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Chapter 1
Introduction

The methodology underlying the analysis of nonlinear dynamic systems has by now
evolved into a new scientific paradigm called synergetics. This interdisciplinary sci-
ence aims to reveal the general principles governing evolution and self-organization
of complex systems in various scientific areas, and it is mainly based on the
design and study of nonlinear dynamic models [1]. One of the key features of
synergetics is the consideration of nonlinear collective interactions among the
different components making up the model systems. It can be said that synergetics
is a multicomponent system C nonlinearity C cooperativity. In physics, chemistry,
biology, ecology, economics, and sociology, synergetics focuses on the traits of
a system’s spatial-temporal organization. It has been shown that cooperation of
system components follows universal principles that are independent of the nature
of the system itself.

In essence, synergetics is a relatively new paradigm in the study of dynamic
systems possessing complex multicomponent structure, in which a powerful arsenal
of nonlinear dynamics methods is used. The majority of models in synergetics
originate from physics, where numerous physical phenomena cannot be described
without taking into account the nonlinearity and cooperativity of the system. In
this book we shall consider the basic models of nonlinear dynamics of molecular
systems and discuss their applications in synergetics. Nowadays the nonlinear
dynamics of molecular systems is evolving steadily and its progress is partly due
to the fast development in computer technologies and computational methods of
nonlinear dynamics. New models and ideas are emerging which have not yet
been introduced in synergetics, but their future application to synergetics looks
promising. One such model is the ratchet model or nonsymmetrical pendulum. It has
been shown that the nonsymmetry of this system is a useful concept when studying
mechanisms for deriving energy from colored noise. We shall consider this model
in detail.

It is known that both integrable and non-integrable systems can have specific
solutions that correspond to coherent formations or spatial-temporal structures,

© Springer International Publishing Switzerland 2015
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2 1 Introduction

such as solitons, kinks, breathers, and others. The emergence of such formations
in molecular structures can provide a range of information on the properties of these
structures and play a significant role in energy-related phenomena, energy transfer
processes, topological defects, dislocations, and charges, as well as in structure
transitions. This is why it is of considerable interest to study the conditions gov-
erning the emergence of spatial-temporal structures (self-organization) in various
molecular systems and investigate the properties of these structures.

The equations which allow solutions in the form of solitons are well-known in
mathematics as being the very same equations that possess the notable property
of complete integrability. This type of equation is also known to be useful for
modelling a broad spectrum of physical phenomena. However, their application to
real systems in condensed matter physics, engineering, biophysics, etc., requires one
to introduce perturbations into the equations to account for the complex features
of any real structure. This means that one cannot confine attention to completely
integrable systems. A systematic study of the different perturbations (boundary
conditions, heterogeneity, and so on) is the next stage in the investigation of systems
with soliton solutions, leading to an increased appreciation of the versatility of
the synergetic (nonlinear) approach. It is worth noting that, in the general case,
nonlinear structures such as kinks and others refer to very different types of solutions
than linear or quasi-linear modes, and that these solutions should be considered
equally fundamental.

The nonlinear equations (models) show significant generality, but at the same
time a distinct equation can describe (in some approximation) a number of nonlinear
phenomena as well as various nonlinear effects. For example, nonlinear models of
molecular chains with a periodic substrate potential describe a wave spreading in
the presence of the gripping potential.

Generally, an analytical description of system dynamics is barely possible in
the case of one-dimensional systems which are specific in their properties and
do not include many real physical conditions. For example, the need to introduce
finite temperature into the model is a significant challenge in numerous tasks.
Furthermore, even nonstable modes turn out to contribute significantly, and their
impact depends on their half-life. The half-life has to be sufficiently high in order
to obtain a noticeable response of the system to the external action. The longer the
half-life, the more significant is the effect of the nonstable modes.

In real systems, there are solitary waves rather than solitons [2]. The Hamilto-
nians of real systems may be initially nonintegrable or become nonintegrable when
physical perturbations are taken into account. One of the examples of integrable
systems is the Toda chain [3]. This model is often used in applications, such as the
theory of heat conduction, the analysis of shock wave propagation, and others.

The aim of synergetics is to reveal the general principles of evolution and
self-organization in complex systems based on the development and analysis of
nonlinear dynamics models in different scientific fields. Many effects of self-
organization, typical to dissipative systems, are also inherent in conservative
Hamiltonian systems where there is neither dissipation, nor energy gain, in contrast
to active media. Thus, localised excitations (concentrated in a limited space region),
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like peculiar deformed particles, can exist and spread in the various media. A
special feature of such spatial-temporal structures is that, in contrast to dissipative
structures, dispersion plays the prevailing role in structure formation (dispersion
structures), so dissipative effects are negligible. The concept of the dispersion
structures was introduced by one of the authors, V.N. Kadantsev in [4, 5]. In
general, the following three physical factors are significant in wave propagation:
nonlinearity, dispersion, and dissipation. We restrict ourselves here to the case
where there is no dissipation or negligibly small dissipation, i.e., in this book we
will consider only conservative systems.

Recently, it was realised that the ideal method for transferring vibrational
excitations, electrons, and protons in a medium is their transfer in the form of
solitary waves, which retain their identity during collisions and are described by
the solutions of some special equations. From now on we will refer to any localised
excitations, such as particles, as solitons, when dealing with soliton-like excitations.
The interest in solitons can be seen in various branches of science such as ele-
mentary particle physics, plasma physics, laser physics, hydrodynamics, biophysics,
transmission line analysis, and so on. Furthermore, there are emerging applications
of solitons in information storage and data transfer. Finally, a plethora of specific
applications of solitary waves exists in science and technology: ranging from
hydrodynamics to meteorology, computer technologies to shock wave dynamics,
the theory of nonlinear filters to dislocation dynamics in crystals, and elementary
particle physics to the theory of consciousness in neuroscience.

The formation of nonlinear waves in a continuous medium described by non-
linear equations is associated with spontaneous breaking of local symmetry in
homogeneous systems, i.e., it is related to the autolocalization of excitation energy,
the density of electrical charge, and other physical parameters.

Excitations in the form of solitary waves along with common extended waves are
typical of many nonlinear dynamical systems. However, their analytical description
has been developed in detail only in the case of one-dimensional systems.

Objectively evaluating the limited capabilities of both analytical and numerical
approaches to the solution of nonlinear problems, Norman Zabusky concluded that
there was a need for a united synthetic approach. According to him, the synergetic
approach to nonlinear mathematical and physical problems may be defined as the
joint application of common analysis and computational mathematics to solving
reasonably formulated problems concerned with the mathematical and physical
meanings of systems of equations [6].

One of the first computational experiments carried out on the first generation of
computers – MANIAC I – aimed to test the hypothesis of a uniform distribution
of energy over the degrees of freedom. The experiment, which focused on the
numerical analogue of a system of cubic oscillators, led to unexpected results,
raising the famous Fermi–Pasta–Ulam problem [7]: following the evolution of the
energy distribution over the degrees of freedom for a sufficiently large cycle index,
the authors observed no tendency for energy equipartition in the system.

The solution to the Fermi–Pasta–Ulam problem was first proposed by Zabusky
and Kruskal in the early 1960s. They showed that the Fermi–Pasta–Ulam system
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represents a difference analogue of the Korteweg–de Vries equation, and the soliton
(the term suggested by Zabusky), transferring the energy among different modes,
prevents energy equipartition. Through heavy use of the computer, Stanislaw Ulam
realised the importance and benefits of the synergy between the computer and
its users, i.e., continuous human–computer interaction, as achieved in modern
computer technology thanks to the design of a usable display.

Considering the complexity of the systems and states studied by Haken’s
synergetics, it is clear that Zabusky’s synergetic approach, containing Ulam’s
synergy as a part, will occupy an important place among the other methods and
tools of synergetics.
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Chapter 2
Acoustic Solitons

The need to consider nonlinear terms in the different equations of solid state physics
has long been realised. Ignoring lattice anharmonicity, it is impossible to explain
the thermal expansion and heat conductivity of a solid body. Previously, in the
framework of perturbation theory, only a small nonlinearity was taken into account,
one that occasionally caused a loss of key features, determined by the nonlinearity of
the problem. Anharmonicity of molecular lattice vibration reveals itself especially
strongly in so-called quasi-one-dimensional crystals – systems composed of parallel
chains the size of the molecular diameter (the nearest-neighbor distance inside
one chain is substantially smaller than the distance between the atoms in different
chains).

2.1 Fermi–Pasta–Ulam Problem (FPU)

A rigorous consideration of the nonlinear vibration of molecular chains began with
the work of Fermi, Pasta, and Ulam (FPU) [1]. For the first time, a computational
study of nonlinear dynamics was carried out. In a chain with harmonic interaction
potential, the normal modes of vibration are mutually independent variables. The
modes do not interact with each other (thermalisation of one mode does not lead
to thermalisation of other modes). FPU considered that, if a nonlinearity were
introduced into the interaction, an energy flux would occur, leading eventually to
equipartition of energy, in accord with the principles of statistical mechanics. They
thus set out to confirm this in a computational experiment, but it turned out that
only a small part of the energy was redistributed. Such systems have been shown to
return recurrently to their initial states.

Let us consider a one-dimensional chain of molecules, arranged along the x axis
at interval a. All molecules in the chain are supposed to be of unitary mass M ,
and the interaction of molecules is described by a unified potential V.r/, where r

© Springer International Publishing Switzerland 2015
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Fig. 2.1 Model of a one-dimensional molecular chain

is the displacement of a molecule with respect to its equilibrium position (r D 0

in equilibrium position). We also assume that only nearest-neighboring molecules
interact with each other. A schematic view of this system is shown in Fig. 2.1. In the
ground state, the nth molecule in the chain has coordinate x D na. Let xn.t/ be the
displacement of the nth molecule with respect to its equilibrium position at time t .
Then the Hamiltonian of the system takes the form

H D
C1X

nD�1

�
1

2
M Px2n C V.rn/

�
; (2.1)

where a dot over xn denotes differentiation with respect to time t , and rn D xnC1 �
xn is the elongation of the nth bond of the chain. The following equations of motion
correspond to the Hamiltonian of the system (2.1):

M Rxn D F.xnC1 � xn/ � F.xn � xn�1/ ; n D 0;˙1;˙2;˙3; : : : ; (2.2)

where the function F.r/ D dV=dr .
If the force resulting from the bond deformation is proportional to the bond strain

as in Hooke’s law, i.e., F.r/ D Kr , the string is said to be linear and the molecular
interaction is described by the harmonic potential

V.r/ D 1

2
Kr2 ; (2.3)

where K is the rigidity of the intermolecular interaction. For an anharmonic
potential, the rigidity isK D V 00.0/. In the case of a harmonic interaction potential,
the equations of motion (2.2) are linearised:

M Rxn D K.xnC1 � 2xn C xn�1/ ; n D 0;˙1;˙2;˙3; : : : : (2.4)

Any linear combination of solutions of equations (2.4) is also a solution of this
system.

Consider a finite chain composed of N C 2 links (n D 0; 1; 2; : : : ; N;N C 1)
with fixed end particles .x0 � 0, xNC1 � 0/. Then Eqs. (2.4) have N linearly
independent solutions (linear modes):
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x.l/n .t/ D Al sin
�ln

N C 1
cos.!lt C ıl/ ;

!l D 2
p
K=M sin

�l

2.N C 1/
; l D 1; 2; : : : ; N :

(2.5)

The amplitudesAl and phases ıl of the modes do not depend on time and are defined
by initial conditions. The modes do not interact with each other, so the linear chain
is not ergodic.

In his early academic career, Fermi was engaged in a study of the ergodic
problem, and when computers came on the scene, he returned to this theme because
it was thought that one particular problem might be solved with the aid of a
computer. He thought that, if a nonlinear term were to be introduced into the force
acting between particles in a chain, the modes would exchange energy, causing
the system to reach a statistical equilibrium state in which energy is uniformly
distributed over the linear modes. It was this expectation that FPU believed would
be confirmed by a computational simulation.

They modeled the chain dynamics using three potentials. The first potential
involved a cubic anharmonic term (the FPU ˛-potential):

V.r/ D K

�
1

2
r2 � 1

3
˛r3

�
; (2.6)

the second, quartic anharmonic term (the FPU ˇ-potential):

V.r/ D K

�
1

2
r2 C 1

4
ˇr4

�
; (2.7)

and the third, a piecewise continuous quadratic function:

V.r/ D

8
ˆ̂<

ˆ̂:

1

2
Kr2 ; if jr j < r0 ;
1

2
K 0r2 C 1

2
.K �K 0/r20 ; if jr j � r0 :

(2.8)

The results turned out to be qualitatively similar for all the potentials.
FPU considered a chain with fixed end points and a number of links N equal to

32 or 62. To model this system, one must put n D 0; 1; : : : ; N C 1, x0 � 0, and
xNC1 � 0 in the equations of motion (2.2). At the initial time, the lowest mode was
excited, so the initial condition was

xn.0/ D A sin
�n

N C 1
; xn

0.0/ D 0 ; n D 0; 1; : : : ; N C 1: (2.9)

The numerical integration of the equations of motion (2.2) with initial condi-
tion (2.9) showed that, after some time, almost all the energy was back in the initial
mode. This is the so-called FPU recurrence phenomenon.
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Computational simulation occasionally leads to utterly unexpected results, and
the FPU recurrence phenomenon was one of these. Furthermore, this result was
repeatedly confirmed. One may assert that, if the energy is low and the initial shape
of the wave is sufficiently smooth, the recurrence phenomenon occurs. Norman
Zabusky [2, 3] summarised the results in the empirical equation which determines
the recurrence time at an initial excitation of the lowest mode:

tr D 0:44N 3=2tlpj˛jA ; (2.10)

where tl D 2N
p
K=M is the time taken by the wave of long wavelength to travel

back and forth along the chain of N particles with fixed ends (or the period of
the wave going round the closed chain of 2N particles). It was shown further that
the recurrence phenomenon is related to the presence of localised solitary waves
(solitons) in the chain, while (2.10) is associated with the characteristics of the
soliton motion [4].

The FPU recurrence phenomenon is also observed in the case of a finite chain
with periodic boundary conditions. Let us consider in detail this phenomenon
occurring in the closed chain. For convenience of numerical modeling, we introduce
the following dimensionless variables: displacement un D xn=a, time � D
t
p
K=M , and energy H D H =Ka2. Then the cyclic chain of N particles can

be described by the dimensionless Hamiltonian

H D
N�1X

nD0

�
1

2
un

02 C U.�n/

�
; (2.11)

where the prime denotes differentiation with respect to the dimensionless time � ,
while �n D unC1�un is the relative displacement, and the dimensionless interaction
potential U.�n/ D V.a�n/=Ka

2 is normalised according to the conditions

U.0/ D 0 ; U�.0/ D 0 ; U��.0/ D 1 : (2.12)

The Hamiltonian (2.11) leads to the following finite system of equations of motion:

u00
n D F.unC1 � un/ � F.un � un�1/ ; n D 0; 1; : : : ; N � 1 ; (2.13)

where the function F.r/ is defined here as F.r/ D dU=d�, while n C 1 D 0 if
n D N � 1 and n � 1 D N � 1 if n D 0.

The linear mode of the cyclic chain takes the form

un.�/ D A exp
�
i.qn � !�/� ; (2.14)

where A, q 2 Œ0; 2��, and ! D 2 sin.q=2/ are the amplitude, wavenumber, and
frequency of the mode, respectively. In the case of the cyclic chain of N molecules,
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the wavenumbers can only take N values, viz.,

qk D 2�k=N ; k D 0; 1; : : : ; N � 1 :

The amplitude of the kth mode is defined by the equation

Ak D 1p
N

N�1X

nD0
un exp.�iqkn/ : (2.15)

It follows from this equation that AN�k D NAk . For the chain with harmonic
interaction potential, the amplitude of the mode is constant, as opposed to the chain
with anharmonic potential, for which the amplitude depends on time according to

Ak
0 D 1p

N

N�1X

nD0
un

0 exp.�iqkn/ : (2.16)

In the case of a harmonic chain, the energy of the kth mode is described by the
equation Ek D !2k jAkj2, where the mode frequency is specified by the relation
!k D 2 sin.qk=2/. Let us define the energy of the mode for an anharmonic chain as
Ek D .jAk 0j2C!2k jAkj2/=2 and integrate the system (2.13) with the initial condition
corresponding to the linear mode of wavenumber q1:

un.0/ D A sin
2�n

N
; un

0.0/ D 0 : (2.17)

Note that, given the initial condition, the problem is equivalent to the dynamics of a
chain of N=2 � 1 links with fixed ends, when the first linear mode is excited.

From now on, we write the FPU ˇ-potential of intermolecular interaction in the
form

U.�/ D 1

2
�2 C 1

4
ˇ�4 : (2.18)

Furthermore, let us fix the amplitude of the mode A D 0:1, but allow the
anharmonicity parameter ˇ to change.

The equations of motion are linear when ˇ D 0, so all the energy of the
initial excitation remains in the given mode. The rest of the modes are not excited
in this scenario. When ˇ > 0, the modes can exchange energy. The numerical
simulation showed that a portion of the energy drifts from the first mode, but
periodically recurs to it (Fig. 2.2a left), whence the initial shape of the wave is
recovered. This is the FPU recurrence phenomenon. The greater the anharmonicity
of the interaction potential, the higher the amplitude of the change in the mode
energy. For strong nonlinearity, the periodic energy exchange between the modes
becomes unstable and recurrence does not proceed, resulting in the energy spreading
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Fig. 2.2 Left: Energy exchange between the linear modes in the anharmonic cyclic chain .N D
132/ for initial excitation of only the first mode k D 1 (q D 2�=N and the amplitude of the mode
isA D 0:1). The dependence of the energy distributionEk over the linear modes of the chain on the
time � is also shown (k is the mode number). (a) Weak nonlinearity ˇ D 1;000. Periodic recurrence
of the energy to the initial mode occurs (the FPU recurrence phenomenon). (b) Strong nonlinearity
ˇ D 2;000. The energy is redistributed over the other modes. Right: Interstitial potentials U.�/.
(a) Toda potential (2.34) with b D 1. (b) Morse potential (2.41) with � D 2, ˇ D 0:5. (c) Lennard-
Jones potential (4,2) (2.42) with � D 2, a D 2. Lines show the asymptotics of the potentials

among the various modes (Fig. 2.2b left). The same effect takes place if one fixes
the nonlinearity parameter and changes the mode amplitude. The FPU recurrence
phenomenon is observed only when the mode amplitude is less than an arbitrary
threshold value.

For the recurrence phenomenon to exist, the initial wave shape must be smooth
(the wavelength of the mode � D 2�=q � 1). Excitation of a single short
wavelength mode in the anharmonic chain leads to fast thermalisation of the rest of
the modes. The recurrence phenomenon is associated with the existence of stable,
elastically-interacting solitary waves in the chain, i.e., solitons. At an energy below
the threshold value, the initial deformation of the chain transforms into solitons
which are periodically assembled together, forming the initial shape of the wave.
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2.2 Solitary Waves

Consider an anharmonic chain. The dimensionless Hamiltonian of the chain takes
the form (2.11), where the sum runs over all integer indices (n D 0;˙1;˙2; : : :).
Taking into account the normalization conditions (2.12), the dimensionless interac-
tion potential U.�/ D V.a�/=Ka2 can be expanded in a series:

U.�/ D 1

2
�2 � 1

3
˛�3 C 1

4
ˇ�4 C � � � ; (2.19)

where ˛ D �U .3/.0/=2 and ˇ D U .4/.0/=6 are nonlinearity parameters. The
equations of motion take the form (2.13) with n D 0;˙1;˙2; : : : and

F.�/ D � � ˛�2 C ˇ�3 C � � � : (2.20)

In the case of small displacements, one can neglect all the anharmonic terms in the
series (2.19). As a result, we obtain the harmonic potential U.�/ D �2=2 and the
equations of motion become linear:

u00
n D unC1 � 2un C un�1 ; n D 0;˙1;˙2; : : : ; (2.21)

The solution of (2.21) can be represented as a sum of linear waves

un.�/ D A exp i.qn � !�/ ; (2.22)

where A, q 2 Œ��; ��, and ! D 2 sin.q=2/ are the wave amplitude, wavenumber,
and wave frequency, respectively. The wavelength � D 2�=q tends to infinity as
q ! 0 and the wave velocity is

s.q/ D !.q/

q
D sin.q=2/

q=2

which tends to the dimensionless velocity of the long-wavelength phonon, s0 D 1.
In the case of anharmonic potential, the linear wave solution (2.22) is no

longer the explicit solution of the infinite-dimensional system of equations of
motion (2.13). Let us search for the solution of this system as a solitary wave of
constant shape, i.e.,

un.�/ D u.n � s�/ ;
where s is the dimensionless velocity of the wave, and the wave shape u.n/ depends
smoothly on the discrete variable n. To use the continuum approximation, the
following parameter must be small:

	 D max
n

ˇ̌
ˇ̌du.n/

dn

ˇ̌
ˇ̌ :
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This parameter describes the reciprocal width of the solitary wave (soliton). It
follows that all the derivatives obey the relationship dmu=dnm D O.	n/. Therefore
in the continuum approximation, the following partial differential equation corre-
sponds to the discrete equations of motion (2.13):

.1 � s2/uzz C 1

12
uzzzz C 1

360
uzzzzzz � ˛

�
2uzuzz C 1

3
uzzuzzz C 1

6
uzuzzzz

�
11

Cˇ
�
3u2z uzz C uzuzzz C 1

4
u2zz C 1

4
u2z uzzzz

�
CO.	6/ D 0 ;

where z D n�s� is the continuous wave variable approximating the discrete variable
n. Considering only the terms smaller than 	5, this equation takes the form

.1 � s2/uzz C 1

12
uzzzz � 2˛uzuzz C 3ˇu2z uzz D 0 : (2.23)

Let us change from the absolute displacement u.z/ to a relative displacement � D uz.
Then (2.23) takes the form

.1 � s2/�z C 1

12
�zzz � 2˛��z C 3ˇ�2�z D 0 : (2.24)

For a solitary wave, the state of the chain at infinity must be the ground state, and
therefore

�; �z; �zz �! 0 as z ! ˙1 : (2.25)

Integrating (2.24) once and considering the boundary conditions (2.25) leads to the
well-known Boussinesq equation:

.1 � s2/�C 1

12
�zz � ˛�2 C ˇ�3 D 0 : (2.26)

This has explicit analytical solutions only for the FPU ˛-potential (the cubic
anharmonic potential, ˇ D 0):

�.z/ D �A= cosh2.	z/ ; A D 3.s2 � 1/=2˛ ; 	 D
p
3.s2 � 1/ ; (2.27)

and the FPU ˇ-potential (the quartic anharmonic potential, ˛ D 0):

�.z/ D A= cosh.	z/ ; A D ˙
p
2.s2 � 1/=ˇ ; 	 D

p
12.s2 � 1/ : (2.28)

The soliton solution of the Boussinesq equation (2.24) has been studied by Toda
and Waddati [5]. In the chain with cubic anharmonicity .ˇ D 0/, the soliton
solution (2.27) exists for any value of the anharmonicity parameter ˛ ¤ 0 and
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velocity s > 1. The bell-shaped function (2.27) describes a region of localized
compression (extension) in the chain for the anharmonicity parameter ˛ > 0

(˛ < 0). This region moves along the chain, retaining its shape with velocity s > s0,
where s0 D 1 is the dimensionless velocity of sound (the velocity of the long-
wavelength phonon) in the chain. Such localized excitation of the chain is called a
supersonic acoustic soliton.

In terms of the absolute displacement, the acoustic soliton is described by the
following solution of the equations of motion for the chain:

un.�/ D A

	

n
1 � tanh

�
	.n � s�/�

o
: (2.29)

Since the displacement un ! �2A=	 as n ! �1 and un ! 0 as n ! C1, the
chain moves as a whole to the right through a distance 2A=	 (total compression of
the chain).

The energy of the acoustic soliton (2.29) in the chain with cubic anharmonicity
is given by the relation

E D
C1X

nD�1

�
1

2
un

02 C U.�n/

�
D
Z C1

�1

�
1

2
.1C s2/�2.z/ � 1

3
˛�3.z/

�
dz

D 1

	

�
2

3
.1C s2/A2 C 16

45
˛A3

�
; (2.30)

and the root-mean-square width of the soliton is defined by

L D 2

 
1

R

C1X

nD�1
n2�n

!1=2
D 2

�
1

R

Z C1

�1
z2�.z/dz

�1=2
D �p

3	
; (2.31)

where the total compression of the chain is

R D
C1X

nD�1
�n D

Z C1

�1
�.z/dz D 2A

	
:

It follows from (2.27), (2.30), and (2.31) that the energy of the acoustic soliton
E.s/ and its amplitude A.s/ steadily increase when its velocity increases, while
the soliton width L.s/ steadily decreases: as s ! 1, E.s/ & 0, A.s/ & 0, and
L.s/ % 1, and as s ! 1, E.s/ % 1, A.s/ % 1, and L.s/ & 0.

Equations (2.27) and (2.29)–(2.31) have been obtained in the continuum approx-
imation, which can only be used if the soliton width L.s/ � 1. The continuum
approximation gives acceptable results for L.s/ D �=	.s/

p
3 D �=3

p
s2 � 1 > 5,

that is, for s <
p
1C .�=15/2 D 1:022. At high velocities, the continuum

approximation cannot be applied, but this does not mean that the discrete equations
of motion do not admit soliton solutions for s > 1:022. Indeed, soliton solutions
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exist for all values of the velocity s > 1. To obtain the explicit shape of the soliton
with width comparable to the lattice spacing .L � 1/, the numerical Eilbeck–Flesh
pseudospectral method [6, 7] can be used.

In a chain with quartet anharmonicity (˛ D 0), the acoustic soliton exists only
for positive anharmonicity ˇ > 0. According to (2.28), the soliton solution exists
for each value of the velocity s > 1. By symmetry of the interaction potential,
there are two similar solutions: soliton and antisoliton, with amplitudes A > 0 and
A < 0, respectively. In a localization region of the acoustic soliton (antisoliton),
compression (extension) of the chain takes place.

At a fixed velocity s > 1, the two types of supersonic soliton have the same
energy

E D
C1X

nD�1

�
1

2
u0
n
2 C U.�n/

�
D
Z C1

�1

�
1

2
.1C s2/�2.z/C 1

4
ˇ�4.z/

�
dz

D 1

	

�
.1C s2/A2 C 1

3
ˇA4

�
; (2.32)

the same absolute value of total chain compression (extension)

R D
ˇ̌
ˇ̌

C1X

nD�1
�n

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z C1

�1
�.z/dz

ˇ̌
ˇ̌ D A�

	
;

and the same width

L D 2

 
1

R

C1X

nD�1
n2�n

!1=2
D 2

�
1

R

Z C1

�1
z2�.z/dz

�1=2
D �

	
: (2.33)

It follows from (2.28), (2.32), and (2.33) that the energy of the acoustic soliton
E.s/ and its amplitude A.s/ steadily increase when its velocity increases, while
the soliton width L.s/ steadily decreases: as s ! 1, A.s/ & 0, E.s/ & 0, and
L.s/ % 1, and as s ! 1, E.s/ % 1, A.s/ % 1, and L.s/ & 0.

The continuum approximation used here for the chain with quartet anharmonicity
is applicable when

L.s/ D �

	.s/
D �
p
12.s2 � 1/ > 5 ;

that is, when s <
p
1C �2=300 D 1:016. Yet, using the pseudospectral method

[6, 7], it can be shown that the discrete equations of motion (2.13) have a soliton
solution for all supersonic values of the velocity s > 1. However, the explicit
soliton solution cannot be obtained analytically. It can only be obtained numerically,
although with any desired precision, for velocities s > 1. An explicit analytical
equation can only be obtained in the case of the chain with the Toda potential [8].
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2.3 Solitons in the Toda Chain

A nonlinear chain with exponential interaction has been studied by Toda and
Waddati [5] and Toda [9–13]. The results of the study are most comprehensibly
represented in his book [8]. It has been shown that the equations describing the
dynamics of such a lattice admit explicit N -soliton solutions. These equations also
have an infinite set of integrals of motion, and constitute a completely integrable
Hamiltonian system which can be solved by the inverse scattering method.

The dimensionless Toda potential, normalized by the conditions (2.12), has the
form

U.�/ D 1

b

�
�C 1

b

�
exp.�b�/ � 1�

	
; (2.34)

where b > 0 is the anharmonicity parameter. The potential is given in Fig. 2.2a
(right). The potential increases exponentially as b�2 exp.�b�/ when � ! �1
and linearly as �=b � 1=b2 when � ! C1. The chain with the interaction
potential (2.34) is called the Toda chain. The parameter b in the potential describes
its anharmonicity. For small displacements, b� � 1, the interaction potential takes
the form

U.�/ D 1

2
�2 � 1

6
b�3 C � � � :

The dimensionless equations of motion (2.13) are

u00
n D 1

b

�
exp.�b�n�1/ � exp.�b�n/

�
; n D 0;˙1;˙2; : : : : (2.35)

Taking into account the relative displacements �n D unC1 � un, the equation of
motion (2.35) can be rewritten in terms of the relative displacements:

�00
n D �1

b

h
exp.�b�n�1/ � 2 exp.�b�n/C exp.�b�nC1/

i
; n D 0;˙1;˙2; : : : :

(2.36)

It can readily be shown that the partial solution of (2.36) which tends to zero
exponentially as n ! ˙1 is the solitary wave solution

exp.�b�n/ � 1 D sinh2 q

cosh2
�
q.n � s�/� ; (2.37)

where s > 1 is the velocity of the wave and the parameter q is determined from the
dispersion equation

s D sinh q

q
: (2.38)
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The acoustic soliton (2.37) can have any supersonic velocity. It follows from (2.38)
that the velocity s ! 1 C 0 as q ! 0 and s tends to infinity as q ! 1. The
parameter q determines the reciprocal width of the soliton.

It is easily shown that the displacement has the form [8]

un.�/ D 1

b
ln

�
1C exp.�2q/ exp 2q.n � s�/

1C exp 2q.n � s�/
�

C const: (2.39)

The relative displacement is

�n D unC1 � un D �1
b

ln
1C sinh2.q/

cosh2 q.n � s�/ < 0 ;

whence the chain is compressed in a region of soliton localization. The total chain
compression is

u�1 � uC1 D 2q

b
:

As a result of chain compression, there is an excess of mass in the chain that allows
us to attribute a mass to the soliton (soliton massm D 2q=b in dimensionless units).
The energy of the soliton is

E D
C1X

nD�1

1

2
un

02 C U.�n/ D 2

b2

�
sinh.q/ cosh q � q� : (2.40)

The profile of the acoustic soliton in the Toda chain is shown in Fig. 2.3 (left). In
terms of absolute un or relative �n displacements, the acoustic soliton is described,
respectively, by the step function (Fig. 2.3a left) or the bell-shaped function,
corresponding to chain compression (Fig. 2.3b left). When the soliton velocity
increases, its width decreases and the amplitude grows. At all values s > 1, the
solitons interact with each other as elastic particles. When they collide, they repel
each other (see Fig. 2.3 right). Furthermore, the solitons exchange momentum as
perfect rigid particles, the only difference being a minor delay that occurs during
their repulsion [8].

The Toda potential (2.34) appropriately describes molecular interaction during
compression of intermolecular bonds, but it is not suitable for describing bond
expansion. As can be seen in Fig. 2.2a (right), the potential rises exponentially for
negative deformation (� < 0), and linearly for positive deformation (� > 0). Hence,
it is not generally used to model molecular chain dynamics.

The deformation of valence bonds is more frequently described by the Morse
potential

U.�/ D "
�

exp.�ˇ�/ � 1�2 ; (2.41)
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Fig. 2.3 Left: Acoustic soliton in the Toda chain with b D 1, q D 1, (s D 1:1752). The
distribution of the absolute un (a) and relative �n (b) displacements of the links in the chain is
shown. Right: Collision of the two acoustic solitons in the Toda chain with b D 1, s D 1:017

(q D 0:1). The distribution of the relative chain displacements �n is shown as a function of time �

where the parameter " corresponds to the bond energy and the parameter ˇ describes
the anharmonicity of the potential. The potential profile is shown in Fig. 2.2b (right).
The potential grows exponentially as " exp.�2ˇ�/ when � ! �1 and tends to "
when � ! C1.

The disadvantage of the Morse potential is that it allows the molecules to pass
through each other since it is defined for all values of the displacements �. To
prevent this, one must add a repulsive core to the potential. Given the equilibrium
intermolecular bond length a, the energy of the potential must tend to infinity when
the bond compression reaches the value a. The Lennard-Jones potential .2n; n/,
being a potential with a repulsive core, is most frequently used:

U.�/ D "
h

1C �

a

��n � 1
i2
; (2.42)

where n D 1; 2; 3; : : :. At n D 6, the potential (2.42) describes the weak nonvalence
van der Waals interaction of molecules with reasonable accuracy. The potential
profile is shown in Fig. 2.2c (right). It is defined only for the relative displacement
� > �a. The potential tends to U.�/ ! C1 as � ! �a and U.�/ ! " as
� ! C1.

In contrast to the Toda chain, a chain with the Morse interaction potential (2.41)
or the Lennard-Jones potential (2.42) is not a completely integrable system.
Nevertheless, there exist acoustic solitons in these systems at all supersonic values
of the velocity, although some peculiarities manifest themselves in the dynamics.
As the Lennard-Jones potential differs most significantly from the Toda potential,
the peculiarities must be more pronounced in this case. The profile of the soliton
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(solitary wave) in the Morse and Lennard-Jones chains can only be obtained
numerically.

2.4 Numerical Methods for Finding Soliton Solution

A solitary wave can be found in a discrete chain with a high degree of accuracy
using the Eilbeck–Flesh pseudospectral method [6, 7]. In terms of the absolute
displacement un, the chain dynamics is described by infinite-dimensional systems
of discrete equations (2.13). In terms of the relative displacement �n D unC1 � un,
the equations of motion have the form

�00
n D F.�nC1/ � 2F.�n/C F.�n�1/ ; n D 0;˙1;˙2; : : : : (2.43)

Let us search for a solution of this system as a solitary wave of unchanged profile
which moves with constant velocity s: �n.s/ D �.n� s�/ D �.z/, where z D n� s�
is the continuum wave variable z D n � s� . The wave profile �.z/ ! 0 and its
derivative �0.z/ ! 0 as z ! 1.

Replacing the discrete variable n by a continuous one z, (2.43) takes the form

s2
d2�

dz2

ˇ̌
ˇ̌
zDn

D F
�
�.nC 1/


 � 2F ��.n/
C F
�
�.n � 1/
 ; n D 0;˙1;˙2; : : : :

(2.44)

The main idea of this method is to approximate the explicit soliton solution �.z/ by
the finite Fourier series on a finite interval �L=2 	 z 	 L=2:

�.z/ 
 R.z/ D
KX

kD0
akck.z/ ; (2.45)

where ck.z/ D cos.2�kz=L/, k D 0; 1; 2; : : : ; K. Substituting (2.45) into (2.44)
leads to the continuous equation

F .z/ D s2
KX

kD0
ak

�
2�k

L

�2
ck.z/CG.z C 1/� 2G.z/CG.z � 1/ D 0 ; (2.46)

where

G.z/ D F

� KX

kD0
akck.z/

�
:
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The Fourier coefficients fakgKkD0 can be found numerically as the roots of the system
of K nonlinear equations

�.L=2/ D
KX

kD0
akck.L=2/ D 0 ;

F .zi / D 0 ; i D 0; 1; : : : ; K � 1 ;
(2.47)

where zi D iL=2K and the function F .z/ is given by (2.46).
This method can unambiguously answer the question about the existence of

a soliton for any value of the velocity s. The absence of a soliton solution
of (2.47) implies the impossibility of soliton motion for a given value of s. When
solving (2.47) numerically, it suffices to put K D 100 and L D 10D, where D is
the diameter of the soliton solution given by

D D 2

2

664

Z L=2

0

z2�.z/dz

Z L=2

0

�.z/dz

3

775

1=2

:

The value A D ��.0/ describes the amplitude of the soliton (the maximum relative
displacement of a chain link in a region of soliton localization). The soliton energy
is

E D
NLX

nD�NL

1

2
v2n C V

�
r.n/



;

where NL is an integer part of L=2 and the velocity is

v�NL�1 D 0; vnC1 D vn C s

KX

kD1

2�kak

L
sin

2�kn

L
; n D �NL;�NL C 1; : : : ; NL:

2.5 Solitons in the Lennard-Jones Chain

Here we consider a chain with the Lennard-Jones potential (12,6) and parameters
a D 1 and " D 1=72. Note that, at these parameter values, the potential rigidity is
U 00.0/ D 72"=a2 D 1. Numerical solution of (2.47) has shown that acoustic solitons
exist in the chain at all supersonic values of the velocity s > 1. The dependencies
of the soliton amplitude A, diameter D, and energy E, on the velocity s, are shown
in Fig. 2.4 (left). As can be seen from Fig. 2.4a and b (left), the amplitude A tends
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Fig. 2.4 Left: Dependence of the function .1�A/�6 of the amplitude A (a), the widthD (b), and
the square root of the energy

p
E (c) on the velocity of the acoustic soliton s in the Lennard-Jones

chain. Right: Collision of acoustic solitons in the Lennard-Jones chain at velocity s D 1:2 (a).
The soliton profile before the collision at time � D 50 (b) and after collision at � D 100 (c) and
� D 150 (d)

steadily to 1 as 1�O.s�1=6/, while the soliton diameterD decreases monotonically.
The soliton width becomes less than 10 at s D 1:0055, 5 at s D 1:0226, 2 at
s D 1:175, and finally less than 1 at s D 3:7, at which point it is less than the chain
spacing. The soliton energy increases steadily as s2 (see Fig. 2.4b left).

As the Lennard-Jones chain is not a completely integrable system, the soliton
interaction is no longer elastic. The collision of two solitons is accompanied by
the emission of low-amplitude waves (phonons). The non-elasticity of the soliton
interaction can be characterized by the energy loss p D �

.E1 � E2/=E1
�
100 %,

where E1 and E2 are the soliton energies before and after collision, respectively.
The dependence of the energy loss p on the velocity s is given in Table 2.1. The
maximum energy loss p D 0:00083% is observed for s D 1:23. The soliton
collision is shown in Fig. 2.4 (right). The phonon emission can be observed only at
a high magnification. Therefore, the weak ‘non-elasticity’ of the soliton interaction
is related to the proximity of the Lennard-Jones chain to a completely integrable
system. The energy loss at the collision tends to zero as s ! 1 C 0 (in this limit,
the soliton dynamics is described by the continuous integrable Boussinesq equation)
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Table 2.1 Dependence of the energy loss (%) in a soliton collision in the Lennard-Jones chain on
their velocity s

s 1.03 1.06 1.1 1.2 1.23

p (%) 1:4� 10�5 1:1� 10�4 3:7� 10�4 8:1� 10�4 8:3� 10�4

s 1.3 2.0 2.5 3.0 3.5

p (%) 7:6� 10�4 5:6� 10�5 7:9� 10�6 9:8� 10�7 4:6� 10�8

Fig. 2.5 Formation of the
acoustic soliton in the chain
with the Morse potential
." D 0:5, ˇ D 1/ as a result
of the compression of the first
bond in the molecular chain
of N D 500 molecules.
Dependence of the
distribution of the local
displacement �n in the chain
on the time �

and as s ! 1 (where the dynamics is described by an integrable system of rigid
spheres).

Thus, the acoustic solitons in the Lennard-Jones chain exist at all supersonic
values of the velocity s > 1. The solitons interact virtually as rigid particles. The
maximum soliton energy loss observed at collision for s D 1:23 is only 0.00083 %
of their energy. The solitons in the chain with the Morse interaction potential can be
considered to be interacting elastically.

The acoustic solitons are formed as a result of the compression of molecular
bonds. To model the formation of the soliton, it is best to consider a finite chain of
N molecules, subjected to the compression of its end link by a value �0 > 0 at the
initial moment of time. The chain dynamics will be described by the equations

u00
n D F.unC1 � un/ � F.un � un�1/; n D 2; 3; : : : ; N � 1; u1 � �0; uN � 0;

(2.48)

with initial conditions un.0/ D 0 and un0.0/ D 0. Let us take here the Morse
potential (2.41) with parameters " D 0:5, ˇ D 1. For these parameters, the potential
rigidity U 00.0/ D 1. Numerical simulation of the soliton dynamics shows that the
compression of a single finite link leads to the formation of an acoustic soliton in the
chain, along with a spreading wave packet moving with the velocity of sound (see
Fig. 2.5). The bigger the initial compression of the link, the bigger fraction of the
energy accumulated by the soliton. The fraction of the soliton energy relative to the
total energy is p D 0:504 for �0 D 0:1, p D 0:718 for �0 D 0:2, and p D 0:922 for
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�0 D 0:5. Thus, in the anharmonic chain, the energy of the dynamic compression of
the chain end is effectively transferred along the chain by the acoustic soliton.

2.6 Solitons in the Diatomic Chain

The diatomic chain with nonlinear intermolecular interaction has become a subject
of close attention in connection with modeling thermal conductivity in nonmetallic
crystals [14–16]. Anomalies in the thermal conductivity of nonlinear systems were
first observed in the notable work of Fermi, Pasta, and Ulam [1]. It has been realized
by now that the impact of nonlinearity, in the context of the classical theory of
thermal conductivity, does not reduce to the inelastic phonon–phonon interaction.
Experimentally observed thermal solitons in the quasi-one-dimensional system [17]
can significantly modify the character of thermal conductivity. Moreover, no one has
yet succeeded in deriving the thermal conductivity equation from first principles.

The diatomic Toda lattice has the property of complete integrability in the case of
equal masses [8] and exhibits stochastic behavior for a specific mass ratio [15]. To
understand the features of the dynamical behavior of this system and the mechanism
underlying its thermal conductivity, one must determine the dynamical properties
of the acoustic solitons. We thus investigate numerically the soliton dynamics in
the diatomic Toda lattice. We will show that the soliton motion in a given system
is always accompanied by a phonon emission which is insignificantly small in
the range of the sound velocity and steadily increases when the soliton velocity
increases.

2.6.1 Model of the Diatomic Chain

Consider a chain consisting of particles of masses m1 and m2, which are located at
a fixed interval a from each other. The model is shown schematically in Fig. 2.6. We
describe the interaction of the neighboring particles by the Toda potential

V.�/ D Kb�1n�C b�1� exp.�b�/ � 1�
o
;

where � is the relative change in the intermolecular distance, K is the rigidity
coefficient, and b is the potential anharmonicity parameter.

The Hamiltonian of the system can be represented in the form

H D
X

n

�
1

2
m1 Px22n C 1

2
m2 Px22nC1 C V.�2n/C V.�2nC1/

�
; (2.49)

where the dot denotes differentiation with respect to time t , xn is the displacement
of the nth site from its equilibrium position, and �n D xnC1 � xn is the relative
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Fig. 2.6 Schematic view of the diatomic molecular chain

displacement of the nth site. The following equations of motion correspond to the
Hamiltonian (2.49):

m1 Rx2n DF.�2n/�F.�2n�1/; m2 Rx2nC1 DF.�2nC1/�F.�2n/; n D 0;˙1;˙2; : : : ;
(2.50)

where F.�/ D dV=d�. For small-amplitude waves, the dispersion equation is
readily found to be

!4m1m2 � 2K.m1 Cm2/!
2 C 4K2 sin2.�a/ D 0 ;

where ! is the wave frequency and 0 	 � 	 �=a is the wavenumber. This gives
the velocity of sound in the form (the velocity of long-wavelength, small-amplitude
waves)

v0 D lim
�!0

!.�/

�
D a

p
2K=M ;

where the mass M D m1 Cm2.
For the convenience of calculation, we introduce the dimensionless displacement

un D xn=a, time � D t
p
2K=M , and energy H D H=Ka2. Then the Hamiltonian

of the chain (2.49) takes the form

H D
X

n

�
1

2
	1u

02
2n C 1

2
	2u

02
2nC1 C U.r2n/C U.r2nC1/

�
;

where the prime denotes differentiation with respect to time � , 	i D 2mi=M , i D
1; 2, is the dimensionless mass, rn D unC1 � un is the relative displacement, and the
potential is

U.r/ D ˇ�1nr C ˇ�1� exp.�ˇr/ � 1�
o
; (2.51)

with ˇ D ab. In terms of the dimensionless variables, the equations of motion (2.50)
take the form
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	1u
00

2n DG.r2n/�G.r2n�1/; 	2u
00

2nC1 DG.r2nC1/�G.r2n/; n D 0;˙1;˙2; : : : ;
(2.52)

where G.r/ D dU=dr D ˇ�1�1 � exp.�ˇr/�.

2.6.2 Continuum Approximation

Hereafter, for simplicity, we shall put ˇ D 1. Then the dimensionless Toda
potential (2.51) for the small-amplitude displacements has the form

U.r/ 
 1

2
r2 � 1

6
r3 :

Let us use the continuum approximation un.�/ D u.x; �/jxDn. Then the equations
of motion (2.52) lead to the well-known Boussinesq equation [18, 19]:

u�� D uxx � uxuxx C 1

12
cuxxxx : (2.53)

We will search for its solution in the form of a wave of constant shape un.�/ D u.
/,
where 
 D n � s� is the wave variable and s > 1 is the wave velocity.

As a result of the series of elementary approximations, (2.53) leads to the
following equation in terms of the relative displacement r D u
 :

.1 � s2/r2 � 1

3
r3 C 1

3
cr2
 D 0 ;

where the coefficient c D 1 � 3	1	2=4. The solution of this equation has the form

r.
/ D � A

cosh2.˛
/
; (2.54)

where A D 3.s2 � 1/ and ˛ D p
3.s2 � 1/=4c are the amplitude and the reciprocal

width of the soliton, respectively.

2.6.3 Numerical Simulation of Soliton Dynamics

Let us consider the dynamics of an acoustic soliton in a chain with	1 D 	 and	2 D
2� 	, where 0 < 	 	 1. We numerically integrated the equations of motion (2.52)
with n D 1; : : : ; N , N D 300 and boundary conditions .u0

1 � 0, uN � 0/ at the
fixed ends. The soliton solution (2.54) was taken as the initial condition.



2.6 Solitons in the Diatomic Chain 25

Let the center of the soliton be located at the site n D N=2 at the initial time. To
model the soliton dynamics in an infinite chain, we shift the soliton back just as it
passes 100 links of the chain, i.e., we carry out the substitution

un.�/ D unC100 ; n D 1; : : : ; N � 100 ; un.�/ D 0 ; n D N � 99; : : : ; N
u0
n.�/ D u0

nC100 ; n D 1; : : : ; N � 100 ; u0
n.�/ D 0 ; n D N � 99; : : : ; N :

At each such point in time, the soliton is described by the current velocity s D
100=�1, where �1 is the time of the soliton passage over 100 links and the energy is

E D
N=2�1X

nD1

�
1

2
	1u

02
2n C 1

2
	2u

02
2nC1 C U.r2n/C U.r2nC1/

�
:

The numerical integration showed that the soliton dynamics depends significantly
on the ratio of particle masses � D 	1=	2. For � D 1 (	1 D 	2 D 1)
and � D 0 (	1 D 0, 	2 D 2), the equations of motion become completely
integrable. Therefore, the soliton motion occurs without phonon emission. The
soliton moves with a constant velocity. However, the intermediate value of � is more
interesting. In the intermediate region, the soliton motion is always accompanied by
phonon emission (see Fig. 2.7 left), leading to the slowing down of the soliton. This
phenomenon is conveniently described by the fraction of its energy which is lost
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Fig. 2.7 Left: Phonon emission of the acoustic soliton in the diatomic chain. Soliton velocity
s D 1:03 and mass ratio � D 0:65. Right: Dependence of the soliton energy loss p on the velocity
s at (a) � D 0:9, 0.8, 0.7, and 0.65 (lines 1, 2, 3, and 4, respectively) and (b) � D 0:65, 0.6, 0.5,
and 0.4 (lines 5, 6, 7, and 8, respectively)
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Fig. 2.8 Elastic collision of
acoustic solitons in the
diatomic chain .� D 0:65/ at
the velocity s D 1:01

when it passes 100 links of the chain:

p.�/ D E.�/ �E.� C �1/

E.�/
:

The dependence of the soliton energy loss p on its velocity s is shown in Fig. 2.7
(right) for different values of �. As can be seen, when the velocity decreases, the
energy loss decreases proportionally to .1 � s/2. The value of the proportionality
coefficient depends on �. With � decreasing from 1 to 0.65, the energy loss grows
steadily. The maximal loss is observed at � D 0:65. A further decrease in � no
longer leads to a monotonic decrease in the energy loss (see Fig. 2.7 right).

For velocities with 1 < s < 1:015, phonon emission by the soliton becomes
negligibly small. In this case the solitons actually move with constant velocities and
interact as rigid particles (see Fig. 2.8).

The modeling performed here has shown that, in the diatomic chain, acoustic
soliton motion is always accompanied by phonon emission. The emission is
negligibly small in the range of the sound speed .1 < s < 1:015/, but as the
soliton velocity increases, the fraction of the energy emitted by the phonons grows
proportionally to .1�s/2. These results allow us to conclude that the equipartition of
energy in diatomic chains happens as a result of the intensive emission of phonons
by the acoustic solitons. Maximal emission is reached at the ratio of particle masses
of the chain � D m1=m2 D 0:65. It is for this value of � that the effect of chaos in
the system dynamics is expected to be the most pronounced.

2.7 Acoustic Solitons in a Helix Chain

The development of modern nonlinear physics has led to the discovery of new
elementary mechanisms which determine the behavior of many physical processes
in crystals and other ordered molecular systems at the molecular level. Today,
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the role of acoustic solitons, ensuring the most efficient mechanisms of energy
transfer in such processes as heat conductivity, fracture of solids [20–23], and signal
propagation in biological macromolecules, is quite clear [24].

One pioneering theoretical study of the nonlinear dynamics of macromolecular
chains [1, 4, 12, 25] considered the one-dimensional (spatial-linear) models with
positive anharmonicity, in which only the longitudinal displacements of atoms
(molecules) in the chain were taken into account. In this case, when neighboring
sites of a chain approach each other, the repulsive force between them increases
faster than in the harmonic approximation. One of the consequences of this is the
existence of dynamically stable solitary waves of compression which are referred to
as supersonic acoustic solitons.

Essentially, acoustic solitons do not interact with longitudinal acoustic phonons,
so they transfer energy in a loss-free manner over long distances. The process
changes dramatically if the transverse and longitudinal displacements are taken into
account. In this case, the soliton will have a finite path length and its motion will be
accompanied by emission of transverse and orientational phonons of the chain.

The effect of the transverse molecular oscillations in a chain on the soliton
dynamics was considered for the first time in [26]. Solitons turned out to be highly
sensitive to longitudinal perturbations. This problem was investigated comprehen-
sively in [27–32]. The soliton interaction with orientational molecular oscillations
was analysed in [33].

For a series of biomolecular chains, it is hard to understand the way they function
without considering the transverse motion of the chain links. Thus, in the DNA
molecule, the stretching of base pairs in the transverse direction makes denaturation
possible. The Peyrard–Bishop model of DNA melting [34–36] considered only
the transverse motion of complimentary base pairs. Although the DNA molecule
(having both longitudinal and transverse degrees of freedom) is considered as an
isolated object, this model actually describes the one-dimensional dynamics of the
molecular chain in an effective substrate potential. A comprehensive review of
models of DNA nonlinear dynamics is given in [37].

The geometric structure of biomolecular systems requires use of two- and
three-dimensional models. This is the only way to take into account the system’s
anharmonicity, which is determined by its molecular geometry. For example, in
the framework of the simplest cluster model of the ˛-chymotrypsin enzyme, it was
shown that geometric anharmonicity in the two-dimensional system makes energy
transfer between degrees of freedom possible, even for small amplitudes [38, 39].

Applying current computational power to the analysis of nonlinear molecu-
lar systems dynamics, one can move from simple one-dimensional models to
more complex two- and three-dimensional models, which take into account the
geometrical structure of the system in a realistic way. The simplest and most
convenient objects from this point of view are the zigzag molecular chains for
which the nonlinear dynamics is considered in detail in [40–44]. To understand
the mechanisms at work in the majority of biological systems, a two-dimensional
model is inappropriate. The simplest example of such a system is a protein ˛-helix
macromolecule.
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Consider the three-dimensional dynamics of a free molecular chain. Clearly, the
chain, in the absence of a substrate, will have a ground state with a regular stable
structure only if the interaction between the remote neighbours is taken into account
in addition to the short-range interaction. The inclusion of the long-range interaction
results in the appearance of a secondary structure, of the chain, which is often
encountered in many macromolecules (DNA, proteins, and the like). Geometrically,
the secondary structure is realized in the form a helix.

The three-dimensional dynamics of a helix chain was analysed in [45], where the
existence of the three-dimensional acoustic soliton of compression was shown. The
existence of this soliton is associated with the physical anharmonicity (anharmonic-
ity of intermolecular interaction).

Here we consider in detail the soliton dynamics in the helix chain. We will
show that, along with a soliton of longitudinal compression, there also exists
another type of soliton in the helix, namely the soliton of torsion. In this case, the
existence of this soliton is associated with the geometrical anharmonicity of the
helix. This anharmonicity is determined by three-dimensional structure of the helix
and manifests itself even if all the intermolecular interaction forces are harmonic.
The geometrical anharmonicity was first studied in [46], where it was shown that
this anharmonicity can ensure the existence of a breather-like excitation in a linear
molecular chain.

2.7.1 Model of a Helix Chain

Consider a molecular helix chain shown in Fig. 2.9 (left), in which each molecule
(peptide group) of the chain interacts with its six nearest neighbors. The interaction
between first neighbors is the strongest. It is mainly due to the deformation of the
rigid valence bonds. The interaction between second neighbors results from the
deformation of the softer valence angles. The interaction between third neighbors is
the weakest. It is described by the non-valence molecular interaction. These three
types of interaction stabilize the three-dimensional helix chain, provided that each
molecule of the chain can move in three .x; y; z/ directions.

The geometry of the helix chain is uniquely given by a set of three parameters:
the radius R0, the angular spacing �, and the longitudinal spacing �z of the helix.
In the equilibrium position, the radius vector of the nth site of the helix is

Rn D R0
�

cos.n�/; sin.n�/; nh


; n D 0;˙1; : : : ;

where h D �z=R0 is the dimensionless longitudinal spacing of the helix. The
angular spacing of the helix satisfies j�j 	 � . The helix is right-handed for � > 0

and left-handed for � < 0. When � D ˙� , the three-dimensional helix degenerates
into a planar zigzag structure.

The helix can also be uniquely specified by the distances between three neigh-
boring molecules, i.e., the distances D1, D2, and D3 between the first, second, and
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Fig. 2.9 Left: Fragment of the helix chain consisting of 11 molecules. The geometry of the chain
corresponds to an ˛-helix (� D 100ı). The intermolecular potentials Uj , j D 1; 2; 3 are shown
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rigidity). Right: Local coordinate system in the xy plane

third neighbors. The dimensionless nearest-neighbor intermolecular distance is

aj D Dj

R0
D
q
2
�
1 � cos.j�/

�C j 2h2 ; j D 1; 2; 3 : (2.55)

It follows from (2.55) that the angular spacing � of the helix obeys

3 � 4 cos� C cos.2�/

8 � 9 cos� C cos.3�/
D 4a21 � a22
9a21 � a23

: (2.56)

After solving (2.56), we readily obtain

R0 D
q
4D2

1 �D2
2

4 sin2.�=2/
; �z D

q
D2
2=4 �D2

1 cos2.�=2/

sin.�=2/
:
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The Hamiltonian of the helix chain has the form

H D
X

n

2

41
2
M
� Px2n C Py2n C Pz2n


CKR20

X

jD1;2;3
Uj .rjn/

3

5 ; (2.57)

where M is the mass of a single link of the chain, and xn, yn, and zn are
the displacements of the nth chain link from its equilibrium position. The dot
denotes differentiation with respect to time t . The constant K defines the rigidity
of intermolecular interaction. The dimensionless potential Uj .rjn/ describes the
interaction between the nth and the .n C j /th molecules, and rjn D Rjn=R0 is
the dimensionless distance between them. The interaction potentials are normalized
by the conditions Uj .aj / D 0, U 0

j .aj / D 0, j D 1; 2; 3.
We describe the molecular interaction by the Morse potentials

Uj .r/ D 1

2

�j


2j

n
1 � exp

� � 
j .r � aj /
�o2

D 1

2
�j .r � aj /2

�
1 � 
j .r � aj /C � � � � ; j D 1; 2; 3 ; (2.58)

where �j D Kj=K D U 00
j .aj / is the dimensionless rigidity of the interaction and


j is the anharmonicity parameter. In the limit 
j ! 0, the potential (2.58) turns
into the harmonic potential

Uj .r/ D 1

2
�j .r � aj /2 ; j D 1; 2; 3 :

For further calculation, it is convenient to introduce the dimensionless time

� D !0t ; !0 D
p
K=M ;

and dimensionless displacement vectors

qn D .q1n; q2n; q3n/ D Rn

R0
C vn ; vn D .v1n; v2n; v3n/ D 1

R0
.xn; yn; zn/ :

(2.59)

Then the dimensionless distances rjn D jqnCj � qnj and the Hamiltonian of the
chain (2.57) can be rewritten in the dimensionless form

H D H

KR20
D
X

n

2

41
2

�
dqn
d�

�2
C

X

jD1;2;3
Uj
�jqnCj � qnj



3

5 : (2.60)
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The equations of motion corresponding to the Hamiltonian (2.60) take the form

d2qn
d�2

D
X

jD1;2;3

h
Wj .rjn/.qnCj � qn/ �Wj .rj;n�j /.qn � qn�j /

i
;

n D 0;˙1;˙2; : : : ; (2.61)

where Wj .rjn/ D U 0
j .rjn/=rjn.

2.7.2 Dispersion Equation

It is more reasonable to consider the relative molecular displacement with respect
to the equilibrium position locally for each molecule. For the equilibrium position
of the nth molecule, we consider the coordinate system formed by the normal
and the tangent to the circle z=R0 D nh, jqj D 1 in the xy plane, as shown in
Fig. 2.9 (right). We denote the displacement vector vn in this coordinate system by
un D .u1n; u2n; u3n/, where u1n and u2n are the normal and tangential projections of
the displacement vector, respectively, and u3n D v3n is the longitudinal coordinate.
The new local coordinate system can be obtained by a rotational transformation,
specified by

Tnvn D un ; Tn D
0

@
cos.n�/ sin.n�/ 0

� sin.n�/ cos.n�/ 0
0 0 1

1

A : (2.62)

The orthogonal operators Tn form a group: TmTn D TmCn, where T0 D I is the
identity operator.

Substituting the expression qn D Rn=R0 C T�1
n un (see (2.59) and (2.62)) into

the equations of motion (2.61) yields

d2un
d�2

D
X

jD1;2;3

h
T�1
j Fj

�
un;unCj


 � Fj
�
un�j ;un


i
; n D 0;˙1;˙2; : : : ;

where the intermolecular forces are defined by

Fj
�
un;unCj


 D Wj .rjn/
�
cj C unCj � Tjun



: (2.63)

Here, the distance rjn between the nth and the .nC j /th molecules is

rjn D ˇ̌
ajn C T�1

nCjunCj � T�1
n un

ˇ̌
; ajn D RnCj � Rn

R0
; (2.64)
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and the constant vectors are defined by

cj D �
1 � cos.j�/; sin.j�/; jh



: (2.65)

As can be seen from (2.63)–(2.65), the right-hand side of the equations of
motion (2.63) is not a function of the difference between the vectors un and unCj .

In the harmonic approximation .
j ! 0, j D 1; 2; 3/, for all the intermolecular
forces, we have

Fj
�
un;unCj


 D ˛j
˝
.unCj � Tjun/; cj

˛
cj C � � � ;

where ˛j D �j =a
2
j and h�; �i denotes the inner product. Substituting this expansion

into (2.63) gives the linearized equations of motion:

d2un
d�2

D
X

jD1;2;3
˛j

h
hunCj � Tjun; cj iT�1

j cj � hun � Tjun�j ; cj icj
i
;

n D 0;˙1;˙2; : : : : (2.66)

Substituting the plane wave

un D An exp
�
i.kn �˝�/�

into the linear equations (2.66), we obtain the following dispersion law:

ˇ̌
ˇ̌
ˇ̌
˝2 � c11 �ic12 �ic13

ic12 ˝2 � c22 �c23
ic13 �c23 ˝2 � c33

ˇ̌
ˇ̌
ˇ̌ D 0 ; (2.67)

where the coefficients are

c11 D 2
X

j

˛j Œ1 � cos.j�/�2Œ1C cos.jk/� ;

c12 D 2
X

j

˛j Œ1 � cos.j�/� sin.j�/ sin.jk/ ;

c13 D 2
X

j

˛j jhŒ1 � cos.j�/� sin.jk/ ;

c22 D 2
X

j

˛j sin2.j�/Œ1 � cos.jk/� ;

c23 D 2
X

j

˛j jh sin.j�/Œ1 � cos.jk/� ;

c33 D 2
X

j

˛j j
2h2Œ1 � cos.jk/� :

(2.68)
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Fig. 2.10 Left: Dependence of the frequencies ˝t (line 1), ˝l (line 2), and ˝op (line 3) on the
wavenumber k, 0 � k � � . Right: The three-component profile of the torsion soliton at the
velocity s D 1:5st (
3 D 0). Phonon emission by the soliton is notable

More explicitly, the dispersion equation (2.67) has the form

˝6 � �
c11 C c22 C c33



˝4 C �

c11c22 C c11c33 C c22c33 � c212 � c213 � c223


˝2

C�c11c223 C c22c
2
13 C c33c

2
12 � c11c22c33 � 2c12c13c23


 D 0 : (2.69)

Using the explicit form of (2.68) and (2.69), it can be shown that there are three non-
degenerate, non-negative roots of the cubic equation (2.69) with respect to ˝2 for
0 < k 	 � . In the long-wavelength limit, k ! 0, the free term and the coefficient
of ˝2 in (2.69) tend to zero. Therefore, two of the three solutions of this equation
correspond to the acoustic branches of the dispersion curve. These two roots,˝l.k/

and˝t.k/ (see Fig. 2.10 left), are related to the longitudinal and torsional molecular
oscillations in the helix chain, respectively. The third root gives an optical branch
˝op.k/ corresponding to the transverse oscillations of the molecules. At k D 0,
we have

˝op D p
c11 C c22 C c33 D 2

sX

j

˛j
�
1 � cos.j�/

�2
:



34 2 Acoustic Solitons

The presence of the two acoustic branches leads to the existence of two speeds of
sound: the longitudinal speed vl and the torsional speed vt. In the dimensionless
form, they can be defined as the limits

sl;t D vl;t=v0 D h lim
k!0

˝l;t.k/

k
;

where v0 D .K=M/1=2R0 is the characteristic velocity of the small-amplitude waves
in the helix macromolecule.

For the numerical helix chain dynamics simulation, we take the following
parameter values:

� D 100ı ; h D 1 ; �1 D 10 ; �2 D 5 ; �3 D 1 : (2.70)

The value of the angle � corresponds to the angular spacing of the ˛-helix protein
molecule. The rigidity constants k1, k2, and k3, approximately follow the ratios of
the valence bond, angle, and hydrogen bond.

The form of the dispersion curves for the parameter set (2.70) is shown in
Fig. 2.10 (left). For k D 0, the frequencies are ˝l D ˝t D 0 and ˝op D 5:1098. It
follows from (2.68) that there is a value of the wave number k D k0 D 1:74795 for
which the free term in the dispersion equation (2.69) becomes zero. For this value,
a soft torsional mode emerges ˝t.k0/ D 0. As can be seen from Fig. 2.10 (left),
the frequency spectrum of the helix chain includes a separate optical zone and two
acoustic zones, with the frequency spectrum of the torsional oscillations lying inside
the frequency spectrum of the longitudinal oscillations. Moreover, the longitudinal
velocity of sound sl D 3:39475 significantly exceeds the torsional velocity of sound
st D 0:750411.

2.7.3 Numerical Methods for Finding the Soliton Solution

Here we consider a numerical scheme for finding solitary waves with a stationary
profile, where the wave profile is found as the steady state of a certain discrete
functional [42]. A necessary condition for the application of this scheme is the
smooth dependence of the wave profile on the number of chain links. The main
problem in applying such a scheme is finding a discrete functional that is optimal
with respect to its numerical realization. To find the narrow soliton solutions,
one should use the more complex pseudospectral method, suggested for one-
dimensional chains by Eilbeck and Flesch [6], and used for analysis of soliton
dynamics in a series of publications [7,47,48]. Once found, the soliton solutions are
then used as the initial conditions for the numerical helix chain dynamics simulation.
However, we shall demonstrate the absence of narrow solitons in the chain, so
there would be no point applying the pseudospectral method, with the associated
complications in its numerical realization.
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The soliton solution of the equation of motion (2.61) is conveniently analysed in
the cylindrical coordinate system in which

q1n D .1C �n/ cos.n� C �n/ ;

q2n D .1C �n/ sin.n� C �n/ ;

q3n D nh C ˇn ;

where the variable �n describes the radial displacement of the nth molecule from
the cylinder surface, which spans all the sites of the helix chain at their equilibrium
positions. The displacement is positive if a molecule is moving outside the helix and
negative if it is moving inside. The second generalized coordinate �n describes the
azimuthal displacement of the nth molecule with respect to its equilibrium position.
The third coordinate ˇn is the z coordinate of the displacement.

In terms of the new coordinate system, the Lagrangian of the helix chain has the
form

L D L

�
d�n
d�
; �nI d�n

d�
; �nI dˇn

d�
; ˇn

	

D
X

n

8
<

:
1

2

"�
d�n
d�

�2
C .1C �n/

2

�
d�n
d�

�2
C
�

dˇn
d�

�2#
�

X

jD1;2;3
Uj .rjn/

9
=

; ;

(2.71)

where the distance is

rjn D jqnCj � qnj
D
h
.1C �n/

2 C .1C �nCj /2 � 2.1C �n/.1C �nCj / cos.j� C �nCj � �n/

C.jhC ˇnCj � ˇn/2
i1=2

:

The corresponding equations of motion take the form

d2�n
d�2

D .1C �n/

�
d�n
d�

�2

�
X

jD1;2;3

(
Wj .rj;n�j /

h
1C �n � .1C �n�j / cos.j� C �n � �n�j /

i

CWj .rjn/
h
1C �n � .1C �nCj / cos.j� C �nCj � �n/

i)
;

(2.72)
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d2�n
d�2

D 1

1C �n

(
� 2d�n

d�

d�n
d�

C
X

jD1;2;3

h
Wj .rjn/.1C �nCj / sin.j� C �nCj � �n/

�Wj .rj;n�j /.1C �n�j / sin.j� C �n � �n�j /
i)

;

(2.73)
d2ˇn
d�2

D
X

j

h
Wj .rjn/.jhCˇnCj �ˇn/�Wj .rj;n�j /.jhCˇn�ˇn�j /

i
: (2.74)

We assume that there exists a solution in the form of a wave with a stationary profile:
�n D �.nh � s�/, �n D �.nh � s�/, and ˇn D ˇ.nh � s�/, where s D v=v0 is the
dimensionless velocity. As shown in Fig. 2.10 (left), there are three types of linear
modes: one optical and two acoustic modes. Therefore, there is no need to take
into account the dispersion of the optical mode, and we can approximate the first
and second time derivatives of the variable �n by the simplest finite differences as
follows:

d�n
d�

D �s�0.n � s�/ ' �s �nC1 � �n�1
2h

;

d2�n
d�2

D s2�00.n � s�/ ' s2
�nC1 � 2�n C �n�1

h2
:

(2.75)

However, for the longitudinal and torsional displacements, we need to take into
account the dispersion arising from the discreteness of the chain. The time deriva-
tives of the displacements �n and ˇn require the use of a more precise finite-
difference approximation. Introducing the relative displacements 'n D �nC1 � �n
and �n D ˇnC1 � ˇn, we can rewrite

d�n
d�

D �s� 0.n � s�/

' �s
�
�nC1 � �n�1

2h
� �nC2 � 3�nC1 C 3�n � �n�1

6h

�

D s.�nC2 � 6�nC1 C 3�n C 2�n�1/=6h

D s.'nC1 � 5'n � 2'n�1/=6h ; (2.76)

d2�n
d�2

D s2� 00.n � s�/
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' s2
�
�nC1 � 2�n C �n�1

h2
� �nC2 � 4�nC1 C 6�n � 4�n�1 C �n�2

12h2

�

D �s2.'nC1 � 15'n C 15'n�1 � 'n�2/=12h2 ; (2.77)

dˇn
d�

' s.ˇnC2 � 6ˇnC1 C 3ˇn C 2ˇn�1/=6h

D s.�nC1 � 5�n � 2�n�1/=6h ; (2.78)

d2ˇn
d�2

D s2ˇ00.n � s�/

' �s2.�nC1 � 15�n C 15�n�1 C �n�2/=12h2 : (2.79)

Using the finite-difference approximations (2.75)–(2.79), we rewrite the equations
of motion (2.72)–(2.74) as discrete equations for the relative displacements �n, 'n,
and �n :

Fn;1 D s2

h2

h
�nC1 � 2�n C �n�1 � .1C �n/.'nC1 � 5'n � 2'n�1/2=36

i

C
X

jD1;2;3

(
Wj .rj;n�j /

�
1C �n � .1C �n�j / cos

�
j� C

jX

iD1
'n�jCi�1

��

CWj .rjn/

�
1C �n � .1C �nCj / cos

�
j�C

jX

iD1
'nCi�1

��)
D 0 ;

(2.80)

Fn;2 D s2

12h2

h
.1C �n/.'nC1 � 15'n C 15'n�1 � 'n�2/

C 2.�nC1 � �n�1/.'nC1 � 5'n � 2'n�1/
i

C
X

jD1;2;3

"
Wj .rjn/.1C �nCj / sin

�
j� C

jX

iD1
'nCi�1

�

�Wj .rj;n�j /.1C �n�j / sin

�
j� C

jX

iD1
'n�jCi�1

�#
D 0 ;

(2.81)
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Fn;3 � Fn�1;3 D s2

12h2
.�nC1 � 15�n C 15�n�1 � �n�2/

C
X

jD1;2;3

"
Wj .rjn/

�
jhC

jX

iD1
�nCi�1

�

�Wj .rj;n�j /
�
jhC

jX

iD1
�n�jCi�1

�#
D 0 :

(2.82)

Equation (2.82) can be integrated once with the result

Fn;3 D s2

12h2
.�nC1 � 14�n C �n�1/

C
X

jD1;2;3

jX

lD1
Wj .rj;n�jCl /

�
jhC

jX

iD1
�n�jClCi�1

�
D 0 : (2.83)

The system of the discrete equations (2.80), (2.81), and (2.83) was solved numer-
ically. Our aim was to find the soliton solutions of this system, i.e., the solutions
f�n; 'n; �ngNnD1 which depend smoothly on the number of chain sites n, and have
asymptotic behavior at the chain ends.

The first approximation to the soliton solution can be conveniently found as the
minimum of the functional

F D 1

2

N�3X

nD4

�
F 2
n;1 C F 2

n;2 C F 2
n;3



; (2.84)

where N is the number of chain sites. The problem for the conditional minimum

F ! min W �n D 'n D �n D 0 ; n D 1; 2; 3;N � 2;N � 1;N ; (2.85)

was solved numerically using the variable metric method. The initial point was taken
in the form of the bell-shaped pulse

�n D A�= cosh2
�
	.n �N=2/� ;

'n D A'= cosh2
�
	.n �N=2/� ;

�n D A�= cosh2
�
	.n �N=2/� ;

where the parameter 	 describes the reciprocal width and A�, A' , and A� are the
amplitudes of the initial approximation to the soliton solution. The number of sites
N must chosen to be approximately ten times larger than the soliton width. In this
case, the soliton shape will not depend on the boundary conditions. We took N D
400, which is appropriate for finding the broad soliton solutions.
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Because of surface roughness, corresponding to the functional

F D F .�4; : : : ; �N�3I'4; : : : ; 'N�3I �4; : : : ; �N�3/ ;

the search for the soliton solution as a minimum of the functional (2.84) leads
to a slow convergence of the numerical minimization procedure. Therefore, the
final form of the solution was found as a numerical solution of the system of
3.N � 6/ nonlinear equations (2.80), (2.81), and (2.83) with respect to the variables
f�n; 'n; �ngN�3

nD4 , where �n; 'n; �n � 0 for n D 1; 2; 3; : : : ; N � 2;N � 1;N .
The system of nonlinear equations was solved numerically using the modified
hybrid method (with the standard program from the package MINPACK). The point
obtained by solving the constrained minimum problem (2.85) was used as the initial
point for this method.

In addition to the velocity s, the soliton solution f�n; 'n; �ngNnD1 is also charac-
terised by its energy

E D
N�1X

nD2

(
s2

8h2

�
.�nC1 � �n�1/2 C 1

9
.1C �n/

2.'nC1 � 5'n � 2'n�1/2

C 1

9
.�nC1 � 5�n � 2�n�1/2

�
C

3X

jD1
Uj .rjn/

)
;

which follows from (2.71), (2.75), (2.76), and (2.78), and the amplitudes are

A� D �n0 ; where j�n0 j D max
1�n�N j�nj ;

A' D 'n0 ; where j'n0 j D max
1�n�N j'nj ;

A� D �n0 ; where j�n0 j D max
1�n�N j�nj :

The root-mean-square width is

L D 2

� NX

nD1
.n � nc/

2�n=R

�1=2
;

where

R D
NX

nD1
�n

is the total compression of the helix chain and
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nc D 1

2
C

NX

nD1

n�n

R

is the position of the soliton center.

2.7.4 Results of Numerical Analysis

Let us find the soliton solutions for the chain with parameters (2.70). The nonlinear-
ity of the dynamics observed in ˛-chain protein macromolecules is caused mainly by
their three-dimensional geometry and the nonlinearity of the soft hydrogen bonds.
Therefore, we take into account the nonlinearity of the interaction only between
distant neighbors, i.e., we set 
1 D 0, 
2 D 0, and 
3 � 0. To distinguish between
the effects of the geometrical and physical anharmonicity on the chain nonlinear
dynamics, we consider the soliton solutions for the four values of the anharmonicity

3 D 0, 0.1, 1, and 10. For 
3 D 0, physical anharmonicity is absent and the
nonlinear dynamics is defined by the geometrical anharmonicity of the chain. As
the value of 
3 increases, the geometrical anharmonicity effect decreases, while the
physical anharmonicity effect increases.

The numerical analysis performed for the discrete system of (2.80), (2.81),
and (2.83) showed that two types of acoustic solitons can exist in the helix chain:
solitons of torsion and compression. The torsional soliton is a localized nonlinear
packet of torsional phonons, moving with the supersonic velocity s > st. The
compression soliton is a localized nonlinear packet of longitudinal phonons moving
with the supersonic velocity s > sl.

