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Preface

The contents of this book are based upon manuscripts prepared for both under-
graduate courses of Kyoto Institute of Technology by the author entitled “Polymer
Nanomaterials Engineering” and “Photonics Physical Chemistry” and a master’s
course lecture of Kyoto Institute of Technology by the author entitled “Solid-State
Polymers Engineering.”

This book is intended for graduate and undergraduate students, especially those
who major in chemistry and, at the same time, wish to study mathematical physics.
Readers are supposed to have basic knowledge of analysis and linear algebra.
However, they are not supposed to be familiar with the theory of analytic functions
(i.e., complex analysis), even though it is desirable to have relevant knowledge
about it.

At the beginning, mathematical physics looks daunting to chemists, as used to be
the case with myself as a chemist. The book introduces basic concepts of mathe-
matical physics to chemists. Unlike other books related to mathematical physics,
this book makes a reasonable selection of material so that students majoring in
chemistry can readily understand the contents in spontaneity. In particular, we stress
the importance of practical and intuitive methodology. We also expect engineers
and physicists to benefit from reading this book.

In Part I and Part II, the book describes quantum mechanics and electromag-
netism. Relevance between the two is well considered. Although quantum
mechanics covers broad field of modern physics, in Part I we focus on a harmonic
oscillator and a hydrogen (like) atom. This is because we can study and deal with
many of fundamental concepts of quantum mechanics within these restricted topics.
Moreover, knowledge acquired from the study of the topics can readily be extended
to practical investigation of, e.g., electronic sates and vibration (or vibronic) states
of molecular systems. We describe these topics both by analytic method (that uses
differential equations) and operator approach (using matrix calculations). We
believe that the basic concepts of quantum mechanics can be best understood by
contrasting the analytical and algebraic approaches. For this reason, we give matrix
representations of physical quantities whenever possible. Examples include energy
eigenvalues of a quantum-mechanical harmonic oscillator and angular momenta of
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a hydrogen-like atom. At the same time, these two physical systems supply us with
a good opportunity to study classical polynomials, e.g., Hermite polynomials,
(associated) Legendre polynomials, Laguerre polynomials, Gegenbauer polyno-
mials, and special functions, more generally. These topics constitute one of
important branches of mathematical physics. One of the basic concepts of the
quantum mechanics is that a physical quantity is represented by an Hermitian
operator or matrix. In this respect, the algebraic approach gives a good opportunity
to get familiar with this concept. We present tangible examples for this. We also
emphasize the importance of notion of Hermiticity of a differential operator. We
often encounter unitary operator or unitary transformation alongside of the notion
of Hermitian operator. We show several examples of the unitary operators in
connection with transformation of vectors and coordinates.

Part II describes Maxwell’s equations and their applications to various phe-
nomena of electromagnetic waves. These include their propagation, reflection, and
transmission in dielectric media. We restrict ourselves to treating those phenomena
in dielectrics without charge. Yet, we cover a wide range of important topics. In
particular, when two (or more) dielectrics are in contact with each other at a plane
interface, reflection and transmission of light are characterized by various important
parameters such as reflection and transmission coefficients, Brewster angles, and
critical angles. We should have a proper understanding not only from the point of
view of basic study, but also to make use of relevant knowledge in optical device
applications such as a waveguide. In contrast to a concept of electromagnetic
waves, light possesses a characteristic of light quanta. We present semiclassical and
statistical approach to blackbody radiation occurring in a simplified system in
relation to Part I. The physical processes are well characterized by a notion of
two-level atoms. In this context, we outline the dipole radiation within the frame-
work of the classical theory. We briefly describe how the optical processes
occurring in a confined dielectric medium are related to a laser that is of great
importance in fundamental science and its applications. Many of basic equations of
physics are descried as second-order linear differential equations (SOLDEs).
Different methods were developed and proposed to seek their solutions. One of the
most important methods is that of Green’s functions. We present introductory
theory of the Green’s functions accordingly. In this connection, we rethink the
Hermiticity of a differential operator.

In Par III and Part IV, we describe algebraic structures of mathematical physics.
Their understanding is useful to studies of quantum mechanics and electromag-
netism whose topics are presented in Part I and Part II. Part III deals with theories of
linear vector spaces. We focus on the discussion on vectors and their transforma-
tions in finite-dimensional vector spaces. Generally, we consider the vector trans-
formations among the vector spaces of different dimensions. In this book, however,
we restrict ourselves to the case of the transformation between the vector spaces of
same dimension, i.e., endomorphism of the space ðVn ! VnÞ. This is not only
because this is most often the case with many of physical applications, but because
the relevant operator is represented by a square matrix. Canonical forms of square
matrices hold an important position in algebra. These include a triangle matrix,
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diagonalizable matrix as well as a nilpotent matrix and idempotent matrix. The most
general form will be Jordan canonical form. We present its essential parts in detail
taking a tangible example. Next to the general discussion, we deal with an inner
product space. Once an inner product is defined between any couple of vectors, the
vector space is given a fruitful structure. An example is a norm (i.e., “length”) of a
vector. Also we gain a clear relationship between Part III and Part I. We define
various operators or matrices that are important in physical applications. Examples
include normal operators (or matrices) such as Hermitian operators, projection
operators, and unitary operators. Once again, we emphasize the importance of the
Hermitian operators. In particular, two commutable Hermitian matrices share
simultaneous eigenvectors (or eigenstates) and, in this respect, such two matrices
occupy a special position in quantum mechanics.

Finally, Part IV describes the essence of group theory and its chemical appli-
cations. Group theory has a broad range of applications in solid-state physics,
solid-state chemistry, molecular science, etc. Nonetheless, the knowledge of group
theory does not seem to have fully prevailed among chemists. We can discover an
adequate reason for this in a preface to the first edition of “Chemical Applications of
Group Theory” written by F. A. Cotton. It might well be natural that definition and
statement of abstract algebra, especially group theory, sound somewhat pretentious
for chemists, even though the definition of group is quite simple. Therefore, we
present various examples for readers to get used to notions of group theory. Notion
of mapping is important as in the case of the linear vector spaces. Aside from being
additive with calculation for a vector space and multiplicative for a group, the
fundamentals of calculation regulations are pretty much the same regarding the
vector space and group. We describe characteristics of symmetry groups in detail
partly because related knowledge is useful for molecular orbital (MO) calculations
that are presented in the last Section of the book. Representation theory is probably
one of the most daunting notions for chemists. Practically, however, the repre-
sentation is just homomorphism that corresponds to a linear transformation in a
vector space. In this context, the representation is merely denoted by a number or a
matrix. Basis functions of representation correspond to basis vectors in a vector
space. Grand orthogonality theorem (GOT) is a “nursery bed” of the representation
theory. Therefore, readers are encouraged to understand its essence apart from the
rigorous proof of the theorem. In conjunction with Part III, we present a variety of
projection operators. These are very useful to practical applications in, e.g.,
quantum mechanics and molecular science. The final parts of the book are devoted
to applications of group theory to problems of physical chemistry, especially those
of quantum chemistry, more specifically molecular orbital calculations. We see how
symmetry consideration, particularly use of projection operators, saves us a lot of
labor. Examples include aromatic hydrocarbons and methane.

The above is the constitution of this book. Readers may start with any Part and
go freely back and forth. This is because contents of many Sections are interrelated.
For example, we stress the importance of Hermiticity of differential operators and
matrices. Also projection operators and nilpotent matrices appear in many Sections
along with their tangible applications to individual topics. Hence, readers are
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recommended to carefully examine and compare the related contents throughout the
book. We believe that readers, especially chemists, benefit from a writing style of
this book, since it is suited to chemists who are good at intuitive understanding.

The author would like to thank many students for their valuable suggestions and
discussions at the lectures. The author also wishes to thank Dr. Shin’ichi Koizumi,
Springer for giving him an opportunity to write this book.

Kyoto, Japan Shu Hotta
October 2017
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Part I
Quantum Mechanics

Quantum mechanics is clearly distinguished from classical physics whose major
pillars are Newtonian mechanics and electromagnetism established by Maxwell.
Quantum mechanics was first established as a theory of atomic physics that handled
microscopic world. Later on, quantum mechanics was applied to macroscopic
world, i.e., cosmos. A question on how exactly quantum mechanics describes the
natural world and on how far the theory can go remains yet problematic and is in
dispute to this day.

Such an ultimate question is irrelevant to this monograph. Our major aim is to
study a standard approach to applying Schrödinger equation to selected topics. The
topics include a particle confined within a potential well, a harmonic oscillator, and
a hydrogen-like atoms. Our major task rests on solving eigenvalue problems of
these topics. To this end, we describe both an analytical method and algebraic (or
operator) method. Focusing on these topics, we will be able to acquire various
methods to tackle a wide range of quantum-mechanical problems. These problems
are usually posed as an analytical equation (i.e., differential equation) or an
algebraic equation. A Hamiltonian is constructed analytically or algebraically
accordingly. Besides Hamiltonian, physical quantities are expressed as a differential
operator or a matrix operator. In both analytical and algebraic approaches,
Hermitian property (or Hermiticity) of an operator and matrix is of crucial
importance. This feature will, therefore, be highlighted not only in this part but also
throughout this book along with a unitary operator and matrix.

Optical transition and associated selection rules are dealt with in relation to
the above topics. Those subjects are closely related to electromagnetic phenomena
that are considered in Part II.



Chapter 1
Schrödinger Equation and Its Application

Quantum mechanics is an indispensable research tool of modern natural science
that covers cosmology, atomic physics, molecular science, materials science, and so
forth. The basic concept underlying quantum mechanics rests upon Schrödinger
equation. The Schrödinger equation is described as a second-order linear differential
equation (SOLDE). The equation is analytically solved accordingly. Alternatively,
equations of the quantum mechanics are often described in terms of operators and
matrices, and physical quantities are represented by those operators and matrices.
Normally, they are non-commutative. In particular, the quantum-mechanical for-
malism requires the canonical commutation relation between position and mo-
mentum operators. One of the great characteristics of the quantum mechanics is that
physical quantities must be Hermitian. This aspect is deeply related to the
requirement that these quantities should be described by real numbers. We deal with
the Hermiticity from both an analytical point of view (or coordinate representation)
relevant to the differential equations and an algebraic viewpoint (or matrix repre-
sentation) associated with the operators and matrices. Including these topics, we
briefly survey the origin of Schrödinger equation and consider its implications. To
get acquainted with the quantum-mechanical formalism, we deal with simple
examples of the Schrödinger equation.

1.1 Early-Stage Quantum Theory

The Schrödinger equation is a direct consequence of discovery of quanta. It
stemmed from the hypothesis of energy quanta propounded by Max Planck (1900).
This hypothesis was further followed by photon (light quantum) hypothesis pro-
pounded by Albert Einstein (1905). He claimed that light is an aggregation of light
quanta and that individual quanta carry an energy E expressed as Planck constant h
multiplied by frequency of light m, i.e.,
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E ¼ hm ¼ �hx; ð1:1Þ

where �h � h=2p and x ¼ 2pm. The quantity x is called angular frequency with m
being frequency. The quantity �h is said to be a reduced Planck constant.

Also, Einstein (1917) concluded that momentum of light quantum p is identical
to the energy of light quantum divided by light velocity in vacuum c. That is, we
have

p ¼ E=c ¼ �hx=c ¼ �hk; ð1:2Þ

where k � 2p=k (k is wavelength of light in vacuum) and k is called wavenumber.
Using vector notation, we have

p ¼ �hk; ð1:3Þ

where k � 2p
k n (n: a unit vector in the direction of propagation of light) is said to be

a wavenumber vector.
Meanwhile, Arthur Compton (1923) conducted various experiments where he

investigated how an incident X-ray beam was scattered by matter (e.g., graphite,
copper, etc.). As a result, Compton found out a systematical redshift in X-ray
wavelengths as a function of scattering angles of the X-ray beam (Compton effect).
Moreover, he found that the shift in wavelengths depended only on the scattering
angle regardless of quality of material of a scatterer. The results can be summarized
in a simple equation described as

Dk ¼ h
mec

1� cos hð Þ; ð1:4Þ

where Dk denotes a shift in wavelength of the scattered beam; me is a rest mass of
an electron; h is a scattering angle of the X-ray beam (see Fig. 1.1). A quantity h

mec

has a dimension of length and denoted by ke. That is,

ke � h=mec: ð1:5Þ

In other words, ke is equal to the maximum shift in the wavelength of the
scattered beam; this shift is obtained when h ¼ p=2. The quantity ke is called an
electron Compton wavelength and has an approximate value of 2.426 � 10−12 (m).

Let us derive (1.4) on the basis of conservation of energy and momentum. To
this end, in Fig. 1.1 we assume that an electron is originally at rest. An X-ray beam
is incident to the electron. Then the X-ray is scattered and the electron recoils as
shown. The energy conservation reads as

�hxþmec
2 ¼ �hx0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2

ec
4

q
; ð1:6Þ
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wherex andx0 are initial and final angular frequencies of the X-ray; the second term
of RHS is an energy of the electron in which p is a magnitude of momentum after
recoil. Meanwhile, conservation of the momentum as a vector quantity reads as

�hk ¼ �hk0 þ p, ð1:7Þ

where k and k0 are wavenumber vectors of the X-ray before and after being scat-
tered; p is a momentum of the electron after recoil. Note that an initial momentum
of the electron is zero since the electron is originally at rest. Here, p is defined as

p � mu, ð1:8Þ

where u is a velocity of an electron and m is given by [1]

m ¼ me

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� uj j2=c2

q
: ð1:9Þ

Figure 1.1 shows that ��hk, �hk0, and p form a closed triangle.
From (1.6), we have

½mec
2 þ �hðx� x0Þ�2 ¼ p2c2 þm2

ec
4: ð1:10Þ

Hence, we get

2mec
2�h x� x0ð Þ þ �h2ðx� x0Þ2 ¼ p2c2: ð1:11Þ

From (1.7), we have

p2 ¼ �h2ðk� k0Þ2 ¼ �h2 k2 þ k02 � 2kk0 cos h
� �

recoiled electron ( )

rest electronincident X-ray ( ) 

scattered X-ray ( ) 

(a)

(b)

Fig. 1.1 Scattering of an X-ray beam by an electron. a h denotes a scattering angle of the X-ray
beam. b conservation of momentum
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¼ �h2

c2
x2 þx02 � 2xx0 cos h
� �

; ð1:12Þ

where we used the relations x ¼ ck and x0 ¼ ck0 with the third equality. Therefore,
we get

p2c2 ¼ �h2 x2 þx02 � 2xx0 cos h
� �

: ð1:13Þ

From (1.11) and (1.13), we have

2mec
2�h x� x0ð Þ þ �h2ðx� x0Þ2 ¼ �h2 x2 þx02 � 2xx0 cos h

� �
: ð1:14Þ

Equation (1.14) is simplified to the following:

2mec
2�h x� x0ð Þ � 2�h2xx0 ¼ �2�h2xx0 cos h:

That is,

mec
2 x� x0ð Þ ¼ �hxx0 1� cos hð Þ: ð1:15Þ

Thus, we get

x� x0

xx0 ¼ 1
x0 �

1
x

¼ 1
2pc

k0 � kð Þ ¼ �h
mec2

1� cos hð Þ; ð1:16Þ

where k and k0 are wavelengths of the initial and final X-ray beams, respectively.
Since k0 � k ¼ Dk, we have (1.4) from (1.16) accordingly.

We have to mention another important person, Louis Victor de Broglie (1924) in
the development of quantum mechanics. Encouraged by the success of Einstein and
Compton, he propounded the concept of matter wave, which was referred to as the
de Broglie wave afterward. Namely, de Broglie reversed the relationship of (1.1)
and (1.2) such that

x ¼ E=�h; ð1:17Þ

and

k ¼ p=�h or k ¼ h=p; ð1:18Þ

where p equals pj j and k is a wavelength of a corpuscular beam. This is said to be
the de Broglie wavelength. In (1.18), de Broglie thought that a particle carrying an
energy E and momentum p is accompanied by a wave that is characterized by an
angular frequency x and wavenumber k (or a wavelength k ¼ 2p=k). Equation
(1.18) implies that if we are able to determine the wavelength of the corpuscular
beam experimentally, we can decide a magnitude of momentum accordingly.
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In turn, from squares of both sides of (1.8) and (1.9), we get

u ¼ p

me

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðp=mecÞ2

q : ð1:19Þ

This relation represents a velocity of particles of the corpuscular beam. If we are
dealing with an electron beam, (1.19) gives the velocity of the electron beam. As a
non-relativistic approximation (i.e., p=mec � 1), we have

p � meu:

We used a relativistic relation in the second term of RHS of (1.6), where energy
of an electron Ee is expressed by

Ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2

ec
4

q
: ð1:20Þ

In the meantime, deleting u2 from (1.8) and (1.9), we have

mc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2

ec
4

q
:

Namely, we get [1]

Ee ¼ mc2: ð1:21Þ

The relation (1.21) is due to Einstein (1905, 1907) and is said to be the
equivalence theorem of mass and energy.

If an electron is accompanied by a matter wave, that wave should be propagated
with a certain phase velocity vp and a group velocity vg. Thus, using (1.17) and
(1.18), we have

vp ¼ x=k ¼ Ee=p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2

ec
4

q
=p[ c;

vg ¼ @x=@k ¼ @Ee=@p ¼ c2p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2

ec
4

q
\c;

vpvg ¼ c2:

ð1:22Þ

Notice that in the above expressions, we replaced E of (1.17) with Ee of (1.20).
The group velocity is thought to be a velocity of a wave packet and, hence, a
propagation velocity of a matter wave should be identical to vg. Thus, vg is con-
sidered as a particle velocity as well. In fact, vg given by (1.22) is identical to u
expressed in (1.19). Therefore, a particle velocity must not exceed c. As for photons
(or light quanta), vp ¼ vg ¼ c and, hence, once again we get vpvg ¼ c2. We will
encounter the last relation of (1.22) in Part II as well.
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The above discussion is a brief historical outlook of early-stage quantum theory
before Erwin Schrödinger (1926) propounded his equation.

1.2 Schrödinger Equation

First, we introduce a wave equation expressed by

r2w ¼ 1
v2

@2w
@t2

; ð1:23Þ

where w is an arbitrary function of a physical quantity relevant to propagation of a
wave; v is a phase velocity of wave; r2 called Laplacian is defined below

r2 � @2

@x2
þ @2

@y2
þ @2

@z2
: ð1:24Þ

One of special solutions for (1.24) called a plane wave is well studied and
expressed as

w ¼ w0e
i k�x�xtð Þ: ð1:25Þ

In (1.25), x denotes a position vector of a three-dimensional Cartesian coordinate
and is described as

x ¼ e1e2e3ð Þ
x
y
z

0
@

1
A; ð1:26Þ

where e1; e2; and e3 denote basis vectors of an orthonormal base pointing to positive
directions of x-, y-, and z-axes. Here, we make it a rule to represent basis vectors by
a row vector and represent a coordinate or a component of a vector by a column
vector; see Sect. 9.1.

The other way around, now we wish to seek a basic equation whose solution is
described as (1.25). Taking account of (1.1)–(1.3) as well as (1.17) and (1.18), we
rewrite (1.25) as

w ¼ w0e
i p

�h�x�E
�htð Þ; ð1:27Þ

where we redefine p ¼ e1e2e3ð Þ
px
py
pz

0
@

1
A and E as quantities associated with those of

matter (electron) wave. Taking partial differentiation of (1.27) with respect to x, we
obtain
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@w
@x

¼ i
�h
pxw0e

i p
�h�x�E

�htð Þ ¼ i
�h
pxw: ð1:28Þ

Rewriting (1.28), we have

�h
i
@w
@x

¼ pxw: ð1:29Þ

Similarly, we have

�h
i
@w
@y

¼ pyw and
�h
i
@w
@z

¼ pzw: ð1:30Þ

Comparing both sides of (1.29), we notice that we may relate a differential
operator �h

i
@
@x to px. From (1.30), similar relationship holds with the y and z com-

ponents. That is, we have the following relations:

�h
i
@

@x
$ px;

�h
i
@

@y
$ py;

�h
i
@

@z
$ pz ð1:31Þ

Taking partial differentiation of (1.28) once more,

@2w
@x2

¼ i
�h
px

� �2

w0e
i p

�h�x�E
�htð Þ ¼ � 1

�h2
p2xw: ð1:32Þ

Hence,

��h2
@2w
@x2

¼ p2xw: ð1:33Þ

Similarly, we have

��h2
@2w
@y2

¼ p2yw and � �h2
@2w
@z2

¼ p2zw ð1:34Þ

As in the above cases, we have

��h2
@2

@x2
$ p2x ;��h2

@2

@y2
$ p2y ;��h2

@2

@z2
$ p2z ; ð1:35Þ

Summing both sides of (1.33) and (1.34) and then dividing by 2m, we have

� �h2

2m
r2w ¼ p2

2m
w ð1:36Þ
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and the following correspondence

� �h2

2m
r2 $ p2

2m
; ð1:37Þ

where m is the mass of a particle.
Meanwhile, taking partial differentiation of (1.27) with respect to t, we obtain

@w
@t

¼ � i
�h
Ew0e

i p
�h�x�E

�htð Þ ¼ � i
�h
Ew: ð1:38Þ

That is,

i�h
@w
@t

¼ Ew: ð1:39Þ

As the above, we get the following relationship:

i�h
@

@t
$ E ð1:40Þ

Thus, we have relationships between c-numbers (classical numbers) and
q-numbers (quantum numbers, namely, operators) in (1.35) and (1.40). Subtracting
(1.36) from (1.39), we get

i�h
@w
@t

þ �h2

2m
r2w ¼ E � p2

2m

� �
w: ð1:41Þ

Invoking the relationship on energy

Total energyð Þ ¼ Kinetic energyð Þþ Potential energyð Þ; ð1:42Þ

we have

E ¼ p2

2m
þV ; ð1:43Þ

where V is a potential energy. Thus, (1.41) reads as

i�h
@w
@t

þ �h2

2m
r2w ¼ Vw: ð1:44Þ

Rearranging (1.44), we finally get

� �h2

2m
r2 þV

� �
w ¼ i�h

@w
@t

: ð1:45Þ
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This is the Schrödinger equation, a fundamental equation of quantum mechanics.
In (1.45), we define a following Hamiltonian operator H as

H � � �h2

2m
r2 þV : ð1:46Þ

Then we have a shorthand representation such that

Hw ¼ i�h
@w
@t

: ð1:47Þ

On going from (1.25) to (1.27), we realize that quantities k and x pertinent to a
field have been converted to quantities p and E related to a particle. At the same
time, whereas x and t represent a whole space-time in (1.25), those in (1.27) are
characterized as localized quantities.

From a historical point of view, we have to mention a great achievement
accomplished by Werner Heisenberg (1925) who propounded matrix mechanics.
The matrix mechanics is often contrasted with the wave mechanics Schrödinger
initiated. Schrödinger and Pau Dirac (1926) demonstrated that wave mechanics and
matrix mechanics are mathematically equivalent. Note that the Schrödinger equa-
tion is described as a non-relativistic expression based on (1.43). In fact, kinetic
energy K of a particle is given by [1]

K ¼ mec2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðu=cÞ2

q � mec
2

As a non-relativistic approximation, we get

K � mec
2 1þ 1

2
u
c

� 	2

 �

� mec
2 ¼ 1

2
meu

2 � p2

2me
;

where we used p � meu again as a non-relativistic approximation; also, we used

1ffiffiffiffiffiffiffiffiffiffiffi
1� x

p � 1þ 1
2
x

when xð[ 0Þ corresponding to u
c

� �2
is enough small than 1. This implies that in the

above case, the group velocity u of a particle is supposed to be well below light
velocity c. Dirac (1928) formulated an equation that describes relativistic quantum
mechanics (the Dirac equation).

In (1.45), w varies as a function of x and t. Suppose, however, that a potential V
depends only upon x. Then, we have
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� �h2

2m
r2 þV xð Þ


 �
w x; tð Þ ¼ i�h

@w x; tð Þ
@t

: ð1:48Þ

Now, let us assume that separation of variables can be done with (1.48) such that

w x; tð Þ ¼ / xð Þn tð Þ: ð1:49Þ

Then, we have

� �h2

2m
r2 þV xð Þ


 �
/ xð Þn tð Þ ¼ i�h

@/ xð Þn tð Þ
@t

: ð1:50Þ

Accordingly, (1.50) can be recast as

� �h2

2m
r2 þV xð Þ


 �
/ xð Þ=/ xð Þ ¼ i�h

@n tð Þ
@t

=n tð Þ: ð1:51Þ

For (1.51) to hold, we must equate both sides to a constant E. That is, for a
certain fixed point x0 we have

� �h2

2m
r2 þV x0ð Þ


 �
/ x0ð Þ=/ x0ð Þ ¼ i�h

@n tð Þ
@t

=n tð Þ; ð1:52Þ

where / x0ð Þ of a numerator should be evaluated after operating r2, while with
/ x0ð Þ in a denominator, / x0ð Þ is evaluated simply replacing x in / xð Þ with x0.
Now, let us define a function U xð Þ such that

U xð Þ � � �h2

2m
r2 þV xð Þ


 �
/ xð Þ=/ xð Þ: ð1:53Þ

Then, we have

U x0ð Þ ¼ i�h
@n tð Þ
@t

=n tð Þ: ð1:54Þ

If RHS of (1.54) varied depending on t, U x0ð Þ would be allowed to have various
values, but this must not be the case with our present investigation. Thus, RHS of
(1.54) should take a constant value E. For the same reason, LHS of (1.51) should
take a constant.

Thus, (1.48) or (1.51) should be separated into the following equations:

H/ xð Þ ¼ E/ xð Þ; ð1:55Þ
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i�h
@n tð Þ
@t

¼ En tð Þ: ð1:56Þ

Equation (1.56) can readily be solved. Since (1.56) depends on a sole variable t,
we have

dn tð Þ
n tð Þ ¼ E

i�h
dt or dlnn tð Þ ¼ E

i�h
dt: ð1:57Þ

Integrating (1.57) from zero to t, we get

ln
n tð Þ
n 0ð Þ ¼

Et
i�h

: ð1:58Þ

That is,

n tð Þ ¼ n 0ð Þ expð�iEt=�hÞ: ð1:59Þ

Comparing (1.59) with (1.38), we find that the constant E in (1.55) and (1.56)
represents an energy of a particle (electron).

Thus, the next task we want to do is to solve an eigenvalue equation of (1.55).
After solving the problem, we get a solution

w x; tð Þ ¼ / xð Þ expð�iEt=�hÞ; ð1:60Þ

where the constant n 0ð Þ has been absorbed in / xð Þ. Normally, / xð Þ is to be
normalized after determining the functional form (vide infra).

1.3 Simple Applications of Schrödinger Equation

The Schrödinger equation has been expressed as (1.48). The equation is a
second-order linear differential equation (SOLDE). In particular, our major interest
lies in solving an eigenvalue problem of (1.55). Eigenvalues consist of points in a
complex plane. Those points sometimes form a continuous domain, but we focus on
the eigenvalues that comprise discrete points in the complex plane. Therefore in our
studies, the eigenvalues are countable and numbered as, e.g., kn n ¼ 1; 2; 3; . . .ð Þ.
An example is depicted in Fig. 1.2. Having this common belief as a background, let
us first think of a simple form of SOLDE.

Example 1.1 Let us think of a following differential equation:
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d2y xð Þ
dx2

þ ky xð Þ ¼ 0; ð1:61Þ

where x is a real variable; y may be a complex function of x with k possibly being a
complex constant as well. Suppose that y xð Þ is defined within a domain
�L; L½ � ðL[ 0Þ. We set boundary conditions (BCs) for (1.61) such that

y Lð Þ ¼ 0 and y �Lð Þ ¼ 0 ðL[ 0Þ: ð1:62Þ
The BCs of (1.62) are called Dirichlet conditions. We define the following

differential operator D described as

D � � d2

dx2
: ð1:63Þ

Then rewriting (1.61), we have

Dy xð Þ ¼ ky xð Þ: ð1:64Þ

According to a general principle of SOLDE, it has two linearly independent
solutions. In the case of (1.61), we choose exponential functions for those solutions
described by

eikx and e�ikx k 6¼ 0ð Þ:

This is because the above functions do not change a functional form with respect
to the differentiation and we ascribe solving a differential equation to solving an
algebraic equation among constants (or parameters). In the present case, k and k are
such constants.

The parameter k could be a complex variable, because k is allowed to take a
complex value as well. Linear independence of these functions is ensured from a
nonvanishing Wronskian, W . That is,

z

1

i

0

Fig. 1.2 Eigenvalues
kn ðn ¼ 1; 2; 3; . . .Þ on a
complex plane
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W ¼ eikx e�ikx

ðeikxÞ0 ðe�ikxÞ0
����

���� ¼ eikx e�ikx

ikeikx �ike�ikx

����
���� ¼ �ik � ik ¼ �2ik: ð1:65Þ

If k 6¼ 0, W 6¼ 0. Therefore, as a general solution, we get

y xð Þ ¼ aeikx þ be�ikx k 6¼ 0ð Þ; ð1:66Þ

where a and b are (complex) constant. We call two linearly independent solutions
eikx and e�ikx k 6¼ 0ð Þ a fundamental set of solutions of a SOLDE. Inserting (1.66)
into (1.61), we have

k� k2
� �

aeikx þ be�ikx
� � ¼ 0: ð1:67Þ

For (1.67) to hold with any x, we must have

k� k2 ¼ 0 i:e:k ¼ k2: ð1:68Þ

Using BCs (1.62), we have

aeikL þ be�ikL ¼ 0 and ae�ikL þ beikL ¼ 0: ð1:69Þ

Rewriting (1.69) in a matrix form, we have

eikL e�ikL

e�ikL eikL

� �
a
b

� �
¼ 0

0

� �
: ð1:70Þ

For a and b in (1.70) to have nonvanishing solutions, we must have

eikL e�ikL

e�ikL eikL

����
���� ¼ 0 i:e e2ikL � e�2ikL ¼ 0: ð1:71Þ

It is because if (1.71) were not zero, we would have a ¼ b ¼ 0 and y xð Þ � 0.
Note that with an eigenvalue problem, we must avoid having a solution that is
identically zero. Rewriting (1.71), we get

eikL þ e�ikL
� �

eikL � e�ikL
� � ¼ 0: ð1:72Þ

That is, we have either

eikL þ e�ikL ¼ 0 ð1:73Þ

or
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eikL � e�ikL ¼ 0: ð1:74Þ

In the case of (1.73), inserting this into (1.69), we have

eikL a� bð Þ ¼ 0: ð1:75Þ

Therefore,

a ¼ b; ð1:76Þ

where we used the fact that eikL is a nonvanishing function for any ikL (either real or
complex). Similarly, in the case of (1.74), we have

a ¼ �b: ð1:77Þ

For (1.76), from (1.66), we have

y xð Þ ¼ aðeikx þ e�ikxÞ ¼ 2a cos kx: ð1:78Þ

With (1.77), in turn, we get

y xð Þ ¼ aðeikx � e�ikxÞ ¼ 2ia sin kx: ð1:79Þ

Thus, we get two linearly independent solutions (1.78) and (1.79).
Inserting BCs (1.62) into (1.78), we have

cos kL ¼ 0: ð1:80Þ

Hence,

kL ¼ p
2
þmp m ¼ 0;	1;	2; . . .ð Þ: ð1:81Þ

In (1.81), for instance, we have k ¼ p
2L for m ¼ 0 and k ¼ � p

2L for m ¼ �1.
Also, we have k ¼ 3p

2L for m ¼ 1 and k ¼ � 3p
2L for m ¼ �2. These cases, however,

individually give linearly dependent solutions for (1.78). Therefore, to get a set of
linearly independent eigenfunctions, we may define k as positive. Correspondingly,
from (1.68), we get eigenvalues of

k ¼ ð2mþ 1Þ2p2=4L2 m ¼ 0; 1; 2; . . .ð Þ: ð1:82Þ

Also, inserting BCs (1.62) into (1.79), we have
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sin kL ¼ 0: ð1:83Þ

Hence,

kL ¼ np n ¼ 1; 2; 3; . . .ð Þ: ð1:84Þ

From (1.68), we get

k ¼ n2p2=L2 ¼ 2nð Þ2p2=4L2 n ¼ 1; 2; 3; . . .ð Þ; ð1:85Þ

where we chose positive numbers n for the same reason as the above. With the
second equality of (1.85), we made eigenvalues easily comparable to those of
(1.82). Figure 1.3 shows the eigenvalues given in both (1.82) and (1.85) in a unit of
p2=4L2.

From (1.82) and (1.85), we find that k is positive definite (or strictly positive),
and so from (1.68), we have

k ¼
ffiffiffi
k

p
: ð1:86Þ

The next step is to normalize eigenfunctions. This step corresponds to appro-
priate choice of a constant a in (1.78) and (1.79) so that we can have

I ¼ ZL

�L

y xð Þ
y xð Þdx ¼ ZL

�L

jy xð Þj2dx ¼ 1: ð1:87Þ

That is,

I ¼ 4jaj2
ZL

�L

cos2kxdx ¼ 4jaj2
ZL

�L

1
2
ð1þ cos 2kxÞdx

¼ 2jaj2 xþ 1
2k

sin 2kx

 �L

�L
¼ 4Ljaj2:

ð1:88Þ

Combining (1.87) and (1.88), we get

aj j ¼ 1
2

ffiffiffi
1
L

r
: ð1:89Þ

0 1 9 25164

Fig. 1.3 Eigenvalues of a differential Eq. (1.61) under boundary conditions given by (1.62). The
eigenvalues are given in a unit of p2=4L2 on a real axis
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Thus, we have

a ¼ 1
2

ffiffiffi
1
L

r
eih; ð1:90Þ

where h is any real number and eih is said to be a phase factor. We usually set

eih � 1. Then, we have a ¼ 1
2

ffiffi
1
L

q
. Thus for a normalized cosine eigenfunctions, we

get

y xð Þ ¼
ffiffiffi
1
L

r
cos kx kL ¼ p

2
þmp m ¼ 0; 1; 2; . . .ð Þ

h i
ð1:91Þ

that corresponds to an eigenvalue k ¼ ð2mþ 1Þ2p2=4L2 m ¼ 0; 1; 2; . . .ð Þ. For
another series of normalized sine functions, similarly, we get

y xð Þ ¼
ffiffiffi
1
L

r
sin kx kL ¼ np n ¼ 1; 2; 3; . . .ð Þ½ � ð1:92Þ

that corresponds to an eigenvalue k ¼ 2nð Þ2p2=4L2 n ¼ 1; 2; 3; . . .ð Þ.
Notice that arranging k in ascending order, we have even functions and odd

functions alternately as eigenfunctions corresponding to k. Such a property is said
to be parity. We often encounter it in quantum mechanics and related fields. From
(1.61), we find that if y xð Þ is an eigenfunction, so is cy xð Þ. That is, we should bear
in mind that the eigenvalue problem is always accompanied by an indeterminate
constant and that normalization of an eigenfunction does not mean the uniqueness
of the solution (see Chap. 8).

Strictly speaking, we should be careful to assure that (1.81) holds on the basis of
(1.80). It is because we have yet the possibility that k is a complex number. To see
it, we examine zeros of a cosine function that is defined in a complex domain. Here,
the zeros are (complex) numbers to which the function takes zero. That is, if
f z0ð Þ ¼ 0, z0 is called a zero (i.e., one of zeros) of f zð Þ. Now, we have

cos z � 1
2

eiz þ e�iz
� �

; z ¼ xþ iy x; y : realð Þ: ð1:93Þ

Inserting z ¼ xþ iy in cos z and rearranging terms, we get

cos z ¼ 1
2
cos x ey þ e�yð Þþ i sin x e�y � eyð Þ½ �: ð1:94Þ

For cos z to vanish, both its real and imaginary parts must be zero. Since
ey þ e�y [ 0 for all real numbers y, we must have cos x ¼ 0 for the real part to
vanish, i.e.,
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x ¼ p
2
þmp m ¼ 0;	1;	2; . . .ð Þ: ð1:95Þ

Note in this case that sin x ¼ 	1 6¼ 0ð Þ. Therefore, for the imaginary part to
vanish, e�y � ey ¼ 0. That is, we must have y ¼ 0. Consequently, the zeros of cos z
are real numbers. In other words, with respect to z0 that satisfies cos z0 ¼ 0, we have

z0 ¼ p
2
þmp m ¼ 0;	1;	2; . . .ð Þ: ð1:96Þ

The above discussion equally applies to a sine function as well.
Thus, we ensure that k is a nonzero real number. Eigenvalues k are positive

definite from (1.68) accordingly. This conclusion is not fortuitous but a direct
consequence of the form of a differential equation we have dealt with in combi-
nation with the BCs we imposed, i.e., the Dirichlet conditions. Detailed discussion
will follow in Sects. 1.4, 8.3, and 8.4 in relation to the Hermiticity of a differential
operator.

Example 1.2 A particle confined within a potential well.
The results obtained in Example 1.1 can immediately be applied to dealing with

a particle (electron) in a one-dimensional infinite potential well. In this case, (1.55)
reads as

�h2

2m
d2w xð Þ
dx2

þEw xð Þ ¼ 0; ð1:97Þ

where m is a mass of a particle and E is an energy of the particle. A potential V is
expressed as

V xð Þ ¼ 0 �L� x� Lð Þ;
1 �L[ x; x[ Lð Þ:




Rewriting (1.97), we have

d2w xð Þ
dx2

þ 2mE

�h2
w xð Þ ¼ 0 ð1:98Þ

with BCs

w Lð Þ ¼ w �Lð Þ ¼ 0: ð1:99Þ

If we replace k of (1.61) with 2mE
�h2
, we can follow the procedures of Example. 1.1.

That is, we put

E ¼ �h2k
2m

ð1:100Þ
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with k ¼ k2 in (1.68). For k, we use the values of (1.81) and (1.84). Therefore, with
energy eigenvalues, we get either

E ¼ �h2

2m
� ð2mþ 1Þ2p2

4L2
m ¼ 0; 1; 2; . . .ð Þ; ð1:101Þ

to which y xð Þ ¼
ffiffi
1
L

q
cos kx kL ¼ p

2 þmp m ¼ 0; 1; 2; . . .ð Þ� �
corresponds or

E ¼ �h2

2m
� ð2nÞ

2p2

4L2
n ¼ 1; 2; 3; . . .ð Þ; ð1:102Þ

to which y xð Þ ¼
ffiffi
1
L

q
sin kx kL ¼ np n ¼ 1; 2; 3; . . .ð Þ½ � corresponds.

Since the particle behaves as a free particle within the potential well
�L� x� Lð Þ and p ¼ �hk, we obtain

E ¼ p2

2m
¼ �h2

2m
k2;

where

k ¼ 2mþ 1ð Þp=2L m ¼ 0; 1; 2; . . .ð Þ;
2np=2L n ¼ 1; 2; 3; . . .ð Þ:




The energy E is a kinetic energy of the particle.
Although in (1.97), w xð Þ � 0 trivially holds, such a function may not be

regarded as a solution of the eigenvalue problem. In fact, considering that jw xð Þj2
represents existence probability of a particle, w xð Þ � 0 corresponds to a situation
where a particle in question does not exist. Consequently, such a trivial case has
physically no meaning.

1.4 Quantum-Mechanical Operators and Matrices

As represented by (1.55), a quantum-mechanical operator corresponds to a physical
quantity. In (1.55), we connect a Hamiltonian operator to an energy (eigenvalue).
Let us rephrase the situation as follows:

PW ¼ pW: ð1:103Þ

In (1.103), we are viewing P as an operation or measurement on a physical
system that is characterized by the quantum state W. Operating P on the physical
system (or state), we obtain a physical quantity p relevant to P as a result of the
operation (or measurement).
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A way to effectively achieve the above is to use a matrix and vector to represent
the operation and physical state, respectively. Let us glance a little bit of matrix
calculation to get used to the quantum-mechanical concept and, hence, to obtain
clear understanding about it. In Part III, we will deal with matrix calculation in
detail from a point of view of a general principle. At present, a (2,2) matrix suffices.
Let A be a (2,2) matrix expressed as

A ¼ a b
c d

� �
: ð1:104Þ

Let wj i be a (2,1) matrix, i.e., a column vector such that

wj i ¼ e
f

� �
: ð1:105Þ

Note that operating (2,2) matrix on a (2,1) matrix produces another (2,1) matrix.

Furthermore, we define an adjoint matrix Ay such that

Ay ¼ a
 c


b
 d


� �
; ð1:106Þ

where a
 is a complex conjugate of a. That is, Ay is a complex conjugate transposed

matrix of A. Also, we define an adjoint vector wjh or jwiy such that

wh j � wj iy¼ e
f 
ð Þ: ð1:107Þ

In this case, wj iy also denotes a complex conjugate transpose of wj i. The
notation wj i and wh j are due to Dirac. He named wh j and uj i a bra vector and ket
vector, respectively. This naming or equivoque comes from that wh j � uj i ¼ w j uh i
forms a bracket. This is a ð1; 2Þ � ð2; 1Þ ¼ ð1; 1Þ matrix, i.e., a c-number (including
a complex number) and w j uh i represent an inner product. These notations are
widely used nowadays in the field of mathematics and physics.

Taking another vector nj i ¼ g
h

� �
and using a matrix calculation rule, we have

Ay wj i ¼ Ayw
��� E

¼ a
 c


b
 d


� �
e
f

� �
¼ a
eþ c
f

b
eþ d
f

� �
: ð1:108Þ

According to the definition (1.107), we have

Aywiy
��� ¼ Ayw

D ��� ¼ ae
 þ cf 
be
 þ df 
ð Þ: ð1:109Þ
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Thus, we get

Ayw
��� nD E

¼ ae
 þ cf 
be
 þ df 
ð Þ g
h

� �
¼ agþ bhð Þe
 þ cgþ dhð Þf 
: ð1:110Þ

Similarly, we have

w j Anh i ¼ e
f 
ð Þ a b
c d

� �
g
h

� �
¼ agþ bhð Þe
 þ cgþ dhð Þf 
: ð1:111Þ

Comparing (1.110) and (1.111), we get

Ayw
��� nD E

¼ w j Anh i: ð1:112Þ

Also, we have

w j Anh i
 ¼ An j wh i: ð1:113Þ

Replacing A with Ay in (1.112), we get

ðAyÞyw
��� nD E

¼ w
��� AynD E

: ð1:114Þ

From (1.104) and (1.106), obviously we have

ðAyÞy ¼ A: ð1:115Þ

Then from (1.114) and (1.115), we have

Aw j nh i ¼ w
��� AynD E

¼ n j Awh i
; ð1:116Þ

where the second equality comes from (1.113) obtained by exchanging w and n
there. Moreover, we have a following relation:

ðABÞy ¼ ByAy: ð1:117Þ

The proof is left for readers. Using this relation, we have

Awh j ¼ Awj iy¼ A wj i½ �y¼ wj iyAy ¼ wh jAy ¼ wAy
D ���: ð1:118Þ

Making an inner product by multiplying nj i from the right of the leftmost and
rightmost sides of (1.118) and using (1.116), we get
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Aw j nh i ¼ wAy
��� nD E

¼ w
��� AynD E

:

This relation may be regarded as the associative law with regard to the symbol
“|” of the inner product. This is equivalent to the associative law with regard to the
matrix multiplication.

The results obtained above can readily be extended to a general case where
(n,n) matrices are dealt with.

Now, let us introduce a Hermitian operator (or matrix) H. When we have

Hy ¼ H; ð1:119Þ

H is called a Hermitian matrix. Then, applying (1.112) to the Hermitian matrix
H, we have

Hyw
��� nD E

¼ w j Hnh i ¼ w
��� Hyn

D E
or Hw j nh i ¼ w

��� Hyn
D E

¼ w j Hnh i
ð1:120Þ

Also, let us introduce a norm of a vector wj i such that

wj jj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w j wh i

p
: ð1:121Þ

A norm is a natural extension for a notion of a “length” of a vector. The norm
wj jj j is zero, if and only if wj i ¼ 0 (zero vector). For, from (1.105) and (1.107), we

have

w j wh i ¼ ej j2 þ fj j2:

Therefore, w j wh i ¼ 0 , e ¼ f ¼ 0; i:e: wj i ¼ 0:
Let us further consider an eigenvalue problem represented by our newly intro-

duced notation. The eigenvalue equation is symbolically written as

H wj i ¼ k wj i; ð1:122Þ

where H represents a Hermitian operator and wj i is an eigenfunction that belongs to
an eigenvalue k. Operating wh j on (1.122) from the left, we have

wh jH wj i ¼ wh jk wj i ¼ k w j wh i ¼ k; ð1:123Þ

where we assume that wj i is normalized; namely w j wh i ¼ 1 or wk k ¼ 1. Notice
that the symbol “|” in an inner product is of secondary importance. We may
disregard this notation as in the case where a product notation “�” is omitted by
denoting ab instead of a� b.
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Taking a complex conjugate of (1.123), we have

w j Hwh i
¼ k
: ð1:124Þ

Using (1.116) and (1.124), we have

k
 ¼ w j Hwh i
¼ w
��� Hyw

D E
¼ w j Hwh i ¼ k; ð1:125Þ

where with the third equality we used the definition (1.119). The relation k
 ¼ k
obviously shows that any eigenvalue k is real, if H is Hermitian. The relation
(1.125) immediately tells us that even though wj i is not an eigenfunction, w j Hwh i
is real as well, if H is Hermitian. The quantity w j Hwh i is said to be an expectation
value. This value is interpreted as the most probable or averaged value of H
obtained as a result of operation of H on a physical state wj i. We sometimes denote
the expectation value as

Hh i � w j Hwh i; ð1:126Þ

where wj i is normalized. Unless wj i is not normalized, it can be normalized on the
basis of (1.121) by choosing Uj i such that

Uj i ¼ wj i= wk k: ð1:127Þ

Thus, we have an important consequence; if a Hermitian operator has an
eigenvalue, it must be real. An expectation value of a Hermitian operator is real as
well. The real eigenvalue and expectation value are a prerequisite for a physical
quantity.

As discussed above, the Hermitian matrices play a central role in quantum
physics. Taking a further step, let us extend the notion of Hermiticity to a function
space.

In Example 1.1, we have remarked that we have finally reached a solution where
k is a real (and positive) number, even though at the beginning we set no restriction
on k. This is because the SOLDE form (1.61) accompanied by BCs (1.62) is
Hermitian, and so eigenvalues k are real.

In this context, we give a little bit of further consideration. We define an inner
product between two functions as follows:

g j fh i �
Zb

a

g xð Þ
f xð Þdx; ð1:128Þ

where g xð Þ
 is a complex conjugate of g xð Þ; x is a real variable and an integration
range can be either bounded or unbounded. If a and b are real definite numbers, [a,
b] is the bounded case. With the unbounded case, we have, e.g.,
�1;1ð Þ; �1; cð Þ; and c;1ð Þ, etc. where c is a definite number. This notation
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will appear again in Chap. 8. In (1.128), we view functions f and g as vectors in a
function space, often referred to as a Hilbert space. We assume that any function f
is square-integrable, i.e., jf j2 is finite. That is,

Zb

a

f xð Þj j2dx\1: ð1:129Þ

Using the above definition, let us calculate g j Dfh i, where D was defined in
(1.63). Then, using the integration by parts, we have

g j Dfh i ¼
Zb

a

gðxÞ
 � d2f xð Þ
dx2


 �
dx ¼ � g
f 0½ �ba þ

Zb

a

g
0f 0dx

¼ � g
f 0½ �ba þ g
0f½ �ba�
Zb

a

g
00f dx ¼ g
0f � g
f 0½ �ba þ
Zb

a

�g
00fð Þdx

¼ g
0f � g
f 0½ �ba þ Dg j fh i:
ð1:130Þ

If we have BCs such that

f bð Þ ¼ f að Þ ¼ 0 and gðbÞ
 ¼ gðaÞ
 ¼ 0 i:e:; g bð Þ ¼ g að Þ ¼ 0; ð1:131Þ

we get

g j Dfh i ¼ Dg j fh i: ð1:132Þ

In light of (1.120), (1.132) implies that D is Hermitian. In (1.131), notice that the
functions f and g satisfy the same BCs. Normally, for an operator to be Hermitian
assumes this property. Thus, the Hermiticity of a differential operator is closely
related to BCs of the differential equation.

Next, we consider a following inner product:

f j Dfh i ¼ �
Zb

a

f 
f 00dx ¼ �½ f 
f 0�ba þ
Zb

a

f 

0
f 0dx ¼ �½ f 
f 0�ba þ

Zb

a

f 0j j2dx: ð1:133Þ

Note that the definite integral of (1.133) cannot be negative. There are two
possibilities for D to be Hermitian according to different BCs.

(i) Dirichlet conditions: f bð Þ ¼ f að Þ ¼ 0. If we could have f 0 ¼ 0, f j Dfh i would
be zero. But, in that case, f should be constant. If so, f xð Þ � 0 according to
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BCs. We must exclude this trivial case. Consequently, to avoid this situation,
we must have

Zb

a

f 0j j2dx[ 0 or f j Dfh i[ 0: ð1:134Þ

In this case, the operator D is said to be positive definite. Suppose that such a
positive-definite operator has an eigenvalue k. Then, for a corresponding eigen-
function y xð Þ, we have

Dy xð Þ ¼ ky xð Þ: ð1:135Þ

In this case, we state that y xð Þ is an eigenfunction or eigenvector that corre-
sponds (or belongs) to an eigenvalue k. Taking an inner product of both sides, we
have

y j Dyh i ¼ y j kyh i ¼ k y j yh i ¼ k yk k2 or k ¼ y j Dyh i= yk k2: ð1:136Þ

Both y j Dyh i and yk k2 are positive and, hence, we have k[ 0. Thus, if D has an
eigenvalue, it must be positive. In this case, k is said to be positive definite as well;
see Example 1.1.

(ii) Neumann conditions: f 0 bð Þ ¼ f 0 að Þ ¼ 0. From (1.130), D is Hermitian as well.
Unlike the condition (i), however, f may be a nonzero constant in this case.
Therefore, we are allowed to have

Zb

a

f 0j j2dx ¼ 0 or f j Dfh i ¼ 0: ð1:137Þ

For any function, we have

f j Dfh i� 0: ð1:138Þ

In this case, the operator D is said to be nonnegative (or positive semi-definite).
The eigenvalue may be zero from (1.136) and, hence, is called nonnegative
accordingly.

(iii) Periodic conditions: f bð Þ ¼ f að Þ and f 0 bð Þ ¼ f 0 að Þ. We are allowed to have
f j Dfh i� 0 as in the case of the condition (ii). Then, the operator and
eigenvalues are nonnegative.

Thus, in spite of being formally the same operator, that operator behaves dif-
ferently according to the different BCs. In particular, for a differential operator to be
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associated with an eigenvalue of zero produces a special interest. We will encounter
another illustration in Chap. 3.

1.5 Commutator and Canonical Commutation Relation

In quantum mechanics, it is important whether two operators A and B are com-
mutable. In this context, a commutator between A and B is defined such that

A;B½ � � AB� BA: ð1:139Þ

If A;B½ � ¼ 0 (zero matrix), A and B are said to be commutable (or commutative).
If A;B½ � 6¼ 0, A and B are non-commutative. Such relationships between two
operators are called commutation relation.

We have canonical commutation relation as an underlying concept of quantum
mechanics. This is defined between a (canonical) coordinate q and a (canonical)
momentum p such that

q; p½ � ¼ i�h; ð1:140Þ

where the presence of a unit matrix Ê is implied. Explicitly writing it, we have,

q; p½ � ¼ i�hÊ: ð1:141Þ

The relations (1.140) and (1.141) are called the canonical commutation relation.
On the basis of a relation p ¼ �h

i
@
@q, a brief proof for this is as follows:

q; p½ � wj i ¼ qp� pqð Þ wj i ¼ q
�h
i
@

@q
� �h

i
@

@q
q

� �
wj i ¼ q

�h
i
@

@q
wj i � �h

i
@

@q
q wj ið Þ

¼ q
�h
i
@ wj i
@q

� �h
i
@q
@q

wj i � �h
i
q
@ wj i
@q

¼ � �h
i
wj i ¼ i�h wj i

ð1:142Þ

Since wj i is an arbitrarily chosen vector, we have (1.140).
Using (1.117), we have

½A;B�y ¼ ðAB� BAÞy ¼ ByAy � AyBy: ð1:143Þ

If in (1.143) A and B are both Hermitian, we have

½A;B�y ¼ BA� AB ¼ � A;B½ �: ð1:144Þ
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If we have an operator G such that

Gy ¼ �G; ð1:145Þ

G is said to be anti-Hermitian. Therefore, A;B½ � is anti-Hermitian, if both A and
B are Hermitian. If an anti-Hermitian operator has an eigenvalue, the eigenvalue is
zero or pure imaginary. To show this, suppose that

G wj i ¼ k wj i; ð1:146Þ

where G is an anti-Hermitian operator and wj i has been normalized. As in the case
of (1.123), we have

wh jG wj i ¼ k w j wh i ¼ k: ð1:147Þ

Taking a complex conjugate of (1.147), we have

w j Gwh i
¼ k
: ð1:148Þ

Using (1.116) and (1.145) again, we have

k
 ¼ w j Gwh i
¼ w
��� GywD E

¼ � w j Gwh i ¼ �k; ð1:149Þ

This shows that k is zero or pure imaginary.
Therefore, (1.142) can be viewed as an eigenvalue equation to which any

physical state wj i has a pure imaginary eigenvalue i�h with respect to q; p½ �. Note
that both q and p are Hermitian (see Sect. 8.2, Example 8.3), and so q; p½ � is anti-
Hermitian as mentioned above. The canonical commutation relation given by
(1.140) is believed to underpin the uncertainty principle.

In quantum mechanics, it is of great importance whether a quantum operator is
Hermitian or not. A position operator and momentum operator along with an an-
gular momentum operator are particularly important when we constitute
Hamiltonian. Let f and g be arbitrary functions. Let us consider, e.g., a following
inner product with the momentum operator.

g j pfh i ¼
Zb

a

gðxÞ
 �h
i
@

@x
f xð Þ½ �dx; ð1:150Þ

where the domain a; b½ � depends on a physical system; this can be either bounded or
unbounded. Performing integration by parts, we have
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g j pfh i ¼ �h
i
g xð Þ
f xð Þ½ �ba�

Zb

a

@

@x
g xð Þ
½ � �h

i
f xð Þdx

¼ �h
i
g bð Þ
f bð Þ � g að Þ
f að Þ½ � þ

Zb

a

�h
i
@

@x
g xð Þ


 �

f xð Þdx:

ð1:151Þ

If we require f bð Þ ¼ f að Þ and g bð Þ ¼ g að Þ, the first term vanishes and we get

g j pfh i ¼
Zb

a

�h
i
@

@x
g xð Þ


 �

f xð Þdx ¼ pg j fh i: ð1:152Þ

Thus, as in the case of (1.120), the momentum operator p is Hermitian. Note that
a position operator q of (1.142) is Hermitian as a priori assumption.

Meanwhile, the angular momentum operator Lz is described in a polar coordinate
as follows:

Lz ¼ �h
i
@

@/
; ð1:153Þ

where / is an azimuthal angle varying from 0 to 2p. The notation and implication
of Lz will be mentioned in Chap. 3. Similarly as the above, we have

g j Lzfh i ¼ �h
i
g 2pð Þ
f 2pð Þ � g 0ð Þ
f 0ð Þ½ � þ

Z2p

0

�h
i
@

@/
g xð Þ


 �

f xð Þd/: ð1:154Þ

Requiring an arbitrary function f to satisfy a BC f 2pð Þ ¼ f 0ð Þ, we reach

g j Lzfh i ¼ Lzg j fh i: ð1:155Þ

Note that we must have the above BC, because / ¼ 0 and / ¼ 2p are spatially
the same point. Thus, we find that Lz is Hermitian as well on this condition.

On the basis of aforementioned argument, let us proceed to quantum-mechanical
studies of a harmonic oscillator. Regarding the angular momentum, we will study
their basic properties in Chap. 3.

Reference
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Chapter 2
Quantum-Mechanical Harmonic
Oscillator

Quantum-mechanical treatment of a harmonic oscillator has been a well-studied
topic from the beginning of the history of quantum mechanics. This topic is a
standard subject in classical mechanics as well. In this chapter, first we briefly
survey characteristics of a classical harmonic oscillator. From a quantum-
mechanical point of view, we deal with features of a harmonic oscillator through
matrix representation. We define creation and annihilation operators using position
and momentum operators. A Hamiltonian of the oscillator is described in terms of
the creation and annihilation operators. This enables us to easily determine energy
eigenvalues of the oscillator. As a result, energy eigenvalues are found to be
positive definite. Meanwhile, we express the Schrödinger equation by the coordi-
nate representation. We compare the results with those of the matrix representation
and show that the two representations are mathematically equivalent. Thus, the
treatment of the quantum-mechanical harmonic oscillator supplies us with a firm
ground for studying basic concepts of the quantum mechanics.

2.1 Classical Harmonic Oscillator

Classical Newtonian equation of a one-dimensional harmonic oscillator is expres-
sed as

m
d2x tð Þ
dt2

¼ �sx tð Þ; ð2:1Þ

where m is a mass of an oscillator and s is a spring constant. Putting s=m ¼ x2, we
have

d2x tð Þ
dt2

þx2x tð Þ ¼ 0: ð2:2Þ
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In (2.2), we set x positive, namely

x ¼
ffiffiffiffiffiffiffiffi
s=m

p
; ð2:3Þ

where x is called an angular frequency of the oscillator.
If we replace x2 with k, we have formally the same equation as (1.61). Two

linearly independent solutions of (2.2) are the same as before (see Example 1.1); we
have eixt and e�ixt x 6¼ 0ð Þ as such. Note, however, that Example 1.2 we were
dealing with a quantum state related to existence probability of a particle in a
potential well. In (2.2), on the other hand, we are examining a position of harmonic
oscillator undergoing a force of a spring. We are thus considering a different
situation.

As a general solution, we have

x tð Þ ¼ aeixt þ be�ixt; ð2:4Þ

where a and b are suitable constants. Let us consider BCs different from those of
Examples 1.1 or 1.2 this time. That is, we set BCs such that

x 0ð Þ ¼ 0 and x0 0ð Þ ¼ v0 ðv0 [ 0Þ: ð2:5Þ

Notice that (2.5) gives initial conditions (ICs). Mathematically, ICs are included
in BCs (see Chap. 8). From (2.4), we have

x tð Þ ¼ aþ b ¼ 0 and x0 0ð Þ ¼ ix a� bð Þ ¼ v0: ð2:6Þ

Then, we get a ¼ �b ¼ v0=2ix. Thus, we get a simple harmonic motion as a
solution expressed as

x tð Þ ¼ v0
2ix

eixx � e�ixx
� � ¼ v0

x
sinxt: ð2:7Þ

From this, we have

E ¼ KþV ¼ 1
2
mv20: ð2:8Þ

In particular, if v0 ¼ 0, x tð Þ � 0. This is a solution of (2.1) that has the meaning
that the particle is eternally at rest. It is physically acceptable as well. Notice also
that unlike Examples 1.1 and 1.2, the solution has been determined uniquely. This
is due to the different BCs.

From a point of view of a mechanical system, mathematical formulation of the
classical harmonic oscillator resembles that of electromagnetic fields confined
within a cavity. We return this point later in Sect. 7.6.
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2.2 Formulation Based on an Operator Method

Now let us return to our task to find quantum-mechanical solutions of a harmonic
oscillator. Potential V is given by

V qð Þ ¼ 1
2
sq2 ¼ 1

2
mx2q2; ð2:9Þ

where q is used for a one-dimensional position coordinate. Then, we have a clas-
sical Hamiltonian H expressed as

H ¼ p2

2m
þV qð Þ ¼ p2

2m
þ 1

2
mx2q2: ð2:10Þ

Following the formulation of Sect. 1.2, the Schrödinger equation as an eigen-
value equation related to energy E is described as

Hw qð Þ ¼ Ew qð Þ or

� �h2

2m
r2w qð Þþ 1

2
mx2q2w qð Þ ¼ Ew qð Þ:

ð2:11Þ

This is a SOLDE and it is well known that the SOLDE can be solved by a power
series expansion method.

In the present studies, however, let us first use an operator method to solve the
eigenvalue Eq. (2.11) of a one-dimensional oscillator. To this end, we use a
quantum-mechanical Hamiltonian where a momentum operator p is explicitly
represented. Thus, the Hamiltonian reads as

H ¼ p2

2m
þ 1

2
mx2q2: ð2:12Þ

The equation of (2.12) is formally the same as (2.10). Note, however, that in
(2.12) p and q are expressed as quantum-mechanical operators.

As in (1.126), we first examine an expectation value Hh i of H. It is given by

Hh i ¼ wh jHwi ¼ w
p2

2m
w

����� �
þ w

1
2
mx2q2w

����� �
¼ 1

2m
pyw pwj
D E

þ 1
2
mx2 qyw qwj

D E
¼ 1

2m
pw pwjh iþ 1

2
mx2 qw qwjh i

¼ 1
2m

pwk k2 þ 1
2
mx2 qwk k2 � 0; ð2:13Þ

where again we assumed that wj i has been normalized. In (2.13), we used the
notation (1.126) and the fact that both q and p are Hermitian. In this situation, Hh i
takes a nonnegative value.
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In (2.13), the equality holds if and only if jpwi ¼ 0 and qwj i ¼ 0. Let us specify
a vector w0j i that satisfies these conditions such that

pw0j i ¼ 0 and qw0j i ¼ 0: ð2:14Þ

Multiplying q from the left on the first equation of (2.14) and multiplying p from
the left on the second equation, we have

qp w0j i ¼ 0 and pq w0j i ¼ 0: ð2:15Þ

Subtracting the second equation of (2.15) from the first equation, we get

qp� pqð Þ w0j i ¼ i�h w0j i ¼ 0; ð2:16Þ

where with the first equality we used (1.140). Therefore, we would have
w0 qð Þj i � 0. This leads to the relations (2.14). That is, if and only if w0 qð Þj i � 0,
Hh i ¼ 0. But, since it has no physical meaning, w0 qð Þj i � 0 must be rejected as
unsuitable for the solution of (2.11). Regarding a physically acceptable solution of
(2.13), Hh i must take a positive-definite value accordingly. Thus, on the basis of the
canonical commutation relation, we restrict the range of the expectation values.

Instead of directly dealing with (2.12), it is well known to introduce following
operators [1]:

a �
ffiffiffiffiffiffiffi
mx
2�h

r
qþ iffiffiffiffiffiffiffiffiffiffiffiffi

2m�hx
p p ð2:17Þ

and its adjoint (complex conjugate) operator

ay ¼
ffiffiffiffiffiffiffi
mx
2�h

r
q� iffiffiffiffiffiffiffiffiffiffiffiffi

2m�hx
p p: ð2:18Þ

Notice here again that both q and p are Hermitian. Using a matrix representation
for (2.17) and (2.18), we have

a
ay

� 	
¼

ffiffiffiffiffi
mx
2�h

p
iffiffiffiffiffiffiffiffiffi

2m�hx
pffiffiffiffiffi

mx
2�h

p � iffiffiffiffiffiffiffiffiffi
2m�hx

p

 !
q
p

� 	
ð2:19Þ

Then, we have

aya ¼ ð2m�hxÞ�1 mxq� ipð Þ mxqþ ipð Þ
¼ ð2m�hxÞ�1 m2x2q2 þ p2 þ imx qp� pqð Þ
 �
¼ ð�hxÞ�1 1

2
mx2q2 þ 1

2m
p2 þ 1

2
ixi�h

� 

¼ ð�hxÞ�1 H � 1

2
�hx

� 	
; ð2:20Þ
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where the second last equality comes from (1.140). Rewriting (2.20), we get

H ¼ �hxayaþ 1
2
�hx: ð2:21Þ

Similarly, we get

H ¼ �hxaay � 1
2
�hx: ð2:22Þ

Subtracting (2.22) from (2.21), we have

0 ¼ �hxaya� �hxaay þ �hx: ð2:23Þ

That is,

a; ay
h i

¼ 1 or a; ay
h i

¼ E: ð2:24Þ

Furthermore, using (2.21), we have

H; ay
h i

¼ �hx ayaþ 1
2
; ay

� 

¼ �hx ayaay � ayaya

� �
¼ �hxay a; ay

h i
¼ �hxay:

ð2:25Þ

Similarly, we get

H; a½ � ¼ ��hxa: ð2:26Þ

Next, let us calculate an expectation value of H. Using a normalized function
wj i, from (2.21), we have

w Hj jwh i ¼ wh j�hxayaþ 1
2
�hx wj i ¼ �hx wh jaya wj i þ 1

2
�hx wh jwi

¼ �hx awh jawiþ 1
2
�hx ¼ �hx awk k2 þ 1

2
�hx� 1

2
�hx:

ð2:27Þ

Thus, the expectation value is equal to or larger than 1
2 �hx. This is consistent with

that an energy eigenvalue is positive definite as mentioned above. Equation (2.27)
also tells us that if we have

aw0j i ¼ 0; ð2:28Þ

we get

w0h jH w0j i ¼ 1
2
�hx: ð2:29Þ
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Equation (2.29) means that the smallest expectation value is 1
2 �hx on the con-

dition of (2.28). On the same condition, using (2.21), we have

H w0j i ¼ �hxaya w0j i þ 1
2
�hx w0j i ¼ 1

2
�hx w0j i: ð2:30Þ

Thus, w0j i is an eigenfunction corresponding to an eigenvalue 1
2 �hx � E0, which

is identical with the smallest expectation value of (2.29). Since this is the lowest
eigenvalue, w0j i is said to be a ground state. We ensure later that w0j i is certainly an
eligible function for a ground state.

The above method is consistent with the variational principle [2] which stipu-
lates that under appropriate BCs an expectation value of Hamiltonian estimated
with any arbitrary function is always larger than or equal to the smallest eigenvalue
corresponding to the ground state.

Next, let us evaluate energy eigenvalues of the oscillator. First we have

H w0j i ¼ 1
2
�hx w0j i ¼ E0 w0j i: ð2:31Þ

Operating ay on both sides of (2.31), we have

ayH w0j i ¼ ayE0 w0j i: ð2:32Þ

Meanwhile, using (2.25), we have

ayH w0j i ¼ Hay � �hxay
� �

w0j i: ð2:33Þ

Equating RHSs of (2.32) and (2.33), we get

Hay w0j i ¼ E0 þ �hxð Þay w0j i: ð2:34Þ

This implies that ay w0j i belongs to an eigenvalue E0 þ �hxð Þ, which is larger

than E0 as expected. Again multiplying ay on both sides of (2.34) from the left and
using (2.25), we get

HðayÞ2 w0j i ¼ E0 þ 2�hxð ÞðayÞ2 w0j i: ð2:35Þ

This implies that ðayÞ2 w0j i belongs to an eigenvalue E0 þ 2�hxð Þ. Thus,
repeatedly taking the above procedures, we get

HðayÞn w0j i ¼ E0 þ n�hxð ÞðayÞn w0j i: ð2:36Þ
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Thus, ðayÞn w0j i belongs to an eigenvalue

En � E0 þ n�hxð Þ ¼ nþ 1
2

� 	
�hx; ð2:37Þ

where En denotes an energy eigenvalue of the nth excited state. The energy
eigenvalues are plotted in Fig. 2.1.

Our next task is to seek normalized eigenvectors of the nth excited state. Let cn
be a normalization constant of that state. That is, we have

wnj i ¼ cnðayÞn w0j i; ð2:38Þ

where wnj i is a normalized eigenfunction of the nth excited state. To determine cn,

let us calculate a wnj i. This includes a factor aðayÞn. We have

aðayÞn ¼ aay � aya
� �

ðayÞn�1 þ ayaðayÞn�1

¼ a; ay
h i

ðayÞn�1 þ ayaðayÞn�1 ¼ ðayÞn�1 þ ayaðayÞn�1

¼ ðayÞn�1 þ ay a; ay
h i

ðayÞn�2 þðayÞ2aðayÞn�2

¼ 2ðayÞn�1 þðayÞ2aðayÞn�2

¼ 2ðayÞn�1 þðayÞ2 a; ay
h i

ðayÞn�3 þðayÞ3aðayÞn�3

¼ 3ðayÞn�1 þðayÞ3aðayÞn�3

¼ � � � :

ð2:39Þ

In the above procedures, we used a; ay
h i

¼ 1. What is implied in (2.39) is that a

coefficient of ðayÞn�1 increased one by one with a transferred toward the right one
by one in the second term of RHS. Notice that in the second term a is sandwiched

such that ðayÞmaðayÞn�m m ¼ 1; 2; . . .ð Þ. Finally, we have

aðayÞn ¼ nðayÞn�1 þðayÞna: ð2:40Þ

0

Fig. 2.1 Energy eigenvalues
of a quantum-mechanical
harmonic oscillator on a real
axis
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Thus, we get

a wnj i ¼ cnaðayÞn w0j i ¼ cn nðayÞn�1 þðayÞna
h i

w0j i ¼ cnnðayÞn�1 w0j i
¼ n

cn
cn�1

cn�1ðayÞn�1 w0j i ¼ n
cn
cn�1

wn�1j i;
ð2:41Þ

where the third equality comes from (2.28).
Next, operating a on (2.40), we get

a2ðayÞn ¼ naðayÞn�1 þ aðayÞna
¼ n n� 1ð ÞðayÞn�2 þðayÞn�1a
h i

þ aðayÞna
¼ n n� 1ð ÞðayÞn�2 þ nðayÞn�1aþ aðayÞna:

ð2:42Þ

Operating another a on (2.42), we get

a3ðayÞn ¼ n n� 1ð ÞaðayÞn�2 þ naðayÞn�1aþ a2ðayÞna
¼ n n� 1ð Þ n� 2ð ÞðayÞn�3 þðayÞn�2a

h i
þ naðayÞn�1aþ a2ðayÞna

¼ n n� 1ð Þ n� 2ð ÞðayÞn�3 þ n n� 1ð ÞðayÞn�2aþ naðayÞn�1aþ a2ðayÞna
¼ � � � :

ð2:43Þ

To generalize the above procedures, operating a on (2.40) mð\nÞ times, we get

amðayÞn ¼ n n� 1ð Þ n� 2ð Þ. . . n� mþ 1ð ÞðayÞn�m þ f a; ay
� �

a; ð2:44Þ

where m\n and f a; ay
� �

is a polynomial of ay that has a power of a as a

coefficient. Further operating w0h j and w0j i from the left and right on both sides of
(2.44), respectively, we have

w0h jamðayÞn w0j i ¼ n n� 1ð Þ n� 2ð Þ. . . n� mþ 1ð Þ w0h jðayÞn�m w0j i
þ w0h jf a; ay

� �
a w0j i

¼ n n� 1ð Þ n� 2ð Þ. . . n� mþ 1ð Þ w0h jðayÞn�m w0j i:
ð2:45Þ

Note that in (2.45) w0h jf a; ay
� �

a w0j i vanishes because of (2.28).

Meanwhile, taking adjoint of (2.28), we have
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w0h jay ¼ 0: ð2:46Þ

Operating ay n� m� 1ð Þ times from the right of LHS of (2.46), we have

w0h jðayÞn�m ¼ 0:

Further operating w0j i from the right of the above equation, we get

w0h jðayÞn�m w0j i ¼ 0:

Therefore, from (2.45), we get

w0h jamðayÞn w0j i ¼ 0: ð2:47Þ

Taking adjoint of (2.47) once again, we have

w0h janðayÞm w0j i ¼ 0: ð2:48Þ

Equation (2.48) can be obtained by repeatedly using (1.117). From (2.45) and
(2.48), we get

w0h jamðayÞn w0j i ¼ 0; whenm 6¼ n: ð2:49Þ

If m ¼ n, from (2.45), we get

w0h janðayÞn w0j i ¼ n! w0h jw0i: ð2:50Þ

If we assume that w0j i is normalized; i.e., w0h jw0i ¼ 1, (2.50) is expressed as

w0h janðayÞn w0j i ¼ n!: ð2:51Þ

From (2.51), if we put

wnj i ¼ 1ffiffiffiffi
n!

p ðayÞn w0j i; ð2:52Þ

then we have

wnh j ¼ 1ffiffiffiffi
n!

p w0h jan:

Thus, from (2.49) and (2.52), we get

wmh jwni ¼ dmn: ð2:53Þ
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At the same time, for cn of (2.38), we get

cn ¼ 1ffiffiffiffi
n!

p : ð2:54Þ

Notice here that an undetermined phase factor eih h : realð Þ is intended such that

cn ¼ 1ffiffiffiffi
n!

p eih:

But, eih is usually omitted for the sake of simplicity. Thus, we have constructed a
series of orthonormal eigenfunctions wnj i.

Furthermore, using (2.41) and (2.54), we get

a wnj i ¼ ffiffiffi
n

p
wn�1j i: ð2:55Þ

From (2.36), we get

H wnj i ¼ E0 þ n�hxð Þ wnj i: ð2:56Þ

Meanwhile, from (2.21), we have

H wnj i ¼ �hxayaþE0

� �
wnj i: ð2:57Þ

Equating RHSs of (2.56) and (2.57), we get

aya wnj i ¼ n wnj i: ð2:58Þ

Thus, we find that an integer n is an eigenvalue of aya when it is evaluated with

respect to wnj i. For this reason, aya is called a number operator. Notice that aya is
Hermitian because we have

ðayaÞy ¼ ayðayÞy ¼ aya; ð2:59Þ

where we used (1.115) and (1.117).
Moreover, from (2.55) and (2.58),

aya wnj i ¼ ffiffiffi
n

p
ay wn�1j i ¼ n wnj i: ð2:60Þ

Thus,

ay wn�1j i ¼ ffiffiffi
n

p
wnj i: ð2:61Þ
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Or replacing n with nþ 1, we get

ay wnj i ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
wnþ 1

�� �
: ð2:62Þ

As implied in (2.55) and (2.62), we find that operating a on wnj i lowers an

energy level by one and that operating ay on wnj i raises an energy level by one. For

this reason, a and ay are said to be an annihilation operator and creation operator,
respectively.

2.3 Matrix Representation of Physical Quantities

Equations (2.55) and (2.62) clearly represent the relationship between an operator
and eigenfunction (or eigenvector). The relationship is characterized by

Matrixð Þ� Vectorð Þ ¼ Vectorð Þ: ð2:63Þ

Thus, we are now in a position to construct this relation using matrices.
From (2.53), we should be able to construct basis vectors using a column vector
such that

w0j i ¼

1
0
0
0
0
..
.

0BBBBBB@

1CCCCCCA; w1j i ¼

0
1
0
0
0
..
.

0BBBBBB@

1CCCCCCA; w2j i ¼

0
0
1
0
0
..
.

0BBBBBB@

1CCCCCCA; � � � : ð2:64Þ

Notice that these vectors form a vector space of an infinite dimension. The

orthonormal relation (2.53) can easily be checked. We represent a and ay so that
(2.55) and (2.62) can be satisfied. We obtain

a ¼

0 1 0
0 0

ffiffiffi
2

p
0 0 0

0 0 � � �
0 0 � � �ffiffiffi
3

p
0 � � �

0 0 0
0 0 0
..
. ..

. ..
.

0 2 � � �
0 0 � � �
..
. ..

. . .
.

0BBBBBB@

1CCCCCCA: ð2:65Þ
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Similarly,

ay ¼

0 0 0
1 0 0
0

ffiffiffi
2

p
0

0 0 � � �
0 0 � � �
0 0 � � �

0 0
ffiffiffi
3

p
0 0 0
..
. ..

. ..
.

0 0 � � �
2 0 � � �
..
. ..

. . .
.

0BBBBBB@

1CCCCCCA: ð2:66Þ

Note that neither a nor ay is Hermitian.
Since a determinant of the matrix of (2.19) is �i=�h 6¼ 0, using its inverse matrix

we get

q
p

� 	
¼

ffiffiffiffiffiffiffi
�h

2mx

q ffiffiffiffiffiffiffi
�h

2mx

q
1
i

ffiffiffiffiffiffiffi
m�hx
2

q
� 1

i

ffiffiffiffiffiffiffi
m�hx
2

q
0@ 1A a

ay
� 	

: ð2:67Þ

That is, we have

q ¼
ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
aþ ay
� �

and p ¼ 1
i

ffiffiffiffiffiffiffiffiffiffi
m�hx
2

r
a� ay
� �

: ð2:68Þ

With the inverse matrix, we will deal with it in Part III. Note that q and p are
both Hermitian. Inserting (2.65) and (2.66) into (2.68), we get

q ¼
ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r 0 1 0 0 0 � � �
1 0

ffiffiffi
2

p
0 0 � � �

0
ffiffiffi
2

p
0

ffiffiffi
3

p
0 � � �

0 0
ffiffiffi
3

p
0 2 � � �

0 0 0 2 0 � � �
..
. ..

. ..
. ..

. ..
. . .

.

0BBBBBB@

1CCCCCCA; ð2:69Þ

p ¼
ffiffiffiffiffiffiffiffiffiffi
m�hx
2

r
i

0 �1 0
1 0 � ffiffiffi

2
p

0
ffiffiffi
2

p
0

0 0 � � �
0 0 � � �

� ffiffiffi
3

p
0 � � �

0 0
ffiffiffi
3

p
0 0 0
..
. ..

. ..
.

0 �2 � � �
2 0 � � �
..
. ..

. . .
.

0BBBBBB@

1CCCCCCA: ð2:70Þ

Equations (2.69) and (2.70) obviously show that q and p are Hermitian. We can
derive various physical quantities from these equations. For instance, following
matrix algebra Hamiltonian H can readily be calculated. The result is expressed as
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H ¼ p2

2m
þ 1

2
mx2q2 ¼ �hx

2

1 0 0
0 3 0
0 0 5

0 0 � � �
0 0 � � �
0 0 � � �

0 0 0
0 0 0
..
. ..

. ..
.

7 0 � � �
0 9 � � �
..
. ..

. . .
.

0BBBBBB@

1CCCCCCA: ð2:71Þ

Looking at (2.69–2.71), we immediately realize that although neither q or p is
diagonalized, H is diagonalized. The matrix representation of (2.71) is said to be a
representation that diagonalizes H. This representation is of great practical use. In
fact, using (2.64), we get, e.g.,

H w2j i ¼ �hx
2

1 0 0

0 3 0

0 0 5

0 0 � � �
0 0 � � �
0 0 � � �

0 0 0

0 0 0

..

. ..
. ..

.

7 0 � � �
0 9 � � �
..
. ..

. . .
.

0BBBBBBBBB@

1CCCCCCCCCA

0

0

1

0

0

..

.

0BBBBBBBBB@

1CCCCCCCCCA
¼ �hx

2

0

0

5

0

0

..

.

0BBBBBBBBB@

1CCCCCCCCCA
¼ 5�hx

2

0

0

1

0

0

..

.

0BBBBBBBBB@

1CCCCCCCCCA
¼ 5�hx

2
w2j i ¼ 1

2
þ 2

� 	
�hx w2j i:

ð2:72Þ

This clearly means that the second-excited state w2j i has an eigenenergy
1
2 þ 2
� �

�hx. More generally, we find that wnj i has an eigenenergy 1
2 þ n
� �

�hx as
already shown in (2.36) and (2.56).

Furthermore, let us confirm the canonical commutation relation of (1.140).
Using (2.68), we have

qp� pq ¼ 1
i

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r ffiffiffiffiffiffiffiffiffiffi
m�hx
2

r
aþ ay
� �

a� ay
� �

� a� ay
� �

aþ ay
� �h i

¼ �h
2i
� �2ð Þ � aay � aya

� �
¼ i�h a; ay

h i
¼ i�h ¼ i�hbE ; ð2:73Þ

where with the second last equality we used (2.24) and the identity matrix of an
infinite dimension bE is given by

bE ¼

1 0 0
0 1 0
0 0 1

0 0 � � �
0 0 � � �
0 0 � � �

0 0 0
0 0 0
..
. ..

. ..
.

1 0 � � �
0 1 � � �
..
. ..

. . .
.

0BBBBBB@

1CCCCCCA: ð2:74Þ
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Thus, the canonical commutation relation holds with the quantum-mechanical
harmonic oscillator. This can be confirmed directly from (2.69) and (2.70). The
proof is left for readers as an exercise.

2.4 Coordinate Representation of Schrödinger Equation

The Schrödinger equation has been given in (1.55) or (2.11) as a SOLDE form. In
contrast to the matrix representation, (1.55) and (2.11) are said to be coordinate
representation of Schrödinger equation. Now, let us derive a coordinate represen-
tation of (2.28) to obtain an analytical solution.

On the basis of (1.31) and (2.17), a is expressed as

a ¼
ffiffiffiffiffiffiffi
mx
2�h

r
qþ iffiffiffiffiffiffiffiffiffiffiffiffi

2m�hx
p p ¼

ffiffiffiffiffiffiffi
mx
2�h

r
qþ iffiffiffiffiffiffiffiffiffiffiffiffi

2m�hx
p �h

i
@

@q
¼

ffiffiffiffiffiffiffi
mx
2�h

r
qþ

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
@

@q
:

ð2:75Þ

Thus, (2.28) reads as a following first-order linear differential equation (FOLDE):ffiffiffiffiffiffiffi
mx
2�h

r
qþ

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
@

@q

 !
w0 qð Þ ¼ 0: ð2:76Þ

Or ffiffiffiffiffiffiffi
mx
2�h

r
qw0 qð Þþ

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
@w0 qð Þ
@q

¼ 0: ð2:77Þ

This is further reduced to

@w0 qð Þ
@q

þ mx
�h

qw0 qð Þ ¼ 0: ð2:78Þ

From this FOLDE form, we anticipate the following solution:

w0 qð Þ ¼ N0e�aq2 ; ð2:79Þ

where N0 is a normalization constant and a is a constant coefficient. Putting (2.79)
into (2.78), we have

�2aqþ mx
�h

q
� �

N0e�aq2 ¼ 0: ð2:80Þ
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Hence, we get

a ¼ mx
2�h

: ð2:81Þ

Thus,

w0 qð Þ ¼ N0e�
mx
2�h q

2
: ð2:82Þ

The constant N0 can be determined by the normalization condition given by

Z1
�1

w0 qð Þj j2dq ¼ 1 or N2
0

Z1
�1

e�
mx
�h q

2
dq ¼ 1: ð2:83Þ

Recalling the following formula:

Z1
�1

e�cq2dq ¼
ffiffiffi
p
c

r
ðc[ 0Þ; ð2:84Þ

we have

Z1
�1

e�
mx
�h q

2
dq ¼

ffiffiffiffiffiffiffi
p�h
mx

r
: ð2:85Þ

To get (2.84), putting I � R1�1 e�cq2dq, we have

I2 ¼
Z1
�1

e�cq2dq

0@ 1A Z1
�1

e�cs2ds

0@ 1A ¼
Z1
�1

e�c q2 þ s2ð Þdqds

¼
Z1
0

e�cr2rdr
Z2p
0

dh ¼ 1
2

Z1
0

e�cRdR
Z2p
0

dh ¼ p
c
;

ð2:86Þ

where with the third equality we converted two-dimensional Cartesian coordinate to
polar coordinate; take q ¼ r cos h, s ¼ r sin h and convert an infinitesimal area
element dqds to dr � rdh. With the second last equality of (2.86), we used the
variable transformation of r2 ! R. Hence, we get I ¼ ffiffi

p
c

p
.

Thus, we get

N0 ¼ mx
p�h

� �1=4
and w0 qð Þ ¼ mx

p�h

� �1=4
e�

mx
2�h q

2
: ð2:87Þ
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Also, we have

ay ¼
ffiffiffiffiffiffiffi
mx
2�h

r
q� iffiffiffiffiffiffiffiffiffiffiffiffi

2m�hx
p p ¼

ffiffiffiffiffiffiffi
mx
2�h

r
q� iffiffiffiffiffiffiffiffiffiffiffiffi

2m�hx
p �h

i
@

@q
¼

ffiffiffiffiffiffiffi
mx
2�h

r
q�

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
@

@q
:

ð2:88Þ

From (2.52), we get

wn qð Þ ¼ 1ffiffiffiffi
n!

p ðayÞn w0j i ¼ 1ffiffiffiffi
n!

p
ffiffiffiffiffiffiffi
mx
2�h

r
q�

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
@

@q

 !n

w0 qð Þ

¼ 1ffiffiffiffi
n!

p mx
2�h

� �n=2
q� �h

mx
@

@q

� 	n

w0 qð Þ:
ð2:89Þ

Putting

b �
ffiffiffiffiffiffiffiffiffiffiffiffi
mx=�h

p
and n ¼ bq; ð2:90Þ

we rewrite (2.89) as

wn qð Þ ¼ wn
n
b

� 	
¼ 1ffiffiffiffi

n!
p mx

2�hb2

� 	n=2

n� @

@n

� 	n

w0 qð Þ

¼ 1ffiffiffiffi
n!

p 1
2

� 	n=2

n� @

@n

� 	n

w0 qð Þ

¼
ffiffiffiffiffiffiffiffiffi
1

2nn!

r
mx
p�h

� �1=4
n� @

@n

� 	n

e�
1
2n

2

:

ð2:91Þ

Comparing (2.81) and (2.90), we have

a ¼ b2

2
: ð2:92Þ

Moreover, putting

Nn �
ffiffiffiffiffiffiffiffiffi
1

2nn!

r
mx
p�h

� �1=4
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

p1=22nn!

r
; ð2:93Þ

we get

wn n=bð Þ ¼ Nn n� @

@n

� 	n

e�
1
2n

2

: ð2:94Þ
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We have to normalize (2.94) with respect to a variable n. Since wn qð Þ has
already been normalized as in (2.53), we haveZ1

�1
wn qð Þj j2dq ¼ 1: ð2:95Þ

Changing a variable q to n, we have

1
b

Z1
�1

wn n=bð Þj j2dn ¼ 1: ð2:96Þ

Let us define fwn nð Þ as being normalized with n. In other words, wn qð Þ is

converted to fwn nð Þ by means of variable transformation and concomitant change in
normalization condition. Then, we haveZ1

�1

fwn nð Þ
��� ���2dn ¼ 1: ð2:97Þ

Comparing (2.96) and (2.97), if we define fwn nð Þ as

fwn nð Þ �
ffiffiffi
1
b

s
wn n=bð Þ; ð2:98Þ

fwn nð Þ should be a proper normalized function. Thus, we get

fwn nð Þ ¼ fNn n� @

@n

� 	n

e�
1
2n

2

with fNn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
p1=22nn!

r
: ð2:99Þ

Meanwhile, according to a theory of classical orthogonal polynomial, the
Hermite polynomials Hn xð Þ are defined as [3]

Hn xð Þ � ð�1Þnex2 dn

dxn
e�x2
� �

n� 0ð Þ; ð2:100Þ

where Hn xð Þ is a nth-order polynomial. We wish to show the following relation on
the basis of mathematical induction:

fwn nð Þ ¼ fNnHn nð Þe�1
2n

2

: ð2:101Þ
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Comparing (2.87), (2.98), and (2.99), we make sure that (2.101) holds with
n ¼ 0. When n ¼ 1, from (2.99), we have

fw1 nð Þ ¼ fN1 n� @

@n

� 	
e�

1
2n

2 ¼ fN1 ne�
1
2n

2 � �nð Þe�1
2n

2
h i

¼ fN1 � 2ne�1
2n

2

¼ fN1 ð�1Þ1en2 d
dn

e�n2
� �� 


e�
1
2n

2 ¼ fN1H1 nð Þe�1
2n

2
:

ð2:102Þ

Then, (2.101) holds with n ¼ 1 as well.
Next, from supposition of mathematical induction, we assume that (2.101) holds

with n. Then, we have

gwnþ 1 nð Þ ¼ gNnþ 1 n� @

@n

� 	nþ 1

e�
1
2n

2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 nþ 1ð Þp n� @

@n

� 	fNn n� @

@n

� 	n

e�
1
2n

2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 nþ 1ð Þp n� @

@n

� 	 fNnHn xð Þe�1
2n

2
h i

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 nþ 1ð Þp fNn n� @

@n

� 	
ð�1Þnen2 dn

dnn
e�n2
� �� 


e�
1
2n

2
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 nþ 1ð Þp fNnð�1Þn n� @

@n

� 	
e
1
2n

2 dn

dnn
e�n2
� �� 


¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 nþ 1ð Þp fNnð�1Þn ne

1
2n

2 dn

dnn
e�n2
� �

� @

@n
e
1
2n

2 dn

dnn
e�n2
� �� 
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 nþ 1ð Þp fNnð�1Þn ne

1
2n

2 dn

dnn
e�n2
� �

� ne
1
2n

2 dn

dnn
e�n2
� �

� e
1
2n

2 dnþ 1

dnnþ 1 e�n2
� �� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 nþ 1ð Þp fNnð�1Þnþ 1e

1
2n

2 dnþ 1

dnnþ 1 e�n2
� �

¼ gNnþ 1 ð�1Þnþ 1en
2 dnþ 1

dnnþ 1 e�n2
� �� 


e�
1
2n

2 ¼ gNnþ 1Hnþ 1 xð Þe�1
2n

2
:

ð2:103Þ

This means that (2.101) holds with nþ 1 as well. Thus, it follows that (2.101) is
true of n that is zero or any positive integer.

Orthogonal relation reads as

Z1
�1

fwmðnÞ�fwn nð Þdn ¼ dmn: ð2:104Þ

Placing (2.98) back into the function form wn qð Þ, we have

wn qð Þ ¼
ffiffiffi
b

p fwn bqð Þ: ð2:105Þ
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Using (2.101) and explicitly rewriting (2.105), we get

wn qð Þ ¼ mx
�h

� �1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p1=22nn!

r
Hn

ffiffiffiffiffiffiffi
mx
�h

r
q

� 	
e�

mx
2�h q

2
n ¼ 0; 1; 2; . . .ð Þ: ð2:106Þ

We tabulate first several Hermite polynomials Hn xð Þ in Table 2.1, where the
index n represents the highest order of the polynomials. In Table 2.1, we see that
even functions and odd functions appear alternately (i.e., parity). This is the case
with wn qð Þ as well, because wn qð Þ is a product of Hn xð Þ and an even function e�mx

2�h q
2
.

Combining (2.101) and (2.104), the orthogonal relation betweenfwn nð Þ n ¼ 0; 1; 2; . . .ð Þ can be described alternatively as [3]Z1
�1

e�n2Hm nð ÞHn nð Þdn ¼ ffiffiffi
p

p
2nn!dmn: ð2:107Þ

Note that Hm nð Þ is a real function, and so HmðnÞ� ¼ Hm nð Þ. The relation (2.107)

is well known as the orthogonality of Hermite polynomials with e�n2 taken as a
weight function [3]. Here, the weight function is a real and nonnegative function
within the domain considered [e.g., �1; þ1ð Þ in the present case] and inde-
pendent of indices m and n. We will deal with it again in Sect. 8.4.

The relation (2.101) and the orthogonality relationship described as (2.107) can
more explicitly be understood as follows: From (2.11), we have the Schrödinger
equation of a one-dimensional quantum-mechanical harmonic oscillator such that

� �h2

2m
d2u qð Þ
dq2

þ 1
2
mx2q2u qð Þ ¼ Eu qð Þ: ð2:108Þ

Changing a variable as in (2.90), we have

� d2u nð Þ
dn2

þ n2u nð Þ ¼ 2E
�hx

u nð Þ: ð2:109Þ

Defining a dimensionless parameter

k � 2E
�hx

: ð2:110Þ

Table 2.1 First six Hermite
polynomials

H0 xð Þ ¼ 1

H1 xð Þ ¼ 2x

H2 xð Þ ¼ 4x2 � 2

H3 xð Þ ¼ 8x3 � 12x

H4 xð Þ ¼ 16x4 � 48x2 þ 12

H5 xð Þ ¼ 32x5 � 160x3 þ 120x
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and also defining a differential operator D such that

D � � d2

dn2
þ n2; ð2:111Þ

we have a following eigenvalue equation:

Du nð Þ ¼ ku nð Þ: ð2:112Þ

We further consider a following function v nð Þ such that

u nð Þ ¼ v nð Þe�n2=2: ð2:113Þ

Then, (2.109) is converted as follows:

� d2v nð Þ
dn2

þ 2n
dv nð Þ
dn

� 

e�

n2

2 ¼ k� 1ð Þv nð Þe�n2

2 : ð2:114Þ

Since e�
n2

2 does not vanish with any n, we have

� d2v nð Þ
dn2

þ 2n
dv nð Þ
dn

¼ k� 1ð Þv nð Þ: ð2:115Þ

If we define another differential operator eD such that

eD � � d2

dn2
þ 2n

d
dn

; ð2:116Þ

we have another eigenvalue equation

eDv nð Þ ¼ k� 1ð Þv nð Þ: ð2:117Þ

Meanwhile, we have a following well-known differential equation:

d2Hn nð Þ
dn2

� 2n
dHn nð Þ
dn

þ 2nHn nð Þ ¼ 0: ð2:118Þ

This equation is said to be Hermite differential equation. Using (2.116), (2.118)
can be recast as an eigenvalue equation such that

eDHn nð Þ ¼ 2nHn nð Þ: ð2:119Þ
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Therefore, comparing (2.115) and (2.118) and putting

k ¼ 2nþ 1; ð2:120Þ

we get

v nð Þ ¼ cHn nð Þ; ð2:121Þ

where c is an arbitrary constant. Thus, using (2.113), for a solution of (2.109), we
get

un nð Þ ¼ cHn nð Þe�n2=2; ð2:122Þ

where the solution u nð Þ is indexed with n. From (2.110), as an energy eigenvalue,
we have

En ¼ nþ 1
2

� 	
�hx:

Thus, (2.37) is recovered. A normalization constant c of (2.122) can be decided
as in (2.106).

As discussed above, the operator representation and coordinate representation
are fully consistent.

2.5 Variance and Uncertainty Principle

Uncertainty principle is one of most fundamental concepts of quantum mechanics.
To think of this conception on the basis of a quantum harmonic oscillator, let us
introduce a variance operator [4]. Let A be a physical quantity and let Ah i be an
expectation value as defined in (1.126). We define a variance operator as

ðDAÞ2
D E

;

where we have

DA � A� Ah i: ð2:123Þ

In (2.123), we assume that Ah i is obtained by operating A on a certain physical
state wj i. Then, we have

ðDAÞ2
D E

¼ ðA� Ah iÞ2
D E

¼ A2 � 2 Ah iAþ Ah i2
D E

¼ Ah i2� Ah i2: ð2:124Þ
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If A is Hermitian, DA is Hermitian as well. This is because

ðDAÞy ¼ Ay � Ah i�¼ A� Ah i ¼ DA; ð2:125Þ

where we used the fact that an expectation value of an Hermitian operator is real.

Then, ðDAÞ2
D E

is nonnegative as in the case of (2.13). Moreover, if wj i is an

eigenstate of A, ðDAÞ2
D E

¼ 0. Therefore, ðDAÞ2
D E

represents a measure of how

large measured values are dispersed when A is measured in reference to a quantum
state wj i. Also, we define a standard deviation dA as

dA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDAÞ2
D Er

: ð2:126Þ

We have a following important theorem on a standard deviation dA [4].

Theorem 2.1 Let A and B be Hermitian operators. If A and B satisfy

A;B½ � ¼ ik ðk : non-zero real numberÞ; ð2:127Þ

then we have

dA � dB� kj j=2 ð2:128Þ

in reference to any quantum state wj i.
Proof We have

DA;DB½ � ¼ A� wjAjwh i;B� wh jB wj i½ � ¼ A;B½ � ¼ ik: ð2:129Þ

In (2.129), we used the fact that wjAjwh i and wjBjwh i are just real numbers and
those commute with any operator. Next, we calculate a following quantity in
relation to a real number k:

ðDAþ ikDBÞ wj ik k2 ¼ wh jðDA� ikDBÞðDAþ ikDÞ wj i
¼ wh jðDAÞ2 wj i � kkþ wh jðDBÞ2 wj ik2;

ð2:130Þ

where we used the fact that DA and DB are Hermitian. For the above quadratic form
to hold with any real number k, we have

ð�kÞ2 � 4 wh jðDAÞ2 wj i wh jðDBÞ2 wj i 	 0: ð2:131Þ

Thus, (2.128) will follow.
On the basis of Theorem 2.1, we find that both dA and dB are positive on

condition that (2.127) holds. We have another important theorem.

52 2 Quantum-Mechanical Harmonic Oscillator



Theorem 2.2 Let A be an Hermitian operator. The necessary and sufficient con-
dition for a physical state w0j i to be an eigenstate of A is dA ¼ 0.

Proof Suppose that w0j i is a normalized eigenstate of A that belongs to an
eigenvalue a. Then, we have

w0h jA2w0

� ¼ a w0h jAw0i ¼ a2 w0h jw0i ¼ a2;

w0h jAw0i2 ¼ a w0h jw0i½ �2¼ a2:
ð2:132Þ

From (2.124) and (2.126), we have

w0h jðDAÞ2w0

E
¼ 0 i:e: dA ¼ 0: ð2:133Þ

Note that dA is measured in reference to w0j i. Conversely, suppose that dA ¼ 0.
Then,

dA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0jðDAÞ2w0

D Er
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DAw0jDAw0h i

p
¼ DAw0j jj j; ð2:134Þ

where we used the fact that DA is Hermitian. From the definition of norm of (1.121),
for dA ¼ 0 to hold, we have

DAw0 ¼ A� Ah ið Þw0 ¼ 0 i:e: Aw0 ¼ Ah iw0: ð2:135Þ

This indicates that w0 is an eigenstate of A that belongs to an eigenvalue Ah i.
This completes the proof.

Theorem 2.1 implies that (2.127) holds with any physical state wj i. That is, we
must have dA[ 0 and dB[ 0, if dA and dB are evaluated in reference to any wj i
on condition that (2.127) holds. From Theorem 2.2, in turn, it follows that eigen-
states cannot exist with A or B under the condition of (2.127).

To explicitly show this, we take an inner product of (2.127). That is, with
Hermitian operators A and B, consider the following inner product:

wh j A;B½ � wj i ¼ wh jik wj i i:e: wh jAB� BA wj i ¼ ik; ð2:136Þ

where we assumed that wj i is arbitrarily chosen normalized vector. Suppose now
that w0j i is an eigenstate of A that belongs to an eigenvalue a. Then, we have

A w0j i ¼ a w0j i: ð2:137Þ

Taking an adjoint of (2.137), we get

w0h jAy ¼ w0h jA ¼ w0h ja� ¼ a w0h j; ð2:138Þ

where the last equality comes from the fact that A is Hermitian. From (2.138), we
would have
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w0h jAB� BA w0j i ¼ w0h jAB w0j i � w0h jBA w0j i
¼ w0h jaB w0j i � w0h jBa w0j i ¼ a w0h jB w0j i � a w0h jB w0j i ¼ 0:

This would imply that (2.136) does not hold with w0j i, in contradiction to
(2.127), where ik 6¼ 0. Namely, we conclude that any physical state cannot be an
eigenstate of A on condition that (2.127) holds. Equation (2.127) is rewritten as

wh jBA� AB wj i ¼ �ik: ð2:139Þ

Suppose now that u0j i is an eigenstate of B that belongs to an eigenvalue b.
Then, we can similarly show that any physical state cannot be an eigenstate of B.

Summarizing the above, we restate that once we have a relation
A;B½ � ¼ ik k 6¼ 0ð Þ, their representation matrix does not diagonalize A or B. Or,
once we postulate A;B½ � ¼ ik k 6¼ 0ð Þ, we must abandon an effort to have a repre-
sentation matrix that diagonalizes A and B. In the quantum-mechanical formulation
of a harmonic oscillator, we have introduced the canonical commutation relation
(see Sect. 2.3) described by q; p½ � ¼ i�h (1.140). Indeed, neither q nor p is diago-
nalized as shown in (2.69) or (2.70).

Example 2.1 Taking a quantum harmonic oscillator as an example, we consider
variance of q and p in reference to wnj i n ¼ 0; 1; . . .ð Þ. We have

ðDqÞ2
D E

¼ wnh jq2 wnj i � wnh jq wnj i2: ð2:140Þ
Using (2.55) and (2.62) as well as (2.68), we get

wnh jq wnj i ¼
ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
wnh jaþ ay wnj i

¼
ffiffiffiffiffiffiffiffiffiffi
�hn
2mx

r
wn�1h jwniþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h nþ 1ð Þ
2mx

r
wnh jwnþ 1

� ¼ 0;

ð2:141Þ

where the last equality comes from (2.53). We have

q2 ¼ �h
2mx

ðaþ ayÞ2 ¼ �h
2mx

a2 þ bE þ 2ayaþðayÞ2
h i

; ð2:142Þ

where bE denotes a unit operator and we used (2.24) along with the following
relation:

aay ¼ aay � ayaþ aya ¼ a; ay
h i

þ aya ¼ bE þ aya: ð2:143Þ
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Using (2.55) and (2.62), we have

wnh jq2 wnj i ¼ �h
2mx

wnh jwniþ 2 wnh jayawn

Eh i
¼ �h

2mx
2nþ 1ð Þ; ð2:144Þ

where we used (2.60) with the last equality. Thus, we get

ðDqÞ2
D E

¼ wnh jq2 wnj i � wnh jq wnj i2¼ �h
2mx

2nþ 1ð Þ:

Following similar procedures to those mentioned above, we get

wnh jp wnj i ¼ 0 and wnh jp2 wnj i ¼ m�hx
2

2nþ 1ð Þ: ð2:145Þ

Thus, we get

ðDpÞ2
D E

¼ wnh jp2 wnj i ¼ m�hx
2

2nþ 1ð Þ:

Accordingly, we have

dq � dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDqÞ2
D Er

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDpÞ2
D Er

¼ �h
2

2nþ 1ð Þ� �h
2
: ð2:146Þ

The quantity dq � dp is equal to �h
2 for n ¼ 0 and becomes larger with increasing n.

The above example gives a good illustration for Theorem 2.1. Note that putting
A ¼ q and B ¼ p along with k ¼ �h in Theorem 2.1, we should have from (1.140)

dq � dp� �h
2
:

This is indeed the case with (2.146) for the quantum-mechanical harmonic
oscillator. This example represents uncertainty principle more generally.

In relation to the aforementioned argument, we might well wonder if in
Examples 1.1 and 1.2 have an eigenstate of a fixed momentum. Suppose that we
chose for an eigenstate y xð Þ ¼ ceikx, where c is a constant. Then, we would have
�h
i
@y xð Þ
@x ¼ �hky xð Þ and get an eigenvalue �hk for a momentum. Nonetheless, such y xð Þ

does not satisfy the proper BCs; i.e., y Lð Þ ¼ y �Lð Þ ¼ 0. This is because eikx never
vanishes with any real numbers of k or x (any complex numbers of k or x, more
generally). Thus, we cannot obtain a proper solution that has an eigenstate with a
fixed momentum in a confined physical system.
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Chapter 3
Hydrogen-like Atoms

In a history of quantum mechanics, it was first successfully applied to the motion of
an electron in a hydrogen atom along with a harmonic oscillator. Unlike the case of
a one-dimensional harmonic oscillator we dealt with in Chap. 2 however, with a
hydrogen atom we have to consider three-dimensional motion of an electron.
Accordingly, it takes somewhat elaborate calculations to constitute the
Hamiltonian. The calculation procedures themselves, however, are worth following
to understand underlying basic concepts of the quantum mechanics. At the same
time, this chapter is a treasure of special functions. In Chap. 2, we have already
encountered one of them, i.e., Hermite polynomials. Here, we will deal with
Legendre polynomials associated Legendre polynomials, etc. These special func-
tions arise when we deal with a physical system having, e.g., the spherical sym-
metry. In a hydrogen atom, an electron is moving in a spherically symmetric
Coulomb potential field produced by a proton. This topic provides us with a good
opportunity to study various special functions. The related Schrödinger equation
can be separated into an angular part and a radial part. The solutions of angular
parts are characterized by spherical (surface) harmonics. The (associated) Legendre
functions are correlated with them. The solutions of the radial part are connected to
the (associated) Laguerre polynomials. The exact solutions are obtained by the
product of the (associated) Legendre functions and (associated) Laguerre polyno-
mials accordingly. Thus, to study the characteristics of hydrogen-like atoms from
the quantum-mechanical perspective is of fundamental importance.

3.1 Introductory Remarks

The motion of the electron in hydrogen is well-known as a two-particle problem (or
two-body problem) in a central force field. In that case, the coordinate system of the
physical system is separated into the relative coordinates and center-of-mass
coordinates. To be more specific, the coordinate separation is true of the case where
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two particles are moving under control only by a force field between the two
particles without other external force fields [1].

In the classical mechanics, equation of motion is separated into two equations
related to the relative coordinates and center-of-mass coordinates accordingly. Of
these, a term of the potential field is only included in the equation of motion with
respect to the relative coordinates.

The situation is the same with the quantum mechanics. Namely, the Schrödinger
equation of motion with the relative coordinates is expressed as an eigenvalue
equation that reads as

� �h2

2l
$2 þVðrÞ

� �
w ¼ Ew; ð3:1Þ

where l is a reduced mass of two particles [1], i.e., an electron and a proton; VðrÞ is
a potential with r being a distance between the electron and proton. In (3.1), we
assume the spherically symmetric potential; i.e., the potential is expressed only as a
function of the distance r. Moreover, if the potential is coulombic,

� �h2

2l
$2 � e2

4pe0r

� �
w ¼ Ew; ð3:2Þ

where e0 is permittivity of vacuum and e is an elementary charge.
If we think of hydrogen-like atoms such as He+, Li2+, Be3+, etc., we have an

equation described as

� �h2

2l
$2 � Ze2

4pe0r

� �
w ¼ Ew; ð3:3Þ

where Z is an atomic number and l is a reduced mass of an electron and a nucleus
pertinent to the atomic (or ionic) species. We start with (3.3) in this chapter.

3.2 Constitution of Hamiltonian

As explicitly described in (3.3), the coulombic potential has a spherical symmetry.
In such a case, it will be convenient to recast (3.3) in a spherical coordinate (or polar
coordinate). As the physical system is of three-dimensional, we have to consider
orbital angular momentum L in Hamiltonian.

We have

L ¼ ðe1e2e3Þ
Lx
Ly
Lz

0@ 1A; ð3:4Þ
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where e1; e2; and e3 denote an orthonormal basis vectors in a three-dimensional
Cartesian space (R3); Lx, Ly, and Lz represent each component of L. The angular
momentum L is expressed in a form of determinant as

L ¼ x� p ¼
e1 e2 e3
x
px

y z
py pz

������
������;

where x denotes a position vector with respect to the relative coordinates x, y, and
z. That is,

x ¼ ðe1e2e3Þ
x
y
z

0@ 1A: ð3:5Þ

The quantity p denotes a momentum of an electron (as a particle carrying a
reduced mass l) with px, py, and pz being their components; p is denoted similar to
the above.

As for each component of L, we have, e.g.,

Lx ¼ ypz � zpy: ð3:6Þ

To calculate L2, we estimate L2x , L
2
y , and L2z separately. We have

L2x ¼ ðypz � zpyÞ � ðypz � zpyÞ
¼ ypzypz � ypzzpy � zpyypz � zpyzpy

¼ y2p2z � ypzzpy � zpyypz þ z2p2y

¼ y2p2z � yðzpz � i�hÞpy � zðypy � i�hÞpz þ z2p2y

¼ y2p2z þ z2p2y � yzpzpy � zypypz þ i�hðypy þ zpzÞ;

where we have used canonical commutation relation (1.140) in the third equality. In
the above calculations, we used commutability of, e.g., y and pz; z and py. For
example, we have

pz; y½ � wj i ¼ �h
i

@

@z
y� y

@

@z

� �
wj i ¼ �h

i
y
@ wj i
@z

� y
@ wj i
@z

� �
¼ 0:

Since wj i is arbitrarily chosen, this relation implies that pz and y commute. We
obtain similar relations regarding L2y and L2z as well. Thus, we have
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L2 ¼ L2x þ L2y þ L2z

¼ ðy2p2z þ z2p2y þ z2p2x þ x2p2z þ x2p2y þ y2p2xÞ
þ ðx2p2x � x2p2x þ y2p2y � y2p2y þ z2p2z � z2p2z Þ
� ðyzpzpy þ zypypz þ zxpxpz þ xzpzpx þ xypypx þ yxpxpyÞ
þ i�hðypy þ zpz þ zpz þ xpx þ xpx þ ypyÞ

¼ ðy2p2z þ z2p2y þ z2p2x þ x2p2z þ x2p2y þ y2p2x

þ x2p2x þ y2p2y þ z2p2z Þ � ðx2p2x þ y2p2y þ z2p2z
þ yzpzpy þ zypypz þ zxpxpz þ xzpzpx þ xypypx þ yxpxpyÞ
þ i�hðypy þ zpz þ zpz þ xpx þ xpx þ ypyÞ

¼ r2 � p2 � rðr � pÞ � pþ 2i�hðr � pÞ

: ð3:7Þ

In (3.7), we are able to ease the calculations by virtue of putting a term
ðx2p2x � x2p2x þ y2p2y � y2p2y þ z2p2z � z2p2z Þ. As a result, for the second term after the
second to the last equality we have

� ðx2p2x þ y2p2y þ z2p2z
þ yzpzpy þ zypypz þ zxpxpz þ xzpzpx þ xypypx þ yxpxpyÞ

¼ � xðxpx þ ypy þ zpzÞpx þ yðxpx þ ypy þ zpzÞpy þ zðxpx þ ypy þ zpzÞpz
� �

¼ �rðr � pÞ � p:

The calculations of r2 � p2 [the first term of (3.7)] and r � p (in the third term) are
straightforward.

In a spherical coordinate, momentum p is expressed as

p ¼ preðrÞ þ pheðhÞ þ p/eð/Þ; ð3:8Þ

where pr, ph, and p/ are components of p; eðrÞ, eðhÞ, and eð/Þ are orthonormal basis
vectors of R3 in the direction of increasing r, h, and /, respectively (see Fig. 3.1).
In Fig. 3.1b, eð/Þ is perpendicular to the plane shaped by the z-axis and a straight
line of y ¼ x tan/. Notice that the said plane is spanned by eðrÞ and eðhÞ.
Meanwhile, the momentum operator is expressed as [2]

p ¼ �h
i
$

¼ �h
i

eðrÞ
@

@r
þ eðhÞ

1
r
@

@h
þ eð/Þ

1
r sin h

@

@/

� �
:

ð3:9Þ

The vector notation of (3.9) corresponds to (1.31). That is, in the Cartesian
coordinate, we have
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p ¼ �h
i
$ ¼ �h

i
e1

@

@x
þ e2

@

@y
þ e3

@

@z

� �
;

where $ is said to be nabla (or del), a kind of differential vector operator.
Noting that

r ¼ reðrÞ; ð3:10Þ

and using (3.9), we have

r � p ¼ r � �h
i
$ ¼ r

�h
i
@

@r

� �
: ð3:11Þ

Hence,

rðr � pÞ � p ¼ r r
�h
i
@

@r

� �� �
�h
i
@

@r

� �
¼ ��h2r2

@2

@r2
: ð3:12Þ

Thus, we have

L2 ¼ r2p2 þ �h2r2
@2

@r2
þ 2�h2r

@

@r
¼ r2p2 þ �h2

@

@r
r2

@

@r

� �
: ð3:13Þ

Therefore,

y

x

z

e(r)

e( )

e( )

O

(a) (b)

e(r)

e( )

e( )

z

Fig. 3.1 Spherical coordinate system and orthonormal basis set. a Orthonormal basis vectors eðrÞ,
eðhÞ, and eð/Þ in R

3. b The basis vector eð/Þ is perpendicular to the plane shaped by the z-axis and a
straight line of y ¼ x tan/
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p2 ¼ � �h2

r2
@

@r
r2

@

@r

� �
þ L2

r2
: ð3:14Þ

Notice here that L2 does not contain r (vide infra); i.e., L2 commutes with r2, and
so it can freely be divided by r2. Thus, the Hamiltonian H is represented by

H ¼ p2

2l
þVðrÞ

¼ 1
2l

� �h2

r2
@

@r
r2

@

@r

� �
þ L2

r2

� �
� Ze2

4pe0r
:

ð3:15Þ

Thus, the Schrödinger equation can be expressed as

1
2l

� �h2

r2
@

@r
r2

@

@r

� �
þ L2

r2

� �
� Ze2

4pe0r

	 

w ¼ Ew: ð3:16Þ

Now, let us describe L2 in a polar coordinate. The calculation procedures are
somewhat lengthy, but straightforward. First, we have

x ¼ r sin h cos/;
y ¼ r sin h sin/;

z ¼ r cos h;

9=; ð3:17Þ

where we have 0� h� p and 0�/� 2p. Rewriting (3.17) with respect to r, h, and
/, we get

r ¼ ðx2 þ y2 þ z2Þ12;
h ¼ tan�1 ðx2 þ y2Þ1=2

z ;

/ ¼ tan�1 y
x :

9>=>; ð3:18Þ

Thus, we have

Lz ¼ xpy � ypx ¼ �i�h x
@

@y
� y

@

@x

� �
; ð3:19Þ

@

@x
¼ @r

@x
@

@r
þ @h

@x
@

@h
þ @/

@x
@

@/
: ð3:20Þ

In turn, we have
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@r
@x

¼ x
r
¼ sin h cos/;

@h
@x

¼ 1
1þðx2 þ y2Þ=z2 �

ðx2 þ y2Þ�1
2 � 2x

2z
¼ z

x2 þ y2 þ z2
� x

ðx2 þ y2Þ12
¼ cos h cos/

r
;

@/
@x

¼ 1
1þðy2=x2Þ � y � 1

x2

� �
¼ � sin/

r sin h
:

ð3:21Þ

In calculating the last two equations of (3.21), we used the differentiation of an
arc tangent function along with a composite function. Namely,

ðtan�1xÞ0 ¼ 1
1þ x2

:

Inserting (3.21) into (3.20), we get

@

@x
¼ sin h cos/

@

@r
þ cos h cos/

r
@

@h
� sin/
r sin h

@

@/
: ð3:22Þ

Similarly, we have

@

@y
¼ sin h sin/

@

@r
þ cos h sin/

r
@

@h
þ cos/

r sin h
@

@/
: ð3:23Þ

Inserting (3.22) and (3.23) together with (3.17) into (3.19), we get

Lz ¼ �i�h
@

@/
: ð3:24Þ

In a similar manner, we have

@

@z
¼ @r

@z
@

@r
þ @h

@z
@

@h
¼ cos h

@

@r
� sin h

r
@

@h
:

Combining this relation with either (3.23) or (3.22), we get

Lx ¼ i�h sin/
@

@h
þ cot h cos/

@

@/

� �
; ð3:25Þ

Ly ¼ �i�h cos/
@

@h
� cot h sin/

@

@/

� �
: ð3:26Þ
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Now, we introduce following operators:

Lðþ Þ � Lx þ iLy and Lð�Þ � Lx � iLy: ð3:27Þ

Then, we have

Lðþ Þ ¼ �hei/
@

@h
þ i cot h

@

@/

� �
; and Lð�Þ ¼ �he�i/ � @

@h
þ i cot h

@

@/

� �
: ð3:28Þ

Thus, we get

Lðþ ÞLð�Þ ¼ �h2ei/
@

@h
þ i cot h

@

@/

� �
e�i/ � @

@h
þ i cot h

@

@/

� �
¼ �h2ei/

(
e�i/ � @2

@h2
þ i � 1

sin2h

� �
@

@/
þ i cot h

@2

@h@/

� �

þ e�i/ cot h � @

@h
þ i cot h

@

@/

� �
þ ie�i/ cot h � @2

@/@h
þ i cot h

@2

@/2

� �)

¼ ��h2
@2

@h2
þ cot h

@

@h
þ i

@

@/
þ cot2h

@2

@/2

� �
:

ð3:29Þ

In the above calculation procedure, we used differentiation of a product function.
For instance, we have

@

@h
i cot h

@

@/

� �
¼ i

@ cot h
@h

@

@/
þ cot h

@2

@h@/

� �
¼ i � 1

sin2h

� �
@

@/
þ cot h

@2

@h@/

� �
:

Note also that @2

@h@/ ¼ @2

@/@h. This is because we are dealing with continuous and
differentiable functions.

Meanwhile, we have following commutation relations:

½Lx; Ly� ¼ i�hLz; ½Ly; Lz� ¼ i�hLx; and ½Lz; Lx� ¼ i�hLy: ð3:30Þ

This can easily be confirmed by requiring canonical commutation relations. The
derivation can routinely be performed, but we show it because the procedures
include several important points. For instance, we have
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½Lx; Ly� ¼ LxLy � LyLx
¼ ðypz � zpyÞðzpx � xpzÞ � ðzpx � xpzÞðypz � zpyÞ
¼ ypzzpx � ypzxpz � zpyzpx þ zpyxpz
� zpxypz þ zpxzpy þ xpzypz � xpzzpy

¼ ðypxpzz� zpxypzÞþ ðzpyxpz � xpzzpyÞ
þ ðxpzypz � ypzxpzÞþ ðzpxzpy � zpyzpxÞ

¼ �ypxðzpz � pzzÞþ xpyðzpz � pzzÞ ¼ i�hðxpy � ypxÞ ¼ i�hLz

:

In the above calculations, we used the canonical commutation relation as well as
commutability of, e.g., y and px; y and z; px and py. For example, we get

px; py
� �

wj i ¼ ��h2
@

@x
@

@y
� @

@y
@

@x

� �
wj i ¼ ��h2

@2 wj i
@x@y

� @2 wj i
@y@x

� �
¼ 0:

In the above equation, we assumed that the order of differentiation with respect
to x and y can be switched. It is because we are dealing with continuous and
differentiable normal functions. Thus, px and py commute.

For other important commutation relations, we have

½Lx;L2� ¼ 0; ½Ly;L2� ¼ 0; and ½Lz;L2� ¼ 0: ð3:31Þ

With the derivation, use

A;BþC½ � ¼ A;B½ � þ A;C½ �:

The derivation is straightforward and it is left for readers. The relations (3.30)
and (3.31) imply that a simultaneous eigenstate exists for L2 and one of Lx, Ly, and
Lz. This is because L2 commute with them from (3.31), whereas Lz does not
commute with Lx or Ly. The detailed argument about the simultaneous eigenstate
can be seen in Part III.

Thus, we have

Lðþ ÞLð�Þ ¼ L2x þ L2y þ iðLyLx � LxLyÞ ¼ L2x þ L2y þ i½Ly; Lx�
¼ L2x þ L2y þ �hLz:

Notice here that ½Ly; Lx ¼ �½Lx; Ly
� � ¼ �i�hLz. Hence,

L2 ¼ Lðþ ÞLð�Þ þ L2z � �hLz: ð3:32Þ

From (3.24), we have
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L2z ¼ ��h2
@2

@/2 : ð3:33Þ

Finally, we get

L2 ¼ ��h2
@2

@h2
þ cot h

@

@h
þ 1

sin2h

@2

@/2

� �
or

L2 ¼ ��h2
1

sin h
@

@h
sin h

@

@h

� �
þ 1

sin2h

@2

@/2

� �
:

ð3:34Þ

Replacing L2 in (3.15) with that of (3.34), we have

H ¼ � �h2

2lr2
@

@r
r2

@

@r

� �
þ 1

sin h
@

@h
sin h

@

@h

� �
þ 1

sin2h

@2

@/2

� �
� Ze2

4pe0r
ð3:35Þ

Thus, the Schrödinger equation of (3.3) takes a following form:

� �h2

2lr2
@

@r
r2

@

@r

� �
þ 1

sin h
@

@h
sin h

@

@h

� �
þ 1

sin2h

@2

@/2

� �
� Ze2

4pe0r

	 

w ¼ Ew:

ð3:36Þ

3.3 Separation of Variables

If the potential is spherically symmetric (e.g., a Coulomb potential), it is
well-known that the Schrödinger equations of (3.1–3.3) can be solved by a method
of separation of variables. More specifically, (3.36) can be separated into two
differential equations one of which only depends on a radial component r and the
other of which depends only upon angular components h and /.

To apply the method of separation of variables to (3.36), let us first return to
(3.15). Considering that L2 is expressed as (3.34), we assume that L2 has eigen-
values c (at any rate if any) and takes eigenfunctions Yðh;/Þ (again, if any as well)
corresponding to c. That is,

L2Yðh;/Þ ¼ cYðh;/Þ; ð3:37Þ

where Yðh;/Þ is assumed to be normalized. Meanwhile,

L2 ¼ L2x þ L2y þ L2z : ð3:38Þ

From (3.6), we have
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Lyx ¼ ðypz � zpyÞy ¼ pyz yy � pyy zy ¼ pzy� pyz ¼ ypz � zpy ¼ Lx: ð3:39Þ

Note that pz and y commute, so do py and z. Therefore, Lx is Hermitian, so is L2x .
More generally if an operator A is Hermitian, so is An (n: a positive integer);
readers, please show it. Likewise, Ly and Lz are Hermitian as well. Thus, L2 is
Hermitian, too.

Next, we consider an expectation value of L2, i.e., L2
� �

. Let wj i be an arbitrary
normalized nonzero vector (or function). Then,

L2� � � w
�� L2w

� �
¼ w

�� L2xw� �þhw j L2ywiþ w
�� L2zw� �

¼ hLyxw j Lxwiþ hLyyw j Lywiþ hLyz w j Lzwi
¼ Lxw j Lxwh iþ Lyw

�� Lyw� �þ Lzw j Lzwh i
¼ Lxwk k2 þ Lyw



 

2 þ Lzwk k2 � 0:

ð3:40Þ

Notice that the second last equality comes from that Lx, Ly, and Lz are Hermitian.
An operator that satisfies (3.40) is said to be nonnegative (see Sects. 1.4 and 2.2,
etc., where we saw the calculation routines). Note also that in (3.40) the equality
holds only when the following relations hold:

Lxwj i ¼ Lyw
�� � ¼ Lzwj i ¼ 0: ð3:41Þ

On this condition, we have

L2w
�� � ¼ jðL2x þ L2y þ L2z Þwi ¼ L2xw

�� �þ jL2ywiþ L2zw
�� �

¼ Lx Lxwj i þ LyjLywiþ Lz Lzwj i ¼ 0:
ð3:42Þ

The eigenfunction that satisfies (3.42) and the next relation (3.43) is a simul-
taneous eigenstate of Lx, Ly, Lz, and L2. This could seem to be in contradiction to
the fact that Lz does not commute with Lx or Ly. However, this is an exceptional
case. Let w0j i be the eigenfunction that satisfies both (3.41) and (3.42). Then, we
have

Lxw0j i ¼ Lyw0

�� � ¼ Lzw0j i ¼ L2w0

�� � ¼ 0: ð3:43Þ

As can be seen from (3.24) to (3.26) along with (3.34), the operators Lx, Ly, Lz,
and L2 are differential operators. Therefore, (3.43) implies that w0j i is a constant.
We will come back this point later. In spite of this exceptional situation, it is
impossible that all Lx, Ly, and Lz as well as L2 take a whole set of eigenfunctions as
simultaneous eigenstates. We briefly show this as below.
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In Chap. 2, we mention that if A;B½ � ¼ ik, any physical state cannot be an
eigenstate of A or B. The situation is different, on the other hand, if we have a
following case

A;B½ � ¼ iC; ð3:44Þ

where A, B, and C are Hermitian operators. The relation (3.30) is a typical example
for this. If C wj i ¼ 0 in (3.44), wj i might well be an eigenstate of A and/or B.
However, if C wj i ¼ c wj iðc 6¼ 0Þ, wj i cannot be an eigenstate of A or B. This can
readily be shown in a fashion similar to that described in Sect. 2.5. Let us think of,
e.g., ½Lx; Ly� ¼ i�hLz. Suppose that for 9w0 we have Lz w0j i ¼ 0. Taking an inner
product using w0j i, from (3.30) we have

w0

�� ðLxLy � LyLxÞw0

� � ¼ 0:

In this case, moreover, even if we have Lxw0j i ¼ 0 and Lyw0

�� � ¼ 0, we have no
inconsistency. If, on the other hand, Lz wj i ¼ m wj iðm 6¼ 0Þ, wj i cannot be an
eigenstate of Lx or Ly as mentioned above. Thus, we should be careful to deal with a
general situation where we have A;B½ � ¼ iC.

In the case where A;B½ � ¼ 0; AB ¼ BA, namely A and B commute, we have a
different situation. This relation is equivalent to that an operator AB� BA has an
eigenvalue zero for any physical state wj i. Yet, this statement is of less practical
use. Again, regarding details we wish to make a discussion in Sect. 12.6 of Part III.

Returning to (3.40), let us replace w with a particular eigenfunction Yðh;/Þ.
Then, we have

Y
�� L2Y

� � ¼ Y j cYh i ¼ c Y j Yh i ¼ c� 0: ð3:45Þ

Again, if L2 has an eigenvalue, the eigenvalue should be nonnegative. Taking
account of the coefficient �h2 in (3.34), it is convenient to put

c ¼ �h2kðk� 0Þ: ð3:46Þ

On ground that the solution of (3.36) can be described as

wðr; h;/Þ ¼ RðrÞYðh;/Þ; ð3:47Þ

the Schrödinger equation (3.16) can be rewritten as

1
2l

� �h2

r2
@

@r
r2

@

@r

� �
þ L2

r2

� �
� Ze2

4pe0r

	 

RðrÞYðh;/Þ ¼ ERðrÞYðh;/Þ: ð3:48Þ

That is,
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1
2l

� �h2

r2
@

@r
r2
@RðrÞ
@r

� �
Yðh;/Þþ L2Yðh;/Þ

r2
RðrÞ

� �
� Ze2

4pe0r
RðrÞYðh;/Þ

¼ ERðrÞYðh;/Þ:
ð3:49Þ

Recalling (3.37) and (3.46), we have

1
2l

� �h2

r2
@

@r
r2
@RðrÞ
@r

� �
Yðh;/Þþ �h2kYðh;/Þ

r2

� �
RðrÞ � Ze2

4pe0r
RðrÞYðh;/Þ

¼ ERðrÞYðh;/Þ:
ð3:50Þ

Dividing both sides by Yðh;/Þ, we get a SOLDE of a radial component as

1
2l

� �h2

r2
@

@r
r2
@RðrÞ
@r

� �
þ �h2k

r2

� �
RðrÞ � Ze2

4pe0r
RðrÞ ¼ ERðrÞ: ð3:51Þ

Regarding angular components h and/, using (3.34), (3.37), and (3.46), we have

L2Yðh;/Þ ¼ ��h2
1

sin h
@

@h
sin h

@

@h

� �
þ 1

sin2h

@2

@/2

� �
Yðh;/Þ ¼ �h2kYðh;/Þ:

ð3:52Þ

Dividing both sides by �h2, we get

� 1
sin h

@

@h
sin h

@

@h

� �
þ 1

sin2h

@2

@/2

� �
Yðh;/Þ ¼ kYðh;/Þ: ð3:53Þ

Notice in (3.53) that the angular part of SOLDE does not depend on a specific
form of the potential.

Now, we further assume that (3.53) can be separated into a zenithal angle part h
and azimuthal angle part / such that

Yðh;/Þ ¼ HðhÞUð/Þ: ð3:54Þ

Then, we have

� 1
sin h

@

@h
sin h

@HðhÞ
@h

� �
Uð/Þþ 1

sin2h

@2Uð/Þ
@/2

� �
HðhÞ ¼ kHðhÞUð/Þ: ð3:55Þ

Multiplying both sides by sin2h=HðhÞUð/Þ and arranging both the sides, we get

� 1
Uð/Þ

@2Uð/Þ
@/2 ¼ sin2h

HðhÞ
1

sin h
@

@h
sin h

@HðhÞ
@h

� �
þ kHðhÞ

	 

: ð3:56Þ
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Since LHS of (3.56) depends only upon / and RHS depends only on h, we must
have

LHS of ð3:56Þ ¼ RHS of ð3:56Þ ¼ g ðconstantÞ: ð3:57Þ

Thus, we have a following relation of LHS of (3.56):

� 1
Uð/Þ

d2Uð/Þ
d/2 ¼ g: ð3:58Þ

Putting D � � d2

d/2, we get

DUð/Þ ¼ gUð/Þ: ð3:59Þ

The SOLDEs of (3.58) and (3.59) are formally the same as (1.61) of Sect. 1.3,
where boundary conditions (BCs) are Dirichlet conditions. Unlike (1.61), however,
we have to consider different BCs; i.e., the periodic BCs.

As in Example 1.1, we adopt two linearly independent solutions. That is, we have

eim/; and e�im/ ðm 6¼ 0Þ:

As their linear combination, we have

Uð/Þ ¼ aeim/ þ be�im/: ð3:60Þ

As BCs, we consider Uð0Þ ¼ Uð2pÞ and U0ð0Þ ¼ U0ð2pÞ; i.e., we have

aþ b ¼ aei2pm þ be�i2pm: ð3:61Þ

Meanwhile, we have

U0ð/Þ ¼ aimeim/ � bime�im/: ð3:62Þ

Therefore, from BCs we have

aim� bim ¼ aimei2pm � bime�i2pm:

Then,

a� b ¼ aei2pm � be�i2pm: ð3:63Þ

From (3.61) to (3.63), we have

2að1� ei2pmÞ ¼ 0; and 2bð1� e�i2pmÞ ¼ 0:
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If a 6¼ 0, we must have m ¼ 0;	1;	2; . . .. If a ¼ 0, we must have b 6¼ 0 to
avoid having Uð/Þ � 0 as a solution. In that case, we have m ¼ 0;	1;	2; . . . as
well. Thus, it suffices to put Uð/Þ ¼ ceim/ðm ¼ 0;	1;	2; . . .Þ. Therefore, as a
normalized function ~Uð/Þ, we get

~Uð/Þ ¼ 1ffiffiffiffiffiffi
2p

p eim/ðm ¼ 0;	1;	2; . . .Þ: ð3:64Þ

Inserting it into (3.58), we have

m2eim/ ¼ geim/:

Therefore, we get

g ¼ m2 ðm ¼ 0;	1;	2; . . .Þ: ð3:65Þ

From (3.56) to (3.65), we have

� 1
sin h

d
dh

sin h
dHðhÞ
dh

� �
þ m2HðhÞ

sin2h
¼ kHðhÞðm ¼ 0;	1;	2; . . .Þ: ð3:66Þ

In (3.64) putting m ¼ 0 as an eigenvalue, we have Uð/Þ ¼ 1=
ffiffiffiffiffiffi
2p

p
as a corre-

sponding eigenfunction. Unlike Examples 1.1 and 1.2, this reflects that the differ-

ential operator � d2

d/2 accompanied by the periodic BCs is a nonnegative operator

that allows an eigenvalue of zero. Yet, we are uncertain of a range of m. To clarify
this point, we consider generalized angular momentum in the next section.

3.4 Generalized Angular Momentum

We obtained commutation relations of (3.30) among individual angular momentum
components Lx, Ly, and Lz. In an opposite way, we may start with (3.30) to define
angular momentum. Such a quantity is called generalized angular momentum.

Let ~J be a generalized angular momentum as in the case of (3.4) such that

~J ¼ ðe1e2e3Þ
~Jx
~Jy
~Jz

0@ 1A: ð3:67Þ

For the sake of simple notation, let us define J as follows so that we can
eliminate �h and deal with dimensionless quantities in the present discussion:
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J � ~J=�h ¼ ðe1e2e3Þ
~Jx=�h
~Jy=�h
~Jz=�h

0B@
1CA ¼ ðe1e2e3Þ

Jx
Jy
Jz

0B@
1CA;

J2 ¼ J2x þ J2y þ J2z :

ð3:68Þ

Then, we require following commutation relations:

½Jx; Jy� ¼ iJz; ½Jy; Jz� ¼ iJx; and ½Jz; Jx� ¼ iJy: ð3:69Þ

Also, we require Jx, Jy, and Jz to be Hermitian. The operator J2 is Hermitian
accordingly. The relations (3.69) lead to

½Jx; J2� ¼ 0; ½Jy; J2� ¼ 0; and ½Jz; J2� ¼ 0: ð3:70Þ

This can be confirmed as in the case of (3.30).
As noted above, again a simultaneous eigenstate exists for J2 and one of Jx, Jy,

and Jz. According to the convention, we choose J2 and Jz for the simultaneous
eigenstate. Then, designating the eigenstate by f; lj i, we have

J2 f; lj i ¼ f f; lj i and Jz f; lj i ¼ l f; lj i: ð3:71Þ

The implication of (3.71) is that f; lj i is the simultaneous eigenstate and that l is
an eigenvalue of Jz which f; lj i belongs to with f being an eigenvalue of J2 which
f; lj i belongs to as well.
Since Jz and J2 are Hermitian, both l and f are real (see Sect. 1.4). Of these,

f� 0 as in the case of (3.45). We define following operators Jðþ Þ and Jð�Þ as in the
case of (3.27):

Jðþ Þ � Jx þ iJy and Jð�Þ � Jx � iJy: ð3:72Þ

Then, from (3.69) to (3.70), we get

Jðþ Þ; J2
h i

¼ Jð�Þ; J2
h i

¼ 0: ð3:73Þ

Also, we obtain following commutation relations:

Jz; J
ðþ Þ

h i
¼ Jðþ Þ; Jz; J

ð�Þ
h i

¼ �Jð�Þ; Jðþ Þ; Jð�Þ
h i

¼ 2Jz: ð3:74Þ

From (3.70) to (3.72), we get

J2Jðþ Þ f; lj i ¼ Jðþ ÞJ2 lj i ¼ fJðþ Þ f; lj i;
J2Jð�Þ f; lj i ¼ Jð�ÞJ2 f; lj i ¼ fJð�Þ f; lj i:

ð3:75Þ
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Equation (3.75) indicates that both Jðþ Þ f; lj i and Jð�Þ f; lj i are eigenvectors of
J2 that correspond to an eigenvalue f.

Meanwhile, from (3.74) we get

JzJðþ Þ f; lj i ¼ Jðþ ÞðJz þ 1Þ f; lj i ¼ ðlþ 1ÞJðþ Þ f; lj i;
JzJ

ð�Þ f; lj i ¼ Jð�ÞðJz � 1Þ f; lj i ¼ ðl� 1ÞJð�Þ f; lj i:
ð3:76Þ

The relation (3.76) means that Jðþ Þ f; lj i is an eigenvector of Jz corresponding to
an eigenvalue ðlþ 1Þ, while Jð�Þ f; lj i is an eigenvector of Jz corresponding to an
eigenvalue ðl� 1Þ. This implies that Jðþ Þ and Jð�Þ function as raising and lowering
operators (or ladder operators) that have been introduced in this chapter. Thus,

using undetermined constants (or phase factors) aðþ Þ
l and að�Þ

l , we describe

Jðþ Þ f; lj i ¼ aðþ Þ
l f; lþ 1j i and Jð�Þ f; lj i ¼ að�Þ

l f; l� 1j i: ð3:77Þ

Next, let us characterize eigenvalues l. We have

J2x þ J2y ¼ J2 � J2z : ð3:78Þ

Therefore,

ðJ2x þ J2y Þ f; lj i ¼ ðJ2 � J2z Þ f; lj i ¼ ðf� l2Þ f; lj i: ð3:79Þ

Since ðJ2x þ J2y Þ is a nonnegative operator, its eigenvalues are nonnegative as
well, as can be seen from (3.40) to (3.45). Then, we have

f� l2 � 0: ð3:80Þ

Thus, for a fixed value of nonnegative f, l is bounded both upward and
downward. We define then a maximum of l as j and a minimum of l as j0.
Consequently, on the basis of (3.77), we have

Jðþ Þ f; jj i ¼ 0 and Jð�Þ f; j0j i ¼ 0: ð3:81Þ

This is because we have no quantum state corresponding to f; jþ 1j i or
f; j0 � 1j i. From (3.75) to (3.81), possible numbers of l are

j; j� 1; j� 2; . . .; j0: ð3:82Þ

From (3.69) to (3.72), we get

Jð�ÞJðþ Þ ¼ J2 � J2z � Jz; Jðþ ÞJð�Þ ¼ J2 � J2z þ Jz: ð3:83Þ

Operating these operators on f; jj i or f; j0j i and using (3.81) we get
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Jð�ÞJðþ Þ f; jj i ¼ ðJ2 � J2z � JzÞ f; jj i ¼ ðf� j2 � jÞ f; jj i ¼ 0;

Jðþ ÞJð�Þ f; j0j i ¼ ðJ2 � J2z þ JzÞ f; j0j i ¼ ðf� j02 þ j0Þ f; j0j i ¼ 0:
ð3:84Þ

Since f; jj i 6¼ 0 and f; j0j i 6¼ 0, we have

f� j2 � j ¼ f� j02 þ j0 ¼ 0: ð3:85Þ

This means that

f ¼ jðjþ 1Þ ¼ j0ðj0 � 1Þ: ð3:86Þ

Moreover, from (3.86) we get

jðjþ 1Þ � j0ðj0 � 1Þ ¼ ðjþ j0Þðj� j0 þ 1Þ ¼ 0: ð3:87Þ

As j� j0, j� j0 þ 1[ 0. From (3.87), therefore, we get

jþ j0 ¼ 0 or j ¼ �j0: ð3:88Þ

Then, we conclude that the minimum of l is �j. Accordingly, possible values of
l are

l ¼ j; j� 1; j� 2; . . .;�j� 1;�j: ð3:89Þ

That is, the number l can take is ð2jþ 1Þ. The relation (3.239) implies that
taking a positive integer k,

j� k ¼ �j or j ¼ k=2: ð3:90Þ

In other words, j is permitted to take a number zero, a positive integer, or a
positive half-integer (or more precisely, half-odd-integer). For instance, if j ¼ 1=2,
l can be 1=2 or �1=2. When j ¼ 1, l can be 1; 0; or � 1.

Finally, we have to decide undetermined constants aðþ Þ
l and að�Þ

l . To this end,
multiplying f; l� 1h j on both sides of the second equation of (3.77) from the left,
we have

f; l� 1h jJð�Þ f; lj i ¼ að�Þ
l f; l� 1 j f; l� 1h i ¼ að�Þ

l ; ð3:91Þ

where the second equality comes from that f; l� 1j i has been normalized; i.e.,
f; l� 1j ij jj j ¼ 1. Meanwhile, taking adjoint of both sides of the first equation of

(3.77), we have

f; lh j½Jðþ Þ�y ¼ aðþ Þ
l

h i

f; lþ 1h j: ð3:92Þ

But, from (3.72) and the fact that Jx and Jy are Hermitian,
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½Jðþ Þ�y ¼ Jð�Þ: ð3:93Þ

Using (3.93) and replacing l in (3.92) with l� 1, we get

f; l� 1h jJð�Þ ¼ aðþ Þ
l�1

h i

f; lh j: ð3:94Þ

Furthermore, multiplying f; lj i on (3.94) from the right, we have

f; l� 1h jJð�Þ f; lj i ¼ aðþ Þ
l�1

h i

f; l j f; lh i ¼ aðþ Þ

l�1

h i

; ð3:95Þ

where again f; lj i is assumed to be normalized. Comparing (3.91) and (3.95), we get

að�Þ
l ¼ aðþ Þ

l�1

h i

: ð3:96Þ

Taking an inner product regarding the first equation of (3.77) and its adjoint,

f;lh jJð�ÞJðþ Þ f; lj i ¼ aðþ Þ
l

h i

aðþ Þ
l f; lþ 1 j f; lþ 1h i ¼ aðþ Þ

l

��� ���2: ð3:97Þ

Once again, the second equality of (3.97) results from the normalization of the
vector.

Using (3.83) as well as (3.71) and (3.86), (3.97) can be rewritten as

f; lh jJ2 � J2z � Jz f; lj i
¼ f; lh jjðjþ 1Þ � l2 � l f; lj i ¼ f; l j f; lh iðj� lÞðjþ lþ 1Þ ¼ jaðþ Þ

l j2:
ð3:98Þ

Thus, we get

aðþ Þ
l ¼ eid

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj� lÞðjþ lþ 1Þ

p
ðd : an arbitrary real numberÞ; ð3:99Þ

where eid is a phase factor. From (3.96), we also get

að�Þ
l ¼ e�id

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj� lþ 1Þðjþ lÞ

p
: ð3:100Þ

In (3.99) and (3.100), we routinely put d ¼ 0 so that aðþ Þ
l and að�Þ

l can be
positive numbers. Explicitly rewriting (3.77), we get

Jðþ Þ f; lj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj� lÞðjþ lþ 1Þ

p
f; lþ 1j i;

Jð�Þ f; lj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj� lþ 1Þðjþ lÞ

p
f; l� 1j i;

ð3:101Þ
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where j is a fixed given number chosen from among zero, positive integers, and
positive half-integers (or half-odd-integers).

3.5 Orbital Angular Momentum: Operator Approach

In Sect. 3.4, we have derived various important results on angular momenta on the
basis of the commutation relations (3.69) and the assumption that Jx, Jy, and Jz are
Hermitian. Now, let us return to the discussion on orbital angular momenta we dealt
with in Sects. 3.2 and 3.3. First, we treat the orbital angular momenta via operator
approach. This approach enables us to understand why a quantity j introduced in
Sect. 3.4 takes a value zero or positive integers with the orbital angular momenta. In
the next section (Sect. 3.6), we will deal with the related issues by an analytical
method.

In (3.28), we introduced differential operators Lðþ Þ and Lð�Þ. According to
Sect. 3.4, we define following operators to eliminate �h so that we can deal with
dimensionless quantities:

M � L=�h ¼ ðe1e2e3Þ
Mx

My

Mz

0B@
1CA;

M2 ¼ L2=�h2 ¼ M2
x þM2

y þM2
z :

ð3:102Þ

Hence, we have

Mx ¼ Lx=�h;My ¼ Ly=�h; and Mz ¼ Lz=�h: ð3:103Þ

Moreover, we define following operators:

Mðþ Þ � Mx þ iMy ¼ Lðþ Þ=�h ¼ ei/
@

@h
þ i cot h

@

@/

� �
; ð3:104Þ

Mð�Þ � Lð�Þ=�h ¼ e�i/ � @

@h
þ i cot h

@

@/

� �
: ð3:105Þ

Then, we have

M2 ¼ � 1
sin h

@

@h
sin h

@

@h

� �
þ 1

sin2h

@2

@/2

� �
: ð3:106Þ

Here, we execute variable transformation such that
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n ¼ cos hð0� h� pÞ or sin h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
: ð3:107Þ

Noting, e.g., that

@

@h
¼ @n

@h
@

@n
¼ � sin h

@

@n
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
@

@n
; sin h

@

@h
¼ �sin2h

@

@n
¼ �ð1� n2Þ @

@n
;

ð3:108Þ

we get

Mðþ Þ ¼ ei/ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
@

@n
þ i

nffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p @

@/

 !
;

Mð�Þ ¼ e�i/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
@

@n
þ i

nffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p @

@/

 !
;

M2 ¼ � @

@n
ð1� n2Þ @

@n

� �
� 1

1� n2
@2

@/2 :

ð3:109Þ

Although we showed in Sect. 3.3 that m ¼ 0;	1;	2; . . ., the range of m was
unclear. The relationship between m and k in (3.66) remains unclear so far as well.
On the basis of a general approach developed in Sect. 3.4, however, we have
known that the eigenvalue l of the dimensionless z-component angular momentum
Jz is bounded with its maximum and minimum being j and �j, respectively see
(3.89), where j can be zero, a positive integer, or a positive half-odd-integer.
Concomitantly, the eigenvalue f of J2 equals jðjþ 1Þ.

