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Preface

Subfactors (unital inclusions of von Neumann algebras with trivial centre) became a
thriving focus of research interest after Vaughan Jones discovered in 1983 the
quantization of the index below four. The associated principal graph was imme-
diately identified as an important combinatorial invariant beyond the index, con-
trolling the induction and restriction of bimodules of and between the two factors;
more detailed information is encoded in the “planar algebra”.

There is a close similarity with the theory of superselection sectors in relativistic
quantum field theory (QFT), which was developed in the late 1960s and early 1970s
by Sergio Doplicher, Rudolf Haag and John E. Roberts in Algebraic Quantum Field
Theory (DHR). Especially, the method to obtain the quantization of the index
closely resembled the argument for the quantization of the “statistical dimension” in
the DHR theory. This involves (independent) works of two of us in 1989: R.L.
found the direct link between the statistical dimension and the Jones index, and
K.-H.R. (with K. Fredenhagen and B. Schroer) studied the braided tensor cate-
gorical superselection structure in low-dimensional quantum field theory.

While the details of the two theories differ (Jones theory addresses type II
factors, whereas the local algebras of QFT are generically type III factors), the
underlying mathematical structure is in both cases a C* tensor category (or 2-
category). In the first case, its objects are bimodules, in the latter case they are
endomorphisms (or homomorphisms); but as abstract structures, one deals with “the
same” categories. A main purpose of the present work is in fact to “transfer”
concepts from abstract tensor categories (going beyond just subfactor theory) into
the language of von Neumann algebras and their endomorphisms, see below.

A main aim of the DHR theory in four spacetime dimensions (finally achieved in
1990 by S. Doplicher and J.E. Roberts) was to establish the identification of the
category of DHR endomorphisms with a dual of a compact group, which is then the
global gauge group of an extended quantum field theory (the “field algebra”)
containing the original QFT as its gauge fixed points. Crucial for this identification
was the existence of a braiding, which is in fact maximally degenerate (i.e., a
“permutation symmetry”) in the DHR category.



vi Preface

This is markedly different in low-dimensional quantum field theory, notably in
chiral and two-dimensional conformal QFT, which also experienced a research
boost in the mid-1980s after the complementary breakthrough discoveries of A.A.
Belavin, A.M. Polyakov, A.B. Zamolodchikov (minimal models) and D. Friedan,
Z. Qiu, S. Shenker (classification of positive-energy representations of the Virasoro
algebra). Again, the sectors of these theories are described by a braided C* tensor
category, but the braiding turned out to be non-degenerate (modular) in most
models of interest; a structural argument about why (and when) this is the case was
given in 2001 by two of us (Y.K. and R.L.) in collaboration with M. Miiger.

Not least for the reason that these structures had been discovered both in the
physics context and in connection with quantum groups at about the same time, the
focus of mathematical interest concentrated on modular tensor categories, which
appear to describe generalized symmetries akin to group symmetries, but placed “at
the other end of the range of possibilities” (tensor categories with modular braiding
vs. tensor categories with symmetric braiding). Not only classification results were
obtained, but relations with different fields of mathematics (vertex operator alge-
bras, algebraic topology, elliptic functions) were discovered and explored.

On the physics side, the idea was put forward to hinge the axiomatic definition of
a conformal QFT on its modular tensor category. While the present authors do not
entirely conform to this idea (because it would exclude important models), it was
certainly very fruitful for the discussion of a large class of interesting models.

A most important insight emerged from the formulation of “topological quantum
field theory” (TQFT) in terms of the data of a given modular category, promoted by
Jiirgen Fuchs, Jiirg Frohlich, Ingo Runkel, Christoph Schweigert et al. (FFRS) in
the late 1990s until today. This is the insight that the effect of representation-
changing spacetime boundaries is entirely controlled by structures within the
modular category: notably modules and bimodules of Frobenius algebras.

Frobenius algebras in a C* tensor category of endomorphisms had also been
discovered—under the name of Q-systems—by one of us (R.L.) in 1994 as a
complete invariant for type III subfactors N C M of finite index. A crucial aspect is
that the relevant category is the category of endomorphisms of the smaller factor N,
so that the larger factor M is characterized in terms of data pertaining to N. This
changes the perspective from subfactors (“N is embedded into a given M) to
extensions (“M extends a given N”). In fact, for single subfactors, there is a duality
(related to the Jones tower) by which an extension N C M is equivalently described
by a subfactor y(M) C N (where y is a canonical endomorphism of M with values
in N), so that this change in perspective seems to be just a matter of taste. However,
it becomes crucial in the application to QFT, where N and M have a direct physical
meaning while y(M) has not.

It is in this field of research where the interests of the four of us have eventually
converged.

Two of us had noticed the relevance of subfactor theory, and in particular the
characterization of extensions in terms of Q-systems, for questions like, “Which
quantum field theories possibly share the same stress-energy tensor” (or some other
common sub-theory)? In chiral conformal QFT, the stress-energy tensor is
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described by the Virasoro algebra, whose positive-energy representations are
known and give rise to well-studied modular C* tensor categories (provided the
central charge is ¢ < 1). Indeed, full classifications have been obtained along this
line.

Especially, the formulation of boundaries and boundary conditions in relativistic
conformal QFT, and its relation to the remarkable findings in the TQFT approach
by FFRS, have intrigued us. The present work, along with several research papers,
is an outcome of the endeavour to gain a better understanding of these connections.

A main difference with the TQFT approach is that a TQFT is essentially defined
in terms of a modular tensor category (which need not be a C* tensor category),
whereas in our feeling, a conformal QFT is in the first place a relativistic quantum
field theory with an enhanced symmetry, subject to well-established axioms among
which the C* structure (crucial for quantum observables) and local commutativity
(Einstein causality) are most essential. In this vein, the presence of the modular
category has to be derived (via the DHR theory), and its role in the formulation of
QFT with boundaries has to be established.

In the present work, we focus on the theory of (modular) C* tensor categories,
only keeping the applications to QFT in the back of our minds, and devoting the
final chapter to a review of these applications. Large parts of the abstract theory
were originally developed by FFRS, involving more recently also L. Kong; our
main contribution is to clarify the “transfer” of these results into the language of
endomorphisms of von Neumann algebras (which then facilitates the intended
application to QFT).

Acknowledgments

We are much indebted to J. Fuchs, I. Runkel, and C. Schweigert for their hospitality

and enlightening explanations of their work, which were most beneficial for the

results presented in Sect. 4.12. Y.K. thanks M. Izumi for an interesting question.
We also acknowledge institutional and financial support:

e Support by the Grants-in-Aid for Scientific Research, JSPS (Y.K.)

e Support by the German Research Foundation (Deutsche Forschungsgemeinschaft
(DFQG)) through the Institutional Strategy of the University of Géttingen (M.B.,
K.-H.R.)

e Support by the Alexander von Humboldt Foundation and the European Research
Council (R.L.)


http://dx.doi.org/10.1007/978-3-319-14301-9_4

viii Preface

e Hospitality and support of the Erwin Schrédinger International Institute for
Mathematical Physics, Vienna (all of us).

Nashville, October 2014 Marcel Bischoff
Tokyo Yasuyuki Kawahigashi
Rome Roberto Longo

Gottingen Karl-Henning Rehren



Contents

1 Imtroduction. . .......... ... . . ... . . ...
References . .. ... .. ...
2 Homomorphisms of von Neumann Algebras . ............. ...
2.1 Endomorphisms of Infinite Factors. . ... ................
2.2 Homomorphisms and Subfactors . .....................
2.3 Non-factorial Extensions . . . .. .......................
References . .. ... ... ..
3 Frobenius Algebras, Q-Systems and Modules. . . ... ...........
3.1 C*Frobenius Algebras . . .. ........ ... ... ... ... ... ..
3.2 Q-Systems and Extensions. . .. ......... ... ... ... .....
3.3  The Canonical Q-System . ............ ... ...........
34 Modules of Q-Systems . . .. ...
3.5 Induced Q-Systems and Morita Equivalence . .............
36 Bimodules............ ... . ... i
3.7 Tensor Product of Bimodules. . . ......................
References . . ... ... .
4 Q-System Calculus. . ........ .. .. .. .. .. .. .. ... . . .. ...
4.1 Reduced Q-Systems . . .. ...
4.2 Central Decomposition of Q-Systems . ... ...............
4.3  Irreducible Decomposition of Q-Systems. . . ..............
4.4 Intermediate Q-Systems. . . .. ... ..
4.5 Q-Systems in Braided Tensor Categories. . . .. ............
4.6 oa-Induction........ ... ...
477  Mirror Q-SyStems. . . . . ot it e
4.8 Centre of Q-Systems. . . . .. ... ...t
4.9  Braided Product of Q-Systems. . .. ..... ... ... ... ... ...
410 TheFullCentre.......... ... ... ... ..

W =

41
41
43
45
51
55
56
57
59
61
63

ix


http://dx.doi.org/10.1007/978-3-319-14301-9_1
http://dx.doi.org/10.1007/978-3-319-14301-9_1
http://dx.doi.org/10.1007/978-3-319-14301-9_1#Bib1
http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_2#Sec2
http://dx.doi.org/10.1007/978-3-319-14301-9_2#Sec2
http://dx.doi.org/10.1007/978-3-319-14301-9_2#Sec3
http://dx.doi.org/10.1007/978-3-319-14301-9_2#Sec3
http://dx.doi.org/10.1007/978-3-319-14301-9_2#Sec4
http://dx.doi.org/10.1007/978-3-319-14301-9_2#Sec4
http://dx.doi.org/10.1007/978-3-319-14301-9_2#Bib1
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec2
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec2
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec3
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec3
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec4
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec4
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec5
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec5
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec6
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec6
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec7
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec7
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec8
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Sec8
http://dx.doi.org/10.1007/978-3-319-14301-9_3#Bib1
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec2
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec2
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec3
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec3
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec4
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec4
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec5
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec5
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec6
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec6
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec7
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec7
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec8
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec8
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec9
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec9
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec10
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec10
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec11
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec11

Contents

4.11 Modular Tensor Categories . . . . . .o v v v ie e
4.12 The Braided Product of Two Full Centres . . . ... ..........
References . . .. ... ... . . .. ..
Applications in QFT. . . .. ... ... .. .. .. .. ... . ...
5.1  Basics of Algebraic Quantum Field Theory . . .. ...........
5.1.1 Local Nets . ........ ... ...
5.1.2 Representations and DHR Endomorphisms . . .. ... ...
5.13 DHRBraiding. . .......... ... ... ... ... ......
5.2  Local and Nonlocal Extensions . . .....................
5.2.1 Q-Systems for Quantum Field Theories . ...........
5.2.2 Two-Dimensional Extensions. . . .................
523 Leftand RightCentre. . ... ....................
5.2.4 Braided Product of Extensions. . . .. ..............
53 Hard Boundaries . .............. ... . .. ... .. ... ...
5.4  Transparent Boundaries. . . . ....... ... ... ... ... ... ...
5.5 Further Directions . .. ... ..... ... ... ...
References . ... ... .. . . . . . .. e
Conclusions . . . ......... ... . . . ...

Reference

65
66
75

71
77
Tl
79
80
81
81
83
84
85
86
88
90
90

93
94


http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec12
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec12
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec13
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Sec13
http://dx.doi.org/10.1007/978-3-319-14301-9_4#Bib1
http://dx.doi.org/10.1007/978-3-319-14301-9_5
http://dx.doi.org/10.1007/978-3-319-14301-9_5
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec2
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec2
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec3
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec3
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec4
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec4
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec5
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec5
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec6
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec6
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec7
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec7
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec8
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec8
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec9
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec9
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec10
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec10
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec11
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec11
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec12
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec12
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec13
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Sec13
http://dx.doi.org/10.1007/978-3-319-14301-9_5#Bib1
http://dx.doi.org/10.1007/978-3-319-14301-9_6
http://dx.doi.org/10.1007/978-3-319-14301-9_6
http://dx.doi.org/10.1007/978-3-319-14301-9_6#Bib1

Chapter 1
Introduction

Abstract Q-systems describe “extensions” of an infinite von Neumann factor N, i.e.,
finite-index unital inclusions of N into another von Neumann algebra M. They are
(special cases of) Frobenius algebras in the C* tensor category of endomorphisms
of N. We review the relation between Q-systems, their modules and bimodules
as structures in a tensor category on one side, and homomorphisms between von
Neumann algebras on the other side. We then elaborate basic operations with Q-
systems (various decompositions in the general case, and the centre, the full centre,
and the braided product in braided categories), and illuminate their meaning in the
von Neumann algebra setting. The main applications are in local quantum field
theory, where Q-systems in the subcategory of DHR endomorphisms of a local
algebra encode extensions &7 (0) C A(0) of local nets. These applications, notably
in conformal quantum field theories with boundaries, are briefly exposed, and are
discussed in more detail in two original papers [1, 2].

Q-systems have first appeared in [3] as a device to characterize finite-index subfactors
N C M of infinite (type III) von Neumann algebras, generalizing the Jones theory
of type II subfactors [4-6]. A Q-system is a triple

A=(0,w,x),

where 6 is a unital endomorphism of N and w € Hom(idy, 8), x € Hom(6, 6?) are
a pair of intertwiners whose algebraic relations guarantee that 6 is the dual canonical
endomorphism (Sect.2.2) associated with a subfactor N C M.

Notice that the data of the Q-system pertain only to N, so the Q-system actually
characterizes M as an “extension” of N. In fact, the larger algebra M along with the
embedding of N into M can be explicitly reconstructed (up to isomorphism) from the
data. One issue in this work is a generalization to Q-systems for extensions N C M
where M may have a finite centre, i.e., M is a direct sum of infinite factors.

Subfactors are, apart from their obvious mathematical interest, also of physical
interest since they describe, e.g., the embedding of a physical quantum sub-system
in larger system. In this context, it is essential that the algebras are C* or von Neu-
mann algebras, since quantum observables are always (selfadjoint) elements of such
algebras, and in relativistic QFT, local observables generate factors of type III.

© The Author(s) 2015 1
M. Bischoff et al., Tensor Categories and Endomorphisms of von Neumann Algebras,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-14301-9_1


http://dx.doi.org/10.1007/978-3-319-14301-9_2

2 1 Introduction

From a category point of view, a Q-system is the same as a special C* Frobenius
algebra in a (strict, simple) C* tensor category. In the case at hand, the category
would be (a subcategory of) the category Endo (V) of endomorphisms of N with finite
dimension. This is actually the most general situation, since every (rigid, countable)
abstract C* tensor category can be realized as a full subcategory of Endo (V) [7].

In a more general setting (notably without assuming the C* structure which is
naturally present in the case of Endg(/N)) abstract tensor categories and Frobenius
algebras have been extensively studied by many mathematicians [8—12], and inter-
esting “derived” structures have been discovered and classified, notably when the
underlying tensor category is braided, or even modular [13-20].

A connection to physics of this more general setting is provided by [21-24] where a
formulation of two-dimensional (Euclidean) conformal quantum field theory on Rie-
mannian surfaces is developed in terms of a three-dimensional “topological quantum
field theory” which is a cobordism theory between pairs of Riemannian surfaces. The
authors observed, among a wealth of other results, that the modules and bimodules
of the representation category of the underlying chiral theory play a prominent role
in the classification of one-dimensional boundaries between Riemannian surfaces.

From the von Neumann algebra point of view, an important class of braided
tensor subcategories of Endg(/N) naturally arises in the algebraic formulation of
relativistic Quantum Field Theory (QFT). Namely, a distinguished class of positive-
energy representations of local QFT can be described in terms of endomorphisms of
the C* algebra <7 of quasi-local observables. These DHR endomorphisms are the
objects of a braided C* tensor category [25, 26]. By restricting attention to a von
Neumann algebra N = &/ (0) of local observables, one obtains a braided tensor
subcategory of End (V). In this context, Q-systems describe finite-index extensions
o/ C % of quantum field theories, and 4 is local if and only if the Q-system is
commutative w.r.t. the braiding.

Our main motivation for the present work was the study of boundary conditions in
relativistic conformal QFT in two spacetime dimensions, as discussed in detail in the
compagnon papers [1, 2]. Boundaries in relativistic quantum field theories [27-29],
with observables that are Hilbert space operators subject to the principle of locality
(or rather causality), have been analyzed much less than in the Euclidean setting. Very
little is known about an apriori relation between Euclidean and Lorentzian bound-
aries. Yet, our treatment of boundaries in relativistic two-dimensional conformal QFT
shows that precisely the same mathematical structures, namely the chiral representa-
tion category, its Q-systems and their modules and bimodules, control the boundary
conditions in both situations. We address in particular the case of “hard” bound-
aries in [1] and “transparent” or “phase boundaries” (defects) in [2]. In this work, we
shall concentrate on the underlying mathematical theory, with only scattered remarks
about the relevance in QFT. A brief exposition of these physical applications will be
given in Chap. 5.

While large portions of the category side of this work are reformulations from
[30, 31], our original contribution is the elaboration of the relation between the
abstract category notions and the von Neumann algebra setting and subfactor theory.
A prominent issue is our proof of Theorem 4.42 (a characterization of the central
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projections of an extension N C M, which is given by the braided product of two
full-centre Q-systems in a modular category). This theorem is implicitly present, but
widely scattered in the work of [21-24, 30-33]. Our proof is much more streamlined,
because it benefits from substantial simplifications in the C* setting, where one can
exploit positivity arguments in crucial steps.

This theorem is relevant for phase boundaries in relativistic two-dimensional con-
formal QFT because it classifies the boundary conditions in terms of chiral data [2],
very much the same as in the Euclidean setting [21].

Other original contributions in this work concern Q-systems for extensions
N C M when M is not a factor, a situation that naturally occurs in several applica-
tions, as well as the characterization of various types of decompositions of Q-systems
(Sects.4.2—4.4) in terms of algebraic properties of projections in Hom(9, ).

In Chap.2, we review the basic notions concerning endomorphisms and homo-
morphisms of infinite von Neumann algebras, with special emphasis on the notions
of conjugates and dimension.

Chapter 3 is devoted to the category structure, and to the correspondences between
Q-systems and algebra extensions, and between bimodules between Q-systems and
homomorphisms between the corresponding extensions.

Chapter4 is the main part of this work. We introduce various operations with
Q-systems (decompositions, braided products, centres and full centre), and investi-
gate their meaning in the setting of von Neumann algebras.

Chapter 5 contains an exposition of the appearance of braided and modular C*
tensor categories in the DHR theory of superselection sectors in Algebraic QFT,
and reviews the relevance of Q-systems for issues like extensions and boundary
conditions.
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Chapter 2
Homomorphisms of von Neumann Algebras

Abstract We introduce the tensor category structure of endomorphisms of infinite
(type IIT) von Neumann factors. We review the basic concepts of conjugate homo-
morphisms between a pair of infinite factors, including the dimension, and discuss
the generalization to homomorphisms of a factor into a von Neumann algebra with
a centre.

Let N and M be two von Neumann algebras, and «, f a pair of homomor-
phisms : N — M. (Without further mentioning, the notion “homomorphism” will
include the * and unit-preserving properties «(n*) = a(n)* and a(1y) = 1y7.) An
operator ¢ € M such that

t-a(n)y=pBm)-t forall ne N

is called an intertwiner, writing t : « — B or t € Hom(a, ). Clearly, if
t € Hom(, B), then t* € Hom(B, «); Hom(«, B) is a complex vector space, and
Hom(w, @) is a C*-algebra.

A homomorphism « : N — M is composed with a homomorphism 8 : M — L,
suchthat foa : N — L.

Likewise, for any three homomorphisms «, 8,y : N — M and intertwiners
t € Hom(w, B) and s € Hom(B, y), the product in M gives an intertwiner s - f €
Hom(e, y).

These structures turn the endomorphisms of a von Neumann algebra N into a strict
tensor category End(N), and the homomorphisms between von Neumann algebras
N, M, ... into a strict tensor 2-category, where the concatenation of morphisms is
the product of intertwiners: sof := s - ¢, the monoidal product of objects is the
composition of endomorphisms: § X o := B o «, and the monoidal product of
morphisms #; : «; — f; is the product

B B> Bi B2 Bi 2
hxt=t-ot)=Pi(t) t: = -
o o o (0%) o 27)

(This graphical notation, directly appealing to the underlying tensor category point
of view, will render the structure of many algebraic computations more transparent.
© The Author(s) 2015 5
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6 2 Homomorphisms of von Neumann Algebras

Its basic rules are self-explaining from this example: Different shades indicate
different von Neumann algebras, and we usually reserve the lightest shade for NV, lines
are homomorphisms, boxes and similar symbols to appear later are intertwiners, the
monoidal product is horizontal juxtaposition, and the concatenation product is read
from the bottom to the top. The operator adjoint is represented by up-down reflection.)

Notice that as operators, t x 14 = t is the same operator in a different intertwiner
space, whereas 1, xt = a(t). To enhance readability, we shall occasionally suppress
the concatenation symbol and write simply s o as the operator product s¢.

Because all intertwiner spaces Hom(c, 8) are linear subspaces of the target von
Neumann algebra, they inherit its weak and norm topologies. In particular, End(N)
is a C* tensor category, and the self-intertwiners Hom(w, o) form a C* algebra.
Important consequences are that t* ot = t*7 is a positive operator in Hom(8, ),
and that t* ot = 0 implies t = 0.

2.1 Endomorphisms of Infinite Factors

A von Neumann algebra N is a factor iff its centre N' N N = Hom(idy, idy) =
C - 1. Since idy is the monoidal unit in the tensor category, this is the same as
saying that the category End (V) is simple.

These elementary facts can be supplemented by further structure. If u : « — S is
unitary, o and 8 are said to be unitarily equivalent. The unitary equivalence class of
«a is called the sector [«]. An endomorphism « is irreducible iff Hom (o, ) = C-1y.

In an infinite (< purely infinite, type III) von Neumann factor acting on a separa-
ble Hilbert space (which we shall henceforth assume throughout), every projection
e # 0 can be written as e = ss* where s*s = 1, and one can always choose decom-
positions of the unit I = >, s;5;* such that 5;*s; = §;;. The algebra generated by
bounded quantum mechanical observables (= the algebra Z(¢) of all bounded
operators) does not share this property; instead, the local algebras of quantum field
theory are generically infinite von Neumann factors.

