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Preface

Tensors are needed in Physics to describe anisotropies and orientational behavior.
While every physics student knows what a vector is, there is often an uneasiness
about the notion tensor. In lectures, I used to tell students: “you can be a good
physicist without knowing much about tensors, but when you learn how to handle
tensors and what they are good for, you will have a considerable advantage. And
here is your chance to learn about tensors as a mathematical tool and to get familiar
with their applications to physics.”

This book is, up to Chap. 14, largely based on the two books:

Siegfried Hess, Vektor- und Tensor-Rechnung, which, in turn, was based on
lectures for first-year physics students, and

Siegfried Hess and Walter Köhler, Formeln zur Tensor-Rechnung, a collection
of computational rules and formulas needed in more advanced theory.

Both books were published by Palm and Enke, Erlangen, Germany in 1980,
reprinted in 1982, but are out of print since many years.

Here, the emphasis is on Cartesian tensors in 3D. The applications of tensors to
be presented are strongly influenced by my presentations of the standard four
courses in Theoretical Physics: Mechanics, Quantum Mechanics, Electrodynamics
and Optics, Thermodynamics and Statistical Physics, and by my research experi-
ence in the kinetic theory of gases of particles with spin and of rotating molecules,
in transport, orientational and optical phenomena of molecular fluids, liquid crystals
and colloidal dispersions, in hydrodynamics and rheology, as well as in the elastic
and plastic properties of solids. The original publications cited, in particular in the
second part of the book, show a wide range of applications of tensors. An outlook
to 4D is provided in Chap. 18, where the Maxwell equations of electrodynamics are
formulated in the appropriate four-dimensional form.

While learning the mathematics, first- and second-year students may skip the
applications involving physics they are not yet familiar with, however, brief
introductions to basic physics are given at many places in the book. Exercises are
found throughout the book, answers and solutions are given at the end.
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Here, I wish to express my gratitude to Prof. Ludwig Waldmann (1913–1980),
who introduced me to Cartesian Tensors, quite some time ago, when I was a
student. I thank my master- and PhD-students, postdocs, co-workers, and col-
leagues for fruitful cooperation on research projects, where tensors played a key
role. I am grateful to Springer for publishing this Tensor book in the series
Undergraduate Lecture Notes in Physics, and I thank Adelheid Duhm, Project
Coordinator at Production Physics Books of Springer in Heidelberg for her diligent
editorial work.

Berlin Siegfried Hess
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Part I
A Primer on Vectors and Tensors



Chapter 1
Introduction

Abstract In this chapter, preliminary remarks are made on vectors and tensors.
The axioms of a vector space and the norm of a vector are introduced, the role of
vectors for classical physics and for Special Relativity is discussed. The scope of the
book as well as a brief overview of the history and literature devoted to vectors and
tensors are presented. Before tensors and their properties are introduced here, it is
appropriate to discuss the question: what is a vector? Aswe shall see, mathematicians
and physicists give somewhat different answers.

1.1 Preliminary Remarks on Vectors

Some physical quantities like the mass, energy or temperature are quantified by a
single numerical value. Such a quantity is referred to as scalar. For other physical
quantities, like the velocity or the force not only their magnitude but also their direc-
tion has to be specified. Such a quantity is a vector. In the three-dimensional space
we live in, three numerical values are needed to quantify a vector. These numbers
are, e.g. the three components in a rectangular, Cartesian coordinate system.

In general terms, a vector is an element of a vector space. The axioms obeyed by
these elements are patterned after the rules for the addition of arrows and for their
multiplication by real numbers.

1.1.1 Vector Space

Consider special vectors, represented by arrows, which have a length and a direction.
The rules for computations with vectors can be visualized by manipulations with
arrows. Multiplication of a vector by a number means: the length of the arrow is
multiplied by this number. The relation most typical for vectors is the addition of
two vectors a and b as indicated in Fig. 1.1.

The operation a + b means: attach the tail of b to the arrowhead of a. The sum is
the arrow pointing from the tail of a to the arrowhead of b. The sum b + a, indicated
by dashed arrows, yields the same result, thus

© Springer International Publishing Switzerland 2015
S. Hess, Tensors for Physics, Undergraduate Lecture Notes in Physics,
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4 1 Introduction

Fig. 1.1 Vector addition

a + b = b + a. (1.1)

As a side remark, one may ask: how was the rule for the vector addition conceived?
A vector a can be associated with the displacement or shift along a straight line of
an object, from point 0 to point A. This is the origin for the word vector: it carries
an object over a straight and directed distance. The vector b corresponds to a shift
from 0 to point B. The vector addition a + b means: make first the shift from 0 to
point A and then the additional shift corresponding to vector b, which has to start
from point A. For this reason, the tail of the second vector is attached to the head of
the first vector in the vector addition operation.

When three vectors a, b and c are added, it makes no difference when first the
vector sum of a and b is computed and then the vector c is added or when a is added
to the sum of b and c:

(a + b) + c = a + (b + c). (1.2)

The vector sum is also used to define the difference between two vectors according to

a + x = b → x = b − a. (1.3)

When the vector b in (1.3) is equal to zero, then one has

x = −a. (1.4)

This vector has the same length as a but the opposite direction, i.e. arrowhead and
tail are exchanged.

For real numbers k and �, the following rules hold true for any vector a:

(k + �)a = ka + �a,

k(�a) = (k�)a, (1.5)

1a = a.
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Furthermore, for any real number k and two vectors a and b one has:

k(a + b) = ka + kb. (1.6)

Mathematical objects which obey the rules or axioms (1.1)–(1.6) are elements of a
vector space. For mathematician, the answer to the question “what is a vector?” is:
“it is an element of a vector space”. In addition to the arrows we discussed, there are
many other types of vector spaces. Examples are,

1. real numbers or complex numbers,
2. polynomials of order n,
3. quadratic matrices,
4. ordered n-tuples (a1, a2, . . . , an) with real numbers a1, a2 to an.

In physics, the notion vector is used in a more special sense. Before this is discussed,
a brief remark on the norm of a vector is in order.

1.1.2 Norm and Distance

It is obvious that an arrow has a length. For an element a of an abstract vector space
the norm ||a|| ≥ 0 corresponding to the length of a vector has to be defined by rules.
Computation of the norm requires a metric. Without going into details, the general
properties of a norm are listed here.

1. When the norm of a vector equals zero, the vector must be the zero-vector. Like-
wise, the norm of the zero-vector is equal to zero, thus,

||a|| = 0 ↔ a = 0. (1.7)

2. For any real number r with the absolute magnitude |r |, one has:

||ra|| = |r | ||a||. (1.8)

3. The norm of the sum of two vectors a and b cannot be larger than the sum of the
norm of the two vectors:

||a + b|| ≤ ||a|| + ||b||. (1.9)

The relation (1.9) is obvious for the addition of he arrows as shown in Fig. 1.1.
The distance d(a, b) between two vectors a and b is defined as the norm of the

difference vector a − b:
d(a, b) := ||a − b||. (1.10)

For vectors represented as arrows with their tails located at the same point, this
corresponds to the length of the vector joining the arrowheads.
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The distance is translationally invariant. This means: addition of the same vector
x to both a and b does not change their distance:

d(a + x, b + x) = d(a, b). (1.11)

Furthermore, the distance is homogeneous. This means: multiplication of both vec-
tors a and b by the same real number k implies the multiplication of the distance by
the absolute value |k|:

d(ka,kb) = |k|d(a, b). (1.12)

As stressed before, inmany applications in physics, the notion vector refers to amore
special mathematical object. Before details are discussed in the following section,
here a short answer is given to the question: what is special about vectors in physics?
Vectors in two and three dimensions, as used in classical physics, have to be distin-
guished from the four-dimensional vectors of special relativity theory.

1.1 Exercise: Complex Numbers as 2D Vectors
Convince yourself that the complex numbers z = x + iy are elements of a vector
space, i.e. that they obey the rules (1.1)–(1.6). Make a sketch to demonstrate that
z1 + z2 = z2 + z1, with z1 = 3 + 4i and z2 = 4 + 3i , in accord with the vector
addition in 2D.

1.1.3 Vectors for Classical Physics

The position of a physical object is represented by an arrow pointing from the origin
of a coordinate system to the center of mass of this object. This position vector
is specified by the coordinates of the arrowhead. This ordered set of two or three
numbers, in two-dimensional (2D) or three-dimensional (3D) space R3, is referred
to as the components of the position vector. It is convenient to use a Cartesian
coordinate system which has rectangular axes. Then the length (norm or magnitude)
of a vector is just the square root of the sum of the components squared.

In a coordinate system rotated with respect to the original one, the same position
vector has different components. There are well defined rules to compute the com-
ponents in the rotated system from the original components. This is referred to as
transformation of the components upon rotation of the coordinate system.

Now we are in the position to state what is special about vectors in physics:
A vector is a quantity with two or three components which transform like those of
the position vector, upon a rotation of the coordinate system.

The vectors used in classical physics like the velocity or the force are elements
of a vector space, do have a norm, and they possess an additional property, viz. a
specific transformation behavior of their components.

A scalar is a quantity which does not change upon a rotation of the coordinate
system. Examples for scalars are the mass or the length of the position vector.
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1.1.4 Vectors for Special Relativity

Vectors with four components are used in special relativity theory. The basic vector is
composed of the three components of the position vector; the fourth one is the time,
multiplied by the speed of light. The components of this 4-vector change according
to the Lorentz transformation when the original coordinate system is replaced by a
coordinate systemmovingwith constant velocitywith respect to the original one. The
time is also changed in this transformation. Physical quantitieswith four components,
which transform with the same rule, are referred to as Lorentz vectors. Properties
of Lorentz vectors and their application in physics, in particular in electrodynamics,
are discussed in the last chapter of this book.

1.2 Preliminary Remarks on Tensors

For the first time, students hear about tensors in connectionwith themoment of inertia
tensor linking the rotational angular momentum with the rotational velocity of a
rotating solid body. In such a linear relation, two vectors are not just parallel to each
other. Tensors also describe certain orientational dependencies in anisotropic media.
Examples are electric and magnetic susceptibility tensors, mobility and diffusion
tensors. To be more precise, these are tensors of rank 2. Vectors are also referred to
as tenors of rank 1. There are second rank tensors which are physical variables of
their own, like the stress tensor and the strain tensor. The linear relation between two
second rank tensors is described by a tensor of rank 4. An example is the elasticity
tensor linking the stress tensor with the strain tensor. Tensors of different ranks are
used to characterize orientational distributions.

Definitions, properties and applications of tensors represented by their compo-
nents in a 3D coordinate system are discussed in detail in the following sections.
Here just a brief, preliminary answer is given to the question: What is a tensor?

The rule which links the components of the position vector in a rotated coordinate
system with the components of the original one involves a transformation matrix,
referred to as rotation matrix. The product of � components of the position vector
needs the product of � rotation matrices for their interrelation between the rotated
system and the original one.

A tensor of rank � is a quantity whose components are transformed upon a rotation
of the coordinate system with the �-fold product of the rotation matrix.

In this sense, scalars and vectors are tensors of rank � = 0 and � = 1. Often,
tensors of rank � = 2 are just referred to as tensors. Properties and applications of
second rank tensors, as well as of higher rank tensors, are discussed in the following
sections.
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1.3 Remarks on History and Literature

Cartesian tensors, as they are used here for the description of material properties in
anisotropic media, were first introduced by the German physicist Woldemar Voigt
around 1890. This is documented in his books on the physics of crystals [1]. In his
lectures on theoretical physics, published around 1895, Voigt worked with tensors,
without using the word. In the books on crystal physics, the term vector is used as
if everybody is familiar with it. Tensors, in particular of rank two, are discussed in
detail. Tensors of rank three and four are applied for the description of the relevant
physical phenomena. Voigt refers to Pierre Curie [2] as having very similar ideas
about tensors and symmetries.

In connection with differential geometry, the notion tensor, however, not the
word, was already invented by Carl Friedrich Gauss, who had lived and worked in
Göttingen, more than half a century before Voigt. At about the same time asVoigt, the
Italian mathematicians Tullio Levi-Civita and Gregorio Ricci Curbastro formulated
tensor calculus, as it is used since then in connection with differential geometry [3].
Their work provided the mathematical foundation for Einstein’s General Relativity
Theory [4]. This topic, however, is not treated here. The necessary mathematical tool
for General Relativity are found in the text books devoted to this subject, e.g. in
[5–7].

As stated before, the emphasis of this book is on Cartesian tensors in three dimen-
sions and applications to physics, in particular for the description of anisotropic
properties of matter. Classic books on the subject were published between 1930 and
1960, by Jeffrey [8], Brillouin [9], Dusschek and Hochrainer [10], and Temple [11].
In the Kinetic Theory of gases, tensors and the importance of the use of irreducible
tensors was stressed in the book of Chapman and Cowling [12] and in the Handbuch
article by Waldmann [13]. I was introduced to Cartesian tensors in lectures on elec-
trodynamics by Ludwig Waldmann in 1963. Applications to the kinetic theory of
molecular gases, in the presence of external fields, as well as to optics and transport
properties of liquid crystals required efficient use of tensor algebra and tensor calcu-
lus. This strongly influenced a book for an introductory course to vectors and tensors
[14], for first year students of physics, and led to a collection of computational rules
and formulas needed in more advanced theory [15]. For the application of tensors in
the kinetic theory of molecular gases, see also [16, 17].

In the following, no references will be given to the physics which is standard in
undergraduate and graduate courses, the reader may consult her favorite text book or
internet source. In the second part of the book, devoted to more specialized subjects,
references to original articles will be presented. The particular choice of these topics
largely reflects my own research experience.

A remark on vectors is in order. The notion of vector, i.e. that some physical
quantities, like velocity and force, have both a magnitude or strength and a direction
and that the combined effect of two vectors follow a rule which we call the addition
of vectors, was known long before the word vector was used. Among others, Isaac
Newtonwaswell aware, howvectorial quantities should be handled.Gauss and others
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used a geometric representation of complex numbers in a way which was essentially
equivalent to dealing with two-dimensional vectors. William Rowan Hamilton tried
to extend this concept to three dimensions. He did not succeed but, in 1843, he
invented the four-dimensional quaternions. James Clark Maxwell did not encourage
the application of quaternions to the theory of electrodynamics, but rather favored a
vectorial description. Vector analysis, as it is used nowadays, was strongly promoted,
around 1880, by Willard Gibbs [18].

1.4 Scope of the Book

The first part of the book, Chaps. 2–8, is a primer on vectors and tensors, it provides
definitions, rules for calculations and applications every student of physics should
become familiarwith at anundergraduate level. The symmetry of second rank tensors,
viz. their decomposition into isotropic, antisymmetric and symmetric traceless parts,
the connection of the antisymmetric part with a dual vector, in 3D, as well as the
differentiation and integration of vector and tensor fields, including generalizations
of the laws of Stokes and Gauss play a central role.

Part II, Chaps. 9–18, deals with more advanced topics. In particular, Chaps.
9–11 are devoted to irreducible tensors of rank �, multipole potentials and multipole
moments, isotropic tensors. Integral formulae and distribution functions, spin oper-
ators and the active rotation of tensors are presented in Chaps. 12–14. The properties
of liquid crystals intimately linked with tensors, constitutive relations for elasticity,
viscosity and flow birefringence, as well as the dynamics of tensors obeying nonlin-
ear differential equations are treated in Chaps. 15–17. Whereas this book is mostly
devoted to tensors in 3D, Chap.18 provides an outlook to the 4D formulation of
electrodynamics. Answers and solutions to the exercises are given at the end of the
book.

The examples presented are meant to show the applications of tensors in a variety
of physical properties and phenomena, occurring in different branches of physics.
The examples are far from exhaustive. They are closely linkedwith the author’s expe-
rience in teaching and research. Applications to Mechanics and to Electrodynamics
and Optics are, e.g., found in Chaps. 2–10 and in Chaps. 7–14, as well as in Chap. 18.
Applications to Quantum Mechanics and properties of Atoms and Molecules are dis-
cussed in Chaps. 5, 7, and 10–13.Elasticity, Hydrodynamics andRheology are treated
in Chaps. 7–10 and 16. Problems of Statistical Physics, of the Physics of Condensed
Matter and Material Properties are addressed in Chaps. 12–16. Applications to Non-
equilibrium Phenomena like Transport and Relaxation Processes and Irreversible
Thermodynamics are presented in Chaps. 12, 14, 16, and 17. The physics underlying
the various applications of tensors is discussed to an extend considered appropriate,
without the intention to replace any textbook or monograph on the topics considered.
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Chapter 2
Basics

Abstract This chapter is devoted to the basic features needed for Cartesian tensors:
the components of a position vector with respect to a coordinate system, the scalar
product of two vectors, the transformation of the components upon a change of
the coordinate system. Special emphasis is put on the orthogonal transformation
associated with a rotation of the coordinate system. Then tensors of rank � ≥ 0 are
defined via the transformation behavior of their components upon a rotation of the
coordinate system, scalars and vectors correspond to the special cases � = 0 and
� = 1. The importance of tensors of rank � ≥ 2 for physics is pointed out. The parity
and time reversal behavior of vectors and tensors are discussed. The differentiation
of vectors and tensors with respect to a parameter, in particular the time, is treated.

2.1 Coordinate System and Position Vector

2.1.1 Cartesian Components

Given the origin of a coordinate system, the position of a particle or the center ofmass
of an extended object is specified by the position vector r, as indicated in Fig. 2.1.
In the three-dimensional space we live in, this vector has three components, often
referred to as the x-, y- and z-components. We use a (space-fixed) right-handed rec-
tangular coordinate system, also called Cartesian coordinate system. It is convenient
to label the axes by 1, 2 and 3 and to denote the components of the position vector
by r1, r2, and r3. Sometimes, the vector is written as an ordered triple of the form
(r1, r2, r3).

For these Cartesian components of the position vector the notation rμ is preferred,
where it is understood that μ, or any other Greek letter used for the subscript, also
called indices, can have the value 1, 2 or 3. Of course, the mathematical content is
unaffected, when Latin letters are used as subscripts instead of the Greek ones. Here,
Latin letters are reserved for the components of two- and four-dimensional vectors
or for components in a coordinate system with axes which are not orthogonal.

The components of the sum S = r + s of two vectors r and s, with the Cartesian
components r1, r2, r3 and s1, s2, s3, are given by r1+s1, r2+s2, r3+s3. This standard
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Fig. 2.1 Position vector in a
Cartesian coordinate system.
The dashed lines are guides
for the eye

rule for the addition of two vectors can also be written as

Sμ = rμ + sμ, (2.1)

withμ = 1, 2, 3. The multiplication of the vector r with a real number k, i.e. R = kr
means, that each component is multiplied by this number, viz.,

Rμ = k rμ. (2.2)

We are still dealing with the same vectors when other Greek letters, like ν, λ, . . . or
α, β, . . . are used as subscripts.

2.1.2 Length of the Position Vector, Unit Vector

For the rectangular coordinate system, the length r of the vector r is given by the
Euclidian norm:

r2 = r · r = r21 + r22 + r23 := rμ rμ. (2.3)

Thus one has
r = √

rμ rμ. (2.4)

The length of the vector is also referred to as its magnitude or its norm.
Here and in the following, the summation convention is used: Greek subscripts

which occur twice are summed over. This implies that on one side of an equation,
each Greek letter can only show up once or twice as a Cartesian index. Einstein
introduced such a summation convention for the components of four-dimensional
vectors. For this reason, also the term Einstein summation convention, is used.
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The vector r, divided by its length r , is the dimensionless unit vector r̂:

r̂ = r−1r, (2.5)

or, in component notation:
r̂μ = r−1 rμ. (2.6)

The unit vector has magnitude 1:

r̂μ r̂μ = 1. (2.7)

2.1.3 Scalar Product

The scalar product of two position vectors r and s with components rμ and sμ is

r · s = r1 s1 + r2 s2 + r3 s3 := rμ sμ. (2.8)

Clearly, the length squared (2.3) of the vector r is its scalar product with itself. Just
as in (2.3), the center dot “·” is essential to indicate the scalar product, when the
vectors are written with bold face symbols. The summation convention is used for
the component notation. Notice that the “name” of the summation index does not
matter, i.e. rμsμ = rνsν = rλsλ. What really matters is: a Greek letter occurs twice
(and only twice) in a product.

The scalar product has a simple geometric interpretation. In general, the two
vectors r and s span a plane. We choose the coordinate system such that r is parallel
to the 1-axis and s is in the 1–2-plane, see Fig. 2.2. Then the components of r are
(r1, 0, 0) and those of s are (s1, s2, 0). The scalar product yields r · s = r1s1. The

lengths of the two vectors are given by r = r1 and s =
√

s21 + s22 . The angle between
r and s is denoted by ϕ, see Fig. 2.2. One has s1 = r cosϕ, and

r · s = r s cosϕ (2.9)

Fig. 2.2 For the geometric
interpretation of the scalar
product
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holds true. Or in words: the scalar product of two vectors is equal to the product of
their lengths times the cosine of the angle between them. The scalar product of s
with the unit vector r̂ is equal to s cosϕ. The vector s cos ϕ̂r = (s · r̂)̂r is called the
the projection of s onto the direction of r.

The value of the scalar product reaches its maximum and (negative) minimum
when the vectors are parallel (ϕ = 0) and anti-parallel (ϕ = π ). The scalar product
vanishes for two vectors which are perpendicular to each other, i.e. for ϕ = π/2.
Such vectors are also referred to as orthogonal vectors.

2.1 Exercise: Compute Scalar Product for Given Vectors
Compute the length, the scalar products and the angles between the vectors a, b, c
which have the components {1, 0, 0}, {1, 1, 0}, and {1, 1, 1}.

2.1.4 Spherical Polar Coordinates

As stated before, the position vector r has a length, specified by its magnitude r =√
r · r, and a direction, determined by the unit vector r̂, cf. (2.5) and (2.6). These parts

of the vector are often referred to as radial part and angular part. Indeed, the unit
vector and thus the direction of r can be specified by the two polar angles ϑ and ϕ.
Conventionally, a particular coordinate system is chosen, the Cartesian coordinates
{r1, r2, r3} are denoted by {x, y, z} which, in turn, are related to the spherical polar
coordinates r, ϑ, ϕ by

x = r sin ϑ cosϕ , y = r sin ϑ sin ϕ , z = r cosϑ. (2.10)

Notice, the three numbers for r, ϑ, ϕ are not components of a vector.
The information given by the Cartesian components of a unit vector corresponds

to a point on the unit sphere, identified by the two angles, similar to positions on earth.
Notice, however, that the standard choice made for the angle ϑ would correspond to
associate ϑ = 0 and ϑ = 180◦ with the North Pole and the South Pole, respectively,
whereas the equator would be at ϑ = 90◦. For positions on earth, one starts counting
ϑ from zero on the equator and has to distinguish between North and South, or plus
and minus. In any case, the angle spans an interval of 180◦, or just π , whereas that
of ϕ is 360◦, or 2π .

2.2 Vector as Linear Combination of Basis Vectors

2.2.1 Orthogonal Basis

Examples of orthogonal vectors are the unit vectors e(i), i = 1, 2, 3, which are
parallel to the axes 1, 2, 3 of the Cartesian coordinate system. These vectors have
the properties e(1) · e(1) = 1, e(1) · e(2) = 0, . . ., in more general terms,
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e(i) · e(j) = δij. (2.11)

Here δij is the Kronecker symbol, i.e. δij = 1 for i = j and δij = 0 for i �= j .
The position vector r can be written as a linear combination of these unit vectors

e(i) according to
r = r1 e(1) + r2 e(2) + r3 e(3). (2.12)

Since the basis vectors are not only orthogonal, but also normalized to 1, theCartesian
components are equal to the scalar product of rwith the basis vectors, e.g. r1 = e(1)·r.

2.2.2 Non-orthogonal Basis

Three vectors a(i), with i = 1, 2, 3, which are not within one plane, can be used as
basis vectors. Then the vector r can be represented by the linear combination

r = ξ1 a(1) + ξ2 a(2) + ξ3 a(3), (2.13)

with the coefficients ξ i. Scalar multiplication of (2.13) with the basis vectors a(i)

yields

ξi = a(i) · r =
3

∑

j=1

gij ξ
j. (2.14)

The coefficient matrix
gij = a(i) · a(j) = gji, (2.15)

is determined by the scalar products of the basis vectors. The coefficients ξ i and ξi
are referred to as contra- and co-variant components of the vector in a coordinate
system with axes specified by the basis vectors a(i).

In this basis, the square of the length or of the magnitude of the vector is given by

r · r =
∑

i

∑

j

ξ iξ j a(i) · a(j) =
∑

i

∑

j

ξ iξ j gji =
∑

i

ξ iξi. (2.16)

The coefficientmatrix gij characterizes the connection between the co- and the contra-
variant components and it is essential for the calculation of the norm. Thus it deter-
mines the metric of the coordinate system.

The geometric meaning of the two different types of components is demonstrated
in Fig. 2.3 for the 2-dimensional case.

The intersection of the dashed line parallel to the 2-axis with the 1-axis marks the
component ξ1, similarly ξ2 is found at the intersection of the 2-axis with the dashed
line parallel to the 1-axis. The component ξ1 and ξ2 are found at the intersections
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Fig. 2.3 Components of the
position vector in a
non-orthogonal coordinate
system

of the dashed lines perpendicular to the axes. It is understood that the basis vectors
along the axes, not shown in Fig. 2.3, are unit vectors.

For basis vectorswhich aremutually perpendicular and normalized to 1, thematrix
gij reduces to unit matrix δij. Consequently co- and the contra-variant components
are equal. This is also obvious from Fig. 2.3. The two types of components coin-
cide when the basis vectors are orthogonal. We do not have to distinguish between
co- and the contra-variant components when we use the Cartesian coordinate system.

2.3 Linear Transformations of the Coordinate System

The laws of physics do not depend on the choice of a coordinate system. However, in
many applications, a specific choice is made. Then it is important to know, how com-
ponents have to be transformed such that the physics is not changed, when another
coordinate system is chosen. Here, we are concerned with linear transformations
where the coordinates in the new system are linked with those of the original coordi-
nate system by a linear relation. The two types of linear transformations, translations
and affine transformations, also referred to as linear maps, are discussed separately.
The rotation of a coordinate system is a special case of an affine transformations.
Due to its importance, an extra section is devoted to rotations.

2.3.1 Translation

Consider a new coordinate system, that is shifted with respect to the original one by
a constant vector a. Such a shift is referred to as translation of the coordinate system.
In Fig. 2.4, a translation within the 1,2-plane is depicted.
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Fig. 2.4 Components of the
position vector r in shifted
coordinate system

The position vector r′ with respect the origin of the shifted coordinate system is
related to the original r by

r′ = r − a, (2.17)

or in component notation,
r ′
μ = rμ − aμ. (2.18)

The inverse transformation, which brings the shifted coordinate system back to the
original one, corresponds to a shift by the vector −a.

Notice: the translation of the coordinate system is a passive transformation, which
has to be distinguished from the active translation of the position of a particle or of
an object from r to r + a.

2.3.2 Affine Transformation

For an affine transformation, the components r ′
1, r ′

2, r ′
3 of the position vector r′ in

the new coordinate system are linear combinations of the components r1, r2, r3 in
the original system. When the components of the vectors are written in columns, the
linear mapping can be expressed in the form

⎛

⎝

r ′
1

r ′
2

r ′
3

⎞

⎠ =
⎛

⎝

T11 T12 T13
T21 T22 T23
T31 T32 T33

⎞

⎠

⎛

⎝

r1
r2
r3

⎞

⎠ . (2.19)

The elements T11, T12, . . . of the matrix T characterize the affine transformation.
The determinant of T must not be zero, such that the reciprocal matrix T−1 exists.
Standard matrix multiplication is assumed in (2.19). This means, e.g.
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r ′
1 = T11 r1 + T12 r2 + T13 r3. (2.20)

More general, for μ = 1, 2, 3, one has

r ′
μ = Tμ1 r1 + Tμ2 r2 + Tμ3 r3, (2.21)

or, with the help of the summation convention

r ′
μ = Tμν rν. (2.22)

Notice: in (2.22), μ is a free index which can have any value 1, 2 or 3. The subscript
ν, on the other hand, is a summation index, for which any other Greek letter, except
μ, could be chosen here.

Sometimes, the relations (2.19) or equivalently (2.22) are expressed in the form

r′ = T · r, (2.23)

where the matrix-character of T is indicated by the bold face sans serif letter and
the center dot “·” implies the summation of products of components.

Notice: in such a notation, the order of factors matters, in contradistinction to the
component notation. The equation r′ = r · T corresponds to r ′

μ = rνTνμ = Tνμrν

which is different from (2.22), unless the transformation matrix T is symmetric, i.e.
unless Tνμ = Tμν holds true.

The inverse transformation, also called back-transformation, links the compo-
nents of r with those of r′, according to

r = T−1 · r′, (2.24)

with the inverse transformation matrix T−1. Insertion of (2.23) into (2.24) leads to
r = T−1 · r′ = T−1 · T · r which implies

T−1 · T = δ, (2.25)

or in component notation,
T −1

μλ Tλν = δμν. (2.26)

Notice: here μ and ν are free indices, λ is the summation index. The symbol δ

indicates the unit matrix, viz.:

δ :=
⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ , (2.27)

or equivalently, δμν = 1 for μ = ν, and δμν = 0 for μ �= ν.
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Similarly, insertion of (2.24) into (2.23) leads to

T · T−1 = δ, (2.28)

or in component notation
Tμλ T −1

λν = δμν. (2.29)

For the affine transformation, the left-inverse and the right-inversematrices are equal.

2.4 Rotation of the Coordinate System

2.4.1 Orthogonal Transformation

Affine transformations, which conserve the rule for the computation of the length or
the norm of the position vector, and likewise the scalar product of two vectors, are of
special importance. Coordinate transformations with this property are called orthog-
onal transformations. Proper rotations and rotations combined with a mirroring of
the coordinate system are special cases to be discussed in detail.

The orthogonal transformations are defined by the requirement that

r ′
μ r ′

μ = rμ rμ, (2.30)

where it is understood, that a relation of the form (2.23) holds true. This then is a
condition on the properties of the transformationmatrixT. Here and in the following,
the symbol U is used for the norm-conserving orthogonal transformation matrices.
The letter “U” is reminiscent of “unitarian”.

The property of the orthogonal matrix is inferred as follows. Use of r ′
λ = Uλμrμ

and r ′
λ = Uλνrν yields r ′

λr ′
λ = UλμUλνrμrν . On the other hand (2.30) requires this

expression to be equal to rμrμ = δμνrμrν . Thus one has

UλμUλν = δμν. (2.31)

Notice: here the summation index λ is the front index for both matrices U. Reversal
of the order of the subscripts yields the corresponding component of the transposed
matrix, labelled with the superscript “T”. Thus one has Uλμ = UT

μλ, and (2.31) is
equivalent to

UT
μλ Uλν = δμν. (2.32)

This orthogonality relation for the transformation matrix is equivalent to

UT · U = 1, (2.33)
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where it is understood that the 1 on the right hand side stands for the unit matrix.
Comparison of (2.32) and (2.33) with (2.26) and (2.25) reveals: the inverse U−1 of
the orthogonal matrix U is just its transposed UT:

U−1 = UT, (2.34)

or
U−1

μν = Uνμ. (2.35)

Use of the inverse transformation in considerations similar to those which lead to
(2.31) and of (2.35) yield the orthogonality relation with the summation index at the
back,

UμλUνλ = δμν, (2.36)

or, equivalently,
U · UT = 1. (2.37)

Summary

The coordinate transformation
r ′
μ = Uμν rν, (2.38)

where the matrix Uμν has the property

Uμλ Uνλ = Uλμ Uλν = δμν (2.39)

guarantees that the scalar product of two vectors (2.8) and consequently, the expres-
sion (2.4) for the length of a vector are invariant under this transformation. Further-
more, the relation (2.39)means that the reciprocalU−1 ofU is equal to the transposed
matrix UT which, in turn is defined by UT

μν = Uνμ.

Simple Examples

The simplest examples for transformationmatrices which obey (2.39) areUμν = δμν

and Uμν = −δμν , or in matrix notation:

U = δ :=
⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ , U = −δ :=
⎛

⎝

−1 0 0
0 −1 0
0 0 −1

⎞

⎠ , (2.40)

which, respectively, induce the identity transformation and a reversal of the directions
of the coordinate axes. The latter case means a transformation to the ‘mirrored’
coordinate system.
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Fig. 2.5 The components of
the position vector r in the
original coordinate system
and in one rotated about the
3-axis by the angle α are
given by the projections of r
on the coordinate axes 1, 2
and 1′, 2′, respectively

2.4.2 Proper Rotation

In general, an orthogonal transformation is either a proper rotation or a rotation
combined with mirrored axes. The relation (2.39) implies (det U)2 = 1, thus det U =
±1. In the case of a proper rotation, the determinant “det” of the transformation
matrix is equal to 1. Check the sign of the determinant for the simple matrices shown
in (2.40).

An instructive nontrivial special case is the rotation of the coordinate system about
one of its axes, e.g. the 3-axis as in Fig. 2.5 by an angle α. Let r be a vector located
in the 1–2-plane, the angle between r and the 1-axis is denoted by ϕ. Then one has
r1 = r cosϕ, r2 = r cosϕ, r3 = 0, where r is the length of the vector. From the figure
one infers: r ′

1 = r cos(ϕ−α) = r(cosϕ cosα+sin ϕ sin α) = r1 cosα+r2 sin α and
r ′
2 = r sin(ϕ−α) = r(sin ϕ cosα−cosϕ sin α) = −r1 sin α+r2 cosα; furthermore

r ′
3 = 0. Thus the rotation matrix Uμν = Uμν(3| α), also denoted by U(3| α), reads:

U = U(3| α) :=
⎛

⎝

cosα sin α 0
− sin α cosα 0

0 0 1

⎞

⎠ . (2.41)

A glance at (2.41) shows U(3| − α) = UT(3| α). This is expected on account of
(2.39) equivalent to U−1 = UT, since the rotation by the angle −α corresponds to
the inverse transformation.

By analogy to (2.41), the transformation matrix for a rotation by the angle β about
the 2-axis is

U = U(2| β) :=
⎛

⎝

cosβ 0 − sin β

0 1 0
sin β 0 cosβ

⎞

⎠ . (2.42)

The two rotation matrices U(3| α) and U(2| β) do not commute, i.e. one has

U (3| α)μλU (2| β)λν �= U (2| β)μλU (3| α)λν.
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This is explained as follows. When first a rotation U(3| α) about the 3-axis is
performed, the subsequent rotation induced by U(2| β) is about the new coordi-
nate axis 2′. On the other hand, the rotation U(3| α), performed after the 2′ rotation,
is about the new 3′-axis.

