened (or strengthened) accordingly. Thus, to take a balance of

income and outgo with respect to the luminous flux before and after getting through

cos ¢
cos 0°

the interface, the transmission irradiance must be multiplied by a factor

6.5 Brewster Angles and Critical Angles

In this section and subsequent sections, we deal with non-magnetic substance as
dielectrics; namely, we assume u, ~ 1. In that case, as mentioned in Sect. 6.3 we
rewrite, e.g., (6.51) and (6.59) as

. cosl —ncos¢

E " cosO+ncosgp’ (6.:84)

Rl _cos¢p —ncosl

= 6.85
E™ cos¢p+ncos0’ (6.85)

where n (= ny/n;) is a relative refractive index of D2 relative to D1. Let us think of

a condition on which R =0 or R = 0.
First, we consider (6.84). We have

Fig. 6.6 Luminous flux near z
the interface k; k,
~ v
[
D1
D2 x
¢ c&
0059
kl
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in0
[numerator of (6. 84)] = cos —n cos ¢ = cos 0 — SIY cos ¢

sin ¢
~ sin¢g cos) —sin6 cos¢p  sin(p — 0) (6.86)
- sin ¢ © sing

where with the second equality we used Snell’s law; the last equality is due to
trigonometric formula. Since we assume 0<0<m/2 and 0<¢p<m/2, we have
—n/2<¢ — 0<m/2. Therefore, if and only if ¢ — 0 = 0, sin(¢p — ) = 0. Namely,
only when ¢ =0, Ry could vanish. For different dielectrics having different
refractive indices, only if ¢ = 0 =0 (i.e., a vertical incidence), we have ¢ = 0.
But, in that case we have

sin(¢p — 0)

m -
$—0,0-0  sin ¢

0
0
This is a limit of indeterminate form. From (6.84), however, we have

71—n
1+’

R (6.87)

for ¢ = 6 = 0. This implies that R} does not vanish at ¢ = 6 = 0. Thus, Ri never
vanishes for any 6 or ¢. Note that for this condition, naturally we have

1—n

R) =

This is because with ¢ = 0 = 0 we have no physical difference between TE and
TM waves.
In turn, let us examine (6.85) similarly with the case of TM wave.

in 0
[numerator of (6. 85)] = cos ¢ — n cos @ = cos ¢ — S,md)cos 0
sin
6.88
_ sin¢ cos ¢ —sin0 cos O sin(¢p — 0) cos(¢ +0) (6.88)
N sin ¢ N sin ¢ '
With the last equality of (6.88), we used a trigonometric formula. From (6.86),
we know that % does not vanish. Therefore, for Ryg to vanish, we need
cos(¢p+0) = 0. Since 0<¢p+ 0 <m, cos(¢p+0) = 0 if and only if

¢+0=m/2 (6.89)
In other words, for particular angles 0 = 0 and ¢ = ¢y that satisfy
¢+ 0 =7/2, (6.90)
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we have R,HE = 0; i.e., we do not observe a reflected wave. The particular angle 0 is
said to be the Brewster angle. For 0, we have

sin ¢y = sin(g — GB) = cos 0,
1

n=sin0p/sin ¢y = sinfp/cosp =tanfg or Op =tan  n, (6.91)
¢p =tan 'n7l.

Suppose that we have a parallel plate consisting a dielectric D2 of a refractive
index n, sandwiched with another dielectric D1 of a refractive index n; (Fig. 6.7).
Let 0g be the Brewster angle when the TM wave is incident from D1 to D2. In the
above discussion, we defined a relative refractive index n of D2 relative D1 as
n = my/ny; recall (6.39). The other way around, suppose that the TM wave is
incident from D2 to D1. Then, the relative refractive index of D1 relative to D2 is
ni/ny = n~'. In this situation, another Brewster angle (from D2 to D1) defined as

Og is given by
Op =tan'n". (6.92)
This number is, however, identical to ¢y in (6.91). Thus, we have
05 = oy (6.93)

Thus, regarding the TM wave that is propagating in D2 after getting through the

interface and is to get back to D1, 0 = ¢y is again the Brewster angle. In this way,
the said TM wave is propagating from D1 to D2 and then getting back from D2 to
D1 without being reflected by the two interfaces. This conspicuous feature is often
utilized for an optical device.

Ty Wayg z
by D1 (ny)
x
D2 (n;)  [4N\e
D1 (ny) Gy
Ty Wayg

Fig. 6.7 Diagram that explains the Brewster angle. Suppose that a parallel plate consisting of a
dielectric D2 of a refractive index n, is sandwiched with another dielectric D1 of a refractive index
ny. The incidence angle 0 represents the Brewster angle observed when the TM wave is incident
from D1 to D2. ¢y is another Brewster angle that is observed when the TM wave is getting back
from D2 to D1
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If an electromagnetic wave is incident from a dielectric of a higher refractive
index to that of a lower index, the total reflection takes place. This is equally the
case with both TE and TM waves. For the total reflection to take place, 0 should be
larger than a critical angle 0. that is defined by

0. = sin"! n. (6.94)
This is because at 0. from the Snell’s law we have

sin 6, . n
Gz = Sl 0. = n—? (=n). (6.95)
2

From (6.95), we have
tan 0. = n/V1 —n? > n = tan 0p.
In the case of the TM wave, therefore, we find that
0. > 0g. (6.96)

The critical angle is always larger than the Brewster angle with TM waves.

6.5.1 Total Reflection

In Sect. 6.2, we saw that the Snell’s law results from the kinematical requirement.
For this reason, we may consider it as a universal relation that can be extended to
complex refraction angles. In fact, for the Snell’s law to hold with 6 > 0., we must
have

sing > 1. (6.97)

This needs us to extend ¢ to a complex domain. Putting

¢ = g Via (a:real, a #0), (6.98)
we have
. 1 ip —i¢p 1 —a a
sing =— (e —e ) == (e +e%) > 1, (6.99)
2i 2
1, . . ]
cos ¢ = 3 (e +e ) = %(e‘“ —e). (6.100)

Thus, cos ¢ is pure imaginary.
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Now, let us consider a transmitted wave whose electric field is described as
E, = Ege'k—o1, (6.101)

where g is the unit polarization vector and k, is a wavenumber vector of the
transmission wave. Suppose that the incidence plane is the zx-plane. Then, we have

ki -x = k; x+k; z = xk; sin ¢ + zk; cos ¢, (6.102)
where k, and k;, are x and z components of k,, respectively; k; = |k;|. Putting
cos¢ =ib (b :real, b #0), (6.103)
we have
E, = Egei(vhsiné +ibtk—or) _ pe ok sing—on) o—bek (6.104)
With the total reflection, we must have
z—o00=e " 0. (6.105)
To meet this requirement, we have
b > 0. (6.106)
Meanwhile, we have

sin?@ n? —sin% 0

cos’p=1—sin’¢p=1-— > > ,

(6.107)

n n

where notice that n < 1, because we are dealing with the incidence of light from a
medium with a higher refractive index to a low index medium. When we consider
the total reflection, the numerator of (6.107) is negative, and so we have two
choices such that

V) )
cos = 4y 0 = (6.108)
n

From (6.103) and (6.106), we get

Vsin? 0 — n2
cos ¢ = i%. (6.109)

Hence, inserting (6.109) into (6.84) we have for the TE wave
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RL _ cos B — iVsin> 0 — n?

= . 6.110
£ cos 0+ iVsin® 0 — n? ( )

Then, we have

cos —iVsin? 0 — n2 cos 0+ iVsin® 0 — n? B

R = —RE(RE)' = RE(RE)' = - .
B EYE cos 0+ iVsin® 0 —n2 cos0 — iVsin® 0 — n?
(6.111)

As for the TM wave, substituting (6.109) for (6.85) we have

I —n?cos 0+ iVsin> 0 — n2

Rl = . (6.112)
£ n2 cos 0+ iVsin® 0 — n?
In this case, we also get
Rl —n%cos 0+ iVsin®0 —n2 —n?cos O — iVsin® 0 — n2 _ (6.113)

n2cos 0+ ivsin?0 —n?2  n2cos O — iVsin® 0 — n?

The relations (6.111) and (6.113) ensure that the energy flow gets back to a
higher refractive index medium.

Thus, the total reflection is characterized by the complex reflection coefficient
expressed as (6.110) and (6.112) as well as a reflectance of 1. From (6.110) and
(6.112), we can estimate a change in a phase of the electromagnetic wave that takes
place by virtue of the total reflection. For this purpose, we put

R:=e” and Rl =" (6.114)
Rewriting (6.110), we have

cos? 0 — (sin® O — n?) — 2i cos 0Vsin* O — n>

1 —n?

Ry = (6.115)

At a critical angle 0., from (6.95) we have
sin 6, = n. (6.116)
Therefore, we have

2 = cos? 0. (6.117)

1—n



6.5 Brewster Angles and Critical Angles 195
Then, as expected, we get
Rilg_g, = 1. (6.118)
Note, however, that at § = n/2 (i.e., grazing incidence) we have
Rilonp = —1. (6.119)
From (6.115), an argument o in a complex plane is given by

2 cos 0V'sin? 0 — n?
tano = — — . (6.120)
cos? 0 — (sin” 0 — n?)

The argument o defines a phase shift upon the total reflection. Considering
(6.115) and (6.118), we have

°‘|0:OC =0.

Since 1 —n? > 0 (i.e., n<1) and in the total reflection region sin? 6 — n> > 0,
the imaginary part of Ry is negative for any 0 (i.e., 0 to 7/2). On the other hand, the
real part of R,% varies from 1 to —1, as is evidenced from (6.118) and (6.119). At 0,
that satisfies a following condition:

1+n2
2 b

sin 0y = (6.121)

the real part is zero. Thus, the phase shift o varies from O to —= as indicated in
Fig. 6.8. Comparing (6.121) with (6.116) and taking into account n <1, we have

0. <by<m/2.

Fig. 6.8 Phase shift «
defined in a complex plane for i

the total reflection of TE
wave. The number n denotes
a relative refractive index of
D2 relative to D1. At a critical
angle 6., « =0 1
\Ja
6 =6,

a\

N
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Similarly, we estimate the phase change for a TM wave. Rewriting (6.112), we

have

—n* cos? 0+ sin® 0 — n? + 2in? cos OVsin® 0 — n2

R) =
n* cos? 0+ sin® 0 — n2

—n* cos? 0+ sin® 0 — n? + 2in? cos 0Vsin® 0 — n2

(1 —n2)(sin* 0 — n% cos? 0)
Then, we have
R}‘lvbzec = -1
Also at 6 = 7/2 (i.e., grazing incidence), we have
R‘1‘5|0:n/2 =1

From (6.122), an argument f is given by

212 cos 0Vsin? 0 — n?

tan f = - .
—n* cos? 0+ sin® 0 — n?

Considering (6.122) and (6.123), we have
Blo—g, = -

In the total reflection region, we have

sin? 0 — n?cos? 0 > n> — n*cos? 0 = n2(1 — cos? 9) > 0.

(6.122)

(6.123)

(6.124)

(6.125)

Therefore, the denominator of (6.122) is positive and, hence, the imaginary part
of R‘,‘,; is positive as well for any (i.e., 0 to 7/2). From (6.123) and (6.124), on the
other hand, the real part of R,HE in (6.122) varies from —1 to 1. At 50 that satisfies a

following condition:

~ 1—n?
cos 0o = \/ T

the real part of RQ is zero. Once again, we have

90<50<n/2.

Thus, the phase f varies from 7 to 0 as depicted in Fig. 6.9.

(6.126)
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Fig. 6.9 Phase shift f§ for the

total reflection of TM wave. N 1 —n2
At a critical angle 0., f =7 6y = cos™! Tont .
1

6.6 Several Remarks on Analytic Functions

In Sect. 6.6, we mentioned somewhat peculiar features of complex trigonometric
functions such as sin ¢ > 1 in light of real functions. Even though we do not make
systematic description of analytic functions (or complex analysis), we add several
remarks on them. Readers are referred to appropriate literature with the theory of
analytic functions [2].

Suppose that a mathematical function is defined on a real domain (i.e., a real
number line). Consider whether that function is differentiable at a certain point xy of
the real number line. On this occasion, we can approach xy only from two direc-
tions, i.e., from the side of x <xqy (from the left) or from the side of x > xy (from the
right) (see Fig. 6.10a). Meanwhile, suppose that a mathematical function is defined
on a complex domain (i.e., a complex plane). Also, consider whether the function is
differentiable at a certain point zo of the complex plane. In this case, we can
approach zo from continuously varying directions (see Fig. 6.10b) where only four
directions are depicted.

Suppose now that (i) a function f(z) is single-valued and that (ii) f(z) is dif-
ferentiable, in other words, the following finite limit exists

dff _ o S0+ A7) —f(z0)
—| = lim
dz 2 Az—0 Az

(6.127)

regardless of the way (or direction) one approaches the point z = zy. Notice that
four such ways (or directions) are shown in Fig. 6.10b. Then, f(z) is said to be
analytic at zo. This definition naturally implies that the differentiability of f(z) at zo
demands the differentiability at all points of the “neighborhood” of zy. A point
where f(z) is analytic is called a regular point of f(z). Otherwise, the point is called
a singular point of f(z). If f(z) is analytic on the entire complex plane, f(z) is called
an entire function.
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Fig. 6.10 Ways a number (a)

(real or complex) is X
approached. a Two ways a
number X, is approached in a 0 X0
real number line. b Various

ways a number zo is

approached in a complex (b) z
plane. Here, only four ways l
are indicated
— 0
A
T
1
0 1

Usually a complex variable z is given by
7=x-+1y,
where x and y are real. Consider a flowing function
8(z) =x+iy=z.

Then, g(z) is an entire function. On the other hand, consider a following function
h(z) such that

h(z) =2x+iy=z+x.

Then, the derivative (6.127) with h(z) varies depending on a way zp is
approached. For instance, think of

dh

_ . 2 2 .
M limh((H_Z) h(0) lim 2x+iy lim 2x” +y* — ixy
Z

= i -
0 0 z 1=0,y-0 X iy x=0,y-0  x% 4>

Suppose that the differentiation is taken along a straight line in a complex plane
represented by iy = (ik)x (k,x,y : real). Then, we have

%
dz

m 2x% + k2x? — ikx? - 24+k*—ik  24+k*—ik
= 1 _— sp = 1 =
0 x—0, y—0 x2 —+ k2x2 x—0, y—0 1 + k2 1 + k2

However, this means that g—i‘ ) takes varying values depending upon k. Namely,
(

g—i‘ o cannot uniquely be defined but depends on different ways to approach the



6.6 Several Remarks on Analytic Functions 199

origin of the complex plane. Thus, we find that the derivative takes different values
depending on straight lines along which the differentiation is taken. In other words,
h(z) is not differentiable or analytic at z = 0.

Reflecting the nature of the differentiability, we have an integral representation
of an analytic function. This is well-known as Cauchy’s integral formula. It is
described as

10 = 5 f 2 (6.128)
C

where f(z) is analytic within a complex domain encircled by a closed contour
C (see Fig. 6.11) and contour integration along C is taken in the counterclockwise
direction. We also have a following salient property with respect to (higher-order)
derivatives such that

dnf(z)_n!]{(gdeé (6.129)

dZ” - 271?1 _ Z)n+l
C

We have a further outstanding theorem as follows. Equation (6.129) implies that
an analytic function is infinitely differentiable and that the derivatives of all order of
an analytic function are again analytic. These prominent properties arise partly from
the aforementioned stringent requirement on the differentiability of a function of a
complex variable.

A following theorem is important and intriguing with the analytic functions.

Theorem 6.1 (Cauchy-Liouville Theorem) A bounded entire function must be a
constant.

Proof Using (6.129), we consider the first derivative of an entire function f(z)

described as
R EIC)
dz Zm'z{ (&~ 2) de.

Fig. 6.11 Complex domain
encircled by a closed contour
C and contour integration
along C. The integration is
taken in the counterclockwise it C
direction
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Since f(z) is an entire function, we can arbitrarily choose a large enough circle of
radius R centered at z for a closed contour C. On the circle, we have

E=z+Re",

where 6 is a real number changing from O to 27. Then, the above equation can be
rewritten as

2n 2n
o LTI e O
d_z_ﬁ/(ReieflRe do_an/ el
0 0

Taking an absolute value of both sides, we have

2n
M
_ZRR/If )do< 71R/d(9_E7
0

where M is the maximum of |f(&)]. As R — oo, .g—’;‘ tends to be zero. This implies

dz

that f(z) is constant. This completes the proof.

At the first glance, Cauchy—Liouville Theorem looks astonishing in terms of
theory of real analysis. It is because we are too familiar with —1 < sinx <1 for any
real number x. Note that sinx is bounded in a real domain. In fact, as (6.98) and
(6.99) show, sin¢ — oo with a — oo. This simple example clearly shows that
sin ¢ is an unbounded function in a complex domain. As a very familiar example of
a bounded entire functions, we take

f(z) =cosz® + sinz? =1,

which is defined in an entire complex plane.
As a matter of course, in Sect. 6.6 a complex angle ¢ should be determined
experimentally from (6.109).

6.7 Waveguide Applications

There are many optical devices based upon light propagation. Among them,
waveguide devices utilize the total reflection. We explain their operation principle.

Suppose that we have a thin plate (usually said to be a slab) comprising a
dielectric medium that infinitely spreads two-dimensionally and that the plate is
sandwiched with another dielectric (or maybe air or vacuum) or metal. In this
situation, electromagnetic waves are confined within the slab. Moreover, only under
a restricted condition those waves are allowed to propagate in parallel to the slab
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plane. Such electromagnetic waves are usually called propagation modes or simply
“modes.” An optical device thus designed is called a waveguide. These modes are
characterized by repeated total reflection during the propagation. Another mode is
an evanescent mode. Because of the total reflection, the energy transport is not
allowed to take place vertically to the interface of two dielectrics and the evanescent
mode is thought to be propagated very close to the interface.

6.7.1 TE and TM Waves in a Waveguide

In a waveguide configuration, propagating waves are classified into TE and TM
modes. Quality of materials that constitute a waveguide largely governs the prop-
agation modes within the waveguide.

Figure 6.12 depicts a cross section of a slab waveguide. We assume that the
electromagnetic wave is propagated toward the positive direction of the z-axis and
that a waveguide infinitely spreads toward the z- and x-axis. Suppose that the said
waveguide is spatially confined toward the y-axis. Let the thickness of the
waveguide be d. From a point of view of material that shapes a waveguide,
waveguides are classified into two types. (i) Electromagnetic waves are completely
confined within the waveguide layer. This case typically happens when a dielectric
forming the waveguide is sandwiched between a couple of metal layers
(Fig. 6.12a). This is because the electromagnetic wave is not allowed to exist or
propagate inside the metal.

(ii) Electromagnetic waves are not completely confined within the waveguide.
This case happens when the dielectric of the waveguide is sandwiched by a couple
of other dielectrics. We distinguish this case as the fotal internal reflection from the
above case (i). We further describe it in Sect. 6.8.2. For the total internal reflection
to take place, the refractive index of the waveguide must be higher than those of
other dielectrics (Fig. 6.12b). The dielectric of the waveguide is called core layer
and the other dielectric is called clad layer. In this case, electromagnetic waves are
allowed to propagate inside of the clad layer, even though the region is confined
very close to the interface between the clad and core layers. Such electromagnetic

Fig. 6.12 Cross section of a (a) Metal
slab waveguide comprising a
dielectric medium. a A
waveguide is sandwiched Waveguide S
between a couple of metal
layers. b A waveguide is
sandwiched between a couple Metal Dielectric (clad layer)
of layers consisting of another
dielectric called clad layer.

The sandwiched layer is z 5
called core layer ® ®

()  Dielectric (clad layer)

Waveguide
(core layer)
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waves are said to be an evanescent wave. According to these two cases (i) and (ii),
we have different conditions under which the allowed modes can exist.

Now, let us return to Maxwell’s equations. We have introduced the equations of
wave motion (5.35) and (5.36) from Maxwell’s equations (5.28) and (5.29) along
with (5.7) and (5.10). One of their simplest solutions is a plane wave described by
(5.53). The plane wave is characterized by that the wave has the same phase on an
infinitely spreading plane perpendicular to the propagation direction (characterized
by a wavevector k). In a waveguide, however, the electromagnetic field is confined
with respect to the direction parallel to the normal to the slab plane (i.e., the
direction of the y-axis in Fig. 6.12). Consequently, the electromagnetic field can no
longer have the same phase in that direction. Yet, as solutions of equations of wave
motion, we can have a solution that has the same phase with the direction of the x-
axis. Bearing in mind such a situation, let us think of Maxwell’s equations in
relation to the equations of wave motion.

Ignoring components related to partial differentiation with respect to x (i.e., the
component related to 9/0x) and rewriting (5.28) and (5.29) for individual Cartesian
coordinates, we have [3]

OE, OE, 0B

-+ S0, (6.130)
aa_?jL%:o’ (6.131)
_ %’ix 4 % _o, (6.132)
38_’;&_58_?_%:0, (6.133)
a;x _% 0, (6.134)
_ 8;; _ 851 —o. (6.135)

Of the above equations, we collect those pertinent to E, and differentiate (6.131),
(6.132), and (6.133) with respect to z, y, and ¢, respectively, to get

O*E, O°B,
= = 6.136
072 + 070t ’ ( )
’F, ’B
OE OB _ (6.137)

a2 dyor
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0°H, B 0’H, B 0D,
Ordy 0tdz O

=0. (6.138)

Multiplying (6.138) by i and further adding (6.136) and (6.137) to it and using
(5.7), we get
O’E,  O’E, OE,

o a2 Mar

(6.139)

This is a two-dimensional equation of wave motion. In a similar manner, from
(6.130), (6.134), and (6.135), we have for the magnetic field

OH,  O°H., 862Hx
o oz Man

(6.140)

Equations (6.139) and (6.140) are two-dimensional wave equations with respect
to the y- and z-coordinates. With the direction of the x-axis, a propagating wave has
the same phase. Suppose that we have plane wave solutions for them as in the case
of (5.58) and (5.59). Then, we have

E= Eoei<k'x7wt) _ Eoei(kn-xfwt),

H— Hoei<k'x7wt) _ Hoei(kn-xfwt). (6141)

Note that a plane wave expressed by (5.58) and (5.59) is propagated uniformly
in a dielectric medium. In a waveguide, on the other hand, the electromagnetic
waves undergo repeated (total) reflections from the two boundaries positioned
either side of the waveguide, while being propagated.

In a three-dimensional version, the wavenumber vector has three components k,,
ky, and k, as expressed in (5.48). In (6.141), in turn, k has y and z components such
that

2
K=k =k +k. (6.142)
Equations (6.139) and (6.140) can be rewritten as

O*E, O*E, O*E, O*H, O*H, O*H,

an) oy Mamn amr e’ Mo

Accordingly, we have four wavenumber vector components
ky = %|ky| and k, = +|k].

Figure 6.13 indicates this situation where an electromagnetic wave can be
propagated within a slab waveguide in either one direction out of four choices of
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k|

!
1
— k| v
!
1
!

Fig. 6.13 Four possible propagation directions k of an electromagnetic wave in a slab waveguide

k. In this section, we assume that the electromagnetic wave is propagated toward
the positive direction of the z-axis, and so we define k, as positive. On the other
hand, k, can be either positive or negative. Thus, we get

k,=ksin0 and k, = £k cos0. (6.143)

Figure 6.14 shows the geometries of the electromagnetic waves within the slab
waveguide. The slab plane is parallel to the zx-plane. Let the positions of the two
interfaces of the slab waveguide be

y=0 and y=d. (6.144)

That is, we assume that the thickness of the waveguide is d.

Since (6.139) describes a wave equation for only one component E,, (6.139) is
suited for representing a TE wave. In (6.140), in turn, a wave equation is given only
for H,, and hence, it is suited for representing a TM wave. With the TE wave, the
electric field oscillates parallel to the slab plane and vertical to the propagation
direction. With the TM wave, in turn, the magnetic field oscillates parallel to the
slab plane and vertical to the propagation direction. In a general case, electro-
magnetic waves in a slab waveguide are formed by superposition of TE and TM
waves. Notice that Fig. 6.14 is applicable to both TE and TM waves.

Fig. 6.14 Geometries and
propagation of the
electromagnetic waves in a
slab waveguide

6 i 6
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Let us further proceed with the waveguide analysis. The electric field E within
the waveguide is described by superposition of the incident and reflected waves.
Using the first equation of (6.141) and (6.143), we have

E(z,y) —eE. ei(kz sin 0+ ky cos 0—wt) + E;E_ei(kz sin 0—ky cos 9%0[)7 (6 145)

where £ (E_) and &, (s’e) represent an amplitude and unit polarization vector of
the incident (reflected) waves, respectively. The vector & (or &) is defined in (5.67).

Equation (6.145) is common to both the cases of TE and TM waves. From now,
we consider the TE mode case. Suppose that the slab waveguide is sandwiched with
a couple of metal sheet of high conductance. Since the electric field must be absent
inside the metal, the electric field at the interface must be zero owing to the
continuity condition of a tangential component of the electric field. Thus, we

require the following condition should be met with (6.145):

t-E(z,0)=0=t¢- 85E+ei(kz sinf—ar) 44, SICE,ei(kZ sin 0—awt)

o (6.146)
— (t . SeE+ +t- SIeE,)el(kZ sin 0—wr)
Therefore, since ek sinf=o1) pever vanishes, we have
t-gEq +1-gE =0, (6.147)

where £ is a tangential unit vector at the interface.
Since E is polarized along the x-axis, setting & = &, = e; and taking f as e;, we
get
E + + E, - O

This means that the reflection coefficient of the electric field is —1. Denoting
E. =—-E_=E, (>0), we have

E = e,E, |:ei(kz sin 0+ ky cos 0—or) _ (ke sin 0—ky cos 97wt):|
— e,E, [ (eiky cosO _ o—iky cos()) eilke sin (Hm)] (6.148)
= ¢, 2iE, sin(ky cos 0) e/ sinf=e1)
Requiring the electric field to vanish at another interface of y = d, we have
E(z,d) = 0 = e, 2iE, sin(kd cos 0) e/ sin0=o1),
Note that in terms of the boundary conditions we are thinking of Dirichlet
conditions (see Sects. 1.3 and 8.3). In this case, we have nodes for the electric field

at the interface between metal and a dielectric. For this condition to be satisfied, we
must have
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kd cos@ =mn (m=1,2,---). (6.149)
From (6.149), we have a following condition for m:
m<kd/m. (6.150)

Meanwhile, we have
k = nky, (6.151)

where n is a refractive index of a dielectric that shapes the slab waveguide; the
quantity kq is a wavenumber of the electromagnetic wave in vacuum. The index n is
given by

n=c/v, (6.152)

where ¢ and v are light velocity in vacuum and the dielectric media, respectively.
Here, v is meant as a velocity in an infinitely spreading dielectric. Thus, 0 is allowed
to take several (or more) numbers depending upon k, d, and m.

Since in the z-direction no specific boundary conditions are imposed, we have
propagating modes in that direction characterized by a propagation constant (vide
infra). Looking at (6.148), we notice that k sin 6 plays a role of a wavenumber in a
free space. For this reason, a quantity f defined as

f =k sin@ = nkysin 0 (6.153)

is said to be a propagation constant. From (6.149) and (6.153), we get

. I 1/2
ﬂz(kz— d2> : (6.154)

Thus, the allowed TE waves indexed by m are called TE modes and represented
as TE,,. The phase velocity v, is given by

v, = 0/p. (6.155)

Meanwhile, the group velocity v, is given by

Cdo (dp\7!
ve=g5= (@) : (6.156)

Using (6.154) and noting that k> = w?/v?, we get

ve =V B/w. (6.157)
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Thus, we have
Ve = V7. (6.158)

Note that in (1.22) of Sect. 1.1 we saw a relationship similar to (6.158).

The characteristics of TM waves can be analyzed in a similar manner by
examining the magnetic field H,. In that case, the reflection coefficient of the
magnetic field is +1 and we have antinodes for the magnetic field at the interface.
Concomitantly, we adopt Neumann conditions as the boundary conditions (see
Sects. 1.3 and 8.3). Regardless of the difference in the boundary conditions,
however, discussion including (6.149) to (6.158) applies to the analysis of TM
waves. Once H, is determined, E, and E; can be determined as well from (6.134)
and (6.135).

6.7.2 Total Internal Reflection and Evanescent Waves

If a slab waveguide shaped by a dielectric is sandwiched by a couple of another
dielectric (Fig. 6.12b), the situation differs from a metal waveguide (Fig. 6.12a) we
encountered in Sect. 6.8.1. Suppose in Fig. 6.12b that the former dielectric D1 of a
refractive index n; is sandwiched by the latter dielectric D2 of a refractive index n,.
Suppose that an electromagnetic wave is being propagated from D1 toward D2.
Then, we must have

so that the total internal reflection can take place at the interface of D1 and D2. In
this case, the dielectrics D1 and D2 act as a core layer and a clad layer, respectively.

The biggest difference between the present waveguide and the previous one is
that unlike the previous case, the total internal reflection occurs in the present case.
Concomitantly, an evanescent wave is present in the clad layer very close to the
interface.

First, let us estimate the conditions that are satisfied so that an electromagnetic
wave can be propagated within a waveguide. Figure 6.15 depicts a cross section of
the waveguide where the light is propagated in the direction of k. In Fig. 6.15,
suppose that we have a normal N to the plane of paper at P. Then, N and a straight
line XY shape a plane NXY. Also, suppose that a dielectric fills a semi-infinite
space situated below NXY. Further, suppose that there is another virtual plane N'X’
Y’ that is parallel with NXY as shown. Here N’ is parallel to N. The separation of
the two parallel planes is d. We need the virtual plane N'X"Y' just to estimate an
optical path difference (or phase difference, more specifically) between two waves,
i.e., a propagating wave and a reflected wave.
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Fig. 6.15 Cross section of the waveguide where the light is propagated in the direction of k. A
dielectric fills a semi-infinite space situated below NXY. We suppose another virtual plane N'X"Y’
that is parallel with NXY. We need the plane N'X'Y’ to estimate an optical path difference (or
phase difference)

Let n be a unit vector in the direction of k; i.e.,
n=k/lk| =k/k. (6.160)

Then, the electromagnetic wave is described as
E = Ege'**=01) = gyeitknx—on) (6.161)

Suppose we take a coordinate system such that
X =rn+su-+tv, (6.162)

where u and v represent unit vectors in the direction perpendicular to n. Then,
(6.161) can be expressed by

E = Ege'—), (6.163)

Suppose that the wave is propagated starting from a point A to P and reflected at
P. Then, the wave is further propagated to B and reflected again to reach Q. The
wave front is originally at AB and finally at PQ. Thus, the Z-shaped optical path
length APBQ is equal to a separation between A'B’ and PQ. Notice that the sep-
aration between A'B’ and P'Q’ is taken so that it is equal to that between AB and
PQ. The geometry of Fig. 6.15 implies that two waves starting from AB and A'B' at
once reach PQ again at once.

We find the separation between AB and A'B’ is

2d cos 0.

Let us tentatively call these waves Wave-AB and Wave-A'B’ and describe their
electric fields as Eap and E g/, respectively. Then, we denote
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Eap = Ege®=1, (6.164)
Eyp = Eoei[k(1'+2d cos())fwt], (6165)

where k is a wavenumber in the dielectric. Note that since E y;p gets behinds Eap, a
plus sign appears in the first term of the exponent. Therefore, the phase difference
between the two waves is

2kd cos 0. (6.166)

Now, let us come back to the actual geometry of the waveguide. That is, the
core layer of thickness d is sandwiched by a couple of clad layers (Fig. 6.12b). In
this situation, the wave Eap experiences the total internal reflection two times,
which we ignored in the above discussion of the metal waveguide. Since the total
internal reflection causes a complex phase shift, we have to take account of this
effect. The phase shift was defined as o of (6.114) for a TE mode and f for a TM
mode. Notice that in Fig. 6.15 the electric field oscillates perpendicularly to the
plane of paper with the TE mode, whereas it oscillates in parallel with the plane
of paper with the TM mode. For both the cases, the electric field oscillates
perpendicularly to n. Consequently, the phase shift due to these reflections has to
be added to (6.166). Thus, for the phase commensuration to be obtained, the
following condition must be satisfied:

2kd cos 0 +26 = 2mm (m=0,1,2,---), (6.167)

where J is either dtg or dpv defined below according to the case of the TE wave
and TM wave, respectively. For a practical purpose, (6.167) is dealt with by a
numerical calculation, e.g., to design an optical waveguide.

Unlike (6.149), what is the most important with (6.167) is that the condition
m = 0 is permitted because of d <O (see just below).

For convenience and according to the custom, we adopt a phase shift notation
other than that defined in (6.114). With the TE mode, the phase is retained upon
reflection at the critical angle, and so we identify o with an additional component
Ote. In the TM case, on the other hand, the phase is reversed upon reflection at the
critical angle (i.e., a 7 shift occurs). Since this 7 shift has been incorporated into f3,
it suffices to consider only an additional component dty. That is, we have

org=o and om=pf -7 (6.168)

We rewrite (6.110) as

—ic
RE — ot — gioe = %€ _ 2ic .4
E aeio (6.169)

5TE =20 (G > 0),
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where we have
ae'” = cos 0+ iVsin? 0 — n2. (6.170)
Therefore,

0 Vsin® 0 — n?
tang = — tan o = Y T (6.171)
2 cos 0

Meanwhile, rewriting (6.112) we have

o _e72t‘c

befir .
— i(—2t+m) 6.172
< ), (6.172)

where
be' = n*cos 0 +iV'sin? O — n2. (6.173)

Note that the minus sign with the second last equality in (6.172) is due to the
phase reversal upon reflection. From (6.172), we may put

f=-2t+m.
Comparing this with the second equation of (6.168), we get
5TM =21 (‘C > O) (6174)

Consequently, we get

0 Vsin? 0 — n2
tant = — tan -4 — ysm v . (6.175)
2 n?cos 0

Finally, the additional phase change d1g and dry upon the total reflection is
given by [4]

| Vsin? 0 — n?

cos 0

| Vsin? 0 — n?

and Oy = —2 tan~
™ nZcos 0

Ot = —2 tan~ (6176)

We emphasize that in (6.176) both drg and dy are negative quantities. This
phase shift has to be included in (6.167) as a negative quantity 9.

At a first glance, (6.176) seems to differ largely from (6.120) and (6.125).
Nevertheless, noting that a trigonometric formula

2 tanx
tan2x = —————
1 — tan%x
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and remembering that dy in (6.168) includes 7 arising from the phase reversal, we
find that both the relations are virtually identical.

Evanescent waves are drawing a large attention in the field of basic physics and
applied device physics. If the total internal reflection is absent, ¢ is real. But, under
the total internal reflection, ¢ is pure imaginary. The electric field of the evanescent
wave is described as

Et _ Estei(k,z sin ¢ + k;y cos p—wr) — E8t6i<k'z sin ¢ + k,;yib—ot)

_ Estei(k,z sin qﬁf(ot)efk,yb. (6 177)

In (6.177), a unit polarization vector & is either perpendicular to the plane of

paper of Fig. 6.15 (the TE case) or in parallel to it (the TM case). Notice that the
coordinate system is different from that of (6.104). The quantity k,sin¢ is the

propagation constant. Let v},s) and v,(,e) be a phase velocity of the electromagnetic
wave in the slab waveguide (i.e., core layer) and evanescent wave in the clad layer,
respectively. Then, in virtue of Snell’s law we have

(s) _ Vi (0] - (0] _ (e _ V2

<% = = = = =—< 6.178
S T Ging T ksin0 k; sin ¢ »" 7 Sin ¢ "2 ( )
where v and v, are light velocity in a free space filled by the dielectric D1 and D2,
respectively. For this, we used a relation described as

= vik = ok, (6.179)

We also used Snell’s law with the third equality. Notice that sin¢ > 1 in the
evanescent region and that k, sin ¢ is a propagation constant in the clad layer. Also,
note that vﬁ) is equal to v;e) and that these phase velocities are in between the two
velocities of the free space. Thus, the evanescent waves must be present, accom-
panying propagating waves that undergo the total internal reflections in a slab
waveguide.

As remarked in (6.105), the electric field of evanescent waves decays expo-
nentially with increasing z. This implies that the evanescent waves exist only in the
clad layer very close to an interface of core and clad layers.

6.8 Stationary Waves

So far, we have been dealing with propagating waves either in a free space or in a
waveguide. If the dielectric shaping the waveguide is confined in another direction,
the propagating waves show specific properties. Examples include optical fibers.
In this section, we consider a situation where the electromagnetic wave is
propagating in a dielectric medium and reflected by a “wall” formed by metal or
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another dielectric. In such a situation, the original wave (i.e., a forward wave)
causes interference with the backward wave and a stationary wave is formed as a
consequence of the interference.

To approach this issue, we deal with superposition of two waves that have
different phases and different amplitudes. To generalize the problem, let ; and v,
be two cosine functions described as

Y, =a; cosb; and Y, =a, cosb;. (6.180)
Their addition is expressed as
¥ =y, +¢, =ajcosb; +aycosb;. (6.181)

Here, we wish to unify (6.181) as a single cosine (or sine) function. To this end,
we modify a description of 1/, such that

W, = aycoslby + (by — by))]
= ay[cos by cos(b, — by) — sinby sin(b, — by)] (6.182)
= az[cos by cos(by — by) + sin by sin(by — by)].

Then, the addition is described by

=y, +
= [a1 +az cos(by — by)] cos by + ay sin(b; — by) sinb;.
Putting R such that
R = \/|a) +ay cos(by — by)]* + a3 sin®(b; — by)
\/ i (6.184)
= a%+a%+2a1a2 COS(b1 - bz),
we get
V¥ = R cos(b; — 0), (6.185)
where 0 is expressed by
in(by — b
tan 0 = —22 sin(by = b) (6.186)

ar+ap COS(b] — bz) '

Figure 6.16 represents a geometrical diagram in relation to the superposition of
two waves having different amplitudes (a; and a,) and different phases (b, and b,) [5].
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Fig. 6.16 Geometrical
diagram in relation to the o .
superposition of two waves a, cos(b; — bZ)x’f az sin(by — by)
having different amplitudes
(ay and a,) and different b b
phases (b; and b,) A1 72
R .
a,
b, b, X

To apply (6.185) to the superposition of two electromagnetic waves that are
propagating forward and backward to collide head-on with each other, we change
the variables such that

by =kx— ot and by = —kx— ot, (6.187)

where the former equation represents a forward wave, whereas the latter a backward
wave. Then, we have

by — by = 2kx. (6.188)

Equation (6.185) is rewritten as

V(x,1) = R cos(kx — wt — 0), (6.189)
with
R = \/a}+d3 + 2a,a; cos 2kx (6.190)
and
ap sin 2kx
tan@zm. (6.191)

Equation (6.189) looks simple, but since both R and 6 vary as a function of x, the
situation is somewhat complicated unlike a simple sinusoidal wave. Nonetheless,
when x takes a special value, (6.189) is expressed by a simple function form. For
example, at t = 0,

W(x,0) = (a; + az) cos kx.



214 6 Reflection and Transmission of Electromagnetic Waves ...

This corresponds to (i) of Fig. 6.17. If ¢t =T/2 (where T is a period, i.e.,
T =2n/w), we have

V(x,T/2) = —(ay + az) cos kx.

This corresponds to (iii) of Fig. 6.17. But, the waves described by (ii) or (iv) do
not have a simple function form.
We characterize Fig. 6.17. If we have

2kx=nn or x=ni/4 (6.192)

with / being a wavelength, then 6 = 0 or w, and so 6 can be eliminated. This
situation occurs with every quarter period of a wavelength. Let us put r = 0 and
examine how the superposed wave looks like. For instance, putting x = 0, x = 1/4,
and x = 4/2 we have

¥(0,0) = |ai +az|, ¥(2/4,0) = ¥(34/4,0) = 0, ¥(4/2,0) = —|a1 +az|, (6.193)

respectively. Notice that in Fig. 6.17 we took aj,a; > 0. At another instant
t = T/4, we have similarly

VOT/4) =0, YG/AT/) = —aal YT =0, o
V(/4,T/4) = —|a - as]. |

Thus, the waves that vary with time are characterized by two dram-shaped
envelopes that have extremals |a; + az| and |a; — ap| or those —l|a; +az| and
—|a; — az|. An important implication of Fig. 6.17 is that no node is present in the
superposed wave. In other words, there is no instant #y when Y(x, ) = 0 for any
x. From the aspect of energy transport of electromagnetic waves, if |a;| > |a;]
(where a; and a, represent an amplitude of the forward and backward waves,
respectively), the net energy flow takes place in the traveling direction of the
forward wave. If, on the other hand, |a;| > |a,|, the net energy flow takes place in
the traveling direction of the backward wave. In this respect, think of Poynting
vectors.

Fig. 6.17 Superposition of 2

two sinusoidal waves. In 15 I
(6.189) and (6.190), we put (@) . (i)
ar =1, @ = 0.5, with ‘ @ - :

(iii) r = T/2. (iv) t = 3T /4. . \/\/7\
W(x,1) is plotted as a function s \' \/

of phase kx

0 Phase kx (rad) 6.3
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In case |aj| = |az|, the situation is particularly simple. No net energy flow takes
place in this case. Correspondingly, we observe nodes. Such waves are called
stationary waves. Let us consider this simple situation for an electromagnetic wave
that is incident perpendicularly to the interface between two dielectrics (one of them
may be a metal).

Returning back to (5.58) and (5.66), we describe two electromagnetic waves that
are propagating in the positive and negative directions of the z-axis such that

E| = Ejee™ ™ and E, = Eee ), (6.195)

where & is a unit polarization vector arbitrarily fixed so that it can be parallel to the
interface, i.e., wall (i.e., perpendicular to the z-axis). The situation is depicted in
Fig. 6.18. Notice that in Fig. 6.18 E| represents the forward wave (i.e., incident
wave) and E, the backward wave (i.e., wave reflected at the interface). Thus, a
superposed wave is described as

E=E +E,. (6.196)

Taking account of the reflection of an electromagnetic wave perpendicularly
incident on a wall, let us consider following two cases:

(1) Syn-phase:

The phase of the electric field is retained upon reflection. We assume that
E, = E; ( > 0). Then, we have

E =E ¢ |:ei<szwt) +ei(*kz7wt)} — Eig.e it eikz+e,ikz
e e ) (6.197)
= 2E g™ coskz.

In (6.197), we put z = 0 at the interface for convenience. Taking a real part of
(6.197), we have

E = 2E &, cos wt cos kz. (6.198)

Fig. 6.18 Superposition of
electric fields of forward (or
incident) wave E; and
backward (or reflected) wave
E,

E1 — Elseei(kz—(ot)

\4

EZ — EZ seei(—kz—wt)
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Note that in (6.198) variables z and ¢ have been separated. This implies that we
have a stationary wave. For this case to be realized, the characteristic impedance of
the dielectric of the incident wave side should be smaller enough than that of the
other side [see (6.51) and (6.59)]. In other words, the dielectric constant of the
incident side should be large enough. We have nodes at positions that satisfy

1
_kZ:gﬂm (m=0,1,2,---) or _Zzzmgz. (6.199)

Note that we are thinking of the stationary wave in the region of z<O.
Equation (6.199) indicates that nodes are formed at a quarter wavelength from the
interface and every half wavelength from it. The node means the position where no
electric field is present.

Meanwhile, antinodes are observed at positions

—kz=mn (m=0,1,2,---) or —z= +§i.

Thus, the nodes and antinodes alternate with every quarter wavelength.
(i) Anti-phase:
The phase of the electric field is reversed. We assume that E; = —E, ( > 0).

Then, we have

E = E;z. ei(kz—wt) _ ei(—kz—wt)} _ Elseefiwt (eikz _ e—ikz)

' (6.200)
= 2iE g, " sin kz.
Taking a real part of (6.197), we have
E = 2E ¢ sinwt sin kz. (6.201)

In (6.201), variables z and ¢ have been separated as well. For this case to be
realized, the characteristic impedance of the dielectric of the incident wave side
should be larger enough than that of the other side. In other words, the dielectric
constant of the incident side should be small enough. Practically, this situation can
easily be attained choosing a metal of high reflectance for the wall material. We
have nodes at positions that satisfy

—kz=mn (m=0,1,2,---) or —zzgﬂb. (6.202)

The nodes are formed at the interface and every half wavelength from it. As in
the case of the syn-phase, the antinodes take place with the positions shifted by a
quarter wavelength relative to the nodes.
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If there is another interface at say —z = L ( > 0), the wave goes back and forth
many times. If an absolute value of the reflection coefficient at the interface is high
enough (i.e., close to the unity), attenuation of the wave is ignorable. For both the
syn-phase and anti-phase cases, we must have

kL=mn (m=1,2,--) or L=—21 (6.203)

|3

so that stationary waves can stand stable. For a practical purpose, an optical device
having such an interface is said to be a resonator. Various geometries and con-
stitutions of the resonator are proposed in combination with various dielectrics
including semiconductors. Related discussion can be seen in Chap. 7.
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Chapter 7
Light Quanta: Radiation and Absorption

So far we discussed propagation of light and its reflection and transmission
(or refraction) at an interface of dielectric media. We described characteristics of
light from the point of view of an electromagnetic wave. In this chapter, we describe
properties of light in relation to quantum mechanics. To this end, we start with
Planck’s law of radiation that successfully reproduced experimental results related to
a blackbody radiation. Before this law had been established, Rayleigh—Jeans law
failed to explain the experimental results at a high frequency region of radiation
(the ultraviolet catastrophe). The Planck’s law of radiation led to the discovery of
light quanta. Einstein interpreted Planck’s law of radiation on the basis of a model of
two-level atoms. This model includes so-called Einstein A and B coefficients that are
important in optics applications, especially lasers. We derive these coefficients from
a classical point of view based on a dipole oscillation. We also consider a close
relationship between electromagnetic waves confined in a cavity and a motion of a
harmonic oscillator.

7.1 Blackbody Radiation

Historically, the relevant theory was first propounded by Max Planck and then
Albert Einstein as briefly discussed in Chap. 1. The theory was developed on the
basis of the experiments called cavity radiation or blackbody radiation. Here,
however, we wish to derive Planck’s law of radiation on the assumption of the
existence of quantum harmonic oscillators.

As discussed in Chap. 2, the ground state of a quantum harmonic oscillator has
an energy 3
state. Let Ny be the number of oscillators (i.e., light quanta) present in the ground
state. Then, according to Boltzmann distribution law, the number of oscillators of
the first excited state N is

ho. Therefore, we measure energies of the oscillator in reference to that
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Ny = Noe"/kaT (7.1)

where kg is Boltzmann constant and T is absolute temperature. Let N; be the
number of oscillators of the jth excited state. Then we have

Nj = Noehe/kT (7.2)
Let N be the total number of oscillators in the system. Then, we get
N = Ny + Noge "@/%T ... 4 Nye mo/ksT ...
_ N —jhe ks T (7.3)
=Ny FZO e .
Let E be a total energy of the oscillator system in reference to the ground state.
That is, we put a ground state energy at zero. Then we have

E = 0- Ny + Nohwe "/%T 4 ... 4 Nojlhiwe kT 4.

o~ (7.4)
_ NO Z]hwe ]hw/kBT‘
j=0
Therefore, an average energy of oscillators E is
. E 33 -efjh(u/kBT
E=—= h(/)—Z]O_OO] 77710)//( T (75)
N Z}.ZO e/ B
Putting x = e /%7 [1], we have
_ 2 ogx!
£ oo 20 (7.6)

Since x< 1, we have

jiojxjjiojle . Li (f@:y)]x Lic (1 ixﬂx i jx)f (1.7)

Therefore, we get
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E_ hiowx _ hweo/kT _ hw ' (7.9)
1—x 1— e—hw/kBT ehw/kBT -1
The function
1
FolbT 1" (7.10)

is a form of Bose—FEinstein distribution functions; more specifically, it is called the
Bose-Einstein distribution function for photons today.

If (hw/kgT) < 1, &"/%T ~ 1 4 (hw/kpT). Therefore, we have
E~ kpT. (7.11)

Thus, the relation (7.9) asymptotically agrees with a classical theory. In other
words, according to the classical theory related to law of equipartition of energy,
energy of kg7 /2 is distributed to each of two degrees of freedom of motion, i.e., a
kinetic energy and a potential energy of a harmonic oscillator.

7.2 Planck’s Law of Radiation and Mode Density
of Electromagnetic Waves

Researcher at the time tried to seek the relationship between the energy density
inside the cavity and (angular) frequency of radiation. To reach the relationship, let
us introduce a concept of mode density of electromagnetic waves related to the
blackbody radiation. We define the mode density D (w) as the number of modes of
electromagnetic waves per unit volume per unit angular frequency. We refer to the
electromagnetic waves having allowed specific angular frequencies and polarization
as modes. These modes must be described as linearly independent functions.

Determination of the mode density is related to boundary conditions (BCs)
imposed on a physical system. We already dealt with this problem in Chaps. 2, 3,
and 6. These BCs often appear when we find solutions of differential equations. Let
us consider a following wave equation:

Py 10%
—==—. 7.12
ox2 V2 O (7.12)
According to the method of separation of variables, we put
U(x, 1) =X(x)T(¢). (7.13)

Substituting (7.13) for (7.12) and dividing both sides by X(x)T(¢), we have
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1d’X  11d°T )
Xae —wrdae = % (7.14)

where k is an undetermined (possibly complex) constant. For the x component, we
get

d’x
e + kX =0. (7.15)

Remember that k is supposed to be a complex number for the moment (see
Example 1.1). Modifying Example 1.1 a little bit such that (7.15) is posed in a
domain [0, L] and imposing the Dirichlet conditions such that

X(0) =X(L) =0, (7.16)
we find a solution of
X(x) = a sin kx, (7.17)
where a is a constant. The constant k& can be determined to satisfy the BCs; i.e.,
kL=mnork=mn/L (m=1,2,---). (7.18)
Thus, we get real numbers for k. Then, we have a solution
T(¢t) = b sin kvt = b sin wt. (7.19)
The overall solution is then
W(x,1) = c sin kx sin ot. (7.20)

This solution has already appeared in Chap. 6 as a stationary solution. The
readers are encouraged to derive these results.
In a three-dimensional case, we have a wave equation

Py Py Py 1%

In this case, we also assume

Y(x, 1) = Xx)Y(»)Z(2)T(z). (7.22)
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Similarly, we get

1  1dY  1d°Z  11d°T >

S T I 7.23
de2+de2+de2 v2 T df? ( )
Putting
1d°X 1d%y 1d°z
- C 2,77 = _ 2777 = 7/(27 (7.24)
X dx? Y dx? V7 dx? ‘
we have
2 2, 12 2
k; +ky +k =k (7.25)

Then, we get a stationary wave solution as in the one-dimensional case such that
V(x,1) = ¢ sinkyx sinkyy sink,z sin wt. (7.26)

The BCs to be satisfied with X(x), Y(y), and Z(z) are
kL = mym, kyL = mym, k,L = m;n (m,(,my,mZ =1,2,-- ) (7.27)

Returning to the main issue, let us deal with the mode density. Think of a cube of
each side of L that is placed as shown in Fig. 7.1. Calculating k, we have

T w
k:\/kf+ky2+kfzz\/m§+m§+m§:?, (7.28)

where we assumed that the inside of a cavity is vacuum and, hence, the propagation
velocity of light is c¢. Rewriting (7.28), we have

Lw
7/ 2 2 2 =——. 7.29
mx+my+mz . ( )

Fig. 7.1 Cube of each side of z
L. We use this simple model
to estimate mode density L
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The number m,, m,, and m, represents allowable modes in the cavity; the set of
(my, my, m;) specifies individual modes. Note that m,,m,, and m, are all positive
integers. If for instance —m, were allowed, this would produce
sin (—k,x) = — sink,x; but this function is linearly dependent on sin k.x. Then, a
mode indexed by —m, should not be regarded as an independent mode. Given a o,
a set (my,my,m;) that satisfies (7.29) corresponds to each mode. Therefore, the
number of modes that satisfies a following expression

L
Jm2 2 < =2 (7.30)
- e

represents those corresponding to angular frequencies equal to or less than given w.

Each mode has one-to-one correspondence with the lattice indexed by
(my, my,m;). Accordingly, if m,,my,m,>> 1, the number of allowed modes
approximately equals one-eighth of a volume of a sphere having a radius of % Let
Ny, be the number of modes whose angular frequencies equal to or less than .
Recalling that there are two independent modes having the same index (rm,, my, m.)
but mutually orthogonal polarities, we have

4 (Lo\’ 1 Lo’
N=—|—) 5 2=7—=. 7.31
) (nc) 8 3n%c3 (7:31)

Consequently, the mode density D(w) is expressed as

1 dNL (,02
where D(w) dw represents the number of modes per unit volume whose angular
frequencies range @ and ® + dw.
Now, we introduce a function p(w) as an energy density per unit angular fre-
quency. Then, combining D(w) with (7.9), we get

D ho - ha?® 1
p(w) = D(w) chofksT _ | 23 eho/ksT _ 1

(7.33)

The relation (7.33) is called Planck’s law of radiation. Notice that p(w) has a
dimension [Jm~s].

To solve (7.15) under the Dirichlet conditions (7.16) is pertinent to analyzing an
electric field within a cavity surrounded by a metal husk, because the electric field
must be absent at an interface between the cavity and metal. The problem, however,
can equivalently be solved using the magnetic field. This is because at the interface
the reflection coefficient of electric field and magnetic field have a reversed sign
(see Chap. 6). Thus, given an equation for the magnetic field, we may use the
Neumann condition. This condition requires differential coefficients to vanish at the
boundary (i.e., the interface between the cavity and metal). In a similar manner to
the above, we get
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V(x,1) = c coskx cos wt. (7.34)

By imposing BCs, again we have (7.18) that leads to the same result as the
above.

We may also impose the periodic BCs. This type of equation has already been
treated in Chap. 3. In that case, we have a solution of

e™ and e

The BCs demand that ¢ = 1 = e*~. That is,
kL =2mm (m=0,£1,£2,---). (7.35)

Notice that e and e~*** are linearly independent and, hence, minus sign for m is
permitted. Correspondingly, we have

4n (Lo \* Lw?
Ne=—|—] 2=-——=. 7.36
LT3 <2nc> 3n2c3 (7.36)

In other words, here we have to consider a whole volume of a sphere of a half
radius of the previous case. Thus, we reach the same conclusion as before.

If the average energy of an oscillator were described by (7.11), we would obtain
a following description of p(w) such that

?

p(w) = D(w)kgT = WkBT. (7.37)

This relation is well-known as Rayleigh—Jeans law, but (7.37) disagreed with

experimental results in that according to Rayleigh-Jeans law, p(w) diverges toward

infinity as o goes to infinity. The discrepancy between the theory and experimental

results was referred to as “ultraviolet catastrophe.” Planck’s law of radiation
described by (7.33), on the other hand, reproduces the experimental results well.

7.3 Two-Level Atoms

Although Planck established Planck’s law of radiation, researchers at that time
hesitated in professing the existence of light quanta. It was Einstein that derived
Planck’s law by assuming two-level atoms in which light quanta play a role.

His assumption comprises the following three postulates: (i) The physical system
to be addressed comprises so-called hypothetical “two-level” atoms that have only
two energy levels. If two-level atoms absorb a light quantum, a ground-state
electron is excited up to a higher-level (i.e., the stimulated absorption). (ii) The
higher-level electron may spontaneously lose its energy and return back to the
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ground state (the spontaneous emission). (iii) The higher-level electron may also
lose its energy and return back to the ground state. Unlike (ii), however, the excited
electron has to be stimulated by being irradiated by light quanta having an energy
corresponding to the energy difference between the ground state and excited state
(the stimulated emission). Figure 7.2 schematically depicts the optical processes of
the Einstein model.

Under those postulates, Einstein dealt with the problem probabilistically.
Suppose that the ground state and excited state have energies E; and E,. Einstein
assumed that light quanta having an energy equaling E, — E; take part in all the
above three transition processes. He also propounded the idea that the light quanta
have an energy that is proportional to its (angular) frequency. That is, he thought
that the following relation should hold:

ham = E2 — El, (738)

where wy; is an angular frequency of light that takes part in the optical transitions.
For the time being, let us follow Einstein’s postulates.

(i) Stimulated absorption: This process is simply said to be an “absorption.” Let
W, [s7!] be the transition probability that the electron absorbs a light quantum
to be excited to the excited state. W, is described as

Wy = N1Baip (w21), (7.39)

where N; is the number of atoms occupying the ground state; B, is a
proportional constant; p (w;;) is due to (7.33). Note that in (7.39) we used wy;
instead of w in (7.33). The coefficient B, is called Einstein B coefficient; more
specifically one of Einstein B coefficients. Namely, B; is pertinent to the
transition from the ground state to excited state.