Thanks to this property, one can define

(i) an inclusion relation for endomorphisms: 8 < « iff there is s : B — « with
s*s = 1g.

(i1) subobjects: if e : ¢ — « is a projection, then there is a sub-endomorphism o
defined by the choice of s such that ss* = e, s*s = 1, and putting

os()=s"a()s: o .

We refer to oy < o as the range of e. We shall sometimes write «, instead, in
order to emphasize that the unitary equivalence class of o does not depend on
the choice of 5. (Categories where subobjects exist are also called “Karoubian”,
thus End(N) is Karoubian if N is an infinite factor.)
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(iii) direct sums of endomorphisms:

o) ::Zs,-ai(~)s,-*: 2 o

o

is an endomorphism, «; < «. Suppressing the dependence on the isometries
si, we write sloppily « ~ €D, «;. Since the choice of the isometries s; is
irrelevant for the unitary equivalence class (sector) [« ], the direct sum should
be understood as a direct sum of sectors. We emphasize this by writing also

o] = €D [i].

2.2 Homomorphisms and Subfactors

All notions of the preceding presentation can be transferred to homomorphisms
¢ : N — M where both N and M are infinite factors. Notice that intertwiners
t € Hom(gq, @) are elements of M.

Admitting several factors, one obtains a 2-category, whose objects are the fac-
tors, the 1-morphisms are the homomorphisms, and the 2-morphisms are their
intertwiners.

If N C M is a subfactor (i.e., both N and M are factors), then the identical map
t: N — M,n +> n,is anontrivial homomorphism, that describes the embedding
of N into M.

One candefine [1, Chap. 3] adimension function on the homomorphisms N — M
when both N and M are infinite factors, which is additive under direct sums and
multiplicative under composition. It is defined through the notion of conjugates:
a: N — Mandwo : M — N are said to be conjugates of each other whenever there
is a pair of intertwiners N > w : idy — oo and M > w : idy; — o« satisfying the
conjugacy relations

Sl

(W x1g)o(lg xw) = lg:

(Ig xwHo(Wx 1g) =14 :

(2.2.1)

Being self-intertwiners of idy, resp. idy, w*w = d - 1y and w'w = d’ - 1y
are positive scalars, and w, w can be normalized such that d = d’. The dimension
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dim(«) = dim(@) is defined to be

dim(e) = dim@) := inf d (2.2.2)
(w.9)

where the infimum is taken over all solutions (w, w) of the conjugacy relations
Eq.(2.2.1)withd = d’. A solution saturating the infimum is called standard solution
or standard pair. If & and B are irreducible, every solution with d = d’ is standard,
because dimHom((id, ) = dimHom (a«)=1. In the general case, standard solutions
always exists, and are unique up to unitary equivalence [1, 2].

(Here is a simple explicit proof: For [a] = €D, n;[«;] and [@] = €D, n;[@;] with
o, «; irreducible, one may choose standard pairs (w;, w;) for «;, &; and ortho-
normal bases sfl € Hom(o;, ), Eg € Hom(w;, @). Then the most general ele-
ment of Hom(id, @, ) is of the fom w = >, > , c;b&(s;ﬁ;',w,-, and similarly
w=2>>u c(’lib a(EZ)séW,u These solve the conjugacy relations iff the coefficient
matrices satisfy ¢’ T = ()~ (in particular, the multiplicities 77; = n; must be the
same), and one has d = >, dim(e;) Tr(c¢')*c', d' = >°; dim(@;) Tr(c))~1*(c') 7.

The variational problem d[c]d’[c] < min with d = @’ is solved by any family of
unitary matrices c'.)

The conjugate of an endomorphism is unique up to unitary equivalence. Endo-
morphisms which do not have conjugates can be assigned the dimension oco.

The dimension is always >1, and a homomorphism « is an isomorphism iff
dim(e) = 1. In this case, «~! is a conjugate of «. More generally, the dimension is
the square root of the (minimal) index [3, 4]:

dim(e)? = [M : a(N)].
In particular, for a subfactor N C M, dim(¢) is the square root of the index
[M : N][5]. In this case, «t € End(M) is called the canonical endomorphism, and

1t € End(N) the dual canonical endomorphism.

Lemma 2.1 ([1]) (i) Ler (w1, w1) and (w2, w2) be standard pairs for (o1, @1) and
for (ap, 02), respectively. Then

w=0o1(w)wi, wW=oa(W)w

is a standard pair for (ap01, A 1002).

(ii) Let (w;, w;) be standard pairs for (a;, @;), and [a] = P;[e;], [@] = P;[ai].
Choose orthonormal isometries s; € Hom(«;, @) and s; € Hom(«;, o). Then

w= > xs)ow, W=D (six5)ow
i i

is a standard pair for (o, o).
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Corollary 2.2 ([1]) The conjugate respects direct sums, and the dimension is
additive and multiplicative:

dim(az 0 @1) = dim(e) - dim(e)), dim(e) = D dim(e;) if [o] = Plei].

It should, of course, be emphasized that all the notions of direct sums, subobjects,
conjugates and dimension respect the unitary equivalence relation.

Definition 2.3 The left and right traces are the faithful positive maps

LTt : Hom(arB, of") — Hom(B,B),
[z

t— (W' xlg)o(lgxt)o(wxlg) 223

RTr,, : Hom(Bor,B'ar) — Hom(B,B'),

= (Ig x W) o(t x Ig)o(lg x W)

(2.2.4)

for the conjugate homomorphisms «, o.

Proposition 2.4 ([1, Lemma 3.7]) Let N and M be infinite factors, and let the traces
LTr, and RTry be defined w.r.t. a standard solution (w, w) of the conjugacy relations
foroa : N - Mando : M — N.

The traces do not depend on the choice of the conjugate and of the standard
solution, and satisfy the trace property

LTrq (s % 1gr)ot =LTryrto(s x 1g)

RTrg (1g: x 5)of = RTrgrt0(1p X 5) “ m
(2.2.5)

for s € Hom(o/, ) and t € Hom(aB, a’B’) resp. t € Hom(Ba, B'a’). For B =
B’ = id, both traces coincide and are denoted Try, : Hom(a, &) — C. In particular

Try 1o = dim(a). (2.2.6)

The latter property can in fact be adopted as an alternative definition for standard-
ness, since one also has

Proposition 2.5 ([1, Lemma 3.9]) Let N and M be infinite factors, and let the traces
LTr, and RTr,, be defined as in Definition 2.3 w.r.t. any (i.e., not necessarily standard)
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solution (w, w) of the conjugacy relations foroo : N — M ando : M — N. Then
LTry and RTry coincide if and only if (w, w) is standard.

If (w,w) is not standard, the maps LTr, and RTry, on Hom(x, ) — C may
happen to be traces, without being equal. E.g., for reducible « every n € Hom(c, o)
gives rise to a deformation w' := (1z x n) ow, W' := (n*~! x 1) oW of a standard
pair (w, w), which still solves the conjugacy relations. Then LTr}, and RTr;, defined
with (W', W) are traces if and only if n*n is central in Hom(e, o), while (W', W') is
standard iff n*n = 1,. One has the following characterization [1, Lemma 2.3]:

Proposition 2.6 Let (w, w) and (W', W') be solutions of the conjugacy relations for
a, @ and for o', @', not necessarily standard. Define LTr,, as in Definition 2.3 w.r.t.
these pairs. The following are equivalent:

(i) Fort € Hom(a, ') and s € Hom(o/, ), one has LTry (st) = LTry/(s).
(ii) Fort € Hom(a, a’), one has

/% W,*
= € Hom(a,a’).
w W

The same is true, replacing LTr by RTr in (i), or replacing t by s € Hom(c!', o)
in (ii).
In particular, (i) holds if (w, w) and (W', W') are standard.

Proof “(i) = (ii)” is the statement of [1, Lemma 2.3c], although the authors actually
prove also the converse. The proof proceeds by noting that

LTry (st) = @f = @]s, RTr, (ts) = @; — @ﬁ]s.

Now, (ii) trivially implies equality of the two expressions, hence (i). Conversely, (i)
implies (ii) because (15 x s) ow' is an arbitrary element of Hom(id, o).

The variants of the statement follow by obvious modifications.

Finally, if (w,w) and (w/,w’) are standard, then Proposition 2.4 implies (i),
hence (ii). (Il

For a single infinite von Neumann factor N, Endy (V) is the full subcategory of
End(N), whose objects are the endomorphisms of finite dimension. This is a “rigid”
category since left and right duals exist for all objects (namely, the conjugate).

All intertwiner spaces Hom(w, 8) in Endg(/N) are finite-dimensional, and
Hom(«, ) are isomorphic with a direct sum of matrix algebras @@, Matc (1), where
A are the equivalence classes of irreducible sub-endomorphisms of « and n, their
multiplicities in «.
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Whenever « has finite dimension (and hence a conjugate o exists), one can
use a standard solution (w, w) to define linear bijections (left and right Frobenius
conjugations) between the spaces Hom(y», «y;) and Hom(«y», 1), and between
Hom(y,, y1a) and Hom(y2a, y1),

ol |In w " "N rﬁ
— 3 > ,
IJ—JHYZ L:%IZ O!IJT_[!/Z w* V2
nl o n| " %
— s — .
IJ—JW-ZI 7IJ/;_FLI;J Yzﬁla 72 T

These maps along with the ensuing equalities of the dimensions of the intertwiner
spaces,

dimHom(y», ay1) = dimHom(@y», y1),
dimHom(y2, y1a) = dimHom(y»@, y1),

are usually referred to as Frobenius reciprocities.

2.3 Non-factorial Extensions

We want to extend our setup to N being a factor, while M is admitted to be a properly
infinite von Neumann algebra with finite centre. For a related analysis, see [6, 7].
M is a direct sum of finitely many infinite factors

M:@Mi.
i

The units of M; are the minimal central projections e; of M. A homomorphism
¢ : N — M can then be written as

o) =EPain).

Unlike the direct sum of sectors involving isometric intertwiners, cf. Sect. 2.1, this
is the true direct sum of homomorphisms ¢; : N — M;, which is a homomorphism
N — EBi M;.

Notice that the central projections ¢; € M are self-intertwiners of ¢, but ¢; can
not be split as ss™ with isometries s € M. Therefore, the direct sum of sectors [¢;]
as in Sect. 2.1 is not defined.
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Proposition 2.7 If all ¢; : N — M; have conjugates ¢;, then a conjugate
homomorphism ¢ : M — N of ¢ can be defined as

Pm) =D sig;(my)s;

where m = @i mi, m; € M;, and s; are isometries in N satisfying s7's; = 6;j and
> 8is} = 1n. The dimension of ¢ is

dim(p) = (Zdim(go,')z)%. (2.3.1)

The dimension dim(¢) is defined by the same infimum as Eq.(2.2.2), taken over
all solutions (w, w) of the conjugacy relations such that w*w = d -1y, W*w = d -1;.
Notice that it is no longer additive, as in the factor case.

Proof One easily sees that the solutions of the conjugacy relations are parameterized
by
— ——1 —
W:ZM-S,‘WZ‘, WZG}M @i (si)wi,
i i

with parameters A; € C. Here, (w;, w;) are solutions for (¢, ¢) satisfying w;“w,- =
d; - 1y and Wiw; = d; - 1,. Imposing w*w = d - 1y and w*w = d - 1) fixes the
numerical coefficients by |A;|> = d/d; and d* = > dl.z. This quantity is minimized
if all d; are minimal, i.e., all (w;, w;) are standard, and d; = dim(g;). This completes
the proof. ([

Remark 2.8 For standard pairs (w, w) of multiples of isometries satisfying the min-
imality condition, the tracial properties (Propositions 2.4-2.6) fail in general, when
M (or N) is not a factor. The authors of [7] propose a different “normalization con-
dition” (Eq. (4.3) in [7]) for solutions to the conjugacy relations, with w*w € N and
Ww*W € M central but in general not multiples of 1. In the case of N and M both
being factors, their condition amounts to the equality of the left and right traces,
hence is equivalent to standardness by Proposition 2.5, but it distinguishes different
normalizations otherwise. In the case at hand, it would rather fix |A; |2 = 1, so that
Ww*W is no longer a multiple of an isometry.
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Chapter 3
Frobenius Algebras, Q-Systems and Modules

Abstract We introduce the notion of Q-systems as Frobenius algebras in a C* tensor
category, enjoying a standardness property. Q-systems in the category of endomor-
phisms of an infinite factor N completely characterize extensions N C M. Mod-
ules and bimodules of Q-systems are equivalent to homomorphisms N — M resp.
M 1 — Mz.

We collect here some relevant results about the (simple, strict, Karoubian) C* tensor
category Endg(N) for an infinite von Neumann factor N. In fact, every full sub-
category of Endg(/N) can be canonically completed so as to become a simple strict
Karoubian C* tensor category with direct sums

¢ C Endo(N).

This completion is precisely given by the constructions exposed in Sect. 2.1. Without
further specification, throughout this work 6 C Endo(N) will denote a subcategory
with the stated properties.

In the motivating application to QFT, as exposed in Chap. 5.1.2, N will be the von
Neumann algebra <7 (O) of observables localized in some region O of spacetime,
which is known to be an infinite factor under very general assumptions. The assign-
ment O — &7 (0) is called the local net of observables, and a distinguished class
of positive-energy representations can be described by DHR endomorphisms [1]
of this net, which form a C* tensor category %DHR(% ) (strict, simple, with sub-
objects, direct sums and conjugates). The DHR endomorphisms localized in O,
when restricted to ./ (0), are in fact endomorphisms of o7 (0), and they have the
same intertwiners as endomorphisms of the net and as elements of End (<7 (0)) [2].
Therefore, they are the objects of a C* tensor category PR (.27)| o, which is a full
subcategory both of ¥PHR (&7) and of End(N), N = <7/ (0).

In other words, if p is localized in O, then one may safely drop the distinction
between p € ¥PHR (o7) and p € EPHR (7)o C End(N).

Since dim(p) was defined in terms of intertwiners, one may assign the same
dimension to p as a DHR endomorphism, and the same properties (additivity and mul-
tiplicativity) remain valid. This definition coincides [3] with the “statistical dimen-
sion” originally defined in terms of the statistics operators [1, 4].

© The Author(s) 2015 15
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It is physically most important that ¥PHR (o7) is in fact a braided category, and
in certain cases even modular. However, in our exposition, a braiding of the category
% is not required before Sect.4.5, and the braided category is not required to be
modular before Sect.4.11.

If the category ¥ C Endg(N) has only finitely many equivalence classes of
irreducible objects (sectors), then it is called rational. In this case, the structures
discussed below admit only finitely many realizations, with complete classification
available in many models. The global dimension of a rational tensor category is

dim(%) := > dim(p)?, (3.0.1)

[p]irr

where the sum extends over the irreducible sectors of €.

Example 3.1 (The Ising tensor category) In order to illustrate the “rigidity” of
a C* tensor category (and as a reference for further examples), we introduce
the Ising category, which is one of two tensor categories with three self-
conjugate equivalence classes [id], [T], [o] of irreducible objects with “fusion
rules” [t?] = [id], [to 0] = [0 0 T] = [0], [6?] = [id] @ [T]. It arises in QFT,
e.g., as the category of DHR endomorphisms Chap. 5 of the chiral Ising model.

The tensor category is specified by a choice of a representative in each class,
an isometric intertwiner in each intertwiner space according to the fusion rules,
and the action of the representative endomorphisms on the intertwiners. For all
unitarily equivalent endomorphisms, the intertwiners are canonically related.
(To specify a category in this manner, is sometimes refereed to as the “Cuntz
algebra approach™.)

Because T o 0 is unitarily equivalent to o, one can choose T in its equivalence
class such that T oo = 0. Because T is unitarily equivalent to the identity id
and 1200 = o, it follows from irreducibility of o that 12 = id. Therefore,
Hom(o, to) = Hom(id, t¥) = C - 1. The remaining nontrivial intertwiner
spaces are spanned by a pair of orthogonal isometries » € Hom(id, 0?) and ¢ €
Hom(z, 02), satisfying rr* +¢¢* = 1, and u € Hom(o, 0 1) = Hom(o, 0 T) X
1, = Hom(o?, 62). Because u? € Hom(o, 6 1) = Hom(o,0) = C - 1, one
may choose u = rr* — tt*.

Because t(r) € Hom(t, 62), one may choose + = 1(r), thus fixing the
action of t:

t(r)=t, T@t)=r, T(u)=—u.

o(r) € Hom(o, 0%) and o(t) € Hom(o T, 6%) are linear combinations of r
and 1, resp. ru and ru, invariant under the action of t. Imposing o2(a) =
rar* + t t(a)t* fora = r and a = ¢ suffices to fix all coefficients up to an
overall sign. For the Ising category one has
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1 1
o(r)=2"2(r+1), o(t)=2"2(r —tu.

(The category of DHR endomorphisms of the su(2) current algebra at level 2
is specified by the opposite sign: o(r) = —2_% (r+1t),0() = —2_% (r—1t)u.)

The dimensions are dim(t) = 1, dim(c) = +/2, and the global dimension
is dim(%) = 4.

3.1 C* Frobenius Algebras

A Frobenius algebra A = (6, w, x, w,x) in a C* tensor category (satisfying the
unit, counit, associativity, coassociativity and Frobenius relations [5]) is called C*
Frobenius algebra if the dual morphisms are given by the adjoint operators: w = w*
and X = x*. By the latter property, the unit and counit relations become equivalent,
and so do the associativity and coassociativity relations.

More precisely, 6 is an object of the C* category, and w € Hom(id, ) and
x € Hom(#, 6%) are morphisms satisfying the relations

unit property: (w* X lg)oxr=(lg xw*)ox=1y

b

associativity: (xx lg)ox= (g xx)ox

3.1.1)

=)

(3.1.2)

Frobenius property: (1 xx*)o(xXx 1g) = (x* x 1g)o(1g x x)

AR

In view of Eq. (3.1.2), we also write x@ for (x x lp)ox = (g x x) o x.
Clearly, w*w € Hom(id, id) = C is a multiple of 1.

Definition 3.2 If in addition, also x*x € Hom(#, #) is a multiple of 1y, the C*
Frobenius algebra is called special. If moreover,

w'w =da -1lig and x*x =da - 1y (3.1.4)
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with da = +/dim(6), we call the C* Frobenius algebra standard. The number
da > 1 1is called the dimension of A.

Ifa: N—> Mandwo : M — N are conjugate homomorphisms between two
factors, and (w € Hom(idy, @), w € Hom(id s, @)) is a solution of the conjugacy
relations, then

O =ua,w,x =a(w))

is a C* Frobenius algebra. It is automatically special because w*w € Hom(idy, idy)
and w*w € Hom(idyy, idjps) are multiples of 1. (0, w, x) is standard if and only if
the pair (w, w) is standard. Therefore, standardness can not always be enforced by a
scalar rescaling of a special C* Frobenius algebra.

Our aim is to prove Theorem 3.11 which states that every standard C* Frobenius
algebra is in fact of this type.

Let us first comment on the independence of the above axioms.

Lemma 3.3 ([6]) A Frobenius algebra is special, i.e., x*x = A - 1y, if and only
if x*xow = A - w is a multiple of w. In particular, every Frobenius algebra with
Hom(id, 0) one-dimensional is special.

Proof x*x = A - 1g trivially implies x*x ow = A - w. For the converse conclusion:

¢ (B.1.D) g (3.13) f (3.1.2) Lé . U GLD,

Standardness, however, is not automatic, as explained before.

Definition 3.4 For a Frobenius algebra (6, w, x) in a simple C* tensor category,
Homyg (6, 0) is the subspace Hom (6, 0) of elements satisfying

(lg Xxt)ox=xo0r=(r X 1g)ox: H}]: g :I{H.
(3.1.5)

We shall later identify this space with the self-morphisms of the Frobenius algebra
as a bimodule of itself (Sect.3.6), and exhibit the importance of this space for the
centre of the von Neumann algebra extension N C M associated with a Frobenius
algebra (Sect.3.2).

Lemma 3.5 [f (0, w, x) is a Frobenius algebra in a simple C* tensor category, then
n := x*x is a strictly positive element of Homq (60, 0).

Proof If w*w = d - 1jq, then d=1 . ww* is a projection, hence 19 > d~! - ww*, hence

xx>d " xFo(l x wwH)ox (3i'1) d ' 1y (3.1.6)
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is strictly positive. Equation(3.1.5) follows by associativity and the Frobenius
property:

Léb (3.12) L<j (3.13) ?5’6i$ C;J (.12) <1J
O

Corollary 3.6 The equivalent Frobenius algebra (8, w, X) with

1 1

Y 1 P 1 _1 1
w:=n2ow, x:=(n 2Xn 2)oxon?
is special.

Proof Replacing w, x by w, X clearly preserves the unit property, associativity, and
Frobenius property, and w*w € Hom(id, id) = C - 1. Specialness follows because
along with n € Homg (@, 6), also n~! € Homg (8, 0), hence:

1 (3.1.5)

o ' xn Hoxon2

=

X =n2

e}

n

1
onon 2 = ly.

In C* tensor categories, also the Frobenius property is not independent from
the other relations. We shall now prove that Eq.(3.1.3) follows from Egs.(3.1.1)
and (3.1.2) along with the special property x*x = A - 1. Notice that specialness is a
relation in Hom (6, 0), and is thus “simpler” than the Frobenius relation Eq. (3.1.3)
in Hom(62, 62).

Lemma 3.7 ([7]) In a C* tensor category, the Frobenius property is a consequence
of unit property, associativity, and specialness.

Proof Let X := (1g x x*) o (x x lg) — xx* € Hom(#?, #?). Then, if x*x =d - 1,
one has

X*X = (x* x 1g) o (lg x xx¥) o (x x 1g) —d - xx* € Hom(62, 6?),

where for the two mixed terms the associativity relation has been used. We define
the map § : Hom(62, 62) — Hom(62, 92) given by

O(T)=(x"x1g)o(lg xT)o(xx1g): t

8 is positive and faithful: Namely if T = Y™*Y is positive, then §(T) = Z*Z with
Z = (lp x Y)o(x x lp), hence §(Y*Y) is positive; and §(Y*Y) = 0 implies
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Z = 0 from which it follows that ¥ = 0 by the unit property Eq.(3.1.1). We apply
dto T = X*X. Again, using the associativity relation, one finds §(X*X) = 0.
Hence X = 0. (]

We make a little digression to report also the following observation: A triple
satisfying only the unit property and associativity can be “deformed” in such a
way that it is in addition special. Then the Frobenius property also follows by
Lemma 3.7, hence the deformed triple is a C* Frobenius algebra. There enters in the
proof, however, a certain “regularity condition” which we do not quite know how to
control.

