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Preface

Subfactors (unital inclusions of von Neumann algebras with trivial centre) became a
thriving focus of research interest after Vaughan Jones discovered in 1983 the
quantization of the index below four. The associated principal graph was imme-
diately identified as an important combinatorial invariant beyond the index, con-
trolling the induction and restriction of bimodules of and between the two factors;
more detailed information is encoded in the “planar algebra”.

There is a close similarity with the theory of superselection sectors in relativistic
quantum field theory (QFT), which was developed in the late 1960s and early 1970s
by Sergio Doplicher, Rudolf Haag and John E. Roberts in Algebraic Quantum Field
Theory (DHR). Especially, the method to obtain the quantization of the index
closely resembled the argument for the quantization of the “statistical dimension” in
the DHR theory. This involves (independent) works of two of us in 1989: R.L.
found the direct link between the statistical dimension and the Jones index, and
K.-H.R. (with K. Fredenhagen and B. Schroer) studied the braided tensor cate-
gorical superselection structure in low-dimensional quantum field theory.

While the details of the two theories differ (Jones theory addresses type II

factors, whereas the local algebras of QFT are generically type III factors), the
underlying mathematical structure is in both cases a C* tensor category (or 2-
category). In the first case, its objects are bimodules, in the latter case they are
endomorphisms (or homomorphisms); but as abstract structures, one deals with “the
same” categories. A main purpose of the present work is in fact to “transfer”
concepts from abstract tensor categories (going beyond just subfactor theory) into
the language of von Neumann algebras and their endomorphisms, see below.

A main aim of the DHR theory in four spacetime dimensions (finally achieved in
1990 by S. Doplicher and J.E. Roberts) was to establish the identification of the
category of DHR endomorphisms with a dual of a compact group, which is then the
global gauge group of an extended quantum field theory (the “field algebra”)
containing the original QFT as its gauge fixed points. Crucial for this identification
was the existence of a braiding, which is in fact maximally degenerate (i.e., a
“permutation symmetry”) in the DHR category.
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This is markedly different in low-dimensional quantum field theory, notably in
chiral and two-dimensional conformal QFT, which also experienced a research
boost in the mid-1980s after the complementary breakthrough discoveries of A.A.
Belavin, A.M. Polyakov, A.B. Zamolodchikov (minimal models) and D. Friedan,
Z. Qiu, S. Shenker (classification of positive-energy representations of the Virasoro
algebra). Again, the sectors of these theories are described by a braided C* tensor
category, but the braiding turned out to be non-degenerate (modular) in most
models of interest; a structural argument about why (and when) this is the case was
given in 2001 by two of us (Y.K. and R.L.) in collaboration with M. Müger.

Not least for the reason that these structures had been discovered both in the
physics context and in connection with quantum groups at about the same time, the
focus of mathematical interest concentrated on modular tensor categories, which
appear to describe generalized symmetries akin to group symmetries, but placed “at
the other end of the range of possibilities” (tensor categories with modular braiding
vs. tensor categories with symmetric braiding). Not only classification results were
obtained, but relations with different fields of mathematics (vertex operator alge-
bras, algebraic topology, elliptic functions) were discovered and explored.

On the physics side, the idea was put forward to hinge the axiomatic definition of
a conformal QFT on its modular tensor category. While the present authors do not
entirely conform to this idea (because it would exclude important models), it was
certainly very fruitful for the discussion of a large class of interesting models.

A most important insight emerged from the formulation of “topological quantum
field theory” (TQFT) in terms of the data of a given modular category, promoted by
Jürgen Fuchs, Jürg Fröhlich, Ingo Runkel, Christoph Schweigert et al. (FFRS) in
the late 1990s until today. This is the insight that the effect of representation-
changing spacetime boundaries is entirely controlled by structures within the
modular category: notably modules and bimodules of Frobenius algebras.

Frobenius algebras in a C* tensor category of endomorphisms had also been
discovered—under the name of Q-systems—by one of us (R.L.) in 1994 as a
complete invariant for type III subfactors N � M of finite index. A crucial aspect is
that the relevant category is the category of endomorphisms of the smaller factor N,
so that the larger factor M is characterized in terms of data pertaining to N. This
changes the perspective from subfactors (“N is embedded into a given M”) to
extensions (“M extends a given N”). In fact, for single subfactors, there is a duality
(related to the Jones tower) by which an extension N � M is equivalently described
by a subfactor γðMÞ � N (where γ is a canonical endomorphism of M with values
in N), so that this change in perspective seems to be just a matter of taste. However,
it becomes crucial in the application to QFT, where N and M have a direct physical
meaning while γðMÞ has not.

It is in this field of research where the interests of the four of us have eventually
converged.

Two of us had noticed the relevance of subfactor theory, and in particular the
characterization of extensions in terms of Q-systems, for questions like, “Which
quantum field theories possibly share the same stress-energy tensor” (or some other
common sub-theory)? In chiral conformal QFT, the stress-energy tensor is
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described by the Virasoro algebra, whose positive-energy representations are
known and give rise to well-studied modular C* tensor categories (provided the
central charge is c\ 1). Indeed, full classifications have been obtained along this
line.

Especially, the formulation of boundaries and boundary conditions in relativistic
conformal QFT, and its relation to the remarkable findings in the TQFT approach
by FFRS, have intrigued us. The present work, along with several research papers,
is an outcome of the endeavour to gain a better understanding of these connections.

A main difference with the TQFT approach is that a TQFT is essentially defined
in terms of a modular tensor category (which need not be a C* tensor category),
whereas in our feeling, a conformal QFT is in the first place a relativistic quantum
field theory with an enhanced symmetry, subject to well-established axioms among
which the C* structure (crucial for quantum observables) and local commutativity
(Einstein causality) are most essential. In this vein, the presence of the modular
category has to be derived (via the DHR theory), and its role in the formulation of
QFT with boundaries has to be established.

In the present work, we focus on the theory of (modular) C* tensor categories,
only keeping the applications to QFT in the back of our minds, and devoting the
final chapter to a review of these applications. Large parts of the abstract theory
were originally developed by FFRS, involving more recently also L. Kong; our
main contribution is to clarify the “transfer” of these results into the language of
endomorphisms of von Neumann algebras (which then facilitates the intended
application to QFT).
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Chapter 1
Introduction

Abstract Q-systemsdescribe “extensions” of an infinite vonNeumann factor N , i.e.,
finite-index unital inclusions of N into another von Neumann algebra M . They are
(special cases of) Frobenius algebras in the C* tensor category of endomorphisms
of N . We review the relation between Q-systems, their modules and bimodules
as structures in a tensor category on one side, and homomorphisms between von
Neumann algebras on the other side. We then elaborate basic operations with Q-
systems (various decompositions in the general case, and the centre, the full centre,
and the braided product in braided categories), and illuminate their meaning in the
von Neumann algebra setting. The main applications are in local quantum field
theory, where Q-systems in the subcategory of DHR endomorphisms of a local
algebra encode extensionsA (O) ⊂ B(O) of local nets. These applications, notably
in conformal quantum field theories with boundaries, are briefly exposed, and are
discussed in more detail in two original papers [1, 2].

Q-systems have first appeared in [3] as a device to characterize finite-index subfactors
N ⊂ M of infinite (type III) von Neumann algebras, generalizing the Jones theory
of type II subfactors [4–6]. A Q-system is a triple

A = (θ, w, x),

where θ is a unital endomorphism of N and w ∈ Hom(idN , θ), x ∈ Hom(θ, θ2) are
a pair of intertwiners whose algebraic relations guarantee that θ is the dual canonical
endomorphism (Sect. 2.2) associated with a subfactor N ⊂ M .

Notice that the data of the Q-system pertain only to N , so the Q-system actually
characterizes M as an “extension” of N . In fact, the larger algebra M along with the
embedding of N into M can be explicitly reconstructed (up to isomorphism) from the
data. One issue in this work is a generalization to Q-systems for extensions N ⊂ M
where M may have a finite centre, i.e., M is a direct sum of infinite factors.

Subfactors are, apart from their obvious mathematical interest, also of physical
interest since they describe, e.g., the embedding of a physical quantum sub-system
in larger system. In this context, it is essential that the algebras are C* or von Neu-
mann algebras, since quantum observables are always (selfadjoint) elements of such
algebras, and in relativistic QFT, local observables generate factors of type III.

© The Author(s) 2015
M. Bischoff et al., Tensor Categories and Endomorphisms of von Neumann Algebras,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-14301-9_1
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2 1 Introduction

From a category point of view, a Q-system is the same as a special C* Frobenius
algebra in a (strict, simple) C* tensor category. In the case at hand, the category
would be (a subcategory of) the categoryEnd0(N ) of endomorphisms of N with finite
dimension. This is actually the most general situation, since every (rigid, countable)
abstract C* tensor category can be realized as a full subcategory of End0(N ) [7].

In a more general setting (notably without assuming the C* structure which is
naturally present in the case of End0(N )) abstract tensor categories and Frobenius
algebras have been extensively studied by many mathematicians [8–12], and inter-
esting “derived” structures have been discovered and classified, notably when the
underlying tensor category is braided, or even modular [13–20].

Aconnection to physics of thismore general setting is providedby [21–24]where a
formulation of two-dimensional (Euclidean) conformal quantum field theory on Rie-
mannian surfaces is developed in terms of a three-dimensional “topological quantum
field theory” which is a cobordism theory between pairs of Riemannian surfaces. The
authors observed, among a wealth of other results, that the modules and bimodules
of the representation category of the underlying chiral theory play a prominent role
in the classification of one-dimensional boundaries between Riemannian surfaces.

From the von Neumann algebra point of view, an important class of braided
tensor subcategories of End0(N ) naturally arises in the algebraic formulation of
relativistic Quantum Field Theory (QFT). Namely, a distinguished class of positive-
energy representations of local QFT can be described in terms of endomorphisms of
the C* algebra A of quasi-local observables. These DHR endomorphisms are the
objects of a braided C* tensor category [25, 26]. By restricting attention to a von
Neumann algebra N = A (O) of local observables, one obtains a braided tensor
subcategory of End0(N ). In this context, Q-systems describe finite-index extensions
A ⊂ B of quantum field theories, and B is local if and only if the Q-system is
commutative w.r.t. the braiding.

Our main motivation for the present work was the study of boundary conditions in
relativistic conformal QFT in two spacetime dimensions, as discussed in detail in the
compagnon papers [1, 2]. Boundaries in relativistic quantum field theories [27–29],
with observables that are Hilbert space operators subject to the principle of locality
(or rather causality), have been analyzedmuch less than in the Euclidean setting. Very
little is known about an apriori relation between Euclidean and Lorentzian bound-
aries.Yet, our treatment of boundaries in relativistic two-dimensional conformalQFT
shows that precisely the same mathematical structures, namely the chiral representa-
tion category, its Q-systems and their modules and bimodules, control the boundary
conditions in both situations. We address in particular the case of “hard” bound-
aries in [1] and “transparent” or “phase boundaries” (defects) in [2]. In this work, we
shall concentrate on the underlyingmathematical theory, with only scattered remarks
about the relevance in QFT. A brief exposition of these physical applications will be
given in Chap.5.

While large portions of the category side of this work are reformulations from
[30, 31], our original contribution is the elaboration of the relation between the
abstract category notions and the von Neumann algebra setting and subfactor theory.
A prominent issue is our proof of Theorem 4.42 (a characterization of the central

http://dx.doi.org/10.1007/978-3-319-14301-9_5
http://dx.doi.org/10.1007/978-3-319-14301-9_4
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projections of an extension N ⊂ M , which is given by the braided product of two
full-centre Q-systems in a modular category). This theorem is implicitly present, but
widely scattered in the work of [21–24, 30–33]. Our proof is muchmore streamlined,
because it benefits from substantial simplifications in the C* setting, where one can
exploit positivity arguments in crucial steps.

This theorem is relevant for phase boundaries in relativistic two-dimensional con-
formal QFT because it classifies the boundary conditions in terms of chiral data [2],
very much the same as in the Euclidean setting [21].

Other original contributions in this work concern Q-systems for extensions
N ⊂ M when M is not a factor, a situation that naturally occurs in several applica-
tions, as well as the characterization of various types of decompositions of Q-systems
(Sects. 4.2–4.4) in terms of algebraic properties of projections in Hom(θ, θ).

In Chap.2, we review the basic notions concerning endomorphisms and homo-
morphisms of infinite von Neumann algebras, with special emphasis on the notions
of conjugates and dimension.

Chapter3 is devoted to the category structure, and to the correspondences between
Q-systems and algebra extensions, and between bimodules between Q-systems and
homomorphisms between the corresponding extensions.

Chapter4 is the main part of this work. We introduce various operations with
Q-systems (decompositions, braided products, centres and full centre), and investi-
gate their meaning in the setting of von Neumann algebras.

Chapter5 contains an exposition of the appearance of braided and modular C*
tensor categories in the DHR theory of superselection sectors in Algebraic QFT,
and reviews the relevance of Q-systems for issues like extensions and boundary
conditions.
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Chapter 2
Homomorphisms of von Neumann Algebras

Abstract We introduce the tensor category structure of endomorphisms of infinite
(type III) von Neumann factors. We review the basic concepts of conjugate homo-
morphisms between a pair of infinite factors, including the dimension, and discuss
the generalization to homomorphisms of a factor into a von Neumann algebra with
a centre.

Let N and M be two von Neumann algebras, and α, β a pair of homomor-
phisms : N → M . (Without further mentioning, the notion “homomorphism” will
include the * and unit-preserving properties α(n∗) = α(n)∗ and α(1N ) = 1M .) An
operator t ∈ M such that

t · α(n) = β(n) · t for all n ∈ N

is called an intertwiner, writing t : α → β or t ∈ Hom(α, β). Clearly, if
t ∈ Hom(α, β), then t∗ ∈ Hom(β, α); Hom(α, β) is a complex vector space, and
Hom(α, α) is a C*-algebra.

A homomorphism α : N → M is composed with a homomorphism β : M → L ,
such that β ◦ α : N → L .

Likewise, for any three homomorphisms α, β, γ : N → M and intertwiners
t ∈ Hom(α, β) and s ∈ Hom(β, γ ), the product in M gives an intertwiner s · t ∈
Hom(α, γ ).

These structures turn the endomorphisms of a vonNeumann algebra N into a strict
tensor category End(N ), and the homomorphisms between von Neumann algebras
N , M, . . . into a strict tensor 2-category, where the concatenation of morphisms is
the product of intertwiners: s ◦ t := s · t , the monoidal product of objects is the
composition of endomorphisms: β × α := β ◦ α, and the monoidal product of
morphisms ti : αi → βi is the product

t1 × t2 = =t1 ·α1(

(t2 β1(t2) · t1 : t1 t2

β1

α1

β2

α2

=
t1

t2

β1

α1

β2

α2

=
t1

t2
β1

α1

β2

α2

(This graphical notation, directly appealing to the underlying tensor category point
of view, will render the structure of many algebraic computations more transparent.

© The Author(s) 2015
M. Bischoff et al., Tensor Categories and Endomorphisms of von Neumann Algebras,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-14301-9_2
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6 2 Homomorphisms of von Neumann Algebras

Its basic rules are self-explaining from this example: Different shades indicate
different vonNeumann algebras, andweusually reserve the lightest shade for N , lines
are homomorphisms, boxes and similar symbols to appear later are intertwiners, the
monoidal product is horizontal juxtaposition, and the concatenation product is read
from the bottom to the top. The operator adjoint is represented byup-down reflection.)

Notice that as operators, t ×1α = t is the same operator in a different intertwiner
space, whereas 1α ×t = α(t). To enhance readability, we shall occasionally suppress
the concatenation symbol and write simply s ◦ t as the operator product st .

Because all intertwiner spaces Hom(α, β) are linear subspaces of the target von
Neumann algebra, they inherit its weak and norm topologies. In particular, End(N )

is a C* tensor category, and the self-intertwiners Hom(α, α) form a C* algebra.
Important consequences are that t∗ ◦ t ≡ t∗t is a positive operator in Hom(β, β),
and that t∗ ◦ t = 0 implies t = 0.

2.1 Endomorphisms of Infinite Factors

A von Neumann algebra N is a factor iff its centre N ′ ∩ N ≡ Hom(idN , idN ) =
C · 1N . Since idN is the monoidal unit in the tensor category, this is the same as
saying that the category End(N ) is simple.

These elementary facts can be supplemented by further structure. If u : α → β is
unitary, α and β are said to be unitarily equivalent. The unitary equivalence class of
α is called the sector [α]. An endomorphismα is irreducible iff Hom(α, α) = C·1N .

In an infinite (⇔ purely infinite, type III) von Neumann factor acting on a separa-
ble Hilbert space (which we shall henceforth assume throughout), every projection
e 
= 0 can be written as e = ss∗ where s∗s = 1, and one can always choose decom-
positions of the unit 1 = ∑

i si si
∗ such that si

∗s j = δi j . The algebra generated by
bounded quantum mechanical observables (= the algebra B(H ) of all bounded
operators) does not share this property; instead, the local algebras of quantum field
theory are generically infinite von Neumann factors.

Thanks to this property, one can define

(i) an inclusion relation for endomorphisms: β ≺ α iff there is s : β → α with
s∗s = 1β .

(ii) subobjects: if e : α → α is a projection, then there is a sub-endomorphism αs

defined by the choice of s such that ss∗ = e, s∗s = 1, and putting

αs(·) = s∗α (·)s :
αs

αs
s∗

s

α .

We refer to αs ≺ α as the range of e. We shall sometimes write αe instead, in
order to emphasize that the unitary equivalence class of αs does not depend on
the choice of s. (Categories where subobjects exist are also called “Karoubian”,
thus End(N ) is Karoubian if N is an infinite factor.)
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(iii) direct sums of endomorphisms:

α (·) := ∑
i

siαi(·)si
∗ : ∑

i
α

α
si

s∗
i

αi

is an endomorphism, αi ≺ α. Suppressing the dependence on the isometries
si , we write sloppily α � ⊕

i αi . Since the choice of the isometries si is
irrelevant for the unitary equivalence class (sector) [α], the direct sum should
be understood as a direct sum of sectors. We emphasize this by writing also

[α] =
⊕

i
[αi ].

2.2 Homomorphisms and Subfactors

All notions of the preceding presentation can be transferred to homomorphisms
ϕ : N → M where both N and M are infinite factors. Notice that intertwiners
t ∈ Hom(ϕ1, ϕ2) are elements of M .

Admitting several factors, one obtains a 2-category, whose objects are the fac-
tors, the 1-morphisms are the homomorphisms, and the 2-morphisms are their
intertwiners.

If N ⊂ M is a subfactor (i.e., both N and M are factors), then the identical map
ι : N → M , n �→ n, is a nontrivial homomorphism, that describes the embedding
of N into M .

One candefine [1,Chap. 3] adimension functionon the homomorphisms N → M
when both N and M are infinite factors, which is additive under direct sums and
multiplicative under composition. It is defined through the notion of conjugates:
α : N → M and α : M → N are said to be conjugates of each other whenever there
is a pair of intertwiners N � w : idN → αα and M � w : idM → αα satisfying the
conjugacy relations

(w∗ ×1α )◦(1α ×w) = 1α :
w∗

w

α

=

α

,

(1α ×w∗)◦(w×1α ) = 1α :
w∗

w

α

=

α

.

(2.2.1)

Being self-intertwiners of idN , resp. idM , w∗w = d · 1N and w∗w = d ′ · 1M

are positive scalars, and w, w can be normalized such that d = d ′. The dimension
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dim(α) = dim(α) is defined to be

dim(α) = dim(α) := inf
(w,w)

d (2.2.2)

where the infimum is taken over all solutions (w, w) of the conjugacy relations
Eq. (2.2.1)withd = d ′.A solution saturating the infimum is called standard solution
or standard pair. If α and β are irreducible, every solution with d = d ′ is standard,
because dimHom(id, αα) = dimHom(αα)=1. In the general case, standard solutions
always exists, and are unique up to unitary equivalence [1, 2].

(Here is a simple explicit proof: For [α] = ⊕
i ni [αi ] and [α] = ⊕

i ni [αi ] with
αi , αi irreducible, one may choose standard pairs (wi , wi ) for αi , αi and ortho-
normal bases si

a ∈ Hom(αi , α), si
b ∈ Hom(αi , α). Then the most general ele-

ment of Hom(id, α, α) is of the form w = ∑
i
∑

ab ci
abα(si

a)si
bwi , and similarly

w = ∑
i
∑

ab c′i
ab α(si

b)s
i
awi . These solve the conjugacy relations iff the coefficient

matrices satisfy c′i = (ci )−1∗ (in particular, the multiplicities ni = ni must be the
same), and one has d = ∑

i dim(αi )Tr(ci )∗ci , d ′ = ∑
i dim(αi )Tr(ci )−1∗(ci )−1.

The variational problem d[c]d ′[c] != min with d = d ′ is solved by any family of
unitary matrices ci .)

The conjugate of an endomorphism is unique up to unitary equivalence. Endo-
morphisms which do not have conjugates can be assigned the dimension ∞.

The dimension is always ≥1, and a homomorphism α is an isomorphism iff
dim(α) = 1. In this case, α−1 is a conjugate of α. More generally, the dimension is
the square root of the (minimal) index [3, 4]:

dim(α)2 = [M : α(N )].

In particular, for a subfactor N ⊂ M , dim(ι) is the square root of the index
[M : N ] [5]. In this case, ιι ∈ End(M) is called the canonical endomorphism, and
ιι ∈ End(N ) the dual canonical endomorphism.

Lemma 2.1 ([1]) (i) Let (w1, w1) and (w2, w2) be standard pairs for (α1, α1) and
for (α2, α2), respectively. Then

w = α1(w2)w1, w = α2(w1)w2

is a standard pair for (α2α1, α1α2).

(ii) Let (wi , wi ) be standard pairs for (αi , αi ), and [α] = ⊕
i [αi ], [α] = ⊕

i [αi ].
Choose orthonormal isometries si ∈ Hom(αi , α) and si ∈ Hom(αi , α). Then

w =
∑

i

(si × si ) ◦ wi , w =
∑

i

(si × si ) ◦ wi

is a standard pair for (α, α).
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Corollary 2.2 ([1]) The conjugate respects direct sums, and the dimension is
additive and multiplicative:

dim(α2 ◦ α1) = dim(α2) · dim(α1), dim(α) =
∑

i

dim(αi ) if [α] =
⊕

i

[αi ].

It should, of course, be emphasized that all the notions of direct sums, subobjects,
conjugates and dimension respect the unitary equivalence relation.

Definition 2.3 The left and right traces are the faithful positive maps

LTrα : Hom(αβ ,αβ ′) → Hom(β ,β ′),

t �→ (w∗ ×1β )◦(1α × t)◦(w×1β )
t

(2.2.3)

RTrα : Hom(βα ,β ′α ) → Hom(β ,β ′),

t �→ (1β ×w∗)◦(t ×1α )◦(1β ×w)
t

(2.2.4)

for the conjugate homomorphisms α, α.

Proposition 2.4 ([1, Lemma 3.7]) Let N and M be infinite factors, and let the traces
LTrα and RTrα be defined w.r.t. a standard solution (w, w) of the conjugacy relations
for α : N → M and α : M → N.

The traces do not depend on the choice of the conjugate and of the standard
solution, and satisfy the trace property

LTrα (s×1β ′)◦ t = LTrα ′ t ◦(s×1β ) t

s
= t

s
,

RTrα (1β ′ × s)◦ t = RTrα ′ t ◦(1β × s) t

s
= t

s
.

(2.2.5)

for s ∈ Hom(α′, α) and t ∈ Hom(αβ, α′β ′) resp. t ∈ Hom(βα, β ′α′). For β =
β ′ = id, both traces coincide and are denoted Trα : Hom(α, α) → C. In particular,

Trα 1α = dim(α). (2.2.6)

The latter property can in fact be adopted as an alternative definition for standard-
ness, since one also has

Proposition 2.5 ([1, Lemma 3.9]) Let N and M be infinite factors, and let the traces
LTrα andRTrα be defined as in Definition 2.3w.r.t. any (i.e., not necessarily standard)
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solution (w, w) of the conjugacy relations for α : N → M and α : M → N. Then
LTrα and RTrα coincide if and only if (w, w) is standard.

If (w, w) is not standard, the maps LTrα and RTrα on Hom(α, α) → C may
happen to be traces, without being equal. E.g., for reducible α every n ∈ Hom(α, α)

gives rise to a deformation w′ := (1α × n) ◦ w, w′ := (n∗−1 × 1α) ◦ w of a standard
pair (w, w), which still solves the conjugacy relations. Then LTr′α and RTr′α defined
with (w′, w′) are traces if and only if n∗n is central in Hom(α, α), while (w′, w′) is
standard iff n∗n = 1α . One has the following characterization [1, Lemma 2.3]:

Proposition 2.6 Let (w, w) and (w′, w′) be solutions of the conjugacy relations for
α, α and for α′, α′, not necessarily standard. Define LTrα as in Definition 2.3 w.r.t.
these pairs. The following are equivalent:

(i) For t ∈ Hom(α, α′) and s ∈ Hom(α′, α), one has LTrα(st) = LTrα′(ts).
(ii) For t ∈ Hom(α, α′), one has

t
w′∗

w
= t

w

w′∗
∈ Hom(α ,α ′).