(i) Emission processes: The processes include both the spontaneous and stimu-
lated emissions. Let W, [s™!] be the transition probability that the electron
emits a light quantum and returns back to the ground state. W, is described as

We = NoBiop (w21) + NoAy, (7.40)
EZ' NZ
5 !
[ :
S H
I N1Bz1p(w21)  NyBypp(wqq) NyAq,
§ | |
A v
Ei, Ny Stimulated Stimulated Spontaneous

absorption emission emission

Fig. 7.2 Optical processes of Einstein two-level atom model
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where N, is the number of atoms occupying the excited state; Bi, and Ay, are
proportional constants. The coefficient Aj, is called Einstein A coefficient
relevant to the spontaneous emission. The coefficient By, is associated with the
stimulated emission and also called Einstein B coefficient together with B,;.
Here, B is pertinent to the transition from the excited state to ground state.

Now, we have
B> = By (7.41)

The reasoning for this is as follows: The coefficients B, and B, are proportional
to the matrix elements pertinent to the optical transition. Let T be an operator
associated with the transition. Then, a matrix element is described using an inner
product notation of Chap. 1 by

B = (Y| T[y), (7.42)
where Y/, and , are initial and final states of the system in relation to the optical
transition. As a good approximation, we use er for T (dipole approximation), where e
is an elementary charge and r is a position operator (see Chap. 1). If (7.42) represents

the absorption process (i.e., the transition from the ground state to excited state), the
corresponding emission process should be described as a reversed process by

Bia = (Y1|T|2)- (7.43)

Notice that in (7.43) ¥, and ¥, are initial and final states.
Taking complex conjugate of (7.42), we have

By, = (| TT ), (7.44)

where 7T is an operator adjoint to T (see Chap. 1). With an Hermitian operator H,
from Sect. 1.4 we have

Hf = H. (1.119)
Since T is also Hermitian, we have
=1 (7.45)
Thus, we get
B}, = Bi». (7.46)

But, as in the cases of Sects. 4.2 and 4.3, ; and y, can be represented as real
functions. Then, we have
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B}, = By = Bp».

That is, we assume that the matrix B is real symmetric. In the case of two-level
atoms, as a matrix form we get

(0 By
B= (Bn o ) (7.47)

Compare (7.47) with (4.28).
Now, in the thermal equilibrium, we have

We = W,. (7.48)
That is,
N2B1p(w21) + N2Ajp = NiBayp(war), (7.49)
where we used (7.41) for LHS. Assuming Boltzmann distribution law, we get

x_? = exp[—(Ex — Ey) /kyT). (7.50)

Here if moreover we assume (7.38), we get

N
]V? = exp(—hwgl/kBT). (751)

Combing (7.49) and (7.51), we have

exp(—fimay /kgT) = lm (7.52)
Solving (7.52) with respect to p(w;;), we finally get
plom) = 2_2 1 ixfip(;ic‘;)ﬁ?]:n N 2_2 . eXP(hCUzl;kBT) -1 (7:53)
Assuming that
A _ fo, (7.54)
By w23’

we have
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fiw3, 1
23 exp(hwy /kgT) — 1°

p(le) = (755)

This is none other than Planck’s law of radiation.

7.4 Dipole Radiation

In (7.54), we only know the ratio of A1, to B,;. To have a good knowledge of these
Einstein coefficients, we briefly examine a mechanism of the dipole radiation. The
electromagnetic radiation results from an accelerated motion of a dipole.

A dipole moment p(¢) is defined as a function of time # by

(i) = / ¥, 1), (7.56)

where x’ is a position vector in a Cartesian coordinate; an integral is taken over a
whole three-dimensional space; p is a charge density appearing in (5.1). If we
consider a system comprising point charges, integration can immediately be carried
out to yield

pt) = Z%’xi, (7.57)

where ¢; is a charge of each point charge i and x; is a position vector of the point
charge i. From (7.56) and (7.57), we find that p(¢) depends on how we set up the
coordinate system. However, if a total charge of the system is zero, p () does not
depend on the coordinate system. Let p(r) and p’(¢) be a dipole moment viewed
from the frame O and O’, respectively (see Fig. 7.3). Then we have

p(1)= Zm? = Z‘Ii (%0 +x;) = (Z qz-)xo + Zqz'xi = Zl]ixi =p().

(7.58)
Fig. 7.3 Dipole moment o + o —
viewed from the frame O or
o o
i °
° xi e
0’ L qi
xO xl Y
0
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Notice that with the third equality the first term vanishes because the total charge
is zero. The system comprising two point charges that have an opposite charge
(%q) is particularly simple but very important. In that case, we have

p(t) = gx1+(—q)x2 = g(x1 — x2) = gx. (7.59)

Here, we assume that g > 0 according to the custom and, hence, X is a vector
directing from the minus point charge to the plus charge.

Figure 7.4 displays geometry of an oscillating dipole and electromagnetic
radiation from it. Figure 7.4a depicts the dipole. It is placed at the origin of the
coordinate system and assumed to be of an atomic or molecular scale in extension;
we regard a center of the dipole as the origin. Figure 7.4b represents a large-scale
geometry of the dipole and surrounding space of it. For the electromagnetic radi-
ation, an accelerated motion of the dipole is of primary importance. The electro-
magnetic fields produced by p(z) vary as the inverse of r, where r is a macroscopic
distance between the dipole and observation point. Namely, r is much larger
compared to the dipole size.

There are other electromagnetic fields that result from the dipole moment. The
fields result from p(r) and p(z). Strictly speaking, we have to include those quan-
tities that are responsible for the electromagnetic fields associated with the dipole
radiation. Nevertheless, the fields produced by p(¢) and p(z) vary as a function of
the inverse cube and inverse square of r, respectively. Therefore, the surface
integral of the square of the fields associated with p(z) and p(¢) asymptotically
reaches zero with enough large r with respect to a sphere enveloping the dipole.
Regarding p(z), on the other hand, the surface integral of the square of the fields
remains finite even with enough large r. For this reason, we refer to the spatial
region where p(¢) does not vanish as a wave zone.

(b2

Fig. 7.4 Electromagnetic radiation from an accelerated motion of a dipole. a A dipole placed at
the origin of the coordinate system is executing harmonic oscillation along the z-direction around
an equilibrium position. b Electromagnetic radiation from a dipole in a wave zone. & and &, are
unit polarization vectors of the electric field and magnetic field, respectively. &, &y, and n form a
right-handed system



7.4 Dipole Radiation 231

Suppose that a dipole placed at the origin of the coordinate system is executing

harmonic oscillation along the z-direction around an equilibrium position (see
Fig. 7.4). Motion of two charges having plus and minus signs is described by

z4 =z0€3+ae”e; (z9,a > 0), (7.60)

7. = —zpe3 — ac'Ves, (7.61)

where z, and z_ are position vectors of a plus charge and minus charge, respec-

tively; zop and —z¢ are equilibrium positions of each charge; a is an amplitude of the

harmonic oscillation; w is an angular frequency of the oscillation. Then, acceler-
ations of the charges are given by

a, =%, = —aw’ees, (7.62)
a_ =% =an’e™e;. (7.63)
Meanwhile, we have
p(1) =qz4 +(—q)z- =q(z4 —z-) (¢>0). (7.64)
Therefore,
p(t) =qF, —7 ) = —2qaw’e™e;. (7.65)

The quantity p(7), i.e., the second derivative of p(¢) with respect to time pro-
duces the electric field described by [2]

E = —p/4neoc’r = —qaw’e™es /2neoc’r, (7.66)
where r is a distance between the dipole and observation point. In (7.66), we
ignored a term proportional to inverse square and cube of r for the aforementioned
reason.

As described in (7.66), the strength of the radiation electric field in the wave
zone measured at a point away from the oscillating dipole is proportional to a
component of the vector of the acceleration motion of the dipole [i.e., p(¢)]. The
radiation electric field lies in the direction perpendicular to a line connecting the
observation point and the point of the dipole (Fig. 7.4). Let &, be a unit polarization
vector of the electric field in that direction, and let E* be the radiation electric field.
Then, we have

E+ = —qaw’e™ (e; - & )8, /2neoc’r = —qaw?’e e, sin 0/2mecr . (7.67)
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As shown in Sect. 5.3, (& - €3) & in (7.67) “extracts” from e3 a vector compo-
nent parallel to &. Such an operation is said to be a projection of a vector. The
related discussion can be seen in Part III.

It takes a time of r/c for the emitted light from the charge to arrive at the
observation point. Consequently, the acceleration of the charge has to be measured at
the time when the radiation leaves the charge. Let 7 be the instant when the electric
field is measured at the measuring point. Then, it follows that the radiation leaves the
charge at a time of t — r/c. Thus, the electric field relevant to the radiation that can be
observed far enough away from the oscillating charge is described as [2]

qawze""( 9 sin0

E*(x,1) = Ee. (7.68)

2megctr

The radiation electric field must necessarily be accompanied by a magnetic field.
Writing the radiation magnetic field as H* (x, ), we have [3]

H (x.1) 1 qawze"“( ) sin Gn .o — _qawze’w( ) sin 9n .
’ 2
Clg 2megc’r 2ner

qaa)ze”"( ) sin 0

_ .
2ncr ’

(7.69)

where n represents a unit vector in the direction parallel to a line connecting the
observation point and the dipole. The &, is a unit polarization vector of the mag-
netic field as defined by (5.67). From the above, we see that the radiation elec-
tromagnetic waves in the wave zone are transverse waves that show the properties
the same as those of electromagnetic waves in a free space.

Now, let us evaluate a time-averaged energy flux from an oscillating dipole.
Using (6.71), we have

VIR0

— 1 . _ 1 gao’e () sin 0 qawzefiw(’ff) sin 0
S(0)=-ExH =~ ——_ls n
2 2 2megcr 2ner (7.70)
w*sin” 0 '
=———(qa)’n
8n2epc3r? 9 '

If we are thinking of an atom or a molecule in which the dipole consists of an
electron and a positive charge that compensates it, g is replaced with —e (e <0).
Then (7.70) reads as

- *sin? 0 2



7.4 Dipole Radiation 233

Let us relate the above argument to Einstein A and B coefficients. Since we are
dealing with an isolated dipole, we might well suppose that the radiation comes
from the spontaneous emission. Let P be a total power of emission from the
oscillating dipole that gets through a sphere of radius r. Then we have

2n

p:/s(g).ndsz/ddbo/s(e)rzsin(?d@

0

w4 ) 2n n
:W(ea) /d¢/51n30d9

0 0

(7.72)

Changing cos 0 to ¢, the integral [ = fg sin® 0 d0 can be converted into

1

1= / (1—¢%)dr = 4/3. (7.73)

~1
Thus, we have

4
w
= W(ea)z. (774)

A probability of the spontaneous emission is given by N Aj,. Since we are
dealing with a single dipole, N, can be put 1. Accordingly, an expected power of
emission is Ajp ficy;. Replacing o in (7.74) with @, in (7.55) and equating
Ap iy to P, we get

w
Ap =—2 2, 7.75
12 3negc3h (ea) ( )
From (7.54), we also get
n 2
By, =——(ea)”. 7.76
12 380h2< ) (7.76)

In order to relate these results to those of quantum mechanics, we may replace a”

in the above expressions with matrix elements of the position operator r. That is,
representing |1) and |2) as the quantum states of the ground and excited states of a
two-level atom, we define (1|r|2) as the matrix element of the position operator.

Relating |(1]r|2)|* to a2, we get
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0)3 62 7[62
Ap =—2"_|(1|r[2)]* and B12:W|<1|r|2>|2. (7.77)
50

" 3regc3h

From (7.77), we have

2 e? ne?

e . T i
B = —— (1|r2)(1}r|2)"= 1r[2) 2)rT|1) =
2 = 3o (PR (U2) = 2 )2 = 575

(Lr(2)Q2Ir|1), (7.78)

where with the second equality we used (1.116); the last equality comes from that r
is Hermitian. Meanwhile, we have
e’

By =
S

, 7eé? ne?
21} =5 <2|r|1><1]rT’2> = S Arne2). (7.79)

Hence, we recover (7.41).

7.5 Lasers

A concept of the two-level atoms proposed by Einstein is universal and independent
of materials and can be utilized for some particular purposes. Actually, in later years
many researchers tried to validate that concept and verified its validity. After basic
researches of 1950s and 1960s, fundamentals were put into practical use as various
optical devices. Typical examples are masers and lasers, abbreviations for “mi-
crowave amplification by stimulated emission of radiation” and “light amplification
by stimulated emission of radiation.” Of these, lasers are common and particularly
important nowadays. On the basis of universality of the concept, a lot of materials
including semiconductors and dyes are used in gaseous, liquid, and solid states.

Let us consider a rectangular parallelepiped of a laser medium with a length
L and cross-sectional area S (Fig. 7.5). Suppose there are N two-level atoms in the
rectangular parallelepiped such that

N =N+ Ny, (7.80)

t ttdt

1(x) I : 1(x+dx)

0 x x+dx L

Fig. 7.5 Rectangular parallelepiped of a laser medium with a length L and a cross-sectional area
S (not shown). I(x) denotes irradiance at a point of x from the origin
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where N and N, represent the number of atoms occupying the ground and excited
states, respectively. Suppose that a light is propagated from the left of the rectan-
gular parallelepiped and entering it. Then, we expect that three processes occur
simultaneously. One is a stimulated absorption and others are stimulated emission
and spontaneous emission. After these process, an increment dE in photon energy
of the total system (i.e., the rectangular parallelepiped) during df is described by

dE = {N2 [lep (wzl) +A12} - N lep (wzl)}hwzl dr. (781)

In light of (7.39) and (7.40), a dimensionless quantity dE/fiw,; represents a
number of effective events of photons emission that have occurred during dz. Since
in lasers the stimulated emission is dominant, we shall forget about the spontaneous
emission and rewrite (7.81) as

dE = {N; By1p (w21) — N1 Ba1p (w21) Yheoy dt

(7.82)

= By1p (w21) (N2 — Ni) haoyy dt.

Under a thermal equilibrium, we have N, <N; on the basis of Boltzmann dis-

tribution law, and so dE<O0. In this occasion, therefore, the photon energy

decreases. For the light amplification to take place, therefore, we must have a
following condition:

N, > Nj. (783)

This energy distribution is called inverted distribution or population inversion.
Thus, the laser oscillation is a typical non-equilibrium phenomenon. To produce the
population inversion, we need an external exciting source using an electrical or
optical device.

The essence of lasers rests upon the fact that stimulated emission produces a
photon that possesses a wave vector (k) and a polarization (&) both the same as
those of an original photon. For this reason, the laser light is monochromatic and
highly directional. To understand the fundamental mechanism underlying the
related phenomena, interested readers are encouraged to seek appropriate literature
of quantum theory of light for further reading [4].

To make a discussion simple and straightforward, let us assume that the light is
incident parallel to the long axis of the rectangular parallelepiped. Then, the
stimulated emission produces light to be propagated in the same direction. As a
result, an irradiance I measured in that direction is described as

1= c (7.84)
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Note that the light velocity in the laser medium ¢’ is given by
d =c/n, (7.85)

where n is a refractive index of the laser medium. Taking an infinitesimal of both
sides of (7.84), we have

/

c c
dl =dE— =B N, — Ny)h — dt
SL 21,0(6021)( 2 1) w71 SL (7.86)

=Byip ((,OZI)NECOZICI de,

where N = (N, — N;)/SL denotes a “net” density of atoms that occupy the excited
state.
The energy density p (w;) can be written as

p(021) =1 (1) g (01)/¢, (7.87)

where I (w;) [Js’lm’z] represents an intensity of radiation; g (w,;) is a gain
function [s]. The gain function is a measure that shows how favorably (or unfa-
vorably) the transition takes place at the said angular frequency wj,. This is nor-
malized in the emission range such that

O/g(w) do = 1.

The quantity I(wy;) is an energy flux that gets through per unit area per unit
time. This flux corresponds to an energy contained in a long and thin rectangular
parallelepiped of a length ¢’ and a unit cross-sectional area. To obtain p(wy),
I(w)>) should be divided by ¢’ in (7.87) accordingly. Using (7.87) and replacing
c'dr with a distance dx and I(w,2) with I(x) as a function of x, we rewrite (7.86) as

_ By g(wa1 ) Nhan,
C/

dI(x) I(x) dx. (7.88)

Dividing (7.88) by I(x) and integrating both sides, we have

/Idl(x) - /[d InI(x) :M/xdx, (7.89)

I(x) c
Iy 0

where I is an irradiance of light at an instant when the light is entering the laser
medium from the left. Thus, we get
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Baig(@a) Nl x] . (7.90)

I(x) :Ioexpl =

The Eq. (7.90) shows that an irradiance of the laser light is augmented expo-
nentially along the path of the laser light. In (7.90), denoting an exponent as G

By g(w21)Nhawy,

/ )

G

; (7.91)

we get
I(x) = Ipexp Gx.

The constant G is said to be a gain constant. This is an index that indicates the
laser performance. Large numbers By, g(wy;), and N yield a high performance of
the laser.

In Sects. 6.9 and 7.2, we sought conditions for electromagnetic waves to cause
constructive interference. In a one-dimensional dielectric medium, the condition is
described as

kL=mn or ml=2L(m=1,2, ), (7.92)

where k and A denote a wave number and wavelength in the dielectric medium,
respectively. Indexing k and A with m that represents a mode, we have

knL=mn or mh, =2L (m=1,2,---). (7.93)
This condition can be expressed by different manners such that
Oy = 21y, = 27 [ Ay = 27c /iy, = mrc/nL. (7.94)

It is often the case that if the laser is a long and thin rod, rectangular paral-
lelepiped, etc., we see that sharply resolved and regularly spaced spectral lines are
observed in emission spectrum. These lines are referred to as longitudinal multi-
modes. The separation between two neighboring emission lines is referred to as the
free spectral range [2]. If adjacent emission lines are clearly resolved so that the
free spectral range can easily be recognized, we can derive useful information from
the laser oscillation spectra (vide infra).

Rewriting (7.94) as, e.g.,

Wt = %m, (7.93)
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and taking differential (or variation) of both sides, we get

) )
now,, + w,,0n = néw,, + W, o Ow,, = (n + W, —n> ow,, = € sm. (7.96)
5a)m aa)m L

Therefore, we get

e on \ !
560,” = f (}’l —+ Wy, m) om. (797)

The Eq. (7.97) premises the wavelength dispersion of a refractive index of a
laser medium. Here, the wavelength dispersion means that the refractive index
varies as a function of wavelengths of light in a matter. The laser materials often
have a considerably large dispersion, and relevant information is indispensable.

From (7.97), we find that

on
ng = n—l—wma (7.98)

plays a role of refractive index when the laser material has a wavelength dispersion.
The quantity 7, is said to be a group refractive index (or group index). Thus, (7.97)
is rewritten as

e

0w = —om, (7.99)
Ln,

where we omitted the index m of w,,. Rewriting (7.98) as a relation of continuous
quantities and using differentiation instead of variation, we have [2]

dn )
ng =ntwo- or ng=n-—/i-. (7.100)
To derive the second equation of (7.100), we used following relations: Namely,
taking a variation of Aw = 27c, we have

w 2
A+ 2dw = 0 L __4
@ds o+ Ade o dw T T dz

Several formulae or relation equations were proposed to describe the wavelength
dispersion. One of famous and useful formula among them is Sellmeier’s dispersion
formula [5]. As an example, the Sellmeier’s dispersion formula can be described as

— (7.101)
1= 9
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where A, B, and C are appropriate constants with A and B being dimensionless and
C having a dimension [m]. In an actual case, it would be difficult to determine
n analytically. However, if we are able to obtain well-resolved spectra, ém can be
put as 1 and dw,, can be determined from the free spectral range. Expressing it as
dwrsr from (7.99) we have

P) e e
WESR =7~ Of nHg =—-————.
Lng L(5a)FSR)

(7.102)

Thus, one can determine 7, as a function of wavelengths.

As an tangible example, Fig. 7.6 [6] displays a broadband emission spectra of a
crystal consisting of an organic semiconductor AC’7. As another example, Fig. 7.7
[6] displays a laser oscillation spectrum of an AC’7 crystal. The structural formula
of AC’7 is shown in Fig. 7.8 together with other related organic semiconductors.
Once we choose an empirical formula of the wavelength dispersion [e.g., (7.101)],
we can determine constants of that empirical formula by comparing it with
experimentally decided data. For such data, laser oscillation spectra (Fig. 7.7) were
used in addition to the broadband emission spectra. It is because the laser oscillation
spectra are essentially identical to Fig. 7.6 in a sense that both the broadband and
laser emission lines gave the same free spectral range. Inserting (7.101) into (7.100)
and expressing n, as a function of 4, Yamao et al. got a following expression [6]:

ng = Al 6)2}2% . (7.103)

=@ Al - ]+

Determining optimum constants A, B, and C, a set of these constants yields a
reliable dispersion formula in (7.101). Numerical calculations can be utilized
effectively. The procedures are as follows: (i) Tentatively choosing probable

(@ ——————— . (b)
el 1 £ 1t
C r >
3 T 8
o F mo
™
i = 10
e s <
- 2
2 2
(%2}
c Q
i 2 ot
g [0 M- £ L 1 L
~ 500 520 540 560 580 600 620 640 529 530 531

Wavelength (nm) Wavelength (nm)

Fig. 7.6 Broadband emission spectra of an organic semiconductor crystal AC’7. a Full spectrum.
b Enlarged profile of the spectrum around 530 nm. Reproduced from Yamao et al. [6], with the
permission of AIP Publishing. http://doi.org/10.1063/1.3634117
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Fig. 7.7 Laser oscillation
spectrum of an organic
semiconductor crystal AC’7.
Reproduced from Yamao

et al. [6], with the permission
of AIP Publishing. http://doi.
0rg/10.1063/1.3634117

Intensity (103 counts)

522 524 526 528
Wavelength (nm)

Fig. 7.8 Structural formulae 7\
of several organic O O S O O
semiconductors BP1T, ACS,

and AC’7 n BP1T
AC5
I/ \ I\
s O L00 s O
AC'7

numbers for A, B, and C for (7.103), n, can be expressed as a function of A. (ii) The
resulting fitting curve is then compared with n, data experimentally decided from
(7.102). After this procedure, one can choose another set of A, B, and C and again
compare the fitting curve with the experimental data. (iii) This procedure can be
repeated many times through iterative numerical computations of (7.103) using
different sets of A, B, and C.

Thus, we should be able to adjust and determine better and better combination of
A, B, and C so that the refined function (7.103) can reproduce the experimental
results as precise as one pleases. At the same time, we can determine the most
reliable combination of A, B, and C with the dispersion formula of (7.101).
Figure 7.9 [6] shows several examples of the wavelength dispersion for organic
semiconductor crystals. Optimized constants A, B, and C of (7.101) are listed in
Table 7.1 [6].

The formulae (7.101) and (7.103) along with associated procedures to determine
the constants A, B, and C are expected to apply to various laser and light-emitting
materials consisting of semiconducting inorganic and organic materials.
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Fig. 7.9 Examples of the TTTTTRTrTTrTTTTTT
wavelength dispersion of Ay (@) 7

a group indices and

b refractive indices for several
organic semiconductor
crystals. Reproduced from
Yamao et al. [6], with the
permission of AIP Publishing.
http://doi.org/10.1063/1.
3634117

b
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3.1 1
> BP1T
- 3| .
£
[0 29+ T
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Wavelength (nm)
Table 7.1 Optimized Material A B C (nm)
constants of A, B, and C for BPIT 57 Loa 397
Sellmeier’s dispersion : :
formula (7.101) with several ACS 3.9 1.44 402
organic semiconductor AC’7 6.0 1.06 452

crystals Reproduced from Yamao et al. [6] with the permission of AIP

Publishing. http://doi.org/10.1063/1.3634117

7.6 Mechanical System

As outlined above, two-level atoms have distinct characteristics in connection with
lasers. Electromagnetic waves similarly confined within a one-dimensional cavity
exhibit related properties and above all have many features in common with a
harmonic oscillator [7].

We have already described several features and properties of the harmonic
oscillator (Chap. 2). Meanwhile, we have briefly discussed formation of electro-
magnetic stationary waves (Chap. 6). There are several resemblance and corre-
spondence between the harmonic oscillator and electromagnetic stationary waves
when we view them as mechanical systems. The point is that in a harmonic
oscillator the position and momentum are in-quadrature relationship; i.e., their
phase difference is /2. For the electromagnetic stationary waves, electric field and
magnetic field are in-quadrature relationship as well.
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In Chap. 6, we examine the conditions under which stationary waves are
formed. In a dielectric medium both sides of which are equipped with metal layers
(or mirrors), the electric field is described as

E = 2E ¢ sin wt sinkz. (6.201)

In (6.201), we assumed that forward and backward electromagnetic waves are
propagating in the direction of the z-axis. Here, we assume that the interfaces (or
walls) are positioned at z = 0 and z = L. Within a domain [0, L], the two waves
form a stationary wave. Since this expression assumed two waves, the electro-
magnetic energy was doubled. To normalize the energy so that a single wave is
contained, the amplitude E; of (6.201) should be divided by /2. Therefore, we
think of a following description for E:

E = V2Ee;sinot sinkz or E, = V2E sin ot sinkz, (7.104)

where we designated the polarization vector as a direction of the x-axis. At the same
time, we omitted the index from the amplitude. Thus, from the second equation of
(5.65) we have

on,_ 10k,
o poz

sin wt cos kz. (7.105)

Note that this equation appears in the second equation of (6.131) as well.
Integrating both sides of (7.105), we get

V2Ek

v = cos wt cos kz.
) o

Using a relation w = vk, we have

2E
H, = ——coswt coskz+C,
uv

where v is a light velocity in the dielectric medium and C is an integration constant.
Removing C and putting

E
H=—, (7.106)

we have

H, = V2H cos wt cos kz. (7.107)
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Using a vector expression, we have

H = ezx/EH cos wt cos kz.

Thus, E (|| 1), H (|| €2), and n (]| e3) form the right-handed system in this order.
As noted in Sects. 6.8 and 6.9, at the interface (or wall) the electric field and
magnetic field form nodes and antinodes, respectively. Namely, the two fields are
in-quadrature.

Let us calculate electromagnetic energy of the dielectric medium within a cavity.
In the present case, the cavity is meant as the dielectric sandwiched by a couple of
metal layer. We have

W =W, + Wy, (7.108)
where W is the total electromagnetic energy; W, and W), are electric and magnetic

energies, respectively. Let the length of the cavity be L. Then the energy per unit
cross-sectional area is described as

L L
W, :%/Ezdz and W, :g/H2dz. (7.109)
0 0

Performing integration, we get

We = %LE2 sin’ w1,

E\?2 c (7.110)
Wn = ELH2 cos? wt = EL — | cos? wt = = LE? cos® wt,
2 2 \wv 2
where we used 1/v? = e with the last equality. Thus, we have

& gy
W =_LE*="LH" 7.111
5 2 (7.111)

Representing an energy per unit volume as W., Wi, and W, we have

W, :§E2sin2wt, VszgEzcoszwt, W:%Ezngz. (7.112)

In Chap. 2, we treated motion of a harmonic oscillator. There, we had

x(1) = 0 sinwr = X sin wt. (2.7)
®
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Here, we have defined an amplitude of the harmonic oscillation as xy ( > 0)

_Y
X0 =—.
w

Then, momentum is described as
p(t) = mi(t) = max cos wt.
Defining
Po = mmxy,
we have
p(t) = po cos w.

Let a kinetic energy and potential energy of the oscillator be K and V, respec-
tively. Then, we have

1 1
K= %p(t)2 = %pg cos® wr x(1),
1 1
V= Emcuzx(t)2 = Emwzxé sin® wr x(1), (7.113)
WeKtv=tp=l L o
= =_—Ppo = =mv; = -mm°x;.
om0 = M0 T M

Comparing (7.112) and (7.113), we recognize the following relationship in
energy between the electromagnetic fields and harmonic oscillator motion [7]:

Vmawxy < eE and po/v/m < \JuH. (7.114)

Thus, there is an elegant contradistinction between the dynamics of electro-
magnetic fields in cavity and motion of a harmonic oscillator. In fact, quantum
electromagnetism is based upon the treatment of a quantum harmonic oscillator
introduced in Chap. 2.
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Chapter 8
Introductory Green’s Functions

In this chapter, we deal with various properties and characteristics of differential
equations, especially first-order linear differential equations (FOLDEs) and
second-order linear differential equations (SOLDEs). These differential equations
are characterized by differential operators and boundary conditions (BCs). Of these,
differential operators appearing in SOLDEs are particularly important. Under
appropriate conditions, the said operators can be converted to Hermitian operators.
The SOLDE:s associated to classical orthogonal polynomials play a central role in
many fields of mathematical physics including quantum mechanics and electro-
magnetism. We study the general principle of SOLDEs in relation to several
specific SOLDEs we have studied in Part I and examine general features of an
eigenvalue problem and an initial value problem (IVP). In this context, Green’s
functions provide a powerful tool for solving SOLDEs. For a practical purpose, we
deal with actual construction of Green’s functions. In Sect. 6.9, we dealt with
steady-state characteristics of electromagnetic waves in dielectrics in terms of
propagation, reflection, and transmission. When we consider transient characteris-
tics of electromagnetic and optical phenomena, we often need to deal with SOLDEs
having constant coefficients. This is well known in connection with a motion of a
damped harmonic oscillator. In the latter part of this chapter, we treat the initial
value problem of a SOLDE of this type.

8.1 Second-Order Linear Differential Equations
(SOLDEs)

A general form of n-th-order linear differential equations has the following form:

n n—1

d d d
an(-x)a:t +a”71(x)W o R +al(x)au +a()(.x)1/l :d(.x). (8.1)
© Springer Nature Singapore Pte Ltd. 2018 245
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If d(x) = 0, the differential equation is said to be homogeneous; otherwise, it is
called inhomogeneous. Equation (8.1) is a linear function of u and its derivatives.
Likewise, we have a SOLDE such that

u u
a(x) 3x_2 —l—b(x)% +c(x)u =d(x). (8.2)

In (8.2), we assume that the variable x is real. The equation can be solved under
appropriate boundary conditions (BCs). A general form of BCs is described as

=01, (83)

du
yu(b) 4 8 —
+7u(b) + e

X=a

Bu() = aaula) + B, -

= 02, (84)

du
o1 (b) + 6 —
+ /zu( ) + 2 dx -

X=a

Balu) = oau(a) + > 3

where a1, f3;, y;, 01 01, etc., are real constants; u(x) is defined in an interval [a, b],
where a and b can be infinity (i.e., £00). The LHS of By («) and B, (u) are referred
to as boundary functionals [1, 2]. If ; = g, = 0, the BCs are called homogeneous;
otherwise, the BCs are said to be inhomogeneous. In combination with the inho-
mogeneous equation expressed as (8.2), Table 8.1 summarizes characteristics of
SOLDEs. We have four types of SOLDEs according to homogeneity and inho-
mogeneity of equations and BCs.

Even though SOLDEs are mathematically tractable, yet it is not easy necessarily
to solve them depending upon the nature of a(x), b(x), and ¢(x) of (8.2). Nonetheless,
if those functions are constant coefficients, it can readily be solved. We will deal with
SOLDEs of that type in great deal later. Suppose that we find two linearly inde-
pendent solutions #; (x) and u,(x) of a following homogeneous equation:

a(x)jx—l; —|—b(x)% +c(x)u = 0. (8.5)

Then, any solution #(x) of (8.5) can be expressed as their linear combination
such that

u(x) = cuy (x) + caup (x), (8.6)

where c¢; and ¢, are some arbitrary constants.

Table 8.1 Characteristics of SOLDEs

Type 1 Type 1I Type 111 Type IV
Equation Homogeneous Homogeneous Inhomogeneous Inhomogeneous
Boundary Homogeneous Inhomogeneous Homogeneous Inhomogeneous
conditions
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In general, suppose that there are arbitrarily chosen n functions; i.e.,
f1(x), fo(x),- -+, fu(x). Suppose a following equation with those functions:

arfi(x) + axfo(x) + - +afu(x) =0, (8.7)

where aj, ay,---, anda, are constants. If a; =a, =---=a, =0, (8.7) always
holds. In this case, (8.7) is said to be a trivial linear relation. If fi(x), /(x), - - -,
andf,(x) satisfy a non-trivial linear relation, fi(x), f>(x), - -+, f,(x) are said to be
linearly dependent. That is, the non-trivial expression means that in (8.7) at least
one of a1, ay, - - -, and a,, is nonzero. Suppose that a, # 0. Then, from (8.7), f,,(x) is
expressed as

fulx) = —j—jlfl (%) —Z—jfzm 2 ). (8.8)

If fi(x), f2(x), -+, fu(x) are not linearly dependent, they are called linearly
independent. In other words, the statement that f; (x), f>(x), - - -, f,(x) are linearly
independent is equivalent to that (8.7) holds if and only if a; = a, = --- = a, = 0.
We will have relevant discussion in Part III.

Now suppose that with the above two linearly independent u (x) and us(x) we
have

aju (x) + aqua (x) = 0. (8.9)

Differentiating (8.9), we have

duy (x) duy(x)

o TP

=0. (8.10)

a

Expressing (8.9) and (8.10) in a matrix form, we get
ur(x)  up(x)
(dul(x) disy (x) (Zl ) =0. (811)
dx dx 2

Thus, that u;(x) and uy(x) are linearly independent is equivalent to that the
following expression holds:

u (x)  ua(x)
duy(x)  dip(n)

X X

= W(uhuz) 75 0, (812)

where W(uy,uy) is called Wronskian of u; (x) and uy(x). In fact, if W(u;,u,) = 0,
then we have

ul——uz—:O. (813)
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This implies that there is a functional relationship between u; and u,. In fact, if

we can express as uy = up(u;(x)), then % = %% That is,
1y

duy duy duy du duy du, duy
uy—— = Uy—— Or = —

— g —2 — = — 8.14
de g dx T dr an = &1
where the second equality of the first equation comes from (8.13). The third
equation can easily be integrated to yield

u u . .
In—==c or —=¢ or u=ecu. (8.15)
u uj

Equation (8.15) shows that u; (x) and u,(x) are linearly dependent. It is easy to

show if u;(x) and u,(x) are linearly dependent, W (u;,u;) = 0. Thus, we have a
following statement:

Two functions are linearly dependent. < W(u;,u) = 0.
Then, as the contraposition of this statement, we have
Two functions are linearly independent. < W (uy,u,) # 0.

On the other hand, suppose that we have another solution u3(x) for (8.5) besides
uy(x) and uy(x). Then, we have

d2u1 du1

a(x) @ =+ b(.x) a —+ C()C)Ml = 0,
d2u2 stQ

a(x)ﬁ +b(x)a +C<X)M2 = 0, (816)
d2u3 du3

a(x) e +b(x) i +c(x)us = 0.

Again rewriting (8.16) in a matrix form, we have

2 -

2
% % 1"y b | =o. (8.17)
dw du

de d B c

A necessary and sufficient condition to obtain a non-trivial solution (i.e., a
solution besides a = b = ¢ = 0) is that [1]

2
d iy, | =0 (8.18)
d2u3 du3 Uz



8.1 Second-Order Linear Differential Equations (SOLDEs) 249

Note here that

2

%:21 % uy cthl Cbltz 513

Eowr du | dw de du |

= 9w = & dx dr | = —W(uy,un,u3), (8.19)
&, du

du;  dis L 2 :

dx23 I M dx 2 de

where W (uy, uy,u3) is Wronskian of u;(x), uz(x), and uz(x). In the above relation,
we used the fact that a determinant of a matrix is identical to that of its transposed
matrix and that a determinant of a matrix changes the sign after permutation of row
vectors. To be short, a necessary and sufficient condition to get a non-trivial
solution is that W (u;, uy,u3) vanishes.

This implies that u; (x), uz(x), and u3(x) are linearly dependent. However, we
have assumed that u;(x) and u;(x) are linearly independent, and so (8.18) and
(8.19) mean that uz(x) must be described as a linear combination of u;(x) and
up(x). That is, we have no third linearly independent solution. Consequently, the
general solution of (8.5) must be given by (8.6). In this sense, u;(x) and uy(x) are
said to be a fundamental set of solutions of (8.5).

Next, let us consider the inhomogeneous equation of (8.2). Suppose that u(x) is
a particular solution of (8.2). Let us think of a following function v(x) such that:

u(x) = v(x) + up(x). (8.20)

Substituting (8.20) for (8.2), we have

d?v dv dzup du,
a(x) 2 +b(x) o +c(x)v+a(x) a2 +b(x) o +co(x)u, =d(x). (8.21)
Therefore, we have
a(x) @ +b(x) dv +c(x)py=0
dx? dx -

But, v(x) can be described by a linear combination of u;(x) and u,(x) as in the
case of (8.6). Hence, the general solution of (8.2) should be expressed as

u(x) = crui(x) + coun (x) +up(x), (8.22)

where ¢; and ¢, are arbitrary (complex) constants.
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8.2 First-Order Linear Differential Equations (FOLDESs)

In a discussion that follows, first-order linear differential equations (FOLDESs)
supply us with useful information. A general form of FOLDE:s is expressed as

a(x)?iau +b(x)u = d(x) [a(x) # 0]. (8.23)

An associated boundary condition is given by a boundary functional B(u) such
that

B(u) = ou(a) + fu(b) = o, (8.24)

where a, 5, and o are real constants; u(x) is defined in an interval [a, b]. If in (8.23)
d(x) =0, (8.23) can readily be integrated to yield a solution. Let us multiply both
sides of (8.23) by w(x). Then, we have

w(x)a(x)% +w(x)b(x)u = w(x)d(x). (8.23)
We define p(x) as
p(x) = w(x)a(x), (8.26)

where w(x) is called a weight function. As mentioned in Sect. 2.3, the weight
function is a real and nonnegative function within the domain considered. Here we
suppose that

dp(x) _
o w(x)b(x). (8.27)
Then, (8.25) can be rewritten as
d
o [p(X)u] = w(x)d(x). (8.28)

Thus, we can immediately integrate (8.28) to obtain a solution

U= Iﬁ [ / ") d ()Y + c] : (8.29)

where C is an arbitrary integration constant.
To seek w(x), from (8.26) and (8.27) we have

P = (wa)l = wb = wa (Z) (8.30)
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This can easily be integrated for wa to be expressed as

!
wa = C’exp(/édx) or w _< exp(/édx), (8.31)
a a a

where C’ is an arbitrary integration constant. The quantity % must be nonnegative
so that w can be nonnegative.

Example 8.1 Let us think of a following FOLDE within an interval [a, b]; i.e.,
a<x<b.

d

a” o= x. (8.32)

A boundary condition is set such that

u(a) =o. (8.33)
Notice that (8.33) is obtained by setting « = 1 and f§ = 0 in (8.24). Following
the above argument, we obtain a solution described as

X

1 / / /
u= o /w(x )d(x)dx' +u(a)p(a) | . (8.34)

a

Also, we have

X

p(x) = w(x) = exp(/x’dx’) = exp B (¥ — az)} : (8.35)

a

The integration of RHS can be performed as follows:

x x /2
2
/w(x/)d(x/)dx’ = /x’ exp B 4 —az)} dx' = exp(—%) / exp tdt
a a a2/2
_ a X2 a2\ a’ X2 - |
—or(-3)or(s) o (5) | —on(=5) e (y) 1 po -

(8.36)

where with the second equality we used an integration by substitution of %x’z —t.
Considering (8.33) and putting p(a) = 1, (8.34) is rewritten as
1 o—1
u=——pkx)—1+0g =14+ —+
ol P el =140

_1+(a—1)exp[“2_x2} &

where with the last equality we used (8.35).
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Notice that when ¢ =1, u(x) = 1. This is because u(x) =1 is certainly a
solution of (8.32) and satisfies the BC of (8.33). Uniqueness of a solution imposes

this strict condition upon (8.37).
In the next two examples, we make general discussions.

Example 8.2 Let us consider a following differential operator:
L,=—. (8.38)
We think of a following identity using an integration by parts:

/ v (0 ) + /h (o ) = loul (8.39)

a

Rewriting this, we get

b b
d d 17 b
dxo* [ — — [ dx|=—= = [p*Y]°. 8.40
Jaor () - [ax|- g0 v=tow: (8.40)
Looking at (8.40), we notice that LHS comprises a difference between two
integrals, while RHS referred to as a boundary term (or surface term) does not

contain an integral.
Recalling the expression (1.128) and defining

in (8.40), we have
(olLw) = (Looly ) = [o" v, (8.41)
Here, RHS of (8.41) needs to vanish so that we can have
(olLw) = (Leoly). (8.42)

Meanwhile, adopting the expression (1.112) with respect to an adjoint operator,
we have a following expression such that

(olLy) = (Lloly). (8.43)
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Comparing (8.42) and (8.43) and considering that ¢ and  are arbitrary func-

tions, we have Z; = LI. Thus, as an operator adjoint to L., we get

L=, =——=-L.

d
dx

Notice that only if the surface term vanishes, the adjoint operator LI can
appropriately be defined. We will encounter a similar expression again in Part III.
We add that if with an operator A, we have a relation described by

Al = —a, (8.44)

the operator A is said to be anti-Hermitian. We have already encountered such an
operator in Sect. 1.5.

Let us then examine on what condition the surface term vanishes. The RHS of
(8.40) and (8.41) is given by

@ (D) (b) — ¢*(@)(a).

For this term to vanish, we should have

If Y(b) = 2y/(a), then we should have ¢(b) =1¢(a) for the surface term to
vanish. Recalling (8.24), the above conditions are expressed as

BUY) = 20(a) ~ $(b) =0, (5.45)
B(p) = 5 0(a) ~ o(b) = 0. (8.46)

The boundary functional B'(¢) is said to be adjoint to B(y/). The two boundary
functionals are admittedly different. If, however, we set ¥/(b) = ¥(a), then we
should have ¢(b) = ¢(a) for the surface term to vanish. That is,

B() = (a) —y(b) =0, (8.47)
B'(¢) = ¢(a) — o(b) = 0. (8.48)

Thus, the two functionals are identical and ¥ and ¢ satisfy homogeneous BCs
with respect to these functionals.

As discussed above, a FOLDE is characterized by its differential operator as well
as a BC (or boundary functional). This is similarly the case with SOLDEs as well.
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Example 8.3 Next, let us consider a following differential operator:
Ly=—-—. (8.49)

As in the case of Example 8.2, we have

/h avo (G40 - /b dxﬁd‘;w}*w ol (8.50)

a a

Also rewriting (8.50) using an inner product notation, we get

1 *
(PIL) = (Laoly) =~ 0"V, (851)
Apart from the factor 1, RHS of (8.51) is again given by

@ (D) (D) — ¢*(a)y(a).

Repeating a discussion similar to Example 8.2, when the surface term vanishes,
we get

(QILuh) = (Leopl¥h). (8.52)

Comparing (8.43) and (8.52), we have

(Laoly) = (Lolv). (8.53)
Again considering that ¢ and  are arbitrary functions, we get
Ll =L, (8.54)

As in (8.54), if the differential operator is identical to its adjoint operator, such an
operator is called self-adjoint. On the basis of (1.119), L, would apparently be
Hermitian. However, we have to be careful to assure that L, is Hermitian. For a
differential operator to be Hermitian, (i) the said operator must be self-adjoint.
(ii) The two boundary functionals adjoint to each other must be identical. In other
words, 1 and ¢ must satisfy the same homogeneous BCs with respect to these
functionals. In this example, we must have the same boundary functionals as those
described by (8.47) and (8.48). If and only if the conditions (i) and (ii) are satisfied,
the operator is said to be Hermitian. It seems somewhat a formal expression.
Nonetheless, satisfaction of these conditions is also the case with second-order
differential operators so that these operators can be Hermitian. In fact, SOLDEs we
studied in Part I are essentially dealt with within the framework of the aforemen-
tioned formalism.
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8.3 Second-Order Differential Operators

The second-order differential operators are the most common operators and fre-
quently treated in mathematical physics. The general differential operators are
described as

L, =a(x)— +b(x)—x +c(x), (8.53)

where a(x), b(x), and c¢(x) can in general be complex functions of a real variable x.
Let us think of following identities [1]:

vieu — ucev' = 0. (8.56)

Summing both sides of (8.56), we have an identity

2 2 * *
v*{ d*u _’_b% —|—cu} —u{d (@*) d(bv) +cv*}

a—
dx? dx? dx
dr (8.57)
_ i av* % —u d((lv*) + i [buv*]
Cdx | dx dx dx '
Hence, following the expressions of Sect. 8.2, we define L;r such that
. d(av*)  d(bv) .
[LIV] = dxz — T +CV . (858)
Taking a complex conjugate of both sides, we get
A(av) d*y)
Ljv R R +cv. (8.59)
Considering the differential of a product function, we have as LI
LT—a*d_2_|_ Qda*_b* i+@_g+c* (860)
T a2 dx dv  d?  dx ' '
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Replacing (8.57) with (8.55) and (8.59), we have

v (Lyu) — [L;rv]*u = i |:av* d_” B ud(av*)

P o o + buy ] (8.61)

Assuming that the relevant SOLDE is defined in [r,s] and integrating (8.61)
within that interval, we get

/de[v*(Lxu) - [LIV]*M} = {av*i{—dz - ud(g;*) —i—buv*]s (8.62)

r

Using the definition of an inner product described in (1.128) and rewriting
(8.62), we have

d d(av* N

(v|Lyut) — <L;rv|u> = {av*au u (g)‘: ) +buv*] .

r

Here if RHS of the above (i.e., the surface term of the above expression) van-
ishes, we get

(v|Lot) = <Ljv|u>.

We find that this notation is consistent with (1.112).

Bearing in mind this situation, let us seek a condition under which the differ-
ential operator L, is Hermitian. Suppose here that a(x), b(x), and c(x) are all real
and that

d
‘;SC) = b(x).
Then, instead of (8.60), we have
Ll ()d2+b()d+() L (8.63)
=a(x)— x)— +c(x) = L. .
" dx? dx

Thus, we are successful in constituting a self-adjoint operator L,. In that case,
(8.62) can be rewritten as

/ [V (Lett) — (Lov)'u] = [a (v*%— ”c:ivx” (8.64)

r
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Notice that b(x) is eliminated from (8.64). If RHS of (8.64) vanishes, we get
(v|Lyu) = (Lyv|u).

This notation is consistent with (1.119) and the Hermiticity of L, becomes well
defined.
If we do not have the condition of % = b(x), how can we deal with the

problem? The answer is that following the procedures in Sect. 8.2, we can convert
L, to a self-adjoint operator by multiplying L, by a weight function w(x) introduced
in (8.26), (8.27), and (8.31). Replacing a(x), b(x), and c¢(x) with w(x)a(x),
w(x)b(x), and w(x)c(x), respectively, in the identity (8.57), we rewrite (8.57) as

*{ d’u du } {dz(awv*) d(bwv*) *}
vVicaw— +bw— +cwu p —u — + cwv

2 2
dx dx dx dx (8.65)

=— awv*%— dlawy) —|—£[bw V']
TS T dx

Let us calculate {---} of the second term for LHS of (8.65). Using (8.26) and
(8.27), we have

d(awv*) _d(bwv)
dx? dx

W' = [(aw) v +awv*] — [(bw)’v* + bwv*,] +cwv’
= {bwv* +am*]— wa)/v* + bwv*,] + cwv”
= (bw)'v +bwv* + (aw)V" +awv™” — (bw)'V' — bwv* + cwv*
= (aw)V" +amv”" +ewv* = bwv* + awv®” + ewv*
= W(av*// +bv + cv*) =w (a* v b 4t V*)
=w(a" +bv +cv)".
(8.66)

The second last equality of (8.66) is based on the assumption that a(x), b(x), and
c(x) are real functions. Meanwhile, for RHS of (8.65), we have

L + — [bwuv”]

du  d(awv*) d
dx

d dv* d
. ” } bwuv’|

awv’* e u(aw)'v' — uaw ol T &[
(8.67)

*

d

dx

d[ ,du ; dv d .
=4 | a—ubwv —uawdx]—i—a[bwuv]

d

dx

: L du dv\| d L du dv*
_awvdxudx =5 IPWV ) |
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With the last equality of (8.67), we used (8.26). Using (8.66) and (8.67), we
rewrite (8.65) once again as

[ dPu du v dv "od Jdu A
vwa@qu—Jrcu —uw|a b—+cv| =—|p|Vi——u .

dx @ TPx dx dv  dx
(8.68)
Then, integrating (8.68) from r to s, we finally get
r de v ]
“(Lat) — [Lov]*u} = |p(v — — . .
JE A T ) )

The relations (8.69) along with (8.62) are called the generalized Green’s identity.

We emphasize that as far as the coefficients a(x), b(x), and ¢(x) in (8.55) are real
functions, the associated differential operator L, can be converted to a self-adjoint
form following the procedures of (8.66) and (8.67).

In the above, LHS of the original homogeneous differential equation (8.5) is
rewritten as

d’u du d du
() T + 0w G+ el = 5 [p) ] + ewton
Rewriting this, we have
L= w(lx)% [p(x) %] +cu [w(x) > 0], (8.70)
where we have
p(x) = a(x)w(x) and deT(x) = b(x)w(x). (8.71)

When the differential operator L, is defined as (8.70), L, is said to be self-adjoint
with respect to a weight function of w(x).

Now we examine boundary functionals. The homogeneous adjoint boundary
functionals are described as follows:

. dv* B dv*
slw =@ hg] oo =0 @7)
dv* dv*
Bl =o' (@) + o | 40+ =0 (873)
x=a x=b
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In (8.3), putting «; = 1 and f;, =y, = d; = 0, we have
B (u) = u(a) = a;. (8.74)
Also putting y, = 1 and o = ff, = J, = 0, we have
By (1) = u(b) = 0. (8.75)
Further putting
g1 =0, =0, (8.76)
we also get homogeneous BCs of

Bi(u) = B2(u) =0; ie. u(a)=u(b)=0. (8.77)
For RHS of (8.69) to vanish, it suffices to define Bir (u) and B;r (u) such that

Bl(u) = v'(a) and Bl(u) = v'(b). (8.78)
Then, homogeneous adjoint BCs read as
vi(a) =v'(b) =0 ie. v(a)=v(b)=0. (8.79)

In this manner, we can readily construct the homogeneous adjoint BCs the same
as those of (8.77) so that L, can be Hermitian.
We list several prescriptions of typical BCs below.

(i) u(a) = u(b) = 0 (Dirichlet conditions),

(ii) % = % e 0 (Neumann conditions),
d d

(iii)) wu(a) = u(b) and it (periodicconditions). (8.80)
dx x=a dx x=b

Yet, care should be taken when handling RHS of (8.69); i.e., the surface terms. It
is because conditions (i) to (iii) are not necessary but sufficient conditions for the
surface terms to vanish. Such conditions are not limited to them. Meanwhile, we
often have to deal with the nonvanishing surface terms. In that case, we have to start
with (8.62) instead of (8.69).

In Sect. 8.2, we mentioned the definition of Hermiticity of the differential
operator in such a way that the said operator is self-adjoint and that homogeneous
BCs and homogeneous adjoint BCs are the same. In light of the above argument,
however, we may relax the conditions for a differential operator to be Hermitian.
This is particularly the case when p(x) = a(x)w(x) in (8.69) vanishes at both the
endpoints. We will encounter such a situation in Sect. 8.7.
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8.4 Green’s Functions

Having aforementioned discussions, let us proceed with studies of Green’s func-
tions for SOLDEs. Though minimum, we have to mention a bit of formalism.
Given L, defined by (8.55), let us assume

Lou(x) = d(x) (8.81)

under homogeneous BCs with an inhomogeneous term d(x) being an arbitrary
function. We also assume that (8.81) is well defined in a domain [r, s]. The numbers
r and s can be infinity. Suppose simultaneously that we have

Liv(x) = h(x) (8.82)

under homogeneous adjoint BCs [1, 2] with an inhomogeneous term 4(x) being an
arbitrary function as well.
Let us describe the above relations as

L) =|d) and L) = |n). (8.83)
Suppose that there is an inverse operator L~! = G such that
GL=LG=E, (8.84)
where E is an identity operator. Operating G on (8.83), we have
GL|u) = Elu) = |u) = G|d). (8.85)

This implies that (8.81) has been solved and the solution is given by G|d). Since
an inverse operation to differentiation is integration, G is expected to be an integral
operator.

We have

(*|LGly) = Li(x|Gly) = LG(x, ). (8.86)
Meanwhile, using (8.84), we get
(x|[LGly) = (x|Ely) = (x[y). (8.87)

Using a weight function w(x), we generalize an inner product of (1.128) such
that

s

(slf) = / w(x)g() F(x)dx. (8.88)

r
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As we expand an arbitrary vector using basis vectors, we “expand” an arbitrary
function |f) using basis vectors |x). Here, we are treating real numbers as if they
formed continuous innumerable basis vectors on a real number line (see Fig. 8.1).
Thus, we could expand |f) in terms of |x) such that

) = / dow(x)f (D). (8.89)

In (8.89), we considered f(x) as if it were an expansion coefficient. The fol-
lowing notation would be reasonable accordingly:

f(x) = (x[f). (8.90)

In (8.90), f(x) can be viewed as coordinate representation of |f). Thus, from
(8.89), we get
Wlf) =fx') = jdXW(X)f(X)<x'IX>- (8.91)
Alternatively, we have
fi&) = /def(x)é(x—x’). (8.92)

This comes from a property of the ¢ function [1] described as

/ dxf ()0(x) = £(0). (8.93)

Fig. 8.1 Function [f) and its
coordinate representation f(x) f (x) = (xlf )
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Comparing (8.91) and (8.92), we have

w) () = 8(x —¥) or (|x) = 5(fv (_x)’d ) _ 5% (;)") . (8.94)

Thus comparing (8.86) and (8.87) and using (8.94), we get

ox—y
LG(x,y) = W) ) (8.95)
In a similar manner, we also have
ox—y
Lig(xy) = (W(x) ) (8.96)

To arrive at (8.96), we start the discussion assuming an operator (L;[)_1 such that

(Ljf1 = g with gLT = LTg =E.

The function G(x,y) is called a Green’s function and g(x,y) is said to be an
adjoint Green’s function. Handling of Green’s functions and adjoint Green’s
functions is based upon (8.95) and (8.96), respectively. As (8.81) is defined in a
domain r <x <s, (8.95) and (8.96) are defined in a domain r <x<sand r <y <s.
Notice that except for the point x =y we have

LG(x,y) =0 and Lig(x,y)=0. (8.97)

That is, G(x,y) and g(x,y) satisfy the homogeneous equation with respect to the
variable x. Accordingly, we require G(x,y) and g(x,y) to satisfy the same homo-
geneous BCs with respect to the variable x as those imposed upon u(x) and v(x) of
(8.81) and (8.82), respectively [1].

The relation (8.88) can be obtained as follows: Operating (g| on (8.89), we have

s

() = [ (el = [ wie( loan (898)

r

where for the last equality we used

() = (xlg)" = g(x)". (8.99)

For this, see (1.113) where A is replaced with an identity operator E with regard
to a complex conjugate of an inner product of two vectors. Also see (11.2) of
Sect. 11.1.

If in (8.69) the surface term (i.e., RHS) vanishes under appropriate conditions,
e.g., (8.80), we have
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/ dow () (v (L) — [LH]u} = 0, (8.100)

which is called Green’s identity. Since (8.100) is derived from identities (8.56),
(8.100) is an identity as well (as a terminology of Green’s identity shows).
Therefore, (8.100) must hold with any functions u and v so far as they satisfy
homogeneous BCs. Thus, replacing v in (8.100) with g(x,y) and using (8.96)
together with (8.81), we have

[ o {e Lol Llete)uto )

— / dxw(x){g*(x, y)d(x) — F(v’i(x)y)yu(x)} (8.101)
= / dxw(x)g" (x,y)d(x) — u(y) =0,

where with the second last equality we used a property of the ¢ functions. Also

notice that ‘35:‘(; ; ) is a real function. Rewriting (8.101), we get

u(y) = / dow(x)g" (x,y)d(x). (8.102)

Similarly, replacing u in (8.100) with G(x,y) and using (8.95) together with
(8.82), we have

W(y) = / diw(x)G* (x, y)h(x). (8.103)
Replacing u and v in (8.100) with G(x, ¢) and g(x, ), respectively, we have
/ dow(x){g" (6,0 [LGx )] — [Llg(v.0)] Gleg)} =0 (8.104)

Notice that we have chosen ¢ and ¢ for the second argument y in (8.95) and
(8.96), respectively. Inserting (8.95) and (8.96) into the above equation after
changing arguments, we have
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/ dxw(x){g*(x, t)é(:;(x)q) - [5(;“()6;)] G(x, q)} =0. (8.105)
Thus, we get
g (q,t) = G(t,q) or g(q,1) =G"(t,9). (8.106)

This implies that G*(¢, ¢) must satisfy the adjoint BCs with respect to the second
argument g. Inserting (8.106) into (8.102), we get

u(y) = / dow(x)G(y, x)d(x). (8.107)
Or exchanging the arguments x and y, we have
u(x) = / dew(y)G(x,y)d(y). (8.108)

Similarly, using (8.103) into (8.106), we get

Wy) = / dow(x)g(y, x)(x). (8.109)
Or, we have
W) = / dyw(3)g(x, 3)h(). (8.110)

r

Equations (8.107-8.110) clearly show that homogeneous equations [given by
putting d(x) = h(x) = 0] have a trivial solution u(x) = 0 and v(x) = 0 under ho-
mogeneous BCs. Note that it is always the case when we are able to construct a
Green’s function. This in turn implies that we can construct a Green’s function if
the differential operator is accompanied by initial conditions. Conversely, if the
homogeneous equation has a non-trivial solution under homogeneous BCs,
Egs. (8.107-8.110) will not work.