The admitted deformations by any invertible element n € Hom(0,0) are
defined via

wisn " low, x> (n xn)oxonil,

obviously preserving Egs. (3.1.1) and (3.1.2). The deformed triple is standard if
x*o(n*n x n*n)ox =n*n.

We want to solve this eqution by iterating the following recursion:
mys1 = x*o(mg x my)ox,

starting with mg = 1, i.e., m; = x*x. Clearly, each my is a positive element of
1

Hom(#, 0). It is even strictly positive, because (8, wiy) = mk_7 oWk, Xkt1 =

1 1 1
(m x m?)ovgom, ?) is a sequence of triples satisfying Egs.(3.1.1) and (3.1.2),
and x,ka = my is strictly positive by Eq. (3.1.6). The question is, of course, whether
(my)x converges.

Now Hom(6, 6) equipped with the product m| * my = x*o(m; X mp)ox is
an algebra. The algebra has the unit ww™*, and is associative by Eq.(3.1.2). It is
finite-dimensional, because Hom (6, 0) is finite-dimensional. Hence it is isomorphic
to some matrix algebra. W.r.t. this product, mg = lg, m; = lg * lg, and my = 1;2k.
Because my are strictly positive, they cannot be zero, hence 14 is not nilpotent w.r.t.
the *-product. Hence it has some largest eigenvalue, and hence some multiple pg
of 1g has a largest eigenvalue 1, so that ;1,32’( converges to an idempotent m w.r.t.
the s-product. This element therefore solves x* o (m x m) ox = m. If m is strictly
positive, then deforming the original triple (6, w, x) withn = m %, would give rise to
a special triple, which then satisfies the Frobenius property by Lemma 3.7. However,
we only know that m is positive as a limit of strictly positive elements of Hom(6, 9).
The “regularity condition” mentioned above is the absence of a kernel of the limit.
(Actually, in order to solve the equation, one may start from any initial element 1o
(not necessarily a multiple of 1p), but in the most general case, one will have even
less control over the invertibility of the limit.)

After this digression, we return to the main line of the chapter.
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3.2 Q-Systems and Extensions

Definition 3.8 A Q-system is a standard Frobenius algebra A = (0, w, x) in a
simple strict C* tensor category €. Its dimension is da = /dim(0).

Even in the irreducible case, where the canonical endomorphism 6 fixes the inter-
twiner w € Hom(id, 8) up to a complex phase, there may be finitely many inequiv-
alent x € Hom(8, 62) [8].

From now on, we reserve the graphical representation

B - -

for the intertwiners associated with a Q-system, i.e., w and x satisfy Eqs.(3.1.1)—
(3.1.4), and (r, r) satisfies Eq.(2.2.1). We shall freely use these properties in the
sequel.

For the irreducible case, and ¢ = Endo (), this definition first appeared in [9] as
acharacterization of subfactors N C M. In this section, we review and generalize this
work to the reducible case. The correspondence between Q-systems and extensions
of a factor (= inclusions into a (possibly non-factorial) von Neumann algebra) is
the main reason for the study of Q-systems. In quantum field theory, Q-systems in
¢ = €PHR(o7) correspond to extensions &/ C 2 of a given QFT. Non-factorial
extensions naturally arise, e.g., in the “universal construction” of boundary conditions
discussed in [10], cf. Sect.5.4.

An immediate consequence of standardness is the following:

Corollary 3.9 Let A = (0,w,x) be a Q-system, r = xow. Then (r,7 = r)
is a standard pair for (0,0 = 0). The left and right Frobenius conjugations
Hom(6, #%) — Hom(62,0), y — (r*x1g)o(lgx y)andy — (1g xr*) o (y x lg)
take x to x*.

Proof The conjugacy relations Eq.(2.2.1) follow by applying the definition

~ = in several ways to Eqgs.(3.1.3), and (3.1.1). (r,7 = r) is a stan-

dard pair because r*r = w*x*xw = daw*w = di = dim(#). O

Remark 3.10 If A = (6, w, x) is only special, w*w = d,, - 1, x*x = d, - 1y,
then (7, r) still solves the conjugacy relations by the Frobenius and unit properties.
Therefore, r*r > dim(6) by the definition of the dimension as an infimum. Hence,
dyd, > dim(0) with equality if and only if A is standard.

Let N C M be an infinite subfactor of finite index, and ¢ : N — M the embedding
homomorphism. This gives rise to a Q-system in the C* tensor category Endg(N) as
follows. Because the index [M : N] is finite, the dimension dim(¢) is finite, hence
there is a conjugate homomorphism i : M — N. Let

w € Hom(idy,t) C N, v € Hom(idy, 1) C M
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be a standard solution of the conjugacy relations Eq.(2.2.1). Then the triple
A=0,w,x), 0:=ue€Endy(N), we N, x:=1t(v)eN 3.2.1)

is a Q-system in Endg(/N) of dimension dy = dim(t). Graphically “resolving” 6 =
1 o ¢, the intertwiners w and x = 7(v) are displayed as

Yy

so that the unit, associativity and Frobenius properties are trivially satisfied:

YW
W
TR

Notice that the projections d;l -ww* and d;l - xx* have the same properties as
the Jones projections in the type II case [11], satisfying the Temperley-Lieb algebra
and starting the “Jones tunnel”. The Jones “planar algebra” [12] associated with a
subfactor is the 2-category with two objects N and M, whose 1-morphisms are sub-
homomorphisms of alternating products of ¢ and ¢, namely p < (1t)" € Endg(NV)
foranyn € N, ¢ < ()" € Hom(N, M), etc., and whose 2-morphisms are their
intertwiners.

If M = @; M; is not a factor, and t(n) = €, t;(n) as in Sect.2.3, then the
Q-system defined by Eq.(3.2.1) can be computed with Proposition2.7:

d /d;
9(1’!) = lZsiQi(n)si*, w = ZZ E cSiow;, X = ZZ El . (S,' X s,-)oxi OSEI<
3.2.2)
where d = /dim(9) = /> _; dim(6;), in compliance with Eq. (2.3.1).

The projections p; = s,-s;" € Hom(#, 0) are elements of Homg (8, 6), cf.
Definition 3.4, i.e., they satisfy Eq. (3.1.5).

The central result of this section is the converse to the construction of a Q-system
from an inclusion map ¢ : N — M: namely, the larger von Neumann algebra M can

be reconstructed from N and the Q-system.
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Theorem 3.11 ([9]) Let N be an infinite factor, and A = (6, w, x) be a
Q-system in Endg(N). Then there is a von Neumann algebra M and a homo-
morphism v : N — M with conjugate t : M — N such that 6 = U, and
a standard solution (w,v) of the conjugacy relations Eq.(2.2.1) such that
x = 1(v). The dimension da equals the dimension dim(t) = /dim(0).

Proof The algebra M is reconstructed from N and the Q-system by adjoining to
N one new element, called v, whose algebraic relations are the same as those of
the operator v = v x 1, € Hom(t, (&t) = Hom(e, 6¢) if we knew that the Q-system
comes from a conjugate solution (w, v) as before. Namely, v satisfies the commutation
relations:

vi(n) = 16(n)v

with the elements n € N (where ¢ is the embedding of N into the larger algebra M),
i.e., v € Hom(t, t0), its square is

| @
Vv i=1(x)v: @ = y,

V= t(wtx ).

and its adjoint is

It follows from these relations that every element of M can be written in the form
t(n)vforsomen € N.The product thus defined is associative by virtue of Eq. (3.1.2),
and it has a unit 13, = ((w*)v by virtue of Eq.(3.1.1). The definition of v* implies
the adjoint of a general element of M, namely (t(n)v)* = v*i(n*) = c(W*x*0 (n™))v.
This turns M into a *-algebra, because the Frobenius property Eq.(3.1.3) ensures
that the adjoint is an anti-multiplicative involution.

We have now constructed M as a *-algebra. To see that it is in fact a von Neumann
algebra, one has to induce the weak topology from N to M with the help of the faithful
conditional expectation ; : M — N given by

u(m) = dXI 'W*Z(m)w, ,u(vv*) = d;l 1y

Here,
(t(n)v) :=60(n)x

defines a conjugate homomorphism ¢ : M — N, with (w, v) as a standard solution
of the conjugacy relations. M is already weakly closed with respect to the induced
topology because it is finitely generated from N. (]

Remark 3.12 It may be convenient to consider, rather than the single generator v of
the extension, the system of generators v/, = L(W;)V (charged intertwiners), where
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p < 0 1is an irreducible sub-endomorphism, and w, € Hom(p, #). By definition,
Y, € Hom(t, t o p) which is equivalent to the commutation relations (suppressing
the embedding map ¢)

Yon =p(n)y, (n€N). (3.2.3)

Every element of M has an expansion ) n,V, into a basis of charged intertwiners
with coefficients in N. The Q-system controls the product and adjoint of charged
intertwiners.

In the sequel, we shall always use Q-systems to characterize extensions N C M
of a given factor N. In particular, all properties of the embedding are encoded in the
Q-system, see also Chap. 4.

Lemma 3.13 For:: N — M, the following are equivalent:

(1) The extension is irreducible: (N "M = C -1y,
(i) ¢t: N — M is irreducible: Hom(¢, 1) = C - 1y;
(iii) dimHom(idy, zt) = 1.

Accordingly, we call a Q-system irreducible iff dimHom(idy, 0) = 1.

Example 3.14 (Q-systems of the Ising category) The Ising category (cf.
Example 3.1) has two irreducible Q-systems: (id, 1, 1) with M = N, and
O = oZw = 2%r,x = 2% o(r) = 2_%(r + t)). In the latter case, the
extension is M = «(N) V ¢, where ¥ = 2%L(t*)v satisfies the relations
Yin) = ((tm) ¥, v* = ¥, 2 = 1. M has an automorphism (fixing N, =
gauge transformation) « : ¥ — —. The conjugate 7 in the latter case takes
((n) to O(n) = o%(n) and ¥ to o2 (t*)(r + 1) = rt* + tr*.

For an irreducible Q-system, M is automatically a factor, because M’ N M C
t(N) N M. However, when Hom(idy, 0) is more than one-dimensional, then M
may have a nontrivial centre, as characterized by (ii) of the following Lemma.

Definition 3.15 We call the Q-system simple,' if the von Neumann algebra M in
Theorem 3.11 is a factor.

‘We shall see the equivalence of this definition with the usual one in Corollary 3.40.
In the sequel, we give various characterizations of the relative commutant N’ N M
and of the centre of M.

Lemma 3.16 (i) The relative commutant N' N\ M is given by the elements 1(q)v,
g € Hom(#, idy).

! The term factorial might be more appropriate in this context. “Simple”, however, is more in line
with standard category terminology, cf. Corollary 3.40.
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q
(i) t(q)v is idempotent iff (@ X q) ox = gq: gj = T , and it is selfadjoint

iff ¢ = (lg x g)oxow: Uq = J,q .

(iii) The centre of M is given by the elements 1(q)v, where q belongs to the subspace
of Hom(0, idy) of elements satisfying

q q
(gxlg)ox=(lg xq)ox: U = Lj
(3.2.4)

In particular, the central projections are given by 1(q)v where ¢ € Hom(0,idy)
satisfies all the relations in (i1) and (iii).

Proof We use the uniqueness of the representation m = t(n)v for all three statements.
Thus we write ¢ = t(q)v and characterize the properties of ¢ in terms of g:

(i) For ¢ € t(N) N M, the commutation relation ct(n) = ¢(n)c reads t(gf (n))v =
t(nq)v. This is equivalent to g6 (n) = ngq.
(ii) Immediate from (:(¢)v)* = t(gf(q)x)v and (L(g)v)* = t(W*x*0(g™))v.
(iii) The commutation relation cv = vc for c € M’ N M reads t(gx)v = t(0(g)x)v,
hence gx = 6(q)x. O

q q
Lemma 3.17 (i) The linear maps Hom(#, idy) — Hom(@, 6), T - Lrj ,
and Hom(8,0) — Hom(#, idy), — define a bijection between

Hom(0, idy) and the subspace of Hom(6, 0) of elements satisfying the first of

Eq.(3.1.5):
Lfﬁj - g ' (3.2.5)

(i) g € Hom(#, idy) satisfies Eq.(3.2.4) iff t € Hom(6, 0) (its image under the
bijection in (1)) satisfies also

éirj Lfﬁj (3.2.6)
i.e., iff t € Homg(6, 6).
Proof (i) 6(q)x satisfies Eq. (3.2.5): By associativity Ly = er
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The two maps invert each other:

tol-Re
o~ [E-1Ee -l

(3.2.6)
(i) “If: IKTJ = I?{FJ = KTﬁj = + =: Lrj by the unit property.
3.2.4)
“Only if”: w = w = L}J( = LTS} = krﬁ] by asso-
O

ciativity.

and

Thus, the relative commutant N’ N M and the centre M’ N M are equivalently
characterized by certain elements of Hom(6, idy) or of Hom(#, €). In particular, the
space Homg (6@, 0), Definition 3.4, is one way to characterize the centre of M. We
shall come back to this in Sects.4.2 and 4.3.

Remark 3.18 The standardness property of the Q-system is not used in the construc-
tion of the algebra M in the proof of Theorem 3.11, and neither the (weaker) special-
ness property that x*x is a multiple of 14. These properties are only required to ensure
that v*v is a multiple of 1,7, namely x*x = t(v*v). Because M’ N M = Hom (1, (1),
v¥v is always central in M, hence specialness is automatically satisfied if M is a
factor.

3.3 The Canonical Q-System

Let j : N — j(N) be an antilinear isomorphism of factors. E.g., j : n — n* is
an antilinear isomorphism of N with j(N) = N°PP (the algebra with the opposite
product), or a Tomita conjugation j = Ady is an antilinear isomorphism of N with
j(N) = N'.For € C Endg(N), let j (%) the category with objects p/ = jopo j~!
(p € %) and with intertwiners j (¢).

We denote by 6 X % (the Deligne product) the completion of the tensor product
of categories 41 ® % by direct sums.

Proposition 3.19 ([13]) If € has only finitely many inequivalent irreducible
objects p, then there is a canonical irreducible Q-system R in € X j (&) with

[Bcn] = Pl ® 0],
o)
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Because of the anti-linearity of j, the sums over a do not depend on the choice of
orthonormal bases #,. A different choice of T, gives a unitarily equivalent Q-system.
One easily proves (cf. Proposition 2.6)

Lemma 3.20 ([7]) Choosing, for every p € €, a conjugate p € € and a standard
pair (w, w), the assignment

pp 1 i W”;):J-(W )
Wo

o

taking Hom(p, o) into Hom(p/, S/) is a linear isomorphism between the C* ten-
sor categories €°PP and j(€) (the category equipped with the opposite monoidal
product).

Corollary 3.21 The opposite tensor category €°PP can be realized as j(€) C
Endo(N°PP) or Endog(N’). Under this isomorphism, the canonical Q-system in
€ R j(€) becomes a Q-system in € K €°PP with [©] = Plp] ® [p].

This is the way it is defined in the abstract setting (e.g., [15, Prop. 4.1]).

3.4 Modules of Q-Systems

A module (= left module) of a Q-system A = (6, w, x) is a pair m = (8, m),
where B is an object of the underlying category and m € Hom(B, 68),? satisfying
the relations

unit property: (w" x lg)om = lg

‘qz

2 More precisely, (8, m*) is a module and (8, m) is a co-module. We do not make the distinction
because the dualization is canonically given by the operator adjoint.

?

(3.4.1)
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representation property: (1o x m)om = (x x 1 /3) om

H u (3.42)

A module of a Q-system is called a standard module if 7*m is a multiple of 1.
(This property is automatic if (8, m) is irreducible as a module, and in particular if
B is irreducible as an endomorphism.)

A Q-system A is also a standard A-module (8 = 6, m = x).

Two modules (8, m) and (8’, m') are equivalent, when there is an invertible
n € Hom(B, B') such that m’ on = (lgp x n) om. They are unitarily equivalent if
there is a unitary such n.

Lemma 3.22 (i) Ifa module m = (8, m) is standard, then (with dx = the dimen-
sion of the Q-system)
(3.4.3)

(i1) Every module is equivalent to a standard module, i.e., there is an invertible
element n of Hom(B, B) such that (8, (19 xn) om o n~Y) is a standard module.

Proof (i) follows from the representation property Eq.(3.4.2) and x*x = dj - 1y,
which imply

o(lg xm*m)om = @ Q] =dj- q =dx-m*m.

For (ii), first we notice that m*m is an invertible positive element of Hom(8, ),
because ¢ = d;l - ww* is a projection in Hom(6, 6), hence by the unit property,

m*m > m*o(ex 1g)om =d;] - lg.
Let n € Hom(p, B) be the square root of m*m. Then by the representation property,

n'm*o(lg x n®)omn™ ' = n"'m* o (x*x x lﬁ)omnfl =da - 1. |

Lemma 3.23 [f (8, m) is a standard module, then in addition to the unit and repre-
sentation relations, the relation

(X*Xlﬂ)o(lg ><m) 19 ><m Xlﬁ)

TNHY L
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holds. This implies

m* = (r* x 1g)o(lg xm): ﬂ N’ (3.4.5)

and consequently

E::d;1~(x*><lﬂ)o(19 xm)=dy"-

is a self-adjoint idempotent, i.e., a projection in Hom(68, 68).

Proof The proof is very much the same as the proof of the Frobenius property in
Lemma 3.7, with X replaced by X’ := (19 x m*) o (x x 1g) —mm™* € Hom(6B, 0),
the associativity property of x replaced by the representation property of m, and §
replaced by the faithful positive map 8’ : Hom(68, 68) — Hom(68, 68)

B
O'(T)=(x"x1g)o(lg xT)o(xx1g): t

The equation for m* then follows by left composition with w* x 14, and the statement
about E follows because E = d;l -mm* and m*m = dy - 1p. O

From now on, we reserve the graphical representation

Qﬁ
m=

for the intertwiner associated with a standard module m = (8, m), i.e., m satisfies
Egs. (3.4.1)—(3.4.3), hence also Eq.(3.4.5). We shall freely use these properties in
the sequel.

If A is a Q-system in ¥’ = End(V), corresponding to an extension ¢ : N — M,
then every homomorphism ¢ : N — M of finite dimension gives rise to a standard

module
2] 1
B,m)= (1@, 17x vx 1y): q = @
T

of A. Notice that, as an operator in N, m = 1(v) = x. If € C Endy(N) as specified
in the beginning of the chapter, then the same is true provided 7¢ belongs to % This
restriction on ¢ is equivalent to the condition that ¢ < tp with some p € €.

4

(3.4.6)
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The converse is also true: namely, we prove now that every standard module is of
this form:

Proposition 3.24 Every standard module m = (B, m) of a simple Q-system
A = (0, w, x) in Endo(N) is unitarily equivalent to a standard module of the
form (1, x) as in Eq. (3.4.6), where ¢ is a homomorphism ¢ : N — M.

(The same result was derived by [16, Lemma 3.1] by an exhaustion argument,
using the known number of modules in the case of a braided category; our proof is
more constructive, and does not refer to a braiding.)

Proof Writing as before & = 11, m defines by left Frobenius conjugation an element
e=dy'- (v x 1,8)0(l, x m)

of Hom(¢8,8) C M. Then 1; x e equals, by Eq.(3.4.4), the projection E =
d;l - mm™* in Lemma 3.23, hence e is also a projection. Let ¢ < (8 be the sub-
homomorphism : N — M corresponding to this projection, and s € Hom(g, ¢8) an
isometry such thate = ss™. By left Frobenius conjugation, § := (1;xs*) o (wx 1) €
Hom(B, 1p). We claim that the range projection of 5 equals 17,.

Indeed, by inverting the definition of e, we have that

m=dy - (If x ss¥) o (w x 1g),

hence
5= d;l (I x s om.
Now, we use again Eq.(3.4.4): mm™ = da - 1t x e = da - 17 X ss™ to conclude

55 = d? - (I x s%) omm™ o (I x s%) = dy - (17 x s¥ss*s) = d" - 1.

Thus, while ¢ < (8 by construction, we also have (8 < ¢, hence g is equivalent
to 7. It follows that u := +/da - § is a unitary u € Hom(p, t¢). Then, inserting
s =1, x5 oW x l,)intom =da - (1t X s5¥) o (w x 1g), one arrives at

m=(lg xu*)o(lg xvxly)ou.

This proves the claim. O

The homomorphism ¢ corresponding to a module m can be explicitly computed:
namely, ¢(n) € M can be written as ¢(n) = t(k)v for some k € N. Applying ¢
implies B(n) = 6 (k)x. Multiplying w* from the right, implies w*8(n) = w*0 (k)x =
kw*x = k. Hence ¢ : N — M is given by

o) =1(w*Bmn)v e M.
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Considering A as a standard A-module (8 = 6, m = x), the corresponding
homomorphismis¢ =t: N - M.

The modules of a Q-system (6, w, x) are the objects of the module category. A
morphism between two modules (8, m) and (8, m’) is an element ¢ € Hom(8, 8')

satisfying
m—=mot: l * _ e
(19 X t) ° or: dq m
(3.4.7)

It is obvious from the definition that the modules are closed under right tensoring
with p € €, namely m x 1, = (8 o p, m x 1) is again a module, and the corre-
sponding homomorphism is ¢ o p. Moreover, the right tensoring is compatible with
the morphisms. The category thus defined is therefore a right module category in the
sense of [17, Definition 6].

Clearly, every s € Hom(gp, ¢') defines a morphism r = 17 x s between the
associated standard modules. The converse is also true:

Proof s = dy" - LTr:(t) does the job:

O

We recognize that the argument in the proof of Lemma 3.17 is just an instance
of this general fact, namely Eq. (3.2.5) just states that + € Hom(6, €) is a morphism
between A = (6, x) as a A-module and itself, hence t = 1; x s = 1(s) with
s = t(q)v € Hom(t, ¢).