The same is true, replacing LTr by RTr in (i), or replacing t by s ∈ Hom(α′, α)

in (ii).

In particular, (ii) holds if (w, w) and (w′, w′) are standard.

Proof “(i)⇒ (ii)” is the statement of [1, Lemma 2.3c], although the authors actually
prove also the converse. The proof proceeds by noting that

LTrα (st) =
s
t =

st , RTrα ′(ts) = t
s =

st .

Now, (ii) trivially implies equality of the two expressions, hence (i). Conversely, (i)
implies (ii) because (1α′ × s) ◦ w′ is an arbitrary element of Hom(id, αα′).

The variants of the statement follow by obvious modifications.
Finally, if (w, w) and (w′, w′) are standard, then Proposition 2.4 implies (i),

hence (ii). �

For a single infinite von Neumann factor N , End0(N ) is the full subcategory of
End(N ), whose objects are the endomorphisms of finite dimension. This is a “rigid”
category since left and right duals exist for all objects (namely, the conjugate).

All intertwiner spaces Hom(α, β) in End0(N ) are finite-dimensional, and
Hom(α, α) are isomorphicwith a direct sumofmatrix algebras

⊕
λ MatC(nλ), where

λ are the equivalence classes of irreducible sub-endomorphisms of α and nλ their
multiplicities in α.
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Whenever α has finite dimension (and hence a conjugate α exists), one can
use a standard solution (w, w) to define linear bijections (left and right Frobenius
conjugations) between the spaces Hom(γ2, αγ1) and Hom(αγ2, γ1), and between
Hom(γ2, γ1α) and Hom(γ2α, γ1),

α γ1

γ2
�→

α

γ1

γ2

w∗

,
α γ2

γ1
�→

α

γ2

γ1

w∗
,

γ1 α

γ2
�→

γ1

αγ2

w∗

,
γ2 α

γ1
�→

γ2

αγ1

w∗
.

These maps along with the ensuing equalities of the dimensions of the intertwiner
spaces,

dimHom(γ2, αγ1) = dimHom(αγ2, γ1),

dimHom(γ2, γ1α) = dimHom(γ2α, γ1),

are usually referred to as Frobenius reciprocities.

2.3 Non-factorial Extensions

Wewant to extend our setup to N being a factor, while M is admitted to be a properly
infinite von Neumann algebra with finite centre. For a related analysis, see [6, 7].

M is a direct sum of finitely many infinite factors

M =
⊕

i

Mi .

The units of Mi are the minimal central projections ei of M . A homomorphism
ϕ : N → M can then be written as

ϕ(n) =
⊕

i

ϕi (n).

Unlike the direct sum of sectors involving isometric intertwiners, cf. Sect. 2.1, this
is the true direct sum of homomorphisms ϕi : N → Mi , which is a homomorphism
N → ⊕

i Mi .
Notice that the central projections ei ∈ M are self-intertwiners of ϕ, but ei can

not be split as ss∗ with isometries s ∈ M . Therefore, the direct sum of sectors [ϕi ]
as in Sect. 2.1 is not defined.
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Proposition 2.7 If all ϕi : N → Mi have conjugates ϕi , then a conjugate
homomorphism ϕ : M → N of ϕ can be defined as

ϕ(m) =
∑

i

siϕi (mi )s
∗
i

where m = ⊕
i mi , mi ∈ Mi , and si are isometries in N satisfying s∗

i s j = δi j and∑
i si s∗

i = 1N . The dimension of ϕ is

dim(ϕ) = ( ∑

i

dim(ϕi )
2) 1

2 . (2.3.1)

The dimension dim(ϕ) is defined by the same infimum as Eq. (2.2.2), taken over
all solutions (w, w) of the conjugacy relations such thatw∗w = d ·1N ,w∗w = d ·1M .
Notice that it is no longer additive, as in the factor case.

Proof One easily sees that the solutions of the conjugacy relations are parameterized
by

w =
∑

i

λi · si wi , w =
⊕

i

λ
−1
i · ϕi (si )wi ,

with parameters λi ∈ C. Here, (wi , wi ) are solutions for (ϕ, ϕ) satisfying w∗
i wi =

di · 1N and w∗
i wi = di · 1Mi . Imposing w∗w = d · 1N and w∗w = d · 1M fixes the

numerical coefficients by |λi |2 = d/di and d2 = ∑
i d2

i . This quantity is minimized
if all di are minimal, i.e., all (wi , wi ) are standard, and di = dim(ϕi ). This completes
the proof. �
Remark 2.8 For standard pairs (w, w) of multiples of isometries satisfying the min-
imality condition, the tracial properties (Propositions 2.4–2.6) fail in general, when
M (or N ) is not a factor. The authors of [7] propose a different “normalization con-
dition” (Eq. (4.3) in [7]) for solutions to the conjugacy relations, with w∗w ∈ N and
w∗w ∈ M central but in general not multiples of 1. In the case of N and M both
being factors, their condition amounts to the equality of the left and right traces,
hence is equivalent to standardness by Proposition 2.5, but it distinguishes different
normalizations otherwise. In the case at hand, it would rather fix |λi |2 = 1, so that
w∗w is no longer a multiple of an isometry.
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Chapter 3
Frobenius Algebras, Q-Systems and Modules

Abstract We introduce the notion ofQ-systems as Frobenius algebras in a C* tensor
category, enjoying a standardness property. Q-systems in the category of endomor-
phisms of an infinite factor N completely characterize extensions N ⊂ M . Mod-
ules and bimodules of Q-systems are equivalent to homomorphisms N → M resp.
M1 → M2.

We collect here some relevant results about the (simple, strict, Karoubian) C* tensor
category End0(N ) for an infinite von Neumann factor N . In fact, every full sub-
category of End0(N ) can be canonically completed so as to become a simple strict
Karoubian C* tensor category with direct sums

C ⊂ End0(N ).

This completion is precisely given by the constructions exposed in Sect. 2.1. Without
further specification, throughout this work C ⊂ End0(N ) will denote a subcategory
with the stated properties.

In the motivating application to QFT, as exposed in Chap. 5.1.2, N will be the von
Neumann algebra A (O) of observables localized in some region O of spacetime,
which is known to be an infinite factor under very general assumptions. The assign-
ment O �→ A (O) is called the local net of observables, and a distinguished class
of positive-energy representations can be described by DHR endomorphisms [1]
of this net, which form a C* tensor category C DHR(A ) (strict, simple, with sub-
objects, direct sums and conjugates). The DHR endomorphisms localized in O ,
when restricted to A (O), are in fact endomorphisms of A (O), and they have the
same intertwiners as endomorphisms of the net and as elements of End(A (O)) [2].
Therefore, they are the objects of a C* tensor category C DHR(A )|O , which is a full
subcategory both of C DHR(A ) and of End(N ), N = A (O).

In other words, if ρ is localized in O , then one may safely drop the distinction
between ρ ∈ C DHR(A ) and ρ ∈ C DHR(A )|O ⊂ End(N ).

Since dim(ρ) was defined in terms of intertwiners, one may assign the same
dimension toρ as aDHRendomorphism, and the sameproperties (additivity andmul-
tiplicativity) remain valid. This definition coincides [3] with the “statistical dimen-
sion” originally defined in terms of the statistics operators [1, 4].
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It is physically most important that C DHR(A ) is in fact a braided category, and
in certain cases even modular. However, in our exposition, a braiding of the category
C is not required before Sect. 4.5, and the braided category is not required to be
modular before Sect. 4.11.

If the category C ⊂ End0(N ) has only finitely many equivalence classes of
irreducible objects (sectors), then it is called rational. In this case, the structures
discussed below admit only finitely many realizations, with complete classification
available in many models. The global dimension of a rational tensor category is

dim(C ) :=
∑

[ρ] irr
dim(ρ)2, (3.0.1)

where the sum extends over the irreducible sectors of C .

Example 3.1 (The Ising tensor category) In order to illustrate the “rigidity” of
a C* tensor category (and as a reference for further examples), we introduce
the Ising category, which is one of two tensor categories with three self-
conjugate equivalence classes [id], [τ], [σ] of irreducible objects with “fusion
rules” [τ2] = [id], [τ ◦ σ] = [σ ◦ τ] = [σ], [σ2] = [id] ⊕ [τ]. It arises in QFT,
e.g., as the category of DHR endomorphisms Chap.5 of the chiral Isingmodel.

The tensor category is specified by a choice of a representative in each class,
an isometric intertwiner in each intertwiner space according to the fusion rules,
and the action of the representative endomorphisms on the intertwiners. For all
unitarily equivalent endomorphisms, the intertwiners are canonically related.
(To specify a category in this manner, is sometimes refereed to as the “Cuntz
algebra approach”.)

Because τ ◦ σ is unitarily equivalent to σ, one can choose τ in its equivalence
class such that τ ◦ σ = σ. Because τ2 is unitarily equivalent to the identity id
and τ2 ◦ σ = σ, it follows from irreducibility of σ that τ2 = id. Therefore,
Hom(σ, τ σ) = Hom(id, τ2) = C · 1. The remaining nontrivial intertwiner
spaces are spanned by a pair of orthogonal isometries r ∈ Hom(id, σ2) and t ∈
Hom(τ, σ2), satisfying rr∗ + t t∗ = 1, and u ∈ Hom(σ, σ τ) = Hom(σ, σ τ)×
1σ = Hom(σ2, σ2). Because u2 ∈ Hom(σ, σ τ2) = Hom(σ, σ) = C · 1, one
may choose u = rr∗ − t t∗.

Because τ(r) ∈ Hom(τ, σ2), one may choose t = τ(r), thus fixing the
action of τ:

τ(r) = t, τ(t) = r, τ(u) = −u.

σ(r) ∈ Hom(σ, σ3) and σ(τ) ∈ Hom(σ τ, σ3) are linear combinations of r
and t , resp. ru and tu, invariant under the action of τ. Imposing σ2(a) =
rar∗ + t τ(a)t∗ for a = r and a = t suffices to fix all coefficients up to an
overall sign. For the Ising category one has

http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_5
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σ(r) = 2− 1
2 (r + t), σ(t) = 2− 1

2 (r − t)u.

(The category of DHR endomorphisms of the su(2) current algebra at level 2

is specified by the opposite sign: σ(r) = −2− 1
2 (r + t), σ(t) = −2− 1

2 (r − t)u.)
The dimensions are dim(τ) = 1, dim(σ) = √

2, and the global dimension
is dim(C ) = 4.

3.1 C* Frobenius Algebras

A Frobenius algebra A = (θ, w, x, ŵ, x̂) in a C* tensor category (satisfying the
unit, counit, associativity, coassociativity and Frobenius relations [5]) is called C*
Frobenius algebra if the dual morphisms are given by the adjoint operators: ŵ = w∗
and x̂ = x∗. By the latter property, the unit and counit relations become equivalent,
and so do the associativity and coassociativity relations.

More precisely, θ is an object of the C* category, and w ∈ Hom(id, θ) and
x ∈ Hom(θ, θ2) are morphisms satisfying the relations

unit property: (w∗ ×1θ )◦x = (1θ ×w∗)◦x = 1θ

w∗

x
= =

(3.1.1)

associativity: (x×1θ )◦x = (1θ × x)◦x

x
x

= =:
x(2)

;

(3.1.2)

Frobenius property: (1θ × x∗)◦(x×1θ ) = xx∗ = (x∗ ×1θ )◦(1θ × x)

= = .

(3.1.3)

In view of Eq. (3.1.2), we also write x (2) for (x × 1θ ) ◦ x = (1θ × x) ◦ x .
Clearly, w∗w ∈ Hom(id, id) = C is a multiple of 1.

Definition 3.2 If in addition, also x∗x ∈ Hom(θ, θ) is a multiple of 1θ , the C*
Frobenius algebra is called special. If moreover,

w∗w = dA · 1id and x∗x = dA · 1θ (3.1.4)
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with dA = √
dim(θ), we call the C* Frobenius algebra standard. The number

dA ≥ 1 is called the dimension of A.

If α : N → M and α : M → N are conjugate homomorphisms between two
factors, and (w ∈ Hom(idN , αα), w ∈ Hom(idM , αα)) is a solution of the conjugacy
relations, then

(θ = αα, w, x = α(w))

is a C* Frobenius algebra. It is automatically special because w∗w ∈ Hom(idN , idN )

and w∗w ∈ Hom(idM , idM ) are multiples of 1. (θ, w, x) is standard if and only if
the pair (w, w) is standard. Therefore, standardness can not always be enforced by a
scalar rescaling of a special C* Frobenius algebra.

Our aim is to prove Theorem 3.11 which states that every standard C* Frobenius
algebra is in fact of this type.

Let us first comment on the independence of the above axioms.

Lemma 3.3 ([6]) A Frobenius algebra is special, i.e., x∗x = λ · 1θ , if and only
if x∗x ◦ w = λ · w is a multiple of w. In particular, every Frobenius algebra with
Hom(id, θ) one-dimensional is special.

Proof x∗x = λ · 1θ trivially implies x∗x ◦ w = λ · w. For the converse conclusion:

(3.1.1)
=

(3.1.3)
=

(3.1.2)
= = λ · (3.1.1)

= λ · .

Standardness, however, is not automatic, as explained before.

Definition 3.4 For a Frobenius algebra (θ, w, x) in a simple C* tensor category,
Hom0(θ, θ) is the subspace Hom(θ, θ) of elements satisfying

(1θ × t)◦x = x◦ t = (t ×1θ )◦x : = = .

(3.1.5)

We shall later identify this space with the self-morphisms of the Frobenius algebra
as a bimodule of itself (Sect. 3.6), and exhibit the importance of this space for the
centre of the von Neumann algebra extension N ⊂ M associated with a Frobenius
algebra (Sect. 3.2).

Lemma 3.5 If (θ, w, x) is a Frobenius algebra in a simple C* tensor category, then
n := x∗x is a strictly positive element of Hom0(θ, θ).

Proof If w∗w = d ·1id, then d−1 · ww∗ is a projection, hence 1θ ≥ d−1 · ww∗, hence

x∗x ≥ d−1 · x∗ ◦ (1 × ww∗) ◦ x
(3.1.1)= d−1 · 1θ (3.1.6)
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is strictly positive. Equation (3.1.5) follows by associativity and the Frobenius
property:

(3.1.2)
=

(3.1.3)
=

(3.1.3)
=

(3.1.2)
= .

�

Corollary 3.6 The equivalent Frobenius algebra (θ, ŵ, x̂) with

ŵ := n
1
2 ◦ w, x̂ := (n− 1

2 × n− 1
2 ) ◦ x ◦ n

1
2

is special.

Proof Replacing w, x by ŵ, x̂ clearly preserves the unit property, associativity, and
Frobenius property, and ŵ∗ŵ ∈ Hom(id, id) = C · 1. Specialness follows because
along with n ∈ Hom0(θ, θ), also n−1 ∈ Hom0(θ, θ), hence:

x̂∗ x̂ = n
1
2 ◦ x∗ ◦ (n−1 × n−1) ◦ x ◦ n

1
2
(3.1.5)= n− 1

2 ◦ x∗x ◦ n− 1
2

= n− 1
2 ◦ n ◦ n− 1

2 = 1θ .

�

In C* tensor categories, also the Frobenius property is not independent from
the other relations. We shall now prove that Eq. (3.1.3) follows from Eqs. (3.1.1)
and (3.1.2) along with the special property x∗x = λ · 1. Notice that specialness is a
relation in Hom(θ, θ), and is thus “simpler” than the Frobenius relation Eq. (3.1.3)
in Hom(θ2, θ2).

Lemma 3.7 ([7]) In a C* tensor category, the Frobenius property is a consequence
of unit property, associativity, and specialness.

Proof Let X := (1θ × x∗) ◦ (x × 1θ ) − xx∗ ∈ Hom(θ2, θ2). Then, if x∗x = d · 1,
one has

X∗ X = (x∗ × 1θ ) ◦ (1θ × xx∗) ◦ (x × 1θ ) − d · xx∗ ∈ Hom(θ2, θ2),

where for the two mixed terms the associativity relation has been used. We define
the map δ : Hom(θ2, θ2) → Hom(θ2, θ2) given by

δ (T ) = (x∗ ×1θ )◦(1θ ×T )◦(x×1θ ) : T

δ is positive and faithful: Namely if T = Y ∗Y is positive, then δ(T ) = Z∗Z with
Z = (1θ × Y ) ◦ (x × 1θ ), hence δ(Y ∗Y ) is positive; and δ(Y ∗Y ) = 0 implies
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Z = 0 from which it follows that Y = 0 by the unit property Eq. (3.1.1). We apply
δ to T = X∗ X . Again, using the associativity relation, one finds δ(X∗ X) = 0.
Hence X = 0. �

We make a little digression to report also the following observation: A triple
satisfying only the unit property and associativity can be “deformed” in such a
way that it is in addition special. Then the Frobenius property also follows by
Lemma 3.7, hence the deformed triple is a C* Frobenius algebra. There enters in the
proof, however, a certain “regularity condition” which we do not quite know how to
control.

The admitted deformations by any invertible element n ∈ Hom(θ, θ) are
defined via

w �→ n∗−1 ◦ w, x �→ (n × n) ◦ x ◦ n−1,

obviously preserving Eqs. (3.1.1) and (3.1.2). The deformed triple is standard if

x∗ ◦ (n∗n × n∗n) ◦ x = n∗n.

We want to solve this eqution by iterating the following recursion:

mk+1 := x∗ ◦ (mk × mk) ◦ x,

starting with m0 = 1, i.e., m1 = x∗x . Clearly, each mk is a positive element of

Hom(θ, θ). It is even strictly positive, because (θ, wk+1 := m
− 1

2
k ◦ wk, xk+1 :=

(m
1
2
k × m

1
2
k ) ◦ vk ◦ m

− 1
2

k ) is a sequence of triples satisfying Eqs. (3.1.1) and (3.1.2),
and x∗

k xk = mk is strictly positive by Eq. (3.1.6). The question is, of course, whether
(mk)k converges.

Now Hom(θ, θ) equipped with the product m1 ∗ m2 = x∗ ◦ (m1 × m2) ◦ x is
an algebra. The algebra has the unit ww∗, and is associative by Eq. (3.1.2). It is
finite-dimensional, because Hom(θ, θ) is finite-dimensional. Hence it is isomorphic
to some matrix algebra. W.r.t. this product, m0 = 1θ , m1 = 1θ ∗ 1θ , and mk = 1∗2k

θ .
Because mk are strictly positive, they cannot be zero, hence 1θ is not nilpotent w.r.t.
the ∗-product. Hence it has some largest eigenvalue, and hence some multiple μ0

of 1θ has a largest eigenvalue 1, so that μ∗2k

0 converges to an idempotent m w.r.t.
the ∗-product. This element therefore solves x∗ ◦ (m × m) ◦ x = m. If m is strictly

positive, then deforming the original triple (θ, w, x)with n = m
1
2 , would give rise to

a special triple, which then satisfies the Frobenius property by Lemma 3.7. However,
we only know that m is positive as a limit of strictly positive elements of Hom(θ, θ).
The “regularity condition” mentioned above is the absence of a kernel of the limit.
(Actually, in order to solve the equation, one may start from any initial element μ0
(not necessarily a multiple of 1θ ), but in the most general case, one will have even
less control over the invertibility of the limit.)

After this digression, we return to the main line of the chapter.
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3.2 Q-Systems and Extensions

Definition 3.8 A Q-system is a standard Frobenius algebra A = (θ, w, x) in a
simple strict C* tensor category C . Its dimension is dA = √

dim(θ).

Even in the irreducible case, where the canonical endomorphism θ fixes the inter-
twiner w ∈ Hom(id, θ) up to a complex phase, there may be finitely many inequiv-
alent x ∈ Hom(θ, θ2) [8].

From now on, we reserve the graphical representation

w= , x = , r := x◦w=

for the intertwiners associated with a Q-system, i.e., w and x satisfy Eqs. (3.1.1)–
(3.1.4), and (r, r) satisfies Eq. (2.2.1). We shall freely use these properties in the
sequel.

For the irreducible case, and C = End0(N ), this definition first appeared in [9] as
a characterization of subfactors N ⊂ M . In this section,we review and generalize this
work to the reducible case. The correspondence between Q-systems and extensions
of a factor (= inclusions into a (possibly non-factorial) von Neumann algebra) is
the main reason for the study of Q-systems. In quantum field theory, Q-systems in
C = C DHR(A ) correspond to extensions A ⊂ B of a given QFT. Non-factorial
extensions naturally arise, e.g., in the “universal construction” of boundary conditions
discussed in [10], cf. Sect. 5.4.

An immediate consequence of standardness is the following:

Corollary 3.9 Let A = (θ, w, x) be a Q-system, r = x ◦ w. Then (r, r = r)

is a standard pair for (θ, θ = θ). The left and right Frobenius conjugations
Hom(θ, θ2) → Hom(θ2, θ), y �→ (r∗×1θ ) ◦ (1θ × y) and y �→ (1θ ×r∗) ◦ (y×1θ )

take x to x∗.

Proof The conjugacy relations Eq. (2.2.1) follow by applying the definition

r
= in several ways to Eqs. (3.1.3), and (3.1.1). (r, r = r) is a stan-

dard pair because r∗r = w∗x∗xw = dAw∗w = d2
A = dim(θ). �

Remark 3.10 If A = (θ, w, x) is only special, w∗w = dw · 1, x∗x = dx · 1θ ,
then (r, r) still solves the conjugacy relations by the Frobenius and unit properties.
Therefore, r∗r ≥ dim(θ) by the definition of the dimension as an infimum. Hence,
dwdx ≥ dim(θ) with equality if and only if A is standard.

Let N ⊂ M be an infinite subfactor of finite index, and ι : N → M the embedding
homomorphism. This gives rise to a Q-system in the C* tensor category End0(N ) as
follows. Because the index [M : N ] is finite, the dimension dim(ι) is finite, hence
there is a conjugate homomorphism ι : M → N . Let

w ∈ Hom(idN , ιι) ⊂ N , v ∈ Hom(idM , ιι) ⊂ M

http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_5
http://dx.doi.org/10.1007/978-3-319-14301-9_2
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be a standard solution of the conjugacy relations Eq. (2.2.1). Then the triple

A = (θ, w, x), θ := ιι ∈ End0(N ), w ∈ N , x := ι(v) ∈ N (3.2.1)

is a Q-system in End0(N ) of dimension dA = dim(ι). Graphically “resolving” θ =
ι ◦ ι, the intertwiners w and x = ι(v) are displayed as

w

θ ≡ ι ι
, x ≡ v

,

so that the unit, associativity and Frobenius properties are trivially satisfied:

= = ,

= = ,

= = .

Notice that the projections d−1
A · ww∗ and d−1

A · xx∗ have the same properties as
the Jones projections in the type II case [11], satisfying the Temperley-Lieb algebra
and starting the “Jones tunnel”. The Jones “planar algebra” [12] associated with a
subfactor is the 2-category with two objects N and M , whose 1-morphisms are sub-
homomorphisms of alternating products of ι and ι, namely ρ ≺ (ιι)n ∈ End0(N )

for any n ∈ N, ϕ ≺ ι(ιι)n ∈ Hom(N , M), etc., and whose 2-morphisms are their
intertwiners.

If M = ⊕
i Mi is not a factor, and ι(n) = ⊕

i ιi (n) as in Sect. 2.3, then the
Q-system defined by Eq. (3.2.1) can be computed with Proposition2.7:

θ(n) =
∑

i

siθi (n)s∗
i , w =

∑

i

√
d

di
· si ◦ wi , x =

∑

i

√
di

d
· (si × si ) ◦ xi ◦ s∗

i

(3.2.2)
where d = √

dim(θ) = √∑
i dim(θi ), in compliance with Eq. (2.3.1).

The projections pi = si s∗
i ∈ Hom(θ, θ) are elements of Hom0(θ, θ), cf.

Definition 3.4, i.e., they satisfy Eq. (3.1.5).

The central result of this section is the converse to the construction of a Q-system
from an inclusion map ι : N → M : namely, the larger von Neumann algebra M can
be reconstructed from N and the Q-system.

http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_2
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Theorem 3.11 ([9]) Let N be an infinite factor, and A = (θ, w, x) be a
Q-system in End0(N ). Then there is a von Neumann algebra M and a homo-
morphism ι : N → M with conjugate ι : M → N such that θ = ιι, and
a standard solution (w, v) of the conjugacy relations Eq. (2.2.1) such that
x = ι(v). The dimension dA equals the dimension dim(ι) = √

dim(θ).

Proof The algebra M is reconstructed from N and the Q-system by adjoining to
N one new element, called v, whose algebraic relations are the same as those of
the operator v ≡ v × 1ι ∈ Hom(ι, ιιι) = Hom(ι, θι) if we knew that the Q-system
comes froma conjugate solution (w, v) as before.Namely, v satisfies the commutation
relations:

vι(n) = ιθ(n)v

with the elements n ∈ N (where ι is the embedding of N into the larger algebra M),
i.e., v ∈ Hom(ι, ιθ), its square is

v2 := ι(x)v : v

v ι
=

ι θ θ
,

and its adjoint is
v∗ := ι(w∗x∗)v.