If the differential operator L in (8.81) is Hermitian, according to the associated

remarks of Sect. 8.2, we must have L, = L;r and u(x) and v(x) of (8.81) and (8.82)
must satisfy the same homogeneous BCs. Consequently, in the case of an Hermitian
operator, we should have
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G(x,y) = g(x,y). (8.111)
From (8.106) and (8.111), if the operator is Hermitian, we get
G(x,y) = G"(y, ). (8.112)

In Sect. 8.3, we assume that the coefficients a(x), and b(x), and c(x) are real to
assure that L, is Hermitian [1]. On this condition, G(x, y) is real as well (vide infra).
Then, we have

G(x,y) = G(y,x). (8.113)

That is, G(x,y) is real symmetric with respect to the arguments x and y.

To be able to apply Green’s functions to practical use, we will have to estimate a
behavior of the Green’s function near x = y. This is because in light of (8.95) and
(8.96), there is a “jump” at x = y.

When we deal with a case where a self-adjoint operator is relevant, using a
function p(x) of (8.69), we have

a(x) 0 <paG) +e()G = . (8.114)

p(x) dx

ox

Multiplying both sides by {1%, we have

X

Ox

0 (G _p(x)olx—y) pel) .
(pﬁx)_a(x) w(x) a(x) G(x,y). (8.115)

Using a property of the ¢ function expressed by

f(x)d(x) =f(0)é(x) or f(x)d(x—y)=Ff(y)o(x—y) (8.116)
we have
O ( 9G\ _p()dx—y) p¥e) .
Ox (p 8x) a(y) w(y) a(x) G(x,y). (8.117)

Integrating (8.117) with respect to x, we get

aG(x,y)  ply) [ p()e()
» - B O(x—y)—/dt e+ (8.118)

r

where C is a constant. The function 0(x — y) is defined by
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0(x) = { égzo(;). (8.119)
Note that we have
%d.(;) = J(x). (8.120)

In RHS of (8.118), the first term has a discontinuity at x = y because of 0(x — y),
whereas the second term is continuous with respect to y. Thus, we have

. 9G(x,y) 9G(x, ) ]
lim (p(y+e¢) —p(y —e)
a=+0 a(x) =+ Ox )(‘:;’*S (8.121)
R G YR )
= im0 09l = 2

Since p(y) is continuous with respect to the argument y, this factor drops off and
we get

dG(x,y)
ox

IG(x,y)
Ox

lim
e—+0

] - (8.122)

x=y+e

Thus, % is accompanied by a discontinuity at x =y by a magnitude of
m. Since RHS of (8.122) is continuous with respect to the argument y, inte-
grating (8.122) again with respect to x, we find that G(x,y) is continuous at x = y.
These properties of G(x, y) are useful to calculate Green’s functions in practical use.
We will encounter several examples in next sections.

Suppose that there are two Green’s functions that satisfy the same homogeneous

BCs. Let G(x,y) and G(x,y) be such functions. Then, we must have

o(x—y) - o(x—y)
L.G(x,y) = d L.G(x,y)= 12
G(x,y) W) an G(x,y) e (8.123)
Subtracting both sides of (8.123), we have
L.[G(x,y) — G(x,y)] = 0. (8.124)

In virtue of the linearity of BCs, G(x,y) — G(x,y) must satisfy the same ho-
mogeneous BCs as well. But, (8.124) is a homogeneous equation, and so we must
have a trivial solution from the aforementioned constructability of the Green’s
function such that



8.4 Green’s Functions 267

G(x,y) — G(x,y) =0 or G(x,y) = G(x,y). (8.125)

This obviously indicates that a Green’s function should be unique.
We have assumed in Sect. 8.3 that the coefficients a(x), and b(x), and c(x) are
real. Therefore, taking complex conjugate of (8.95), we have

LG(x,y)" = . (8.126)

Notice here that both d(x — y) and w(x) are real functions. Subtracting (8.95)
from (8.126), we have

Lx[G(xvy)* - G(X,y)} =0.

Again, from the uniqueness of the Green’s function, we get G(x,y)" = G(x,);
i.e., G(x,y) is real accordingly. This is independent of specific structures of L. In
other words, so far as we are dealing with real coefficients a(x), b(x), and c(x),
G(x,y) is real whether or not L, is self-adjoint.

8.5 Construction of Green’s Functions

So far we dealt with homogeneous boundary conditions (BCs) with respect to a
differential equation

2

a(x) % —i—b(x)% +e(x)u = d(x), (8.2)
where coefficients a(x), b(x), and ¢(x) are real. In this case, if d(x) = 0 in (8.108),
namely the SOLDE is homogeneous equation, we have a solution u(x) = 0 on the
basis of (8.108). If, on the other hand, we have inhomogeneous boundary condi-
tions (BCs), additional terms appear on RHS of (8.108) in both the cases of
homogeneous and inhomogeneous equations. In this section, we examine how we
can deal with this problem.

Following the remarks made in Sect. 8.3, we start with (8.62) or (8.69). If we
deal with a self-adjoint or Hermitian operator, we can apply (8.69) to the problem.
In a more general case where the operator is not self-adjoint, (8.62) is useful. In this
respect, in Sect. 8.6, we have a good opportunity for this.

In Sect. 8.3, we mentioned that we may relax the definition of Hermiticity of the
differential operator in the case where the surface term vanishes. Meanwhile, we
should bear in mind that the Green’s functions and adjoint Green’s functions are
constructed using homogeneous BCs regardless of whether we are concerned with a
homogeneous equation or inhomogeneous equation. Thus, even if the surface terms
do not vanish, we may regard the differential operator as Hermitian. This is because
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we deal with essentially the same Green’s function to solve a problem with both the

cases of homogeneous equation and inhomogeneous equations (vide infra). Notice

also that whether or not RHS vanishes, we are to use the same Green’s function [1].

In this sense, we do not have to be too strict with the definition of Hermiticity.
Now, suppose that with an Hermitian operator L, we are given

j av () (Lao) — (L'} = {p(x) (V* % - u‘gxﬂ (8.69)

r

where w(x) > 0 in a domain [r, s] and p(x) is a real function. Note that since (8.69)
is an identity by an appropriate choice of w(x), we insert g(x,y) into v. Then from
(8.97) and (8.106), we have

N

/ dxw(x){g(w)d(x) _ {&;(;)y)} u}

r

= {p(x){G(y,x) db:jix) —u(x) 8G§: X)}Lr (8.127)
Using a property of the ¢ function, we get
) = [ @690 p){ 600 % —utn 20|
(8.128)

The differential operator is Hermitian according to the discussion of Sect. 8.3.
Hence, we have

G(x,y) = G(y,x). (8.113)

The function G(x, y) satisfies homogeneous BCs. Hence, if we assume, e.g., the
Dirichlet BCs, we have

G(r,y) = G(s,y) = 0. (8.129)

Since G(x,y) is symmetric with respect to arguments x and y, from (8.129) we
get

G(y,r) =G(y,5) =0. (8.130)

Thus, the first term of the surface terms of (8.128) is eliminated to yield
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= [ dotacts s + [ (222)

Exchanging the arguments x and y, we get

N
OG(x,y)\1°
) = [amcnae + oo ()| s
y=r
Then, (i) substituting surface terms of u(s) and u(r) that are associated with the
inhomogeneous BCs described as

B](u) = 0] and Bz(l/t) = 07. (8132)

9G(xy) | 9G(xy) |
dy ly=r dy ly=s’

solution. Once again, notice that (8.131) is used for a differential equation rendered
self-adjoint by means of a weight function w(x).

On the basis of the general discussion of Sect. 8.4 and this section, we are in the
position to construct the Green’s functions. Except for the points of x =y, the
Green’s function G(x,y) must satisfies the following differential equation:

and (ii) calculating and we will be able to obtain a unique

L.G(x,y) =0, (8.133)
where L, is given by
d? d
L, = a(x) 2 +b(x) o +c(x). (8.55)

The differential equation L.u = d(x) is defined within an interval [r, s], where r
may be —oo and s may be + co.

From now on, we regard a(x), b(x), and ¢(x) as real functions. From (8.133), we
expect the Green’s function to be described as a linear combination of a funda-
mental set of solutions u;(x) and u(x). Here the set of fundamental solutions is
given by two linearly independent solutions of a homogeneous equation Lyu = 0.
Then, we should be able to express G(x,y) as a combination of Fi(x,y) and F>(x,y)
that are described as

Fi(x,y) = ciui (x) + caup(x) for r<x<y,
Fy(x,y) = dyuy (x) + daup(x) for y<x<s, (8.134)
where ¢y, c,,d;,and d, are arbitrary (complex) constants to be determined later.

These constants are given as a function of y. The combination has to be made such
that
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[ Fi(x,y) for r<x<y,
Glxy) = { Fy(x,y) fory<x<s. (8.135)
Thus using 0(x) function defined as (8.119), we describe G(x,y) as
Gx,y) = Fi(x,y)0(y = x) + F2(x,y)0(x —y). (8.136)

Notice that F(x,y) and F»(x,y) are “ordinary” functions and that G(x, y) is not,
because G(x,y) contains the 6(x) function.

If we have
Fa(x,y) = Fi(y,x), (8.137)
G(x,y) = Fi(x,)0(y — x) + F1(y,x)0(x — y). (8.138)
Hence, we get
G(x,y) = G(y,x). (8.139)

From (8.113), L, is Hermitian. Suppose that F;(x,y) = (x —r)(y — s) and
F>(x,y) = (x — s)(y — r). Then, (8.137) is satisfied and, hence, if we can construct
the Green’s function from Fi(x,y) and F5(x,y), L, should be Hermitian. However,
if we had, e.g., F1(x,y) =x —r and Fp(x,y) =y — s, G(x,y) # G(y,x), and so L,
would not be Hermitian.

The Green’s functions must satisfy the homogeneous BCs. That is,

Bi(G) = B,(G) = 0. (8.140)

Also, we require continuity condition of G(x,y) at x =y and discontinuity
condition of % at x =y described by (8.122). Thus, we have four conditions
including BCs and continuity and discontinuity conditions to be satisfied by
G(x,y). Thus, we can determine four constants ci,c,d;,and d, by the four
conditions.

Now, let us inspect further details about the Green’s functions by an example.

Example 8.4 Let us consider a following differential equation

d*u

We assume that a domain of the argument x is [0, L]. We set boundary conditions
such that

u(0) =0, and u(L) = o,. (8.142)
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Thus, if at least one of ¢; and o, is not zero, we are dealing with an inhomo-
geneous differential equation under inhomogeneous BCs.

Next, let us seek conditions that the Green’s function satisfies. We also seek a
fundamental set of solutions of a homogeneous equation described by

d*u

This is obtained by putting @ = ¢ = 1 and b = 0 in a general form of (8.5) with a
weight function being unity. The differential equation (8.143) is therefore
self-adjoint according to the argument of Sect. 8.3. A fundamental set of solutions
are given by

e™ and e ™.
Then, we have

Fi(x,y) = cie® +ce™ for 0<x<y.
Fy(x,y) = die™ +de™ for y<x<L. (8.144)
The functions F;(x,y) and F(x,y) must satisfy the following BCs such that
Fi1(0,y) =ci+c,=0 and Fy(L,y) =die™ +de ™ =0. (8.145)
Thus, we have
Fi(x,y) = ci(e™ —e™™), Fy(x,y) = d; (e* — e*Le ). (8.146)
Therefore, at x =y, we have
ci(e? —e ™) =d,(e¥ —e*le™). (8.147)

Discontinuity condition of (8.122) is equivalent to

an(x,y) _aFl(xay)

. —, = L. 8.148
R T (8.148)

This is because both Fi(x,y) and F;(x,y) are ordinary functions and supposed to
be differentiable at any x. The relation (8.148) then reads as

idy (e” +e*le ™) —ici(e” +e ) = 1. (8.149)

From (8.147) and (8.149), using Cramer’s rule, we have
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0 —eeile
. iy 2L —iy iy 2L i
i —eV —e e i(eV —ese™™
c = . — = ( ), (8.150)

eiy —e W _eiy + eZiLe—zy 2(1 _ eZiL)
eiy + e—iy _eiy _ eZiLe—iy
e¥—e™ 0
iy —iy ; aly Al
P eV +e i _i(eY —e™) (8.151)
1= - — — L] TR .
eV —e™™ —e¥4ete™ 2(1 —e?h)

eiy + efiy _eiy _ eZiLefiy
Substituting these parameters for (8.146), we get

sinx(ele ™ — e¥) sin y(e¥le™™ — ei)
Fl(x7y): l_ezl'L 7F2(x7y): 1—62i[’ . (8152)

Making a denominator real, we have

__sinx[cos(y — 2L) — cosy]

__siny[cos(x — 2L) — cos x|

F ) - ) F ) - .
1) 2sin’L 2(x) 2sin’L
(8.153)
Using the 6(x) function, we get
sinx[cos(y — 2L) — cos y] sin y[cos(x — 2L) — cos x|
Gx,y) = 0(y —x) + 0(x—y).
(x.) 2sin’L =) 2sin’L (=)
(8.154)

Thus, G(x,y) = G(y,x) as expected. Notice, however, that if L=
nn(n=1,2,---) the Green’s function cannot be defined as an ordinary function
even if x # y. We return to this point later.

The solution for (8.141) under the homogeneous BCs is then described as

L

o) = [ axGny)
0
(x —2L) — cos [ sin r
cos(x — - x inx
= sinydy + ——— [ [cos(y — 2L) — cos y|dy.
2sin’L / ye 2sin2L/ [cos(y ) yldy
0 X

(8.155)

This can readily be integrated to yield solution for the inhomogeneous equation
such that
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~ cos(x — 2L) — cosx — 2sin L sinx — cos 2L + 1
B 2sin’L

~ cos(x — 2L) — cosx — 2sin L sinx + 2sin’L

B 2sin’L

u(x)
(8.156)

Next, let us consider the surface term. This is given by the second term of
(8.131). We get

OF(x,y) L= sinx OF,(x,y) = cos(x — 2L) — cosx
ox 7E 7 sinL’ ox MO 2sin’L

(8.157)

Therefore, with the inhomogeneous BCs, we have the following solution for the
inhomogeneous equation:

_ cos(x —2L) — cosx — 2sin L sinx+ 2sin°L n 20, sin L sinx + oy [cos x — cos(x — 2L)]

u() 2sin’L 2sin’L

)

(8.158)

where the second term is the surface term. If 61 = g, = 1, we have

Looking at (8.141), we find that u(x) = 1 is certainly a solution for (8.141) with
inhomogeneous BCs of 6; = ¢, = 1. The uniqueness of the solution then ensures
that u(x) = 1 is a sole solution under the said BCs.

From (8.154), we find that G(x, y) has a singularity at L = nn(n : integers). This
is associated with the fact that a homogenous equation (8.143) has a non-trivial
solution, e.g., u(x) = sinx under homogeneous BCs u(0) = u(L) = 0. The present
situation is essentially the same as that of Example 1.1 of Sect. 1.3. In other words,
when 4 = 1 in (1. 61), the form of a differential equation is identical to (8.143) with
virtually the same Dirichlet conditions. The point is that (8.143) can be viewed as a
homogeneous equation and, at the same time, as an eigenvalue equation. In such a
case, a Green’s function approach will fail.

8.6 Initial Value Problems (IVPs)
8.6.1 General Remarks

The IVPs are frequently appeared in mathematical physics. The relevant conditions
are dealt with as BCs in the theory of differential equations. With boundary
functionals Bj(u) and B,(u) of (8.3) and (8.4), setting oy = §, = 1 and other
coefficients as zero, we get
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du

Bl(u) = u(p) =0, and BZ(M) = a |x:p

=0,. (8.159)

In the above, note that we choose [r, s] for a domain of x. The points r and s can
be infinity as before. Any point p within the domain [r, s] may be designated as a
special point on which the BCs (8.159) are imposed. The initial conditions are
particularly prominent among BCs. This is because the conditions are set at one
point of the argument. This special condition is usually called initial conditions. In
this section, we investigate fundamental characteristics of IVPs.

Suppose that we have

du
u(p) = Fleyp = 0. (8.160)

with homogeneous BCs. Given a differential operator L, defined as (8.55), i.e.,

Lo = a(x) % +b(x)% elx), (8.55)

let a fundamental set of solutions be u;(x) and u(x) for
L.u(x) = 0. (8.161)

A general solution u(x) for (8.161) is given by a linear combination of #; (x) and
up(x) such that

u(x) = cru (x) + coua (x), (8.162)

where c¢; and ¢, are arbitrary (complex) constants. Suppose that we have homo-
geneous BCs expressed by (8.160). Then, we have

u(p) = cuur(p) + caua(p) =0,
u'(p) = ey (p) + cauy(p) = 0.

Rewriting it in a matrix form, we have

(m(p) Mz(P)) (Cl> _
/ / - O
w(p) ur(p) )\ e
Since the matrix represents Wronskian of a fundamental set of solutions u; (x)
and uy(x), its determinant never vanishes at any point p. That is, we have

ui(p) uap)
| u;(p)‘?éo' (8.163)



8.6 Initial Value Problems (IVPs) 275

Then, we necessarily have ¢; = ¢, = 0. From (8.162), we have a trivial solution

under the initial conditions as homogeneous BCs. Thus, as already discussed a
Green’s function can always be constructed for IVPs.

To seek the Green’s functions for IVPs, we return back to the generalized
Green’s identity described as

/de[v*(Lxu) — [LlLv]*u} = {av*% - ud(av*) + buv* s. (8.62)

r

For the surface term (RHS) to vanish, for homogeneous BCs, we have, e.g.,

d d
u(s) =l =0 and () =7, =0,

for the two sets of BCs adjoint to each other. Obviously, these are not identical
simply because the former is determined at s and the latter is determined at a
different point r. For this reason, the operator L, is not Hermitian, even though it is
formally self-adjoint. In such a case, we would rather use L, directly than construct
a self-adjoint operator because we cannot make the operator Hermitian either way.

Hence, unlike the precedent sections, we do not need a weight function w(x). Or,
we may regard w(x) = 1. Then, we reconsider the conditions which the Green’s
functions should satisfy. On the basis of the general consideration of Sect. 8.4,
especially (8.86), (8.87), and (8.94), we have [2]

LG(x,y) = (xly) = (x —y). (8.164)

Therefore, we have

#Glxy) | bx) 9Gx,y)

o alx)  ox a(x) (%,y) = a(x)

Integrating or integrating by parts the above equation, we get

aGg{y) * [%G@’yﬂio} - / {%} G(&,y)dé + / ag G(¢,y)de

X0 Xo

>
—~
=
|
<
~

Noting that the functions other than ( ) and & )) are continuous, as before we
have
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IG(x,y)
Oox

9G(x,y)

1
=—. (8.165)
&= +0 x=y+é x=y—¢&

8.6.2 Green’s Functions for IVPs

From a practical point of view, we may set r = 0 in (8.62). Then, we can choose a
domain for [0, s] (for s > 0) or [s,0] (for s <0) with (8.2). For simplicity, we use x
instead of s. We consider two cases of x > 0 and x<0.

(i) Case I (x > 0): Let u;(x) and u(x) be a fundamental set of solutions. We
define F(x,y) and F,(x,y) as before such that

Fi(x,y) = ciui (x) + coup(x)  for 0<x<y, (8.166)
Fy(x,y) = dyuy (x) + doua(x) for O<y<ux. ‘
As before, we set

Fi(x,y)for 0<x<y,
Fy(x,y)for 0<y<x.

G@w—{
Homogeneous BCs are defined as
u(0)=0 and u'(0)=0.
Correspondingly, we have
Fi1(0,y)=0 and F;(0,y)=0.
This is translated into
c1u1(0) +coup(0) =0 and  c1u(0) + 21y (0) = 0.
In a matrix form, we get
(ul(O) uz(O)) (c1> _o.
(0) u5(0) )\ e2
As mentioned above, since u(x) and u,(x) are a fundamental set of solutions,
we have ¢; = ¢, = 0. Hence, we get

Fi(x,y) =0.
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From the continuity and discontinuity conditions (8.165) imposed upon the
Green’s functions, we have

diuy (y) +daun(y) =0 and  diu(y) + dais (y) = 1/a(y). (8.167)

As before, we get

d = — and dp, =
aly

where W (u;(y), u2(y)) is Wronskian of u;(y) and u>(y). Thus, we get

up (xX)uy (y) — uy (X)ua(y) .

D) =W (), w0) (5168
(i) Case II (x<0): Next, we think of the case as below:
Fi(x,y) = ciuy (x) + coup(x)  for y<x <0, (8.169)
F>(x,y) = dyuy (x) + doua(x) for x<y<O.
Similarly proceeding as the above, we have ¢; = ¢; = 0. Also, we get
ur (X)ua(y) — ua(x)u
Fa(x,y) = 14(1&) 34%1 (y)fiz)@‘)gy ) (8.170)

Here notice that the sign is reversed in (8.170) relative to (8.168). This is because
on the discontinuity condition, instead of (8.167) we have to have

diy (y) + datty (y) = —1/a(y).

This results from the fact that magnitude relationship between the arguments x
and y has been reversed in (8.169) relative to (8.166).

Summarizing the above argument, (8.168) is obtained in the domain 0 <y <x;
(8.170) is obtained in the domain x <y <0. Noting this characteristic, we define a
function such that

O(x,y) = 0(x —y)0(y) — 0(y —x)0(—y). (8.171)
Notice that
O(x,y) = —O(—x, —y).

That is, ©(x,y) is antisymmetric with respect to the origin.
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Fig. 8.2 Graph of a function
B(x,y). ©(x,y) =1 or-1in
hatched areas, otherwise
B(x,y) =0

Figure 8.2 shows a feature of ®(x, y). If the “initial point” is taken at x = a, we
can use @(x — a,y — a) instead; see Fig. 8.3. The function is described as

O —a,y—a)=0(x—y)0(—a)—0(y—x)0(a—y).

Note that ®(x — a,y — a) can be obtained by shifting ®(x,y) toward the posi-
tive direction of the x- and y-axes by a (a can be either positive or negative; in
Fig. 8.3, we assume a > 0). Using the ®(x,y) function, the Green’s function is
described as

up (X)ur (y) — ui (x)uz(y) O(x,y). (8.172)

G(x,y) = a()W(ur (), u2(y))

Defining a function F such that

R e
we have
Glx,y) = F(x,y)0(x, y). (8.174)
Notice that
O(r,y) £O(y,x) and G(x,y) # G(y,x). (8.175)

It is therefore obvious that the differential operator is not Hermitian.
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8.6.3 Estimation of Surface Terms

To include the surface term of the inhomogeneous case, we use (8.62).

s
s

/ dx[v*(Lxu) - [Ljv]*u} - {av*%—ud(g*) —&-buv*} . (8.62)

r
r

As before, we set r =0 in (8.62). Also, we classify (8.62) into two cases
according as s > 0 or s <0.
(i) Case I (x > 0,y > 0): Equation (8.62) reads as

* . T * _ *d_u_ d(d\/*) . o
/dx{v (Lyu) — [L]V] u] av’ U + buv . (8.176)
0
As before, inserting
gx,y) =G (y,x) = G(y,x) (8.177)

into v of (8.176) and arranging terms, we have

~ [ 6t
0
—la xdu(x)iuxdai(x) xfuxaxaG(%x) x)u(x X N
a0 “5) — ) 292 600.0) —uwlat) 20 oG
(8.178)

Note that in the above we used LIg(x,y) = 6(x — y). In Fig. 8.4, we depict a
domain of G(y, x) in which G(y,x) does not vanish. Notice that we get the domain
by folding back that of ©(x,y) (see Fig. 8.2) relative to a straight line y = x. Thus,
we find that G(y, x) vanishes at x > y. So does aG(”) see Fig. 8.4. Namely, the
second term of RHS of (8.178) vanishes at x = In other words, g(x,y) and

G(y,x) must satisfy the adjoint BCs; i.e.,

8(00,y) = G(y,00) = 0. (8.179)

At the same time, the upper limit of integration range of (8.178) can be set at y.
Noting the above, we have
(the first term) of (8.178)
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= /de(y,x)d(x). (8.180)

Also with the second term of (8.178), we get
(the second term) of (8.178) =

du(x)
dx

du(0)
dx

da(x)

0G(y, x)
o p +b(x)u(x)G(y, x) »
0) 2% (y,0)  u(0)a(0) 242

+a(x)G(y,x) — u(x) G(y,x) — u(x)a(x)

= a(0)G(y,0) +5(0)u(0)G(y, 0).

x=0

(8.181)
If we substitute inhomogeneous BCs

u(0) =0, and du

o =o (8.182)

x=0

for (8.181) along with other appropriate values, we should be able to get a unique
solution as

da(0)
u(y) = | dxG(y,x)d(x)+ |2a(0) — oy +01b(0)| G(y,0)
0/ [ a ] (8.183)
—01a(0) 8Gg;,x) .

Exchanging arguments x and y, we get

X

u(x) = /dyG(x7 y)d(y) + [aza(O) — 0 da(0)
0

+010(0) | G(x,0)
(8.184)

y=0

Here, we consider that @(x,y) = 1 in this region and use (8.174). Meanwhile,
from (8.174), we have

9G(xy) _ OF (x.y)

. 1
B B X By F(x,y) (8.185)

In the second term,
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20ke) O )+ o — ) 22 - 0D gy -y - P
—0(x = )0(y) +0(x — y)o(y) — o(y — x)0(—y) + 0(y — x)3(~y)
= —0(x —y)[0(y) + 0(=y)] +[0(x —y) + 0y — x)]5(y)
= —5(x = y)[0(y) + 0(=y)] +[0(x) + O(=x)]6(y) = —0(x — y) + (),
(8.186)
where we used
0(x) + 0(—x) = 1 (8.187)
as well as
F()o(y) =£(0)d(y) (8.188)
and
o(=y) = o(y). (8.189)

However, the function —d(x —y)+d(y) is of secondary importance. It is
because in (8.184) we may choose [¢,x — ¢](¢ > 0) for the domain y and put
& — + 0 after the integration and other calculations related to the surface terms.
Therefore, —3(x — y) + d(y) in (8.186) virtually vanishes.

Thus, we can express (8.185) as

9G(x,y) _ 0F(x,y) _ 0F(xy)
Then, finally we reach
r da(0
o) = [ OF@0)+ | o2a0) 0 0 +016(0)| 72 0)
5 Y (8.190)
OF (x,y)
— a1a(0) B ly—o-

(i) Case II (x<0,y<0): Similarly as the above, Eq. (8.62) reads as

0
uy) = [ @Gl d)

0
+b(x)u(x)G(y, %)

—00

du(x)
dx

da(x)
dx

9G(y, x)
ox

— u(x)

- {a(X)G(y,X) G(y,%) — u(x)a(x)
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Similarly as mentioned above, the lower limit of integration range is y.

Considering both G(y, x) and 6G(”) vanish at x <y (see Fig. 8.4), we have

9G(y, x)
ox |

+ O'lb(()):| G(y,0) + 01a(0)

(8.191)

Comparing (8.191) with (8.183), we recognize that the sign of RHS of (8.191)
has been reversed relative to RHS of (8.183). This is also the case after exchanging
arguments x and y. Note, however, ©(x,y) = —1 in the present case. As a result,
two minus signs cancel and (8.191) takes exactly the same expression as (8.183).
Proceeding with calculations similarly, for both Cases I and II we arrive at a unified
solution represented by (8.190) throughout a domain (—oo, + 00).

8.6.4 Examples

To deepen understanding of Green’s functions, we deal with tangible examples of

the IVP below.

Example 8.5 Let us consider a following inhomogeneous differential equation
d*u

2 +u=1 (8.192)

Note that (8.192) is formally the same differential equation of (8.141). We may
encounter (8.192) when we are observing a motion of a charged harmonic oscillator
that is placed under a static electric field. We assume that a domain of the argument
x is a whole range of real numbers. We set boundary conditions such that

u(0) =0, and u'(0)= o,. (8.193)
As in the case of Example 8.4, a fundamental set of solutions are given by
e” and e ™. (8.194)
Therefore, following (8.173), we get

F(x,y) = sin(x — ). (8.195)



284 8 Introductory Green’s Functions

Also following (8.190), we have

X

u(x) = / dy sin(x —y) + o2 sinx — g1 cos(x —y)|,_

J (8.196)
=1 —cosx+ o, sinx -+ oy cosx.
In particular, if we choose g, = 1 and g, = 0, we have
u(x) = 1. (8.197)

This also ensures that this is a unique solution under the inhomogeneous BCs
described as ¢; = 1 and g, = 0.

Example 8.6: Damped oscillator If a harmonic oscillator undergoes friction, the
oscillator exerts damped oscillation. Such an oscillator is said to be a damped
oscillator. The damped oscillator is often dealt with when we think of bound
electrons in a dielectric medium that undergo an effect of a dynamic external field
varying with time. This is the case when the electron is placed in an alternating
electric field or an electromagnetic wave.

An equation of motion of the damped oscillator is described as

2

u du
mos —&—ra +ku = d(x), (8.198)

where m is a mass of an electron; r is a damping constant; & is a spring constant of
the damped oscillator. To seek a fundamental set of solutions of a homogeneous
equation described as

d*u du
I’I’l@ =+ ra + kl/t = 07
putting
u=-e" (8.199)

and inserting it to (8.198), we have

r k\ .
(—p2 +—ip+ —) e =0.
m m
Since e”* does not vanish, we have

k
PP+ Zip+ = =0. (8.200)
m m
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We call this equation a characteristic quadratic equation. We have three cases for
the solution of a quadratic equation of (8.200). Solving (8.200), we get

. —
il 4= (8.201)

P=om N a2 "

(1) Equation (8.201) gives two pure imaginary roots; i.e., — % + ﬁ <0 (an over

2+ k=0 (a critical damping).

4m? m

damping). (ii) The equation has double roots; —

(iii) The equation has two complex roots; —% + % > 0 (a weak damping). Of

these, Case (iii) is characterized by an oscillating solution and has many applica-
tions in mathematical physics. For the Case (i) and (ii), on the other hand, we do
not have an oscillating solution.

Case (i):

The characteristic roots are given by

ir | r k

P=om ™ Nam? "

Therefore, we have a fundamental set of solutions described by

rt ok
u(r) = exp(—%) exp| Fy\fp 5 1)

Then, a general solution is given by

Case (ii):
The characteristic roots are given by

Another solution u,(¢) is given by
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up(t) = C%inf)t)) =t exp(f%»

where ¢ and ¢’ are appropriate constants. Thus, general solution is given by

t 1
u(t) =a exp(f 2Lm> + bt exp(f 2Lm>

The most important and interesting feature emerges as a “damped oscillator” in
the next Case (iii) in many fields of natural science. We are particularly interested in

this case.
Case (iii):
Suppose that the damping is relatively weak such that the characteristic equation
has two complex roots. Let us examine further details of this case following the
prescriptions of IVPs. We divide (8.198) by m for the sake of easy handling of the

differential equation such that

d2u+rdu+k —ld()
a2 Tmax T mt m

Putting
2 k
(8.202)

we get a fundamental set of solutions described as

u(t) = exp(— ;—t) exp(Fiwr), (8.203)
m
Given BCs, following (8.172) we get as a Green’s function
G([, ‘L') _ u2(t)u1 (T) - Ml(t)uz(‘f) @(t, T)
W (ui (1), u2(7)) (8.204)
1,
= ae_ﬁ("f) sinw(t — 1)0(t, 7).

where u; (1) = exp(— £) exp(iwr) and us(1) = exp(—£%) exp(—iwr).
We examine whether G(¢, 1) is eligible for the Green’s function as follows:

r

- )e—zm(l‘f) sinw(r — 1) + we 7 cos w(r — r)} o(t,1) (5.205)

P

dG 1
dat o [(_%
+ Le 59 gin o(t —1)[6(t — 7)0(z) 4 6(t — 1)0(—1)].
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The second term of (8.205) vanishes because sinw(zr—1)o(r —1) =0-
o(t — 1) = 0. Thus,

&’G 1 2, .
—=— {(— L) e 2 sinw(r — 1) — " e 5 cos o(t—1)
m

? o 2m
—2e ) g _
we2 sin (¢ r)}@(z‘, 7) (8.206)
1 : ,
+ p” [(— ﬁ) e 3 sin (r — 1) + we I cos w(r — r)]

x [8(t — 7)0(c) + 8(z — 1)0(~1)]

In the last term using the property of the § function and 0 function, we get
o(t — 7). Note here that

e 317 cos o(t — 7)[3(1 — ©)0(7) + 0(x — 1)0(—7)]
=e2'(cosm - 0){d(r — 7)[0(7) + 0(—1)]}
=5(t—1)[0(z) + 0(—7)] = (¢ — 7).

Thus, rearranging (8.206), we get

&’G 1 P\ L]
P _ Iy SUN Y ( —a(1=1) i _
oft—1)+ co{ [( ) +w }e sinw(t — 1)

dr? 2m
- % [(— i) e 2 sinw(r — 1) + we I cos w(r — r)} }@(t, 7)
k rdG
(t=1) m mdt’

(8.207)

where we used (8.202) for the last equality. Rearranging (8.207) once again, we
have

d? d k
G, rde + -G =0t —7), (8.208)

a2 ' mdr
Defining the following operator

d? d k
=5+ . (8.209)

L re
' mdt  m’

we get

LG =6(t—1). (8.210)
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Note that this expression is consistent with (8.164). Thus, we find that (8.210)
satisfies the condition (8.123) of the Green’s function, where the weight function is
identified with unity.

Now, suppose that a sinusoidally changing external field e influences the
motion of the damped oscillator. Here, we assume that an amplitude of the external
field is unity. Then, we have

iQt

d%u rdu—&—ﬁu:leigt.
m

—_—+ —— 211
dr? + mdx m (8 )

Thus, as a solution of the homogeneous boundary conditions [i.e.,

u(0) = u(0) = 0], we get

t

1 , i
o —=(1—1) iQt
1) =— 2 t—r1)d 8.212
u(t) mw/e e™sinw(t — 1)dr, ( )
0

where 7 is an arbitrary positive or negative time. Equation (8.212) shows that with
the real part we have an external field cos Q¢ and that with the imaginary part we
have an external field sin Qz. To calculate (8.212), we use

171 . .

sinw(t — 1) = % elol—7) _ e_"”(’_f)]. (8.213)

i
Then, the equation can readily be solved by integration of exponential functions,

even though we have to do somewhat lengthy (but straightforward) calculations.
Thus for the real part (i.e., the external field is cos Qf), we get a solution

1 1 2 1
Cu(t) = — (£>Qsin Qt+ — (ZL) cos Qf — — (Qz — w?) cos Qt
m m \2m m

| p—— 2 2 rl 2 2\ o
4+ —e ' | (Q° — t———(Q° + t
€ [( w )cosw ) ( w )smw (8.214)

—(z—) coswt — (=—) —sinw
2m 2m/) ’
where C is a constant [i.e., a constant denominator of u(f)] expressed as

r? r\4
C=(@ -0+ 55 (Q+0?) + (%) . (8.215)

For the imaginary part (i.e., the external field is sin Qf), we get
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1 1 1 2
Cu(t) = —— (@ — »*) sinQt — — (%)Q cos Qt + — (i) sin Q¢
m m m
1 _..[Q 20
+ —e ol [— (Q* — o) sinot + L Qcoswr+ (L> Zsin a)t] )
m W m 2m/

(8.216)

In Fig. 8.5, we show an example that depicts the positions of a damped oscillator
as a function of time. In Fig. 8.5a, an amplitude of an envelope gradually dimin-
ishes with time. An enlarged diagram near the origin (Fig. 8.5b) clearly reflects the

(a)os

o

Phase: 0

Position (m)

0

-0

-0.6
—446 754
Time (s)

(b) 06

0.2

il Wit Aﬂl\nnw
VTR

Position (m)
o
<
L
-_—
-_—
S ————

-0.2
Phase: 0
-0.4
-0.6
-110 110
Time (s)

Fig. 8.5 Example of a damped oscillation as a function of ¢. a Overall profile. b Profile enlarged
near the origin



290 8 Introductory Green’s Functions

initial conditions u(0) = u(0) = 0. In Fig. 8.5, we put m = llkg], Q = 1[4,
o =0.94[Y], and r = 0.006 [1%} In the above calculations, if £ is small enough

1
(i.., damping is small enough), the third order and fourth order of ;- may be ignored
and the approximation is precise enough.

In the case of inhomogeneous BCs, given o1 = u(0) and ¢, = u(0), we can
decide additional terms S(#) using (8.190) such that

ry 1 g .
S(t) = (0'2 +o; —) —e ' sin wt
o/ r ms o A (8.217)

_— (— e~ sin wt — we > cos a)t) )
o \2m

This term arises from (8.190). Thus, from (8.212) and (8.217), u(t) + S(¢) gives
a unique solution for the SOLDE with inhomogeneous BCs. Notice that S(z) does
not depend on the external field.

8.7 Eigenvalue Problems

We often encounter eigenvalue problems in mathematical physics. Of these, those
related to Hermitian differential operators have particularly interesting and impor-
tant features. The eigenvalue problems we have considered in Part I are typical
illustrations. Here, we investigate general properties of the eigenvalue problems.

Returning to the case of homogeneous BCs, we consider a following homoge-
neous SOLDE:

u u
at(x)ix—2 —|—b(x)% +c(x)u = 0. (8.5)

Defining a following differential operator L, such that

d? d
L, = a(x) 2 +b(x) o +c(x), (8.55)
we have a homogeneous equation
Luu(x) =0. (8.218)

Putting a constant —A instead of c(x), we have

d’u du

a "
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If we define a differential operator L, such that

d d
Lx = a(x) @ + b(x) d_x — A, (8220)
we have a homogeneous equation
Lau=0 (8.221)

to express (8.219). Instead, if we define a differential operator L, such that

d? d
Ly= a(x)@ +b(x)&,

we have the same homogeneous equation
Ly = u (8.222)

to express (8.219).

Equations (8.221) and (8.222) are essentially the same except that the expression
is different. The expression using (8.222) is familiar to us as an eigenvalue equation.
The difference between (8.5) and (8.219) is that whereas c(x) in (8.5) is a given
fixed function, A in (8.219) is constant, but may be varied according to the solution
of u(x). One of the most essential properties of the eigenvalue problem that is posed
in the form of (8.222) is that its solution is not uniquely determined as already
studied in various cases of Part I. Remember that the methods based upon the
Green’s function are valid for a problem to which a homogeneous differential
equation has a trivial solution (i.e., identically zero) under homogeneous BCs. In
contrast to this situation, even though the eigenvalue problem is basically posed as a
homogeneous equation under homogeneous BCs, non-trivial solutions are expected
to be obtained. In this respect, we have seen that in Part I we rejected a trivial
solution (i.e., identically zero) because of no physical meaning.

As exemplified in Part I, the eigenvalue problems that appear in mathematical
physics are closely connected to the Hermiticity of (differential) operators. This is
because in many cases an eigenvalue is required to be real. We have already
examined how we can convert a differential operator to the self-adjoint form. That
is, if we define p(x) as in (8.26), we have the self-adjoint operator as described in
(8.70). As a symbolic description, we have

w(x)Lu = — {p(x) %} + c(x)w(x)u. (8.223)

In the same way, multiplying both sides of (8.222) by w(x), we get

w(x)Lyu = Aw(x)u. (8.224)



292 8 Introductory Green’s Functions

For instance, Hermite differential equation that has already appeared as (2.118)
in Sect. 2.3 is described as

d*u du
w2 Zxa +2nu = 0. (8.225)

If we express (8.225) as in (8.224), multiplying e on both sides of (8.225), we
have

d > du 2
—le™ — 2ne ™ u = 0. 22
™ (e dx) +2ne ™ u=20 (8.226)

Notice that the differential operator has been converted to a self-adjoint form
according to (8.31) that defines a real and positive weight function e™ in the
present case. The domain of the Hermite differential equation is (—oo, + 00) at the
endpoints (i.e., £00) of which the surface term of RHS of (8.69) approaches zero
sufficiently rapidly in virtue of e .

In Sects. 3.4, and 3.5, in turn, we dealt with the (associated) Legendre differential
equation (3.127) for which the relevant differential operator is self-adjoint. The
surface term corresponding to (8.69) vanishes. It is because (1 — 52) vanishes at the
endpoints £ = cos = +1 (i.e., 0 = 0or 7) from (3.107). Thus, the Hermiticity is
automatically ensured for the (associated) Legendre differential equation as well as
Hermite differential equation. In those cases, even though the differential equations
do not satisfy any particular BCs, the Hermiticity is yet ensured.

In the theory of differential equations, the aforementioned properties of the
Hermitian operators have been fully investigated as the so-called Strum—Liouville
system (or problem) in the form of a homogeneous differential equation. The related
differential equations are connected to classical orthogonal polynomials having
personal names such as Hermite, Laguerre, Jacobi, Gegenbauer, Legendre,
Tchebichef. These equations frequently appear in quantum mechanics and elec-
tromagnetism as typical examples of Strum-Liouville system. They can be con-
verted to differential equations by multiplying an original form by a weight
function. The resulting equations can be expressed as

[0 B im0 o (8.227)

where Y,(x) is a collective representation of classical orthogonal polynomials.
Equation (8.226) is an example. Conventionally, a following form is adopted
instead of (8.227):
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d dy,(x)

ﬁa[aﬁ)w@ d }HnYn(X)=O, (8.228)

where we put (aw) = bw. That is, the differential equation is originally described
as

d?Y,(x) dy,(x) B
a(x) 02 +b(x) o + AYu(x) = 0. (8.229)

In the case of Hermite polynomials, for instance, a(x) = 1 and w(x) = e *.

Since we have (aw) = —2xe™ = bw, we can put b = —2x. Examples including
this case are tabulated in Table 8.2. The eigenvalues 4, are associated with real
numbers that characterize the individual physical systems. The related fields have
wide applications in many branches of natural science.

After having converted the operator to the self-adjoint form, i.e., L, = LI,
instead of (8.100), we have

/dxw(x){v*(Lxu) — L] u} = 0. (8.230)
Rewriting it, we get
/dxv*[w(x)Lxu] = /dx[w(x)va]*u. (8.231)

If we use an inner product notation described by (8.88), we get
(v|Lyu) = (Lyv|u). (8.232)

Here let us think of two eigenfunctions /; and y; that belong to an eigenvalue /;
and 4;, respectively. That is,

w(xX)Lop; = Zw(x)y; and - w(x)Loy; = Lw(x)y;. (8.233)
Inserting ; and y; into u and v, respectively, in (8.232), we have
<%‘Lx‘ﬁi> = <¢j|)“i¢i> = ii<%W;‘> = ?(%Wﬁ = <’1j¢j|‘//i> = <Lxlpj|lpi>' (8~234)

With the second and third equalities, we have used a rule of the inner product
(see Parts I and III). Therefore, we get
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(2 = 75 ) wylw) = 0. (8.235)
Putting i = in (8.235), we get
(/li - i,*) (Wily;) = 0. (8.236)
An inner product (,|y;) vanishes if and only if ;) = 0; see inner product
calculation rules of Sect. 11.1. However, |/;) = 0 is not acceptable as a physical
state. Therefore, we must have (y;|y;) # 0. Thus, we get

)vi — ll* =0 or /1,' = /I;F (8237)

The relation (8.237) obviously indicates that /; is real; i.e., we find that eigen-
values of an Hermitian operator are real. If 4; # 4; = 7, from (8.235) we get

(Wily;) = 0. (8.238)

That is, [;) and [;) are orthogonal to each other.

We often encounter related orthogonality relationship between vectors and
functions. We saw several cases in Part I and will see other cases in Part III.
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Part II1
Linear Vector Spaces

In this part, we treat vectors and their transformations in linear vector spaces so that
we can address various aspects of mathematical physics systematically but
intuitively. We outline general principles of linear vector spaces mostly from an
algebraic point of view. Starting with abstract definition and description of vectors,
we deal with their transformation in a vector space using a matrix. An inner product
is a central concept in the theory of a linear vector space so that two vectors can be
associated with each other to yield a scalar. Unlike many of books of linear algebra
and linear vector spaces, however, we describe canonical forms of matrices before
considering the inner product. This is because we can treat the topics in light of the
abstract theory of matrices and vector space without a concept of the inner product.
Of the canonical forms of matrices, Jordan canonical form is of paramount
importance. We study how it is constructed providing a tangible example.

In relation to the inner product space, normal operators such as Hermitian
operators and unitary operators frequently appear in quantum mechanics and
electromagnetism. From a general aspect, we revisit the theory of Hermitian
operators that often appeared in both Parts I and II.



Chapter 9
Vectors and Their Transformation

In this chapter, we deal with the theory of finite-dimensional linear vector spaces.
Such vector spaces are spanned by a finite number of linearly independent vectors,
namely basis vectors. In conjunction with developing an abstract concept and
theory, we mention a notion of mapping among mathematical elements. A linear
transformation of a vector is a special kind of mapping. In particular, we focus on
endomorphism within a n-dimensional vector space V". Here, the endomorphism is
defined as a linear transformation: V* — V". The endomorphism is represented by a
(n,n) square matrix. This is most often the case with physical and chemical
applications, when we deal with matrix algebra. In this book, we focus on this type
of transformation.

A non-singular matrix plays an important role in the endomorphism. In this
connection, we consider its inverse matrix and determinant. All these fundamental
concepts supply us with a sufficient basis for better understanding of the theory of
the linear vector spaces. Through these processes, we should be able to get
acquainted with connection between algebraic and analytical approaches and gain a
broad perspective on various aspects of mathematical physics and related fields.

9.1 Vectors

From both fundamental and practical points of view, it is desirable to define linear
vector spaces in an abstract way. Suppose V is a set of elements denoted by a, b, c,
etc., called vectors. The set V is a linear vector space (or simply a vector space), if a
sum a +b € V is defined for any pair of vectors @ and b and the elements of V
satisfy the following mathematical relations:

(@a+b)+c=a+(b+c), (9.1)
a+b=>b+a, (9.2)
© Springer Nature Singapore Pte Ltd. 2018 299
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a+0=a, (9.3)
a+(—a)=0. (9.4)

For the above, 0 is called the zero vector. Furthermore, fora € V, ca € V is
defined (c is a complex number called a scalar) and we assume the following
relations among vectors and scalars:

(cd)a = c(da), (9.5)
la =a, (9.6)
cla+b) =ca+ch, (9.7)
(c+d)a = ca+da. (9.8)

On the basis of the above relations, we can construct the following expression
called a linear combination:

cia) +cocax+ - +cua,.
If this linear combination is equated to zero, we obtain
cia;+car+ - +cpa, =0. (9.9)

If (9.9) holds only in the case where every ¢; =0(1<i<n), the vectors
aj,ay,---,a, are said to be linearly independent. In this case, the relation repre-
sented by (9.9) is said to be trivial. If the relation is non-trivial (i.e., 3¢ #0), those
vectors are said to be linearly dependent.

If in the vector space V the maximum number of linearly independent vectors is
n, V is said to be an n-dimensional vector space and sometimes denoted by V". In
this case, any vector x of V" is expressed uniquely as a linear combination of
linearly independent vectors such that

X =xia;+x0a;+ --- +x,a,. (9.10)
Suppose x is denoted by
x =xXa +xXa,+ - +xa, (9.11)
Subtracting both sides of (9.11) from (9.10), we obtain
0= (x, —x))ar+ (o —xy)ar+ -+ + (%, — x})a,. (9.12)

Linear independence of the vectors ay,a;, - - - ,a, implies x,, — x’n =0;i.e.,x, =
x, (1 <i<n). These n linearly independent vectors are referred to as basis vectors.
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A vector space that has a finite number of basis vectors is called finite-dimensional;
otherwise, it is infinite dimensional.
Alternatively, we express (9.10) as

x=(a--—-a,)| : | (9.13)

Xn

X1
A set of coordinates is called a column vector (or a numerical vector)
Xn
that indicates an “address” of the vector x with respect to the basis vectors
a,a,---,a,. Any vector in V" can be expressed as a linear combination of the
basis vectors, and hence, we say that V" is spanned by ai,a,,---,a,. This is
represented as

V" = Span{a,,a,- - ,a,}. (9.14)

Let us think of a subset W of V" (i.e., W C V"). If the following relations hold
for W, W is said to be a (linear) subspace of V".

abeW=a+beWw,

(9.13)
acW=caecW.
These two relations ensure that the relations of (9.1) to (9.8) hold for W as well.
The dimension of W is equal to or smaller than n. For instance, W =
Span {a;,ay,---,a,}(r <n) is a subspace of V". If r = n, W = V". Suppose that
there are two subspaces W; = Span {a;} and W, = Span {a,}. Note that in this
case, Wi UW, is not a subspace, because W;UW, does not contain a; + a,.
However, a set U defined by

U= {x=x +x3;"x, € W), x, € W,} (9.16)

is a subspace of V. We denote this subspace by W; + W,.

To show this is in fact a subspace, suppose that x,y € W; + W,. Then, we may
express x =x; +x, and y =y, +y,, where x,y, € W;; x2,y, € W,. We have
x+y=(x;+y;)+ (x2+y,), where x; +y, € W; and x; +y, € W, because both
W, and W, are subspaces. Therefore, x +y € W; + W,. Meanwhile, with any scalar
¢, cx=cx;+cxy € Wi+ W, By definition (9.15), Wi+ W, is a subspace
accordingly. Suppose here x; € Wi. Then, x; =x;4+0¢& W+ W,. Then,
W, C Wi + W,. Similarly, we have W, C W 4+ W,. Thus, W; + W, contains both
W, and W,. Conversely, let W be an arbitrary subspace that contains both W; and
W,. Then, we have "x; € W; C Wand "x, € Wo C W and, hence, we have
x| +x, €W by definition (9.15). But, from (9.16), W, + W, = {x| +x2; "x;
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€ Wy, x, € W,}. Hence, W, + W, C W. Consequently, any subspace necessarily
contains Wi + W,. This implies that W, + W, is the smallest subspace that contains
both W; and W,.

Example 9.1 Consider a three-dimensional Cartesian space R* (Fig. 9.1). We
regard the xy-plane and yz-plane as a subspace W; and W,, respectively, and
R? = W, + W». In Fig. 9.1a, a vector 0 (in R?) is expressed as OA + AB (i.e.,
a sum of a vector in W and that in W,). Alternatively, the same vector ﬁ}) can be
_— _— . .
expressed as 04’ + A’B- On the other hand, we can designate a subspace in a
different way; i.e., in Fig. 9.1b, the z-axis is chosen for a subspace Wj instead of
W,. We have R = Wi+ W5 as well. In this case, however, ﬁf is uniquely
expressed as OB = OP + PB . Notice that in Fig. 9.1a, W, N W, = Span {e2},

z z
(a) w,
B B/
o o
y S
we 0N
A A’
X X
(b) z W
B
o)
y
174
P
X

Fig. 9.1 Decomposition of a vector in a three-dimensional Cartesian space R? into two subspaces.
aR =W, +Wo; WiNW, = Span {e>}, where e is a unit vector in the positive direction of the
y-axis. b R® = W, + Ws; Wi N W5 = {0}
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where e; is a unit vector in the positive direction of the y-axis. In Fig. 9.1b, on the
other hand, we have W; N W5 = {0}.
We can generalize this example to the following theorem.

Theorem 9.1 Let W, and W, be subspaces of Vand V = W + W,. Then, a vector
x in V is uniquely expressed as

X =x1+Xx2,X] € W17x2 € W27

if and only if W, N W, = {0}.

Proof Suppose W NW,={0} and x=ux;+x =x|+x}, x1,x] € W,x2,
x5 € W,. Then, x; — x| = x} —x,. LHS belongs to W, and RHS belongs to W.
Both sides belong to W; N W, accordingly. Hence, from the supposition, both the
sides should be equal to a zero vector. Therefore, x| = x/l, x, = x%. This implies
that x is expressed uniquely as x = x| +x,. Conversely, suppose the vector rep-
resentation (x =x;+x,) is unique and x € WyNW,. Then, x =x+0=
0+x;x,0 € W) and x,0 € W,. Uniqueness of the representation implies that
x = 0. Consequently, W; N W, = {0} follows.

In case W, NW, = {0}, V.= W; + W, is said to be a direct sum of W; and W, or
we say that V is decomposed into a direct sum of W, and W,. We symbolically
denote this by

V=W &W,. (9.17)
In this case, the following equality holds:
dim V = dim W, 4+ dim W,, (9.18)

where “dim” stands for dimension of the vector space considered. To prove (9.18),
we suppose that V is a n-dimensional vector space and that W, and W, are spanned
by r; and r, linearly independent vectors, respectively, such that

W, = Span {eil)veél)a"'veﬁf)} and W, = Span {e<12>,egz>’,..7eg)}.
(9.19)

This is equivalent to that dimension of W; and W, is r; and r,, respectively. If
V = Wi + W, (here we do not assume that the summation is a direct sum), we have

V = Span {e<11>7e<21>7 el e e aeff)}- (9.20)

Then, we have n <r| +r. This is almost trivial. Suppose r; 4+ r, <n. Then,

these (r; + r2) vectors cannot span V, but we need additional vectors for all vectors

including the additional vectors to span V. Thus, we should have n<r; +r,
accordingly. That is,



304 9  Vectors and Their Transformation

dimV < dim W; 4+ dim W,. (921)

Now, let us assume that V = W, & W,. Then, efz)(l <i<r,) must be linearly

independent of e(11>,e(21), e ,eﬁll). If not, efz)

bination of e(ll) , egl), .

could be described as a linear com-

~,e<.11>. But, this would imply that e?z) e W, ie.,

e§2> € WiNW,, in contradiction to that we have V = W; ® W,. It is because
Wi NW, = {0} by assumption. Likewise, e](l)(l <j<r) is linearly independent of
e(12>,e(22), .. ,eﬁ?. Hence, e<11)’e§1>7 ... ,3<1)7e(12)’e§2>7 .. ,ef.?

bl r

must be linearly
independent. Thus, n > r; 4 r». This is because in the vector space V we may well
have additional vector(s) that are independent of the above (r; +r;) vectors.
Meanwhile, n < r; 4 r, from the above. Consequently, we must have n = r| + r;.
Thus, we have proven that

V=W &W, = dim V =dim W; 4+ dim W,.

Conversely, suppose n = r; + r,. Then, any vector x in V is expressed uniquely as

x= (alegl) + o +arle(l)) + (ble(IZ) + - +b e(z)). (9.22)

r 2%y

The vector described by the first term is contained in W, and that described by
the second term in W,. Both the terms are again expressed uniquely. Therefore, we
get V.= W; @ W,. This is a proof of

dmV =dim W, + dim W, = V =W, & W,.

The above statements are summarized as the following theorem:

Theorem 9.2 Let V be a vector space and let Wy and W, be subspaces of V. Also,
suppose V.= W + W,. Then, the following relation holds:

dimV < dim W; + dim W,. (9.21)
Furthermore, we have

dim V =dim W, + dim W,, (9.23)
if and only if V. =W, & W,.
Theorem 9.2 is readily extended to the case where there are three or more

subspaces. That is, having Wy, W,,--- W, so that V=W, +W,.--- + W, we
obtain the following relation:

dim V< dim W; + dim Wo + --- + W,,. (9.24)

The equality of (9.24) holds if and only if V=W, & W, & --- § W,,.
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In light of Theorem 9.2, Example 9.1 says that 3 = dim R®*<2+2 =
dim W, + dim W5. But, dim R? = 2+ 1 = dim W, + dim W;. Therefore, we have
R = W, & Ws.

9.2 Linear Transformations of Vectors

In the previous section, we introduced vectors and their calculation rules in a linear
vector space. It is natural and convenient to relate a vector to another vector, as a
function f relates a number (either real or complex) to another number such that
y = f(x), where x and y are certain two numbers. A linear transformation from the
vector space V to another vector space W is a mapping A : V — W such that

Aca +db) = cAa) + dA(b). (9.25)

We will briefly discuss the concepts of mapping at the end of this section.
It is convenient to define addition of the linear transformations. It is defined as

(A+ B)a = Aa + Ba, (9.26)

where a is any vector in V.

Since (9.25) is a broad but abstract definition, we begin with a well-known
simple example of rotation of a vector within a xy-plane (Fig. 9.2). We denote an
arbitrary position vector x in the xy-plane by

X = xe; +ye;.