In particular:

Corollary 3.27 Letm = (8, m) be a reducible module. The space of self-morphisms
ofm is a finite-dimensional C* algebra. If p; are minimal projections in this algebra,
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and p; = t;t} with isometries t;, then m >~ @, m; with m; = (B;, m;), where
Bi =t7B()tiandmi = (19 x tf)omot;, i.e.,

B=D i) m=>D (g xt)omot}.

Example 3.28 (Modules in the Ising category) The irreducible modules of the
trivial Q-system are (p, 1) with p = id, o, T. The corresponding homomor-
phisms : N - M = N are ¢ = p.

The modules (B, x = 2_%(r + t)) of the nontrivial Q-system given in
Example 3.14 (6 = 0% ~ id @ 1) arising from ¢ < p are:

(i) p = id: module (62, x), homomorphism ¢ = t.

(i) p = v module (62 T, x), homomorphism ¢ = ¢ o T.

(iii) p = o: The module (8 = 6o = 03, x) is reducible: ~ B =
0,x) @ (B2 = o1, x) (with morphisms o(r) € Hom(81, 8) and o(¢) €
Hom(B,, B), respectively). For the submodule (o, x), one computes
@1 i n > r*o(n)(r 1), in particular, 7 > 272 (r 1), £ > 27 (r —
ty), u — . For the submodule (0 T, x), 92 : n > r*ot(m)(r +tv¥), in
particular r +— 2_%(r—t1p), t— 2_%(r+t1p), u — —r. These homo-
morphisms are surjective, hence isomorphisms, and > = ¢10T = @ o
(o = gauge transformation ¢ — —).

3.5 Induced Q-Systems and Morita Equivalence

Let A = (6, w, x) be a Q-system, defining an extension ¢ : N — M.

If m = (B, m) is a standard module of A, and ¢ : N — M the corresponding
homomorphism, we choose a conjugate homomorphism ¢ : M — N and a solution
of the conjugacy relations wy, v,. Then

Ay = Oy, wp, xp) Wwith 0, =0, x4y =0(Vy)

is a Q-system. We call A, the Q-system induced by m.

Notice that, by definition, ¢ = 6, = Iyty; but the corresponding extension
tp : N — M, should not be confused with the homomorphism ¢ : N — M,
because ty,(n) =n € N C My, while p(n) #n € N C M.

Lemma 3.29 [f a Q-system Ay = (62, wa, x2) is induced by a standard module
(B1,my) of A1 = (01, wi, x1), then Ay is induced by a standard module of A;.
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Proof By Proposition 3.24, (81, m1) is of the form 81 = ;¢ and m| = x1, where
@1 < t1p for some p € €. By definition of the induced Q-system, (3 = ¢, and
hence ¢; < t2p. Therefore, A is induced by the module (82 = o2, my = x3) of
Ay, where ¢ = (. O

Definition 3.30 ([17, Definition 10]) Two Q-systems in % are Morita equivalent if
their module categories are equivalent, i.e., there exists an invertible functor between
the two module categories that commutes with the right tensoring by p € %

Proposition 3.31 Two Q-systems are Morita equivalent if and only if one of
them is induced by a standard module of the other one (which implies also the
converse).

Proof If Ay = (62, wa, xp) is induced by a standard module (81, m) of A| =
(61, w1, x1), then 15 = @1 < t1p for some p € €. Then the sub-homomorphisms
@ of 10" for some p’ € ¥ are the same as the sub-homomorphisms of ¢; 0" for
some p” € €. Then, by Propositions 3.24 and 3.25, mapping the standard modules
(t19, x1) of Ay to (129, x2), and morphisms #| = 1;; X s to r = I, x s, defines a
bijective functor that commutes with the right tensoring by p € %.

Conversely, if A| and Aj are Morita equivalent, then there is a module m; of A4
mapped by the bijective functor F to A, as a module of itself. By Proposition 3.24,
m; = (119, x1) (up to equivalence) with ¢ < (o for some p € %. We have to
show that the Q-system A, induced by ¢ is equivalent to A;. We first show that
0y = Tyly = @@ equals O, (up to unitary equivalence).

For every o € €, one has Hom(o, p¢) ~ Hom(¢ 0, ¢) by Frobenius reciprocity.
Because ¢ corresponds to ¢ under F, and F' commutes with right tensoring by
o € %, we further have Hom(¢ 0, ¢) ~ Hom(¢; 0, 1) ~ Hom(o, 6,), from which
the claim follows.

Since the construction of the induced Q-system is invariant under the isomorphism
of module categories F, it follows that the Q-system induced by ¢ from A coincides
with the Q-system induced by ¢, from Aj, which is of course Aj. ([l

Thus, the Q-systems A, induced from a Q-system A precisely give the Morita
equivalence class of A. However, inequivalent ¢ may induce equivalent Q-systems
Ayieg,if A = (id, 1, 1) is the trivial Q-system, then all invertible ¢, hence pp = id,
induce the trivial Q-system.

3.6 Bimodules

The identification Sect. 3.4 between standard modules (= left modules) of a Q-system
A in ¢ C Endg(N) and homomorphisms N — M of the associated pair of alge-
bras works exactly the same for standard right modules m = (8, m € Hom(8, 6))
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(satisfying the analogous relations with the reversed tensor product). The
correspondence is then that every standard right module is of the form

(B=9t,m =),

where ¢ : M — N is a sub-homomorphism of .
In particular, a Q-system A is also a standard right A-module (8 = 6, m = x),
and the corresponding homomorphismis ¢ =7: M — N.

By obvious generalizations of the arguments, one also treats bimodules. An A |-
Aj-bimodule between two Q-systems is a triplem = (8, m; € Hom(B, 6,8), m; €
Hom(g, 6>)) suchthat (8, m)isaleft Aj-module and (B, m;) is aright A;-module,
and the left and right actions commute:

0 | 6>
(191 xm2)0m1 :(ml ><192)om2: m; = = m
my Qi my

Equivalently, one may characterize the bimodule as a pairm = (8 € €,m €
Hom(g, 61 86»)) satisfying

w B ‘ , w B WZ
B B m m (3.6.1)

Then (B8, m1) := (lg, x 1g x wy) om is a left Aj-module, (B, m2) := (W] x lg x
1p,) o m is a right Ap-module, and their actions commute.

A bimodule of a Q-system is called a standard bimodule if m*m is a multiple
of 1g.

A Q-system A is also a standard A-A-bimodule A = (8 =6, m = x?).

One proves the analogs of Lemmas 3.22 and 3.23, Propositions 3.24 and 3.25
and Corollary 3.26 in more or less exactly the same way (replacing the left trace in
Proposition 3.25 by the right trace for the right module action):

R
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A morphism between two bimodules is an element ¢ € Hom(B, B') satisfying

ol Al el Jo
(lg, xt x 1g,) om=m'ot : = m .
m i (3.6.2)

Again, the homomorphism associated with a standard bimodule m = (8, m)
can be computed. Namely, the formula for m implies that 7;¢(v2) = wim (cor-
responding to m as a right Ay-module). Hence ¢(ip(n)v2) = t(1(k)v; implies
B(m)wim = 01 (k)x1, hence k = wiB(n)wim:

p((m)v2) = u(wiBm)wim)vy. (3.6.3)

In particular, ¢(v2) =t (Wiwim)vy.

The homomorphism associated with A as an A-A-bimodule is ¢ = idy; : M —
M.

If ¢ = t1p1 (which is in general reducible), hence B = 61p6, and m =
x101p(x2), this simplifies to ¢ (12(n)) = t1(p02(n)) and @(v2) = t1(p(x2)). Thus,
¢ : M> — M happens to take values in ¢;(N) C M;. This property is, however,
not intrinsic, as it is not stable under unitary equivalence in the target algebra M.
Also, the decomposition of ¢ into irreducibles (which are unique only up to unitary
equivalence within M) depends on the choice of isometries s, so that g3 = s*¢(-)s.
These may or may not be chosen in (1 (N). As the Example 3.35 shows, there may
be good reasons to choose the homomorphisms rnot to take values in ¢; (N).

Also the analog of Proposition 3.31 holds for bimodules, again with the same
proof as for modules:

In particular, the category of bimodules between a pair of Q-systems depends
only on the Morita equivalence classes of the latter.
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Example 3.35 (Bimodules in the Ising category) Let A = (8 = o2, w =
2%r, ¥ o= 2’%(r + 1)) be the nontrivial Q-system as in Example 3.14 and
M = N Vv ¢ be the corresponding extension of N. The irreducible id-id-
bimodules are just p = id, 0, T. The A-id-bimodules are the same as the
modules of A, Example 3.28.

The id-A-bimodules arising from ¢ = ptare:m, = (8 = pf = pol,m =
p(x)), where x = 2’%(r + t). Thus, ¢ maps n € N to paz(n) and v to
p(x).

(i) p = id and p = t: These are the same bimodules, because To = ¢ and
T(x) = x. One finds ¢ : n — o%(n), ¥ > rt* + tr*.

) p=c:f=0m=0(x)=2"Tc(r+1) =277 41+ — ).
@ :n > o3(n), Yy — rur® — tut*.
The latter homomorphism ¢ = o is reducible, with projections rr* and
tt* in the commutant. Then ¢; = r*¢(-)r and @ = t*¢(-)t give rise
to

(1) Bi =0, my =23r, @1 :n > o), ¥ > u.
1
(1i.2) Bo = 10 = 0, my = 24%t, ¢y : n — o(n), ¥ — —u. One has
2 =@1oa = Tog].

The A-A-bimodules arising from ¢ = (ot are: m, = (8 = 6pf =
02,002, m = x0p(x)). Thus ¢ maps n to p02(n) and v to p(x).

(i) p = id and p = T are again the same bimodule. ¢ : n > o%(n), ¥
rt*+tr*. ¢ isreducible with projections %(lillf) = s45%, 54 = 2’%(rj:
tvr). This gives the irreducible components ¢+ : n — n, ¥ — £, i.e.,
¢+ =idand p_ = .

() p =0.¢ :n > o), ¥ — ort* +tr*) = rur* — tur*. The
commutant of ¢ (M) contains u# and 1. Thus ¢ is the direct sum of
two equivalent components, [¢] = [¢'] @ [¢']. Choosing projections
rr* and tt* to compute ¢; = r*p(-)r and ¢» = t*@(-)z, one has
o1 :nt> on),Yy - uand ¢ : n — o),y — —u. These are
equivalent to each other by ¥ € Hom(gi, ¢2). They are also equivalent
to the a-inductions o:ff (cf. Sect.4.6) by UL = 2_%(1 =+ ivr); with the
former choice, ¢; take values in ¢{ (N), while Ady, @1 = AdU¥ 0 = aoi
don’t.)
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3.7 Tensor Product of Bimodules

The tensor product of bimodules is defined as follows. If m; = (81, m) is an
A-B-bimodule and my = (8,, m3) is an B-C-bimodule, then

64 0¢
P € Hom(f3, 82,63, 5,6°)

myl [m2

satisfies the representation property of an A-C-bimodule, but the unit property fails.
Instead, we have

Lemma 3.36 The intertwiner

—1 —1 ﬁl ﬁz
pi= dB . i = = dB . S Hom(ﬁlﬁzvﬁlﬁZ)

is a projection, and satisfies

94 ¢
(19A><p>(10c)0ﬁ:r?1:n/iop; dl;lw: :dglkﬁj
m ny

(3.7.1)

Proof Idempotency of p follows from the relation Eq.(3.7.1). Self-adjointness of
p follows from Lemma 3.23. To prove Eq.(3.7.1), we use the representation prop-

erty, e.g.,
04 6¢
03

Then the bimodule tensor product is defined as the range of the projection p:

Definition 3.37 Letm; = (8, m) be an A-B-bimodule and m; = (8>, m>) aB-C-
bimodule. Choose an isometry s € N such that ss™ = p and put 8(-) := s*B182(")s
the range of p in B 8,. Then the bimodule tensor product

m; @pmy = (f,m),

%

eA S 9C

my

m:=dg' - (1ga x 5" x lgc)omios=dg' - € Hom(3,6436°)

is an A-C-bimodule.
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Proposition 3.38 Under the correspondence Proposition 3.32(ii), the bimodule
tensor product m| @g my corresponds to the composition of homomorphisms
QLo : MC — MA.

Proof Using Proposition 3.32(ii), one computes

11 B. Bx U

- —1
p=dg - hop, XW W x 1 =dg 1A €,

D1 (22

With this, the claim is easily verified. The proper normalization is fixed by
Proposition 3.32(i). (]

@p01€

hence (up to unitary equivalence) one may choose

1
s=dg”-1

1
B = 2
Xwex 1, e =dg”-

TAo(pl

In particular, we have equipped the category of A-A-bimodules with the structure
of a tensor category, such that the tensor product corresponds to the composition of
the corresponding endomorphisms in Endg(M). By admitting bimodules between
different Q-systems A;, one arrives naturally at a (non-strict) bicategory (with 1-
objects A;, 1-morphisms the bimodules and 2-morphisms the bimodule morphisms),
corresponding to homomorphisms among the associated extensions M;. Fixing the
von Neumann algebra N and some full subcategory 4" of Endg(/N) in which the
Q-systems, bimodules and morphisms take their values, one obtains a full sub-2-
category of the latter 2-category.

In the tensor category of A-A-bimodules, the bimodule A is the tensor unit. Cor-
respondingly, this category is simple iff A is irreducible as a A-A-bimodule. The
following Lemma characterizes the self-intertwiners of A:

Lemma 3.39 ¢ € Hom(6, 0) is a self-morphism of A as left (right) A-module if and
only if t satisfies the first (second) of Eq.(3.1.5). t € Hom(0, 0) is a self-morphism
of A as an A-A-bimodule if and only if t € Homq (0, 0).

Proof The first statement is just the definition of morphisms. We prove only the last
statement. “If”’: obvious. “Only if”: by applying the unit relation in several ways to
the defining property of a bimodule morphism

Y-
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Notice that (i) <> (ii) is our Definition 3.15 of a simple Q-system. (iii) < (iv) is
the definition of a simple tensor category. Thus, Corollary 3.40 states the equivalence
of our Definition 3.15 of simplicity with the standard definition, which is given by
the condition (iv).

Proof 1t suffices to prove (ii) < (iii). The endomorphism ¢ : M — M corre-
sponding to the bimodule A according to Proposition 3.24, is ¢ = idjs. Then, by
Proposition 3.33, every self-intertwiner of A as an A-A-bimodule is of the form
t = 1y xs x 1, € Hom(0, ), where s € Hom(idy, idys). But Hom(id s, idys) is
the same as the centre M’ N M. O

For later use, we mention

Lemma 3.41 If m; = (B;, m;) (i = 1, 2)are A-B-bimodules, andt € Hom(B1, B2),
then
B2
S 1= m5o(1ga x 1% Lys)omy = () € Hom(B1,8>)
Bit

is a bimodule morphism : m; — my.

The proof is rather easy in terms of the defining properties of modules and module
intertwiners, and actually becomes trivial if one uses Proposition 3.32: namely S €
La x Hom(gy, 92) x 1.

This Lemma implies that if the two bimodules are irreducible and inequivalent,
then every intertwiner S obtained in this way must be trivial. E.g., if my is trivial A-
A-bimodule (0, x(z)), and m = (B, m) is any nontrivial irreducible A-A-bimodule,

then X* o (lg x s* X 1g)om = = 0 for every s € Hom(id, 8). This is a

special case of the Lemma (with r = wos* € Hom(p, 0)), that we shall make use
of in Sect.4.12.
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Chapter 4
Q-System Calculus

Abstract We introduce operations with Q-systems and clarify their meaning in
terms of the corresponding extensions N C M. We identify three different types of
reduced Q-systems, corresponding to the central decomposition and the irreducible
decomposition of the extension, and to intermediate extensions. In braided tensor
categories, the centre, the full centre, and the braided product of Q-systems are
defined. The main classification result is the computation of the central decomposition
of the braided product of the full centres of two Q-systems in a modular C* tensor
category.

Throughout this section, N is an infinite factor, and ¥ C Endy(N) with properties
as specified in Chap. 3.

Q-systems in ¥ can be decomposed in several distinct ways. In the first four
sections, we discuss various decompositions in turn, and characterize them in terms
of suitable projections in the underlying category %'

In the remainder of this section, we discuss Q-systems in braided C* tensor cate-
gories, introduce various operations with Q-systems (the centres, the braided products
and the full centre), and compute the central decomposition of the extension corre-
sponding to the braided product of two full centres. The latter is motivated because
this decomposition gives the irreducible boundary conditions for phase boundaries
in local QFT [1].

4.1 Reduced Q-Systems

Let (8, w, x) be a Q-system describing the extension N C M. When the multiplicity
dimHom((idy, ) = dimHom(t, ¢) of idy in 6 is one, then the extension is irreducible
(N'N'M = C1), and in particular M is automatically a factor. When the multiplicity
is larger than one, then M may or may not be a factor.

Let e be a nontrivial projection in Hom(t, ¢). If M is a factor, then one can write
e = tt* with an isometry t € M, define a sub-homomorphism ¢, < ¢ by ¢.(-) =
t*1(-)t, and arrive at a decomposition [¢] = [t.]®[t1—.], cf. Corollary 4.10, where we
shall characterize this decomposition in terms of certain projections in Hom (@, 6).
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In contrast, if M is nota factor and e # 1 belongs to the centre of M, such isometries ¢
do notexistin M. Namely,t € M and 1t* € M’ would imply e = et*t = t*et = 1.

One should therefore first perform a central decomposition of M into factors
M, = eM by the minimal central projections, and compute the reduced Q-systems
(cf. Sect. 4.2) for the subfactors N >~ Ne C Me. Each of these may still be reducible,
and can be further reduced by decomposing [¢] = € lte], as before.

Finally, we also discuss in Sect.4.4 the multiplicative “splitting” decomposition
of ¢, when there is an intermediate subfactor N C L C M, sothat: = 1p ot1. Whether
an intermediate subfactor exists is independent of reducibility of the subfactor, e.g.,
[t] = [idy ] [id n] is reducible but does not admit an intermediate subfactor, whereas
H®u = ( ®idy,) o (idy, ® 12) : N1 ® No — M| ® M> is an irreducible
homomorphism (if ¢; are) but admits intermediate factors N1 ® M> and M| ® N».
This example also shows that the splitting cannot be expected to be unique. Also,
even if both N and M are factors, the intermediate algebra L need not be a factor, as
the example N C N @ N C Mat,(N) shows.

Although the three decompositions of a Q-system (6, w, x) are of quite different
nature, they all come with a projection P € Hom(6, 0) satisfying

(PxP)ox=(Pxlg)oxoP=(lg Xx P)oxoP

YYY

(“of three projection, any one is redundant”, or “any two projections imply the third”),
and in each case different further properties. One easily proves:

Lemma 4.1 Equation(4.1.1) alone implies
(1) The triple

Op :=S*0(-)S, wp:=85*ow, Xp:=(S*xS)oxoS

is a C* Frobenius algebra, where S € N is any isometry such that SS* = P,
ie,Op < 0.

(i) np := XpXp is a multiple of 1y, if and only if x* o (P x P)ox is a multiple
of P.

(The notation emphasizes that the unitary equivalence class of (Op, wp, Xp) depends
on P, but not on the choice of the isometry S.)

Proof (i) The unit property, associativity and Frobenius property follow from
the corresponding properties of (6, w, x) by “eliminating” projections using
Eq.(4.1.1) and PS = S.

(i) “If” is obvious. Conversely, XpXp = i - lg, implies that Pox* o (P x P)o
xoP =pu-P.ByEq.(4.1.1), this equals x* o (P x P)ox. |
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However, the property in (ii) may fail, in which case the C* Frobenius algebra
fails to be special (and hence to be standard). Then, by Corollary 3.6, one can define
the equivalent special C* Frobenius algebra (0p, wp, Xp) with

1 1 1 1
Wpi=npSTow, Xp:=@mp S xnp>SHoxoSn;

with the “normalization intertwiner” np = xpxp = S*X*(P x P)XS € Homo(0p,
6p), such that x3xp = 1g,,.
wp € Hom(id, 6p) is automatically a multiple of an isometry, and

wWpwp =w ox*o(P x P)oxow=r"o(P x P)or.

In each of the three decompositions discussed in the subsequent sections, further
properties of the characterizing projections beyond Eq. (4.1.1) will indeed ensure the
correct normalization as required in Corollary 4.2.

4.2 Central Decomposition of Q-Systems

In this section, we shall characterize decompositions of ¢ : N — M as a direct sum
L=11®D0

when M = M| & M, is not a factor, ¢; : N — M,.

Let N C M an inclusion of von Neumann algebras, where N is an infinite factor,
and M is properly infinite with a finite centre. Every central projection e € M’ N M
gives rise to an inclusion eN C eM, where eN is canonically isomorphic to N.
(Recall also the characterization of such projections as e = i(q)v with ¢ €
Hom(#, idy), given in Lemma 3.16.) If e is minimal, e N C eM is a subfactor.
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We want to characterize the corresponding embeddings eN — eM in terms of
reduced Q-systems Eq. (4.1.2). Our starting observation is that P :=i(e) € N is a
projection in Homg (6, 6):

(Ig x P)ox=x0P=(Pxlg)ox: w = \%J = v ,

which s precisely Eq. (3.1.5). This follows immediately by applying ¢ to the equations
1t(e)v = ve (because e € M) and ev = ve (because e € M’). We now show the
converse:

Proposition 4.3 Let A = (0, w, x) be a Q-system defining the extension
N C M. Let P € Hom(0, 0) be a projection satisfying Eq.(3.1.5), hence also
Eq. (4.1.1). Then Eq. (4.1.2) with normalization intertwiner np = /dim(6) -
1y, defines a reduced Q-system A p. The reduced Q-system corresponds to the
extension eN C eM wheree € M' N\ M and i(e) = P.

Along with P, also 1 — P satisfies Eq. (3.1.5).

If P is a minimal projection in Hom (6, €) with the stated properties, we will also
refer to the reduced Q-system as a factor Q-system of A.

Proof Let us first compute the normalizations. Let S € N be any isometry such
that P = SS*. Because P € Homg(#, 6), we have np = S*x*(P x P)x§S =
S*Px*xPS = /dim(0) - lg, and r*(P x P)r = r*(lg x P)r = Trp(P) =
dim(0p) by Proposition 2.4. Hence, by Corollary 4.2, Ap = (@p,wp,xp) is a
reduced Q-system.