The form of the torsional soliton is shown in Fig. 2.10 (right). The soliton has a
bell-shaped profile in all three coordinates �n, 'n, and �n. In a region of soliton
localization, untwisting of the helix chain occurs ('n > 0). The radius of the
helix chain decreases (�n < 0) and its length increases (�n > 0). The existence
of the soliton is associated with the geometrical anharmonicity. The physical
anharmonicity has the opposite sign and so opposes the formation of the torsion
soliton. An increase in the physical anharmonicity parameter, i.e., 
3 � 0, leads
to narrowing of the soliton velocity spectrum. With weak physical anharmonicity
(
3 D 0, 0.1), the spectrum of the soliton velocity is 1 < s=st < 1:59. With medium
physical anharmonicity (
3 D 1), the spectrum is narrower by a factor of two, viz.,
1 < s=st < 1:32, and with strong physical anharmonicity (
3 D 10), the torsional
soliton no longer exists in the helix chain (the physical anharmonicity is stronger
than the geometrical anharmonicity).

The numerical simulation showed that the soliton’s motion is always accompa-
nied by phonon emission (see Fig. 2.10 right). This emission is considerably more
intensive at the maximal velocity. As a result of the emission, the energy and the
velocity of the soliton steadily decrease (see Fig. 2.11 left). The energy E and the
velocity s of the soliton depend on the time � . To estimate emission intensity, it is
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Fig. 2.11 Left: Dependence of the energy E and velocity s of the torsion soliton on the
dimensionless time � . The anharmonicity parameter is 
3 D 0. Right: Dependence of the relaxation
coefficients of the velocity ˇs and energy ˇE of the torsion soliton on its velocity s for 
3 D 0 (lines
1 and 4) and 
3 D 1 (lines 2 and 5). Dependence of the relaxation coefficients for the localized
breather-like state at 
3 D 10 (lines 3 and 6)

convenient to define the relaxation coefficients ˇs D �s0=st and ˇE D �E 0=E,
where the prime denotes differentiation with respect to � . As the soliton shape is
uniquely determined by its velocity s, the relaxation coefficients ˇs and ˇE also
uniquely depend on s. When the soliton velocity s decreases, the intensity of phonon
emission tends exponentially to zero and becomes negligibly small at s D 1:22st

(see Fig. 2.11 right). At velocities 1 < s=st < 1:22, the phonon emission vanishes
completely and the soliton moves with a constant velocity.

With an increase in soliton velocity, its energy E and the absolute values of
its three amplitudes A�, A' , and A� increase steadily, while its width L decreases
monotonically (see Table 2.2). At s=st < 1:2, its width significantly exceeds the
chain spacing that allows the use of the continuum approximation. The discreteness
effects of the helix chain become apparent through the noticeable phonon emission
at higher velocities. These effects manifest themselves more strongly as the soliton
width decreases.

With strong physical anharmonicity .
3 D 10/, the torsion soliton does not exist.
The numerical simulation showed that, instead of the torsion soliton, there is a
localized breather-like excitation (see Fig. 2.12 left), which has a narrow velocity
spectrum 1 < s=st < 1:043. The helix chain twisting occurs in the excitation
localization region .'n < 0/, decreasing its length (�n < 0) and increasing its radius
.�n > 0/. The motion of the excitation is also accompanied by phonon emission.
With decreasing excitation velocity, the emission intensity tends exponentially to
zero (see Fig. 2.11 right).
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Table 2.2 Dependence of the energy E, width L, amplitudes A�, A' , and A�, and transmission
coefficient p of the torsion soliton in the helix chain on its velocity s for 
3 D 1

s=st E L A� A' A� p

1.04 0.01016 14.17 �0.0194 0.0363 0.0185 0.643˙0:020
1.08 0.03117 10.54 �0.0385 0.0735 0.0364 0.463˙0:020
1.12 0.06247 9.25 �0.0576 0.1121 0.0543 0.347˙0:018
1.16 0.10585 9.11 �0.0770 0.1531 0.0727 0.269˙0:016
1.20 0.16499 9.06 �0.0976 0.1966 0.0916 0.216˙0:014
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Fig. 2.12 Left: The three-component profile of the breather-like excitation at velocity s D 1:042st

(
3 D 10). Right: The three-component profile of the compression soliton at velocity s D 1:146sl

(
3 D 1). Phonon emission by the soliton is clearly visible

The profile of the compression soliton is shown in Fig. 2.12 (right). The soliton
has a bell-shaped profile in all three coordinates �n, 'n, and �n. In the soliton
localization region, compression (�n < 0) and slight untwisting of the helix
chain ('n > 0) occur, these being accompanied by an increase in the helix chain
radius (�n > 0). The existence of the compression soliton is associated with
the physical anharmonicity. In the absence of physical anharmonicity .
3 D 0/,
the soliton does not exist. The spectrum of soliton velocities broadens steadily
when the anharmonicity parameter is increased. Thus, for 
3 D 0:1, the soliton
velocity spectrum is 1 < s=sl < 1:065, while for 
3 D 1, it is twice as broad
1 < s=sl < 1:143. A further increase in the anharmonicity parameter does not lead
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Fig. 2.13 Left: Dependence of the energy E and the velocity s on the dimensionless time � . The
anharmonicity parameter is 
3 D 1. Right: Dependence of the relaxation coefficients of the velocity
ˇs and the energy ˇE for the compression soliton on its velocity s for 
3 D 0:1 (lines 1 and 4),

3 D 1 (lines 2 and 5), and 
3 D 10 (lines 3 and 6)

to a significant change in the velocity spectrum: the spectrum is 1 < s=sl < 1:147

for 
3 D 10.
The numerical simulation of the soliton dynamics showed that the soliton motion

is always accompanied by phonon emission (see Fig. 2.12 right). This emission is
more intensive at its maximal velocity. As a result of the emission, the energy and the
velocity of the soliton both decrease monotonically (see Fig. 2.13 left). We define the
velocity relaxation coefficient as ˇs D �s0=sl. When the soliton velocity s decrease,
the phonon emission intensity tends exponentially to zero (see Fig. 2.13 right). As
can be seen, phonon emission is completely absent for s=sl < 1:02 when 
3 D 0:1,
s=sl < 1:035 when 
3 D 1, and s=sl < 1:05 when 
3 D 10.

When the soliton velocity s decreases, its energy E and the absolute values
of all three coordinates A�, A' , and A� increase steadily, while its width L

decreases monotonically (see Table 2.3). As can be seen, for 1 < s=sl < 1:05,
the soliton width significantly exceeds the chain spacing. Comparing Tables 2.2
and 2.3, we may conclude that the helix chain deformation in the torsion soliton
localization region is caused mainly by its untwisting, while in the compression
soliton localization region, it is due to its longitudinal compression.
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Table 2.3 Dependence of the energy E, width L, amplitudes A�, A' , and A�, and transmission
coefficient p of the compression soliton on its velocity s for 
3 D 1

s=sl E L A� A' A� p

1.01 0.02022 20.78 0.0054 0.0049 �0.0093 0.814˙0:020
1.02 0.05763 15.18 0.0107 0.0096 �0.0183 0.708˙0:020
1.03 0.10670 12.55 0.0158 0.0143 �0.0271 0.627˙0:018
1.04 0.16557 11.03 0.0208 0.0188 �0.0358 0.560˙0:016
1.05 0.23329 10.03 0.0258 0.0232 �0.0441 0.506˙0:014

Fig. 2.14 Left: Elastic collision of two torsion solitons. The velocities of the first and second
solitons are s1 D 1:04st and s2 D �1:04st, respectively (
3 D 1). Right: Inelastic collision of two
torsion solitons. The velocities of the first and second solitons are s1 D 1:2st and s2 D �1:2st,
respectively (
3 D 1)

2.7.5 Soliton Interaction

At velocities close to the sound velocity st, torsion solitons interact with each
other as elastic particles. Their collision leads to elastic repulsion without phonon
emission and a change of shape (see Fig. 2.14 left). At higher velocities, the soliton
interaction becomes inelastic, and the collision is accompanied by phonon emission
(see Fig. 2.14 right). Compression solitons moving with a velocity close to the speed
of sound sl also interact as elastic particles. For other velocity values, the soliton
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Fig. 2.15 Left: Inelastic collision of two compression solitons. The velocities of the first and
second solitons are s1 D 1:04sl and s2 D �1:04sl, respectively (
3 D 1). Right: Inelastic collision
of a torsion soliton (velocity s1 D 1:2st) with a compression soliton (velocity s2 D �1:04sl). The
anharmonicity parameter is 
3 D 1

repulsion is accompanied by torsional phonon emission (see Fig. 2.15 left). Solitons
of different types interact with each other as inelastic particles. Even at velocities
close to st and sl, their collision leads to inelastic repulsion followed by phonon
emission. The greater the velocity, the more intensive the emission (see Fig. 2.15
right). This way, both types of acoustic solitons interact with each other as elastic
particles in the helix molecule. A soliton collision leads to their repulsion, followed
by nonessential phonon emission.

2.7.6 Modeling Acoustic Soliton Formation

In finite helix chains, acoustic solitons can be formed by deformation of chain end-
links. Here we model this process. Consider the chain dynamics under the torsion
deformation of three chain end-links. We integrate the equations of motion (2.72)–
(2.74) with fixed end boundary conditions �0

n � 0, � 0
n � 0, and ˇ0

n � 0 for n D
1; : : : ; N and the following initial conditions:
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Fig. 2.16 Left: Formation of the torsion soliton and two wave packets in the helix chain under
untwisting of three chain end-links at the initial time .� D 0/. The amplitude of the initial
deformation is A� D �=2 and the anharmonicity parameter is 
3 D 0. The distributions of the
relative angular deformation 'n, relative displacement �n, and energy En in the helix chain at time
� D 550 are shown. Right: Formation of a torsion soliton, compression soliton, and two wave
packets in the helix chain under untwisting of three chain end-links at the initial time .� D 0/. The
amplitude of the initial deformation is A� D �=2 and the anharmonicity parameter is 
3 D 0. The
distributions of the relative angular deformation 'n, relative displacement �n, and energy En in the
helix chain at time � D 550 are shown

�n.0/ D 0 ; �0
n.0/ D 0 ; ˇn.0/ D 0 ; ˇ0

n.0/ D 0 ; n D 1; 2; : : : ; N ;

�1.0/ D �2.0/ D �3.0/ D �A� ; �n.0/ D 0 ; � 0
n.0/ D 0 ; n D 4; : : : ; N ;

where A� is the amplitude of the torsional deformation and N D 2;000 is the
number of chain sites.

Numerical simulation of the dynamics has shown that initial deformation of
the chain end-links leads to the formation of two oscillating wave packets and a
torsion soliton in the chain for 
3 D 0 (see Fig. 2.16 left). For the deformation
amplitude A� D ��=2, the torsion soliton accumulates more than 20 % of the
initial deformation energy. For 
3 D 1, the chain end-link deformation leads to the
formation of two acoustic solitons (see Fig. 2.16 right). The torsion and compression
solitons accumulate 9 and 48 % of initial deformation energy, respectively. The rest
of the energy is spent on the formation of a wave packet of torsion solitons.
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Table 2.4 Dimensional Mk (given in proton mass) and dimensionless 	k masses of 20 amino
acid residues of an ˛-helix protein molecule

Notation Gly Ala Val Leu Ile Phe Pro

M 57 71 99 113 113 147 125

	 0.474 0.591 0.824 0.940 0.940 1.223 1.040

Notation Trp Ser Thr Met Asn Gln Cys

M 186 87 101 131 114 128 103

	 1.548 0.724 0.841 1.090 0.949 1.065 0.857

Notation Asp Glu Tyr His Lys Arg Average

M 115 129 163 137 128 156 120.15

	 0.957 1.074 1.357 1.140 1.065 1.298 1

The dynamics simulation carried out showed that the torsional deformation of the
three chain end-links can be an effective mechanism of acoustic soliton initiation in
a helix macromolecule. The effectiveness of the initiation can exceed 50 %.

2.7.7 Interaction of Solitons with Molecular Chain
Heterogeneities

All protein molecules consist of 20 types of amino acids, each with a different mass
(see Table 2.4). Therefore, in an ˛-helix chain macromolecule, the mass of each link
depends on its number. Let us consider the acoustic soliton dynamics in a chain with
a random distribution of amino acid residues.

Values of the mass fMkg20kD1 of amino acid residues are given in Table 2.4. The
average mass value is

M D 1

20

20X

kD1
Mk D 120:15mp ;

where mp is the proton mass. Introducing the dimensionless masses 	k D Mk=M ,
the equations of motion (2.72)–(2.74) of the helix chain take the form

mn

d2�n
d�2

D mn.1C �n/

�
d�n
d�

�2

�
X

jD1;2;3

�
Wj .rj;n�j /

h
1C �n � .1C �n�j / cos.j� C �n � �n�j /

i

CWj .rjn/
h
1C �n � .1C �nCj / cos.j� C �nCj � �n/

i	
;

(2.86)
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mn

d2�n
d�2

D 1

1C �n

�
� 2mn

d�n
d�

d�n
d�

C
X

jD1;2;3

h
Wj .rjn/.1C �nCj / sin.j� C �nCj � �n/

�Wj .rj;n�j /.1C �n�j / sin.j� C �n � �n�j /
i	
;

(2.87)

mn

d2ˇn
d�2

D
X

j

h
Wj .rjn/.jhC ˇnCj � ˇn/ �Wj .rj;n�j /.jhC ˇn � ˇn�j /

i
;

(2.88)

where the massmn of the nth link can take any of the 20 values f	kg20kD1 with equal
probability.

Let us consider a chain of N D 2;000 links, where the first and the last 500
chain links have equal masses: mn D 1, n D 1; : : : ; 500, n D 1;501; : : : ; 2;000.
The masses of the links with numbers 500 < n 	 1;500 are randomly chosen
from the 20 dimensionless values f	kg20kD1. To model the passage through this
inhomogeneous region of the chain by an acoustic soliton, we integrate the equations
of motion (2.86)–(2.88) with initial conditions corresponding to the acoustic soliton
centered at nc D 50.

The example of the passage of the soliton through the inhomogeneous region of
the chain is shown in Fig. 2.17. We observe that the helix chain inhomogeneities

Fig. 2.17 Passage of a compression soliton through an inhomogeneous region of the helix
chain. Dependence of energy En over the chain on time � . Initial soliton velocity s D 1:05sl,
anharmonicity parameter 
3 D 1, and transmission coefficient p D 0:557
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do not cause the soliton to collapse. The soliton only emits phonons, thus leading
to energy loss. We introduce the transmission coefficient p D Ef=Ei, where Ei

is the initial energy of the soliton and Ef is its energy after passage through an
inhomogeneous region of the helix chain. The value of p was estimated from the
results of 100 independent computational experiments.

The dependences of the transmission coefficient p on the torsion velocity and the
compression solitons are given in Tables 2.2 and 2.3, respectively. We observe that
the energy loss grows steadily with the soliton velocity. The compression soliton is
more stable with respect to the chain inhomogeneities than the torsion soliton. The
simulation shows that the acoustic compression soliton can be an effective energy
carrier in an ˛-helix macromolecule for a distance of up to 1,000 chain spacings.

2.8 Conclusion

The investigation undertaken shows that two types of acoustic solitons can exist
in a helix chain: the soliton of torsion and the soliton of compression. The torsion
soliton is a localized nonlinear packet of torsional phonons with velocity higher
than the velocity of sound of torsional phonons in the helix chain. The soliton
describes the motion of a localization region of helix untwisting along the chain
(in the soliton localization region, the helix chain stretches and its radius decreases).
The compression soliton is a localized nonlinear packet of longitudinal phonons
with velocity higher than the longitudinal sound velocity in the helix chain (in
the localization region of the soliton, the helix chain also slightly stretches and
its radius increases). The existence of the torsion soliton is associated with the
geometrical anharmonicity, while the compression soliton is defined by the physical
anharmonicity (the molecular interaction anharmonicity) of the helix chain.

Solitons interact with each other as elastic particles. Their collision leads to
reflection, followed by slight phonon emission. In a finite chain, the solitons can
be formed as a result of the torsional deformation of three chain end-links. The
effectiveness of such initiation of the soliton can exceed 50 %.

If the soliton interacts with inhomogeneities in the ˛-helix chain, this does not
cause immediate soliton collapse. The soliton only emits phonons when it passes
through the inhomogeneity, leading to energy loss. The compression soliton is more
stable with respect to chain inhomogeneities than the torsion soliton. It can serve as
an effective energy carrier for a distance of up to 1,000 chain spacings.
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Chapter 3
Topological Solitons

In general, it is not possible to isolate a molecular chain in physical systems. It
is surrounded by other chains, which form its substrate. To consider the chain
interaction with its environment, an additional potential W.x/ is introduced into
the model, describing the interaction of a chain site with its substrate (see Fig. 3.1).
If a chain in a system can have several steady states, the substrate potential must
possess the same number of minima as well. Furthermore, if the equilibrium states
are of equal energy (degenerate states), ‘state transfer’ can occur in the chain. A
topological soliton (kink, antikink) describes the maximum efficient transition of
the system from one equilibrium state to another [1, 2].

3.1 Solitons in a Chain with Substrate

We consider here a one-dimensional molecular chain arranged along the x-axis.
As previously, let a be the chain spacing, M the mass of a single link, xn
the displacement of the nth site from its equilibrium position, and V.r/ the
intermolecular potential. Then the Hamiltonian of the chain has the form

H D
C1X

nD�1

�
1

2
M Px2n C V.rn/CW.xn/

�
; (3.1)

where rn D xnC1 � xn andW.x/ is the substrate potential. The following potentials
are most frequently used as a substrate potential: the periodic sine–Gordon potential

W.x/ D W0

1

2

�
1 � cos

2�x

a

�
; (3.2)
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Fig. 3.1 Molecular chain (a) with the periodic (the Frenkel–Kontorova model) and (b) double-
well (the �-4 model) substrate potential W.x/

and the double-well �-4 potential

W.x/ D W0

�
1 �


xn
d

�2�2
: (3.3)

The model (3.1) with the periodic substrate potential (3.2) was first suggested by
Frenkel and Kontorova [3,4] to describe the dislocation dynamics. The period of the
substrate potential coincides with chain spacing a, and the potential amplitude W0

corresponds to the bound energy between a chain link and the chain substrate. The
chain has an infinite set of equivalent ground states xn � 0;˙a;˙2a; : : :. A two-
dimensional generalization of the Frenkel–Kontorova (FK) model was proposed in
[5], where the molecular chain has the shape of a plane zigzag.

The chain with the substrate �-4 potential (3.3) has only two ground states, viz.,
xn � �d and xn � d , where 2d is the distance between them. This model is
used in many areas of physics, and in particular in modeling proton transport along
hydrogen bond chains [6–10]. In this case, each chain link can be in one of the two
equivalent states: O–H� � � O or O� � � H–O, and the displacement of a proton H along
the line of the hydrogen bond O–H� � � O is described by a double-well potential.

For convenience of further calculation we introduce the following dimensionless
variables:

• For the Frenkel–Kontorova model, time � D t
p
K=M , displacement un D xn=a,

energy H D H =Ka2.
• For the �-4 model, displacement un D xn=2d and energy H D H =4Kd2.
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Here K D V 00.0/ is the rigidity of the intermolecular interaction. Then the chain is
described by the dimensionless Hamiltonian

H D
C1X

nD�1

�
1

2
u0
n
2 C U.�n/C "Z.un/

�
; (3.4)

where the dimensionless intermolecular potential U.�/ is normalized by the condi-
tion (2.12), and �n D unC1 � un are the relative displacements. The dimensionless
substrate potential has two minimum states with the same energy, separated by a
distance l from each other, and one maximum between them. For the Frenkel–
Kontorova model, the potential is

Z.u/ D 1

2

�
1 � cos.2�u/

�
; (3.5)

and for the �-4 model it has the form

Z.u/ D .1 � 4u2/2 : (3.6)

The dimensionless parameter " describes the bond energy between the chain and its
substrate.

It is also convenient to introduce the parameter g D 1=", describing the system’s
cooperativity. At g D 0, the motion of each particle does not link to the motion of
neighboring particles and is defined only by the substrate potential. The greater the
cooperativity coefficient g, the stronger the influence of neighboring particles. For
the sine–Gordon potential, the cooperativity coefficient is g D Ka2=W0, while for
the �-4 potential (3.3), g D 4Kd2=W0.

3.1.1 Stationary State of Topological Soliton

In the system considered, the chain can be in at least two equivalent ground states.
Let us consider the case when the first half of the chain is in one state and the second
is in another. This results in the emergence of a topological defect in the system. It
is localized on the boundary of two states, so it is often called a topological soliton.

To find a steady state of a topological soliton, the following minimum problem
must be solved:

E D
C1X

nD�1

�
U.�n/C "Z.un/

� �! min
:::;un;unC1;:::

; (3.7)

with the boundary conditions

lim
n!˙1 un D u˙1 ; (3.8)
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which correspond to these states. A topological soliton is called a kink if u�1 <

uC1 and an antikink if u�1 > uC1. The topological charge can also be defined as
the difference between the limit displacements q D u�1 � uC1.

The nonlinearity in this system results primarily from the substrate potential
Z.u/. Therefore, the harmonic potential of the intermolecular interaction is com-
monly used:

U.�/ D 1

2
�2 : (3.9)

As the harmonic potential is an even function, in a chain with this intermolecular
interaction potential, the properties of a kink and antikink coincide. Let us study fur-
ther a chain with this interaction potential. For the Frenkel–Kontorova model (3.4)
and (3.5), it is sufficient to consider only a soliton with the topological charge
q D ˙1, i.e., take the limiting values u�1 D 0, uC1 D �q, and u�1 D q=2,
uC1 D �q=2 for the �-4 model.

It is not possible to obtain an explicit solution of the constrained minimum
problem (3.7) and (3.8), but this problem can be solved numerically to any
preassigned accuracy. To do this, a solution of the following minimum problem
is sought using the conjugate gradient method [59]:

E D
N�1X

nD1

�
gU.�n/CZ.un/

� �! min
u2;:::;uN�1

; (3.10)

with the boundary conditions

u1 D u�1 ; uN D uC1 ; (3.11)

where E D E=" D gE is the renormalized energy. The solution of this problem
fungNnD1 will change steadily as the link number n increases. Therefore, it is
convenient to describe a steady state of the topological soliton by the position of
its centre

n D
N�1X

nD1

�
nC 1

2

�
pn

and the root-mean-square diameter

D D 1C 2

"
N�1X

nD1

�
nC 1

2
� n

�2
pn

#1=2
;

where the sequence pn D junC1 � unj specifies the distribution of the deformation
in the chain (

P
n pn D 1). In order to ensure that the boundary conditions (3.11)
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do not affect the shape of the soliton, it will suffice to solve the problem taking the
number of chain links N to be ten times greater than the soliton width D.

The substrate potentials (3.5) and (3.6) are symmetrical with respect to a local
minimum point. Therefore, the minimization problem will have two types of soliton
solution: one solution with the half-integer centre of symmetry n D n0 C 1=2

(for the �-4 model the displacements un0Ck D �un0C1�k , k D 0; 1; 2; : : :) and
another solution with the integer centre n D n0 (unn0 D 0, un0Ck D �un0�k ,
k D 1; 2; : : :). Only the solution with the half-integer centre is stable. In the absence
of cooperativity (g D 0), the solution with the half-integer centre has the form

un D u�1 ; for n D n0; n0 � 1; n0 � 2; : : : ;
un D uC1 ; for n D n0 C 1; n0 C 2; : : : :

This is the ground state with energy E D 0 and widthD D 1. The solution with the
integer centre, viz.,

un D u�1 ; for n D n0 � 1; n0 � 2; : : : ; un0 D 1

2
.u�1 C uC1/ ;

un D uC1 ; for n D n0 C 1; n0 C 2; : : : ;

is unstable. Its renormalized energy and width are E D 1 and D D 2, respectively.
The difference between these two states is �E D 1.

The solutions of the minimum problem (3.10) and (3.11) for the �-4 model at
N D 100 and g D 10 with the different types of symmetry are shown in Fig. 3.2a
(left). The solution with the half-integer centre is always the energetic ground state
for all values of the cooperativity coefficient g. Its energy E1=2 is less than that of
the steady state of the soliton with an integer centre. If in solving the minimum
problem the displacement uN=2 of a central particle is fixed, it is possible to find the
dependence of the topological soliton energy E on the position of its centre n. (For
a monotonic change in the value uN=2, the soliton centre changes. Using this, the
dependence of uN=2 on n can be obtained, and from this the dependence of E.n/.)
As can be seen from Fig. 3.2b (left), the profile of the Peierls potential E.n/ is a
sine-like periodic function with unit period. The minima of the Peierls potential
are associated with the steady states of the soliton with a half-integer centre, while
the maxima are associated with the states with an integer centre of symmetry. The
amplitude of the Peierls potential corresponds to the difference between these states,
viz., �E D E0 �E1=2.

For g D 0, we have the amplitude of the Peierls potential �E D g�E D 1,
the energy of the ground state of the topological soliton E1=2 D 0, and the width
D D 1. With an increase in the cooperativity parameter g, the renormalized energy
E and the width of the soliton grow as

p
g (see Fig. 3.2a, b right), and the amplitude

of the Peierls potential tends exponentially to zero (see Fig. 3.2c right).
The Peierls potential profile resists the motion of the topological defect [11]. The

defect is in the pinning state. If it is to start moving, it must overcome the potential



58 3 Topological Solitons

−0.5

−0.25

0

0.25

0.5

a

n

1 2

47 48 49 50 51 52 53
0

0.03

0.06 b

(E
−

E 1/
2

)/ε

n

0 5 10 15
0

5

10

15

a

gE
1/

2

0 5 10 15
0

5

10 b

D

0 5 10 15

−12

−8

−4

0

c

1/2

lg
(g

Δ 
E 

)
g

u

Fig. 3.2 Left: Steady state of the topological soliton (antikink) in the �-4 chain, " D 0:1 (g D 10)
with the integer and half-integer centres of symmetry, lines 1 and 2 (a), and the corresponding
Peierls potential profile E.n/ (b). Right: Dependencies of the renormalized energy E1=2 D gE1=2
(a), width of the steady ground state of the topological soliton D (b), and the logarithm of the
renormalized amplitude of the Peierls potential lg�E D lg.g�E/ (c) on the square root of the
cooperativity coefficient

p
g. The dependencies for the discrete �-4 model and the sine–Gordon

model are shown by solid and dashed lines, respectively

profile threshold, and the motion itself will be accompanied by phonon emission.
With an increase in system cooperativity, the pinning energy tends exponentially
to zero. As can be seen from Fig. 3.2c (right), the pinning actually disappears for
g > 100 (" < 0:01). For a strong cooperativity, the topological defect can already
move as a solitary wave with a constant subsonic velocity. Therefore, the defect is
often called the topological soliton.

3.1.2 Interaction of Topological Solitons

To describe soliton interactions, we will derive the potential of their pair interaction,
i.e., the dependence of the energy of soliton steady states on the distance between
their centres.

In the �-4 model only the opposite-sign solitons (kink and antikink) can interact.
In order to find the energy of a pair of opposite-sign solitons, the following
constrained minimum problem must be solved:

gE D
N�1X

nD1

�
1

2
g.unC1 � un/

2 CZ.un/

�
�! min

u2;:::;uN�1

W u1 D uN D �1=2 ;
(3.12)
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Fig. 3.3 Dependence of the renormalized energy gE of a pair of solitons on the distance between
their centres R (cooperativity coefficient g D 100). Line 1: dependence for opposite-sign solitons
in the �-4 chain. Lines 2 and 3: dependence for opposite-sign and same-sign solitons in the sine–
Gordon chain, respectively

for a fixed displacement of the central particle uN=2. The solution of the prob-
lem (3.12) corresponds to the homogeneous state un � �1=2 at uN=2 D �1=2
and noninteracting kink–antikink pair at uN=2 D 1=2.

Let fungNnD1 be the solution of the problem (3.12) with energy E. The distance
between solitons can be defined as

R D
NX

nD1
.un C 1=2/ :

The distance R depends continuously on uN=2. We have R < 0 for uN=2 < 0, R D 0

for uN=2 D 0, and R ! C1 as uN=2 ! 1=2 � 0.
To be specific, let us take the cooperativity parameter g D 100 (" D 0:01). The

dependence of the renormalized energy gE of two opposite-sign solitons in the �-4
chain on the distance R between them is shown in Fig. 3.3. As can be seen from this
figure, the soliton interaction is attractive. The energy is E D 0 at R D 0, and it
tends monotonically to the doubled energy of the isolated steady state asR ! C1,
and to 1 as E % C1. This form of the interaction potential is due to the inability
of topological solitons in the �-4 chain to pass through each other – they can only
either recombine or repel one another other.

In the sine–Gordon model, both opposite-sign and same-sign solitons can
interact. To find the energy of opposite-sign solitons, one must solve the constrained
minimum problem (3.12) with boundary conditions u1 D uN D 0. The interaction
potential is shown in Fig. 3.3. This potential is a finite symmetrical function with
minimum at R D 0. Under these circumstances, opposite-sign solitons can already
pass through each other. To find the energy of same-sign solitons, it is essential to
solve the constrained minimum problem (3.12) with the boundary conditions u1 D 0
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and uN D 2. Fixing the displacement of soliton centres, the dependence E.R/ can
be obtained. As can be seen from Fig. 3.3, the energy tends steadily to infinity as
R & 0. Therefore, the interaction of same-sign solitons corresponds to their mutual
repulsion.

3.1.3 Soliton Dynamics

The Hamiltonian (3.4) gives the equations of motion

un
00 D unC1 � 2un C un�1 � "Zu.un/ ; n D 0;˙1;˙2; : : : : (3.13)

For strong cooperativity, the relatively broad soliton justifies the use of the
continuum approximation. We seek a soliton solution of (3.13) in the form of a
solitary wave un.�/ D u.
/, smoothly dependent on n, where 
 D n � s� is the
wave variable and s is the wave velocity. For the �-4 and sine–Gordon models, the
equations of motion in the continuum approximation have an explicit solution for
s < 1. In general, it is convenient to search for a soliton solution numerically. For
this purpose, one must move from a continuous derivative with respect to time to
a discrete derivative with respect to n: u0

n.�/ D �s.unC1 � un/. Then, a soliton
solution will correspond to the minimum of the discrete Lagrangian

L D
X

n

�
1

2
.1 � s2/.unC1 � un/

2 C "Z.un/

�
:

To find a soliton form, one must solve the minimum problem

LD
N�1X

nD1

�
1

2
.1 � s2/.unC1 � un/

2 C "Z.un/

�
�! min

u2;:::;uN�1

W u1 D u�1; uN D uC1 :

(3.14)

For strong cooperativity, the topological soliton has the subsonic velocity spectrum
0 	 s < 1. When the velocity increases (s % 1), the soliton energy increases
steadily (E % 1), while its width decreases monotonically (D & 1).

The interaction of opposite-sign solitons in the continuous �-4 model has been
treated in numerous studies [12–20]. The interaction of kink and antikink in their
collision was first investigated numerically in [12]. It was shown that the soliton
collision at velocity s D 0:1 leads to formation of a bound state (breather) which
is a weakly decaying, autolocalized nonlinear vibration. An analytical expression
describing the breather dynamics with appropriate accuracy was found in [13], and
its half-life was estimated to be such that it could be referred to as a long-lived
state. The breather forms at a collision velocity s not exceeding a certain threshold
velocity sc. For s > sc, there is inelastic reflection of solitons, accompanied by
phonon emission.
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Further study [14–20] showed that the interaction of opposite-sign solitons
exhibits a resonant behavior. In the value range s < sc, there exist regions of
velocities in which solitons are inelastically reflected. These regions interchange
with regions of velocities for which the soliton collision leads to breather formation.
An analysis of this phenomenon was carried out in [20]. For s < sc, solitons
converge and diverge several times before they completely diverge (the number of
collision resonances). This allows us to consider resonance interaction of solitons at
certain collision velocities. The resonance phenomenon is also observed in the case
of the modified sine–Gordon equation [21] and double sine–Gordon equation [22].

For strong cooperativity of the intermolecular interaction, all these phenomena
are observed in the discrete �-4 model as well. To illustrate this, we consider
a soliton collision in the �-4 chain for the cooperativity coefficient g D 100

(" D 0:01). We integrate the equations of motion (3.13) with n D 1; 2; : : : ; N ,
taking the initial condition which corresponds to a kink–antikink pair moving
towards each other with velocity s, and introducing viscous friction at the chain
ends to ensure absorption of emitting phonons (thereby excluding the influence of
boundary conditions on the topological soliton dynamics). Inelastic reflection of
solitons is shown in Fig. 3.4 (left). As can be clearly seen in this figure, at velocity
s D 0:3, the soliton collision leads to their reflection, followed by excitation of
internal vibrations and slight phonon emission. As a result of energy loss, their
velocities decrease (after collision they already diverge with velocities s D 0:16).

Therefore, the soliton collision is accompanied by energy loss through excitation
of the soliton’s internal modes. As can be seen from the static interaction potential
E.R/ of the solitons (see line 1 in Fig. 3.3), at small collision velocities, the rest
of the energy is not sufficient to overcome the interaction energy of opposite-sign
solitons. Indeed, for s D 0:05, the collision already causes the formation of a
bound state of solitons, a low frequency breather. As Fig. 3.4 (right) illustrates, the
collision itself is accompanied by energy loss through intensive phonon emission.

Fig. 3.4 Left: Nonelastic reflection of opposite-sign solitons in the �-4 chain (" D 0:01). The
soliton velocity is s D 0:3 before the collision and s D 0:16 afterwards. Viscous friction at the
chain ends was introduced in order to ensure absorption of emitting phonons. Right: Formation of
the low frequency breather upon the collision of opposite-sign topological solitons in the �-4 chain
(" D 0:01). The soliton velocity is s D 0:05. The chain length is N D 200. Viscous friction at the
ends of the chain was introduced in order to ensure absorption of emitting phonons
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After the collision, long-lived localized nonlinear vibrations form in the chain. The
frequency of this vibration lies below the lower limit of the frequency spectrum of
linear vibrations (phonons) in the chain and approaches this limit when the vibration
damps. Low frequency breathers, such as topological solitons, can move along the
chain with subsonic velocities.

Note that, in the �-4 chain, in addition to the low-frequency breathers, there exist
discrete high-frequency breathers – the highly localized vibrations of the chain. The
frequencies of these nonlinear vibrations lie above the upper limit of the phonon
frequency spectrum and their energy significantly exceeds the interwell barrier
height of the �-4 potential. In the �-4 model, the discrete breather is essentially
a localized high-frequency vibration of a single particle in the substrate potential
with energy E � ". The existence of the breathers is associated with positive
anharmonicity of the substrate potential for the deformation junj > 1. In the
sine–Gordon model, for which the potential has a negative anharmonicity, only the
low-frequency breathers exist.

The discrete breathers, or intrinsic localized modes, are localized, periodic stable
vibrations of the nonlinear discrete system. Intensive investigation of the discrete
breathers began in 1988 with the pioneering work of Sievers and Takeno [23]. The
existence of discrete breathers is ensured by a theorem proven in [24, 25], as well
as a large number of numerical studies (see the review [26]). Today, their role in
the mechanisms of energy transfer and relaxation in molecular systems has become
quite clear [27–29].

The continuous sine–Gordon model is a completely integrable system. All
topological solitons have a subsonic band of velocities and elastically interact with
each other without any changes to their shapes and velocities, as well as not emitting
phonons. Opposite-sign solitons pass through one another, while same-sign solitons
reflect from each other (this interaction scenario corresponds to the shape of the
soliton interaction potential, see Fig. 3.3). There exist different discretizations of the
continuous sine–Gordon model [30,31] which are also integrable systems. However,
the discrete sine–Gordon chain is not an integrable system for any values of the
cooperativity coefficient [11]. In this case, the Peierls potential always exists.

Here, we choose the amplitude of the substrate parameter " D 0:01, correspond-
ing to a strong cooperativity g D 100, for which solitons move along the chain
virtually without any phonon emission. At velocity s D 0:5, as in the continuous
model, opposite-sign solitons pass through one another without any changes to their
shapes and velocities (see Fig. 3.5 left). The system discreteness manifests itself in
an inelastic interaction of solitons at small velocities. At velocity s D 0:02, soliton
collision already leads to the formation of breathers (see Fig. 3.5 right). Same-sign
solitons repel each other, so their collision causes elastic reflection (see Fig. 3.6).

Note that, in a thermalized chain, the properties of the soliton interaction can
change. In fact, in the thermalized �-4 chain, an indirect reflection of opposite-sign
solitons occurs through the thermal phonons and the resulting interaction has longer
range than the static attraction [32]. As a result, in the thermalized chain, opposite-
sign solitons attract each other only at short range and repel one another at longer
ranges. In a chain with weak cooperativity, the Peierls potential profile prevents the
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Fig. 3.5 Left: Collision of same-sign topological solitons in the sine–Gordon chain (" D 0:01).
The soliton velocity is s D 0:5 and the length of the chain n D 400. Right: Formation of a low-
frequency breather as a result of the collision of opposite-sign solitons in the sine–Gordon chain
(" D 0:01). Velocity of the soliton s D 0:02 and length of chain n D 400

Fig. 3.6 Inelastic reflection of topological solitons of opposite signs in the sine–Gordon chain
(" D 0:01). Soliton velocity s D 0:5 and length of chain N D 400

solitons from approaching each other. In this case, the interaction of opposite-sign
solitons can lead to the formation of soliton bound states [33].

3.1.4 Supersonic Regimes of Topological Soliton Motion

In the absence of anharmonicity of the site–site interaction, the topological solitons
of opposite signs possess the same properties: they can only have a continuous
supersonic velocity spectrum. With the appearance of cubic anharmonicity in
the site–site interaction, the situation changes dramatically. The properties of the
topological solitons of opposite signs become different. If the site–site interaction
has positive anharmonicity, i.e., ˛ D �U .3/.0/ > 0, the negative soliton (kink)
is narrower than the positive soliton (antikink). The pinning energy of the negative
soliton is greater, while its mobility is less than that of the positive soliton. For strong
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cooperativity and increased anharmonicity, the velocity spectrum of the negative
soliton becomes narrower and the spectrum even disappears when the velocity
approaches a threshold, whereas the positive soliton always has the continuous
subsonic velocity spectrum [34]. Note that the lack of symmetry in the properties of
the solitons of opposite signs is entirely determined by the lack of symmetry in the
site–site interaction, so the quartet anharmonicity does not cause any difference in
the soliton properties.

The positive soliton can also travel at supersonic velocity [35]. The supersonic
spectrum has a discrete structure [36, 47]. There exists only a finite number of
supersonic velocity values s1 > s2 > : : : > sN , for which the antikink motion
is not accompanied by phonon emission. The supersonic kink, corresponding to the
nth velocity value sn, is a bound state of n acoustic solitons, and in this case the sum
of their amplitudes must coincide with the width of the substrate potential barrier.
The number N of supersonic velocity values increases when the anharmonicity
parameter of the site–site interaction is increased.

3.2 Solitons in an Anharmonic Chain

Let us consider how the properties of a topological soliton are modified when the
anharmonicity of the site–site interaction is changed. The chain model (3.4) with
a harmonic potential for the site–site interaction U.�/ and the periodic substrate
potential (3.5) was first suggested by Frenkel and Kontorova [3, 4] to describe
dislocation dynamics. A chain model with the FPU substrate potential (3.5) is a
natural generalization of the Frenkel–Kontorova model.

3.2.1 Stationary Soliton State

The Hamiltonian of the chain can be written in the dimensionless form

H D
C1X

nD�1

�
1

2
u0
n
2 C gU.�n/C .1 � cos un/

�
; (3.15)

where the prime denotes differentiation with respect to the dimensionless time
� D t

p
2�2W0=Ma2, g D a2K=2�2W0 is the dimensionless cooperativity param-

eter, U.�/ is the dimensionless potential of the site–site interaction, normalized
according to the condition d2U=d�2j�D0 D 1, and �n D unC1 � un is the relative
displacement. We take the potential in the form

U.�/ D 1

2
�2 � 1

3
˛�3 C 1

4
ˇ�4 ; (3.16)
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where ˛ � 0 and ˇ � 0 are the nonlinearity parameters. For ˇ D 0, the potential has
only the cubic anharmonic term (the FPU-˛ potential), while for ˛ D 0, it includes
the quartet anharmonic term alone (the FPU-ˇ potential).

The chain under consideration has infinitely many ground states fun D
2�ngC1

nD�1. We focus on the case where the first half of the chain is in one state
and the second is in another. As a result, a topological defect (soliton) emerges in
the system, localized on the boundary of two states. To find the stationary state of
the topological defect, one must solve the minimum problem

E D
C1X

nD�1

�
gU.�n/C .1 � cos un/

� �! min
:::;un;unC1;:::

; (3.17)

with the boundary conditions

lim
n!˙1 un D u˙1 ; (3.18)

which correspond to these two states. A topological defect (soliton) is called a
kink if u�1 > uC1 and an antikink if u�1 < uC1. A kink is the soliton of
chain compression and an antikink is the soliton of chain extension. The topological
charge of a soliton can be defined as the difference between the limit displacements,
viz., q D .uC1 � u�1/=2� . Thus, kink and antikink have negative q D �1 and
positive q D C1 charges, respectively.

It is impossible to obtain an analytical solution of the minimum problem (3.17).
A comprehensive review of analytical methods is given in the book by Braun and
Kivshar [37, 38]. An analytical study can be conducted only by using approximate
methods. For strong cooperativity .g � 1/, the continuum approximation can
be used, while in the case of weak cooperativity, the variational approach is
applicable. Meanwhile, explicit results can be obtained only numerically by solving,
to any given accuracy, the constrained minimum problem (3.17) with the boundary
condition (3.18). Using the method of conjugate gradients [59], we seek a solution
of the minimum problem

E D
N�1X

nD1

�
gU.�n/C .1 � cos un/

� �! min
u2;:::;uN�1

; (3.19)

with the boundary conditions

u1 D u�1 ; uN D uC1 : (3.20)

The solution of this problem depends monotonically on n. Therefore, for the
solution (the stationary state of a topological soliton), the position of the soliton
centre can be determined as
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n D
N�1X

nD1

�
nC 1

2

�
pn ;

and its diameter as

D D 1C 2

"
N�1X

nD1

�
nC 1

2
� n

�2
pn

#1=2
;

where the sequence pn D junC1 � unj=2� defines the distribution of chain
deformation (

P
n pn D 1). In order to avoid the boundary conditions (3.20)

influencing the soliton shape when we solve the minimum problem (3.19), it suffices
to take the number of chain links N to be ten times the soliton width D.

Let us consider a chain with the FPU-ˇ potential, i.e., with cubic nonlinearity
parameter ˛ D 0. This potential is an even function, so the deformation energy
will depend only on the deformation amplitude, but not the deformation sign. As
a result, a kink and antikink will possess the same properties. To be specific, we
consider here only the kink when u�1 D 2� and uC1 D 0.

The periodic potential of the substrate is a symmetric function with respect to
all of its maxima. Thus, the maximum problem has two types of soliton solutions:
the solution with a half-integer centre of symmetry n D n0 C 1=2 and the solution
with an integer centre n D n0 (un0 D � , un0Ck D 2� � un0�k , k D 1; 2; : : :). In
the absence of cooperativity (g D 0), the solution with a half-integer center has the
form

un D 2� ; for n D n0; n0 � 1; n0 � 2; : : : ;
un D 0 ; for n D n0 C 1; n0 C 2; : : : :

This solution is the ground state with energy E D 0 and widthD D 1. The solution
with an integer centre, viz.,

un D 2� ; for n D n0 � 1; n0 � 2; : : : ; un0 D � ;

un D 0 ; for n D n0 C 1; n0 C 2; : : : ;

is unstable. Its energy and width are E D 1 and D D 2, respectively. The energy
difference between these states is �E D 1.

In the case of the FK model, i.e., when ˛ D ˇ D 0, for any cooperativity g � 0,
only the solution with a half-integer centre is stable. For the FPU model, this state
can already be unstable and the solution with an integer centre can become a stable
solution.

The solutions of the minimum problem (3.19) and (3.20) with different types of
symmetry and N D 100, g D 1, ˛ D 0, and ˇ D 1 are shown in Fig. 3.7. If in
solving the minimum problem we fix the displacement of the central particle uN=2,
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Fig. 3.7 Stationary state of
the topological soliton (kink)
in the chain with g D 1,
˛ D 0, and ˇ D 1. Line 1:
half-integer centered soliton
(energy E D 10:042 585 94

and width D D 4:50). Line 2:
integer centered soliton,
n D 51 (E D 10:042 585 89

and D D 4:50) 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
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Fig. 3.8 Peierls potential
profile E.n/�E0 for the kink
in the chain with ˛ D 0 and
ˇ D 2 when the cooperativity
parameter has value g D 0:34

(a), g D 0:348 333 714 (b),
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we can find the dependence of the energy of the topological solitonE on the position
n of its centre. Indeed, with a monotonic change in the value of uN=2, the soliton
centre n also changes monotonically. Using this fact, we can obtain the dependence
of uN=2 on n and thus the dependence E.n/. As can be seen from Fig. 3.8, the
Peierls potential E.n/ � E0 is a sine-like function with unit period equal (E0 is
the kink ground state energy). The minima of the Peierls potential correspond to the
stationary state of the kink, while the maxima correspond to its unstable state. When
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Fig. 3.9 Left: Dependence of the energy E (a) and width D (b) of the stationary kink on the
square root of the cooperativity parameter g1=2 for nonlinearity values ˛ D 0 and ˇ D 0 (lines
1 and 6), 0.2 (lines 2 and 7), 0.5 (lines 3 and 8), 1 (lines 4 and 9), 2 (lines 5 and 10). Right: The
dependence of the logarithm of the Peierls potential amplitude ln� (a) and the logarithm of the
lowest eigenfrequency of the kink ln! (b) on the square root of the cooperativity parameter g1=2

for nonlinearity values ˛ D 0 and ˇ D 0 (lines 1 and 6), 0.2 (lines 2 and 7), 0.5 (lines 3 and 8), 1
(lines 4 and 9), and 2 (lines 5 and 10)

the nonlinearity ˇ D 2 and the cooperativity g D 0:34, only the kink with a half-
integer centre is stable, and when g D 0:36, the kink with an integer centre becomes
stable. At an intermediate value g D 0:348 333 714, both types of stationary states
are stable and they have the same energy, although in this case the Peierls potential
amplitude is �E D max jE.n/ �E0j > 0.

Figure 3.9 (left) shows the dependence of the energy E and width D of the
stationary kink on the cooperativity parameter g, calculated for various values of
the nonlinearity parameter ˇ. As can be seen in this figure, for all values of ˇ � 0,
the energy and width of the kink increase steadily as

p
g with increasing g. The

coefficients of proportionality

e1 D lim
g!1

Ep
g
; d1 D lim

g!1
Dp
g
;

are virtually independent of the nonlinearity parameter ˇ. Only the following terms
in the asymptotic expansion depend on ˇ :

e2 D lim
g!1.E � e1pg/ ; d1 D lim

g!1.D � d1pg/ :
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The energy and width of the topological soliton increase steadily with increasing
nonlinearity.

The dependence of the pinning energy �E on the model parameters g and ˇ
is more complex (see Fig. 3.9 right). When g D 0, we have the amplitude of
the Peierls potential �E D 1, the ground state energy of the topological defect
E1=2 D 0, and its width D D 1. Increasing the cooperativity parameter g, the
amplitude of the Peierls potential tends exponentially to zero (see Fig. 3.9a right).
As can be seen in this figure, for weak nonlinearity ˇ 	 0:5, the amplitude �E
decreases monotonically. In this case, the stationary state with half-integer centre
always remains as the (stable) ground state. The situation changes for stronger
nonlinearity. In fact, the amplitude �E has local minima at g D g1, g2, and g3
for ˇ D 1, where

g1 D 0:988 654 < g2 D 1:598 386 < g3 D 3:762 3 ;

and minima at g D g1; : : : ; g6 for ˇ D 2, where

g1 D 0:348 333 714 < g2 D 0:579 470 53 < g3

D 1:065 449 51 < g4 D 1:844 469 < g5 D 3:166 < g6 D 5:44 :

Under these circumstances, the stationary state of the kink with a half-integer centre
already becomes the ground state at 0 	 g < g1, g2 < g < g3, g4 < g < g5; : : :

and the state with an integer centre becomes the ground state at g1 < g < g2,
g3 < g < g4; : : : At g D gk , k D 1; 2; : : : both states are stable and have the
same energy. As a result, a sharp drop in the amplitude of the Peierls potential,�E,
take places and its period decreases by a factor 2 (see Fig. 3.8). However, the Peierls
potential never disappears completely: �E > 0 at all values ˇ � 0 and g � 0.

The Peierls potential profile prevents the motion of the topological defect [11].
The defect is in the pinning (immobile) state. For it to start moving, it must overcome
the potential threshold, and the motion itself is accompanied by phonon emission. If
the initial kinetic energy does not exceed the potential amplitude, instead of straight
motion, the defect will oscillate relative to a corresponding minimum of the Peierls
potential. The frequency ! of this oscillation is the lowest eigenfrequency of the
defect, which is directly proportional to the potential amplitude (see Fig. 3.9b right).
For strong cooperativity g > 10, pinning practically vanishes, and the topological
defect can move as a solitary wave with constant subsonic velocity. Therefore, the
defect is often called a topological soliton.

In the FPU-˛ model (˛ > 0), there is symmetry breaking between kink and
antikink. This was observed for the first time by Milchev and Markov [39, 40]
(see also [41]). In this case, the kink and antikink have different shapes, energies,
and widths. This effect results from the fact that, when ˛ > 0, the interaction of
neighboring particles in a kink localization region (in a region of local compression)
is stronger than the interaction in an antikink localization region (in a region of
local extension). The dependencies of the kink energy E and width D on the



70 3 Topological Solitons

0 1 2 3
0

5

10

15

20

25

E

a1

2

3

4

5

0 1 2 3
0

2

4

6

8

10

g1/2

D

b
6

7

8

9

10
0 1 2 3

−25

−20

−15

−10

−5

0

ln
Δ E

1

2

3

4

5

a

0 1 2 3
−15

−10

−5

0

1/2

ln
ω

6

7

8

9

10

b

g

Fig. 3.10 Left: Dependence of the energy E (a) and width D (b) of the stationary kink on the
square root of the cooperativity parameter g1=2 for nonlinearity values ˇ D 0 and ˛ D 0 (lines
1 and 6), 0.2 (lines 2 and 7), 0.5 (lines 3 and 8), 1 (lines 4 and 9), and 2 (lines 5 and 10). Right:
Dependence of the logarithm of the Peierls potential amplitude ln� (a) and the logarithm of the
lowest eigenfrequency of the kink ln! (b) on the square root of the cooperativity parameter g1=2

for nonlinearity values ˇ D 0 and ˛ D 0 (lines 1 and 6), 0.2 (lines 2 and 7), 0.5 (lines 3 and 8), 1
(lines 4 and 9), and 2 (lines 5 and 10)

cooperativity parameter g are shown in Fig. 3.10 (left) for different values of the
nonlinear parameters ˛ > 0 and ˇ D 0. As can be clearly seen in this figure, the
pinning energy �E and the frequency ! decrease exponentially with increasing
values of

p
g. The greater the value of the nonlinearity parameter ˛, the faster it

decreases. For all values of g � 0 and ˛ � 0, only the stationary state of the kink
with a half-integer centre is stable.

Let us consider now the general case of the FPU model with parameters
˛ D 1 and ˇ D 1. As can be seen in Fig. 3.11 (left), the kink energy and
width are greater than those of the antikink. They increase proportionally top
g with increasing cooperativity, and the proportionality coefficient in the

case of kink is greater for the antikink. The dependencies of the pinning
energy �E and the lowest eigenfrequency ! of the topological defect on
the parameter g for the kink and antikink differ significantly (Fig. 3.11
right). The values of �E and ! for the kink decrease exponentially with
increasing

p
g, and the ground state always corresponds to the kink with a

half-integer centre. In the case of the antikink, �E and ! decrease exponentially
much more slowly. This decrease is not monotonic. There are three local minima at
g D g1, g2, and g3 (g1 D 0:342 996 < g2 D 0:821 412 < g3 D 2:834 920 6). The
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Fig. 3.11 Left: Dependence of the energy E (a) and width D (b) of the kink (lines 1 and 3) and
antikink (lines 2 and 4) on the square root of the cooperativity parameter g1=2 for nonlinearity
values ˛ D 1 and ˇ D 1. Right: Dependence of the logarithm of the Peierls potential amplitude
ln� (a) and the logarithm of the lowest eigenfrequency ln! (b) of the kink (lines 1 and 3) and
antikink (lines 2 and 4) on the square root of the cooperativity parameter g1=2 for nonlinearity
values ˛ D 1 and ˇ D 1

stationary state of the antikink with a half-integer centre is the ground state only if
0 	 g 	 g1 and g2 	 g 	 g3. If g1 	 g 	 g2 and g � g3, the ground state will be
the state with an integer centre.

3.2.2 Vibrational Eigenmodes of a Topological Soliton

The symmetry between kink and antikink breaks once the cubic anharmonicity is
taken into account [37, 42]. In this case, the topological soliton shape changes and
additional vibrational eigenmodes can appear [43]. Let us consider these vibrational
eigenmodes. For this purpose we find the frequency spectrum of the vibrational
eigenmodes of a kink and antikink and analyse the stability of these localized
vibrations.

The Hamiltonian (3.15) gives the equations of motion

Run D gF.�nC1/ � gF.�n/ � sin un ; n D 0;˙1;˙2; : : : ; (3.21)
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where

F.�/ D dU

d�
D � � ˛�2 C ˇ�3 :

When ˛ D ˇ D 0, (3.21) in the continuum approximation has the form of the sine–
Gordon equation. For small displacements junj � 1, one can neglect all anharmonic
terms. Then (3.21) becomes linear:

Run D g.unC1 � 2un C un�1/ � un ; n D 0;˙1;˙2; : : : ; (3.22)

and its solution can be represented as a sum of linear waves

un.t/ D A exp i.qn � !t/ ;

where A and q 2 Œ��; �� are the wave amplitude and wavenumber, respectively,
and the wave frequency is

!.q/ D
p
2g.1 � cos q/C 1 : (3.23)

It follows from the dispersion equation (3.23) that the frequency spectrum of small
amplitude vibrations (phonons) comprises a band Œ!.0/; !.�/�, where !.0/ D 1

and !.�/ D p
4g C 1 are the minimum and maximum frequencies, respectively.

3.2.3 Numerical Method for Finding the Vibrational
Eigenmodes

In order to find a stationary state of the topological soliton, one must solve the
minimum problem (3.19) with the boundary conditions (3.20), viz., u�1 D 2� and
uC1 D 0 for the kink and u�1 D 0 and uC1 D 2� for the antikink.

Let fu0ngNnD1 be the solution of the problem (3.19), corresponding to a stationary
topological soliton. To find its vibrational eigenmodes, we represent the solution
of the equations of motion in the form of a small perturbation of the stationary
topological soliton: un.t/ D u0n C vn.t/, where the perturbation jvnj � 1, n D
1; : : : ; N . Substituting this relationship into the equations of motion of a finite chain
of N links with fixed ends, we get the linear equations

Rvn D bn�1vn�1 C anvn C bnvnC1 ; n D 2; 3; : : : ; N � 1 ; (3.24)

where

an D �gU 00.u0nC1 � u0n/ � gU 00.u0n � u0n�1/C cos.u0n/ ; bn D gU 00.u0nC1 � u0n/ :
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The search for vibrational eigenmodes of the stationary topological soliton is
thereby reduced to finding the eigenvalues and eigenvectors of the symmetric
tridiagonal matrix:

B D

0

BBBBB@

a2 b2 0 : : : 0 0 0

b2 a3 b3 : : : 0 0 0
:::

:::
:::
: : :

:::
:::

:::

0 0 0 : : : bN�3 aN�2 bN�2
0 0 0 : : : 0 bN�2 aN�1

1

CCCCCA
:

Let � and �� D . 2;  3; : : : ;  N�1/� be the eigenvalue and eigenvector corre-
sponding to the matrix B (

P
n  

2
n D 1). Then the solution for the system of linear

equations (3.24) has the form

vn.t/ D �A n exp.�i!t/ ; n D 2; 3; : : : ; N � 1 ; (3.25)

where A > 0 and ! D p�� are the amplitude and frequency of the vibration,
respectively. Let us define the centre of the vibration as

n D
N�1X

nD2
 2
n ;

and its diameter

D D 1C 2

"
N�1X

nD2
.n � n/2 2

n

#1=2
:

We treat the vibration as localized if its diameterD < N=4. The localized vibrations
correspond to the vibrational eigenmodes of the soliton and the nonlocalized
vibrations are referred to as phonons of the chain.

3.2.4 Vibrational Eigenmodes of a Soliton in the FPU-ˇ Model

In the FK model, i.e., when ˛ D 0 and ˇ D 0, the topological solitons have
only the low-frequency vibrational eigenmodes. In addition to the trivial vibration,
corresponding to the translation mode (vibration of the soliton centre around the
minimum of the Peierls profile), in the narrow interval of the cooperativity parameter
0:29 	 g 	 1:05, a high-frequency vibration exists near the low limit of the
frequency spectrum (see Fig. 3.12). This vibration was investigated in detail in [44].
When anharmonicity ˇ > 0 appears, this interval quickly begins to get narrower (see
Fig. 3.12), and when ˇ 
 0:007, it completely vanishes (for nonlinearity parameter
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Fig. 3.12 Dependence of the second eigenfrequency of the kink on the cooperativity parameter g
for ˛ D 0 and ˇ D 0, 0.001, 0.003, and 0.004 (lines 1–4). The shaded area shows the phonon
frequency spectrum
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Fig. 3.13 Left: Dependence of the eigenfrequencies ! of the stationary topological soliton on the
parameter of site–site interaction nonlinearity ˇ for cooperativity g D 1 in the FPU chain with
˛ D 0. The shaded area shows the phonon frequency spectrum. Line 1 represents the dependence
of the lowest eigenfrequency, lines 2–8 show the dependence of the rest of eigenfrequencies. Right:
Profiles of the vibrational eigenmodes with frequencies ! D 3:98 (a), 3.30 (b), 2.77 (c), 2.40 (d),
and 0.00045 (e). Profile of the corresponding kink (f) in the FPU model with parameters g D 1,
˛ D 0, and ˇ D 1

ˇ � 0:007, there is only a single eigenfrequency in the low-frequency region 0 	
! < 1 which corresponds to the translational mode). With increasing nonlinearity,
the high-frequency vibration eigenmodes appear. These lie above the phonon
frequency spectrum. Both the number of these eigenfrequencies and their values
increase steadily as the parameter ˇ increases, while the lowest eigenvalue tends to
zero (see Fig. 3.13 left). The profile of the vibration eigenmodes (corresponding to
eigenvectors  n) and the profile of the kink are shown in Fig. 3.13 (right). The width
of the vibration decreases monotonically with increasing frequency. The number
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Fig. 3.14 Left: Ratio of the high eigenfrequencies ! of the topological soliton to the maximum
frequency !1 of the phonon spectrum as a function of the cooperativity parameter g in the FPU
chain with parameters ˛ D 0 and ˇ D 1. Right: Dependence of the eigenfrequencies ! of the
stationary kink on the parameter ˛ of site–site interaction nonlinearity, for cooperativity g D 1 in
the FPU chain with ˇ D 0. The shaded area shows the phonon frequency spectrum. Line 1 shows
the dependence of the lowest eigenfrequency and lines 2–10 depict the dependencies for the rest
of the eigenfrequencies

of eigenfrequencies also increases with increasing cooperativity parameter g (see
Fig. 3.14 left).

3.2.5 Vibrational Eigenmodes of a Kink in the FPU-˛ Model

In the FPU chain with cubic anharmonicity, ˛ > 0 and ˇ D 0, the properties
of the kink and antikink differ significantly. For ˇ D 0 and ˛ > 0, the site–site
interaction potential (3.16) is no longer a function bounded from below (the point
� D 0 here is only a local minimum). When extended, this chain may break, so the
solitons of extension, i.e., antikinks, can cause chain breakdown. In this connection,
we consider only the soliton of compression (kinks). In the case of both the FPU-
˛ and FPU-ˇ models in a range of frequencies lying below the phonon frequency
spectrum, the stationary kink can have two eigenfrequencies only for very weak
nonlinearity ˛ < 0:39. When ˛ � 0:39, in this range, the kink has only the trivial
(translational) mode. The frequency of this mode is proportional to the amplitude of
the Peierls potential and so tends exponentially to zero with increasing cooperativity
parameter g. An increase in the nonlinearity parameter leads to the appearance
of the high-frequency vibrational eigenmodes with frequencies lying above the
phonon frequency spectrum. With increasing ˛, the number of these frequencies
rises, and the frequencies themselves increase steadily (see Fig. 3.14 right). The
number of eigenfrequencies also increases with rising cooperativity parameter g
(Fig. 3.15 left).
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Fig. 3.15 Left: Ratio of the eigenfrequencies ! of the topological soliton to the maximum
frequency !1 of the phonon spectrum as a function of the cooperativity parameter g in the FPU
chain with parameters ˛ D 1 and ˇ D 0. Right: Ratio of the high eigenfrequencies ! of the
antikink (a) and kink (b) to the maximum frequency !1 of the phonon spectrum as a function of
the cooperativity parameter g in the FPU chain with parameters ˛ D 1 and ˇ D 1

3.2.6 Soliton Vibrational Eigenmodes in the Mixed FPU-˛-ˇ
Model

Here we consider the FPU chain with nonlinearity parameters ˛ D 1 and ˇ D 1.
The site–site interaction potential (3.16) is bounded from below and has only a
single minimum at the point � D 0. Opposite-sign topological solitons can exist
simultaneously in this chain. The properties of the kink and antikink differ from
each other. The kink always has a broader profile, with a large number of high-
frequency vibrational eigenmodes. The number of vibrational eigenmodes increases
steadily with increasing cooperativity parameter g (see Fig. 3.15b right). For weak
cooperativity, the antikink also has high-frequency vibrational eigenmodes, but
their number decreases with increasing g (see Fig. 3.15a right). With increasing
cooperativity, these frequencies can even overlap with the phonon spectrum. For
strong cooperativity g > 14:5, these frequencies vanish and the antikink (as
opposed to the kink) has only a single trivial low-frequency translational mode.

3.2.7 Modeling Vibrational Eigenmodes

Numerical modeling of the vibrational eigenmodes of topological solitons shows
that they are exactly linear. To check this, we modeled the dynamics of a finite
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function of time t in the FPU chain with ˛ D 1, ˇ D 1, and cooperativity parameter g D 1

chain with fixed ends. The following equations were integrated numerically:

Run D gF.�nC1/ � gF.�n/ � sin un ; n D 2; 3; : : : ; N � 1 ; (3.26)

with initial condition

un.0/ D u0n ; Pun.0/ D A n ; n D 1; 2; : : : ; N; (3.27)

where u1 � u01 and uN � u0N , N is the number of chain links, fu0ngNnD1 is the sta-
tionary soliton profile which was obtained by solving the minimum problem (3.19),
f ngNnD1 is the normalized eigenvector corresponding to the eigenfrequency of the
topological soliton, and A > 0 is the amplitude of the vibration. (The energy of
the excited soliton (3.27) will be equal to E0 C A2=2, where E0 is the energy of
its stationary state.) To model the dynamics of the excited state of the soliton in
an infinite chain, we introduce viscous friction at the ends of the chain in order to
ensure absorption of phonons emitted by the soliton.

Numerical integration of (3.26) has shown that, at a sufficiently high amplitude
A, the vibration is accompanied by phonon emission which almost vanishes
upon reaching a certain excitation energy threshold (see Fig. 3.16). Under these
circumstances, the emission is already absent and the oscillation frequency does
not depend on the amplitude, i.e., the vibration is linear. Thus, an increase in the
amplitude of vibrational eigenmodes does not lead to the formation of nonlinear
vibrations. The excess energy is spent on phonon emission until the vibration
becomes completely linear.

The contribution of the vibrational eigenmodes of the topological soliton to
the frequency spectrum of thermal vibrations can be estimated by considering the
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Langevin equation

Run D gF.�nC1/� gF.�n/� sin un C 
n � 
 Pun ; n D 2; 3; : : : ; N � 1 ; (3.28)

with initial condition

un.0/ D u0n ; Pun.0/ D 0 ; n D 1; 2; : : : ; N ; (3.29)

where fu0ngnnD1 is the profile of the stationary topological soliton, 
 D 1=tr is the
friction coefficient, and tr is the relaxation time. The random forces 
n describing
the interaction of the chain sites with a thermal bath have normal distribution and
their correlation functions are

˝

n.t1/
m.t2/

˛ D 2
T ınmı.t1 � t2/ ;

where T is the dimensionless temperature of the thermal bath.
The equations of motion (3.28) with the initial conditions (3.29) were integrated

numerically by the standard fourth-order Runge–Kutta method with a constant
integration step �t [45]. In the numerical procedure, the lagged Fibonacci random
number generator [46] was used and the ı function has the form ı.t/ D 0, if
jt j > �t=2 and ı.t/ D 1=�t , if jt j 	 �t=2, i.e., the step of numerical integration
corresponds to the correlation time of the random force. To use the Langevin
equation, this correlation time is assumed to be �t � tr. We thus chose the
integration step �t D 0:05 and the relaxation time tr D 10. During the time
t0 D 10tr, the system comes to equilibrium with the thermal bath and the point

˚
un.t0/; Pun.t0/

�N
nD1 (3.30)

gives a random realization of the thermalized state of the chain. To analyse the
dynamics of the thermalized chain further, one must switch off the interaction with
the thermal bath, i.e., the equations of motion (3.26) should be integrated with the
initial condition (3.30).

The frequency spectral density p.!/ for the thermal vibration of the chain (N D
200) with the kink as a function of temperature T is shown in Fig. 3.17 (left). In
the chain with nonlinearity parameters ˛ D 1, ˇ D 1, and cooperativity parameter
g D 1, the kink has eight vibrational eigenmodes (see Fig. 3.15b right). As can be
seen in Fig. 3.17c (left), at temperature T D 0:01, each eigenfrequency is related
to the clearly pronounced peak in the frequency spectral density. At the higher
temperature T D 0:1, these local maxima are still present in the frequency spectral
density, but they exhibit tailing (see Fig. 3.17b left). At the temperature T D 1,
they already vanish (see Fig. 3.17a left). The right edge of the frequency spectrum
shifts to the right. This is associated with the appearance of high-frequency breathers
in the chain. A similar situation also takes place for the antikinks (see Fig. 3.17
right). Here, the maxima corresponding to eigenfrequencies are pronounced at the
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Fig. 3.17 Left: Frequency spectral density p.!/ for the thermal vibration of the FPU chain with
the kink (under the fixed-end boundary condition, N D 200) at temperatures T D 1 (a), T D 0:1

(b), and T D 0:01 (c) (chain parameters ˛ D 1, ˇ D 1, and g D 1). Right: Frequency spectral
density p.!/ for the thermal vibration of the FPU chain with the antikink (under the fixed-end
boundary condition, N D 200) at temperatures T D 1 (a), T D 0:1 (b), and T D 0:01 (c) (chain
parameters ˛ D 1, ˇ D 1, and g D 1)

temperature T D 0:01, poorly expressed at T D 0:01, and completely absent
at T D 1. Therefore, the vibrational eigenmodes of topological solitons manifest
themselves in the frequency spectrum only at low temperatures, when all vibrations
are almost linear. At high temperatures, when the vibrations become essentially
nonlinear, the vibrational eigenmodes no longer manifest themselves in the thermal
vibration spectrum, which again highlights their linear character.

3.2.8 Supersonic Soliton Motion

In the absence of the site–site interaction anharmonicity, the opposite-sign topolog-
ical solitons possess the same properties – they have a continuous subsonic velocity
spectrum. Static interaction of opposite-sign topological solitons leads to their
attraction, but in discrete chains, the pinning of solitons can lead to stable bound
states [33]. In a thermalized chain with the �-4 potential, the indirect repulsive
interaction of opposite-sign solitons occurs via phonons. This is longer-ranged
than the static interaction [32]. With the appearance of anharmonicity in the site–
site interaction, the situation changes drastically. The properties of opposite-sign
topological solitons now become different.
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As shown in [35], with increasing negative anharmonicity, the velocity spectrum
of the negative soliton becomes narrow, and when it reaches a certain threshold,
it even vanishes (the soliton has only the zero velocity component), whereas the
positive soliton always has a continuous subsonic velocity spectrum. It was shown
in [34] that anharmonicity can lead to the positive topological soliton having a single
supersonic velocity value. The structure of the supersonic velocity spectrum of the
positive topological soliton in the �-4 model with negative cubic anharmonicity
of the site–site interaction was analysed in detail in [36]. There it was shown that
the supersonic spectrum has a discrete structure. There exists only a finite number
of supersonic velocity values s1 > s2 > : : : > sN , for which the kink motion is
not accompanied by phonon emission. The supersonic kink corresponding to the
nth velocity value sn is a bound state of n acoustic (nontopological) solitons. For
other supersonic velocity values, the kink motion is always accompanied by phonon
emission. In the Frenkel–Kontorova model the situation becomes more complex.
Here, anharmonicity also leads to the appearance of the discrete supersonic
velocity spectrum of the topological soliton, but anharmonicity can also bring about
association of solitons of the same signs. In this case, supersonic topological solitons
with multiple charge emerge [47].

The Model

The Hamiltonian of a bistable molecular chain has the form

H D
X

n

�
1

2
mPu2n C U .unC1 � un/C V .un/

�
; (3.31)

where m is the mass of a chain link, un is the displacement of the nth link from
its equilibrium position, U .�/ is the site–site interaction potential, and V .u/ is
the symmetric two-well potential describing the interaction of chain sites with its
substrate. For the �-4 model with cubic anharmonicity, the potentials are

U .�/ D 1

2
��2 � 1

3

�3 ; V .u/ D "

�
.u=l/2 � 1�2 ;

where � and 
 > 0 are the stiffness and anharmonicity of the site–site interaction
potential and " and 2l are the height and width of the barrier of the two-site potential,
respectively.

The Hamiltonian (3.31) gives the equations of motion

mRun D F .unC1�un/�F .un�un�1/�G .un/ ; n D 0;˙1;˙2; : : : ; (3.32)

where

F .�/ D d

d�
U .�/ D �� � 
�2 ; G .u/ D d

du
V .u/ D 4"u

.u=l/2 � 1
l2

:
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For convenience, we introduce dimensionless variables: time � D t
p
�=m,

displacement xn D un=l , and energy H D H =�l2. Then the Hamiltonian of the
system (3.31) takes the form

H D
X

n

�
1

2
x02
n C U.rn/C V.xn/

�
; (3.33)

where the prime denotes differentiation with respect to the dimensionless time � and
rn D xnC1 � xn is the relative displacement. The potentials are

U.r/ D 1

2
r2 � 1

3
ˇr3 ; V .x/ D g.x2 � 1/2 ;

where ˇ D 
l=� > 0 is the dimensionless anharmonicity parameter and g D
"=�l2 � 0 is the dimensionless height of the two-well potential barrier. The
equations of motion (3.32) have the form

x00
n D F.rn/ � F.rn�1/ �G.xn/ ; n D 0;˙1;˙2; : : : ; (3.34)

where

F.r/ D d

dr
U.r/ D r � ˇr2 ; G.x/ D d

dx
V.x/ D 4gx.x2 � 1/ :

The Continuum Approximation

We assume that (3.34) has a soliton solution xn.�/ D x.
/ D x.n � st/ which
smoothly depends on the number of chain sites n, i.e., the solution is suggested to
have the form of a solitary wave of constant shape with asymptotic behavior

xn �! �1 .˙1/ for n ! ˙1 ; (3.35)

for the positive (negative) soliton. Here, 
 D n � st and s are the wave variable
and soliton velocity, respectively. The positive topological soliton describes the
transition of the chain from one equilibrium state xn � C1 to another xn � �1,
while the negative topological soliton describes the reverse transition from the state
xn � �1 to xn � C1. The compression or extension of the chain occurs in the
localization region of the positive or negative soliton, respectively.

Without considering the dispersion of long-wavelength phonons, the equations
of motion (3.34) in the continuum approximation reduce to the differential equation

.1 � s2/x

 � 2ˇx
x

 � 4gx.x2 � 1/ D 0 : (3.36)
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This equation can be integrated, thus allowing a complete study in this approxima-
tion of the properties of topological solitons in an anharmonic chain [34]. Indeed,
letting ' D x
 , (3.36) takes the form

�
1 � s2 � 2ˇ'
d' D 4gx.x2 � 1/d
 : (3.37)

Multiplying (3.37) by ', then integrating and taking into account the boundary
conditions (3.35), we obtain

�
1

2
.1 � s2/ � 2

3
ˇ'

�
'2 D g.x2 � 1/2 : (3.38)

For the positive soliton (' 	 0), one can obtain from (3.38) the continuous
dependence ' D '.x/, �1 	 x 	 1 only if jsj 	 1, while for the negative soliton
(' � 0) the continuous dependence can be obtained only if jsj < s�, where the
velocities are

s� D
( p

1 � .24ˇ2g/1=3 for 24ˇ2g 	 1 ;

0 for 24ˇ2g > 1 :

Thus, using the continuum approximation without considering the dispersion of
long-wavelength phonons shows that the positive topological soliton always has
only the continuous subsonic velocity spectrum 0 	 s 	 1, while the negative
topological soliton has the continuous spectrum 0 	 s 	 s�.

Accounting for the dispersion of long-wavelength phonons, the equations of
motion (3.34) in the continuum approximation reduce to the differential equation

.1 � s2/x

 C 1

12
x



 � 2ˇx
x

 � 4gx.x2 � 1/ D 0 ; (3.39)

which cannot generally be integrated analytically. It was shown in [35] that, for the
fixed velocity

s D s0
1.ˇ/ D

s

1C 4

3
ˇ2 � 1

2ˇ2
g ; (3.40)

(3.39) has the soliton solution

x.
/ D � tanh
	


2
; (3.41)

with the inverse width	 D 4ˇ. It follows from (3.40) that, for a small height g of the
two-well potential barrier, the positive topological soliton (3.41) has the supersonic
velocity s D s0

1.ˇ/ > 1.
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In the limit g ! 0, after a single integration, (3.39) becomes the Boussinesq
equation

1

12
'

 C .1 � s2/' � ˇ'2 D 0 ;

which defines the supersonic acoustic soliton

'.
/ D � a

cosh2.	
/

in the one-dimensional lattice with cubic anharmonicity, where a D 3.s2 � 1/=2ˇ,
	 D p

3.s2 � 1/ is the inverse width, and s > 1 is the velocity. The boundary
condition (3.35), conserved in the passage to the limit g ! 0, allows the acoustic
soliton to have only the single velocity

s D
r
1C 4

3
ˇ2 : (3.42)

In fact, the total chain compression, which we shall henceforth refer to as the
acoustic soliton amplitude, is

R.s/ D x.C1/ � x.�1/ D
Z C1

�1
'.
/d
 D �

p
3.s2 � 1/
ˇ

D �2 ;

which leads to (3.42). Note also that (3.42) follows from (3.40) in the passage to the
limit g ! 0.

On the other hand, for g D 0, the boundary conditions (3.35) will also be fulfilled
when several identical acoustic solitons are present in the system. In this case, the
velocity sN of the N -soliton state can be found from the equation NR.sN / D �2,
and is equal to

sı
N .ˇ/ D

s

1C 4

3

�
ˇ

N

�2
: (3.43)

Thus, in the limit g ! 0, the positive topological soliton has the infinite discrete
supersonic spectrum fsı

N g1
ND1 with the sound velocity s D 1 as the limit point. It is

impossible to find an analytical N -soliton solution of (3.39) at N � 2 and g > 0,
so we seek it numerically.