In the present section, let us reconsider the relationship between m and k in
(3.66) in light of the knowledge obtained in Sect. 3.4. According to the custom, we
replace l in (3.89) with m to have

m ¼ j; j� 1; j� 2; . . .; j� 1;�j: ð3:110Þ

At the moment, we assume that m can be a half-odd-integer besides zero or an
integer [3].

Now, let us define notation of Yðh;/Þ that appeared in (3.37). This function is
eligible for a simultaneous eigenstate of M2 and Mz and can be indexed with j and
m as in (3.110). Then, let Yðh;/Þ be described accordingly as

Ym
j ðh;/Þ � Yðh;/Þ: ð3:111Þ

From (3.54) to (3.64), we have

Ym
j ðh;/Þ / eim/:
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Therefore, we get

Mðþ ÞYm
j ðh;/Þ ¼ ei/ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
@

@n
� mnffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p !

Ym
j ðh;/Þ

¼ �ei/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �mþ 1 @

@n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m

Ym
j ðh;/Þ

� �
;

ð3:112Þ

where we used the following equation:

@

@n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �� ��m

¼ ð�mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m�1

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��1

ð�2nÞ

¼ mn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m�2

;

@

@n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m

Ym
j ðh;/Þ

� �
¼ mn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m�2

Ym
j ðh;/Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m@Ym
j ðh;/Þ
@n

:

ð3:113Þ

Similarly, we get

Mð�ÞYm
j ðh;/Þ ¼ e�i/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
@

@n
� mnffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p !

Ym
j ðh;/Þ

¼ e�i/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��mþ 1
@

@n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �m

Ym
j ðh;/Þ

� �
:

ð3:114Þ

Let us derive the relations where Mðþ Þ or Mð�Þ is successively operated on
Ym
j ðh;/Þ. In the case of Mðþ Þ, using (3.109) we have

½Mðþ Þ�nYm
j ðh;/Þ ¼ ð�1Þnein/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �mþ n
@n

@nn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m

Ym
j ðh;/Þ

� �
:

ð3:115Þ

We confirm this relation by mathematical induction. We have (3.112) by
replacing n with 1 in (3.115). Namely, (3.115) holds when n ¼ 1. Next, suppose
that (3.115) holds with n. Then, using the first equation of (3.109) and noting
(3.64), we have
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½Mðþ Þ�nþ 1Ym
j ðh;/Þ ¼ Mðþ Þ ½Mðþ Þ�nYm

j ðh;/Þ
n o

¼ ei/ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
@

@n
þ i

nffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p @

@/

 !

� ð�1Þnein/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �mþ n @n

@nn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m

Ym
j ðh;/Þ

� �
¼ ð�1Þneiðnþ 1Þ/ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
@

@n
� nðnþmÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p" #

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �mþ n @n

@nn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m

Ym
j ðh;/Þ

� �
¼ ð�1Þneiðnþ 1Þ/ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
ðmþ nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �mþ n�1

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��1

ð�2nÞ
" #(

� @n

@nn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m

Ym
j ðh;/Þ

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �mþ n @nþ 1

@nnþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m

Ym
j ðh;/Þ

� �
� nðnþmÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
q� �mþ n @n

@nn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m

Ym
j ðh;/Þ

� �)

¼ ð�1Þnþ 1eiðnþ 1Þ/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �mþðnþ 1Þ @nþ 1

@nnþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m

Ym
j ðh;/Þ

� �
:

ð3:116Þ

Notice that the first and third terms in the second last equality canceled each
other. Thus, (3.115) certainly holds with ðnþ 1Þ. Similarly, we have [3]

½Mð�Þ�nYm
j ðh;/Þ ¼ e�in/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��mþ n
@n

@nn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �m

Ym
j ðh;/Þ

� �
:

ð3:117Þ

Proof of (3.117) is left for readers.
From the second equation of (3.81) and (3.114) where m is replaced with �j, we

have

Mð�ÞY�j
j ðh;/Þ ¼ e�i/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �jþ 1 @

@n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��j

Y�j
j ðh;/Þ

" #
¼ 0:

ð3:118Þ
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This implies that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p� ��j
Y�j
j ðh;/Þ is a constant with respect to n. We

describe this asffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��j

Y�j
j ðh;/Þ ¼ c ðc : constant with respect to nÞ: ð3:119Þ

Meanwhile, putting m ¼ �j and n ¼ 2jþ 1 in (3.115) and taking account of the
first equation of (3.77) and the first equation of (3.81), we get

½Mðþ Þ�2jþ 1Y�j
j ðh;/Þ

¼ ð�1Þ2jþ 1eið2jþ 1Þ/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �jþ 1 @2jþ 1

@n2jþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� � j

Y�j
j ðh;/Þ

" #
¼ 0:

ð3:120Þ

This means thatffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� � j

Y�j
j ðh;/Þ ¼ ðat most a 2j-degree polynomial with nÞ: ð3:121Þ

Replacing Y�j
j ðh;/Þ in (3.121) with that of (3.119), we get

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� � j ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� � j

¼ cð1� n2Þ j

¼ ðat most a 2j-degree polynomial with nÞ:
ð3:122Þ

Here, if j is a half-odd-integer, cð1� n2Þ j of (3.122) cannot be a polynomial. If
on the other hand j is zero or a positive integer, cð1� n2Þ j is certainly a polynomial
and, to top it all, a 2j-degree polynomial with respect to n; so isffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p� � j

Y�j
j ðh;/Þ.

According to the custom, henceforth we use l as zero or a positive integer instead
of j. That is,

Yðh;/Þ � Ym
l ðh;/Þ ðl : zero or a positive integerÞ: ð3:123Þ

At the same time, so far as the orbital angular momentum is concerned, from
(3.71) to (3.86) we can identify f in (3.71) with lðlþ 1Þ. Namely, we have

f ¼ lðlþ 1Þ:

Concomitantly, m in (3.110) is determined as
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m ¼ l; l� 1; l� 2; . . .1; 0;�1; . . .� lþ 1;�l: ð3:124Þ

Thus, as expected m is zero or a positive or negative integer. Considering (3.37)
and (3.46), f is identical with k in (3.46). Finally, we rewrite (3.66) such that

� 1
sin h

d
dh

sin h
dHðhÞ
dh

� �
þ m2HðhÞ

sin2h
¼ lðlþ 1ÞHðhÞ; ð3:125Þ

where l is equal to zero or positive integers and m is given by (3.124).
On condition of n ¼ cos h (3.107), defining the following function

Pm
l ðnÞ � HðhÞ; ð3:126Þ

and considering (3.109) along with (3.54), we arrive at the next SOLDE described as

d
dn

ð1� n2Þ dP
m
l ðnÞ
dn

� �
þ lðlþ 1Þ � m2

1� n2

� �
Pm
l ðnÞ ¼ 0: ð3:127Þ

The SOLDE of (3.127) is well-known as the associated Legendre differential
equation. The solutions Pm

l ðnÞ are called associated Legendre functions.
In the next section, we characterize the said equation and functions by an ana-

lytical method. Before going into details, however, we further seek characteristics
of Pm

l ðnÞ by the operator approach.
Adopting the notation of (3.123) and putting m ¼ l in (3.112), we have

Mðþ ÞYl
l ðh;/Þ ¼ �ei/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �lþ 1
@

@n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��l

Y l
l ðh;/Þ

" #
: ð3:128Þ

Corresponding to (3.81), we have Mðþ ÞYl
l ðh;/Þ ¼ 0. This implies thatffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
q� ��l

Y l
l ðh;/Þ ¼ c ðc : constant with respect to; nÞ: ð3:129Þ

From (3.107) to (3.64), we get

Yl
l ðh;/Þ ¼ jlsinlheil/; ð3:130Þ

where jl is another constant that depends on l, but is independent of h and /. Let us
seek jl by normalization condition. That is,

Z2p
0

d/
Zp
0

sin hdh Yl
l ðh;/Þj2 ¼ 2p��� ��jlj2 Zp

0

sin2lþ 1hdh ¼ 1; ð3:131Þ
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where the integration is performed on a unit sphere. Note that an infinitesimal area
element on the unit sphere is represented by sin hdhd/.

We evaluate the above integral denoted as

I �
Zp
0

sin2lþ 1hdh: ð3:132Þ

Using integration by parts,

I ¼
Zp
0

ð� cos hÞ0sin2lhdh

¼ ½ð� cos hÞsin2lh�p0 þ
Zp
0

ðcos hÞ � 2l � sin2l�1h cos hdh

¼ 2l
Zp
0

sin2l�1hdh� 2l
Zp
0

sin2lþ 1hdh:

ð3:133Þ

Thus, we get a recurrence relation with respect to I (3.132) such that

I ¼ 2l
2lþ 1

Zp
0

sin2l�1hdh: ð3:134Þ

Repeating the above process, we get

I ¼ 2l
2lþ 1

� 2l� 2
2l� 1

. . .
2
3

Zp
0

sin hdh ¼ 22lþ 1ðl!Þ2
ð2lþ 1Þ! : ð3:135Þ

Then,

jlj j ¼ 1
2ll!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ!

4p

r
or jl ¼ eiv

2ll!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ!

4p

r
ðv : realÞ; ð3:136Þ

where eiv is an undetermined constant (phase factor) that is to be determined below.
Thus we get

Yl
l ðh;/Þ ¼

eiv

2ll!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ!

4p

r
sinlh eil/: ð3:137Þ
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Meanwhile, in the second equation of (3.101) replacing Jð�Þ, j, and l in (3.101)
with Mð�Þ, l, and m, respectively, and using Ym

l ðh;/Þ instead of f; lj i, we get

Ym�1
l ðh;/Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl� mþ 1ÞðlþmÞp Mð�ÞYm

l ðh;/Þ: ð3:138Þ

Replacing m with l in (3.138), we have

Yl�1
l ðh;/Þ ¼ 1ffiffiffiffi

2l
p Mð�ÞYl

l ðh;/Þ: ð3:139Þ

Operating Mð�Þ ðl� mÞ times in total on Yl
l ðh;/Þ of (3.139), we have

Ym
l ðh;/Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lð2l� 1Þ. . .ðlþmþ 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 2. . .ðl� mÞp ½Mð�Þ�l�mYl
l ðh;/Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞ!

ð2lÞ!ðl� mÞ!

s
½Mð�Þ�l�mYl

l ðh;/Þ:

ð3:140Þ

Meanwhile, putting m ¼ l, n ¼ l� m, and j ¼ l in (3.117), we have

½Mð�Þ�l�mYl
l ðh;/Þ ¼ e�iðl�mÞ/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m
@l�m

@nl�m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �l

Y l
l ðh;/Þ

" #
:

ð3:141Þ

Further replacing ½Mð�Þ�l�mYl
l ðh;/Þ in (3.140) with that of (3.141), we get

Ym
l ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞ!

ð2lÞ!ðl� mÞ!

s
e�iðl�mÞ/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� ��m
@l�m

@nl�m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q� �l

Y l
l ðh;/Þ

" #
:

ð3:142Þ

Finally, replacing Yl
l ðh;/Þ in (3.142) with that of (3.137) and converting h to n,

we arrive at the following equation:

Ym
l ðh;/Þ ¼

eiv

2ll!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!
4pðl� mÞ!

s
eim/ð1� n2Þ�m=2 @l�m

@nl�m ½ð1� n2Þl�: ð3:143Þ

Now, let us decide eiv. Putting m ¼ 0 in (3.143), we have
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Y0
l ðh;/Þ ¼

eivð�1Þl
2ll!ð�1Þl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4p

r
@l

@nl
½ð1� n2Þl�; ð3:144Þ

where we put ð�1Þl on both the numerator and denominator. In RHS of (3.144),

ð�1Þl
2ll!

@l

@nl
½ð1� n2Þl� � PlðnÞ: ð3:145Þ

Equation (3.145) is well-known as Rodrigues formula of Legendre polynomials.
We mention characteristics of Legendre polynomials in the next section. Thus,

Y0
l ðh;/Þ ¼

eiv

ð�1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4p

r
PlðnÞ: ð3:146Þ

According to the custom [2], we require Y0
l ð0;/Þ to be positive. Noting that

h ¼ 0 corresponds to n ¼ 1, we have

Y0
l ð0;/Þ ¼

eiv

ð�1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4p

r
Plð1Þ ¼ eiv

ð�1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4p

r
; ð3:147Þ

where we used Plð1Þ ¼ 1. For this important relation, see Sect. 3.6.1. Also noting

that eiv

ð�1Þl
��� ��� ¼ 1, we must have

eiv

ð�1Þl ¼ 1 or eiv ¼ ð�1Þl ð3:148Þ

so that Y0
l ð0;/Þ can be positive. Thus, (3.143) is rewritten as

Ym
l ðh;/Þ ¼

ð�1Þl
2ll!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!
4pðl� mÞ!

s
eim/ð1� n2Þ�m=2 @l�m

@nl�m ½ð1� n2Þl� ð3:149Þ

In Sect. 3.3, we mentioned that w0j i in (3.43) is a constant. In fact, putting
l ¼ m ¼ 0 in (3.149), we have

Y0
0 ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffi
1=4p

p
: ð3:150Þ

Thus, as a simultaneous eigenstate of all Lx, Ly, Lz, and L2 corresponding to
l ¼ 0 andm ¼ 0, we have

w0j i � Y0
0 ðh;/Þ:

The normalized functions Ym
l ðh;/Þ described as (3.149) define simultaneous

eigenfunctions of L2 (or M2) and Lz (or Mz). Those functions are called spherical
surface harmonics and frequently appear in various fields of mathematical physics.
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As in the case of Sect. 2.3, matrix representation enables us to intuitively grasp
the relationship between angular momentum operators and their eigenfunctions (or
eigenvectors). Rewriting the relations of (3.101) so that they can meet the present
purpose, we have

Mð�Þ l;mj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� mþ 1ÞðlþmÞ

p
l;m� 1j i;

Mðþ Þ l;mj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� mÞðlþmþ 1Þ

p
l;mþ 1j i;

ð3:151Þ

where we used l instead of f to designate the eigenstate.
Now, we know that m takes ð2lþ 1Þ different values that correspond to each l.

This implies that the operators can be expressed with ð2lþ 1; 2lþ 1Þ matrices. As
implied in (3.151), Mð�Þ takes the following form:

Mð�Þ ¼

0
ffiffiffiffiffiffiffiffiffiffi
2l � 1p
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l� 1Þ � 2p
0 . .

.

. .
.

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l� kþ 1Þ � kp

0
. .
.

. .
.

0
ffiffiffiffiffiffiffiffiffiffi
1 � 2lp
0

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

;

ð3:152Þ

where diagonal elements are zero and a ðk; kþ 1Þ element is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l� kþ 1Þ � kp

.
That is, nonzero elements are positioned just above the zero diagonal elements.
Correspondingly, we have

Mðþ Þ ¼

0ffiffiffiffiffiffiffiffiffiffi
2l � 1p

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l� 1Þ � 2p
0

. .
.

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l� kþ 1Þ � kp
0

. .
. . .

.

0
. .
.

0ffiffiffiffiffiffiffiffiffiffi
1 � 2lp

0

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
;

ð3:153Þ

where again diagonal elements are zero and a ðkþ 1; kÞ element isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l� kþ 1Þ � kp
. In this case, nonzero elements are positioned just below the zero
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diagonal elements. Notice also that Mð�Þ and Mðþ Þ are adjoint to each other and
that these notations correspond to (2.65) and (2.66).

Basis functions Ym
l ðh;/Þ can be represented by a column vector, as in the case of

Sect. 2.3. These are denoted as follows:

l;�lj i ¼

1
0
0
..
.

0
0

0BBBBBB@

1CCCCCCA; l;�lþ 1j i ¼

0
1
0
..
.

0
0

0BBBBBB@

1CCCCCCA; . . .; l; l� 1j i ¼

0
0
..
.

0
1
0

0BBBBBB@

1CCCCCCA; l; lj i ¼

0
0
..
.

0
0
1

0BBBBBB@

1CCCCCCA;

ð3:154Þ

where the first number l in l;�lj i, l;�lþ 1j i, etc., denotes the quantum number
associated with k ¼ lðlþ 1Þ of (3.124) and is kept constant; the latter number
denotes m. Note from (3.154) that the column vector whose kth row is 1 corre-
sponds to m such that

m ¼ �lþ k � 1: ð3:155Þ

For instance, if k ¼ 1, m ¼ �l; if k ¼ 2lþ 1, m ¼ l, etc.
The operator Mð�Þ converts the column vector whose ðkþ 1Þth row is 1 to that

whose kth row is 1. The former column vector corresponds to l;mþ 1j i and the
latter corresponding to l;mj i. Therefore, using (3.152), we get the following
representation:

Mð�Þ l;mþ 1j i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l� kþ 1Þ � k

p
l;mj i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� mÞðlþmþ 1Þ

p
l;mj i; ð3:156Þ

where the second equality is obtained by replacing k with that of (3.155), i.e.,
k ¼ lþmþ 1. Changing m to ðm� 1Þ, we get the first equation of (3.151).
Similarly, we obtain the second equation of (3.151) as well. That is, we have

Mðþ Þ l;mj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l� kþ 1Þ � k

p
l;mþ 1j i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� mÞðlþmþ 1Þ

p
l;mþ 1j i:

ð3:157Þ

From (3.32), we have

M2 ¼ Mðþ ÞMð�Þ þM2
z �Mz:

In the above, Mðþ ÞMð�Þ and Mz are diagonal matrices and, hence, M2
z and M2

are diagonal matrices as well such that
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Mz ¼

�l

�lþ 1

�lþ 2

. .
.

k � l

. .
.

l

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
;

Mðþ ÞMð�Þ ¼

0

2l � 1
ð2l� 1Þ � 2

. .
. ð2l� kþ 1Þ � k

. .
.

1 � 2l

0BBBBBBBBBB@

1CCCCCCCCCCA
;

ð3:158Þ

where k � l and ð2l� kþ 1Þ � k represent ðkþ 1; kþ 1Þ elements of Mz and
Mðþ ÞMð�Þ, respectively. Therefore, ðkþ 1; kþ 1Þ element of M2 is calculated as

ð2l� kþ 1Þ � kþðk � lÞ2 � ðk � lÞ ¼ lðlþ 1Þ:

As expected, M2 takes a constant value lðlþ 1Þ. A matrix representation is
shown in (3.159) such that

M2 ¼

lðlþ 1Þ
lðlþ 1Þ

. .
.

lðlþ 1Þ
. .
.

lðlþ 1Þ
lðlþ 1Þ

0BBBBBBBBBB@

1CCCCCCCCCCA
: ð3:159Þ

These expressions are useful to understand how the vectors of (3.154) constitute
simultaneous eigenstates of M2 and Mz. In this situation, the matrix representation
is said to diagonalize both M2 and Mz. In other words, the quantum states repre-
sented by (3.154) are simultaneous eigenstates of M2 and Mz.
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The matrices (3.152) and (3.153) that represent Mð�Þ andMðþ Þ, respectively, are
said to be ladder operators or raising and lowering operators, because operating
column vectors those operators convert mj i to m� 1j i as mentioned above. The

operators Mð�Þ and Mðþ Þ correspond to a and ay given in (2.65) and (2.66),
respectively. All these operators are characterized by that the corresponding
matrices have diagonal elements of zero and that nonvanishing elements are only
positioned on “right above” or “right below” relative to the diagonal elements.
These matrices are a kind of triangle matrices, and all their diagonal elements are
zero. The matrices are characteristic of nilpotent matrices. That is, if a suitable
power of a matrix is zero as a matrix, such a matrix is said to be a nilpotent matrix
(see Part III). In the present case, ð2lþ 1Þth power of Mð�Þ and Mðþ Þ becomes zero
as a matrix.

The operator Mð�Þ and Mðþ Þ can be described by the following shorthand
representations:

½Mð�Þ�kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l� kþ 1Þ � k

p
dkþ 1;j ð1� k� 2lÞ: ð3:160Þ

If l ¼ 0, Mz ¼ Mðþ ÞMð�Þ ¼ M2 ¼ 0. This case corresponds to
Y0
0 ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffi
1=4p

p
, and we do not need the matrix representation. Defining

ak �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l� kþ 1Þ � k

p
;

we have for instance

f½Mð�Þ�2gkj ¼
X

p
akdkþ 1;papdpþ 1;j ¼ akakþ 1dkþ 2;j

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l� kþ 1Þ � k

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l� ðkþ 1Þþ 1½ � � ðkþ 1Þ

p
dkþ 2;j;

ð3:161Þ

where the summation is nonvanishing only if p ¼ kþ 1. The factor dkþ 2;j implies
that the elements are shifted by one toward upper right by being squared. Similarly,
we have

½Mðþ Þ�kj ¼ ak�1dk;jþ 1 ð1� k� 2lþ 1Þ: ð3:162Þ

In (3.158), Mðþ ÞMð�Þ is represented as follows:

½Mðþ ÞMð�Þ�kj ¼
X
p

ak�1dk;pþ 1apdpþ 1;j ¼ ak�1aj�1dk;j ¼ ðak�1Þ2dk;j

¼ 2l� ðk � 1Þþ 1½ � � ðk � 1Þdk;j ¼ ð2l� kþ 2Þðk � 1Þdk;j:
ð3:163Þ

Notice that although a0 is not defined, d1;jþ 1 ¼ 0 for any j, and so this causes no
inconvenience. Hence, ½Mðþ ÞMð�Þ�kj of (3.163) is well-defined with 1� k� 2lþ 1.
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Important properties of angular momentum operators examined above are based
upon the fact that those operators are ladder operators and represented by nilpotent
matrices. These characteristics will further be studied in Part III.

3.6 Orbital Angular Momentum: Analytic Approach

In this section, our central task is to solve the associated Legendre differential
equation expressed by (3.127) by an analytical method. Putting m ¼ 0 in (3.127),
we have

d
dx

ð1� x2Þ dP
0
l ðxÞ
dx

� �
þ lðlþ 1ÞP0

l ðxÞ ¼ 0; ð3:164Þ

where we use a variable x instead of n. Equation (3.164) is called Legendre dif-
ferential equation, and its characteristics and solutions have been widely investi-
gated. Hence, we put

P0
l ðxÞ � PlðxÞ; ð3:165Þ

where PlðxÞ is said to be Legendre polynomials. We first start with Legendre
differential equation and Legendre polynomials.

3.6.1 Spherical Surface Harmonics and Associated
Legendre Differential Equation

Let us think of a following identity according to Byron and Fuller [4]:

ð1� x2Þ d
dx

ð1� x2Þl ¼ �2lxð1� x2Þl; ð3:166Þ

where l is a positive integer. We differentiate both sides of (3.166) ðlþ 1Þ times.
Here, we use the Leibniz rule about differentiation of a product function that is
described by

dnðuvÞ ¼
Xn
m¼0

n!
m!ðn� mÞ! d

mudn�mv; ð3:167Þ

where

dmu=dxm � dmu:
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The above shorthand notation is due to Byron and Fuller [4]. We use this
notation for simplicity from place to place.

Noting that the third-order and higher differentiations of ð1� x2Þ vanish in LHS
of (3.166), we have

LHS ¼ dlþ 1½ð1� x2Þdð1� x2Þl�
¼ ð1� x2Þdlþ 2ð1� x2Þl � 2ðlþ 1Þxdlþ 1ð1� x2Þl

� lðlþ 1Þdlð1� x2Þl:

Also noting that the second-order and higher differentiations of 2lx vanish in
LHS of (3.166), we have

RHS ¼ �dlþ 1½2lxð1� x2Þl�
¼ �2lxdlþ 1ð1� x2Þl � 2lðlþ 1Þdlð1� x2Þl:

Therefore,

LHS � RHS

¼ ð1� x2Þdlþ 2ð1� x2Þl � 2xdlþ 1ð1� x2Þl þ lðlþ 1Þdlð1� x2Þl ¼ 0:

We define PlðxÞ as

PlðxÞ � ð�1Þl
2ll!

dl

dxl
½ð1� x2Þl�; ð3:168Þ

where a constant ð�1Þl
2l l! is multiplied according to the custom so that we can explicitly

represent Rodrigues formula of Legendre polynomials. Thus, from (3.164) PlðxÞ
defined above satisfies Legendre differential equation. Rewriting it, we get

ð1� x2Þ d
2PlðxÞ
dx2

� 2x
dPlðxÞ
dx

þ lðlþ 1ÞPlðxÞ ¼ 0: ð3:169Þ

Or equivalently, we have

d
dx

ð1� x2Þ dPlðxÞ
dx

� �
þ lðlþ 1ÞPlðxÞ ¼ 0: ð3:170Þ

Returning to (3.127) and using x as a variable, we rewrite (3.127) as

d
dx

ð1� x2Þ dP
m
l ðxÞ
dx

� �
þ lðlþ 1Þ � m2

1� x2

� �
Pm
l ðxÞ ¼ 0; ð3:171Þ
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where l is a nonnegative integer and m is an integer that takes following values:

m ¼ l; l� 1; l� 2; . . .1; 0;�1; � � � � lþ 1;�l:

Deferential equations expressed as

d
dx

pðxÞ dyðxÞ
dx

� �
þ cðxÞyðxÞ ¼ 0

are of particular importance. We will come back to this point in Sect. 8.3.
Since m can be either positive or negative, from (3.171) we notice that Pm

l ðxÞ and
P�m
l ðxÞ must satisfy the same differential equation (3.171). This implies that Pm

l ðxÞ
and P�m

l ðxÞ are connected, i.e., linearly dependent. First, let us assume that m� 0.
In the case of m\0, we will examine it later soon.

According to Dennery and Krzywicki [5], we assume

Pm
l ðxÞ ¼ jð1� x2Þm=2CðxÞ; ð3:172Þ

where j is a constant. Inserting (3.172) into (3.171) and rearranging the terms, we
obtain

ð1� x2Þ d
2C
dx2

� 2ðmþ 1Þx dC
dx

þðl� mÞðlþmþ 1ÞC ¼ 0ð0�m� lÞ: ð3:173Þ

Recall once again that if m ¼ 0, the associated Legendre differential equation
given by (3.127) and (3.171) is exactly identical to Legendre differential equation of
(3.170). Differentiating (3.170) m times, we get

ð1� x2Þ d2

dx2
dmPl

dxm

� �
� 2ðmþ 1Þx d

dx
dmPl

dxm

� �
þðl� mÞðlþmþ 1Þ d

mPl

dxm
¼ 0;

ð3:174Þ

where we used the Leibniz rule about differentiation of (3.167). Comparing (3.173)
and (3.174), we find that

CðxÞ ¼ j0
dmPl

dxm
;

where j0 is a constant. Inserting this relation into (3.172) and setting jj0 ¼ 1, we
get

Pm
l ðxÞ ¼ ð1� x2Þm=2 d

mPlðxÞ
dxm

ð0�m� lÞ: ð3:175Þ
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Using Rodrigues formula of (3.168), we have

Pm
l ðxÞ �

ð�1Þl
2ll!

ð1� x2Þm=2 dlþm

dxlþm ½ð1� x2Þl�: ð3:176Þ

Equation (3.175) defines the associated Legendre functions. Note, however, that
the function form differs from literature to literature [2, 5, 6].

Amongst classical orthogonal polynomials, Gegenbauer polynomials Ck
nðxÞ

often appear in the literature. The relevant differential equation is defined by

ð1� x2Þ d2

dx2
Ck
nðxÞ � ð2kþ 1Þx d

dx
Ck
nðxÞþ nðnþ 2kÞCk

nðxÞ ¼ 0 k[ � 1
2

� �
:

ð3:177Þ

Setting n ¼ l� m and k ¼ mþ 1
2 in (3.177) [5], we have

ð1� x2Þ d2

dx2
C
mþ 1

2
l�m ðxÞ � 2ðmþ 1Þx d

dx
C
mþ 1

2
l�m ðxÞ

þ ðl� mÞðlþmþ 1ÞCmþ 1
2

l�m ðxÞ ¼ 0:

ð3:178Þ

Once again comparing (3.174) and (3.178), we obtain

dmPlðxÞ
dxm

¼ constant � Cmþ 1
2

l�m ðxÞð0�m� lÞ: ð3:179Þ

Next, let us determine the constant appearing in (3.179). To this end, we con-
sider a following generating function of the polynomials Ck

nðxÞ defined by [7]

ð1� 2txþ t2Þ�k �
X1
n¼0

Ck
nðxÞtn k[ � 1

2

� �
: ð3:180Þ

To calculate (3.180), let us think of a following expression for x and kð[ � 1
2Þ:

ð1þ xÞ�k ¼
X1
m¼0

�k
m

� �
xm; ð3:181Þ

where k is an arbitrary real number and we define
�k
m

� �
as

�k
m

� �
� �kð�k� 1Þð�k� 2Þ. . .ð�k� mþ 1Þ=m! and

�k
0

� �
� 1:

ð3:182Þ
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Notice that (3.182) is an extension of binomial theorem. Putting �k ¼ n, we
have

n
m

� �
¼ n!

ðn� mÞ!m! and
n
0

� �
¼ 1:

We rewrite (3.181) using gamma functions CðzÞ such that

ð1þ xÞ�k ¼
X1
m¼0

Cð�kþ 1Þ
m!Cð�k� mþ 1Þ x

m; ð3:183Þ

where CðzÞ is defined by integral representation as

CðzÞ ¼
Z1
0

e�ttz�1dtðRe z[ 0Þ: ð3:184Þ

Changing variables such that t ¼ u2, we have

CðzÞ ¼ 2
Z1
0

e�u2u2z�1duðRe z[ 0Þ: ð3:185Þ

Note that the above expression is associated with the following fundamental
feature of the gamma functions:

Cðzþ 1Þ ¼ zCðzÞ; ð3:186Þ

where z is any complex number.
Replacing x with �tð2x� tÞ and rewriting (3.183), we have

ð1� 2txþ t2Þ�k ¼
X1
m¼0

Cð�kþ 1Þ
m!Cð�k� mþ 1Þ ð�tÞmð2x� tÞm: ð3:187Þ

Assuming that x is a real number belonging to an interval �1; 1½ �, (3.187) holds
with t satisfying tj j\1 [8]. The discussion is as follows: When x satisfies the above
condition, solving 1� 2txþ t2 ¼ 0 we get solution t	 such that

t	 ¼ x	 i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
:

Defining r as

r � min tþ ;j jt�j jf g;

3.6 Orbital Angular Momentum: Analytic Approach 93



ð1� 2txþ t2Þ�k, regarded as a function of t, is analytic in the disk tj j\r. But,
we have

t	j j ¼ 1:

Thus, ð1� 2txþ t2Þ�k is analytic within the disk tj j\1 and, hence, it can be
expanded in a Taylor series.

Continuing the calculation of (3.187), we have

ð1� 2txþ t2Þ�k

¼
X1
m¼0

Cð�kþ 1Þ
m!Cð�k� mþ 1Þ ð�1Þmtm

Xm
k¼0

m!
k!ðm� kÞ! 2

m�kxm�kð�1Þktk
" #

¼
X1
m¼0

Xm
k¼0

ð�1Þmþ k

k!ðm� kÞ!
Cð�kþ 1Þ

Cð�k� mþ 1Þ 2
m�kxm�ktmþ k

¼
X1
m¼0

Xm
k¼0

ð�1Þmþ k

k!ðm� kÞ!
ð�1ÞmCðkþmÞ

CðkÞ 2m�kxm�ktmþ k;

ð3:188Þ

where the last equality results from that we rewrote gamma functions using (3.186).
Replacing ðmþ kÞ with n, we get

ð1� 2txþ t2Þ�k ¼
X1
n¼0

Xn=2½ �

k¼0

ð�1Þk2n�2k

k!ðn� 2kÞ!
Cðkþ n� kÞ

CðkÞ xn�2ktn; ð3:189Þ

where n=2½ � represents an integer that does not exceed n=2. This expression comes
from a requirement that an order of x must satisfy the following condition:

n� 2k� 0 or k� n=2: ð3:190Þ

That is, if n is even, the maximum of k ¼ n=2. If n is odd, the maximum of
k ¼ ðn� 1Þ=2. Comparing (3.180) and (3.189), we get [8]

Ck
nðxÞ ¼

Xn=2½ �

k¼0

ð�1Þk2n�2k

k!ðn� 2kÞ!
Cðkþ n� kÞ

CðkÞ xn�2k: ð3:191Þ

Comparing (3.164) and (3.177) and putting k ¼ 1=2, we immediately find that
the two differential equations are identical [7]. That is,

C1=2
n ðxÞ ¼ PnðxÞ: ð3:192Þ

Hence, we further have
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PnðxÞ ¼
Xn=2½ �

k¼0

ð�1Þk2n�2k

k!ðn� 2kÞ!
Cð12 þ n� kÞ

Cð12Þ
xn�2k: ð3:193Þ

Using (3.186) once again, we get [8]

PnðxÞ ¼
Xn=2½ �

k¼0

ð�1Þkð2n� 2kÞ!
2nk!ðn� kÞ!ðn� 2kÞ! x

n�2k: ð3:194Þ

It is convenient to make a formula about a gamma function. In (3.193),
n� k[ 0, and so let us think of Cð12 þmÞ ðm : positive integerÞ. Using (3.186), we
have

C
1
2
þm

� �
¼ m� 1

2

� �
C m� 1

2

� �
¼ m� 1

2

� �
m� 3

2

� �
C m� 3

2

� �
¼ � � �

¼ m� 1
2

� �
m� 3

2

� �
. . .

1
2

� �
C

1
2

� �
¼ 2�mð2m� 1Þð2m� 3Þ � � � 3 � 1 � C 1

2

� �
¼ 2�m ð2m� 1Þ!

2m�1ðm� 1Þ!C
1
2

� �
¼ 2�2m ð2mÞ!

m!
C

1
2

� �
:

ð3:195Þ

Notice that (3.195) still holds even if m ¼ 0. Inserting n� k into m of (3.195),
we get

C
1
2
þ n� k

� �
¼ 2�2ðn�kÞ ð2n� 2kÞ!

ðn� kÞ! C
1
2

� �
: ð3:196Þ

Replacing C 1
2 þ n� k
� �

of (3.193) with RHS of the above equation, (3.194) will
follow. A gamma function C 1

2

� �
often appears in mathematical physics. According

to (3.185), we have

C
1
2

� �
¼ 2

Z1
0

e�u2du ¼ ffiffiffi
p

p
:

For the derivation of the above definite integral, see (2.86) of Sect. 2.4. From
(3.184), we also have

Cð1Þ ¼ 1:

In relation of the discussion of Sect. 3.5, let us derive an important formula
about Legendre polynomials. From (3.180) to (3.192), we get
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ð1� 2txþ t2Þ�1=2 �
X1
n¼0

PnðxÞtn: ð3:197Þ

Assuming tj j\1, when we put x ¼ 1 in (3.197), we have

ð1� 2txþ t2Þ�1
2 ¼ 1

1� t
¼
X1
n¼0

tn ¼
X1
n¼0

Pnð1Þtn: ð3:198Þ

Comparing individual coefficients of tn in (3.198), we get

Pnð1Þ ¼ 1:

See the related parts of Sect. 3.5.
Now, we are in the position to determine the constant in (3.179). Differentiating

(3.194) m times, we have

dmPlðxÞ=dxm ¼
Xðl�mÞ=2½ �

k¼0

ð�1Þkð2l� 2kÞ!ðl� 2kÞðl� 2k � 1Þ. . .ðl� 2k � mþ 1Þ
2lk!ðl� kÞ!ðl� 2kÞ! xl�2k�m

¼
Xðl�mÞ=2½ �

k¼0

ð�1Þkð2l� 2kÞ!
2lk!ðl� kÞ!ðl� 2k � mÞ! x

l�2k�m:

ð3:199Þ

Meanwhile, we have

C
mþ 1

2
l�m ðxÞ ¼

Xðl�mÞ=2½ �

k¼0

ð�1Þk2l�2k�m

k!ðl� 2k � mÞ!
Cðlþ 1

2 � kÞ
Cðmþ 1

2Þ
xl�2k�m: ð3:200Þ

Using (3.195) and (3.196), we have

Cðlþ 1
2 � kÞ

Cðmþ 1
2Þ

¼ 2�2ðl�k�mÞ ð2l� 2kÞ!
ðl� kÞ!

m!
ð2mÞ! :

Therefore, we get

C
mþ 1

2
l�m ðxÞ ¼

Xðl�mÞ=2½ �

k¼0

ð�1Þkð2l� 2kÞ!
2lk!ðl� kÞ!ðl� 2k � mÞ!

2mCðmþ 1Þ
Cð2mþ 1Þ xl�2k�m; ð3:201Þ

where we used m! ¼ Cðmþ 1Þ and ð2mÞ! ¼ Cð2mþ 1Þ. Comparing (3.199) and
(3.201), we get

96 3 Hydrogen-like Atoms



dmPlðxÞ
dxm

¼ Cð2mþ 1Þ
2mCðmþ 1ÞC

mþ 1
2

l�m ðxÞ: ð3:202Þ

Thus, we find that the constant appearing in (3.179) is Cð2mþ 1Þ
2mCðmþ 1Þ. Putting m ¼ 0 in

(3.202), we have PlðxÞ ¼ C1=2
l ðxÞ. Therefore, (3.192) is certainly recovered. This

gives an easy checkup to (3.202).
Meanwhile, Rodrigues formula of Gegenbauer polynomials [5] is given by

Ck
nðxÞ ¼

ð�1ÞnCðnþ 2kÞCðkþ 1
2Þ

2nn!Cðnþ kþ 1
2ÞCð2kÞ

ð1� x2Þ�kþ 1
2
dn

dxn
ð1� x2Þnþ k�1

2

h i
: ð3:203Þ

Hence, we have

C
mþ 1

2
l�m ðxÞ ¼ ð�1Þl�mCðlþmþ 1ÞCðmþ 1Þ

2l�mðl� mÞ!Cðlþ 1ÞCð2mþ 1Þ ð1� x2Þ�m dl�m

dxl�m
½ð1� x2Þl�: ð3:204Þ

Inserting (3.204) into (3.202), we have

dmPlðxÞ
dxm

¼ ð�1Þl�mCðlþmþ 1Þ
2lðl� mÞ!Cðlþ 1Þ ð1� x2Þ�m dl�m

dxl�m
½ð1� x2Þl�

¼ ð�1Þl�mðlþmÞ!
2ll!ðl� mÞ! ð1� x2Þ�m dl�m

dxl�m
½ð1� x2Þl�:

ð3:205Þ

Further inserting this into (3.175), we finally get

Pm
l ðxÞ ¼

ð�1Þl�mðlþmÞ!
2ll!ðl� mÞ! ð1� x2Þ�m=2 dl�m

dxl�m
½ð1� x2Þl�: ð3:206Þ

When m ¼ 0, we have

P0
l ðxÞ ¼

ð�1Þl
2ll!

dl

dxl
½ð1� x2Þl� ¼ PlðxÞ: ð3:207Þ

Thus, we recover the functional form of Legendre polynomials. The expression
(3.206) is also meaningful for negative m, provided mj j � l, and permits an
extension of the definition of Pm

l ðxÞ given by (3.175) to negative numbers of m [5].
Changing m to �m in (3.206), we have

P�m
l ðxÞ ¼ ð�1Þlþmðl� mÞ!

2ll!ðlþmÞ! ð1� x2Þm=2 dlþm

dxlþm ½ð1� x2Þl�: ð3:208Þ

Meanwhile, from (3.168) to (3.175),

3.6 Orbital Angular Momentum: Analytic Approach 97



Pm
l ðxÞ ¼

ð�1Þl
2ll!

ð1� x2Þm=2 dlþm

dxlþm ½ð1� x2Þl� ð0�m� lÞ: ð3:209Þ

Comparing (3.208) and (3.209), we get

P�m
l ðxÞ ¼ ð�1Þmðl� mÞ!

ðlþmÞ! Pm
l ðxÞ ð�l�m� lÞ: ð3:210Þ

Thus, as expected earlier, Pm
l ðxÞ and P�m

l ðxÞ are linearly dependent.
Now, we return back to (3.149). From (3.206) we have

ð1� x2Þ�m
2
dl�m

dxl�m
½ð1� x2Þl� ¼ ð�1Þl�m2ll!ðl� mÞ!

ðlþmÞ! Pm
l ðxÞ: ð3:211Þ

Inserting (3.211) into (3.149) and changing the variable x to n, we have

Ym
l ðh;/Þ ¼ ð�1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl� mÞ!

4pðlþmÞ!

s
Pm
l ðnÞeim/ðn ¼ cos h; 0� h� pÞ: ð3:212Þ

The coefficient ð�1Þm appearing (3.212) is well-known as Condon–Shortley
phase [7]. Another important expression obtained from (3.210) to (3.212) is

Y�m
l ðh;/Þ ¼ ð�1Þm½Ym

l ðh;/Þ�
: ð3:213Þ

Since (3.208) or (3.209) involves higher order differentiations, it would some-
what be inconvenient to find their functional forms. Here, we try to seek the
convenient representation of spherical harmonics using familiar cosine and sine
functions. Starting with (3.206) and applying Leibniz rule there, we have

Pm
l ðxÞ ¼

ð�1Þl�mðlþmÞ!
2ll!ðl� mÞ! ð1þ xÞ�m=2ð1� xÞ�m=2

�
Xl�m

r¼0

ðl� mÞ!
r!ðl� m� rÞ!

dr

dxr
½ð1þ xÞl� d

l�m�r

dxl�m�r
½ð1� xÞl�

¼ ð�1Þl�mðlþmÞ!
2ll!ðl� mÞ!

Xl�m

r¼0

ðl� mÞ!
r!ðl� m� rÞ!

l!ð1þ xÞl�r�m
2

ðl� rÞ!
ð�1Þl�m�rl!ð1� xÞmþ r�m

2

ðmþ rÞ!

¼ l!ðlþmÞ!
2l

Xl�m

r¼0

ð�1Þr
r!ðl� m� rÞ!

ð1þ xÞl�r�m
2

ðl� rÞ!
ð1� xÞrþ m

2

ðmþ rÞ! : ð3:214Þ

Putting x ¼ cos h in (3.214) and using a trigonometric formula, we have

Pm
l ðxÞ ¼ l!ðlþmÞ!

Xl�m

r¼0

ð�1Þr
r!ðl� m� rÞ!

cos2l�2r�m h
2

� �
ðl� rÞ!

sin2rþm h
2

� �
ðmþ rÞ! : ð3:215Þ
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Inserting this into (3.212), we get

Ym
l ðh;/Þ ¼ l!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!ðl� mÞ!

4p

r
eim/

Xl�m

r¼0

ð�1Þrþmcos2l�2r�m h
2

� �
sin2rþm h

2

� �
r!ðl� m� rÞ!ðl� rÞ!ðmþ rÞ! :

ð3:216Þ

Summation domain of r must be determined so that factorials of negative
integers can be avoided [6]. That is,

(i) If m� 0, 0� r� l� m; ðl� mþ 1Þ terms,
(ii) If m\0, mj j � r� l; ðl� mj j þ 1Þ terms.

For example, if we choose l for m, putting r ¼ 0 in (3.216) we have

Yl
l ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ!

4p

r
eil/

ð�1Þlcosl h
2

� �
sinl h

2

� �
l!

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ!

4p

r
eil/

ð�1Þlsinlh
2ll!

: ð3:217Þ

In particular, we have Y0
0 ðh;/Þ ¼

ffiffiffiffi
1
4p

q
to recover (3.150). When m ¼ �l, put-

ting r ¼ l in (3.216) we get

Y�l
l ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ!

4p

r
e�il/ cos

l h
2

� �
sinl h

2

� �
l!

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ!

4p

r
e�il/ sin

lh
2ll!

: ð3:218Þ

For instance, choosing l ¼ 3 and m ¼ 	3 and using (3.217) or (3.218), we have

Y3
3 ðh;/Þ ¼ �

ffiffiffiffiffiffiffiffi
35
64p

r
ei3/sin3h; Y�3

3 ðh;/Þ ¼
ffiffiffiffiffiffiffiffi
35
64p

r
e�i3/sin3h:

For the minus sign appearing in Y3
3 ðh;/Þ is due to the Condon–Shortley phase.

For l ¼ 3 and m ¼ 0, moreover, we have

Y0
3 ðh;/Þ ¼ 3!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 � 3! � 3!

4p

r X3
r¼0

ð�1Þrcos6�2r h
2

� �
sin2r h

2

� �
r!ð3� rÞ!ð3� rÞ!r!

¼ 18

ffiffiffi
7
p

r
cos6 h

2

� �
0!3!3!0!

� cos4 h
2

� �
sin2 h

2

� �
1!2!2!1!

þ cos2 h
2

� �
sin4 h

2

� �
2!1!1!2!

� sin6 h
2

� �
3!0!0!3!

" #

¼ 18

ffiffiffi
7
p

r
cos6 h

2

� �� sin6 h
2

� �
36

þ cos2 h
2

� �
sin2 h

2

� �
sin2 h

2

� �� cos2 h
2

� �� �
4

( )

¼
ffiffiffi
7
p

r
5
4
cos3h� 3

4
cos h

� �
;

where in the last equality we used formulae of elementary algebra and trigonometric
functions. At the same time, we get
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Y0
3 ð0;/Þ ¼

ffiffiffiffiffiffi
7
4p

r
:

This is consistent with (3.147) in that Y0
3 ð0;/Þ is positive.

3.6.2 Orthogonality of Associated Legendre Functions

Orthogonality relation of functions is important. Here, we deal with it, regarding the
associated Legendre functions.

Replacing m with ðm� 1Þ in (3.174) and using the notation introduced before,
we have

ð1� x2Þdmþ 1Pl � 2mxdmPl þðlþmÞðl� mþ 1Þdm�1Pl ¼ 0: ð3:219Þ

Multiplying both sides by ð1� x2Þm�1, we have

ð1� x2Þmdmþ 1Pl � 2mxð1� x2Þm�1dmPl

þðlþmÞðl� mþ 1Þð1� x2Þm�1dm�1Pl ¼ 0:

Rewriting the above equation, we get

d½ð1� x2ÞmdmPl� ¼ �ðlþmÞðl� mþ 1Þð1� x2Þm�1dm�1Pl: ð3:220Þ

Now, let us define f ðmÞ as follows:

f ðmÞ �
Z 1

�1
ð1� x2ÞmðdmPlÞdmPl0dx ð0�m� l; l0Þ: ð3:221Þ

Rewriting (3.221) as follows and integrating it by parts, we have

f ðmÞ ¼
Z1
�1

ð1� x2Þmdðdm�1PlÞdmPl0dx

¼ ½ðdm�1PlÞð1� x2ÞmdmPl0 �1�1 �
Z1
�1

ðdm�1PlÞd½ð1� x2ÞmdmPl0�dx

¼ �
Z1
�1

ðdm�1PlÞd½ð1� x2ÞmdmPl0 �dx

¼
Z1
�1

ðdm�1PlÞðl0 þmÞðl0 � mþ 1Þð1� x2Þm�1dm�1Pl0dx

¼ ðl0 þmÞðl0 � mþ 1Þf ðm� 1Þ;

ð3:222Þ

100 3 Hydrogen-like Atoms



where with the second equality the first term vanished and with the second last
equality we used (3.220). Equation (3.222) gives a recurrence formula regarding
f ðmÞ. Further performing the calculation, we get

f ðmÞ ¼ ðl0 þmÞðl0 þm� 1Þ � ðl0 � mþ 2Þðl0 � mþ 1Þf ðm� 2Þ
¼ � � �
¼ ðl0 þmÞðl0 þm� 1Þ. . .ðl0 þ 1Þ � l0. . .ðl0 � mþ 2Þðl0 � mþ 1Þf ð0Þ

¼ ðl0 þmÞ!
ðl0 � mÞ! f ð0Þ;

ð3:223Þ

where we have

f ð0Þ ¼
Z1
�1

PlðxÞPl0 ðxÞdx: ð3:224Þ

Note that in (3.223) a coefficient of f ð0Þ comprises 2m factors.
In (3.224), PlðxÞ and Pl0 ðxÞ are Legendre polynomials defined in (3.165). Then,

using (3.168) we have

f ð0Þ ¼ ð�1Þl
2ll!

ð�1Þl0
2l0 l0!

Z1
�1

½dlð1� x2Þl�½dl0 ð1� x2Þl0 �dx: ð3:225Þ

To evaluate (3.224), we have two cases; i.e., (i) l 6¼ l0 and (ii) l ¼ l0. With the
first case, assuming that l[ l0 and taking partial integration, we have

I ¼
Z1
�1

½dlð1� x2Þl�½dl0 ð1� x2Þl0 �dx

¼ fdl�1ð1� x2Þlgfdl0 ð1� x2Þl0 g
h i1

�1

�
Z1
�1

½dl�1ð1� x2Þl�½dl0 þ 1ð1� x2Þl0 �dx

ð3:226Þ

In the above, we find that the first term vanishes because it contains ð1� x2Þ as a
factor. Integrating (3.226) another l0 times as before, we get

I ¼ ð�1Þl0 þ 1
Z1
�1

½dl�l0�1ð1� x2Þl�½d2l0 þ 1ð1� x2Þl0 �dx: ð3:227Þ
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In (3.227) 0� l� l0 � 1� 2l, and so dl�l0�1ð1� x2Þl does not vanish, but

ð1� x2Þl0 is an at most 2l0-degree polynomial and, hence, d2l
0 þ 1ð1� x2Þl0 vanishes.

Therefore,

f ð0Þ ¼ 0: ð3:228Þ

If l\l0, changing PlðxÞ and Pl0 ðxÞ in (3.224), we get f ð0Þ ¼ 0 as well.
In the second case of l ¼ l0, we evaluate the following integral:

I ¼
Z1
�1

½dlð1� x2Þl�2dx: ð3:229Þ

Similarly integrating (3.229) by parts l times, we have

I ¼ ð�1Þl
Z1
�1

ð1� x2Þl½d2lð1� x2Þl�dx ¼ ð�1Þ2lð2lÞ!
Z1
�1

ð1� x2Þldx: ð3:230Þ

In (3.230), changing x to cos h, we have

Z 1

�1
ð1� x2Þldx ¼

Zp
0

sin2lþ 1hdh: ð3:231Þ

We have already estimate this integral in (3.132) to have 22lþ 1ðl!Þ2
ð2lþ 1Þ! . Therefore,

f ð0Þ ¼ ð�1Þ2lð2lÞ!
22lðl!Þ2

22lþ 1ðl!Þ2
ð2lþ 1Þ! ¼ 2

2lþ 1
: ð3:232Þ

Thus, we get

f ðmÞ ¼ ðlþmÞ!
ðl� mÞ! f ð0Þ ¼

ðlþmÞ!
ðl� mÞ!

2
2lþ 1

: ð3:233Þ

From (3.228) to (3.233), we have

Z1
�1

Pm
l ðxÞPm

l0 ðxÞdx ¼
ðlþmÞ!
ðl� mÞ!

2
2lþ 1

dll0 : ð3:234Þ

Accordingly, putting
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fPm
l ðxÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl� mÞ!

2ðlþmÞ!

s
Pm
l ðxÞ ð3:235Þ

we get Z1
�1

fPm
l ðxÞfPm

l0 ðxÞdx ¼ dll0 : ð3:236Þ

Normalized Legendre polynomials immediately follow. This is given by

~PlðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1
2

r
PlðxÞ ¼ ð�1Þl

2ll!

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1
2

r
dl

dxl
½ð1� x2Þl�: ð3:237Þ

Combining a normalized function (3.235) with 1ffiffiffiffi
2p

p eim/, we recover

Ym
l ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl� mÞ!

4pðlþmÞ!

s
Pm
l ðxÞeim/ðx ¼ cos h; 0� h� pÞ: ð3:238Þ

Notice in (3.238), however, we could not determine Condon–Shortley phase
ð�1Þm; see (3.212).

Since Pm
l ðxÞ and P�m

l ðxÞ are linearly dependent as noted in (3.210), the set of the
associated Legendre functions cannot define a complete set of orthonormal system.
In fact, we have

Z1
�1

Pm
l ðxÞP�m

l ðxÞdx ¼ ð�1Þmðl� mÞ!
ðlþmÞ!

ðlþmÞ!
ðl� mÞ!

2
2lþ 1

¼ 2ð�1Þm
2lþ 1

: ð3:239Þ

This means that Pm
l ðxÞ and P�m

l ðxÞ are not orthogonal. Thus, we need eim/ to
constitute the complete set of orthonormal system. In other words,

Z2p
0

d/
Z1
�1

dðcos hÞ½Ym0
l0 ðh;/Þ�
Ym

l ðh;/Þ ¼ dll0dmm0 : ð3:240Þ

3.7 Radial Wave Functions of Hydrogen-like Atoms

In Sect. 3.1 we have constructed Hamiltonian of hydrogen-like atoms. If the
physical system is characterized by the central force field, the method of separation
of variables into the angular part ðh;/Þ and radial ðrÞ part is successfully applied to

3.6 Orbital Angular Momentum: Analytic Approach 103



the problem and that method allows us to deal with the Schrödinger equation
separately. The spherical surface harmonics play a central role in dealing with the
differential equations related to the angular part. We studied important properties of
the special functions such as Legendre polynomials and associated Legendre
functions, independent of the nature of the specific central force fields such as
Coulomb potential and Yukawa potential. With the Schrödinger equation pertinent
to the radial part, on the other hand, its characteristics differ depending on the nature
of individual force fields. Of these, the differential equation associated with the
Coulomb potential gives exact (or analytical) solutions. It is well-known that the
second-order differential equations are often solved by an operator representation
method. Examples include its application to a quantum-mechanical harmonic
oscillator and angular momenta of a particle placed in a central force field.
Nonetheless, the corresponding approach to the radial equation for the electron has
been less popular to date. The initial approach, however, was made by Sunakawa
[3]. The purpose of this chapter rests upon further improvement of that approach.

3.7.1 Operator Approach to Radial Wave Functions

In Sect. 3.2, the separation of variables leaded to the radial part of the Schrödinger
equation described as

1
2l

� �h2

r2
@

@r
ðr2 @RðrÞ

@r
Þþ �h2k

r2

� �
RðrÞ � Ze2

4pe0r
RðrÞ ¼ ERðrÞ: ð3:51Þ

We identified k with lðlþ 1Þ in (3.124). Thus, rewriting (3.51) and indexing RðrÞ
with l, we have

� �h2

2lr2
d
dr

r2
dRlðrÞ
dr

� �
þ �h2lðlþ 1Þ

2lr2
� Ze2

4pe0r

� �
RlðrÞ ¼ ERlðrÞ ð3:241Þ

where RlðrÞ is a radial wave function parametrized with l; l, Z, e0, and E denote a
reduced mass of hydrogen-like atom, atomic number, permittivity of vacuum, and
eigenvalue of energy, respectively. Otherwise we follow conventions.

Now, we are in position to solve (3.241). As in the cases of Chap. 2 of a
quantum-mechanical harmonic oscillator and the previous section of the angular
momentum operator, we present the operator formalism in dealing with radial wave
functions of hydrogen-like atoms. The essential point rests upon that the radial
wave functions can be derived by successively operating lowering operators on a
radial wave function having a maximum allowed orbital angular momentum
quantum number. The results agree with the conventional coordinate representation
method based upon power series expansion that is related to associated Laguerre
polynomials.
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Sunakawa [3] introduced the following differential equation by suitable trans-
formations of a variable, parameter, and function:

� d2wlðqÞ
dq2

þ lðlþ 1Þ
q2

� 2
q

� �
wlðqÞ ¼ �wlðqÞ; ð3:242Þ

where q ¼ Zr
a , � ¼ 2l

�h2
a
Z

� �2
E, and wlðqÞ ¼ qRlðrÞ with a (� 4pe0�h2=le2) being Bohr

radius of a hydrogen-like atom. Note that q and � are dimensionless quantities. The
related calculations are as follows: We have

dRl

dr
¼ dðwl=qÞ

dq
dq
dr

¼ dwl

dq
1
q
� wl

q2

� �
Z
a
:

Thus, we get

r2
dRl

dr
¼ dwl

dq
r � a

Z
wl;

d
dr

r2
dRl

dr

� �
¼ d2wlðqÞ

dq2
q:

Using the above relations, we arrive at (3.242).
Here, we define the following operators:

bl � d
dq

þ l
q
� 1

l

� �
: ð3:243Þ

Hence,

byl ¼ � d
dq

þ l
q
� 1

l

� �
; ð3:244Þ

where the operator byl is an adjoint operator of bl. Notice that these definitions are

different from those of Sunakawa [3]. The operator d
dq ð� AÞ is formally an

anti-Hermitian operator. We have mentioned such an operator in Sect. 1.5. The
second terms of (3.243) and (3.244) are Hermitian operators, which we define as

H. Thus, we foresee that bl and byl can be denoted as follows:

bl ¼ AþH and byl ¼ �AþH:

These representations are analogous to those appearing in the operator formalism
of a quantum-mechanical harmonic oscillator. Special care, however, should be

taken in dealing with the operators bl and byl . First, we should carefully examine

whether d
dq is in fact an anti-Hermitian operator. This is because for d

dq to be

anti-Hermitian, the solution wlðqÞ must satisfy boundary conditions in such a way
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that wlðqÞ vanishes or takes the same value at the endpoints q ! 0 and 1. Second,
the coordinate system we have chosen is not Cartesian coordinate but the polar
(spherical) coordinate, and so q is defined only on a domain q > 0. We will come
back to this point later.

Let us proceed on calculations. We have

blb
y
l ¼ d

dq
þ l

q
� 1

l

� �� �
� � d

dq
þ l

q
� 1

l

� �� �
¼ � d2

dq2
þ d

dq
l
q
� 1

l

� �
� l

q
� 1

l

� �
d
dq

þ l2

q2
� 2
q
þ 1

l2

¼ � d2

dq2
� l
q2

þ l2

q2
� 2
q
þ 1

l2
¼ � d2

dq2
þ lðl� 1Þ

q2
� 2
q
þ 1

l2
:

ð3:245Þ

Also, we have

byl bl ¼ � d2

dq2
þ lðlþ 1Þ

q2
� 2
q
þ 1

l2
: ð3:246Þ

We further define an operator HðlÞ as follows:

HðlÞ � � d2

dq2
þ lðlþ 1Þ

q2
� 2
q

� �
:

Then, from (3.243) to (3.244) as well as (3.245) and (3.246) we have

HðlÞ ¼ blþ 1b
y
lþ 1 þ eðlÞðl� 0Þ; ð3:247Þ

where eðlÞ � � 1
ðlþ 1Þ2. Alternatively,

HðlÞ ¼ byl bl þ eðl�1Þðl� 1Þ: ð3:248Þ

If we put l ¼ n� 1 in (3.247) with n being a fixed given integer larger than l, we
obtain

Hðn�1Þ ¼ bnb
y
n þ eðn�1Þ: ð3:249Þ

We evaluate the following inner product of both sides of (3.249):

v Hðn�1Þ�� ��vD E
¼ hvjbnbyn vj i þ eðn�1Þ v vjh i

¼ bynvjbynv
D E

þ eðn�1Þ v vjh i
¼ jjbyn vj ijj2 þ eðn�1Þ v vjh i
� eðn�1Þ

ð3:250Þ
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Here, we assume that v is normalized. On the basis of the variational principle
[9], the above expected value must take a minimum eðn�1Þ so that v can be an
eigenfunction. To satisfy this condition, we have

jbynv[ ¼ 0: ð3:251Þ

In fact, if (3.251) holds, from (3.249) we have

Hðn�1Þv ¼ eðn�1Þv: ð3:252Þ

We define such a function as below

wðnÞ
n�1 � v: ð3:253Þ

From (3.247) to (3.248), we have the following relationship:

HðlÞblþ 1 ¼ blþ 1H
ðlþ 1Þðl� 0Þ: ð3:254Þ

Meanwhile, we define the functions as shown below

wðnÞ
n�s � bn�sþ 1bn�sþ 2. . .bn�1w

ðnÞ
n�1ð2� s� nÞ: ð3:255Þ

With these functions (s − 1), operators have been operated on wðnÞ
n�1. Note that if

s took 1, no operation of bl would take place. Thus, we find that bl functions upon
the l-state to produce the ðl� 1Þ-state. That is, bl acts as an annihilation operator.
For the sake of convenience, we express

Hðn;sÞ � Hðn�sÞ: ð3:256Þ

Using this notation and (3.254), we have

Hðn;sÞwðnÞ
n�s ¼ Hðn;sÞbn�sþ 1bn�sþ 2. . .bn�1w

ðnÞ
n�1

¼ bn�sþ 1H
ðn;s�1Þbn�sþ 2. . .bn�1w

ðnÞ
n�1

¼ bn�sþ 1bn�sþ 2H
ðn;s�2Þ. . .bn�1w

ðnÞ
n�1

� � �
¼ bn�sþ 1bn�sþ 2. . .H

ðn;2Þbn�1w
ðnÞ
n�1

¼ bn�sþ 1bn�sþ 2. . .bn�1H
ðn;1ÞwðnÞ

n�1

¼ bn�sþ 1bn�sþ 2. . .bn�1e
ðn�1ÞwðnÞ

n�1

¼ eðn�1Þbn�sþ 1bn�sþ 2. . .bn�1w
ðnÞ
n�1

¼ eðn�1ÞwðnÞ
n�s:

ð3:257Þ
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Thus, total n functions wðnÞ
n�s ð1� s� nÞ belong to the same eigenvalue eðn�1Þ.

Notice that the eigenenergy En corresponding to eðn�1Þ is given by

En ¼ � �h2

2l
Z
a

� �2 1
n2

: ð3:258Þ

If we define l � n� s and take account of (3.252), total n functions wðnÞ
l (l = 0,

1, 2, … , n − 1) belong to the same eigenvalue eðn�1Þ.
The quantum state wðnÞ

l is associated with the operators HðlÞ. Thus, the solution

of (3.242) has been given by functions wðnÞ
l parametrized with n and l on condition

that (3.251) holds. As explicitly indicated in (3.255) and (3.257), bl lowers the

parameter l by one from l to l − 1, when it operates on wðnÞ
l . The operator b0 cannot

be defined as indicated in (3.243), and so the lowest number of l should be zero.
Operators such as bl are known as a ladder operator (lowering operator or anni-
hilation operator in the present case). The implication is that the successive oper-

ations of bl on w
ðnÞ
n�1 produce various parameters l as a subscript down to zero, while

retaining the same integer parameter n as a superscript.

3.7.2 Normalization of Radial Wave Functions

Next, we seek normalized eigenfunctions. Coordinate representation of (3.251) takes

� dwðnÞ
n�1

dq
þ n

q
� 1
n

� �
wðnÞ
n�1 ¼ 0: ð3:259Þ

The solution can be obtained as

wðnÞ
n�1 ¼ cnq

ne�q=n; ð3:260Þ

where cn is a normalization constant. This can be determined as follows:

Z1
0

jwðnÞ
n�1j2dq ¼ 1: ð3:261Þ

Namely,

jcnj2
Z1
0

q2ne�2q=ndq ¼ 1: ð3:262Þ
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Consider the following definite integral:

Z1
0

e�2qndq ¼ 1
2n

:

Differentiating the above integral 2n times with respect to n gives

Z1
0

q2ne�2qndq ¼ 1
2

� �2nþ 1

ð2nÞ!n�ð2nþ 1Þ: ð3:263Þ

Substituting 1/n into n, we obtain

Z1
0

q2ne�2q=ndq ¼ 1
2

� �2nþ 1

ð2nÞ!nð2nþ 1Þ: ð3:264Þ

Hence,

cn ¼ 2
n

� �nþ 1
2

=
ffiffiffiffiffiffiffiffiffiffi
ð2nÞ!

p
: ð3:265Þ

To further normalize the other wave functions, we calculate the following inner
product:

wðnÞ
l

��� wðnÞ
l

D E
¼ wðnÞ

n�1b
y
n�1. . .b

y
lþ 2b

y
lþ 1

��� blþ 1blþ 2. . .bn�1w
ðnÞ
n�1

D E
: ð3:266Þ

From (3.247) to (3.248), we have

byl bl þ eðl�1Þ ¼ blþ 1b
y
lþ 1 þ eðlÞ ðl� 1Þ: ð3:267Þ

Applying (3.267–3.266) repeatedly and considering (3.251), we reach the fol-
lowing relationship:

wðnÞ
l

��� wðnÞ
l

D E
¼ eðn�1Þ � eðn�2Þ
h i

eðn�1Þ � eðn�3Þ
h i

. . . eðn�1Þ � eðlÞ
h i

wðnÞ
n�1

��� wðnÞ
n�1

D E
:

ð3:268Þ

To show this, we use mathematical induction. We have already normalized wðnÞ
n�1

in (3.261). Next, we calculate wðnÞ
n�2

��� wðnÞ
n�2

D E
such that
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wðnÞ
n�2

��� wðnÞ
n�2

D E
¼ wðnÞ

n�1b
y
n�1jbn�1w

ðnÞ
n�1

D E
¼ wðnÞ

n�1b
y
n�1bn�1w

ðnÞ
n�1

D E
¼ wðnÞ

n�1 bnb
y
n þ eðn�1Þ � eðn�2Þ

h i
wðnÞ
n�1

D E
¼ wðnÞ

n�1bnb
y
nw

ðnÞ
n�1

D E
þ eðn�1Þ � eðn�2Þ
h i

wðnÞ
n�1

��� wðnÞ
n�1

D E
¼ eðn�1Þ � eðn�2Þ
h i

wðnÞ
n�1

��� wðnÞ
n�1

D E
:

ð3:269Þ

With the third equality, we used (3.267) with l ¼ n� 1; with the last equality we
used (3.251). Therefore, (3.268) holds with l ¼ n� 2: Then, it suffices to show that

assuming that (3.268) holds with wðnÞ
lþ 1

��� wðnÞ
lþ 1

D E
, it holds with wðnÞ

l

��� wðnÞ
l

D E
as

well.

Let us calculate wðnÞ
l

��� wðnÞ
l

D E
, starting with (3.266) as below:

wðnÞ
l jwðnÞ

l

D E
¼ wðnÞ

n�1b
y
n�1. . .b

y
lþ 2b

y
lþ 1jblþ 1blþ 2. . .bn�1w

ðnÞ
n�1

D E
¼ wðnÞ

n�1b
y
n�1. . .b

y
lþ 2ðbylþ 1blþ 1Þblþ 2. . .bn�1w

ðnÞ
n�1

D E
¼ wðnÞ

n�1b
y
n�1. . .b

y
lþ 2 blþ 2b

y
lþ 2 þ eðlþ 1Þ � eðlÞ

h i
blþ 2. . .bn�1w

ðnÞ
n�1

D E
¼ wðnÞ

n�1b
y
n�1. . .b

y
lþ 2blþ 2ðbylþ 2blþ 2Þ. . .bn�1w

ðnÞ
n�1

D E
þ eðlþ 1Þ � eðlÞ
h i

wðnÞ
n�1b

y
n�1. . .b

y
lþ 2blþ 2. . .bn�1w

ðnÞ
n�1

D E
¼ wðnÞ

n�1b
y
n�1. . .b

y
lþ 2blþ 2ðbylþ 2blþ 2Þ. . .bn�1w

ðnÞ
n�1

D E
þ eðlþ 1Þ � eðlÞ
h i

wðnÞ
lþ 1jwðnÞ

lþ 1

D E
: ð3:270Þ

In the next step, using bylþ 2blþ 2 ¼ blþ 3b
y
lþ 3 þ eðlþ 2Þ � eðlþ 1Þ, we have

wðnÞ
l

��� wðnÞ
l

D E
¼ wðnÞ

n�1b
y
n�1. . .b

y
lþ 2blþ 2blþ 3b

y
lþ 3blþ 3. . .bn�1w

ðnÞ
n�1

D E
þ eðlþ 1Þ � eðlÞ
h i

wðnÞ
lþ 1

��� wðnÞ
lþ 1

D E
þ eðlþ 2Þ � eðlþ 1Þ
h i

wðnÞ
lþ 1

��� wðnÞ
lþ 1

D E
:

ð3:271Þ

Thus, we find that in the first term the index number of bylþ 3 has been increased
by one with itself transferred toward the right side. On the other hand, we notice

that with the second and third terms eðlþ 1Þ wðnÞ
lþ 1

��� wðnÞ
lþ 1

D E
cancels out. Repeating

the above processes, we reach a following expression:
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wðnÞ
l

��� wðnÞ
l

D E
¼ wðnÞ

n�1b
y
n�1. . .b

y
lþ 2blþ 2. . .bn�1b

y
n�1w

ðnÞ
n�1

D E
þ eðn�1Þ � eðn�2Þ
h i

wðnÞ
lþ 1

��� wðnÞ
lþ 1

D E
þ eðn�2Þ � eðn�3Þ
h i

wðnÞ
lþ 1

��� wðnÞ
lþ 1

D E
þ � � �

þ eðlþ 2Þ � eðlþ 1Þ
h i

wðnÞ
lþ 1

��� wðnÞ
lþ 1

D E
þ eðlþ 1Þ � eðlÞ
h i

wðnÞ
lþ 1

��� wðnÞ
lþ 1

D E
¼ eðn�1Þ � eðlÞ
h i

wðnÞ
lþ 1

��� wðnÞ
lþ 1

D E
:

ð3:272Þ

In (3.272), the first term of RHS vanishes because of (3.251); the subsequent

term produces wðnÞ
lþ 1

��� wðnÞ
lþ 1

D E
whose coefficients have canceled one another except

for eðn�1Þ � eðlÞ
� �

:

Meanwhile, from assumption of the mathematical induction we have

wðnÞ
lþ 1

��� wðnÞ
lþ 1

D E
¼ eðn�1Þ � eðn�2Þ
h i

eðn�1Þ � eðn�3Þ
h i

. . . eðn�1Þ � eðlþ 1Þ
h i

wðnÞ
n�1

��� wðnÞ
n�1

D E
:

Inserting this equation into (3.272), we arrive at (3.268). In other words, we have
shown that if (3.268) holds with l ¼ lþ 1, (3.268) holds with l ¼ l as well. This

completes the proof to show that (3.268) is true of wðnÞ
l

��� wðnÞ
l

D E
with l down to 0.

The normalized wave functions ~wðnÞ
l are expressed from (3.255) as

~wðnÞ
l ¼ jðn; lÞ�1

2blþ 1blþ 2. . .bn�1
~wðnÞ
n�1; ð3:273Þ

where jðn; lÞ is defined such that

jðn; lÞ � eðn�1Þ � eðn�2Þ
h i

� eðn�1Þ � eðn�3Þ
h i

. . . eðn�1Þ � eðlÞ
h i

; ð3:274Þ

with l� n� 2. More explicitly, we get

jðn; lÞ ¼ ð2n� 1Þ!ðn� l� 1Þ!ðl!Þ2
ðnþ lÞ!ðn!Þ2ðnn�l�2Þ2 : ð3:275Þ

In particular, from (3.265) we have

~wðnÞ
n�1 ¼

2
n

� �nþ 1
2 1ffiffiffiffiffiffiffiffiffiffið2nÞ!p qne�q=n: ð3:276Þ

From (3.272), we define the following operator:
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~bl � ½eðn�1Þ � eðl�1Þ��1
2bl: ð3:277Þ

Then, (3.273) becomes

~wðnÞ
l ¼ ~blþ 1~blþ 2. . .~bn�1

~wðnÞ
n�1: ð3:278Þ

3.7.3 Associated Laguerre Polynomials

It will be of great importance to compare the functions ~wðnÞ
l with conventional wave

functions that are expressed using associated Laguerre polynomials. For this pur-

pose, we define the following functions UðnÞ
l ðqÞ such that

UðnÞ
l ðqÞ � 2

n

� �lþ 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� l� 1Þ!
2nðnþ lÞ!

s
e�

q
nqlþ 1L2lþ 1

n�l�1ð
2q
n
Þ: ð3:279Þ

The associated Laguerre polynomials are described as

LmnðxÞ ¼
1
n!
x�mex

dn

dxn
ðxnþ me�xÞ; ðm[ �1Þ: ð3:280Þ

In a form of power series expansion, the polynomials are expressed for integer
k � 0 as

LknðxÞ ¼
Xn
m¼0

ð�1Þmðnþ kÞ!
ðn� mÞ!ðkþmÞ!m! x

m: ð3:281Þ

Notice that “Laguerre polynomials” LnðxÞ are defined as

LnðxÞ � L0nðxÞ:

Hence, instead of (3.280) and (3.281), the Rodrigues formula and power series
expansion of LnðxÞ are given by [2, 5]

LnðxÞ ¼
1
n!
ex

dn

dxn
ðxne�xÞ;

LnðxÞ ¼
Xn
m¼0

ð�1Þmn!
ðn� mÞ!ðm!Þ2 x

m:

The function UðnÞ
l ðqÞ contains multiplication factors e�

q
n and qlþ 1. The function

L2lþ 1
n�l�1

2q
n

� �
is a polynomial of q with the highest order of qn�l�1: Therefore, UðnÞ

l ðqÞ
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consists of summation of terms containing e�
q
nqt, where t is an integer equal to 1 or

larger. Consequently, UðnÞ
l ðqÞ ! 0 when q ! 0 and q ! 1 (vide supra). Thus, we

have confirmed that UðnÞ
l ðqÞ certainly satisfies proper BCs mentioned earlier and,

hence, the operator d
dq is indeed an anti-Hermitian. To show this more explicitly, we

define D � d
dq. An inner product between arbitrarily chosen functions f and g is

f j Dgh i �
Z 1

0
f 
Dgdq

¼ ½f 
g�10 �
Z 1

0
ðDf 
Þgdq

¼ ½f 
g�10 þ\� Df 
 gj i;

ð3:282Þ

where f 
 is a complex conjugate of f . Meanwhile, from (1.112) we have

f Dgjh i ¼ Dyf gj
D E

ð3:283Þ

Therefore if the functions f and g vanish at q ! 0 and q ! 1, Dy ¼ �D by
equating (3.282) and (3.283). This means that D is anti-Hermitian. The functions

UðnÞ
l ðqÞ we are dealing with certainly satisfy the required boundary conditions. The

operator HðlÞ appearing in (3.247) and (3.248) is Hermitian accordingly. This is
because

byl bl ¼ ð�AþHÞðAþHÞ ¼ H2 � A2 � AHþHA; ð3:284Þ

ðbyl blÞy ¼ ðH2Þy � ðA2Þy � HyAy þAyHy ¼ ðHyÞ2 � ðAyÞ2 � HyAy þAyHy

¼ H2 � ð�AÞ2 � Hð�AÞþ ð�AÞH ¼ H2 � A2 þHA� AH ¼ byl bl:
ð3:285Þ

The Hermiticity is true of blb
y
l as well. Thus, the eigenvalue and eigenstate (or

wave function) which belongs to that eigenvalue are physically meaningful.
Next, consider the following operation:

~blU
ðnÞ
l ðqÞ

¼ ½eðn�1Þ � eðl�1Þ��1
2

2
n

� �lþ 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� l� 1Þ!
2nðnþ lÞ!

s
d
dq

þ l
q
� 1

l

� �� �
e�

q
nqlþ 1L2lþ 1

n�l�1
2q
n

� �	 

;

ð3:286Þ

where
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½eðn�1Þ � eðl�1Þ��1
2 ¼ nlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ lÞðn� lÞp : ð3:287Þ

Rewriting L2lþ 1
n�l�1

2q
n

� �
in a power series expansion form using (3.280) and

rearranging the result, we obtain

~blU
ðnÞ
l ðqÞ

¼ 2
n

� �lþ 3
2 nlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ lÞðn� lÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2nðnþ lÞ!ðn� l� 1Þ!

s
d
dq

þ l
q
� 1

l

� �� �
eq=nq�l d

n�l�1

dqn�l�1 ðqnþ le�2q=nÞ
� �

¼ 2
n

� �lþ 3
2 nlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ lÞðn� lÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2nðnþ lÞ!ðn� l� 1Þ!

s
d
dq

þ l
q
� 1

l

� �� �

� e�q=n
Xn�l�1

m¼0

ð�1Þmðnþ lÞ!
ð2lþmþ 1Þ! q

lþmþ 1 2
n

� �m ðn� l� 1Þ!
m!ðn� l� m� 1Þ! ;

ð3:288Þ

where we used well-known Leibniz rule of higher order differentiation of a product

function, i.e., dn�l�1

dqn�l�1 ðqnþ le�2q=nÞ. To perform further calculation, notice that d
dq

does not change a functional form of e�q=n, whereas it lowers the order of qlþmþ 1

by one. Meanwhile, operation of l
q lowers the order of q

lþmþ 1 by one as well. The

factor nþ l
2l in Eq. (3.289) results from these calculation processes. Considering these

characteristics of the operator, we get

~blU
ðnÞ
l ðqÞ ¼ 2

n

� �lþ 3
2nþ l
2l

nlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ lÞðn� lÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2nðnþ lÞ!ðn� l� 1Þ!

s
e�q=nql

�
Xn�l�1

m¼0

ð�1Þmþ 1ðnþ lÞ!
ð2lþmþ 1Þ!

ðn� l� 1Þ!
m!ðn� l� m� 1Þ! q

mþ 1 2
n

� �mþ 1
(

þ 2l
Xn�l�1

m¼0

ð�1Þmðnþ l� 1Þ!
ð2lþmÞ!

ðn� l� 1Þ!
m!ðn� l� m� 1Þ! q

m 2
n

� �m
)
ð3:289Þ

In (3.289), calculation of the part � � �f g next to the multiplication sign for RHS is
somewhat complicated, and so we describe the outline of the calculation procedure
below.

� � �f g of RHS of (3.289)
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¼
Xn�l

m¼1

ð�1Þmðnþ lÞ!
ð2lþmÞ!

ðn� l� 1Þ!
ðm� 1Þ!ðn� l� mÞ! q

m 2
n

� �m

þ 2l
Xn�l�1

m¼0

ð�1Þmðnþ l� 1Þ!
ð2lþmÞ!

ðn� l� 1Þ!
m!ðn� l� m� 1Þ! q

m 2
n

� �m

¼
Xn�l�1

m¼1

ð�1Þm 2q
n

� �mðn� l� 1Þ!ðnþ l� 1Þ!
ð2lþmÞ!

nþ l
ðm� 1Þ!ðn� l� mÞ! þ

2l
m!ðn� l� m� 1Þ!

� �
þð�1Þn�l 2q

n

� �n�l

þ ðnþ l� 1Þ!
ð2l� 1Þ!

¼
Xn�l�1

m¼1

ð�1Þm 2q
n

� �mðn� l� 1Þ!ðnþ l� 1Þ!
ð2lþmÞ! � ðm� 1Þ!ðn� l� m� 1Þ!ð2lþmÞðn� lÞ

ðm� 1Þ!ðn� l� mÞ!m!ðn� l� m� 1Þ!

þð�1Þn�l 2q
n

� �n�l

þ ðnþ l� 1Þ!
ð2l� 1Þ! :

¼
Xn�l�1

m¼1

ð�1Þm 2q
n

� �mðn� lÞ!ðnþ l� 1Þ!
ð2lþm� 1Þ!ðn� l� mÞ!m! þð�1Þn�l 2q

n

� �n�l

þ ðnþ l� 1Þ!
ð2l� 1Þ!

¼ ðn� lÞ!
Xn�l�1

m¼1

ð�1Þm 2q
n

� �mðnþ l� 1Þ!
ð2lþm� 1Þ!ðn� l� mÞ!m!þð�1Þn�l 1

ðn� lÞ!
2q
n

� �n�l

þ ðnþ l� 1Þ!
ðn� lÞ!ð2l� 1Þ!

" #

¼ ðn� lÞ!
Xn�l

m¼0

ð�1Þm 2q
n

� �mðnþ l� 1Þ!
ð2lþm� 1Þ!ðn� l� mÞ!m!

¼ ðn� lÞ!L2l�1
n�l

2q
n

� �
:

ð3:290Þ

Notice that with the second equality of (3.290), the summation is divided into
three terms, i.e., 1�m� n� l� 1, m ¼ n� l (the highest-order term), and m ¼ 0
(the lowest-order term). Note that with the second last equality of (3.290), the
highest-order (n� l) term and the lowest-order term (i.e., a constant) have been
absorbed in a single equation, namely an associated Laguerre polynomial.
Correspondingly, with the second last equality of (3.290) the summation range is
extended to 0�m� n� l.

Summarizing the above results, we get

~blU
ðnÞ
l ðqÞ

¼ 2
n

� �lþ 3
2nþ l
2l

nlðn� lÞ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ lÞðn� lÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2nðnþ lÞ!ðn� l� 1Þ!

s
e�q=nqlL2l�1

n�l
2q
n

� �

¼ 2
n

� �lþ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� lÞ!

2nðnþ l� 1Þ!

s
e�q=nqlL2l�1

n�l
2q
n

� �

¼ 2
n

� �ðl�1Þþ 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n� ðl� 1Þ � 1�!
2n½nþðl� 1Þ�!

s
e�

q
nqðl�1Þþ 1L2ðl�1Þþ 1

n�ðl�1Þ�1

2q
n

� �
� UðnÞ

l�1ðqÞ:

ð3:291Þ
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Thus, we find out that UðnÞ
l ðqÞ behaves exactly like ~wðnÞ

l . Moreover, if we replace
l in (3.279) with n − 1, we find

UðnÞ
n�1ðqÞ ¼ ~wðnÞ

n�1: ð3:292Þ

Operating ~bn�1 on both sides of (3.292), we get

UðnÞ
n�2ðqÞ ¼ ~wðnÞ

n�2: ð3:293Þ

Likewise successively operating ~bl (1� l� n� 1), we get

UðnÞ
l ðqÞ ¼ ~wðnÞ

l ðqÞ; ð3:294Þ

with all allowed numbers of l (i.e., 0� l� n� 1). This permits us to identify

UðnÞ
l ðqÞ � ~wðnÞ

l ðqÞ: ð3:295Þ

Consequently, it is clear that the parameter n introduced in (3.249) is identical to
a principal quantum number and that the parameter l (0� l� n� 1) is an orbital

angular momentum quantum number. The functions UðnÞ
l ðqÞ and ~wðnÞ

l ðqÞ are
identical up to the constant cn expressed in (3.265). Note, however, that a complex
constant with an absolute number of 1 (phase factor) remains undetermined, as is
always the case with the eigenvalue problem.

The radial wave functions are derived from the following relationship as
described earlier:

RðnÞ
l ðrÞ ¼ ~wðnÞ

l =q: ð3:296Þ

To normalize RðnÞ
l ðrÞ, we have to calculate the following integral:

Z 1

0
jRðnÞ

l ðrÞj2r2dr ¼
Z1
0

1
q2

j~wðnÞ
l j2 a

Z
q

� �2a
Z
dq ¼ a

Z

� �3Z1
0

j~wðnÞ
l j2dq ¼ a

Z

� �3
:

ð3:297Þ

Accordingly, we choose the following functions ~RðnÞ
l ðrÞ for the normalized radial

wave functions:

~RðnÞ
l ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ=aÞ3

q
RðnÞ
l ðrÞ: ð3:298Þ

Substituting (3.296) into (3.298) and taking account of (3.279) and (3.280), we
obtain
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~RðnÞ
l ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z
an

� �3

� ðn� l� 1Þ!
2nðnþ lÞ!

s
2Zr
an

� �l

exp � Zr
an

� �� �
L2lþ 1
n�l�1

2Zr
an

� �
: ð3:299Þ

Equation (3.298) is exactly the same as the normalized radial wave functions
that can be obtained as the solution of (3.241) through the power series expansion.
All these functions belong to the same eigenenergy En ¼ � �h2

2l ðZaÞ2 1
n2.

In summary of this section, we have developed the operator formalism in dealing
with radial wave functions of hydrogen-like atoms and seen how the operator
formalism features the radial wave functions. The essential point rests upon that the
radial wave functions can be derived by successively operating the lowering

operators bl on ~wðnÞ
n�1 that is parametrized with a principal quantum number n and an

orbital angular momentum quantum number l = n − 1. This is clearly represented
by (3.278). The results agree with the conventional coordinate representation
method based upon the power series expansion that leads to associated Laguerre
polynomials. Thus, the operator formalism is again found to be powerful in
explicitly representing the mathematical constitution of quantum-mechanical
systems.

3.8 Total Wave Functions

Since we have obtained angular wave functions and radial wave functions, we

describe normalized total wave functions ~KðnÞ
l;m of hydrogen-like atoms as a product

of the angular part and radial part such that

~KðnÞ
l;m ¼ Ym

l ðh;/Þ~RðnÞ
l ðrÞ: ð3:300Þ

Let us seek several tangible functional forms of hydrogen ðZ ¼ 1Þ including
angular and radial parts. For example, we have

/ð1sÞ � Y0
0 ðh;/Þ~Rð1Þ

0 ðrÞ ¼
ffiffiffiffiffiffi
1
4p

r
a�3=2

~wðnÞ
n�1

q

 !
¼

ffiffiffi
1
p

r
a�3=2e�r=a; ð3:301Þ

where we used (3.276) and (3.295).
For /ð2sÞ, using (3.277) and (3.278) we have

/ð2sÞ � Y0
0 ðh;/Þ~Rð2Þ

0 ðrÞ ¼ 1

4
ffiffiffiffiffiffi
2p

p a�
3
2 e�

r
2a 2� r

a

� �
: ð3:302Þ

For /ð2pzÞ, in turn, we express it as
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/ð2pzÞ � Y0
1 ðh;/Þ~Rð2Þ

1 ðrÞ ¼
ffiffiffiffiffiffi
3
4p

r
ðcos hÞ 1

2
ffiffiffi
6

p a�
3
2
r
a
e�

r
2a

¼ 1

4
ffiffiffiffiffiffi
2p

p a�
3
2
r
a
e�

r
2a cos h ¼ 1

4
ffiffiffiffiffiffi
2p

p a�
3
2
r
a
e�

r
2a
z
r
¼ 1

4
ffiffiffiffiffiffi
2p

p a�
5
2e�

r
2az: ð3:303Þ

For /ð2pxþ iyÞ, using (3.217) we get

/ð2pxþ iyÞ � Y1
1 ðh;/Þ~Rð2Þ

1 ðrÞ ¼ � 1
8
ffiffiffi
p

p a�
3
2
r
a
e�

r
2a sin hei/

¼ � 1
8
ffiffiffi
p

p a�
3
2
r
a
e�

r
2a
xþ iy
r

¼ � 1
8
ffiffiffi
p

p a�
5
2e�

r
2aðxþ iyÞ:

ð3:304Þ

In (3.304), the minus sign comes from the Condon–Shortley phase. Furthermore,
we have

/ð2px�iyÞ � Y�1
1 ðh;/Þ~Rð2Þ

1 ðrÞ ¼ 1
8
ffiffiffi
p

p a�
3
2
r
a
e�

r
2a sin he�i/

¼ 1
8
ffiffiffi
p

p a�
3
2
r
a
e�

r
2a
x� iy
r

¼ 1
8
ffiffiffi
p

p a�
5
2e�

r
2aðx� iyÞ: ð3:305Þ

Notice that the above notations /ð2pxþ iyÞ and /ð2px�iyÞ differ from the custom
that uses, e.g., /ð2pxÞ and /ð2pyÞ. We will come back to this point in Sect. 4.3.
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Chapter 4
Optical Transition and Selection Rules

In Sect. 1.2, we showed the Schrödinger equation as a function of space coordinates
and time. In subsequent sections, we dealt with the time-independent eigenvalue
problems of a harmonic oscillator and a hydrogen-like atoms. This implies that the
physical system is isolated from the outside world and that there is no interaction
between the outside world and physical system we are considering. However, by
virtue of the interaction, the system may acquire or lose energy, momentum, an-
gular momentum, etc. As a consequence of the interaction, the system changes its
quantum state as well. Such a change is said to be a transition. If the interaction
takes place as an optical process, we are to deal with an optical transition. Of
various optical transitions, the electric dipole transition is common and the most
important. In this chapter, we study the optical transition of a particle confined in a
potential well, a harmonic oscillator, and a hydrogen using a semiclassical
approach. A question of whether the transition is allowed or forbidden is of great
importance. We have a selection rule to judge it.

4.1 Electric Dipole Transition

We have a time-dependent Schrödinger equation described as

Hw ¼ i�h
@w
@t

: ð1:47Þ

Using the method of separation of variables, we obtained two equations
expressed below.

H/ xð Þ ¼ E/ xð Þ; ð1:55Þ
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i�h
@n tð Þ
@t

¼ En tð Þ: ð1:56Þ

Equation (1.55) is aneigenvalue equation of energy, and (1.56) is an equation
with time. So far we have focused our attention upon (1.55) taking a
one-dimensional harmonic oscillator and hydrogen-like atoms as an example. In
this chapter, we deal with a time-evolved Schrödinger equation and its relevance to
an optical transition. The optical transition takes place according to selection rules.
We mention their significance as well.

We showed that after solving the eigenvalue equation, the Schrödinger equation
is expressed as

w x; tð Þ ¼ / xð Þ expð�iEt=�hÞ: ð1:60Þ

The probability density of the system (i.e., normally a particle such as an
electron, a harmonic oscillator) residing at a certain place x at a certain time t is
expressed as

w� x; tð Þw x; tð Þ:

If the Schrödinger equation is described as a form of separated variables as in the
case of (1.60), the exponential factors including t cancel out and we have

w� x; tð Þw x; tð Þ ¼ /� xð Þ/ xð Þ: ð4:1Þ

This means that the probability density of the system depends only on spatial
coordinate and is constant in time. Such a state is said to be a stationary state. That
is, the system continues residing in a quantum state described by / xð Þ and remains
unchanged independent of time.

Next, we consider a linear combination of functions described by (1.60). That is,
we have

w x; tð Þ ¼ c1/1 xð Þ expð�iE1t=�hÞþ c2/2 xð Þ expð�iE2t=�hÞ; ð4:2Þ

where the first term is pertinent to the state 1 and second term to the state 2; c1 and
c2 are complex constants with respect to the spatial coordinates but may be weakly
time-dependent. The state described by (4.2) is called a coherent state. The prob-
ability distribution of that state is described as

w� x; tð Þw x; tð Þ ¼ c1j j2 /1j j2 þ c2j j2 /2j j2 þ c�1c2/
�
1/2e

�ixt þ c�2c1/
�
2/1e

ixt; ð4:3Þ

where x is expressed as

x ¼ E2 � E1ð Þ=�h: ð4:4Þ

This equation shows that the probability density of the system undergoes a
sinusoidal oscillation with time. The angular frequency equals the energy difference
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between the two states divided by the reduced Planck constant. If the system is a
charged particle such as an electron and proton, the sinusoidal oscillation is
accompanied by an oscillating electromagnetic field. Thus, the coherent state is
associated with the optical transition from one state to another, when the transition
is related to the charged particle.

The optical transitions result from various causes. Of these, the electric dipole
transition yields the largest transition probability, and the dipole approximation is
often chosen to represent the transition probability. From the point of view of
optical measurements, the electric dipole transition gives the strongest absorption or
emission spectral lines. The matrix elementof the electric dipole, more specifically a
square of an absolute value of the matrix element, is a measure of the optical
transitionprobability. Labeling the quantum states as a, b, etc. and describing the
corresponding state vector as aj i; bj i, etc., the matrix element Pba is given by

Pba � bjee � Pjah i; ð4:5Þ

where ee is a unit polarization vector of the electric field of an electromagnetic wave
(i.e., light). Equation (4.5) describes the optical transition that takes place as a result
of the interaction between electrons and radiation field in such a way that the
interaction causes electrons in the system to change the state from aj i to bj i. That
interaction is represented by ee � P. The quantum states aj i and bj i are referred to as
an initial state and final state, respectively.

The quantity P is the electric dipole moment of the system, which is defined as

P � e
X
j

xj; ð4:6Þ

where e is an elementary charge (e\0) and xj is a position vector of the jth electron.
Detailed description of ee andP can be seen in Chap. 5. The quantity Pba is said to
be transition dipole moment, or more precisely, transition electric dipole moment
with respect to the states aj i and bj i. We assume that the optical transition occurs
from a quantum state aj i to another state bj i. Since Pba is generally a complex
number, Pbaj j2 represents the transition probability.

If we adopt the coordinate representation, (4.5) is expressed by

Pba ¼ Z
/�
bee � P/ads; ð4:7Þ

where s denotes an integral range of a space.

4.2 One-dimensional System

Let us apply the aforementioned general description to individual cases of
Chaps. 1–3.
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Example 4.1 A particle confined in a square-well potential
This example was treated in Chap. 1. As before, we assume that a particle (i.e.,

electron) is confined in a one-dimensional system ½�L� x� LðL[ 0Þ�.
We consider the optical transition from the ground state /1 xð Þ to the first excited

state /2 xð Þ. Here, we put L ¼ p=2 for convenience. Then, the normalized coherent
state w xð Þ is described as

w x; tð Þ ¼ 1ffiffiffi
2

p /1 xð Þ expð�iE1t=�hÞþ/2 xð Þ expð�iE2t=�hÞ½ �; ð4:8Þ

where we put c1 ¼ c2 ¼ 1ffiffi
2

p in (4.2). In (4.8), we have

/1 xð Þ ¼
ffiffiffi
2
p

r
cos x and /2 xð Þ ¼

ffiffiffi
2
p

r
sin 2x: ð4:9Þ

Following (4.3), we have a following real function called a probability distri-
bution density:

w� x; tð Þw x; tð Þ ¼ 1
p

cos2 xþ sin2 2xþ sin 3xþ sin xð Þ cosxt� �
; ð4:10Þ

where x is given by (4.4) as

x ¼ 3�h=2m; ð4:11Þ

where m is a mass of an electron. Rewriting (4.10), we have

w� x; tð Þw x; tð Þ ¼ 1
p

1þ 1
2
ðcos 2x� cos 4xÞþ sin 3xþ sin xð Þ cosxt

� �
: ð4:12Þ

Integrating (4.12) over � p
2 ;

p
2

� �
, a contribution from only the first term is non-

vanishing to give 1, as anticipated (because of the normalization).
Putting t ¼ 0 and integrating (4.12) over a positive domain 0; p2

� �
, we have

Zp=2
0

w� x; 0ð Þw x; 0ð Þdx ¼ 1
2
þ 4

3p
� 0:924: ð4:13Þ

Similarly, integrating (4.12) over a negative domain � p
2 ; 0

� �
, we have

Z0
�p=2

w� x; 0ð Þw x; 0ð Þdx ¼ 1
2
� 4
3p

� 0:076: ð4:14Þ
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Thus, 92% of a total charge (as a probability density) is concentrated in the
positive domain. Differentiation of w� x; 0ð Þw x; 0ð Þ gives five extremals including
both edges. Of these, a major maximum is located at 0.635 rad that corresponds to
about 40% of p=2. This can be a measure of the transition moment. Figure 4.1
demonstrates these results (see a solid curve). Meanwhile, putting t ¼ p=x (i.e.,
half period), we plot w� x; p=xð Þw x; p=xð Þ. The result shows that the graph is
obtained by folding back the solid curve of Fig. 4.1 with respect to the ordinate
axis. Thus, we find that the charge (or the probability density) exerts a sinusoidal
oscillation with an angular frequency 3�h=2m along the x-axis around the origin.

Let e1 be a unit vector in the positive direction of the x-axis. Then, the electric
dipole P of the system is

P ¼ ex ¼ exe1; ð4:15Þ

where x is a position vector of the electron. Let us define the matrix element of the
electric dipoletransition as

P21 � /2 xð Þje1 � Pj/1 xð Þh i ¼ /2 xð Þjexj/1 xð Þh i: ð4:16Þ

Notice that we only have to consider that the polarization of light is parallel to
the x-axis. With the coordinate representation, we have

P21 ¼
Zp=2

�p=2

/�
2 xð Þex/1 xð Þdx ¼

Zp=2
�p=2

ffiffiffi
2
p

r
ðcos xÞex

ffiffiffi
2
p

r
sin 2x dx

¼ e
2
p

Zp=2
�p=2

x cos x sin 2x dx ¼ e
p

Zp=2
�p=2

xðsin xþ sin 3xÞdx

¼ e
p

Zp=2
�p=2

xð� cos xÞ0 þ x � 1
3
cos 3x

� �0� �
dx ¼ 16e

9p
;

ð4:17Þ

Fig. 4.1 Probability
distribution density
w� x; tð Þw x; tð Þ of a particle
confined in a square-well
potential. The solid curve and
broken curve represent the
density of t ¼ 0 and t ¼ p=x
(i.e., half period), respectively
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where we used a trigonometric formula and integration by parts. The factor 16=9p
in (4.17) is about 36% of p=2. This number is pretty good agreement with 40% that
is estimated above from the major maximum of w� x; 0ð Þw x; 0ð Þ.

Note that the transition moment vanishes if the two states associated with the
transition have the same parity. In other words, if these are both described by sine
functions or cosine functions, the integral vanishes.

Example 4.2 One-dimensional harmonic oscillator
Second, let us think of an optical transition regarding a harmonic oscillator that

we dealt with in Chap. 2. We denote the state of the oscillator as nj i in place of
wnj i n ¼ 0; 1; 2; . . .ð Þ of Chap. 2. Then, a general expression (4.5) can be written as

Pkl ¼ kjee � Pjlh i: ð4:18Þ
Since we are considering the sole one-dimensional oscillator,

ee ¼ ~q and P ¼ eq, ð4:19Þ

where ~q is a unit vector in the positive direction of the coordinate q. Therefore,
similarly to the above we have

ee � P ¼ eq: ð4:20Þ

That is,

Pkl ¼ e kjqjlh i: ð4:21Þ

Since q is an Hermitian operator, we have

P�
kl ¼ e ljqyjk

D E
¼ e ljqjkh i ¼ Plk; ð4:22Þ

where we used (1. 116). Using (2. 68), we have

Pkl ¼ e

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
kjaþ ayjl
D E

¼
ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
kjajlh iþ kjayjl

D Eh i
: ð4:23Þ

Taking the adjoint of (2.62) and modifying the notation, we have

kjah ¼ ffiffiffiffiffiffiffiffiffiffi
kþ 1

p
kþ 1jh : ð4:24Þ

Using (2.62) once again, we get

Pkl ¼ e

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r ffiffiffiffiffiffiffiffiffiffi
kþ 1

p
kþ 1jlh iþ ffiffiffiffiffiffiffiffiffi

lþ 1
p

kjlþ 1h i
h i

: ð4:25Þ

Using orthonormal conditions between the state vectors, we have
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Pkl ¼ e

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r ffiffiffiffiffiffiffiffiffiffi
kþ 1

p
dkþ 1;l þ

ffiffiffiffiffiffiffiffiffi
lþ 1

p
dk;lþ 1

h i
: ð4:26Þ

Exchanging k and l in the above, we get

Pkl ¼ Plk:

The matrix element Pkl is symmetric with respect to indices k and l. Notice that
the first term does not vanish only when kþ 1 ¼ l. The second term does not vanish
only when k ¼ lþ 1. Therefore, we get

Pk;kþ 1 ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h kþ 1ð Þ
2mx

r
and Plþ 1;l ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h lþ 1ð Þ
2mx

r
or Pkþ 1;k ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h kþ 1ð Þ
2mx

r !
:

ð4:27Þ

Meanwhile, we find that the transition matrix P is expressed as

P ¼ eq ¼ e

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
aþ ay
	 


¼ e

ffiffiffiffiffiffiffiffiffiffi
�h

2mx

r
0 1 0
1 0

ffiffiffi
2

p
0

ffiffiffi
2

p
0

0 0 � � �
0 0 � � �ffiffiffi
3

p
0 � � �

0 0
ffiffiffi
3

p
0 0 0
..
. ..

. ..
.

0 2 � � �
2 0 � � �
..
. ..

. . .
.

0
BBBBBB@

1
CCCCCCA
;

ð4:28Þ

where we used (2. 68). Note that a real Hermitian matrix is a symmetric matrix.
Practically, it is a fast way to construct a transition matrix (4.28) using (2.65) and

(2.66). It is an intuitively obvious and straightforward task. Having a glance at the
matrix form immediately tells us that the transition matrix elements are nonvanishing
with only k; kþ 1ð Þ and kþ 1; kð Þ positions. Whereas the k; kþ 1ð Þ-element repre-
sents transition from the kth excited state to k � 1ð Þ-th excited state accompanied by
photoemission, the kþ 1; kð Þ-element implies the transition from k � 1ð Þ-excited
state to kth excited state accompanied by photoabsorption. The two transitions give
the same transition moment. Note that zeroth excited state means the ground state;
see (2.64) for basisvector representations.

We should be careful about “addresses” of the matrix accordingly. For example,
P0;1 in (4.27) represents a (1,2) element of the matrix (4.28); P2;1 stands for a (3,2)
element.

Suppose that we seek the transition dipole moments using coordinate repre-
sentation. Then, we need to use (2.106) and perform definite integration. For
instance, we have
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e
Z1
�1

w0 qð Þqw1 qð Þdq

that corresponds to (1,2) element of (4.28). Indeed, the above integral gives e
ffiffiffiffiffiffiffi
�h

2mx

q
.

The confirmation is left for the readers. Nonetheless, to seek a definite integral of
product of higher excited-state wave functions becomes increasingly troublesome.
In this respect, the operator method described above provides us with a much better
insight into complicated calculations.

Equations (4.26–4.28) imply that the electric dipole transition is allowed to
occur only when the quantum number changes by one. Notice also that the tran-
sition takes place between the even function and odd function; see Table 2.1 and
(2.101). Such a condition or restriction on the optical transition is called a selection
rule. The former equation of (4.27) shows that the transition takes place from the
upper state to the lower state accompanied by the photonemission. The latter
equation, on the other hand, shows that the transition takes place from the lower
state to the upper accompanied by the photonabsorption.

4.3 Three-dimensional System

The hydrogen-like atoms give us a typical example. Since we have fully investi-
gated the quantum states of those atoms, we make the most of the related results.

Example 4.3 An electron in a hydrogen atom
Unlike the one-dimensional system, we have to take account of an angular

momentum in the three-dimensional system. We have already obtained explicit
wave functions. Here we focus on 1s and 2p states of a hydrogen. For their nor-
malized states, we have

/ 1sð Þ ¼
ffiffiffiffiffiffiffi
1
pa3

r
e�r=a; ð4:29Þ

/ 2pzð Þ ¼ 1
4

ffiffiffiffiffiffiffiffiffiffi
1

2pa3

r
r
a
e�r=2a cos h; ð4:30Þ

/ 2pxþ iy
� � ¼ � 1

8

ffiffiffiffiffiffiffi
1
pa3

r
r
a
e�r=2a sin hei/; ð4:31Þ

/ 2px�iy
� � ¼ 1

8

ffiffiffiffiffiffiffi
1
pa3

r
r
a
e�r=2a sin he�i/; ð4:32Þ
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where adenotes Bohr radius of a hydrogen. Note that a minus sign of / 2pxþ iy
� �

is
due to the Condon–Shortley phase. Even though the transition probability is pro-
portional to a square of the matrix element and so the phase factor cancels out, we
describe the state vector faithfully. The energy eigenvalues are

E 1sð Þ ¼ � �h2

2la2
;E 2pzð Þ ¼ E 2pxþ iy

� � ¼ E 2px�iy
� � ¼ � �h2

8la2
; ð4:33Þ

where l is a reduced mass of a hydrogen. Note that the latter three states are
degenerated.

First, we consider a transition between / 1sð Þ and / 2pzð Þ states. Suppose that the
normalized coherent state is described as

w x; tð Þ ¼ 1ffiffiffi
2

p f / 1sð Þ exp½�iE 1sð Þt=�h½ � þ/ 2pzð Þ exp �iE 2pzð Þt=�h½ �g: ð4:34Þ

As before, we have

w� x; tð Þw x; tð Þ ¼ jw x; tð Þj2

¼ 1
2

/ð1sÞ½ �2 þ / 2pzð Þ½ �2 þ 2/ 1sð Þ/ 2pzð Þ cosxt
n o

;
ð4:35Þ

where x is given by

x ¼ E 2pzð Þ � E 1sð Þ½ �=�h ¼ 3�h=8la2: ð4:36Þ

In virtue of the third term that contains a cosxt term, the charge distribution
undergoes a sinusoidal oscillation along the z-axis with an angular frequency
described by (4.36). For instance, xt ¼ 0 gives +1 factor to (4.35) when t ¼ 0,
whereas it gives �1 factor when xt ¼ p, i.e. t ¼ 8pla2=3�h.

Integrating (4.35), we have

Z
w� x; tð Þw x; tð Þds ¼ Z jw x; tð Þj2ds

¼ 1
2

Z
/ 1sð Þ½ �2 þ / 2pzð Þ½ �2

n o
ds;

þ cosxt
Z

/ 1sð Þ/ 2pzð Þds ¼ 1
2
þ 1

2
¼ 1

where we used normalized functional forms of / 1sð Þ and / 2pzð Þ together with
orthogonality of them. Note that both of the functions are real.

Next, we calculate the matrix element. For simplicity, we denote the matrix
element simply as P eeð Þ only by designating the unit polarization vector ee. Then, we
have
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P eeð Þ ¼ / 1sð Þjee � Pj/ 2pzð Þh i; ð4:37Þ

where

P ¼ ex ¼ e e1e2e3ð Þ
x
y
z

0
@

1
A: ð4:38Þ

We have three possibilities of choosing ee out of e1; e2; and e3. Choosing e3, we
have

P e3ð Þ
z; pzj i ¼ e / 1sð Þjzj/ 2pzð Þh i

¼ e

4
ffiffiffi
2

p
pa4

Z1
0

r4e�3r=2adr
Zp
0

cos2h sin h dh
Z2p
0

d/ ¼ 27
ffiffiffi
2

p

35
ea � 0:745ea:

ð4:39Þ

In (4.39), we express the matrix element as P e3ð Þ
z; pzj i to indicate the z-component of

position vector and to explicitly show that / 2pzð Þ state is responsible for the
transition. In (4.39), we used z ¼ r cos h. We also used a radial part integration
such that

Z1
0

r4e�3r=2adr ¼ 24
2a
3

� �5

:

Also we changed a variable cos h ! t to perform the integration with respect to
h. We see that a “leverage” length of the transition moment is comparable to Bohr
radius a.

With the notation P e3ð Þ
z;jpzi we need some explanation for consistency with the latter

description. Equation (4.39) represents the transition from / 2pzð Þj i to / 1sð Þj i that
is accompanied by the photonemission. Thus, pzj i in the notation, means that
/ 2pzð Þj i is the initial state. In the notation, in turn, e3ð Þ denotes the polarization
vector and z represents the electric dipole.

In the case of photonabsorption where the transition occurs from / 1sð Þj i to
/ 2pzð Þj i, we use the following notation:

P e3ð Þ
z; pzh j ¼ e / 2pzð Þjzj/ 1sð Þh i: ð4:40Þ

Since all the functions related to the integration are real, we have
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P e3ð Þ
z; pzj i ¼ P e3ð Þ

z; pzh j:

Meanwhile, if we choose e1 for ee to evaluate the matrix element Px, we have

P e1ð Þ
x; pzj i ¼ e / 1sð Þjxj/ 2pzð Þh i

¼ e

4
ffiffiffi
2

p
pa4

Z1
0

r4e�3r=2adr
Zp
0

sin2h cos h dh
Z2p
0

cos/ d/ ¼ 0;
ð4:41Þ

where cos / comes from x ¼ r sin h cos / and an integration of cos / gives zero.
In a similar manner, we have

P e2ð Þ
y; pzj i ¼ e / 1sð Þjyj/ 2pzð Þh i ¼ 0: ð4:42Þ

Next, we estimate the matrix elements associated with 2px and 2py. For this
purpose, it is convenient to introduce the following complex coordinates by a
unitary transformation:

e1e2e3ð Þ
x

y

z

0
B@

1
CA ¼ e1e2e3ð Þ

1ffiffi
2

p 1ffiffi
2

p 0

� iffiffi
2

p

0

iffiffi
2

p 0

0 1

0
BB@

1
CCA

1ffiffi
2

p iffiffi
2

p 0

1ffiffi
2

p

0

� iffiffi
2

p 0

0 1

0
BB@

1
CCA

x

y

z

0
B@

1
CA

¼ 1ffiffiffi
2

p e1 � ie2ð Þ 1ffiffiffi
2

p e1 þ ie2ð Þe3
� � 1ffiffi

2
p xþ iyð Þ
1ffiffi
2

p x� iyð Þ
z

0
B@

1
CA;

ð4:43Þ

where a unitary transformation is represented by a unitary matrix defined as

UyU ¼ UUy ¼ E: ð4:44Þ

We will investigate details of the unitary transformation and matrix in Parts III
and IV.

We define eþ and e� as follows [1]:

eþ � 1ffiffiffi
2

p e1 þ ie2ð Þ and e� � 1ffiffiffi
2

p e1 � ie2ð Þ; ð4:45Þ

where complex vectors eþ and e� represent the left-circularly polarized lightand
right-circularly polarized light that carry an angular momentum �h and ��h,
respectively. We will revisit the characteristics and implication of these complex
vectors in Sect. 5.4.
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We have

e1e2e3ð Þ
x
y
z

0
@

1
A ¼ e� eþ e3ð Þ

1ffiffi
2

p xþ iyð Þ
1ffiffi
2

p x� iyð Þ
z

0
@

1
A: ð4:46Þ

Note that eþ ; e�;and e3 are orthonormal. That is,

eþ jeþh i ¼ 1; eþ je�h i ¼ 0; etc: ð4:47Þ

In this situation, eþ ; e�; and e3 are said to form an orthonormal basis in a
three-dimensional complex vector space (see Sect. 11.4).

Now, choosing eþ for ee, we have [2]

P eþð Þ
x�iy; pþj i � e / 1sð Þj 1ffiffiffi

2
p x� iyð Þj/ 2pxþ iy

� �
 �
; ð4:48Þ

where pþj i is a shorthand notation of / 2pxþ iy
� �

; x� iy represents a complex
electric dipole. Equation (4.48) represents an optical process in which an electron
causes transition from / 2pxþ iy

� �
to / 1sð Þ to lose an angular momentum �h, whereas

the radiation field gains that angular momentum to conserve a total angular

momentum �h. The notation P eþð Þ
x�iy; pþj i reflects this situation. Using the coordinate

representation, we rewrite (4.48) as

P eþð Þ
x�iy; pþj i ¼ � e

8
ffiffiffi
2

p
pa4

Z1
0

r4e�3r=2adr
Zp
0

sin3h dh
Z2p
0

e�i/ei/d/ ¼ � 27
ffiffiffi
2

p

35
ea;

ð4:49Þ

where we used

x� iy ¼ r sin he�i/: ð4:50Þ

In the definite integral of (4.49), e�i/ comes from x� iy, while ei/ comes from
/ 2pxþ iy
� �

. Note that from (3.24) ei/ is an eigenfunction corresponding to an an-
gular momentumeigenvalue �h. Notice that in (4.49), exponents e�i/ and ei/ cancel
out and that an azimuthal integral is nonvanishing.

If we choose e� for ee, we have

P e�ð Þ
xþ iy; pþj i ¼ e / 1sð Þj 1ffiffiffi

2
p xþ iyð Þj/ 2pxþ iy

� �
 �
ð4:51Þ
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¼ e

8
ffiffiffi
2

p
pa4

Z1
0

r4e�3r=2adr
Zp
0

sin3h dh
Z2p
0

e2i/d/ ¼ 0; ð4:52Þ

where we used

xþ iy ¼ r sin hei/:

With (4.52), a factor e2i/ results from the product / 2pxþ iy
� �

xþ iyð Þ which
renders the integral (4.51) vanishing. Note that the only difference between (4.49)
and (4.52) is about the integration of / factor. For the same reason, if we choose e3
for ee, the matrix element vanishes. Thus, with the / 2pxþ iy

� �
-related matrix ele-

ment, only P eþð Þ
x�iy; pþj i survives. Similarly, with the / 2px�iy

� �
-related matrix element,

only P e�ð Þ
xþ iy; p�j i survives. Notice that p�j i is a shorthand notation of / 2px�iy

� �
. That

is, we have, e.g.,

P e�ð Þ
xþ iy; p�j i ¼ e / 1sð Þj 1ffiffiffi

2
p xþ iyð Þj/ 2px�iy

� �
 �
¼ 27

ffiffiffi
2

p

35
ea;

P eþð Þ
x�iy; p�j i ¼ e / 1sð Þj 1ffiffiffi

2
p x� iyð Þj/ 2px�iy

� �
 �
¼ 0:

ð4:53Þ

Taking complex conjugate of (4.48), we have

P eþð Þ
x�iy; pþj i

h i�
¼ e / 2pxþ iy

� �j 1ffiffiffi
2

p xþ iyð Þj/ 1sð Þ

 �

¼ � 27
ffiffiffi
2

p

35
ea ð4:54Þ

Here recall (1.116) and ðx� iyÞy ¼ xþ iy. Also note that since P eþð Þ
x�iy; pþj i is real,

P eþð Þ
x�iy;jpþ i

h i�
is real as well so that we have

P eþð Þ
x�iy; pþj i

h i�
¼ P eþð Þ

x�iy; pþj i ¼ P e�ð Þ
xþ iy; pþh j: ð4:55Þ

Comparing (4.48) and (4.55), we notice that the polarization vector has been
switched from eþ to e� with the allowed transition, even though the matrix element
remains the same. This can be explained as follows: In (4.48), the photonemission
is occurring, while the electron is causing a transition from / 2pxþ iy

� �
to / 1sð Þ. As

a result, the radiation field has gained an angular momentum by �h during the
process in which the electron has lost an angular momentum �h. In other words, �h is
transferred from the electron to the radiation field and this process results in the
generation of left-circularly polarized light in the radiation field.

In (4.54), on the other hand, the reversed process takes place. That is, the
photonabsorption is occurring in such a way that the electron is excited from / 1sð Þ
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to / 2pxþ iy
� �

. After this process has been completed, the electron has gained an
angular momentum by �h, whereas the radiation field has lost an angular momentum
by �h. As a result, the positive angular momentum �h is transferred to the electron
from the radiation field that involves left-circularly polarized light. This can be
translated into the statement that the radiation field has gained an angular
momentum by ��h. This is equivalent to the generation of right-circularly polarized
light (characterized by e�) in the radiation field. In other words, the electron gains
the angular momentum by �h to compensate the change in the radiation field.

The implication of the first equation of (4.53) can be interpreted in a similar
manner. Also we have

P e�ð Þ
xþ iy; p�j i

h i�
¼ P e�ð Þ

xþ iy; p�j i ¼ P eþð Þ
x�iy; p�h j ¼ e / 2px�iy

� �j 1ffiffiffi
2

p x� iyð Þj/ 1sð Þ

 �

¼ 27
ffiffiffi
2

p

35
ea:

Notice that the inner products of (4.49) and (4.53) are real, even though oper-

ators xþ iy and x� iy are not Hermitian. Also note that P eþð Þ
x�iy; pþj i of (4.49) and

P e�ð Þ
xþ iy; p�j i of (4.53) have the same absolute value with minus and plus signs,

respectively. The minus sign of (4.49) comes from the Condon–Shortley phase. The
difference, however, is not essential, because the transition probability is propor-

tional to jP e�ð Þ
xþ iy; p�j ij2 or jP eþð Þ

x�iy; pþj ij2. Some literature [3, 4] uses � xþ iyð Þ instead of

xþ iy. This is because simply of the inclusion of the Condon–Shortley phase; see
(3.304).

Let us think of the coherent state that is composed of / 1sð Þ and / 2pxþ iy
� �

or
/ 2px�iy
� �

. Choosing / 2pxþ iy
� �

, the state w x; tð Þ can be given by

w x; tð Þ ¼ 1ffiffiffi
2

p / 1sð Þ exp �iE 1sð Þt=�hð Þþ/ 2pxþ iy
� �

exp �iE 2pxþ iy
� �

t=�h
� �� �

;

ð4:56Þ

where / 1sð Þ is described by (3.301) and / 2pxþ iy
� �

is expressed as (3.304). Then
we have

w� x; tð Þw x; tð Þ ¼ jw x; tð Þj2

¼ 1
2

/ 1sð Þj j2 þ / 2pxþ iy
� ��� ��2 þ/ 1sð Þ< 2pxþ iy

� �
ei /�xtð Þ þ e�i /�xtð Þ
h in o

¼ 1
2

/ 1sð Þj j2 þ / 2pxþ iy
� ��� ��2 þ 2/ 1sð Þ< 2pxþ iy

� �
cos /� xtð Þ

n o
;

ð4:57Þ

where using < 2pxþ iy
� �

, we denote / 2pxþ iy
� �

as follows:

132 4 Optical Transition and Selection Rules



/ 2pxþ iy
� � � < 2pxþ iy

� �
ei/: ð4:58Þ

That is, < 2pxþ iy
� �

represents a real component of / 2pxþ iy
� �

that depends only
on r and h. The third term of (4.57) implies that the existence probability density of
an electron represented by jw x; tð Þj2 is rotating counterclockwise around the z-axis
with an angular frequency of x. Similarly, in the case of / 2px�iy

� �
, the existence

probability density of an electron is rotating clockwise around the z-axis with an
angular frequency of x.

Integrating (4.57), we haveZ
w� x; tð Þw x; tð Þds ¼

Z
jw x; tð Þj2ds

¼ 1
2

Z
/ 1sð Þj2 þ�� ��/ 2pxþ iy

� �j2n o
ds

þ
Z1
0

r2dr
Zp
0

sin h dh/ 1sð Þ< 2pxþ iy
� �

Z2p
0

d/ cos /� xtð Þ ¼ 1
2
þ 1

2
¼ 1;

where we used normalized functional forms of / 1sð Þ and / 2pxþ iy
� �

; the last term
vanishes because

Z2p
0

d/ cos /� xtð Þ ¼ 0:

This is easily shown by suitable variable transformation.
In relation to the above discussion, we often use real numbers to describe wave

functions. For this purpose, we use the following unitary transformation to trans-
form the orthonormal basis of e	im/ to cosm/ and sinm/. That is, we have

1ffiffiffi
p

p cosm/
1ffiffiffi
p

p sinm/
� �

¼ �1ð Þmffiffiffiffiffiffi
2p

p eim/
1ffiffiffiffiffiffi
2p

p e�im/

� � �1ð Þmffiffi
2

p � �1ð Þmiffiffi
2

p
1ffiffi
2

p iffiffi
2

p

 !
;

ð4:59Þ

where we assume that m is positive so that we can appropriately take into account
the Condon–Shortley phase. Alternatively, we describe it via unitary transformation
as follows:
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�1ð Þmffiffiffiffiffiffi
2p

p eim/
1ffiffiffiffiffiffi
2p

p e�im/

� �
¼ 1ffiffiffi

p
p cos m/

1ffiffiffi
p

p sin m/

� � �1ð Þmffiffi
2

p 1ffiffi
2

p
�1ð Þmiffiffi

2
p � iffiffi

2
p

 !
; ð4:60Þ

In this regard, we have to be careful about normalization constants; for
trigonometric functions, the constant should be 1ffiffi

p
p , whereas for the exponential

representation, the constant is 1ffiffiffiffi
2p

p . At the same time, trigonometric functions are

expressed as a linear combination of eim/ and e�im/, and so if we use the
trigonometric functions, information of a magnetic quantum number is lost.

In Sect. 3.7, we showed normalized functions ~K
nð Þ
l;m ¼ Ym

l h;/ð Þ~R nð Þ
l rð Þ of the

hydrogen-like atom. Noting that Ym
l h;/ð Þ is proportional to e	im/, ~K

nð Þ
l;m can be

described using cos m/ and sin m/ for the basis vectors. We denote two linearly

independent vectors by ~K
nð Þ
l;cosm/ and ~K

nð Þ
l;sinm/. Then, these vectors are expressed as

~K
nð Þ
l;cosm/

~K
nð Þ
l;sinm/

	 

¼ ~K

nð Þ
l;m

~K
nð Þ
l;�m

	 
 �1ð Þmffiffi
2

p � �1ð Þmiffiffi
2

p
1ffiffi
2

p iffiffi
2

p

 !
; ð4:61Þ

where we again assume that m is positive. In chemistry and materials science, we

normally use real functions of ~K
nð Þ
l;cosm/ and ~K

nð Þ
l;sinm/. In particular, we use the

notations of, e.g., / 2pxð Þ and / 2py
� �

instead of ~K
2ð Þ
1;cos/ and ~K

2ð Þ
1;sin/, respectively. In

that case, we explicitly have a following form:

/ 2pxð Þ/ 2py
� �� � ¼ ~K

2ð Þ
1;1

~K
2ð Þ
1;�1

	 
 � 1ffiffi
2

p iffiffi
2

p

1ffiffi
2

p iffiffi
2

p

 !

¼ / 2pxþ iy
� �

/ 2px�iy
� �� � � 1ffiffi

2
p iffiffi

2
p

1ffiffi
2

p iffiffi
2

p

 !

¼ 1

4
ffiffiffiffiffiffi
2p

p a�
3
2
r
a
e�

r
2a sin h cos /

1

4
ffiffiffiffiffiffi
2p

p a�
3
2
r
a
e�

r
2a sin h sin /

� �
:

ð4:62Þ

Thus, the Condon–Shortley phasefactor has been removed.
Using this expression, we calculate matrix elements of the electric dipole tran-

sition. We have

P e1ð Þ
x; pxj i ¼ e / 1sð Þjxj/ 2pxð Þh i

¼ e

4
ffiffiffi
2

p
pa4

Z1
0

r4e�3r=2adr
Zp
0

sin3h dh
Z2p
0

cos2/ d/ ¼ 27
ffiffiffi
2

p

35
ea:

ð4:63Þ
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Thus, we obtained the same result as (4.49) apart from the minus sign. Since a
square of an absolute value of the transition moment plays a role, the minus sign is
again of secondary importance. With P e2ð Þ

y , similarly we have

P e2ð Þ
y; pyj i ¼ e / 1sð Þjyj/ 2py

� �� �

¼ e

4
ffiffiffi
2

p
pa4

Z1
0

r4e�3r=2adr
Zp
0

sin3h dh
Z2p
0

sin2/ d/ ¼ 27
ffiffiffi
2

p

35
ea:

ð4:64Þ

Comparing (4.39), (4.63), and (4.64), we have

P e3ð Þ
z; pzj i ¼ P e1ð Þ

x; pxj i ¼ P e2ð Þ
y; pyj i ¼

27
ffiffiffi
2

p

35
ea:

In the case of P e3ð Þ
z; pzj i;P

e1ð Þ
x; pxj i, and P e2ð Þ

y; pyj i, the optical transition is said to be

polarized along the z-, x-, and y-axes, respectively, and so linearly polarized lights
are relevant. Note moreover that operators z, x, and y in (4.39), (4.63), and (4.64)
are Hermitian and that / 2pzð Þ, / 2pxð Þ, and / 2py

� �
are real functions.

4.4 Selection Rules

In a three-dimensional system such as hydrogen-like atoms, quantum states of
particles (i.e., electrons) are characterized by three quantum numbers; principal
quantum numbers, azimuthal quantum numbers (or orbital angular momentum
quantum numbers), and magnetic quantum numbers. In this section, we examine
the selection rules for the electric dipole approximation.

Of the three quantum numbers mentioned above, angular momentum quantum
numbers are denoted by l and magnetic quantum numbers by m. First, we examine
the conditions on m. With the angular momentum operator L and its corresponding
operator M, we get the following commutation relations:

Mz; x½ � ¼ iy; My; z
� � ¼ ix; Mx; y½ �;¼ iz;

Mz; iy½ � ¼ x; My; ix
� � ¼ z; Mx; iz½ � ¼ y; etc:

ð4:65Þ

Notice that in the upper line, the indices change cyclic like z; x; yð Þ, whereas in
the lower line they change anticyclic such as z; y; xð Þ. The proof of (4.65) is left for
the reader. Thus, we have, e.g.,

Mz; xþ iy½ � ¼ xþ iy; Mz; x� iy½ � ¼ � x� iyð Þ; etc: ð4:66Þ
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Putting

Qþ � xþ iy and Q� � x� iy;

we have

Mz;Q
þ½ � ¼ Qþ ; Mz;Q

�½ � ¼ �Q�: ð4:67Þ

Taking an inner product of both sides of (4.67), we have

m0j Mz;Q
þ½ �jmh i ¼ m0h jMzQ

þ � QþMz mj i ¼ m0 m0jQþ jmh i � m m0jQþ jmh i
¼ m0jQþ jmh i;

ð4:68Þ

where the quantum state mj i is identical to l;mj i in (3.151). Here we need no
information about l, and so it is omitted. Thus, we have, e.g., Mz mj i ¼ m mj i.
Taking its adjoint, we have mh jMy

z ¼ mh jMz ¼ m mh j, whereMz is Hermitian. These
results lead to (4.68). From (4.68), we get

m0 � m� 1ð Þ m0jQþ jmh i ¼ 0: ð4:69Þ

Therefore, for the matrix element m0jQþ jmh i not to vanish, we must have

m0 � m� 1 ¼ 0 or Dm ¼ 1 Dm � m0 � mð Þ:

This represents the selection rule with respect to the coordinate Qþ .
Similarly, we get

m0 � mþ 1ð Þ m0jQ�jmh i ¼ 0: ð4:70Þ

In this case, for the matrix element m0jQ�jmh i not to vanish, we have

m0 � mþ 1 ¼ 0 or Dm ¼ �1:

To derive (4.70), we can alternatively use the following: Taking the adjoint of
(4.69), we have

m0 � m� 1ð Þ mjQ�jm0h i ¼ 0:

Exchanging m0 and m, we have

m� m0 � 1ð Þ m0jQ�jmh i ¼ 0 or m0 � mþ 1ð Þ m0jQ�jmh i ¼ 0:

Thus, (4.70) is recovered.
Meanwhile, we have a commutation relation
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Mz; z½ � ¼ 0: ð4:71Þ

Similarly, taking an inner product of both sides of (4.71), we have

m0 � mð Þ m0jzjmh i ¼ 0:

Therefore, for the matrix element m0jzjmh i not to vanish, we must have

m0 � m ¼ 0 or Dm ¼ 0: ð4:72Þ

These results are fully consistent with Example 4.3 of Sect. 4.3. That is, if
circularly polarized light takes part in the optical transition, Dm ¼ 	1. For instance,
using the present notation, we rewrite (4.48) as

/ 1sð Þj 1ffiffiffi
2

p x� iyð Þj/ 2pxþ iy
� �
 �

¼ 1ffiffiffi
2

p 0jQ�j1h i ¼ � 27
ffiffiffi
2

p

35
a:

If linearly polarized light is related to the optical transition, we have Dm ¼ 0.
Next, we examine the conditions on l. To this end, we calculate a following

commutator [5]:

M2; z
� � ¼ M2

x þM2
y þM2

z ; z
h i

¼ M2
x ; z

� �þ M2
y ; z

h i
¼ Mx Mxz� zMxð ÞþMxzMx � zM2

x

þMy Myz� zMy
� �þMyzMy � zM2

y

¼ Mx Mx; z½ � þ Mx; z½ �Mx þMy My; z
� �þ My; z

� �
My

¼ i Myxþ xMy �Mxy� yMx
� �

¼ i Mxy� yMx �Myxþ xMy þ 2Myx� 2Mxy
� �

¼ i 2izþ 2Myx� 2Mxy
� � ¼ 2i Myx�Mxyþ iz

� �
:

ð4:73Þ

In the above calculations, (i) we used Mz; z½ � ¼ 0 (with the second equality);
(ii) RHS was modified so that the commutation relations can be used (the third
equality); (iii) we used �Mxy ¼ Mxy� 2Mxy and Myx ¼ �Myxþ 2Myx so that we
can use (4.65) (the second last equality). Moreover, using (4.65), (4.73) can be
written as

M2; z
� � ¼ 2i xMy �Mxy

� � ¼ 2i Myx� yMx
� �

:

Similar results on the commutator can be obtained with M2; x
� �

and M2; y
� �

. For
further use, we give alternative relations such that

4.4 Selection Rules 137



M2; x
� � ¼ 2iðyMz �MyzÞ ¼ 2i Mzy� zMy

� �
;

M2; y
� � ¼ 2iðzMx �MzxÞ ¼ 2i Mxz� xMzð Þ: ð4:74Þ

Using (4.73), we calculate another commutator such that

M2; M2; z
� �� � ¼ 2i M2;Myx

� �� M2;Mxy
� �þ i½M2; z�� �

¼ 2i My M2; x
� ��Mx M2; y

� �þ i M2; z
� �� �

¼ 2i 2iMy yMz �Myz
� �� 2iMx Mxz� xMzð Þþ i M2; z

� �� �
¼ �2 2 MxxþMyyþMzz

� �
Mz � 2 M2

x þM2
y þM2

z

	 

zþM2z� zM2

n o
¼ 2 M2zþ zM2� �

:

ð4:75Þ

In the above calculations, (i) we used ½M2;My ¼ ½M2;Mx
� � ¼ 0 (with the second

equality); (ii) we used (4.74) (the third equality); (iii) RHS was modified so that we
can use the relation M? x from the definition of the angular momentum operator,
i.e., MxxþMyyþMzz ¼ 0 (the second last equality). We used Mz; z½ � ¼ 0 as well.
Similar results are obtained with x and y. That is, we have

M2; M2; x
� �� � ¼ 2 M2xþ xM2� �

; ð4:76Þ

M2; M2; y
� �� � ¼ 2 M2yþ yM2

� �
: ð4:77Þ

Rewriting, e.g., (4.75), we have

M4z� 2M2zM2 þ zM4 ¼ 2 M2zþ zM2� �
: ð4:78Þ

Using the relation (4.78) and taking inner products of both sides, we get, e.g.,

l0jM4z� 2M2zM2 þ zM4jl� � ¼ l0j2 M2zþ zM2� �jl� �
: ð4:79Þ

That is,

l0jM4z� 2M2zM2 þ zM4jl� �� l0j2 M2zþ zM2� �jl� � ¼ 0:

Considering that both terms of LHS contain a factor l0jzjlh i in common, we have

l02ðl0 þ 1Þ2 � 2l0l l0 þ 1ð Þ lþ 1ð Þþ l2ðlþ 1Þ2 � 2l0 l0 þ 1ð Þ � 2l lþ 1ð Þ
h i


 l0jzjlh i ¼ 0; ð4:80Þ

where the quantum state lj i is identical to l;mj i in (3.151) with m omitted.
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To factorize the first factor of LHS of (4.80), we view it as a quartic equation
with respect to l0. Replacing l0 with �l, we find that the first factor vanishes, and so
the first factor should have a factor l0 þ lð Þ. Then, we factorize the first term such
that.The first factor of LHS of (4.80)

¼ ðl0 þ lÞ2ðl0 � lÞ2 þ 2 l0 þ lð Þ l02 � l0lþ l2
� �� 2l0l l0 þ lð Þ � 2 l0 þ lð Þ � ðl0 þ lÞ2

¼ l0 þ lð Þ l0 þ lð Þ l0 � lð Þ2 þ 2 l02 � l0lþ l2
� �� 2l0l� 2� l0 þ lð Þ

h i
¼ l0 þ lð Þ l0 þ lð Þ l0 � lð Þ2 þ 2 l02 � 2l0lþ l2

� �� l0 þ lþ 2ð Þ
h i

¼ l0 þ lð Þ l0 þ lð Þðl0 � lÞ2 þ 2 l0 � lð Þ2� l0 þ lþ 2ð Þ
h i

¼ l0 þ lð Þ l0 � lð Þ2 l0 þ lð Þþ 2½ � � l0 þ lþ 2ð Þ
n o

¼ l0 þ lð Þ l0 þ lþ 2ð Þ l0 � lþ 1ð Þ l0 � l� 1ð Þ:
ð4:81Þ

Thus rewriting (4.80), we get

l0 þ lð Þ l0 þ lþ 2ð Þ l0 � lþ 1ð Þ l0 � l� 1ð Þ l0jzjlh i ¼ 0: ð4:82Þ

We have similar relations with respect to l0jxjlh i and l0jyjlh i because of (4.76) and
(4.77). For the electric dipole transition to be allowed, among l0jxjlh i, l0jyjlh i, and
l0jzjlh i, at least one term must be nonvanishing. For this, at least one of the four
factors of (4.81) should be zero. Since l0 þ lþ 2[ 0, this factor is excluded.

For l0 þ l to vanish, we should have l0 ¼ l ¼ 0; notice that both l0 and l are
nonnegative integers. We must then examine this condition. This condition is
equivalent to that the spherical harmonics related to the angular variables h and/
take the form of Y0

0 h;/ð Þ ¼ 1=
ffiffiffiffiffiffi
4p

p
, i.e., a constant. Therefore, the h-related inte-

gral for the matrix element l0jzjlh i only consists of a following factor:

Zp
0

cos h sin h dh ¼ 1
2

Zp
0

sin 2h dh ¼ � 1
4
cos 2h½ �p0¼ 0;

where cos h comes from a polar coordinate z ¼ r cos h; sin h is due to an
infinitesimal volume of space, i.e., r2 sin h dr dh d/. Thus, we find that l0jzjlh i
vanishes on condition that l0 ¼ l ¼ 0. As a polar coordinate representation,
x ¼ r sin h cos/ and y ¼ r sin h sin/, and so the /-related integral l0jxjlh i and
l0jyjlh i vanishes as well. That is,

Z2p
0

cos/ d/ ¼
Z2p
0

sin/ d/ ¼ 0:
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Therefore, the matrix elements relevant to l0 ¼ l ¼ 0 vanish with all the coor-
dinates; i.e., we have

l0jxjlh i ¼ l0jyjlh i ¼ l0jzjlh i ¼ 0: ð4:83Þ

Consequently, we exclude l0 þ lð Þ-factor as well, when we consider a condition
of the allowed transition. Thus, regarding the condition that should be satisfied with
the allowed transition, from (4.82) we get

l0 � lþ 1 ¼ 0 or l0 � l� 1 ¼ 0: ð4:84Þ

Or defining Dl � l0 � l, we get

Dl ¼ 	1: ð4:85Þ

Thus, for the transition to be allowed, the azimuthal quantum number must
change by one.

4.5 Angular Momentum of Radiation [6]

In Sect. 4.3, we mentioned circularly polarized light. If the circularly polarized light
acts on an electron, what can we anticipate? Here we deal with this problem within
a framework of a semiclassical theory.

Let E and H be electric and magnetic fields of a left-circularly polarized light.
They are expressed as

E ¼ 1ffiffiffi
2

p E0 e1 þ ie2ð Þ exp iðkz� xtÞ; ð4:86Þ

H ¼ 1ffiffiffi
2

p H0 e2 � ie1ð Þ exp iðkz� xtÞ ¼ 1ffiffiffi
2

p E0

lv
e2 � ie1ð Þ exp iðkz� xtÞ: ð4:87Þ

Here we assume that the light is propagating in the direction of the positive z-
axis. The electric and magnetic fields described by (4.86) and (4.87) represent the
left-circularly polarized light. A synchronized motion of an electron is expected, if
the electron exerts a circular motion in such a way that the motion direction of the
electron is always perpendicular to the electric field and parallel to the magnetic
field (see Fig. 4.2). In this situation, magnetic Lorentz force does not affect the
electron motion.

Equation (4.86) can be rewritten as
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E ¼ 1ffiffiffi
2

p E0 e1 cos kz� xtð Þ � e2 sinðkz� xtÞ½ �

þ i
1ffiffiffi
2

p E0 e2 cos kz� xtð Þþ e1 sinðkz� xtÞ½ �:
ð4:88Þ

Suppose that the electron exerts the circular motion in a region narrow enough
around the origin and that the said electron motion is confined within the xy-plane
that is perpendicular to the light propagation direction. Then, we can assume that
z � 0 in (4.88). Ignoring kz in (4.88) accordingly and taking a real part, we have

E ¼ 1ffiffiffi
2

p E0 e1 cos xtþ e2 sin xtð Þ: ð4:89Þ

Thus, a force F exerting the electron is described by

F ¼ eE, ð4:90Þ

where e is an elementary charge (e\0). Accordingly, an equation of motion of the
electron is approximated such that

m€x ¼ eE, ð4:91Þ

where m is a mass of an electron and x is a position vector of the electron. With
individual components of the coordinate, we have

m€x ¼ 1ffiffiffi
2

p eE0 cosxt and m€y ¼ 1ffiffiffi
2

p eE0 sinxt: ð4:92Þ

Integrating (4.92) two times, we get

E

H

x

y

electron motion

electron

Fig. 4.2 Synchronized
motion of an electron under a
left-circularly polarized light
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mx ¼ � eE0ffiffiffi
2

p
x2

cosxtþCtþD; ð4:93Þ

where C and D are integration constants. Setting x 0ð Þ ¼ � eE0ffiffi
2

p
mx2 and x0ð0Þ ¼ 0, we

have C ¼ D ¼ 0. Similarly, we have

my ¼ � eE0ffiffiffi
2

p
x2

sin xtþC0tþD0; ð4:94Þ

where C0 and D0 are integration constants. Setting y 0ð Þ ¼ 0 and y0ð0Þ ¼ � eE0ffiffi
2

p
mx

, we

have C0 ¼ D0 ¼ 0. Thus, making t a parameter, we get

x2 þ y2 ¼ eE0ffiffiffi
2

p
mx2

� �2

: ð4:95Þ

This implies that the electron is exerting a counterclockwise circular motion with
a radius � eE0ffiffi

2
p

mx2 under the influence of the electric field. This is consistent with a

motion of an electron in the coherent state of / 1sð Þ and / 2pxþ iy
� �

as expressed in
(4.57).

An angular momentum the electron has acquired is

L ¼ x
 p ¼ xpy � ypx ¼ � eE0ffiffiffi
2

p
mx2

� �
� meE0ffiffiffi

2
p

mx

� �
¼ e2E2

0

2mx3 : ð4:96Þ

Identifying this with �h, we have

e2E2
0

2mx3 ¼ �h: ð4:97Þ

In terms of energy, we have

e2E2
0

2mx2 ¼ �hx: ð4:98Þ

Assuming a wavelength of the light is 600 nm, we need a left-circularly
polarized light whose electric field is about 1:5
 1010 V=m.

A radius a of a circular motion of the electron is given by

a ¼ eE0ffiffiffi
2

p
mx2

: ð4:99Þ

Under the same condition as the above, a is estimated to be � 2�A.
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Part II
Electromagnetism

Electromagnetism is one of pillars of modern physics, even though it belongs to
classical physics along with Newtonian mechanics. Maxwell’s equations describe
and interpret almost all electromagnetic phenomena and are basis equations of
classical physics together with Newton equation. Although after the discovery of
relativistic theory Newton equation needed to be modified, Maxwell’s equations did
not virtually have to be changed. In this part, we treat characteristics of
electromagnetic waves that are directly derived from Maxwell’s equations.

Electromagnetism becomes connected to quantum mechanics, especially
when we deal with emission and absorption of light. In fact, the experiments
performed in connection with the blackbody radiation led to discovery of light
quanta and establishment of quantum mechanics. These accounts are not only of
particular interest from a historical point of view but of great importance in
understanding modern physics. To understand the propagation of electromagnetic
waves in a dielectric medium is important from a basic aspect of electromagnetism.
Moreover, it is deeply connected to optical applications including optical devices
such as waveguides and lasers.

The motion of particles as well as spatial and temporal change in, e.g.,
electromagnetic fields is very often described in terms of differential equations. We
describe introductory methods of Green’s functions in order to solve those
differential equations.



Chapter 5
Maxwell’s Equations

Maxwell’s equations consist of four first-order partial differential equations. First
we deal with basic properties of Maxwell’s equations. Next we show how equations
of electromagnetic wave motion are derived from Maxwell’s equations along vector
analysis. It is important to realize that the generation of the electromagnetic wave is
a direct consequence of the interplay between the electric field and magnetic field
that both change with time. We deal with behaviors of electromagnetic waves in
dielectric media where no true charge exists. At a first glance, this restriction seems
to narrow a range of application of principles of electromagnetism. In practice,
however, such a situation is universalistic; topics cover a wide range of electro-
magnetic phenomena, e.g., light propagation in dielectrics including water, glass,
polymers. Polarized properties characterize the electromagnetic waves. These
include linear, circular, and elliptic polarizations. The characteristics are important
both from a fundamental aspect and from the point of view of optical applications.

5.1 Maxwell’s Equations and Their Characteristics

In this chapter, we first represent Maxwell’s equations as vector forms. The
equations are represented as a differential form that is consistent with a viewpoint
based on “action trough medium.” The equation of wave motion (or wave equation)
is naturally derived from these equations.

Maxwell’s equations of electromagnetism are expressed as follows:

divD ¼ q; ð5:1Þ

divB ¼ 0; ð5:2Þ
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rotEþ @B
@t

¼ 0; ð5:3Þ

rotH � @D
@t

¼ i: ð5:4Þ

In (5.3), RHS denotes a zero vector. Let us take some time to get acquainted with
physical quantities with their dimension as well as basic ideas and concepts along
with definitions of electromagnetism.

The quantity D is called electric flux density A�s
m2 ¼ C

m2

h i
(or electric displace-

ment); q is electric charge density C
m3

h i
. We describe vector quantities V as in (3.4).

V ¼ e1e2e3ð Þ
Vx

Vy

Vz

0
@

1
A: ð5:5Þ

The notation div denotes a differential operator such that

divV � @Vx

@x
þ @Vy

@y
þ @Vz

@z
: ð5:6Þ

Thus, the div operator converts a vector to a scalar. The quantities D and the
electric field E V=m½ � are associated with the following expression:

D ¼ eE; ð5:7Þ

where e C2

Nm2

h i
is called a dielectric constant (or permittivity) of the dielectric

medium. The dimension can be understood from the following Coulomb’s law that
describes a force exerted between two charges:

F ¼ 1
4pe

QQ0

r2
; ð5:8Þ

where F is the force; Q andQ0 are electric charges of the two charges; r is a distance
between the two charges. Equation (5.1) represents Gauss’ law of electrostatics.