By Lemma 3.39, P is a self-morphism of A considered as an A-A-bimodule.
Hence, by Proposition 3.33, P = 1; x e x 1, with e € Hom(idys, idy) = M' N M.
If P is a projection, so is e. We claim that n — en = et(n) is a *-isomorphism
between N and eN. Because e is a central projection, the *-homomorphism property
is obvious, and so is surjectivity. Injectivity follows because et(n) = 0 implies
PO(n) =0, hence Op (n) := S*0(n)S = 0. Since Op is injective, n = 0.

We now define a conjugate ¢p for the embedding tp : N — eM, n — et(n):

ip:em — S*i(m)S.

Then wp := S*w € Hom(id.y,Tptp) and vp := et(S*)v € Hom(id.p, tpip) are
intertwiners:

iptp(Mwp = S*0(n)SS*w = §*0(n) Pw = S*PO(n)w

= S*0(n)w = S*wn = wpn,

tpip(em)vp = et(S*)i(m)i(SS™)v = et (S*P)it(m)v = et (S*)vm = Vpem,
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because ((SS*) = ((P) = (i(e) commutes with = (I(m). wp and Vp solve the
conjugacy relations Eq. (2.2.1):

Wpip(Vp) = w*SS*(et(S*)v)S = w*PO(S*)xS = w*0(S*)x S
= S*w*xS = S*S = 1y,

because P commutes with 0(S*) and with x, and
ep(Wp)vpl = et (W S)t(S*)v) = POW*P)x = POW")xP = P2 =P =1(e),

which implies tp(W})Vp = e = l.y. Finally, Xp := Tp(vp) equals S*1(e)6(S*)
= (§* x S*)xS because i(¢) = P. Thus, after the appropriate rescaling by

d1m(9p)jF4 . i = (dim(@p)/ d1m(9))¢4 the Q-system for eN C eM coincides
with the reduced Q-system Ap = (@p, wp, xp).
The last statement is obvious by linearity. O

Corollary 4.4 If 19 = >_ P; is the partition of unity into minimal projections in
Hom (0, 0) satisfying Eq. (3.1.5), then (6, w, x) is the direct sum of simple Q-systems
as in Eq.(3.2.2). The corresponding partition 1y = > e; gives the decomposition
of M' N M into minimal central projections, i.e., each simple extension e;N C e; M
is a representation of the extension N C M.

4.3 Irreducible Decomposition of Q-Systems

In this section, we shall characterize decompositions of ¢t : N — M as a direct sum
of sectors

[M=[ul®lrl, e, () =s11()s]+s2020)s3

for infinite subfactors N C M.

Thus, let both N and M be factors, i.e., there are no nontrivial projections in
Hom(0, 0) satisfying Eq. (3.1.5).

If «(N) N M = Hom(t, ) is nontrivial, then ¢ is a reducible homomorphism.
If e € «(N) N M is a projection, then there is an isometry s € M such
that ss* = e, and (s(n) = s*u(n)s is a sub-homomorphism of ¢. Clearly s €
Hom iy, ¢).

Lemma 4.5 The homomorphism 1y : N — M is isomorphic to the embedding
eN = Ne C eMe, i.e., the identical map i, : eN — eMe.

Proof We may write eN C eMe as ss*t(N)ss* = sig(N)s* C sMs*. The claim
follows because the map Adg : M — sMs* = eMe is an isomorphism. (]
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For ¢y < ¢ one has a conjugate i5 < 7, and an isometry s € Hom(is, t). Then
e =ss* € Hom(t, 1) C M and ¢ = 55* € Hom(, 1) C N are projections such that

(ex1)ow=(yxe)ow, (ex1pov=(l, xe)ov, “4.3.1)

and w* o (e x e) ow = dim(¢5) -1y, v 0 (e xe) ov = dim(ty) - 1p7, Then p = Iy x e
and p = e x 1, are a pair of commuting projections € Hom(6, 8) such that

ip:pi 43.2)
Y Y Y

(4.3.3)

Conversely, if A = (0, w, x) is a simple Q-system, and dim Hom(id, 8) > 1,
then by Frobenius reciprocity also dim Hom(¢, ¢) > 1, hence ¢ is reducible. In order
to decompose ¢, we want to characterize the projections in Hom(t, ¢) in terms of
projections in Hom(@, 6).

Instead of characterizing ¢; < ¢ by the pair of projections p, p satisfying
Egs.(4.3.2) and (4.3.3), we observe that either p or p suffices: namely, from the
third relation in (4.3.3), one can express p in terms of p, and vice versa:

PR

Expressing p in terms of p as in Eq.(4.3.4), turns Eq.(4.3.2) into another relation
for p

(4.3.5)

besides the second in (4.3.3), while the first is automatically satisfied. In the same
way, expressing p in terms of p, turns Eq. (4.3.2) into another relation for p

(4.3.6)

besides the first in (4.3.3).
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Lemma 4.6 Let A = (60, w, x) be a simple Q-system. Let either p € Hom(6, 0) be
a projection satisfying Eq.(4.3.6) and the first of Eq.(4.3.3), or p € Hom(0, 0) a

projection satisfying Eq. (4.3.5) and the second of Eq. (4.3.3). Defining P = %;J

in the first case, and P -~ L?} in the second case, gives another projection such
that p and p satisfy the system Egs. (4.3.2) and (4.3.3).

Proof We first establish that p defined from p is a projection:

A
R %)

where we have used p* = p and the first defining property Eq.(4.3.6) of p, and
p? = p and the second defining property Eq. (4.3.3) of p, respectively.

That p satisfies Eq. (4.3.2), is an immediate consequence of the defining property
Eq.(4.3.6) of p. The second of Eq.(4.3.3) is trivial by associativity. It remains to
verify the last of Eq.(4.3.3):

FELR-RIRY)

The properties of p defined from p follow similarly. ]

Lemma 4.7 If projections p € Hom(6, 6) and p € Hom(0, 0) satisfy Eq.(4.3.2)
and (4.3.3), then p and p commute, and P = Tpp is a projection satisfying
Eq.(4.1.1).

Proof Using in turn Eq.(4.3.4), the second and the last relation of Eq.(4.3.3),

one finds
o kﬁ‘? U H} _ b
p - 2
p 4.3.7)

It follows that P = pp is a projection, and the relations Eq.(4.3.3) immediately
imply Eq. (4.1.1) for P. (]
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Instead of characterizing either of the projections p or p € Hom(6, 0) as in
Lemma 4.6, it is also possible to characterize directly the projection P = pp €
Hom(8, 6).

Proposition 4.8 A projection P € Hom(0, 0) is of the form P = pp with p and p
as in Lemma 4.6, if and only if P satisfies

&) - Péﬁ
(4.3.8)

Proof “Only if”’: we show that P = pp satisfies Eq. (4.3.8):

. PX (433) \p X 437
p: P - B = = 1% .
2 P

“If”’: We first show that Eq. (4.3.8) implies further identities. Namely, we obviously
get by the unit property:

%L&: 8w Eoi/l%: E% | (43.9)

Moreover, by Proposition 2.6, we have

PR DR

(4.3.10)
b8 gy Y
and similarly

Now, given P, we define p := (W*P X lg) ox = %] and p := (lg xw*P)ox =

implying

l}% . Then, obviously P = pp, and p and p satisfy the last of Eq. (4.3.3):
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@ @ 4.3.11)

hence p and p are related to each other by Eq. (4.3.4). Moreover, p obviously sat-
isfies Eq. (4.3.5) and the second of Eq. (4.3.3) by associativity and the unit property.
In view of Lemma 4.6, it remains to verify that p is a projection. Idempotency of p
is just Eq. (4.3.9), and selfadjointness of follows from Eq.(4.3.11):

§-41-4 -4
The following is the main result of this section.

Proposition 4.9 Let A = (0, w, x) be a simple Q-system, describing a sub-
factor N C M. Let either p or p or P be a projection in Hom(6, 6) with
properties as specified in Lemma 4.6 resp. Proposition 4.8, thus defining the
respective other two projections. Then Eq. (4.1.2) with normalization factor
I (i.e, np = /dim(0p) - ly,) defines a reduced Q-system Ap. The sub-Q-
system A p is associated with a homomorphism v, < ¢ which is the range of
p € Hom(t, t) such that ¢ is a direct sum tp, @ t1—p.

We will also refer to this reduced Q-system as a sub-Q-system of A.

Proof From Lemma 4.6 we know that p, p satisfy the system Egs. (4.3.2) and (4.3.3).

The first and second relations of Eq.(4.3.3) state that p (resp. p) are self-
intertwiners of (@, x) as a left (resp. right) A-module. By Proposition 3.25 for left
and right modules, we conclude that p = 1; x e and p = e x 1; with projections
e € Hom(t, t), e € Hom(t, 7). In terms of the projections e and e, Eq.(4.3.2) and the
last relation of Eq.(4.3.3) read

- e ! e ! e
= s = .
w w v v

Because M is a factor, one can write ¢ = ss* with an isometry s € M and define
ts = s*1(:)s < ¢ as the range of e. Similarly, iy = 5*7(-)s < T is the range of e.
Then ¢, and Ty < 7 are conjugate homomorphisms, because wp = (5% x s*) ow,
vp = (s x %) ov solve the conjugacy relations Eq. (2.2.1):

(4.3.12)

. 43.12
(15, X vp) o (wp x 1,,) = (22
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where we have used the first of Eq.(4.3.12), and similarly (1,, x wjf,) o(vp X
I) = 1,.
Now let S = 5*I(s), hence wp = S* o w. We compute

L, (vp) =S¥ s WIS = s¥Us* (E*T(s™))vs s

= S*0G*I(s™)i(vs)s = (§* x §*)oxoS =: xp.

It remains to show that (p = T5t5, wp, xp) is the reduced Q-system. Clearly, 6p =
S*0(-)S. With S§* = P = pp € Hom(0, 0), we compute

wpwp =w* o Pow = Tr,(e) = Tri(e) = dim(i,) = dim(iz) = /dim(6p)

by Proposition 2.4, and

PoX"o(PxP)oXoP= @1 = <)é(> = <<o}(> = dim(1) - P,

hence np = xjxp = dim(y) - 1p, = 4/dim(p) - 1g,. (Contact with Corollary 4.2
is made by noting that wpwp = whnpwp = 4/dim(@p) - wpwp = dim(@p).) O

Corollary 4.10 If p or p satisfy the conditions in Proposition 4.9, the same is true
for 1 — p resp. 1 — p. Thus, every simple Q-system with dim Hom(id, ) > 1 has a
decomposition into irreducible Q-systems A p with dim Hom(id, 6p) = 1.

Namely, if A p is reducible, one can just continue the decomposition.

(Notice, however, that unlike in Sect.4.2 the decomposition corresponds to a
partition of unity by p;, not by P; = p, p;! This reflects the obvious fact that [#] =
@D, [t D(D,,[tn]) is different from P[Op] >~ Plintal. )

Finally, instead of characterizing the projection p = t(e) € Hom(#, 0) satisfying
the pair of relations as in Proposition 4.9, one may also write e = t(g)v which
is in Hom(t, ¢) iff ¢ € Hom(#, id), and characterize the operator ¢. Indeed, by
Lemma 3.16, e is idempotent iff ¢ = (¢ x g) o x, and e is selfadjoint iff ¢* = (1 x
q) o x ow. In view of these properties, the first of the two conditions on p = 6(g)x is
equivalent to ¢* = (¢ x 1p) o x ow, whereas the second one is automatic. Therefore,

g € Hom(6, id) satisfying
Tﬂ’ - - Q N ﬂ (4.3.13)

give rise to projections e = ((q)v € Hom(t,t), hence p = i(e) = 0(q)x €
Hom(#, 0), hence also p € Hom(#, ) as in the proposition, hence the sub-Q-
system.

q
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Notice that the last equality in Eq. (4.3.13) is an instance of Proposition 2.6, which
applies since M is a factor (A is simple).

4.4 Intermediate Q-Systems

In this section, we shall characterize decompositions of ¢t : N — M as
L=1p01
when M is afactor, i.e., intermediate von Neumann algebras ¢ (V) between N and M.
Let N C L C M be an intermediate extension with ¢ = 1y o (1, hence 8 = 110;¢;.
Let A = (6, w, x) and Ay = (62, w2, x2) be the Q-systems for N C M and N C L,

respectively. The projection ez = d, ! -wowj € Hom(6,, 62) ontoid;, < 6, defines a
projection P =1j(e2) = | x | € Hom(6, 6). The projection P satisfies the relations

Eq.(4.1.1) and
@)

hence w* o Pow = w*ow = d - 1y. It also satisfies

4.4.1)

x*o(PxP)ox=dy* @ =dpdy*-P.

\YZ

Conversely, the intermediate extension is characterized by the projection P:

We will also refer to this reduced Q-system as intermediate Q-system of A.

Remark 4.12 A similar characterization of intermediate subfactors by projections
has been given for the type II case in [2].
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Remark 4.13 The “normalization intertwiner” np € Homgy(0p, 6p) asin Lemma4.1
will in general not be a multiple of 14,, or equivalently, x* o (P x P)ox will
not be a multiple of P. Because of Corollary 3.6 and Lemma 3.16, this can only
occur when L p is not a factor. We shall present an example below (Example 4.14).
On the other hand, when dim Hom(id, 6p) = 1, then np € Homg(0p, 0p) is
trivially a multiple of 1y,. In particular, when N C M is irreducible, hence
dim Hom(id, #) = 1, then N C L p is irreducible, and L p is a factor. We also have:
if np € Homo(Op,0p) = 1 - 1g,, then u = dim(6p)/da, because by Eq. (4.4.3),
r*(P x P)r = r*(lg, x P)r = Trg(P) = dim(6p), while on the other hand,
by Eq.(4.4.1), r*(P x P)r = w*x*(P x P)xw = pu-w*Pw = pu-w'w =
- da.

Proof of Proposition 4.11 We first observe that by the assumed relations,

¥ @4 %} @.L1) 9%) @an t
443)

Thus, by Proposition 2.4,
r*o(P x P)or =r*o(lg x P)or = Trg(P) = dim(p).

Hence, by Corollary 4.2, Ap = (6p, wp, xp) is a reduced Q-system.

We write ((n) = n in the following.

To show that Lp = N Pv is a subalgebra of M, we compute (11 Pv)(nyPv) =
n1PO(nyP)xv = n16(ny) PO(P)xv = ny1 PO(ny)x Pv, using Eq. (4.1.1) in the last
step. To show that L p is a *-algebra, we compute (n Pv)* = r*vPn* = r*6(Pn*)v =
r*PO(n*)v = r*0(n*) Pv, using Eq. (4.4.3) in the third step. Lp = N - Pv is clearly
weakly closed, and it is contained in N - v = M.

We now compute the Q-system for N C Lp.Let P = SS* with S € N, §*S =
1y, and put wp := S*w and vp := S*v € Lp. Then the embedding tp : N — Lp
is given by

tp(n) =n =nw*v = nw* Pv = nw*SS*v = nwpvp.

The conjugate map
tp() =SS

is a homomorphism by Eq.(4.1.1), because every element of Lp is of the form
nPv =nSvp withn € N.

We claim that the pair (wp,Vvp) solves the conjugacy relations Eq.(2.2.1) for
(tp,Tp). Certainly, wp € Hom(idy, tptp), because

tpip(n) = S*1(n)S = S*0(n)S = 6p(n).
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Furthermore, Vp € Hom(idy,, (plp) because vpn = S*vn = S*0(n)v =
S*0(n)SS*v = O0p(n)S*v = Op(n)vp, and vpvp = S*vS§*v = S*O(S*)xv =
S*0(S*)xSS*v = xpvp = 1p(vVp)Vvp, using Eq.(4.1.1) in the third step. The conju-
gacy relations then follow from Eq. (4.1.1).

Finally, t{(vp) = S*1(S*v)S = S*0(S*)xS = Xp. Thus, after the appropriate
rescaling as in Corollary 4.2, the Q-system for N C L p coincides with the reduced
Q-system Ap = (Op, wp, xp). U

Example 4.14 We give here a counterexample, showing that n p is not neces-
sarily a multiple of 1g,,.

Let N C L C M,where N and M are factors, and L = @; L; afinite direct
sum of factors. Let¢ : N — M given by [:] = €D;[toit1;] where t1; : N — L;
and tp; : L; — M. Similarly, [1] = €p;[t1;72i] where 7; : L; — N and
1p; : M — L. We choose orthonormal isometries s; € Hom(¢p;¢1;, t) and z; €
Hom(71;12;, ). The canonical endomorphismis [0] = [it] = @ij [t1it2ie2015]

The intermediate embedding is described by ¢; = @; t1; : N — L, asin
Sect. 2.3, with canonical endomorphism [6;] = €D, [t1;¢1;] < [6].

For N C M we construct a standard Q-system as usual (cf. Lemma 2.1):
with standard pairs (wy;, wy;) forey; (N) C L; and (wy;, wo;) forip; (L) C M,
we have the “composite” standard pairs as in Lemma 2.1(i)

(wi = 11;(w2i)wii, Wi = t2i (W1;)wa;i)

for ¢;(N) = tit1;(N) C M. Then w € Hom(idy, &t) and w € Hom(idyy, tt)
given by

W= 2 4] Xsl oW, = 2 tl@& w 2 Si X t,')OWi = Si@ti

form a standard pair for ¢ : N — M, hence (8, w, x) is the Q-system for
t(N) C M, where

The projection P € Hom(6, 6) onto 6; < 6 is given by

t || S;

P =Y (t; xs;)o(lg,, X Ezi x 1,,) o (t; X ;) Zdll’n ) !
i

i g¥

i||1
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where Ep; = dim(tz,-)_1 - Wi w;i € Hom(1p;1;, 1ojt2;) is the projection onto
idy; < 1pitp;. Then, one computes

dim(eq;)
x*o (P x P)ox = Z dimty | 7 500 (o x Eai x L) o i x 51).
Since giﬁ—g”’) in general depends on i, this is not a multiple of P in general. In

contrast, the normalization condition in [3] (cf. Remark 2.8) would be satisfied.

The following Lemma states how modules restrict to modules of intermediate
Q-systems:

Lemma 4.15 If A is a Q-system, and A p is an intermediate Q-system, then a (left)
A-module m = (B, m) restricts to a (left) A p-module

_1
mp = (B.mp) with mp :=dim@p)7 - (np>S* x 1g)om,

where §*S = 1, §§* = P. Ifnp € Homo(Bp, Op) is a multiple of 1g,, then the

normalization factor equals dim(6p) i = (da/da P)2 If m is standard, then
mp is standard. The analogous statements hold for right modules and bimodules.

Proof One easily verifies, using Eq. (4.1.1), that the defining unit and representation
properties of a module are satisfied. As for standardness of mp, one has

LY | 642

with

(4.4.3);(4.1.1) o . (44__1)

|
|
=
|

where in the second step, we have used that nle Homg(@p, 6p), and the definition
of np and Eq. (4.4.1) in the third step. Thus, m}mp = dim(Bp)% -1g by Eq.(3.4.1).

Because dim(6 p)% = dap, this is the proper normalization of a standard module in
accord with Lemma 3.22. 1

If np € Homy(6p, Op) is a multiple of 1g,, then np = dim(@p)/ dim(0)2 - 1y
by Remark 4.13, giving the stated normalization factor.

The right module and bimodule cases are proven similarly. ([
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4.5 Q-Systems in Braided Tensor Categories

Let now ¢ C Endo(N) be in addition be braided. The braiding is denoted by

I pxj € Hom(po,op).

We also write 8;0 =é¢p0,and e, , = &5 , for the opposite braiding.

Definition 4.16 If ¥ is a braided C* tensor category with braiding ¢ = e, then
@ °PP is the braided C* tensor category, which coincides with % as a C* tensor
category, equipped with the opposite braiding ¢~

Remark 4.17 This definition is tantamount to the more fundamental definition (as
in Sect. 3.3), according to which the monoidal product is regarded as a functor x :
E x € — €, and €°PP is the category equipped with the opposite monoidal product
0 x°PPp = p x o. The braiding is a natural transformation between the functors x
and x°PP_and its inverse : x°PP — x is the opposite braiding. The equivalence can
be seen “by left-right reflection of every diagram”.

The cases of interest in QFT are € = ¢ PHR (&), the categories of DHR endomor-
phisms of local quantum field nets. These categories are braided categories, where
the DHR braiding is defined in terms of unitary “charge transporters” changing the
localization of DHR endomorphisms, as exposed Sect. 5.1.3. In low dimensions, the
braiding and the opposite braiding arise, depending on the choice of a connected
component of the spacelike complement. In particular, for a two-dimensional con-
formal net 2% = o7y ® /_ arising as a product of its two chiral subnets, we have
EPHR (oh) = €PHR (o7, ) ) EPHR (o7 )PP cf. Sect.5.2.2.

Definition 4.18 If p € %, then the operator
7
LT, (epp) = C/\ =RTr1, (ep ) € Hom(p,p)

is called the twist. The twist is a unitary self-intertwiner [4, afterLemma 4.3],
[5, Proposition 2.4]; in particular, it is a complex phase denoted «, if p is irreducible.

Example 4.19 (Braiding of the Ising category) The tensor category Example 3.1
can be equipped with four inequivalent braidings.
The braiding of the DHR category of the Ising model is specified by

1

= * 3 * 9
i =—1, €oo=ky -rr* 4Ky 11", €51 =Eroc=—iU,

where k; = exp 2%.
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(This braiding and its opposite, and a second pair of braidings obtained
by replacing k, by —ks, exhaust all possibilities. The second tensor category
mentioned in Example 3.1 also admits four inequivalent braidings.)

Definition 4.20 A Q-system (6, w, x) in a braided tensor category is called com-

mutative if
N
€goOoX =X =
“4.5.1)

Proposition 4.21 ([6]) The canonical Q-system (cf. Proposition 3.19) of a
braided C* tensor category is a commutative Q-system in the Deligne product
€ X EOPP.

In local quantum field theory, commutative Q-systems describe local extensions
of a given local quantum field theory [6], cf. Sect.5.2.1.