Numerical Methods for Finding Supersonic Soliton States

We assume once again that the equations of motion of the chain (3.34) have a
solution xn.�/ D x.n � s�/ which depends smoothly on n and satisfies the
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asymptotic behavior (3.35). Then if we replace the second time derivative by its
discrete analogue

x00
n D s2

d2

dn2
x D 1

12
s2
h
16.xnC1 � 2xn C xn�1/ � .xnC2 � 2xn C xn�2/

i
;

the differential equations (3.34) are transformed into completely discrete equations

� 1

12
s2
h
16.xnC1 � 2xn C xn�1/ � .xnC2 � 2xn C xn�2/

i

CF.rn/ � F.rn�1/ �G.xn/ D 0 ; n D 0;˙1;˙2; : : : ; (3.44)

which coincide with (3.39) in the continuum approximation. The discrete equa-
tions (3.44) determine an extremum of the Lagrangian

Ls D
X

n

�
� 1

24
s2
h
16.xnC1 � xn/2 � .xnC2 � xn/2

i
C U.xnC1 � xn/C V.xn/

	
:

Therefore, a soliton solution of (3.39) can be sought numerically as the extremum
of the Lagrangian Ls. The supersonic topological soliton corresponds to the saddle
point of the Lagrangian and so can be found by numerically solving the constrained
minimum problem

Fs D 1

2

M�2X

nD3

�
@Ls

@xn

�2
�! min

x3;:::;xM�2

W x1 D x2 D C1 ; xM�1 D xM D �1:
(3.45)

The boundary conditions should not affect the soliton shape. To satisfy this
requirement, it suffices to take the number of sites M to be ten times the soliton
width.

In order to solve the minimum problem (3.45) numerically, we used the conjugate
gradient method [59] with M D 400. By solving this problem, we can find all
the soliton solutions of (3.39). The minimum point fxı

ngMnD1 of the functional Fs

corresponds to a soliton solution only if xı
n depends smoothly on n and the actual

minimum value Fs.x
ı
1 ; : : : ; x

ı
M/ 
 0. The absence of such minima unambiguously

indicates that (3.44), and hence also (3.39), do not have soliton solutions for a given
velocity.

Supersonic Soliton States

Here we take the value of the substrate parameter to be g D 0:001. Numerical
solution of the minimum problem (3.45) shows that the positive soliton always has
the continuous subsonic velocity spectrum 0 	 s 	 s0 < 1. The dependence of the
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Fig. 3.18 Upper edge of the
continuous velocity spectrum
s0 (thick line 1), the
supersonic velocities
s1; s2; : : : ; s7 (thin lines 2, 3,
. . . , 8), s0

1 (dashed line 9),
and sı

1 ; s
ı

2 ; : : : ; s
ı

5 (dotted
lines 10, 11, . . . , 14) as a
function of the anharmonicity
parameter ˇ of the chain

upper edge of the continuous spectrum on the anharmonicity parameter ˇ is shown
in Fig. 3.18. For ˇ D 0, we have s0 D 0:966, and with increasing anharmonicity the
upper edge of the spectrum tends to the sound velocity: s0 ! 1 as ˇ ! 1.

In addition to the continuous subsonic spectrum, the soliton has the finite discrete
supersonic velocity spectrum fs D sngNnD1, where s1 > : : : > sN > 1 (for the other
values s > 1 the problem (3.45) does not have soliton solutions). The number of
permissible supersonic values of the velocity N increases steadily with increasing
anharmonicity parameter ˇ. There exists a sequence of values of ˇ tending to
infinity, viz.,

0 < ˇ1 < ˇ2 < : : : < ˇn < : : : ;

at which the number N increases by 1. Thus, for 0 	 ˇ < ˇ1, we have N D 0

(the topological soliton does not have supersonic states), and for ˇn 	 ˇ < ˇnC1,
we have N D n (the topological soliton has n supersonic states, n D 1; 2; : : :). For
the value g D 0:001 used here, the critical values of the anharmonicity parameter
are ˇ1 D 0:12, ˇ2 D 0:25, ˇ3 D 0:42, ˇ4 D 0:59, ˇ5 D 0:78, ˇ6 D 0:97, and
ˇ7 D 1:17.

The supersonic velocities sn increase steadily with increasing anharmonicity
parameter. The dependencies of the supersonic values s1; s2; : : :, and s7 on the
parameter ˇ is shown in Fig. 3.18. As can be seen from this figure, the dependence
s1.ˇ/ obtained by numerical solution of the problem (3.45) coincides completely
with the dependence s0

1.ˇ/ obtained analytically. The corresponding curves 2 and
9 in Fig. 3.18 differ only at velocities s > 1:07 when the soliton gets narrow and the
continuum approximation we used ceases to be correct.
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Fig. 3.19 Left: Profile of the one-soliton supersonic kink state found in the numerical solution of
the problem (3.45) at the initial time � D 0 (dashed lines 1 and 2) and time � D �e D 92;542:1

after the passage of N D 105 chain links (solid lines 3 and 4). The anharmonicity parameter is
ˇ D 0:4, the barrier height g D 0:001, the initial velocity s1 D 1:095, and the final velocity
s1 D 1:079. Right: Profile of the two-soliton supersonic kink state. All notations are the same as
for the plots on the left and ˇ D 0:9, g D 0:001, s2 D 1:115, s2 D 1:095, N D 5 � 104, and
�e D 45;530:0

As can be seen in Fig. 3.18, the functions sn.ˇ/ and sı
n.ˇ/ behave equivalently as

ˇ ! 1, i.e., sn.ˇ/=sı
n.ˇ/ ! 1. In the limit, the supersonic state of the topological

soliton (kink), which has velocity sn, decays into identical acoustic solitons which
we will call an n-soliton state. From the analysis above, we can also conclude that
the discreteness of the supersonic velocity spectrum is only due to the boundary
conditions (3.35), i.e., the two-well nature of the potential V.x/, but not its specific
form.

A typical profile of the one-soliton supersonic state of the kink is shown in
Fig. 3.19 (left). Considering the relative displacement of chain links rn D xnC1�xn,
which is proportional to the velocities x0

n (x0
n 
 �srn), the kink is seen to have

a one-hump profile. The one-soliton state can be considered as an acoustic soliton
satisfying the boundary conditions (3.35). Typical profiles of the two-, three-, and
four-soliton supersonic states of the kink are shown in Figs. 3.19 (right) and 3.20
(left and right). The corresponding kinks are characterized by the two-, three-,
and four-hump profiles according to their relative displacements. This shows that
these supersonic states are the bound states of two, three, or four acoustic solitons,
respectively. We will show in the next section that if the substrate is taken away, i.e.,
g D 0, the n-soliton state decays into n acoustic solitons.
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Fig. 3.20 Left: Profile of the three-soliton supersonic kink state. All notations are the same as
in Fig. 3.19 (left) and ˇ D 1:1, g D 0:001, s3 D 1:083, s3 D 1:065, N D 5 � 104, and
�e D 46;823:0. Right: Profile of the four-soliton supersonic kink state. All notations are the same
as in Fig. 3.19 (left) and ˇ D 1:2, g D 0:001, s4 D 1:058, s2 D 1:041, N D 5 � 104, and
�e D 47;944:8

Modeling the Supersonic Dynamics

Let us consider the dynamics of supersonic states of the topological soliton (kink)
in a finite chain of L links with free ends. The dynamics of this chain are given by
the equations of motion

x00
1 D F.r1/ �G.x1/ ;
:::

x00
n D F.rn/ � F.rn�1/ �G.xn/ ; (3.46)

:::

x00
L D �F.rL�1/ �G.xL/ ;

with the energy integral

H D
LX

nD1

�
1

2
x02
n C V.xn/

�
C

L�1X

nD1
U.rn/ : (3.47)

We take the number of chain sites L equal to M C 100, where M is the number of
sites used in the solution of the minimum problem (3.45). The soliton solution of
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the problem (3.45), fxı
ngMnD1, with velocity s satisfies the initial conditions

xn.0/ D xı
n ; for n D 1; 2; : : : ;M ;

xn.0/ D xı
M ; for n D M C 1; : : : ; L ;

x0
n.0/ D �1

2
s
�
xnC1.0/ � xn�1.0/

�
; for n D 2; : : : ; L � 1 ; (3.48)

x0
1.0/ D 0 ;

x0
L.0/ D 0 :

The soliton centre fxn.�/gLnD1 is conveniently defined as the point at which the
broken line sequentially linking the points .n; xn/ intersects the n-axis. At the initial
time, the soliton is centered at m D M=2. To model the soliton dynamics in an
infinite chain, we shift the soliton through 100 links to the left as soon as it passes
through 100 chain links, i.e., when its centre reaches the site M=2 C 100. This
procedure leads to the change of variables

xn D x100Cn ; x0
n D x0

100Cn ; for n D 1; : : : ;M ;

xn D xL ; x0
n D 0 ; for n D M C 1; : : : ; L :

This numerical method for topological soliton dynamics simulation allows us to
avoid the integration of a high dimensional system of equations. This method
is especially efficient in the analysis of supersonic soliton dynamics. Using this
method, the nonsoliton subsonic component of the initial condition is cut off as a
result of the soliton shift.

Numerical simulation of the topological soliton dynamics confirmed the dis-
creteness of the supersonic velocity spectrum. As can be seen from Figs. 3.19
and 3.20, the initial condition (3.48), corresponding the n-soliton supersonic kink
state (s D sn > 1), leads to the formation of a supersonic kink of unchanged shape
moving along the discrete chain with constant supersonic velocity s D sn < sn.

The initial condition (3.48), obtained in the continuum approximation, is not
exact for a soliton in the discrete chain. The discreteness of the chain leads to the
difference between the actual sn and calculated sn values of the velocity. The motion
of the supersonic kink is always accompanied by phonon emission as long as the
kink velocity s > sn. Phonon emission causes the kink to slow down. At the velocity
s D sn, the emission disappears and the kink motion gets completely stabilized.
The kink now begins to move with this constant velocity, and its shape does not
change. Note that the final velocity s D sn does not change with small variations
in the initial velocity and shape of the kink. Such stability unambiguously points to
the discreteness of the supersonic velocity spectrum of the kink in an anharmonic
chain.

In order to understand the structure of the kink supersonic state, we consider its
dynamics in a chain without the substrate (g D 0). For this purpose, we integrate the
equation of motion (3.46) for g D 0 and L D 1;100. We take the initial conditions
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Fig. 3.21 Decay of the four-soliton supersonic kink state (ˇ D 1:2, g D 0:001, and s4 D 1:041)
into four acoustic solitons and a subsonic phonon tail in the free chain (g D 0). Lines 1 and 2 show
the relative displacement rn D xnC1 � xn of the chain links at the initial time � D 0 and time
� D 900, respectively. The chain length L D 1;100

corresponding to the supersonic n-soliton state of the kink .n D 1; : : : ; 5/ in a
discrete chain with the substrate (g D 0:001). In this case, numerical integration
showed that exactly n uncoupled acoustic solitons and a subsonic phonon tail are
formed from the kink (see Fig. 3.21). This allows us to conclude that the supersonic
n-soliton state of the kink is really a bound state of n acoustic solitons, which is
only stable at the velocity s D sn.

The dependence of the velocity sn of the n-soliton supersonic state of the kink
in the discrete chain on the anharmonicity parameter ˇ is shown in Fig. 3.22. The
velocity value sn agrees with the calculated value sn only near the sound velocity.
In this case, a sufficiently large kink width justifies the use of the continuum
approximation in the previous section. Despite this, the numerical simulation
performed for the supersonic kink dynamics suggests that the conclusion about
the discreteness of the supersonic velocity spectrum also remains true for higher
velocities when the kink width becomes commensurate with the chain spacing.
However, in this case, the derivation of an accurate value for the velocity requires
the use of finer methods which take into account the chain discreteness [48].
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Fig. 3.22 Dependencies of
the velocities s0; s1; : : : ; s7
(lines 1, 2, . . . , 8) on the
anharmonicity parameter ˇ.
The markers 9, 10, . . . , 14
give the velocity values
s0; s1; : : : ; s5 obtained in the
numerical simulation of the
soliton dynamics

At a subsonic velocity s < 1, the positive topological soliton has a sufficiently
large width, so solution of the minimum problem (3.45) allows one to find the soliton
shape to high accuracy (see Fig. 3.23).

Numerical integration of the equations of motion (3.46) was carried out by
the standard fourth order Runge–Kutta method with a constant integration step
[45]. The accuracy of the numerical integration was controlled by checking the
conservation of the energy integral (3.47). Using the step value �� D 0:05, the
energy is conserved up to five digits.

3.2.9 Conclusion

The anharmonicity of the site–site interaction leads to a significant change in
the properties of topological solitons. In the FPU chain with sinusoidal substrate
potential, the properties of the stationary states of topological solitons depend
substantially on the relationship between the nonlinearity and cooperativity param-
eters. In contrast to the Frenkel–Kontorova model, states with both half-integer
and integer centres of symmetry can be stable. The energy of soliton pinning
can have deep local minima, but it is nonzero for all parameter values. The
anharmonicity also leads to the appearance of localized vibrational eigenmodes:
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Fig. 3.23 Profiles of the subsonic topological soliton at the initial time � D 0 (dashed lines 1 and
2) and time � D 10;103:0 after the soliton passage of N D 104 chain links (solid lines 3 and 4).
Initial velocity s D 0:99, ˇ D 1:0, g D 0:001, and velocity s D 0:9898

in addition to the low-frequency translational mode, the vibrational eigenmodes
appear with frequencies lying above the phonon frequency spectrum. The number
of these high-frequency vibrational eigenmodes increases with increasing values
of the nonlinearity and cooperativity parameters. These vibrations are linear and
give a clearly pronounced peak in the frequency spectral density for the thermal
vibrations of a chain with topological solitons at low temperatures, when all
vibrations are almost linear. Additionally, anharmonicity can cause supersonic
motion of the topological soliton: there are a finite number of the velocity values
s1 > s2 > � � � > sN > 1 for which the supersonic motion of the soliton is not
accompanied by phonon emission. The supersonic kink corresponding to the nth
velocity value sn is the bound state of n acoustic solitons and the sum of their
amplitudes should coincide with the width of the two-well potential barrier. The
number N of supersonic velocity values rises with increasing chain anharmonicity.
In the continuum approximation, the numerical method was suggested to obtain the
shape and velocity of a supersonic state of the topological soliton.
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3.3 Solitons in a Quasi-One-Dimensional Crystal

Topological solitons represent one of the most important types of localized nonlinear
excitations in periodic nonlinear media. They can be identified with the point
structural defects in polymer crystals, which play a significant role in heat transfer
and other physical processes related to chain mobility, such as relaxation processes,
diffusion of chains between the crystal and amorphous phases, and phase transitions
[49]. Generally, topological solitons are investigated in the approximation of a one-
dimensional chain interacting with a substrate (via a periodic interaction potential).
Even within this approximation, there were found to be deviations from the behavior
predicted by the continuous models (particularly, the Frenkel–Kontorova model),
which result from the pinning phenomenon (the soliton slowing down due to
dispersion).

The physical mechanism of this interaction has been analysed in [11], where the
role of resonant relationships between the soliton and phonon characteristics was
elucidated. A series of works conducted later [50–52] was devoted to analysis of
the soliton slowdown through the Cherenkov radiation mechanism. In view of the
application of these models to polymer crystals, the question arises concerning the
role of the chains, which are close to strongly excited chains, in the dynamics of
point structural defects. To solve this problem, the simplest model of a polymer
crystal was suggested in [53–55]. This involves a system of linear chains with
strong intrachain and weak interchain interactions. In the modeling, the existence of
point structure defects such as vacancies or interstitials (areas of local extension and
compression with no break in the intrachain bonds) was revealed. Furthermore, the
dependence of the defect dynamics on the interchain interaction was investigated.
It was shown that, at a weak bond between the chains, the defects represent smooth
profile topological solitons with smooth profile peculiar to a one-dimensional
chain in a periodic substrate potential. The spectrum of possible velocities was
also obtained. When the interchain interaction increases, there are no soliton-like
solutions in the form of waves traveling with a constant velocity. Defect motion is
always accompanied by emission with a series of typical properties that are absent
in the Frenkel–Kontorova model.

3.3.1 Modelling a Quasi-One-Dimensional Molecular System

In the modeling of topological solitons discussed above we assumed that the chain
environment forms an immobile substrate for the chain which interacts with it via
the substrate potential V.u/. This model does not allow a correct description of the
interaction between a molecular chain and its environment. To do this, one must
consider the mobility of neighboring chains.

Let us consider the two-dimensional model of the quasi-one-dimensional molec-
ular system represented in Fig. 3.24. The system is made up of parallel linear chains
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(m−1,n) (m−1,n+1) (m−1,n+2)(m−1,n−1)(m−1,n−2)

Fig. 3.24 Schematic representation of the two-dimensional model of a quasi-one-dimensional
molecular system

of massive particles. The structure of the system is defined by two periods: the
longitudinal chain spacing c and transverse chain spacing b. If we number the
links and the particles of the chain with indices m and n, respectively, then in an
equilibrium position the particle .m; n/ has coordinates

xm;n D nC �
1C .�1/m�

4
c ; ym;n D mb ; m; n D 0;˙1;˙2; : : : :

We assume that the chain links can move along the x-axis, i.e., their transverse
coordinates ym;n do not change. We denote the particle mass by M and the
rigidity of a spring connecting the particles by K. We then change to a system
of units in which the constants

p
M=K and Kc21 are the units of time and energy,

respectively, with c1 a unit of length which will be defined below. We also denote
the longitudinal displacements of particles from their equilibrium positions by um;n.
Then the Hamiltonian of the system takes the form

H D
X

m;n

2

41
2

Pu2m;n C 1

2
.um;nC1 � um;n � ı/2 C

C1X

kD1

C1X

jD�1
U.rm;nIk;j /

3

5 ; (3.49)

where the dot denotes differentiation with respect to time and the compression
of the isolated chain spacing which occurs during the formation of a quasi-one-
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dimensional crystal is specified by the parameter ı D c0 � c, with c0 the isolated
chain spacing. The potential U.rm;nIk;j / describes the interaction of the nth particle
in themth chain with the (nCj )th particle in themCk chain (k ¤ 0). The distance
between the particles is

rm;nIk;j D
n�
.j C dm;k/c C umCk;nCj � um;n

�2 C .kb/2
o1=2

;

where dm;k D .�1/m�.�1/k � 1�=4.
The parameter ı can be either positive or negative depending on the potential

U.rm;nIk;j /. Most often, this potential is chosen so that it causes repulsion at short
range and attraction of particles at long range. The parameter ı is negative if the
attraction decreases sufficiently slowly when the distance between the particles
increases. Then the attraction of the chain to non-nearest neighbors is so strong
that nearest neighbors repel each other and the chains are extended during crystal
formation. In the case of a sufficiently rapid decrease in particle attraction at infinity,
the nearest chains attract each other weakly and ı > 0.

We describe the particle interaction between different chains by the Lennard-
Jones potential

U.r/ D "

r0
r

�6 �
r0
r

�6 � 2
�
f .r/ ; (3.50)

where the dimensionless parameter " specifies the ratio of energies of inter- and
intrachain interactions and r0 is the equilibrium distance between the interacting
particles. The truncation function is

f .r/ D 1

2

n
1 � tanh

�
	.r �R0/

�o
;

which is introduced for the convenience of numerical calculations. It allows one
to avoid taking into account interactions between particles separated by a distance
greater than r > R0, where R0 � r0 is the truncation radius and the parameter 	 >
0 describes the smoothness of the truncation function. Figure 3.25 shows profiles of
the interaction potential U.r/ and truncation function f .r/ for the values R0 D 20

and 	 D 2 used for the truncation radius and smoothness parameter, respectively.
To find the equilibrium values of the lattice periods b and c, one must solve the

minimum problem

E.b; c/ D 1

2
.c0 � c/2 C

C1X

kD1

C1X

jD�1
U.rjk/ �! min

b;c
; (3.51)

where the distance between particles is

rj;k D �
.kb/2 C .j C�k/

2c2
�1=2

;
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Fig. 3.25 Profiles of the interaction potential U.r/ (a) and the truncation function f .r/ ( b)

and parameter �k D �
1 � .�1/k�=4. The solution to this problem (3.51) satisfies

the system of equations

Ec D c � c0 C c

C1X

kD1

C1X

jD�1
U 0.rjk/.j C�k/

2=rjk D 0 ; (3.52)

Eb D b

C1X

kD1

C1X

jD�1
U 0.rjk/k

2=rjk D 0 ; (3.53)

where U 0.r/ D dU=dr . We assume that, in the ground state, the longitudinal
period is c D 1, i.e., the crystal longitudinal period c1 is taken as a unit of length.
Substituting this value into (3.53), we obtain an equation which uniquely defines the
value of the longitudinal period b, viz.,

g.b/ D
C1X

kD1

C1X

jD�1
U 0.rjk/k

2=rjk D 0 :

Now the distance rjk is determined by the relation rjk D �
.kb/2 C .j C �k/

2
�1=2

.
After obtaining the equilibrium value of the period b from (3.52), the value of the
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parameter ı is immediately found to be

ı D c0 � 1 D
C1X

kD1

C1X

jD�1
U 0.rjk/.j C�k/

2=rjk :

For these parameter values b and ı, the ground state of the system will be
characterized by zero relative displacements fum;n D 0gC1

m;nD�1. The energy of
the ground state is equal to

e0 D 1

2
ı2 C

C1X

kD1

C1X

jD�1
U.rjk/ :

Therefore, thanks to the judicious choice of variables, there remain two dimen-
sionless parameters in the problem which define the properties of the system
dynamics: the ratio of characteristic inter- and intrachain distances r0 and the ratio of
characteristic inter- and intrachain interaction energies ". The value 0:5 < r0 < 1
influences the form of the substrate potential generated by the neighbors of a given
chain. It was shown in [56] that, for 0:5 < r0 < 0:82, the substrate potential
near a given particle is generated mainly by a pair of nearest atoms belonging
to the two nearest neighboring chains (‘local’ interaction of chains), and its form
is significantly different from sinusoidal. For 0:91 < r0 < 1, neighboring
chains create a substrate potential which is close to a sinusoidal form with good
accuracy. In this case, the substrate near a given particle is formed by many particles
(more than four) belonging to the neighboring chain (‘collective’ interaction of
chains).

It is the latter case that is of interest when investigating the dynamics of soliton-
like localized excitations in a two-dimensional system, because this leads to the
Frenkel–Kontorova model in the limit of immobile neighbors. Here, we choose
an equilibrium distance r0 for the Lennard-Jones potential which corresponds to
a polyethylene crystal in the ‘united atoms’ model [57, 58]. In this model, the CH2-
group is substituted for particles with a total mass of 14 amu, and parameters of the
Lennard-Jones potential between these particles are chosen such that the density of
the crystal with united atoms is close to the density of the polyethylene crystal. As
the chain period and equilibrium distance for the Lennard-Jones potential are equal
to 2.54 and 4.265 Å, respectively, we obtain the value r0 D 1:67. The interaction
properties in a three-dimensional crystal composed of zigzag chains differ from
those in a planar system of linear chains. Therefore, in our model we consider
the value of " corresponding to polyethylene at which the width of a static soliton
coincides with that of a static soliton obtained in the model developed in [57, 58].
This condition appears to give the value " D 0:0007. We also analyse two cases
with a stronger interchain interaction, viz., " D 0:007 and 0:07.
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3.3.2 Immobile Neighbor Approximation

In the immobile neighbor approximation, the dynamics of only a single chain in the
system are considered, while the rest of the chains are assumed to be immobile and
form the substrate potential for the mobile chain. Let un be the displacement of the
nth particle in the mobile chain from its equilibrium position. Then the Hamiltonian
of the chain has the form

H D
X

n

�
1

2
Pu2n C 1

2
.unC1 � un � ı/2 C V.un/

�
; (3.54)

where the substrate potential is

V.u/ D 2

C1X

kD1

C1X

jD�1
U.rjk/ : (3.55)

The substrate potential (3.55) is a periodic function with period equal to the
chain spacing. The potential shape depends only on the dimensionless equilibrium
distance r0 of the Lennard-Jones potential (3.50), and the energy of interaction "
gives the amplitude of the potential.

For the value r0 D 1:67 used in the calculation, the substrate potential V.u/
coincides with the sinusoidal potential V0 C 0:3513" sin2.�u/ to 0.1 % accuracy,
where V0 D minV.u/ is the minimum value of the substrate potential. Therefore,
the Hamiltonian (3.54) can be written in the same form as the Hamiltonian for the
Frenkel–Kontorova model up to a difference of zero-energy reference level:

H D
X

n

�
1

2
Pu2n C 1

2
.unC1 � un/

2 C � sin2.�u/

�
; (3.56)

where � D 0:3513" is the substrate potential amplitude. Thus, in the immobile
neighbor approximation, the two-dimensional model of a quasi-one-dimensional
molecular crystal reduces to the well-studied Frenkel–Kontorova model with the
dimensionless Hamiltonian (3.56).

3.3.3 Dispersion of Low-Amplitude Waves

The Hamiltonian of the quasi-one-dimensional crystal (3.49) gives the equations of
motion

Rum;n D � @H

@um;n
; n;m D 0;˙1;˙2; : : : : (3.57)
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For a low-amplitude displacement jum;nj � 1, one can replace the nonlinear
equations (3.57) by the system of linear equations

Ru2mC1;n D u2mC1;nC1 � 2u2mC1;n C u2mC1;n�1

C
C1X

iD1

C1X

jD�1

h
K2i�1;j .u2mC2i;nCj C u2m�2iC2;nCj � 2u2mC1;n/

CK2i;j .u2mC2iC1;nCj C u2m�2iC1;nCj � 2u2mC1;n/
i
;

(3.58)

Ru2m;n D u2m;nC1 � 2u2m;n C u2m;n�1

C
C1X

iD1

C1X

jD�1

h
K2i�1;j�1.u2mC2i�1;nCj C u2m�2iC1;nCj � 2u2m;n/

CK2i;j .u2mC2i;nCj C u2m�2i;nCj � 2u2m;n/
i
; (3.59)

for n;m D 0;˙1;˙2; : : : , where

K2i�1;j D U 00.r2i�1;j /
.j C 1=2/2

r22i�1;j
C U 0.r2i�1;j /

.2i � 1/2b2
r32i�1;j

;

K2i;j D U 00.r2i;j /
j 2

r22i;j
C U 0.r2i;j /

.2ib/2

r32i;j
;

for i D 1; 2; : : : , j D 0;˙1;˙2; : : : , and the primes denote derivatives. The
intermolecular distances are

r2i�1;j D �
.j C 1=2/2 C .2i � 1/2b2�1=2 ;

r2i;j D �
j 2 C .2ib/2

�1=2
:

It can be readily seen that r2i�1;�j�1 D r2i�1;j and r2i;�j D r2i;j , whence the same
equalities will hold for the corresponding rigidity coefficients, viz.,

K2i�1;�j�1 D K2i�1;j ; K2i;�j D K2i;j : (3.60)

Using the equalities (3.60), the linearized equations of motion (3.58) and (3.59) can
be rewritten in the more convenient form

Ru2mC1;n D u2mC1;nC1 � 2u2mC1;n C u2mC1;n�1



3.3 Solitons in a Quasi-One-Dimensional Crystal 99

C
C1X

iD1

C1X

jD0
K2i�1;j

�
u2mC2i;nCj C u2m�2iC2;nCj

C u2mC2i;n�j�1 C u2m�2iC2;n�j�1 � 4u2mC1;n



C
C1X

iD1

�
K2i;0

�
u2mC2iC1;n C u2m�2iC1;n � 2u2mC1;n




C
C1X

jD1
K2i;j

�
u2mC2iC1;nCj C u2m�2iC1;nCj C u2mC2iC1;n�j

C u2m�2iC1;n�j � 4u2mC1;n

�
; (3.61)

Ru2m;n D u2m;nC1 � 2u2m;n C u2m;n�1

C
C1X

iD1

C1X

jD0
K2i�1;j

�
u2mC2i�1;nCjC1 C u2m�2iC1;nCjC1

C u2mC2i�1;n�j C u2m�2iC1;n�j � 4u2m;n



C
C1X

iD1

�
K2i;0

�
u2mC2i;n C u2m�2i;n � 2u2m;n




C
C1X

jD1
K2i;j

�
u2mC2i;nCj C u2m�2i;nCj C u2mC2i;n�j

C u2m�2i;n�j � 4u2m;n

�
; (3.62)

for n;m D 0;˙1;˙2; : : : . In order to obtain the dispersion equation, we substitute
the solution in the form of a traveling wave into (3.61) and (3.62):

u2m;n D A exp i.q1nC q22m � !t/ ;
u2mC1;n D A exp i

�
q1.n � 1=2/C q2.2mC 1/ � !t� ; (3.63)

for n D 0;˙1;˙2; : : : , and m D 0;˙1;˙2; : : : , where A � 1 and q1; q2 2 Œ0; ��
are the amplitude and wavenumbers, respectively.
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Substituting the solution (3.63) into (3.61) and (3.62) gives the same dispersion
equation:

!2.q1; q2/ D 2.1 � cos q1/

C 4

C1X

iD1

�
C1X

jD0

K2i�1;j

�
1 � cos q1.j C 1=2/ cos q2.2i � 1/�

C 1

2
K2i;0.1 � cos 2iq2/C

C1X

jD1

K2i;j .1 � cos jq1 cos 2iq2/

	
:

(3.64)

It can be shown that, in a numerical simulation, it suffices to consider only the
interaction of the chain with a finite number L (limited above and below) of
the nearest neighboring chains. Therefore, the infinite sums describing the chain
interaction must be substituted for the finite sums. This leads to the Hamiltonian of
the system (3.49) to take the form

H D
X

m;n

2

41
2

Pu2m;n C 1

2
.um;nC1 � um;n � ı/2 C

LX

kD1

C1X

jD�1
U.rm;nIk;j /

3

5 : (3.65)

Similarly, in (3.58)–(3.64), the infinite sum
PC1

iD1 over index i must be substituted
for the finite sum

PL
iD1.

If one confines attention to only the nearest neighboring chains, the dispersion
equation (3.64) has the particularly simple form

!2.q1; q2/ D 2.1 � cos q1/C 4

C1X

jD0
K1;j

�
1 � cos q1.j C 1=2/ cos q2

�
: (3.66)

The dispersion equations (3.64) and (3.66) give the two-dimensional dispersion
surface ! D ˝.q1; q2/ which is shown in Fig. 3.26 (left) for the three values of
the interchain interaction parameters ". When the wavenumbers are varied over
the ranges 0 < q1 < � and 0 < q2 < � , the dispersion surface behaves like
a smooth function which increases steadily as the variables q1 and q2 increase.
With an increase in the interaction parameter ", the slope of the surface decreases
monotonically over the variable q2 and vanishes in the limit " ! C0:

lim
"!0

˝.q1; q2/ D ˝0.q1/ ;

where ˝0.q1/ D 2 sin.q1=2/ specifies the dispersion curve of an isolated molecular
chain. Note that, in the immobile neighbor approximation, in the framework of the
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Fig. 3.26 Left: The dispersion surface ! D ˝.q1; q2/ for r0 D 1:67, L D 1, and " D 0:07

(a), " D 0:007 (b), " D 0:0007 (c). For comparison, the dispersion curve for the corresponding
Frenkel–Kontorova model (the immobile neighbor approximation) ! D ˝1.q1/ D ˝.q1; �=2/ is
shown in all the figures. Right: Profiles of the positive (a) and negative (b) topological solitons in a
quasi-one-dimensional crystal at " D 0:007 and L D 1. The dependence of the displacement um;n
on the number of the link n in the chain m is shown

Frenkel–Kontorova model (3.56), the dispersion curve has only the optical branch:

˝1.q1/ D
q
� C 4 sin2.q1=2/ ; (3.67)

where � D 2�2� is the rigidity of the substrate potential. This one-dimensional
curve always lies strictly on a two-dimensional dispersion surface at q2 D �=2:
˝.q1; �=2/ D ˝1.q1/ (see Fig. 3.26 left).
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Let us find the velocities

sx D lim
q1!0

˝.q1; 0/=q1

and

sy D lim
q2!0

˝.0; q2/=q2

of longitudinal and transverse long-wavelength phonons, the maximum velocities of
longitudinal and transverse sound. Using (3.64) and (3.66), it can be easily shown
that the velocity of longitudinal sound is

sx D
8
<

:1C 2

C1X

iD1

�C1X

jD0
.j C 1=2/2K2i�1;j C

C1X

jD1
j 2K2i;j

�9=

;

1=2

D
8
<

:1C
C1X

iD1

C1X

jD�1

h
.j C 1=2/2K2i�1;j C j 2K2i;j

i
9
=

;

1=2

; (3.68)

and the velocity of transverse sound is

sy D
8
<

:

C1X

iD1

�
2

C1X

jD0
.2i � 1/2K2i�1;j C .2i/2K2i;0 C 2

C1X

jD1
.2i/2K2i;j

�9=

;

1=2

D
0

@
C1X

iD1

C1X

jD�1
i 2Ki;j

1

A
1=2

; (3.69)

where we have used (3.60) for the rigidity coefficients.
When we take into account the interaction of only the nearest neighboring

chains, (3.68) and (3.69) are significantly simplified:

sx D
�
1C

C1X

jD�1
.j C 1=2/2K1;j

�1=2
;

sy D
� C1X

jD�1
K1;j

�1=2
:

The dependencies of sx and sy on the energy of interchain interaction " and the
number of interacting neighboring chains L are given in Tables 3.1 and 3.2. As the
tables show, the longitudinal sound velocity is always greater than the transverse.
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Table 3.1 Dependence of the longitudinal sound velocity sx on the parameters " and L

" L D 1 L D 2 L D 4 L D 6 L D 8

0.07 0.752958 0.736010 0.733030 0.732789 0.732739

0.007 0.978108 0.976817 0.976593 0.976575 0.976571

0.0007 0.997832 0.997706 0.997684 0.997682 0.997682

Table 3.2 Dependence of the transverse sound velocity sy on the parameters " and L

" L D 1 L D 2 L D 4 L D 6 L D 8

0.07 0.491599 0.524050 0.528294 0.528671 0.528745

0.007 0.155457 0.165719 0.167054 0.167173 0.167196

0.0007 0.049160 0.052405 0.052829 0.052865 0.052872

This phenomenon results from the prevalence of the intrachain interaction over
the interchain interaction. The velocities are commensurable only for the energy
of longitudinal interaction " D 0:07. For greater values of ", the interchain
interaction becomes comparable with the intrachain interaction and the system
ceases to be quasi-one-dimensional. If the interchain interaction is decreased, the
longitudinal sound velocity decreases monotonically, while the transverse sound
velocity increases. As " & 0, we have sy & 0 and sx % 1. Tables 3.1 and 3.2
also show that the velocities change slightly with increasing number of interacting
neighboring chains L. It allows us to conclude that even with the power-law
decrease in the Lennard-Jones potential, the interaction between nearest neighbors
is predominant.

3.3.4 Stationary States of Topological Solitons

Here we consider a finite segment of a one-dimensional crystal with 1 	 n 	 N

and 1 	 m 	 M . The end particles of the segment are assumed to be immobile.
The potential energy of the segment (soliton energy) is defined by the equation

E D
M�1X

mD1

N�1X

nD1

�
1

2
.um;nC1 � um;n � ı/2 � e0 C

LX

kD1

X

j

U.rm;nIk;j /
�
: (3.70)

To find the stationary state of the topological soliton, it is necessary to solve the
constrained minimum problem

E �! min
um;n

W
�

um;1 D 0 ; um;N D 0 ; m D 1; 2; : : : ;M ;

u1;n D 0 ; uM;n D 0 ; n D 1; 2; : : : ; N ;
(3.71)
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with the boundary conditions

uM=2C1;1 D 0 ; uM=2C1;N D 1 ;

for the positive soliton (kink) and

uM=2C1;1 D 1 ; uM=2C1;N D 0 ;

for the negative soliton (antikink).
Let fum;ngN;MnD1;mD1 be a solution of the minimum problem (3.71) with the

boundary conditions corresponding to the topological soliton. Then the coordinates
of the stationary soliton centre can be obtained as

m D
MX

mD1

NX

nD1
mpm;n ; n D

MX

mD1

NX

nD1
npm;n ;

along with its transverse and longitudinal diameters

Dy D 1C2
"

MX

mD1

NX

nD1
.m �m/2pm;n

#1=2
; Dx D 1C2

"
MX

mD1

NX

nD1
.n � n/2pm;n

#1=2
;

where the two-dimensional sequence

pm;n D 1

S

h
.um;nC1 � um;n/

2 C .um;n � um;n�1/2
i
;

with

S D
MX

mD1

NX

nD1

h
.um;nC1 � um;n/

2 C .um;n � um;n�1/2
i
;

specifies the energy distribution of longitudinal chain deformation over the crystal.
The minimum problem (3.71) was solved numerically using the conjugate

gradient method [59]. The crystal segment with N D 1;000 and M D 67 was
adapted for the calculation. A soliton-like profile with centre between the N=2th
and (N=2C 1)th particles in the (M=2C 1)th chain was used as the initial point:

um;n D 0 ; m D 1; 2; : : : ; N ; n D 1; 2; : : : ;M ;

uM=2C1;n D 1 ; n D N=2C 1;N=2C 2; : : : ; N ; for the kink
uM=2C1;n D 1 ; n D 1; 2; : : : ; N=2 ; for the antikink:

Views of the positive and negative soliton solutions are shown in Fig. 3.26 (right).
For the positive soliton (see Fig. 3.26a right) in the central chain .m D M=2 C
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Fig. 3.27 Left: Dependencies of the displacement um;n (a) and relative displacement wm;n D
um;n � um�1;n (b) on the chain link number n for the chains in a region of localization of the
positive topological soliton. The dependencies are shown for the central chain with the number
m D M=2 C 1 (lines 1 and 5) and two neighboring chains with m D M=2 C 2 (lines 2 and 6)
and m D M=2C 3 (lines 3 and 7). For comparison, kink profile obtained in the approximation of
immobile neighbor chains is shown (dashed lines 4 and 8). " D 0:07, L D 1. Right: Dependencies
of the energy E (a) and longitudinal diameter Dx (b) of the topological soliton on its velocity s in
the case of the antikink (lines 1 and 3) and kink (lines 2 and 4) in a quasi-one-dimensional crystal
with " D 0:007. For comparison, the dependencies obtained in the approximation of immobile
neighbor chains are shown (dashed lines 4 and 8)

1/, the displacement has the form of a smooth antikink. In the range of soliton
localization, extension of the central chain occurs, followed by local compression
of neighboring chains. For the negative soliton (see Fig. 3.26b right), the relative
displacements of the central chain already have the form of a kink. In the range of
antisoliton localization, there is compression of the central chain, accompanied by
local extension of neighboring chains.

Figure 3.27 (left) compares the profiles of the topological soliton and soliton
obtained in the immobile neighbor approximation. As can be seen from the figure,
although the derivatives of the curves, taken at the kink centre, coincide for the
quasi-one-dimensional and Frenkel–Kontorova models, the decay character of the
curves at infinity differs qualitatively. In the case of mobile neighbors, the decay
is not exponential, but follows a power law, as does the perturbation decay of
neighboring chains. However, the curve corresponding to the displacement of atoms
in the central chain relative to atoms in the neighboring chain appears to be well
approximated by the Frenkel–Kontorova model (see Fig. 3.27b left). In the region
of soliton localization, the nearest neighboring chains adjust to the topological
defect of the central chain. For this reason, the topological soliton in a quasi-one-
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dimensional crystal has not only the longitudinal width Dx but also the transverse
width 1 < Dy < Dx .

If in solving the minimum problem (3.71) we fix the particle displacement, taken
at the soliton centre uM=2C1;N=2, and then vary it, we can obtain the dependence
of the stationary state energy E on the position of its centre n, i.e., find the
Peierls potential profile E.M=2C 1; n/. The Peierls potential is a periodic function
with period equal to the longitudinal crystal spacing. The minima and maxima
of the potential correspond to the ground and metastable states of the stationary
topological soliton, respectively. The amplitude of the Peierls potential gives the
soliton pinning energy �E.

The dependencies of the energy E, diameters Dx , Dy , and pinning energy �E
of the topological soliton on the interchain interaction energy " and soliton sign are
listed in Table 3.3. The difference in the values of the kink and antikink parameters
is defined by the fact that the chains are slightly compressed when they associate
in a crystal, so that asymmetry in extension and compression appears as a result of
nonlinearity of the interchain interactions. As can be seen from Table 3.3, the soliton
is weakly pinned only for the strong interchain interaction " D 0:07. For the weak
interactions " D 0:007 or " D 0:0007, the pinning actually vanishes (�E < 10�9).

Table 3.4 gives the dependencies of the energy E and diameters Dx and Dy

of the positive soliton on the number of interacting neighboring chains L for the
interaction energy " D 0:007. The soliton energy and shape remain practically
unchanged as the chain number increases. Therefore, for both the nonlinear and
linear waves in the quasi-one-dimensional crystal, the interaction with only two
nearest neighbors is dominant. Thus, for the analysis of soliton dynamics, it is

Table 3.3 Dependencies of
the energy E, diameters Dx

and Dy , and pinning energy
�E of the topological soliton
on the interchain interaction
energy "

" Type E Dx Dy �E

Antikink 0.15117 6.48 3.62 3:1� 10�5

0.07 Kink 0.10516 3.90 1.49 1:8� 10�5

FK model 0.10574 3.76 1.00 1:0� 10�5

Antikink 0.04302 14.5 2.55 0

0.007 Kink 0.03851 12.6 2.18 0

FK model 0.04115 9.29 1.00 0

Antikink 0.01310 40.3 2.27 0

0.0007 Kink 0.01266 37.8 2.14 0

FK model 0.01376 27.1 1.00 0

Table 3.4 Dependencies of
the energy E and diameters
Dx and Dy of the positive
soliton on the number of
interacting neighboring
chains L for the interaction
energy " D 0:007

L E Dx Dy

1 0.043017 12.61 2.18

2 0.045279 11.97 2.16

4 0.045657 11.74 2.14

6 0.045691 11.71 2.12

8 0.045700 11.68 2.11
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sufficient to take L D 1, i.e., assume that only two nearest neighboring chains
interact.

3.3.5 Topological Soliton Dynamics

For weak interaction between neighboring chains, viz., " D 0:007 and 0.0007,
pinning is practically absent. Therefore, soliton solutions are expected to exist in
the form of a traveling wave um;n.t/ D u.m; n � st/, where s is the wave velocity
and the wave shape depends smoothly on the chain link number n. Then the second
derivative with respect to time can be replaced by the second discrete derivative

Rum;n D s2
@2

@n2
u.m; n � st/ D s2.um;nC1 � 2um;n C um;n�1/ :

Substituting this expression into the equations of motion (3.57), we obtain the set of
discrete equations

s2.um;nC1 � 2um;n C um;n�1/ D � @H

@um;n
; n;m D 0;˙1;˙2; : : : :

The solution to the discrete equations (3.72) corresponds to the minimum of the
functional

F D
M�1X

mD1

N�1X

nD1

�
1

2
.um;nC1 � um;n � ı/2 � 1

2
s2.um;nC1 � um;n/

2

C
LX

kD1

X

j

U.rm;nIk;j / � e0
�
:

Therefore, the form of the moving soliton (like the form of the stationary soliton)
can be sought numerically as the solution of the minimum problem

F �! min
um;n

: (3.72)

If fu0m;ng is a solution to the minimum problem (3.72), the soliton energy is

E D
M�1X

mD1

N�1X

nD1

�
1

2
.u0m;nC1 � u0m;n � ı/2

C 1

2
s2.u0m;nC1 � u0m;n/

2 C
LX

kD1

X

j

U.rm;nIk;j / � e0
�
;
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and the boundary conditions for the equations of motion at t D 0 are

um;n.0/ D u0m;n ; Pum;n.0/ D �s.u0m;nC1 � u0m;n/ ; n D 1; 2; : : : ; N ;

m D 1; 2; : : : ;M : (3.73)

Numerical solution of the problem (3.72) has shown that the topological soliton
has the subsonic spectrum of velocities 0 < s < sx . The dependencies of the
energy E and longitudinal width Dx of the soliton on its velocity s are shown in
Fig. 3.27 (right). As in the Frenkel–Kontorova model, the soliton energy increases
steadily with increasing velocity (E % 1 as s % sx), and the longitudinal diameter
decreases monotonically (Dx & 1 as s % sx).

We also modeled the soliton dynamics. Numerical integration of the equations of
motion

Rum;n D � @H

@um;n
; n D 1; 2; : : : ; N ; m D 1; 2; : : :M : (3.74)

with the initial condition (3.73) has shown that, for weak interchain interaction,
viz., " D 0:007 and 0:0007, the motion of topological solitons in the quasi-one-
dimensional crystal is not accompanied by phonon emission. The solitons retain
their initial forms and velocities over the whole spectrum of velocities 0 < s < sx .

The situation changes for the stronger interchain interaction " D 0:07. The
transverse diameter of the kinks increases, while the longitudinal diameter decreases
to sizes at which discreteness effects become significant (see Table 3.3). It turns out
that the pinning energy of the kinks in the quasi-one-dimensional crystal is two
to three times greater than that predicted by the corresponding Frenkel–Kontorova
model (in the immobile neighbor approximation). Therefore, the discreteness
effects in the crystal are expected to be more pronounced. The smooth soliton
solutions do not exist in this case. The kink motion is always accompanied by
phonon emission (Fig. 3.28 left). As a result, its velocity decreases monotonically.
Numerical simulation of the kink dynamics allows us to find the dependence of its
velocity s on time t . The function s.t/ is a monotonically decreasing function, so
it is possible to obtain the dependence of the kink slowdown jds=dt j on its velocity
s (see Fig. 3.28 right). For comparison, the same dependence as obtained in the
corresponding Frenkel–Kontorova model (all chains except one are fixed) is also
shown in Fig. 3.28 (right). As expected, the slowdown in the quasi-one-dimensional
crystal at any velocity turns out to be stronger than that in the corresponding
Frenkel–Kontorova model.

Phonon emission by a moving kink was investigated in the discrete Frenkel–
Kontorova model [11]. Numerical simulation has shown that, during the motion,
the kink radiates a phonon of a certain mode if it resonates with this phonon mode.
The physical condition for this resonance can be stated as follows: moving along
the chain together with the phonon mode, the kink ‘sees’ all particles oscillating in
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Fig. 3.28 Left: Phonon emission during the motion of the weakly pinned antikink in the quasi-one-
dimensional crystal (" D 0:07). Distribution of velocities Pum;n in the crystal with the condition of
fixed ends. The antikink velocities are s D 0:254 (a), s D 0:137 (b), and s D 0:093 (c). Right:
Dependence of the kink slowdown on its velocity s in the one-dimensional crystal with " D 0:07

(line 1) and in the corresponding Frenkel–Kontorova model (line 2). Dashed lines show the critical
values of velocities s1 D ˝1.0/=2� D ˝.0; �=2/=2� D 0:1109 and s2 D ˝.0; �/=2� D
0:1509

phase with each other, i.e.,

q � !.q/

s
D �2�n ; n D 0; 1; 2 : : : ;

or

!.q/

q C 2�n
D s ; n D 0; 1; 2 : : : :



110 3 Topological Solitons

Fig. 3.29 Dispersion curve
for the discrete
Frenkel–Kontorova model
(the approximation of
immobile neighboring chains)
! D ˝1.q1/ (2.19). The
points where it intersects the
straight line with slope equal
to the kink velocity
correspond to the phonon
modes radiated by the kink.
These modes are also shown
by the filled circles in the first
Brillouin zone �� < q1 < �
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Graphically, the different modes in which the kink can radiate are easy to represent
on the dispersion curve ! D !.q/, shown in all Brillouin zones, by drawing a
straight line with slope equal to the kink velocity. The intersections of the straight
line with the curve !.q/ correspond to the resonant modes of the kink.

The dispersion curve corresponding to the discrete Frenkel–Kontorova model
! D ˝1.q1/ (see (3.67)) is depicted in Fig. 3.29. In this case, the kink radiates
forward at a frequency !2 and back at frequencies !1 and !3. The farther the inter-
section point is from the first Brillouin zone, the weaker, as a rule, the association
of the kink with this mode and the lower the radiation level corresponding to this
mode. Even at high discreteness, the emission into the radiation modes lying outside
the region of 0 	 q 	 2� is very low. In the case shown in Fig. 3.29, only the
back radiation at frequency !1 is noticeable. When the kink velocity decreases to
s < s1 D ˝1.2�/=2� , the phonon emission falls drastically and the velocity of the
soliton becomes almost constant.

For " D 0:07, the critical value of the velocity is s1 D 0:1109. Numerical
simulation of the soliton dynamics in the immobile neighbor approximation cor-
roborates this result. At s > s1, the soliton velocity decreases monotonically and
the logarithm of the slowdown lg jst j decreases proportionally with the velocity s
(Fig. 3.28 right). After reaching the value of s1, the soliton velocity stops changing.
The soliton radiates phonons and ‘descends’ the dispersion surface with decreasing
velocity, following the curve

˝.q1; �=2/

q1
D ˝1.q1/

q1
D s ; (3.75)

up to the breakup velocity s1. In Fig. 3.30, the dependence of the kink’s phonon
emission frequency on its velocity (line 2), obtained in numerical simulation, is
compared with the curve obtained by substituting q1.s/ as given by (3.75) into the
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Fig. 3.30 Dependence of the frequency of phonon emission by the kink on its velocity for the
interchain interaction value " D 0:07. Lines 1 and 2 show the dependencies for the quasi-one-
dimensional crystal (all chains are mobile) and for immobile neighboring chains (the Frenkel–
Kontorova model), respectively. Dashed lines give the theoretical dependencies ! D ˝.q.s/; q2/,
where q.s/ is obtained from the equation˝.q; q2/� qs D 0 with q2 D 0, �=3, �=2, 2�=3, and �
(lines 3–7). The dotted line is asymptotic to line 1 for low velocities, ! D 2�s

dispersion equation (line 5)

!.s/ D ˝.q1.s/; �=2/ : (3.76)

As can be seen, the curves coincide exactly.
In a quasi-one-dimensional crystal, a similar analysis of the soliton radiation

frequencies leads to the resonance condition

˝.q1; q2/

q1
D s ; (3.77)

which now defines, not a single mode, but the set of modes shown in Fig. 3.31,
represented by constant velocity curves for several values of the soliton velocity.
For the soliton velocity s D 0:254 lying within the wavenumber region, where
resonance with the mode can lead to significant radiation into this mode, only back
radiation is possible. The level line of the function (3.77) lies to the left of the
straight line q1 D 2� , and correspondingly to the left of the straight line q1 D 0

upon transferring to the first Brillouin zone. Indeed, only the back radiation can
be seen in Fig. 3.28a (left). For the soliton velocity s D 0:137, both forward
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Fig. 3.31 Level lines of the function s D ˝.q1; q2/=q1 for s D 0:0454, 0:093, 0:137, 0:182, and
0:254 (" D 0:07)

and backward radiation are possible, as observed in the numerical experiment
(Fig. 3.28b left).

Since the soliton width is very small, the soliton radiates mainly into a mode
with the maximum possible value of q2 (0 	 q2 	 �). Clearly, the optimal value
is q2 D � (particles in neighboring chains oscillate out of phase, as happens in the
motion within the soliton centre, and the best resonance with the mode is thereby
reached). However, when the soliton velocity decreases, this condition ceases to be
fulfilled (see Fig. 3.31). Then the soliton radiates at the frequency

! D ˝
�
qmax
1 .s/; qmax

2 .s/


; (3.78)

where qmax
2 .s/ is the maximum value of q2 for a given kink velocity s lying on

the level line of the function (3.77) in the range 0 < q2 < � , and qmax
1 .s/ is the

corresponding value of q1. As can be seen in Fig. 3.31, at small soliton velocities, the
maximum of q2 is reached at q1 
 2� . Therefore, the dependence of the frequency
of phonon emission by the soliton on its velocity should tend to the straight line
! D 2�s, and this is indeed what is observed in the numerical simulation (see
Fig. 3.30). Thus, in a quasi-one-dimensional crystal, the soliton radiates when it
‘descends’ the dispersion surface, first along the line q2 D � (q1 changes from �

to a value close to zero) and then along the line q1 
 0 (q2 decreases from � to
zero). Interestingly, the energy emitted by the soliton changes sharply at two points
(see Fig. 3.28 right): first at the transition from the line q2 D � to the line q1 
 0

(the soliton is no longer in resonance with the radiation mode), and secondly when
crossing the point (q1 
 0, q2 D �=2). At velocities lower than the second point,
the soliton radiates after the passage of one chain spacing, and the radiation energy
does not depend on its velocity.
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As we have seen, the soliton spectrum in a quasi-one-dimensional molecular
crystal with weak interchain interaction (" D 0:007 or 0:0007) is bounded above
by the velocity of longitudinal sound 0 < s < sx . For these velocities, the plane
! D q1s does not intersect the dispersion surface ! D ˝.q1; q2/ in the wavenumber
range 0 < q1 < 0:8� (the plane is tangent to the dispersion surface). For
wavenumbers q1 
 � , the group velocity of phonons is close to zero, so the energy
transfer into these modes is highly ineffective. At soliton velocities higher than the
velocity of longitudinal sound, the intersection of the aforementioned plane with the
dispersion surface already occurs in the wavenumber range where 0 < q1 < �=2

and q2 can take the value of � . In this case, effective emission of corresponding
phonons is possible. Indeed, we observed that, in this range of velocities, the solitons
cannot move without emission even for weak interchain interaction. On the other
hand, because of the small discreteness of the system, this resonance does not lead to
noticeable emission. This is true despite the fact that the plane ! D q1s at velocities
0 < s < sx intersects the dispersion surface in the range of wavenumbers q1 
 2� ,
as well as in the case of a strong interchain interaction " D 0:07.

3.3.6 Interaction of Topological Solitons

The Frenkel–Kontorova model is only able to describe the interaction of topological
solitons located on the same molecular chain. The two-dimensional model of a
quasi-one-dimensional crystal already allows one to describe the interaction of
topological solitons located on different molecular chains [53, 60]. Let us consider
a soliton interaction in the framework of our model with interchain interaction
intensity " D 0:007. First, we compare the interaction of solitons located on the
same chain of the quasi-one-dimensional crystal with their interaction obtained
in the FK model. Numerical simulation of the collision of same-sign solitons
has shown that the two models lead to an almost identical description of their
interaction. At all velocities, the solitons repel one another as elastic particles,
almost without phonon emission. The situation changes dramatically when we
consider the interaction of opposite-sign solitons.

In the FK model with " D 0:007, the chain discreteness manifests itself
very weakly, so the soliton dynamics is well described by the continuous sine–
Gordon equation. In this model, solitons interact with each other as elastic particles,
i.e., opposite-sign solitons pass through each other without emitting phonons or
changing their velocities. In the weakly discrete FK model considered above, this
interaction of solitons occurs at all velocities s 	 0:01 (see Fig. 3.32a left). The
chain discreteness begins to manifest itself only at very low velocities s < 0:01.
At the velocity s D 0:005, soliton collision causes them to recombine, resulting in
the formation of a long-lived, localized nonlinear vibration, that is, a low-frequency
breather (a bound state of two opposite-sign solitons) (see Fig. 3.32b left).

In the two-dimensional molecular crystal, the collision of opposite-sign solitons
always occurs inelastically. Solitons can pass through each other only at high
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Fig. 3.32 Left: Collision of two opposite-sign solitons in the discrete Frenkel–Kontorova model
(" D 0:007) at the velocities s1 D �s2 D 0:01 (a) and s1 D �s2 D 0:005 (b). The distribution of
the longitudinal displacement un over the chain is shown as a function of time t . Right: Collision
of two opposite-sign solitons on the same chain in a quasi-one-dimensional system (N D 2;100,
M D 63, m D 32, " D 0:007) at the velocities s1 D �s2 D 0:5 (a) and s1 D �s2 D 0:25

(b). The distribution of the longitudinal displacement um;n over the chain (m D 32) is shown as a
function of time t

velocities (s � 0:5). In this case, a noticeable part of the energy is expended in
radiation into the neighboring chains, and this decreases the soliton velocity after
the collision (see Fig. 3.32a right). At lower velocities s 	 0:25, solitons always
recombine (see Fig. 3.32b right). This scenario of soliton recombination in the
two-dimensional model differs essentially from the recombination scenario in the
discrete FK model. In this case, localized breather-like excitations are not formed.
All the energy of colliding solitons is radiated into the neighboring chains. This
allows us to conclude that low-frequency breathers cannot exist in the quasi-one-
dimensional system, i.e., the low-frequency breathers in the FK model are an artifact
of the immobile neighbor approximation.

To test this conclusion, a numerical simulation of the low-frequency breather
dynamics was carried out in the immobile neighbor approximation. The results
show that the breathers have frequencies lying within the lowest gap in the phonon
spectrum 0 < ! < ˝1.0/. For values of the intermolecular interaction energy
� D 0:07, 0.007, and 0.0007, the low-frequency breather is a long-lived localized
nonlinear vibration (see Fig. 3.33a left). The picture changes drastically if we
let neighboring chains move. As there is no low-frequency gap in the phonon
spectrum of the quasi-one-dimensional crystal, the breather begins to emit phonons
intensively into the neighboring chains and collapses almost immediately (see
Fig. 3.33b left). For all values of �, the breather completely collapses during one
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Fig. 3.33 Left: Low-frequency breather in the quasi-one-dimensional crystal (M D 51, N D
400) in the case of immobile neighboring chains (a) and its degradation when link motion in
neighboring chains is possible (b). The displacement u26;n of the middle chain links is shown.
Breather frequency !b D 0:0157 and intermolecular interaction energy � D 0:007. Right: Bound
state of a pair of kinks (a) and opposite-sign topological solitons (b) located on neighboring chains
m2 D m1 C 1 (" D 0:007). The distribution of longitudinal displacements um;n is shown

oscillation period and its energy is uniformly distributed over all chains in the
system.

Let us consider the interaction of solitons located on different chains with
numbersm1 ¤ m2. To find the bound state of the stationary solitons, one must solve
the minimum problem (3.71) with a corresponding initial point. It is energetically
favorable for solitons to form a bound state. Typical forms of the bound state of
same- and opposite-sign solitons are shown in Fig. 3.33 (right).

In order to find the interaction potential between two solitons located on different
chains m1 and m2 (i.e., the dependence of the energy E of a pair of solitons on the
longitudinal distance R between their centres), one must fix the positions of their
centres n1 and n2 when solving the minimum problem. The interaction potential
of two same-sign solitons is shown in Fig. 3.34a. It follows from the form of the
potential that, regardless of the distance between chains, the interaction of same-sign
solitons located on these chains corresponds to weak repulsion at large distances
and strong attraction at small distances. To form the bound state, the defects must
overcome an energy barrier of height �E1 D max

�
E.R/ � 2E0

�
, where E0 is the

energy of a single soliton. The depth�E0 D 2E0�E.0/ of the interaction potential
well corresponds to the binding energy of the solitons.

Numerical simulation of the same-sign soliton dynamics in neighboring chains
confirms the form obtained for the interaction potential. If the kinetic energy of
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Fig. 3.34 Interaction potential of a pair of same-sign solitons (kink + kink) (a) and opposite-sign
solitons (kink + antikink) (b) located on the chains m1 and m2, where m2 D m1 C 1, m1 C 2,
m1 C 3, and m1 C 4 (lines 1–4). Parameter " D 0:007

solitons is lower than the energy barrier �E1, their collision always leads to
repulsion between them. If the energy insignificantly exceeds the barrier, the solitons
overcome the barrier and form the bound state. (The energy gain �E0 due to the
formation of the bound state is released by phonon emission.) Finally, solitons pass
each other if their kinetic energy substantially exceeds the barrier�E1. In this case,
the solitons slow down and part of the kinetic energy is released by the phonon
emission.

The interaction potential of two opposite-sign solitons is shown in Fig. 3.34b.
The interaction of two solitons located on different chains always corresponds to
their attraction. If the defects located on the chains are separated from each other by
a distance of two or more transverse lattice spacings, their interaction corresponds
to weak attraction at large distances and strong repulsion at small ones. Numerical
simulation of the dynamics of solitons moving towards each other has completely
confirmed this feature of their interaction.
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3.3.7 Formation of Topological Solitons in a Thermalized
Lattice

Consider a finite rectangular segment of a quasi-one-dimensional crystal � D f1 	
n 	 N; 1 	 m 	 M g with periodic boundary conditions. We describe the dynamics
of the thermalized segment by the Langevin equation

Rumn D � @H

@umn
C 
mn � 
 Pum;n ; .m; n/ 2 � ; (3.79)

where the Hamiltonian H is given by (3.62), 
 D 1=tr is the relaxation coefficient,
and 
mn is the random force describing the interaction of the lattice site .m; n/ with
a thermal bath, which has a normal distribution with correlation function

˝

mn.t1/
kl .t2/

˛ D 2
T ımkınl ı.t1 � t2/ ; (3.80)

where T is the dimensionless temperature of the thermal bath.
The equations of motion (3.79) were integrated numerically by the standard

fourth-order Runge–Kutta method with a constant step of integration �t [45]. In
the numerical procedure, the lagged Fibonacci random number generator [46] was
used and the ı function has the form ı.t/ D 0, if jt j > �t=2 and ı.t/ D 1=�t ,
if jt j 	 �t=2, i.e., the step of numerical integration corresponds to the correlation
time of the random force. For the Langevin equation to be used, one must have
�t � tr. Therefore, we take the step �t D 0:1 and the relaxation time tr D 10.
During the time t D 10tr, the system comes to equilibrium with the thermal bath.
The dynamics of the thermalized system can then be analysed.

The degree of nonlinearity of the thermal vibrations characterizes the heat
capacity of the system, c D hH i=T , where hH i is the average system energy.
A typical dependence of the heat capacity of the system is shown in Fig. 3.35 (left).
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Fig. 3.35 Left: Dependence of the heat capacity c of the quasi-one-dimensional crystal (line 1)
and the Frenkel–Kontorova chain (line 2) on temperature T . " D 0:07. Right: Dependence of the
distribution density p of the distance between the sites in neighboring chains on the temperature
T of the quasi-one-dimensional crystal
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At low temperatures T � ", the heat capacity of the system is c D 1 (only
the linear phonon modes are thermalized). With increasing temperature, the heat
capacity increases steadily up to a maximum value cm > 1 at Tm. A further increase
in temperature leads to a monotonic decrease in the heat capacity. As T % 1,
the heat capacity tends to 1, c & 1. At " D 0:07, the maximum value of the heat
capacity cm D 1:14 is reached at temperature Tm D 0:03.

An increase in the heat capacity of the system at T < Tm is associated with
the accumulation of topological defects in the chain. The defects in the thermalized
chain are produced by opposite-sign pairs and move along the chain as Brownian
particles. The maximum concentration of defects is reached at temperature Tm.

To study the correlation in the motion of neighboring chains, we consider the
distance r between the sites in neighboring chains as a random variable. At zero

temperature, r can assume only a discrete set of values rk D �
b2 C .k C 1=2/2

�1=2
,

k D 0; 1; 2; : : : . Its distribution function p.r/ is a sum of delta-functions centered
on the points rk . Thermal vibrations cause spreading of this discrete set of values.
The dependence of p.r/ on temperature T is shown in Fig. 3.35 (right). With
increasing temperature, the local maxima of the distribution function become
smaller and wider. The local maxima begin to disappear at temperatures T > Tm.
There remains only one first maximum. The longitudinal order of the molecular
arrangement in neighboring chains disappears and the concept of topological defect
thus loses its meaning. The chains are no longer sensitive to each other’s structure
and begin to interact as solid rods. This manifests itself more and more as the
temperature increases. As a result, the heat capacity decreases monotonically with
increasing temperature.

The temperature dependence of the heat capacity of the Frenkel–Kontorova chain
has the same form as in the quasi-one-dimensional crystal model, but the maximum
is reached at a higher temperature Tm D 0:05 and cm D 1:16 (see Fig. 3.35 left).
This shift is associated with the fact that the formation of a defect pair modeled in
the immobile neighbor approximation requires a higher energy in comparison to the
case where motion of the sites in neighboring chains is possible. At temperatures
T > Tm, the chain detaches from the substrate. As a consequence, with increasing
temperature, the heat capacity decreases monotonically and tends to 1, i.e., C & 1

as T �! 1.
The model used above cannot be used to model crystal melting. However, one

can consider the loss of longitudinal order in the arrangement of sites in neighboring
chains, resulting from the accumulation of topological defects, as crystal premelting.
This creates the necessary conditions for further mutual detachment of the chains.

3.3.8 Conclusion

We have seen that, in the simplest nonlinear anisotropic medium, namely, a system
of weakly bound molecular chains, there exist nonlinear localized excitations
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of soliton type with a topological charge. Their properties are determined by
the intensity of the interchain interaction. At a low intensity of the interchain
interaction, corresponding to a polyethylene crystal, when the sound velocity along
the chain is significantly higher than in the transverse direction, these soliton-
like excitations behave like the solitons in the Frenkel–Kontorova model (without
changing their shape and velocity) at zero temperature. In this case, the system
of bound molecular chains is a quasi-one-dimensional system. When the intensity
of the interchain interaction increases so much that the transverse sound velocity
becomes comparable with the longitudinal sound velocity, discreteness effects begin
to appear. The solitons cannot maintain a constant velocity and shape, but slow
down, emitting phonons.
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Chapter 4
Localized Nonlinear Vibrations

The description of various phenomena in solid state physics, the physics of
waves and vibrations, biophysics, and engineering is based on models of (quasi-
one-dimensional) molecular lattice dynamics. The study of linear quasi-periodic
structures has allowed the explanation of many properties of systems consisting
of a large number of interacting molecules and atoms. The introduction of the
concept of collective excitations, describing the coordinated (coherent) motion of
a large amount of particles has been especially fruitful. In the majority of cases, the
exact quantitative results, obtained in the harmonic approximation, are in excellent
agreement with observed properties of real systems.

However, there exist many significant physical phenomena which cannot be
explained in the linear approach. These phenomena are determined by higher order
terms in the power series expansion of the interaction energy of the molecular
system components, taken in the vicinity of its equilibrium state, which are
commonly neglected. In this chapter we will consider localized nonlinear vibrations,
which are referred to as spatial-temporal structures. They are stable spatial-temporal
formations in a dispersive medium which emerge in the absence of dissipation due
to the development of instability and its subsequent stabilization through dispersion
compensation by nonlinearity of these vibrations. If any, or even one, of their
parameters are changed, these systems become unstable. In this case the instability
may not be due to dissipation, but may result instead from effects associated with
the dispersion. Structures formed this way can be called dispersive structures (by
analogy with dissipative structures).
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4.1 A Nonlinear Oscillator

Let us consider first the properties of an isolated nonlinear oscillator which can be
generally described by the dimensionless Hamiltonian

H D 1

2
Pu2 C U.u/ ; (4.1)

where u is the coordinate of oscillation, the dot denotes differentiation with respect
to the dimensionless time t , the potential of the oscillator is normalized by the
conditions U.0/ D 0, U 0.0/ D 0, and U 00.0/ D 1, and the dimensionless frequency
of the oscillator is equal to 1. Here, we restrict ourselves to cubic and quartic
anharmonicity. Then the nonlinear oscillator potential takes the form

U.u/ D 1

2
u2 C 1

3
˛u3 C 1

4
ˇu4 ; (4.2)

where ˛ D d3U=du3juD0 and ˇ D d4U=du4juD0 are the cubic and quartic
anharmonicity parameters, respectively. Typical forms of the potential are shown in
Fig. 4.1 (left). The potential is a single-well if ˛2 < 4ˇ, or a double-well if ˛2 > 4ˇ
(when ˛2 D 9ˇ=2, the double-well potential is a symmetric potential).

The equations of motion corresponding to the nonlinear oscillator (4.1) and (4.2)
have the form

Ru D �U 0.u/ D �u � ˛u2 � ˇu3 ; (4.3)

with the integral of motion

1

2
Pu2 C U.u/ D E ; (4.4)
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Fig. 4.1 Left: Profile of the substrate potential U.u/ D u2=2 C ˛u3=3 C ˇu4=4 at ˇ D 1 and
˛ D 0 (line 1), ˛ D 1 (line 2), ˛ D 2 (line 3), and ˛ D 3=

p
2 (line 4). Right: Dependence of the

oscillation frequency ! of the nonlinear oscillator on the oscillation energy E at ˇ D 1 and ˛ D 0

(line 1), ˛ D 1 (line 2), ˛ D 1:5 (line 3), and ˛ D 2 (line 4)
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where E is the oscillation energy of the nonlinear oscillator. The energy conserva-
tion law (4.4) can be written in the form

du D ˙
q
2
�
E � U.u/�dt ; (4.5)

which can be integrated directly to give

Z u.t/

u0

du
q
2
�
E � U.u/�

D t ; (4.6)

where u0 D u.0/. The oscillation period can be readily found from the integral
equation (4.6):

T D p
2

Z umax

umin

du
p
E � U.u/ ; (4.7)

where umin and umax are the minimum and maximum amplitudes of oscillation,
i.e., the minimum and maximum solutions of the equation U.u/ D E with energy
E > 0. The oscillation frequency is ! D 2�=T .

The theoretical analysis of nonlinear oscillator dynamics carried out by Landau
and Lifshitz [1] has shown that, in the second-order approximation of perturbation
theory, the nonlinearity leads to a frequency shift by the amount

�! D
�
3ˇ

8!0
� 5˛2

12!30

�
a2 ;

where !0 is the oscillation frequency in the linear approximation and a is the
oscillation amplitude. Thus, the frequency shift is directly proportional to the square
of the oscillation amplitude and the shift direction depends on the relationship
between the nonlinearity parameters ˛ and ˇ. The nonlinearity causes an increase
in the oscillation frequency (hard anharmonicity) for ˛2 < 9ˇ!20=10 and a decrease
for ˛2 > 9ˇ!20=10 (soft anharmonicity). In our case, the frequency is !0 D 1.
Here, we take ˇ D 1, so that the nonlinear oscillator is soft for ˛2 > 9=10, i.e., for
j˛j >p9=10 D 0:9487, and otherwise hard.

The oscillation frequency of a linear oscillator does not depend on the oscillation
energy (amplitude). When nonlinearity is considered, this gives rise to a strong
dependence of the oscillation frequency ! on its energy E (see Fig. 4.1 right). For
ˇ D 1 and ˛ D 0, the oscillation frequency increases steadily with increasing the
energy. For ˛ D 1 and ˛ D 1:5, the frequency decreases at low energy and increases
monotonically at high energy, i.e., the oscillator possesses either soft anharmonicity
for small displacements or hard anharmonicity for large ones. This is especially
apparent for ˇ D 1 and ˛ D 2, when the oscillation period (4.7) tends to infinity at
the energy E D 1=12.
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4.2 A Chain of Nonlinear Oscillators

The Hamiltonian of a chain of nonlinear oscillators has the form

H D
X

n

�
1

2
Pu2n C 1

2
g.unC1 � un/

2 C U.un/

�
; (4.8)

where g is the dimensionless parameter of system cooperativity. The Hamilto-
nian (4.8) leads to the equations of motion

Run D k.unC1 � 2un C un�1/ � U 0.un/ ; n D 0;˙1;˙2; : : : : (4.9)

For low-amplitude displacements junj � 1, the equation of motion can be written
as the linear system

Run D k.unC1 � 2un C un�1/ � un ; n D 0;˙1;˙2; : : : ; (4.10)

with the dispersion equation

!.q/ D
p
1C 2g.1 � cos q/ ;

where q 2 Œ0; �� is the wavenumber. The phonon frequency spectrum consists of
the bands Œ!0; !m�, where !0 D !.0/ D 1 and !m D !.�/ D p

1C 4g are the
minimum and maximum frequencies, respectively. Here, we take the cooperativity
parameter g D 1, so the maximum frequency is !m D p

5 D 2:2361.
Self-localization of vibrations in a one-dimensional anharmonic chain was

investigated analytically by Kosevich and Kozlov [2]. Using an asymptotic method,
it has been shown that, in the limit of low-amplitude displacements, the nonlinearity
of the substrate potential (4.2) causes the appearance of localized eigenmode
vibrations (breathers). The frequencies of these self-localized vibrations can lie both
below and above the vibration frequency band of the corresponding harmonic chain.
Here, the magnitude of the splitting of vibration frequencies from the edge of the
phonon spectrum is a small parameter, so an asymptotic expansion of the solution
of the nonlinear equations can be obtained. In this approach, the solutions of the
equations can be found only in the continuum approximation.

Low-amplitude, low-frequency breathers (with frequencies ! < !0) can exist
only when ˛2 > 9ˇ=10 [2], i.e., in the case where an isolated oscillator possesses
soft anharmonicity. In a discrete chain, these breathers are not the exact solutions,
but behave as long-lived localized vibrations which are always accompanied by
phonon emission [3]. The low-amplitude, high-frequency breathers (with frequen-
cies ! > !m) can exist only when the following inequality is satisfied [2]:

˛2 <
3 � 12.1C 4g/

6 � 16.1C 4g/
ˇ : (4.11)
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For weak cooperativity g � 1, the inequality (4.11) takes the form ˛2 < 9ˇ=10,
i.e., low-amplitude, high-frequency breathers can exist in the chain only in the case
of hard anharmonicity of an isolated oscillator.

In a chain with hard anharmonicity, there can exist high-amplitude breathers,
which are the exact solutions in a discrete chain [3]. As shown above, the isolated
oscillators (4.1) with the nonlinear potential (4.2) always possess hard anharmonic-
ity for large displacements. It will be shown below that this anharmonicity always
leads to the existence of high-amplitude, high-frequency breathers.

4.3 Numerical Method for Finding Breathers

To find a discrete breather with frequency !, one must solve numerically the
nonlinear equations

F.X/ D X ; (4.12)

where X D fun.0/; Pun.0/gNnD1 is the 2N -dimensional vector representing the initial
condition for the equations of motion (4.9) with n D 1; 2; : : : ; N , and the vector
F.X/ D fun.T /; Pun.T /gNnD1 gives the chain position at time t D T , where T D
2�=! is the nonlinear vibration period. Equation (4.12) always has the zero trivial
solution X � 0. In order to find a non-trivial solution, one must choose the right
initial point for a sequence of iterations. For this purpose, it is convenient to use the
anti-continuum approximation with g D 0 for ! � !m. Then the resulting solution
is used as the initial point in solving (4.12) with a low frequency ! and so on. One
can thereby find a solution for all frequencies at which a discrete breather can exist.