It follows from these relations that every element of M can be written in the form
ι(n)v for some n ∈ N . The product thus defined is associative by virtue of Eq. (3.1.2),
and it has a unit 1M = ι(w∗)v by virtue of Eq. (3.1.1). The definition of v∗ implies
the adjoint of a general element of M , namely (ι(n)v)∗ = v∗ι(n∗) = ι(w∗x∗θ(n∗))v.
This turns M into a *-algebra, because the Frobenius property Eq. (3.1.3) ensures
that the adjoint is an anti-multiplicative involution.

We have now constructed M as a *-algebra. To see that it is in fact a von Neumann
algebra, one has to induce theweak topology from N to M with the help of the faithful
conditional expectation μ : M → N given by

μ(m) = d−1
A · w∗ι(m)w, μ(vv∗) = d−1

A · 1N .

Here,
ι(ι(n)v) := θ(n)x

defines a conjugate homomorphism ι : M → N , with (w, v) as a standard solution
of the conjugacy relations. M is already weakly closed with respect to the induced
topology because it is finitely generated from N . �
Remark 3.12 It may be convenient to consider, rather than the single generator v of
the extension, the system of generators ψρ = ι(w∗

ρ)v (charged intertwiners), where

http://dx.doi.org/10.1007/978-3-319-14301-9_2
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ρ ≺ θ is an irreducible sub-endomorphism, and wρ ∈ Hom(ρ, θ). By definition,
ψρ ∈ Hom(ι, ι ◦ ρ) which is equivalent to the commutation relations (suppressing
the embedding map ι)

ψρn = ρ(n)ψρ (n ∈ N ). (3.2.3)

Every element of M has an expansion
∑

nρψρ into a basis of charged intertwiners
with coefficients in N . The Q-system controls the product and adjoint of charged
intertwiners.

In the sequel, we shall always use Q-systems to characterize extensions N ⊂ M
of a given factor N . In particular, all properties of the embedding are encoded in the
Q-system, see also Chap.4.

Lemma 3.13 For ι : N → M, the following are equivalent:

(i) The extension is irreducible: ι(N )′ ∩ M = C · 1M ;
(ii) ι : N → M is irreducible: Hom(ι, ι) = C · 1M ;
(iii) dimHom(idN , ῑι) = 1.

Accordingly, we call a Q-system irreducible iff dimHom(idN , θ) = 1.

Example 3.14 (Q-systems of the Ising category) The Ising category (cf.
Example 3.1) has two irreducible Q-systems: (id, 1, 1) with M = N , and

(θ = σ 2, w = 2
1
4 r, x = 2

1
4 σ(r) = 2− 1

4 (r + t)). In the latter case, the
extension is M = ι(N ) ∨ ψ , where ψ = 2

1
4 ι(t∗)v satisfies the relations

ψι(n) = ι(τ(n))ψ , ψ∗ = ψ , ψ2 = 1. M has an automorphism (fixing N , =
gauge transformation) α : ψ �→ −ψ . The conjugate ι in the latter case takes
ι(n) to θ(n) = σ 2(n) and ψ to σ 2(t∗)(r + t) = r t∗ + tr∗.

For an irreducible Q-system, M is automatically a factor, because M ′ ∩ M ⊂
ι(N )′ ∩ M . However, when Hom(idN , θ) is more than one-dimensional, then M
may have a nontrivial centre, as characterized by (ii) of the following Lemma.

Definition 3.15 We call the Q-system simple,1 if the von Neumann algebra M in
Theorem 3.11 is a factor.

We shall see the equivalence of this definitionwith the usual one in Corollary 3.40.
In the sequel, we give various characterizations of the relative commutant N ′ ∩ M

and of the centre of M .

Lemma 3.16 (i) The relative commutant N ′ ∩ M is given by the elements ι(q)v,
q ∈ Hom(θ, idN ).

1 The term factorial might be more appropriate in this context. “Simple”, however, is more in line
with standard category terminology, cf. Corollary 3.40.

http://dx.doi.org/10.1007/978-3-319-14301-9_4
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(ii) ι(q)v is idempotent iff =
q

(q×q)◦x= q: , and it is selfadjoint

iff q∗ = (1θ ×q)◦x◦w: q
= q .

(iii) The centre of M is given by the elements ι(q)v, where q belongs to the subspace
of Hom(θ, idN ) of elements satisfying

(q×1θ )◦x = (1θ ×q)◦x :
q

=
q

(3.2.4)

In particular, the central projections are given by ι(q)v where q ∈ Hom(θ, idN )

satisfies all the relations in (ii) and (iii).

Proof Weuse the uniqueness of the representationm = ι(n)v for all three statements.
Thus we write c = ι(q)v and characterize the properties of c in terms of q:

(i) For c ∈ ι(N )′ ∩ M , the commutation relation cι(n) = ι(n)c reads ι(qθ(n))v =
ι(nq)v. This is equivalent to qθ(n) = nq.

(ii) Immediate from (ι(q)v)2 = ι(qθ(q)x)v and (ι(q)v)∗ = ι(w∗x∗θ(q∗))v.
(iii) The commutation relation cv = vc for c ∈ M ′ ∩ M reads ι(qx)v = ι(θ(q)x)v,

hence qx = θ(q)x . �

Lemma 3.17 (i) The linear maps Hom(θ, idN ) → Hom(θ, θ),
q �→ q

,

and Hom(θ, θ) → Hom(θ, idN ), t �→ t define a bijection between

Hom(θ, idN ) and the subspace of Hom(θ, θ) of elements satisfying the first of
Eq. (3.1.5):

= .

(3.2.5)

(ii) q ∈ Hom(θ, idN ) satisfies Eq. (3.2.4) iff t ∈ Hom(θ, θ) (its image under the
bijection in (i)) satisfies also

= ,

(3.2.6)

i.e., iff t ∈ Hom0(θ, θ).

Proof (i) θ(q)x satisfies Eq. (3.2.5): By associativity = .
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The two maps invert each other:

�→ �→ = ,

and

�→ �→ (3.2.5)
= = .

(ii) “If”: :=
(3.2.6)
= = =: by the unit property.

“Only if”: := =
(3.2.4)
= =: by asso-

ciativity. �
Thus, the relative commutant N ′ ∩ M and the centre M ′ ∩ M are equivalently

characterized by certain elements of Hom(θ, idN ) or of Hom(θ, θ). In particular, the
space Hom0(θ, θ), Definition 3.4, is one way to characterize the centre of M . We
shall come back to this in Sects. 4.2 and 4.3.

Remark 3.18 The standardness property of the Q-system is not used in the construc-
tion of the algebra M in the proof of Theorem 3.11, and neither the (weaker) special-
ness property that x∗x is amultiple of 1θ . These properties are only required to ensure
that v∗v is a multiple of 1M , namely x∗x = ι(v∗v). Because M ′ ∩ M = Hom(ιι, ιι),
v∗v is always central in M , hence specialness is automatically satisfied if M is a
factor.

3.3 The Canonical Q-System

Let j : N → j (N ) be an antilinear isomorphism of factors. E.g., j : n �→ n∗ is
an antilinear isomorphism of N with j (N ) = N opp (the algebra with the opposite
product), or a Tomita conjugation j = AdJ is an antilinear isomorphism of N with
j (N ) = N ′. For C ⊂ End0(N ), let j (C ) the category with objects ρ j ≡ j ◦ρ ◦ j−1

(ρ ∈ C ) and with intertwiners j (t).
We denote by C1 �C2 (the Deligne product) the completion of the tensor product

of categories C1 ⊗ C2 by direct sums.

Proposition 3.19 ([13]) If C has only finitely many inequivalent irreducible
objects ρ, then there is a canonical irreducible Q-system R in C � j (C ) with

[Θcan] =
⊕

ρ

[ρ] ⊗ [ρ j ],

http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
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where the sum runs over the equivalence classes of irreducible objects of C .
Its dimension is given by d2

R = dim(Θcan) = dim(C ). Choosing isometries
Tρ ∈ Hom(ρ ⊗ ρ j ,Θcan), the Q-system is given by

W = d
1
2

R ·Tid, X = d
− 1

2
R

∑

ρ,σ,τ

(dρdσ

dτ

) 1
2 ·(Tρ ×Tσ) ◦

( ∑

a

ta ⊗ j (ta)
)

◦ T ∗
τ ,

where the first sum extends over representatives of all sectors, and the inner
sums over a extend over orthonormal bases of isometries ta ∈ Hom(τ, ρ σ).

Because of the anti-linearity of j , the sums over a do not depend on the choice of
orthonormal bases ta . A different choice of Tρ gives a unitarily equivalent Q-system.

One easily proves (cf. Proposition2.6)

Lemma 3.20 ([7]) Choosing, for every ρ ∈ C , a conjugate ρ ∈ C and a standard
pair (w, w), the assignment

ρ �→ρ , t �→ j
(

t∗
w∗

ρ

wσ

)
= j

(
t∗

wσ

w∗
ρ )

taking Hom(ρ, σ) into Hom(ρ j , σ j ) is a linear isomorphism between the C* ten-
sor categories C opp and j (C ) (the category equipped with the opposite monoidal
product).

Corollary 3.21 The opposite tensor category C opp can be realized as j (C ) ⊂
End0(N opp) or End0(N ′). Under this isomorphism, the canonical Q-system in
C � j (C ) becomes a Q-system in C � C opp with [Θ] = ⊕[ρ] ⊗ [ρ].

This is the way it is defined in the abstract setting (e.g., [15, Prop. 4.1]).

3.4 Modules of Q-Systems

A module (≡ left module) of a Q-system A = (θ, w, x) is a pair m = (β, m),
where β is an object of the underlying category and m ∈ Hom(β, θβ),2 satisfying
the relations

unit property: (w∗ ×1β )◦m= 1β

= ,
(3.4.1)

2 More precisely, (β, m∗) is a module and (β, m) is a co-module. We do not make the distinction
because the dualization is canonically given by the operator adjoint.

http://dx.doi.org/10.1007/978-3-319-14301-9_2
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representation property: (1θ ×m)◦m= (x×1β )◦m

= .
(3.4.2)

A module of a Q-system is called a standard module if m∗m is a multiple of 1β .
(This property is automatic if (β, m) is irreducible as a module, and in particular if
β is irreducible as an endomorphism.)

A Q-system A is also a standard A-module (β = θ, m = x).
Two modules (β, m) and (β ′, m′) are equivalent, when there is an invertible

n ∈ Hom(β, β ′) such that m′ ◦ n = (1θ × n) ◦ m. They are unitarily equivalent if
there is a unitary such n.

Lemma 3.22 (i) If a module m = (β, m) is standard, then (with dA = the dimen-
sion of the Q-system)

m∗m= = dA ·1β .

(3.4.3)

(ii) Every module is equivalent to a standard module, i.e., there is an invertible
element n of Hom(β, β) such that (β, (1θ ×n) ◦ m ◦ n−1) is a standard module.

Proof (i) follows from the representation property Eq. (3.4.2) and x∗x = dA · 1θ ,
which imply

m∗ ◦(1θ ×m∗m)◦m= = = dA · = dA ·m∗m.

For (ii), first we notice that m∗m is an invertible positive element of Hom(β, β),
because e = d−1

A · ww∗ is a projection in Hom(θ, θ), hence by the unit property,

m∗m ≥ m∗ ◦ (e × 1β) ◦ m = d−1
A · 1β.

Let n ∈ Hom(β, β) be the square root of m∗m. Then by the representation property,

n−1m∗ ◦ (1θ × n2) ◦ mn−1 = n−1m∗ ◦ (x∗x × 1β) ◦ mn−1 = dA · 1β. �

Lemma 3.23 If (β, m) is a standard module, then in addition to the unit and repre-
sentation relations, the relation

(x∗ ×1β )◦(1θ ×m) = mm∗ = (1θ ×m∗)◦(x∗ ×1β ) :

= =
(3.4.4)
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holds. This implies

m∗ = (r∗ ×1β )◦(1θ ×m) : = ,
(3.4.5)

and consequently

E := d−1
A · (x∗ ×1β )◦(1θ ×m) = d−1

A ·

is a self-adjoint idempotent, i.e., a projection in Hom(θβ, θβ).

Proof The proof is very much the same as the proof of the Frobenius property in
Lemma 3.7, with X replaced by X ′ := (1θ ×m∗) ◦ (x ×1β)−mm∗ ∈ Hom(θβ, θβ),
the associativity property of x replaced by the representation property of m, and δ

replaced by the faithful positive map δ′ : Hom(θβ, θβ) → Hom(θβ, θβ)

δ (T ) = (x∗ ×1β )◦(1θ ×T )◦(x×1β ) : T

β

β

The equation form∗ then follows by left composition withw∗×1β , and the statement
about E follows because E = d−1

A · mm∗ and m∗m = dA · 1β . �

From now on, we reserve the graphical representation

m=
θ β

for the intertwiner associated with a standard module m = (β, m), i.e., m satisfies
Eqs. (3.4.1)–(3.4.3), hence also Eq. (3.4.5). We shall freely use these properties in
the sequel.

If A is a Q-system in C = End0(N ), corresponding to an extension ι : N → M ,
then every homomorphism ϕ : N → M of finite dimension gives rise to a standard
module

(β ,m) ≡ (ιϕ ,1ι × v× 1ϕ ) :
θ

≡ v
ϕ

ι

ι

(3.4.6)

of A. Notice that, as an operator in N , m = ι(v) = x . If C ⊂ End0(N ) as specified
in the beginning of the chapter, then the same is true provided ιϕ belongs to C . This
restriction on ϕ is equivalent to the condition that ϕ ≺ ιρ with some ρ ∈ C .
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The converse is also true: namely, we prove now that every standard module is of
this form:

Proposition 3.24 Every standard module m = (β, m) of a simple Q-system
A = (θ, w, x) in End0(N ) is unitarily equivalent to a standard module of the
form (ιϕ, x) as in Eq. (3.4.6), where ϕ is a homomorphism ϕ : N → M.

(The same result was derived by [16, Lemma 3.1] by an exhaustion argument,
using the known number of modules in the case of a braided category; our proof is
more constructive, and does not refer to a braiding.)

Proof Writing as before θ = ιι, m defines by left Frobenius conjugation an element

e = d−1
A · (v∗ × 1ιβ) ◦ (1ι × m)

of Hom(ιβ, ιβ) ⊂ M . Then 1ι × e equals, by Eq. (3.4.4), the projection E =
d−1

A · mm∗ in Lemma 3.23, hence e is also a projection. Let ϕ ≺ ιβ be the sub-
homomorphism : N → M corresponding to this projection, and s ∈ Hom(ϕ, ιβ) an
isometry such that e = ss∗. By left Frobenius conjugation, s̃ := (1ι×s∗) ◦ (w×1β) ∈
Hom(β, ιϕ). We claim that the range projection of s̃ equals 1ιϕ .

Indeed, by inverting the definition of e, we have that

m = dA · (1ι × ss∗) ◦ (w × 1β),

hence
s̃ = d−1

A · (1ι × s∗) ◦ m.

Now, we use again Eq. (3.4.4): mm∗ = dA · 1ι × e = dA · 1ι × ss∗ to conclude

s̃ s̃∗ = d−2
A · (1ι × s∗) ◦ mm∗ ◦ (1ι × s∗) = d−1

A · (1ι × s∗ss∗s) = d−1
A · 1ιϕ.

Thus, while ϕ ≺ ιβ by construction, we also have ιβ ≺ ϕ, hence β is equivalent
to ιϕ. It follows that u := √

dA · s̃ is a unitary u ∈ Hom(β, ιϕ). Then, inserting
s = (1ι × s̃∗) ◦ (w × 1ϕ) into m = dA · (1ι × ss∗) ◦ (w × 1β), one arrives at

m = (1θ × u∗) ◦ (1ι × v × 1ϕ) ◦ u.

This proves the claim. �
The homomorphism ϕ corresponding to a module m can be explicitly computed:

namely, ϕ(n) ∈ M can be written as ϕ(n) = ι(k)v for some k ∈ N . Applying ι

implies β(n) = θ(k)x . Multiplyingw∗ from the right, impliesw∗β(n) = w∗θ(k)x =
kw∗x = k. Hence ϕ : N → M is given by

ϕ(n) = ι(w∗β(n))v ∈ M.
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Considering A as a standard A-module (β = θ, m = x), the corresponding
homomorphism is ϕ = ι : N → M .

The modules of a Q-system (θ, w, x) are the objects of the module category. A
morphism between two modules (β, m) and (β ′, m′) is an element t ∈ Hom(β, β ′)
satisfying

(1θ × t)◦m= m ◦ t : t
m

= t
m

(3.4.7)

It is obvious from the definition that the modules are closed under right tensoring
with ρ ∈ C , namely m × 1ρ ≡ (β ◦ ρ, m × 1ρ) is again a module, and the corre-
sponding homomorphism is ϕ ◦ ρ. Moreover, the right tensoring is compatible with
the morphisms. The category thus defined is therefore a right module category in the
sense of [17, Definition 6].

Clearly, every s ∈ Hom(ϕ, ϕ′) defines a morphism t = 1ι × s between the
associated standard modules. The converse is also true:

Proposition 3.25 Every morphism t between two standard modules (ιϕ, m =
1ι × v × 1ϕ) and (ιϕ′, m′ = 1ι × v × 1ϕ′) is of the form t = 1ι × s where
s ∈ Hom(ϕ, ϕ′).

Proof s = d−1
A · LTrι(t) does the job:

t
=

t
⇒ t =

t
= dA · t .

�

We recognize that the argument in the proof of Lemma 3.17 is just an instance
of this general fact, namely Eq. (3.2.5) just states that t ∈ Hom(θ, θ) is a morphism
between A = (θ, x) as a A-module and itself, hence t = 1ι × s = ι(s) with
s = ι(q)v ∈ Hom(ι, ι).

Corollary 3.26 The module category of a simple Q-system in C ⊂ End0(N )

is equivalent to the full subcategory of Hom(N , M) whose objects are the
homomorphisms ϕ ≺ ιρ : N → M, ρ ∈ C .

In particular:

Corollary 3.27 Let m = (β, m) be a reducible module. The space of self-morphisms
of m is a finite-dimensional C* algebra. If pi are minimal projections in this algebra,
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and pi = ti t∗i with isometries ti , then m � ⊕
i mi with mi = (βi , mi ), where

βi = t∗i β(·)ti and mi = (1θ × t∗i ) ◦ m ◦ ti , i.e.,

β =
∑

i

tiβi (·)t∗i , m =
∑

i

(1θ × ti ) ◦ mi ◦ t∗i .

Example 3.28 (Modules in the Ising category) The irreducible modules of the
trivial Q-system are (ρ, 1) with ρ = id, σ, τ. The corresponding homomor-
phisms : N → M = N are ϕ = ρ.

The modules (β, x = 2− 1
4 (r + t)) of the nontrivial Q-system given in

Example 3.14 (θ = σ2 � id ⊕ τ) arising from ϕ ≺ ιρ are:

(i) ρ = id: module (σ2, x), homomorphism ϕ = ι.
(ii) ρ = τ: module (σ2 τ, x), homomorphism ϕ = ι ◦ τ.
(iii) ρ = σ: The module (β = θ σ = σ3, x) is reducible: � (β1 =

σ, x) ⊕ (β2 = σ τ, x) (with morphisms σ(r) ∈ Hom(β1, β) and σ(t) ∈
Hom(β2, β), respectively). For the submodule (σ, x), one computes

ϕ1 : n �→ r∗ σ(n)(r +tψ), in particular, r �→ 2− 1
2 (r +tψ), t �→ 2− 1

2 (r −
tψ), u �→ ψ . For the submodule (σ τ, x), ϕ2 : n �→ r∗ σ τ(n)(r + tψ), in
particular r �→ 2− 1

2 (r − tψ), t �→ 2− 1
2 (r + tψ), u �→ −ψ . These homo-

morphisms are surjective, hence isomorphisms, and ϕ2 = ϕ1 ◦τ = α ◦ϕ1
(α = gauge transformation ψ → −ψ).

3.5 Induced Q-Systems and Morita Equivalence

Let A = (θ, w, x) be a Q-system, defining an extension ι : N → M .
If m = (β, m) is a standard module of A, and ϕ : N → M the corresponding

homomorphism, we choose a conjugate homomorphism ϕ : M → N and a solution
of the conjugacy relations wϕ , vϕ . Then

Aϕ = (θϕ, wϕ, xϕ) with θϕ = ϕϕ, xϕ = ϕ(vϕ)

is a Q-system. We call Aϕ the Q-system induced by m.
Notice that, by definition, ϕϕ = θϕ = ιϕιϕ ; but the corresponding extension

ιϕ : N → Mϕ should not be confused with the homomorphism ϕ : N → M ,
because ιϕ(n) = n ∈ N ⊂ Mϕ , while ϕ(n) �= n ∈ N ⊂ M .

Lemma 3.29 If a Q-system A2 = (θ2, w2, x2) is induced by a standard module
(β1, m1) of A1 = (θ1, w1, x1), then A1 is induced by a standard module of A2.
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Proof By Proposition 3.24, (β1, m1) is of the form β1 = ι1ϕ1 and m1 = x1, where
ϕ1 ≺ ι1ρ for some ρ ∈ C . By definition of the induced Q-system, ι2 = ϕ1, and
hence ι1 ≺ ι2ρ. Therefore, A1 is induced by the module (β2 = ι2ϕ2, m2 = x2) of
A2, where ϕ2 = ι1. �

Definition 3.30 ([17, Definition 10]) Two Q-systems in C are Morita equivalent if
their module categories are equivalent, i.e., there exists an invertible functor between
the two module categories that commutes with the right tensoring by ρ ∈ C .

Proposition 3.31 Two Q-systems are Morita equivalent if and only if one of
them is induced by a standard module of the other one (which implies also the
converse).

Proof If A2 = (θ2, w2, x2) is induced by a standard module (β1, m1) of A1 =
(θ1, w1, x1), then ι2 = ϕ1 ≺ ι1ρ for some ρ ∈ C . Then the sub-homomorphisms
ϕ of ι2ρ

′ for some ρ′ ∈ C are the same as the sub-homomorphisms of ι1ρ
′′ for

some ρ′′ ∈ C . Then, by Propositions 3.24 and 3.25, mapping the standard modules
(ι1ϕ, x1) of A1 to (ι2ϕ, x2), and morphisms t1 = 1ι1 × s to t2 = 1ι2 × s, defines a
bijective functor that commutes with the right tensoring by ρ ∈ C .

Conversely, if A1 and A2 are Morita equivalent, then there is a module m1 of A1
mapped by the bijective functor F to A2 as a module of itself. By Proposition 3.24,
m1 = (ι1ϕ, x1) (up to equivalence) with ϕ ≺ ιρ for some ρ ∈ C . We have to
show that the Q-system Aϕ induced by ϕ is equivalent to A2. We first show that
θϕ = ιϕιϕ = ϕϕ equals θ2 (up to unitary equivalence).

For every σ ∈ C , one has Hom(σ, ϕϕ) ∼ Hom(ϕ σ, ϕ) by Frobenius reciprocity.
Because ϕ corresponds to ι2 under F , and F commutes with right tensoring by
σ ∈ C , we further have Hom(ϕ σ, ϕ) ∼ Hom(ι2 σ, ι2) ∼ Hom(σ, θ2), from which
the claim follows.

Since the construction of the inducedQ-system is invariant under the isomorphism
of module categories F , it follows that the Q-system induced by ϕ from A1 coincides
with the Q-system induced by ι2 from A2, which is of course A2. �

Thus, the Q-systems Aϕ induced from a Q-system A precisely give the Morita
equivalence class of A. However, inequivalent ϕ may induce equivalent Q-systems
Aϕ : e.g., ifA = (id, 1, 1) is the trivial Q-system, then all invertible ϕ, hence ϕϕ = id,
induce the trivial Q-system.

3.6 Bimodules

The identification Sect. 3.4 between standardmodules (= leftmodules) of aQ-system
A in C ⊂ End0(N ) and homomorphisms N → M of the associated pair of alge-
bras works exactly the same for standard right modules m = (β, m ∈ Hom(β, βθ))
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(satisfying the analogous relations with the reversed tensor product). The
correspondence is then that every standard right module is of the form

(β = ϕι, m = ϕ(v)),

where ϕ : M → N is a sub-homomorphism of βι.
In particular, a Q-system A is also a standard right A-module (β = θ, m = x),

and the corresponding homomorphism is ϕ = ι : M → N .

By obvious generalizations of the arguments, one also treats bimodules. An A1-
A2-bimodule between two Q-systems is a triple m = (β, m1 ∈ Hom(β, θ1β), m2 ∈
Hom(β, βθ2)) such that (β, m1) is a leftA1-module and (β, m2) is a rightA2-module,
and the left and right actions commute:

(1θ1 ×m2)◦m1 = (m1 ×1θ2)◦m2 :
m1

m2 =
m β

θ1 θ2

= m1

m2

Equivalently, one may characterize the bimodule as a pair m = (β ∈ C , m ∈
Hom(β, θ1βθ2)) satisfying

m β
=

β
,

m
=

m

x1 x2

(3.6.1)

Then (β, m1) := (1θ1 × 1β × w∗
2) ◦ m is a left A1-module, (β, m2) := (w∗

1 × 1β ×
1θ2) ◦ m is a right A2-module, and their actions commute.