Recall that the DHR category of a two-dimensional QFT which is the tensor
product @ = o/, ® </ of two chiral QFTs, is €PHR (1) = ¢PHR(o7,) W
&PHR (o7_)°PP a5 a braided category. Therefore, if <7, and <7_ are isomorphic, the
2D extension associated with the canonical Q-system in PHR (.o7') K @’PHR (.o7)oPP
is always a local QFT.

4.6 o-Induction

If A = (0,w,x) is a Q-system in a braided category, then m = (8 = 6p,m =
0% (e )X 2)) is a standard A-A-bimodule. The formula Eq. (3.6.3) for the associated
endomorphism ¢ : M — M becomes

P(mv) = Lp(mey v,

which is known as the «-induction of p € Endg(N) to Ot;_r € Endog(M), originally
defined by 7o aF = Adg,, 0 p 07 [6-9].
The endomorphisms a/jf extend the endomorphism p € End(N):

ayoL=top, (4.6.1)

and the mappings p — oz;t,t — ((¢) are functorial, namely if # € Hom(p1, p2), then
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+
1(t) € Hom(e, , o,)). (4.6.2)
However, ¢ : Hom(p1, p2) — Hom(iz/f1 , affz) is in general not surjective. E.g., aff

may possess self-intertwiners (i.e., &> is reducible), while p is irreducible.

0

Corollary 4.22 (i) One has a;; =@ and dim(af) = dim(p).
@) If (0,w, x) is a Q-system in Endg(N), then (ot;E, t(w), t(x)) is a Q-system in
Endy(M).

Proof Since conjugacy and dimension are defined in terms of intertwiners and their
algebraic relations, (i) follows from Eq. (4.6.2). Similarly, (ii) follows because also
Q-systems are defined in terms of intertwiners and their algebraic relations. (]

If the category % is modular (cf. Sect.4.11), then the matrices

Zp.s = dimHom(a, , o) (4.6.3)

o

are “modular invariants”, i.e., they commute with the unitary representation of the
modular group SL(2,Z) defined by the braiding [10-12], and have many other
remarkable properties [11-13] that can, not least, be exploited for classifications
and actual computations.

4.7 Mirror Q-Systems

Let N® N C M be an irreducible finite-index subfactor, and A = (@, W, X) its
Q-system. The subfactor is called a canonical tensor product subfactor (CTPS), if @
has the form

(01 =EPZ,5lp]l @[3,

where p € Endg(N) and G € Endo(ﬁ ) are irreducible, and Z, 5 are multiplicities.
The following proposition was derived in [10, Theorem 3.6]:

Proposition 4.23 The following are equivalent:

(1) [[d] ® [6] < ® implies [0] = lidy], and [0] ® [id] < @ implies [o] = [idy].
(i1) It holds

(N®D'NM=(1®N), (AQN)NM=((N®L).

(iii) There is a bijection F between the set A of sectors [p] and the set A of sectors
[0] contributing to ® such that

(0] = Plrl ® Flpl;
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A and A are closed uncier fusion (i.e., the product [p1][p2] decomposes into
irreducibles in A resp. A), and F is an isomorphism of fusion rings.

Under stronger conditions (the tensor categories generated by the endomorphisms
p €[pl € Aand p € [p] € A are braided and modular, and A is commutative),
the isomorphism of fusion rings is even an isomorphism of braided tensor cate-
gories [14].

The canonical Q-systems in ¢’ X ¢°PP with [@] = Plp] ® [p] and F[p] = [p],
cf. Corollary 3.21, are examples fulfilling the properties in Proposition 4.23.

Xu [15] has strengthened the statement:

Proposition 4.24 Assume that the equivalent conditions of Proposition 4.23 are
fulfilled. Let ¢ C Endo(N) be the full tensor subcategory generated by endo-
morphisms p € [p] € A, and similarly € C Endo(N). If ¢ and € are
braided categories, hence A is a Q-system in the braided category ¢ X €, the
a-induction of p ® 6 € € ® € is well-defined (choosing o™ for definiteness). Then,
one has

t(Hom(py, p2) ® 1) = Hom(ap, gids ¥p,®id) 4.7.1)

(and similar for p), rather than just the inclusion C according to Eq.(4.6.2). More-
over, if [p] = Flpl, then aiqgs and apgia are unitarily equivalent. If A is commu-
tative, the unitary u € Hom(apgid, ¢idgp) can be chosen such that

U xu)oulep,®1) =1(1® ek 5) 0 (u x u). 4.7.2)

From this, he conclgdes the existence of the “mirror extension” defined by a
“mirror Q-system” in % associated with a Q-system in &, as follows.

Assume that the equivalent conditions of Proposition 4.23 are fulfilled. If (9, w, x)
is a Q-system in &, there is 6 such that @407 and aggid are unitarily equivalent, i.e.,
[0] = F[0]. Let u € Hom(apgid, ¢tqgp) unitary. Then, by Eq.(4.7.1),

woi(w®1) € uoHom(id, apeia) = Hom(id, ajyg7) = ¢(1 ® Hom(id, §)),

and similarly B
(uxu)oulx ® 1) ou* €(1®Hom(@, 6?)).

This defines w and X such thatu ot(w®1) = 1(1®@w) and (u X u) ot(x ®1) ou™* =
1(1®X).

Corollary 4.25 ([15, Theorem 3.8]) o, w, X) is a Q-systemin z. IfA=(O,W, X)
is commutative, then (0, w, X) is commutative iff (0, w, x) is commutative.

Proof The defining relations for 6, w,%) tobe a Q-system are satisfied because by
Corollary 4.22 (aggid, t(w ® 1), t(x ® 1)) is a Q-system in Endy(M), and hence
(ggg> uotw®1), (uxu)ot(x®1)o u™*) is an equivalent Q-system in Endy(M).
If A is commutative, then Eq.(4.7.2) proves the second statement. (|
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4.8 Centre of Q-Systems

Let A = (0, w, x) be a Q-system of dimension dj in a braided C* category %,
r = xow,and m = (B, m) an A-A-bimodule. Define Qi € Hom(8, B) by

6
On o= (r" x1g)0(lg xeﬁe)om: (1p Xr*)o(egﬁ x1g)om: Of = g{—?

Lemma 4.26 (cf. [16]) Prﬁ = d;l . fol are projections. For m = A the trivial
A-A-bimodule, the projections P* = PAjE satisfy the relations

Pt % P )
= (pt) > = (p) .
4.8.1)

Proof We prove idempotency and selfadjointness of Pt using the representation
property of the bimodule, the associativity of the Q-system, and the unitarity of the
twist (cf. Definition 4.18) in the last step:

Bbopp P
b o

We then prove the relation for P+ = P+

S PV Y

where we have several times used associativity of the Q-system. The proofs for
P~ are similar. O

and

Lemma 4.27 (cf. [16]) The projections Pf satisfy Egs.(4.1.1) and (4.4.1). Hence,
they define intermediate extensions by Proposition 4.11; the corresponding reduced
Q-systems (G;,t, wﬁ, x,f) are called left resp. right centre C £[A]
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Proof We prove Eq. (4.4.1) by

990wl

using selfadjointness of P*, and the unit property and standardness of A. In order
to establish Eq. (4.1.1) (for P: ), we compute

U 8y

using associativity in the second step, Eq. (4.8.1) in the third step, and the Frobenius
property and standardness in the last step. Thus, one of the three projections is
redundant. Redundancy of the other two is obtained similarly. The other statements
follow from Proposition 4.11. O

The left and right centre projections can be characterized as the maximal ones
satisfying Eq. (4.8.1):

Proof For P: :

38.1)

O

Thus, p < P, concluding the proof.

Proof Follows from Propositions 4.28 and 4.11 because by definition, a Q-system
is commutative iff 1¢ satisfies Eq. (4.8.1). [l

This result is of interest in the applications to local QFT, where the intermediate
extension associated with the centre projections can be identified as certain relative
commutants of local algebras [1], cf. Sect.5.2.3.
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4.9 Braided Product of Q-Systems

Definition 4.30 Let A = (04, w?, x4) and B = (68, wB, xB) be two Q-systems
in a braided C* tensor category % . Then there are two natural product Q-systems,
called braided products and denoted as A x* B, given by the object § = #46® and
the interwiners

04 loB L
A B __ + + A By. .+
= X = J) J) = X X o X : = .
w=w w O, 9 , X (leA geA,eB leB) (x x) X a %5

The extension N C M* corresponding to the braided product of two Q-systems is
called the braided product of extensions.

Notice that dim Hom(idy, GAQB) = dim Hom (6, 6B) can in general be larger
than 1, even if dim Hom(idy, 9A) = dim Hom(idy, QB) = 1. Thus, the braided
product of extensions is in general not irreducible, and not even a factor, even if both
extensions are irreducible. We shall return to this issue below.

One can easily see that the braided product A x* B contains both A and B
as intermediate Q-systems, via the natural projections d;l S (wAWA 1 gB) onto
64 < 6268 and dl;l < (lga x wBwB*) onto 6B < 6408, respectively.

Expressed in terms of the corresponding extensions, the braided products N C
M= of extensions N € M®, N c M® contain both MA and M® as intermediate
extensions:

CMA C
+
N S B C,M 4.9.1)

More precisely, we have

Lemma 4.31 The braided products N C M?* of two extensions N C MA =
AWNWA N ¢ MB = B(N W are generated by the subalgebra N and the generator

vE = vAvB where vA and VB are embedded into M* as

1 l
VA:li(eA(WB*))Vi: Al B VB:li(WA*)vi: Al |B .

Thus M* contain both MA = (£ (N)vA and M® = =(N)W® as intermediate alge-
bras. In M, the generators v and v® satisfy the relations

B A

vovt = L(S;:A’GB)~VAVB.

‘We can relate the braided product of Q-systems with the «-induction of Q-systems,
Corollary 4.22, as follows.
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Proof 1t suffices to verify that the composite Q-system according to Lemma 2.1(i)
arising by the composition of embeddings (* : N — M4 and ;B* : MA — Mot
coincides with A xT B = (®, W, XT). Indeed, by the definitions and Eq.(4.6.1)
we have

7 Jot =1

b}

ATBE o BEA Z A A Z MG — gAgB = o

AWt = oW = w,
and, denoting the generator of a®(B) by v, such that 7Bi(vi) = A(xB):
ZAjBﬂ:[JB:t(vA)vﬂ:] — TA[Ol;i; (VA)LA(XB)] — [A[LA(S;FA’GB)VALA(XB)]
= 9A(e;FA, )0 (P = XF. .

Of course, a similar result is true for the «-induction of the Q-system A to a
Q-system in M®, namely a®(A) is the Q-system for M® in the braided product of
extensions corresponding to B x¥ A, which is in turn unitarily equivalent to the
braided product of extensions corresponding to A x* B.

As mentioned before, the braided product of two extensions may fail to be
irreducible, or to be a factor, even if both extensions are irreducible. For the
braided product of two commutative extensions, the centre equals the relative
commutant. This result is of particular interest in the applications to local QFT,

where phase boundaries are described by the braided product of two local
extensions [1].
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Proof In view of Lemma 3.16, we have to show that every g € Hom (6468, idy)
satisfies Eq.(3.2.4). Let g € Hom (6268, idy). Then

R

If both Q-systems are commutative, the two expressions are the same.

O

4.10 The Full Centre

Definition 4.34 ([16])Let A = (0, w, x) be a Q-system in %. It trivially gives rise
to aQ-system A®1 = (0; ®idy, w1y, x®1y) in ¥XE°PP. Let R be the canonical
Q-system in € X €°PP. Then the full centre of A is defined as the commutative Q-
system in € X €°PP given by the left centre of the x *-product

ZIAl=C*[(A®1) x* R]. (4.10.1)
Because dimHom(id, (0 ® id)®,,) = dimHom(id, 6), and the centre projection

can only decrease multiplicities, the full centre is irreducible if A is irreducible. For
a stronger statement, see Proposition 4.37.

This result was conjectured in [18], and proven in [17]. In fact, it is rather easy to
show that both the a-induction construction and the full centre give

[01=EP Zp.0 [p] ® [5]

with the multiplicities Z, ; given by Eq. (4.6.3); whereas the equality of the respective
intertwiners X is more difficult to establish.
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Remark 4.36 The «-induction construction [10] was originally found as a
construction of two-dimensional local conformal QFT models out of chiral data,
cf. Sect.5.2.4. It is in fact a construction of commutative Q-systems in ¢ X ¢°PP
out of a Q-system in %, using the «-induction (Sect.4.6) to extend p € End(N)
to aff € End(M). In the simplest case, when the Q-system in % is trivial or
Morita equivalent to the trivial Q-system, then one obtains the canonical Q-system
Proposition 3.19 in ¥’ X €°PP. A more general analysis is given in [11, 12, 19].

Proof The projection defining the full centre is a multiple of

o(h-

Therefore, for the multiplicity of the identity in Z[A], we can replace the canonical
Q-system R by the trivial Q-system id ®1id in €’ X6 °PP. Then trivially, dimHom (id ®
id, Z[A]) = dimHom(id ® id, CT[A ® id]) = dimHom(id, CT[A]). Writing the
centre projection as p;{ = SS*, we have t € Hom(id, C*[A]) ¢ Hom(id, 0p) iff
tn = 60p(n)t = S*0(n)St iff ¢ = St € Hom(id, 0) satisfies gn = PO(n)q = Pgn
foralln € N, ie., g = Pq. Then Lemma 3.16(iii) together with the following
Lemma prove the claim. O

c

Lemma 4.38 Let A be a Q-system in a braided C* tensor category, and P* = pX
its centre projections. Then q € Hom(id, 6) satisfies gPT = q iff P~ = q iff ¢
satisfies Eq. (3.2.4).

Proof We have

A
qP+=d;1- ® =d;1. @ =d;1. @ =qP .

If qPjE = ¢, then ¢ satisfies Eq. (3.2.4) (using associativity):

Vo @ oo @l
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Conversely, if ¢ satisfies Eq.(3.2.4), then

qp+:d;1. (I) :d;l- qj: T =gq.
O

4.11 Modular Tensor Categories

A C* tensor category with finitely many inequivalent irreducible objects (denoted
p, 0, T,etc.), all of finite dimension, is called rational. In a braided rational C* tensor
category, one can introduce the matrices

. 1 ) T
Sor=dim(e) 4 (o)1) =Sea, Moo= oty CRD =bor e

where dim(%) = 2 o dim(,o)2 is the global dimension Eq. (3.0.1), and « is the twist
(Definition 4.18).

Definition 4.39 A braiding of a tensor category % is called non-degenerate if there
is no nontrivial sector [p] such that 8; s = €, forallo € €. A braided rational C*
tensor category is called modular, if the symmetric matrix S is invertible.

Proposition 4.40 ([20]) A braided rational C* tensor category is modular if and
only ifitis non-degenerate. In this case, the matrix S is unitary, and there is a complex
phase o (unique up to a third root of unity) such that the matrices S and T := w - T°
form a unitary representation of the modular group SL(2, Z):

(ST H =5% S*=E.

Moreover, S; 7z = m = S5.1, i.e., the central element 52 of SL(2, Z) is represented
by the conjugation matrix C.

Recall that dim(%)% = dR is also the dimension of the canonical Q-system in
% K €°PP (Proposition 3.19). By considering the id-id-component of the equation
T-1ST~!'ST~! = S, one finds that ©* = >« ! dim(7)?/dg.

All the braidings mentioned in Example 4.19 are non-degenerate, giving rise to
eight inequivalent modular categories associated with the same “fusion rules” of
three irreducible sectors.

Lemma 4.41 For Tt and o irreducible, one has in a modular category

A _ dR-Sto

T
RTrs (g6 1616) = @ dim(7) e = LTt (g5 787 5)-
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Proof Clearly, RTrs(e5,161,0) 1S a multiple of 1.. Thus, one can compute the
coefficient by applying Tr,, where Tr(1;) = dim(t). Similar for the second equa-
tion. O

Proposition 4.42 (The “killing ring”) For p an object of €, consider p ® id as an
object of € R E°PP. If € is modular, then

p®id*, p®1d
D) - (@

where © is the endomorphism of the canonical Q-system, Corollary 3.21, and
v

Eq = € Hom(p, p) is the projection on the identity component id < p

(which is zero if id is not contained in p).

Proof If t is irreducible, then
T®id} dr - S .
AD -2 IO - rcmon

Then, dim(0) = dg - So,id = dR - So,id and unitarity of S yield d if T = id and zero
otherwise. If p is reducible, then write 1, = >"_ E; where E; € Hom(p, p) are the
projections on the irreducible T < p. Under the “killing ring”, only T = id survives. [J

We can now see that it was essential to choose matching signs in the definition
Definition 4.34 of the full centre:

Corollary 4.43 For A an irreducible Q-system in ¢ and R the canonical Q-system,
one has
CIA®D) xTR]=CT[(A®1) x R] =

Proof By using Proposition 4.42 and the fact that R is commutative, one can compute
the trace Tr(p¥) of the respective centre projections of (A ® 1) x T R. The result is
Tr(p*) = dl%. On the other hand, the projection pr onto the intermediate Q-system
R=(1®1 xTR < (A®1) xT R satisfies Eq.(4.8.1), hence pr < p* by
Proposition 4.28. Since by Proposition 2.4, Tr(pr) = dim(@can) = d2, the claim
follows. (I

4.12 The Braided Product of Two Full Centres

We assume % to be modular.

The following Theorem 4.44 provides the minimal central projections for the
braided product of two commutative Q-systems which arise as full centres. By way
of preparation of this result, let us compile several equivalent ways of describing the
centre.
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Recall that the centre M’ N M of the extension corresponding to the braided
product of two commutative Q-systems equals the relative commutant ((N) N
M = (Hom(OAOB,id)V by Lemma 3.16 and Proposition 4.33. The space
Hom(®A®B, id) is isomorphic to Hom(®®B, ®4) by Frobenius reciprocity. Thus,
there is a linear bijection

x :Hom(@®,0%) - M'nM, 3(T):=1(R*o(lga xT))V =

4.12.1)
with inverse
X () =[1ga x (W oi())]o RA.

Notice also that ¢ maps the centre into Hom(@A@B, @A@B):

B
TX(T): (1@A@B>< (RA*O(IQAXT))>0X: L (421)

A |B

where we have used commutativity of B, and are freely appealing to Frobenius
reciprocity in the last way of drawing the diagram.
Then, one easily verifies that

x(T)ox(T2) = x(T1 % T2),  ix(T1)otx(T2) =ix (T *T2),

where T * T; is the commutative “convolution” product on Hom (&8, ©7) with unit
WA WB*:

Likewise, the adjoint is given by

(4.12.2)

x(I)* = x(F(T), x(I)" =1x(F()),

where F is the antilinear Frobenius conjugation on Hom (@B, ©4)

F(T) = Prop. 2.6 € Hom(0B,04).
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Therefore, finding the minimal projections E,, € M’ N M is equivalent to finding
the minimal projections /,, € Hom(@®, ®A) w.r.t. the convolution product, i.e., to

solving the system

self-adjointness Iy = F (),

idempotency Ly * I, = S’ * I, (4.12.3)
completeness z L, = WAWER*,
m

Minimality is ensured if the number of 7, exhausts the dimension of Hom(OB, 64).

We therefore have to solve these equations by a basis 1,, of Hom(@®B, ©4), and put
A

B

E, = x(I,). Obviously, then also P, = (E,) = € Hom(0A6B,

©A©B) will be projections.

The following theorem gives the solution to Eq. (4.12.3), where I, are labelled
by the irreducibe A-B-bimodules m in €. This result is of great interest for boundary
conformal QFT: it provides a bijection between chiral bimodules and phase bound-
aries [1]. It therefore establishes the link between our algebraic QFT approach to
phase boundaries, and the TFT approach by [21-24]. The fact that the central pro-
jections for the braided product extension of two full centre Q-systems in € X ¢°PP
are labelled by bimodules in %, means in physical terms that the boundary conditions
between two maximal local two-dimensional extensions is fixed by chiral data.

As a byproduct, we shall also prove:

Proposition 4.45 Let A be a simple Q-system in a modular tensor category, so that
1
its centre Z[A] is irreducible (Proposition 4.37). Then dzja] = dr = dim(%)2
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equals the dimension of the canonical Q-system. In particular, all irreducible full
centres have the same dimension.

(This is not a new result, cf. [25], but the proof seems to be new.)

The proof of Theorem 4.44 is rather lengthy, but it is worthwhile because it
paves the way to an efficient computation of the centre, with ensuing classification
results. The operators Iy, first appeared in [16], but their idempotent property is not
manifest there. It was proven in a more special case in [25] (with the hindsight that
the general case can be reduced to the special case by highly nontrivial properties
of modular tensor categories). We attempt to give here a streamlined version of the
proof that does not require the general theory of modular tensor categories. The use
of the C*-structure of the DHR category allows for some substantial simplification
as compared to [25].

Proof of Theorem 4.44 The statement about the centre is just an instance of
Lemma 3.16 and Proposition 4.33, because the full centres are commutative.

To prepare the solution of Eq.(4.12.3), we associate with every A-B-bimodule

m = (B, m € Hom(B, 64 6B)) an intertwiner Dy, € Hom(6®, 64) as follows [25]:

eA ﬁ eA
Dy = TI'B (SGA,ﬁ 0(19Aﬁ X rB*)o(m X 193)) : B = .
m 0B

(We freely use Frobenius reciprocity in the graphical representations.) One easily
sees

Lemma 4.46 (cf. [25]) The following statements hold.

(i) Dm depends only on the unitary equivalence class of m = (8, m).
(i)) Dy = D
(111) Dm1€Bm2 = Dm1 + Dm2~
(iv) If m = (B, m) is an A-B-bimodule and m’ = (B, m") a B-C-bimodule, hence
m ®g m’ an A-C-bimodule, then Dy Dpy = dg - Dmggm'-
(v) wA*DpwB = dim(m) = dim(B) for m = (8, m).

Proof (i) follows because the “closed B-line” represents a trace, absorbing a unitary
bimodule morphism : m — m'. (ii) is proven in the same way as Lemma 4.26, using
the unitarity of the twist. (iii) follows by

(iv) follows from
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in combination with the property Eq.(3.7.1) in Lemma 3.36. (v) follows from the
unit property and Eq. (2.2.6). ]

In particular, taking A = (GA, xA@) as the trivial A-A-bimodule, one has

Corollary 4.47 (i) Dp =da - PA, hence (by Lemma 4.46(iv))
(i) P§ - Dm- Py = Dm.