For definiteness, we set the cooperativity g D 1 and the nonlinearity ˇ D 1.
Numerical solution of (4.12) has shown that there can exist several types of localized
vibrations (breathers). Each breather is described by its energy E, diameter D,
centre m, and frequency !. Let X D fun.0/; Pun.0/gNnD1 be the solution of the
nonlinear equation (4.12) corresponding to the breather with frequency !. Then
the breather energy is

E D
N�1X

nD1

�
1

2
Pu2n.0/C 1

2
g
�
unC1.0/ � un.0/

�2 C U.un.0//

	
;

and its centre is

m D
NX

nD1
npn ;

where the sequence
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pn D En

E
D 1

ET

Z T

0

�
1

2
Pu2n.�/C 1

2
g
�
unC1.�/ � un.�/

�2 C U
�
un.�/


	
d�

describes the distribution of vibration energy over the chain. D D 1 C 2R is the
diameter, and the square of the radius is

R2 D
NX

nD1
.n �m/2pn :

4.4 Properties of Discrete Breathers

The typical form of discrete breathers is shown in Figs. 4.2 and 4.3 and the
dependence of their energy E and diameter D on frequency ! is given in Fig. 4.4
(left). The first type is a breather with an integer centre, for which the centre
of the vibration energy distribution falls on one oscillator (see Fig. 4.2a, c). The
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Fig. 4.2 Profile of the discrete breather with an integer (a) and a half-integer (b) centre at the
frequency ! D 2:4 in the chain with parameters g D 1, ˛ D 0, and ˇ D 1. Maximum
displacements of the chain sites un (the displacements at the moment when velocities of all particles
are equal to zero) and the corresponding distribution of the energy En (c) and (d) over the chain
are shown
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Fig. 4.3 View of the bound state of two discrete breathers located at a distance of two (a, d) and
three (b, e) sites, and the bound state of three discrete breathers (c, f) at the frequency ! D 2:8 in
the chain with parameters g D 1, ˛ D 0, and ˇ D 1. Maximum displacements of the chain sites
un (the displacements at the moment when velocities of all particles are equal to zero) (a–c) and the
corresponding distribution of the energy En (d–f) in the range of nonlinear vibration localization
are shown

second is a breather with a half-integer centre for which the centre of the vibration
energy distribution is located in the middle, between the two neighboring oscillators
(Fig. 4.2b, d). For ˛ D 0, these breathers exist at all frequencies above the phonon
frequency spectrum ! > !m. With increasing frequency, the energy E grows as !4

(see Fig. 4.4a left), and the diameter D tends to 1 for the breather with an integer
centre and 2 for the breather with a half-integer centre (Fig. 4.4c left). At high
frequencies, the breather with an integer centre can be considered as the excited
state of a single oscillator and the breather with a half-integer centre can be treated
as the excited state of the two neighboring breathers vibrating in the opposite phase.
In the latter case, this breather is essentially the bound state of two breathers with
an integer centre. This is confirmed by the fact that the relative difference �E=E1
(�E D E1=2�E1) between the energies E1 and E1=2 of the breathers with the half-
integer and integer centres tends monotonically to 1 as ! ! 1 (Fig. 4.4b left). With
decreasing frequency ! ! !m, this ratio tends monotonically to zero. The breather
energies also tend to zero while their diameters tend to infinity. At low frequencies,
the difference between these breathers vanishes almost completely.

There exist other localized vibrations in the chain which are the bound states
of the breathers with an integer centre. These states appear when (i) two breathers
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Fig. 4.4 Left: Dependencies ofE1=4 (a), the relative difference�E=E in the energies of breathers
with half-integer and integer centres of symmetry (b), and the diameter D of the discrete breather
(c) on the frequency ! in the chain with the nonlinear substrate potential (g D 1, ˛ D 0, and
ˇ D 1). Breathers with integer (lines 1 and 6) and half-integer (lines 2 and 7) centres, the bound
state of breathers located at a distance of two (lines 3 and 8) and three (lines 4 and 9) sites, and
the bound state of three breathers (lines 5 and 9). Right: Formation of the discrete breather with
an integer centre from the bound state of two breathers located at a distance of two sites (a) and
formation of the discrete breather with a half-integer centre from the bound state of two breathers
located at a distance of three sites (b) in the chain with parameters g D 1, ˛ D 0, and ˇ D 1.
Initial frequency of the bound state ! D 2:8. The dependence of the energy distribution En over
the chain on time t is shown

are separated from each other by two chain links (Fig. 4.3a, d) and by three chain
links (Fig. 4.3b, e) and (ii) three breathers are separated from each other by two
chain links (Fig. 4.3c, f). They can exist only at significantly high frequencies. The
dependencies of their energies and diameters on the frequency are shown in Fig. 4.4
(left). For ˛ D 0, the bound state of two breathers exists only at frequencies (i)
! � 2:76 for the breathers separated from each other by two chain links and (ii)
! � 2:57 for the ones separated by three chain links. The bound state of three
breathers exists only at frequencies ! � 2:72.

In the absence of the cubic anharmonicity, i.e., when ˛ D 0, breathers with
integer and half-integer centres are stable for all permissible values of frequencies
! > !m. Bound states of the breathers are stable only for high frequencies. For
low frequencies, they lose stability and turn into breathers with integer or half-
integer centres, while low-intensity phonons are emitted and the vibration frequency
increases (Fig. 4.4 right).
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Fig. 4.5 Left: Dependencies of energy E (a) and diameter D (b) of the discrete breather with an
integer centre on the frequency ! in the chain with parameters g D 1 and ˇ D 1 for ˛ D 0 (lines
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2 (lines 6 and 12). Right: Discrete breather dynamics in the chain with parameters g D 1,

˛ D 1, and ˇ D 1 for frequencies ! D 2:24 (a) and ! D 2:3 (b). The dependence of the energy
distribution En over the chain on time t is shown

Let us now consider how the properties of the discrete breathers depend on the
cubic anharmonicity parameter ˛. Low-amplitude, high-frequency breathers can
exist only if the inequality (4.11) is satisfied. For g D 1 and ˇ D 1, this inequality
reduces to j˛j <p57=74 D 0:8777. Numerical simulation confirms this condition.
For ˛ D 0 and ˛ D 0:5, the discrete breather with integer centre exists for all
frequencies ! > !m. In this case, with increasing frequency, the breather energy
(and thus also its amplitude) tends monotonically to zero (Fig. 4.5 left). The situation
changes for ˛ >

p
57=74. Here, the breather exists for all frequencies ! > !m as

well, but its energy does not tend to zero as the frequency decreases. Moreover,
near the upper bound of the phonon spectrum, a decrease in the energy changes
to an increase (Fig. 4.5a left). Thus, when the inequality (4.11) is not true near the
maximum frequency of the phonon spectrum, high-amplitude breathers exist instead
of low-amplitude breathers. Under these conditions, the diameters of these breathers
increase steadily with increasing frequency.

At high frequencies, discrete breathers are stable localized vibrations for all
values of the cubic anharmonicity parameter. When the inequality (4.11) holds, the
breather remains stable for all frequencies ! > !m. If this inequality no longer
holds, the breather loses stability at its minimum frequencies. For ˛ D 1, the
breather is stable at frequency ! D 2:3 and unstable at ! D 2:24 > !m Dp
5 D 2:2361 (Fig. 4.5 right). Numerical simulation of the chain dynamics for
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Fig. 4.6 Dynamics of the discrete breather in the chain with parameters g D 1, ˛ D 2, and ˇ D 1

for frequencies ! D 2:24 (a), ! D 2:3 (b), ! D 2:5 (c), and ! D 4 (d). The dependence of the
energy distribution En over the chain on time t is shown

initial conditions corresponding to the discrete breather with an integer centre has
shown that, at this frequency, the lifetime of this localized vibration is t D 460

(before destruction, the breather performs 164 oscillations) (Fig. 4.5a right). At the
frequency ! D 2:3, the breather remains stable during the whole time of numerical
integration t D 104.

For strong cubic anharmonicity ˛ � 2, the anharmonic oscillator potential U.u/
becomes a double well. This causes the breathers to become unstable at higher
frequencies, when the oscillation amplitude becomes comparable with the distance
between the walls. For ˛ D 2, the breather is unstable for frequencies ! D 2:24

and ! D 2:5, and stable for ! D 2:3, as well as for the higher frequency ! D 4

(Fig. 4.6).
The localized vibrations discussed above exist by virtue of the nonlinearity of

oscillators compensating for the dispersion. Here, the dispersion and nonlinearity
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have different origins: the dispersion results from the site–site interaction and the
nonlinearity is a substrate potential property. We now consider a case where both
nonlinearity and dispersion are due only to the site–site interaction. We will show
that localized high-frequency nonlinear vibrations can exist there.

For simplicity, we assume that the substrate potential U.u/ is absent. Then the
dimensionless Hamiltonian can be written in the form

H D
X

n

�
1

2
Pu2n C V.unC1 � un/

2

�
; (4.13)

where the potential V.�/ of the site–site interaction is normalized by the conditions

V.0/ D 0 ; V 0.0/ D 0 ; V 00.0/ D 1 : (4.14)

The Hamiltonian (2.13) gives the equations of motion

Run D F.unC1 � un/ � F.un � un�1/ ; n D 0;˙1;˙2; : : : ; (4.15)

where the function F.�/ D V 0.�/.
For low-amplitude displacements junj � 1, by virtue of the normalization

conditions (4.14), the equations of motion can be written in the form of the linear
system

Run D unC1 � 2un C un�1 ; n D 0;˙1;˙2; : : : ; (4.16)

which gives the dispersion equation

!.q/ D
p
2.1 � cos q/ D 2 sin

q

2
;

where q 2 Œ0; �� is the wavenumber. It follows from the dispersion equation that the
phonon frequency spectrum consists of the band Œ0; 2�.

For definiteness, we restrict attention to the cubic and quartic anharmonicity of
the site–site interaction potential V.�/. Then this potential has the form

V.�/ D 1

2
�2 � 1

3
˛�3 C 1

4
ˇ�4 ; (4.17)

where ˛ D �d3V=d�3j�D0 � 0 and ˇ D d4V=d�4j�D0 > 0 are the parameters of
the cubic and quartic anharmonicity, respectively.

Vibration self-localization in this one-dimensional anharmonic chain was also
investigated analytically by Kosevich and Kovalev [2]. Using an asymptotic method,
they have shown that, in the limit of low-amplitude displacements, interaction
potential nonlinearity can lead to the existence of self-localized nonlinear vibrations
(breathers) (4.17). The frequencies of these vibrations can only lie above the
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frequency band of the corresponding harmonic chain. Here the magnitude of the
splitting of the vibration frequency from the edge of the phonon spectrum is also
a small parameter, which means that an asymptotic expansion of the solution to
the nonlinear equation can be obtained. In this approach, one can only get the
solution of (2.15) in the continuum approximation. Low-amplitude breathers with
frequencies ! > 1 can exist only for

˛2 <
3ˇ

4
: (4.18)

These breathers exist for all frequencies ! > 2 [3]. Let us consider their properties.
A typical view of discrete breathers is shown in Fig. 4.7 (left) and the dependen-

cies of their energy E and diameter D on the frequency ! are given in Figs. 4.7
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Fig. 4.7 Left: Profile of the discrete breather with a half-integer centre for frequency ! D 2:2 in
the chain with parameters ˇ D 1 and ˛ D 0 (a), 0.5 (b), 1 (c), and 2 (d). Chain site displacements
un are shown at the time when the velocities of all particles are equal to zero. Right: Dependencies
of E1=4 (a), relative difference�E=E in the energies of the breathers with half-integer and integer
centres of symmetry (b), and diameter of the discrete breather D (c) on frequency ! in the chain
with the nonlinear site–site potential (2.17) and parameters ˛ D 0 and ˇ D 1. Upper and bottom
lines (a) correspond to breathers with an integer centre. Bottom and upper lines (c) correspond to
breathers with half-integer centres
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Fig. 4.8 Dependencies of E1=4 (a), full extension of the chain R (b), and diameter D (c) of the
discrete breather with integer centre on its frequency ! in the chain with the nonlinear site–site
potential (g D 1, ˇ D 1) for ˛ D 0 (lines 1, 5, 9), ˛ D 0:5 (lines 2, 6, 10), ˛ D 1 (lines 3, 7, 11),
and ˛ D 2 (lines 4, 8, 12)

(right) and 4.8. There exist only two types of breather, i.e., with integer and
half-integer centres. For ˛ D 0, these breathers exist for all frequencies lying above
the phonon frequency spectrum ! > 1. With increasing frequency, the energy E
increases as !4 (Fig. 4.7a right) and the diameters of breathers with integer and half-
integer centres D tend to 1 and 2, respectively (Fig. 4.7c right). Here, one cannot
yet consider the breather with integer centre as the bound state of two breathers
with integer centres. The relative difference�E=E1 in the energies of the breathers
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with half-integer and integer centres does not exceed 0.22 (Fig. 4.7 right). Here, the
breather with integer centre has a higher energy �E D E1 � E1=2 > 0. When the
frequency is decreased ! ! 2, this ratio tends monotonically to zero, the breather
energy also tends to zero, and the diameter tends to infinity. For low frequencies, the
difference between these breathers practically vanishes.

In the absence of cubic anharmonicity (˛ D 0), discrete breathers are stable
for all frequencies ! > 2. Numerical solution of (4.12) has shown that, when
ˇ > 0, the discrete breather exists for all values of the cubic anharmonicity
parameter. The form of the breather depends essentially on the parameter ˛ � 0.
When ˛ D 0, the breather is a symmetrical vibration and chain compression
does not occur in the region of its localization (Fig. 4.7a left). When ˛ > 0, the
vibration becomes asymmetrical. The local extension of the chain takes place in the
vibration localization region (Fig. 4.7b–d left). The total compression of the chain
R D uC1 � u�1 steadily increases with increasing cubic anharmonicity.

Let us consider how the properties of the breather depend on the cubic anhar-
monicity parameter ˛ � 0. Low-amplitude, high-frequency breathers can exist
only if the inequality (4.18) holds. When ˇ D 1, this inequality reduces to
j˛j <

p
3=4 D 0:866. Numerical simulation confirms this condition. When

˛ D 0 and ˛ D 0:5, the discrete breather with half-integer centre exists at
all frequencies ! > 2. With decreasing frequency, the breather energy and total
chain extension R tend monotonically to zero (Fig. 4.8). The picture changes when
˛ >

p
3=4. Here, the breather also exists for all frequencies ! > 2, but its

energy and total chain extension do not tend to zero as the frequency increases.
Moreover, near the upper bound of the phonon spectrum, a decrease in energy
changes to and increase (Fig. 4.8a). Thus, when the inequality (4.18) fails, in the
chain with the anharmonic site–site interaction, instead of low-amplitude breathers,
there exist high-amplitude breathers at frequencies near the upper bound of the
phonon spectrum. In this case, the diameter of these breathers increases steadily
with increasing frequency.

When the inequality (4.18) holds, the breather remains stable for all frequencies
! > 2. If this inequality is no longer true, the discrete breather becomes
unstable. The instability becomes more pronounced for higher values of the cubic
anharmonicity ˛. Numerical simulation of the chain dynamics with the initial
condition corresponding to the discrete breather with half-integer centre has shown
that, when ˇ D 1 and ! D 2:2, the breather remains stable during the whole
simulation time if ˛ D 0, 0:5 < 0:866 (Fig. 4.9d, c). When ˛ D 1, the
lifetime of the localized vibration is t D 3;500 (the breather performs 1:2 � 103

vibrations before destruction), and when ˛ D 2, its lifetime is equal to t D 2;000

(Fig. 4.9b, a).
The investigation discussed above shows that discrete breathers are stable

localized periodic vibrations. A necessary condition for their existence is the hard
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Fig. 4.9 Dynamics of the discrete breather with frequency ! D 2:2 in the chain with parameters
g D 1 and ˇ D 1 at ˛ D 2 (a), 1 (b), 0.5 (c), and 0 (d). The dependence of the energy distribution
En over the chain on time t is shown

anharmonicity of a chain. In such a chain, breathers can form stable spatial-temporal
structures.
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Chapter 5
Ratchets

The standard Frenkel–Kontorova model describes a symmetric substrate potential.
However, if the system symmetry is broken, new effects related to this phenomenon
appear, namely, the so-called saw-tooth or ratchet dynamics. A system under
external perturbation exhibits ratchet dynamics if the average particle flux is
nonzero, while all average values of external factors (stationary forces, gradients of
temperature and concentration, chemical potential, and so on) are equal to zero. Sys-
tems displaying ratchet dynamics are currently attracting a lot of attention because
they can help to explain the physics of molecular motors and pumps, and also
because they open up new possibilities for various applications of nanotechnology.

A comprehensive review of the features of ratchet dynamics can be found in [1,
2]. For a molecular system to exhibit ratchet dynamics, it must satisfy the following
conditions:

• The system must be out of thermal equilibrium. This requirement results from the
fact that a system in thermal equilibrium cannot display systematic displacement
in a preferential direction due to the second law of thermodynamics. Therefore,
the system must be undergoing the action of an external perturbation, e.g., an
external force with zero average value.

• The spatial-temporal symmetry of the system should be broken as a result of
either an asymmetric substrate potential or an asymmetric external force. More
stringent rules are formulated in [3, 4].

An asymmetry in the potential profile of the substrate (its saw-tooth profile) should
lead to the specific dynamics of particles. A view of the asymmetric piecewise linear
potential profile is shown in Fig. 5.1. Such a saw-tooth-like potential profile was
used for the first time by Feynman in his lectures to illustrate the second law of
thermodynamics [5]. He considered the mechanism of a saw-tooth wheel with a
ratchet to show that this mechanism could not convert random thermal fluctuations
into useful work. But the situation changes dramatically if this mechanism is
embedded in a colored thermal bath. In this case, it can convert colored noise
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Fig. 5.1 Piecewise linear
saw-tooth-like periodic
potential profile V.x/ (L is
the profile period)
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into useful work [6]. Colored noise can induce a continuous one-way flux of
particles in the saw-tooth-like periodic potential profile. The simplest models of
this phenomenon were investigated in [7], where it was shown that the magnitude
and direction of the flux both depend on the form of the profile and the statistical
properties of the noise. Such nonequilibrium mechanisms can explain the highly
efficient functioning of many molecular biosystems [8–10].

In this chapter we consider ratchet dynamics in detail using the following three
models as examples:

• The asymmetric pendulum,
• The FK model with an asymmetrical periodic substrate potential, and
• The �-4 model with an asymmetrical double-well potential.

All these models possess internal asymmetry related to the specific form of the
substrate potential. We will show how directed motion can emerge under the action
of external forces.

5.1 Asymmetric Pendulum

Particle motion in force fields which are periodic both in space and time serves
as a model for many processes in physical systems (classical pendulum, charged
particle moving in an electric field, synchronous rotors, Josephson junctions, and
others). These systems can possess complex dynamics. For example, studies of
pendulums under forced oscillation have revealed complex dynamic processes and
chaotic oscillations [11–13].

Symmetric sinusoidal fields are mainly considered when all possible directions of
particle motion are completely equivalent. On the other hand, there has recently been
great interest in the stochastic dynamics of a particle in the asymmetric periodic
ratchet potential profile [14–16]. This concern stems from a number of biological
applications [17, 18]. The asymmetry of the potential profile causes asymmetry in
the Brownian motion of a particle under the action of colored low-frequency noise,
and this in turn means that such noise can produce useful work.
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Here, we consider the dynamics of a particle in an asymmetric saw-tooth-like
potential profile under the action of an external periodic force. It will be shown that
a symmetric periodic external force causes the appearance of a preferred direction
in the particle motion with a magnitude and sign that depend on the amplitude and
frequency of the force, particle mass, and temperature of the heat bath (a change in
any of these parameters can cause a change in the direction of motion). Thus, the
action of an external symmetric periodic force with zero average value allows for
particles to be selected on the basis of their masses.

5.1.1 Potential Function of an Asymmetric Pendulum

We use the potential function of an asymmetric pendulum given in Fig. 5.2a as the
saw-tooth-like periodic potential profile. Let us consider a pendulum composed of

φ

M

R

K,  L0

a

g

−π 0 π 2π 3π 4π 5π
0

0.5

1
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V

b

Fig. 5.2 Schematic model of the asymmetric pendulum (a) and its dimensionless potential V.�/
for l0 D 2 and � D 2 (b)
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a point mass M , hanging on a rigid weightless rod of length R and attached to a
wall by a weightless spring of length L0 and rigidity K. This mechanical system
provides a simple illustration of asymmetry formation, due here to the presence of
the additional spring.

Let � be the angle of rotation of the rod around the point of suspension. Then the
potential function of the pendulum has the form

P.�/ D MgR.1C cos�/C 1

2
K
�
L.�/ � L0

�2
; (5.1)

where g is the acceleration due to gravity and the current length of the spring is

L.�/ D
p
.L0 CR sin�/2 CR2.1C cos�/2

The potential (5.1) is a periodic function of period 2� with minima at the points
� D �� ˙ 2�k, k D 0; 1; 2; : : : , and maxima at the points � D �0 ˙ 2�k, where
�0 2 Œ��; �� is the solution of the equation dP=d� D 0.

We define the dimensionless potential by

V.�/ D P.�/

P.�0/
D C

�
1C cos� C �

2

hp
.l0 C sin�/2 C .1C cos�/2 � l0

i2	
;

(5.2)

where � D KR=Mg and l0 D L0=R are the dimensionless parameters and the
constant C is found from the condition maxV.�/ D 1. The potential (5.2) is an
asymmetric periodic function taking values from 0 to 1. For definiteness, we take
l0 D 2 and � D 2, so the constant C D 1=3:155110. A view of the potential V.�/ is
shown in Fig. 5.2b. The potential has the characteristic asymmetrical saw-tooth-like
profile with maximum shifted to the right (direction of the ‘saw’) �0 D 0:705747.

5.1.2 Dynamical Equation

Let us consider the dynamics of a particle of mass m in the asymmetrical potential
profile U.x/ D "V .2�x=p/, where x is the particle coordinate, and p and " are
the period and height of the potential profile, respectively. The Hamiltonian of the
particle has the form

H D 1

2
m

�
dx

dt

�2
C U.x/ : (5.3)

For convenience, we introduce the dimensionless displacement � D 2�x=p, time
� D 2�t

p
"=m0p2, and energy H D H =", where m0 is the characteristic value of
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the mass. Then the Hamiltonian (5.3) takes the form

H D 1

2
	

�
d�

d�

�2
C V.�/ ; (5.4)

where 	 D m=m0 is the dimensionless mass of the particle.
The Langevin dynamics of the particle under the action of an external periodic

force is described by the dynamical equation

	
d2

d�2
� C F.�/C 
	

d

d�
� C 
 C A cos.!� C '0/ D 0 ; (5.5)

where F.�/ D dV=d� is the force function, 
 D 1=�r is the friction coefficient,
and �r is the relaxation time. The random force 
 describes the interaction of the
particle with the heat bath. A, !, and '0 are the amplitude, angular frequency, and
initial phase of the external periodic force, respectively. The random force 
.�/ is
ı-correlated in time:

˝

.�1/
.�2/

˛ D 2
ˇ	ı.�1 � �2/ ;

where ˇ is the dimensionless temperature of the heat bath.
Hereafter we use the initial conditions corresponding to the equilibrium state

�.0/ D �� , .d�=d�/.0/ D 0, and integrate (5.5) by the standard Runge–Kutta
method with fourth-order accuracy and constant integration step d� D 0:05 [19].

5.1.3 Asymmetry of Chaotic Oscillations

We begin by considering the particle dynamics at zero temperature of the heat bath
.ˇ D 0/. Forced oscillations of the symmetric pendulum .� D 0/ have been well
studied [11–13]. It is known that these oscillations are chaotic over a wide range
of parameter values. For the asymmetric pendulum .� ¤ 0/, the character of the
oscillations remains chaotic. Numerical integration of the dynamical equation (5.5)
has shown that the chaotic oscillations become asymmetric, i.e., particle drift occurs
in the background of the oscillations. This drift does not directly allow the use
of the standard Poincaré map because the point set f�.nT /; �0.nT /g1

nD0 forms
an unbounded set in the phase plane. Here, the prime denotes differentiation with
respect to the dimensionless time and T D 2�=! is the period of the external force.

Let us slightly modify the Poincaré map. Consider the point set

n
un D �

�
.nC 1/T


 � �.nT / ; vn D �0�.nC 1/T

o1
nD1 :

This set is bounded for a constant particle drift velocity, which allows us to analyse
the nature of the oscillations based on its structure. In Fig. 5.3, the modified Poincaré
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Fig. 5.3 Modified Poincaré map for 	 D 1, 
 D 0:1, ˇ D 0, A D 0:75, T D 100, and '0 D 0

map consisting of N D 4 � 104 points is shown for the parameter values 	 D 1,

 D 0:1, ˇ D 0, A D 0:75, '0 D � , and T D 100. As can be seen from this
figure, the modified Poincaré map has a fine structure which resembles a strange
attractor. The characteristic feature of this map is its asymmetry relative to the line
u D 0. The centre of the point set fun; vngNnD1 turns out to be shifted to the right,
indicating that the particle drifts to the right. One can therefore conclude that the
particle dynamics in the saw-tooth-like potential profile under the action of the
symmetric periodic force has the nature of a bounded chaotic oscillation against
a background of uniform motion. The velocity of this uniform motion corresponds
to the limit

s D lim
�!1

�.�/ � �.0/
�

:

Our next aim is to investigate the dependence of s on the parameters A, T , ˇ, and 	.

5.1.4 Asymmetric Particle Drift Velocity

Let us integrate the dynamics equation (5.5) numerically for 0 	 � 	 2 � 104. The
drift velocity of a particle can be estimated as

s D �
�.2 � 104/ � �.104/� � 10�4 :

The drift velocity is estimated from the second half of the time interval, in which
the system is certain to be in thermal equilibrium. The drift velocity s can depend
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on the initial phase of the force '0. Let us average s over '0. To do this, we find the
average velocity over the set fsn D s.'0/; '0 D 2�n=36g36nD1, viz.,

s D 1

36

36X

nD1
sn ;

and also the standard deviation

� D
"
1

36

36X

nD1
.sn � s/2

#1=2
:

We thus arrive at the estimate s D s ˙ � .

5.1.5 Frequency Dependence of the Drift Velocity

Let us find the dependence of the drift velocity of a particle s on the period of the
external force T D 2�=!. To be specific, we will take 	 D 1, 
 D 0:1, and
A D 0:5. The dependence of s on T for ˇ D 0 is given in Fig. 5.4a (left). As can
be seen from this figure, when T < 280, the value of s is very sensitive to a small
variation of the period, which can even cause a change in the sign of the velocity.
When T > 280, the velocity s remains practically unchanged as the period varies.

Let us introduce a low-amplitude white noise into the external periodic force
(thermal fluctuations of the dimensionless temperature ˇ D 0:02). As can be seen
in Fig. 5.4b (left), the addition of the noise leads to smoothing in the dependence
s.T /. For 15 < T < 95, the velocity is negative s < 0 (the particle drifts against
the direction of the saw-tooth-like potential profile), while for T � 95, the velocity
is positive s > 0 (the particle drifts in the direction of the saw-tooth-like potential
profile). The average velocity s increases steadily as the period T increases to a
certain limiting value.

When we add the noise, the disappearance of the singular dependence of s on T
in the range of low values of the period proves that the singularity here is due to the
nonlinear resonant interaction between the particle and the force. The presence of
random forces (thermal fluctuations) leads to the disruption of ‘fine’ resonances and
hence to the disappearance of the singularity (see Fig. 5.4b left).

5.1.6 Temperature Dependence of the Drift Velocity

Comparison of Figs. 5.4a, b (left) shows that the introduction of low-amplitude
white noise leads in several cases to a change in the sign and magnitude of the
particle drift velocity. We now consider in detail the dependence of this drift velocity
s on the dimensionless temperature of the heat bath ˇ.
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Fig. 5.4 Left: Dependence of the particle drift velocity s on the period T of the external force
when 	 D 1, 
 D 0:1, A D 0:5, ˇ D 0 (a), and ˇ D 0:02 (b). Right: Dependence of the
particle drift velocity s on the temperature of the heat bath ˇ for A D 0:6, T D 100 (a), A D 0:6,
T D 500 (b), and A D 0:3, T D 500 (c). Dimensionless mass 	 D 1 and 
 D 0:1

Let us choose 	 D 1 and 
 D 0:1 and consider first the dependence s.ˇ/ for
the external force amplitude A D 0:6 and periods T D 100 (Fig. 5.4a right) and
T D 500 (Fig. 5.4b right). For T D 100, temperature growth leads to a much
stronger smoothing of the nonlinear resonant interaction between the particle and
periodic force and, as a consequence, causes a decrease in the asymmetry of the
dynamics. The average value is negative, i.e., s < 0, only for ˇ < 0:055. Further
growth of ˇ results in a decrease in the average value s and increase in the standard
deviation � .

For T D 500, the asymmetry in the particle dynamics (positivity of the drift
velocity) is a result of higher mobility of a particle moving under the action of a
constant force in the direction of the saw-tooth-like potential profile as compared
with its movement against this direction. When the force has a long period, the
particle velocity at each time will correspond to the current value of the force.
The appearance of white noise destroys the synchronization between the particle
velocity and the current value of the force, so with an increase in the noise amplitude
(temperature of the heat bath), the particle drift velocity tends monotonically to zero.

Let us consider separately the dependence s.ˇ/ for A D 0:3 and T D 500 (see
Fig. 5.4c right). In the absence of white noise (ˇ D 0), the external low-amplitude
periodic force does not cause particle drift, and the particle only oscillates in the
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vicinity of its equilibrium position. The introduction of white noise can lead to
pinning of the particle and, as a result, to asymmetric drift. For ˇ < 0:02, the
particle remains pinned, while for ˇ > 0:02, it already drifts in the direction of
the saw-tooth-like potential profile. The maximum drift velocity is reached when
ˇ D 0:1 (for this value, the signal/noise ratio turns out to be optimal). A further
increase in ˇ already leads to a monotonic decrease in the drift velocity.

Thus, for a low amplitude of the external periodic force, thermalization of
the system can be a necessary condition for asymmetric drift, while for a large
amplitude, thermalization only causes a decrease in the asymmetric drift of the
particle.

5.1.7 Amplitude Dependence of the Drift Velocity

As mentioned above, a small amplitude periodic force does not cause particle drift.
For particle drift to occur, the amplitude must exceed a certain threshold value at
which depinning happens. Let us consider in detail the dependence of the drift
velocity of a particle s on the force amplitude A. We choose 	 D 1, 
 D 0:1,
and ˇ D 0:02.

The dependence s.A/ for T D 100 is shown in Fig. 5.5a (left). For amplitude
A < 0:26, particle drift does not occur, since the particle remains in the pinned
state at all times. For A D 0:26, depinning takes place and the particle thus starts
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Fig. 5.5 Left: Dependence of the particle drift velocity s on the amplitude of the external force A
for 	 D 1, 
 D 0:1, ˇ D 0:02, and T D 100 (a) and T D 500 (b). Right: Dependence of the
particle drift velocity s on the dimensionless mass 	 when 
 D 0:1, A D 0:7, T D 50, and ˇ D 0

(a) and ˇ D 0:02 (b)
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moving. This motion has the nature of an asymmetric drift: the particle drifts to the
right (in the direction of the saw-tooth-like potential profile) for A < 0:53 and to
the left (against this direction) for A > 0:53. In the limit A ! 1, the drift velocity
tends to zero. The dependence s.A/ for T D 500 is shown in Fig. 5.5b (left). Here,
for A < 0:26, particle drift is also absent. A further increase in the amplitude leads
to steady growth in the drift velocity. The velocity reaches a maximum value when
A D 0:54 and then tends monotonically to zero.

Thus, for asymmetry in the particle dynamics to manifest itself, the amplitude
of the external force must be commensurate with the barrier height of the potential
profile. For low amplitudes, the particle will be in the pinned state and only oscillate
around its equilibrium position with a small amplitude. For very large amplitudes,
the potential profile will have little effect on the particle dynamics. For short force
periods, a change in its amplitude can cause a change in the direction of the particle
drift. For long force periods, a change in its amplitude leads only to a change in the
drift velocity, and there is only a single value of the amplitude at which the drift
velocity will be at its maximum.

5.1.8 Isotope Dependence of the Particle Drift Velocity

A change in the mass of a particle can lead to a change in its drift direction only
when there is a short period external force. Nonlinear resonance manifests itself in
the asymmetry of the dynamics. Let us consider in detail the particle dynamics for

 D 0:1, A D 0:7, T D 50, and ˇ D 0 (Fig. 5.5a right) and ˇ D 0:02 (Fig. 5.5b
right).

In the absence of white noise, a severalfold increase in the dimensionless mass 	
leads to a change in the sign of the drift velocity s (see Fig. 5.5a right). Furthermore,
there even exists an interval of mass values for which particle drift is absent. The
introduction of white noise of small amplitude smooths the dependence of s on
	 (see Fig. 5.5b right). The drift velocity oscillates when the dimensionless mass
is increased, and the range of mass values 	 is divided into several intervals in
which the drift velocity has constant sign. This dependence of s on 	 once again
confirms the resonant nature of asymmetry in the particle dynamics under the action
of the short-period force. Thus, the action of the periodic force can be used to select
particles on the basis of their mass using the asymmetric saw-tooth-like potential
profile.

5.1.9 Conclusion

The investigation carried out brings out a number of features of the particle
dynamics in an asymmetric saw-tooth-like potential profile under the action of
an external periodic force (forced oscillations of an asymmetric pendulum). The
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particle motion reduces to limited chaotic oscillations against a background of
uniform motion, i.e., a symmetric external force leads to the asymmetric drift of
a particle. For a low frequency of the force, this dynamics is associated with an
asymmetry in the particle mobility, while for a high frequency, it is a manifestation
of the nonlinear resonance interaction between the particle and the force. In the
second case, a change in the parameters of the system (the amplitude and frequency
of the force and particle mass) can lead to a change in both the velocity and
the direction of the drift. Low-amplitude white noise (thermal fluctuations of the
particle) does not interfere with the asymmetric drift of the particle, and for a small
force amplitude, it can even be a necessary condition for drift.

5.2 Ratchet Dynamics of Solitons in the FK Model

The development of modern nonlinear physics has led to the discovery of new
nonlinear mechanisms of energy and charge transfer in quasi-one-dimensional
molecular systems [20]. One such mechanism is the transport of topological
solitons. This mechanism can be implemented in multi-stable systems in which the
energy degeneracy of equilibrium states predetermines the possibility of ‘state trans-
fer’. A topological soliton (kink, antikink) describes the most effective transition of
the system from one equilibrium state to another [20, 21].

The study of topological solitons began with [22]. Here, the nonlinear dynamics
of a chain consisting of harmonically coupled particles lying on a sinusoidal
substrate were considered for the first time. In all the many subsequent studies,
it was always assumed that the potential function of the substrate had a symmetric
sinusoidal shape with maxima lying exactly midway between neighboring minima.
However, it turns out that, in many biological systems [8–10, 23], the periodic
potential of the substrate has an asymmetric saw-tooth-like (ratchet) shape with
maxima shifted to one side (Fig. 5.6). Such asymmetry of the substrate potential
can significantly influence the nonlinear dynamics of the chain. A study of the
isolated particle dynamics in an asymmetric ratchet periodic potential has shown
that symmetric colored noise can lead to the directional motion of particles [6, 7].
A similar result holds for topological solitons in the FK chain with a ratchet
substrate potential. We will show that, in such an anisotropic system, symmetric
low-frequency noise can cause directional motion of solitons.

Fig. 5.6 Schematic model of a linear chain with an asymmetric substrate potential
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5.2.1 Asymmetric Chain Model

Here we consider the dynamics of a linear chain with an asymmetric substrate
potential. The Hamiltonian of the chain is written in the form

H D
X

n

�
1

2
m Px2n C 1

2
�.xnC1 � xn � l/2 C "V .2�xn=l/

�
; (5.6)

where m is the mass of a chain link, � is the force constant of the interparticle
interaction, l is the chain period, " is the barrier height of the substrate potential, xn
is the coordinate of the n th link of the chain, and V.u/ is the dimensionless periodic
potential of period 2� with zero minima at the points �˙2�k, k D 0; 1; 2; : : : , and
maxima equal to 1. The chain under consideration has an infinite number of fully
equivalent ground states fxn D �l=2C l.nC k/gnDC1

nD�1 .
We introduce the anisotropy parameter describing the ratchet potential, viz.,

A D 1

�V

Z �

��
uV.u/du ;

where the average value of the potential is

V D 1

�

Z �

��
V .u/du :

For a symmetric potential, the anisotropy is A D 0. The nonzero anisotropy
parameter clearly indicates the asymmetry of the substrate potential.

We choose the specific dimensionless substrate potential

V.u/ D cos2
�
1

2



u � a cos2

u

2

��
: (5.7)

The parameter a describes the asymmetry of the potential. For �2 	 a 	 2, the
potential (5.7) has minima and maxima located at the points �˙ 2�k and u ˙ 2�k,
k D 0; 1; 2; : : : , respectively, where the point u is found from the equation

u D a cos2
u

2
:

The potential anisotropy is A < 0 for a < 0, A D 0 for a D 0, and A > 0 for
a > 0. When a D ˙1:5, the anisotropy is A D ˙0:20478 and the maximum is at
the point u D ˙1:09412. The potential is shown in Fig. 5.7.

For convenience, we introduce dimensionless variables such as the displacement
un D 2�.xn=l � n/, time � D t

p
"=ml2, and energy H D H =". Then the
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Fig. 5.7 Dimensionless substrate potential V.x/ for the anisotropy parameter a D 1:5 (line 1)
and a D 0 (line 2)

Hamiltonian (5.6) takes the form

H D
X

n

�
1

2
un

02 C 1

2
g.unC1 � un/

2 C V.un/

�
; (5.8)

where the prime denotes differentiation with respect to the dimensionless time � ,
and the dimensionless cooperativity parameter g D �l2=" describes the magnitude
of the interparticle interaction.

5.2.2 Soliton Stationary State

To find the stationary state of a positive (negative) topological soliton, one must
solve the minimum problem

E D
N�1X

nD1

�
1

2
g.unC1 � un/

2 C V.un/

�
�! min

u2;:::;uN�1

(5.9)

with the conditions u1 D C� and uN D �� (u1 D �� and uN D C�). It is
convenient to characterize the stationary state of the soliton by the position of its
centre

n D
N�1X

nD1

�
nC 1

2

�
pn
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and the root-mean-square diameter

L D 1C 2

"
N�1X

nD1

�
nC 1

2
� n

�2
pn

#1=2
;

where the sequence pn D junC1 � unj=2� describes the distribution of chain
deformation.

The minimum problem (5.9) was solved numerically by the method of conju-
gated gradients [24]. The stationary states of topological solitons were sought in
the chain consisting of N D 200 links for different values of the cooperativity
parameter. To find the Peierls potential profile (the dependence of the energy of the
soliton stationary state E on its centre position n) in the problem (5.9), we fix the
displacement uN=2 2 .��; �/. Then, varying the variable uN=2 monotonically, we
obtain the monotonic change in the soliton centre n. As a result, the dependence
E.n/ can be calculated numerically.

The Peierls potential profile E.n/ is a periodic function with unit period. The
anisotropy of the substrate potential (5.7) should lead to anisotropy in the Peierls
potential profile. We define the anisotropy of the profile by

A D 1

�E

Z 1=2

�1=2
n

�
E

�
n0 C 1

2
C n

�
�E.n0/

�
dn ;

where the minimum point of the profile is n0 and the average value of the profile
amplitude is

�E D
Z 1=2

�1=2

�
E

�
n0 C 1

2
C n

�
�E.n0/

�
dn :

A view of the Peierls potential profile is given for g D 0:1 and a D 1:5 in Fig. 5.8.
The profile has amplitude �E D maxE.n/ � minE.n/ D 0:63107, anisotropy
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1 2E(
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n

Fig. 5.8 Peierls potential profile E.n/ for the antikink (line 1) and kink (line 2) in a chain with
parameters g D 0:1 and a D 1:5
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Fig. 5.9 Peierls potential
profile E.n/ for the antikink
(line 1) and kink (line 2) in a
chain with parameters g D 1

and a D 1:5
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A D 0:13460 for the positive soliton (antikink), and A D �0:13460 for the negative
soliton (kink). The potential profile for the kink is the mirror image of the profile
for the antikink relative to the line n D 1=2. A view of the Peierls potential profile
is shown for g D 1 and a D 1:5 in Fig. 5.9. The Peierls profile has amplitude
�E D 0:06014 and anisotropy A D ˙0:02216.

When the cooperativity parameter g is increased, both the energy E and the
diameter L of the stationary defect increase steadily, and the pinning energy
�E decreases exponentially (see Fig. 5.10). With decreasing pinning energy, the
anisotropy of the potential profile decreases exponentially as well (Fig. 5.11). For
g > 5, the Peierls profile has an almost symmetrical shape, and for g > 25,
soliton pinning is almost absent. Therefore, for strong cooperativity, asymmetry of
the substrate potential should not affect the motion of a topological soliton. The two
directions of motion must be equivalent.

The asymmetry of the substrate potential is manifested in the interaction of
opposite-sign solitons. Let us find the dependence of the energy of a pair of opposite-
sign solitons on the distance between them. For this purpose, we numerically solve
the minimum problem

E D
N�1X

nD1

�
1

2
g.unC1 � un/

2 C V.un/

�
�! min

u2;:::;uN�1

W u1 D uN D � ; (5.10)

for the fixed value of the displacement uN=2. A solution to the problem (5.10)
corresponds to the homogeneous state uN=2 � � for uN=2 D � , a non-interacting
pair of kink–antikink solitons for uN=2 ! 3� � 0, and a non-interacting pair of
antikink–kink solitons for uN=2 ! �� C 0.

Let fungNnD1 and E be the solution to the problem (5.10) and its energy,
respectively. The distance between the solitons is defined as

R D 1

�

NX

nD1
.un � �/ :
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Fig. 5.10 Dependence of the energy E (line 1), diameter L (line 2), and decimal logarithm of
the pinning energy lg�E (line 3) on the cooperativity parameter g for the stationary topological
soliton in the chain with anisotropic substrate potential (a D 1:5)
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Fig. 5.11 Dependence of the anisotropy of the Peierls potential A on the cooperativity parameter
g in a chain with anisotropic substrate (a D 1:5)
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The distanceR depends monotonically on the value of uN=2. The distanceR ! �1
as uN=2 ! �� C 0, R D 0 for uN=2 D � , and R ! C1 for uN=2 ! 3� � 0. The
distance between two opposite-sign solitons is negative for the antikink–kink pair
and positive for the kink–antikink pair. The dependence E.R/ can be obtained from
the monotonic dependence of R on uN=2.

To find the dependence of the energy of two same-sign solitons, one must solve
the minimum problem

E D
N�1X

nD1

�
1

2
g.unC1 � un/

2 C V.un/

�
�! min

u2;:::;uN�1

W u1 D 3�; uN D �� ;
(5.11)

for the fixed value of the displacement 3� > uN=3 � � � u2N=3 > �� . Let fungNnD1
be the solution to the problem (5.11). Then the distance between the solitons is

R D 1

2�

NX

nD1

�
2� � jun � �j
 :

Varying the displacements uN=3 and u2N=3, we obtain the dependence of the energy
E of a pair same-sign solitons on the distance R between them.

Note that the dependence of the interaction energy of two antikinks on the
distance has to coincide exactly with the dependence of the interaction energy of
two kinks. Therefore, we restrict ourselves to calculating the interaction potential of
two antikinks.

The dependence of the energy EC� of a pair of opposite-sign solitons on the
distance R between them is shown in Fig. 5.12. In a chain with symmetric substrate
potential .a D 0/, the interaction energy is an even function of the distance,
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Fig. 5.12 Dependence of the energy E
C�

of a pair of opposite-sign solitons on the distance R
between them for the symmetric (line 1) and anisotropic .a D 1:5/ (line 2) substrate potentials,
and dependence of the energy E

CC

of a pair of same-sign solitons on the distance R between
them for the symmetric (line 3) and anisotropic (line 4) substrate potentials
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i.e., EC�.�R/ D EC�.R/. The interaction energy of a kink and an antikink
coincides exactly with the interaction energy of an antikink and a kink. In the
chain with asymmetric substrate potential (a ¤ 0), the interaction energy of a
kink and antikink no longer coincides with the interaction energy of an antikink
and kink, i.e., EC�.�R/ ¤ �EC�.R/. As a result, a collision between a kink and
an antikink cannot coincide with the results of a collision between an antikink and
a kink.

The energy ECC of two same-sign solitons increases steadily with decreasing
distance between them. The energy ECC ! C1 as R ! 0. As can be seen from
Fig. 5.12, the anisotropy of the substrate potential does not lead to any qualitative
changes in the dependence ECC.R/. A collision of same-sign solitons can only
cause their reflection.

5.2.3 Soliton Dynamics

The Hamiltonian (5.8) gives the equations of motion

un
00 D g.unC1 � 2un C un�1/ � @V

@u
.un/ ; n D 0;˙1;˙2; : : : : (5.12)

Let us find a soliton solution of (5.12). We search for this in the form of a solitary
wave un.�/ D u.n � s�/, depending smoothly on n, where s is the soliton velocity.
Then, one can replace the continuous time derivative by the discrete derivative with
respect to n so that un0.�/ D �s.unC1 � un/. A soliton solution corresponds to the
minimum of the discrete Lagrangian

L D
X

n

�
1

2
g.1 � s2/.unC1 � un/

2 C V.un/

�
;

where s D s=s0 and s0 D p
g is the velocity of long-wave phonons.

To find the shape of a kink (antikink), the following minimum problem was
solved numerically:

L D
N�1X

nD1

�
1

2
g.1 � s2/.unC1 � un/

2 C V.un/

�
(5.13)

�! min
u2;:::;uN�1

W u1 D �� .�/ ; uN D � .��/ :

The method of conjugated gradients [24] was used to solve the problem (5.13) for
the chain with N D 200 links.

Numerical solution of the problem (5.13) has shown that, for strong cooperativ-
ity, the topological soliton has the subsonic velocity spectrum 0 	 s < s0. With
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Fig. 5.13 Antikink and kink
in the cyclic chain (g D 25,
a D 1:5, N D 500, and
s D 2:5) at the initial time
� D 0 (line 1) and time
� D 4;000 (line 2)

0 100 200 300 400 500

π

−π

0

1

2

n

n

u

increasing velocity, the soliton diameter decreases monotonically and its energy

E D
N�1X

nD1

�
1

2
g.1C s2/.unC1 � un/

2 C V.un/

�

increases steadily. The diameter L ! 1 and energy E ! C1 as s ! s0 � 0.
Let us numerically model the soliton dynamics. We consider the motion of a

kink and an antikink in a cyclic chain. For this purpose, we integrate the equations
of motion (5.12) numerically with the periodic boundary conditions unCN � un and
u0
NCn � u0

n and take g D 25, N D 500, and s D 2:5 .s D 0:5/. The profiles of
topological solitons at the initial time � D 0 are shown in Fig. 5.13. The antikink
profile u D un is always the mirror image of the kink profile relative to the u-axis. As
a result of this symmetry, in a chain with an anisotropic substrate, the kink motion
to the right is equivalent to the antikink motion to the left and vice versa.

Numerical solution of the equations of motion has shown the stability of the
solitons. The soliton shape at the final time � D 4;000 coincides with the initial
shape (see Fig. 5.13). The kink passed 9,989 chain links during this time and
the antikink 9,972. The results show that, for strong cooperativity, the substrate
anisotropy has almost no effect on the soliton dynamics. The soliton can move freely
either to the right or to the left.

5.2.4 Soliton Mobility

Let us introduce relaxation and an external constant force into the equations of
motion (5.12) so that they take the form

un
00 D g.unC1 � 2un C un�1/ � @V

@u
.un/ � 
un

0 C f ; n D 0;˙1;˙2; : : : ;
(5.14)
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Fig. 5.14 Dependence of the velocity s of a kink (line 1) and an antikink (line 2) on the value of
the constant external force f in the anisotropic chain .a D 1:5/ for a weak cooperativity g D 1

(relaxation time �0 D 10)

where 
 D 1=�r is the friction coefficient, �r is the relaxation time of the system, and
f is the external constant force. In the system described by (5.14), the topological
soliton can move only with a specific velocity, for which the action of the external
force is fully compensated by friction.

Let us find the dependence of the soliton velocity on the external force. For this
purpose we numerically model the soliton dynamics in a finite chain with free ends
for �r D 10 .
 D 0:1/ and a D 1:5. We consider a stationary soliton at the initial
time and analyse its motion under the constant force f . In the absence of pinning,
the soliton starts moving. Its velocity increases until it levels out at a value s.f /.
The dependence s.f / for weak cooperativity g D 1 is shown in Fig. 5.14. For this
value of the cooperativity, the stationary soliton is pinned. To overcome the pinning,
a force f > 0:0126 or f < �0:013 must be applied. Under the action of such a
force, opposite-sign solitons move in opposite directions. If the absolute magnitude
of the force is increased, the absolute magnitude of the velocity does so too. The
dependence s.f / for strong cooperativity g D 25 is shown in Fig. 5.15. In this case,
a force of any magnitude causes soliton motion.

As can be seen from the calculations discussed above, the anisotropy of the chain
substrate leads to the difference between the velocities of motion to the right and to
the left, i.e., s.f / ¤ �s.�f /. As a result, in a chain with an external force and
relaxation, the two directions of soliton motion are no longer equivalent.

Let the external force change sign at regular intervals, i.e.,

f .�/ D f0sign
sin��

�0
; (5.15)

where f0 is the absolute amplitude of the force and �0 is the period of sign change.
For sufficiently large values of �0, the soliton velocity can be considered to be
constant on the interval of constant sign of the force. When the sign of the force
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Fig. 5.15 Dependence of the velocity s of the kink (line 1) and antikink (line 2) on the magnitude
of the external force f (g D 25, a D 1:5, and �r D 10)
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Fig. 5.16 Dependence of the average velocity sm of the kink (line 1) and antikink (line 2) on the
magnitude of the external force f (g D 25, a D 1:5, �r D 10)

changes, the direction of soliton motion changes. In the limit �0 ! 1, the average
velocity of the soliton is

sm.f0/ D s.f0/C s.�f0/ ¤ 0 :

The dependence of sm.f0/ for g D 25 is shown in Fig. 5.16. Therefore, when
affected by a low-frequency force (5.15), the kink has to move to the left, while the
antikink moves to the right. The velocity depends monotonically on the amplitude
of the force. Note that this soliton dynamics can take place only in an anisotropic
chain. In a chain with a symmetric substrate potential, the absolute soliton velocity
does not change when the sign of the external force changes and the average velocity
is therefore sm.f0/ D 0.
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5.2.5 Soliton Motion Induced by Low-Frequency Noise

We now examine topological soliton motion in an anisotropic chain .a D 1:5/

under the action of colored noise with a narrow-band frequency spectrum. For this
purpose, we integrate the equations of motion of the finite chain with free ends, viz.,

u1
00 D g.u2 � u1/ � @V

@u
.u1/ � 
u1

0 C �.�/ ;

:::

un
00 D g.unC1 � 2un C un�1/ � @V

@u
.un/ � 
un

0 C �.�/ ; (5.16)

:::

uN
00 D g.uN�1 � uN / � @V

@u
.uN / � 
uN

0 C �.�/ ;

where the function �.�/ depends on time according to the Langevin equation

�00 D �!2� � � �0 C 
 : (5.17)

In (5.17), the frequency ! defines the average period T D 2�=! of the colored
noise, the parameter � describes the width of the frequency spectrum of the colored
noise (hereafter, we will take � D 1=10T ), and 
.�/ is the normal random force
with autocorrelation function

˝

.�1/
.�2/

˛ D 2� !2a2�ı.�1 � �2/ ;

where a� is the amplitude of the colored noise.
For the equations of motion (5.16), we take the initial conditions corresponding

to the stationary topological soliton centered in the middle of the chain. The soliton
dynamics will be considered in a chain consisting of N D 103 links. To analyse the
dynamics, it is convenient to define the soliton centre n as the intersection point of
the broken line, sequentially connecting the points f.n; un/gNnD1 with the line u D u
on the (n; u)-plane, where u 2 .��; �/ is the maximum of the anisotropic substrate
potential (5.7).

Let g D 1, 
 D 0:1, and a D 1:5. The dynamics of a kink and an antikink
induced by colored noise (a� D 0:05 and T D 10) is shown in Fig. 5.17 (left). The
noise causes opposite-sign solitons to start moving in opposite directions. For short-
period noise, the motion occurs as a sequence of random jumps. An increase in the
period results in more uniform movement (see Fig. 5.17 (right) for a� D 0:05 and
T D 30). When the noise period increases, the soliton velocity increases as well.
The strongest response to the noise is observed at low frequencies (long periods)
(see Fig. 5.18 (left) for � D 0:1 and T D 200).
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Fig. 5.17 Left: Dynamics of a kink (line 1) and an antikink (line 2) in the anisotropic chain (a D
1:5 and g D 1) under the action of narrow-band colored noise (a� D 0:05 and T D 10). Right:
Dynamics of a kink (line 1) and an antikink (line 2) in the anisotropic chain (a D 1:5 and g D 1)
under the action of narrow-band colored noise (a� D 0:05, T D 30)
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Fig. 5.18 Left: Dynamics of the kink (line 1) and antikink (line 2) in the anisotropic chain (a D
1:5, g D 1) under the action of low-frequency, narrow-band colored noise (a� D 0:1, T D 200).
Right: View of the double-well potential V.u/ for ˛1 D 0:5, ˛2 D 5:0 (line 1), ˛1 D ˛2 D 0:5

(line 2), and ˛1 D ˛2 D 5:0 (line 3)



162 5 Ratchets

5.2.6 Conclusion

The foregoing investigation shows that, in a chain of particles lying on a periodic
anisotropic substrate, symmetric low-frequency noise can induce directed motion
of topological solitons. Opposite-sign solitons (kink and antikink) start moving
in opposite directions. This effect stems from the asymmetry of the substrate
potential. The greatest response to the noise is observed in the low-frequency region.
Structural anisotropy is a typical feature of many biomolecular systems and it is
hoped that this investigation may help to understand the nature of some of their
properties.

5.3 Numerical Simulation of Soliton Dynamics
in the �-4 Model

In this section we consider the topological soliton dynamics in a chain consisting
of asymmetric, energetically degenerate, double-well potentials with weak inter-
particle interaction. We will show that in this case the soliton is pinned and the
corresponding Peierls potential has a typical asymmetric potential profile. Here,
symmetrical external noise, modeling the chain interaction with a heat bath, leads to
a nonequilibrium motion of the solitons in a direction that depends on the spectral
properties of the noise. The results of this section were first published in [25, 26].

5.3.1 The Model

We will consider the dynamics of a linear chain consisting of bistable monomeric
links. Let us assume that the chain monomer can be in two energy-equivalent con-
formations ˙l , and that the corresponding double-well potential has an asymmetric
shape (the maximum of the potential barrier is shifted to one of the minima).

The Hamiltonian of the bistable chain is written in the form

H D
X

n

�
1

2
m Px2n C 1

2
�.xnC1 � xn/2 C "V .xn=l/

�
; (5.18)

where m is the reduced mass of a monomeric link, � is the force constant of the
chain, V.u/ is the asymmetric double-well potential with minima ˙1 normalized
to zero and a maximum normalized to 1, and " is the height of the energy barrier
between the monomer conformations.
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For convenience, we introduce the dimensionless displacement un D xn=l , time
� D t

p
"=ml2, and energy H D H =". Then the Hamiltonian takes the form

H D
X

n

�
1

2
u0
n
2 C 1

2
g.unC1 � un/

2 C V.un/

�
; (5.19)

where the dimensionless parameter g D �l2=" describes the magnitude of the
interparticle interaction. It is convenient to specify the asymmetric potential V.u/
by the equation

V.u/ D C
�
.e˛1u � e˛1/.e�˛2u � e˛2/

�2
; (5.20)

where ˛1; ˛2, and C > 0. The potential (5.20) has a double-well shape with minima
situated at the points u D ˙1. The constant C normalizes the barrier height to 1:

C D �
.e˛1u0 � e˛1/.e�˛2u0 � e˛2/

��2
;

where the position u0 of the potential maximum is obtained by solving V 0.u0/ D 0.
The potential V.u/ is symmetric only if ˛1 D ˛2 D ˛, when (5.20) takes the

particularly simple form

V.u/ D .e˛u � e˛/2.e�˛u � e˛/2.1 � e˛/�4 D
�

cosh˛x � cosh˛

1 � cosh˛

�2
:

In the general case when ˛1 ¤ ˛2, the potential is asymmetric. The maximum of
potential barrier is shifted to the right .u0 > 0/ for ˛1 > ˛2 and to the left for
˛1 < ˛2. A view of the potential V.u/ for the three values of the parameters ˛1 and
˛2 is shown in Fig. 5.18 (right).

The chain dynamics is described by the dimensionless Langevin equations

un
00 D g.unC1�2unCun�1/�F.un/�
un

0C�n ; n D 0;˙1;˙2; : : : ; (5.21)

where the function F.u/ D dV=du, 
 D 1=�r is the friction coefficient, �r is the
relaxation time, and �n is the random force describing the interaction of the n th
chain link with the heat bath. The random forces �n are independent and have the
correlation functions

˝
�n1.�1/�n2.�2/

˛ D 2
ˇın1n2'.�1 � �2/ ;

where ˇ D kT=" is the dimensionless temperature and '.�/ is the dimensionless
autocorrelation function normalized to 1, viz.,

R C1
�1 '.�/d� D 1. The autocorrela-

tion function has the form '.�/ D ı.�/ for white noise and '.�/ D .�=2/ exp �j�� j
for colored noise, where � D 1=�c and �c is the correlation time of the random force.
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5.3.2 Asymmetry of Chain Monomer Oscillation

We first consider the dynamics of a single isolated particle in an energetically
degenerate, asymmetric potential. Asymmetry of the potential has to lead to
asymmetry in the thermal fluctuations of the particle. The probability p of finding
a particle in the left well generally does not coincide with the probability 1 � p

of finding it in the right well. The probability p characterizes the asymmetry of
the oscillation. In the case of a symmetric potential, the probabilities of finding the
particle in the left and right wells coincide, i.e., p D 1 � p D 0:5. Let us examine
the dependence of the probability p on the frequency spectrum of colored noise,
i.e., its dependence on the correlation time �c.

It is convenient to describe the particle dynamics under colored noise by the
system of two equations

u00 D �F.u/ � 
u0 C � ; (5.22)

�0 D �.
 � �/ ; (5.23)

where 
.�/ is the delta-correlated random force distributed normally, i.e.,

˝

.�1/
.�2/

˛ D 2
ˇı.�1 � �2/ :

Specifically, let us take ˛1 D 0:5 and ˛2 D 5:0. Then the asymmetric potential V.u/
has a maximum at the point u0 D �0:50017. The curvatures of the left and right
wells are k� D V 00.�1/ D 85:17 and kC D V 00.1/ D 2:13, respectively, so the
frequency of particle oscillation in the left well, viz., !� D p

k� D 9:23, is an
order of magnitude higher than that in the right well, viz., !C D p

kC D 1:46.
Let us consider the low-amplitude oscillations. We assume that, in the vicinity of

the well at u D ˙1, the potential is V.u/ D k˙.u�1/2=2. Then the average particle
energy is

E˙ D lim
t!1

1

t

Z t

0

�
1

2
u02 C 1

2
k˙.u � 1/2

�
d�

D 2
ˇ

Z 1

0

.!2 C !2˙/jH˙.!/j2F.!/d! ;

where H˙.!/ D .!2˙ � ! � i!
/�1 is the response function of the Langevin
equation and

F.!/ D 1

2�

Z C1

�1
'.�/ exp.�i!�/d�

is the Fourier transformation of the autocorrelation function of the random force.
Therefore, the average energy is E˙ D K˙ C P˙, where
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K˙ D 2
ˇ

Z 1

0

!2F.!/d!

.!2˙ � !2/2 C !2
2
; P˙ D 2
ˇ

Z 1

0

!2˙F.!/d!
.!2˙ � !2/2 C !2
2

:

For colored noise (an exponentially correlated random force), the Fourier transfor-
mation is F.!/ D �2=2�.!2 C �2/ and the average kinetic and potential energies
are K˙ D f̌K.!˙; 
; �/=2 and P˙ D f̌P.!˙; 
; �/=2, respectively, where the
dimensionless functions are

fK.!; 
; �/ D �2

�2 C �
 C !2
; fP.!; 
; �/ D �2.!2 C �2 � 
2/C �
!2

.!2 C �2/2 � 
2�2 :

For infinitely small friction .
 D 0/, the average oscillation energy is

E˙ D ˇ�2=.�2 C !2˙/ :

During one period of oscillation, the particle makes one attempt to overcome the
barrier, so the probability of its transition into another well is

P˙ D !˙
2�

exp.�1=E˙/ :

The ratio of the probabilities is

a D P�
PC

D
s
k�
kC

exp

�
��

2
c .k� � kC/

ˇ

�
;

and the probability of finding the particle in the left well is p D 1=.a C 1/. The
dependence of the probability p on the correlation time �c is shown in Fig. 5.19.
The probability p increases steadily with increasing �c. For white noise .�c D 0/,
the ratio a D p

k�=kC D 6:321, the probability p D 0:137, and for the low-
frequency limit .�c ! 1/, the probability is p D 1.

Fig. 5.19 Dependence of the
probability p of finding the
particle in the left well on the
correlation time �c of the
random force. Solid line (1)
and points (2) show the
dependence obtained
analytically and numerically,
respectively
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Table 5.1 Dependence of the probability p on the correlation time of the random force �c

�c 0.00 0.05 0.10 0.15 0.20 0.25

p 0.12 0.14 0.27 0.53 0.71 1.00

As can be seen from the above analysis, the asymmetric nature of the oscillations
depends on both the shape of the double-well potential and the frequency spectrum
of the noise. For white noise, the probability of finding the particle in the well is
proportional to its width. When the high-frequency components are removed from
the noise, this rule is violated, i.e., the particle is more likely to be found in the
narrower well on the left. ‘Freezing’ of high-frequency oscillations occurs and the
particle in the well with higher curvature is practically in a non-thermalized state.
This leads to a decrease in the probability of the particle leaving the well.

We simulate the particle dynamics numerically. Specifically, we choose 
 D 0:01

and �r D 100 and solve the equations of motion (5.22) and (5.23) numerically
with the initial conditions u.0/ D u0, u0.0/ D 0, and �.0/ D 0. Numerical
integration was performed up to the time � D 105. The dependence of the resulting
probability p of finding the particle in the left well on the correlation time of
the random force �c is given in Table 5.1 and Fig. 5.19. As can be seen from the
table and figure, the numerical results confirm our conclusions about the growth of
the probability p with increasing correlation time �c. The difference between the
values p obtained analytically and numerically results from the use of a piecewise-
parabolic approximation for the double-well potential.

5.3.3 Stationary States of a Topological Soliton

To find the stationary state of a positive (negative) topological soliton IC (I�), one
must solve the minimum problem

E D
N�1X

nD1

�
1

2
g.unC1 � un/

2 C V.un/

�
�! min W u2; : : : ; uN�1 ; (5.24)

with the conditions u1 D C1 and uN D �1 (u1 D �1 and uN D C1). It is
convenient to describe the soliton stationary sate by the position of its centre

n D
N�1X

nD1
npn

and root mean square diameter

L D 1C
vuut

N�1X

nD1
.n � n/2pn ;
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Fig. 5.20 Unstable positive
(line 1) and stable negative
(line 2) stationary topological
solitons (˛1 D 0:5, ˛2 D 5:0,
and g D 1:0)
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where the sequence

pn D 1

E

�
V.un/C 1

4

�
.unC1 � un/

2 C .un�1 � un/
2
�	

gives the energy distribution over the chain.
The minimum problem (5.24) was solved by the method of conjugate gradients

[24]. The stationary states were sought in the chain consisting of N D 50 links and
the cooperativity parameter g D 1 was used. The results of the calculation showed
that the soliton has two stationary states: the stable state (n1 D 25:2484, E1 D
1:3812, and L1 D 2:196) and the unstable state (n2 D 24:6806, E2 D 1:9505, and
L2 D 2:147). The pinning soliton energy is �E D E2 � E1 D 0:5693. Profiles of
these states are shown in Fig. 5.20.

We can also find the energy dependence of the stationary defect on its centre
position, i.e., calculate the Peierls potential profile. For this purpose, one must fix
the value uN=2 2 .�1; 1/ in the problem (5.24) and minimize the energy E with
respect to the remaining variables. Then, by monotonically varying uN=2, we obtain
the monotonic change in its centre n. The centre position is uniquely determined
by the coordinate uN=2. The dependence of the soliton energy E.n/ on its centre
position can thus be obtained numerically. A view of the Peierls potential profile
E.n/ is shown in Fig. 5.21 (left). For the value g D 1 of the cooperativity parameter
used here, the soliton is strongly pinned and its Peierls potential profile has a
typical asymmetric ratchet-like profile (the left side of the potential barrier has a
steeper shape than the right side). Thus, the topological soliton dynamics in the
chain consisting of energetically degenerate, asymmetric double-well potentials can
be considered qualitatively as the motion of a particle in the periodic ratchet-like
potential profile. Taken together, these results demonstrate that symmetric forces
can cause the asymmetric motion of a topological soliton.
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Fig. 5.21 Left: Peierls potential profile of the topological soliton (˛1 D 0:5, ˛2 D 5:0, and g D
1:0). Right: Dynamics of the topological soliton in the thermalized chain with the parameters ˛1 D
0:5, ˛2 D 5:0, g D 1:0, �r D 10, and ˇ D 0:25 for �c D 0 (line 1) and �c D 0:3 (line 2)

5.3.4 Soliton Dynamics in a Thermalized Chain

Let us consider a finite chain with fixed ends. The dynamics of the chain consisting
of N links is described by the Langevin equations

un00 D g.unC1 � 2un C un�1/ � F.un/ � 
un0 C �n ;

�n
0 D �.
n � �n/ ;

)
n D 2; 3; : : : ; N � 1 ;

(5.25)

where 
n.�/ are the normally distributed delta-correlated random forces:

˝

n1.�1/
n2.�2/

˛ D 2
ˇın1n2ı.�1 � �2/ :

We take the initial conditions of (5.25) corresponding to a stable stationary state
of the topological soliton located in the middle of the chain. We fix the coordinate
uN=2 at the initial time and numerically integrate (5.25) until thermal equilibrium is
reached with the thermostat. We then release the coordinate uN=2 and analyse the
soliton dynamics.

To do this, it is convenient to define the soliton centre n as the intersection of the
broken line sequentially connecting the points f.n; un/gNnD1 with the line u D u0 on
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the (n; u)-plane. We choose the chain parameters ˛1 D 0:5, ˛2 D 5:0, g D 1:0,
ˇ D 0:25, and �r D 10. Note that opposite-sign solitons in the model discussed here
possess the same properties. Therefore, we restrict attention to the positive soliton
dynamics.

The dynamics of the soliton centre in a thermalized chain consisting of N D 50

links is shown in Fig. 5.21 (right). We see that, most of the time, the soliton remains
in the pinned state, rarely making random jumps. Obviously, if the probability of
finding the particle in the left well p < 0:5, thermal fluctuations have to cause the
soliton drift to the right end or to the left if p > 0:5. Indeed, the soliton drifts to the
right for �c D 0 (p D 0:12) and to the left for �c D 0:3 (p D 1:0).

5.3.5 Conclusion

The numerical analysis performed above shows that, in a thermalized chain
consisting of energetically degenerate, asymmetric bistable monomers, the sym-
metrical thermal fluctuations should lead to the asymmetric motion of a topological
soliton. The velocity and direction of the motion depend on both the shape of the
asymmetric double-well potential and the frequency spectrum of the noise. This
control mechanism of soliton transport may be used in biomolecular systems, since
the frequency spectrum of the noise depends significantly on the temperature and
conformation state of these systems.
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Chapter 6
Solitons in Polymer Systems

This chapter will focus on the numerical investigation of nonlinear dynamics of
localized excitations (acoustic and topological solitons and breathers) in polymer
macromolecules. The characteristics of supersonic acoustic solitons in polymer
macromolecules will be studied, using the examples of an isolated zigzag macro-
molecule of polyethylene (PE), a spiral macromolecule of polytetrafluoroethylene
(PTFE), and a single-well carbon nanotube. Topological soliton dynamics will be
analysed using the crystalline PE and PTFE models. We will discuss the role of
topological solitons in the premelting mechanisms of crystals and their structural
transitions. Nonlinear localized vibrations, or breathers, will be considered in
the case of a trans zigzag PE molecule. The quasi-one-dimensional structure of
isolated macromolecules, polymer crystals of PE and PTFE, and a single-well
carbon nanotube will be shown to lead to the existence of all the basic types of
localized nonlinear excitations (acoustic and topological solitons and breathers).
The properties of such excitations will be shown to depend significantly on the
structure of the polymer macromolecule.

The development of contemporary nonlinear physics has led to the discovery
of new fundamental mechanisms which determine, on the molecular level, the
progression of many physical processes in crystals and other ordered molecular
structures. It is now clear that acoustic solitons may contribute to the most efficient
mechanism of energy transfer in such processes as heat conduction and breakdown
of solids [1–4]. Topological solitons serve as models of structural defects in polymer
crystals, and their mobility ensures the possibility of such processes as plastic
deformation [5], relaxation [6], and premelting [7, 8]. Crystal structure defects are
described in a natural way using the concept of topological solitons [9, 10], and
soliton mobility defines a specific ‘soliton’ contribution to the thermodynamics and
kinetics of polymer crystals. Breathers play a significant role in the mechanisms of
energy transfer and relaxation in molecular systems [11–13].
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172 6 Solitons in Polymer Systems

6.1 Acoustic Solitons in Planar Zigzag PE Macromolecules
and Spiral PTFE Macromolecules

In molecular systems with pronounced quasi-one-dimensional structure, an acoustic
soliton (nonlinear solitary wave) defines a local region of longitudinal compression
of intermolecular bonds in an alpha-helix protein molecule, moving along the
molecular chain [14–16]. The investigation of nonlinear dynamics of PE macro-
molecules has shown that the zigzag structure of the chain can lead to the existence
of acoustic stretching solitons [17–19].

Today, the PE molecule (CH2–)x is the most studied in the class of polymer
macromolecules in which the repeating link consists of a single atom. The ground
state of the molecule is a planar zigzag conformation of the chain (the helix symbol
is 1*2/1). The two-dimensional zigzag structure of the chain leads to peculiar
features in its dynamics. It is worth noting that, for most macromolecules in this
class, the ground state is a three-dimensional helix rather than a planar zigzag
structure. Therefore, it is also of interest to consider the nonlinear dynamics of the
PTFE molecule (CF2–)x , which is analogous to the PE molecule but has the three-
dimensional helix structure with symbol 1*13/6 in its ground state.

6.1.1 Stretching Solitons PE Macromolecules

Although the linear dynamics of the polyethylene molecule was studied by Kirk-
wood [20] over half a century ago, its nonlinear extension has only recently become
the subject of theoretical analysis [17–19]. In a study of the low-energy dynamic
processes in the polyethylene molecule, the motion of hydrogen atoms with respect
to the chain backbone is not important, and the united atom approximation can be
used. Let us consider a polyethylene molecule (CH2–)x in the trans zigzag con-
formation. At equilibrium, the molecule backbone has the planar zigzag structure
characterized by the step �0 D 1:53Å (the equilibrium length of the valence bond
H2C–CH2), and the zigzag angle �0 D 113ı (the equilibrium valence angle CH2–
CH2–CH2). The trans zigzag structure is shown schematically in Fig. 6.1a.

If we let the trans zigzag chain be directed along the x-axis and lie in the xy-
plane, then the nth site of the chain at equilibrium has coordinates

x0n D nlx ; y0n D .�1/nly=2 ;

where lx D �0 sin.�0=2/ and ly D �0 cos.�0=2/ are the longitudinal and transverse
steps of the zigzag chain. It is convenient to change from the absolute coordinates
xn and yn of the nth links to the relative coordinates

un D xn � x0n ; vn D .�1/nC1.yn � y0n/ :
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Fig. 6.1 Structure of the polyethylene molecule (CH2)1

(a), definition of local coordinate
systems (b), and the planar mechanical model of the macromolecule (c)

Here un and vn define, respectively, the longitudinal and the transverse displace-
ments of the nth link from its equilibrium position, the positive direction of the
transverse displacement being taken towards the centre of the zigzag chain (see
Fig. 6.1b). The length of the nth valence bond and the cosine of the nth valence
angle are, respectively,

�n D
q
.lx � wn/2 C .ly � zn/2 ; cos �n D �an�1an � bn�1bn

�n�1�n
;

where wn D un � unC1 and zn D vn C vnC1 are the longitudinal and transverse
compression of the nth chain link, whence an D lx � wn and bn D ly � zn.

The Hamiltonian of the chain can be written as

H D
X

n

�
1

2
M.Pu2n C Pv2n/C V.�n/C U.�n/

�
: (6.1)

Here the mass of the chain link is M D 14mp (mp is the proton mass),

V.�n/ D D0

n
1 � exp

� � ˛.�n � �0/
�o2

(6.2)
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is the potential of the nth valence bond and

U.�n/ D 1

2
K�.cos �n � cos �0/

2 (6.3)

is the potential of the nth valence angle. According to [21], the energy of the valence
bond D0 D 334:72 kJ mol�1, the parameter ˛ D 19:1 nm�1, and the parameter
K� D 130:122 kJ mol�1. In [22], the higher energy value " D 529 kJ mol�1 was
used. The planar mechanical model of the trans zigzag chain under consideration is
shown in Fig. 6.1c.

The dispersion equation for low-amplitude vibrations of the trans zigzag chain
was first obtained by Kirkwood [20]. A detailed description of the derivation of this
equation is given in [17], so here we will skip most of the intermediate calculations.

The Hamiltonian of the chain (6.1) gives the equations of motion

M Run D �@H
@un

; M Rvn D �@H
@vn

; n D 0;˙1;˙2; : : : : (6.4)

We linearize these equations and find their solution in the form of a harmonic wave

un.t/ D A exp i.˝t C kn/ ; vn.t/ D B exp i
�
˝t C k.nC 1=2/

�
;

where ˝ is the circular frequency and �� 	 k 	 � is the dimensionless wave
vector. Then the dispersion equation has the form

˝2˙.k/ D !20.k/˙
q
!40.k/ � !41.k/ ; (6.5)

where

!20.k/ D C1.1C cos �0 cos k/C 2C2.1C cos k/.1 � cos �0 cos k/ ;

!41.k/ D 8C1C2.1C cos k/ sin2 k :

Here, C1 D K1=M and C2 D K2=M�
2
0 are the rigidity parameters, where

K1 D d2

d�2
V .�/

ˇ̌
ˇ̌
�D�0

D 2D0˛
2 D 405:53 N/m

and

K2 D d2

d�2
U.�/

ˇ̌
ˇ̌
�D�0

D K� sin2 �0 D 18:308 � 10�20 J

are the rigidities of the valence bond and valence angle, respectively, The shape
of the dispersion curve (6.5) is shown in Fig. 6.2. The upper branch ˝ D ˝C.k/
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corresponds to the high-frequency optical phonons of the trans zigzag chain, and
the lower branch˝ D ˝�.k/ to the low-frequency optical phonons. The frequency
of acoustic phonons tends to zero as k ! 0 and k ! � . The long-wave (smooth)
longitudinal and bending waves of the zigzag molecular chain correspond to these
limiting values of the wave number.

The velocity of the long-wave longitudinal acoustic phonons (speed of sound) is
given by the relation

c0 D lx lim
k!0

˝�.k/
k

D 2
p
K2=M tan.�0=2/p
1C 4ı tan.�0=2/

;

where the dimensionless parameter

ı D C2

C1
D K2

K1�
2
0

:

defines the ratio of the rigidity of the valence angle to that of the valence
bond (ı D 0:01929 when K� D 130:122 kJ mol�1 and ı D 0:07841 when
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K� D 529). As it turns out, the rigidity of the valence bond is two orders of
magnitude greater than that of the valence angle. It would seem that it is quite
possible to use the approximation of an infinitely rigid valence bond ı D 0

(K1 D 1), but in this approximation, even for ı D 0:01929, the sound speed
c0 D 2

p
K2=M tan.�0=2/ D 8;449ms�1 differs considerably from the exact value

of c0 D 7;790ms�1 D 0:92210c0. Such a substantial shift in the sound speed means
that one must take account of the deformation of valence bonds.