_ (e1e2)<;), (9.27)

Fig. 9.2 Rotation of a vector y
within a xy-plane

()

€1
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where e and e, are unit basis vectors in the xy-plane, and x and y are coordinates of
the vector x in reference to e; ande,. The expression (9.27) is consistent with
(9.13). The rotation represented in Fig. 9.2 is an example of a linear transformation.
We call this rotation R. According to the definition,

R(xe; +ye;) = R(x) = xR(e;) + yR(e>). (9.28)
Putting R(xe; +ye;) =x’, R(e;) = €}, and R(ey) = €},

x' = xe| +ye,
9.29
- () o2

y

From Fig. 9.2, we readily obtain

e, =e cos 0+eysin 0,
o T (9.30)
e, = —e; sin 0 +e;cos 0.

Using a matrix representation,

(€}eh) = (9102)(C059 Sine)- (9.31)

sinf  cosf
Substituting (9.30) into (9.29), we obtain
x' = (x cos O —y sin 0)e; + (x sin 0+ cos 0)e,. (9.32)
Meanwhile, x’ can be expressed relative to the original basis vectors e; and e,.
X' =xe +ye. (9.33)
Comparing (9.32) and (9.33), uniqueness of the representation ensures that

X =xcos O —ysin 0,
, . (9.34)
y =xsin 8+y cos 6.

Using a matrix representation once again,
x cosf —sinf\ [ x
(y’) a (sin@ cos 0 )(y) (9-35)

Further combining (9.29) and (9.31), we get
¥ = R(x) = (e162) (COS 0 —sin 9) (x) (9.36)

sind  cosf y
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The above example demonstrates that the linear transformation R has a (2,2)
matrix representation shown in (9.36). Moreover, this example obviously shows
that if a vector is expressed as a linear combination of the basis vectors, the
“coordinates” (represented by a column vector) can be transformed as well by the
same matrix.

Regarding an abstract n-dimensional linear vector space V", the linear vector
transformation A is given by

aip ot dip X1
Alx)=(er---en)| o T b (9.37)
anl ctt dpp Xn
where ey, e,,---, ande, are basis vectors and xj,x»,---, and x, are the corre-

n
sponding coordinates of a vector x = > x;e;. We assume that the transformation is
i=1
a mapping A: V' — V" (i.e.,, endomorphism). In this case, the transformation is
represented by an (n,n) matrix. Note that the matrix operates on the basis vectors
from the right and that it operates on the coordinates (i.e., a column vector) from the
left. In (9.37), we often omit a parenthesis to simply write Ax.
Here we mention matrix notation for later convenience. We often identify a
linear vector transformation with its representation matrix and denote both trans-
formation and matrix by A. On this occasion, we write

ap - Qin
A= 0 L LA=(A);= (ay), etc., (9.38)

apl - App

where with the second expression (A),; and (a,-j) represent the matrix A itself; for

we frequently use indexed matrix notations such as AL AT, A. The notation (9.38)
can conveniently be used in such cases. Note moreover that a;; represents the matrix
A as well.

Equation (9.37) has duality such that the matrix A operates either on the basis
vectors or coordinates. This can explicitly be written as

aip - A X1
Alx) = |(er---en)
Qn ann ) | \ Xn
ain - oa\ x|
= (e -en)

(277 I 17 Xn
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That is, we assume the associative law with the above expression. Making
summation representation, we have

n
> aux
X1 =1

A()C) = ( (23273 I Zekakn> = (el o 'en)
k=1 k=1

T Z aplX]
=1 (9.39)

n

E erax;
=1
n n
€rxdr | X1 = E E apX| | €k-
1 =1

k=1

I
~
S M:
-

=

=1 k=

That is, the above equation can be viewed in either of two ways, i.e., coordinate
transformation with fix vectors or vector transformation with fixed coordinates.
Also, Eq. (9.37) can formally be written as

Ax)=(e1---e)A|l : | =(e1A---e,A)| |, (9.40)

Xn Xn

where we assumed that the distributive law holds with operation of A on (e; - - - €,,).
Meanwhile, if in (9.37) we put x; = 1,x; = 0 (j # i), from (9.39) we get

A(e,-) = Z €ray;.
k=1

Therefore, (9.39) can be rewritten as

xi
Alx) = (Aler) - Ale))| . (9.41)

Xn

Since x; (1 <i<n) can arbitrarily be chosen, comparing (9.40) and (9.41) we
have

e A=A(e;) (1<i<n). (9.42)

The matrix representation is unique in reference to the same basis vectors.
Suppose that there is another matrix representation of the transformation A such that
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/
T B T X1

AW =(ee)| 2 ] (9.43)

/ /
1 Gy Xn

a

Subtracting (9.43) from (9.37), we obtain

aipr - A X1 S T P X1
(e1---en) -
[0 R ) Xn Cl:ﬂ ce a:m Xn
’Zl(alk — dy )Xk
k=1
=(e;---e,) =0

n
2 = @)x

On the basis of the linear dependence of the basis vectors, > ;_ (ax — dj)xx =
0(1 <i<n). This relationship holds for any arbitrarily and independently chosen
complex numbers x; (1 <i<n). Therefore, we must have ay = aj,(1 <i,k<n),
meaning that the matrix representation of A is unique with regard to fixed basis
vectors.

Nonetheless, if a set of vectors ej,e;,---, and e, does not constitute basis
vectors (i.e., those vectors are linearly dependent), the aforementioned uniqueness
of the matrix representation loses its meaning. For instance, in V? take vectors e;
and e; such that e; = e, (i.e., the two vectors are linearly dependent) and let the
1 0
0 2
transformation. At the same time, the vector e,(= e;) should be converted to
2e;(= 2e;). It is impossible except for the case of e; = e, = 0. The above matrix
B in its own right is an object of matrix algebra, of course.

Putting a =b =0 and ¢ =d =1 in the definition of (9.25) for the linear
transformation, we obtain

transformation matrix be B = ( ) This means that e; should be e; after the

A(0) = A(0) +A(0).
Combining this relation with (9.4) gives
A(0) =0. (9.44)

Then do we have a vector u # 0 for which A(#) = 0? An answer is yes. This is

because if a (2,2)-matrix of ( (1) 8) is chosen for R, we get a linear transformation

such that
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(e1€5) = (6’192)((1) 8) = (e)0).

That is, we have R(e;) = 0.

In general, vectors x (€ V) satisfying A(x) = 0 form a subspace in a vector
space V. This is because A(x) =0 and A(y) =0 = A(x+y) =A(x)+A(y) =0,
A(cex) = cA(x) = 0. We call this subspace of a maximum dimension a null-space
and represent it as Ker A, where Ker stands for “kernel.” In other words,
Ker A = A~1(0). Note that this symbolic notation does not ensure the existence of
the inverse transformation A~! (vide infra) but represents a set comprising elements
x that satisfy A(x) = 0. In the above example, Ker R = Span{e, }.

A(V"™) (here V" is a vector space considered and we assume that A is an endo-
morphism of V") also forms a subspace in V”". In fact, for any x, y € V", we have
Ax),A(y) € A(V") = A(x)+A(y) =A(x+y) € A(V");cA(x) = A(ex) € A(V").
Obviously, A(V") C V". The subspace A(V") is said to be an image of the trans-
formation A and sometimes denoted by Im A. We have a so-called dimension
theorem expressed as follows:

Theorem 9.3 Dimension theorem Let V" be a linear vector space of dimension n.
Also, let A be an endomorphism: V' — V". Then, we have

dim V" = dim A(V") 4+ dim Ker A. (9.45)

The number of dim A(V") is said to be a rank of the linear transformation A.
That is, we write

dim A(V") = rank A.

Also, the number of dim Ker A is said to be a nullity of the linear transfor-
mation A. That is, we have

dim Ker A = nullity A.
Thus, (9.45) can be written succinctly as

dim V" = rank A + nullity A.

Proof Let e1,e;,---, and e, be basis vectors of V". First, assume
A(el) = A(ez) == A(e,,) =0.
This implies that nullity A = n. Then, A(Y}_7_| xe;) = Y1, x;A(e;) = 0. Since

x; is arbitrarily chosen, the expression means that A(x) =0 for "x € V". This
implies A = 0. That is, rank A = 0. Thus, (9.45) certainly holds.
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To proceed with proof of the theorem, we think of a linear combination
>, cie;. Next, assume that Ker A = Span{e,e>,---,e,}(v<n); dimKer A = v.
After A is operated on the above linear combination, we are left with
>t CiA(e;). We put

n

D cie) =) ciAle) =0. (9.46)
i=1

i=v+1

Suppose that the (n —v) vectors A(e;)(v+1<i<n) are linearly dependent.
Then without loss of generality, we can assume ¢, 1| # 0. Dividing (9.46) by ¢, 1 1,
we obtain

Cn

Cy
A(eerl) + L214(ev+2) + -+ A(en> = 0>
Ciiq Gt
Cy+2 Cn
A(e\’+l)+A( ev+2)+ +A( en) =0,
Cv+1 Cv+1

c c
Aley 1+ 226t -+ —"g,) =0.
Ciit Ciit

Meanwhile, the (v+41) vectors ej,ep,---,e, and e, |+ é*fl e+ -
+ C‘+ -e, are linearly independent, because e}, e»,- - -, ande, are basis vectors of
V". This would imply that the dimension of KerA is v+ 1, but this is in contra-
diction to Ker A = Span{e;,es,---,e,}. Thus, the (n—v) vectors
A(e;)(v+ 1 <i<n) should be linearly independent.

Let V" be described as

Vi = Span {A(e,11),Aleys2), -+, Alen)}. (9.47)

Then, V"7V is a subspace of V", and so dim A(V")>n —v=dim V",
Meanwhile, from (9.46), we have

A( zn: c,-e,-) =0.
i=v+1

From the above discussion, however, this relation holds if and only if
Cy+1 =+ =c¢, =0. This implies that Ker ANV"™" = {0}. Then, we have

V"7V +KerA = V"V @ KerA.
Meanwhile, from Theorem 9.2, we have
dim[V"™" @ KerA] = dim V"7 +dim KerA = (n —v)+v =n=dim V".

Thus, we must have dim A(V") =n — v = dim V"~". Since V""" is a subspace
of V" and V"' C A(V") from (9.47), V™" = A(V™).
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To conclude, we get

dim A(V") +dimKerA = dim V",
(9.48)
V' =A(V") @ KerA.

This completes the proof.

Comparing Theorem 9.3 with Theorem 9.2, we find that Theorem 9.3 is a special
case of Theorem 9.2. Equations (9.45) and (9.48) play an important role in the
theory of linear vector space.

As an exercise, we have a following example:

Example 9.2 Let e, e, e3, e, be basis vectors of V. Let A be an endomorphism of
V* and described by

1 01 0

0 1 1 0

A=1 01 0

0 1 1 0

We have
1 01 0
0O 1 1 0
(81782783,6’4) ) 01 0 :(e1+e3,e2+e4,e1+e2+e3+e4,0).

0 1 1 0

That is,

Ale)) = e +e3, A(er) =er+eyq, Ales) = e; +er+e3+ ey,
A(e4) =0.

We have
A(—e; —ey+e3) = —Ale)) —A(ex) +A(e3) = 0.
Then, we find
A(V*) =Span {e; +e3,e;+es} KerA=Span{—e; —e>+es,es}. (9.49)
For any x € V", using scalar ¢;(1 <i<4), we have
X = c1e1 + cey + czez + corey
zlkrﬂﬂwﬁwﬁ+%@Q+Q—QX%+%) (9.50)

2
1
+ =(cz3—c1)(—e1 —ex+e3)+ E(Cl —2¢y — €3+ 2c¢4)eq.

N =
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Thus, x has been uniquely represented as (9.50) with respect to basis vectors
(e1 +e3), (e2+e4), (—e; —ex+e3), and e4. The linear independence of these
vectors can easily be checked by equating (9.50) with zero. We also confirm that

Vi =A(V*) @ Ker A.

Linear transformation is a kind of mapping. Figure 9.3 depicts the concept of
mapping. Suppose two sets of X and Y. The mapping f is a correspondence between
an element x(€ X) and y(€ Y). The set f(X)(C Y) is said to be a range of f. (i) The
mapping f is injective: If x| # x; = f(x1) # f(x2). (ii) The mapping is surjective:
f(X) =Y. For"y € Y corresponding element(s) x € X exist(s). (iii) The mapping is
bijective: If the mapping f is both injective and surjective, it is said to be bijective
(or reversible mapping or invertible mapping). A mapping that is not invertible is
said to be a non-invertible mapping.

If the mapping f is bijective, a unique element *x € X exists for "y € ¥ such that
f(x) = y. In terms of solving an equation, we say that with any given y we can find
a unique solution x to the equation f(x) = y. In this case, x is said to be an inverse
element to y and this is denoted by x = f~!(y). The mapping f~! is called an
inverse mapping. If the linear transformation is relevant, the mapping is said to be
an inverse transformation.

Here we focus on a case where both X and Y form a vector space and the
mapping is an endomorphism. Regarding the linear transformation A: V* — V"
(i.e., an endomorphism of V"), we have a following important theorem:

Theorem 9.4 Let A: V' — V" be an endomorphism of V*. A necessary and

sufficient condition for the existence of an inverse transformation to A (i.e., A™') is
A71(0) = {0}.

Proof Suppose A~'(0) = {0}. Then A(x;) =A(x2) © A(x; —x2) =0 < x;
—x, = 0; i.e.,, x; = x,. This implies that the transformation A is injective. Other
way round, suppose that A is injective. If A=1(0) # {0}, there should be b(# 0)
with which A(b) = 0. This is, however, in contradiction to that A is injective. Then,
we must have A~1(0) = {0}. Thus, A~!(0) = {0} < A is injective.

Fig. 9.3 Concept of mapping injective
from a set X to another set Y

surjective

bijective: injective + surjective
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Meanwhile, A~'(0) = {0} & dim A~1(0) =0« dim A(V") =n (due to
Theorem 9.3); i.e., A(V") = V". Then A~1(0) = {0} < A is surjective. Combining
this with the above-mentioned statement, we have A~1(0) = {0} < A is bijective.
This statement is equivalent to that an inverse transformation exists.

In the proof of Theorem 9.4, to show that A~!(0) = {0} < A is surjective, we
have used the dimension theorem (Theorem 9.3), for which the relevant vector
space is finite (i.e., n-dimensional). In other words, that A is surjective is equivalent
to that A is injective with a finite-dimensional vector space, and vice versa. To
conclude, so far as we are thinking of the endomorphism of a finite-dimensional
vector space, if we can show it is either injective or surjective, the other necessarily
follows and, hence, the mapping is bijective.

9.3 Inverse Matrices and Determinants

The existence of the inverse transformation plays a particularly important role in the
theory of linear vector spaces. The inverse transformation is a linear transformation.
Let x; = A‘l(yl),xz = A_l(yQ). Also, we have A(c1x1 + C2.X'2) = clA(xl) +C2A(X2)
=cy, +cy,. Thus, cix;+cxy =A" ey, +cay,) = clA™ (y)) + A7 (y,),
showing that A~! is a linear transformation. As already mentioned, a matrix that
represents a linear transformation A is uniquely determined with respect to fixed
basis vectors. This should be the case with A~! accordingly. We have an important
theorem for this.

Theorem 9.5 [1] The necessary and sufficient condition for the matrix A~ that
represents the inverse transformation to A to exist is that det A £ 0 (“det” means a
determinant). Here the matrix A represents the linear transformation A. The matrix
A~ is uniquely determined and given by

(A7) = (1) (M);;/ (det A), (9:51)

where (M )y is the minor of det A corresponding to the element A;;.

Proof First, we suppose that the matrix A~! exists so that it satisfies the following
relation

> (A (A)y =051 <ij<n) (9.52)
k=1
On this condition, suppose that det A = 0. From the properties of determinants,
this implies that one of the columns of A (let it be the mth column) can be expressed
as a linear combination of the other columns of A such that
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A =Y Ai. (9.53)
i#m

Putting i = m in (9.52), multiplying by c;, and summing over j # m, we get

n

Z (a™h, . ZAkjc,- = Z Omici = 0. (9.54)

k=1 J#Em J#m

From (9.52) and (9.53), on the other hand, we obtain

n

Z (Ail)mk ZA]‘JC] = {(Ail)ik(A)km}i:m: L. (955)

k=1 J#m

There is the inconsistency between (9.54) and (9.55). The inconsistency resulted
from the supposition that the matrix A~! exists. Therefore, we conclude that if
det A = 0, A~! does not exist. Taking contraposition to the above statement, we say
that if A~! exists, det A # 0. Suppose next that det A # 0. In this case, on the basis
of the well-established result, a unique A" exists and it is given by (9.51). This
completes the proof.

Summarizing the characteristics of the endomorphism within a
finite-dimensional vector space, we have

injective < surjective < bijective < detA # 0.

Let a matrix A be

a1 - App
The determinant of a matrixA is denoted by det A or by

ayp -+ A

ayl  cc App

The determinant is defined as

detA = Z 8(0’)a|i1a2i2am‘”, (956)
( 1 2 .. n )
o= . . .
1 %) “e 78
where ¢ means permutation among 1, 2, ..., n and ¢(¢) denotes a sign of + (in the

case of even permutations) or — (for odd permutations).
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We deal with triangle matrices for future discussion. It is denoted by

T = e , (9.57)
ann

where an asterisk (*) means that upper right off-diagonal elements can take any
complex numbers (including zero). A large zero shows that all the lower left
off-diagonal elements are zero. Its determinant is given by

detT = ajjax - app. (9.58)

In fact, focusing on a,;,, we notice that only if i, = n, a,;, does not vanish. Then,
we get

det A = Z - 1 | e(a)alila2i2an_1infla,m. (959)
T\ o i

Repeating this process, we finally obtain (9.58).
The endomorphic linear transformation can be described succinctly as

Alx) =y, (9.60)

where we have vectors such that x = > " x;e; and y = Y | yie;. In reference to
the same set of basis vectors (e; - - - €,) and using a matrix representation, we have

a -+ A X1 Y1
Ax)=(er---e)| " Cf=(ee) 2 [ (961)
ayl  **° App Xn Yn

From the unique representation of a vector in reference to the basis vectors,
(9.61) is simply expressed as

(235 I /S P X1 Y1
=11 (9.62)

anl o App Xn Vn

With a shorthand notation, we have

apxp(1<i<n). (9.63)
1

yi =
k

n
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From the above discussion, for the linear transformation A to be bijective, det
A # 0. In terms of the system of linear equations, we say that for (9.62) to have a
X1 V1

unique solution | : | foragiven | : |, we must have det A # 0. Conversely,

Xn Yn
det A = 0 is equivalent to that (9.62) has indefinite solutions or has no solution. As
far as the matrix algebra is concerned, (9.61) is symbolically described by omitting
a parenthesis as

Ax =y. (9.64)

However, when the vector transformation is explicitly taken into account, the
full representation of (9.61) should be borne in mind.

The relations (9.60) and (9.64) can be considered as a set of simultaneous
equations. A necessary and sufficient condition for (9.64) to have a unique solution
x for a given y is det A # 0. In that case, the solution x of (9.64) can be sym-
bolically expressed as

x =AYy, (9.65)

where A~! represents an inverse matrix of A.

Example 9.3 Think of three-dimensional rotation by 0 in R? around the z-axis. The
relevant transformation matrix is

cos@ —sinf O
R=| sinf cosO O
0 0 1

As det R = 1 # 0, the transformation is bijective. This means that for Yy € R?,
there is always a corresponding x € R>. This x can be found by solving Rx = y;
i, x =R'y. Putting x = xe; +ye, +ze3 and y = x'e; +y'e; +7'e3, a matrix
representation is given by

x X cos 0 sinf0 O X
y| =Ry | = —-sin0 cosf 0 y
Z 4 0 0 1 7

Thus, x can be obtained by rotating y by —0.

Example 9.4 Think of a following matrix that represents a linear transformation P:

1 00
p=(0 1 0| (9.66)
0 00



318 9  Vectors and Their Transformation

This matrix transforms a vector x = xe; + ye; +ze; into y = xe; +ye, as
follows:

I 00 X X
0 1 0 yl=1\|y (9.67)
0 0 0 b4 0

In this example, we are thinking of an endomorphism P: R® — R3.
Geometrically, it can be viewed as in Fig. 9.4. Let us think of (9.67) from a point of
view of solving a system of linear equations and newly consider the next equation.
In other words, we are thinking of finding x, y, and z with given a, b, and c in (9.68).

1 00\ /x a
0o 10 ||ly|l=|» (9.68)
0 0 o0/)\z c

If ¢ = 0, we can readily find a solution of x = a, y = b, but z can be any (complex)
number; we have thus indefinite solutions. If ¢ # 0, we have no solution. The former
situation reflects the fact that the transformation represented by P is not injective.
Meanwhile, the latter reflects the fact that the transformation is not surjective.
Remember that as det P = 0, the transformation is not injective or surjective.

9.4 Basis Vectors and Their Transformations

In the previous sections, we show that a vector is uniquely represented as a column
vector in reference to a set of the fixed basis vectors. The representation, however,
will be changed under a different set of basis vectors.

First, let us think of a linear transformation of a set of basis vectors
e,ey, ---, and e,. The transformation matrix A representing a linear transforma-
tion A is defined as follows:

Fig. 9.4 Example of an z
endomorphism P: R® — R3

es P

€

€
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ap -+ A

anl ctt dpp

Notice here that we often denote both a linear transformation and its corre-
sponding matrix by the same character. After the transformation, suppose that the
resulting vectors are given by €|, ¢), and /. This is explicitly described as

~

(er-en) 1 T 1| =(e1e). (9.69)

With a shorthand notation, we have
e = Zakiek(l <i<n). (9.70)
k=1

Care should be taken not to confuse (9.70) with (9.63). Here, a set of vectors
e\, ¢e,, and e/, may or may not be linearly independent. Let us operate both sides

X1
from the left on and equate both the sides to zero. That is,
Xn
apy ain X1 X1
. /
(e1---e,) = (e} ---¢e) =0
anl Ann Xn Xn
Since e, ey, ---, and e, are the basis vectors, we get
ay - QA X1
1 =0. (9.71)
(23] st dpp Xn
X1
Meanwhile, we must have | : | =0 so that e},¢), and €/, can be linearly
Xn

independent (i.e., so as to be a set of basis vectors). But this means that (9.71) has
such a unique (and trivial) solution and, hence, det A # 0. If conversely det A # 0,
(9.71) has a unique trivial solution and e},e), and e/, are linearly independent.
Thus, a necessary and sufficient condition for €/,e} and e/, to be a set of basis
vectors is det A # 0. If det A = 0, (9.71) has indefinite solutions (including a trivial
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solution) and e/,e), and €/, are linearly dependent, and vice versa. In case
det A # 0, an inverse matrix A~ exists and so we have

(e1---e,) = (e -e)A ™. (9.72)

In the previous steps, we see how the linear transformation (and the corre-
sponding matrix representation) converts a set of basis vectors (e; - - - €,) to another
set of basis vectors (e - -¢,,). Is this possible then to find a suitable transformation
between two sets of arbitrarily chosen basis vectors? The answer is yes. This is
because any vector can be expressed uniquely by a linear combination of any set of
basis vectors. A whole array of such linear combinations uniquely defines a
transformation matrix between the two sets of basis vectors as expressed in (9.69)
and (9.72). The matrix has nonzero determinant and has an inverse matrix.
A concept of the transformation between basis vectors is important and very often
used in various fields of natural science.

Example 9.5 We revisit Example 9.2. The relation (9.49) tells us that the basis
vectors of A(V*#) and those of KerA span V* in total. Therefore, in light of the above
argument, there should be a linear transformation R between the two sets of vectors;
ie., ej,ey,e3,eq and e; +e3,e; + ey, —€; — €, + e3,e4. Moreover, the matrix R
associated with the linear transformation must be non-singular (i.e., det R # 0). In
fact, we find that R is expressed as

1 0 -1 0

o 1 -10
B=11 o010
0 1 01

This is because we have a following relation between the two sets of basis
vectors:

1 0 -1 0
0 1 -1 0

(e1,e2,e3,€4) 1 o0 10 = (e1 +es,ex+es,—e; —ex+esz,ey).
0 1 0 1

We have det R =2 # 0 as expected.

Next, let us consider successive linear transformations of vectors. Again, we
assume that the transformations are endomorphism: V" — V”. We have to take into
account transformations of basis vectors along with the targeted vectors. First, we
choose a transformation by a non-singular matrix (having a nonzero determinant)
for the subsequent transformation to have a unique matrix representation (vide
supra). The vector transformation by P is expressed as
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P11 P X1
Px)=(er---e))| © o E (9.73)
DPnl *r Pnn Xn

where the non-singular matrix P represents the transformation P. Notice here that
the transformation and its matrix are represented by the same P. As mentioned in
Sect. 9.2, the matrix P can be operated either from the right on the basis vectors or
from the left on the column vector. We explicitly write

pPu - P X
Pix)=|(er---en)| * - E
Pnt * DPnn Xn (9.74)
X1
:(e’l...e) ,
Xn

/ /

where (el ~~en) = (e;---e,)P [here P is the non-singular matrix defined in

(9.73)]. Alternatively, we have

[ (P Pin X1
P(x) = (e @)
e _x
/pnl Pnn n (975)
X1
= (el ' en) )
X,
where
Xy pu 0 P X1
= . D (9.76)
x; Pnl " Pm Xn

Equation (9.75) gives a column vector representation regarding the vector that
has been obtained by the transformation P and is viewed in reference to the basis
vectors (e; - - - e,). Combining (9.74) and (9.75), we get
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Plx)=(e)---¢)| : | =(e-—-e)| : |- (9.77)

We further make another linear transformation A : V" — V”. In this case, a
corresponding matrix A may be non-singular (i.e., detA # 0) or singular
(detA = 0). We have to distinguish the matrix representations of the two cases. It is
because the matrix representations are uniquely defined in reference to an individual
set of basis vectors; see (9.37) and (9.43). Let us denote the matrices Ap and A’ with
respect to the basis vectors (e ---e,) and (e} - --e,), respectively. Then, A[P(x)]
can be described in two different ways as follows:

A[P(x)] = (e ---e)A"| 1 | =(e1---e)A0| : |. (9.78)

This can be rewritten in reference to a linearly independent set of vectors
e, --,e, as
X1 X1
AP(x)] = [(e1---e,)PA]| : | =(e1---e,) |AoP] : . (9.79)

Xn Xn
As (9.79) is described for a vector x = ", xe; arbitrarily chosen in V", we get
PA" = AoP. (9.80)
Since P is non-singular, we finally obtain
A = P 'AP. (9.81)

We can see (9.79) from a point of view of successive linear transformations.
When the subsequent operation is viewed in reference to the basis vectors e}, - - - , e/,
newly reached by the precedent transformation, we make it a rule to write the
relevant subsequent operator A’ from the right. In the case, where the subsequent
operation is viewed in reference to the original basis vectors, on the other hand, we
write the subsequent operator Ap from the left. Further, discussion and examples
can be seen in Part IV.

We see (9.81) in a different manner. Suppose we have

x|
Alx) = (e1---e)Ao| |- (9.82)

X n
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Note that since the transformation A has been performed in reference to the basis
vectors (e; - - - e,), Ap should be used for the matrix representation. This is rewritten
as

X1
A(x) = (e;---e, )PP 'ApPP~ | © |. (9.83)
Xn
Meanwhile, any vectorx in V" can be written as
X1
X = (el ...en)
'xﬂ
" (9.84)
X1 X1 X1
= (e,---e,)PP7'| : :(e’l...e:)P—' :(e’l...e;)
Xn Xy Xn
In (9.84), we put
X1 }1
(el ...en)P: (e/l ...e;)7 P_l = . (985)
X, X

Equation (9.84) give a column vector representation regarding the same vector x
viewed in reference to the basis set of vectors ej,---,e, or e}, ---,e.

Equation (9.85) should not be confused with (9.76). That is, (9.76) relates the two
X1 x’l

coordinates | | and | : | of different vectors before and after the transfor-
Xn X

mation viewed in reference t(r; the same set of basis vectors. The relation (9.85), on
X1 Xi

the other hand, relates two coordinates | : | and | : | of the same vector
Xn Xn

viewed in reference to different set of basis vectors. Thus, from (9.83), we have

X1
A(x) = (e} ---€,)P'AoP| * |. (9.86)

Xn
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Meanwhile, viewing the transformation A in reference to the basis vectors
/ /
(¢} ---e,), we have

Alx) = (e ---e)A"| . (9.87)

Equating (9.86) and (9.87),
A =P 'AoP. (9.88)

Thus, (9.81) is recovered.

The relations expressed by (9.81) and (9.88) are called a similarity transfor-
mation on A. The matrices Ay and A’ are said to be similar to each other. As
mentioned earlier, if Ay (and hence A’) is non-singular, the linear transformation A
produces a set of basis vectors other than e/, - -, e}, say e/, ---,e/. We write this
symbolically as

(e1- e, )PA= (e} ---e,)A= (e ---€]). (9.89)

Therefore, such A defines successive transformations of the basis vectors in
conjunction with P defined in (9.73). The successive transformations and resulting
basis vectors supply us with important applications in the field of group theory.
Topics will be dealt with in Part IV.

Reference

1. Dennery P, Krzywicki A (1996) Mathematics for physicists. Dover, New York



Chapter 10
Canonical Forms of Matrices

In Sect. 9.4, we saw that the transformation matrices are altered depending on the
basis vectors we choose. Then a following question arises. Can we convert a
(transformation) matrix to as simple a form as possible by similarity transformation
(s)? In Sect. 9.4, we have also shown that if we have two sets of basis vectors in a
linear vector space V" we can always find a non-singular transformation matrix
between the two. In conjunction with the transformation of the basis vectors, the
matrix undergoes similarity transformation. It is our task in this chapter to find a
simple form or a specific form (i.e., canonical form) of a matrix as a result of the
similarity transformation. For this purpose, we should first find eigenvalue(s) and
corresponding eigenvector(s) of the matrix. Depending upon the nature of matrices,
we get various canonical forms of matrices such as a triangle matrix and a diagonal
matrix. Regarding any form of matrices, we can treat these matrices under a unified
form called the Jordan canonical form.

10.1 Eigenvalues and Eigenvectors

An eigenvalue problem is one of important subjects of the theory of linear vector
spaces. Let A be a linear transformation on V". The resulting matrix gets to several
different kinds of canonical forms of matrices. A typical example is a diagonal
matrix. To reach a satisfactory answer, we start with so-called an eigenvalue
problem.

Suppose that after the transformation of x we have

Ax) = ox, (10.1)

where « is a certain (complex) number. Then we say that o is an eigenvalue and that
x is an eigenvector that corresponds to the eigenvalue «. Using a notation of (9.37)
of Sect. 9.2, we have

© Springer Nature Singapore Pte Ltd. 2018 325
S. Hotta, Mathematical Physical Chemistry,
https://doi.org/10.1007/978-981-10-7671-8_10
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a ... Ay X1 X1
Alx) = (e;...e,) : = ale;...e,)
Aanl Apn Xn Xn
From linear dependence of e;,e,, ..., and e,, we simply write
ay ... dip X1 X1
=0
Api ... dpn Xn Xn
X1
If we identify x with | : | at fixed basis vectors (e;. . .e,), we may naturally
Xp
rewrite (10.1) as
Ax = ox. (10.2)

If x; and x, belong to the eigenvalue «, so does x; +x, and cx; (c is an
appropriate complex number). Therefore, all the eigenvectors belonging to the
eigenvalue o along with 0 (a zero vector) form a subspace of A (within V") cor-
responding to the eigenvalue o.

Strictly speaking, we should use terminologies such as a “proper” (or ordinary)
eigenvalue, eigenvector, eigenspace to distinguish them from a “generalized”
eigenvalue, eigenvector, eigenspace, etc. We will return to this point later. Further
rewriting (10.2), we have

(A—aE)x =0, (10.3)

where E is a (n, n) unit matrix. Equations (10.2) and (10.3) are said to be an
eigenvalue equation (or eigenequation). In (10.2) or (10.3) x = 0 always holds (as a
trivial solution). Consequently, for x # 0 to be a solution we must have

A —aE| =0, (10.4)

In (10.4), |A — oE| stands for det (A — oF).
Now let us define the following polynomial:

X —djp] —dip
falx) =|xE—A| = : : . (10.5)

—ay eee X — Ay
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A necessary and sufficient condition for « to be an eigenvalue is that « is a root
of f4(x) = 0. The function fy (x) is said to be a characteristic polynomial and we call
fa(x) = 0 a characteristic equation. This is an nth order polynomial. Putting

Salx) =X"4axX" '+ - ta,, (10.6)
we have
a1 = —(an+an+ - +ay) = —tA, (10.7)
where tr stands for “trace” that is a summation of diagonal elements. Moreover,
a, = (—1)"|A]. (10.8)

The characteristic equation f4(x) = 0 has n roots including possible multiple
roots. Let those roots be vy, . .., o, (some of them may be identical). Then we have

falx) =[] (= ). (10.9)

Furthermore, according to relations between roots and coefficients we get
o+ - o, = —ay = trA, (10.10)
... = (=1)"a, = |A]. (10.11)

The characteristic equation f4 (x) is invariant under a similarity transformation. In
fact,

fro-1ap(x) = |xE — P7'AP| = |P7! (xE — A)P|

10.12
= |P|”'|xE — A||P| = |xE — A| = fa(x). 112

This leads to invariance of the trace under a similarity transformation. That is,
tr(P~'AP) = trA. (10.13)

Let us think of a following triangle matrix:

T= : (10.14)

ann
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The matrix of this type is thought to be one of canonical forms of matrices. Its
characteristic equation fr(x) is

xX—ay * *
fr(x) =xE-T| = 0 £ | (10.15)

0 0 x—au

Therefore, we get
fr(x) =] (= aa), (10.16)

where we used (9.58). From (10.14) and (10.16), we find that eigenvalues of a
triangle matrix are given by its diagonal elements accordingly. Our immediate task
will be to examine whether and how a given matrix is converted to a triangle matrix
through a similarity transformation. A following theorem is important.

Theorem 10.1 Every (n, n) square matrix can be converted to a triangle matrix by
similarity transformation [1].

Proof A triangle matrix is either an “upper” triangle matrix [to which all the lower
left off-diagonal elements are zero; see (10.14)] or a “lower” triangle matrix (to
which all the upper right off-diagonal elements are zero). In the present case, we
show the proof for the upper triangle matrix. Regarding the lower triangle matrix,
the theorem is proven in a similar manner.

The proof is due to mathematical induction. First we show that the theorem is
true of a (2, 2) matrix. Suppose that one of eigenvalues of A, is «; and that its
corresponding eigenvector is x;. Then we have

Ale = 01X, (1017)
where we assume that x| represents a column vector. Let a non-singular matrix be
P1 :(x1p1)7 (1018)

where p, is another column vector chosen in such a way that x; and p, are linearly
independent so that P; can be a non-singular matrix. Then, we have

Py 'AsPy = (P Asx Py Aop)). (10.19)

(i) (3)

Meanwhile,
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Hence, we have

P A = oy Py 'xy = o, Py Py (é) = <(1)> = (%) (10.20)

Thus (10.19) can be rewritten as
. o
PlAP, = ( 0‘ *> (10.21)

This shows that Theorem 10.1 is true of a (2, 2) matrix A,.

Now let us show that Theorem 10.1 holds in a general case, i.e., for a (n,
n) square matrix A,. Let o, be one of eigenvalues of A,. On the basis of the
argument of the (2, 2) matrix case, suppose that after a suitable similarity trans-

formation by a non-singular matrix P we have

A, = (P)'A,P. (10.22)
Then, we can describe K; as
an xl oo xn_l
a=|? : (10.23)
6 Anfl

In (8.23), «, is one of eigenvalues of A,. To show that (10.23) is valid, we have a
similar argument as in the case of a (2, 2) matrix. That is, we set P such that

P=(a,pps-Pn1)

where a,, is an eigenvector corresponding to «, and P is anon-sin gular matrix formed
by n linearly independent column vectors a,,, p;, p,, .. and p,_,. Then we have
A, = (P)'A,P
~ ~ ~ ~ (10.24)
= ((7)"4san (P) " Aupy (P) ' Aupa- - (P) ' A, )

The vector a,, can be expressed as

oS O
O

ay=(anpips-Pp)| ° | =P
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Therefore, we have

1 1 o
0 0 0
<f))71A"a” = (?)71a'1an = (13)710(,,?’ 0 =, 0 — 0
0 0 0

Thus, from (10.24) we see that one can express a matrix form of :47, as (10.23).
By a hypothesis of the mathematical induction, we assume that there exists a
(n — 1, n — 1) non-singular square matrix P,_; and an upper triangle matrix A,_;

such that
P A, P =AM (10.25)

Let us define a following matrix

P =
n Pn ] s
0

where d #0. The P, is (n, n) non-singular square matrix; remember that
detP, = d(detP,_) # 0. Operating P, on A, from the right, we have

an X1 vt Xp-1 d 0 - 0 Olnd xz;_lpn_l
0 0 0
: . = X . (10.26)
: Ay P, © [ Ana Paa
0 0
x|
where xf_l is a transpose of a column vector : . Therefore, x,f_lP,l,l isa(l,
Xn—1

n — 1) matrix (i.e., a row vector). Meanwhile, we have

d 0 0 0 an x5_,P,_,/d apd  xI_ P4

0 0 0
: : =1 - (10.27)
('] Pnfl 0 An—l O Pn—l An—l

From the assumption of (10.25), we have
LHS of (10.26) = LHS of (10.27). (10.28)

That is,
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AnPn = PnAn- (1029)
In (10.29), we define A, such that

An x%—lpn—l/d

0

4, = . 5 .
: An,l (10.30)
0

which has appeared in LHS of (10.27). As A,_; is a triangle matrix from the
assumption, A, is a triangle matrix as well. Combining (10.22) and (10.29), we
finally get

A, = (PP,) 'A,PP,. (10.31)

Notice that I~’Pn is a non-singular matrix, and so ﬁPnPn‘lTD*I = E. Hence,

P;'P~' = (PP,)"". The equation obviously shows that A, has been converted to a
triangle matrix A,. This completes the proof.

Equation (10.31) implies that eigenvectors are disposed on diagonal positions of
a triangle matrix. Triangle matrices can further undergo a similarity transformation.

Example 10.1 Let us think of a following triangle matrix A:

A= (é }) (10.32)

Eigenvalues of A are 2 and 1. Remember that diagonal elements of a triangle

matrix give eigenvalues. According to (10.20), a vector ( (1)

eigenvector (as a column vector representation) corresponding to the eigenvalue 2.

) can be chosen for an

1

1 1
(O 0>x—0

. . . . c
as an eigenvalue equation (A — E)x = 0. Therefore, with an eigenvector (cl)
2

. -1 L .
Another eigenvector can be chosen to be < > . This is because for an eigenvalue

1, we obtain

corresponding to the eigenvalue 1, we get ¢; + ¢, = 0. Therefore, we have <_11 )

as a simple form of the eigenvector. Hence, putting P = ( (1) _11>, similarity

transformation is carried out such that
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P‘IAP:((I) i)(g i)(é _11):((2) (1’) (10.33)

This is a simple example of matrix diagonalization.
Regarding the eigenvalue/eigenvector problems, we have another important
theorem.

Theorem 10.2 Eigenvectors corresponding to different eigenvalues of A are lin-
early independent.

Proof We prove the theorem by mathematical induction. Let «; and o be two
different eigenvalues of a matrix A and let @, and a, be eigenvectors corresponding
to op and oy, respectively.

Let us think of a following equation:

c1ay +cxa, = 0. (1034)

Suppose that a; and a, are linearly dependent. Then, without loss of generality
we can put ¢; # 0. Accordingly, we get

a = ——aj. (1035)
Operating A from the left of (10.35), we have

mar = — 2oa, = ma. (10.36)
c1

With the second equality, we have used (10.35). From (10.36), we have
(OC] - O(z)dl =0. (1037)

As oy # oy, o — op # 0. This implies @; = 0, in contradiction to that a; is a
eigenvector. Thus, a; and a, must be linearly independent.

Next we assume that Theorem 10.2 is true of the case where we have (n — 1)
eigenvalues oy,0p,..., and o, that are different from one another and corre-
sponding eigenvectors a;,d,, . . ., and a,_; are linearly independent. Let us think of
a following equation:

cia) +cay+ - +cp_1@y_1 +cpa, = 0, (10.38)

where a, is an eigenvector corresponding to an eigenvalue «,. Suppose here that
a,a, ..., and a, are linearly dependent. If ¢, = 0, we have
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ciay+ca+ - +cp_1a,-1 =0. (10.39)

But from the linear independence of ay,a,,..., anda,_;, we have
cir=c=---=c¢y,—1 =0. Thus, it follows that all the eigenvectors
ai,a,,..., and a, are linearly independent. However, this is in contradiction to the

assumption. We should therefore have ¢, # 0. Accordingly, we get

a, = — <C—1a1 + C—zaz + o+ Gt anl)- (10.40)
c c

n n n

Operating A from the left of (10.38) again, we have

Ol = _<ﬂu1a1 + C_2a2a2 4ot Cn-1 oc,,lanl). (10.41)
c C

n n n

Here we think of two cases of (i) &, # 0 and (ii) o, = 0.
(1) Case I: o, # 0.
Multiplying both sides of (10.40) by «, we have

Uy = — (C—locnal + C—Zcxnag 4+ -+ C"—_loc,,a,,_l). (10.42)
C, C,

n n n

Subtracting (10.42) from (10.41), we get

C Cy—
0:—(ocn—ocl)al—i-—z(ocn—ozz)az—l— cog 2l

Cn Cn Cn

(oty — 0ty—1)an—1.  (10.43)

Since we assume that eigenvalue are different from one another,

Oy £ oy, Oy 7 O, ..., 0y 7 dp—y. This implies thatc; = ¢, = -+ = ¢,—; = 0. From
(10.40), we have a, = 0. This is, however, in contradiction to that a, is an
eigenvector. This means that our original supposition that a;,a,, ..., and a, are
linearly dependent was wrong. Thus, the eigenvectors a;,a», ..., and a, should be

linearly independent.
(i) Case II: o, = 0.

Suppose again that a;,ay, ..., and a, are linearly dependent. Since as before
¢, # 0, we get (10.40) and (10.41) once again. Putting o, = 0 in (10.41) we have

0=— (clrxlal + chzaz o4 Cnl fxnlanl). (10.44)

n Cn cn
Since eigenvalues are different, we should have o #£0, 0, #0,...,
and o,,_; # 0. Then, considering that a,,a,, . . ., and a,,_ are linearly independent,
for (10.44) to hold we must have ¢; = ¢, = -+ = ¢,_1 = 0. But from (10.40), we

havea, = 0, again in contradiction to thata,, is an eigenvector. Thus, the eigenvectors
a,a,,..., and a, should be linearly independent. These complete the proof.
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10.2 Eigenspaces and Invariant Subspaces

Equations (10.21), (10.30), and (10.31) show that if we adopt an eigenvector as one
of basis vectors, the matrix representation of the linear transformation A in reference
to such basis vectors is obtained so that the leftmost column is zero except for the
left top corner on which an eigenvalue is positioned. (Note that if the said eigen-
vector is zero, the leftmost column is a zero vector.) Meanwhile, neither
Theorem 10.1 nor Theorem 10.2 tells about multiplicity of eigenvalues. If the
eigenvalues have multiplicity, we have to think about different aspects. This is a
major issue of this section.

Let us start with a discussion of invariant subspaces. Let A be a (n, n) square
matrix. If a subspace W in V" is characterized by

xeW=AxcW,

W is said to be invariant with respect to A (or simply A-invariant) or an invariant
subspace in V" = Span{ay,ay, . . .,a, }. Suppose thatx is an eigenvector of A and that
its corresponding eigenvalue is o.. Then, Span {x} is an invariant subspace of V". Itis
because A(cx) = cAx = cox = o(cx) and cx is again an eigenvector belonging to o.
Suppose that dim W = m(m <n) and that W = Span {a,,az,...,a,}. If Wis A-
invariant, A causes a linear transformation within W. In that case, expressing A in
reference to ay,ay, . ...y, a4y 1, - - .,a,, we have

(@ay. . .anay . 1...a,)A = (@1ay. . anay .. .a,) (Aom :), (10.45)
where A,, is a (m, m) square matrix and “zero” denotes a (n — m, m) zero matrix.
Notice that the transformation A makes the remaining (n —m) basis vectors
ay+1,ap,42,..., anda, in V" be converted to a linear combination of
ai.a,,..., and a,. The triangle matrix A, given in (10.30) and (10.31) is an
example to which A,, is a (1, 1) matrix (i.e., simply a complex number).

Let us examine properties of the A-invariant subspace still further. Let a be any
vector in V" and think of following (n + 1) vectors [2].

a,Aa,A%, ... Aa.

These vectors are linearly dependent, since there are at most n linearly inde-
pendent vectors in V”. These vectors span a subspace in V”. Let us call this
subspace M, i.e,.

M = Span{a,Aa,A%a,...,A"a},
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Consider the following equation:

coa+ciAa+cA’a+ - +c,A'a = 0. (10.46)

Not all ¢;(0<i<n) are zero, because the vectors are linearly dependent.

Suppose that ¢, # 0. Then, from (10.46) we have

1
Ala = —— (coa +cAa+cAla+ -+ cn,lA”’Ia).

Cn
Operating A on the above equation from the left, we have

1
Altlg=—— (coAa +cA%a+cA%a+ - +cp1A'a).

n

Thus, A'tlg is contained in M. That is, we have
A'tlg e Span{a7Aa7A2a, .. .,A”a}. Next, suppose that ¢, = 0. Then, at least one
of ¢;(0<i<n—1) is not zero. Suppose that ¢,_; # 0. From (10.46), we have

Al =— (coa+ciAa+crA’a+ -+ +c, A" %a).

Cn—1

Operating A2 on the above equation from the left, we have

1
Al lg = — - (coAza +oAla+Ata+ -+ cn2A"a).
n—1

Again, A"t !a is contained in M. Repeating similar procedures, we reach
coa + c1Aa = 0.

If ¢; = 0, then we must have ¢y # 0. If so, @ = 0. This is impossible, however,
because we should have a # 0. Then, we have ¢; # 0 and, hence,

€o
——a.
C1

Aa =

Operating once again A" on the above equation from the left, we have

o
—A"a.
c1

An+1a:_

Thus, once again A" la is contained in M.
In the above discussion, we get AM C M. Further operating
A, A’M C AM C M, A’M C A’M C AM C M, .... Then we have
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a,Aa,A%a,...,A"a,A" " 'a,... € Span {a,Aa,A’a,... ,A"a}.
That is, M is an A-invariant subspace. We also have
m=dimM <dim V" = n.

There are m basis vectors in M, and so representing A in a matrix form in
reference to the n basis vectors of V" including these m vectors, we have

A= (AO'" :) (10.47)

Note again that in (10.45) V" is spanned by the m basis vectors in M together
with other (n — m) linearly independent vectors.

We happen to encounter a situation where two subspaces Wi and W, are at once
A-invariant. Here we can take basis vectors ap,a»,..., anda, for W; and
a1,y +2,-.., and a, for W,. In reference to such a;,as,..., and a, as basis
vector of V", we have

An 0
A= ( 0 Ann,)’ (10.48)

where A,_,, is a (n —m,n — m) square matrix and “zero” denotes either a (n —
m,m) or (m,n — m) zero matrix. Alternatively, we denote

A=A, DA, _n.

In this situation, the matrix A is said to be reducible.

As stated above, A causes a linear transformation within both W; and W,. In
other words, A,, and A,_,, cause a linear transformation within W; and W, in
reference toay,ay, .. .,a, and a,, 4 1,8, 42, - . ., a,, respectively. In this case, V" can
be represented as a direct sum of W; and W, such that

Vi=W, oW,

(10.49)
= Span{a,,ay,...,a,} ® Span{a,,  1,@m 12, - .,an}
This is because Span{a;,as,...,a,}NSpan{a, +1,an+2,....,a,} ={0}. In
fact, if the two subspaces possess x( # 0) in common, a;,a;,...,a, become lin-
early dependent, in contradiction.
The vector space V" may well further be decomposed into subspaces with a
lower dimension. For further discussion, we need a following theorem and a
concept of a generalized eigenvector and generalized eigenspace.

Theorem 10.3: Hamilton—Cayley Theorem [3] Let fx(x) be the characteristic
polynomial pertinent to a linear transformation A : V' — V". Then f(A)(x) =0
for "x € V". That is, Ker fy(A) = V".
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Proof To prove the theorem, we use the following well-known property of
determinants. Namely, let A be a (n, n) square matrix expressed as

ann ... Ay
A =
anl A )

Let A be the cofactor matrix of A, namely

where A is a cofactor of a;;. Then
ATA = AAT = |AIE, (10.50)

where A7 is a transposed matrix of A. We now apply (10.50) to the characteristic
polynomial.

(xE = A)"(xE — A) = (xE — A)(xE—A)" = |xE — A|E = fy(A)E,  (10.51)
where xE — A is the cofactor matrix of xE — A. Let the cofactor of the (i, j)-element
of (xE —A) be A;. Note in this case that A;; is an at most (n — 1)th order poly-
nomial of x. Let us put accordingly

Aj = boX by X" by (10.52)

Also put By = (byx).
Then we have

A o A
xE—A = : ] :

Ay - Ay

buoxX™ '+ oo bt 0 Do N4 o bt

buioX ' 4 o byt banoX 4 b
biio - b biio - bign-i

—_— + o+

buio - buo buio 0 bua—i

=xX"'By+x"?B,+ --- +B,_;.
(10.53)
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Thus, we get

XE — A|E = (xE — A) (X" 'By +x"?BT + ... + BT ). (10.54)

n—1

Replacing x with A, we have
fa(A) = (A—A)(A"'Bl +A" Bl + .- +B_|) =0. (10.55)

This means that f; (A)(x) = 0 for "x € V".
In relation to Hamilton—Cayley theorem, we consider an important concept of a
minimal polynomial.

Definition 10.1 Let f(x) be a polynomial of x with scalar coefficients such that
f(A) =0, where A is a (n, n) matrix. Among f(x), a lowest-order polynomial with
the highest-order coefficient of one is said to be a minimal polynomial. We denote it
by @4 (x); ie., 4(A) =0.

We have an important property for this. Namely, a minimal polynomial ¢, (x) is
a divisor of f(A). In fact, suppose that we have

F(x) = g(x)pa(x) + h(x).
Inserting A into x, we have
F(A) = g(A)@A(A) +h(A) = h(A) = 0.

From the above equation, /(x) should be a polynomial whose order is lower than
that of @, (A). But the presence of such i(x) is in contradiction to the definition of
the minimal polynomial. This implies that 4(x) = 0. Thus, we get

fx) = g(x)@a(x).

That is, @, (x) must be a divisor of f(A).

Suppose that ¢/, (x) is another minimal polynomial. If the order of ¢/, (x) is lower
than that of ¢,(x), we can choose ¢/ (x) for a minimal polynomial from the
beginning. Thus, we assume that ¢, (x) and ¢/, (x) are of the same order. We have

f(x) = g(x)pa(x) = &' (x) @ (x).

Then, we have

Pa(x) [ 9y (x) = &'(x) / glx) = c,

where c is a constant, because ¢4 (x) and ¢/, (x) are of the same order. But ¢ should
be one, since the highest-order coefficient of the minimal polynomial is one. Thus,
@4 (x) is uniquely defined.
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10.3 Generalized Eigenvectors and Nilpotent Matrices

Equation (10.4) ensures that an eigenvalue is accompanied by an eigenvector.
Therefore, if a matrix A : V" — V" has different n eigenvalues without multiple
roots, the vector space V" is decomposed to a direct sum of one-dimensional
subspaces spanned by those individual linearly independent eigenvectors (see
discussion of Sect. 10.1). Thus, we have

Vi=W oW, d---dW,

10.56
= Span {a,} ® Span{a,} & - - - ® Span{a, }, ( )

where a;(1 <i<n) are eigenvectors corresponding to different n eigenvalues. The
situation, however, is not always simple. Even though a matrix has eigenvalues of
multiple roots, we have yet a simple case as shown in a next example.

Example 10.2 Let us think of a following matrix A : V3 — V3.

2 0 0
A=[0 2 0 (10.57)
0 0 2

The matrix has a triple root 2. As can easily be seen below, individual eigen-
vectors a;, a,, and a3 form basis vectors of each invariant subspace, indicating that
V3 can be decomposed to a direct sum of the three invariant subspaces as in (10.56).

(a1aza3) = (2a;2a2a;3). (10.58)

S O
S NO
N OO

Let us think of another simple example.

Example 10.3 Let us think of a linear transformation A : V> — V? expressed as

a6 = @a) (5 3)(3): (1059)

where a; and a, are basis vectors and for "x € Vz,x = x1a; + x;a,. This example
has a double root 3. We have

(a1a2)<3 ;) — (Gaiar +3az). (10.60)

Thus, Span{a;} is A-invariant, but this is not the case with Span{a,}. This
implies that a; is an eigenvector corresponding to an eigenvalue 3 but a, is not.
Detailed discussion about matrices of this kind follows below.
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Nilpotent matrices play an important role in matrix algebra. These matrices are
defined as follows.

Definition 10.2 Let N be a linear transformation in a vector space V". Suppose that
we have

N* =0and N*' #0, (10.61)

where N is a (1, n) square matrix and k( <?2) is a certain natural number. Then, N is
said to be a nilpotent matrix of an order k or a kth order nilpotent matrix. If (10.61)
holds with kK = 1, N is a zero matrix.

Nilpotent matrices have following properties:

(i) Eigenvalues of a nilpotent matrix are zero. Let N be a kth order nilpotent
matrix. Suppose that

Nx = ox, (10.62)

where o is an eigenvalue and x( # 0) is its corresponding eigenvector.
Operating N (k — 1) more times from the left of both sides of (10.62), we have

Nfx = ofx. (10.63)

Meanwhile, N* = 0 by definition, and so ok =0, namely o = 0.
Conversely, suppose that eigenvalues of a (n, n) matrix N are zero. From
Theorem 10.1, via a suitable similarity transformation with P we have

P'NP =N,
where N is a triangle matrix. Then, using (10.12) and (10.16) we have
Fropl®) = £(2) = fu(x) = 2.

From Theorem 10.3, we have
fn(N)=N"=0. (10.64)

Namely, N is a nilpotent matrix. In a trivial case, we have N = 0 (zero matrix).
By Definition 10.2, we have N* = 0 with a kth nilpotent (n, n) matrix N. Then,
its minimal polynomial is ¢y (x) = x*(k <n).
(i1) A nilpotent matrix N is not diagonalizable (except for a zero matrix). Suppose
that N is diagonalizable. Then N can be diagonalized by a non-singular matrix
P such that
P7'NP =0.
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The above equation holds, because N only takes eigenvalues of zero. Operating
P from the left of the above equation and P~! from the right, we have

N =0.

This means that N would be a zero matrix, in contradiction. Thus, a nilpotent
matrix N is not diagonalizable.

Example 10.4 Let N be a matrix of a following form:

0 1
N = .

Then, we can easily check that N? = 0. Therefore, N is a nilpotent matrix of a
second order. Note that N is an upper triangle matrix, and so eigenvalues are given
by diagonal elements. In the present case, the eigenvalue is zero (as a double root),
consistent with the aforementioned property.

With a nilpotent matrix of an order k, we have at least one vector x such that
N1y = 0. Here we add that a zero transformation A (or matrix) can be defined as

A=0s Ax =0for 'x € V".
Taking contraposition of this, we have

A#0 < Ax # 0 for “x € V.
In relation to a nilpotent matrix, we have a following important theorem.

Theorem 10.4 If N is a kth order nilpotent matrix, then for *x € V we have
following linearly independent k vectors:

x, Nx Nzx, .. .,Nk’lx.

Proof Let us think of a following equation:

k—1
D aN'x =0. (10.65)
i=0
Multiplying (8.64) by N*~! and using N* = 0, we get
coN*'x = 0. (10.66)

This implies that ¢y) = 0. Thus, we are left with

k—1
> aN'x =0. (10.67)
i=1
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Multiplying (8.66) next by N2, we get similarly
k1. _
aN"x =0, (10.68)

implying that ¢; =0. Continuing this procedure, we finally get
¢; =0(0<i<k—1). This completes the proof.

This immediately tells us that for a kth order nilpotent matrix N : V" — V", we
should have k <n. This is because the number of linearly independent vectors is at
most n.

In Example 10.4, N causes a transformation of basis vectors in V2 such that

(e1 e2)N = (e ez)(g (1)> — (0er).

That is, Ne; = ej. Then, linearly independent two vectors e and Ne, correspond
to the case of Theorem 10.4.