A bimodule of a Q-system is called a standard bimodule if m∗m is a multiple
of 1β .

A Q-system A is also a standard A-A-bimodule A = (β = θ, m = x (2)).
One proves the analogs of Lemmas 3.22 and 3.23, Propositions 3.24 and 3.25

and Corollary 3.26 in more or less exactly the same way (replacing the left trace in
Proposition 3.25 by the right trace for the right module action):

Proposition 3.32 (i) Every bimodule is equivalent to a standard bimodule.
The normalization of a standard bimodule is m∗m = dA1dA2 · 1β . The
adjoint of a bimodule is obtained by Frobenius reciprocity.

(ii) [16] Every standard bimodule is unitarily equivalent to a bimodule of the
form β = ῑ1ϕι2 where ϕ : M2 → M1 is a sub-homomorphism of ι1ρῑ2
for some ρ ∈ C ⊂ End0(N ) (e.g., ρ = β), and

b= 1ῑ1 × v1 ×1ϕ × v2 ×1ι2 : m

θ1 θ2

≡ ϕ .
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A morphism between two bimodules is an element t ∈ Hom(β, β ′) satisfying

(1θ1 × t ×1θ2)◦m= m ◦ t :
t

m

θ1 θ2

=
t
m

θ1 θ2

.

(3.6.2)

Proposition 3.33 Every morphism t between two standard A1-A2-bimodules
(ι1ϕι2, 1ι1 × v1 × 1ϕ × v2 × 1ι2) and (ι1ϕ

′ι2, 1ι1 × v1 × 1′
ϕ × v2 × 1ι2) is of

the form t = 1ι1 × s × 1ι2 where s ∈ Hom(ϕ, ϕ′). This establishes a bijective
functor between the category of A1-A2-bimodules and the full subcategory of
Hom(M2, M1) whose objects are the homomorphisms ≺ ι1ρι2, ρ ∈ C .

Again, the homomorphism associated with a standard bimodule m = (β, m)

can be computed. Namely, the formula for m implies that ι1ϕ(v2) = w∗
1m (cor-

responding to m as a right A2-module). Hence ϕ(ι2(n)v2) = ι1(k)v1 implies
β(n)w∗

1m = θ1(k)x1, hence k = w∗
1β(n)w∗

1m:

ϕ(ι2(n)v2) = ι1(w
∗
1β(n)w∗

1m)v1. (3.6.3)

In particular, ϕ(v2) = ι1(w∗
1w∗

1m)v1.
The homomorphism associated with A as an A-A-bimodule is ϕ = idM : M →

M .
If ϕ = ι1ρι2 (which is in general reducible), hence β = θ1ρθ2 and m =

x1θ1ρ(x2), this simplifies to ϕ(ι2(n)) = ι1(ρθ2(n)) and ϕ(v2) = ι1(ρ(x2)). Thus,
ϕ : M2 → M1 happens to take values in ι1(N ) ⊂ M1. This property is, however,
not intrinsic, as it is not stable under unitary equivalence in the target algebra M1.
Also, the decomposition of ϕ into irreducibles (which are unique only up to unitary
equivalence within M1) depends on the choice of isometries s, so that ϕs = s∗ϕ(·)s.
These may or may not be chosen in ι1(N ). As the Example 3.35 shows, there may
be good reasons to choose the homomorphisms not to take values in ι1(N ).

Also the analog of Proposition 3.31 holds for bimodules, again with the same
proof as for modules:

Proposition 3.34 There is a bijective functor between the category of A1-A2-
bimodules and the category of A′

1-A′
2-bimodules, if and only if A′

1 is induced
from A1 by a standard module of A1 (i.e., ι1 ≺ ι2ρ, ρ ∈ C ), and A′

2 is induced
from A2 by a standard module of A2.

In particular, the category of bimodules between a pair of Q-systems depends
only on the Morita equivalence classes of the latter.
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Example 3.35 (Bimodules in the Ising category) Let A = (θ = σ 2, w =
2

1
4 r, x = 2− 1

4 (r + t)) be the nontrivial Q-system as in Example 3.14 and
M = N ∨ ψ be the corresponding extension of N . The irreducible id-id-
bimodules are just ρ = id, σ, τ. The A-id-bimodules are the same as the
modules of A, Example 3.28.

The id-A-bimodules arising from ϕ = ρι are: mρ = (β = ρθ = ρσ 2, m =
ρ(x)), where x = 2− 1

4 (r + t). Thus, ϕ maps n ∈ N to ρσ 2(n) and v to
ρ(x).

(i) ρ = id and ρ = τ: These are the same bimodules, because τ σ = σ and
τ(x) = x . One finds ϕ : n �→ σ2(n), ψ �→ r t∗ + tr∗.

(ii) ρ = σ: β = σ3, m = σ(x) = 2− 1
4 σ(r + t) = 2− 3

4 (r + t + (r − t)u).
ϕ : n �→ σ3(n), ψ �→ rur∗ − tut∗.
The latter homomorphism ϕ = σ ι is reducible, with projections rr∗ and
t t∗ in the commutant. Then ϕ1 = r∗ϕ(·)r and ϕ2 = t∗ϕ(·)t give rise
to

(ii.1) β1 = σ, m1 = 2
1
4 r , ϕ1 : n �→ σ(n), ψ �→ u.

(ii.2) β2 = τ σ = σ, m2 = 2
1
4 t , ϕ2 : n �→ σ(n), ψ �→ −u. One has

ϕ2 = ϕ1 ◦ α = τ ◦ϕ1.

The A-A-bimodules arising from ϕ = ιρι are: mρ = (β = θρθ =
σ 2ρσ 2, m = xθρ(x)). Thus ϕ maps n to ρσ 2(n) and v to ρ(x).

(i) ρ = id and ρ = τ are again the same bimodule. ϕ : n �→ σ2(n), ψ �→
r t∗+tr∗.ϕ is reduciblewith projections 1

2 (1±ψ) = s±s∗±, s± = 2− 1
2 (r ±

tψ). This gives the irreducible components ϕ± : n �→ n, ψ �→ ±ψ , i.e.,
ϕ+ = id and ϕ− = α.

(ii) ρ = σ. ϕ : n �→ σ3(n), ψ �→ σ(r t∗ + tr∗) = rur∗ − tut∗. The
commutant of ϕ(M) contains u and ψ . Thus ϕ is the direct sum of
two equivalent components, [ϕ] = [ϕ′] ⊕ [ϕ′]. Choosing projections
rr∗ and t t∗ to compute ϕ1 = r∗ϕ(·)r and ϕ2 = t∗ϕ(·)t , one has
ϕ1 : n �→ σ(n), ψ �→ u and ϕ2 : n �→ σ(n), ψ �→ −u. These are
equivalent to each other by ψ ∈ Hom(ϕ1, ϕ2). They are also equivalent

to the α-inductions α±
σ (cf. Sect. 4.6) by U± = 2− 1

2 (1 ± iψ); with the
former choice, ϕi take values in ι1(N ), while AdU±ϕ1 = AdU∓ϕ2 = α±

σ

don’t.)

http://dx.doi.org/10.1007/978-3-319-14301-9_4
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3.7 Tensor Product of Bimodules

The tensor product of bimodules is defined as follows. If m1 = (β1, m1) is an
A-B-bimodule and m2 = (β2, m2) is an B-C-bimodule, then

m= m1 m2

Aθ θ C

∈ Hom(β1β2,θ Aβ1β2θ C)

satisfies the representation property of an A-C-bimodule, but the unit property fails.
Instead, we have

Lemma 3.36 The intertwiner

p := d−1
B · m1 m2

≡ d−1
B ·

β1 β2

∈ Hom(β1β2,β1β2)

is a projection, and satisfies

(1θ A × p×1θ C )◦m=m=m◦ p : d−1
B · =

θ A θ C

m1 m2
= d−1

B · .

(3.7.1)

Proof Idempotency of p follows from the relation Eq. (3.7.1). Self-adjointness of
p follows from Lemma 3.23. To prove Eq. (3.7.1), we use the representation prop-
erty, e.g.,

θ A θ C

=
θ B

= dB · .

�

Then the bimodule tensor product is defined as the range of the projection p:

Definition 3.37 Letm1 = (β1, m1) be anA-B-bimodule andm2 = (β2, m2) aB-C-
bimodule. Choose an isometry s ∈ N such that ss∗ = p and put β(·) := s∗β1β2(·)s
the range of p in β1β2. Then the bimodule tensor product

m1 ⊗B m2 = (β ,m),

m := d−1
B · (1θ A × s∗ ×1θ C)◦ m̂◦s = d−1

B · m1 m2

θ A θ Cs∗

s

∈ Hom(β ,θ Aβθ C)

is an A-C-bimodule.
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Proposition 3.38 Under the correspondence Proposition3.32(ii), the bimodule
tensor product m1 ⊗B m2 corresponds to the composition of homomorphisms
ϕ1 ◦ ϕ2 : MC → MA.

Proof Using Proposition 3.32(ii), one computes

p = d−1
B ·1ιA◦ϕ1

×wBwB∗ ×1ϕ2◦ι C = d−1
B · ϕ1 ϕ2ι A ιC ,

hence (up to unitary equivalence) one may choose

s = d
− 1

2
B ·1ιA◦ϕ1

×wB ×1ϕ2◦ι C ≡ d
− 1

2
B · wB .

With this, the claim is easily verified. The proper normalization is fixed by
Proposition 3.32(i). �

In particular, we have equipped the category of A-A-bimodules with the structure
of a tensor category, such that the tensor product corresponds to the composition of
the corresponding endomorphisms in End0(M). By admitting bimodules between
different Q-systems Ai , one arrives naturally at a (non-strict) bicategory (with 1-
objects Ai , 1-morphisms the bimodules and 2-morphisms the bimodule morphisms),
corresponding to homomorphisms among the associated extensions Mi . Fixing the
von Neumann algebra N and some full subcategory C of End0(N ) in which the
Q-systems, bimodules and morphisms take their values, one obtains a full sub-2-
category of the latter 2-category.

In the tensor category of A-A-bimodules, the bimodule A is the tensor unit. Cor-
respondingly, this category is simple iff A is irreducible as a A-A-bimodule. The
following Lemma characterizes the self-intertwiners of A:

Lemma 3.39 t ∈ Hom(θ, θ) is a self-morphism of A as left (right) A-module if and
only if t satisfies the first (second) of Eq. (3.1.5). t ∈ Hom(θ, θ) is a self-morphism
of A as an A-A-bimodule if and only if t ∈ Hom0(θ, θ).

Proof The first statement is just the definition of morphisms. We prove only the last
statement. “If”: obvious. “Only if”: by applying the unit relation in several ways to
the defining property of a bimodule morphism

= .

�
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Corollary 3.40 The following are equivalent.

(i) A Q-system A is simple.
(ii) The corresponding extension N ⊂ M is a factor.
(iii) A is irreducible as an A-A-bimodule.
(iv) The tensor category of A-A-bimodules is simple.

Notice that (i) ⇔ (ii) is our Definition 3.15 of a simple Q-system. (iii) ⇔ (iv) is
the definition of a simple tensor category. Thus, Corollary 3.40 states the equivalence
of our Definition 3.15 of simplicity with the standard definition, which is given by
the condition (iv).

Proof It suffices to prove (ii) ⇔ (iii). The endomorphism ϕ : M → M corre-
sponding to the bimodule A according to Proposition 3.24, is ϕ = idM . Then, by
Proposition 3.33, every self-intertwiner of A as an A-A-bimodule is of the form
t = 1ι × s × 1ι ∈ Hom(θ, θ), where s ∈ Hom(idM , idM ). But Hom(idM , idM ) is
the same as the centre M ′ ∩ M . �

For later use, we mention

Lemma 3.41 If mi = (βi , mi ) (i = 1, 2) are A-B-bimodules, and t ∈ Hom(β1, β2),
then

S := m∗
2 ◦(1θ A × t ×1θ B)◦m1 = t

β1

β2

∈ Hom(β1,β2)

is a bimodule morphism : m1 → m2.

The proof is rather easy in terms of the defining properties of modules andmodule
intertwiners, and actually becomes trivial if one uses Proposition 3.32: namely S ∈
1ιA × Hom(ϕ1, ϕ2) × 1ιB .

This Lemma implies that if the two bimodules are irreducible and inequivalent,
then every intertwiner S obtained in this way must be trivial. E.g., if m2 is trivial A-
A-bimodule (θ, x (2)), and m = (β, m) is any nontrivial irreducible A-A-bimodule,

then for every s ∈ Hom(id, β). This is a

special case of the Lemma (with t = w ◦ s∗ ∈ Hom(β, θ)), that we shall make use
of in Sect. 4.12.

http://dx.doi.org/10.1007/978-3-319-14301-9_4
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Chapter 4
Q-System Calculus

Abstract We introduce operations with Q-systems and clarify their meaning in
terms of the corresponding extensions N ⊂ M . We identify three different types of
reduced Q-systems, corresponding to the central decomposition and the irreducible
decomposition of the extension, and to intermediate extensions. In braided tensor
categories, the centre, the full centre, and the braided product of Q-systems are
defined.Themain classification result is the computationof the central decomposition
of the braided product of the full centres of two Q-systems in a modular C* tensor
category.

Throughout this section, N is an infinite factor, and C ⊂ End0(N ) with properties
as specified in Chap.3.

Q-systems in C can be decomposed in several distinct ways. In the first four
sections, we discuss various decompositions in turn, and characterize them in terms
of suitable projections in the underlying category C .

In the remainder of this section, we discuss Q-systems in braided C* tensor cate-
gories, introducevarious operationswithQ-systems (the centres, the braidedproducts
and the full centre), and compute the central decomposition of the extension corre-
sponding to the braided product of two full centres. The latter is motivated because
this decomposition gives the irreducible boundary conditions for phase boundaries
in local QFT [1].

4.1 Reduced Q-Systems

Let (θ, w, x) be a Q-system describing the extension N ⊂ M . When the multiplicity
dimHom(idN , θ) = dimHom(ι, ι) of idN in θ is one, then the extension is irreducible
(N ′ ∩ M = C1), and in particular M is automatically a factor. When the multiplicity
is larger than one, then M may or may not be a factor.

Let e be a nontrivial projection in Hom(ι, ι). If M is a factor, then one can write
e = t t∗ with an isometry t ∈ M , define a sub-homomorphism ιe ≺ ι by ιe(·) =
t∗ι(·)t , and arrive at a decomposition [ι] = [ιe]⊕[ι1−e], cf. Corollary 4.10, where we
shall characterize this decomposition in terms of certain projections in Hom(θ, θ).

© The Author(s) 2015
M. Bischoff et al., Tensor Categories and Endomorphisms of von Neumann Algebras,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-14301-9_4

41

http://dx.doi.org/10.1007/978-3-319-14301-9_3


42 4 Q-System Calculus

In contrast, if M is not a factor and e 	= 1 belongs to the centre of M , such isometries t
do not exist in M . Namely, t ∈ M and t t∗ ∈ M ′ would imply e = et∗t = t∗et = 1M .

One should therefore first perform a central decomposition of M into factors
Me = eM by the minimal central projections, and compute the reduced Q-systems
(cf. Sect. 4.2) for the subfactors N 
 Ne ⊂ Me. Each of these may still be reducible,
and can be further reduced by decomposing [ι] = ⊕

e[ιe], as before.
Finally, we also discuss in Sect. 4.4 the multiplicative “splitting” decomposition

of ι, when there is an intermediate subfactor N ⊂ L ⊂ M , so that ι = ι2◦ι1.Whether
an intermediate subfactor exists is independent of reducibility of the subfactor, e.g.,
[ι] = [idN ]⊕[idN ] is reducible but does not admit an intermediate subfactor, whereas
ι1 ⊗ ι2 = (ι1 ⊗ idN2) ◦ (idN1 ⊗ ι2) : N1 ⊗ N2 → M1 ⊗ M2 is an irreducible
homomorphism (if ιi are) but admits intermediate factors N1 ⊗ M2 and M1 ⊗ N2.
This example also shows that the splitting cannot be expected to be unique. Also,
even if both N and M are factors, the intermediate algebra L need not be a factor, as
the example N ⊂ N ⊕ N ⊂ Mat2(N ) shows.

Although the three decompositions of a Q-system (θ, w, x) are of quite different
nature, they all come with a projection P ∈ Hom(θ, θ) satisfying

(P×P)◦x= (P×1θ )◦x◦P= (1θ ×P)◦x◦P

= =
(4.1.1)

(“of three projection, any one is redundant”, or “any two projections imply the third”),
and in each case different further properties. One easily proves:

Lemma 4.1 Equation (4.1.1) alone implies

(i) The triple

θP := S∗θ(·)S, w̃P := S∗ ◦ w, x̃P := (S∗ × S∗) ◦ x ◦ S

is a C* Frobenius algebra, where S ∈ N is any isometry such that SS∗ = P,
i.e., θP ≺ θ .

(ii) n P := x̃∗
P x̃P is a multiple of 1θP if and only if x∗ ◦ (P × P) ◦ x is a multiple

of P.

(The notation emphasizes that the unitary equivalence class of (θP , w̃P , x̃P ) depends
on P , but not on the choice of the isometry S.)

Proof (i) The unit property, associativity and Frobenius property follow from
the corresponding properties of (θ, w, x) by “eliminating” projections using
Eq. (4.1.1) and PS = S.

(ii) “If” is obvious. Conversely, x̃∗
P x̃P = μ · 1θP implies that P ◦ x∗ ◦ (P × P) ◦

x ◦ P = μ · P . By Eq. (4.1.1), this equals x∗ ◦ (P × P) ◦ x . �
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However, the property in (ii) may fail, in which case the C* Frobenius algebra
fails to be special (and hence to be standard). Then, by Corollary 3.6, one can define
the equivalent special C* Frobenius algebra (θP , ŵP , x̂P ) with

ŵP := n
1
2
P S∗ ◦ w, x̂P := (n

− 1
2

P S∗ × n
− 1

2
P S∗) ◦ x ◦ Sn

1
2
P

with the “normalization intertwiner” n P = x̃∗
P x̃P = S∗ X∗(P × P)XS ∈ Hom0(θP ,

θP ), such that x̂∗
P x̂P = 1θP .

ŵP ∈ Hom(id, θP ) is automatically a multiple of an isometry, and

ŵ∗
P ŵP = w∗ ◦ x∗ ◦ (P × P) ◦ x ◦ w = r∗ ◦ (P × P) ◦ r.

Corollary 4.2 The appropriately rescaled triple

θP = S∗θ(·)S,

wP = dim(θP )−
1
4 · n

1
2
P S∗ ◦ w, (4.1.2)

xP = dim(θP )
1
4 · (n

− 1
2

P S∗ × n
− 1

2
P S∗) ◦ x ◦ Sn

1
2
P

is a standard C* Frobenius algebra, i.e., a Q-system, called the reduced
Q-system, if and only if ŵP has the correct normalization ŵ∗

P ŵP = r∗ ◦
(P × P) ◦ r

!= dim(θP ).

In each of the three decompositions discussed in the subsequent sections, further
properties of the characterizing projections beyond Eq. (4.1.1) will indeed ensure the
correct normalization as required in Corollary 4.2.

4.2 Central Decomposition of Q-Systems

In this section, we shall characterize decompositions of ι : N → M as a direct sum

ι = ι1 ⊕ ι2

when M = M1 ⊕ M2 is not a factor, ιi : N → Mi .
Let N ⊂ M an inclusion of von Neumann algebras, where N is an infinite factor,

and M is properly infinite with a finite centre. Every central projection e ∈ M ′ ∩ M
gives rise to an inclusion eN ⊂ eM , where eN is canonically isomorphic to N .
(Recall also the characterization of such projections as e = ι(q)v with q ∈
Hom(θ, idN ), given in Lemma 3.16.) If e is minimal, eN ⊂ eM is a subfactor.

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
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We want to characterize the corresponding embeddings eN → eM in terms of
reduced Q-systems Eq. (4.1.2). Our starting observation is that P := ι(e) ∈ N is a
projection in Hom0(θ, θ):

(1θ ×P)◦x = x◦P= (P×1θ )◦x : = = ,

which is preciselyEq. (3.1.5). This follows immediately by applying ι to the equations
ιι(e)v = ve (because e ∈ M) and ev = ve (because e ∈ M ′). We now show the
converse:

Proposition 4.3 Let A = (θ, w, x) be a Q-system defining the extension
N ⊂ M. Let P ∈ Hom(θ, θ) be a projection satisfying Eq. (3.1.5), hence also
Eq. (4.1.1). Then Eq. (4.1.2) with normalization intertwiner n P = √

dim(θ) ·
1θp defines a reduced Q-system AP . The reduced Q-system corresponds to the
extension eN ⊂ eM where e ∈ M ′ ∩ M and ι(e) = P.

Along with P, also 1 − P satisfies Eq. (3.1.5).

If P is a minimal projection in Hom(θ, θ) with the stated properties, we will also
refer to the reduced Q-system as a factor Q-system of A.

Proof Let us first compute the normalizations. Let S ∈ N be any isometry such
that P = SS∗. Because P ∈ Hom0(θ, θ), we have n P = S∗x∗(P × P)x S =
S∗ Px∗x P S = √

dim(θ) · 1θ , and r∗(P × P)r = r∗(1θ × P)r = Trθ (P) =
dim(θP ) by Proposition 2.4. Hence, by Corollary 4.2, AP = (θP , wP , xP ) is a
reduced Q-system.

By Lemma 3.39, P is a self-morphism of A considered as an A-A-bimodule.
Hence, by Proposition 3.33, P = 1ι × e × 1ι with e ∈ Hom(idM , idM ) = M ′ ∩ M .
If P is a projection, so is e. We claim that n �→ en ≡ eι(n) is a *-isomorphism
between N and eN . Because e is a central projection, the *-homomorphism property
is obvious, and so is surjectivity. Injectivity follows because eι(n) = 0 implies
Pθ(n) = 0, hence θP (n) := S∗θ(n)S = 0. Since θP is injective, n = 0.

We now define a conjugate ιP for the embedding ιP : N → eM , n �→ eι(n):

ιP : em �→ S∗ι(m)S.

Then w̃P := S∗w ∈ Hom(ideN , ιP ιP ) and ṽP := eι(S∗)v ∈ Hom(ideM , ιP ιP ) are
intertwiners:

ιP ιP (n)w̃P = S∗θ(n)SS∗w = S∗θ(n)Pw = S∗ Pθ(n)w

= S∗θ(n)w = S∗wn = w̃P n,

ιP ιP (em )̃vP = eι(S∗)ιι(m)ι(SS∗)v = eι(S∗ P)ιι(m)v = eι(S∗)vm = ṽP em,

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
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because ι(SS∗) = ι(P) = ιι(e) commutes with = ιι(m). w̃P and ṽP solve the
conjugacy relations Eq. (2.2.1):

w̃∗
P ιP (̃vP ) = w∗SS∗ι(eι(S∗)v)S = w∗ Pθ(S∗)x S = w∗θ(S∗)x S

= S∗w∗x S = S∗S = 1N ,

because P commutes with θ(S∗) and with x , and

ι[ιP (w̃∗
P )̃vP ] = ι(eι(w∗S)ι(S∗)v) = Pθ(w∗ P)x = Pθ(w∗)x P = P2 = P = ι(e),

which implies ιP (w̃∗
P )̃vP = e = 1eM . Finally, x̃P := ιP (̃vP ) equals S∗ι(e)θ(S∗)

x S = (S∗ × S∗)x S because ι(e) = P . Thus, after the appropriate rescaling by

dim(θP )∓ 1
4 · n

± 1
2

P = (dim(θP )/ dim(θ))∓ 1
4 , the Q-system for eN ⊂ eM coincides

with the reduced Q-system AP = (θP , wP , xP ).
The last statement is obvious by linearity. �

Corollary 4.4 If 1θ = ∑
Pi is the partition of unity into minimal projections in

Hom(θ, θ) satisfying Eq. (3.1.5), then (θ, w, x) is the direct sum of simple Q-systems
as in Eq. (3.2.2). The corresponding partition 1M = ∑

ei gives the decomposition
of M ′ ∩ M into minimal central projections, i.e., each simple extension ei N ⊂ ei M
is a representation of the extension N ⊂ M.

4.3 Irreducible Decomposition of Q-Systems

In this section, we shall characterize decompositions of ι : N → M as a direct sum
of sectors

[ι] = [ι1] ⊕ [ι2], i.e., ι(·) = s1ι1(·)s∗
1 + s2ι2(·)s∗

2

for infinite subfactors N ⊂ M .
Thus, let both N and M be factors, i.e., there are no nontrivial projections in

Hom(θ, θ) satisfying Eq. (3.1.5).
If ι(N )′ ∩ M = Hom(ι, ι) is nontrivial, then ι is a reducible homomorphism.