A general rotation about an arbitrary axis can be expressed by three successive
rotations of the type (2.41) by 3 Euler angles about the 3-axis, the new 2-axis, and
the new 3-axis, viz.: Uμν = Uμλ(3| γ )Uλκ(2| β)Uκν(3| α).

In most applications, it is not necessary to compute or to perform rotations explic-
itly. However, the behavior of the components of the position vector is essential for
the definition of a vector and of a tensor, as used in physics.

2.5 Definitions of Vectors and Tensors in Physics

2.5.1 Vectors

A quantity a with Cartesian components aμ, μ = 1, 2, 3 is called a vector when,
upon a rotation of the coordinate system, its components are transformed just like the
components of the position vector, cf. (2.38). This means, the components a′

μ, in the
rotated coordinate system, are linked with the components in the original system by

a′
μ = Uμν aν . (2.43)

Here Uμν are the elements of a transformation matrix for a proper rotation of the
coordinate system.

Differentiation with respect to time t does not affect the vector character of a
physical quantity. Thus the velocity vμ = drμ(t)/dt and the acceleration dvμ(t)/dt
are vectors. The linear momentum p, being equal to the mass of a particle times
its velocity, and the force F are vectors. This guarantees that Newton’s equation of
motion dp/dt = F, or in components

dpμ

dt
= Fμ, (2.44)

is form-invariant against a rotation of the coordinate system.

Warning

A rotated coordinate systemmust not be confused with a rotating coordinate system.
A rotating coordinate system is an accelerated system where additional forces, like
theCoriolis force and a centrifugal force, have to be taken into account in the equation
of motion.
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2.5.2 What is a Tensor?

Tensors are important “tools” for the characterization of anisotropies; but what is
meant by the notion tensor? Here mainly Cartesian tensors of rank �, � = 0, 1, 2, . . .
are treated. These are quantities with � indices which change in a specific way, when
the coordinate system is rotated. More specifically: a Cartesian tensor of rank � is a
quantity with � indices, e.g. Aμ1μ2...μ�

, whose Cartesian components A′
μ1μ2...μ�

in a
rotated coordinate system are obtained from the original ones by the application of
� rotation matrices U to each one of the indices, viz.:

A′
μ1μ2...μ�

= Uμ1ν1Uμ2ν2 . . . Uμ�ν�
Aν1ν2...ν�

. (2.45)

In this sense, scalars and vectors are tensors of rank � = 0 and � = 1. Examples for
vectors are the position vector r of a particle, its velocity v, its linear momentum p,
as already mentioned before, but also its orbital angular momentum L, its spin s, as
well as an electric field E and a magnetic field B.

Tensors of rank � = 2 are frequently referred to as tensors without indicating their
rank. Examples are the moment of inertia tensor, the pressure tensor or the stress
tensor. Applications will be discussed later.

A second rank tensor can also be written as a matrix. However, it is distinguished
from an arbitrary 3 × 3-matrix by the transformation properties of its components,
just as not any 3-tuple is a vector in the sense described above. Of course, the matrix
notation does not work for tensors of rank 3 or of higher rank.

2.5.3 Multiplication by Numbers and Addition of Tensors

The multiplication of a tensor by real number k means the multiplication of all its
elements by this number, which is almost trivial in component notation:

k (A)μ1μ2...μ�
= k Aμ1μ2...μ�

. (2.46)

The addition of two tensors of the same rank implies that the corresponding compo-
nents are added. When a tensor C is said to be the sum of the tensors A and B, this
means:

Cμ1μ2...μ�
= Aμ1μ2...μ�

+ Bμ1μ2...μ�
. (2.47)

The addition of two tensors makes sense only when both have the same rank �. Of
course, the rank of the resulting sum is also �.

Notice, though it may sound somewhat confusing, tensors of a fixed rank � (with
� = 0, 1, 2, . . .) are elements of a vector space.



24 2 Basics

2.5.4 Remarks on Notation

The Cartesian components of tensors are unambiguously specified by Greek sub-
scripts, e.g. aμ and aμν . As practiced already above, it is sometimes more convenient
to use boldface and boldface sans serif letters, e.g. a and a to indicate that a quantity
is a vector or (second rank) tensor. An alternative “invariant” notation for tensors of
rank � (which is preferred in hand writing) is to underline a letter � times, e.g. a and
a for a vector and a tensor of rank 2. When Cartesian components are not written
explicitly, a center dot · must be used to indicate a “contraction”, i.e. a summation
over indices. The scalar product a ·b = aμbμ has to be distinguished from the dyadic
product a b, equivalent to aμbν , which is a second rank tensor. The scalar product
of a second rank tensor with a vector, e.g. C · b, equivalent to Cμνbν , is a vector
whose components are computed by analogy to the multiplication of a matrix with
a “column vector”. The quantity C b, on the other hand, stands for the third rank
tensor Cμνbλ.

The invariant notation appears to be “simpler” than the component notation. Here
both notations are used. The components of Cartesian tensors are specified explicitly
when new relations are introduced and when ambiguities in the order of subscripts
could arise as, e.g., in the products aμνbνμ and aμνbμν of two tensors a and b.
The invariant notation is preferred only when it can be translated uniquely into the
component form.

2.5.5 Why the Emphasis on Tensors?

The physical content of equationsmust be invariant under a rotation of the coordinate
system. For the linear relation

bμ = Cμν aν, (2.48)

between two vectors a and b, this implies that the components of the coefficient
matrix C have to transform under a rotation like the components of a tensor of rank
2. In short, C is a second rank tensor. The proof is as follows. We assume that a and
b are vectors. This means, in the rotated coordinate system, the components of b are
related to the original ones by b′

μ = Uμλbλ. Use of (2.48) leads to

b′
μ = Uμλ Cλκ aκ .

The components of a are related to those of a′ by aκ = U−1
κν a′

ν = Uνκa′
ν . In the last

equality it has been used that the inverse and the transposed of the transformation
matrix U, cf. (2.35), are equal. Insertion into the previous equation leads to b′

μ =
Uμλ CλκUνκa′

ν , which is equivalent to

b′
μ = C ′

μν a′
ν, (2.49)
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with the quantity C′ linked with C by

C ′
μν = UμλUνκ Cλκ . (2.50)

The relation (2.50) proves: C is a second rank tensor.
Examples for linear relations like (2.48) are those between the angular momentum

and the angular velocity of a solid body, where the moment of inertia tensor occurs,
and between the electric polarization and the electric field in a “linear medium”.
Here, the susceptibility tensor plays the role of C.

Similarly, the linear relation bμν = Cμνλκaλκ between two second rank tensors
a and b implies that, in this case, C is a tensor of rank 4. The elasticity and the
viscosity tensors linking the stress tensor or the pressure tensor with the gradient of
the displacement and of the velocity field, respectively, are of this type.

The generalization of (2.48) is a linear relation between a tensor b of rank � with
tensor a of rank k of the form

bμ1μ2...μ�
= Cμ1μ2...μ� ν1ν2...νk aν1ν2...νk . (2.51)

Here C is a tensor of rank � + k.
In physics, examples for linear relations linking tensors of rank 1 with tensors of

rank 1, 2, 3 and of tensors of 2 with tensors of rank 1, 2, 3 of tensors, and so on, were
already discussed over hundred years ago in the book Lehrbuch der Kristallphysik
where Woldemar Voigt introduced the notion tensor.

The relation (2.51) is a linear mapping of a on b. Nevertheless, the physical
content may describe non-linear effects, when the tensor a stands for a product of
tensors. Examples occur in non-linear optics. For strong electric fields, the induced
electric polarization contains not only the standard term linear in the field, but also
contributions bilinear and of third order in the electric field. The material coefficient
characterizing these effects, called higher order susceptibilities, are tensors of rank
3 and 4.

2.6 Parity

2.6.1 Parity Operation

In addition to their rank, tensors are classified by their parity. The parity is either equal
to 1 or −1 when the physical quantity considered is an eigenfunction of the parity
operator P . The parity operation is an active transformation where the position
vector r is replaced by−r, cf. Fig. 2.6. This active ‘mirroring’ should not be confused
with themirroring of the coordinate system as described by the transformationmatrix
Uμν = −δμν .
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Fig. 2.6 Parity operation:
r → −r

The parity operator P , when applied on any function f (r), yields f (−r):

P f (r) = f (−r). (2.52)

Clearly, one has P f (−r) = f (r) and consequently

P2 = 1, (2.53)

or (P − 1)(P + 1) = 0. Thus the eigenvalues of the parity operator are

P = ±1. (2.54)

Usually eigenfunctions are referred to as having positive or negative parity, when
P = 1 and P = −1, respectively, applies.

2.6.2 Parity of Vectors and Tensors

Inmost applications tensors, and this includes vectors, are eigenfunction of the parity
operator. Tensors of rank � with

P = (−1)� (2.55)

are called proper tensors, those with

P = −(−1)� = (−1)�+1 (2.56)

are referred to as pseudo tensors.
For vectors (� = 1), also the terms polar vector and axial vector are used to

distinguish between proper and pseudo vectors. Examples for polar vectors are the
linearmomentump of a particle and the electric field,whereas the angularmomentum
and the magnetic field are axial vectors, as will be discussed later.
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2.6.3 Consequences for Linear Relations

The electromagnetic interaction underlying all relevant interactions encountered in
every days life, i.e. in gases, liquids and solids, is invariant under the parity operation.
The equations governing physical properties and phenomena must not violate this
parity invariance. This means, for example, when the vector b in the relation bμ =
Cμνaν has the parity −1 (polar vector), the vector a and the tensor C must have the
parities −1 and 1 (polar vector and proper tensor) or 1 and −1 (axial vector and
pseudo tensor). More general, let Pa, Pb, PC the values of the parities of the tensors
a, b, C in the linear relation (2.51). Parity invariance requires

Pb = PC Pa. (2.57)

Likewise, when the parities of a and b are given by their physical meaning, the
coefficient tensor C must have the parity

PC = Pa Pb, (2.58)

in order that the linear relation (2.51) does not violate parity.

2.6.4 Application: Linear and Nonlinear Susceptibility Tensors

The electric field E, the electric displacement field D and the electric polarization P
used in electrodynamics are polar vectors. They are linked by the general relation

D = ε0 E + P,

where ε0 is the electric permeability coefficient of the vacuum. In a material, called
linear medium, the electric polarization is linearly related to the electric field, accord-
ing to

Pμ = ε0 χμν Eν,

where χμν is the linear susceptibility tensor. In the special case of a linear medium,
one has

Dμ = ε0 εμν Eν, εμν = ε0 (δμν + χμν),

with the dimensionless dielectric tensor εμν . In general, in particular for strong
electric fields as, e.g. encountered in a (focussed) laser beam, terms nonlinear in the
electric field give significant contributions to the electric polarization. Up to third
order in the electric field, the electric polarization is given by
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Pμ = ε0 (χ(1)
μν Eν + χ

(2)
μνλ Eν Eλ + χ

(3)
μνλκ Eν EλEκ + . . .). (2.59)

Here χ
(1)
μν ≡ χμν is the linear susceptibility tensor. The third and fourth rank tensors

χ
(2)
μνλ and χ

(3)
μνλκ characterize the second and third order susceptibilities. In optics,

these terms are responsible for the second and third harmonics generation, where a
part of the incident light with frequencyω is converted into light with the frequencies
2ω and 3ω, respectively.

Both the electric field and the electric polarization have negative parity. Conser-
vation of parity enforces that the linear and the third order susceptibility tensors
must have positive parity, i.e. they are proper tensors of rank 2 and 4, respectively.
In the simple case of an isotropic medium, these tensors reduce to χ

(1)
μν = χ1δμν and

χ
(3)
μνλκ = χ3δμνδλκ , with (proper) scalar coefficients χ1 and χ3. The second order

susceptibility, underlying the second harmonic generation (and also the generation
of a zero frequency field), must have negative parity. This can be provided by a polar
vector d in the medium, such as dipole moment or internal electric field, or even by
the vector normal to a surface. Then the second order susceptibility tensor χ

(2)
μνλ will

contain contributions proportional to dμδνλ and to δμνdλ.

Notice: as far as the tensor algebra is concerned, the terms nonlinear in the electric
field in (2.59) still are “linear relations” between Pμ and the tensors Eν Eλ and
Eν EλEκ , which are of second and third order in the components of the electric field
vector.

2.7 Differentiation of Vectors and Tensors with Respect
to a Parameter

2.7.1 Time Derivatives

Just like scalars, vectors and tensors can dependent on parameters. In most appli-
cations in physics, one deals with functions of the time t . The time derivative of a
tensor A is a tensor again. It is defined as the time derivatives of all its components,
viz.,

(

d

dt
A

)

μν...

≡ (Ȧ)μν... = d

dt
Aμν.... (2.60)

It is recalled that the tensor character of a quantity is intimately linked with the
transformation behavior of its components under a rotation of the coordinate system,
cf. (2.45). Since the transformation matrix U is “timeless”, the differentiation with
respect to time and the rotation of the coordinate system commute. Thus the time
derivative of a tensor of rank � obeys the same transformation rules, it is also a tensor
of rank �.
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The parity operation is also timeless. Thus it commutes with the differentiation
with respect to time. Consequently, the time derivative Ȧ of a tensor has the same
parity as the original tensor A.

In short: neither the property of a physical quantity being a tensor, nor its parity
behavior are affected by differentiating it with respect to time.

2.7.2 Trajectory and Velocity

The trajectory of a mass point or of the center of mass of any solid object is described
by the time dependence of its position vector r = r(t), or equivalently, rμ = rμ(t),
μ = 1, 2, 3. The velocity v is defined by

vμ = d

dt
rμ ≡ ṙμ. (2.61)

The velocity is a polar vector, just as the position vector.
The unit vector

v̂μ = v−1 vμ = (ṙν ṙν)
−1/2 ṙμ, (2.62)

points in the direction of the tangent of the curve describing the trajectory. It is
referred to as tangential vector.

Two simple types of motion are considered next.

1. Motion along a straight line. The trajectory is determined by

rμ(t) = r0μ + f (t) eμ,

where r0μ and the unit vector eμ are constant. The differentiable function f (t) is
assumed to be equal to zero for t = 0, then rμ(0) = r0μ. For r0μ = 0, the line runs
through the origin. The resulting velocity is

vμ(t) = d f

dt
eμ.

Here, one has v̂μ = eμ = const. and v = ḟ . For a straight uniform motion, not
only the direction of the velocity, but also the speed v is constant. Then f (t) = v t
hold true.

2. Motion on a circle. The motion on a circle with the radius R and the angular
velocity w is described by

r1 = R cos(wt), r2 = R sin(wt) , r3 = 0,

where, obviously, the circle lies in the 1–2-plane. The origin of the coordinate
system is the center of the circle. At time t = 0, the position vector points in the
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1-direction. For w > 0, the motion runs counterclockwise, i.e. in the mathemat-
ically positive sense. Assuming R = const. and w = const., the components of
the velocity are

v1 = −Rw sin(wt), v2 = Rw cos(wt), v3 = 0.

In this case, the velocity is perpendicular to the position vector, it is purely tan-
gential.

2.7.3 Radial and Azimuthal Components of the Velocity

The position vector rμ(t) can be written as a product of its magnitude r = (rνrν)
1/2

and the unit vector r̂μ(t), according to rμ = rr̂μ. Then one has

d

dt
rμ = dr

dt
r̂μ + r

d

dt
r̂μ. (2.63)

The radial component of the velocity is the first term on the right hand side of (2.63),
which is parallel to the position vector r. It describes the change of the length of r. The
second term, associated with the change of the direction of r, is called the azimuthal
component, sometimes also the tangential component of the velocity, because it is
perpendicular to r. This can be seen quickly as follows. Notice that r̂ν r̂ν = 1. The
time derivative of this equation yields 2̂rν

d
dt r̂ν = 0, which implies that the derivative

of the radial unit vector r̂ is perpendicular to r̂. Alternatively, the definition of the unit
vector, viz., r̂μ = rμ r−1 = rμ(rνrν)

−1/2 and the chain rule can be used to obtain

d

dt
r̂μ = r−1 d

dt
rμ − r−3rμrν

d

dt
rν = r−1 (δμν − r̂μr̂ν) vν. (2.64)

The projection tensor δμν − r̂μr̂ν guarantees that d
dt r̂μ is perpendicular to r̂μ.

Notice that the word tangential is used with two slightly different meanings,
which only coincide for the motion on a circle. In one case it refers to the tangent
of a trajectory which points in the direction of the velocity. In the second case,
just discussed here, where the word “azimuthal” is more appropriate, it means the
direction perpendicular to the position vector.

2.8 Time Reversal

The trajectory of a particle or of the center of mass of an extended object is described
by the time dependence of the position vector r = r(t). One may ask the question:
does the trajectory r(−t) also describe a physically possible motion? In other words,
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does physics allow the backward motion just as well as the forward motion. If the
answer to this question is “yes”, the motion is called reversible, otherwise it is
referred to as irreversible. In movies and in computer simulations, one can let the
time run backwards. In real physics, just as in real life, this is not possible. On the
other hand, physics deals both with reversible processes, like the celestial motion of a
planet around the sun and with irreversible processes, like an earthly motion, damped
by friction. It is desirable to know, whether the equations governing the dynamics,
describe a reversible or an irreversible behavior, even before these equations are
solved. This can be found out by inspecting the time reversal behavior of all terms
in the relevant equations.

The time reversal behavior of a physical quantity is called even or odd, or also
denoted by plus + or minus −, depending on whether the time reversal operator,
applied on this quantity, leaves it unchanged or changes its sign. The time reversal
operator does not change the position vector r. Application to the velocity v = d

dt r
yields −v. More generally, the first derivative of a physical variable has a time
reversible behavior, which is just opposite to that of the original variable. Clearly,
the acceleration a = d

dt v = d2

dt2
r is even under time reversal.

The idea behind these considerations is as follows: observe a process, e.g. the
trajectory of a particle, from time t = 0 to the time tobs, then change the sign of the
velocity and of all relevant variables, which are odd under the time reversal operation
and let the time run forward till 2tobs. When the process comes back to the original
state, e.g. a particle runs back to its initial position, the process is called reversible.
If the process does not return to its original state, it is called irreversible. When
all physical variables in an equation governing the dynamics of a process have the
same time reversal behavior, time reversal invariance is obeyed, otherwise the time
reversal invariance is violated. A simple example is Newton’s equation of motion
for a single particle. Mass times acceleration is even under time reversal. When the
force is just a function of the position vector, it is also even and, as a consequence,
the equation describes a reversible dynamics. When, on the other hand, the force has
a frictional contribution proportional to the velocity, the equation of motion involves
terms with different time reversal behavior, the motion is irreversible. The motion is
damped provided that the friction coefficient has the correct sign.

To distinguish in the theoretical description between reversible and irreversible
phenomena, it is important to know the time reversal behavior of vectors and tensors
used in physics. As alreadymentioned, the position vector r is not affected by the time
reversal operator, the velocity v = d

dt r, however, changes sign, when t is replaced by
−t . Likewise, the linearmomentum p = mv, and also the orbital angularmomentum,
as discussed later, are odd under time reversal. The acceleration, being the second
derivative of r with respect to time, is even under time reversal.

In Table2.1, parity and the time reversible behavior of some vectors are indicated
by plus or minus. The parity of all these vectors is uniquely determined. This is
also true for the time reversal behavior of r, v, p and of the acceleration a, of the
angular velocity w, and of the orbital angular momentum L. As will be discussed
later, this also applies for the electric and magnetic fields E and B. When the time
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Table 2.1 The parity and time-reversal behavior of some vectors

Physical quantity r v p a F w L T E B

Parity − − − − − + + + − +
Time reversal + − − + ± − − ± + −

reversal behavior of the force F and of the torque T are positive, the dynamics is
reversible. Forces and torques, however, contain terms with the other time reversal
behavior, when friction plays a role. Then the dynamics is irreversible. The time
reversal behavior of tensors occurring in applications will be discussed later.



Chapter 3
Symmetry of Second Rank Tensors,
Cross Product

Abstract This chapter deals with the symmetry of second rank tensors and the
definition of the cross product of two vectors. In general, a second rank tensor con-
tains a part which is symmetric and a part which is antisymmetric with respect to
the interchange of its indices. For 3D, there exists a dual relation between the an-
tisymmetric part of the second rank tensor and a vector. The symmetric part of the
tensor is further decomposed into its isotropic part involving the trace of the tensor
and the symmetric traceless part. Fourth rank projection tensors are defined which,
when applied on an arbitrary second rank tensor, project onto its isotropic, antisym-
metric and symmetric traceless parts. The properties of dyadics, viz. second rank
tensors composed of the components of two vectors, are discussed. The dual relation
between its antisymmetric part and a vector corresponds to the definition of the cross
product or vector product, various physical applications are presented.

3.1 Symmetry

3.1.1 Symmetric and Antisymmetric Parts

An arbitrary tensor A of rank 2 can be decomposed into its symmetric and antisym-
metric parts Asym and Aasy according to

Asym
μν = 1

2

(

Aμν + Aνμ

)

, Aasy
μν = 1

2

(

Aμν − Aνμ

)

. (3.1)

Clearly, the interchange of subscripts implies

Asym
μν = Asym

νμ , Aasy
μν = −Aasy

νμ . (3.2)

In three dimensions, Asym and Aasy have 6 and 3 independent components.
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3.1.2 Isotropic, Antisymmetric and Symmetric Traceless Parts

The symmetric part of a second rank tensor A can be decomposed further into an
isotropic part proportional to the product of the isotropic tensor δ and the trace

tr A = Aλλ and a symmetric traceless part A defined by

Aμν = 1

2

(

Aμν + Aνμ

) − 1

3
Aλλ δμν. (3.3)

Thus the tensor A is decomposed into its isotropic, antisymmetric and symmetric
traceless parts according to

Aμν = 1

3
Aλλ δμν + Aasy

μν + Aμν . (3.4)

This decomposition is invariant under a rotation of the coordinate system.
The symbol . . . used to indicate the symmetric traceless part of a tensor, was

introduced by Ludwig Waldmann around 1960. Compared with the double arrow
←→, which also occurs in printing, the . . . has the advantage that it can be drawn
in one stroke. For second rank tensors, . . . first appeared in print in [20], and in
[21], it was applied for irreducible tensors of any rank. Alternative notations used in
the literature for symmetric traceless tensors are mentioned in Sect. 3.1.7.

3.1.3 Trace of a Tensor

The isotropic part involves the trace of the tensor

tr(A) = Aλλ = A11 + A22 + A33. (3.5)

It is a scalar (tensor of rank � = 0), i.e., it is invariant under a rotation of the
coordinate system. The proof is: the tensor property A′

μν = UμκUνλ Aκλ implies
A′

μμ = UμκUμλ Aκλ, and due to the orthogonality (2.31) of the transformation
matrix, one has A′

μμ = δκλ Aκλ = Aκκ .
The term isotropic is used since the unit tensor δμν has no directional properties,

it is not affected by a rotation of the coordinate system. Here the other orthogonality
(2.36) is used for the proof: δ′

μν = UμκUνλδκλ = UμλUνλ = δμν .
Notice: the antisymmetric part of the tensor does not contribute to the trace:

tr(A) = Aλλ = Asym
λλ = tr(Asym). (3.6)

The trace of a second rank tensor is also given by the total contraction of this tensor
with the unit tensor:

tr(A) = δμν Aμν = δμν Aνμ = Aνν . (3.7)

http://dx.doi.org/10.1007/978-3-319-12787-3_2
http://dx.doi.org/10.1007/978-3-319-12787-3_2
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Again, notice that summation indices can have different names, as long as no index
appears more than twice.

The trace of the unit tensor is equal to the dimension D, here D = 3. Thus

δνν = 3. (3.8)

This is the reason why the fraction 1
3 occurs in (3.3) and (3.4).

3.1.4 Multiplication and Total Contraction of Tensors, Norm

The multiplication of a tensor Aμν with a tensor Bλκ yields a fourth rank tensor. The
contraction with ν = λ, corresponding to a “dot-product” A · B, gives a second rank
tensor. The total contraction or “double dot-product”

A : B = Aμν Bνμ (3.9)

is a scalar. The order of the indices is such that it corresponds to the trace of the
matrix product of A with B.

In such a total contraction, the symmetry of one tensor is imposed on the other
one. This means, e.g. when A is symmetric, the symmetric part of B only contributes
in the product Aμν Bνμ. Likewise, when A is antisymmetric, the antisymmetric part
of B only contributes in the product Aμν Bνμ. Furthermore, when A is isotropic, i.e.
proportional to the unit tensor, then the trace of B only contributes to the product.
When A is symmetric traceless, then only the symmetric traceless part of B gives a
contribution. With both tensors decomposed according to (3.4), one obtains

Aμν Bνμ = 1

3
Aλλ Bκκ + Aasy

μν Basy
νμ + Aμν Bνμ . (3.10)

Notice that one has Aμν Bνμ = Aμν Bμν only when at least one of the two tensors is
symmetric.

The square of the norm or magnitude |A| of a second rank tensor is determined
by the total contraction of A with its transposed AT, viz.:

|A|2 = Aμν AT
νμ = Aμν Aμν. (3.11)

Of course, the order of the subscript does not matter when A is symmetric.
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3.1.5 Fourth Rank Projections Tensors

The decomposition (3.4) of a second rank tensor A into its isotropic (i = 0), its
antisymmetric (i = 1), and its symmetric traceless (i = 2) parts A(i) can also
be accomplished by application of fourth rank projection tensors P(i)

μνμ′ν′ on the
components Aμ′ν′ according to

A(i)
μν = P(i)

μνμ′ν′ Aμ′ν′ . (3.12)

Here pairs of subscripts are used like one index. Furthermore, notice that A(1)
μν ≡ Aasy

μν

and A(2)
μν ≡ Aμν . The projection tensors are defined by

P(0)
μν,μ′ν′ := 1

3
δμνδμ′ν′ , P(1)

μνμ′ν′ := 1

2
(δμμ′δνν′ − δμν′δνμ′), (3.13)

and

P(2)
μνμ′ν′ ≡ Δμν,μ′ν′ := 1

2
(δμμ′δνν′ + δμν′δνμ′) − 1

3
δμνδμ′ν′ . (3.14)

In the applications presented later, the symbol Δ... is preferred over P(2)
... .

The projection tensors have the properties

P(i)
μναβ P(j)

αβμ′ν′ = δijP(i)
μνμ′ν′ , (3.15)

where δij is the Kronecker symbol, being equal to 1, when i = j and 0 when i �= j ,
and they obey the ‘sum rule’ or ‘completeness relation’

P(0)
μν,μ′ν′ + P(1)

μν,μ′ν′ + P(2)
μν,μ′ν′ = δμμ′δνν′ . (3.16)

The contraction ν′ = ν of the projectors yields

P(0)
μν,μ′ν = 1

3
δμμ′ , P(1)

μν,μ′ν = δμμ′ , P(2)
μνμ′ν ≡ Δμν,μ′ν = 5

3
δμμ′ . (3.17)

The subsequent complete contraction, corresponding toμ′ = μ, gives the numbers of
the independent components of the isotropic, antisymmetric and symmetric traceless
parts of second rank tensor in 3D, viz.:

P(0)
μν,μν = 1, P(1)

μν,μν = 3, P(2)
μνμν ≡ Δμν,μν = 5. (3.18)

Generalized Delta-tensors of rank 2� which, when applied to tensors of rank �,
project out the symmetric traceless part of that tensor, will be introduced later.
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3.1.6 Preliminary Remarks on “Antisymmetric Part
and Vector”

The three independent components of the antisymmetric part, in 3D, can be linked
with a vector (tensor of rank � = 1). This property is specific for 3D, whereas most
relations formulated here, apply also to Cartesian components in 2, 4 and higher
dimensions. This is seen as follows. In n dimensions, the number of elements of a
second rank tensor is n2. There are n elements in the diagonal, consequently one has
n2−n off-diagonal elements. The number of independent elements of the symmetric
part is

N sym = n + 1

2
n(n − 1) = 1

2
n(n + 1), (3.19)

that of the antisymmetric part is

N asy = 1

2
n(n − 1). (3.20)

The number of elements of a vector is n. For n > 0, the relation n = N asy has just
the solution n = 3.

3.1.7 Preliminary Remarks on the Symmetric Traceless Part

The symmetric traceless part cannot be expressed in terms of lower rank tensors. For
this reason, it is also referred to as the irreducible part of the tensor. In 3D, it has 5
independent components.

The symbol · · · is also used for tensors of rank � ≥ 2 in order to indicate the
symmetric traceless (irreducible) part which, in general, has 2� + 1 independent
components, details later.

Different notations for the symmetric traceless part of tensor are found in the
literature. Sometimes the double arrow ←→. . . , in same cases the brackets [. . .]0 or
double brackets [[. . .]]0, where the subscript 0 indicates that the trace is zero, are
used instead of · · · .

3.2 Dyadics

3.2.1 Definition of a Dyadic Tensor

A second rank tensor constructed from the components of two vectors, e.g. a and b
is called a dyadic tensor, sometimes also just dyadic or dyad. The quantity
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a b :=
⎛

⎝

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎞

⎠ (3.21)

is a tensor. It must not be confused with the scalar product a ·b = a1b1+a2b2+a3b3.
With Aμν = aμbν , the decomposition (3.4) reads:

aμbν = 1

3
aλbλδμν + 1

2

(

aμbν − aνbμ

) + aμbν . (3.22)

The symmetric traceless part, in accord with (3.3), given by

aμbν = 1

2

(

aμbν + aνbμ

) − 1

3
aλbλδμν. (3.23)

The trace of the dyadic a b is the scalar product a · b. In 3D, the antisymmetric part
of the dyadic is linked with the cross product a × b, details later.

The product of dyadic tensors, with total contraction, can be inferred from (3.10).
The case where both dyadics are symmetric traceless is discussed in Sect. 3.2.2.

3.1 Exercise:
Symmetric and Antisymmetric Parts of a Dyadic in Matrix Notation
Write the symmetric traceless and the antisymmetric parts of the dyadic tensor Aμν =
aμbν inmatrix form for the vectorsa : {1, 0, 0} andb : {0, 1, 0}. Compute the normof
the symmetric and the antisymmetric parts and compare with Aμν Aμν and Aμν Aνμ.

3.2.2 Products of Symmetric Traceless Dyadics

Consider two dyadics, formed by the pairs of vectors a, b and c, d, respectively. As
discussed above for the tensor multiplication with contraction, the expression ab ·cd
stands for the dyadic ad, multiplied by the scalar product b·c. The double dot product
then yields a · d b · c.

Of particular interest is the case, where the symmetric traceless parts of these
dyadics are multiplied. Here one has

( ab · cd )μν = aμbλ cλdν

= 1

4
(b · c aμdν + b · d aμcν + a · c bμdν + a · d bμcν)

−1

6
c · d (aμbν + aνbμ) − 1

6
a · b (cμdν + cνdμ)

+1

9
a · b c · d δμν. (3.24)
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The further contraction μ = ν leads to

ab : cd = aμbλ cλdμ = 1

2
(a · c b · d + a · d b · c) − 1

3
a · b c · d. (3.25)

For the special case a = b and c = d, relation (3.25) reduces to

aa : cc = aμaλ cλcμ = (a · c)2 − 1

3
a2 c2

= a2 c2
(

(̂a · ĉ)2 − 1

3

)

= a2 c2
(

cos2 ϕ − 1

3

)

, (3.26)

where â and ĉ are unit vectors, and ϕ is the angle between the vectors a and c.
Clearly, for a = c, corresponding to ϕ = 0, one finds

aa : aa = aμaλ aλaμ = 2

3
a4. (3.27)

Notice, the double dot product of two symmetric traceless dyadic tensors constructed
from orthogonal vectors is not zero. For c perpendicular to a, corresponding to
ϕ = 90◦, relation (3.26) implies

a ⊥ c =⇒ aa : cc = aμaλ cλcμ = −1

3
a2c2. (3.28)

On the other hand, the two dyadic tensors aa and cc are “orthogonal”, in the
sense that their double dot product vanishes, when the angle between the two vectors
is given by the “magic angle” ϕ = arccos(1/

√
3) ≈ 54.7◦. Applications of these

relations for the double dot product of dyadics are discussed later.

3.2 Exercise: Symmetric Traceless Dyadics in Matrix Notation
Write the symmetric traceless parts of the dyadic tensor Cμν = Cμν(α) = 2aμbν in
matrix form for the vectors a = a(α) : {c,−s, 0} and b = b(α) : {s, c, 0}, where
c and s are the abbreviations c = cosα and s = sin α. Discuss the special cases

α = 0 and α = π/4. Compute the product Bμν(α) = Cμλ (0) Cλν (α), determine
the trace and the symmetric traceless part of this product. Determine the angle α, for
which one has Bμμ = 0.
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3.3 Antisymmetric Part, Vector Product

3.3.1 Dual Relation

As already mentioned before, the antisymmetric part (1/2)(Aμν − Aνμ) of a second
rank tensor Aμν , in three dimensions, can be linked with the three components of a
vector a. This link, referred to as dual relation, is:

a1 = A23 − A32 = 2Aasy
23 ,

a2 = A31 − A13 = 2Aasy
31 ,

a3 = A12 − A21 = 2Aasy
12 . (3.29)

Clearly, the order of the subscript 1, 2, 3 in the second line is a cyclic permutation
of that one in the first line, and so on.

The relation (3.29) can be inverted in the sense that, in matrix notation, the anti-
symmetric tensor is given by

Aasy =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
1

2
a3 −1

2
a2

−1

2
a3 0

1

2
a1

1

2
a2 −1

2
a1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (3.30)

The ‘proof’ that a, defined by (3.29) indeed transforms like a vector, when A is a
tensor, is presented next. This is not self-evident since a vector is transformed with
one rotation matrix, whereas the second rank tensor is transformed with a product
of two transformation matrices.

The tensor property of A implies, that the first component of a, in the rotated
system, is given by

a′
1 = A′

23 − A′
32 = U2μU3ν Aμν − U3μU2ν Aμν = U2μU3ν(Aμν − Aνμ). (3.31)

Note: in the last term before the last equality sign, the summation indices μ, ν, have
been interchanged. When a′

1, given by this relation is the component of a vector, the
quantity bμ defined by

bμ = U−1
μλ a′

λ = Uλμa′
λ, (3.32)

must be equal to aμ. The first component of (3.32) reads

b1 = U11a′
1 + U21a′

2 + U31a′
3. (3.33)
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Use of (3.31) for a′
1 and of the corresponding expressions for a′

2, a′
3 (obtained by the

cyclic permutations of 1, 2, 3) leads to

b1 = (U11U2μU3ν + U21U3μU2ν + U31U1μU2ν)(Aμν − Aνμ). (3.34)

Now we consider the special case a1 = A23 − A32 �= 0 and a2 = A31 − A13 = 0,
a3 = A12 − A21 = 0. Then (3.34) yields, with the summation over double indices
written explicitly

b1 = (U11(U22U33 − U23U32) + U21(U32U13 − U33U12)

+ U31(U12U23 − U13U22))a1 = det(U)a1, (3.35)

where det(U) is the determinant of the transformation matrix. For a proper rotation
det(U) = 1 holds true, and consequently b1 = a1. The proof for the equality
of the other components b and a requires just the cyclic permutation of 1, 2, 3.
This then completes the proof that the three-component quantity a linked with the
antisymmetric part of a tensor by the duality relation (3.29) is a vector in the sense
used here.