So far we have shown simple cases where matrices can be diagonalized via
similarity transformation. This is equivalent to that the relevant vector space is
decomposed to a direct sum of (invariant) subspaces. Nonetheless, if a characteristic
polynomial of the matrix has multiple root(s), it remains uncertain whether the
vector space is decomposed to such a direct sum. To answer this question, we need
a following lemma.

Lemma 10.1 Let f;(x), f2(x),..., and f;(x) be polynomials without a common
factor. Then we have s polynomials M (x), My(x), ..., M;(x) that satisfy the fol-
lowing relation:

My (x)fi(x) + Mo (x)fa(x) + - - + M(x)fs(x) = 1. (10.69)

Proof Let M;(x) (1 <i<s) be arbitrarily chosen polynomials and deal with a set of
g(x) that can be expressed as

g(x) = My (x)fi (x) + My (x)fa(x) + - -+ + Mi(x)fs(x). (10.70)
Let a whole set of g(x) be 9. Then $ has following two properties:

(i) g1(x), 82(x) € H = g1(x) +82(x) € 9,
(i) g(x) € H,M(x): an arbitrarily chosen polynomial = M(x)g(x) € H.

Now let the lowest-order polynomial out of the set $ be go(x). Then "g(x)(€ H)
are a multiple of go(x). Suppose that dividing g(x) by go(x), we have

¢(x) = M(x)go(x) + h(x), (10.71)

where h(x) is a certain polynomial. Since g(x), go(x) € 9, we have h(x) € H from
the above properties (i) and (ii). If 2(x) # 0, the order of &(x) is lower than that of
go(x) from (10.71). This is, however, in contradiction to the definition of go(x).
Therefore, h(x) = 0. Thus,
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g(x) = M(x)go(x). (10.72)

This implies that § is identical to a whole set of polynomials comprising mul-
tiples of go(x). In particular, polynomials f;(x) (1 <i<s) € $. To show this, put
M;(x) = 1 with other M;(x) = 0 (j # i). Hence, the polynomial go(x) should be a
common factor of f;(x). Meanwhile, go(x) € §, and so by virtue of (10.70) we have

90(x) = My (x)fi (¥) + Mo (0)fa(x) + -+ + M, (x)fs (). (10.73)

On assumption, the greatest common factor of fi(x), f2(x), ..., and fy(x) is 1.
This implies that go(x) = 1. Thus, we finally get (10.69) and complete the proof.

10.4 Idempotent Matrices and Generalized Eigenspaces

In Sect. 10.1, we have shown that eigenvectors corresponding to different eigen-
values of A are linearly independent. Also if those eigenvalues do not possess
multiple roots, the vector space comprises a direct sum of the subspaces of cor-
responding eigenvectors. However, how do we have to treat a situation where
eigenvalues possess multiple roots? Even in this case there is at least one eigen-
vector that corresponds to the eigenvalue. To adequately address the question, we
need a concept of generalized eigenvectors and generalized eigenspaces.

For this purpose, we extend and generalize the concept of eigenvectors. For a
certain natural number [, if a vector x (€ V") satisfies a following relation, x is said
to be a generalized eigenvector of rank / that corresponds to an eigenvalue.

(A —aE)'x =0,
(A—aE)'x £0.

Thus (10.3) implies that an eigenvector of (10.3) may be said to be a generalized
eigenvector of rank 1. When we need to distinguish it from generalized eigen-
vectors of rank [(I >2), we call it a “proper” eigenvector. Thus far we have only
been concerned with the proper eigenvectors. We have a following theorem related
to the generalized eigenvectors.

In this section, idempotent operators play a role. The definition is simple.

Definition 10.3 An operator A is said to be idempotent if A> = A.

From this simple definition, we can draw several important pieces of informa-
tion. Let A be an idempotent operator that operates on V”. Let x be an arbitrary
vector in V". Then, A%x = A(Ax) = Ax. That is,

A(Ax —x) = 0.
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Then, we have
Ax=x or Ax=0. (10.74)

From Theorem 9.3 (dimension theorem), we have
V"' =A(V") @ Ker A,
where

A(V") = {x; x € V", Ax =x},

10.75
KerA = {x; x € V", Ax = 0}. ( )

Thus, we find that A decomposes V" into a direct sum of A(V") and KerA.
Conversely, we can readily verify that if there exists an operator A that satisfies
(10.75), such A must be an idempotent operator. The verification is left for readers.

Meanwhile, we have

(E—A?=E—-2A+A>=E—-2A+A=E—A.
Hence, E — A is an idempotent matrix as well. Moreover, we have
A(E—A) = (E—A)A =0.
Putting £ — A = B and following a procedure similar to the above
Bx—x=(E—A)x —x=x—Ax —x = —Ax.
Therefore, B(V") = {x; x € V", Bx = x} is identical to Ker A. Writing
Wa={x;xec V" Ax =x}, Wy ={x; x € V", Ax = 0}, (10.76)
we get

Wy =AV", Wy = (E—-A)V"=BV" =V" — AV" = KerA.

That is,
V"= Wy + W

Suppose that Fu € W, N W5. Then, from (10.76) Au = u and Au = 0, namely
u =0, and so Vis a direct sum of W, and W5. That is,

V=W, @ Wy
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Notice that if we consider an identity operator E as an idempotent operator, we
are thinking of a trivial case. That is, V" = V" @ {0}.

The result can immediately be extended to the case where more idempotent
operators take part in the vector space. Let us define operators such that

Al +Ay+ - +A,=E,
where E is a (n, n) identity matrix. Also
Aij = Aidjj.
Moreover, we define W; such that
W, =AV"={x; x € V", Ax =x}. (10.77)
Then
V=W aeW,o-- oW, (10.78)
In fact, suppose that "x(€ V") € W;, W; (i # j). Then Axx = x = Ajx. Operating
Aj (j # i) from the left, AjAx = Ajx = AjA;x. That is, 0 = x = A;x, implying that

W;NW; = {0}. Meanwhile,

V= (A +As+ - +ANV = AV + AV 4 -+ AV

(10.79)
=Wi+Wo+ -+ W,

As W;NW; = {0} (i #j), (10.79) is a direct sum. Thus, (10.78) will follow.

Example 10.5 Think of the following transformation A:

1 0 0 O
0 1 0 0
(el ey ée3 e4)A = (81 ey e3 e4) 0 0 0 0 = (el (%} 0 0)
0 0 0 O
Put x = Z?:l x;e;. Then, we have
4 2

Alx) = Zx,-A(e,-) = inei = Wa,
i—1

i=1

(E-A)(x)=x—A(x) = ix,-ei = W;.

In the above,
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(e1eze3eq)(E—A) = (e1exe3¢€4) =(00e3e4).

[l e N
(=N N
SO = OO
— o OO

Thus, we have

W, = Span {ey, e2}, W; = Span {e3, e}, V* = Wy & W;.

The properties of idempotent matrices can easily be checked. It is left for
readers.

Using the aforementioned idempotent operators, let us introduce the following
theorem.

Theorem 10.5 [3] Let A be a linear transformation V' — V". Suppose that a
vector x (€ V") satisfies the following relation:

(A —aE)'x =0, (10.80)

where | is an enough large natural number. Then a set comprising x forms an A-
invariant subspace that corresponds to an eigenvalue o. Let oy,0p,...,05 be
eigenvalues of A different from one another. Then V" is decomposed to a direct sum
of the A-invariant subspaces that correspond individually to oy, 0, . . ., 0. This is
succinctly expressed as follows:

Vie W, @ Wy, @@ W, (10.81)
Here W,, (1<i<s) is given by
W, = {x; x eV, (A—oE)x = 0}, (10.82)

where [; is an enough large natural number. If multiplicity of o; is n;, dim
Wot,- = n,;.

Proof Let us define the aforementioned A-invariant subspaces as ﬁ/ak (1<k<ys).
Let f4(x) be a characteristic polynomial of A. Factorizing f4(x) into a product of
powers of first-degree polynomials, we have

S

fa) =T =)™, (10.83)

i=1
where n; is a multiplicity of o;. Let us put

s

F0) = fa(x)/(x = )" =T (x = )" (10.84)

J#
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Then fi(x), f2(x),..., and f;(x) do not have a common factor. Consequently,
Lemma 10.1 tells us that there are polynomials M (x), M>(x), ..., and M(x) such
that

My (x)fi(x) + -+ +M(x)fs(x) = 1. (10.85)

Replacing x with a matrix A, we get
Mi(A)fi(A)+ --- +M(A)fs(A) = E. (10.86)
Or defining M;(A)f;(A) = A;
Al +As+ - +A, =E, (10.87)
where E is a (n, n) identity matrix. Moreover, we have
AiAj = Aidy. (10.88)

In fact, if i #j,
AiAj = Mi(A)fi(A)M;(A)fi(A) = Mi(A)M;(A)fi(A)fi(A)

N S

= My(AM;(A) [T (A — )™ T (A — o)™

7 7 (10.89)

S

= M(A)M;(Afa(A) T (A — o)™
ki
=0.

The second equality results from the fact that M;(A) and f;(A) are commutable
since both are polynomials of A. The last equality follows from Hamilton—Cayley
Theorem. On the basis of (10.87) and (10.89),

A =AE=A(A +Ar+ - +A,) = AL (10.90)

Thus, we find that A; is an idempotent matrix.
Next, let us show that using A; determined above, A;V" is identical to

W,, (1<i<s). To this end, we define W; such that
Wi =AV"={x; x € V", Ax =x}. (10.91)
We have

(x = )" fi(x) = fa(x). (10.92)
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Therefore, from Hamilton—Cayley Theorem we have
(A — oE)"fi(A) = 0. (10.93)

Operating M;(A) from the left and from the fact that M;(A) commutes with
(A — oE)", we get

(A — E)"A; =0, (10.94)

where we used M;(A)fi(A) = A;. Operating both sides of this equation on V",
furthermore, we have

(A — E)"AV" = 0.
This means that
AV C W, (1<i<s). (10.95)
Conversely, suppose that x € W,.. Then (A — oE)'x = 0 holds for a certain

natural number /. If M;(x)f;(x) were divided out by x — o;, LHS of (10.85) would be
divided out by x — «; as well, leading to the contradiction. Thus, it follows that

(x — ;)" and M;(x)fi(x) do not have a common factor. Consequently, Lemma 10.1
ensures that we have polynomials M(x) and N(x) such that

M(x)(x — o) + N(x)M;(x)f;(x) = 1.
Hence,
M(A)(A — E)' + N(A)M;(A)f;(A) = E. (10.96)
Operating both sides of (10.96) on x, we get
M(A)(A — %E)'x + N(A)M;(A)fi(A)x = N(A)Ax = x. (10.97)

Notice that the first term of (10.97) vanishes from (10.82).
As A; is a polynomial of A, it commutes with N(A). Hence, we have

x =AN(A)x] € A,V". (10.98)
Thus, we get

W, CAV" (1<i<s). (10.99)
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From (10.95) and (10.99), we conclude that

W, =AV" (1<i<s). (10.100)

In other words, W; defined as (10.91) is identical to V~V1,. that is defined as
(10.82). Thus, we have

V=W &Wr @ & W,
or
Vi W, @ Wy, @B W, (10.101)

This completes the former half of the proof. With the latter half, the proof is as
follows.

Suppose that dim Woc,» = n}. In parallel to the decomposition of V" to the direct
sum of (10.81), A can be reduced as

Aot ] (10.102)

where A (1<i<s)isa (ni, n;) matrix and a symbol ~ indicates that A has been
transformed by suitable similarity transformation. The matrix A() represents a linear
transformation that A causes to ﬁ/a,.. We denote a n! order identity matrix by E,.
Equation (10.82) implies that the matrix represented by

N; =AY — oE,. (10.103)

is a nilpotent matrix. The order of an nilpotent matrix is at most n} (vide supra) and,
hence, /; can be n. With N;, we have

Ty, (x) = ‘xEn; —N;| = )xEn; — [A@ - a,En;] ‘ = ’xEn§ — AY + o,

‘ (10.104)
= ‘(x-i—o(i)En; _A(l)

’

= X",

The last equality is because eigenvalues of a nilpotent matrix are all zero.
Meanwhile,

!

fao (x) = ’xE,,; — A<i)’ = fy.(x — o) = (x — o). (10.105)
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Equation (10.105) implies that

s

) = [T = T - o = [J )" (10.106)

i=1 i=1

The last equality comes from (10.83). Thus, n; = n;. These procedures complete
the proof. At the same time, we may equate /; in (10.82) to n;.

Theorem 10.1 shows that any square matrix can be converted to a (upper)
triangle matrix by a similarity transformation. Theorem 10.5 demonstrates that the
matrix can further be segmented according to individual eigenvalues. Considering

Theorem 10.1 again, A®) (1 <i<s) can be described as an upper triangle matrix by

o ... *

AV~ ] (10.107)

Therefore, denoting N () such that

0 ... x
]\](l> :A(l) - OCiEn,- = ’ (10108)
0o ... 0

we find that N is nilpotent. This is because all the eigenvalues of N are zero.
From (10.108), we have

10.5 Decomposition of Matrix

To investigate canonical forms of matrices, it would be convenient if a matrix can
be decomposed into appropriate forms. To this end, the following definition is
important.

Definition 10.4 A matrix similar to a diagonal matrix is said to be semi-simple.
In the above definition, if a matrix is related to another matrix by similarity
transformation, those matrices are said to be similar to each other. When we have
two matrices A and A, we express it by A~A’ as stated above. This relation
satisfies the equivalence law. That is,
D) A~A, (i) A~A = A ~A, (i) A~cA A ~A" = A~AY.
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Readers, check this. We have a following important theorem with the matrix
decomposition.

Theorem 10.6 [3] Any (n, n) square matrix A is expressed uniquely as
A=S+N, (10.109)

where S is semi-simple and N is nilpotent; S and N are commutable, i.e., SN = NS.
Furthermore, S and N are polynomials of A with scalar coefficients.

Proof Using (10.86) and (10.87), we write
s
S=wmAi+ - +o0A =Y uMi(A)fi(A). (10.110)
i=1

Then, Eq. (10.110) is a polynomial of A. From Theorems 10.1 and 10.5,
A (1<i<s) in (10.102) is characterized by that A(¥) is a triangle matrix whose
eigenvalues o; (1 <i<ys) are positioned on diagonal positions and that the order of
AY is identical to the multiplicity of o;. Since A; (1 <i <) is an idempotent matrix,
it should be diagonalized through similarity transformation (see Sect. 10.7). In fact,
S is transformed via similarity transformation the same as (10.102) into

OC]En1 0
A (10.111)
0 R

where E,, (1<i<s) is an identity matrix of an order n; that is identical to the
multiplicity of o;. This expression is equivalent to e.g.,

E, ... 0
R B
o ... 0
in (10.110). Thus, S is obviously semi-simple. Putting N = A — §, N is described
after the above transformation as

. N —AD _gE, (10.112)

Since each N is nilpotent as stated in Sect. 10.4, N is nilpotent as well. Also
(10.112) is a polynomial of A as in the case of S. Therefore, S and N are
commutable.
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To prove the uniqueness of the decomposition, we show the following:

(1)

(i)

(iii)
(i)

(i)

Let S and S’ be commutable semi-simple matrices. Then, those matrices are
simultaneously diagonalized. That is, with a certain non-singular matrix P,
P~'SP and P~'S'P are diagonalized at once. Hence, S + §' is semi-simple as
well.

Let N and N’ be commutable nilpotent matrices. Then, N &+ N’ is nilpotent as
well.

A matrix both semi-simple and nilpotent is zero matrix.

Let different eigenvalues of S be «y, ..., o, Then, since S is semi-simple, a
vector space V" is decomposed into a direct sum of eigenspaces
W,, (1 <i<s). That is, we have

Vn:Wal@"'@W%'

Since S and § are commutable, with 3x¢€ W, we have
SS'x = §'Sx = §'(a;x) = 0;5'x. Hence, we have S'x € W,.. Namely, W,. is

S’-invariant. Therefore, if we adopt the basis vectors {ai,...,a,} with
respect to the direct sum decomposition, we get

wE, ... O S, ... 0
S~ e S~ oo
0 ... %E, 0 ... &8

Since S’ is semi-simple, S} (1 <i<s) must be semi-simple as well. Here, let
{e1,...,e,} be original basis vectors before the basis vector transformation
and let P be a representation matrix of the said transformation. Then, we
have

(e1...e,)P = (ay...a,).
Thus, we get

OC]Enl NN 0 Sll .. 0
Plsp=1| .|, PISP=]
0 ... oFE, 0o ... §

This means that both P~!SP and PSP are diagonal. That is, PSP+
P1S'P =P~ (S £ 5P is diagonal, indicating that S + 5’ is semi-simple as
well.

Suppose that N' =0 and N = 0. From the assumption, N and N’ are
commutable. Consequently, using binomial theorem we have
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NEN)"=N"+mN"'N'+ -+ +(£1)) ——N""'N"+ ...
( ) " o E) T +
+ (£1)"N"™.

(10.113)

Putting m = v+Vv — 1, if i >/, N = 0 from the supposition. If i<V, we
have m—i>m—VvV =v+v —1—-v =v—1; i.e., m—i>v. Therefore,
N~ = 0. Consequently, we have N"~'N" = 0 with any i in (10.113). Thus,
we get (N £ N')" = 0, indicating that N + N’ is nilpotent.

(iii) Let S be a semi-simple and nilpotent matrix. We describe S as

S~ |, (10.114)

where some of o; (1 <i<n) may be identical. Since S is nilpotent, all
o; (1 <i<n) is zero. We have then S~ 0; i.e., S = 0 accordingly.

Now, suppose that a matrix A is decomposed differently from (10.109). That
is, we have

A=S+N=S+N o S-S5 =N —N. (10.115)

From the assumption, S and N’ are commutable. Moreover, since S, S, N,
and N’ are described by a polynomial of A, they are commutable with one
another. Hence, from (i) and (ii) along with the second equation of (10.115),
S — 8 and N' — N are both semi-simple and nilpotent at once. Consequently,
from (iii) S — S =N — N = 0. Thus, we finally get S=5 and N = N'.
That is, the decomposition is unique.

These complete the proof.

Theorem 10.6 implies that the matrix decomposition of (10.109) is unique. On
the basis of Theorem 10.6, we investigate Jordan canonical forms of matrices in the
next section.

10.6 Jordan Canonical Form

Once the vector space V" has been decomposed to a direct sum of generalized
eigenspaces with the matrix reduced in parallel, we are able to deal with individual

eigenspaces W,, (1 <i<s) and the corresponding A®) (1 <i<s) separately.
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10.6.1 Canonical Form of Nilpotent Matrix

To avoid complication of notation, we think of a following example where we
assume a (n, n) matrix that operates on V”: Let the nilpotent matrix be N: Suppose
that N'~! #£0 and N* =0 (1 <v<n). If v = 1, the nilpotent matrix N is a zero
matrix. Notice that since a characteristic polynomial is described by fy(x) =
¥", fy(N) = N" = 0 from Hamilton—-Cayley Theorem. Let W) be given such that

wi = {x; x € V" Nx= 0}.
Then we have
vi=w o w5 5wl 5 w0 = {0} (10.116)

Note that when v = 1, we have trivially V" = W) > W(® = {0}. Let us put
dim WY =my;, mj —m;_ = ri(1<i<v), my =0. Then we can add r, linearly
independent vectors aj,as, ..., and a,, to the basis vectors of W0=1 so that those
r, vectors can be basis vectors of WO, Unless N = 0 (i.e., zero matrix), we must
have at least one such vector; from the supposition with Ix # 0 we have N'~'x # 0,
and so x & W=D At least one such vector x is present and it is eligible for a basis
vector of W(). Hence, ry > 1 and we have

w") = Span {a,,as, ...,a, } & WOV, (10.117)

Note that (10.117) is expressed as a direct sum. Meanwhile,
Na,,Na;,...,Na, € wo=b_ In  fact, suppose  that x € wo, e,
N'x = N'"'(Nx) = 0. That is, Nx € W01,

According to a similar reasoning made above, we have

Span{Na;,Na,,...,Na, } N w2 = {0}.

Moreover, these r, vectors Naj,Na,, ..., and Na,, are linearly independent.
Suppose that

ciNa; +c;Nay + - - - +c¢,Na,, = 0. (10.118)
Operating N "2 from the left, we have
Nvil(Clal +ca)+ -+ c,\,a,‘_) =0.

This would imply that cia; + a2+ -+ +ca,, € W=D On the basis of the
above argument, however, we must have ¢; = ¢, = - -+ = ¢, = 0. In other words,
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if ¢; (1 <i<r,) were nonzero, we would have a; € W“”l), in contradiction. From
(10.118), this means linear independence of Na;, Nay, ..., and Na,,.

As WO 5 W=2) we may well have additional linearly independent vectors
within the basis vectors of W=D Let those vectors be a,41,...,4a, . Here we
assume that the number of such vectors is r,_; —r,. We have r,_1 —1r,>0
accordingly. In this way, we can construct basis vectors of W('~!) by including
a. i1,..., anda,_, along with Na;,Na,, ..., and Na,,. As a result, we get

w01 = Span {Nay,...,Na, a, +1,....a,_ & w2,
We can repeat these processes to construct W ~2) such that

w02 = Span {N%a\,...,N%a, ,Na,,,1,.. ,Na, ,a,  .1,....a, ,}
e w3,

For W, furthermore, we have

w)
= Span {N""ay,....,N""'a, ,N"""'a, 1,.. .N""a, ,....a,  11,....4,}
@ W(i_l).
(10.119)

Further repeating the procedures, we exhaust all the n basis vectors of W(") =
V". These vectors are given as follows:

Na, i1, Na, (1<i<v;0<k<i—1).

At the same time, we have

O=rnn<1<n<n < <. (10.120)

Table 10.1 [3] shows the resulting structure of these basis vectors pertinent to
Jordan blocks. In Table 10.1, if laterally counting basis vectors, from the top we
have r,, r,_1,...,r vectors. Their sum is n. This is the same number as that
vertically counted. The dimension n of the vector space V" is thus given by

n:;ri:;i(ri—ri+1). (10.121)

Let us examine the structure of Table 10.1 more closely. More specifically, let us
inspect the i-layered structures of (r; —r; ) vectors. Picking up a vector from
among @, 41,-..,a,, we call it a,. Then, we get following set of vectors
a,, Na,N%a,,...,N"'a, in the i-layered structure. These i vectors are displayed
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“vertically” in Table 10.1. These vectors are linearly independent (see
Theorem 10.4) and form an i-dimensional N-invariant subspace; i.e.,
szln{N"’ltzp,N"’za‘a7 .. .,Nap,ap}, where r; 1 + 1 < p <r;. Matrix representation
of the linear transformation N with respect to the set of these i vectors is

(N'a,N"*a,.. .Na,a,)N

L (10.122)
= (N""a,N“a,.. Naya,)

0 1
0

These (i, i) matrices of (10.122) are called ith order Jordan blocks. Notice that
the number of those Jordan blocks is (r; — r;;1). Let us expressly define this
number as [3]

Ji:r,»—r,-+1, (10123)

where J; is the number of the ith order Jordan blocks. The total number of Jordan
blocks within a whole vector space V" = W) is

Sh=>Y (ri—rig)=n. (10.124)
i=1 i=1
Recalling the dimension theorem mentioned in (9.45), we have

dim V" = dim Ker N’ + dim N'(V")

] , . (10.125)
= dim Ker N' +rank N'.

Meanwhile, since W = Ker N, dim W = m; = dim Ker N'. From (10.116),
mgy = 0. Then (9.45) is now read as
dim V" = m; 4 rank N'. (10.126)
That is

n = m; +rank N'. (10.127)
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or
m; = n — rank N'. (10.128)

Meanwhile, from Table 10.1 we have
) i ) i—1
dim WO =m; = " r, dim WY =m = ne (10.129)
k=1 k=1

Hence, we have

ri =m; —m;_1. (10130)
Then we get [3].
Ji=ri—rip1r = (mi—miy) — (mig —m) =2m; —miy —mj
=2(n —rankN') — (n — rank N"') — (n — rank N'*'") (10.131)

= rank N ! + rank N'* 1 — 2rank N'.

The number J; is therefore defined uniquely by N. The total number of Jordan
blocks 7 is also computed using (10.128) and (10.130) as

rp =m; —mg=m; =n—rank N = dim Ker N, (10.132)

where the last equality arises from the dimension theorem expressed as (9.45).
In Table 10.1, moreover, we have two extreme cases. That is, if v = 1in (10.116),
ie., N =0, from (10.132) we have ry =n and r, = --- = r,, = 0; see Fig. 10.1a.

Also we confirmn = ) _;_, r;in (10.121). In this case, all the eigenvectors are proper

Fig. 10.1 Examples of the (b)
structure of Jordan blocks. a;
ar, =n.
bri=rn=--=r=1 Na1
(a) Nn—Zal
al'az'...’arl Nn_lal

n=n n=rp=--=1
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eigenvectors with multiplicity of n and we have n first-order Jordan blocks. The other
is the case of v = n. In that case, we have

n=rn=--=rn=1 (10.133)

In the latter case, we also have n = ., r; in (10.121). We have only one
proper eigenvector and (n — 1) generalized eigenvectors; see Fig. 10.1b. From
(10.132), we have this special case where we have only one nth order Jordan block,
when rank N = n — 1.

10.6.2 Jordan Blocks

Let us think of (10.81) on the basis of (10.102). Picking up AY from (10.102) and
considering (10.108), we put

Ny =AY — E, (1<i<s), (10.134)

where E,, denotes (n;,n;) identity matrix. We express a nilpotent matrix as N; as
before. In (10.134), the number n; corresponds to n in V" of Sect. 10.6.1. As N; is a
(ni, n;) matrix, we have

NI = 0.

Here we are speaking of vth order nilpotent matrices N; such that N}~' # 0 and
N} =0 (1<v<n;). We can deal with N; in a manner fully consistent with the
theory we developed in Sect. 10.6.1. Each A”) comprises one or more Jordan
blocks A®) that is expressed as

A® = Ny + 0B, (1<K <ny), (10.135)

where A®) denotes the kth Jordan block in A®. In A("), Ny, and E,, are nilpotent
(i, ;) matrix and (x;, x;)identity matrix, respectively. In N, x; zeros are displayed
on the principal diagonal and entries of 1 are positioned on the matrix element next
above the principal diagonal. All other entries are zero; see, e.g., a matrix of
(10.122). As in Sect. 10.6.1, the number x; is called a dimension of the Jordan
block. Thus, A of (10.102) can further be reduced to segmented matrices AW Our
next task is to find out how many Jordan blocks are contained in individual A®) and
what is the dimension of those Jordan blocks.

Corresponding to (10.122), the matrix representation of the linear transformation
by A®) with respect to the set of x; vectors is
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(A% — o E " 'a [AY) — wE, )" 2a,. . a,)[AY) — o,E,]
= (AW — E " 'a,[AY) — wE, ] a,. . .a,)
0 1
0 1
0 (10.136)

0

A vector a, stands for a vector associated with the xth Jordan block of A®. From
(10.136), we obtain

k‘,‘*l
[A(K) _ O‘iEK,v:| { [A(K) _ OCiEh‘l} ao_} =0. (10137)
Namely,

A("'){ |4 — 0iE Kilaa} = oci{ 4% - 0iE ] ’qlaa}- (10.138)

This shows that [A") — ociEKi]K"flaa is a proper eigenvector of A®) that corre-
sponds to an eigenvalue o;. On the other hand, a, is a generalized eigenvector of
rank ;. There are another (x; —2) generalized eigenvectors of
[A<"') — ociE,L.J“a,, (1<pu<ik;—2). In total, there are x; eigenvectors [a proper
eigenvector and (k; — 1) generalized eigenvectors]. Also we see that the sole proper
eigenvector can be found for each Jordan block.

In reference to these k; eigenvectors as the basis vectors, the (i;, k;)-matrix A®)
(i.e., a Jordan block) is expressed as

o 1
o 1
o .
A(zc) _ . . . : . (10139)
o 1
o 1
0l
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A(n;, n;)-matrix A of (10.102) pertinent to an eigenvalue o; contains a direct
sum of Jordan blocks whose dimension ranges from 1 to n;. The largest possible
number of Jordan blocks of dimension d (that satisfies [5 + 1] <d <n;, where [y]
denotes a largest integer that does not exceed u) is at most one.

An example depicted below is a matrix A® that explicitly includes two
one-dimensional Jordan blocks, a (3, 3) three-dimensional Jordan block, and a (5,
5) five-dimensional Jordan block:

o 0
o 0
o 1
o 1
o 0
o 1
o 1
ol 1

o 1

&i

where A is a (10,10) upper triangle matrix in which o; is displayed on the prin-
cipal diagonal with entries 0 or 1 on the matrix element next above the principal
diagonal with all other entries being zero.

Theorem 10.1 shows that every (n, n) square matrix can be converted to a
triangle matrix by suitable similarity transformation. Diagonal elements give
eigenvalues. Furthermore, Theorem 10.5 ensures that A can be reduced to gener-
alized eigenspaces W,, (1 <i<s) according to individual eigenvalues. Suppose for
example that after a suitable similarity transformation a full matrix A is represented
as

241
Ol *
%)
%)

A~ : o ., (10.140)
* *

o
o
0l

s
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where
A=AV AP @ . 0AV @ .. ALY, (10.141)

In (10.141), AW is a (1,1) matrix (i.e., simply a number); A® is a (3,3) matrix;
--AY is a (4,4) matrix; ---A®) is a (2, 2) matrix.

The above matrix form allows us to further deal with segmented triangle
matrices separately. In the case of (10.140), we may use a following matrix for
similarity transformation:

1

D b1 P12 P13 P4
P21 P2 P23 Pu
P31 P32 P33 P34
P41 P42 P43 P44

where a (4,4) matrix P given by

Piir P12 P13 P4
p— | P Pn P P
P31 P32 P33 P34
P41 P42 P43 P44

is a non-singular matrix. The matrix P is to be operated on AY) so that we can
separately perform the similarity transformation with respect to a (4, 4) nilpotent
matrix A® — o;E, following the procedures mentioned Sect. 10.6.1.

Thus, only an o;-associated segment can be treated with other segments left
unchanged. In a similar fashion, we can consecutively deal with matrix segments
related to other eigenvalues. In a practical case, however, it is more convenient to
seek different eigenvalues and corresponding (generalized) eigenvectors at once and
convert the matrix to Jordan canonical form. To make a guess about the structure of
a matrix, however, the following argument will be useful. Let us think of an
example after that.
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Using (10.140), we have

A*O(,'E
oy — &
Oy — O * *

Oy — 0O *

oy — O *

Oty — O

Here we are treating the (n, n) matrix A on V”. Note that a matrix A — o;E is not
nilpotent as a whole. Suppose that the multiplicity of «; is n;; in (10.140) n; = 4.

Since eigenvalues oy, 0;,..., and «; take different values from one another,
o — 0y 0p — O, ..., and oy — o; #~ 0. In a triangle matrix diagonal element gives
eigenvalues and, hence, o«; — o, 00 — o;, ..., and oy — o; are nonzero eigenvalues

of A — o;E. We rewrite (10.140) as
A— OC,'E ~

(10.142)

Oy — O *
where M) = (o1 — o), M2 = oy — O * PN

I
(e
O %
O ¥ ¥ ¥
|
N
K
S
|
R
K
“
*
R
~~_
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Thus, M©®) (p # i) is a non-singular matrix and M (@ is a nilpotent matrix. Note
that if we can find g such that [M(i)]ui717é 0 and [M(")}H": 0, with a minimal
polynomial ¢, (x) for M), we have ¢, (x) = x*. Consequently, we get

[M(l)]#i
[M<2)]Hi

(A — aE)" ~ (10.143)

[M(s)]lh

In (10.143), diagonal elements of non-singular triangle matrices [M")]" (p # i)
are (a, — ;)" (£ 0). Thus, we have a “perforated” matrix (A — oE)" where
[M®W]%= 0 in (10.143). Putting

we get

D4(A) =[] (A - wE)" =0.

i=1

A polynomial @4(x) gives a minimal polynomial for f; (x).
From the above argument, we can choose p; for /; in (10.82). Meanwhile, M @ in
(10.142) is identical to N; in (10.134). Rewriting (10.134), we get
AD = p) 1 GE,,. (10.144)

Let us think of matrices [A®) — oc,-En/.]k and (A — o,E)* (k < ;). From (9.45), we
find

dim V" = n = dim Ker (A — E)" +rank (A — w:E)", (10.145)
and
dim W, =n; = dim Ker [A” — E, | +rank [AD — oE, )5, (10.146)

where rank (A — oE)* = dim (A — o,E)* (V") and rank [A® — %E, ]* = dim
A — o, J* (W,,).

i
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Noting that
dim Ker (A — o,E)" = dim Ker [A"” — 4E, ", (10.147)

we get

n — rank (A — o,E)" = n; — rank [AY) — 5,E, | (10.148)

This notable property comes from the non-singularity of [M(m]k (p#i, k:a
positive integer); i.e., all the eigenvalues of [M (P)]k are nonzero. In particular, as
rank [AY) — oE, ]* = 0, from (10.148) we have

rank(A — wE) = n —n; (1> ). (10.149)

Meanwhile, putting k£ = 1 in (10.148) and using (10.132) we get

dim Ker [AY) — 0,E, ] = n; — rank [AY) — o, ]
=n —rank (A — o;E) = dim Ker (A — 4E)  (10.150)
=,
The value rgi) gives the number of Jordan blocks with an eigenvalue o;.
Moreover, we must consider a following situation. We know how the matrix A®)
in (10.134) is reduced to Jordan blocks of lower dimension. To get detailed
information about it, however, we have to get the information about (generalized)
eigenvalues corresponding to eigenvalues other than «;. In this context, (10.148) is
useful. Equation (10.131) tells how the number of Jordan blocks in a nilpotent
matrix is determined. If we can get this knowledge before we have found out all the
(generalized) eigenvectors, it will be easier to address the problem. Let us rewrite
(10.131) as

chi> =Tqg—Tq+1
= rank [AY) — E, 97" +rank [AY) — o;E, " — 2rank [AY) — %, |7,
(10.151)

where we define J(Si) as the number of the gth order Jordan blocks within A®). Note

that these blocks are expressed as (g, ¢) matrices. Meanwhile, using (10.148) Jf,i) is
expressed as

() — — E)?! —E) T = —wE)?
J,) =rank (A — o;E)""" +rank (A — oE) 2rank (A — o;E)?.  (10.152)

This relation can be obtained by replacing k in (10.148) withg — 1, + 1, and g,
respectively and deleting » and n; from these three relations. This enables us to gain
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access to a whole structure of the linear transformation represented by the (n,
n) matrix A without reducing it to subspaces.

To enrich our understanding of Jordan canonical forms, a following tangible
example will be beneficial.

10.6.3 Example of Jordan Canonical Form

Let us think of a following matrix A:

1 -1 0 O
1 3 0 0
A=l 0 o 2 o (10.153)
3 -1 -2 4
The characteristic equation f4 (x) is given by
x—1 1 0 0
) -1 x-3 0 0
x) = .
4 0 x-2 0 (10.154)
3 2 x—4
=(x—4)(x—2).

Equating (10.154) to zero, we get an eigenvalue 4 as a simple root and an
eigenvalue 2 as a triple root. The vector space V* is then decomposed to two
invariant subspaces. The first is a one-dimensional kernel (or null-space) of the
transformation (A — 4E) and the other is a three-dimensional kernel of the trans-

formation (A — 2E)3. We have to seek eigenvectors that span these invariant
subspaces.

i x=4:

An eigenvector belonging to the first invariant subspace must satisfy a proper
eigenvalue equation since the eigenvalue 4 is simple root. This equation is
expressed as

(A—4E)x =0.

This reads in a matrix form as

-3 -1 0 O cl

1 -1 0 0 ()] _

o 0o —2o0lle|=" (10.155)
-3 -1 -2 0 Cyq
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This is equivalent to a following set of four equations:

—3c1—c =0,
Cl_C2:O7
—2C3:O,

—3C1—C2—2C3:0.

These are equivalent to that c; = 0 and ¢; = ¢; = —3c). Therefore, c; = ¢; =

c3 = 0 with an arbitrarily chosen number of ¢4, which is chosen as 1 as usual.

Hence, designating the proper eigenvector as e<14>, its column vector representation

18

- o O O

A (4,4) matrix in (10.155) representing (A — 4E) has a rank 3. The number of
Jordan blocks for an eigenvalue 4 is given by (10.150) as

r§4) =4 —rank(A — 4E) = 1. (10.156)

In this case, the Jordan block is naturally one-dimensional. In fact, using
(10.152) we have
Jf4> = rank (A — 4E)" + rank (A — 4E)* — 2rank (A — 4E) (10.157)
=44+3-2x3=1. '
In (10.157), Jf4) gives the number of the first-order Jordan blocks for an
eigenvalue 4. We used

8

—4
0
8

(A—4E)’ = (10.158)

~ OO B~
~ OO

S O OO

and confirmed that rank(A — 4E)* = 3.
(i) x=2:

The eigenvalue 2 has a triple root. Therefore, we must examine how the in-
variant subspaces can further be decomposed to subspaces of lower dimension. To
this end, we first start with a secular equation expressed as
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(A-2E)x=0. (10.159)
The matrix representation is
-1 -1 0 0 C1
1 1 0 O | _g
0O 0 0 O a |
-3 -1 =2 2 Cy

This is equivalent to a following set of two equations:

cita :07
—3ci—cp —2c3+2¢c4 =0.

From the above, we can put ¢; = ¢; = 0 and ¢3 = ¢4 (= 1). The equations allow
the existence of another proper eigenvector. For this we have ¢; = —cy = 1,
c3 =0, and ¢4 = 1. Thus, for the two proper eigenvectors corresponding to an
eigenvalue 2, we get

0 1

2 0 2 -1
e(l): 1 eg): 0
1 1

A dimension of the invariant subspace corresponding to an eigenvalue 2 is three
(due to the triple root) and, hence, there should be one generalized eigenvector. To
determine it, we examine a following matrix equation:

(A—2E)*x =0. (10.160)
The matrix representation is
0 0 0 O c1
0 0 0 O | _
0 0 0 O a |7
-4 0 —4 4 4

That is,

—c1—c3+cq4 =0. (10161)
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Furthermore, we have

(A—2E)* = (10.162)

S OO
(=Nl
S OO

0
0
0
-8 -8 8
Moreover, rank(A — 2E)’ (= 1) remains unchanged for /> 2 as expected from

(10.149).
It will be convenient to examine a structure of the invariant subspace. For this

purpose, we seek the number of Jordan blocks r52> and their order. Using (10.150),
we have

AP =4 —rank(A —2E) =4 —2=2. (10.163)
The number of first-order Jordan blocks is

71 = rank (A — 2E)° + rank (A — 2E)* — 2rank (A — 2E)

(10.164)
=4+1-2x2=1.
In turn, the number of second-order Jordan blocks is
2 _ _ _ 3 _ _ 2
J5” =rank (A — 2E) +rank (A — 2E)” — 2rank (A — 2E) (10.165)

=2+1-2x1=1
In the above, Jiz) and Jéz) are obtained from (10.152). Thus, Fig. 10.2 gives a
constitution of Jordan blocks for eigenvalues 4 and 2. The overall number of Jordan
blocks is three; the number of the first-order and second-order Jordan blocks is two
and one, respectively.

The proper eigenvector e(lz) is related to J §2> of (10.164). A set of the proper

eigenvector e(22> and the corresponding generalized eigenvector ggz) is pertinent to

Jéz) of (10.165). We must have the generalized eigenvector ggz) in such a way that

(A —2E)g®? = (A - 2E) {(A - 2E)g§2)} = (A-2E)e? =0.  (10.166)

Fig. 10.2 Structure of Jordan Jordan blocks
blocks of a matrix shown in @
(10.170) 9,
‘ 954) ‘ egz) egz)

Eigenvalue: 4 Eigenvalue: 2
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From (10.161), we can put ¢; =c3 =c4 =0 and ¢, = —1. Thus, the matrix
representation of the generalized eigenvector g§2) is
0
g? = _01 . (10.167)
0

We stress here that e(lz) is not eligible for a proper pair with géz) in Jp. It is

because from (10.166) we have
(A—2E)g =e?, (A—2E)gl # e (10.168)

Thus, we have determined a set of (generalized) eigenvectors. The matrix rep-
resentation R for the basis vectors transformation is given by

00 1 0
00 -1 —1 PP

R=1g 1 o o |~@" e e’ s (10.169)
11 1 0

where the symbol ~ denotes the column vector representation; e<14>7 e§2), and ef’

represent proper eigenvectors and ggz) is a generalized eigenvector. Performing

similarity transformation using this R, we get a following Jordan canonical form:

1 0 -1 1\/1 -1 0 O0\/00 1 0

eig_| 0 0 L o[t 3 0 offoo -1 -

1 0o o oflo o 2 oflo1 0o o

1 -1 0 o/\=3 -1 2 4/\1 1 1 o
400 0
0200
“lo o 21
000 2

(10.170)

The structure of Jordan blocks is shown in Fig. 10.2. Notice here that the trace of
A remains unchanged before and after similarity transformation.

Next, we consider column vector representations. According to (9.37), let us
view the matrix A as a linear transformation over V4. Then A is given by
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xi
X
Alx) = (e1 ex e3e4)A 2
X3
X4
L1000\ Sy (10.171)
: 3 o offe
=(ejerese ,
1 €263 ey 0o 0 2 0 N
-3 -1 -2 4) \x

where ey, e;, e3, and ey are basis vectors and x;, x, x3, and x4 are corresponding
coordinates of a vector x = >, x;e; (€ V*). We rewrite (10.171) as

X1
A(x) = (e e e3 es)RR'ARR™| 2
X3
X4
4 0 0 O X, (10.172)
02 0 O X
@ (2 ,2) (2 2
=(e; e e ’
(e, e e g) 00 2 1 %,
0O 0 0 2 X
where we have
((334) e(12> e(22) g(22)) = (el e e; e4)R
¥ " 10.17
X/z — R—l X2 ( 0. 3)
xl3 X3
X X4
After (9.84), we have
X1 X1
X | x
x:(el 828384) 2 :(91 e e; e4)RR 1 2
X3 X3
X4 X4
X} (10.174)
X
@ (2 2 (2 2
:(el el)ez)gz) ;
X3
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As for V" in general, let us put R = (p); and R = (9);- Also represent jth
(generalized) eigenvectors by a column vector and denote them by pU). There we
display  individual  (generalized) eigenvectors in the order of
(e(1> e ...l .. -e<")), where eU) (1 <j<n) denotes either a proper eigenvector
or a generalized eigenvector according to (10.174). Each pV) is represented in
reference to original basis vectors (e;...e,). Then we have

R'pD =" qup{ = o, (10.175)
k=1

where 5,@ denotes a column vector to which only the jth row is 1, otherwise O.
Thus, a column vector 55" ) is an “address” of eY) in reference to
(e(1> e?. . el .e<")) taken as basis vectors.

In our present case, in fact, we have

-1 0 —1 1\ /0 1
gm_| 0 0 offol_|of
o 0 offo 0
-1 -1 0 o/ \1 0
-1 0 —1 1\ /0 0
Rpe_ | 00 Looffol i)
1 0o o off1 0
-1 -1 0 o/ \1 0
(10.176)
“1 0 -1 1\ /1 0
o |00 ol -t_{of
1 0o o offo 1
-1 -1 0 0/ \1 0
“1 0 —1 1\ /0 0
g | 00 ofl-1|_]o
1 0o o offo 0
-1 -1 0 o/ \o 1

In (10.176), p'!) is a column vector representation of e(14); p?) is a column vector

representation of eﬁz), and so on.
A minimal polynomial @,(x) is expressed as

Dp(x) = (x—4)(x —2)%

Readers can easily make sure of it.
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We remark that a non-singular matrix R pertinent to the similarity transformation
is not uniquely determined, but we have arbitrariness. In (10.169), for example, if

we adopt _ggz) instead of ggz)’ we should adopt _egz) instead of e;z) accordingly.

Thus, instead of R in (10.169) we may choose

-1
1

R = (10.177)

— O O O
—_—— O O

0
1
0
-1 0

In this case, we also get the same Jordan canonical form as before. That is,

4 0 00
_ 02 00
/—1 /
kAR = 00 2 1
00 0 2
Suppose that we choose R” such that
0 1 0 O
0O -1 -1 0
erere;e )R = (ejereze
(e1 €23 e4) (1234)1000
1 1 0 1

= (e} ef? g €l").

In this case, we have

R//—IAR// —

SO O
[Nl S )
SN = O
~ O OO

Note that we get a different disposition of the matrix elements from that of
(10.172).

Next, we decompose A into a semi-simple matrix and a nilpotent matrix. In
(10.172), we had

R'AR =

SO O B~
S OO
SN OO
- OO
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Defining
4 0 0O 0 0 0O
s=lo o2 0] ™ ¥=|50 01|
00 0 2 0 0 0O

we have

R'AR=S+N ie. A=R(S+N)R'=RSR'+RNR .

Performing the above matrix calculations and putting S =RSR™! and
N =RNR™!, we get

A=S+N
with
20 0 0 1 -1 0 0
~ 0 2 0 0 - 1 1 00
5=10 o 2 of ™ N= 0 0 0
2 0 -2 4 1 -1 0 0
That is, we have
1 -1 0 0 20 0 0 1 -1 0 0
a1 3 00 o200 f1 1 00
“lo o 2 ol o o 2 o 0 0 00
3 -1 -2 4 2 0 -2 4 -1 -1 0 0
(10.178)

Even though matrix forms S and N differ depending on the choice of different
matrix forms of similarity transformation R (namely, R', R” represented above), the
decomposition (10.178) is unique. That is, S and N are uniquely determined, once
a matrix A is given. The confirmation is left for readers as an exercise.

We present another simple example. Let A be a matrix described as

0 4
A= (_1 4>.
Eigenvalues of A are 2 as a double root. According to routine, we have an

. 2
eigenvector e(l ) as a column vector, c.g.,
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Another eigenvector is a generalized eigenvector g(lz) of rank 2. This can be
decided such that

2 -2 4\ 2
(A—2E)g” = (_1 2>g5)=e<1>-

As an option, we get

Thus, we can choose R for a diagonalizing matrix together with an inverse
matrix R~! such that

(21 1 1 -1
R—<1 1), and R —<_1 2).
Therefore, with a Jordan canonical form we have

e (21
R AR—(O 2). (10.179)

As before, putting

2 0 0 1
S_<O 2) and N_(O 0)’

R'AR=S+N ie. A=R(S+N)R'=RSR'+RNR "

we have

Putting S = RSR™' and N = RNR™", we get
A=S+N

with

~ (20 ~ (-2 4
S—<0 2> and N_<1 2). (10.180)
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We may also choose R for a diagonalizing matrix together with an inverse
matrix R'~! instead of R and R™!, respectively, such that we have, e.g.,

/ 2 _3 -1 _ _1 3
R_(l _1), and R —(_1 2).

Using these matrices, we get exactly the same Jordan canonical form and the
matrix decomposition as (10.179) and (10.180). Thus, again we find that the matrix
decomposition is unique.

Another simple example is a lower triangle matrix

2 00
A= -2 1 0
0 01

Following now familiar procedures, as a diagonalizing matrix we have, e.g.,

1 00 1 00
R=|-2 10 and R'=[2 1 0
0 01 0 0 1
Then, we get
2 00
R'AR=S=(0 1 0
0 0 1
Therefore, the “decomposition” is
2 00 0 0 O
A=RSR'=[ -2 1 0])+[0 0 0],
0 01 0 0 O

where the first term is a semi-simple matrix and the second is a nilpotent matrix
(i.e., zero matrix). Thus, the decomposition is once again unique.

10.7 Diagonalizable Matrices

Among canonical forms of matrices, the simplest form is a diagonalizable matrix.
Here we define a diagonalizable matrix as a matrix that can be converted to that
whose off-diagonal elements are zero. In Sect. 10.5 we have investigated different
properties of the matrices. In this Section we examine basic properties of diago-
nalizable matrices.
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In Sect. 10.6.1 we have shown that Span{Ni"a‘,, N'~%a,,...Na,, ap} forms a
N-invariant subspace of a dimension i, where a, satisfies the relations N"aﬂ =
0and N la, # 0 (r;y 1 +1<j<r) as in (10.122). Of these vectors, only N'"'a,
is a sole proper eigenvector that is accompanied by (i — 1) generalized eigenvec-
tors. Note that only the proper eigenvector can construct one-dimensional N-
invariant subspace by itself. This is because regarding other generalized eigen-
vectors g (here g stands for all of generalized eigenvectors), Ng(# 0) and g are
linearly independent. Note that with a proper eigenvector e, we have Ne = 0.
A corresponding Jordan block is represented by a matrix as given in (10.122) in
reference to the basis vectors comprising these i eigenvectors. Therefore, if a (n,
n) matrix A has only proper eigenvectors, all Jordan blocks are one-dimensional.
This means that A is diagonalizable. That A has only proper eigenvectors is
equivalent to that those eigenvectors form a one-dimensional subspace and that V"
is a direct sum of the subspaces spanned by individual proper eigenvectors. In other
words, if V" is a direct sum of subspaces (i.e., eigenspaces) spanned by individual
proper eigenvectors of A, A is diagonalizable.

Next, suppose that A is diagonalizable. Then, after an appropriate similarity
transformation with a non-singular matrix P, A has a following form:

o

o
2%}

PlAP = - . (10.181)
[2%]

s

s

In this case, let us examine what form a minimal polynomial ¢, (x) for A takes.
A characteristic polynomial f; (x) for A is invariant through similarity transforma-
tion, so is @4 (x). That is,

Pp1ap(x) = @a(x). (10.182)

From (10.181), we find that A — o;E (1 <i <) has a “perforated” form such as
(10.143) with the diagonalized form unchanged. Then we have

(A= o E)(A — E)...(A — osE) = 0. (10.183)
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This is because a product of matrices having only diagonal elements is merely a
product of individual diagonal elements. Meanwhile, in virtue of Hamilton—Cayley
Theorem, we have

faA) = H (A — oE)" = 0.

Rewriting this expression, we have
(A= E)"(A—oE)?...(A—oE)" =0. (10.184)
In light of (10.183), this implies that a minima polynomial ¢, (x) is expressed as
Pa(x) = (x — o) (x — o). . .(x — o). (10.185)

Surely ¢4(x) is in (10.185) has a lowest-order polynomial among those satis-
fying f(A) = 0 and a divisor of f4(x). Also ¢, (x) has a highest-order coefficient of
1. Thus, @4 (x) should be a minimal polynomial of A and we conclude that ¢, (x)
does not have a multiple root.

Then let us think how V" is characterized in case ¢, (x) does not have a multiple
root. This is equivalent to that ¢, (x) is described by (10.185). To see this, suppose
that we have two matrices A and B and let BV" = W. We wish to use the following
relation:

rank (AB) = dimABV" = dim AW = dim W — dim (A~'{0} N W)
>dim W — dim (A7'{0}) = dim BV" — (n — dim AV")  (10.186)
=rank A +rank B — n.

In (10.186), the third equality comes from the fact that the domain of A is
restricted to W. Concomitantly, A~'{0} is restricted to A~' {0} N W as well; notice
that A~'{0} NW is a subspace. Considering these situations, we use a relation
corresponding to that of (9.45). The fourth equality is due to the dimension theorem
of (9.45). Applying (10.186) to (10.183) successively, we have

0 =rank [(A — 0 E)(A — %E). . .(A — o,E)]
>rank (A — oy E) +rank [(A — pFE)...(A — oxE)] — n
>rank (A — o E) +rank (A — pFE) +rank [(A — o3E)...(A — o,E))

rank (A — oyE)+ -+ +rank (A — o,E) — (s — L)n

= Zrank [(A — o4E) — n] +n.
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Finally we get
Zrank [n— (A —oE)] >n. (10.187)
i=1

As rank[n — (A — o4E)] = dim W,,, we have

> dim W, >n. (10.188)

i—1

Meanwhile, we have

VIO W, W, @B W,

g 10.189
n>dim (W,, ®W,, &---dW,,) = E dim W,,. ( )
i=1

The equality results from the property of a direct sum. From (10.188) and
(10.189), we get

> dim W, =n. (10.190)
i=1

Hence,
V=W, oW, &---a&W,. (10.191)

Thus, we have proven that if the minimal polynomial does not have a multiple
root, V" is decomposed into direct sum of eigenspaces as in (10.191).

If in turn V" is decomposed into direct sum of eigenspaces as in (10.191), A can
be diagonalized by a similarity transformation. The proof is as follows: Suppose
that (10.191) holds. Then, we can take only eigenvectors for the basis vectors of V.

Suppose that dim W,, = n;. Then, we can take vectors ay; [(Z;;i nj> +1<k<

25:1 n]} so that a; can be the basis vectors of W,,. In reference to this basis set, we

describe a vector x € V" such that

x|
x
x=(may...a,)

Xn
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Operating A on x, we get

X1 X1
X2 X
A(x) = (al a.. -an)A . = (alA azA. . .a,,A)
Xn Xn
X1
X2
= (oclal ohay. . .ocna,l) . (10192)
Xn
o1 X1
0 X
= (a1 a2...an) ,
0y Xn

where with the second equality we used the notation (9.40); with the third equality
some of &; (1 <i<n) may be identical; ; is an eigenvector that corresponds to an

eigenvalue o;. Suppose that a, a,, ..., and @, are obtained by transforming an
“original” basis set e, e, ..., and e, by R. Then, we have
” K0
0
A(x) = (e; €3...€,)R 2 . R™! xg-)
. oy x,éo)
We denote the transformation A with respect to a basis set ej, e, ..., and e, by

Agp; see (9.82) with the notation. Then, we have

X
O

A(X) = (el €e).. .en>A0 ]
e

Therefore, we get
o
1 %2
R AgR = . . (10.193)
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Thus, A is similar to a diagonal matrix as represented in (10.192) and (10.193).

It is obvious to show a minimal polynomial of a diagonalizable matrix has no
multiple root. The proof is left for readers.

Summarizing the above arguments, we have a following theorem:

Theorem 10.7 [3] The following three statements related to A are equivalent:

(1) The matrix A is similar to a diagonal matrix.
(ii) The minimal polynomial ¢4 (x) does not have a multiple root.
(iii) The vector space V" is decomposed into a direct sum of eigenspaces.

In Example 10.1 we showed the diagonalization of a matrix. There A has two
different eigenvalues. Since with a (n, n) matrix having »n different eigenvalues its
characteristic polynomial does not have a multiple root, the minimal polynomial
necessarily has no multiple root. The above theorem therefore ensures that a matrix
having no multiple root must be diagonalizable.

Another consequence of this theorem is that an idempotent matrix is diagonal-
izable. The matrix is characterized by A?> = A. Then A(A — E) = 0. Taking its
determinant, (det A)[det (A — E)] = 0. Therefore, we have either det A =0 or
det (A — E) = 0. Hence, eigenvalues of A are zero or 1. Think of f(x) = x(x — 1).
As f(A) =0, f(x) should be a minimal polynomial. It has no multiple root, and so
the matrix is diagonalizable.

Example 10.6 Let us revisit Example 10.1, where we dealt with

A= (3 }) (10.32)

From (10.33), fa(x) = (x — 2)(x — 1). Note that fs (x) = fp-14p(x). Let us treat a
problem according to Theorem 10.5. Also we use the notation of (10.85). Given
filx) =x—1and f>(x) = x — 2, let us decide M;(x) and M;(x) such that these can
satisfy

M, (x)fi (x) + Mz (x)f>(x) = L. (10.194)
We find M; (x) = 1 and M,(x) = —1. Thus, using the notation of Theorem 10.5,

Sect. 10.4 we have

A =M (A)fi(A) =A—E = (é (1)>

Ay = Ma(A)fr(A) = —A +2E = (g _11>
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We also have

Al +A; = E, AA;j = AjA; = Ay, (10.195)

Thus, we find that A; and A, are idempotent matrices. As both A; and A, are
expressed by a polynomial A, they are commutative with A.
We find that A is represented by

A= O(lAl + O(zAz, (10196)

where «; and o, denote eigenvalues 2 and 1, respectively. Thus choosing proper
eigenvectors for basis vectors, we have decomposed a vector space V" into a direct
sum of invariant subspaces comprising the proper eigenvectors. Concomitantly, A is
represented as in (10.196). The relevant decomposition is always possible for a
diagonalizable matrix.

Thus, idempotent matrices play an important role in the theory of linear vector
spaces.

Example 10.7 Let us think of a following matrix.

(10.197)

=
I
oo~

0
1
0

O = =

This is a triangle matrix, and so diagonal elements give eigenvalues. We have an
eigenvalue 1 of double root and that O of simple root. The matrix can be diago-
nalized using P such that

B 1o 1\ /1 o0 1\ /1 0 -1 1 00
A=pP'AP={0 1 1])]l0 1 1]{0 1 —-1]={0 1 0]. (10.198)
00 1/\000/\0O O 1 000

As can be checked easily, A% = A. We also have

/000
E-A=[0 0 0], (10.199)
00 1

where (E — A)*> = E — A holds as well. Moreover, A (E - Z) = (E - Z)Z =0.