The electric charge of 1 C (1 [C]) is defined as follows: Suppose that two point
charges having the same electric charge are placed in vacuum 1 m apart. In that
situation, if a force F between the two charges is

F ¼ ~c2=107 N½ �;

where ~c is a light velocity, then we define the electric charge which each point
charge possesses as 1 [C]. Here, note that ~c is a dimensionless number related to the
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light velocity in vacuum that is measured in a unit of [m/s]. Notice also that the light
velocity c in vacuum is defined as

c ¼ 299; 792; 458 m=s½ � exact numberð Þ:

Thus, we have
~c ¼ 299; 792; 458 (dimensionless number).

Vacuum is a kind of dielectric media. From (5.8), its dielectric constant e0 is
defined by

e0 ¼ 107

4p~c2
C2

Nm2

� �
� 8:854� 10�12 C2

Nm2

� �
: ð5:9Þ

Meanwhile, 1 s (second) has been defined from a certain spectral line emitted
from 133Cs. Thus, 1 m (meter) is defined by

distance alongwhich light is propagated in vacuum during 1 sð Þ=299792458:

The quantity B is called magnetic flux density V�s
m2 ¼ Wb

m2

h i
. Equation (5.2)

represents Gauss’s law of magnetostatics. In contrast to (5.1), RHS of (5.2) is zero.
This corresponds to the fact that although a true charge exists, a true “magnetic
charge” does not exist. (More precisely, such charge has not been detected so far.)
The quantity B is connected with magnetic field H by the following relation:

B ¼ lH; ð5:10Þ

where l N
A2

h i
is said to be permeability (or magnetic permeability). Thus, H has a

dimension A
m

h i
. Permeability of vacuum l0 is defined by

l0 ¼ 4p=107
N

A2

� �
: ð5:11Þ

Also we have

l0e0 ¼ 1=c2: ð5:12Þ

We will encounter this relation later again. Since the quantities c and e0 have a
defined magnitude, so does l0 from (5.12).

We often make an issue of a relative magnitude of dielectric constant and
magnetic permeability of a dielectric medium. That is, relative permittivity er and
relative permeability lr are defined as follows:
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er � e=e0 and lr � l=l0: ð5:13Þ

Note that both er and lr are dimensionless quantities. Those magnitudes are
equal to 1 (in the case of vacuum) or larger than 1 (with any other dielectric media).

Equations (5.3) and (5.4) deal with the change in electric and magnetic fields
with time. Of these, (5.3) represents Faraday’s law of electromagnetic induction due
to Michael Faraday (1831). He found that when a permanent magnet was thrust into
or out of a closed circuit, the transient current flowed. Moreover, that experiment
implied that even without the closed circuit, an electric field was generated around
the space that changed the position relative to the permanent magnet.
Equation (5.3) is easier to understand if it is rewritten as follows.

rotE ¼ � @B
@t

: ð5:14Þ

That is, the electric field E is generated in such a way that the induced electric
field (or induced current) tends to lessen the change in magnetic flux (or magnetic
field) produced by the permanent magnet (Lenz’s law). The minus sign in RHS
indicates that effect.

The rot operator appearing in (5.3) and (5.4) is defined by

rotV ¼ r� V ¼
e1 e2 e3
@
@x

Vx

@
@y

@
@z

Vy Vz

�������
�������

¼ @Vz

@y
� @Vy

@z

� �
e1 þ @Vx

@z
� @Vz

@x

� �
e2 þ @Vy

@x
� @Vx

@y

� �
e3:

ð5:15Þ

The operator r has already appeared in (3.9). This operator transforms a vector
to a vector. Let us think of the meaning of the rot operator. Suppose that there is a
vector field that varies with time and spatial positions. Suppose also at some instant
the spatial distribution of the field varies as in Fig. 5.1, where a spiral vector field V
is present. For a z-component of rotV around the origin, we have

ðrotVÞz ¼
@Vy

@x
� @Vx

@y
¼ lim

Dx!0;Dy!0

ðV1Þy � ðV3Þy
Dx

� ðV2Þx � ðV4Þx
Dy

� �
:

In the case of Fig. 5.1, ðV1Þy � ðV3Þy [ 0 and ðV2Þx � ðV4Þx\0 and, hence, we

find that rotV has a positive z-component. If Vz ¼ 0 and @Vy

@z ¼ @Vx
@z ¼ 0, we find

from (5.15) that rotV possesses only the z-component. The equation @Vy

@z ¼ @Vx
@z ¼ 0

implies that the vector field V is uniform in the direction of the z-axis. Thus, under
the above conditions, the spiral vector field V is accompanied by the rotV vector
field that is directed toward the upper side of the plane of paper (i.e., the positive
direction of the z-axis).
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Equation (5.4) can be rewritten as

rotH ¼ iþ @D
@t

: ð5:16Þ

Notice that @D
@t has the same dimension as A

m2

h i
and is called displacement

current. Without this term, we have

rotH ¼ i: ð5:17Þ

This relation is well known as Ampère’s law or Ampère’s circuital law (André-
Marie Ampère: 1827), which determines a magnetic field yielded by a stationary
current. Again with the aid of Fig. 5.1, (5.17) implies that the current given by i
produces spiral magnetic field.

Now, let us think of a change in amount of charges with time in a part of
three-dimensional closed space V surrounded by a closed surface S. It is given by

d
dt

Z
V

q dV ¼
Z
V

@q
@t

dV ¼ �
Z
S

i � n dS ¼ �
Z
V

div i dV ; ð5:18Þ

where n is an outward-directed normal unit vector; with the last equality, we used
Gauss’s theorem. The Gauss’s theorem is described byZ

V

div i dV ¼
Z
S

i � n dS:

Figure 5.2 gives an intuitive diagram that explains the Gauss’s theorem. The
diagram shows a cross section of the closed space V surrounded by a surface S. In

x 

y 

V1 V2 

V3 V4 

O
(Δx/2, 0)

(‒Δx/2, 0)

(0, ‒Δy/2)

(0, Δy/2)

z 

Fig. 5.1 Schematic
representation of a spiral
vector field V that yields rotV

5.1 Maxwell’s Equations and Their Characteristics 151



this case, imagine a cube or a hexahedron as V . The periphery is the cross section of
the closed surface accordingly. Arrows in the diagram schematically represent div i
on individual fragments; only those of the center infinitesimal fragment are shown
with solid lines. The arrows of adjacent fragments cancel out each other, and only
the components on the periphery are nonvanishing. Thus, the volume integration of
div i is converted to the surface integration of i. Readers are referred to the
appropriate literature with the vector integration [1].

Consequently, from (5.18) we have

Z
V

@q
@t

þ div i
� �

dV ¼ 0: ð5:19Þ

Since V is arbitrarily chosen, we get

@q
@t

þ div i ¼ 0: ð5:20Þ

The relation (5.20) is called a current continuity equation. This relation repre-
sents law of conservation of charge.

Meanwhile, taking div of both sides of (5.17), we have

div rotH ¼ div i: ð5:21Þ

The LHS of (5.21) reads

S 

V 

Fig. 5.2 Intuitive diagram
that explains the Gauss’s
theorem
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div rotH ¼ @

@x
@Hz

@y
� @Hy

@z

� �
þ @

@y
@Hx

@z
� @Hz

@x

� �
þ @

@z
@Hy

@x
� @Hx

@y

� �

¼ @2

@x@y
� @2

@y@x

� �
Hz þ @2

@y@z
� @2

@z@y

� �
Hx þ @2

@z@x
� @2

@x@z

� �
Hy

¼ 0:

ð5:22Þ

With the last equality of (5.22), we used the fact that if, e.g., @2Hz
@x@y and

@2Hz
@y@x are

continuous and differentiable in a certain domain (x, y), @2Hz
@x@y ¼ @2Hz

@y@x. That is, we
assume “ordinary” functions for Hz, Hx, and Hy. Thus from (5.21), we have

div i ¼ 0: ð5:23Þ

From (5.20), we also have

@q x; tð Þ
@t

¼ 0; ð5:24Þ

where we explicitly show that q depends upon both x and t. Note that x is a position
vector described as (3.5). Therefore, (5.24) shows that q x; tð Þ is temporally constant
at a position x, consistent with the stationary current.

Nevertheless, we encounter a problem when q x; tð Þ is temporally varying. In
other words, (5.17) goes against the charge conservation law, when q x; tð Þ is
temporally varying. It was James Clerk Maxwell (1861–1862) that solved the
problem by introducing a concept of the displacement current. In fact, taking div of
both sides of (5.16), we have

div rotH ¼ div iþ @divD
@t

¼ div iþ @q
@t

¼ 0; ð5:25Þ

where with the first equality, we exchanged the order of differentiations with respect
to t and x; with the second equality, we used (5.1). The last equality of (5.25) results
from (5.20). In other words, in virtue of the term of @D

@t , (5.4) is consistent with the
charge conservation law. Thus, the set of Maxwell’s equations (5.1)–(5.4) supply us
with well-established base in natural science up until the present.

Although the set of these equations describes spatial and temporal changes in
electric and magnetic fields in vacuum and matter including metal, in Part II we
confine ourselves to the changes in the electric and magnetic fields in a uniform
dielectric medium.
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5.2 Equation of Wave Motion

If we further confine ourselves to the case where neither electric charge nor electric
current is present in a uniform dielectric medium, we can readily obtain equations
of wave motion regarding the electric and magnetic fields. That is,

divD ¼ 0; ð5:26Þ

divB ¼ 0; ð5:27Þ

rotEþ @B
@t

¼ 0; ð5:28Þ

rotH � @D
@t

¼ 0: ð5:29Þ

The relations (5.27) and (5.28) are identical to (5.2) and (5.3), respectively.
Let us start with a formula of vector analysis. First, we introduce a grad operator.

We have

grad f ¼ rf ¼ @f
@x

e1 þ @f
@y

e2 þ @f
@z

e3:

That is, the grad operator transforms a scalar to a vector. We have a following
formula:

rot rot V ¼ grad divV �r2V: ð5:30Þ

The operator r2 has already appeared in (1.24). To show (5.30), we compare an
x-component of both sides of (5.30). That is,

rot rot V½ �x¼
@

@y
@Vy

@x
� @Vx

@y

� �
� @

@z
@Vx

@z
� @Vz

@x

� �
: ð5:31Þ

grad divV �r2V
� �

x ¼
@

@x
@Vx

@x
þ @Vy

@y
þ @Vz

@z

� �
� @2Vx

@x2
� @2Vx

@y2
� @2Vx

@z2

¼ @

@x
@Vy

@y
þ @Vz

@z

� �
� @2Vx

@y2
� @2Vx

@z2
: ð5:32Þ

Again assuming that @2Vy

@y@x ¼ @2Vy

@x@y and
@2Vz
@z@x ¼ @2Vz

@x@z, we have

½rot rotV�x ¼ ½grad divV �r2V�x: ð5:33Þ
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Regarding y- and z-components, we have similar relations as well. Thus (5.30)
holds.

Taking rot of both sides of (5.28), we have

rot rotEþ rot
@B
@t

¼ grad divE�r2Eþ @rotB
@t

¼ �r2Eþ le
@2E
@t2

¼ 0; ð5:34Þ

where with the first equality, we used (5.30) and for the second equality, we used
(5.7), (5.10), and (5.29). Thus we have

r2E ¼ le
@2E
@t2

: ð5:35Þ

Similarly, from (5.29) we get

r2H ¼ le
@2H
@t2

: ð5:36Þ

Equations (5.35) and (5.36) are called equations of wave motions for the electric
and magnetic fields.

To consider implications of these equations, let us think of for simplicity a
following equation in a one-dimensional space.

@2y x; tð Þ
@x2

¼ 1
v2

@2y x; tð Þ
@t2

; ð5:37Þ

where y is an arbitrary scalar function that depends on x and t; v is a constant. Let
f x; tð Þ and g x; tð Þ be arbitrarily chosen functions. Then, f x� vtð Þ and g xþ vtð Þ are
two solutions of (5.37). In fact, putting X ¼ x� vt, we have

@f
@x

¼ @f
@X

@X
@x

¼ @f
@X

;
@2f
@x2

¼ @

@X
@f
@X

� �� �
@X
@x

¼ @2f
@X2 ; ð5:38Þ

@f
@t

¼ @f
@X

@X
@t

¼ �vð Þ @f
@X

;
@2f
@t2

¼ �vð Þ @

@X
@f
@X

� �� �
@X
@t

¼ ð�vÞ2 @
2f

@X2 : ð5:39Þ

From the second equations of (5.38) and (5.39), we recover

@2f
@x2

¼ 1
v2

@2f
@t2

: ð5:40Þ
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Similarly, we get

@2g
@x2

¼ 1
v2

@2g
@t2

: ð5:41Þ

Therefore, as a general solution, we can take a superposition of f x; tð Þ and
g x; tð Þ. That is,

y x; tð Þ ¼ f x� vtð Þþ g xþ vtð Þ: ð5:42Þ

The implication of (5.42) is as follows: (i) The function f x� vtð Þ can be
obtained by parallel translation of f xð Þ by vt in a positive direction of x-axis. In
other words, f x� vtð Þ is obtained by translating f xð Þ by v in a unit of time in a
positive direction of x-axis, or the function represented by f xð Þ is translated at a rate
of v with its form unchanged in time. (ii) The function g xþ vtð Þ, on the other hand,
is translated at a rate of �v with its form unchanged in time as well. (iii) Thus,
y x; tð Þ of (5.42) represents two “waves”, i.e., a forward wave and a backward wave.
Propagation velocity of the two waves is vj j accordingly. Usually, we choose a
positive number for v, and v is called a phase velocity.

Comparing (5.35) and (5.36) with (5.41), we have

le ¼ 1=v2: ð5:43Þ

In particular, in a vacuum we recover (5.12).
Notice that f and g can take any functional form and, hence, they are not

necessarily a periodic wave. Yet, what we are mostly concerned with is a periodic
wave such as sinusoidal waves. Thus, we arrive at a following functional form:

f x� vtð Þ ¼ Aei x�vtð Þ; ð5:44Þ

where A is said to be an amplitude of the wave. The constant A usually takes a
positive number, but it may take a complex number including a negative number.
An exponent of (5.44) contains a number having a dimension [m]. To make it a
dimensionless number, we multiply x� vtð Þ by a wave number k that has been
introduced in (1.2) and (1.3). That is, we have

~f k x� vtð Þ½ � ¼ Aeik x�vtð Þ ¼ Aei kx�kvtð Þ ¼ Aei kx�xtð Þ; ð5:45Þ

where ~f shows the change in the functional from according to the variable trans-
formation. In (5.45), we have

kv ¼ kkm ¼ 2p=kð Þkm ¼ 2pm ¼ x; ð5:46Þ
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where m and x are said to be frequency and angular frequency, respectively. For a
three-dimensional wave f of a scalar function, we have a following form:

f ¼ Aei k�x�xtð Þ ¼ A½cos k � x� xtð Þþ i sin k � x� xtð Þ�; ð5:47Þ

where k is said to be a wave number vector. In (5.47),

k2 ¼ k2 ¼ k2x þ k2y þ k2z : ð5:48Þ

Equation (5.47) is virtually identical to (1.25). When we deal with a problem of
classical electromagnetism, we usually take a real part of the results after relevant
calculations.

Suppose that (5.47) is a solution of a following wave equation:

r2f ¼ 1
v2

@2f
@t2

: ð5:49Þ

Substituting LHS of (5.47) for f of (5.49), we have

A �k2
	 


ei k�x�xtð Þ ¼ A
1
v2

�x2	 

ei k�x�xtð Þ: ð5:50Þ

Comparing both sides of (5.50), we get

k2v2 ¼ x2 or kv ¼ x: ð5:51Þ

Thus, we recover (5.46).
Here we introduce a unit vector n as in (1.3) whose direction parallels that of

propagation of wave such that

k ¼ kn ¼ 2p
k
n; n ¼ e1e2e3ð Þ

nx
ny
nz

0
@

1
A; ð5:52Þ

where nx, ny, and nz define direction cosines. Then (5.47) can be rewritten as

f ¼ Aei kn�x�xtð Þ; ð5:53Þ

where an exponent is called a phase. Suppose that the phase is fixed at zero. That is,

kn � x� xt ¼ 0: ð5:54Þ
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Since x ¼ kv, we have

n � x� vt ¼ 0: ð5:55Þ

Equation (5.55) defines a plane in a three-dimensional space and is called a
Hesse’s normal form. Figure 5.3 schematically represents a plane wave of the field
f . The field has the same phase on a plane P. A solid arrow x represents an arbitrary
position vector on the plane and n is a unit vector perpendicular to the plane P (i.e.,
parallel to a normal of the plane P). The quantity vt defines a length of a perpen-
dicular that connects the origin O and plane P (i.e., the length of the perpendicular
from the origin and a foot of the perpendicular) at a given time t.

In other words, (5.54) determines a plane in such a way that the wave f has the
same phase (zero) at a given time t at position vectors x on the plane determined by
(5.54) or (5.55). That plane is moving in the direction of n at a phase velocity v.
From this situation, a wave f described by (5.53) is called a plane wave.

A refractive index n of a dielectric media is an important index that characterizes
its dielectric properties. It is defined as

n � c=v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
le=l0e0

p
¼ ffiffiffiffiffiffiffiffi

lrer
p

: ð5:56Þ

In a non-magnetic substance such as glass and polymer materials, we can assume
that lr � 1. Thus, we get an approximate expression as follows:

n � ffiffiffiffi
er

p
: ð5:57Þ

5.3 Polarized Characteristics of Electromagnetic Waves

As in (5.47), we assume a similar form for a solution of (5.35) such that

E ¼ E0ei k�x�xtð Þ ¼ E0ei kn�x�xtð Þ; ð5:58Þ

y 

x 

z 

x n 

vt P 

O

Fig. 5.3 Schematic
representation of a plane
wave. The field has the same
phase on a plane P. A solid
arrow x represents an
arbitrary position vector on
the plane and n is a unit
vector perpendicular to the
plane P (i.e., parallel to a
normal of the plane P). The
quantity v is a phase velocity
of the plane wave
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where with the second equality we used (5.52). Similarly, we have

H ¼ H0ei k�x�xtð Þ ¼ H0ei kn�x�xtð Þ: ð5:59Þ

In (5.58) and (5.59), E0 and H0 are constant vectors and may take a complex
magnitude. Substituting (5.58) for (5.28) and using (5.10) as well as (5.43) and
(5.46), we have

ikn� E0ei kn�x�xtð Þ ¼ � �ixð ÞlH0ei kn�x�xtð Þ ¼ ivklH0ei kn�x�xtð Þ

¼ ik
ffiffiffiffiffiffiffi
l=e

p
H0ei kn�x�xtð Þ:

Comparing coefficients of the exponential functions of the first and last sides, we
get

H0 ¼ n� E0

� ffiffiffiffiffiffiffi
l=e

p
 �
: ð5:60Þ

Similarly, substituting (5.59) for (5.29) and using (5.7), we get

E0 ¼
ffiffiffiffiffiffiffi
l=e

p
 �
H0 � n: ð5:61Þ

From (5.26) and (5.27), we have

n � E0 ¼ n �H0 ¼ 0: ð5:62Þ

This indicates that E and H are both perpendicular to n; i.e., the propagation
direction of the electromagnetic wave. Thus, the electromagnetic wave is charac-
terized by a transverse wave. The fields E and H have the same phase on P at an
arbitrary given time. Taking account of (5.60)–(5.62), E, H, and n are mutually
perpendicular to one another. We depict a geometry of E, H, and n for the elec-
tromagnetic plane wave in Fig. 5.4, where a plane P is perpendicular to n.

y 

x 

n 

P 

O

z 

E 

H 

Fig. 5.4 Mutual geometry of
E and H for an
electromagnetic plane wave in
P. E and H have the same
phase on P at an arbitrary
given time. The unit vector n
is perpendicular to P
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We find that (5.60) is not independent of (5.61). In fact, taking an outer product
from the right with respect to both sides of (5.60), we have

H0 � n ¼ n� E0 � n
� ffiffiffiffiffiffiffi

l=e
p
 �

¼ E0

� ffiffiffiffiffiffiffi
l=e

p
 �
;

where we used (5.61) with the second equality. Thus, we get

n� E0 � n ¼ E0: ð5:63Þ

Meanwhile, vector analysis tells us that [1].

C � A� Bð Þ ¼ A B � Cð Þ � B C � Að Þ:

In the above, putting B ¼ C ¼ n, we have

n� A� nð Þ ¼ A n � nð Þ � n n � Að Þ:

That is, we have

A ¼ n n � Að Þþ n� A� nð Þ:

This relation means that A can be decomposed into a component parallel to n
and that perpendicular to n. Equation (5.63) shows that E0 has no component
parallel to n. This is another confirmation that E is perpendicular to n.

In (5.60) and (5.61),
ffiffiffiffiffiffiffi
l=e

p
has a dimension X½ �. Make sure that this can be

confirmed by (5.9) and (5.11). Hence,
ffiffiffiffiffiffiffi
l=e

p
is said to be characteristic impedance

[2]. We denote it by

Z �
ffiffiffiffiffiffiffi
l=e

p
: ð5:64Þ

Thus, we have

H0 ¼ n� E0ð Þ=Z:

In vacuum, we have

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
� 376:7 X½ �:

For the electromagnetic wave to be the transverse wave means that neither E nor
H has component along n. Choosing the positive direction of the z-axis for n and
ignoring components related to partial differentiation with respect to x and y (i.e.,
the component related to @=@x and @=@y), we rewrite (5.28) and (5.29) for indi-
vidual Cartesian coordinates as
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� @Ey

@z
þ @Bx

@t
¼ 0 or � @Dy

@z
þ le

@Hx

@t
¼ 0;

@Ex

@z
þ @By

@t
¼ 0 or

@Dx

@z
þ le

@Hy

@t
¼ 0;

� @Hy

@z
� @Dx

@t
¼ 0 or � @By

@z
� le

@x
@t

¼ 0;

@Hx

@z
� @Dy

@t
¼ 0 or

@Bx

@z
� le

@Ey

@t
¼ 0:

ð5:65Þ

We differentiate the first equation of (5.65) with respect to z to get

� @2Ey

@z2
þ @2Bx

@z@t
¼ 0:

Also differentiating the fourth equation of (5.65) with respect to t and multi-
plying both sides by �l, we have

�l
@2Hx

@t@z
þ l

@2Dy

@t2
¼ 0:

Summing both sides of the above equations and arranging terms, we get

@2Ey

@z2
¼ le

@2Ey

@t2
:

In a similar manner, we have

@2Ex

@z2
¼ le

@2Ex

@t2
:

Similarly, for the magnetic field, we also get

@2Hx

@z2
¼ le

@2Hx

@t2
and

@2Hy

@z2
¼ le

@2Hy

@t2
:

From the above relations, we have two plane electromagnetic waves polarized
either the x-axis or y-axis.

What is implied in the above description is that as solutions of (5.35) and (5.36),
we have a plane wave characterized by a specific direction defined by E0 and H0.
This implies that if we observe the electromagnetic wave at a fixed point, both E
and H oscillate along the mutually perpendicular directions E0 and H0. Hence, we
say that the “electric wave” is polarized in the direction E0 and that the “magnetic
wave” is polarized in the direction H0.
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To characterize the polarization of the electromagnetic wave, we introduce
following unit polarization vectors ee and em (with indices e and m related to the
electric and magnetic field, respectively) [3].

ee ¼ E0=E0 and em ¼ H0=H0;H0 ¼ E0=Z; ð5:66Þ

where E0 and H0 are said to be amplitude and may be again complex. We have

ee � em ¼ n: ð5:67Þ

We call ee and em a unit polarization vector of the electric field and magnetic
field, respectively. As noted above, ee, em; and n constitute a right-handed system in
this order and are mutually perpendicular to one another.

The phase of E in the plane wave (5.58) and that of H in (5.59) are individually
the same on all the points of P. From the wave equations of (5.35) and (5.36),
however, it is unclear whether E and H have the same phase. Suppose that E and H
would have a different phase such that

E ¼ E0ei k�x�xtð Þ and

H ¼ H0ei k�x�xtþ dð Þ ¼ H0eidei k�x�xtð Þ ¼ ~H0ei k�x�xtð Þ;

where ~H0 ¼ H0eid
	 


is complex and a phase factor eid in the exponent is unknown.
This factor, however, can be set at zero. To show this, let us make qualitative
discussion using Fig. 5.5. Figure 5.5 shows the electric field of the plane wave at
some instant as a function of phase U. Suppose that U is taken in the direction of n
in Fig. 5.4. Then, from (5.53) we have

U ¼ kn � x� xt ¼ kn � qn� xt ¼ kq� xt;

where q is distance from the origin. Also we have

E ¼ E0ei k�x�xtð Þ ¼ E0eeei kq�xtð ÞðE0 [ 0Þ:

P1 P2

Phase 

El
ec

tri
c 

fie
ld

Fig. 5.5 Electric field of a
plane wave at some instant as
a function of phase. The
sinusoidal curve representing
the electric field is shifted
with time from left to right
with its form unchanged
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Suppose furthermore that the phase is measured at t ¼ 0 and that the electric
field is measured along the ee direction. Then, we have

U ¼ kq and E ¼ Ej j ¼ E0eikq: ð5:68Þ

In Fig. 5.5, a real part of E is shown with E ¼ E0 at q ¼ 0. The sinusoidal curve
representing the electric field in Fig. 5.5 is shifted with time from left to right with
its form unchanged.

In this situation, the electric field is to be strengthened with a negative value at a
phase P1 with time according to (5.68), whereas at another phase P2, the electric
field is to be strengthened with a positive value with time. As a result, in a region
tucked between P1 and P2, a spiral magnetic field is generated toward the em
direction; i.e., upper side of a plane of paper. The magnitude of the magnetic field is
expected to be maximized at a center point of P1P2 (i.e., the origin of the coordinate
system) where the electric field is maximized as well. Thus, we conclude that E and
H have the same phase. It is important to realize that the generation of the elec-
tromagnetic wave is a direct consequence of the interplay between the electric field
and magnetic field that both change with time. It is truly based upon the nature of
the electric and magnetic fields that are clearly represented in Maxwell’s equations.

Next, we consider the situation where two electromagnetic waves are propagated
in the same direction but with a different phase. Notice again that we are consid-
ering the electromagnetic wave that is propagated in a uniform and infinite
dielectric media without BCs.

5.4 Superposition of Two Electromagnetic Waves

Let E1 and E2 be two electric waves described such that

E1 ¼ E1e1ei kz�xtð Þ and E2 ¼ E2e2ei kz�xtþ dð Þ;

where E1ð[ 0Þ and E2ð[ 0Þ are amplitudes and e1 and e2 represent unit polar-
ization vectors in the direction of positive x-axis and y-axis; we assume that two
waves are being propagated in the direction of the positive z-axis; d is a phase
difference. The total electric field E is described as the superposition of E1 and E2

such that

E ¼ E1 þE2 ¼ E1e1ei kz�xtð Þ þE2e2ei kz�xtþ dð Þ: ð5:69Þ

Note that we usually discuss the polarization characteristics of electromagnetic
wave only by considering electric waves. We emphasize that an electric wave and
concomitant magnetic wave share the same phase in a uniform and infinite
dielectric media. A reason why the electric wave represents an electromagnetic
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wave is partly because optical application is mostly made in a non-magnetic sub-
stance such as glass, water, plastics, and most of semiconductors.

Let us view temporal change of E at a fixed point x ¼ 0; x ¼ y ¼ z ¼ 0. Then,
taking a real part of (5.69), x- and y-components of E; i.e., Ex and Ey are expressed
as

Ex ¼ E1 cos �xtð Þ and Ey ¼ E2 cos �xtþ dð Þ: ð5:70Þ

First, let us briefly think of the case where d ¼ 0. Eliminating t, we have

Ey ¼ E2

E1
Ex: ð5:71Þ

This is an equation of a straight line. The resulting electric field E is called a
linearly polarized light accordingly. That is, when we are observing the electric field
of the relevant light at the origin, the field is oscillating along the straight line
described by (5.71) with the origin centrally located of the oscillating field. If
d ¼ p, we have

Ey ¼ �E2

E1
Ex:

This gives a straight line as well. Therefore, if we wish to seek the relationship
between Ex and Ey, it suffices to examine it as a function of d in a region of
� p

2 � d� p
2 :

(i) Case I: E1 6¼ E2.

Let us consider the case where d 6¼ 0 in (5.70). Rewriting the second equation of
(5.70) and inserting the first equation into it so that we can eliminate t, we have

Ey ¼ E2ðcosxt cos dþ sinxt sin dÞ ¼ E2 cos d
Ex

E1
	 sin d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

x

E2
1

s !
:

Rearranging terms of the above equation, we have

Ey

E2
� cos dð Þ Ex

E1
¼ 	 sin dð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

x

E2
1

s
: ð5:72Þ

Squaring both sides of (5.72) and arranging the equation, we get

E2
x

E2
1sin

2d
� 2ðcos dÞExEy

E1E2sin2d
þ E2

y

E2
2sin

2d
¼ 1: ð5:73Þ
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Using a matrix form, we have

Ex Eyð Þ
1

E2
1sin

2d
� cos d

E1E2sin2d

� cos d
E1E2sin2d

1
E2
2sin

2d

 !
Ex

Ey

� �
¼ 1: ð5:74Þ

Note that the above matrix is real symmetric. In that case, to examine properties
of the matrix, we calculate its determinant along with principal minors. The prin-
cipal minor means a minor with respect to a diagonal element. In this case, two
principal minors are 1

E2
2sin

2d
and 1

E2
1sin

2d
. Also we have

1
E2
1sin

2d
� cos d

E1E2sin2d

� cos d
E1E2sin2d

1
E2
2sin

2d

�����
����� ¼ 1

E2
1E

2
2sin

2d
: ð5:75Þ

Evidently, two principal minors as well as a determinant are all positive (d 6¼ 0).
In this case, the (2, 2) matrix of (5.74) is said to be positive definite. The related
discussion will be given in Part III. The positive definiteness means that in a
quadratic form described by (5.74), LHS takes a positive value for any real number
Ex and Ey except a unique case where Ex ¼ Ey ¼ 0, which renders LHS zero. The
positive definiteness of a matrix ensures the existence of positive eigenvalues with
the said matrix.

Let us consider a real symmetric (2, 2) matrix that has positive principal minors
and a positive determinant in a general case. Let such a matrix M be

M ¼ a c
c b

� �
;

where a; b[ 0 and det M[ 0; i.e., ab� c2 [ 0. Let a corresponding quadratic
form be Q. Then, we have

Q ¼ x yð Þ a c

c b

� �
x

y

� �
¼ ax2 þ 2cyxþ by2 ¼ a xþ cy

a


 �2
� c2y2

a2
þ aby2

a2

� �� �

¼ a xþ cy
a


 �2
þ y2

a2
ab� c2
	 
� �

:

Thus, Q
 0 for any real numbers x and y. We seek a condition under which
Q ¼ 0. We readily find that with M that has the above properties, only x ¼ y ¼ 0
makes Q ¼ 0. Thus, M is positive definite. We will deal with this issue from a more
general standpoint in Part III.

In general, it is pretty complicated to seek eigenvalues and corresponding
eigenvectors in the above case. Yet, we can extract important information from
(5.74). The eigenvalues k are estimated as follows:
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k ¼
E2
1 þE2

2 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

1 þE2
2Þ2 � 4E2

1E
2
2sin

2d
q

2E2
1E

2
2sin

2d
: ð5:76Þ

Notice that k in (5.76) represents two different positive eigenvalues. It is because
an inside of the square root is rewritten by

ðE2
1 � E2

2Þ2 þ 4E2
1E

2
2cos

2d[ 0ðd 6¼ 	p=2Þ:

Also we have

E2
1 þE2

2 [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

1 þE2
2Þ2 � 4E2

1E
2
2sin

2d
q

:

These clearly show that the quadratic form of (5.74) gives an ellipse (i.e., el-
liptically polarized light). Because of the presence of the second term of LHS of
(5.73), both the major and minor axes of the ellipse are tilted and diverted from the
x- and y-axes.

Let us inspect the ellipse described by (5.74). Inserting Ex ¼ E1 obtained at
t ¼ 0 in (5.70) into (5.73) and solving a quadratic equation with respect to Ey, we
get Ey as a double root such that

Ey ¼ E2 cos d:

Similarly putting Ey ¼ E2 in (5.73), we have

Ex ¼ E1 cos d:

These results show that an ellipse described by (5.73) or (5.74) is internally
tangent to a rectangle as depicted in Fig. 5.6a. Equation (5.69) shows that the
electromagnetic wave is propagated toward the positive direction of the z-axis.
Therefore, in Fig. 5.6a, we are peeking into the oncoming wave from the bottom of
a plane of paper at a certain position of z ¼ constant. We set the constant ¼ 0.
Then, we find that at t ¼ 0 the electric field is represented by the point P
ðEx ¼ E1;Ey ¼ E2 cos dÞ; see Fig. 5.6a. From (5.70), if d[ 0, P traces the ellipse
counterclockwise. It reaches a maximum point of Ey ¼ E2 at t ¼ d=2x. Since the
trace of electric field forms an ellipse as in Fig. 5.6, the associated light is said to be
an elliptically polarized light. If d\0 in (5.70), on the other hand, P traces the
ellipse clockwise.

In a special case of d ¼ p=2, the second term of (5.73) vanishes and we have a
simple form described as

E2
x

E2
1
þ E2

y

E2
2
¼ 1: ð5:77Þ
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Thus, the principal axes of the ellipse coincide with the x- and y-axes. On the
basis of (5.70), we see from Fig. 5.6b that starting from P at t ¼ 0, again the
coordinate point representing the electric field traces the ellipse counterclockwise
with time; see the curved arrow of Fig. 5.6b. If d\0, the coordinate point traces the
ellipse clockwise with time.

(ii) Case II: E1 ¼ E2.

Now, let us consider a simple but important case. When E1 ¼ E2, (5.73) is
simplified to be

E2
x � 2 cos dExEy þE2

y ¼ E2
1sin

2d: ð5:78Þ

Using a matrix form, we have

Ex Eyð Þ 1 � cos d
� cos d 1

� �
Ex

Ey

� �
¼ E2

1sin
2d: ð5:79Þ

(a)

(b)

Fig. 5.6 Trace of an electric
field of an elliptically
polarized light. a The trace is
internally tangent to a
rectangle of 2E1 � 2E2. In the
case of d[ 0, starting from P
at t ¼ 0, the coordinate point
representing the electric field
traces the ellipse
counterclockwise with time.
b The trace of an elliptically
polarized light for d ¼ p=2
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We obtain eigenvalues k of the matrix of (5.79) such that

k ¼ 1	 cos dj j: ð5:80Þ

Setting � p
2 � d� p

2, we have

k ¼ 1	 cos d: ð5:81Þ

The corresponding normalized eigenvectors v1 and v2 (as a column vector) are

v1 ¼
1ffiffi
2

p

� 1ffiffi
2

p

 !
and v2 ¼

1ffiffi
2

p
1ffiffi
2

p

 !
: ð5:82Þ

Thus, we have a diagonalizing unitary matrix P such that

P ¼
1ffiffi
2

p 1ffiffi
2

p

� 1ffiffi
2

p 1ffiffi
2

p

 !
: ð5:83Þ

Defining the above matrix appearing in (5.79) as A such that

A ¼ 1 � cos d
� cos d 1

� �
; ð5:84Þ

we obtain

P�1AP ¼ 1þ cos d 0
0 1� cos d

� �
: ð5:85Þ

Notice that eigenvalues 1þ cos dð Þ and ð1� cos dÞ are both positive as
expected.

Rewriting (5.79), we have

Ex Eyð ÞPP�1 1 � cos d
� cos d 1

� �
PP�1 Ex

Ey

� �

¼ Ex Eyð ÞP 1þ cos d 0
0 1� cos d

� �
P�1 Ex

Ey

� �
¼ E2

1sin
2d:

ð5:86Þ

Here, let us define new coordinates such that

u
v

� �
� P�1 Ex

Ey

� �
: ð5:87Þ
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This coordinate transformation corresponds to the transformation of basis vec-
tors e1e2ð Þ such that

e1e2ð Þ Ex

Ey

� �
¼ e1e2ð ÞPP�1 Ex

Ey

� �
¼ e01e

0
2

	 
 u
v

� �
; ð5:88Þ

where new basis vectors e01e
0
2

	 

are given by

e01e
0
2

	 
 ¼ e1e2ð ÞP ¼ 1ffiffiffi
2

p e1 � 1ffiffiffi
2

p e2
1ffiffiffi
2

p e1 þ 1ffiffiffi
2

p e2

� �
: ð5:89Þ

The coordinate system along with the basis vectors are depicted in Fig. 5.7. The
relevant discussion will again appear in Part III.

Substituting (5.87) for (5.86) and rearranging terms, we get

u2

E2
1 1� cos dð Þ þ

v2

E2
1ð1þ cos dÞ ¼ 1: ð5:90Þ

Equation (5.90) indicates that a major axis and minor axis are E1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos d

p
and

E1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos d

p
, respectively. When d ¼ 	p=2, (5.90) becomes

u2

E2
1
þ v2

E2
1
¼ 1: ð5:91Þ

This represents a circle. For this reason, the wave described by (5.91) is called a
circularly polarized light. In (5.90) where d 6¼ 	p=2, the wave is said to be an
elliptically polarized light. Thus, we have linearly, elliptically, and circularly
polarized lights depending on a magnitude of d.

Fig. 5.7 Relationship
between the basis vectors
e1e2ð Þ and e01e

0
2

	 

in the case

of E1 ¼ E2; see text
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Let us closely examine characteristics of the elliptically and circularly polarized
lights in the case of E1 ¼ E2. When t ¼ 0, from (5.70) we have

Ex ¼ E1 and Ey ¼ E1 cos d: ð5:92Þ

This coordinate point corresponds to A1 whose Ex coordinate is E1 (see
Fig. 5.8a). In the case of Dt ¼ d=2x, Ex ¼ Ey ¼ E1 cos 	d=2ð Þ. This point corre-
sponds to A2 in Fig. 5.8a. We have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
x þE2

y

q
¼

ffiffiffi
2

p
E1 cos d=2ð Þ ¼ E1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos d

p
: ð5:93Þ

This is equal to the major axis as anticipated. With t ¼ Dt,

Ex ¼ E1 cos �xDtð Þ and Ey ¼ E1 cos �xDtþ dð Þ: ð5:94Þ

(a)

(b)

Fig. 5.8 Polarized feature of
light in the case of E1 ¼ E2.
a If d[ 0, the electric field
traces an ellipse from A1 via
A2 to A3 (see text). b If
d ¼ p=2, the electric field
traces a circle from C1 via C2

to C3 (left-circularly polarized
light)
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Notice that Ey takes a maximum E1 when Dt ¼ d=x. Consequently, if d takes a
positive value, Ey takes a maximum E1 for a positive Dt, as is similarly the case
with Fig. 5.6a. At that time, Ex ¼ E1 cos �dð Þ\E1. This point corresponds to A3 in
Fig. 5.8a. As a result, the electric field traces the ellipse counterclockwise with
time, as in the case of Fig. 5.6. If d takes a negative value, on the other hand, the
field traces the ellipse clockwise.

If d ¼ 	p=2, in (5.94) we have

Ex ¼ E1 cos �xtð Þ and Ey ¼ E1 cos �xt 	 p
2


 �
: ð5:95Þ

We examine the case of d ¼ p=2 first. In this case, when t ¼ 0, Ex ¼ E1 and
Ey ¼ 0 [Point C1 in Fig. 5.8b]. If xt ¼ p=4, Ex ¼ Ey ¼ 1=

ffiffiffi
2

p
[Point C2 in

Fig. 5.8b]. In turn, if xt ¼ p=2, Ex ¼ 0 and Ey ¼ E1 (Point C3). Again the electric
field traces the circle counterclockwise. In this situation, we see the light from
above the z-axis. In other words, we are viewing the light against the direction of its
propagation. The wave is said to be left-circularly polarized and have positive
helicity. In contrast, when d ¼ �p=2, starting from Point C1, the electric field traces
the circle clockwise. That light is said to be right-circularly polarized and have
negative helicity.

With the left-circularly polarized light, (5.69) can be rewritten as

E ¼ E1 þE2 ¼ E1ðe1 þ ie2Þei kz�xtð Þ: ð5:96Þ

Therefore, a complex vector e1 þ ie2ð Þ characterizes the left-circular polariza-
tion. On the other hand, e1 � ie2ð Þ characterizes the right-circular polarization. To
normalize them, it is convenient to use the following vectors as in the case of
Sect. 4.3 [3].

eþ � 1ffiffiffi
2

p e1 þ ie2ð Þ and e� � 1ffiffiffi
2

p e1 � ie2ð Þ; ð4:45Þ

In the case of d ¼ 0, we have a linearly polarized light. For this, the points A1,
A2, and A3 coalesce to be a point on a straight line of Ey ¼ Ex.
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Chapter 6
Reflection and Transmission
of Electromagnetic Waves in Dielectric
Media

In Chap. 5, we considered the propagation of electromagnetic waves in an infinite
uniform dielectric medium. In this chapter, we think of a situation where two (or
more) dielectrics are in contact with each other at a plane interface. When two
dielectric media adjoin each other with an interface, propagating electromagnetic
waves are partly reflected by the interface and partly transmitted beyond the in-
terface. We deal with these phenomena in terms of characteristic impedance of the
dielectric media. In the case of an oblique incidence of a wave, we categorize it into
a transverse electric (TE) wave and transverse magnetic (TM) wave. If a thin plate
of a dielectric is sandwiched by a couple of metal sheets, the electromagnetic wave
is confined within the dielectric. In this case, the propagating mode of the wave
differs from that of a wave propagating in a free space (i.e., a space filled by a
three-dimensionally infinite dielectric medium). If a thin plate of a dielectric having
a large refractive index is sandwiched by a couple of dielectrics with a smaller
refractive index, the electromagnetic wave is also confined within the dielectric with
a larger index. In this case, we have to take account of the total reflection that causes
a phase change upon the reflection. We deal with such specific modes of the
electromagnetic wave propagation. These phenomena are treated both from a basic
aspect and from a point of view of device application. The relevant devices are
called waveguides in optics.

6.1 Electromagnetic Fields at an Interface

We start with examining a condition of an electromagnetic field at the plane in-
terface. Suppose that two semi-infinite dielectric media D1 and D2 are in contact
with each other at a plane interface. Let us take a small rectangle S that strides the
interface (see Fig. 6.1). Taking a surface integral of both sides of (5.28) over the
strip, we have
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Z
S

rotE � n dSþ
Z
S

@B
@t

� n dS ¼ 0; ð6:1Þ

where n is a unit vector directed to a normal of S as shown. Applying Stokes’
theorem to the first term of (6.1), we getI

C

E � dlþ @B
@t

� nDlDh ¼ 0: ð6:2Þ

With the line integral of the first term, C is a closed loop surrounding the
rectangle S and dl ¼ t dl, where t is a unit vector directed toward the tangential
direction of C (see t1 and t2 in Fig. 6.1). The line integration is performed such that
C is followed counterclockwise in the direction of t.

Figure 6.2 gives an intuitive diagram that explains Stokes’ theorem. The diagram
shows an overview of a surface S encircled by a closed curveC. Suppose that we have
a spiral vector field E represented by arrowed circles as shown. In that case, rot E is
directed toward the upper side of the plane of paper in the individual fragments.
A summation of rotE � n dS forms a surface integral covering S. Meanwhile, the
arrows of adjacent fragments cancel out each other and only the components on the
periphery (i.e., the curveC) are nonvanishing (see Fig. 6.2). Thus, the surface integral
of rot E is equivalent to the line integral of E. Accordingly, we get Stokes’ theorem
described by [1]

Δl

ΔhD1 

D2 

t1 

t2 n
S

C

Fig. 6.1 A small rectangle S that strides an interface formed by two semi-infinite dielectric media
of D1 and D2. Let a curve C be a closed loop surrounding the rectangle S. A unit vector n is
directed to a normal of S. Unit vectors t1 and t2 are directed to a tangential line of the interface
plane

C

S

dS

n

Fig. 6.2 Diagram that intuitively explains Stokes’ theorem. In the diagram, a surface S is
encircled by a closed curve C. An infinitesimal portion of C is denoted by dl. The surface S is
pertinent to the surface integration. Spiral vector field E is present on and near S
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Z
S

rotE � n dS ¼
I
C

E � dl: ð6:3Þ

Returning back to Fig. 6.1 and taking Dh ! 0, we have @B
@t � nDlDh ! 0. Then,

the second term of (6.2) vanishes and we getI
C

E � dl ¼ 0:

This implies that

Dl E1 � t1 þE2 � t2ð Þ ¼ 0;

where E1 and E2 represent the electric field in the dielectrics D1 and D2 close to the
interface, respectively. Considering t2 ¼ �t1 and putting t1 ¼ t, we get

E1 � E2ð Þ � t ¼ 0; ð6:4Þ

where t represents a unit vector in the direction of a tangential line of the interface
plane. Equation (6.4) means that the tangential components of the electric field are
continuous on both sides of the interface. We obtain a similar result with the
magnetic field. This can be shown by taking a surface integral of both sides of (5.29)
as well. As a result, we get

H1 �H2ð Þ � t ¼ 0; ð6:5Þ

where H1 and H2 represent the magnetic field in D1 and D2 close to the interface,
respectively. Hence, from (6.5) the tangential components of the magnetic field are
continuous on both sides of the interface as well.

6.2 Basic Concepts Underlying Phenomena

When an electromagnetic wave is incident upon an interface of dielectrics, its
reflection and transmission (refraction) take place at the interface. We address a
question of how the nature of the dielectrics and the conditions dealt with in the
previous section are associated with the optical phenomena. When we deal with the
problem, we assume non-absorbing media. Notice that the complex wavenumber
vector is responsible for an absorbing medium along with a complex index of
refraction. Nonetheless, our approach is useful to discuss related problems in the
absorbing media. Characteristic impedance plays a key role in the reflection and
transmission of light.
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We represent a field (either electric or magnetic) of the incident, reflected, and
transmitted (or refracted) waves by Fi, Fr, and Ft, respectively. We call a dielectric
of the incidence side (and, hence, reflection side) D1 and another dielectric of the
transmission side D2. The fields are described by

Fi ¼ Fieiei ki�x�xtð Þ; ð6:6Þ

Fr ¼ Frerei kr �x�xtð Þ; ð6:7Þ

Ft ¼ Ftetei kt �x�xtð Þ; ð6:8Þ

where Fi, Fr, and Ft denote an amplitude of the field; ei, er, and et represent a unit
vector of polarization direction, i.e., the direction along which the field oscillates;
ki, kr, and kt are wavenumber vectors such that ki ? ei, kr ? er, and kt ? et. These
wavenumber vectors represent the propagation directions of individual waves. In
(6.6) to (6.8), indices of i, r, and t stand for incidence, reflection, and transmission,
respectively.

Let xs be an arbitrary position vector at the interface between the dielectrics.
Also, let t be a unit vector paralleling the interface. Thus, tangential components of
the field are described as

Fit ¼ Fi t � eið Þei ki�xs�xtð Þ; ð6:9Þ

Frt ¼ Fr t � erð Þei kr �xs�xtð Þ; ð6:10Þ

Ftt ¼ Ft t � etð Þei kt �xs�xtð Þ: ð6:11Þ

Note that Fit and Frt represent the field in D1 just close to the interface and that
Ftt denotes the field in D2 just close to the interface. Thus, in light of (6.4) and
(6.5), we have

Fit þFrt ¼ Ftt : ð6:12Þ

Notice that (6.12) holds with any position xs and any time t.
Let us think of elementary calculation of exponential functions or exponential

polynomials and the relationship between individual coefficients and exponents.
With respect to two functions eikx and eik

0x, we have two alternatives according to a
value Wronskian takes. Here, Wronskian W is expressed as

W ¼ eikx eik
0x

ðeikxÞ0 ðeik0xÞ0
����

���� ¼ �i k � k0ð Þ ei kþ k0ð Þx: ð6:13Þ
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(i) W 6¼ 0 if and only if k 6¼ k0. In this case, eikx and eik
0x are said to be linearly

independent. That is, on condition of k 6¼ k0, for any x we have

aeikx þ beik
0x ¼ 0 , a ¼ b ¼ 0: ð6:14Þ

(ii) W ¼ 0 if k ¼ k0. In that case, we have

aeikx þ beik
0x ¼ aþ bð Þeikx ¼ 0 , aþ b ¼ 0:

Notice that eikx never vanishes with any x. To conclude, if we think of an
equation of an exponential polynomial

aeikx þ beik
0x ¼ 0;

we have two alternatives regarding the coefficients: One is a trivial case of
a ¼ b ¼ 0, and the other is aþ b ¼ 0.

Next, with respect to eik1x, and eik2x, and eik3x, similarly we have

W ¼
eik1x eik2x eik3x

ðeik1xÞ0 ðeik2xÞ0 ðeik3xÞ0
ðeik1xÞ00 ðeik2xÞ00 ðeik3xÞ00

�������
�������

¼ �i k1 � k2ð Þ k2 � k3ð Þ k3 � k1ð Þeiðk1 þ k2 þ k3Þx;

ð6:15Þ

where W 6¼ 0 if and only if k1 6¼ k2, k2 6¼ k3, and k3 6¼ k1. That is, on this condition
for any x we have

aeik1x þ beik2x þ ceik3x ¼ 0 , a ¼ b ¼ c ¼ 0: ð6:16Þ

If the three exponential functions are linearly dependent, at least two of k1, k2,
and k3 are equal to each other, and vice versa. On this condition, again consider a
following equation of an exponential polynomial:

aeik1x þ beik2x þ ceik3x ¼ 0: ð6:17Þ

Without loss of generality, we assume that k1 ¼ k2. Then, we have

aeik1x þ beik2x þ ceik3x ¼ aþ bð Þeik1x þ ceik3x ¼ 0:

If k1 6¼ k3, we must have

aþ b ¼ 0 and c ¼ 0 ð6:18Þ
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If, on the other hand, k1 ¼ k3, i.e., k1 ¼ k2 ¼ k3, we have

aeik1x þ beik2x þ ceik3x ¼ aþ bþ cð Þeik1x ¼ 0:

That is, we have

aþ bþ c ¼ 0: ð6:19Þ

Consequently, we must have k1 ¼ k2 ¼ k3 so that we can get three nonzero
coefficients a; b; and c.

Returning to (6.12), its full description is

Fi t � eið Þei ki�xs�xtð Þ þFr t � erð Þei kr �xs�xtð Þ � Ft t � etð Þei kt �xs�xtð Þ ¼ 0: ð6:20Þ

Again, (6.20) must hold with any position xs and any time t. Meanwhile, for
(6.20) to have a physical meaning, we should have

Fi t � eið Þ 6¼ 0; Fr t � erð Þ 6¼ 0 andFt t � erð Þ 6¼ 0: ð6:21Þ

On the basis of the above consideration, we must have the following two
relations:

ki � xs � xt ¼ kr � xs � xt ¼ kt � xs � xt or

ki � xs ¼ kr � xs ¼ kt � xs;
ð6:22Þ

and

Fi t � eið ÞþFr t � erð Þ � Ft t � etð Þ ¼ 0 or

Fi t � eið ÞþFr t � erð Þ ¼ Ft t � etð Þ: ð6:23Þ

In this way, we are able to obtain a relation among amplitudes of the fields of
incidence, reflection, and transmission. Notice that we get both the relations
between exponents and coefficients at once.

First, let us consider (6.22). Suppose that the incident light (ki) is propagated in a
dielectric medium D1 in parallel to the zx-plane and that the interface is the xy-plane
(see Fig. 6.3). Also suppose that at the interface the light is reflected partly back to
D1 and transmitted (or refracted) partly into another dielectric medium D2. In
Fig. 6.3, ki, kr, and, kt represent the incident, reflected, and transmitted lights that
make an angle h, h0, and / with the z-axis, respectively. Then we have

ki ¼ e1 e2 e3ð Þ
ki sin h

0
�ki cos h

0
@

1
A; ð6:24Þ
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xs ¼ e1 e2 e3ð Þ
x
y
0

0
@

1
A; ð6:25Þ

where h is said to be an incidence angle. A plane formed by ki and a normal to the
interface is called a plane of incidence (or incidence plane). In Fig. 6.3, the zx-plane
forms the incidence plane. From (6.24) and (6.25), we have

ki � xs ¼ kix sin h; ð6:26Þ

kr � xs ¼ krxxþ kryy; ð6:27Þ

kt � xs ¼ ktxxþ ktyy; ð6:28Þ

where ki ¼ kij j; krx and kry are x and y components of kr; similarly, ktx and kty are
x and y components of kt.

Since (6.22) holds with any x and y, we have

ki sin h ¼ krx ¼ ktx ; ð6:29Þ

kry ¼ kty ¼ 0: ð6:30Þ

From (6.30), neither kr nor kt has a y component. This means that ki; kr; and kt
are coplanar. That is, the incident, reflected, and transmitted waves are all parallel to
the zx-plane. Notice that at the beginning we did not assume the coplanarity of those
waves. We did not assume the equality of h and h0 either (vide infra). From (6.29)
and Fig. 6.3, however, we have

x 

z 

θ 

φ 

ki 

kr

kt 

θ θ 
D1 

D2 

Fig. 6.3 Geometry of the incident, reflected, and transmitted lights. We assume that the light is
incident from a dielectric medium D1 toward another medium D2. The wavenumber vectors ki, kr ,
and kt represent the incident, reflected, and transmitted (or refracted) lights with an angle h, h0, and
/, respectively. Note here that we did not assume the equality of h and h0 (see text)
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ki sin h ¼ kr sin h0 ¼ kt sin /; ð6:31Þ

where kr ¼ krj j and kt ¼ ktj j; h0 and / are said to be a reflection angle and a
refraction angle, respectively. Thus, the end points of ki; kr; and kt are connected
on a straight line that parallels the z-axis. Figure 6.3 clearly shows it.

Now, we suppose that a wavelength of the electromagnetic wave in D1 is k1 and
that in D2 is k2. Since the incident light and reflected light are propagated in D1, we
have

ki ¼ kr ¼ 2p=k1: ð6:32Þ

From (6.31) and (6.32), we get

sin h ¼ sin h0: ð6:33Þ

Therefore, we have either h ¼ h0 or h0 ¼ p� h. since 0\h; h0\p=2, we have

h ¼ h0: ð6:34Þ

Then, returning back to (6.31), we have

ki sin h ¼ kr sin h ¼ kt sin/: ð6:35Þ

This implies that the components tangential to the interface of ki; kr; and kt are
the same.

Meanwhile, we have

kt ¼ 2p=k2: ð6:36Þ

Also we have

c ¼ k0m; v1 ¼ k1m; v2 ¼ k2m; ð6:37Þ

where v1 and v2 are phase velocities of light in D1 and D2, respectively. Since m is
common to D1 and D2, we have

c=k0 ¼ v1=k1 ¼ v2=k2 or

c=v1 ¼ k0=k1 ¼ n1; c=v2 ¼ k0=k2 ¼ n2;
ð6:38Þ

where k0 is a wavelength in vacuum; n1 and n2 are refractive indices of D1 and D2,
respectively. Combining (6.35) with (6.32), (6.36), and (6.38), we have several
relations such that

sin h
sin/

¼ kt
ki
¼ k1

k2
¼ n2

n1
ð� nÞ; ð6:39Þ
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where n is said to be a relative refractive index of D2 relative to D1. The relation
(6.39) is called Snell’s law. Notice that (6.39) reflects the kinematic aspect of light
and that this characteristic comes from the exponents of (6.20).

6.3 Transverse Electric (TE) Waves and Transverse
Magnetic (TM) Waves

On the basis of the above argument, we are now in the position to determine the
relations among amplitudes of the electromagnetic fields of waves of incidence,
reflection, and transmission. Notice that since we are dealing with non-absorbing
media, the relevant amplitudes are real (i.e., positive or negative). In other words,
when the phase is retained upon reflection, we have a positive amplitude due to
ei0 ¼ 1. When the phase is reversed upon reflection, on the other hand, we will be
treating a negative amplitude due to eip ¼ �1. Nevertheless, when we consider the
total reflection, we deal with a complex amplitude (vide infra).

We start with the discussion of the vertical incidence of an electromagnetic wave
before the general oblique incidence. In Fig. 6.4a, we depict electric fields E and
magnetic fields H obtained at a certain moment near the interface. We index, e.g.,
Ei for the incident field. There we define unit polarization vectors of the electric
field ei, er, and et as identical to be e1 (a unit vector in the direction of the x-axis). In
(6.6), we also define Fi (both electric and magnetic fields) as positive.

We have two cases about a geometry of the fields (see Fig. 6.4). The first case is
that all Ei, Er, and Et are directed in the same direction (i.e., the positive direction
of the x-axis) (see Fig. 6.4a). Another case is that although Ei and Et are directed in
the same direction, Er is reversed (Fig. 6.4b). In this case, we define Er as negative.
Notice that Ei and Et are always directed in the same direction and that Er is
directed either in the same direction or in the opposite direction according to the
nature of the dielectrics. The situation will be discussed soon.

x

z

Ei

Er

Et

(a) Incidence light

Ht

Hr

Hi

x

z

Ei

Er

Et

(b) Incidence light

Ht

Hr

Hi

e1 e1

D1

D2

Fig. 6.4 Geometry of the electromagnetic fields near the interface between dielectric media D1
and D2 in the case of vertical incidence. a All Ei, Er , and Et are directed in the same direction e1
(i.e., a unit vector in the positive direction of the x-axis). b Although Ei and Et are directed in the
same direction, Er is reversed. In this case, we define Er as negative
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Meanwhile, unit polarization vectors of the magnetic fields are determined by
(5.67) for the incident, reflected, and transmitted waves. In Fig. 6.4, the magnetic
fields are polarized along the y-axis (i.e., perpendicular to the plane of paper). The
magnetic fields Hi and Ht are always directed to the same direction as in the case of
the electric fields. On the other hand, if the phase of Er is conserved, the direction of
Hr is reversed and vice versa. This converse relationship with respect to the electric
and magnetic fields results solely from the requirement that E, H, and the propa-
gation unit vector n of light must constitute a right-handed system in this order.
Notice that n is reversed upon reflection.

Next, let us consider an oblique incidence. With the oblique incidence, elec-
tromagnetic waves are classified into two special categories, i.e., transverse electric
(TE) waves (or modes) or transverse magnetic (TM) waves (or modes). The TE
wave is characterized by the electric field that is perpendicular to the incidence
plane, whereas the TM wave is characterized by the magnetic field that is per-
pendicular to the incidence plane. Here, the incidence plane is a plane that is formed
by the propagation direction of the incident light and the normal to the interface of
the two dielectrics. Since E, H, and n form a right-handed system, in the TE wave
H lies on the incidence plane. For the same reason, in the TM wave E lies on the
incidence plane.

In a general case where a field is polarized in an arbitrary direction, that field can
be formed by superimposing two fields corresponding to the TE and TM waves. In
other words, if we take an arbitrary field E, it can be decomposed into a component
having a unit polarization vector directed perpendicular to the incidence plane and
another component having the polarization vector that lies on the incidence plane.
These two components are orthogonal to each other.

Example 6.1: TE wave In Fig. 6.5 we depict the geometry of oblique incidence of a
TE wave. The xy-plane defines the interface of the two dielectrics, and t of (6.9) lies
on that plane. The zx-plane defines the incidence plane. In this case, E is polarized
along the y-axis with H polarized in the zx-plane. That is, regarding E, we choose
polarization direction ei, er, and et of the electric field as e2 (a unit vector toward the
positive direction of the y-axis that is perpendicular to the plane of paper). In
Fig. 6.5, the polarization direction of the electric field is denoted by a symbol �.
Therefore, we have

e2 � ei ¼ e2 � er ¼ e2 � et ¼ 1: ð6:40Þ

ForH we define the direction of unit polarization vectors ei, er, and et so that their
direction cosine relative to the x-axis can be positive (see Fig. 6.5). Choosing e1 (a
unit vector in the direction of the x-axis) for t of (6.9) with regard to H, we have

e1 � ei ¼ cos h; e1 � er ¼ cos h; and e1 � et ¼ cos/: ð6:41Þ

Accordingly as Hr is directed to the same direction as er or the opposite direction
to er, the amplitude is defined as positive or negative, as in the case of the vertical
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incidence. In Fig. 6.5, we depict the case where the amplitude Hr is negative. That
is, the phase of the magnetic field is reversed upon reflection and, hence, Hr is in an
opposite direction to er in Fig. 6.5. Note that Hi and Ht are in the same direction as
ei and et, respectively. To avoid complication, neither Hi nor Ht is shown in
Fig. 6.5. Applying (6.23) to both E and H, we have

Ei þEr ¼ Et; ð6:42Þ

Hi cos hþHr cos h ¼ Ht cos/: ð6:43Þ

To derive the above equations, we choose t ¼ e2 with E and t ¼ e1 with H for
(6.23). Because of the above-mentioned converse relationship with E and H, we
have

ErHr\0: ð6:44Þ

Suppose that we carry out an experiment to determine six amplitudes in (6.42)
and (6.43). Out of those quantities, we can freely choose and fix Ei. Then, we have
five unknown amplitudes, i.e., Er, Et, Hi, Hr, and Ht. Thus, we need three more
relations to determine them. Here, information about the characteristic impedance
Z is useful. It was defined as (5.64). From (6.6) to (6.8) as well as (6.44), we get

Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l1=e1

p
¼ Ei=Hi ¼ �Er=Hr; ð6:45Þ

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l2=e2

p
¼ Et=Ht; ð6:46Þ

where e1 and l1 are permittivity and permeability of D1, respectively; e2 and l2 are
permittivity and permeability of D2, respectively. As an example, we have
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Fig. 6.5 Geometry of the electromagnetic fields near the interface between dielectric media D1
and D2 in the case of oblique incidence of a TE wave. The electric field E is polarized along the y-
axis (i.e., perpendicular to the plane of paper) with H polarized in the zx-plane. Polarization
directions ei, er , and et are given for H. To avoid complication, neither H nor Ht is shown
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Hi ¼n� Ei=Z1 ¼ n� Eiei;e ei ki�x�xtð Þ=Z1 ¼ Eiei;m ei ki�x�xtð Þ=Z1

¼Hiei;m ei ki�x�xtð Þ;
ð6:47Þ

where we distinguish polarization vectors of electric and magnetic fields. Note in
the above discussion, however, we did not distinguish these vectors to avoid
complication. Comparing coefficients of the last relation of (6.47), we get

Ei=Z1 ¼ Hi: ð6:48Þ

On the basis of (6.42) to (6.46), we are able to decide Er, Et, Hi, Hr, and Ht.
What we wish to determine, however, is a ratio among those quantities. To this

end, dividing (6.42) and (6.43) by Ei ð[ 0Þ, we define following quantities:

R?
E � Er=Ei and T?

E � Et=Ei; ð6:49Þ

where R?
E and T?

E are said to be a reflection coefficient and transmission coefficient
with the electric field, respectively; the symbol ? means a quantity of the TE wave
(i.e., electric field oscillating vertically with respect to the incidence plane). Thus
rewriting (6.42) and (6.43) and using R?

E and T?
E , we have

R?
E � T?

E ¼ �1;
R?
E

cos h
Z1

þ T?
E

cos /
Z2

¼ cos h
Z1

:

�
ð6:50Þ

Using Cramer’s rule of matrix algebra, we have a solution such that

R?
E ¼

�1 �1
cos h
Z1

cos/
Z2

����
����

1 �1
cos h
Z1

cos/
Z2

����
����
¼ Z2 cos h� Z1 cos/

Z2 cos hþ Z1 cos/
; ð6:51Þ

T?
E ¼

1 �1
cos h
Z1

cos h
Z1

����
����

1 �1
cos h
Z1

cos/
Z2

����
����
¼ 2Z2 cos h

Z2 cos hþ Z1 cos/
: ð6:52Þ

Similarly, defining

R?
H � Hr=Hi and T?

H � Ht=Hi; ð6:53Þ

where R?
H and T?

H are said to be a reflection coefficient and transmission coefficient
with the magnetic field, respectively, we get
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R?
H ¼ Z1 cos/� Z2 cos h

Z2 cos hþ Z1 cos/
; ð6:54Þ

T?
H ¼ 2Z1 cos h

Z2 cos hþ Z1 cos/
: ð6:55Þ

In this case, rewrite (6.42) as a relation among Hi, Hr, and Ht using (6.45) and
(6.46). Derivation of (6.54) and (6.55) is left for readers. Notice also that

R?
H ¼ �R?

E : ð6:56Þ

This relation can easily be derived by (6.45).

Example 6.2: TM wave In a manner similar to that described above, we obtain
information about the TM wave. Switching a role of E and H, we assume that H is
polarized along the y-axis with E polarized in the zx-plane. Following the afore-
mentioned procedures, we have

Ei cos hþEr cos h ¼ Et cos/; ð6:57Þ

Hi þHr ¼ Ht: ð6:58Þ
From (6.57) and (6.58), similarly we get

Rk
E ¼ Z2 cos/� Z1 cos h

Z1 cos hþ Z2 cos/
; ð6:59Þ

Tk
E ¼ 2Z2 cos h

Z1 cos hþ Z2 cos/
: ð6:60Þ

Also, we get

Rk
H ¼ Z1 cos h� Z2 cos/

Z1 cos hþ Z2 cos/
¼ �Rk

E; ð6:61Þ

Tk
H ¼ 2Z1 cos h

Z1 cos hþ Z2 cos/
: ð6:62Þ

In Table 6.1, we list the important coefficients in relation to the reflection and
transmission of electromagnetic waves along with their relationship.

In Examples 6.1 and 6.2, we have examined how the reflection and transmission
coefficients vary as a function of characteristic impedance as well as incidence and
refraction angles. Meanwhile, in a non-magnetic substance a refractive index n can
be approximated as

n � ffiffiffiffi
er

p
; ð5:57Þ
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assuming that lr � 1. In this case, we have

Z ¼
ffiffiffiffiffiffiffi
l=e

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lrl0=ere0

p
� Z0=

ffiffiffiffi
er

p � Z0=n:

Using this relation, we can readily rewrite the reflection and transmission co-
efficients as a function of refractive indices of the dielectrics. The derivation is left
for the readers.

6.4 Energy Transport by Electromagnetic Waves

Returning to (5.58) and (5.59), let us consider energy transport in a dielectric medium
by electromagnetic waves. Let us describe their electric (E) and magnetic (H)
fields of the electromagnetic waves in a uniform and infinite dielectric medium such
that

E ¼ Eeeei kn�x�xtð Þ; ð6:63Þ

H ¼ Hemei kn�x�xtð Þ; ð6:64Þ

where ee and em are unit polarization vector; we assume that both E and H are
positive. Notice again that ee, em; and n constitute a right-handed system in this
order.

The energy transport is characterized by a Poynting vector S that is described by

S ¼ E�H: ð6:65Þ

Since E and H have a dimension V
m

h i
and A

m

h i
, respectively, S has a dimension

W
m2

h i
. Hence, S represents an energy flow per unit time and per unit area with

respect to the propagation direction. For simplicity, let us assume that the elec-
tromagnetic wave is propagating toward the z-direction. Then, we have

Table 6.1 Reflection and transmission coefficients of TE and TM waves

? Incidence (TE) k Incidence (TM)

R?
E ¼ Z2 cos h�Z1 cos/

Z2 cos hþ Z1 cos/ Rk
E ¼ Z2 cos/�Z1 cos h

Z1 cos hþ Z2 cos/

R?
H ¼ Z1 cos/�Z2 cos h

Z2 cos hþ Z1 cos/
¼ �R?

E Rk
H ¼ Z1 cos h�Z2 cos/

Z1 cos hþ Z2 cos/
¼ �Rk

E

T?
E ¼ 2Z2 cos h

Z2 cos hþ Z1 cos/ Tk
E ¼ 2Z2 cos h

Z1 cos hþ Z2 cos/

T?
H ¼ 2Z1 cos h

Z2 cos hþ Z1 cos/ Tk
H ¼ 2Z1 cos h

Z1 cos hþ Z2 cos/

�R?
E R

?
H þ T?

E T
?
H

cos/
cos h ¼ 1 R? þ T? ¼ 1ð Þ �Rk

ER
k
H þ Tk

ET
k
H

cos /
cos h ¼ 1 Rk þ Tk ¼ 1

� �
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E ¼ Eeeei kz�xtð Þ; ð6:66Þ

H ¼ Hemei kz�xtð Þ: ð6:67Þ

To seek a time-averaged energy flow toward the z-direction, it suffices to mul-
tiply real parts of (6.66) and (6.67) and integrate it during a period T at a point of
z ¼ 0. Thus, a time-averaged Poynting vector S is given by

S ¼ e3
EH
T

ZT
0

cos2 xt dt; ð6:68Þ

where T ¼ 1=m ¼ 2p=x. Using a trigonometric formula

cos2 xt ¼ 1
2
ð1þ cos 2xtÞ; ð6:69Þ

the integration can easily be performed. Thus, we get

S ¼ 1
2
EHe3: ð6:70Þ

Equivalently, we have

S ¼ 1
2
E�H�: ð6:71Þ

Meanwhile, an energy density W is given by

W ¼ 1
2

E � DþH � Bð Þ; ð6:72Þ

where the first and second terms are pertinent to the electric and magnetic fields,

respectively. Note in (6.72) that the dimension of E � D is V
m � C

m2

h i
¼ J

m3

h i
and

that the dimension of H � B is A
m � V�s

m2

h i
¼ W�s

m3

h i
¼ J

m3

h i
. Using (5.7) and (5.10),

we have

W ¼ 1
2

eE2 þ lH2
� �

: ð6:73Þ

As in the above case, estimating a time-averaged energy density W , we get

W ¼ 1
2

1
2
eE2 þ 1

2
lH2

� �
¼ 1

4
eE2 þ 1

4
lH2: ð6:74Þ
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We also get this relation by integrating (6.73) over a wavelength k at a time of
t ¼ 0. Using (5.60) and (5.61), we have

eE2 ¼ lH2: ð6:75Þ

This implies that the energy density resulting from the electric field and that due
to the magnetic field have the same value. Thus, rewriting (6.74) we have

W ¼ 1
2
eE2 ¼ 1

2
lH2: ð6:76Þ

Moreover, using (5.43), we have for an impedance

Z ¼ E=H ¼
ffiffiffiffiffiffiffi
l=e

p
¼ lv or E ¼ lvH: ð6:77Þ

Using this relation along with (6.75), we get

S ¼ 1
2
veE2e3 ¼ 1

2
vlH2e3: ð6:78Þ

Thus, we have various relations among amplitudes of electromagnetic waves and
related physical quantities together with constant of dielectrics.

Returning to Examples 6.1 and 6.2, let us further investigate the reflection and
transmission properties of the electromagnetic waves. From (6.51) to (6.55) as well
as (6.59) to (6.62), we get in both the cases of TE and TM waves

�R?
E R?

H þ T?
E T?

H
cos/
cos h

¼ 1; ð6:79Þ

�Rk
E R

k
H þ Tk

E T
k
H
cos/
cos h

¼ 1: ð6:80Þ

In both the TE and TM cases, we define reflectance R and transmittance T such
that

R � �RERH ¼ R2
E ¼ 2 Sr

�� ��=2 Si
�� �� ¼ Sr

�� ��= Si
�� ��; ð6:81Þ

where Sr and Si are time-averaged Poynting vectors of the reflected wave and
incident waves, respectively. Also, we have

T � TETH
cos/
cos h

¼ 2 St
�� ��
2 Si
�� �� cos/cos h

¼ St
�� ��
Si
�� �� cos/cos h

; ð6:82Þ

where St is a time-averaged Poynting vector of the transmitted wave. Thus, we have

Rþ T ¼ 1: ð6:83Þ
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The relation (6.83) represents the energy conservation. The factor cos/
cos h can be

understood by Fig. 6.6 that depicts a luminous flux near the interface. Suppose that

we have an incident wave with an irradiance I W
m2

h i
whose incidence plane is the

zx-plane. Notice that I has the same dimension as a Poynting vector.
Here, let us think of the luminous flux that is getting through a unit area (i.e., a

unit length square) perpendicular to the propagation direction of the light. Then, this
flux illuminates an area on the interface of a unit length (in the y-direction) mul-
tiplied by a length of cos/

cos h (in the x-direction). That is, the luminous flux has been

widened (or squeezed) by cos/
cos h times after getting through the interface. The irra-

diance has been weakened (or strengthened) accordingly. Thus, to take a balance of
income and outgo with respect to the luminous flux before and after getting through
the interface, the transmission irradiance must be multiplied by a factor cos/

cos h.

6.5 Brewster Angles and Critical Angles

In this section and subsequent sections, we deal with non-magnetic substance as
dielectrics; namely, we assume lr � 1. In that case, as mentioned in Sect. 6.3 we
rewrite, e.g., (6.51) and (6.59) as

R?
E ¼ cos h� n cos/

cos hþ n cos/
; ð6:84Þ

Rk
E ¼ cos/� n cos h

cos/þ n cos h
; ð6:85Þ

where n ¼ n2=n1ð Þ is a relative refractive index of D2 relative to D1. Let us think of
a condition on which R?

E ¼ 0 or Rk
E ¼ 0.

First, we consider (6.84). We have
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Fig. 6.6 Luminous flux near
the interface
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numerator of 6: 84ð Þ½ 	 ¼ cos h� n cos/ ¼ cos h� sin h
sin/

cos/

¼ sin/ cos h� sin h cos/
sin/

¼ sinð/� hÞ
sin/

;

ð6:86Þ

where with the second equality we used Snell’s law; the last equality is due to
trigonometric formula. Since we assume 0\h\p=2 and 0\/\p=2, we have
�p=2\/� h\p=2. Therefore, if and only if /� h ¼ 0, sinð/� hÞ ¼ 0. Namely,
only when / ¼ h, R?

E could vanish. For different dielectrics having different
refractive indices, only if / ¼ h ¼ 0 (i.e., a vertical incidence), we have / ¼ h.
But, in that case we have

lim
/!0; h!0

sinð/� hÞ
sin/

¼ 0
0
:

This is a limit of indeterminate form. From (6.84), however, we have

R?
E ¼ 1� n

1þ n
; ð6:87Þ

for / ¼ h ¼ 0. This implies that R?
E does not vanish at / ¼ h ¼ 0. Thus, R?

E never
vanishes for any h or /. Note that for this condition, naturally we have

Rk
E ¼ 1� n

1þ n
:

This is because with / ¼ h ¼ 0 we have no physical difference between TE and
TM waves.

In turn, let us examine (6.85) similarly with the case of TM wave.

numerator of 6: 85ð Þ½ 	 ¼ cos/� n cos h ¼ cos/� sin h
sin/

cos h

¼ sin/ cos/� sin h cos h
sin/

¼ sinð/� hÞ cosð/þ hÞ
sin/

:

ð6:88Þ

With the last equality of (6.88), we used a trigonometric formula. From (6.86),

we know that sinð/�hÞ
sin/ does not vanish. Therefore, for Rk

E to vanish, we need

cosð/þ hÞ ¼ 0. Since 0\/þ h\p, cosð/þ hÞ ¼ 0 if and only if

/þ h ¼ p=2: ð6:89Þ

In other words, for particular angles h ¼ hB and / ¼ /B that satisfy

/B þ hB ¼ p=2; ð6:90Þ
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we have Rk
E ¼ 0; i.e., we do not observe a reflected wave. The particular angle hB is

said to be the Brewster angle. For hB, we have

sin/B ¼ sin
p
2
� hB

	 

¼ cos hB;

n ¼ sin hB= sin/B ¼ sin hB= cos hB ¼ tan hB or hB ¼ tan�1 n;

/B ¼ tan�1 n�1:

ð6:91Þ

Suppose that we have a parallel plate consisting a dielectric D2 of a refractive
index n2 sandwiched with another dielectric D1 of a refractive index n1 (Fig. 6.7).
Let hB be the Brewster angle when the TM wave is incident from D1 to D2. In the
above discussion, we defined a relative refractive index n of D2 relative D1 as
n ¼ n2=n1; recall (6.39). The other way around, suppose that the TM wave is
incident from D2 to D1. Then, the relative refractive index of D1 relative to D2 is
n1=n2 ¼ n�1. In this situation, another Brewster angle (from D2 to D1) defined asehB is given by

ehB ¼ tan�1 n�1: ð6:92Þ

This number is, however, identical to /B in (6.91). Thus, we have

ehB ¼ /B ð6:93Þ

Thus, regarding the TM wave that is propagating in D2 after getting through the

interface and is to get back to D1, ehB ¼ /B is again the Brewster angle. In this way,
the said TM wave is propagating from D1 to D2 and then getting back from D2 to
D1 without being reflected by the two interfaces. This conspicuous feature is often
utilized for an optical device.

Fig. 6.7 Diagram that explains the Brewster angle. Suppose that a parallel plate consisting of a
dielectric D2 of a refractive index n2 is sandwiched with another dielectric D1 of a refractive index
n1. The incidence angle hB represents the Brewster angle observed when the TM wave is incident
from D1 to D2. /B is another Brewster angle that is observed when the TM wave is getting back
from D2 to D1
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If an electromagnetic wave is incident from a dielectric of a higher refractive
index to that of a lower index, the total reflection takes place. This is equally the
case with both TE and TM waves. For the total reflection to take place, h should be
larger than a critical angle hc that is defined by

hc ¼ sin�1 n: ð6:94Þ

This is because at hc from the Snell’s law we have

sin hc
sin p

2

¼ sin hc ¼ n2
n1

� nð Þ: ð6:95Þ

From (6.95), we have

tan hc ¼ n=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
[ n ¼ tan hB:

In the case of the TM wave, therefore, we find that

hc [ hB: ð6:96Þ

The critical angle is always larger than the Brewster angle with TM waves.

6.5.1 Total Reflection

In Sect. 6.2, we saw that the Snell’s law results from the kinematical requirement.
For this reason, we may consider it as a universal relation that can be extended to
complex refraction angles. In fact, for the Snell’s law to hold with h[ hc, we must
have

sin/[ 1: ð6:97Þ

This needs us to extend / to a complex domain. Putting

/ ¼ p
2
þ ia a : real; a 6¼ 0ð Þ; ð6:98Þ

we have

sin/ � 1
2i

ei/ � e�i/
� � ¼ 1

2
e�a þ eað Þ[ 1; ð6:99Þ

cos / � 1
2

ei/ þ e�i/
� � ¼ i

2
e�a � eað Þ: ð6:100Þ

Thus, cos/ is pure imaginary.
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Now, let us consider a transmitted wave whose electric field is described as

Et ¼ Eetei kt �x�xtð Þ; ð6:101Þ

where et is the unit polarization vector and kt is a wavenumber vector of the
transmission wave. Suppose that the incidence plane is the zx-plane. Then, we have

kt � x ¼ ktxxþ ktz z ¼ xkt sin/þ zkt cos/; ð6:102Þ

where ktx and ktz are x and z components of kt, respectively; kt ¼ ktj j. Putting

cos/ ¼ ib b : real; b 6¼ 0ð Þ; ð6:103Þ

we have

Et ¼ Eetei xkt sin/þ ibzkt�xtð Þ ¼ Eetei xkt sin/�xtð Þe�bzkt : ð6:104Þ

With the total reflection, we must have

z ! 1 ) e�bzkt ! 0: ð6:105Þ

To meet this requirement, we have

b[ 0: ð6:106Þ

Meanwhile, we have

cos2 / ¼ 1� sin2 / ¼ 1� sin2 h
n2

¼ n2 � sin2 h
n2

; ð6:107Þ

where notice that n\1, because we are dealing with the incidence of light from a
medium with a higher refractive index to a low index medium. When we consider
the total reflection, the numerator of (6.107) is negative, and so we have two
choices such that

cos/ ¼ 
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

n
: ð6:108Þ

From (6.103) and (6.106), we get

cos/ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

n
: ð6:109Þ

Hence, inserting (6.109) into (6.84) we have for the TE wave
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R?
E ¼ cos h� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

cos hþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p : ð6:110Þ

Then, we have

R? ¼ �R?
E ðR?

HÞ� ¼ R?
E ðR?

E Þ� ¼
cos h� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

cos hþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p � cos hþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

cos h� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p ¼ 1:

ð6:111Þ

As for the TM wave, substituting (6.109) for (6.85) we have

Rk
E ¼ �n2 cos hþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

n2 cos hþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p : ð6:112Þ

In this case, we also get

Rk ¼ �n2 cos hþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

n2 cos hþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p � �n2 cos h� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

n2 cos h� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p ¼ 1: ð6:113Þ

The relations (6.111) and (6.113) ensure that the energy flow gets back to a
higher refractive index medium.

Thus, the total reflection is characterized by the complex reflection coefficient
expressed as (6.110) and (6.112) as well as a reflectance of 1. From (6.110) and
(6.112), we can estimate a change in a phase of the electromagnetic wave that takes
place by virtue of the total reflection. For this purpose, we put

R?
E � eia and Rk

E � eib: ð6:114Þ

Rewriting (6.110), we have

R?
E ¼ cos2 h� ðsin2 h� n2Þ � 2i cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

1� n2
: ð6:115Þ

At a critical angle hc, from (6.95) we have

sin hc ¼ n: ð6:116Þ

Therefore, we have

1� n2 ¼ cos2 hc: ð6:117Þ
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Then, as expected, we get

R?
E jh¼hc ¼ 1: ð6:118Þ

Note, however, that at h ¼ p=2 (i.e., grazing incidence) we have

R?
E jh¼p=2 ¼ �1: ð6:119Þ

From (6.115), an argument a in a complex plane is given by

tan a ¼ � 2 cos h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

cos2 h� ðsin2 h� n2Þ : ð6:120Þ

The argument a defines a phase shift upon the total reflection. Considering
(6.115) and (6.118), we have

ajh¼hc ¼ 0:

Since 1� n2 [ 0 ði:e:; n\1Þ and in the total reflection region sin2 h� n2 [ 0,
the imaginary part of R?

E is negative for any h (i.e., 0 to p=2). On the other hand, the
real part of R?

E varies from 1 to −1, as is evidenced from (6.118) and (6.119). At h0
that satisfies a following condition:

sin h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

2

r
; ð6:121Þ

the real part is zero. Thus, the phase shift a varies from 0 to �p as indicated in
Fig. 6.8. Comparing (6.121) with (6.116) and taking into account n\1, we have

hc\h0\p=2:

Fig. 6.8 Phase shift a
defined in a complex plane for
the total reflection of TE
wave. The number n denotes
a relative refractive index of
D2 relative to D1. At a critical
angle hc, a ¼ 0
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Similarly, we estimate the phase change for a TM wave. Rewriting (6.112), we
have

Rk
E ¼ �n4 cos2 hþ sin2 h� n2 þ 2i n2 cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

n4 cos2 hþ sin2 h� n2

¼ �n4 cos2 hþ sin2 h� n2 þ 2i n2 cos h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

1� n2ð Þ sin2 h� n2 cos2 h
� � :

ð6:122Þ

Then, we have

Rk
Ejh¼hc ¼ �1: ð6:123Þ

Also at h ¼ p=2 (i.e., grazing incidence), we have

Rk
Ejh¼p=2 ¼ 1: ð6:124Þ

From (6.122), an argument b is given by

tan b ¼ 2 n2 cos h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

�n4 cos2 hþ sin2 h� n2
: ð6:125Þ

Considering (6.122) and (6.123), we have

bjh¼hc ¼ p:

In the total reflection region, we have

sin2 h� n2 cos2 h[ n2 � n2 cos2 h ¼ n2 1� cos2 h
� �

[ 0:

Therefore, the denominator of (6.122) is positive and, hence, the imaginary part

of Rk
E is positive as well for any (i.e., 0 to p=2). From (6.123) and (6.124), on the

other hand, the real part of Rk
E in (6.122) varies from −1 to 1. At eh0 that satisfies a

following condition:

cos eh0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

1þ n4

r
; ð6:126Þ

the real part of Rk
E is zero. Once again, we have

hc\eh0\p=2:

Thus, the phase b varies from p to 0 as depicted in Fig. 6.9.
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6.6 Several Remarks on Analytic Functions

In Sect. 6.6, we mentioned somewhat peculiar features of complex trigonometric
functions such as sin/[ 1 in light of real functions. Even though we do not make
systematic description of analytic functions (or complex analysis), we add several
remarks on them. Readers are referred to appropriate literature with the theory of
analytic functions [2].

Suppose that a mathematical function is defined on a real domain (i.e., a real
number line). Consider whether that function is differentiable at a certain point x0 of
the real number line. On this occasion, we can approach x0 only from two direc-
tions, i.e., from the side of x\x0 (from the left) or from the side of x[ x0 (from the
right) (see Fig. 6.10a). Meanwhile, suppose that a mathematical function is defined
on a complex domain (i.e., a complex plane). Also, consider whether the function is
differentiable at a certain point z0 of the complex plane. In this case, we can
approach z0 from continuously varying directions (see Fig. 6.10b) where only four
directions are depicted.

Suppose now that (i) a function f ðzÞ is single-valued and that (ii) f ðzÞ is dif-
ferentiable, in other words, the following finite limit exists

df
dz

����
z0

¼ lim
Dz!0

f z0 þDzð Þ � f z0ð Þ
Dz

ð6:127Þ

regardless of the way (or direction) one approaches the point z ¼ z0. Notice that
four such ways (or directions) are shown in Fig. 6.10b. Then, f ðzÞ is said to be
analytic at z0. This definition naturally implies that the differentiability of f ðzÞ at z0
demands the differentiability at all points of the “neighborhood” of z0. A point
where f ðzÞ is analytic is called a regular point of f ðzÞ. Otherwise, the point is called
a singular point of f ðzÞ. If f ðzÞ is analytic on the entire complex plane, f ðzÞ is called
an entire function.

Fig. 6.9 Phase shift b for the
total reflection of TM wave.
At a critical angle hc, b ¼ p
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Usually a complex variable z is given by

z ¼ xþ iy;

where x and y are real. Consider a flowing function

gðzÞ ¼ xþ iy ¼ z:

Then, gðzÞ is an entire function. On the other hand, consider a following function
hðzÞ such that

hðzÞ ¼ 2xþ iy ¼ zþ x:

Then, the derivative (6.127) with hðzÞ varies depending on a way z0 is
approached. For instance, think of

dh
dz

����
0
¼ lim

z!0

h 0þ zð Þ � h 0ð Þ
z

¼ lim
x!0; y!0

2xþ iy
xþ iy

¼ lim
x!0; y!0

2x2 þ y2 � ixy
x2 þ y2

:

Suppose that the differentiation is taken along a straight line in a complex plane
represented by iy ¼ ikð Þx k; x; y : realð Þ. Then, we have

dh
dz

����
0
¼ lim

x!0; y!0

2x2 þ k2x2 � ikx2

x2 þ k2x2
¼ lim

x!0; y!0

2þ k2 � ik
1þ k2

¼ 2þ k2 � ik
1þ k2

:

However, this means that dhdz

���
0
takes varying values depending upon k. Namely,

dh
dz

���
0
cannot uniquely be defined but depends on different ways to approach the

x 

0 

z 

1 

i

0 

(a)

(b)

Fig. 6.10 Ways a number
(real or complex) is
approached. a Two ways a
number x0 is approached in a
real number line. b Various
ways a number z0 is
approached in a complex
plane. Here, only four ways
are indicated
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origin of the complex plane. Thus, we find that the derivative takes different values
depending on straight lines along which the differentiation is taken. In other words,
hðzÞ is not differentiable or analytic at z = 0.

Reflecting the nature of the differentiability, we have an integral representation
of an analytic function. This is well-known as Cauchy’s integral formula. It is
described as

f ðzÞ ¼ 1
2pi

I
C

f nð Þ
n� z

dn; ð6:128Þ

where f ðzÞ is analytic within a complex domain encircled by a closed contour
C (see Fig. 6.11) and contour integration along C is taken in the counterclockwise
direction. We also have a following salient property with respect to (higher-order)
derivatives such that

dnf zð Þ
dzn

¼ n!
2pi

I
C

f nð Þ
ðn� zÞnþ 1 dn: ð6:129Þ

We have a further outstanding theorem as follows. Equation (6.129) implies that
an analytic function is infinitely differentiable and that the derivatives of all order of
an analytic function are again analytic. These prominent properties arise partly from
the aforementioned stringent requirement on the differentiability of a function of a
complex variable.

A following theorem is important and intriguing with the analytic functions.

Theorem 6.1 (Cauchy–Liouville Theorem) A bounded entire function must be a
constant.

Proof Using (6.129), we consider the first derivative of an entire function f ðzÞ
described as

df
dz

¼ 1
2pi

I
C

f nð Þ
ðn� zÞ2 dn:

z 

1 

i

0 

Fig. 6.11 Complex domain
encircled by a closed contour
C and contour integration
along C. The integration is
taken in the counterclockwise
direction
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Since f ðzÞ is an entire function, we can arbitrarily choose a large enough circle of
radius R centered at z for a closed contour C. On the circle, we have

n ¼ zþReih;

where h is a real number changing from 0 to 2p. Then, the above equation can be
rewritten as

df
dz

¼ 1
2pi

Z2p
0

f nð Þ
Reihð Þ2

iReih dh ¼ 1
2pR

Z2p
0

f nð Þ
eih

dh:

Taking an absolute value of both sides, we have

df
dz

����
����� 1

2pR

Z2p
0

f nð Þj j dh� M
2pR

Z2p
0

dh ¼ M
R
;

where M is the maximum of f nð Þj j. As R ! 1, df
dz

��� ��� tends to be zero. This implies

that f ðzÞ is constant. This completes the proof.
At the first glance, Cauchy–Liouville Theorem looks astonishing in terms of

theory of real analysis. It is because we are too familiar with �1� sin x� 1 for any
real number x. Note that sin x is bounded in a real domain. In fact, as (6.98) and
(6.99) show, sin/ ! 1 with a ! 1. This simple example clearly shows that
sin/ is an unbounded function in a complex domain. As a very familiar example of
a bounded entire functions, we take

f ðzÞ ¼ cos z2 þ sin z2 � 1;

which is defined in an entire complex plane.
As a matter of course, in Sect. 6.6 a complex angle / should be determined

experimentally from (6.109).

6.7 Waveguide Applications

There are many optical devices based upon light propagation. Among them,
waveguide devices utilize the total reflection. We explain their operation principle.

Suppose that we have a thin plate (usually said to be a slab) comprising a
dielectric medium that infinitely spreads two-dimensionally and that the plate is
sandwiched with another dielectric (or maybe air or vacuum) or metal. In this
situation, electromagnetic waves are confined within the slab. Moreover, only under
a restricted condition those waves are allowed to propagate in parallel to the slab
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plane. Such electromagnetic waves are usually called propagation modes or simply
“modes.” An optical device thus designed is called a waveguide. These modes are
characterized by repeated total reflection during the propagation. Another mode is
an evanescent mode. Because of the total reflection, the energy transport is not
allowed to take place vertically to the interface of two dielectrics and the evanescent
mode is thought to be propagated very close to the interface.

6.7.1 TE and TM Waves in a Waveguide

In a waveguide configuration, propagating waves are classified into TE and TM
modes. Quality of materials that constitute a waveguide largely governs the prop-
agation modes within the waveguide.

Figure 6.12 depicts a cross section of a slab waveguide. We assume that the
electromagnetic wave is propagated toward the positive direction of the z-axis and
that a waveguide infinitely spreads toward the z- and x-axis. Suppose that the said
waveguide is spatially confined toward the y-axis. Let the thickness of the
waveguide be d. From a point of view of material that shapes a waveguide,
waveguides are classified into two types. (i) Electromagnetic waves are completely
confined within the waveguide layer. This case typically happens when a dielectric
forming the waveguide is sandwiched between a couple of metal layers
(Fig. 6.12a). This is because the electromagnetic wave is not allowed to exist or
propagate inside the metal.

(ii) Electromagnetic waves are not completely confined within the waveguide.
This case happens when the dielectric of the waveguide is sandwiched by a couple
of other dielectrics. We distinguish this case as the total internal reflection from the
above case (i). We further describe it in Sect. 6.8.2. For the total internal reflection
to take place, the refractive index of the waveguide must be higher than those of
other dielectrics (Fig. 6.12b). The dielectric of the waveguide is called core layer
and the other dielectric is called clad layer. In this case, electromagnetic waves are
allowed to propagate inside of the clad layer, even though the region is confined
very close to the interface between the clad and core layers. Such electromagnetic

dWaveguide 

Metal

Metal

(a) 

dWaveguide 
(core layer)

(b) Dielectric (clad layer)

y 

x 
z 

y 

x 
z 

Dielectric (clad layer)

Fig. 6.12 Cross section of a
slab waveguide comprising a
dielectric medium. a A
waveguide is sandwiched
between a couple of metal
layers. b A waveguide is
sandwiched between a couple
of layers consisting of another
dielectric called clad layer.
The sandwiched layer is
called core layer
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waves are said to be an evanescent wave. According to these two cases (i) and (ii),
we have different conditions under which the allowed modes can exist.

Now, let us return to Maxwell’s equations. We have introduced the equations of
wave motion (5.35) and (5.36) from Maxwell’s equations (5.28) and (5.29) along
with (5.7) and (5.10). One of their simplest solutions is a plane wave described by
(5.53). The plane wave is characterized by that the wave has the same phase on an
infinitely spreading plane perpendicular to the propagation direction (characterized
by a wavevector k). In a waveguide, however, the electromagnetic field is confined
with respect to the direction parallel to the normal to the slab plane (i.e., the
direction of the y-axis in Fig. 6.12). Consequently, the electromagnetic field can no
longer have the same phase in that direction. Yet, as solutions of equations of wave
motion, we can have a solution that has the same phase with the direction of the x-
axis. Bearing in mind such a situation, let us think of Maxwell’s equations in
relation to the equations of wave motion.

Ignoring components related to partial differentiation with respect to x (i.e., the
component related to @=@x) and rewriting (5.28) and (5.29) for individual Cartesian
coordinates, we have [3]

@Ez

@y
� @Ey

@z
þ @Bx

@t
¼ 0; ð6:130Þ

@Ex

@z
þ @By

@t
¼ 0; ð6:131Þ

� @Ex

@y
þ @Bz

@t
¼ 0; ð6:132Þ

@Hz

@y
� @Hy

@z
� @Dx

@t
¼ 0; ð6:133Þ

@Hx

@z
� @Dy

@t
¼ 0; ð6:134Þ

� @Hx

@y
� @Dz

@t
¼ 0: ð6:135Þ

Of the above equations, we collect those pertinent to Ex and differentiate (6.131),
(6.132), and (6.133) with respect to z, y, and t, respectively, to get

@2Ex

@z2
þ @2By

@z@t
¼ 0; ð6:136Þ

@2Ex

@y2
� @2Bz

@y@t
¼ 0; ð6:137Þ
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@2Hz

@t@y
� @2Hy

@t@z
� @2Dx

@t2
¼ 0: ð6:138Þ

Multiplying (6.138) by l and further adding (6.136) and (6.137) to it and using
(5.7), we get

@2Ex

@y2
þ @2Ex

@z2
¼ le

@2Ex

@t2
: ð6:139Þ

This is a two-dimensional equation of wave motion. In a similar manner, from
(6.130), (6.134), and (6.135), we have for the magnetic field

@2Hx

@y2
þ @2Hx

@z2
¼ le

@2Hx

@t2
: ð6:140Þ

Equations (6.139) and (6.140) are two-dimensional wave equations with respect
to the y- and z-coordinates. With the direction of the x-axis, a propagating wave has
the same phase. Suppose that we have plane wave solutions for them as in the case
of (5.58) and (5.59). Then, we have

E ¼ E0ei k�x�xtð Þ ¼ E0ei kn�x�xtð Þ;

H ¼ H0ei k�x�xtð Þ ¼ H0ei kn�x�xtð Þ:
ð6:141Þ

Note that a plane wave expressed by (5.58) and (5.59) is propagated uniformly
in a dielectric medium. In a waveguide, on the other hand, the electromagnetic
waves undergo repeated (total) reflections from the two boundaries positioned
either side of the waveguide, while being propagated.

In a three-dimensional version, the wavenumber vector has three components kx,
ky, and kz as expressed in (5.48). In (6.141), in turn, k has y and z components such
that

k2 ¼ k2 ¼ k2y þ k2z : ð6:142Þ

Equations (6.139) and (6.140) can be rewritten as

@2Ex

@ 
yð Þ2 þ @2Ex

@ 
zð Þ2 ¼ le
@2Ex

@ 
tð Þ2 ;
@2Hx

@ 
yð Þ2 þ @2Hx

@ 
zð Þ2 ¼ le
@2Hx

@ 
tð Þ2 :

Accordingly, we have four wavenumber vector components

ky ¼ 
 ky
�� �� and kz ¼ 
 kzj j:

Figure 6.13 indicates this situation where an electromagnetic wave can be
propagated within a slab waveguide in either one direction out of four choices of

6.7 Waveguide Applications 203



k. In this section, we assume that the electromagnetic wave is propagated toward
the positive direction of the z-axis, and so we define kz as positive. On the other
hand, ky can be either positive or negative. Thus, we get

kz ¼ k sin h and ky ¼ 
k cos h: ð6:143Þ

Figure 6.14 shows the geometries of the electromagnetic waves within the slab
waveguide. The slab plane is parallel to the zx-plane. Let the positions of the two
interfaces of the slab waveguide be

y ¼ 0 and y ¼ d: ð6:144Þ

That is, we assume that the thickness of the waveguide is d.
Since (6.139) describes a wave equation for only one component Ex, (6.139) is

suited for representing a TE wave. In (6.140), in turn, a wave equation is given only
for Hx, and hence, it is suited for representing a TM wave. With the TE wave, the
electric field oscillates parallel to the slab plane and vertical to the propagation
direction. With the TM wave, in turn, the magnetic field oscillates parallel to the
slab plane and vertical to the propagation direction. In a general case, electro-
magnetic waves in a slab waveguide are formed by superposition of TE and TM
waves. Notice that Fig. 6.14 is applicable to both TE and TM waves.

Fig. 6.13 Four possible propagation directions k of an electromagnetic wave in a slab waveguide

ky k

kzk

kz

ky 
θ θ 

y 

x 
z 

Fig. 6.14 Geometries and
propagation of the
electromagnetic waves in a
slab waveguide
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Let us further proceed with the waveguide analysis. The electric field E within
the waveguide is described by superposition of the incident and reflected waves.
Using the first equation of (6.141) and (6.143), we have

E z; yð Þ ¼ eeEþ ei kz sin hþ ky cos h�xtð Þ þ e0eE�ei kz sin h�ky cos h�xtð Þ; ð6:145Þ

where Eþ (E�) and ee e0e
� �

represent an amplitude and unit polarization vector of
the incident (reflected) waves, respectively. The vector ee (or e0e) is defined in (5.67).

Equation (6.145) is common to both the cases of TE and TM waves. From now,
we consider the TE mode case. Suppose that the slab waveguide is sandwiched with
a couple of metal sheet of high conductance. Since the electric field must be absent
inside the metal, the electric field at the interface must be zero owing to the
continuity condition of a tangential component of the electric field. Thus, we
require the following condition should be met with (6.145):

t � E z; 0ð Þ ¼ 0 ¼ t � eeEþ ei kz sin h�xtð Þ þ t � e0eE�ei kz sin h�xtð Þ

¼ t � eeEþ þ t � e0eE�
� �

ei kz sin h�xtð Þ ð6:146Þ

Therefore, since ei kz sin h�xtð Þ never vanishes, we have

t � eeEþ þ t � e0eE� ¼ 0; ð6:147Þ

where t is a tangential unit vector at the interface.
Since E is polarized along the x-axis, setting ee ¼ e0e ¼ e1 and taking t as e1, we

get

Eþ þE� ¼ 0:

This means that the reflection coefficient of the electric field is −1. Denoting
Eþ ¼ �E� � E0 ð[ 0Þ, we have

E ¼ e1E0 ei kz sin hþ ky cos h�xtð Þ � ei kz sin h�ky cos h�xtð Þ
h i

¼ e1E0 eiky cos h � e�iky cos h� �
ei kz sin h�xtð Þ

h i
¼ e12iE0 sinðky cos hÞ ei kz sin h�xtð Þ:

ð6:148Þ

Requiring the electric field to vanish at another interface of y ¼ d, we have

E z; dð Þ ¼ 0 ¼ e12iE0 sinðkd cos hÞ ei kz sin h�xtð Þ:

Note that in terms of the boundary conditions we are thinking of Dirichlet
conditions (see Sects. 1.3 and 8.3). In this case, we have nodes for the electric field
at the interface between metal and a dielectric. For this condition to be satisfied, we
must have
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kd cos h ¼ mp m ¼ 1; 2; � � �ð Þ: ð6:149Þ

From (6.149), we have a following condition for m:

m� kd=p: ð6:150Þ

Meanwhile, we have

k ¼ nk0; ð6:151Þ

where n is a refractive index of a dielectric that shapes the slab waveguide; the
quantity k0 is a wavenumber of the electromagnetic wave in vacuum. The index n is
given by

n ¼ c=v; ð6:152Þ

where c and v are light velocity in vacuum and the dielectric media, respectively.
Here, v is meant as a velocity in an infinitely spreading dielectric. Thus, h is allowed
to take several (or more) numbers depending upon k, d, and m.

Since in the z-direction no specific boundary conditions are imposed, we have
propagating modes in that direction characterized by a propagation constant (vide
infra). Looking at (6.148), we notice that k sin h plays a role of a wavenumber in a
free space. For this reason, a quantity b defined as

b ¼ k sin h ¼ nk0 sin h ð6:153Þ

is said to be a propagation constant. From (6.149) and (6.153), we get

b ¼ k2 � m2p2

d2

� �1=2

: ð6:154Þ

Thus, the allowed TE waves indexed by m are called TE modes and represented
as TEm. The phase velocity vp is given by

vp ¼ x=b: ð6:155Þ

Meanwhile, the group velocity vg is given by

vg ¼ dx
db

¼ db
dx

� ��1

: ð6:156Þ

Using (6.154) and noting that k2 ¼ x2=v2, we get

vg ¼ v2b=x: ð6:157Þ
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Thus, we have

vpvg ¼ v2: ð6:158Þ

Note that in (1.22) of Sect. 1.1 we saw a relationship similar to (6.158).
The characteristics of TM waves can be analyzed in a similar manner by

examining the magnetic field Hx. In that case, the reflection coefficient of the
magnetic field is +1 and we have antinodes for the magnetic field at the interface.
Concomitantly, we adopt Neumann conditions as the boundary conditions (see
Sects. 1.3 and 8.3). Regardless of the difference in the boundary conditions,
however, discussion including (6.149) to (6.158) applies to the analysis of TM
waves. Once Hx is determined, Ey and Ez can be determined as well from (6.134)
and (6.135).

6.7.2 Total Internal Reflection and Evanescent Waves

If a slab waveguide shaped by a dielectric is sandwiched by a couple of another
dielectric (Fig. 6.12b), the situation differs from a metal waveguide (Fig. 6.12a) we
encountered in Sect. 6.8.1. Suppose in Fig. 6.12b that the former dielectric D1 of a
refractive index n1 is sandwiched by the latter dielectric D2 of a refractive index n2.
Suppose that an electromagnetic wave is being propagated from D1 toward D2.
Then, we must have

n1 [ n2 ð6:159Þ

so that the total internal reflection can take place at the interface of D1 and D2. In
this case, the dielectrics D1 and D2 act as a core layer and a clad layer, respectively.

The biggest difference between the present waveguide and the previous one is
that unlike the previous case, the total internal reflection occurs in the present case.
Concomitantly, an evanescent wave is present in the clad layer very close to the
interface.

First, let us estimate the conditions that are satisfied so that an electromagnetic
wave can be propagated within a waveguide. Figure 6.15 depicts a cross section of
the waveguide where the light is propagated in the direction of k. In Fig. 6.15,
suppose that we have a normal N to the plane of paper at P. Then, N and a straight
line XY shape a plane NXY. Also, suppose that a dielectric fills a semi-infinite
space situated below NXY. Further, suppose that there is another virtual plane N′X′
Y′ that is parallel with NXY as shown. Here N′ is parallel to N. The separation of
the two parallel planes is d. We need the virtual plane N′X′Y′ just to estimate an
optical path difference (or phase difference, more specifically) between two waves,
i.e., a propagating wave and a reflected wave.
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Let n be a unit vector in the direction of k; i.e.,

n ¼ k= kj j ¼ k=k: ð6:160Þ

Then, the electromagnetic wave is described as

E ¼ E0ei k�x�xtð Þ ¼ E0ei kn�x�xtð Þ: ð6:161Þ

Suppose we take a coordinate system such that

x ¼ rnþ suþ tv; ð6:162Þ

where u and v represent unit vectors in the direction perpendicular to n. Then,
(6.161) can be expressed by

E ¼ E0ei kr�xtð Þ: ð6:163Þ

Suppose that the wave is propagated starting from a point A to P and reflected at
P. Then, the wave is further propagated to B and reflected again to reach Q. The
wave front is originally at AB and finally at PQ. Thus, the Z-shaped optical path
length APBQ is equal to a separation between A′B′ and PQ. Notice that the sep-
aration between A′B′ and P′Q′ is taken so that it is equal to that between AB and
PQ. The geometry of Fig. 6.15 implies that two waves starting from AB and A′B′ at
once reach PQ again at once.

We find the separation between AB and A′B′ is

2d cos h:

Let us tentatively call these waves Wave-AB and Wave-A′B′ and describe their
electric fields as EAB and EA0B0 , respectively. Then, we denote

θ 

d A 

B 

Q 

P 

θ 

A’ 

B’ 

Q’ 

P’ 
 

N Y X 

N’ Y’ X’ 

Fig. 6.15 Cross section of the waveguide where the light is propagated in the direction of k. A
dielectric fills a semi-infinite space situated below NXY. We suppose another virtual plane N′X′Y′
that is parallel with NXY. We need the plane N′X′Y′ to estimate an optical path difference (or
phase difference)
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EAB ¼ E0ei kr�xtð Þ; ð6:164Þ

EA0B0 ¼ E0ei½k rþ 2d cos hÞ�xtð 	; ð6:165Þ

where k is a wavenumber in the dielectric. Note that since EA0B0 gets behinds EAB, a
plus sign appears in the first term of the exponent. Therefore, the phase difference
between the two waves is

2kd cos h: ð6:166Þ

Now, let us come back to the actual geometry of the waveguide. That is, the
core layer of thickness d is sandwiched by a couple of clad layers (Fig. 6.12b). In
this situation, the wave EAB experiences the total internal reflection two times,
which we ignored in the above discussion of the metal waveguide. Since the total
internal reflection causes a complex phase shift, we have to take account of this
effect. The phase shift was defined as a of (6.114) for a TE mode and b for a TM
mode. Notice that in Fig. 6.15 the electric field oscillates perpendicularly to the
plane of paper with the TE mode, whereas it oscillates in parallel with the plane
of paper with the TM mode. For both the cases, the electric field oscillates
perpendicularly to n. Consequently, the phase shift due to these reflections has to
be added to (6.166). Thus, for the phase commensuration to be obtained, the
following condition must be satisfied:

2kd cos hþ 2d ¼ 2mp m ¼ 0; 1; 2; � � �ð Þ; ð6:167Þ

where d is either dTE or dTM defined below according to the case of the TE wave
and TM wave, respectively. For a practical purpose, (6.167) is dealt with by a
numerical calculation, e.g., to design an optical waveguide.

Unlike (6.149), what is the most important with (6.167) is that the condition
m ¼ 0 is permitted because of d\0 (see just below).

For convenience and according to the custom, we adopt a phase shift notation
other than that defined in (6.114). With the TE mode, the phase is retained upon
reflection at the critical angle, and so we identify a with an additional component
dTE. In the TM case, on the other hand, the phase is reversed upon reflection at the
critical angle (i.e., a p shift occurs). Since this p shift has been incorporated into b,
it suffices to consider only an additional component dTM. That is, we have

dTE � a and dTM � b� p: ð6:168Þ

We rewrite (6.110) as

R?
E ¼ eia ¼ eidTE � ae�ir

aeir
¼ e�2ir and

dTE ¼ �2r ðr[ 0Þ;
ð6:169Þ
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where we have

aeir ¼ cos hþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p
: ð6:170Þ

Therefore,

tan r ¼ � tan
dTE
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

cos h
: ð6:171Þ

Meanwhile, rewriting (6.112) we have

Rk
E ¼ eib ¼ ei dTM þ pð Þ � � be�is

beis
¼ �e�2is ¼ ei �2sþpð Þ; ð6:172Þ

where

beis ¼ n2 cos hþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p
: ð6:173Þ

Note that the minus sign with the second last equality in (6.172) is due to the
phase reversal upon reflection. From (6.172), we may put

b ¼ �2sþ p:

Comparing this with the second equation of (6.168), we get

dTM ¼ �2s ðs[ 0Þ: ð6:174Þ

Consequently, we get

tan s ¼ � tan
dTM
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

n2 cos h
: ð6:175Þ

Finally, the additional phase change dTE and dTM upon the total reflection is
given by [4]

dTE ¼ �2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

cos h
and dTM ¼ �2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� n2

p

n2 cos h
: ð6:176Þ

We emphasize that in (6.176) both dTE and dTM are negative quantities. This
phase shift has to be included in (6.167) as a negative quantity d.

At a first glance, (6.176) seems to differ largely from (6.120) and (6.125).
Nevertheless, noting that a trigonometric formula

tan 2x ¼ 2 tan x
1� tan2 x
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and remembering that dTM in (6.168) includes p arising from the phase reversal, we
find that both the relations are virtually identical.

Evanescent waves are drawing a large attention in the field of basic physics and
applied device physics. If the total internal reflection is absent, / is real. But, under
the total internal reflection, / is pure imaginary. The electric field of the evanescent
wave is described as

Et ¼ Eetei ktz sin/þ kty cos/�xtð Þ ¼ Eetei ktz sin/þ ktyib�xtð Þ

¼ Eetei ktz sin/�xtð Þe�ktyb:
ð6:177Þ

In (6.177), a unit polarization vector et is either perpendicular to the plane of
paper of Fig. 6.15 (the TE case) or in parallel to it (the TM case). Notice that the
coordinate system is different from that of (6.104). The quantity kt sin/ is the

propagation constant. Let vðsÞp and vðeÞp be a phase velocity of the electromagnetic
wave in the slab waveguide (i.e., core layer) and evanescent wave in the clad layer,
respectively. Then, in virtue of Snell’s law we have

v1\vðsÞp ¼ v1
sin h

¼ x
k sin h

¼ x
kt sin/

¼ vðeÞp ¼ v2
sin/

\v2; ð6:178Þ

where v1 and v2 are light velocity in a free space filled by the dielectric D1 and D2,
respectively. For this, we used a relation described as

x ¼ v1k ¼ v2kt: ð6:179Þ

We also used Snell’s law with the third equality. Notice that sin/[ 1 in the
evanescent region and that kt sin/ is a propagation constant in the clad layer. Also,

note that vðsÞp is equal to vðeÞp and that these phase velocities are in between the two
velocities of the free space. Thus, the evanescent waves must be present, accom-
panying propagating waves that undergo the total internal reflections in a slab
waveguide.

As remarked in (6.105), the electric field of evanescent waves decays expo-
nentially with increasing z. This implies that the evanescent waves exist only in the
clad layer very close to an interface of core and clad layers.

6.8 Stationary Waves

So far, we have been dealing with propagating waves either in a free space or in a
waveguide. If the dielectric shaping the waveguide is confined in another direction,
the propagating waves show specific properties. Examples include optical fibers.

In this section, we consider a situation where the electromagnetic wave is
propagating in a dielectric medium and reflected by a “wall” formed by metal or
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another dielectric. In such a situation, the original wave (i.e., a forward wave)
causes interference with the backward wave and a stationary wave is formed as a
consequence of the interference.

To approach this issue, we deal with superposition of two waves that have
different phases and different amplitudes. To generalize the problem, let w1 and w2
be two cosine functions described as

w1 ¼ a1 cos b1 and w2 ¼ a2 cos b2: ð6:180Þ

Their addition is expressed as

w ¼ w1 þw2 ¼ a1 cos b1 þ a2 cos b2: ð6:181Þ

Here, we wish to unify (6.181) as a single cosine (or sine) function. To this end,
we modify a description of w2 such that

w2 ¼ a2 cos½b1 þðb2 � b1Þ	
¼ a2½cos b1 cosðb2 � b1Þ � sin b1 sinðb2 � b1Þ	
¼ a2½cos b1 cosðb1 � b2Þþ sin b1 sinðb1 � b2Þ	:

ð6:182Þ

Then, the addition is described by

w ¼ w1 þw2

¼ a1 þ a2 cosðb1 � b2½ Þ	 cos b1 þ a2 sinðb1 � b2Þ sin b1:
ð6:183Þ

Putting R such that

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ a2 cosðb1 � b2½ Þ	2 þ a22 sin

2ðb1 � b2Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ 2a1a2 cosðb1 � b2Þ

q
;

ð6:184Þ

we get

w ¼ R cosðb1 � hÞ; ð6:185Þ

where h is expressed by

tan h ¼ a2 sinðb1 � b2Þ
a1 þ a2 cosðb1 � b2Þ : ð6:186Þ

Figure 6.16 represents a geometrical diagram in relation to the superposition of
twowaves having different amplitudes (a1 and a2) and different phases (b1 and b2) [5].
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To apply (6.185) to the superposition of two electromagnetic waves that are
propagating forward and backward to collide head-on with each other, we change
the variables such that

b1 ¼ kx� xt and b2 ¼ �kx� xt; ð6:187Þ

where the former equation represents a forward wave, whereas the latter a backward
wave. Then, we have

b1 � b2 ¼ 2kx: ð6:188Þ

Equation (6.185) is rewritten as

wðx; tÞ ¼ R cos kx� xt � hð Þ; ð6:189Þ

with

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ 2a1a2 cos 2kx

q
ð6:190Þ

and

tan h ¼ a2 sin 2kx
a1 þ a2 cos 2kx

: ð6:191Þ

Equation (6.189) looks simple, but since both R and h vary as a function of x, the
situation is somewhat complicated unlike a simple sinusoidal wave. Nonetheless,
when x takes a special value, (6.189) is expressed by a simple function form. For
example, at t ¼ 0,

w x; 0ð Þ ¼ a1 þ a2ð Þ cos kx:

Fig. 6.16 Geometrical
diagram in relation to the
superposition of two waves
having different amplitudes
(a1 and a2) and different
phases (b1 and b2)
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This corresponds to (i) of Fig. 6.17. If t ¼ T=2 (where T is a period, i.e.,
T ¼ 2p=xÞ, we have

w x; T=2ð Þ ¼ � a1 þ a2ð Þ cos kx:

This corresponds to (iii) of Fig. 6.17. But, the waves described by (ii) or (iv) do
not have a simple function form.

We characterize Fig. 6.17. If we have

2kx ¼ np or x ¼ nk=4 ð6:192Þ

with k being a wavelength, then h ¼ 0 or p, and so h can be eliminated. This
situation occurs with every quarter period of a wavelength. Let us put t ¼ 0 and
examine how the superposed wave looks like. For instance, putting x ¼ 0, x ¼ k=4,
and x ¼ k=2 we have

w 0; 0ð Þ ¼ a1 þ a2j j; w k=4; 0ð Þ ¼ w 3k=4; 0ð Þ ¼ 0; w k=2; 0ð Þ ¼ � a1 þ a2j j; ð6:193Þ

respectively. Notice that in Fig. 6.17 we took a1; a2 [ 0. At another instant
t ¼ T=4, we have similarly

w 0; T=4ð Þ ¼ 0; w k=4; T=4ð Þ ¼ a1 � a2j j; w k=2; T=4ð Þ ¼ 0;

w k=4; T=4ð Þ ¼ � a1 � a2j j: ð6:194Þ

Thus, the waves that vary with time are characterized by two dram-shaped
envelopes that have extremals a1 þ a2j j and a1 � a2j j or those � a1 þ a2j j and
� a1 � a2j j. An important implication of Fig. 6.17 is that no node is present in the
superposed wave. In other words, there is no instant t0 when w x; t0ð Þ ¼ 0 for any
x. From the aspect of energy transport of electromagnetic waves, if a1j j[ a2j j
(where a1 and a2 represent an amplitude of the forward and backward waves,
respectively), the net energy flow takes place in the traveling direction of the
forward wave. If, on the other hand, a1j j[ a2j j, the net energy flow takes place in
the traveling direction of the backward wave. In this respect, think of Poynting
vectors.

Phase kx (rad) 0 6.3

(i) 

(ii)

(iii)

(iv) 

Fig. 6.17 Superposition of
two sinusoidal waves. In
(6.189) and (6.190), we put
a1 ¼ 1, a2 ¼ 0:5, with
(i) t ¼ 0. (ii) t ¼ T=4.
(iii) t ¼ T=2. (iv) t ¼ 3T=4.
w x; tð Þ is plotted as a function
of phase kx
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In case a1j j ¼ a2j j, the situation is particularly simple. No net energy flow takes
place in this case. Correspondingly, we observe nodes. Such waves are called
stationary waves. Let us consider this simple situation for an electromagnetic wave
that is incident perpendicularly to the interface between two dielectrics (one of them
may be a metal).

Returning back to (5.58) and (5.66), we describe two electromagnetic waves that
are propagating in the positive and negative directions of the z-axis such that

E1 ¼ E1eeei kz�xtð Þ and E2 ¼ E2eeei �kz�xtð Þ; ð6:195Þ

where ee is a unit polarization vector arbitrarily fixed so that it can be parallel to the
interface, i.e., wall (i.e., perpendicular to the z-axis). The situation is depicted in
Fig. 6.18. Notice that in Fig. 6.18 E1 represents the forward wave (i.e., incident
wave) and E2 the backward wave (i.e., wave reflected at the interface). Thus, a
superposed wave is described as

E ¼ E1 þE2: ð6:196Þ

Taking account of the reflection of an electromagnetic wave perpendicularly
incident on a wall, let us consider following two cases:

(i) Syn-phase:

The phase of the electric field is retained upon reflection. We assume that
E1 ¼ E2 ð[ 0Þ. Then, we have

E ¼ E1ee ei kz�xtð Þ þ ei �kz�xtð Þ
h i

¼ E1eee�ixt eikz þ e�ikz
� �

¼ 2E1eee�ixt cos kz:
ð6:197Þ

In (6.197), we put z ¼ 0 at the interface for convenience. Taking a real part of
(6.197), we have

E ¼ 2E1ee cosxt cos kz: ð6:198Þ

Fig. 6.18 Superposition of
electric fields of forward (or
incident) wave E1 and
backward (or reflected) wave
E2
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Note that in (6.198) variables z and t have been separated. This implies that we
have a stationary wave. For this case to be realized, the characteristic impedance of
the dielectric of the incident wave side should be smaller enough than that of the
other side [see (6.51) and (6.59)]. In other words, the dielectric constant of the
incident side should be large enough. We have nodes at positions that satisfy

�kz ¼ p
2
þmp m ¼ 0; 1; 2; � � �ð Þ or � z ¼ 1

4
kþ m

2
k: ð6:199Þ

Note that we are thinking of the stationary wave in the region of z\0.
Equation (6.199) indicates that nodes are formed at a quarter wavelength from the
interface and every half wavelength from it. The node means the position where no
electric field is present.

Meanwhile, antinodes are observed at positions

�kz ¼ mp m ¼ 0; 1; 2; � � �ð Þ or � z ¼ þ m
2
k:

Thus, the nodes and antinodes alternate with every quarter wavelength.

(ii) Anti-phase:

The phase of the electric field is reversed. We assume that E1 ¼ �E2 ð[ 0Þ.
Then, we have

E ¼ E1ee ei kz�xtð Þ � ei �kz�xtð Þ
h i

¼ E1eee�ixt eikz � e�ikz
� �

¼ 2iE1eee�ixt sin kz:
ð6:200Þ

Taking a real part of (6.197), we have

E ¼ 2E1ee sinxt sin kz: ð6:201Þ

In (6.201), variables z and t have been separated as well. For this case to be
realized, the characteristic impedance of the dielectric of the incident wave side
should be larger enough than that of the other side. In other words, the dielectric
constant of the incident side should be small enough. Practically, this situation can
easily be attained choosing a metal of high reflectance for the wall material. We
have nodes at positions that satisfy

�kz ¼ mp m ¼ 0; 1; 2; � � �ð Þ or � z ¼ m
2
k: ð6:202Þ

The nodes are formed at the interface and every half wavelength from it. As in
the case of the syn-phase, the antinodes take place with the positions shifted by a
quarter wavelength relative to the nodes.
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If there is another interface at say �z ¼ L ð[ 0Þ, the wave goes back and forth
many times. If an absolute value of the reflection coefficient at the interface is high
enough (i.e., close to the unity), attenuation of the wave is ignorable. For both the
syn-phase and anti-phase cases, we must have

kL ¼ mp m ¼ 1; 2; � � �ð Þ or L ¼ m
2
k ð6:203Þ

so that stationary waves can stand stable. For a practical purpose, an optical device
having such an interface is said to be a resonator. Various geometries and con-
stitutions of the resonator are proposed in combination with various dielectrics
including semiconductors. Related discussion can be seen in Chap. 7.
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Chapter 7
Light Quanta: Radiation and Absorption

So far we discussed propagation of light and its reflection and transmission
(or refraction) at an interface of dielectric media. We described characteristics of
light from the point of view of an electromagnetic wave. In this chapter, we describe
properties of light in relation to quantum mechanics. To this end, we start with
Planck’s law of radiation that successfully reproduced experimental results related to
a blackbody radiation. Before this law had been established, Rayleigh–Jeans law
failed to explain the experimental results at a high frequency region of radiation
(the ultraviolet catastrophe). The Planck’s law of radiation led to the discovery of
light quanta. Einstein interpreted Planck’s law of radiation on the basis of a model of
two-level atoms. This model includes so-called Einstein A and B coefficients that are
important in optics applications, especially lasers. We derive these coefficients from
a classical point of view based on a dipole oscillation. We also consider a close
relationship between electromagnetic waves confined in a cavity and a motion of a
harmonic oscillator.

7.1 Blackbody Radiation

Historically, the relevant theory was first propounded by Max Planck and then
Albert Einstein as briefly discussed in Chap. 1. The theory was developed on the
basis of the experiments called cavity radiation or blackbody radiation. Here,
however, we wish to derive Planck’s law of radiation on the assumption of the
existence of quantum harmonic oscillators.

As discussed in Chap. 2, the ground state of a quantum harmonic oscillator has
an energy 1

2 �hx. Therefore, we measure energies of the oscillator in reference to that
state. Let N0 be the number of oscillators (i.e., light quanta) present in the ground
state. Then, according to Boltzmann distribution law, the number of oscillators of
the first excited state N1 is
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N1 ¼ N0e��hx=kBT ; ð7:1Þ

where kB is Boltzmann constant and T is absolute temperature. Let Nj be the
number of oscillators of the jth excited state. Then we have

Nj ¼ N0e�j�hx=kBT : ð7:2Þ

Let N be the total number of oscillators in the system. Then, we get

N ¼ N0 þN0e��hx=kBT þ � � � þN0e�j�hx=kBT þ � � �

¼ N0

X1
j¼0

e�j�hx=kBT :
ð7:3Þ

Let E be a total energy of the oscillator system in reference to the ground state.
That is, we put a ground state energy at zero. Then we have

E ¼ 0 � N0 þN0�hxe��hx=kBT þ � � � þN0j�hxe�j�hx=kBT þ � � �

¼ N0

X1
j¼0

j�hxe�j�hx=kBT :
ð7:4Þ

Therefore, an average energy of oscillators E is

E ¼ E
N

¼ �hx

P1
j¼0 je

�j�hx=kBTP1
j¼0 e�j�hx=kBT

: ð7:5Þ

Putting x � e��hx=kBT [1], we have

E ¼ �hx

P1
j¼0 jx

jP1
j¼0 x

j
: ð7:6Þ

Since x\1, we have

X1
j¼0

jx j ¼
X1
j¼0

jxj�1 � x ¼ d
dx

X1
j¼0

x j
 !" #

x ¼ d
dx

1
1� x

� �� �
x ¼ x

ð1� xÞ2 : ð7:7Þ

X1
j¼0

x j ¼ 1
1� x

: ð7:8Þ

Therefore, we get
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E ¼ �hxx
1� x

¼ �hxe��hx=kBT

1� e��hx=kBT
¼ �hx

e�hx=kBT � 1
: ð7:9Þ

The function

1
e�hx=kBT � 1

: ð7:10Þ

is a form of Bose–Einstein distribution functions; more specifically, it is called the
Bose–Einstein distribution function for photons today.

If ð�hx=kBTÞ � 1, e�hx=kBT � 1þð�hx=kBTÞ. Therefore, we have

E � kBT: ð7:11Þ

Thus, the relation (7.9) asymptotically agrees with a classical theory. In other
words, according to the classical theory related to law of equipartition of energy,
energy of kBT=2 is distributed to each of two degrees of freedom of motion, i.e., a
kinetic energy and a potential energy of a harmonic oscillator.

7.2 Planck’s Law of Radiation and Mode Density
of Electromagnetic Waves

Researcher at the time tried to seek the relationship between the energy density
inside the cavity and (angular) frequency of radiation. To reach the relationship, let
us introduce a concept of mode density of electromagnetic waves related to the
blackbody radiation. We define the mode density D ðxÞ as the number of modes of
electromagnetic waves per unit volume per unit angular frequency. We refer to the
electromagnetic waves having allowed specific angular frequencies and polarization
as modes. These modes must be described as linearly independent functions.

Determination of the mode density is related to boundary conditions (BCs)
imposed on a physical system. We already dealt with this problem in Chaps. 2, 3,
and 6. These BCs often appear when we find solutions of differential equations. Let
us consider a following wave equation:

@2w
@x2

¼ 1
v2

@2w
@t2

: ð7:12Þ

According to the method of separation of variables, we put

wðx; tÞ ¼ XðxÞTðtÞ: ð7:13Þ

Substituting (7.13) for (7.12) and dividing both sides by XðxÞTðtÞ, we have
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1
X
d2X
dx2

¼ 1
v2

1
T
d2T
dt2

¼ �k2; ð7:14Þ

where k is an undetermined (possibly complex) constant. For the x component, we
get

d2X
dx2

þ k2X ¼ 0: ð7:15Þ

Remember that k is supposed to be a complex number for the moment (see
Example 1.1). Modifying Example 1.1 a little bit such that (7.15) is posed in a
domain ½0; L� and imposing the Dirichlet conditions such that

Xð0Þ ¼ XðLÞ ¼ 0; ð7:16Þ

we find a solution of

XðxÞ ¼ a sin kx; ð7:17Þ

where a is a constant. The constant k can be determined to satisfy the BCs; i.e.,

kL ¼ mp or k ¼ mp=L m ¼ 1; 2; � � �ð Þ: ð7:18Þ

Thus, we get real numbers for k. Then, we have a solution

TðtÞ ¼ b sin kvt ¼ b sin xt: ð7:19Þ

The overall solution is then

wðx; tÞ ¼ c sin kx sin xt: ð7:20Þ

This solution has already appeared in Chap. 6 as a stationary solution. The
readers are encouraged to derive these results.

In a three-dimensional case, we have a wave equation

@2w
@x2

þ @2w
@y2

þ @2w
@z2

¼ 1
v2

@2w
@t2

: ð7:21Þ

In this case, we also assume

wðx; tÞ ¼ XðxÞYðyÞZðzÞTðtÞ: ð7:22Þ
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Similarly, we get

1
X
d2X
dx2

þ 1
Y
d2Y
dx2

þ 1
Z
d2Z
dx2

¼ 1
v2

1
T
d2T
dt2

¼ �k2: ð7:23Þ

Putting

1
X
d2X
dx2

¼ �k2x ;
1
Y
d2Y
dx2

¼ �k2y ;
1
Z
d2Z
dx2

¼ �k2z ; ð7:24Þ

we have

k2x þ k2y þ k2z ¼ k2: ð7:25Þ

Then, we get a stationary wave solution as in the one-dimensional case such that

wðx; tÞ ¼ c sin kxx sin kyy sin kzz sinxt: ð7:26Þ

The BCs to be satisfied with XðxÞ; YðyÞ; and ZðzÞ are

kxL ¼ mxp; kyL ¼ myp; kzL ¼ mzp mx;my;mz ¼ 1; 2; � � �� �
: ð7:27Þ

Returning to the main issue, let us deal with the mode density. Think of a cube of
each side of L that is placed as shown in Fig. 7.1. Calculating k, we have

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
¼ p

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þm2
y þm2

z

q
¼ x

c
; ð7:28Þ

where we assumed that the inside of a cavity is vacuum and, hence, the propagation
velocity of light is c. Rewriting (7.28), we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
x þm2

y þm2
z

q
¼ Lx

pc
: ð7:29Þ

y

x

z

L

L

L

Fig. 7.1 Cube of each side of
L. We use this simple model
to estimate mode density
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The number mx;my; andmz represents allowable modes in the cavity; the set of
ðmx;my;mzÞ specifies individual modes. Note that mx;my; andmz are all positive
integers. If for instance �mx were allowed, this would produce
sin ð�kxxÞ ¼ � sin kxx; but this function is linearly dependent on sin kxx. Then, a
mode indexed by �mx should not be regarded as an independent mode. Given a x,
a set ðmx;my;mzÞ that satisfies (7.29) corresponds to each mode. Therefore, the
number of modes that satisfies a following expressionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
x þm2

y þm2
z

q
� Lx

pc
ð7:30Þ

represents those corresponding to angular frequencies equal to or less than given x.
Each mode has one-to-one correspondence with the lattice indexed by

ðmx;my;mzÞ. Accordingly, if mx;my;mz 	 1, the number of allowed modes
approximately equals one-eighth of a volume of a sphere having a radius of Lx

pc . Let
NL be the number of modes whose angular frequencies equal to or less than x.
Recalling that there are two independent modes having the same index ðmx;my;mzÞ
but mutually orthogonal polarities, we have

NL ¼ 4p
3

Lx
pc

� �3

� 1
8
� 2 ¼ L3x3

3p2c3
: ð7:31Þ

Consequently, the mode density DðxÞ is expressed as

DðxÞ dx ¼ 1
L3

dNL

dx
dx ¼ x2

p2c3
dx; ð7:32Þ

where DðxÞ dx represents the number of modes per unit volume whose angular
frequencies range x and xþ dx.

Now, we introduce a function qðxÞ as an energy density per unit angular fre-
quency. Then, combining DðxÞ with (7.9), we get

qðxÞ ¼ DðxÞ �hx
e�hx=kBT � 1

¼ �hx3

p2c3
1

e�hx=kBT � 1
: ð7:33Þ

The relation (7.33) is called Planck’s law of radiation. Notice that qðxÞ has a
dimension ½Jm�3s�.

To solve (7.15) under the Dirichlet conditions (7.16) is pertinent to analyzing an
electric field within a cavity surrounded by a metal husk, because the electric field
must be absent at an interface between the cavity and metal. The problem, however,
can equivalently be solved using the magnetic field. This is because at the interface
the reflection coefficient of electric field and magnetic field have a reversed sign
(see Chap. 6). Thus, given an equation for the magnetic field, we may use the
Neumann condition. This condition requires differential coefficients to vanish at the
boundary (i.e., the interface between the cavity and metal). In a similar manner to
the above, we get
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wðx; tÞ ¼ c cos kx cosxt: ð7:34Þ

By imposing BCs, again we have (7.18) that leads to the same result as the
above.

We may also impose the periodic BCs. This type of equation has already been
treated in Chap. 3. In that case, we have a solution of

eikx and e�ikx:

The BCs demand that e0 ¼ 1 ¼ eikL. That is,

kL ¼ 2pm m ¼ 0;
1;
2; � � �ð Þ: ð7:35Þ

Notice that eikx and e�ikx are linearly independent and, hence, minus sign for m is
permitted. Correspondingly, we have

NL ¼ 4p
3

Lx
2pc

� �3

�2 ¼ L3x3

3p2c3
: ð7:36Þ

In other words, here we have to consider a whole volume of a sphere of a half
radius of the previous case. Thus, we reach the same conclusion as before.

If the average energy of an oscillator were described by (7.11), we would obtain
a following description of qðxÞ such that

qðxÞ ¼ DðxÞkBT ¼ x2

p2c3
kBT: ð7:37Þ

This relation is well-known as Rayleigh–Jeans law, but (7.37) disagreed with
experimental results in that according to Rayleigh–Jeans law, qðxÞ diverges toward
infinity as x goes to infinity. The discrepancy between the theory and experimental
results was referred to as “ultraviolet catastrophe.” Planck’s law of radiation
described by (7.33), on the other hand, reproduces the experimental results well.

7.3 Two-Level Atoms

Although Planck established Planck’s law of radiation, researchers at that time
hesitated in professing the existence of light quanta. It was Einstein that derived
Planck’s law by assuming two-level atoms in which light quanta play a role.

His assumption comprises the following three postulates: (i) The physical system
to be addressed comprises so-called hypothetical “two-level” atoms that have only
two energy levels. If two-level atoms absorb a light quantum, a ground-state
electron is excited up to a higher-level (i.e., the stimulated absorption). (ii) The
higher-level electron may spontaneously lose its energy and return back to the
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ground state (the spontaneous emission). (iii) The higher-level electron may also
lose its energy and return back to the ground state. Unlike (ii), however, the excited
electron has to be stimulated by being irradiated by light quanta having an energy
corresponding to the energy difference between the ground state and excited state
(the stimulated emission). Figure 7.2 schematically depicts the optical processes of
the Einstein model.

Under those postulates, Einstein dealt with the problem probabilistically.
Suppose that the ground state and excited state have energies E1 and E2. Einstein
assumed that light quanta having an energy equaling E2 � E1 take part in all the
above three transition processes. He also propounded the idea that the light quanta
have an energy that is proportional to its (angular) frequency. That is, he thought
that the following relation should hold:

�hx21 ¼ E2 � E1; ð7:38Þ

where x21 is an angular frequency of light that takes part in the optical transitions.
For the time being, let us follow Einstein’s postulates.

(i) Stimulated absorption: This process is simply said to be an “absorption.” Let
Wa ½s�1� be the transition probability that the electron absorbs a light quantum
to be excited to the excited state. Wa is described as

Wa ¼ N1B21q ðx21Þ; ð7:39Þ

where N1 is the number of atoms occupying the ground state; B21 is a
proportional constant; q ðx21Þ is due to (7.33). Note that in (7.39) we used x21

instead of x in (7.33). The coefficient B21 is called Einstein B coefficient; more
specifically one of Einstein B coefficients. Namely, B21 is pertinent to the
transition from the ground state to excited state.

(ii) Emission processes: The processes include both the spontaneous and stimu-
lated emissions. Let We ½s�1� be the transition probability that the electron
emits a light quantum and returns back to the ground state. We is described as

We ¼ N2B12q ðx21ÞþN2A12; ð7:40Þ

Stimulated 
absorption

Stimulated 
emission

Spontaneous
emission

Fig. 7.2 Optical processes of Einstein two-level atom model
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where N2 is the number of atoms occupying the excited state; B12 and A12 are
proportional constants. The coefficient A12 is called Einstein A coefficient
relevant to the spontaneous emission. The coefficient B12 is associated with the
stimulated emission and also called Einstein B coefficient together with B21.
Here, B12 is pertinent to the transition from the excited state to ground state.

Now, we have

B12 ¼ B21: ð7:41Þ

The reasoning for this is as follows: The coefficients B12 and B21 are proportional
to the matrix elements pertinent to the optical transition. Let T be an operator
associated with the transition. Then, a matrix element is described using an inner
product notation of Chap. 1 by

B21 ¼ w2h jT w1j i; ð7:42Þ

where w1 and w2 are initial and final states of the system in relation to the optical
transition. As a good approximation, we use er for T (dipole approximation), where e
is an elementary charge and r is a position operator (see Chap. 1). If (7.42) represents
the absorption process (i.e., the transition from the ground state to excited state), the
corresponding emission process should be described as a reversed process by

B12 ¼ w1h jT w2j i: ð7:43Þ

Notice that in (7.43) w2 and w1 are initial and final states.
Taking complex conjugate of (7.42), we have

B�
21 ¼ w1h jTy w2j i; ð7:44Þ

where Ty is an operator adjoint to T (see Chap. 1). With an Hermitian operator H,
from Sect. 1.4 we have

Hy ¼ H: ð1:119Þ

Since T is also Hermitian, we have

Ty ¼ T: ð7:45Þ

Thus, we get

B�
21 ¼ B12: ð7:46Þ

But, as in the cases of Sects. 4.2 and 4.3, w1 and w2 can be represented as real
functions. Then, we have
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B�
21 ¼ B21 ¼ B12:

That is, we assume that the matrix B is real symmetric. In the case of two-level
atoms, as a matrix form we get

B ¼ 0 B12

B12 0

� �
: ð7:47Þ

Compare (7.47) with (4.28).
Now, in the thermal equilibrium, we have

We ¼ Wa: ð7:48Þ

That is,

N2B21qðx21ÞþN2A12 ¼ N1B21qðx21Þ; ð7:49Þ

where we used (7.41) for LHS. Assuming Boltzmann distribution law, we get

N2

N1
¼ exp � E2 � E1ð Þ=kBT½ �: ð7:50Þ

Here if moreover we assume (7.38), we get

N2

N1
¼ exp ��hx21=kBTð Þ: ð7:51Þ

Combing (7.49) and (7.51), we have

exp ��hx21=kBTð Þ ¼ B21qðx21Þ
B21qðx21ÞþA12

: ð7:52Þ

Solving (7.52) with respect to qðx12Þ, we finally get

qðx21Þ ¼ A12

B21
� exp ��hx21=kBTð Þ
1� exp ��hx21=kBTð Þ ¼

A12

B21
� 1
exp �hx21=kBTð Þ � 1

: ð7:53Þ

Assuming that

A12

B21
¼ �hx3

21

p2c3
; ð7:54Þ

we have
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qðx21Þ ¼ �hx3
21

p2c3
� 1
exp �hx21=kBTð Þ � 1

: ð7:55Þ

This is none other than Planck’s law of radiation.

7.4 Dipole Radiation

In (7.54), we only know the ratio of A12 to B21. To have a good knowledge of these
Einstein coefficients, we briefly examine a mechanism of the dipole radiation. The
electromagnetic radiation results from an accelerated motion of a dipole.

A dipole moment pðtÞ is defined as a function of time t by

pðtÞ ¼
Z

x0q x0; tð Þdx0; ð7:56Þ

where x0 is a position vector in a Cartesian coordinate; an integral is taken over a
whole three-dimensional space; q is a charge density appearing in (5.1). If we
consider a system comprising point charges, integration can immediately be carried
out to yield

pðtÞ ¼
X
i

qixi; ð7:57Þ

where qi is a charge of each point charge i and xi is a position vector of the point
charge i. From (7.56) and (7.57), we find that pðtÞ depends on how we set up the
coordinate system. However, if a total charge of the system is zero, p ðtÞ does not
depend on the coordinate system. Let pðtÞ and p0ðtÞ be a dipole moment viewed
from the frame O and O0, respectively (see Fig. 7.3). Then we have

p0ðtÞ ¼
X
i

qi x0i ¼
X
i

qi x0 þ xið Þ ¼
X
i

qi

 !
x0 þ

X
i

qixi ¼
X
i

qi xi ¼ pðtÞ:

ð7:58Þ

.
.

Fig. 7.3 Dipole moment
viewed from the frame O or
O0
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Notice that with the third equality the first term vanishes because the total charge
is zero. The system comprising two point charges that have an opposite charge
ð
qÞ is particularly simple but very important. In that case, we have

pðtÞ ¼ qx1 þð�qÞx2 ¼ qðx1 � x2Þ ¼ qex: ð7:59Þ

Here, we assume that q[ 0 according to the custom and, hence, ex is a vector
directing from the minus point charge to the plus charge.

Figure 7.4 displays geometry of an oscillating dipole and electromagnetic
radiation from it. Figure 7.4a depicts the dipole. It is placed at the origin of the
coordinate system and assumed to be of an atomic or molecular scale in extension;
we regard a center of the dipole as the origin. Figure 7.4b represents a large-scale
geometry of the dipole and surrounding space of it. For the electromagnetic radi-
ation, an accelerated motion of the dipole is of primary importance. The electro-
magnetic fields produced by €pðtÞ vary as the inverse of r, where r is a macroscopic
distance between the dipole and observation point. Namely, r is much larger
compared to the dipole size.

There are other electromagnetic fields that result from the dipole moment. The
fields result from pðtÞ and _pðtÞ. Strictly speaking, we have to include those quan-
tities that are responsible for the electromagnetic fields associated with the dipole
radiation. Nevertheless, the fields produced by pðtÞ and _pðtÞ vary as a function of
the inverse cube and inverse square of r, respectively. Therefore, the surface
integral of the square of the fields associated with pðtÞ and _pðtÞ asymptotically
reaches zero with enough large r with respect to a sphere enveloping the dipole.
Regarding €pðtÞ, on the other hand, the surface integral of the square of the fields
remains finite even with enough large r. For this reason, we refer to the spatial
region where €pðtÞ does not vanish as a wave zone.

(b)(a)

a
z 0

z 0
a

+q

q

y

x

z

O

x

Fig. 7.4 Electromagnetic radiation from an accelerated motion of a dipole. a A dipole placed at
the origin of the coordinate system is executing harmonic oscillation along the z-direction around
an equilibrium position. b Electromagnetic radiation from a dipole in a wave zone. ee and em are
unit polarization vectors of the electric field and magnetic field, respectively. ee, em, and n form a
right-handed system
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Suppose that a dipole placed at the origin of the coordinate system is executing
harmonic oscillation along the z-direction around an equilibrium position (see
Fig. 7.4). Motion of two charges having plus and minus signs is described by

zþ ¼ z0 e3 þ aeixte3 ðz0; a[ 0Þ; ð7:60Þ

z� ¼ �z0 e3 � aeixte3; ð7:61Þ

where zþ and z� are position vectors of a plus charge and minus charge, respec-
tively; z0 and �z0 are equilibrium positions of each charge; a is an amplitude of the
harmonic oscillation; x is an angular frequency of the oscillation. Then, acceler-
ations of the charges are given by

aþ � €zþ ¼ �ax2eixte3; ð7:62Þ

a� � €z� ¼ ax2eixte3: ð7:63Þ

Meanwhile, we have

pðtÞ ¼ qzþ þ ð�qÞz� ¼ q zþ � z�ð Þ ðq[ 0Þ: ð7:64Þ

Therefore,

€pðtÞ ¼ q €zþ � €z�ð Þ ¼ �2qax2eixte3: ð7:65Þ

The quantity €pðtÞ, i.e., the second derivative of pðtÞ with respect to time pro-
duces the electric field described by [2]

E ¼ �€p=4pe0c2r ¼ �qax2eixte3=2pe0c2r; ð7:66Þ

where r is a distance between the dipole and observation point. In (7.66), we
ignored a term proportional to inverse square and cube of r for the aforementioned
reason.