3.3.2 Vector Product

In the case of a dyadic A = ab and with a, in (3.29), replaced by c, the relation
(3.29) corresponds to the usual cross product or vector product c = a × b of the two
vectors a and b. More specifically one has

c1 = (a × b)1 = a2b3 − a3b2,

c2 = (a × b)2 = a3b1 − a1b3,

c3 = (a × b)3 = a1b2 − a2b1. (3.36)

By analogy to (3.30), an antisymmetric tensor is linked with the cross product. In
particular, one has for the 12-component:

2 (a b)
asy
12 := a1b2 − a2b1 = (a × b)3. (3.37)

The other components are obtained by a cyclic interchange of 1, 2, 3.
The antisymmetric part of the dyadic a b, as well as the cross product c = a × b

vanish, when the vectors a and b are parallel to each other.
As an alternative to (3.36), the components of the cross product can be expressed

with the help of a determinant according to

cμ :=
∣

∣

∣

∣

∣

∣

δ1μ a1 b1
δ2μ a2 b2
δ3μ a3 b3

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

δ1μ δ2μ δ3μ
a1 a2 a3
b1 b2 b3

∣

∣

∣

∣

∣

∣

. (3.38)
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To verify this expression, e.g. use μ = 1 and note that δ11 = 1, δ21 = δ31 = 0. Then
one obtains the first line of (3.36). Similarly, the second and third line are recovered
with μ = 2 and μ = 3.

The cross product of the two vectors is antisymmetric with respect their exchange:

(b × a) = −(a × b). (3.39)

When the two vectors are parallel, i.e. when one has b = ka with some numerical
factor k, the cross product is equal to zero, thus

a × b = 0 ⇐⇒ a ‖ b. (3.40)

These properties follow from the definition of the vector product. Likewise, with the
help of (3.38), the scalar product of a vector d with the vector c which, in turn, is the
vector product of vectors a and b is given by the spate product:

d · c = d · (a × b) =
∣

∣

∣

∣

∣

∣

d1 a1 b1
d2 a2 b2
d3 a3 b3

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

d1 d2 d3
a1 a2 a3
b1 b2 b3

∣

∣

∣

∣

∣

∣

. (3.41)

Two vectors d and c are orthogonal, when the scalar product d · c vanishes. From
(3.41) follows that the spate products a · (a × b) and b · (a × b) are zero, since a
determinant with two equal columns or rows is zero. Thus the vector product a×b of
two vectors a and b is perpendicular to both a and b. Of course, a and b are assumed
not to be parallel to each other.

In summary, the vector product of two vectors which span a plane is defined such
that a × b is perpendicular to this plane. The direction of this vector is parallel to the
middle finger of the right hand when a points along the thumb and b is parallel to
the pointing finger. The magnitude of the vector product is given by the magnitude
of a times the magnitude of b times the magnitude of the sine of the angle ϕ between
a and b, viz.:

|a × b| = |a| |b| | sin ϕ|. (3.42)

For the proof of (3.42), see Fig. 3.1. The coordinate system is chosen such that a is
parallel to the 1-axis and b is in the 1–2-plane, their components then are (a1, 0, 0)
and (b1, b2, 0), with a1 = a, b1 = b cosϕ, b2 = b sin ϕ, a = |a| and b = |b|.

Due to (3.36), the components of c = a × b are (0, 0, c3), with c3 = a1b2 =
ab sin ϕ. The magnitude of c3 then is given by (3.42). The magnitude of the vector
product assumes it maximum value when the two vectors are orthogonal.
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Fig. 3.1 Vector product

3.4 Applications of the Vector Product

3.4.1 Orbital Angular Momentum

The orbital angular momentum L of a mass point at the position r with the linear
momentum p is defined by

L = r × p. (3.43)

When the linear momentum is just mass m times the velocity v, (3.43) is equivalent
to L = mr × v.

Notice: the orbital angular momentum depends on the choice of the origin of the
coordinate system where r = 0. Furthermore, L is non-zero even for a motion along
a straight line, as long as the line does not go through the point r = 0. For constant
speed v, the magnitude L of L is determined by r0 mv where r0 is the shortest
distance of the line from r = 0, cf. Fig. 3.2. The angular momentum is perpendicular
to the plane, pointing downward.

3.3 Exercise: Angular Momentum in Terms of Spherical Components
Compute the z-component of the angular momentum in terms of the spherical com-
ponents (2.10).

3.4.2 Torque

According to Newton, the time change of the linear momentum a particle, subjected
to a force F, is determined by

dp
dt

:= ṗ = F. (3.44)

http://dx.doi.org/10.1007/978-3-319-12787-3_2
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Fig. 3.2 Motion on
a straight line

The time change of the orbital angular momentum L is L̇ = ṙ × p + r × ṗ. Notice
that ṙ = v. When one has p = m v, the term ṙ × p is zero. Then the time change of
the orbital angular momentum is given by

dL
dt

:= L̇ = r × ṗ = r × F. (3.45)

The quantity r × F is called torque.
Notice: there are two cases where L̇ = 0 and where, as a consequence, the angular
momentum L is constant:

1. no force is acting, F = 0,
2. the force F is parallel to the position vector r.

A force with this property is called central force.
Furthermore, notice: the orbital angular momentum and the torque are axial vec-

tors. These quantities do not change sign upon the parity operation. This follows from
the fact that they are bilinear functions of polar vectors. By definition, the angular
momentum changes sign under time reversal, its time derivative does not change
sign. Thus (3.45) describes a reversible dynamics provided that the torque r × F
does not change sign under time reversal. This, in turn, is the case when there is no
rotational friction proportional to the rotational velocity.

3.4 Exercise: Torque Acting on an Anisotropic Harmonic Oscillator
Determine the torque for the force

F = −k r · e e − (r − e r · e),

where the parameter k and unit vector e are constant.Which component of the angular
momentum is constant, even for k �= 1?

3.4.3 Motion on a Circle

The velocity v of a mass point on a circular orbit can be expressed as

v = w × r, (3.46)
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where w is an axial vector which is perpendicular to the plane of motion. The
magnitude of this vector is the angular velocity w. The point r = 0 is located on the
axis of rotation. For a circle with radius R, the magnitude of the velocity is v = R w.

3.4.4 Lorentz Force

The forceF acting on a particle with charge e, movingwith velocity v, in the presence
of an electric field E and a magnetic field (flux density) B is

F = e E + e v × B. (3.47)

This expression is called Lorentz force. Notice that F, E and v are polar vectors,
with negative parity, whereas B is an axial vector with positive parity. Thus parity is
conserved in (3.47).

What about time reversal invariance? The electric field E is even under time
reversal, the B-field and the velocity are odd, i.e. they do change sign under time
reversal. Thus both terms on the right hand side of (3.47) do not change sign and the
same is true for the resulting force. Consequently, the Lorentz force conserves parity
and is time reversal invariant.

3.4.5 Screw Curve

The position vector s = s(α) describing a screw-like curve, as function of the angle
α (Fig. 3.3), is given by

s = ρ (e cosα + u sin α) + χ
α

2π
e × u. (3.48)

Fig. 3.3 A screw curve for
ρ = 1 and χ = 1/3. The unit
vectors u and v are pointing
in the x- and y-directions.
The vertical line indicates
the axis of the screw
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Here e and u, with e · u = 0, are orthogonal unit vectors. The parameter ρ is the
radius of the screw, projected into the in the e–u-plane. The sign of the chirality
parameter

χ = s(2π) · (e × u) (3.49)

determines, whether the curve describes a right-handed or a left-handed screw. The
magnitude of χ is the pitch of the screw. The chirality, being the spate product of
three polar vectors, is a pseudo vector, which changes sign under the parity operation.

3.5 Exercise: Velocity of a Particle Moving on a Screw Curve

Hint: Use α = ω t for the parameter occurring in the screw curve (3.48), ω is a
frequency.



Chapter 4
Epsilon-Tensor

Abstract The third rank epsilon-tensor is used to formulate the dual relationbetween
an antisymmetric second rank tensor and a vector or vice versa, in three-dimensional
space. In this chapter, the properties of this isotropic tensor are presented. From the
rules for the multiplication of two of these tensors follow relations for the scalar
product of two vector products and the double vector product. Some applications
are presented, involving the orbital angular momentum, the torque, the motion on
a circle and on a screw curve, as well as the Lorentz force. The dual relation in
two-dimensional space is discussed.

4.1 Definition, Properties

4.1.1 Link with Determinants

The dual relation between an antisymmetric second rank tensor and a vector, as well
as the properties of the vector product can be formulated more efficiently with the
help of the third rank epsilon-tensor, which is also called Levi-Civita tensor. It is
defined by

εμνλ :=
∣

∣

∣

∣

∣

∣

δ1μ δ1ν δ1λ
δ2μ δ2ν δ2λ
δ3μ δ3ν δ3λ

∣

∣

∣

∣

∣

∣

. (4.1)

This implies

1, μ ν λ = 123, 231, 312

εμνλ = −1, μ ν λ = 213, 132, 321

0, μ ν λ = else, (4.2)

or, equivalently, ε123 = ε231 = ε312 = 1, ε213 = ε132 = ε321 = −1, and ε... = 0 for
all other combinations of subscripts.
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The epsilon-tensor is totally antisymmetric, i.e. it changes sign, when two indices
are interchanged. It is equal to zero, when two indices are equal. Furthermore, the
tensor εμνλ is isotropic. This means, just like the unit tensor δμν , it is form-invariant
upon a rotation of the coordinate system.

The dual relation between a vector and the antisymmetric part of a tensor, as given
by (3.29), is equivalent to

aμ = εμνλ Aνλ. (4.3)

To verify this relation, consider the 1-component. Then one has a1 = ε1νλ Aνλ =
ε123A23 + ε132A32 = A23 − A32. Notice that the positions of the summation indices
matter, not their names. The double contraction of the epsilon-tensor with a second
rank tensor, as in (4.3), projects out the antisymmetric part of the tensor, i.e.

εμνλ Aνλ = εμνλ Aasy
νλ . (4.4)

This can be seen as follows. Trivially, since 1 = 1
2 + 1

2 , one has εμνλ Aνλ =
1
2εμνλ Aνλ + 1

2εμνλ Aνλ. The renaming ν, λ → λν of the summation indices in
the second term on the right hand side, leads to εμνλ Aνλ = 1

2εμνλ Aνλ + 1
2εμλν Aλν .

Next, εμλν = −εμνλ is used. Then εμνλ Aνλ = 1
2εμνλ(Aνλ − Aλν) is obtained,

which corresponds to (4.4).
By analogy to (4.3), the vector product of two vectors a and b, defined by (3.38),

can be written as
cμ = εμνλ aνbλ. (4.5)

The properties of the vector product discussed above follow from the properties of
the epsilon-tensor.

The spate product d · (a × b) corresponds to εμνλdμaνbλ. A cyclic renaming of
the summation indices and the use of εμνλ = ενλμ = ελμν implies

εμνλaμbνdλ = εμνλbμdνaλ, (4.6)

or, equivalently
d · (a × b) = a · (b × d) = b · (d × a). (4.7)

Of course, the symmetry of the spate product can also be inferred from the symmetry
properties of the determinant shown in (3.41).

4.1.2 Product of Two Epsilon-Tensors

The product of two epsilon-tensors is a tensor of rank 6 which can be expressed in
terms of triple products of the unit second rank tensor, in particular

http://dx.doi.org/10.1007/978-3-319-12787-3_3
http://dx.doi.org/10.1007/978-3-319-12787-3_3
http://dx.doi.org/10.1007/978-3-319-12787-3_3
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εμνλ εμ′ν′λ′ =
∣

∣

∣

∣

∣

∣

δμμ′ δμν′ δμλ′
δνμ′ δνν′ δνλ′
δλμ′ δλν′ δλλ′

∣

∣

∣

∣

∣

∣

. (4.8)

The rows and columns in the determinant can be interchanged and one has
εμνλ εμ′ν′λ′ = εμ′ν′λ′εμνλ. Written explicitly, (4.8) is equivalent to

εμνλ εμ′ν′λ′ = δμμ′δνν′δλλ′ + δμν′δνλ′δλμ′ + δμλ′δνμ′δλν′

− δμμ′δνλ′δλν′ − δμν′δνμ′δλλ′ − δμλ′δνν′δλμ′ . (4.9)

The relation (4.8) can be inferred from (4.1) as follows. First, notice that the deter-
minant of the product of two matrices is equal to the product of the determinants
of these matrices. Furthermore, in the defining relation (4.1) for εμ′ν′λ′ , the rows
and columns are interchanged in the determinant. Then εμ′ν′λ′εμνλ is equal to the
determinant of the matrix product

⎛

⎝

δ1μ′ δ2μ′ δ3μ′
δ1ν′ δ2ν′ δ3ν′
δ1λ′ δ2λ′ δ3λ′

⎞

⎠

⎛

⎝

δ1μ δ1ν δ1λ
δ2μ δ2ν δ2λ
δ3μ δ3ν δ3λ

⎞

⎠ .

Matrix multiplication, row times column, yields δ1μ′δ1μ + δ2μ′δ2μ + δ3μ′δ3μ =
δκμ′δκμ = δμ′μ = δμμ′ for the 11-element. Similarly, the other elements are
obtained, as they appear in the determinant (4.8).

In many applications, a contracted version of the product of two epsilon-tensors
is needed where two subscripts are equal and summed over. In particular, for λ = λ′,
(4.8) and (4.9) reduce to

εμνλ εμ′ν′λ =
∣

∣

∣

∣

δμμ′ δμν′
δνμ′ δνν′

∣

∣

∣

∣

= δμμ′δνν′ − δμν′δνμ′ . (4.10)

Notice that εμνλεμ′ν′λ = εμνλελμ′ν′ . Formulae known for the product of two vector
products follow from (4.10).

The further contraction of (4.10), with ν = ν′, yields

εμνλ εμ′νλ = 2 δμμ′ . (4.11)

The total contraction of two epsilon-tensors is equal to 6, viz.:

εμνλ εμνλ = 6. (4.12)

This value is equal to the number of non-zero elements of the epsilon-tensor in 3D.
Side remark: by analogy, a totally antisymmetric isotropic tensor can be defined in
D dimensions. Then the total contraction of this tensor with itself, corresponding to
(4.12) is D!. Clearly, this value is 6 for D = 3.
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4.1.3 Antisymmetric Tensor Linked with a Vector

With the help of the epsilon-tensor and its properties, the dual relation (4.3) which
links a vector with an antisymmetric second rank tensor can be inverted. This is
seen as follows. First, by renaming indices, (4.3) is rewritten as aλ = ελμ′ν′ Aμ′ν′ .
Multiplication of this expression by εμνλ and use of (4.10) leads to

εμνλ aλ = (δμμ′δνν′ − δμν′δνμ′)Aμ′ν′ = Aμν − Aνμ = 2 Aasy
μν , (4.13)

or

Aasy
μν = 1

2
εμνλ aλ. (4.14)

4.2 Multiple Vector Products

4.2.1 Scalar Product of Two Vector Products

Let a, b, c, d be four vectors. The scalar product of two vector product formed with
these vectors can be expressed in terms of products of scalar products:

(a × b) · (c × d) = a · c b · d − a · d b · c. (4.15)

For the proof, notice that the left hand side of (4.15) is equivalent to

ελμνaμbν ελμ′ν′cμ′dν′ .

Use of the symmetry properties of the epsilon-tensor and of (4.10) allows one to
rewrite this expression as (δμμ′δνν′ −δμν′δνμ′)aμbνcμ′dν′ = aμcμbνdν−aμdμbνcν ,
which corresponds to the right hand side of (4.15).

Now the special case c = a, d = b is considered. Then (4.15) implies

|a×b|2 = a2b2−(a ·b)2 = a2b2
(

1 − (̂a ·̂b)2
)

= a2b2(1−cos2 ϕ) = a2b2 sin2 ϕ.

(4.16)
Here â and̂b are unit vectors and ϕ is the angle between the vectors a and b. The
last equality is equivalent to (3.42).

4.2.2 Double Vector Products

Let a, b, c be three vectors. The double vector product a × (b × c) is a vector with
contributions parallel to b and c, in particular

http://dx.doi.org/10.1007/978-3-319-12787-3_3
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a × (b × c) = a · c b − a · b c. (4.17)

Notice that the position of the parenthesis (. . .) is essential in this case. The expression
a × b × c is not well defined since a × (b × c) �= (a × b) × c, in general. The latter
double cross product yields a vector with component parallel to a and b.

The proof of (4.17), is also based on the relation (4.10). In component notation,
one has

[a × (b × c)]μ = εμνλaν(b × c)λ = εμνλελμ′ν′ aνbμ′cν′ .

Now use of (4.10), together with the symmetry properties of the epsilon-tensor yields

[a × (b × c)]μ = bμ aνcν − cμ aνbν, (4.18)

which is equivalent to (4.17).
For the special case a = c = e, where e is a unit vector, (4.17) reduces to

e × (b × e) = b − e · b e = b − b‖ := b⊥. (4.19)

Here b‖ := e · be and b⊥ are the parts of b which are parallel and perpendicular,
respectively, to e. Clearly, one has b‖ + b⊥ = b.

4.3 Applications

4.3.1 Angular Momentum for the Motion on a Circle

The linear momentum p = mv of a particle with mass m and velocity v, moving on
a circle, with the angular velocity w, cf. (3.46), is given by

p = m w × r.

Here r = 0 is a point on the axis of rotation which is parallel to w. With the help of
(4.18), the resulting orbital angular momentum L = r × p is found to be

L = mr × (w × r) = m (r2w − r · wr). (4.20)

In component notation, this equation linking the angular momentumwith the angular
velocity, is equivalent to

Lμ = m (r2wμ − rνwν rμ) = m (r2 δμν − rμrν) wν . (4.21)

http://dx.doi.org/10.1007/978-3-319-12787-3_3
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When the center of the circle is chosen as the origin r = 0, the position vector r
is perpendicular to w, thus r · w = 0 and L = mr2 w = m R2w, where R is the
radius of the circle. For a single particle, such a special choice of the origin, where r
has only components perpendicular to the rotation axis, can always be made. This,
however, is not possible for a rotating solid body which is composed of many mass
points.

4.3.2 Moment of Inertia Tensor

A solid body is composed of N mass points, i.e. atoms, molecules or small parts
of the body, with masses m1, m2, . . . , mN located at positions r(1), r(2), . . . , r(N).
The total mass is M = ∑N

i=1 mi. Solid means: the distances between the constituent
parts of the body do not change, the body moves as a whole. In the case of a rotation
with the angular velocity w, each mass point has the velocity v(i) = w × r(i), the
linear momentum p(i) = miv(i), and the angular momentum L(i) = r(i) × p(i), for
i = 1, 2, . . . , N . Again, the origin of the position vectors is a point on the rotation
axis, w is parallel to this axis. By analogy to (4.21), the total angular momentum is
found to be

Lμ =
N

∑

i=1

L(i)
μ = Θμν wν, (4.22)

with the moment of inertia tensor Θμν given by

Θμν =
N

∑

i=1

mi [(r (i))2 δμν − r (i)
μ r (i)

ν ]. (4.23)

By definition, the moment of inertia tensor is symmetric: Θμν = Θνμ.
The equation (4.22) is an example for a linear relation between two vectors gov-

erned by a second rank tensor. Here both vectors w and L have positive parity, i.e.
they are axial or pseudo vectors. Themoment of inertia tensor has also positive parity,
i.e. it is a proper tensor of rank 2.

The moment of inertia for a rotation about a fixed axis is defined via the linear
relation between the component of the angular momentum parallel to this axis and
the magnitude w of the angular velocity. Scalar multiplication of (4.22) with the unit
vector ŵμ = wμ/w leads to

ŵμLμ = ŵμΘμν wν = Θ w,

with the moment of inertia

Θ = ŵμΘμνŵν =
N

∑

i=1

mi

(

r (i)
⊥

)2
. (4.24)
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Here

(

r (i)
⊥

)2 =
(

r (i)
)2 −

(

ŵνr (i)
ν

)2

is the square of the shortest distance of mass point i from the rotation axis.
The moment of inertia tensor and the inertia moment, as defined by (4.23) and

(4.24) depend on the choice of the origin. As mentioned before, the origin for the
position vectors has to be on the axis of rotation. When the axis of rotation goes
through the center of mass of the body, it is convenient to choose the center of mass

as the origin. In this case one has
∑N

i=1 mir(i) = 0.
Due to its definition, the moment of inertia tensor does not change its sign both

under the parity operation nor under time reversal.
When one talks about the moment of inertia tensor or the moment of inertia of a

solid body, one means quantities, which are characteristic for the shape of the body:
they are computed via (4.23) and (4.24) with r(i) = 0 corresponding to the center
of mass of the solid body. Furthermore, expressions analogous to (4.23) and (4.24)
are presented later for continuous mass distributions, where the sum over discrete
masses is replaced by an integral over space.

Examples for the moment of inertia tensor are discussed in Sects. 5.3.1, 8.3.3 and
computed in the Exercises 5.1 and 8.4.

4.4 Dual Relation and Epsilon-Tensor in 2D

4.4.1 Definitions and Matrix Notation

Let ai and bi, i = 1, 2, be the Cartesian components of two vectors in 2D. The
antisymmetric part of the dyadic constructed from these components is related to a
scalar c according to

c = a1b2 − a2b1. (4.25)

This dual relation can be written as

c = εij ai bj, (4.26)

where the summation convention is used for the Latin subscripts. By analogy to the
3D case, εij is defined by

εij :=
∣

∣

∣

∣

δ1i δ1j
δ2i δ2j

∣

∣

∣

∣

. (4.27)

http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_8
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This 2D ε-tensor can also be expressed in matrix notation:

εij =
(

0 1
−1 0

)

. (4.28)

In 3D, a corresponding notation requires a three dimensional ‘3 × 3 × 3-matrix’.

4.1 Exercise: 2D Dual Relation in Complex Number Notation

Let the two 2D vectors (x1, y1) and (x2, y2) be expressed in terms of the complex
numbers z1 = x1 + iy1 and z2 = x2 + iy2. Write the dual relation corresponding to
(4.25) in terms of the complex numbers z1 and z2. How about the scalar product of
these 2D vectors?
Hint: the complex conjugate of z = x + iy is z∗ = x − iy.



Chapter 5
Symmetric Second Rank Tensors

Abstract This chapter deals with properties and applications of symmetric second
rank tensors which are composed of isotropic and symmetric traceless parts. A prin-
ciple axes representation is considered and the cases of isotropic, uniaxial and biaxial
tensors are discussed. Applications comprise the moment of inertia tensor, the radius
of gyration tensor, the molecular polarizability tensor, the dielectric tensor and bire-
fringence, electric and magnetic torques. Geometric interpretations of symmetric
tensors are possible via bilinear forms or via a linear mapping. The scalar invari-
ants are discussed. The consequences of a Hamilton-Cayley theorem for triple and
quadruple products of symmetric traceless tensors are presented. A volume conserv-
ing affine mapping of a sphere onto an ellipsoid is considered.

5.1 Isotropic and Symmetric Traceless Parts

Here the properties of symmetric tensors are discussed. For a tensor S this means

Sμν = Sνμ.

As mentioned before, cf. (3.3) and (3.4), such a tensor is equal to the sum of its
isotropic part, involving its trace Sλλ and its symmetric traceless part:

Sμν = 1

3
Sλλ δμν + Sμν , (5.1)

with

Sμν = Sμν − 1

3
Sλλ δμν. (5.2)

This decomposition is invariant under a rotation of the coordinate system. Notice that

Sνν = 0, that is why this part of the tensor is called symmetric traceless. Frequently,
it is also referred to as irreducible part, because it can not be associated with a lower
rank tensor. Here, it is also called anisotropic part, because the symmetric traceless
part of tensors used in applications characterizes the anisotropyof physical properties.
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In solid state mechanics, the symmetric traceless part is commonly referred to
deviatoric part, because it indicates a deviation from isotropy.Notice, not only various
names are used for the same item, also different notations are found in the literature.

5.2 Principal Values

5.2.1 Principal Axes Representation

A symmetric tensor S can be brought into a diagonal form with the help of an
appropriate rotation of the coordinate system. Then, in this principal axes system, it
is presented as

S :=
⎛

⎝

S(1) 0 0
0 S(2) 0
0 0 S(3)

⎞

⎠ , (5.3)

with real principal values, also called eigenvalues S(i), i = 1, 2, 3. The axes of
the particular coordinate system in which the tensor is diagonal are referred to as
principal axes. Unit vectors parallel to these axes are denoted by e(i), i = 1, 2, 3.
The order 1, 2, 3 can be chosen conveniently. With the help of the dyadics e(i)e(i),
the symmetric tensor S can be written in the eigen-representation:

S =
3

∑

i=1

S(i) e(i) e(i). (5.4)

The validity of the standard eigenvalue equation

S · e(i) = S(i) e(i) (5.5)

follows from (5.4) and the orthogonality e(i) · e(j) = δ(ij) of the eigen vectors e(i).
Notice that a symmetric second rank tensor in 3D has 6 independent components.

How come there are only 3 numbers specified by the 3 eigenvalues? The answer is:
3 additional numbers, e.g. Eulerian angles, are needed to determine the directions of
the principal axis in relation to an arbitrary, space fixed, coordinate system.

5.2.2 Isotropic Tensors

In the special case where all three principal values are equal,

S(1) = S(2) = S(3) = S,
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the tensor S is isotropic, i.e. it is proportional to the unit tensor:

Sμν = Sδμν. (5.6)

This follows from (5.4), due to the completeness relation for the orthogonal unit
vectors e(i), viz.,

3
∑

i=1

e(i)
μ e(i)

ν = δμν. (5.7)

By definition, an isotropic tensor has no anisotropic part. Whenever the three
eigenvalues are not equal to each other, the symmetric tensor possesses a non-zero
traceless part, sometimes also called anisotropic part. Two cases can be distin-
guished: (i) two eigenvalues are equal, but different from the third one, and (ii)
three different eigenvalues. These cases are referred to with the labels uniaxial and
biaxial.

5.2.3 Uniaxial Tensors

When only two the principal values are equal but different from the third one, say
S(1) = S(2) �= S(3), the tensor is called uniaxial. It possesses a symmetry axis which
is parallel to e(3) in the special case considered. It is convenient to use the notation
e(3) = e for the unit vector parallel to the symmetry axis and to denote the eigenvalues
associated with the directions parallel and perpendicular to this direction by S‖ and
S⊥, respectively. This means:

S(1) = S(2) = S⊥, S(3) = S‖.

Thus the uniaxial tensor can be written as

Sμν = S‖ eμeν + S⊥ (δμν − eμeν), (5.8)

and

Sμν = 1

3
(S‖ + 2 S⊥) δμν + (S‖ − S⊥) eμeν . (5.9)

In matrix notation, this expression is equivalent to

S := 1

3
(S‖ + 2 S⊥)

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ + 2

3
(S‖ − S⊥)

⎛

⎝

− 1
2 0 0
0 − 1

2 0
0 0 1

⎞

⎠ . (5.10)

The factor 2
3 in the symmetric traceless part stems from eμeν eμeν = 2

3 .
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5.2.4 Biaxial Tensors

The general symmetric second rank tensor with three different principal values is
referred to as biaxial tensor. With the abbreviations

S̄ = 1

3

(

S(1) + S(2) + S(3)
)

, s = S(3) − 1

2

(

S(1) + S(2)
)

, q = 1

2

(

S(1) − S(2)
)

,

(5.11)

the decomposition of the tensor according to (5.1), can be written as

Sμν = S̄ δμν + s e(3)
μ e(3)

ν + q

(

e(1)
μ e(1)

ν − e(2)
μ e(2)

ν

)

. (5.12)

To check the validity of this relation, notice that S(i) = e(i)
μ Sμνe(i)

ν and e(i)
μ e(j)

μ e(j)
ν e(i)

μ

is equal to 2/3, for i = j and equal to −1/3, for i �= j , cf. (3.27) and (3.28). Both,
i and j , can be equal to 1, 2 or 3. The result is

S(1) = S̄ − 1

3
s + q, S(2) = S̄ − 1

3
s − q, S(3) = S̄ + 2

3
s. (5.13)

Furthermore, notice that e(1)
μ e(1)

ν − e(2)
μ e(2)

ν = e(1)
μ e(1)

ν − e(2)
μ e(2)

ν . Alternatively, to
obtain (5.12), one may start from (5.4) and decompose the tensor into its isotropic
and anisotropic parts according to

S = 1

3

3
∑

i=1

S(i)δμν +
3

∑

i=1

S(i) e(i)
μ e(i)

ν .

Since

S(1) e(1)
μ e(1)

ν + S(2) e(2)
μ e(2)

ν

is equal to

1

2

(

S(1)+S(2)
)

(

e(1)
μ e(1)

ν + e(2)
μ e(2)

ν

)

+ 1

2

(

S(1)−S(2)
)

(

e(1)
μ e(1)

ν − e(2)
μ e(2)

ν

)

and

e(1)
μ e(1)

ν + e(2)
μ e(2)

ν = − e(3)
μ e(3)

ν ,

equation (5.12) is recovered.

http://dx.doi.org/10.1007/978-3-319-12787-3_3
http://dx.doi.org/10.1007/978-3-319-12787-3_3
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In matrix notation, (5.12) is equivalent to

Sμν = S̄

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ + 2

3
s

⎛

⎝

− 1
2 0 0
0 − 1

2 0
0 0 1

⎞

⎠ + q

⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠ . (5.14)

For a symmetric traceless tensor one has S(1) + S(2) + S(3) = 0, i.e. S̄ = 0. The
anisotropic part of the tensor is characterized by the linear combinations s and q of
its principal values. For q = 0 and s �= 0, the uniaxial case, discussed above, is
recovered. In the other special case s = 0, but q �= 0, the symmetric traceless part
of the tensor is referred to as being planar biaxial. In general, a symmetric tensor,
in principle axis representation, is characterized by its three principal values or by
its trace and two parameters specifying its symmetric traceless part, as introduced
in (5.11). In principle, the labeling 1, 2, 3 of the principle axes can be interchanged.
Preferentially, the 3-axis is associated either with the largest or the smallest eigen-
value.

5.2.5 Symmetric Dyadic Tensors

In general, the principal directions and values of a symmetric tensor can be found
by the methods used in Linear Algebra for the diagonalization of matrices. In many
problems of physics, the principal directions are obvious by symmetry considera-
tions, and then the principal values can be inferred from the eigenvalue equation. As
an example, the special case of a symmetric dyadic tensor constructed from two unit
vectors u and v is considered. Thus we have

Sμν = 1

2
(uμvν + uνvμ). (5.15)

Let h be a vector parallel to a principal direction. Then the eigenvalue equation
Sμνhν = Shμ implies that the principal value S is determined by hμSμνhν = Shμhμ

and consequently
S = hμuμvνhν/hκhκ . (5.16)

First, the case v parallel to u is considered. Then one principal direction is parallel to
u and the directions of the two other ones are not uniquely determined, but they lie
in the plane perpendicular to u. The principal values are S = 1, for h = u, and two
principal values are 0, for two orthogonal directions which are perpendicular to u. In
short, the principal values are {1, 0, 0}. Clearly, the tensor is uniaxial. The symmetry
direction can be identified with any one of the coordinate axes, frequently either the
1- or the 3-axis is chosen.
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Now the case is considered, where v is not parallel to u. By symmetry, one of the
principal directions is parallel to the vector product u × v. The pertaining principal
eigenvalue is 0. The twoother principal directions are parallel to the bisectors between
the vectorsu and v, i.e. they are parallel tou±v.Withh = u±v, one hash·u = 1±c,
h · v = c ± 1, and h · h = 2(1 ± c), with c = u · v = cosϑ , where ϑ is the angle
between the vectors u and v. Thus the two other principal values are found to be
(c ± 1)/2. In summary, the principle values are

{

1

2
(c + 1),

1

2
(c − 1), 0

}

.

Clearly, for ϑ = 0, corresponding to u = v, one has c = 1, and the uniaxial case
is recovered. For u ⊥ v, c = 0 applies and the principal values are {1/2,−1/2, 0}.
This corresponds to a symmetric traceless planar biaxial tensor.

The trace of the tensor given by (5.15) is the scalar product c = u · v. Thus the
principal values of the symmetric traceless tensor uμvν are

{

1

6
c + 1

2
,
1

6
c − 1

2
, −1

3
c

}

, c = u · v = cosϑ. (5.17)

Comparison with (5.14) shows that the coefficients s and q, introduced in Sect. 5.2.4,
are here given by s = −c/2 and q = 1/2.

5.3 Applications

5.3.1 Moment of Inertia Tensor of Molecules

The moment of inertia tensor Θμν , as defined in (4.23), is symmetric. When the
origin of the position vectors of the constituent parts of a solid body coincides with
the center of mass of the body, the moment of inertia tensor reflects and characterizes
the shape and symmetry of the body. Molecules in their vibrational ground state can
be looked upon as “solid bodies”. Some simple examples are considered next.

(i) Linear Molecules

A linear molecule is composed of two atoms, with masses m1 and m2, separated by
the distance d. The unit vector parallel to the axis joining the nuclei of the two atoms
is denoted by u. Their position vectors, with respect to the center of mass of the
molecule, are r(1) = d1u and r(2) = −d2u, with the distances d1 and d2 determined
by d1+d2 = 0 andm1d1 = m2d2. Use of (4.23) leads to themoment of inertia tensor

Θμν =
(

m1 d2
1 + m2 d2

2

)

(

δμν − uμuν

) = Θ
(

δμν − uμuν

)

, (5.18)

http://dx.doi.org/10.1007/978-3-319-12787-3_4
http://dx.doi.org/10.1007/978-3-319-12787-3_4
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with the moment of inertia

Θ = m1 d2
1 + m2 d2

2 = m12 d2. (5.19)

Here m12 = m1m2/(m1 + m2) is the reduced mass.
Notice that the tensor δμν −uμuν , when multiplied with a angular velocity vector

wν , projects onto the directions perpendicular to u. Thus the angular momentum
Lμ = Θμνwν is perpendicular to u, and L · u = 0. The rotational motion of a linear
molecule, in 3D, has just 2 and not 3 degrees of freedom. This also holds true, when
the rotational motion is treated quantum mechanically.