If e ∈ ι(N )′ ∩ M is a projection, then there is an isometry s ∈ M such
that ss∗ = e, and ιs(n) = s∗ι(n)s is a sub-homomorphism of ι. Clearly s ∈
Hom(ιs, ι).

Lemma 4.5 The homomorphism ιs : N → M is isomorphic to the embedding
eN ≡ Ne ⊂ eMe, i.e., the identical map ιe : eN → eMe.

Proof We may write eN ⊂ eMe as ss∗ι(N )ss∗ ≡ sιs(N )s∗ ⊂ s Ms∗. The claim
follows because the map Ads : M → s Ms∗ ≡ eMe is an isomorphism. �

http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
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For ιs ≺ ι one has a conjugate ιs ≺ ι, and an isometry s ∈ Hom(ιs, ι). Then
e = ss∗ ∈ Hom(ι, ι) ⊂ M and e = ss∗ ∈ Hom(ι, ι) ⊂ N are projections such that

(e × 1ι) ◦ w = (1ι × e) ◦ w, (e × 1ι) ◦ v = (1ι × e) ◦ v, (4.3.1)

and w∗ ◦ (e ×e) ◦ w = dim(ιs) ·1N , v∗ ◦ (e ×e) ◦ v = dim(ιs) ·1M , Then p = 1ι ×e
and p = e × 1ι are a pair of commuting projections ∈ Hom(θ, θ) such that

p
=

p
,

(4.3.2)

p
=

p
,

p
=

p
,

p
=

p
.

(4.3.3)

Conversely, if A = (θ, w, x) is a simple Q-system, and dimHom(id, θ) > 1,
then by Frobenius reciprocity also dimHom(ι, ι) > 1, hence ι is reducible. In order
to decompose ι, we want to characterize the projections in Hom(ι, ι) in terms of
projections in Hom(θ, θ).

Instead of characterizing ι1 ≺ ι by the pair of projections p, p satisfying
Eqs. (4.3.2) and (4.3.3), we observe that either p or p suffices: namely, from the
third relation in (4.3.3), one can express p in terms of p, and vice versa:

p = p
, p =

p
.

(4.3.4)

Expressing p in terms of p as in Eq. (4.3.4), turns Eq. (4.3.2) into another relation
for p

p = p

(4.3.5)

besides the second in (4.3.3), while the first is automatically satisfied. In the same
way, expressing p in terms of p, turns Eq. (4.3.2) into another relation for p

p = p

(4.3.6)

besides the first in (4.3.3).
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Lemma 4.6 Let A = (θ, w, x) be a simple Q-system. Let either p ∈ Hom(θ, θ) be
a projection satisfying Eq. (4.3.6) and the first of Eq. (4.3.3), or p ∈ Hom(θ, θ) a

projection satisfying Eq. (4.3.5) and the second of Eq. (4.3.3). Defining p := p

in the first case, and p := p in the second case, gives another projection such

that p and p satisfy the system Eqs. (4.3.2) and (4.3.3).

Proof We first establish that p defined from p is a projection:

p∗ = p = p =
p

= p,

p2 =
p p

=
p p

=
p

p =
p

= p,

where we have used p∗ = p and the first defining property Eq. (4.3.6) of p, and
p2 = p and the second defining property Eq. (4.3.3) of p, respectively.

That p satisfies Eq. (4.3.2), is an immediate consequence of the defining property
Eq. (4.3.6) of p. The second of Eq. (4.3.3) is trivial by associativity. It remains to
verify the last of Eq. (4.3.3):

p
=

p
=

p
= p =

p

.

The properties of p defined from p follow similarly. �

Lemma 4.7 If projections p ∈ Hom(θ, θ) and p ∈ Hom(θ, θ) satisfy Eq. (4.3.2)
and (4.3.3), then p and p commute, and P = p p is a projection satisfying
Eq. (4.1.1).

Proof Using in turn Eq. (4.3.4), the second and the last relation of Eq. (4.3.3),
one finds

p

p
=

pp
=

p

p

=
p

p
=

p

p
.

(4.3.7)

It follows that P = p p is a projection, and the relations Eq. (4.3.3) immediately
imply Eq. (4.1.1) for P . �
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Instead of characterizing either of the projections p or p ∈ Hom(θ, θ) as in
Lemma 4.6, it is also possible to characterize directly the projection P = p p ∈
Hom(θ, θ).

Proposition 4.8 A projection P ∈ Hom(θ, θ) is of the form P = p p with p and p
as in Lemma 4.6, if and only if P satisfies

= P

(4.3.8)

Proof “Only if”: we show that P = p p satisfies Eq. (4.3.8):

p
p

p
p (4.3.3)

=
p

p
p

p
=

p

p
p

p
(4.3.7)
= p

p
.

“If”:Wefirst show thatEq. (4.3.8) implies further identities.Namely,weobviously
get by the unit property:

= , and = .

(4.3.9)

Moreover, by Proposition 2.6, we have

= ⇒ = ⇒ = ,

(4.3.10)

implying

= =
(4.3.10)
=

(4.3.9)
= ,

and similarly

= .

Now, given P , we define p := (w∗ P × 1θ ) ◦ x = and p := (1θ × w∗ P) ◦ x =

. Then, obviously P = p p, and p and p satisfy the last of Eq. (4.3.3):

http://dx.doi.org/10.1007/978-3-319-14301-9_2
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= ,

(4.3.11)

hence p and p are related to each other by Eq. (4.3.4). Moreover, p obviously sat-
isfies Eq. (4.3.5) and the second of Eq. (4.3.3) by associativity and the unit property.
In view of Lemma 4.6, it remains to verify that p is a projection. Idempotency of p
is just Eq. (4.3.9), and selfadjointness of follows from Eq. (4.3.11):

= = , = = .

�

The following is the main result of this section.

Proposition 4.9 Let A = (θ, w, x) be a simple Q-system, describing a sub-
factor N ⊂ M. Let either p or p or P be a projection in Hom(θ, θ) with
properties as specified in Lemma 4.6 resp. Proposition 4.8, thus defining the
respective other two projections. Then Eq. (4.1.2) with normalization factor
1 (i.e., n P = √

dim(θP ) · 1θp ) defines a reduced Q-system AP . The sub-Q-
system AP is associated with a homomorphism ιp ≺ ι which is the range of
p ∈ Hom(ι, ι) such that ι is a direct sum ιp ⊕ ι1−p.

We will also refer to this reduced Q-system as a sub-Q-system of A.

Proof FromLemma4.6we know that p, p satisfy the systemEqs. (4.3.2) and (4.3.3).
The first and second relations of Eq. (4.3.3) state that p (resp. p) are self-

intertwiners of (θ, x) as a left (resp. right) A-module. By Proposition 3.25 for left
and right modules, we conclude that p = 1ι × e and p = e × 1ι with projections
e ∈ Hom(ι, ι), e ∈ Hom(ι, ι). In terms of the projections e and e, Eq. (4.3.2) and the
last relation of Eq. (4.3.3) read

e

w

ι
=

e

w

ι
,

e

v

ι
=

e

v

ι
.

(4.3.12)

Because M is a factor, one can write e = ss∗ with an isometry s ∈ M and define
ιs = s∗ι(·)s ≺ ι as the range of e. Similarly, ιs = s∗ι(·)s ≺ ι is the range of e.
Then ιs and ιs ≺ ι are conjugate homomorphisms, because wP = (s∗ × s∗) ◦ w,
vP = (s∗ × s∗) ◦ v solve the conjugacy relations Eq. (2.2.1):

(1ι s × v∗
P)◦(wP ×1ιs) =

ι s

ι sw

v∗

e
(4.3.12)
= ι = ι

ι s

= = 1ι s ,

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_2
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where we have used the first of Eq. (4.3.12), and similarly (1ιs × w∗
P ) ◦ (vP ×

1ιs ) = 1ιs .
Now let S = s∗ι(s), hence wP = S∗ ◦ w. We compute

ιs(vP ) = s∗ι[s∗ι(s∗)v]s = s∗ι[s∗ι(s∗ι(s∗))vs]s
= S∗θ(s∗ι(s∗))ι(vs)s = (S∗ × S∗) ◦ x ◦ S =: xP .

It remains to show that (θP = ιs ιs, wP , xP ) is the reduced Q-system. Clearly, θP =
S∗θ(·)S. With SS∗ = P = p p ∈ Hom(θ, θ), we compute

w∗
P wP = w∗ ◦ P ◦ w = Trι(e) = Trι(e) = dim(ιs) = dim(ιs) = √

dim(θP )

by Proposition 2.4, and

P◦X∗ ◦(P×P)◦X ◦P= = = = dim(ιs) ·P,

hence n P = x∗
P xP = dim(ιs) · 1θP = √

dim(θP ) · 1θP . (Contact with Corollary 4.2
is made by noting that w̃∗

P w̃P = w∗
P n P wP = √

dim(θP ) · w∗
P wP = dim(θP ).) �

Corollary 4.10 If p or p satisfy the conditions in Proposition 4.9, the same is true
for 1 − p resp. 1 − p. Thus, every simple Q-system with dimHom(id, θ) > 1 has a
decomposition into irreducible Q-systems AP with dimHom(id, θP ) = 1.

Namely, if AP is reducible, one can just continue the decomposition.
(Notice, however, that unlike in Sect. 4.2 the decomposition corresponds to a

partition of unity by pi , not by Pi = pi pi ! This reflects the obvious fact that [θ ] =
(
⊕

n[ιn])(⊕m[ιm]) is different from ⊕[θP ] 
 ⊕[ιnιn]. )
Finally, instead of characterizing the projection p = ι(e) ∈ Hom(θ, θ) satisfying

the pair of relations as in Proposition 4.9, one may also write e = ι(q)v which
is in Hom(ι, ι) iff q ∈ Hom(θ, id), and characterize the operator q. Indeed, by
Lemma 3.16, e is idempotent iff q = (q × q) ◦ x , and e is selfadjoint iff q∗ = (1θ ×
q) ◦ x ◦ w. In view of these properties, the first of the two conditions on p = θ(q)x is
equivalent to q∗ = (q ×1θ ) ◦ x ◦ w, whereas the second one is automatic. Therefore,
q ∈ Hom(θ, id) satisfying

q ≡
θ

= = =
(4.3.13)

give rise to projections e = ι(q)v ∈ Hom(ι, ι), hence p = ι(e) = θ(q)x ∈
Hom(θ, θ), hence also p ∈ Hom(θ, θ) as in the proposition, hence the sub-Q-
system.

http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_3
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Notice that the last equality in Eq. (4.3.13) is an instance of Proposition 2.6, which
applies since M is a factor (A is simple).

4.4 Intermediate Q-Systems

In this section, we shall characterize decompositions of ι : N → M as

ι = ι2 ◦ ι1

when M is a factor, i.e., intermediate vonNeumann algebras ι1(N ) between N and M .
Let N ⊂ L ⊂ M be an intermediate extension with ι = ι2 ◦ ι1, hence θ = ι1θ2ι1.

Let A = (θ, w, x) and A2 = (θ2, w2, x2) be the Q-systems for N ⊂ M and N ⊂ L ,
respectively. The projection e2 = d−1

2 ·w2w∗
2 ∈ Hom(θ2, θ2) onto idL ≺ θ2 defines a

projection P = ι1(e2) = ∈ Hom(θ, θ). The projection P satisfies the relations

Eq. (4.1.1) and

P◦w= w :
P

= d−1
2 · = ,

(4.4.1)

hence w∗ ◦ P ◦ w = w∗ ◦ w = d · 1N . It also satisfies

x∗ ◦(P×P)◦x = d−2
2 · = dAd−2

2 ·P.

Conversely, the intermediate extension is characterized by the projection P:

Proposition 4.11 Let A = (θ, w, x) be a Q-system inC ⊂ End0(N ), defining
ι : N → M of dimension dim(ι) = dA. Let P ∈ Hom(θ, θ) be a projection
satisfying Eqs. (4.1.1) and (4.4.1). Then Eq. (4.1.2) defines a reduced Q-system
AP . The intermediate Q-system corresponds to the intermediate von Neumann
algebra N ⊂ L P ⊂ M given by

L P := ι(N P)v. (4.4.2)

We will also refer to this reduced Q-system as intermediate Q-system of A.

Remark 4.12 A similar characterization of intermediate subfactors by projections
has been given for the type II case in [2].

http://dx.doi.org/10.1007/978-3-319-14301-9_2
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Remark 4.13 The “normalization intertwiner”n P ∈ Hom0(θP , θP ) as inLemma4.1
will in general not be a multiple of 1θP , or equivalently, x∗ ◦ (P × P) ◦ x will
not be a multiple of P . Because of Corollary 3.6 and Lemma 3.16, this can only
occur when L P is not a factor. We shall present an example below (Example 4.14).
On the other hand, when dimHom(id, θP ) = 1, then n P ∈ Hom0(θP , θP ) is
trivially a multiple of 1θP . In particular, when N ⊂ M is irreducible, hence
dimHom(id, θ) = 1, then N ⊂ L P is irreducible, and L P is a factor. We also have:
if n P ∈ Hom0(θP , θP ) = μ · 1θP , then μ = dim(θP )/dA, because by Eq. (4.4.3),
r∗(P × P)r = r∗(1θP × P)r = Trθ (P) = dim(θP ), while on the other hand,
by Eq. (4.4.1), r∗(P × P)r = w∗x∗(P × P)xw = μ · w∗ Pw = μ · w∗w =
μ · dA.

Proof of Proposition 4.11 We first observe that by the assumed relations,

(4.4.1)
=

(4.1.1)
=

(4.4.1)
= .

(4.4.3)

Thus, by Proposition 2.4,

r∗ ◦ (P × P) ◦ r = r∗ ◦ (1θ × P) ◦ r = Trθ (P) = dim(θP ).

Hence, by Corollary 4.2, AP = (θP , wP , xP ) is a reduced Q-system.
We write ι(n) ≡ n in the following.
To show that L P = N Pv is a subalgebra of M , we compute (n1Pv)(n2Pv) =

n1Pθ(n2P)xv = n1θ(n2)Pθ(P)xv = n1Pθ(n2)x Pv, using Eq. (4.1.1) in the last
step. To show that L P is a *-algebra,we compute (n Pv)∗ = r∗vPn∗ = r∗θ(Pn∗)v =
r∗ Pθ(n∗)v = r∗θ(n∗)Pv, using Eq. (4.4.3) in the third step. L P = N · Pv is clearly
weakly closed, and it is contained in N · v = M .

We now compute the Q-system for N ⊂ L P . Let P = SS∗ with S ∈ N , S∗S =
1N , and put w̃P := S∗w and ṽP := S∗v ∈ L P . Then the embedding ιP : N → L P

is given by

ιP (n) ≡ n = nw∗v = nw∗ Pv = nw∗SS∗v = nw̃∗
P ṽP .

The conjugate map
ιP (·) := S∗ι(·)S

is a homomorphism by Eq. (4.1.1), because every element of L P is of the form
n Pv = nS̃vP with n ∈ N .

We claim that the pair (w̃P , ṽP ) solves the conjugacy relations Eq. (2.2.1) for
(ιP , ιP ). Certainly, w̃P ∈ Hom(idN , ιP ιP ), because

ιP ιP (n) = S∗ι(n)S = S∗θ(n)S = θP (n).

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_2
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Furthermore, ṽP ∈ Hom(idL P , ιP ιP ) because ṽP n = S∗vn = S∗θ(n)v =
S∗θ(n)SS∗v = θP (n)S∗v = θP (n)̃vP , and ṽP ṽP = S∗vS∗v = S∗θ(S∗)xv =
S∗θ(S∗)x SS∗v = x̃P ṽP = ιP (̃vP )̃vP , using Eq. (4.1.1) in the third step. The conju-
gacy relations then follow from Eq. (4.1.1).

Finally, ι(̃vP ) = S∗ι(S∗v)S = S∗θ(S∗)x S = x̃P . Thus, after the appropriate
rescaling as in Corollary 4.2, the Q-system for N ⊂ L P coincides with the reduced
Q-system AP = (θP , wP , xP ). �

Example 4.14 We give here a counterexample, showing that n P is not neces-
sarily a multiple of 1θP .

Let N ⊂ L ⊂ M , where N and M are factors, and L = ⊕
i Li a finite direct

sum of factors. Let ι : N → M given by [ι] = ⊕
i [ι2i ι1i ] where ι1i : N → Li

and ι2i : Li → M . Similarly, [ι] = ⊕
i [ι1i ι2i ] where ι1i : Li → N and

ι2i : M → L1. We choose orthonormal isometries si ∈ Hom(ι2i ι1i , ι) and ti ∈
Hom(ι1i ι2i , ι). The canonical endomorphism is [θ ] = [ιι] = ⊕

i j [ι1i ι2i ι2 j ι1 j ].
The intermediate embedding is described by ι1 = ⊕

i ι1i : N → L , as in
Sect. 2.3, with canonical endomorphism [θ1] = ⊕

i [ι1i ι1i ] ≺ [θ ].
For N ⊂ M we construct a standard Q-system as usual (cf. Lemma 2.1):

with standard pairs (w1i , w1i ) for ι1i (N ) ⊂ Li and (w2i , w2i ) for ι2i (Li ) ⊂ M ,
we have the “composite” standard pairs as in Lemma 2.1(i)

(wi = ι1i (w2i )w1i , wi = ι2i (w1i )w2i )

for ιi (N ) = ι2i ι1i (N ) ⊂ M . Then w ∈ Hom(idN , ιι) and w ∈ Hom(idM , ιι)

given by

w= ∑
i
(ti × si)◦wi = ∑

i

ti si

wi

, w= ∑
i
(si × ti)◦wi = ∑

i

si ti

wi

form a standard pair for ι : N → M , hence (θ, w, x) is the Q-system for
ι(N ) ⊂ M , where

x = (w) = ∑
i, j,k

i it j sk

t∗j s∗
k

.

The projection P ∈ Hom(θ, θ) onto θ1 ≺ θ is given by

P= ∑
i
(ti × si)◦(1 1i ×E2i ×1 1i)◦(ti × si) = ∑

i
dim( 2i)−1 ·

ti si

t∗i s∗
i

http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_2
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where E2i = dim(ι2i )
−1 · w2i w∗

2i ∈ Hom(ι2i ι2i , ι2i ι2i ) is the projection onto
idLi ≺ ι2i ι2i . Then, one computes

x∗ ◦ (P × P) ◦ x =
∑

i

dim(ι1i )

dim(ι2i )
· (ti × si ) ◦ (1ι1i × E2i × 1ι1i ) ◦ (ti × si ).

Since dim(ι1i )
dim(ι2i )

in general depends on i , this is not a multiple of P in general. In
contrast, the normalization condition in [3] (cf. Remark 2.8) would be satisfied.

The following Lemma states how modules restrict to modules of intermediate
Q-systems:

Lemma 4.15 If A is a Q-system, and AP is an intermediate Q-system, then a (left)
A-module m = (β, m) restricts to a (left) AP -module

mP = (β, m P ) with m P := dim(θP )
1
4 · (n

− 1
2

P S∗ × 1β) ◦ m,

where S∗S = 1, SS∗ = P. If n P ∈ Hom0(θP , θP ) is a multiple of 1θP , then the

normalization factor equals dim(θP )
1
4 · n

− 1
2

P = (dA/dAP )
1
2 . If m is standard, then

mP is standard. The analogous statements hold for right modules and bimodules.

Proof One easily verifies, using Eq. (4.1.1), that the defining unit and representation
properties of a module are satisfied. As for standardness of mP , one has

n−1
(3.4.2)
= ,

with

(4.4.3),(4.1.1)
= =

n−1
= n

n−1
=

(4.4.1)
= ,

where in the second step, we have used that n−1 ∈ Hom0(θP , θP ), and the definition

of n P and Eq. (4.4.1) in the third step. Thus, m∗
P m P = dim(θP )

1
2 · 1β by Eq. (3.4.1).

Because dim(θP )
1
2 = dAP , this is the proper normalization of a standard module in

accord with Lemma 3.22.
If n P ∈ Hom0(θP , θP ) is a multiple of 1θP , then n P = dim(θP )/ dim(θ)

1
2 · 1θP

by Remark 4.13, giving the stated normalization factor.
The right module and bimodule cases are proven similarly. �

http://dx.doi.org/10.1007/978-3-319-14301-9_2
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
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4.5 Q-Systems in Braided Tensor Categories

Let now C ⊂ End0(N ) be in addition be braided. The braiding is denoted by

ερ,σ ≡ ρ σ
∈ Hom(ρσ ,σρ ).

We also write ε+
ρ,σ ≡ ερ,σ, and ε−

ρ,σ ≡ ε∗
σ,ρ for the opposite braiding.

Definition 4.16 If C is a braided C* tensor category with braiding ε ≡ ε+, then
C opp is the braided C* tensor category, which coincides with C as a C* tensor
category, equipped with the opposite braiding ε−.

Remark 4.17 This definition is tantamount to the more fundamental definition (as
in Sect. 3.3), according to which the monoidal product is regarded as a functor × :
C ×C → C , and C opp is the category equipped with the opposite monoidal product
σ ×oppρ = ρ × σ . The braiding is a natural transformation between the functors ×
and ×opp, and its inverse : ×opp → × is the opposite braiding. The equivalence can
be seen “by left-right reflection of every diagram”.

The cases of interest inQFT areC = C DHR(A ), the categories ofDHR endomor-
phisms of local quantum field nets. These categories are braided categories, where
the DHR braiding is defined in terms of unitary “charge transporters” changing the
localization of DHR endomorphisms, as exposed Sect. 5.1.3. In low dimensions, the
braiding and the opposite braiding arise, depending on the choice of a connected
component of the spacelike complement. In particular, for a two-dimensional con-
formal net A2 = A+ ⊗ A− arising as a product of its two chiral subnets, we have
C DHR(A2) = C DHR(A+) � C DHR(A−)opp, cf. Sect. 5.2.2.

Definition 4.18 If ρ ∈ C , then the operator

LTrρ (ερ ,ρ) ≡ ρ
= RTrρ (ερ ,ρ) ∈ Hom(ρ ,ρ )

is called the twist. The twist is a unitary self-intertwiner [4, afterLemma 4.3],
[5, Proposition 2.4]; in particular, it is a complex phase denoted κρ if ρ is irreducible.

Example 4.19 (Braidingof the Ising category)The tensor categoryExample 3.1
can be equipped with four inequivalent braidings.

The braiding of the DHR category of the Ising model is specified by

ετ,τ = −1, εσ,σ = κ−1
σ · rr∗ + κ3

σ · t t∗, εσ,τ = ετ,σ = −iu,

where κσ = exp 2π i
16 .

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_5
http://dx.doi.org/10.1007/978-3-319-14301-9_5
http://dx.doi.org/10.1007/978-3-319-14301-9_3
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(This braiding and its opposite, and a second pair of braidings obtained
by replacing κσ by −κσ, exhaust all possibilities. The second tensor category
mentioned in Example 3.1 also admits four inequivalent braidings.)

Definition 4.20 A Q-system (θ, w, x) in a braided tensor category is called com-
mutative if

εθ ,θ ◦x= x : =
(4.5.1)

Proposition 4.21 ([6]) The canonical Q-system (cf. Proposition 3.19) of a
braided C* tensor category is a commutative Q-system in the Deligne product
C � C opp.

In local quantum field theory, commutative Q-systems describe local extensions
of a given local quantum field theory [6], cf. Sect. 5.2.1.

Recall that the DHR category of a two-dimensional QFT which is the tensor
product A2 = A+ ⊗ A− of two chiral QFTs, is C DHR(A2) = C DHR(A+) �
C DHR(A−)opp as a braided category. Therefore, if A+ and A− are isomorphic, the
2D extension associated with the canonical Q-system in C DHR(A ) �C DHR(A )opp

is always a local QFT.

4.6 α-Induction

If A = (θ, w, x) is a Q-system in a braided category, then m = (β = θρ, m =
θ2(ε±

θ,ρ)x (2)) is a standard A-A-bimodule. The formula Eq. (3.6.3) for the associated
endomorphism ϕ : M → M becomes

ϕ(ι(n)v) = ι(ρ(n)ε±
θ,ρ)v,

which is known as the α-induction of ρ ∈ End0(N ) to α∓
ρ ∈ End0(M), originally

defined by ι ◦ α±
ρ = Adερ,θ ◦ ρ ◦ ι [6–9].

The endomorphisms α±
ρ extend the endomorphism ρ ∈ End(N ):

α±
ρ ◦ ι = ι ◦ ρ, (4.6.1)

and themappings ρ �→ α±
ρ , t → ι(t) are functorial, namely if t ∈ Hom(ρ1, ρ2), then

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_5
http://dx.doi.org/10.1007/978-3-319-14301-9_3
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ι(t) ∈ Hom(α±
ρ1

, α±
ρ2

). (4.6.2)

However, ι : Hom(ρ1, ρ2) → Hom(α±
ρ1

, α±
ρ2

) is in general not surjective. E.g., α±
ρ

may possess self-intertwiners (i.e., α±
ρ is reducible), while ρ is irreducible.

Corollary 4.22 (i) One has α±
ρ = α±

ρ and dim(α±
ρ ) = dim(ρ).