As described in (7.66), the strength of the radiation electric field in the wave
zone measured at a point away from the oscillating dipole is proportional to a
component of the vector of the acceleration motion of the dipole [i.e., €pðtÞ]. The
radiation electric field lies in the direction perpendicular to a line connecting the
observation point and the point of the dipole (Fig. 7.4). Let ee be a unit polarization
vector of the electric field in that direction, and let E? be the radiation electric field.
Then, we have

E? ¼ �qax2eixt e3 � eeð Þee=2pe0c2r ¼ �qax2eixtee sin h=2pe0c2r : ð7:67Þ
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As shown in Sect. 5.3, ðee � e3Þ ee in (7.67) “extracts” from e3 a vector compo-
nent parallel to ee. Such an operation is said to be a projection of a vector. The
related discussion can be seen in Part III.

It takes a time of r=c for the emitted light from the charge to arrive at the
observation point. Consequently, the acceleration of the charge has to be measured at
the time when the radiation leaves the charge. Let t be the instant when the electric
field is measured at the measuring point. Then, it follows that the radiation leaves the
charge at a time of t � r=c. Thus, the electric field relevant to the radiation that can be
observed far enough away from the oscillating charge is described as [2]

E?ðx; tÞ ¼ � qax2eix t�r
cð Þ sin h

2pe0c2r
ee: ð7:68Þ

The radiation electric field must necessarily be accompanied by a magnetic field.
Writing the radiation magnetic field as H?ðx; tÞ, we have [3]

H? x; tð Þ ¼ � 1
cl0

� qax
2eix t�r

cð Þ sin h
2pe0c2r

n� ee ¼ � qax2eix t�r
cð Þ sin h

2pcr
n� ee

¼ � qax2eix t�r
cð Þ sin h

2pcr
em;

ð7:69Þ

where n represents a unit vector in the direction parallel to a line connecting the
observation point and the dipole. The em is a unit polarization vector of the mag-
netic field as defined by (5.67). From the above, we see that the radiation elec-
tromagnetic waves in the wave zone are transverse waves that show the properties
the same as those of electromagnetic waves in a free space.

Now, let us evaluate a time-averaged energy flux from an oscillating dipole.
Using (6.71), we have

SðhÞ ¼ 1
2
E�H� ¼ 1

2
� qax

2eix t�r
cð Þ sin h

2pe0c2r
� qax

2e�ix t�r
cð Þ sin h

2pcr
n

¼ x4 sin2 h
8p2e0c3r2

ðqaÞ2n:
ð7:70Þ

If we are thinking of an atom or a molecule in which the dipole consists of an
electron and a positive charge that compensates it, q is replaced with �e ðe\0Þ.
Then (7.70) reads as

SðhÞ ¼ x4 sin2 h
8p2e0c3r2

ðeaÞ2n: ð7:71Þ
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Let us relate the above argument to Einstein A and B coefficients. Since we are
dealing with an isolated dipole, we might well suppose that the radiation comes
from the spontaneous emission. Let P be a total power of emission from the
oscillating dipole that gets through a sphere of radius r. Then we have

P ¼
Z

SðhÞ � n dS ¼
Z2p
0

d/
Zp
0

SðhÞr2 sin h dh

¼ x4

8p2e0c3
ðeaÞ2

Z2p
0

d/
Zp
0

sin3 h dh:

ð7:72Þ

Changing cos h to t, the integral I � R p0 sin3 h dh can be converted into

I ¼
Z1
�1

ð1� t2Þ dt ¼ 4=3: ð7:73Þ

Thus, we have

P ¼ x4

3pe0c3
ðeaÞ2: ð7:74Þ

A probability of the spontaneous emission is given by N2 A12. Since we are
dealing with a single dipole, N2 can be put 1. Accordingly, an expected power of
emission is A12 �hx21. Replacing x in (7.74) with x21 in (7.55) and equating
A12 �hx21 to P, we get

A12 ¼ x3
21

3pe0c3�h
ðeaÞ2: ð7:75Þ

From (7.54), we also get

B12 ¼ p

3e0�h2
ðeaÞ2: ð7:76Þ

In order to relate these results to those of quantum mechanics, we may replace a2

in the above expressions with matrix elements of the position operator r. That is,
representing 1j i and 2j i as the quantum states of the ground and excited states of a
two-level atom, we define 1h jr 2j i as the matrix element of the position operator.
Relating 1h jr 2j ij j2 to a2, we get
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A12 ¼ x3
21e

2

3pe0c3�h
1h jr 2j ij j2 and B12 ¼ pe2

3e0�h2
1h jr 2j ij j2: ð7:77Þ

From (7.77), we have

B12 ¼ pe2

3e0�h2
1h jr 2j i 1h jr 2j i�¼ pe2

3e0�h2
1h jr 2j i 2h jry 1j i ¼ pe2

3e0�h2
1 rj j2h i 2 rj j1h i; ð7:78Þ

where with the second equality we used (1.116); the last equality comes from that r
is Hermitian. Meanwhile, we have

B21 ¼ pe2

3e0�h2
2 rj j1h ij j2¼ pe2

3e0�h2
2 rj j1h i 1 ry

			 			2D E
¼ pe2

3e0�h2
2 rj j1h i 1 rj j2h i: ð7:79Þ

Hence, we recover (7.41).

7.5 Lasers

A concept of the two-level atoms proposed by Einstein is universal and independent
of materials and can be utilized for some particular purposes. Actually, in later years
many researchers tried to validate that concept and verified its validity. After basic
researches of 1950s and 1960s, fundamentals were put into practical use as various
optical devices. Typical examples are masers and lasers, abbreviations for “mi-
crowave amplification by stimulated emission of radiation” and “light amplification
by stimulated emission of radiation.” Of these, lasers are common and particularly
important nowadays. On the basis of universality of the concept, a lot of materials
including semiconductors and dyes are used in gaseous, liquid, and solid states.

Let us consider a rectangular parallelepiped of a laser medium with a length
L and cross-sectional area S (Fig. 7.5). Suppose there are N two-level atoms in the
rectangular parallelepiped such that

N ¼ N1 þN2; ð7:80Þ

0 Lx x+dx

t t+dt

I(x) I(x+dx)

Fig. 7.5 Rectangular parallelepiped of a laser medium with a length L and a cross-sectional area
S (not shown). IðxÞ denotes irradiance at a point of x from the origin
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where N1 and N2 represent the number of atoms occupying the ground and excited
states, respectively. Suppose that a light is propagated from the left of the rectan-
gular parallelepiped and entering it. Then, we expect that three processes occur
simultaneously. One is a stimulated absorption and others are stimulated emission
and spontaneous emission. After these process, an increment dE in photon energy
of the total system (i.e., the rectangular parallelepiped) during dt is described by

dE ¼ N2 B21q ðx21ÞþA12½ � � N1 B21q ðx21Þf g�hx21 dt: ð7:81Þ

In light of (7.39) and (7.40), a dimensionless quantity dE=�hx21 represents a
number of effective events of photons emission that have occurred during dt. Since
in lasers the stimulated emission is dominant, we shall forget about the spontaneous
emission and rewrite (7.81) as

dE ¼ N2 B21q ðx21Þ � N1 B21q ðx21Þf g�hx21 dt

¼ B21q ðx21Þ ðN2 � N1Þ �hx21 dt:
ð7:82Þ

Under a thermal equilibrium, we have N2\N1 on the basis of Boltzmann dis-
tribution law, and so dE\0. In this occasion, therefore, the photon energy
decreases. For the light amplification to take place, therefore, we must have a
following condition:

N2 [N1: ð7:83Þ

This energy distribution is called inverted distribution or population inversion.
Thus, the laser oscillation is a typical non-equilibrium phenomenon. To produce the
population inversion, we need an external exciting source using an electrical or
optical device.

The essence of lasers rests upon the fact that stimulated emission produces a
photon that possesses a wave vector (k) and a polarization ðeÞ both the same as
those of an original photon. For this reason, the laser light is monochromatic and
highly directional. To understand the fundamental mechanism underlying the
related phenomena, interested readers are encouraged to seek appropriate literature
of quantum theory of light for further reading [4].

To make a discussion simple and straightforward, let us assume that the light is
incident parallel to the long axis of the rectangular parallelepiped. Then, the
stimulated emission produces light to be propagated in the same direction. As a
result, an irradiance I measured in that direction is described as

I ¼ E
SL

� c0: ð7:84Þ
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Note that the light velocity in the laser medium c0 is given by

c0 ¼ c=n; ð7:85Þ

where n is a refractive index of the laser medium. Taking an infinitesimal of both
sides of (7.84), we have

dI ¼ dE
c0

SL
¼ B21q ðx21Þ ðN2 � N1Þ�hx21

c0

SL
dt

¼ B21q ðx21Þ~N�hx21c
0 dt ;

ð7:86Þ

where ~N ¼ ðN2 � N1Þ=SL denotes a “net” density of atoms that occupy the excited
state.

The energy density q ðx21Þ can be written as

q ðx21Þ ¼ I ðx21Þ g ðx21Þ=c0; ð7:87Þ

where I ðx12Þ Js�1m�2

 �

represents an intensity of radiation; g ðx21Þ is a gain
function ½s�. The gain function is a measure that shows how favorably (or unfa-
vorably) the transition takes place at the said angular frequency x12. This is nor-
malized in the emission range such that

Z1
0

gðxÞ dx ¼ 1:

The quantity Iðx21Þ is an energy flux that gets through per unit area per unit
time. This flux corresponds to an energy contained in a long and thin rectangular
parallelepiped of a length c0 and a unit cross-sectional area. To obtain qðx21Þ,
Iðx12Þ should be divided by c0 in (7.87) accordingly. Using (7.87) and replacing
c0dt with a distance dx and Iðx12Þ with IðxÞ as a function of x, we rewrite (7.86) as

dIðxÞ ¼ B21gðx21ÞeN�hx21

c0
IðxÞ dx: ð7:88Þ

Dividing (7.88) by IðxÞ and integrating both sides, we have

Z I
I0

dIðxÞ
IðxÞ ¼

Z I
I0

d ln IðxÞ ¼ B21g ðx21ÞeN�hx21

c0

Zx
0

dx; ð7:89Þ

where I0 is an irradiance of light at an instant when the light is entering the laser
medium from the left. Thus, we get
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IðxÞ ¼ I0 exp
B21gðx21ÞeN�hx21

c0
x

" #
: ð7:90Þ

The Eq. (7.90) shows that an irradiance of the laser light is augmented expo-
nentially along the path of the laser light. In (7.90), denoting an exponent as G

G � B21gðx21ÞeN�hx21

c0
; ð7:91Þ

we get

IðxÞ ¼ I0 expGx:

The constant G is said to be a gain constant. This is an index that indicates the
laser performance. Large numbers B21, gðx21Þ, and eN yield a high performance of
the laser.

In Sects. 6.9 and 7.2, we sought conditions for electromagnetic waves to cause
constructive interference. In a one-dimensional dielectric medium, the condition is
described as

kL ¼ mp or mk ¼ 2L m ¼ 1; 2; � � �ð Þ; ð7:92Þ

where k and k denote a wave number and wavelength in the dielectric medium,
respectively. Indexing k and k with m that represents a mode, we have

kmL ¼ mp or mkm ¼ 2L m ¼ 1; 2; � � �ð Þ: ð7:93Þ

This condition can be expressed by different manners such that

xm ¼ 2pmm ¼ 2pc0=km ¼ 2pc=nkm ¼ mpc=nL: ð7:94Þ

It is often the case that if the laser is a long and thin rod, rectangular paral-
lelepiped, etc., we see that sharply resolved and regularly spaced spectral lines are
observed in emission spectrum. These lines are referred to as longitudinal multi-
modes. The separation between two neighboring emission lines is referred to as the
free spectral range [2]. If adjacent emission lines are clearly resolved so that the
free spectral range can easily be recognized, we can derive useful information from
the laser oscillation spectra (vide infra).

Rewriting (7.94) as, e.g.,

xmn ¼ pc
L
m; ð7:95Þ
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and taking differential (or variation) of both sides, we get

ndxm þxmdn ¼ ndxm þxm
dn
dxm

dxm ¼ nþxm
dn
dxm

� �
dxm ¼ pc

L
dm: ð7:96Þ

Therefore, we get

dxm ¼ pc
L

nþxm
dn
dxm

� ��1

dm: ð7:97Þ

The Eq. (7.97) premises the wavelength dispersion of a refractive index of a
laser medium. Here, the wavelength dispersion means that the refractive index
varies as a function of wavelengths of light in a matter. The laser materials often
have a considerably large dispersion, and relevant information is indispensable.

From (7.97), we find that

ng � nþxm
dn
dxm

ð7:98Þ

plays a role of refractive index when the laser material has a wavelength dispersion.
The quantity ng is said to be a group refractive index (or group index). Thus, (7.97)
is rewritten as

dx ¼ pc
Lng

dm; ð7:99Þ

where we omitted the index m of xm. Rewriting (7.98) as a relation of continuous
quantities and using differentiation instead of variation, we have [2]

ng ¼ nþx
dn
dx

or ng ¼ n� k
dn
dk

: ð7:100Þ

To derive the second equation of (7.100), we used following relations: Namely,
taking a variation of kx ¼ 2pc, we have

xdkþ kdx ¼ 0 or
x
dx

¼ � k
dk

:

Several formulae or relation equations were proposed to describe the wavelength
dispersion. One of famous and useful formula among them is Sellmeier’s dispersion
formula [5]. As an example, the Sellmeier’s dispersion formula can be described as

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B

1� C
k

� �2
s

; ð7:101Þ
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where A, B, and C are appropriate constants with A and B being dimensionless and
C having a dimension [m]. In an actual case, it would be difficult to determine
n analytically. However, if we are able to obtain well-resolved spectra, dm can be
put as 1 and dxm can be determined from the free spectral range. Expressing it as
dxFSR from (7.99) we have

dxFSR ¼ pc
Lng

or ng ¼ pc
LðdxFSRÞ : ð7:102Þ

Thus, one can determine ng as a function of wavelengths.
As an tangible example, Fig. 7.6 [6] displays a broadband emission spectra of a

crystal consisting of an organic semiconductor AC’7. As another example, Fig. 7.7
[6] displays a laser oscillation spectrum of an AC’7 crystal. The structural formula
of AC’7 is shown in Fig. 7.8 together with other related organic semiconductors.
Once we choose an empirical formula of the wavelength dispersion [e.g., (7.101)],
we can determine constants of that empirical formula by comparing it with
experimentally decided data. For such data, laser oscillation spectra (Fig. 7.7) were
used in addition to the broadband emission spectra. It is because the laser oscillation
spectra are essentially identical to Fig. 7.6 in a sense that both the broadband and
laser emission lines gave the same free spectral range. Inserting (7.101) into (7.100)
and expressing ng as a function of k, Yamao et al. got a following expression [6]:

ng ¼
A 1� C

k

� �2h i2
þBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C
k

� �2h i3r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A 1� C

k

� �2h i
þB

r : ð7:103Þ

Determining optimum constants A, B, and C, a set of these constants yields a
reliable dispersion formula in (7.101). Numerical calculations can be utilized
effectively. The procedures are as follows: (i) Tentatively choosing probable
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Fig. 7.6 Broadband emission spectra of an organic semiconductor crystal AC’7. a Full spectrum.
b Enlarged profile of the spectrum around 530 nm. Reproduced from Yamao et al. [6], with the
permission of AIP Publishing. http://doi.org/10.1063/1.3634117
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numbers for A, B, and C for (7.103), ng can be expressed as a function of k. (ii) The
resulting fitting curve is then compared with ng data experimentally decided from
(7.102). After this procedure, one can choose another set of A, B, and C and again
compare the fitting curve with the experimental data. (iii) This procedure can be
repeated many times through iterative numerical computations of (7.103) using
different sets of A, B, and C.

Thus, we should be able to adjust and determine better and better combination of
A, B, and C so that the refined function (7.103) can reproduce the experimental
results as precise as one pleases. At the same time, we can determine the most
reliable combination of A, B, and C with the dispersion formula of (7.101).
Figure 7.9 [6] shows several examples of the wavelength dispersion for organic
semiconductor crystals. Optimized constants A, B, and C of (7.101) are listed in
Table 7.1 [6].

The formulae (7.101) and (7.103) along with associated procedures to determine
the constants A, B, and C are expected to apply to various laser and light-emitting
materials consisting of semiconducting inorganic and organic materials.

522 524 526 528

0

1

2

3

4

Wavelength  (nm)

In
te

ns
ity

  (
10

3  c
ou

nt
s)

Fig. 7.7 Laser oscillation
spectrum of an organic
semiconductor crystal AC’7.
Reproduced from Yamao
et al. [6], with the permission
of AIP Publishing. http://doi.
org/10.1063/1.3634117

Fig. 7.8 Structural formulae
of several organic
semiconductors BP1T, AC5,
and AC’7
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7.6 Mechanical System

As outlined above, two-level atoms have distinct characteristics in connection with
lasers. Electromagnetic waves similarly confined within a one-dimensional cavity
exhibit related properties and above all have many features in common with a
harmonic oscillator [7].

We have already described several features and properties of the harmonic
oscillator (Chap. 2). Meanwhile, we have briefly discussed formation of electro-
magnetic stationary waves (Chap. 6). There are several resemblance and corre-
spondence between the harmonic oscillator and electromagnetic stationary waves
when we view them as mechanical systems. The point is that in a harmonic
oscillator the position and momentum are in-quadrature relationship; i.e., their
phase difference is p=2. For the electromagnetic stationary waves, electric field and
magnetic field are in-quadrature relationship as well.
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Fig. 7.9 Examples of the
wavelength dispersion of
a group indices and
b refractive indices for several
organic semiconductor
crystals. Reproduced from
Yamao et al. [6], with the
permission of AIP Publishing.
http://doi.org/10.1063/1.
3634117

Table 7.1 Optimized
constants of A, B, and C for
Sellmeier’s dispersion
formula (7.101) with several
organic semiconductor
crystals

Material A B C (nm)

BP1T 5.7 1.04 397

AC5 3.9 1.44 402

AC’7 6.0 1.06 452

Reproduced from Yamao et al. [6] with the permission of AIP
Publishing. http://doi.org/10.1063/1.3634117
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In Chap. 6, we examine the conditions under which stationary waves are
formed. In a dielectric medium both sides of which are equipped with metal layers
(or mirrors), the electric field is described as

E ¼ 2E1ee sin xt sin kz: ð6:201Þ

In (6.201), we assumed that forward and backward electromagnetic waves are
propagating in the direction of the z-axis. Here, we assume that the interfaces (or
walls) are positioned at z ¼ 0 and z ¼ L. Within a domain ½0; L�, the two waves
form a stationary wave. Since this expression assumed two waves, the electro-
magnetic energy was doubled. To normalize the energy so that a single wave is
contained, the amplitude E1 of (6.201) should be divided by

ffiffiffi
2

p
. Therefore, we

think of a following description for E:

E ¼
ffiffiffi
2

p
Ee1 sinxt sin kz or Ex ¼

ffiffiffi
2

p
E sinxt sin kz; ð7:104Þ

where we designated the polarization vector as a direction of the x-axis. At the same
time, we omitted the index from the amplitude. Thus, from the second equation of
(5.65) we have

@Hy

@t
¼ � 1

l
@Ex

@z
¼ �

ffiffiffi
2

p
Ek
l

sin xt cos kz: ð7:105Þ

Note that this equation appears in the second equation of (6.131) as well.
Integrating both sides of (7.105), we get

Hy ¼
ffiffiffi
2

p
Ek

lx
cosxt cos kz:

Using a relation x ¼ vk, we have

Hy ¼
ffiffiffi
2

p
E

lv
cosxt cos kzþC;

where v is a light velocity in the dielectric medium and C is an integration constant.
Removing C and putting

H � E
lv

; ð7:106Þ

we have

Hy ¼
ffiffiffi
2

p
H cosxt cos kz: ð7:107Þ
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Using a vector expression, we have

H ¼ e2
ffiffiffi
2

p
H cosxt cos kz:

Thus, E k e1ð Þ, H k e2ð Þ, and n k e3ð Þ form the right-handed system in this order.
As noted in Sects. 6.8 and 6.9, at the interface (or wall) the electric field and
magnetic field form nodes and antinodes, respectively. Namely, the two fields are
in-quadrature.

Let us calculate electromagnetic energy of the dielectric medium within a cavity.
In the present case, the cavity is meant as the dielectric sandwiched by a couple of
metal layer. We have

W ¼ We þWm; ð7:108Þ

where W is the total electromagnetic energy; We andWm are electric and magnetic
energies, respectively. Let the length of the cavity be L. Then the energy per unit
cross-sectional area is described as

We ¼ e
2

ZL
0

E2dz and Wm ¼ l
2

ZL
0

H2dz: ð7:109Þ

Performing integration, we get

We ¼ e
2
LE2 sin2 xt;

Wm ¼ l
2
LH2 cos2 xt ¼ l

2
L

E
lv

� �2

cos2 xt ¼ e
2
LE2 cos2 xt;

ð7:110Þ

where we used 1=v2 ¼ el with the last equality. Thus, we have

W ¼ e
2
LE2 ¼ l

2
LH2: ð7:111Þ

Representing an energy per unit volume as fWe , gWm, and eW , we have

fWe ¼ e
2
E2 sin2 xt; gWm ¼ e

2
E2 cos2 xt; eW ¼ e

2
E2 ¼ l

2
H2: ð7:112Þ

In Chap. 2, we treated motion of a harmonic oscillator. There, we had

x ðtÞ ¼ v0
x
sinxt ¼ x0 sinxt: ð2:7Þ
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Here, we have defined an amplitude of the harmonic oscillation as x0 ð[ 0Þ

x0 � v0
x
:

Then, momentum is described as

pðtÞ ¼ m _xðtÞ ¼ mxx0 cosxt:

Defining

p0 � mxx0;

we have

pðtÞ ¼ p0 cosxt:

Let a kinetic energy and potential energy of the oscillator be K and V , respec-
tively. Then, we have

K ¼ 1
2m

pðtÞ2 ¼ 1
2m

p20 cos
2 xt xðtÞ;

V ¼ 1
2
mx2xðtÞ2 ¼ 1

2
mx2x20 sin

2 xt xðtÞ;

W ¼ KþV ¼ 1
2m

p20 ¼
1
2
mv20 ¼

1
2
mx2x20:

ð7:113Þ

Comparing (7.112) and (7.113), we recognize the following relationship in
energy between the electromagnetic fields and harmonic oscillator motion [7]:ffiffiffiffi

m
p

xx0 $
ffiffi
e

p
E and p0=

ffiffiffiffi
m

p $ ffiffiffi
l

p
H: ð7:114Þ

Thus, there is an elegant contradistinction between the dynamics of electro-
magnetic fields in cavity and motion of a harmonic oscillator. In fact, quantum
electromagnetism is based upon the treatment of a quantum harmonic oscillator
introduced in Chap. 2.
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Chapter 8
Introductory Green’s Functions

In this chapter, we deal with various properties and characteristics of differential
equations, especially first-order linear differential equations (FOLDEs) and
second-order linear differential equations (SOLDEs). These differential equations
are characterized by differential operators and boundary conditions (BCs). Of these,
differential operators appearing in SOLDEs are particularly important. Under
appropriate conditions, the said operators can be converted to Hermitian operators.
The SOLDEs associated to classical orthogonal polynomials play a central role in
many fields of mathematical physics including quantum mechanics and electro-
magnetism. We study the general principle of SOLDEs in relation to several
specific SOLDEs we have studied in Part I and examine general features of an
eigenvalue problem and an initial value problem (IVP). In this context, Green’s
functions provide a powerful tool for solving SOLDEs. For a practical purpose, we
deal with actual construction of Green’s functions. In Sect. 6.9, we dealt with
steady-state characteristics of electromagnetic waves in dielectrics in terms of
propagation, reflection, and transmission. When we consider transient characteris-
tics of electromagnetic and optical phenomena, we often need to deal with SOLDEs
having constant coefficients. This is well known in connection with a motion of a
damped harmonic oscillator. In the latter part of this chapter, we treat the initial
value problem of a SOLDE of this type.

8.1 Second-Order Linear Differential Equations
(SOLDEs)

A general form of n-th-order linear differential equations has the following form:

an xð Þ d
nu
dxn

þ an�1 xð Þ d
n�1u
dxn�1 þ � � � þ a1 xð Þ du

dx
þ a0 xð Þu ¼ d xð Þ: ð8:1Þ
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If d xð Þ ¼ 0, the differential equation is said to be homogeneous; otherwise, it is
called inhomogeneous. Equation (8.1) is a linear function of u and its derivatives.
Likewise, we have a SOLDE such that

a xð Þ d
2u
dx2

þ b xð Þ du
dx

þ c xð Þu ¼ d xð Þ: ð8:2Þ

In (8.2), we assume that the variable x is real. The equation can be solved under
appropriate boundary conditions (BCs). A general form of BCs is described as

B1 uð Þ ¼ a1u að Þþ b1
du
dx

����
x¼a

þ c1u bð Þþ d1
du
dx

����
x¼b

¼ r1; ð8:3Þ

B2 uð Þ ¼ a2u að Þþ b2
du
dx

����
x¼a

þ c2u bð Þþ d2
du
dx

����
x¼b

¼ r2; ð8:4Þ

where a1, b1, c1, d1 r1, etc., are real constants; u xð Þ is defined in an interval [a, b],
where a and b can be infinity (i.e., �1). The LHS of B1 uð Þ and B2 uð Þ are referred
to as boundary functionals [1, 2]. If r1 ¼ r2 ¼ 0, the BCs are called homogeneous;
otherwise, the BCs are said to be inhomogeneous. In combination with the inho-
mogeneous equation expressed as (8.2), Table 8.1 summarizes characteristics of
SOLDEs. We have four types of SOLDEs according to homogeneity and inho-
mogeneity of equations and BCs.

Even though SOLDEs are mathematically tractable, yet it is not easy necessarily
to solve them depending upon the nature of a xð Þ, b xð Þ, and c xð Þ of (8.2). Nonetheless,
if those functions are constant coefficients, it can readily be solved. We will deal with
SOLDEs of that type in great deal later. Suppose that we find two linearly inde-
pendent solutions u1 xð Þ and u2 xð Þ of a following homogeneous equation:

a xð Þ d
2u
dx2

þ b xð Þ du
dx

þ c xð Þu ¼ 0: ð8:5Þ

Then, any solution u xð Þ of (8.5) can be expressed as their linear combination
such that

u xð Þ ¼ c1u1 xð Þþ c2u2 xð Þ; ð8:6Þ

where c1 and c2 are some arbitrary constants.

Table 8.1 Characteristics of SOLDEs

Type I Type II Type III Type IV

Equation Homogeneous Homogeneous Inhomogeneous Inhomogeneous

Boundary
conditions

Homogeneous Inhomogeneous Homogeneous Inhomogeneous
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In general, suppose that there are arbitrarily chosen n functions; i.e.,
f1 xð Þ; f2 xð Þ; � � � ; fn xð Þ. Suppose a following equation with those functions:

a1f1 xð Þþ a2f2 xð Þþ � � � þ anfn xð Þ ¼ 0; ð8:7Þ

where a1; a2; � � � ; and an are constants. If a1 ¼ a2 ¼ � � � ¼ an ¼ 0, (8.7) always
holds. In this case, (8.7) is said to be a trivial linear relation. If f1 xð Þ; f2 xð Þ; � � � ;
and fn xð Þ satisfy a non-trivial linear relation, f1 xð Þ; f2 xð Þ; � � � ; fn xð Þ are said to be
linearly dependent. That is, the non-trivial expression means that in (8.7) at least
one of a1; a2; � � � ; and an is nonzero. Suppose that an 6¼ 0. Then, from (8.7), fn xð Þ is
expressed as

fn xð Þ ¼ � a1
an

f1 xð Þ � a2
an

f2 xð Þ � � � � � an�1

an
fn�1 xð Þ: ð8:8Þ

If f1 xð Þ; f2 xð Þ; � � � ; fn xð Þ are not linearly dependent, they are called linearly
independent. In other words, the statement that f1 xð Þ; f2 xð Þ; � � � ; fn xð Þ are linearly
independent is equivalent to that (8.7) holds if and only if a1 ¼ a2 ¼ � � � ¼ an ¼ 0.
We will have relevant discussion in Part III.

Now suppose that with the above two linearly independent u1 xð Þ and u2 xð Þ we
have

a1u1 xð Þþ a2u2 xð Þ ¼ 0: ð8:9Þ

Differentiating (8.9), we have

a1
du1 xð Þ
dx

þ a2
du2 xð Þ
dx

¼ 0: ð8:10Þ

Expressing (8.9) and (8.10) in a matrix form, we get

u1 xð Þ u2 xð Þ
du1 xð Þ
dx

du2 xð Þ
dx

 !
a1
a2

� �
¼ 0: ð8:11Þ

Thus, that u1 xð Þ and u2 xð Þ are linearly independent is equivalent to that the
following expression holds:

u1 xð Þ u2 xð Þ
du1 xð Þ
dx

du2 xð Þ
dx

�����
����� � W u1; u2ð Þ 6¼ 0; ð8:12Þ

where W u1; u2ð Þ is called Wronskian of u1 xð Þ and u2 xð Þ. In fact, if W u1; u2ð Þ ¼ 0,
then we have

u1
du2
dx

� u2
du1
dx

¼ 0: ð8:13Þ
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This implies that there is a functional relationship between u1 and u2. In fact, if

we can express as u2 ¼ u2 u1 xð Þð Þ, then du2
dx ¼ du2

du1
du1
dx . That is,

u1
du2
dx

¼ u1
du2
du1

du1
dx

¼ u2
du1
dx

or u1
du2
du1

¼ u2 or
du2
u2

¼ du1
u1

; ð8:14Þ

where the second equality of the first equation comes from (8.13). The third
equation can easily be integrated to yield

ln
u2
u1

¼ c or
u2
u1

¼ ec or u2 ¼ ecu1: ð8:15Þ

Equation (8.15) shows that u1 xð Þ and u2 xð Þ are linearly dependent. It is easy to
show if u1 xð Þ and u2 xð Þ are linearly dependent, W u1; u2ð Þ ¼ 0. Thus, we have a
following statement:

Two functions are linearly dependent. , W u1; u2ð Þ ¼ 0.
Then, as the contraposition of this statement, we have
Two functions are linearly independent. , W u1; u2ð Þ 6¼ 0.
On the other hand, suppose that we have another solution u3 xð Þ for (8.5) besides

u1 xð Þ and u2 xð Þ. Then, we have

a xð Þ d
2u1
dx2

þ b xð Þ du1
dx

þ c xð Þu1 ¼ 0;

a xð Þ d
2u2
dx2

þ b xð Þ du2
dx

þ c xð Þu2 ¼ 0;

a xð Þ d
2u3
dx2

þ b xð Þ du3
dx

þ c xð Þu3 ¼ 0:

ð8:16Þ

Again rewriting (8.16) in a matrix form, we have

d2
u1

dx2
du1
dx u1

d2
u2

dx2
d2

u3
dx2

du2
dx u2
du3
dx u3

0BBB@
1CCCA

a

b

c

0BBB@
1CCCA ¼ 0: ð8:17Þ

A necessary and sufficient condition to obtain a non-trivial solution (i.e., a
solution besides a = b = c = 0) is that [1]

d2
u1

dx2
du1
dx u1

d2
u2

dx2
d2

u3
dx2

du2
dx u2
du3
dx u3

���������

��������� ¼ 0: ð8:18Þ
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Note here that

d2
u1

dx2
du1
dx u1

d2
u2

dx2
d2

u3
dx2

du2
dx u2
du3
dx u3

���������

��������� ¼ �
u1 u2 u3
du1
dx

du2
dx

du3
dx

d2
u1

dx2
d2

u2
dx2

d2
u3

dx2

�������
������� � �W u1; u2; u3ð Þ; ð8:19Þ

where W u1; u2; u3ð Þ is Wronskian of u1 xð Þ; u2 xð Þ; and u3 xð Þ. In the above relation,
we used the fact that a determinant of a matrix is identical to that of its transposed
matrix and that a determinant of a matrix changes the sign after permutation of row
vectors. To be short, a necessary and sufficient condition to get a non-trivial
solution is that W u1; u2; u3ð Þ vanishes.

This implies that u1 xð Þ; u2 xð Þ; and u3 xð Þ are linearly dependent. However, we
have assumed that u1 xð Þ and u2 xð Þ are linearly independent, and so (8.18) and
(8.19) mean that u3 xð Þ must be described as a linear combination of u1 xð Þ and
u2 xð Þ. That is, we have no third linearly independent solution. Consequently, the
general solution of (8.5) must be given by (8.6). In this sense, u1 xð Þ and u2 xð Þ are
said to be a fundamental set of solutions of (8.5).

Next, let us consider the inhomogeneous equation of (8.2). Suppose that up xð Þ is
a particular solution of (8.2). Let us think of a following function v xð Þ such that:

u xð Þ ¼ v xð Þþ up xð Þ: ð8:20Þ

Substituting (8.20) for (8.2), we have

a xð Þ d
2v

dx2
þ b xð Þ dv

dx
þ c xð Þvþ a xð Þ d

2up
dx2

þ b xð Þ dup
dx

þ c xð Þup ¼ d xð Þ: ð8:21Þ

Therefore, we have

a xð Þ d
2v

dx2
þ b xð Þ dv

dx
þ c xð Þv ¼ 0:

But, v xð Þ can be described by a linear combination of u1 xð Þ and u2 xð Þ as in the
case of (8.6). Hence, the general solution of (8.2) should be expressed as

u xð Þ ¼ c1u1 xð Þþ c2u2 xð Þþ up xð Þ; ð8:22Þ

where c1 and c2 are arbitrary (complex) constants.
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8.2 First-Order Linear Differential Equations (FOLDEs)

In a discussion that follows, first-order linear differential equations (FOLDEs)
supply us with useful information. A general form of FOLDEs is expressed as

a xð Þ du
dx

þ b xð Þu ¼ d xð Þ a xð Þ 6¼ 0½ �: ð8:23Þ

An associated boundary condition is given by a boundary functional B uð Þ such
that

B uð Þ ¼ au að Þþ bu bð Þ ¼ r; ð8:24Þ

where a, b, and r are real constants; u xð Þ is defined in an interval a; b½ �. If in (8.23)
d xð Þ � 0, (8.23) can readily be integrated to yield a solution. Let us multiply both
sides of (8.23) by w xð Þ. Then, we have

w xð Þa xð Þ du
dx

þw xð Þb xð Þu ¼ w xð Þd xð Þ: ð8:25Þ

We define p xð Þ as
p xð Þ � w xð Þa xð Þ; ð8:26Þ

where w xð Þ is called a weight function. As mentioned in Sect. 2.3, the weight
function is a real and nonnegative function within the domain considered. Here we
suppose that

dp xð Þ
dx

¼ w xð Þb xð Þ: ð8:27Þ

Then, (8.25) can be rewritten as

d
dx

p xð Þu½ � ¼ w xð Þd xð Þ: ð8:28Þ

Thus, we can immediately integrate (8.28) to obtain a solution

u ¼ 1
p xð Þ

Z x

w x0ð Þd x0ð Þdx0 þC

� �
; ð8:29Þ

where C is an arbitrary integration constant.
To seek w xð Þ, from (8.26) and (8.27) we have

p0 ¼ ðwaÞ0 ¼ wb ¼ wa
b
a

� �
: ð8:30Þ
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This can easily be integrated for wa to be expressed as

wa ¼ C0 exp
Z

b
a
dx

� �
or w ¼ C0

a
exp

Z
b
a
dx

� �
; ð8:31Þ

where C0 is an arbitrary integration constant. The quantity C0
a must be nonnegative

so that w can be nonnegative.

Example 8.1 Let us think of a following FOLDE within an interval a; b½ �; i.e.,
a� x� b.

du
dx

þ xu ¼ x: ð8:32Þ

A boundary condition is set such that

u að Þ ¼ r: ð8:33Þ
Notice that (8.33) is obtained by setting a ¼ 1 and b ¼ 0 in (8.24). Following

the above argument, we obtain a solution described as

u ¼ 1
p xð Þ

Zx
a

w x0ð Þd x0ð Þdx0 þ u að Þp að Þ
24 35: ð8:34Þ

Also, we have

p xð Þ ¼ w xð Þ ¼ expð
Zx
a

x0dx0Þ ¼ exp
1
2

x2 � a2
� �� �

: ð8:35Þ

The integration of RHS can be performed as follows:

Zx
a

w x0ð Þd x0ð Þdx0 ¼
Zx
a

x0 exp
1
2
ðx02 � a2Þ

� �
dx0 ¼ exp � a2

2

� � Zx2=2
a2=2

exp tdt

¼ exp � a2

2

� �
exp

x2

2

� �
� exp

a2

2

� �� �
¼ exp � a2

2

� �
exp

x2

2

� �
� 1 ¼ p xð Þ � 1;

ð8:36Þ

where with the second equality we used an integration by substitution of 1
2 x

02 ! t.
Considering (8.33) and putting p að Þ ¼ 1, (8.34) is rewritten as

u ¼ 1
p xð Þ p xð Þ � 1þ r½ � ¼ 1þ r� 1

p xð Þ

¼ 1þ r� 1ð Þ exp a2 � x2

2

� �
:

ð8:37Þ

where with the last equality we used (8.35).
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Notice that when r ¼ 1, u xð Þ � 1. This is because u xð Þ � 1 is certainly a
solution of (8.32) and satisfies the BC of (8.33). Uniqueness of a solution imposes
this strict condition upon (8.37).

In the next two examples, we make general discussions.

Example 8.2 Let us consider a following differential operator:

Lx ¼ d
dx

: ð8:38Þ

We think of a following identity using an integration by parts:

Zb
a

dxu� d
dx

w

� �
þ
Zb
a

dx
d
dx

u�
� �

w ¼ ½u�w�ba: ð8:39Þ

Rewriting this, we get

Zb
a

dxu� d
dx

w

� �
�
Zb
a

dx � d
dx

u

� ��
w ¼ u�w½ �ba: ð8:40Þ

Looking at (8.40), we notice that LHS comprises a difference between two
integrals, while RHS referred to as a boundary term (or surface term) does not
contain an integral.

Recalling the expression (1.128) and defining

fLx � � d
dx

in (8.40), we have

ujLxwh i � fLxujwD E
¼ ½u�w�ba: ð8:41Þ

Here, RHS of (8.41) needs to vanish so that we can have

ujLxwh i ¼ fLxujwD E
: ð8:42Þ

Meanwhile, adopting the expression (1.112) with respect to an adjoint operator,
we have a following expression such that

ujLxwh i ¼ Lyxujw
D E

: ð8:43Þ
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Comparing (8.42) and (8.43) and considering that u and w are arbitrary func-

tions, we have fLx ¼ Lyx . Thus, as an operator adjoint to Lx, we get

Lyx ¼fLx ¼ � d
dx

¼ �Lx:

Notice that only if the surface term vanishes, the adjoint operator Lyx can
appropriately be defined. We will encounter a similar expression again in Part III.

We add that if with an operator A, we have a relation described by

Ay ¼ �A; ð8:44Þ

the operator A is said to be anti-Hermitian. We have already encountered such an
operator in Sect. 1.5.

Let us then examine on what condition the surface term vanishes. The RHS of
(8.40) and (8.41) is given by

u� bð Þw bð Þ � u� að Þw að Þ:

For this term to vanish, we should have

u� bð Þw bð Þ ¼ u� að Þw að Þ or
u� bð Þ
u� að Þ ¼

w að Þ
w bð Þ :

If w bð Þ ¼ 2w að Þ, then we should have u bð Þ ¼ 1
2u að Þ for the surface term to

vanish. Recalling (8.24), the above conditions are expressed as

B wð Þ ¼ 2w að Þ � w bð Þ ¼ 0; ð8:45Þ

B0 uð Þ ¼ 1
2
u að Þ � u bð Þ ¼ 0: ð8:46Þ

The boundary functional B0 uð Þ is said to be adjoint to B wð Þ. The two boundary
functionals are admittedly different. If, however, we set w bð Þ ¼ w að Þ, then we
should have u bð Þ ¼ u að Þ for the surface term to vanish. That is,

B wð Þ ¼ w að Þ � w bð Þ ¼ 0; ð8:47Þ

B0 uð Þ ¼ u að Þ � u bð Þ ¼ 0: ð8:48Þ

Thus, the two functionals are identical and w and u satisfy homogeneous BCs
with respect to these functionals.

As discussed above, a FOLDE is characterized by its differential operator as well
as a BC (or boundary functional). This is similarly the case with SOLDEs as well.
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Example 8.3 Next, let us consider a following differential operator:

Lx ¼ 1
i
d
dx

: ð8:49Þ

As in the case of Example 8.2, we have

Zb
a

dxu� 1
i
d
dx

w

� �
�
Zb
a

dx
1
i
d
dx

u

� ��
w ¼ 1

i
u�w½ �ba: ð8:50Þ

Also rewriting (8.50) using an inner product notation, we get

ujLxwh i � Lxujwh i ¼ 1
i
½u�w�ba; ð8:51Þ

Apart from the factor 1
i , RHS of (8.51) is again given by

u� bð Þw bð Þ � u� að Þw að Þ:

Repeating a discussion similar to Example 8.2, when the surface term vanishes,
we get

ujLxwh i ¼ Lxujwh i: ð8:52Þ

Comparing (8.43) and (8.52), we have

Lxujwh i ¼ Lyxujw
D E

: ð8:53Þ

Again considering that u and w are arbitrary functions, we get

Lyx ¼ Lx: ð8:54Þ

As in (8.54), if the differential operator is identical to its adjoint operator, such an
operator is called self-adjoint. On the basis of (1.119), Lx would apparently be
Hermitian. However, we have to be careful to assure that Lx is Hermitian. For a
differential operator to be Hermitian, (i) the said operator must be self-adjoint.
(ii) The two boundary functionals adjoint to each other must be identical. In other
words, w and u must satisfy the same homogeneous BCs with respect to these
functionals. In this example, we must have the same boundary functionals as those
described by (8.47) and (8.48). If and only if the conditions (i) and (ii) are satisfied,
the operator is said to be Hermitian. It seems somewhat a formal expression.
Nonetheless, satisfaction of these conditions is also the case with second-order
differential operators so that these operators can be Hermitian. In fact, SOLDEs we
studied in Part I are essentially dealt with within the framework of the aforemen-
tioned formalism.
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8.3 Second-Order Differential Operators

The second-order differential operators are the most common operators and fre-
quently treated in mathematical physics. The general differential operators are
described as

Lx ¼ a xð Þ d2

dx2
þ b xð Þ d

dx
þ c xð Þ; ð8:55Þ

where a xð Þ, b xð Þ, and c xð Þ can in general be complex functions of a real variable x.
Let us think of following identities [1]:

v�a
d2u
dx2

� u
d2 av�ð Þ
dx2

¼ d
dx

av�
du
dx

� u
d av�ð Þ
dx

� �
;

v�b
du
dx

þ u
d bv�ð Þ
dx

¼ d
dx

buv�½ �;

v�cu� ucv� ¼ 0: ð8:56Þ

Summing both sides of (8.56), we have an identity

v� a
d2u
dx2

þ b
du
dx

þ cu

	 

� u

d2 av�ð Þ
dx2

� d bv�ð Þ
dx

þ cv�
	 


¼ d
dx

av�
du
dx

� u
d av�ð Þ
dx

� �
þ d

dx
buv�½ �:

ð8:57Þ

Hence, following the expressions of Sect. 8.2, we define Lyx such that

½Lyx v�� �
d2 av�ð Þ
dx2

� d bv�ð Þ
dx

þ cv�: ð8:58Þ

Taking a complex conjugate of both sides, we get

Lyx v ¼
d2 a�vð Þ
dx2

� d b�vð Þ
dx

þ c�v: ð8:59Þ

Considering the differential of a product function, we have as Lyx

Lyx ¼ a�
d2

dx2
þ 2

da�

dx
� b�

� �
d
dx

þ d2a�

dx2
� db�

dx
þ c�: ð8:60Þ
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Replacing (8.57) with (8.55) and (8.59), we have

v� Lxuð Þ � ½Lyx v��u ¼ d
dx

av�
du
dx

� u
d av�ð Þ
dx

þ buv�
� �

: ð8:61Þ

Assuming that the relevant SOLDE is defined in r; s½ � and integrating (8.61)
within that interval, we get

Zs
r

dx v� Lxuð Þ � ½Lyx v��u
h i

¼ av�
du
dx

� u
d av�ð Þ
dx

þ buv�
� �s

r
ð8:62Þ

Using the definition of an inner product described in (1.128) and rewriting
(8.62), we have

vjLxuh i � Lyx vju
D E

¼ av�
du
dx

� u
d av�ð Þ
dx

þ buv�
� �s

r
:

Here if RHS of the above (i.e., the surface term of the above expression) van-
ishes, we get

vjLxuh i ¼ Lyx vju
D E

:

We find that this notation is consistent with (1.112).
Bearing in mind this situation, let us seek a condition under which the differ-

ential operator Lx is Hermitian. Suppose here that a xð Þ, b xð Þ, and c xð Þ are all real
and that

da xð Þ
dx

¼ b xð Þ:

Then, instead of (8.60), we have

Lyx ¼ a xð Þ d2

dx2
þ b xð Þ d

dx
þ c xð Þ ¼ Lx: ð8:63Þ

Thus, we are successful in constituting a self-adjoint operator Lx. In that case,
(8.62) can be rewritten as

Zs
r

dx v� Lxuð Þ � Lxvð Þ�u½ � ¼ a v�
du
dx

� u
dv�

dx

� �� �s
r
: ð8:64Þ
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Notice that b xð Þ is eliminated from (8.64). If RHS of (8.64) vanishes, we get

vjLxuh i ¼ Lxvjuh i:

This notation is consistent with (1.119) and the Hermiticity of Lx becomes well
defined.

If we do not have the condition of da xð Þ
dx ¼ b xð Þ, how can we deal with the

problem? The answer is that following the procedures in Sect. 8.2, we can convert
Lx to a self-adjoint operator by multiplying Lx by a weight function w xð Þ introduced
in (8.26), (8.27), and (8.31). Replacing a xð Þ, b xð Þ, and c xð Þ with w xð Þa xð Þ,
w xð Þb xð Þ, and w xð Þc xð Þ, respectively, in the identity (8.57), we rewrite (8.57) as

v� aw
d2u
dx2

þ bw
du
dx

þ cwu

	 

� u

d2 awv�ð Þ
dx2

� d bwv�ð Þ
dx

þ cwv�
	 


¼ d
dx

awv�
du
dx

� u
d awv�ð Þ

dx

� �
þ d

dx
bwuv�½ �:

ð8:65Þ

Let us calculate � � �f g of the second term for LHS of (8.65). Using (8.26) and
(8.27), we have

d2 awv�ð Þ
dx2

� d bwv�ð Þ
dx

þ cwv� ¼ ½ðawÞ0v� þ awv�
0 �0 � ½ bwÞ0v� þ bwv�

0
� i

þ cwv�

¼ bwv� þ awv�
0 �0�

h h
bwÞ0v� þ bwv�

0
� i

þ cwv�

¼ ðbwÞ0v� þ bwv�
0 þ ðawÞ0v�0 þ awv�

00 � ðbwÞ0v� � bwv�
0 þ cwv�

¼ ðawÞ0v�0 þ awv�
00 þ cwv� ¼ bwv�

0 þ awv�
00 þ cwv�

¼ w av�
00 þ bv�

0 þ cv�
� �

¼ w a�v�
00 þ b�v�

0 þ c�v�
� �

¼ wðav00 þ bv0 þ cvÞ�:
ð8:66Þ

The second last equality of (8.66) is based on the assumption that a xð Þ, b xð Þ, and
c xð Þ are real functions. Meanwhile, for RHS of (8.65), we have

d
dx

awv�
du
dx

� u
d awv�ð Þ

dx

� �
þ d

dx
bwuv�½ �

¼ d
dx

awv�
du
dx

� uðawÞ0v� � uaw
dv�

dx

� �
þ d

dx
bwuv�½ �

¼ d
dx

awv�
du
dx

� ubwv� � uaw
dv�

dx

� �
þ d

dx
bwuv�½ �

¼ d
dx

aw v�
du
dx

� u
dv�

dx

� �� �
¼ d

dx
p v�

du
dx

� u
dv�

dx

� �� �
:

ð8:67Þ
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With the last equality of (8.67), we used (8.26). Using (8.66) and (8.67), we
rewrite (8.65) once again as

v�w a
d2u
dx2

þ b
du
dx

þ cu

� �
� uw a

d2v
dx2

þ b
dv
dx

þ cv

� ��
¼ d

dx
p v�

du
dx

� u
dv�

dx

� �� �
:

ð8:68Þ

Then, integrating (8.68) from r to s, we finally get

Zs
r

dxw xð Þfv� Lxuð Þ � ½Lxv��ug ¼ pðv� du
dx

� u
dv�

dx
Þ

� �s
r
: ð8:69Þ

The relations (8.69) along with (8.62) are called the generalized Green’s identity.
We emphasize that as far as the coefficients a xð Þ, b xð Þ, and c xð Þ in (8.55) are real

functions, the associated differential operator Lx can be converted to a self-adjoint
form following the procedures of (8.66) and (8.67).

In the above, LHS of the original homogeneous differential equation (8.5) is
rewritten as

a xð Þw xð Þ d
2u
dx2

þ b xð Þw xð Þ du
dx

þ c xð Þw xð Þu ¼ d
dx

p xð Þ du
dx

� �
þ cw xð Þu;

Rewriting this, we have

Lxu ¼ 1
w xð Þ

d
dx

p xð Þ du
dx

� �
þ cu ½w xð Þ[ 0�; ð8:70Þ

where we have

p xð Þ ¼ a xð Þw xð Þ and dp xð Þ
dx

¼ b xð Þw xð Þ: ð8:71Þ

When the differential operator Lx is defined as (8.70), Lx is said to be self-adjoint
with respect to a weight function of w xð Þ.

Now we examine boundary functionals. The homogeneous adjoint boundary
functionals are described as follows:

By1 uð Þ ¼ a1v
� að Þþ b1

dv�

dx

����
x¼a

þ c1v
� bð Þþ d1

dv�

dx

����
x¼b

¼ 0; ð8:72Þ

By2 uð Þ ¼ a2v� að Þþ b2
dv�

dx

����
x¼a

þ c2v
� bð Þþ d2

dv�

dx

����
x¼b

¼ 0: ð8:73Þ
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In (8.3), putting a1 ¼ 1 and b1 ¼ c1 ¼ d1 ¼ 0, we have

B1 uð Þ ¼ u að Þ ¼ r1: ð8:74Þ

Also putting c2 ¼ 1 and a2 ¼ b2 ¼ d2 ¼ 0, we have

B2 uð Þ ¼ u bð Þ ¼ r2: ð8:75Þ

Further putting

r1 ¼ r2 ¼ 0; ð8:76Þ

we also get homogeneous BCs of

B1 uð Þ ¼ B2 uð Þ ¼ 0; i.e. u að Þ ¼ u bð Þ ¼ 0: ð8:77Þ

For RHS of (8.69) to vanish, it suffices to define By1 uð Þ and By2 uð Þ such that

By1 uð Þ ¼ v� að Þ and By2 uð Þ ¼ v� bð Þ: ð8:78Þ

Then, homogeneous adjoint BCs read as

v� að Þ ¼ v� bð Þ ¼ 0 i:e: v að Þ ¼ v bð Þ ¼ 0: ð8:79Þ

In this manner, we can readily construct the homogeneous adjoint BCs the same
as those of (8.77) so that Lx can be Hermitian.

We list several prescriptions of typical BCs below.

(i) u að Þ ¼ u bð Þ ¼ 0 (Dirichlet conditions),

(ii) du
dx

���
x¼a

¼ du
dx

���
x¼b

¼ 0 (Neumann conditions),

(iii) u að Þ ¼ u bð Þ and du
dx

����
x¼a

¼ du
dx

����
x¼b

ðperiodicconditionsÞ: ð8:80Þ

Yet, care should be taken when handling RHS of (8.69); i.e., the surface terms. It
is because conditions (i) to (iii) are not necessary but sufficient conditions for the
surface terms to vanish. Such conditions are not limited to them. Meanwhile, we
often have to deal with the nonvanishing surface terms. In that case, we have to start
with (8.62) instead of (8.69).

In Sect. 8.2, we mentioned the definition of Hermiticity of the differential
operator in such a way that the said operator is self-adjoint and that homogeneous
BCs and homogeneous adjoint BCs are the same. In light of the above argument,
however, we may relax the conditions for a differential operator to be Hermitian.
This is particularly the case when p xð Þ ¼ a xð Þw xð Þ in (8.69) vanishes at both the
endpoints. We will encounter such a situation in Sect. 8.7.
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8.4 Green’s Functions

Having aforementioned discussions, let us proceed with studies of Green’s func-
tions for SOLDEs. Though minimum, we have to mention a bit of formalism.

Given Lx defined by (8.55), let us assume

Lxu xð Þ ¼ d xð Þ ð8:81Þ

under homogeneous BCs with an inhomogeneous term d xð Þ being an arbitrary
function. We also assume that (8.81) is well defined in a domain r; s½ �. The numbers
r and s can be infinity. Suppose simultaneously that we have

Lyx v xð Þ ¼ h xð Þ ð8:82Þ

under homogeneous adjoint BCs [1, 2] with an inhomogeneous term h xð Þ being an
arbitrary function as well.

Let us describe the above relations as

Ljui ¼ jdi and Lyjvi ¼ jhi: ð8:83Þ

Suppose that there is an inverse operator L�1 � G such that

GL ¼ LG ¼ E; ð8:84Þ

where E is an identity operator. Operating G on (8.83), we have

GLjui ¼ Ejui ¼ jui ¼ Gjdi: ð8:85Þ

This implies that (8.81) has been solved and the solution is given by Gjdi. Since
an inverse operation to differentiation is integration, G is expected to be an integral
operator.

We have

hxjLGjyi ¼ LxhxjGjyi ¼ LxG x; yð Þ: ð8:86Þ

Meanwhile, using (8.84), we get

hxjLGjyi ¼ hxjEjyi ¼ hxjyi: ð8:87Þ

Using a weight function w xð Þ, we generalize an inner product of (1.128) such
that

hgjf i �
Zs
r

w xð Þg xð Þ�f xð Þdx: ð8:88Þ
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As we expand an arbitrary vector using basis vectors, we “expand” an arbitrary
function jf i using basis vectors jxi. Here, we are treating real numbers as if they
formed continuous innumerable basis vectors on a real number line (see Fig. 8.1).
Thus, we could expand jf i in terms of jxi such that

jf i ¼
Zs
r

dxw xð Þf xð Þjxi: ð8:89Þ

In (8.89), we considered f xð Þ as if it were an expansion coefficient. The fol-
lowing notation would be reasonable accordingly:

f xð Þ � hxjf i: ð8:90Þ

In (8.90), f xð Þ can be viewed as coordinate representation of jf i. Thus, from
(8.89), we get

hx0jf i ¼ f x0ð Þ ¼
Zs
r

dxw xð Þf xð Þhx0jxi: ð8:91Þ

Alternatively, we have

f x0ð Þ ¼
Zs
r

dxf xð Þd x� x0ð Þ: ð8:92Þ

This comes from a property of the d function [1] described as

Zs
r

dxf xð Þd xð Þ ¼ f 0ð Þ: ð8:93Þ

Fig. 8.1 Function jf i and its
coordinate representation f xð Þ
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Comparing (8.91) and (8.92), we have

w xð Þhx0jxi ¼ d x� x0ð Þ or hx0jxi ¼ d x� x0ð Þ
w xð Þ ¼ d x0 � xð Þ

w xð Þ : ð8:94Þ

Thus comparing (8.86) and (8.87) and using (8.94), we get

LxG x; yð Þ ¼ d x� yð Þ
w xð Þ : ð8:95Þ

In a similar manner, we also have

Lyx g x; yð Þ ¼ d x� yð Þ
w xð Þ : ð8:96Þ

To arrive at (8.96), we start the discussion assuming an operator ðLyx Þ�1 such that

ðLyx Þ�1 � g with gLy ¼ Lyg ¼ E.
The function G x; yð Þ is called a Green’s function and g x; yð Þ is said to be an

adjoint Green’s function. Handling of Green’s functions and adjoint Green’s
functions is based upon (8.95) and (8.96), respectively. As (8.81) is defined in a
domain r� x� s, (8.95) and (8.96) are defined in a domain r� x� s and r� y� s.
Notice that except for the point x ¼ y we have

LxG x; yð Þ ¼ 0 and Lyx g x; yð Þ ¼ 0: ð8:97Þ

That is, G x; yð Þ and g x; yð Þ satisfy the homogeneous equation with respect to the
variable x. Accordingly, we require G x; yð Þ and g x; yð Þ to satisfy the same homo-
geneous BCs with respect to the variable x as those imposed upon u xð Þ and v xð Þ of
(8.81) and (8.82), respectively [1].

The relation (8.88) can be obtained as follows: Operating hgj on (8.89), we have

hgjf i ¼
Zs
r

dxw xð Þf xð Þhgjxi ¼
Zs
r

w xð Þg xð Þ�f xð Þdx; ð8:98Þ

where for the last equality we used

hgjxi ¼ hxjgi� ¼ g xð Þ�: ð8:99Þ

For this, see (1.113) where A is replaced with an identity operator E with regard
to a complex conjugate of an inner product of two vectors. Also see (11.2) of
Sect. 11.1.

If in (8.69) the surface term (i.e., RHS) vanishes under appropriate conditions,
e.g., (8.80), we have
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Zs
r

dxw xð Þfv� Lxuð Þ � ½Lyx v��ug ¼ 0; ð8:100Þ

which is called Green’s identity. Since (8.100) is derived from identities (8.56),
(8.100) is an identity as well (as a terminology of Green’s identity shows).
Therefore, (8.100) must hold with any functions u and v so far as they satisfy
homogeneous BCs. Thus, replacing v in (8.100) with g x; yð Þ and using (8.96)
together with (8.81), we have

Zs
r

dxw xð Þ g� x; yð Þ½Lxu xð Þ �� ½Lyx g x; yð Þ��u xð Þ
n o

¼
Zs
r

dxw xð Þ g� x; yð Þd xð Þ � d x� yð Þ
w xð Þ

� ��
u xð Þ

	 


¼
Zs
r

dxw xð Þg� x; yð Þd xð Þ � u yð Þ ¼ 0;

ð8:101Þ

where with the second last equality we used a property of the d functions. Also

notice that d x�yð Þ
w xð Þ is a real function. Rewriting (8.101), we get

u yð Þ ¼
Zs
r

dxw xð Þg� x; yð Þd xð Þ: ð8:102Þ

Similarly, replacing u in (8.100) with G x; yð Þ and using (8.95) together with
(8.82), we have

v yð Þ ¼
Zs
r

dxw xð ÞG� x; yð Þh xð Þ: ð8:103Þ

Replacing u and v in (8.100) with G x; qð Þ and g x; tð Þ, respectively, we have

Zs
r

dxw xð Þ g� x; tð Þ LxG x; qð Þ½ � � Lyx g x; tð Þ
h i�

G x; qð Þ
n o

¼ 0 ð8:104Þ

Notice that we have chosen q and t for the second argument y in (8.95) and
(8.96), respectively. Inserting (8.95) and (8.96) into the above equation after
changing arguments, we have
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Zs
r

dxw xð Þ g� x; tð Þ d x� qð Þ
w xð Þ � d x� tð Þ

w xð Þ
� ��

G x; qð Þ
	 


¼ 0: ð8:105Þ

Thus, we get

g� q; tð Þ ¼ G t; qð Þ or g q; tð Þ ¼ G� t; qð Þ: ð8:106Þ

This implies that G� t; qð Þ must satisfy the adjoint BCs with respect to the second
argument q. Inserting (8.106) into (8.102), we get

u yð Þ ¼
Zs
r

dxw xð ÞG y; xð Þd xð Þ: ð8:107Þ

Or exchanging the arguments x and y, we have

u xð Þ ¼
Zs
r

dxw yð ÞG x; yð Þd yð Þ: ð8:108Þ

Similarly, using (8.103) into (8.106), we get

v yð Þ ¼
Zs
r

dxw xð Þg y; xð Þh xð Þ: ð8:109Þ

Or, we have

v xð Þ ¼
Zs
r

dyw yð Þg x; yð Þh yð Þ: ð8:110Þ

Equations (8.107–8.110) clearly show that homogeneous equations [given by
putting d xð Þ ¼ h xð Þ ¼ 0� have a trivial solution u xð Þ � 0 and v xð Þ � 0 under ho-
mogeneous BCs. Note that it is always the case when we are able to construct a
Green’s function. This in turn implies that we can construct a Green’s function if
the differential operator is accompanied by initial conditions. Conversely, if the
homogeneous equation has a non-trivial solution under homogeneous BCs,
Eqs. (8.107–8.110) will not work.

If the differential operator L in (8.81) is Hermitian, according to the associated

remarks of Sect. 8.2, we must have Lx ¼ Lyx and u xð Þ and v xð Þ of (8.81) and (8.82)
must satisfy the same homogeneous BCs. Consequently, in the case of an Hermitian
operator, we should have
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G x; yð Þ ¼ g x; yð Þ: ð8:111Þ

From (8.106) and (8.111), if the operator is Hermitian, we get

G x; yð Þ ¼ G� y; xð Þ: ð8:112Þ

In Sect. 8.3, we assume that the coefficients a xð Þ, and b xð Þ, and c xð Þ are real to
assure that Lx is Hermitian [1]. On this condition, G x; yð Þ is real as well (vide infra).
Then, we have

G x; yð Þ ¼ G y; xð Þ: ð8:113Þ

That is, G x; yð Þ is real symmetric with respect to the arguments x and y.
To be able to apply Green’s functions to practical use, we will have to estimate a

behavior of the Green’s function near x ¼ y. This is because in light of (8.95) and
(8.96), there is a “jump” at x ¼ y.

When we deal with a case where a self-adjoint operator is relevant, using a
function p xð Þ of (8.69), we have

a xð Þ
p xð Þ

@

@x
p
@G
@x

� �
þ c xð ÞG ¼ d x� yð Þ

w xð Þ : ð8:114Þ

Multiplying both sides by p xð Þ
a xð Þ, we have

@

@x
p
@G
@x

� �
¼ p xð Þ

a xð Þ
d x� yð Þ
w xð Þ � p xð Þc xð Þ

a xð Þ G x; yð Þ: ð8:115Þ

Using a property of the d function expressed by

f xð Þd xð Þ ¼ f 0ð Þd xð Þ or f xð Þd x� yð Þ ¼ f yð Þd x� yð Þ ð8:116Þ

we have

@

@x
p
@G
@x

� �
¼ p yð Þ

a yð Þ
d x� yð Þ
w yð Þ � p xð Þc xð Þ

a xð Þ G x; yð Þ: ð8:117Þ

Integrating (8.117) with respect to x, we get

p
@G x; yð Þ

@x
¼ p yð Þ

a yð Þw yð Þ h x� yð Þ �
Zx
r

dt
p tð Þc tð Þ
a tð Þ G t; yð ÞþC; ð8:118Þ

where C is a constant. The function h x� yð Þ is defined by
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h xð Þ ¼ 1 ðx[ 0Þ
0 ðx\0Þ:

	
ð8:119Þ

Note that we have

dh xð Þ
dx

¼ d xð Þ: ð8:120Þ

In RHS of (8.118), the first term has a discontinuity at x ¼ y because of h x� yð Þ,
whereas the second term is continuous with respect to y. Thus, we have

lim
e!þ 0

p yþ eð Þ@G x; yð Þ
@x

����
x¼yþ e

�p y� eð Þ@G x; yð Þ
@x

����
x¼y�e

" #

¼ lim
e!þ 0

p yð Þ
a yð Þw yð Þ h þ eð Þ � h �eð Þ½ � ¼ p yð Þ

a yð Þw yð Þ :
ð8:121Þ

Since p yð Þ is continuous with respect to the argument y, this factor drops off and
we get

lim
e!þ 0

@G x; yð Þ
@x

����
x¼yþ e

�@G x; yð Þ
@x

����
x¼y�e

" #
¼ 1

a yð Þw yð Þ : ð8:122Þ

Thus, @G x;yð Þ
@x is accompanied by a discontinuity at x ¼ y by a magnitude of

1
a yð Þw yð Þ. Since RHS of (8.122) is continuous with respect to the argument y, inte-

grating (8.122) again with respect to x, we find that G x; yð Þ is continuous at x ¼ y.
These properties of G x; yð Þ are useful to calculate Green’s functions in practical use.
We will encounter several examples in next sections.

Suppose that there are two Green’s functions that satisfy the same homogeneous
BCs. Let G x; yð Þ and ~G x; yð Þ be such functions. Then, we must have

LxG x; yð Þ ¼ d x� yð Þ
w xð Þ and Lx ~G x; yð Þ ¼ d x� yð Þ

w xð Þ : ð8:123Þ

Subtracting both sides of (8.123), we have

Lx ~G x; yð Þ � G x; yð Þ
 � ¼ 0: ð8:124Þ

In virtue of the linearity of BCs, G x; yð Þ � ~G x; yð Þ must satisfy the same ho-
mogeneous BCs as well. But, (8.124) is a homogeneous equation, and so we must
have a trivial solution from the aforementioned constructability of the Green’s
function such that
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G x; yð Þ � ~G x; yð Þ � 0 or G x; yð Þ � ~G x; yð Þ: ð8:125Þ

This obviously indicates that a Green’s function should be unique.
We have assumed in Sect. 8.3 that the coefficients a xð Þ, and b xð Þ, and c xð Þ are

real. Therefore, taking complex conjugate of (8.95), we have

LxGðx; yÞ� ¼ d x� yð Þ
w xð Þ : ð8:126Þ

Notice here that both d x� yð Þ and w xð Þ are real functions. Subtracting (8.95)
from (8.126), we have

Lx½G x; yÞ� � G x; yð Þð � ¼ 0:

Again, from the uniqueness of the Green’s function, we get Gðx; yÞ� ¼ G x; yð Þ;
i.e., G x; yð Þ is real accordingly. This is independent of specific structures of Lx. In
other words, so far as we are dealing with real coefficients a xð Þ, b xð Þ, and c xð Þ,
G x; yð Þ is real whether or not Lx is self-adjoint.

8.5 Construction of Green’s Functions

So far we dealt with homogeneous boundary conditions (BCs) with respect to a
differential equation

a xð Þ d
2u
dx2

þ b xð Þ du
dx

þ c xð Þu ¼ d xð Þ; ð8:2Þ

where coefficients a xð Þ, b xð Þ, and c xð Þ are real. In this case, if d xð Þ � 0 in (8.108),
namely the SOLDE is homogeneous equation, we have a solution u xð Þ � 0 on the
basis of (8.108). If, on the other hand, we have inhomogeneous boundary condi-
tions (BCs), additional terms appear on RHS of (8.108) in both the cases of
homogeneous and inhomogeneous equations. In this section, we examine how we
can deal with this problem.

Following the remarks made in Sect. 8.3, we start with (8.62) or (8.69). If we
deal with a self-adjoint or Hermitian operator, we can apply (8.69) to the problem.
In a more general case where the operator is not self-adjoint, (8.62) is useful. In this
respect, in Sect. 8.6, we have a good opportunity for this.

In Sect. 8.3, we mentioned that we may relax the definition of Hermiticity of the
differential operator in the case where the surface term vanishes. Meanwhile, we
should bear in mind that the Green’s functions and adjoint Green’s functions are
constructed using homogeneous BCs regardless of whether we are concerned with a
homogeneous equation or inhomogeneous equation. Thus, even if the surface terms
do not vanish, we may regard the differential operator as Hermitian. This is because
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we deal with essentially the same Green’s function to solve a problem with both the
cases of homogeneous equation and inhomogeneous equations (vide infra). Notice
also that whether or not RHS vanishes, we are to use the same Green’s function [1].
In this sense, we do not have to be too strict with the definition of Hermiticity.

Now, suppose that with an Hermitian operator Lx we are given

Zs
r

dxw xð Þ v� Lxuð Þ � ½Lyx v��u
n o

¼ p xð Þ v�
du
dx

� u
dv�

dx

� �� �s
r
; ð8:69Þ

where w xð Þ[ 0 in a domain r; s½ � and p xð Þ is a real function. Note that since (8.69)
is an identity by an appropriate choice of w xð Þ, we insert g x; yð Þ into v. Then from
(8.97) and (8.106), we have

Zs
r

dxw xð Þ G y; xð Þd xð Þ � d x� yð Þ
w xð Þ

� ��
u

	 


¼ p xð Þ G y; xð Þ du xð Þ
dx

� u xð Þ @G y; xð Þ
@x

	 
� �s
x¼r

: ð8:127Þ

Using a property of the d function, we get

u yð Þ ¼
Zs
r

dxw xð ÞG y; xð Þd xð Þ � p xð Þ G y; xð Þ du xð Þ
dx

� u xð Þ @G y; xð Þ
@x

	 
� �s
x¼r

:

ð8:128Þ

The differential operator is Hermitian according to the discussion of Sect. 8.3.
Hence, we have

G x; yð Þ ¼ G y; xð Þ: ð8:113Þ

The function G x; yð Þ satisfies homogeneous BCs. Hence, if we assume, e.g., the
Dirichlet BCs, we have

G r; yð Þ ¼ G s; yð Þ ¼ 0: ð8:129Þ

Since G x; yð Þ is symmetric with respect to arguments x and y, from (8.129) we
get

G y; rð Þ ¼ G y; sð Þ ¼ 0: ð8:130Þ

Thus, the first term of the surface terms of (8.128) is eliminated to yield

268 8 Introductory Green’s Functions



u yð Þ ¼
Zs
r

dxw xð ÞG y; xð Þd xð Þþ p xð Þu xð Þ @G y; xð Þ
@x

� �� �s
x¼r

:

Exchanging the arguments x and y, we get

u xð Þ ¼
Zs
r

dyw yð ÞG x; yð Þd yð Þþ p yð Þu yð Þ @G x; yð Þ
@y

� �� �s
y¼r

: ð8:131Þ

Then, (i) substituting surface terms of u sð Þ and u rð Þ that are associated with the
inhomogeneous BCs described as

B1 uð Þ ¼ r1 and B2 uð Þ ¼ r2: ð8:132Þ

and (ii) calculating @G x;yð Þ
@y jy¼r and @G x;yð Þ

@y jy¼s, we will be able to obtain a unique

solution. Once again, notice that (8.131) is used for a differential equation rendered
self-adjoint by means of a weight function w xð Þ.

On the basis of the general discussion of Sect. 8.4 and this section, we are in the
position to construct the Green’s functions. Except for the points of x ¼ y, the
Green’s function G x; yð Þ must satisfies the following differential equation:

LxG x; yð Þ ¼ 0; ð8:133Þ

where Lx is given by

Lx ¼ a xð Þ d2

dx2
þ b xð Þ d

dx
þ c xð Þ: ð8:55Þ

The differential equation Lxu ¼ d xð Þ is defined within an interval r; s½ �, where r
may be �1 and s may be þ1.

From now on, we regard a xð Þ, b xð Þ, and c xð Þ as real functions. From (8.133), we
expect the Green’s function to be described as a linear combination of a funda-
mental set of solutions u1 xð Þ and u2 xð Þ. Here the set of fundamental solutions is
given by two linearly independent solutions of a homogeneous equation Lxu ¼ 0.
Then, we should be able to express G x; yð Þ as a combination of F1 x; yð Þ and F2 x; yð Þ
that are described as

F1 x; yð Þ ¼ c1u1 xð Þþ c2u2 xð Þ for r� x\y;

F2 x; yð Þ ¼ d1u1 xð Þþ d2u2 xð Þ for y\x� s; ð8:134Þ

where c1; c2; d1; and d2 are arbitrary (complex) constants to be determined later.
These constants are given as a function of y. The combination has to be made such
that
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G x; yð Þ ¼ F1 x; yð Þ for r� x\y;
F2 x; yð Þ for y\x� s:

	
ð8:135Þ

Thus using h xð Þ function defined as (8.119), we describe G x; yð Þ as

G x; yð Þ ¼ F1 x; yð Þh y� xð ÞþF2 x; yð Þh x� yð Þ: ð8:136Þ

Notice that F1 x; yð Þ and F2 x; yð Þ are “ordinary” functions and that G x; yð Þ is not,
because G x; yð Þ contains the h xð Þ function.

If we have

F2 x; yð Þ ¼ F1 y; xð Þ; ð8:137Þ

G x; yð Þ ¼ F1 x; yð Þh y� xð ÞþF1 y; xð Þh x� yð Þ: ð8:138Þ

Hence, we get

G x; yð Þ ¼ G y; xð Þ: ð8:139Þ

From (8.113), Lx is Hermitian. Suppose that F1 x; yð Þ ¼ x� rð Þ y� sð Þ and
F2 x; yð Þ ¼ x� sð Þ y� rð Þ. Then, (8.137) is satisfied and, hence, if we can construct
the Green’s function from F1 x; yð Þ and F2 x; yð Þ, Lx should be Hermitian. However,
if we had, e.g., F1 x; yð Þ ¼ x� r and F2 x; yð Þ ¼ y� s, G x; yð Þ 6¼ G y; xð Þ, and so Lx
would not be Hermitian.

The Green’s functions must satisfy the homogeneous BCs. That is,

B1 Gð Þ ¼ B2 Gð Þ ¼ 0: ð8:140Þ

Also, we require continuity condition of G x; yð Þ at x ¼ y and discontinuity

condition of @G x;yð Þ
@x at x ¼ y described by (8.122). Thus, we have four conditions

including BCs and continuity and discontinuity conditions to be satisfied by
G x; yð Þ. Thus, we can determine four constants c1; c2; d1; and d2 by the four
conditions.

Now, let us inspect further details about the Green’s functions by an example.

Example 8.4 Let us consider a following differential equation

d2u
dx2

þ u ¼ 1: ð8:141Þ

We assume that a domain of the argument x is 0; L½ �. We set boundary conditions
such that

u 0ð Þ ¼ r1 and u Lð Þ ¼ r2: ð8:142Þ
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Thus, if at least one of r1 and r2 is not zero, we are dealing with an inhomo-
geneous differential equation under inhomogeneous BCs.

Next, let us seek conditions that the Green’s function satisfies. We also seek a
fundamental set of solutions of a homogeneous equation described by

d2u
dx2

þ u ¼ 0: ð8:143Þ

This is obtained by putting a ¼ c ¼ 1 and b ¼ 0 in a general form of (8.5) with a
weight function being unity. The differential equation (8.143) is therefore
self-adjoint according to the argument of Sect. 8.3. A fundamental set of solutions
are given by

eix and e�ix.
Then, we have

F1 x; yð Þ ¼ c1eix þ c2e�ix for 0� x\y:

F2 x; yð Þ ¼ d1eix þ d2e�ix for y\x� L: ð8:144Þ

The functions F1 x; yð Þ and F2 x; yð Þ must satisfy the following BCs such that

F1 0; yð Þ ¼ c1 þ c2 ¼ 0 and F2 L; yð Þ ¼ d1eiL þ d2e�iL ¼ 0: ð8:145Þ

Thus, we have

F1 x; yð Þ ¼ c1ðeix � e�ixÞ;F2 x; yð Þ ¼ d1ðeix � e2iLe�ixÞ: ð8:146Þ

Therefore, at x ¼ y, we have

c1ðeiy � e�iyÞ ¼ d1ðeiy � e2iLe�iyÞ: ð8:147Þ

Discontinuity condition of (8.122) is equivalent to

@F2 x; yð Þ
@x

jx¼y �
@F1 x; yð Þ

@x
jx¼y ¼ 1: ð8:148Þ

This is because both F1 x; yð Þ and F2 x; yð Þ are ordinary functions and supposed to
be differentiable at any x. The relation (8.148) then reads as

id1ðeiy þ e2iLe�iyÞ � ic1ðeiy þ e�iyÞ ¼ 1: ð8:149Þ

From (8.147) and (8.149), using Cramer’s rule, we have
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c1 ¼
0 �eiy þ e2iLe�iy

i �eiy � e2iLe�iy

���� ����
eiy � e�iy �eiy þ e2iLe�iy

eiy þ e�iy �eiy � e2iLe�iy

���� ���� ¼
i eiy � e2iLe�iyð Þ
2 1� e2iLð Þ ; ð8:150Þ

d1 ¼
eiy � e�iy 0
eiy þ e�iy i

���� ����
eiy � e�iy �eiy þ e2iLe�iy

eiy þ e�iy �eiy � e2iLe�iy

���� ���� ¼
i eiy � e�iyð Þ
2 1� e2iLð Þ : ð8:151Þ

Substituting these parameters for (8.146), we get

F1 x; yð Þ ¼ sin xðe2iLe�iy � eiyÞ
1� e2iL

;F2 x; yð Þ ¼ sin yðe2iLe�ix � eixÞ
1� e2iL

: ð8:152Þ

Making a denominator real, we have

F1 x; yð Þ ¼ sin x½cos y� 2Lð Þ � cos y�
2sin2L

;F2 x; yð Þ ¼ sin y½cos x� 2Lð Þ � cos x�
2sin2L

:

ð8:153Þ

Using the h xð Þ function, we get

G x; yð Þ ¼ sin x½cos y� 2Lð Þ � cos y�
2sin2L

h y� xð Þþ sin y½cos x� 2Lð Þ � cos x�
2sin2L

h x� yð Þ:
ð8:154Þ

Thus, G x; yð Þ ¼ G y; xð Þ as expected. Notice, however, that if L ¼
np n ¼ 1; 2; � � �ð Þ the Green’s function cannot be defined as an ordinary function
even if x 6¼ y. We return to this point later.

The solution for (8.141) under the homogeneous BCs is then described as

u xð Þ ¼
ZL
0

dxG x; yð Þ

¼ cos x� 2Lð Þ � cos x

2sin2L

Zx
0

sin ydyþ sin x

2sin2L

ZL
x

½cos y� 2Lð Þ � cos y�dy:

ð8:155Þ

This can readily be integrated to yield solution for the inhomogeneous equation
such that
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u xð Þ ¼ cos x� 2Lð Þ � cos x� 2 sin L sin x� cos 2Lþ 1

2sin2L

¼ cos x� 2Lð Þ � cos x� 2 sin L sin xþ 2sin2L

2sin2L

ð8:156Þ

Next, let us consider the surface term. This is given by the second term of
(8.131). We get

@F1 x; yð Þ
@x

jy¼L ¼
sin x
sin L

;
@F2 x; yð Þ

@x
jy¼0 ¼

cos x� 2Lð Þ � cos x

2sin2L
: ð8:157Þ

Therefore, with the inhomogeneous BCs, we have the following solution for the
inhomogeneous equation:

u xð Þ ¼ cos x� 2Lð Þ � cos x� 2 sin L sin xþ 2sin2L

2sin2L
þ 2r2 sin L sin xþ r1 cos x� cos x� 2Lð Þ½ �

2sin2L
;

ð8:158Þ

where the second term is the surface term. If r1 ¼ r2 ¼ 1, we have

u xð Þ � 1:

Looking at (8.141), we find that u xð Þ � 1 is certainly a solution for (8.141) with
inhomogeneous BCs of r1 ¼ r2 ¼ 1. The uniqueness of the solution then ensures
that u xð Þ � 1 is a sole solution under the said BCs.

From (8.154), we find that G x; yð Þ has a singularity at L ¼ np n : integersð Þ. This
is associated with the fact that a homogenous equation (8.143) has a non-trivial
solution, e.g., u xð Þ ¼ sin x under homogeneous BCs u 0ð Þ ¼ u Lð Þ ¼ 0. The present
situation is essentially the same as that of Example 1.1 of Sect. 1.3. In other words,
when k ¼ 1 in (1. 61), the form of a differential equation is identical to (8.143) with
virtually the same Dirichlet conditions. The point is that (8.143) can be viewed as a
homogeneous equation and, at the same time, as an eigenvalue equation. In such a
case, a Green’s function approach will fail.

8.6 Initial Value Problems (IVPs)

8.6.1 General Remarks

The IVPs are frequently appeared in mathematical physics. The relevant conditions
are dealt with as BCs in the theory of differential equations. With boundary
functionals B1 uð Þ and B2 uð Þ of (8.3) and (8.4), setting a1 ¼ b2 ¼ 1 and other
coefficients as zero, we get
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B1 uð Þ ¼ u pð Þ ¼ r1 and B2 uð Þ ¼ du
dx

jx¼p ¼ r2: ð8:159Þ

In the above, note that we choose r; s½ � for a domain of x. The points r and s can
be infinity as before. Any point p within the domain r; s½ � may be designated as a
special point on which the BCs (8.159) are imposed. The initial conditions are
particularly prominent among BCs. This is because the conditions are set at one
point of the argument. This special condition is usually called initial conditions. In
this section, we investigate fundamental characteristics of IVPs.

Suppose that we have

u pð Þ ¼ du
dx

jx¼p ¼ 0; ð8:160Þ

with homogeneous BCs. Given a differential operator Lx defined as (8.55), i.e.,

Lx ¼ a xð Þ d2

dx2
þ b xð Þ d

dx
þ c xð Þ; ð8:55Þ

let a fundamental set of solutions be u1 xð Þ and u2 xð Þ for

Lxu xð Þ ¼ 0: ð8:161Þ

A general solution u xð Þ for (8.161) is given by a linear combination of u1 xð Þ and
u2 xð Þ such that

u xð Þ ¼ c1u1 xð Þþ c2u2 xð Þ; ð8:162Þ

where c1 and c2 are arbitrary (complex) constants. Suppose that we have homo-
geneous BCs expressed by (8.160). Then, we have

u pð Þ ¼ c1u1 pð Þþ c2u2 pð Þ ¼ 0;

u0 pð Þ ¼ c1u
0
1 pð Þþ c2u

0
2 pð Þ ¼ 0:

Rewriting it in a matrix form, we have

u1 pð Þ u2 pð Þ
u01 pð Þ u02 pð Þ

� �
c1
c2

� �
¼ 0:

Since the matrix represents Wronskian of a fundamental set of solutions u1 xð Þ
and u2 xð Þ, its determinant never vanishes at any point p. That is, we have

u1 pð Þ u2 pð Þ
u01 pð Þ u02 pð Þ
���� ���� 6¼ 0: ð8:163Þ
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Then, we necessarily have c1 ¼ c2 ¼ 0. From (8.162), we have a trivial solution

u xð Þ � 0

under the initial conditions as homogeneous BCs. Thus, as already discussed a
Green’s function can always be constructed for IVPs.

To seek the Green’s functions for IVPs, we return back to the generalized
Green’s identity described as

Zs
r

dx v�ðLxuÞ � ½Lyx v��u
h i

¼ av�
du
dx

� u
d av�ð Þ
dx

þ buv�
� �s

r
: ð8:62Þ

For the surface term (RHS) to vanish, for homogeneous BCs, we have, e.g.,

u sð Þ ¼ du
dx

jx¼s ¼ 0 and v rð Þ ¼ dv
dx

jx¼r ¼ 0;

for the two sets of BCs adjoint to each other. Obviously, these are not identical
simply because the former is determined at s and the latter is determined at a
different point r. For this reason, the operator Lx is not Hermitian, even though it is
formally self-adjoint. In such a case, we would rather use Lx directly than construct
a self-adjoint operator because we cannot make the operator Hermitian either way.

Hence, unlike the precedent sections, we do not need a weight function w xð Þ. Or,
we may regard w xð Þ � 1. Then, we reconsider the conditions which the Green’s
functions should satisfy. On the basis of the general consideration of Sect. 8.4,
especially (8.86), (8.87), and (8.94), we have [2]

LxG x; yð Þ ¼ hxjyi ¼ d x� yð Þ: ð8:164Þ

Therefore, we have

@2G x; yð Þ
@x2

þ b xð Þ
a xð Þ

@G x; yð Þ
@x

þ c xð Þ
a xð ÞG x; yð Þ ¼ d x� yð Þ

a xð Þ :

Integrating or integrating by parts the above equation, we get

@G x; yð Þ
@x

þ b xð Þ
a xð ÞG x; yð Þ�xx0
� �

�
Zx
x0

b nð Þ
a nð Þ
� �0

G n; yð Þdnþ
Zx
x0

c nð Þ
a nð ÞG n; yð Þdn

¼ h x� yð Þ
a yð Þ :

Noting that the functions other than @G x;yð Þ
@x and h x�yð Þ

a yð Þ are continuous, as before we

have
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lim
e!þ 0

@G x; yð Þ
@x

����
x¼yþ e

"
� @G x; yð Þ

@x

����
x¼y�e

#
¼ 1

a yð Þ : ð8:165Þ

8.6.2 Green’s Functions for IVPs

From a practical point of view, we may set r ¼ 0 in (8.62). Then, we can choose a
domain for 0; s½ � (for s[ 0) or s; 0½ � (for s\0) with (8.2). For simplicity, we use x
instead of s. We consider two cases of x[ 0 and x\0.

(i) Case I ðx[ 0Þ: Let u1 xð Þ and u2 xð Þ be a fundamental set of solutions. We
define F1 x; yð Þ and F2 x; yð Þ as before such that

F1 x; yð Þ ¼ c1u1 xð Þþ c2u2 xð Þ for 0� x\y;
F2 x; yð Þ ¼ d1u1 xð Þþ d2u2 xð Þ for 0\y\x:

ð8:166Þ

As before, we set

G x; yð Þ ¼ F1 x; yð Þ for 0� x\y;
F2 x; yð Þ for 0\y\x:

	
Homogeneous BCs are defined as

u 0ð Þ ¼ 0 and u0 0ð Þ ¼ 0:

Correspondingly, we have

F1 0; yð Þ ¼ 0 and F0
1 0; yð Þ ¼ 0:

This is translated into

c1u1 0ð Þþ c2u2 0ð Þ ¼ 0 and c1u
0
1 0ð Þþ c2u

0
2 0ð Þ ¼ 0:

In a matrix form, we get

u1 0ð Þ u2 0ð Þ
u01 0ð Þ u02 0ð Þ

� �
c1
c2

� �
¼ 0:

As mentioned above, since u1 xð Þ and u2 xð Þ are a fundamental set of solutions,
we have c1 ¼ c2 ¼ 0. Hence, we get

F1 x; yð Þ ¼ 0:
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From the continuity and discontinuity conditions (8.165) imposed upon the
Green’s functions, we have

d1u1 yð Þþ d2u2 yð Þ ¼ 0 and d1u
0
1 yð Þþ d2u

0
2 yð Þ ¼ 1=a yð Þ: ð8:167Þ

As before, we get

d1 ¼ � u2 yð Þ
a yð ÞW u1 yð Þ; u2 yð Þð Þ and d2 ¼ u1 yð Þ

a yð ÞW u1 yð Þ; u2 yð Þð Þ :

where W u1 yð Þ; u2 yð Þð Þ is Wronskian of u1 yð Þ and u2 yð Þ. Thus, we get

F2 x; yð Þ ¼ u2 xð Þu1 yð Þ � u1 xð Þu2 yð Þ
a yð ÞW u1 yð Þ; u2 yð Þð Þ : ð8:168Þ

(ii) Case II ðx\0Þ: Next, we think of the case as below:

F1 x; yð Þ ¼ c1u1 xð Þþ c2u2 xð Þ for y\x� 0;
F2 x; yð Þ ¼ d1u1 xð Þþ d2u2 xð Þ for x\y\0:

ð8:169Þ

Similarly proceeding as the above, we have c1 ¼ c2 ¼ 0. Also, we get

F2 x; yð Þ ¼ u1 xð Þu2 yð Þ � u2 xð Þu1 yð Þ
a yð ÞW u1 yð Þ; u2 yð Þð Þ : ð8:170Þ

Here notice that the sign is reversed in (8.170) relative to (8.168). This is because
on the discontinuity condition, instead of (8.167) we have to have

d1u
0
1 yð Þþ d2u

0
2 yð Þ ¼ �1=a yð Þ:

This results from the fact that magnitude relationship between the arguments x
and y has been reversed in (8.169) relative to (8.166).

Summarizing the above argument, (8.168) is obtained in the domain 0� y\x;
(8.170) is obtained in the domain x\y\0. Noting this characteristic, we define a
function such that

H x; yð Þ � h x� yð Þh yð Þ � h y� xð Þh �yð Þ: ð8:171Þ

Notice that

H x; yð Þ ¼ �H �x;�yð Þ:

That is, H x; yð Þ is antisymmetric with respect to the origin.
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Fig. 8.2 Graph of a function
H x; yð Þ. H x; yð Þ ¼ 1 or –1 in
hatched areas, otherwise
H x; yð Þ ¼ 0

Figure 8.2 shows a feature of H x; yð Þ. If the “initial point” is taken at x ¼ a, we
can use H x� a; y� að Þ instead; see Fig. 8.3. The function is described as

H x� a; y� að Þ ¼ h x� yð Þh y� að Þ � h y� xð Þh a� yð Þ:

Note that H x� a; y� að Þ can be obtained by shifting H x; yð Þ toward the posi-
tive direction of the x- and y-axes by a (a can be either positive or negative; in
Fig. 8.3, we assume a[ 0). Using the H x; yð Þ function, the Green’s function is
described as

G x; yð Þ ¼ u2 xð Þu1 yð Þ � u1 xð Þu2 yð Þ
a yð ÞW u1 yð Þ; u2 yð Þð Þ H x; yð Þ: ð8:172Þ

Defining a function F such that

F x; yð Þ � u2 xð Þu1 yð Þ � u1 xð Þu2 yð Þ
a yð ÞW u1 yð Þ; u2 yð Þð Þ ; ð8:173Þ

we have

G x; yð Þ ¼ F x; yð ÞH x; yð Þ: ð8:174Þ

Notice that

H x; yð Þ 6¼ H y; xð Þ and G x; yð Þ 6¼ G y; xð Þ: ð8:175Þ

It is therefore obvious that the differential operator is not Hermitian.
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8.6.3 Estimation of Surface Terms

To include the surface term of the inhomogeneous case, we use (8.62).

Zs
r

dx v�ðLxuÞ � ½Lyx v��u
h i

¼ av�
du
dx

� u
d av�ð Þ
dx

þ buv�
� �s

r
: ð8:62Þ

As before, we set r ¼ 0 in (8.62). Also, we classify (8.62) into two cases
according as s[ 0 or s\0.

(i) Case I ðx[ 0; y[ 0Þ: Equation (8.62) reads as

Z1
0

dx v�ðLxuÞ � ½Lyx v��u
h i

¼ av�
du
dx

� u
d av�ð Þ
dx

þ buv�
� �1

0
: ð8:176Þ

As before, inserting

g x; yð Þ ¼ G� y; xð Þ ¼ G y; xð Þ ð8:177Þ

into v of (8.176) and arranging terms, we have

u yð Þ ¼
Z1
0

dxG y; xð Þd xð Þ

� a xð ÞG y; xð Þ du xð Þ
dx

� u xð Þ da xð Þ
dx

G y; xð Þ � u xð Þa xð Þ @G y; xð Þ
@x

þ b xð Þu xð ÞG y; xð Þ
� �1

x¼0
:

ð8:178Þ

Note that in the above we used Lyx g x; yð Þ ¼ d x� yð Þ. In Fig. 8.4, we depict a
domain of G y; xð Þ in which G y; xð Þ does not vanish. Notice that we get the domain
by folding back that of H x; yð Þ (see Fig. 8.2) relative to a straight line y ¼ x. Thus,

we find that G y; xð Þ vanishes at x[ y. So does @G y;xð Þ
@x ; see Fig. 8.4. Namely, the

second term of RHS of (8.178) vanishes at x ¼ 1. In other words, g x; yð Þ and
G y; xð Þ must satisfy the adjoint BCs; i.e.,

g 1; yð Þ ¼ G y;1ð Þ ¼ 0: ð8:179Þ

At the same time, the upper limit of integration range of (8.178) can be set at y.
Noting the above, we have

(the first term) of (8.178)
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Fig. 8.3 Graph of a function
H x� a; y� að Þ. We assume
a[ 0

x

y

Fig. 8.4 Domain of G y; xð Þ.
Areas for which G y; xð Þ does
not vanish are hatched
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¼
Zy
0

dxG y; xð Þd xð Þ: ð8:180Þ

Also with the second term of (8.178), we get
(the second term) of (8.178) ¼

þ a xð ÞG y; xð Þ du xð Þ
dx

� u xð Þ da xð Þ
dx

G y; xð Þ � u xð Þa xð Þ @G y; xð Þ
@x

þ b xð Þu xð ÞG y; xð Þ
� �

x¼0

¼ a 0ð ÞG y; 0ð Þ du 0ð Þ
dx

� u 0ð Þ da 0ð Þ
dx

G y; 0ð Þ � u 0ð Þa 0ð Þ @G y; xð Þ
@x

����
x¼0

þ b 0ð Þu 0ð ÞG y; 0ð Þ:

ð8:181Þ

If we substitute inhomogeneous BCs

u 0ð Þ ¼ r1 and
du
dx

����
x¼0

¼ r2: ð8:182Þ

for (8.181) along with other appropriate values, we should be able to get a unique
solution as

u yð Þ ¼
Zy
0

dxG y; xð Þd xð Þþ r2a 0ð Þ � r1
da 0ð Þ
dx

þ r1b 0ð Þ
� �

G y; 0ð Þ

�r1a 0ð Þ @G y; xð Þ
@x

����
x¼0

ð8:183Þ

Exchanging arguments x and y, we get

u xð Þ ¼
Zx
0

dyG x; yð Þd yð Þþ r2a 0ð Þ � r1
da 0ð Þ
dy

þ r1b 0ð Þ
� �

G x; 0ð Þ

�r1a 0ð Þ @G x; yð Þ
@y

����
y¼0

ð8:184Þ

Here, we consider that H x; yð Þ ¼ 1 in this region and use (8.174). Meanwhile,
from (8.174), we have

@G x; yð Þ
@y

¼ @F x; yð Þ
@y

H x; yð Þþ @H x; yð Þ
@y

F x; yð Þ: ð8:185Þ

In the second term,
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@H x; yð Þ
@y

¼ @h x� yð Þ
@y

h yð Þþ h x� yð Þ @h yð Þ
@y

� @h y� xð Þ
@y

h �yð Þ � h y� xð Þ @h �yð Þ
@y

¼ �d x� yð Þh yð Þþ h x� yð Þd yð Þ � d y� xð Þh �yð Þþ h y� xð Þd �yð Þ
¼ �d x� yð Þ h yð Þþ h �yð Þ½ � þ h x� yð Þþ h y� xð Þ½ �d yð Þ
¼ �d x� yð Þ h yð Þþ h �yð Þ½ � þ h xð Þþ h �xð Þ½ �d yð Þ ¼ �d x� yð Þþ d yð Þ;

ð8:186Þ

where we used

h xð Þþ h �xð Þ � 1 ð8:187Þ

as well as

f yð Þd yð Þ ¼ f 0ð Þd yð Þ ð8:188Þ

and

d �yð Þ ¼ d yð Þ: ð8:189Þ

However, the function �d x� yð Þþ d yð Þ is of secondary importance. It is
because in (8.184) we may choose e; x� e½ �ðe[ 0Þ for the domain y and put
e ! þ 0 after the integration and other calculations related to the surface terms.
Therefore, �d x� yð Þþ d yð Þ in (8.186) virtually vanishes.

Thus, we can express (8.185) as

@G x; yð Þ
@y

¼ @F x; yð Þ
@y

H x; yð Þ ¼ @F x; yð Þ
@y

:

Then, finally we reach

u xð Þ ¼
Zx
0

dyF x; yð Þd yð Þþ r2a 0ð Þ � r1
da 0ð Þ
dy

þ r1b 0ð Þ
� �

F x; 0ð Þ

� r1a 0ð Þ @F x; yð Þ
@y

jy¼0:

ð8:190Þ

(ii) Case II ðx\0; y\0Þ: Similarly as the above, Eq. (8.62) reads as

u yð Þ ¼
Z0
�1

dxG y; xð Þd xð Þ

� a xð ÞG y; xð Þ du xð Þ
dx

� u xð Þ da xð Þ
dx

G y; xð Þ � u xð Þa xð Þ @G y; xð Þ
@x

þ b xð Þu xð ÞG y; xð Þ
� �0

�1
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Similarly as mentioned above, the lower limit of integration range is y.

Considering both G y; xð Þ and @G y;xð Þ
@x vanish at x\y (see Fig. 8.4), we have

u yð Þ ¼
Z0
y

dxG y; xð Þd xð Þ � a xð ÞG y; xð Þ du xð Þ
dx

� u xð Þ da xð Þ
dx

G y; xð Þ
�

�u xð Þa xð Þ @G y; xð Þ
@x

þ b xð Þu xð ÞG y; xð Þ
�
x¼0

¼ �
Zy
0

dxG y; xð Þd xð Þ � r2a 0ð Þ � r1
da 0ð Þ
dx

þ r1b 0ð Þ
� �

G y; 0ð Þþ r1a 0ð Þ @G y; xð Þ
@x

����
x¼0

ð8:191Þ

Comparing (8.191) with (8.183), we recognize that the sign of RHS of (8.191)
has been reversed relative to RHS of (8.183). This is also the case after exchanging
arguments x and y. Note, however, H x; yð Þ ¼ �1 in the present case. As a result,
two minus signs cancel and (8.191) takes exactly the same expression as (8.183).
Proceeding with calculations similarly, for both Cases I and II we arrive at a unified
solution represented by (8.190) throughout a domain �1; þ1ð Þ.

8.6.4 Examples

To deepen understanding of Green’s functions, we deal with tangible examples of
the IVP below.

Example 8.5 Let us consider a following inhomogeneous differential equation

d2u
dx2

þ u ¼ 1: ð8:192Þ

Note that (8.192) is formally the same differential equation of (8.141). We may
encounter (8.192) when we are observing a motion of a charged harmonic oscillator
that is placed under a static electric field. We assume that a domain of the argument
x is a whole range of real numbers. We set boundary conditions such that

u 0ð Þ ¼ r1 and u0 0ð Þ ¼ r2: ð8:193Þ
As in the case of Example 8.4, a fundamental set of solutions are given by

eix and e�ix: ð8:194Þ

Therefore, following (8.173), we get

F x; yð Þ ¼ sin x� yð Þ: ð8:195Þ
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Also following (8.190), we have

u xð Þ ¼
Zx
0

dy sin x� yð Þþ r2 sin x� r1 cosðx� yÞjy¼0

¼ 1� cos xþ r2 sin xþ r1 cos x:

ð8:196Þ

In particular, if we choose r1 ¼ 1 and r2 ¼ 0, we have

u xð Þ � 1: ð8:197Þ

This also ensures that this is a unique solution under the inhomogeneous BCs
described as r1 ¼ 1 and r2 ¼ 0.

Example 8.6: Damped oscillator If a harmonic oscillator undergoes friction, the
oscillator exerts damped oscillation. Such an oscillator is said to be a damped
oscillator. The damped oscillator is often dealt with when we think of bound
electrons in a dielectric medium that undergo an effect of a dynamic external field
varying with time. This is the case when the electron is placed in an alternating
electric field or an electromagnetic wave.

An equation of motion of the damped oscillator is described as

m
d2u
dt2

þ r
du
dx

þ ku ¼ d xð Þ; ð8:198Þ

where m is a mass of an electron; r is a damping constant; k is a spring constant of
the damped oscillator. To seek a fundamental set of solutions of a homogeneous
equation described as

m
d2u
dt2

þ r
du
dx

þ ku ¼ 0;

putting

u ¼ eiqt ð8:199Þ

and inserting it to (8.198), we have

�q2 þ r
m
iqþ k

m

� �
eiqt ¼ 0:

Since eiqt does not vanish, we have

�q2 þ r
m
iqþ k

m
¼ 0: ð8:200Þ
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We call this equation a characteristic quadratic equation. We have three cases for
the solution of a quadratic equation of (8.200). Solving (8.200), we get

q ¼ ir
2m

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� r2

4m2 þ k
m

r
: ð8:201Þ

(i) Equation (8.201) gives two pure imaginary roots; i.e., � r2
4m2 þ k

m\0 (an over

damping). (ii) The equation has double roots; � r2
4m2 þ k

m ¼ 0 (a critical damping).

(iii) The equation has two complex roots; � r2
4m2 þ k

m [ 0 (a weak damping). Of
these, Case (iii) is characterized by an oscillating solution and has many applica-
tions in mathematical physics. For the Case (i) and (ii), on the other hand, we do
not have an oscillating solution.

Case (i):
The characteristic roots are given by

q ¼ ir
2m

	 i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

4m2 �
k
m

r
:

Therefore, we have a fundamental set of solutions described by

u tð Þ ¼ exp � rt
2m

� �
exp 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

4m2 �
k
m

r
t

 !
:

Then, a general solution is given by

u tð Þ ¼ exp � rt
2m

� �
a exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

4m2 �
k
m

r
t

 !
þ b exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

4m2 �
k
m

r
t

 !" #
:

Case (ii):
The characteristic roots are given by

q ¼ ir
2m

:

Therefore, one of the solutions is

u1 tð Þ ¼ exp � rt
2m

� �
:

Another solution u2 tð Þ is given by
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u2 tð Þ ¼ c
@u1 tð Þ
@ iqð Þ ¼ c0t exp � rt

2m

� �
;

where c and c0 are appropriate constants. Thus, general solution is given by

u tð Þ ¼ a exp � rt
2m

� �
þ bt exp � rt

2m

� �
:

The most important and interesting feature emerges as a “damped oscillator” in
the next Case (iii) in many fields of natural science. We are particularly interested in
this case.

Case (iii):
Suppose that the damping is relatively weak such that the characteristic equation

has two complex roots. Let us examine further details of this case following the
prescriptions of IVPs. We divide (8.198) by m for the sake of easy handling of the
differential equation such that

d2u
dt2

þ r
m
du
dx

þ k
m
u ¼ 1

m
d xð Þ:

Putting

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� r2

4m2 þ k
m

r
; ð8:202Þ

we get a fundamental set of solutions described as

u tð Þ ¼ exp � rt
2m

� �
exp 	ixtð Þ; ð8:203Þ

Given BCs, following (8.172) we get as a Green’s function

G t; sð Þ ¼ u2 tð Þu1 sð Þ � u1 tð Þu2 sð Þ
W u1 sð Þ; u2 sð Þð Þ H t; sð Þ

¼ 1
x
e�

r
2m t�sð Þ sinx t � sð ÞH t; sð Þ:

ð8:204Þ

where u1 tð Þ ¼ exp � rt
2m

� �
exp ixtð Þ and u2 tð Þ ¼ exp � rt

2m

� �
exp �ixtð Þ.

We examine whether G t; sð Þ is eligible for the Green’s function as follows:

dG
dt

¼ 1
x

� r
2m

� �
e�

r
2m t�sð Þ sinx t � sð Þþxe�

r
2m t�sð Þ cosx t � sð Þ

h i
H t; sð Þ

þ 1
x
e�

r
2m t�sð Þ sinx t � sð Þ d t � sð Þh sð Þþ d s� tð Þh �sð Þ½ �:

ð8:205Þ
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The second term of (8.205) vanishes because sinx t � sð Þd t � sð Þ ¼ 0�
d t � sð Þ ¼ 0. Thus,

d2G
dt2

¼ 1
x

� r
2m

� �2
e�

r
2m t�sð Þ sinx t � sð Þ � r

m
xe�

r
2m t�sð Þ cosx t � sð Þ

�
�x2e�

r
2m t�sð Þ sinx t � sð Þ

i
H t; sð Þ

þ 1
x

� r
2m

� �
e�

r
2m t�sð Þ sinx t � sð Þþxe�

r
2m t�sð Þ cosx t � sð Þ

h i

 d t � sð Þh sð Þþ d s� tð Þh �sð Þ½ �

ð8:206Þ

In the last term using the property of the d function and h function, we get
d t � sð Þ. Note here that

e�
r
2m t�sð Þ cosx t � sð Þ d t � sð Þh sð Þþ d s� tð Þh �sð Þ½ �

¼ e�
r
2m�0ðcosx � 0Þ d t � sð Þ h sð Þþ h �sð Þ½ �f g

¼ d t � sð Þ h sð Þþ h �sð Þ½ � ¼ d t � sð Þ:

Thus, rearranging (8.206), we get

d2G
dt2

¼ d t � sð Þþ 1
x

� � r
2m

� �2
þx2

� �
e�

r
2m t�sð Þ sinx t � sð Þ

	
� r
m

� r
2m

� �
e�

r
2m t�sð Þ sinx t � sð Þþxe�

r
2m t�sð Þ cosx t � sð Þ

h io
H t; sð Þ

¼ d t � sð Þ � k
m
G� r

m
dG
dt

;

ð8:207Þ

where we used (8.202) for the last equality. Rearranging (8.207) once again, we
have

d2G
dt2

þ r
m
dG
dt

þ k
m
G ¼ d t � sð Þ: ð8:208Þ

Defining the following operator

Lt � d2

dt2
þ r

m
d
dt

þ k
m
; ð8:209Þ

we get

LtG ¼ d t � sð Þ: ð8:210Þ
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Note that this expression is consistent with (8.164). Thus, we find that (8.210)
satisfies the condition (8.123) of the Green’s function, where the weight function is
identified with unity.

Now, suppose that a sinusoidally changing external field eiXt influences the
motion of the damped oscillator. Here, we assume that an amplitude of the external
field is unity. Then, we have

d2u
dt2

þ r
m
du
dx

þ k
m
u ¼ 1

m
eiXt: ð8:211Þ

Thus, as a solution of the homogeneous boundary conditions [i.e.,

u 0ð Þ ¼ _u 0ð Þ ¼ 0], we get

u tð Þ ¼ 1
mx

Z t

0

e�
r
2m t�sð ÞeiXtsinx t � sð Þds; ð8:212Þ

where t is an arbitrary positive or negative time. Equation (8.212) shows that with
the real part we have an external field cosXt and that with the imaginary part we
have an external field sinXt. To calculate (8.212), we use

sinx t � sð Þ ¼ 1
2i

eix t�sð Þ � e�ix t�sð Þ
h i

: ð8:213Þ

Then, the equation can readily be solved by integration of exponential functions,
even though we have to do somewhat lengthy (but straightforward) calculations.

Thus for the real part (i.e., the external field is cosXt), we get a solution

Cu tð Þ ¼ 1
m

r
m

� �
X sinXtþ 1

m
r
2m

� �2
cosXt � 1

m
X2 � x2
� �

cosXt

þ 1
m
e�

r
2mt X2 � x2� �

cosxt � r
2m

1
x

X2 þx2� �
sinxt

�
� r

2m

� �2
cosxt � r

2m

� �3 1
x
sinxt

�
;

ð8:214Þ

where C is a constant [i.e., a constant denominator of u tð Þ] expressed as

C ¼ ðX2 � x2Þ2 þ r2

2m2 X2 þx2� �þ r
2m

� �4
: ð8:215Þ

For the imaginary part (i.e., the external field is sinXt), we get
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Cu tð Þ ¼ � 1
m

X2 � x2� �
sinXt � 1

m
r
m

� �
X cosXtþ 1

m
r
2m

� �2
sinXt

þ 1
m
e�

r
2mt

X
x

X2 � x2� �
sinxtþ r

m
X cosxtþ r

2m

� �2X
x
sinxt

� �
:

ð8:216Þ

In Fig. 8.5, we show an example that depicts the positions of a damped oscillator
as a function of time. In Fig. 8.5a, an amplitude of an envelope gradually dimin-
ishes with time. An enlarged diagram near the origin (Fig. 8.5b) clearly reflects the

Phase:

Phase:

(a)

(b)

Fig. 8.5 Example of a damped oscillation as a function of t. a Overall profile. b Profile enlarged
near the origin
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initial conditions u 0ð Þ ¼ _u 0ð Þ ¼ 0. In Fig. 8.5, we put m ¼ 1 kg½ �, X ¼ 1 1
s


 �
,

x ¼ 0:94 1
s


 �
, and r ¼ 0:006 kg

s

h i
. In the above calculations, if r

m is small enough

(i.e., damping is small enough), the third order and fourth order of r
m may be ignored

and the approximation is precise enough.

In the case of inhomogeneous BCs, given r1 ¼ u 0ð Þ and r2 ¼ _u 0ð Þ, we can
decide additional terms S tð Þ using (8.190) such that

S tð Þ ¼ r2 þ r1
r
m

� � 1
x
e�

r
2mt sinxt

� r1
x

r
2m

e�
r
2mt sinxt � xe�

r
2mt cosxt

� �
:

ð8:217Þ

This term arises from (8.190). Thus, from (8.212) and (8.217), u tð Þþ S tð Þ gives
a unique solution for the SOLDE with inhomogeneous BCs. Notice that S tð Þ does
not depend on the external field.

8.7 Eigenvalue Problems

We often encounter eigenvalue problems in mathematical physics. Of these, those
related to Hermitian differential operators have particularly interesting and impor-
tant features. The eigenvalue problems we have considered in Part I are typical
illustrations. Here, we investigate general properties of the eigenvalue problems.

Returning to the case of homogeneous BCs, we consider a following homoge-
neous SOLDE:

a xð Þ d
2u
dx2

þ b xð Þ du
dx

þ c xð Þu ¼ 0: ð8:5Þ

Defining a following differential operator Lx such that

Lx ¼ a xð Þ d2

dx2
þ b xð Þ d

dx
þ c xð Þ; ð8:55Þ

we have a homogeneous equation

Lxu xð Þ ¼ 0: ð8:218Þ

Putting a constant �k instead of c xð Þ, we have

a xð Þ d
2u
dx2

þ b xð Þ du
dx

� ku ¼ 0: ð8:219Þ
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If we define a differential operator Lx such that

Lx ¼ a xð Þ d2

dx2
þ b xð Þ d

dx
� k; ð8:220Þ

we have a homogeneous equation

Lxu ¼ 0 ð8:221Þ

to express (8.219). Instead, if we define a differential operator Lx such that

Lx ¼ a xð Þ d2

dx2
þ b xð Þ d

dx
;

we have the same homogeneous equation

Lxu ¼ ku ð8:222Þ

to express (8.219).
Equations (8.221) and (8.222) are essentially the same except that the expression

is different. The expression using (8.222) is familiar to us as an eigenvalue equation.
The difference between (8.5) and (8.219) is that whereas c xð Þ in (8.5) is a given
fixed function, k in (8.219) is constant, but may be varied according to the solution
of u xð Þ. One of the most essential properties of the eigenvalue problem that is posed
in the form of (8.222) is that its solution is not uniquely determined as already
studied in various cases of Part I. Remember that the methods based upon the
Green’s function are valid for a problem to which a homogeneous differential
equation has a trivial solution (i.e., identically zero) under homogeneous BCs. In
contrast to this situation, even though the eigenvalue problem is basically posed as a
homogeneous equation under homogeneous BCs, non-trivial solutions are expected
to be obtained. In this respect, we have seen that in Part I we rejected a trivial
solution (i.e., identically zero) because of no physical meaning.

As exemplified in Part I, the eigenvalue problems that appear in mathematical
physics are closely connected to the Hermiticity of (differential) operators. This is
because in many cases an eigenvalue is required to be real. We have already
examined how we can convert a differential operator to the self-adjoint form. That
is, if we define p xð Þ as in (8.26), we have the self-adjoint operator as described in
(8.70). As a symbolic description, we have

w xð ÞLxu ¼ d
dx

p xð Þ du
dx

� �
þ c xð Þw xð Þu: ð8:223Þ

In the same way, multiplying both sides of (8.222) by w xð Þ, we get

w xð ÞLxu ¼ kw xð Þu: ð8:224Þ
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For instance, Hermite differential equation that has already appeared as (2.118)
in Sect. 2.3 is described as

d2u
dx2

� 2x
du
dx

þ 2nu ¼ 0: ð8:225Þ

If we express (8.225) as in (8.224), multiplying e�x2 on both sides of (8.225), we
have

d
dx

e�x2 du
dx

� �
þ 2ne�x2u ¼ 0: ð8:226Þ

Notice that the differential operator has been converted to a self-adjoint form
according to (8.31) that defines a real and positive weight function e�x2 in the
present case. The domain of the Hermite differential equation is �1; þ1ð Þ at the
endpoints (i.e., �1) of which the surface term of RHS of (8.69) approaches zero
sufficiently rapidly in virtue of e�x2 .

In Sects. 3.4, and 3.5, in turn, we dealt with the (associated) Legendre differential
equation (3.127) for which the relevant differential operator is self-adjoint. The
surface term corresponding to (8.69) vanishes. It is because 1� n2

� �
vanishes at the

endpoints n ¼ cos h ¼ �1 (i.e., h ¼ 0 or p) from (3.107). Thus, the Hermiticity is
automatically ensured for the (associated) Legendre differential equation as well as
Hermite differential equation. In those cases, even though the differential equations
do not satisfy any particular BCs, the Hermiticity is yet ensured.

In the theory of differential equations, the aforementioned properties of the
Hermitian operators have been fully investigated as the so-called Strum–Liouville
system (or problem) in the form of a homogeneous differential equation. The related
differential equations are connected to classical orthogonal polynomials having
personal names such as Hermite, Laguerre, Jacobi, Gegenbauer, Legendre,
Tchebichef. These equations frequently appear in quantum mechanics and elec-
tromagnetism as typical examples of Strum–Liouville system. They can be con-
verted to differential equations by multiplying an original form by a weight
function. The resulting equations can be expressed as

d
dx

a xð Þw xð Þ dYn xð Þ
dx

� �
þ knw xð ÞYn xð Þ ¼ 0; ð8:227Þ

where Yn xð Þ is a collective representation of classical orthogonal polynomials.
Equation (8.226) is an example. Conventionally, a following form is adopted
instead of (8.227):
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1
w xð Þ

d
dx

a xð Þw xð Þ dYn xð Þ
dx

� �
þ knYn xð Þ ¼ 0; ð8:228Þ

where we put ðawÞ0 ¼ bw. That is, the differential equation is originally described
as

a xð Þ d
2Yn xð Þ
dx2

þ b xð Þ dYn xð Þ
dx

þ knYn xð Þ ¼ 0: ð8:229Þ

In the case of Hermite polynomials, for instance, a xð Þ ¼ 1 and w xð Þ ¼ e�x2 .
Since we have ðawÞ0 ¼ �2xe�x2 ¼ bw, we can put b ¼ �2x. Examples including
this case are tabulated in Table 8.2. The eigenvalues kn are associated with real
numbers that characterize the individual physical systems. The related fields have
wide applications in many branches of natural science.

After having converted the operator to the self-adjoint form, i.e., Lx ¼ Lyx ,
instead of (8.100), we have

Zs
r

dxw xð Þfv� Lxuð Þ � ½Lxv��ug ¼ 0: ð8:230Þ

Rewriting it, we get

Zs
r

dxv� w xð ÞLxu½ � ¼
Zs
r

dx½w xð ÞLxv��u: ð8:231Þ

If we use an inner product notation described by (8.88), we get

hvjLxui ¼ hLxvjui: ð8:232Þ

Here let us think of two eigenfunctions wi and wj that belong to an eigenvalue ki
and kj, respectively. That is,

w xð ÞLxwi ¼ kiw xð Þwi and w xð ÞLxwj ¼ kjw xð Þwj: ð8:233Þ

Inserting wi and wj into u and v, respectively, in (8.232), we have

hwjjLxwii ¼ hwjjkiwii ¼ kihwjjwii ¼ k�j hwjjwii ¼ hkjwjjwii ¼ hLxwjjwii: ð8:234Þ

With the second and third equalities, we have used a rule of the inner product
(see Parts I and III). Therefore, we get
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ki � k�j
� �

hwjjwii ¼ 0: ð8:235Þ

Putting i ¼ j in (8.235), we get

ki � k�i
� �hwijwii ¼ 0: ð8:236Þ

An inner product hwijwii vanishes if and only if jwii � 0; see inner product
calculation rules of Sect. 11.1. However, jwii � 0 is not acceptable as a physical
state. Therefore, we must have hwijwii 6¼ 0. Thus, we get

ki � k�i ¼ 0 or ki ¼ k�i : ð8:237Þ

The relation (8.237) obviously indicates that ki is real; i.e., we find that eigen-
values of an Hermitian operator are real. If ki 6¼ kj ¼ k�j , from (8.235) we get

wjjwi

� � ¼ 0: ð8:238Þ

That is, jwji and jwii are orthogonal to each other.
We often encounter related orthogonality relationship between vectors and

functions. We saw several cases in Part I and will see other cases in Part III.
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Part III
Linear Vector Spaces

In this part, we treat vectors and their transformations in linear vector spaces so that
we can address various aspects of mathematical physics systematically but
intuitively. We outline general principles of linear vector spaces mostly from an
algebraic point of view. Starting with abstract definition and description of vectors,
we deal with their transformation in a vector space using a matrix. An inner product
is a central concept in the theory of a linear vector space so that two vectors can be
associated with each other to yield a scalar. Unlike many of books of linear algebra
and linear vector spaces, however, we describe canonical forms of matrices before
considering the inner product. This is because we can treat the topics in light of the
abstract theory of matrices and vector space without a concept of the inner product.
Of the canonical forms of matrices, Jordan canonical form is of paramount
importance. We study how it is constructed providing a tangible example.

In relation to the inner product space, normal operators such as Hermitian
operators and unitary operators frequently appear in quantum mechanics and
electromagnetism. From a general aspect, we revisit the theory of Hermitian
operators that often appeared in both Parts I and II.



Chapter 9
Vectors and Their Transformation

In this chapter, we deal with the theory of finite-dimensional linear vector spaces.
Such vector spaces are spanned by a finite number of linearly independent vectors,
namely basis vectors. In conjunction with developing an abstract concept and
theory, we mention a notion of mapping among mathematical elements. A linear
transformation of a vector is a special kind of mapping. In particular, we focus on
endomorphism within a n-dimensional vector space Vn. Here, the endomorphism is
defined as a linear transformation: Vn ! Vn. The endomorphism is represented by a
(n,n) square matrix. This is most often the case with physical and chemical
applications, when we deal with matrix algebra. In this book, we focus on this type
of transformation.

A non-singular matrix plays an important role in the endomorphism. In this
connection, we consider its inverse matrix and determinant. All these fundamental
concepts supply us with a sufficient basis for better understanding of the theory of
the linear vector spaces. Through these processes, we should be able to get
acquainted with connection between algebraic and analytical approaches and gain a
broad perspective on various aspects of mathematical physics and related fields.

9.1 Vectors

From both fundamental and practical points of view, it is desirable to define linear
vector spaces in an abstract way. Suppose V is a set of elements denoted by a, b, c,
etc., called vectors. The set V is a linear vector space (or simply a vector space), if a
sum aþ b 2 V is defined for any pair of vectors a and b and the elements of V
satisfy the following mathematical relations:

aþ bð Þþ c ¼ aþ bþ cð Þ; ð9:1Þ

aþ b ¼ bþ a; ð9:2Þ
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aþ 0 ¼ a; ð9:3Þ

aþ �að Þ ¼ 0: ð9:4Þ

For the above, 0 is called the zero vector. Furthermore, for a 2 V , ca 2 V is
defined (c is a complex number called a scalar) and we assume the following
relations among vectors and scalars:

cdð Þa ¼ c dað Þ; ð9:5Þ

1a ¼ a; ð9:6Þ

c aþ bð Þ ¼ caþ cb; ð9:7Þ

cþ dð Þa ¼ caþ da: ð9:8Þ

On the basis of the above relations, we can construct the following expression
called a linear combination:

c1a1 þ c2a2 þ � � � þ cnan:

If this linear combination is equated to zero, we obtain

c1a1 þ c2a2 þ � � � þ cnan ¼ 0: ð9:9Þ

If (9.9) holds only in the case where every ci ¼ 0 1� i� nð Þ, the vectors
a1; a2; � � � ; an are said to be linearly independent. In this case, the relation repre-
sented by (9.9) is said to be trivial. If the relation is non-trivial (i.e., 9ci 6¼ 0), those
vectors are said to be linearly dependent.

If in the vector space V the maximum number of linearly independent vectors is
n, V is said to be an n-dimensional vector space and sometimes denoted by Vn. In
this case, any vector x of Vn is expressed uniquely as a linear combination of
linearly independent vectors such that

x ¼ x1a1 þ x2a2 þ � � � þ xnan: ð9:10Þ

Suppose x is denoted by

x ¼ x01a1 þ x02a2 þ � � � þ x0nan: ð9:11Þ

Subtracting both sides of (9.11) from (9.10), we obtain

0 ¼ x1 � x01
� �

a1 þ x2 � x02
� �

a2 þ � � � þ xn � x0n
� �

an: ð9:12Þ

Linear independence of the vectors a1; a2; � � � ; an implies xn � x0n ¼ 0; i:e:; xn ¼
x0n 1� i� nð Þ. These n linearly independent vectors are referred to as basis vectors.
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A vector space that has a finite number of basis vectors is called finite-dimensional;
otherwise, it is infinite dimensional.

Alternatively, we express (9.10) as

x ¼ a1 � � � anð Þ
x1
..
.

xn

0B@
1CA: ð9:13Þ

A set of coordinates

x1
..
.

xn

0B@
1CA is called a column vector (or a numerical vector)

that indicates an “address” of the vector x with respect to the basis vectors
a1; a2; � � � ; an. Any vector in Vn can be expressed as a linear combination of the
basis vectors, and hence, we say that Vn is spanned by a1; a2; � � � ; an. This is
represented as

Vn ¼ Span a1; a2; � � � ; anf g: ð9:14Þ

Let us think of a subset W of Vn (i.e., W � Vn). If the following relations hold
for W , W is said to be a (linear) subspace of Vn.

a; b 2 W ) aþ b 2 W ;

a 2 W ) ca 2 W :
ð9:15Þ

These two relations ensure that the relations of (9.1) to (9.8) hold for W as well.
The dimension of W is equal to or smaller than n. For instance, W ¼
Span a1; a2; � � � ; arf g r� nð Þ is a subspace of Vn. If r ¼ n, W ¼ Vn. Suppose that
there are two subspaces W1 ¼ Span a1f g and W2 ¼ Span a2f g. Note that in this
case, W1 [W2 is not a subspace, because W1 [W2 does not contain a1 þ a2.
However, a set U defined by

U ¼ fx ¼ x1 þ x2; 8x1 2 W1;
8x2 2 W2g ð9:16Þ

is a subspace of Vn. We denote this subspace by W1 þW2.
To show this is in fact a subspace, suppose that x; y 2 W1 þW2. Then, we may

express x ¼ x1 þ x2 and y ¼ y1 þ y2, where x1; y1 2 W1; x2; y2 2 W2. We have
xþ y ¼ x1 þ y1ð Þþ x2 þ y2ð Þ, where x1 þ y1 2 W1 and x2 þ y2 2 W2 because both
W1 and W2 are subspaces. Therefore, xþ y 2 W1 þW2. Meanwhile, with any scalar
c, cx ¼ cx1 þ cx2 2 W1 þW2. By definition (9.15), W1 þW2 is a subspace
accordingly. Suppose here x1 2 W1. Then, x1 ¼ x1 þ 0 2 W1 þW2. Then,
W1 � W1 þW2. Similarly, we have W2 � W1 þW2. Thus, W1 þW2 contains both
W1 and W2. Conversely, let W be an arbitrary subspace that contains both W1 and
W2. Then, we have 8x1 2 W1 � W and 8x2 2 W2 � W and, hence, we have
x1 þ x2 2 W by definition (9.15). But, from (9.16), W1 þW2 ¼ fx1 þ x2; 8x1
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2 W1;
8x2 2 W2}. Hence, W1 þW2 � W . Consequently, any subspace necessarily

contains W1 þW2. This implies that W1 þW2 is the smallest subspace that contains
both W1 and W2.

Example 9.1 Consider a three-dimensional Cartesian space R
3 (Fig. 9.1). We

regard the xy-plane and yz-plane as a subspace W1 and W2, respectively, and
R

3 ¼ W1 þW2. In Fig. 9.1a, a vector OB
�! (in R

3) is expressed as OA
�! þ AB

�! (i.e.,

a sum of a vector in W1 and that in W2). Alternatively, the same vector OB
�! can be

expressed as OA0��! þ A0B
�! . On the other hand, we can designate a subspace in a

different way; i.e., in Fig. 9.1b, the z-axis is chosen for a subspace W3 instead of
W2. We have R

3 ¼ W1 þW3 as well. In this case, however, OB
�! is uniquely

expressed as OB
�! ¼ OP

�! þ PB
�! . Notice that in Fig. 9.1a, W1 \W2 ¼ Span e2f g,

y

x

z

y

x

z

y

x

z

(a)

(b)

Fig. 9.1 Decomposition of a vector in a three-dimensional Cartesian space R3 into two subspaces.
a R

3 ¼ W1 þW2; W1 \W2 ¼ Span e2f g, where e2 is a unit vector in the positive direction of the
y-axis. b R

3 ¼ W1 þW3; W1 \W3 ¼ 0f g
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where e2 is a unit vector in the positive direction of the y-axis. In Fig. 9.1b, on the
other hand, we have W1 \W3 ¼ 0f g.

We can generalize this example to the following theorem.

Theorem 9.1 Let W1 and W2 be subspaces of V and V = W1 + W2. Then, a vector
x in V is uniquely expressed as

x ¼ x1 þ x2; x1 2 W1; x2 2 W2;

if and only if W1 \W2 ¼ 0f g.
Proof Suppose W1 \W2 ¼ 0f g and x ¼ x1 þ x2 ¼ x01 þ x02; x1; x

0
1 2 W1; x2;

x02 2 W2. Then, x1 � x01 ¼ x02 � x2. LHS belongs to W1; and RHS belongs to W2.
Both sides belong to W1 \W2 accordingly. Hence, from the supposition, both the
sides should be equal to a zero vector. Therefore, x1 ¼ x01, x2 ¼ x02. This implies
that x is expressed uniquely as x ¼ x1 þ x2. Conversely, suppose the vector rep-
resentation (x ¼ x1 þ x2) is unique and x 2 W1 \W2: Then, x ¼ xþ 0 ¼
0þ x; x; 0 2 W1 and x; 0 2 W2: Uniqueness of the representation implies that
x ¼ 0. Consequently, W1 \W2 ¼ 0f g follows.

In case W1 \W2 ¼ 0f g, V = W1 + W2 is said to be a direct sum of W1 and W2 or
we say that V is decomposed into a direct sum of W1 and W2. We symbolically
denote this by

V ¼ W1 �W2: ð9:17Þ

In this case, the following equality holds:

dim V ¼ dim W1 þ dim W2; ð9:18Þ

where “dim” stands for dimension of the vector space considered. To prove (9.18),
we suppose that V is a n-dimensional vector space and that W1 and W2 are spanned
by r1 and r2 linearly independent vectors, respectively, such that

W1 ¼ Span e 1ð Þ
1 ; e 1ð Þ

2 ; � � � ; e 1ð Þ
r1

n o
and W2 ¼ Span e 2ð Þ

1 ; e 2ð Þ
2 ; � � � ; e 2ð Þ

r2

n o
:

ð9:19Þ

This is equivalent to that dimension of W1 and W2 is r1 and r2, respectively. If
V ¼ W1 þW2 (here we do not assume that the summation is a direct sum), we have

V ¼ Span e 1ð Þ
1 ; e 1ð Þ

2 ; � � � ; e 1ð Þ
r1 ; e

2ð Þ
1 ; e 2ð Þ

2 ; � � � ; e 2ð Þ
r2

n o
: ð9:20Þ

Then, we have n� r1 þ r2. This is almost trivial. Suppose r1 þ r2\n. Then,
these r1 þ r2ð Þ vectors cannot span V , but we need additional vectors for all vectors
including the additional vectors to span V . Thus, we should have n� r1 þ r2
accordingly. That is,
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dimV � dim W1 þ dim W2: ð9:21Þ

Now, let us assume that V ¼ W1 �W2. Then, e
2ð Þ
i 1� i� r2ð Þ must be linearly

independent of e 1ð Þ
1 ; e 1ð Þ

2 ; � � � ; e 1ð Þ
r1 . If not, e

2ð Þ
i could be described as a linear com-

bination of e 1ð Þ
1 ; e 1ð Þ

2 ; � � � ; e 1ð Þ
r1 . But, this would imply that e 2ð Þ

i 2 W1, i.e.,

e 2ð Þ
i 2 W1 \W2, in contradiction to that we have V ¼ W1 �W2. It is because

W1 \W2 ¼ 0f g by assumption. Likewise, e 1ð Þ
j 1� j� r1ð Þ is linearly independent of

e 2ð Þ
1 ; e 2ð Þ

2 ; � � � ; e 2ð Þ
r2 . Hence, e 1ð Þ

1 ; e 1ð Þ
2 ; � � � ; e 1ð Þ

r1 ; e
2ð Þ
1 ; e 2ð Þ

2 ; � � � ; e 2ð Þ
r2 must be linearly

independent. Thus, n� r1 þ r2. This is because in the vector space V we may well
have additional vector(s) that are independent of the above r1 þ r2ð Þ vectors.
Meanwhile, n� r1 þ r2 from the above. Consequently, we must have n ¼ r1 þ r2.
Thus, we have proven that

V ¼ W1 �W2 ) dim V ¼ dim W1 þ dim W2:

Conversely, suppose n ¼ r1 þ r2. Then, any vector x in V is expressed uniquely as

x ¼ a1e
1ð Þ
1 þ � � � þ ar1e

1ð Þ
r1

� �
þ b1e

2ð Þ
1 þ � � � þ br2e

2ð Þ
r2

� �
: ð9:22Þ

The vector described by the first term is contained in W1 and that described by
the second term in W2. Both the terms are again expressed uniquely. Therefore, we
get V ¼ W1 �W2. This is a proof of

dimV ¼ dim W1 þ dim W2 ) V ¼ W1 �W2:

The above statements are summarized as the following theorem:

Theorem 9.2 Let V be a vector space and let W1 and W2 be subspaces of V . Also,
suppose V ¼ W1 þW2. Then, the following relation holds:

dimV � dim W1 þ dim W2: ð9:21Þ
Furthermore, we have

dim V ¼ dim W1 þ dim W2; ð9:23Þ

if and only if V ¼ W1 �W2.
Theorem 9.2 is readily extended to the case where there are three or more

subspaces. That is, having W1;W2; � � � ;Wm so that V ¼ W1 þW2 � � � þWm, we
obtain the following relation:

dim V � dim W1 þ dim W2 þ � � � þWm: ð9:24Þ

The equality of (9.24) holds if and only if V ¼ W1 �W2 � � � � �Wm.
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In light of Theorem 9.2, Example 9.1 says that 3 ¼ dim R
3\2þ 2 ¼

dim W1 þ dim W2. But, dim R
3 ¼ 2þ 1 ¼ dim W1 þ dim W3. Therefore, we have

R
3 ¼ W1 �W2.

9.2 Linear Transformations of Vectors

In the previous section, we introduced vectors and their calculation rules in a linear
vector space. It is natural and convenient to relate a vector to another vector, as a
function f relates a number (either real or complex) to another number such that
y ¼ f xð Þ, where x and y are certain two numbers. A linear transformation from the
vector space V to another vector space W is a mapping A : V ! W such that

A caþ dbð Þ ¼ cA að Þþ dA bð Þ: ð9:25Þ

We will briefly discuss the concepts of mapping at the end of this section.
It is convenient to define addition of the linear transformations. It is defined as

AþBð Þa ¼ AaþBa; ð9:26Þ

where a is any vector in V.
Since (9.25) is a broad but abstract definition, we begin with a well-known

simple example of rotation of a vector within a xy-plane (Fig. 9.2). We denote an
arbitrary position vector x in the xy-plane by

x ¼ xe1 þ ye2:

¼ e1e2ð Þ x

y

� �
;

ð9:27Þ

Fig. 9.2 Rotation of a vector
within a xy-plane
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where e1 and e2 are unit basis vectors in the xy-plane, and x and y are coordinates of
the vector x in reference to e1 and e2. The expression (9.27) is consistent with
(9.13). The rotation represented in Fig. 9.2 is an example of a linear transformation.
We call this rotation R. According to the definition,

R xe1 þ ye2ð Þ ¼ R xð Þ ¼ xR e1ð Þþ yR e2ð Þ: ð9:28Þ

Putting R xe1 þ ye2ð Þ ¼ x0; R e1ð Þ ¼ e01, and R e2ð Þ ¼ e02;

x0 ¼ xe01 þ ye02;

¼ e01e
0
2

� � x

y

� �
:

ð9:29Þ

From Fig. 9.2, we readily obtain

e01 ¼ e1 cos hþ e2 sin h;

e02 ¼ �e1 sin hþ e2 cos h:
ð9:30Þ

Using a matrix representation,

e01e
0
2

� � ¼ e1e2ð Þ cos h � sin h
sin h cos h

� �
: ð9:31Þ

Substituting (9.30) into (9.29), we obtain

x0 ¼ x cos h� y sin hð Þe1 þ x sin hþ y cos hð Þe2: ð9:32Þ

Meanwhile, x0 can be expressed relative to the original basis vectors e1 and e2.

x0 ¼ x0e1 þ y0e2: ð9:33Þ

Comparing (9.32) and (9.33), uniqueness of the representation ensures that

x0 ¼ x cos h� y sin h;

y0 ¼ x sin hþ y cos h:
ð9:34Þ

Using a matrix representation once again,

x0

y0

� �
¼ cos h � sin h

sin h cos h

� �
x
y

� �
: ð9:35Þ

Further combining (9.29) and (9.31), we get

x0 ¼ R xð Þ ¼ e1e2ð Þ cos h � sin h
sin h cos h

� �
x
y

� �
: ð9:36Þ
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The above example demonstrates that the linear transformation R has a (2,2)
matrix representation shown in (9.36). Moreover, this example obviously shows
that if a vector is expressed as a linear combination of the basis vectors, the
“coordinates” (represented by a column vector) can be transformed as well by the
same matrix.

Regarding an abstract n-dimensional linear vector space Vn, the linear vector
transformation A is given by

A xð Þ ¼ e1 � � � enð Þ
a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

0B@
1CA x1

..

.

xn

0B@
1CA; ð9:37Þ

where e1; e2; � � � ; and en are basis vectors and x1; x2; � � � ; and xn are the corre-

sponding coordinates of a vector x ¼Pn
i¼1

xiei. We assume that the transformation is

a mapping A: Vn ! Vn (i.e., endomorphism). In this case, the transformation is
represented by an (n,n) matrix. Note that the matrix operates on the basis vectors
from the right and that it operates on the coordinates (i.e., a column vector) from the
left. In (9.37), we often omit a parenthesis to simply write Ax.

Here we mention matrix notation for later convenience. We often identify a
linear vector transformation with its representation matrix and denote both trans-
formation and matrix by A. On this occasion, we write

A ¼
a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

0B@
1CA; A ¼ ðAÞij ¼ aij

� �
; etc:; ð9:38Þ

where with the second expression ðAÞij and aij
� �

represent the matrix A itself; for

we frequently use indexed matrix notations such as A�1, Ay, eA. The notation (9.38)
can conveniently be used in such cases. Note moreover that aij represents the matrix
A as well.

Equation (9.37) has duality such that the matrix A operates either on the basis
vectors or coordinates. This can explicitly be written as

A xð Þ ¼ e1 � � � enð Þ
a11 � � � a1n

..

. . .
. ..

.

an1 � � � ann

0BB@
1CCA

2664
3775

x1

..

.

xn

0BB@
1CCA

¼ e1 � � � enð Þ
a11 � � � a1n

..

. . .
. ..

.

an1 � � � ann

0BB@
1CCA

x1

..

.

xn

0BB@
1CCA

2664
3775:
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That is, we assume the associative law with the above expression. Making
summation representation, we have

A xð Þ ¼
Xn
k¼1

ekak1 � � �
Xn
k¼1

ekakn

 ! x1

..

.

xn

0BB@
1CCA ¼ e1 � � � enð Þ

Pn
l¼1

a1lxl

..

.Pn
l¼1

anlxl

0BBBBBB@

1CCCCCCA:

¼
Xn
k¼1

Xn
l¼1

ekaklxl

¼
Xn
l¼1

Xn
k¼1

ekakl

 !
xl ¼

Xn
k¼1

Xn
l¼1

aklxl

 !
ek:

ð9:39Þ

That is, the above equation can be viewed in either of two ways, i.e., coordinate
transformation with fix vectors or vector transformation with fixed coordinates.

Also, Eq. (9.37) can formally be written as

A xð Þ ¼ e1 � � � enð ÞA
x1
..
.

xn

0B@
1CA ¼ e1A � � � enAð Þ

x1
..
.

xn

0B@
1CA; ð9:40Þ

where we assumed that the distributive law holds with operation of A on e1 � � � enð Þ.
Meanwhile, if in (9.37) we put xi ¼ 1; xj ¼ 0 j 6¼ ið Þ, from (9.39) we get

A eið Þ ¼
Xn
k¼1

ekaki:

Therefore, (9.39) can be rewritten as

A xð Þ ¼ A e1ð Þ � � � A enð Þð Þ
x1
..
.

xn

0B@
1CA: ð9:41Þ

Since xi 1� i� nð Þ can arbitrarily be chosen, comparing (9.40) and (9.41) we
have

eiA ¼ A eið Þ 1� i� nð Þ: ð9:42Þ

The matrix representation is unique in reference to the same basis vectors.
Suppose that there is another matrix representation of the transformation A such that
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A xð Þ ¼ e1 � � � enð Þ
a011 � � � a01n
..
. . .

. ..
.

a0n1 � � � a0nn

0B@
1CA x1

..

.

xn

0B@
1CA: ð9:43Þ

Subtracting (9.43) from (9.37), we obtain

e1 � � � enð Þ
a11 � � � a1n

..

. . .
. ..

.

an1 � � � ann

0BB@
1CCA

x1

..

.

xn

0BB@
1CCA�

a011 � � � a01n
..
. . .

. ..
.

a0n1 � � � a0nn

0BB@
1CCA

x1

..

.

xn

0BB@
1CCA

2664
3775

¼ e1 � � � enð Þ

Pn
k¼1

ða1k � a01kÞxk

..

.Pn
k¼1

ðank � a0nkÞxk

0BBBBBB@

1CCCCCCA ¼ 0:

On the basis of the linear dependence of the basis vectors,
Pn

k¼1ðaik � a0ikÞxk ¼
0 1� i� nð Þ: This relationship holds for any arbitrarily and independently chosen
complex numbers xi 1� i� nð Þ. Therefore, we must have aik ¼ a0ik 1� i; k� nð Þ,
meaning that the matrix representation of A is unique with regard to fixed basis
vectors.

Nonetheless, if a set of vectors e1; e2; � � � ; and en does not constitute basis
vectors (i.e., those vectors are linearly dependent), the aforementioned uniqueness
of the matrix representation loses its meaning. For instance, in V2 take vectors e1
and e2 such that e1 ¼ e2 (i.e., the two vectors are linearly dependent) and let the

transformation matrix be B ¼ 1 0
0 2

� �
. This means that e1 should be e1 after the

transformation. At the same time, the vector e2 ¼ e1ð Þ should be converted to
2e2 ¼ 2e1ð Þ. It is impossible except for the case of e1 ¼ e2 ¼ 0. The above matrix
B in its own right is an object of matrix algebra, of course.

Putting a = b = 0 and c = d = 1 in the definition of (9.25) for the linear
transformation, we obtain

A 0ð Þ ¼ A 0ð ÞþA 0ð Þ:

Combining this relation with (9.4) gives

A 0ð Þ ¼ 0: ð9:44Þ

Then do we have a vector u 6¼ 0 for which A uð Þ ¼ 0? An answer is yes. This is

because if a (2,2)-matrix of
1 0
0 0

� �
is chosen for R, we get a linear transformation

such that
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e01e
0
2

� � ¼ e1e2ð Þ 1 0
0 0

� �
¼ e10ð Þ:

That is, we have R e2ð Þ ¼ 0:
In general, vectors x 2 Vð Þ satisfying A xð Þ ¼ 0 form a subspace in a vector

space V. This is because A xð Þ ¼ 0 and A yð Þ ¼ 0 ) A xþ yð Þ ¼ A xð ÞþA yð Þ ¼ 0;
A cxð Þ ¼ cA xð Þ ¼ 0: We call this subspace of a maximum dimension a null-space
and represent it as Ker A, where Ker stands for “kernel.” In other words,
Ker A ¼ A�1 0ð Þ. Note that this symbolic notation does not ensure the existence of
the inverse transformation A�1 (vide infra) but represents a set comprising elements
x that satisfy A xð Þ ¼ 0. In the above example, Ker R = Span{e2}.

A(Vn) (here Vn is a vector space considered and we assume that A is an endo-
morphism of Vn) also forms a subspace in Vn. In fact, for any x, y 2 Vn; we have
A xð Þ;A yð Þ 2 A Vnð Þ ) A xð ÞþA yð Þ ¼ A xþ yð Þ 2 A Vnð Þ; cA xð Þ ¼ A cxð Þ 2 A Vnð Þ:
Obviously, A Vnð Þ � Vn. The subspace A Vnð Þ is said to be an image of the trans-
formation A and sometimes denoted by Im A. We have a so-called dimension
theorem expressed as follows:

Theorem 9.3 Dimension theorem Let Vn be a linear vector space of dimension n.
Also, let A be an endomorphism: Vn ! Vn. Then, we have

dimVn ¼ dim A Vnð Þþ dimKer A: ð9:45Þ

The number of dim A Vnð Þ is said to be a rank of the linear transformation A.
That is, we write

dim A Vnð Þ ¼ rankA:

Also, the number of dim Ker A is said to be a nullity of the linear transfor-
mation A. That is, we have

dim Ker A ¼ nullity A:

Thus, (9.45) can be written succinctly as

dim Vn ¼ rankAþ nullityA:

Proof Let e1; e2; � � � ; and en be basis vectors of Vn. First, assume

A e1ð Þ ¼ A e2ð Þ ¼ � � � ¼ A enð Þ ¼ 0:

This implies that nullity A ¼ n. Then, A
Pn

i¼1 xiei
� � ¼Pn

i¼1 xiAðeiÞ ¼ 0. Since
xi is arbitrarily chosen, the expression means that A xð Þ ¼ 0 for 8x 2 Vn. This
implies A ¼ 0. That is, rankA ¼ 0. Thus, (9.45) certainly holds.
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To proceed with proof of the theorem, we think of a linear combinationPn
i¼1 ciei. Next, assume that Ker A ¼ Span e1; e2; � � � ; emf g m\nð Þ; dimKer A ¼ m.