Thus A and E — A behave like A; and A, of (10.195).
Next, suppose that x € V" is expressed as a linear combination of basis vectors
a,a,,..., and a,. Then

X =ca +ca+ - +c_1a,-1+cpa,. (10200)
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Here let us define a following linear transformation P*) such that P*) “extracts”
the kth component of x. That is,

PO (x) = p® (Z c,-a,-) =33 pllca = cian (10.201)
j=1 j=1 i=1

g
ij
arbitrarily chosen vector x such that

where p}; is the matrix representation of P(*). In fact, suppose that there is another

y=da+da,+ --- +d,_1a,_1 +d,a,. (10202)
Then we have
P® (ax + by) = (acx + bdy)ay = acway + bdway = aP® (x) +bPW (y). (10.203)

Thus P%) is a linear transformation. In (10.201), for the third equality to hold, we
should have

(py) = 0{5},,, (10.204)

ij

where 5?) has been defined in (10.175). Meanwhile, 5{k> denotes a row vector to

which only the kth column is 1, otherwise 0. Note that 51(»]() represents a (n, 1) matrix
and that (3'(ik> denotes a (1, n) matrix. Therefore, 5,(-k)5{k> represents a (n, n) matrix

whose (k, k) element is 1, otherwise 0. Thus, P*¥)(x) is denoted by

0
X1
k 2
PX(x) = (ay.. .a,) 1 C | =xa,  (10.205)

Xn

0
where only the (k.k) element is 1, otherwise 0. Then P®)[P®)(x)] = P()(x). That is
2
[p(@] — pl) (10.206)
Also PO[PD(x)] = 0 if k # 1. Meanwhile, we have P! (x) 4 --- + P (x) =

x. Hence, PV (x) + --- +P"(x) = [PV 4 ... + P™](x) = x. Since this relation
holds with any x € V", we get
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PO ... L p) —F (10.207)

As shown above, an idempotent matrix such as P%) always exists. In particular,
if the basis vectors comprise only proper eigenvectors, the decomposition as
expressed in (10.196) is possible. In that case, it is described as

A=oA1+ - + oA, (10.208)
where «p,..., and o, are eigenvalues (some of which may be identical) and
Ay, ..., and A, are idempotent matrices such as those represented by (10.205).

Yet, we have to be careful to construct idempotent matrices according to a
formalism described in Theorem 10.5. It is because we often encounter a situation
where different matrices give an identical characteristic polynomial. We briefly
mention this in the next example.

Example 10.8 Let us think about following two matrices:
300 300
A=10 2 0},B=(0 2 1|. (10.209)
0 0 2 0 0 2
Then, following Theorem 10.5, Sect. 10.4, we have

Fu) = fal) = (x = 3)(x — 27, (10.210)

with eigenvalues oy =3 and o, =2. Also we have fi(x) = (x—2)" and
/f>(x) = x — 3. Following the procedures of (10.85) and (10.86), we obtain

Mi(x) =x—2 and M(x) = —x*+3x—3.
Therefore, we have
Mi(fi(x) = (x = 2)°, Ma(x)fa(x) = (x — 3) (=% +3x — 3). (10.211)
Hence, we get

AL = M(A)fi(A) = (A —2E),

(10.212)
Ay = My(A)f2(A) = (A — 3E)(—A% +3A — 3E).

Similarly, we get B; and B; by replacing A with B in (10.212). Thus, we have

100 000
Al=Bi={0 0 0], 4=B=[0 10 (10.213)
000 00 1
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Notice that we get the same idempotent matrix of (10.213), even though the
matrix forms of A and B differ. Also we have

Al+A, =B, +B,=E.
Then, we have
A= (A1+A2)A=A1A+AA, B= (B, +B,)B= BB+ B)B.

Nonetheless, although A = 3A; +2A, holds, B # 3B;+2B;. That is, the
decomposition of the form of (10.208) is not true of B. The decomposition of this
kind is possible only with diagonalizable matrices.

In summary, a (n, n) matrix with s (1 <s<n) different eigenvalues has at least
s proper eigenvectors. (Note that a diagonalizable matrix has n proper eigenvec-
tors.) In the case of s <n, the matrix has multiple root(s) and may have generalized
eigenvectors. If the matrix has a generalized eigenvector of rank v, the matrix is
accompanied by (v — 1) generalized eigenvectors along with a sole proper eigen-
vector. Those vectors form an invariant subspace along with the proper eigenvector
(s). In total, such n (generalized) eigenvectors span a whole vector space V".

With the eigenvalue equation A(x) = ox, we have an indefinite but non-trivial
solution x # 0 for only restricted numbers o (i.e., eigenvalues) in a complex plane.
However, we have a unique but trivial solution x = 0 for complex numbers « other
than eigenvalues. This is characteristic of the eigenvalue problem.
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Chapter 11
Inner Product Space

Thus far we have treated the theory of linear vector spaces. The vector spaces,
however, were somewhat “structureless,” and so it will be desirable to introduce a
concept of metric or measure into the linear vector spaces. We call a linear vector
space where the inner product is defined an inner product space. In virtue of a
concept of the inner product, the linear vector space is given a variety of structures.
For instance, introduction of the inner product to the linear vector space immedi-
ately leads to the definition of adjoint operators and Gram matrices.

Above all, the concept of inner product can readily be extended to a functional
space and facilitate understanding of, e.g., orthogonalization of functions, as was
exemplified in Parts I and II. Moreover, definition of the inner product allows us to
relate matrix operators and differential operators. In particular, it is a key issue to
understand logical structure of quantum mechanics. This can easily be understood
from the fact that Paul Dirac, who was known as one of prominent founders of
quantum mechanics, invented bra and ket vectors to represent an inner product.

11.1 Inner Product and Metric

Inner product relates two vectors to a complex number. To do this, we introduce the
notation |a) and (b| to represent the vectors. This notation is due to Dirac and
widely used in physics and mathematical physics. Usually, |a) and (b| are called a
“ket” vector and a “bra” vector, respectively, again due to Dirac. Alternatively, we

may call (a| an adjoint vector of |a). Or we denote (a| = |a>T. The symbol “{”
(dagger) means that for a matrix, its transposed matrix should be taken with

complex conjugate matrix elements. That is, (aij)Jr: (a;) If we represent a full
matrix, we have

© Springer Nature Singapore Pte Ltd. 2018 387
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apjp -+ daip ay oo ay
A= o | At (1L.1)

*
nn

g Ay a, - a
We call AT an adjoint matrix or adjoint to A; see (1.106). The operation of
transposition and complex conjugate is commutable. A further remark will be made
below after showing the definition of the inner product. The symbols |a) and (b|
represent vectors, and hence, we do not need to use bold characters to show that
those are vectors.
The definition of the inner product is as follows:

(bla) = (alb)", (11.2)
(a|(BIb) +vlc)) = Blalb) +y(alc), (11.3)
(ala) > 0. (11.4)

In (11.4), equality holds only if |a) = 0. Note here that two vectors are said to be
orthogonal to each other if their inner product vanishes, i.e., (bla) = (a|b) = 0. In
particular, if a vector |a) € V" is orthogonal to all the vectors in V”, i.e., (x|a) =0
for Yx € V", then |a) = 0. This is because if we choose |a) for |x), we have
(ala) = 0. This means that |a) = 0. We call a linear vector space to which the inner
product is defined an inner product space.

We can create another structure to a vector space. An example is a metric.
Suppose that there is an arbitrary set Q. If a real nonnegative number p(a, b) is
defined as follows with a,b € Q, the set Q is called a metric space [1]:

p(a,b) = p(b,a), (11.5)
p(a,b) >0 for Ya,b; p(a,b) =0 if and only if a = b, (11.6)
p(a,b)+p(b,c) > p(a,c). (11.7)

In our study, a vector space is chosen for the set Q. Here let us define a norm for
each vector a. The norm is defined as

lall = /(ala). (11.8)

If we define p(a,b) =|la—b||, ||a— D] satisfies the definitions of metric.
Equations (11.5) and (11.6) are obvious. For (11.7), let us consider a vector |c) as
|c) = |a) — x(b|a)|b) with real x. Since {(c|c) >0, we have
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x*{alb)(bla)(blb) — 2x{alb) (bla) + (ala) 20 or

11.9
2|(alb)[*(b|b) — 2x|{alb)|* + (ala) > 0. )

The inequality (11.9) related to the quadratic equation in x with real coefficients
requires the inequality such that

{ala) {b|b) > (alb){bla) = |(alb)|*. (11.10)

That is,
Viala) - /bIb) = |(alb)|- (11.11)

Namely,

llall - [l = [(alb)| = Re(alb). (11.12)

The relations (11.11) and (11.12) are known as Cauchy—Schwarz inequality.
Meanwhile, we have

la+b|*= (a+bla+b) = ||a||* + ||b]|* + 2Re(alb), (11.13)
(lall + 11B1)2= llall* + 111> +2]lall - I5]] (11.14)

Comparing (11.13) and (11.14) and using (11.12), we have
llall + (|5l = lla + b]|- (11.15)

The inequality (11.15) is known as the triangle inequality. In (11.15), replacing
a—a—band b — b —c, we get

lla = bl + 16 = el = [la = |- (11.16)

Thus, (11.16) is equivalent to (11.7). At the same time, the norm defined in
(11.8) may be regarded as a “length” of a vector a.
As f|b) + y|c) represents a vector, we use a shorthand notation for it as

Bb +ye) = Blb) +

According to the definition (11.3)

c). (11.17)

(a|pb+yc) = plalb) + y{alc). (11.18)
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Also from (11.2),
(Bb+yela) = (alBb+ye)’ = [Blalb) +7{ale)]' = B* (bla) +7"(cla).  (11.19)

That is,
(Bb+yc| = B(b] + 7" (c|. (11.20)

Therefore, when we take out a scalar from a bra vector, it should be a complex
conjugate. When the scalar is taken out from a ket vector, on the other hand it is
unaffected by definition (11.3). To show this, we have |0a) = a|a). Taking its
adjoint, (0| = o*{al.

We can view (11.17) as a linear transformation in a vector space. In other words,
-) is that
of V" to V7. On the other hand, (-| could not be regarded as a linear transformation

if we regard |-) as a linear transformation of a vector a € V" to |a) € V",

of a € V" to (a] € V". Sometimes, the said transformation is referred to as “an-
tilinear” or “sesquilinear.” From the point of view of formalism, the inner product
can be viewed as an operation: Vi ox v — C.

Let us consider |x)=|y) in an inner product space V. Then |x)—|y) = 0. That is,
|x —y) = 0. Therefore, we have x =y, or |0) = 0. This means that the linear
transformation |-) converts 0 € V" to [0) € V. This is a characteristic of a linear
transformation represented in (9.44). Similarly, we have (0] = 0. However, we do
not have to get into further details in this book. Also, if we have to specify a vector
space, we simply do so by designating it as V".

11.2 Gram Matrices

Once we have defined an inner product between any pair of vectors |a) and |b) of a
vector space V", we can define and calculate various quantities related to inner
products. As an example, let |a;),...,|a,) and |by), ..., |b,) be two sets of vectors
in V". The vectors |a;),. .., |a,) may or may not be linearly independent. This is
true of |by), ..., |b,). Let us think of a following matrix M defined as below:

(a1 {@ilbr) - {ai|bn)
m={ s = | ma
<an| <aﬂ‘b1> T (a"‘bn>

We assume the following cases.
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(i) Suppose that in (11.21), |by),...,|b,) are linearly dependent. Then, without
loss of generality, we can put

|b1) = calba) + c3]b3) + - - +culby). (11.22)
Then we have
calailba) +c3lar|bs) + -+ +elailby) (arlba) ... (ailbn)
M = : : :
ca{an|ba) +c3lan|bs) + -+ +culanlbn)  {anlba) ... {au|by)
(11.23)

Multiplying the second column, ..., and the nth column by (—c;), ..., and
(—cn), respectively, and adding them to the first column to get

0 <(11|b2> (a1|bn>
M=|: : : ) (11.24)
0 <Cl,1|b2> B <an|bﬂ>
Hence, det M = 0.
(ii) Suppose in turn that in (11.21), |a1), ..., |a,) are linearly dependent. In that

case, again, without loss of generality, we can put

|Cl1> = d2|612> +d3|a3> + - +d,,\a,,>. (1125)

Focusing attention on individual rows and taking a similar procedure described
above, we have

0 0
M= <a2!bl> <a2!b"> (11.26)
<anib1> <anibn>

Again, det M = 0.

Next, let us examine the case where det M = 0. In that case, n column vectors of M
in (11.21) are linearly dependent. Without loss of generality, we suppose that the first
column is expressed as a linear combination of the other (n — 1) columns such that

(a1]by) (a1]b2) (a1|bn)

: =0 +"'+Cn . (1127)
(an|by) (an|b2) (an|bn)
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Rewriting this, we have

(ai|by — c2by — -+ — cuby) 0
: =1 :]. (11.28)
<an|bl - CZbZ - = Cnbn> 0
Multiplying the first row, ..., and the nth row of (11.28) by an appropriate
complex number p7, ..., and p}, respectively, we have
<p1an|b1 - C2b2 - Cnbn> = 07
cee (11.29)
(pnan|b1 — C2b2 — = Cnbn> = 0
Adding all the above, we get
<p1a1+ +pnan|b1 — by — - _Cnbn> =0. (1130)
Now, suppose that |a,), .. ., |a,) are the basis vectors. Then, |p1a; + - -+ + ppay)
represent any vectors in a vector space. This implies that
|by — c2by — -+ - — ¢cuby,) = 0; for this, see remarks after (11.4). That is,
‘b1>262|b2>+ +Cn|bn). (1131)
Thus, |by),...,|b,) are linearly dependent.

Meanwhile, det M = O implies that n row vectors of M in (11.21) are linearly
dependent. In that case, performing similar calculations to the above, we can readily

show thatif |b;),...,|b,) are the basis vectors, |a), ..., |a,) are linearly dependent.
We summarize the above discussion by following statement: Suppose that we
have two sets of vectors |ay), ..., |a,) and |by),. .., |b,).

At least a set of vectors are linearly dependent. < detM = 0.

Both the sets of vectors are linearly independent. < detM # 0.

The latter statement is obtained by considering contraposition of the former
statement.

We restate the above in following theorem:

Theorem 11.1 Let |ay), .. .,|a,) and |b1),. .., |by) be two sets of vectors defined in
a vector space V". A necessary and sufficient condition for both these sets of vectors
to be linearly independent is that for a matrix M defined below, detM # 0.

(a1 (arlbr) -+ {ai|bn)
m=| ey =|
(an] (an|br) -+ (an|bn)

Next, we consider a norm of a vector expressed in reference to a set of basis
vectors |e1), .. ., |e,) of V™. Let us express a vector |x) in an inner product space as
follows as in the case of (9.10) and (9.13):
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|x) = xiler) +xalea) + -+ +xalen)
= |xie1 + X000+ - +x8)

X1 (11.32)
= (le1) -+ len))
‘xl'l
A bra vector (x| is then denoted by
(el
W=0-x)| | (11.33)
el

Thus, we have an inner product described as

(e1] X1
()= ()| 0 [er) - lea))
<e,,| Xn
11.34
etler) - erlen)\ [ 39
= (x1--x;)
<en|el> T <‘3n|en> Xn
Here the matrix expressed as follows is called a Gram matrix [2, 3]:

(erler) -+ (eilen)

G= : : i (11.35)
(enler) -+ (enlen)

As (ejle;)=(eile;)", we have G = G'. From Theorem 11.1, det G £ 0. With a
shorthand notation, we write (G)u = (g,j) = (<e,~‘ej>). As already mentioned in
Sect. 1.1, if for a matrix H we have a relation described by

H=H, (1.119)
it is said to be a Hermitian matrix or a self-adjoint matrix. We often say that such a
matrix is Hermitian.

Since the Gram matrices frequently appear in matrix algebra and play a role,
their properties are worth examining. Since G is a Hermitian matrix, it can be

diagonalized through similarity transformation using a unitary matrix. We will give
its proof later (see Sect. 12.3).
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Let us deal with (11.34) further. We have

(etler) -+ (ei]en) xi
o) = (--x oot o o oot s |, (1136)

n .
<en|el> <‘3n|en> Xn

where U is defined as UUT = UTU = E. Such a matrix U is called a unitary
matrix. We represent a matrix form of U as

Ui cee Uy u’i‘l e ”Zl
u=\|: . ,UT: S (11.37)
unl ... unn uTn ... u:;n/
Here, putting
X1 & n
uf =1 i Jor equivalentlnykuzi =¢ (11.38)
X Sn !

and taking its adjoint such that

(xj---x)U= (& -+ &) or equivalentlny;:uki =&,
=1

we have

etler) - letle)\ (&
oy = (¢t ol

: : (11.39)
(en|el> T <en|en> én

We assume that the Gram matrix is diagonalized by a similarity transformation
by U. After being diagonalized, similarly to (10.192) and (10.193) the Gram matrix
has a following form G':

A - 0
vteu=6 = : . :|. (11.40)

Thus, we get
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A - O ¢
Gy = (&--a)| 0 | = alal e
0 - A &,

&P (11.41)

From the relation (11.4), (x|x) > 0. This implies that in (11.41), we have
2i>0(1<i<n). (11.42)
To show this, suppose that for 7 4;, Z; <0. Suppose also that for 7¢;, &; # 0. Then,
0
with | & | we have (x|x) = 4|&]|* <0, in contradiction.
0
Since we have det G # 0, taking a determinant of (11.40) we have
det G' = det (UTGU) — det (UTUG) = det E det G = det G = [ [ 4 #0.
i=1
(11.43)
Combining (11.42) and (11.43), all the eigenvalues /; are positive, i.e.,
4i>0(1<i<n). (11.44)
The norm (x|x) = 0, ifand only if {; = &, = --- = &, = 0 which corresponds to
Xy =xp =+ =x, =0 from (11.38).
For further study, we generalize the aforementioned feature a little further. That
is, if |e1),..., and |e,) are linearly dependent, from Theorem 11.1 we get
det G = 0. This implies that there is at least one eigenvalue 4; = 0 (1 <i<n) and
0

that for a vector | < | with 3¢ # 0 we have (x|x) = 0. (Suppose that in V2 we
0

have linearly dependent vectors |e;) and |e;) = |—e1); see Example 11.2 below.)

Let H be a Hermitian matrix [i.e., (H);= (H");]. If we have ¢ as a function of
complex variables xi, ..., x, such that

DX, Xa) = D xi (H);, (11.45)
ij=1
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where H;; is a matrix element of a Hermitian matrix; ¢ (xi,...,x,) is said to be a
Hermitian quadratic form. Suppose that ¢(xi,...,x,) satisfies ¢(x1,...,x,) = 0 if
and only if x; = x, = - -- = x,, = 0, and otherwise ¢(x1,...,x,) > 0 with any other
sets of x; (1 <i<mn). Then, the said Hermitian quadratic form is called positive
definite and we write

H>0. (11.46)

If ¢(x1,...,x,) >0forany x, (1<i<n)and ¢(xi,...,x,) = 0 for at least a set
of (x1,...,x,) to which “x; # 0, ¢(x1,...,x,) is said to be positive semi-definite or
nonnegative. In that case, we write

H>0. (11.47)

From the above argument, a Gram matrix comprising linearly independent
vectors is positive definite, whereas that comprising linearly dependent vectors is
nonnegative. On the basis of the above argument including (11.36) to (11.44), we
have

H>0< 1;>0(1<i<n),detH > 0;

) e ) (11.48)
H>0< 4;>0with 2, =0 (1<i<n), detH = 0.

Notice here that eigenvalues A; remain unchanged after (unitary) similarity
transformation. Namely, the eigenvalues are inherent to H.

We have already encountered several examples of positive definite and non-
negative operators. A typical example of the former case is Hamiltonian of
quantum-mechanical harmonic oscillator (see Chap. 2). In this case, energy
eigenvalues are all positive (i.e., positive definite). Orbital angular momenta L? of
hydrogen-like atoms, on the other hand, are nonnegative operators, and hence, an
eigenvalue of zero is permitted.

Alternatively, the Gram matrix is defined as B]LB, where B is any (n, n) matrix. If
we take an orthonormal basis |17,), |7,), - - ., |1,)» |e;) can be expressed as

les) = > bjiln;),
=

(exler) = Z Zb7kbji<nl|’7j> = Z Zb?kbjiéﬁ = bekbji (11.49)
J=1 =1 j=1

=1 =1
- i (BT)kj(B)ji: (BTB)ki'

For the second equality of (11.49), we used the orthonormal condition
<111- | nj> = 0;. Thus, the Gram matrix G defined in (11.35) can be regarded as

identical to BTB.
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In Sect. 9.4, we have dealt with a linear transformation of a set of basis vectors
e,ey,..., and e, by a matrix A defined in (9.69) and examined whether the
transformed vectors ell , el27 and e/n are linearly independent. As a result, a necessary
and sufficient condition for €|, e,, and e, to be linearly independent (i.e., to be a set
of basis vectors) is detA # 0. Thus, we notice that B plays a same role as A of
(9.69) and, hence, det B # 0 if and only if the set of vectors |e1), |e2), and - - |e,)
defined in (11.32) are linearly independent. By the same token as the above, we
conclude that eigenvalues of BTB are all positive, only if det B # 0 (i.e., B is
non-singular).

Alternatively, if B is singular, detBTB = det BJr det B = 0. In that case, at least
one of eigenvalues of BYB must be zero. The Gram matrices appearing in (11.35)
are frequently dealt with in the field of mathematical physics in conjunction with
quadratic forms. Further topics can be seen in the next chapter.

Example 11.1 Let us take two vectors |¢;) and |e,) that are expressed as
ler) = ler) +le2), |e2) = ler) +ile2). (11.50)

Here we have <ei‘ej>:5,<j (1<i, j<2). Then we have a Gram matrix

expressed as
o= (e} Bla)=(2 150w

2 1+i
1—1 2
(1 —i) =2 > 0. Therefore, according to Theorem 12.11, G > 0 (vide infra).

Let us diagonalize the matrix G. To this end, we find roots of the characteristic
equation. That is,

=4— (14

Principal minors of G are [2|=2>0 and ‘

2—4 1+4i

—0 22_ _
L o =0 2 —4ir2=0. (11.52)

We have A = 2 4 /2. Then as a diagonalizing unitary matrix U, we get

14i 14
U:(% ) (11.53)

H

o

[
o)

Thus, we get
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(11.54)

The eigenvalues 2 + V2 and 2 — /2 are real positive as expected. That is, the
Gram matrix is positive definite.

Example 11.2 Let |e;) and |e2)(= —|e;)) be two vectors. Then, we have a Gram
matrix expressed as

o=l @)= 7)o

Similarly in the case of Example 11.1, we have as an eigenvalue equation

1-42 -1

_ 2 _ _
5 1—/1‘ =0, 2 ~2/.=0. (11.56)

det|G — AE| = ‘

We have 4 =2 or 0. As a diagonalizing unitary matrix U, we get

0
U= (_@ f) (11.57)
2 V2
Thus, we get
AV A
2 2 - 2 2
V2 ooV2 V2 V2 (11.58)

2 O)
~\o o/
As expected, we have a diagonal matrix, one of eigenvalues for which is zero.

That is, the Gram matrix is nonnegative.
In the present case, let us think of a following Hermitian quadratic form.

(W) = 30 % (G) = () vutGuut ( )

ij=1"1 X

2 0 X 2 0 E
(ko "' 1 _ * gk =1 _ 2
_(WZ)U(O O)U (n) - (5‘52)(0 0>(éz) =24l
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Then, if we take (éO ) with &, # 0 as a column vector, (x|x) = 0. Meanwhile,
2
we have

Thus, for <0> with & #0 we get <x1> #* (O> That is, if we had
S x 0

1 0 , we would have <1 = 0 , in contradiction. To be more
X2 0 52 0

1

2

precise, if we take, e.g., (il ) = (i) or ( ), we have
2

wo =i e(M)=a () () =0 n(()
(x]x) = (1 2)(_11 11><;>:(1 2)(11):1>0.

Thus, G is nonnegative by definition.

11.3 Adjoint Operators

A linear transformation A is similarly defined as before and A transforms |x) of
(11.32) such that

ayp -0 din X1

A(lx) = (lex) - - len)) ; (11.59)

(23] Ann Xn

where (a;) is a matrix representation of A. Defining A(|x)) = |A(x)) and ((x)AT| =
((x|)A]L = [A(|x>)]Jr to be consistent with (1.117), we have
ap o ay (e1]
(WAT] = (] x)) S (11.60)

aTn e a:;n <€n|

n
Therefore, putting |y) = > yi|e;), we have
i=1
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ay o ay (e1] n
(at [y =) o || [den e
(IT” U arm <eﬂ‘ Yn
V1
= (x x;)ATG
Yn
(11.61)
Meanwhile, we get
<€1| ary e Al X1
OIAE) =07 o) | o [ Uer) - len)
ay ttt A Xn
terl : (11.62)
X1
= (yT .. 'yZ)GA
Xn
Hence, we have
b . b
OIA@) = Gr3)GA [ 1| =G (aT) | (e)
xt xt

n n

T
With the second equality, we used G* = (GT> = G" (note that G is Hermitian)

T
and A* = (AT> . A complex conjugate matrix A* is defined as

* *
a4y,

A =
* *
ay Gy,

Comparing (11.61) and (11.63), we find that one is transposed matrix of the

other. Also note that (AB)"= BTA™, (ABC)"= CTBTAT, etc. Since an inner product
can be viewed as a (1,1) matrix, two mutually transposed (1,1) matrices are iden-
tical. Hence, we get

(AT y) = (1 4G = (A | ), (11.64)
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where the second equality is due to (11.2).

The other way around, we may use (11.64) for the definition of an adjoint
operator of a linear transformation A. In fact, on the basis of (11.64), we have

th*< ) k/yj Zyl kl ;F

| = ;x y;[(AT) (G)y —(G*)jk(Azi)] (11.65)
= z;x VJKAT) —-(A )ki(G)kj] =0.

With the third equality of (11.65), we used (G*);= (G) ie., Gl =¢
(Hermitian matrix). Thanks to the freedom in choice of basis vectors as well as
x; and y;, we must have

(AT)ik: (A),- (11.66)

Adopting the matrix representation of (11.59) for A, we get [1]
A1) = (ap). 11.67
(aT) = (ai) (11.67)

Thus, we confirm that the adjoint operator At s represented by a complex
conjugate transposed matrix of A, in accordance with (11.1).
Taking complex conjugate of (11.64), we have

(wal |y) = <y \ (af )T<x>><y | A().

Comparing both sides of the second equality, we get

(AT)T: A. (11.68)

In Chap. 9, we have seen how a matrix representation of a linear transformation
A is changed from Aj to A’ by the basis vectors transformation. We have

A = P71A(P. (9.88)

In a similar manner, taking the adjoint of (9.88), we get

(A/)Jf: PTAT(pfl)T: pTAT<pT)_l. (11.69)
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In (11.69), we denote the adjoint operator before the basis vectors transformation

simply by AT to avoid complicated notation. We also have
!
(AT) — )l (11.70)

!/
Meanwhile, suppose that (AT) = Q‘lATQ. Then, from (11.69) to (11.70), we

have

pl—o .

Next, let us perform a calculation as below:

(s AT | ) = (v | ALt o)) = [ A@)" + B (v | AW))"
= o ((wpaf ‘ y)+B (WAl ‘ v) = (a(wal + pw)al | v).

As y is an element arbitrarily chosen from a relevant vector space, we have
<(ocu+[3v)AT‘ - <a(u)AT +ﬁ(v)AT‘, (11.71)
or

(o + pv)AT = a(u)aT + p()at. (11.72)

Equation (11.71) states the equality of two vectors in an inner product space on
both sides, whereas (11.72) states that in a vector space where the inner product is

not defined. In either case, both (11.71) and (11.72) show that AJf is indeed a linear
transformation. In fact, the matrix representation of (11.66) and (11.67) is inde-
pendent of the concept of the inner product.

Suppose that there are two (or more) adjoint operators B and C that correspond
to A. Then, from (11.64), we have

(DB ]y) = (()C [ )= [AX))". (11.73)

Also we have

(0)B = ()C [ y)=((x)(B-C)|y) =0. (11.74)

As x and y are arbitrarily chosen elements, we get B = C, indicating the
uniqueness of the adjoint operator.

It is of importance to examine how the norm of a vector is changed by the linear
transformation. To this end, let us perform a calculation as below:
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<(x)AT ’A(x)>

ay o ay (e1] ayp - i X1
=g e+ lea))
ajlﬁn T a:;n <en‘ Ayl - App Xn
X1

(11.75)

Equation (11.75) gives the norm of vector after its transformation.
We may have a case where the norm is conserved before and after the trans-

formation. Actually, comparing (11.34) and (11.75), we notice that if ATGA =G,
<x|x>:<(x)AT ‘ A(x)>. Let us have a following example for this.

Example 11.3 Let us take two mutually orthogonal vectors |e;) and |e;) as basis
vectors in the xy-plane (Fig. 11.1).

) = eled( ). (11.76

Then we have

Fig. 11.1 Basis vectors |e;) v
and |e;) in the xy-plane and
their linear transformation |92)
by R
lex") |e;) cos @ ,
___________________ e
)sin@ | 1)
e
5| A
0 ler)

—2|e;)sin@ O| |e;)cos@ X
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sy i) ()=o) 7

In (11.77), we are considering that |e;) and |e;) are orthogonal, but we do not
assume that le2) is normalized. That is, although

ller]| = Verler) = 1, lea| = v/{ealez) = 2.

Next, let us think of a following linear transformation R whose matrix repre-
sentation is given by

cos ) —2sinf
k= <(sin0)/2 cos 0 ) (11.78)

The transformation matrix R is geometrically represented in Fig. 11.1. Following
(9.36), we have

R = (bl ins amn ) (5)- a1

As a result of the transformation R, the basis vectors |e;) and |e;) are trans-
formed into |¢}) and |e}), respectively, as in Fig. 11.1 such that

/ ’ cos 0 —2sin 0
(’el>{62>) = (|el>|e2>)<(sin0)/2 cos 0 >
Taking an inner product of (11.79), we have
<(x R]L ‘ R( x)>
( cos 0 81n9)/2)<1 O)( cos 0 —2sin0>(x1)
Xlxz .
—2sinf  cos 0 4/)\(sin0)/2 cos0 X2

(x1x2) ( >( ):x%+4x§.

(11.80)

Putting

G— ((1) 2), (11.81)
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we have RTGR =G.

Comparing (11.77) and (11.80), we notice that a norm of |x) remains unchanged
after the transformation R. This means that R is virtually a unitary transformation.
A somewhat unfamiliar matrix form of R resulted from the choice of basis vectors
other than an orthonormal basis.

11.4 Orthonormal Basis

Now we introduce an orthonormal basis, the simplest and most important basis set
in an inner product space. If we choose the orthonormal basis so that (e;|e;) = 3, a
Gram matrix G = E. Thus, RTGR = G reads as RTR = E. In that case, a linear
transformation is represented by a unitary matrix and it conserves a norm of a

vector and an inner product with two arbitrary vectors.

So far we assumed that an adjoint operator Af operates only on a row vector
from the right, as is evident from (11.61). At the same time, A operates only on the
column vector from the left as in (11.62). To render the notation of (11.61) and
(11.62) consistent with the associative law, we have to examine the commutability

of AT with G. In this context, choice of the orthonormal basis enables us to get
through such a troublesome situation and largely eases matrix calculation. Thus,

<(x)AT ‘ A(x)>

ap; o ay (e1] ai - Qi X1
= ()| b (er) - fen))
ay, o ay, (en] an1 0 Qun Xn
x| X
=(xT~-~x,’;)ATEA : :(XT"'XZ)ATA
Xy X,
(11.82)

At the same time, we adopt a simple notation as below instead of (11.75)

X1
(xafjar) = (xj---xp)atal o | (11.83)

Xn

This notation has become now consistent with the associative law. Note that A7L
and A operate on either a column or row vector. We can also do without a symbol
“I” in (11.83) and express it as
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<xATAx> - <xAT|Ax>. (11.84)

Thus, we can freely operate AT and A from both the left and right. By the same
token, we rewrite (11.62) as

ay - ap X1 X1
ylAx) = yAx) = (i) [ ¢+ = 00an)A
Aapl Tt Apn Xn Xn
(11.85)

Here, notice that a vector |x) is represented by a column vector with respect to
the orthonormal basis. Using (11.64), we have

Y1
olax)” = (af [ y) = (- xp)at
) NG (11.86)
a4y V1
= (xi-ox) :
aTn e a:n Yn

If in (11.83) we put |y) = |Ax), <xAT|Ax>:<y|y> > 0. Thus, we define a norm of
|Ax) as

| Ax|| = <xAT|Ax>. (11.87)

Now we are in a position to construct an orthonormal basis in V" using n linearly
independent vectors |i) (1 <i<n). The following theorem is well-known as the
Gram—Schmidt orthonormalization.

Theorem 11.2: Gram-Schmidt Orthonormalization Theorem [4] Suppose that
there are a set of linearly independent vectors |i) (1 <i<n) in V". Then one can
construct an orthonormal basis |e;) (1 <i<n) so that (e;|e;) = ; (1 <j<n) and
each vector |e;) can be a linear combination of the vectors |i).

Proof First, let us take |1). This can be normalized such that

o) =— 1, (erler) = 1. (1158)

VT

Next, let us take |2) and then make a following vector:
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) = 2-12) = (a2l (11.59)

where L, is a normalization constant such that (e;|e;) = 1. Note that |e;) cannot be
a zero vector. This is because if |e;) were a zero vector, |2) and |e;) (or |1)) would
be linearly dependent, in contradiction to the assumption. We have (e;|e;) = 0.
Thus, |e;) and |e;) are orthonormal.

After this, the proof is based upon mathematical induction. Suppose that the
theorem is true of (n — 1) vectors. That is, let |e;) (1 <i<n — 1) so that (e;|e;) =
0j (1<j<n—1) and each vector |e¢;) can be a linear combination of the vectors
|i). Meanwhile, let us define

Iy =n) =S (en)]e)). (11.90)

Again, the vector |n) cannot be a zero vector as asserted above. We have

n—1 n—1

(ek|n (ex|n) — Z (ejn) (ex|e;y = (ex|n) — Z ejln)d =0, (11.91)

=1 =1

~.
~.

where 1 <k<n— 1. The second equality comes from the assumption of the

induction. The vector |n) can always be normalized such that

len) = ) =, (ealen) = L. (11.92)

(n|n)

Thus, the theorem is proven. In (11.92), a phase factor ¢ (0: an arbitrarily
chosen real number) can be added such that

el |’nv>

(i)

len) = (11.93)

To prove Theorem 11.2, we have used the following simple but important
theorem.

Theorem 11.3 Let us have any n vectors |iy # 0 (1 <i<n) in V" and let these
vectors |i) be orthogonal to one another. Then the vectors |i) are linearly
independent.

Proof Let us think of the following equation:
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all)y + |2y + - 4culn) = 0. (11.94)

Multiplying (11.94) by (i| from the left and considering the orthogonality among
the vectors, we have

cilili) = 0. (11.95)

Since (ili) #0, ¢; =0. The above is true of any ¢; and |i). Then

cp=c;=+--=c¢, =0. Thus, (11.94) implies that |1),|2),...,|n) are linearly
independent.
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Chapter 12
Hermitian Operators and Unitary
Operators

Hermitian operators and unitary operators are quite often encountered in mathe-
matical physics and, in particular, quantum physics. In this chapter, we investigate
their basic properties. Both Hermitian operators and unitary operators fall under the
category of normal operators. The normal matrices are characterized by an
important fact that those matrices can be diagonalized by a unitary matrix.
Moreover, Hermitian matrices always possess real eigenvalues. This fact largely
eases mathematical treatment of quantum mechanics. In relation to these topics, in
this chapter we investigate projection operators systematically. We find their
important application to physicochemical problems in Part IV. We further inves-
tigate Hermitian quadratic forms and real symmetric quadratic forms as an
important branch of matrix algebra. In connection with this topic, positive defi-
niteness and nonnegative property of a matrix are an important concept. This
characteristic is readily applicable to theory of differential operators, thus rendering
this chapter closely related to basic concepts of quantum physics.

12.1 Projection Operators

In Chap. 10 we considered the decomposition of a vector space to direct sum of
invariant subspaces. We also mentioned properties of idempotent operators.
Moreover, we have shown how an orthonormal basis can be constructed from a set
of linearly independent vectors. In this section, an orthonormal basis set is implied
as basis vectors in an inner product space V".

Let us start with a concept of an orthogonal complement. Let W be a subspace in
V". Let us think of a set of vectors |x) such that

{1x); (xly) = 0 for "|y) € W},

© Springer Nature Singapore Pte Ltd. 2018 409
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https://doi.org/10.1007/978-981-10-7671-8_12
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We name this set W+ and call it an orthogonal complement of W. The set W+
forms a subspace of V". In fact, if |a),|b) € W*, (aly) =0, (b|y) = 0. Since
({al+ (b)) = (aly) + (bly) = 0. Therefore, |a)+|b) € W* and {saly) = o
{aly) = 0. Hence, |0a) = a|a) € W. Then, W is a subspace of V".

Theorem 12.1 Let W be a subspace and W+ be its orthogonal complement in V".
Then,

Vi=waowh (12.1)
Proof Suppose that an orthonormal basis comprising |e;), |e2), and |e,) spans V",

V" = Span{le,), |e2), .. ., |en) }- (12.2)
Of the orthonormal basis let |e1), |e2), and |e,) (r<n) span W. Let an arbitrarily
chosen vector from V" be |x). Then we have

) = xifer) +xalea) + - +xalen) = D xiler). (12.3)
i=1
Multiplying (e;| on (12.3) from the left, we have

<ej|x> = Z.Xi<€j|€i> = Z)C,’&ij = Xj. (124)
i=1 i=1
That is,

) = (eilx)]e). (12.5)

Meanwhile, put
W) = eilx)er). (12.6)
i—1

Then we have |X) € W. Also putting |x") =|x) — |x') and multiplying
(ei|(1<i<r) on it from the left, we get

(eilx") = (eilx) — (eilx') = (eilx) — (eilx) =0. (12.7)

Taking account of W = Span{|e;), |e2), ..., le,) }, we get |x) € W. That is, for
YIx) e v
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%) = ) + ). (12.8)

This means that V" = W + W=. Meanwhile, we have W N W= = {0}. In fact,
suppose that |x) € WN WL, Then (x|x) =0 because of the orthogonality.
However, this implies that |x) = 0. Consequently, we have V" = W & W+. This
completes the proof.

The consequence of the Theorem 12.1 is that the dimension of W+ is (n — r). In
other words, we have

dim V" = n = dim W + dim W+.

Moreover, the contents of the Theorem 12.1 can readily be generalized to more
subspaces such that

V=W, aW, & & W, (12.9)

where Wy, Wa, ..., and W,(r <n) are mutually orthogonal complements. In this
case, "|x) € V" can be expressed uniquely as the sum of individual vectors
[wi),|w2),...,and |w,) of each subspace, i.e.,

[x) = |wi) + [w2) + -+ we) = [witwa+ - ). (12.10)
Let us define the following operators similarly to the case of (10.201):
Pi(|x)) = [wi)(1<i<r). (12.11)
Thus, the operator P; extracts a vector |w;) in a subspace W;. Then we have

(P1+Py+ -+« +P.)(|x)) = P1|x) + Pa|x) + - - - + P,|x)

S P Y S
Since |x) is an arbitrarily chosen vector, we get
P +Py+ - +P, =E. (12.13)
Moreover,
Pi[Pi(|x))] = Pi(lwi)) = [w)(1 <i<r). (12.14)

Therefore, from (12.11) and (12.14) we have

PilPi(|x))] = Pi(]x)). (12.15)
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The vector |x) is arbitrarily chosen, and so we get

P2 =P, (12.16)

Choose another arbitrary vector |y) € V" such that
y) = lw) +ua) + -+ fur) = [ +ua + -+ + ). (12.17)
Then, we have

(x|Py) = (wi+wa+ -« +w|Piluy +us + - +u,)

12.18
= (Wi +wa+ - Fwelu) = (wi). ( )

With the last equality, we used the mutual orthogonality of the subspaces.
Meanwhile, we have

GIPx)" = (uy +up + -+ +uPilwy +wa+ - +w,)"

12.19
=(uy+uy+ - +uwi) = (wilw;) = (wilus). ( )

Comparing (12.18) and (12.19), we get
(wlP) = 1Py = (o), (12:20)

where we used (11.64) with the second equality. Since |x) and |y) are arbitrarily
chosen, we get

Pl = p. (12.21)
Equation (12.21) shows that P; is Hermitian.
The above discussion parallels that made in Sect. 10.4 with an idempotent
operator. We have a following definition about a projection operator.

Definition 12.1 An operator P is said to be a projection operator if P> = P and

Pl = P. That is, an idempotent and Hermitian operator is a projection operator.

As described above, a projection operator is characterized by (12.16) and
(12.21). An idempotent operator does not premise the presence of an inner product
space, but we only need a direct sum of subspaces. In contrast, if we deal with the
projection operator, we are thinking of orthogonal compliments as subspaces and
their direct sum. The projection operator can adequately be defined in an inner
product vector space having an orthonormal basis.
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From (12.13) we have

(Pr+Py+ - +P)(Pir+Pr+ - +P)

I S T ST o o VR o
i=1

i i=1 i i

In (12.22), we used (12.13) and (12.16). Therefore, we get

> PP =0.

i#]
In particular, we have
PP =0, PiP;=0(i#})). (12.23)
In fact, we have
PilPi(1x))] = Pi(jw;)) =0 (i #j. 1<i, j<n). (12.24)

The second equality comes from W; N W; = {0}. Notice that in (12.24), indices
i and j are interchangeable. Again, |x) is arbitrarily chosen, and so (12.23) holds.
Combining (12.16) and (12.23), we write

PiP; = 6. (12.25)

In virtue of the relation (12.23), P; + P; (i # j) is a projection operator as well [1].
In fact, we have

(Pi+P)’= P2+ PP+ PP+ P2 =P} + P2 = P+ P},
where the second equality comes from (12.23). Also we have
(Pi +P,-)T: P:f +PjT =P;+P;
The following notation is often used:

p =l (12.26)
ol - Tow]

Then we have
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PM=ﬁ%%ﬁWMHMH~+MM

= [lwi) ((wilw1) + (wilwa) + -+ (wilwy))]/ (wilwi)
= [lwi)(wilwi)] / (wilwi) = |wi).

Furthermore, we have
P} [x) = Pilwi) = |wi) = P;lx). (12.27)
Equation (12.16) is recovered accordingly. Meanwhile,
(wa) owi) 1= (onal) T (hwi) = i) (. (12.28)
Hence, we recover
Pl =P, (12.21)
In (12.28), we used (AB) = BTAT. In fact, we have
(BTally) = (xBTaTy) = palB) = (laBlY = (@B ). (12.29)

With the second equality of (12.29), we used (11.86) where A is replaced with

B and |y) is replaced with AT\ y). Since (12.29) holds for arbitrarily chosen vectors
|x) and |y), comparing the first and last sides of (12.29) we have

aB)f= Biaf. (12.30)

We can express (12.29) alternatively as follows:

<xBT ‘ATy> - <y(AJf)T‘ (BT)T)C>*: (yA|Bx)*= (yABx)*, (12.31)

where with the second equality we used (11.68). Also recall the remarks after
(11.83) with the expressions of (12.29) and (12.31). Other notations can be adopted.

We can view a projection operator under a more strict condition. Related
operators can be defined as well. As in (12.26), let us define an operator such that

Pe = lex) (exl. (12.32)

Operating P; on |x) = xi]e1) + xa]e2) + - - - + x,|e,) from the left, we get
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Pelx) = lex) {ex] (i:xj’@) = lex) (ix]‘<6’k|€j>> = lex) (i%‘%)

j=1 j=1

:xk|ek>.

Thus, we find that Fk plays the same role as P® defined in (10.201).

Represented by a matrix, f’; has the same structure as that denoted in (10.205).
Evidently,

—~\2 - - _— o~~~ —
(Pk) =P, Pl =P, Pi+Py+ - +P, =E. (12.33)

Now let us modify P® in (10.201). There P®) 5 5' ) where only the
(k, k) element is 1, otherwise 0, in the (n, n) matrix. We define a matrix

PEQ) = 5§k)5'{m). A full matrix representation for it is

0

P = 0 7 (12.34)

where only the (k, m) element is 1, otherwise 0. In an example of (12.34), P m) is an

upper triangle matrix (k <m). Therefore, its eigenvalues are all zero, and so PEm)) is

a nilpotent matrix. If £ > m, the matrix is a lower triangle matrix and nilpotent as
well. Such a matrix is not Hermitian (nor a projection operator), as can be imme-
diately seen from the matrix form of (12 34). Because of the properties of nilpotent

matrices mentioned in Sect. 10.3, P< (k # m) is not diagonalizable either.
Various relations can be extracted. As an example, we have

k i k
P = Za oWl = 015,00, = dwPly). (12.35)

(m) (n)

Note that P*) = P®) defined in (10.201). From (12.35), moreover, we have

®
© pm) _ p)  p) pim) _ pn) pm) pn) _ plm)
PPy =Piy PPy = Plays Py Piomy = Pl
) pk) _ K pm) pm) _ [pm]>_ pm)
PPy = OnkPys Pl Py = [P <m>} =P, el
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These relations remain unchanged after the unitary similarity transformation by U.
For instance, taking the first equation of the above, we have

k
n

UTPEk

Vv = [utrl ] [utPlu] = Utk

)
) ) YU

Among these operators, only Pgllz; is eligible for a projection operator. We will

encounter further examples in Part IV.
Using PEg in (11.62), we have

Xy

k * * k .
<y‘PEk;(x)>:(yl"'yn)GPEk§ E (12.36)

Xn

Within a framework of an orthonormal basis where G = E, the representation is
largely simplified to be

k * * k . *
<y‘PEk;x> = (- 'yn>PEk; s = X (12.37)

12.2 Normal Operators

There are a large group of operators called normal operators that play an important
role in mathematical physics, especially quantum physics. A normal operator is
defined as an operator on an inner product space that commutes with its adjoint
operator. That is, let A be a normal operator. Then, we have

AAT = ATA. (12.38)

The normal operators include an Hermitian operator H defined as H T =H as
well as a unitary operator U defined as vut =utu =E.
In this condition, let us estimate the norm of ‘ATx> together with |Ax) defined by

(11.87). If A is a normal operator,

HATxH - 1/<x(AT)T’ATx> - \/<xAATx> - \/<xATAx> — |lAx].  (12.39)
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The other way around suppose that [|Ax| = HATxH Then, since
2 lafx, (xaf f is, (xATA — A
|Ax||"= HA xH , <xA Ax> = <xAA x>. That is, (x|JATA —AATl|x) =0 for an
arbitrarily chosen vector |x). To assert ATA —AAT =0, ie., ATA = AAT on the
assumption that <x|ATA - AAT|x> = 0, we need the following theorems.

Theorem 12.2 [2] A linear transformation A on an inner product space is the zero
transformation if and only if (y|Ax) = 0 for any vectors |x) and |y).

Proof If A =0, then (y|Ax)=(y|0) =0. This is because in (11.3) putting
f=1=—yand |b) = |c), we get (a|0) = 0. Conversely, suppose that (y|Ax) = 0
for any vectors |x) and |y). Then, putting |y) = |Ax), <xA]L \Ax> =0and (y|y) =0.

This implies that |y) = |Ax) = 0. For |Ax) = 0 to hold for any |x) we must have
A = 0. Note here that if A is a singular matrix, for some vectors |x),|Ax) = 0.
However, even though A is singular, for |Ax) = 0 to hold for any |x), A = 0.

We have another important theorem under a further restricted condition.

Theorem 12.3 [2] A linear transformation A on an inner product space is the zero
transformation if and only if (x|Ax) = 0 for any vectors |x).

Proof As in the case of Theorem 12.2, a necessary condition is trivial. To prove a
sufficient condition, let us consider the following:

(x+y[A(x+)) = (x|Ax) + (y|Ay) + (x|Ay) + (y|Ax),

(KA + 1A% = (rHylAG ) — (e - Ay,
From the assumption that (x|Ax) = 0 with any vectors |x), we have
(x|Ay) + (y]Ax) = 0. (12.41)
Meanwhile, replacing |y) by |iy) in (12.41), we get
(xlAi) + (ivlAx) = i{(xlAy) — (v]Ax)] = 0. (12.42)
That is,
(x]Ay) — (y]Ax) = 0. (12.43)
Combining (12.41) and (12.43), we get
(x|Ay) = 0. (12.44)

Theorem 12.2 means that A = 0, indicating that the sufficient condition holds.
This completes the proof.

Thus returning to the beginning, i.e., remarks made after (12.39), we establish
the following theorem.
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Theorem 12.4 A necessary and sufficient condition for a linear transformation A
on an inner product space to be a normal operator is

HATXH = [lAx]. (12.45)

12.3 Unitary Diagonalization of Matrices

A normal operator has a distinct property. The normal operator can be diagonalized
by a similarity transformation by a unitary matrix. The transformation is said to be a
unitary similarity transformation. Let us prove the following theorem.

Theorem 12.5 [3] A necessary and sufficient condition for a matrix A to be di-
agonalized by unitary similarity transformation is that the matrix A is a normal
matrix.

Proof To prove the necessary condition, suppose that A can be diagonalized by a
unitary matrix U. That is,

Ulau =D, ie A=uput and AT = unfUT, (12.46)

where D is a diagonal matrix. Then

At = (UDUT) (UDTUT) — upptut = uptput = (UDTUT) (UDUT)

—afa.
(12.47)

For the third equality, we used DDJr = DTD (i.e., D and DJr are commutable).
This shows that A is a normal matrix.

To prove the sufficient condition, let us show that a normal matrix can be
diagonalized by unitary similarity transformation. The proof is due to mathematical
induction, as is the case with Theorem 10.1.

First we show that Theorem is true of a (2,2) matrix. Suppose that one of
eigenvalues of A; is a; and that its corresponding eigenvector is |x;). Following
procedures of the proof for Theorem 10.1 and remembering the Gram—Schmidt
orthonormalization theorem, we can construct a unitary matrix U; such that

Uy = (Ix1)lp1)), (12.48)

where |x;) represents a column vector and |p;) is another arbitrarily determined
column vector. Then we can convert A; to a triangle matrix such that
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- o X
Ay = UlTAzUl = ( 01 y). (12.49)

Then we have

&) = () (via) = (viaw) (viatw,)

— vlaalu, = vlalau, = wialvywiaw) — (1250

— (&)

With the fourth equality, we used the supposition that A, is a normal matrix.

Equation (12.50) means that ;\vg defined in (12.49) is a normal operator. Via simple
matrix calculations, we have

Z;{Z;}T: (|o(1|2—|—|x|2 xy’;), {A;}TA;: (|061|j ZOCTX 2>. (12.51>

Xy |y|

T o 0
Ay = (0 y>' (12.52)
This implies that a normal matrix A, has been diagonalized by the unitary
similarity transformation.

Now let us examine a general case where we consider a (n,n) square normal
matrix A,. Let o, be one of eigenvalues of A,. On the basis of the argument of the

(2,2) matrix case, after a suitable similarity transformation by a unitary matrix U we
first have

A, = (U)TAHU, (12.53)

where we can put

~ (o, xT
An(o B), (12.54)

where x is a column vector of order (n — 1), 0 is a zero column vector of order
(n—1),and Bis a (n— 1, n — 1) matrix. Then we have

[AZ]L (z ;L), (12.55)
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where x* is a complex column vector. Performing matrix calculations, we have

i)' (lanlz+xr"* "TBT>,

Bx* BBt
. . 2 *3.T
R () e
ax* xx’ +BB
et et .
For A, [An} = {An} [An} to hold with (12.56), we must have x = 0. Thus we
get
—~ o, O
A, = (0 B)' (12.57)

Since Z; is a normal matrix, so is B. According to mathematical induction, let us
assume that the theorem holds with a (n — 1,n — 1) matrix, i.e., B. Then, also from
the assumption there exists a unitary matrix C and a diagonal matrix D, both of
order (n — 1), such that BC = CD. Hence,

(% g)(é 2)2(5 2)(% g)- (12.58)

~ 1 0 —~ a, O
Cn - (0 C> and Dn - <0 D>7 (1259)

Here putting

we get

A,C, =C,D,. (12.60)
o . IS SURS
As C, is a (m,n) unitary matrix, {Cn} Cc,=0C, [Cn} = E. Hence,
T e =
[c,,} A, C, = D,,. Thus, from (12.53) finally we get
1t~ P
1G] (0)'a,0¢, =D, (12.61)
Putting f]a =V, V being another unitary operator,

via,v =D,. (12.62)
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This completes the proof.

A direct consequence of Theorem 12.5 is that with any normal matrix we can
find a set of orthonormal eigenvectors corresponding to individual eigenvalues
whether or not those are degenerate.

In Sect. 8.2 we dealt with a decomposition of a linear vector space and relevant
reduction of an operator when discussing canonical forms of matrices. In this
context, Theorem 12.5 gives a simple and clear criterion for this. Equation (12.57)
implies that a (n — 1,n — 1) submatrix B can further be reduced to matrices having
lower dimensions. Considering that a diagonal matrix is a special case of triangle
matrices, a normal matrix that has been diagonalized by the unitary similarity
transformation gives eigenvalues by its diagonal elements.

From a point of view of the aforementioned aspect, let us consider the charac-
teristics of normal matrices, starting with the discussion about the invariant sub-
spaces. We have a following important theorem.

Theorem 12.6 Let A be a normal matrix and let one of its eigenvalues be o. Let W,
be an eigenspace corresponding to o. Then, W, is both A-invariant and Al
invariant. Also Wj‘ is both A-invariant and AT-invariant.

Proof Theorem 12.5 ensures that a normal matrix is diagonalized by unitary

similarity transformation. Therefore, we deal with only “proper” eigenvalues and
eigenvectors here. First we show if a subspace W is A-invariant, then its orthogonal

complements W+ is Af-invariant. In fact, suppose that |x) € W and |x') € W,
Then, from (11.64) and (11.86), we have
(W|Ax) = 0 = <xAT|x’> - <x’ATx’>*. (12.63)
The first equality comes from the fact that |x) € W = A|x)(= |Ax)) € W as Wis
A-invariant. From the last equality of (12.63), we have

AT\x’>(: )ATx’>) e Wk, (12.64)

That is, W is AT-invariant.
Next suppose that |x) € W,. Then we have

AATx) = ATAlx) = AT (afx)) = 0aT|x). (12.65)

Therefore, AT|x) € W,. This means that W, is Af-invariant. From the above

f
remark, W;- is (A]L) -invariant, i.e., A-invariant accordingly. This completes the
proof.

From Theorem 12.5, we know that the resulting diagonal matrix D, in (12.62)
has a form with n eigenvalues (o,,) some of which may be multiple roots arranged in
diagonal elements. After diagonalizing the matrix, those eigenvalues can be sorted
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out according to different eigenvalues oy, oy, ..., and «,. This can also be done by
unitary similarity transformation. The relevant unitary matrix U is represented as

1

1

where except (7, j) and (j, i) elements equal to 1, all the off-diagonal elements are
zero. If operated from the left, U exchanges the ith and jth rows of the matrix. If
operated from the right, U exchanges the ith and jth columns of the matrix. Note
that U is at once unitary and Hermitian with eigenvalue 1 or —1. Note that U? = E.
This is because exchanging two columns (or two rows) two times produces identity
transformation. Thus performing such unitary similarity transformations appropriate
times, we get

o

o
o2

D,~ " . (12.67)

%

s

The matrix is identical to that represented in (10.181).
In parallel, V" is decomposed to mutually orthogonal subspaces associated with
different eigenvalues o, o, ..., and oy such that

V=W, &W,, & B W,. (12.68)
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This expression is formally identical to that represented in (10.191). Note,
however, that in (10.181), orthogonal subspaces are not implied. At the same time,
A,, 1s reduced to

Ay~ . . . ) (1269)

according to the different eigenvalues.
A normal operator has other distinct properties. Following theorems are good
examples.

Theorem 12.7 Let A be a normal operator on V". Then |x) is an eigenvector of A

with an eigenvalue o, if and only if |x) is an eigenvector ofAJr with an eigenvalue o*.

Proof We apply (12.45) for the proof. Both (A — OCE)T: AT — o0*E and (A —aFE)
are normal, since A is normal. Consequently, we have ||(A — oF)x|| = 0 if and only

if H (A]L — oc*E)xH = 0. Since only the zero vector has a zero norm, we get
(A — oE)|x) = 0 if and only if (AT - oc*E) lx) = 0.

This completes the proof.

Theorem 12.8 Let A be a normal operator on V". Then, eigenvectors corre-
sponding to different eigenvalues are mutually orthogonal.