(ii) If (θ, w, x) is a Q-system in End0(N ), then (α±
θ , ι(w), ι(x)) is a Q-system in

End0(M).

Proof Since conjugacy and dimension are defined in terms of intertwiners and their
algebraic relations, (i) follows from Eq. (4.6.2). Similarly, (ii) follows because also
Q-systems are defined in terms of intertwiners and their algebraic relations. �

If the category C is modular (cf. Sect. 4.11), then the matrices

Zρ,σ = dimHom(α−
ρ , α+

σ ) (4.6.3)

are “modular invariants”, i.e., they commute with the unitary representation of the
modular group SL(2,Z) defined by the braiding [10–12], and have many other
remarkable properties [11–13] that can, not least, be exploited for classifications
and actual computations.

4.7 Mirror Q-Systems

Let N ⊗ Ñ ⊂ M be an irreducible finite-index subfactor, and A = (Θ, W, X) its
Q-system. The subfactor is called a canonical tensor product subfactor (CTPS), if Θ

has the form
[Θ] =

⊕
Zρ,̃σ[ρ] ⊗ [̃σ],

where ρ ∈ End0(N ) and σ̃ ∈ End0(Ñ ) are irreducible, and Zρ,̃σ are multiplicities.
The following proposition was derived in [10, Theorem 3.6]:

Proposition 4.23 The following are equivalent:

(i) [id] ⊗ [̃σ] ≺ Θ implies [̃σ] = [idÑ ], and [σ] ⊗ [id] ≺ Θ implies [σ] = [idN ].
(ii) It holds

(N ⊗ 1)′ ∩ M = (1 ⊗ Ñ ), (1 ⊗ Ñ )′ ∩ M = (N ⊗ 1).

(iii) There is a bijection F between the set Δ of sectors [ρ] and the set Δ̃ of sectors
[̃σ] contributing to Θ such that

[Θ] =
⊕

[ρ] ⊗ F[ρ];
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Δ and Δ̃ are closed under fusion (i.e., the product [ρ1][ρ2] decomposes into
irreducibles in Δ resp. Δ̃), and F is an isomorphism of fusion rings.

Under stronger conditions (the tensor categories generated by the endomorphisms
ρ ∈ [ρ] ∈ Δ and ρ̃ ∈ [ρ̃] ∈ Δ̃ are braided and modular, and A is commutative),
the isomorphism of fusion rings is even an isomorphism of braided tensor cate-
gories [14].

The canonical Q-systems in C �C opp with [Θ] = ⊕[ρ] ⊗ [ρ] and F[ρ] = [ρ],
cf. Corollary 3.21, are examples fulfilling the properties in Proposition 4.23.

Xu [15] has strengthened the statement:

Proposition 4.24 Assume that the equivalent conditions of Proposition 4.23 are
fulfilled. Let C ⊂ End0(N ) be the full tensor subcategory generated by endo-
morphisms ρ ∈ [ρ] ∈ Δ, and similarly C̃ ⊂ End0(Ñ ). If C and C̃ are
braided categories, hence A is a Q-system in the braided category C � C̃ , the
α-induction of ρ ⊗ σ̃ ∈ C ⊗ C̃ is well-defined (choosing α+ for definiteness). Then,
one has

ι(Hom(ρ1, ρ2) ⊗ 1) = Hom(αρ1⊗id, αρ2⊗id) (4.7.1)

(and similar for ρ̃), rather than just the inclusion ⊂ according to Eq. (4.6.2). More-
over, if [ρ̃] = F[ρ], then αid⊗ρ̃ and αρ⊗id are unitarily equivalent. If A is commu-
tative, the unitary u ∈ Hom(αρ⊗id, αid⊗ρ̃ ) can be chosen such that

(u × u) ◦ ι(ερ,ρ ⊗ 1) = ι(1 ⊗ ε∗̃
ρ,ρ̃) ◦ (u × u). (4.7.2)

From this, he concludes the existence of the “mirror extension” defined by a
“mirror Q-system” in C̃ associated with a Q-system in C , as follows.

Assume that the equivalent conditions of Proposition 4.23 are fulfilled. If (θ, w, x)

is a Q-system in C , there is θ̃ such that αid⊗θ̃ and αθ⊗id are unitarily equivalent, i.e.,
[θ̃] = F[θ ]. Let u ∈ Hom(αθ⊗id, αid⊗θ̃ ) unitary. Then, by Eq. (4.7.1),

u ◦ ι(w ⊗ 1) ∈ u ◦Hom(id, αθ⊗id) = Hom(id, αid⊗θ̃ ) = ι(1 ⊗ Hom(id, θ̃ )),

and similarly
(u × u) ◦ ι(x ⊗ 1) ◦ u∗ ∈ ι(1 ⊗ Hom(θ̃ , θ̃2)).

This defines w̃ and x̃ such that u ◦ ι(w ⊗ 1) = ι(1 ⊗ w̃) and (u × u) ◦ ι(x ⊗ 1) ◦ u∗ =
ι(1 ⊗ x̃).

Corollary 4.25 ([15, Theorem 3.8]) (θ̃ , w̃, x̃) is a Q-system in C̃ . If A = (Θ, W, X)

is commutative, then (θ̃ , w̃, x̃) is commutative iff (θ, w, x) is commutative.

Proof The defining relations for (θ̃ , w̃, x̃) to be a Q-system are satisfied because by
Corollary 4.22 (αθ⊗id, ι(w ⊗ 1), ι(x ⊗ 1)) is a Q-system in End0(M), and hence
(αid⊗θ̂ , u ◦ ι(w ⊗ 1), (u × u) ◦ ι(x ⊗ 1) ◦ u∗) is an equivalent Q-system in End0(M).
If A is commutative, then Eq. (4.7.2) proves the second statement. �

http://dx.doi.org/10.1007/978-3-319-14301-9_3
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4.8 Centre of Q-Systems

Let A = (θ, w, x) be a Q-system of dimension dA in a braided C* category C ,
r = x ◦ w, and m = (β, m) an A-A-bimodule. Define Q±

m ∈ Hom(β, β) by

±
m := (r∗ ×1β )◦(1θ ×ε±

β ,θ )◦m= (1β × r∗)◦(ε∓
θ ,β ×1θ )◦m : +

m =
β

m
θ

.

Lemma 4.26 (cf. [16]) P±
m := d−1

A · Q±
m are projections. For m = A the trivial

A-A-bimodule, the projections P± ≡ P±
A satisfy the relations

P+

= P+ ,
P−

= P− .

(4.8.1)

Proof We prove idempotency and selfadjointness of P+
m , using the representation

property of the bimodule, the associativity of the Q-system, and the unitarity of the
twist (cf. Definition 4.18) in the last step:

β

= = = = dA · ,

and

= = .

We then prove the relation for P+ ≡ P+
A :

= = = = ,

where we have several times used associativity of the Q-system. The proofs for
P− are similar. �

Lemma 4.27 (cf. [16]) The projections P±
A satisfy Eqs. (4.1.1) and (4.4.1). Hence,

they define intermediate extensions by Proposition 4.11; the corresponding reduced
Q-systems (θ±

P , w±
P , x±

P ) are called left resp. right centre C±[A].
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Proof We prove Eq. (4.4.1) by

= = ≡ = dA · ,

using selfadjointness of P±, and the unit property and standardness of A. In order
to establish Eq. (4.1.1) (for P+

A ), we compute

= =
(4.8.1)
= = dA · ,

using associativity in the second step, Eq. (4.8.1) in the third step, and the Frobenius
property and standardness in the last step. Thus, one of the three projections is
redundant. Redundancy of the other two is obtained similarly. The other statements
follow from Proposition 4.11. �

The left and right centre projections can be characterized as the maximal ones
satisfying Eq. (4.8.1):

Proposition 4.28 ([16]) Among all projections p ∈ Hom(θ, θ) satisfying
Eq. (4.8.1), P±

A are the maximal ones.

Proof For P+
A :

=
(4.8.1)
= = dA ·

Thus, p < P+
A , concluding the proof. �

Corollary 4.29 The left and right centres of a Q-system are maximal commu-
tative intermediate Q-systems. A Q-system A is commutative iff P+

A = 1θ iff
P+

A = 1θ (i.e., C±[A] = A).

Proof Follows from Propositions 4.28 and 4.11 because by definition, a Q-system
is commutative iff 1θ satisfies Eq. (4.8.1). �

This result is of interest in the applications to local QFT, where the intermediate
extension associated with the centre projections can be identified as certain relative
commutants of local algebras [1], cf. Sect. 5.2.3.

http://dx.doi.org/10.1007/978-3-319-14301-9_5
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4.9 Braided Product of Q-Systems

Definition 4.30 Let A = (θA, wA, xA) and B = (θB, wB, xB) be two Q-systems
in a braided C* tensor category C . Then there are two natural product Q-systems,
called braided products and denoted as A ×± B, given by the object θ = θAθB and
the interwiners

w=wA×wB ≡
wA wB

A B

, x± =(1θA × ±
θA,θB ×1θB)◦(xA×xB) : x+ =

xA xB
.

The extension N ⊂ M± corresponding to the braided product of two Q-systems is
called the braided product of extensions.

Notice that dim Hom(idN , θAθB) = dimHom(θA, θB) can in general be larger
than 1, even if dim Hom(idN , θA) = dimHom(idN , θB) = 1. Thus, the braided
product of extensions is in general not irreducible, and not even a factor, even if both
extensions are irreducible. We shall return to this issue below.

One can easily see that the braided product A ×± B contains both A and B
as intermediate Q-systems, via the natural projections d−1

A · (wAwA∗ × 1θB) onto
θA ≺ θAθB and d−1

B · (1θA × wBwB∗) onto θB ≺ θAθB, respectively.
Expressed in terms of the corresponding extensions, the braided products N ⊂

M± of extensions N ⊂ MA, N ⊂ MB contain both MA and MB as intermediate
extensions:

MA⊂ ⊂
N M±⊂ ⊂MB

(4.9.1)

More precisely, we have

Lemma 4.31 The braided products N ⊂ M± of two extensions N ⊂ MA =
ιA(N )vA, N ⊂ MB = ιB(N )vB are generated by the subalgebra N and the generator
v± = vAvB, where vA and vB are embedded into M± as

vA = ι ±(θ A(wB∗))v± =
v

ι
BA , vB = ι ±(wA∗)v± =

v

ι
BA .

Thus M± contain both MA = ι±(N )vA and MB = ι±(N )vB as intermediate alge-
bras. In M±, the generators vA and vB satisfy the relations

vBvA = ι(ε±
θA,θB) · vAvB.

Wecan relate the braided product ofQ-systemswith theα-induction ofQ-systems,
Corollary 4.22, as follows.



62 4 Q-System Calculus

Proposition 4.32 Let ιA : N → MA and ιB : N → MB, and A =
(θA, wA, xA) and B = (θB, wB, xB) the associated Q-systems in a braided
C* tensor category C ⊂ End0(N ). Denote by

α±(B) = (α±
θB , ιA(wB), ιA(xB))

the Q-system in End0(MA) obtained from B by α-induction along A
(Corollary 4.22(ii)). Then α±(B) is the Q-system for the extension MA ⊂ M∓
in the diagram Eq. (4.9.1).

More precisely, if we write the extensions corresponding to the braided
products A ×± B as ι± : N → M±, and the extension corresponding to
α±(B) as jB± : MA → Mα±, such that α±

θB = jB±jB±, then we have
Mα± = M∓ and

ι∓ = jB± ◦ ιA.

Proof It suffices to verify that the composite Q-system according to Lemma 2.1(i)
arising by the composition of embeddings ιA : N → MA and jB± : MA → Mα±,
coincides with A ×∓ B = (Θ, W, X∓). Indeed, by the definitions and Eq. (4.6.1)
we have

ιAjB± ◦ jB±ιA = ιAα±
θB ιA = ιAιAθB = θAθB = Θ,

ιA(ιA(wB))wA = θ1(w
B)wA = W,

and, denoting the generator of α±(B) by v±, such that jB±(v±) = ιA(xB):

ιAjB±[
jB±(vA)v±] = ιA

[
α±

θB(vA)ιA(xB)
] = ιA

[
ιA(ε∓

θA,θB)vAιA(xB)
]

= θA(ε∓
θA,θB)xAθA(xB) = X∓. �

Of course, a similar result is true for the α-induction of the Q-system A to a
Q-system in MB, namely α±(A) is the Q-system for MB in the braided product of
extensions corresponding to B ×∓ A, which is in turn unitarily equivalent to the
braided product of extensions corresponding to A ×± B.

As mentioned before, the braided product of two extensions may fail to be
irreducible, or to be a factor, even if both extensions are irreducible. For the
braided product of two commutative extensions, the centre equals the relative
commutant. This result is of particular interest in the applications to local QFT,
where phase boundaries are described by the braided product of two local
extensions [1].

http://dx.doi.org/10.1007/978-3-319-14301-9_2
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Proposition 4.33 Let A = (θA, wA, xA) and B = (θB, wB, xB) be two
commutative Q-systems in a braided category, and A ×± B = (θ, w, x) the
product Q-system (with either braiding). Let N ⊂ M be the corresponding
braided product of extensions. Then the centre M ′∩M of M equals the relative
commutant ι(N )′ ∩ M.

Proof In view of Lemma 3.16, we have to show that every q ∈ Hom(θAθB, idN )

satisfies Eq. (3.2.4). Let q ∈ Hom(θAθB, idN ). Then

q

A B

=
q

A B

,
q

A B

=
q

BA

.

If both Q-systems are commutative, the two expressions are the same. �

4.10 The Full Centre

Definition 4.34 ([16])Let A = (θ, w, x) be a Q-system in C . It trivially gives rise
to aQ-systemA⊗1 = (θi ⊗idN , w⊗1N , x⊗1N ) inC �C opp. LetR be the canonical
Q-system in C � C opp. Then the full centre of A is defined as the commutative Q-
system in C � C opp given by the left centre of the ×+-product

Z [A] = C+[(A ⊗ 1) ×+ R]. (4.10.1)

Because dimHom(id, (θ ⊗ id)Θcan) = dimHom(id, θ), and the centre projection
can only decrease multiplicities, the full centre is irreducible if A is irreducible. For
a stronger statement, see Proposition 4.37.

Proposition 4.35 ([17, Proposition 4.18]) The full centre equals the
α-induction construction in [10].

This result was conjectured in [18], and proven in [17]. In fact, it is rather easy to
show that both the α-induction construction and the full centre give

[Θ] =
⊕

Zρ,σ [ρ] ⊗ [σ]

with themultiplicities Zρ,σ givenbyEq. (4.6.3);whereas the equality of the respective
intertwiners X is more difficult to establish.

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
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Remark 4.36 The α-induction construction [10] was originally found as a
construction of two-dimensional local conformal QFT models out of chiral data,
cf. Sect. 5.2.4. It is in fact a construction of commutative Q-systems in C � C opp

out of a Q-system in C , using the α-induction (Sect. 4.6) to extend ρ ∈ End(N )

to α±
ρ ∈ End(M). In the simplest case, when the Q-system in C is trivial or

Morita equivalent to the trivial Q-system, then one obtains the canonical Q-system
Proposition 3.19 in C � C opp. A more general analysis is given in [11, 12, 19].

Proposition 4.37 Let A be a Q-system in a braided C* tensor category. The
full centre Z [A] is irreducible iff A is simple, i.e., iff the extension described by
A is a factor (cf. Corollary 3.40). More generally, the following linear spaces
have equal dimension:

(i) Hom(id ⊗ id, Z [A])
(ii) Hom(id, C+[A]) and Hom(id, C−[A])
(iii) The centre M ′ ∩ M of the extension described by A.

Proof The projection defining the full centre is a multiple of

σ σ
⊗

σ
.

Therefore, for the multiplicity of the identity in Z [A], we can replace the canonical
Q-systemR by the trivial Q-system id⊗id inC �C opp. Then trivially, dimHom(id⊗
id, Z [A]) = dimHom(id ⊗ id, C+[A ⊗ id]) = dimHom(id, C+[A]). Writing the
centre projection as p+

A = SS∗, we have t ∈ Hom(id, C+[A]) ⊂ Hom(id, θP ) iff
tn = θP (n)t = S∗θ(n)St iff q = St ∈ Hom(id, θ) satisfies qn = Pθ(n)q = Pqn
for all n ∈ N , i.e., q = Pq. Then Lemma 3.16(iii) together with the following
Lemma prove the claim. �

Lemma 4.38 Let A be a Q-system in a braided C* tensor category, and P± ≡ p+
A

its centre projections. Then q ∈ Hom(id, θ) satisfies q P+ = q iff q P− = q iff q
satisfies Eq. (3.2.4).

Proof We have

qP+ = d−1
A · = d−1

A · = d−1
A · = qP−.

If q P± = q, then q satisfies Eq. (3.2.4) (using associativity):

q
= d−1

A · = d−1
A · = d−1

A · =
q
.

http://dx.doi.org/10.1007/978-3-319-14301-9_5
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
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Conversely, if q satisfies Eq. (3.2.4), then

qP+ = d−1
A · = d−1

A · = = q.

�

4.11 Modular Tensor Categories

A C* tensor category with finitely many inequivalent irreducible objects (denoted
ρ, σ, τ, etc.), all of finite dimension, is called rational. In a braided rational C* tensor
category, one can introduce the matrices

Sσ ,τ := dim( )−
1
2 · σ τ = Sτ ,σ , T 0

σ ,τ :=
δσ ,τ

dim(τ )
· τ ≡ δσ ,τ ·κτ ,

where dim(C ) = ∑
ρ dim(ρ)2 is the global dimension Eq. (3.0.1), and κτ is the twist

(Definition 4.18).

Definition 4.39 A braiding of a tensor categoryC is called non-degenerate if there
is no nontrivial sector [ρ] such that ε+

ρ,σ = ε−
ρ,σ for all σ ∈ C . A braided rational C*

tensor category is called modular, if the symmetric matrix S is invertible.

Proposition 4.40 ([20]) A braided rational C* tensor category is modular if and
only if it is non-degenerate. In this case, the matrix S is unitary, and there is a complex
phase ω (unique up to a third root of unity) such that the matrices S and T := ω · T 0

form a unitary representation of the modular group SL(2,Z):

(ST −1)3 = S2, S4 = E .

Moreover, Sσ,τ = Sσ,τ = Sσ,τ, i.e., the central element S2 of SL(2,Z) is represented
by the conjugation matrix C.

Recall that dim(C )
1
2 = dR is also the dimension of the canonical Q-system in

C � C opp (Proposition 3.19). By considering the id-id-component of the equation
T −1ST −1ST −1 = S, one finds that ω3 = ∑

τ κ−1
τ dim(τ)2/dR.

All the braidings mentioned in Example 4.19 are non-degenerate, giving rise to
eight inequivalent modular categories associated with the same “fusion rules” of
three irreducible sectors.

Lemma 4.41 For τ and σ irreducible, one has in a modular category

RTrσ (εσ ,τετ ,σ ) ≡ τ
σ =

dR ·Sτ ,σ
dim(τ )

·1τ = LTrσ (ε∗
σ ,τ ε∗

τ ,σ ).

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
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Proof Clearly, RTrσ(εσ,τετ,σ) is a multiple of 1τ. Thus, one can compute the
coefficient by applying Trτ, where Trτ(1τ) = dim(τ). Similar for the second equa-
tion. �

Proposition 4.42 (The “killing ring”) For ρ an object of C , consider ρ ⊗ id as an
object of C � C opp. If C is modular, then

ρ ⊗id
Θ = d2

R ·Eid =
ρ ⊗id
Θ ,

where Θ is the endomorphism of the canonical Q-system, Corollary 3.21, and

Eid = ∈ Hom(ρ, ρ) is the projection on the identity component id ≺ ρ

(which is zero if id is not contained in ρ).

Proof If τ is irreducible, then

τ ⊗id
Θ = ∑

σ

τ
σ ⊗ σ = ∑

σ

dR ·Sτ ,σ
dim(τ )

·1τ ·dim(σ ).

Then, dim(σ) = dR · Sσ,id = dR · Sσ,id and unitarity of S yield d2
R if τ = id and zero

otherwise. If ρ is reducible, then write 1ρ = ∑
τ Eτ where Eτ ∈ Hom(ρ, ρ) are the

projections on the irreducible τ ≺ ρ. Under the “killing ring”, only τ = id survives.�

We can now see that it was essential to choose matching signs in the definition
Definition 4.34 of the full centre:

Corollary 4.43 For A an irreducible Q-system in C and R the canonical Q-system,
one has

C−[(A ⊗ 1) ×+ R] = C+[(A ⊗ 1) ×− R] = R.

Proof Byusing Proposition 4.42 and the fact thatR is commutative, one can compute
the trace Tr(p±) of the respective centre projections of (A ⊗ 1) ×∓ R. The result is
Tr(p±) = d2

R. On the other hand, the projection pR onto the intermediate Q-system
R = (1 ⊗ 1) ×∓ R ≺ (A ⊗ 1) ×∓ R satisfies Eq. (4.8.1), hence pR < p± by
Proposition 4.28. Since by Proposition 2.4, Tr(pR) = dim(Θcan) = d2

R, the claim
follows. �

4.12 The Braided Product of Two Full Centres

We assume C to be modular.
The following Theorem 4.44 provides the minimal central projections for the

braided product of two commutative Q-systems which arise as full centres. By way
of preparation of this result, let us compile several equivalent ways of describing the
centre.

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_2
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Recall that the centre M ′ ∩ M of the extension corresponding to the braided
product of two commutative Q-systems equals the relative commutant ι(N )′ ∩
M = ι(Hom(ΘAΘB, id))V by Lemma 3.16 and Proposition 4.33. The space
Hom(ΘAΘB, id) is isomorphic to Hom(ΘB,ΘA) by Frobenius reciprocity. Thus,
there is a linear bijection

χ : Hom(Θ B,Θ A) → M ∩M, χ(T ) := ι RA∗ ◦(1Θ A ×T ) V =
T

V

ι

BA

(4.12.1)
with inverse

χ−1(·) = [1ΘA × (W ∗ ◦ ι(·))] ◦ RA.

Notice also that ι maps the centre into Hom(ΘAΘB,ΘAΘB):

ιχ (T )= 1Θ AΘ B × RA∗ ◦(1Θ A ×T ) ◦X = T

A B

A B

(4.5.1)
= T

A B

A B

≡ T

B

A

where we have used commutativity of B, and are freely appealing to Frobenius
reciprocity in the last way of drawing the diagram.

Then, one easily verifies that

χ(T1) ◦ χ(T2) = χ(T1 ∗ T2), ιχ(T1) ◦ ιχ(T2) = ιχ(T1 ∗ T2),

where T1 ∗T1 is the commutative “convolution” product on Hom(ΘB,ΘA)with unit
W AW B∗:

T1 ∗T2 := T1 T2
(4.5.1)
= T1 T2 = T2 T1 , T = T = T .

(4.12.2)
Likewise, the adjoint is given by

χ(T )∗ = χ(F(T )), ιχ(T )∗ = ιχ(F(T )),

where F is the antilinear Frobenius conjugation on Hom(ΘB,ΘA)

F(T ) = T ∗ Prop. 2.6
= T ∗ ∈ Hom(Θ B,Θ A).

http://dx.doi.org/10.1007/978-3-319-14301-9_3
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Therefore, finding the minimal projections Em ∈ M ′ ∩ M is equivalent to finding
the minimal projections Im ∈ Hom(ΘB,ΘA) w.r.t. the convolution product, i.e., to
solving the system

self-adjointness I ∗
m = F(Im),

idempotency Im ∗ I ′
m = δmm′ · Im, (4.12.3)

completeness
∑

m

Im = W AW B∗.

Minimality is ensured if the number of Im exhausts the dimension of Hom(ΘB,ΘA).
We therefore have to solve these equations by a basis Im of Hom(ΘB,ΘA), and put

Em = χ(Im). Obviously, then also Pm = ι(Em) = Im

B

A

∈ Hom(ΘAΘB,

ΘAΘB) will be projections.
The following theorem gives the solution to Eq. (4.12.3), where Im are labelled

by the irreducibe A-B-bimodules m inC . This result is of great interest for boundary
conformal QFT: it provides a bijection between chiral bimodules and phase bound-
aries [1]. It therefore establishes the link between our algebraic QFT approach to
phase boundaries, and the TFT approach by [21–24]. The fact that the central pro-
jections for the braided product extension of two full centre Q-systems in C �C opp

are labelled by bimodules inC , means in physical terms that the boundary conditions
between two maximal local two-dimensional extensions is fixed by chiral data.

Theorem 4.44 Let A and B be two simple Q-systems in a modular tensor
category C , and let Z [A] = (ΘA, W A, XA) and Z [B] = (ΘB, W B, XB) be
their full centre Q-systems in C � C opp. Let N ⊂ M be the extension defined
by either of the product Q-systems Z [A]×± Z [B]. Then M has a centre given
by M ′ ∩ M = ι(N )′ ∩ M = Hom(ι, ι). The minimal central projections Em
can be characterized as follows.

The irreducible A-B-bimodules m = (β, m) naturally give rise to inter-
twiners DR[m]|Z ∈ Hom(ΘB,ΘA) (to be defined in the proof). Then

Im = dim(β)

d2
Ad2

Bd2
R

· DR[m]|Z

solve the system Eq. (4.12.3). Then Em = χ(Im) are the minimal central
projections.