After A is operated on the above linear combination, we are left withPn
i¼mþ 1 ciAðeiÞ. We put

Xn
i¼1

ciAðeiÞ ¼
Xn

i¼mþ 1

ciAðeiÞ ¼ 0: ð9:46Þ

Suppose that the n� mð Þ vectors A eið Þ mþ 1� i� nð Þ are linearly dependent.
Then without loss of generality, we can assume cmþ 1 6¼ 0. Dividing (9.46) by cmþ 1;
we obtain

Aðemþ 1Þþ cmþ 2

Cmþ 1
Aðemþ 2Þþ � � � þ cn

Cmþ 1
AðenÞ ¼ 0;

Aðemþ 1ÞþAðcmþ 2

Cmþ 1
emþ 2Þþ � � � þAð cn

Cmþ 1
enÞ ¼ 0;

Aðemþ 1 þ cmþ 2

Cmþ 1
emþ 2 þ � � � þ cn

Cmþ 1
enÞ ¼ 0:

Meanwhile, the mþ 1ð Þ vectors e1; e2; � � � ; em and emþ 1 þ cmþ 2
Cmþ 1

emþ 2 þ � � �
þ cn

Cmþ 1
en are linearly independent, because e1; e2; � � � ; and en are basis vectors of

Vn. This would imply that the dimension of Ker A is mþ 1, but this is in contra-
diction to Ker A ¼ Span e1; e2; � � � ; emf g. Thus, the n� mð Þ vectors
A eið Þ mþ 1� i� nð Þ should be linearly independent.

Let Vn�m be described as

Vn�m ¼ Span A emþ 1ð Þ;Aðemþ 2Þ; � � � ;AðenÞf g: ð9:47Þ

Then, Vn�m is a subspace of Vn, and so dim A Vnð Þ� n� m ¼ dim Vn�m.
Meanwhile, from (9.46), we have

A
Xn

i¼mþ 1

ciei

 !
¼ 0:

From the above discussion, however, this relation holds if and only if
cmþ 1 ¼ � � � ¼ cn ¼ 0. This implies that Ker A\Vn�m ¼ 0f g. Then, we have

Vn�m þKer A ¼ Vn�m � Ker A:

Meanwhile, from Theorem 9.2, we have

dim Vn�m � Ker A½ � ¼ dim Vn�m þ dim Ker A ¼ n� mð Þþ m ¼ n ¼ dim Vn:

Thus, we must have dim A Vnð Þ ¼ n� m ¼ dim Vn�m. Since Vn�m is a subspace
of Vn and Vn�m � A Vnð Þ from (9.47), Vn�m ¼ A Vnð Þ.
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To conclude, we get

dim A Vnð Þþ dimKer A ¼ dim Vn;

Vn ¼ A Vnð Þ � Ker A:
ð9:48Þ

This completes the proof.
Comparing Theorem 9.3 with Theorem 9.2, we find that Theorem 9.3 is a special

case of Theorem 9.2. Equations (9.45) and (9.48) play an important role in the
theory of linear vector space.

As an exercise, we have a following example:

Example 9.2 Let e1; e2; e3; e4 be basis vectors of V4. Let A be an endomorphism of
V4 and described by

A ¼
1
0
1

0 1 0
1 1 0
0 1 0

0 1 1 0

0B@
1CA:

We have

e1; e2; e3; e4ð Þ
1
0
1

0 1 0
1 1 0
0 1 0

0 1 1 0

0B@
1CA ¼ e1 þ e3; e2 þ e4; e1 þ e2 þ e3 þ e4; 0ð Þ:

That is,

A e1ð Þ ¼ e1 þ e3; A e2ð Þ ¼ e2 þ e4; A e3ð Þ ¼ e1 þ e2 þ e3 þ e4;

A e4ð Þ ¼ 0:

We have

A �e1 � e2 þ e3ð Þ ¼ �A e1ð Þ � A e2ð ÞþA e3ð Þ ¼ 0:

Then, we find

A V4� � ¼ Span e1 þ e3; e2 þ e4f g Ker A ¼ Span �e1 � e2 þ e3; e4f g: ð9:49Þ

For any x 2 Vn, using scalar ci 1� i� 4ð Þ, we have

x ¼ c1e1 þ c2e2 þ c3e3 þ c2e4

¼ 1
2

c1 þ c3ð Þ e1 þ e3ð Þþ 1
2

2c2 þ c3 � c1ð Þ e2 þ e4ð Þ

þ 1
2

c3 � c1ð Þ �e1 � e2 þ e3ð Þþ 1
2

c1 � 2c2 � c3 þ 2c4ð Þe4:
ð9:50Þ
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Thus, x has been uniquely represented as (9.50) with respect to basis vectors
e1 þ e3ð Þ, e2 þ e4ð Þ, �e1 � e2 þ e3ð Þ, and e4. The linear independence of these
vectors can easily be checked by equating (9.50) with zero. We also confirm that

V4 ¼ A V4� �� Ker A:

Linear transformation is a kind of mapping. Figure 9.3 depicts the concept of
mapping. Suppose two sets of X and Y. The mapping f is a correspondence between
an element x 2 Xð Þ and y 2 Yð Þ. The set f Xð Þ � Yð Þ is said to be a range of f . (i) The
mapping f is injective: If x1 6¼ x2 ) f x1ð Þ 6¼ f x2ð Þ. (ii) The mapping is surjective:
f Xð Þ ¼ Y . For 8y 2 Y corresponding element(s) x 2 X exist(s). (iii) The mapping is
bijective: If the mapping f is both injective and surjective, it is said to be bijective
(or reversible mapping or invertible mapping). A mapping that is not invertible is
said to be a non-invertible mapping.

If the mapping f is bijective, a unique element 9x 2 X exists for 8y 2 Y such that
f xð Þ ¼ y: In terms of solving an equation, we say that with any given y we can find
a unique solution x to the equation f xð Þ ¼ y. In this case, x is said to be an inverse
element to y and this is denoted by x ¼ f�1 yð Þ. The mapping f�1 is called an
inverse mapping. If the linear transformation is relevant, the mapping is said to be
an inverse transformation.

Here we focus on a case where both X and Y form a vector space and the
mapping is an endomorphism. Regarding the linear transformation A: Vn ! Vn

(i.e., an endomorphism of Vn), we have a following important theorem:

Theorem 9.4 Let A: Vn ! Vn be an endomorphism of Vn. A necessary and
sufficient condition for the existence of an inverse transformation to A (i.e., A�1) is
A�1 0ð Þ ¼ 0f g.
Proof Suppose A�1 0ð Þ ¼ 0f g. Then A x1ð Þ ¼ A x2ð Þ , A x1 � x2ð Þ ¼ 0 , x1
�x2 ¼ 0; i.e., x1 ¼ x2. This implies that the transformation A is injective. Other
way round, suppose that A is injective. If A�1 0ð Þ 6¼ 0f g, there should be b 6¼ 0ð Þ
with which A bð Þ ¼ 0. This is, however, in contradiction to that A is injective. Then,
we must have A�1 0ð Þ ¼ 0f g. Thus, A�1 0ð Þ ¼ 0f g , A is injective.

Fig. 9.3 Concept of mapping
from a set X to another set Y
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Meanwhile, A�1 0ð Þ ¼ 0f g , dim A�1 0ð Þ ¼ 0 , dim A Vnð Þ ¼ n (due to
Theorem 9.3); i.e., A Vnð Þ ¼ Vn. Then A�1 0ð Þ ¼ 0f g , A is surjective. Combining
this with the above-mentioned statement, we have A�1 0ð Þ ¼ 0f g , A is bijective.
This statement is equivalent to that an inverse transformation exists.

In the proof of Theorem 9.4, to show that A�1 0ð Þ ¼ 0f g , A is surjective, we
have used the dimension theorem (Theorem 9.3), for which the relevant vector
space is finite (i.e., n-dimensional). In other words, that A is surjective is equivalent
to that A is injective with a finite-dimensional vector space, and vice versa. To
conclude, so far as we are thinking of the endomorphism of a finite-dimensional
vector space, if we can show it is either injective or surjective, the other necessarily
follows and, hence, the mapping is bijective.

9.3 Inverse Matrices and Determinants

The existence of the inverse transformation plays a particularly important role in the
theory of linear vector spaces. The inverse transformation is a linear transformation.
Let x1 ¼ A�1 y1ð Þ; x2 ¼ A�1 y2ð Þ. Also, we have A c1x1 þ c2x2ð Þ ¼ c1A x1ð Þþ c2A x2ð Þ
¼ c1y1 þ c2y2. Thus, c1x1 þ c2x2 ¼ A�1 c1y1 þ c2y2ð Þ ¼ c1A�1 y1ð Þþ c2A�1 y2ð Þ,
showing that A�1 is a linear transformation. As already mentioned, a matrix that
represents a linear transformation A is uniquely determined with respect to fixed
basis vectors. This should be the case with A�1 accordingly. We have an important
theorem for this.

Theorem 9.5 [1] The necessary and sufficient condition for the matrix A�1 that
represents the inverse transformation to A to exist is that det A 6¼ 0 (“det” means a
determinant). Here the matrix A represents the linear transformation A. The matrix
A�1 is uniquely determined and given by

ðA�1Þij ¼ ð�1Þiþ jðMÞji=ðdet AÞ; ð9:51Þ

where ðMÞij is the minor of det A corresponding to the element Aij.

Proof First, we suppose that the matrix A�1 exists so that it satisfies the following
relation

Xn
k¼1

ðA�1ÞikðAÞkj ¼ dij 1� i; j� nð Þ ð9:52Þ

On this condition, suppose that det A ¼ 0. From the properties of determinants,
this implies that one of the columns of A (let it be the mth column) can be expressed
as a linear combination of the other columns of A such that
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Akm ¼
X
j6¼m

Akjcj: ð9:53Þ

Putting i ¼ m in (9.52), multiplying by cj, and summing over j 6¼ m, we get

Xn
k¼1

ðA�1Þmk
X
j6¼m

Akjcj ¼
X
j6¼m

dmjcj ¼ 0: ð9:54Þ

From (9.52) and (9.53), on the other hand, we obtain

Xn
k¼1

ðA�1Þmk
X
j6¼m

Akjcj ¼ ðA�1ÞikðAÞkm
	 


i¼m¼ 1: ð9:55Þ

There is the inconsistency between (9.54) and (9.55). The inconsistency resulted
from the supposition that the matrix A�1 exists. Therefore, we conclude that if
det A ¼ 0, A�1 does not exist. Taking contraposition to the above statement, we say
that if A�1 exists, det A 6¼ 0. Suppose next that det A 6¼ 0. In this case, on the basis
of the well-established result, a unique A�1 exists and it is given by (9.51). This
completes the proof.

Summarizing the characteristics of the endomorphism within a
finite-dimensional vector space, we have

injective , surjective , bijective , detA 6¼ 0.
Let a matrix A be

A ¼
a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

0B@
1CA:

The determinant of a matrixA is denoted by det A or by

a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

�������
�������:

The determinant is defined as

detA 	
X

r¼ 1 2 � � � n
i1 i2 � � � in

� � e rð Þa1i1a2i2anin ; ð9:56Þ

where r means permutation among 1, 2, …, n and e rð Þ denotes a sign of þ (in the
case of even permutations) or � (for odd permutations).
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We deal with triangle matrices for future discussion. It is denoted by

,*
0

ð9:57Þ

where an asterisk (*) means that upper right off-diagonal elements can take any
complex numbers (including zero). A large zero shows that all the lower left
off-diagonal elements are zero. Its determinant is given by

det T ¼ a11a22 � � � ann: ð9:58Þ

In fact, focusing on anin ; we notice that only if in ¼ n, anin does not vanish. Then,
we get

det A 	
X

r¼ 1 2 � � � n� 1
i1 i2 � � � in�1

� � e rð Þa1i1a2i2an�1in�1ann: ð9:59Þ

Repeating this process, we finally obtain (9.58).
The endomorphic linear transformation can be described succinctly as

A xð Þ ¼ y; ð9:60Þ

where we have vectors such that x ¼Pn
i¼1 xiei and y ¼Pn

i¼1 yiei. In reference to
the same set of basis vectors e1 � � � enð Þ and using a matrix representation, we have

A xð Þ ¼ e1 � � � enð Þ
a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

0B@
1CA x1

..

.

xn

0B@
1CA ¼ e1 � � � enð Þ

y1
..
.

yn

0B@
1CA: ð9:61Þ

From the unique representation of a vector in reference to the basis vectors,
(9.61) is simply expressed as

a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

0B@
1CA x1

..

.

xn

0B@
1CA ¼

y1
..
.

yn

0B@
1CA: ð9:62Þ

With a shorthand notation, we have

yi ¼
Xn
k¼1

aikxk 1� i� nð Þ: ð9:63Þ
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From the above discussion, for the linear transformation A to be bijective, det
A 6¼ 0. In terms of the system of linear equations, we say that for (9.62) to have a

unique solution

x1
..
.

xn

0B@
1CA for a given

y1
..
.

yn

0B@
1CA, we must have det A 6¼ 0. Conversely,

det A ¼ 0 is equivalent to that (9.62) has indefinite solutions or has no solution. As
far as the matrix algebra is concerned, (9.61) is symbolically described by omitting
a parenthesis as

Ax ¼ y: ð9:64Þ

However, when the vector transformation is explicitly taken into account, the
full representation of (9.61) should be borne in mind.

The relations (9.60) and (9.64) can be considered as a set of simultaneous
equations. A necessary and sufficient condition for (9.64) to have a unique solution
x for a given y is det A 6¼ 0. In that case, the solution x of (9.64) can be sym-
bolically expressed as

x ¼ A�1y; ð9:65Þ

where A�1 represents an inverse matrix of A.

Example 9.3 Think of three-dimensional rotation by h in R
3 around the z-axis. The

relevant transformation matrix is

R ¼
cos h � sin h 0
sin h cos h 0
0 0 1

0@ 1A:

As det R ¼ 1 6¼ 0, the transformation is bijective. This means that for 8y 2 R
3;

there is always a corresponding x 2 R
3. This x can be found by solving Rx ¼ y;

i.e., x ¼ R�1y. Putting x ¼ xe1 þ ye2 þ ze3 and y ¼ x0e1 þ y0e2 þ z0e3, a matrix
representation is given by

x
y
z

0@ 1A ¼ R�1
x0

y0

z0

0@ 1A ¼
cos h sin h 0
� sin h cos h 0
0 0 1

0@ 1A x0

y0

z0

0@ 1A:

Thus, x can be obtained by rotating y by �h.

Example 9.4 Think of a following matrix that represents a linear transformation P:

P ¼
1 0 0
0
0

1 0
0 0

0@ 1A: ð9:66Þ
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This matrix transforms a vector x ¼ xe1 þ ye2 þ ze3 into y ¼ xe1 þ ye2 as
follows:

1 0 0
0
0

1 0
0 0

0@ 1A x
y
z

0@ 1A ¼
x
y
0

0@ 1A: ð9:67Þ

In this example, we are thinking of an endomorphism P: R
3 ! R

3.
Geometrically, it can be viewed as in Fig. 9.4. Let us think of (9.67) from a point of
view of solving a system of linear equations and newly consider the next equation.
In other words, we are thinking of finding x, y, and z with given a, b, and c in (9.68).

1 0 0
0
0

1 0
0 0

0@ 1A x
y
z

0@ 1A ¼
a
b
c

0@ 1A: ð9:68Þ

If c = 0, we can readily find a solution of x = a, y = b, but z can be any (complex)
number; we have thus indefinite solutions. If c 6¼ 0, we have no solution. The former
situation reflects the fact that the transformation represented by P is not injective.
Meanwhile, the latter reflects the fact that the transformation is not surjective.
Remember that as det P ¼ 0, the transformation is not injective or surjective.

9.4 Basis Vectors and Their Transformations

In the previous sections, we show that a vector is uniquely represented as a column
vector in reference to a set of the fixed basis vectors. The representation, however,
will be changed under a different set of basis vectors.

First, let us think of a linear transformation of a set of basis vectors
e1; e2; � � � ; and en. The transformation matrix A representing a linear transforma-
tion A is defined as follows:

Fig. 9.4 Example of an
endomorphism P: R3 ! R

3
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A ¼
a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

0B@
1CA:

Notice here that we often denote both a linear transformation and its corre-
sponding matrix by the same character. After the transformation, suppose that the
resulting vectors are given by e01; e

0
2; and e0n. This is explicitly described as

e1 � � � enð Þ
a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

0B@
1CA ¼ e01 � � � e0n

� �
: ð9:69Þ

With a shorthand notation, we have

e0i ¼
Xn
k¼1

akiek 1� i� nð Þ: ð9:70Þ

Care should be taken not to confuse (9.70) with (9.63). Here, a set of vectors
e01; e

0
2; and e0n may or may not be linearly independent. Let us operate both sides

from the left on

x1
..
.

xn

0B@
1CA and equate both the sides to zero. That is,

e1 � � � enð Þ
a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

0B@
1CA x1

..

.

xn

0B@
1CA ¼ e01 � � � e0n

� � x1
..
.

xn

0B@
1CA ¼ 0:

Since e1; e2; � � � ; and en are the basis vectors, we get

a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

0B@
1CA x1

..

.

xn

0B@
1CA ¼ 0: ð9:71Þ

Meanwhile, we must have

x1
..
.

xn

0B@
1CA ¼ 0 so that e01; e

0
2; and e0n can be linearly

independent (i.e., so as to be a set of basis vectors). But this means that (9.71) has
such a unique (and trivial) solution and, hence, det A 6¼ 0. If conversely det A 6¼ 0,
(9.71) has a unique trivial solution and e01; e

0
2; and e0n are linearly independent.

Thus, a necessary and sufficient condition for e01; e
0
2 and e0n to be a set of basis

vectors is det A 6¼ 0. If det A ¼ 0, (9.71) has indefinite solutions (including a trivial
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solution) and e01; e
0
2; and e0n are linearly dependent, and vice versa. In case

det A 6¼ 0, an inverse matrix A�1 exists and so we have

e1 � � � enð Þ ¼ e01 � � � e0n
� �

A�1: ð9:72Þ

In the previous steps, we see how the linear transformation (and the corre-
sponding matrix representation) converts a set of basis vectors e1 � � � enð Þ to another
set of basis vectors e01 � � � e0n

� �
. Is this possible then to find a suitable transformation

between two sets of arbitrarily chosen basis vectors? The answer is yes. This is
because any vector can be expressed uniquely by a linear combination of any set of
basis vectors. A whole array of such linear combinations uniquely defines a
transformation matrix between the two sets of basis vectors as expressed in (9.69)
and (9.72). The matrix has nonzero determinant and has an inverse matrix.
A concept of the transformation between basis vectors is important and very often
used in various fields of natural science.

Example 9.5 We revisit Example 9.2. The relation (9.49) tells us that the basis
vectors of A V4ð Þ and those of KerA span V4 in total. Therefore, in light of the above
argument, there should be a linear transformation R between the two sets of vectors;
i.e., e1; e2; e3; e4 and e1 þ e3; e2 þ e4;�e1 � e2 þ e3; e4. Moreover, the matrix R
associated with the linear transformation must be non-singular (i.e., det R 6¼ 0Þ. In
fact, we find that R is expressed as

R ¼
1
0
1

0 �1 0
1 �1 0
0 1 0

0 1 0 1

0B@
1CA:

This is because we have a following relation between the two sets of basis
vectors:

e1; e2; e3; e4ð Þ
1
0
1

0 �1 0
1 �1 0
0 1 0

0 1 0 1

0B@
1CA ¼ e1 þ e3; e2 þ e4;�e1 � e2 þ e3; e4ð Þ:

We have det R ¼ 2 6¼ 0 as expected.
Next, let us consider successive linear transformations of vectors. Again, we

assume that the transformations are endomorphism: Vn ! Vn. We have to take into
account transformations of basis vectors along with the targeted vectors. First, we
choose a transformation by a non-singular matrix (having a nonzero determinant)
for the subsequent transformation to have a unique matrix representation (vide
supra). The vector transformation by P is expressed as
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P xð Þ ¼ e1 � � � enð Þ
p11 � � � p1n
..
. . .

. ..
.

pn1 � � � pnn

0B@
1CA x1

..

.

xn

0B@
1CA; ð9:73Þ

where the non-singular matrix P represents the transformation P. Notice here that
the transformation and its matrix are represented by the same P. As mentioned in
Sect. 9.2, the matrix P can be operated either from the right on the basis vectors or
from the left on the column vector. We explicitly write

P xð Þ ¼ e1 � � � enð Þ
p11 � � � p1n

..

. . .
. ..

.

pn1 � � � pnn

0BB@
1CCA

2664
3775

x1

..

.

xn

0BB@
1CCA;

¼ e01 � � � e0n
� � x1

..

.

xn

0BB@
1CCA;

ð9:74Þ

where e01 � � � e0n
� � ¼ e1 � � � enð ÞP [here P is the non-singular matrix defined in

(9.73)]. Alternatively, we have

P xð Þ ¼ e1 � � � enð Þ
p11 � � � p1n

..

. . .
. ..

.

pn1 � � � pnn

0BB@
1CCA

x1

..

.

xn

0BB@
1CCA

2664
3775:

¼ e1 � � � enð Þ
x01
..
.

x0n

0BB@
1CCA;

ð9:75Þ

where

x01
..
.

x0n

0B@
1CA ¼

p11 � � � p1n
..
. . .

. ..
.

pn1 � � � pnn

0B@
1CA x1

..

.

xn

0B@
1CA: ð9:76Þ

Equation (9.75) gives a column vector representation regarding the vector that
has been obtained by the transformation P and is viewed in reference to the basis
vectors e1 � � � enð Þ. Combining (9.74) and (9.75), we get
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P xð Þ ¼ e01 � � � e0n
� � x1

..

.

xn

0B@
1CA ¼ e1 � � � enð Þ

x01
..
.

x0n

0B@
1CA: ð9:77Þ

We further make another linear transformation A : Vn ! Vn. In this case, a
corresponding matrix A may be non-singular (i.e., detA 6¼ 0) or singular
(detA ¼ 0). We have to distinguish the matrix representations of the two cases. It is
because the matrix representations are uniquely defined in reference to an individual
set of basis vectors; see (9.37) and (9.43). Let us denote the matrices AO and A0 with
respect to the basis vectors e1 � � � enð Þ and e01 � � � e0n

� �
, respectively. Then, A P xð Þ½ �

can be described in two different ways as follows:

A P xð Þ½ � ¼ e01 � � � e0n
� �

A0
x1
..
.

xn

0B@
1CA ¼ e1 � � � enð ÞAO

x01
..
.

x0n

0B@
1CA: ð9:78Þ

This can be rewritten in reference to a linearly independent set of vectors
e1; � � � ; en as

A P xð Þ½ � ¼ e1 � � � enð ÞPA0½ �
x1
..
.

xn

0B@
1CA ¼ e1 � � � enð Þ AOP

x1
..
.

xn

0B@
1CA

264
375: ð9:79Þ

As (9.79) is described for a vector x ¼Pn
i¼1 xiei arbitrarily chosen in Vn, we get

PA0 ¼ AOP: ð9:80Þ

Since P is non-singular, we finally obtain

A0 ¼ P�1AOP: ð9:81Þ

We can see (9.79) from a point of view of successive linear transformations.
When the subsequent operation is viewed in reference to the basis vectors e01; � � � ; e0n
newly reached by the precedent transformation, we make it a rule to write the
relevant subsequent operator A0 from the right. In the case, where the subsequent
operation is viewed in reference to the original basis vectors, on the other hand, we
write the subsequent operator AO from the left. Further, discussion and examples
can be seen in Part IV.

We see (9.81) in a different manner. Suppose we have

A xð Þ ¼ e1 � � � enð ÞAO

x1
..
.

xn

0B@
1CA: ð9:82Þ

322 9 Vectors and Their Transformation



Note that since the transformation A has been performed in reference to the basis
vectors e1 � � � enð Þ, AO should be used for the matrix representation. This is rewritten
as

A xð Þ ¼ e1 � � � enð ÞPP�1AOPP
�1

x1
..
.

xn

0B@
1CA: ð9:83Þ

Meanwhile, any vectorx in Vn can be written as

x ¼ e1 � � � enð Þ
x1

..

.

xn

0BB@
1CCA

¼ e1 � � � enð ÞPP�1

x1

..

.

xn

0BB@
1CCA ¼ e01 � � � e0n

� �
P�1

x1

..

.

xn

0BB@
1CCA ¼ e01 � � � e0n

� � ex1
..
.

exn
0BB@

1CCA
ð9:84Þ

In (9.84), we put

e1 � � � enð ÞP ¼ e01 � � � e0n
� �

; P�1

x1
..
.

xn

0B@
1CA ¼

ex1
..
.

exn
0B@

1CA: ð9:85Þ

Equation (9.84) give a column vector representation regarding the same vector x
viewed in reference to the basis set of vectors e1; � � � ; en or e01; � � � ; e0n.
Equation (9.85) should not be confused with (9.76). That is, (9.76) relates the two

coordinates

x1
..
.

xn

0B@
1CA and

x01
..
.

x0n

0B@
1CA of different vectors before and after the transfor-

mation viewed in reference to the same set of basis vectors. The relation (9.85), on

the other hand, relates two coordinates

x1
..
.

xn

0B@
1CA and

ex1
..
.

exn
0B@

1CA of the same vector

viewed in reference to different set of basis vectors. Thus, from (9.83), we have

A xð Þ ¼ e01 � � � e0n
� �

P�1AOP

ex1
..
.

exn
0B@

1CA: ð9:86Þ

9.4 Basis Vectors and Their Transformations 323



Meanwhile, viewing the transformation A in reference to the basis vectors
e01 � � � e0n
� �

, we have

A xð Þ ¼ e01 � � � e0n
� �

A0
ex1
..
.

exn
0B@

1CA: ð9:87Þ

Equating (9.86) and (9.87),

A0 ¼ P�1AOP: ð9:88Þ

Thus, (9.81) is recovered.
The relations expressed by (9.81) and (9.88) are called a similarity transfor-

mation on A. The matrices A0 and A0 are said to be similar to each other. As
mentioned earlier, if A0 (and hence A0) is non-singular, the linear transformation A
produces a set of basis vectors other than e01; � � � ; e0n, say e001; � � � ; e00n . We write this
symbolically as

e1 � � � enð ÞPA ¼ e01 � � � e0n
� �

A ¼ e001 � � � e00n
� �

: ð9:89Þ

Therefore, such A defines successive transformations of the basis vectors in
conjunction with P defined in (9.73). The successive transformations and resulting
basis vectors supply us with important applications in the field of group theory.
Topics will be dealt with in Part IV.

Reference
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Chapter 10
Canonical Forms of Matrices

In Sect. 9.4, we saw that the transformation matrices are altered depending on the
basis vectors we choose. Then a following question arises. Can we convert a
(transformation) matrix to as simple a form as possible by similarity transformation
(s)? In Sect. 9.4, we have also shown that if we have two sets of basis vectors in a
linear vector space Vn we can always find a non-singular transformation matrix
between the two. In conjunction with the transformation of the basis vectors, the
matrix undergoes similarity transformation. It is our task in this chapter to find a
simple form or a specific form (i.e., canonical form) of a matrix as a result of the
similarity transformation. For this purpose, we should first find eigenvalue(s) and
corresponding eigenvector(s) of the matrix. Depending upon the nature of matrices,
we get various canonical forms of matrices such as a triangle matrix and a diagonal
matrix. Regarding any form of matrices, we can treat these matrices under a unified
form called the Jordan canonical form.

10.1 Eigenvalues and Eigenvectors

An eigenvalue problem is one of important subjects of the theory of linear vector
spaces. Let A be a linear transformation on Vn. The resulting matrix gets to several
different kinds of canonical forms of matrices. A typical example is a diagonal
matrix. To reach a satisfactory answer, we start with so-called an eigenvalue
problem.

Suppose that after the transformation of x we have

AðxÞ ¼ ax, ð10:1Þ

where a is a certain (complex) number. Then we say that a is an eigenvalue and that
x is an eigenvector that corresponds to the eigenvalue a. Using a notation of (9.37)
of Sect. 9.2, we have

© Springer Nature Singapore Pte Ltd. 2018
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AðxÞ ¼ e1. . .enð Þ
a11 . . . a1n
..
. . .

. ..
.

an1 . . . ann

0B@
1CA x1

..

.

xn

0B@
1CA ¼ a e1. . .enð Þ

x1
..
.

xn

0B@
1CA:

From linear dependence of e1; e2; . . .; and en, we simply write

a11 . . . a1n
..
. . .

. ..
.

an1 . . . ann

0B@
1CA x1

..

.

xn

0B@
1CA ¼ a

x1
..
.

xn

0B@
1CA:

If we identify x with

x1
..
.

xn

0B@
1CA at fixed basis vectors e1. . .enð Þ, we may naturally

rewrite (10.1) as

Ax ¼ ax. ð10:2Þ

If x1 and x2 belong to the eigenvalue a, so does x1þ x2 and cx1 (c is an
appropriate complex number). Therefore, all the eigenvectors belonging to the
eigenvalue a along with 0 (a zero vector) form a subspace of A (within Vn) cor-
responding to the eigenvalue a.

Strictly speaking, we should use terminologies such as a “proper” (or ordinary)
eigenvalue, eigenvector, eigenspace to distinguish them from a “generalized”
eigenvalue, eigenvector, eigenspace, etc. We will return to this point later. Further
rewriting (10.2), we have

ðA� aEÞx ¼ 0; ð10:3Þ

where E is a (n, n) unit matrix. Equations (10.2) and (10.3) are said to be an
eigenvalue equation (or eigenequation). In (10.2) or (10.3) x ¼ 0 always holds (as a
trivial solution). Consequently, for x 6¼ 0 to be a solution we must have

A� aEj j ¼ 0; ð10:4Þ

In (10.4), A� aEj j stands for det ðA� aEÞ.
Now let us define the following polynomial:

fAðxÞ ¼ xE � Aj j ¼
x� a11 . . . �a1n

..

. . .
. ..

.

�an1 . . . x� ann

�������
�������: ð10:5Þ
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A necessary and sufficient condition for a to be an eigenvalue is that a is a root
of fAðxÞ ¼ 0. The function fAðxÞ is said to be a characteristic polynomial and we call
fAðxÞ ¼ 0 a characteristic equation. This is an nth order polynomial. Putting

fAðxÞ ¼ xnþ a1x
n�1þ � � � þ an; ð10:6Þ

we have

a1 ¼ � a11þ a22þ � � � þ annð Þ � �trA; ð10:7Þ

where tr stands for “trace” that is a summation of diagonal elements. Moreover,

an ¼ ð�1Þn Aj j: ð10:8Þ

The characteristic equation fAðxÞ ¼ 0 has n roots including possible multiple
roots. Let those roots be a1; . . .; an (some of them may be identical). Then we have

fAðxÞ ¼
Yn
i¼1
ðx� aiÞ: ð10:9Þ

Furthermore, according to relations between roots and coefficients we get

a1þ � � � þ an ¼ �a1 ¼ trA; ð10:10Þ

a1. . .an ¼ ð�1Þnan ¼ Aj j: ð10:11Þ

The characteristic equation fAðxÞ is invariant under a similarity transformation. In
fact,

fP�1APðxÞ ¼ xE � P�1AP
�� �� ¼ P�1 ðxE � AÞP�� ��

¼ Pj j�1 xE � Aj j Pj j ¼ xE � Aj j ¼ fAðxÞ:
ð10:12Þ

This leads to invariance of the trace under a similarity transformation. That is,

tr P�1AP
� � ¼ trA: ð10:13Þ

Let us think of a following triangle matrix:

ð10:14Þ
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The matrix of this type is thought to be one of canonical forms of matrices. Its
characteristic equation fTðxÞ is

fTðxÞ ¼ xE � Tj j ¼
x� a11 � �

0 . .
. �

0 0 x� ann

�������
�������: ð10:15Þ

Therefore, we get

fTðxÞ ¼
Yn
i¼1
ðx� aiiÞ; ð10:16Þ

where we used (9.58). From (10.14) and (10.16), we find that eigenvalues of a
triangle matrix are given by its diagonal elements accordingly. Our immediate task
will be to examine whether and how a given matrix is converted to a triangle matrix
through a similarity transformation. A following theorem is important.

Theorem 10.1 Every (n, n) square matrix can be converted to a triangle matrix by
similarity transformation [1].

Proof A triangle matrix is either an “upper” triangle matrix [to which all the lower
left off-diagonal elements are zero; see (10.14)] or a “lower” triangle matrix (to
which all the upper right off-diagonal elements are zero). In the present case, we
show the proof for the upper triangle matrix. Regarding the lower triangle matrix,
the theorem is proven in a similar manner.

The proof is due to mathematical induction. First we show that the theorem is
true of a (2, 2) matrix. Suppose that one of eigenvalues of A2 is a1 and that its
corresponding eigenvector is x1. Then we have

A2x1 ¼ a1x1; ð10:17Þ

where we assume that x1 represents a column vector. Let a non-singular matrix be

P1 ¼ x1 p1ð Þ; ð10:18Þ

where p1 is another column vector chosen in such a way that x1 and p1 are linearly
independent so that P1 can be a non-singular matrix. Then, we have

P�11 A2P1 ¼ ðP�11 A2x1P�11 A2p1Þ: ð10:19Þ

Meanwhile,

x1 ¼ x1 p1ð Þ 1
0

� �
¼ P1

1
0

� �
:
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Hence, we have

P�11 A2x1 ¼ a1P
�1
1 x1 ¼ a1P

�1
1 P1

1
0

� �
¼ a1

1
0

� �
¼ a1

0

� �
: ð10:20Þ

Thus (10.19) can be rewritten as

P�11 A2P1 ¼ a1 �
0 �

� �
: ð10:21Þ

This shows that Theorem 10.1 is true of a (2, 2) matrix A2.
Now let us show that Theorem 10.1 holds in a general case, i.e., for a (n,

n) square matrix An. Let an be one of eigenvalues of An. On the basis of the
argument of the (2, 2) matrix case, suppose that after a suitable similarity trans-
formation by a non-singular matrix eP we have

fAn ¼ ðePÞ�1AneP: ð10:22Þ

Then, we can describe fAn as

ð10:23Þ

In (8.23), an is one of eigenvalues of An. To show that (10.23) is valid, we have a
similar argument as in the case of a (2, 2) matrix. That is, we set eP such that

eP ¼ an p1 p2. . .pn�1ð Þ;

where an is an eigenvector corresponding to an and eP is a non-singular matrix formed
by n linearly independent column vectors an; p1; p2; . . . and pn�1. Then we have

fAn ¼ ðePÞ�1AneP
¼ ðePÞ�1Anan ðePÞ�1Anp1 ðePÞ�1Anp2. . .ðePÞ�1Anpn�1
� �

:
ð10:24Þ

The vector an can be expressed as

an ¼ an p1 p2. . .pn�1ð Þ

1
0
0
..
.

0

0BBB@
1CCCA ¼ eP

1
0
0
..
.

0

0BBB@
1CCCA:
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Therefore, we have

ðePÞ�1Anan ¼ ðePÞ�1anan ¼ ðePÞ�1aneP
1
0
0
..
.

0

0BBB@
1CCCA ¼ an

1
0
0
..
.

0

0BBB@
1CCCA ¼

an
0
0
..
.

0

0BBBB@
1CCCCA:

Thus, from (10.24) we see that one can express a matrix form of fAn as (10.23).
By a hypothesis of the mathematical induction, we assume that there exists a

(n − 1, n − 1) non-singular square matrix Pn�1 and an upper triangle matrix Dn�1
such that

P�1n�1An�1Pn�1 ¼ Dn�1: ð10:25Þ

Let us define a following matrix

where d 6¼ 0. The Pn is (n, n) non-singular square matrix; remember that

detPn ¼ dðdetPn�1Þ 6¼ 0. Operating Pn on fAn from the right, we have

ð10:26Þ

where xTn�1 is a transpose of a column vector

x1
..
.

xn�1

0B@
1CA. Therefore, xTn�1Pn�1 is a (1,

n − 1) matrix (i.e., a row vector). Meanwhile, we have

ð10:27Þ

From the assumption of (10.25), we have

LHS of ð10:26Þ ¼ LHS of ð10:27Þ: ð10:28Þ

That is,
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fAnPn ¼ PnDn: ð10:29Þ

In (10.29), we define Dn such that

ð10:30Þ

which has appeared in LHS of (10.27). As Dn�1 is a triangle matrix from the
assumption, Dn is a triangle matrix as well. Combining (10.22) and (10.29), we
finally get

Dn ¼ ðePPnÞ�1AnePPn: ð10:31Þ

Notice that ePPn is a non-singular matrix, and so ePPnP�1n
eP�1 ¼ E. Hence,

P�1n
eP�1 ¼ ðePPnÞ�1. The equation obviously shows that An has been converted to a

triangle matrix Dn. This completes the proof.
Equation (10.31) implies that eigenvectors are disposed on diagonal positions of

a triangle matrix. Triangle matrices can further undergo a similarity transformation.

Example 10.1 Let us think of a following triangle matrix A:

A ¼ 2 1
0 1

� �
: ð10:32Þ

Eigenvalues of A are 2 and 1. Remember that diagonal elements of a triangle

matrix give eigenvalues. According to (10.20), a vector
1
0

� �
can be chosen for an

eigenvector (as a column vector representation) corresponding to the eigenvalue 2.

Another eigenvector can be chosen to be
�1
1

� �
. This is because for an eigenvalue

1, we obtain

1 1
0 0

� �
x ¼ 0

as an eigenvalue equation ðA� EÞx ¼ 0. Therefore, with an eigenvector
c1
c2

� �
corresponding to the eigenvalue 1, we get c1þ c2 ¼ 0. Therefore, we have

�1
1

� �
as a simple form of the eigenvector. Hence, putting P ¼ 1 �1

0 1

� �
, similarity

transformation is carried out such that
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P�1AP ¼ 1 1
0 1

� �
2 1
0 1

� �
1 �1
0 1

� �
¼ 2 0

0 1

� �
: ð10:33Þ

This is a simple example of matrix diagonalization.
Regarding the eigenvalue/eigenvector problems, we have another important

theorem.

Theorem 10.2 Eigenvectors corresponding to different eigenvalues of A are lin-
early independent.

Proof We prove the theorem by mathematical induction. Let a1 and a2 be two
different eigenvalues of a matrix A and let a1 and a2 be eigenvectors corresponding
to a1 and a2, respectively.

Let us think of a following equation:

c1a1þ c2a2 ¼ 0: ð10:34Þ

Suppose that a1 and a2 are linearly dependent. Then, without loss of generality
we can put c1 6¼ 0. Accordingly, we get

a1 ¼ � c2
c1

a2: ð10:35Þ

Operating A from the left of (10.35), we have

a1a1 ¼ � c2
c1

a2a2 ¼ a2a1. ð10:36Þ

With the second equality, we have used (10.35). From (10.36), we have

ða1 � a2Þa1 ¼ 0: ð10:37Þ

As a1 6¼ a2; a1 � a2 6¼ 0. This implies a1 ¼ 0, in contradiction to that a1 is a
eigenvector. Thus, a1 and a2 must be linearly independent.

Next we assume that Theorem 10.2 is true of the case where we have (n − 1)
eigenvalues a1; a2; . . .; and an�1 that are different from one another and corre-
sponding eigenvectors a1; a2; . . .; and an�1 are linearly independent. Let us think of
a following equation:

c1a1þ c2a2þ � � � þ cn�1an�1þ cnan ¼ 0; ð10:38Þ

where an is an eigenvector corresponding to an eigenvalue an. Suppose here that
a1; a2; . . .; and an are linearly dependent. If cn ¼ 0, we have
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c1a1þ c2a2þ � � � þ cn�1an�1 ¼ 0: ð10:39Þ

But from the linear independence of a1; a2; . . .; and an�1, we have
c1 ¼ c2 ¼ � � � ¼ cn�1 ¼ 0. Thus, it follows that all the eigenvectors
a1; a2; . . .; and an are linearly independent. However, this is in contradiction to the
assumption. We should therefore have cn 6¼ 0. Accordingly, we get

an ¼ � c1
cn

a1þ c2
cn

a2þ � � � þ cn�1
cn

an�1

� �
: ð10:40Þ

Operating A from the left of (10.38) again, we have

anan ¼ � c1
cn

a1a1þ c2
cn

a2a2þ � � � þ cn�1
cn

an�1an�1

� �
: ð10:41Þ

Here we think of two cases of (i) an 6¼ 0 and (ii) an ¼ 0.

(i) Case I: an 6¼ 0.

Multiplying both sides of (10.40) by an we have

anan ¼ � c1
cn

ana1þ c2
cn

ana2þ � � � þ cn�1
cn

anan�1

� �
: ð10:42Þ

Subtracting (10.42) from (10.41), we get

0 ¼ c1
cn
ðan � a1Þa1þ c2

cn
ðan � a2Þa2þ � � � þ cn�1

cn
ðan � an�1Þan�1: ð10:43Þ

Since we assume that eigenvalue are different from one another,
an 6¼ a1; an 6¼ a2; . . .; an 6¼ an�1. This implies that c1 ¼ c2 ¼ � � � ¼ cn�1 ¼ 0. From
(10.40), we have an ¼ 0. This is, however, in contradiction to that an is an
eigenvector. This means that our original supposition that a1; a2; . . .; and an are
linearly dependent was wrong. Thus, the eigenvectors a1; a2; . . .; and an should be
linearly independent.

(ii) Case II: an ¼ 0.

Suppose again that a1; a2; . . .; and an are linearly dependent. Since as before
cn 6¼ 0, we get (10.40) and (10.41) once again. Putting an ¼ 0 in (10.41) we have

0 ¼ � c1
cn

a1a1þ c2
cn

a2a2þ � � � þ cn�1
cn

an�1an�1

� �
: ð10:44Þ

Since eigenvalues are different, we should have a1 6¼ 0; a2 6¼ 0; . . .;
and an�1 6¼ 0. Then, considering that a1; a2; . . .; and an�1 are linearly independent,
for (10.44) to hold we must have c1 ¼ c2 ¼ � � � ¼ cn�1 ¼ 0. But from (10.40), we
have an ¼ 0, again in contradiction to that an is an eigenvector. Thus, the eigenvectors
a1; a2; . . .; and an should be linearly independent. These complete the proof.
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10.2 Eigenspaces and Invariant Subspaces

Equations (10.21), (10.30), and (10.31) show that if we adopt an eigenvector as one
of basis vectors, the matrix representation of the linear transformation A in reference
to such basis vectors is obtained so that the leftmost column is zero except for the
left top corner on which an eigenvalue is positioned. (Note that if the said eigen-
vector is zero, the leftmost column is a zero vector.) Meanwhile, neither
Theorem 10.1 nor Theorem 10.2 tells about multiplicity of eigenvalues. If the
eigenvalues have multiplicity, we have to think about different aspects. This is a
major issue of this section.

Let us start with a discussion of invariant subspaces. Let A be a (n, n) square
matrix. If a subspace W in Vn is characterized by

x 2 W ) Ax 2 W ;

W is said to be invariant with respect to A (or simply A-invariant) or an invariant
subspace in Vn ¼ Span a1; a2; . . .; anf g. Suppose that x is an eigenvector ofA and that
its corresponding eigenvalue is a. Then, Span xf g is an invariant subspace of Vn. It is
because A cxð Þ ¼ cAx ¼ cax ¼ aðcxÞ and cx is again an eigenvector belonging to a.
Suppose that dimW ¼ mðm� nÞ and that W ¼ Span a1; a2; . . .; amf g. If W is A-
invariant, A causes a linear transformation within W. In that case, expressing A in
reference to a1; a2; . . .; am; amþ 1; . . .; an, we have

ða1a2. . .amamþ 1. . .anÞA ¼ ða1a2. . .amamþ 1. . .anÞ Am �
0 �

� �
; ð10:45Þ

where Am is a (m, m) square matrix and “zero” denotes a ðn� m;mÞ zero matrix.
Notice that the transformation A makes the remaining ðn� mÞ basis vectors
amþ 1; amþ 2; . . .; and an in Vn be converted to a linear combination of
a1; a2; . . .; and an. The triangle matrix Dn given in (10.30) and (10.31) is an
example to which Am is a (1, 1) matrix (i.e., simply a complex number).

Let us examine properties of the A-invariant subspace still further. Let a be any
vector in Vn and think of following (n + 1) vectors [2].

a;Aa;A2a; . . .;Ana.

These vectors are linearly dependent, since there are at most n linearly inde-
pendent vectors in Vn. These vectors span a subspace in Vn. Let us call this
subspace M; i.e,.

M � Span a;Aa;A2a; . . .;Ana
	 


;
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Consider the following equation:

c0aþ c1Aaþ c2A
2aþ � � � þ cnA

na ¼ 0: ð10:46Þ

Not all cið0� i� nÞ are zero, because the vectors are linearly dependent.
Suppose that cn 6¼ 0. Then, from (10.46) we have

Ana ¼ � 1
cn

c0aþ c1Aaþ c2A
2aþ � � � þ cn�1An�1a

� �
:

Operating A on the above equation from the left, we have

Anþ 1a ¼ � 1
cn

c0Aaþ c1A
2aþ c2A

3aþ � � � þ cn�1Ana
� �

:

Thus, Anþ 1a is contained in M. That is, we have
Anþ 1a 2 Span a;Aa;A2a; . . .;Ana

	 

. Next, suppose that cn ¼ 0. Then, at least one

of cið0� i� n� 1Þ is not zero. Suppose that cn�1 6¼ 0. From (10.46), we have

An�1a ¼ � 1
cn�1

c0aþ c1Aaþ c2A
2aþ � � � þ cn�2An�2a

� �
:

Operating A2 on the above equation from the left, we have

Anþ 1a ¼ � 1
cn�1

c0A2aþ c1A3aþ c2A4aþ � � � þ cn�2Ana
� �

:

Again, Anþ 1a is contained in M. Repeating similar procedures, we reach

c0aþ c1Aa ¼ 0:

If c1 ¼ 0, then we must have c0 6¼ 0. If so, a ¼ 0. This is impossible, however,
because we should have a 6¼ 0. Then, we have c1 6¼ 0 and, hence,

Aa ¼ � c0
c1

a.

Operating once again An on the above equation from the left, we have

Anþ 1a ¼ � c0
c1

Ana.

Thus, once again Anþ 1a is contained in M.
In the above discussion, we get AM � M. Further operating

A; A2M � AM � M; A3M � A2M � AM � M; . . .. Then we have

10.2 Eigenspaces and Invariant Subspaces 335



a;Aa;A2a; . . .;Ana;Anþ 1a; . . . 2 Span a;Aa;A2a; . . .;Ana
	 


:

That is, M is an A-invariant subspace. We also have

m � dimM� dimVn ¼ n:

There are m basis vectors in M, and so representing A in a matrix form in
reference to the n basis vectors of Vn including these m vectors, we have

A ¼ Am �
0 �

� �
: ð10:47Þ

Note again that in (10.45) Vn is spanned by the m basis vectors in M together
with other (n − m) linearly independent vectors.

We happen to encounter a situation where two subspaces W1 and W2 are at once
A-invariant. Here we can take basis vectors a1; a2; . . .; and am for W1 and
amþ 1; amþ 2; . . .; and an for W2. In reference to such a1; a2; . . .; and an as basis
vector of Vn, we have

A ¼ Am 0
0 An�m

� �
; ð10:48Þ

where An�m is a ðn� m; n� mÞ square matrix and “zero” denotes either a ðn�
m;mÞ or ðm; n� mÞ zero matrix. Alternatively, we denote

A ¼ Am � An�m:

In this situation, the matrix A is said to be reducible.
As stated above, A causes a linear transformation within both W1 and W2. In

other words, Am and An�m cause a linear transformation within W1 and W2 in
reference to a1; a2; . . .; am and amþ 1; amþ 2; . . .; an, respectively. In this case, Vn can
be represented as a direct sum of W1 and W2 such that

Vn ¼ W1 �W2

¼ Span a1; a2; . . .; amf g � Span amþ 1; amþ 2; . . .; anf g: ð10:49Þ

This is because Span a1; a2; . . .; amf g\ Span amþ 1; amþ 2; . . .; anf g ¼ 0f g. In
fact, if the two subspaces possess x( 6¼ 0Þ in common, a1; a2; . . .; an become lin-
early dependent, in contradiction.

The vector space Vn may well further be decomposed into subspaces with a
lower dimension. For further discussion, we need a following theorem and a
concept of a generalized eigenvector and generalized eigenspace.

Theorem 10.3: Hamilton–Cayley Theorem [3] Let fAðxÞ be the characteristic
polynomial pertinent to a linear transformation A : Vn ! Vn. Then fAðAÞðxÞ ¼ 0
for 8x 2 Vn. That is, Ker fAðAÞ ¼ Vn.
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Proof To prove the theorem, we use the following well-known property of
determinants. Namely, let A be a (n, n) square matrix expressed as

A ¼
a11 . . . a1n
..
. . .

. ..
.

an1 . . . ann

0B@
1CA:

Let eA be the cofactor matrix of A, namely

eA ¼ D11 � � � D1n

..

. . .
. ..

.

Dn1 � � � Dnn

0B@
1CA;

where Dij is a cofactor of aij. Then

eATA ¼ AeAT ¼ Aj jE; ð10:50Þ

where eAT is a transposed matrix of eA. We now apply (10.50) to the characteristic
polynomial.

ð gxE� AÞT xE � Að Þ ¼ xE � Að ÞðxgE�AÞT ¼ xE � Aj jE ¼ fAðAÞE; ð10:51Þ

where gxE� A is the cofactor matrix of xE � A. Let the cofactor of the (i, j)-element
of ðxE � AÞ be Dij. Note in this case that Dij is an at most ðn� 1Þth order poly-
nomial of x. Let us put accordingly

Dij ¼ bij;0x
n�1þ bij;1x

n�2þ � � � þ bij;n�1: ð10:52Þ

Also put Bk ¼ bij;k
� �

.
Then we have

gxE� A ¼
D11 � � � D1n

..

. . .
. ..

.

Dn1 � � � Dnn

0BB@
1CCA

¼
b11;0xn�1þ � � � þ b11;n�1 � � � b1n;0xn�1þ � � � þ b1n;n�1

..

. . .
. ..

.

bn1;0xn�1þ � � � þ bn1;n�1 � � � bnn;0xn�1þ � � � þ bnn;n�1

0BB@
1CCA

¼ xn�1
b11;0 � � � b1n;0

..

. . .
. ..

.

bn1;0 � � � bnn;0

0BB@
1CCAþ � � � þ

b11;0 � � � b1n;n�1

..

. . .
. ..

.

bn1;0 � � � bnn;n�1

0BB@
1CCA

¼ xn�1B0þ xn�2B1þ � � � þBn�1:

ð10:53Þ
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Thus, we get

xE � Aj jE ¼ ðxE � AÞðxn�1BT
0 þ xn�2BT

1 þ � � � þBT
n�1Þ: ð10:54Þ

Replacing x with A, we have

fAðAÞ ¼ ðA� AÞ An�1BT
0 þAn�2BT

1 þ � � � þBT
n�1

� � ¼ 0: ð10:55Þ

This means that fAðAÞðxÞ ¼ 0 for 8x 2 Vn.
In relation to Hamilton–Cayley theorem, we consider an important concept of a

minimal polynomial.

Definition 10.1 Let f ðxÞ be a polynomial of x with scalar coefficients such that
f ðAÞ ¼ 0, where A is a (n, n) matrix. Among f ðxÞ, a lowest-order polynomial with
the highest-order coefficient of one is said to be a minimal polynomial. We denote it
by uAðxÞ; i.e., uAðAÞ ¼ 0.

We have an important property for this. Namely, a minimal polynomial uAðxÞ is
a divisor of f ðAÞ. In fact, suppose that we have

f ðxÞ ¼ gðxÞuAðxÞþ hðxÞ:

Inserting A into x, we have

f ðAÞ ¼ gðAÞuAðAÞþ hðAÞ ¼ hðAÞ ¼ 0:

From the above equation, hðxÞ should be a polynomial whose order is lower than
that of uAðAÞ. But the presence of such hðxÞ is in contradiction to the definition of
the minimal polynomial. This implies that hðxÞ � 0. Thus, we get

f ðxÞ ¼ gðxÞuAðxÞ:

That is, uAðxÞ must be a divisor of f ðAÞ.
Suppose that u0AðxÞ is another minimal polynomial. If the order of u0AðxÞ is lower

than that of uAðxÞ, we can choose u0AðxÞ for a minimal polynomial from the
beginning. Thus, we assume that uAðxÞ and u0AðxÞ are of the same order. We have

f ðxÞ ¼ gðxÞuAðxÞ ¼ g0ðxÞu0AðxÞ:

Then, we have

uAðxÞ =u0AðxÞ ¼ g0ðxÞ = gðxÞ ¼ c;

where c is a constant, because uAðxÞ and u0AðxÞ are of the same order. But c should
be one, since the highest-order coefficient of the minimal polynomial is one. Thus,
uAðxÞ is uniquely defined.
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10.3 Generalized Eigenvectors and Nilpotent Matrices

Equation (10.4) ensures that an eigenvalue is accompanied by an eigenvector.
Therefore, if a matrix A : Vn ! Vn has different n eigenvalues without multiple
roots, the vector space Vn is decomposed to a direct sum of one-dimensional
subspaces spanned by those individual linearly independent eigenvectors (see
discussion of Sect. 10.1). Thus, we have

Vn ¼ W1 �W2 � � � � �Wn

¼ Span a1f g � Span a2f g � � � � � Span anf g;
ð10:56Þ

where aið1� i� nÞ are eigenvectors corresponding to different n eigenvalues. The
situation, however, is not always simple. Even though a matrix has eigenvalues of
multiple roots, we have yet a simple case as shown in a next example.

Example 10.2 Let us think of a following matrix A : V3 ! V3.

A ¼
2 0 0
0
0

2 0
0 2

0@ 1A: ð10:57Þ

The matrix has a triple root 2. As can easily be seen below, individual eigen-
vectors a1; a2, and a3 form basis vectors of each invariant subspace, indicating that
V3 can be decomposed to a direct sum of the three invariant subspaces as in (10.56).

a1a2a3ð Þ
2 0 0
0
0

2 0
0 2

0@ 1A ¼ 2a12a22a3ð Þ: ð10:58Þ

Let us think of another simple example.

Example 10.3 Let us think of a linear transformation A : V2 ! V2 expressed as

A xð Þ ¼ a1a2ð Þ 3 1
0 3

� �
x1
x2

� �
; ð10:59Þ

where a1 and a2 are basis vectors and for 8x 2 V2; x ¼ x1a1þ x2a2. This example
has a double root 3. We have

a1a2ð Þ 3 1
0 3

� �
¼ ð3a1a1þ 3a2Þ. ð10:60Þ

Thus, Span a1f g is A-invariant, but this is not the case with Span a2f g. This
implies that a1 is an eigenvector corresponding to an eigenvalue 3 but a2 is not.
Detailed discussion about matrices of this kind follows below.
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Nilpotent matrices play an important role in matrix algebra. These matrices are
defined as follows.

Definition 10.2 Let N be a linear transformation in a vector space Vn. Suppose that
we have

Nk ¼ 0 and Nk�1 6¼ 0; ð10:61Þ

where N is a (n, n) square matrix and kð� 2Þ is a certain natural number. Then, N is
said to be a nilpotent matrix of an order k or a kth order nilpotent matrix. If (10.61)
holds with k ¼ 1, N is a zero matrix.

Nilpotent matrices have following properties:

(i) Eigenvalues of a nilpotent matrix are zero. Let N be a kth order nilpotent
matrix. Suppose that

Nx ¼ ax, ð10:62Þ

where a is an eigenvalue and x( 6¼ 0) is its corresponding eigenvector.
Operating N ðk � 1Þ more times from the left of both sides of (10.62), we have

Nkx ¼ akx. ð10:63Þ

Meanwhile, Nk ¼ 0 by definition, and so ak ¼ 0, namely a ¼ 0.
Conversely, suppose that eigenvalues of a (n, n) matrix N are zero. From
Theorem 10.1, via a suitable similarity transformation with P we have

P�1NP ¼ eN ;

where eN is a triangle matrix. Then, using (10.12) and (10.16) we have

fP�1NPðxÞ ¼ feN ðxÞ ¼ fNðxÞ ¼ xn:

From Theorem 10.3, we have

fNðNÞ ¼ Nn ¼ 0: ð10:64Þ

Namely, N is a nilpotent matrix. In a trivial case, we have N ¼ 0 (zero matrix).
By Definition 10.2, we have Nk ¼ 0 with a kth nilpotent (n, n) matrix N. Then,
its minimal polynomial is uNðxÞ ¼ xkðk� nÞ.

(ii) A nilpotent matrix N is not diagonalizable (except for a zero matrix). Suppose
that N is diagonalizable. Then N can be diagonalized by a non-singular matrix
P such that

P�1NP ¼ 0:
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The above equation holds, because N only takes eigenvalues of zero. Operating
P from the left of the above equation and P�1 from the right, we have

N ¼ 0:

This means that N would be a zero matrix, in contradiction. Thus, a nilpotent
matrix N is not diagonalizable.

Example 10.4 Let N be a matrix of a following form:

N ¼ 0 1
0 0

� �
:

Then, we can easily check that N2 ¼ 0. Therefore, N is a nilpotent matrix of a
second order. Note that N is an upper triangle matrix, and so eigenvalues are given
by diagonal elements. In the present case, the eigenvalue is zero (as a double root),
consistent with the aforementioned property.

With a nilpotent matrix of an order k, we have at least one vector x such that
Nk�1x 6¼ 0. Here we add that a zero transformation A (or matrix) can be defined as

A ¼ 0, Ax ¼ 0 for 8x 2 Vn:

Taking contraposition of this, we have

A 6¼ 0, Ax 6¼ 0 for 9x 2 Vn:

In relation to a nilpotent matrix, we have a following important theorem.

Theorem 10.4 If N is a kth order nilpotent matrix, then for 9x 2 V we have
following linearly independent k vectors:

x, Nx N2x; . . .;Nk�1x:

Proof Let us think of a following equation:

Xk�1
i¼0

ciN
ix ¼ 0: ð10:65Þ

Multiplying (8.64) by Nk�1 and using Nk ¼ 0, we get

c0N
k�1x ¼ 0: ð10:66Þ

This implies that c0 ¼ 0. Thus, we are left with

Xk�1
i¼1

ciN
ix ¼ 0: ð10:67Þ
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Multiplying (8.66) next by Nk�2, we get similarly

c1N
k�1x ¼ 0; ð10:68Þ

implying that c1 ¼ 0. Continuing this procedure, we finally get
ci ¼ 0ð0� i� k � 1Þ. This completes the proof.

This immediately tells us that for a kth order nilpotent matrix N : Vn ! Vn, we
should have k� n. This is because the number of linearly independent vectors is at
most n.

In Example 10.4, N causes a transformation of basis vectors in V2 such that

e1 e2ð ÞN ¼ e1 e2ð Þ 0 1
0 0

� �
¼ ð0 e1Þ:

That is, Ne2 ¼ e1. Then, linearly independent two vectors e2 and Ne2 correspond
to the case of Theorem 10.4.

So far we have shown simple cases where matrices can be diagonalized via
similarity transformation. This is equivalent to that the relevant vector space is
decomposed to a direct sum of (invariant) subspaces. Nonetheless, if a characteristic
polynomial of the matrix has multiple root(s), it remains uncertain whether the
vector space is decomposed to such a direct sum. To answer this question, we need
a following lemma.

Lemma 10.1 Let f1ðxÞ; f2ðxÞ; . . .; and fsðxÞ be polynomials without a common
factor. Then we have s polynomials M1ðxÞ, M2ðxÞ; . . .;MsðxÞ that satisfy the fol-
lowing relation:

M1ðxÞf1ðxÞþM2ðxÞf2ðxÞþ � � � þMsðxÞfsðxÞ ¼ 1: ð10:69Þ
Proof Let MiðxÞ ð1� i� sÞ be arbitrarily chosen polynomials and deal with a set of
gðxÞ that can be expressed as

gðxÞ ¼ M1ðxÞf1ðxÞþM2ðxÞf2ðxÞþ � � � þMsðxÞfsðxÞ: ð10:70Þ
Let a whole set of gðxÞ be H. Then H has following two properties:

(i) g1ðxÞ; g2ðxÞ 2 H ) g1ðxÞþ g2ðxÞ 2 H,
(ii) gðxÞ 2 H;MðxÞ: an arbitrarily chosen polynomial ) MðxÞgðxÞ 2 H.

Now let the lowest-order polynomial out of the set H be g0ðxÞ. Then 8gðxÞð2 HÞ
are a multiple of g0ðxÞ. Suppose that dividing gðxÞ by g0ðxÞ, we have

gðxÞ ¼ MðxÞg0ðxÞþ hðxÞ; ð10:71Þ

where hðxÞ is a certain polynomial. Since gðxÞ; g0ðxÞ 2 H, we have hðxÞ 2 H from
the above properties (i) and (ii). If hðxÞ 6¼ 0, the order of hðxÞ is lower than that of
g0ðxÞ from (10.71). This is, however, in contradiction to the definition of g0ðxÞ.
Therefore, hðxÞ ¼ 0. Thus,
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gðxÞ ¼ MðxÞg0ðxÞ: ð10:72Þ

This implies that H is identical to a whole set of polynomials comprising mul-
tiples of g0ðxÞ. In particular, polynomials fiðxÞ ð1� i� sÞ 2 H. To show this, put
MiðxÞ ¼ 1 with other MjðxÞ ¼ 0 ðj 6¼ iÞ. Hence, the polynomial g0ðxÞ should be a
common factor of fiðxÞ. Meanwhile, g0ðxÞ 2 H, and so by virtue of (10.70) we have

g0ðxÞ ¼ M1ðxÞf1ðxÞþM2ðxÞf2ðxÞþ � � � þMsðxÞfsðxÞ: ð10:73Þ

On assumption, the greatest common factor of f1ðxÞ; f2ðxÞ; . . .; and fsðxÞ is 1.
This implies that g0ðxÞ ¼ 1. Thus, we finally get (10.69) and complete the proof.

10.4 Idempotent Matrices and Generalized Eigenspaces

In Sect. 10.1, we have shown that eigenvectors corresponding to different eigen-
values of A are linearly independent. Also if those eigenvalues do not possess
multiple roots, the vector space comprises a direct sum of the subspaces of cor-
responding eigenvectors. However, how do we have to treat a situation where
eigenvalues possess multiple roots? Even in this case there is at least one eigen-
vector that corresponds to the eigenvalue. To adequately address the question, we
need a concept of generalized eigenvectors and generalized eigenspaces.

For this purpose, we extend and generalize the concept of eigenvectors. For a
certain natural number l, if a vector x ð2 VnÞ satisfies a following relation, x is said
to be a generalized eigenvector of rank l that corresponds to an eigenvalue.

ðA� aEÞlx ¼ 0;

ðA� aEÞl�1x 6¼ 0:

Thus (10.3) implies that an eigenvector of (10.3) may be said to be a generalized
eigenvector of rank 1. When we need to distinguish it from generalized eigen-
vectors of rank lðl	 2Þ, we call it a “proper” eigenvector. Thus far we have only
been concerned with the proper eigenvectors. We have a following theorem related
to the generalized eigenvectors.

In this section, idempotent operators play a role. The definition is simple.

Definition 10.3 An operator A is said to be idempotent if A2 ¼ A.
From this simple definition, we can draw several important pieces of informa-

tion. Let A be an idempotent operator that operates on Vn. Let x be an arbitrary
vector in Vn. Then, A2x ¼ AðAxÞ ¼ Ax. That is,

A Ax� xð Þ ¼ 0:
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Then, we have

Ax ¼ x or Ax ¼ 0: ð10:74Þ

From Theorem 9.3 (dimension theorem), we have

Vn ¼ A Vnð Þ � Ker A;

where

A Vnð Þ ¼ x; x 2 Vn; Ax ¼ xf g;
Ker A ¼ x; x 2 Vn; Ax ¼ 0f g: ð10:75Þ

Thus, we find that A decomposes Vn into a direct sum of A Vnð Þ and Ker A.
Conversely, we can readily verify that if there exists an operator A that satisfies
(10.75), such A must be an idempotent operator. The verification is left for readers.

Meanwhile, we have

ðE � AÞ2 ¼ E � 2AþA2 ¼ E � 2AþA ¼ E � A:

Hence, E � A is an idempotent matrix as well. Moreover, we have

A E � Að Þ ¼ ðE � AÞA ¼ 0:

Putting E � A � B and following a procedure similar to the above

Bx� x ¼ E � Að Þx� x ¼ x� Ax� x ¼ �Ax.

Therefore, B Vnð Þ ¼ x; x 2 Vn; Bx ¼ xf g is identical to Ker A. Writing

WA ¼ x; x 2 Vn; Ax ¼ xf g; WA ¼ x; x 2 Vn; Ax ¼ 0f g; ð10:76Þ

we get

WA ¼ AVn; WA ¼ E � Að ÞVn ¼ BVn ¼ Vn � AVn ¼ Ker A:

That is,

Vn ¼ WAþWA:

Suppose that 9u 2 WA \WA. Then, from (10.76) Au ¼ u and Au ¼ 0, namely
u ¼ 0, and so V is a direct sum of WA and WA. That is,

Vn ¼ WA �WA:

344 10 Canonical Forms of Matrices



Notice that if we consider an identity operator E as an idempotent operator, we
are thinking of a trivial case. That is, Vn ¼ Vn � 0f g.

The result can immediately be extended to the case where more idempotent
operators take part in the vector space. Let us define operators such that

A1þA2þ � � � þAs ¼ E;

where E is a (n, n) identity matrix. Also

AiAj ¼ Aidij:

Moreover, we define Wi such that

Wi ¼ AiV
n ¼ x; x 2 Vn; Aix ¼ xf g: ð10:77Þ

Then

Vn ¼ W1 �W2 � � � � �Ws: ð10:78Þ

In fact, suppose that 9xð2 VnÞ 2 Wi;Wj ði 6¼ jÞ. Then Aix ¼ x ¼ Ajx. Operating
Aj ðj 6¼ iÞ from the left, AjAix ¼ Ajx ¼ AjAjx. That is, 0 ¼ x ¼ Ajx, implying that
Wi \Wj ¼ 0f g. Meanwhile,

Vn ¼ A1þA2þ � � � þAsð ÞVn ¼ A1V
nþA2V

nþ � � � þAsV
n

¼ W1þW2þ � � � þWs:
ð10:79Þ

As Wi \Wj ¼ 0f g ði 6¼ jÞ, (10.79) is a direct sum. Thus, (10.78) will follow.

Example 10.5 Think of the following transformation A:

e1 e2 e3 e4ð ÞA ¼ e1 e2 e3 e4ð Þ
1 0 0 0
0
0
0

1 0 0
0 0 0
0 0 0

0B@
1CA ¼ e1 e2 0 0ð Þ:

Put x ¼P4
i¼1 xiei. Then, we have

AðxÞ ¼
X4
i¼1

xiA eið Þ ¼
X2
i¼1

xiei ¼ WA;

ðE � AÞðxÞ ¼ x� AðxÞ ¼
X4
i¼3

xiei ¼ WA:

In the above,
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e1 e2 e3 e4ð ÞðE � AÞ ¼ e1 e2 e3 e4ð Þ
0 0 0 0
0
0
0

0 0 0
0 1 0
0 0 1

0B@
1CA ¼ 0 0 e3 e4ð Þ:

Thus, we have

WA ¼ Span e1; e2f g; WA ¼ Span e3; e4f g; V4 ¼ WA �WA:

The properties of idempotent matrices can easily be checked. It is left for
readers.

Using the aforementioned idempotent operators, let us introduce the following
theorem.

Theorem 10.5 [3] Let A be a linear transformation Vn ! Vn. Suppose that a
vector x ð2 VnÞ satisfies the following relation:

ðA� aEÞlx ¼ 0; ð10:80Þ

where l is an enough large natural number. Then a set comprising x forms an A-
invariant subspace that corresponds to an eigenvalue a. Let a1; a2; . . .; as be
eigenvalues of A different from one another. Then Vn is decomposed to a direct sum
of the A-invariant subspaces that correspond individually to a1; a2; . . .; as. This is
succinctly expressed as follows:

Vn ¼gWa1 �gWa2 � � � � �gWas : ð10:81Þ

Here eWai 1� i� sð Þ is given by

Wai ¼ x; x 2 Vn; ðA� aiEÞlix ¼ 0
n o

; ð10:82Þ

where li is an enough large natural number. If multiplicity of ai is ni, dimeWai ¼ ni.

Proof Let us define the aforementioned A-invariant subspaces as eWak ð1� k� sÞ.
Let fAðxÞ be a characteristic polynomial of A. Factorizing fAðxÞ into a product of
powers of first-degree polynomials, we have

fAðxÞ ¼
Ys
i¼1
ðx� aiÞni ; ð10:83Þ

where ni is a multiplicity of ai. Let us put

fiðxÞ ¼ fAðxÞ=ðx� aiÞni ¼
Ys
j 6¼i
ðx� ajÞnj : ð10:84Þ
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Then f1ðxÞ; f2ðxÞ; . . .; and fsðxÞ do not have a common factor. Consequently,
Lemma 10.1 tells us that there are polynomials M1ðxÞ; M2ðxÞ; . . .; and MsðxÞ such
that

M1ðxÞf1ðxÞþ � � � þMsðxÞfsðxÞ ¼ 1: ð10:85Þ

Replacing x with a matrix A, we get

M1ðAÞf1ðAÞþ � � � þMsðAÞfsðAÞ ¼ E: ð10:86Þ

Or defining MiðAÞfiðAÞ � Ai

A1þA2þ � � � þAs ¼ E; ð10:87Þ

where E is a (n, n) identity matrix. Moreover, we have

AiAj ¼ Aidij: ð10:88Þ

In fact, if i 6¼ j,

AiAj ¼ MiðAÞfiðAÞMjðAÞfjðAÞ ¼ MiðAÞMjðAÞfiðAÞfjðAÞ

¼ MiðAÞMjðAÞ
Ys
k 6¼i
ðA� akÞnk

Ys
l 6¼j
ðA� alÞnl

¼ MiðAÞMjðAÞfAðAÞ
Ys
k 6¼i;j
ðA� akÞnk

¼ 0:

ð10:89Þ

The second equality results from the fact that MjðAÞ and fiðAÞ are commutable
since both are polynomials of A. The last equality follows from Hamilton–Cayley
Theorem. On the basis of (10.87) and (10.89),

Ai ¼ AiE ¼ Ai A1þA2þ � � � þAsð Þ ¼ A2
i : ð10:90Þ

Thus, we find that Ai is an idempotent matrix.
Next, let us show that using Ai determined above, AiVn is identical toeWai ð1� i� sÞ. To this end, we define Wi such that

Wi ¼ AiV
n ¼ x; x 2 Vn; Aix ¼ xf g: ð10:91Þ

We have

ðx� aiÞni fiðxÞ ¼ fAðxÞ: ð10:92Þ
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Therefore, from Hamilton–Cayley Theorem we have

ðA� aiEÞni fiðAÞ ¼ 0: ð10:93Þ

Operating MiðAÞ from the left and from the fact that MiðAÞ commutes with
ðA� aiEÞni , we get

ðA� aiEÞniAi ¼ 0; ð10:94Þ

where we used MiðAÞfiðAÞ ¼ Ai. Operating both sides of this equation on Vn,
furthermore, we have

ðA� aiEÞniAiV
n ¼ 0:

This means that

AiV
n � eWai ð1� i� sÞ: ð10:95Þ

Conversely, suppose that x 2 eWai . Then ðA� aEÞlx ¼ 0 holds for a certain
natural number l. If MiðxÞfiðxÞ were divided out by x� ai, LHS of (10.85) would be
divided out by x� ai as well, leading to the contradiction. Thus, it follows that
ðx� aiÞl and MiðxÞfiðxÞ do not have a common factor. Consequently, Lemma 10.1
ensures that we have polynomials MðxÞ and NðxÞ such that

MðxÞðx� aiÞlþNðxÞMiðxÞfiðxÞ ¼ 1:

Hence,

MðAÞðA� aiEÞlþNðAÞMiðAÞfiðAÞ ¼ E: ð10:96Þ

Operating both sides of (10.96) on x, we get

MðAÞðA� aiEÞlxþNðAÞMiðAÞfiðAÞx ¼ NðAÞAix ¼ x. ð10:97Þ

Notice that the first term of (10.97) vanishes from (10.82).
As Ai is a polynomial of A, it commutes with NðAÞ. Hence, we have

x ¼ Ai NðAÞx½ 
 2 AiV
n: ð10:98Þ

Thus, we get

eWai � AiV
n ð1� i� sÞ: ð10:99Þ
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From (10.95) and (10.99), we conclude that

eWai ¼ AiV
n ð1� i� sÞ: ð10:100Þ

In other words, Wi defined as (10.91) is identical to eWai that is defined as
(10.82). Thus, we have

Vn ¼ W1 �W2 � � � � �Ws:

or

Vn ¼gWa1 �gWa2 � � � � �gWas : ð10:101Þ

This completes the former half of the proof. With the latter half, the proof is as
follows.

Suppose that dim eWai ¼ n0i. In parallel to the decomposition of Vn to the direct
sum of (10.81), A can be reduced as

A�
Að1Þ . . . 0
..
. . .

. ..
.

0 . . . AðsÞ

0B@
1CA; ð10:102Þ

where AðiÞ ð1� i� sÞ is a n0i; n
0
i

� �
matrix and a symbol � indicates that A has been

transformed by suitable similarity transformation. The matrix AðiÞ represents a linear
transformation that A causes to eWai . We denote a n0i order identity matrix by En0i .
Equation (10.82) implies that the matrix represented by

Ni ¼ AðiÞ � aiEn0i : ð10:103Þ

is a nilpotent matrix. The order of an nilpotent matrix is at most n0i (vide supra) and,
hence, li can be n0i. With Ni, we have

fNiðxÞ ¼ xEn0i � Ni

��� ��� ¼ xEn0i � A ið Þ � aiEn0i

h i��� ��� ¼ xEn0i � AðiÞ þ aiEn0i

��� ���
¼ ðxþ aiÞEn0i � AðiÞ
��� ��� ¼ xn

0
i :

ð10:104Þ

The last equality is because eigenvalues of a nilpotent matrix are all zero.
Meanwhile,

fAðiÞ ðxÞ ¼ xEn0i � AðiÞ
��� ��� ¼ fNi x� aið Þ ¼ ðx� aiÞn

0
i : ð10:105Þ
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Equation (10.105) implies that

fAðxÞ ¼
Ys
i¼1

fA ið Þ ðxÞ ¼
Ys
i¼1
ðx� aiÞn

0
i ¼

Ys
i¼1
ðx� aiÞni : ð10:106Þ

The last equality comes from (10.83). Thus, n0i ¼ ni. These procedures complete
the proof. At the same time, we may equate li in (10.82) to ni.

Theorem 10.1 shows that any square matrix can be converted to a (upper)
triangle matrix by a similarity transformation. Theorem 10.5 demonstrates that the
matrix can further be segmented according to individual eigenvalues. Considering
Theorem 10.1 again, AðiÞ ð1� i� sÞ can be described as an upper triangle matrix by

AðiÞ �
ai . . . �
..
. . .

. ..
.

0 . . . ai

0B@
1CA: ð10:107Þ

Therefore, denoting NðiÞ such that

NðiÞ ¼ AðiÞ � aiEni ¼
0 . . . �
..
. . .

. ..
.

0 . . . 0

0@ 1A; ð10:108Þ

we find that NðiÞ is nilpotent. This is because all the eigenvalues of NðiÞ are zero.
From (10.108), we have

½NðiÞ
li ¼ 0 ðli� niÞ:

10.5 Decomposition of Matrix

To investigate canonical forms of matrices, it would be convenient if a matrix can
be decomposed into appropriate forms. To this end, the following definition is
important.

Definition 10.4 A matrix similar to a diagonal matrix is said to be semi-simple.
In the above definition, if a matrix is related to another matrix by similarity

transformation, those matrices are said to be similar to each other. When we have
two matrices A and A0, we express it by A�A0 as stated above. This relation
satisfies the equivalence law. That is,

(i) A�A, (ii) A�A0 ) A0 �A, (iii) A�A0;A0 �A00 ) A�A00.
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Readers, check this. We have a following important theorem with the matrix
decomposition.

Theorem 10.6 [3] Any (n, n) square matrix A is expressed uniquely as

A ¼ SþN; ð10:109Þ

where S is semi-simple and N is nilpotent; S and N are commutable, i.e., SN ¼ NS.
Furthermore, S and N are polynomials of A with scalar coefficients.

Proof Using (10.86) and (10.87), we write

S ¼ a1A1þ � � � þ asAs ¼
Xs
i¼1

aiMiðAÞfiðAÞ: ð10:110Þ

Then, Eq. (10.110) is a polynomial of A. From Theorems 10.1 and 10.5,
AðiÞ ð1� i� sÞ in (10.102) is characterized by that AðiÞ is a triangle matrix whose
eigenvalues ai ð1� i� sÞ are positioned on diagonal positions and that the order of
AðiÞ is identical to the multiplicity of ai. Since Ai ð1� i� sÞ is an idempotent matrix,
it should be diagonalized through similarity transformation (see Sect. 10.7). In fact,
S is transformed via similarity transformation the same as (10.102) into

S�
a1En1 . . . 0

..

. . .
. ..

.

0 . . . asEns

0B@
1CA; ð10:111Þ

where Eni ð1� i� sÞ is an identity matrix of an order ni that is identical to the
multiplicity of ai. This expression is equivalent to e.g.,

A1�
En1 . . . 0

..

. . .
. ..

.

0 . . . 0

0B@
1CA

in (10.110). Thus, S is obviously semi-simple. Putting N ¼ A� S, N is described
after the above transformation as

N�
Nð1Þ . . . 0
..
. . .

. ..
.

0 . . . NðsÞ

0B@
1CA; NðiÞ ¼ AðiÞ � aiEni : ð10:112Þ

Since each NðiÞ is nilpotent as stated in Sect. 10.4, N is nilpotent as well. Also
(10.112) is a polynomial of A as in the case of S. Therefore, S and N are
commutable.
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To prove the uniqueness of the decomposition, we show the following:

(i) Let S and S0 be commutable semi-simple matrices. Then, those matrices are
simultaneously diagonalized. That is, with a certain non-singular matrix P,
P�1SP and P�1S0P are diagonalized at once. Hence, S� S0 is semi-simple as
well.

(ii) Let N and N 0 be commutable nilpotent matrices. Then, N � N 0 is nilpotent as
well.

(iii) A matrix both semi-simple and nilpotent is zero matrix.
(i) Let different eigenvalues of S be a1; . . .; as. Then, since S is semi-simple, a

vector space Vn is decomposed into a direct sum of eigenspaces
Wai 1� i� sð Þ. That is, we have

Vn ¼ Wa1 � � � � �Was :

Since S and S0 are commutable, with 9x 2 Wai we have
SS0x ¼ S0Sx ¼ S0 aixð Þ ¼ aiS0x. Hence, we have S0x 2 Wai . Namely, Wai is
S0-invariant. Therefore, if we adopt the basis vectors a1; . . .; anf g with
respect to the direct sum decomposition, we get

S�
a1En1 . . . 0

..

. . .
. ..

.

0 . . . asEns

0B@
1CA; S0 �

S01 . . . 0

..

. . .
. ..

.

0 . . . S0s

0B@
1CA:

Since S0 is semi-simple, S0i 1� i� sð Þ must be semi-simple as well. Here, let
e1; . . .; enf g be original basis vectors before the basis vector transformation

and let P be a representation matrix of the said transformation. Then, we
have

e1. . .enð ÞP ¼ a1. . .anð Þ:

Thus, we get

P�1SP ¼
a1En1 . . . 0

..

. . .
. ..

.

0 . . . asEns

0B@
1CA; P�1S0P ¼

S01 . . . 0

..

. . .
. ..

.

0 . . . S0s

0B@
1CA:

This means that both P�1SP and P�1S0P are diagonal. That is, P�1SP�
P�1S0P ¼ P�1ðS� S0ÞP is diagonal, indicating that S� S0 is semi-simple as
well.

(ii) Suppose that Nm ¼ 0 and N 0m
0 ¼ 0. From the assumption, N and N 0 are

commutable. Consequently, using binomial theorem we have
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ðN � N 0Þm ¼ Nm � mNm�1N 0 þ � � � þ ð�1Þi m!
i! m� ið Þ!N

m�iN 0iþ � � �

þ ð�1ÞmN 0m:
ð10:113Þ

Putting m ¼ mþ m0 � 1, if i	 m0; N 0i ¼ 0 from the supposition. If i\m0, we
have m� i[m� m0 ¼ mþ m0 � 1� m0 ¼ m� 1; i.e., m� i	 m. Therefore,
Nm�i ¼ 0. Consequently, we have Nm�iN 0i ¼ 0 with any i in (10.113). Thus,
we get ðN � N 0Þm ¼ 0, indicating that N � N 0 is nilpotent.

(iii) Let S be a semi-simple and nilpotent matrix. We describe S as

S�
a1 . . . 0
..
. . .

. ..
.

0 . . . an

0B@
1CA; ð10:114Þ

where some of ai ð1� i� nÞ may be identical. Since S is nilpotent, all
ai ð1� i� nÞ is zero. We have then S� 0; i.e., S ¼ 0 accordingly.
Now, suppose that a matrix A is decomposed differently from (10.109). That
is, we have

A ¼ SþN ¼ S0 þN 0 or S� S0 ¼ N 0 � N: ð10:115Þ

From the assumption, S0 and N 0 are commutable. Moreover, since S; S0;N,
and N 0 are described by a polynomial of A, they are commutable with one
another. Hence, from (i) and (ii) along with the second equation of (10.115),
S� S0 and N 0 � N are both semi-simple and nilpotent at once. Consequently,
from (iii) S� S0 ¼ N 0 � N ¼ 0. Thus, we finally get S ¼ S0 and N ¼ N 0.
That is, the decomposition is unique.

These complete the proof.
Theorem 10.6 implies that the matrix decomposition of (10.109) is unique. On

the basis of Theorem 10.6, we investigate Jordan canonical forms of matrices in the
next section.

10.6 Jordan Canonical Form

Once the vector space Vn has been decomposed to a direct sum of generalized
eigenspaces with the matrix reduced in parallel, we are able to deal with individual
eigenspaces eWai 1� i� sð Þ and the corresponding AðiÞ ð1� i� sÞ separately.
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10.6.1 Canonical Form of Nilpotent Matrix

To avoid complication of notation, we think of a following example where we
assume a (n, n) matrix that operates on Vn: Let the nilpotent matrix be N: Suppose
that Nm�1 6¼ 0 and Nm ¼ 0 ð1� m� nÞ. If m ¼ 1, the nilpotent matrix N is a zero
matrix. Notice that since a characteristic polynomial is described by fNðxÞ ¼
xn; fNðNÞ ¼ Nn ¼ 0 from Hamilton–Cayley Theorem. Let W ðiÞ be given such that

W ðiÞ ¼ x; x 2 Vn; Nix ¼ 0
	 


:

Then we have

Vn ¼ W ðmÞ 
 W ðm�1Þ 
 � � � 
 W ð1Þ 
 W ð0Þ � 0f g: ð10:116Þ

Note that when m ¼ 1, we have trivially Vn ¼ W ðmÞ 
 W ð0Þ � 0f g. Let us put
dim W ðiÞ ¼ mi; mi � mi�1 ¼ ri 1� i� mð Þ; m0 � 0. Then we can add rm linearly
independent vectors a1; a2; . . .; and arm to the basis vectors of W ðm�1Þ so that those
rm vectors can be basis vectors of W ðmÞ. Unless N ¼ 0 (i.e., zero matrix), we must
have at least one such vector; from the supposition with 9x 6¼ 0 we have Nm�1x 6¼ 0,
and so x 62 W m�1ð Þ. At least one such vector x is present and it is eligible for a basis
vector of W ðmÞ. Hence, rm	 1 and we have

W ðmÞ ¼ Span a1; a2; . . .; armf g �W ðm�1Þ: ð10:117Þ

Note that (10.117) is expressed as a direct sum. Meanwhile,
Na1;Na2; . . .;Narm 2 W ðm�1Þ. In fact, suppose that x 2 W ðmÞ, i.e.,
Nmx ¼ Nm�1ðNxÞ ¼ 0. That is, Nx 2 W ðm�1Þ.

According to a similar reasoning made above, we have

Span Na1;Na2; . . .;Narmf g\W m�2ð Þ ¼ 0f g:

Moreover, these rm vectors Na1;Na2; . . .; and Narm are linearly independent.
Suppose that

c1Na1þ c2Na2þ � � � þ crmNarm ¼ 0: ð10:118Þ

Operating Nm�2 from the left, we have

Nm�1 c1a1þ c2a2þ � � � þ crmarmð Þ ¼ 0:

This would imply that c1a1þ c2a2þ � � � þ crmarm 2 W ðm�1Þ. On the basis of the
above argument, however, we must have c1 ¼ c2 ¼ � � � ¼ crm ¼ 0. In other words,
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if ci ð1� i� rmÞ were nonzero, we would have ai 2 W ðm�1Þ, in contradiction. From
(10.118), this means linear independence of Na1;Na2; . . .; and Narm .

As W ðm�1Þ 
 W ðm�2Þ, we may well have additional linearly independent vectors
within the basis vectors of W ðm�1Þ. Let those vectors be arm þ 1; . . .; arm�1 . Here we
assume that the number of such vectors is rm�1 � rm. We have rm�1 � rm	 0
accordingly. In this way, we can construct basis vectors of W ðm�1Þ by including
arm þ 1; . . .; and arm�1 along with Na1;Na2; . . .; and Narm . As a result, we get

W ðm�1Þ ¼ Span Na1; . . .;Narm ; arm þ 1; . . .; arm�1f g �W ðm�2Þ:

We can repeat these processes to construct W ðm�2Þ such that

W m�2ð Þ ¼ Span N2a1; . . .;N2arm ;Narm þ 1; . . .;Narm�1 ; arm�1 þ 1; . . .; arm�2
	 


�W ðm�3Þ:

For W ið Þ, furthermore, we have

W ið Þ

¼ Span Nm�ia1; . . .;Nm�iarm ;N
m�i�1arm þ 1; . . .;N

m�i�1arm�1 ; . . .; ariþ 1 þ 1; . . .; ari
	 


�W ði�1Þ:

ð10:119Þ

Further repeating the procedures, we exhaust all the n basis vectors of W ðmÞ ¼
Vn: These vectors are given as follows:

Nkariþ 1 þ 1; . . .;N
kari ð1� i� m; 0� k� i� 1Þ:

At the same time, we have

0 � rmþ 1\1� rm� rm�1� � � � � r1: ð10:120Þ

Table 10.1 [3] shows the resulting structure of these basis vectors pertinent to
Jordan blocks. In Table 10.1, if laterally counting basis vectors, from the top we
have rm; rm�1; . . .; r1 vectors. Their sum is n. This is the same number as that
vertically counted. The dimension n of the vector space Vn is thus given by

n ¼
Xv
i¼1

ri ¼
Xv
i¼1

i ri � riþ 1ð Þ: ð10:121Þ

Let us examine the structure of Table 10.1 more closely. More specifically, let us
inspect the i-layered structures of ri � riþ 1ð Þ vectors. Picking up a vector from
among ariþ 1 þ 1; . . .; ari , we call it aq. Then, we get following set of vectors
aq; Naq N2aq; . . .;Ni�1aq in the i-layered structure. These i vectors are displayed
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“vertically” in Table 10.1. These vectors are linearly independent (see
Theorem 10.4) and form an i-dimensional N-invariant subspace; i.e.,
Span Ni�1aq;Ni�2aq; . . .;Naq; aq

	 

, where riþ 1þ 1� q� ri. Matrix representation

of the linear transformation N with respect to the set of these i vectors is

ðNi�1aqNi�2aq. . .NaqaqÞN

¼ ðNi�1aqNi�2aq. . .NaqaqÞ

0 1

0 1

0

..

. . .
. ..

.

0 1

� � � 0 1

0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:

ð10:122Þ

These (i, i) matrices of (10.122) are called ith order Jordan blocks. Notice that
the number of those Jordan blocks is ri � riþ 1ð Þ. Let us expressly define this
number as [3]

Ji ¼ ri � riþ 1; ð10:123Þ

where Ji is the number of the ith order Jordan blocks. The total number of Jordan
blocks within a whole vector space Vn ¼ W ðmÞ is

Xv
i¼1

Ji ¼
Xv
i¼1

ri � riþ 1ð Þ ¼ r1: ð10:124Þ

Recalling the dimension theorem mentioned in (9.45), we have

dimVn ¼ dim Ker Niþ dim Ni Vnð Þ
¼ dim KerNiþ rankNi:

ð10:125Þ

Meanwhile, since W ðiÞ ¼ KerNi, dim W ðiÞ ¼ mi ¼ dim KerNi. From (10.116),
m0 � 0. Then (9.45) is now read as

dimVn ¼ miþ rankNi: ð10:126Þ

That is

n ¼ miþ rankNi: ð10:127Þ
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or

mi ¼ n� rankNi: ð10:128Þ

Meanwhile, from Table 10.1 we have

dim W ðiÞ ¼ mi ¼
Xi
k¼1

rk; dim W ði�1Þ ¼ mi�1 ¼
Xi�1
k¼1

rk: ð10:129Þ

Hence, we have

ri ¼ mi � mi�1: ð10:130Þ

Then we get [3].

Ji ¼ ri � riþ 1 ¼ mi � mi�1ð Þ � miþ 1 � mið Þ ¼ 2mi � mi�1 � miþ 1

¼ 2 n� rankNi
� �� n� rankNi�1� �� ðn� rankNiþ 1Þ

¼ rankNi�1þ rankNiþ 1 � 2rankNi:

ð10:131Þ

The number Ji is therefore defined uniquely by N. The total number of Jordan
blocks r1 is also computed using (10.128) and (10.130) as

r1 ¼ m1 � m0 ¼ m1 ¼ n� rankN ¼ dim KerN; ð10:132Þ

where the last equality arises from the dimension theorem expressed as (9.45).
In Table 10.1, moreover, we have two extreme cases. That is, if m ¼ 1 in (10.116),

i.e., N ¼ 0, from (10.132) we have r1 ¼ n and r2 ¼ � � � ¼ rn ¼ 0; see Fig. 10.1a.
Also we confirm n ¼Pv

i¼1 ri in (10.121). In this case, all the eigenvectors are proper

(a)

(b)Fig. 10.1 Examples of the
structure of Jordan blocks.
a r1 ¼ n.
b r1 ¼ r2 ¼ � � � ¼ rn ¼ 1
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eigenvectors with multiplicity of n and we have n first-order Jordan blocks. The other
is the case of m ¼ n. In that case, we have

r1 ¼ r2 ¼ � � � ¼ rn ¼ 1: ð10:133Þ

In the latter case, we also have n ¼Pv
i¼1 ri in (10.121). We have only one

proper eigenvector and ðn� 1Þ generalized eigenvectors; see Fig. 10.1b. From
(10.132), we have this special case where we have only one nth order Jordan block,
when rankN ¼ n� 1.

10.6.2 Jordan Blocks

Let us think of (10.81) on the basis of (10.102). Picking up AðiÞ from (10.102) and
considering (10.108), we put

Ni ¼ AðiÞ � aiEni ð1� i� sÞ; ð10:134Þ

where Eni denotes ni; nið Þ identity matrix. We express a nilpotent matrix as Ni as
before. In (10.134), the number ni corresponds to n in Vn of Sect. 10.6.1. As Ni is a
ni; nið Þ matrix, we have

Nni
i ¼ 0:

Here we are speaking of vth order nilpotent matrices Ni such that Nm�1
i 6¼ 0 and

Nm
i ¼ 0 ð1� m� niÞ. We can deal with Ni in a manner fully consistent with the

theory we developed in Sect. 10.6.1. Each AðiÞ comprises one or more Jordan
blocks AðjÞ that is expressed as

AðjÞ ¼ Nji þ aiEji ð1� ji� niÞ; ð10:135Þ

where AðjÞ denotes the jth Jordan block in AðiÞ. In AðjÞ, Nji and Eji are nilpotent
ji; jið Þ matrix and ji; jið Þidentity matrix, respectively. In Nji ; ji zeros are displayed
on the principal diagonal and entries of 1 are positioned on the matrix element next
above the principal diagonal. All other entries are zero; see, e.g., a matrix of
(10.122). As in Sect. 10.6.1, the number ji is called a dimension of the Jordan
block. Thus, AðiÞ of (10.102) can further be reduced to segmented matrices AðjÞ. Our
next task is to find out how many Jordan blocks are contained in individual AðiÞ and
what is the dimension of those Jordan blocks.

Corresponding to (10.122), the matrix representation of the linear transformation
by AðjÞ with respect to the set of ji vectors is
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ð½A jð Þ � aiEji 
ji�1ar½A jð Þ � aiEji 
ji�2ar. . .arÞ½A jð Þ � aiEji 

¼ ð½A jð Þ � aiEji 
ji�1ar½A jð Þ � aiEji 
ji�2ar. . .arÞ

�

0 1

0 1

0

..

. . .
. ..

.

0 1

� � � 0 1

0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:

ð10:136Þ

A vector ar stands for a vector associated with the jth Jordan block of AðiÞ. From
(10.136), we obtain

A jð Þ � aiEji

h i
A jð Þ � aiEji

h iji�1
ar

� �
¼ 0: ð10:137Þ

Namely,

A jð Þ A jð Þ � aiEji

h iji�1
ar

� �
¼ ai A jð Þ � aiEji

h iji�1
ar

� �
: ð10:138Þ

This shows that A jð Þ � aiEji


 �ji�1ar is a proper eigenvector of A jð Þ that corre-
sponds to an eigenvalue ai. On the other hand, ar is a generalized eigenvector of
rank ji. There are another ðji � 2Þ generalized eigenvectors of
A jð Þ � aiEji


 �l
ar 1� l� ji � 2ð Þ. In total, there are ji eigenvectors [a proper

eigenvector and ðji � 1Þ generalized eigenvectors]. Also we see that the sole proper
eigenvector can be found for each Jordan block.

In reference to these ji eigenvectors as the basis vectors, the ðji; jiÞ-matrix AðjÞ

(i.e., a Jordan block) is expressed as

AðjÞ ¼

ai 1
ai 1

ai . .
.

..

. . .
. . .

. ..
.

ai 1
. . . ai 1

ai

0BBBBBBBBB@

1CCCCCCCCCA
: ð10:139Þ
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A ni; nið Þ-matrix AðiÞ of (10.102) pertinent to an eigenvalue ai contains a direct
sum of Jordan blocks whose dimension ranges from 1 to ni. The largest possible
number of Jordan blocks of dimension d (that satisfies ½ni2 þ 1
 � d� ni, where ½l

denotes a largest integer that does not exceed l) is at most one.

An example depicted below is a matrix AðiÞ that explicitly includes two
one-dimensional Jordan blocks, a (3, 3) three-dimensional Jordan block, and a (5,
5) five-dimensional Jordan block:

AðiÞ �

ai 0
ai 0

ai 1
ai 1

..

. ai

. . .

0 ..
.

ai 1
ai 1

. . . ai 1
ai 1

ai

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
;

where AðiÞ is a (10,10) upper triangle matrix in which ai is displayed on the prin-
cipal diagonal with entries 0 or 1 on the matrix element next above the principal
diagonal with all other entries being zero.

Theorem 10.1 shows that every (n, n) square matrix can be converted to a
triangle matrix by suitable similarity transformation. Diagonal elements give
eigenvalues. Furthermore, Theorem 10.5 ensures that A can be reduced to gener-
alized eigenspaces eWai ð1� i� sÞ according to individual eigenvalues. Suppose for
example that after a suitable similarity transformation a full matrix A is represented
as

A�

a1
a2 � �

a2 �
a2

. .
.

ai � � �
ai � �

ai �
ai

. .
.

as �
as

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA

; ð10:140Þ
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where

A ¼ Að1Þ � Að2Þ � � � � � AðiÞ � � � � � AðsÞ: ð10:141Þ

In (10.141), Að1Þ is a (1,1) matrix (i.e., simply a number); Að2Þ is a (3,3) matrix;
� � �AðiÞ is a (4,4) matrix; � � �AðsÞ is a (2, 2) matrix.

The above matrix form allows us to further deal with segmented triangle
matrices separately. In the case of (10.140), we may use a following matrix for
similarity transformation:

eP ¼

1
1

1
1

. .
.

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

. .
.

1
1

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

:

where a (4,4) matrix P given by

P ¼
p11 p12
p21 p22

p13 p14
p23 p24

p31 p32
p41 p42

p33 p34
p43 p44

0B@
1CA:

is a non-singular matrix. The matrix P is to be operated on AðiÞ so that we can
separately perform the similarity transformation with respect to a (4, 4) nilpotent
matrix A ið Þ � aiE4 following the procedures mentioned Sect. 10.6.1.

Thus, only an ai-associated segment can be treated with other segments left
unchanged. In a similar fashion, we can consecutively deal with matrix segments
related to other eigenvalues. In a practical case, however, it is more convenient to
seek different eigenvalues and corresponding (generalized) eigenvectors at once and
convert the matrix to Jordan canonical form. To make a guess about the structure of
a matrix, however, the following argument will be useful. Let us think of an
example after that.
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Using (10.140), we have

A� aiE

�

a1 � ai
a2 � ai � �

a2 � ai �
a2 � ai

. .
.

0 � � �
0 � �

0 �
0

. .
.

as � ai �
as � ai

0BBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCA

:

Here we are treating the (n, n) matrix A on Vn. Note that a matrix A� aiE is not
nilpotent as a whole. Suppose that the multiplicity of ai is ni; in (10.140) ni ¼ 4.
Since eigenvalues a1; a2; . . .; and as take different values from one another,
a1 � ai; a2 � ai; . . .; and as � ai 6¼ 0. In a triangle matrix diagonal element gives
eigenvalues and, hence, a1 � ai; a2 � ai; . . .; and as � ai are nonzero eigenvalues
of A� aiE. We rewrite (10.140) as

A� aiE�

Mð1Þ

Mð2Þ

. .
.

MðiÞ

. .
.

MðsÞ

0BBBBBBB@

1CCCCCCCA; ð10:142Þ

where Mð1Þ ¼ a1 � aið Þ; Mð2Þ ¼
a2 � ai � �

a2 � ai �
a2 � ai

0@ 1A; � � �,

MðiÞ ¼
0 �

0
� �
� �
0 �

0

0B@
1CA; . . .;MðsÞ ¼ as � ai �

as � ai

� �
:
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Thus, MðpÞ ðp 6¼ iÞ is a non-singular matrix and MðiÞ is a nilpotent matrix. Note

that if we can find li such that MðiÞ

 �li�1 6¼ 0 and MðiÞ


 �li¼ 0, with a minimal
polynomial uMðiÞ ðxÞ for MðiÞ, we have uMðiÞ ðxÞ ¼ xli . Consequently, we get

ðA� aiEÞli �

½Mð1Þ
li
½Mð2Þ
li

. .
.

0
. .
.

½MðsÞ
li

0BBBBBBB@

1CCCCCCCA: ð10:143Þ

In (10.143), diagonal elements of non-singular triangle matrices MðpÞ

 �li ðp 6¼ iÞ

are ðap � aiÞli ð6¼ 0Þ. Thus, we have a “perforated” matrix ðA� aiEÞli where
MðiÞ

 �li¼ 0 in (10.143). Putting

UAðxÞ �
Ys
i¼1
ðx� aiÞli ;

we get

UAðAÞ �
Ys
i¼1
ðA� aiEÞli ¼ 0:

A polynomial UAðxÞ gives a minimal polynomial for fAðxÞ.
From the above argument, we can choose li for li in (10.82). Meanwhile, MðiÞ in

(10.142) is identical to Ni in (10.134). Rewriting (10.134), we get

AðiÞ ¼ MðiÞ þ aiEni : ð10:144Þ

Let us think of matrices AðiÞ � aiEni


 �k
and ðA� aiEÞk ðk� liÞ. From (9.45), we

find

dimVn ¼ n ¼ dim Ker ðA� aiEÞk þ rank ðA� aiEÞk; ð10:145Þ

and

dim eWai ¼ ni ¼ dim Ker ½AðiÞ � aiEni 
k þ rank ½AðiÞ � aiEni 
k; ð10:146Þ

where rank ðA� aiEÞk ¼ dim ðA� aiEÞk Vnð Þ and rank ½AðiÞ � aiEni 
k ¼ dim
½AðiÞ � aiEni 
k eWai

� �
.
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Noting that

dim Ker ðA� aiEÞk ¼ dim Ker ½AðiÞ � aiEni 
k; ð10:147Þ

we get

n� rank ðA� aiEÞk ¼ ni � rank ½AðiÞ � aiEni 
k: ð10:148Þ

This notable property comes from the non-singularity of MðpÞ

 �k

(p 6¼ i, k: a

positive integer); i.e., all the eigenvalues of MðpÞ

 �k

are nonzero. In particular, as

rank ½AðiÞ � aiEni 
li ¼ 0, from (10.148) we have

rankðA� aiEÞl ¼ n� ni ðl	 liÞ: ð10:149Þ

Meanwhile, putting k ¼ 1 in (10.148) and using (10.132) we get

dim Ker ½AðiÞ � aiEni 
 ¼ ni � rank ½AðiÞ � aiEni 

¼ n� rank ðA� aiEÞ ¼ dim Ker ðA� aiEÞ
¼ rðiÞ1 :

ð10:150Þ

The value rðiÞ1 gives the number of Jordan blocks with an eigenvalue ai.
Moreover, we must consider a following situation. We know how the matrix AðiÞ

in (10.134) is reduced to Jordan blocks of lower dimension. To get detailed
information about it, however, we have to get the information about (generalized)
eigenvalues corresponding to eigenvalues other than ai. In this context, (10.148) is
useful. Equation (10.131) tells how the number of Jordan blocks in a nilpotent
matrix is determined. If we can get this knowledge before we have found out all the
(generalized) eigenvectors, it will be easier to address the problem. Let us rewrite
(10.131) as

JðiÞq ¼ rq � rqþ 1

¼ rank ½A ið Þ � aiEni 
q�1þ rank ½A ið Þ � aiEni 
qþ 1 � 2 rank ½A ið Þ � aiEni 
q;
ð10:151Þ

where we define JðiÞq as the number of the qth order Jordan blocks within A ið Þ. Note

that these blocks are expressed as (q, q) matrices. Meanwhile, using (10.148) JðiÞq is
expressed as

JðiÞq ¼ rank ðA� aiEÞq�1þ rank ðA� aiEÞqþ 1 � 2 rank ðA� aiEÞq: ð10:152Þ

This relation can be obtained by replacing k in (10.148) with q� 1; qþ 1, and q,
respectively and deleting n and ni from these three relations. This enables us to gain
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access to a whole structure of the linear transformation represented by the (n,
n) matrix A without reducing it to subspaces.

To enrich our understanding of Jordan canonical forms, a following tangible
example will be beneficial.

10.6.3 Example of Jordan Canonical Form

Let us think of a following matrix A:

A ¼
1 �1 0 0
1 3 0 0
0 0 2 0
�3 �1 �2 4

0BB@
1CCA: ð10:153Þ

The characteristic equation fAðxÞ is given by

fAðxÞ ¼

x� 1 1 0 0

�1 x� 3 0 0

0 0 x� 2 0

3 1 2 x� 4

���������

���������:
¼ ðx� 4Þðx� 2Þ3:

ð10:154Þ

Equating (10.154) to zero, we get an eigenvalue 4 as a simple root and an
eigenvalue 2 as a triple root. The vector space V4 is then decomposed to two
invariant subspaces. The first is a one-dimensional kernel (or null-space) of the
transformation ðA� 4EÞ and the other is a three-dimensional kernel of the trans-
formation ðA� 2EÞ3. We have to seek eigenvectors that span these invariant
subspaces.

(i) x ¼ 4 :

An eigenvector belonging to the first invariant subspace must satisfy a proper
eigenvalue equation since the eigenvalue 4 is simple root. This equation is
expressed as

A� 4Eð Þx ¼ 0:

This reads in a matrix form as

�3 �1 0 0
1 �1 0 0
0 0 �2 0
�3 �1 �2 0

0BB@
1CCA

c1
c2
c3
c4

0BB@
1CCA ¼ 0: ð10:155Þ
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This is equivalent to a following set of four equations:

� 3c1 � c2 ¼ 0;

c1 � c2 ¼ 0;

� 2c3 ¼ 0;

� 3c1 � c2 � 2c3 ¼ 0:

These are equivalent to that c3 ¼ 0 and c1 ¼ c2 ¼ �3c1. Therefore, c1 ¼ c2 ¼
c3 ¼ 0 with an arbitrarily chosen number of c4, which is chosen as 1 as usual.

Hence, designating the proper eigenvector as eð4Þ1 , its column vector representation
is

eð4Þ1 ¼
0
0
0
1

0BB@
1CCA:

A (4,4) matrix in (10.155) representing A� 4Eð Þ has a rank 3. The number of
Jordan blocks for an eigenvalue 4 is given by (10.150) as

rð4Þ1 ¼ 4� rank A� 4Eð Þ ¼ 1: ð10:156Þ

In this case, the Jordan block is naturally one-dimensional. In fact, using
(10.152) we have

Jð4Þ1 ¼ rank ðA� 4EÞ0þ rank ðA� 4EÞ2 � 2rank ðA� 4EÞ
¼ 4þ 3� 2� 3 ¼ 1:

ð10:157Þ

In (10.157), Jð4Þ1 gives the number of the first-order Jordan blocks for an
eigenvalue 4. We used

ðA� 4EÞ2 ¼
8 4 0 0
�4 0 0 0
0 0 4 0
8 4 4 0

0BB@
1CCA ð10:158Þ

and confirmed that rankðA� 4EÞ2 ¼ 3.

(ii) x ¼ 2 :

The eigenvalue 2 has a triple root. Therefore, we must examine how the in-
variant subspaces can further be decomposed to subspaces of lower dimension. To
this end, we first start with a secular equation expressed as

10.6 Jordan Canonical Form 367



A� 2Eð Þx ¼ 0: ð10:159Þ

The matrix representation is

�1 �1 0 0
1 1 0 0
0 0 0 0
�3 �1 �2 2

0BB@
1CCA

c1
c2
c3
c4

0BB@
1CCA ¼ 0:

This is equivalent to a following set of two equations:

c1þ c2 ¼ 0;

� 3c1 � c2 � 2c3þ 2c4 ¼ 0:

From the above, we can put c1 ¼ c2 ¼ 0 and c3 ¼ c4 ð¼ 1Þ. The equations allow
the existence of another proper eigenvector. For this we have c1 ¼ �c2 ¼ 1;
c3 ¼ 0, and c4 ¼ 1. Thus, for the two proper eigenvectors corresponding to an
eigenvalue 2, we get

eð2Þ1 ¼
0
0
1
1

0BB@
1CCA; eð2Þ2 ¼

1
�1
0
1

0BB@
1CCA:

A dimension of the invariant subspace corresponding to an eigenvalue 2 is three
(due to the triple root) and, hence, there should be one generalized eigenvector. To
determine it, we examine a following matrix equation:

ðA� 2EÞ2x ¼ 0: ð10:160Þ

The matrix representation is

0 0 0 0
0 0 0 0
0 0 0 0
�4 0 �4 4

0BB@
1CCA

c1
c2
c3
c4

0BB@
1CCA ¼ 0:

That is,

�c1 � c3þ c4 ¼ 0: ð10:161Þ
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Furthermore, we have

ðA� 2EÞ3 ¼
0 0 0 0
0 0 0 0
0 0 0 0
�8 0 �8 8

0BB@
1CCA: ð10:162Þ

Moreover, rank A� 2Eð Þl ð¼ 1Þ remains unchanged for l	 2 as expected from
(10.149).

It will be convenient to examine a structure of the invariant subspace. For this

purpose, we seek the number of Jordan blocks rð2Þ1 and their order. Using (10.150),
we have

rð2Þ1 ¼ 4� rank A� 2Eð Þ ¼ 4� 2 ¼ 2: ð10:163Þ

The number of first-order Jordan blocks is

Jð2Þ1 ¼ rank ðA� 2EÞ0þ rank ðA� 2EÞ2 � 2 rank ðA� 2EÞ
¼ 4þ 1� 2� 2 ¼ 1:

ð10:164Þ

In turn, the number of second-order Jordan blocks is

Jð2Þ2 ¼ rank ðA� 2EÞþ rank ðA� 2EÞ3 � 2 rank ðA� 2EÞ2
¼ 2þ 1� 2� 1 ¼ 1:

ð10:165Þ

In the above, Jð2Þ1 and Jð2Þ2 are obtained from (10.152). Thus, Fig. 10.2 gives a
constitution of Jordan blocks for eigenvalues 4 and 2. The overall number of Jordan
blocks is three; the number of the first-order and second-order Jordan blocks is two
and one, respectively.

The proper eigenvector eð2Þ1 is related to Jð2Þ1 of (10.164). A set of the proper

eigenvector eð2Þ2 and the corresponding generalized eigenvector gð2Þ2 is pertinent to

Jð2Þ2 of (10.165). We must have the generalized eigenvector gð2Þ2 in such a way that

ðA� 2EÞ2g 2ð Þ
2 ¼ A� 2Eð Þ A� 2Eð Þg 2ð Þ

2

h i
¼ A� 2Eð Þe 2ð Þ

2 ¼ 0: ð10:166Þ

Fig. 10.2 Structure of Jordan
blocks of a matrix shown in
(10.170)
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From (10.161), we can put c1 ¼ c3 ¼ c4 ¼ 0 and c2 ¼ �1. Thus, the matrix

representation of the generalized eigenvector gð2Þ2 is

gð2Þ2 ¼
0
�1
0
0

0BB@
1CCA: ð10:167Þ

We stress here that eð2Þ1 is not eligible for a proper pair with gð2Þ2 in J2. It is
because from (10.166) we have

A� 2Eð Þgð2Þ2 ¼ eð2Þ2 ; A� 2Eð Þgð2Þ2 6¼ eð2Þ1 : ð10:168Þ

Thus, we have determined a set of (generalized) eigenvectors. The matrix rep-
resentation R for the basis vectors transformation is given by

R ¼
0 0 1 0
0 0 �1 �1
0 1 0 0
1 1 1 0

0BB@
1CCA�ðeð4Þ1 eð2Þ1 eð2Þ2 gð2Þ2 Þ; ð10:169Þ

where the symbol � denotes the column vector representation; eð4Þ1 ; eð2Þ1 ; and eð2Þ2

represent proper eigenvectors and gð2Þ2 is a generalized eigenvector. Performing
similarity transformation using this R, we get a following Jordan canonical form:

R�1AR ¼

�1 0 �1 1

0 0 1 0

1 0 0 0

�1 �1 0 0

0BBB@
1CCCA

1 �1 0 0

1 3 0 0

0 0 2 0

�3 �1 �2 4

0BBB@
1CCCA

0 0 1 0

0 0 �1 �1
0 1 0 0

1 1 1 0

0BBB@
1CCCA

¼

4 0 0 0

0 2 0 0

0 0 2 1

0 0 0 2

0BBB@
1CCCA:

ð10:170Þ

The structure of Jordan blocks is shown in Fig. 10.2. Notice here that the trace of
A remains unchanged before and after similarity transformation.

Next, we consider column vector representations. According to (9.37), let us
view the matrix A as a linear transformation over V4. Then A is given by
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AðxÞ ¼ ðe1 e2 e3 e4ÞA
x1
x2
x3
x4

0BB@
1CCA

¼ ðe1 e2 e3 e4Þ

1 �1 0 0

1 3 0 0

0 0 2 0

�3 �1 �2 4

0BBB@
1CCCA

x1
x2
x3
x4

0BB@
1CCA;

ð10:171Þ

where e1; e2; e3; and e4 are basis vectors and x1; x2; x3; and x4 are corresponding
coordinates of a vector x ¼Pn

i¼1 xiei ð2 V4Þ. We rewrite (10.171) as

AðxÞ ¼ ðe1 e2 e3 e4ÞRR�1ARR�1
x1
x2
x3
x4

0BB@
1CCA

¼ ðeð4Þ1 eð2Þ1 eð2Þ2 gð2Þ2 Þ

4 0 0 0

0 2 0 0

0 0 2 1

0 0 0 2

0BBB@
1CCCA

x01
x02
x03
x04

0BBB@
1CCCA;

ð10:172Þ

where we have

eð4Þ1 eð2Þ1 eð2Þ2 gð2Þ2

� �
¼ ðe1 e2 e3 e4ÞR

x01
x02
x03
x04

0BBB@
1CCCA ¼ R�1

x1
x2
x3
x4

0BB@
1CCA:

ð10:173Þ

After (9.84), we have

x ¼ e1 e2 e3 e4ð Þ
x1
x2
x3
x4

0BB@
1CCA ¼ e1 e2 e3 e4ð ÞRR�1

x1
x2
x3
x4

0BB@
1CCA

¼ eð4Þ1 eð2Þ1 eð2Þ2 gð2Þ2

� � x01
x02
x03
x04

0BBB@
1CCCA:

ð10:174Þ
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As for Vn in general, let us put R ¼ ðpÞij and R�1 ¼ ðqÞij. Also represent jth

(generalized) eigenvectors by a column vector and denote them by pðjÞ. There we
display individual (generalized) eigenvectors in the order of
eð1Þ eð2Þ � � � eðjÞ � � � eðnÞ� �

, where eðjÞ ð1� j� nÞ denotes either a proper eigenvector

or a generalized eigenvector according to (10.174). Each pðjÞ is represented in
reference to original basis vectors e1. . .enð Þ. Then we have

R�1pðjÞ ¼
Xn
k¼1

qikp
ðjÞ
k ¼ dðjÞi ; ð10:175Þ

where dðjÞi denotes a column vector to which only the jth row is 1, otherwise 0.

Thus, a column vector dðjÞi is an “address” of eðjÞ in reference to
eð1Þ eð2Þ. . .e jð Þ. . .eðnÞ
� �

taken as basis vectors.
In our present case, in fact, we have

R�1pð1Þ ¼

�1 0 �1 1

0 0 1 0

1 0 0 0

�1 �1 0 0

0BBB@
1CCCA

0

0

0

1

0BBB@
1CCCA ¼

1

0

0

0

0BBB@
1CCCA;

R�1pð2Þ ¼

�1 0 �1 1

0 0 1 0

1 0 0 0

�1 �1 0 0

0BBB@
1CCCA

0

0

1

1

0BBB@
1CCCA ¼

0

1

0

0

0BBB@
1CCCA;

R�1pð3Þ ¼

�1 0 �1 1

0 0 1 0

1 0 0 0

�1 �1 0 0

0BBB@
1CCCA

1

�1
0

1

0BBB@
1CCCA ¼

0

0

1

0

0BBB@
1CCCA;

R�1pð4Þ ¼

�1 0 �1 1

0 0 1 0

1 0 0 0

�1 �1 0 0

0BBB@
1CCCA

0

�1
0

0

0BBB@
1CCCA ¼

0

0

0

1

0BBB@
1CCCA:

ð10:176Þ

In (10.176), pð1Þ is a column vector representation of e 4ð Þ
1 ; pð2Þ is a column vector

representation of eð2Þ1 , and so on.
A minimal polynomial UAðxÞ is expressed as

UAðxÞ ¼ ðx� 4Þðx� 2Þ2:

Readers can easily make sure of it.
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We remark that a non-singular matrix R pertinent to the similarity transformation
is not uniquely determined, but we have arbitrariness. In (10.169), for example, if

we adopt �gð2Þ2 instead of gð2Þ2 , we should adopt �eð2Þ2 instead of eð2Þ2 accordingly.
Thus, instead of R in (10.169) we may choose

R0 ¼
0 0 �1 0
0 0 1 1
0 1 0 0
1 1 �1 0

0BB@
1CCA: ð10:177Þ

In this case, we also get the same Jordan canonical form as before. That is,

R0�1AR0 ¼
4 0 0 0
0 2 0 0
0 0 2 1
0 0 0 2

0BB@
1CCA:

Suppose that we choose R00 such that

e1 e2 e3 e4ð ÞR00 ¼ e1 e2 e3 e4ð Þ

0 1 0 0

0 �1 �1 0

1 0 0 0

1 1 0 1

0BBB@
1CCCA

¼ ðeð2Þ1 eð2Þ2 gð2Þ2 eð4Þ1 Þ:

In this case, we have

R00�1AR00 ¼
2 0 0 0
0 2 1 0
0 0 2 0
0 0 0 4

0BB@
1CCA:

Note that we get a different disposition of the matrix elements from that of
(10.172).

Next, we decompose A into a semi-simple matrix and a nilpotent matrix. In
(10.172), we had

R�1AR ¼
4 0 0 0
0 2 0 0
0 0 2 1
0 0 0 2

0BB@
1CCA:
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Defining

S ¼
4 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

0BB@
1CCA and N ¼

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

0BB@
1CCA;

we have

R�1AR ¼ SþN i:e: A ¼ R SþNð ÞR�1 ¼ RSR�1þRNR�1:

Performing the above matrix calculations and putting eS ¼ RSR�1 andeN ¼ RNR�1, we get

A ¼ eSþ eN
with

eS ¼ 2 0 0 0
0 2 0 0
0 0 2 0
�2 0 �2 4

0BB@
1CCA and eN ¼ �1 �1 0 0

1 1 0 0
0 0 0 0
�1 �1 0 0

0BB@
1CCA:

That is, we have

A ¼
1 �1 0 0
1 3 0 0
0 0 2 0
�3 �1 �2 4

0BB@
1CCA ¼

2 0 0 0
0 2 0 0
0 0 2 0
�2 0 �2 4

0BB@
1CCAþ

�1 �1 0 0
1 1 0 0
0 0 0 0
�1 �1 0 0

0BB@
1CCA:

ð10:178Þ

Even though matrix forms S and N differ depending on the choice of different
matrix forms of similarity transformation R (namely, R0;R00 represented above), the
decomposition (10.178) is unique. That is, eS and eN are uniquely determined, once
a matrix A is given. The confirmation is left for readers as an exercise.

We present another simple example. Let A be a matrix described as

A ¼ 0 4
�1 4

� �
:

Eigenvalues of A are 2 as a double root. According to routine, we have an

eigenvector eð2Þ1 as a column vector, e.g.,
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eð2Þ1 ¼
2
1

� �
:

Another eigenvector is a generalized eigenvector gð2Þ1 of rank 2. This can be
decided such that

A� 2Eð Þgð2Þ1 ¼
�2 4
�1 2

� �
gð2Þ1 ¼ eð2Þ1 :

As an option, we get

gð2Þ1 ¼
1
1

� �
:

Thus, we can choose R for a diagonalizing matrix together with an inverse
matrix R�1 such that

R ¼ 2 1
1 1

� �
; and R�1 ¼ 1 �1

�1 2

� �
:

Therefore, with a Jordan canonical form we have

R�1AR ¼ 2 1
0 2

� �
: ð10:179Þ

As before, putting

S ¼ 2 0
0 2

� �
and N ¼ 0 1

0 0

� �
;

we have

R�1AR ¼ SþN i:e: A ¼ RðSþNÞR�1 ¼ RSR�1þRNR�1:

Putting eS ¼ RSR�1 and eN ¼ RNR�1, we get

A ¼ eSþ eN
with

eS ¼ 2 0
0 2

� �
and eN ¼ �2 4

�1 2

� �
: ð10:180Þ
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We may also choose R0 for a diagonalizing matrix together with an inverse
matrix R0�1 instead of R and R�1, respectively, such that we have, e.g.,

R0 ¼ 2 �3
1 �1

� �
; and R0�1 ¼ �1 3

�1 2

� �
:

Using these matrices, we get exactly the same Jordan canonical form and the
matrix decomposition as (10.179) and (10.180). Thus, again we find that the matrix
decomposition is unique.

Another simple example is a lower triangle matrix

A ¼
2 0 0
�2
0

1 0
0 1

0@ 1A:

Following now familiar procedures, as a diagonalizing matrix we have, e.g.,

R ¼
1 0 0
�2
0

1 0
0 1

0@ 1A and R�1 ¼
1 0 0
2
0

1 0
0 1

0@ 1A:

Then, we get

R�1AR ¼ S ¼
2 0 0
0
0

1 0
0 1

0@ 1A:

Therefore, the “decomposition” is

A ¼ RSR�1 ¼
2 0 0
�2
0

1 0
0 1

0@ 1Aþ 0 0 0
0
0

0 0
0 0

0@ 1A;

where the first term is a semi-simple matrix and the second is a nilpotent matrix
(i.e., zero matrix). Thus, the decomposition is once again unique.

10.7 Diagonalizable Matrices

Among canonical forms of matrices, the simplest form is a diagonalizable matrix.
Here we define a diagonalizable matrix as a matrix that can be converted to that
whose off-diagonal elements are zero. In Sect. 10.5 we have investigated different
properties of the matrices. In this Section we examine basic properties of diago-
nalizable matrices.
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In Sect. 10.6.1 we have shown that Span Ni�1aq; Ni�2aq; . . .Naq; aq
	 


forms a
N-invariant subspace of a dimension i, where aq satisfies the relations Niaq ¼
0 and Ni�1aq 6¼ 0 ðriþ 1þ 1� j� riÞ as in (10.122). Of these vectors, only Ni�1aq
is a sole proper eigenvector that is accompanied by ði� 1Þ generalized eigenvec-
tors. Note that only the proper eigenvector can construct one-dimensional N-
invariant subspace by itself. This is because regarding other generalized eigen-
vectors g (here g stands for all of generalized eigenvectors), Ngð6¼ 0Þ and g are
linearly independent. Note that with a proper eigenvector e, we have Ne ¼ 0.
A corresponding Jordan block is represented by a matrix as given in (10.122) in
reference to the basis vectors comprising these i eigenvectors. Therefore, if a (n,
n) matrix A has only proper eigenvectors, all Jordan blocks are one-dimensional.
This means that A is diagonalizable. That A has only proper eigenvectors is
equivalent to that those eigenvectors form a one-dimensional subspace and that Vn

is a direct sum of the subspaces spanned by individual proper eigenvectors. In other
words, if Vn is a direct sum of subspaces (i.e., eigenspaces) spanned by individual
proper eigenvectors of A, A is diagonalizable.

Next, suppose that A is diagonalizable. Then, after an appropriate similarity
transformation with a non-singular matrix P, A has a following form:

P�1AP ¼

a1
. .
.

a1
a2

. .
.

a2
. .
.

as
. .
.

as

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

: ð10:181Þ

In this case, let us examine what form a minimal polynomial uAðxÞ for A takes.
A characteristic polynomial fAðxÞ for A is invariant through similarity transforma-
tion, so is uAðxÞ. That is,

uP�1APðxÞ ¼ uAðxÞ: ð10:182Þ

From (10.181), we find that A� aiE ð1� i� sÞ has a “perforated” form such as
(10.143) with the diagonalized form unchanged. Then we have

A� a1Eð Þ A� a2Eð Þ. . . A� asEð Þ ¼ 0: ð10:183Þ
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This is because a product of matrices having only diagonal elements is merely a
product of individual diagonal elements. Meanwhile, in virtue of Hamilton–Cayley
Theorem, we have

fAðAÞ ¼
Ys
i¼1
ðA� aiEÞni ¼ 0:

Rewriting this expression, we have

ðA� a1EÞn1ðA� a2EÞn2 . . .ðA� asEÞns ¼ 0: ð10:184Þ

In light of (10.183), this implies that a minima polynomial uAðxÞ is expressed as

uAðxÞ ¼ x� a1ð Þ x� a2ð Þ. . . x� asð Þ: ð10:185Þ

Surely uAðxÞ is in (10.185) has a lowest-order polynomial among those satis-
fying f ðAÞ ¼ 0 and a divisor of fAðxÞ. Also uAðxÞ has a highest-order coefficient of
1. Thus, uAðxÞ should be a minimal polynomial of A and we conclude that uAðxÞ
does not have a multiple root.

Then let us think how Vn is characterized in case uAðxÞ does not have a multiple
root. This is equivalent to that uAðxÞ is described by (10.185). To see this, suppose
that we have two matrices A and B and let BVn ¼ W . We wish to use the following
relation:

rank ðABÞ ¼ dimABVn ¼ dim AW ¼ dim W � dim ðA�1 0f g\WÞ
	 dimW � dim A�1 0f g� � ¼ dim BVn � ðn� dim AVnÞ
¼ rank Aþ rank B� n:

ð10:186Þ

In (10.186), the third equality comes from the fact that the domain of A is
restricted to W. Concomitantly, A�1 0f g is restricted to A�1 0f g\W as well; notice
that A�1 0f g\W is a subspace. Considering these situations, we use a relation
corresponding to that of (9.45). The fourth equality is due to the dimension theorem
of (9.45). Applying (10.186) to (10.183) successively, we have

0 ¼ rank A� a1Eð Þ A� a2Eð Þ. . . A� asEð Þ½ 

	 rank A� a1Eð Þþ rank A� a2Eð Þ. . . A� asEð Þ½ 
 � n

	 rank A� a1Eð Þþ rank A� a2Eð Þþ rank A� a3Eð Þ. . . A� asEð Þ½ 

� 2n

	 . . .

	 rank A� a1Eð Þþ � � � þ rank A� asEð Þ � ðs� 1Þn

¼
Xs
i¼1

rank ½ A� aiEð Þ � n
 þ n:
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Finally we get

Xs
i¼1

rank n� A� aiEð Þ½ 
 	 n: ð10:187Þ

As rank n� A� aiEð Þ½ 
 ¼ dim Wai , we have

Xs
i�1

dim Wai 	 n: ð10:188Þ

Meanwhile, we have

Vn 
 Wa1 �Wa2 � � � � �Was

n	 dim ðWa1 �Wa2 � � � � �WasÞ ¼
Xs
i¼1

dim Wai :
ð10:189Þ

The equality results from the property of a direct sum. From (10.188) and
(10.189), we get

Xs
i¼1

dimWai ¼ n: ð10:190Þ

Hence,

Vn ¼ Wa1 �Wa2 � � � � �Was : ð10:191Þ

Thus, we have proven that if the minimal polynomial does not have a multiple
root, Vn is decomposed into direct sum of eigenspaces as in (10.191).

If in turn Vn is decomposed into direct sum of eigenspaces as in (10.191), A can
be diagonalized by a similarity transformation. The proof is as follows: Suppose
that (10.191) holds. Then, we can take only eigenvectors for the basis vectors of Vn.

Suppose that dim Wai ¼ ni. Then, we can take vectors ak
Pi�1

j¼1 nj
� �

þ 1� k�
h

Pi
j¼1 nj

i
so that ak can be the basis vectors of Wai . In reference to this basis set, we

describe a vector x 2 Vn such that

x ¼ ða1a2. . .anÞ
x1
x2
..
.

xn

0BB@
1CCA:
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Operating A on x, we get

AðxÞ ¼ a1 a2. . .anð ÞA

x1
x2

..

.

xn

0BBBB@
1CCCCA ¼ a1A a2A. . .anAð Þ

x1
x2

..

.

xn

0BBBB@
1CCCCA

¼ a1a1 a2a2. . .ananð Þ

x1
x2

..

.

xn

0BBBB@
1CCCCA

¼ a1 a2. . .anð Þ

a1
a2

. .
.

an

0BBBB@
1CCCCA

x1
x2

..

.

xn

0BBBB@
1CCCCA;

ð10:192Þ

where with the second equality we used the notation (9.40); with the third equality
some of ai ð1� i� nÞ may be identical; ai is an eigenvector that corresponds to an
eigenvalue ai. Suppose that a1; a2; . . .; and an are obtained by transforming an
“original” basis set e1; e2; . . .; and en by R. Then, we have

AðxÞ ¼ e1 e2. . .enð ÞR
a1

a2
. .
.

an

0BBB@
1CCCAR�1

xð0Þ1

xð0Þ2

..

.

xð0Þn

0BBBB@
1CCCCA:

We denote the transformation A with respect to a basis set e1; e2; . . .; and en by
A0; see (9.82) with the notation. Then, we have

AðxÞ ¼ e1 e2. . .enð ÞA0

xð0Þ1

xð0Þ2

..

.

xð0Þn

0BBBB@
1CCCCA:

Therefore, we get

R�1A0R ¼
a1

a2
. .
.

an

0BBB@
1CCCA: ð10:193Þ
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Thus, A is similar to a diagonal matrix as represented in (10.192) and (10.193).
It is obvious to show a minimal polynomial of a diagonalizable matrix has no

multiple root. The proof is left for readers.
Summarizing the above arguments, we have a following theorem:

Theorem 10.7 [3] The following three statements related to A are equivalent:

(i) The matrix A is similar to a diagonal matrix.
(ii) The minimal polynomial uAðxÞ does not have a multiple root.
(iii) The vector space Vn is decomposed into a direct sum of eigenspaces.

In Example 10.1 we showed the diagonalization of a matrix. There A has two
different eigenvalues. Since with a (n, n) matrix having n different eigenvalues its
characteristic polynomial does not have a multiple root, the minimal polynomial
necessarily has no multiple root. The above theorem therefore ensures that a matrix
having no multiple root must be diagonalizable.

Another consequence of this theorem is that an idempotent matrix is diagonal-
izable. The matrix is characterized by A2 ¼ A. Then AðA� EÞ ¼ 0. Taking its
determinant, ðdet AÞ½det ðA� EÞ
 ¼ 0. Therefore, we have either det A ¼ 0 or
det ðA� EÞ ¼ 0. Hence, eigenvalues of A are zero or 1. Think of f ðxÞ ¼ xðx� 1Þ.
As f ðAÞ ¼ 0, f ðxÞ should be a minimal polynomial. It has no multiple root, and so
the matrix is diagonalizable.

Example 10.6 Let us revisit Example 10.1, where we dealt with

A ¼ 2 1
0 1

� �
: ð10:32Þ

From (10.33), fAðxÞ ¼ ðx� 2Þðx� 1Þ. Note that fAðxÞ ¼ fP�1APðxÞ. Let us treat a
problem according to Theorem 10.5. Also we use the notation of (10.85). Given
f1ðxÞ ¼ x� 1 and f2ðxÞ ¼ x� 2, let us decide M1ðxÞ and M2ðxÞ such that these can
satisfy

M1ðxÞf1ðxÞþM2ðxÞf2ðxÞ ¼ 1: ð10:194Þ

We find M1ðxÞ ¼ 1 and M2ðxÞ ¼ �1. Thus, using the notation of Theorem 10.5,
Sect. 10.4 we have

A1 ¼ M1ðAÞf1ðAÞ ¼ A� E ¼ 1 1

0 0

� �
;

A2 ¼ M2ðAÞf2ðAÞ ¼ �Aþ 2E ¼ 0 �1
0 1

� �
:
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We also have

A1þA2 ¼ E; AiAj ¼ AjAi ¼ Aidij: ð10:195Þ

Thus, we find that A1 and A2 are idempotent matrices. As both A1 and A2 are
expressed by a polynomial A, they are commutative with A.

We find that A is represented by

A ¼ a1A1þ a2A2; ð10:196Þ

where a1 and a2 denote eigenvalues 2 and 1, respectively. Thus choosing proper
eigenvectors for basis vectors, we have decomposed a vector space Vn into a direct
sum of invariant subspaces comprising the proper eigenvectors. Concomitantly, A is
represented as in (10.196). The relevant decomposition is always possible for a
diagonalizable matrix.

Thus, idempotent matrices play an important role in the theory of linear vector
spaces.

Example 10.7 Let us think of a following matrix.

A ¼
1 0 1
0 1 1
0 0 0

0@ 1A: ð10:197Þ

This is a triangle matrix, and so diagonal elements give eigenvalues. We have an
eigenvalue 1 of double root and that 0 of simple root. The matrix can be diago-
nalized using P such that

eA ¼ P�1AP ¼
1 0 1
0 1 1
0 0 1

0@ 1A 1 0 1
0 1 1
0 0 0

0@ 1A 1 0 �1
0 1 �1
0 0 1

0@ 1A ¼ 1 0 0
0 1 0
0 0 0

0@ 1A: ð10:198Þ

As can be checked easily, eA2 ¼ eA. We also have

E � eA ¼ 0 0 0
0 0 0
0 0 1

0@ 1A; ð10:199Þ

where ðE � eAÞ2 ¼ E � eA holds as well. Moreover, eA E � eA� �
¼ E � eA� �eA ¼ 0.

Thus eA and E � eA behave like A1 and A2 of (10.195).
Next, suppose that x 2 Vn is expressed as a linear combination of basis vectors

a1; a2; . . .; and an. Then

x ¼ c1a1þ c2a2þ � � � þ cn�1an�1þ cnan: ð10:200Þ
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Here let us define a following linear transformation PðkÞ such that PðkÞ “extracts”
the kth component of x. That is,

PðkÞðxÞ ¼ PðkÞ
Xn
j¼1

cjaj

 !
¼
Xn
j¼1

Xn
i¼1

p½k
ij cjai ¼ ckak ð10:201Þ

where p½k
ij is the matrix representation of PðkÞ. In fact, suppose that there is another
arbitrarily chosen vector x such that

y ¼ d1a1þ d2a2þ � � � þ dn�1an�1þ dnan: ð10:202Þ

Then we have

PðkÞðaxþ byÞ ¼ ðack þ bdkÞak ¼ ackak þ bdkak ¼ aPðkÞðxÞþ bPðkÞðyÞ: ð10:203Þ

Thus PðkÞ is a linear transformation. In (10.201), for the third equality to hold, we
should have

ðp½k
ij Þ ¼ dðkÞi d j
ðkÞ; ð10:204Þ

where dðjÞi has been defined in (10.175). Meanwhile, d j
ðkÞ denotes a row vector to

which only the kth column is 1, otherwise 0. Note that dðkÞi represents a (n, 1) matrix

and that d j
ðkÞ denotes a (1, n) matrix. Therefore, dðkÞi d j

ðkÞ represents a (n, n) matrix

whose (k, k) element is 1, otherwise 0. Thus, PðkÞðxÞ is denoted by

PðkÞðxÞ ¼ a1. . .anð Þ

0
. .
.

0
1

0
. .
.

0

0BBBBBBBBB@

1CCCCCCCCCA
x1
x2
..
.

xn

0BBB@
1CCCA ¼ xkak, ð10:205Þ

where only the (k,k) element is 1, otherwise 0. Then PðkÞ PðkÞðxÞ
 � ¼ PðkÞðxÞ. That is

PðkÞ
h i2

¼ PðkÞ: ð10:206Þ

Also P kð Þ½P lð Þ xð Þ
 ¼ 0 if k 6¼ l. Meanwhile, we have P 1ð Þ xð Þþ � � � þP nð Þ xð Þ ¼
x. Hence, P 1ð Þ xð Þþ � � � þP nð Þ xð Þ ¼ ½P 1ð Þ þ � � � þ P nð Þ
ðxÞ ¼ x. Since this relation
holds with any x 2 Vn, we get
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Pð1Þ þ � � � þPðnÞ ¼ E: ð10:207Þ

As shown above, an idempotent matrix such as PðkÞ always exists. In particular,
if the basis vectors comprise only proper eigenvectors, the decomposition as
expressed in (10.196) is possible. In that case, it is described as

A ¼ a1A1þ � � � þ anAn; ð10:208Þ

where a1; . . .; and an are eigenvalues (some of which may be identical) and
A1; . . .; and An are idempotent matrices such as those represented by (10.205).

Yet, we have to be careful to construct idempotent matrices according to a
formalism described in Theorem 10.5. It is because we often encounter a situation
where different matrices give an identical characteristic polynomial. We briefly
mention this in the next example.

Example 10.8 Let us think about following two matrices:

A ¼
3 0 0
0 2 0
0 0 2

0@ 1A;B ¼
3 0 0
0 2 1
0 0 2

0@ 1A: ð10:209Þ

Then, following Theorem 10.5, Sect. 10.4, we have

fAðxÞ ¼ fBðxÞ ¼ ðx� 3Þðx� 2Þ2; ð10:210Þ

with eigenvalues a1 ¼ 3 and a2 ¼ 2. Also we have f1ðxÞ ¼ ðx� 2Þ2 and
f2ðxÞ ¼ x� 3. Following the procedures of (10.85) and (10.86), we obtain

M1ðxÞ ¼ x� 2 and M2ðxÞ ¼ �x2þ 3x� 3:

Therefore, we have

M1ðxÞf1ðxÞ ¼ ðx� 2Þ3; M2ðxÞf2ðxÞ ¼ ðx� 3Þ �x2þ 3x� 3
� �

: ð10:211Þ

Hence, we get

A1 � M1ðAÞf1ðAÞ ¼ ðA� 2EÞ3;
A2 � M2ðAÞf2ðAÞ ¼ ðA� 3EÞ �A2þ 3A� 3E

� �
:

ð10:212Þ

Similarly, we get B1 and B2 by replacing A with B in (10.212). Thus, we have

A1 ¼ B1 ¼
1 0 0
0 0 0
0 0 0

0@ 1A; A2 ¼ B2 ¼
0 0 0
0 1 0
0 0 1

0@ 1A: ð10:213Þ
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Notice that we get the same idempotent matrix of (10.213), even though the
matrix forms of A and B differ. Also we have

A1þA2 ¼ B1þB2 ¼ E:

Then, we have

A ¼ A1þA2ð ÞA ¼ A1AþA2A; B ¼ B1þB2ð ÞB ¼ B1BþB2B:

Nonetheless, although A ¼ 3A1þ 2A2 holds, B 6¼ 3B1þ 2B2. That is, the
decomposition of the form of (10.208) is not true of B. The decomposition of this
kind is possible only with diagonalizable matrices.

In summary, a (n, n) matrix with s ð1� s� nÞ different eigenvalues has at least
s proper eigenvectors. (Note that a diagonalizable matrix has n proper eigenvec-
tors.) In the case of s\n, the matrix has multiple root(s) and may have generalized
eigenvectors. If the matrix has a generalized eigenvector of rank m, the matrix is
accompanied by ðm� 1Þ generalized eigenvectors along with a sole proper eigen-
vector. Those vectors form an invariant subspace along with the proper eigenvector
(s). In total, such n (generalized) eigenvectors span a whole vector space Vn.

With the eigenvalue equation AðxÞ ¼ ax, we have an indefinite but non-trivial
solution x 6¼ 0 for only restricted numbers a (i.e., eigenvalues) in a complex plane.
However, we have a unique but trivial solution x ¼ 0 for complex numbers a other
than eigenvalues. This is characteristic of the eigenvalue problem.
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Chapter 11
Inner Product Space

Thus far we have treated the theory of linear vector spaces. The vector spaces,
however, were somewhat “structureless,” and so it will be desirable to introduce a
concept of metric or measure into the linear vector spaces. We call a linear vector
space where the inner product is defined an inner product space. In virtue of a
concept of the inner product, the linear vector space is given a variety of structures.
For instance, introduction of the inner product to the linear vector space immedi-
ately leads to the definition of adjoint operators and Gram matrices.

Above all, the concept of inner product can readily be extended to a functional
space and facilitate understanding of, e.g., orthogonalization of functions, as was
exemplified in Parts I and II. Moreover, definition of the inner product allows us to
relate matrix operators and differential operators. In particular, it is a key issue to
understand logical structure of quantum mechanics. This can easily be understood
from the fact that Paul Dirac, who was known as one of prominent founders of
quantum mechanics, invented bra and ket vectors to represent an inner product.

11.1 Inner Product and Metric

Inner product relates two vectors to a complex number. To do this, we introduce the
notation aj i and bh j to represent the vectors. This notation is due to Dirac and
widely used in physics and mathematical physics. Usually, aj i and bh j are called a
“ket” vector and a “bra” vector, respectively, again due to Dirac. Alternatively, we

may call ah j an adjoint vector of aj i. Or we denote ah �j jaiy. The symbol “y”
(dagger) means that for a matrix, its transposed matrix should be taken with

complex conjugate matrix elements. That is, aij
� �y¼ ða�jiÞ. If we represent a full

matrix, we have
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A ¼
a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

0B@
1CA; Ay ¼

a�11 � � � a�n1
..
. . .

. ..
.

a�1n � � � a�nn

0B@
1CA ð11:1Þ

We call Ay an adjoint matrix or adjoint to A; see (1.106). The operation of
transposition and complex conjugate is commutable. A further remark will be made
below after showing the definition of the inner product. The symbols aj i and bh j
represent vectors, and hence, we do not need to use bold characters to show that
those are vectors.

The definition of the inner product is as follows:

b ajh i ¼ a bjh i�; ð11:2Þ

ah j b biþ cj jcið Þ ¼ b ah biþ c ahj jci; ð11:3Þ

a ajh i� 0: ð11:4Þ

In (11.4), equality holds only if aj i ¼ 0. Note here that two vectors are said to be
orthogonal to each other if their inner product vanishes, i.e., b ajh i ¼ a bjh i ¼ 0. In
particular, if a vector aj i 2 Vn is orthogonal to all the vectors in Vn, i.e., x ajh i ¼ 0
for 8x 2 Vn, then aj i ¼ 0. This is because if we choose aj i for xj i, we have
a ajh i ¼ 0. This means that aj i ¼ 0. We call a linear vector space to which the inner
product is defined an inner product space.

We can create another structure to a vector space. An example is a metric.
Suppose that there is an arbitrary set Q. If a real nonnegative number q a; bð Þ is
defined as follows with a; b 2 Q, the set Q is called a metric space [1]:

q a; bð Þ ¼ q b; að Þ; ð11:5Þ

q a; bð Þ� 0 for 8a; b; q a; bð Þ ¼ 0 if and only if a ¼ b; ð11:6Þ

q a; bð Þþ q b; cð Þ� q a; cð Þ: ð11:7Þ

In our study, a vector space is chosen for the set Q. Here let us define a norm for
each vector a. The norm is defined as

ak k ¼
ffiffiffiffiffiffiffiffiffiffi
a ajh i

p
: ð11:8Þ

If we define q a; bð Þ � a� bk k, a� bk k satisfies the definitions of metric.
Equations (11.5) and (11.6) are obvious. For (11.7), let us consider a vector cj i as
cj i ¼ aj i � x b ajh i bj i with real x. Since c cjh i � 0, we have
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x2 a bjh i b ajh i b bjh i � 2x a bjh i b ajh iþ a ajh i� 0 or

x2 a bjh ij j2 b bjh i � 2x a bjh ij j2 þ a ajh i� 0:
ð11:9Þ

The inequality (11.9) related to the quadratic equation in x with real coefficients
requires the inequality such that

a ajh i b bjh i� a bjh i b ajh i ¼ a bjh ij j2: ð11:10Þ

That is, ffiffiffiffiffiffiffiffiffiffi
a ajh i

p
�
ffiffiffiffiffiffiffiffiffiffi
b bjh i

p
� a bjh ij j: ð11:11Þ

Namely,

ak k � bk k� a bjh ij j �Re a bjh i: ð11:12Þ

The relations (11.11) and (11.12) are known as Cauchy–Schwarz inequality.
Meanwhile, we have

aþ bk k2¼ aþ b aþ bjh i ¼ ak k2 þ bk k2 þ 2Re a bjh i; ð11:13Þ

ak kþ bk kð Þ2¼ ak k2 þ bk k2 þ 2 ak k � bk k; ð11:14Þ

Comparing (11.13) and (11.14) and using (11.12), we have

ak kþ bk k� aþ bk k: ð11:15Þ

The inequality (11.15) is known as the triangle inequality. In (11.15), replacing
a ! a� b and b ! b� c, we get

a� bk kþ b� ck k� a� ck k: ð11:16Þ

Thus, (11.16) is equivalent to (11.7). At the same time, the norm defined in
(11.8) may be regarded as a “length” of a vector a.