Examples for linear molecules are the homo-nuclear molecules (m1 = m2) of hy-
drogen and nitrogen, viz.: H2 and N2. Hetero-nuclear molecules (m1 �= m2) are, e.g.
hydrogen-deuterium HD and hydrogen chloride HCl. Also some tri-atomic mole-
cules are linear, e.g. carbon-dioxide CO2. In this case, the center of mass coincides
with the central C-atom and the moment of inertia is determined by the masses and
distances of the O-atoms.

(ii) Symmetric Top Molecules

The moment of inertia tensor of molecules with a symmetry axis parallel to the unit
vector u is of the form

Θμν = Θ‖ uμuν + Θ⊥ (δμν − uμuν), (5.20)

where Θ‖ and Θ⊥ are the moments of inertia for the angular velocity parallel and
perpendicular to u, respectively. Examples for symmetric top molecules are CH3Cl
and CHCl3, or C6H6. For prolate, i.e. elongated, particles, one has Θ‖ > Θ⊥.
Particles with Θ‖ < Θ⊥ are referred to as oblate or disc-like.

The linear molecules discussed above correspond to Θ‖ = 0.

(iii) Spherical Top Molecules

The special caseΘ‖ = Θ⊥ applies to spherical topmoleculeswhich have an isotropic
moment of inertia tensor

Θμν = Θδμν, (5.21)

with the moment of inertia Θ . The regular tetrahedral molecules, CH4 and CF4, as
well as the regular octahedral molecules CF6 and SF6, are spherical top molecules.

Notice that physical properties described by a second rank tensor, like themoment
of inertia tensor, are isotropic not only for spheres, but also for regular tetrahedra,
cubes and regular octahedra. Physical properties associated with higher rank tensors
are needed to distinguish between the different symmetries.

(iv) Asymmetric Top Molecules

In general, the moment of inertia tensor is characterized by three different principal
values Θ(1), Θ(2) and Θ(3). By definition, one has Θ(i) ≥ 0 for i = 1, 2, 3.
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A molecule with three different moments of inertia is referred to as asymmetric
top molecule. On the level of the second rank tensor, it has the same symmetry as a
brick stone.

5.1 Exercise: Show that the Moment of Inertia Tensors for Regular Tetrahedra
and Octahedra are Isotropic

Hint: Use the coordinates (1, 1, 1), (−1,−1, 1), (1,−1,−1), (−1, 1,−1) for the
four corners of the tetrahedron and (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1),
(0, 0,−1), for the six corners of the octahedron.

5.3.2 Radius of Gyration Tensor

Consider a cloud of N particles or N monomers of a polymer molecule located at
positions r(1), r(2), . . . , r(N). The geometric center shall correspond to r = 0, thus
∑N

i=1 r(i) = 0. The radius of gyration tensor is defined by

Gμν =
N

∑

i=1

r (i)
μ r (i)

ν . (5.22)

The trace of this tensor is the square of the average radius R of the group of particles
considered:

R2 = Gλλ =
N

∑

i=1

r (i)
λ r (i)

λ , (5.23)

where R is a measure for the size of the group of particles. The full tensor

Gμν = 1

3
Gλλ δμν + Gμν ,

characterizes the size and the shape of the group of particles under consideration. The
symmetric traceless part, in particular, is a measure for the deviation from a spherical
symmetry.When all particles considered have the samemassm, themoment of inertia
tensor Θμν is related to Gμν by

Θμν = m
(

Gλλ δμν − Gμν

)

. (5.24)

In applications, the average of the right hand side of (5.22) is referred to as radius of
gyration tensor, viz. Gμν = 〈∑N

i=1 r (i)
μ r (i)

ν 〉.
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5.3.3 Molecular Polarizability Tensor

An electric field E causes a slight average shift of the electrons in an atom or a
molecule. The center of charge of the electrons is displaced with respect to the center
of charge of the nuclei. Thus the electric field induces an electric dipole moment
pind. It has to be distinguished from a permanent dipole moment pperm which some
molecules posses. The molecular polarizability tensor αμν characterizes the size and
direction of the induced dipole moment according to

pindμ = ε0 αμν Eν, (5.25)

where ε0 is the dielectric permeability of the vacuum.
For molecules with a symmetry axis parallel to the unit vector u, the molecular

polarizability tensor is of the form

αμν = α‖ uμuν + α⊥
(

δμν − uμuν

)

, (5.26)

where α‖ and α⊥ are the polarizability for an electric field parallel and perpendicular
to u, respectively. The standard decomposition of the polarizability tensor into its
isotropic and symmetric traceless parts is

αμν = ᾱ δμν + (

α‖ − α⊥
)

uμuν , (5.27)

with the average polarizability ᾱ = (α‖ +2α⊥)/3. The polarizability has the dimen-
sion of a volume. For atoms and molecules, it is of the order of a molecular volume.
For a metallic sphere of radius R, it is 4πR3, cf. Sect. 10.4.1.

5.3.4 Dielectric Tensor, Birefringence

In an anisotropic linear medium the electric displacement field D is linked with the
electric field E via the linear relation

Dμ = ε0 εμν Eν = ε0

(

ε̄ Eμ + εμν Eν

)

, (5.28)

where ε0 is the dielectric permeability of the vacuum, and ε̄ = ελλ/3. The connec-
tion between the dielectric tensor and the molecular polarizability is discussed in
Sects. 12.2.3 and 13.6.5.

The symmetric dielectric tensor εμν depends on the frequency ω of the elec-

tric field. Its symmetric traceless part εμν characterizes the dielectric or optical
anisotropy of the medium. Double refraction, which is also called birefringence,
occurs only when εμν is not zero for optical frequencies. Notice that D, as given by
(5.28), is not parallel to E, unless the electric field is parallel to one of the principal
directions.

http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_13
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The index of refraction ν(i) for linearly polarized light with the electric field
vector parallel to a principal direction e(i), is linked with the principal value ε(i) of
the dielectric tensor by the Maxwell relation

ν(i) =
√

ε(i), i = 1, 2, 3. (5.29)

Birefringence occurs, whenever, at least two of the principal indices of refraction
are different. The differences δν12 = ν(1) − ν(2) or δν13 = ν(1) − ν(3) quantify the
size of the birefringence for light propagating in the 3-direction or in the 2-direction,
respectively.

One way to detect birefringence is to measure the transmission of light through
a medium, between crossed polarizer and analyzer. The effect is largest, when the
incident light is linearly polarized with the electric field vector oriented under 45◦
between two principal directions, say between e(1) and e(3). The vector obviously
has components to both these principal directions for which the speed of light is
different, because the indices of refraction are different. After a propagation over
the distance L through the birefringent medium, the two components have a phase
shift δφ = L

λ
δν13, where λ is the wave length of the light. As a consequence of this

phase shift, the light is elliptically polarized and has a component perpendicular to
the direction of the incident linear polarization. The intensity I of the light which
passes through an analyzer oriented parallel to e(1) − e(3), is proportional to

I ∼ sin2(δφ) = sin2
(

L

λ
δν13

)

. (5.30)

Clearly, this intensity of the light passing through the crossed analyzer can be used
to measure the difference δν13 between the indices of refraction which, in turn, is
caused by the symmetric traceless part of the dielectric tensor. Its microscopic origin,
described by an average of the molecular polarizability tensor and the alignment of
optically anisotropic molecules, as well as a non-isotropic arrangement of atoms,
will be discussed later.

5.3.5 Electric and Magnetic Torques

An electric field E exerts a torque on an electric dipole moment pel. Similarly, a
magnetic field B causes a torque on a magnetic dipole moment m. These torques,
denoted by Tel and Tmag, are given by

T el
μ = εμλν pλ Eν, Tmag

μ = εμλν mλ Bν . (5.31)

In general, the electric dipole moment is the sum of a permanent and an induced part,
viz. pel = pperm+pind, cf. Sect. 5.3.3. The computation of the permanent moment for
a given charge distribution is presented in Sect. 10.3. As discussed above, the induced
dipole moment is proportional to the electric field, when the field strength is small

http://dx.doi.org/10.1007/978-3-319-12787-3_10
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enough, such that terms nonlinear in the applied electric field can be disregarded.
In this linear regime, one has pindν = ε0ανκ Eκ , cf. (5.25). Here ανκ is the molecular
polarizability tensor and ε0 is the dielectric permeability of the vacuum. The α-tensor
is symmetric, it can be decomposed into its isotropic and symmetric traceless parts:
ανκ = 1

3αττ δνκ + ανκ . It is only the anisotropic, i.e. irreducible part of the α-tensor,
which contributes to the torque

T el,ind
μ = ε0 εμλν αλκ Eκ Eν . (5.32)

This equation can also be written as

Tel,ind = ε0

(

α · E
)

× E.

An expression analogous to (5.32) applies for the induced magnetic dipole moment.
Again, only the anisotropic part of the magnetic polarizability tensor gives rise to
the torque.

Similar relations follow from the angular momentum balance of the Maxwell
equations, see Sect. 7.5. In particular, the torque density associated with the electro-
magnetic fields is E × D + H × B. Due to D = ε0E + P and B = μ0(H + M),
the torque density is also equal to E × P + μ0H × M. Here μ0 is the magnetic
permeability, also called magnetic induction constant, of the vacuum. In SI-units, it
is given by μ0 = 4π10−7 As/Vm, where As/Vm stands for “Ampere seconds/Volt
meter”. On the other hand, the torque density exerted by the fields on the matter is
P ×E+M×B, which involves the electric polarization P and the magnetization M.

For the induced part, one has, in the linear regime,

P ind
λ = ε0 χel

λκ Eκ , M ind
λ = μ−1

0 χ
mag
λκ Bκ , (5.33)

where χel
λκ and χ

mag
λκ are the electric and magnetic susceptibility tensors. By analogy

to (5.32), the torque density is determined by

εμλν

(

ε0 χel
λκ Eκ Eν + μ−1

0 χ
mag
λκ Bκ Bν

)

, (5.34)

where just the anisotropic parts of the susceptibility tensors contribute to the torque.

5.4 Geometric Interpretation of Symmetric Tensors

5.4.1 Bilinear Form

Symmetric second rank tensors can be visualized through geometric interpretations.
In one, the tensor is used as the coefficient matrix of a bilinear form, e.g.

xμSμν xν = X2, (5.35)

http://dx.doi.org/10.1007/978-3-319-12787-3_7


66 5 Symmetric Second Rank Tensors

with some positive number X . In many applications, all principal values are posi-
tive, S(i) > 0. Then (5.35) represents an ellipsoid in “x-space” with the semi-axes
X/

√
S(i). In the uniaxial case it is an ellipsoid of revolution. It reduces to a sphere

with radius X , when all principal values are equal.
In many applications in physics, bilinear forms are encountered, where the prin-

cipal values of the second rank tensor cannot be negative. An example is the kinetic
energy T of a solid body rotating with angular velocity w:

T = 1

2
wμΘμν wν ≥ 0. (5.36)

This inequality has to hold true for any direction of the angular velocity, in particular
for w parallel to any one of the principal axes. All principal values must not be
negative. Thus the equation (5.36), with T = const. > 0, describes an ellipsoid in
w-space.

5.4.2 Linear Mapping

A second geometric interpretation of a symmetric tensor is based on the linear
mapping

yμ = Sμν xν (5.37)

from x-space into y-space.
Firstly, notice that the vector y as related to x via (5.37), in general, is not parallel

to x, unless x is parallel to one of the principal directions. Thus the cross product
x × y is not zero, provided that the symmetric traceless part of the tensor S is not
isotropic. More specifically, one has

(x × y)μ = εμνλ xν yλ = εμνλ xν Sλκ xκ = εμνλ xν Sλκ xκ . (5.38)

In the uniaxial case, cf. (5.8), with the symmetry axis parallel to the unit vector e,
this relation reduces to

(x×y)μ = εμνλ xν yλ = (S‖−S⊥) εμνλ xνeλ eνxκ = (S‖−S⊥) x·e (x×e)μ. (5.39)

Clearly, this expression vanishes when the principal values S‖ and S⊥ are equal to
each other. Furthermore, (5.39) gives zero both for x parallel and perpendicular to e,
and it assumes extremal values, when x encloses an angle of 45◦ with the symmetry
axis.

Secondly, when the end point of the vector x scans a unit sphere, the end point
of the vector y will be on an ellipsoid provided that all principal values are positive.
In this case the semi-axes are equal to S(i). Again biaxial and uniaxial ellipsoids are
generated by biaxial and uniaxial tensors, and the ellipsoid degenerates to a sphere
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Fig. 5.1 Perspective view of
uniaxial (left) and biaxial
(right) ellipsoids generated
by linear mappings with
S(1) = S(2) = 0.8,
S(3) = 1.4 and S(1) = 1.4,
S(2) = 0.6, S(3) = 1,
respectively

when the tensor is isotropic. In Fig. 5.1, uniaxial (left) and biaxial (right) ellipsoids
are presented in a perspective view. The principal axes of the ellipsoids are parallel
to the edges of the boxes, their lengths are proportional to the semiaxes.

In the uniaxial case where S(1) = S(2) �= S(3) the ellipsoids generated by the
linear mapping are cigar-like when S(3) > S(1) holds true, and disk-like when one
has S(3) < S(1). They are referred to as prolate and oblate ellipsoids, respectively.

Now a geometric interpretation can be given to the decomposition of the sym-
metric tensor S according to (3.4) into an isotropic part and the symmetric traceless

(anisotropic) part S . In the mapping (5.37), the isotropic part of tensor S yields a
sphere with its radius equal to the mean value 1

3 (S(1) + S(2) + S(3)) of the principal

values. The symmetric traceless part S characterizes the deviation of the ellipsoid
generated by S from that sphere.

For the uniaxial case depicted on the left hand side in Fig. 5.1, the cross section
of the ellipsoid in the 1–3-plane and of the pertaining sphere are shown on the left
side of Fig. 5.2 as thick and dashed curves. The area between them is a measure for
the anisotropic (symmetric traceless) part of the tensor S. The cross section of the
ellipsoid in the 2–3-plane has the same appearance as in the 1–3-plane whereas it is
a circle in the 1–2-plane.

The cross sections of the biaxial ellipsoid on the right hand side of Fig. 5.1 are
ellipses in all three planes containing two of the coordinate axes. On the right hand
side of Fig. 5.2, the cross sections of the ellipsoid (and the sphere pertaining to the
isotropic part of S) are shown for the 1–3-plane (thick curve) and the 2–3-plane
(thin curve) in the upper diagram. The lower diagram is for the 1–2-plane. Again,
the area between the ellipses and the dashed circles is a measure for the deviation of
the tensor S from being isotropic.

5.4.3 Volume and Surface of an Ellipsoid

The volume V and the surface area A of the y-ellipsoid generated by the linear
mapping of a unit sphere in x-space according to (5.37), as discussed above for
tensors with non-negative principal values, are given by

http://dx.doi.org/10.1007/978-3-319-12787-3_3
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Fig. 5.2 Cross section of uniaxial (left) and biaxial (right) ellipsoids generated by linear mappings
with S(1) = S(2) = 0.8, S(3) = 1.4 and S(1) = 1.4, S(2) = 0.6, S(3) = 1, respectively. The upper
diagrams show the cross sections in the 1–3- and 2–3-planes, the lower ones are for the 1–2-plane.
The dashed circle corresponds to the cross sections with the sphere generated by the isotropic part
of the tensor

V = 4

3
π det(S), A = 2

3
π

(

Sμμ Sνν − Sμν Sνμ

)

. (5.40)

The expression for A is equivalent to A = 4
3π(S(1)S(2) + S(2)S(3) + S(3)S(1)).

Insertion of the decomposition (3.4) of S into isotropic and anisotropic parts, i.e. of

Sμν = S̄δμν + Sμν with S̄ = 1
3 Sλλ yields

ΔA = −2

3
π Sμν Sμν , ΔV = 4

9
π Sμν Sνλ Sλμ + S̄ ΔA (5.41)

for the differences ΔA and ΔV between the area and the volume of the ellipsoid
and the pertaining sphere with the radius S̄ generated by the linear mapping with the
isotropic part of S.

http://dx.doi.org/10.1007/978-3-319-12787-3_3
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5.5 Scalar Invariants of a Symmetric Tensor

5.5.1 Definitions

The trace Sμμ, the square of the magnitude (norm) Sμν Sμν and the determinant

det(S) = 1

3
Sμν Sνλ Sλμ + 1

6

(

Sμμ Sνν − 3 Sμν Sνμ

)

Sλλ (5.42)

of the symmetric tensor S are not affected by a rotation of the coordinate system
and are therefore called scalar invariants. More specifically, they are called scalar
invariants of first, second and third order, and denoted by I1, I2, I3, respectively. In
terms of the principal values, one has

Sμμ = S(1) + S(2) + S(3), Sμν Sμν = S(1)2 + S(2)2 + S(3)2,

and
det(S) = S(1) S(2) S(3). (5.43)

To check the validity of (5.42), denote the principal values of the tensor by a, b, c
for simplicity. Then det(S) reads

1

3

(

a3 + b3 + c3
)

+ 1

6

(

(a + b + c)2 − 3
(

a2 + b2 + c2
))

(a + b + c)

which is equal to abc, the result obtained directly from the determinant.
For symmetric traceless tensors, the symbols I2 and I3 are used in the following,

for the norm and for the determinant, multiplied by 3:

I2 = Sμν Sνμ , I3 = 3 det
(

S
)

= Sμν Sνλ Sλμ . (5.44)

Aderivation of (5.42) and (5.44), based on theHamilton-Cayley theorem, is presented
in Sect. 5.6.

The third order invariant can be used to decide whether a tensor is uniaxial or
biaxial without diagonalizing the tensor. A measure for biaxiality is introduced next.

5.5.2 Biaxiality of a Symmetric Traceless Tensor

As discussed above, a biaxial symmetric traceless tensor can be decomposed into a
uniaxial part and a planar biaxial part, cf. (5.12), characterized by coefficients s and
q. More specifically, the principal values are − 1

3 s + q, − 1
3 s − q, and 2

3 s, cf. (5.13).
Thus one has, according to (5.44),
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I2 = 2

3
s2 + 2 q2, I3 = 3 det

(

S
)

= 2s

(

1

9
s2 − q2

)

. (5.45)

The special planar biaxial case considered in (5.14) means s = 0, then one has
I3 = 0. On the other hand, I3 is also zero for q = ± 1

3 s. In this case the tensor is
also planar biaxial, but the roles of the principal axes 1, 2, 3 are interchanged. For
a uniaxial tensor corresponding to q = 0, the ratio I 23 /I 32 is equal to 1/6. Thus a
biaxiality parameter b can be defined by

b2 = 1 − 6I 23 /I 32 . (5.46)

Clearly, one has b2 = 1 for the planar biaxial case corresponding to s = 0 and
b2 = 0 for a uniaxial tensor with q = 0.

For the dyadic tensor 2 uμvν constructed from the components of two unit vectors
u and v, as considered in Sect. 5.2.5, one has s = −c and q = 1, with c := u · v =
cosϑ , where ϑ is the angle between the two vectors. Then b2 is equal to

1 − 3c2
(

1 − c2/9
)2 (

c2/3 + 1
)−3

.

In Fig. 5.3, the biaxiality parameter b is plotted as function of σ = sin2 ϑ = 1− c2,
as given by

b =
[

1 − (1 − σ)(8 + σ)2 (4 − σ)−3
]1/2

. (5.47)

This curve does not deviate strongly from the dashed straight line b = σ . As expected,
the biaxiality parameter is zero for σ = 0 corresponding to ϑ = 0. It assumes its
maximum value 1 for σ = 1 which pertains to ϑ = ±π/2.

Fig. 5.3 The biaxiality
parameter b as function of
σ = sin2 ϑ , where ϑ is the
angle between the vectors u
and v, which form the
symmetric traceless dyadic.
The dashed line corresponds
to b = σ
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5.6 Hamilton-Cayley Theorem and Consequences

5.6.1 Hamilton-Cayley Theorem

Any symmetric second rank tensor Sμν , with principal values S(1), S(2), S(3) obeys
the equation

(

Sμν − S(1)δμν

) (

Sνλ − S(2)δνλ

) (

Sλκ − S(3)δλκ

)

= 0, (5.48)

which is essentially the Hamilton-Cayley theorem. In linear algebra, this theorem is
applied to square matrices. To prove (5.48), notice firstly, that any vector a, in 3D,
can be written as linear combination of the three unit vectors e(1), e(2), e(3) which are
parallel to the principal directions: aκ = a(1)e(1)

κ +a(2)e(2)
κ +a(3)e(3)

κ . Multiplication
of the left hand side of (5.48) with aκ yields zero. This can be checked, term by
term, using the eigenvalue relation Sμνe(i)

ν = e(i)
μ , for i = 1, 2, 3. In particular, one

has immediately (Sλκ − S(3)δλκ)e(3)
κ = 0. The multiplication (Sνλ − S(2)δνλ)(Sλκ −

S(3)δλκ)e(2)
κ = (Sνλ − S(2)δνλ)(S(2) − S(3))e(2)

λ = 0 again yields zero. Similarly, one

finds (Sμν − S(1)δμν)(Sνλ − S(2)δνλ)(Sλκ − S(3)δλκ)e(1)
κ = (Sμν − S(1)δμν)(S(1) −

S(2))(S(1) − S(3))e(1)
ν = 0. Since this result is valid for all vectors, the tensorial

relation (5.48) must hold true.
Explicit multiplication of the terms in (5.48) leads to

Sμν SνλSλκ −
(

S(1) + S(2) + S(3)
)

SμλSλκ

+
(

S(1)S(2) + S(2)S(3) + S(3)S(1)
)

Sμκ − S(1)S(2)S(3) δμκ = 0.

Since S(1)S(2)S(3) = det(S), due to S(1) + S(2) + S(3) = Sαα and S(1)S(2) +
S(2)S(3) + S(3)S(1) = 1

2 ((S(1) + S(2) + S(3))2 − ((S(1))2 + (S(2))2 + (S(3))2)) =
1
2 (Sαα Sββ − Sαβ Sβα), the Hamilton-Cayley theorem is equivalent to

det(S) δμκ = Sμν SνλSλκ − Sνν SμλSλκ + 1

2
(Sνν Sλλ − SνλSλν) Sμκ . (5.49)

In the case of a symmetric traceless tensor S , this relation reduces to

det

(

S
)

δμκ = Sμν Sνλ Sλκ − 1

2
Sνλ Sλν Sμκ . (5.50)

Consequences of the Hamilton-Cayley relations (5.49) and (5.50) are presented next.
The contraction with μ = κ in the Hamilton-Cayley theorem (5.49) leads to the
previously presented equation (5.42) for the calculation of the determinant in terms
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of products of the tensor. Likewise, the expression for the invariant I3 of a symmetric
traceless tensor, as given in (5.45), follows from (5.50) with μ = κ . The symmetric
traceless part of equation (5.50) leads to

Sμν Sνλ Sλκ = 1

2
Sνλ Sλν Sμκ , (5.51)

which is a remarkable relation for the triple product of an irreducible second rank
tensor. In matrix notation, this can be checked by writing the tensor in its principal
axes coordinate system.

5.2 Exercise:
Verify the Relation (5.51) for the Triple Product of a Symmetric Traceless Tensor

Hint: use the matrix notation
⎛

⎝

a 0 0
0 b 0
0 0 c

⎞

⎠ ,

with c = −(a + b), for the symmetric traceless tensor in its principal axes system.
Compute the expressions on both sides of (5.51) and compare.

5.6.2 Quadruple Products of Tensors

Multiplication of (5.50) or (5.51) with Sκμ implies

Sκμ Sμν Sνλ Sλκ = 1

2
Sνλ Sλν Sκμ Sμκ . (5.52)

This relation says: the trace of the four fold product of a symmetric traceless sec-
ond rank tensor is equal to one half of the square of its norm squared. Similarly,
multiplication of (5.49) with Sκμ yields an expression for the fourth order product
SκμSμν SνλSλκ in terms of the trace, of two fold and three fold products of the tensor.

Notice that the equations presented in Sects. 5.5 and 5.6 are specific for symmetric
second rank tensors in three dimensional space. This is obvious in the formulation of
the Hamilton-Cayley theorem (5.50), there are just three principal values in 3D. For
second rank tensors in 2D or in 4D, analogous, but different relations apply, which
give rise to different consequences.
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5.7 Volume Conserving Affine Transformation

5.7.1 Mapping of a Sphere onto an Ellipsoid

Let r and rA be the coordinates in the original and in an affine transformed space.
The components are linked by

rAμ rAμ = rμ Aμνrν, rAμ = A1/2
μν rν . (5.53)

When the tensor Aμν has positive eigenvalues, the relations (5.53) describe amapping
of a sphere rA · rA = const. onto an ellipsoid in r-space. The affine transformation
matrix, as considered in Sect. 2.3.2, is A1/2

μν . The volume of the ellipsoid is equal to
that of the sphere provided that the product of the eigenvalues Ai, i = 1, 2, 3 of Aμν

are equal to 1, viz.,
A1 A2 A3 = 1. (5.54)

For a uniaxial ellipsoid two of the eigenvalues are equal, e.g. A2 = A3.

5.7.2 Uniaxial Ellipsoid

Let u be a unit vector parallel to the symmetry axis of a uniaxial ellipsoid. In this case,
one can make the ansatz Aμν ∼ δμν + A uμuν where the non-sphericity parameter
A is bounded according to −3/2 < A < 3. The volume conserving condition (5.54)
implies

Aμν =
[

(

1 − 1

3
A

)2 (

1 + 2

3
A

)

]−1/3
(

δμν + A uμuν

)

. (5.55)

The equation (5.54) with rAμ rAμ = r2A = const. describes an ellipsoid with the semi-

axes a = [(1 − 1
3 A)(1 + 2

3 A)−1]1/3rA and b = c = [(1 + 2
3 A)(1 − 1

3 A)−1]1/6rA.
Thus the axes ratio is

Q = a

b
=

[

(

1 − 1

3
A

) (

1 + 2

3
A

)−1
]1/2

, (5.56)

and A is related to Q by

A = 3
1 − Q2

1 + 2 Q2 . (5.57)

http://dx.doi.org/10.1007/978-3-319-12787-3_2
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The dependence of Aμν and its inverse on Q are

Aμν = Q2/3
[

δμν +
(

Q−2 − 1
)

uμuν

]

, A−1
μν = Q−2/3

[

δμν +
(

Q2 − 1
)

uμuν

]

.

(5.58)

Prolate and oblate ellipsoids correspond to Q > 1 and Q < 1, respectively. Appli-
cations of the volume conserving affine transformation to the interaction potential
between perfectly oriented ellipsoidal particles and to the anisotropy of the viscosity,
are presented in Sect. 16.4.2.

http://dx.doi.org/10.1007/978-3-319-12787-3_16


Chapter 6
Summary: Decomposition of Second
Rank Tensors

Abstract This chapter provides a summary of formulae for the decomposition of a
Cartesian second rank tensor into its isotropic, antisymmetric and symmetric traceless
parts.

Any second rank tensor Aμν can be decomposed into its isotropic part, associated
with a scalar, its antisymmetric part, linked a vector, and its irreducible, symmetric
traceless part:

Aμν = 1

3
Aλλ δμν + 1

2
εμνλcλ + Aμν . (6.1)

The dual vector c is linked with the antisymmetric part of the tensor by

cλ = ελστ Aστ = ελστ

1

2
(Aστ − Aτσ ). (6.2)

The symmetric traceless second rank tensor, as defined previously, is

Aμν = 1

2
(Aμν + Aνμ) − 1

3
Aλλ δμν. (6.3)

Similarly, for a dyadic tensor composed of the components of the two vectors a and
b, the relations above give

aμbν = 1

3
(a · b) δμν + 1

2
εμνλcλ + aμbν . (6.4)

The isotropic part involves the scalar product (a · b) of the two vectors. The anti-
symmetric part is linked with the cross product of the two vectors, here one has

cλ = ελστ aσ bτ = (a × b)λ. (6.5)

The symmetric traceless part of the dyadic tensor is

aμbν = 1

2
(aμbν + aνbμ) − 1

3
aλbλ δμν. (6.6)

© Springer International Publishing Switzerland 2015
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Chapter 7
Fields, Spatial Differential Operators

Abstract This chapter is devoted to the spatial differentiation of fields which are
tensors of various ranks and to the properties of spatial differential operators. Firstly,
scalar fields like potential functions are considered. The nabla operator is intro-
duced and applications of gradient fields are discussed, e.g. force fields in Newton’s
equation of motion. Secondly, the differential change of vector fields is analyzed,
the divergence and the curl or rotation of vector fields are defined. Special types
of vector fields are studied: vorticity-free fields as derivatives of scalar potentials
and divergence-free fields as derivatives of vector potentials. The Laplace operator,
the Laplace and Poisson equations are introduced. The conventional classification of
vector fields is listed. Thirdly, tensor fields are considered. A graphical representation
of symmetric second rank tensors is given. Spatial derivatives of tensor fields are dis-
cussed. An application involves the pressure tensor in the local conservation law for
linear momentum. Further applications are the Maxwell equations of electrodynam-
ics in differential form. This chapter is concluded by rules for the nabla and Laplace
operators, their decomposition into radial and angular parts, with applications to the
orbital angular momentum and kinetic energy operators of Wave Mechanics.

A function f = f (r) which determines a number at any space point r is called
a field. In three dimensional space (3D), f is a function of the three components
r1, r2, r3 of the position vector. Such a function, in turn, can be a scalar, a component
of a vector or of a tensor. Depending on the rank of the tensor, one talks of

1. Scalar fields, examples are:
the potential energy Φ = Φ(r) or the electrostatic potential φ = φ(r).

2. Vector fields, like
the force F = F(r), the electric field E = E(r), or
the flow field v = v(r) of hydrodynamics.

3. Tensor fields, an example for a second rank tensor field is
the pressure tensor or the stress tensor.

© Springer International Publishing Switzerland 2015
S. Hess, Tensors for Physics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-12787-3_7
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7.1 Scalar Fields, Gradient

In physics, potential functions are important examples for scalar fields. The math-
ematical considerations presented in the following for potentials apply just as well
for other scalar fields, such as the number density, the mass density and the charge
density, or concentration and temperature fields.

7.1.1 Graphical Representation of Potentials

In the case of a two-dimensional space, the value of a potential field can be plotted
into the third dimension, i.e. as the height above a plane. It can be visualized just
like a panoramic map of a landscape, or in a 3D graphics plot. Alternatively, the
information about the potential can be shown in equipotential lines, just like the
lines of equal height in maps used for hiking.

The panoramic view of a potential function depending on a three-dimensional
vector requires a four-dimensional space, which is beyond our visual experience.
The surfaces of equal potential energy, also called equal potential surfaces can be
visualized in 3D graphics. The surface where the value of the potential is equal to c,
is determined by

Φ(r1, r2, r3) = c.

The solution of this equation for r3 yields

r3 = z(r1, r2, c),

where c is a curve parameter. In this way, equipotential surfaces of 3D fields can be
represented geometrically with the same tools used for 2D potential functions.

Three simple special cases associatedwith planar, cylindrical and spherical geom-
etry are discussed next.

1. Planar Geometry. Let a preferential direction be specified by the constant unit
vector e, and a special potential depending on r in the formΦ = Φ(e ·r) = Φ(x),
where x = e · r. In this case the equipotential surfaces are planes perpendicular
to e. The information in the variation of the potential is contained in the one-
dimensional function Φ(x).

2. Cylindrical Geometry. Let the direction of a preferential axis be parallel to the
constant unit vector e. Now the case is considered, where the potential depends
just on the components of r perpendicular to e. Then one has Φ = Φ(r⊥),
with r⊥ = r − e · r e. Or, in other words, one has Φ = Φ(x, y), where the
components of r⊥ are denoted by x and y. When, even more special, the potential
just depends on distance ρ = √

r⊥ · r⊥ = √

x2 + y2 of a point from the axis,
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the equipotential surfaces are coaxial cylinders. In this case, the values of the
potential are determined by a function of a single variable, viz.: ρ.

3. Spherical Geometry. Of special importance are potential functions which depend
on the position vector r just via itsmagnitude, i.e. via the distance r = |r| = √

r · r
of the point r from the center r = 0. The equipotential surfaces of such a spherical
potential Φ = Φ(r) are concentric spheres. In this special case, again, a function
depending on one variable only, suffices to quantify the value of the potential.

7.1.2 Differential Change of a Potential, Nabla Operator

The change dΦ of the value of a potential function Φ, when one goes from the
position r to an adjacent position r′ = r + dr is given by the difference Φ(r + dr)−
Φ(r). Taking into account that one is dealing with a function depending on the three
components of the position vector, one has explicitly

dΦ = Φ(r1 + dr1, r2 + dr2, r3 + dr3) − Φ(r1, r2, r3).

It is assumed that the potential function can be expanded in a power series with
respect to the increment dr. Differential change implies that the magnitude of dr is
small enough, such that terms nonlinear in dr can be disregarded. Then

dΦ = ∂Φ

∂r1
dr1 + ∂Φ

∂r2
dr2 + ∂Φ

∂r3
dr3 = ∂Φ

∂rμ

drμ (7.1)

is obtained. In 3D, the quantity ∂Φ
∂rμ

has three components and it is a vector, since the
scalar product with the vector drμ yields the scalar dΦ.

The partial differentiationwith respect to theCartesian components of the position
vector is frequently denoted by the nabla operator

∇μ := ∂

∂rμ

. (7.2)

Also the symbol ∂μ is used for the spatial partial derivative. Here the nabla operator
is preferred. Nabla applied on a scalar field is also referred to as the gradient field,
and sometimes denoted by gradΦ.

7.1.3 Gradient Field, Force

A geometric interpretation of the gradient field ∇μΦ(r) is obtained as follows. Con-
sider the case, where the differential change dr is tangential to an equipotential
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surface. Then one has dΦ = 0, and consequently, in this case ∇μΦdrμ = 0. This
means: the gradient field

∇μΦ(r) is perpendicular to the equipotential surface running through r.

It is recalled that a two-dimensional potential function can be visualized by analogy
to a map showing the height of hills and dales. The gradient points in the direction of
the steepest ascent. Hikers know,when the lines of equal height are close together, the
ascent is very steep. The interrelation between the force and the potential is defined
such that the force is determined by the negative gradient. In the landscape analogy,
the force points into the direction of the steepest descent, just as water flows.

In mechanics, there are forces which can be derived from a potential and others,
for which no potential function exists. Examples will be discussed later. When the
force F acting on a single particle can indeed be derived from a potential, then it is
determined by

Fμ = Fμ(r) = −∇μ Φ(r). (7.3)

Similarly, in electrostatics, the electric field E = E(r) is the negative gradient of the
electrostatic potential φ = φ(r):

Eμ = Eμ(r) = −∇μ φ(r). (7.4)

The electric field is everywhere perpendicular to the surfaces of equal electrostatic
potential. The field lines indicate these directions normal to the potential surfaces.
The electric field, at a specific point, is parallel to the tangent vector of the electric
field running through this point.