The complexity of the equations of motion (6.4) defies analytical investigation
(unlike the case of infinitely rigid valence bonds). To obtain the soliton solution, we
use a numerical method of soliton analysis [23]. According to this, for every value
of the velocity c, the soliton solution un.t/ D u.nlx � ct/, vn.t/ D v.nlx � ct/,
n D 0;˙1;˙2; : : : , is sought as an extreme point of a certain functional, which, in
the continuous approximation, corresponds to the equations of motion of the system.

We now seek a solution of the equations of motion (6.4) in the form of a traveling
smooth wave with constant profile. For this purpose, we set un.t/ D u.
/ and
vn.t/ D v.
/, where 
 D nlx � ct is the wave variable, c is the wave velocity,
and u and v are smooth functions of 
 . Then the Lagrangian corresponding to the
equations of motion (6.4) is

L D
X

n

�
1

2
M.Pu2n C Pv2n/ � V.�n/ � U.�n/

�
; (6.6)

which can be written in the form

L D
X

n

�
c2M

24l2x

�
16w2n � .wn C wnC1/2 C 16.vnC1 � vn/

2 � .vnC2 � vn/
2
�

�V.�n/ � U.�n/
	
: (6.7)

The supersonic soliton state of the chain corresponds to the saddle point of the
Lagrangian, so it can be sought as the minimum of the functional

F D 1

2

X

n

�
L
2

wn C L
2

vn



:

Thus, in order to find the soliton solution (solitary wave) fwn; vngNnD1, one should
solve the minimum problem

F D 1

2

N�1X

nD2

�
L
2

wn C L
2

vn


 �! min W w1 D wN D v1 D 0; vN D 0 .ly/ : (6.8)

The solution to this problem allows us to find all the soliton solutions of the
nonlinear system (6.4), i.e., smooth solitary waves with constant profile. The
absence of such solutions for any value c of the velocity implies the impossibility
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of soliton motion at this velocity. The problem (6.8) was solved numerically by the
method of conjugate gradients [24]. A solution was sought in a chain of N D 400

links. The initial point of descent was taken in the form of two symmetrical bell-
shaped (or kink) profiles w.n/ and v.n/ centred at the middle of the chain.

The key idea of the method consists in replacing the continuous time derivatives
in the Lagrangian (6.6) by their discrete approximations (the transition from the
Lagrangian (6.6) to the discrete functional (6.7)). Therefore, this method can only
be used to find ‘broad’ soliton solutions whose shape exhibits a smooth dependence
on the number n of a chain site (the length of the chain N must be ten times the
width of the soliton solution).

Let us assume that fw0n; v
0
ngNnD1 is the required soliton solution with symmetry

centre located at the site n D N=2. Then the relevant soliton is characterized by the
energy

E D
N�1X

nD2

�
c2M

24l2x
Œ16w2n � .wn C wnC1/2 C 16.vnC1 � vn/

2 � .vnC2 � vn/
2�

CV.�n/C U.�n/

	
;

the total compression of the chain is

R D
NX

nD1
wn ;

the root-mean-square width given in the chain periods is

D D 2

"
NX

nD1
.n �m/2wn

R

#1=2
;

and the point

m D 1

2
C

NX

nD1

nwn
R

defines the position of the soliton centre. The other characteristics of the soliton are
the maximum value of the valence angle A� D maxn.�n/ and the maximum length
of the valence bond A� D maxn.�n/.

Numerical analysis has shown that the form of the soliton solution depends on
the dimensionless parameter ı which characterizes the ratio between physical and
geometrical anharmonicity. The physical anharmonicity is due to the potential of
the valence bond, whereas the geometrical anharmonicity is due to the potential of
the valence angle. Geometrical anharmonicity prevails for ı < 0:0356 and physical
anharmonicity for ı > 0:03556.
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a

b

c

d

Fig. 6.3 Deformation of the trans zigzag chain corresponding to the first type of stretching soliton
ı D 0:01929, s D 1:02 (a), the second type of stretching soliton ı D 0:01929, s D 1:05 (b),
the third type of stretching soliton ı D 0:01929, s D 1:0738 (c), and the compression soliton
ı D 0:07841, s D 1:035 (d)

When ı D 0:01929, the equations of motion (6.4) have three types of soliton
solution. The first corresponds to a solitary wave of longitudinal stretching of the
trans zigzag chain (see Fig. 6.3a) with amplitude Av D maxn vn < ly=2 (the
maximum value of the valence angle in the range of soliton localization is A� < �)
and asymptotic behavior wn; vn ! 0 as n ! 1. The second type soliton is a
solitary wave of large-amplitude longitudinal stretching of the trans zigzag chain
(see Fig. 6.3b) with asymptotic behavior wn; vn ! 0 as n ! �1 and wn ! 0,
vn ! ly as n ! C1. This solitary wave describes the sequential unfolding of
valence angles from one equilibrium value �n D �0 to the other �n D 2� � �0. As
a result, the chain transforms from one ground state fwn � 0; vn � 0g to another
one fwn � 0; vn � lyg. The third type of soliton solution corresponds to a solitary
stretching wave of the trans zigzag chain (see Fig. 6.3c) with amplitude ly=2 <
Av < ly (� < A� < 2� � �0) and asymptotic behavior wn; vn ! 0 as n ! 1. This
soliton is essentially a bound state of two opposite-sign solitons of the second type.

The dependence of the energy E, root-mean-square width D, and total longitu-
dinal compression of the chain R on the dimensionless soliton velocity s D c=c0
are shown in Fig. 6.4 (left). Solitons of the first type have the supersonic spectrum
of velocities 1 < s < s1 D 1:020. When the soliton velocity increases, the energy
E and total compression R of the chain increase steadily, while the root-mean-
square width D decreases. Solitons of the second type have the supersonic band
of admissible velocities s2 D 1:023 < s < s3 D 1:062. In this case, E, D,
and R decrease monotonically. Solitons of the third type exist only for velocity
s D s4 D 1:074.

A typical shape of the first type of soliton is shown in Fig. 6.4 (right). The
soliton has the characteristic bell-shaped profile of a solitary wave with respect to its
components wn, vn, and �n. In the region of soliton localization, the molecular chain
exhibits longitudinal stretching .wn > 0/ and transverse compression .vn > 0/: the
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Fig. 6.4 Left: Dependencies of the energy E, width D, and total stretching of the chain R on the
velocity s of the compression soliton of the trans zigzag chain for the first (lines 1, 4, and 7),
second (lines 2, 5, and 8), and third (lines 3, 6, and 9) types. Right: Profiles of the stretching soliton
of the first type. Components wn (a), vn (b), and �n (c) are shown at the initial time t D 0 and the
final time t D 1;613:8 after passing 99,999.69 chain links (s D 1:015)

valence angles increase and the valence bonds stretch out. The existence of these
solitons in the zigzag chain is due to the geometrical nonlinearity of the chain rather
than the inherent (physical) anharmonicity of intermolecular potentials. This is the
fundamental distinction between the trans zigzag model and the model of the two-
dimensional alpha-helix.

As the velocity increases, the energy and amplitude of the soliton increase
steadily and attain their maximum values Em D 4:6 eV and Rm D 5:3Å,
respectively, at s D s1. The soliton width decreases, but always exceeds 18 chain
links, i.e., the stretching soliton always complies with the assumption we made when
we found its shape, i.e., that its profile depends smoothly on the number of chain
links. The specific values of energy E, width D, amplitude R, increments in the
angle �� D A� � �0, and valence bond �� D A� � �0 are given in Table 6.1.
As can be seen from this table, with increasing velocity s, in the region of soliton
localization, the deformations of angles and bonds increase steadily but always
satisfy �� < 27ı for the valence angle and �� < 0:05Å for the valence bond.

With the second value of the parameter ı D 0:078419, the equations of
motion (6.4) have a soliton solution corresponding to a solitary wave of longitudinal
compression of the trans zigzag chain (see Fig. 6.3d). In the region of soliton
localization, compression of valence angles and bonds occurs. The soliton has a
finite range of velocities 1 < s 	 1:035.
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Table 6.1 Energy E, widthD, total compression R, torsion � , amplitudes Ar , A�, A� , and Aı of
the helix stretching soliton for different values of the dimensionless velocity s

s E (kJ mol�1) D R (Å) � (deg) Ar (Å) A� (Å) A� (deg) Aı (deg)

1.005 8.8 20.3 �0.44 7.8 0.006 �0.010 �1.6 �0.3

1.010 27.8 15.9 �0.66 11.4 0.013 �0.019 �3.3 �0.5

1.015 55.5 13.6 �0.88 14.5 0.020 �0.028 �5.1 �0.7

1.020 97.2 12.2 �1.10 17.4 0.028 �0.038 �7.2 �0.9

1.025 158.3 11.3 �1.35 20.5 0.038 �0.048 �9.5 �1.1

1.030 252.4 10.8 �1.65 24.3 0.049 �0.059 �12.2 �1.3

1.035 418.6 10.6 �2.11 29.9 0.062 �0.071 �15.8 �1.5

1.040 941.0 11.5 �3.34 44.9 0.085 �0.088 �21.8 �1.7
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Fig. 6.5 Existence regions of the acoustic solitons of stretching (a) and compression (b) of the
trans zigzag chain in the space of dimensionless parameters ı and s

The dependence of the velocity range of the acoustic soliton on the dimensionless
parameter ı is shown in Fig. 6.5. The soliton is a solitary wave of stretching for
ı < ı0 D 0:0356 and a solitary wave of compression of the trans zigzag chain for
ı > ı0. In the chain with ı D 0 (the approximation of an infinitely rigid valence
bond), the soliton velocity range is 1 < s < s1 D 1:095. As ı increases, the
upper limit of the velocities s1 decreases steadily. At a threshold value ı D ı0, the
geometrical and physical anharmonicity cancel out, and the velocity range vanishes
.s1 D 1/. A further increase in ı leads to a monotonic growth of the velocity range.

Numerical simulation of the dynamics has shown that the first type soliton is
dynamically stable at all values of the velocity 1 < s < s1. It moves with a
constant velocity and completely retains its original shape. For example, at the initial
dimensionless velocity s D 1:015 (c D 7;906:85ms�1, ı D 0:01929), the soliton
passed 99,999.694 chain links in 1,613.8 ps and had the final velocity s D 1:014995

(c D 7;906:81ms�1). As shown in Fig. 6.4 (right), the final shape of the soliton
is exactly the same as the initial one. The solitons interact as elastic particles.
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Fig. 6.6 Elastic collision
between stretching solitons of
the first type in the cyclic
chain consisting of N D 500

links. The time dependencies
of the longitudinal (a) and
transverse (b) displacements
of the chain links are shown

Their collisions result in elastic reflection without emission of phonons or change in
shape (see Fig. 6.6). Only near the limiting velocity s1 does the soliton interaction
become inelastic. Collision is then accompanied by phonon emission. Thus, near
the sound speed, the stretching solitons belonging to the first type exhibit clear
particle-like properties. Solitons of the second type are unstable. When moving, they
emit phonons and quickly decay. The third type of soliton is stable at the velocity
s D s4. It moves along the chain at a constant velocity and retains its shape. The
interaction between solitons of the third type is not elastic. Indeed, collisions lead
to their destruction.

The above analysis of the trans zigzag model has shown that, in an isolated
planar polyethylene macromolecule, dynamically stable stretching solitons can
exist, with a relatively narrow spectrum of supersonic velocities. The existence
of the solitons is due to the geometrical anharmonicity of the zigzag chain rather
than the physical anharmonicity of the intermolecular interaction potentials. A more
detailed description of the results is given in [17, 18, 25].

6.1.2 Stretching Solitons in a PTFE Macromolecule

A molecule of PTFE in the crystal state has helix conformation 1*13/6 with lattice
periods a D b D 5:59Å and c D 16:88Å [26]. Let us use the united atom
approximation in which a segment of the PTFE macromolecule CF2 is treated as
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a unified particle of mass M D 50 mp, where mp is the proton mass. Then the nth
chain link in the equilibrium state is defined by the radius vector

R D �
R0 cos.n��/; R0 sin.n��/; n��



; (6.9)

where R0 is the helix radius, and �� D 12�=13 D 166:15ı and �z D c=13 D
1:298Å are the angular and longitudinal helix step, respectively.

The helix radius can be determined from the length of the valence bond C–C,
viz., �0 D 1:533Å. Indeed, it follows from the helix equation (6.9) that the square
of the valence bond length is

�20 D ˇ̌
RnC1 � Rn

ˇ̌ D 2R20.1 � cos��/C�z2 ;

whence the helix radius is

R0 D
s

�20 ��z2

2.1 � cos��/
D 0:410 Å :

The valence angle in the equilibrium state is �0 D arccos
� � .en�1; en/=�20

�
, where

the vector en D RnC1 � Rn determines the direction of the nth valence bond. After
elementary transformations, we find that

�0 D � � arccos
4R20 sin2.��=2/ cos�� C�z2

�20
D 116:30ı :

The dihedral (torsional) angle in the equilibrium state is

�n D arccos
.vn�1; vn/
jvn�1jjvnj D arccos

h2 cos�� C sin2 ��

h2 C sin2 ��
;

where vn D .en; enC1/ is the vector product of the vectors en and enC1 and h D
�z=R0 is the dimensionless longitudinal helix step. We also introduce the rotation
angle around the nth bond ın D � � �n, where �n is the nth dihedral angle. In the
equilibrium state, the rotation angle is ı0 D � � �0 D 16:32ı.

Let xn, yn, and zn be the coordinates of the nth chain site. We change from
Cartesian to cylindrical coordinates:

xn D .R0 C rn/ cos.n�� C 'n/ ;

yn D .R0 C rn/ sin.n�� C 'n/ ;

zn D n�z C hn ;

where rn, 'n, and hn are the radial, angular, and longitudinal displacements of the
nth chain link from its equilibrium state, respectively. Then the Hamiltonian of the
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chain has the form

H D
X

n

�
M

2

h
Pr2n C P'2n.R0 C rn/

2 C Ph2n
i

C V.�n/C U.�n/CW.ın/

	
;

(6.10)

where the dot denotes differentiation with respect to time t and �n, �n, and ın
are the length of the nth valence bond, the valence angle, and the rotation angle,
respectively.

The potential of the valence bond V.�n/ is given by (6.2), in which the length of
the nth bond is

�n D .an;1 C b2n/
1=2 ;

with

an;1 D d2n C d2nC1 � 2dndnC1cn;1 ; bn D �z C hnC1 � hn ;

and dn D R0 C rn, cn;1 D cos.��C 'nC1 � 'n/. The energy of the valence bond is
D0 D 334:72 kJ mol�1 and the anharmonicity parameter is ˛ D 1:91Å [21].

The deformation energy of the valence angle is described by the potential (6.3),
in which the nth valence angle is

�n D arccos

�
�an;2 C bn�1bn

�n�1�n

�
; (6.11)

with

an;2 D dn�1dncn�1;1 C dndnC1cn;1 � d2n � dn�1dnC1cn;2 ;

cn;2 D cos.2�� C 'nC1 � 'n�1/ :

The energy K� D 529 kJ mol�1 [22]. The potential of internal rotation W.ın/
characterizes the slowdown of chain link rotation around the nth valence bond. The
nth rotation angle is

ın D arccos

 
� bnbnC1an;2 C bn�1bnanC1;2 � b2nan;4 � bn�1bnC1an;1 C an;3anC1;3p

ˇnˇnC1

!
;

where

an;3 D dn�1dnsn�1;1 C dndnC1sn;1 � dn�1dnC1sn;2 ;

an;4 D dndnC2cnC1;2 � dndnC1cn;1 � dn�1dnC2cn;3 C dn�1dnC1cn;2 ;

sn;1 D sin.�� C 'nC1 � 'n/ ;
sn;2 D sin.2�� C 'nC1 � 'n�1/ ;
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Fig. 6.7 Potential W.ı/ of rotation around the valence bond C–C for macromolecules of PTFE
(line 1) and PE (line 2)

cn;3 D cos.3�� C 'nC2 � 'n�1/ ;

ˇn D an�1;1b2n C an;1b
2
n�1 � 2an;2bn�1bn C a2n;3 :

A view of the potential for the PF macromolecule is presented in Fig. 6.7. The
absolute minimum ı0 D 0 of the potential corresponds to the trans conformation,
while the other two minima ı1 
 2�=3 and ı2 
 4�=3 refer to the gauche
conformation. The potential is characterized by three values:

• The height �1 D U.�=3/ of the potential barrier between trans and gauche
conformations,

• The second minimum �2 D U.2�=3/ of the potential, corresponding to the
gauche conformation energy, and

• The maximum value �3 D U.�/, corresponding to the energy level of the masked
conformation.

According to [26], the values are �1 D 14:94 kJ mol�1, �2 D 2:0768 kJ mol�1, and
�3 D 22:6 kJ mol�1.

A view of the potential for the PTFE macromolecule is shown in Fig. 6.7. The
difference between these two potentials relates to the polarity of the C–F bond and
the fact that the van der Waals radius of fluoride is greater than that of hydrogen.
All these effects also contribute to the total potential energy of rotation. In contrast
to PE, which has three rotary isomers on each C–C bond, the one with minimum
energy (trans) and two others with higher energy, viz., gauche (C) and gauche (�),
PTFE has four rotary isomers. Two of them, viz., trans (C) and trans (�), have
identical minimum energy, i.e., ı1 D ı0, ı2 D 2� � ı0, W.ı1/ D W.ı2/ D 0, while
the two others, gauche (C) and gauche (�), have higher energies, i.e., ı3 
 2�=3

and ı4 
 4�=3, W.ı3/ D W.ı4/ > 0.
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The rotational potential is characterized by four values:

• The height �0 D W.0/ of the potential barrier between the two trans conforma-
tions,

• The height �1 D W.�=3/ of the potential barrier between the trans and gauche
conformations,

• The gauche conformation energy �2 D W.2�=3/, and
• The height �3 D W.�/ of the barrier between the gauche conformations.

According to [26], �0 D 1:674 kJ mol�1, �1 D 18:42 kJ mol�1, �2 D
4:186 kJ mol�1, and �3 D 23:02 kJ mol�1.

For the numerical modeling of the dynamics, it is convenient to represent the
rotational potential by the equation

W.ı/ D �
C1Z˛.ı/C C2Zˇ.ı/ � C3

�2
; (6.12)

where the one-parameter functions are

Z˛.ı/ D .1C ˛/ sin2.ı=2/

1C ˛ sin2.ı=2/
; Zˇ.ı/ D

�
.1C ˇ/ sin.3ı=2/

1 � ˇ sin.3ı=2/

�2
:

The parameter values C1 D 3:411 kJ1=2 mol�1=2, C2 D 2:681 kJ1=2 mol�1=2, and
C3 D 1:294 kJ1=2 mol�1=2, together with ˛ D 14:6125 and ˇ D 4:0028 � 10�3, are
uniquely determined by the following equations:

W.0/ D C2
3 D �0 ;

W.ı0/ D �
C1Z˛.ı0/C C2Zˇ.ı0/ � C3

�2 D 0 ;

W.�=3/ D
"
C1
1C ˛

4C ˛
C C2

�
1C ˇ

1 � ˇ
�2

� C3
#2

D �1 ;

W.2�=3/ D
�
3C1

1C ˛

4C 3˛
� C3

�2
D �2 ;

W.�/ D .C1 C C2 � C3/2 D �3 :

A view of the potential (6.12) for the given values of the parameters is shown in
Fig. 6.7. The potential has absolute minimum at ı D ı0 and 2� � ı0. Note that
the rotational potential W.ı/ of PE is symmetric relative to the point of absolute
minimum ı0 D 0. The cubic anharmonicity of the potential at this point is equal to
zero. In the case of PTFE, the minimum ı0 is no longer the symmetry point. The
cubic anharmonicity at this point is not equal to zero. As a result, one can expect
the existence of torsion solitons, caused by the cubic anharmonicity of the rotational
potential.
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To analyse the small-amplitude vibrations of the chain, it is convenient to change
from the cylindrical coordinates rn, 'n, and hn to the local ones:

unD
0

@
un;1
un;2
un;3

1

A

D
0

@
cos.n��/ sin.n��/ 0

� sin.n��/ cos.n��/ 0
0 0 1

1

A

0

@
.R0 C rn/ cos.n�� C 'n/ �R0 cos.n��/
.R0 C rn/ sin.n�� C 'n/ �R0 sin.n��/

hn

1

A:

In this coordinate system, the Hamiltonian (6.10) has the form

H D
X

n

�
1

2
M. Pun; Pun/C V.un;unC1/C U.un�1;un;unC1/

CW.un�1;un;unC1;unC2/
�
: (6.13)

The following equations of motion correspond to the Hamiltonian (6.13):

�M Run D V1.un;unC1/C V2.un�1;un/C U1.un;unC1;unC2/

CU2.un�1;un;unC1/C U3.un�2;un�1;un/

CW1.un;unC1;unC2;unC3/C W2.un�1;un;unC1;unC2/

CW3.un�2;un�1;un;unC1/C W4.un�3;un�2;un�1;un/ ; (6.14)

where the vectors are

Vi .u1;u2/ D @

@ui
V ; i D 1; 2 ;

Ui .u1;u2;u3/ D @

@ui
U ; i D 1; 2; 3 ;

Wi .u1;u2;u3;u4/ D @

@ui
W ; i D 1; 2; 3; 4 :

The linear approximation for the nonlinear equations (6.14) takes the form

�M Run D B1un C B2.un�1 C unC1/C B3.un�2 C unC2/C B4.un�3 C unC3/ ;
(6.15)

where the constant matrices are

B1 D V11 C V22 C U11 C U22 C U33 CW11 CW22 CW33 CW44 ;

B2 D V12 C U12 C U23 CW12 CW23 CW34 ;
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B3 D U13 CW13 CW24 ;

B4 D W14 :

Here

Vij D @2V

@ui @uj
.0; 0/ ; i; j D 1; 2 ;

Uij D @2U

@ui @uj
.0; 0; 0/ ; i; j D 1; 2; 3 ;

Wij D @2W

@ui @uj
.0; 0; 0; 0/ ; i; j D 1; 2; 3; 4 :

Let us search for a solution of the linear system (6.8) in the form of a harmonic wave

un D A exp
�
i.qn � !t/� : (6.16)

Substituting (6.16) into the linear equation (6.15), we obtain the dispersion equation

ˇ̌
B1 C 2B2 cos q C 2B3 cos.2q/C 2B4 cos.3q/ � !2E ˇ̌ D 0 ; (6.17)

where E is the unit matrix. The dispersion equation (6.17) is an algebraic equation
of third order in the variable !2. The corresponding algebraic curve has three
branches: two acoustic ! D !t.q/, ! D !l.q/, and one optical ! D !o.q/, with
!t.q/ 	 !l.q/ 	 !o.q/.

A view of the dispersion curves is presented in Fig. 6.8. The lower curve
! D !t.q/ gives the dispersion law for acoustic phonons corresponding to torsional
oscillations, while the middle curve ! D !l.q/ gives the dispersion law for acoustic
phonons corresponding to longitudinal oscillations of the helix. The upper curve
! D !o.q/ corresponds to the high-frequency optical phonons in the helix.

The velocity vl D �z limq!0 !l.q/=q D 6;978:6m/s of the long-wavelength
longitudinal phonons exceeds the velocity vt D �z limq!0 !t.q/=q D 5;585:3m/s
of the torsional phonons. The ratio of these velocities is st D vt=vl D 0:80035.

The Hamiltonian of the chain (6.10) gives the equations of motion

M Rrn �M.R0 C rn/ P'2n C @

@rn
P D 0 ;

M.R0 C rn/
2 R'n C 2M.R0 C rn/ P'n Prn C @

@'n
P D 0 ; (6.18)

M Rh2n C @

@hn
P D 0 ;
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Fig. 6.8 Dispersion curves ! D !t.q/ (line 1), ! D !l.q/ (line 2), and ! D !o.q/ (line 3) for an
isolated PTFE molecule

where the potential energy is

P D
X

n

�
V.�n/C U.�n/CW.ın/

�
:

The complexity of the equations of motion precludes analytical investigation, so to
analyse the soliton solutions, we turn once again to the numerical methods of [14].
We search for a solution to the system of equations (6.18) in the form of a smooth
traveling solitary wave with constant profile. For this purpose, we set rn.t/ D r.
/,
'n.t/ D '.
/, and hn.t/ D h.
/, where 
 D n�z � vt is the wave variable, v is the
wave velocity, and r , ', and h are smooth functions of 
 .

We use the discrete approximation to the time derivatives:

Prn D �v.rnC1 � rn�1/=2�z ;

P'n D v. nC1 � 5 n � 2 n�1/=6�z ;

Rrn D v2.rnC1 � 2rn C rn�1/=�z2 ;
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R'n D �v2. nC1 � 15 n C 15 n�1 �  n�2/=12�z2 ;

Rhn D �v2.wnC1 � 15wn C 15wn�1 � wn�2/=12�z2 ;

where  n D 'nC1 � 'n is the relative rotation and wn D hnC1 � hn is the relative
displacement. Then the equations of motion (6.18) can be written in the form of
discrete equations in the variables rn,  n, and wn:

F1;n D �c1.rnC1 � 2rn C rn�1/

Cc2. nC1 � 5 n � 2 n�1/2.R0 C rn/

CF1.rn�3; : : : ; rnC3I n�3; : : : ;  n�2I wn�3; : : : ;wnC2/ D 0 ;

F2;n D c3. nC1 � 15 n C 15 n�1 �  n�2/

Cc4.rnC1 � rn�1/. nC1 � 5 n � 2 n�1/=.R0 C rn/ (6.19)

CF2.rn�3; : : : ; rnC3I n�3; : : : ;  n�2I wn�3; : : : ;wnC2/ D 0 ;

F3;n D c3.wnC1 � 15wn C 15wn�1 � wn�2/

CF3.rn�3; : : : ; rnC3I n�3; : : : ;  n�2I wn�3; : : : ;wnC2/ D 0 ;

where the coefficients are c1 D v2=�z2, c2 D c1=36, c3 D c1=12, and c4 D c1=6.
We search numerically for a soliton solution frn;  n;wngNnD1 to the discrete

equations (6.13) as a solution of the constrained minimum problem

F D 1

2

N�1X

nD2

�
F 2
1;n C F 2

2;n C F 2
3;n


 �! min; r1 D rN D 1 D N D w1 D wN D 0:

(6.20)

The solution to this problem can be used to find numerically all the soliton solutions
(solitary waves with constant profile) of the equations of motion (6.18). The absence
of such solutions at any value of the velocity v implies the impossibility of soliton
motion at that velocity.

The problem (6.20) was solved numerically by the method of conjugate gradients
[24]. A solution was sought on a chain consisting of N D 400 links (this value of
N ensures that the solution shape is independent of the zero boundary conditions).
The initial point of descent was taken in the form of three symmetric bell-shaped
profiles r.n/,  .n/, and w.n/, centered on the middle of the chain.

Every soliton solution frn;  n;wngNnD1 is characterized by the energy

E D
N�1X

nD2

�
M v2

8�z2

h
.rnC1 � rn�1/2 C .R0 C rn/

2. n C  n�1/2 C .wn C wn�1/2
i

C V.�n/C U.�n/CW.ın/

	
;
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the total torsion � D PN
nD1  n, and the chain compression R D PN

nD1 wn. The
root-mean-square width of the solution, given in periods of the chain, is

D D 2

"
NX

nD1

.n � n/wn
R

#1=2
;

where n D PN
nD1 nwn=R determines the position of the soliton centre. The

solution is also characterized by the amplitude of the transverse displacement
of chain links Ar D maxn rn, the amplitudes of valence bond deformations
A� D minn.�n � �0/, the valence angles A� D minn.�n � �0/, and the rotational
angles Aı D maxn.ın � ı0/.

Numerical solution of the problem (6.20) has shown the existence of soliton
solutions of two types. The first type solution describes the propagation of a
torsional solitary wave along the chain. A typical view of this solution is shown in
Fig. 6.9 (left). In the region of soliton localization, the helix is expanded relative to
the transverse component rn, monotonically twisted relative to the angular variable
'n, and monotonically squeezed relative to the longitudinal variable hn. As can be
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Fig. 6.10 Left: dependencies of the energy E (a) and depth D (b) of the torsional soliton on
the dimensionless velocity s. Right: dependencies of the energy E (a) and depth D (b) of the
compression soliton on the dimensionless velocity s

seen from Fig. 6.9 (right), all these deformations of the helix result basically from a
local increase in the rotational angles ın, i.e., squeezing dihedral angles of the chain.

The second solution describes the propagation of a solitary wave of longitudinal
compression along the chain. The form of the solution is shown in Fig. 6.9 (left). In
the localization region of the soliton, the helix is expanded relative to the transverse
component rn, slightly untwisted relative to the angular variable 'n, and squeezed
relative to the longitudinal variable hn. As can be seen in Fig. 6.9 (right), these
deformations are due mainly to squeezing the valence angles and valence bonds.
The torsional angles are thus weakly deformed.

The torsional solitons occupy the finite interval st < s < 0:820034 of permissible
values of the dimensionless velocity s D v=vl. The dependencies of the energy E
and soliton width D on s are shown in Fig. 6.10 (left). With increasing velocity,
the soliton energy steadily increases. The soliton width decreases monotonically
up to the minimum value D D 16:3 at s D 0:818, and then begins to grow
monotonically. Table 6.2 gives concrete values of the energy E, width D, total
compression R, torsion of the helix � , amplitude of transverse expansion of the
chain Ar , and extreme values of the strains of valence bonds A�, valence angles Aı ,
and rotational angles Aı . It follows from this table that the amplitude of longitudinal
compression of the chain grows monotonically with increasing velocity and reaches
the maximum value �0:23Å at the maximum value of the velocity. The transverse
expansion of the helix does not reach noticeable values. At all values of the velocity,
the valence bonds and angles are almost undeformed, in contrast to the rotational
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Table 6.2 Dependence of the energyE, depthD, total compressionR, torsion � , amplitudes Ar ,
A�, A� , and Aı of the torsion soliton on the dimensionless velocity s

s E (kJ mol�1) D R (Å) � (deg) Ar (Å) A� (Å) A� (deg) Aı (deg)

0.8025 0.11 39.9 �0.012 �11.8 0.0003 �0.0001 �0.006 0.32

0.8050 0.37 27.5 �0.019 �18.5 0.0006 �0.0002 �0.017 0.72

0.8075 0.81 22.5 �0.026 �24.6 0.0010 �0.0003 �0.033 1.16

0.8100 1.48 19.7 �0.033 �31.1 0.0014 �0.0005 �0.052 1.65

0.8125 2.51 17.9 �0.043 �38.6 0.0020 �0.0007 �0.080 2.21

0.8150 4.19 16.8 �0.056 �48.4 0.0028 �0.0010 �0.120 2.88

0.8175 7.47 16.3 �0.079 �64.0 0.0038 �0.0013 �0.179 3.77

0.8200 28.61 21.0 �0.201 �144.8 0.0063 �0.0021 �0.325 5.70

Table 6.3 Dependence of the energyE, depthD, total compressionR, torsion � , amplitudes Ar ,
A�, A� , and Aı of the soliton of helix expansion on the dimensionless velocity s

s E (kJ mol�1) D R (Å) � (deg) Ar (Å) A� (Å) A� (deg) Aı (deg)

1.005 8.8 20.3 �0.44 7.8 0.006 �0.010 �1.6 �0.3

1.010 27.8 15.9 �0.66 11.4 0.013 �0.019 �3.3 �0.5

1.015 55.5 13.6 �0.88 14.5 0.020 �0.028 �5.1 �0.7

1.020 97.2 12.2 �1.10 17.4 0.028 �0.038 �7.2 �0.9

1.025 158.3 11.3 �1.35 20.5 0.038 �0.048 �9.5 �1.1

1.030 252.4 10.8 �1.65 24.3 0.049 �0.059 �12.2 �1.3

1.035 418.6 10.6 �2.11 29.9 0.062 �0.071 �15.8 �1.5

1.040 941.0 11.5 �3.34 44.9 0.085 �0.088 �21.8 �1.7

angles. The compression amplitude of the torsion angles increases monotonically
with increasing velocity. The maximum compression is at the right end of the
velocity interval where the total torsion of the helix � D �163:5ı.

The solitons of helix compression occupy the interval of permissible values
1 < s < 1:04 of the dimensionless velocity. The dependencies of the energy
E and width D of the soliton on s are presented in Fig. 6.10 (right). The energy
of the soliton grows monotonically with growth in the velocity, and the width
decreases monotonically down to the minimum value D D 10:19 at s D 1:035,
and then begins to grow steadily. Concrete values of the energy E, width D, total
compression R, torsion of the helix � , amplitude of transverse expansion of the
chain Ar , extremal strain of the valence bonds A�, valence angles A� , and rotational
angles Aı are presented in Table 6.3. The amplitude of longitudinal compression
of the chain increases steadily with increasing velocity and reaches the maximum
value of 3.34 Å on the right end of the velocity interval. The amplitude of transverse
expansion can reach a value of 0.085 Å, which exceeds by more than one order of
magnitude the maximum value of helix expansion for the torsion soliton. The strains
of the valence bonds and angles can also reach large values. In this case, the dihedral
angles are deformed weakly. Extension of the torsion angle at the maximum value
of the velocity does not exceed 1.7ı.
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Numerical simulation of the soliton dynamics has demonstrated the dynamical
stability of the solitons at all permissible values of velocity. The solitons move along
the chain with a constant velocity and maintain their shape. Modeling of the soliton
collision has shown that the solitons interact with each other like elastic particles at
velocities close to the left edges of the soliton velocity intervals: when they collide,
they reflect from each other without changing their shape and without phonon
emission. At velocities close to the left edges of the soliton velocity intervals,
the soliton interaction is no longer elastic, and the soliton collision is already
accompanied by low-amplitude phonon emission (see Fig. 6.11).

Our investigation of the nonlinear dynamics of PTFE allows us to conclude that,
in an isolated polymer macromolecule having the structure of a three-dimensional
helix, two types of supersonic solitons can exist simultaneously: solitons of torsion

Fig. 6.11 Collision of the torsion soliton (s D 0:82) with the solitons of longitudinal compression
(s D �1:01) in the helix. The dependencies of the transverse displacement of chain links rn (a),
relative rotation  n (b), and relative longitudinal displacement wn (c) on n and t are shown
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and solitons of longitudinal compression of the helix. The first type of soliton
corresponds to solitary waves of rotary displacements, and the second to solitary
waves of longitudinal displacements of chain links. The helix intertwisting is
mainly realized by compression of the dihedral (torsion) angles, while longitudinal
compression is due to compression of the valence angles and bonds. The solitons
have finite supersonic velocity intervals: the torsional soliton has a higher velocity
interval than the velocities of long-wave torsional phonons, and the compression
soliton has a higher velocity interval than the velocities of long-wave longitudinal
phonons. The solitons are dynamically stable for all permissible values of the
velocity and have particle-like properties (inelasticity of their interaction is exhibited
only at the maximum velocity values). A more detailed description of the results is
given in [27, 28].

6.2 Planar Solitary Waves in Graphite Layers
and Soliton-Like Excitations in Carbon Nanotubes

Carbon nanotubes (CNTs) are cylindrical macromolecules of diameter exceeding
half a nanometer and a length of up to several microns. Similar structures were
obtained more than 50 years ago through thermal decomposition of carbon oxide
on an iron contact [29]. However, nanotubes themselves were obtained only about
20 years ago as by-products of the synthesis of fullerene C60 [30]. Carbon nanotubes
now attract attention due to their unique properties [31]. A nanotube is a quasi-
one-dimensional molecular structure with pronounced nonlinear properties. It was
shown in [32] that, in the continuum approximation, the nonlinear dynamics of such
structures can be described by the Korteweg–de Vries equation, i.e., supersonic
longitudinal compression solitons can exist in nanotubes.

The aim of this section is a numerical investigation of the motion of supersonic
acoustic solitons in ideal single-wall CNTs. If the nanotube radius increases
infinitely, the nanotube takes the form of a planar graphite layer and its acoustic
waves become planar waves in the layer. It will be shown that stable solitary waves
(solitons) exist only in the flat layer. Supersonic motion of these excitations in
CNTs is always accompanied by continuous phonon emission. This emission is due
to the variation in nanotube diameter in the region of excitation localization, and
its intensity decreases with increasing CNT radius. Phonon emission results in the
slowdown of supersonic solitons, implying that they have a finite lifetime.

6.2.1 Structure of Graphite Layers

A graphite layer is a plane covered by regular hexagons with carbon atoms at their
vertices (see Fig. 6.12a). In this two-dimensional lattice, each carbon atom is bonded
to the three neighboring atoms by valence bonds, thereby forming regular hexagons.
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Fig. 6.12 Structure of a flat graphite layer (a), carbon nanotube (b) with chirality (10,10), and
reduced one-dimensional chain (c) used to model the propagation of symmetric plane waves

It is convenient to denote lattice sites by two indices i and j . Let xi;j , yi;j , and zi;j
be the coordinates of the lattice site with the corresponding indices. In equilibrium,
we have

x0i;j D iax ; y0i;j D .�1/iCj �0=4C jay ; z0i;j D 0 ; (6.21)

where ax D �0
p
3=2, ay D 3�0=2, and �0 is the equilibrium valence bond length.

Here and in what follows, we will take into account only the interaction
between the nearest neighbor carbon atoms bound by valence bonds and describe
the interaction itself by the many-particle Brenner potential [33]. To specify the
electrostatic interaction energy between two carbon atoms with two-dimensional
indices i and j, one must also know the positions of the other carbon atoms bonded
to these two atoms. Let rij, �i;1, �i;2, �j;1, and �j;2 be the bond length and the angles
formed by the valence bonds, respectively (see Fig. 6.13).
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Fig. 6.13 Configuration of a
carbon structure in the
vicinity of the valence bond
between carbon atoms with
indices i and j
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Then the interaction energy is

Uij D VR.rij/ � 1

2
.Bij C Bji/VA.rij/ ; (6.22)

where the repulsive part of the potential is

VR.r/ D D

S � 1 exp
� � p

2Sˇ.r � r0/
�
;

its attractive part is

VA.r/ D DS

S � 1 exp

"
�
r
2

S
ˇ.r � r0/

#
;

and the parameters are r0 D 1:315Å, D D 6:325 eV, ˇ D 1:5Å�1, and S D 1:29.
The coefficients are

Bij D �
1CG.�i;1/CG.�i;2/

��ı
; Bji D �

1CG.�j;1/CG.�j;2/
��ı

;

where

G.�/ D a0

�
1C c20

d20
� c20
d20 C .1C cos �/2

�
;

and the parameters are a0 D 0:011304, c0 D 19, d0 D 2:5, and ı D 0:80469.
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To find the equilibrium valence bond length in the graphite lattice described
by (6.21), one must solve the minimum problem

Uij �! min
rij
; (6.23)

with the constraints �i;1 D �i;2 D �j;1 D �j;2 D 2�=3. Numerical solution of the
problem (6.23) yields the value R0 D 1:419Å, which is in good agreement with
the experimental valence bond length jCCj D 1:42Å. The valence bond energy is
E0 D �Uij.R0/ D 4:92 eV.

6.2.2 Dispersion Equation of a Planar Wave in a Graphite
Layer

Here we consider a symmetric planar wave propagating along the x-axis in a
graphite layer. For such motion, all sites with the same value of the index i always
have equal displacements, i.e., xi;j � xi , yi;j � yi , and zi;j � zi . Therefore,
instead of the dynamics of a two-dimensional lattice (Fig. 6.12a), it suffices to con-
sider the dynamics of a reduced one-dimensional chain (see Fig. 6.12c) described
by the Hamiltonian

H D
X

i

�
1

2
M.Pri ; Pri /C V.ri�1; ri ; riC1; riC2/

�
; (6.24)

where M D 12mp is the mass of a site in the reduced chain (doubled carbon atom
mass, mp D 1:67261 � 10�27 kg is the proton mass). The vector ri D .xi ; yi ; zi /
specifies the position of the i th site, and the site–site interaction potential is

V.ri�1; ri ; riC1; riC2/ D Ui;1 C Ui;2 C Ui;3 : (6.25)

Here, the potential Ui;1 is given by (6.4) and describes the valence bond between the
sites .i � 1; j / and .i; j /. The potentials Ui;2 and Ui;3 describe the bonds between
the sites .i; j / and .i; j C 1/, and .i; j / and .i C 1; j /, respectively.

The Hamiltonian (6.24) gives the equations of motion

�M Rri D F1.ri ; riC1; riC2; riC3/C F2.ri�1; ri ; riC1; riC2/

CF3.ri�2; ri�1; ri ; riC1/C F4.ri�3; ri�2; ri�1; ri / ; (6.26)

where

Fk D @

@rk
U.r1; r2; r3; r4/ ; k D 1; 2; 3; 4 :
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For convenience, we change from the absolute coordinates ri .t / to the relative
displacements ui .t / D ri .t / � r0i , where r0i is the equilibrium position of the i th
site. To analyse small-amplitude oscillations, we use a linear approximation. For
displacements jui j � �0, we change from the nonlinear equations of motion (6.26)
to the linear system

�M Rui D B1uiCB2.ui�1CuiC1/CB3.ui�2CuiC2/CB4.ui�3CuiC3/ ; (6.27)

where the matrices B1 D F11 C F22 C F33 C F44, B2 D F12 C F23 C F34, B3 D
F13 C F24, B4 D F14, and the matrix

Fkl D @2V

@uk@ul
.0; 0; 0; 0/ ; k; l D 1; 2; 3; 4 :

We search for the solution of (6.9) in the form of a wave

ui .t / D A exp
�
i.qi � !t/� ; (6.28)

where !, A, and q 2 Œ0; �� are the wave frequency, amplitude vector, and
dimensionless wave number. Substituting (6.28) into the linear system (6.27), we
obtain the dispersion equation

ˇ̌
B1 C 2B2 cos q C 2B3 cos.2q/C 2B4 cos 3q � !2E ˇ̌ D 0 ; (6.29)

where E is the unit matrix.
The dispersion equation (6.29) is a third-order polynomial with respect to the

square of the frequency !2. The corresponding algebraic curve has three branches:
0 	 !z.q/ 	 !y.q/ 	 !z.q/ (see Fig. 6.14a left). The first branch ! D !z.q/

describes the dispersion of the transverse planar waves in the graphite layer when the
lattice sites are displaced from the layer plane and move along the z-axis. The second
branch ! D !y.q/ corresponds to the dispersion of the transverse planar waves
when the lattice sites move along the y-axis, but remaining in the lattice plane. The
third branch ! D !x.q/ relates to the dispersion of the plane longitudinal waves
when the lattice sites move along the x-axis in the plane of the two-dimensional
lattice.

The dispersion curves are shown in Fig. 6.14a (left). All three frequencies are
equal to zero for the wave number q D 0. The frequencies increase steadily
with increasing q. Their maximal values are reached at q D � , where !x.�/ D
121 cm�1, !y.�/ D 97 cm�1, and !z.�/ D 54 cm�1. Let us determine the
velocities of the corresponding long-wavelength phonons. The velocity of planar
longitudinal phonons is vx D ax limq!0 !x.q/=q D 15;878:5m/s, while the
velocity of planar transverse phonons is vy D ax limq!0 !y.q/=q D 10;670:7m/s.
The ratio of the velocities is vy=vx D 0:672. Non-planar phonons have zero velocity
vz D ax limq!0 !z.q/=q D 0:
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Fig. 6.14 Left: Dispersion curves for a flat graphite layer (a) and a (5,5) carbon nanotube (b).
! D !z.q/ (line 1), ! D !y.q/ (line 2), ! D !x.q/ (line 3), ! D !o.q/ (line 4), ! D !t.q/ (line
5) and ! D !l.q/ (line 6). Right: Dependencies of the energy E (a) (line 1), amplitudes (b) Ax
(line 2) and Ay (line 3) on the dimensionless velocity s D v=vx for the planar solitary wave in a
graphite layer

6.2.3 Plane Solitary Waves in a Graphite Layer

To find a planar solitary wave (soliton), we use the pseudospectral method [34, 35].
A detailed description of this method can be found in [36], where the dynamics of
planar solitary waves were modeled numerically in a two-dimensional hexagonal
lattice. This method is applicable almost without any changes to the problem of
finding planar solitary waves in graphite layers. Therefore, we omit the description
of the method and directly state the results.

The pseudospectral method can give an unambiguous answer to the problem of
the existence of broad solitons as well as narrow ones whose widths are comparable
to the chain period. In terms of the relative displacements ui .t /, the equations of
motion (6.8) have the form

�M Rui D F1.ui ;uiC1;uiC2;uiC3/C F2.ui�1;ui ;uiC1;uiC2/

CF3.ui�2;ui�1;ui ;uiC1/C F4.ui�3;ui�2;ui�1;ui / ;

i D 0;˙1;˙2; : : : : (6.30)

The solution of the nonlinear equations (6.30) is sought in the form of a solitary
wave of stationary profile ui .t / D u.
/ D .ux.
/; uy.
/; uz.
//, where 
 D axi�vt
is the wave variable. The vector function u.
/ determines the shape of the wave
propagating along the x-axis with constant velocity v. As 
 ! ˙1, the derivatives
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of all three components of this function must tend to zero u0 ! 0 (solitariness
condition).

Numerical analysis of the nonlinear equations (6.30) has shown that only
solitary waves of longitudinal compression can exist in a planar graphite layer,
and that their supersonic dimensionless velocities lie in the finite interval
1< sD v=vx < s2 D 1:48. The solitary wave u is characterized by the energy

E D
X

i

�
1

2
M v2

�
u0.iax/;u0.iax/




C V



u
�
.i � 1/ax



;u.iax/;u

�
.i C 1/ax



;u
�
.i C 2/ax


��
;

and by the vector amplitude A D .Ax; Ay; Az/, where

Ax D max

�
ux.
 C 1/ � ux.
/

�
; Ay D max


�
uy.
 C 1/ � uy.
/

�
;

Az D max

�
uz.
 C 1/ � ux.
/

�
:

For all permissible values of the solitary wave velocity, the lattice site displacements
occur in the lattice plane, i.e., the amplitude Az D 0. The wave energy E increases
monotonically with increasing propagation velocity (see Fig. 6.14a right). The
amplitude of the lattice compression Ax along the x-axis also grows monotonically
for 1 < s < s1 D 1:39 (Fig. 6.14b right). In this case, the displacement amplitude
Ay D 0, i.e., the lattice sites are only displaced along the x-axis. This component
of the displacement has the form of a solitary wave (Fig. 6.15a left). For velocities
in the interval s1 < s < s2, the second component of the site displacement is also
nonzero. Here, with increasing velocity, the amplitude Ay increases steadily and the
displacements have the form of a solitary wave in the two components x and y (see
Fig. 6.15b left).

Numerical integration of (6.30) shows that the planar solitary waves are stable
for all values of the dimensionless velocity in the range 1 < s < s2. They propagate
along the chain with constant velocity and completely conserve their initial shapes.
As shown in [36], the planar solitary wave in a two-dimensional hexagonal lattice
can propagate in any direction (only the maximum velocity depends on the direction
of propagation).

6.2.4 Structure of a Carbon Nanotube

An ideal single-wall carbon nanotube (Fig. 6.12b) is a cylindrically convoluted
planar graphite layer ribbon. The direction of convolution determines the chirality of
the CNT, denoted by the set of symbols .m; n/. For convenience of calculation, we
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Fig. 6.15 Left: profile of a solitary wave in a graphite layer for the dimensionless velocities s D
1:25 (a) and s D 1:47 (b). The relative displacements along the x-axis, viz., �x;i D ux;iC1 � ux;i
(lines 1 and 3) and along the y-axis, viz., �y;i D uy;iC1 � uy;i (lines 2 and 4) are shown. Right:
changes in the deformation energy Uc (a) and radius R of an .m;m/-nanotube (m D 5, 10, and
20) (b) as a function of the compression of the nanotube step �

consider CNTs with equal chirality symbols .m;m/. Note, that all results obtained
are also valid for any CNT, regardless of the symbols .m; n/.

CNTs with chirality .10;10/ are most stable. This nanotube is shown in
Fig. 6.12b. In the equilibrium position, carbon atoms in the infinite .m;m/ nanotube
have coordinates

x0i;j D i�x ; y0i;j D R cos'i;j ; z0i;j D R sin'i;j ; (6.31)

where the indices i D 0;˙1;˙2; : : : and j D 1; 2; : : : ; mCm define the numbering
of nanotube sites in the longitudinal and transverse directions, respectively. �x and
R are the longitudinal step and nanotube radius, respectively. The angles are

'i;j D .j � 1/ �
m

� 1

2

�
1 � .�1/iCj ��' ;

where �' is the angle of the transverse displacement. Stationary values of the
parameters �x0, R0, and �'0 can be found as minima of the function

E.�x;R;�'/ D 1

3
.E1 CE2 CE3/ ;

whereE1 is the energy of the valence bond between the .1; 1/ and .1; 2/ sites, found
from (6.4), E2 is the bonding energy between sites .1; 1/ and .2; 1/, and E3 is the
bonding energy between sites .1; 1/ and .0; 1/. The dependencies of �x0, R0, �'0,
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Table 6.4 Dependencies of
the longitudinal step �x0,
radius R0, angle of transverse
displacement �'0, and
energy of one valence bond
E0 on the chirality symbols
.m;m/ of the nanotube

m �x0 (Å) R0 (Å) �'0 (grad) E0 (eV)

5 1.23387 3.42 11.89 4.8655

7 1.23153 4.76 8.53 4.8912

10 1.23036 6.79 5.99 4.9048

15 1.22975 10.18 4.00 4.9120

20 1.22954 13.56 3.00 4.9146

30 1.22939 20.34 2.00 4.9164

50 1.22932 33.89 1.20 4.9173

100 1.22929 67.77 0.60 4.9177

1 1.22928 1 0 4.9178

and the energy of the valence bond E0 are given in Table 6.4. As m ! 1, the
radius of the CNT tends to infinity and the nanotube becomes a two-dimensional
lattice (graphite layer).

6.2.5 Dispersion Equation of Longitudinal Waves in Nanotube

Let xi;j , yi;j , and zi;j be the coordinates of the site .i; j / in the nanotube. We change
from Cartesian coordinates to cylindrical hi;j , ri;j , and �i;j :

xi;j D i�x C hi;j ;

yi;j D .RC ri;j / cos.'i;j C �i;j / ; (6.32)

zi;j D .RC ri;j / sin.'i;j C �i;j / ;

noting that, in equilibrium hi;j D 0, �i;j D 0, and ri;j D 0. Next, we assume that
the displacements of atoms with the same second indices j are equal, i.e.,

hi;j � hi ; ri;j � ri ; �i;j � �i :

Then the Hamiltonian of the system takes the form

H D
X

i

�
1

2
M
� Pr2i C .RC ri /

2 P�2i C Ph2i
�C Vi

	
; (6.33)

where

Vi D V.ri�1; �i�1; hi�1I ri ; �i ; hi I riC1; �iC1; hiC1I riC2; �iC2; hiC2/
D Ui;1 C Ui;2 C Ui;3 :

Here, the potential Ui;1 is given by (6.4) and describes the valence bond between the
sites .i � 1; j / and .i; j /. The potentials Ui;2 and Ui;3 describe the bonds between
the sites .i; j / and .i; j C 1/, and .i; j / and .i C 1; j /, respectively.
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It is convenient to analyze low-amplitude vibrations by introducing local orthog-
onal coordinates ui;1 D .R C ri / cos�i � R, ui;2 D .R C ri / sin�i , and ui;3 D hi ,
in which the Hamiltonian of the system has the form

H D
X

i

�
1

2
M. Pui ; Pui /C V.ui�1;ui ;uiC1;uiC2/

�
; (6.34)

where ui D .ui;1; ui;2; ui;3/. In the linear approximation, the equations of
motion (6.34) correspond to the Hamiltonian (6.27).

We will search for a solution of the linear system in the form of a linear
wave (6.28). Then the dispersion equation with respect to the frequency squared
!2 is a cubic equation. The corresponding algebraic curve has three branches:
0 	 !o.q/ 	 !t.q/ 	 !l.q/ (see Fig. 6.14b left). The first branch ! D !o.q/

describes the optical (transverse) nanotube vibrations, for which the deformation is
mostly due to the displacement of the local radius ri . The second branch ! D !t.q/

describes the torsional nanotube vibrations, for which the deformation is due to
the displacement of the local angles �i , and the third branch corresponds to the
longitudinal vibrations, for which deformation is due to the local longitudinal
displacements hi . Note that, for small values of the dimensionless wave number q,
the frequencies!o.q/ and!l.q/ correspond to longitudinal and transverse vibrations
of the nanotube, respectively.

The dispersion curves are shown in Fig. 6.14b (left). For q D 0, the frequencies
!o.q/ and !t.q/ are equal to zero and !l.q/ > 0. The frequency !l.q/ ! 0 as
the nanotube radius increases. The frequencies increase monotonically with q and
reach their maximum values at q D � . We define the velocity of long-wavelength
torsional phonons as vt D �x limq!0 !t.q/=q and the velocity of longitudinal
phonons as vl D �x limq!0 !o.q/=q. The dependencies of the limiting values of
frequencies and velocities of long-wavelength phonons vt and vl on the chirality
symbols of CNT .m;m/ are given in Table 6.5.

With increasing index m, i.e., with increasing radius R, the CNT becomes
a planar layer and the dispersion curves !o.q/, !t.q/, and !l.q/ approach the
corresponding curves !o.q/, !t.q/, and !l.q/ for a planar layer: as m ! 1, the
frequencies !o.q/ ! !z.q/, !t.q/ ! !y.q/, !l.q/ ! !x.q/, and the velocities
vt ! vy , vl ! vx .

6.2.6 Soliton-Like Excitations of Nanotubes

To analyze the nonlinear nanotube dynamics, it is useful to consider the nanotube
effective potential of the longitudinal compression:

Uc.�/ D min
R;�'

�
E.�x0 C �;R;�'/ �E.�x0;R0;�'0/

�
;
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Table 6.5 Dependencies of
the limiting values of
frequencies !l.0/, !o.�/,
!t.0/, !l.�/, and velocities
of long-wavelength phonons
vt and vl on the chirality
symbols .m;m/ of the
nanotube. The frequencies are
given in reciprocal
centimeters

m !l.0/ !o.�/ !t.�/ !l.�/ vt (m/s) vl (m/s)

5 24.5 56.7 94.7 120.6 10,442.3 15,766.1

7 17.6 55.5 95.6 120.8 10,551.5 15,782.8

10 12.4 54.9 96.1 120.9 10,611.4 15,792.9

15 8.3 54.5 96.4 120.9 10,644.2 15,798.5

20 6.2 54.3 96.5 121.0 10,655.7 15,808.2

30 4.1 54.2 96.6 121.0 10,664.0 15,820.7

50 2.5 54.2 96.6 121.0 10,668.3 15,848.5

100 1.2 54.2 96.6 121.0 10,670.1 15,877.1

1 0 54.2 96.6 121.0 10,670.7 15,878.5

which describes a change in the energy of one valence bond in the nanotube
when each longitudinal bond is stretched by an amount �. When the nanotube is
stretched, both its energy and radius are changed. The effective potential Uc.�/

and the nanotube radius R are shown as functions of the longitudinal compression
� in Fig. 6.15 (right). As can be seen from this figure, � D 0, the radius of the
spiral R D R0, and the deformation energy Uc.0/ D 0 in the ground state. Both
compression and stretching of the nanotube lead to an increase in its radius. The
shape of the potential Uc.�/ shows that the nanotube has a pronounced negative
anharmonicity. The deformation energy increases much faster for compression than
for stretching.

The negative anharmonicity of the nanotube suggests that supersonic solitons
of longitudinal compression can exist in it. This was noted for the first time in
[32], where it was shown that, in the continuum approximation (without taking into
account variations in the nanotube radius), the nanotube nonlinear dynamics can be
described by the Korteweg–de Vries equation with soliton solutions.

Let us consider the one-dimensional effective torsional potential of the nanotube,
viz.,

Ut.�/ D min
�x;R

�
E.�x;R;�'0 C �/ �E.�x0;R0;�'0/

�
;

which describes the nanotube energy variation when each nanotube link is twisted
through an angle �. The torsional potential is shown in Fig. 6.16 (left). As can be
seen from this figure, the nanotube has fourth order negative anharmonicity with
respect to the angular variable. This anharmonicity does not ensure the existence of
acoustic solitons (soliton solutions can only exist for systems with positive quartic
anharmonicity). Therefore, one should not expect the existence of torsional solitary
waves in nanotubes.

The following equations of motion correspond to the Hamiltonian (6.33):
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M Rri �M.RC ri / P�2i C @

@ri
P D 0 ;

M.RC ri /
2 R�i C 2M.RC ri / P�i Pri C @

@�i
P D 0;

M Rhi C @

@hi
P D 0 ;

9
>>>>>=

>>>>>;

i D 0;˙1;˙2; : : : ;

(6.35)

where the potential energy is

P D
X

i

V
�
ri�1; �i�1; hi�1I ri ; �i ; hi I riC1; �iC1; hiC1I riC2; �iC2; hiC2



:

Numerical analysis of the discrete system (6.35) has shown that, in contrast to the
case of a graphite layer, the equations of motion for a nanotube have no exact
solutions describing the propagation of solitary waves (solitons) of longitudinal
compression along the chain.

The fundamental difference between a plane layer and a nanotube is that
compression of a nanotube modifies the surface curvature, whereas a graphite layer
always remains planar. If the transverse displacements in the equations of motion
for a nanotube (6.35) are forbidden, i.e., all ri � 0, just as for a graphite layer,
the exact soliton solutions appear, describing longitudinal compression solitons in a
finite supersonic velocity range. However, as soon as transverse displacements of the
nanotube sites become possible, these solutions are no longer exact. Therefore, only
soliton-like excitations can be discussed. These soliton-like excitations move with
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supersonic velocities v > vl, but while moving, they always emit longitudinal acous-
tic phonons. The emission intensity depends on the nanotube radius. Indeed, the
smaller the radius, the greater the emission rate. When the excitation is propagating,
its energy and velocity decrease in time (see Fig. 6.16 right). Therefore, the soliton
excitations in CNTs have a finite lifetime which increases steadily with increasing
nanotube radius. The equations of motion (6.35) have no solutions describing the
propagation of solitary longitudinal torsional waves along the nanotube.

Thus, in CNTs there can exist only soliton-like solutions describing the prop-
agation of the localized region of longitudinal compression, and this is always
accompanied by phonon emission. To check this claim, we numerically model
the excitation dynamics in a finite fragment of the nanotube with fixed ends. We
consider the equations of motion (6.35) with i D 1; 2; : : : ; 1;000 and use the
condition of fixed ends by setting Pri , Phi , and P�i � 0 for i D 1 and i D 1;000.
Then we integrate the equations of motion with the initial conditions corresponding
to the ground state (ri D 0, Pri D 0, hi D 0, Phi D 0, �i D 0, and P�i D 0,
i D 2; 3; : : : ; 1;000) with the first link displaced, namely, r1.0/ D Ar , h1.0/ D Ax ,
and �1.0/ D A� . The results of numerical integration are shown in Fig. 6.17.
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Fig. 6.17 Left: Distributions of the transverse displacements ri (a), longitudinal compression �i D
hiC1�hi (b), andEi energy (c) for the (10,10) nanotube at time t D 6 ps. The initial deformations
are Ar D 0, Ah D 1Å, and A� D 0. Vertical dashed lines indicate the region through which the
long-wavelength longitudinal phonons pass during the numerical integration. Right: Formation
of two oscillating wave packets caused by the initial torsion of a finite fragment of the (10,10)
nanotube (the amplitudes are Ar D 0, Ah D 0, and A� D �'=3). Distributions of the transverse
displacements ri (a), relative rotations �iC1 � �i (b), longitudinal compression �i D hiC1 � hi
(c), and energy Ei (d) along the chain at time t D 6 ps. Vertical dashed lines indicate the region
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during the numerical integration
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The system of equations (6.35) was integrated numerically using the standard
fourth-order Runge–Kutta method with a constant integration step [37]. Integration
accuracy was estimated using the conservation of the total energy integral (6.33).
For the integration step �t D 0:5� 10�15 s, the system energy was conserved up to
six significant figures for the entire time of numerical integration.

To be specific, let us consider a (10,10) CNT. For the longitudinal compression
of the first link by 1 Å (Ar D 0, Ax D 1Å, and A� D 0), a localized region of
longitudinal compression is formed in the chain and propagates with supersonic
velocity v > vl (Fig. 6.17 left). The propagation of this soliton-like excitation is
accompanied by the emission of longitudinal phonons. In addition, an oscillating
wave packet is formed which propagates with subsonic velocity v < vl. The main
part of the initial deformation energy is concentrated in the soliton-like excitation,
but it is then completely spent on phonon emission in further motion.

In the initial twisting of a nanotube (Ar D 0, Ax D 0, and A� D �'=3), only
two oscillating wave packets appear (see Fig. 6.17 right). The first is formed by the
torsional phonons and moves with velocity v D vt, while the second is formed by
the longitudinal phonons and moves with the higher velocity v D vl.

Thus, the numerical modeling confirms the conclusion that acoustic solitons
do not exist in carbon nanotubes. There exist only soliton-like excitations whose
propagation is always accompanied by the emission of longitudinal phonons. The
emission amplitude decreases with increasing CNT radius, but it is never equal to
zero. A more detailed description of the results is given in [38].

6.3 Topological Solitons in a Quasi-One-Dimensional
Polymer Crystal

The acoustic solitons discussed above can exist only in isolated linear molecules of
PE and PTFE. In crystals, each molecule is in a dense environment of neighboring
macromolecules which form its substrate. In this case, only topological solitons
can exist. The displacements of chain atoms associated with the soliton must be
consistent with the substrate structure. In this section we consider the features of
topological soliton dynamics in a quasi-one-dimensional crystal formed by linear
polymers in a parallel arrangement. The defect structure of polymer crystals is
naturally described in terms of the static topological solitons [9, 10], while their
mobility determines the specific ‘soliton contribution’ to the thermodynamics and
kinetics of polymer crystals. Topological solitons will be exemplified by the simplest
quasi-one-dimensional polymer crystal of PE and PTFE.

6.3.1 Topological Solitons in Crystalline PE

Each molecule of PE (CH2)1 in a crystal is in the trans zigzag conformation,
i.e., its backbone has a planar zigzag structure which is described by the spacing
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1

�
u.�/; v.�/;w


 � Z0 (a) and its approximation
z D Z

�
u.�/; v.�/;w



(b)

�0 D 1:53Å (equilibrium length of the valence bond H2C–CH2) and by the zigzag
angle �0 D 113ı (equilibrium valence angle CH2–CH2–CH2).

In a study of the low-energy nonlinear dynamical processes, the motion of
hydrogen atoms with respect to the main chain is not essential, so the united atom
approximation can be used. Therefore, we will consider each CH2 group as a single
particle. In this approach, it is impossible to obtain an orthorhombic lattice, and only
a monoclinic lattice can be stable [39]. Therefore, as a model system, we consider
this lattice with the periods

a0 D 1

2

p
a2 C b2 ; b0 D a ; c0 D c ;

where the following parameters (Fig. 6.18 left) give a realistic density for the
system: a D 4:51Å, b D 7:031Å, c D 2�0 sin.�0=2/ D 2:552Å.

The corresponding structure of the crystal is shown schematically in Fig. 6.18
(left). All macromolecules are situated in the parallel planes. The structure of the
crystal is completely determined by the zigzag angle and three parameters a, b, and
c. Let us consider an isolated PE molecule. We choose the coordinate system in
such a manner that the sites of the trans zigzag chain in the equilibrium position
have coordinates

x.0/n D .�1/n lx
2
; y.0/n D 0 ; z.0/n D nlz ;

where n D 0;˙1;˙2; : : : is the number of a chain site and lx D �0 cos.�0=2/ and
lz D c=2 D �0 sin.�0=2/ are the transverse and longitudinal constants of the zigzag
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chain. Let us label the nearest six chains of the crystal by the numbers from 1 to 6,
as shown in Fig. 6.18 (left). Then, in the equilibrium position, the nth site of the k
chain has coordinates

x.k/n D x.0/n C e.k/x ; y.k/n D y.0/n C e.k/y ; z.k/n D z.0/n ;

where n D 0;˙1;˙2; : : :, k D 1; 2; : : : ; 6, and

e
.1/
x D a ; e

.2/
x D a

2
; e

.3/
x D �a

2
; e

.4/
x D �a ; e.5/x D �a

2
; e

.6/
x D a

2
;

e
.1/
y D 0 ; e

.2/
y D b

2
; e

.3/
y D b

2
; e

.4/
y D 0 ; e

.5/
y D �b

2
; e

.6/
y D �b

2
:

Below, we consider only the dynamics of the central chain .k D 0/ and take into
account its interaction with the six neighboring chains .k D 1; 2; : : : ; 6/, which
are assumed to be immobile (the fixed neighbor approximation). It is convenient to
change from the absolute coordinates of the nth site of the zeroth trans zigzag chain
xn, yn, and zn to the relative coordinates

un D .�1/nC1.xn � x.0/n / ; vn D .�1/nC1yn ; wn D zn � z.0/n ; n D 0;˙1;˙2; : : : :

The local systems of coordinates are shown schematically in Fig. 6.18 (left).
The Hamiltonian of the chain can be written as follows

H D
X

n

�
1

2
M. Pun; Pun/C V.�n/C U.�n/CW.ın/CZ.un; vn;wn/

�
; (6.36)

where the first term describes the kinetic energy of the nth site, the second is the
deformation energy of the nth valence bond, the third is the deformation energy of
the nth valence angle, the fourth is the deformation energy of the nth torsional angle,
and the last term is the energy of interaction of the nth site with the six neighboring
chains (the substrate potential). M D 14mp is the mass of the united atom (mp is
the proton mass) and the vector un D .un; vn;wn/. The length of the nth valence
bond is �n D .a2n;1Ca2n;2Ca2n;3/

1=2, where an;1 D unCunC1� lx , an;2 D vnCvnC1,
and an;3 D wnC1 � wn C lz. The cosine of the nth valence angle is

cos �n D an�1;1an;1 C an�1;2an;2 � an�1;3an;3
�n�1�n

;

and the cosine of the nth torsional angle is

cos ın D �bn;1bnC1;1 � bn;2bnC1;2 C bn;3bnC1;3
ˇnˇnC1

;
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where ˇn D .b2n;1 C b2n;2 C b2n;3/
1=2 and

bn;1 D an�1;2an;3 C an;2an�1;3 ; bn;2 D an�1;1an;3 C an;1an�1;3 ;

bn;3 D an�1;2an;1 � an;2an�1;1 :

Following [21, 40], we take the potential of the valence bond to be (6.2), that of the
valence angle to be (6.3), and that of the torsional angle in the form

W.ın/ D C1 C C2 cos ın C C3 cos 3ın ; (6.37)

where the parameters D0 D 334:72 kJ mol�1, ˛ D 1:91Å�1, K� D
130:122 kJ mol�1, C1 D 8:37 kJ mol�1, C2 D 1:675 kJ mol�1, and C3 D
6:695 kJ mol�1.

The substrate potential Z.u; v;w/ in the Hamiltonian (6.36) is given by the
infinite series

Z1.u; v;w/ D
C1X

nD�1

6X

kD1
VLJ .rk;n/ ; (6.38)

where the Lennard-Jones potential

VLJ .rk;n/ D 4�
�
.�=rk;n/

12 � .�=rk;n/6
�

describes the interaction of the zeroth site of the central chain with the nth site of
the kth chain. The distance between these sites is given by

rk;n D
�h

u C x.k/n � lx=2
i2 C

h
v C y.k/n

i2 C
h
w � z.k/n

i2	 1=2
:

In accordance with [40], the parameters appearing in the Lennard-Jones potential
are � D 3:8Å and � D 0:4937 kJ mol�1. The potential (6.38) is a periodic function
of the variable w with period 2lz.

The use of the infinite series for numerical calculation (6.38) is not reasonable
because the power decrease in the terms requires summation of a large number of
terms (�50 	 n 	 50), and therefore long computation times. For this reason, we
use a simpler analytical potential as substrate potential, viz.,

Z.u; v;w/ D "w sin2.�w=lz/C 1

2
Kv
�
1C "v sin2.�w=lz/

�
v2

C 1

2
Ku
�
1C "u sin2.�w=lz/

� �
u � 1

2
lx
�
1 � cos.�w=lz/

�	 2
:

(6.39)

The two-dimensional shape of this potential was first used in the generalization of
the Frenkel–Kontorova model for zigzag-like molecular chains [41].
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The potential (6.39) is a periodic function in the variable w with period 2lz. The
minima of the potential coincide with the site positions in the trans zigzag chains of
the undeformed crystal.

The large number of free parameters in the potential (6.39) ("u, "v, "w, Ku,
and Kv) allows accurate approximation of the potential (6.38). Let us consider a
longitudinal displacement and rotation of the trans zigzag chain around the x D 0

and y D 0 axes. The local coordinates of the chain sites depend on the angle �
according to u.�/ D .lx=2/ cos� and v.�/ D .ly=2/ sin�. To find appropriate
values of the free parameters of the potential (6.39), we solve the minimum problem

"Z 2�

0

Z 2lz

0

Z2
er

�
u.�/; v.�/;w



d�dw

#1=2
�! min

"u;"v;"w;Ku;Kv
; (6.40)

where Zer
�
u.�/; v.�/;w


 D Z
�
u.�/; v.�/;w


�Z1
�
u.�/; v.�/;w


CZ1.0; 0; 0/.
The numerical study of the problem (6.40) has shown that the error in approxi-

mating the infinite series (6.38) by the analytic potential (6.39) is minimum when
the parameters take the values

"u D 0:0674265 kJ mol�1; "v D 0:0418353 kJ mol�1; "w D 0:1490124 kJ mol�1;
Ku D 2:169513 kJ/Å mol2 ; Kv D 13:683865 kJ/Å mol2 :

The approximation accuracy is illustrated in Fig. 6.18 (right), which shows that the
surface z D Z

�
u.�/; v.�/;w



practically coincides with z D Z1

�
u.�/; v.�/;w


 �
Z0. The approximation error is

1

4�lz

Z 2�

0

Z 2lz

0

ˇ̌
ˇZer

�
u.�/; v.�/;w


ˇ̌
ˇd�dw D 0:02833 KJ mol�1 :

Let us consider the possible local topological defects of the trans zigzag chain.
As can be seen in Fig. 6.18 (left), the trans zigzag chain can be transformed into
itself by three isometric transformations: a shift along the z-axis by one zigzag
period w D 2lz, a shift by the half period w D lz, and a rotation of the whole
chain through the angle � D � around the z-axis. The transition from the point
.0; 0/ to the point .2lz; 0/ in the space .w; �/ corresponds to the first transformation,
from .0; 0/ to .lz; �/ corresponds to the second, and from .0; 0/ to .0; 2�/ to the
third. All other isometric transformations which preserve the form of the trans
zigzag chain are compositions of these three and the three inverse transformations.
Consequently, only three basic types of local topological defect are possible: pure
stretching (compression), stretching (compression) accompanied by twist, and pure
twist of the trans zigzag chain.

The equations of motion corresponding to the Hamiltonian (6.36) have the form

M Run D �@H
@un

; M Rvn D �@H
@vn

; M Rwn D � @H
@wn

; n D 0;˙1;˙2; : : : :
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The complexity of this system precludes analytical study, so we use the variational
techniques proposed in [23, 42].

We search for solutions of the equations (6.41) in the form of a traveling wave
with smooth constant profile. For this purpose, we put un.t/ D u.
/, vn.t/ D v.
/,
and wn.t/ D w.
/, where 
 D nlz � vt and v are the wave variable and the
wave velocity, respectively, and the functions u, v, and w are assumed to depend
smoothly on the variable 
 . Then the Lagrangian corresponding to the equations of
motion (6.41), viz.,

L D
X

n

�
1

2
M
�Pu2n C Pv2n C Pw2n


 � V.�n/ � U.�n/ �W.ın/ �Z.un; vn;wn/
�
;

can be written in the form

L D
X

n

�
v2M

24l2z

h
16.unC1 � un/

2 � .unC2 � un/
2 C 16.vnC1 � vn/

2 � .vnC2 � vn/
2

C 16.wnC1 � wn/
2 � .wnC2 � wn/

2
i

� V.�n/ � U.�n/ �W.ın/ �Z.un; vn;wn/
	
:

A soliton solution can correspond to a saddle point of the Lagrangian L, so it is
convenient to search for it as a minimum of the functional

F D 1

2

X

n

�
L
2

un C L
2

vn C L
2

wn



:

Therefore, to find soliton solutions (solitary waves) fun; vn;wngNnD1, one must
numerically solve the minimum problem

F D 1

2

N�1X

nD2

�
L
2

un C L
2

vn C L
2

wn


 �! min
u2;v2;w2;:::;uN�1;vN�1;wN�1

; (6.41)

u1 D u�1 ; v1 D v�1 ; w1 D w�1 ; (6.42)

uN D uC1 ; vN D vC1 ; wN D wC1 : (6.43)

The boundary conditions (6.42) and (6.43) for the problem (6.41) determine the
type of soliton solution, and the number N should be chosen sufficiently large to
prevent any dependence of the soliton shape on N . The solution of the problem
given by (6.41), (6.42), and (6.43) allows us to find numerically all soliton solutions,
i.e., smooth solitary waves with constant profile solving the nonlinear system (6.41).
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The absence of such solutions for a certain value v implies the impossibility of
soliton motion at this velocity.

We consider the possible local topological defects of the trans zigzag chain. As
can be seen in Fig. 6.18 (left), the trans zigzag chain can be transformed into itself by
the following three isometric transformations: a shift along the z-axis by one zigzag
period w D 2lz, a shift by the half period w D lz, and a rotation of the whole chain
through the angle � D � around the z-axis. The transition from the point .0; 0/ to the
point .2lz; 0/ in the space .w; �/ corresponds to the first transformation, from .0; 0/

to .lz; �/ corresponds to the second, and from .0; 0/ to .0; 2�/ the third. Each of
these transformations involves overcoming the potential barrier (see Fig. 6.18 right).
All other isometric transformations which preserve the form of the trans zigzag
chain are compositions of these three and the three inverse transformations.

Consequently, only three basic types of local topological defect are possible: pure
stretching (compression), stretching (compression) accompanied by twist, and pure
twist of the trans zigzag chain. Let us determine the rotational angle of the nth unit
of the chain, viz.,

�n D arg
�
lx � un � unC1 C i.vn C vnC1/

�
;

where i is the imaginary unit. The topological charge of the defect can defined as
the two-dimensional vector q D .q1; q2/, where

q1 D .wC1 � w�1/=2lz ; q2 D .�C1 � ��1/=2� :

Then the first type of defect has the topological charge q D .1; 0/ Œq D .�1; 0/�, the
second q D .0:5;˙0:5/ Œq D .�0:5;˙0:5/�, and the third q D .0;˙1/.