As a byproduct, we shall also prove:

Proposition 4.45 Let A be a simple Q-system in a modular tensor category, so that

its centre Z [A] is irreducible (Proposition 4.37). Then dZ [A] = dR = dim(C )
1
2
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equals the dimension of the canonical Q-system. In particular, all irreducible full
centres have the same dimension.

(This is not a new result, cf. [25], but the proof seems to be new.)
The proof of Theorem 4.44 is rather lengthy, but it is worthwhile because it

paves the way to an efficient computation of the centre, with ensuing classification
results. The operators Im first appeared in [16], but their idempotent property is not
manifest there. It was proven in a more special case in [25] (with the hindsight that
the general case can be reduced to the special case by highly nontrivial properties
of modular tensor categories). We attempt to give here a streamlined version of the
proof that does not require the general theory of modular tensor categories. The use
of the C*-structure of the DHR category allows for some substantial simplification
as compared to [25].
Proof of Theorem 4.44 The statement about the centre is just an instance of
Lemma 3.16 and Proposition 4.33, because the full centres are commutative.

To prepare the solution of Eq. (4.12.3), we associate with every A-B-bimodule
m = (β, m ∈ Hom(β, θAβθB)) an intertwiner Dm ∈ Hom(θB, θA) as follows [25]:

Dm := Trβ εθ A,β ◦(1θ Aβ × rB∗)◦(m×1θ B) :
m

θ A

β ≡
θ B

θ Aβ
.

(We freely use Frobenius reciprocity in the graphical representations.) One easily
sees

Lemma 4.46 (cf. [25]) The following statements hold.

(i) Dm depends only on the unitary equivalence class of m = (β, m).
(ii) D∗

m = Dm.
(iii) Dm1⊕m2 = Dm1 + Dm2 .
(iv) If m = (β, m) is an A-B-bimodule and m′ = (β ′, m′) a B-C-bimodule, hence

m ⊗B m′ an A-C-bimodule, then Dm Dm′ = dB · Dm⊗Bm′ .
(v) wA∗ DmwB = dim(m) ≡ dim(β) for m = (β, m).

Proof (i) follows because the “closed β-line” represents a trace, absorbing a unitary
bimodule morphism : m → m′. (ii) is proven in the same way as Lemma 4.26, using
the unitarity of the twist. (iii) follows by

∑
i

s∗
i si

β
= ∑

i
mi

βi

.

(iv) follows from

=

θ C

θ A

http://dx.doi.org/10.1007/978-3-319-14301-9_3
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in combination with the property Eq. (3.7.1) in Lemma 3.36. (v) follows from the
unit property and Eq. (2.2.6). �

In particular, taking A ≡ (θA, xA(2)) as the trivial A-A-bimodule, one has

Corollary 4.47 (i) DA = dA · Pl
A, hence (by Lemma 4.46(iv))

(ii) Pl
A · Dm · Pl

B = Dm.

We also define more generally, for any ρ ∈ C ,

Dm(ρ ) :=
m

ρ
β

∈ Hom(θ B ◦ρ ,θ A ◦ρ ).

Clearly, Dm ≡ Dm(id). The properties (i)–(iv) hold as well for Dm(ρ).
Next, consider A ⊗ 1 ≡ (θ ⊗ id, x ⊗ 1id) as a Q-system in C � C opp, and

m ⊗ 1 ≡ (β ⊗ id, m ⊗ 1id) as an A ⊗ 1-B ⊗ 1-bimodule. Taking the product

R[A] := (A ⊗ 1) ×+ R

where R = (Θcan, Wcan, Xcan) is the canonical Q-system in C � C opp, we get

R[m] = ((β ⊗ id)◦Θcan,R[m]), R[m] =
R

R

β id

A id B id

as an R[A]-R[B]-bimodule. Because R is commutative, one has DR = dR · 1Θcan by
Corollary 4.47, and hence

DR[m] =

A⊗ id

β ⊗ id
R = = dR · R = dR ·Dm⊗1(Θcan).

(4.12.4)

As the full centre Z [A] = (ΘA, W A, XA) is an irreducible (by Proposition 4.37)
intermediate Q-system to R[A], the R[A]-R[B]-bimodule R[m] restricts to a Z [A]-
Z [B]-bimodule according to Lemma 4.15

R[m]|Z =
dR[A]dR[B]
dZ[A]dZ[B]

· (SA∗ ×1(β id)×Θcan ×SB)◦R[m] ≡

≡ dR[A]dR[B]
dZ[A]dZ[B]

·
Rβ id

A id

Z[A]

B id

Z[B]

,

(4.12.5)

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_2
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where SA ∈ Hom(Z [A], R[A]), SB ∈ Hom(Z [B], R[B]) are isometric intertwiners
such that SASA∗ = Pl

R[A], SBSB∗ = Pl
R[B], cf. Lemma 4.15.

Next, we consider the intertwiners

DR[m]|Z ∈ Hom(ΘB,ΘA).

In particular, for the trivial A-A-bimodule A, one has, using Corollary 4.47

DR[A]|Z = dR[A]
dZ [A]

· S∗ DR[A]S = d2
R[A]

dZ [A]
· S∗ Pl

R[A]S = d2
Ad2

R

dZ [A]
· 1ΘA . (4.12.6)

We introduce the positive-definite inner product onHom(ΘB,ΘA)w.r.t. the trace:

(T2,T1) := TrΘ B(T ∗
1 T2) =

T ∗
1

T2
≡ TrΘA(T2T ∗

1 ) =
T2

T ∗
1

.

(4.12.7)

Then we compute

(DR[m′]|Z , DR[m]|Z ) = dR[A]dR[B]
dZ [A]dZ [B]

· TrΘA(S∗ DR[m′]SS∗ DR[m]S) (4.12.8)

Corollary 4.47, (4.12.4)
=

dR[A]dR[B]
dZ [A]dZ [B]

· d2
R · Tr(θA⊗id)Θcan

(Dm′⊗1(Θcan)Dm⊗1(Θcan))

Lemma 4.46 (iii),(iv)
=

dR[A]dR[B]
dZ [A]dZ [B]

· d2
R · dB

∑

n

N n
m′m · LTrθA⊗id RTrΘcan(Dn⊗1(Θcan)),

where m′ ⊗B m 
 ⊕
n N n

m′m · n as A-A-bimodules, n = (α, n) irreducible.
At this point, modularity comes to bear through Proposition 4.42: namely RTrΘcan

projects on the contribution id ≺ α:

RTrΘcan(Dn 1(Θcan)) = α id Θcan

θ A id

θ A id

= d2
R · α

θ A

θ A
s∗

id,

where s is an isometry such that ss∗ = Eid ∈ Hom(α, α). After taking also LTrθA⊗id,
one obtains

LTrθ A id RTrΘcan(Dn 1(Θcan)) = d2
R · θ A
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Now, Lemma 3.41 applies, and accordingly the value vanishes unless n is the trivial
A-A-bimodule n = A. In this case s = w/

√
dA, hence the value of the diagram is

dim(θ)/dA = dA. Since N A
m′m = δmm′ , we arrive at the orthogonality relation

Corollary 4.48 In a modular category,

(DR[m′]|Z , DR[m]|Z ) = d2
Ad2

Bd6
R

dZ [A]dZ [B]
· δmm′ .

For m = A, DR[A]|Z = D∗
R[A]|Z

, one can compute (DR[A]|Z , DR[A]|Z ) in two diff-

erent ways: By Eq. (4.12.6), the result is d4
Ad4

R. By Corollary 4.48, it is
d2

Ad2
Bd6

R
dZ [A]dZ [B] . By

comparison, dZ [A] = dA for all simple Q-systems A. This proves Proposition 4.45.
Moreover, the coefficient in Corollary 4.48 equals d2

Ad2
Bd4

R.
By Corollary 4.48, the intertwiners DR[m]|Z are linearly independent. It is

also known that the number of inequivalent irreducible A-B-bimodules equals
dim Hom(ΘA,ΘB) [13], hence the intertwiners Im span Hom(ΘA,ΘB). Since both

(dAdBd2
R)−1 · DR[m]|Z and T := (dim(σ) dim(τ))− 1

2 · T A
σ⊗τT B∗

σ⊗τ (where T A and T B

are isometric bases of Hom(σ ⊗ τ,ΘA) resp. Hom(σ ⊗ τ,ΘB) for all irreducible
common sub-endomorphism σ ⊗ τ of ΘA and ΘB) form orthonormal bases w.r.t.
trace, the matrix

SmT := 1

dAdBd2
R
√
dim(σ ⊗ τ)

· TrΘA(DR[m]|Z T B
σ⊗τT A∗

σ⊗τ)

is unitary. In particular, for σ = τ = id, T = T0 ≡ d−1
R · W AW B∗, one finds

Sm0 = dim(β)

dAdB
,

hence

W AW B∗ = dR ·T0 = dR

∑

m

Sm0

dAdBd2
R

·DR[m]|Z =
∑

m

dim(β)

d2
Ad2

Bd2
R

·DR[m]|Z . (4.12.9)

Now, we define

Im := dim(β)

d2
Ad2

Bd2
R

· DR[m]|Z ∈ Hom(ΘB,ΘA). (4.12.10)

From the definition and properties (i) and (ii) in Lemma4.46, one can see that DR[m]|Z

and hence Im satisfy the selfadjointness condition inEq. (4.12.3). BecauseW AW B∗ is
the unit w.r.t. the convolution product Eqs. (4.12.2), and (4.12.9) is the completeness
relation, i.e.,

∑
m Em = 1M under the isomorphism χ . It remains to prove the

idempotency relation in Eq. (4.12.3). Using Eq. (4.12.9), it suffices to show that

http://dx.doi.org/10.1007/978-3-319-14301-9_3
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Im ∗ Im′ = 0

for m 	= m′, in order to conclude that Im ∗ Im = Im ∗∑
m′ Im′ = Im ∗ (W AW B∗) =

Im.
Let m and m′ be two A-B-bimodules. Define

Qm,m :=
m m

θ A

∈ Hom(ββ ,ββ ).

By a similar computation as for the projection property of the left and right centre,
Lemma 4.26, one sees that (dAdB)−1 · Qm,m′ is a projection. Now,

LTrβ RTr
β

′(Qm,m′) = TrθA(Dm D∗
m′).

Thus, replacing A and B by Z [A] and Z [B], m and m′ by R[m]|Z and R[m′]|Z , and
β and β ′ by R[β] = (id ⊗ β)Θcan and R[β ′], we conclude that

LTrR[β] RTrR[β ′](Q R[m]|Z ,R[m′]|Z ) = 0

for m 	= m′ by the orthogonality of DR[m]|Z , Corollary 4.48. Since Q R[m]|Z ,R[m′]|Z

is a multiple of a projection, hence a positive operator, and because the traces are
faithful positive maps, it follows that Q R[m]|Z ,R[m′]|Z = 0 for m 	= m′.

Now in order to conclude that XA∗(Im × Im′)XB = 0 for m 	= m′, it suffices to
compute

m m

A

B

(3.6.1)
=

A

B

= .

Inside the dashed box, there appears the intertwiner Q R[m]|Z ,R[m′]|Z , which we have
just shown to be zero if m 	= m′. In step (r), the representation property of m as a
left A-module has been used. This concludes the proof that Im solve Eq. (4.12.3).

Theorem 4.44 now follows from the considerations before Eq. (4.12.3). �
The minimal projections Em ∈ M ′ ∩ M define representations m �→ Emm as

in Sect. 4.2. In these representations, the generators V A and V B of the intermediate
algebras MA and MB (defined as in Lemma 4.31) are no longer independent. Let us
describe the nature of these relations.
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Lemma 4.49 The bijection χ , Eq. (4.12.1), can be equivalently written as

χ(T ) = V B A∗ι(T )V B.

Therefore, in particular, Em = V A∗ι(Im)V B.

Proof By Lemma 4.31 and V ∗ = ι(R∗)V , we have

V B A∗ι(T )V B = V ∗ιΘA(W B)ι(T )ι(W A∗)V = ι
(

R∗Θ(ΘA(W B)T W A∗)X
)

V,

and the argument of ι equals

A B

= .

This coincides with Eq. (4.12.1). The last statement follows from Em = χ(Im). �

Expanding a general element T ∈ Hom(ΘB,ΘA) in the basis Im, such that
T = ∑

m cm(T ) · Im, we get

V A∗ι(T )V B =
∑

m

cm(T ) · Em,

i.e., in the representation defined by each Em, the central elements V A∗ι(T )V B take
the values cm(T ). In particular, for σ ⊗τ an irreducible common sub-endomorphism

of ΘA and ΘB, and T = (dim(σ) dim(τ))− 1
2 · T A

σ⊗τT B∗
σ⊗τ as above, these values are

cm(T ) = dAdB

dim(β)
· SmT .

Sinceon theother hand, the charged intertwinersΨ A
σ⊗τ = ι(T A∗

σ⊗τ)V A ∈ Hom(ιA, ιA◦
(σ ⊗ τ)) and Ψ B

σ⊗τ = ι(T B∗
σ⊗τ)V B are multiples of isometries because ιA and ιB are

irreducible, the numerical values for Ψ A∗
σ⊗τΨ

B
σ⊗τ define “angles” between them [1].

Example 4.50 Let A and B be the trivial Q-system (or Morita equivalent),
such that the full centres coincide with R. The irreducible bimodules of the
trivial Q-system are just the irreducible endomorphisms σ ∈ C , m = (σ, 1σ).
The irreducible sub-endomorphism of ΘA = ΘB = Θcan are τ ⊗τ. The oper-

ators Im, Eq. (4.12.10), simplify to dim(σ)
dR

·
σ id

Θcan ∼ τ σ

τ τ
.

The matrix (Sm,T )m,T determining the angles turns out to coincide with the
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“modular” matrix (Sσ,τ)σ,τ, cf. Definition 4.39. In particular, if Sσ,τ happens

to equal a complex phase ω times dim(σ) dim(τ) · ( ∑
ρ dim(ρ)2

)− 1
2 (this is

always the case whenever σ has dimension dim(σ) = 1), it follows that the
generatorsΨ A

τ ⊗τ
= ω ·Ψ B

τ ⊗τ
are linearly dependent in the representation given

by Em.
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Chapter 5
Applications in QFT

Abstract We review some applications of the abstract theory presented in the
preceding chapters in the context of local quantum field theory. The methods devel-
oped in Chap.4 prove to be most efficient to deal with QFT with boundaries, and to
classify the boundary conditions.

We review some applications of the above abstract theory in the context of local
quantum field theory. In a nutshell, Q-systems provide a complete characterization
of (finite index) extensions of local quantum field theories, and the notions and
operations discussed in the main body of this work have counterparts in conformal
QFT that are of interest for the construction and classification of local extensions
and of boundary conditions. More details can be found in [1–5].

The enormous benefit of the approach lies in the fact that, once the validity of the
formalism is established, one does not need any dynamical details of the quantum
field theory at hand, except the knowledge of its representation category as a braided
C* tensor category. In turn, as Examples 3.1 and 4.17 show, this information typically
requires very few data (like the fusion rules and the twist parameters κρ) which in
many cases uniquely fix the category.

5.1 Basics of Algebraic Quantum Field Theory

5.1.1 Local Nets

The additional feature in quantumfield theory is the local structure: quantumfields are
operator-valued distributions in spacetime, such that the support of the test function
specifies the localization of field operators. In the algebraic approach [6] one rather
considers local algebras A (O) of bounded operators generated by quantum fields
evaluated on test functions with a given spacetime support O .

In fact, it is not necessary to assume that the local algebras are generated by actual
quantum fields. It is sufficient to assume that the net of local algebras is isotonous,
i.e., O1 ⊂ O2 implies A (O1) ⊂ A (O2).
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Thus, rather thanwith a single vonNeumann algebra, one deals with a directed net
of von Neumann algebrasA (O), where O runs over a suitable family of connected
open regions in spacetime, and A (O) are the von Neumann algebras generated by
local observables localized in O . (If O has a sufficiently large causal complement,
then the algebra A (O) does not depend on the representation in which the weak
closure is taken.) The regions O can be chosen to be doublecones (intersections of
a future and a past lightcone)

future

past

O

in Minkowski spacetime M D = (RD, η), or intervals I ⊂ R where R is the “space-
time” of a chiral quantum field theory.

The use of R as the “spacetime” of a chiral quantum field theory is due to the
feature of conformal quantum field theory in two dimensions that it necessarily
contains fields (notably the stress-energy tensor which is the local generator of dif-
feomorphism covariance) that depend only on either lightcone coordinate t + x or
t − x . The net of local algebras generated by chiral fields is therefore indexed by
the intervals I ⊂ R. By virtue of the conformal symmetry, a conformal net on R

actually extends to a net (more precisely: a pre-cosheaf) on S1 by identifying Rwith
S1 minus a point; but this feature will not be essential for the applications that we
are going to review.

In two spacetime dimensions, the spacelike complement of a doublecone has two
connected components (wedges). In chiral theories, the spacelike complement of an
interval is just its complement in R, which is a disconnected union of two halfrays.

The quasilocal algebra Aql associated with a net A : O �→ A (O) is the C*
algebra defined as the inductive C* limit as O exhausts the entire spacetime. A
group G of spacetime symmetries (Poincaré group, conformal group) is assumed to
act on Aql as automorphisms αg such that αg(A (O)) = A (gO).

The principle of causality (locality) expresses the absence of superluminal causal
influences. In quantum theory, it asserts that observables localized at spacelike dis-
tance must commute with each other. Thus, if two regions O1, O2 are spacelike
separated (in the chiral case: disjoint), then [A (O1),A (O2)] = {0} (as subalgebras
of Aql), or equivalently

A (O) ⊂ A (O ′)′,

where O ′ is the causal complement of O , and A (O ′) the C* algebra generated by
A (Ô), Ô ⊂ O ′, and A (O ′)′ its commutant in Aql.

An overview of the consequences of these axioms (isotony, covariance, locality,
vacuum representation) in chiral conformal QFT can be found in [7, 8].

There is a variety of methods to construct local conformal nets. Free field nets can
be constructed as CAR or CCR algebras, equipped with a vacuum state. Local nets
associated with affine Kac-Moody algebras can be constructed from unitary imple-
menters of local gauge transformations acting as automorphisms of the CAR algebra,



5.1 Basics of Algebraic Quantum Field Theory 79

giving rise to projective representations of loop groups [9]. Local nets associatedwith
a chiral stress-energy tensor can similarly be obtained from unitary implementers of
local diffeomorphisms acting as automorphisms of the CAR algebra; an alternative,
more explicit construction from a given heighest-weight representation of the Vira-
soro algebra is given in [8]. By orbifold (fixed point) and coset (relative commutants)
constructions, one can construct new nets from given ones. Finally, the extension of
local nets by commutative Q-systems will be described in Sect. 5.2.

5.1.2 Representations and DHR Endomorphisms

Nets of local algebras possess inequivalent Hilbert space representations. A represen-
tation π is covariant if the automorphisms αg are implemented by a unitary represen-
tation Uπ (g) on the representation Hilbert space, π(αg(a)) = Uπ (g)π(a)Uπ (g)∗.
A representation π is said to have positive energy if the generator of the unitary
one-parameter group Uπ (t) corresponding to the subgroup of time translations
has positive spectrum. We assume that there is a unique vacuum representation
π0, i.e., a faithful positive-energy representation with an invariant ground state Ω ,
U (g)Ω = Ω , and we assume that in the vacuum representation a stronger version
of locality holds, namely Haag duality:

π0(A (O)) = π0(A (O ′))′.

Under these standard assumptions, one can show that the local algebras A(O)

are infinite factors. Moreover [10], an important class of positive-energy representa-
tions (in two-dimensional conformalQFT: all positive-energy representations) can be
described in terms of DHR endomorphisms ρ of the quasilocal algebraAql such that

π = π0 ◦ ρ.

DHR endomorphisms are localized in some region O in the sense that the restriction
of ρ to the algebraA (O ′) of the causal complement acts like the identity; and trans-
portable in the sense that for every other region Ô , there is an endomorphism ρ̂

localized in Ô which is unitarily equivalent, namely, there is a unitary charge trans-
porter u ∈ Aql (actually localized in any doublecone that contains O and Ô) such
that ρ̂ = Adu ◦ ρ:

ρ̂ρ
u

.

By Haag duality it follows that ρ(A (O)) ⊂ A (O) if ρ is localized in O , i.e., ρ
restricts to an endomorphism of the von Neumann algebra N = A (O).

The composition ρ1 ◦ρ2 of DHR endomorphisms is again a DHR endomorphism.
Inertwiners betweenDHRendomorphisms are defined as operators t ∈ Aql satisfying
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tρ1(a) = ρ2(a)t for all a ∈ Aql. By Haag duality, it follows that t ∈ A (O) if ρi

are localized in Oi and O1 ∪ O2 ⊂ O . In particular, all intertwiners among DHR
endomorphisms localized in the same region O are elements of A (O).

In this way, picking any fixed region O and putting N = A (O), the restrictions
of DHR endomorphisms localized in O form a C* tensor subcategory of End(N ).
One can show [7, Theorem2.3] that this subcategory is full, i.e., every intertwiner
between ρ1 and ρ2 regarded as endomorphisms of the vonNeumann algebra N is also
an intertwiner between ρ1 and ρ2 regarded as endomorphisms of the C* algebraAql
(local intertwiners=global intertwiners). In particular, notions like sector, conjugates
and dimension have the same meaning for DHR endomorphisms as endomorphisms
of Aql and as endomorphisms of N .

We denote by C DHR(A )|O the full subcategory of End0(N ), whose objects are
the DHR endomorphisms of finite dimension, localized in O , and by C DHR(A ) the
C* tensor category of all DHR endomorphisms of finite dimension. Example 3.1
specifies the DHR category of the chiral Ising model.

5.1.3 DHR Braiding

The C* tensor category C DHR(A ) is equipped with a distinguished unitary braid-
ing ερ,σ ∈ Hom(ρ σ, σ ρ). It is defined using unitary charge transporters uρ ∈
Hom(ρ, ρ̂) and uσ ∈ Hom(σ, σ̂), such that ρ̂ is localized to the spacelike right (in
the chiral case: in the future) of σ̂:

ρ̂σ̂ ρ
σ .

One shows with Haag duality that the auxiliary endomorphisms ρ̂ and σ̂, being
localized at spacelike distance, commute with each other, and defines

ερ,σ := (uσ × uρ)∗ ◦ (uρ × uσ) ≡ σ(u∗
ρ)u∗

σuρρ(uσ) ∈ Hom(ρσ, σρ). (5.1.1)

This unitary does not depend on the choice of ρ̂, σ̂ with the specified relative local-
ization, nor on the choice of the charge transporters uρ , uσ. It satisfies the defining
properties of a braiding. By construction, if ρ is localized to the spacelike right (in
the chiral case: in the future) of σ, then

ερ,σ = 1,

because one may just choose ρ̂ = ρ, σ̂ = σ, and uρ = uσ = 1. In contrast, if ρ is
localized to the spacelike left (past) of σ, one will have εσ,ρ = 1 but ερ,σ �= 1 in
general, because the braiding ε+

ρ,σ ≡ ερ,σ and its opposite ε−
ρ,σ ≡ ε∗

σ,ρ differ in low-
dimensional QFT, due to the two connected components of the causal complement.

http://dx.doi.org/10.1007/978-3-319-14301-9_3
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In four dimensional QFT, the braiding is degenerate: ερ,σεσ,ρ = 1, i.e., it is a
permutation symmetry, and the twist parameter κρ = ±1 distinguishes fermionic and
bosonic sectors [10]. In chiral conformal QFT, the conformal spin-statistics theorem
[7] relates the twist parameter κρ = e2π ihρ of a sector to the lowest eigenvalue hρ

of L0.
If both ρ and σ are localized in O , then ερ,σ ∈ A (O), hence the DHR braiding

restricts to each C DHR(A )|O . The local structure of a QFT net therefore provides
us intrinsically with a braided C* tensor category, the arena of the abstract theory of
the previous chapters.

Of particular interest in the context of the present work is the case when the
quantum field theory A possesses only finitely many irreducible DHR sectors of
finite dimension. In chiral conformal QFT, this property (referred to as “completely
rationality”), is known to follow from the split property andHaag duality for intervals.
Many models of interest, including the chiral Virasoro models with central charge
c < 1, are completely rational. The case c = 1

2 is the chiral Ising model, Examples
3.1 and 4.17.

(Complete rationality should be regarded, however, rather as a technically useful
regularity conditionwith far-reaching consequences, than an axiombased onphysical
principles—since important models, like the u(1) current algebra, do not share this
property.)