As b bj i þ c cj i represents a vector, we use a shorthand notation for it as

bbj þ cci � b bj i þ c cj i: ð11:17Þ

According to the definition (11.3)

a bbj þ cch i ¼ b a bjh iþ c a cjh i: ð11:18Þ
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Also from (11.2),

bbþ cc ajh i ¼ a bbþ ccjh i�¼ b a bjh iþ c a cjh i½ ��¼ b� b ajh iþ c� c ajh i: ð11:19Þ

That is,

bbh þ ccj ¼ b� bh j þ c� ch j: ð11:20Þ

Therefore, when we take out a scalar from a bra vector, it should be a complex
conjugate. When the scalar is taken out from a ket vector, on the other hand it is
unaffected by definition (11.3). To show this, we have aaj i ¼ a aj i. Taking its
adjoint, aah j ¼ a� ah j.

We can view (11.17) as a linear transformation in a vector space. In other words,
if we regard �j i as a linear transformation of a vector a 2 Vn to aj i 2 fVn , �j i is that
of Vn to fVn . On the other hand, �h j could not be regarded as a linear transformation

of a 2 Vn to ah j 2 fVn0 . Sometimes, the said transformation is referred to as “an-
tilinear” or “sesquilinear.” From the point of view of formalism, the inner product

can be viewed as an operation: fVn � fVn0 ! C.
Let us consider xj i¼ yj i in an inner product space fVn . Then xj i� yj i ¼ 0. That is,

x� yj i ¼ 0. Therefore, we have x ¼ y, or 0j i ¼ 0. This means that the linear
transformation �j i converts 0 2 Vn to 0j i 2 fVn . This is a characteristic of a linear
transformation represented in (9.44). Similarly, we have 0h j ¼ 0. However, we do
not have to get into further details in this book. Also, if we have to specify a vector
space, we simply do so by designating it as Vn.

11.2 Gram Matrices

Once we have defined an inner product between any pair of vectors aj i and bj i of a
vector space Vn, we can define and calculate various quantities related to inner
products. As an example, let a1j i; . . .; anj i and b1j i; . . .; bnj i be two sets of vectors
in Vn. The vectors a1j i; . . .; anj i may or may not be linearly independent. This is
true of b1j i; . . .; bnj i. Let us think of a following matrix M defined as below:

M ¼
a1h j
..
.

anh j

0B@
1CA b1j i � � � bnj ið Þ ¼

a1 b1jh i � � � a1 bnjh i
..
. . .

. ..
.

an b1jh i � � � an bnjh i

0B@
1CA: ð11:21Þ

We assume the following cases.
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(i) Suppose that in (11.21), b1j i; . . .; bnj i are linearly dependent. Then, without
loss of generality, we can put

b1j i ¼ c2 b2j i þ c3 b3j i þ � � � þ cn bnj i: ð11:22Þ

Then we have

M ¼
c2 a1 b2jh iþ c3 a1 b3jh iþ � � � þ cn a1 bnjh i a1 b2jh i . . . a1 bnjh i

..

. ..
. . .

. ..
.

c2 an b2jh iþ c3 an b3jh iþ � � � þ cn an bnjh i an b2jh i . . . an bnjh i

0B@
1CA:

ð11:23Þ

Multiplying the second column, . . ., and the nth column by �c2ð Þ, . . ., and
�cnð Þ, respectively, and adding them to the first column to get

M ¼
0 a1 b2jh i . . . a1 bnjh i
..
. ..

. . .
. ..

.

0 an b2jh i . . . an bnjh i

0B@
1CA: ð11:24Þ

Hence, det M ¼ 0.

(ii) Suppose in turn that in (11.21), a1j i; . . .; anj i are linearly dependent. In that
case, again, without loss of generality, we can put

a1j i ¼ d2 a2j i þ d3 a3j i þ � � � þ dn anj i: ð11:25Þ

Focusing attention on individual rows and taking a similar procedure described
above, we have

M ¼
0

a2 b1jh i
� � �
� � �

0
a2 bnjh i

..

. . .
. ..

.

an b1jh i � � � an bnjh i

0BBB@
1CCCA ð11:26Þ

Again, det M ¼ 0.
Next, let us examine the case where det M ¼ 0. In that case, n column vectors ofM

in (11.21) are linearly dependent. Without loss of generality, we suppose that the first
column is expressed as a linear combination of the other n� 1ð Þ columns such that

a1 b1jh i
..
.

an b1jh i

0B@
1CA ¼ c2

a1 b2jh i
..
.

an b2jh i

0B@
1CAþ � � � þ cn

a1 bnjh i
..
.

an bnjh i

0B@
1CA: ð11:27Þ
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Rewriting this, we have

a1 b1 � c2b2 � � � � � cnbnjh i
..
.

an b1 � c2b2 � � � � � cnbnjh i

0B@
1CA ¼

0
..
.

0

0@ 1A: ð11:28Þ

Multiplying the first row, . . ., and the nth row of (11.28) by an appropriate
complex number p�1, . . ., and p�n, respectively, we have

p1an b1 � c2b2 � � � � � cnbnjh i ¼ 0;
� � � ;

pnan b1 � c2b2 � � � � � cnbnjh i ¼ 0:
ð11:29Þ

Adding all the above, we get

p1a1 þ � � � þ pnan b1 � c2b2 � � � � � cnbnjh i ¼ 0: ð11:30Þ

Now, suppose that a1j i; . . .; anj i are the basis vectors. Then, p1a1 þ � � � þ pnanj i
represent any vectors in a vector space. This implies that
b1 � c2b2 � � � � � cnbnj i ¼ 0; for this, see remarks after (11.4). That is,

b1j i ¼ c2 b2j i þ � � � þ cn bnj i: ð11:31Þ

Thus, b1j i; . . .; bnj i are linearly dependent.
Meanwhile, det M ¼ 0 implies that n row vectors of M in (11.21) are linearly

dependent. In that case, performing similar calculations to the above, we can readily
show that if b1j i; . . .; bnj i are the basis vectors, a1j i; . . .; anj i are linearly dependent.

We summarize the above discussion by following statement: Suppose that we
have two sets of vectors a1j i; . . .; anj i and b1j i; . . .; bnj i.

At least a set of vectors are linearly dependent. , detM ¼ 0.
Both the sets of vectors are linearly independent. , detM 6¼ 0.
The latter statement is obtained by considering contraposition of the former

statement.
We restate the above in following theorem:

Theorem 11.1 Let a1j i; . . .; anj i and b1j i; . . .; bnj i be two sets of vectors defined in
a vector space Vn. A necessary and sufficient condition for both these sets of vectors
to be linearly independent is that for a matrix M defined below, detM 6¼ 0.

M ¼
a1h j
..
.

anh j

0B@
1CA b1j i � � � bnj ið Þ ¼

a1 b1jh i � � � a1 bnjh i
..
. . .

. ..
.

an b1jh i � � � an bnjh i

0B@
1CA:

Next, we consider a norm of a vector expressed in reference to a set of basis
vectors e1j i; . . .; enj i of Vn. Let us express a vector xj i in an inner product space as
follows as in the case of (9.10) and (9.13):
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xj i ¼ x1 e1j i þ x2 e2j i þ � � � þ xn enj i
¼ x1e1 þ x2e2 þ � � � þ xnenj i

¼ e1j i � � � enj ið Þ
x1

..

.

xn

0BB@
1CCA:

ð11:32Þ

A bra vector xh j is then denoted by

xh j ¼ x�1 � � � x�n
� � e1h j

..

.

enh j

0B@
1CA: ð11:33Þ

Thus, we have an inner product described as

x xjh i ¼ x�1 � � � x�n
� � e1h j

..

.

enh j

0BB@
1CCAð e1j i � � � enj iÞ

x1

..

.

xn

0BB@
1CCA

¼ x�1 � � � x�n
� � e1 e1jh i � � � e1 enjh i

..

. . .
. ..

.

en e1jh i � � � en enjh i

0BB@
1CCA

x1

..

.

xn

0BB@
1CCA:

ð11:34Þ

Here the matrix expressed as follows is called a Gram matrix [2, 3]:

G ¼
e1 e1jh i � � � e1 enjh i
..
. . .

. ..
.

en e1jh i � � � en enjh i

0B@
1CA: ð11:35Þ

As ej eij
� �¼ ei ej

��� ��
, we have G ¼ Gy. From Theorem 11.1, detG 6¼ 0. With a

shorthand notation, we write ðGÞij ¼ gij
� � ¼ ei ej

��� �� �
. As already mentioned in

Sect. 1.1, if for a matrix H we have a relation described by

H ¼ Hy; ð1:119Þ

it is said to be a Hermitian matrix or a self-adjoint matrix. We often say that such a
matrix is Hermitian.

Since the Gram matrices frequently appear in matrix algebra and play a role,
their properties are worth examining. Since G is a Hermitian matrix, it can be
diagonalized through similarity transformation using a unitary matrix. We will give
its proof later (see Sect. 12.3).
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Let us deal with (11.34) further. We have

x xjh i ¼ x�1 � � � x�n
� �

UUy
e1 e1jh i � � � e1 enjh i
..
. . .

. ..
.

en e1jh i � � � en enjh i

0B@
1CAUUy

x1
..
.

xn

0B@
1CA; ð11:36Þ

where U is defined as UUy ¼ UyU ¼ E. Such a matrix U is called a unitary
matrix. We represent a matrix form of U as

U ¼
u11 � � � u1n
..
. . .

. ..
.

un1 � � � unn

0B@
1CA;Uy ¼

u�11 � � � u�n1
..
. . .

. ..
.

u�1n � � � u�nn

0B@
1CA: ð11:37Þ

Here, putting

Uy
x1
..
.

xn

0B@
1CA ¼

n1
..
.

nn

0B@
1CA or equivalently

Xn
k¼1

xku
�
ki � ni ð11:38Þ

and taking its adjoint such that

x�1 � � � x�n
� �

U ¼ n�1 � � � n�n
� �

or equivalently
Xn
k¼1

x�kuki ¼ n�i ;

we have

x xjh i ¼ n�1 � � � n�n
� �

Uy
e1 e1jh i � � � e1 enjh i
..
. . .

. ..
.

en e1jh i � � � en enjh i

0B@
1CAU

n1
..
.

nn

0B@
1CA: ð11:39Þ

We assume that the Gram matrix is diagonalized by a similarity transformation
by U. After being diagonalized, similarly to (10.192) and (10.193) the Gram matrix
has a following form G0:

UyGU ¼ G
0 ¼

k1 � � � 0
..
. . .

. ..
.

0 � � � kn

0B@
1CA: ð11:40Þ

Thus, we get
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x xjh i ¼ n�1 � � � n�n
� � k1 � � � 0

..

. . .
. ..

.

0 � � � kn

0B@
1CA n1

..

.

nn

0B@
1CA ¼ k1 n1j j2 þ � � � þ kn nnj j2: ð11:41Þ

From the relation (11.4), x xjh i� 0. This implies that in (11.41), we have

ki � 0 1	 i	 nð Þ: ð11:42Þ

To show this, suppose that for 9ki, ki\0. Suppose also that for 9ni, ni 6¼ 0. Then,

with

0
..
.

ni
..
.

0

0BBBBB@

1CCCCCA we have x xjh i ¼ ki nij j2\0, in contradiction.

Since we have detG 6¼ 0, taking a determinant of (11.40) we have

det G0 ¼ det UyGU
� 	

¼ det UyUG
� 	

¼ det E detG ¼ detG ¼
Yn
i¼1

ki 6¼ 0:

ð11:43Þ

Combining (11.42) and (11.43), all the eigenvalues ki are positive, i.e.,

ki [ 0 1	 i	 nð Þ: ð11:44Þ

The norm x xjh i ¼ 0, if and only if n1 ¼ n2 ¼ � � � ¼ nn ¼ 0 which corresponds to
x1 ¼ x2 ¼ � � � ¼ xn ¼ 0 from (11.38).

For further study, we generalize the aforementioned feature a little further. That
is, if e1j i; . . .; and enj i are linearly dependent, from Theorem 11.1 we get
det G ¼ 0. This implies that there is at least one eigenvalue ki ¼ 0 1	 i	 nð Þ and

that for a vector

0
..
.

ni
..
.

0

0BBBBB@

1CCCCCA with 9ni 6¼ 0 we have x xjh i ¼ 0. (Suppose that in V2 we

have linearly dependent vectors e1j i and e2j i ¼ �e1j i; see Example 11.2 below.)
Let H be a Hermitian matrix [i.e., Hð Þij¼ H�ð Þji]. If we have / as a function of

complex variables x1; . . .; xn such that

/ x1; . . .; xnð Þ ¼
Xn
i;j¼1

x�i Hð Þijxj; ð11:45Þ
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where Hij is a matrix element of a Hermitian matrix; / x1; . . .; xnð Þ is said to be a
Hermitian quadratic form. Suppose that / x1; . . .; xnð Þ satisfies / x1; . . .; xnð Þ ¼ 0 if
and only if x1 ¼ x2 ¼ � � � ¼ xn ¼ 0, and otherwise / x1; . . .; xnð Þ[ 0 with any other
sets of xi 1	 i	 nð Þ. Then, the said Hermitian quadratic form is called positive
definite and we write

H[ 0: ð11:46Þ

If / x1; . . .; xnð Þ� 0 for any xn 1	 i	 nð Þ and / x1; . . .; xnð Þ ¼ 0 for at least a set
of x1; . . .; xnð Þ to which 9xi 6¼ 0, / x1; . . .; xnð Þ is said to be positive semi-definite or
nonnegative. In that case, we write

H� 0: ð11:47Þ

From the above argument, a Gram matrix comprising linearly independent
vectors is positive definite, whereas that comprising linearly dependent vectors is
nonnegative. On the basis of the above argument including (11.36) to (11.44), we
have

H[ 0 , ki [ 0 1	 i	 nð Þ; det H[ 0;

H� 0 , ki � 0 with 9ki ¼ 0 1	 i	 nð Þ; detH ¼ 0:
ð11:48Þ

Notice here that eigenvalues ki remain unchanged after (unitary) similarity
transformation. Namely, the eigenvalues are inherent to H.

We have already encountered several examples of positive definite and non-
negative operators. A typical example of the former case is Hamiltonian of
quantum-mechanical harmonic oscillator (see Chap. 2). In this case, energy
eigenvalues are all positive (i.e., positive definite). Orbital angular momenta L2 of
hydrogen-like atoms, on the other hand, are nonnegative operators, and hence, an
eigenvalue of zero is permitted.

Alternatively, the Gram matrix is defined as ByB, where B is any (n, n) matrix. If
we take an orthonormal basis g1j i; g2j i; . . .; gnj i, eij i can be expressed as

eij i ¼
Xn
j¼1

bji gj
�� i;

ekjeih i ¼
Xn
j¼1

Xn
l¼1

b�lkbji gl gj
��� � ¼Xn

j¼1

Xn
l¼1

b�lkbjidlj ¼
Xn
j¼1

b�jkbji

¼
Xn
j¼1

By
� 	

kj
Bð Þji¼ ByB

� 	
ki
:

ð11:49Þ

For the second equality of (11.49), we used the orthonormal condition
gi
�� gj� � ¼ dij. Thus, the Gram matrix G defined in (11.35) can be regarded as

identical to ByB.
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In Sect. 9.4, we have dealt with a linear transformation of a set of basis vectors
e1; e2; . . .; and en by a matrix A defined in (9.69) and examined whether the
transformed vectors e

0
1; e

0
2; and e

0
n are linearly independent. As a result, a necessary

and sufficient condition for e
0
1; e

0
2; and e

0
n to be linearly independent (i.e., to be a set

of basis vectors) is detA 6¼ 0. Thus, we notice that B plays a same role as A of
(9.69) and, hence, det B 6¼ 0 if and only if the set of vectors e1j i; e2j i; and � � � enj i
defined in (11.32) are linearly independent. By the same token as the above, we

conclude that eigenvalues of ByB are all positive, only if det B 6¼ 0 (i.e., B is
non-singular).

Alternatively, if B is singular, detByB ¼ detBy detB ¼ 0. In that case, at least

one of eigenvalues of ByB must be zero. The Gram matrices appearing in (11.35)
are frequently dealt with in the field of mathematical physics in conjunction with
quadratic forms. Further topics can be seen in the next chapter.

Example 11.1 Let us take two vectors e1j i and e2j i that are expressed as

e1j i ¼ e1j i þ e2j i; e2j i ¼ e1j i þ i e2j i: ð11:50Þ

Here we have ei ej
��� � ¼ dij 1	 i; j	 2ð Þ. Then we have a Gram matrix

expressed as

G ¼ e1 e1jh i e1 e2jh i
e2 e1jh i e2 e2jh i


 �
¼ 2 1þ i

1� i 2


 �
: ð11:51Þ

Principal minors of G are 2j j ¼ 2[ 0 and
2 1þ i

1� i 2

���� ���� ¼ 4� 1þ ið Þ
1� ið Þ ¼ 2[ 0. Therefore, according to Theorem 12.11, G[ 0 (vide infra).
Let us diagonalize the matrix G. To this end, we find roots of the characteristic

equation. That is,

det G� kEj j ¼ 2� k 1þ i
1� i 2� k

���� ���� ¼ 0; k2 � 4kþ 2 ¼ 0: ð11:52Þ

We have k ¼ 2
 ffiffiffi
2

p
. Then as a diagonalizing unitary matrix U, we get

U ¼
1þ i
2

1þ i
2ffiffi

2
p
2 �

ffiffi
2

p
2

 !
: ð11:53Þ

Thus, we get
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UyGU ¼
1�i
2

ffiffi
2

p
2

1�i
2 �

ffiffi
2

p
2

 !
2 1þ i

1� i 2


 � 1þ i
2

1þ i
2ffiffi

2
p
2 �

ffiffi
2

p
2

 !

¼ 2þ ffiffiffi
2

p
0

0 2� ffiffiffi
2

p
 !

:

ð11:54Þ

The eigenvalues 2þ ffiffiffi
2

p
and 2� ffiffiffi

2
p

are real positive as expected. That is, the
Gram matrix is positive definite.

Example 11.2 Let e1j i and e2j ið¼ � e1j iÞ be two vectors. Then, we have a Gram
matrix expressed as

G ¼ e1 e1jh i e1 e2jh i
e2 e1jh i e2 e2jh i


 �
¼ 1 �1

�1 1


 �
: ð11:55Þ

Similarly in the case of Example 11.1, we have as an eigenvalue equation

det G� kEj j ¼ 1� k �1
�1 1� k

���� ���� ¼ 0; k2 � 2k ¼ 0: ð11:56Þ

We have k ¼ 2 or 0. As a diagonalizing unitary matrix U, we get

U ¼
1ffiffi
2

p 1ffiffi
2

p

� 1ffiffi
2

p 1ffiffi
2

p

 !
: ð11:57Þ

Thus, we get

UyGU ¼
1ffiffi
2

p � 1ffiffi
2

p

1ffiffi
2

p 1ffiffi
2

p

 !
1 �1

�1 1


 � 1ffiffi
2

p 1ffiffi
2

p

� 1ffiffi
2

p 1ffiffi
2

p

 !

¼ 2 0

0 0


 �
:

ð11:58Þ

As expected, we have a diagonal matrix, one of eigenvalues for which is zero.
That is, the Gram matrix is nonnegative.

In the present case, let us think of a following Hermitian quadratic form.

x xjh i ¼
X2

i;j¼1
x�i ðGÞijxj ¼ x�1x

�
2

� �
UUyGUUy x1

x2


 �
¼ x�1x

�
2

� �
U

2 0

0 0


 �
Uy x1

x2


 �
¼ n�1n

�
2

� � 2 0

0 0


 �
n1
n2


 �
¼ 2jn1j2;
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Then, if we take
0
n2


 �
with n2 6¼ 0 as a column vector, x xjh i ¼ 0. Meanwhile,

we have

Uy x1
x2


 �
¼ n1

n2


 �
:

Thus, for
0
n2


 �
with n2 6¼ 0 we get

x1
x2


 �
6¼ 0

0


 �
. That is, if we had

x1
x2


 �
¼ 0

0


 �
, we would have

n1
n2


 �
¼ 0

0


 �
, in contradiction. To be more

precise, if we take, e.g.,
x1
x2


 �
¼ 1

1


 �
or

1
2


 �
, we have

x xjh i ¼ x�1 x�2ð ÞG x1
x2


 �
¼ 1 1ð Þ 1 �1

�1 1


 �
1

1


 �
¼ 1 1ð Þ 0

0


 �
¼ 0;

x xjh i ¼ 1 2ð Þ 1 �1

�1 1


 �
1

2


 �
¼ 1 2ð Þ �1

1


 �
¼ 1[ 0:

Thus, G is nonnegative by definition.

11.3 Adjoint Operators

A linear transformation A is similarly defined as before and A transforms xj i of
(11.32) such that

A xj ið Þ ¼ e1j i � � � enj ið Þ
a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

0B@
1CA x1

..

.

xn

0B@
1CA; ð11:59Þ

where aij
� �

is a matrix representation of A. Defining A xj ið Þ ¼ A xð Þj i and h xð ÞAyj ¼
xh jð ÞAy ¼ A xj ið Þ½ �y to be consistent with (1.117), we have

h xð ÞAyj ¼ x�1 � � � x�n
� � a�11 � � � a�n1

..

. . .
. ..

.

a�1n � � � a�nn

0B@
1CA e1h j

..

.

enh j

0B@
1CA: ð11:60Þ

Therefore, putting yj i ¼Pn
i¼1

yi eij i, we have
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xð ÞAy
��� yD E

¼ x�1 � � � x�n
� � a�11 � � � a�n1

..

. . .
. ..

.

a�1n � � � a�nn

0BB@
1CCA

e1h j
..
.

enh j

0BB@
1CCA e1j i � � � enj ið Þ

y1

..

.

yn

0BB@
1CCA

¼ x�1 � � � x�n
� �

AyG
y1

..

.

yn

0BB@
1CCA:

ð11:61Þ
Meanwhile, we get

y j A xð Þh i ¼ y�1 � � � y�n
� � e1h j

..

.

e1h j

0BB@
1CCA e1j i � � � e1j ið Þ

a11 � � � a1n

..

. . .
. ..

.

an1 � � � ann

0BB@
1CCA

x1

..

.

xn

0BB@
1CCA

¼ y�1 � � � y�n
� �

GA

x1

..

.

xn

0BB@
1CCA:

ð11:62Þ

Hence, we have

y j A xð Þh i�¼ y1 � � � ynð ÞG�A�
x�1
..
.

x�n

0B@
1CA ¼ y1 � � � ynð ÞGT Ay

� 	T x�1
..
.

x�n

0B@
1CA: ð11:63Þ

With the second equality, we used G� ¼ Gy
� 	T

¼ GT (note that G is Hermitian)

and A� ¼ Ay
� 	T

. A complex conjugate matrix A� is defined as

A� �
a�11 � � � a�1n
..
. . .

. ..
.

a�n1 � � � a�nn

0B@
1CA:

Comparing (11.61) and (11.63), we find that one is transposed matrix of the
other. Also note that ABð ÞT¼ BTAT, ABCð ÞT¼ CTBTAT, etc. Since an inner product
can be viewed as a (1,1) matrix, two mutually transposed (1,1) matrices are iden-
tical. Hence, we get

xð ÞAy
��� yD E

¼ y j A xð Þh i�¼ A xð Þ j yh i; ð11:64Þ
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where the second equality is due to (11.2).
The other way around, we may use (11.64) for the definition of an adjoint

operator of a linear transformation A. In fact, on the basis of (11.64), we haveX
i;j;k

x�i Ay
� 	

ik
Gð Þkjyj ¼

X
i;j;k

yj G
�ð Þjk A�ð Þkix�i

¼
X
i;j;k

x�i yj Ay
� 	

ik
Gð Þkj� G�ð Þjk A�

ki

� �h i
¼
X
i;j;k

x�i yj Ay
� 	

ik
� A�ð Þki Gð Þkj

h i
¼ 0:

ð11:65Þ

With the third equality of (11.65), we used G�ð Þjk¼ Gð Þkj, i.e., Gy ¼ G
(Hermitian matrix). Thanks to the freedom in choice of basis vectors as well as
xi and yi, we must have

Ay
� 	

ik
¼ A�ð Þki: ð11:66Þ

Adopting the matrix representation of (11.59) for A, we get [1]

Ay
� 	

ik
¼ a�ki
� �

: ð11:67Þ

Thus, we confirm that the adjoint operator Ay is represented by a complex
conjugate transposed matrix of A, in accordance with (11.1).

Taking complex conjugate of (11.64), we have

xð ÞAy
��� yD E�

¼ y

���� Ay
� 	y

xð Þ
� 


¼ y j A xð Þh i:

Comparing both sides of the second equality, we get

Ay
� 	y

¼ A: ð11:68Þ

In Chap. 9, we have seen how a matrix representation of a linear transformation
A is changed from A0 to A0 by the basis vectors transformation. We have

A0 ¼ P�1A0P: ð9:88Þ

In a similar manner, taking the adjoint of (9.88), we get

A0ð Þy¼ PyAy P�1
� �y¼ PyAy Py

� 	�1
: ð11:69Þ
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In (11.69), we denote the adjoint operator before the basis vectors transformation

simply by Ay to avoid complicated notation. We also have

Ay
� 	0

¼ A0ð Þy: ð11:70Þ

Meanwhile, suppose that Ay
� 	0

¼ Q�1AyQ. Then, from (11.69) to (11.70), we

have

Py ¼ Q�1:

Next, let us perform a calculation as below:

auþ bvð ÞAy
��� yD E

¼ y j A auþ bvð Þh i�¼ a� y j A uð Þh i� þ b� y j A vð Þh i�

¼ a� uð ÞAy
��� yD E

þ b� vð ÞAy
��� yD E

¼ a uð ÞAy þ b vð ÞAy
��� yD E

:

As y is an element arbitrarily chosen from a relevant vector space, we have

auþ bvð ÞAy
D ��� ¼ a uð ÞAy þ b vð ÞAy

D ���; ð11:71Þ

or

auþ bvð ÞAy ¼ a uð ÞAy þ b vð ÞAy: ð11:72Þ

Equation (11.71) states the equality of two vectors in an inner product space on
both sides, whereas (11.72) states that in a vector space where the inner product is

not defined. In either case, both (11.71) and (11.72) show that Ay is indeed a linear
transformation. In fact, the matrix representation of (11.66) and (11.67) is inde-
pendent of the concept of the inner product.

Suppose that there are two (or more) adjoint operators B and C that correspond
to A. Then, from (11.64), we have

xð ÞB j yh i ¼ xð ÞC j yh i¼ y j A xð Þh i�: ð11:73Þ

Also we have

xð ÞB� xð ÞC j yh i¼ xð Þ B� Cð Þ j yh i ¼ 0: ð11:74Þ

As x and y are arbitrarily chosen elements, we get B ¼ C, indicating the
uniqueness of the adjoint operator.

It is of importance to examine how the norm of a vector is changed by the linear
transformation. To this end, let us perform a calculation as below:
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xð ÞAy
��� A xð Þ

D E

¼ x�1 � � � x�n
� � a�11 � � � a�n1

..

. . .
. ..

.

a�1n � � � a�nn

0BB@
1CCA

e1h j
..
.

enh j

0BB@
1CCA e1j i � � � enj ið Þ

a11 � � � a1n

..

. . .
. ..

.

an1 � � � ann

0BB@
1CCA

x1

..

.

xn

0BB@
1CCA

¼ x�1 � � � x�n
� �

AyGA
x1

..

.

xn

0BB@
1CCA:

ð11:75Þ

Equation (11.75) gives the norm of vector after its transformation.
We may have a case where the norm is conserved before and after the trans-

formation. Actually, comparing (11.34) and (11.75), we notice that if AyGA ¼ G,

x xjh i¼ xð ÞAy
��� A xð Þ

D E
. Let us have a following example for this.

Example 11.3 Let us take two mutually orthogonal vectors e1j i and e2j i as basis
vectors in the xy-plane (Fig. 11.1).

xj i ¼ e1j i e2j ið Þ x1
x2


 �
: ð11:76Þ

Then we have

y

x

′′
2

Fig. 11.1 Basis vectors e1j i
and e2j i in the xy-plane and
their linear transformation
by R
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x xjh i ¼ x1 x2ð Þ he1j
he2j


 �
ð e1j i e2j iÞ x1

x2


 �
¼ x1 x2ð Þ e1 j e1h i e1 j e2h i

e2 j e1h i e2 j e2h i


 �
x1
x2


 �
¼ x1 x2ð Þ 1 0

0 4


 �
x1
x2


 �
¼ x21 þ 4x22:

ð11:77Þ

In (11.77), we are considering that e1j i and e2j i are orthogonal, but we do not
assume that e2j i is normalized. That is, although
e1j jj j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e1 e1jh ip ¼ 1; e2j jj j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 e2jh ip ¼ 2:

Next, let us think of a following linear transformation R whose matrix repre-
sentation is given by

R ¼ cos h �2 sin h
sin hð Þ=2 cos h


 �
: ð11:78Þ

The transformation matrix R is geometrically represented in Fig. 11.1. Following
(9.36), we have

R xj ið Þ ¼ e1j i e2j ið Þ cos h �2 sin h
ðsin hÞ=2 cos h


 �
x1
x2


 �
: ð11:79Þ

As a result of the transformation R, the basis vectors e1j i and e2j i are trans-
formed into e01

�� � and e02
�� �, respectively, as in Fig. 11.1 such that

e01
�� � e02�� �� � ¼ e1j i e2j ið Þ cos h �2 sin h

sin hð Þ=2 cos h


 �
:

Taking an inner product of (11.79), we have

xð ÞRy
��� R xð Þ

D E
¼ x1x2ð Þ cos h ðsin hÞ=2

�2 sin h cos h


 �
1 0

0 4


 �
cos h �2 sin h

ðsin hÞ=2 cos h


 �
x1
x2


 �
¼ x1x2ð Þ 1 0

0 4


 �
x1
x2


 �
¼ x21 þ 4x22:

ð11:80Þ

Putting

G ¼ 1 0
0 4


 �
; ð11:81Þ
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we have RyGR ¼ G.
Comparing (11.77) and (11.80), we notice that a norm of xj i remains unchanged

after the transformation R. This means that R is virtually a unitary transformation.
A somewhat unfamiliar matrix form of R resulted from the choice of basis vectors
other than an orthonormal basis.

11.4 Orthonormal Basis

Now we introduce an orthonormal basis, the simplest and most important basis set
in an inner product space. If we choose the orthonormal basis so that ei ej

��� � ¼ dij, a

Gram matrix G ¼ E. Thus, RyGR ¼ G reads as RyR ¼ E. In that case, a linear
transformation is represented by a unitary matrix and it conserves a norm of a
vector and an inner product with two arbitrary vectors.

So far we assumed that an adjoint operator Ay operates only on a row vector
from the right, as is evident from (11.61). At the same time, A operates only on the
column vector from the left as in (11.62). To render the notation of (11.61) and
(11.62) consistent with the associative law, we have to examine the commutability

of Ay with G. In this context, choice of the orthonormal basis enables us to get
through such a troublesome situation and largely eases matrix calculation. Thus,

xð ÞAy
��� A xð Þ

D E

¼ x�1 � � � x�n
� � a�11 � � � a�n1

..

. . .
. ..

.

a�1n � � � a�nn

0BB@
1CCA

e1h j
..
.

enh j

0BB@
1CCA e1j i � � � enj ið Þ

a11 � � � a1n

..

. . .
. ..

.

an1 � � � ann

0BB@
1CCA

x1

..

.

xn

0BB@
1CCA

¼ x�1 � � � x�n
� �

AyEA
x1

..

.

xn

0BB@
1CCA ¼ x�1 � � � x�n

� �
AyA

x1

..

.

xn

0BB@
1CCA:

ð11:82Þ

At the same time, we adopt a simple notation as below instead of (11.75)

xAy Axj
D E

¼ x�1 � � � x�n
� �

AyA
x1
..
.

xn

0B@
1CA: ð11:83Þ

This notation has become now consistent with the associative law. Note that Ay
and A operate on either a column or row vector. We can also do without a symbol
“|” in (11.83) and express it as
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xAyAx
D E

¼ xAy Axj
D E

: ð11:84Þ

Thus, we can freely operate Ay and A from both the left and right. By the same
token, we rewrite (11.62) as

y Axjh i ¼ yAxh i ¼ y�1 � � � y�n
� � a11 � � � a1n

..

. . .
. ..

.

an1 � � � ann

0B@
1CA x1

..

.

xn

0B@
1CA ¼ y�1 � � � y�n

� �
A

x1
..
.

xn

0B@
1CA:

ð11:85Þ

Here, notice that a vector xj i is represented by a column vector with respect to
the orthonormal basis. Using (11.64), we have

y Axjh i� ¼ xAy
��� yD E

¼ x�1 � � � x�n
� �

Ay
y1

..

.

yn

0BB@
1CCA

¼ x�1 � � � x�n
� � a�11 � � � a�n1

..

. . .
. ..

.

a�1n � � � a�nn

0BB@
1CCA

y1

..

.

yn

0BB@
1CCA:

ð11:86Þ

If in (11.83) we put yj i ¼ Axj i, xAy Axj
D E

¼ y yjh i� 0. Thus, we define a norm of

Axj i as

Axk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xAy Axj
D Er

: ð11:87Þ

Now we are in a position to construct an orthonormal basis in Vn using n linearly
independent vectors ij i 1	 i	 nð Þ. The following theorem is well-known as the
Gram–Schmidt orthonormalization.

Theorem 11.2: Gram–Schmidt Orthonormalization Theorem [4] Suppose that
there are a set of linearly independent vectors ij i 1	 i	 nð Þ in Vn. Then one can
construct an orthonormal basis eij i 1	 i	 nð Þ so that ei ej

��� � ¼ dij 1	 j	 nð Þ and
each vector eij i can be a linear combination of the vectors ij i.
Proof First, let us take 1j i. This can be normalized such that

e1j i ¼ 1j iffiffiffiffiffiffiffiffiffiffiffiffiffi
1 j 1h ip ; e1 e1jh i ¼ 1: ð11:88Þ

Next, let us take 2j i and then make a following vector:
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e2j i ¼ 1
L2

2j i � e1 2jh i e1j i½ �; ð11:89Þ

where L2 is a normalization constant such that e2 e2jh i ¼ 1. Note that e2j i cannot be
a zero vector. This is because if e2j i were a zero vector, 2j i and e1j i (or 1j i) would
be linearly dependent, in contradiction to the assumption. We have e1 e2jh i ¼ 0.
Thus, e1j i and e2j i are orthonormal.

After this, the proof is based upon mathematical induction. Suppose that the
theorem is true of n� 1ð Þ vectors. That is, let eij i 1	 i	 n� 1ð Þ so that ei ej

��� � ¼
dij 1	 j	 n� 1ð Þ and each vector eij i can be a linear combination of the vectors
ij i. Meanwhile, let us define

fnj i � nj i �
Xn�1

j¼1

ej nj
� �

ej
�� �: ð11:90Þ

Again, the vector fnj i cannot be a zero vector as asserted above. We have

ekh fnj i ¼ ek njh i �
Xn�1

j¼1

ej nj
� �

ek ej
��� � ¼ ek njh i �

Xn�1

j¼1

ej nj
� �

dkj ¼ 0; ð11:91Þ

where 1	 k	 n� 1. The second equality comes from the assumption of the

induction. The vector fnj i can always be normalized such that

enj i ¼
fnj iffiffiffiffiffiffiffiffiffiffiffienh j eniq ; en enjh i ¼ 1: ð11:92Þ

Thus, the theorem is proven. In (11.92), a phase factor eih (h: an arbitrarily
chosen real number) can be added such that

enj i ¼ eihfnj iffiffiffiffiffiffiffiffiffiffiffienh j eniq : ð11:93Þ

To prove Theorem 11.2, we have used the following simple but important
theorem.

Theorem 11.3 Let us have any n vectors ij i 6¼ 0 1	 i	 nð Þ in Vn and let these
vectors ij i be orthogonal to one another. Then the vectors ij i are linearly
independent.

Proof Let us think of the following equation:
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c1 1iþ c2j j2iþ � � � þ cn nj i ¼ 0: ð11:94Þ

Multiplying (11.94) by ih j from the left and considering the orthogonality among
the vectors, we have

ci i ijh i ¼ 0: ð11:95Þ

Since i ijh i 6¼ 0, ci ¼ 0. The above is true of any ci and ij i. Then
c1 ¼ c2 ¼ � � � ¼ cn ¼ 0. Thus, (11.94) implies that 1i;j j2i; . . .; nj i are linearly
independent.
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Chapter 12
Hermitian Operators and Unitary
Operators

Hermitian operators and unitary operators are quite often encountered in mathe-
matical physics and, in particular, quantum physics. In this chapter, we investigate
their basic properties. Both Hermitian operators and unitary operators fall under the
category of normal operators. The normal matrices are characterized by an
important fact that those matrices can be diagonalized by a unitary matrix.
Moreover, Hermitian matrices always possess real eigenvalues. This fact largely
eases mathematical treatment of quantum mechanics. In relation to these topics, in
this chapter we investigate projection operators systematically. We find their
important application to physicochemical problems in Part IV. We further inves-
tigate Hermitian quadratic forms and real symmetric quadratic forms as an
important branch of matrix algebra. In connection with this topic, positive defi-
niteness and nonnegative property of a matrix are an important concept. This
characteristic is readily applicable to theory of differential operators, thus rendering
this chapter closely related to basic concepts of quantum physics.

12.1 Projection Operators

In Chap. 10 we considered the decomposition of a vector space to direct sum of
invariant subspaces. We also mentioned properties of idempotent operators.
Moreover, we have shown how an orthonormal basis can be constructed from a set
of linearly independent vectors. In this section, an orthonormal basis set is implied
as basis vectors in an inner product space Vn.

Let us start with a concept of an orthogonal complement. Let W be a subspace in
Vn. Let us think of a set of vectors xj i such that

xj i; x yjh i ¼ 0 for 8 yj i 2 W
� �

:
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We name this set W? and call it an orthogonal complement of W. The set W?

forms a subspace of Vn. In fact, if aj i; bj i 2 W?, a yjh i ¼ 0; b yjh i ¼ 0: Since
ah j þ bh jð Þ yj i ¼ a yjh iþ b yjh i ¼ 0. Therefore, aj i þ bj i 2 W? and aa yjh i ¼ a�

a yjh i ¼ 0. Hence, aaj i ¼ a aj i 2 W?. Then, W? is a subspace of Vn.

Theorem 12.1 Let W be a subspace and W? be its orthogonal complement in Vn.
Then,

Vn ¼ W �W?: ð12:1Þ
Proof Suppose that an orthonormal basis comprising e1j i; e2j i; and enj i spans Vn;

Vn ¼ Span e1j i; e2j i; . . .; enj if g: ð12:2Þ
Of the orthonormal basis let e1j i; e2j i; and erj i ðr\nÞ span W. Let an arbitrarily

chosen vector from Vn be xj i. Then we have

xj i ¼ x1 e1j i þ x2 e2j i þ � � � þ xn enj i ¼
Xn
i¼1

xi eij i: ð12:3Þ

Multiplying ej
� �� on (12.3) from the left, we have

ej xj
� � ¼Xn

i¼1

xi ej eij
� � ¼Xn

i¼1

xidij ¼ xj: ð12:4Þ

That is,

xj i ¼
Xn
i¼1

ei xjh i eij i: ð12:5Þ

Meanwhile, put

x0j i ¼
Xr
i¼1

ei xjh i eij i: ð12:6Þ

Then we have x0j i 2 W . Also putting x00j i ¼ xj i � x0j i and multiplying
eih j 1� i� rð Þ on it from the left, we get

ei x
00jh i ¼ ei xjh i � ei x

0jh i ¼ ei xjh i � ei xjh i ¼ 0: ð12:7Þ

Taking account of W ¼ Span e1j i; e2j i; . . .; erj if g, we get x00j i 2 W?. That is, for
8 xj i 2 Vn
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xj i ¼ x0j i þ x00j i: ð12:8Þ

This means that Vn ¼ W þW?. Meanwhile, we have W \W? ¼ 0f g. In fact,
suppose that xj i 2 W \W?. Then x xjh i ¼ 0 because of the orthogonality.
However, this implies that xj i ¼ 0. Consequently, we have Vn ¼ W �W?. This
completes the proof.

The consequence of the Theorem 12.1 is that the dimension of W? is n� rð Þ. In
other words, we have

dimVn ¼ n ¼ dimW þ dimW?:

Moreover, the contents of the Theorem 12.1 can readily be generalized to more
subspaces such that

Vn ¼ W1 �W2 � � � � �Wr; ð12:9Þ

where W1;W2; . . .; and Wr r� nð Þ are mutually orthogonal complements. In this
case, 8 xj i 2 Vn can be expressed uniquely as the sum of individual vectors
w1j i; w2j i; . . .; and wrj i of each subspace, i.e.,

xj i ¼ w1j i þ w2j i þ � � � þ wrj i ¼ w1 þw2 þ � � � þwrj i: ð12:10Þ

Let us define the following operators similarly to the case of (10.201):

Pi xj ið Þ ¼ wij i 1� i� rð Þ: ð12:11Þ

Thus, the operator Pi extracts a vector wij i in a subspace Wi. Then we have

P1 þP2 þ � � � þPrð Þ xj ið Þ ¼ P1 xj i þP2 xj i þ � � � þPr xj i
¼ w1j i þ w2j i þ � � � þ wrj i ¼ xj i: ð12:12Þ

Since xj i is an arbitrarily chosen vector, we get

P1 þP2 þ � � � þPr ¼ E: ð12:13Þ

Moreover,

Pi Pi xj ið Þ½ � ¼ Pi wij ið Þ ¼ wij i 1� i� rð Þ: ð12:14Þ

Therefore, from (12.11) and (12.14) we have

Pi Pi xj ið Þ½ � ¼ Pi xj ið Þ: ð12:15Þ
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The vector xj i is arbitrarily chosen, and so we get

P2
i ¼ Pi: ð12:16Þ

Choose another arbitrary vector yj i 2 Vn such that

yj i ¼ u1j i þ u2j i þ � � � þ urj i ¼ u1 þ u2 þ � � � þ urj i: ð12:17Þ

Then, we have

x Piyjh i ¼ w1 þw2 þ � � � þwrh jPi u1 þ u2 þ � � � þ urj i
¼ w1 þw2 þ � � � þwr uijh i ¼ wiuih i: ð12:18Þ

With the last equality, we used the mutual orthogonality of the subspaces.
Meanwhile, we have

y Pixjh i� ¼ u1 þ u2 þ � � � þ urh jPi w1 þw2 þ � � � þwrj i�
¼ u1 þ u2 þ � � � þ ur wijh i�¼ ui wijh i�¼ wi uijh i: ð12:19Þ

Comparing (12.18) and (12.19), we get

x Piyjh i ¼ y Pixjh i�¼ x Pyi y
���D E

; ð12:20Þ

where we used (11.64) with the second equality. Since xj i and yj i are arbitrarily
chosen, we get

Pyi ¼ Pi: ð12:21Þ

Equation (12.21) shows that Pi is Hermitian.
The above discussion parallels that made in Sect. 10.4 with an idempotent

operator. We have a following definition about a projection operator.

Definition 12.1 An operator P is said to be a projection operator if P2 ¼ P and

Py ¼ P. That is, an idempotent and Hermitian operator is a projection operator.
As described above, a projection operator is characterized by (12.16) and

(12.21). An idempotent operator does not premise the presence of an inner product
space, but we only need a direct sum of subspaces. In contrast, if we deal with the
projection operator, we are thinking of orthogonal compliments as subspaces and
their direct sum. The projection operator can adequately be defined in an inner
product vector space having an orthonormal basis.
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From (12.13) we have

P1 þP2 þ � � � þPrð Þ P1 þP2 þ � � � þPrð Þ

¼
Xr
i¼1

P2
i þ

X
i6¼j

PiPj ¼
Xr
i¼1

Pi þ
X
i6¼j

PiPj ¼ Eþ
X
i 6¼j

PiPj ¼ E:
ð12:22Þ

In (12.22), we used (12.13) and (12.16). Therefore, we getX
i 6¼j

PiPj ¼ 0:

In particular, we have

PiPj ¼ 0; PjPi ¼ 0 i 6¼ jð Þ: ð12:23Þ

In fact, we have

Pi Pj xj ið Þ� � ¼ Pi wj

�� �	 
 ¼ 0 i 6¼ j; 1� i; j� nð Þ: ð12:24Þ

The second equality comes from Wi \Wj ¼ 0f g. Notice that in (12.24), indices
i and j are interchangeable. Again, xj i is arbitrarily chosen, and so (12.23) holds.
Combining (12.16) and (12.23), we write

PiPj ¼ dij: ð12:25Þ

In virtue of the relation (12.23), Pi þPj i 6¼ jð Þ is a projection operator as well [1].
In fact, we have

Pi þPj
	 
2¼ P2

i þPiPj þPjPi þP2
j ¼ P2

i þP2
j ¼ Pi þPj;

where the second equality comes from (12.23). Also we have

Pi þPj
	 
y¼ Pyi þPyj ¼ Pi þPj:

The following notation is often used:

Pi ¼ wij i wih j
wik k � wik k : ð12:26Þ

Then we have
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Pi xj i ¼ wij i wih j
wik k � wik k w1j i þ w2j i þ � � � þ wsj ið Þj j

¼ wij i wi w1jh iþ wi w2jh iþ � � � þ wi wsjh ið Þ½ �= wi wijh i
¼ wij i wi wijh i½ �= wi wijh i ¼ wij i:

Furthermore, we have

P2
i xj i ¼ Pi wij i ¼ wij i ¼ Pi xj i: ð12:27Þ

Equation (12.16) is recovered accordingly. Meanwhile,

wij i wih jð Þy¼ wih jð Þy wij ið Þy¼ wij i wih j: ð12:28Þ

Hence, we recover

Pyi ¼ Pi: ð12:21Þ

In (12.28), we used ABð Þy¼ ByAy. In fact, we have

xh jByAy yj i ¼ xBy Ayy
���D E

¼ yA Bxjh i�¼ yh jAB xj i�¼ xh j ABð Þy yj i: ð12:29Þ

With the second equality of (12.29), we used (11.86) where A is replaced with

B and yj i is replaced with Ay yj i. Since (12.29) holds for arbitrarily chosen vectors
xj i and yj i, comparing the first and last sides of (12.29) we have

ABð Þy¼ ByAy: ð12:30Þ

We can express (12.29) alternatively as follows:

xBy Ayy
���D E

¼ y Ay
� �y

By
� �y

x

����
 ��
¼ yA Bxjh i�¼ yABxh i�; ð12:31Þ

where with the second equality we used (11.68). Also recall the remarks after
(11.83) with the expressions of (12.29) and (12.31). Other notations can be adopted.

We can view a projection operator under a more strict condition. Related
operators can be defined as well. As in (12.26), let us define an operator such that

fPk ¼ ekj i ekh j: ð12:32Þ

Operating ePi on xj i ¼ x1 e1j i þ x2 e2j i þ � � � þ xn enj i from the left, we get
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fPk xj i ¼ ekj i ekh j
Xn
j¼1

xj ej
�� � !

¼ ekj i
Xn
j¼1

xj ek ej
��� � !

¼ ekj i
Xn
j¼1

xjdkj

 !
¼ xk ekj i:

Thus, we find that fPk plays the same role as P kð Þ defined in (10.201).
Represented by a matrix, fPk has the same structure as that denoted in (10.205).
Evidently,

fPk

� �2
¼ fPk ; fPk

y ¼ fPk ; fP1 þfP2 þ � � � þfPn ¼ E: ð12:33Þ

Now let us modify P kð Þ in (10.201). There P kð Þ ¼ d kð Þ
i d j

kð Þ, where only the

(k, k) element is 1, otherwise 0, in the (n, n) matrix. We define a matrix

P kð Þ
mð Þ ¼ d kð Þ

i d j
mð Þ. A full matrix representation for it is

P kð Þ
mð Þ ¼

0
. .
.

0
1

0
0

. .
.

0

0BBBBBBBBB@

1CCCCCCCCCA
; ð12:34Þ

where only the (k, m) element is 1, otherwise 0. In an example of (12.34), P kð Þ
mð Þ is an

upper triangle matrix ðk\mÞ. Therefore, its eigenvalues are all zero, and so P kð Þ
mð Þ is

a nilpotent matrix. If k[m, the matrix is a lower triangle matrix and nilpotent as
well. Such a matrix is not Hermitian (nor a projection operator), as can be imme-
diately seen from the matrix form of (12.34). Because of the properties of nilpotent

matrices mentioned in Sect. 10.3, P kð Þ
mð Þ k 6¼ mð Þ is not diagonalizable either.

Various relations can be extracted. As an example, we have

P kð Þ
mð ÞP

lð Þ
nð Þ ¼

X
q

d kð Þ
i dqmð Þd

lð Þ
q d j

nð Þ ¼ d kð Þ
i dmld

j
nð Þ ¼ dmlP

kð Þ
nð Þ: ð12:35Þ

Note that P kð Þ
kð Þ � P kð Þ defined in (10.201). From (12.35), moreover, we have

P kð Þ
mð ÞP

mð Þ
nð Þ ¼ P kð Þ

nð Þ; P
nð Þ
mð ÞP

mð Þ
nð Þ ¼ P nð Þ

nð Þ; P
mð Þ
nð Þ P

nð Þ
mð Þ ¼ P mð Þ

mð Þ

P kð Þ
mð ÞP

kð Þ
mð Þ ¼ dmkP

kð Þ
mð Þ; P

mð Þ
mð ÞP

mð Þ
mð Þ ¼ P mð Þ

mð Þ
h i2

¼ P mð Þ
mð Þ; etc:
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These relations remain unchanged after the unitary similarity transformation byU.
For instance, taking the first equation of the above, we have

UyP kð Þ
mð ÞP

mð Þ
nð ÞU ¼ UyP kð Þ

mð ÞU
h i

UyP mð Þ
nð ÞU

h i
¼ UyP kð Þ

nð ÞU:

Among these operators, only P kð Þ
kð Þ is eligible for a projection operator. We will

encounter further examples in Part IV.

Using P kð Þ
kð Þ in (11.62), we have

y P kð Þ
kð ÞðxÞ

���D E
¼ y�1 � � � y�n
	 


GP kð Þ
kð Þ

x1
..
.

xn

0B@
1CA: ð12:36Þ

Within a framework of an orthonormal basis where G ¼ E, the representation is
largely simplified to be

y P kð Þ
kð Þx

���D E
¼ y�1 � � � y�n
	 


P kð Þ
kð Þ

x1
..
.

xn

0B@
1CA ¼ y�kxk: ð12:37Þ

12.2 Normal Operators

There are a large group of operators called normal operators that play an important
role in mathematical physics, especially quantum physics. A normal operator is
defined as an operator on an inner product space that commutes with its adjoint
operator. That is, let A be a normal operator. Then, we have

AAy ¼ AyA: ð12:38Þ

The normal operators include an Hermitian operator H defined as Hy ¼ H as

well as a unitary operator U defined as UUy ¼ UyU ¼ E.

In this condition, let us estimate the norm of Ayx
��� E

together with Axj i defined by
(11.87). If A is a normal operator,

Ayx
��� ��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x Ay
� �y

Ayx
���
 �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xAAyx
D Er

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xAyAx
D Er

¼ Axk k: ð12:39Þ
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The other way around suppose that Axk k ¼ Ayx
��� ���. Then, since

Axk k2¼ Ayx
��� ���2, xAyAx

D E
¼ xAAyx
D E

. That is, xh jAyA� AAy xj i ¼ 0 for an

arbitrarily chosen vector xj i. To assert AyA� AAy ¼ 0, i.e., AyA ¼ AAy on the

assumption that xh jAyA� AAy xj i ¼ 0, we need the following theorems.

Theorem 12.2 [2] A linear transformation A on an inner product space is the zero
transformation if and only if y Axjh i ¼ 0 for any vectors xj i and yj i.
Proof If A ¼ 0, then y Axjh i¼ y 0jh i ¼ 0. This is because in (11.3) putting
b ¼ 1 ¼ �c and bj i ¼ cj i, we get a 0jh i ¼ 0. Conversely, suppose that y Axjh i ¼ 0

for any vectors xj i and yj i. Then, putting yj i ¼ Axj i, xAy Axj
D E

¼ 0 and y yjh i ¼ 0.

This implies that yj i ¼ Axj i ¼ 0. For Axj i ¼ 0 to hold for any xj i we must have
A ¼ 0. Note here that if A is a singular matrix, for some vectors xj i; Axj i ¼ 0.
However, even though A is singular, for Axj i ¼ 0 to hold for any xj i, A ¼ 0.

We have another important theorem under a further restricted condition.

Theorem 12.3 [2] A linear transformation A on an inner product space is the zero
transformation if and only if x Axjh i ¼ 0 for any vectors xj i.
Proof As in the case of Theorem 12.2, a necessary condition is trivial. To prove a
sufficient condition, let us consider the following:

xþ y A xþ yð Þjh i ¼ x Axjh i þ y Ayjh iþ x Ayjh iþ y Axjh i;
x Ayjh iþ y Axjh i ¼ xþ y A xþ yð Þjh i � x Axjh i � y Ayjh i: ð12:40Þ

From the assumption that x Axjh i ¼ 0 with any vectors xj i, we have

x Ayjh i þ y Axjh i ¼ 0: ð12:41Þ

Meanwhile, replacing yj i by iyj i in (12.41), we get

x Aiyjh iþ iy Axjh i ¼ i x Ayjh i � y Axjh i½ � ¼ 0: ð12:42Þ

That is,

x Ayjh i � y Axjh i ¼ 0: ð12:43Þ

Combining (12.41) and (12.43), we get

x Ayjh i ¼ 0: ð12:44Þ

Theorem 12.2 means that A ¼ 0, indicating that the sufficient condition holds.
This completes the proof.

Thus returning to the beginning, i.e., remarks made after (12.39), we establish
the following theorem.
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Theorem 12.4 A necessary and sufficient condition for a linear transformation A
on an inner product space to be a normal operator is

Ayx
��� ��� ¼ Axk k: ð12:45Þ

12.3 Unitary Diagonalization of Matrices

A normal operator has a distinct property. The normal operator can be diagonalized
by a similarity transformation by a unitary matrix. The transformation is said to be a
unitary similarity transformation. Let us prove the following theorem.

Theorem 12.5 [3] A necessary and sufficient condition for a matrix A to be di-
agonalized by unitary similarity transformation is that the matrix A is a normal
matrix.

Proof To prove the necessary condition, suppose that A can be diagonalized by a
unitary matrix U. That is,

UyAU ¼ D; i:e: A ¼ UDUy and Ay ¼ UDyUy; ð12:46Þ

where D is a diagonal matrix. Then

AAy ¼ UDUy� �
UDyUy� �

¼ UDDyUy ¼ UDyDUy ¼ UDyUy� �
UDUy� �

¼ AyA:
ð12:47Þ

For the third equality, we used DDy ¼ DyD (i.e., D and Dy are commutable).
This shows that A is a normal matrix.

To prove the sufficient condition, let us show that a normal matrix can be
diagonalized by unitary similarity transformation. The proof is due to mathematical
induction, as is the case with Theorem 10.1.

First we show that Theorem is true of a (2,2) matrix. Suppose that one of
eigenvalues of A2 is a1 and that its corresponding eigenvector is x1j i. Following
procedures of the proof for Theorem 10.1 and remembering the Gram–Schmidt
orthonormalization theorem, we can construct a unitary matrix U1 such that

U1 ¼ x1j i p1j ið Þ; ð12:48Þ

where x1j i represents a column vector and p1j i is another arbitrarily determined
column vector. Then we can convert A2 to a triangle matrix such that
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fA2 � Uy
1 A2U1 ¼ a1 x

0 y

� �
: ð12:49Þ

Then we have

fA2 fA2

h iy
¼ Uy

1 A2U1

� �
Uy

1 A2U1

� �y
¼ Uy

1 A2U1

� �
Uy

1 A
y
2U1

� �
¼ Uy

1 A2A
y
2U1 ¼ Uy

1 A
y
2A2U1 ¼ ðUy

1 A
y
2U1ÞðUy

1 A2U1Þ
¼ ½fA2 �yfA2 :

ð12:50Þ

With the fourth equality, we used the supposition that A2 is a normal matrix.

Equation (12.50) means that fA2 defined in (12.49) is a normal operator. Via simple
matrix calculations, we have

fA2 fA2

h iy
¼ a1j j2 þ xj j2 xy�

x�y yj j2
� �

; fA2

h iyfA2 ¼ ja1j2 a�1x
a1x� xj j2 þ yj j2

� �
: ð12:51Þ

For (12.50) to hold, we must have x ¼ 0 in (12.51). Accordingly, we get

fA2 ¼ a1 0
0 y

� �
: ð12:52Þ

This implies that a normal matrix A2 has been diagonalized by the unitary
similarity transformation.

Now let us examine a general case where we consider a (n,n) square normal
matrix An. Let an be one of eigenvalues of An. On the basis of the argument of the
(2,2) matrix case, after a suitable similarity transformation by a unitary matrix eU we
first have

fAn ¼ eU	 
y
An eU ; ð12:53Þ

where we can put

fAn ¼ an xT

0 B

� �
; ð12:54Þ

where x is a column vector of order n� 1ð Þ, 0 is a zero column vector of order
n� 1ð Þ, and B is a n� 1; n� 1ð Þ matrix. Then we have

fAn

h iy
¼ a�n 0

x� By
� �

; ð12:55Þ
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where x� is a complex column vector. Performing matrix calculations, we have

fAn fAn

h iy
¼ janj2 þ xTx� xTBy

Bx� BBy

 !
;

fAn

h iy fAn

h i
¼ janj2 a�nx

T

anx� x�xT þByB

 !
: ð12:56Þ

For fAn fAn

h iy
¼ fAn

h iy fAn

h i
to hold with (12.56), we must have x ¼ 0. Thus we

get

fAn ¼ an 0
0 B

� �
: ð12:57Þ

Since fAn is a normal matrix, so is B. According to mathematical induction, let us
assume that the theorem holds with a n� 1; n� 1ð Þ matrix, i.e., B. Then, also from
the assumption there exists a unitary matrix C and a diagonal matrix D, both of
order n� 1ð Þ, such that BC ¼ CD. Hence,

an 0
0 B

� �
1 0
0 C

� �
¼ 1 0

0 C

� �
an 0
0 D

� �
: ð12:58Þ

Here putting

fCn ¼ 1 0
0 C

� �
and fDn ¼ an 0

0 D

� �
; ð12:59Þ

we get

fAnfCn ¼ fCnfDn : ð12:60Þ

As fCn is a (n,n) unitary matrix, fCn

h iyfCn ¼ fCn fCn

h iy
¼ E. Hence,

fCn

h iyfAnfCn ¼ fDn . Thus, from (12.53) finally we get

fCn

h iy eU	 
y
An eUfCn ¼ fDn : ð12:61Þ

Putting eUfCn ¼ V , V being another unitary operator,

VyAnV ¼ fDn : ð12:62Þ
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This completes the proof.
A direct consequence of Theorem 12.5 is that with any normal matrix we can

find a set of orthonormal eigenvectors corresponding to individual eigenvalues
whether or not those are degenerate.

In Sect. 8.2 we dealt with a decomposition of a linear vector space and relevant
reduction of an operator when discussing canonical forms of matrices. In this
context, Theorem 12.5 gives a simple and clear criterion for this. Equation (12.57)
implies that a n� 1; n� 1ð Þ submatrix B can further be reduced to matrices having
lower dimensions. Considering that a diagonal matrix is a special case of triangle
matrices, a normal matrix that has been diagonalized by the unitary similarity
transformation gives eigenvalues by its diagonal elements.

From a point of view of the aforementioned aspect, let us consider the charac-
teristics of normal matrices, starting with the discussion about the invariant sub-
spaces. We have a following important theorem.

Theorem 12.6 Let A be a normal matrix and let one of its eigenvalues be a. Let Wa

be an eigenspace corresponding to a. Then, Wa is both A-invariant and Ay-
invariant. Also W?

a is both A-invariant and Ay-invariant.
Proof Theorem 12.5 ensures that a normal matrix is diagonalized by unitary
similarity transformation. Therefore, we deal with only “proper” eigenvalues and
eigenvectors here. First we show if a subspace W is A-invariant, then its orthogonal

complements W? is Ay-invariant. In fact, suppose that xj i 2 W and x0j i 2 W?.
Then, from (11.64) and (11.86), we have

x0 Axjh i ¼ 0 ¼ xAy x0j
D E�

¼ x Ayx0
���D E�

: ð12:63Þ
The first equality comes from the fact that xj i 2 W ) A xj i ¼ Axj ið Þ 2 W as W is

A-invariant. From the last equality of (12.63), we have

Ay x0j i ¼ Ayx0
��� E� �

2 W?: ð12:64Þ

That is, W? is Ay-invariant.
Next suppose that xj i 2 Wa. Then we have

AAy xj i ¼ AyA xj i ¼ Ay a xj ið Þ ¼ aAy xj i: ð12:65Þ

Therefore, Ay xj i 2 Wa. This means that Wa is Ay-invariant. From the above

remark, W?
a is Ay

� �y
-invariant, i.e., A-invariant accordingly. This completes the

proof.
From Theorem 12.5, we know that the resulting diagonal matrix fDn in (12.62)

has a form with n eigenvalues (an) some of which may be multiple roots arranged in
diagonal elements. After diagonalizing the matrix, those eigenvalues can be sorted
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out according to different eigenvalues a1; a2; . . .; and as. This can also be done by
unitary similarity transformation. The relevant unitary matrix U is represented as

U ¼

1
. .
.

1
0 � � � 1

1
..
. . .

. ..
.

1
1 � � � 0

1
. .
.

1

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

; ð12:66Þ

where except (i, j) and (j, i) elements equal to 1, all the off-diagonal elements are
zero. If operated from the left, U exchanges the ith and jth rows of the matrix. If
operated from the right, U exchanges the ith and jth columns of the matrix. Note
that U is at once unitary and Hermitian with eigenvalue 1 or �1. Note that U2 ¼ E.
This is because exchanging two columns (or two rows) two times produces identity
transformation. Thus performing such unitary similarity transformations appropriate
times, we get

eDn 	

a1
. .
.

a1
a2

. .
.

a2
. .
.

as
. .
.

as

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

: ð12:67Þ

The matrix is identical to that represented in (10.181).
In parallel, Vn is decomposed to mutually orthogonal subspaces associated with

different eigenvalues a1; a2; . . .; and as such that

Vn ¼ Wa1 �Wa2 � � � � �Was : ð12:68Þ
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This expression is formally identical to that represented in (10.191). Note,
however, that in (10.181), orthogonal subspaces are not implied. At the same time,
An is reduced to

An 	
A 1ð Þ

A 2ð Þ � � �
..
. . .

. ..
.

� � � A sð Þ

0BBB@
1CCCA; ð12:69Þ

according to the different eigenvalues.
A normal operator has other distinct properties. Following theorems are good

examples.

Theorem 12.7 Let A be a normal operator on Vn. Then xj i is an eigenvector of A

with an eigenvalue a, if and only if xj i is an eigenvector of Ay with an eigenvalue a�.

Proof We apply (12.45) for the proof. Both A� aEð Þy¼ Ay � a�E and A� aEð Þ
are normal, since A is normal. Consequently, we have A� aEð Þxk k ¼ 0 if and only

if Ay � a�E
� �

x
��� ��� ¼ 0. Since only the zero vector has a zero norm, we get

A� aEð Þ xj i ¼ 0 if and only if Ay � a�E
� �

xj i ¼ 0:

This completes the proof.

Theorem 12.8 Let A be a normal operator on Vn. Then, eigenvectors corre-
sponding to different eigenvalues are mutually orthogonal.

Proof Let A be a normal operator on Vn. Let uj i be an eigenvector corresponding to
an eigenvalue a; and vj i be an eigenvector corresponding to an eigenvalue b with
a 6¼ b. Then we have

a v ujh i ¼ v aujh i ¼ v Aujh i ¼ u Ayv
���D E�

¼ u byv
���D E�

¼ b�v ujh i
¼ bv ujh i;

ð12:70Þ

where with the fourth equality we used Theorem 12.7. Then we get

a� bð Þ v ujh i ¼ 0:

Since a� b 6¼ 0, v ujh i ¼ 0. Namely, the eigenvectors uj i and vj i are mutually
orthogonal.

In (10.208), we mentioned the decomposition of diagonalizable matrices. As for
the normal matrices, we have a related matrix decomposition. Let A be a normal
operator. Then, according to Theorem 12.5, A can be diagonalized and expressed as
(12.67). This is equivalently expressed as a following succinct relation. That is, if
we choose U for a diagonalizing unitary matrix, we have
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UyAU ¼ a1P1 þ a2P2 þ � � � þ asPs; ð12:71Þ

where a1; a2; . . .; and as are different eigenvalues of A; Pl 1� l� sð Þ is described
such that, e.g.,

P1 ¼
En1

0n2
� � �

..

. . .
. ..

.

� � � 0ns

0BBB@
1CCCA; ð12:72Þ

where En1 stands for a n1; n1ð Þ identity matrix with n1 corresponding to multiplicity
of a1. A matrix represented by 0n2 is a n2; n2ð Þ zero matrix, and so forth. This
expression is in accordance with (12.69). From a matrix form (12.72), obviously

Pl 1� l� sð Þ is a projection operator. Thus, operating U and Uy on both sides
(12.71) from the left and right of (12.71), respectively, we obtain

A ¼ a1UP1U
y þ a2UP2U

y þ � � � þ asUPsU
y: ð12:73Þ

Defining ePl � UPlUy 1� l� sð Þ, we have

A ¼ a1fP1 þ a1fP2 þ � � � þ asfPs : ð12:74Þ

In (12.74), we can easily check that ePl is a projection operator with
a1; a2; . . .; and as being different eigenvalues of A. If al 1� l� sð Þ is degenerate, we
express ePl asfPl

l 1� l�mlð Þ, whereml is multiplicity of al. In that case, wemaywrite

ePl ¼ fP1
l � � � � �gPml

l : ð12:75Þ

Also we have

fPk ePl ¼ UPkU
yUPlU

y ¼ UPkEPlU
y ¼ UPkPlU

y ¼ 0 1� k; l� sð Þ:

The last equality comes from (12.23). Similarly, we have

ePlfPk ¼ 0:

Thus, we have

fPk ePl ¼ dkl:
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If the operator is decomposed as in the case of (12.75), we can express

fPl
l
fPm
l ¼ dlm 1� l; m�mlð Þ:

Conversely, if an operator A is expressed by (12.74), that operator is normal
operator. In fact, we have

AyA ¼
X
i

ai ePi

 !y X
j

aj ePj

 !
¼
X
i;j

a�i aj ePi ePj ¼
X
i;j

a�i ajdij ePi ¼
X
i

jaij2 ePi ;

AAy ¼
X
j

aj ePj

 ! X
i

ai ePi

 !y
¼
X
i;j

a�i aj ePj ePi ¼
X
i;j

a�i ajdji ePj ¼
X
i

jaij2 ePi :

ð12:76Þ

Hence, AyA ¼ AAy. If projection operators are further decomposed as in the case
of (12.75), we have a related expression to (12.76). Thus, a necessary and sufficient
condition for an operator to be a normal operator is that the said operator is
expressed as (12.74). The relation (12.74) is well known as a spectral decompo-
sition theorem. Thus, the spectral decomposition theorem is equivalent to
Theorem 12.5.

The relations (10.208) and (12.74) are virtually the same, aside from the fact that
whereas (12.74) premises an inner product space, (10.208) does not premise it.
Correspondingly, whereas the related operators are called projection operators with
the case of (12.74), those operators are said to be idempotent operators for (10.208).

Example 12.1 Let us think of a Gram matrix of Example 11.1, as shown below.

G ¼ 2 1þ i
1� i 2

� �
: ð11:51Þ

After a unitary similarity transformation, we got

UyGU ¼ 2þ ffiffiffi
2

p
0

0 2� ffiffiffi
2

p
� �

: ð11:54Þ

Putting eG ¼ UyGU and rewriting (11.54), we have

eG ¼ 2þ ffiffiffi
2

p
0

0 2� ffiffiffi
2

p
� �

¼ 2þ
ffiffiffi
2

p� � 1 0
0 0

� �
þ 2�

ffiffiffi
2

p� � 0 0
0 1

� �
:
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By a back calculation of U eGUy ¼ G, we get

G ¼ 2þ
ffiffiffi
2

p� � 1
2

ffiffi
2

p
1þ ið Þ
4ffiffi

2
p

1�ið Þ
4

1
2

 !
þ 2�

ffiffiffi
2

p� � 1
2 �

ffiffi
2

p
1þ ið Þ
4

�
ffiffi
2

p
1�ið Þ
4

1
2

 !
:

ð12:77Þ

Putting eigenvalues a1 ¼ 2þ ffiffiffi
2

p
and a2 ¼ 2� ffiffiffi

2
p

along with

A1 ¼
1
2

ffiffi
2

p
1þ ið Þ
4ffiffi

2
p

1�ið Þ
4

1
2

 !
; A2 ¼

1
2 �

ffiffi
2

p
1þ ið Þ
4

�
ffiffi
2

p
1�ið Þ
4

1
2

 !
; ð12:78Þ

we get

G ¼ a1A1 þ a2A2: ð12:79Þ

In the above, A1 and A2 are projection operators. In fact, as anticipated we have

A2
1 ¼ A1;A

2
2 ¼ A2;A1A2 ¼ A2A1 ¼ 0;A1 þA2 ¼ E: ð12:80Þ

Moreover, (12.78) obviously shows that both A1 and A2 are Hermitian. Thus,
Eqs. (12.77) and (12.79) are an example of the spectral decomposition. The
decomposition is unique.

The Example 12.1 can be dealt with in parallel to Example 10.5. In Example
10.5, however, an inner product space is not implied, and so we used an idempotent
matrix instead of a projection operator. Note that as can be seen in Example 10.5
that idempotent matrix was not Hermitian.

12.4 Hermitian Matrices and Unitary Matrices

Of normal matrices, Hermitian matrices and unitary matrices play a crucial role both
in fundamental and applied science. Let us think of several topics and examples.

In quantum physics, one frequently treats expectation value of an operator. In
general, such an operator is Hermitian, more strictly an observable. Moreover, a
vector on an inner product space is interpreted as a state on a Hilbert space. Suppose
that there is a linear operator (or observable that represents a physical quantity)
O that has discrete (or countable) eigenvalues a1; a2; . . . The number of the
eigenvalues may be a finite number or an infinite number, but here we assume the
finite number, i.e., let us suppose that we have eigenvalues a1; a2; . . .; and as, in
consistent with our previous discussion.

In quantum physics, we have a well-known Born probability rule. The rule says
the following: Suppose that we carry out a physical measurement on A with respect
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to a physical state uj i. Here we assume that uj i has been normalized. Then, the
probability }l that A takes al 1� l� sð Þ is given by

}l ¼ ePlu
�� ��2; ð12:81Þ

where ePl is a projection operator that projects uj i to an eigenspace Wal spanned by
al; kj i. Here k 1� k� nlð Þ reflects the multiplicity nl of an eigenvalue al. Hence, we
express the nl-dimensional eigenspace Wal as

Wal ¼ Span al; 1j i; al; 2j i; . . .; al; nlj if g: ð12:82Þ

Now, we define an expectation value Ah i of A such that

Ah i �
Xs
l¼1

al}l: ð12:83Þ

From (12.81), we have

}l ¼ ePlu
�� ��2¼ u ePl

y ��� ePlu
D E

¼ u ePl

�� ePlu
� � ¼ u ePl ePlu

� � ¼ u ePlu
� �

: ð12:84Þ

For the third equality, we used the fact that ePl is Hermitian; for the last equality,
we used eP2

l ¼ ePl. Summing (12.84) with the index l, we have

X
l

}l ¼
X
l

uePlu
� � ¼ u

X
l

ePl

 !
u

* +
¼ uEuh i ¼ ujuh i ¼ 1;

where with the third equality we used (12.33).
Meanwhile, from the spectral decomposition theorem, we have

A ¼ a1eP1 þ a2eP2 þ � � � þ asePs: ð12:74Þ

Operating uh j and uj i on both sides of (12.74), we get

u A ujjh i ¼ a1 uh jeP1 uj i þ a2 uh jeP2 uj i þ � � � þ as uh jePs uj i
¼ a1}1 þ a2}2 þ � � � þ as}s:

ð12:85Þ

Equating (12.83) and (12.85), we have

Ah i ¼ u A ujjh i: ð12:86Þ

In quantum physics, a real number is required for an expectation value of an
observable (i.e., a physical quantity). To warrant this, we have following theorems.

12.4 Hermitian Matrices and Unitary Matrices 427



Theorem 12.9 A linear transformation A on an inner product space is Hermitian if
and only if u A ujjh i is real for all uj i of that inner product space.

Proof If A ¼ Ay, then u A ujjh i�¼ u Ay uj
���D E

¼ u A ujjh i. Therefore, u A ujjh i is real.

Conversely, if u A ujjh i is real for all uj i, we have

u A ujjh i ¼ u A ujjh i�¼ u Ay uj
���D E

:

Hence,

uh jA� Ay uj i ¼ 0: ð12:87Þ
From Theorem 12.3, we get A� Ay ¼ 0, i.e., A ¼ Ay. This completes the proof.

Theorem 12.10 The eigenvalues of an Hermitian operator A are real.

Proof Let a be an eigenvalue of A and let uj i be a corresponding eigenvector. Then,
A uj i ¼ a uj i. Operating uh j from the left, u A ujjh i ¼ a u ujh i ¼ a uk k. Thus,

a ¼ u A ujjh i= uj jj j: ð12:88Þ
Since A is Hermitian, u A ujjh i is real. Then, a is real as well.
Unitary matrices have a following conspicuous features: (i) An inner product is

held invariant under unitary transformation: Suppose that x0j i ¼ U xj i and

y0j i ¼ U yj i, where U is a unitary operator. Then y0 x0jh i ¼ yUy Uxj
D E

¼ y xjh i.
A norm of any vector is held invariant under unitary transformation as well. This is
easily checked by replacing yj i with xj i in the above. (ii) Let U be a unitary matrix
and suppose that k be an eigenvalue with kj i being its corresponding eigenvector of
that matrix. Then we have

kj i ¼ UyU kj i ¼ Uy k kj ið Þ ¼ kUy kj i ¼ kk� kj i; ð12:89Þ

where with the last equality we used Theorem 12.7. Thus

1� kk�ð Þ kj i ¼ 0: ð12:90Þ

As kj i 6¼ 0 is assumed, 1� kk� ¼ 0. That is

kk� ¼ jkj2 ¼ 1: ð12:91Þ

Thus, eigenvalues of a unitary matrix have unit absolute value.

Example 12.2 Let us think of a following unitary matrix R:

R ¼ cos h � sin h
sin h cos h

� �
: ð12:92Þ
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A characteristic equation is

cos h� k � sin h
sin h cos h� k

���� ���� ¼ k2 � 2k cos hþ 1: ð12:93Þ

Solving (12.93), we have

k ¼ cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 h� 1

p
¼ cos h
 i sin hj j: ð12:94Þ

(i) h ¼ 0: This is a trivial case. The matrix R has automatically been diago-
nalized to be an identity matrix. Eigenvalues are 1 (double root).

(ii) h ¼ p: This is a trivial case. Eigenvalues are �1 (double root).
(iii) h 6¼ 0; p: Let us think of 0\h\p. Then k ¼ cos h
 i sin h. As a diago-

nalizing unitary matrix U, we get

U ¼
1ffiffi
2

p 1ffiffi
2

p

� iffiffi
2

p iffiffi
2

p

 !
; Uy ¼

1ffiffi
2

p iffiffi
2

p
1ffiffi
2

p � iffiffi
2

p

 !
: ð12:95Þ

Therefore, we have

UyRU ¼
1ffiffi
2

p iffiffi
2

p
1ffiffi
2

p � iffiffi
2

p

 !
cos h � sin h
sin h cos h

� � 1ffiffi
2

p 1ffiffi
2

p

� iffiffi
2

p iffiffi
2

p

 !
¼ eih 0

0 e�ih

� �
:

ð12:96Þ

A trace of the resulting matrix is 2 cos h. In the case of p\h\2p, we get a
diagonal matrix similarly. The conformation is left for readers.

12.5 Hermitian Quadratic Forms

The Hermitian quadratic forms appeared in, e.g., (11.34) and (11. 83) in relation to
Gram matrices in Sect. 11.2. The Hermitian quadratic forms have wide applications
in the field of mathematical physics and materials science.

Let H be an Hermitian operator and xj i on an inner vector space. We define the
Hermitian quadratic form in an arbitrary orthonormal basis as follows:

x H xjjh i ¼ x�1 � � � x�n
	 


H

x1
..
.

xn

0B@
1CA ¼

X
i;j

x�i Hð Þijxj;

where xj i is represented as a column vector, as already mentioned in Sect. 11.4. Let
us start with unitary diagonalization of (11.40), where a Gram matrix is a kind of
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Hermitian matrix. Following similar procedures, as in the case of (11.36) we obtain
a diagonal matrix and an inner product such that

x H xjjh i ¼ n�1 � � � n�n
	 
 k1 � � � 0

..

. . .
. ..

.

0 � � � kn

0B@
1CA n1

..

.

nn

0B@
1CA ¼ k1 n1j j2 þ � � � þ kn nnj j2:

ð12:97Þ

Notice, however, that the Gram matrix comprising basis vectors (that are linearly
independent) is positive definite. Remember that if a Gram matrix is constructed by

AyA (Hermitian as well) according to whether A is non-singular or singular, AyA is
either positive definite or nonnegative. The Hermitian matrix we are dealing with
here, in general, does not necessarily possess the positive definiteness or nonneg-
ative feature. Yet, remember that x H xjjh i and eigenvalues k1; . . .; kn are real.

Positive definiteness of matrices is an important concept in relation to the
Hermitian (and real) quadratic forms (see Sect. 11.2). In particular, in the case
where all the matrix elements are real and xj i is defined in a real domain, we are
dealing with the quadratic form with respect to a real symmetric matrix. In the case
of the real quadratic forms, we sometimes adopt the following notation:

A x½ � � xTAx ¼
Xn
i;j¼1

aijxixj; x ¼
x1
..
.

xn

0B@
1CA;

where A ¼ aij
	 


is a real symmetric matrix and xi 1� i� nð Þ are real numbers. The
positive definiteness is invariant under a transformation PTAP, where P is
non-singular. In fact, if A[ 0, for x

0T ¼ xTP and A0 ¼ PTAP we have

xTAx ¼ xTP PTAP
	 


PTx ¼ x
0TA0x0:

Since P is non-singular, PTx ¼ x0 represents any arbitrary vector. Hence,

A0 ¼ PTAP[ 0; ð12:98Þ

where with the notation PTAP[ 0, see (11.46). In particular, using a suitable
orthogonal matrix O, we obtain

OTAO ¼
k1 � � � 0
..
. . .

. ..
.

0 � � � kn

0B@
1CA:
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From the above argument, OTAO[ 0. We have

detOTAO ¼ detOT detA detO ¼ 
1ð Þ detA 
1ð Þ ¼ detA:

Therefore, from (12.97), we have ki [ 0 1� i� nð Þ. Thus, we get

detA ¼
Yn
i¼1

ki [ 0:

Notice that in the above discussion, PTAP is said to be an equivalent transfor-
mation of A by P and that we distinguish the equivalent transformation from the
similarity transformation P�1AP. Nonetheless, if we choose an orthogonal matrix
O for P, the two transformations are the same because OT ¼ O�1.

We often encounter real quadratic forms in the field of electromagnetism.
Typical example is a trace of electromagnetic fields observed with an elliptically or
circularly polarized light (see Sect. 5.3). A polarizability tensor of an anisotropic
media such as crystals (either inorganic or organic) is another example, even though
we did not treat it but only assumed isotropic media in Part II.

Regarding the real quadratic forms, we have a following important theorem.

Theorem 12.11 [4] Let A be a n-dimensional real symmetric matrix A ¼ aij
	 


. Let

A kð Þ be k-dimensional principal submatrices described by

A kð Þ ¼
ai1i1 ai1i2 � � � ai1ik
ai2i1
..
.

aiki1

ai2i2 � � � ai2ik
..
.

aiki2

. .
. ..

.

� � � aikik

0BBB@
1CCCA 1� i1\i2\ � � �\ik � nð Þ;

where the principal submatrices mean a matrix made by striking out rows and
columns on diagonal elements. Alternatively, a principal submatrix of a matrix
A can be defined as a matrix whose diagonal elements are a part of the diagonal
elements of A. As a special case, those include a11; . . .; or ann as a (1,1) matrix (i.e.,
merely a number) as well as A itself. Then, we have

A[ 0 , detA kð Þ [ 0 1� k� nð Þ: ð12:99Þ

Proof First, suppose that A[ 0. Then, in a quadratic form A x½ � equating n� kð Þ
variables xl ¼ 0 l 6¼ i1; i2; . . .; ikð Þ, we obtain a quadratic form of

Xk
l;m¼1

ailimxilxim :

Since A[ 0, this (partial) quadratic form is positive definite as well, i.e., we
have
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A kð Þ [ 0:

Therefore, we get

detA kð Þ [ 0:

This is due to (11.48). Notice that detA kð Þ is said to be a principal minor. Thus,
we have proven ) of (12.99).

To prove (, in turn, we use mathematical induction. If n ¼ 1, we have a trivial
case, i.e., A is merely a real positive number. Suppose that( is true of n� 1. Then,
we have A n�1ð Þ [ 0 by supposition. Thus, it follows that it will suffice to show
A[ 0 on condition that A n�1ð Þ [ 0 and detA[ 0 in addition. Let A be a n-
dimensional real symmetric non-singular matrix such that

A ¼ A n�1ð Þ a
aT an

� �
;

where A n�1ð Þ is a symmetric matrix and non-singular as well. We define P such that

P ¼ E A n�1ð Þ�1
a

0 1

� �
;

where E is a n� 1; n� 1ð Þ unit matrix. Notice that detP ¼ detE � 1 ¼ 1 6¼ 0,
indicating that P is non-singular. We have

PT ¼ E 0
aTA n�1ð Þ�1

1

� �
:

For this expression, consider a non-singular matrix S. Then, we have SS�1 ¼ E.
Taking its transposition, we have ðS�1ÞTST ¼ E. Therefore, if S is a symmetric
matrix ðS�1ÞTS ¼ E, i.e., ðS�1ÞT ¼ S�1. Hence, an inverse matrix of a symmetric
matrix is symmetric as well. Then, for a symmetric matrix A n�1ð Þ we have

aTA n�1ð Þ�1
� �T

¼ A n�1ð Þ�1
� �T

aT
	 
T¼ A n�1ð Þ�1

a:

Therefore, A can be expressed as

A ¼ PT A n�1ð Þ 0

0 an � A n�1ð Þ�1
a½ �

 !
P:

¼ E 0

aTA n�1ð Þ�1
1

� �
A n�1ð Þ 0

0 an � A n�1ð Þ�1
a½ �

 !
E A n�1ð Þ�1

a

0 1

 !
:

ð12:100Þ
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Now, taking a determinant of (12.100), we have

detA ¼ detPT detA n�1ð Þ
h i

an � A n�1ð Þ�1

a½ �
n o

detP

¼ detA n�1ð Þ
h i

an � A n�1ð Þ�1

a½ �
n o

:

By supposition, we have detA n�1ð Þ [ 0 and detA[ 0. Hence, we have

an � A n�1ð Þ�1

a½ �[ 0:

Putting ean � an � A n�1ð Þ�1
a½ � and x � x n�1ð Þ

xn

� �
, we get

A n�1ð Þ 0
0 ean

� �
x½ � ¼ A n�1ð Þ x n�1ð Þ

h i
þ eanx2n:

Since A n�1ð Þ [ 0 and ean [ 0, we have

eA � A n�1ð Þ 0
0 ean

� �
[ 0:

Meanwhile, A is expressed as

A ¼ PT eAP:
From (12.98), A[ 0. These complete the proof.

We also have a related theorem (the following Theorem 12.12) for an Hermitian
quadratic form.

Theorem 12.12 Let A ¼ aij
	 


be a n-dimensional Hermitian matrix. Let gA kð Þ be
k-dimensional principal submatrices. Then, we have

A[ 0 , detgA kð Þ [ 0 1� k� nð Þ;

where gA kð Þ is described as

gA kð Þ ¼
a11 � � � a1k
..
. . .

. ..
.

ak1 � � � akk

0B@
1CA:

The proof is left for readers.

Example 12.3 Let us consider a following Hermitian (real symmetric) matrix and
corresponding Hermitian quadratic form.
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H ¼ 5 2
2 1

� �
; x H xjjh i ¼ x1 x2ð Þ 5 2

2 1

� �
x1
x2

� �
: ð12:101Þ

Principal minors of H are 5ð[ 0Þ and 1ð[ 0Þ and detH ¼ 5� 4 ¼ 1ð[ 0Þ.
Therefore, from Theorem 12.11 we have H[ 0. A characteristic equation gives
following eigenvalues, i.e.,

k1 ¼ 3þ 2
ffiffiffi
2

p
; k2 ¼ 3� 2

ffiffiffi
2

p
:

Both the eigenvalues are positive as anticipated. As a diagonalizingmatrixR, we get

R ¼ 1þ ffiffiffi
2

p
1� ffiffiffi

2
p

1 1

� �
:

To obtain a unitary matrix, we have to seek norms of column vectors.

Corresponding to k1 and k2, we estimate their norms to be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2

ffiffiffi
2

pp
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� 2
ffiffiffi
2

pp
, respectively. Using them, as a unitary matrix U we get

U ¼
1ffiffiffiffiffiffiffiffiffiffiffi

4�2
ffiffi
2

pp � 1ffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2

ffiffi
2

pp
1ffiffiffiffiffiffiffiffiffiffiffiffi

4þ 2
ffiffi
2

pp 1ffiffiffiffiffiffiffiffiffiffiffi
4�2

ffiffi
2

pp

0@ 1A: ð12:102Þ

Thus, performing the matrix diagonalization, we obtain a diagonal matrix D such
that

D ¼ UyHU ¼ 3þ 2
ffiffiffi
2

p
0

0 3� 2
ffiffiffi
2

p
� �

: ð12:103Þ

Let us view the above unitary diagonalization in terms of coordinate transfor-
mation. Using the above matrix U and changing (12.101) as in (11.36),

x H xjjh i ¼ x1x2ð ÞUUy 5 2

2 1

� �
UUy x1

x2

� �
¼ x1x2ð ÞU 3þ 2

ffiffiffi
2

p
0

0 3� 2
ffiffiffi
2

p
 !

Uy x1
x2

� �
:

ð12:104Þ

Making an argument analogous to that of Sect. 11.2 and using similar notation,
we have

~x H0 ~xjjh i ¼ ex1 ex2ð ÞH0 ex1ex2
� �

¼ x1x2ð ÞUUyHUUy x1
x2

� �
¼ xh jH xj i:

ð12:105Þ
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That is, we have

ex1ex2
� �

¼ Uy x1
x2

� �
: ð12:106Þ

Or, taking an adjoint of (12.106), we have equivalently ex1 ex2ð Þ ¼ x1 x2ð ÞU.

Notice here that
ex1ex2

� �
and

x1
x2

� �
are real and that U is real (i.e., orthogonal

matrix). Likewise,

H0 ¼ UyHU: ð12:107Þ

Thus, it follows that
x1
x2

� �
and

ex1ex2
� �

are different column vector representa-

tions of the identical vector that is viewed in reference to two different sets of
orthonormal bases (i.e., different coordinate systems).

From (12.102), as an approximation we have

U ffi 0:92 �0:38
0:38 0:92

� �
ffi cos 22:5� � sin 22:5�

sin 22:5� cos 22:5�

� �
: ð12:108Þ

Equating x H xjjh i to a constant, we get a hypersurface in a plane. Choosing 1 for
a constant, we get an equation of hypersurface (i.e., an ellipse) as a function of ex1
and ex2 such that

ex21ffiffiffiffiffiffiffiffiffiffiffiffi
1

3þ 2
ffiffi
2

p
q� �2 þ

ex22ffiffiffiffiffiffiffiffiffiffiffi
1

3�2
ffiffi
2

p
q� �2 ¼ 1: ð12:109Þ

Figure 12.1 depicts the ellipse.

12.6 Simultaneous Eigenstates and Diagonalization

In quantum physics, a concept of simultaneous eigenstate is important and has
briefly mentioned in Sect. 3.3. To rephrase this concept, suppose that there are two
operators B and C and ask whether the two operators (or more) possess a common
set of eigenvectors. The question is boiled down to whether the two operators
commute. To address this question, the following theorem is important.
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Theorem 12.13 [2] Two Hermitian matrices B and C commute if and only if there
exists a complete orthonormal set of common eigenvectors.

Proof Suppose that there exists a complete orthonormal set of common eigen-
vectors xi; mij if g that span the linear vector space, where i and mi are a positive
integer and that xij i corresponds to an eigenvalue bi of B and ci of C. Note that if mi

is 1, we say that the spectrum is non-degenerate and that if mi is equal to two or
more, the spectrum is said to be degenerate. Then we have

B xij ið Þ ¼ bi xij i; C xij ið Þ ¼ ci xij i: ð12:110Þ

Therefore, BC xij ið Þ ¼ Bðci xij iÞ ¼ ciB xij ið Þ ¼ cibi xij i. Similarly, CB xij ið Þ ¼
cibi xij i. Consequently, BC � CBð Þ xij ið Þ ¼ 0 for any xij i. As all the set of xij i span
the vector space, BC � CB ¼ 0, namely BC ¼ CB.

In turn, assume that BC ¼ CB and that B xij ið Þ ¼ bi xij i, where xij i are
orthonormal. Then, we have

CB xij ið Þ ¼ biC xij ið Þ ) B½C xij ið Þ� ¼ biC xij ið Þ: ð12:111Þ

This implies that C xij ið Þ is an eigenvector of B corresponding to the eigenvalue
bi. We have two cases.

(i) The spectrum is non-degenerate: The spectrum is said to be non-degenerate if
only one eigenvector belongs to an eigenvalue. In other words, multiplicity of
bi is one. Then, C xij ið Þ must be equal to some constant times xij i, i.e.,
C xij ið Þ ¼ ci xij i. That is, xij i is an eigenvector of C corresponding to an
eigenvalue ci. That is, xij i is a common eigenvector to B and C. This com-
pletes the proof.

Fig. 12.1 Ellipse obtained
through diagonalization of a
Hermitian quadratic form.
The angle h is about 22:5�
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(ii) The spectrum is degenerate: The spectrum is said to be degenerate if two or
more eigenvectors belong to an eigenvalue. Multiplicity of bi is two or more;

here suppose that the multiplicity is m m
 2ð Þ. Let xð1Þi

��� E
; xð2Þi

��� E
; . . .;

and xðmÞi

��� E
be linearly independent vectors and belong to the eigenvalue

bi of B. Then, from the assumption, we have m eigenvectors

C xð1Þi

��� E� �
;C xð2Þi

��� E� �
; . . .;C xðmÞi

��� E� �
that belong to an eigenvalue bi of B. This means that individual

C xðlÞi

��� E� �
1� l�mð Þ are described by linear combination of xð1Þi

��� E
; xð2Þi

��� E
; . . .;

and xðmÞi

��� E
. What we want to prove is to show that suitable linear combination

of these m vectors constitutes an eigenvector corresponding to an eigenvalue
cl of C. Here, to avoid complexity, we denote the multiplicity by m instead of the
above-mentioned mi.

The vectors C xðlÞi

��� E� �
1� l�mð Þ can be described as

C xð1Þi

��� E� �
¼
Xm
j¼1

aj1 xðjÞi
��� E

; . . .;C xðmÞi

��� E� �
¼
Xm
j¼1

ajm xðjÞi
��� E

: ð12:112Þ

Using full matrix representation, we have

C
Xm
k¼1

ck x
ðkÞ
i

��� E !
¼ x 1ð Þ

i

��� E
� � � xðmÞi

��� E� �
C

c1

..

.

cm

0BB@
1CCA

¼ xð1Þi

��� E
� � � xðmÞi

��� E� � a11 � � � a1m

..

. . .
. ..

.

am1 � � � amm

0BB@
1CCA

c1

..

.

cm

0BB@
1CCA:

ð12:113Þ

In (12.113), we adopt the notation of (9.37). Since aij
	 


is a matrix represen-
tation of an Hermitian operator C, aij

	 

is Hermitian as well. More specifically, if

we take an inner product of a vector expressed in (12.112) with xðlÞi
��� E

, then we have

x lð Þ
i Cx kð Þ

i

���D E
¼ x lð Þ

i

Xm
j¼1

ajkx
jð Þ

i

�����
* +

¼
Xm
j¼1

ajk x lð Þ
i x jð Þ

i

���D E
¼
Xm
j¼1

ajkdlj

¼ alk 1� k; l�mð Þ;
ð12:114Þ
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where the third equality comes from the orthonormality of the basis vectors.
Meanwhile,

x lð Þ
i Cx kð Þ

i

���D E
¼ x kð Þ

i Cyx lð Þ
i

���D E�
¼ x kð Þ

i Cx lð Þ
i

���D E�
¼ a�kl; ð12:115Þ

where the second equality comes from the Hermiticity of C. From (12.114) and
(12.115), we get

alk ¼ a�kl 1� k; l�mð Þ: ð12:116Þ

This indicates that aij
	 


is in fact Hermitian.
We are seeking the condition under which linear combinations of the eigen-

vectors xðkÞi

��� E
1� k�mð Þ for B are simultaneously eigenvectors of C. If the linear

combination
Pm
k¼1

ck x
ðkÞ
i

��� E
is to be an eigenvector of C, we must have

C
Xm
k¼1

ck x
kð Þ
i

��� E !
¼ c

Xm
j¼1

cj x
jð Þ

i

��� E !
: ð12:117Þ

Considering (12.113), we have

xð1Þi

��� E
� � � xðmÞi

��� E� � a11 � � � a1m
..
. . .

. ..
.

am1 � � � amm

0B@
1CA c1

..

.

cm

0B@
1CA ¼ xð1Þi

��� E
� � � xðmÞi

��� E� �
c

c1
..
.

cm

0B@
1CA:

ð12:118Þ

The vectors xðjÞi
��� E

1� k�mð Þ span an invariant subspace (i.e., an eigenspace

corresponding to an eigenvalue of biÞ. Let us call this subspace Wm. Consequently,

in (12.118), we can equate the scalar coefficients of individual xðjÞi
��� E

1� k�mð Þ.
Then, we get

a11 � � � a1m
..
. . .

. ..
.

am1 � � � amm

0B@
1CA c1

..

.

cm

0B@
1CA ¼ c

c1
..
.

cm

0B@
1CA: ð12:119Þ

This is nothing other than an eigenvalue equation. Since aij
	 


is an Hermitian
matrix, there should be m eigenvalues cl some of which may be identical (the
degenerate case). Moreover, we can always decide m orthonormal column vectors
by solving (12.119). We denote them by c lð Þ 1� l�mð Þ that belong to cl.
Rewriting (12.119), we get
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a11 � � � a1m
..
. . .

. ..
.

am1 � � � amm

0B@
1CA c lð Þ

1

..

.

c lð Þ
m

0B@
1CA ¼ cl

c lð Þ
1

..

.

c lð Þ
m

0B@
1CA: ð12:120Þ

Equation (12.120) implies that we can construct a (m,m) unitary matrix from the
m orthonormal column vectors c lð Þ. Using the said unitary matrix, we will be able to
diagonalize aij

	 

according to Theorem 12.5.

Having determined m eigenvectors c lð Þ 1� l�mð Þ, we can construct a set of
eigenvectors such that

yðlÞi

��� E
¼
Xm
k¼1

c lð Þ
k xðkÞi

��� E
: ð12:121Þ

Finally let us confirm that yðlÞi

��� E
1� l�mð Þ in fact constitute an orthonormal

basis. To show this, we have

y mð Þ
i y lð Þ

i

���D E
¼

Xm
k¼1

c mð Þ
k x kð Þ

i

Xm
l¼1

c lð Þ
l x lð Þ

i

�����
* +

¼
Xm
k¼1

Xm
l¼1

c mð Þ
k

h i�
c lð Þ
l x kð Þ

i x lð Þ
i

���D E
¼
Xm
k¼1

Xm
l¼1

c mð Þ
k

h i�
c lð Þ
l dkl

¼
Xm
k¼1

c mð Þ
k

h i�
c lð Þ
k ¼ dml:

ð12:122Þ

The last equality comes from the fact that a matrix comprising m orthonormal

column vectors c lð Þ 1� l�mð Þ forms a unitary matrix. Thus, y lð Þ
i

��� E
1� l�mð Þ

certainly constitute an orthonormal basis.
The above completes the proof.
Theorem 12.13 can be restated as follows: Two Hermitian matrices B and C can

be simultaneously diagonalized by a unitary similarity transformation. As men-
tioned above, we can construct a unitary matrix U such that

U ¼
c 1ð Þ
1 � � � c mð Þ

1

..

. . .
. ..

.

c 1ð Þ
m � � � c mð Þ

m

0B@
1CA:

Then, using U, matrices B and C are diagonalized such that
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UyBU ¼
bi

bi
. .
.

bi

0BB@
1CCA; UyCU ¼

c1
c2

. .
.

cm

0BB@
1CCA: ð12:123Þ

Note that both B and C are represented in an invariant subspace Wm.
As we have already seen in Part I that dealt with an eigenvalue problem of a

hydrogen-like atom, squared angular momentum (L2) and z-component of angular
momentum (Lz) possess a mutual set of eigenvectors and, hence, their eigenvalues
are determined at once. Related matrix representations to (12.123) were given in
(3.159). On the other hand, this was not the case with a set of operators Lx, and Ly,
and Lz; see (3.30). Yet, we pointed out the exceptional case where these three
operators along with L2 take an eigenvalue zero in common which an eigenstate
Y0
0 h; /ð Þ � ffiffiffiffiffiffiffiffiffiffi

1=4p
p

corresponds to. Nonetheless, no complete orthonormal set of
common eigenvectors exists with the set of operators Lx, and Ly, and Lz. This fact is
equivalent to that these three operators are non-commutative among them. In
contrast, L2 and Lz share a complete orthonormal set of common eigenvectors and,
hence, are commutable.

Notice that C xð1Þi

��� E� �
;C xð2Þi

��� E� �
; . . .; and C xðmÞi

��� E� �
are not necessarily lin-

early independent (see Sect. 9.4). Suppose that among m eigenvalues cl
1� l�mð Þ, some cl ¼ 0. Then, detC ¼ 0 according to (11.48). This means that

C is singular. In that case, C xð1Þi

��� E� �
;C xð2Þi

��� E� �
; . . .; and C xðmÞi

��� E� �
are linearly

dependent. In Sect. 3.3, in fact, we had LzY0
0 h;/ð Þ�� �¼ L2Y0

0 h;/ð Þ�� � ¼ 0. But, this
special situation does not affect the proof of Theorem 12.13.

We know that any matrix A can be decomposed such that

A ¼ 1
2

AþAy
� �

þ i
1
2i

A� Ay
� �� �

; ð12:124Þ

where we put B � 1
2 AþAy
� �

and C � 1
2i A� Ay
� �

; both B and C are Hermitian.

That is any matrix A can be decomposed to two Hermitian matrices in such a way
that

A ¼ Bþ iC: ð12:125Þ

Note here that B and C commute if and only if A andAy commute, that is A is a
normal matrix. In fact, from (12.125) we get

AAy � AyA ¼ 2i CB� BCð Þ: ð12:126Þ
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From (12.126), if and only if B and C commute (i.e., B and C can be diago-

nalized simultaneously), AAy � AyA ¼ 0, i.e., AAy ¼ AyA. This indicates that A is
a normal matrix. Thus, the following theorem will follow.

Theorem 12.14 A matrix can be diagonalized by a unitary similarity transfor-
mation, if and only if it is a normal matrix.

Thus, Theorem 12.13 is naturally generalized so that it can be stated as follows:
Two normal matrices B and C commute if and only if there exists a complete
orthonormal set of common eigenvectors.

In Sects. 12.1 and 12.3, we mentioned the spectral decomposition. There, we
showed a special case where projection operators commute with one another; see
(12.23). Thus, in light of Theorem 12.13, those projection operators can be diag-
onalized at once to be expressed as, e.g., (12.72). This is a conspicuous feature of
the projection operators.
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Part IV
Group Theory and

Its Chemical Applications

Universe comprises space and matter. These two mutually stipulate their modality of
existence. We often comprehend related various aspects as manifestation of
symmetry. In this part, we deal with the symmetry from a point of view of group
theory. In this last part of the book, we outline and emphasize chemical applications
of the methods of mathematical physics. This part supplies us with introductory
description of group theory. The group theory forms an important field of both pure
and applied mathematics. Starting with the definition of groups, we cover a variety
of topics related to group theory. Of these, symmetry groups are familiar to chemists,
because they deal with a variety of matter and molecules that are characterized by
different types of symmetry. The symmetry group is a kind of finite group and called
a point group as well. Meanwhile, we have various infinite groups that include
rotation group as a typical example. We also mention an introductory theory of the
rotation group of SO(3) that deals with an important topic of, e.g., Euler angles.
We also treat successive coordinate transformations.

Next, we describe representation theory of groups. Schur’s lemmas and related
grand orthogonality theorem underlie the representation theory of groups. In parallel,
characters and irreducible representations are important concepts that support the
representation theory. We present various representations, e.g., regular representa-
tion, direct-product representation, and symmetric and antisymmetric representa-
tions. These have wide applications in the field of quantum mechanics and quantum
chemistry, and so forth.

In the final chapter, we highlight quantum chemical applications of group
theory in relation to a method of molecular orbitals. As tangible examples, we adopt
aromatic molecules and methane.



Chapter 13
Introductory Group Theory

A group comprises mathematical elements that satisfy four simple definitions.
A bunch of groups exists under these simple definitions. This makes the group
theory a discriminating field of mathematics. To get familiar with various concepts
of groups, we first show several tangible examples. Group elements can be numbers
(both real and complex) and matrices. More abstract mathematical elements can be
included as well. Examples include transformation, operation as already studied in
previous parts. Once those mathematical elements form a group, they share several
common notions such as classes, subgroups, and direct-product groups. In this
context, readers are encouraged to conceive different kinds of groups close to their
heart. Mapping is an important concept as in the case of vector spaces. In particular,
isomorphism and homomorphism frequently appear in the group theory. These
concepts are closely related to the representation theory that is an important pillar of
the group theory.

13.1 Definition of Groups

In contrast to a broad range of applications, the definition of the group is simple. Let
g be a set of elements gm, where m is an index either countable (e.g., integers) or
uncountable (e.g., real numbers) and the number of elements may be finite or
infinite. We denote this by g ¼ gmf g. If a group is a finite group, we express it as

g ¼ g1; g2; . . .; gnf g; ð13:1Þ

where n is said to be an order of the group.
Definition of the group comprises the following four axioms with respect to a

well-defined “multiplication” rule between any pair of elements. The multiplication
is denoted by a symbol 00�00 below. Note that the symbol � implies an ordinary
multiplication, an ordinary addition, etc.
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(A1) If a and b are any elements of the set g, then so is a�b. (We sometimes say
that the set is “closed” regarding the multiplication.)

(A2) Multiplication is associative; i.e., a� b�cð Þ ¼ a�bð Þ�c.
(A3) The set g contains an element of e called the identity element such that we

have a�e ¼ e�a ¼ a with any element a of g.
(A4) For any a of g, we have an element b such that a�b ¼ b�a ¼ e. The element

b is said to be the inverse element of a. We denote b � a�1:

In the above definitions, we assume that the commutative law does not neces-
sarily hold, that is, a�b 6¼ b�a. In that case, the group g is said to be a
non-commutative group. However, we have a case where the commutative law
holds, i.e., a�b ¼ b�a. If so, the group g is called a commutative group or an
Abelian group.

Let us think of some examples of groups. Henceforth, we follow the convention
and write ab to express a�b.
Example 13.1 We present several examples of groups below. Examples (i) to
(iv) are simple, but Example (v) is general.

(i) g ¼ 1;�1f g. The group g makes a group with respect to the multiplication.
This is an example of a finite group.

(ii) g ¼ . . .;�3;�2;�1; 0; 1; 2; 3; . . .f g: The group g makes a group with
respect to the addition. This is an infinite group. For instance, take að[ 0Þ
and make aþ 1 and make aþ 1ð Þþ 1; aþ 1ð Þþ 1½ � þ 1; . . . again and again.
Thus, addition is not closed and, hence, we must have an infinite group.

(iii) Let us start with a matrix a ¼ 0 �1
1 0

� �
. Then, the inverse

a�1 ¼ a3 ¼ 0 1
�1 0

� �
. We have a2 ¼ �1 0

0 �1

� �
. Its inverse is a2 itself.

These four elements make a group. That is, g ¼ e; a; a2; a3
� �

. This is an
example of cyclic groups.

(iv) g ¼ 1f g. It is a most trivial case, but sometimes the trivial case is very
important as well. We will come back later to this point.

(v) Let us think of a more general case. In Chap. 9, we discussed endomorphism
on a vector space and showed the necessary and sufficient condition for the
existence of an inverse transformation. In this relation, we consider a set that
comprises matrices such that

GL n;Cð Þ � fA ¼ aij
� �ji; j ¼ 1; 2; . . .; n; aij 2 C; detA 6¼ 0g:

This may be either a finite group or an infinite group. The former can be a
symmetry group and the latter can be a rotation group. This group is characterized
by a set of invertible and endomorphic linear transformations over a vector space
Vn and called a linear transformation group or a general linear group and denoted
by GL n;Cð Þ, GL Vnð Þ, GL Vð Þ, etc. The relevant transformations are bijective.
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We can readily make sure that axioms (A1) to (A4) are satisfied with GL n;Cð Þ.
Here, the vector space can be C

n or a function space.
The structure of a finite group is tabulated in a multiplication table. This is made

up such that group elements are arranged in a first row and a first column and that
an intersection of an element gi in the row and gj in the column is designated as a
product gi�gj. Choosing the above (iii) for an example, we make its multiplication
table (see Table 13.1). There we define a2 ¼ b and a3 ¼ c.

Having a look at Table 13.1, we notice that in the individual rows and columns
each group element appears once and only once. This is well known as a rear-
rangement theorem.

Theorem 13.1: Rearrangement Theorem [1] In each row or each column in the
group multiplication table, individual group elements appear once and only once.
From this, each row and each column list merely rearranged group elements.

Proof Let a set g ¼ g1 � e; g2; . . .; gnf g be a group. Arbitrarily choosing any
element h from g and multiplying individual elements by h, we obtain a set
H ¼ hg1; hg2; � � � ; hgnf g. Then, all the group elements of g appear in H once and
only once. Choosing any group element gi, let us multiply gi by h�1 to get h�1gi.
Since h�1gi must be a certain element gk of g, we put h�1gi ¼ gk. Multiplying both
sides by h, we have gi ¼ hgk. Therefore, we are able to find this very element hgk in
H, i.e., gi in H. This implies that the element gi necessarily appears in H. Suppose
in turn that gi appears more than once. Then, we must have gi ¼ hgk ¼ hgl k 6¼ lð Þ.
Multiplying the relation by h�1, we would get h�1gi ¼ gk ¼ gl, in contradiction to
the supposition. This means that gi appears in H once and only once. This confirms
that the theorem is true of each row of the group multiplication table.

A similar argument applies with a set H0 ¼ g1h; g2h; . . .; gnhf g. This confirms in
turn that the theorem is true of each column of the group multiplication table. These
complete the proof.

13.2 Subgroups

As we think of subspaces in a linear vector space, we have subgroups in a group.
The definition of the subgroup is that a subset H of a group makes a group with
respect to the multiplication � that is defined for the group g. The identity element

Table 13.1 Multiplication
table of {g ¼ e; a; a2; a3}

g e a b � a2 c � a3

e e a b c

a a b c e

b b c e a

c c e a b
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makes a group by itself. Both ef g and g are subgroups as well. We often call
subgroups other than ef g and g “proper” subgroups.

A necessary and sufficient condition for the subset H to be a subgroup is the
following:

(1) hi; hj 2 H ) hi�hj 2 H.
(2) h 2 H ) h�1 2 H.

If H is a subgroup of g, it is obvious that the relations (1) and (2) hold.
Conversely, if (1) and (2) hold, H is a subgroup. In fact, (1) ensures the afore-
mentioned relation (A1). Since H is a subset of g, this guarantees the associative
law (A2). The relation (2) ensures (A4). Finally, in virtue of (1) and (2), h�h�1 ¼ e
is contained inH; this implies that (A3) is satisfied. Thus,H is a subgroup, because
H satisfies the axioms (A1) to (A4). Of the above examples, (iii) has a subgroup
H ¼ e; a2

� �
.

It is important to decompose a set into subsets that do not mutually contain an
element (except for a special element) among them. We saw this in Part III when we
decomposed a linear vector space into subspaces. In that case the said special ele-
ment was a zero vector. Here let us consider a related question in its similar aspects.

LetH ¼ h1 � e; h2; . . .; hsf g be a subgroup of g. Also, let us consider aH where
9a 2 g and a 62 H. Suppose that aH is a subset of g such that
aH ¼ ah1; ah2; . . .; ahsf g. Then, we have another subset Hþ aH. If H contains s
elements, so does aH. In fact, if it were not the case, namely, if ahi ¼ ahj, mul-
tiplying the both sides by a�1 we would have hi ¼ hj, in contradiction. Next, let us
take b such that b 62 H and b 62 aH and make up bH and Hþ aHþ bH succes-
sively. Our question is whether these procedures decompose g into subsets mutu-
ally exclusive and collectively exhaustive.

Suppose that we can succeed in such a decomposition and get

g ¼ g1Hþ g2Hþ � � � þ gkH; ð13:2Þ

where g1; g2; . . .; gk are mutually different elements with g1 being the identity e. In
that case (13.2) is said to be the left coset decomposition of g by H. Similarly, right
coset decomposition can be done to give

g ¼ Hg1 þHg2 þ � � � þHgk: ð13:3Þ

In general, however,

gkH 6¼ Hgk or gkHg�1
k 6¼ H: ð13:4Þ

Taking the case of left coset as an example, let us examine whether different
cosets mutually contain a common element. Suppose that giH and gjH mutually
contain a common element. Then, that element would be expressed as
gihp ¼ gjhq 1� i; j� n; 1� p; q� sð Þ. Thus, we have gihph�1

q ¼ gj. Since H is a
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subgroup of g, hph�1
q 2 H. This implies that gj 2 giH. It is in contradiction to the

definition of left coset. Thus, we conclude that different cosets do not mutually
contain a common element.

Suppose that the order of g and H is n and s, respectively. Different k cosets
comprise s elements individually and different cosets do not mutually possess a
common element and, hence, we must have

n ¼ sk; ð13:5Þ

where k is called an index of H. We will have many examples afterward.

13.3 Classes

Another method to decompose a group into subsets is called conjugacy classes.
A conjugate element is defined as follows: Let a be an element arbitrarily chosen
from a group. Then an element gag�1 is called a conjugate element or conjugate to
a. If c is conjugate to b and b is conjugate to a, then c is conjugate to a. It is because

c ¼ g0bg0�1; b ¼ gag�1 ) c ¼ g0bg0�1 ¼ g0gag�1g0�1 ¼ g0gaðg0gÞ�1: ð13:6Þ

In the above, a set containing a and all the elements conjugate to a is said to be a
(conjugate) class of a. Denoting this set by Ca, we have

Ca ¼ a; g2ag
�1
2 ; g3ag

�1
3 ; . . .; gnag

�1
n

� �
: ð13:7Þ

In Ca, a same element may appear repeatedly. It is obvious that in every group
the identity element e forms a class by itself. That is,

Ce ¼ ef g: ð13:8Þ

As in the case of the decomposition of a group into (left or right) cosets, we can
decompose a group to classes. If group elements are not exhausted by a set com-
prising Ce or Ca, let us take b such that b 6¼ e and b 62 Ca and make Cb similarly to
(13.7). Repeating this procedure, we should be able to decompose a group into
classes. In fact, if group elements have not yet exhausted after these procedures,
take remaining element z and make a class. If the remaining element is only z in this
moment, z can make a class by itself (as in the case of e). Notice that for an Abelian
group every element makes a class by itself. Thus, with a finite group, we have a
decomposition such that

g ¼ Ce þCa þCb þ � � �Cz: ð13:9Þ

To show that (13.9) is really a decomposition, suppose that for instance a set
Ca \Cb is not an empty set and that x 2 Ca \Cb. Then, we must have a and b that
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satisfy a following relation: x ¼ aaa�1 ¼ bbb�1, i.e., b ¼ b�1aaa�1

b ¼ b�1aaðb�1aÞ�1. This implies that b has already been included in Ca, in con-
tradiction to the supposition. Thus, (13.9) is in fact a decomposition of g into a
finite number of classes.

In the above, we thought of a class conjugate to a single element. This notion can
be extended to a class conjugate to a subgroup. Let H be a subgroup of g. Let g be
an element of g. Let us now consider a set H0 ¼ gHg�1. The set H0 is a subgroup
of g and is called a conjugate subgroup.

In fact, let hi and hj be any two elements of H, that is, let ghig�1 and ghjg�1 be
any tow elements of H0. Then, we have

ghig
�1� �

ghjg
�1� � ¼ ghihjg

�1 ¼ ghkg
�1; ð13:10Þ

where hk ¼ hihj 2 H. Hence, ghkg�1 2 H0. Meanwhile, ðghig�1Þ�1 ¼ gh�1
i

g�1 2 H0. Thus, conditions (1) and (2) of Sect. 13.2 are satisfied with H0.
Therefore, H0 is a subgroup of g. The subgroup H0 has a same order as H. This is
because with any two different elements hi and hj ghig�1 6¼ ghjg�1.

If for 8g 2 g and a subgroup H, we have a following equality

g�1Hg ¼ H; ð13:11Þ

such a subgroup H is said to be an invariant subgroup. If (13.11) holds, H should
be a sum of classes (reader, please show this). A set comprising only the identity,
i.e., ef g forms a class. Therefore, if H is a proper subgroup, H must contain two or
more classes. The relation (13.11) can be rewritten as

gH ¼ Hg: ð13:12Þ

This implies that the left coset is identical to the right coset. Thus, as far as we
are dealing with a coset pertinent to an invariant subgroup, we do not have to
distinguish left and right cosets.

Now let us anew consider the (left) coset decomposition of g by an invariant
subgroup H

g ¼ g1Hþ g2Hþ � � � þ gkH; ð13:13Þ

where we have H ¼ h1 � e; h2; . . .; hsf g. Then, multiplication of two elements that
belong to the cosets giH and gjH is expressed as

gihlð Þ gjhm
� � ¼ gigjg�1

j hl
� 	

gjhm
� � ¼ gigjðg�1

j hlgjÞhm ¼ gigjhphm ¼ gigjhq;

ð13:14Þ
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where the third equality comes from (13.11). That is, we should have 9hp such that
g�1
j hlgj ¼ hp, and hphm ¼ hq. In (13.14), ha 2 H (a stands for l, m, p, q, etc., with

1� a� s). Note that gigjhq 2 gigjH. Accordingly, a product of elements belonging
to giH and gjH belongs to gigjH. We rewrite (13.14) as a relation between the sets

giHð Þ gjH
� � ¼ gigjH: ð13:15Þ

Viewing LHS of (13.15) as a product of two cosets, we find that the said product
is a coset as well. This implies that a collection of the cosets forms a group. Such a
group that possesses cosets as elements is said to be a factor group or quotient
group. In this context, the multiplication is a product of cosets. We denote the factor
group by

g=H

An identity element of this factor group is H. This is because in (13.15) putting
gi ¼ e, we get H gjH

� � ¼ gjH. Alternatively, putting gj ¼ e, we have
giHð ÞH ¼ giH. In (13.15), moreover, putting gj ¼ g�1

i , we get

giHð Þ g�1
i H� � ¼ gig

�1
i H ¼ H: ð13:16Þ

Hence, ðgiHÞ�1 ¼ g�1
i H. That is, the inverse element of giH is g�1

i H.

13.4 Isomorphism and Homomorphism

As in the case of the linear vector space, we consider the mapping between group
elements. Of these, the notion of isomorphism and homomorphism is important.

Definition 13.1
Let g ¼ x; y; . . .f g and g0 ¼ x0; y0; . . .f g be groups and let a mapping g ! g0 exist.
Suppose that there is a one-to-one correspondence (i.e., injective mapping)

x $ x0; y $ y0; � � �

between the elements such that xy ¼ z implies that x0y0 ¼ z0 and vice versa.
Meanwhile, any element in g0 must be the image of some element of g. That is, the
mapping is surjective as well and, hence, the mapping is bijective. Then, the two
groups g and g0 are said to be isomorphic. The relevant mapping is called an
isomorphism. We symbolically denote this relation by

g ffi g0:
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Note that the aforementioned groups can be either a finite group or an infinite
group. We did not designate identity elements. Suppose that x is the identity e.
Then, from the relations xy ¼ z and x0y0 ¼ z0, we have

ey ¼ z ¼ y; x0y0 ¼ z0 ¼ y0: ð13:17Þ

Then, we get

x0 ¼ e0; i.e. e $ e0: ð13:18Þ

Also let us put y ¼ x�1. Then,

xx�1 ¼ z ¼ e; x0 x�1� �0 ¼ e0; x0y0 ¼ z0 ¼ e0: ð13:19Þ

Comparing the second and third equations of (13.19), we get

y0 ¼ x0�1 ¼ x�1� �0: ð13:20Þ

The bijective character mentioned above can somewhat be loosened in such a
way that the one-to-one correspondence is replaced with n-to-one correspondence.
We have a following definition.

Definition 13.2
Let g ¼ x; y; . . .f g and g0 ¼ x0; y0; . . .f g be groups and let a mapping g ! g0 exist.
Also let a mapping q: g ! g0 exist such that with arbitrarily chosen any two
elements, the following relation holds:

q xð Þq yð Þ ¼ q xyð Þ: ð13:21Þ

Then, the two groups g and g0 are said to be homomorphic. The relevant
mapping is called homomorphism. We symbolically denote this relation by

g	 g0:

In this case, we have

q eð Þq eð Þ ¼ q eeð Þ ¼ q eð Þ; i.e. q eð Þ ¼ e0;

where e0 is an identity element of g0. Also, we have

q xð Þq x�1� � ¼ q xx�1� � ¼ q eð Þ ¼ e0:

Therefore,

½q xð Þ��1 ¼ q x�1
� �

:

The two groups can be either a finite group or an infinite group. Note that in the
above, the mapping is not injective. The mapping may or may not be surjective.
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Regarding the identity and inverse elements, we have the same relations as (13.18)
and (13.20). From Definitions 13.1 and 13.2, we say that the bijective homomor-
phism is the isomorphism.

Let us introduce an important notion of a kernel of a mapping. In this regard, we
have a following theorem.

Definition 13.3
Let g ¼ e; x; y; . . .f g and g0 ¼ e0; x0; y0; . . .f g be groups and let e and e0 be the
identity elements. Suppose that there exists a homomorphic mapping q: g ! g0.
Also let F be a subset of g such that

q Fð Þ ¼ e0: ð13:22Þ

Then, F is said to be a kernel of q.
Regarding the kernel, we have following important theorems.

Theorem 13.2
Let g ¼ e; x; y; � � �f g and g0 ¼ e0; x0; y0; � � �f g be groups, where e and e0 are identity
elements. A necessary and sufficient condition for a surjective and homomorphic
mapping q : g ! g0 to be isomorphic is that a kernel F ¼ ef g.
Proof We assume that F ¼ ef g. Suppose that q xð Þ ¼ q yð Þ. Then, we have

q xð Þ½q yð Þ��1 ¼ q xð Þq y�1� � ¼ q xy�1� � ¼ e0: ð13:23Þ
The first and second equalities result from the homomorphism of q. Since

F ¼ ef g, xy�1 ¼ e, i.e., x ¼ y. Therefore, q is injective (i.e., one-to-one corre-
spondence). As q is surjective from the assumption, q is bijective. The mapping q is
isomorphic accordingly.

Conversely, suppose that q is isomorphic. Also suppose for 9x 2 g q xð Þ ¼ e0.
From (13.18), q eð Þ ¼ e0. We have q xð Þ ¼ q eð Þ ¼ e0 ) x ¼ e due to the isomor-
phism of q (i.e., one-to-one correspondence). This implies F ¼ ef g. This com-
pletes the proof.

We become aware of close relationship between Theorem 13.1 and linear
transformation versus kernel already mentioned in Sect. 9.2 of Part III. Figure 13.1
shows this relationship. Figure 13.1a represents homomorphic mapping q in a
group, whereas Fig. 13.1b shows linear transformation A in a vector space.

Theorem 13.3 Suppose that there exists a homomorphic mapping q: g ! g0,
where g and g0 are groups. Then, a kernel F of q is an invariant subgroup of g.

Proof Let ki and kj be any two arbitrarily chosen elements of F . Then,

q kið Þ ¼ q kj
� � ¼ e0; ð13:24Þ
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where e0 is the identity element of g0. From (13.21), we have

q kikj
� � ¼ q kið Þq kj

� � ¼ e0e0 ¼ e0: ð13:25Þ

Therefore, kikj 2 F . Meanwhile, from (13.20), we have

q k�1
i

� � ¼ ½q kið Þ��1 ¼ e0�1 ¼ e0: ð13:26Þ

Then, k�1
i 2 F . Thus, F is a subgroup of g.

Next, for 8g 2 g, we have

q gkig
�1� � ¼ q gð Þq kið Þq g�1� � ¼ q gð Þe0q g�1� � ¼ e0: ð13:27Þ

Accordingly, we have gkig�1 2 F . Thus, gFg�1 
 F . Since g is chosen arbi-
trarily, replacing it with g�1 we have g�1Fg 
 F . Multiplying g and g�1 on both
sides from the left and right, respectively, we get F 
 gFg�1. Consequently, we
get

gFg�1 ¼ F : ð13:28Þ

This implies that F of q is an invariant subgroup of g.

Theorem 13.4 (Homomorphism Theorem)
Let g ¼ x; y; . . .f g and g0 ¼ x0; y0; . . .f g be groups and let a homomorphic (and
surjective) mapping q: g ! g0 exist. Also let F be a kernel of g. Let us define a
surjective mapping eq: g=F ! g0 such that

eq giFð Þ ¼ q gið Þ: ð13:29Þ

Then, eq is an isomorphic mapping.

(a)

(b)

:  isomorphism

:  invertible (bijective)

Fig. 13.1 Mapping in a
group and vector space.
a Homomorphic Mapping q
in a group. b Linear
transformation A in a vector
space
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Proof From (13.15) and (13.21), it is obvious that eq is homomorphic. The con-
firmation is left for readers. Let giF and gjF be two different cosets. Suppose here
that q gið Þ ¼ q gj

� �
. Then, we have

q g�1
i gj

� � ¼ q g�1
i

� �
q gj
� � ¼ ½q gið Þ��1q gj

� � ¼½q gið Þ��1q gið Þ ¼ e0: ð13:30Þ

This implies that g�1
i gj 2 F . That is, we would have gj 2 giF . This is in con-

tradiction to the definition of a coset. Thus, we should have q gið Þ 6¼ q gj
� �

. In other
words, the different cosets giF and gjF have been mapped into different elements
q gið Þ and q gj

� �
in g0. That is, eq is isomorphic; i.e., g=F ffi g0.

13.5 Direct-Product Groups

So far we have investigated basic properties of groups. In Sect. 13.4, we examined
factor groups. The homomorphism theorem shows that the factor group is char-
acterized by division. In the case of a finite group, an order of the group is reduced.
In this section, we study the opposite character, i.e., properties of direct product of
groups, or direct-product groups.

Let H ¼ h1 � e; h2; . . .; hmf g and H0 ¼ h01 � e; h02; . . .; h
0
n

� �
be groups of the

order of m and n, respectively. Suppose that (i) 8hi 1� i�mð Þ and 8h0j 1� i�mð Þ
commute, i.e., hih0j ¼ h0jhi and that (ii) H\H0 ¼ ef g. Under these conditions let us
construct a set g such that

g ¼ h1h
0
1 � e; hih

0
j 1� i�m; 1� j� nð Þ

n o
: ð13:31Þ

In other words, g is a set comprising mn elements hih0j. A product of elements is
defined as

ðhih0jÞðhkh0lÞ ¼ hihkh
0
jh

0
l ¼ hph

0
q; ð13:32Þ

where hp ¼ hihk and h0q ¼ h0jh
0
l. The identity element is ee ¼ e; ehihk ¼ hihke. The

inverse element is ðhih0jÞ�1 ¼ h
0�1
j h�1

i ¼ h�1
i h

0�1
j . Associative law is obvious from

hih0j ¼ h0jhi. Thus, g forms a group. This is said to be a direct product of groups, or a
direct-product group. The groups H and H0 are called direct factors of g. In this
case, we succinctly represent

g ¼ H�H0:

In the above, the condition (ii) is equivalent to that 8g 2 g is uniquely repre-
sented as
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g ¼ hh0; h 2 H; h0 2 H0: ð13:33Þ

In fact, suppose that H\H0 ¼ ef g and that g can be represented in two ways
such that

g ¼ h1h
0
1 ¼ h2h

0
2; h1; h2 2 H; h01; h

0
2 2 H0: ð13:34Þ

Then, we have

h�1
2 h1 ¼ h02h

0�1
1 ; h�1

2 h1 2 H; h02h
0�1
1 2 H0: ð13:35Þ

From the supposition, we get

h�1
2 h1 ¼ h02h

0�1
1 ¼ e: ð13:36Þ

That is, h2 ¼ h1 and h02 ¼ h01. This means that the representation is unique.
Conversely, suppose that the representation is unique and that x 2 H\H0. Then,

we must have

x ¼ xe ¼ ex: ð13:37Þ

Thanks to uniqueness of the representation, x ¼ e. This implies H\H0 ¼ ef g.
Now suppose h 2 H. Then for 8g 2 g putting g ¼ hmh0l, we have

ghg�1 ¼ hmh
0
lhh

0�1
l h�1

m ¼ hmhh
0
lh

0�1
l h�1

m ¼ hmhh
�1
m 2 H: ð13:38Þ

Then, we have gHg�1 
 H. Similarly to the proof of Theorem 13.3, we get

gHg�1 ¼ H: ð13:39Þ

This shows that H is an invariant subgroup of g. Similarly, H0 is an invariant
subgroup as well.

Regarding the unique representation of the group element of a direct-product
group, we become again aware of the close relationship between the direct product
and direct sum that was mentioned earlier in Part III.

Reference

1. Cotton FA (1990) Chemical applications of group theory. Wiley, New York
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Chapter 14
Symmetry Groups

We have many opportunities to observe symmetry both macroscopic and micro-
scopic in natural world. First, we need to formulate the symmetry appropriately. For
this purpose, we must regard various symmetry operations as mathematical ele-
ments and classify these operations under several categories. In Part III, we
examined various properties of vectors and their transformations. We also showed
that the vector transformation can be viewed as the coordinate transformation. On
these topics, we focused upon abstract concepts in various ways. On another front,
however, we have not paid attention to specific geometric objects, especially
molecules. In this chapter, we study the symmetry of these concrete objects. For
this, it will be indispensable to correctly understand a variety of symmetry opera-
tions. At the same time, we deal with the vector and coordinate transformations as
group elements. Among such transformations, rotations occupy a central place in
the group theory and related field of mathematics. Regarding the three-dimensional
Euclidean space, SO(3) is particularly important. This is characterized by an infinite
group in contrast to various symmetry groups (or point groups) we investigate in
the former parts of this chapter.

14.1 A Variety of Symmetry Operations

To understand various aspects of symmetry operations, it is convenient and
essential to consider a general point that is fixed in a three-dimensional Euclidean
space and to examine how this point is transformed in the space. In parallel to the
description in Part III, we express the coordinate of the general point P as

P ¼
x
y
z

0
@

1
A: ð14:1Þ

© Springer Nature Singapore Pte Ltd. 2018
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Note that P may be on or within or outside a geometric object or molecule that we
are dealing with. The relevant position vector x for P is expresses as

x ¼ xe1 þ ye2 þ ze3:

¼ e1 e2 e3ð Þ
x

y

z

0
B@

1
CA;

ð14:2Þ

where e1; e2; and; e3 denote an orthonormal basis vectors pointing to positive
directions of x-, y-, and z-axes, respectively. Similarly, we denote a linear trans-
formation A by

A xð Þ ¼ e1 e2 e3ð Þ
a11 a12 a13
a21
a31

a22 a23
a32 a33

0
@

1
A x

y
z

0
@

1
A: ð14:3Þ

Among various linear transformations that are represented by matrices, orthogonal
transformations are the simplest and most widely used. We use orthogonal matrices
to represent the orthogonal transformations accordingly.

Let us think of a movement or translation of a geometric object and an operation
that causes such a movement. First suppose that the geometric object is fixed on a
coordinate system. Then, the object is moved (or translate) to another place. If
before and after such a movement (or translation) one could not tell whether the
object has been moved, we say that the object possesses a “symmetry” in a certain
sense. Thus, we have to specify this symmetry. In that context, group theory deals
with the symmetry and defines it clearly.

To tell whether the object has been moved (to another place), we usually dis-
tinguish it by change in (i) positional relationship and (ii) attribute or property. To
make the situation simple, let us consider a following example:

Example. 14.1 We have two round disks; i.e., Disk A and Disk B. Suppose that
Disk A is a solid white disk, whereas Disk B is partly painted black (see Fig. 14.1).
In Fig. 14.1, we are thinking of a rotation of an object (e.g., round disk) around an
axis standing on its center and stretching perpendicularly to the object plane.

(a) (b)

C

Rotation around

the center

Rotation around

the centerC C
C

Disk A Disk B

Fig. 14.1 Rotation of an object. a Case where we cannot recognize that the object has been
moved. b Case where we can recognize that the object has been moved because of its attribute (i.e.,
because the round disk is partly painted black)

458 14 Symmetry Groups



If an arbitrarily chosen positional vector fixed on the object before the rotation is
moved to another position that was not originally occupied by the object, then we
recognize that the object has certainly been moved. For instance, imagine that a
round disk having a through-hole located aside from center is rotating. What about
the case where that position was originally occupied by the object, then? We have
two possibilities. The first alternative is that we cannot recognize that the object has
been moved. The second one is that we can yet recognize that the object has been
moved. According to Fig. 14.1a, b, we have the former case and the latter case,
respectively. In the latter case, we have recognized the movement of the object by
its attribute, i.e., by that the object is partly painted black.

However, we do not have to be rigorous here. We have a clear intuitive criterion
for a judgement of whether a geometric object has been moved. From now on, we
assume that the geometric character of an object is pertinent to both its positional
relationship and attribute. Thus, we define the equivalent (or indistinguishable)
disposition of an object and the operation that yields such an equivalent disposition
as follows:

Definition 14.1

(i) Symmetry operation: A geometric operation that produces an equivalent (or
indistinguishable) disposition of an object.

(ii) Equivalent (or indistinguishable) disposition: Suppose that regarding a geo-
metric operation of an object, we cannot recognize that the object has been
moved before and after that geometric operation. In that case, the original
disposition of the object and the resulting disposition reached after the geo-
metric operation are referred to as an equivalent disposition. The relevant
geometric operation is the symmetric operation.

Here we should clearly distinguish translation (i.e., parallel displacement) from
the above-mentioned symmetry operations. This is because for a geometric object
to possess the translation symmetry the object must be infinite in extent, typically
an infinite crystal lattice. The relevant discipline is widely studied as space group
and has a broad class of applications in physics and chemistry. However, we will
not deal with the space group or associated topics, but focus our attention upon
symmetry groups in this book.

In the above example, the rotation is a symmetry operation with Fig. 14.1a, but the
said geometric operation is not a symmetric operation with Fig. 14.1b.

Let us further inspect properties of the symmetry operation. Let us consider a set
H consisting of symmetry operations. Let a and b be any two symmetric operations
of H. Then, (i) a � b is a symmetric operation as well. (ii) Multiplication of
successive symmetric operations a; b; c is associative; i.e., a � b � cð Þ ¼ a � bð Þ
� c. (iii) The set H contains an element of e called the identity element such that we
have a � e ¼ e � a ¼ a with any element a of H. Operating “nothing” should be
e. If the rotation is relevant, 2p rotation is thought to be e. These are intuitively
acceptable. (iv) For any a of g, we have an element b such that
a � b ¼ b � a ¼ e. The element b is said to be the inverse element of a. We

14.1 A Variety of Symmetry Operations 459



denote it by b � a�1. The inverse element corresponds to an operation that brings
the disposition of a geometric object back to the original disposition. Thus, H forms
a group. We call H satisfying the above criteria a symmetry group. A symmetry
group is called a point group as well. This is because a point group comprises
symmetry operations of geometric objects as group elements, and those objects
have at least one fixed point after the relevant symmetry operation. The name of a
point group comes from this fact.

As mentioned above, the symmetric operation is best characterized by a (3,3)
orthogonal matrix. In Example 14.1, e.g., the p rotation is represented by an
orthogonal matrix A such that

A ¼
�1 0 0
0
0

�1 0
0 1

0
@

1
A: ð14:4Þ

This operation represents a p rotation around the z-axis. Let us think of another
symmetric operation described by

B ¼
1 0 0
0 1 0
0 0 �1

0
@

1
A: ð14:5Þ

This produces a mirror symmetry with respect to the xy-plane. Then, we have

C � AB ¼ BA ¼
�1 0 0
0 �1 0
0 0 �1

0
@

1
A: ð14:6Þ

The operation C shows an inversion about the origin. Thus, A, B, and C along with
an identity unit E form a group. Here E is expressed as

E ¼
1 0 0
0 1 0
0 0 1

0
@

1
A: ð14:7Þ

The above group is represented by four three-dimensional diagonal matrices whose
elements are 1 or −1. Therefore, it is evident that an inverse element of A, B, and
C is A, B, and C itself, respectively. The said group is commutative (Abelian) and
said to be a four group [1].

Meanwhile, we have a number of non-commutative groups. From a point of
view of a matrix structure, non-commutativity comes from off-diagonal elements of
the matrix. A typical example is a rotation matrix of a rotation angles different from
zero or np (n: integer). For later use, let us have a matrix form that expresses a h
rotation around the z-axis. Figure 14.2 depicts a graphical illustration for this.
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A matrix R has a following form:

R ¼
cos h � sin h 0
sin h cos h 0
0 0 1

0
@

1
A: ð14:8Þ

Note that R has been reduced. This implies that the three-dimensional Euclidean
space is decomposed into a two-dimensional subspace (xy-plane) and a
one-dimensional subspace (z-axis). The xy-coordinates are not mixed with the z-
component after the rotation R. Note, however, that if the rotation axis is oblique
against the xy-plane, this is not the case. We will come back to this point later.

Taking only the xy-coordinates in Fig. 14.3, we make a calculation. Using an
addition theorem of trigonometric functions, we get

x0 ¼ r cos hþ að Þ ¼ rðcos a cos h� sin a sin hÞ ¼ x cos h� y sin h; ð14:9Þ

y0 ¼ r sin hþ að Þ ¼ rðsin a cos hþ cos a sin hÞ ¼ y cos hþ x sin h; ð14:10Þ

where we used x ¼ r cos a and y ¼ r sin a. Combining (14.9) and (14.10), as a
matrix form, we get

x0

y0

� �
¼ cos h � sin h

sin h cos h

� �
x
y

� �
: ð14:11Þ

Equation (14.11) is the same as (9.31) and represents a transformation matrix of
a rotation angle h within the xy-plane. Whereas in Chap. 9, we considered this from
the point of view of the transformation of basis vectors, here we deal with the

y

x

z

O

Fig. 14.2 Rotation by h
around the z-axis
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y

x

Fig. 14.3 Transformation of
the xy-coordinates by a h
rotation

transformations of coordinates in the fixed coordinate system. If h 6¼ p,
off-diagonal elements do not vanish. Including the z-component, we get (14.8).

Let us summarize symmetry operations and their (3,3) matrix representations.
The coordinates before and after a symmetry operation are expressed as

x
y
z

0
@

1
A and

x
0

y
0

z
0

0
@

1
A, respectively.

(i) Identity transformation:
To leave a geometric object or a coordinate system unchanged (or unmoved),
by convention, we denote it by a capital letter E. It is represented by a (3,3)
identity matrix.

(ii) Rotation symmetry around a rotation axis:
Here a “proper” rotation is intended. We denote a rotation by a rotation axis
and its magnitude (i.e., rotation angle). Thus, we have

Rzh ¼
cos h � sin h 0

sin h cos h 0

0 0 1

0
B@

1
CA; Ry/ ¼

cos/ 0 sin/

0 1 0

� sin/ 0 cos/

0
B@

1
CA;

Rxu ¼
1 0 0

0 cosu � sinu

0 sinu cosu

0
B@

1
CA:

ð14:12Þ
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With Ry/, we first consider a following coordinate transformation:

z0

x0

y0

0
@

1
A ¼

cos/ � sin/ 0
sin/ cos/ 0
0 0 1

0
@

1
A z

x
y

0
@

1
A: ð14:13Þ

This can easily be visualized in Fig. 14.4; consider that cyclic permutation of
x
y
z

0
@

1
A produces

z
x
y

0
@

1
A. Shuffling the order of coordinates, we get

x0

y0

z0

0
@

1
A ¼

cos/ 0 sin/
0 1 0

� sin/ 0 cos/

0
@

1
A x

y
z

0
@

1
A: ð14:14Þ

By convention of the symmetry groups, the following notation Cn is used to
denote a rotation. A subscript n of Cn represents the order of the rotation axis. The
order means the largest number of n so that the rotation through 2p/n gives an
equivalent configuration. Successive rotations of m times (m < n) are denoted by

Cm
n :

If m = n, the successive rotations produce an equivalent configuration same as the
beginning; i.e., Cn

n ¼ E. The rotation angles h, u, etc., used above are restricted to
2pm/n accordingly.

y

x

z

O

Fig. 14.4 Rotation by /
around the y-axis
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(iii) Mirror symmetry with respect to a plane of mirror symmetry:
We denote a mirror symmetry by a mirror symmetry plane; xy-plane, and yz-
plane, etc. We have

Mxy ¼
1 0 0
0 1 0
0 0 �1

0
@

1
A;Myz ¼

�1 0 0
0 1 0
0 0 1

0
@

1
A;Mzx ¼

1 0 0
0 �1 0
0 0 1

0
@

1
A: ð14:15Þ

The mirror symmetry is usually denoted by rv; rh; and rd , whose subscripts stand
for “vertical,” “horizontal,” and “dihedral,” respectively. Among these symmetry
operations, rv and rd include a rotation axis in the symmetry plane, while rh is
perpendicular to the rotation axis if such an axis exists. Notice that a group
belonging to Cs symmetry possesses only E and rh. Although rh can exist by itself
as a mirror symmetry, neither rv nor rd can exist as a mirror symmetry by itself. We
will come back to this point later.

(iv) Inversion symmetry with respect to a center of inversion:
We specify an inversion center if necessary; e.g., an origin of a coordinate
system O.

IO ¼
�1 0 0
0 �1 0
0 0 �1

0
@

1
A: ð14:16Þ

Note that as obviously from the matrix form, IO is commutable with any other
symmetry operations. Note also that IO can be expressed as successive symmetry
operations or product of symmetry operations. For instance, we have

IO ¼ RzpMxy ¼
�1 0 0
0 �1 0
0 0 1

0
@

1
A 1 0 0

0 1 0
0 0 �1

0
@

1
A: ð14:17Þ

Note that Rzp and Mxy are commutable; i.e., RzpMxy ¼ MxyRzp.

(iv) Improper rotation:
This is a combination of a proper rotation and a reflection by a mirror sym-
metry plane. That is, rotation around an axis is performed first and then
reflection is carried out by a mirror plane that is perpendicular to the rotation
axis. For instance, an improper rotation is expressed as
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MxyRzh ¼
1 0 0

0 1 0

0 0 �1

0
B@

1
CA

cos h � sin h 0

sin h cos h 0

0 0 1

0
B@

1
CA

¼
cos h � sin h 0

sin h cos h 0

0 0 �1

0
B@

1
CA:

ð14:18Þ

As mentioned just above, the inversion symmetry I can be viewed as an improper
rotation. Note that in this case, the reflection and rotation operations are com-
mutable. However, we will follow a conventional custom that considers the in-
version symmetry as an independent symmetry operation. Readers may well
wonder why we need to consider the improper rotation. The answer is simple; it
solely rests upon the axiom (A1) of the group theory. A group must be closed with
respect to the multiplication.

The improper rotations are usually denoted by Sn. A subscript n again stands for
an order of rotation.

14.2 Successive Symmetry Operations

Let us now consider successive reflections in different planes and successive
rotations about different axes [2]. Figure 14.5a displays two reflections with respect
to the planes r and ~r both perpendicular to the xy-plane. The said planes make a
dihedral angle h with their intersection line identical to the z-axis. Also, the plane r
is identical with the zx-plane. Suppose that an arrow lies on the xy-plane perpen-
dicularly to the zx-plane. As in (14.15), an operation r is represented as

r ¼
1 0 0
0 �1 0
0 0 1

0
@

1
A: ð14:19Þ

To determine a matrix representation of ~r, we calculate a matrix again as in the
above case. As a result, we have

~r ¼
cos h � sin h 0

sin h cos h 0

0 0 1

0
B@

1
CA

1 0 0

0 �1 0

0 0 1

0
B@

1
CA

cos h sin h 0

� sin h cos h 0

0 0 1

0
B@

1
CA

¼
cos 2h sin 2h 0

sin 2h � cos 2h 0

0 0 1

0
B@

1
CA:

ð14:20Þ
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Notice that this matrix representation is referred to the original xyz-coordinate
system; see discussion of Sect. 9.4. Hence, we describe the successive transfor-
mations r followed by ~r as

~rr ¼
cos 2h � sin 2h 0
sin 2h cos 2h 0
0 0 1

0
@

1
A: ð14:21Þ

(b) (c)

y

x

z

O

(a)

Fig. 14.5 Successive two reflections about two planes r and ~r that make an angle h. a Reflections
r and ~r with respect to two planes. b Successive operations of r and ~r in this order. The combined
operation is denoted by ~rr. The operations result in a 2h rotation around the z-axis. c Successive
operations of ~r and r in this order. The combined operation is denoted by r~r. The operations
result in a –2h rotation around the z-axis
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The expression (14.21) means that the multiplication should be done first by r and then
by ~r; see Fig. 14.5b. Note that r and ~r are conjugate to each other (Sect. 13.3).
In this case, the combined operations produce a 2h rotation around the z-axis.