We also define more generally, for any p € ¢,

g1 b

Dm(p):== ( ‘) € Hom(6Bop 04 0p).
m

Clearly, Dy, = D (id). The properties (i)—(iv) hold as well for Dy (p).
Next, consider A ® 1 = (f ® id, x ® ljg) as a Q-system in € X €°PP, and
m@1l=(®id m®e ljg) asan A ® 1-B ® 1-bimodule. Taking the product

RAl:=(A®1) xTR

where R = (Ocan, Wean, Xcan) 1S the canonical Q-system in ¢’ X €°PP, we get

ki#
Rim] = ((8 ®id) 0Ocsn, R[m]), Rm] = A®id B®id
Bid] |R

as an R[A]-R[B]-bimodule. Because R is commutative, one has Dr = dR - 1o, by

Corollary 4.47, and hence
= (b = dR ' R = dR 'Dm®l (@can)~
I I

(4.12.4)

As the full centre Z[A] = (@A, WA, XA) is an irreducible (by Proposition 4.37)
intermediate Q-system to R[A], the R[A]-R[B]-bimodule R[m] restricts to a Z[A]-
Z[B]-bimodule according to Lemma 4.15

dria|dRB] as

Klemllz = dzia)dzB)

1(85id)x@un X S°) oR[m] =

Z[A] Z[B|
_ [dradre _
- dZ[A] dZ[B] A®id B®id ’

B®idT IR (4.12.5)
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where SA € Hom(Z[A], R[A]), SB € Hom(Z[B], R[B]) are isometric intertwiners
such that SA§4* = Pf \ SBSB* = Pp y ., cf. Lemma 4.15.
Next, we consider the intertwiners

Dgm|, € Hom(0®%, 6%).
In particular, for the trivial A-A-bimodule A, one has, using Corollary 4.47
2 2 12

3 d3d
R[A
Z[ L. §*Dppars = 241 e AL g phiyS = d— loa.  (4.12.6)
[A] Z[A] Z[A]

Dpiay, =

We introduce the positive-definite inner product on Hom (@B, ©4) w.r.t. the trace:

. .
1
(4.12.7)
Then we compute
dRriA1dR(B
(DR[m,“Z?DR[m]‘Z) = M TI'@A(S*DR[m/]SS*DR[mS) (4128)
dziA1dz[B)
dRriA1dR[B
Corollary 4.47, (4.12.4) @ . d12{ . Tr(9A®id)(~)can(Dm/®1 (@can)Dﬁ®l(@can))
= dzA1dz[B]
dria)d
Lemma 4.46 (ii).(iv) 1 RBL 42 g Z m - LTrgagiq RTro,,, (Dng1(Ocan)),
= Z[1A1dZ[B]

where m’ g m >~ P, NJ - as A-A-bimodules, n = («, n) irreducible.
At this point, modularlty comes to bear through Proposition 4.42: namely RTrg,,,
projects on the contribution id < «:

604®id 04 -
RTr@can (Dn®1 (@Can)) = a®id O @Can - d12{ : o ® ld7
0A®id 04

where s is an isometry such that ss* = Ejq € Hom(a, o). After taking also LTrga g4,
one obtains

LTrgagiq RTro,, (Dne1(Ocan)) = dlzl ’ @9"‘
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Now, Lemma 3.41 applies, and accordingly the value vanishes unless n is the trivial
A-A-bimodule n = A. In this case s = w/+/da, hence the value of the diagram is
dim(0)/da = da. Since Nlﬁ,ﬁ = Smm’» We arrive at the orthogonality relation

Corollary 4.48 In a modular category,

d?d2ds
(Drimz> Driml,) = =222 Sy
dza1dzB)

Form = A, Dga), = Dy RIA]|,» One can compute (Dg{a),, Driaj|,) in two diff-

2 72 46
erent ways: By Eq. (4.12.6), the result is d AdR By Corollary 4.48, it is d[Zl[ch dj[BJ By

comparison, dzja] = da for all simple Q-systems A. This proves Proposition 4.45.
Moreover, the coefficient in Corollary 4.48 equals didﬁdﬁ.

By Corollary 4.48, the intertwiners Dgmj, are linearly independent. It is
also known that the number of inequivalent irreducible A-B-bimodules equals
dim Hom(®4, ®8) [13], hence the intertwiners Iy span Hom(©A, ©®B). Since both
(dadpd3)™" - Dpmy, and T := (dim(o) dim(v))~2 - TA, TB% (where TA and B
are isometric bases of Hom(o ® t, @A) resp. Hom(o ® T, ©8) for all irreducible
common sub-endomorphism ¢ ® T of @A and @8) form orthonormal bases w.r.t.
trace, the matrix

1
S = .TrH D T T Ax
m dAdBdI% dim(o ® 1) oA (DRimlz Trg Trgr)

is unitary. In particular, foroc =t1=1id, T = Tp = dﬁl - WAWB* one finds

o _ dim(p)
m0 dAdB
hence
dim(B)
WAWS* = dp-To = d, " _.D => —.D . (4129
R To de dpd2 Rlml]|z gdﬁdédﬁ Rim]|z- ( )
Now, we define
dim(B)
Im = ﬁ - DRpm|, € Hom(0®, 6%). (4.12.10)
A"B*R

From the definition and properties (i) and (ii) in Lemma 4.46, one can see that Dgm]),,
and hence I, satisfy the selfadjointness condition in Eq. (4.12.3). Because WA WB* is
the unit w.r.t. the convolution product Egs. (4.12.2), and (4.12.9) is the completeness
relation, i.e., Zm Enm = 1) under the isomorphism y. It remains to prove the
idempotency relation in Eq. (4.12.3). Using Eq. (4.12.9), it suffices to show that
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Im * Iy =0

form 7 m', in order to conclude that Iy * Im = Im * > I’ = Im * (WAWB*) =
Im.
Let m and m’ be two A-B-bimodules. Define

| | oA
—/ —/
Qm,m’ = € Hom(ﬁﬁ aBﬁ )
m m
By a similar computation as for the projection property of the left and right centre,
Lemma 4.26, one sees that (dadg) ™" - Om.w 1s a projection. Now,

LTt RTrz (Qm,m) = Troa (DmDjy)-

Thus, replacing A and B by Z[A] and Z[B], m and m’ by R[m]|z and R[m']|z, and
B and B’ by R[B] = (id ® B)Ocan and R[B’], we conclude that

LTrrip) RTr g7, (Q Rim] 7. RImr}j ) = O

for m # m’ by the orthogonality of D gpmy|,, Corollary 4.48. Since Q gim|,, Rim']|,
is a multiple of a projection, hence a positive operator, and because the traces are
faithful positive maps, it follows that Q gimj|,.rim’), = 0 form # m’.

Now in order to conclude that XA* (I, x Iyy)X® = 0 for m # m’, it suffices to
compute

Inside the dashed box, there appears the intertwiner Q gimj|,, Rm']|,» Which we have

just shown to be zero if m # m'. In step (r), the representation property of m as a

left A-module has been used. This concludes the proof that I, solve Eq. (4.12.3).
Theorem 4.44 now follows from the considerations before Eq. (4.12.3). U

The minimal projections Ey, € M’ N M define representations m +> Epm as
in Sect.4.2. In these representations, the generators VA and VB of the intermediate
algebras MA and M® (defined as in Lemma 4.31) are no longer independent. Let us
describe the nature of these relations.
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Lemma 4.49 The bijection x, Eq.(4.12.1), can be equivalently written as
x(T) = VB4 (T)VE.

Therefore, in particular, Em = VA*1(In) VB.

Proof By Lemma 4.31 and V* = ((R*)V, we have

VB4 (T VB = VoA WB) (T (WAY)V = L(R*@(@A(WB)TWA*)X) v,

@

This coincides with Eq. (4.12.1). The last statement follows from Ep = x (Ip). U

and the argument of ¢ equals

Expanding a general element 7 € Hom(@B, ®A) in the basis Iy, such that
T =>nem(T) - I, we get

VA*(T)VB = Zcm(T) - Em,

i.e., in the representation defined by each Ey,, the central elements A% (T) VB take
the values ¢y (T'). In particular, for o ® T an irreducible common sub-endomorphism

of @A and ©B, and T = (dim(o) dim(t))_% . T(;A(X)I ngt as above, these values are

dadp ——

em(T) = dim(B) - Smr-

Since on the other hand, the charged intertwiners lI/o‘.*(X)I = L(ngt) VA € Hom(:A, Ao
(0 ® 1)) and U8, = (785 )V are multiples of isometries because (* and (P are
irreducible, the numerical values for Wé‘gth@,t define “angles” between them [1].

Example 4.50 Let A and B be the trivial Q-system (or Morita equivalent),
such that the full centres coincide with R. The irreducible bimodules of the
trivial Q-system are just the irreducible endomorphisms ¢ € ¢, m = (o, 1,).

The irreducible sub-endomorphism of @4 = OB = @, are 1 ®T. The oper-
®

. . i Ocan T T
ators Iy, Eq.(4.12.10), simplify to d“;—f)~ o®id< Y~ D, G(|) ®
I I
The matrix (Sm,7)m, 7 determining the angles turns out to coincide with the
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R

10.
11.

12.

14.

15.
16.

17.

19.

20.

21.

22.

“modular” matrix (S¢, <)o, cf. Definition 4.39. In particular, if S; - happens

_1
to equal a complex phase o times dim(o) dim(t) - (> P dim(p)?)~ 2 (this is
always the case whenever o has dimension dim(c) = 1), it follows that the
generators lI/IA®? =w- ‘IITB®? are linearly dependent in the representation given
by Em.
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Chapter 5
Applications in QFT

Abstract We review some applications of the abstract theory presented in the
preceding chapters in the context of local quantum field theory. The methods devel-
oped in Chap.4 prove to be most efficient to deal with QFT with boundaries, and to
classify the boundary conditions.

We review some applications of the above abstract theory in the context of local
quantum field theory. In a nutshell, Q-systems provide a complete characterization
of (finite index) extensions of local quantum field theories, and the notions and
operations discussed in the main body of this work have counterparts in conformal
QFT that are of interest for the construction and classification of local extensions
and of boundary conditions. More details can be found in [1-5].

The enormous benefit of the approach lies in the fact that, once the validity of the
formalism is established, one does not need any dynamical details of the quantum
field theory at hand, except the knowledge of its representation category as a braided
C* tensor category. In turn, as Examples 3.1 and 4.17 show, this information typically
requires very few data (like the fusion rules and the twist parameters k,) which in
many cases uniquely fix the category.

5.1 Basics of Algebraic Quantum Field Theory

5.1.1 Local Nets

The additional feature in quantum field theory is the local structure: quantum fields are
operator-valued distributions in spacetime, such that the support of the test function
specifies the localization of field operators. In the algebraic approach [6] one rather
considers local algebras <7 (O) of bounded operators generated by quantum fields
evaluated on test functions with a given spacetime support O.

In fact, it is not necessary to assume that the local algebras are generated by actual
quantum fields. It is sufficient to assume that the net of local algebras is isotonous,
i.e., O1 C Oy implies <7 (01) C <7 (03).
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Thus, rather than with a single von Neumann algebra, one deals with a directed net
of von Neumann algebras <7 (0), where O runs over a suitable family of connected
open regions in spacetime, and .7 (0) are the von Neumann algebras generated by
local observables localized in O. (If O has a sufficiently large causal complement,
then the algebra 27 (0O) does not depend on the representation in which the weak
closure is taken.) The regions O can be chosen to be doublecones (intersections of
a future and a past lightcone)

future

X

past

in Minkowski spacetime MP = (RP, n), or intervals I C R where R is the “space-
time” of a chiral quantum field theory.

The use of R as the “spacetime” of a chiral quantum field theory is due to the
feature of conformal quantum field theory in two dimensions that it necessarily
contains fields (notably the stress-energy tensor which is the local generator of dif-
feomorphism covariance) that depend only on either lightcone coordinate ¢ 4+ x or
t — x. The net of local algebras generated by chiral fields is therefore indexed by
the intervals / C R. By virtue of the conformal symmetry, a conformal net on R
actually extends to a net (more precisely: a pre-cosheaf) on S! by identifying R with
S minus a point; but this feature will not be essential for the applications that we
are going to review.

In two spacetime dimensions, the spacelike complement of a doublecone has two
connected components (wedges). In chiral theories, the spacelike complement of an
interval is just its complement in R, which is a disconnected union of two halfrays.

The quasilocal algebra .27 associated with a net & : O + &/(0) is the C*
algebra defined as the inductive C* limit as O exhausts the entire spacetime. A
group G of spacetime symmetries (Poincaré group, conformal group) is assumed to
act on 7y as automorphisms o, such that o, (7 (0)) = &/ (g 0).

The principle of causality (locality) expresses the absence of superluminal causal
influences. In quantum theory, it asserts that observables localized at spacelike dis-
tance must commute with each other. Thus, if two regions O1, O, are spacelike
separated (in the chiral case: disjoint), then [«7(01), <7 (0,)] = {0} (as subalgebras
of .a), or equivalently

A (0) C (0,

where O’ is the causal complement of O, and <7 (0") the C* algebra generated by
(0),0 C 0, and &/(0’) its commutant in g1

An overview of the consequences of these axioms (isotony, covariance, locality,
vacuum representation) in chiral conformal QFT can be found in [7, 8].

There is a variety of methods to construct local conformal nets. Free field nets can
be constructed as CAR or CCR algebras, equipped with a vacuum state. Local nets
associated with affine Kac-Moody algebras can be constructed from unitary imple-
menters of local gauge transformations acting as automorphisms of the CAR algebra,
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giving rise to projective representations of loop groups [9]. Local nets associated with
a chiral stress-energy tensor can similarly be obtained from unitary implementers of
local diffeomorphisms acting as automorphisms of the CAR algebra; an alternative,
more explicit construction from a given heighest-weight representation of the Vira-
soro algebra is given in [8]. By orbifold (fixed point) and coset (relative commutants)
constructions, one can construct new nets from given ones. Finally, the extension of
local nets by commutative Q-systems will be described in Sect.5.2.

5.1.2 Representations and DHR Endomorphisms

Nets of local algebras possess inequivalent Hilbert space representations. A represen-
tation 77 is covariant if the automorphisms o, are implemented by a unitary represen-
tation Uy (g) on the representation Hilbert space, 7 (a,(a)) = Ux(g)m(a)Ux(g)*.
A representation 7 is said to have positive energy if the generator of the unitary
one-parameter group Uy (f) corresponding to the subgroup of time translations
has positive spectrum. We assume that there is a unique vacuum representation
1o, i.e., a faithful positive-energy representation with an invariant ground state 2,
U(g)$2 = £2, and we assume that in the vacuum representation a stronger version
of locality holds, namely Haag duality:

m0(</(0)) = mo(</ (0"))'.

Under these standard assumptions, one can show that the local algebras A(O)
are infinite factors. Moreover [10], an important class of positive-energy representa-
tions (in two-dimensional conformal QFT: all positive-energy representations) can be
described in terms of DHR endomorphisms p of the quasilocal algebra 2% such that

T =70 pP.

DHR endomorphisms are localized in some region O in the sense that the restriction
of p to the algebra &7 (O’) of the causal complement acts like the identity; and trans-
portable in the sense that for every other region O, there is an endomorphism o
localized in O which is unitarily equivalent, namely, there is a unitary charge trans-
porter u € /g (actually localized in any doublecone that contains O and 5) such

that p = Ad, o p:
0X0

By Haag duality it follows that p (27 (0)) C </ (0) if p is localized in O, i.e., p
restricts to an endomorphism of the von Neumann algebra N = &7 (0).

The composition pj o p2 of DHR endomorphisms is again a DHR endomorphism.
Inertwiners between DHR endomorphisms are defined as operators ¢ € .o satisfying
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tp1(a) = pa(a)t for all a € ;. By Haag duality, it follows that r € /(0) if p;
are localized in O; and O1 U O, C O. In particular, all intertwiners among DHR
endomorphisms localized in the same region O are elements of .2/ (O).

In this way, picking any fixed region O and putting N = <7 (0), the restrictions
of DHR endomorphisms localized in O form a C* tensor subcategory of End(N).
One can show [7, Theorem2.3] that this subcategory is full, i.e., every intertwiner
between p1 and p, regarded as endomorphisms of the von Neumann algebra N is also
an intertwiner between p; and p, regarded as endomorphisms of the C* algebra <7
(local intertwiners = global intertwiners). In particular, notions like sector, conjugates
and dimension have the same meaning for DHR endomorphisms as endomorphisms
of <74 and as endomorphisms of N.

We denote by ¢PHR (g7 |o the full subcategory of Endg(N), whose objects are
the DHR endomorphisms of finite dimension, localized in O, and by €PHR (27 the
C* tensor category of all DHR endomorphisms of finite dimension. Example 3.1
specifies the DHR category of the chiral Ising model.

5.1.3 DHR Braiding

The C* tensor category € PHR (o) is equipped with a distinguished unitary braid-
ing ¢y € Hom(po,op). It is defined using unitary charge transporters u, €
Hom(p, p) and u; € Hom(o, ), such that p is localized to the spacelike right (in

the chiral case: in the future) of G:
b
@030@ .

—f

One shows with Haag duality that the auxiliary endomorphisms p and G, being
localized at spacelike distance, commute with each other, and defines

€p0 = (g X Up)* 0 (Up X Ug) = o(u;)u(’;upp(uc) € Hom(po, op). (5.1.1)

This unitary does not depend on the choice of p, ¢ with the specified relative local-
ization, nor on the choice of the charge transporters u,, uq. It satisfies the defining
properties of a braiding. By construction, if p is localized to the spacelike right (in
the chiral case: in the future) of o, then

gpo =1,

because one may just choose p = p, 6 = o, and u, = us = 1. In contrast, if p is
localized to the spacelike left (past) of o, one will have &5 , = 1 bute, s # 1 in
general, because the braiding 5;0 = &p,0 and its opposite ¢, , = &7 , differ in low-
dimensional QFT, due to the two connected components of the causal complement.
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In four dimensional QFT, the braiding is degenerate: ¢, ¢65,, = 1, 1.e., it is a
permutation symmetry, and the twist parameter «, = %1 distinguishes fermionic and
bosonic sectors [10]. In chiral conformal QFT, the conformal spin-statistics theorem
[7] relates the twist parameter k, = ¢>/'» of a sector to the lowest eigenvalue %,
of L.

If both p and o are localized in O, then ¢, ; € 27(0), hence the DHR braiding
restricts to each €PHR (&7)| . The local structure of a QFT net therefore provides
us intrinsically with a braided C* tensor category, the arena of the abstract theory of
the previous chapters.

Of particular interest in the context of the present work is the case when the
quantum field theory <7 possesses only finitely many irreducible DHR sectors of
finite dimension. In chiral conformal QFT, this property (referred to as “completely
rationality”), is known to follow from the split property and Haag duality for intervals.
Many models of interest, including the chiral Virasoro models with central charge
¢ < 1, are completely rational. The case ¢ = % is the chiral Ising model, Examples
3.1 and 4.17.

(Complete rationality should be regarded, however, rather as a technically useful
regularity condition with far-reaching consequences, than an axiom based on physical
principles—since important models, like the u(1) current algebra, do not share this
property.)

In completely rational chiral models, the DHR braiding is non-degenerate [11],
making the braided category ¢PHR (o7) a modular category, cf. Sect. 4.11. Moreover,
the global dimension of €PHR (¢7) (i.e., the quantity >}, dim(p)?, Eq.(3.0.1))
coincides with the p-index of .« which measures the violation of Haag duality for
pairs of disconnected intervals [11, 12]. Thus, the presence of DHR sectors can be
“detected” by inspection of the two-interval subfactor

o (< (11 U b)) C mo(</ (I U 1))

where I1, I are any pair of non-touching intervals. Recall that the global dimension
also is the common dimension of @ in all irreducible full centre Q-systems by
Proposition 4.43. In particular, the two-interval subfactor is isomorphic with the
subfactor described by the canonical Q-system [1].

We now turn to the interpretations of Q-systems and the various operations on
them, in the QFT context.

5.2 Local and Nonlocal Extensions

5.2.1 Q-Systems for Quantum Field Theories

A Q-system in a C* tensor category ¥ C Endo(N) describes an extension N C M.
A Q-system A = (6, w, x) in the category € = € HR (.7 describes a family of
extensions

o (0) C A(0)
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in very much the same way. Namely, let % be the * algebra generated by 2% and v
subject to the relations

via=60@@)-v, vV =x-v, v =w'x" v,

such that # = .o/ - v as a vector space. Embed 2% by 1(a) = aw* - v asa*
subalgebra. Define * subalgebras

B(O) .= (O)u-v

where u € 27 is a unitary such that 0= Ad,, o6 is localized in O. Because (u x
u)oxou* € Hom(@, 62) C /(0) and (u x u)ox ow € Hom(id, #%) C & (0),
A(0) are indeed * algebras. In fact, @7 (0) C HB(0) is precisely the von Neumann
algebra extension of <7 (0) by the Q-system (5: Ad, o080, uow, (u X u)oxou®).

One obtains a net of von Neumann algebras O +— Z(0) extending ./ (0), and
2 is its inductive limit as the regions O exhaust the entire spacetime.

Charged intertwiners v, defined for p < 6 as in Remark 3.12, are elements
of #(0) whenever p is localized in O, and these operators together with <7 (0O)
generate #(0). As O varies, these operators are the substitute of charged “fields”
in the language of algebraic QFT.

The charged intertwiners create charged states from the vacuum as follows [1].
The positive map

wib s dyt - wib)w

is a conditional expectation u : 8 — & . It allows to extend the vacuum state wgy on
£/ to a vacuum state w := wg o 1 on A. Since (Y, lp;‘) € Hom(p, p) is a multiple
of 1if p is irreducible, we may assume it to be = 1 by normalizing ¥/,,. Then one has

wp o w(pt(@) V) = wo(p@u(py)) = wo o p(a).

Thus, in the GNS representation 7 of the state w, the vector n(lp;‘)ﬂw belongs
to the DHR representation g o p of . Indeed, upon restriction to <7, the GNS
representation of w is equivalent to the DHR representation 7o o 6 of 7.