In completely rational chiral models, the DHR braiding is non-degenerate [11],
making the braided categoryC DHR(A ) amodular category, cf. Sect. 4.11.Moreover,
the global dimension of C DHR(A ) (i.e., the quantity

∑
[ρ] irr dim(ρ)2, Eq. (3.0.1))

coincides with the μ-index of A which measures the violation of Haag duality for
pairs of disconnected intervals [11, 12]. Thus, the presence of DHR sectors can be
“detected” by inspection of the two-interval subfactor

π0
(
A (I1 ∪ I2)

) ⊂ π0
(
A ((I1 ∪ I2)

′)
)′

where I1, I2 are any pair of non-touching intervals. Recall that the global dimension
also is the common dimension of Θ in all irreducible full centre Q-systems by
Proposition 4.43. In particular, the two-interval subfactor is isomorphic with the
subfactor described by the canonical Q-system [1].

We now turn to the interpretations of Q-systems and the various operations on
them, in the QFT context.

5.2 Local and Nonlocal Extensions

5.2.1 Q-Systems for Quantum Field Theories

A Q-system in a C* tensor category C ⊂ End0(N ) describes an extension N ⊂ M .
A Q-system A = (θ, w, x) in the category C = C DHR(A ) describes a family of
extensions

A (O) ⊂ B(O)

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_4
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in very much the same way. Namely, letB be the * algebra generated by Aql and v
subject to the relations

v · a = θ(a) · v, v2 = x · v, v∗ = w∗x∗ · v,

such that B = Aql · v as a vector space. Embed Aql by ι(a) = aw∗ · v as a *
subalgebra. Define * subalgebras

B(O) := A (O)u · v

where u ∈ Aql is a unitary such that θ̂ = Adu ◦ θ is localized in O . Because (u ×
u) ◦ x ◦ u∗ ∈ Hom(θ̂ , θ̂2) ⊂ A (O) and (u × u) ◦ x ◦ w ∈ Hom(id, θ̂2) ⊂ A (O),
B(O) are indeed * algebras. In fact,A (O) ⊂ B(O) is precisely the von Neumann
algebra extension ofA (O) by the Q-system (θ̂ = Adu ◦ θ, u ◦ w, (u × u) ◦ x ◦ u∗).

One obtains a net of von Neumann algebras O �→ B(O) extending A (O), and
B is its inductive limit as the regions O exhaust the entire spacetime.

Charged intertwiners ψρ , defined for ρ ≺ θ as in Remark 3.12, are elements
of B(O) whenever ρ is localized in O , and these operators together with A (O)

generate B(O). As O varies, these operators are the substitute of charged “fields”
in the language of algebraic QFT.

The charged intertwiners create charged states from the vacuum as follows [1].
The positive map

μ : b �→ d−1
A · w∗ι(b)w

is a conditional expectation μ : B → A . It allows to extend the vacuum state ω0 on
A to a vacuum state ω := ω0 ◦ μ onB. Since μ(ψρψ∗

ρ ) ∈ Hom(ρ, ρ) is a multiple
of 1 if ρ is irreducible, we may assume it to be= 1 by normalizingψρ . Then one has

ω0 ◦ μ(ψρι(a)ψ∗
ρ ) = ω0(ρ(a)μ(ψρψ∗

ρ )) = ω0 ◦ ρ(a).

Thus, in the GNS representation π of the state ω, the vector π(ψ∗
ρ )Ωω belongs

to the DHR representation π0 ◦ ρ of A . Indeed, upon restriction to A , the GNS
representation of ω is equivalent to the DHR representation π0 ◦ θ of A .

The net B is by construction relatively local w.r.t. the subnet A : if b = auv ∈
B(O) with a ∈ A (O), and a′ ∈ A (O ′), then

b · a′ = auv · a′ = auθ(a′)v = aθ̂ (a′)uv = aa′uv = a′ · auv = a′ · b,

where we have used the localization of θ̂ and the local commutativity of a with a′.
In fact, every relatively local net of extensions of finite index arises this way [1].

An extension B of A is in general not local. It is local iff u1v commutes with
u2v whenever θ1 = Adu1 ◦ θ and θ2 = Adu2 ◦ θ are localized in spacelike separated
regions O1, O2. But

u1v · u2v = u1θ(u2)xv, u2v · u1v = u2θ(u1)xv,

http://dx.doi.org/10.1007/978-3-319-14301-9_3
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which are equal iff εθ,θ ◦ x = x , by the definition of the DHR braiding Eq. (5.1.1).
Thus, B is local iff the Q-system (θ, w, x) is commutative.

Given a local extension A ⊂ B, one may apply α-induction (cf. Sect. 4.6) to
the DHR endomorphisms ρ of A , defining endomorphisms α±

ρ of B. These are,
however, in general not DHR endomorphisms of B, since they act trivially only on
one of the two components of the causal complement of the localization region of
ρ. DHR endomorphisms of B are obtained as sub-endomorphisms which are con-
tained in both α+

ρ and α−
σ for some ρ, σ ∈ C DHR(A ). The common (“ambichiral”)

sub-endomorphisms are counted by the numbers Zρ,σ = dimHom(α−
ρ , α+

σ ), cf.
Eq. (4.6.3).

By classifying (commutative) Q-systems within the DHR category of a given
completely rational quantum field theory, one obtains a classification of its (local)
extensions. This program has been completed (profiting from existence and unique-
ness results of [13] and the previous classifications of modular invariant matrices in
[14]) for the local extensions of chiral nets associated with the stress-energy tensor
with central charge c < 1, which are known to be completely rational [15]. All mod-
els in this classification can be realized by coset constructions, except one which
arises as a mirror extension (cf. Sect. 4.7) of a coset extension. The classification of
relatively local extensions with c < 1 (which is of interest in the presence of bound-
aries, Sect. 5.3) can be found in [16]; and the classification of local two-dimensional
extensions (Sect. 5.2.2) with c < 1 was achieved in [17].

5.2.2 Two-Dimensional Extensions

The chiral observables of a two-dimensional conformal QFT are given by a tensor
product of two chiral nets A2 := A+ ⊗ A− such that

A2(O) = A+(I ) × A−(J )

if

O = I × J = {(t,x) : t + x ∈ I, t − x ∈ J} :
I

J

O .

Its DHR endomorphisms are direct sums of ρ+ ⊗ ρ− ∈ C DHR(A+) ⊗ C DHR(A−).
From the definition of the DHR braidings, and because O1 = I1 × J1 is in the right
spacelike complement of O2 = I2 × J2 if and only if I1 is in the future of I2 and J1
is in the past of J2, it follows that the braiding ofA2 is given by ε+ ⊗ ε−. Therefore,
as a braided category, C DHR(A2) = C DHR(A+) � C DHR(A−)opp.

In particular, if the chiral nets A+ and A− are isomorphic, then the canonical
Q-system gives rise to a local two-dimensional extension B2 of A2 = A ⊗ A ,
which is also known as the “Cardy type” extension. Its charged fields carry conjugate

http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
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charges w.r.t. the + and − chiral observables. For the construction of this extension,
it is actually not essential that A+ and A− are isomorphic, but it is sufficient that
they have isomorphic DHR categories. Obviously, one may as well construct a Cardy
type extension based on any pair of isomorphic subcategories of C DHR(A+) and of
C DHR(A−).

A more general class of local two-dimensional extensions ofA2 was constructed
in [18], by exhibiting the numerical coefficients of the Q-system (Θ, W, X) in
C DHR(A ) � C DHR(A )opp by a method involving chiral α-induction along a pos-
sibly noncommutative chiral Q-system (the “α-induction construction”). The mul-
tiplicities of the irreducible subsectors ρ ⊗ σ ≺ Θ coincide with the matrix ele-
ments Zρ,σ = dimHom(α−

ρ , α+
σ ) of the modular invariants, mentioned before, cf.

Sect. 5.2.1.

5.2.3 Left and Right Centre

In general, the extension A ⊂ B described by a Q-system A in C DHR(A ) will be
nonlocal. Since the left and right centresC±[A] ofA are commutative Q-systems, cf.
Sect. 4.8, they correspond to local extensions B±

loc intermediate between A andB.
In [4], we have identified these local intermediate extensions with relative com-

mutants

B+
loc(O) := B(WL)′ ∩ B(W ′

R), resp. B−
loc(O) := B(WR)′ ∩ B(W ′

L).

Here, the wedges WL and WR are the left and right components of the spacelike
complement of the doublecone O (resp. the past and future complements of an
interval in the chiral case):

WL WRO , WL

W ′
R

O .

In order to establish this result, one has to verify that the relative commutant
B+

loc(O) = B(WL)′ ∩ B(W ′
R) is intermediate between A (O) ⊂ B(O), and that

the projection p+
loc corresponding to the intermediate extension coincides with the

right centre projection p+ of theQ-system forA (O) ⊂ B(WL)′∩B(W ′
R) ⊂ B(O).

Thanks to Proposition 4.26, it is sufficient to prove that p+
loc satisfies the relation

Eq. (4.8.1), and that B+
loc(O) is maximal with this property.

The inclusion A (O) ⊂ B+
loc(O) is obvious by isotony of B and relative local-

ity of B w.r.t. A . The inclusion B+
loc(O) ⊂ B(O) can be established with the

help of Haag duality for wedges, which was assumed to be valid for the net A .
The intersection B+

loc(O) is therefore the maximal subalgebra of B(O) commut-
ing with B(WL). One has B+

loc(O) = A (O)v+
loc = A (O)p+

locv. This algebra

http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
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commutes with B(WL) iff the generator p+
locv of B+

loc(O) commutes with the

generator v̂ = uv of B(WL), where u ∈ Hom(θ, θ̂ ) is a unitary charge transporter
taking θ to θ̂ localized in WL . Now, p+

locv · uv = p+
locθ(u)xv = θ(u)p+

locxv,

whereas uv · p+
locv = uθ(p+

loc)xv. Commutativity is therefore equivalent to p+
locx =

θ(u)∗uθ(p+
loc)x , which is Eq. (4.8.1) by the definition of the DHR braiding.

The claim, p+
loc = p+, then follows by the maximality of B+

loc(O) and the char-
acterization of p+ in Proposition 4.26.

In establishing this result, it is again essential that the braiding is theDHRbraiding
Eq. (5.1.1), defined in terms of unitary charge transporters. This explains why a
similar interpretation of the left and right centre as the Q-system of some relative
commutant cannot be given in a general braided subcategory of End0(N ) for a single
von Neumann algebra N . It would be interesting to have such a theory, which would
require—in addition to a braided tensor category C ⊂ End0(N )—as additional data
a splitting of N ′ into two commuting subalgebras N ′ = NL ∨ NR , and unitary
intertwiners between endomorphisms ρ ∈ End0(N ) and endomorphisms of NL and
of NR , connected to the given braiding by (versions of) Eq. (5.1.1).

5.2.4 Braided Product of Extensions

According to Lemma 4.29, the braided products A ×± B of two Q-systems A =
(θA, wA, xA) and B = (θB, wB, xB) describe extensions M± which are generated
by the algebra N and the generators vA and vB such that NvA = MA and NvB = MB

are intermediate algebras, and the generators vA, vB satisfy the commutation relations

vBvA = ι(ε±
θA,θB) · vBvA. (5.2.1)

These properties uniquely specify M±.
The same holds true in the QFT setting, that is, the braided product B± of two

extensions BA and BB of a net A is generated by A and the generators vA, vB

subject to the same commutation relation Eq. (5.2.1).
It follows that for any unitary charge transporters u1 ∈ Hom(θA, θ̂A), u2 ∈

Hom(θB, θ̂B),
(u2vB)(u1vA) = ι(ε±

θ̂A,θ̂B) · (u1vA)(u2vB).

Now, if θ̂A is localized to the right (left) of θ̂B, then ε+
θ̂A,θ̂B = 1 (ε−

θ̂A,θ̂B = 1), hence

in these cases the generators u1vA and u2vB commute. Since the local algebras of an
extension are generated by A (O) and uv such that θ̂ = Adu ◦ θ is localized in O ,
it follows (using relative locality w.r.t. A ) that, as subalgebras of B+ resp. of B−,
the algebras BA(O1) and BB(O2) commute with each other if O1 is located to the
spacelike right resp. left of O2—but in general not in the converse order.

http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
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We paraphrase these situations by saying that the net BA is “right local” resp.
“left local” w.r.t. the net BB. Thus, the braided products of of two extensions BA

andBB can be regarded as a quotient of the free product by the relations that identify
the common subnets A ⊂ BA and A ⊂ BB, and by the relations expressing that
BA is “right local” resp. “left local” w.r.t.BB.

(The same is true in the chiral case, replacing “right” by “future” and “left” by
“past”.)

Let A be a chiral QFT and A a Q-system in C DHR(A ), describing a (nonlocal)
chiral extension B. The full centre Z [A] is a Q-system in C DHR(A ⊗ A ), i.e., it
describes a two-dimensional extensionB2 ofA ⊗A . Because the full centre is the
right centre of the braided product (A ⊗ 1) ×+ R, we recognize the corresponding
extension B2 as the relative commutant of right wedges of the nonlocal extension,
obtained by the right-local braided product of the possibly nonlocal chiral extension
B ⊗ 1 with the local canonical extension BR

2 .
By Proposition 4.33, the full centre coincides with the α-induction construction

which was originally found as a construction of two-dimensional local conformal
QFTmodels out of chiral data. This result therefore not only gives amore satisfactory,
purely algebraic interpretation of the α-induction construction in terms of braided
products of nets and relative commutants of wedge algebras, cf. Sect. 5.2.3; it also
explains the fact (knownbefore) that the latter depends only on theMorita equivalence
class of the chiral Q-system in C [19]; namely two Q-systems in a modular tensor
category C have the same full centre if and only if they are Morita equivalent [20].

Since moreover, every irreducible extension B2 of A2 is intermediate between
A2 and an α-induction extension [2, 3, 19], it follows that full centre extensions are
precisely the maximal irreducible extensions (if the underlying chiral theory A is
completely rational).

5.3 Hard Boundaries

A conformal quantum field theory with a “hard boundary” arises, when Minkowski
spacetime M2 is restricted to a halfspace, say the right halfspace M2

R = {(t, x) : x >

0}. The stress-energy tensor defined on M2
R still splits into two chiral components,

but if one imposes conservation of energy at the boundary, the two components are no
longer independent fields, but instead they coincide as operator-valued distributions
on R [19]. Thus, for I and J intervals such that O = I × J = {(t, x) : t + x ∈
I, t − x ∈ J } lies inside M2

R (⇔ I > J elementwise as subsets of R), the local
algebra of chiral observables is

AR(O) = A (I ) ∨ A (J )

rather than the tensor product A+(I ) ⊗ A−(J ). Here, the chiral algebras are gen-
erated by the stress-energy tensor and possibly further chiral fields whose boundary
conditions might also impose an identification of the fields.

http://dx.doi.org/10.1007/978-3-319-14301-9_4
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An analysis of local extensions AR(O) ⊂ BR(O) on the halfspace was given
in [19]. One finds (assuming A to be completely rational) that the local algebras of
every maximal such extension are of the form

BR(O) = B(K )′ ∩ B(L) (O = I × J ⊂ M2
R) (5.3.1)

where A ⊂ B is a possibly nonlocal chiral extension (given by a Q-system in
C DHR(A )), and K ⊂ L is the unique pair of open intervals such that I ∪ J = L \ K :

L K ,
I

J

O .

This formula is “holographic” in the sense that the local observables in a region
O ⊂ M2

R are given in terms of operators in a chiral net that can be thought of as a
net on the boundary.

The simplest case is the trivial chiral extension B = A . In this case, BR(O) is
generated by AR(O) = A (I ) ∨ A (J ) and charge transporters in A (L), namely
unitary intertwiners transporting a DHR endomorphisms localized in J to an equiv-
alent DHR endomorphism localized in J . Accordingly, the charged generators for
the subfactorAR(O) ⊂ BR(O) “carry a charge ρ in I and a charge ρ in J”. Indeed,
under the split isomorphism between the von Neumann algebrasA (I ) ∨A (J ) and
A (I )⊗A (J ), the subfactor turns out to be isomorphic with the subfactor associated
with the canonical Q-system Proposition 3.19 with [ΘR] = ⊕

[ρ] irr ρ ⊗ ρ.
For general chiral extensions A ⊂ B with irreducible Q-system A, the local

subfactor AR(O) ⊂ BR(O) for any bounded doublecone O ⊂ M2
R not touching

the boundary is isomorphic to the subfactor obtained from the full centre Q-system
Z [A], and hence depends (up to isomorphism) only on the Morita equivalence class
(cf. Sect. 3.5) of the chiral Q-system A.

As mentioned in Sect. 5.2.4, the full centre gives also a local net on the full two-
dimensional Minkowski spacetime as an extension B2 ⊃ A ⊗ A of the tensor
product of a pair of isomorphic chiral nets. Indeed, this net can be recovered from
the maximal boundary net BR by a procedure called “removing the boundary”. It
proceeds by taking the limit of a sequence of states on rightwedge algebrasBR(WR+
a) as a ∈ WR tends to infinity (“far away from the boundary”). The netB2 can then
be defined in the GNS Hilbert space of this state, which carries two commuting
unitary representations of the Mbius group. First defining the local algebraB2(WR)

of a single right wedge, andB2(W ′
R) := Bs(WR)′ as its commutant, the two unitary

representations of the translations are used to define the local algebras for general
wedge regions, and the local algebras for doublecones by intersections of algebra for
wedges.

The converse procedure of “adding a boundary” can also be performed alge-
braically [3]. Starting from an extensionA2 ⊂ B2 defined onMinkowski spacetime,
one can redefine the representation of its restriction to M2

R , obtaining a reducible rep-

http://dx.doi.org/10.1007/978-3-319-14301-9_3
http://dx.doi.org/10.1007/978-3-319-14301-9_3
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resentation. Its decomposition yields a direct sum of boundary extensionsAR ⊂ BR

related to chiral extensionsA ⊂ B by the “holographic formula” Eq. (5.3.1), which
all give back A2 ⊂ B2 when the “boundary is removed”. In particular, for every
right wedge WR ⊂ M2

R not touching the boundary, the subnets AR(O) ⊂ BR(O)

indexed by O ⊂ WR are all isomorphic to the subnets A2(O) ⊂ B2(O), so that
the boundary nets in the decomposition can be interpreted as different boundary
conditions imposed on the original net A2 ⊂ B2.

The procedure of “adding a boundary” amounts, in the language of C*-tensor
categories, to the tensor functor T : C � C opp, ρ ⊗ σ �→ ρ σ, taking Q-systems in
C � C opp to Q-systems in C . This functor is adjoint [21] to the full centre, taking
Q-systems in C to Q-systems in C � C opp. In is proven in [20] that the image of
the full centre Q-system Z [A] under T is the direct sum (in the sense of Sect. 4.2) of
Q-systems given by the irreducible A-modules. Thus, the hard boundary conditions
are classified in 1:1 correspondence with the irreducible modules of the underlying
chiral Q-system A.

5.4 Transparent Boundaries

Whereas a hard boundary describing a QFT on a halfspace identifies the left- and
right-moving chiral observables in the halfspace, a transparent boundary separates
two possibly different quantum field theoriesBL andBR in the halfspaces M2

L , M2
R

on either side of the boundary:

L(O1) R(O2)
(O1 ⊂ M2

L, O2 ⊂ M2
R).

Physically speaking, the boundary is thought to separate regions with different
dynamics, e.g., two different phases of a relativistic system with a phase transition.
For the example of the Ising model, cf. [22] and Example 5.1.

The two theories are defined on the same Hilbert space, and share a tensor product
A+ ⊗ A− of common chiral subtheories. The latter property arises from the phys-
ical assumption that energy and momentum are conserved at the boundary, which
identifies the chiral stress-energy tensors on either side of the boundary [5].

Because the presence of the boundary cannot violate the principle of causality,
quantum observables of BL localized in the left halfspace M2

L must commute with
observables of BR localized in the right halfspace M2

R at spacelike separation.
Because the stress-energy tensor is the local generator of diffeomorphisms, the

common chiral subtheory A+ ⊗ A− can be used to extend both theories to the full
Minkowski spacetime.

Motivated by these two (heuristic) observations, one should define a transparent
boundary as a pair of quantum field theories on two-dimensional Minkowski space-
time, sharing a common chiral subtheory, such thatBL is left-local w.r.t.BR . As we
have seen before, such a pair is described by the braided product of two extensions

http://dx.doi.org/10.1007/978-3-319-14301-9_4
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of the common chiral subtheory, and every irreducible such pair is a quotient of the
braided product.

The mathematical issue is therefore the central decomposition of the braided
product of a pair of commutative Q-systems inC DHR(A+)�C DHR(A−). The centre
of the braided product of extensions is given by Proposition 4.31 as a linear space
isomorphic to Hom(ΘL ,Θ R). In order to know its central projections, it must be
computed as an algebra. This is precisely what we have achieved in Theorem 4.42,
providedC DHR(A+) andC DHR(A−) are isomorphic as modular braided categories,
and the pair of commutative Q-systems are full centres of chiral Q-systems AL and
AR . Namely, Theorem 4.42 classifies the transparent boundary conditions in 1:1
correspondence with the irreducible chiral AL -AR-bimodules.

In [5], this classification is further elaborated. As discussed in Sect. 4.12, the
space Hom(ΘL ,Θ R) has two distinguished bases, orthogonal w.r.t. the inner prod-
uct Eq. (4.12.7): one arising by “diagonalizing” the left and right compositions with
Hom(ΘL ,ΘL) and Hom(Θ R,Θ R), the other corresponding to the minimal central
projections of the braided product, i.e., the minimal projections in Hom(ΘL ,Θ R)

w.r.t. the convolution product Eq. (4.12.2). The unitary transition matrix is a gen-
eralized Verlinde matrix, and can be computed by its distinguishing property that
it “diagonalizes” the bimodule fusion rules. Its matrix elements finally turn out to
determine the specific identifications between charged fields of BL and charged
fields of BR , that make up the specific boundary conditions.

Example 5.1 The special case where both Q-systems are the canonical one,
i.e., the boundary between two conformal quantum field theories both isomor-
phic to the Cardy extension, has been given in Example 4.48. For the Ising
model (i.e., the chiral net is given by the Virasoro net with central charge
c = 1), one obtains three boundary conditions given by the three sets of linear
dependencies between the charged generators Ψσ ⊗ σ, Ψτ ⊗ τ:

(i) Ψ L
τ ⊗ τ = Ψ R

τ ⊗ τ, Ψ L
σ ⊗ σ = Ψ R

σ ⊗ σ;
(ii) Ψ L

τ ⊗ τ = Ψ R
τ ⊗ τ, Ψ L

σ ⊗ σ = −Ψ R
σ ⊗ σ;

(iii) Ψ L
τ ⊗ τ = −Ψ R

τ ⊗ τ.

The first case is the trivial boundary; the second the “fermionic” boundary
where the field Ψσ ⊗ σ changes sign, and the third the “dual” boundary, in
which there are two independent fields Ψ R

σ ⊗ σ and Ψ L
σ ⊗ σ (corresponding to the

order and disorder parameter σ and μ in [22]).

http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4
http://dx.doi.org/10.1007/978-3-319-14301-9_4


90 5 Applications in QFT

5.5 Further Directions

Wehave outlined the remarkably tight links between the abstract theory ofQ-systems
in braided C* tensor categories and the representation theory of conformal quantum
field theories in two dimensions. Notably the classifications of “hard” and “transpar-
ent” boundary conditions have very natural counterparts in the abstract setting.

Thinking of systems with several transparent boundaries, some immediate
questions arise: the juxtaposition of two boundaries is described by the (associa-
tive) braided product of three Q-systems. The individual boundary conditions are
classified as A-B-bimodules and as B-C-bimodules. Thus, it is expected that the
juxtaposition of boundary conditions is described in terms of the bimodule tensor
product.

It is much less clear which mathematical structure should be expected to describe
situations where two transparent boundaries intersect each other.

Finally, hard and transparent boundaries are only two “opposite extremes” in a
wide spectrum of possible behaviour of chiral fields at a boundary [5]. It would be
rewarding to describe also more general boundaries in terms of the present unifying
framework.
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Chapter 6
Conclusions

Q-systems are a tool to describe extensions N ⊂ M of an infinite vonNeumann factor
N in terms of “data” referring only to N . We have extended this notion, well-known
for subfactors, to the case when M is admitted to be a finite direct sum of factors.
Modules and bimodules of Q-systems are equivalent to homomorphisms between
extensions. Decompositions of Q-systems and other operations defined in braided
C* tensor categories: the centres, braided products and the full centre—which are
known in the setting of abstract tensor categories—are interpreted in terms of the
associated extensions of von Neumann algebras.

The meaning of these operations in the context of local quantum field theory is
elaborated in [1]. Especially the determination of the centre of the von Neumann
algebra which arises as the braided product of two commutative extensions, is a
problem motivated by these applications. We have completely solved this task for
the braided product of two full centres in modular C* tensor categories.

In the last section, we have given a brief outline of this and other applications of
the theory of braided and modular C* tensor categories in the context of quantum
field theory. It is here, where the interpretation in terms of endomorphisms of von
Neumann algebras is most substantial, since local quantum observables are (selfad-
joint) elements of von Neumann algebras. This application was not only our original
motivation for the analysis presented in the main body of this work; it is also not an
exaggeration to say that the (rather natural) appearance of modular C* categories
in chiral conformal QFT, as an offspring of the original DHR theory designed for
massive QFT in four spacetime dimensions, has triggered many of the developments
described in this work.
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