To find a soliton solution with topological charge q D .q1; q2/, one must solve
the minimum problem (6.41) with the boundary conditions

u�1 D 0 ; v�1 D 0 ; w�1 D 0 ;

uC1 D 1

2
lx.1 � cos 2q2�/ ; vC1 D 0 ; wC1 D 2lzq1 :

The solution of this problem was sought numerically by the method of conjugate
gradients [24] with N D 500. The starting point was chosen to be

un D 1

2
lx
�
1 � cos.2q2�rn/

�
; vn D 1

2
lx sin.2q2�rn/ ; wn D 2lzq1rn ;

where

rn D 1

2

�
1C tanh

��
n � N � 1

2

�
	

�	
;

and 	 is an adjustable parameter.
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Each soliton solution fu0n; v
0
n;w

0
ngNnD1 corresponds to a topological soliton with

energy

E D
X

n

�
v2M

24l2z

h
16.u0nC1 � u0n/

2 � .u0nC2 � u0n/
2 C 16.v0nC1 � v0n/

2 � .v0nC2 � v0n/
2

C 16.w0nC1 � w0n/
2 � .w0nC2 � w0n/

2
i

C V.�n/C U.�n/CW.ın/CZ.u0n; v
0
n;w

0
n/

	
;

and root-mean-square width, given in chain periods,

D D 2

� NX

nD1
.n � nc/

2pn

�1=2
;

where the point

nc D 1

2
C

NX

nD1
npn

determines the position of the soliton centre. The sequence pn is given by

pn D
(
.wnC1 � wn/=C for q2 D 0 ;

.�nC1 � �n/=C for q2 ¤ 0 ;

where the constant C is found from the normalization condition
PN

nD1 pn D 1.
Let us define the parameters which describe the amplitudes of chain deformation

in the region of soliton localization, i.e., the maximum deformations of the valence
bonds

�� D max
nD1;2;:::;N j�n � �0j ;

the valence angle

�� D max
nD1;2;:::;N j�n � �0j ;

and the torsional angle

�ı D max
nD1;2;:::;N jın � �j :
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The rest mass of the soliton can also be found as the limit

M0 D lim
v!0

2
E.v/ �E.0/

v2
:

Numerical solution of the minimum problem given by (6.41)–(6.43) shows that
the equations of motion (6.41) have soliton solutions with the topological charge
q D .1; 0/ only for the dimensionless velocities s D v=va in the subsonic interval
0 	 s 	 0:79, whereas solutions with topological charge q D .�1; 0/ exist
in the velocity interval 0 	 s 	 0:66. The topological solitons with charge
q D .˙0:5;˙0:5/ exist only for 0 	 s 	 0:4, while solitons with q D .0;˙1/ exist
only for 0 	 s 	 0:35. Here, va D 7;810m/s is the velocity of planar longitudinal
sound (velocity of long-wave planar acoustic phonons in an isolated trans zigzag
chain). The torsional sound velocity (velocity of the long-wave torsional acoustic
phonons in an isolated trans zigzag chain) is vt D 7;613m/s [8].

The typical profile of the topological solitons with charge q D .1; 0/ Œq D
.�1; 0/� is shown in Fig. 6.19 (left). The soliton has the form of a kink (antikink)
with respect to the wn component, and the typical bell-shaped profile of a solitary
wave with respect to the un component. All the chain particles remain in the trans
zigzag plane (vn � 0). When q1 D 1, there is stretching of the zigzag backbone in
the localization region (valence bonds and angles are stretched), and when q1 D �1,

100 200 300 400

−2

−1

0

1

2 a

w
(  

)Å
n

1

3

100 200 300 400

−0.03

−0.02

−0.01

0

0.01

0.02

0.03 b

u
(  

)Å
n

2

4

100 200 300 400

−1
−0.5

0
0.5

1 a

w
n

(  
)Å

1

5

100 200 300 400
0

0.2

0.4 b

v n
(  

)Å 2

6

100 200 300 400
0

0.4

0.8 c

u n
(  

)Å

7 3

100 200 300 400
 0 

π/2

 π 

d

φ n

n

8 4

n

Fig. 6.19 Left: Profiles of the topological soliton with charge q D .1; 0/ (lines 1 and 2 show
components wn and un, respectively) after the passage of 104 chain sites (� D 40;010:2, s D
0:2499) and the soliton with charge q D .�1; 0/ (� D 40;011, s D 0:2499) (lines 3 and 4). Initial
soliton velocity s D 0:25. Right: Profiles of the topological soliton with charge q D .0:5; 0:5/

(lines 1–4 show components wn, vn, un, and �n, respectively) after the passage of 104 chain sites
(� D 40;127:2, s D 0:2492) and the soliton with charge q D .�0:5; 0:5/ (� D 40;174, s D
0:2488) (lines 5–8). Initial soliton velocity s D 0:25
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there is compression of the zigzag chain (valence bonds and angles are compressed).
In the soliton localization region, the deformations of the valence bonds do not
exceed 0.01 Å, while the maximum deformations of the valence angles can reach
8ı. Therefore, the stretching (compression) of the trans zigzag chain is realised
mainly due to stretching (compression) of the planar valence angles.

The profile of the soliton with topological charge q D .0:5; 0:5/ Œq D
.�0:5; 0:5/� is shown in Fig. 6.19 (right). The soliton has the form of a kink
(antikink) with respect to the components wn and un and a bell-shaped profile with
respect to the component vn. If q1 D 0:5, in the soliton localization region, there
is stretching and torsion of the zigzag backbone (the valence bonds and angles
are stretched, and the torsion angles are compressed), and if q1 D �0:5, there is
compression and stretching (the valence bonds and angles as well as the torsion
angles are compressed). The rotations of the chain sites �n also have the form of a
kink. The deformations of the valence bonds do not exceed 0.007 Å. In this case, the
stretching (compression) and torsion of the trans zigzag chain are realized mainly
through deformation of the torsional and valence angles.

The soliton solution with topological charge q D .0; 1/ is shown in Fig. 6.20
(left). All three soliton components wn, vn, and un have the form of a solitary wave,
and in combination they describe a localized rotation of the chain through an angle
2� (the soliton has the form of a kink with respect to the rotation). In the region of
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Fig. 6.20 Left: Profiles of the topological soliton with charge q D .0; 1/ (components wn, vn, un,
and �n) after the passage of 104 chain sites (� D 40;219:4, s D 0:2486). Initial soliton velocity
s D 0:25. Right: Dependence on the dimensionless velocity s of the energy E (a) and width D
(b) of the soliton with topological charge q D .1; 0/ (lines 1 and 2), q D .�1; 0/ (lines 3 and 4),
q D .0:5; 0:5/ (lines 5 and 6), and q D .�0:5; 0:5/ (lines 7 and 8), q D .0; 1/ (lines 9 and 10)
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soliton localization, a very small stretching of the valence bonds, accompanied by a
compression of the valence angles, occurs, i.e., the torsion of the zigzag backbone
is accomplished mainly through deformation of the torsional angles.

The dependencies of the energyE and widthD of the solitons on the dimension-
less velocity s are shown in Fig. 6.20 (right). When the velocity grows, the soliton
energies increase steadily and the widths decrease monotonically. The soliton with
topological charge q D .0;˙1/ has maximum energy while the soliton with charge
q D .0:5;˙0:5/ has minimum energy. The stretching solitons (q2 D 0) are
approximately two times broader than the torsional solitons (q2 ¤ 0).

Topological excitations in a single chain can be formed only as pairs of
topological solitons with opposite signs (the sum of the topological charges has
to be equal to zero). Therefore, the formation energy of the soliton pair with
topological charges q and �q must not be less than the sum of their energies:
Ec.q/ D E.q/CE.�q/.

Numerical modeling has shown that the topological solitons are dynamically
stable for all permissible values of the velocity. They propagate with constant
velocity and retain their initial forms. For the initial value s D 0:25 of the
dimensionless velocity, the soliton with topological charge q D .1; 0/ passes 104

chain sites during the dimensionless time � D 40;010:2 (the time unit of the
dimensionless time, � D vat= lz, corresponds to the time of one chain site passage by
the longitudinal sound t0 D lz=va D 1:633 � 10�14 s). At the final time, this soliton
has velocity s D 0:2499 and its profile coincides totally with the initial one (see
Fig. 6.19 left). The soliton with topological charge q D .�1; 0/, after the passage of
104 chain sites, has velocity s D 0:2499 at the final time � D 40;011. Its profile also
remains unchanged, as shown in Fig. 6.19 (left). Similar results were obtained for
the solitons with topological charges q D .0:5; 0:5/ and .�0:5; 0:5/ (see Fig. 6.19
right). After the passage of 104 chain sites, the solitons with q D .0:5; 0:5/ and
q D .�0:5; 0:5/ have velocities s D 0:2492 and s D 0:2488, respectively. The
topological soliton with q D .0; 1/ passes 104 chain sites in the time � D 40;219:4

(s D 0:2486). The profile of this soliton at the final time is also the same as the
initial one (see Fig. 6.20 left).

Let us model the head-on collision of topological solitons. We consider the
collision of solitons with topological charges q1 and q2. Solition collision will be
examined in a finite chain of N1 D 103 sites. Viscous friction is introduced at the
chain ends to ensure absorption of phonon radiation after the collision. Initially, the
solitons move towards each other with the same velocity s D 0:25. The dependence
of the results of the soliton collision on their topological charges q1 and q2 is
presented in Table 6.6. It is obvious that the collision cannot lead to a change in the
total topological charge of the chain q1 C q2. Therefore, complete recombination is
only possible for solitons with different signs on their charges (q1 D �q2), when
the total charge of the chain equals zero. If this total charge does not equal zero, the
soliton collision can lead to their reflection, passage through one another, a change
in their type (change in the topological charges), or to partial recombination (change
in the number of solitons).
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Table 6.6 Dependence of the result of a soliton collision on their topological charges q1 and q2

Chain state before collision Chain state after collision

q1 q2
.0;˙1/ .0;˙1/ .0;˙1/C .0;˙1/

(elastic reflection)

.0;˙1/ .0;�1/ Breather + phonon radiation
(recombination of solitons)

.0; 1/ .˙0:5;�0:5/ .˙0:5; 0:5/C breather C phonon radiation
(partial recombination of solitons)

.0; 1/ .˙0:5; 0:5/ .˙0:5; 0:5/C .0; 1/

(passage of solitons through each other)

.0;�1/ .˙0:5; 0:5/ .˙0:5;�0:5/C breather C phonon radiation
(partial recombination of solitons)

.0;�1/ .˙0:5;�0:5/ .˙0:5;�0:5/C .0;�1/
(passage of solitons through each other)

.0;˙1/ .1; 0/ .0:5;˙0:5/C .0:5;˙0:5/C phonon radiation
(change of the soliton type)

.0;˙1/ .�1; 0/ .�0:5;˙0:5/C .�0:5;˙0:5/C phonon radiation
(change of the type of solitons)

.˙0:5;˙0:5/ .�0:5;�0:5/ Breather C phonon radiation
(soliton recombination, Fig. 6.21 left)

.˙0:5;�0:5/ .�0:5;˙0:5/ Breather C phonon radiation
(soliton recombination)

.˙0:5;˙0:5/ .˙0:5;˙0:5/ .˙0:5;˙0:5/C .˙0:5;˙0:5/
(elastic reflection of solitons)

.˙0:5;˙0:5/ .�0:5;˙0:5/ .�0:5;˙0:5/C .˙0:5;˙0:5/
(passage of solitons through each other)

.˙1; 0/ .�0:5; 0:5/ .˙0:5; 0:5/C phonon radiation
(partial recombination of solitons, Fig. 6.21 right)

.˙1; 0/ .�0:5;�0:5/ .˙0:5;�0:5/ + phonon radiation
(partial recombination of solitons)

.˙1; 0/ .˙0:5;˙0:5/ .˙1; 0/+ .˙0:5;˙0:5/
(elastic reflection of solitons)

.˙1; 0/ .�1; 0/ .�1; 0/+ .˙1; 0/+ phonon radiation
(passage of solitons through each other)

.˙1; 0/ .˙1; 0/ .˙1; 0/C .˙1; 0/
(elastic reflection of solitons)

Solitons with the same topological charges (q1 D q2) manifest elastic reflection
(which occurs without phonon emission or excitation). The collision of solitons with
opposite signs q1 D .0;˙1/ and q2 D .0;�1/ results in their recombination.
As this takes place, breather-like localized torsional vibrations form in the chain.
The recombination is accompanied by intensive phonon emission. The collision of
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Fig. 6.21 Left: Recombination of solitons with topological charges q1 D .0:5; 0:5/ and q2 D
.�0:5;�0:5/. The collision is accompanied by intensive phonon emission. The formation of
breather-like localized vibrations occurs in the chain. Right: Formation of the soliton with
topological charge q D .0:5; 0:5/ as a result of the collision of solitons with charges q1 D .1; 0/

and q2 D .�0:5; 0:5/. The collision is accompanied by intensive phonon emission

solitons with charges q1 D .˙0:5;˙0:5/ Œq1 D .˙0:5;�0:5/� and q2 D �q1
gives similar results (see Fig. 6.21 left). The collision of solitons with charges
q1 D .˙1; 0/ and q2 D �q1 leads to the solitons passing through one another,
accompanied by insignificant phonon emission.

The collision of the soliton with charge q1 D .q1;1; q1;2/ D .0;˙1/ and the soli-
ton with charge q2 D .q2;1; q2;2/ leads to the solitons passing through one another
if q1;2q2;2 > 0 (soliton velocities and shapes do not change). When q1;2q2;2 < 0,
there is partial recombination. One soliton with charge q D .q2;1; q1;2 C q2;2/ is
created from the original pair. The collision is accompanied by intensive phonon
emission. Formation of a breather-like localized torsional vibration in the chain is
possible. Partial recombination also occurs for the collision of solitons with charges
q1 D .˙1; 0/ and q2 D .�0:5;˙0:5/ (see Fig. 6.21 right).

When they collide, solitons with charges q1 D .0;˙1/ and q2 D .˙1; 0/ form
two solitons with charges q D .˙0:5;˙0:5/. The collision is accompanied by
phonon emission and leads to a change of soliton type.

Let us test the stability of topological solitons with respect to thermal fluctuations
in the chain. The dynamics of a thermalized chain consisting of N sites is described
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by the Langevin equations

M Run D �@H
@un

C 
n � �M Pun ;

M Rvn D �@H
@vn

C �n � �M Pvn ;

M Rwn D � @H
@wn

C �n � �M Pwn ;

9
>>>>>>>=

>>>>>>>;

n D 1; 2; : : : ; N ; (6.44)

where the Hamiltonian for the system H is given by (6.34), 
n, �n, and �n are
normally distributed random forces describing the interaction of the nth molecule
with a thermal bath, � D 1=tr is the friction coefficient, and tr is the relaxation
time of the molecular velocity. The random forces 
n, �n, and �n have correlation
functions

˝

n.t1/
m.t2/

˛ D ˝
�n.t1/�m.t2/

˛ D ˝
�n.t1/�m.t2/

˛ D 2M� kBT ınmı.t1 � t2/ ;
˝

n.t1/�m.t2/

˛ D ˝

n.t1/�m.t2/

˛ D ˝
�n.t1/�m.t2/

˛ D 0 ; n;m D 1; 2; : : : ; N;

where kB is Boltzmann’s constant and T is the temperature of the thermal bath.
We integrate (6.44) numerically using the standard fourth-order Runge–Kutta

method with a constant integration step �t [37] and the lagged Fibonacci random
number generator [43]. The delta-function is represented numerically as ı.t/ D 0

for jt j > �t=2 and ı.t/ D 1=�t for jt j < �t=2, i.e., the numerical integration
step corresponds to the correlation time of the random force. In order to use the
Langevin equation, one must have �t � tr. Therefore, we chose �t D 0:002 ps
and the relaxation time tr D 10ta D 0:1633 ps.

We now consider the soliton dynamics in the chain consisting of N D 103 sites
with fixed ends. The initial conditions are taken so as to correspond to a stationary
topological soliton. It is obvious that the solitons, which form due to the chain shift
(the topological charge q1 ¤ 0), are stable with respect to thermal fluctuations. Their
stability has a topological nature: to destroy them, one would have to move half of
the chain sites by one (q1 D ˙0:5) or two (q1 D ˙1) periods. Numerical integration
of the equations of motion (6.44) has shown that, at temperature T D 300K, thermal
fluctuations can lead only to Brownian motion of the solitons along the chain.

Defects relating only to the chain torsion (the topological charges are q1 D 0

and q2 D ˙1) can be unstable with respect to the thermal fluctuations. Indeed,
the torsion of one site of the chain by 360ı transfers it to the initial state, so to
destroy this defect, it suffices to twist only a finite number of sites. Such defects
in a thermalized chain have a finite life-time which decreases exponentially with
increasing temperature of the thermal bath. Numerical modeling has shown that, at
temperature T D 100K, the defect with topological charge q D .0;˙1/ remains
stable throughout the t D 103 ps of the numerical experiment, but at T D 300K
the lifetime of this defect is only 3 ps. The defect destruction process is shown
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Fig. 6.22 Destruction of the topological soliton with charge q D .0; 1/ in the thermalized chain
(temperature of the thermal bath T D 300K). Profiles of the soliton component �n at the initial
time t D 0 (a), time t D 2 ps (b), and t D 3 ps (c) are shown

in Fig. 6.22. At the initial time t D 0, the defect has a smooth soliton-like form
corresponding to the smooth torsion of the trans zigzag chain (see Fig. 6.22a). The
thermal fluctuations lead to a gradual decrease in the soliton width. At t D 2 ps,
the soliton width decreases by approximately a factor of 2 (see Fig. 6.22b), while
at t D 3 ps, the width becomes equal to 1 (Fig. 6.22c). This means that the defect
disappears (all the chain sites are in equivalent states).

To model topological soliton formation in an infinite thermalized chain, let us
consider the cyclic chain of N D 5;000 sites. The ground state un D 0, vn D 0,
and wn D 0, n D 1; 2; : : : ; N; is adopted as initial condition. The equations of
motion (6.44) were integrated numerically during the time t D 103 ps.

It is convenient to describe the degree of chain thermalization by the instanta-
neous dimensionless temperature

cT.t/ D
NX

nD1
M
�Pu2n C Pv2n C Pw2n



=3NkBT ;
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Table 6.7 Dependencies of the average value of the dimensionless heat capacity CE and
dimensionless temperature CT of the chain on the thermal bath temperature T

T (K) 1 100 200 300 400 425 450 475 500

CE 0.994 0.995 0.999 1.013 1.032 1.033 1.045 1.093 1.135

CT 0.994 0.994 0.994 1.002 1.003 0.994 0.994 0.994 1.002

the instantaneous dimensionless heat capacity cE.t/ D H.t/=3NkBT , and their
averaged values

CT D lim
t!1

1

t

Z t

0

cT.�/d� ; CE D lim
t!1

1

t

Z t

0

cE.�/d� :

The dependencies of CE and CT on the temperature of the thermal bath are presented
in Table 6.7. The dimensionless temperature of the chain CT practically always
remains near 1, and this confirms the validity of the thermalization procedure. The
dimensionless heat capacity increases monotonically with an increase in tempera-
ture. At small temperatures, the heat capacity is close to 1, so this emphasizes the
‘harmonicity’ of thermal vibrations in the chain. With an increase in temperature, the
vibration amplitude also increases and the effect of nonlinearity (‘anharmonicity’)
of the vibrations thus becomes stronger. A growth in CE reflects the increasing
contribution of the nonlinearity to the heat capacity of the system.

The chain vibration becomes essentially nonlinear at T D 400K, and local
topological defects of stretching and torsion (topological solitons with the charges
q D .˙0:5;˙0:5/) appear at T D 425K. A further increase in the temperature
leads to an increase in the density of this type of defect (Fig. 6.23). Defects of other
types do not arise. The absence of pure torsion defects in the chain can be explained
by their short lifetime at high temperatures. The absence of defects of pure stretching
(compression) in the chain is associated solely with the topology of the trans zigzag
structure (note that the energy of defect pair formation for opposite-sign solitons
exceeds that for same-sign solitons). We can conclude that the first type of soliton
can only form through the interaction of the second type of soliton. Therefore, the
density of the first type of defect has to be much less than that of the second.

The sharp exponential growth in the dimensionless heat capacity near T D 425K
is due to the accumulation of the second type of local topological defects in the
chain. A phase transition of first order, i.e., a change in chain conformation, takes
place. This temperature almost coincides with the melting point of the PE crystal,
viz., T0 D 420K. Therefore, the accumulation of the second type of topological
defects can be considered as the initial mechanism in the premelting of a PE crystal.

The results discussed above showed that three types of topological solitons
can exist in the polyethylene crystal at realistic values of the interaction potential
parameters:

• A two-dimensional soliton of stretching (compression),
• A soliton of stretching (compression) and torsion, and
• A torsional soliton.
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Fig. 6.23 Accumulation of topological solitons of the second type in the chain at the thermal bath
temperature T D 450K. The local displacement components of chain sites wn (a) and �n (b) are
shown at time t D 103 ps

All these solitons have a subsonic velocity spectrum. The most extended of them
(40–50 chain segments) are the solitons of trans zigzag stretching. The solitons
describing the local torsion of the trans zigzag backbone have half the length.
The most massive quasi-particle (the rest mass is 1.4 proton mass) is the torsional
soliton, while the other solitons have half the mass (0.72–0.8 proton mass). The
torsional solitons also possess the highest energy of formation for an opposite-
sign soliton pair, viz., �148 kJ mol�1. The energy of formation of a stretching
and compression soliton pair is �90 kJ mol�1, and the energy of formation of a
stretching and torsional soliton pair and a compression and torsional soliton pair is
�81 kJ mol�1. All the solitons have possible velocity bands in the subsonic range.
They are dynamically stable and propagate with constant velocity while retaining
their shapes.

Numerical modeling of the thermalized chain dynamics of crystalline PE has
shown that thermal vibrations can lead to the formation of only one type of
local mobile defect, namely, the topological solitons corresponding to stretching
(compression) of the zigzag chain by a half of the chain period, followed by its
torsion by 180ı. Therefore, solitons with pure stretching (compression) of the trans
zigzag backbone can be formed through interaction of same-sign solitons. Both
these types of defect are topologically stable to thermal vibrations in the chain.
In a thermalized chain, the defects are formed as pairs of opposite-sign topological
solitons and they move as Brownian particles. The solitons corresponding to chain
torsion by 360ı are unstable to thermal vibrations. They have a finite lifetime which
decreases exponentially as the temperature grows.
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The concentration of topological defects grows sharply near the melting point.
This allows us to consider their accumulation as the initial mechanism in the
premelting of the PE crystal. A more detailed description of the results can be found
in [7, 8, 44].

6.3.2 Topological Solitons in a Crystalline PTFE

The ground state of the PTFE molecule is the planar zigzag conformation of the
chain (helix with symbol 1
2/1). The two-dimensional structure of this zigzag
chain determines the significant features of the chain dynamics. However, most
of the macromolecules belonging to this class have the three-dimensional helix
conformation, rather than the two-dimensional zigzag conformation in the ground
state. Therefore, it would be interesting to study topological solitons in a crystalline
polymer consisting of macromolecules with the three-dimensional helix conforma-
tion in the ground state. Poly(tetrafluoroethylene) is the simplest example of such
a polymer. The purpose of this section is to study the topological soliton dynamics
in a helical polymer macromolecule through the example of PTFE. We will show
that four types of topological defects can exist in the crystal formed by helical
macromolecules, and that only one of them displays soliton dynamics.

At temperature T < 19 ıC, a molecule of PTFE in the crystalline state has the
helical chain conformation of type 13/6, i.e., there are 13 CF2 groups for every
six turns of the molecule. The crystal lattice constants are a D b D 5:59Å and
c D 16:88Å [26]. The helix has the helix angle �� D 12�=13 D 166:15ı and the
pitch �z D c=13 D 1:298Å.

The helix radii defined by the carbon atoms �C and fluorine ones �F can be
determined from the values of the C–C and C–F bond lengths and the FCF bond
angle:

�C D �
.�2CC ��z2/=2.1 � cos��/

�1=2
; (6.45)

�F D �
�2C C 2�C�CF cos.˛FCF=2/C �2CF

�1=2
: (6.46)

According to [21], the bond lengths are �CC D 1:54Å and �CF D 1:34Å, and the
bond angle is ˛FCF D 104:8ı. Thus, from (6.45) and (6.46), we obtain �C D 0:417Å
and �F D 1:628Å.

In the equilibrium state, the position vector of the nth carbon atom Cn is

RCn D �
�C cos.n��/; �C sin.n��/; n�z



;

and the position vectors of the first and second nth fluorine atoms Fṅ are

�FCFRF˙

n
D �

�F cos.n�� ˙ ˇ/; �F sin.n�� ˙ ˇ/; n�z


;
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Fig. 6.24 Left: Arrangement of a helical molecular chain and its six neighbors in crystalline PTFE.
Right: Construction of the dimensionless local coordinates u and v for the discrete helix. Solid lines
correspond to the chain links and circles indicate sites of the left-handed helix

where

ˇ D arcsin

�
�CF

�F
sin

˛FCF

2

�
D 40:69ı :

Thus, the PTFE molecule is described as three left-handed helices (one helix is
formed by Cn atoms and the other two are formed by Fṅ atoms).

In the crystal, each macromolecule is surrounded by six neighbor molecules (see
Fig. 6.24 left). Let us consider the interaction between the corresponding chains.
The four nearest molecular chains are right helices with position vectors

RCn D
�

˙ a0

2
C �C cos.�0 � n��/; ˙b0

2
C �C sin.�0 � n��/; z0 C n�z

�
;

RF˙

n
D
�

˙ a0

2
C �F cos.�0 �n�� ˙ ˇ/; ˙b0

2
C �F sin.�0 �n�� ˙ ˇ/; z0 Cn�z

�
;

where �0 and z0 are the relative angular and longitudinal shift of the helices,
respectively. The two other nearest helices are obtained from the initial one by a
shift by ˙b0 along the Y -axis.

Let us calculate the parameters of the crystal unit cell. For this purpose we
minimize the energy of nonvalence interaction of the helices with respect to the
four parameters a0, b0, �0, and z0. The pair potentials of the interaction between
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atoms belonging to neighbor chains (CC, CF, and FF) were taken from [45]. We
then obtained a0 D 9:41Å, b0 D 5:72Å, �0 D �110:77ı, and z0 D 1:95Å.
The relative arrangement of the helices is shown in Fig. 6.24 (left). Hereafter, in
the dynamics simulation of a molecular chain, the six nearest neighbor chains will
be assumed to be immobile. These chains comprise the immobile substrate for the
molecular chain under consideration.

We now use the united atom approximation and consider the chain link CF2 of
the PTFE macromolecule as a single particle of mass M D 50mp (where mp is the
proton mass). In this case, the equilibrium position of the nth chain link is given by
the position vector

R D �
R0 cos.n��/; R0 sin.n��/; n�z



;

whereR0 D �C is the helix radius. In the equilibrium state, the valence angle †CCC
is �0 D arccos

�� .en�1; en/=�20
�
; where the vector en D RnC1 � Rn determines the

direction of the nth valence bond and �0 D �CC is the equilibrium bond length.
After elementary transformations, we obtain

�0 D � � arccos
4R20 sin2.��=2/ cos�� C�z2

�20
D 116:30ı :

The equilibrium value of the nth dihedral (torsion) angle is

�n D arccos
.vn�1; vn/
jvn�1jjvnj

D �0 D arccos
h2 cos�� C sin2 ��

h2 C sin2 ��
;

where vn D Œen; enC1� is the vector product of en and enC1, and h D �z=R0 is the
dimensionless pitch of the helix. Hereafter, we shall use the rotation angle about the
nth bond ın D � � �n, where �n is the nth dihedral angle. The equilibrium rotation
angle is ı0 D � � �0 D 16:32ı.

Let xn, yn, and zn be the coordinates of the nth chain site. Transforming from
Cartesian to cylindrical coordinates, we obtain

xn D .R0 C rn/ cos.n�� C 'n/ ;

yn D .R0 C rn/ sin.n�� C 'n/ ;

zn D n�z C hn ;

where rn, 'n, and hn are the radial, angular, and longitudinal displacements of the
nth chain site from its equilibrium position, respectively. The Hamiltonian of the
chain is
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H D
X

n

�
1

2
M
� Pr2n C P'2n.R0 C rn/

2 C Ph2n
�

C V.�n/C U.�n/CW.ın/C S.rn; un; vn/

	
: (6.47)

Here the dot denotes the derivative with respect to time t , while �n, �n, and ın are
the length of the nth valence bond, the nth bond angle, and the nth rotation angle,
respectively.

The potential of the nth valence bond is given by (6.2), where the length of the
nth bond is �n D Œan;1 C b2n�

1=2. Here,

an;1 D d2n C d2nC1 � 2dndnC1cn;1 ; bn D �z C hnC1 � hn ; dn D R0 C rn ;

cn;1 D cos.�� C 'nC1 � 'n/ :

According to [21], the valence bond energy has the value D0 D 334:72 kJ mol�1
and ˛ D 1:91Å. The deformation energy of the bond angle is given by the
potential (6.3), where the nth bond angle is �n D arccosŒ�.an;2 Cbn�1bn/=�n�1�n�.
Here,

an;2 D dn�1dncn�1;1 C dndnC1cn;1 � d2n � dn�1dnC1cn;2 ;

cn;2 D cos.2�� C 'nC1 � 'n�1/ ;

and the energy K� D 529 kJ mol�1 [22].
The internal rotation potential W.ın/ describes the slowdown of chain links

rotating about the nth valence bond. The nth rotational angle is

ın D arccos

 
�bnbnC1an;2 C bn�1bnanC1;2 � b2nan;4 � bn�1bnC1an;1 C an;3anC1;3p

ˇnˇnC1

!
;

where

an;3 D dn�1dnsn�1;1 C dndnC1sn;1 � dn�1dnC1sn;2 ;

an;4 D dndnC2cnC1;2 � dndnC1cn;1 � dn�1dnC2cn;3 C dn�1dnC1cn;2 ;

sn;1 D sin.�� C 'nC1 � 'n/ ; sn;2 D sin.2�� C 'nC1 � 'n�1/ ;

cn;3 D cos.3�� C 'nC2 � 'n�1/ ;

and

ˇn D an�1;1b2n C an;1b
2
n�1 � 2an;2bn�1bn C a2n;3 :

The potential is given by (6.12) and its form is shown in Fig. 6.7. The potential has
an absolute minimum at ı D ı0, 2� � ı0. A PTFE macromolecule has four rotation
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isomers per C–C bond. Two of them, trans (C) and trans (�), have equal minimum
energies, viz., ı1 D ı0, ı2 D 2� � ı0, W.ı1/ D W.ı2/ D 0, and the other two,
gauche (C) and gauche (�), have higher energies, viz., ı3 
 2�=3, ı4 
 4�=3, and
W.ı3/ D W.ı4/ > 0.

The potential S.rn; un; vn/ describes the interaction of a molecular chain with
the substrate formed by the six neighboring chains. This potential can be found
numerically by calculating the energy of the chain interaction with the six immobile
neighboring chains as a function of the chain displacement. For this purpose, it
is necessary to calculate the sum of energies of nonvalence (van der Waals and
Coulomb) interactions of all atoms, and to divide it by the number of chain sites.

Let us introduce the new local dimensionless coordinates

un D 'n � hn��=�z

2�
; (6.48)

vn D un C hn=�z ; (6.49)

The substrate potential is a two-dimensional periodic function of these variables:
S.r; u ˙ 1; v ˙ 1/ � S.r; u; v/. The region 0 	 u 	 1, 0 	 v 	 1 is a unit
cell of the discrete helix (Fig. 6.24 right). Indeed, each nth helix link occupies the
position of the .n � 1/th links at un � 1 and the .nC 1/th links at vn � 1. In both
cases, the position of the infinite helix does not change. Therefore, it suffices to find
numerically the substrate potential for the unit cell alone.

The substrate potential can be described analytically to high accuracy by the
finite double Fourier series

S.r; u; v/ D 1

2
Krr

2 C b22 cos
�
2�.u � v/

�

C
6X

iD1

6X

jD1
aij cos

n
2�
�
.i � 1/.u � 1=2/C .j � 1/.v � 1=2/�

o
;

(6.50)

whereKr D 17:1N/m is the transverse rigidity, b22 D �0:075878 kJ mol�1, and the
values of other Fourier coefficients are given in Table 6.8.

A two-dimensional plot of the substrate potential E D S.0; u; v/ is shown
in Fig. 6.25. As can be seen, the substrate potential has a valley landscape. The
potential minima .u; v/ D .0; 0/, (0,1), (1,0), and (1,1) correspond to the ground
state of the chain. The transition of the chain from the (1,0) ground state to the (0,1)
state requires a minimum energy expenditure (this transition involves overcoming
an energy barrier of height of 2.983 kJ mol�1). In this case, the motion is along the
bottom of the deepest valley. Hereafter, we will show that this transition corresponds
to the topological defect of a chain, possessing soliton dynamics.

As shown in Sect. 2.2, there exist two sound velocities in an isolated PTFE chain:
vl D 6;978:6m/s is the velocity of the long-wave longitudinal phonons and vt D
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Table 6.8 Fourier coefficients faijg6;6iD1;jD1 for the analytical representation of the substrate
potential (6.50)

Value of aij (kJ mol�1) at j
i 1 2 3 4 5 6

1 2.642967 �0.405754 �0.000389 0.000112 �0.000004 �0.000006

2 0.840162 0.110066 �0.203920 0.004530 0.000084 0.000003

3 �0.001460 0.720333 �0.960938 �0.133891 0.000759 �0.000007

4 �0.000745 0.042676 0.828604 �0.184377 0.000844 0.000554

5 �0.000016 �0.001780 0.018256 �0.007373 �0.127483 0.011884

6 0.000001 �0.000012 �0.000185 0.028068 �0.149317 0.001723

Fig. 6.25 Plot of the two-dimensional substrate potential E D S.0; u; v/. The bold line shows the
most energetically preferred trajectory of particle motion in the unit cell of the helix

5;585:3m/s is the velocity of the long-wave torsional phonons. The ratio of these
velocities is st D vt=vl D 0:80035.

To find the stationary state of a topological defect (soliton) frn; 'n; hngNnD1 in a
helical PTFE macromolecule, one must solve numerically the constrained minimum
problem

P D
NX

nD1

�
V.�n/CU.�n/CW.ın/CS.rn; un; vn/

� �! min
r1;'1;h1;:::;rN ;'N ;hN

W (6.51)

r1 D 0 ; '1 D '�1 ; h1 D h�1 ; (6.52)

rN D 0 ; 'N D 'C1 ; hN D hC1 : (6.53)

The boundary conditions (6.52) and (6.53) for the problem (6.51) determine the type
of topological defect. The number of chain unitsN must be sufficiently large for the
defect shape to be independent of its value, e.g., N D 500.
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Let us consider the possible local topological defects in a helical chain. For this
purpose, we rewrite the boundary conditions (6.52) and (6.53) in the dimensionless
helical coordinates (6.48) and (6.49):

r1 D 0 ; u1 D 0; 1 ; v1 D 0; 1 ; (6.54)

rN D 0 ; uN D 0; 1 ; vN D 0; 1 : (6.55)

Each of these boundary conditions (6.54) and (6.55) corresponds to a certain ground
state of the chain. Therefore, a solution of the constrained minimum problem given
by (6.51)–(6.53) relates to the topological defect describing the transition of the
helix from the ground state (6.54) to another (6.55). Let us define the topological
charge of a defect as the two-dimensional vector q D .q1; q2/, where q1 D uN � u1
and q2 D vN � v1. Thus, there are four possible types of elementary topological
defects in the helical chain, with topological charges q D ˙.1; 0/, ˙.0; 1/, and
˙.1; 1/, ˙.�1; 1/.

The distribution of chain deformations in the localization region of a topological
defect with charge q D .1; 0/ is shown in Fig. 6.26a. This defect is formed by
rotating a chain segment through an angle of 2� ��� and then shifting it along the
z-axis by ��z. As a result of this deformation, the nth link occupies the position of
the .n � 1/th link. The chain deforms due to contraction of the bond angles and an
increase in the torsion angles. As can be seen from Fig. 6.26a, the defect does not
have a smooth profile along the radial rn and angular 'n components, so it cannot
move as a smooth solitary wave.

The defect with topological charge q D .0; 1/ (see Fig. 6.26b) is formed by
rotating a chain segment through an angle �� and displacing it by �z. As a result,
the nth link takes the position of the (n C 1)th link. The chain deforms as a result
of increasing the bond angles and diminishing the torsion angles. Once again, this
defect does not have a smooth profile for the components rn and 'n.

The defect with charge q D .1; 1/ (see Fig. 6.26c) is formed by rotating a helix
segment through 360ı. As a result, each helix unit returns to its initial position. This
defect is characterized by the absence of a smooth profile for all three components
rn, 'n, and hn.

The defect with charge q D .�1; 1/ has a smooth profile for all three components
rn, 'n, and hn (see Fig. 6.26d). This defect is formed by rotating a chain segment
through an angle 2.� � ��/ and then displacing the chain along the z-axis by
2�z. As a result, the nth link occupies the position of the .n C 2/th link. The
defect with the opposite charge q D .1;�1/ also has a smooth profile for all three
components. In this case, the chain deforms first of all due to contraction (extension)
of the bond angles. These defects exhibit soliton dynamics, that is, they can move
with a constant subsonic velocity v < vt, retaining their shapes. In the unit cell
0 	 u 	 1, 0 	 v 	 1, the topological soliton is characterized by a smooth
trajectory f.u.n/; v.n//gC1

nD�1, which connects the ground states .1; 0/ and .0; 1/.
This trajectory, shown by the bold line in Fig. 6.25, corresponds to the deepest valley
of the two-dimensional surface of the substrate potential E D S.0; u; v/.
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Fig. 6.26 Distribution of the radial rn, angular 'n, and longitudinal hn displacements of the helix
units, and the chain deformation energy en, where n is the number of the chain unit, in the
localization region of the defect with topological charges q D .1; 0/ (a), (0,1) (b), (1,1) (c), and
(�1,1) (d). The energies of the defects areE D 52:4 (a), 33.6 (b), 28.9 (c), and 119.4 kJ mol�1 (d)

Numerical simulation of the dynamics of the topological solitons with charges
q D ˙.�1; 1/ has shown that they are stable. Their motion is not accompanied by
a change in shape. Let us consider the interaction between a soliton with charge
q D .�1; 1/ and other stationary defects. For this purpose, we numerically integrate
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Fig. 6.27 Partial recombination of the topological soliton (charge qs D .�1; 1/) with the
topological defect (charge qd D .1; 0/) as a result of their collision (a) and (b). Elastic reflection
of the topological soliton (charge qs D .�1; 1/) with the topological defect (charge qd D .�1; 0/)
(c) and (d)

the equations of motion

M Rrn D M.R0 C rn/ P'2n � @

@rn
P ;

M.R0 C rn/
2 R'n D �2M.R0 C rn/ P'n Prn � @

@'n
P ;

M Rh2n D � @

@hn
P ;

9
>>>>>=

>>>>>;

n D 1; 2; : : : ; N ;

(6.56)

with the initial condition corresponding to a soliton with charge qs D .�1; 1/
and velocity v D 0:1vt, as well as a stationary topological defect with another
topological charge qd.

When qd D .1; 0/, the collision of the soliton and defect causes their partial
recombination. This leads to the stationary defect with charge q D .0; 1/ remaining
in the chain. The collision is accompanied by intense phonon emission (see
Fig. 6.27a, b). When qd D .�1; 0/, there is elastic reflection of the soliton from the
defect. The defect itself remains immobile (see Fig. 6.27c, d). Elastic reflection also
occurs when qd D .0; 1/ and .�1;�1/. In these cases, the defect remains immobile.
When qd D .0;�1/, a stationary defect with q D .�1; 0/ remains in the chain as a
result of partial relaxation. Partial recombination occurs also when qd D .1; 1/. In
this case, a stationary defect with the double topological charge q D .0; 2/ remains
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in the chain, i.e., stationary defects with multiple topological charges can exist in
the chain.

The collision of two identical topological solitons always results in their elastic
reflection, while the collision of two opposite-sign solitons leads to their complete
recombination.

Numerical simulation of the topological defect dynamics in a thermalized chain
shows that, for T D 100K, all the defects are stable to thermal vibrations of
the chain. For defects with the topological charge q ¤ ˙.1; 1/, this stability is
topological in origin, i.e., the destruction of these defects involves moving half of
the chain along the z-axis. The defect with charge q D ˙.1; 1/ formed by local
rotations of the helix units can be unstable to thermal vibrations. For T D 100K,
this defect remained stable over the whole integration time t D 100 ps. Under the
action of thermal vibrations, the topological soliton, i.e., the defect with charge
q D ˙.�1; 1/, moves like a free Brownian particle. Other topological defects
are pinned, so that their motion is reduced to rare thermally activated jumps to
neighboring links.

Therefore, numerical investigation of the topological defects (solitons) in the
PTFE crystal has shown that four types of defect can exist in a crystal composed
of macromolecules in the conformation of a three-dimensional helix. All the defects
are stable to thermal vibrations of the chain. Each defect can be characterized by a
two-dimensional topological charge. One of the defects exhibits soliton dynamics,
i.e., it can move along the chain as a solitary wave. The velocity spectrum of this
soliton falls in the subsonic range. Other defects are pinned and their motion has the
character of thermally activated random jumps.

A more detailed description of the results is given in [46, 47]. Numerical
simulation carried out in [47] has also shown the existence of a phase transition in
the PTFE crystal at temperature T D 300K, characterized by the fast accumulation
of topological defects and increasing heat capacity of the system.

6.4 Breathers in a PE Macromolecule

Localized excitations in nonlinear systems – such as solitons, polarons, and
breathers – have become a subject of growing interest over the past few decades.
Discrete breathers, localized nonlinear modes, are periodic, stable and localized
vibrations in a system. An intensive study of them began with the pioneering work
of Sievers and Takeno [48]. Furthermore, the existence of discrete breathers is
guaranteed by a related theorem proven in [49, 50] and by numerous numerical
investigations (see review [51]). Now the role of breathers in the mechanisms of
energy transfer and relaxation in molecular systems has been well clarified [11–13].

In general, the investigation of breathers is carried out based on simple, one-
dimensional models. However, these localized excitations can also exist in complex,
discrete nonlinear systems of any dimension [52]. Necessary conditions for their
existence include the discreteness of the system (boundedness of the phonon
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frequency spectrum) and the dependence of oscillation frequencies on the oscillation
amplitudes (nonlinearity of interaction). Polymer molecules belong to such systems.
The existence of high-frequency breathers in hydrocarbon macromolecules was
shown in [52]. In these systems, there can exist localized high-frequency vibrations
of C–H valence bonds due to anharmonic potential of these bonds. These vibrations
are present in polyethylene (PE) molecule and have frequencies �3,100 cm�1. In
this section we shall show the existence of low-frequency localized vibrations of
PE macromolecule zigzag backbone which result from coordinated changes in C–C
valence bonds and angles.

The nonlinear dynamics of the trans zigzag chain of PE macromolecule was
considered in Sects. 2.1 and 4.1. Here, we investigate the dynamics of a PE molecule
using the united atom approximation, i.e. representing every CH2 group as a single
particle. In this approximation, the Hamiltonian of the chain has the form (6.36).

Small-amplitude vibrations can be divided into planar vibrations in the trans
zigzag plane, and transverse vibrations in the plane transverse to the trans zigzag
plane. Planar vibrations are further divided into low-frequency acoustic and high-
frequency optical vibrations. Therefore, there are three dispersion curves which
correspond to planar acoustic phonons ! D !a.q/, planar optical phonons ! D
!o.q/, and torsional (transverse) phonons ! D !t.q/ in the chain. For the chain
with substrate, these curves are shown in Fig. 6.28a (left).

For an isolated chain, i.e. when substrate potential Z.u; v;w/ � 0, the acoustic,
torsional and optical phonons have the following frequency spectra:

0 	 !a 	 228:75 cm�1 ; 0 	 !t 	 243:85 cm�1 ;

838:47 cm�1 	 !o 	 1;168:11 cm�1 ;

respectively. Consideration of the interaction with the chain substrate leads to a shift
of the lower limit of the acoustic and transverse phonon spectra to high frequencies:

19:05 cm�1 	 !a 	 229:54 cm�1 ; 52:43 cm�1 	 !t 	 249:43 cm�1 ;

838:69 cm�1 	 !o 	 1;168:27 cm�1 :

Consider a finite chain consisting of N D 200 links and introduce viscous
friction at the chain ends which ensures adsorption of phonons. The equations of
motion (6.41) are integrated numerically with n D 1; 2; : : : ; N and a breather-
like initial condition. If a discrete breather could exist in the chain, it should be
obtainable. A superfluous ‘non-breather’ part of the initial condition will disappear
through phonon emission.

Numerical modeling has shown that only one type of localized periodic vibra-
tions exists in the zigzag chain, viz., the localized vibrations of valence C–C bonds.
In the localization region of the excitation, there exist periodic compression and
extension of valence bonds followed by a coordinated change in the valence angles
(see Fig. 6.28b, c right). The vibrations occur in the plane of the trans zigzag chain,
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Fig. 6.28 Left: Dispersion curves ! D !a.q/, ! D !t.q/, and ! D !o.q/ (lines 1–3) for the trans
zigzag chain interacting with the substrate (a). Dependence of the energy distribution density p on
the frequencies of thermal vibrations at temperatures T D 1K (b), T D 100K (c), T D 200K
(d), and T D 300K (e). The frequency region in which discrete breathers exist is shaded. Right:
Localized planar periodic vibrations of the trans zigzag chain. Vibrations are shown schematically.
Line thickness corresponds to the vibration amplitude (a). Dependence of valence bond length �n
(b) and angles �n (c) are given for ten different times. Breather frequency ! D 820:5 cm�1, energy
E D 26:4 kJ/mol, and width L D 4:28

while zigzag segments oscillate perpendicularly to the main axis of the zigzag
backbone (see Fig. 6.28a right).

These vibrations are stable excitations characterized by the frequency !, energy

E and dimensionless width L D 2
�PN

nD1.n � nc/
2pn

�1=2
. Here, the point nc DP

n npn determines the position of the vibration centre and the sequence pn D
En=E describes the energy distribution density along the chain. The vibrations are
nonlinear, i.e. its frequency decreases with increasing amplitude. Therefore, these
vibrations are a truly discrete breather.

The dependence of the energy E and width L of the breather on its frequency !
is shown in Fig. 6.29 (left). The breather has the frequency spectrum near the lower
limit of optical phonons. In essence, the breather is a modulated optical phonon with
wave number q D 0, and so the chain substrate does not significantly affect it. The
breather has frequency spectrum !b D 817 cm�1 	 ! < !o.0/ D 838 cm�1 in
an isolated chain and !b D 820 cm�1 	 ! < !o.0/ D 839 cm�1 in a chain with
substrate. When the frequency decreases, the breather energy increases steadily and
its width decreases monotonically.
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Fig. 6.29 Left: Dependence of the energy E (a) and width L (b) of the breather on its frequency
! in the isolated chain (lines 1 and 3) and in the chain with the substrate potential (lines 2 and
4). Right: Formation of discrete breathers from thermal vibrations of the zigzag chain (N D 500,
T D 200K). Absorbing ends are taken into account (N0 D 50). The dependence of the energy
distribution En in the chain on time t is shown

The breather frequency has to be separated from the frequencies of small-
amplitude linear vibrations. One might also expect the existence of low-frequency
breathers with frequencies near the upper limit of the torsion phonon spectrum,
! > max!t.q/, and high-frequency breathers with frequencies near the upper
limit of the optical phonon spectrum, ! > !o.�/. However, numerical analysis
has shown the absence of these localized excitations.

Let us consider thermal vibrations of the trans zigzag chain. For this purpose, we
analyse a finite chain, consisting of N links, of which N0 links of both chain ends
are attached to a thermal bath with temperature T . The dynamics of this system is
described by the Langevin equations (6.44), where 
n, �n, and �n D 0 are random
forces and the friction coefficients �n D 0 for N0 < n 	 N � N0. When n 	 N0
and N �N0 < n 	 N , �n D � and 
n, �n, and �n are normally distributed random
forces which describe the interaction of the nth molecule with the thermal bath. The
friction coefficient � D 1=tr, where tr is the relaxation time of molecular velocity.

Consider the frequency distribution of the kinetic energy of thermal vibrations in
the molecule. To obtain these, Eq. (6.44) was numerically integrated for N D 500

and N0 D N=2. The initial conditions were chosen to correspond to the ground
state of the chain and the equations were integrated over time t D 10tr to bring
the chain into thermal equilibrium with the thermal bath. The frequency density
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p.!/ of the kinetic energy distribution in the molecule was then calculated. To
improve accuracy, the distribution density was calculated using 1,000 independent
realizations of the chain thermalization. The profile of the distribution density is
shown in Fig. 6.28 (left) for different values of the temperature. The distribution
density is normalized according to the condition

R
p.!/d! D 3.

For temperature T D 1K, the distribution density practically coincides with
the corresponding distribution density of the linearized system. Here, the vibrations
remain linear and only phonons are thermalized. With increasing temperature, the
amplitude of the thermal vibrations also increases, and their anharmonicity begins
to manifest itself. For T D 100K, a shift in the density distribution beyond the
lower limit of the optical phonon spectrum can be seen. This shift becomes more
pronounced with further temperature increase. In this temperature region, high-
frequency vibrations appear which are not optical phonons. The frequencies of these
vibrations fall into the frequency interval of the discrete breather .!b; !o.0//, thus
they can be identified as breathers. The part of the energy corresponding to the
breathers can be determined as the integral

pb D
Z !o.0/

!b

p.!/d! :

The contribution of the breathers to thermal energy increases with rising temperature
(pb D 0.002 and 0.106 for T D 1 and 100 K, respectively), reaching a maximum
value pb D 0:115 at T D 200K, and then decreases (for T D 300K, the breather
contribution is p D 0:083).

To isolate breathers from thermal vibrations, consider a chain consisting of N D
500 links with end links .N0 D 50/ attached to a thermal bath with temperature
T . After thermalization, we set the temperature of the thermal bath to T D 0 and
analyse the process of heat energy sink from an internal region of the chain .N0 <
n < N � N0/. The relaxation process for T D 200K is shown in Fig. 6.29 (right).
The formation of several mobile localized excitations can be clearly visible in this
figure. Detailed analysis has shown that these excitations are discrete breathers with
frequencies ! � !b. Therefore, discrete breathers are present in thermal vibrations.

Consider the interaction of a discrete breather with thermal phonons. Take a
finite chain (N D 500), with a stationary discrete breather with frequency ! D
820:5 cm�1 placed in the centre of the chain with end links .N0 D 10/ attached to
a thermal bath with temperature T D 10K. Analysis of the breather dynamics has
shown that the breather begins to collapse just as thermalization of the chain centre
begins. The breather loses about half of its energy in 20 ps.

The probability of the thermally-activated formation of discrete breathers in the
trans zigzag chain grows with increasing temperature. Therefore, concentration of
breathers in the chain has to increase when the temperature increases. However,
in a thermalized chain, breather has a finite lifetime which decreases with rising
temperature. As a result, the dependence of the breather concentration pb on the
temperature T is non-monotonic. In fact, this concentration increases when T 	
200K and decreases when T > 200K. Maximum value is reached for T D 200K.
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Numerical investigation shows that the breathers are best separated from thermal
vibrations precisely at this temperature.

As can be seen in Fig. 6.28 (left), there are no other stable localized periodic
vibrations in a thermalized chain except for the breathers considered above. As
demonstrated previously, only vibrations with frequencies belonging to the linear
vibration spectrum are thermalized. This confirms our conclusion regarding the
existence of only one type of stable discrete breathers which correspond to the
localized vibrations of valence C–C bonds. These excitations are present in a
thermalized chain even at low temperatures.

The investigation carried out shows that, in linear polymer macromolecules,
there can exist stable localized periodic vibrations, namely, discrete breathers.
In a polyethylene macromolecule they represent planar vibrations of the trans
zigzag chain with periodic compression and extension of valence C–C bonds in
the localization region of the vibrations. Breathers are present in a thermalized chain
and contribute to the heat capacity of the chains. A detailed description of the results
obtained can be found in [53].

Note that the same breathers must also exist in PTFE molecules, where they will
have the lower frequency spectrum. Recent studies have shown that breathers can
exist in carbon nanotubes possessing the zigzag structure, where they correspond
to localized torsion vibrations [54]. They can also exist at the edges of carbon
nanotubes [55].

6.5 Conclusion

Numerical investigation of nonlinear dynamics of localized excitations showed that
all types of excitations can exist in linear polymer molecules, viz., acoustic and
topological solitons, as well as discrete breathers.

In a planar trans zigzag polyethylene macromolecule, there can exist dynam-
ically stable, supersonic acoustic solitons corresponding to zigzag stretching.
Furthermore, in a helix macromolecule of polytetrafluoroethylene, two types of
supersonic acoustic solitons can exist: solitons of torsion and longitudinal com-
pression of the helix. The solitons have finite supersonic velocity spectrum, they are
stable for all permissible velocities, and display particle-like properties. On the other
hand, in a carbon nanotube, acoustic solitons do not exist. There are only soliton-like
excitations whose motion is always accompanied by longitudinal phonon emission.
The amplitude of this emission decreases with increasing nanotube radius, but it
is always nonzero. It can be said that an acoustic soliton in nanotube has a finite
lifetime and therefore always possesses a finite free path.

In PE crystal, three types of topological solitons can exist:

• The two-dimensional soliton of stretching (compression) of the zigzag chain by
one period,
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• The soliton of stretching (compression) of the zigzag chain by a half of period,
followed by torsion through 180ı, and

• The soliton corresponding to torsion of the zigzag chain through 360ı.

All these solitons have permissible velocity intervals in the subsonic range. They
are dynamically stable, they move with constant velocities, and retain their shapes.
In PTFE crystal, there are four types of localized topological defects of the helix
macromolecule. All the defects are stable to thermal vibrations of the chain, but the
defect of only one type is soliton, which can move as a solitary wave along the chain.
The soliton velocity interval lies in the subsonic range. Other defects are pinned and
their motion has the character of thermally-activated random hops.

In linear polymer molecules, there also exist breathers, i.e. stable localized
periodic vibrations of macromolecule chains. In the PE macromolecule, these
vibrations represent planar vibrations which correspond to periodic compression
and extension of the valence bonds and angles in the trans zigzag chain.
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Chapter 7
Autolocalization of Quantum Particles

In this chapter we discuss the autolocalized state (soliton) dynamics of a quantum
particle (intermolecular excitation) in a molecular chain.

One of the central concepts in bioenergetics is the question of how the chemical
energy released by the hydrolysis of adenosine triphosphate (ATP) transforms and
transfers along the protein molecules, and over significant distances compared to
the molecular scale. The difficulty in the physical explanation for this transfer
is associated with the fact that the energy released by ATP hydrolysis, equal to
0.42 eV, is only 20 times higher than the average energy of thermal fluctuations
under physiological conditions. This energy is insufficient to excite electronic states.
Therefore, it is normally assumed that the energy of ATP hydrolysis is transferred
along the protein molecules in the form of the vibrational energy of the C=O group
belonging to the peptide groups (PGs) of all proteins [1].

Among the interpeptide vibrations, the longitudinal amide-I vibrations of the
double bond C=O are the most intensive. They manifest themselves through infrared
absorption near 1,650 cm�1 (the single-quantum excitation energy is 0.205 eV) in all
proteins. These vibrations have a relatively large electric dipole transition moment
of 0:35D. This leads to the resonance interaction between neighboring PGs, causing
the vibration to hop from one PG to the next. On the other hand, the dependence of
the energy of this vibration on the distance between neighboring PGs results in
the appearance of exciton–phonon interactions in the chain. These interactions are
determined by the coupling between the amide-I vibration and the displacement of
the PG.

Given the regularity of the helical protein structure, Davydov and Kislukha
[2] suggested a nonlinear model for vibration localization based on the exciton
concept from solid-state physics [3–5]. The model consists of a one-dimensional
deformable chain of harmonically-coupled molecules (PGs), each having an internal
vibrational degree of freedom described by the exciton Hamiltonian. Using this
model, they established that, in ˛-helical protein molecules, nonlinear collective
autolocalized excitations can move without loss of energy or change in shape.
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Later, these autolocalized excitations received the name of Davydov solitons [6–10].
The balance between the resonant and exciton–phonon interactions discussed above
leads to stabilization of the soliton motion. Here, the resonant interaction between
neighboring molecules plays the role of dispersing small-amplitude waves (free
excitons), while the exciton–phonon interaction (EPI) represents the nonlinearity
causing localization of the intermolecular excitation.

The Davydov soliton model is based on the polaron concept, first introduced
by Landau [11] and developed further by Pekar [12, 13] to describe electron
autolocalization in a polarized field induced by the electron itself. Today, the term
polaron has lost its original meaning (electron interacting with long-wave polarized
optical vibrations) and it is mainly used for a much wider class of autolocalized
states when a quantum particle (or quasi-particle) interacts with a field of any nature
[14]. Recently, in connection with the development of the soliton theory [15–25]
and its wide application to various areas in physics [26–40], autolocalized states,
capable of moving, were called solitons. In addition, the term soliton is used not
only in the strict mathematical sense, i.e., in the case of completely integrable
Hamiltonian systems [15, 17, 19–21, 24], but also to describe dynamically stable
nonlinear collective structures [22, 23, 25, 28–40], and in particular, autolocalized
states [26, 27, 38–40]. Therefore, in ‘polaron language’, the Davydov soliton can
also be called a one-dimensional acoustic polaron.

The dynamical equations describing the motion of a one-dimensional acoustic
polaron (autolocalized exciton or polaron) in the continuum approximation con-
stitute a self-consistent system which includes the time-dependent Schrödinger
equation with a deformation potential and an inhomogeneous linear wave equation
for this potential. The right-hand side of the wave equation corresponds to the
second spatial derivative of the wave function satisfying the Schrödinger equation.
This system, called the Zakharov system, has an important significance in physics
and generally describes the nonlinear interaction of two physical subsystems: fast
and slow.

The Zakharov equations were first obtained in plasma physics in the description
of the interaction of Langmuir (high-frequency) waves with ion sound waves [28].
For different purposes and applications in condensed matter physics, equations of
this type, describing self-trapping (autolocalization) of a quantum particle by the
acoustic mode of a one-dimensional crystal lattice, were established by Kosevich
[41] in the investigation of one-dimensional dynamics problems in nonlinear crystal
mechanics. Similar results were obtained by Petrina and Epolskiy [42] in the
investigation of molecular chain dynamics based on the Bogolubov equations [42].
Davydov and Kislukha developed this approach to model the soliton energy transfer
of the interpeptide amid-I excitation [2]. In contrast to [43], the work described in [2]
considers the excitation motion in a deformable molecular chain without taking the
kinetic energy of the molecules into account. In this approximation, the equations
of motion reduce to a completely integrable nonlinear Schrödinger equation (NSE)
with cubic nonlinearity [18].

The Zakharov equations have a well-known soliton solution in hyperbolic secant
form, describing the envelope profile of the high-frequency vibrations of a fast
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subsystem which can propagate with any subsonic velocity. In the stationary case,
a solution of this type was first obtained by Rashba [44, 45] when investigating
the interactions of intermolecular excitations with acoustic phonons in molecular
crystals. These and later works [2, 46–51] studied the conditions for formation of
bound states of intramolecular excitation and deformation in a molecular crystal
without considering the excitation motion. The autolocalized state turned out to have
the lowest energy, but in the case of the short-range coupling of the excitation with
phonons in a three-dimensional crystal, a metastable exciton state is also possible,
separated from the autolocalized state by an energy barrier.

The Zakharov equations constitute a non-integrable system. This was discovered
by Degtyarev, Makhankov, and Rudakov [52] when they numerically modeled
the interaction of Langmuir solitons with each other and with ion sound. This
interaction turned out to be inelastic, and this was proved in the strict mathematical
sense by Schulman [53]. The interaction of these solitons with sound waves was
also investigated by Malomed [54] using the inverse scattering method [20, 21]. It
has been shown that a soliton situated in a sound field gradually collapses, emitting
high-frequency waves.

The equations described above, both from the point of view of plasma physics
and the theory of molecular systems, provide the simplest model. To describe
realistic cases, this system of equations requires refinements and generalizations.
First, in the model of a molecular chain with harmonic intermolecular potential,
a soliton solution has physical meaning only for velocities significantly less than
the longitudinal sound velocity. When the soliton velocity approaches the sound
velocity in a chain, the amplitude of local compression tends to infinity. As a
result, there appears an effect of neighboring molecules passing through each other,
which has no physical meaning. To avoid this, Davydov and Zolotaryuk [55–
57] introduced positive intermolecular anharmonicity, enhancing the repulsion of
neighboring molecules in a chain if they approach one another. In [57], an algorithm
has been developed to obtain successive approximations to a soliton solution. It
turns out that including positive anharmonicity also extends both the limits of
applicability of the continuum approximation and the range of permissible velocities
of soliton solutions to include the sound velocity. In the case of cubic anharmonicity,
Karbovskiy and Kislikha have found approximate soliton solutions using a vari-
ational approach [58]. Further study of the model with cubic anharmonicity was
carried out in [59, 60]. It should be emphasized that the dispersion law for acoustic
phonons was assumed to be linear in all these studies [55–60].

Second, any real molecular chain is a discrete system that leads to certain
peculiarities in the localized state dynamics. The dynamical equations in the discrete
case, as determined in [42, 43], will hereafter be called the discrete acoustic self-
trapping equations. They do not admit exact soliton solutions, even if one neglects
the inertia of molecular motion, when these equations reduce to the corresponding
discrete NSE. Note that exact soliton solutions exist only in the case of another type
of NSE discretization scheme, as discussed by Ablowitz and Ladik [61, 62], who
demonstrated its complete integrability.
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The manifestation of discreteness in the case of stationary and moving autolocal-
ized states in a harmonic chain was investigated by Kuprievich using variational
[63] and numerical [64] approaches, by Kislukha in a study of the limit case
of strong autolocalization [65, 66], Vakhnenko and Gaididei [67] who used the
exact results and perturbation theory [61, 62], and also by other authors [68–
74]. In [75, 76], the dynamic stability of Davydov solitons was established by
numerical modeling. In [76], the velocity spectrum of stable solitons was found.
The question of the existence and dynamics of autolocalization states in an ˛-
helix protein molecule, consisting of three hydrogen bonded chains, was studied
in [7, 8, 77, 78]. In this chapter we consider the features of the autolocalized
state dynamics in inhomogeneous molecular chains and two-dimensional structures
including ˇ-layers of protein molecules.

Acoustic solitons in the anharmonic chain are stabilized by the balance between
the effects of nonlinearity due to the positive intermolecular anharmonicity and
the dispersion of acoustic waves caused by the chain discreteness [79]. In the
continuum approximation, this dispersion can be taken into account if the expansion
of difference derivatives with respect to molecule displacements is limited to terms
with derivatives up to fourth order. As a result, for cubic anharmonicity, the
Boussinesq equation is derived, and this admits only supersonic soliton solutions.
These solutions (acoustic solitons) describe local compression regions moving
along the chain. On the other hand, the Davydov soliton in a harmonic chain can
propagate only with subsonic velocities. Therefore, the propagation of supersonic
two-component solitons is expected to be possible in a molecular chain with
intermolecular excitation if both intermolecular anharmonicity and acoustic wave
dispersion are taken into account.

A soliton solution of the Schrödinger equation with the self-consistent potential
satisfied by the Boussinesq equation was investigated in the series of studies [80–
87], which are devoted to various applications. For example, in [80], devoted to the
dynamics of near-sound Langmuir solitons, a supersonic solution is found, while it
is asserted in [81] that supersonic soliton solutions do not exist at all. In [82, 83],
this system of equations was solved using a non-self-consistent method, and as a
result, solutions were found which describe, not autolocalization, but the capture
of a quantum quasi-particle (external excess electron) by the supersonic acoustic
soliton. The complete integrability of this system was investigated in [86].

The most comprehensive study of soliton solutions of the coupled Schrödinger
and Boussinesq equations is given in [85, 87], where it has been suggested that
two soliton modes can exist: the Davydov soliton (autolocalized state of a quantum
quasi-particle) and a supersonic acoustic mode (coupled state of a quantum quasi-
particle with an acoustic soliton). The dynamical stability of these solutions was
investigated in [76]. The discrete equations of acoustic self-trapping in a context
with intermolecular anharmonicity were studied in [88, 89], but the two-component
soliton solutions with supersonic velocities were not examined. In this chapter we
will consider in detail the coupled states of a quantum quasi-particle with an acoustic
soliton.
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An essential complement to the research discussed above was a study of the
soliton-induced transfer of intermolecular vibrational energy in a situation where
each chain molecule is in an external single-well potential which describes a chain
substrate [90]. From the study of this model, it turned out that two stable states
exist for a definite range of the coupling constant between chain molecules and
substrate: exciton and soliton states separated by an energy barrier. The exciton state
is stable for large values of the coupling constant, while the soliton state is stable for
small values. This model can also be used to describe the dynamics of autolocalized
states in a three-dimensional crystal, where the existence of a similar barrier was
established by other methods [50, 51]. In this chapter we will obtain numerically a
parameter range for which the stable soliton state of a quasi-particle exists.

The most convincing experimental evidence for the existence of solitons in pro-
teins was obtained by looking at the absorption spectrum of crystalline acetanilide
(ACN) [91]. The chains of hydrogen bonds in the ACN crystal have a surprising
structural similarity to the chains of hydrogen bonds in the peptide groups of ˛-
helix proteins [92]. This similarity was noticed by Careri and prompted him to
experimental studies in the hope of finding new physical properties of ACN which
might be of a certain biological interest. Experimentally, the amide-I excitation
in crystalline ACN is observed as the maximum of infrared absorption near
1,667 cm�1. In addition, another anomalous band has been found 17 cm�1 below
the maximum of the amide-I vibration. Analysing the experimental data, Careri,
Scott, and others [91, 92] have concluded that this anomalous line is due to a
new type of soliton which emerges as a result of the interaction between the
amide-I vibration and the displacement of a hydrogen-bonded proton, but not the
displacement of a PG as a whole. With increasing temperature, the magnitude of the
second (soliton) maximum in the absorption spectrum decreases. This is accounted
for by the destabilizing effect of thermal vibrations of peptide groups in the crystal.

Therefore, in order to describe the soliton transport of the amide-I excitation
along the chain of hydrogen-bonded PGs, one must consider both the interaction
of the intramolecular excitation with deformation of hydrogen bonds (acoustic
vibrations) and the nonlinear interaction of the excitation with intrapeptide proton
displacement (optical vibration of chain molecules).

A mathematical treatment of the modified soliton theory for the ACN crystal
is similar to the original Davydov model which describes acoustic self-trapping of
the intramolecular excitation. The corresponding equations, which can be called
the discrete self-trapping equations, describe the interaction of the excitation with
optical vibrations of a one-dimensional lattice [93]. In fact, they coincide with the
equations obtained by Holstein in the study of one-dimensional polaron dynamics
[94, 95]. Later, this model of the dynamics of quantum quasi-particles, nonlinearly
interacting with optical lattice vibrations, was investigated in many other studies,
e.g., see the reviews [39, 96] and the references therein. Davydov and Enolski have
established the existence of stationary soliton excitations in the presence of the
dispersion of optical vibrations [97]. It has been shown by numerical modeling that
these solitons exist and that they are dynamically stable formations at any (even
zero) magnitude of the dispersion of optical vibrations [98, 99].
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A classical vibrational model of the interpeptide excitation dynamics, alternative
to the quantum Davydov model, was suggested by Taneko [100–102]. This model
can describe the transport of vibrational energy in the form of solitary waves
(vibron solitons). The main condition for emergence of these waves, which are in
essence the envelope solitons, is the interaction between high-frequency vibrations
of the oscillators, modeling the intrapeptide C=O bonds, and one of the modes
(acoustic [101] or optical [102]) of another one-dimensional lattice, viz., a PG chain.
Autolocalization, induced by the intrinsic anharmonicity of the high-frequency
oscillators, was studied by Kosevich and Kovalev [103], and this was subsequently
used by Oraevsky and Sudakov to model the transport of vibrational energy in
proteins [104].

The successful application of the concept of the Davydov soliton in biology
depends on its stability at physiological temperatures T 
 300K. The influence
of thermal motion of the chain molecules on the soliton properties was studied in
a series of works [105–112, 116–118]. Davydov investigated the role of thermal
effects analytically, using the theory he developed himself [105–107], which takes
into account the impact of quantum fluctuations in the equilibrium positions of
molecules and their thermal vibrations relative to the new equilibrium positions. It
follows from his analysis that the soliton exists at physiological temperatures, but its
degree of localization decreases with increasing temperature. Numerical simulation
of the soliton dynamics carried out by the authors with quantum consideration of
thermal vibrations has shown that thermal vibrations contribute to the localization
of the intramolecular excitation, leading to an effective decrease in the resonant
interaction of neighboring molecules [108–115]. A similar result was obtained by
Cruseiro et al. [116].

On the other hand, Lomdahl and Kerr [117, 118] (see also the work of Laurence
et al. [119]) have shown that classical consideration of thermal vibrations based on
the Langevin equation leads to the instability of Davydov solitons at physiological
temperatures. It follows from these results that the amplitude of thermal vibrations
in the molecule is more than one order of magnitude greater than the amplitude
of the chain’s local deformation caused by intramolecular excitation during its
autolocalization. Thermal vibrations induced in the molecule by random external
forces (white noise) lead to a breakdown of the coupling between the excitation and
the local deformation of the chain, thereby destroying the soliton.

Today, the question of the stability of the Davydov soliton to thermal fluctuations
in protein macromolecules is still open. It is obvious that the interaction of the
amide-I excitation with other, lower frequency intermolecular vibrations must
increase the soliton stability. The frequencies of these vibrations significantly exceed
acoustic phonon frequencies, so they are not completely thermalized. In this case,
application of the Langevin equation requires the use of colored noise rather than
white, which only leads to complete thermalization of low-frequency vibrations.
The periods of optical vibrations are much shorter than the time required by the
excitation to pass over one chain link, so the excitation is sensitive to an averaged
magnitude of the vibrations, responding only to a change in the equilibrium
positions of the vibrations. In this chapter, these issues will be discussed in detail.
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7.1 Davydov Soliton

Let us consider autolocalized states of a quantum quasi-particle (the intramolecular
amide-I excitation of an external electron) in molecular systems of hydrogen-
bonded chains. Two of the most significant examples of such systems are the
˛-helix and ˇ-sheet protein macromolecules. To describe their dynamics, we will
use the semi-classical approximation, in which a quasi-particle is treated quantum-
mechanically and the displacements of the system monomers and the intramonomer
displacements of atoms (i.e., acoustic and optical vibrations of the molecular
system) are considered within the framework of classical mechanics [26].

7.1.1 General Dynamical Equations: Semi-classical
Approximation

One of the secondary structures of a protein is the ˛-helix. The interactions between
amino acid residues are regular and determine the periodicity of the secondary
structure. The stability of the ˛-helix is ensured by the hydrogen bonds between
(NH)- and (CO)-groups of the main chain. The atom groups NHCO (the peptide
group) form three regular chains of bonds. The ˛-helix has the form of a rod, and its
inner part consists of a tightly twisted backbone with the radicals directed outwards.
The charge distribution over the atoms involved in the peptide groups is such that
each peptide group has dipole moment equal to approximately 3.5 D, directed along
the hydrogen bond [26].

Let us consider a chain of hydrogen-bonded peptide groups HNCO of the ˛-helix
protein molecule:

� � � H–N–C=O� � � H–N–C=O� � � H–N–C=O� � � .

To describe the dynamics of a quantum of the intramolecular amide-I excitation
(vibration of the double valence bond C=O), the exciton Hamiltonian [3, 26] can be
used:

H D
X

n

�
"nB

C
n Bn � Jn.BC

n Bn�1 C BC
n�1Bn/

�
; (7.1)

where "n is the energy of the amide-I excitation at the nth molecule (PG), depending
on the relative displacements of the nth molecule, its neighbors, and intramolecular
atom displacements, Jn is the energy of the resonant dipole–dipole interaction
between the excitations at the nth and .n C 1/th molecules, depending generally
on the relative distances between these molecules, and BC

n and Bn are the creation
and annihilation operators of the excitation at the nth molecule, respectively, which
satisfy the usual commutation relations

ŒBn; B
C
m � D ınm ; ŒBn; Bm� D 0 ; ŒBC

n ; B
C
m � D 0 :
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Hereafter, we will replace the magnitudes "n and Jn by the linear terms in their
power series expansions with respect to small displacements:

"n D "0 C �L.yn � yn�1/C �R.ynC1 � yn/C �Ozn C � � � ; (7.2)

Jn D J 0n � �D;n.yn � yn�1/C � � � ; (7.3)

where "0 is the energy of the amide-I excitation at a single molecule, J 0n is the energy
of the resonant interaction between excitations at the .n � 1/th and nth molecules
in a non-deformed chain, �L � 0 (�R � 0) is the parameter of interaction between
the excitation and deformation of the left (right) hydrogen bond of the molecule,
yn is the displacement of the nth molecule from its equilibrium position, �O is
the parameter of interaction between the excitation and the intramolecular atom
displacement zn, and �D;n is the parameter (whose sign coincides with the sign
of J 0n ) describing a decrease in the resonant interaction with increasing distance
between the neighboring .n�1/th and nth molecules. The intrapeptide displacement
of the hydrogen atom is usually considered as the intramolecular displacement of
the PG. Then zn D yn � xn, where xn is the displacement of the hydrogen atom
from its equilibrium position in the nth PG.

In the lattice representation, the wave function of a quantum of the intramolecular
excitation can be written as

j� i D
X

n

�n.t/B
C
n j0i ; (7.4)

where j0i is the ground state (the exciton vacuum) and �n.t/ is the complex-valued
probability amplitude for finding a quantum of excitation at the nth molecule. The
normalization condition h�.t/j�.t/i D 1 implies the normalization relationship for
the state vector (7.4):

X

n

j�n.t/j2 D 1 : (7.5)

The time dependence of the wave function (7.4) is given by the Schrödinger
equation

i¯ @
@t

j� i D H j� i ;

with the Hamiltonian (7.1). The displacements yn.t/ and zn.t/ in (7.2) and (7.3) are
the classical variables. Thus, the following Lagrange function can be introduced:

L D
�
�

ˇ̌
ˇ̌i¯ @
@t

�H
ˇ̌
ˇ̌�
�

C Llat ; (7.6)
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Fig. 7.1 Schematic model of the hydrogen bond chain HNC=O� � � HNC=O� � � HNC=O, where n
is the number of the PG

where

Llat D
X

n

�
1

2
m Px2n C 1

2
Mn Py2n � V.ynC1 � yn/ � 1

2
K.yn � xn/2 � 1

2
Kıy2n

�
:

Here, the dot denotes differentiation with respect to time t , while m and Mn are
the reduced masses of hydrogen and the nth PG, respectively, and K is the elastic
constant of the intrapeptide displacement of hydrogen atom. The Morse potential

V.�/ D �ı
�

exp.�b�/ � 1�2

describes the hydrogen bond between neighboring PGs and �ı is the energy of the
hydrogen bond. For small deformation of the bond, we have V.�/ 
 ��2=2, where
� D V 00.0/ is the stiffness constant of the bond. The phenomenological parameter
of the Morse potential is b D p

�=2�ı. The interaction of the nth PG with the chain
substrate is described by the potential Vı.yn/ D Kıy2n=2, where Kı is the stiffness
coefficient of the interaction. The structure of the chain under consideration is shown
schematically in Fig. 7.1.