7.1.4 Newton’s Equation of Motion, One and More Particles

In Newton’s equation of motion the position r = r(t) of a particle is a function of
the time t . For a constant mass m and with the velocity v(t) = dr/dt , the equation
of motion now reads

m
dvμ

dt
= m

d2rμ

dt2
= Fμ = −∇μ Φ(r). (7.5)

So far, the dynamics of a single particle, subjected to an “external” force, was con-
sidered. The description of the dynamics of N = 2, 3, . . . particles with position
vectors ri and masses mi where i = 1, 2, . . . , N , is based on equations of motion
for each one of these particles:

mi
dviμ
dt

= mi
d2r iμ
dt2

= F i
μ. (7.6)
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Clearly, vi is the velocity of particle “i”. When the force can be derived from a
potential, thismany-particle potentialΦ is a function of the coordinates of all particles
involved, viz.: Φ = Φ(r1, r2, . . . , rN). The force Fi acting on particle “i” is given
by the negative partial derivative of the potential with respect to the vector ri:

F i
μ = − ∂

∂r iμ
Φ = −∇ i

μΦ. (7.7)

An important special case are two interacting particles, N = 2. When their dynam-
ics can be treated as if they were isolated from the rest of the world, the rele-
vant interaction potential depends on their positions only via the relative vector
r12 = r1 − r2. Then one has ∂Φ/∂r1μ = ∂Φ/∂r12μ and ∂Φ/∂r2μ = −∂Φ/∂r12μ . This
implies F1

μ = −F2
μ, which corresponds to Newton’s actio equal reactio. As a con-

sequence, the motion of the center of mass of the two particles is “force free”, and
the total linear momentum P = m1v1 + m2v2 is constant. The interesting motion is
that one described by the relative vector r12 and the relative velocity v12 = v1 − v2.
The governing equation of this motion is

m12
dv12μ

dt
= m12

d2r12μ

dt2
= F1

μ = −∂Φ(r12)
∂r12μ

, (7.8)

with the reduced mass m12 = m1m2/(m1 + m2). Thus the two-particle dynamics is
reduced to the force-free motion of its center of mass and an effective one-particle
dynamics of the relativemotion.With the replacementsm12 → m, r12 → r,F1 → F,
Φ(r12) → Φ(r) and (∂/∂r12μ ) → ∇μ the equation of motion (7.8) is mathematically
equivalent to (7.5). In this sense, some of the special potential and force functions to
be mentioned below pertain to an effective one-particle problem rather than to a true
one particle dynamics.

7.1.5 Special Force Fields

The application of the nabla operator to the vector r yields

∇μrν = δμν. (7.9)

The contraction with μ = ν implies

∇μrμ = 3, (7.10)

in 3D. The fact that the scalar product of the nabla operator with the vector r yields
a number, which is certainly a scalar, proves that the nabla operator is also a vector.
The relation (7.9) is essential for the calculation of the force from a given potential
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function. Some examples for the special forms of potential functions discussed in
Sect. 7.1, are presented next.

(i) Planar Geometry

Let the potential depend on r via x = e · r = eνrν , where e is a constant unit vector.
Then the chain rule, with the help of (7.9), leads to,

∇μΦ(x) = dΦ

dx
∇μeνrν = dΦ

dx
eμ. (7.11)

Clearly, one has Fμ ∼ eμ, the direction of the force is constant. In this very special
case, where the potential is linear in x , also the force strength is constant. Such a
force field is referred to as a homogeneous field. The gravitational field above a flat
surface on earth is of this type, as long as the height over ground, corresponding to the
variable x , is very small compared with the diameter of the earth. Another example
of an approximately homogeneous field is the electric field between the charged flat
plates of an electric capacitor.

(ii) Cylindrical Geometry

Let Φ be a function of the distance ρ = √

r⊥
ν r⊥

ν of point r from an axis parallel the
the constant unit vector e. Here r⊥

ν = rν − eνeλrλ is the projection of r onto a plane
perpendicular to e. Use of the chain rule yields

∇μΦ(ρ) = dΦ

dρ
∇μρ.

Furthermore, one obtains

∇μρ = ∇μ

√

r⊥
ν r⊥

ν = 1

2
ρ−1 ∇μ

(

r⊥
ν r⊥

ν

)

= ρ−1 r⊥
ν ∇μr⊥

ν = ρ−1 r⊥
ν (δμν − eμeν) = ρ−1 r⊥

μ .

Thus the gradient of the potential function is found to be

∇μΦ(ρ) = dΦ

dρ
ρ−1 r⊥

μ = dΦ

dρ
̂r⊥
μ , (7.12)

where ̂r⊥
μ is the radial unit vector pointing outward from the cylinder axis.

Notice: both the planar and the cylindrical geometry as considered here have
cylindrical symmetry since there is a preferential direction parallel to the constant
vector e. In both cases, the torque Tμ = εμνλrν Fλ = −εμνλrν∇λΦ is proportional
to εμνλrνeλ. Thus only the component of the orbital angular momentum L which is
parallel to e is conserved. The other two components of L, which are perpendicular
to the preferential direction, do change in time.



7.1 Scalar Fields, Gradient 83

(iii) Spherical Symmetry

Now the case is considered where the potential depends on r via the magnitude
r = √

rνrν , thus Φ = Φ(r). Then one has

∇μΦ(r) = dΦ

dr
∇μr.

Use of the definition of r leads to

∇μr = ∇μ

√
rνrν = 1

2
r−1 ∇μ(rνrν) = r−1 rν ∇μrν = r−1 rν δμν = r−1 rμ.

The rule

∇μr = r−1 rμ = r̂μ (7.13)

is important for many applications. It can be remembered by observing that the direc-
tion of∇μr must be parallel to theμ-direction since r does not contain any directional
information, and by dimensional considerations, the result of the application of the
nabla operator on r must be a dimensionless unit vector.

Thus the gradient of a spherical potential function is

∇μΦ(r) = dΦ

dr
r−1 rμ = dΦ

dr
r̂μ. (7.14)

The resulting force Fμ = −∇μΦ(r) is

Fμ = −Φ ′ r̂μ, Φ ′ = dΦ

dr
. (7.15)

Such a force, which is parallel to r, is referred to as central force. The attractive
gravitational force between two masses, like the sun and the earth, is of this type.
The same applies to the electrostatic Coulomb force between two charges. Here the
force is repulsive or attractive, when the signs of both charges are equal or opposite,
respectively. The pertaining potential functions, both for gravitation and Coulomb,
are proportional to r−1. Notice that the interaction between two spherical particles
is described by potential functions which have a dependence on r , in general. For
example, the potential function of two electrically neutral atoms, e.g. Argon atoms,
are of the type (r0/r)12 − (r0/r)6, where r0 is an effective diameter of the atom. The
first term is responsible for the repulsion at short distances, the second one for the
attraction at larger distances.

The torque r ×F vanishes for a central force. This implies that the orbital angular
momentum L is constant. It is recalled that L is both perpendicular to r and to the
velocity. Thus the constant direction of L implies that the motion takes place in a
plane. Such a motion is essentially two-dimensional although it takes place in 3D.

The interaction between two particles or extended objects can be described
by a spherical potential function just depending on the inter-particle separation
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r = |r1 − r2| only, when these particles are effectively round and do not posses any
internal directional properties, like electric dipole or quadrupole moments, which
influence their interaction.

7.2 Vector Fields, Divergence and Curl or Rotation

Let v(r) be a vector field with Cartesian components vμ(r). Here the symbol v can be
associatedwith “vector”, in general, or with the flowvelocity field of hydrodynamics.
The vector fieldmight also be associatedwith the displacement induced by a deforma-
tion of an elastic solid. Themathematical considerations to be presented are invariant
with respect to different interpretations in physics.

Vector fields can be visualized as a field of arrows. At each point r, an arrow can
be drawn, whose length and direction is determined by v(r). Firstly, some examples
are considered.

7.2.1 Examples for Vector Fields

(i) Homogeneous Field

As previously mentioned, a vector field of the type v = const., where the vector
everywhere has constant length and direction, is referred to as a homogeneous field.
Let the direction be specified by the constant unit vector e. Then one has, apart from
a numerical factor,

vμ = eμ = const.

This field is the gradient of the simple potential function Φ = rνeν = x (Fig. 7.1).

Fig. 7.1 Homogeneous and
linearly increasing vector
fields
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(ii) Linearly Increasing Field

Let v(r) be given by

vμ = eμ eνrν = x eμ. (7.16)

In this case, the direction of the vector is still parallel to a constant unit vector, viz.
to e. This field can be derived from the potential function

Φ = (1/2) (eνrν)
2 = (1/2) x2, (7.17)

which is that of an one-dimensional harmonic oscillator.

(iii) Radial and Cylindrical Fields

The vector field

vμ = rμ (7.18)

has radial symmetry. It is the gradient of Φ = (1/2)rνrν = (1/2)r2, which has the
functional form of the potential of an isotropic harmonic oscillator, in 3D.

The 2D version of a radial vector field is given by

vμ = r⊥
μ = rμ − eμ eνrν, (7.19)

where the constant unit vector is perpendicular to the plane, in which the vector
arrows lie. In this case the potential function

Φ = (1/2) r⊥
ν r⊥

ν = (1/2) (x2 + y2) (7.20)

is of the type of a 2D isotropic harmonic oscillator. Here the components of the
position vector in the plane perpendicular to e have been denoted by x and y (Fig. 7.2).

Fig. 7.2 Cylindrical vector field
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Fig. 7.3 Uniaxial
squeeze-stretch field

(iv) Uniaxial Squeeze-stretch Field

The vector field

vμ = 3 eμ eνrν − rμ = 3z eμ − rμ, (7.21)

with z = eνrν can be used to describe a stretching in the direction parallel to the unit
vector e and a squeezing in both directions perpendicular to e. This vector field is
the gradient of the potential function

Φ = 3

2
(eμrμ)2 − 1

2
r2 = 1

2

(

2z2 − x2 − y2
)

, (7.22)

where the components of r perpendicular to e are denoted by x and y (Fig. 7.3).

(v) Planar Squeeze-stretch Field

Let e and u be two orthogonal unit vectors, e · u = 0. The vector field

vμ = eμ uνrν + uμ eνrν = y eμ + x uμ, (7.23)

with x = eνrν and y = uνrν , is of the form needed to describe the deformation
of an elastic solid with stretching and squeezing, within the x–y-plane, under 45◦
and 135◦ with respect to the x-axis, cf. Fig. 7.4. There is no deformation in the third
direction.

Again, the vector field can be obtained as the gradient of a potential function, in
this case one has

Φ = eμrμ uνrν = x y. (7.24)

When the coordinate axis are rotated by 45◦, the potential reads

Φ = (1/2)
(

(eνrν)
2 − (uνrν)

2
)

= (1/2)(x2 − y2). (7.25)
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Fig. 7.4 Planar
squeeze-stretch field

In this case, the gradient field is

vμ = eμ eνrν − uμ uνrν = x eμ − y uμ. (7.26)

So far, all vector fields presented can be derived from a scalar potential function.
However, there exist also vector fields forwhich this is not the case.A simple example
is discussed next.

(vi) Solid-like Rotation or Vorticity Field

A circular flow with a constant angular velocity w is described by

vμ = εμνλwνrλ. (7.27)

This flow field is called solid-like since it corresponds to the motion of the points on
a solid disc, rotating about an axis normal to the disc and running through the point
r = 0. The axial vector w is parallel to the rotation axis. The field v has a non-zero
vorticity ∇ × v. For this reason it is also referred to as vorticity flow field or just
vorticity field. This kind of vector field cannot be represented as the gradient of a
scalar potential function! (Fig7.5).

(vii) Simple Shear Flow

Let e and u again be two orthogonal unit vectors, e · u = 0. The simple vector field

vμ = eμ uνrν = y eμ, (7.28)

with x = eνrν and y = uνrν , is called a simple shear field. When the vector v
is associated with the displacement of a part of a solid, the field describes a shear
deformation. In fluids, such a flow field can be realized in a plane Couette geometry,
where a fluid is confined between parallel flat plates, normal to u, and one plate
moves parallel to e. Such a flow is also called simple shear flow. The vector field
(7.28) is essentially a linear combination of the planar squeeze-stretch field (7.23)
and the circular field (7.27). The simple vector field (7.28) cannot be obtained as the
gradient of a scalar field (Fig. 7.6).
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Fig. 7.5 Solid-like rotation
field

Fig. 7.6 Simple shear field

7.2.2 Differential Change of a Vector Fields

The difference dvμ = vμ(r+dr)−vμ(r) of the vector field vμ between the positions
r + dr and r can be expanded with respect to the small, differential change dr. Up
to linear terms, one has

dvμ = ∂vμ

∂rν

drν = (∇ν vμ)drν . (7.29)

The quantity ∇νvμ which is sometimes called gradient of v, is a second rank tensor.
It can be decomposed into its symmetric and antisymmetric parts or its isotropic,
symmetric traceless and antisymmetric parts, just like any dyadic tensor, cf. (6.4).
These decompositions are

∇ν vμ = 1

2
(∇ν vμ + ∇ν vμ) + 1

2
(∇ν vμ − ∇ν vμ), (7.30)

and

∇ν vμ = 1

3
(∇λ vλ) δμν + ∇ν vμ + 1

2
ενμλ(∇ × v)λ. (7.31)

http://dx.doi.org/10.1007/978-3-319-12787-3_6
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The scalar ∇λvλ = ∇ · v := divv is called the divergence of the vector v. The cross
product (∇ ×v) of the nabla operator and a vector v is also denoted by curl v or rot v,
pronounced as curl or rotation. In component notation it is given by

(∇ × v)λ = ελστ∇σ vτ . (7.32)

When v stands for the flow velocity of a streaming fluid, the quantity (1/2)(∇ × v)

is referred to as the vorticity of the flow field. A sphere suspended in a plane Couette
flow picks up an angular velocity equal to the vorticity, provided it is allowed to
rotate freely.

The symmetric traceless part, also called deviatoric part of the gradient of the
vector field, is given by

∇ν vμ = 1

2
(∇ν vμ + ∇ν vμ) − 1

3
(∇λ vλ) δμν. (7.33)

Vector fields with ∇ · v 	= 0, examples (ii) and (iii), have field lines with sources
and sinks. Fields with ∇ · v = 0, all other cases above, are called source free vector
fields. Vector fields with∇ ×v = 0, examples (i)–(v), are called vortex-free. Vectors
of this kind can be derived from a scalar potential field. Frequently, vector fields are
classified according to whether their divergence and their rotation are zero or not
equal to zero, more details later.

The divergence, the rotation and ∇v can be calculated for the special vector
fields treated above in Sect. 7.2.1. The cases (i)–(iii) and (vii) are considered next,
the calculations for the vector fields (iv)–(vi) are transferred to the following exercise.

Divergence, Rotation and Symmetric Traceless Part of the Gradient Tensor for
the vector fields (i)–(iii) and (vii) of Sect. 7.2.1:

(i) Homogeneous Field

vμ = eμ = const.

Obviously, one finds ∇νvμ = 0, consequently ∇ · v = 0, ∇ × v = 0, and ∇v = 0.

(ii) Linearly Increasing Field

vμ = eμ eκrκ = x eμ.

Due to ∇νrκ = δνκ one obtains here, ∇νvμ = eμeν , and consequently

∇ · v = 1, ∇ × v = 0, ∇νvμ = eνeμ .

(iii) Radial and Cylindrical Fields

vμ = rμ.
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For the three-dimensional radial field, one finds

∇ · v = 3, ∇ × v = 0, ∇νvμ = 0.

The 2D version of a radial vector field is

vμ = r⊥
μ = rμ − eμ eνrν,

with the unit vector e, perpendicular to the plane, in which the radial vector lies. Here
one obtains

∇ · v = 2, ∇ × v = 0, ∇νvμ = − eνeμ .

(vii) Simple Shear Flow

vμ = eμ uνrν,

where e and u are two orthogonal unit vectors, e · u = 0. In this case, one finds
∇νvμ = uνeμ, and

∇ · v = 0, (∇ × v)λ = ελνμuν eμ, ∇νvμ = uνeμ .

The calculations here and in the following exercise show: the symmetric traceless

part ∇v is zero for the flow fields (i), the 3D radial field of (iii) and for (vi). The

tensor ∇v is uniaxial for the examples (ii), the 2D radial field of (iii), and for (iv),
it is planar biaxial for (v) and (vii).

7.1 Exercise: Compute the Spatial Derivatives of Special Vector Fields
Compute the divergence ∇ · v, the curl or rotation ∇ × v and the symmetric traceless

part ∇νvμ of the gradient tensor ∇νvμ for the vector fields (iv)–(vi) of Sect. 7.2.1.

7.3 Special Types of Vector Fields

7.3.1 Vorticity Free Vector Fields, Scalar Potential

Let v be a vector field, which can be represented as the gradient of a scalar potential:
v = ∇Φ(r), then the rotation ∇ × v of the vector is zero, thus

vλ = ∇λΦ ⇒ (∇ × v)μ = εμνλ∇νvλ = εμνλ∇ν∇λΦ = 0. (7.34)

Of course, it is assumed, that the scalar function Φ can be differentiated twice and
that ∇ν∇λΦ = ∇λ∇νΦ.
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The arguments just presented here, can be reverted.When∇×v = 0 holds true for
a vector field v, then it can be derived from a scalar potential Φ, such that v = ∇Φ.
The condition of a vanishing curl or rotation of the vector field is equivalent to the
integrability condition ∇μvν = ∇νvμ or

∂vν

∂rμ

= ∂vμ

∂rν

. (7.35)

When the integrability condition holds true for a vector field, it does posses an
“integral”, viz.: a scalar potential function. Since nabla applied to a constant yields
zero, the potential is only determined by its gradient up to an additive constant.

7.3.2 Poisson Equation, Laplace Operator

Let the divergence ∇ · v of the vector field be equal to a given “density” function
ρ = ρ(r)

∇νvν = ρ(r). (7.36)

The function ρ(r) is the “source” for the vector field. When v = ∇Φ holds true,
(7.36) implies, that the potential Φ obeys the Poisson equation

∇ν∇νΦ := ΔΦ = ρ(r). (7.37)

The symbol Δ stands for the Laplace operator. This second spatial derivative is
defined by

Δ := ∇ν∇ν = ∂2

∂rν∂rν

. (7.38)

By definition, the Laplace operator is a scalar, i.e. invariant under a rotation of the
coordinate system.

7.3.3 Divergence Free Vector Fields, Vector Potential

A vector field v is called divergence-free or source-free when ∇ · v = 0, or equiva-
lently,

∇μvμ = 0

holds true. Such a field can be derived from a vector potential A according to

vμ = (∇ × A)μ = εμνλ∇ν Aλ. (7.39)
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Clearly, due to ∇μvμ = εμνλ∇μ∇ν Aλ = 0, the divergence of a vector field given by
(7.39) vanishes, when the symmetry ∇μ∇ν = ∇ν∇μ applies for the second spatial
derivatives of the vector potential A.

The vector potential A is not unique, in the sense that also the vector potential
A′ = A+∇ϕ(r), with a scalar function ϕ(r), used (7.39), yields the same vector field
v. The reason is that∇×∇ϕ(r) = 0. The freedom for the choice of a vector potential
is by far greater than that of a scalar potential, which is determined except for an
additive constant. In some applications, a source-free vector potential is required,
i.e. the extra condition ∇ · A = 0 is imposed.

Some Examples for Vector Potentials

(i) Homogeneous Vector Field

Ahomogeneous vector field v = const. is obtained as the rotation of a vector potential
A, which should be linear in the position vector r. Furthermore, A must contain the
information on the constant v. A plausible ansatz is A = cv × r, with a coefficient
c, which has to be determined. To this purpose, one computes, with the help of the
properties of the epsilon-tensor, cf. Sect. 4.1.2,

vμ = (∇ × A)μ = εμνλ ∇ν c ελστ vσ rτ = c εμνλελστ δντ vσ

= c εμνλελσνvσ = c 2 δμσ vσ = 2 c vμ

and consequently, c = 1/2. Thus the constant vector field v is represented as the
rotation of the vector potential

Aμ = 1

2
εμνλ vνrλ. (7.40)

Notice that the constant vector field can be derived both from a scalar potential and
from a vector potential. A scalar potential does not exist for the next example.

(ii) Solid-like Rotational Flow

The solid-like rotational flow is described by the vector field

vμ = εμνλwνrλ,

with the constant angular velocity w. The pertaining vector potential must be linear
in w and of second order in r. A guess is Aλ = c1r2wλ + c2rλrκwκ , with two
coefficients c1 and c2, which have to be determined such that εμνλ∇ν Aλ = vμ. The
direct computation gives

εμνλ∇ν Aλ = εμνλ(2 c1 rν + c2 δνλrκwκ + c2 rλδνκwκ) = (−2 c1 + c2) εμνλwνrλ.

http://dx.doi.org/10.1007/978-3-319-12787-3_4
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Thus the yet undetermined coefficients must obey the relation c2 −2c1 = 1. Clearly,
there is no unique solution. With c1 as open parameter, the vector potential can be
written as

Aλ = c1 (r2 wλ + 2 rλrκwκ) + rλrκwκ .

The first term, multiplied by c1, is the gradient ∇λϕ(r) of the scalar function ϕ(r) =
r2wκrκ . Since ∇ ×∇ϕ(r) = 0, the term proportional to c1 does not contribute in the
calculation of v via v = ∇ × A. Thus one may chose c1 = 0, or c1 = −1/2. In the
latter case, one has

Aμ = −1

2
r2 wμ. (7.41)

When one requires that the divergence of the vector potential vanishes, i.e. that
∇μ Aμ = 0 holds true, the coefficients c1 and c2 are determined uniquely: c1 = −2/5
and c2 = 1/5. Then the vector potential reads

Aμ = −2

5
r2 wμ + 1

5
rμrκwκ . (7.42)

Application in Electrodynamics

One of the Maxwell equations of electrodynamics is ∇μ Bμ = 0. Thus the magnetic
flux density B, in general, can be represented by a vector potential according to
Bμ = εμνλ∇ν Aλ. For the special case of a constant B-field, Aλ = (1/2)ελστ Bσ rτ

is the pertaining vector potential.

7.3.4 Vorticity Free and Divergence Free Vector Fields,
Laplace Fields

When a vector field v is vorticity free, ∇ × v = 0, there exists a potential function
Φ. When furthermore, the vector field is divergence free, or “source free”,∇ ·v = 0,
the potential obeys the Laplace equation

∇ · ∇ Φ ≡ ∇ν∇νΦ = ΔΦ = 0. (7.43)

Scalar fields of this kind are called Laplace fields.
For the examples of vector fields with potentials, listed in Sect. 7.2.1, one finds

ΔΦ = 0 for the cases (i), (iv) and (v), pertaining to the homogeneous field, the
uniaxial and planar biaxial squeeze-stretch fields. The Laplace operator applied on
Φ yields nonzero constant values for the cases (ii) and (iii).
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Application in Electrostatics

For static electric fields E, the curl vanishes: ∇ × E = 0. The E-field is the negative
gradient of electrostatic potential φ(r), which obeys the Laplace equation:

Eμ = −∇μ φ ⇒ Δφ = 0. (7.44)

Usually, in applications to specific problems, the electrostatic potential has to obey
certain boundary conditions, e.g. φ must be constant on an electrically conducting
(metal) surface.

7.3.5 Conventional Classification of Vector Fields

Based on the previous discussions, vector fields can be classified, as shown in the
Table7.1.

This conventional classification scheme does not include the information on the
symmetric traceless part ∇v of the gradient of the vector field. There are, however,

many applications in physics, where ∇v matters. Examples shall be presented later.

7.3.6 Second Spatial Derivatives of Spherically Symmetric
Scalar Fields

From the examples presented in Sect. 7.2.2, on might assume, that ∇v is nonzero
only when the pertaining potential function involves special directions, e.g. specified
by constant unit vectors in the examples (ii), the 2D version of (iii), in (iv) and (v).
However, also the general spherical potential, which depends on the position vector r

only via its magnitude r = √
rκrκ , leads to non-vanishing values for ∇v . Of course,

as discussed before, the antisymmetric part of ∇v, associated with the vorticity, is
zero when a scalar potential exists.

Table 7.1 The conventional classification of vector fields

∇ × v = 0 ∇ × v 	= 0

∇ · v = 0 vorticity and source free source free vorticity field

Laplace field with vector potential A
v = ∇Φ, ΔΦ = 0 v = ∇ × A

∇ · v 	= 0 vorticity free Poisson field general vector field

with source density ρ

v = ∇Φ, ΔΦ = ρ v = ∇Φ + ∇ × A
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Let vμ be given by vμ = ∇μΦ, with Φ = Φ(r). Then

vμ = dΦ

dr
∇μr = dΦ

dr
r−1 rμ = r−1Φ ′ rμ,

cf. (7.13). The prime indicates the derivative with respect to r . Nabla applied to the
vector field yields

∇νvμ = ∇ν∇μΦ(r) = rμ∇ν(r
−1Φ ′)+r−1Φ ′ δμν = r−1(r−1Φ ′)′ rνrμ+r−1Φ ′ δμν.

(7.45)
The special case Φ = (1/2)r2, treated previously, yields ∇ν∇μΦ = δμν , and con-

sequently, ∇νvμ = 0. On the other hand, for Φ = r−1, one finds

∇ν∇μr−1 = 3 r−5 rνrμ − r−3 δμν = 3 r−3 r̂μr̂ν , (7.46)

with the unit vector r̂ = r−1r. In this case,∇v is “automatically” symmetric traceless.
In general, ∇νvμ = ∇ν∇μΦ(r) has an isotropic part, proportional to δμν and a

symmetric traceless part, proportional to r̂μr̂ν . Relation (7.45) implies

∇νvμ = ∇ν∇μ Φ(r) = r(r−1Φ ′)′ r̂μr̂ν . (7.47)

On the other hand, setting μ = ν in (7.45), one finds

∇μ∇μΦ(r) = ΔΦ(r) = r(r−1Φ ′)′ + 3 r−1Φ ′ = Φ ′′ + 2 r−1Φ ′, (7.48)

for the Laplace operator applied to a function, which depends on r via r = |r| only.

7.4 Tensor Fields

7.4.1 Graphical Representations of Symmetric Second Rank
Tensor Fields

Examples for second rank tensor fields are the pressure or the stress tensor, as well
as the alignment tensor of molecular fluids or liquid crystals, which describes the
the orientation of molecules or of non-spherical particles. Sometimes, it is desirable
to have a graphical representation of such a tensor field. In the case of a tensor
with uniaxial symmetry, this can be accomplished by displaying the direction of the
principal axis of the tensor, which is associated with the tensor’s symmetry axis, i.e.
with its largest or its smallest principal value. Such a representation then looks like
that of a vector field, but here the directions are indicated by lineswithout arrowheads.
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Fig. 7.7 Uniaxial tensor
fields for the director in a
nematic liquid crystal

Fig. 7.8 Bricks indicating
the alignment tensor of a
nematic liquid crystal

Examples are shown in Fig. 7.7, adapted from [23]. The ‘defect’ structure in the lower
left corner of the right figure is typical for a nematic substance, cf. Chap.15.

In the general biaxial case, ellipsoids associated the tensor, as discussed in
Sect. 5.4, could be used to to visualize a second rank tensor field. However, “bricks”
with their sides proportional to the principal semi-axes can more easily convey the
information about the different principal values of the tensor at different space points.
As an example, the alignment tensor in the vicinity of a “defect” in a nematic liquid
crystal is shown in Fig. 7.8, adapted from [24, 83].

7.4.2 Spatial Derivatives of Tensor Fields

Let Tμν(r) be a tensor field. Application of the nabla operator ∇λ yields the third
rank tensor∇λTμν . By analogy to (7.31), the tensor of rank three can be decomposed
into parts associated with a vector, with a second rank tensor, and with the pertaining
irreducible symmetric traceless third rank tensor. The first one of these parts involves
the tensor divergence

∇λ Tλν,

which is a vector. Notice that this expression has to be distinguished from ∇λTνλ,
when one has Tμν 	= Tνμ.

An application of the tensor divergence used for the pressure tensor, occurs in the
local conservation equation for the linear momentum.

http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_5
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7.4.3 Local Mass and Momentum Conservation,
Pressure Tensor

Let ρ = ρ(r) and v = v(r) be the mass density and the local velocity field of a fluid.
The conservation of mass implies the continuity equation

∂ρ

∂t
+ ∇ν(ρ vν) = 0. (7.49)

With the help of the substantial time derivative

d

dt
:= ∂

∂t
+ vν∇ν, (7.50)

the continuity equation is equivalent to

dρ

dt
+ ρ ∇νvν = 0. (7.51)

The local conservation equation for the linearmomentum density ρvμ, in the absence
of external forces, can be cast into the form

ρ
dvμ

dt
+ ∇ν pνμ = 0. (7.52)

Here pνμ is the pressure tensor. It characterizes the transport of momentum, which is
not of convective type. The convective transport is described by the term ρvν∇νvμ,
which occurs in connectionwith the substantial derivative. The gradient∇ν pνμ = kμ

describes an internal force density.
In thermal equilibrium, the pressure tensor of a fluid reduces to the isotropic

tensor Pδμν , where P is the hydrostatic pressure. In general, the pressure tensor can
be decomposed into its isotropic, its symmetric traceless and its antisymmetric parts,
cf. Chap. 6. Thus

pνμ = (P + p̃) δμν + pνμ + 1

2
ενμλ pλ. (7.53)

In thermal equilibrium, the part p̃ of the scalar pressure is zero, just as pνμ and the
axial vector pλ = ελαβ pαβ which is associated with the antisymmetric part of the
pressure tensor.

The time change of the orbital angular momentum �λ = ελκμrκvμ can be inferred
from the momentum conservation equation. More specifically, multiplication of
(7.52) by ελκμrκ and use of rκ∇ν pνμ = ∇ν(rκ pνμ) − pνμ∇νrκ leads to

ρ
d�λ

dt
+ ελκμ∇ν(rκ pνμ) = ελνμ pνμ. (7.54)

http://dx.doi.org/10.1007/978-3-319-12787-3_6
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A fluid composed of particles with an internal rotational degree of freedom, in gen-
eral, also possesses an internal angular momentum or spin density. The balance
equation for this quantity contains the axial vector pλ = ελνμ pνμ in such a way, that
it cancels in the sum of the equations of change for the orbital and the internal angular
momenta. This is due to the conservation of the total angular momentum. As a con-
sequence, the antisymmetric part of the pressure tensor is identical to zero for fluids
composed of particles which have no rotational degree of freedom, like gaseous or
liquid Argon. In the hydrodynamic description of flow processes in molecular fluids,
and this includes water, the antisymmetric part of the pressure tensor relaxes to zero
on a time scale fast compared with typical hydrodynamical time changes, such that
the pressure tensor can be treated as being symmetric. Then constitutive laws are
needed for p̃ and pνμ only. In hydrodynamics, the relations

p̃ = −ηV ∇λvλ, pνμ = −2 η ∇νvμ , (7.55)

are used. The non-negative coefficients η and ηV are the shear viscosity and the
volume viscosity, respectively. A justification of these constitutive laws and gener-
alizations thereof are treated in Sects. 16.3, 16.4, 17.3, and 17.4. Insertion of (7.55)
into the momentum balance yields a closed equation for the flow velocity v. For
ηV = 0, this corresponds to the Navier-Stokes equations.

7.5 Maxwell Equations in Differential Form

7.5.1 Four-Field Formulation

The full Maxwell equations, in differential form, and in the conventional four-field
formulation, are

∇μ Dμ = ρ, εμνλ ∇ν Hλ = jμ + ∂

∂t
Dμ, (7.56)

and

εμνλ ∇ν Eλ = − ∂

∂t
Bμ, ∇μ Bμ = 0. (7.57)

The first pair of equations, referred to as the inhomogeneous Maxwell equations,
involve the density ρ of electric charges and the electric current density j. The second
pair are the homogeneous Maxwell equations. Here E is the electric field, D is the
electric displacement field. Frequently, both H and the magnetic induction B are
calledmagnetic field. For charges and currents in vacuum, one hasD = ε0E andB =
μ0H, where ε0 andμ0 are the dielectric permeability and the magnetic susceptibility
of the vacuum. When all charges and currents are represented by ρ and j, the two
fields E and B would suffice for electrodynamics, and one could use ε0 = 1,μ0 = 1,

http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_17
http://dx.doi.org/10.1007/978-3-319-12787-3_17
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as in the Gaussian cgs-system of physical units. Such a description is inconvenient
for electrodynamics applied to macroscopic matter. There, ρ and j stand for the
density of free charges and free currents, whereas bound charges, internal currents
and magnetic moments associated with the spin of particles are incorporated into
the electric polarization P and the magnetization M, respectively. These quantities
occur in the relations

Dμ = ε0 Eμ + Pμ, Bμ = μ0 (Hμ + Mμ). (7.58)

Vacuum corresponds to P = 0 and M = 0. In matter, constitutive relations are
needed for P and M in order to obtain a closed set of equations. These constitutive
relations are specific for the materials considered.
Remarks on Parity and Time Reversal The E- and D-fields are polar vectors, B and
H are axial vectors. Since ρ is a true scalar, and ∇ as well as j are polar vectors, the
Maxwell equations (7.56) and (7.57) conserve parity. The constitutive relations for P
and M, however, have to obey certain restrictions, when parity conservation should
not be violated.

Furthermore, ρ and the fields E, as well as D, do not change sign under the time
reversal operation, whereas j and the fields B, as well as H, do change sign. Thus the
Maxwell equations (7.56) and (7.57) are invariant under time reversal. Time reversal
invariance, however, can be broken by constitutive relations. An example is Ohm’s
law, in differential form, j = σE. The non-negative coefficient σ is the electrical
conductivity.

Parity (P) and time reversal (T) invariance hold true for charges, currents and fields
in vacuum, where the relations D = ε0E and B = μ0H apply. Parity conservation
implies: when

E(t, r), D(t, r), B(t, r), H(t, r)

are solutions of the Maxwell equations for given charge density and current density

ρ(t, r), j(t, r),

then

−E(t,−r),−D(t,−r), B(t,−r), H(t,−r)

are solutions for given
ρ(t,−r), −j(t,−r).

Similarly, from T-invariance follows:

E(−t, r), D(−t, r),−B(−t, r),−H(−t, r)
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are solutions for

ρ(−t, r), −j(−t, r).

As a consequence of the combined PT-invariance

−E(−t,−r),−D(−t,−r),−B(−t,−r),−H(−t,−r)

are solutions for

ρ(−t,−r), j(−t,−r).