Proof Let A be a normal operator on V”. Let |u) be an eigenvector corresponding to
an eigenvalue «, and |v) be an eigenvector corresponding to an eigenvalue f§ with
o # fB. Then we have
a(v|u) = (v|ou) = (v|Au) = <u ATV> = <u
= (Bvlu),
where with the fourth equality we used Theorem 12.7. Then we get

(o« — B)(vlu) = 0.

Tv T *vlu
Blv) = (B"viu) (1270

Since o — f§ # 0, (v|u) = 0. Namely, the eigenvectors |u) and |v) are mutually
orthogonal.

In (10.208), we mentioned the decomposition of diagonalizable matrices. As for
the normal matrices, we have a related matrix decomposition. Let A be a normal
operator. Then, according to Theorem 12.5, A can be diagonalized and expressed as
(12.67). This is equivalently expressed as a following succinct relation. That is, if
we choose U for a diagonalizing unitary matrix, we have
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UTAU = Py + 0Py + -+ +a,P;, (12.71)
where oy, 0, ...,and oy are different eigenvalues of A; P;(1<I<ys) is described
such that, e.g.,

E,,
0y,
Py = ) . s (12.72)
O

s

where E,, stands for a (n;,n;) identity matrix with n; corresponding to multiplicity
of o;. A matrix represented by 0,, is a (n2,n2) zero matrix, and so forth. This
expression is in accordance with (12.69). From a matrix form (12.72), obviously

P;(1<1<s) is a projection operator. Thus, operating U and UT on both sides
(12.71) from the left and right of (12.71), respectively, we obtain

A =0 UPUT +up,UT + -+ oup,UT (12.73)
Defining P = UP,UT(I <I1<s), we have

A= P40 Py+ -+ 40P, (12.74)

In (12.74), we can easily check that P is a projection operator with
oy, 00, .., and o, being different eigenvalues of A. If o; (1 <1 <) is degenerate, we

express [~’l as P;‘ (1 < p<my), where m; is multiplicity of o;. In that case, we may write
Pi=P & @®P" (12.75)
Also we have
PP, = urUTuPUT = uPEP,UT = UPPUT = 0 (1 <k, 1<5).
The last equality comes from (12.23). Similarly, we have
PiPy =0.
Thus, we have

PP = dy.
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If the operator is decomposed as in the case of (12.75), we can express
PYB] = 0,(1<pv<m).

Conversely, if an operator A is expressed by (12.74), that operator is normal
operator. In fact, we have

T
Ala = (Z “fl;i> (Z “fﬁi> =D woPiPy =D ajooP; = Y |ouf P,
! j ij i i
I
AAT = <Z a,ﬁ) <Z oc;ﬁ) = Zaj“jﬁji;i = Zoc;‘ajéﬁﬁj — Z |O€i|2f~’i.
J i i i "

(12.76)

Hence, ATA = aat 1 projection operators are further decomposed as in the case
of (12.75), we have a related expression to (12.76). Thus, a necessary and sufficient
condition for an operator to be a normal operator is that the said operator is
expressed as (12.74). The relation (12.74) is well known as a spectral decompo-
sition theorem. Thus, the spectral decomposition theorem is equivalent to
Theorem 12.5.

The relations (10.208) and (12.74) are virtually the same, aside from the fact that
whereas (12.74) premises an inner product space, (10.208) does not premise it.
Correspondingly, whereas the related operators are called projection operators with
the case of (12.74), those operators are said to be idempotent operators for (10.208).

Example 12.1 Let us think of a Gram matrix of Example 11.1, as shown below.

_ 2 14
G_(l—i ) ) (11.51)
After a unitary similarity transformation, we got
24+4vV2 0
vteu = . 11.54
( 0 2-V2 ) ( )

Putting G = UTGU and rewriting (11.54), we have

6= (30" 2 2n) =)0 o)+ (5 V)
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By a back calculation of U Gul = G, we get

1 V2(1+i) 1 _ V2(1+10)
— 2 % _ 2 4
G=(+v2)( iy ¢ )V A )
i 2 i 2
(12.77)
Putting eigenvalues o; = 24 /2 and o, = 2 — /2 along with
1 V2(1+i) 1 _V2(1+0)
— 2 3 — 2 )
A= V30 | , A=  JAli-i L , (12.78)
3 2 ) 2
we get
G = 1A + 0A;. (1279)

In the above, A; and A, are projection operators. In fact, as anticipated we have
A} = A, A3 = Ay, AjAy = AyA; = 0,A + A, = E. (12.80)

Moreover, (12.78) obviously shows that both A; and A, are Hermitian. Thus,
Egs. (12.77) and (12.79) are an example of the spectral decomposition. The
decomposition is unique.

The Example 12.1 can be dealt with in parallel to Example 10.5. In Example
10.5, however, an inner product space is not implied, and so we used an idempotent
matrix instead of a projection operator. Note that as can be seen in Example 10.5
that idempotent matrix was not Hermitian.

12.4 Hermitian Matrices and Unitary Matrices

Of normal matrices, Hermitian matrices and unitary matrices play a crucial role both
in fundamental and applied science. Let us think of several topics and examples.

In quantum physics, one frequently treats expectation value of an operator. In
general, such an operator is Hermitian, more strictly an observable. Moreover, a
vector on an inner product space is interpreted as a state on a Hilbert space. Suppose
that there is a linear operator (or observable that represents a physical quantity)
O that has discrete (or countable) eigenvalues oq,d5,... The number of the
eigenvalues may be a finite number or an infinite number, but here we assume the
finite number, i.e., let us suppose that we have eigenvalues o, oy, ..., and o, in
consistent with our previous discussion.

In quantum physics, we have a well-known Born probability rule. The rule says
the following: Suppose that we carry out a physical measurement on A with respect
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to a physical state |u). Here we assume that |u) has been normalized. Then, the
probability ¢; that A takes oy(1 <I<s) is given by

~ 2
o1 = ||Puul|, (12.81)
where P, is a projection operator that projects |u) to an eigenspace W,, spanned by

|oy, k). Here k(1 <k <m) reflects the multiplicity n; of an eigenvalue o;. Hence, we
express the n-dimensional eigenspace W,, as

W,, = Span{|oy, 1), |oy,2), ..., |y, m) }. (12.82)

Now, we define an expectation value (A) of A such that
(4) = Z %1 (12.83)
1=1
From (12.81), we have
1= Hﬁzu”zz <u:5ﬂL ’ ,Slu> = <uf~’1 | FN’lu> = <u131f’1u> = <uf~’lu> (12.84)

For the third equality, we used the fact that P, is Hermitian; for the last equality,
we used ;’12 =P, Summing (12.84) with the index [/, we have

EZ: o1 = Z}uﬁ,u) - <u<§l: E>u> — (uEu) = (ulu) = 1,

where with the third equality we used (12.33).
Meanwhile, from the spectral decomposition theorem, we have

AZOC1?|—|—O(2;)2+"-+OCS;)S. (1274)
Operating (u| and |u) on both sides of (12.74), we get

(lAlu) = oty (ul Pr|u) + oo (ul Pafu) + - -+ + oty (u Pua)

(12.85)
= o1 T 0P+ s
Equating (12.83) and (12.85), we have
(A) = (u|Alu). (12.86)

In quantum physics, a real number is required for an expectation value of an
observable (i.e., a physical quantity). To warrant this, we have following theorems.
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Theorem 12.9 A linear transformation A on an inner product space is Hermitian if
and only if (u|Alu) is real for all |u) of that inner product space.

Proof If A = AT, then (ulAlu)*= <u‘AT|u> = (u|A|u). Therefore, (u|A|u) is real.

Conversely, if (u|A|u) is real for all |u), we have

(ulA ) = (ulA]u)' = (u

Hence,

(ula — AT|uy = 0. (12.87)
From Theorem 12.3, we get A — Al = 0,ie,A= AT This completes the proof.
Theorem 12.10 The eigenvalues of an Hermitian operator A are real.

Proof Let o be an eigenvalue of A and let |u) be a corresponding eigenvector. Then,
Alu) = aju). Operating (u| from the left, (u|A|u) = a(u|u) = o||u||. Thus,

o = {(ul|Alu)/||ull. (12.88)

Since A is Hermitian, (u|A|u) is real. Then, o is real as well.
Unitary matrices have a following conspicuous features: (i) An inner product is
held invariant under unitary transformation: Suppose that |x') = Ulx) and

[') = Uly), where U is a unitary operator. Then {y'|x') = <yUT|Ux> = (y|x).

A norm of any vector is held invariant under unitary transformation as well. This is
easily checked by replacing |y) with |x) in the above. (ii) Let U be a unitary matrix
and suppose that A be an eigenvalue with |1) being its corresponding eigenvector of
that matrix. Then we have

2=ty = vt = oty =00, (12.89)

where with the last equality we used Theorem 12.7. Thus
(1 =492 =0. (12.90)
As |A) # 0 is assumed, 1 — 24" = 0. That is
M= =1. (12.91)

Thus, eigenvalues of a unitary matrix have unit absolute value.

Example 12.2 Let us think of a following unitary matrix R:

cos —sinf
k= (sin@ cos 0 ) (12.92)
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A characteristic equation is

cos0—A —sinh | ,
Ginf  cosl —J =A"—2AcosO+1. (12.93)
Solving (12.93), we have
A =cosf £ Vcos? 0 — 1 =cos+ilsinf]. (12.94)

(i) 0 =0: This is a trivial case. The matrix R has automatically been diago-
nalized to be an identity matrix. Eigenvalues are 1 (double root).
(ii)) 0 = m: This is a trivial case. Eigenvalues are —1 (double root).
(iii) 6 # 0, m: Let us think of 0<6<m. Then 4 =cosf £ isinf. As a diago-
nalizing unitary matrix U, we get

1 1 U
U( V2 ﬁ) UT<f ﬁ) (12.95)
V2 V2 V2

Therefore, we have

ﬁ' cos) —sinf % \/Lg _ e 0
~& sinf  cos0 -5 5 0 e )

(12.96)

3
S
) ISy

S

2
1

Utry = <

S

A trace of the resulting matrix is 2cos 6. In the case of 1 <60 <2m, we get a
diagonal matrix similarly. The conformation is left for readers.

12.5 Hermitian Quadratic Forms

The Hermitian quadratic forms appeared in, e.g., (11.34) and (11. 83) in relation to
Gram matrices in Sect. 11.2. The Hermitian quadratic forms have wide applications
in the field of mathematical physics and materials science.

Let H be an Hermitian operator and |x) on an inner vector space. We define the
Hermitian quadratic form in an arbitrary orthonormal basis as follows:

X1

W) = (5-x)H| | =S xi ),y
ij

Xn

where |x) is represented as a column vector, as already mentioned in Sect. 11.4. Let
us start with unitary diagonalization of (11.40), where a Gram matrix is a kind of



430 12 Hermitian Operators and Unitary Operators

Hermitian matrix. Following similar procedures, as in the case of (11.36) we obtain
a diagonal matrix and an inner product such that

;Ll 0 él
(lHlx) = (& &) o - Sl =alalP e+ alélR
0 in én
(12.97)

Notice, however, that the Gram matrix comprising basis vectors (that are linearly
independent) is positive definite. Remember that if a Gram matrix is constructed by
ATA (Hermitian as well) according to whether A is non-singular or singular, AfAis
either positive definite or nonnegative. The Hermitian matrix we are dealing with
here, in general, does not necessarily possess the positive definiteness or nonneg-
ative feature. Yet, remember that (x|H|x) and eigenvalues 4i,..., 4, are real.

Positive definiteness of matrices is an important concept in relation to the
Hermitian (and real) quadratic forms (see Sect. 11.2). In particular, in the case
where all the matrix elements are real and |x) is defined in a real domain, we are
dealing with the quadratic form with respect to a real symmetric matrix. In the case
of the real quadratic forms, we sometimes adopt the following notation:

n .Xl
Al =xTAx = > g x = |
[x] =x = agxixi; x = |,

ij=1
/ Xn

where A = (aij) is a real symmetric matrix and x;(1 <i <n) are real numbers. The
positive definiteness is invariant under a transformation PTAP, where P is
non-singular. In fact, if A > 0, for x7 = x”P and A’ = PTAP we have

x"Ax = x"P(PTAP)PTx = xTA'x'.
Since P is non-singular, Px = x’ represents any arbitrary vector. Hence,
A= PTAP >0, (12.98)

where with the notation PTAP > 0, see (11.46). In particular, using a suitable
orthogonal matrix O, we obtain

o 0
0TAO =
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From the above argument, OTAO > 0. We have
det OTAO = det O" detAdet O = (£1)detA(£1) = detA.

Therefore, from (12.97), we have 4; > 0 (1 <i<n). Thus, we get

detA = }.i > 0.

1

n
i=

Notice that in the above discussion, PTAP is said to be an equivalent transfor-
mation of A by P and that we distinguish the equivalent transformation from the
similarity transformation P~'AP. Nonetheless, if we choose an orthogonal matrix
O for P, the two transformations are the same because OT = O~!.

We often encounter real quadratic forms in the field of electromagnetism.
Typical example is a trace of electromagnetic fields observed with an elliptically or
circularly polarized light (see Sect. 5.3). A polarizability tensor of an anisotropic
media such as crystals (either inorganic or organic) is another example, even though
we did not treat it but only assumed isotropic media in Part II.

Regarding the real quadratic forms, we have a following important theorem.

Theorem 12.11 [4] Let A be a n-dimensional real symmetric matrix A = (a,-j). Let
A®) be k-dimensional principal submatrices described by

ailil ailiz e ailik
) Aiiy QAiyiy o Qi . . .
= . . . . St 1 e lysn
A 1<ii<ip< <i<n),
Qiiy Aiyiy T Qigiy

where the principal submatrices mean a matrix made by striking out rows and
columns on diagonal elements. Alternatively, a principal submatrix of a matrix
A can be defined as a matrix whose diagonal elements are a part of the diagonal
elements of A. As a special case, those include a;y, .. .,or a,, as a (1,1) matrix (i.e.,
merely a number) as well as A itself. Then, we have

A> 0o detA® >0 (1<k<n). (12.99)

Proof First, suppose that A > 0. Then, in a quadratic form A[x] equating (n — k)
variables x; = 0(I # iy, iz, . . ., i), We obtain a quadratic form of

k
Cl,‘“ ivx,‘“x,‘v .
ny=1
Since A > 0, this (partial) quadratic form is positive definite as well, i.e., we
have
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AW > 0.
Therefore, we get

detA® > 0.

This is due to (11.48). Notice that det A®) is said to be a principal minor. Thus,
we have proven = of (12.99).

To prove <, in turn, we use mathematical induction. If n = 1, we have a trivial
case, i.e., A is merely a real positive number. Suppose that < is true of n — 1. Then,
we have A"~ > 0 by supposition. Thus, it follows that it will suffice to show

A >0 on condition that A”~1) >0 and detA > 0 in addition. Let A be a n-
dimensional real symmetric non-singular matrix such that

A=l g
A=
( a’  a,)’

where A"~ is a symmetric matrix and non-singular as well. We define P such that

p_(E A"V a
0 1 ’

where E is a (n— 1,n— 1) unit matrix. Notice that detP =detE-1=1#0,
indicating that P is non-singular. We have

- E 0
P = <aTA(nl)1 1/

For this expression, consider a non-singular matrix S. Then, we have SS1=E.
Taking its transposition, we have (S’I)TST = E. Therefore, if S is a symmetric
matrix (S7)'S = E, ie., (§")" = 5!, Hence, an inverse matrix of a symmetric
matrix is symmetric as well. Then, for a symmetric matrix A"~} we have

Therefore, A can be expressed as

A(n—]) 0
A=Pr . P.
( 0 a,—A[g]

E 0\ [A-D 0 E At-D"g
~ \aTA-D7" 0 a,—A"V"[a /o 1 '

(12.100)
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Now, taking a determinant of (12.100), we have

detA = det P [detAWl)] {a,, — A=) [q] } det P

= [detAVl_l)} {an — A" [a]}.
By supposition, we have detA”~!) > 0 and detA > 0. Hence, we have

ap — A"V ' [a] > 0.

x(n71>

Putting d, = a, — A"V '[a] and x = (
-Xl‘l

>, we get

(n—1)
(A 0 )[x] — A1) |:x(n—1)] 4 C’l;xi

0 an
Since AV > 0 and g, > 0, we have

~ A(n—l) 0
A= - 0.
( 0 ay ~

Meanwhile, A is expressed as
A =PTAP.

From (12.98), A > 0. These complete the proof.
We also have a related theorem (the following Theorem 12.12) for an Hermitian
quadratic form.

Theorem 12.12 Let A = (a,-j) be a n-dimensional Hermitian matrix. Let A®) be
k-dimensional principal submatrices. Then, we have

A>0&detA®) >0 (1<k<n),

where AK®) is described as

The proof is left for readers.

Example 12.3 Let us consider a following Hermitian (real symmetric) matrix and
corresponding Hermitian quadratic form.



434 12 Hermitian Operators and Unitary Operators

H:G f) (xH|x) = (x1 xz)G %)(2) (12.101)

Principal minors of H are 5( > 0) and 1( > 0) and detH =5 —4 = 1( > 0).
Therefore, from Theorem 12.11 we have H > 0. A characteristic equation gives
following eigenvalues, i.e.,

I =342V2, Jp=3-2V2.
Both the eigenvalues are positive as anticipated. As a diagonalizing matrix R, we get

R <1+1\/§ 1—1\/5).

To obtain a unitary matrix, we have to seek norms of column vectors.
Corresponding to A; and /,, we estimate their norms to be /4 +2v/2 and
/4 — 2+/2, respectively. Using them, as a unitary matrix U we get

1 1
U= | V&2 Vinvz) (12.102)
Vat2v/2 Va2

Thus, performing the matrix diagonalization, we obtain a diagonal matrix D such
that

p—utHU = (H(fﬂ 3—02ﬁ)' (12.103)

Let us view the above unitary diagonalization in terms of coordinate transfor-
mation. Using the above matrix U and changing (12.101) as in (11.36),

(x|H]x) = (xp) 0t (5 ?) oot (xl )

2 X2

(12.104)
B 3+2V2 0 e
—(x1x2)U< 0 3_2\/§>U ( )

Making an argument analogous to that of Sect. 11.2 and using similar notation,
we have

X2

HH'R) = (5 @)H’({‘) - (xlxz)UUTHUUT<x1>

X2 X2

(12.105)
= (x|H|x).
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(g) :UT(Q). (12.106)

Or, taking an adjoint of (12.106), we have equivalently (x; X% )= (x1 x)U.

That is, we have

X2 2
matrix). Likewise,

Notice here that ()ﬂ) and <§1> are real and that U is real (i.e., orthogonal

H =U'HU. (12.107)

. X X1 .
Thus, it follows that (xl ) and ( 5{1 ) are different column vector representa-
2 2

tions of the identical vector that is viewed in reference to two different sets of
orthonormal bases (i.e., different coordinate systems).
From (12.102), as an approximation we have

. (092 —-038Y\ _ (cos22.5° —sin22.5°
v= (0.38 0.92 > = (sin22.5° €08 22.5° > (12.108)

Equating (x|H|x) to a constant, we get a hypersurface in a plane. Choosing 1 for
a constant, we get an equation of hypersurface (i.e., an ellipse) as a function of x;
and x, such that

o+ —1. (12.109)

( 3+12\/§)

Figure 12.1 depicts the ellipse.

12.6 Simultaneous Eigenstates and Diagonalization

In quantum physics, a concept of simultaneous eigenstate is important and has
briefly mentioned in Sect. 3.3. To rephrase this concept, suppose that there are two
operators B and C and ask whether the two operators (or more) possess a common
set of eigenvectors. The question is boiled down to whether the two operators
commute. To address this question, the following theorem is important.
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Fig. 12.1 Ellipse obtained Xy
through diagonalization of a
Hermitian quadratic form.
The angle 6 is about 22.5°

X1

Theorem 12.13 [2] Two Hermitian matrices B and C commute if and only if there
exists a complete orthonormal set of common eigenvectors.

Proof Suppose that there exists a complete orthonormal set of common eigen-
vectors {|x;; m;)} that span the linear vector space, where i and m; are a positive
integer and that |x;) corresponds to an eigenvalue b; of B and ¢; of C. Note that if m;
is 1, we say that the spectrum is non-degenerate and that if m; is equal to two or
more, the spectrum is said to be degenerate. Then we have

B(|Xl>) = bi\xi>, C(|Xl>) = c,-\xi>. (12110)

Therefore, BC(|X,>) = B(Cl‘|x,'>) = Cl'B(|X,'>) = cibi|xi>. Slmllarly, CB(|X,>) =
¢;bi|x;). Consequently, (BC — CB)(|x;)) = 0 for any |x;). As all the set of |x;) span
the vector space, BC — CB = 0, namely BC = CB.

In turn, assume that BC = CB and that B(|x;)) = b;|x;), where |x;) are
orthonormal. Then, we have

CB(Jx)) = b:C(Jx)) = BIC(1x))] = biC(ly)). (12.111)

This implies that C(]x;)) is an eigenvector of B corresponding to the eigenvalue
b;. We have two cases.

(1) The spectrum is non-degenerate: The spectrum is said to be non-degenerate if
only one eigenvector belongs to an eigenvalue. In other words, multiplicity of
b; is one. Then, C(|x;)) must be equal to some constant times |x;), i.e.,
C(|]x:)) = cilx;). That is, |x;) is an eigenvector of C corresponding to an
eigenvalue c¢;. That is, |x;) is a common eigenvector to B and C. This com-
pletes the proof.
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(i1)) The spectrum is degenerate: The spectrum is said to be degenerate if two or
more eigenvectors belong to an eigenvalue. Multiplicity of b; is two or more;

Y,

and }xﬁm)> be linearly independent vectors and belong to the eigenvalue

here suppose that the multiplicity is m (m>2). Let ‘xl(l)>,

b; of B. Then, from the assumption, we have m eigenvectors

(")) c(4). ()

that belong to an eigenvalue b; of B. This means that individual
C(‘xf“)>)(1 <u<m) are described by linear combination of ‘x51)>, x£2)>,...,

and ’xfm)>. What we want to prove is to show that suitable linear combination

of these m vectors constitutes an eigenvector corresponding to an eigenvalue
¢, of C. Here, to avoid complexity, we denote the multiplicity by m instead of the
above-mentioned m;.

The vectors C (‘x,(”)>) (1 <u<m) can be described as

m

(")) =D s e (™)) = D ). (12.112)
j=1 j=1
Using full matrix representation, we have
m V1
(kD) - () )
(kl
m (12.113)
o vt Oim 71
- (4)--)
Omt - %mm VYm

In (12.113), we adopt the notation of (9.37). Since (ocij) iS a matrix represen-
tation of an Hermitian operator C, (OCij) is Hermitian as well. More specifically, if

we take an inner product of a vector expressed in (12.112) with ‘x51)>, then we have

<x§l) Cxl(k)> = <x§l)

= OC[k(l Sk,lﬁm),

m

Sl ) =S
=1

j=1

O\ _ N
x ) = ik O
’ > J; A (12.114)
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where the third equality comes from the orthonormality of the basis vectors.
Meanwhile,
(o

where the second equality comes from the Hermiticity of C. From (12.114) and
(12.115), we get

Cx§k>> _ <xl(k)‘ CTx§l>>*= <xl(k)‘ fo”>*: o, (12.115)

o = oy (1 <k, I1<m). (12.116)

This indicates that (ocij) is in fact Hermitian.
We are seeking the condition under which linear combinations of the eigen-

vectors ‘x,{k)>(l <k <m) for B are simultaneously eigenvectors of C. If the linear

m
combination > 7,
k=1

xgk)> is to be an eigenvector of C, we must have

C(i Vk xfk)>> = C(i Vi xfj)>>- (12.117)

k=1

Considering (12.113), we have

o1 A1m Y1 71
(O] e B (T Es
gl O T -
(12.118)

The vectors xim>(l <k <m) span an invariant subspace (i.e., an eigenspace

corresponding to an eigenvalue of b;). Let us call this subspace W™. Consequently,
in (12.118), we can equate the scalar coefficients of individual ‘xl@>(l <k<m).
Then, we get

D I A T 71 71
: : =c| . |. (12.119)

Im1 = Olmm Tm Tm

This is nothing other than an eigenvalue equation. Since (ac,-j) is an Hermitian
matrix, there should be m eigenvalues ¢, some of which may be identical (the
degenerate case). Moreover, we can always decide m orthonormal column vectors
by solving (12.119). We denote them by y*(1<pu<m) that belong to c,.
Rewriting (12.119), we get
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o1 cee Ol ,})(lﬂ) ,ygﬂ)

: =cu| |- (12.120)
Ol Olym ’(;/ll) y’(;/lt)
Equation (12.120) implies that we can construct a (m,m) unitary matrix from the
m orthonormal column vectors 7). Using the said unitary matrix, we will be able to
diagonalize (ocl;,v) according to Theorem 12.5.
Having determined m eigenvectors y(">(l <u<m), we can construct a set of
eigenvectors such that

yl(u)> _ ZVIEM ‘x,(k)>- (12.121)

k=1

Finally let us confirm that yS“ )>(1 < u<m) in fact constitute an orthonormal

basis. To show this, we have

<ylgv) y§u>> _ <ZV/(CV)X§I€> Z Vl(u)xlgz)>
[V’g)} y§“><xf.k) ’x51)> - ZZ[V/(:)} 7o (12.122)

The last equality comes from the fact that a matrix comprising m orthonormal
column vectors y*)(1 < u<m) forms a unitary matrix. Thus, ’)’EH)>(1 <u<m)

certainly constitute an orthonormal basis.

The above completes the proof.

Theorem 12.13 can be restated as follows: Two Hermitian matrices B and C can
be simultaneously diagonalized by a unitary similarity transformation. As men-
tioned above, we can construct a unitary matrix U such that

| m
A el

U =

J L ym)

m

Then, using U, matrices B and C are diagonalized such that
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bi C1
o
ulBU = . , Ulcu = . . (12.123)

b; Cm

Note that both B and C are represented in an invariant subspace W™.

As we have already seen in Part I that dealt with an eigenvalue problem of a
hydrogen-like atom, squared angular momentum (L*) and z-component of angular
momentum (L;) possess a mutual set of eigenvectors and, hence, their eigenvalues
are determined at once. Related matrix representations to (12.123) were given in
(3.159). On the other hand, this was not the case with a set of operators L,, and L,
and L;; see (3.30). Yet, we pointed out the exceptional case where these three
operators along with L? take an eigenvalue zero in common which an eigenstate
Y9(0, ¢) = \/1/4n corresponds to. Nonetheless, no complete orthonormal set of
common eigenvectors exists with the set of operators L., and L,, and L.. This fact is
equivalent to that these three operators are non-commutative among them. In
contrast, L? and L, share a complete orthonormal set of common eigenvectors and,
hence, are commutable.

Notice that C( x51)>),C(‘x§2)>), ..., and (C‘x5m>>) are not necessarily lin-
early independent (see Sect. 9.4). Suppose that among m eigenvalues c,
(1 <u<m), some ¢, = 0. Then, det C = 0 according to (11.48). This means that
C is singular. In that case, C(‘x§l>>) , C( x§2>>) ,..., and (C xgm)>) are linearly
dependent. In Sect. 3.3, in fact, we had |L.Y{ (0, ¢))=|L*Y{ (0, $)) = 0. But, this
special situation does not affect the proof of Theorem 12.13.

We know that any matrix A can be decomposed such that

A:%(A%—AT)—H[%(A—AT)}, (12.124)

where we put B = % (A —|—AT) and C = % (A — AT); both B and C are Hermitian.

That is any matrix A can be decomposed to two Hermitian matrices in such a way
that

A=B+iC. (12.125)

Note here that B and C commute if and only if A and AJr commute, that is A is a
normal matrix. In fact, from (12.125) we get

Al — ata = 2i(cB - BO). (12.126)
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From (12.126), if and only if B and C commute (i.e., B and C can be diago-

nalized simultaneously), AAT — ATA = 0, i.e., AAT = ATA. This indicates that A is
a normal matrix. Thus, the following theorem will follow.

Theorem 12.14 A matrix can be diagonalized by a unitary similarity transfor-
mation, if and only if it is a normal matrix.

Thus, Theorem 12.13 is naturally generalized so that it can be stated as follows:
Two normal matrices B and C commute if and only if there exists a complete
orthonormal set of common eigenvectors.

In Sects. 12.1 and 12.3, we mentioned the spectral decomposition. There, we
showed a special case where projection operators commute with one another; see
(12.23). Thus, in light of Theorem 12.13, those projection operators can be diag-
onalized at once to be expressed as, e.g., (12.72). This is a conspicuous feature of
the projection operators.
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Part IV
Group Theory and
Its Chemical Applications

Universe comprises space and matter. These two mutually stipulate their modality of
existence. We often comprehend related various aspects as manifestation of
symmetry. In this part, we deal with the symmetry from a point of view of group
theory. In this last part of the book, we outline and emphasize chemical applications
of the methods of mathematical physics. This part supplies us with introductory
description of group theory. The group theory forms an important field of both pure
and applied mathematics. Starting with the definition of groups, we cover a variety
of topics related to group theory. Of these, symmetry groups are familiar to chemists,
because they deal with a variety of matter and molecules that are characterized by
different types of symmetry. The symmetry group is a kind of finite group and called
a point group as well. Meanwhile, we have various infinite groups that include
rotation group as a typical example. We also mention an introductory theory of the
rotation group of SO(3) that deals with an important topic of, e.g., Euler angles.
We also treat successive coordinate transformations.

Next, we describe representation theory of groups. Schur’s lemmas and related
grand orthogonality theorem underlie the representation theory of groups. In parallel,
characters and irreducible representations are important concepts that support the
representation theory. We present various representations, e.g., regular representa-
tion, direct-product representation, and symmetric and antisymmetric representa-
tions. These have wide applications in the field of quantum mechanics and quantum
chemistry, and so forth.

In the final chapter, we highlight quantum chemical applications of group
theory in relation to a method of molecular orbitals. As tangible examples, we adopt
aromatic molecules and methane.



Chapter 13
Introductory Group Theory

A group comprises mathematical elements that satisfy four simple definitions.
A bunch of groups exists under these simple definitions. This makes the group
theory a discriminating field of mathematics. To get familiar with various concepts
of groups, we first show several tangible examples. Group elements can be numbers
(both real and complex) and matrices. More abstract mathematical elements can be
included as well. Examples include transformation, operation as already studied in
previous parts. Once those mathematical elements form a group, they share several
common notions such as classes, subgroups, and direct-product groups. In this
context, readers are encouraged to conceive different kinds of groups close to their
heart. Mapping is an important concept as in the case of vector spaces. In particular,
isomorphism and homomorphism frequently appear in the group theory. These
concepts are closely related to the representation theory that is an important pillar of
the group theory.

13.1 Definition of Groups

In contrast to a broad range of applications, the definition of the group is simple. Let
¢ be a set of elements g,, where v is an index either countable (e.g., integers) or
uncountable (e.g., real numbers) and the number of elements may be finite or
infinite. We denote this by ¢ = {g,}. If a group is a finite group, we express it as

y:{g11g27-"7gn}7 (131)

where n is said to be an order of the group.

Definition of the group comprises the following four axioms with respect to a
well-defined “multiplication” rule between any pair of elements. The multiplication
is denoted by a symbol "¢” below. Note that the symbol ¢ implies an ordinary
multiplication, an ordinary addition, etc.

© Springer Nature Singapore Pte Ltd. 2018 445
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(A1) If a and b are any elements of the set ¢, then so is ach. (We sometimes say
that the set is “closed” regarding the multiplication.)

(A2) Multiplication is associative; i.e., ao(boc) = (aob)oc.

(A3) The set 4 contains an element of e called the identity element such that we
have ace = eva = a with any element a of 4.

(A4) For any a of 4, we have an element b such that aob = boa = e. The element

b is said to be the inverse element of a. We denote b = a~!.

In the above definitions, we assume that the commutative law does not neces-
sarily hold, that is, aob # boa. In that case, the group ¢ is said to be a
non-commutative group. However, we have a case where the commutative law
holds, i.e., aob = boa. If so, the group ¢ is called a commutative group or an
Abelian group.

Let us think of some examples of groups. Henceforth, we follow the convention
and write ab to express aob.

Example 13.1 We present several examples of groups below. Examples (i) to
(iv) are simple, but Example (v) is general.

(i) ¢={1,—1}. The group ¢ makes a group with respect to the multiplication.
This is an example of a finite group.

G ¢=4{...,-3,-2,-1,0,1,2,3,...}. The group 4 makes a group with
respect to the addition. This is an infinite group. For instance, take a( > 0)
and make a + 1 and make (a+ 1)+ 1,[(e+ 1) + 1]+ 1,... again and again.
Thus, addition is not closed and, hence, we must have an infinite group.

(iii) Let wus start with a matrix a= ((1) _Ol ) Then, the inverse
0 1 -1 0 . . .
~1 3 2 2
a'=a = <_1 0).Wehavea = < 0 _1).Its1nverselsa itself.

These four elements make a group. That is, 4 = {e,a,a* a*}. This is an
example of cyclic groups.

(iv) ¢ ={1}. It is a most trivial case, but sometimes the trivial case is very
important as well. We will come back later to this point.

(v) Let us think of a more general case. In Chap. 9, we discussed endomorphism
on a vector space and showed the necessary and sufficient condition for the
existence of an inverse transformation. In this relation, we consider a set that
comprises matrices such that

GL(n,C)={A = (aij)|i,j =1,2,...,n; a; € C,detA # 0}.

This may be either a finite group or an infinite group. The former can be a
symmetry group and the latter can be a rotation group. This group is characterized
by a set of invertible and endomorphic linear transformations over a vector space
V" and called a linear transformation group or a general linear group and denoted
by GL(n,C), GL(V"), GL(V), etc. The relevant transformations are bijective.
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We can readily make sure that axioms (Al) to (A4) are satisfied with GL(n, C).
Here, the vector space can be C" or a function space.

The structure of a finite group is tabulated in a multiplication table. This is made
up such that group elements are arranged in a first row and a first column and that
an intersection of an element g; in the row and g; in the column is designated as a
product g;og;. Choosing the above (iii) for an example, we make its multiplication
table (see Table 13.1). There we define ¢> = b and @® = c.

Having a look at Table 13.1, we notice that in the individual rows and columns
each group element appears once and only once. This is well known as a rear-
rangement theorem.

Theorem 13.1: Rearrangement Theorem [1] In each row or each column in the
group multiplication table, individual group elements appear once and only once.
From this, each row and each column list merely rearranged group elements.

Proof Let a set ¢ = {g1 =e,82,...,8,} be a group. Arbitrarily choosing any
element & from 4 and multiplying individual elements by /s, we obtain a set
9 = {hg1,hg2,---,hg,}. Then, all the group elements of 4 appear in § once and
only once. Choosing any group element g;, let us multiply g; by 4~ ! to get h~'g;.
Since ™' g; must be a certain element g of 4, we put h~'g; = g;. Multiplying both
sides by &, we have g; = hg;. Therefore, we are able to find this very element hgy in
9, i.e., g; in . This implies that the element g; necessarily appears in £. Suppose
in turn that g; appears more than once. Then, we must have g; = hgy = hg;(k # ).
Multiplying the relation by h~!, we would get h~'g; = g; = g;, in contradiction to
the supposition. This means that g; appears in $ once and only once. This confirms
that the theorem is true of each row of the group multiplication table.

A similar argument applies with a set ' = {g1h, g2h, . . ., g,h}. This confirms in
turn that the theorem is true of each column of the group multiplication table. These
complete the proof.

13.2 Subgroups

As we think of subspaces in a linear vector space, we have subgroups in a group.
The definition of the subgroup is that a subset H of a group makes a group with
respect to the multiplication ¢ that is defined for the group 4. The identity element

Table 13.1 Multlplzlcat;on P e a b=d c=d3
table of {4 = e,a,a”,a’}

e e a b c

a a b c e

b b c e a

c c e a b
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makes a group by itself. Both {¢} and 4 are subgroups as well. We often call
subgroups other than {e} and 4 “proper” subgroups.

A necessary and sufficient condition for the subset H to be a subgroup is the
following:

(1) hi,hj € H = hjoh; € H.
Q2 heH=h'ecH.

If 'H is a subgroup of g4, it is obvious that the relations (1) and (2) hold.
Conversely, if (1) and (2) hold, H is a subgroup. In fact, (1) ensures the afore-
mentioned relation (Al). Since H is a subset of ¢, this guarantees the associative
law (A2). The relation (2) ensures (A4). Finally, in virtue of (1) and (2), hoh ! = ¢
is contained in H; this implies that (A3) is satisfied. Thus, H is a subgroup, because
‘H satisfies the axioms (A1) to (A4). Of the above examples, (iii) has a subgroup
H= {e, az}.

It is important to decompose a set into subsets that do not mutually contain an
element (except for a special element) among them. We saw this in Part III when we
decomposed a linear vector space into subspaces. In that case the said special ele-
ment was a zero vector. Here let us consider a related question in its similar aspects.

Let H = {h = e, hy,. .., hs} be a subgroup of 4. Also, let us consider a{ where
Ja€y and a¢H. Suppose that aH is a subset of 4 such that
aH = {ahy,ahy, ..., ahs}. Then, we have another subset H + aH. If H contains s
elements, so does a’H. In fact, if it were not the case, namely, if ah; = ah;, mul-
tiplying the both sides by a~! we would have &; = h;, in contradiction. Next, let us
take b such that b ¢ H and b ¢ a’H and make up bH and H + aH + b’H succes-
sively. Our question is whether these procedures decompose ¢ into subsets mutu-
ally exclusive and collectively exhaustive.

Suppose that we can succeed in such a decomposition and get

g=8H+aH+ - +aH, (13.2)

where g1, g2, . . ., g are mutually different elements with g; being the identity e. In
that case (13.2) is said to be the left coset decomposition of 4 by H. Similarly, right
coset decomposition can be done to give

g=Hg1+Hg+ -+ +Hgr. (13.3)
In general, however,
g H # HgrorgHg, ' # H. (13.4)

Taking the case of left coset as an example, let us examine whether different
cosets mutually contain a common element. Suppose that g;H and g;/H mutually
contain a common element. Then, that element would be expressed as
gihy = gihg(1 <i,j<n;1<p,q<s). Thus, we have gihph;1 = g;. Since H is a
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subgroup of ¢, h,,h;l € H. This implies that g; € g;H. It is in contradiction to the
definition of left coset. Thus, we conclude that different cosets do not mutually
contain a common element.

Suppose that the order of 4 and H is n and s, respectively. Different k cosets
comprise s elements individually and different cosets do not mutually possess a
common element and, hence, we must have

n = sk, (13.3)

where k is called an index of H. We will have many examples afterward.

13.3 Classes

Another method to decompose a group into subsets is called conjugacy classes.
A conjugate element is defined as follows: Let a be an element arbitrarily chosen
from a group. Then an element gag~' is called a conjugate element or conjugate to
a. If c is conjugate to b and b is conjugate to a, then c is conjugate to a. It is because

c=gbg " \b=gag ' = c=gbg ' =ggag "¢ =g'galg's)”". (13.6)

In the above, a set containing a and all the elements conjugate to a is said to be a
(conjugate) class of a. Denoting this set by C,, we have

Co = {a, 8208, " 83a85", .., gnag, ' }. (13.7)

In C,, a same element may appear repeatedly. It is obvious that in every group
the identity element e forms a class by itself. That is,

Ce = {e}. (13.8)

As in the case of the decomposition of a group into (left or right) cosets, we can
decompose a group to classes. If group elements are not exhausted by a set com-
prising C, or C,, let us take b such that b # e and b ¢ C, and make C,, similarly to
(13.7). Repeating this procedure, we should be able to decompose a group into
classes. In fact, if group elements have not yet exhausted after these procedures,
take remaining element z and make a class. If the remaining element is only z in this
moment, z can make a class by itself (as in the case of ¢). Notice that for an Abelian
group every element makes a class by itself. Thus, with a finite group, we have a
decomposition such that

4=C.+C,+Cy+ ---C.. (13.9)

To show that (13.9) is really a decomposition, suppose that for instance a set
C, NGy is not an empty set and that x € C, N C,,. Then, we must have o and f that
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satisfy a following relation: x=oao ! =pbp", ie, b=p 'oan
p= ﬁ_laa(ﬁ_la)fl. This implies that b has already been included in C,, in con-
tradiction to the supposition. Thus, (13.9) is in fact a decomposition of ¢ into a
finite number of classes.

In the above, we thought of a class conjugate to a single element. This notion can
be extended to a class conjugate to a subgroup. Let H be a subgroup of 4. Let g be
an element of 4. Let us now consider a set H' = gHg!. The set H' is a subgroup
of ¢ and is called a conjugate subgroup.

In fact, let h; and h; be any two elements of H, that is, let gh;g~" and gh;g~"' be
any tow elements of H’. Then, we have
(ghig™") (ghig™") = ghiljg™" = ghig™", (13.10)

where &y = h;h; € H. Hence, ghyg™' € H'. Meanwhile, (ghig’l)71 = gh!
g ' € H'. Thus, conditions (1) and (2) of Sect. 13.2 are satisfied with 7.
Therefore, H' is a subgroup of 4. The subgroup H' has a same order as . This is
because with any two different elements #; and h; ghig™' # ghig™".

If for Yg € 4 and a subgroup H, we have a following equality
g '"Hg =H, (13.11)

such a subgroup H is said to be an invariant subgroup. If (13.11) holds, H should
be a sum of classes (reader, please show this). A set comprising only the identity,
i.e., {e} forms a class. Therefore, if H is a proper subgroup, H must contain two or
more classes. The relation (13.11) can be rewritten as

¢H = Hg. (13.12)

This implies that the left coset is identical to the right coset. Thus, as far as we
are dealing with a coset pertinent to an invariant subgroup, we do not have to
distinguish left and right cosets.

Now let us anew consider the (left) coset decomposition of 4 by an invariant
subgroup H

g=8iH+gH+ - +aH, (13.13)

where we have H = {h; = e, hy, ..., h}. Then, multiplication of two elements that
belong to the cosets g;H and g;H is expressed as

(gih) (gihm) = (gigjgflhl) (gihm) = gigj(gflhlgj)hm = gigilphm = gigihy,
(13.14)
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where the third equality comes from (13.11). That is, we should have th such that
gjflh,gj = hp, and h,h,, = hy. In (13.14), h, € H (« stands for I, m, p, g, etc., with
1 <a <s). Note that g;g;h, € gigiH. Accordingly, a product of elements belonging
to g/H and g;/H belongs to g;gjH. We rewrite (13.14) as a relation between the sets

(&) (8/H) = gig/M- (13.15)

Viewing LHS of (13.15) as a product of two cosets, we find that the said product
is a coset as well. This implies that a collection of the cosets forms a group. Such a
group that possesses cosets as elements is said to be a factor group or quotient
group. In this context, the multiplication is a product of cosets. We denote the factor

group by
g/M

An identity element of this factor group is H. This is because in (13.15) putting
gi=e, we get H(g/H)=g/H. Alternatively, putting g;=e, we have
(s/H)H = giH. In (13.15), moreover, putting g; = g; ', we get

(M) (¢ H) = gigy "M = H. (13.16)

Hence, (g/H) ' = g7 ""H. That is, the inverse element of g/H is g "H.

13.4 Isomorphism and Homomorphism

As in the case of the linear vector space, we consider the mapping between group
elements. Of these, the notion of isomorphism and homomorphism is important.

Definition 13.1
Let 4 = {x,y,...} and ¢/ = {x',)',...} be groups and let a mapping ¢ — 4 exist.
Suppose that there is a one-to-one correspondence (i.e., injective mapping)

’ /
XX,y Y,

between the elements such that xy = z implies that x'y’ =7 and vice versa.
Meanwhile, any element in ¢/ must be the image of some element of 4. That is, the
mapping is surjective as well and, hence, the mapping is bijective. Then, the two
groups ¢ and ¢ are said to be isomorphic. The relevant mapping is called an
isomorphism. We symbolically denote this relation by

~ !

g=9-
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Note that the aforementioned groups can be either a finite group or an infinite
group. We did not designate identity elements. Suppose that x is the identity e.
Then, from the relations xy = z and x'y’ = 7/, we have

ey=z=y, x,y, :Z/ :y/. (1317)
Then, we get
X =éfiee—eé. (13.18)

Also let us put y = x~ L. Then,

xl=z=e,X(x) =€ ¥y =/=¢. (13.19)
Comparing the second and third equations of (13.19), we get
y=x"1=@x"). (13.20)

The bijective character mentioned above can somewhat be loosened in such a
way that the one-to-one correspondence is replaced with n-to-one correspondence.
We have a following definition.

Definition 13.2

Let 4 = {x,y,...} and ¢/ = {x/,)/,...} be groups and let a mapping 4 — 4 exist.
Also let a mapping p: 4 — ¢ exist such that with arbitrarily chosen any two
elements, the following relation holds:

p(x)p(y) = p(xy). (13.21)

Then, the two groups ¢ and ¢4 are said to be homomorphic. The relevant
mapping is called homomorphism. We symbolically denote this relation by

!

g

In this case, we have

/

ple)p(e) = p(ee) = p(e),ie.ple) = ¢,
where ¢ is an identity element of 4. Also, we have

/

p)p(x!) = plo!) = ple) =€
Therefore,

[p(x)] " =p(x").

The two groups can be either a finite group or an infinite group. Note that in the
above, the mapping is not injective. The mapping may or may not be surjective.
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Regarding the identity and inverse elements, we have the same relations as (13.18)
and (13.20). From Definitions 13.1 and 13.2, we say that the bijective homomor-
phism is the isomorphism.

Let us introduce an important notion of a kernel of a mapping. In this regard, we
have a following theorem.

Definition 13.3

Let 4 = {e,x,y,...} and 4 = {e/,x,y',...} be groups and let ¢ and ¢’ be the
identity elements. Suppose that there exists a homomorphic mapping p: ¢ — 4.
Also let F be a subset of 4 such that

p(F)=¢. (13.22)
Then, F is said to be a kernel of p.

Regarding the kernel, we have following important theorems.

Theorem 13.2

Let g ={e,x,y,---}and ¢/ = {¢/, x|y, - -} be groups, where e and ¢’ are identity
elements. A necessary and sufficient condition for a surjective and homomorphic
mapping p : ¢ — 4 to be isomorphic is that a kernel F = {e}.

Proof We assume that 7 = {e}. Suppose that p(x) = p(y). Then, we have

PO = p@)p (") =p(o") =€ (13.23)
The first and second equalities result from the homomorphism of p. Since
F ={e}, xy ! =e, ie., x=y. Therefore, p is injective (i.., one-to-one corre-

spondence). As p is surjective from the assumption, p is bijective. The mapping p is
isomorphic accordingly.

Conversely, suppose that p is isomorphic. Also suppose for Fx € g7 p(x)=¢.
From (13.18), p(e) = ¢’. We have p(x) = p(e) = ¢ = x = e due to the isomor-
phism of p (i.e., one-to-one correspondence). This implies F = {e}. This com-
pletes the proof.

We become aware of close relationship between Theorem 13.1 and linear
transformation versus kernel already mentioned in Sect. 9.2 of Part III. Figure 13.1
shows this relationship. Figure 13.1a represents homomorphic mapping p in a
group, whereas Fig. 13.1b shows linear transformation A in a vector space.

Theorem 13.3 Suppose that there exists a homomorphic mapping p: ¢ — 4,
where g and 4' are groups. Then, a kernel F of p is an invariant subgroup of 4.

Proof Let k; and k; be any two arbitrarily chosen elements of . Then,

plk) = pk) = ¢ (13.24)
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Fig. 13.1 Mapping in a
group and vector space.

a Homomorphic Mapping p
in a group. b Linear
transformation A in a vector

space . .
P e < e': isomorphism

0 < 0: invertible (bijective)

where ¢ is the identity element of 4. From (13.21), we have
p(kik;) = p(ki)p (k) = €'e =¢'. (13.25)
Therefore, kik; € F. Meanwhile, from (13.20), we have
p(ki') = [pk)] =€ =¢. (13.26)

Then, k; ! € F. Thus, F is a subgroup of 4.
Next, for Vg € g, we have

p(gkig™") = p(e)p(kp(g™") = p(g)ep(e™") =¢. (13.27)

Accordingly, we have gk;g~' € F. Thus, gFg~' C F. Since g is chosen arbi-
trarily, replacing it with g~! we have g~!Fg C F. Multiplying g and g~! on both
sides from the left and right, respectively, we get 7 C gFg~'. Consequently, we
get

eFg ' =F. (13.28)

This implies that F of p is an invariant subgroup of 4.

Theorem 13.4 (Homomorphism Theorem)

Let g ={x,y,...} and ¢4 ={x,y',...} be groups and let a homomorphic (and
surjective) mapping p: ¢ — ¢ exist. Also let F be a kernel of g. Let us define a
surjective mapping p: ¢/F — 4 such that

p(&iF) = p(8i)- (13.29)

Then, p is an isomorphic mapping.
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Proof From (13.15) and (13.21), it is obvious that p is homomorphic. The con-
firmation is left for readers. Let g;F and g;F be two different cosets. Suppose here
that p(g;) = p(g;). Then, we have

p(gi'g) = plg " )p(g) = lp(g)] 'p(g) =lp(g)] 'plg) =¢.  (13.30)

This implies that g;'g; € F. That is, we would have g; € g;F. This is in con-
tradiction to the definition of a coset. Thus, we should have p(g;) # p(gj). In other
words, the different cosets g;F and g;F have been mapped into different elements
p(g:) and p(g;) in #/. That is, p is isomorphic; i.e., ¢/F = 4.

13.5 Direct-Product Groups

So far we have investigated basic properties of groups. In Sect. 13.4, we examined
factor groups. The homomorphism theorem shows that the factor group is char-
acterized by division. In the case of a finite group, an order of the group is reduced.
In this section, we study the opposite character, i.e., properties of direct product of
groups, or direct-product groups.

Let H={h =e,h,....hy} and H' = {h| = e h}, ... h,} be groups of the
order of m and n, respectively. Suppose that (i) "4;(1 <i<m) and vhJ’,(l <i<m)
commute, i.e., h,-h; = h]’-hi and that (ii) HN'H' = {e}. Under these conditions let us
construct a set ¢ such that

g = {hlh’l ze,h,-h;(lgigm,lgjgn)}. (13.31)

In other words, ¢ is a set comprising mn elements h,-h]’.. A product of elements is
defined as

(hik) (i) = halhh) = hyh., (13.32)

where hy, = h;hy and h; = h;h; The identity element is ee = ¢; eh;hy = h;hge. The
inverse element is (hih})_l = h;'h' = hi 'k Associative law is obvious from
hih} = h]’h, Thus, 4 forms a group. This is said to be a direct product of groups, or a

direct-product group. The groups H and H' are called direct factors of 4. In this
case, we succinctly represent

g=HoH.

In the above, the condition (ii) is equivalent to that "g € 4 is uniquely repre-
sented as
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g=hh;he H, W e H. (13.33)

In fact, suppose that HN'H' = {e} and that g can be represented in two ways
such that

g = hh, = hhy;h, hy € H, ki, by € H'. (13.34)
Then, we have
by 'hy = WSH Y by thy € HORART € H (13.35)
From the supposition, we get
hy'hy = WK =e. (13.36)
That is, h, = hy and K = ). This means that the representation is unique.
Conversely, suppose that the representation is unique and that x € 7 NH’. Then,
we must have
X = xe = ex. (13.37)

Thanks to uniqueness of the representation, x = e. This implies HN'H' = {e}.
Now suppose 4 € H. Then for "g € 4 putting g = hvh;l, we have

ghg™" = hyl,hh W = hyhi W Y = by € H. (13.38)
Then, we have gHg~! C H. Similarly to the proof of Theorem 13.3, we get
gHg ' =H. (13.39)
This shows that H is an invariant subgroup of 4. Similarly, H' is an invariant
subgroup as well.
Regarding the unique representation of the group element of a direct-product

group, we become again aware of the close relationship between the direct product
and direct sum that was mentioned earlier in Part III.

Reference
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Chapter 14
Symmetry Groups

We have many opportunities to observe symmetry both macroscopic and micro-
scopic in natural world. First, we need to formulate the symmetry appropriately. For
this purpose, we must regard various symmetry operations as mathematical ele-
ments and classify these operations under several categories. In Part III, we
examined various properties of vectors and their transformations. We also showed
that the vector transformation can be viewed as the coordinate transformation. On
these topics, we focused upon abstract concepts in various ways. On another front,
however, we have not paid attention to specific geometric objects, especially
molecules. In this chapter, we study the symmetry of these concrete objects. For
this, it will be indispensable to correctly understand a variety of symmetry opera-
tions. At the same time, we deal with the vector and coordinate transformations as
group elements. Among such transformations, rotations occupy a central place in
the group theory and related field of mathematics. Regarding the three-dimensional
Euclidean space, SO(3) is particularly important. This is characterized by an infinite
group in contrast to various symmetry groups (or point groups) we investigate in
the former parts of this chapter.

14.1 A Variety of Symmetry Operations

To understand various aspects of symmetry operations, it is convenient and
essential to consider a general point that is fixed in a three-dimensional Euclidean
space and to examine how this point is transformed in the space. In parallel to the
description in Part III, we express the coordinate of the general point P as

by
P=1y]. (14.1)
<
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Note that P may be on or within or outside a geometric object or molecule that we
are dealing with. The relevant position vector x for P is expresses as

X = xey +ye, +zes.

* (14.2)

=(e1ere3)| v |,
Z

where e,e;,and,e; denote an orthonormal basis vectors pointing to positive
directions of x-, y-, and z-axes, respectively. Similarly, we denote a linear trans-
formation A by

ain ap a3 X
Alx) = (e1ere3)| an axn an y . (14.3)
az  azx  as z

Among various linear transformations that are represented by matrices, orthogonal
transformations are the simplest and most widely used. We use orthogonal matrices
to represent the orthogonal transformations accordingly.

Let us think of a movement or translation of a geometric object and an operation
that causes such a movement. First suppose that the geometric object is fixed on a
coordinate system. Then, the object is moved (or translate) to another place. If
before and after such a movement (or translation) one could not tell whether the
object has been moved, we say that the object possesses a “symmetry” in a certain
sense. Thus, we have to specify this symmetry. In that context, group theory deals
with the symmetry and defines it clearly.

To tell whether the object has been moved (to another place), we usually dis-
tinguish it by change in (i) positional relationship and (ii) attribute or property. To
make the situation simple, let us consider a following example:

Example. 14.1 We have two round disks; i.e., Disk A and Disk B. Suppose that
Disk A is a solid white disk, whereas Disk B is partly painted black (see Fig. 14.1).
In Fig. 14.1, we are thinking of a rotation of an object (e.g., round disk) around an
axis standing on its center and stretching perpendicularly to the object plane.

(a) (b)
Disk A Disk B

Rotatlon around Rotatlon around
the center the center

Fig. 14.1 Rotation of an object. a Case where we cannot recognize that the object has been
moved. b Case where we can recognize that the object has been moved because of its attribute (i.e.,
because the round disk is partly painted black)
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If an arbitrarily chosen positional vector fixed on the object before the rotation is
moved to another position that was not originally occupied by the object, then we
recognize that the object has certainly been moved. For instance, imagine that a
round disk having a through-hole located aside from center is rotating. What about
the case where that position was originally occupied by the object, then? We have
two possibilities. The first alternative is that we cannot recognize that the object has
been moved. The second one is that we can yet recognize that the object has been
moved. According to Fig. 14.1a, b, we have the former case and the latter case,
respectively. In the latter case, we have recognized the movement of the object by
its attribute, i.e., by that the object is partly painted black.

However, we do not have to be rigorous here. We have a clear intuitive criterion
for a judgement of whether a geometric object has been moved. From now on, we
assume that the geometric character of an object is pertinent to both its positional
relationship and attribute. Thus, we define the equivalent (or indistinguishable)
disposition of an object and the operation that yields such an equivalent disposition
as follows:

Definition 14.1

(i) Symmetry operation: A geometric operation that produces an equivalent (or
indistinguishable) disposition of an object.

(i) Equivalent (or indistinguishable) disposition: Suppose that regarding a geo-
metric operation of an object, we cannot recognize that the object has been
moved before and after that geometric operation. In that case, the original
disposition of the object and the resulting disposition reached after the geo-
metric operation are referred to as an equivalent disposition. The relevant
geometric operation is the symmetric operation.

Here we should clearly distinguish translation (i.e., parallel displacement) from
the above-mentioned symmetry operations. This is because for a geometric object
to possess the translation symmetry the object must be infinite in extent, typically
an infinite crystal lattice. The relevant discipline is widely studied as space group
and has a broad class of applications in physics and chemistry. However, we will
not deal with the space group or associated topics, but focus our attention upon
symmetry groups in this book.

In the above example, the rotation is a symmetry operation with Fig. 14.1a, but the
said geometric operation is not a symmetric operation with Fig. 14.1b.