Let us calculate the expectation value appearing in the Lagrangian function (7.6):

�
�

ˇ̌
ˇ̌i¯ @
@t

�H
ˇ̌
ˇ̌�
�

D
X

n

��
n .i¯ P�n � "n�n C Jn�n�1 C JnC1�nC1/ :

Then, from the least action principle

•

Z t2

t1

L .: : : ; P�n; �n; Pyn; yn; Pxn; xn; : : :/dt D 0 ;

we find three differential difference equations

i¯ P�n D "n�n � .Jn�n�1 C JnC1�nC1/ ; (7.7)

Mn Ryn D V 0.ynC1 � yn/ � V 0.yn � yn�1/ �K.yn � xn/ �Kıyn
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C�L.j�nC1j2 � j�nj2/C �R.j�nj2 � j�n�1j2/
C2�D;nC1Re.��

nC1�n/ � 2�D;nRe.��
n �n�1/ � �Oj�nj2 ; (7.8)

m Rxn D K.yn � xn/C �Oj�nj2 ; (7.9)

where the coefficients "n and Jn are given by (7.2) and (7.3).
The following momenta correspond to the coordinates �n, yn, and xn:

P ex
n D @L

@ P�n
D i¯��

n ; P ac
n D @L

@ Pyn D Mn Pyn ; P op
n D @L

@ Pxn D m Pxn :

The equations of motion (7.7)–(7.9) can be obtained from the Hamiltonian function
in the usual way:

H D
X

n

.i¯��
n

P�n CMn Py2n Cm Px2n/ � Llat

D
X

n

��
n ."n�n � Jn�n�1 � JnC1�nC1/C Hlat ; (7.10)

where

Hlat D
X

n

�
1

2
m Px2n C 1

2
Mn Py2n C V.ynC1 � yn/C 1

2
K.yn � xn/2 C 1

2
Kıy2n

�
:

(7.11)

It is convenient to write the Hamiltonian function (7.10) in the symmetric form

H D
X

n

�
"n�n�

�
n � Jn.��

n �n�1 C �n�
�
n�1/

�C Hlat : (7.12)

7.1.2 Soliton Dynamics in an Inhomogeneous Chain

Let us consider the dynamics of the intramolecular excitation in a single free
molecular chain .Kı D 0/ with an inhomogeneous distribution of masses and
energies of the resonant interaction of the chain PGs. Excluding the interaction of
the excitation with the intrapepride displacement and considering (7.2) and (7.3),
the chain Hamiltonian function (7.12) can be written in the form

H D
X

n

�
j�nj2

�
"0 C �L.yn � yn�1/C �R.ynC1 � yn/

�

� .�n��
n�1 C ��

n �n�1/
�
Jn � �D;n.yn � yn�1/

�

C 1

2
Mn Py2n C 1

2
�.yn � yn�1/2

	
: (7.13)
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Here, Jn and �D;n are now the energy of the resonant dipole–dipole interaction and
the parameter of the resonant exciton–phonon interaction (EPI) of the nth and .n �
1/th molecules, respectively. When measuring the energy from the bottom of the
exciton band, the term in "0 can be omitted in (7.13).

The Hamiltonian function (7.13) gives the equations of motion

i¯ P�n D �JnC1�nC1 � Jn�n�1 C �n
�
�R.ynC1 � yn/C �L.yn � yn�1/

�

C�D;n.yn � yn�1/�n�1 C �D;nC1.ynC1 � yn/�nC1 ; (7.14)

Mn Ryn D �.yn�1 � 2yn C ynC1/C �L.j�nC1j2 � j�nj2/C �R.j�nj2 � j�n�1j2/
C2�D;nC1Re.�n�

�
nC1/ � 2�D;nRe.�n�1��

n / : (7.15)

The values of the PG masses Mn depend significantly on the distribution of amino
acid residues in the ˛-helix molecule. The resonant interaction energy Jn depends
weakly on the distribution of amino acid residues, but depends heavily on the
relative orientation of the transition dipole moments of the PGs:

Jn D �d
2

a3

h
.en; en�1/ � 3.l; en/.l; en�1/

i
;

where d D 0:35D is the transition dipole moment of the amide-I excitation, l is
the unit vector giving the direction along the chain, a D 4:5 � 10�10 m is the chain
spacing, and en and en�1 are the unit vectors giving the directions of the dipole
moments of the nth and .n � 1/th PGs, respectively. If all the dipole moments are
directed along the chain, then Jn D J D 2d2=a3 D 1:55 � 10�22 J for all n
[120, 121]. In general, Jn D J.2 cos˛n�1 cos˛n � sin˛n�1 sin˛n/=2, where ˛n is
the angle between the vectors en and l.

The excitation dynamics in an infinite chain is conveniently modeled in a finite
cyclic chain consisting of N PGs. For this purpose, in the Hamiltonian (7.13) and
the equations of motion (7.14) and (7.15), one must take n D 1; 2; : : : ; N and put
n C 1 D 1 for n D N and n � 1 D N for n D 1. The Davydov soliton dynamics
were investigated numerically in a cyclic chain consisting of 100 and 200 PGs and
the following values were taken for the parameters: � D 13N/m, average mass of
the PGsM D 190:7� 10�27 kg [7], and average tilt angle of the PG dipole moment
˛ D 0. The EPI parameters �L D 0, �R D 5 � 10�11 N, and �D;n D 3Jn=a were
used. These were obtained from quantum mechanical calculations of the electronic
structure of the formamide dimer (the EPI asymmetry is explained by the asymmetry
in the distribution of the amide-I excitation inside the PG) [122].

Equations (7.14) and (7.15) were integrated numerically using the standard
fourth-order Runge–Kutta method with constant grid spacing �t D p

M=k=12 D
0:1 ps [123]. The accuracy of the integration was estimated through the conservation
of the integrals of motion for the system. For a given value of �t , the total
probability integral of (7.5) and the total energy integral (7.13) are conserved with an
accuracy to seven and six significant figures, respectively. The initial condition was



254 7 Autolocalization of Quantum Particles

chosen to correspond to the exact solution of the nonlinear Schrödinger equation,
which is the continuum approximation to the discrete equations of motion. The
following initial conditions correspond to the Davydov soliton [2, 26, 43], located
at the n0th PG .n0 D 10/ and moving with velocity V D a

p
�=M=4 D 0:928 �

103 m/s:

�n.0/ D D�1=2
n

expŒik.n � n0/�
cosh 
n

;

yn.0/ � yn�1.0/ D �
Q

2�.1 � s2/ cosh2 
n
;

Pyn.0/ � Pyn�1.0/ D �
Q2s sinh 
n

�.1 � s2/ cosh3 
n
;

where


n D Q.n � n0/ ; Q D � �2

4�J.1 � s2/ ; � D �L C �R C 6J=a ;

and k D arcsin.¯V=2aJ / is the wave number, s D V=Vph D 1=4 is the dimension-
less velocity, Vph D a

p
�=M is the sound velocity, and DN D PN

nD1 1= cosh2 
n
is the normalization coefficient. For the chosen parameters of the chain, the soliton
width is approximately equal to ten chain spacings, thereby justifying the continuum
approximation.

Numerical integration has shown that, in a homogeneous chain (Mn D M , ˛n D
0, n D 1; 2; : : : ; N , N D 100), the soliton moves with constant velocity s D 0:21,
keeping its profile (it passes 422 PGs of the chain in t D 240�10�12 s). The soliton
also moves along a chain with a random inhomogeneous mass distribution, where
Mn is chosen from the interval ŒM=2; 3M=2� (see Fig. 7.2a), as well as along a chain
with a random inhomogeneous distribution of dipole orientation, where Mn D M

and the angles ˛n are taken randomly from the interval Œ�ˇ; ˇ�, with ˇ D 5ı and
ˇ D 10ı. The soliton is stable to mass distribution inhomogeneity and does not
collapse when moving into a chain region with different density. In a chain with
M1 D M2 D : : : D M50 D M ,M51 D M52 D : : : D MN D M 0 forM 0 D 4M and
M 0 D M=4, the passage of the soliton between two regions of different densities
causes only insignificant periodic changes in its profile (soliton ‘breathing’). The
soliton is stable with respect to certain fixed PGs of a chain. It is important in this
case that the distance between fixed PGs is not less than twice the soliton width
(the soliton width is approximately equal to ten chain links, so it does not collapse
when moving along a chain where every 20th PG is fixed, but it collapses when
every 10th PG is fixed). The soliton does not collapse when passing two and even
three fixed neighboring GPs. The stability of the Davydov soliton to inhomogeneity
in the mass distribution is accounted for by its subsonic velocity, and the fact that
the chain deformation energy of the soliton is a few hundredths of a percent of the
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Fig. 7.2 Dynamics of the Davydov soliton in a chain with a random mass distribution (a). Decay
of the soliton when encountering a boundary of chain regions with different dipole orientations
(b), ˇ D 25ı. Soliton reflection from the boundary (c), ˇ D 30ı

intramolecular amide-I excitation energy, which means that its energy loss due to its
energy loss due to inhomogeneities in the phonon system is insignificant.

The soliton is more sensitive to inhomogeneities in the distribution of the PG
transition dipole moment orientation, which lead to an inhomogeneous distribution
of the resonant interaction energy. In a chain with a random inhomogeneous
distribution of the angles ˛n, where Mn � M and f˛ngND200

nD1 are chosen randomly
from the interval Œ�ˇ; ˇ�, the soliton is already destroyed when ˇ � 15ı. When the
soliton encounters a boundary of chain regions with different dipole orientations
(Mn D M , n D 1; 2; : : : ; N , N D 200, ˛1 D ˛2 D : : : D ˛100 D 0,
˛101 D ˛102 D : : : D ˛200 D ˇ), three cases are observed:

• The soliton does not collapse and keeps the same direction of motion (its velocity
only decreases) for ˇ 	 20ı.

• The soliton decays into two oscillating wave packets moving in opposite
directions for ˇ D 25ı.

• The soliton reflects from the boundary of two regions with ˇ � 30ı (see Fig. 7.2a,
b).

When the soliton encounters a differently oriented PG (all Mn D M and ˛n D 0

except ˛100 D ˇ, n D 1; 2; : : : ; N ,N D 200), the same three cases are observed:

• The soliton passes through the inhomogeneity, not collapsing and losing only a
small portion of its energy, when ˇ 	 35ı.

• The soliton collapses when ˇ D 40ı.
• The soliton reflects from the inhomogeneity when ˇ � 45ı.

The stability of the Davydov soliton to inhomogeneities in the PG mass distribution
in a chain makes it an effective carrier of energy along the ˛-helix segments of
protein molecules. Note that supersonic acoustic solitons are unstable to these
inhomogeneities [124–126]. They emit phonons passing through an inhomogeneity
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and can decay into several solitons moving with different velocities. Therefore,
acoustic solitons, suggested as an alternative to the Davydov soliton [127, 128],
cannot serve as an energy carrier over large distances along the ˛-helix segments
of protein molecules. The sensitivity of the Davydov soliton to inhomogeneities in
the distribution of the resonant interaction energy allows one to affect the soliton
transport of energy by changing the local orientation of chain PGs. For example,
the binding of barbiturate to an ˛-helical protein molecule should lead, not only to
weakening of the hydrogen bond and an increase in the distance between two nearest
neighbor PGs [129,130], but also to a perturbation of their mutual orientation, which
causes an additional decrease in the resonant interaction energy in this region of the
˛-helix molecule.

This dynamical modeling shows that the Davydov soliton is stable to inhomo-
geneities in the ˛-helix protein molecules and so can serve as an effective energy
carrier. The results of this section were first obtained in [131, 132].

7.2 Autolocalization of the Excitations in a ˇ-Sheet

Here we consider the transport of the intrapeptide excitation in a ˇ-sheet structure
of a protein molecule. In contrast to the ˛-helical structure, which is quasi-one-
dimensional, the ˇ-sheet structure is two-dimensional. In the continuum approx-
imation, the excitation dynamics of the ˇ-sheet structure are described by the
two-dimensional Schrödinger equation. It is still not known [25] whether this
equation has two-dimensional soliton solutions.

7.2.1 Discrete Model of Protein ˇ-Sheet

The structure of a ˇ-sheet protein molecule is shown in Fig. 7.3. The protein ˇ-
sheet is a polypeptide chain, folded in a zigzag plane structure that is stabilized
by the hydrogen bonds between peptide groups. The PGs themselves form a two-
dimensional lattice with two periods a and b. We will treat the ˇ-sheet as a plane
on which the chain of hydrogen-bonded PGs are laid parallel with period b (a is the
period of the hydrogen bond chain, m is the chain number, and n is the number of
the PG in the chain). Hereafter we will take into account the resonant interaction of
the intrapeptide amide-I excitation only with the ten nearest PGs. The coefficients
C1; C2; : : : ; C8 in Fig. 7.3 correspond to the energies of the resonant interaction
between the PG with numbers .m; n/ and neighboring PGs.

There exist two ˇ-sheet packings of a protein molecule: parallel and antiparallel.
In the model under consideration, they differ only in the values of parameters b, C1,
C2; : : : ; C8. Parameter values for the parallel ˇ-sheet p and antiparallel ˇ-sheet ap
are given in Table 7.1 [121, 133, 134].
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Fig. 7.3 Structure of a
ˇ-sheet protein molecule.
The polypeptide chain and
hydrogen bonds between the
peptide groups are shown by
solid and dashed lines,
respectively. Ovals and
arrows indicate the directions
of the PG dipole moments

Table 7.1 Values of the parameters a and b (nm), and interaction coefficients C1; : : : ; C8 (cm�1)
for parallel p and antiparallel ap ˇ-sheets

a b C1 C2 C3 C4 C5 C6 C7 C8

p 0.473 0.334 1.0 2.3 �13.6 �1.7 �2.1 �2.1 2.1 2.1

ap 0.473 0.345 �0.1 1.8 �13.0 �1.6 15.3 �6.7 2.5 1.4

The total energy of a quantum of the amide-I excitation in the ˇ-sheet can be
written in the form

H D Hex C Hint C Hph : (7.16)

Here, the energy of the resonant interaction of the excitation is

Hex D "0 C
X

m;n

2Re

�
��
m;n

�
C1�mC1;n CC2�mC2;n CC3�m;nC1 CC4�m;nC2 C 1

2
Rm;n

�	
;

(7.17)

where m is the number of the hydrogen bond chain (m D 0;˙1;˙2; : : :), n is the
number of the PG in a chain (n D 0;˙1;˙2; : : :),

Rm;n D C5�mC1;nC1 C C6�m�1;nC1 C C7�m�1;n�1 C C8�mC1;n�1 ;

if m is an even number and

Rm;n D C7�mC1;nC1 C C8�m�1;nC1 C C5�m�1;n�1 C C6�mC1;n�1 ;

if m is odd number, and "0 D 0:205 eV is the energy of one quantum excitation in
an isolated PG. The complex functions �m;n in the lattice representation specify the
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wave function of the excitation in the ˇ-sheet. They are normalized by the condition

X

m;n

j�m;nj2 D 1 ; (7.18)

where the magnitude j�m;nj2 gives the probability for finding a quantum of
excitation in the PG with the numbers .m; n/.

The energy of the EPI excitation has the form

Hint D
X

m;n

j�m;nj2
�
�m;1.ym;nC1 � ym;n/C �m;2.ym;n � ym;n�1/

�
; (7.19)

where ym;n is the displacement of hydrogen bonds along the chain from the
equilibrium position of the PG with the numbers .m; n/. If m is an even number,
�m;1 D � and �m;2 D 0, while if m is an odd number, �m;1 D 0 and �m;2 D �,
where � is the EPI parameter (hereafter the value of � will be varied).

The deformation energy of the ˇ-sheet has the form

Hph D
X

m;n

�
M

2
Py2m;n C �

2
.ym;nC1 � ym;n/2

�
; (7.20)

where M is the reduced mass of the PG and � is the stiffness of the hydrogen bond
(M D 114:2mp [7], where mp is the proton mass and � D 13N/m).

The stationary state of this system can be obtained from the minimum total
energy condition (7.16). By virtue of (7.19) and (7.20), necessary conditions for
stationarity are

Pym;n D 0 ;
@H

@ym;n
D �.ym;n � ym;n�1/ � �.ym;nC1 � ym;n/C fm;n D 0 ;

where fm;n D �.j�m;n�1j2 � j�m;nj2/ for even m and fm;n D �.j�m;nj2 � j�m;nC1j2/
for odd m. It follows that ym;n � ym;n�1 is equal to �j�m;n�1j2=� for even m and
��j�m;nj2=� for odd m. Therefore, from (7.16), (7.19), and (7.20), we obtain

H D QH D Hex � �2

2�

X

m;n

j�m;nj4 : (7.21)

To find a stationary state, it is sufficient to solve the minimum problem for the
reduced Hamiltonian QH with the constraint (7.18)

QH ! min W
X

m;n

j�m;nj2 D 1 : (7.22)

If we consider the interaction of the excitation with other low-frequency intrapeptide
vibrations [92, 93] (e.g., with the hydrogen atom) rather than with the longitudinal
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deformation of hydrogen bonds, the problem of finding the stationary state will have
the same form (7.22). Indeed, in this case

Hint D
X

m;n

�j�m;nj2xm;n ; Hph D
X

m;n

1

2
mp Px2m;n C 1

2
Ky2m;n ;

where xm;n is the normal coordinate of the vibration andK is the stiffness coefficient
of the system. Necessary conditions for stationarity are

Pxm;n D 0 ;
@H

@xm;n
D �j�m;nj2 CKxm;n D 0 ;

which lead to the relations xm;n D ��j�m;nj2=K and QH D H .
Up to now we have been considering the infinite ˇ-sheet. Below we analyse

a finite ˇ-sheet consisting of M chains, each of which contains N PGs .m D
1; 2; : : : ;M and n D 1; 2; : : : ; N /. We shall consider a ˇ-sheet with free edges
(in which case all terms in (7.17) with indices m˙ k greater than M or less than 1,
together with all terms with indices n ˙ k greater than N or less than 1 should be
omitted) and a ˇ-sheet with periodic boundary conditions (in which case the sums
overm˙k and n˙k in (7.17) should be carried out moduloM andN , respectively).

7.2.2 Stationary States of Intrapeptide Excitation in ˇ-Sheet
Structures

Let us find the stationary excitation states in a ˇ-sheet by the numerical method of
steepest descent [123] for the minimum problem (7.22). We will consider a ˇ-sheet
with periodic boundary conditions and a ˇ-sheet with free edges (M D 20 and
N D 20). It is convenient to characterize the degree of excitation localization in the
stationary state by the magnitude D D PM

mD1
PN

nD1 j�m;nj4, so that D D 1 if the
excitation is localized at a single PG and D D 1=MN if the excitation is uniformly
distributed throughout the entire sheet. Here, we choose the zero level of the state
energy as the energy "0 of one quantum excitation in an isolated PG and give it in
units of 10�3 eV.

Numerical solution of the problem (7.22) has shown that, in the ˇ-sheet with
periodic boundary conditions, two types of stationary states exist, depending on the
value of the EPI interaction: the exciton state (the excitation is uniformly distributed
over the sheet) and the strongly localized soliton state (the excitation is virtually
localized on one PG).

There are two exciton stationary states in the parallel ˇ-sheet with periodic
boundary conditions. For the first state,

�m;n D .�1/Œm=2� 1C .�1/mp
2MN

; (7.23)
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Fig. 7.4 Left: Stationary profiles of the excitation distribution in the parallel ˇ-sheet .M D N D
20/with free edges for � D 1:1�10�10 N (a) and with periodic boundary conditions for � D 1:1�
10�10 N (b) and � D 1:15 � 10�10 N (c). Right: Stationary profiles of the excitation distribution
in the antiparallel ˇ-sheet .M D N D 20/ with free edges: the two-humped stationary state for
� D 1:45 � 10�10 N (a), the ground stationary state for � D 1:4 � 10�10 N (b), and the ground
stationary state for � D 1:45� 10�10 N (c)

where m D 1; 2; : : : ;M , n D 1; 2; : : : ; N , Œp� is the integer part of p, D D 2=MN,
andE1 D 2.�C2CC3CC4/��2=�MN is the state energy. In this case, the excitation
is localized only on chains with even number m (see Fig. 7.4b left). For the second
state,

�m;n D 1=
p

MN ; (7.24)

whereD D 1=MN and the energy E2 D 2.C1 CC2 CC3 CC4/��2=2�MN > E1.
When � � �p D 1:15 � 10�10 N, in the parallel ˇ-sheet, along with the stationary
exciton states discussed above, there exists a strongly localized stationary soliton
state if the excitation is mainly localized on a single PG (Fig. 7.4c left). When � <
�p, this state was not found. The dependence of the stationary state energy on the
parameter � for the parallel ˇ-sheet with periodic boundary conditions is given in
Table 7.2.

In the antiparallel ˇ-sheet, two stationary exciton states also exist. For the first,

�m;n D .�1/Œm=2�=pMN ; (7.25)

and for the second,

�m;n D .�1/m=pMN ; (7.26)
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Table 7.2 Dependence of the stationary state energy (given in 10�3 eV) on the value of � (given
in 10�10 N) for the parallel ˇ-sheet with periodic boundary conditions for (a) the main exciton
state (7.23), (b) the exciton state (7.24), and (c) the localized state

� 0.0 1.0 1.1 1.15 1.2 1.3 1.4

a �4.364 �4.376 �4.379 �4.380 �4.381 �4.384 �4.389

b �2.976 �2.982 �2.983 �2.984 �2.984 �2.986 �2.987

c � � � �4.341 �4.496 �4.912 �5.426

Table 7.3 Dependence of the stationary state energy (given in 10�3 eV) on the EPI parameter �
(given in 10�10 N) for the antiparallel ˇ-sheet with periodic boundary conditions for (a) the main
exciton state (7.25), (b) the exciton state (7.26), and (c) the localized state

� 0.0 1.0 1.4 1.45 1.5 1.6 1.7

a �6.666 �6.672 �6.678 �6.678 �6.679 �6.681 �6.683

b �4.699 �4.705 �4.711 �4.712 �4.713 �4.714 �4.716

c � � � �6.195 �6.445 �7.032 �7.706

where m D 1; 2; : : : ;M and n D 1; 2; : : : ; N . The energy of the first state, viz.,

E1 D 2.�C2 C C3 C C4/ � C5 C C6 C C7 � C8 � �2=2�MN ;

is less than the energy of the second, viz.,

E2 D 2.�C1 C C2 C C3 C C4/ � C5 � C6 � C7 � C8 � �2=2�MN :

When � � �p D 1:45 � 10�10 N, there is also a soliton state (Fig. 7.4c right).
The dependence of the stationary state energy on the EPI parameter � is given in
Table 7.3.

The soliton state is not always energetically more favorable than the exciton state.
When � D �p, the first exciton state turns out to be more energetically favorable,
but with increasing �, the soliton state becomes more favorable.

In a ˇ-sheet with free edges, the stationary state has the exciton form for � < �p

(see Fig. 7.4a (left) and a, b (right)) and the strongly localized form for � > �p

(Fig. 7.4c (left) and c (right)).
When � < �p, the stationary distribution of the excitation for the parallel ˇ-

sheet with free edges has a bell-shaped profile, touching the sheet edges, and the
excitation is mainly localized at the chains with even number m (Fig. 7.4a left).
The dependencies of the energy E and the localization degree D of the stationary
excitation state on the EPI parameter � for the parallel ˇ-sheet with free edges are
given in Table 7.4.

When � < �p, the stationary distribution of the excitation for the antiparallel
ˇ-sheet with free edges also has a bell-shaped profile, touching the sheet edges, and
the excitation is mainly localized at the chains with even number m (Fig. 7.4b left).
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Table 7.4 Dependencies of the energy E (given in 10�3 eV) and the localization degree D of the
stationary excitation state on the EPI parameter � (given in 10�10 N) for the parallel ˇ-sheet with
free edges

� 0.0 1.0 1.1 1.15 1.2 1.3 1.4

E �4.301 �4.325 �4.332 �4.341 �4.496 �4.912 �5.426

D 0.008 0.013 0.015 0.463 0.613 0.753 0.828

Table 7.5 Dependencies of the energy E (given in 10�3 eV) and the localization degree D of the
stationary excitation state on the EPI parameter � (given in 10�10 N) for the antiparallel ˇ-sheet
with free edges

� 0.0 1.0 1.4 1.45 1.5 1.6 1.7

E �6.565 �6.579 �6.593 �6.195 �6.445 �7.032 �7.706

D 0.005 0.006 0.007 0.667 0.742 0.825 0.872

Table 7.6 Dependencies of the energy E (given in 10�3 eV) and the localization degree D of the
ground stationary excitation state on the sheet width M for the ˇ-sheet with free edges (� values
are given in 10�10 N)

Parallel ˇ-sheet Antiparallel ˇ-sheet
� D 1:1 � D 1:15 � D 1:4 � D 1:45

M E D E D E D E D

1 �4.116 0.368 �4.245 0.558 �5.314 0.857 �5.611 0.878

5 �4.269 0.131 �4.339 0.473 �5.973 0.531 �6.185 0.676

9 �4.312 0.022 �4.341 0.468 �6.439 0.011 �6.190 0.667

13 �4.335 0.014 �4.341 0.467 �6.499 0.007 �6.190 0.667

21 �4.350 0.009 �4.341 0.467 �6.535 0.004 �6.190 0.667

29 �4.355 0.007 �4.341 0.467 �6.544 0.003 �6.190 0.667

Note that, in the antiparallel ˇ-sheet with free edges, in addition to the one-humped
stationary states, there are two-humped stationary states which are less energetically
favorable (Fig. 7.4a right). The dependencies of the energy E and the localization
degreeD of the stationary excitation state on the EPI parameter � for the antiparallel
ˇ-sheet with free edges are given in Table 7.5.

To study the dependence of the stationary state profile on the sheet width for
the ˇ-sheet with free edges, we considered the stationary states for the sheet with
N D 30 and M D 1, 5, 9, 13, 17, 21, 25, and 29 when � < �p (� D 1:1 � 10�10 N
for the parallel ˇ-sheet and � D 1:4 � 10�10 N for the antiparallel one) and when
� D �p. The dependencies of the energy E and the localization degree D of the
ground stationary state on its width M for the ˇ-sheet with free edges are given in
Table 7.6.

The investigation carried out in this section allows us to conclude that, with
increasing sheet size, the stationary state profile becomes broader when � < �p, but
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it does not come off the sheet edges. When � � �p, the stationary state still remains
highly localized and does not depend on the sheet width. Therefore, in the ˇ-sheet
with � < �p, only delocalized exciton-like stationary states are possible, but when
� � �p, there is a highly localized stationary state. This property is a manifestation
of the two-dimensionality of the system (in an isolated chain, stationary soliton
states exist for any value of the parameter �, and only the soliton width depends
on �).

7.2.3 Intrapeptide Excitation Dynamics in a ˇ-Sheet

The dynamics of one quantum amide-I excitation in a ˇ-sheet is described by the
Hamiltonian equations

i¯ P�m;n D @H

@�m;n
; M Rym;n D � @H

@ym;n
; (7.27)

with the Hamiltonian (7.16), where m D 1; 2; : : : ;M and n D 1; 2; : : : ; N .
Let us consider the excitation dynamics in a ˇ-sheet with free edges (M D 20

and N D 30) at the initial induction of the excitation at one PG with numbers
(m0; n0). For this purpose, one must solve the equations of motion (7.27) with the
initial condition �m0;n0.0/ D 1, �m;n.0/ D 0 for m ¤ m0 or n ¤ n0, and ym;n.0/ D
0, Pym;n.0/ D 0 for all m and n.

Equations (7.27) were solved numerically by the standard fourth-order Runge–
Kutta method [123]. Numerical integration has shown that, for values of the EPI
parameter � below a certain threshold value �p, the excitation propagates through
the sheet as an oscillating, spreading two-dimensional wave packet. For � � �p,
the excitation hangs up at one PG and an immobile autolocalized stationary state is
formed (see Fig. 7.5 left). The dependence of the threshold value �p on the position
of the excited PG at the initial time is given in Table 7.7.

This behavior of the excitation is in good agreement with the results of a study
of the stationary states. One can say that the soliton transport of the excitation
can only occur in narrow ˇ-sheets consisting of several chains of hydrogen bonds.
In broad sheets, transport of the excitation can occur either by two-dimensional
excitons or by spreading of two-dimensional wave packets. Therefore, quasi-one-
dimensionality of molecular structure is a necessary condition for soliton transport
of the intramolecular excitation.
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Fig. 7.5 Left: Excitation dynamics in a parallel ˇ-sheet .M D 20;N D 30/ with free edges
.m0 D 20, n0 D 1/. Right: Profiles of an acoustic soliton in a chain with cubic anharmonicity
.
 D 3/ at the initial time � D 0, obtained as the solution to the problem (7.41) with initial
velocity s D 1:05 (lines 1 and 2) and at time � D 1;911:9 after the passage of 2,000 chain links
(lines 3 and 4). The soliton velocity at the final time is s D 1:0461

Table 7.7 Dependence of the threshold value of the EPI parameter �p on the position of the
initially excited PG .m0; n0/

Parallel ˇ-sheet Antiparallel ˇ-sheet

m0 10 10 1 20 10 10 1 20

n0 1 15 15 1 1 15 15 1

�p.10
�10/ N 1.3 1.35 1.3 1.25 1.55 1.6 1.45 1.35

7.3 Soliton Dynamics of a Quasi-particle in an Anharmonic
Chain

In this section we restrict ourselves to the dynamics of a quantum quasi-particle
(a single quantum of intramolecular excitation of an extra electron) in a free
anharmonic chain. We only take into account the interaction of the quasi-particle
with acoustic vibrations of the molecular chain.

7.3.1 Acoustic Solitons

Let us consider a free anharmonic molecular chain [135–137]. Without taking into
account the intramolecular displacements, the Hamiltonian function (7.11) has the
form
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Hlat D
X

n

�
1

2
M 0 Py2n C V.ynC1 � yn/

�
; (7.28)

where M 0 D M Cm is the total molecular mass, yn is the displacement of the nth
molecule from its equilibrium position, and V.r/ D �r2=2�ˇ1r3=3Cˇ2r4=4C� � �
is the anharmonic on-site interaction potential.

For convenience, we introduce the following dimensionless variables: displace-
ment un D yn=a (a is the chain spacing), time � D v0t=a (v0 D a

p
�=M 0 is the

sound velocity in the chain), and energy E D H =�a2. Then the dimensionless
Hamiltonian function of the chain (7.28) takes the form

E D
X

n

�
1

2
u0
n C U.unC1 � un/

�
; (7.29)

where the prime denotes differentiation with respect to the dimensionless time � and
the dimensionless anharmonic potential is

U.u/ D 1

�a2
V .au/ D 1

2
u2 � 
1

3
u3 C 
2

4
u4 � � � � :

Here 
1 D ˇ1a=�, 
2 D ˇ2a
2=�; : : : are the dimensionless anharmonicity

parameters.
The Hamiltonian (7.29) implies the discrete equations of motion

u00
n D F.unC1 � un/ � F.un � un�1/ ; n D 0;˙1;˙2; : : : ; (7.30)

where F.u/ D dU=du D u � 
1u2 C 
2u3 � � � � . Let us search for a solution of
(7.30) in the form of a traveling smooth solitary wave with constant profile (acoustic
soliton). For this purpose, we set un.�/ D u.n � s�/, where s is the dimensionless
wave velocity and the function u depends smoothly on the discrete variable n. To
use this continuum approximation, the parameter 	 D maxn jdu.n/=dnj which
describes the reciprocal soliton width, must be small. It is obvious that all derivatives
are equal to zero: dmu=dnm D O.	m/. Therefore, in the continuum approximation
the following partial differential equation corresponds to the discrete equations
(7.30):

0 D .1 � s2/uxx C 1

12
uxxxx C 1

360
uxxxxxx

�
1
�
2uxuxx C 1

3
uxxuxxx C 1

6
uxuxxxx

�

C
2
�
3u2xuxx C uxuxxx C 1

4
u2xx C 1

4
u2xuxxxx

�
� 4
3uxxu3x CO.	7/ ;



266 7 Autolocalization of Quantum Particles

where x is the continuous variable approximating the discrete one n. Taking into
account only terms up to the order of 	5, this equation takes the form

.1 � s2/uxx C 1

12
uxxxx � 2
1uxuxx C 3
2u

2
xuxx D 0 : (7.31)

We now make the replacement � D ux in (7.31) and integrate once. Then, taking
into account the boundary conditions �; �x; �xx ! 0 as x ! ˙1, we obtain the
well known Boussinesq equation

.1 � s2/�C 1

12
�xx � 
1�2 C 
2�

3 D 0 ; (7.32)

which has an exact solution in only two situations. Firstly, when 
2 D 0 (cubic
anharmonicity) and

�.x/ D A

cosh2.	x/
; A D �3.s

2 � 1/
2
1

; 	 D
p
3.s2 � 1/ ; (7.33)

and secondly, when 
1 D 0 (quartet anharmonicity) and

�.x/ D A

cosh.	x/
; A D ˙

s
2.s2 � 1/


2
; 	 D

p
12.s2 � 1/ : (7.34)

The solution (7.33) describes the motion of the compression region (A < 0) of
a constant profile with supersonic velocity (s > 1) along the chain. The solution
(7.34) corresponds to the motion of the compression region (A < 0) and expansion
region (A < 0) with supersonic velocity (s > 1).

For definiteness, we restrict ourselves below to the case of cubic anharmonicity
(
1 D 
 > 0, 
2 D 0, 
3 D 0; : : :). In this case, the acoustic soliton is characterized
by the amplitude A, the energy

E D
Z C1

�1

�
1

2
.1C s2/�2 � 1

3

�3

�
dx D 1

	

�
2

3
.1C s2/A2 C 16

45

A3

�
;

(7.35)
the total compression of the chain

R D
Z C1

�1
�dx D 2A=	 ; (7.36)

and the root-mean-square diameter

L D 2

�
1

R

Z C1

�1
x2�dx

�1=2
D �=

p
3	 ; (7.37)

given in units of the chain period.
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7.3.2 Numerical Method for Finding Acoustic Soliton Profile

A soliton solution of the discrete equations of motion (7.30) can be found as the
extremum of the Lagrangian

L D
X

n

�
� s2

24

�
16.unC1 � un/

2 � .unC2 � un/
2
�C U.unC1 � un/

	
; (7.38)

which is determined by the discrete equations

Lun D s2

12

�
16.unC1 � 2un C un�1/ � .unC2 � 2un C un�2/

�

�F.unC1 � un/C F.un � un�1/ D 0 ; n D 0;˙1;˙2; : : : : (7.39)

In the continuum approximation, the discrete equations (7.39) coincide with (7.31)
up to terms of the order of 	5. Introducing the notation unC1�un D �n, (7.39) takes
the form

Lun D s2

12

�
16.�n � �n�1/ � .�nC1 C �n � �n�1 � �n�2/

�

�F.�n/C F.�n�1/ D 0 ; n D 0;˙1;˙2; : : : : (7.40)

An acoustic soliton corresponds to a saddle point of the Lagrangian, so a soliton
solution of the discrete equations (7.40) should be sought numerically by minimiz-
ing the functional F1:

F1 D 1

2

N�1X

nD3
L 2

un �! min
�2;:::;�N�1

W �1 D 0 ; �N D 0 ; (7.41)

where N is the number of chain sites.
If one makes the replacement unC1 � un D �n in the Lagrangian (7.38), it takes

the form

L D
X

n

�
� s

2

24

�
16�2n � .�nC1 C �n/

2
�C U.�n/

	
:

Then an extremum of the Lagrangian is defined by the discrete equations

L�n D s2

12
.�nC1�14�nC�n�1/CF.�n/ D 0 ; n D 0;˙1;˙2; : : : ; (7.42)
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for which, in the continuum approximation, we can write the modified Boussinesq
equation

.1 � s2/�C s2

12
�xx � 
�2 D 0 : (7.43)

This has the soliton solution

�.x/ D A

cosh2.	x/
; A D �3.s

2 � 1/
2


; 	 D
r
3.s2 � 1/

s2
: (7.44)

It is convenient to solve the discrete equations (7.42) numerically by minimizing the
functional F2:

F2 D 1

2

N�1X

nD2
L 2
�n

�! min
�2;:::;�N�1

W �1 D 0 ; �N D 0 : (7.45)

The constrained minimum problems (7.41) and (7.45) were solved numerically by
the conjugate gradient method [138]. For the minimization procedure, N D 100

chain links were taken. In the conjugate gradient method, initial points f�0ngNnD1
with �0n D 0 for n ¤ N=2 and �0N=2 D �1=
 were chosen. The localized solution

f�ngNnD1 with the bell-shaped form corresponds to an acoustic soliton. The soliton is
characterized by the energy

E D
NX

nD1

�
1

2
s2�2n C U.�n/

�
;

the amplitude A D minn �n, the total compression R D PN
nD1 �n, the position of its

centre m D PN
nD1 n�n=R, and the root-mean-square diameter

L D 2

vuut
NX

nD1
.m � n/2�n=R ;

given in units of the chain period.

7.3.3 Modeling the Dynamics of the Acoustic Soliton

The acoustic soliton dynamics in an infinite chain are conveniently modeled
numerically in a finite chain with free edges. This dynamics is described by the
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equations of motion

u00
1 D F.u2 � u1/ ;

:::

u00
n D F.unC1 � un/ � F.un � un�1/ ; (7.46)

:::

u00
M D �F.uM � uM�1/ ;

with the energy integral

E D
MX

nD1

1

2
u02
n C

M�1X

nD1
U.unC1 � un/ : (7.47)

Equations (7.46) were solved numerically by the standard fourth-order Runge–Kutta
method with the constant grid spacing�� [123]. The accuracy of the integration can
be estimated through the conservation of the energy integral (7.47). For the value of
�� D 0:1 used in the calculation, the integral (7.47) is conserved to an accuracy of
five significant figures throughout the time of numerical integration.

The molecule number M in the chain was taken equal to N C 100, where N D
100 is the number of sites used in the solution of the minimum problems (7.41) and
(7.45). The following initial conditions correspond to the acoustic soliton:

un.0/ D �R
2

C
nX

kD1
�n ; u0

n.0/ D �s�n ; for n D 1; 2; : : : ; N ;

un.0/ D R

2
; u0

n.0/ D 0 ; for n D N C 1; : : : ;M :

(7.48)

With this choice of initial conditions, the soliton position is characterized by its
centre, which is conveniently defined as the intersection point of the broken line
sequentially connecting the points .n; un/ (n D 1; 2; : : : ;M ) with the n-axis.

To model the soliton dynamics in an infinite chain, we shift the soliton to the left
through 100 chain sites as soon as it passes through 100 chain sites, i.e., we make
the replacements un.�/ D unC100.�/, u0

n.�/ D u0
nC100.�/ for n D 1; 2; : : : ; N and

un.�/ D uN .0/, u0
n.�/ D 0 for n D N C 1; : : : ;M . This method of numerical

simulation of the dynamics allows us to integrate the equations of motion for the
relatively small dimension M D 200, with a considerable saving in computer time.
The method is especially efficient for analysis of the supersonic soliton dynamics.
As a result of each shift, a subsonic phonon tail emitted by the soliton is cut off.
Note that, when using a cyclic chain, the soliton moves in a background of phonons
emitted by itself.
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Table 7.8 Dependence of the soliton velocities s1 and s2, obtained in numerical simulation of the
soliton dynamics, on the velocity value si used in the solution of the minimum problems (7.41)
and (7.45)

si 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10

s1 1.0098 1.0194 1.0287 1.0376 1.0461 1.0540 1.0612 1.0679 1.0743 1.0806

s2 1.0098 1.0193 1.0286 1.0375 1.0459 – – – – –

The results of the numerical minimization show that the problem (7.41) has a
localized soliton solution only for velocities 1 < s 	 1:05 (if s � 1:06, the problem
has no solution when a minimum value of the functional F1 
 0 is reached). The
problem (7.45) has a localized solution with F2 
 0 for all s > 1. With increasing s,
the accuracy of the soliton solution, obtained by minimizing the functionals F1 and
F2, decreases. Table 7.8 presents the velocity values si used to solve the minimum
problems (7.41) and (7.45), together with the velocity values s1 and s2 obtained
by numerical simulation of the soliton dynamics with the initial conditions (7.48),
which correspond to the solutions for these problems. The anharmonicity parameter

 D 3 is used in the simulation.

The decrease in accuracy of the obtained soliton solutions with increasing
velocity s is accounted for by the increasing influence of chain discreteness on
the dynamics. With increasing s, the soliton diameter L 
 �=

p
3	, where 	 Dp

3.s2 � 1/, decreases proportionally to s�1. For s > 1:05, the diameter already
becomesL < 3:27, precluding the use of the continuum approximation. The method
using the functional F2 is more stable to chain discreteness in comparison with
the method using the functional F1. The dynamics of the acoustic soliton found
by solving the problem (7.45) for s D 1:05 is shown in Fig. 7.5 (right). As can
be seen from this figure, the numerical method for finding a soliton profile using
the functional F2 slightly underestimates the soliton amplitude. Figure 7.6 (left)
shows the dependencies of the energy E, diameter L, total chain compression R,
and amplitude A of the acoustic soliton on s, as obtained by different methods:
numerical simulation of the dynamics, solution of the modified Boussinesq equation
(7.43), solution of the Boussinesq equation (7.32) .
2 D 0/, and numerical
minimization of the functional F2. As can be seen from this figure, the three latter
methods, based on the use of the continuum approximation, give appropriate results
only for 1 < s 	 1:05, when the soliton has sufficient width to justify use of the
continuum approximation.

It follows from the foregoing numerical analysis that a much more efficient
method for finding a soliton profile is the numerical method based on minimization
of the functional F2, which allows a good approximation of the soliton profile when
1 < s 	 1:05. We now apply this method to find a bound state of the acoustic soliton
with a quantum quasi-particle.
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Fig. 7.6 Left: Dependencies of the energy E, diameter L, total compression of the chain R, and
amplitude A on the velocity s in the chain with cubic anharmonicity .
1 D 3/, as obtained by
the following methods: numerical simulation of the dynamics (lines 1–4), solution of the modified
Boussinesq equation (7.43) (lines 5–8), solution of the Boussinesq equation (7.32) (lines 9–12), and
numerical minimization of the functional F2 (lines 13–16). Right: Dependencies of the energy E
and diameters L1 and L2 on the velocity s for the following soliton types: (1) the soliton d, found
using the Lagrangians L1 (lines 1–3) and L∈ (lines 4–6), (2) the soliton a1 (lines 7–9), (3) the
soliton a2 (lines 10–12), and (4) the purely acoustic soliton (lines 13 and 14). Points with markers
(15) and (16) correspond to the solutions (7.64) and (7.67), respectively

7.3.4 Davydov Soliton and Bound States of a Quantum
Quasi-particle with an Acoustic Soliton

Here we consider the dynamics of a quantum quasi-particle in a free anharmonic
chain. Taking into account only the interaction of a quasi-particle with acoustic
phonons, the Hamiltonian function of the chain (7.12) can be written in the form

H D
X

n

��
"0 C �.ynC1 � yn�1/

�
�n�

�
n � J.��

n �nC1 C �n�
�
nC1/

C 1

2
M 0 Py2n C V.ynC1 � yn/

	
: (7.49)

Here, as before, f�ngnDC1
nD�1 is the complex-valued wave function of a quasi-particle

satisfying the normalization condition (7.5), "0 is the energy of a quasi-particle
located at one molecule of an undeformed chain, J is the energy of a quasi-particle
hopping on a neighboring molecule (the same for all molecules), and � is the EPI
parameter (for definiteness, the symmetrical EPI is considered, so �L D �R D �).
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For convenience, we introduce the dimensionless displacement un D yn=a, time
� D v0t=a, energy E D H =�a2, and renormalized wave function  n D p

˛�n,
with ˛ D ¯=aM 0v0 and ¯ the Planck constant (see also the derivation of the
dimensionless Hamiltonian (7.28)). Then the dimensionless Hamiltonian function
(7.49) takes the form

E D
X

n

��
�0 C 1

2
g.unC1 � un�1/

�
 n 

�
n �D. �

n  nC1 C  n 
�
nC1/

C 1

2
u02
n C U.unC1 � un/

	
; (7.50)

where �0 D a"0=¯v0, g D 2�a2=¯v0, and D D aJ=¯v0 are the dimensionless
parameters, and f ngnDC1

nD�1 is the wave function satisfying the normalization
condition

X

n

j nj2 D ˛ : (7.51)

U.u/ D u2=2�
u3=3 is the dimensionless potential of the intermolecular interaction
with cubic anharmonicity and the prime denotes differentiation with respect to the
dimensionless time � .

The dimensionless Hamiltonian (7.50) yields the equations of motion

i n0 D �0 n �D. n�1 C  nC1/C 1

2
g.unC1 � un�1/ n ;

un00 D F.unC1 � un/ � F.un � un�1/C 1

2
g.j nC1j2 � j n�1j2/ ;

(7.52)

where n D 0;˙1;˙2; : : : ; and F.u/ D dU=du D u � 
u2. We now change from
the absolute displacements un to the relative ones �n D unC1 � un, whence (7.52)
takes the form

i n
0 D �0 n �D. n�1 C  nC1/C 1

2
g.�n C �n�1/ n ;

�n
00 D F.�nC1/ � 2F.�n/C F.�n�1/

C1

2
g.j nC2j2 � j nC1j2 � j nj2 C j n�1j2/ ; (7.53)

where n D 0;˙1;˙2; : : :.
We represent the wave function of a quasi-particles in the form of the ansatz

 n.�/ D 'n.�/ exp
n
i
�
nk � .�C �0 � 2D cos k/�

�o
; (7.54)
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where 'n.�/ is the real-valued wave function which, by virtue of (7.51), satisfies the
normalization condition

X

n

'2n.�/ D ˛ : (7.55)

Then (7.53) takes the form

'n
0 D D.'n�1 � 'nC1/ sin k ;

�'n D �D cos k.'nC1 � 2'n C 'n�1/C 1

2
g.�n�1 C �n/'n ; (7.56)

�n
00 D F.�nC1/ � 2F.�n/C F.�n�1/C 1

2
g.'2nC2 � '2nC1 � '2n C '2n�1/ ;

where n D 0;˙1;˙2; : : :.
In the continuum approximation,

'n.�/ D '.n � s�/ D '.
/ ; �n.�/ D �.n � s�/ D �.
/ ;

where s is the velocity of a wave with constant profile and 
 is the wave variable.
Then the discrete equations (7.56) take the form of ordinary differential equations
with respect to the wave variable

0 D .�s C 2D sin k/'
 ; (7.57)

�' D �D cos k'

 C g�' ; (7.58)

s2�

 D
�
1 � 1

12

d2

d
2

��1
F.�/

 C g.'2/

 ; (7.59)

and the normalization condition (7.55) has the form

Z C1

�1
'2d
 D ˛ : (7.60)

Equation (7.57) determines the wave number k D arcsin.s=se/, where se D 2D

is the dimensionless maximum velocity of a quasi-particle. We seek a solution of
(7.58) and (7.59) in the form of a solitary wave (soliton), i.e., we assume that the
functions ', �, and their derivatives satisfy the asymptotic behavior

' ; '
 ; '

 ; � ; �
 ; �

 �! 0 ; j
j ! 1 : (7.61)

We integrate (7.59) twice. Then, taking into account the boundary conditions (7.61),
we get the equation

.1 � s2/�C 1

12
s2�

 � 
�2 C g'2 D 0 : (7.62)
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Thus the functions � and ' are the solutions of the system comprising the stationary
Schrödinger equation (7.58) and the modified Boussinesq equation (7.62), with the
normalization condition (7.60) for the wave function '. This system of equations is
the Lagrange–Euler system for the constrained extremum problem:

L D
Z C1

�1

�
�
q
s2e � s2''
 C 1

2
s2�2 C U.�/C g�'2

�
d


�! extremum W
Z C1

�1
'2d
 D ˛ : (7.63)

Equations (7.58), (7.60), and (7.62) have two explicit solutions. The first is

'.
/ D
p
3	1˛=4

cosh2.	1
/
; �.
/ D A1

cosh2.	1
/
; (7.64)

with

A1 D �3	21
q
s2e � s2=g ; 	1 D

p
3.s2 � 1/=s2 ; (7.65)

for the anharmonicity parameter


 D 
01 D g

6
p
s2e � s2 C ˛g3

12.s2e � s2/
�

s2

3.s2 � 1/
�3=2

: (7.66)

The second solution is

'.
/ D
p
	2˛=2

cosh.	2
/
; �.
/ D A2

cosh2.	2
/
; (7.67)

for another value of the anharmonicity parameter, viz.,


 D 
02 D gs2

2
p
s2e � s2 : (7.68)

The amplitude of this solution is

A2 D �	22
q
s2e � s2g ; (7.69)

where the reciprocal width of the soliton 	2 is a positive root of the cubic equation

s2	3

3
C .1 � s2/	 � g2˛

2
p
s2e � s2 D 0 ; (7.70)

which always has exactly one positive root for s < se.
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By virtue of the conditions (7.65) and (7.66), the first solution (7.64) exists only
for the single value of the anharmonicity parameter 
 D 
01 .s/ (1 < s < se). Due to
the conditions (7.68)–(7.70), the second solution (7.67) already exists already at the
value 
 D 
02 .s/ of the anharmonicity parameter (0 	 s < se). Thus, both soliton
solutions (7.64) and (7.67) can describe supersonic soliton states of a quasi-particle.
These solutions were first found by Davydov and Zolotaryuk in [85,87], where they
put forward the hypothesis that there were two soliton modes of a quasi-particle in
an anharmonic chain: the Davydov mode with velocity spectrum 0 	 s < se and the
supersonic acoustic mode (a bound state of a quasi-particle and an acoustic soliton)
with velocity spectrum 1 < s < se.

It is convenient to characterize a two-component soliton by the energy

E D
Z C1

�1

�
�
q
s2e � s2''
 C 1

2
s2�2 C U.�/C g�'2

�
d
 ;

the root-mean-square diameter with respect to the first component, viz.,

L1 D 2

�
˛�1

Z C1

�1

2'2.
/d


�1=2
;

and the root-mean-square diameter with respect to the second component, viz.,

L2 D 2

�
R�1

Z C1

�1

2�.
/d


�1=2
;

where R D R C1
�1 r.
/d
 is the total compression of the chain induced by the quasi-

particle soliton state. For the first soliton (7.64) (we denote the characteristics of this
soliton by the additional index i D 1), the energy is

E1 D �3
4
˛	1 C 4

5
g˛A1 C A21

	1

�
2

3
.1C s2/ � 16

45

A1

�
; (7.71)

the first diameter is

L1;1 D
p
2.�2=6 � 1/=	1 ; (7.72)

and the second diameter is

L2;1 D �=
p
3	1 : (7.73)

For the second soliton (7.67) (we also denote the characteristics of this soliton by
the additional index i D 2), the energy is

E2 D �1
2
˛	2 C 2

3
g˛A2 C A22

	2

�
2

3
.1C s2/ � 16

45

A2

�
; (7.74)
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and the diameters are

L1;2 D L2;2 D �=
p
3	2 : (7.75)

For the pure acoustic soliton (7.44), the energy E0 and diameter L0 are determined
by (7.35) and (7.37), respectively.

For definiteness, we set ˛ D 0:01, g D 1:0, and se D 2:0. For these values,
the system of two equations 
 D 
01 .s/ and 
 D 
02 .s/ has one solution s D
1:002129 and 
 D 0:29. Thus, for 
 D 0:29, (7.58), (7.60), and (7.62) have two
supersonic two-component soliton solutions (s D 1:002129). For the first soliton,
we found E1 D 0:052963, L1;1 D 10:065, L2;1 D 16:074, and A1 D �0:0661171,
while for the second, we obtained E2 D 0:047728, L1;2 D L2;2 D 8:035, and
A2 D �0:0882036, and for the pure acoustic soliton, we obtained E0 D 0:0057657,
L0 D 16:074, and A0 D �0:0220475.

As can be seen from these data, the amplitudes A1 and A2 of the two-component
solitons significantly exceed, in absolute magnitude, the amplitude of the acoustic
soliton A0 and the diameters with respect to the second component L2;1 D L0
and L2;2 < L0. The energy difference E1 � E2 D 0:0052353 is approximately
equal to the energy of one acoustic soliton. All this suggests that, for s > 1, the first
soliton solution (7.64) describes the bound state of a quasi-particle with two acoustic
solitons, and the second solution (7.67) describes the bound state of a quasi-particle
with one acoustic soliton.

The quasi-particle interaction with one acoustic soliton causes an increase in the
soliton amplitude, jA2j > jA0j, and a decrease in its diameter,L2;2 < L0. The quasi-
particle interaction with two acoustic solitons leads to soliton pairing, while in the
absence of a quasi-particle, these solitons interact with each other as elastic particles.
Together they form a broader (L2;1 > L2;2), but less deep (jA1j < jA2j), potential
well for a quasi-particle than is formed by one soliton. Numerical investigations
confirmed this finding.

7.3.5 Numerical Methods for Finding Quasi-particle
Autolocalized States in an Anharmonic Chain

The following Lagrangian corresponds to the dimensionless Hamilton function
(7.50):

L D
X

n

(
i �
n  

0
n �

�
�0 C 1

2
g.�n C �n�1/

�
 n 

�
n

CD. �
n  nC1 C  n 

�
nC1/C 1

2
u02
n � U.�n/

)
: (7.76)
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Substituting the ansatz (7.54) into the Lagrangian (7.76) and taking into account
(7.55) and (7.56), we rewrite the Lagrangian in the form

L D �
X

n

�
1

2

q
s2e � s2.'nC1 � 'n/2 C 1

2
g.�n C �n�1/'2n � 1

2
u02
n C U.�n/

�
:

(7.77)

Let us further assume that the discrete equations of motion (7.52) have smooth
soliton solutions 'n.�/ D '.n� s�/ and un.�/ D u.n� s�/, where s D 2D sin k D
se sin k. Then finally, making the replacement u0

n D �s.unC1 � un/ D �s�n; the
Lagrangian (7.77) can be represented in the form

L1 D �
X

n

�
1

2

q
s2e � s2.'nC1 � 'n/2 C 1

2
g.�n C �n�1/'2n � 1

2
s2�2n C U.�n/

�
:

(7.78)

The quasi-particle localized state corresponds to the extremum of the Lagrangian
L1, viz.,

L1 �! extremum W
X

n

'2n D ˛ ; (7.79)

which is defined by the Lagrange–Euler equations

�L1 'n D �
q
s2e � s2.'nC1 � 2'n C 'n�1/C g.�n�1 C �n/'n � �'n D 0;

(7.80)

�L1 �n D .1 � s2/�n � 
�2n C 1

2
g.'2n C '2nC1/ D 0; (7.81)

where the Lagrange multiplier � is found from the condition
P

n L1 'n'n D 0:

� D ˛�1X

n

�q
s2e � s2.'nC1 � 'n/2 C g.�n�1 C �n/'

2
n

�
:

From (7.81), we have

�n D 1

2


�
1 � s2 �

q
.1 � s2/2 C 2g
.'2n C '2nC1/

�
: (7.82)

As 'n ! 0, the chain deformation �n ! 0 only for s 	 1. Therefore, using the
Lagrangian L1 allows us to obtain only subsonic solitons.

For a harmonic chain (
 D 0), it follows from (7.81) that

�n D �g'
2
n C '2nC1
2.1 � s2/ ;
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and with this, (7.80) thus reduces to the discrete Schrödinger equation

q
s2e � s2.'nC1 � 2'n C 'n�1/C g2

2.1 � s2/ .'
2
n�1 C 2'2n C '2nC1/'n C �'n D 0 :

In the continuum approximation, this equation goes over into the well known
nonlinear Schrödinger equation (NSE)

q
s2e � s2'

 C 2g2

.1 � s2/'
3 C �' D 0

with the wave function ' satisfying the normalization condition (7.60). The width
of the soliton solution of the NSE (Davydov soliton)

'.
/ D
p
	˛=2

cosh.	
/
; 	 D ˛g2

2.1 � s2/ps2e � s2 ;

tends to zero as s ! 1 (the soliton exists only for s < 1). Considering anharmonicity
(
 > 0) leads to an increase in the soliton width, and it will then also exist for s 	 1.

A soliton solution of the discrete equations (7.80) and (7.81) corresponds to the
minimum of the function �L1, so this solution can be sought numerically by solving
the constrained minimum problem using the descent method:

� L1 D
X

n

�
1

2

q
s2e � s2.'nC1 � 'n/2 C 1

2
g.�n C �n�1/'2n � 1

2
s2�2n C U.�n/

�

�! min W
NX

nD1
'2n D ˛ ; (7.83)

where n C 1 D 1 for n D N and n � 1 D N for n D 1. The number of sites N
used in the calculation is chosen experimentally. N should be chosen in such a way
that the periodic boundary conditions do not affect the soliton shape. To meet this
requirement, it suffices to take N ten times greater than the soliton diameter.

The minimum of the function �L1 can be sought by the more time consuming
method of sequential self-consistency for (7.80) and (7.81) (n D 1; 2; : : : ; N ) [64,
72]. Putting 'n D 0 for n ¤ N=2 and 'N=2 D p

˛ at the initial stage of the self-
consistency procedure, we find the vector f�ngNnD1 and then the vector f'ngNnD1 as
eigenvectors of the tridiagonal symmetric N �N matrix A with diagonal elements

An;n D 2

q
s2e � s2 C g.�n�1 C �n/

and subdiagonal elements

An;nC1 D AnC1;n D �
q
s2e � s2 ;
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which corresponds to the smallest eigenvalue. Then once again, using f'ngNnD1,
we find f�ngNnD1 from (7.82) and the new value of f'ngNnD1, and so on, until
complete self-consistency for (7.80) and (7.81) is achieved, i.e., when the sumPN

nD1.L 2
1 'n

C L 2
1 �n
/ reaches its minimum value. Complete self-consistency for

the equations usually requires 30–40 iterations.
The Lagrangian L1 does not take into account the acoustic phonon dispersion, so

it does not allow one to obtain supersonic solitons by the minimization procedure.
For this purpose, as shown in Sect. 7.3.3, the following Lagrangian should be used:

L2 D �
X

n

�
1

2

q
s2e � s2.'nC1 � 'n/2 C 1

2
g.�n C �n�1/'2n

� 1

2
s2�2n � 1

24
s2.�nC1 � �n/2 C U.�n/

�
; (7.84)

which has extrema that satisfy the Lagrange–Euler equations

�L2 'n D �
q
s2e � s2.'nC1 � 2'n C 'n�1/C g.�n�1 C �n/'n � �'n D 0;

(7.85)

�L2 �n D �s2�n C 1

12
s2.�nC1 � 2�n C �n�1/C 1

2
g.'2n C '2nC1/C U.�n/ D 0:

(7.86)

In the continuum approximation, these discrete equations coincide with the coupled
Schrödinger and Boussinesq equations (7.58) and (7.62), with the normalization
condition (7.60) for the wave function.

When s > 1, the soliton solution of the discrete equations (7.85) and (7.86)
corresponds to a saddle point of the Lagrangian (7.84). Hence, it is impossible
to find a soliton solution by minimizing the Lagrangian �L2. Here, the self-
consistency method can be used for (7.85) and (7.86). The vector f'ngNnD1 is most
advantageously sought by solving the constrained minimum problem numerically
using the simple method of gradient descent:

NX

nD1

�
1

2

q
s2e � s2.'nC1 � 'n/2 C 1

2
g.�n C �n�1/'2n

�
�! min

'1;:::;'N
W

NX

nD1
'2n D ˛ :

In order to find the displacements f�ngNnD1, we can use the conjugate gradient
method [138] to solve the minimum problem

1

2

NX

nD1
L 2
2 �n

�! min
�1;:::;�N

:

To find a bound state of a quasi-particle with two acoustic solitons, it is convenient
to use the solution f'n; �ngNnD1 of the problem (7.83) with s D 1 as starting point for
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the self-consistency procedure (it can be found by minimizing the functional L1).
To find a bound state with one acoustic soliton, the solutions

n
'n D c= cosh

�
	0.n �N=2/�; �n D A0= cosh2

�
	0.n �N=2/�

oN
nD1

can be used, where A0 D 3.1� s2/=2
 , 	0 D p
3.s2 � 1/=s2, and the constant c is

determined from the normalization condition (7.55). The self-consistency procedure
is considered complete when the functional

F D 1

2

NX

nD1
.L 2

2 'n
C L 2

2 �n
/

reaches its minimum.

7.3.6 Two-Component Soliton Dynamics

The accuracy of the two-component solitons can be evaluated by simulating their
dynamics numerically. Let us consider the soliton motion in a finite chain with free
ends, where the soliton dynamics is determined by the equations of motion

i 1
0 D �1

2
se 2 C 1

2
g.u2 � u1/ 1 ;

u1
00 D F.u2 � u1/C 1

2
g.j 2j2 C j 1j2/ ;

:::

i n
0 D �1

2
se. nC1 C  n�1/C 1

2
g.unC1 � un�1/ n ; (7.87)

un
00 D F.unC1 � un/ � F.un � un�1/C 1

2
g.j nC1j2 � j n�1j2/ ;

:::

i M
0 D �1

2
se M�1 C 1

2
g.uM � uM�1/ M ;

uM
00 D �F.uM � uM�1/ � 1

2
g.j M�1j2 C j M j2/ ;

with the integral of total probability

P D ˛�1
MX

nD1
j nj2 (7.88)
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and the integral of the total energy

E D �1
2
se

M�1X

nD1
. n 

�
nC1 C  �

n  nC1/

C1

2
g

�M�1X

nD1
.unC1 � un/j nj2 C

MX

nD2
.un � un�1/j nj2

�

C
MX

nD1

1

2
un

0 C
M�1X

nD1
U.unC1 � un/ : (7.89)

Equations (7.87) were solved numerically using the standard fourth-order Runge–
Kutta method with constant grid spacing �� [123]. The accuracy of the numerical
integration was estimated through the conservation of the integrals of motion (7.88)
and (7.89). For the values ˛ D 0:01, g D 1:0, 
 D 0:3, and se D 2:0, the grid
spacing �� D 0:005 was used. This ensures conservation of the integrals of motion
to an accuracy of seven significant figures during the total time of the numerical
simulations.

The quasi-particle dynamics was considered in a chain consisting of
M D N C 50 molecules, where N (the site number used in the self-consistency
procedure for (7.85) and (7.86)) was taken approximately ten times greater than the
soliton diameter. The following initial conditions correspond to the two-component
soliton

 n.0/ D '0n exp.ink/ ; un.0/ D 1

2
RC

nX

kD1
�0k ; un

0.0/ D �s�0n ;

for n D 1; 2; : : : ; N; and

 n.0/ D 0 ; un.0/ D �R
2
; un

0.0/ D 0 ;

for n D N C 1; : : : ;M; where R D �PN
nD1 �0n and f'0n; �0ngNnD1 is the extremum

point of the Lagrangian (7.84) which corresponds to the soliton. With this choice
of the initial conditions, the soliton position in the chain is characterized by its
centre, which is conveniently defined as an intersection point of the broken line,
sequentially connecting the points .n; un/, n D 1; 2; : : : ;M; with the n-axis.
At the initial time, the soliton is centred at m D N=2. To model the soliton
dynamics in an infinite chain, we shift the soliton to the left through 50 sites as
soon as it passes through 50 chain sites to the right, i.e., we make the replacements
 n.�/ D  nC50.�/, un.�/ D unC50.�/, and un0.�/ D u0

nC50.�/ for n D 1; 2; : : : ; N;

and  n.�/ D 0, un.�/ D uN .0/, and un0.�/ D 0 for n D N C 1; : : : ;M .
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7.3.7 Results of Numerical Investigation

The two-component soliton f'0n; �0ngNnD1, found by the method of self-consistency
for (7.85), is characterized by the energy

E D
NX

nD1

�
1

2

q
s2e � s2.'0nC1 � '0n/2 C 1

2
g.�0n C �0n�1/'0n

2 C 1

2
s2�0n

2 C U.�0n/

�
;

the centre of the distribution of the quasi-particle wave function

m1 D
NX

nD1
n'0n

2
=˛ ;

the centre of the chain deformation distribution

m2 D
NX

nD1
n�0n=R ; R D

NX

nD1
�0n ;

the root-mean-square diameter with respect to the first component

L1 D 2

� NX

nD1
.m1 � n/2'0n2=˛

�1=2
;

and the diameter with respect to the second component

L2 D 2

� NX

nD1
.m2 � n/2�0n=R

�1=2
:

Numerical solution of the discrete equations (7.85) and (7.86) (N D 200, g D 1:0,
˛ D 0:01, 
 D 0:3, and se D 2:0) has shown the existence of three soliton modes:
the Davydov mode d (subsonic self-trapping mode of a quasi-particle), the first
supersonic acoustic mode a1 (the bound state of a quasi-particle with two acoustic
solitons), and the second supersonic acoustic mode a2 (the bound state of a quasi-
particle with one acoustic soliton). The dependencies ofE,L1, andL2 on the soliton
velocity s for each mode are shown in Fig. 7.6 (right). Numerical modeling of the
dynamics has shown that all three soliton modes are dynamically stable.

The Davydov mode has velocity spectrum 0 	 s 	 1. The Davydov soliton d
moves along the chain with constant velocity and unchanged shape for s D 1. The
profile of the soliton after passing over 1,000 links coincides completely with the
initial profile (see Fig. 7.7 left).

The soliton of the first acoustic mode has a two-humped profile with respect
to each component. This two-humped profile is barely noticeable for s close to 1
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Fig. 7.7 Left: Profile of the soliton d for s D 1:0 at the initial time � D 0 and time � D 1;000:05,
after passing over 1,000 chain links. Right: Profile of the soliton a1 for s D 1:004 at the initial time
� D 0 and time � D 995:825, after passing 1,000 chain links

Fig. 7.8 Left: Profile of the soliton a1 at the initial time � D 0 (lines 1–3) and at � D 954:05 (lines
4–6), after passing over 1,000 chain links at s D 1:05. At the final time the soliton has velocity
s D 1:046. Right: Profile of the soliton a2 at the initial time � D 0 and at � D 996:05 after passing
over 1,000 chain links at s D 1:004

(Fig. 7.7 right), but it becomes more pronounced with increasing velocity (Fig. 7.8
left). This can be accounted for only by the pairing of two acoustic solitons due to
their interaction with a quasi-particle. The solitons of this mode are dynamically
stable. At the initial velocity s D 1:004, the soliton a1 moves with constant velocity
and keeps its shape. Its profile at the initial time � D 0 coincides completely with
its profile at time � D 995:825, after passing over 1,000 chain links (Fig. 7.7
right). With increasing velocity s, the acoustic soliton diameter decreases, and
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Fig. 7.9 Left: Profile of the soliton a2 at the initial time � D 0 (lines 1–3) and at time � D 956:05

(lines 4–6), after passing over 1,000 chain links at s D 1:05. At the final time the soliton has the
velocity s D 1:046. Right: Dependence of the threshold ��1=2

p on G found numerically (points)

and its linear approximation ��1=2
p D a1 C a2G (line) found by the method of least squares

.a1 D 0:16606 and a2 D 3:08087/

this leads to decreasing accuracy of the soliton solutions obtained by the self-
consistency procedure for the discrete equations (7.85) and (7.86). At the initial
velocity s D 1:05, the soliton a1 moves along the chain keeping its shape, but its
velocity becomes s D 1:046 (Fig. 7.8 left).

The soliton of the mode a2 has a one-humped profile with respect to both
components (Figs. 7.8 right and 7.9 left). The solitons are dynamically stable. For
s D 1:004, the soliton a2 propagates along the chain keeping its shape. Its profile at
the initial time � D 0 coincides completely with its profile at time � D 996:05, after
passing over 1,000 chain links (Fig. 7.8 right). For s D 1:05, the soliton moves with
velocity s D 1:046, keeping its shape (Fig. 7.9 left).

The difference between the energies of the solitons a1 and a2 at all velocities is
approximately equal to the energy of one pure acoustic soliton (see Fig. 7.6 right).
This supports the idea that the solitons a1 and a2 are the bound states of a quasi-
particle with two and one acoustic solitons, respectively.

For 
 D 0:3, ˛ D 0:01, g D 1:0, and se D 2, (7.66) has solution s D 1:002057.
At this velocity, by virtue of (7.65) and (7.71)–(7.73), the two-component soliton
corresponding to the solution (7.64) has energy E D 0:0503459 and diameters
L1 D 10:238809 and L2 D 16:351806. Equation (7.68) has the solution s D
1:01658. At this velocity, by virtue of (7.69), (7.70), (7.74), and (7.75), the two-
component soliton corresponding to the solution (7.67) has energy E D 0:1742091

and diameters L1 D L2 D 5:2087173. The values of E, L1, and L2 obtained for
the solution (7.64) lie exactly on the curves E.s/, L1.s/, and L2.s/ corresponding
to the soliton a1, while those obtained for the solution (7.67) lie on the curves E.s/,
L1.s/, and L2.s/ corresponding to the soliton a2 (see Fig. 7.6 right). Therefore, the
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solution (7.64) corresponds to the soliton mode a1, the solution (7.67) for s > 1,
i.e., for 
 > g=2

p
s2e � 1, corresponds to the soliton mode a2, while for s 	 1, i.e.,

for 
 	 g=2
p
s2e � 1, it refers to the soliton mode d. Note that the mode d at s D 1

changes directly to the mode a1, and there is a gap in the velocity spectrum between
the modes d and a2 (see Fig. 7.6 right).

The Lagrangian L1 for s 	 0:98 gives almost the same profile for the soliton d
as the Lagrangian L2. The difference appears only in the range of s D 1, when
consideration of acoustic phonon dispersion is already required (Fig. 7.6 right).
Therefore, use of the Lagrangian L2 is justified only for transonic and supersonic
velocities. Thus, for se < 1, when only solitons d with velocity spectrum 0 	 s < se

exist, it makes sense to use only the Lagrangian L1 and search for the soliton profile
numerically by solving the constrained minimum problem (7.83). We will apply this
method to further investigate Davydov solitons in a chain with substrate.

The results of this section were published in [139, 140].

7.4 Quasi-particle Autolocalization in a Chain with Substrate

Let us consider the quantum quasi-particle dynamics in a harmonic chain with an
external substrate. When we take into account the quasi-particle interaction with
acoustic phonons alone, the Hamiltonian function of the chain given by (7.11) and
(7.12) has the form

H D
X

n

��
"0 C �.ynC1 � yn�1/

�
�n�

�
n � J.��

n �nC1 C �n�
�
nC1/

C 1

2
M 0 Py2n C �

2
.ynC1 � yn/2 C Kı

2
y2n

	
: (7.90)

Here, as before, f�ngnDC1
nD�1 is the complex-valued quasi-particle wave function

which satisfies the normalization condition (7.5), "0 is the energy of a quasi-particle,
located at one molecule of the non-deformed chain, J is the energy of the quasi-
particle hopping onto a neighboring molecule (the same for all molecules), � is the
EPI parameter (for definiteness, the symmetrical EPI is considered), M 0 is the total
mass, � is the stiffness coefficient of the intermolecular interaction, and Kı is the
stiffness coefficient of the interaction between the chain molecules and the substrate.

The Hamiltonian function (7.90) yields the equations of motion

i¯ P�n D � J.�n�1 C�nC1/C �
"0 C�.ynC1 �yn�1/

�
�n;

M 0 Ryn D �.ynC1 � 2yn Cyn�1/�Kıyn C�.j�nC1j2 � j�n�1j2/;

9
=

; n D 0;˙1;˙2; : : : :

(7.91)
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For convenience, we introduce the dimensionless displacement un D �yn=2� and
time � D v0t=a D t

p
�=M 0. Then (7.91) takes the form

i�n0 D �D.�n�1 C�nC1/C
�
�0 C 1

2
g.unC1 � un�1/

�
�n;

un00 D unC1 � 2un C un�1 � �un C 1

2
.j�nC1j2 � j�n�1j2/;

un C 1

2
.j�nC1j2 � j�n�1j2/;

9
>>>>>=

>>>>>;

n D 0;˙1;˙2; : : : ;

(7.92)

where

D D J

¯p�=M 0 D aJ

¯v0
; �0 D "0

¯p�=M 0 D a"0

¯v0
; g D 4�2

�¯p�=M 0 D 4�2a

�¯v0
;

and � D Kı=� are the dimensionless coefficients, and the prime denotes differenti-
ation with respect to the dimensionless time � .

We represent the quasi-particle wave function in the form of the ansatz

�n.�/ D 'n.�/ exp
n
i
�
nk � .�C �0 � 2D cos k/�

�o
; (7.93)

where f'n.�/gC1
nD�1 is the real-valued wave function which, by virtue of (7.5),

satisfies the normalization condition

X

n

'2n D 1 : (7.94)

Then (7.92) takes the form

'n
0 D D.'n�1 � 'nC1/ sin k ;

�'n D �D.'nC1 � 2'n C 'n�1/ cos k C 1

2
g.unC1 � un�1/'n ; (7.95)

un
00 D unC1 � 2un C un�1 � �un C 1

2
.'2nC1 � '2n�1/ ;

for n D 0;˙1;˙2; : : :. In the continuum approximation, we have

'n.�/ D '.n � s�/ D '.
/ ; un.�/ D u.n � s�/ D u.
/ ;

where s is the dimensionless velocity of the wave with constant profile, 
 is the wave
variable, and the derivatives are

un
00 D s2

d2u

dn2
D s2.unC1 � 2un C un�1/ ;
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'n
0 D �s d'

dn
D � s

2
.'nC1 � 'n�1/ :

Therefore the discrete equations (7.95) can be rewritten in the form

s D 2D sin k ;

�'n D �D.'nC1 � 2'n C 'n�1/ cos k C 1

2
g.unC1 � un�1/'n ; (7.96)

0 D .1 � s2/.unC1 � 2un C un�1/ � �un C 1

2
.'2nC1 � '2n�1/ ;

for n D 0;˙1;˙2; : : :.
Let us introduce new dimensionless displacements vn D .1 � s2/un. Then the

discrete equations (7.96) can be rewritten as

G.'nC1 � 2'n C 'n�1/C .vnC1 � vn�1/'n C Q�'n D 0 ;

�vnC1 C 2vn � vn�1 C �vn C 1

2
.'2n�1 � '2nC1/ D 0 ;

9
>=

>;
n D 0;˙1;˙2; : : : ;

(7.97)

where the new dimensionless coefficients are

G D 2D.1 � s2/ cos k

g
D �¯.v20 � v2/

p
v2ex � v2

4a�2v20
;

� D Kı
�.1 � s2/ ;

Q� D �2�.1 � s2/
g

:

(7.98)

Here, v0 D a
p
�=M 0 is the sound velocity in the chain, vex D 2aJ=¯ is the

maximum quasi-particle velocity, and v D sv0 is the soliton velocity.
The system of discrete equations (7.97) is the Lagrange–Euler system for the

constrained minimum problem

F D 1

2

X

n

h
G.'nC1 � 'n/2 C .vnC1 � vn�1/'2n C .vnC1 � vn/

2 C �v2n
i

�! min W
X

n

'2n D 1 : (7.99)

The Lagrange multiplier Q� is found from the normalization condition (7.94), whence
Q� D �Pn

�
G.'nC1 � 'n/2 C .vnC1 � vn�1/'2n

�
, since

P
n F'n'n D 0.