7.5.2 Special Cases

Application of ∇μ to the second equation of (7.56) and use of the first of these
equations and of ∇μεμνλ∇ν Hλ = 0 yields the continuity equation for the time
change of the charge density:

∂

∂t
ρ + ∇μ jμ = 0. (7.59)

Without Maxwell’s current density ∂
∂t Dμ in the second inhomogeneous equation of

(7.56), one would just have ∇μ jμ = 0, which is true for stationary processes, but
not in general. More important, the existence of electromagnetic waves hinges on
the term ∂

∂t Dμ in (7.56), see the next section.
Special cases, for a stationary situation, where the time derivatives vanish in

the Maxwell equations, are the equations of electrostatics, magnetostatics, and the
equations determining the magnetic field caused a steady current. For electrostatics,
one has

∇μ Dμ = ρ, εμνλ ∇ν Eλ = 0.

The first of these equations is referred to as the Gauss law.
The equations for magnetostatics, applicable to fields of permanent magnets, are

mathematically equivalent to those of electrostatics with D and E replaced by B and
H, respectively, and ρ = 0, because there are no magnetic monopoles and conse-
quently there is no magnetic charge density. In the equations ruling electrostatics and
magnetostatics, there is no coupling between electric and magnetic fields, unless the
constitutive relations for the electric polarization and the magnetization contain such
terms.

The equations for the magnetic field caused by a stationary electric current are
associatedwith the namesOersted andAmpère, who discovered and studied an effect
which reveals a coupling between electric and magnetic phenomena. The relevant
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equations, the first one of which is referred to as Oersted law, are

εμνλ ∇ν Hλ = jμ, ∇μ Bμ = 0.

Applications of the stationary equations are given in Sects. 8.2.7 and 8.3.5.
The first of the homogeneous Maxwell equations (7.57), viz.

εμνλ ∇ν Eλ = − ∂

∂t
Bμ,

is referred to as Faraday law. It underlies the coupling between electric andmagnetic
fields discoveredbyFaraday: a time-dependentB-field induces an electric fieldE. For
the application of this differential equation to the Faraday induction see Sect. 8.2.8.

7.5.3 Electromagnetic Waves in Vacuum

In vacuum, where D = ε0E and B = μ0H, and for ρ = 0, jμ = 0, application of
εαβμ∇β on the first equation of (7.57), use of (4.10) for the double cross product,
and of ∇ν Eν = 0, yields −ΔEα = −μ0

∂
∂t εαβμ Hμ. The second equation of (7.56)

links the curl of the H field with the time derivative of ε0E. This then leads to the
wave equation

� E ≡ ΔE − 1

c2
∂2

∂t2
E = 0, (7.60)

with the speed of light, in vacuum, determined by

c2 = (ε0 μ0)
−1. (7.61)

The magnetic field H obeys the same type of wave equation. The symbol

� ≡ Δ − 1

c2
∂2

∂t2
(7.62)

is the d’Alembert operator. A solution of (7.60) is

Eμ = E (0)
μ f (ξ), ξ = ̂kν rν − c t, (7.63)

where E (0)
μ is a constant vector characterizing the polarization of the field, ̂kν is a

unit vector parallel to the wave vector, pointing in the direction of propagation of
the radiation, and f is any function which can be differentiated twice. Notice that
̂kν E (0)

ν = 0, i.e. the electromagnetic radiation, in vacuum, is a transverse wave.

http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_4
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The plane wave is a special case of (7.63). In complex notation, this solution of
the wave equation reads

Eμ = E (0)
μ exp[i kν rν − i ω t]. (7.64)

The wave vector kν and the circular frequencyω are linked by the dispersion relation
kνkν = ω2/c2 or

ω = k c, (7.65)

where k is the magnitude of the wave vector.

7.2 Exercise: Test Solutions of the Wave Equation
Proof that both the ansatz (7.63) and the plane wave (7.64) obey the wave equation.
Furthermore, show that the E-field is perpendicular to the wave vector, and that the
B-field is perpendicular to both.

7.5.4 Scalar and Vector Potentials

The electric fieldE and theB-field can be expressed as derivatives of the electroscalar
potential φ and a magnetic vector potential A according to

Eμ = −∇μφ − ∂

∂t
Aμ, Bμ = εμνλ∇ν Aλ. (7.66)

With the ansatz (7.66), the homogeneous Maxwell equations (7.57) are fulfilled
automatically.

The electromagnetic potential functions, however, are not unique. More specifi-
cally, the same fields E and B follow from (7.66), when φ and A are replaced by

φ′ = φ − ∂

∂t
f, A′

λ = Aλ + ∇λ f,

where f = f (t, r) is a scalar function. This allows, e.g. to require φ = 0 or
∇ν Aν = 0.

For charges and currents in vacuum, where D = ε0E and B = μ0H, insertion of
(7.66) into the inhomogeneous Maxwell equations (7.56) and use of the scaling

∂

∂t
φ + ∇λ Aλ = 0, (7.67)

leads to

� Aν = ΔAν − 1

c2
∂2

∂t2
Aν = μ0 jν, �φ = Δφ − 1

c2
∂2

∂t2
φ = 1

ε0
ρ. (7.68)
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The current density and the charge density are the sources for the vector potential
and the scalar potential. Electromagnetic radiation is caused by accelerated charges,
then the time derivatives in (7.68) are essential. For a stationary situation, on the
other hand, the time derivatives vanish and the second of these equations reduces
to the Poisson equation, cf. Sect. 7.3.2. The first of the equations (7.68), linking the
vector potential with the current density is mathematically equivalent to the Poisson
equation, when a stationary situation is considered. It determines the magnetic field
generated by a steady current, as formulated in the Biot-Savart relation.

7.5.5 Magnetic Field Tensors

In 3D, there exists a dual relation between an antisymmetric second rank tensor and
a vector, cf. Sects. 3.3 and 4.1.3. This allows to replace the magnetic field vectors B
and H by antisymmetric tensors. To see what this means, consider the homogeneous
Maxwell equation ελστ∇σ Eτ = − ∂

∂t Bλ. Multiplication of this equation by εμνλ and
use of εμνλελστ = δμσ δντ − δμτ δνσ yields

∇μEν − ∇ν Eμ = − ∂

∂t
εμνλ Bλ.

Both sides of this equation, which is equivalent to the first of the Maxwell equations
(7.57), are antisymmetric tensors. The right hand side can be expressed in terms of
the magnetic field tensor Bμν , which is related to the vector field Bλ, by

Bμν ≡ εμνλ Bλ. (7.69)

In matrix notation, this relation is equivalent to

Bμν :=
⎛

⎝

0 B3 −B2
−B3 0 B1
B2 −B1 0

⎞

⎠ . (7.70)

The reciprocal relation between the vector and the antisymmetric tensor is

Bλ = 1

2
ελμν Bμν. (7.71)

The field tensor is linked with the vector potential A via

Bμν = ∇μ Aν − ∇ν Aμ. (7.72)

The Lorentz Force F, viz.

Fμ = e Eμ + e εμλν Bλvν,

http://dx.doi.org/10.1007/978-3-319-12787-3_3
http://dx.doi.org/10.1007/978-3-319-12787-3_4
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acting on a particle with charge e, moving with velocity v, in the presence of an
electric field E and a magnetic field B, cf. Sect. 3.4.6, is equivalent to

Fμ = e Eμ + e vν Bνμ. (7.73)

The antisymmetric field tensor Hμν pertaining to the magnetic field H is defined by
analogy to (7.69). Using the magnetic field tensors, the Maxwell equations read

∇μ Dμ = ρ, −∇ν Hνμ = jμ + ∂

∂t
Dμ, (7.74)

and

∇μEν − ∇ν Eμ = − ∂

∂t
Bμν, ∇1B23 + ∇2B31 + ∇3B12 = 0. (7.75)

Notice that the last equation stems from

ελμν∇λ Bμν = 0,

and Bνμ = −Bμν was used.
Why should one bother to look at the alternative version of theMaxwell equations,

rather than stick to the vector equations (7.56) and (7.57)? There are two answers to
this question.

First, in the 4D formulation of electrodynamics, which reflects the Lorentz invari-
ance of the Maxwell equations, the 3 × 3 field tensor (7.70) is enlarged to a the
4×4 field tensor, which also comprises the 3 components of the electric field. In 4D,
an antisymmetric second rank tensor has 6 independent components, just like the
two vectors B and E combined. The 3D tensorial notation of the Maxwell equations
makes it easier to see their connection with the 4D version, discussed in Chap.18.
Notice, the non-euklidian metric of special relativity is used for that 4D-space.

A second, more mathematical reason is: the first three of the equations (7.74) and
(7.75) can be adapted to any D-dimensional space with Euklidian metric, and D ≥ 2.
Thus it is possible to answer the question: do electromagnetic waves exist for 2D?

7.3 Exercise: Electromagnetic Waves in Flatland?
In flatland, one has just 2 dimensions. Cartesian components are denoted by Latin
letters i, j, . . .; i = 1, 2; j = 1, 2. The summation convention is used. In vacuum,
and for zero charges and currents, the adapted Maxwell equations are

∇iEi = 0, −∇iHij = ε0
∂

∂t
Ej, ∇iEj − ∇jEi = −μ0

∂

∂t
Hij.

Derive awave equation for the electric field to proof that one can have electromagnetic
waves in 2D. How about 1D?

http://dx.doi.org/10.1007/978-3-319-12787-3_3
http://dx.doi.org/10.1007/978-3-319-12787-3_18
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7.6 Rules for Nabla and Laplace Operators

7.6.1 Nabla

The application of the nabla operator∇μ to a field, which is a tensor of rank �, yields
a tensor of rank �+ 1. The appropriate decomposition shall be discussed latter. Here
the obvious product and chain rules are listed, which have already been used above.

Let f and g be components of tensors, which depend on r. Then one has

∇μ( f g) = g ∇μ f + f ∇μ g. (7.76)

Now, let f be the component of a tensor, which is a function of the scalar g, which
in turn, depends on r. Then the chain rule applies:

∇μ( f (g)) = ∂ f

∂g
∇μ g. (7.77)

The position vector r is equal to the product of its magnitude r and of the unit vector
r̂, viz.: rμ = rr̂μ, with r̂μ = r−1rμ. In some applications, it may be convenient and
useful to decompose the spatial derivative into differentiations with respect to r and
with respect to r̂μ. This is accomplished by observing

∇μ ≡ ∂

∂rμ

= ∂r

∂rμ

∂

∂r
+ ∂ r̂ν

∂rμ

∂

∂ r̂ν

.

Due to

∂r

∂rμ

= r̂μ,
∂ r̂ν

∂rμ

= r−1 (δμν − r̂μr̂ν),

the radial and the angular parts of the spatial derivative are

∇μ = r̂μ

∂

∂r
+ r−1 (δμν − r̂μr̂ν)

∂

∂ r̂ν

. (7.78)

Multiplication of (7.78) by rμ leads to

rμ ∇μ = r
∂

∂r
. (7.79)

With the help of the anti-hermitian operator

Lμ = εμνλ rν ∇λ = εμνλ r̂ν

∂

∂ r̂λ

, (7.80)
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the equation (7.78) can be written as

∇μ = r̂μ

∂

∂r
− r−1 εμνλ r̂ν Lλ. (7.81)

Notice: the differential operator L = r × ∇ only acts on the angular part of a
function depending on the vector r. In particular, one has L f (r) = 0 when f is
only a function of r = |r|.

The Cartesian components of the differential operator do not commute. More
specifically, one finds the commutation relation

Lμ Lν − Lν Lμ = −εμνλ Lλ, (7.82)

or equivalently,

ελμν Lμ Lν = Lλ. (7.83)

The differential operator L is closely related to the quantum mechanical angular
momentum operator, cf. Sect. 7.6.2.

7.4 Exercise: Radial and Angular Parts of the Nabla Operator, Compare
Equation (7.81) with (7.78)

7.5 Exercise: Prove the Relations (7.82) and (7.83) for the Angular Nabla
Operator

Hint: use (4.10) and observe that the names of summation indices can be changed
conveniently, as long as none appears more than twice.

7.6.2 Application: Orbital Angular Momentum Operator

The quantummechanical angular momentum operator Lop, in spatial representation,
is given by

Lop
μ = �

i
Lμ = �

i
εμνλ rν ∇λ. (7.84)

Here � is the Planck constant h, divided by 2π , and i is the imaginary unit, with the
property i2 = −1. The expression (7.84) follows the definition r × p for the orbital
angular momentum, cf. Sect. 3.4.1, when the linear momentum p is replaced by the
operator

pop = �

i
∇, (7.85)

in spatial representation.

http://dx.doi.org/10.1007/978-3-319-12787-3_4
http://dx.doi.org/10.1007/978-3-319-12787-3_3
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Side Remark:
Where Does the Expression for the Linear Momentum Operator Come From?

A plane waveψ with the wave vector k and the (circular) frequencyω is proportional
to exp(ik · r − iωt). Application of the nabla operator yields ∇ψ = ikψ , which is
just a mathematical identity. By analogy to the Einstein relation E = �ω between
the energy E and the frequency, de Broglie suggested that the linear momentum p of
a particle should be associated with a wave vector according to p = �k. Schrödinger
took up this idea and invented wave mechanics. Later it became clear that the wave
functionψ is a probability amplitude, its absolute square characterizes the probability
to find a particle in a volume element at a specific position r. For a free particle
with linear momentum p, the ψ-function is proportional to exp(ip · r/�), hence
∇ψ = i

�
pψ . This corresponds to (7.85). The expression for the linear momentum

operator derived for the special case of a plane wave holds true in general, in spatial
representation.

Dimensionless Angular Momentum Operator

It is convenient to introduce angular momentum operators in units of � and to denote
them by the same symbol L as the usual angular momentum, as long as no danger
of confusion exists. Then one has

Lμ = 1

i
Lμ = −i εμνλ rν ∇λ. (7.86)

Thanks to the imaginary unit i which is introduced in the definitions (7.84) and (7.86),
the angular momentum operator is a hermitian operator with real eigenvalues.

The commutation relations (7.82) for the components of the differential operator
L now lead to the angular momentum commutation relations

Lμ Lν − Lν Lμ = i εμνλ Lλ. (7.87)

Similarly, relation (7.83) implies

ελμν Lμ Lν = i Lλ. (7.88)

The commutation relations for the orbital angular momentum hold true in general,
not only in the space representation which was used here to derive them.

Notice that (7.88) is equivalent to

L × L = i L. (7.89)

This reflects the fact that the components of the quantummechanical angularmomen-
tum do not commute, in contradistinction to the components of the classical angular
momentum for which the corresponding cross product vanishes.
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7.6.3 Radial and Angular Parts of the Laplace Operator

The Laplace operator can be decomposed into a radial and angular parts, by analogy
to the decomposition (7.81) of the nabla operator. With the help of the angular
differential operator L , one has

Δ = Δr + r−2LμLμ. (7.90)

The radial part Δr is given by

Δr = r−2 ∂

∂r

(

r2
∂

∂r

)

= r−1 ∂2

∂r2
r = ∂2

∂r2
+ 2 r−1 ∂

∂r
. (7.91)

To prove the relation (7.90) with (7.91), one can compute LμLμ, starting from the
definition (7.80). One finds

LμLμ = εμνλ εμαβ rν ∇λ rα ∇β = εμνλ εμαβ (rν rα ∇λ ∇β + rν δλα ∇β).

Nowuse of εμνλεμαβ = δναδλβ−δνβδλα , cf. Sect. 4.1.2, leads toLμLμ = r2∇λ∇λ−
r2 ∂2

∂r2
+ r ∂

∂r − 3r ∂
∂r . Thus one obtains

LμLμ = r2
(

Δ − ∂2

∂r2
− 2 r−1 ∂

∂r

)

.

For r > 0, this relation is equivalent to (7.90).
Notice that Δr−1 = 0, for r 	= 0. This result applies just for 3D, the three-

dimensional space we live in. In D dimensions one has Δr (2−D) = 0, see the next
exercise.

7.6 Exercise: Determine the Radial Part of the Laplace Operator in
D Dimensions, Prove Δr (2−D) = 0

Hint: Compute ∇μ∇μ f = ∇μ(∇μ f ), where the function f = f (r) has no angular
dependence, and use ∇μrμ = D.

Furthermore, make the ansatz f = rn and determine for which exponent n the
equation Δrn = 0 holds true.

7.6.4 Application: Kinetic Energy Operator
in Wave Mechanics

The kinetic energy of a particle with mass m and with linear momentum p is
p · p/(2m). In Schrödinger’s wave mechanics, in spatial representation, the linear

http://dx.doi.org/10.1007/978-3-319-12787-3_4
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momentum corresponds to the operator pop = �

i ∇, cf. (7.85). Hence the Hamilton
operator for the kinetic energy of a single particle is

Hop
kin = − �

2

2m
∇μ∇μ = − �

2

2m
Δ. (7.92)

In accord with the decomposition (7.90) of the Laplace operator into a radial part and
an azimuthal or angular part involving the L operator, the kinetic energy operator
is the sum a radial part and a part containing the dimensionless angular momentum
operator L, as defined in (7.86). Thus one has

Hop
kin = − �

2

2m
Δr + �

2

2m
r−2 LμLμ. (7.93)

For the radial part Δr of the Laplace operator see (7.91).



Chapter 8
Integration of Fields

Abstract The integration of fields is treated in this chapter. Firstly, line integrals are
considered and the computation of potential functions from vector fields is discussed.
Secondly, surface integrals are introduced and the generalized Stokes law is derived.
Applications are themagnetic field around an electricwire and the Faraday induction.
Thirdly, volume integrals are treated and a generalized Gauss theorem is stated. The
moment of inertia tensor is defined and computed for some examples. Applications of
volume integrals in electrodynamics comprise the Gauss law and the Coulomb force,
the formulation of balance equations for energy, linear and angular momentum and
thedefinitionof theMaxwell stress tensor. Further applications concern the continuity
equation and the flow through a pipe, the momentum balance and the force on a solid
body, the derivation of the Archimedes principle and the computation of the torque
on a rotating solid body.

The differentiation of a field provides a local information about the changes of
a function caused by small changes of the position considered. Integrals contain
a more global information since the behavior of a function over a larger region of
space is involved. These regions can be lines, surfaces or volumes, in 3D. All three
types of integrals are needed for applications in physics. They are referred to as line
integrals, surface integrals, and volume integrals.

8.1 Line Integrals

8.1.1 Definition, Parameter Representation

Let f = f (r) be a well defined, smooth function within a region B of the 3D space.
Furthermore, let C be a continuous, piecewise smooth curve within the region B
with start point r1 and end point r2. The line integral of f (r) along the curve C is
defined by

Iμ =
∫

C
f (r)drμ. (8.1)

© Springer International Publishing Switzerland 2015
S. Hess, Tensors for Physics, Undergraduate Lecture Notes in Physics,
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Here drμ is the Cartesian component of the differential change dr along the curve
C . The line integral is also called curve integral or path integral.

When the curve is determined by a parameter representation

rμ = rμ(p), p1 < p < p2,

the line integral (8.1) can be expressed as the ordinary Riemann integral

Iμ =
∫ p2

p1
f (r(p))

drμ

dp
dp. (8.2)

The parameter values p1 and p2 correspond to the start and end points of the curve
C , i.e. r(pi) = ri, i = 1, 2.

Remark: in some applications, it may be convenient to use piecewise different
parameter representations for the curve C . A simple example is a curve depicted
in the Fig. 8.3.

The sign of a line integral changes, when the integration is performed backwards
along the curve considered. This is obvious in the parameter representation since

∫ p2

p1
. . . dp = −

∫ p1

p2
. . . dp.

Notice: the line integral is a vector, provided that f is a scalar. When the function
f is the component of a tensor of rank �, e.g. f ≡ gν1...ν�

, the resulting line integral
Iμν1...ν�

is a component of a tensor of rank � + 1. Some examples are considered in
Sect. 8.1.3.

Remark: in the literature, the term “line integral” is also used for an integral with
the scalar integration element ds where s is the arc length of the curve. In that case,
the integral is a tensor of the same rank as that of the integrand f . Such integrals are
not considered here.

8.1.2 Closed Line Integrals

The symbol
∮

is used when the line integration is performed along a closed curve C :

Iμ =
∮

C
f (r)drμ. (8.3)

This type of line integral is also called loop integral or contour integral.
Next two curves C1 and C2 are considered, which have common start and end

points, see Fig. 8.1. In general, one has
∫

C1
f (r)drμ �= ∫

C2
f (r)drμ and conse-

quently
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Fig. 8.1 Two curves C1 and
C2 starting and ending at the
same points

∫

C1

f (r)drμ −
∫

C2

f (r)drμ =
∮

C
f (r)drμ �= 0.

Here C = C1 − C2 is a closed curve.
On the other hand, when

∫

C1
f (r)drμ = ∫

C2
f (r)drμ holds true, in a special case,

for arbitrary curves C1 and C2 within the region B, then one has

∮

C
f (r)drμ = 0.

This then applies to any closed curve within B, provided that B is a simply connected
region, i.e. when there are no “holes” in B.

8.1.3 Line Integrals for Scalar and Vector Fields

(i) Scalar Fields

As mentioned before, the line integral (8.1) is a vector, when the field function f is
a scalar.

A simple example is f = 1. Then one obtains

Iμ =
∫ p2

p1
rμ(p)dp = rμ(p2) − rμ(p1),

which is the vector pointing from r1 to r2, cf. Fig. 8.2.
The line integral, for f = 1, should not be confused with the arc length s, which

is given by

s =
∫

C
|dr| =

∫ p2

p1

(

drμ

dp

drμ

dp

)1/2

dp.

The quantity s is a scalar.
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Fig. 8.2 Line integral yields
a relative position vector

(ii) Vector Fields

Now let f be the component vν of a vector field v = v(r). Then the line integral

Iμν =
∫

C
vν(r)drμ (8.4)

is a second rank tensor. In general, it can be decomposed into an isotropic part which
is proportional to its trace times the unit tensor δμν , an antisymmetric part, and a
symmetric traceless part, cf. Chap. 6.

In some applications, the trace

I ≡ Iμμ =
∫

C
vμ(r)drμ (8.5)

is needed. The scalar quantityI is referred to as the curve integral of a vector field.

8.1.4 Potential of a Vector Field

Now consider the special case where a vector field v is given by the gradient of a
scalar potential field Φ = Φ(r),

vμ = ∇μ Φ.

The scalar line integral (8.5) of such a vector field is computed according to

I =
∫

C
vμ(r)drμ =

∫ p2

p1

∂Φ

∂rμ

drμ

dp
dp =

∫ p2

p1

dΦ

dp
dp = Φ(r(p2)) − Φ(r(p1)),

(8.6)

http://dx.doi.org/10.1007/978-3-319-12787-3_6
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or

I = Φ(r2) − Φ(r1). (8.7)

For the case of a vector field obtained as a gradient of a potential, the line integral is
given by the difference of the potential between the end and the start points of the
curve, irrespective of its path in between these points. As consequence, the integral
along a closed curve vanishes:

∮

C
vμ(r)drμ = 0. (8.8)

For (8.8) to be valid, the region in which the curveC lies, has to be compact, it should
not have any holes.

8.1.5 Computation of the Potential for a Vector Field

For a vector field v which obeys the integrability condition (7.35), or equivalently
∇ × v = 0, the pertaining potential function can be computed with the help of a
line integral. A convenient integration path can be chosen, starting from an arbitrary
point r1 and ending at the variable position r. Then the path integralI is a function
of r. More specifically, one has

I = I (r) =
∫ r

r1
vμdrμ = Φ(r) − Φ(r1), (8.9)

or equivalently

Φ(r) =
∫ r

r1
vμdrμ + const. (8.10)

Obviously, the potential function Φ is only determined up to a constant const.

A Simple Example: Homogeneous Vector Field

As a simple special case the constant homogeneous vector field v = const. is
considered. Then one has

I (r) = vμ

∫ r

r1
drμ = v · (r − r1),

and consequently

Φ(r) = v · r + const.

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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Remark: in physics, forces F associated with a potential are given by the negative
gradient of the potential function. Thus the mechanical potential Φ is computed as

Φ(r) = −
∫ r

r1
Fμdrμ + const. (8.11)

8.1 Exercise: Compute Path Integrals along a Closed Curve
Consider a special closed path composed of the curve C1 with r given by

{x, 0, 0}, −ρ ≤ x ≤ ρ,

and the curve C2 with r determined by

{x, y, 0}, x = ρ cosϕ, y = ρ sin ϕ, 0 ≤ ϕ ≤ π.

The curve C1 is a straight line, C2 is a semi-circle with the constant radius ρ, cf.
Fig. 8.3. The differential dr needed for the integration is equal to dx{1, 0, 0} and
ρdϕ{− sin ϕ, cosϕ, 0} for the curves C1 and C2, respectively. Compute the loop
integral I = ∮

C vμdrμ along the closed curve defined here for the following three
vector fields:

(i) homogeneous field, where v = e = const., with e parallel to the x-axis;
(ii) radial field, where v = r;
(iii) solid-like rotation field, where v = w × r, with the constant axial vector w

parallel to the z-axis.

Hint: guess whether I = 0 or I �= 0 is expected for these vector fields, before
you begin with the explicit calculation. Denote the line integrals along the curves
C1 and C2 by I1 and I2. The desired integral I along the closed curve is the sum
I1 + I2.

Fig. 8.3 Closed curve
composed of a semi-circle
and a straight line
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8.2 Surface Integrals, Stokes

8.2.1 Parameter Representation of Surfaces

Surfaces in 3D space can e.g. be described by a relation of the form z = z(x, y),
where the components of the position vector on the surface are denoted by x, y, z.
Implicitly, the surface can also be determined by Φ = Φ(x, y, z) = const., where
Φ is a scalar function, by analogy to potentials, cf. Sect. 7.1.1. Sometimes, it is
advantageous to use a parameter presentation of the form

rμ = rμ(p, q), (8.12)

for the Cartesian components of the position vector r located on the surface, with
the two parameters p and q.

For a constant q, e.g. q = q0, the relation rμ = rμ(p, q0) describes a curve
with the curve parameter p. Likewise, for p = p0, the relation rμ = rμ(p0, q)

is a curve with the curve parameter q. Different values p = p0, p1, p2, . . . and
q = q0, q1, q2, . . . yield a (p, q)-mesh of curves on the surface, cf. Fig. 8.4.

Provided that the tangential vectors

tpμ = ∂rμ

∂p
, tqμ = ∂rμ

∂q
, (8.13)

in the p- and q-directions are not parallel to each other, the curves r = r(p, q =
const.) and r = r(p = const., q) cover the surface. Subject to this condition, a vector
normal to the surface is inferred from

ελμν tpμ tqν = ελμν

∂rμ

∂p

∂rν

∂q
�= 0. (8.14)

Fig. 8.4 Schematic view of
a surface generated by a
mesh of curves

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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8.2.2 Examples for Parameter Representations of Surfaces

(i) Plane

Let e and u be two orthogonal unit vectors. Then

r = pe + qu

represents the plane spanned by the vectors e and u. With the x- and y-axes of a
coordinate system chosen parallel to e and u, the plane is represented by x = p,
y = q, z = 0. The vector normal to the plane is parallel to the z-direction. The
(p, q)-mesh covering the plane are orthogonal straight lines parallel to the x- and
y-axes.

Alternatively, the planar polar coordinates ρ and ϕ can be used as parameters to
represent the plane. Here the position vector within the x–y-plane is expressed as
r = {ρ cosϕ, ρ sin ϕ, 0}, and consequently

∂r
∂ρ

= {cosϕ, sin ϕ, 0} = eρ,
∂r
∂ϕ

= {−ρ sin ϕ, ρ cosϕ, 0} = ρ eϕ. (8.15)

Unit vectors in ρ- and ϕ-directions are denoted by eρ and eϕ , see Fig. 8.5. These
vectors are orthogonal. The plane is covered by a mesh of straight lines starting at
the origin and concentric circles, corresponding to ϕ = const. and ρ = const.

(ii) Cylinder Mantle

For a circular cylinder with constant radius ρ, its mantle surface is described by

r = {ρ cosϕ, ρ sin ϕ, z}, (8.16)

Fig. 8.5 Planar polar
coordinates with the vectors
eρ and eϕ
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Fig. 8.6 Cylinder
coordinates with the vectors
eϕ , ez and eρ

with the two parameters ϕ and z. The tangential vectors are

∂r
∂ϕ

= {−ρ sin ϕ, ρ cosϕ, 0} = ρ eϕ,
∂r
∂z

= {0, 0, 1} = ez. (8.17)

The unit vectors eϕ and ez = eρ are orthogonal, cf. Fig. 8.6. Their cross product
eϕ × ez is parallel to the outer normal n of the cylinder mantle.

(iii) Surface of a Sphere

The surface of a sphere with constant radius R parameterized with the ansatz

r = {R cosϕ sin θ, R sin ϕ sin θ, R cos θ}. (8.18)

Here the parameters are the polar angles θ and ϕ. Now the tangential vectors are

∂r
∂ϕ

= {−R sin ϕ sin θ, R cosϕ sin θ, 0} = R sin θ eϕ, (8.19)

and

∂r
∂θ

= {R cosϕ cos θ, R sin ϕ cos θ,−R sin θ} = R eθ , (8.20)

The cross product of these tangential vectors yields

∂r
∂θ

× ∂r
∂ϕ

= R2 sin θ eθ × eϕ = R2 sin2 θ r̂ , (8.21)

with the unit vector r̂ pointing in radial direction. The mesh on the surface consists
of circles around the polar axis with radius R sin θ , for θ = const., and grand semi-
circles running from the North to the South pole, for ϕ = const.. The unit vectors
eθ , eϕ and r̂ are mutually orthogonal, see Fig. 8.7.
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Fig. 8.7 Spherical polar
coordinates with the vectors
eϕ , eθ and er

8.2.3 Surface Integrals as Integrals Over Two Parameters

Consider a finite surface A which has a rim and which is simply connected, i.e. A is
without any holes. Furthermore, the surface should everywhere have a well oriented
normal direction. A counter example is the Moebius strip.

The surface A is described by a parameter representation r = r(p, q) where the
parameters p and q vary between the values p1, p2 and q1, q2. Thus the rim of the
surface in R3 corresponds to the rim of a rectangle in the p–q-plane, cf. Fig. 8.8.

Now let f = f (r) be a function of r which depends on the parameters q and q
via r = r(p, q). The surface integral of this function over the surface A is defined by

Sμ =
∫

A
f (r) dsμ. (8.22)

The surface element dsμ is the cross product of the tangential vectors (8.13), see
also (8.14). The axial vector dsμ is perpendicular to the surface. More specifically,
one has

dsμ = εμνλ

∂rν

∂p

∂rλ

∂q
dpdq = ŝμ(p, q)d2s. (8.23)

Here ŝ is a unit vector orthogonal to the surface, andd2s is themagnitude of the surface
element. It quantifies the change of rwith the change of p andq. The exponent 2 in the
symbol “d2s” used here indicates that the surface integration is “two dimensional”.
It is clearly distinguished from the arc length element ds occurring sometimes in
“one dimensional” line integrals. Notice that the surface element ds, being defined
in (8.23) as the cross product of two tangential vectors, is an axial vector. The same
applies to the unit vector ŝ.

Due to (8.23), the surface integral (8.22) can be computed as a double integral
over p and q:

Sμ =
∫ p2

p1
dp

∫ q2

q1
dq f (r)εμνλ

∂rν

∂p

∂rλ

∂q
. (8.24)



8.2 Surface Integrals, Stokes 121

Fig. 8.8 Surface in real space and in the p–q parameter plane

Often the symbol
∮

is used to indicate that the integral is extended over a closed
surface which is topologically equivalent to the surface of a sphere. Notice that the
area in the parameter space has a well defined rim or border line even when the closed
surface has none in the 3D space. This is obvious for the parameter representation of
the surface of a sphere. There the polar angles θ and ϕ are within the intervals [0, π ]
and [0, 2π ].

Surface integrals are discussed next for the examples of parameter presentations
of surfaces shown in Sect. 8.2.2.

8.2.4 Examples for Surface Integrals

(i) Plane

Firstly, consider as area A over which the surface integral shall be evaluated a
rectangle in the x–y-plane where the variables are within the intervals [x1, x2] and
[y1, y2]. The vector normal to the plane is parallel to the z-direction. The unit vector
in this direction is denoted by ez. The surface element is dsμ = ezμdxdy. Thus the
surface integral of a function f = f (r) with r = {x, y, 0}, located within the plane,
is evaluated according to

Sμ = ezμ

∫

A
f (r(x, y))dxdy = ezμ

∫ x2

x1
dx

∫ y2

y1
dy f (r(x, y)). (8.25)

The representation by the planar polar coordinates ρ, ϕ is appropriate for an area A
whose border lines are parts of two circular arcs and two radial lines, see Fig. 8.9.
Here the position vector within the plane is given by r = {ρ cosϕ, ρ sin ϕ, 0}.

The variables are within the intervals [ρ1, ρ2] and [ϕ1, ϕ2]. Now the surface
element is dsμ = ezμρdρdϕ and the surface integral is to be evaluated according to

Sμ = ezμ

∫

A
f (r(ρ, ϕ))ρdρdϕ = ezμ

∫ ρ2

ρ1

ρdρ
∫ ϕ2

ϕ1

dϕ f (r(ρ, ϕ)). (8.26)
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Fig. 8.9 Planar polar
coordinates for a segment
of a planar ring

For the simple case f = 1 and an integration over the full disc with the constant
radius R, the integration over ϕ yields 2π , that over ρ gives (1/2)R2. Then (8.26)
leads to Sμ = ezμ R2π . As expected, in this case the surface integral gives the area
R2π of the circular disc.

In both examples considered so far, the unit vector normal to the surface is constant.
As a consequence, it could be put outside the integral, just as a factor. This is no longer
the case when the integration is to be taken over curved surfaces.

(ii) Cylinder Mantle

For a circular cylinder with constant radius ρ = R, its mantle surface is described
by r = {R cosϕ, R sin ϕ, z}. The two parameters are ϕ and z. Here the surface
element is

dsμ = R nμ(ϕ)dϕdz, (8.27)

where vector normal to the cylinder mantle is given by n = {cosϕ, sin ϕ, 0}. The
surface integral over a region A located on the cylinder mantle is

Sμ = R
∫

A
f (r(ϕ, z)) nμ(ϕ)dϕdz. (8.28)

(iii) Surface of a Sphere

The surface of a sphere with constant radius R is described by

r = {R cosϕ sin θ, R sin ϕ sin θ, R cos θ},

with the polar angles θ and ϕ as parameters. The unit vector normal to the surface is
the radial unit vector r̂ = R−1r. Here the surface element is

dsμ = R2 r̂μ(θ, ϕ) sin θdθdϕ. (8.29)
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The surface integral over a region A on the surface of the sphere is

Sμ = R2
∫

A
f (r(θ, ϕ)) r̂μ(θ, ϕ) sin θdθdϕ. (8.30)

In the following, the abbreviation

d2̂r = sin θdθdϕ (8.31)

is used for the scalar part of the surface element pertaining to the surface of a sphere
with radius R = 1. This sphere is referred to as unit sphere.