The net 4 is by construction relatively local w.r.t. the subnet <7 if b = auv €
P(0) witha € o/ (0), and a’ € <7/ (0’), then

b-a =auv-d =aub(a )y =ab@uv =ad'uv=a -auv=a b,

where we have used the localization of § and the local commutativity of a with a’.
In fact, every relatively local net of extensions of finite index arises this way [1].

An extension & of </ is in general not local. It is local iff #1v commutes with
upv whenever 6 = Ad,, o6 and 6, = Ad,, o0 are localized in spacelike separated
regions O1, O>. But

uv - upv = u10wp)xv, urv-uiv = ur6(uy)xv,
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which are equal iff g9 9 o x = x, by the definition of the DHR braiding Eq.(5.1.1).
Thus, £ is local iff the Q-system (0, w, x) is commutative.

Given a local extension &/ C 4, one may apply a-induction (cf. Sect.4.6) to
the DHR endomorphisms p of 7, defining endomorphisms ag: of A. These are,
however, in general not DHR endomorphisms of %, since they act trivially only on
one of the two components of the causal complement of the localization region of
p. DHR endomorphisms of 4 are obtained as sub-endomorphisms which are con-
tained in both a;' and o5 for some p, 0 € ¢PHR (7). The common (“ambichiral”)
sub-endomorphisms are counted by the numbers Z, , = dim Hom(a;, aj ), cf.
Eq.(4.6.3).

By classifying (commutative) Q-systems within the DHR category of a given
completely rational quantum field theory, one obtains a classification of its (local)
extensions. This program has been completed (profiting from existence and unique-
ness results of [13] and the previous classifications of modular invariant matrices in
[14]) for the local extensions of chiral nets associated with the stress-energy tensor
with central charge ¢ < 1, which are known to be completely rational [15]. All mod-
els in this classification can be realized by coset constructions, except one which
arises as a mirror extension (cf. Sect.4.7) of a coset extension. The classification of
relatively local extensions with ¢ < 1 (which is of interest in the presence of bound-
aries, Sect.5.3) can be found in [16]; and the classification of local two-dimensional
extensions (Sect.5.2.2) with ¢ < 1 was achieved in [17].

5.2.2 Two-Dimensional Extensions

The chiral observables of a two-dimensional conformal QFT are given by a tensor
product of two chiral nets % := &7} ® </_ such that

A (0) = (1) x o (J)
if

1A
L
O=IxJ={(t,x):t+xelt—xeJ}: <>.

Its DHR endomorphisms are direct sums of py ® p_ € EPHR (o7, ) @ EPHR (7).
From the definition of the DHR braidings, and because O; = I} x Ji is in the right
spacelike complement of Oy = I x J; if and only if /; is in the future of /; and J;
is in the past of J», it follows that the braiding of 2% is given by ¥ ® £~ Therefore,
as a braided category, PHR (o) = €PHR (o7, ) R ¢PHR (o7 )oPP,

In particular, if the chiral nets 7, and .&7_ are isomorphic, then the canonical
Q-system gives rise to a local two-dimensional extension %, of @ = & ® o,
which is also known as the “Cardy type” extension. Its charged fields carry conjugate
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charges w.r.t. the 4+ and — chiral observables. For the construction of this extension,
it is actually not essential that o7, and .&7_ are isomorphic, but it is sufficient that
they have isomorphic DHR categories. Obviously, one may as well construct a Cardy
type extension based on any pair of isomorphic subcategories of €PHR (o7, ) and of
%DHR ( o ).

A more general class of local two-dimensional extensions of .2%» was constructed
in [18], by exhibiting the numerical coefficients of the Q-system (©®, W, X) in
¢PHR (/) K ¢’ PHR (o7)°PP by a method involving chiral a-induction along a pos-
sibly noncommutative chiral Q-system (the “«-induction construction”). The mul-
tiplicities of the irreducible subsectors p ® 6 < @ coincide with the matrix ele-
ments Z, ; = dim Hom(a,, «;) of the modular invariants, mentioned before, cf.
Sect.5.2.1.

5.2.3 Left and Right Centre

In general, the extension &7 C % described by a Q-system A in PHR (o7) will be
nonlocal. Since the left and right centres C*[A] of A are commutative Q-systems, cf.
Sect. 4.8, they correspond to local extensions %ljgc intermediate between .7 and A.

In [4], we have identified these local intermediate extensions with relative com-
mutants

B (0) = BWL) N BWg), rtesp. By, (0):=BWg) NBW)).
Here, the wedges Wy and Wpg are the left and right components of the spacelike
complement of the doublecone O (resp. the past and future complements of an
interval in the chiral case):

We

W Wr W

)

In order to establish this result, one has to verify that the relative commutant
%’fgc(O) = AB(Wr)' N B(Wy) is intermediate between ./ (0) C %(0), and that
the projection Pngc corresponding to the intermediate extension coincides with the
right centre projection p* of the Q-system for &/ (0) C B(W)NB(Wy) C B(O).
Thanks to Proposition 4.26, it is sufficient to prove that pf(;c satisfies the relation
Eq.(4.8.1), and that %fo'c(O) is maximal with this property.

The inclusion &7 (0) C %, (0) is obvious by isotony of Z and relative local-

loc

ity of # w.rt. o/. The inclusion % (0) C Z(0) can be established with the

loc
help of Haag duality for wedges, which was assumed to be valid for the net .o/

The intersection %$C(0) is therefore the maximal subalgebra of Z(0) commut-

ing with Z(W). One has %, (0) = /(0. = «/(0)p; v. This algebra
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commutes with Z(Wp) iff the generator plocv of A (0) commutes with the

loc
generator vV = uv of Z(W), where u € Hom(6, 6)isa unitary charge transporter
taking 0 to 6 localized in Wy. Now, p1+ocv S uy = pfgCG(u)xv = 9(u)p1+ocxv,

whereas uv - pfgcv =uf( pfgc)xv. Commutativity is therefore equivalent to pfgcx =
Q(M)*ué?(pfgc)x, which is Eq.(4.8.1) by the definition of the DHR braiding.
The claim, pfgc = p™, then follows by the maximality of %, * (0) and the char-
acterization of p™ in Proposition 4.26.

In establishing this result, it is again essential that the braiding is the DHR braiding
Eq.(5.1.1), defined in terms of unitary charge transporters. This explains why a
similar interpretation of the left and right centre as the Q-system of some relative
commutant cannot be given in a general braided subcategory of Endo () for a single
von Neumann algebra N. It would be interesting to have such a theory, which would
require—in addition to a braided tensor category 4° C Endo(/N)—as additional data
a splitting of N’ into two commuting subalgebras N’ = Ny V Ng, and unitary
intertwiners between endomorphisms p € Endg(N) and endomorphisms of Nz and
of Ng, connected to the given braiding by (versions of) Eq.(5.1.1).

loc

5.2.4 Braided Product of Extensions

According to Lemma 4.29, the braided products A x* B of two Q-systems A =
(QA, wA, xA) and B = (6B, wB, xB) describe extensions M* which are generated
by the algebra N and the generators v and v such that NvA = M4 and NvB = MB
are intermediate algebras, and the generators v, vB satisfy the commutation relations

VByA = L(E;EA’GB) BA (5.2.1)

These properties uniquely specify M.

The same holds true in the QFT setting, that is, the braided product Z* of two
extensions ZA and AP of a net o7 is generated by o7 and the generators v*, vB
subject to the same commutation relation Eq. (5.2.1).

It follows that for any unitary charge transporters u; € Hom(0%, %), uy €
Hom (6B, 6B),

@2v®)uiv®) = ez, gu) - v wav®).

Now, if 6 is localized to the right (left) of 9B, then 8§A =1 (e = 1), hence

64,68
in these cases the generators u1v* and u,v® commute. Since the local algebras of an
extension are generated by .27 (0) and uv such that 6 = Ad, o 60 is localized in O,
it follows (using relative locality w.r.t. .27) that, as subalgebras of %™ resp. of %™,
the algebras ,%’A(Ol) and %’B(Oz) commute with each other if O; is located to the

spacelike right resp. left of O,—but in general not in the converse order.
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We paraphrase these situations by saying that the net 2 is “right local” resp.
“left local” w.r.t. the net ZB. Thus, the braided products of of two extensions 2
and B can be regarded as a quotient of the free product by the relations that identify
the common subnets &/ C % and &7 C %P, and by the relations expressing that
B is “right local” resp. “left local” w.r.t. 8.

(The same is true in the chiral case, replacing “right” by “future” and “left” by
“past”.)

Let o7 be a chiral QFT and A a Q-system in ¥PHR (o), describing a (nonlocal)
chiral extension 4. The full centre Z[A] is a Q-system in ¥PHR (o7 @ &), i.e., it
describes a two-dimensional extension %, of &/ ® .<7. Because the full centre is the
right centre of the braided product (A ® 1) x* R, we recognize the corresponding
extension %, as the relative commutant of right wedges of the nonlocal extension,
obtained by the right-local braided product of the possibly nonlocal chiral extension
A ® 1 with the local canonical extension %g.

By Proposition 4.33, the full centre coincides with the o-induction construction
which was originally found as a construction of two-dimensional local conformal
QFT models out of chiral data. This result therefore not only gives a more satisfactory,
purely algebraic interpretation of the «-induction construction in terms of braided
products of nets and relative commutants of wedge algebras, cf. Sect.5.2.3; it also
explains the fact (known before) that the latter depends only on the Morita equivalence
class of the chiral Q-system in € [19]; namely two Q-systems in a modular tensor
category % have the same full centre if and only if they are Morita equivalent [20].

Since moreover, every irreducible extension %, of <% is intermediate between
2/ and an a-induction extension [2, 3, 19], it follows that full centre extensions are
precisely the maximal irreducible extensions (if the underlying chiral theory <7 is
completely rational).

5.3 Hard Boundaries

A conformal quantum field theory with a “hard boundary” arises, when Minkowski
spacetime M? is restricted to a halfspace, say the right halfspace M12e ={(t,x) x>
0}. The stress-energy tensor defined on MIZe still splits into two chiral components,
but if one imposes conservation of energy at the boundary, the two components are no
longer independent fields, but instead they coincide as operator-valued distributions
on R [19]. Thus, for I and J intervals such that O = I x J = {(t,x) : t +x €
I, t —x € J} lies inside MI% (& I > J elementwise as subsets of R), the local
algebra of chiral observables is

AR(0) = (1) Vv A (J)
rather than the tensor product <74 (I) ® </ (J). Here, the chiral algebras are gen-

erated by the stress-energy tensor and possibly further chiral fields whose boundary
conditions might also impose an identification of the fields.
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An analysis of local extensions 27g(0) C %Br(0) on the halfspace was given
in [19]. One finds (assuming <7 to be completely rational) that the local algebras of
every maximal such extension are of the form

BRr(O)=BK) NBWL) (0=1xJ]C M3 (5.3.1)

where o/ C 2 is a possibly nonlocal chiral extension (given by a Q-system in
¢PHR (7)), and K C L is the unique pair of open intervals such that /UJ = L\ K:

This formula is “holographic” in the sense that the local observables in a region
ocMm % are given in terms of operators in a chiral net that can be thought of as a
net on the boundary.

The simplest case is the trivial chiral extension 4 = 7. In this case, Br(0) is
generated by @z(0) = /(1) v </ (J) and charge transporters in .2/ (L), namely
unitary intertwiners transporting a DHR endomorphisms localized in J to an equiv-
alent DHR endomorphism localized in J. Accordingly, the charged generators for
the subfactor @7g (0O) C %Br(0) “carry acharge p in I and a charge p in J”. Indeed,
under the split isomorphism between the von Neumann algebras .o/ (1) v </ (J) and
o (1) ® <7 (J), the subfactor turns out to be isomorphic with the subfactor associated
with the canonical Q-system Proposition 3.19 with [OR] = EB[ plirr P ®P.

For general chiral extensions &/ C & with irreducible Q-system A, the local
subfactor &/ (0) C HBr(0) for any bounded doublecone O C M% not touching
the boundary is isomorphic to the subfactor obtained from the full centre Q-system
Z[A], and hence depends (up to isomorphism) only on the Morita equivalence class
(cf. Sect. 3.5) of the chiral Q-system A.

As mentioned in Sect.5.2.4, the full centre gives also a local net on the full two-
dimensional Minkowski spacetime as an extension %, O &/ ® & of the tensor
product of a pair of isomorphic chiral nets. Indeed, this net can be recovered from
the maximal boundary net % by a procedure called “removing the boundary”. It
proceeds by taking the limit of a sequence of states on right wedge algebras Zr (Wg+
a) as a € W tends to infinity (“far away from the boundary”). The net %, can then
be defined in the GNS Hilbert space of this state, which carries two commuting
unitary representations of the Mbius group. First defining the local algebra %, (Wg)
of a single right wedge, and 932(W1’Q) = %, (Wg)' as its commutant, the two unitary
representations of the translations are used to define the local algebras for general
wedge regions, and the local algebras for doublecones by intersections of algebra for
wedges.

The converse procedure of “adding a boundary” can also be performed alge-
braically [3]. Starting from an extension @ C %, defined on Minkowski spacetime,
one can redefine the representation of its restriction to M 12?, obtaining a reducible rep-
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resentation. Its decomposition yields a direct sum of boundary extensions &g C %Bpg
related to chiral extensions .7 C 4 by the “holographic formula” Eq. (5.3.1), which
all give back % C %, when the “boundary is removed”. In particular, for every
right wedge Wg C MI% not touching the boundary, the subnets «7g(0) C Br(0)
indexed by O C Wpg are all isomorphic to the subnets @5 (0) C %>(0), so that
the boundary nets in the decomposition can be interpreted as different boundary
conditions imposed on the original net 25 C %,.

The procedure of “adding a boundary” amounts, in the language of C*-tensor
categories, to the tensor functor 7 : € X €°PP, p ® 0 > p o, taking Q-systems in
€ X PP to Q-systems in % This functor is adjoint [21] to the full centre, taking
Q-systems in % to Q-systems in ¢ X €°PP. In is proven in [20] that the image of
the full centre Q-system Z[A] under T is the direct sum (in the sense of Sect.4.2) of
Q-systems given by the irreducible A-modules. Thus, the hard boundary conditions
are classified in 1:1 correspondence with the irreducible modules of the underlying
chiral Q-system A.

5.4 Transparent Boundaries

Whereas a hard boundary describing a QFT on a halfspace identifies the left- and
right-moving chiral observables in the halfspace, a transparent boundary separates
two possibly different quantum field theories Z” and Z* in the halfspaces M?, M}%
on either side of the boundary:

1 (01 CM%,OzCMI%).
2L (01) #R(0,)

Physically speaking, the boundary is thought to separate regions with different
dynamics, e.g., two different phases of a relativistic system with a phase transition.
For the example of the Ising model, cf. [22] and Example 5.1.

The two theories are defined on the same Hilbert space, and share a tensor product
oy ® </_ of common chiral subtheories. The latter property arises from the phys-
ical assumption that energy and momentum are conserved at the boundary, which
identifies the chiral stress-energy tensors on either side of the boundary [5].

Because the presence of the boundary cannot violate the principle of causality,
quantum observables of %’ localized in the left halfspace Mz must commute with
observables of Z* localized in the right halfspace M 12e at spacelike separation.

Because the stress-energy tensor is the local generator of diffeomorphisms, the
common chiral subtheory &7, ® ./ can be used to extend both theories to the full
Minkowski spacetime.

Motivated by these two (heuristic) observations, one should define a transparent
boundary as a pair of quantum field theories on two-dimensional Minkowski space-
time, sharing a common chiral subtheory, such that & is left-local w.r.t. ZX. As we
have seen before, such a pair is described by the braided product of two extensions
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of the common chiral subtheory, and every irreducible such pair is a quotient of the
braided product.

The mathematical issue is therefore the central decomposition of the braided
product of a pair of commutative Q-systems in €PHR (o7, )G PHR (o7 ). The centre
of the braided product of extensions is given by Proposition 4.31 as a linear space
isomorphic to Hom(®@%, ®F). In order to know its central projections, it must be
computed as an algebra. This is precisely what we have achieved in Theorem 4.42,
provided #PHR (o7, ) and ¥PHR (.7 ) are isomorphic as modular braided categories,
and the pair of commutative Q-systems are full centres of chiral Q-systems AL and
AR Namely, Theorem 4.42 classifies the transparent boundary conditions in 1:1
correspondence with the irreducible chiral AX-A®-bimodules.

In [5], this classification is further elaborated. As discussed in Sect.4.12, the
space Hom(®@%, ©F) has two distinguished bases, orthogonal w.r.t. the inner prod-
uct Eq. (4.12.7): one arising by “diagonalizing” the left and right compositions with
Hom(®F, ®F) and Hom(®R, @F), the other corresponding to the minimal central
projections of the braided product, i.e., the minimal projections in Hom(®@~, @)
w.r.t. the convolution product Eq.(4.12.2). The unitary transition matrix is a gen-
eralized Verlinde matrix, and can be computed by its distinguishing property that
it “diagonalizes” the bimodule fusion rules. Its matrix elements finally turn out to
determine the specific identifications between charged fields of % and charged
fields of #R, that make up the specific boundary conditions.

Example 5.1 The special case where both Q-systems are the canonical one,
i.e., the boundary between two conformal quantum field theories both isomor-
phic to the Cardy extension, has been given in Example 4.48. For the Ising
model (i.e., the chiral net is given by the Virasoro net with central charge
¢ = 1), one obtains three boundary conditions given by the three sets of linear
dependencies between the charged generators ¥; g ¢, Y@<

. L R L R .
(1 WI®T=W11®I’ lp0'®0:lp0'®0"
90 L _ R L _ R .

(i1) lpt@‘c — lI,‘t@‘t’ Wo@c — _qj6®c’
L R
(iii) Vigr =Ygt

The first case is the trivial boundary; the second the “fermionic” boundary
where the field ¥; g changes sign, and the third the “dual” boundary, in
which there are two independent fields IPUR@G and 'J/GL®G (corresponding to the
order and disorder parameter ¢ and w in [22]).
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5.5 Further Directions

‘We have outlined the remarkably tight links between the abstract theory of Q-systems
in braided C* tensor categories and the representation theory of conformal quantum
field theories in two dimensions. Notably the classifications of “hard” and “transpar-
ent” boundary conditions have very natural counterparts in the abstract setting.

Thinking of systems with several transparent boundaries, some immediate
questions arise: the juxtaposition of two boundaries is described by the (associa-
tive) braided product of three Q-systems. The individual boundary conditions are
classified as A-B-bimodules and as B-C-bimodules. Thus, it is expected that the
juxtaposition of boundary conditions is described in terms of the bimodule tensor
product.

It is much less clear which mathematical structure should be expected to describe
situations where two transparent boundaries infersect each other.

Finally, hard and transparent boundaries are only two “opposite extremes” in a
wide spectrum of possible behaviour of chiral fields at a boundary [5]. It would be
rewarding to describe also more general boundaries in terms of the present unifying
framework.
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Chapter 6
Conclusions

Q-systems are a tool to describe extensions N C M of an infinite von Neumann factor
N in terms of “data” referring only to N. We have extended this notion, well-known
for subfactors, to the case when M is admitted to be a finite direct sum of factors.
Modules and bimodules of Q-systems are equivalent to homomorphisms between
extensions. Decompositions of Q-systems and other operations defined in braided
C* tensor categories: the centres, braided products and the full centre—which are
known in the setting of abstract tensor categories—are interpreted in terms of the
associated extensions of von Neumann algebras.

The meaning of these operations in the context of local quantum field theory is
elaborated in [1]. Especially the determination of the centre of the von Neumann
algebra which arises as the braided product of two commutative extensions, is a
problem motivated by these applications. We have completely solved this task for
the braided product of two full centres in modular C* tensor categories.

In the last section, we have given a brief outline of this and other applications of
the theory of braided and modular C* tensor categories in the context of quantum
field theory. It is here, where the interpretation in terms of endomorphisms of von
Neumann algebras is most substantial, since local quantum observables are (selfad-
joint) elements of von Neumann algebras. This application was not only our original
motivation for the analysis presented in the main body of this work; it is also not an
exaggeration to say that the (rather natural) appearance of modular C* categories
in chiral conformal QFT, as an offspring of the original DHR theory designed for
massive QFT in four spacetime dimensions, has triggered many of the developments
described in this work.

© The Author(s) 2015 93
M. Bischoff et al., Tensor Categories and Endomorphisms of von Neumann Algebras,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-14301-9_6



94 6 Conclusions

Reference

1. M. Bischoft, Y. Kawahigashi, R. Longo, K.-H. Rehren, Phase boundaries in algebraic conformal
QFT. arXiv:1405.7863


http://arxiv.org/abs/1405.7863

	Preface
	Contents
	1 Introduction
	References

	2 Homomorphisms of von Neumann Algebras
	2.1 Endomorphisms of Infinite Factors
	2.2 Homomorphisms and Subfactors
	2.3 Non-factorial Extensions
	References

	3 Frobenius Algebras, Q-Systems and Modules
	3.1 C* Frobenius Algebras
	3.2 Q-Systems and Extensions
	3.3 The Canonical Q-System
	3.4 Modules of Q-Systems
	3.5 Induced Q-Systems and Morita Equivalence
	3.6 Bimodules
	3.7 Tensor Product of Bimodules
	References

	4 Q-System Calculus
	4.1 Reduced Q-Systems
	4.2 Central Decomposition of Q-Systems
	4.3 Irreducible Decomposition of Q-Systems
	4.4 Intermediate Q-Systems
	4.5 Q-Systems in Braided Tensor Categories
	4.6 α-Induction
	4.7 Mirror Q-Systems
	4.8 Centre of Q-Systems
	4.9 Braided Product of Q-Systems
	4.10 The Full Centre
	4.11 Modular Tensor Categories
	4.12 The Braided Product of Two Full Centres
	References

	5 Applications in QFT
	5.1 Basics of Algebraic Quantum Field Theory
	5.1.1 Local Nets
	5.1.2 Representations and DHR Endomorphisms
	5.1.3 DHR Braiding

	5.2 Local and Nonlocal Extensions
	5.2.1 Q-Systems for Quantum Field Theories
	5.2.2 Two-Dimensional Extensions
	5.2.3 Left and Right Centre
	5.2.4 Braided Product of Extensions

	5.3 Hard Boundaries
	5.4 Transparent Boundaries
	5.5 Further Directions
	References

	6 Conclusions
	Reference