If, on the other hand, the multiplication is made first by ~r and then by r, we have
a �2h rotation around the z-axis; see Fig. 14.5c. As a matrix representation, we
have

r~r ¼
cos 2h sin 2h 0
� sin 2h cos 2h 0

0 0 1

0
@

1
A: ð14:22Þ

Thus, successive operations of reflection by the planes that make a dihedral angle h
yield a rotation ±2h around the z-axis (i.e., the intersection line of r; and; ~r). The
operation r~r is an inverse to ~rr. That is

r~rð Þ ~rrð Þ ¼ E: ð14:23Þ

We have det r~r ¼ det ~rr ¼ 1.
Meanwhile, putting

R2h ¼
cos 2h � sin 2h 0
sin 2h cos 2h 0
0 0 1

0
@

1
A; ð14:24Þ

we have

~rr ¼ R2h or ~r ¼ R2hr: ð14:25Þ

This implies the following: Suppose a plane r and a straight line on it. Also,
suppose that one first makes a reflection about r and then makes a 2h rotation
around the said straight line. Then, the resulting transformation is equivalent to a
reflection about ~r that makes an angle h with r. At the same time, the said straight
line is an intersection line of r and ~r. Note that a dihedral angle between the two
planes r and ~r is half an angle of the rotation. Thus, any two of the symmetry
operations related to (14.25) are mutually dependent; any two of them produce the
third symmetry operation.

In the above illustration, we did not take account of the presence of a symmetry
axis. If the aforementioned axis is a symmetry axis Cn, we must have

2h ¼ 2p=n or n ¼ p=h: ð14:26Þ

From a symmetry requirement, there should be n planes of mirror symmetry in
combination with the Cn axis. Moreover, an intersection line of these n mirror
symmetry planes should coincide with that Cn axis. This can be seen as various Cnv

groups.
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Next we consider another successive symmetry operations. Suppose that there
are two C2 axes (Cxp andCap as shown) that intersect at an angle h (Fig. 14.6).
There Cxp is identical to the x-axis and the other (Cap) lies on the xy-plane making
an angle h with Cxp. Following procedures similar to the above, we have matrix
representations of the successive C2 operations in reference to the xyz-system such
that

Cxp ¼
1 0 0

0 �1 0

0 0 �1

0
B@

1
CA;

Cap ¼
cos h � sin h 0

sin h cos h 0

0 0 1

0
B@

1
CA

1 0 0

0 �1 0

0 0 �1

0
B@

1
CA

cos h sin h 0

� sin h cos h 0

0 0 1

0
B@

1
CA

¼
cos 2h sin 2h 0

sin 2h � cos 2h 0

0 0 �1

0
B@

1
CA:

ð14:27Þ

where Cap can be calculated similarly to (14.20). Again, we get

CapCxp ¼
cos 2h � sin 2h 0

sin 2h cos 2h 0

0 0 1

0
B@

1
CA;

CxpCap ¼ �
cos 2h sin 2h 0

sin 2h cos 2h 0

0 0 1

0
B@

1
CA:

ð14:28Þ

Fig. 14.6 Successive two p
rotations around two C2 axes
of Cxp; and;Cap that intersect
at an angle h. Of these, Cxp is
identical to the x-axis (not
shown)
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Notice that CxpCapð Þ CapCxpð Þ ¼ E. Once again putting

R2h ¼
cos 2h � sin 2h 0
sin 2h cos 2h 0
0 0 1

0
@

1
A; ð14:29Þ

we have [1, 2]

CapCxp ¼ R2h or Cap ¼ R2hCxp: ð14:30Þ

Note that in the above two illustrations for the successive symmetry operations,
both the relevant operators have been represented in reference to the original xyz-
system. For this reason, the latter operation was done from the left in (14.28).

From a symmetry requirement, once again the aforementioned C2 axes must be
present in combination with the Cn axis. Moreover, those C2 axes should be per-
pendicular to the Cn axis. This can be seen in various Dn groups.

Another illustration of successive symmetry operations is an improper rotation.
If the rotation angle is p, this causes an inversion symmetry. In this illustration,
reflection, rotation, and inversion symmetries coexist. A C2h symmetry is a typical
example.

Equations (14.21), (14.22), and (14.29) demonstrate the same relation. Namely,
two successive mirror symmetry operations about a couple of planes and two
successive p-rotations about a couple of C2 axes cause the same effect with regard
to the geometric transformation. In this relation, we emphasize that two successive
reflection operations make a determinant of relevant matrices 1. These aspects cause
an interesting effect, and we will briefly discuss it in relation to O and Td groups.

If furthermore the above-mentioned mirror symmetry planes and C2 axes
coexist, the symmetry planes coincide with or bisect the C2 axes and vice versa. If
these were not the case, another mirror plane or C2 axis would be generated from
the symmetry requirement and the newly generated plane or axis would be coupled
with the original plane or axis. From the above argument, these processes again
produce another Cn axis. That must be prohibited.

Next, suppose that a Cn axis intersects obliquely with a plane of mirror sym-
metry. A rotation of 2p=n around such an axis produces another mirror symmetry
plane. This newly generated plane intersects with the original mirror plane and
produces a different Cn axis according to the above discussion. Thus, in this situ-
ation, a mirror symmetry plane cannot coexist with a sole rotation axis. In a geo-
metric object with higher symmetry such as Oh, however, several mirror symmetry
planes can coexist with several rotation axes in such a way that the axes intersect
with the mirror planes obliquely. In case, the Cn axis intersects perpendicularly to a
mirror symmetry plane that plane can coexist with a sole rotation axis (see
Fig. 14.7). This is actually the case with a geometric object having a C2h symmetry.
The mirror symmetry plane is denoted by rh.

Now, let us examine simple examples of molecules and associated symmetry
operations.
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Example 14.2 Figure 14.8 shows chemical structural formulae of thiophene,
bithiophene, biphenyl, and naphthalene. These molecules belong to C2v, C2h, D2,
and D2h, respectively. Note that these symbols are normally used to show specific
point groups. Notice also that in biphenyl two benzene rings are twisted relative to
the molecular axis. As an example, a multiplication table is shown in Table 14.1 for
a C2v group. Table 14.1 clearly demonstrates that the group constitution of C2v

differs from that of the group appearing in Example 13.1 (iii), even though the order
is four for both the case. Similar tables are given with C2h and D2. This is left for
readers as an exercise. We will find that the multiplication tables of these groups
have the same structure and that C2v;C2h; and;D2 are all isomorphic to one another
as a four group. Table 14.2 gives matrix representation of symmetry operations for
C2v. The representation is defined as the transformation by the symmetry operations
of a set of basis vectors xyzð Þ in R

3.

Fig. 14.7 Mirror symmetry
plane rh and a sole rotation
axis perpendicular to it

(a) (b)

(c) (d)

Fig. 14.8 Chemical
structural formulae and point
groups of a thiophene,
b bithiophene, c biphenyl, and
d naphthalene

Table 14.1 Multiplication
table of C2v

C2v E C2 zð Þ rv zxð Þ r0v yzð Þ
E E C2 rv r0v
C2 zð Þ C2 E r0v rv
rv zxð Þ rv r0v E C2

r0v yzð Þ r0v rv C2 E
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Meanwhile, Table 14.3 gives the multiplication table of D2h. We recognize that
the multiplication table of C2v appears on upper left and lower right blocks. If we
suitably rearrange the order of group elements, we can make another multiplication
table so that, e.g., C2h may appear on upper left and lower right blocks. As in the
case of Table 14.2, Table 14.4 summarizes the matrix representation of symmetry
operations for D2h. There are eight group elements; i.e., an identity, an inversion,
three mutually perpendicular C2 axes and three mutually perpendicular planes of
mirror symmetry (r). Here, we consider a possibility of constructing subgroups of
D2h. The order of the subgroups must be a divisor of eight, and so let us list
subgroups whose order is four and examine how many subgroups exist. We have
8C4 ¼ 70 combinations, but those allowed should be restricted from the require-
ment of forming a group. This is because all the groups must contain identity
element, and so the number allowed is equal to or no greater than 7C3 ¼ 35.

(i) In light of the aforementioned discussion, two C2 axes mutually intersecting
at p=2 yield another C2 axis around the normal to a plane defined by the inter-
secting axes. Thus, three C2 axes have been chosen and a D2 symmetry results. In
this case, we have only one choice. (ii) In the case of C2v, two planes mutually
intersecting at p/2 yield a C2 axis around their line of intersection. There are three
possibilities of choosing two axes out of three (i.e., 3C2 ¼ 3). (iii) If we choose the
inversion (i) along with, e.g., one of the three C2 axes, a r necessarily results. This
is also the case when we first combine a r with i to obtain a C2 axis. We have three
possibilities (i.e., 3C1 ¼ 3) as well. Thus, we have only seven choices to construct
subgroups of D2h having an order of four. This is summarized in Table 14.5.

Table 14.2 Matrix representation of symmetry operations for C2v

E C2 (around z-axis) rv zxð Þ r0v yzð Þ
Matrix 1 0 0

0 1 0
0 0 1

0
@

1
A �1 0 0

0 �1 0
0 0 1

0
@

1
A 1 0 0

0 �1 0
0 0 1

0
@

1
A �1 0 0

0
0

1 0
0 1

0
@

1
A

Table 14.3 Multiplication table of D2h

D2h E C2 zð Þ rv zxð Þ r0v yzð Þ i r00v xyð Þ C0
2 yð Þ C00

2 xð Þ
E E C2 rv r0v i r00v C0

2 C00
2

C2 zð Þ C2 E r0v rv r00v i C00
2 C0

2

rv zxð Þ rv r0v E C2 C0
2 C00

2 i r00v
r0v yzð Þ r0v rv C2 E C00

2 C0
2 r00v i

i i r00v C0
2 C00

2 E C2 rv r0v
r00v xyð Þ r00v i C00

2 C0
2 C2 E r0v rv

C0
2 yð Þ C0

2 C00
2 i r00v rv r0v E C2

C00
2 xð Þ C00

2 C0
2 r00v i r0v rv C2 E
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An inverse of any element is that element itself. Therefore, if with any above
subgroup one chooses any element out of the remaining four elements and com-
bines it with the identity, one can construct a subgroup Cs, C2, or Ci of an order of
2. Since all those subgroups of an order of 4 and 2 are commutative with D2h, these
subgroups are invariant subgroups. Thus in terms of a direct-product group, D2h can
be expressed as various direct factors. Conversely, we can construct factor groups
from coset decomposition. For instance, we have

D2h=C2v ffi Cs;D2h=C2v ffi C2;D2h=C2v ffi Ci: ð14:31Þ

In turn, we express direct-product groups as, e.g.,

D2h ¼ C2v � Cs;D2h ¼ C2v � C2;D2h ¼ C2v � Ci:

Example 14.3 Figure 14.9 shows an equilateral triangle placed on the xy-plane of a
three-dimensional Cartesian coordinate. An orthonormal basis e1; and; e2 are des-
ignated as shown. As for a chemical species of molecules, we have, e.g., boron
trifluoride (BF3). In the molecule, a boron atom is positioned at a molecular center
with three fluorine atoms located at vertices of the equilateral triangle. The boron
atom and fluorine atoms form a planar molecule (Fig. 14.10).

Table 14.5 Choice of
symmetry operations for
construction of subgroups of
D2h

Subgroup E C2(z) r i Choice

D2 1 3 0 0 1

C2v 1 1 2 0 3

C2h 1 1 1 1 3

(

Fig. 14.9 Equilateral triangle
placed on the xy-plane.
Several symmetry operations
of D3h are shown. We
consider the successive
operations (i), (ii), and (iii) to
represent r0v in reference to
the xy-coordinate system (see
text)
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A symmetry group belonging to D3h comprises twelve symmetry operations
such that

D3h ¼ E;C3;C
0
3;C2;C

0
2;C

00
2 ; rh; S3; S

0
3; rv; r

0
v; r

00
v

� �
; ð14:32Þ

where symmetry operations of the same species but distinct operation are denoted
by a “prime” or “double prime.” When we represent these operations by a matrix, it
is straightforward in most cases. For instance, a matrix for rv is given by Myz of
(14.15). However, we should make some matrix calculations about
C0
2;C

00
2 ; r

0
v; and; r

00
v .

To determine a matrix representation of, e.g., r0v in reference to the xy-coordinate
system with orthonormal basis vectors e1 and e2, we consider the x′y′-coordinate
system with orthonormal basis vectors e01; and; e

0
2 (see Fig. 14.9). A transformation

matrix between the two set of basis vectors is represented by

e01e
0
2e

0
3

� � ¼ e1e2e3ð ÞRzp6 ¼ e1e2e3ð Þ

ffiffi
3

p
2 � 1

2 0
1
2

ffiffi
3

p
2 0

0 0 1

0
B@

1
CA: ð14:33Þ

This representation corresponds to (9.69). Let Rv be a reflection with respect to the
z0x0-plane. This is the same operation as r0v. However, a matrix representation is
different. This is because Rv is represented in reference to the x′y′z′-system, while r0v
is in reference to xyz-system. The matrix representation of Rv is simple and
expressed as

Rv ¼
1 0 0
0 �1 0
0 0 1

0
@

1
A: ð14:34Þ

Referring to (9.80), we have

Rzp6Rv ¼ r0vRzp6 or r0v ¼ Rzp6Rv½Rzp6�
�1: ð14:35Þ

Thus, we see that in the first equation of (14.35) the order of multiplications are
reversed according as the latter operation is expressed in the xyz-system or in the
x′y′z′-system. As a full matrix representation, we get

Fig. 14.10 Boron trifluoride (BF3) belonging to a D3h point group
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r0v ¼

ffiffi
3

p
2 � 1

2 0
1
2

ffiffi
3

p
2 0

0 0 1

0
B@

1
CA 1 0 0

0 �1 0
0 0 1

0
@

1
A

ffiffi
3

p
2

1
2 0

� 1
2

ffiffi
3

p
2 0

0 0 1

0
B@

1
CA ¼

1
2

ffiffi
3

p
2 0ffiffi

3
p
2 � 1

2 0
0 0 1

0
B@

1
CA:

ð14:36Þ

Notice that this matrix representation is referred to the original xyz-coordinate
system as before. Graphically, (14.35) corresponds to the multiplication of the
symmetry operations done in the order of (i) �p=6 rotation, (ii) reflection (denoted
by Rv), and (iii) p=6 rotation (Fig. 14.9). The associated matrices are multiplied
from the left.

Similarly, with C0
2, we have

C0
2 ¼

1
2

ffiffi
3

p
2 0ffiffi

3
p
2 � 1

2 0
0 0 �1

0
B@

1
CA: ð14:37Þ

The matrix form of (14.37) can also be decided in a manner similar to the above
according to three successive operations shown in Fig. 14.9. In terms of classes,
rv; r0v; and; r

00
v form a conjugacy class and C2;C0

2; and;C
00
2 form another conjugacy

class. With regard to the reflection and rotation, we have det r0v ¼ �1 and
det C2 ¼ 1, respectively.

14.3 O and Td Groups

According to a geometric object (or a molecule) which has a higher symmetry, we
have to deal with many symmetry operations and relationship between them. As an
example, we consider O and Td groups. Both the groups have 24 symmetry
operations and are isomorphic.

Let us think of the group O fist. We start with considering rotations of p/2
around x-, y-, and z-axes. The matrices representing these rotations are obtained
from (14.12) to give

Rxp2 ¼
1 0 0
0 0 �1
0 1 0

0
@

1
A;Ryp2 ¼

0 0 1
0 1 0
�1 0 0

0
@

1
A;Rzp2 ¼

0 �1 0
1 0 0
0 0 1

0
@

1
A: ð14:38Þ

We continue multiplications of these matrices so that the matrices can make up a
complete set (i.e., a closure). Counting over those matrices, we have 24 of them and
they form a group termed O. The group O is a pure rotation group. Here, the pure
rotation group is defined as a group whose group elements only comprise proper
rotations (with their determinant of 1). An example is shown in Fig. 14.11, where
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individual vertices of the cube have three arrows for the cube not to possess mirror
symmetries or inversion symmetry. The group O has five conjugacy classes.
Figure 14.12 summarizes them. Geometrical characteristics of individual classes
are sketched as well. These classes are categorized by a trace of the matrix. This is
because the trace is kept unchanged by a similarity transformation. (Remember that

Fig. 14.11 Cube whose individual vertices have three arrows for the cube not to possess mirror
symmetries. This object belongs to a point group O called pure rotation group

1 0 0
0 1 0
0 0 1

-1 0  0
0  1  0
0  0 -1

0 0 1
1 0 0
0 1 0

0  0 1
-1 0 0
0 -1 0

0  0 -1
1  0 0
0 -1 0

0  0 -1
-1 0 0
0  1 0

x

y

z

0 1 0
0 0 1
1 0 0

0 -1 0
0 0 -1
1 0  0

0  1  0
0  0 -1
-1 0  0

0  -1  0
0   0  1
-1  0  0

x

y

z

1 0  0
0 0 -1
0 1  0

1  0 0
0  0 1
0 -1 0

0  0  1
0  1  0
-1 0 0

0  0 -1
0  1  0
1  0  0

0 -1  0
1  0  0
0  0  1

0  0  1
0 -1  0
1  0  0

0  0  -1
0  -1  0
-1  0  0

0  1  0
-1 0  0
0  0  1

x y

z

1 0  0
0 -1 0
0 0  -1

-1 0 0
0 -1 0
0  0 1

x y

z

-1 0  0
0 0  1
0 1  0

-1 0 0
0  0 -1
0 -1 0

0  1  0
1  0  0
0  0  -1

0  -1 0
-1 0  0
0  0  -1

= 3

= 1

= 0

= 1

= 1

x
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z

Fig. 14.12 Point group O and its five conjugacy classes. Geometrical characteristics of individual
classes are briefly sketched
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elements of the same conjugacy class are connected with a similarity transforma-
tion.) Having a look at the sketches, we notice that each operation switches the
basis vectors e1; e2; and; e3; i.e., x-, y-, and z-axes. Therefore, the presence of
diagonal elements (either 1 or −1) implies that the matrix takes the basis vector(s)
as an eigenvector with respect to the rotation. Corresponding eigenvalue(s) are
either 1 or −1 accordingly. This is expected from the fact that the matrix is an
orthogonal matrix (i.e., unitary). The trace, namely a summation of diagonal ele-
ments, is closely related to the geometrical feature of the operation.

The operations of a p rotation around the x-, y-, and z-axes and those of a p
rotation around an axis bisecting any two of three axes have a trace −1. The former
operations take all the basis vectors as an eigenvectors; that is, all the diagonal
elements are nonvanishing. With the latter operations, however, only one diagonal
element is −1. This feature comes from that the bisected axes are switched by the
rotation, whereas the remaining axis is reversed by the rotation.

Another characteristic is the generation of eight rotation axes that trisect the x-,
y-, and z-axes, more specifically, a solid angle p=2 formed by the x-, y-, and z-axes.
Since the rotation switches all the x-, y-, and z-axes, the trace is zero. At the same
time, we find that this operation belongs to C3. This operation is generated by
successive two p=2 rotations around two mutually orthogonal axes. To inspect this
situation more closely, we consider a conjugacy class of p=2 rotation that belongs
to the C4 symmetry and includes six elements, i.e., Rxp2, Ryp2, Rzp2, R�xp2, R�yp2, and R�zp2.
With these notations, e.g., Rxp2 stands for a p=2 counterclockwise rotation around the
x-axis; R�xp2 denotes a p/2 counterclockwise rotation around the —x-axis.
Consequently, R�xp2 implies a p=2 clockwise rotation around the x-axis and, hence, an
inverse element of Rxp2. Namely, we have

R�xp2 ¼ ðRxp2Þ
�1: ð14:39Þ

Now let us consider the successive two rotations. This is denoted by the multi-
plication of matrices that represent the related rotations. For instance, the multi-
plication of, e.g., Rxp2 and R0

yp2
produces the following:

Rxyz2p3
¼ Rxp2R

0
yp2
¼

1 0 0
0 0 �1
0 1 0

0
@

1
A 0 0 1

0 1 0
�1 0 0

0
@

1
A ¼

0 0 1
1 0 0
0 1 0

0
@

1
A: ð14:40Þ

In (14.40), we define Rxyz2p3
as a 2p/3 counterclockwise rotation around an axis that

trisects the x-, y-, and z-axes. The prime “ ′ ” of R0
yp2

means that the operation is

carried out in reference to the new coordinate system reached by the previous
operation Rxp2. For this reason, R0

yp2
is operated (i.e., multiplied) from the right in

(14.40). Compare this with the remark made just after (14.30). Changing the order
of Rxp2 and R0

yp2
, we have
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Rxy�z2p3
¼ Ryp2 R

0
xp2
¼

0 0 1
0 1 0
�1 0 0

0
@

1
A 1 0 0

0 0 �1
0 1 0

0
@

1
A ¼

0 1 0
0 0 �1
�1 0 0

0
@

1
A; ð14:41Þ

where Rxy�z2p3
is a 2p/3 counterclockwise rotation around an axis that trisects the x-, y-,

and —z-axes. Notice that we used R0
xp2
this time, because it was performed after Ryp2.

Thus, we notice that there are eight related operations that trisect eight octants of the
coordinate system. These operations are further categorized into four sets in which
the two elements are an inverse element of each other. For instance, we have

R�x�y�z2p3
¼ ðRxyz2p3

Þ�1: ð14:42Þ

Notice that a 2p/3 counterclockwise rotation around an axis that trisects the —x-,
—y-, and —z-axes is equivalent to a 2 p/3 clockwise rotation around an axis that
trisects the x-, y-, and z-axes. Also, we have R�x�yz2p3

¼ ðRxy�z2p3
Þ�1, etc. Moreover, we

have “cyclic” relations such as

Rxp2R
0
yp2
¼ Ryp2R

0
zp2
¼ Rzp2R

0
xp2
¼ Rxyz2p3

: ð14:43Þ

Returning back to Sect. 9.4, we had

A P xð Þ½ � ¼ ½ e1. . .enð ÞPA0�
x1
..
.

xn

0
B@

1
CA ¼ e1. . .enð Þ AOP

x1
..
.

xn

0
B@

1
CA

2
64

3
75: ð9:79Þ

Implication of (9.79) is that LHS is related to the transformation of basis vectors

while retaining coordinates

x1
..
.

xn

0
B@

1
CA and that transformation matrices should be

operated on the basis vectors from the right. Meanwhile, RHS describes the
transformation of coordinates, while retaining basis vectors. In that case, transfor-
mation matrices should be operated on the coordinates from the left. Thus, the order
of operator multiplication is reversed. Following (9.80), we describe

Rxp2R
0
yp2
¼ RORxp2; i:e:;RO ¼ Rxp2R

0
yp2
ðRxp2Þ

�1; ð14:44Þ

where RO is viewed in reference to the original (or fixed) coordinate system and
conjugated to R0

yp2
. Thus, we have

RO ¼
1 0 0
0 0 �1
0 1 0

0
@

1
A 0 0 1

0 1 0
�1 0 0

0
@

1
A 1 0 0

0 0 1
0 �1 0

0
@

1
A ¼

0 �1 0
1 0 0
0 0 1

0
@

1
A: ð14:45Þ
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Note that (14.45) is identical to a matrix representation of a p=2 rotation around the
z-axis. This is evident from the fact that the y-axis is converted to the original z-axis
by Rxp2; readers, imagine it.

We have two conjugacy classes of p rotation (the C2 symmetry). One of them
includes six elements, i.e., Rxyp, Ryzp, Rzxp, R�xyp, R�yzp, and R�zxp. For these notations,
a subscript, e.g., xy stands for an axis that bisects the angle formed by x- and y-axes.
A subscript �xy denotes an axis bisecting the angle formed by —x- and y-axes.
Another class includes three elements, i.e., Rxp, Ryp, and Rzp.

As for Rxp, Ryp, and Rzp, a combination of these operations should yield a C2

rotation axis as discussed in Sect. 14.2. Of these three rotation axes, in fact, any two
produce a C2 rotation around the remaining axis, as is the case with naphthalene
belonging to the D2h symmetry (see Sect. 14.2).

Regarding the class comprising six p rotation elements, a combination of, e.g.,
Rxyp and R�xyp crossing each other at a right angle causes a related effect. For the
other combinations, the two C2 axes intersect each other at p=3; see Fig. 14.6 and
put h ¼ p=3 there. In this respect, elementary analytic geometry teaches the posi-
tional relationship among planes and straight lines. The argument is as follows: A

plane determined by three points
x1
y1
z1

0
@

1
A,

x2
y2
z2

0
@

1
A, and

x3
y3
z3

0
@

1
A that do not sit on a

line is expressed by a following equation:

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

								

								 ¼ 0: ð14:46Þ

Substituting
0
0
0

0
@

1
A,

1
1
0

0
@

1
A, and

0
1
1

0
@

1
A, we have

x� yþ z ¼ 0: ð14:47Þ

Taking account of direction cosines and using the Hesse’s normal form, we get

1ffiffiffi
3

p x� yþ zð Þ ¼ 0; ð14:48Þ

where the normal to the plane expressed in (14.48) has direction cosines of 1ffiffi
3

p ,

� 1ffiffi
3

p , and 1ffiffi
3

p in relation to the x-, y-, and z-axes, respectively.

Therefore, the normal is given by a straight line connecting the origin and
1
�1
1

0
@

1
A. In other words, a line connecting the origin and a corner of a cube is the
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normal to the plane described by (14.48). That plane is formed by two intersecting
lines, i.e., rotation axes of C2 and C0

2 (see Fig. 14.13 that depicts a cube of each side
of 2). These axes make an angle p=3; this can easily be checked by taking an inner

product between
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
0

0
@

1
A and

0
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

0
@

1
A. These column vectors are two

direction cosines of C2 and C0
2. On the basis of the discussion of Sect. 14.2, we

must have a rotation axis of C3. That is, this axis trisects a solid angle p=2 shaped
by three intersecting sides.

It is sometimes hard to visualize or envisage the positional relationship among
planes and straight lines in three-dimensional space. It will therefore be useful to
make a simple kit to help visualize it. Figure 14.14 gives an illustration.

y

x

z

(1, 1, 0)

(0, 1, 1)

(1, 1, 1)

O

Fig. 14.13 Rotation axes of C2 and C0
2 along with another rotation axis C3 in a point group O

Fig. 14.14 Simple kit that helps to visualize the positional relationship among planes and straight
lines in three-dimensional space. To make it, follow next procedures: a Take three thick sheets of
paper and make slits (dashed lines) as shown. b Insert Sheet 2 into Sheet 1 so that the two sheets
can make a right angle. c Insert Sheet 3 into combined Sheets 2 and 3
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Another typical example having 24 group elements is Td . A molecule of
methane belongs to this symmetry. Table 14.6 collects the relevant symmetry
operations and their (3,3) matrix representations. As in the case of Fig. 14.12, the
matrices show how a set of vectors x y zð Þ are transformed according to the sym-
metry operations. Comparing it with Fig. 14.12, we immediately recognize that the
close relationship between Td and O exists and that these point groups share notable
characteristics.

(i) Both Td and O consist of five conjugacy classes, each of which contains the
same number of symmetry species. (ii) Both Td and O contain a pure rotation group
T as a subgroup. The subgroup T consists of 12 group elements E, 8C3, and 3C2.
Other remaining twelve group elements of Td are symmetry species related to
reflection; S4 and rd . The elements 6S4 and 6rd correspond to 6C4 and 6C2 of O,
respectively. That is, successive operations of S4 cause similar effects to those of C4

of O. Meanwhile, successive operations of rd are related to those of 6C2 of O.
Let us imagine in Fig. 14.15 that a regular tetrahedron is inscribed in a cube. As

an example of symmetry operations, suppose that three pairs of planes of rd (six
planes in total) are given by equations of x ¼ �y and y ¼ �z and z ¼ �x. Their
Hesse’s normal forms are represented as

1ffiffiffi
2

p x� yð Þ ¼ 0; ð14:49Þ

1ffiffiffi
2

p y� zð Þ ¼ 0; ð14:50Þ

1ffiffiffi
2

p z� xð Þ ¼ 0: ð14:51Þ

Then, a dihedral angle a of the two planes is given by

cos a ¼ 1ffiffiffi
2

p 	 1ffiffiffi
2

p ¼ 1
2
or ð14:52Þ

cos a ¼ 1ffiffiffi
2

p 	 1ffiffiffi
2

p � 1ffiffiffi
2

p 	 1ffiffiffi
2

p ¼ 0: ð14:53Þ

That is, a ¼ p=3 or a ¼ p=2. On the basis of the discussion of Sect. 14.2, the
intersection of the two planes must be a rotation axis of C3 or C2. Once again, in the
case of C3 the intersection is a straight line connecting the origin and a vertex of the
cube. This can readily be verified as follows: For instance, two planes given by
x ¼ y and y ¼ z make an angle p=3 and produce an intersection line x ¼ y ¼ z. This
line, in turn, connects the origin and a vertex of the cube.

If we choose, e.g., two planes x ¼ �y from the above, these planes make a right
angle and their intersection must be a C2 axis. The three C2 axes coincide with the
x-, y-, and z-axes. In this light, rd functions similarly to 6C2 of O in that their
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combinations produce 8C3 or 3C2. Thus, constitution and operation of Td and O are
related.

Let us more closely inspect the structure and constitution of O and Td . First we
construct mapping q between group elements of O and Td such that

q : g 2 O $ g0 2 Td; if; g 2 T ;

q : g 2 O $ �ðg0Þ�1 2 Td ; if; g 62 T:

In the above relation, the minus sign indicates that with an inverse representation
matrix R must be replaced with –R. Then, q gð Þ ¼ g0 is an isomorphic mapping. In
fact, comparing Fig. 14.12 and Table 14.6, q gives identical matrix representation
for O and Td . For example, taking the first matrix of S4 of Td , we have

�
�1 0 0
0 0 �1
0 1 0

0
@

1
A�1

¼ �
�1 0 0
0 0 1
0 �1 0

0
@

1
A ¼

1 0 0
0 0 �1
0 1 0

0
@

1
A:

The resulting matrix is identical to the first matrix of C4 of O. Thus, we find Td and
O are isomorphic to each other.

Both O and Td consist of 24 group elements and isomorphic to a symmetric
group S4; do not confuse it with the same symbol S4 as a group element of Td. The
subgroup T consists of three conjugacy classes E, 8C3, and 3C2. Since T is con-
structed only by entire classes, it is an invariant subgroup; in this respect see the
discussion of Sect. 13.3. The groups O, Td, and T along with Th and Oh form cubic

y

x

z

O

Fig. 14.15 Regular
tetrahedron inscribed in a
cube. As an example of
symmetry operations, we can
choose three pairs of planes of
rd (six planes in total) given
by equations of x ¼ �y and
y ¼ �z and z ¼ �x
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groups [2]. In Table 14.7, we list these cubic groups together with their name and
order. Of these, O is a pure rotation subgroup of Oh and T is a pure rotation
subgroup of Td and Th.

Symmetry groups are related to permutations of n elements (or objects or
numbers). The permutation has already appeared in (9.56) when we defined a
determinant of a matrix. That was defined as

r ¼ 1 2 	 	 	 n
i1 i2 	 	 	 in

� �
;

where r means the permutation of the numbers 1; 2; 	 	 	 ; n. Therefore, the above
symmetry group has n! group elements (i.e., different ways of rearrangements).
Although we do not dwell on symmetric groups much, we describe a following
important theorem related to finite groups without proof. Interested readers are
referred to literature [1].

Theorem 14.1 (Cayley’s Theorem [1]) Every finite group g of order n is iso-
morphic to a subgroup (containing a whole group) of the symmetric group Sn.

14.4 Special Orthogonal Group SO(3)

In Part III and Part IV thus far, we have dealt with a broad class of linear trans-
formations. Related groups are finite groups. Here we will describe characteristics of
special orthogonal group SO(3), a kind of infinite groups. The SO(3) represents
rotations in three-dimensional Euclidean space R

3. Rotations are made around an
axis (a line through the origin) with the origin fixed. The rotation is defined by an
azimuth of direction and a magnitude (angle) of rotation. The azimuth of direction is
defined by two parameters, and the magnitude is defined by one parameter, a rotation
angle. Hence, the rotation is defined by three independent parameters. Since those
parameters are continuously variable, SO(3) is one of continuous groups.

Two rotations result in another rotation with the origin again fixed. A reverse
rotation is unambiguously defined.An identity transformation is naturally defined.An
associative law holds as well. Thus, the relevant rotations form a group, i.e., SO(3).
The rotation is represented by a real (3,3) matrix whose determinant is 1. A matrix

Table 14.7 Several cubic
groups and their
characteristics

Notation Group name Order Remark

T Tetrahedral
rotation

12 subgroup of Th,
Td

Th, Td Tetrahedral 24

O Octahedral
rotation

24 subgroup of Oh

Oh Octahedral 48
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representation is uniquely determined once an orthonormal basis is set in R
3. Any

rotation is represented by a rotation matrix accordingly. The rotation matrix R is
defined by

RTR ¼ RRT ¼ E; ð14:54Þ

where R is a real matrix with detR ¼ 1. Notice that we exclude the case where
detR ¼ �1. Matrices that satisfy (14.54) with detR ¼ �1 are referred to as
orthogonal matrices that cause orthogonal transformation. Correspondingly,
orthogonal groups (represented by orthogonal matrices) contain rotation groups as a
special case. In other words, the orthogonal groups contain the rotation groups as a
subgroup. An orthogonal group in R

3 denoted O(3) contains SO(3) as a
subgroup. By the same token, orthogonal matrices contain rotation matrices as a
special case.

In Sect. 14.2, we treated reflection and improper rotation with a determinant of
their matrices being –1. In this section, these transformations are excluded and only
rotations are dealt with. We focus on geometric characteristics of the rotation
groups. Readers are referred to more detailed representation theory of SO(3) in
appropriate literature [1].

14.4.1 Rotation Axis and Rotation Matrix

In this section, we represent a vector such as jxi. We start with showing that any
rotation has a unique presence of a rotation axis. The rotation axis is defined by the
following: Suppose that there is a rigid body with some point within the body fixed.
Here the said rigid body can be that with infinite extent. Then the rigid body exerts
rotation. The rotation axis is a line on which every point is unmoved during the
rotation. As a matter of course, identity matrix E has the linearly independent
rotation axes. (Practically, this represents no rotation.)

Theorem 14.2 Any rotation matrix R is accompanied by at least one rotation axis.
Unless the rotation matrix is identity, the rotation matrix should be accompanied by
one and only one rotation axis.

Proof As R is an orthogonal matrix of a determinant 1, so are RT and R�1. Then,
we have

ðR� EÞT ¼ RT � E ¼ R�1 � E: ð14:55Þ
Hence, we get

det R� Eð Þ ¼ detðRT � EÞ ¼ detðR�1 � EÞ ¼ det½R�1ðE � RÞ�
¼ detðR�1ÞdetðE � RÞ ¼ det E � Rð Þ ¼ � det R� Eð Þ: ð14:56Þ
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Note here that with any (3,3) matrix A of R3,

detA ¼ �ð�1Þ9 detA ¼ � det �Að Þ:

This equality holds with R
n n : oddð Þ, but in R

n n : evenð Þ, we have
detA ¼ det �Að Þ. Then, (14.56) results in a trivial equation 0 = 0 accordingly.
Therefore, the discussion made below only applies to R

n n : oddð Þ. Thus, from
(14.56), we have

det R� Eð Þ ¼ 0: ð14:57Þ

This implies that for 9jx0

 6¼ 0

R� Eð Þjx0i ¼ 0: ð14:58Þ

Therefore, we get

R ajx0ið Þ ¼ ajx0i; ð14:59Þ

where a is an arbitrarily chosen real number. In this case, an eigenvalue of R is 1,
which an eigenvector ajx0i corresponds to. Thus, as a rotation axis, we have a
straight line expressed as

l ¼ Spanfajx0i; a 2 Rg: ð14:60Þ

This proves the presence of a rotation axis.
Next suppose that there are two (or more) rotation axes. The presence of two

rotation axes naturally implies that there are two linearly independent vectors (i.e.,
two straight lines that mutually intersect at the fixed point). Suppose that such
vectors are jui and jvi. Then, we have

R� Eð Þjui ¼ 0; ð14:61Þ

R� Eð Þjvi ¼ 0: ð14:62Þ

Let us consider a vector 8jy
 that is chosen from Span ui;j jvif g, to which we assume
that

Span uij ; vijf g � Span a uij ; b vij ; a; b 2 Rf g: ð14:63Þ

That is, Span uij ; vijf g represents a plane P formed by two mutually intersecting
straight lines. Then, we have

y ¼ s uij þ t vij ; ð14:64Þ
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where s and t are some real numbers. Operating R − E on (14.64), we have

R� Eð Þ yij ¼ R� Eð Þ s uij þ t vijð Þ ¼ s R� Eð Þ uij þ t R� Eð Þ vij ¼ 0: ð14:65Þ

This indicates that any vectors in P can be an eigenvector of R, implying that an
infinite number of rotation axes exist.

Now, take another vector wij that is perpendicular to the plane P (see
Fig. 14.16). Let us consider an inner product y Rwjh i. Since

R ui ¼j jui; uh jRy ¼ uh jRT ¼ uh j: ð14:66Þ

Similarly, we have

vh jRT ¼ vh j: ð14:67Þ

Therefore, using the relation (14.64), we get

yh jRT ¼ yh j: ð14:68Þ

Here we are dealing with real numbers, and hence, we have

Ry ¼ RT : ð14:69Þ

Now we have

yjRwh i ¼ yRT
		Rw� 
 ¼ yjRTRw

� 
 ¼ yjEwh i ¼ yjwh i ¼ 0: ð14:70Þ

In (14.70), the second equality comes from the associative law; the third is due to
(14.54). The last equality comes from that wij is perpendicular to P.

From (14.70), we have

yh j R� Eð Þwi ¼ 0: ð14:71Þ

P

Fig. 14.16 Plane P formed
by two mutually intersecting
straight lines represented by
uij and vij . Another vector wij
is perpendicular to the plane P
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However, we should be careful not to conclude immediately from (14.71) that
R� Eð Þjwi ¼ 0; i.e., R wj ¼ wij . This is because in (14.70) yij does not represent
all vectors in R

3 but merely represent all the vectors in Span uij ; vijf g. Nonetheless,
both wij and Rwij are perpendicular to P, and so

Rwij ¼ a wij ; ð14:72Þ

where a is an arbitrarily chosen real number. From (14.72), we have

wRy Rwj
D E

¼ wRT Rwj� 
 ¼ w wjh i ¼ aj j2 w wjh i; i:e: a ¼ �1;

where the first equality comes from that R is an orthogonal matrix. Since det R = 1,
a = 1. Thus, from (14.72) this time around, we have Rwij ¼ wij ; that is,

R� Eð Þ wij ¼ 0: ð14:73Þ

Equations (14.65) and (14.73) imply that for any vector xij arbitrarily chosen from
R

3, we have

R� Eð Þ xij ¼ 0: ð14:74Þ

Consequently, we get

R� E ¼ 0 or R ¼ E: ð14:75Þ

The above procedures represented by (14.61)–(14.75) indicate that the presence
of two rotation axes necessarily requires a transformation matrix to be identity. This
implies that all the vectors in R

3 are an eigenvector of a rotation matrix.
Taking contraposition of the above, unless the rotation matrix is identity, the

relevant rotation cannot have two rotation axes. Meanwhile, the proof of the former
half ensures the presence at least one rotation axis. Consequently, any rotation is
characterized by a unique rotation axis except for the identity transformation. This
completes the proof.

An immediate consequence of Theorem 14.2 is that the rotation matrix should
have an eigenvalue 1 which an eigenvector representing the rotation axis corre-
sponds to. This statement includes a trivial fact that all the eigenvalues of the
identity matrix are 1. In Sect. 12.4, we calculated eigenvalues of a two-dimensional
rotation matrix. The eigenvalues were eih or e�ih, where h is a rotation angle.

Let us consider rotation matrices that we dealt with in Sect. 14.1. The matrix
representing the rotation around the z-axis by a rotation angle h is expressed by

R ¼
cos h � sin h 0
sin h cos h 0
0 0 1

0
@

1
A: ð14:8Þ
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In Sect. 12.4, we treated diagonalization of a rotation matrix. As R is reduced,
the diagonalization can be performed in a manner essentially the same as (12.92).
That is, as a diagonalizing unitary matrix, we have

U ¼
1ffiffi
2

p 1ffiffi
2

p 0

� iffiffi
2

p iffiffi
2

p 0
0 0 1

0
@

1
A; Uy ¼

1ffiffi
2

p iffiffi
2

p 0
1ffiffi
2

p � iffiffi
2

p 0
0 0 1

0
@

1
A: ð14:76Þ

As a result of the unitary similarity transformation, we get

UyRU ¼
1ffiffi
2

p iffiffi
2

p 0
1ffiffi
2

p � iffiffi
2

p 0

0 0 1

0
B@

1
CA

cos h � sin h 0

sin h cos h 0

0 0 1

0
B@

1
CA

1ffiffi
2

p 1ffiffi
2

p 0

� iffiffi
2

p iffiffi
2

p 0

0 0 1

0
B@

1
CA

¼
eih 0 0

0 e�ih 0

0 0 1

0
B@

1
CA:

ð14:77Þ

Thus, eigenvalues are 1, eih, and e�ih. The eigenvalue 1 results from the existence of
the unique rotation axis. When h ¼ 0, (14.77) gives an identity matrix with all the
eigenvalues 1 as expected. When h ¼ p, eigenvalues are −1, −1, and 1. The
eigenvalue 1 is again associated with the unique rotation axis. The (unitary) sim-
ilarity transformation keeps a trace unchanged, that is, the trace v is

v ¼ 1þ 2 cos h: ð14:78Þ

As R is a normal operator, spectral decomposition can be done as in the case of
Example 12.1. Here we only show the result below.

R ¼ eih
1
2

i
2 0

� i
2

1
2 0

0 0 0

0
@

1
Aþ e�ih

1
2 � i

2 0
i
2

1
2 0

0 0 0

0
@

1
Aþ

0 0 0
0 0 0
0 0 1

0
@

1
A:

Three matrices of the above equation are projection operators.

14.4.2 Euler Angles and Related Topics

Euler angles are well known and have been being used in various fields of science.
We wish to connect the above discussion with Euler angles.

In Part III, we dealt with successive linear transformations. This can be extended
to the case of three or more successive transformations. Suppose that we have three
successive transformation R1, R2, and R3 and that the coordinate system
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(a three-dimensional orthonormal basis) is transformed from O ! I ! II ! III
accordingly. The symbol “O” stands for the original coordinate system, and I, II, III
represent successively transformed systems.

With the discussion that follows, let us denote the transformation by R0
2, R

0
3, R

00
3,

etc., in reference to the coordinate system I. For example, R0
3 means that the third

transformation is viewed from the system I. The transformation R00
3 indicates the

third transformation which is viewed from the system II. That is, the number of
primes “ ′ ” denotes the number of the coordinate system to distinguish the systems
I and II. Let R2 (without prime) stand for the second transformation viewed from the
system O.

Meanwhile, we have

R1R
0
2 ¼ R2R1: ð14:79Þ

This notation is in parallel to (9.80). Similarly, we have

R0
2R

00
3 ¼ R0

3R
0
2 and R1R

0
3 ¼ R3R1: ð14:80Þ

Therefore, we get [3]

R1R
0
2R

00
3 ¼ R1R

0
3R

0
2 ¼ R3R1R

0
2 ¼ R3R2R1: ð14:81Þ

Also combining (14.79) and (14.80), we have

R00
3 ¼ ðR2R1Þ�1R3 R2R1ð Þ: ð14:82Þ

Let us call R0
2, R

00
3, etc., a transformation on a “moving” coordinate system (i.e., the

system I, II, III, 	 	 	). On the other hand, we call R1, R2, etc., a transformation on a
“fixed” system (i.e., original coordinate system O). Thus, (14.81) shows that the
multiplication order is reversed with respect to the moving system and fixed system
[3].

For a practical purpose, it would be enough to consider three successive trans-
formations. Let us think of, however, a general case where n successive transfor-
mations are involved (n denotes a positive integer). For the purpose of succinct
notation, let us define the linear transformations and relevant coordinate systems as

those in Fig. 14.17. Also, we define a following orthogonal transformation R ið Þ
j :

R ið Þ
j 0
 i\j
 nð Þ and Ri � R 0ð Þ

i ; ð14:83Þ

where R ið Þ
j is defined as a transformation Rj described in reference to the coordinate

system i; R 0ð Þ
i means that Ri is referred to the original coordinate system (i.e., the

fixed coordinate). Then, we have
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R i�2ð Þ
i�1 R i�1ð Þ

k ¼ R i�2ð Þ
k R i�2ð Þ

i�1 ðk[ i� 1Þ: ð14:84Þ

Particularly, when i = 3

R 1ð Þ
2 R 2ð Þ

k ¼ R 1ð Þ
k R 1ð Þ

2 ðk[ 2Þ: ð14:85Þ

For i = 2 , we have

R1R
1ð Þ
k ¼ RkR1 ðk[ 1Þ: ð14:86Þ

We define n time successive transformations on a moving coordinate system as fRn

such that

fRn � R1R
1ð Þ
2 R 2ð Þ

3 	 	 	R n�3ð Þ
n�2 R n�2ð Þ

n�1 R n�1ð Þ
n : ð14:87Þ

Applying (14.84) on R n�2ð Þ
n�1 R n�1ð Þ

n and rewriting (14.87), we have

fRn ¼ R1R
1ð Þ
2 R 2ð Þ

3 	 	 	R n�3ð Þ
n�2 R n�2ð Þ

n R n�2ð Þ
n�1 : ð14:88Þ

Applying (14.84) again on R n�3ð Þ
n�2 R n�2ð Þ

n , we get

fRn ¼ R1R
1ð Þ
2 R 2ð Þ

3 	 	 	R n�3ð Þ
n R n�3ð Þ

n�2 R n�2ð Þ
n�1 : ð14:89Þ

Proceeding similarly, we have

fRn ¼ R1R
1ð Þ
n R 1ð Þ

2 R 2ð Þ
3 	 	 	R n�3ð Þ

n�2 R n�2ð Þ
n�1 ¼ RnR1R

1ð Þ
2 R 2ð Þ

3 	 	 	R n�3ð Þ
n�2 R n�2ð Þ

n�1 ; ð14:90Þ

where with the last equality, we used (14.86). In this case, we have

R1R
1ð Þ
n ¼ RnR1: ð14:91Þ

x

z

y

Fig. 14.17 Successive orthogonal transformations and relevant coordinate systems
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To reach RHS of (14.90), we applied (14.84) n� 1ð Þ times in total. Then we repeat

the above procedures with respect to R n�2ð Þ
n�1 another n� 2ð Þ times to get

fRn ¼ RnRn�1R1R
1ð Þ
2 R 2ð Þ

3 	 	 	R n�3ð Þ
n�2 : ð14:92Þ

Further proceeding similarly, we finally get

fRn ¼ RnRn�1Rn�2 	 	 	R3R2R1: ð14:93Þ

In total, we have applied the permutation of (14.84) n n� 1ð Þ=2 times. When n is 2,
n n� 1ð Þ=2 ¼ 1. This is the case with (14.79). If n is 3, n n� 1ð Þ=2 ¼ 3. This is the
case with (14.81). Thus, (14.93) once again confirms that the multiplication order is
reversed with respect to the moving system and fixed system.

Meanwhile, we define ~P as

~P � R1R
1ð Þ
2 R 2ð Þ

3 	 	 	R n�3ð Þ
n�2 R n�2ð Þ

n�1 : ð14:94Þ

Alternately, we describe

~P ¼ Rn�1Rn�2 	 	 	R3R2R1: ð14:95Þ

Then, from (14.87) and (14.90), we get

fRn ¼ ~PR n�1ð Þ
n ¼ Rn~P: ð14:96Þ

Equivalently, we have

Rn ¼ ~PR n�1ð Þ
n

~P�1 or ð14:97Þ

R n�1ð Þ
n ¼ ~P�1Rn~P: ð14:98Þ

Moreover, we have

~PT ¼ R1R
1ð Þ
2 R 2ð Þ

3 	 	 	R n�3ð Þ
n�2 R n�2ð Þ

n�1

h iT
¼ R n�2ð Þ

n�1

h iT
R n�3ð Þ
n�2

h iT
	 	 	 R 1ð Þ

2

h iT
R1½ �T

¼ R n�2ð Þ
n�1

h i�1
R n�3ð Þ

n�2

h i�1
	 	 	 R 1ð Þ

2

h i�1
R�1
1

� 

¼ R1R

1ð Þ
2 R 2ð Þ

3 	 	 	R n�3ð Þ
n�2 R n�2ð Þ

n�1

h i�1
¼ ~P�1:

ð14:99Þ

The third equality of (14.99) comes from the fact that matrices R n�2ð Þ
n�1 ,R n�3ð Þ

n�2 ,R 1ð Þ
2 , and

R1 are orthogonal matrices. Then, we get
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~PT ~P ¼ ~P~PT ¼ E: ð14:100Þ

Thus, ~P is an orthogonal matrix.
From a point of view of practical application, (14.97) and (14.98) are very

useful. This is because Rn and R n�1ð Þ
n are conjugate to each other. Consequently, Rn

has the same eigenvalues and trace as R n�1ð Þ
n . In light of (9.81), we see that (14.97)

and (14.98) relate Rn (i.e., viewed in reference to the original coordinate system) to
R n�1ð Þ
n [i.e., the same transformation viewed in reference to the coordinate system

reached after the n� 1ð Þ transformations]. Since the transformation R n�1ð Þ
n is usu-

ally described in a simple form, matrix calculations to compute Rn can readily be
done. Now let us consider an example.

Example 14.4: Successive Rotations A typical illustration of three successive
transformation in moving coordinate systems is well known as Euler angles. This
contains the following three steps:

(i) Rotation by a around the z-axis in the original coordinate system (O).
(ii) Rotation by b around the y0-axis in the transferred coordinate system (I).
(iii) Rotation by c around the z00-axis (the same as z0-axis) in the transferred

coordinate system (II).

Three steps are represented by matrices of Rza, R0
y0b, and R00

z00c in (14.12). That is,

as a total transformation fR3 , we have

fR3 ¼
cos a � sin a 0

sin a cos a 0

0 0 1

0
B@

1
CA

cos b 0 sin b

0 1 0

� sin b 0 cos b

0
B@

1
CA

cos c � sin c 0

sin c cos c 0

0 0 1

0
B@

1
CA

¼
cos a cos b cos c� sin a sin c � cos a cos b sin c� sin a cos c cos a sin b

sin a cos b cos cþ cos a sin c � sin a cos b sin cþ cos a cos c sin a sin b

� sin b cos c sin b sin c cos b

0
B@

1
CA:

ð14:101Þ

This matrix corresponds to (14.87), where n ¼ 3. The angles a, b, and c in (14.101)
are well known as Euler angles, and the associated matrix is widely used in
quantum mechanics and related fields of natural science. The matrix notation,
however, differs from literature to literature, and so care should be taken [3–5].
Using the notation of (14.87), we have

R1 ¼
cos a � sin a 0
sin a cos a 0
0 0 1

0
@

1
A; ð14:102Þ
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R 1ð Þ
2 ¼

cos b 0 sin b
0 1 0

� sin b 0 cos b

0
@

1
A; ð14:103Þ

R 2ð Þ
3 ¼

cos c � sin c 0
sin c cos c 0
0 0 1

0
@

1
A: ð14:104Þ

From (14.94) we also get

~P � R1R
1ð Þ
2 ¼

cos a cos b � sin a cos a sin b
sin a cos b cos a sin a sin b
� sinb 0 cos b

0
@

1
A: ð14:105Þ

Corresponding to (14.97), we have

R3 ¼ ~PR 2ð Þ
3
~P�1 ¼ R1R

1ð Þ
2 R 2ð Þ

3 R 1ð Þ
2

h i�1
R�1
1 : ð14:106Þ

Now matrix calculations are readily performed such that

R3 ¼
cos a � sin a 0

sin a cos a 0

0 0 1

0
B@

1
CA

cos b 0 sin b

0 1 0

� sin b 0 cosb

0
B@

1
CA

cos c � sin c 0

sin c cos c 0

0 0 1

0
B@

1
CA

�
cos b 0 � sin b

0 1 0

sin b 0 cosb

0
B@

1
CA

cos a sin a 0

� sin a cos a 0

0 0 1

0
B@

1
CA

¼

ðcos2 a cos2 bþ sin2 aÞ cos c
þ cos2 a sin2 b

cos a sin a sin2 bð1� cos cÞ
� cosb sin c

cos a cosb sin bð1� cos cÞ
þ sin a sin b sin c

cos a sin a sin2 bð1� cos cÞ
þ cos b sin c

ðsin2 a cos2 bþ cos2 aÞ cos c
þ sin2 a sin2 b

sin a cos b sin bð1� cos cÞ
� cos a sin b sin c

cos b sin b cos að1� cos cÞ
� sin a sin b sin c

sin a cosb sin bð1� cos cÞ
þ cos a sin b sin c

sin2 b cos c

þ cos2 b

0
BBBBBBBB@

1
CCCCCCCCA

ð14:107Þ

Notice that in (14.107), we have a trace v described as

v ¼ 1þ 2 cos c: ð14:108Þ

The trace is same as that of R 2ð Þ
3 , as expected from (14.106) and (14.97).

Equation (14.107) apparently seems complicated but has simple and

well-defined meaning. The rotation represented by R 2ð Þ
3 is characterized by a rotation
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by c around the z00-axis. Figure 14.18 represents the orientation of the z00-axis viewed
in reference to the original xyz-system. That is, the z00-axis (identical to the rotation
axis A) is designated by an azimuthal angle a and a zenithal angle b as shown.
The operation R3 is represented by a rotation by c around the axis A in the xyz-
system. The angles a, b, and c coincide with the Euler angles designated with the
same independent parameters a, b, and c.

From (14.77) and (14.107), a diagonalizing matrix for R3 is ~PU. That is,

Uy~P�1R3~PU ¼ ð~PUÞyR3~PU ¼ UyR 2ð Þ
3 U ¼

eic 0 0
0 e�ic 0
0 0 1

0
@

1
A: ð14:109Þ

Note that as ~P is a real matrix, we have

~Py ¼ ~PT ¼ ~P�1 ð14:110Þ

and

~PU ¼
cos a cos b � sin a cos a sinb

sin a cos b cos a sin a sin b

� sin b 0 cos b

0
B@

1
CA

1ffiffi
2

p 1ffiffi
2

p 0

� iffiffi
2

p iffiffi
2

p 0

0 0 1

0
B@

1
CA

¼

1ffiffi
2

p cos a cos bþ iffiffi
2

p sin a 1ffiffi
2

p cos a cos b� iffiffi
2

p sin a cos a sin b
1ffiffi
2

p sin a cos b� iffiffi
2

p cos a 1ffiffi
2

p sin a cos bþ iffiffi
2

p cos a sin a sinb

� 1ffiffi
2

p sinb � 1ffiffi
2

p sinb cos b

0
BB@

1
CCA:

ð14:111Þ

y

x

z

O

Fig. 14.18 Rotation c around
the rotation axis A. The
orientation of A is defined by
angles a and b as shown
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A vector representing the rotation axis corresponds to an eigenvalue 1. The
direction cosines of x-, y-, and z-components for the rotation axis A are cos a sin b,
sin a sin b, and cos b (see Fig. 3.1), respectively, when viewed in reference to the
original xyz-coordinate system. This can directly be shown as follows: The char-
acteristic equation of R3 is expressed as

R3 � kEj j ¼ 0: ð14:112Þ

Using (14.107), we have

R3 � kEj j

¼

ðcos2 a cos2 bþ sin2 aÞ cos c
þ cos2 a sin2 b� k

cos a sin a sin2 bð1� cos cÞ
� cos b sin c

cos a cos b sin bð1� cos cÞ
þ sin a sin b sin c

cos a sin a sin2 bð1� cos cÞ
þ cosb sin c

ðsin2 a cos2 bþ cos2 aÞ cos c
þ sin2 a sin2 b� k

sin a cos b sin bð1� cos cÞ
� cos a sin b sin c

cos a cos b sin bð1� cos cÞ
� sin a sin b sin c

sin a cos b sin bð1� cos cÞ
þ cos a sin b sin c

sin2 b cos c

þ cos2 b� k

														

														
ð14:113Þ

When k ¼ 1, we must have the direction cosines of the rotation axis as an eigen-
vector. That is,

ðcos2 b cos2 aþ sin2 aÞ cos c
þ sin2 b cos2 a� 1

sin2 b cos a sin að1� cos cÞ
� cos b sin c

cos b sin b cos að1� cos cÞ
þ sin b sin a sin c

sin2 b cos a sin að1� cos cÞ
þ cos b sin c

ðcos2 b sin2 aþ cos2 aÞ cos c
þ sin2 a sin2 b� 1

sin a cos b sin bð1� cos cÞ
� cos a sin b sin c

cos a cos b sin bð1� cos cÞ
� sin a sin b sin c

sin a cos b sin bð1� cos cÞ
þ cos a sin b sin c

sin2 b cos c

þ cos2 b� 1

														

														
�

cos a sin b

sin a sin b

cos b

0
B@

1
CA ¼

0

0

0

0
B@

1
CA:

ð14:114Þ

The above matrix calculations certainly verify that (14.114) holds; readers, check it.
As an application of (14.107) to an illustrative example, let us consider a 2p=3

rotation around an axis trisecting a solid angle p=2 formed by the x-, y-, and z-axes
(see Fig. 14.19 and Sect. 14.3). Then we have

cos a ¼ sin a ¼ 1=
ffiffiffi
2

p
; cos b ¼ 1=

ffiffiffi
3

p
; sin b ¼ 2=

ffiffiffi
3

p
;

cos c ¼ �1=2; sin c ¼
ffiffiffi
3

p
=2:

ð14:115Þ

Substituting (14.115) for (14.107), we get
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R3 ¼
0 0 1
1
0

0 0
1 0

0
@

1
A: ð14:116Þ

If we write a linear transformation R3 following (9.37), we get

R3 xijð Þ ¼ e1ij e2ij e3ijð Þ
0 0 1
1
0

0 0
1 0

0
@

1
A x1

x2
x3

0
@

1
A; ð14:117Þ

where e1ij ; e2ij ; and e3ij represent unit basis vectors in the direction of x-, y-, and z-
axes, respectively. We have xij ¼ x1 e1ij þ x2 e2ij þ x3 e3ij . Thus, we get

R3 xijð Þ ¼ e2ij e3ij e1ijð Þ
x1
x2
x3

0
@

1
A: ð14:118Þ

This implies a cyclic permutation of the basis vectors. This is well-characterized by
Fig. 14.19. Alternatively, (14.117) can be expressed in terms of the column vectors
(i.e., coordinate) transformation as

R3 xijð Þ ¼ e1ij e2ij e3ijð Þ
x3
x1
x2

0
@

1
A: ð14:119Þ

x

y

z

O

(b)(a)

x
y

z

O

Fig. 14.19 Rotation axis of C3 that permutates basis vectors. a The C3 axis is a straight line that
connects the origin and each vertex of a cube. b Cube viewed along the C3 axis that connects the
origin and vertex
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Care should be taken on which linear transformation is intended out of the basis
vectors transformation or coordinate transformation.

As mentioned above, we have compared geometric features on the moving
coordinate system and fixed coordinate system. The features apparently seem to
differ at a glance but are essentially the same.

References

1. Hamermesh M (1989) Group theory and its application to physical problems. Dover, New
York

2. Cotton FA (1990) Chemical applications of group theory. Wiley, New York
3. Edmonds AR (1957) Angular momentum in quantum mechanics. Princeton University Press,

Princeton
4. Chen JQ, Ping J, Wang F (2002) Group representation theory for physicists, 2nd edn. World

Scientific, Singapore
5. Arfken GB, Weber HJ, Harris FE (2013) Mathematical methods for physicists, 7th edn.

Academic Press, Waltham

498 14 Symmetry Groups



Chapter 15
Representation Theory of Groups

Representation theory is an important pillar of the group theory. As we shall see
soon, a word “representation” and its definition sound a bit daunting. To be short,
however, we need “numbers” or “matrices” to do a mathematical calculation.
Therefore, we may think of the representation as merely numbers and matrices.
Individual representations have their dimension. If that dimension is one, we treat a
representation as a number (real or complex). If the dimension is two or more, we
are going to deal with matrices; in the case of the n-dimension, it is a (n,n) square
matrix. In this chapter, we focus on the representation theory of finite groups. In this
case, we have an important theorem stating that a representation of any finite group
can be converted to a unitary representation by a similarity transformation. That is,
group elements of a finite group are represented by a unitary matrix. According to
the dimension of the representation, we have the same number of basis vectors.
Bearing these things firmly in mind, we can pretty easily understand this important
notion of representation.

15.1 Definition of Representation

In Sect. 13.4, we dealt with various aspects of the mapping between group ele-
ments. Of these, we studied fundamental properties of isomorphism and homo-
morphism. In this section, we introduce the notion of representation of groups and
study it. If we deal with a finite group consisting of n elements, we describe it as
g ¼ g1 � e; g2; � � � ; gnf g as in the case of Sect. 13.1.

Definition 15.1 Let g ¼ gmf g be a group comprising elements gm. Suppose that a
(d,d) matrix D gmð Þ is given for each group element gm. Suppose also that in cor-
respondence with

© Springer Nature Singapore Pte Ltd. 2018
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glgm ¼ gq; ð15:1Þ

D gl
� �

D gmð Þ ¼ D gq
� � ð15:2Þ

holds. Then a set L consisting of D gmð Þ, that is,

L ¼ D gmð Þf g

is said to be a representation.
Although the definition seems somewhat daunting, the representation is, as

already seen, merely a homomorphism.
We call individual matrices D gmð Þ a representation matrix. A dimension d of the

matrix is said to be a dimension of representation as well. In correspondence with
gme ¼ gm, we have

D gl
� �

DðeÞ ¼ D gl
� �

: ð15:3Þ

Therefore, we get

DðeÞ ¼ E; ð15:4Þ

where E is an identity matrix of dimension d. Also in correspondence with
gmg�1

m ¼ g�1
m gm ¼ E, we have

D gmð ÞD g�1
m

� � ¼ D g�1
m

� �
D gmð Þ ¼ D eð Þ ¼ E: ð15:5Þ

That is,

D g�1
m

� � ¼ ½D gmð Þ��1: ð15:6Þ

Namely, an inverse matrix corresponds to an inverse element. If the representation
has one-to-one correspondence, the representation is said to be faithful. In the case
of n-to-one correspondence, the representation is homomorphic. In particular,
representing all group elements by 1 [as (1,1) matrix] is called an “identity
representation.”

Illustrative examples of the representation have already appeared in Sects. 14.2
and 14.3. In that case, the representation was faithful. For instance, in Tables 14.2,
14.4, and 14.6 as well as Fig. 14.12, the number of representation matrices is the
same as that of group elements. In Sects. 14.2 and 14.3, in most cases we have used
real orthogonal matrices. Such matrices are included among unitary matrices.
Representation using unitary matrices is said to be a “unitary representation.” In
fact, a representation of a finite group can be converted to a unitary representation.

Theorem 15.1 [1] A representation of any finite group can be converted to a
unitary representation by a similarity transformation.
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Proof Let g ¼ g1; g2; � � � ; gnf g be a finite group of order n. Let D gmð Þ be a rep-
resentation matrix of gm of dimension d. Here we suppose that D gmð Þ is not unitary,
but non-singular. Using D gmð Þ, we construct the following matrix H such that

H ¼
Xn
i¼1

D gið ÞyD gið Þ: ð15:7Þ

Then, for an arbitrarily chosen group element gj, we have

D gj
� �y

HD gj
� � ¼Xn

i¼1

D gj
� �y

D gið ÞyD gið ÞD gj
� �

¼
Xn
i¼1

D gið ÞD gj
� �� �y

D gið ÞD gj
� �

¼
Xn
i¼1

D gigj
� �� �y

D gigj
� � ¼Xn

k¼1

D gkð ÞyD gkð Þ

¼ H;

ð15:8Þ

where the third equality comes from homomorphism of the representation and the
second last equality is due to rearrangement theorem (see Sect. 13.1).

Note that each matrix D gið ÞyD gið Þ is a Hermitian Gram matrix constructed by a
non-singular matrix and that H is a summation of such Gram matrices.
Consequently, on the basis of the argument of Sect. 11.2, H is positive definite and
all the eigenvalues of H are positive. Then, using an appropriate unitary matrix U,
we can get a diagonal matrix K such that

UyHU ¼ K: ð15:9Þ

Here, the diagonal matrix K is given by

K ¼
k1

k2
. .
.

kd

0BB@
1CCA; ð15:10Þ

with ki [ 0 1� i� dð Þ. We define K1=2 such that

K1=2 ¼

ffiffiffiffiffi
k1

p ffiffiffiffiffi
k2

p

. .
. ffiffiffiffiffi

kd
p

0BBB@
1CCCA; ð15:11Þ
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ðK1=2Þ�1 ¼

ffiffiffiffiffiffiffi
k�1
1

q
ffiffiffiffiffiffiffi
k�1
2

q
. .
. ffiffiffiffiffiffiffi

k�1
d

q

0BBBBBB@

1CCCCCCA: ð15:12Þ

Notice that both K1=2 and ðK1=2Þ�1 are non-singular. Furthermore, we define a
matrix V such that

V ¼ UðK1=2Þ�1: ð15:13Þ

Then, multiplying both sides of (15.8) by V�1 from the left and by V from the right
and inserting VV�1 ¼ E in between, we get

V�1D gj
� �y

VV�1HVV�1D gj
� �

V ¼ V�1HV : ð15:14Þ

Meanwhile, we have

V�1HV ¼ K1=2UyHU K1=2
� ��1

¼ K1=2KðK1=2Þ�1 ¼ K: ð15:15Þ

With the second equality of (15.15), we used (15.9). Inserting (15.15) into (15.14),
we get

V�1D gj
� �y

VKV�1D gj
� �

V ¼ K: ð15:16Þ

Multiplying both sides of (15.16) by K�1 from the left, we get

K�1V�1D gj
� �y

VKð Þ � V�1D gj
� �

V ¼ E: ð15:17Þ

Using (15.13), we have

K�1V�1 ¼ VKð Þ�1¼ UK1=2
h i�1

¼ K1=2
� ��1

U�1 ¼ K1=2
� ��1

Uy:

Meanwhile, taking adjoint of (15.13) and noting (15.12), we get

Vy ¼ ðK1=2Þ�1
h iy

Uy ¼ ðK1=2Þ�1Uy:

Using (5.13) once again, we have

VK ¼ UK1=2:
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Also using (5.13), we have

V�1
� �y¼ U K1=2

� ��1
	 
�1

( )y
¼ K1=2Uyh iy

¼ Uyh iy
K1=2
� �y

¼ UK1=2;

where we used Hermiticity of U and (15.11).
Using the above relations and rewriting (15.17), finally we get

VyD gj
� �yðV�1Þy � V�1D gj

� �
V ¼ E: ð15:18Þ

Defining eD gj
� �

as follows

eD gj
� � � V�1D gj

� �
V ; ð15:19Þ

and taking adjoint of both sides of (15.19), we get

VyD gj
� �y

V�1� �y¼ eD gj
� �y

: ð15:20Þ

Then, from (15.18), we have

eD gj
� �y eD gj

� � ¼ E: ð15:21Þ

Equation (15.21) implies that a representation of any finite group can be converted
to a unitary representation by a similarity transformation of (15.19). This completes
the proof.

15.2 Basis Functions of Representation

In Part III, we considered a linear transformation of a vector. In that case, we have
defined vectors as abstract elements with which operation laws of (9.1)–(9.8) hold.
We assumed that the operation is addition. In this part, so far we have dealt with
vectors mostly in R

3. Therefore, vectors naturally possess geometric features. In
this section, we extend a notion of vectors so that they can be treated under a wider
scope. More specifically, we include mathematical functions treated in analysis as
vectors.

To this end, let us think of a basis of a representation. According to the
dimension d of the representation, we have d basis vectors. Here we adopt d linearly
independent basis vectors for the representation.

Let w1;w2; � � � ; andwd be linearly independent vectors in a vector space Vd . Let
g ¼ g1; g2; � � � ; gnf g be a finite group of order n. Here we assume that gi 1� i� nð Þ
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is a linear transformation (or operator) such as a symmetry operation dealt with in
Chap. 14. Suppose that the following relation holds with gi 2 g 1� i� nð Þ:

gi wmð Þ ¼
Xd
l¼1

wlDlm gið Þ 1� m� dð Þ: ð15:22Þ

Here we followed the notation of (9.37) that represented a linear transformation of a
vector. Rewriting (15.22) more explicitly, we have

gi wmð Þ ¼ w1w2 � � �wdð Þ
D11 gið Þ � � � D1d gið Þ

..

. . .
. ..

.

Dd1 gið Þ � � � Ddd gið Þ

0B@
1CA: ð15:23Þ

Comparing (15.23) with (9.37), we notice that w1;w2; � � � ; andwd act as vectors.
The corresponding coordinates of the vectors (or a column vector), i.e.,
x1; x2; � � � ; and xd , have been omitted.

Now let us make sure that a set L consisting of D g1ð Þ;D g1ð Þ; � � � ;D gnð Þf g form
a representation. Operating gj on (15.22), we have

gj gi wmð Þ½ � ¼ gjgi
� �

wmð Þ ¼ gj
Xd
l¼1

wlDlm gið Þ ¼
Xd
l¼1

gj wlDlm gið Þ� �
¼
Xd
l¼1

ðgjwlÞDlm gið Þ ¼
Xd
l¼1

Xd
k¼1

wkDkl gj
� �

Dlm gið Þ

¼
Xd
k¼1

wk½D gj
� �

D gið Þ�km:

ð15:24Þ

Putting gjgi ¼ gk according to multiplication of group elements, we get

gk wmð Þ ¼
Xd
k¼1

wk D gj
� �

D gið Þ� �
km: ð15:25Þ

Meanwhile, replacing gi in (15.22) with gk, we have

gk wmð Þ ¼
Xd
l¼1

wkDkm gkð Þ: ð15:26Þ

Comparing (15.25) and (15.26) and considering the uniqueness of vector repre-
sentation based on linear independence of the basis vectors (see Sect. 9.1), we get

D gj
� �

D gið Þ� �
km¼ Dkm gkð Þ � D gkð Þ½ �km; ð15:27Þ
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where the last identity follows the notation (9.38) of Sect. 9.2. Hence, we have

D gj
� �

D gið Þ ¼ D gkð Þ: ð15:28Þ

Thus, the set L consisting of D g1ð Þ;D g2ð Þ; � � � ;D gnð Þf g is certainly a repre-
sentation of the group g ¼ g1; g2; � � � ; gnf g: In such a case, the set B consisting of
linearly independent d functions (i.e., vectors)

B ¼ fw1;w2; � � � ;wdg ð15:29Þ

is said to be basis functions of the representation D. The number d equals the
dimension of representation. Correspondingly, the representation matrix is a (d,d)
square matrix. As remarked above, the correspondence between the elements of L
and g is not necessarily one-to-one (isomorphic), but may be n-to-one
(homomorphic).

Definition 15.2 Let D and D0 be two representations of g ¼ g1; g2; � � � ; gnf g:
Suppose that these representations are related to each other by similarity transfor-
mation such that

D0 gið Þ ¼ T�1D gið ÞT 1� i� nð Þ; ð15:30Þ

where T is a non-singular matrix. Then, D and D0 are said to be equivalent rep-
resentations, or simply equivalent. If the representations are not equivalent, they are
called inequivalent.

Suppose that B ¼ fw1;w2; � � � ;wdg is a basis of a representation D of g ¼
g1; g2; � � � ; gnf g: Then we have (15.22). Let T be a non-singular matrix. Using T,

we want to transform a basis of the representation D from B to a new set
B0 ¼ w0

1;w
0
2; � � � ;w0

d

� �
. Individual elements of the new basis are expressed as

w0
m ¼

Xd
k¼1

wkTkm: ð15:31Þ

Since T is non-singular, this ensures that w0
1;w

0
2; � � � ; andw0

d are linearly indepen-
dent and, hence, that B0 forms another basis set of D (see discussion of Sect. 9.4).
Thus, we can describe wl 1� l� nð Þ in terms of w0

m. That is,

wl ¼
Xd
k¼1

w0
k T�1� �

kl: ð15:32Þ

Operating gi on both sides of (15.31), we have
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gi w
0
m

� � ¼Xd
k¼1

giðwkÞTkm ¼
Xd
k¼1

Xd
l¼1

wlDlk gið ÞTkm

¼
Xd
k¼1

Xd
l¼1

Xd
j¼1

w0
j T�1� �

jlDlk gið ÞTkm ¼
Xd
j¼1

w0
j T�1D gið ÞT� �

jm:

ð15:33Þ

Let D0 be a representation of g in reference to B0 ¼ w0
1;w

0
2; � � � ;w0

d

� �
. Then we

have

gi w
0
m

� � ¼Xd
j¼1

w0
jD

0
jm: ð15:34Þ

Hence, (15.30) follows in virtue of the linear independence of w0
1;w

0
2; � � � ; andw0

d .
Thus, we see that the transformation of basis vectors via (15.31) causes similarity
transformation between representation matrices. This is in parallel with (9.81) and
(9.88).

Below we show several important notions as a definition. We assume that a
group is a finite group.

Definition 15.3 Let D and eD be two representations of g ¼ g1; g2; � � � ; gnf g: Let
D gið Þ and eD gið Þ be two representation matrices of gi 1� i� nð Þ. If we construct
D gið Þ such that

D gið Þ ¼ D gið Þ eD gið Þ

 �

; ð15:35Þ

then D gið Þ is a representation as well. The representation D gið Þ is said to be a direct
sum of D gið Þ and eD gið Þ. We denote it by

D gið Þ ¼ D gið Þ � eD gið Þ: ð15:36Þ
A dimension D gið Þ is a sum of that of D gið Þ and that of eD gið Þ.
Definition 15.4 Let D be a representation of g and let D gið Þ be a representation
matrix of a group element gi. If we can convert D gið Þ to a block matrix such as
(15.35) by its similarity transformation, D is said to be a reducible representation, or
simply reducible. If the representation is not reducible, it is irreducible.

A reducible representation can be decomposed (or reduced) to a direct sum of
plural irreducible representations. Such an operation (or procedure) is called
reduction.

Definition 15.5 Let g ¼ g1; g2; � � � ; gnf g be a group and let V be a vector space.
Then, we denote a representation D of g operating on V by

D : g ! GL Vð Þ:
We call V a representation space (or carrier space) LS of D [2, 3].
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From Definition 15.5, the dimension of representation is identical with the
dimension of V. Suppose that there is a subspace W in V. If W is D gið Þ-invariant
(see Sect. 10.2) with all 8gi 2 g, W is said to be an invariant subspace of V. Here,
we say that W is D gið Þ-invariant if we have xij 2 W ) D gið Þ xij 2 W ; see
Sect. 10.2. Notice that xj i may well represent a function wm of (15.22). In this
context, we have a following important theorem.

Theorem 15.2 [2] Let D: g ! GL Vð Þ be a unitary representation over V. Let W be
a D gið Þ-invariant subspace of V, where gi 1� i� nð Þ 2 g ¼ g1; g2; � � � ; gnf g.
Then, W? is a D gið Þ-invariant subspace of V as well.

Proof Suppose that aj i 2 W? and let bj i 2 W . Then, from (11.86), we have

b D gið Þj jah i ¼ a D gið Þy
��� ���bD E�

¼ a ½D gið Þ��1�� ��bD E�
¼ a D g�1

i

� ��� ��b� ��
;

where we used the fact that D gið Þ is a unitary matrix; see (15.6). But, since W is
D gið Þ-invariant from the supposition, jD g�1

i

� �jbi 2 W . Here notice that g�1
i must

be 9gi 1� i� nð Þ 2 g. Therefore, we should have

bD gið Þaj jh i ¼ a D g�1
i

� ��� ��b� ��¼ 0:

This implies that jD gið Þjai 2 W?. This means that W? is a D gið Þ-invariant
subspace of V. This completes the proof.

From Theorem 12.1, we have

V ¼ W �W?:

Correspondingly, as in the case of (10.102), D gið Þ is reduced as follows:

D gið Þ ¼ D Wð Þ gið Þ
D W?ð Þ gið Þ


 �
;

where D Wð Þ gið Þ and D W?ð Þ gið Þ are representation matrices associated with subspaces
W and W?, respectively. This is the converse of the additive representations that
appeared in Definition 15.3. From (9.17) to (9.18), we have

dimV ¼ dimW þ dimW?: ð15:37Þ

If V is a d-dimensional vector space, V is spanned by d linearly independent basis
vectors (or functions) wl 1� l� dð Þ. Suppose that the dimension W and W? is

d Wð Þ and d W?ð Þ, respectively. Then, W and W? are spanned by d Wð Þ linearly
independent vectors and d W?ð Þ linearly independent vectors, respectively. The
subspaces W and W? may well further be decomposed into orthogonal comple-
ments [i.e., D gið Þ-invariant subspaces of V]. In this situation, in general, we write
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D gið Þ ¼ D 1ð Þ gið Þ � D 2ð Þ gið Þ � � � � � D xð Þ gið Þ: ð15:38Þ

We will develop further detailed discussion in Sect. 15.4.
If the aforementioned decomposition cannot be done, D is irreducible.

Therefore, it will be of great importance to examine a dimension of irreducible
representations contained in (15.38). This is closely related to the choice of basis
vectors and properties of the invariant subspaces. Notice that the same irreducible
representation may repeatedly occur in (15.38).

Before advancing to the next section, however, let us think of an example to get
used to abstract concepts. This is at the same time for the purpose of taking the
contents of Chap. 16 in advance.

Example 15.1 Figure 15.1 shows structural formulae including resonance struc-
tures for allyl radical. Thanks to the resonance structures, the allyl radical belongs to
C2v; see the multiplication table in Table 14.1. The molecule lies on the yz-plane
and a line connecting C1 and a bonded H is the C2 axis (see Fig. 15.1). The C2 axis
is identical to the z-axis. The molecule has mirror symmetries with respect to the yz-
and zx-planes. We denote p-orbitals of C1, C2, and C3 by /1, /2, and /3,
respectively. We suppose that these orbitals extend toward the x-direction with a
positive sign in the upper side and a negative sign in the lower side relative to the
plane of paper. Notice that we follow custom of the group theory notation with the
coordinate setting in Fig. 15.1.

We consider an inner vector space V3 spanned by /1, /2, and /3. To explicitly
show that these are vectors of the inner vector space, we express them as /1j i, /2j i,
and /3j i in this example. Then, according to (9.19) of Sect. 9.1, we write

V3 ¼ Span /1j i; /2j i; /3j if g:

C1

C2C3

HH

HH

H

C1

C2C3

HH

HH

H

x

z

y

Fig. 15.1 Allyl radical and its resonance structure. The molecule is placed on the yz-plane. The z-
axis is identical with a straight line connecting C1 and H (i.e., C2 axis)
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The vector space V3 is a representation space pertinent to a representation D of the
present example. Also, in parallel to (11.32) of Sect. 11.2, we express an arbitrary
vector wj i 2 V3 as

wj i ¼ c1 /1j i þ c2 /2j i þ c3 /3j i ¼ c1/1 þ c2/2 þ c3/3j i

¼ /1j i /2j i /3j ið Þ
c1
c2
c3

0B@
1CA:

Let us now operate a group element of C2v. For example, choosing C2 zð Þ, we have

C2 zð Þð wj iÞ ¼ /1j i /2j i /3j ið Þ
�1 0 0
0
0

0 �1
�1 0

0@ 1A c1
c2
c3

0@ 1A: ð15:39Þ

Thus, C2 zð Þ is represented by a (3,3) matrix. Other group elements are represented
similarly. These results are collected in Table 15.1, where each matrix is given with
respect to /1j i, /2j i, and /3j i as basis vectors. Notice that the matrix
representations differ from those of Table 14.2, where we chose xj i; yj i; and zj i
for the basis vectors. From Table 15.1, we immediately see that the representation
matrices are reduced to an upper (1,1) diagonal matrix (i.e., just a number) and a
lower (2,2) diagonal matrix.

In Table 15.1, we find that all the matrices are Hermitian (as well as unitary).
Since C2v is an Abelian group (i.e., commutative), in light of Theorem 12.13, we
should be able to diagonalize these matrices by a single unitary similarity trans-
formation all at once. In fact, E and r0v yzð Þ are invariant with respect to unitary
similarity transformation, and so we only have to diagonalize C2 zð Þ and rv zxð Þ at
once. As a characteristic equation of the above (3,3) matrix of (15.39), we have

�k� 1 0 0
0
0

�k �1
�1 �k

������
������ ¼ 0:

Solving the above equation, we get k ¼ 1 or k ¼ �1 (as a double root). Also as a
diagonalizing unitary matrix U, we get

Table 15.1 Matrix representation of symmetry operations given with respect to /1j i, /2j i, and
/3j i
E C2 zð Þ rv zxð Þ r0v yzð Þ

1 0 0
0
0

1 0
0 1

0@ 1A �1 0 0
0
0

0 �1
�1 0

0@ 1A 1 0 0
0
0

0 1
1 0

0@ 1A �1 0 0
0
0

�1 0
0 �1

0@ 1A
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U ¼
1 0 0
0
0

1ffiffi
2

p 1ffiffi
2

p
1ffiffi
2

p � 1ffiffi
2

p

0B@
1CA ¼ Uy: ð15:40Þ

Thus, (15.39) can be rewritten as

C2 zð Þð wj iÞ ¼ ð /1j i /2j i /3j iÞUUy
�1 0 0
0

0

0 �1

�1 0

0B@
1CAUUy

c1
c2
c3

0B@
1CA

¼ /1j i 1ffiffiffi
2

p /2 þ/3j ið Þ 1ffiffiffi
2

p /2 � /3j ið Þ

 � �1 0 0

0

0

�1 0

0 1

0B@
1CA c1

1ffiffi
2

p c2 þ c3ð Þ
1ffiffi
2

p c2 � c3ð Þ

0BB@
1CCA:

The diagonalization of the representation matrix rv zxð Þ using the same U as the
above is left for the readers as an exercise. Table 15.2 shows the results of the
diagonalized representations with regard to the vectors /1j i; 1ffiffi

2
p ð /2 þ /3j iÞ

and 1ffiffi
2

p ð /2 �/3j iÞ. Notice that traces of the matrices remain unchanged in

Tables 15.1 and 15.2, i.e., before and after the unitary similarity transformation.
From Table 15.2, we find that the vectors are eigenfunctions of the individual
symmetry operations. Each diagonal element is a corresponding eigenvalue of those
operations. Of the three vectors, /1j i and 1ffiffi

2
p ð /2 þ/3j iÞ have the same eigenvalues

with respect to individual symmetry operations. With symmetry operations C2 and
rv zxð Þ, another vector 1ffiffi

2
p ð /2 � /3j iÞ has an eigenvalue of a sign opposite to that of

the former two vectors. Thus, we find that we have arrived at “symmetry-adapted”
vectors by taking linear combination of original vectors. Returning back to
Table 14.2, we see that the representation matrices have already been diagonalized.
In terms of the representation space, we constructed the representation matrices
with respect to x, y, and z as symmetry-adapted basis vectors. In the next chapter,
we make the most of such vectors constructed by the symmetry-adapted linear
combination.

Meanwhile, allocating appropriate numbers to coefficients c1, c2, and c3, we
represent any vector in V3 spanned by /1j i, /2j i, and /3j i. In the next chapter, we
deal with molecular orbital (MO) calculations. Including the present case of the allyl
radical, we solve the energy eigenvalue problem by appropriately determining those

Table 15.2 Matrix representation of symmetry operations given with respect to j/1i,
1ffiffi
2

p ð /2 þ/3j iÞ, and 1ffiffi
2

p ð /2 � /3j iÞ
E C2 zð Þ rv zxð Þ r0v yzð Þ

1 0 0
0
0

1 0
0 1

0@ 1A �1 0 0
0
0

�1 0
0 1

0@ 1A 1 0 0
0
0

1 0
0 �1

0@ 1A �1 0 0
0
0

�1 0
0 �1

0@ 1A
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coefficients (i.e., eigenvectors) and corresponding energy eigenvalues in a repre-
sentation space. A dimension of the representation space depends on the number of
molecular orbitals. The representation space is decomposed into several or more (but
finite) orthogonal complements according to (15.38). We will come back to the
present example in Sect. 16.3.4 and further investigate the problems there.

As can be seen in the above example, the representation space accommodates
various types of vectors, e.g., mathematical functions in the present case. If the
representation space is decomposed into invariant subspaces, we can choose
appropriate basis vectors for each subspace the number of which is equal to the
dimensionality of each irreducible representation [3]. In this context, the situation is
related to that of Part III where we have studied how a linear vector space is
decomposed into direct sum of invariant subspaces that are spanned by associated
basis vectors. In particular, it will be of great importance to construct mutually
orthogonal symmetry-adapted vectors through linear combination of original basis
vectors in each subspace associated with the irreducible representation. We further
study these important subjects in the following several sections.

15.3 Schur’s Lemmas and Grand Orthogonality
Theorem (GOT)

Pivotal notions of the representation theory of finite groups rest upon Schur’s
lemmas (first lemma and second lemma).

Schur’s First Lemma [1] Let D and eD be two irreducible representations of g:

Let dimensions of representations of D and eD be m and n, respectively. Suppose
that with 8g 2 g the following relation holds:

D gð ÞM ¼ M eD gð Þ; ð15:41Þ

where M is a (m,n) matrix. Then we must have

Case (i): M ¼ 0 or
Case (ii): M is a square matrix (i.e., m ¼ n) with det M 6¼ 0.

In Case (i), the representations of D and eD are inequivalent. In Case (ii), on the
other hand, D and eD are equivalent.

Proof

(a) First, suppose that m[ n. Let B ¼ fw1;w2; � � � ;wmg be a basis set of the
representation space related to D. Then we have

g wmð Þ ¼
Xm
l¼1

wlDlm gð Þ 1� m�mð Þ:
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Next, we form a linear combination of w1;w2; � � � ; andwm such that

/m ¼
Xm
l¼1

wlMlm 1� m� nð Þ: ð15:42Þ

Operating g on both sides of (15.42), we have

g /mð Þ ¼
Xm
l¼1

g wl

� �
Mlm ¼

Xm
l¼1

Xm
k¼1

wkDkl gð Þ
" #

Mlm

¼
Xm
k¼1

wk

Xm
l¼1

Dkl gð ÞMlm

" #
¼
Xm
k¼1

wk

Xn
l¼1

Mkl eDlm gð Þ
" #

¼
Xn
l¼1

Xm
k¼1

wkMkl

" #eDlm gð Þ ¼
Xn
l¼1

/l
eDlm gð Þ:

ð15:43Þ

With the fourth equality of (15.43), we used (15.41). Therefore, ~B ¼
/1;/2; � � � ;/nf g is a representation of eD.

If m[ n, we would have been able to construct a basis of the representation
D using n (\m) functions of /m 1� m� nð Þ that are a linear combination of
wl 1� l�mð Þ. In that case, we would have obtained a representation of a

smaller dimension n for eD by taking a linear combination of
w1;w2; � � � ; and wm. As n\m by supposition, this implies that as in (15.35),
D would be decomposed into representations whose dimension is smaller than
m. It is in contradiction to the supposition that D is irreducible. To avoid this
contradiction, we must have M ¼ 0. This makes (15.41) trivially hold.

(b) Next, we consider a case of m\n. Taking a complex conjugate of (15.41) and
exchanging both sides, we get

eD gð ÞyMy ¼ MyDðgÞy: ð15:44Þ

Then, from (15.21) to (15.28), we have

DðgÞyD gð Þ ¼ E and D gð ÞD g�1� � ¼ D eð Þ: ð15:45Þ

Therefore, we get

D g�1
� � ¼ DðgÞ�1 ¼ DðgÞy:

Similarly, we have

eD g�1� � ¼ eDðgÞ�1 ¼ eDðgÞy:
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Thus, (15.44) is rewritten as

eD g�1� �
My ¼ MyD g�1� �

: ð15:46Þ

The number of rows of My is larger than that of columns. This time, dimension
n of eD g�1ð Þ is larger than m of D g�1ð Þ. A group element g designates an
arbitrary element of g, so does g�1. Thus, (15.46) can be treated in parallel with
(15.41) where m[ n with a (m,n) matrix M. Figure 15.2 graphically shows the
magnitude relationship in representation dimensions between representation
matrices and M. Thus, in parallel with the above argument of (a), we exclude
the case where m\n as well.

(c) We consider the third case of m ¼ n. Similarly as before, we make a linear
combination of vectors contained in the basis set B ¼ fw1;w2; � � � ;wmg such
that

/m ¼
Xm
l¼1

wlMlm 1� m�mð Þ; ð15:47Þ

where M is a (m,m) square matrix. If detM ¼ 0, then /1;/2; � � � ; and/m are
linearly dependent (see Sect. 9.4). With the number of linearly independent
vectors p, we have p\m accordingly. As in (15.43) again, this implies that we
would have obtained a representation of a smaller dimension p for eD, in
contradiction to the supposition that eD is irreducible. To avoid this contra-
diction, we must have detM 6¼ 0. These complete the proof.

(m, m) (m, n) (n, n)

(a): 

(m, n)

(m, m)(n, m)(n, n) (n, m)

(b): 

Fig. 15.2 Magnitude relationship between dimensions of representation matrices andM. a m[ n.
b m\n. The diagram is based on (15.41) and (15.46) of the text
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Schur’s Second Lemma [1] Let D be a representation of g. Suppose that with
8g 2 g, we have

D gð ÞM ¼ MD gð Þ: ð15:48Þ

Then, if D is irreducible, M ¼ cE where c being an arbitrary complex number
and E is an identity matrix.

Proof Let c be an arbitrarily chosen complex number. From (15.48), we have

D gð Þ M � cEð Þ ¼ M � cEð ÞD gð Þ: ð15:49Þ

If D is irreducible, Schur’s First Lemma implies that we must have either
(i) M � cE ¼ 0 or (ii) det M � cEð Þ 6¼ 0. A matrix M has at least one proper
eigenvalue k (Sect. 10.1), and so choosing k for c in (15.49), we have
det M � kEð Þ ¼ 0. Consequently, only former case is allowed. That is, we have

M ¼ cE: ð15:50Þ

Schur’s lemmas lead to important orthogonality theorem that plays a funda-
mental role in many scientific fields. The orthogonality theorem includes that of
matrices and their traces (or characters).

Theorem 15.3 (Grand Orthogonality Theorem (GOT) [4]) Let D 1ð Þ;D 2ð Þ; � � � be all
inequivalent irreducible representations of a group g ¼ g1; g2; � � � ; gnf g of order n.
Let D að Þ and D bð Þ be two irreducible representations chosen from among
D 1ð Þ;D 2ð Þ; � � �. Then, regarding their matrix representations, we have the following
relationship: X

g

D að Þ
ij ðgÞ�D bð Þ

kl gð Þ ¼ n
da

dabdikdjl; ð15:51Þ

where
P
g
means that the summation should be taken over all n group elements; da

denotes a dimension of the representation D að Þ. The symbol dab means that dab ¼ 1
when D að Þ and D bð Þ are equivalent and that dab ¼ 0 when D að Þ and D bð Þ are
inequivalent.

Proof First we prove the case where D að Þ ¼ D bð Þ. For the sake of simple expres-
sion, we omit a superscript and denote D að Þ simply by D. Let us construct a matrix
A such that

A ¼
X
g

D gð ÞXDðg�1Þ; ð15:52Þ

where X is an arbitrary matrix. Hence,
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D g0ð ÞA ¼
X
g

D g0ð ÞD gð ÞXD g�1
� � ¼X

g

D g0ð ÞD gð ÞXD g�1
� �

D g0�1
� �

D g0ð Þ

¼
X
g

D g0ð ÞD gð ÞXD g�1g0�1� �
D g0ð Þ

¼
X
g

D g0gð ÞXD ðg0gÞ�1
h i

D g0ð Þ:

ð15:53Þ
Thanks to the rearrangement theorem, for fixed g0, the element g0g runs through

all the group elements as g does so. Therefore, we haveX
g

D g0gð ÞXD½ðg0gÞ�1� ¼
X
g

D gð ÞXDðg�1Þ ¼ A: ð15:54Þ

Thus,

D gð ÞA ¼ AD gð Þ: ð15:55Þ

According to Schur’s Second Lemma, we have

A ¼ kE: ð15:56Þ

The value of a constant k depends upon the choice of X. Let X be d lð Þ
i d j

mð Þ where all
the matrix elements are zero except for the (l,m)-component that takes 1
(Sects. 10.5 and 10.6). Thus from (15.53), we haveX

g;p;q

Dip gð Þd lð Þ
p dqmð ÞDqj g

�1� � ¼X
g

Dil gð ÞDmj g
�1� � ¼ klmdij; ð15:57Þ

where klm is a constant to be determined. Using the unitary representation, we haveX
g

Dil gð ÞDjmðgÞ� ¼ klmdij: ð15:58Þ

Next, we wish to determine coefficients klm. To this end, setting i ¼ j and
summing over i in (15.57), we get for LHSX

g

X
i

Dil gð ÞDmiðg�1Þ ¼
X
g

D g�1� �
D gð Þ� �

ml¼
X
g

D g�1g
� �� �

ml

¼
X
g

D eð Þ½ �ml¼
X
g

dml ¼ ndml;
ð15:59Þ

where n is equal to the order of group. As for RHS, we have
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X
i

klmdii ¼ klmd; ð15:60Þ

where d is equal to a dimension of D. From (15.59) to (15.60), we get

klmd ¼ ndlm or klm ¼ n
d
dlm: ð15:61Þ

Therefore, from (15.58) X
g

Dil gð ÞDjmðgÞ� ¼ n
d
dlmdij: ð15:62Þ

Specifying a species of the irreducible representation, we getX
g

D að Þ
il gð ÞD að Þ

jm ðgÞ� ¼ n
da

dlmdij; ð15:63Þ

where da is a dimension of D að Þ.
Next, we examine the relationship between two inequivalent irreducible repre-

sentations. Let D að Þ and D bð Þ be such representations with dimensions da and db,
respectively. Let us construct a matrix B such that

B ¼
X
g

D að Þ gð ÞXD bð Þ g�1� �
; ð15:64Þ

where X is again an arbitrary matrix. Hence,

D að Þ g0ð ÞB ¼
X
g

D að Þ g0ð ÞD að Þ gð ÞXD bð Þðg�1Þ

¼
X
g

D að Þ g0ð ÞD að Þ gð ÞXD bð Þðg�1ÞD bð Þ g0�1
� �

D bð Þ g0ð Þ

¼
X
g

D að Þ g0gð ÞXD bð Þ ðg0gÞ�1
h i

D bð Þ g0ð Þ ¼ BD bð Þ g0ð Þ:

ð15:65Þ

According to Schur’s First Lemma, we have

B ¼ 0: ð15:66Þ

Putting X ¼ d lð Þ
i d j

mð Þ as before and rewriting (15.64), we get

X
g

D að Þ
il gð ÞD bð Þ

jm ðgÞ� ¼ 0: ð15:67Þ

Combining (15.63) and (15.67), we get (15.51). These procedures complete the
proof.
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15.4 Characters

Representation matrices of a group are square matrices. In Part III, we examined
properties of a trace, i.e., a sum of diagonal elements of a square matrix. In group
theory, the trace is called a character.

Definition 15.6 Let D be a (matrix) representation of a group g ¼ g1; g2; � � � ; gnf g:
The sum of diagonal elements v gð Þ is defined as follows:

v gð Þ � TrD gð Þ ¼
Xd
i¼1

Dii gð Þ; ð15:68Þ

where g stands for group elements g1; g2; � � � ; and gn; Tr stands for “trace”; d is a
dimension of the representation D. Let c be a set defined as

c ¼ v g1ð Þ; v g2ð Þ; � � � ; v gnð Þf g: ð15:69Þ
Then, the set c is called a character of D. A character of an irreducible repre-

sentation is said to be an irreducible character.
Let us describe several properties of the character or trace.

(i) A character of the identity element v eð Þ is equal to a dimension d of a
representation. This is because the identity is given by a unit matrix.

(ii) Let P and Q be two square matrices. Then, we have

Tr PQð Þ ¼ Tr QPð Þ: ð15:70Þ

This is becauseX
i

ðPQÞii ¼
X
i

X
j

PijQji ¼
X
j

X
i

QjiPij ¼
X
j

ðQPÞjj ð15:71Þ

Putting Q ¼ SP�1 in (15.70), we get

Tr PSP�1� � ¼ Tr SP�1P
� � ¼ Tr Sð Þ: ð15:72Þ

Therefore, we have the following property:
(iii) Characters of group elements that are conjugate to each other are equal. If gi

and gj are conjugate, these elements are connected by means of a suitable
element g such that

ggig
�1 ¼ gj: ð15:73Þ

Accordingly, a representation matrix is expressed as

D gð ÞD gið ÞD g�1� � ¼ D gð ÞD gið Þ D gð Þ½ ��1¼ D gj
� �

: ð15:74Þ
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Taking a trace of both sides of (15.74), we have

v gið Þ ¼ v gj
� �

: ð15:75Þ

(iv) Any two equivalent representations have the same trace. This immediately
follows from (15.30).

There are several orthogonality theorems about a trace. Among them, a fol-
lowing theorem is well-known.

Theorem 15.4 A trace of irreducible representations satisfies the following
orthogonality relation: X

g

v að ÞðgÞ�v bð ÞðgÞ ¼ ndab; ð15:76Þ

where v að Þ and v bð Þ are traces of irreducible representations D að Þ and D bð Þ,
respectively.

Proof In (15.51), putting i ¼ j and k ¼ l in both sides and summing over all i and k,
we haveX

g

X
i;k

D að Þ
ii ðgÞ�D bð Þ

kk gð Þ ¼
X
i;k

n
da

dabdikdik ¼
X
i;k

n
da

dabdik ¼ n
da

dabda ¼ ndab:

ð15:77Þ
From (15.68) to (15.77), we get (15.76). This completes the proof.
Since a character is identical with group elements belonging to the same con-

jugacy class Kl, we may write it as v Klð Þ and rewrite a summation of (15.76) as a
summation of the conjugacy classes. Thus, we have

Xnc
l¼1

v að ÞðKlÞ�v bð Þ Klð Þkl ¼ ndab; ð15:78Þ

where nc denotes the number of conjugacy classes in a group and kl indicates the
number of group elements contained in a class Kl.

We have seen a case where a representation matrix can be reduced to two (or
more) block matrices as in (15.35). Also as already seen in Part III, the block
matrices’ decomposition takes place with normal matrices (including unitary
matrices). The character is often used to examine a constitution of a reducible
representation or reducible matrix.

Alternatively, if a unitary matrix (a normal matrix, more widely) is decomposed
into block matrices, we say that the unitary matrix comprises a direct sum of those
block matrices. In physics and chemistry dealing with atoms, molecules, crystals,
etc., we very often encounter such a situation. Extending (15.36), the relation can
generally be summarized as
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D gið Þ ¼ D 1ð Þ gið Þ � D 2ð Þ gið Þ � � � � � D xð Þ gið Þ; ð15:79Þ

where D gið Þ is a reducible representation for a group element gi; D 1ð Þ gið Þ, D 2ð Þ gið Þ,
� � �, and D xð Þ gið Þ are irreducible representations in a group. The notation D xð Þ gið Þ
means that D xð Þ gið Þ may be equivalent (or identical) to D 1ð Þ gið Þ, D 2ð Þ gið Þ, etc., or
may be inequivalent to them. More specifically, the same irreducible representa-
tions may well appear several times.

To make the above situation clear, we usually use the following equation
instead:

D gið Þ ¼
X
a

qaD
að Þ gið Þ; ð15:80Þ

where qa is zero or a positive integer and D að Þ is different types of irreducible
representations. If the same D að Þ repeatedly appears in the direct sum, then qa
specifies how many times D að Þ appears in the direct sum. Unless D að Þ appears, qa is
zero.

Bearing the above in mind, we take a trace of (15.80). Then we have

v gð Þ ¼
X
a

qav
að Þ gð Þ; ð15:81Þ

where we omitted a subscript i indicating an element. To find qa, let us multiply
both sides of (15.81) by v að ÞðgÞ� and take summation over group elements. That is,X

g

v að ÞðgÞ�v gð Þ ¼
X
b

qb
X
g

v að ÞðgÞ�v bð Þ gð Þ ¼
X
b

qbndab ¼ qan; ð15:82Þ

where we used (15.76) with the second equality. Thus, we get

qa ¼ 1
n

X
g

v að ÞðgÞ�v gð Þ: ð15:83Þ

The integer qa explicitly gives the number of appearance of D að Þ gð Þ that appears in
a reducible representation D gð Þ. The expression pertinent to the classes is

qa ¼ 1
n

X
i

v að ÞðKiÞ�v Kið Þki; ð15:84Þ

where Ki and ki denote the ith class of the group and the number of elements
belonging to Ki, respectively.
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15.5 Regular Representation and Group Algebra

Now, the readers may wonder how many different irreducible representations exist
for a group. To answer this question, let us introduce a special representation of the
regular representation.

Definition 15.7 Let g ¼ g1; g2; � � � ; gnf g be a group. Let us define a (n,n) square
matrix D Rð Þ gmð Þ for an arbitrary group element gm 1� m� nð Þ such that

D Rð Þ gmð Þ
h i

ij
¼ d g�1

i gmgj
� �

1� i; j� nð Þ; ð15:85Þ

where

d gmð Þ ¼
1 for gm ¼ e i:e: identityð Þ;

0 for gm 6¼ e:

8<: ð15:86Þ

Let us consider a set

R ¼ D Rð Þ g1ð Þ;D Rð Þ g2ð Þ; � � � ;D Rð Þ gnð Þ
n o

: ð15:87Þ

Then, the set R is said to be a regular representation of the group g.
In fact, R is a representation. This is confirmed as follows: In (15.85), if

g�1
i gmgj ¼ e, d g�1

i gmgj
� � ¼ 1. This occurs when gmgj ¼ gi (A). Meanwhile, let us

consider a situation where g�1
j glgk ¼ e. This occurs when glgk ¼ gj Bð Þ.

Replacing gj in (A) with that in (B), we have

gmglgk ¼ gi: ð15:88Þ

That is,

g�1
i gmglgk ¼ e: ð15:89Þ

If we choose gi and gm, gj is uniquely decided from (A). If gl is separately chosen,
then gk is uniquely decided from (B) as well, because gj has already been uniquely
decided. Thus, performing the following matrix calculations, we getX

j

D Rð Þ gmð Þ
h i

ij
D Rð Þ gl

� �h i
jk
¼
X
j

d g�1
i gmgj

� �
d g�1

j glgk
� �

¼ d g�1
i gmglgk

� �
¼ D Rð Þ gmgl

� �h i
ik
: ð15:90Þ
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Rewriting (15.90) in a matrix product form, we get

D Rð Þ gmð ÞD Rð Þ gl
� � ¼ D Rð Þ gmgl

� �
: ð15:91Þ

Thus, D Rð Þ is certainly a representation.
To further confirm this, let us think of an example.

Example 15.2 Let us consider a thiophene molecule that we have already examined
in Sect. 14.2. In a multiplication table, we arrange E, C2, rv; rv0 in a first column
and their inverse element E, C2, rv; rv0 in a first row. In this case, the inverse
element is the same as original element itself. Paying attention, e.g., to C2, we
allocate the number 1 on the place where C2 appears and the number 0 otherwise.
Then, that matrix is a regular representation of C2; see Table 15.3. Thus as
D Rð Þ C2ð Þ, we get

D Rð Þ C2ð Þ ¼
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

0BB@
1CCA: ð15:92Þ

As evidenced in (15.92), the rearrangement theorem ensures that the number 1
appears once and only once in each column and each row in such a way that
individual column and row vectors become linearly independent. Thus, at the same
time, we confirm that the matrix is unitary.

Another characteristic of the regular representation is that the identity is repre-
sented by an identity matrix. In this example, we have

D Rð Þ Eð Þ ¼
1 0 0 0
0
0
0

1 0 0
0 1 0
0 0 1

0B@
1CA: ð15:93Þ

For the other symmetry operations, we have

D Rð Þ rvð Þ ¼
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

0BB@
1CCA; D Rð Þ rv0ð Þ ¼

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0BB@
1CCA:

Table 15.3 How to make a
regular representation of C2v

C2v E�1 C2 zð Þ�1 rv zxð Þ�1 r0v yzð Þ�1

E E C2 rv r0v
C2 zð Þ C2 E r0v rv
rv zxð Þ rv r0v E C2

r0v yzð Þ r0v rv C2 E
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Let v Rð Þ gmð Þ be a character of the regular representation. Then, according to the
definition of (15.85),

v Rð Þ gmð Þ ¼
Xn
i¼1

d g�1
i gmgi

� � ¼ n for gm ¼ e;
0 for gm 6¼ e:

�
ð15:94Þ

As can be seen from (15.92), the regular representation is reducible because the
matrix is decomposed into block matrices. Therefore, the representation can be
reduced to a direct sum of irreducible representations such that

D Rð Þ ¼
X
a

qaD
að Þ; ð15:95Þ

where qa is a positive integer or zero and D að Þ is an irreducible representation. Then,
from (15.81), we have

v Rð Þ gmð Þ ¼
X
a

qav
að Þ gmð Þ; ð15:96Þ

where v að Þ is a trace of the irreducible representation D að Þ. Using (15.83) and
(15.94),

qa ¼ 1
n

X
g

v að ÞðgÞ�v Rð Þ gð Þ ¼ 1
n
v að ÞðeÞ�v Rð Þ eð Þ ¼ 1

n
v að ÞðeÞ�n ¼ v að ÞðeÞ�

¼ da:

ð15:97Þ

Note that a dimension da of the representation D að Þ is equal to a trace of its identity
matrix. Also, notice from (15.95) to (15.97) that D Rð Þ contains every irreducible
representation D að Þ da times. To show it more clearly, Table 15.4 gives a character
table of C2v. The regular representation matrices are given in Example 15.2. For
this, we have

D Rð Þ C2vð Þ ¼ A1 þA2 þB1 þB2: ð15:98Þ

Table 15.4 Character table
of C2v

C2v E C2 zð Þ rv zxð Þ r0v yzð Þ
A1 1 1 1 1 z; x2; y2; z2

A2 1 1 –1 –1 xy

B1 1 –1 1 –1 x; zx

B2 1 –1 –1 1 y; yz
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This relation obviously indicates that all the irreducible representations of C2v

are contained one time (that is equal to the dimension of representation of C2v).
Returning to (15.94) and (15.96) and replacing qa with da there, we get

X
a

dav
að Þ gmð Þ ¼ n for gm ¼ e;

0 for gm 6¼ e:

�
ð15:99Þ

In particular, when gm ¼ e, again we have v að Þ eð Þ ¼ da (da is a real number!). That
is, X

a

d2a ¼ n: ð15:100Þ

This is a very important relation in the representation theory of a finite group in
that (15.100) sets an upper limit to the number of irreducible representations and
their dimensions. That number cannot exceed the order of a group.

In (15.76) and (15.78), we have shown the orthogonality relationship between
traces. We have another important orthogonality relationship between them. To
prove this theorem, we need a notion of group algebra [4]. The argument is as
follows:

(a) Let us think of a set comprising group elements expressed as

@ ¼
X
g

agg; ð15:101Þ

where g is a group element of a group g ¼ g1; g2; � � � ; gnf g; ag is an arbitrarily
chosen complex number; Rg means that summation should be taken over group
elements. Let @0 be another set similarly defined as (15.101). That is,

@0 ¼
X
g0

a0g0g
0: ð15:102Þ

Then we can define a following sum:

@þ@0 ¼
X
g

aggþ
X
g0

a0g0g
0 ¼

X
g

aggþ a0gg
0

� �
¼
X
g

ag þ a0g
� �

g: ð15:103Þ

Also, we get
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@ � @0 ¼
X
g

agg

 ! X
g0

a0g0g
0

 !
¼
X
g0

X
g

aggg
0

 !
a0g0

¼
X
g0�1

X
g

aggg
0�1

 !
a0g0�1 ¼

X
g0�1

X
gg0

agg0gg
0g0�1

 !
a0g0�1

¼
X
g0�1

X
gg0

agg0g

 !
a0g0�1 ¼

X
gg0

X
g0�1

agg0a
0
g0�1

0@ 1Ag

¼
X
g

X
g0

agg0a
0
g0�1

 !
g;

ð15:104Þ

where we used the rearrangement theorem and suitable exchange of group ele-
ments. Thus, we see that the above-defined set @ is closed under summations (i.e.,
linear combinations) and multiplications. A set closed under summations and
multiplications is said to be an algebra. If the set forms a group, the said set is called
a group algebra.

So far we have treated calculations as a multiplication between two elements
g and g0, i.e., g 	 g0 (see Sect. 13.1). Now we start regarding the calculations as
summation as well. In that case, group elements act as basis vectors in a vector
space. Bearing this in mind, let us further define specific group algebra.

(b) Let Ki be the ith conjugacy class of a group g ¼ g1; g2; � � � ; gnf g. Also, let Ki

be such that

Ki ¼ A ið Þ
1 ;A ið Þ

2 ; � � � ;A ið Þ
ki

n o
; ð15:105Þ

where ki is the number of elements belonging to Ki. Now think of a set
gKig�1 8g 2 g

� �
. Then, due to the definition of a class, we have

gKig
�1 
 Ki: ð15:106Þ

Multiplying g�1 from the left and g from the right of both sides, we get
Ki 
 g�1Kig. Since g is arbitrarily chosen, replacing g with g�1, we have

Ki 
 gKig
�1: ð15:107Þ

Therefore, we get

gKig
�1 ¼ Ki: ð15:108Þ

Meanwhile, for A ið Þ
a ;A ið Þ

b 2 Ki;A
ið Þ
a 6¼ A ið Þ

b 1� a; b� kið Þ, we have
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gA ið Þ
a g�1 6¼ gA ið Þ

b g�1 8g 2 g
� �

: ð15:109Þ

This is because if the equality holds with (15.109), we have A ið Þ
a ¼ A ið Þ

b , in
contradiction.

(c) Let K be a set collecting several classes and described as

K ¼
X
i

aiKi; ð15:110Þ

where ai is a positive integer or zero. Thanks to (15.105) and (15.110), we have

gKg�1 ¼ K: ð15:111Þ

Conversely, if a group algebra K satisfies (15.111), K can be expressed as a sum of
classes such as (15.110). Here suppose that K is not expressed by (15.110), but
described by

K ¼
X
i

aiKi þQ; ð15:112Þ

where Q is an “incomplete” set that does not form a class. Then,

gKg�1 ¼ g
X
i

aiKi þQ

 !
g�1 ¼ g

X
i

aiKi

 !
g�1 þ gQg�1 ¼

X
i

aiKi þ gQg�1

¼ K ¼
X
i

aiKi þQ;

ð15:113Þ

where the equality before the last comes from (15.111). Thus, from (15.113), we get

gQg�1 ¼ Q 8g 2 g
� �

: ð15:114Þ

By definition of the classes, this implies that Q must form a “complete” class, in
contradiction to the supposition. Thus, (15.110) holds.

In Sect. 13.3, we described several characteristics of an invariant subgroup. As
readily seen from (13.11) to (15.111), any invariant subgroup consists of two or
more entire classes. Conversely, if a group comprises entire classes, it must be an
invariant subgroup.

(d) Let us think of a product of classes. Let Ki and Kj be sets described as (15.105).
We define a product KiKj as a set containing products

A ið Þ
a A jð Þ

b 1� a�Ki; 1� b�Kj
� �

. That is,
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KiKj ¼
Xgi
l¼1

Xgj
m¼1

A ið Þ
l A jð Þ

m : ð15:115Þ

Multiplying (15.115) by g 8g 2 g
� �

from the left and by g�1from the right, we get

gKiKjg
�1 ¼ gKigð Þ g�1Kjg

�1� � ¼ KiKj: ð15:116Þ

From the above discussion, we get

KiKj ¼
X
l

cijlKl; ð15:117Þ

where cijl is a positive integer or zero. In fact, when we take gKiKjg�1, we merely
permute the terms in (15.117).

(e) If two group elements of the group g ¼ g1; g2; � � � ; gnf g are conjugate to each
other, their inverse elements are conjugate to each other as well. In fact, sup-
pose that for gl; gm 2 Ki, we have

gl ¼ ggmg
�1: ð15:118Þ

Then, taking the inverse of (15.118), we get

g�1
l ¼ gg�1

m g�1: ð15:119Þ

Thus, given a class Ki, there exists another class Ki0 that consists of the inverses of
the elements of Ki. If gl 6¼ gm, g�1

l 6¼ g�1
m . Therefore, Ki and Ki0 are of the same

order. Suppose that the number of elements contained in Ki is ki and that in Ki0 is ki0 .
Then, we have

ki ¼ ki0 : ð15:120Þ

If Kj 6¼ Ki0 (i.e., Kj is not identical with Ki0 as a set), KiKj does not contain e. In
fact, suppose that for gq 2 Ki, there was a group element b 2 Kj such that bgq ¼ e.
Then, we would have

b ¼ g�1
q and b 2 Ki0 : ð15:121Þ

This would mean that b 2 Kj \Ki0 , implying that Kj ¼ Ki0 by definition of class. It
is in contradiction to Kj 6¼ Ki0 . Consequently, KiKj does not contain e. Taking the
product of the classes Ki and Ki0 , we obtain the identity e precisely ki times.
Rewriting (15.117), we have
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KiKj ¼ cij1K1 þ
X
l6¼1

cijlKl; ð15:122Þ

where K1 ¼ ef g. As mentioned below, we are most interested in the first term in
(15.122). In (15.122), if Kj ¼ Ki0 , we have

cij1 ¼ ki: ð15:123Þ

On the other hand, if Kj 6¼ Ki0 , cij1 ¼ 0. Summarizing the above arguments, we get

cij1 ¼ ki forKj ¼ Ki0 ;
0 forKj 6¼ Ki0 :

�
ð15:124Þ

Or, symbolically we write

cij1 ¼ kidji0 : ð15:125Þ

15.6 Classes and Irreducible Representations

After the aforementioned considerations, we have the following theorem:

Theorem 15.5 Let g ¼ g1; g2; � � � ; gnf g be a group. A trace of irreducible rep-
resentations satisfies the following orthogonality relation:

Xnr
a¼1

v að Þ Kið Þv að ÞðKjÞ� ¼ n
ki
dij; ð15:126Þ

where summation a is taken over all inequivalent nr irreducible representations; Ki

and Kj indicate conjugacy classes; ki denotes the number of elements contained in
the ith class Ki.

Proof Rewriting (15.108), we have

gKi ¼ Kig
8g 2 g
� �

: ð15:127Þ
Since a homomorphic correspondence holds between a group element and its

representation matrix, a similar correspondence holds as well with (15.127). Let bKi

be a sum of Ki matrices of the ath irreducible representation D að Þ and let bKi be
expressed as

bKi ¼
X
g2Ki

D að Þ: ð15:128Þ
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Note that in (15.128), D að Þ functions as a linear transformation with respect to a
group algebra. From (15.127), we have

D að Þ bKi ¼ bKiD
að Þ 8g 2 g
� �

: ð15:129Þ

Since D að Þ is an irreducible representation, bKi must be expressed on the basis of
Schur’s Second Lemma as

bKi ¼ kE: ð15:130Þ

To determine k, we take a trace of both sides of (15.130). Then, from (15.128) to
(15.130), we get

kiv
að Þ Kið Þ ¼ kda: ð15:131Þ

Thus, we get

bKi ¼ ki
da

v að Þ Kið ÞE: ð15:132Þ

Next, corresponding to (15.114), we have

bKi bKj ¼
X
l

cijl bKl: ð15:133Þ

Replacing bKl in (15.133) with that of (15.132), we get

kikjv
að Þ Kið Þv að Þ Kj

� � ¼ da
X
l

cijlklv
að Þ Klð Þ: ð15:134Þ

Returning to (15.99) and rewriting it, we haveX
a

dav
að Þ Kið Þ ¼ ndi1; ð15:135Þ

where again we have K1 ¼ ef g. With respect to (15.134), we sum over all the
irreducible representations a. Then we have

X
a

kikjv
að Þ Kið Þv að Þ Kj

� � ¼X
l

cijlkl
X
a

dav
að Þ Klð Þ

" #
¼
X
l

cijlklndl1 ¼ cij1n:

ð15:136Þ

In (15.136), we remark that k1 ¼ 1, meaning that the number of group elements that
K1 ¼ ef g contains is 1. Rewriting (15.136), we get
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kikj
X
a

v að Þ Kið Þv að Þ Kj
� � ¼ cij1n ¼ kindji0 ; ð15:137Þ

where we used (15.125) with the last equality. Moreover, using

v að Þ Ki0ð Þ ¼ v að ÞðKiÞ�; ð15:138Þ

we get

kikj
X
a

v að Þ Kið Þv að ÞðKjÞ� ¼ cij1n ¼ kindji: ð15:139Þ

Rewriting (15.139), we finally get

Xnr
a¼1

v að Þ Kið Þv að ÞðKjÞ� ¼ n
ki
dij: ð15:126Þ

Equations (15.78) and (15.126) are well-known as orthogonality relations. So
far, we have no idea about the mutual relationship between the two numbers nc and
nr in magnitude. In (15.78), let us consider a following set S

S ¼ ffiffiffiffiffiffi
K1

p
v að Þ K1ð Þ; ffiffiffiffiffiffi

K2
p

v að Þ K2ð Þ; � � � ; ffiffiffiffiffiffiffi
Knc

p
v að Þ Kncð Þ

n o
: ð15:140Þ

Viewing individual components in S as coordinates of a nc-dimensional vector,
(15.78) can be considered as an inner product as expressed using (complex)
coordinates of the two vectors. At the same time, (15.78) represents an orthogonal
relationship between the vectors. Since we can obtain at most nc mutually
orthogonal (i.e., linearly independent) vectors in a nc-dimensional space, for the
number (nr) of such vectors, we have

nr � nc: ð15:141Þ

Here nr is equal to the number of different a, i.e., the number of irreducible
representations.

Meanwhile, in (15.126), we consider a following set S0

S0 ¼ v 1ð Þ Kið Þ; v 2ð Þ Kið Þ; � � � ; v nrð Þ Kið Þ
n o

: ð15:142Þ

Similarly, individual components in S0 can be considered as coordinates of a nr-
dimensional vector. Again, (15.126) implies the orthogonality relation among
vectors. Therefore, as for the number (nc) of mutually orthogonal vectors, we have

nc � nr: ð15:143Þ
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Thus, from (15.141) to (15.143), we finally reach a simple but very important
conclusion about the relationship between nc and nr such that

nr ¼ nc: ð15:144Þ

That is, the number (nr) of inequivalent irreducible representations is equal to that
(nc) of conjugacy classes of the group. An immediate and important consequence of
(15.144) together with (15.100) is that the representation of an Abelian group is
one-dimensional. This is because in the Abelian group individual group elements
constitute a conjugacy class. We have nc ¼ n accordingly.

15.7 Projection Operators

In Sect. 15.2, we have described how basis vectors (or functions) are transformed
by a symmetry operation. In that case, the symmetry operation is performed by a
group element that belongs to a transformation group. More specifically, given a
group g ¼ g1; g2; � � � ; gnf g and a set of basis vectors w1;w2; � � � ; and wd , the basis
vectors are transformed by gi 2 g 1� i� nð Þ such that

gi wmð Þ ¼
Xd
l¼1

wlDlm gið Þ: ð15:22Þ

We may well ask then how we can construct such basis vectors. In this section, we
address this question. A central concept about this is a projection operator. We have
already studied the definition and basic properties of the projection operators. In this
section, we deal with them bearing in mind that we apply the group theory to
molecular science, especially to quantum chemical calculations.

In Sect. 15.6, we examined the permissible number of irreducible representa-
tions. We have reached a conclusion that the number (nr) of inequivalent irre-
ducible representations is equal to that (nc) of conjugacy classes of the group.
According to this conclusion, we modify the above Eq. (15.22) such that

g w að Þ
i

� �
¼
Xda
j¼1

w að Þ
j D að Þ

ji gð Þ; ð15:145Þ

where a and da denote the ath irreducible representation and its dimension,
respectively; the subscript i is omitted from gi for simplicity. This naturally leads to

the next question of how the basis vectors w að Þ
j are related to w bð Þ

j that are basis
vectors as well, but belong to a different irreducible representation b.
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Suppose that we have an arbitrarily chosen function f. Then, f is assumed to
contain various components of different irreducible representations. Thus, let us
assume that f is decomposed into the component such that

f ¼
X
a

X
m

c að Þ
m w að Þ

m ; ð15:146Þ

where c að Þ
m is a coefficient of the expansion and w að Þ

m is the mth component of ath
irreducible representation.

Now, let us define the following operator:

P að Þ
l mð Þ ¼

da
n

X
g

D að Þ
lm ðgÞ�g; ð15:147Þ

where
P

g means that the summation should be taken over all n group elements g;

da denotes a dimension of the representation D að Þ. Operating P að Þ
l mð Þ on f, we have

P að Þ
l mð Þf ¼

da
n

X
g

D að Þ
lm ðgÞ�gf ¼ da

n

X
g

D að Þ
lm ðgÞ�g

X
m

X
k

c mð Þ
k w mð Þ

k

¼ da
n

X
g

D að Þ
lm ðgÞ�

X
m

X
k

c mð Þ
k gw mð Þ

k

¼ da
n

X
g

D að Þ
lm ðgÞ�

X
m

X
k

c mð Þ
k

Xdm
j¼1

w mð Þ
j D mð Þ

jk gð Þ

¼ da
n

X
m

X
k

c mð Þ
k

Xdm
j¼1

w mð Þ
j

X
g

D að Þ
lm ðgÞ�D mð Þ

jk gð Þ
" #

¼ da
n

X
m

X
k

c mð Þ
k

Xdm
j¼1

w mð Þ
j

n
da

damdljdmk ¼ c að Þ
m w að Þ

l ; ð15:148Þ

where we used (15.51) for the equality before the last.

Thus, an implication of the operator P að Þ
l mð Þ is that if f contains the component w að Þ

m ,

i.e., c að Þ
m 6¼ 0, P að Þ

l mð Þ plays a role in extracting the component c að Þ
m w að Þ

m from f and then

converting it to c að Þ
m w að Þ

l . If the w að Þ
m component is not contained in f, that means from

(15.148) P að Þ
l mð Þf ¼ 0. In that case, we choose a more suitable function for f. In this

context, we will investigate an example of a quantum chemical calculation later.

In the above case, let us call P að Þ
l mð Þ a projection operator sensu lato. In Sect. 12.1,

we dealt with several aspects of the projection operators. There we have mentioned
that a projection operator should be idempotent and Hermitian in a rigorous sense
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(Definition 12.1). To address another important aspect of the projection operator, let
us prove an important relation in the following theorem.

Theorem 15.6 [1] Let P að Þ
l mð Þ and P bð Þ

s tð Þ be projection operators defined in (15.147).

Then, the following equation holds:

P að Þ
l mð ÞP

bð Þ
s tð Þ ¼ dabdmsP

að Þ
l tð Þ: ð15:149Þ

Proof We have

P að Þ
l mð ÞP

bð Þ
s tð Þ ¼

da
n

X
g

D að Þ
lm ðgÞ�g db

n

X
g0

D bð Þ
st ðg0Þ�g0

¼ da
n

X
g

D að Þ
lm ðgÞ�g db

n

X
g0

D bð Þ
st ðg�1g0Þ�g�1g0

¼ da
n
db
n

X
g

X
g0

D að Þ
lm ðgÞ�D bð Þ

st ðg�1g0Þ�gg�1g0

¼ da
n
db
n

X
g

X
g0

D að Þ
lm ðgÞ� D bð Þ gð Þ

h iy
D bð Þ g0ð Þ

� ��

st
eg0

¼ da
n
db
n

X
g

X
g0

D að Þ
lm ðgÞ�

X
k

D bð Þ gð Þ�ksD bð Þðg0Þkt
( )�

g0

¼ da
n
db
n

X
k

X
g0

X
g

D að Þ
lm ðgÞ�D bð Þ gð Þks

" #
D bð Þðg0Þ�ktg0

¼ da
n
db
n

X
k

X
g0

n
da

dabdlkdmsD
bð Þðg0Þ�ktg0 ¼

db
n

X
g0

dabdmsD
bð Þðg0Þ�ltg0

¼ dabdms
db
n

X
g0

D bð Þðg0Þ�ltg0 ¼ dabdmsP
að Þ
l tð Þ: ð15:150Þ

This completes the proof.
In the above proof, we used the rearrangement theorem and grand orthogonality

theorem (GOT) as well as the homomorphism and unitarity of the representation
matrices.

Comparing (15.146) and (15.148), we notice that the term c að Þ
m w að Þ

m is not

extracted entirely, but c að Þ
m w að Þ

l is given instead. This is due to the linearity of P að Þ
l mð Þ.

Nonetheless, this is somewhat inconvenient for a practical purpose. To overcome
this inconvenience, we modify (15.149). In (15.149), putting s ¼ m, we have

P að Þ
l mð ÞP

bð Þ
m tð Þ ¼ dabP

að Þ
l tð Þ: ð15:151Þ
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We further modify the relation. Putting b ¼ a, we have

P að Þ
l mð ÞP

að Þ
m tð Þ ¼ P að Þ

l tð Þ: ð15:152Þ

Putting t ¼ l furthermore,

P að Þ
l mð ÞP

að Þ
m lð Þ ¼ P að Þ

l lð Þ: ð15:153Þ

In particular, putting m ¼ l moreover, we get

P að Þ
l lð ÞP

að Þ
l lð Þ ¼ P að Þ

l lð Þ
h i2

¼ P að Þ
l lð Þ: ð15:154Þ

In fact, putting m ¼ l in (15.148), we get

P að Þ
l lð Þf ¼ c að Þ

l w að Þ
l : ð15:155Þ

This means that the term c að Þ
l w að Þ

l has been extracted entirely.
Moreover, in (15.149), putting b ¼ a, s ¼ l, and t ¼ m, we have

P að Þ
l mð ÞP

að Þ
l mð Þ ¼ P að Þ

l mð Þ
h i2

¼ dmlP
að Þ
l mð Þ:

Therefore, for P að Þ
l mð Þ to be an idempotent operator, we must have m ¼ l. That is, of

various operators P að Þ
l mð Þ, only P að Þ

l lð Þ is eligible for an idempotent operator.

Meanwhile, fully describing P að Þ
l lð Þ, we have

P að Þ
l lð Þ ¼

da
n

X
g

D að Þ
ll ðgÞ�g: ð15:156Þ

Taking complex conjugate transposition (i.e., adjoint) of (15.156), we have

P að Þ
l lð Þ

h iy
¼ da

n

X
g

D að Þ
ll gð Þgy ¼ da

n

X
g�1

D að Þ
ll g�1� �

g�1� �y
¼ da

n

X
g

D að Þ
ll ðgÞ�g ¼ P að Þ

l lð Þ;
ð15:157Þ

where we used unitarity of g (with the third equality) and equivalence of summation

over g and g�1. Notice that the notation of gy is less common. This should be

interpreted as meaning that gy operates on a vector constituting a representation

space. Thus, notation gy implies that gy is equivalent to its unitary representation
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matrix D að Þ gð Þ. Note also that D að Þ
ll is not a matrix but a (complex) number. Namely,

in (15.156), D að Þ
ll ðgÞ� is a coefficient of an operator g.

Equations (15.154) and (15.157) establish that P að Þ
l lð Þ is a projection operator in a

rigorous sense. Let us call P að Þ
l lð Þ a projection operator sensu stricto accordingly. Also,

we notice that c að Þ
m w að Þ

m is entirely extracted from an arbitrary function f including a
coefficient. This situation resembles that of (10.205).

Regarding P að Þ
l mð Þ, on the other hand, we have

P að Þ
l mð Þ

h iy
¼ da

n

X
g

D að Þ
lm gð Þgy ¼ da

n

X
g�1

D að Þ
lm g�1� �

g�1� �y
¼ da

n

X
g

D að Þ
ml ðgÞ�g ¼ P að Þ

m lð Þ:
ð15:158Þ

Hence, P að Þ
l mð Þ is not Hermitian. We have many other related equations. For instance,

P að Þ
l mð ÞP

að Þ
m lð Þ

h iy
¼ P að Þ

m lð Þ
h iy

P að Þ
l mð Þ

h iy
¼ P að Þ

l mð ÞP
að Þ
m lð Þ: ð15:159Þ

Therefore, P að Þ
l mð ÞP

að Þ
m lð Þ is Hermitian, recovering the relation (15.153).

In (15.149), putting m ¼ l and t ¼ s, we get

P að Þ
l lð ÞP

bð Þ
s sð Þ ¼ dabdlsP

að Þ
l sð Þ: ð15:160Þ

As in the case of (15.146), we assume that h is described as

h ¼
X
a

X
m

d að Þ
m / að Þ

m ; ð15:161Þ

where / að Þ
m is transformed in the same manner as that for w að Þ

m in (15.146), but

linearly independent of w að Þ
m . Namely, we have

g / að Þ
i

� �
¼
Xda
j¼1

/ að Þ
j D að Þ

ji gð Þ: ð15:162Þ

Tangible examples can be seen in Chap. 16.

Operating P að Þ
l lð Þ on both sides of (15.155), we have

P að Þ
l lð Þ

h i2
f ¼ P að Þ

l lð Þ c að Þ
l w að Þ

l

h i
¼ P að Þ

l lð Þf ¼ c að Þ
l w að Þ

l ; ð15:163Þ
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where with the second equality we used ½P að Þ
l lð Þ�2 ¼ P að Þ

l lð Þ. That is, we have

P að Þ
l lð Þ c að Þ

l w að Þ
l

h i
¼ c að Þ

l w að Þ
l : ð15:164Þ

This equation means that c að Þ
l w að Þ

l is an eigenfunction corresponding to an eigen-

value 1 of P að Þ
l lð Þ. In other words, once c að Þ

l w að Þ
l is extracted from f, it belongs to the

“position” l of an irreducible representation a. Furthermore, for some constants
c and d as well as the functions f and h that appeared in (15.146) and (15.161), we
consider a following equation:

P að Þ
l lð Þ cc að Þ

l w að Þ
l þ dd að Þ

l / að Þ
l

h i
¼ cP að Þ

l lð Þc
að Þ
l w að Þ

l þ dP að Þ
l lð Þd

að Þ
l / að Þ

l

¼ cc að Þ
l w að Þ

l þ dd að Þ
l / að Þ

l ;
ð15:165Þ

where with the last equality we used (15.164). This means that an arbitrary linear

combination of c að Þ
l w að Þ

l and d að Þ
l / að Þ

l again belongs to the position l of an irreducible

representation a. If w að Þ
l and / að Þ

l are linearly independent, we can construct two
orthonormal basis vectors following Theorem 11.2 (Gram–Schmidt orthonormal-

ization Theorem). If there are other linearly independent vectors p að Þ
l n að Þ

l , q að Þ
l u að Þ

l ,

� � �, where n að Þ
l , u að Þ

l , etc., belong to the position l of an irreducible representation a,

then cc að Þ
l w að Þ

l þ dd að Þ
l / að Þ

l þ pp að Þ
l n að Þ

l þ qq að Þ
l u að Þ

l þ � � � again belongs to the position
l of an irreducible representation a. Thus, we can construct orthonormal basis
vectors of the representation space according to Theorem 11.2.

Regarding arbitrary functions f and h as vectors and using (15.160), we make an
inner product of (15.160) such that

h P að Þ
l lð ÞP

bð Þ
s sð Þ

��� ���fD E
¼ h P að Þ

l lð ÞP
að Þ
l lð ÞP

bð Þ
s sð Þ

��� ���fD E
¼ h P að Þ

l lð ÞdabdlsP
að Þ
l sð Þ

��� ���fD E
¼ dabdls hP að Þ

l lð Þ P
að Þ
l sð Þ

��� ���fD E
;

ð15:166Þ

where with the first equality we used P að Þ
l lð Þ ¼ P að Þ

l lð ÞP
að Þ
l lð Þ (15.154). Meanwhile, from

(15.148), we have

P að Þ
l sð Þ
���fE ¼ c að Þ

s w að Þ
l ð15:167Þ

Also using (15.155), we get

P að Þ
l lð Þ
���hE ¼ d að Þ

l / að Þ
l

��� E
: ð15:168Þ
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Taking adjoint of (15.168), we have

hh j P að Þ
l lð Þ

h iy
¼ hh jP að Þ

l lð Þ ¼ d að Þ
l

h i�
/ að Þ
l

D ���; ð15:169Þ

where we used P að Þ
l lð Þ

h iy
¼ P að Þ

l lð Þ (15.157). The relation (15.169) is due to the notation

of Sect. 11.3. Substituting (15.167) and (15.168) for (15.166),

h P að Þ
l lð ÞP

bð Þ
s sð Þ

��� ���fD E
¼ dabdls d að Þ

l

h i�
c að Þ
s / að Þ

l jw að Þ
l

D E
:

Meanwhile, (15.166) can also be described as

h P að Þ
l lð ÞP

bð Þ
s sð Þ

��� ���fD E
¼ d að Þ

l / að Þ
l jc bð Þ

s w bð Þ
s

D E
¼ d að Þ

l

h i�
c bð Þ
s / að Þ

l jw bð Þ
s

D E
: ð15:170Þ

For (15.166) and (15.170) to be identical, we must have

dabdls d að Þ
l

h i�
c að Þ
s / að Þ

l jw að Þ
l

D E
¼ d að Þ

l

h i�
c bð Þ
s / að Þ

l jw bð Þ
s

D E
:

Deleting coefficients, we get

/ að Þ
l jw bð Þ

s

D E
¼ dabdls / að Þ

l jw að Þ
l

D E
: ð15:171Þ

The relation (15.171) is frequently used to estimate whether definite integrals
vanish. Functional forms depend upon actual problems we encounter in various
situations. We will deal with this problem in Chap. 16 in relation to, e.g., discussion
on optical transition and evaluation of overlap integrals.

To evaluate (15.170), if a 6¼ b or l 6¼ s, we get simply

h P að Þ
l lð ÞP

bð Þ
s sð Þ

��� ���fD E
¼ 0 a 6¼ b or l 6¼ sð Þ: ð15:172Þ

That is, under a given condition a 6¼ b or l 6¼ s, P bð Þ
s sð Þjf i and P að Þ

l lð Þjhi are orthogonal

(see Theorem 11.3 of Sect. 11.4). The relation clearly indicates that functions
belonging to different irreducible representations (a 6¼ b) are mutually orthogonal.
Even though the functions belong to the same irreducible representation, the
functions are orthogonal if they are allocated to the different “place” as a basis

vector designated by l, s, etc. Here the place means the index j of w að Þ
j in (15.145) or

/ að Þ
j in (15.162) that designates the “order” of w að Þ

j within w að Þ
1 , w að Þ

2 , � � �, w að Þ
da

or / að Þ
j

within / að Þ
1 , / að Þ

2 , � � �, / að Þ
da . This takes place if the representation is multidimensional

(i.e., dimensionality: da).
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In (15.160), putting a ¼ b, we get

P að Þ
l lð ÞP

að Þ
s sð Þ ¼ dlsP

að Þ
l sð Þ:

In the above relation, furthermore, unless l ¼ s, we have

P að Þ
l lð ÞP

að Þ
s sð Þ ¼ 0:

Therefore, on the basis of the discussion of Sect. 12.1, P að Þ
l lð Þ þP að Þ

s sð Þ is a projection

operator as well in the case of l 6¼ s. Notice, however, that if l ¼ s, P að Þ
l lð Þ þP að Þ

s sð Þ is

not a projection operator. Readers can readily show it. Moreover, let us define P að Þ

as below

P að Þ �
Xda
l¼1

P að Þ
l lð Þ: ð15:173Þ

Similarly, P að Þ is again a projection operator as well.
From (15.156), P að Þ in (15.173) can be rewritten as

P að Þ ¼ da
n

X
g

Xda
l¼1

D að Þ
ll ðgÞ�g ¼ da

n

X
g

v að Þ gð Þ
h i�

g: ð15:174Þ

Returning to (15.155) and taking summation over l there, we haveXda
l¼1

P að Þ
l lð Þf ¼

Xda
l¼1

c að Þ
l w að Þ

l :

Using (15.173), we get

P að Þf ¼
Xda
l¼1

c að Þ
l w að Þ

l : ð15:175Þ

Thus, an operator P að Þ has a clear meaning. That is, P að Þ plays a role in extracting all
the vectors (or functions) including their coefficients. Defining those functions as

w að Þ �
Xda
l¼1

c að Þ
l w að Þ

l ; ð15:176Þ

we succinctly rewrite (15.175) as

P að Þf ¼ w að Þ: ð15:177Þ
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In turn, let us calculate P bð ÞP að Þ. This can be done with (15.174) as follows:

P bð ÞP að Þ ¼ db
n

X
g

v bð Þ gð Þ
h i�

g
da
n

X
g0

v að Þ g0ð Þ
h i�

g0: ð15:178Þ

To carry out the calculation, (i) first we replace g0 with g�1g0 and rewrite the
summation over g0 as that over g�1g0. (ii) Using the homomorphism and unitarity of
the representation, we rewrite v að Þ g0ð Þ� ��

as

v að Þ g0ð Þ
h i�

¼
X
i;j

D að Þ gð Þ
h i

ji
D að Þ g0ð Þ
h i�

ji
: ð15:179Þ

Rewriting (15.178), we have

P bð ÞP að Þ ¼ db
n
da
n

X
g

X
k;i;j

D bð Þ gð Þ
h i�

kk
D að Þ gð Þ
h i

ji

X
g0

D að Þ g0ð Þ
h i�

ji
g0

¼ db
n
da
n

X
k;i;j

n
db

dabdkjdki
X
g0

D að Þ g0ð Þ
h i�

ji
g0 ¼ da

n

X
k

X
g0

D að Þ g0ð Þ
h i�

kk
g0

¼ dab
da
n

X
g0

v að Þ g0ð Þ
h i�

g0 ¼ dabP
að Þ:

ð15:180Þ

These relationships are anticipated from the fact that both P að Þ and P bð Þ are pro-
jection operators.

As in the case of (15.160), (15.180) is useful to evaluate an inner product of
functions. Again taking an inner product of (15.180) with arbitrary functions f and
g, we have

g P bð ÞP að Þ�� ��fD E
¼ g dabP

að Þ�� ��fD E
¼ dab g P að Þ�� ��fD E

: ð15:181Þ

If we define P such that

P �
Xnr
a¼1

P að Þ; ð15:182Þ

then P is once again a projection operator (see Sect. 12.1). Now taking summation
in (15.177) over all the irreducible representations a, we have

Xnr
a¼1

P að Þf ¼
Xnr
a¼1

w að Þ ¼ f : ð15:183Þ

538 15 Representation Theory of Groups



The function f has been arbitrarily taken and, hence, we get

P ¼ E: ð15:184Þ

As mentioned in Example 15.1, the concept of the representation space is not
only important but also very useful for addressing various problems of physics and
chemistry. For instance, molecular orbital methods to be dealt with in Chap. 16
consider a representation space whose dimension is equal to the number of elec-
trons of a molecule about which we wish to know, e.g., energy eigenvalues of those
electrons. In that case, the dimension of representation space is equal to the number
of molecular orbitals. According to a symmetry species of the molecule, the rep-
resentation matrix is decomposed into a direct sum of invariant eigenspaces relevant
to individual irreducible representations. If the basis vectors belong to different
irreducible representation, such vectors are orthogonal to each other in virtue of
(15.171). Even though those vectors belong to the same irreducible representation,
they are orthogonal if they are allocated to a different place. However, it is often the
case that the vectors belong to the same place of the same irreducible representa-
tion. Then, it is always possible according to Theorem 11.2 to make them mutually
orthogonal by taking their linear combination. In such a way, we can construct an
orthonormal basis set throughout the representation space. In fact, the method is a
powerful tool for solving an energy eigenvalue problem and for determining
associated eigenfunctions (or molecular orbitals).

15.8 Direct-Product Representation

In Sect. 11.5, we have studied basic properties of direct-product groups.
Correspondingly, we examine in this section the properties of direct-product rep-
resentation. This notion is very useful to investigate optical transitions in molecular
systems and selection rules relevant to those transitions.

Let D að Þ and D bð Þ be two different irreducible representations whose dimensions
are da and db, respectively. Then, operating a group element g on the basis func-
tions, we have

g wið Þ ¼
Xda
k¼1

wkD
að Þ
ki gð Þ 1� i� dað Þ; ð15:185Þ

g /j

� � ¼Xdb
l¼1

/lD
bð Þ
lj gð Þ 1� j� db

� �
; ð15:186Þ

where wk 1� i� dað Þ and /l 1� l� db
� �

are basis functions of D að Þ and D bð Þ,
respectively. We can construct dadb new basis vectors using wk/l. These functions
are transformed according to g such that
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g wi/j

� � ¼ g wið Þg /j

� � ¼ X
k

wkD
að Þ
ki gð Þ

" # X
l

/lD
bð Þ
lj gð Þ

" #
¼
X
k

X
l

wk/lD
að Þ
ki gð ÞD bð Þ

lj gð Þ:
ð15:187Þ

Here let us define the following matrix D a�bð Þ gð Þ� �
kl;ij such that

D a�bð Þ gð Þ
h i

kl;ij
� D að Þ

ki gð ÞD bð Þ
lj gð Þ: ð15:188Þ

Then we have

g wi/j

� � ¼X
k

X
l

wk/l D
a�bð Þ gð Þ

h i
kl;ij

: ð15:189Þ

The notation using double scripts is somewhat complicated. We notice, however,
that in (15.188), the order of subscript of kilj is converted to kl; ij, i.e., the subscripts
i and l have been interchanged.