The symbol

∫

d2̂r . . . , (8.32)

without any indication of a specific area, is used for integrals over the whole unit
sphere.

8.2.5 Flux of a Vector Field

The surface integral Sμ = ∫

A f (r)dsμ, defined in (8.22) with (8.23), is a tensor of
rank � + 1 when f stands for the components of a tensor of rank �. In particular, for
f = vν where v = v(r) is a vector field, the corresponding integral over a surface
A is the second rank tensor

Sμν =
∫

A
vνdsμ. (8.33)

The isotropic part of this tensor, cf. Chap. 6, involves its traceS = Sμμ. This scalar
quantity, viz.

S =
∫

A
vμdsμ =

∫

A
v · ds (8.34)

is referred to as the flux of the vector field v through the surface A.
A simple example demonstrates the meaning of the term “flux”. Let A be a plane

surface with a fixed normal vector n and v = const. a homogeneous vector field.
With dsμ = nμds one obtains

S = vμnμ

∫

ds = vμnμ A ,

where A stands for the area of the surface. With vμ = vv̂μ, this result can be
written as

http://dx.doi.org/10.1007/978-3-319-12787-3_6
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Fig. 8.10 Flux through an
area A and side view of an
effective area Aeff

S = vAeff .

Here v is the magnitude of the homogeneous vector field. The effective area

Aeff = v̂μ nμ A

is the actual area of the surface, reduced by the cosine of the angle between v and
the normal to the plane, see Fig. 8.10.

8.2 Exercise: Surface Integrals over a Hemisphere
Consider a hemisphere with radius R, with the center at the origin. The unit vector
pointing from its center to the North pole is denoted by u.
Compute the surface integralsSμν = ∫

vνdsμ, over the hemisphere and the pertain-
ing flux S = Sμμ for

(i) the homogeneous vector field vν = vv̂ν = const. and
(ii) the radial field vν = rν .

Hint: use the symmetry argumentsSμν ∼ uμv̂ν (case i) andSμν ∼ uμuν (case ii),
to simplify the calculations. Put the base of the hemisphere onto the x–y-plane, for
the explicit integration.

8.2.6 Generalized Stokes Law

The Stokes law provides a relation between surface integrals of a certain type with a
line integral along the closed rim of the surface. Thus the “dimension” of the integral
is reduced from 2 to 1. This applies when the integrand of the surface integral is a
spatial derivative of a function f = f (r), which then occurs as integrand in the line
integral. To be more specific, the generalized Stokes law reads:

∫

A
ελνμ ∇ν f (r)dsλ =

∮

C
f (r)drμ. (8.35)
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It is understood that the closed curve C = ∂ A is the rim, or the contour line, of the
surface A.

The standard Stokes law follows from (8.35) when the function f is identified
with the Cartesian component vμ of a vector field v. Due to

ελνμ ∇ν vμ = (∇ × v)λ,

the Stokes law can be cast into the form
∫

A
(∇ × v) · ds =

∮

∂A
v · dr. (8.36)

The line integral on the right hand side of (8.36) is referred to as the circulation of
the vector field v.

A remark on parity is in order. The nabla-operator ∇ and the line element dr
occurring in (8.35) and (8.36) are polar vectors. Parity is conserved, i.e. both sides
of the equation in the generalized Stokes law have the same parity behavior since the
surface element ds is an axial vector.

Furthermore, when the integration in (8.35) and (8.36) is extended over a closed
surface, there is no contour line and thus these integrals are equal to zero. Notice,
however, that the generalized Stokes law applies to simply connected surfaces which
have no holes. On the other hand, the circulation, i.e. the line integral, as it occurs on
the right hand side of (8.36), can be non-zero, when the integration is around a hole
in a surface, even when ∇ × v, occurring on the left hand side of (8.36), is zero.

A proof of (8.35), which includes the proof for the conventional Stokes law (8.36),
is presented next. The surface is parameterized by r = r(p, q). The area over which
the integration is extended is assumed to be given by a rectangle in the p–q-parameter
plane, see Fig. 8.11.

According to (8.23), the surface element can be written as

dsλ = ελαβ

∂rα

∂p

∂rβ

∂q
dpdq.

Fig. 8.11 Area and rim
curve in p–q-plane for the
proof of the Stokes law
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Insertion of this expression into Sμ = ∫

A ελνμ∇ν f (r)dsλ, which is the left hand
side of (8.35), leads to

Sμ =
∫

A
ελνμ ∇ν f (r)dsλ =

∫ p2

p1
dp

∫ q2

q1
dq

(

∇ν f
∂rν

∂p

∂rμ

∂q
− ∇ν f

∂rμ

∂p

∂rν

∂q

)

.

Here ελνμελαβ = δναδμβ − δνβδμα , which corresponds to (4.10), has been used.
Thanks to the chain rule, one has

∇ν f
∂rν

∂p
= ∂ f

∂p
, ∇ν f

∂rν

∂q
= ∂ f

∂q
.

Due to

∂ f

∂p

∂rμ

∂q
= ∂

∂p

(

f
∂rμ

∂q

)

− f
∂2rμ

∂p∂q
,

∂ f

∂q

∂rμ

∂p
= ∂

∂q

(

f
∂rμ

∂p

)

− f
∂2rμ

∂q∂p
,

the integrand of the surface integral considered reduces to

∂

∂p

(

f
∂rμ

∂q

)

− ∂

∂q

(

f
∂rμ

∂p

)

.

The first term can immediately be integrated over p, the second one over q. This
then yields

Sμ =
∫ q2

q1
dq

(

f (p2, q)
∂rμ(p2, q)

∂q
− f (p1, q)

∂rμ(p1, q)

∂q

)

−
∫ p2

p1
dp

(

f (p, q2)
∂rμ(p, q2)

∂p
− f (p, q1)

∂rμ(p, q1)

∂p

)

. (8.37)

The two terms in the upper line of (8.37) are the line integrals I II
μ + I IV

μ along
the segments II and IV, those in the lower line are I III

μ + I I
μ which pertain to the

segments III and I. The four terms in (8.37), viz.: Sμ = I I
μ + I II

μ + I III
μ + I IV

μ

make up the line integral

Iμ ≡
∮

∂A
f drμ

around the closed rim ∂ A of the surface A, thusSμ = Iμ. This completes the proof
of the generalized Stokes law (8.35).

http://dx.doi.org/10.1007/978-3-319-12787-3_4
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8.3 Exercise: Verify the Stokes Law for a Vorticity Field
Compute the integrals on both sides of the Stokes law (8.36) for the vorticity vector
field v = w × r, with a constant angular velocity w. The surface integral should be
evaluated for a circular disc with radius R. The disc is perpendicular to w.

Hint: choose a coordinate system with its z-axis parallel to w.

8.2.7 Application: Magnetic Field Around an Electric Wire

The Stokes law can be used to evaluate the strength of the magnetic field H outside a
straight wire. The electric current density j, inside the wire, is assumed to be steady,
i.e. it does not change with time. In this stationary situation, one of the Maxwell
equations reduces to

∇ × H = j. (8.38)

This equation underlies the findings of Oersted and Ampere on the coupling between
electricity and magnetism.

Next (8.38) is integrated over a circular surface, perpendicular to the wire. The
radius R of the circle is larger than the diameter of thewire, cf. Fig. 8.12. The resulting
“integral form” of (8.38) is

∫

(∇ × H) · ds =
∫

j · ds ≡ I. (8.39)

Here I is the electric current, notice that j = 0, outside the wire. On the other hand,
the Stokes law implies

∫

(∇ × H) · ds =
∮

H · dr. (8.40)

Fig. 8.12 The magnetic field
H around a long straight wire
carrying the electric current
I , due to the electric flux j
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The line integral is over the circle with radius R. For symmetry reasons, the H-field
is tangential, i.e. parallel to dr, and the magnitude H of the field is constant around
the circle. Thus one has

∮

H · dr = HR
∫ 2π

0
dϕ = 2πRH.

Consequently, the strength of the magnetic field, at the distance r from the center of
the wire, with the previous R now called r , is

H = I

2πr
. (8.41)

Clearly, outside of the wire, the field strength H decreases with increasing distance
r like 1/r . The situation is different inside the wire. There the integral over a circular
disc with radius r increases like its area, viz. like r2, provided that the electric current
density is homogeneous. The constant electric current I , in (8.41) is replaced by a
term proportional to r2. As a consequence, H increases linearly with R. Notice,
however, that the charge density within a metal wire is not homogeneous, but rather
confined to a surface layer.

Furthermore, the present considerations apply to long wires, end-effects are not
taken into account.

8.2.8 Application: Faraday Induction

Consider an almost closed ring-like electrically conducting wire, placed into a mag-
netic B field, cf. Fig. 8.13.

Integration of the Faraday law

εμνλ ∇ν Eλ = − ∂

∂t
Bμ,

Fig. 8.13 Schematic view of
the Faraday induction
experiment
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over the area A, bounded by the wire and application of the Stokes law (8.36) yields
the equation governing the Faraday induction, viz.

∮

∂A
E · dr = d

dt

∫

A
B · ds ≡ d

dt
ΦA, (8.42)

where ΦA = ∫

A B · ds is the flux of B through the area A, cf. Sect. 8.2.5. The left
hand side of (8.42) quantifies the electric tension or the voltage V = ∮

∂A E · dr
generated by the change of the magnetic flux, underlying the Faraday induc-
tion. Notice, the time change of the magnetic flux Φ can be brought about by
a time change of the field B or by a change of the area A, e.g. by a change
of the surface normal of the area with respect to the direction of the magnetic field.

8.3 Volume Integrals, Gauss

8.3.1 Volume Integrals in R3

The integral of a function f = f (r) over a region V in R3 is denoted by

V =
∫

V
f (r)d3r, (8.43)

where the scalar d3r is the volume element. For f = 1, the volume integral yields the
content or the size of the volume, which is also referred to as “volume” and denoted
by V :

V =
∫

V
d3r, (8.44)

When the Cartesian components x, y, z are used for the integration, the volume
integral is just the threefold integral

V =
∫

V
f (r)dxdydz. (8.45)

Often it is advantageous to express the vector r in terms of three parameters
p1, p2, p3, viz.:

r = r(p1, p2, p3),

and to use those as general coordinates for the integration. Then the prescription for
the evaluation of the volume integral is

V =
∫

V
f (r(p1, p2, p3))

∣

∣J (p1, p2, p3)
∣

∣ dp1dp2dp3. (8.46)
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HereJ is the Jacobi determinant, also called functional determinant, which can be
computed according to

J = εμνλ

∂rμ

∂p1

∂rν

∂p2

∂rλ

∂p3
. (8.47)

Notice that J dp1dp2dp3 can also be written as

J dp1dp2dp3 = dsμ

∂rμ

∂p1
dp1, (8.48)

where dsμ is the surface element of a surface parameterized by p2, p3, with p1 =
const., cf. Sect. 8.2.3.

Two examples for general coordinates are discussed next.

(i) Cylinder Coordinates

Consider a circular cylinder whose axis coincides with the z-axis. The presentation
r = {ρ cosϕ, ρ sin ϕ, z} is used, where ρ, ϕ, z are the parameters, see also (8.16).
Now the volume integral is

V =
∫

V
f (r(ρ, ϕ, z)) ρdρdϕdz. (8.49)

When the region in space to be integrated over is a cylinder with radius R and length
L , and furthermore the integrand is independent of the angle ϕ, the relation (8.49)
reduces to

V = 2π

∫ R

0
ρdρ

∫ L

0
dz f (r(ρ, z)). (8.50)

The factor 2π stems from the integration over ϕ. For f = 1, one obtains the volume
V = πR2L of the circular cylinder.

(ii) Spherical Coordinates

The standard parametrization with the spherical coordinates r, θ, ϕ corresponds to
r = {r cosϕ sin θ, r sin ϕ sin θ, r cos θ}. The volume integral is given by

V =
∫

V
f (r(r, θ, ϕ)) r2dr sin θdθdϕ =

∫

V
f (r(r, θ, ϕ)) r2drd2̂r . (8.51)

Here, as in (8.31), the symbol d2̂r = sin θdθdϕ stands for the scalar surface element
of the unit sphere. Sometimes it is advantageous to use ζ = cos θ as integration
variable instead of θ . Then one has

d2̂r = −dζdϕ. (8.52)
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As a more specific example, a half-sphere with radius R, located above the x–y-
plane, is chosen. When, furthermore, the function f does not depend on the angle ϕ,
the volume integral reduces to

V = 2π

∫ R

0
r2dr

∫ 1

0
dζ f (r(r, ζ )). (8.53)

The minus sign occurring in (8.52) is taken care of by an exchange of the integration
limits, θ = 0 and π/2 correspond to ζ = 1 and ζ = 0.

For f = 1 the volume V = (2/3)π R3 of the half-sphere is obtained.

8.3.2 Application: Mass Density, Center of Mass

The macroscopic description of matter, be it a gas, a liquid, or a solid, is based on
the mass density ρ = ρ(r). Its microscopic interpretation, for a substance composed
of N particles with the mass m, is provided by

ρ(r)d3r = mdN (r), (8.54)

where dN (r) is the number of particles found within a small volume element d3r ,
located at the position r. Alternatively, and even more general, the mass density
of a substance composed of particles with masses mi, located at positions ri, with
i = 1, 2, . . . , N , is given by

ρ(r) =
N

∑

i=1

mi δ(r − ri). (8.55)

Here δ(r) is the three dimensional delta-distribution function δ(r), with the property

∫

δ(r − s) f (r) d3r = f (s), (8.56)

which applies when the function f is single valued at the position s. The integrals of
both expressions for ρ, over a volume V , yield the mass MV of the substance within
this volume,

MV =
∫

V
ρ(r) d3r. (8.57)
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For (8.54) one finds MV = m NV, for (8.55) the result is

MV =
NV
∑

i=1

mi,

NV is the number of particles located within the volume V .
In applications, where the atomistic structure of matter is not relevant, e.g. in

hydrodynamics, the mass density ρ = ρ(r) is treated as a continuous field function.
For the dynamic phenomena discussed in Sects. 8.4.1 and 8.4.2, the density should
also be a differentiable function. Differentiability plays no role for the global prop-
erties, which are obtained via volume integrals. The position of the center of mass
and the moment of inertia tensor are of this type.

The position vector R of the center of mass of a substance characterized by the
mass density ρ, and confined within the volume V , is determined by

M Rμ =
∫

V
rμ ρ(r)d3r, (8.58)

where M = ∫

V ρ(r)d3r is the total mass.
An example, instructive for the computation of volume integrals, is a homoge-

neous density, confined by a spherical cap. Its cross section is shown in Fig. 8.14.
The cap has uniaxial symmetry, characterized by the unit vectoruwhich is parallel

to the vector pointing from the geometric center to the North pole of the cap. In the
figure, the geometric center is put at the origin of the coordinate system and the
direction of the z-axis is chosen parallel to u. The inner and outer radii are denoted
by a1 and a2, respectively. As conventional, the angle θ is counted from the z-axis,
its maximum is θmax. With ρ = ρ0 = const. within the cap and ρ = 0 outside, the

Fig. 8.14 Cross section of a
spherical cap
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integrals to be evaluated are of the form

∫

V
. . . d3r = 2π

∫ a2

a1
r2dr

∫ θmax

0
sin θdθ . . . = 2π

∫ a2

a1
r2dr

∫ 1

ζmin

dζ . . . , (8.59)

where the integrand . . . is assumed to be independent of the polar angle ϕ. Further-
more, ζ = cos θ and ζmin = cos θmax are used.

First, the volume is computed with the help of (8.59), with the integrand 1. The
result is

V = 2π

3
(a3

2 − a3
1)(1 − ζmin). (8.60)

The volume of a sphere with radius a is recovered from this expression with a2 = a,
a1 = 0 and ζmin = cosπ = −1. The mass of the cap is M = ρ0V .

Due to the uniaxial symmetry, the vector R is parallel (or anti-parallel) to the unit
vector u. The calculation of the center of mass is simplified with the help of this
argument. The ansatz

Rμ = c uμ, (8.61)

is made. The coefficient c is inferred from the scalar multiplication of this equation
with uμ, thus Mc = Muμ Rμ. The vector u is constant, so it can be put inside the
integral (8.58) used for MRμ. Then the integrand is uμrμ = r cos θ = rζ . With the
help of (8.59),

Vc = 2π

8
(a4

2 − a4
1)(1 − ζ 2

min) (8.62)

is obtained. Clearly, for θmax = π , corresponding to ζmin = −1, the coefficient c
is zero. As expected, in this case, the center of mass coincides with the geometric
center. For a half-sphere, with radius a = a2, a1 = 0, and ζmin = 0, on the other
hand, the center of mass

R = 3

8
a u (8.63)

is shifted “upwards”.
The case a1 = a, a2 = a + δa, with 0 < δa � a corresponds to thin shell

structure with thickness δa. Then the factors (a3
2 − a3

1) and (a4
2 − a4

1), occurring in
(8.60) and (8.62), reduce to 3a2δa and 4a3δa, respectively. As a consequence,

R = 1

2
a u (8.64)

is found for the hollow hemisphere.
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8.3.3 Application: Moment of Inertia Tensor

The moment of inertia tensor Θμν , introduced in Sect. 4.3.2, can also be expressed
as a volume integral over the mass density ρ of a solid body, viz.:

Θμν =
∫

V
ρ(r) (r2 δμν − rμrν)d

3r. (8.65)

The moment of inertia tensor, evaluated either as a sum over discrete masses or
a volume integral, depends on the choice of the origin. When one talks about the
moment of inertia tensor of a mass distribution, it is understood that r = 0, in (8.65),
corresponds to its center of mass. In the general case, the effective moment of inertia
tensor, entering the linear relation between the angular momentum and the angular
velocity, is

Θeff
μν = M(R2 δμν − Rμ Rν) + Θcm

μν , (8.66)

where M is the total mass, R is the position of the center of mass, and it is understood
that Θcm

μν is for a rotation around the center of mass. Relation (8.66) is referred to
as Steiner’s law. It can be derived from (8.65) with r = R + r′. For the proof, use
∫

V ρr′d3r ′ = 0. When there is no danger of confusion Θcm
μν will be denoted by Θμν ,

in the following.
As also pointed out in Sect. 4.3.2, the moment of inertia for a rotation about a

fixed axis is defined via the linear relation between the component of the angular
momentum parallel to this axis and the magnitude w of the angular velocity. With
the unit vector ŵμ, parallel to the axis of rotation, the moment of inertia is Θ =
ŵμΘμνŵν , and consequently

Θ =
∫

V
ρ(r) r2⊥d3r, (8.67)

where

r2⊥ = r2 − ŵμrμ ŵνrν = r2 − (ŵ · r)2

is the square of the shortest distance of a mass element at r, from the rotation axis.
The origin of the position vector is a point on the rotation axis.With the z-axis chosen
parallel to the rotation axis, r2⊥ is just r2 − z2 = x2 + y2.

By definition, the moment of inertia tensor is symmetric and positive definite.
In general, it has three eigenvalues Θ(1), Θ(2) and Θ(3), which are the moments of
inertia for rotations about the three principal axes. An object with three different
principal moments of inertia is referred to as asymmetric top. A symmetric top has
two equal eigenvalues, e.g. Θ1 = Θ(2) �= Θ(3), for the spherical top, all three are
equal. These different types of symmetry of the moment of inertia tensor result from

http://dx.doi.org/10.1007/978-3-319-12787-3_4
http://dx.doi.org/10.1007/978-3-319-12787-3_4
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Fig. 8.15 Brick stone with
sides a, b, c. The coordinate
axes coincide with the
principal axes of the moment
of inertia tensor

a biaxial, uniaxial and spherical symmetry, respectively, of the mass density. For a
constant density inside a solid body, its shape determines the symmetry.

As a simple example, a brick stone with constant mass density ρ0 and with edges
a, b, c, is considered, cf. Fig. 8.15. The center of mass is in the middle, the principal
axes go through it and they are perpendicular to the side planes of the brick. The
volume element is dx dy dz, the integration goes over the intervals [−a/2, a/2],
[−b/2, b/2], [−c/2, c/2]. The mass is M = ρ0abc. The moment of inertia Θ(3) is
associated with the rotation about the z-axis. Then the square of the distance from
the axis is r2⊥ = x2 + y2. The integral (8.67) leads to

Θ(3) = ρ0
1

12
(a3 b + a b3) c = 1

12
M (a2 + b2),

which is the mass times the square of the length of the diagonal of the side perpen-
dicular to the principal axis. The two other principal moments are

Θ(1) = 1

12
M (b2 + c2), Θ(2) = 1

12
M (a2 + c2).

In general, a brick stone is an asymmetric top. For, e.g. a = b, it becomes a symmetric
top. Then the moment of inertia tensor is, as in (5.20),

Θμν = Θ‖ uμuν + Θ⊥ (δμν − uμuν), (8.68)

with Θ‖ = Θ(3), Θ⊥ = Θ(1) = Θ(2), and u is a unit vector parallel to the symmetry
axis.

A cube corresponds to a = b = c which implies three equal moments of inertia.
So the cube is a spherical top with an isotropic moment of inertia tensor

Θμν = Θ δμν, Θ = 1

6
Ma2.

http://dx.doi.org/10.1007/978-3-319-12787-3_5
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For a sphere with radius a/2, the tensor has the same form, just with Θ = 1
10 M a2.

Obviously, on the level of second rank tensors, cubic symmetry cannot be distin-
guished from spherical symmetry. This is different for tensors of rank four, as they
occur, e.g. in elasticity.

The trace Θμμ = 3Θ̄ , where Θ̄ is the mean moment of inertia, is given by

3 Θ̄ = 2
∫

V
ρ(r) r2d3r. (8.69)

In the case of uniaxial symmetry, 3Θ̄ is equal to Θ‖ + 2Θ⊥, see (8.68). In some
applications, it is preferable to compute Θ‖ and 3Θ̄ and to infer Θ⊥ from (3Θ̄ −
Θ‖)/2.

8.4 Exercise: Moment of Inertia Tensor of a Half-Sphere
Compute the moment of inertia tensor of a half-sphere with radius a and constant
mass density ρ0. The orientation is specified by the unit vector u, pointing from the
center of the sphere to the center of mass of the half-sphere.

Hint: make use of the symmetry. First calculate the moments of inertia with respect
to the center of the sphere, then use the Steiner law (8.66) to find the moments of
inertia with respect to the center of mass of the half-sphere, see also Sect. 8.3.2.

8.3.4 Generalized Gauss Theorem

When the integrand of a volume integral is the spatial derivative of a function, the
integral over the volume V can be transformed into a surface integral over the bound-
ing surface A = ∂V . Thus the “three dimensional” integration is reduced to a “two
dimensional” one. Here, a generalized version of the Gauss theorem is stated first
and the standard Gauss theorem is obtained as a special case.

Let f = f (r) be a differentiable function, V a volume with a well defined surface
∂V in R3. The generalized Gauss theorem reads

Vμ ≡
∫

V
∇μ f d3r =

∮

∂V
fnμd

2s, (8.70)

where n is the outer normal of V , cf. Fig. 8.16 at its bounding surface ∂V and d2s is
the scalar surface element.

When f occurring in (8.70) is the component of a tensor of rank � the integrals
on both sides of the equation are tensors of rank � + 1. In particular, for f being the
component vν of a vector field v, the quantities occurring on both sides of (8.70) are
second rank tensors:

Vμν ≡
∫

V
∇μvνd

3r =
∮

∂V
vν nμd

2s. (8.71)
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Fig. 8.16 The potato of
Prof. Muschik as integration
volume, n is the outer
normal vector, perpendicular
to its peel

The isotropic part of the tensor equation involves the trace

Vμμ ≡
∫

V
∇μvμd

3r =
∮

∂V
vμ nμd

2s. (8.72)

This equation can also be written as

∫

V
∇ · vd3r =

∮

∂V
v · nd2s, (8.73)

which is the standard Gauss theorem.
Again a remark on parity is in order. The nabla-operator∇ and the outer normal n

both are polar vectors. Thus parity is “conserved” in the generalized Gauss theorem
(8.70) and its special cases, e.g. in (8.73). Notice that the surface element nd2s
occurring in connection with the Gauss theorem is a polar vector, whereas the surface
element ds occurring in the Stokes law (8.35) is a pseudo vector.

A proof for the Gauss theorem is not given here, however, its validity shall be
verified next with a simple example. A sphere with radius R is chosen as integration
volume. The origin of the coordination system coincideswith the center of the sphere.
The radial vector field v = r is inserted in (8.71). Due to ∇μrν = δμν , the left hand
side of this equation yields the isotropic unit tensor times the volume of the sphere:

Vμν ≡
∫

V
∇μrνd

3r = δμν

∫

V
d3r = δμν

4π

3
R3.

Since n = r̂ for the sphere, the surface integral standing on the right hand side of the
Gauss theorem is equal to

∮

∂V
rν r̂μ R2d2̂r = R3

∫

r̂ν r̂μd
2̂r .

The sphere does not possess any preferential direction. Thus the integral
∫

r̂ν r̂μd2̂r
over the unit sphere must be of the form cδμν , due to symmetry arguments. The
proportionality coefficient c is obtained from the trace relation

∫

r̂μr̂μd2̂r = 4π =
3c, notice that δμμ = 3. Thus
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∫

r̂μr̂νd
2̂r = 4π

3
δμν

is obtained. The expressions just computed for the volume and surface integrals are
in accord with the Gauss theorem.

On the other hand, the Gauss theorem can be applied for the determination of
a more complicated surface integral when the evaluation of the pertaining volume
integral is easier, or vice versa. An example: the relation

∫

V
∇μrνd

3r = δμν

∫

V
d3r = δμνV

holds true for a well bounded volume V with any shape, not just for a sphere, as
considered above. The Gauss theorem (8.71) now implies the remarkable result

∮

∂V
rν nμd

2s = δμνV, (8.74)

irrespective of the shape of the surface ∂V , as long as the outer normal n is well
defined everywhere on the surface of the volume. The trace part of this relation, viz.:

∮

∂V
r · nd2s = 3 V, (8.75)

shows that the volume V can also be computed with the help of a surface integral.

8.3.5 Application: Gauss Theorem in Electrodynamics,
Coulomb Force

In electrodynamics, the symbol ρ is used for the charge density. Then the integral
over the volume V

∫

V
ρd3r = QV, (8.76)

is equal to the electric charge contained in this volume. One of theMaxwell equations
links the divergence of the electric displacement field D with the charge density, viz.:

∇μ Dμ = ρ. (8.77)
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The relation (8.77) is referred to as the differential formof theGauss law. The integral
of (8.77) over a volume V and use of the Gauss theorem, with d2sμ = nμd2s, yields:

∮

∂V
Dμd

2sμ =
∫

V
ρd3r = QV. (8.78)

This is theGauss law of electrodynamics. It means that the flux of the D-field through
the closed surface ∂V is equal to the charge contained within the volume V . The
Coulomb law for the force between two charges, located in vacuum, follows from
the Gauss law (8.78). This is seen as follows.

In general, one has D = ε0 E + P, where ε0 is the dielectric permeability of the
vacuum. Its numerical value depends on the choice of the basic physical units for
length, time, mass and charge. In the system of physical units originally introduced
by Gauss, where no independent basic unit for the charge occurs, ε0 is equal to 1.
The vector field P is the electric polarization. In vacuum, P = 0 applies. Thus in
vacuum, the electric field E is related to the charge density via

∮

∂V
Eμd

2sμ = 1

ε0

∫

V
ρd3r = 1

ε0
QV. (8.79)

Now let ρ be a charge density with spherical symmetry, centered around r = 0.
Then the electric field is parallel (or anti-parallel) to rμ, thus it can be written as
Eμ = Er̂μ.

Now the volume integration is performed over a sphere with radius r , then one has
r̂μd2sμ = d2s, and E is constant on the surface of the sphere. The surface integral
of (8.79) yields E times the surface 4πr2 of the sphere. Assuming that the charge
density is completely contained within this sphere and denoting the total charge by
Q, one obtains 4πr2E = 1

ε0
Q, and

Eμ = Q

4π ε0

1

r2
r̂μ = Q

4π ε0

1

r3
rμ. (8.80)

This is the electric field Eμ(r) at the position r, located in vacuum, caused by the
charge Q at r = 0. A “test” charge q, placed at r, experiences the force F = qE(r).
Thus the force between these charges is the Coulomb force

F = q Q

4π ε0

1

r3
r. (8.81)

The strength of the Coulomb force decreases with increasing distance r between the
charges like 1/r2, just like the gravitational force. Gravitation is always attractive.
The Coulomb force is repulsive or attractive, depending on whether the charges have
equal or opposite sign.
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8.3.6 Integration by Parts

Let f = f (r) and g = g(r) be two field functions. Due to the product rule∇μ(g f ) =
g∇μ f + f ∇μg, and with the help of the generalized Gauss theorem, the volume
integral

∫

V g∇μ f is equal to

∫

V
g ∇μ f d3r = −

∫

V
f ∇μgd3r +

∫

∂V
fgnμd

2s. (8.82)

Inmany applications, the surface integral
∫

∂V f gnμd2s is taken over a surface, where
at least one of the two functions f and g vanishes. Then, the integration by parts is
equivalent to

∫

V
g ∇μ f d3r = −

∫

V
f ∇μgd3r. (8.83)

With f = −∇μg and Δ = ∇μ∇μ, the relation (8.83) implies

−
∫

V
g Δ gd3r =

∫

V
(∇μg)(∇μg)d3r ≥ 0. (8.84)

Thus, subject to the condition that the contribution of the surface integral, occurring
in connection with the integration by parts, is zero, the negative Laplace operator
−Δ is a positive definite operator. This point is of importance for the kinetic energy
operator in wave mechanics, cf. Sect. 7.6.4.

8.4 Further Applications of Volume Integrals

8.4.1 Continuity Equation, Flow Through a Pipe

The mass density and the local velocity field of a fluid are denoted by ρ = ρ(r)
and v = v(r), as in Sect. 7.4.3. The vector field j(r) = ρv is the flux density. The
continuity equation, cf. (7.49),

∂ρ

∂t
+ ∇ν jν = 0, (8.85)

expresses the local conservation of mass. The integral of ρ over a volume V yields
the mass MV = ∫

V ρd3r contained within V . Upon integration of the continuity
equation over a volume V which does not change with time, the first term of the
equation is the time change of the mass MV. The second term can be expressed as a
surface integral over ∂V , due to the Gauss theorem. Thus (8.85) leads to

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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d

dt
MV +

∫

∂V
nν jνd

2s = 0, (8.86)

where n is the outer normal vector on the surface of the volume V . This equation
says: the mass contained in the volume changes with time according to the flux of
mass which goes in and out of the volume, through the surface. There is no creation
or annihilation of mass.

As an example, consider a fluid confined by a pipe, with spatially varying cross
section and open ends. The normal vectors of the open parts of the volume V are
denotedbyn1 andn2, the pertaining areas are A1 and A2. For this geometryn1 = −n2
applies. Since the side walls are assumed to be impenetrable for the fluid, the time
change of the mass is

dMV

dt
= I1 + I2,

where I1 = − ∫

∂A1
n1 · jd2s and I2 = − ∫

∂A2
n2 · jd2s are the fluxes into and out of

V , respectively. One has I1 > 0 and I2 < 0 when n1 and n2 are anti-parallel and
parallel to j.

With the help of the substantial time derivative (7.50), viz.

d

dt
:= ∂

∂t
+ vν∇ν,

the continuity equation can also be written as

dρ

dt
+ ρ ∇νvμ = 0.

The quantity V = ρ−1 is the volume per mass, also called specific volume. The
continuity equation is equivalent to

d

dt
lnV = ∇νvν. (8.87)

This shows: the specific volume and hence the density does not change with time
when the divergence of the velocity vanishes. A flow with ∇ · v = 0 is referred to as
incompressible flow.

In electrodynamics, the symbols ρ and j are used for the charge density and the
electric flux density. The integral of ρ over a volume is the charge Q contained in
this volume. The continuity equation has the same form as (8.85), provided that no
charges are created or annihilated. Then the continuity equation describes the local
charge conservation.

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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8.4.2 Momentum Balance, Force on a Solid Body

The local conservation equation for the linearmomentum density ρvμ, in the absence
of external forces, cf. (7.52), reads

ρ
dvμ

dt
+ ∇ν pνμ = 0. (8.88)

The pressure tensor pνμ characterizes the part of the momentum transport, which is
not of convective type. The gradient ∇ν pνμ = kμ is an internal force density.

The total momentum associated with a fluid in a volume V is

PV
μ ≡

∫

V
ρ vμd

3r. (8.89)

Integration of the local conservation equation (8.88) over this volume and application
of the Gauss theorem leads to

d

dt
PV

μ = −
∫

∂V
nfl

ν pνμd
2s, (8.90)

where nfl is the outer normal of the volume containing the fluid. The term on the
right hand side of this equation is the force Ffl acting on the fluid. Due to actio equal
reactio, the force F s exerted by the fluid on a solid wall or on a solid body immersed
in the fluid has the same magnitude, but with opposite sign: Fs = −Ffl. When the
normal vector nfl is replaced by ns = −nfl, which points from the solid into the fluid,
the expression for F s has the same form as that one in (8.90),

F s
μ = −

∫

∂V
nν pνμd

2s. (8.91)

Consider now a plane wall with the surface area A and the normal vector n ≡ ns.
Assuming that the pressure tensor of the fluid is constant at the wall, the force Fw

acting on the plane wall is
Fw

μ = −nν pνμ A. (8.92)

In thermal equilibrium, the pressure tensor of a fluid is just the isotropic tensor Pδμν ,
with the hydrostatic pressure P , cf. (7.53). Then (8.92) reduces to F = −nPA. The
minus sign means that the fluid pushes against the wall, provided that P > 0, as
valid in thermal equilibrium. In equilibrium, there is only a normal force, i.e. a force
perpendicular to the wall.

In general, the force (8.92) has both normal and tangential components

Fnorm
μ = −nμ (nν pνλ nλ) A, F tang

μ = −nν (pνμ − δμν nκ pκλ nλ) A. (8.93)

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7


8.4 Further Applications of Volume Integrals 143

Fig. 8.17 The tangential
force density due to
non-diagonal elements of the
pressure tensor. The force
exerted by the fluid on the
solid is in the directions
shown when pyx < 0 and
pxy < 0

When the x–z-plane of a coordinate system is on the wall with the y-axis antiparallel
to n, the normal component of the force is Fy = −pyyA. The tangential components
are Fx = −pyxA and Fz = −pyzA.