Therefore, a soliton solution to the equations of motion (7.92) can be found
numerically by solving the constrained minimum problem for a finite cyclic chain
consisting of N molecules (7.99) using a descent method. We define the soliton
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Table 7.9 Dependencies of �p and Lp.�p/ on the parameter G

G 0.2 0.3 0.5 0.7 1.0 1.5 2.0 2.5

�p 1.460 0.802 0.346 0.190 0.0979 0.044 0.025 0.016

L.�p/ 4.57 5.70 6.76 8.63 12.3 14.8 19.1 23.1

diameter f'0n; v0ngNnD1 by the equation L D 2
�P

n.m � n/2'0n
2�1=2

, where m D
P

n n'
0
n

2
is the soliton centre. To obtain the soliton solution, one must take the

numberN of molecules in the chain to be ten times greater than the soliton diameter
L (in this case, the periodic boundary conditions do not influence the soliton shape).

Numerical solution of the problem (7.98) has shown that soliton solutions exist
only for parameter values � less than the threshold value �p.G/, which depends on
the parameter G. For � 	 �p.G/, a stable localized soliton solution exists, while
for � > �p.G/, only the stable exciton solution '0n � 1=

p
N , v0n � 0 exists.

Note that, in a chain without substrate (� D 0), the soliton solution exists for all
values of the parameter G. Introducing the substrate (� > 0) increases the soliton
diameter L.�/ and decreases the energy of the quasi-particle coupling with chain
deformation. With increasing �, L.�/ increases steadily as well. The values of �p

and Lp.�p/ for specific values of the parameter G are given in Table 7.9.
Consider now the position of the points

�
G; 1=

p
�p.G/



found on the plane

.G; 1=
p
�/. Using the method of least squares, we obtain the line which gives

the best fit for the function 1=
p
�p.G/. As can be seen from Fig. 7.9 (right), this

line 1=
p
�p.G/ D a1 C a2G, with a1 D 0:16606 and a2 D 3:080865, passes

through almost all these points. Therefore, the Davydov soliton in the chain with
the substrate, i.e., the soliton solution of (7.92), exists only if

.3:080865G C 0:16606/2� 	 1 ; (7.100)

where the dimensionless parameters G and � are defined according to (7.98). The
dependence of the root-mean-square diameter of the soliton on the parameters G
and � in the soliton existence range is shown in Fig. 7.10 (left). Note that all the
results obtained are also valid for a chain with non-symmetric EPI, and in this case
one must put � D .�L C �R/=2 in (7.98).

Consider now the dynamics of one quantum of the intramolecular amide-I
excitation in a cyclic chain with a substrate where the chain dynamics is described
by the equations of motion (7.91) with n D 1; 2; : : : ; N (n C 1 D 1 for n D N

and n � 1 D N for n D 1). We choose the parameter values corresponding
to a chain of hydrogen-bonded peptide groups in the ˛-helix protein molecule:
"0 D 0:22 eV, a D 4:5 � 10�10 m, J D 1:55 � 10�22 J, M 0 D 114:2mp,
� D 13N/m, � D 0:4 � 10�10 N, where mp is the proton mass. At these values, the
sound velocity v0 D 3;712:5m/s is greater than the maximum velocity of excitation
motion vex D 1;322:9m/s .sex D vex=v0 D 0:356338/. A soliton solution will be
found numerically, solving the constrained minimum problem (7.99) by a simple
descent method.
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Fig. 7.10 Left: Dependence of the root-mean-square diameter of the soliton L on the dimen-
sionless parameters

p
� and G in the range of soliton existence, which lies under the hyperbolap

� D 1=.a1 C a2G/ (thick line). Points show the values found numerically. Thin lines show the
level lines of the function L.G;

p
�/, and numbers on the lines give the function values. Right:

Profile of the soliton in the chain with the substrate .K
ı

D 5N/m) (a) and without (K
ı

D 0) (b)

The condition (7.100) determines the values ofKı for which the Davydov soliton
exists. The stationary soliton .s D 0; v D 0/ exists for Kı 	 2:93N/m, and the
soliton moving with velocity v D 928:1m/s .s D 0:25/ exists for Kı 	 5:70N/m.
The profile of the soliton with dimensionless velocity s D 0:25 is shown in Fig. 7.10
(right) whenKı D 5:6N/m and, for comparison, whenKı D 0. The soliton motion
in the free chain with free ends .Kı D 0/ leads to displacement of the whole chain,
in contrast to the motion in a chain with substrate .Kı > 0/ (a local deformation
with constant profile moves along the chain).

The soliton dynamics in an infinite chain is conveniently modeled in a finite
cyclic chain consisting of N D 100 molecules. This dynamics is described by the
dimensionless equations of motion

i�n0 D �D.�n�1 C �nC1/C 1

2
g.unC1 � un�1/�n ;

un00 D unC1 � 2un C un�1 � �un C 1

2
.j�nC1j2 � j�n�1j2/ � 
un0 ;

(7.101)

where n D 1; 2; ::; N (n C 1 D 1 for n D N and n � 1 D N for n D 1), 
 is
the coefficient of viscous friction (�0 D 1=
 is the dimensionless time of velocity
relaxation in the phonon subsystem). The following initial conditions of the system
correspond to the soliton (7.101):

�n.0/ D '0n exp.ink/ ; un.0/ D v0n
1 � s2 ; un

0.0/ D �s�unC1.0/ � un.0/
�
;

where n D 1; : : : ; N , s is the dimensionless soliton velocity, f'0n; v0ngNnD1 is the
soliton solution of the constrained minimum problem (7.99), and k D arcsin.s=sex/

is the wave number.
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Fig. 7.11 Left: Soliton dynamics in the chain with substrate and friction for K
ı

D 5N/m and
K

ı

D 2:5N/m .
 D 0:2; s D 0:25/. Right: Thermalization of the cyclic chain consisting of
N D 50 PGs at T D 300K. Dependence of the thermalization coefficient F.t/ on time t at
tc D 0:001 ps (line 1, F D 1:97) and tc D 0:0216 ps (line 2, F D 0:843)

Numerical integration of (7.101) with N D 100 and 
 D 0 has shown stability
of the Davydov soliton in the chain with the substrate. The soliton moves along
the chain with constant velocity, keeping its shape. It has the velocity spectrum�
sm.Kı/; sex



, where the minimum velocity sm is found from the equation

.3:080865G C 0:16606/2� D 1

so sm D 0 for Kı 	 2:93N/m and sm > 0 for Kı > 2:93N/m. With increasing
Kı, sm tends monotonically to sex. If viscous friction is introduced into the chain
model .
 > 0/, the soliton should have a finite lifetime for sm > 0. In this case,
friction causes the soliton to slow down to a minimum velocity sm, and then it should
collapse. If sm D 0, the soliton slowdown should not cause its collapse.

To test this, we consider the soliton dynamics in a chain with friction (
 D 0:2)
for Kı D 5N/m .sm D 0:23/ and Kı D 2:5N/m .sm D 0/. Let the soliton have
the velocity s D 0:25 at the initial time. Then, as shown in Fig. 7.11 (left), when
Kı D 5N/m, friction causes the soliton to slow down to the critical velocity sm D
0:23 and then causes it to collapse. When Kı D 2:5N/m, friction results only in a
smooth slowdown of the soliton without breaking it (the soliton eventually stops).
This behavior of the soliton in the chain with friction confirms the result concerning
the necessity and sufficiency of the condition (7.100) for the existence of a Davydov
soliton in a chain with substrate.

7.5 Autolocalized State Dynamics of a Thermalized Chain

Here we consider the dynamics of an autolocalized state of intramolecular excitation
(Davydov soliton) in a thermalized chain when its interaction with the acoustic and
optical modes of the molecular chain is taken into account [141–146]. We will
describe the chain interaction with a heat bath using the Langevin equation and
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introduce friction and colored noise into the acoustic subsystem which characterizes
this interaction. We assume that the higher-amplitude optical subsystem is thermal-
ized through its interaction with the acoustic subsystem.

7.5.1 Acoustic and Optical Vibrations

We consider a one-dimensional chain of hydrogen-bonded peptide groups. The
peptide groups, allowing internal motion of the proton, are located along the x-axis
at the chain sites x D na, where n D 0;˙1;˙2; : : : ; is the site number and a is the
chain spacing. If yn is the displacement of the nth PG from its equilibrium position
and xn is the displacement of the hydrogen of this PG, the Hamiltonian takes the
form

Hlat D
X

n

�
m

2
Px2n C M

2
Py2n C V.ynC1 � yn/C K

2
.yn � xn/2 C Kı

2
y2n

�
;

where the dot denotes differentiation with respect to time t , m and M are the
reduced hydrogen and PG masses, respectively, and K is the elasticity constant of
the intrapeptide displacement of hydrogen. The Morse potential V.�/ D �ı.e�b� �
1/2 describes the hydrogen bond between PGs, �ı is the bonding energy, and
b D p

�=2"ı is the phenomenological parameter. For small deformations of the
bond �, we have V.�/ 
 ��2=2, where � D V 00.0/ is the stiffness of the bond.
The interaction of the nth PG with the chain substrate is described by the potential
Vı.yn/ D Kıy2n=2, where Kı is the stiffness of its interaction. The chain is shown
schematically in Fig. 7.1.

In the calculation we use the parameter values

�ı D 0:17 eVD 2:72357 � 10�20 J [147] ; m D mp D 1:67343 � 10�27 kg ;

M D 113:2mp D 1:89432 � 10�25 kg ; � D 13N/m ; a D 4:5Å [10] :

The transverse intrapeptide vibration of hydrogen (the amide-V vibration) is
characterized by the frequency ˝V D 640–800 cm�1 [148]. The elastic constant
here is K D ˝2

V	 D 30:5116N/m, which corresponds to the average value of ˝V,
viz., 720 cm�1 D 1:35625 � 1014s�1, where 	 D Mm=.M C m/ is the reduced
mass of the vibration. The value of the coefficient Kı depends on the structure
of the protein molecule characterized by a high packing density. The values of
Kı are maximum when the PG is located within a protein globule and minimum
when the PG is on its surface. In the latter case, structured water surrounding
the macromolecule forms a substrate. Let us take the value Kı D 4N/m, which
corresponds to the stiffness of the interaction with the substrate for structured (ice-
like) water.
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The small-amplitude vibrations of the chain are described by the equations of
motion

m Rxn D K.yn � xn/ ;
M Ryn D �.ynC1 � 2yn C yn�1/ �K.yn � xn/ �Kıyn ;

where n D 0;˙1;˙2; : : : . The dispersion law for the small-amplitude vibrations

xn.t/ D Ax exp
�
i˝.q/t C 2qni

�
; yn.t/ D Ay exp

�
i˝.q/t C 2q.nC 1/i

�
;

has the form

˝a.q/ D
q
A.q/ �

p
A2.q/ � B.q/ ;

for the acoustic branch, and

˝o.q/ D
q
A.q/C

p
A2.q/ � B.q/ ;

for the optical one. Here

A.q/ D MK Cm.K CKı C 4� sin2 q/

2mM
; B.q/ D K

Kı C 4� sin2 q

mM
;

and q 2 Œ0; �=2� is the dimensionless wave number. The frequencies of the acoustic
vibrations are ˝a.0/ 	 ˝a.q/ 	 ˝a.�=2/, while those of the optical vibrations are
˝o.�=2/ 	 ˝o.q/ 	 ˝o.0/, with

˝a.0/ D 24:3 cm�1 ; ˝a.�=2/ D 90:9 cm�1 ;

˝o.�=2/ D 719:86 cm�1 ; ˝o.0/ D 719:91 cm�1 .

The Einstein temperature is TE 	 ¯˝a.�=2/=kB D 130:7K for the acoustic branch
and TE D ¯˝V=kB D 1;035:8K for the optical branch, with ¯ and kB the Planck
and Boltzmann constants, respectively. It is clear that, at T D 300K, the optical
vibrations are almost not thermalized. To describe thermalization of the acoustic
vibrations, the methods of classical mechanics can be used.

7.5.2 Langevin Equation

We describe thermalization of the vibrational mode with frequency ˝ using the
Langevin equation

Ru C˝2u C � Pu D 
.t/=	 ;
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where u is the vibration coordinate, � D 1=tr, with tr is the relaxation time of
the vibration, and 
.t/ is the normally distributed random force describing the
interaction of the mode with a heat bath at temperature T . The autocorrelation
function of the random force is

˝

.t/
.t 0/

˛ D 2	� kBT '.t � t 0/, where the dimen-
sionless autocorrelation function '.t/ is normalized according to the conditionR C1

�1 '.t/dt D 1.
In thermal equilibrium, the average energy of thermal vibrations of the mode is

determined by the relation

E D lim
t!1

1

�

Z �

0

	

2
.Pu2 C˝2u2/dt D

Z C1

0

	.!2 C˝2/ jH.!/j2 F.!/d! ;

where H.!/ D �
M.˝2 � !2 C i!� /

��1
is the response function for the Langevin

equation and the Fourier transform of the autocorrelation function is

F.!/ D 1

2�

C1Z

�1

˝

.t/
.0/

˛
exp.�i!t/dt D 	� kBT

�

C1Z

�1
'.t/ exp.�i!t/dt :

Therefore, E D K C P , where the average values of the kinetic K and potential P
energies of the vibrations are

K D 2kBT�

C1Z

0

!2F .!/d!

.˝2 � !2/2 C !2� 2
; P D 2kBT�

C1Z

0

˝2F .!/d!

.˝2 � !2/2 C !2� 2
;

(7.102)

and the Fourier transform of the dimensionless autocorrelation function '.t/ is

F .!/ D 1

2�

Z C1

�1
'.t/ exp.�i!t/dt :

For a delta-correlated random force (the case of the Langevin equation with white
noise), we have '.t/ D ı.t/ and F .!/ D 1=2� . The integrals (7.102) are easily
found by a contour integration method. Finally, we obtain the vibration energy E D
kBT , P D K D kBT=2 .˝ ¤ 0/, and the amplitude A D p

kBT=	˝2.
The Langevin equation with white noise describes the thermal vibrations of the

mode (of the harmonic oscillator) in the classic approximation, where the average
energy is E D kBT . In the case of quantum oscillator, the average energy is

E D ¯˝
�
1

2
C 1

exp.¯˝=kBT / � 1
�
;
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and the heat capacity of the oscillator is c.˝; T / D dE.˝; T /=dT D kBFE.˝; T /,
where the Einstein function is

FE.˝; T / D
� ¯˝
kBT

�2 exp.¯˝=kBT /
�

exp.¯˝=kBT / � 1�2
:

As T ! 0, the heat capacity c.˝; T / ! 0, and c.˝; T / D kB for high
temperatures. Therefore, at low temperatures T < TE, the vibrations of the quantum
oscillator are frozen out. The Einstein temperature TE D ¯˝=kB is determined from
the equation FE.˝; TE/ D e=.e � 1/2 D 0:9206735. The classical approximation
for the description of thermal vibrations can be used only for temperatures T > TE.

Without taking into account zero-point vibrations, the degree of thermalization
of the quantum oscillator can be characterized by the coefficient

G.˝; T / D ¯˝=kBT

exp.¯˝=kBT / � 1 :

The coefficient G.˝; T / ! 0 as T ! 0, G.˝; TE/ D 1=.e � 1/ D 0:5819767 at
T D TE, and G.˝; T / ! 1 as T ! 1. Therefore, at temperature T , the vibrations
of the frequencies ˝ > ˝E.T / D kBT=¯ are frozen out. The Langevin equation
with white noise cannot be used to describe them.

Partial thermalization of the high-frequency vibrations and total thermalization
of the low-frequency ones can be obtained using the Langevin equation with colored
noise which contains only low-frequency components. By analogy with light, this
colored noise could be called red noise. The autocorrelation function of the noise
should depend on the temperature. Let us find this dependence in the case of an
exponentially correlated random force, when

'.t/ D �

2
exp.�j�t j/ ; F .!/ D �2

2�.!2 C �2/
;

where � D 1=tc, and tc is the correlation time of the random force.
For the exponentially correlated random force, the mean values of the kinetic

and potential energies are K D kBTfK.˝; �; �/=2 and P D kBTfP.˝; �; �/=2,
respectively, where

fK.˝; �; �/ D �2

�2 C �� C˝2
; fP.˝; �; �/ D �2.˝2 C �2 � � 2/C �� ˝2

.˝2 C �2/2 � � 2�2
;

are the dimensionless functions. The dependence of the correlation coefficient � on
the temperature can be found from the equation

g.kBT=¯; �; �/ D G.kBT=¯; T / D 1

e � 1 ;
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where

g.˝; �; �/ D 1

2

�
fK.˝; �; �/C fP.˝; �; �/

�
:

For � � kBT=¯, this equation can be rewritten in the simpler form:

�2

�2 C .kBT=¯/2 D 1

e � 1 :

From this equation we obtain the linear dependence of the correlation coefficient on
the temperature:

� D 1=tc D kBT=¯
p
e � 2 : (7.103)

7.5.3 Chain Thermalization

The chain of PGs in a protein macromolecule interacts with a heat bath via amino
acid residues. Therefore, in order to take into account the interaction with the heat
bath, it suffices to introduce friction and random external forces acting only on
the PGs (intrapeptide vibrations are thermalized through the thermal motion of the
peptide groups).

Let us first consider how thermalization of intrapeptide vibrations proceeds in an
isolated PG. The PG dynamics is given by the equations of motion

m Rx D K.y � x/ ;
M Ry D K.x � y/ � �M Py C 
 ;

where the coordinate x describes the displacement of the hydrogen atom in the PG
and y is the displacement of the PG as a whole (x D y for a non-deformed bond).
Substituting u D x � y and v D .mx CMy/=Mt, this system takes the form

	Ru D �Ku � �	2

M
Pu � 	

M

 �


 	
M

�2
Kıu CKı

m

Mt
v C �	Pv ;

Mt Rv D �Kıv � �M Pv C 
 CKı
	

M
u C �	Pu ;

where Mt D M Cm and 	 D mM=Mt are the total and reduced masses of the PG,
respectively. Since m � M and the displacement of the centre of gravity occurs
much more slowly than the changes in the intrapeptide position of the hydrogen
atom, the last three terms in the first equation and the last two terms in the second
equation of this system can be neglected. The system then splits into the two separate
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Langevin equations

	Ru D �Ku � 	� 0 Pu C 
 0 ;

Mt Rv D �Kıv �Mt�
00 Pv C 
 00 ;

where � 0 D 1=tr
0 D 	�=M D 	=Mtr and � 00 D 1=tr

00 D M�=Mt D M=Mttr are
the friction coefficients, and the random forces 
 0.t/ D 	
.t/=M and 
 00.t/ D 
.t/

have the autocorrelation functions

˝

 0.t/
 0.t 0/

˛ D 2	� 0kBkBT '.t � t 0/ ; ˝

 00.t/
 00.t 0/

˛ D 2Mt�
00kBT '.t � t 0/ ;

h
 0.t/
 00.t 0/i D 0 :

Therefore, the relaxation time tr0 D .1CM=m/tr of intrapeptide vibrations is more
than two orders of magnitude greater than the relaxation time tr00 D .1 C m=M/tr
of acoustic waves.

Next we consider a cyclic chain consisting of N molecules. The dynamics of the
PG chain is given by the equations of motion

m Rxn D K.yn � xn/ ; (7.104)

M Ryn D F.ynC1 � yn/ � F.yn � yn�1/ �Kıyn � �M Pyn C 
n.t/; (7.105)

where n D 1; 2; : : : ; N (nC1 D 1 for n D N and n�1 D N for n D 1), 
n.t/ is the
normally distributed random force with autocorrelation functions

˝

n.t/
m.t

0/
˛ D

2M� kBT '.t � t 0/ınm, and F.�/ D dV.�/=d�. To model thermalization of the
chain by exponential colored noise '.t/ D exp.�jt j=tc/=2tc, (7.104) and (7.105)
are conveniently completed by the equations

P
n D t�1c

�
�n.t/ � 
n.t/

�
; (7.106)

where �n.t/ is the independent, normally distributed, delta-correlated random force:˝
�n.t/�m.t

0/
˛ D 2M� kBT ı.t � t 0/ımn.

Let us suppose that the chain have zero temperature at the initial time, i.e., the
chain is in the ground state fxn.0/ D 0; Pxn.0/ D 0; yn.0/ D 0; Pyn.0/ D 0gNnD1. Then
the energy of the acoustic thermal vibrations grows proportionally to the function
E 00.t/ D 1 � exp.�t=tr00/, and the energy of the optical thermal vibrations grows
proportionally to the function E 0.t/ D 1�exp.�t=tr0/. Therefore, in order to model
thermalization of this chain, it suffices to integrate (7.104)–(7.106) over the time
interval 0 	 t 	 5tr

0 D 5.1CM=m/tr.
The friction coefficient is determined by � D 6�b�=M , where b D 1–10 Å is

the characteristic linear size of the mobile amino acid residue, and � is the viscosity
of the medium. For water, � D 10�3 kg/m s, so � D .1–10/ � 1013 s�1. We take
the minimum value � D 1013 s�1, which corresponds to the relaxation time tr D
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0:1 ps. The correlation time of the random force tc can be found from (7.103). At
the physiological temperature T D 300K, tc D 0:0216 ps.

Note that the correlation time of the random force should roughly match
the correlation time of molecular displacements in the heat bath. For protein
molecules, the heat bath is formed by the surrounding structured water, whose
dynamics can be described by the equation of restricted diffusion: '.t/ D
kBT exp.�Kıt=Mı� /=Kı [149, 150], where Mı D 18mp is the mass of the water
molecule. Assuming that, at the physiological temperature, the friction coefficient
of the water molecules is � D 1013 s�1, the correlation time of the displacements
is tc0 D Mı�=Kı D 0:075 ps. On the other hand, in their work [151] devoted to a
study of the motion of the aromatic ring Tyr–21 in the protein molecule, a trypsin
inhibitor, Karplus and McCammon have shown that the average time between
significant changes in the random force is 0.07 ps. This approximate estimate does
not contradict the value tc D 0:0216 ps we obtained at T D 300K. This fact
indirectly confirms (7.103).

The character of chain thermalization at time t is conveniently described by the
degree of thermalization of optical and acoustic vibrations

Fo.t/ D
NX

kD1
	. Pxn � Pyn/2=NkBT ; Fa.t/ D

NX

kD1
.m Pxn �M Pyn/2=MtNkBT ;

their amplitudes

Ao.t/ D
"

NX

kD1
.xn � yn/2=N

#1=2
; Aa.t/ D

"
NX

nD1
.ynC1 � yn/2=N

#1=2
;

and the function F.t/ D Hlat=NkBT .
Equations (7.104)–(7.106) with N D 50 were integrated numerically by the

standard fourth-order Runge–Kutta method with constant grid spacing �t D
0:001 ps [123], using the lagged Fibonacci random number generator [152]. The
process of chain thermalization is shown in Fig. 7.11 (right). As can be seen from
this figure, complete thermal equilibrium is achieved over the time 5tr0 D 57:1 ps.
After approaching thermal equilibrium, the mean values of F o, F a, Ao, Aa, and F
can be found. On the other hand, these values can be found analytically using the
relations for the integrals (7.102):

QFo D
NX

nD1
fK.˝o.qn/; �

0; �/=N ;

QFa D
NX

nD1
fK.˝a.qn/; �

00; �/=N ;
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Table 7.10 Dependencies of the mean values of QFo, F o, QFa, F a, QF , F , QAo, Ao, QAa, and Aa on the
temperature T (amplitudes given in angstroms)

T (K) QFo F o QFa F a QF F QAo Ao QAa Aa

50 0.003 0.003 0.299 0.230 0.380 0.288 0.003 0.003 0.057 0.042

100 0.013 0.013 0.449 0.444 0.605 0.493 0.008 0.008 0.089 0.073

150 0.028 0.027 0.587 0.580 0.742 0.620 0.014 0.014 0.112 0.098

200 0.049 0.043 0.676 0.681 0.834 0.717 0.021 0.020 0.132 0.116

250 0.078 0.078 0.741 0.741 0.913 0.796 0.030 0.030 0.149 0.133

300 0.104 0.105 0.778 0.767 0.965 0.843 0.038 0.038 0.164 0.146

QA2o D
NX

nD1
kBTfP.˝o.qn/; �

0; �/=˝2
o .qn/	N ;

QA2a D
NX

nD1
kBTfP.˝a.qn/; �

00; �/=˝2
a .qn/MtN ;

QF D
NX

nD1

�
g.˝o.qn/; �

0; �/C g.˝a.qn/; �
00; �/

�
=N ;

where qn D ��=2 C �n=N . The dependencies of these mean values on the
temperature of the heat bath T are given in Table 7.10. As can be seen from
Table 7.10, optical vibrations are weakly thermalized. Chain thermalization occurs
due to the energy being pumped into acoustic vibrations.

When taking into account thermal vibrations, the thermalization coefficient of
the chain is

OF .T / D
NX

nD1

h
G
�
˝o.qn/; T


CG
�
˝a.qn/; T


i
=N ;

and the dimensionless heat capacity of the chain is

C.T / D
NX

nD1

h
FE
�
˝o.qn/; T


C FE
�
˝a.qn/; T


i
=N :

The temperature dependence of the functions QF .T /, OF .T /, and F .T /, characteriz-
ing the degree of chain thermalization, and the functions d

�
T QF .T /�=dT and C.T /

characterizing the heat capacity of the chain, is shown in Fig. 7.12. As can be seen
from this figure, the functions QF .T / and d

�
T QF .T /�=dT are good approximations to

the functions OF .T / and C.T /, respectively. One can thus use the Langevin equation
with exponentially correlated colored noise, whose correlation coefficient depends
on temperature according to (7.103), to carry out molecular dynamics simulation
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Fig. 7.12 Dependence of the
thermalization coefficientsQF .T /, OF .T /, F .T / (lines
1–3), the heat capacity
dŒT QF .T /�=dT , and C.T /
(lines 4 and 5)

of the pure quantum effect constituted by the decrease in the heat capacity of a
molecular system when it is cooled.

7.5.4 Soliton States of Intrapeptide Amide-I Excitation

The dynamics of one quantum of the intrapeptide amide-I excitation is described
by the equations of motion (7.7)–(7.9). Let us consider the excitation dynamics in
a homogeneous chain. In this case, we can put Jn D J � �D.yn � yn�1/ in (7.7)
and Mn � M in (7.8). Since for the chain of hydrogen-bonded PGs �L � �R and
�D D 3J=a � �R [122], we assume �L D 0 and �D D 0. Then the Hamiltonian
function takes the form

H D Hlat C Hex

D Hlat C
X

n

n�
"0 C �O.yn � xn/C �R.ynC1 � yn/

�
�n�

�
n (7.107)

�J.�n��
nC1 C ��

n �nC1/
o
:

The Hamiltonian function of the chain yields the equations of motion

i¯ P�n D �
"0 C �O.yn � xn/C �R.ynC1 � yn/

�
�n � J.�nC1 C �n�1/ ; (7.108)

m Rxn D K.yn � xn/C �Oj�nj2 ; (7.109)

M Ryn D F.ynC1 � yn/ � F.yn � yn�1/ �K.yn � xn/
�Kıyn � �Oj�nj2 C �R.j�nj2 � j�n�1j2/ ; (7.110)

where n D 0;˙1;˙2; : : : .
To find the autolocalized state of the excitation (soliton), we use the numerical

method from the previous section. In the long-wave approximation

�n.t/ D '.na � vt / exp
n
i
�
kn � ."0 C �/t=¯�

o
; (7.111)
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where '.z/ is a smooth real function and v is the soliton velocity. After substituting
in (7.111), the normalization condition (7.5) takes the form

X

n

'2n D 1 ; (7.112)

and (7.108) is converted into the system of two equations

� ¯ P'n D J.'nC1 � 'n�1/ sin k ; (7.113)

�
�O.yn � xn/C �R.ynC1 � yn/

�
'n � J.'nC1 C 'n�1/ cos k D �'n ; (7.114)

where 'n D '.na � vt /.
Equation (7.113) defines the soliton velocity spectrum. To third order in a,

we have P'n D �v'z.na/ D �v.'nC1 � 'n�1/=2a, so v D vex sin k, where
vex D 2aJ=¯ is the maximum exciton velocity in the chain and k 2 Œ��=2; �=2�
is the dimensionless wave number. The parameter � in (7.114) is found from the
normalization condition (7.112) to be

� D
X

n

�
�O.yn � xn/C �R.ynC1 � yn/

�
'2n � 2J'n'nC1 cos k :

Let xn.t/ D x.na� vt / and yn.t/ D y.na� vt /. Then to fourth order in a, we have

Rxn D v2xzz D v2.xnC1 � 2xn C xn�1/=a2 ; Ryn D v2yzz D v2.ynC1 � 2yn C yn�1/=a2 :

Therefore, (7.109) and (7.110) can be written in the form

mv2.xnC1 � 2xn C xn�1/
a2

D K.yn � xn/C �O'
2
n ; (7.115)

M v2.ynC1 � 2yn C yn�1/
a2

D F.ynC1 � yn/ � F.yn � yn�1/ �K.yn � xn/

�K0yn � �O'
2
n C �R.'

2
n � '2n�1/ : (7.116)

In a cyclic chain consisting of N PGs, the solution of (7.112) and (7.114)– (7.116)
is equivalent to the solution of the constrained minimum problem

L �! min W
NX

nD1
�2n D 1 ; (7.117)
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where the functional is

L D
NX

nD1

�
� 2J'n'nC1 cos k C �

�O.yn � xn/C �R.ynC1 � yn/
�
'2n

� mv2

2a2
.xnC1 � xn/2 � M v2

2a2
.ynC1 � yn/2

C V.ynC1 � yn/C K

2
.yn � xn/2 C Kı

2
y2n

	
:

The problem (7.117) was solved numerically by the method of steepest descent
[123]. We considered the chain consisting of N D 50 PGs with resonant interaction
energy J D 1:55� 10�22 J, which corresponds to the resonant interaction energy of
neighboring PGs in an ˛-helix protein molecule [120]. The values of the exciton–
phonon interaction parameter �O; �R were varied. The descent algorithm starts at
the point

'N=2 D 1 ; 'n D 0 ; n ¤ N=2 ; xn � 0 ; yn � 0 ;

which corresponds to the localization of the excitation at one PG in the non-
deformed chain.

The autolocalized state f'0n; x0n; y0ngNnD1 found numerically is characterized by the
following quantities: the energy

E D 2J C
NX

nD1

�
� 2J'n'nC1 cos k C �

�O.yn � xn/C �R.ynC1 � yn/
�
'2n

C mv2

2a2
.xnC1 � xn/2 C M v2

2a2
.ynC1 � yn/2

C V.ynC1 � yn/C K

2
.yn � xn/2 C Kı

2
y2n

	
;

which is defined relative to the energy of the stationary exciton Eo D "0 � 2J

(the zero level of energy), the width L D .
PN

nC1 '4n/�1 (L D 1 for the excitation
localized at a single PG, 'n � 1=

p
N and L D N for the exciton), the amplitude of

the optical sublattice deformation Ao D � max.yn � xn/, and the amplitude of the
acoustic sublattice deformation Aa D � max.ynC1 � yn/.

The profile of the autolocalized state (soliton) is shown in Fig. 7.13. The
probability distribution for finding the excitation f'2ngNnD1 has a bell-shaped profile.
The compression of hydrogen bonds .ynC1 � yn < 0/ and the N–H bonds
.yn � xn < 0/, occurs in the localization region of the excitation, which stabilizes
the autolocalized state.
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Fig. 7.13 Profile of the
soliton
(s D 0:25; �O D 8�10�11 N,
�R D 4� 10�11 N) at the
initial time t D 0 (lines 1, 2,
3) and at time t D 175 ps,
after the passage of 124 chain
links in the cyclic chain
consisting of 100 PGs. The
dynamics is described by
(7.108)–(7.110) (thin lines
4–6) or by (7.118)–(7.120)
(thick lines 7–9)

As shown in the previous section, when �O D 0 (the case of the Davydov
soliton) and Kı > 0, the soliton exists only for large values of the exciton–phonon
interaction parameter �R. For low values of �R, only a stable delocalized excitation
state exists. Note that, whenKı D 0, the Davydov soliton is stable, while the exciton
is not stable for any value of the parameter �R.

In the chain with �O D 0, the stationary soliton exists only if �R � 0:8�10�10 N,
but when �O > 0, it already exists for all values of the parameter �R. With increasing
values of �R, the soliton energy decreases, the soliton becomes narrower, and the
amplitude of the acoustic sublattice deformation increases. At a fixed value of �R,
the energy and width of the soliton decrease monotonically with increasing values
of �O, and the deformation amplitudes of both sublattices increase steadily.

The soliton velocity v D vex sin k is conveniently represented in the dimension-
less form s D v=vex, where vex D 2aJ=¯ D 1;322:9m/s is the maximum soliton
velocity. With increasing velocity s, the soliton energy and the amplitudes Ao and
Aa increase steadily, while the width L decreases monotonically.

The soliton dynamics in the chain is given by (7.108)–(7.110), where, without
loss of generality, we may set "0 D 0. Let us consider the soliton dynamics in a
non-thermalized cyclic chain consisting of N D 100 PGs. For this purpose, one
must solve (7.108)–(7.110) with the initial conditions

�n.0/ D '0n exp.ikn/ ; xn.0/ D x0n ; yn.0/ D y0n ;

Pxn.0/ D �v.x0nC1 � x0n/=a ; Pyn.0/ D �v.y0nC1 � y0n/=a ;

where n D 1; 2; : : : ; N , v D svex is the soliton velocity, k D arcsin s, and
f'0n; x0n; y0ngNnD1 is the soliton solution of the problem (7.117).
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Numerical integration of the equations of motion has shown that the soliton
moves along the chain with constant velocity and keeping its shape. For s D 0:25,
�O D 0:8�10�10 N, and �R D 0:4�10�10 N, and the soliton passes over 124 chain
sites during the time t D 175 ps, which corresponds to the dimensionless velocity
s D 0:241 (see Fig. 7.13).

7.5.5 Vibrational Lattice Model of the Amide-I Excitation
Dynamics

A classical vibrational model of the intrapeptide excitation, alternative to the
quantum Davydov model considered previously, was suggested by Taneko [100–
102]. In this model, the energy of the intrapeptide amide-I vibration in a chain of
PGs has the form

Hos D
X

n

�
	

2
Pq2n C ˇ

2
q2n �QqnqnC1 C 1

2

�
RO.yn � xn/CRL.ynC1 � yn/

�
q2n

	
;

where qn is the reduced coordinate of the intrapeptide vibration of the nth PG, 	
is the reduced mass of the vibration, ˇ is the stiffness of the CDO bond, Q is the
parameter of the resonant interaction of neighboring PGs, and RO and RL are the
parameters of the vibration interaction with the optical and acoustic subsystems of
the chain. For the chain of PGs in an ˛-helix protein molecule, the frequency of
the amide-I vibration ˝I D p

ˇ=	 D 1;650 cm�1, the energy "0 D 0:205 eV,
ˇ D 1;540N/m, and 	 D 9:52634mp D 1:59416 � 10�26 kg.

The Hamiltonian of the chain H D Hos CHlat gives the equations of motion

	 Rqn D �ˇqn CQ.qnC1 C qn�1/� �RO.yn � xn/CRL.ynC1 �yn/
�
qn;

(7.118)

m Rxn D K.yn � xn/C 1

2
ROq

2
n; (7.119)

M Ryn D F.ynC1 � yn/ � F.yn � yn�1/ �K.yn � xn/ �K0yn

� 1

2
ROq

2
n C 1

2
RL.q

2
n � q2n�1/: (7.120)

Making the replacement �n D qn
p
ˇ=2"0 C i Pqn

p
	=2"0 and putting Q D 2Jˇ="0,

RO D 2�Oˇ="0, and RL D 2�Rˇ="0; we obtain

Hos D Hex �
X

n

J.�n�nC1 C ��
n �

�
nC1/

C
X

n

1

2

�
�O.yn � xn/C �R.ynC1 � yn/

�
.�2n C ��

n
2
/ : (7.121)
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The frequency of the amide-I vibration significantly exceeds the frequencies of the
optical and acoustic vibrations. Therefore, the optical and acoustic sublattices of
the chain are sensitive to the averaged amplitude of the amide-I vibration. If the
function �n.t/ in the Hamiltonian (7.121) is replaced by its average over the period
of the intrapeptide vibration, the Hamiltonian Hos coincides with the Davydov
Hamiltonian Hex. Indeed, the averages are

h�n�nC1 C��
n �

�
nC1i D

˝
ˇqnqnC1 �	 Pqn PqnC1

˛

"0
D 1

"0

h
ˇ
˝
qnqnC1

˛�	˝ Pqn PqnC1
˛iD 0 ;

˝
�2n C ��

n
2˛ D

˝
ˇq2n � 	 Pq2n

˛

"0
D 1

"0

h
ˇ
˝
q2n
˛ � 	˝ Pq2n

˛i D 0 :

Therefore, for a long period of time, both systems of equations of motion (7.108)–
(7.110) and (7.118)–(7.120) should describe the same dynamics. To test this
numerically, we consider the dynamics of the soliton autolocalized excitation state
in the framework of the vibrational model, i.e., we consider the dynamics of a
vibron–soliton.

We integrate (7.118)–(7.120) numerically with periodic boundary conditions
(n D 1; 2; : : : ; N , N D 100) and the initial conditions

qn.0/ D '0n
p
ˇ=2"0 cos.kn/ ; Pqn.0/ D �'0n

p
	=2"0 sin.kn/ ;

xn.0/ D x0n ; yn.0/ D y0n ;

Pxn.0/ D �v.x0nC1 � x0n/=a ; Pyn.0/ D �v.y0nC1 � yn/=a ;

where f'0n; x0n; y0ngNnD1 is the solution of the problem (7.117).
Numerical integration has demonstrated that the vibron–soliton in the vibrational

model is characterized by exactly the same dynamics as the Davydov soliton in
the quantum model (Fig. 7.13). The stability analysis of the numerical integration
method has shown that a much smaller integration step must be chosen for the
numerical simulation of soliton motion in the vibrational model than in the quantum
model. When using the standard fourth-order Runge–Kutta method [123], the
integration step should not exceed the value �t D 10�15 s when modeling the
Davydov soliton motion and�t D 0:25�10�15 s when modeling the vibron–soliton
motion. Therefore, for numerical modeling of the interpeptide amide-I excitation
dynamics, it suffices to restrict consideration to the quantum model discussed above.

7.5.6 Autolocalized State Dynamics of the Intrapeptide
Amide-I Vibrations in a Thermalized Chain

In a thermalized chain, the autolocalized state has a finite lifetime. Let us first
estimate how its lifetime depends on the frequency spectrum of molecular thermal



7.5 Autolocalized State Dynamics of a Thermalized Chain 305

vibrations in the chain. For this purpose, we will analyse a simplified model for
which the Hamiltonian function of the excitation has the form

H D
X

n

�
."0 C �un/�n�

�
n � J.�n��

nC1 C ��
n �nC1/C 	

2
Pu2n C �

2
u2n

�
;

where � is the EPI parameter, un is the intrapeptide displacement coordinate, and 	
is the reduced mass of the intrapeptide vibration. Let us choose J D 1:55� 10�22 J,
� D 10�10 N, and stiffness � D 30:5116N/m, and vary the mass 	, thereby
changing the frequency ˝ D p

�=	 of the intrapeptide vibration. With these
parameters, the stationary autolocalized state has width L D .

PN
nC1 '4n/�1 D 5:22.

The stabilization energy E D 0:93595 � 10�4 eV is more than two orders of
magnitude less than the energy of thermal vibrations at T D 300K.

The excitation dynamics in the thermalized chain is given by the Langevin
equations

i¯ P�n D �un�n � J.�nC1 C �n�1/ ;

Run D �˝2un � �j�nj2=	 � � Pun C 
n=	 ;

P
n D .�n � 
n/=tc ; n D 1; 2; : : : ; N :

Let the excitation at the initial time be in the stationary autolocalized state centered
at the N=2th site of the thermalized chain consisting of N D 50 molecules. The
destruction of the autolocalized state can be monitored using the autocorrelation
function D.t/ D PN

nD1 j�n.0/�nCm.t/j, where the index m is found from the
condition maxn j�n.t/j D j�N=2Cm.t/j. The state lifetime te can be obtained from
the equation t�1e

R te
0
D.�/d� D 0:9. The profiles of the excitation distribution over

the chain for t D 0 and t D te are shown in Fig. 7.14 (left).

Fig. 7.14 Left: Profiles of the excitation distribution in the thermalized chain for t D 0 (line 1)
and t D te (line 2). Frequency ˝ D 800 cm�1, T D 300K, tc D 0:001 ps, and te D 355 ps.
Right: Soliton dynamics in the thermalized chain for �O D 0:5� 10�10 N, �R D 0, K

ı

D 4N/m,
s D 0:9, and T D 300K
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Table 7.11 Dependence of te (ps) on the frequency˝ for tc D 0:001 and 0.0216 ps at T D 300K

˝ (cm�1) 25 50 100 200 400 800

tc D 0:001 3:9˙ 2:7 5:0˙ 4:9 3:9˙ 2:5 13:4˙ 7:8 71:1˙ 16:3 390:5˙ 69:2

tc D 0:0216 7:4˙ 5:5 4:5˙ 4:2 3:7˙ 2:3 19:5˙ 4:5 107:2˙ 16:8 415:0˙ 41:6

The lifetime te depends on the initial realization of the chain thermalized state.
In this sense, te D t e ˙ �e is a random variable that can be characterized by its
mean value t e and the standard deviation �e. For each value of the frequency ˝, the
lifetime te was obtained from ten different realizations of the thermalized state of
the chain. Using these values ftei g10iD1, the following estimates can be made:

t e ' 1

10
.te1 C � � � C te10 / ; �2e ' 1

10

�
.te1 � t e/2 C � � � C .te10 � t e/2

�
:

The dependence of te on the frequency ˝ for T D 300K, tc D 0:001 ps (for white
noise), and tc D 0:0216 ps (for colored noise) is given in Table 7.11.

The amplitude of thermal vibrations exceeds the amplitude of the deformation
caused by the intrapeptide excitation by more than an order of magnitude, so thermal
vibrations should lead to the rapid destruction of the soliton state. Indeed, when
˝ 	 100 cm�1, the state lifetime is only a few picoseconds. However, for large
values, an increase in the frequency˝ is accompanied by exponential growth of the
lifetime. This growth is observed with both colored or white noise. Therefore, the
growth in te cannot be accounted for by the freezing out of high-frequency vibrations
(freezing out results in only a small increase in the lifetime). This growth relates to
the fact that, at the frequencies ˝ > ˝e, where ˝e D 4�J=¯ D 98 cm�1 is the
maximum frequency of excitation hopping, the intrapeptide excitation is sensitive
to the average amplitude of the vibrations in the phonon subsystem, responding only
to a change in the positions of vibration centres. The more the frequency˝ exceeds
˝e, the stronger the effect. when ˝ 	 ˝e, the excitation responds to the random,
high-amplitude chain deformations caused by thermal molecular vibrations, leading
to fast degradation of the autolocalized state.

In the two-component model we considered, the motion of the intrapeptide
excitation in a thermalized chain is given by the equations

i¯ P�n D �
�O.yn � xn/C �R.ynC1 � yn/

�
�n � J.�nC1 C �n�1/ ; (7.122)

m Rxn D K.yn � xn/C �Oj�nj2 ; (7.123)

M Ryn D F.ynC1 � yn/ � F.yn � yn�1/ �K.yn � xn/ �K0yn

��Oj�nj2 C �R.j�nj2 � j�n�1j2/ � �M Pyn C 
n ; (7.124)

P
n D .�n � 
n/=tc ; n D 1; 2; : : : ; N ;

where all the variables and parameters were defined previously. Based on the
energy difference between the exciton and soliton states of the amide-I excitation
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in crystalline acetanilide, viz., �E D 17 cm�1 [91], the EPI parameter can be
estimated as �O D 0:5 � 10�10 N. The parameter �R is varied.

We choose the following initial conditions

�n.0/ D '0n exp.ikn/ ; xn.0/ D Qxn C x0n ;

yn.0/ D Qyn C y0n ; Pxn.0/ D PQxn � v.x0nC1 � x0n/=a ;
Pyn.0/ D PQyn � v.y0nC1 � y0n/=a ; 
n.0/ D Q
n ;

where v is the soliton velocity, k D arcsin.v=vex/, f'0n; x0n; y0ngNnD1 is the solution of
the problem (7.117), and f Qxn; Qyn; PQxn; PQyn; Q
ngNnD1 are the solutions of (7.104)–(7.106)
at time t D 50 ps, when the chain is already in thermal equilibrium with the heat
bath. Let us consider the excitation dynamics in a chain consisting of N D 100 PG.

The interaction of the excitation with thermal acoustic vibrations should lead to
the fast destruction of the soliton state because the spectrum of acoustic vibrations
lies below the frequency ˝e D 98 cm�1. When �R D 0:3 � 10�10 N, the soliton
state is completely destroyed in a few picoseconds. On the other hand, the optical
vibration spectrum 719:86 	 ˝o 	 719:91 cm�1 lies much higher than the critical
frequency ˝e. Therefore, in the absence of the excitation interaction with acoustic
vibrations (�R D 0), the soliton state will have a significant lifetime at physiological
temperatures .�1;000 ps). Figure 7.14 (right) shows the soliton dynamics in the
thermalized chain when T D 300K and �R D 0. As can be seen from this figure,
when s D 0:9, the soliton moves along the chain with constant velocity. The
excitation interaction with thermal optical vibrations does not lead to noticeable
changes in the soliton shape.

Quantum-mechanical calculations carried out in [122] gives the following
estimate for the EPI parameter: �R D .3–5/ � 10�11 N. At this value of �R, the
soliton is unstable to thermal vibrations. As globular protein macromolecules have
a high packing density, the stiffness of the chain substrate within the globule can
significantly exceed the value used, viz., K0 D 4N/m. In this case, the frequency
of acoustic vibrations will be higher and their amplitude will be an order of
magnitude less (�0:01Å) than those obtained in the calculation. An increase in
the frequency of acoustic vibrations will lead to an increase in the stability of the
soliton. The soliton dynamics in the thermalized chain with Kı D 400N/m and
�R D 3 � 10�11 N is shown in Fig. 7.15. For these values, the excitation interaction
with thermal acoustic vibrations leads only to minor changes in the soliton shape.

The numerical investigation of the intrapeptide amide-I excitation dynamics
performed for the PG chain shows that the thermally stable autolocalized states
of the intramolecular excitation can arise within globular protein macromolecules,
and that they are stabilized by the coupling of the excitation with intrapeptide
displacements. The excitation interaction with the deformation of hydrogen bonds
was shown to cause the destabilizing effect. Therefore, on the surface of a globular
protein, where the thermal vibrations of hydrogen bonds are characterized by a large
amplitude, the autolocalized states turn out to be unstable [153].
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Fig. 7.15 Soliton dynamics
in the thermalized chain with
�O D 0:5� 10�10 N,
�R D 0:3� 10�10,
K

ı

D 4N/m, s D 0:9, and
T D 300K

7.6 Electrosoliton Dynamics in a Thermalized Chain

The possibility of electrosoliton formation in ˛-helical proteins (a localized state
of an extra electron bound with the deformation region of the helix arising due
to the electron interaction with chain PGs) was predicted by Davydov [26, 83].
Electrosolitons can be formed at the chain end if the value of the electron–phonon
interaction (EPI) parameter exceeds a certain threshold [6, 26, 154]. One must
therefore estimate the EPI parameters in order to model the electrosoliton dynamics
numerically.

7.6.1 Estimation of Electron–Phonon Interaction Parameters

Calculations of the bound electron states in the field of the PG and the conduction
band characteristics of an extra electron in the models of polypeptide structures
were carried out in a series of studies [155–157]. These calculations only took
into account the electron interaction with the electrostatic field of the PG, which
was treated as a field of point charges. According to the results of the quantum-
mechanical calculations [158], the charges on the PG groups H–N–C=O were
assumed to be equal to 0.3 (H), �0:3 (N), 0.4 (C), and �0:4 (O) (in units of the
electron charge e). The dipole moment of the PG was reported to be d 
 4D [159].
It follows from the results in [155–157] that the electron can be in a bound state
with this dipole, characterized by an affinity 0.6–1.28 eV. The electron in this state
is located at a distance r� D 3:79 a.u. from the negative charge of the dipole and
rC D 2:82 a.u. from the positive charge.

Let us assume that the bound state of an extra electron with the nth PG, and
therefore with the chain as a whole, is characterized by the same configuration as in
the case of an isolated PG. Consider the electron interaction with the three nearest
PG dipoles (see Fig. 7.16). Each dipole is represented by two charges �q and Cq
.q D d=R/, located at a distance R < a from each other, where a D 4:5Å is the
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Fig. 7.16 Position of an
extra electron relative to the
three nearest PGs

chain spacing. The interaction energy between the electron and the PG is

W D �jqej
�
1

r1
� 1

r2
C 1

r3
� 1

r4
� 1

r5
C 1

r6

�
;

where r1; : : : ; r6 are the distances between the electron and dipole ends (Fig. 7.16),
r1 D rC, and r2 D r�.

When the distance between the first and the second PG changes by u, the change
in the interaction energy is

W� D �jqej
�

1

r3.u/
� 1

r4.u/
� 1

r3.0/
C 1

r4.0/

�
D ���u CO.u2/ ;

and when the distance between the second and the third PG changes by u, the energy
change is

WC D �jqej
�

1

r6.u/
� 1

r5.u/
� 1

r6.0/
C 1

r5.0/

�
D ��Cu CO.u2/ ;

where �� D �dW�=dujuD0 and �C D �dWC=dujuD0 are the ‘left’ and ‘right’ EPI
parameters, respectively.

Changing the length of the dipole R from r2 � r1 to r1 C r2, the interval of
permissible values of the EPI parameters �˙ can be obtained. The dependence of �˙
on R is shown in Fig. 7.17. The ‘left’ EPI parameter �� is always negative and the
‘right’ parameter �C is always positive. The absolute value of �C is approximately
twice the absolute value of ��. We can choose the following estimates of the ‘left’
and ‘right’ parameters: �� D �.1–7/ � 10�10 N and �C D .3–15/ � 10�10 N,
respectively.

7.6.2 Model Hamiltonian

The Hamiltonian function of a cyclic chain of PGs with an extra electron can be
represented as the sum of three terms:

H D Hel CHph CHint ; (7.125)
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Fig. 7.17 Dependence of the
EPI parameters �

C

and �
�

on the dipole length R

where the first term corresponds to the electron energy

Hel D
NX

nD1

�
"0 � ¯2

ma2

�
j�nj2 � ¯2

2ma2
��
n .�nC1 C �n�1/ ;

the second represents the mechanical energy of the chain

Hph D
NX

nD1

M

2
Pu2n C V.�n/C K

2
u2n ;

and the third corresponds to the interaction energy between the electron and the
chain deformation

Hint D �
NX

nD1
.�C�n C ���n�1/j�nj2 :

Here, N is the number of GPs in the chain, f�ngNnD1 is the wave function of the
electron in the lattice representation, normalized by the condition

NX

nD1
j�nj2 D 1 ; (7.126)

un is the displacement of the nth PG from its equilibrium position, �n D unC1 � un
is the lengthening of the nth hydrogen bond, "0 D 9�10�20 J is the electron affinity
with the PG, m D 2¯2=�Ea2 the effective electron mass, a D 4:5 � 10�10 m is
the chain spacing, �E D 1:2 eV is the width of the conduction band [157], and
M D 114:2mp is the reduced mass of the PG, with mp D 1:67265 � 10�27 kg the
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proton mass. The hydrogen bond energy is described by the Morse potential

V.�/ D "1
�

exp.�b�/ � 1�2 ;

where "1 D 0:22 eV is the energy of the hydrogen bond and the phenomenological
parameter b D p

�=2"1 is defined by the elasticity of the bond � D 13N/m.
The coefficient K corresponds to the stiffness of the PG interaction with the chain
substrate.

Note that the difference in signs of the ‘right’ and ‘left’ EPI parameters
distinguishes the model Hamiltonian H considered here from those considered in
the previous sections.

7.6.3 Stationary Autolocalized Electron States

Let us consider the stationary electron states. These can be obtained by solving the
constrained minimum problem

E D "0 � 2J C
NX

nD1

�
� J.'nC1 C'n�1/'n �'2n

�
�C.unC1 � un/C��.un � un�1/

�

C V.�n/C K

2
u2n

	
�! min W

NX

nD1
'2n D 1 ; (7.127)

where f'ngNnD1 are the amplitudes of the real electron wave function given in the
lattice representation for the cyclic chain consisting of N molecules (nC 1 D 1 for
n D N and n�1 D N for n D 1) and J D �E=4. Further, let �C D 15:0�10�10 N
and �� D �7:5 � 10�10 N.

Numerical solution of the problem (7.127) withN D 100 shows that, in addition
to the stationary electron state in the conduction band

˚
'n D 1=

p
N , un D 0

�
, there

exist two stationary autolocalized (soliton) electron states characterized by different
degrees of localization: strong (the localization region is approximately 1–2 chain
links) and weak (the localization region is approximately 10–20 chain links). An
increase in the stiffness K of the chain interaction with the substrate leads to a
decrease in the soliton width. When K > 0, the band state can be stable.

The strongly localized soliton arises due to the opposite signs of the EPI
parameters. In this state, the electron is mainly localized at the right end of the
PG. The soliton is stable when 0 	 K 	 10:9N/m. Figure 7.18 (left) shows the
dependence of the profile of the strongly localized soliton on the parameter K.

The weakly localized soliton has a large enough width to respond on average
to the FPI as the symmetric interaction with parameter � D �.�� C �C/=2. This
soliton corresponds to the Davydov soliton. It is stable only if 0 	 K 	 0:31N/m.
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Fig. 7.18 Left: Profiles of the strongly localized soliton forK D 4, 6, 8, and 10.8 N/m (lines 1–4).
Right: Profiles of the weakly localized soliton for K D 0, 0.1, 0.2, and 0.3 N/m (lines 1–4)

An increase in K leads to an increase in the soliton width and a decrease in chain
deformation (see Fig. 7.18 right).

In a cyclic chain consisting of N D 100 PGs, the electron band state is stable if
K � 0:19N/m and unstable if K < 0:19N/m. Therefore, the following states can
exist in the chain:

• If K < 0:19N/m, two stable soliton modes,
• If 0:19 	 K 	 0:31N/m, two stable soliton modes and a stable band electron

state,
• If 0:31 	 K 	 10:9N/m, stable strongly localized soliton mode and stable band

state, and
• If K � 10:9N/m, only a stable band state.

7.6.4 Dynamics of Autolocalized Electron State
in a Thermalized Chain

The equations of motion corresponding to the Hamiltonian (7.125) have the form

i¯ P�n D �J.�nC1 C �n�1/ � j�nj2.�C�n C ���n�1/ ;

M Run D V 0.�n/ � V 0.�n�1/ �Kun � �C.j�nj2 � j�n�1j2/ (7.128)

���.j�nC1j2 � j�nj2/ � �M Pun C 
n.t/ ;
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for n D 1; 2; : : : ; N . Here, the Langevin approach was used to describe the thermal
vibrations of the PGs in the chain. In the second equation of the system (7.128), we
introduced viscous friction and the normally distributed external random force 
n.t/,
which satisfies the conditions h
n.t/i D 0 and h
n.t/
l .s/i D 2M� kBT ınl�.t�s/,
where � is the friction coefficient, kB D 1:380622 � 10�23 J is the Boltzmann
constant, T is the thermostat temperature, �.t � s/ D 1=t2 for jt � sj 	 t2=2 and
�.t � s/ D 0 for jt � sj > t2=2, and t2 is the relaxation time of the random force.
In order to apply the Langevin equation, the relaxation time of the velocity must be
equal to t1 D 1=� � t2.

The maximum electron velocity vel D 2aJ=¯ D 410;175:5m/s in the chain is
more than two orders of magnitude greater than the velocity vph D a

p
�=M D

3;712:3m/s of the long-wave phonons. Hence, for numerical simulation of the
dynamics, it is convenient to introduce the dimensionless time � D 2J t=¯, whose
unit corresponds to the minimum possible time of the electron passage of one chain
link, namely, 1:09702 � 10�15 s. Let the relaxation time of the PG velocity t1 be
equal to the time taken by sound to pass one chain link, i.e., t1 D p

M=� D
1:21216 � 10�13 s, while the correlation time of the random force is equal to
t2 D ¯=2J .

The equations of motion (7.128) were integrated using the standard fourth-order
Runge–Kutta method with constant integration step �� D 0:1 (corresponding
to �t D 1:09702 � 10�16 s) [123]. The accuracy of the numerical integration
was estimated by conservation of the integral (7.126). The initial conditions
corresponded to the stationary electron state in a cyclic chain with temperature
T D 0K. The thermostat temperature is T D 300K. Electron localization in the
chain and chain thermalization are conveniently characterized by the dimensionless
width of the electron wave functionL.�/ D 1=

PN
nD1 j�n.�/j4 and the instantaneous

temperature T .�/ D PN
nD1 M Pu2n=NkB.

The dependence of the width L.�/ on time for N D 50 and K D 4N/m is
shown in Fig. 7.19 (left) for the strongly localized soliton. The numerical integration
shows the stability of the strongly localized soliton electron state with respect to the
thermal vibrations of the PG chain, which lead only to insignificant vibrations of the
soliton width. The band electron state is unstable with respect to thermal vibrations
of the PG chain, which causes its decay and the appearance of several strongly

Fig. 7.19 Left: Dependence of the width L of the strongly localized soliton on time � in the
thermalized chain at K D 4N/m. Right: Dependence of the width L of the band electron state
on time � in the thermalized chain with K D 4N/m
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localized soliton states (Fig. 7.19 right). For K D 0:2N/m, the weakly localized
soliton is also unstable with respect to thermal vibrations. Thermal fluctuations
cause its collapse and the appearance of several strongly localized soliton states.

The numerical simulation carried out shows that electrosolitons can exist in ˛-
helical proteins at the physiological temperature T � 300K. The results discussed
in this section were published in [160].

7.7 Resonant Effects of Microwaves Due to Their Interaction
with Solitons in ˛-Helical Proteins

7.7.1 Biological Effects of EMR

The dynamic properties of solitons manifest themselves through their interaction
with external fields and other degrees of freedom which determine soliton relaxation
processes. In the previous sections, we investigated the dynamics of localized states
in thermalized soft molecular chains. It was shown that chaotic (thermal) molecular
vibrations do not destroy these states. However, it has been reported in a number
of studies [54, 161, 162] that soliton decay can be induced by sound waves [162–
164] or electromagnetic radiation (EMR). Electromagnetic radiation absorption at
frequencies determined by the binding energy may indicate the presence of solitons
in molecular chains. This can provide a basis for experiments to test the presence
of solitons in biological systems [112, 162, 165, 166]. One experiment to observe
electrosolitons [163] could involve registering the occurrence of (or change in)
electric current in a sample.

The hypothesis and mechanism of Davydov soliton dissociation in the elec-
tromagnetic radiation field, as suggested in [161, 167], can provide a qualitative
explanation for the resonant effects of millimeter range EMR on biological systems,
as observed in a number of experiments [168, 169]. From a scientific point of view,
a study of the mechanisms underlying external field effects (including resonant
effects) on soliton processes may lead to an understanding of these phenomena,
which still lack a strict explanation, and it may then become possible to use them
to solve applied problems [170]. In particular, the biological effects on living
organisms of different organization levels observed under exposure to low-intensity
electromagnetic fields can be explained as the result of EMR interaction with
collective excitations in ˛-helical proteins – Davydov solitons – which, according to
the Davydov theory, are responsible for energy and charge transfer on the molecular
level. In this section, we will discuss the properties of Davydov solitons over the
temperature range from 0 to 350 K and define the frequency spectrum of EMR
effectively interacting with biological systems [171–178].

One of the most important characteristics of the autolocalized state is the
coupling energy of a quasi-particle (exciton or electron) with molecular chain
deformation, which also determines the soliton stability. Davydov solitons are stable
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because the probability of their energy dissipating into thermal energy is very small,
and this ensures a high efficiency for soliton transport of energy, charge, and con-
formation changes in biosystems at a physiological temperature of 310 K. However,
under electromagnetic radiation, the probability of soliton decay (photodissociation)
increases [64, 179–181]. This may explain some of the resonant effects of low-
intensity electromagnetic radiation on biological systems, as observed in numerous
experiments [182–187]. In this connection, the dependence of resonant frequencies
and hence binding energy on the temperature of a molecular chain are of interest.

In addition to the transport of energy and electrical charges by Davydov
solitons, excess charges may be transferred along ˛-helical proteins by being
captured by the moving acoustic solitons [188–191]. In this section, we also discuss
photodissociation of these acoustic solitons, transferring an excess charge along a
molecular chain, and Davydov electrosoliton photodissociation under the influence
of electromagnetic radiation at specific frequencies.

7.7.2 Stationary Autolocalized States in Thermalized
Molecular Chains

In the previous sections, we investigated the conditions for the formation of various
autolocalized states, including Davydov solitons, for the temperature range from 0
to 350 K, and studied the dependence of the binding energy on temperature in this
range. Recall that the energy operator of the intramolecular excitation of a discrete
molecular chain can be represented as the sum of three terms:

H D He CHph CHint ; (7.129)

where the first term describes the energy of the intramolecular amide-I excitation,
viz.,

He D
NX

nD1
"0B

C
n B

�
n � J

 
N�1X

nD1
BC
n B

�
nC1 C

N�1X

nD1
BC
n B

�
n�1

!
; (7.130)

the second represents the deformation energy of the molecular chain, viz.,

Hph D
NX

nD1

1

2
M Pu2n C

NX

nD1

1

2
�.un � un�1/2 ; (7.131)

and the third is the energy of the interaction between the intramolecular excitation
and chain deformation, viz.,

Hint D �

NX

nD1
BC
n B

�
n .unC1 � un/ : (7.132)
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Here, BC
n and B�

n are the creation and annihilation operators of the amide-
I vibration at the nth molecule, respectively, un is the operator of longitudinal
displacements from the equilibrium position of the nth molecule, � is the chain
elasticity coefficient, M is the molecular mass, "0 is the excitation energy including
the non-resonant interaction with neighboring molecules, J is the energy of the
resonant dipole–dipole interaction of neighboring molecules, and � is the exciton–
phonon interaction parameter. The wave function of the molecular chain can be
represented in the following form (the Davydov ansatz):

ˇ̌
 
˛ D

NX

nD1
�nSnB

C
n

ˇ̌
0
˛˝ ˇ̌

�
˛
; (7.133)

where

Sn D exp
hX

q

.ˇ�
q;nb

�
q � ˇq;nbC

q /
i

is the unitary operator of the molecular displacement from its equilibrium position,

ˇ̌
�
˛ D ˇ̌f�qg

˛ D
Y

q

ˇ̌
�q
˛ D .�qŠ/

�1=2�bC
q


� ˇ̌
0
˛

is the phonon wave function, and bC
q and b�

q are the creation and annihilation
operators, respectively, of a phonon with wave number q.

In order to take into account the interaction of the chain with a heat bath, we take
�q D Q�q D �

exp.¯˝q=kBT / � 1
��1

, where ˝q and q are the frequency and wave
number of a phonon, respectively, and kB is the Boltzmann constant. To obtain a
stationary soliton state, one must solve the constrained minimum problem

H


: : : ; �n; �

�
n ; ˇq;nˇ

�
q;n; : : :

�
�! min W

NX

nD1
j�nj2 D 1 ; (7.134)

where H D h jH j i is the Hamiltonian of the molecular chain and H is the
energy operator.

This problem was solved numerically by the steepest descent method with vary-
ing step [123]. The analysis carried out has shown that the degree of localization of
the intramolecular excitation in soliton states increases with increasing temperature
T and EPI parameter � (see Fig. 7.20).

With an increase in T and �, there is also an increase in the width of the
energy gap �E which separates the soliton state energy from the exciton zone (see
Fig. 7.21). Therefore, the conditions for Davydov soliton photodissociation under
EMR depend on both the temperature T and the EPI parameter �. The Davydov
soliton is a bound state of the intramolecular excitation with chain deformation
(phonons).
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Fig. 7.20 Localization of the intramolecular excitations in soliton states. Dependence of the
autolocalized state profile on temperature T and the parameter � in the chain consisting of 30
molecules, for � D 3� 10�11 N (a) and � D 12� 10�11 N (b)

Fig. 7.21 Dependence of the width of the energy gap �E (10�4 eV) which separates the soliton
state from the exciton zone (or conduction band) on the temperature T and the EPI parameter �
(10�11 N)

For strong coupling, that is, when the dimensionless nonlinearity parameter g D
�2=J� � 1, the energy required for its breakage is given by

¯!0 D hc

�
D �E CEph ; (7.135)

where Eph is the deformation energy. For a weak bond g � 1, this energy is

hc=� D �E : (7.136)

The dependencies of the ‘resonant’ wavelength � of EMR on T and � are given in
Tables 7.12 and 7.13.
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Table 7.12 Dependencies of the resonant wavelength � (mm) on the temperature T and the EPI
parameter � (N) for a chain with dimensionless nonlinearity parameter g � 1

T (K) � D 3� 10�11 5� 10�11 7� 10�11 9� 10�11 12� 10�11

250 9.8 3.35 1.65 0.97 0.52

300 8.3 2.88 1.43 0.85 0.47

350 7.5 2.64 1.32 0.79 0.44

Table 7.13 Dependencies of the resonant wavelength � (mm) on the temperature T and the EPI
parameter � (N) for a chain with dimensionless nonlinearity parameter g 	 1

T (K) � D 3� 10�11 5� 10�11 7� 10�11 9� 10�11 12� 10�11

250 5.8 1.9 0.93 0.53 0.27

300 4.6 1.6 0.80 0.46 0.24

350 4.0 1.4 0.70 0.42 0.23

If energy transport in biosystems is realized by Davydov solitons on the
molecular level, soliton decay under EMR can cause resonant biological effects in
living organisms in the millimeter wavelength range. This follows from the analysis
of the values of � obtained for physiological temperatures T 
 300K and values
of the EPI parameter in the range 3 � 10�11 	 � 	 5 � 10�11 N, which correspond
to the ‘soliton window’. The most significant biological effects caused by Davydov
soliton photodissociation can be expected at EMR wavelengths � D 1:6–4.6 mm
corresponding to the frequency range 65–187.5 GHz and at wavelengths 2.9–8.3 mm
corresponding to the frequency range 36–103 GHz. When the temperature increases,
the ‘resonant’ wavelength of EMR also increases.

7.7.3 Stationary States of Excess Electrons in a Chain of PGs

Transport of extra electrons along ˛-helix proteins is determined by the specific
properties of these molecules. Due to the asymmetric distribution of electric charge
in PGs, these proteins have a large constant dipole moment. As a result, the chain
of PGs is capable of capturing the outer electron from a donor molecule. As has
been shown previously by both analytical investigation and numerical simulation,
the outer electron can propagate along the thermalized chain of PGs in the form of
an electrosoliton (ES) if the value of electron–phonon interaction parameter exceeds
a certain threshold.

In this section we investigate the possibility of electrosoliton decay under the
action of EMR. The Hamiltonian for a chain of PGs with an excess electron is
written, as before, as the sum (7.129), where now

He D
NX

nD1

�
"0 � ¯2

ma2

�
j�nj2 � ¯2

2ma2
��
n .�nC1 C �n�1/ ; (7.137)
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Hph D
NX

nD1

M

2
Pu2n C V.�n/C K

2
u2n ; (7.138)

Hint D
NX

nD1
.�C�n C ���n�1/j�nj2 : (7.139)

Here,N is the number of PGs in the chain and �n is the wave function of the electron
in the PG chain, satisfying the normalization condition

PN
nD1 j�nj2 D 1, un is the

displacement of the nth PG from its equilibrium position, �n D unC1 � un is the
deformation of the nth hydrogen bond, "0 D 9� 10�20 J is the electron affinity with
the PG, m D 2¯2=�Ea2 is the effective electron mass, a D 4:5 � 10�10 m is the
chain step,�E D l:2 eV is the width of the conduction band, andM D 114:2mp is
the PG mass (mp D 1:67265 � 10�27 kg is the proton mass).

The hydrogen bond interaction is described by the Morse potential

V.�/ D "1
�

exp.�b�/ � 1�2 ;

where "1 D 0:22 eV is the hydrogen bond energy, the phenomenological parameter
b D p

�=2"1 characterizes the bond elasticity, and � D 13N/m. The coefficient K
describes the elastic interaction of the PG with the chain substrate.

As shown previously, the ‘right’ �C and ‘left’ �� EPI parameters have different
signs. Consideration of both this asymmetry and the presence of optical phonons
in the PG chain .K > 0/ distinguishes the Hamiltonian H from the Davydov
Hamiltonian (7.129–7.132), where �C D �� > 0 and K D 0.

To find the stationary states of an excess electron in the PG chain, one must solve
the constrained minimum problem

E D "0 � 2J C
NX

nD1

�
� J.'nC1 C'n�1/'n C'2n

�
�C.unC1 � un/C��.un � un�1/

�

C V.�n/C 1

2
Ku2n

	
�! min W

NX

nD1
'2n D 1 ; (7.140)

where f'ngNnD1 are the real wave function amplitudes of the electron in the chain
consisting of N PGs and J D �E=4.

Let us assume further that �C D 15:0 � 10�10 N and �� D 7:5 � 10�10 N.
Numerical solution of the problem (7.137) with N D 100 has shown that, in
addition to the stationary electron state in the conduction band

˚
'n D 1=

p
N; un D

0
�
, there are two stationary autolocalized (soliton) states of an excess electron

(electrosoliton), which are characterized by the different degrees of localization:
strong (with localization region spanning �1–2 chain links) and weak (with
localization region spanning �10–20 links). An increase in the elastic interaction
of the chain with the substrate atoms leads to a decrease in the electrosoliton width.
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Table 7.14 Dependence of the binding energy �E of the strongly localized electrosoliton state
on the parameter K (N/m)

K 4 6 8 18.8

�E 0.08 0.11 0.15 0.37

Table 7.15 Dependence of the binding energy �E of the weakly localized electrosoliton state on
the parameter K (N/m)

K 0 0.1 0.2 0.3

�E 0.0081 0.017 0.0265 0.0341

The electrosoliton is stable if 0 	 K 	 10:9N/m. Figure 7.18 (right) shows the
dependence of the profile of the strongly localized soliton on the parameter K,
while Tables 7.14 and 7.15 give the dependencies of the energy gaps of strongly
and weakly localized solitons on the parameter K.

The weakly localized soliton is broad enough to allow us to treat the electron–
phonon interaction as symmetrical, with the EPI parameter � D .�� C�C/=2. This
soliton corresponds to the Davydov electrosoliton (DES), which is stable only if
0 	 K 	 0:31N/m. With increasing K, the soliton width increases and the chain
deformation decreases (see Fig. 7.18 right).

In a cyclic chain consisting of 100 PGs, the bound state of an excess electron
remains stable ifK � 0:19N/m and becomes unstable ifK < 0:19N/m. Therefore,
two stable soliton modes exist in the chain for K < 0:19N/m. If 0:19 	 K 	
0:31N/m, there can exist two stable soliton modes together with the stable band state
of an excess electron in the chain. For K � 10:9N/m, only one stable band state
exists in the chain. It follows from the data given in Tables 7.14 and 7.15 that there
can be frequency-dependent bioeffects of microwave EMR on the electrosoliton
states in ˛-helix proteins in the following frequency ranges: 19.3–89.5 and 1.96–
8.25 THz, depending on the substrate properties.

7.7.4 Photodissociation of the Electrosoliton Under EMR

As shown in the previous section, transport of electric charges along a protein
molecule can proceed as a result of excess electron capture by the acoustic soliton
moving along the chain. The presence of the soliton leads to an additional interaction
energy (the deformation potential) for this extra electron in a periodic chain of PGs
interacting with the electron. As a result, the electron can be captured by the acoustic
soliton and can then move together with the soliton in the form of an electrosoliton.

In this section, we consider electrosoliton decay under EMR. To obtain analytical
results, the continuum approximation is usually used. The investigation of a finite
discrete chain can be carried out only by numerical simulation. The state of an extra
electron interacting with PGs in the chain is defined by the Hamiltonian (7.129),
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Fig. 7.22 Left: Excess electron capture by the acoustic compression soliton with energy 0.49 eV.
(At the initial time the electron was located near the first chain molecule.) Right: Electrosoliton
stability to thermal vibrations of the chain. The soliton dynamics in the thermalized chain is shown
for T D 300K

with termsHe,Hph, andHint determined by (7.137)–(7.139). The supersonic soliton
.vsol � vsound and Esol D 0:49 eV) and electrosoliton were obtained by numerical
integration of the equations of motion (see Fig. 7.22 left). Analysis of the solutions
shows that the electrosoliton is stable with respect to thermal vibrations of the PG
chain at T D 300K. The thermal vibrations cause only insignificant changes in the
soliton width (Fig. 7.22 right).

The electron state is characterized by the wave functions f�ng (see Fig. 7.23 left)
and the spectrum of negative energies fEng (see Fig. 7.23 right).

The absorption of microwave radiation interacting with electrosolitons can result
both from the electron transition between its energy levels and, directly, from the
electrosoliton dissociation into a free electron and acoustic soliton under the EMR.
If the Frank–Condon condition holds (chain atoms do not change their positions
during electron interaction with EMR), the absorption spectrum is defined by the
usual relationship h� D Em � En (in the case of electrosoliton dissociation, Em �
En � 0).

Numerical investigation of the electrosoliton dynamics has revealed two specific
frequencies: �1 
 1:8THz and �2 
 2:7THz, which are determined by the discrete
nature of the PG chain. To take into consideration internal electrosoliton oscillations,
a semiclassical approach was used.
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Fig. 7.23 Left: Wave functions f�ng of the first five electron states in the potential well formed by
the acoustic soliton (a) and the chain displacement �n (Å) in the excitation region (b). The soliton
energy is 0.49 eV. Right: Energy levels of the electron �En (eV) captured by the acoustic soliton.
Small changes in the electrosoliton energy with time are due to the chain discreteness

Fig. 7.24 Dependence of the probability P of electrosoliton photodissociation on the frequency
of the external field �

The equations of motion for the wave function f�ng corresponding to the
Hamiltonian of the electrosoliton in the presence of EMR have the form

¯ P�n D eE0 cos.2��t/na�n�J.�nC1C�n�1/Cj�nj2.�C�nC���n�1/ ; (7.141)

where E0 is the electric field strength and � is its frequency.
Figure 7.24 shows the dependence of the probability of electrosoliton photodis-

sociation on the frequency �, viz.,

P D 1 �
NC1X

nD1
j'n.t/j2 : (7.142)
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By numerical integration of the equations of motion (7.141), the four resonant
frequencies in the absorption spectrum of microwave EMR were found to be �1=3,
2�1=3, �1, and �2.

Therefore, the theoretical analysis of cooperative processes has shown that the
frequency-dependent, resonance-type biological effects of microwaves on ˛-helix
macromolecules, interacting with the environment (thermostat), are defined by the
behavior of the (bio)system as a whole, and hence can depend on its biological
activity. This approach provides a qualitative explanation for the resonant bioeffects
caused by low-intensity EMR on living organisms if the energy transfer of ATP
hydrolysis and/or electron transport from donor to acceptor molecules in real protein
molecules are realized by different types of solitons. Then, as a result of the soliton
state decay, the efficiency of the energy and electron transport should decrease.
Assuming this mechanism, the resonance frequencies were obtained at which the
absorption spectrum of EMR and corresponding bioeffects should be observed.
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