We write D að Þ and D bð Þ in explicit forms as follows:

D að Þ gð Þ ¼
d að Þ
1;1 � � � d að Þ

1;da

..

. . .
. ..

.

d að Þ
da;1 � � � d að Þ

da;da

0BB@
1CCA; D bð Þ gð Þ ¼

d bð Þ
1;1 � � � d bð Þ

1;db

..

. . .
. ..

.

d bð Þ
db;1

� � � d bð Þ
db;db

0BB@
1CCA:

ð15:190Þ

Thus,

D a�bð Þ gð Þ ¼ D að Þ gð Þ � D bð Þ gð Þ ¼
d að Þ
1;1D

bð Þ gð Þ � � � d að Þ
1;daD

bð Þ gð Þ
..
. . .

. ..
.

d að Þ
da;1D

bð Þ gð Þ � � � d að Þ
da;daD

bð Þ gð Þ

0BB@
1CCA:

ð15:191Þ

To get familiar with the double-scripted notation, we describe a case of (2,2)
matrices. Denoting

D að Þ gð Þ ¼ a11 a12
a21 a22


 �
and D bð Þ gð Þ ¼ b11 b12

b21 b22


 �
; ð15:192Þ

we get
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D a�bð Þ gð Þ ¼ D að Þ gð Þ � D bð Þ gð Þ

¼

a11b11 a11b12 a12b11 a12b12
a11b21
a21b11
a21b21

a11b22 a12b21 a12b22
a21b12 a22b11 a22b12
a21b22 a22b21 a22b22

0BBB@
1CCCA:

ð15:193Þ

Corresponding to (15.22), (15.189) describes the transformation of wi/j

regarding the double script. At the same time, a set wi/j; 1� i� da; 1� j� db
� �� �

is a basis of D a�bð Þ. In fact,

D a�bð Þ gg0ð Þ
h i

kl;ij
¼ D að Þ

ki gg0ð ÞD bð Þ
lj gg0ð Þ

¼
X
l

D að Þ
kl gð ÞD að Þ

li g0ð Þ
" # X

m

D bð Þ
lm gð ÞD bð Þ

mj g0ð Þ
" #

¼
X
l

X
m

D að Þ
kl gð ÞD bð Þ

lm gð ÞD að Þ
li g0ð ÞD bð Þ

mj g0ð Þ

¼
X
l

X
m

D a�bð Þ gð Þ
h i

kl;lm
D a�bð Þ g0ð Þ
h i

lm;ij
: ð15:194Þ

Equation (15.194) shows that the rule of matrix calculation with respect to the
double subscript is satisfied. Consequently, we get

D a�bð Þ gg0ð Þ ¼ D a�bð Þ gð ÞD a�bð Þ g0ð Þ: ð15:195Þ

The relation (15.195) indicates that D a�bð Þ is certainly a representation of a group.
This representation is said to be a direct-product representation.

A character of the direct-product representation is given by putting k ¼ i and
l ¼ j in (15.188). That is,

D a�bð Þ gð Þ
h i

ij;ij
¼ D að Þ

ii gð ÞD bð Þ
jj gð Þ: ð15:196Þ

Denoting

v a�bð Þ gð Þ � D a�bð Þ gð Þ
h i

ij;ij
; ð15:197Þ

we have

v a�bð Þ gð Þ ¼ v að Þ gð Þv bð Þ gð Þ: ð15:198Þ
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Even though D að Þ and D bð Þ are both irreducible, D axbð Þ is not necessarily irre-
ducible. Suppose that

D að Þ gð Þ � D bð Þ gð Þ ¼
X
x

qxD xð Þ gð Þ; ð15:199Þ

where qc is given by (15.83). Then, we have

qc ¼ 1
n

X
g

v cð ÞðgÞ�v a�bð Þ gð Þ ¼ 1
n

X
g

v cð ÞðgÞ�v að Þ gð Þv bð Þ gð Þ; ð15:200Þ

where n is an order of the group. This relation is often used to perform quantum
mechanical or chemical calculations, especially to evaluate optical transitions of
matter including atoms and molecular systems. This is also useful to examine
whether a definite integral of a product of functions (or an inner product of vectors)
vanishes.

In Sect. 13.5, we investigated definition and properties of direct-product groups.
Similarly to the case of the direct-product representation, we consider a represen-
tation of the direct-product groups. Let us consider two groups g andH and assume
that a direct-product group g�H is defined (Sect. 13.5). Also, let D að Þ andD bð Þ be
da- and db-dimensional representations of groups g and H; respectively.
Furthermore, let us define a matrix D a�bð Þ abð Þ as in (15.188) such that

D a�bð Þ abð Þ
h i

kl;ij
� D að Þ

ki að ÞD bð Þ
lj bð Þ; ð15:201Þ

where a and b are arbitrarily chosen from g andH; respectively, and ab 2 g�H:

Then a set comprising D a�bð Þ abð Þ forms a representation of g�H: (Readers, please
verify it.) A dimension of D a�bð Þ is dadb. The character is given in (15.69), and so in
the present case by putting i ¼ k and j ¼ l in (15.201), we get

v a�bð Þ abð Þ ¼
X
k

X
l

D a�bð Þ abð Þ
h i

kl;kl
¼
X
k

X
l

D að Þ
kk að ÞD bð Þ

ll bð Þ

¼ v að Þ að Þv bð Þ bð Þ: ð15:202Þ

Equation (15.202) resembles (15.198). Hence, we should be careful not to confuse
them. In (15.198), we were thinking of a direct-product representation within a sole
group g: In (15.202), however, we are considering a representation of the
direct-product group comprising two different groups. In fact, even though a
character is computed with respect to a sole group element g in (15.198), in
(15.202) we evaluate a character regarding two group elements a and b chosen from
different groups g andH; respectively.
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15.9 Symmetric Representation and Antisymmetric
Representation

As mentioned in Sect. 15.2, we have viewed a group element g as a linear trans-
formation over a vector space V. There we dealt with widely chosen functions as
vectors. In this chapter, we introduce other useful ideas so that we can apply them
to molecular science and atomic physics.

In the previous section, we defined direct-product representation. In
D a�bð Þ gð Þ ¼ D að Þ gð Þ � D bð Þ gð Þ, we can freely consider a case where
D að Þ gð Þ ¼ D bð Þ gð Þ. Then we have

g wi/j

� � ¼ g wið Þg /j

� � ¼X
k

X
l

wk/lD
að Þ
ki gð ÞD að Þ

lj gð Þ: ð15:203Þ

Regarding a product function wj/i, we can get a similar equation such that

g wj/i

� � ¼ g wj

� �
g /ið Þ ¼

X
k

X
l

wk/lD
að Þ
kj gð ÞD að Þ

li gð Þ: ð15:204Þ

On the basis of the linearity of the relations (15.203) and (15.204), let us construct a
linear combination of the product functions. That is,

g wi/j 
 wj/i

� � ¼ g wi/j

� �
 g wj/i

� �
¼
X
k

X
l

wk/lD
að Þ
ki gð ÞD að Þ

lj gð Þ 

X
k

X
l

wk/lD
að Þ
kj gð ÞD að Þ

li gð Þ

¼
X
k

X
l

wk/l 
 wl/kð ÞD að Þ
ki gð ÞD að Þ

lj gð Þ:

ð15:205Þ

Here, defining W

ij as

W

ij ¼ wi/j 
 wj/i; ð15:206Þ

we rewrite (15.205) as

gW

ij ¼

X
k

X
l

W

kl

1
2

D að Þ
ki gð ÞD að Þ

lj gð Þ 
 D að Þ
li gð ÞD að Þ

kj gð Þ
h i� �

: ð15:207Þ

Notice that Wþ
ij and W�

ij in (15.206) are symmetric and antisymmetric with respect
to the interchange of subscript i and j, respectively. That is,
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W

ij ¼ 
W


ji : ð15:208Þ

We may naturally ask how we can constitute representation (matrices) with
(15.207). To answer this question, we have to carry out calculations by replacing
g with gg0 in (15.207) and following the procedures of Sect. 15.2. Thus, we have

gg0W

ij ¼

X
k

X
l

W

kl

1
2

D að Þ
ki gg0ð ÞD að Þ

lj gg0ð Þ 
 D að Þ
li gg0ð ÞD að Þ

kj gg0ð Þ
h i� �

¼
X
k

X
l

W

kl

1
2

X
l

D að Þ
kl gð ÞD að Þ

li g0ð Þ
X
m

D að Þ
lm gð ÞD að Þ

mj g0ð Þ
"(



X
l

D að Þ
ll gð ÞD að Þ

li g0ð Þ
X
m

D að Þ
km gð ÞD að Þ

mj g0ð Þ
#)

¼
X
k

X
l

W

kl

1
2

X
l

X
m

D að Þ
kl gð ÞD að Þ

lm gð Þ 
 D að Þ
ll gð ÞD að Þ

km gð Þ
h i

D að Þ
li g0ð ÞD að Þ

mj g0ð Þ
( )

¼
X
k

X
l

W

kl

1
2

X
l

X
m

D a�að Þ gð Þ
h i

kl;lm

 D a�að Þ gð Þ
h i

lk;lm

� �
D að Þ

li g0ð ÞD að Þ
mj g0ð Þ

(
;

ð15:209Þ

where the last equality follows from the definition of a direct-product representation
(15.188). We notice that the terms of D a�að Þ gg0ð Þ� �

kl;lm
 D a�að Þ gg0ð Þ� �
lk;lm in

(15.209) are symmetric and antisymmetric with respect to the interchange of sub-
scripts k and l together with subscripts l and m, respectively. Comparing both sides
of (15.209), we see that this must be the case with i and j as well. Then, the last
factor of (15.209) should be rewritten as:

D að Þ
li g0ð ÞD að Þ

mj g0ð Þ ¼ 1
2

D að Þ
li g0ð ÞD að Þ

mj g0ð Þ 
 D að Þ
mi g0ð ÞD að Þ

lj g0ð Þ
h i

:

Now, we define the following notations accordingly:

D a�a½ � gð Þ
n o

kl;lm
� 1

2
D a�að Þ gð Þ
h i

kl;lm
þ D a�að Þ gð Þ
h i

lk;lm

� �
¼ 1

2
D að Þ

kl gð ÞD að Þ
lm gð ÞþD að Þ

ll gð ÞD að Þ
km gð Þ

h i
: ð15:210Þ

D a�af g gð Þ� �
kl;lm �

1
2

D a�að Þ gð Þ�kl;lm�
h h

D a�að Þ gð Þ�lk;lm
n o

¼ 1
2

D að Þ
kl gð ÞD að Þ

lm gð Þ � D að Þ
ll gð ÞD að Þ

km gð Þ
h i

: ð15:211Þ
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Meanwhile, using D að Þ
li g0ð ÞD að Þ

mj g0ð Þ ¼ D a�að Þ g0ð Þ� �
lm;ij and considering the

exchange of summation with respect to the subscripts l and m, we can also define
D a�a½ � g0ð Þ and D a�af g gð Þ according to the symmetric and antisymmetric cases,
respectively. Thus for the symmetric case, we have

gg0Wþ
ij ¼

X
k

X
l

X
l

X
m

Wþ
kl D a�a½ � gð Þ
n o

kl;lm
D a�a½ � g0ð Þ
n o

lm;ij

¼
X
k

X
l

Wþ
kl D a�a½ � gð ÞD a�a½ � g0ð Þ
n o

kl;ij
:

ð15:212Þ

Using (15.210), (15.207) can be rewritten as

gWþ
ij ¼

X
k

X
l

Wþ
kl D a�a½ � gð Þ
n o

kl;ij
: ð15:213Þ

Then we have

gg0Wþ
ij ¼

X
k

X
l

Wþ
kl D a�a½ � gg0ð Þ
n o

kl;ij
: ð15:214Þ

Comparing (15.212) and (15.214), we finally get

D a�a½ � gg0ð Þ ¼ D a�a½ � gð ÞD a�a½ � g0ð Þ: ð15:215Þ

Similarly, for the antisymmetric case, we have

gg0W�
ij ¼

X
k

X
l

W�
kl D a�af g gð ÞD a�af g g0ð Þ� �

kl;ij; ð15:216Þ

gW�
ij ¼

X
k

X
l

W�
kl D a�af g gð Þ� �

kl;ij; ð15:217Þ

D a�af g gg0ð Þ ¼ D a�af g gð ÞD a�af g g0ð Þ: ð15:218Þ

Thus, both D a�a½ � gð Þ and D a�af g gð Þ produce well-defined representations.
Letting dimension of the representation a be da, we have da da þ 1ð Þ=2 functions

belonging to the symmetric representation and da da � 1ð Þ=2 functions belonging to
the antisymmetric representation. With the two-dimensional representation, for
instance, functions belonging to the symmetric representation are

w1/1;w1/2 þw2/1; and w2/2:
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A function belonging to the antisymmetric representation is

w1/2 � w2/1:

Note that these vectors have not yet been normalized.
From (15.210) to (15.211), we can readily get useful expressions with characters

of symmetric and antisymmetric representations. In (15.210), putting l ¼ k and
m ¼ l and summing over k and l,

v a�a½ � gð Þ ¼
X
k

X
l

D a�a½ � gð Þ
n o

kl;kl

¼ 1
2

X
k

X
l

D að Þ
kk gð ÞD að Þ

ll gð ÞþD að Þ
lk gð ÞD að Þ

kl gð Þ
h i

¼ 1
2

v að Þ gð Þ
h i2

þ v að Þ g2
� �h i� �

:

ð15:219Þ

Similarly, we have

v a�af g gð Þ ¼ 1
2

v að Þ gð Þ
h i2

� v að Þ g2
� �h i� �

: ð15:220Þ
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Chapter 16
Applications of Group Theory to Physical
Chemistry

On the basis of studies of group theory, now in this last chapter we apply the
knowledge to the molecular orbital (MO) calculations (or quantum chemical
calculations). As tangible examples, we adopt aromatic hydrocarbons (ethylene,
cyclopropenyl radical, benzene, and ally radical) and methane. The approach is
based upon a method of linear combination of atomic orbitals (LCAO). To seek an
appropriate LCAO MO, we make the most of a method based on a
symmetry-adapted linear combination (SALC). To use projection operators is a
powerful tool for this purpose. For the sake of correct understanding, it is desired to
consider transformation of functions. To this end, we first show several examples.

In the process of carrying out MO calculations, we encounter a secular equation
as an eigenvalue equation. Using a SALC eases the calculations of the secular
equation. Molecular science relies largely on spectroscopic measurements, and
researchers need to assign individual spectral lines to a specific transition between
the relevant molecular states. Representation theory works well in this situation.
Thus, the group theory finds a perfect fit with its applications in the molecular
science.

16.1 Transformation of Functions

Before showing individual examples, let us consider the transformation of functions
(or vectors) by the symmetry operation. Here, we consider scalar functions.

For example, let us suppose an arbitrary function f x; yð Þ on a Cartesian xy-
coordinate. Figure 16.1 shows a contour map of f x; yð Þ ¼ constant. Then, suppose
that the map is rotated around the origin. More specifically, the position vector r0
fixed on a “summit” [i.e., a point that gives a maximal value of f (x, y)] undergoes a
symmetry operation, namely rotation around the origin. As a result, r0 is trans-
formed to r00. Here, we assume that a “mountain” represented by f x; yð Þ is a rigid
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body before and after the transformation. Concomitantly, a general point r (see
Sect. 14.1) is transformed to r0 in exactly the same way as r0

A new function f 0 gives a new contour map after the rotation. Let us describe f 0 as

f 0 � ORf ð16:1Þ

The RHS of (16.1) means that f 0 is produced as a result of operating the rotation
R on f . We describe the position vector r00. Following the notation of Sect. 9.1, r00
and r0 are expressed as

r00 ¼ R r0ð Þ and r0 ¼ R rð Þ ð16:2Þ

The matrix representation for R is given by, e.g., (9.35). In (16.2), we have

r0 ¼ e1 e2ð Þ x0
y0

� �
and r00 ¼ e1 e2ð Þ x00

y00

� �
ð16:3Þ

where e1 and e2 are orthonormal basis vectors in the xy-plane. Also we have

r ¼ e1 e2ð Þ x
y

� �
and r0 ¼ e1 e2ð Þ x0

y0

� �
ð16:4Þ

Meanwhile, the following equation must hold:

f 0 x0; y0ð Þ ¼ f x; yð Þ ð16:5Þ

y

x

Fig. 16.1 Contour map of f x; yð Þ and f 0 x0; y0ð Þ. The function f 0 x0; y0ð Þ is obtained by rotating a
map of f x; yð Þ around the z-axis
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Or, using (16.1), we have

ORf x0; y0ð Þ ¼ f x; yð Þ ð16:6Þ

The above argument can be extended to a three-dimensional (or higher
dimensional) space. In that case, similarly we have

ORf x0; y0; z0ð Þ ¼ f x; y; zð Þ; ORf r0ð Þ ¼ f rð Þ; or f 0 r0ð Þ ¼ f rð Þ ð16:7Þ

where

r ¼ e1e2e3ð Þ
x
y
z

0@ 1A and r0 ¼ e1e2e3ð Þ
x0

y0

z0

0@ 1A ð16:8Þ

The last relation of (16.7) comes from (16.1). Using (16.2) and (16.3), we
rewrite (16.7) as

ORf R rð Þ½ � ¼ f rð Þ ð16:9Þ

Replacing r with R�1 rð Þ, we get

ORf R R�1 rð Þ� �� � ¼ f R�1 rð Þ� � ð16:10Þ

That is,

ORf ðrÞ ¼ f ½Rð�1ÞðrÞ� ð16:11Þ

More succinctly, (16.11) may be rewritten as

Rf rð Þ ¼ f R�1 rð Þ� � ð16:12Þ

Comparing (16.11) with (16.12) and considering (16.1), we have

f 0 � ORf � Rf ð16:13Þ

To gain a good understanding of the function transformation, let us think of
some examples.

Example 16.1 Let f x; yð Þ be a function described by

f x; yð Þ ¼ ðx� aÞ2 þðy� bÞ2; a; b[ 0 ð16:14Þ

A contour is shown in Fig. 16.2. We consider a p=2 rotation around the z-axis.
Then, f x; yð Þ is transformed into Rf x; yð Þ ¼ f 0 x; yð Þ such that
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Rf x; yð Þ ¼ f 0 x; yð Þ ¼ ðxþ bÞ2 þðy� aÞ2 ð16:15Þ

We also have

r0 ¼ e1e2ð Þ a
b

� �
;

r00 ¼ e1e2ð Þ 0 �1
1 0

� �
a
b

� �
¼ e1e2ð Þ �b

a

� �
;

where we define R as

R ¼ 0 �1
1 0

� �
Similarly,

r ¼ e1e2ð Þ x
y

� �
and r0 ¼ e1e2ð Þ �y

x

� �
From (16.15), we have

f 0 x0; y0ð Þ ¼ ðx0 þ bÞ2 þðy0 � aÞ2 ¼ ð�yþ bÞ2 þðx� aÞ2 ¼ f x; yð Þ ð16:16Þ

y

xOz

Fig. 16.2 Contour map of f x; yð Þ ¼ ðx� aÞ2 þðy� bÞ2 and f 0 x0; y0ð Þ ¼ ðx0 þ bÞ2 þðy0 � aÞ2
before and after a p=2 rotation around the z-axis
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This ensures that (16.5) holds. The implication of (16.16) combined with (16.5)
is that a view of f 0 x0; y0ð Þ from �b; að Þ is the same as that of f x; yð Þ from a; bð Þ.
Imagine that if we are standing at �b; að Þ of f 0 x0; y0ð Þ, we are in the bottom of the
“valley” of f 0 x0; y0ð Þ. Exactly in the same manner, if we are standing at a; bð Þ of
f x; yð Þ, we are in the bottom of the valley of f x; yð Þ as well. Notice that for both
f x; yð Þ and f 0 x0; y0ð Þ, a; bð Þ and �b; að Þ are the lowest point, respectively.

Meanwhile, we have

R�1 ¼ 0 1
�1 0

� �
; R�1 rð Þ ¼ e1e2ð Þ 0 1

�1 0

� �
x
y

� �
¼ e1e2ð Þ y

�x

� �
Then, we have

f R�1 rð Þ� � ¼ yð Þ � a�2 þ
h h

�xð Þ � b�2 ¼ ðxþ bÞ2 þðy� aÞ2 ¼ Rf rð Þ ð16:17Þ

Thus, (16.12) certainly holds.

Example 16.2 Let f rð Þ and g rð Þ be functions described by

f rð Þ ¼ e�2½ x�aÞ2 þ y2 þ z2ð � þ e�2½ xþ aÞ2 þ y2 þ z2ð �ða[ 0Þ; ð16:18Þ

g rð Þ ¼ e�2½ x�aÞ2 þ y2 þ z2ð � � e�2½ xþ aÞ2 þ y2 þ z2ð �ða[ 0Þ: ð16:19Þ

Figure 16.3 shows an outline of the contour of f rð Þ. We consider a following
symmetry operation in a three-dimensional coordinate system:

R ¼
�1 0 0
0
0

1 0
0 1

0@ 1A and R�1 ¼
�1 0 0
0
0

1 0
0 1

0@ 1A ð16:20Þ

y

xz

Fig. 16.3 Contour map of f rð Þ ¼ e�2½ x�aÞ2 þ y2 þ z2ð � þ e�2½ xþ aÞ2 þ y2 þ z2ð �ða[ 0Þ. The function
form remains unchanged by a reflection with respect to the yz-plane
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This represents a reflection with respect to the yz-plane. Then, we have

f R�1 rð Þ� � ¼ Rf rð Þ ¼ f rð Þ; ð16:21Þ

g R�1 rð Þ� � ¼ Rg rð Þ ¼ �g rð Þ; ð16:22Þ

Plotting f rð Þ and g rð Þ as a function of x on the x-axis, we depict results in
Fig. 16.4.

Looking at (16.21) and (16.22), we find that f rð Þ and g rð Þ are solutions of an
eigenvalue equation for an operator R. Corresponding eigenvalues are 1 and −1 for
f rð Þ and g rð Þ, respectively. In particular, f rð Þ holds the functional form after the
transformation R. In this case, f rð Þ is said to be invariant with the transformation R.
Moreover, f rð Þ is invariant with the following eight transformations:

R ¼
�1 0 0
0 �1 0
0 0 �1

0@ 1A ð16:23Þ

These transformations form a group that is isomorphic to D2h. Therefore, f rð Þ is
eligible for a basis function of the totally symmetric representation Ag of D2h.
Notice that f rð Þ is invariant as well with a rotation of an arbitrary angle around the
x-axis. On the other hand, g rð Þ belongs to B3u.

16.2 Method of Molecular Orbitals (MOs)

Bearing in mind these arguments, we examine several examples of quantum
chemical calculations. Our approach is based upon the molecular orbital theory.
The theory assumes the existence of molecular orbitals (MOs) in a molecule, as the
notion of atomic orbitals has been well-established in atomic physics. Furthermore,
we assume that the molecular orbitals comprise a linear combination of atomic
orbitals (LCAO).

0 aa 0 aa
0

0

(b)(a)

Fig. 16.4 Plots of f rð Þ ¼ e�2½ x�aÞ2 þ y2 þ z2ð � þ e�2½ xþ aÞ2 þ y2 þ z2ð � and g rð Þ ¼ e�2½ x�aÞ2 þ y2 þ z2ð � �
e�2½ xþ aÞ2 þ y2 þ z2ð �ða[ 0Þ as a function of x on the x-axis. a f rð Þ. b g rð Þ
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This notion is equivalent to that individual electrons in a molecule are inde-
pendently moving in a potential field produced by nuclei and other electrons. In
other words, we assume that each electron is moving along an MO that is extended
over the whole molecule. Electronic state in the molecule is formed by different
MOs of various energies that are occupied by electrons. As in the case of an atom,
an MO wi rð Þ occupied by an electron is described as

Hwi rð Þ � � �h2

2m
r2 þV rð Þ

� 	
wi rð Þ ¼ Eiwi rð Þ; ð16:24Þ

where H is Hamiltonian of a molecule; m is a mass of an electron (note that we do
not use a reduced mass l here); r is a position vector of the electron; r2 is the
Laplacian (Laplace operator); V rð Þ is a potential of the molecule at r; Ei is an
energy of the electron occupying wi and said to be a molecular orbital energy. We
assume that V rð Þ possesses a symmetry the same as that of the molecule.

Let g be a symmetry group, and let a group element arbitrarily chosen from
among g be R. Suppose that an arbitrary position vector r is moved to another
position r0. This transformation is expressed as (16.2). Since V rð Þ has the same
symmetry as the molecule, an electron “feels” the same potential field at r0 as that at
r. That is,

V rð Þ ¼ V 0 r0ð Þ ¼ V r0ð Þ ð16:25Þ

Or we have

V rð Þw rð Þ ¼ V r0ð Þw0 r0ð Þ ð16:26Þ

where w is an arbitrary function. Defining

V rð Þw rð Þ � Vw½ � rð Þ ¼ Vw rð Þ; ð16:27Þ

and recalling (16.1) and (16.7), we get

RV½ �w r0ð Þ ¼ R Vw r0ð Þ½ � ¼ V 0w0 r0ð Þ ¼ V 0 r0ð Þw0 r0ð Þ ¼ V r0ð Þw0 r0ð Þ
¼ V r0ð ÞRw r0ð Þ ¼ VRw r0ð Þ ¼ VR½ �w r0ð Þ ð16:28Þ

Comparing the first and last sides and remembering that w is an arbitrary
function, we get

RV ¼ VR ð16:29Þ
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Next, let us examine the symmetry of the Laplacianr2. The Laplacian is defined
in Sect. 1.2 as

r2 � @2

@x2
þ @2

@y2
þ @2

@z2
; ð1:24Þ

where x, y, and z denote the Cartesian coordinates. Let S be an orthogonal matrix
that transforms the xyz-coordinate system to x′y′z′-coordinate system. We suppose
that S is expressed as

S ¼
s11 s12 s13
s21
s31

s22 s23
s32 s33

0@ 1A and
x0

y0

z0

0@ 1A ¼
s11 s12 s13
s21
s31

s22 s23
s32 s33

0@ 1A x
y
z

0@ 1A ð16:30Þ

Since S is an orthonormal matrix, we have

x
y
z

0@ 1A ¼
s11 s21 s31
s12
s13

s22 s32
s23 s33

0@ 1A x0

y0

z0

0@ 1A ð16:31Þ

The equation is due to

SST ¼ STS ¼ E; ð16:32Þ

where E is a unit matrix. Then, we have

@

@x0
¼ @x

@x0
@

@x
þ @y

@x0
@

@y
þ @z

@x0
@

@z
¼ s11

@

@x
þ s12

@

@y
þ s13

@

@z
ð16:33Þ

Partially differentiating (16.33), we have

@

@x02
¼ s11

@

@x0
@

@x
þ s12

@

@x0
@

@y
þ s13

@

@x0
@

@z

¼ s11 s11
@

@x
þ s12

@

@y
þ s13

@

@z

� �
@

@x
þ s12 s11

@

@x
þ s12

@

@y
þ s13

@

@z

� �
@

@y

þ s13 s11
@

@x
þ s12

@

@y
þ s13

@

@z

� �
@

@z

¼ s211
@2

@x2
þ s11s12

@2

@y@x
þ s11s13

@2

@z@x
þ s12s11

@2

@x@y
þ s212

@2

@y2
þ s12s13

@2

@z@y

þ s13s11
@2

@x@z
þ s13s12

@2

@y@z
þ s213

@2

@z2

ð16:34Þ
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Calculating terms of @
@y02 and

@
@z02, we have similar results. Then, summarizing all

those 27 terms, we get

s211 þ s221 þ s231

 � @2

@x2
¼ @2

@x2
; ð16:35Þ

where we used an orthogonal relationship of S. Cross terms of @2

@x@y ;
@2

@y@x ; etc., all
vanish. Consequently, we get

@

@x02
þ @

@y02
þ @

@z02
¼ @2

@x2
þ @2

@y2
þ @2

@z2
ð16:36Þ

Defining r02 as

r02 � @

@x02
þ @

@y02
þ @

@z02
; ð16:37Þ

we have

r02 ¼ r2 ð16:38Þ

Notice that (16.38) holds with not only the symmetry operation of the molecule,
but also any rotation operation in R

3 (see Sect. 14.4).
As in the case of (16.28), we have

Rr2� �
w r0ð Þ ¼ R r2w r0ð Þ� � ¼ r02w0 r0ð Þ ¼ r2w0 r0ð Þ

¼ r2Rw r0ð Þ ¼ r2R
� �

w r0ð Þ ð16:39Þ

Consequently, we get

Rr2 ¼ r2R ð16:40Þ

Adding both sides of (16.29) and (16.40), we get

R r2 þV

 � ¼ r2 þV


 �
R ð16:41Þ

From (16.24), we have

RH ¼ HR ð16:42Þ

Thus, we confirm that the Hamiltonian H commutes with any symmetry oper-
ation R. In other words, H is invariant with the coordinate transformation relevant
to the symmetry operation.
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Now, we consider matrix representation of (16.42). Also, let D be an irreducible
representation of the symmetry group g. Then, we have

D gð ÞH ¼ HD gð Þ g 2 g

 �

Let w1;w2; . . .;wdf g be a set of basis vectors that span a representation space LS

associated with D. Then, on the basis of Schur’s Second Lemma of Sect. 15.3,
(16.42) immediately leads to an important conclusion that if H is represented by a
matrix, we must have

H ¼ kE; ð16:43Þ

where k is an arbitrary complex constant. That is, H is represented such that

H ¼
k � � � 0
..
. . .

. ..
.

0 � � � k

0@ 1A ð16:44Þ

where the above matrix is d; dð Þ square diagonal matrix and. This implies that H is
reduced to

H ¼ kD 0ð Þ � � � � � kD 0ð Þ;

where D 0ð Þ denotes the totally symmetric representation; notice that it is given by 1
for any symmetry operation. Thus, the commutability of an operator with all
symmetry operation is equivalent to that the operator belonging to the totally
symmetric representation.

Since H is Hermitian, k should be real. Operating both sides of (16.42) on
w1;w2; . . .;wdf g from the right, we have

w1w2. . .wdð ÞRH ¼ w1w2. . .wdð ÞHR

¼ w1w2. . .wdð Þ

k

k
� � �

..

. . .
. ..

.

� � � k

0BBBB@
1CCCCAR ¼ kw1kw2. . .kwdð ÞR

¼ k w1w2. . .wdð ÞR:
ð16:45Þ

In particular, putting R ¼ E, we get

w1w2. . .wdð ÞH ¼ k w1w2. . .wdð Þ

Simplifying this equation, we have
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wiH ¼ kwi 1� i� dð Þ ð16:46Þ

Thus, k is found to be an energy eigenvalue of H, and wi 1� i� dð Þ are
eigenfunctions belonging to the eigenvalue k.

Meanwhile, using

R wið Þ ¼
Xd
k¼1

wkDki Rð Þ;

we rewrite (16.45) as

w1w2. . .wdð ÞRH ¼ w1Rw2R. . .wdRð ÞH

¼
Xd
k¼1

wkDk1 Rð Þ
Xd
k¼1

wkDk2 Rð Þ . . .
Xd
k¼1

wkDkd Rð Þ
 !

H

¼ k
Xd
k¼1

wkDk1 Rð Þ
Xd
k¼1

wkDk2 Rð Þ . . .
Xd
k¼1

wkDkd Rð Þ
 !

;

where with the second equality we used the relation (9.42), i.e.,

wiR ¼ R wið Þ

Thus, we get Xd
k¼1

wkDkiðRÞH ¼ k
Xd
k¼1

wkDkiðRÞ ð1� i� dÞ: ð16:47Þ

The relations (16.45)–(16.47) imply that w1;w2; . . .; and wd as well as their
linear combinations using a representation matrix D Rð Þ are eigenfunctions that
belong to the same eigenvalue k. That is, w1;w2; . . .; and wd are said to be de-
generate with a multiplication d.

After the remarks of Theorem 12.5, we can construct an orthonormal basis setew1;
ew2; . . .;

ewd

n o
as eigenfunctions. These vectors can be constructed via linear

combinations of w1;w2; . . .; and wd . After transforming the vectors ewi 1� i� dð Þ by
R, we getXd

k¼1

ewkDki Rð Þj
Xd
l¼1

ewlDlj Rð Þ
* +

¼
Xd
k¼1

Xd
l¼1

Dki Rð Þ	Dlj Rð Þ ewkjewl

D E
¼
Xd
k¼1

Dki Rð Þ	Dkj Rð Þ ¼
Xd
k¼1

Dy Rð Þ
h i

ik
DðRÞ½ �kj

¼ Dy Rð ÞD Rð Þ
h i

ij
¼ dij:

16.2 Method of Molecular Orbitals (MOs) 557



With the last equality, we used unitarity of D Rð Þ. Thus, the orthonormal basis set

is retained after unitary transformation of ew1;
ew2; . . .;

ewd

n o
.

In the above discussion, we have assumed that w1;w2; . . .; and wd belong to a

certain irreducible representation DðmÞ. Since ew1;
ew2; . . .; and ewd consist of their

linear combinations, ew1;
ew2; . . .; and ewd belong to DðmÞ as well. Also, we have

assumed that ew1;
ew2; . . .; and ewd form an orthonormal basis, and hence, according

to Theorem 11.3, these vectors constitute basis vectors that belong to DðmÞ. In
particular, functions derived using projection operators share these characteristics.
In fact, the above principles underlie molecular orbital calculations dealt with in
Sects. 16.4 and 16.5. We will go into more detail in subsequent sections.

Bearing the aforementioned argument in mind, we make the most of the relation
expressed by (15.171) to evaluate inner products of functions (or vectors). In this
connection, we often need to calculate matrix elements of an operator. One of the
most typical examples is matrix elements of Hamiltonian. In the field of molecular
science, we have to estimate an overlap integral, Coulomb integral, resonance
integral, etc. Other examples include transition matrix elements pertinent to, e.g.,
electric dipole transition. To this end, we deal with direct-product representation
(see Sects. 15.7 and 15.8). Let OðcÞ be an Hermitian operator belonging to the cth
irreducible representation and. Let us think of a following inner product:

/ðbÞ
l jOðcÞwðaÞ

s

D E
; ð16:48Þ

where wðaÞ
s and /ðbÞ

l are the sth component of ath irreducible representation and the
lth component of bth irreducible representation, respectively; see (15.146) and
(15.161).

(i) Let us think of first the case where OðcÞ is Hamiltonian H. Suppose that wðaÞ
s

belongs to an eigenvalue k of H. Then, we have

H wðaÞ
l

��� E
¼ k wðaÞ

l

��� E
ð16:49Þ

In that case, with (16.48) we get

/ðbÞ
l HwðaÞ

s

���D E
¼ k /ðbÞ

l wðaÞ
s

���D E
: ð16:50Þ

This equation is essentially the same as (15.171). That is,

/ðbÞ
s wðaÞ

l

���D E
¼ dabdls /ðbÞ

s wðaÞ
l

���D E
ð15:171Þ

At the first glance, this equation seems trivial, but the equation gives us a
powerful tool to save us a lot of troublesome calculations. In fact, if we
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encounter a series of inner product calculations (i.e., definite integrals), we
ignore many of them. It is because matrix elements of Hamiltonian do not

vanish only if a ¼ b and l ¼ s. That is, we only have to estimate /ðaÞ
s wðaÞ

s

���D E
.

Otherwise, the inner products vanish. The functional forms of /ðaÞ
s and wðaÞ

s are
determined depending upon individual practical problems. We will show
tangible examples later (Sect. 16.4).

(ii) Next, let us consider matrix elements of the optical transition. In this case, we
are thinking of transition probability between quantum states. Assuming the

dipole approximation, we use ee � PðcÞ for OðcÞ in /ðbÞ
l OðcÞwðaÞ

s

���D E
of (16.48).

The quantity PðcÞ represents an electric dipole moment associated with the
position vector. Normally, we can readily find it in a character table, in which
we examine which irreducible representation c the position vector components
x, y, and z indicated in a rightmost column correspond to. Table 15.4 is an
example. If we take a unit polarization vector ee in parallel with the position
vector component that the character table designates, ee � PðcÞ is nonvanishing.
Suppose that wðaÞ

s and /ðbÞ
l are an initial state and final state, respectively. At

the first glance, we would wish to use (15.200) and count how many times a
representation b occurs for a direct-product representation Dðc
aÞ. It is often
the case, however, where b is not an irreducible representation.

Even in such a case, if either a or b belongs to a totally symmetric represen-
tation, the handling will be easier. This situation corresponds to that an initial
electronic configuration or a final electronic configuration forms a closed shell an
electronic state of which is totally symmetric [1]. The former occurs when we
consider the optical absorption that takes place, e.g., in a molecule of a ground
electronic state. The latter corresponds to an optical emission that ends up with a

ground state. Let us consider the former case. Since OðcÞ
j is Hermitian, we rewrite

(16.48) as

/ðbÞ
l OðcÞ

j wðaÞ
s

���D E
¼ OðcÞ

j /ðbÞ
l wðaÞ

s

���D E
¼ wðaÞ

s OðcÞ
j /ðbÞ

l

���D E	
ð16:51Þ

where we assume that wðaÞ
s is a ground state having a closed-shell electronic con-

figuration. Therefore, wðaÞ
s belongs to a totally symmetric irreducible representation

and. For (16.48) not to vanish, therefore, we may alternatively state that it is
necessary for

Dðc
bÞ ¼ DðcÞ � DðbÞ

to contain DðaÞ belonging to a totally symmetric representation. Note that in group
theory we usually write DðcÞ 
 DðbÞ instead of DðcÞ � DðbÞ; see (15.191).
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If /ðbÞ
l belongs to a reducible representation and, from (15.80) we have

DðbÞ ¼
X
x

qxD
ðxÞ;

where DðxÞ belongs to an irreducible representation and x. Then, we get

DðcÞ 
 DðbÞ ¼
X
x

qxD
ðcÞ 
 DðxÞ:

Thus, applying (15.199) and (15.200), we can obtain a direct sum of irreducible
representations. After that, we examine whether an irreducible representation a is
contained in DðcÞ 
 DðbÞ. Since the totally symmetric representation is
one-dimensional, s ¼ 1 in (16.61).

16.3 Calculation Procedures of Molecular Orbitals (MOs)

We describe a brief outline of the MO method based on LCAO (LCAOMO).
Suppose that a molecule consists of n atomic orbitals and that each MO
wi 1� i� nð Þ comprises a linear combination of those n atomic orbitals
/k 1� k� nð Þ. That is, we have

wi ¼
Xn
k¼1

cki/kð1� i� nÞ; ð16:52Þ

where cki are complex coefficients. We assume that /k are normalized. That is,

/k /kjh i �
Z

/	
k/kds ¼ 1; ð16:53Þ

where ds implies that an integration should be taken over R3. The notation g fjh i
means an inner product defined in Sect. 11.1. The inner product is usually defined
by a definite integral of g	f whose integration range covers a part or all of R3

depending on a constitution of a physical system.
First, we try to solve Schrödinger equation given as an eigenvalue equation. The

said equation is described as

Hw ¼ kw or H � kwð Þ ¼ 0 ð16:54Þ

Replacing w with (16.65), we have

Xn
k¼1

ck H � kð Þ/k ¼ 0 1� k� nð Þ; ð16:55Þ
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where the subscript i in (16.52) has been omitted for simplicity. Multiplying /	
j

from the left and integrating over whole R
3, we have

Xn
k¼1

ck

Z
/	
j H � kð Þ/kds ¼ 0 ð16:56Þ

Rewriting (16.56), we get

Xn
k¼1

ck

Z
/	
j H/k � k/j/k


 �
ds ¼ 0 ð16:57Þ

Here, let us define following quantities:

Hjk ¼
Z

/	
j H/kds and Sjk ¼

Z
/	
j /kds; ð16:58Þ

where Sii ¼ 1 1� i� nð Þ due to a normalized function of /i. Then, we get

Xn
k¼1

ckðHjk � kSjkÞ ¼ 0: ð16:59Þ

Rewriting (16.59) in a matrix form, we get

H11 � k � � � H1n � kS1n
..
. . .

. ..
.

Hn1 � kSn1 � � � Hnn � k

0B@
1CA c1

..

.

cn

0B@
1CA ¼ 0; ð16:60Þ

where note that Sii ¼ 1 1� i� nð Þ because of normalization of /i. Suppose that by
solving (16.59) or (16.60), we get ki 1� i� nð Þ, some of which may be identical
(i.e., the degenerate case), and obtain n different column eigenvectors corre-
sponding to n eigenvalues ki. In light of (10.4) of Sect. 7.3, the following condition
must be satisfied for this to get eigenvectors for which not all ck is zero:

det Hjk � kSjk

 � ¼ 0 or

H11 � k � � � H1n � kS1n
..
.

Hn1 � kSn1

. .
. ..

.

� � � Hnn � k

�������
������� ¼ 0 ð16:61Þ

Equation (16.61) is called a secular equation. This equation is pertinent to a
determinant of an order n, and so we are expected to get n roots for this, some of
which are identical (i.e., a degenerate case).
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In the above discussion, it is useful to introduce the following notation:

/j H/kj� � � Hjk ¼
Z

/	
j H/kds and /j /kj� � � Sjk ¼

Z
/	
j /kds: ð16:62Þ

The above notation has already been introduced in Sect. 1.4. Equation (16.62)
certainly satisfies the definition of the inner product described in (11.2) to (11.4);
readers, please check it. On the basis of (11.64), we have

y Hxjh i	¼ xHy yj
D E

ð16:63Þ

Since H is Hermitian, Hy ¼ H. That is,

y Hxjh i	¼ xH yjh i: ð16:64Þ

To solve (16.61) with an enough large number n is usually formidable. However,
if we can find appropriate conditions, (16.61) can pretty easily be solved. An
essential point rests upon how we deal with off-diagonal elements Hjk and Sjk. If we
are able to appropriately choose basis vectors so that we can get

Hjk ¼ 0 and Sjk ¼ 0 for j 6¼ k; ð16:65Þ

the secular equation is completely reduced to a simple form

eH11 � keS11 eH22 � keS22
. .
. eHnn � keSnn

���������

��������� ¼ 0; ð16:66Þ

where all the off-diagonal elements are zero, and an eigenvalue k is given by

ki ¼ eHii=eSii ð16:67Þ

This means that the eigenvalue equation has automatically been solved.
The best way to achieve this is to choose basis functions (vectors) such that the

functions conform to the symmetry which the molecule belongs to. That is, we
“shuffle” the atomic orbitals as follows:

ni ¼
Xn
k¼1

dki/k 1� i� nð Þ; ð16:68Þ

where ni are new functions chosen instead of wi of (16.52). That is, we construct a
linear combination of the atomic orbitals that belongs to individual irreducible
representation. The said linear combination is called symmetry-adapted linear
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combination (SALC). We remark that all atomic orbitals are not necessarily in-
cluded in the SALC. Then, we have

eHjk ¼
Z

n	j Hnkds and eSjk ¼ Z n	j nkds ð16:69Þ

Thus, instead of (16.61), we have a new secular equation of

det eHjk � keSjk
 �
¼ 0 ð16:70Þ

Since the Hamiltonian H is totally symmetric, in terms of the direct-product
representation Hnk in (16.69) belongs to an irreducible representation in which nk
belongs to. This can intuitively be understood. But, to assert this, use (15.76) and
(15.200) also the fact that characters of the totally symmetric representation are 1.

In light of (15.171) and (15.181), if nk and nj belong to different irreducible

representations, eHjk and eSjk both vanish at once. From (15.172), at the same time,
nk and nj are orthogonal to each other. The most ideal situation is to get (16.66)
with all the off-diagonal elements vanishing. Regarding the diagonal elements of
(16.70), we always have the direct product of the same representation, and hence,
the integrals (16.69) do not vanish. Thus, we get a powerful guideline for the
evaluation of (16.70) in an as simplest as possible form.

If the SALC orbitals nj and nk belong to the same irreducible representation, the
relevant matrix elements are generally nonvanishing. Even in that case, however,
according to Theorem 11.2 we can construct a set of orthonormal vectors by taking
appropriate linear combination of nj and nk. The resulting vectors naturally belong
to the same irreducible representation. This can be done by solving the secular
equation as described below. On top of it, Hermiticity of the Hamiltonian ensures
that those vectors can be rendered orthogonal (see Theorem 12.5). If n electrons are
present in a molecule, we are to deal with n SALC orbitals which we view as
vectors accordingly. In terms of representation theory, these vectors span a repre-
sentation space where the vectors undergo symmetry operations. Thus, we can
construct orthonormal basis vectors belonging to various irreducible representations
throughout the representation space.

To address our problems, we take the following procedures: (i) First, we have to
determine a symmetry species (i.e., point group) of a molecule. (ii) Next, we pick
up atomic orbitals contained in a molecule and examine how those orbitals are
transformed by symmetry operations. (iii) We examine how those atomic orbitals
are transformed according to symmetry operations. Since the symmetry operations
are represented by a (n, n) unitary matrix, we can readily decide a trace of the
matrix. Generally, that matrix representation is reducible, and so we reduce the
representation according to the procedures of (15.81)–(15.83). Thus, we are able to
determine how many irreducible representations are contained in the original re-
ducible representation. (iv) After having determined the irreducible representations,
we construct SALCs and constitute a secular equation using them. (v) Solving the
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secular equation, we determine molecular orbital energies and decide functional
forms of the corresponding MOs. (vi) We examine physicochemical properties such
as optical transition within a molecule.

In the procedure (iii) of the above, if the same irreducible representations appear
more than once, we have to solve a secular equation of an order of two or more.
Even in that case, we can render a set of resulting eigenvectors orthogonal to one
another during the process of solving a problem.

To construct the above-mentioned SALC, we make the most of projection
operators that are defined in Sect. 12.1. In (15.147), putting m ¼ l, we have

PðaÞ
lðlÞ ¼

da
n

X
g

DðaÞ
ll ðgÞ	g ð16:71Þ

Or we can choose a projection operator PðaÞ described as

PðaÞ ¼ da
n

X
g

Xda
l¼1

DðaÞ
ll ðgÞ	g ¼ da

n

X
g

½vðaÞ gð Þ�	g ð15:174Þ

In the one-dimensional representation and, PðaÞ
lðlÞ and PðaÞ are identical. As

expressed in (15.155) and (15.175), these projection operators act on an arbitrary
function and extract specific component(s) pertinent to a specific irreducible rep-
resentation and of the point group which the molecule belongs to.

At first glance, the definition of PðaÞ
lðlÞ and P

ðaÞ looks daunting, but use of character
tables relieves a calculation task. In particular, all the irreducible representations are
one-dimensional (i.e., just a number!) with Abelian groups as mentioned in
Sect. 15.6. For this, notice that individual group elements form a class by them-
selves. Therefore, utilization of character tables becomes easier for Abelian groups.
Even though we encounter a case where a dimension of representation is more than

one (i.e., the case of non-commutative groups), DðaÞ
ll can be determined without

much difficulty.

16.4 MO Calculations Based on p-Electron
Approximation

On the basis of the general argument developed in Sects. 16.2 and 16.3, we perform
molecular orbital calculations of individual molecules. First, we apply group theory
to the molecular orbital calculations about aromatic hydrocarbons such as ethylene,
cyclopropenyl radical, and cation as well as benzene and allyl radical. In these
cases, in addition to adoption of the molecular orbital theory, we adopt so-called p-
electron approximation. With the first three molecules, we will not have to “solve” a
secular equation. But, for allyl radical, we deal with two SALC orbitals belonging
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to the same irreducible representations, and hence, the final molecular orbitals must
be obtained by solving the secular equation.

16.4.1 Ethylene

We start with one of the simplest examples, ethylene. Ethylene is a planar molecule
and belongs to D2h symmetry (see Sect. 14.2). In the molecule, two p-electrons
extend vertically to the molecular plane toward upper and lower directions
(Fig. 16.5). The molecular plane forms a node to atomic 2pz orbitals; that is, those
atomic orbitals change a sign relative to the molecular plane (i.e., the xy-plane).

Figure 16.5, two pz atomic orbitals of carbon are denoted by /1 and /2. We
should be able to construct basis vectors using /1 and /2. Corresponding to the two
atomic orbitals, we are dealing with a two-dimensional vector space. Let us con-
sider how /1 and /2 are transformed by a symmetry operation. First, we examine
an operation C2 zð Þ. This operation exchanges /1 and /2. That is, we have

C2 zð Þ /1ð Þ ¼ /2 ð16:72Þ

and

C2 zð Þ /2ð Þ ¼ /1 ð16:73Þ

Equation (16.73) can be combined into a following equation:

/1/2ð ÞC2 zð Þ ¼ /2/1ð Þ ð16:74Þ

Thus, using a matrix representation, we have

C2 zð Þ ¼ 0 1
1 0

� �
ð16:75Þ

x

y
z

z

y

x

Fig. 16.5 Ethylene molecule
placed on the xyz-coordinate
system. Two pz atomic
orbitals of carbon are denoted
by /1 and /2. The atomic
orbitals change a sign relative
to the molecular plane (i.e.,
the xy-plane)
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In Sect. 14.2, we had

Rzh ¼
cos h � sin h 0
sin h cos h 0
0 0 1

0@ 1A ð16:76Þ

or

C2 zð Þ ¼
�1 0 0
0 �1 0
0 0 1

0@ 1A ð16:77Þ

Whereas (16.76) and (16.77) show the transformation of a position vector in R
3,

(16.75) represents the transformation of functions in a two-dimensional vector
space. A vector space composed of functions may be finite-dimensional or
infinite-dimensional. We have already encountered the latter case in Part I where we
dealt with the quantum mechanics of a harmonic oscillator. Such a function space is
often referred to as a Hilbert space. An essence of (16.75) is characterized by that a
trace (or character) of the matrix is zero.

Let us consider another transformation C2 yð Þ. In this case, the situation is dif-
ferent from the above case in that /1 is converted to �/1 by C2 yð Þ and that /2 is
converted to �/2. Notice again that the molecular plane forms a node to atomic p-
orbitals. Thus, C2 yð Þ is represented by

C2 yð Þ ¼ �1 0
0 �1

� �
ð16:78Þ

The trace of the matrix C2 yð Þ is �2. In this way, choosing /1 and /2 for the
basis functions for the representation of D2h we can determine the characters for
individual symmetry transformations of atomic 2pz orbitals in ethylene belonging to
D2h. We collect the results in Table 16.1.

Next, we examine what kind of irreducible representations is contained in our
present representation of ethylene. To do this, we need a character table of D2h (see
Table 16.2). If a specific kind of irreducible representation is contained, then we
want to examine how many times that specific representation takes place.
Equation (15.83) is very useful for this purpose. In the present case, n ¼ 8 in
(15.83). Also taking into account (15.79) and (15.80), we get

C ¼ B1u � B3g; ð16:79Þ

Table 16.1 Characters for individual symmetry transformations of atomic 2pz orbitals in ethylene

D2h E C2 zð Þ C2 yð Þ C2 xð Þ i r xyð Þ r zxð Þ r yzð Þ
C 2 0 −2 0 0 −2 0 2
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where C is a reducible representation for a set consisting of two pz atomic orbitals
of ethylene. Equation (16.79) clearly shows that C is a direct sum of two irreducible
representations B1u andB3g that belong to D2h. Instead of (16.79), we usually
simply express the direct product in quantum chemical notation as

C ¼ B1u þB3g: ð16:80Þ

As a next step, we are going to find an appropriate basis function belonging to
two irreducible representations of (16.80). For this purpose, we use projection
operators expressed as

PðaÞ ¼ da
n

X
g

vðaÞ gð Þ
h i	

g ð15:174Þ

Taking /1 for instance, we apply (15.174) to /1. That is,

PðB1uÞ/1 ¼
1
8

X
g

vðB1uÞ gð Þ
h i	

g/1

¼ 1
8
½1 � /1 þ 1 � /2 þ �1ð Þ �/1ð Þþ �1ð Þ �/2ð Þþ �1ð Þ �/2ð Þ

þ �1ð Þ �/1ð Þþ 1 � /2 þ 1 � /1� ¼
1
2

/1 þ/2ð Þ

ð16:81Þ

Also with the B3g, we apply (15.174) to /1 and get

PðB3gÞ/1 ¼
1
8

X
g

vðB3gÞ gð Þ
h i	

g/1

¼ 1
8
½1 � /1 þ �1ð Þ/2 þ �1ð Þ �/1ð Þþ 1 �/2ð Þþ 1 �/2ð Þþ �1ð Þ �/1ð Þ

þ �1ð Þ/2 þ 1 � /1� ¼
1
2

/1 � /2ð Þ

ð16:82Þ

Table 16.2 Character table of D2h

D2h E C2 zð Þ C2 yð Þ C2 xð Þ i r xyð Þ r zxð Þ r yzð Þ
Ag 1 1 1 1 1 1 1 1 x2; y2; z2

B1g 1 1 −1 −1 1 1 −1 −1 xy

B2g 1 −1 1 −1 1 −1 1 −1 zx

B3g 1 −1 −1 1 1 −1 −1 1 yz

Au 1 1 1 1 −1 −1 −1 −1

B1u 1 1 −1 −1 −1 −1 1 1 z

B2u 1 −1 1 −1 −1 1 −1 1 y

B3u 1 −1 −1 1 −1 1 1 −1 x
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Thus, after going through routine but sure procedures, we have reached
appropriate basis functions that belong to each irreducible representation.

As mentioned earlier (see Table 14.5), D2h can be expressed as a direct-product
group and C2 group is contained in D2h as a subgroup. We can use it for the present
analysis. Suppose now that we have a group g and that H is a subgroup of g. Let g
be an arbitrary element of g and let D gð Þ be a representation of g. Meanwhile, let h
be an arbitrary element of H. Then, with 8h 2 H, a collection of D hð Þ is a repre-
sentation of H. We write this relation as

D # H ð16:83Þ

This representation is called a subduced representation of D to H. Table 16.3
shows a character table of irreducible representations of C2. In the present case, we
are thinking of C2 zð Þ as C2; see Table 14.5 and Fig. 16.5. Then, we have

B1u # C2 ¼ A and B3g # C2 ¼ B: ð16:84Þ

The expression of (16.84) is called a compatibility relation. Note that in (16.84)
C2 is not a symmetry operation, but means a subgroup of D2h. Thus, (16.81) is
reduced to

PðAÞ/1 ¼
1
2

X
g

vðAÞ gð Þ
h i	

g/1 ¼
1
2
1 � /1 þ 1 � /2½ � ¼ 1

2
/1 þ/2ð Þ ð16:85Þ

Also, we have

PðBÞ/1 ¼
1
2

X
g

vðBÞ gð Þ
h i	

g/1 ¼
1
2
1 � /1 þ �1ð Þ/2½ � ¼ 1

2
/1 � /2ð Þ ð16:86Þ

The relations of (16.85) and (16.86) are essentially the same as (16.81) and
(16.82), respectively.

We can easily construct a character table (see Table 16.3). There should be two
irreducible representations. Regarding the totally symmetric representation, we
allocate 1 to each symmetry operation. For another representation, we allocate 1 to
an identity element E and −1 to an element C2 so that the row and column of the
character table are orthogonal to each other.

Readers might well ask why we bother to make circuitous approaches to
reaching predictable results such as (16.81) and (16.82) or (16.85) and (16.86). This
question seems natural when we are dealing with a case where the number of basis
vectors (i.e., a dimension of the vector space) is small, typically two as in the

Table 16.3 Character table
of C2

C2 E C2

A 1 1 z; x2; y2; z2; xy

B 1 −1 x; y; yz; zx
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present case. With increasing dimension of the vector space, however, to seek and
determine appropriate SALCs become increasingly complicated and difficult. Under
such circumstances, a projection operator is an indispensable tool to address the
problems.

We have a two-dimensional secular equation to be solved such thateH11 � keS11 eH12 � keS12eH21 � keS21 eH22 � keS22
���� ���� ¼ 0 ð16:87Þ

In the above argument, 1
2 /1 þ/2ð Þ belongs to B1u and 1

2 /1 � /2ð Þ belongs to
B3g. Since they belong to different irreducible representations, we have

eH12 ¼ eS12 ¼ 0 ð16:88Þ

Thus, the secular equation (16.84) is reduced to

eH11 � keS11 0
0 eH22 � keS22

���� ���� ¼ 0 ð16:89Þ

As expected, (16.89) has automatically been solved to give a solution

k1 ¼ eH11=eS11 and k2 ¼ eH22=eS22 ð16:90Þ

The next step is to determine the energy eigenvalue of the molecule. Note here
that a role of SALCs is to determine a suitable irreducible representation that
corresponds to a “direction” of a vector. As the coefficient keeps the direction of a
vector unaltered, it would be of secondary importance. The final form of normalized
MOs can be decided last. That procedure includes the normalization of a vector.
Thus, we tentatively choose the following functions for SALCs, i.e.,

n1 ¼ /1 þ/2 and n2 ¼ /1 � /2

Then, we have

eH11 ¼
Z

n	1Hn1ds ¼
Z

ð/1 þ/2Þ	H /1 þ/2ð Þds

¼
Z

/	
1H/1dsþ

Z
/	
1H/2dsþ

Z
/	
2H/1dsþ

Z
/	
2H/2ds

¼ H11 þH12 þH21 þH22 ¼ H11 þ 2H12 þH22

ð16:91Þ

Similarly, we have

eH22 ¼
Z

n	2Hn2ds ¼ H11 � 2H12 þH22 ð16:92Þ
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The last equality comes from the fact that we have chosen real functions for /1
and /2 as studied in Part I. Moreover, we have

H11 �
Z

/	
1H/1ds ¼

Z
/1H/1ds ¼

Z
/2H/2ds ¼ H22;

H12 �
Z

/	
1H/2ds ¼

Z
/1H/2ds ¼

Z
/	
2H/1ds ¼

Z
/2H/1ds ¼ H21

ð16:93Þ

The first equation comes from the fact that both H11 and H22 are calculated using
the same 2pz atomic orbital of carbon. The second equation results from the fact thatH
is Hermitian. Notice that both/1 and/2 are real functions. Following the convention,
we denote

a � H11 ¼ H22 and b � H12 ð16:94Þ

where a is called Coulomb integral and b is said to be resonance integral. Then, we
have eH11 ¼ 2 aþ bð Þ ð16:95Þ

In a similar manner, we get eH22 ¼ 2 a� bð Þ ð16:96Þ

Meanwhile, we have

eS11 ¼ n1jn1h i ¼
Z

ð/1 þ/2Þ	 /1 þ/2ð Þds ¼
Z

ð/1 þ/2Þ2ds

¼
Z

/2
1dsþ

Z
/2
2dsþ 2

Z
/1/2ds ¼ 2þ 2

Z
/1/2ds;

ð16:97Þ

where we used the fact that /1 and /2 have been normalized. Also following the
convention, we denote

S �
Z

/1/2ds ¼ S12; ð16:98Þ

where S is called overlap integral. Thus, we haveeS11 ¼ 2 1þ Sð Þ ð16:99Þ

Similarly, we get eS22 ¼ 2 1� Sð Þ ð16:100Þ

Substituting (16.95) and (16.96) along with (16.99) and (16.100) for (16.90), we
get as the energy eigenvalue

k1 ¼ aþ b
1þ S

and k2 ¼ a� b
1� S

ð16:101Þ
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From (16.97), we get

n1j jj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1jn1h i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ Sð Þ

p
ð16:102Þ

Thus, for one of MOs corresponding to an energy eigenvalue k1, we get

W1 ¼ n1j i
n1j jj j ¼

/1 þ/2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ Sð Þp ð16:103Þ

Also, we have

n2j jj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2jn2h i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� Sð Þ

p
ð16:104Þ

For another MO corresponding to an energy eigenvalue k2, we get

W2 ¼ n2j i
n2j jj j ¼

/1 � /2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� Sð Þp ð16:105Þ

Note that both normalized MOs and energy eigenvalues depend upon whether
we ignore an overlap integral, as being the case with the simplest Hückel
approximation. Nonetheless, MO functional forms (in this case, either /1 þ/2 or
/1 � /2) remain the same regardless of the approximation levels about the overlap
integral. Regarding quantitative evaluation of a, b, and S, we will briefly mention it
later.

Once we have decided symmetry of MO (or an irreducible representation which
the orbital belongs to) and its energy eigenvalue, we will be in a position to examine
various physicochemical properties of the molecule. One of them is an optical
transition within a molecule, particularly electric dipole transition. In most cases,
the most important transition is that occurring among the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). In
the case of ethylene, those levels are depicted in Fig. 16.6. In a ground state

( )

( )

Fig. 16.6 HOMO and LUMO energy levels and their assignments of ethylene
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(i.e., the most stable state), two electrons are positioned in a B1u state (HOMO). An
excited state is assigned to B3g (LUMO). The ground state that consists only of fully
occupied MOs belongs to a totally symmetric representation. In the case of ethy-
lene, the ground state belongs to Ag accordingly.

If a photon is absorbed by a molecule, that molecule is excited by an energy of
the photon. In ethylene, this process takes place by exciting an electron from B1u to
B3g. The resulting electronic state ends up as an electron remaining in B1u and
another excited to B3g (a final state). Thus, the representation of the final state
electronic configuration (denoted by Cf ) is described as

Cf ¼ B1u 
 B3g ð16:106Þ

That is, the final excited state is expressed as a direct product of the states
associated with the optical transition. To determine the symmetry of the final sate,
we use (15.198) and (15.200). If C in (16.106) is reducible, using (15.200) we can
determine the number of times that individual representations take place.
Calculating vðB1uÞ gð ÞvðB3gÞ gð Þ for each group element, we can readily get the result.
Using a character table, we have

Cf ¼ B2u ð16:107Þ

Thus, we find that the transition is Ag ! B2u, where Ag is called an initial state
electronic configuration and B2u is called a final state electronic configuration. This
transition is characterized by an electric dipole transition moment operator P. Here,
we have an important physical quantity of transition matrix element. This quantity
Tfi is approximated by

Tfi � Hf ee � Pj jHi
� �

; ð16:108Þ

where ee is a unit polarization vector of the electric field; Hi and Hf are the initial
state and final sate electronic configuration, respectively. The description (16.108)
is in parallel with (4.5). Notice that in (4.5) we dealt with a single-electron system
such as a particle confined in a square-well potential, a sole one-dimensional har-
monic oscillator, and an electron in a hydrogen atom.

In the present case, however, we are dealing with a two-electron system, ethy-
lene. Consequently, we cannot describeHf by a simple wave function, but must use
a more elaborated function. Nonetheless, when we discuss the optical transition of a
molecule, it is often the case that when we study optical absorption or optical
emission we first wish to know whether such a phenomenon truly takes place. In
such a case, qualitative prediction for this is of great importance. This can be done
by judging whether the integral (16.108) vanishes. If the integral does not vanish,
the relevant transition is said to be allowed. If on the other hand the integral
vanishes, the transition is called forbidden. In this context, a systematic approach
based on group theory is a powerful tool for this.
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Let us consider optical absorption of ethylene. With the transition matrix ele-
ment for this, we have

Tfi ¼ HðB2uÞ
f ee � Pj jHðAgÞ

i

D E
ð16:109Þ

Again, note that a closed-shell electronic configuration belongs to a totally
symmetric representation [1]. Suppose that the position vector x belongs to an
irreducible representation g. A necessary condition for (16.109) not to vanish is that
DðgÞ 
 DðAgÞ contains the irreducible representation DðB2uÞ. In the present case, all
the representations are one-dimensional, and so we can use vðxÞ instead of DðxÞ,
where x shows an arbitrary irreducible representation of D2h. This procedure is
straightforward as shown in Sect. 16.2.

However, if the character is real (it is the case with many symmetry groups and
with the point group D2h as well), the situation will be easier. Suppose in general
that we are examining whether a following matrix element vanishes:

Mfi ¼ UðbÞ
f OðcÞ�� ��UðaÞ

i

D E
; ð16:110Þ

where a, b, and c stand for irreducible representations, and O is an appropriate
operator. In this case, (15.200) can be rewritten as

qa ¼ 1
n

X
g

vðaÞðgÞ	vðc
bÞ gð Þ ¼ 1
n

X
g

v að Þ gð Þv c
bð Þ gð Þ

¼ 1
n

X
g

v að Þ gð Þv cð Þ gð Þv bð Þ gð Þ ¼ 1
n

X
g

v cð Þ gð Þv að Þ gð Þv bð Þ gð Þ

¼ 1
n

X
g

v cð Þ gð Þv a
bð Þ gð Þ ¼ 1
n

X
g

v cð ÞðgÞ	v a
bð Þ gð Þ ¼ qc

ð16:111Þ

Consequently, the number of times that D cð Þ appears in D a
bð Þ is identical to the
number of times that D að Þ appears in D c
bð Þ. Thus, it suffices to examine whether
D c
bð Þ contains D að Þ. In other words, we only have to examine whether qa 6¼ 0 in
(16.111).

Thus, applying (16.111)–(16.109), we examine whether D B2u
Agð Þ contains the
irreducible representation D gð Þ that is related to x. We easily get

B2u ¼ B2u 
 Ag ð16:112Þ

Therefore, if ee � P (or x) belongs to B2u, the transition is allowed. Consulting the
character table, we find that y belongs to B2u. In this case, in fact (16.111) reads as
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qB2u ¼
1
8
½1
 1þ �1ð Þ 
 �1ð Þþ 1
 1þ �1ð Þ 
 �1ð Þ

þ �1ð Þ 
 �1ð Þþ 1
 1þ �1ð Þ 
 �1ð Þþ 1
 1� ¼ 1

Equivalently, we simply write

B2u 
 B2u ¼ Ag

This means that if a light polarized along the y-axis is incident, i.e., ee is parallel
to the y-axis, the transition is allowed. In that situation, ethylene is said to be
polarized along the y-axis or polarized in the direction of the y-axis. As a molecular
axis is parallel to the y-axis, ethylene is polarized in the direction of the molecular
axis. This is often the case with aromatic molecules having a well-defined
molecular long axis such as ethylene.

We would examine whether ethylene is polarized along, e.g., the x-axis. From a
character table of D2h (see Table 16.2), x belongs to B3u. In that case, using
(16.111) we have

qB3u ¼
1
8
½1
 1þ �1ð Þ 
 �1ð Þþ 1
 �1ð Þþ �1ð Þ 
 1

þ �1ð Þ 
 �1ð Þþ 1
 1þ �1ð Þ 
 1þ 1
 �1ð Þ� ¼ 0:

This implies that B3u is not contained in B1u 
 B3g ¼ B2uð Þ.
The above results on the optical transitions are quite obvious. Once we get used

to using a character table, quick estimation will be done.

16.4.2 Cyclopropenyl Radical [1]

Let us think of another example, cyclopropenyl radical that has three resonant
structures (Fig. 16.7). It is a planar molecule, and three carbon atoms form an
equilateral triangle. Hence, the molecule belongs to D3h symmetry (see Sect. 14.2).
In the molecule, three p-electrons extend vertically to the molecular plane toward
upper and lower directions. Suppose that cyclopropenyl radical is placed on the xy-
plane. Three pz atomic orbitals of carbons located at vertices of an equilateral
triangle are denoted by /1, /2, and /3 in Fig. 16.8. The orbitals are numbered
clockwise so that the calculations can be consistent with the conventional notation

C

C

C

H

HH
C

C

C

H

HH

Fig. 16.7 Three resonant
structures of cyclopropenyl
radical

574 16 Applications of Group Theory to Physical Chemistry



of a character table (vide infra). We assume that these p-orbitals take positive and
negative signs on the upper and lower sides of the plane of paper, respectively, with
a nodal plane lying on the xy-plane. The situation is similar to that of ethylene, and
the problem can be treated in parallel with the case of ethylene.

As in the case of ethylene, we can choose /1, /2, and /3 as real functions. We
construct basis vectors using these vectors. What we want to do to address the
problem is as follows: (i) We examine how /1, /2, and /3 are transformed by the
symmetry operations of D3h. According to the analysis, we can determine what
irreducible representations SALCs should be assigned. (ii) On the basis of
knowledge obtained in (i), we construct proper MOs.

In Table 16.4, we list a character table of D3h along with symmetry species.
First, we examine traces (characters) of representation matrices. Similarly, in the
case of ethylene, a subgroup C3 of D3h plays an essential role (vide infra). This
subgroup contains three group elements such that

C3 ¼ E;C3;C
2
3

� �

xOz

y
Fig. 16.8 Three pz atomic
orbitals of carbons for
cyclopropenyl radical that is
placed on the xy-plane. The
carbon atoms are located at
vertices of an equilateral
triangle. The atomic orbitals
are denoted by /1, /2, and /3

Table 16.4 Character table of D3h

D3h E 2C3 3C2 rh 2S3 3rv
A0
1 1 1 1 1 1 1 x2 þ y2; z2

A0
2 1 1 −1 1 1 −1

E0 2 −1 0 2 −1 0 x; yð Þ; x2 � y2; xyð Þ
A00
1 1 1 1 −1 −1 −1

A00
2 1 1 −1 −1 −1 1 z

E00 2 −1 0 −2 1 0 yz; zxð Þ
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In the above, we use the same notation for the group name and group element,
and so we should be careful not to confuse them.

They are transformed as follows:

C3 zð Þ /1ð Þ ¼ /3;C3 zð Þ /2ð Þ ¼ /1; and C3 zð Þ /3ð Þ ¼ /2; ð16:113Þ

C2
3 zð Þ /1ð Þ ¼ /2;C

2
3 zð Þ /2ð Þ ¼ /3; and C2

3 zð Þ /3ð Þ ¼ /1: ð16:114Þ

Equation (16.113) can be combined into a following form:

/1/2/3ð ÞC3 zð Þ ¼ /3/1/2ð Þ ð16:115Þ

Using a matrix representation, we have

C3 zð Þ ¼
0 1 0
0 0 1
1 0 0

0@ 1A: ð16:116Þ

In turn, (16.114) is expressed as

C2
3 zð Þ ¼

0 0 1
1
0

0 0
1 0

0@ 1A ð16:117Þ

Both traces of (16.116) and (16.117) are zero.
Similarly, let us check the representation matrices of other symmetry species. Of

these, e.g., for C2 related to the y-axis (see Fig. 16.8) we have

/1/2/3ð ÞC2 ¼ �/1 � /3 � /2ð Þ ð16:118Þ

Therefore,

C2 ¼
�1 0 0
0 0 �1
0 �1 0

0@ 1A ð16:119Þ

We have a trace −1 accordingly. Regarding rh, we have

/1/2/3ð Þrh ¼ �/1 � /2 � /3ð Þ and rh ¼
�1 0 0
0
0

�1 0
0 �1

0@ 1A ð16:120Þ

In this way, we can determine the trace for individual symmetry transformations
of basis functions /1, /2, and /3. We collect the results of characters of a reducible
representation C in Table 16.5. It can be reduced to a summation of irreducible
representations according to the procedures given in (15.81) to (15.83) and using a
character table of D3h (Table 16.4). As a result, we get
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C ¼ A00
2 þE00 ð16:121Þ

As in the case of ethylene, we make the best use of the information of a
subgroup C3 of D3h. Let us consider a subduced representation of D of D3h to C3.
For this, in Table 16.6 we show a character table of irreducible representations of
C3. We can readily construct this character table. There should be three irreducible
representations. Regarding the totally symmetric representation, we allocate 1 to
each symmetry operation. Hence, for other representations, we allocate 1 to an
identity element E and two other triple roots of 1, i.e., e and e	 [where
e ¼ expði2p=3Þ] to an element C3 and C2

3 as shown so that the row and column
vectors of the character table are orthogonal to each other.

Returning to the construction of the subduced representation, we have

A00
2 # C3 ¼ A and E00 # C3 ¼ E ð16:122Þ

Then, corresponding to (15.147), we have

P Að Þ/1 ¼
1
3

X
g

v Að Þ gð Þ
h i	

g/1 ¼
1
3
1 � /1 þ 1 � /2 þ 1 � /3½ �

¼ 1
3

/1 þ/2 þ/3ð Þ
ð16:123Þ

Also, we have

P E 1ð Þ½ �/1 ¼
1
3

X
g

v E 1ð Þ½ � gð Þ
h i	

g/1 ¼
1
3
1 � /1 þ e	/3 þðe	Þ	/2½ �

¼ 1
3

/1 þ e/2 þ e	/3ð Þ
ð16:124Þ

Table 16.5 Characters for individual symmetry transformations of 2pz orbitals in cyclopropenyl
radical

D3h E 2C3 3C2 rh 2S3 3rv
C 3 0 −1 −3 0 1

Table 16.6 Character table of C3

C3 E C3 C2
3 e ¼ expði2p=3Þ

A 1 1 1 z; x2 þ y2; z2

E 1
1

�
e
e	

e	

e

�
x; yð Þ; x2 � y2; xyð Þ; yz; zxð Þ
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Also, we get

P E 2ð Þ½ �/1 ¼
1
3

X
g

½v E 2ð Þ½ � gð Þ�	g/1 ¼
1
3
1 � /1 þðe	Þ	/3 þ e	/2½ �

¼ 1
3

/1 þ e	/2 þ e/3ð Þ
ð16:125Þ

Here is the best place to mention an eigenvalue of a symmetry operator. Let us
designate SALCs as follows:

n1 ¼ /1 þ/2 þ/3; n2 ¼ /1 þ e/2 þ e	/3; and n3 ¼ /1 þ e	/2 þ e/3 ð16:126Þ

Let us choose C3 for a symmetry operator. Then, we have

C3 n1ð Þ ¼ C3 /1 þ/2 þ/3ð Þ ¼ C3/1 þC3/2 þC3/3 ¼ /3 þ/1 þ/2 ¼ n1;

ð16:127Þ

where for the second equality we used the fact that C3 is a linear operator. That is,
regarding a SALC n1, an eigenvalue of C3 is 1.

Similarly, we have

C3 n2ð Þ ¼ C3 /1 þ e/2 þ e	/3ð Þ ¼ C3/1 þ eC3/2 þ e	C3/3

¼ /3 þ e/1 þ e	/2 ¼ e /1 þ e/2 þ e	/3ð Þ ¼ en2
ð16:128Þ

Furthermore, we get

C3 n3ð Þ ¼ e	n3 ð16:129Þ

Thus, we find that regarding SALCs n2 and n3, eigenvalues of C3 are e and e	,
respectively. These pieces of information imply that if we appropriately choose
proper functions for basis vectors, a character of a symmetry operation for a
one-dimensional representation is identical to an eigenvalue of the said symmetry
operation (see Table 16.6).

Regarding the last parts of the calculations, we follow the procedures described
in the case of ethylene. Using the above functions n1, n2, and n3, we construct the
secular equation such that

eH11 � keS11 eH22 � keS22 eH33 � keS33
������

������ ¼ 0 ð16:130Þ

Since we have obtained three SALCs that are assigned to individual irreducible
representations A, E 1ð Þ, and E 2ð Þ, these SALCs span the representation space V3.
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This makes off-diagonal elements of the secular equation vanish, and it is simplified
as in (16.130). Here, we have

eH11 ¼
Z

n	1Hn1ds ¼
Z

ð/1 þ/2 þ/3Þ	H /1 þ/2 þ/3ð Þds
¼3 aþ 2bð Þ

ð16:131Þ

where we used the same a and b as defined in (16.94). Strictly speaking, a and b
appearing in (16.131) should be slightly different from those of (16.94), because a
Hamiltonian is different. This approximation, however, would be enough for the
present studies. In a similar manner, we get

eH22 ¼
Z

n	2Hn2ds ¼ 3ða� bÞ and eH33 ¼
Z

n	3Hn3ds ¼ 3ða� bÞ: ð16:132Þ

Meanwhile, we haveeS11 ¼ n1jn1h i ¼
Z

ð/1 þ/2 þ/3Þ	 /1 þ/2 þ/3ð Þds ¼
Z

ð/1 þ/2 þ/3Þ2ds
¼ 3 1þ 2Sð Þ

ð16:133Þ

Similarly, we get eS22 ¼ eS33 ¼ 3 1� Sð Þ ð16:134Þ

Readers are urged to verify (16.133) and (16.134).
Substituting (16.131) through (16.134) for (16.130), we get as the energy

eigenvalue

k1 ¼ aþ 2b
1þ 2S

; k2 ¼ a� b
1� S

; and k3 ¼ a� b
1� S

ð16:135Þ

Notice that two MOs belonging to E00 have the same energy. These MOs are said
to be energetically degenerate. This situation is characteristic of a two-dimensional
representation. Actually, even though the group C3 has only one-dimensional
representations (because it is an Abelian group), the two complex conjugate rep-
resentations labeled E behave as if they were a two-dimensional representation [2].
We will again encounter the same situation in a next example, benzene.

From (16.126), we get

n1j jj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1jn1h i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1þ 2Sð Þ

p
ð16:136Þ

Thus, as one of MOs corresponding to an energy eigenvalue k1, i.e., W1, we get

W1 ¼ n1j i
n1j jj j ¼

/1 þ/2 þ/3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1þ 2Sð Þp ð16:137Þ
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Also, we have

n2j jj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2jn2h i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� Sð Þ

p
and n3j jj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3jn3h i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� Sð Þ

p
ð16:138Þ

Thus, for another MO corresponding to an energy eigenvalue k2, we get

W2 ¼ n2j i
n2j jj j ¼

/1 þ e/2 þ e	/3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� Sð Þp ð16:139Þ

Also, with a MO corresponding to k3 ¼ k2ð Þ, we have

W3 ¼ n3j i
n3j jj j ¼

/1 þ e	/2 þ e/3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� Sð Þp ð16:140Þ

Equations (16.139) and (16.140) include complex numbers, and so it is incon-
venient to computer analysis. In that case, we can convert it to real numbers. In
Part III, we examined properties of unitary transformations. Since the unitary
transformation keeps a norm of a vector unchanged, this is suited to our present
purpose. This can be done using a following unitary matrix U:

U ¼
1ffiffi
2

p � iffiffi
2

p
1ffiffi
2

p iffiffi
2

p

 !
ð16:141Þ

Then, we have

W2W3ð ÞU ¼ 1ffiffiffi
2

p W2 þW3ð Þ iffiffiffi
2

p �W2 þW3ð Þ
� �

ð16:142Þ

Thus, defining fW2 and fW3 as

fW2 ¼ 1ffiffiffi
2

p W2 þW3ð Þ and fW3 ¼ iffiffiffi
2

p �W2 þW3ð Þ ð16:143Þ

we get

fW2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1� Sð Þp 2/1 þ eþ e	ð Þ/2 þ e	 þ eð Þ/3½ �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1� Sð Þp 2/1 � /2 � /3ð Þ

ð16:144Þ
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Also, we have

fW3 ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1� Sð Þp e	 � eð Þ/2 þ e� e	ð Þ/3½ � ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 1� Sð Þp �i
ffiffiffi
3

p
/2 þ i

ffiffiffi
3

p
/3

h i
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� Sð Þp /2 � /3ð Þ

ð16:145Þ

Thus, we have successfully converted complex functions to real functions. In the
above unitary transformation, notice that a norm of the vectors remains unchanged
before and after the unitary transformation.

As cyclopropenyl radical has three p electrons, two occupy the lowest energy
level of A00. Another electron occupies a level E00. Since this level possesses an
energy higher than a, the electron occupying this level is anticipated to be unstable.
Under such a circumstance, a molecule tends to lose the said electron so as to be a
cation. Following the argument given in the previous case of ethylene, it is easy to
make sure that the allowed transition of the cyclopropenyl radical takes place when
the light is polarized parallel to the molecular plane (i.e., the xy-plane in Fig. 16.8).
The proof is left for readers as an exercise. This polarizing feature is typical of
planar molecules with high molecular symmetry.

16.4.3 Benzene

Benzene has structural formula which is shown in Fig. 16.9. It is a planar molecule,
and six carbon atoms form a regular hexagon. Hence, the molecule belongs to D6h

symmetry. In the molecule, six p-electrons extend vertically to the molecular plane
toward upper and lower directions as in the case of ethylene and cyclopropenyl
radical. This is a standard illustration of quantum chemistry and dealt with in many
textbooks. As in the case of ethylene and cyclopropenyl radical, the problem can be
treated similarly.

As before, six equivalent pz atomic orbitals of carbon are denoted by /1 to /6 in
Fig. 16.10. These vectors or their linear combinations span a six-dimensional
representation space. We construct basis vectors using these vectors. Following the
previous procedures, we construct proper SALC orbitals along with MOs. Similarly

Fig. 16.9 Structural formula
of benzene. It belongs to D6h

symmetry
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as before, a subgroup C6 of D6h plays an essential role. This subgroup contains six
group elements such that

C6 ¼ E;C6;C3;C2;C
2
3 ;C

5
6

� � ð16:146Þ

Taking C6 zð Þ as an example, we have

/1/2/3/4/5/6ð ÞC6 zð Þ ¼ /6/1/2/3/4/5ð Þ ð16:147Þ

Using a matrix representation, we have

C6 zð Þ ¼

0 1 0
0 0 1
0 0 0

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
1 0 0

0 1 0
0 0 1
0 0 0

0BBBBB@

1CCCCCA ð16:148Þ

Once again, we can determine the trace for individual symmetry transformations
belonging to D6h. We collect the results in Table 16.7. The representation is
reducible, and this is reduced as follows using a character table of D6h (Table 16.8).
As a result, we get

xOz

y

Fig. 16.10 Six equivalent pz atomic orbitals of carbon of benzene

Table 16.7 Characters for individual symmetry transformations of 2pz orbitals in benzene

D6h E 2C6 2C3 C2 3C
0
2

3C00
2 i 2S3 2S6 rh 3rd 3rv

C 6 0 0 0 −2 0 0 0 0 −6 0 2
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C ¼ A2u þB2g þE1g þE2u ð16:149Þ

As a subduced representation of D of D6h to C6, we have

A2u # C6 ¼ A; B2g # C6 ¼ B; E1g # C6 ¼ 2E1; E2u # C6 ¼ 2E2: ð16:150Þ

Here, we used Table 16.9 that shows a character table of irreducible represen-
tations of C6. Following the previous procedures, as SALCs we have

6P Að Þ/1 � n1 ¼ /1 þ/2 þ/3 þ/4 þ/5 þ/6;

6P Bð Þ/1 � n2 ¼ /1 � /2 þ/3 � /4 þ/5 � /6;

P E 1ð Þ
1½ �/1 � n3 ¼ /1 þ e/2 � e	/3 � /4 � e/5 þ e	/6;

P E 2ð Þ
1½ �/1 � n4 ¼ /1 þ e	/2 � e/3 � /4 � e	/5 þ e/6;

P E 1ð Þ
2½ �/1 � n5 ¼ /1 � e	/2 � e/3 þ/4 � e	/5 � e/6;

P E 2ð Þ
2½ �/1 � n6 ¼ /1 � e/2 � e	/3 þ/4 � e/5 � e	/6;

ð16:151Þ

where e ¼ exp ip=3ð Þ.

Table 16.8 Character table of D6h

D6h E 2C6 2C3 C2 3C0
2 3C00

2 i 2S3 2S6 rh 3rd 3rv
A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2 þ y2; z2

A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1

B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1

E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 yz; zxð Þ
E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0 x2 � y2; xyð Þ
A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 z

B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1

B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1

E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 x; yð Þ
E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0

Table 16.9 Character table of C6

C6 E C6 C3 C2 C2
3 C5

6

A 1 1 1 1 1 1 z; x2 þ y2; z2

B 1 −1 1 −1 1 −1

E1 1
1

�
e
e	

�e	

�e
�1
�1

�e
�e	

e	

e

�
x; yð Þ; yz; zxð Þ

E2 1
1

� �e	

�e
�e
�e	

1
1

�e	

�e
�e
�e	

�
x2 � y2; xyð Þ
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Correspondingly, we have a diagonal secular equation of a sixth order such that

eH11 � keS11 eH22 � keS22 eH33 � keS33 eH44 � keS44 eH55 � keS55 eH66 � keS66

������������

������������
¼ 0

ð16:152Þ

Here, we have for example

eH11 ¼
Z

n	1Hn1ds ¼ n1jHn1h i ¼ 6 aþ 2bþ 2b0 þ b00ð Þ ð16:153Þ

In (16.153), we used the same a and b defined in (16.94) as in the case of
cyclopropenyl radical. That is, a is a Coulomb integral and b is a resonance integral
between two adjacent 2pz orbitals of carbon. Meanwhile, b0 is a resonance integral
between orbitals of “meta” positions such as /1 and /3. A quantity b00 is a reso-
nance integral between orbitals of “para” positions such as /1 and /4. It is unfa-
miliar to include such kind of resonance integrals of b0 and b00 at a simple p-electron
approximation level. To ignore such resonance integrals is because of a practical
purpose to simplify the calculations. However, we have no reason to exclude them.
Or rather, the use of appropriate SALCs makes it feasible to include b0 and b00.

In a similar manner, we get

eH22 ¼
Z

n	2Hn2ds ¼ n2jHn2h i ¼ 6 a� 2bþ 2b0 � b00ð Þ;
eH33 ¼ eH44 ¼ 6 aþ b� b0 � b00ð Þ;eH55 ¼ eH66 ¼ 6 a� b� b0 þ b00ð Þ:

ð16:154Þ

Meanwhile, we have

eS11 ¼ n1jn1h i ¼ 6 1þ 2Sþ 2S0 þ S00ð Þ;eS22 ¼ n2jn2h i ¼ 6 1� 2Sþ 2S0 � S00ð Þ;eS33 ¼ eS44 ¼ 6 1þ S� S0 � S00ð Þ;eS55 ¼ eS66 ¼ 6 1� S� S0 þ S00ð Þ;

ð16:155Þ

where S, S0, and S00 are overlap integrals between the ortho, meta, and para posi-
tions, respectively. Substituting (16.153) through (16.155) for (16.152), the energy
eigenvalues are readily obtained as
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k1 ¼ aþ 2bþ 2b0 þ b00

1þ 2Sþ 2S0 þ S00
; k2 ¼ a� 2bþ 2b0 � b00

1� 2Sþ 2S0 � S00
;

k3 ¼ k4 ¼ aþ b� b0 � b00

1þ S� S0 � S00
; k5 ¼ k6 ¼ a� b� b0 þ b00

1� S� S0 þ S00

ð16:156Þ

Notice that two MOs n3 and n4 as well as n5 and n6 are degenerate. As can be
seen, k3 and k4 are doubly degenerate. So are k5 and k6.

From (16.151), we get for instance

n1j jj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1jn1h i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1þ 2Sþ 2S0 þ S00ð Þ

p
ð16:157Þ

Thus, for one of normalized MOs corresponding to an energy eigenvalue k1, we
get

W1 ¼ n1j i
n1j jj j ¼

/1 þ/2 þ/3 þ/4 þ/5 þ/6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1þ 2Sþ 2S0 þ S00ð Þp ð16:158Þ

Following the previous examples, we have other normalized MOs. That is, we
have

W2 ¼ n2j i
n2j jj j ¼

/1 � /2 þ/3 � /4 þ/5 � /6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1� 2Sþ 2S0 � S00ð Þp ;

W3 ¼ n3j i
n3j jj j ¼

/1 þ e/2 � e	/3 � /4 � e/5 þ e	/6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1þ S� S0 � S00ð Þp ;

W4 ¼ n4j i
n4j jj j ¼

/1 þ e	/2 � e/3 � /4 � e	/5 þ e/6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1þ S� S0 � S00ð Þp ;

W5 ¼ n5j i
n5j jj j ¼

/1 � e	/2 � e/3 þ/4 � e	/5 � e/6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1� S� S0 þ S00ð Þp ;

W6 ¼ n6j i
n6j jj j ¼

/1 � e/2 � e	/3 þ/4 � e/5 � e	/6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1� S� S0 þ S00ð Þp

ð16:159Þ

The eigenfunction Wi 1� i� 6ð Þ corresponds to the eigenvalue ki. As in the case
of cyclopropenyl radical, W3 and W4 can be transformed to eW3 and eW4, respec-
tively, through a unitary matrix of (16.141). Thus, we get

eW3 ¼ 2/1 þ/2 � /3 � 2/4 � /5 þ/6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 1þ S� S0 � S00ð Þp ;

eW4 ¼ /2 þ/3 � /5 � /6

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S� S0 � S00

p
ð16:160Þ
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Similarly, transforming W5 and W6 to eW5 and eW6, respectively, we have

eW5 ¼ 2/1 � /2 � /3 þ 2/4 � /5 � /6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 1� S� S0 þ S00ð Þp ;

eW6 ¼ /2 � /3 þ/5 � /6

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S� S0 þ S00

p
ð16:161Þ

Figure 16.11 shows an energy diagram and MO assignments of benzene.
A major optical transition takes place among HOMO ðE1gÞ and LUMO ðE2uÞ

levels. In the case of optical absorption, an initial electronic configuration is
assigned to the totally symmetric representation A1g and the symmetry of the final
electronic configuration is described as

C ¼ E1g 
 E2u

Therefore, a transition matrix element is expressed as

U E1g
E2uð Þjee � PjU A1gð Þ; ð16:162Þ

where U A1gð Þ stands for the totally symmetric ground state electronic configuration;

U E1g
E2uð Þ denotes an excited-state electronic configuration represented by a
direct-product representation. This representation is reducible and expressed as a
direct sum of irreducible representations such that

C ¼ B1u þB2u þE1u ð16:163Þ

Notice that unlike ethylene a direct-product representation associated with the
final state is reducible.

To examine whether (16.162) is nonvanishing, as in the case of (16.109) we
estimate whether a direct-product representation A1g 
 E1g 
 E2u ¼ E1g 
 E2u ¼

Fig. 16.11 Energy diagram
and MO assignments of
benzene. Energy eigenvalues
k1 to k6 are given in (16.156)
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B1u þB2u þE1u contains an irreducible representation which ee � P belongs to.
Consulting a character table of D6h, we find that x and y belong to an irreducible
representation E1u and that z belongs to A2u. Since the direct sum C in (16.163)
contains E1u, benzene is expected to be polarized along both x- and y-axes (see
Fig. 16.10). Since (16.163) does not contain A2u, the transition along the z-axis is
forbidden. Accordingly, the transition takes place when the light is polarized par-
allel to the molecular plane (i.e., the xy-plane). This is a common feature among
planar aromatic molecules including benzene and cyclopropenyl radical. On the
other hand, A2u is not contained in C, and so we do not expect the optical transition
to occur in the direction of the z-axis.

16.4.4 Allyl Radical [1]

We revisit the allyl radical and perform its MO calculations. As already noted,
Tables 15.1 and 15.2 of Example 15.1 collected representation matrices of indi-
vidual symmetry operations in reference to the basis vectors comprising three
atomic orbitals of allyl radical. As usual, we examine traces (or characters) of those
matrices. Table 16.10 collects them. The representation is readily reduced
according to the character table of C2v (see Table 15.4) so that we have

C ¼ A2 þ 2B1 ð16:164Þ

We have two SALC orbitals that belong to the same irreducible representation of
B1. As noted in Sect. 16.3, the orbitals obtained by a linear combination of these
two SALCs belong to B1 as well. Such a linear combination is given by a unitary
transformation. In the present case, it is convenient to transform the basis vectors
two times. The first transformation is carried out to get SALCs, and the second one
will be done in the process of solving a secular equation using the SALCs.
Schematically showing the procedures, we have

/1
/2
/3

8<: !
W1

W2

W3

8<: !
U1

U2

U3

8<: ;

where /1;/2;/3 show the original atomic orbitals; W1;W2;W3 the SALCs;
U1;U2;U3 the final MOs. Thus, the three sets of vectors are connected through
unitary transformations.

Table 16.10 Characters for individual symmetry transformations of 2pz orbitals in allyl radical

C2v E C2 zð Þ rv zxð Þ r
0
v yzð Þ

C 3 −1 1 −3
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Starting with /1 and following the previous cases, we have, e.g.,

P B1ð Þ/1 ¼
1
4

X
g

½v B1ð Þ gð Þ�	g/1 ¼ /1:

Also starting with /2, we have

P B1ð Þ/2 ¼
1
4

X
g

v B1ð Þ gð Þ
h i	

g/2 ¼
1
2

/2 þ/3ð Þ

Meanwhile, we get

P A2ð Þ/1 ¼ 0;

P A2ð Þ/2 ¼
1
4

X
g

v A2ð Þ gð Þ
h i	

g/2 ¼
1
2

/2 � /3ð Þ

Thus, we recovered the results of Example 15.1. Notice that /1 does not par-
ticipate in A2, but take part in B1 by itself.

Normalized SALCs are given as follows:

W1 ¼ /1;W2 ¼ /2 þ/3ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ S0ð Þ

p
;W3 ¼ /2 � /3ð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� S0ð Þ

p
;

where we define S0 � R /2/3ds. IfW1,W2, andW3 belonged to different irreducible
representations (as in the cases of previous three examples of ethylene, cyclo-
propenyl radical, and benzene), the secular equation would be fully reduced to a
form of (16.66). In the present case, however, W1 and W2 belong to the same
irreducible representation B1, making the situation a bit complicated. Nonetheless,
we can use (16.61) and the secular equation is “partially” reduced.

Defining

Hjk ¼
Z

W	
j HWkds and Sjk ¼

Z
W	

jWkds;

we have a following secular equation, the same form as (16.61):

det Hjk � kSjk

 � ¼ 0:

More specifically, we have

a� k
ffiffiffiffiffiffiffiffi
2

1þ S0

q
b� Skð Þ 0ffiffiffiffiffiffiffiffi

2
1þ S0

q
b� Skð Þ aþ b0

1þ S0 � k 0

0 0 a�b0

1�S0 � k

���������

��������� ¼ 0;
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where a, b, and S are similarly defined as (16.94) and (16.98). The quantities b0 are
defined as

b0 �
Z

/	
2H/3ds

Thus, the secular equation is separated into the following two:

a� k
ffiffiffiffiffiffiffiffi
2

1þ S0

q
b� Skð Þffiffiffiffiffiffiffiffi

2
1þ S0

q
b� Skð Þ aþb0

1þ S0 � k

������
������ ¼ 0 and

a� b0

1� S0
� k ¼ 0 ð16:165Þ

The second equation immediately gives

k ¼ a� b0

1� S0

The first equation of (16.165) is somewhat complicated, and so we adopt the
next approximation. That is,

S0 ¼ b0 ¼ 0 ð16:166Þ

This approximation is justified, because two carbon atoms C2 and C3 are pretty
remote, and so the interaction between them is likely to be weak enough. Thus, we
rewrite the first equation of (16.165) as

a� k
ffiffiffi
2

p
b� Skð Þffiffiffi

2
p

b� Skð Þ a� k

���� ���� ¼ 0 ð16:167Þ

Moreover, we assume that since S is a small quantity compared to 1, a square
term of S2 � 1. Hence, we ignore S2.

Using the approximation of (16.166) and assuming S2 
 0, from (16.167) we
have a following quadratic equation:

k2 � 2 a� 2bSð Þkþ a2 � 2b2 ¼ 0

Solving this equation, we have

k ¼ a� 2bS�
ffiffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2aS

b

s

 a� 2bS�

ffiffiffi
2

p
b 1� aS

b

� �
;

where the last approximation is based on

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p

 1� 1

2
x
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with a small quantity x. Thus, we get

kL 
 aþ
ffiffiffi
2

p
b


 �
1�

ffiffiffi
2

p
S


 �
and kH 
 a�

ffiffiffi
2

p
b


 �
1þ

ffiffiffi
2

p
S


 �
; ð16:168Þ

where kL\kH . To determine the corresponding eigenfunctions U (i.e., MOs), we
use a linear combination of two SALCs W1 and W2. That is, putting

U ¼ c1W1 þ c2W2 ð16:169Þ

and from (16.167), we obtain

a� kð Þc1 þ
ffiffiffi
2

p
b� Skð Þc2 ¼ 0:

Thus, with k ¼ kL, we get c1 ¼ c2, and for k ¼ kH , we get c1 ¼ �c2.
Consequently, as a normalized eigenfunction UL corresponding to kL, we get

UL ¼ 1ffiffiffi
2

p W1 þW2ð Þ ¼ 1
2
ð1þ

ffiffiffi
2

p
SÞ�1=2

ffiffiffi
2

p
/1 þ/2 þ/3


 �
ð16:170Þ

Likewise, as a normalized eigenfunction UH corresponding to kH , we get

UH ¼ 1ffiffiffi
2

p �W1 þW2ð Þ ¼ 1
2
ð1�

ffiffiffi
2

p
SÞ�1=2 �

ffiffiffi
2

p
/1 þ/2 þ/3


 �
ð16:171Þ

As another eigenvalue k0 and corresponding eigenfunction U0, we have

k0 
 a andU0 ¼ 1ffiffiffi
2

p /2 � /3ð Þ; ð16:172Þ

where we have kL\k0\kH . The eigenfunction U0 does not participate in chemical
bonding and, hence, is said to be a non-bonding orbital.

It is worth noting that eigenfunctions UL, U0, and UH have the same function
forms as those obtained by the simple Hückel theory that ignores the overlap
integrals S. It is because the interaction between /2 and /3 that construct SALCs of
W2 and W3 is weak.

Notice that two sets of basis vectors /1ij ; 1ffiffi
2

p /2 þ/3ij ; and 1ffiffi
2

p /2 � /3ij and

jULi, jUHi, and jU0i are connected by a following unitary matrix V :

ð ULij UHij U0ij Þ ¼ /1ij 1ffiffiffi
2

p /2 þ/3ij 1ffiffiffi
2

p /2 � /3ij
� �

V

¼ /1ij 1ffiffiffi
2

p /2 þ/3ij 1ffiffiffi
2

p /2 � /3ij
� � 1ffiffi

2
p � 1ffiffi

2
p 0

1ffiffi
2

p 1ffiffi
2

p 0

0 0 1

0B@
1CA ð16:173Þ
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Although both SALCs W1 and W2 belong to the same irreducible representation
B1, they are not orthogonal. As shown in (16.170) and (16.171), however, we find
that UL and UH that are sought by solving the secular equation (16.167) have been
mutually orthogonal. Starting from j/1i, j/2i, and j/3i of Example 15.1, we
reached jULi, jUHi, and jU0i via two-step unitary transformations (15.40) and
(16.173). The combined unitary transformationsW ¼ UV are unitary again. That is,
we have

ð /1j i /2j i /3j iÞUV ¼ ð /1j i /2j i /3j iÞ

1ffiffi
2

p � 1ffiffi
2

p 0

1
2
1
2

1
2

1ffiffi
2

p

1
2 � 1ffiffi

2
p

0BB@
1CCA

¼ ð ULij jUHijU0iÞ

ð16:174Þ

The optical transition of allyl radical represents general features of the optical
transitions of molecules. To make a story simple, let us consider a case of allyl
cation. Figure 16.12 shows electronic configurations together with symmetry spe-
cies of individual eigenstates and their corresponding energy eigenvalues for the
allyl cation. In Fig. 16.13, we redraw its geometry where the origin is located at the
center of a line segment connecting C2 and C3 r2 þ r3 ¼ 0ð Þ. Major optical tran-
sitions (or optical absorption) are UL ! U0 and UL ! UH .

(i) UL ! U0: In this case, following (16.109) the transition matrix element Tfi is
described by

Tfi ¼ H B1
A2ð Þ
f ee � Pj jH A1ð Þ

i

D E
ð16:175Þ

(a)

(

(

(

(b) (c)

Fig. 16.12 Electronic configurations and symmetry species of individual eigenstates along with
their corresponding energy eigenvalues for the allyl cation. a Ground state. b First excited state.
c Second excited state

C1

C2C3

r1

r2r3 O

Fig. 16.13 Geometry and
position vectors of carbon
atoms of the allyl cation. The
origin is located at the center
of a line segment connecting
C2 and C3 r2 þ r3 ¼ 0ð Þ
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In the above equation, we designate the irreducible representation of eigenstates
according to (16.164). Therefore, the symmetry of the final electronic configuration
is described as

C ¼ B1 
 A2 ¼ B2

Since a direct product of the initial electronic configuration H A1ð Þ
i

h i
and the final

configuration H B1
A2ð Þ
f is B1 
 A2 
 A1 ¼ B2. Then, if ee � P belongs to the same

irreducible representation B2, the associated optical transition should be allowed.
Consulting a character table of C2v, we find that y belongs to B2. Thus, the allowed
optical transition is polarized along the y-direction.

(ii) UL ! UH : In parallel with the above case, Tfi is described by

Tfi ¼ H B1
B1ð Þ
f ee � Pj jH A1ð Þ

i

D E
ð16:176Þ

Thus, the transition is characterized by

A1 ! A1;

where the former A1 indicates the electronic ground state and the latter A1 indicates
the excited state given by B1 
 B1 ¼ A1. The direct product of them is simply
described as B1 
 B1 
 A1 ¼ A1. Consulting a character table again, we find that z
belongs to A1. This implies that the allowed transition is polarized along the
z-direction.

Next, we investigate the above optical transition in a semiquantitative manner.
The transition matrix element Tfi should be estimated from (16.175) and (16.176)
that use electronic configurations of two-electron system. Nonetheless, a formula-
tion of (4.7) of Sect. 4.1 based upon one-electron states well serves our present
purpose. For UL ! U0 transition, we have

Tfi UL ! U0ð Þ ¼
Z

U	
0ee � PULds ¼ eee �

Z
U	

0rULds

¼ eee �
Z

1
2

ffiffiffi
2

p
/1 þ/2 þ/3


 �
r
1ffiffiffi
2

p /2 � /3ð Þds

¼ eee
2
ffiffiffi
2

p �
Z ffiffiffi

2
p

/1r/2 �
ffiffiffi
2

p
/1r/3 þ/2r/2 þ/3r/2 � /3r/3


 �
ds


 eee
2
ffiffiffi
2

p �
Z

/2r/2 � /3r/3ð Þds


 eee
2
ffiffiffi
2

p � r2

Z
j/2j2ds� r3

Z
j/3j2ds

� 	
¼ eee

2
ffiffiffi
2

p � r2 � r3ð Þ ¼ eeeffiffiffi
2

p � r2;
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where with the first near equality we ignored integrals
R
/ir/jds i 6¼ jð Þ and with the

last near equality r 
 r2 or r3. For these approximations, we assumed that an
electron density is very high near C2 or C3 with ignorable density at a place remote
from them. Choosing ee for the direction of r2, we get

Tfi UL ! U0ð Þ 
 effiffiffi
2

p r2j j

With UL ! UH transition, similarly we have

Tfi UL ! UHð Þ ¼
Z

U	
Hee � PULds 
 eee

4
� r3 � 2r1 þ r2ð Þ ¼ � eee

2
� r1

Choosing ee for the direction of r1, we get

Tfi UL ! UHð Þ 
 e
2
r1j j

Transition probability is proportional to a square of an absolute value of Tfi.
Using r2 
 ffiffiffi

3
p�� ��r1�� ��, we have

Tfi UL ! U0ð Þj2 
 e2

2

���� ����r2j2 ¼ 3e2

2
jr1j2;

Tfi UL ! UHð Þj2 
 e2

4

���� ����r1j2
Thus, we obtain

Tfi UL ! U0ð Þj2 
 6
�� ��Tfi UL ! UHð Þj2 ð16:177Þ

Thus, the transition probability of UL ! U0 is about six times that for UL ! UH .
Note that in the above simple estimation we ignore an overlap integral S.
From the above discussion, we conclude that (i) the UL ! U0 transition is

polarized along the r2 direction (i.e., the molecular long axis) and that the UL ! UH

transition is polarized along the r1 direction (i.e., the molecular short axis).
(ii) Transition probability of UL ! U0 is about six times that of UL ! UH . Note
that the polarized characteristics are consistent with those obtained from the dis-
cussion based on the group theory. The conclusion reached by the semiquantitative
estimation of a simple molecule of allyl cation well typifies the general optical
features of more complicated molecules having a well-defined molecular long axis
such as polyenes.
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16.5 MO Calculations of Methane

So far, we investigated MO calculations of aromatic molecules based upon p-
electron approximation. These are a homogeneous system that has the same quality
of electrons. Here, we deal with methane that includes a carbon and surrounding
four hydrogens. These hydrogen atoms form a regular tetrahedron with the carbon
atom positioned at a center of the tetrahedron. It is therefore considered as a
heterogeneous system. The calculation principle, however, is consistent; namely,
we make the most of projection operators and construct appropriate SALCs of
methane.

We deal with four 1s electrons of hydrogen along with two 2s electrons and two
2p electrons of carbon. Regarding basis functions of carbon, however, we consider
2s atomic orbital and three 2p orbitals (i.e., 2px; 2py; 2pz orbitals). That is, we deal
with eight atomic orbitals all together. These are depicted in Fig. 16.14. The
dimension of the vector space (i.e., representation space) is eight accordingly.

As before, we wish to determine irreducible representations which individual
MOs belong to. As already mentioned in Sect. 14.3, there are 24 symmetry oper-
ations in a point group Td which methane belongs to (see Table 14.6). According to
the symmetry operations, we decide transformation matrices related to each oper-
ation. For example, Cxyz

3 transforms basis functions as follows:

H1H2H3H4C2sC2pxC2pyC2pz

 �

Cxyz
3

¼ H1H3H4H2C2sC2pyC2pzC2px

 �

;

x

y

z

O

Fig. 16.14 Four 1s atomic
orbitals of hydrogen and a 2pz
orbital of carbon. The former
orbitals are represented by H1

to H4. 2px and 2py orbitals of
carbon are omitted for
simplicity
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where by the above notations we denoted atomic species and molecular orbitals.
Hence, as a matrix representation, we have

Cxyz
3 ¼

1 0 0
0 0 0
0 1 0

0
1
0

0
0
0

0 0 1 0 0
0 0 0 0 1

0
0
0

0
0
0

0
0
0

0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 1
1 0 0
0 1 0

0BBBBBBBBB@

1CCCCCCCCCA
ð16:178Þ

where Cxyz
3 is the same operation as Rxyz2p3

appeared in Sect. 14.3. Therefore,

v Cxyz
3


 � ¼ 2:

As another example ryzd , we have

H1H2H3H4C2sC2pxC2pyC2pz

 �

ryzd
¼ H1H2H4H3C2sC2pxC2pzC2py

 �

;

where ryzd represents a mirror symmetry with respect to the plane that includes the
x-axis and bisects the angle formed by the y- and z-axes. Thus, we have

ryzd ¼

1 0 0
0 1 0
0 0 0

0
0
1

0
0
0

0 0 1 0 0
0 0 0 0 1

0
0
0

0
0
0

0
0
0

0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1 0 0
0 0 1
0 1 0

0BBBBBBBBB@

1CCCCCCCCCA
ð16:179Þ

Then, we have

v ryzd

 � ¼ 4:

Taking some more examples, for Cz
2 we get

H1H2H3H4C2sC2pxC2pyC2pz

 �

Cz
2

¼ H4H3H2H1C2s� C2px � C2pyC2pz

 �

;
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where Cz
2 means a rotation by p around the z-axis. Also, we have

Cz
2 ¼

0 0 0
0 0 1
0 1 0

1
0
0

0
0
0

1 0 0 0 0
0 0 0 0 1

0
0
0

0
0
0

0
0
0

0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

�1 0 0
0 �1 0
0 0 1

0BBBBBBBBB@

1CCCCCCCCCA
ð16:180Þ

v Cz
2


 � ¼ 0:

With S
zp2
4 (i.e., an improper rotation by p

2 around the z-axis), we get

H1H2H3H4C2sC2pxC2pyC2pz

 �

S
zp2
4

¼ H3H1H4H2C2sC2py � C2px � C2pz

 �

;

S
zp2
4 ¼

0 1 0
0 0 0
1 0 0

0
1
0

0
0
0

0 0 1 0 0
0 0 0 0 1

0
0
0

0
0
0

0
0
0

0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 �1 0
1 0 0
0 0 �1

0BBBBBBBBB@

1CCCCCCCCCA
ð16:181Þ

v S
zp2
4


 �
¼ 0

As for the identity matrix E, we have

v Eð Þ ¼ 8

Thus, Table 16.11 collects characters of individual symmetry transformations
with respect to hydrogen 1s and carbon 2s and 2p orbitals in methane. From the
above examples, we notice that all the symmetry operators R reduce an
eight-dimensional representation space V8 to subspaces of Span H1H2H3H4f g and
Span C2sC2pxC2pyC2pz

� �
. In terms of a notation of Sect. 10.2, we have

V8 ¼ Span H1H2H3H4f g � Span C2sC2pxC2pyC2pz
� � ð16:182Þ

In other words,V8 is decomposed into the above two R-invariant subspaces (see
Part III): One is the hydrogen-related subspace, and the other is the carbon-related
subspace.
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Correspondingly, a representation D comprising the above representation
matrices should be reduced to a direct sum of irreducible representations D að Þ. That
is, we should have

D ¼
X
a

qaD
að Þ;

where qa is a positive integer or zero. Here, we are thinking of decomposition of
(8,8) matrices such as (16.178) into submatrices. We estimate qa using (15.83).
That is,

qa ¼ 1
n

X
g

v að ÞðgÞ	v gð Þ: ð15:83Þ

With an irreducible representation A1 of Td for instance, we have

qA1 ¼
1
24

X
g

v A1ð ÞðgÞ	v gð Þ ¼ 1
24

1 � 8þ 1 � 8 � 2þ 1 � 6 � 4ð Þ ¼ 2

As for A2, we have

qA2 ¼
1
24

1 � 8þ 1 � 8 � 2þ �1ð Þ � 6 � 4½ � ¼ 0

Regarding T2, we get

qT2 ¼
1
24

3 � 8þ 1 � 6 � 4ð Þ ¼ 2

For other irreducible representations of Td , we get qa ¼ 0. Consequently, we
have

D ¼ 2D A1ð Þ þ 2D T2ð Þ ð16:183Þ

Evidently, both for the hydrogen-related representation D Hð Þ and for the
carbon-related representation D Cð Þ, we have individually

D Hð Þ ¼ D A1ð Þ þD T2ð Þ and D Cð Þ ¼ D A1ð Þ þD T2ð Þ; ð16:184Þ

where D ¼ D Hð Þ þD Cð Þ.

Table 16.11 Characters for individual symmetry transformations of hydrogen 1s and carbon
2p orbitals in methane

Td E 8C3 3C2 6S4 6rd
C 8 2 0 0 4
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In fact, (16.180), for example, in a subspace Span H1H2H3H4f g,Cz
2 is expressed as

Cz
2 ¼

0 0 0 1
0
0
1

0 1 0
1 0 0
0 0 0

0B@
1CA

Following routine procedures based on a characteristic polynomials, we get
eigenvalues þ 1 (as a double root) and �1 (a double root as well). Unitary simi-
larity transformation using a unitary matrix P expressed as

P ¼

1
2

1
2

1
2

1
2

1
2

1
2 � 1

2 � 1
2

1
2 � 1

2
1
2 � 1

2
1
2 � 1

2 � 1
2

1
2

0BB@
1CCA

yields a diagonal matrix such that

P�1Cz
2P ¼

1 0 0 0
0
0
0

�1 0 0
0 �1 0
0 0 1

0B@
1CA

Note that this diagonal matrix is identical to submatrix of (16.180) for

Span C2sC2pxC2pyC2pz
� �

. Similarly, S
zp2
4 of (16.181) gives eigenvalues �1 and �i

for both the subspaces. Notice that S
zp2
4 is unitary, and its eigenvalues take a complex

number with an absolute value of 1. Since these symmetry operation matrices are
unitary, these matrices must be diagonalized according to Theorem 12.5. Using
unitary matrices whose column vectors are chosen from eigenvectors of the
matrices, diagonal elements are identical to eigenvalues including their multiplicity.
Writing representation matrices of symmetry operations for the hydrogen-asso-
ciated subspace and carbon-associated subspace as H and C, we find that H and C
have the same eigenvalues in common. Notice here that different types of trans-

formation matrices (e.g., Cz
2, S

zp2
4 ) give a different set of eigenvalues. Via unitary

similarity transformation using unitary matrices P and Q, we get

P�1HP ¼ Q�1CQ or ðPQ�1Þ�1H PQ�1
 � ¼ C:

Namely, H and C are similar; i.e., the representation is equivalent. Thus,
recalling Schur’s First Lemma, Eq. (16.184) results.

Our next task is to construct SALCs, i.e., proper basis vectors using projection
operators. From the above, we anticipate that the MOs comprise a linear combi-
nation of the hydrogen-associated SALC and carbon-associated SALC that belongs
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to the same irreducible representation (i.e., A1 or T2Þ. For this purpose, we first find
proper SALCs using projection operators described as

P að Þ
l lð Þ ¼

da
n

X
g

D að Þ
ll ðgÞ	g: ð15:156Þ

We apply this operator to Span H1H2H3H4f g. Taking, e.g., H1 and operating
both sides of (15.156) on H1, as a basis vector corresponding to a one-dimensional
representation of A1, we have

P A1ð Þ
1 1ð ÞH1 ¼ dA1

n

X
g

D A1ð Þ
11 ðgÞ	gH1

¼ 1
24

½ 1 � H1ð Þþ ð1 � H1 þ 1 � H1 þ 1 � H3

þ 1 � H4 þ 1 � H3 þ 1 � H2 þ 1 � H4 þ 1 � H2Þþ 1 � H4 þ 1 � H3 þ 1 � H2ð Þ
þ 1 � H3 þ 1 � H2 þ 1 � H2 þ 1 � H4 þ 1 � H4 þ 1 � H3ð Þ
þ 1 � H1 þ 1 � H4 þ 1 � H1 þ 1 � H2 þ 1 � H1 þ 1 � H3ð Þ�

¼ 1
24

6 � H1 þ 6 � H2 þ 6 � H3 þ 6 � H4ð Þ

¼ 1
4

H1 þH2 þH3 þH4ð Þ
ð16:185Þ

The case of C2s is simple, because all the symmetry operations convert C2s to
itself. That is, we have

P A1ð Þ
1 1ð ÞC2s ¼

1
24

24 � C2sð Þ ¼ C2s ð16:186Þ

Regarding C2p, taking C2px for instance, we have

P A1ð Þ
1 1ð ÞC2px ¼

1
24

f 1 � C2pxð Þþ ½1 � C2py þ 1 � C2pz þ 1 � �C2py

 �

þ 1 � �C2pzð Þþ 1 � �C2py

 �þ 1 � C2pz þ 1 � C2py þ 1 � �C2pzð Þ�

þ 1 � C2px þ 1 � �C2pxð Þþ 1 � �C2pxð Þð � þ½ ½1 � �C2pxð Þ
þ 1 � �C2pxð Þþ 1 � �C2pzð Þþ 1 � C2pz þ 1 � C2py þ 1 � �C2py


 ��
þð1 � C2py þ 1 � C2px þ 1 � C2pz þ 1 � �C2py


 �þ 1 � C2px þ 1 � �C2pzð Þg
¼ 0:

The calculation is somewhat tedious, but it is natural that since C2s is spherically
symmetric, it belongs to the totally symmetric representation. Conversely, it is
natural to think that C2px is totally unlikely to contain a totally symmetric repre-
sentation. This is also the case with C2py and C2pz.
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Table 16.12 shows the character table of Td in which the three-dimensional
irreducible representation T2 is spanned by basis vectors xyzð Þ. Since in Table 14.6
each (3,3) matrix is given in reference to the vectors xyzð Þ, it can directly be utilized
to represent T2. More specifically, we can directly choose the diagonal elements

(1,1), (2,2), and (3,3) of the individual (3,3) matrices for D T2ð Þ
11 , D T2ð Þ

22 , and D T2ð Þ
33

elements of the projection operators, respectively. Thus, we can construct SALCs
using projection operators explained in Sect. 15.7. For example, using H1 we obtain
SALCs that belong to T2 such that

P T2ð Þ
1 1ð ÞH1 ¼ 3

24

X
g

D T2ð Þ
11 ðgÞ	gH1 ¼ 3

24
f 1 � H1ð Þ

þ �1ð Þ � H4 þ �1ð Þ � H3 þ 1 � H2½ �
þ 0 � �H3ð Þþ 0 � �H2ð Þþ 0 � �H2ð Þþ 0 � �H4ð Þþ �1ð Þ � H4 þ �1ð Þ � H3½ �
þ 0 � H1 þ 0 � H4 þ 1 � H1 þ 1 � H2 þ 0 � H1 þ 0 � H3ð Þg

¼ 3
24

2 � H1 þ 2 � H2 þ �2ð Þ � H3 þ �2ð Þ � H4½ �

¼ 1
4

H1 þH2 � H3 � H4ð Þ
ð16:187Þ

Similarly, we have

P T2ð Þ
2 2ð ÞH1 ¼ 1

4
H1 � H2 þH3 � H4ð Þ; ð16:188Þ

P T2ð Þ
3 3ð ÞH1 ¼ 1

4
H1 � H2 � H3 þH4ð Þ ð16:189Þ

Now, we can easily guess that P T2ð Þ
1 1ð ÞC2px solely contains C2px. Likewise,

P T2ð Þ
2 2ð ÞC2py and P T2ð Þ

3 3ð ÞC2pz contain only C2py and C2pz, respectively. In fact, we

obtain what we anticipate. That is,

P T2ð Þ
1 1ð ÞC2px ¼ C2px; P

T2ð Þ
2 2ð ÞC2py ¼ C2py; P

T2ð Þ
3 3ð ÞC2pz ¼ C2pz: ð16:190Þ

Table 16.12 Character table of Td

Td E 8C3 3C2 6S4 6rd
A1 1 1 1 1 1 x2 þ y2 þ z2

A2 1 1 1 −1 −1

E 2 −1 2 0 0 2z2 � x2 � y2; x2 � y2ð Þ
T1 3 0 −1 1 −1

T2 3 0 −1 −1 1 x; y; zð Þ; xy; yz; zxð Þ
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This gives a good example to illustrate the general concept of projection oper-
ators and related calculations of inner products discussed in Sect. 15.7. For

example, we have a nonvanishing inner product of hP T2ð Þ
1 1ð ÞH1jP T2ð Þ

1 1ð ÞC2pxi and an

inner product of, e.g., hP T2ð Þ
2 2ð ÞH1jP T2ð Þ

1 1ð ÞC2pxi is zero. This significantly reduces efforts

to solve a secular equation (vide infra). Notice that functions P T2ð Þ
1 1ð ÞH1, P

T2ð Þ
1 1ð ÞC2px,

etc., are linearly independent of one another. Recall also that P T2ð Þ
1 1ð ÞH1 and P T2ð Þ

1 1ð ÞC2px

correspond to / að Þ
l and w að Þ

l in (15.171), respectively. That is, the former functions
are linearly independent, while they belong to the same place “1” of the same
three-dimensional irreducible representation T2.

Equations (16.187)–(16.190) seem intuitively obvious. This is because if we
draw a molecular geometry of methane (see Fig. 16.14), we can immediately
recognize the relationship between the directionality in R

3 and “directionality” of
SALCs represented by sings of hydrogen atomic orbitals (or C2px, C2py, and C2pz
of carbon).

As stated above, we have successfully obtained SALCs relevant to methane.
Therefore, our next task is to solve an eigenvalue problem and construct appropriate
MOs. To do this, let us first normalize the SALCs. We assume that carbon-based
SALCs have already been normalized as well-studied atomic orbitals. We suppose
that all the functions are real. For the hydrogen-based SALCs

H1 þH2 þH3 þH4jH1 þH2 þH3 þH4h i ¼ 4 H1 H1jh iþ 12 H1 H2jh i
¼ 4þ 12SHH

¼ 4 1þ 3SHH

 �

;

ð16:191Þ

where the second equality comes from the fact that H1j i, i.e., a 1 s atomic orbital is
normalized. We define H1jH2h i ¼ SHH , i.e., an overlap integral between two
adjacent hydrogen atoms. Note also that HijHj

� �
1� i; j� 4; i 6¼ jð Þ is the same

because of the symmetry requirement.
Thus, as a normalized SALC, we have

H A1ð Þ � H1 þH2 þH3 þH4j i
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3SHH

p ð16:192Þ

Defining a denominator as c ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3SHH

p
 �
, we have

H A1ð Þ ¼ H1 þH2 þH3 þH4j i=c ð16:193Þ

16.5 MO Calculations of Methane 601



Also, we have

H1 þH2 � H3 � H4jH1 þH2 � H3 � H4h i ¼ 4 H1 H1jh i � 4 H1 H2jh i
¼ 4� 4SHH ¼ 4 1� SHH


 � ð16:194Þ

Thus, we have

H T2ð Þ
1 � H1 þH2 � H3 � H4j i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SHH

p ð16:195Þ

Also defining a denominator as d ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SHH

p
 �
, we have

H T2ð Þ
1 � H1 þH2 � H3 � H4j i=d

Similarly, we define other hydrogen-based SALCs as

H T2ð Þ
2 � H1 � H2 þH3 � H4j i=d;

H T2ð Þ
3 � H1 � H2 � H3 þH4j i=d:

The next step is to construct MOs using the above SALCs. To this end, we make
a linear combination using SALCs belonging to the same irreducible representa-
tions. In the case of A1, we choose H A1ð Þ and C2s. Naturally, we anticipate two
linear combinations of

a1H
A1ð Þ þ b1C2s, ð16:196Þ

where a1 and b1 are arbitrary constants. On the basis of the discussions of pro-
jection operators in Sect. 15.7, both the above two linear combinations belong to A1

as well. Similarly, according to the projection operators P T2ð Þ
1 1ð Þ, P

T2ð Þ
2 2ð Þ, and P T2ð Þ

3 3ð Þ, we
make three sets of linear combinations

q1P
T2ð Þ
1 1ð ÞH1 þ r1C2px; q2P

T2ð Þ
2 2ð ÞH1 þ r2C2py; q3P

T2ð Þ
3 3ð ÞH1 þ r3C2pz; ð16:197Þ

where q1, r1, etc., are arbitrary constants. These three sets of linear combinations
belong to individual “addresses” 1, 2, and 3 of T2. What we have to do is to
determine coefficients of the above MOs and to normalize them by solving the
secular equations. With two different energy eigenvalues, we get two orthogonal
(i.e., linearly independent) MOs for the individual four sets of linear combinations
of (16.196) and (16.197). Thus, total eight linear combinations constitute MOs of
methane.
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In light of (16.183), the secular equation can be reduced as follows according to
the representations A1 and T2. There we have changed the order of entries in the
equation so that we can deal with the equation easily. Then, we have

H11 � kH12 � kS12
H21 � kS21 H22 � k

G11 � kG12 � kT12
G21 � kT21 G22 � k

F11 � kF12 � kV12
F21 � kV21 F22 � k

K11 � kK12 � kW12

K21 � kW21 K22 � k

���������������

���������������
¼ 0

ð16:198Þ

where blanc off-diagonal elements are all zero. This is because of the symmetry
requirement (see Sect. 16.2). Thus, in (16.198) the secular equation is decomposed
into four (2,2) blocks. The first block is pertinent to A1 of a hydrogen-based
component and carbon-based component from the left, respectively. Lower three
blocks are pertinent to T2 of hydrogen-based and carbon-based components from

the left, respectively, in order of P T2ð Þ
1 1ð Þ, P

T2ð Þ
2 2ð Þ, and P T2ð Þ

3 3ð Þ SALCs from the top. The

notations follow those of (16.59).
We compute these equations. The calculations are equivalent to solving the

following four two-dimensional secular equations.

H11 � k H12 � kS12
H21 � kS21 H22 � k

���� ���� ¼ 0;

G11 � k G12 � kT12
G21 � kT21 G22 � k

���� ���� ¼ 0;

F11 � k F12 � kV12

F21 � kV21 F22 � k

���� ���� ¼ 0;

K11 � k K12 � kW12

K21 � kW21 K22 � k

���� ���� ¼ 0:

ð16:199Þ

Notice that these four secular equations are the same as a (2,2) determinant of
(16.59) in the form of a secular equation. Note, at the same time, that while (16.59)
did not assume SALCs, (16.199) takes account of SALCs. That is, (16.199)
expresses a secular equation with respect to two SALCs that belong to the same
irreducible representation.

The first equation of (16.199) reads as

1� S212

 �

k2 � H11 þH22 � 2H12S12ð ÞkþH11H22 � H2
12 ¼ 0 ð16:200Þ
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In (16.200), we define quantities as follows:

S12 �
Z

H A1ð ÞC2sds � H A1ð ÞjC2s
D E

¼ H1 þH2 þH3 þH4jC2sh i
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3SHH

p

¼ 2 H1jC2sh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3SHH

p

¼ 2SCHA1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3SHH

p

ð16:201Þ

In (16.201), an overlap integral between hydrogen atomic orbitals and C2s is
identical from the symmetry requirement and it is defined as

SCHA1
� H1jC2sh i ð16:202Þ

Also in (16.200), other quantities are defined as follows:

H11 � H A1ð ÞjHH A1ð Þ
D E

¼ aH þ 3bHH

1þ 3SHH
ð16:203Þ

H22 � C2sjHC2sh i ð16:204Þ

H12 � H A1ð ÞjHC2s
D E

¼ H1 þH2 þH3 þH4jHC2sh i
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3SHH

p ¼ 2 H1jHC2sh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3SHH

p

¼ 2bCHA1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3SHH

p ð16:205Þ

where H is a Hamiltonian of a methane molecule. In (16.203) and (16.205),
moreover, we define the quantities as

aH � H1jHH1h i; bHH � H1jHH2h i; bCHA1
� H1jHC2sh i: ð16:206Þ

The quantity of H11 is a “Coulomb” integral of the hydrogen-based SALC that
involves four hydrogen atoms. Solving the first equation of (16.199), we get

k ¼
H11 þH22 � 2H12S12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH11 � H22Þ2 þ 4 H2

12 þH11H22S212 � H12S12 H11 þH22ð Þ� �q
2 1� S212

 �

ð16:207Þ

Similarly, we obtain related solutions for the latter three eigenvalue equations of
(16.199). With the second equation of (16.199), for instance, we have

1� T2
12


 �
k2 � G11 þG22 � 2G12T12ð ÞkþG11G22 � G2

12 ¼ 0 ð16:208Þ
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Solving this, we get

k ¼
G11 þG22 � 2G12T12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG11 � G22Þ2 þ 4 G2

12 þG11G22T2
12 � G12T12 G11 þG22ð Þ� �q

2 1� T2
12


 �
ð16:209Þ

In (16.208) and (16.209), we define these quantities as follows:

T12 �
Z

H T2ð Þ
1 C2pxds � H T2ð Þ

1 j2Cpx
D E

¼ H1 þH2 � H3 � H4jC2pxh i
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SHH

p

¼ 2 H1jC2pxh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SHH

p

¼ 2SCHT2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SHH

p

ð16:210Þ

G11 � H T2ð Þ
1 jHH T2ð Þ

1

D E
¼ aH � bHH

1� SHH
ð16:211Þ

G22 � C2pxjHC2pxh i ð16:212Þ

G12 � H T2ð Þ
1 jHC2px

D E
¼ H1 þH2 � H3 � H4jHC2pxh i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SHH

p

¼ 2 H1jHC2pxh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SHH

p ¼ 2bCHT2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SHH

p
ð16:213Þ

In the above equations, we further define integrals such that

SCHT2 � H1jC2pxh i; bCHT2 � H1jHC2pxh i: ð16:214Þ

In (16.210), an overlap integral T12 between four hydrogen atomic orbitals and
C2px is identical again from the symmetry requirement. That is, the integrals of
(16.213) are additive regarding a product of plus components of a hydrogen atomic
orbital of (16.187) and C2px as well as another product of minus components of a
hydrogen atomic orbital of (16.187) and C2px; see Fig. 16.14. Notice that C2px has
a node on yz-plane.

The third and fourth equations of (16.199) give exactly the same eigenvalues as
that given in (16.209). This is obvious from the fact that all the latter three equations
of (16.199) are associated with a irreducible representation T2. The corresponding
three MOs are triply degenerate.

In (16.207) and (16.209), the plus sign gives a higher orbital energy and the
minus sign gives a lower energy. Equations (16.207) and (16.209), however, look
somewhat complicated. To simplify the situation, (i) in, e.g., (16.207), let us
consider a case where H11 �j jH22j j or H11 �j jH22j j. In that case, ðH11 � H22Þ2
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dominates inside a square root, and so ignoring �2H12S12 and �S212, we have
k 
 H11 or k 
 H22. Inserting these values into (16.199), we have either W 
 H A1ð Þ

or W 
 C2s, where W is a resulting MO. This implies that no interaction would
arise between H A1ð Þ and C2s. (ii) If, on the other hand, H11 ¼ H22, we would get

k ¼ H11 � H12S12 � H12 � H11S12j j
1� S212

ð16:215Þ

As H12 � H11S12 is positive or negative, we have a following alternative:

Case I: H12 � H11S12 [ 0. We have kH ¼ H11 þH12
1þ S12

and kL ¼ H11�H12
1�S12

, where
kH [ kL.
Case II: H12 � H11S12\0. We have kH ¼ H11�H12

1�S12
and kL ¼ H11 þH12

1þ S12
, where

kH [ kL.

In this case, we would anticipate maximum orbital mixing between H A1ð Þ and
C2s. (iii) If H11 and H22 are moderately different in between the above (i) and (ii),
the orbital mixing is likely to be moderate. This is an actual situation. With
(16.209), we have eigenvalues expressed similarly to those of (16.207). Therefore,
classifications related to the above Cases I and II hold with G12 � G11T12,
F12 � F11V12, and K12 � K11W12 as well.

In spite of simplicity of (16.215), the quantities H11, H12, and S12 are hard to
calculate. In general cases including the present example (i.e., methane), the diffi-
culty in calculating these quantities results essentially from the fact that we are
dealing with a many-particle interactions that include electron repulsion.
Nonetheless, for a simplest case of a hydrogen molecular ion Hþ

2 , the estimation is
feasible [3]. Let us estimate H12 � H11S12 quantitatively according to Atkins and
Friedman [3].

The Hamiltonian of Hþ
2 is described as

H ¼ � �h2

2m
r2 � e2

4pe0rA
� e2

4pe0rB
þ e2

4pe0R
; ð16:216Þ

where m is an electron rest mass, and other symbols are defined in Fig. 16.15; the
last term represents the repulsive interaction between the two hydrogen nuclei. To
estimate the quantities in (16.215), it is convenient to use dimensionless ellipsoidal

coordinates
l
m
/

0@ 1A such that [3]

l ¼ rA þ rB
R

and m ¼ rA � rB
R

: ð16:217Þ
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The quantity / is an azimuthal angle around the molecular axis (i.e., the straight
line connecting the two nuclei). Then, we have

H11 ¼ AjHjAh i ¼ A � �h2

2m
r2 � e2

4pe0rA

���� ����A� �
þ A� e2

4pe0rB

���� ����A� �
þ A

e2

4pe0R

���� ����A� �
¼ E1s � e2

4pe0
A

1
rB

���� ����A� �
þ e2

4pe0R
;

ð16:218Þ

where E1s is the same as that given in (3.258) with Z ¼ n ¼ 1 and l replaced with
m (i.e., E1s ¼ � �h2

2ma2). Using a coordinate representation and of (3.301), we have

Aj i ¼
ffiffiffi
1
p

r
a�3=2e�rA=a ð16:219Þ

Moreover considering (16.217), we have

A
1
rB

���� ����A� �
¼ 1

pa3

Z
dse�2rA=a 1

rB

Converting Cartesian coordinates to ellipsoidal coordinates [3] such thatZ
ds ¼ R

2

� �3Z2p
0

d/
Z1
1

dl
Z1
�1

dm l2 � m2

 �

;

we have

A
1
rB

���� ����A� �
¼ R3

8pa3
� 2p

Z1
1

dl
Z1
�1

dm l2 � m2

 � e� lþ mð ÞR=a

R
2 l� mð Þ

¼ R2

2a3

Z1
1

dl
Z1
�1

dm lþ mð Þe� lþ mð ÞR=a

ð16:220Þ

Putting I ¼ R1
1
dl
R1
�1

dm lþ mð Þe� lþ mð ÞR=a, we obtain

BA

eFig. 16.15 Configuration of
electron (e) and hydrogen
nuclei (A and B). rA and rB
denote a separation between
the electron and A and that
between the electron and B,
respectively. R denotes a
separation between A and B
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I ¼
Z1
1

le�lR=adl
Z1
�1

e�mR=admþ
Z1
1

e�lR=adl
Z1
�1

me�mR=adm ð16:221Þ

The above definite integrals can readily be calculated using the methods
described in Sect. 3.7.2; see, e.g., (3.262) and (3.263). For instance, we haveZ1

�1

e�cmdm ¼ e�cx

�c

� 	1
�1
¼ 1

c
ec � e�cð Þ ð16:222Þ

Differentiating (16.222) with respect to the parameter c, we getZ1
�1

me�cmdm ¼ 1
c2

1� cð Þec � 1þ cð Þe�c½ � ð16:223Þ

In the present case, c is to be replaced with R=a. Other calculations of the
definite integrals are left for readers. Thus, we obtain

I ¼ a3

R3 2� 2 1þ R
a

� �
e�2R=a

� 	
In turn, we have

A
1
rB

���� ����A� �
¼ R2

2a3
� I ¼ 1

R
1� 1þ R

a

� �
e�2R=a

� 	
Introducing a symbol according to Atkins and Friedman [3]

j0 � e2

4pe0
;

we finally obtain

H11 ¼ E1s � j0
R

1� 1þ R
a

� �
e�2R=a

� 	
þ j0

R
ð16:224Þ

The quantity S12 can be obtained as follows:

S12 ¼ BjAh i ¼ R3

8pa3

Z2p
0

d/
Z1
1

dl
Z1
�1

dm l2 � m2

 �

e�lR=a; ð16:225Þ

where we used Bij ¼
ffiffi
1
p

q
a�3=2e�rB=a and (16.217). Noting that
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Z1
1

dl
Z1
�1

dm l2 � m2

 �

e�lR=a ¼
Z1
1

dl 2l2 � 2
3

� �
e�lR=a

and following procedures similar to those described above, we get

S12 ¼ 1þ R
a
þ 1

3
R
a

� �2
" #

e�R=a ð16:226Þ

In turn, for H12, we have

H12 ¼ AjHjBh i ¼ A � �h2

2m
r2 � e2

4pe0rB

���� ����B� �
þ A � e2

4pe0rA

���� ����B� �
þ A

e2

4pe0R

���� ����B� �
¼ E1s AjBh i � e2

4pe0
A

1
rA

���� ����B� �
þ e2

4pe0R
AjBh i

ð16:227Þ

Note that in (16.227) Bij is an eigenfunction belonging to E1s ¼ � �h2

2ma2 that is an

eigenvalue of an operator � �h2

2mr2 � e2
4pe0rB

. From (3.258), we estimate E1s to be
13.61 eV. Using (16.217) and converting Cartesian coordinates to ellipsoidal
coordinates once again, we get

A
1
rA

���� ����B� �
¼ 1

a
1þ R

a

� �
e�R=a:

Thus, we have

H12 ¼ E1s þ j0
R

� �
S12 � j0

a
1þ R

a

� �
e�R=a ð16:228Þ

We are now in the position to evaluate H12 � H11S12 in (16.213). According to
Atkins and Friedman [3], we define the following notations:

j0 � j0 A
1
rB

���� ����A� �
and k0 � j0 A

1
rA

���� ����B� �
Then, we have

H12 � H11S12 ¼ �k0 þ j0S12 ð16:229Þ

The calculation of this quantity is straightforward. The result is
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H12 � H11S12 ¼ j0
1
R
� 2R
3a2

� �
e�R=a � j0

R
1þ R

a

� �
1þ R

a
þ 1

3
R
a

� �2
" #

e�3R=a

¼ j0
a

a
R
� 2R

3a

� �
e�R=a � j0

a
1þ a

R


 �
1þ R

a
þ 1

3
R
a

� �2
" #

e�3R=a

ð16:230Þ

In (16.230), we notice that whereas the second term is always negative, the first
term may be negative or positive depending upon R. We could not tell a priori
whether H12 � H11S12 is negative accordingly. If we had R � a, (16.230) would
become positive.

Let us then make a quantitative estimation. The Bohr radius a is about 52.9 pm
(using an electron rest mass). As an experimental result, R is approximately 106 pm
[3]. Hence, for a Hþ

2 ion, we have

R=a 
 2:0

Using this number, we get

H12 � H11S12 
 �0:13j0=a\0

We estimate H12 � H11 S12 to be � � 3:5 eV: Therefore, from (16.215), we get

kL ¼ H11 þH12

1þ S12
and kH ¼ H11 � H12

1� S12
ð16:231Þ

where kL and kH indicate lower and higher energy eigenvalues, respectively.
Namely, Case II in the above is more likely. Correspondingly, for MOs, we have

WL ¼ Aij þ Bijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ S12ð Þp and WH ¼ Aij � Bijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� S12ð Þp ð16:232Þ

where WL and WH belong to kL and kH , respectively. The results are virtually the
same as those given in (16.101)–(16.105) of Sect. 16.4.1. In (16.101) and Fig. 16.6,
however, we merely assumed that k1 ¼ aþb

1þ S is lower than k2 ¼ a�b
1�S. Here, we have

confirmed that this is truly the case. A chemical bond is formed in such a way that
an electron is distributed as much as possible along the molecular axis (see
Fig. 16.4 for a schematic) and that in this configuration a minimized orbital energy
is achieved.

In our present case, H11 in (16.203) and H22 in (16.204) should differ. This is
also the case with G11 in (16.211) and G22 in (16.212). Here, we return back to
(16.199). Suppose that we get a MO by solving, e.g., the first secular equation of
(16.199) such that
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W ¼ a1H
A1ð Þ þ b1C2s

From the secular equation, we get

a1 ¼ �H12 � kS12
H11 � k

b1; ð16:233Þ

where S12 and H12 were defined as in (16.201) and (16.205), respectively.

A normalized MO ew is described by

eW ¼ a1H A1ð Þ þ b1C2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ b21 þ 2a1b1S12

p ð16:234Þ

Thus, according to two different energy eigenvalues k, we will get two linearly
independent MOs. Other three secular equations are dealt with similarly.

From the energetical consideration of Hþ
2 , we infer that a1b1 [ 0 with a bonding

MO and a1b1\0 with an anti-bonding MO. Meanwhile, since both H A1ð Þ and C2s
belong to the irreducible representation A1, so does eW on the basis of the discussion
on the projection operators of Sect. 15.7. Thus, we should be able to construct
proper MOs that belong to A1. Similarly, we get proper MOs belonging to T2 by
solving other three secular equations of (16.199). In this case, three bonding MOs
are triply degenerate, so are three anti-bonding MOs. All these six MOs belong to
the irreducible representation T2. Thus, we can get a complete set of MOs for
methane. These eight MOs span the representation space V8.

To precisely determine the energy levels, we need to take more elaborate
approaches to approximate and calculate various parameters that appear in (16.199).
At the same time, we need to perform detailed experiments including spectroscopic
measurements and interpret those results carefully [4]. Taking account of these
situations, Fig. 16.16 [5] displays as an example of MO calculations that give a
probable energy diagram and MO symmetry species of methane. The diagram
comprises a ground state bonding a1 state and its corresponding anti-bonding state
a	1 along with triply degenerate bonding t2 states and their corresponding
anti-bonding state t	2.

We emphasize that the said elaborate approaches ensue truly from the
“paper-and-pencil” methods based upon group theory. The group theory thus
supplies us with a powerful tool and clear guideline for addressing various quantum
chemical problems, a few of which we are introducing as an example in this book.

Finally, let us examine the optical transition of methane. In this case, we have to
consider electronic configurations of the initial and final states. If we are dealing
with optical absorption, the initial state is the ground state A1 that is described by
the totally symmetric representation. The final state, on the other hand, will be an
excited state, which is described by a direct-product representation related to the
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two states that are associated with the optical transition. The matrix element is
expressed as

H a
bð Þjee � PjH A1ð Þ
D E

; ð16:235Þ

where H A1ð Þ stands for an electronic configuration of the totally symmetric ground
state; H a
bð Þ denotes an electronic configuration of an excited state represented by a
direct-product representation pertinent to irreducible representations a and b; P is
an electric dipole operator; and ee is a unit polarization vector of the electric field.
From a character table for Td , we find that ee � P belongs to the irreducible repre-
sentation T2 (see Table 16.12).

The ground state electronic configuration is A1 (totally symmetric). It is denoted
by

a21t
2
2t

02
2 t

002
2 ;

where three T2 states are distinguished by a prime and double prime. For possible
configuration of excited states, we have

a21t2t
02
2 t

002
2 t	2 ðA1 ! T2 
 T2Þ; a21t2t022 t0022 a	1 ðA1 ! T2 
 A1 ¼ T2Þ;

a1t
2
2t

02
2 t

002
2 t	2 ðA1 ! A1 
 T2 ¼ T2Þ; a1t22t022 t0022 a	1 ðA1 ! A1 
 A1 ¼ A1Þ:

ð16:236Þ

In (16.236), we have optical excitations of t2 ! t	2, t2 ! a	1, a1 ! t	2, and
a1 ! a	1, respectively. Consequently, the excited states are denoted by T2 
 T2, T2,
T2, and A1, respectively. Since ee � P is Hermitian as shown in (16.51) of Sect. 16.2,
we have

H a
bð Þ
���D
ee � P H A1ð Þ

E��� ¼ H A1ð Þ
���D
ee � P H a
bð Þ

E	��� : ð16:237Þ

CH4

Fig. 16.16 Probable energy
diagram and MO symmetry
species of methane. Adapted
from http://www.science.
oregonstate.edu/%7Egablek/
CH334/Chapter1/methane_
MOs.htm with kind permis-
sion of Professor Kevin P.
Gable
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Therefore, according to the general theory of Sect. 16.2, we need to examine
whether T2 
 D að Þ 
 D bð Þ contains A1 to judge whether the optical transition is
allowed. As mentioned above, D að Þ 
 D bð Þ is chosen from among T2 
 T2, T2, T2,
and A1. The results are given as below:

T2 
 T2 
 T2 ¼ 3T1 þ 4T2 þ 2EþA2 þA1; ð16:238Þ

T2 
 T2 ¼ T1 þ T2 þEþA1; ð16:239Þ

T2 
 A1 ¼ T2: ð16:240Þ

Admittedly, (16.238) and (16.239) contain A1, and so the transition is allowed.
As for (16.240), however, the transition is forbidden because it does not contain A1.
In light of the character table of Td (Table 16.12), we find that the allowed tran-
sitions (i.e., t2 ! t	2, t2 ! a	1, and a1 ! t	2) equally take place in the direction
polarized along the x-, y-, z-axes. This is often the case with molecules having
higher symmetries such as methane. The transition a1 ! a	1, on the other hand, is
forbidden.

In the above argument including the energetic consideration, we could not tell
magnitude relationship of MO energies or photon energies associated with the
optical transition. Once again, this requires more accurate calculations and exper-
iments. Yet, the discussion we have developed gives us a strong guiding principle
in the investigation of molecular science.
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