Let us further inspect properties of the symmetry operation. Let us consider a set
$ consisting of symmetry operations. Let a and b be any two symmetric operations
of . Then, (i) @ ¢ b is a symmetric operation as well. (ii) Multiplication of
successive symmetric operations a, b, ¢ is associative; i.e., a ¢ (b ¢ ¢) = (a ¢ b)
© c. (iii) The set $ contains an element of e called the identity element such that we
have a ¢ e = e ¢ a = a with any element a of §. Operating “nothing” should be
e. If the rotation is relevant, 2r rotation is thought to be e. These are intuitively
acceptable. (iv) For any a of 4, we have an element b such that
a o b=>b ¢ a=e. The element b is said to be the inverse element of a. We
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denote it by b = a~!. The inverse element corresponds to an operation that brings
the disposition of a geometric object back to the original disposition. Thus, £ forms
a group. We call $ satisfying the above criteria a symmetry group. A symmetry
group is called a point group as well. This is because a point group comprises
symmetry operations of geometric objects as group elements, and those objects
have at least one fixed point after the relevant symmetry operation. The name of a
point group comes from this fact.

As mentioned above, the symmetric operation is best characterized by a (3,3)
orthogonal matrix. In Example 14.1, e.g., the m rotation is represented by an
orthogonal matrix A such that

-1 00
A= 0 -1 0]. (14.4)
0 0 1

This operation represents a 7 rotation around the z-axis. Let us think of another
symmetric operation described by

10 0
B=(0o 1 0 | (14.5)
00 —1

This produces a mirror symmetry with respect to the xy-plane. Then, we have
C=AB=BA=| 0 -1 0 |. (14.6)

The operation C shows an inversion about the origin. Thus, A, B, and C along with
an identity unit £ form a group. Here E is expressed as

10
E=|0 1 (14.7)
0 0

—_ o O

The above group is represented by four three-dimensional diagonal matrices whose
elements are 1 or —1. Therefore, it is evident that an inverse element of A, B, and
Cis A, B, and C itself, respectively. The said group is commutative (Abelian) and
said to be a four group [1].

Meanwhile, we have a number of non-commutative groups. From a point of
view of a matrix structure, non-commutativity comes from off-diagonal elements of
the matrix. A typical example is a rotation matrix of a rotation angles different from
zero or nn (n: integer). For later use, let us have a matrix form that expresses a 0
rotation around the z-axis. Figure 14.2 depicts a graphical illustration for this.
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Fig. 14.2 Rotation by 0 z
around the z-axis
A
1
S—
0
y
0]
b
A matrix R has a following form:
cos —sinf 0O
R= | sinf cosf O ]. (14.8)

0 0 1

Note that R has been reduced. This implies that the three-dimensional Euclidean
space is decomposed into a two-dimensional subspace (xy-plane) and a
one-dimensional subspace (z-axis). The xy-coordinates are not mixed with the z-
component after the rotation R. Note, however, that if the rotation axis is oblique
against the xy-plane, this is not the case. We will come back to this point later.

Taking only the xy-coordinates in Fig. 14.3, we make a calculation. Using an
addition theorem of trigonometric functions, we get

X' =rcos(0+a) =r(coso cos) — sina sinf) = x cos —y sinf,  (14.9)
y =rsin(0+oa) = r(sino cos 0+ coso sinf) =y cosO+xsin0,  (14.10)

where we used x = r cosa and y = r sina. Combining (14.9) and (14.10), as a

matrix form, we get
X cos) —sin0) [ x
(y’>_<sin0 cos 0 )(y) (14.11)

Equation (14.11) is the same as (9.31) and represents a transformation matrix of
a rotation angle 0 within the xy-plane. Whereas in Chap. 9, we considered this from
the point of view of the transformation of basis vectors, here we deal with the
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Fig. 14.3 Transformation of
the xy-coordinates by a 0

rotation ( x' )
/
y

transformations of coordinates in the fixed coordinate system. If 0 # 7,
off-diagonal elements do not vanish. Including the z-component, we get (14.8).

Let us summarize symmetry operations and their (3,3) matrix representations.
The coordinates before and after a symmetry operation are expressed as

’

x x
y | and [ y |, respectively.
z z

(i) Identity transformation:
To leave a geometric object or a coordinate system unchanged (or unmoved),
by convention, we denote it by a capital letter E. It is represented by a (3,3)
identity matrix.

(i) Rotation symmetry around a rotation axis:
Here a “proper” rotation is intended. We denote a rotation by a rotation axis
and its magnitude (i.e., rotation angle). Thus, we have

cosf —sinf 0 cos¢p 0 sing
Ryg= | sinf cos0 O, Ry= 0 1 0 ,
0 0 1 —sin 0 cos
¢ ¢ (14.12)
1 0 0
Ry, =10 cosgp —sing

0 sing cos@
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With Ry, we first consider a following coordinate transformation:

7 cos¢p —sing 0 z
X |=1{sing cos¢p O x]. (14.13)
y 0 0 1 y

This can easily be visualized in Fig. 14.4; consider that cyclic permutation of
X Z

y | produces | x |. Shuffling the order of coordinates, we get

< y

X cos¢p O sing X
v | = 0 1 0 y |- (14.14)
7 —sing 0 cos¢ z

By convention of the symmetry groups, the following notation C,, is used to
denote a rotation. A subscript n of C, represents the order of the rotation axis. The
order means the largest number of n so that the rotation through 2n/n gives an
equivalent configuration. Successive rotations of m times (m < n) are denoted by

m
cr.

If m = n, the successive rotations produce an equivalent configuration same as the
beginning; i.e., C; = E. The rotation angles 0, ¢, etc., used above are restricted to
2nm/n accordingly.

Fig. 14.4 Rotation by ¢ z
around the y-axis
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(iii)) Mirror symmetry with respect to a plane of mirror symmetry:
We denote a mirror symmetry by a mirror symmetry plane; xy-plane, and yz-
plane, etc. We have

10 0 -1 .0 0 1 0 0
My=(0 1 0 | M.=(0 1 0),M,=[0 —1 0]. (14.15)
0 —1 0 0 1 0 0 1

The mirror symmetry is usually denoted by a,, 6, and g, whose subscripts stand
for “vertical,” “horizontal,” and “dihedral,” respectively. Among these symmetry
operations, g, and ¢, include a rotation axis in the symmetry plane, while g, is
perpendicular to the rotation axis if such an axis exists. Notice that a group
belonging to C; symmetry possesses only E and g;,. Although ¢, can exist by itself
as a mirror symmetry, neither ¢, nor g, can exist as a mirror symmetry by itself. We
will come back to this point later.

(iv) Inversion symmetry with respect to a center of inversion:
We specify an inversion center if necessary; e.g., an origin of a coordinate
system O.

=0 -1 o0 |. (14.16)

Note that as obviously from the matrix form, /p is commutable with any other
symmetry operations. Note also that I, can be expressed as successive symmetry
operations or product of symmetry operations. For instance, we have

-1 0 0\ /1 0 0
Ip=RMy=( 0 -1 0|l0 1 0 |. (14.17)
0 0 1/\0 0 -1

Note that R, and M,, are commutable; i.e., R;zMy, = MR

(iv) Improper rotation:
This is a combination of a proper rotation and a reflection by a mirror sym-
metry plane. That is, rotation around an axis is performed first and then
reflection is carried out by a mirror plane that is perpendicular to the rotation
axis. For instance, an improper rotation is expressed as
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1 0 O cos) —sinf O
MyRy=10 1 0 sinff  cosf O
0 0 -1 0 0 1

) (14.18)
cos0 —sinf O

= | sinf cos@ 0
0 0 -1

As mentioned just above, the inversion symmetry / can be viewed as an improper
rotation. Note that in this case, the reflection and rotation operations are com-
mutable. However, we will follow a conventional custom that considers the in-
version symmetry as an independent symmetry operation. Readers may well
wonder why we need to consider the improper rotation. The answer is simple; it
solely rests upon the axiom (A1) of the group theory. A group must be closed with
respect to the multiplication.

The improper rotations are usually denoted by S,,. A subscript n again stands for
an order of rotation.

14.2 Successive Symmetry Operations

Let us now consider successive reflections in different planes and successive
rotations about different axes [2]. Figure 14.5a displays two reflections with respect
to the planes o and ¢ both perpendicular to the xy-plane. The said planes make a
dihedral angle 6 with their intersection line identical to the z-axis. Also, the plane o
is identical with the zx-plane. Suppose that an arrow lies on the xy-plane perpen-
dicularly to the zx-plane. As in (14.15), an operation ¢ is represented as

1 0 0
s=[0 -1 0]. (14.19)
0 0 1

To determine a matrix representation of G, we calculate a matrix again as in the
above case. As a result, we have

cosf —sinf O 1 0 O cosf@ sinf O
sinf cosf O 0 -1 0 —sinf cosf O
0 0 1 0o 0 1 0 0 1
cos20 sin20 0
sin20 —cos20 0
0 0 1

Q
I

(14.20)
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(a) z

(b) (c)

20

>
ES
>
®
ES

Fig. 14.5 Successive two reflections about two planes ¢ and & that make an angle 0. a Reflections
¢ and ¢ with respect to two planes. b Successive operations of ¢ and ¢ in this order. The combined
operation is denoted by Go. The operations result in a 20 rotation around the z-axis. ¢ Successive
operations of ¢ and ¢ in this order. The combined operation is denoted by ¢¢. The operations
result in a —20 rotation around the z-axis

Notice that this matrix representation is referred to the original xyz-coordinate
system; see discussion of Sect. 9.4. Hence, we describe the successive transfor-
mations ¢ followed by ¢ as

cos20 —sin20 0
6o = | sin20 cos20 O |]. (14.21)
0 0 1
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The expression (14.21) means that the multiplication should be done first by ¢ and then
by a; see Fig. 14.5b. Note that ¢ and ¢ are conjugate to each other (Sect. 13.3).
In this case, the combined operations produce a 20 rotation around the z-axis.

If, on the other hand, the multiplication is made first by ¢ and then by g, we have
a —20 rotation around the z-axis; see Fig. 14.5c. As a matrix representation, we
have

cos20 sin20 0
06 = | —sin20 cos20 0 |]. (14.22)
0 0 1

Thus, successive operations of reflection by the planes that make a dihedral angle 0
yield a rotation +26 around the z-axis (i.e., the intersection line of ¢, and, ). The
operation ¢4 is an inverse to ga. That is

(66)(60) =E. (14.23)

We have detog = detgo = 1.
Meanwhile, putting

cos20 —sin20 O

Ry = | sin20 cos20 0 |, (14.24)
0 0 1
we have
60 = R20 or 6= RQ()O’. (1425)

This implies the following: Suppose a plane ¢ and a straight line on it. Also,
suppose that one first makes a reflection about ¢ and then makes a 26 rotation
around the said straight line. Then, the resulting transformation is equivalent to a
reflection about ¢ that makes an angle 0 with ¢. At the same time, the said straight
line is an intersection line of g and ¢. Note that a dihedral angle between the two
planes gand g is half an angle of the rotation. Thus, any two of the symmetry
operations related to (14.25) are mutually dependent; any two of them produce the
third symmetry operation.

In the above illustration, we did not take account of the presence of a symmetry
axis. If the aforementioned axis is a symmetry axis C,, we must have

20 =2n/n or n=mn/6. (14.26)

From a symmetry requirement, there should be n planes of mirror symmetry in
combination with the C, axis. Moreover, an intersection line of these n mirror
symmetry planes should coincide with that C,, axis. This can be seen as various Cy,
groups.
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Next we consider another successive symmetry operations. Suppose that there
are two C, axes (Cy,and C,; as shown) that intersect at an angle 0 (Fig. 14.6).
There C,, is identical to the x-axis and the other (C,,) lies on the xy-plane making
an angle 0 with C,,. Following procedures similar to the above, we have matrix
representations of the successive C, operations in reference to the xyz-system such

that

where C,,

Fig. 14.6 Successive two 7
rotations around two C, axes
of Cyr,and, C,;; that intersect
at an angle 6. Of these, Cy, is
identical to the x-axis (not

shown)

1 0 0
0—10,
0 0

cosf) sinf O
—sin@ cos® 0 | (14.27)
0 0 1

cos —sinf O
sinf  cosf

0
cos20  sin20 0
sin20 —cos20 0

S O =

0 0
can be calculated similarly to (14.20). Again, we get

cos20 —sin20 O

CynCyr = | sin20 cos260 0 |,
0 0 1

) (14.28)

cos20 sin20 O
CixCue= | —sin20 cos26 O
0 0 1

)20

—~ —26

QDX /\/\
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Notice that (CyzCur)(CanCyr) = E. Once again putting

cos20 —sin20 O

Ryy= [ sin20 cos20 0 |, (14.29)
0 0 1
we have [1, 2]
CaxCox = Ryg 0 Car = RypCir. (14.30)

Note that in the above two illustrations for the successive symmetry operations,
both the relevant operators have been represented in reference to the original xyz-
system. For this reason, the latter operation was done from the left in (14.28).

From a symmetry requirement, once again the aforementioned C, axes must be
present in combination with the C, axis. Moreover, those C, axes should be per-
pendicular to the C, axis. This can be seen in various D, groups.

Another illustration of successive symmetry operations is an improper rotation.
If the rotation angle is =, this causes an inversion symmetry. In this illustration,
reflection, rotation, and inversion symmetries coexist. A Cp, symmetry is a typical
example.

Equations (14.21), (14.22), and (14.29) demonstrate the same relation. Namely,
two successive mirror symmetry operations about a couple of planes and two
successive m-rotations about a couple of C, axes cause the same effect with regard
to the geometric transformation. In this relation, we emphasize that two successive
reflection operations make a determinant of relevant matrices 1. These aspects cause
an interesting effect, and we will briefly discuss it in relation to O and T, groups.

If furthermore the above-mentioned mirror symmetry planes and C, axes
coexist, the symmetry planes coincide with or bisect the C, axes and vice versa. If
these were not the case, another mirror plane or C, axis would be generated from
the symmetry requirement and the newly generated plane or axis would be coupled
with the original plane or axis. From the above argument, these processes again
produce another C, axis. That must be prohibited.

Next, suppose that a C,, axis intersects obliquely with a plane of mirror sym-
metry. A rotation of 27/n around such an axis produces another mirror symmetry
plane. This newly generated plane intersects with the original mirror plane and
produces a different C, axis according to the above discussion. Thus, in this situ-
ation, a mirror symmetry plane cannot coexist with a sole rotation axis. In a geo-
metric object with higher symmetry such as Oy, however, several mirror symmetry
planes can coexist with several rotation axes in such a way that the axes intersect
with the mirror planes obliquely. In case, the C, axis intersects perpendicularly to a
mirror symmetry plane that plane can coexist with a sole rotation axis (see
Fig. 14.7). This is actually the case with a geometric object having a Cy; symmetry.
The mirror symmetry plane is denoted by ay,.

Now, let us examine simple examples of molecules and associated symmetry
operations.
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Fig. 14.7 Mirror symmetry C
plane ¢, and a sole rotation 2
axis perpendicular to it

Op

Example 14.2 Figure 14.8 shows chemical structural formulae of thiophene,
bithiophene, biphenyl, and naphthalene. These molecules belong to C,,, Cop, D>,
and D, respectively. Note that these symbols are normally used to show specific
point groups. Notice also that in biphenyl two benzene rings are twisted relative to
the molecular axis. As an example, a multiplication table is shown in Table 14.1 for
a Cy, group. Table 14.1 clearly demonstrates that the group constitution of Cj,
differs from that of the group appearing in Example 13.1 (iii), even though the order
is four for both the case. Similar tables are given with C,;, and D,. This is left for
readers as an exercise. We will find that the multiplication tables of these groups
have the same structure and that C,,, Cy;, and, D, are all isomorphic to one another
as a four group. Table 14.2 gives matrix representation of symmetry operations for
C,,. The representation is defined as the transformation by the symmetry operations
of a set of basis vectors (xyz) in R,

Fig. 14.8 Chemical (a) (b)
structural formulae and point

groups of a thiophene, / \ / \ S
b bithiophene, ¢ biphenyl, and S

d naphthalene S \ /
CZv Czh
(c) (d)
D, Dyp
Table 14.1 Multiplication Co E G (2) y(2x) o (yz)
table of C,,
E E C, o, a,
C2 (Z) Cz E Ui, ay,
ov(zx) oy a, E C,
a,(2) 7, oy G E
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Table 14.2 Matrix representation of symmetry operations for Cy,

E C, (around z-axis) ay(zx) a(yz)
Matrix 1 00 -1 0 O 1 0 O -1 0 0
010 0O -1 0 0O -1 0 0 1 0
0 0 1 0 0 1 0O 0 1 0O 0 1

Meanwhile, Table 14.3 gives the multiplication table of D,;. We recognize that
the multiplication table of C,, appears on upper left and lower right blocks. If we
suitably rearrange the order of group elements, we can make another multiplication
table so that, e.g., C», may appear on upper left and lower right blocks. As in the
case of Table 14.2, Table 14.4 summarizes the matrix representation of symmetry
operations for Dy;,. There are eight group elements; i.e., an identity, an inversion,
three mutually perpendicular C, axes and three mutually perpendicular planes of
mirror symmetry (o). Here, we consider a possibility of constructing subgroups of
Dyy,. The order of the subgroups must be a divisor of eight, and so let us list
subgroups whose order is four and examine how many subgroups exist. We have
8C4 = 70 combinations, but those allowed should be restricted from the require-
ment of forming a group. This is because all the groups must contain identity
element, and so the number allowed is equal to or no greater than ;C3 = 35.

(1) In light of the aforementioned discussion, two C, axes mutually intersecting
at /2 yield another C, axis around the normal to a plane defined by the inter-
secting axes. Thus, three C, axes have been chosen and a D, symmetry results. In
this case, we have only one choice. (ii) In the case of C»,, two planes mutually
intersecting at 7/2 yield a C, axis around their line of intersection. There are three
possibilities of choosing two axes out of three (i.e., 3C, = 3). (iii) If we choose the
inversion (i) along with, e.g., one of the three C, axes, a ¢ necessarily results. This
is also the case when we first combine a ¢ with i to obtain a C, axis. We have three
possibilities (i.e., 3C; = 3) as well. Thus, we have only seven choices to construct
subgroups of D, having an order of four. This is summarized in Table 14.5.

Table 14.3 Multiplication table of D5,

Dy E Gz)  |oulzx)  |ol(b2) i o) GO |G
E E G, oy o, i o c, (o4
C(z) G E o, oy al i ) C)
ov(zx) o, a, E G, c ) i ol
a,,(yz) o, oy Gy E ) C, ol i

i i ol C} ) E G gy o,

oy (xy) al i (o4 (o G E a, oy

Gy (y) c ) i ol oy al, E C
CY(x) ) (04 o i o, o, C, E
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Table 14.5 ChO.iCC of Subgroup E Cz(Z) s i Choice
symmetry operations for
. D, 1 3 0 0 1
construction of subgroups of
Dsy, G, 1 1 2 0 3
Con 1 1 1 1 3

An inverse of any element is that element itself. Therefore, if with any above
subgroup one chooses any element out of the remaining four elements and com-
bines it with the identity, one can construct a subgroup Cs, C,, or C; of an order of
2. Since all those subgroups of an order of 4 and 2 are commutative with D,;, these
subgroups are invariant subgroups. Thus in terms of a direct-product group, D5, can
be expressed as various direct factors. Conversely, we can construct factor groups
from coset decomposition. For instance, we have

Dzh/C2V = CS,DZh/CZV = Cz,Dzh/sz >~ C;. (1431)
In turn, we express direct-product groups as, e.g.,

Dy, = Gy, X Cy, Doy, = Cyy X Cy, Dy, = Gy, X G

Example 14.3 Figure 14.9 shows an equilateral triangle placed on the xy-plane of a
three-dimensional Cartesian coordinate. An orthonormal basis ey, and, e, are des-
ignated as shown. As for a chemical species of molecules, we have, e.g., boron
trifluoride (BF3). In the molecule, a boron atom is positioned at a molecular center
with three fluorine atoms located at vertices of the equilateral triangle. The boron
atom and fluorine atoms form a planar molecule (Fig. 14.10).

Fig. 14.9 Equilateral triangle y
placed on the xy-plane.

Several symmetry operations ,
of D3, are shown. We y
consider the successive .
operations (i), (ii), and (iii) to e, (i)

represent g/, in reference to €\ €1 X

the xy-coordinate system (see +1 /6
text) -

(if)
oy (Zy); CZI
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B
F~ OF

Fig. 14.10 Boron trifluoride (BF3) belonging to a D3, point group

A symmetry group belonging to Ds, comprises twelve symmetry operations
such that

D3h = {E7 C3; C;a C27 C;a Clzl7 O-h7S37S;a Oy, U:;a 05}7 (1432)

where symmetry operations of the same species but distinct operation are denoted
by a “prime” or “double prime.” When we represent these operations by a matrix, it
is straightforward in most cases. For instance, a matrix for o, is given by M, of
(14.15). However, we should make some matrix calculations about
C,,CY,a,,and, o).

To determine a matrix representation of, e.g., ¢, in reference to the xy-coordinate
system with orthonormal basis vectors e; and e;, we consider the x'y’-coordinate
system with orthonormal basis vectors e}, and, €} (see Fig. 14.9). A transformation
matrix between the two set of basis vectors is represented by

Vi 1o
2 b

(¢)e)e) = (ere2e3)Rz = (e1e2e3) L \/75 0 (14.33)
0o 0 1

This representation corresponds to (9.69). Let X, be a reflection with respect to the
Zx'-plane. This is the same operation as ¢/,. However, a matrix representation is
different. This is because Z, is represented in reference to the x'y'z’-system, while ¢/,
is in reference to xyz-system. The matrix representation of X, is simple and
expressed as

1 0 O
=10 -1 0]. (14.34)
0 0 1
Referring to (9.80), we have
R:%, = )Rz or o, =R:Z,[Ra] " (14.35)

Thus, we see that in the first equation of (14.35) the order of multiplications are
reversed according as the latter operation is expressed in the xyz-system or in the
x'y'z'-system. As a full matrix representation, we get
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=1 1 3 — 1 = 1
v 2 92 0 -2 % 0 750
0 0 1/\0 0 1 0 0 1 0 1
(14.36)

Notice that this matrix representation is referred to the original xyz-coordinate
system as before. Graphically, (14.35) corresponds to the multiplication of the
symmetry operations done in the order of (i) —7 /6 rotation, (ii) reflection (denoted
by X,), and (iii) /6 rotation (Fig. 14.9). The associated matrices are multiplied
from the left.

Similarly, with C}, we have

5

0
C, = 0 (14.37)

OI\)|§NI>—
[SIE

0 -1

The matrix form of (14.37) can also be decided in a manner similar to the above
according to three successive operations shown in Fig. 14.9. In terms of classes,
oy,0,,and, ¢/ form a conjugacy class and C,, C}, and, C5 form another conjugacy
class. With regard to the reflection and rotation, we have det O'V —1 and
det C, = 1, respectively.

14.3 O and T, Groups

According to a geometric object (or a molecule) which has a higher symmetry, we
have to deal with many symmetry operations and relationship between them. As an
example, we consider O and T; groups. Both the groups have 24 symmetry
operations and are isomorphic.

Let us think of the group O fist. We start with considering rotations of m/2
around x-, y-, and z-axes. The matrices representing these rotations are obtained
from (14.12) to give

0 0 1 0 0
0 —1|,Re=[0 1 0],Rz=[1 0 0]. (14.38)
1 00 0 1

We continue multiplications of these matrices so that the matrices can make up a
complete set (i.e., a closure). Counting over those matrices, we have 24 of them and
they form a group termed O. The group O is a pure rotation group. Here, the pure
rotation group is defined as a group whose group elements only comprise proper
rotations (with their determinant of 1). An example is shown in Fig. 14.11, where
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Fig. 14.11 Cube whose individual vertices have three arrows for the cube not to possess mirror

symmetries. This object belongs to a point group O called pure rotation group

individual vertices of the cube have three arrows for the cube not to possess mirror
symmetries or inversion symmetry. The group O has five conjugacy classes.
Figure 14.12 summarizes them. Geometrical characteristics of individual classes
are sketched as well. These classes are categorized by a trace of the matrix. This is
because the trace is kept unchanged by a similarity transformation. (Remember that

=3
X z
100
010
001
z=1 ‘ x
(100 100 001 00-1 0-10 010 /2
00-1 001 010 010 100 100
010 0-10 100 100 001 001
L X y
x=0 z
P
001 001 00-1 00-1 010 0-10 010 0-10
100 100 100 100 001 00-1 00-1 001
010 0-10 0-10 010 100 100 100 100 2n/3
X
x=-1 z
((100) (100 100 .
0-10 010 0-10
Loo-1) (00-1 001
X y
r=—1
P
100 100 010 0-10 001 00 -1
001 00-1 100 100 010 |0-10
L o1o 0-10 00 -1 00 -1 100/ (100

<

<

Fig. 14.12 Point group O and its five conjugacy classes. Geometrical characteristics of individual

classes are briefly sketched
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elements of the same conjugacy class are connected with a similarity transforma-
tion.) Having a look at the sketches, we notice that each operation switches the
basis vectors ej,e;,and,es; i.e., x-, y-, and z-axes. Therefore, the presence of
diagonal elements (either 1 or —1) implies that the matrix takes the basis vector(s)
as an eigenvector with respect to the rotation. Corresponding eigenvalue(s) are
either 1 or —1 accordingly. This is expected from the fact that the matrix is an
orthogonal matrix (i.e., unitary). The trace, namely a summation of diagonal ele-
ments, is closely related to the geometrical feature of the operation.

The operations of a 7 rotation around the x-, y-, and z-axes and those of a 7
rotation around an axis bisecting any two of three axes have a trace —1. The former
operations take all the basis vectors as an eigenvectors; that is, all the diagonal
elements are nonvanishing. With the latter operations, however, only one diagonal
element is —1. This feature comes from that the bisected axes are switched by the
rotation, whereas the remaining axis is reversed by the rotation.

Another characteristic is the generation of eight rotation axes that trisect the x-,
y-, and z-axes, more specifically, a solid angle 7 /2 formed by the x-, y-, and z-axes.
Since the rotation switches all the x-, y-, and z-axes, the trace is zero. At the same
time, we find that this operation belongs to Cs. This operation is generated by
successive two 7/2 rotations around two mutually orthogonal axes. To inspect this
situation more closely, we consider a conjugacy class of 7/2 rotation that belongs
to the C4 symmetry and includes six elements, i.e., Rx%, R%, RZ%, R;.%, Ryg, and Rz%.
With these notations, e.g., R,z stands for a 7/2 counterclockwise rotation around the
X-axis; R;C% denotes a m/2 counterclockwise rotation around the —x-axis.
Consequently, Rz implies a 7/2 clockwise rotation around the x-axis and, hence, an
inverse element of R)%. Namely, we have

Ry = (Re) . (14.39)

Now let us consider the successive two rotations. This is denoted by the multi-
plication of matrices that represent the related rotations. For instance, the multi-
plication of, e.g., R,z and R} produces the following:

Y2

1 0 O 0 0 1 0 0 1
Ry = Ry ’,7[ =10 0 -1 0 1L O]J=1{1 0 0}. (14.40)
i 01 0 -1 0 0 010

In (14.40), we define nyz% as a 2m/3 counterclockwise rotation around an axis that

trisects the x-, y-, and z-axes. The prime

oo

of R’V% means that the operation is
carried out in reference to the new coordinate system reached by the previous
operation Rz. For this reason, R’V% is operated (i.e., multiplied) from the right in

(14.40). Compare this with the remark made just after (14.30). Changing the order
of R,z and R;%, we have
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0 0 1\ /1 0 0 0 1 0
Ryz=RsRg=| 0 1 0][0 0 -1]=[0 0 —1], (1441)
‘ -1 00/\0 1 0 -1 0 0

where nyzz% is a 21t/3 counterclockwise rotation around an axis that trisects the x-, y-,

and —z-axes. Notice that we used R;% this time, because it was performed after R .
Thus, we notice that there are eight related operations that trisect eight octants of the
coordinate system. These operations are further categorized into four sets in which
the two elements are an inverse element of each other. For instance, we have

Riyae = (Ryas) . (14.42)

Xy Ye3

Notice that a 21t/3 counterclockwise rotation around an axis that trisects the —x-,
—y-, and —z-axes is equivalent to a 2 m/3 clockwise rotation around an axis that

trisects the x-, y-, and z-axes. Also, we have Ry = (nyzz%)_l, etc. Moreover, we
have “cyclic” relations such as
RX%R;% = R}%R;% = RZ%R;% =Rz (14.43)
Returning back to Sect. 9.4, we had
X1 X1
A[P(x)] = [(e1...e,)PA'T| ¢ | = (e1...e,) |AoP| : . (9.79)
xn 'xl'[

Implication of (9.79) is that LHS is related to the transformation of basis vectors
X1
while retaining coordinates | : | and that transformation matrices should be
Xn
operated on the basis vectors from the right. Meanwhile, RHS describes the
transformation of coordinates, while retaining basis vectors. In that case, transfor-
mation matrices should be operated on the coordinates from the left. Thus, the order
of operator multiplication is reversed. Following (9.80), we describe
/ : / -1
Rx%Ry% = RORx§7 1.€., RO = Rngy%(R)%) 5 (1444)
where Rp is viewed in reference to the original (or fixed) coordinate system and
conjugated to R;,g. Thus, we have
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Note that (14.45) is identical to a matrix representation of a 7/2 rotation around the
z-axis. This is evident from the fact that the y-axis is converted to the original z-axis
by Rxg; readers, imagine it.

We have two conjugacy classes of w rotation (the C, symmetry). One of them
includes six elements, i.e., Ryyz, Ryzn, Roxn, Ryyn, Ryzn, and Ry, For these notations,
a subscript, e.g., xy stands for an axis that bisects the angle formed by x- and y-axes.
A subscript Xy denotes an axis bisecting the angle formed by —x- and y-axes.
Another class includes three elements, i.e., Ry, Ry, and R,.

As for Rz, Ryr, and R, a combination of these operations should yield a C,
rotation axis as discussed in Sect. 14.2. Of these three rotation axes, in fact, any two
produce a C, rotation around the remaining axis, as is the case with naphthalene
belonging to the D, symmetry (see Sect. 14.2).

Regarding the class comprising six 7 rotation elements, a combination of, e.g.,
Ry, and Ry, crossing each other at a right angle causes a related effect. For the
other combinations, the two C, axes intersect each other at 7/3; see Fig. 14.6 and
put 8 = n/3 there. In this respect, elementary analytic geometry teaches the posi-
tional relationship among planes and straight lines. The argument is as follows: A

X1 X2 X3
plane determined by three points | y; |, | 2 |, and | y3 | that do not sit on a
21 22 <3

line is expressed by a following equation:

x y z 1
noa by (14.46)
X2 »n 2 1
x3 y3 zz 1

0 1 0

Substituting { O |, [ 1 |,and | 1 |, we have

0 0

x—y+z=0. (14.47)

Taking account of direction cosines and using the Hesse’s normal form, we get

1
—((x—y+2z)=0, 14.48
T+ (14.48)
where the normal to the plane expressed in (14.48) has direction cosines of %,
- %, and \/% in relation to the x-, y-, and z-axes, respectively.

Therefore, the normal is given by a straight line connecting the origin and
1

—1 | . In other words, a line connecting the origin and a corner of a cube is the
1
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normal to the plane described by (14.48). That plane is formed by two intersecting
lines, i.e., rotation axes of C, and C}, (see Fig. 14.13 that depicts a cube of each side
of 2). These axes make an angle 7/3; this can easily be checked by taking an inner
1/V2 0
product between | 1/4/2 | and | 1/ V2 |. These column vectors are two
0 1/V2

direction cosines of C, and C5. On the basis of the discussion of Sect. 14.2, we
must have a rotation axis of C3. That is, this axis trisects a solid angle 7/2 shaped
by three intersecting sides.

It is sometimes hard to visualize or envisage the positional relationship among
planes and straight lines in three-dimensional space. It will therefore be useful to
make a simple kit to help visualize it. Figure 14.14 gives an illustration.

Iz
i ‘ (0,1, 1)
b C
L2 2
C3 . |
(1,-1, 1) \\E /3
V3 7 T y
72 O S —
A 2 )
7 (LLO)
/x

Fig. 14.13 Rotation axes of C, and C} along with another rotation axis Cz in a point group O

Sheet 1 Sheet 2 Sheet 3

\
/

Fig. 14.14 Simple kit that helps to visualize the positional relationship among planes and straight
lines in three-dimensional space. To make it, follow next procedures: a Take three thick sheets of
paper and make slits (dashed lines) as shown. b Insert Sheet 2 into Sheet 1 so that the two sheets
can make a right angle. ¢ Insert Sheet 3 into combined Sheets 2 and 3



14.3 O and T; Groups 481

Another typical example having 24 group elements is 7;. A molecule of
methane belongs to this symmetry. Table 14.6 collects the relevant symmetry
operations and their (3,3) matrix representations. As in the case of Fig. 14.12, the
matrices show how a set of vectors (xyz) are transformed according to the sym-
metry operations. Comparing it with Fig. 14.12, we immediately recognize that the
close relationship between T; and O exists and that these point groups share notable
characteristics.

(i) Both T; and O consist of five conjugacy classes, each of which contains the
same number of symmetry species. (ii) Both 7; and O contain a pure rotation group
T as a subgroup. The subgroup T consists of 12 group elements E, 8C3, and 3C;.
Other remaining twelve group elements of 7, are symmetry species related to
reflection; S4 and ¢,4. The elements 654 and 60, correspond to 6C4 and 6C, of O,
respectively. That is, successive operations of S, cause similar effects to those of Cy4
of O. Meanwhile, successive operations of g, are related to those of 6C; of O.

Let us imagine in Fig. 14.15 that a regular tetrahedron is inscribed in a cube. As
an example of symmetry operations, suppose that three pairs of planes of g, (six
planes in total) are given by equations of x = +y and y = +z and z = +x. Their
Hesse’s normal forms are represented as

(x£ty) =0, (14.49)

(y+2) =0, (14.50)

SRS

—(z£x) =0. (14.51)

N

Then, a dihedral angle o of the two planes is given by

1 1 1
COSo = —=+—===0r (14.52)

2 V2 2

1 1 1 1 0
V2 V2 V2 V2
That is, & = n/3 or o = /2. On the basis of the discussion of Sect. 14.2, the
intersection of the two planes must be a rotation axis of C3 or C,. Once again, in the
case of Cj the intersection is a straight line connecting the origin and a vertex of the
cube. This can readily be verified as follows: For instance, two planes given by
x = yand y = z make an angle /3 and produce an intersection line x = y = z. This
line, in turn, connects the origin and a vertex of the cube.

If we choose, e.g., two planes x = £y from the above, these planes make a right
angle and their intersection must be a C, axis. The three C, axes coincide with the
x-, ¥-, and z-axes. In this light, ¢, functions similarly to 6C, of O in that their

Cos o =

(14.53)
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Fig. 14.15 Regular z
tetrahedron inscribed in a

cube. As an example of A
symmetry operations, we can K i
choose three pairs of planes of s
o4 (six planes in total) given S
by equations of x = +y and , E
y==zand z = £x , !

combinations produce 8C3 or 3C,. Thus, constitution and operation of 7,; and O are

related.
Let us more closely inspect the structure and constitution of O and T,. First we

construct mapping p between group elements of O and T, such that
p:g€0—g Ty if,geT,
p:ige0— —(g) el if,g&T.

In the above relation, the minus sign indicates that with an inverse representation
matrix R must be replaced with —R. Then, p(g) = g’ is an isomorphic mapping. In
fact, comparing Fig. 14.12 and Table 14.6, p gives identical matrix representation
for O and T;. For example, taking the first matrix of S4 of T,;, we have

-1

-1 0 O -1 0 O 1 0 O
-1 0 0 -1 =—({ 0 0 1]=(10 0 -1
0 1 0 0 -1 0 01 O

The resulting matrix is identical to the first matrix of C4 of O. Thus, we find T; and
O are isomorphic to each other.

Both O and T, consist of 24 group elements and isomorphic to a symmetric
group Sy4; do not confuse it with the same symbol S, as a group element of 7,;. The
subgroup T consists of three conjugacy classes E, 8C3, and 3C,. Since T is con-
structed only by entire classes, it is an invariant subgroup; in this respect see the
discussion of Sect. 13.3. The groups O, T,, and T along with T}, and O;, form cubic
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groups [2]. In Table 14.7, we list these cubic groups together with their name and
order. Of these, O is a pure rotation subgroup of O, and T is a pure rotation
subgroup of T,; and T,

Symmetry groups are related to permutations of n elements (or objects or
numbers). The permutation has already appeared in (9.56) when we defined a
determinant of a matrix. That was defined as

(1 2 ... n)
oc=1\|. . .,
11 1 .. 1y

where ¢ means the permutation of the numbers 1,2, - -, n. Therefore, the above
symmetry group has n! group elements (i.e., different ways of rearrangements).
Although we do not dwell on symmetric groups much, we describe a following
important theorem related to finite groups without proof. Interested readers are
referred to literature [1].

Theorem 14.1 (Cayley’s Theorem [1]) Every finite group ¢ of order n is iso-
morphic to a subgroup (containing a whole group) of the symmetric group S,,.

14.4 Special Orthogonal Group SO(3)

In Part IIT and Part IV thus far, we have dealt with a broad class of linear trans-
formations. Related groups are finite groups. Here we will describe characteristics of
special orthogonal group SO(3), a kind of infinite groups. The SO(3) represents
rotations in three-dimensional Euclidean space R*. Rotations are made around an
axis (a line through the origin) with the origin fixed. The rotation is defined by an
azimuth of direction and a magnitude (angle) of rotation. The azimuth of direction is
defined by two parameters, and the magnitude is defined by one parameter, a rotation
angle. Hence, the rotation is defined by three independent parameters. Since those
parameters are continuously variable, SO(3) is one of continuous groups.

Two rotations result in another rotation with the origin again fixed. A reverse
rotation is unambiguously defined. An identity transformation is naturally defined. An
associative law holds as well. Thus, the relevant rotations form a group, i.e., SO(3).
The rotation is represented by a real (3,3) matrix whose determinant is 1. A matrix

Table 14.7 Se.veral cubic Notation Group name Order | Remark
hamcirsics r Tetrahedrl 12| subgroup of 7,
rotation T,
Ty, Ty Tetrahedral 24
o Octahedral 24 subgroup of O,
rotation
(o) Octahedral 48
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representation is uniquely determined once an orthonormal basis is set in R, Any
rotation is represented by a rotation matrix accordingly. The rotation matrix R is
defined by

R'R=RR" =E, (14.54)

where R is a real matrix with detR = 1. Notice that we exclude the case where
detR = —1. Matrices that satisfy (14.54) with detR = 1 are referred to as
orthogonal matrices that cause orthogonal transformation. Correspondingly,
orthogonal groups (represented by orthogonal matrices) contain rotation groups as a
special case. In other words, the orthogonal groups contain the rotation groups as a
subgroup. An orthogonal group in R® denoted O(3) contains SO(3) as a
subgroup. By the same token, orthogonal matrices contain rotation matrices as a
special case.

In Sect. 14.2, we treated reflection and improper rotation with a determinant of
their matrices being —1. In this section, these transformations are excluded and only
rotations are dealt with. We focus on geometric characteristics of the rotation
groups. Readers are referred to more detailed representation theory of SO(3) in
appropriate literature [1].

14.4.1 Rotation Axis and Rotation Matrix

In this section, we represent a vector such as |x). We start with showing that any
rotation has a unique presence of a rotation axis. The rotation axis is defined by the
following: Suppose that there is a rigid body with some point within the body fixed.
Here the said rigid body can be that with infinite extent. Then the rigid body exerts
rotation. The rotation axis is a line on which every point is unmoved during the
rotation. As a matter of course, identity matrix £ has the linearly independent
rotation axes. (Practically, this represents no rotation.)

Theorem 14.2 Any rotation matrix R is accompanied by at least one rotation axis.
Unless the rotation matrix is identity, the rotation matrix should be accompanied by
one and only one rotation axis.

Proof As R is an orthogonal matrix of a determinant 1, so are RT and R~!. Then,
we have

(R—E)=RT—E=R"'-E. (14.55)
Hence, we get

det(R — E) = det(RT — E) = det(R™! — E) = det[R"!(E — R)]

= det(R*l)det(E . R) _ det(E 7R) _ 7det(R - E) (1456)
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Note here that with any (3,3) matrix A of R3,

detA = —(—1)° detA = — det(—A).
This equality holds with R"(n:odd), but in R"(n:even), we have
detA = det(—A). Then, (14.56) results in a trivial equation O = 0 accordingly.

Therefore, the discussion made below only applies to R” (n : odd). Thus, from
(14.56), we have

det(R — E) = 0. (14.57)
This implies that for |xg) # 0

(R—E)|x) = 0. (14.58)
Therefore, we get

R(alx)) = alxo), (14.59)

where a is an arbitrarily chosen real number. In this case, an eigenvalue of R is 1,
which an eigenvector alxy) corresponds to. Thus, as a rotation axis, we have a
straight line expressed as

I = Span{alxy); a € R}. (14.60)

This proves the presence of a rotation axis.

Next suppose that there are two (or more) rotation axes. The presence of two
rotation axes naturally implies that there are two linearly independent vectors (i.e.,
two straight lines that mutually intersect at the fixed point). Suppose that such
vectors are |u) and |v). Then, we have

(R— E)u) =0, (14.61)
(R — E)|v) = 0. (14.62)

Let us consider a vector ”|y) that is chosen from Span{|u),|v)}, to which we assume
that

Span{|u), |v)} = Span{a|u), b|v);a,b € R}. (14.63)

That is, Span{|u), |v)} represents a plane P formed by two mutually intersecting
straight lines. Then, we have

y = slu) +t]v), (14.64)



144  Special Orthogonal Group SO(3) 487
where s and ¢ are some real numbers. Operating R — E on (14.64), we have

(R—E)|ly) =(R—E)(s|lu) +1|v)) = s(R—E)|u) +t(R—E)[v) =0. (14.65)
This indicates that any vectors in P can be an eigenvector of R, implying that an
infinite number of rotation axes exist.

Now, take another vector |w) that is perpendicular to the plane P (see
Fig. 14.16). Let us consider an inner product (y|Rw). Since

RJu) =[u), (ulRT = |R" = (u]. (14.66)
Similarly, we have
(WIRT = (v]. (14.67)
Therefore, using the relation (14.64), we get
(IR" = (y. (14.68)
Here we are dealing with real numbers, and hence, we have
R =R". (14.69)
Now we have
(y|Rw) = (R"|Rw) = (y|R"Rw) = (y|Ew) = (y|w) = 0. (14.70)
In (14.70), the second equality comes from the associative law; the third is due to

(14.54). The last equality comes from that |w) is perpendicular to P.
From (14.70), we have

OI(R — Eyw) = 0. (14.71)

Fig. 14.16 Plane P formed [w)

by two mutually intersecting

straight lines represented by

|u) and |v). Another vector |w)

is perpendicular to the plane P

P
|u)

[v)
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However, we should be careful not to conclude immediately from (14.71) that
(R — E)|w) = 0; i.e., Rjw = |w). This is because in (14.70) |y) does not represent
all vectors in R? but merely represent all the vectors in Span{|u), |v)}. Nonetheless,
both |w) and |Rw) are perpendicular to P, and so

[Rw) = alw), (14.72)

where a is an arbitrarily chosen real number. From (14.72), we have
<WR]L|RW> = (WR"|Rw) = (w|w) = la|*(wiw), ie. a= =1,

where the first equality comes from that R is an orthogonal matrix. Since det R = 1,
a = 1. Thus, from (14.72) this time around, we have |Rw) = |w); that is,

(R — E)|w) = 0. (14.73)

Equations (14.65) and (14.73) imply that for any vector |x) arbitrarily chosen from
R3, we have

(R—E)|x) = 0. (14.74)
Consequently, we get
R—E=0 or R=E. (14.75)

The above procedures represented by (14.61)—(14.75) indicate that the presence
of two rotation axes necessarily requires a transformation matrix to be identity. This
implies that all the vectors in R? are an eigenvector of a rotation matrix.

Taking contraposition of the above, unless the rotation matrix is identity, the
relevant rotation cannot have two rotation axes. Meanwhile, the proof of the former
half ensures the presence at least one rotation axis. Consequently, any rotation is
characterized by a unique rotation axis except for the identity transformation. This
completes the proof.

An immediate consequence of Theorem 14.2 is that the rotation matrix should
have an eigenvalue 1 which an eigenvector representing the rotation axis corre-
sponds to. This statement includes a trivial fact that all the eigenvalues of the
identity matrix are 1. In Sect. 12.4, we calculated eigenvalues of a two-dimensional
rotation matrix. The eigenvalues were e or e where 0 is a rotation angle.

Let us consider rotation matrices that we dealt with in Sect. 14.1. The matrix
representing the rotation around the z-axis by a rotation angle 6 is expressed by

cos —sinf 0
R= | sin0 cos0 O ]. (14.8)
0 0 1
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In Sect. 12.4, we treated diagonalization of a rotation matrix. As R is reduced,
the diagonalization can be performed in a manner essentially the same as (12.92).
That is, as a diagonalizing unitary matrix, we have

ne 1 0 1 i 0
S N
U=|-&5 50 U L -+ o0 (14.76)
0 0 1 0 0 1
As a result of the unitary similarity transformation, we get
% \/% 0 cos) —sin0 0 % \/% 0
TRy = | 2 i ; i
U'RU 5 5 0 sinf@ cosf O -5 7 0
0 0 1 0 0 1 0 0 (14.77)
e 0 0
=10 e 0
0 0 1

Thus, eigenvalues are 1, e and e . The eigenvalue 1 results from the existence of
the unique rotation axis. When 6 = 0, (14.77) gives an identity matrix with all the
eigenvalues 1 as expected. When 6 = 7, eigenvalues are —1, —1, and 1. The
eigenvalue 1 is again associated with the unique rotation axis. The (unitary) sim-
ilarity transformation keeps a trace unchanged, that is, the trace y is

¥ =1+2cos6. (14.78)

As R is a normal operator, spectral decomposition can be done as in the case of
Example 12.1. Here we only show the result below.

S F Oy (F =iy (o000
R=e"| -4 L 0)+e™ £ 5 0]+[{0 0O
0 00 0 0 0 00 1

Three matrices of the above equation are projection operators.

14.4.2 Euler Angles and Related Topics

Euler angles are well known and have been being used in various fields of science.
We wish to connect the above discussion with Euler angles.

In Part III, we dealt with successive linear transformations. This can be extended
to the case of three or more successive transformations. Suppose that we have three
successive transformation R;, R, and R; and that the coordinate system
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(a three-dimensional orthonormal basis) is transformed from O — I — II — III
accordingly. The symbol “O” stands for the original coordinate system, and I, II, III
represent successively transformed systems.

With the discussion that follows, let us denote the transformation by R}, R}, R},
etc., in reference to the coordinate system I. For example, R’3 means that the third
transformation is viewed from the system I. The transformation R indicates the
third transformation which is viewed from the system II. That is, the number of

primes “ ' ” denotes the number of the coordinate system to distinguish the systems
I and II. Let R, (without prime) stand for the second transformation viewed from the
system O.

Meanwhile, we have
RiR, = RyR,. (14.79)
This notation is in parallel to (9.80). Similarly, we have
R’zRg’ = R’3R’2 and Rle = R3R;. (14.80)
Therefore, we get [3]
RIR,R} = RiR,R, = R3R\R, = R3R:R,. (14.81)
Also combining (14.79) and (14.80), we have
Ry = (RaR))"'R3(RaRy). (14.82)

Let us call R/z, R’3’ , etc., a transformation on a “moving” coordinate system (i.e., the
system I, II, IIL, - - -). On the other hand, we call Ry, R,, etc., a transformation on a
“fixed” system (i.e., original coordinate system O). Thus, (14.81) shows that the
multiplication order is reversed with respect to the moving system and fixed system
[3].

For a practical purpose, it would be enough to consider three successive trans-
formations. Let us think of, however, a general case where n successive transfor-
mations are involved (n denotes a positive integer). For the purpose of succinct
notation, let us define the linear transformations and relevant coordinate systems as

those in Fig. 14.17. Also, we define a following orthogonal transformation RJ@:

(g <i<i _ RO
R7(0<i<j<n) and R, =R;", (14.83)
(i

where R; ) is defined as a transformation R; described in reference to the coordinate

J
system i; Rl@ means that R; is referred to the original coordinate system (i.e., the

fixed coordinate). Then, we have
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R” =g, RY R R

O —» I — I —- I —

z zZ
y, VA >%\y Z yu
y
X x' X' xm

Fig. 14.17 Successive orthogonal transformations and relevant coordinate systems

REPRIY = RFIRID (k> i—1). (14.84)
Particularly, when i = 3
RVRY = RVRY (k > 2). (14.85)
Fori =2, we have
RiRY =RiR, (k > 1). (14.86)

We define n time successive transformations on a moving coordinate system as R,
such that

R, = RRVRY - RUVRIPRUD. (14.87)

Applying (14.84) on RS:Z)R,S”’I) and rewriting (14.87), we have

R, = RiRYRY - RUVRU2IR™ . (14.88)
Applying (14.84) again on R"2VR("2) we get
R, = RR\VRY ... RU-3IRIIRI2) (14.89)

Proceeding similarly, we have

R, = RRRVRVRY ... RV IR D — RRRVRY - RVIR™ Y (14.90)

n n— n—1 >

where with the last equality, we used (14.86). In this case, we have

RiRW = R,R;. (14.91)
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To reach RHS of (14.90), we applied (14.84) (n — 1) times in total. Then we repeat

the above procedures with respect to RSL":f) another (n — 2) times to get
R, =R,R,_\RiRVRY - . R"Y. (14.92)

Further proceeding similarly, we finally get

R, = R,R\_\R,_»- - RsRoR,. (14.93)

In total, we have applied the permutation of (14.84) n(n — 1)/2 times. When n is 2,
n(n —1)/2 = 1. This is the case with (14.79). If nis 3, n(n — 1)/2 = 3. This is the
case with (14.81). Thus, (14.93) once again confirms that the multiplication order is
reversed with respect to the moving system and fixed system.

Meanwhile, we define P as

P=RRVRY ... RIRD. (14.94)
Alternately, we describe
P=R, R, 1 R3RyR,. (14.95)
Then, from (14.87) and (14.90), we get
R, = PRV = R,P. (14.96)
Equivalently, we have
R, = PR" VP or (14.97)
R"D = p~IR,P. (14.98)

Moreover, we have
jad n— n— T n— T n— T T
Pl [rr RS R = [RP] RS [R) e
= [rR17] 71R[§,":23)} L 7] TR
1

R R

—_

(14.99)

The third equality of (14.99) comes from the fact that matrices Ri":lz) , Rfl'f;), Rgl ) and

R, are orthogonal matrices. Then, we get
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P'P=PP" =E. (14.100)

Thus, P is an orthogonal matrix.

From a point of view of practical application, (14.97) and (14.98) are very
useful. This is because R, and RE,”’” are conjugate to each other. Consequently, R,
has the same eigenvalues and trace as R,(l"‘l). In light of (9.81), we see that (14.97)
and (14.98) relate R, (i.e., viewed in reference to the original coordinate system) to
qu”’w [i.e., the same transformation viewed in reference to the coordinate system
reached after the (n — 1) transformations]. Since the transformation R""~") is usu-
ally described in a simple form, matrix calculations to compute R, can readily be
done. Now let us consider an example.

Example 14.4: Successive Rotations A typical illustration of three successive
transformation in moving coordinate systems is well known as Euler angles. This
contains the following three steps:

(i) Rotation by o around the z-axis in the original coordinate system (O).
(ii) Rotation by f around the y’-axis in the transferred coordinate system (I).
(iii) Rotation by 7y around the z”-axis (the same as 7'-axis) in the transferred
coordinate system (II).

Three steps are represented by matrices of R, R;,, g and R;’,,y in (14.12). That is,

as a total transformation E we have

cosoe —sino 0 cosff 0 sinf cosy —siny 0
Ry=| sina cosa 0 0 1 0 siny cosy O
0 0 1 —sinff 0 cosf 0 0 1

cos o cosff cosy —sina siny —cosa cos ff siny —sina cosy coso sin ff

sino cos ff cosy+ coso siny  —sino cos f siny+ coso cosy  sino sin f§
—sin ff cosy sin f} siny cos f§

(14.101)

This matrix corresponds to (14.87), where n = 3. The angles o, f3, and y in (14.101)
are well known as Euler angles, and the associated matrix is widely used in
quantum mechanics and related fields of natural science. The matrix notation,
however, differs from literature to literature, and so care should be taken [3-5].
Using the notation of (14.87), we have

cosae —sina 0
Ry = | sina cosa O |, (14.102)
0 0 1
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cosp 0 sinf

RV=1 o 1 o |, (14.103)
—sinff 0 cospf
cosy —siny 0
Rgz) = | siny cosy O ]. (14.104)
0 0 1
From (14.94) we also get
. cosa cosff —sino cosa sinfi
P= Rlel) = | sinadcosff cosa sinasinf |. (14.105)
—sinf 0 cos f§
Corresponding to (14.97), we have
o (o)~ -1
Ry = PRYP™ = RRRY[RY] R; (14.106)

Now matrix calculations are readily performed such that

cosoe —sina 0 cosff 0 sinf cosy —siny 0
Ry = | sina cosa O 0 1 0 siny cosy O
0 0 1 —sinfi 0 cosf 0 0 1

cosff 0 —sinf cosa sinoe 0
X 0 1 0 —sinoe cosa O
sinf 0 cosf 0 0 1

(cos? o cos? B+ sin*a) cosy  cosa sina sin® B(1 —cosy)  cosa cos B sin f(1 — cosy)

+ cos? o sin® B —cos f siny + sino sin f8 siny
| cosasina sin> B(1 —cosy)  (sin®a cos®> B+ cos®a)cosy  sina cos f§ sin f(1 — cosy)
B + cos f3 siny + sin® o sin” 8 —cosa sinff siny
cos f§ sin f§ cosa(l — cosy) sino cos ff sin (1 — cosy) sin® B cos y
—sina sin f§ siny -+ cosa sin ff siny + cos?
(14.107)

Notice that in (14.107), we have a trace y described as

x=1+2cosy. (14.108)

The trace is same as that of Rgz)’ as expected from (14.106) and (14.97).

Equation (14.107) apparently seems complicated but has simple and

)

well-defined meaning. The rotation represented by Rff is characterized by a rotation
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Fig. 14.18 Rotation y around
the rotation axis A. The

orientation of A is defined by A
angles o and f as shown

by y around the 7’-axis. Figure 14.18 represents the orientation of the z”-axis viewed
in reference to the original xyz-system. That is, the z’-axis (identical to the rotation
axis A) is designated by an azimuthal angle o and a zenithal angle f# as shown.
The operation R; is represented by a rotation by 7y around the axis A in the xyz-
system. The angles a, f5, and y coincide with the Euler angles designated with the
same independent parameters o, f3, and 7.

From (14.77) and (14.107), a diagonalizing matrix for Rj is PU. That is,
e’ 0 0

Utb-1RsPU = PUYIRPU=UTRPU = 0 e® 0.  (14.109)
0 0 1
Note that as P is a real matrix, we have
pl = pr = p-! (14.110)
and
cosa cosff —sino cosa sinf§ % \/% 0
PU = | sinazcosff cosa sinasinf _\/LZ \/LZ 0
—sin f§ 0 cos 0 0o 1

1 g 1 g i
ﬁcosoccosﬁ—i—\/zsmoc \/zcosoccosﬂ 73 sina cosa sin f§

— | Lgi . g i i i
= ﬂsmoccosﬁ 73008 ﬁsmoccosﬁ—i— 75008 & sina sin f§

—%sinﬂ —\/%sinﬁ cos f8
(14.111)
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A vector representing the rotation axis corresponds to an eigenvalue 1. The
direction cosines of x-, y-, and z-components for the rotation axis A are cos o sin f3,
sinasin 8, and cos f§ (see Fig. 3.1), respectively, when viewed in reference to the
original xyz-coordinate system. This can directly be shown as follows: The char-
acteristic equation of Rj3 is expressed as

IRs — JE| = 0. (14.112)

Using (14.107), we have

|Rs — AE|
(cos? o cos? B+ sin*a)cosy  cosa sina sin® (1 —cosy)  cosa cos f sin f(1 — cosy)
+ cos? o sin® B — 4 —cos f siny + sino sin f§ siny
_ | cosasina sin® (1 — cosy)  (sin®a cos® B+ cos®a)cosy  sina cos B sin f(1 — cosy)
a + cos f3 siny + sin® o sin® f — A —cos o sin ff siny
cosa cos f3 sin f(1 — cosy) sina cos ff sin