For a cube placed in the fluid, with its sides parallel to the coordinate axes, the
tangential part of the vector nν pνμ occurring in (8.92), has directions indicated in
Fig. 8.17, for the x–y-plane. Notice, when pyx �= pxy, i.e. when the pressure tensor
has a non-zero antisymmetric part, the cube experiences a torque, caused by the fluid.

By analogy to (8.91), the total force of the fluid, exerted on a stiff solid body is

F s
μ = −

∮

∂V
nν pνμd

2s. (8.94)

Here ∂V is the closed surface of the solid body, n is its outer normal.
A remark on Fig. 8.17 is in order. The force exerted by the fluid on the solid cube,

evaluated with (8.94), has tangential components in the directions indicated by the
arrows, provided that pyx and pxy are negative. This happens, indeed, for a plane
Couette flow with the geometry chosen as in Fig. 7.6.

8.4.3 The Archimedes Principle

The principle of Archimedes states: an impenetrable solid body immersed in a liquid
experiences a lift force, against the direction of gravity. The magnitude of this buoy-
ancy force is equal to the weight of the liquid in a volume, which is as large as that
one occupied by the solid. Why is that so? Why does it apply to solid bodies of any
shape, as long as the liquid does not penetrate into the solid?

Consider the local momentum conservation equation (8.88). In the presence of an
external force, an extra force density has to be taken into account on the right hand
side of the balance equation. In the case of the gravity on earth, this force density

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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is ρg, where ρ is the mass density of the liquid, and g is the gravity acceleration,
pointing downward, towards the center of the earth. Thus the force balance reads

ρ
dvμ

dt
+ ∇ν pνμ = ρ gμ. (8.95)

In a stationary situation, the time derivative of the velocity vanishes. Then one has
∇ν pνμ = ρgμ. On the other hand, the force on the solid body, which is assumed to
be totally surrounded by the liquid, is given by (8.91). Replacing the surface integral
by the pertaining volume integral, with the help of the Gauss theorem, and making
use of the momentum balance, one obtains for the buoyancy force

Fbuoy
μ = −

∫

V
ρgμd

3r, (8.96)

where the integral is to be extended over the volume of the solid. When ρ and g are
constant, the integral yields the volume V of the solid, irrespective of its shape, and
ρV = Mfl is the mass of the fluid, contained in such a volume. Thus one has

Fbuoy
μ = −Mfl gμ, (8.97)

which is just the Archimedes principle. Due to theminus sign in (8.97), this force acts
against gravity. The weight “felt” by the body with the mass Ms, immersed inside
the liquid is (Ms − Mfl)g.

How about the proof for the Archimedes principle for a floating body, that is only
partially immersed in the liquid, say in water? Imagine the floating body is cut at the
water level and a mass equal to that of the part cut off is placed at the center of gravity
of the part remaining under water. The force balance is still the same. Assuming that
a very thin layer of water is above the body, the considerations given above now
apply.

8.4.4 Torque on a Rotating Solid Body

The force Fν , per surface element, exerted by a fluid on the surface of a solid body is
proportional to −nκ pκν , cf. (8.94). The torque Tμ exerted by a fluid on a stiff solid
body is

Tμ = −εμλν

∮

∂V
rλnκ pκνd

2s. (8.98)

As before, ∂V indicates the closed surface of the solid body, n is its outer normal. It
is understood, that r = 0 coincides with the center of gravity of the body.

Examples for the computation of forces and torques are presented in Sects. 10.5.2
and 10.3

http://dx.doi.org/10.1007/978-3-319-12787-3_10
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8.5 Further Applications in Electrodynamics 145

8.5 Further Applications in Electrodynamics

8.5.1 Energy and Energy Density in Electrostatics

The Coulomb energy U of charges qi and qj, located in vacuum, is

U = 1

4π ε0

∑

i<j

∑

j

qi qj
|ri − rj| = 1

4π ε0

1

2

∑

i �=j

∑

j

qi qj
|ri − rj| . (8.99)

The last expression is equivalent to

U = 1

2

∑

i

qi φ(ri), φ(ri) = 1

4π ε0

∑

j

qj
|ri − rj| , (8.100)

where φ is the electrostatic potential. With the continuous charge density

ρ(r) =
∑

i

qi δ(r − ri),

the Coulomb energy reads

U = 1

2

∫

ρ(r) φ(r)d3r. (8.101)

Notice, the condition i �= j occurring in (8.99), is ignored in (8.100) and lost in
(8.101).

Now use of the Gauss law ρ = ∇ν Dν , cf. (7.56), of the relation φ∇ν Dν =
∇ν(Dνφ) − Dν∇νφ and Eν = −∇νφ, and the application of the Gauss theorem
leads to

U = 1

2

∫

φ(r)∇ν Dνd
3r = 1

2

∫

Eν Dνd
3r +

∮

nν Dν φd2s. (8.102)

The last term vanishes, when the integral
∮

. . . d2s is performed over a far away
surface where, at least φ = 0, or nν Dν = 0, holds true. Then the energy is given by

U = 1

2

∫

u(r)d3r, u = 1

2
Eν Dν, (8.103)

where u(r) is the energy density. So far charges in vacuum were considered, thus
one has Dν = ε0Eν and consequently u = 1

2ε0Eν Eν . The relations still apply to a
linear medium characterized by the dielectric tensor ενμ according to

Dν = ε0 ενμ Eμ,

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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cf. Sects. 2.6.4 and 5.3.4. Then the energy density is equal to

u = 1

2
Eν Dν = 1

2
ε0 ενμ Eμ Eν . (8.104)

Clearly, the symmetric part of ενμ only contributes to the energy density.
The energy density for the more general case of a nonlinear relation between the

D and E fields is treated in Sect. 8.5.3.

8.5.2 Force and Maxwell Stress in Electrostatics

The force Fμ acting on charges qj, in vacuum, in the presence of a given electric
field Eμ is

Fμ =
∑

j

qj Eμ(rj),

or, in terms of the charge density ρ, by

Fμ =
∫

ρ(r) Eμ(r)d3r =
∫

kelstatμ d3r. (8.105)

With the help of the Gauss law ρ = ∇ν Dν , cf. (7.56), the electrostatic force density
kelstatμ can be rewritten as

kelstatμ = Eμ ∇ν Dν = ∇ν(Dν Eμ) − Dν ∇ν Eμ. (8.106)

In electrostatics, one has∇ ×E = 0, and consequently∇ν Eμ = ∇μEν . Thus the last
term of (8.106) is equal to Dν∇μEν . Provided that the interrelation between D and E
is linear, this term can also be written as the total spatial derivative (1/2)∇μ(Eν Dν).
Thus in vacuum, and the same applies for any linear medium, the force density is
given by

kelstatμ = ∇ν(Dν Eμ) − 1

2
∇μ(EλDλ) = ∇ν(Dν Eμ) − 1

2
∇μ(EλDλδμν) = ∇νT elstat

νμ .

(8.107)
The electrostatic stress tensor for a linear medium is defined by

T elstat
νμ ≡ Dν Eμ − 1

2
EλDλ δμν. (8.108)

This tensor is symmetric, i.e. T elstat
νμ = T elstat

μν , in vacuum and for an isotropic linear
medium, where Dν = εε0Eν applies, with a scalar dielectric coefficient ε. In general

http://dx.doi.org/10.1007/978-3-319-12787-3_2
http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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however, and also in an anisotropic linear medium with ενμ �= 0, the Maxwell
stress tensor contains an antisymmetric part, which is associated with a torque. For
a discussion of this point see Sect. 8.5.5.

8.5.3 Energy Balance for the Electromagnetic Field

Point of departure of the formulation of the energy balance for the electromagnetic
field is the expression

jμ Eμ

for the power, i.e. for the time change of the energy, delivered by the electric field E
on the electric current density j.
Side remark: A plausible argument for the power being given by jμEμ.

In mechanics, the time change of the kinetic energy d
dt

1
2mvμvμ = vμ

d
dt mvμ of a

particle moving with velocity v in a force field F is given by vμFμ. For one type of
carriers with the electric charge e, the current density is equal to jμ = nevμ, where
n is the number density of the charges and v their average velocity. Then the relation
stated above follows due to Fμ = eEμ.

Now, multiplication of the inhomogeneous Maxwell equation involving the cur-
rent density, cf. (7.56), by Eμ leads to

εμνλ Eμ ∇ν Hλ = jμEμ + Eμ

∂

∂t
Dμ.

The term on the left hand side can be rewritten as

εμνλ Eμ ∇ν Hλ = ∇ν (εμνλ Eμ Hλ) − Hλ εμνλ ∇ν Eμ.

Due to the homogeneous Maxwell equation referred to as Faraday law, cf. (7.57),
the last term of the equation above is equal to

−Hλ εμνλ ∇ν Eμ = Hλ ελνμ ∇ν Eμ = −Hλ

∂

∂t
Bλ.

Thus the energy balance equation reads

jμEμ + Eμ

∂

∂t
Dμ + Hμ

∂

∂t
Bμ + ∇μSμ = 0, (8.109)

with the energy flux density, also called Poynting vector,

Sμ ≡ εμνλ EμHλ. (8.110)

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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Notice, no specific form of an interrelation between E and D or between B and H
has been used. So the energy balance (8.109) holds true in general.

Integration of the local balance equation over a volume V and use of the Gauss
theorem yields

∫

V
jμEμd

3r +
∫

V

(

Eμ

∂

∂t
Dμ + Hμ

∂

∂t
Bμ

)

d3r +
∮

∂V
nμSμd

2s = 0. (8.111)

The first term is the power which the current extracts from the electromagnetic field
and the second term stands for the power which the field takes from the current, both
within the volume V . The last term describes the power given to the surroundings,
e.g. by radiation.

The field energy can be defined for a nonlinear, hysteresis-free medium, where
the E and H fields are uniquely determined by the D and B fields according to

E = E(r, D), H = H(r, B). (8.112)

The electric and magnetic energy densities are defined by

uel(D) =
∫ D

0
Eμ(D′)dD′

μ, umag(B) =
∫ B

0
Hμ(B′)dB ′

μ. (8.113)

The time derivatives of these energy densities are

∂

∂t
uel = Eμ

∂

∂t
Dμ,

∂

∂t
umag = Hμ

∂

∂t
Bμ. (8.114)

Thus, for the hysteresis-freemedium, the local energy balance (8.109) is equivalent to

∂

∂t
(uel + umag) + ∇μSμ + jμEμ = 0. (8.115)

The definition (8.113) implies that E and H are derivatives of the electric and of the
magnetic energy density with respect to D and B, respectively:

Eλ = ∂uel

∂ Dλ

, uel = uel(D), Hλ = ∂umag

∂ Bλ

, umag = umag(B). (8.116)

For a linear medium characterized by the relative dielectric tensor ελκ and the mag-
netic permeability tensor μλκ according to

Dλ = ε0 ελκ Eκ , Bλ = μ0 μλκ Hκ , (8.117)
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one has

Eλ = ε−1
0 ε−1

λκ Dκ , Hλ = μ−1
0 μ−1

λκ Bκ ,

and consequently

uel = 1

2
ε−1
0 Dλ ε−1

λκ Dκ = 1

2
Dλ Eλ

umag = 1

2
μ−1
0 Bλ μ−1

λκ Bκ = 1

2
BλHλ. (8.118)

For the special case of an isotropic linear medium, where ελκ = εδλκ and μλκ =
μδλκ , with the scalar coefficients ε and μ hold true, the equations for the electric and
magnetic energy density reduce to

uel = 1

2
(ε0 ε)−1 D2, umag = 1

2
(μ0 μ)−1 B2. (8.119)

8.5.4 Momentum Balance for the Electromagnetic Field,
Maxwell Stress Tensor

TheLorentz force (3.47) describes the force, i.e. the time change of the linearmomen-
tum, experienced by a charge in the presence of E and B fields. When the “matter”
is characterized by the charge density ρ and the current density jν , the force density
exerted by the fields on the matter is

kμ = ρEμ + εμνλ jν Bλ.

With the help of the inhomogeneous Maxwell equations (7.56), this expression is
equal to

ρ Eμ + εμνλ jν Bλ = Eμ ∇ν Dν + εμνλ ενκτ (∇κ Hτ ) Bλ − εμνλ

(

∂

∂t
Dν

)

Bλ.

The term involving the time derivative can be rewritten as

−εμνλ

(

∂

∂t
Dν

)

Bλ = −εμνλ

∂

∂t
(Dν Bλ) + εμνλ Dν

∂

∂t
Bλ.

Due to the Faraday law, i.e. the homogeneous Maxwell equation (7.57) involving the
time derivative of the B field, the last term is equal to

εμνλ Dν

∂

∂t
Bλ = −εμνλ Dνελκτ∇κ Eτ .

http://dx.doi.org/10.1007/978-3-319-12787-3_3
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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Putting terms together, one arrives at

ρ Eμ + εμνλ jν Bλ + εμνλ

∂

∂t
(Dν Bλ)

= Eμ ∇ν Dν − εμνλ Dνελκτ∇κ Eτ + εμνλ ενκτ (∇κ Hτ ) Bλ.

The right hand side of this equation can be written as a total spatial derivative. First
notice that, due to εμνλελκτ = δμκδντ − δμτ δνκ ,

−εμνλ Dνελκτ∇κ Eτ = −Dν∇μEν + Dν∇ν Eμ.

With

−Dν∇μEν = −∇μ(Dν Eν) + Eν∇μ Dν

and

Dν∇ν Eμ = ∇ν(Dν Eμ) − Eμ∇ν Dν,

one obtains

−εμνλ Dνελκτ∇κ Eτ + Eμ∇ν Dν = ∇ν(Dν Eμ − Dκ Eκ δμν) + Eν∇μDν .

The last term on the right hand side is the gradient of the electric energy density uel.
By analogy to (8.114), one has

Eν∇μ Dν = ∇μ uel,

provided that the medium is hysteresis-free. Then the terms involving the electric
fields are equal to

−εμνλ Dνελκτ∇κ Eτ + Eμ∇ν Dν = ∇νT el
νμ,

where

T el
νμ = Dν Eμ − (Dκ Eκ − uel) δμν (8.120)

is the electric part of theMaxwell stress tensor. By analogy, the term in themomentum
balance involving the magnetic fields is equal to

εμνλ ενκτ (∇κ Hτ ) Bλ = ∇νTmag
νμ ,

with the magnetic part

Tmag
νμ = Bν Hμ − (Bκ Hκ − umag) δμν (8.121)
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of the Maxwell stress tensor. The total stress tensor is

Tνμ = T el
νμ + Tmag

νμ . (8.122)

Finally, the momentum balance is found to be

∇νTνμ = ∂

∂t
(εμνλ Dν Bλ) + ρEμ + εμνλ jν Bλ. (8.123)

The term on the left hand side is the divergence of the momentum flux density,
the first term on the right side is the time change of the momentum density of the
electromagnetic field. The other terms on the right hand side describe the time change
of the momentum density of matter.

Integration of (8.123) over a volume V and application of the Gauss theorem
yields

∮

∂V
nνTνμd

2s = d

dt

∫

V
εμνλ Dν Bλd

3r +
∫

V
(ρEμ + εμνλ jν Bλ)d

3r. (8.124)

The balance equations (8.123) and (8.124) show that

D × B (8.125)

is the density of the linear momentum of the electromagnetic field. For fields in
vacuum, this quantity is proportional to the energy flux density S, cf. (8.110), viz.

D × B = 1

c2
E × H = 1

c2
S, (8.126)

where c is the speed of light in vacuum.

8.5.5 Angular Momentum in Electrodynamics

Multiplication of the momentum balance equation (8.123) by εκτμrτ and use of

εκτμrτ∇νTνμ = ∇ν(εκτμrτ Tνμ) − εκτμTνμ∇νrτ ,

together with ∇νrτ = δντ , leads to the angular momentum balance equation

∇ν(εκτμrτ Tνμ) = εκνμTνμ + εκτμrτ

(

∂

∂t
(εμνλ Dν Bλ) + ρ Eμ + εμνλ jν Bλ

)

.

(8.127)
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Notice that

εκνμTνμ = εκνμ Dν Eμ + εκνμ Bν Hμ = (D × E)κ + (B × H)κ . (8.128)

Thus integration of the local balance equation over a volume V leads to

d

dt

∫

V
r×(D×B)d3r = −

∫

V
(D×E+B×H)d3r −

∫

V
r×(ρE+j×B)d3r, (8.129)

provided that the surface integral vanishes. The term on the left hand side is the
time change of the angular momentum of the electromagnetic field, compensated by
torques exerted by matter. So the torque of the field on the matter is equal to the right
hand side, just with the opposite sign.

For electrically neutral matter with ρ = 0 and j = 0, the torque acting onmatter is

∫

V
(D × E + B × H)d3r.

Due to

D = ε0 E + P, B = μ0 (H + M),

andD×E = P×E, as well asB×H = μ0M×H = M×B, the corresponding torque
T acting on matter characterized by the electric polarization P and the magnetization
M is the sum of the electric and magnetic torques Tel and Tmag determined by

T = Tel + Tmag, Tel =
∫

V
P × Ed3r, Tmag =

∫

V
M × Bd3r. (8.130)

For a spatially constant electric field, the integration of P over the volume yields
the electric dipole moment pel, cf. Sect. 10.4.2. Similarly, for a constant magnetic
field, the integration of M gives the magnetic moment m. The relation (8.130) then
reduces to the expressions (5.31) for the electric and magnetic torques.

The pertaining torque density t acting on the electric polarization P and the mag-
netization M is

t = P × E + M × B. (8.131)

http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_5
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Chapter 9
Irreducible Tensors

Abstract At the begin of the more advanced part of the book, irreducible, i.e.
symmetric traceless tensors of any rank are treated in this chapter. Products of
irreducible tensors and contractions, a relation to Legendre polynomials as well as
spherical components of tensors are pointed out. Cubic tensors and cubic harmonics
associated with cubic symmetry are presented.

9.1 Definition and Examples

An arbitrary tensor Aμ1μ2...μ�−1μ�
of rank � can be reduced to a tensor of rank � − 1

with the help of the epsilon-tensor:

εμμ�−1μ�
Aμ1μ2...μ�−1μ�

. (9.1)

Similarly, the contraction

Aμ1μ2...μ�−2μμ = δμ�−1μ�
Aμ1μ2...μ�−1μ�

(9.2)

yields a tensor of rank �−2. A reduction of the rank of a tensor is not possible, when
the tensor is symmetric with respect to the interchange of any pair of subscripts and
when its partial trace vanishes, i.e. whenever two of its indices are equal and summed
over. Such a tensor, which cannot be reduced to a lower-rank tensor is an irreducible
tensor, sometimes it is also referred to as symmetric traceless. Just as in the case
of second rank tensors, cf. (3.3), the symbol . . . indicates the irreducible part of a
tensor, of rank �:

Aμ1μ2...μ�−1μ�
. (9.3)

Scalars and vectors, tensors of rank � = 0 and � = 1, are irreducible tensors, per se.
The irreducible part of a second rank tensor Aμν is

Aμν = 1

2

(

Aμν + Aνμ

) − 1

3
Aλλ δμν,
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seeSects. 3.1.2 andChap. 6.Thenumber of independent components of an irreducible
tensor is of rank � is

2 � + 1.

This can be verified easily for the cases � = 0, 1, 2, treated so far. In general, an
irreducibleCartesian tensor Aμ1μ2...μ�−1μ�

of rank �, is isomorphic to a corresponding
spherical tensor with components A�m . The integer m, with −� ≤ m ≤ �, has 2�+1
possible values. The connection between Cartesian and spherical components is
discussed later, in Sect. 9.4. Some examples for irreducible tensors of rank 3 and 4
are presented next.

Let aμ be a vector and Aνλ = Aνλ an irreducible second rank tensor. The

irreducible third rank tensor aμ Aνλ is explicitly given by

aμ Aνλ = 1

3
(aμ Aνλ+aν Aμλ+aλ Aμν)−2

5
aκ(δμν Aλκ+δμλ Aνκ+δνλ Aμκ). (9.4)

The third rank irreducible tensor constructed from the components of the vector aμ is

aμaνaλ = aμaνaλ − 1

5
a2(aμδνλ + aνδμλ + aλδμν), (9.5)

with a2 = aκaκ = a · a. Similarly, the explicit expression for the irreducible tensor
of rank four, constructed from the components of the vector, is

aμaνaλaκ = aμaνaλaκ

− 1

7
a2(aμaνδλκ +aμaλδνκ +aμaκδνλ+aνaλδμκ +aνaκδμλ+aλaκδμν)

+ 1

35
a4(δμνδλκ +δμλδνκ +δμκδνλ). (9.6)

Notice: the symbol . . . is defined such that the factor in front of the term aμ1aμ2 . . .

aμ�
in the irreducible tensor aμ1aμ2 . . . aμ�

is 1.
Let Aμν be an irreducible tensor. The irreducible fourth rank tensor constructed

from the product of the second rank tensor is

Aμν Aλκ = 1

3
(Aμν Aλκ + Aμλ Aνκ + Aμκ Aλν)

− 2

21
(Aμτ Aτνδλκ + Aμτ Aτλδνκ + Aμτ Aτκ δνλ+ Aντ Aτλδμκ + Aντ Aτκ δμλ+ Aλτ Aτκ δμν)

+ 2

105
Aτσ Aτσ (δμνδλκ +δμλδνκ +δμκδνλ). (9.7)

http://dx.doi.org/10.1007/978-3-319-12787-3_3
http://dx.doi.org/10.1007/978-3-319-12787-3_6
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In many cases, the explicit form of the symmetric traceless higher rank tensors are
not needed. It is one of the advantages of tensor calculus that general properties of
tensors often suffice in applications.

A remarkonnotation is appropriate.Asmentionedbefore inSect. 3.1.2, alternative
ways to write and display irreducible tensors are found in the literature. In additions
to the double arrow, the symbols [. . .]0 or [[. . .]]0, as well as {. . .}0 were used to
indicate the symmetric traceless part of a tensor.

9.2 Products of Irreducible Tensors

Let Aμν and Bλκ be irreducible tensors. Multiplication of the irreducible fourth rank
tensor constructed from the product of the second rank tensor Aμν , cf. (9.7), by Bλκ

yields

Aμν Aλκ Bλκ = 1

3
Aμν(Aλκ Bλκ) + 4

105
Bμν(Aλκ Aλκ)

+2

3
AμλBλκ Aκν − 8

21
Bμλ Aλκ Aκν . (9.8)

For the special case B = A, (9.8), reduces to

Aμν Aλκ Aλκ = 13

35
Aμν(Aλκ Aλκ) + 2

7
Aμλ Aλκ Aκν = 18

35
Aμν(Aλκ Aλκ).

(9.9)

The last equality follows from Aμλ Aλκ Aκν = 1
2 Aμν Aλκ Aλκ , cf. (5.51).

9.1 Exercise: Verify the Required Properties of the Third and Fourth Rank
Irreducible Tensors (9.5) and (9.6)
First, verify by inspection, that the tensors explicitly given by (9.5) and (9.6) are
symmetric against the interchange of indices, within any pair of components. Then
put λ = ν, in (9.5) to show aμaνaν = 0. Likewise, use κ = λ in (9.6) to verify

aμaνaλaλ = 0.

9.3 Contractions, Legendre Polynomials

The multiplication of two tensors of rank � constructed from the components of
two vectors a and b and their subsequent total contraction yields a scalar which is
proportional to the Legendre polynomial P�, depending on the cosine of the angle
between these two vectors. More specifically:

P�(a, b) ≡ aμ1aμ2 . . . aμ�
bμ1bμ2 . . . bμ�

= a� b� N� P�(̂a ·̂b), (9.10)

http://dx.doi.org/10.1007/978-3-319-12787-3_3
http://dx.doi.org/10.1007/978-3-319-12787-3_5
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with

N� = �!
(2� − 1)!! = 1 · 2 · 3 · · · (� − 1) · �

1 · 3 · 5 · · · (2� − 3) · (2� − 1)
. (9.11)

For a proof of this relation see Sect. 10.3.5. The special case a = b leads to
P�(a, a) = a2�N�, since P�(1) = 1.

Examples for � = 1, 2, 3, 4 are listed explicitly:

P1(a, b) = a b P1(̂a ·̂b), P1(x) = x, (9.12)

P2(a, b) = 2

3
a2 b2 P2(̂a ·̂b), P2(x) = 3

2

(

x2 − 1

3

)

, (9.13)

P3(a, b) = 2

5
a3 b3 P3(̂a ·̂b), P3(x) = 5

2

(

x3 − 3

5
x

)

, (9.14)

P4(a, b) = 8

35
a4 b4 P4(̂a ·̂b), P4(x) = 35

8

(

x4 − 6

7
x2 + 3

35

)

. (9.15)

Some general properties of Legendre polynomials, in particular the prescription for
their evaluation via a generating function, are presented in Sect. 10.3.5.

9.4 Cartesian and Spherical Tensors

9.4.1 Spherical Components of a Vector

Let e(x), e(y), e(z) be unit vectors parallel to the coordinate axes. A vector a is given
by the linear combination a = axe(x)+aye(x)+aze(x). The ax, ay, az are the standard
Cartesian components. The spherical unit vectors

e(0) = e(z), e(±1) = ∓ 1√
2

(

e(x) ∓ i e(y)
)

, (9.16)

which have the properties

(

e(m)
)∗ = (−1)me(−m),

(

e(m)
)∗ · e(m′) = δmm′, m, m′ = −1, 0, 1, (9.17)

can as well be used as basis vectors. Then the vector a is represented by

a = a(1) e(1) + a(0) e(0) + a(−1) e(−1) =
1

∑

m=−1

a(m) e(m), (9.18)

http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_10
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with the spherical components

a(m) = a · (e(m))∗ = (−1)m a · e(−m). (9.19)

Explicitly, the relation between the spherical and Cartesian components is

a(0) = az, a(±1) = ∓ 1√
2

(ax ± i ay). (9.20)

The unit vector r̂ = r−1 r is represented in terms of the spherical polar angles ϑ

and ϕ according to {cosϕ sin ϑ, sin ϕ sin ϑ, cosϑ}. Then the spherical components
of the position vector r are

r (0) = r cosϑ, r (±1) = ∓ 1√
2

r sin ϑ exp(±i ϕ). (9.21)

Apart from the numerical factor
√
4π/3, the spherical components of r̂ = r−1r are

equal to the first order spherical harmonics Ym
1 (̂r). Similarly, for any vector a = a â,

one has

a(m) = a

√

4π

3
Ym
1 (̂a). (9.22)

The generalization of the interrelation between Cartesian and spherical components
to tensors of rank � > 1 is discussed next.

9.4.2 Spherical Components of Tensors

Let Sμ1μ2···μ�
be a symmetric traceless tensor of rank �, given by its Cartesian com-

ponents. By analogy to (9.19) the pertaining spherical components S(m)
� are obtained

by the scalar multiplication with �-fold product of the Cartesian components of the
vectors e(m)∗, viz.

S(m)
� =

1
∑

m1=−1

. . .

1
∑

m�=−1

(−1)m

× Sμ1μ2···μ�
e(−m1)
μ1

e(−m2)
μ2

· · · e(−m�)
μ�

δ(m, m1 + m2 + . . . + m�). (9.23)

Here, the notation δ(m, m1+m2+ . . .+m�) is used for the Kronecker delta symbol,
i.e. δ(· · · ) = 1, form1+m2+. . .+m� = m, and δ(· · · ) = 0, otherwise.Bydefinition,
the possible values for m are the integer numbers m = −�,−� + 1, . . . , 0, . . . , � −
1, �. Clearly, the irreducible tensor of rank � has 2� + 1 spherical components.
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The isomorphic Cartesian tensor has the same number of independent components,
though it is not obvious from its notation.

The expression (9.23) can also be applied to the irreducible tensor aμ1aμ2 · · · aμ�

constructed from the components of the vector a. The resulting spherical components
a(m)
� are related to the �-th order spherical harmonic Y (m)

� (̂a) by

a(m)
� = a�

√

4π �!
(2 � + 1)!! Y (m)

� (̂a). (9.24)

The scalar product, i.e. the total contraction of the two tensors in (9.10) can also be
expressed in terms of the pertaining spherical components, where the sum over m
corresponds to a scalar product, viz.

aμ1aμ2 . . . aμ�
bμ1bμ2 . . . bμ�

=
�

∑

m=−�

a(m)
�

(

b(m)
�

)∗
(9.25)

= a� b� 4π �!
(2 � + 1)!!

�
∑

m=−�

Y (m)
� (̂a)

(

Y (m)
�

)∗
(̂b).

Comparison of this equation with the right hand side of (9.10) yields the relation

P�(̂a ·̂b) = 4π

(2 � + 1)

�
∑

m=−�

Y (m)
� (̂a)

(

Y (m)
�

)∗
(̂b), (9.26)

which expresses the Legendre polynomial with a scalar product of spherical harmon-
ics.

For ease of reference, the first few spherical harmonics, for � = 0, 1, 2, are
listed here, where the Cartesian components of r are denoted by {x, y, z}, and the
coefficients c(�) = √

(2� + 1)!!/4π are used:

Y (0)
0 = c(0) = 1/

√
4π,

Y (0)
1 = c(1) r−1 z = c(1) cosϑ,

Y (±1)
1 = ∓c(1)

1√
2

r−1(x ± i y) = ∓c(1)
1√
2
sin ϑ exp(±i ϕ), (9.27)

Y (0)
2 = c(2)

√
3

2
r−2

(

z2 − 1

3
r2

)

= c(2)

√
3

2

(

cos2 ϑ − 1

3

)

,

Y (±1)
2 = ∓c(2)

1√
2

r−2 z (x ± i y) = ∓c(2)
1√
2
sin ϑ cosϑ exp(±i ϕ),
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Y (±2)
2 = c(2)

1

2
√
2

r−2 (x ± i y)2 = c(2)
1

2
√
2
sin2 ϑ exp(±2 i ϕ). (9.28)

For all � one has
Y (m)

� ∼ exp(m i ϕ). (9.29)

Furthermore, the Y (0)
� , which do not depend on ϕ, are proportional to the Legendre

polynomials P�(cosϑ), viz.Y (0)
� = √

(2� + 1)/4π P�. The spherical harmonicsY (0)
� ,

as well as Y (m)
� + Y (m)∗

� and i(Y (m)
� − Y (m)∗

� ) are real functions.

Notice: the name spherical harmonics does not indicate the symmetry of these func-
tions, but rather their dependence on the polar angles of spherical coordinates. As
far as symmetry is concerned, a preferential axis, usually chosen as the z-axis, is
linked with the spherical harmonics. In Quantum Mechanics, this reference axis is
also referred to as quantization axis.

9.5 Cubic Harmonics

9.5.1 Cubic Tensors

Irreducible Cartesian tensors, which reflect the symmetry of cubic crystals are tensors
of ranks � = 4, 6, . . .. Let e(i), with i = 1, 2, 3 be unit vectors parallel to the axes of
a cubic crystal. The first of these tensors with full cubic symmetry, as used in [25],
are

H (4)
μνλκ ≡

3
∑

i=1

e(i)
μ e(i)

ν e(i)
λ e(i)

κ =
3

∑

i=1

e(i)
μ e(i)

ν e(i)
λ e(i)

κ − 1

5
(δμνδλκ + δμλδνκ + δμκδνλ),

(9.30)

H (6)
μνλκστ ≡ e(1)

μ e(1)
ν e(2)

λ e(2)
κ e(3)

σ e(3)
τ , H (8)

μ1···μ8
≡

3
∑

i=1

e(i)
μ1 · · · e(i)

μ8 . (9.31)

These tensors are invariant against the exchange of the cubic axes.

9.5.2 Cubic Harmonics with Full Cubic Symmetry

Multiplication of H (4)
μνλκ with the irreducible fourth rank tensor r̂μr̂ν r̂λr̂κ , con-

structed from the components of the unit vector r̂ = r−1r, yields
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H4 ≡ H (4)
μνλκ r̂μr̂ν r̂λr̂κ = x4 + y4 + z4 − 3

5
. (9.32)

Here x, y, z stand for the components of the unit vector r̂ with respect to the cubic
axes e(i), e.g. x = r̂μe(1)

μ . The function H4 is proportional to the fourth order cubic
harmonic K4 with the full cubic symmetry. Cubic harmonics were introduced in [26],
and also used in [27, 28]. These real functions can be expressed in terms of linear
combinations of spherical harmonics, e.g.

K4 ≡ 5

4

√
21 H4 = √

4π

[
√

7

12
Y (0)
4 +

√

5

6

1

2

(

Y (4)
4 + Y (−4)

4

)

]

. (9.33)

The other 8 cubic harmonics of order 4 can be found in [26–28]. Similarly, of the 13
and 17 cubic harmonics of order 6 and 8, only those are presented here, which are
obtained by analogy to (9.32), from the tensors H (6)

... and H (8)
... :

K6 ≡ 231

8

√
26 H6, H6 = x2 y2 z2 − 1

105
+ 1

22
H4, (9.34)

K8 ≡ 65

16

√
561 H8, H8 = x8 + y8 + z8 − 1

3
− 28

5
H6 − 210

143
H4. (9.35)

The numerical factors occurring in the relations between the K� and H�, for � =
4, 6, 8, are chosen such that the orientational averages of K 2

� are equal to 1. The

function K6 is proportional to a linear combination of Y (0)
6 and Y (4)

6 + Y (−4)
6 . For

K8, it is Y (0)
8 , Y (4)

8 + Y (−4)
8 , and Y (8)

8 + Y (−8)
8 , cf. [28].

The values of the functions H4, H6, and H8, taken at the positions of the first
and second coordination shell of simple cubic (sc), body centered cubic (bcc), and
face centered cubic (fcc) crystals, are characteristic for these different types of cubic
crystals. The coordinates {x, y, z}of a representative nearest neighbor are {1, 0, 0} for
the sc, {1/√3, 1/

√
3, 1/

√
3} for the bcc, and {1/√2, 1/

√
2, 0} for the fcc crystal.

Then H4, H6, H8 are equal to 2/5, 2/231, 2/65, respectively, for sc, the simple
cubic crystal. The corresponding values for bcc, the body centered cubic crystal, are
−4/15, 32/2079, 16/1755. For fcc, the face centered cubic structure, these values
are −1/10, −13/924, 9/520.



Chapter 10
Multipole Potentials

Abstract In this chapter descending and ascending multipole potentials are
introduced, their properties are discussed and the dipole, quadrupole and octupole
potentials are considered in more detail. An application is the multipole expansion
of electrostatics, the multipole moments, like electric dipole, quadrupole, octupole
moments are defined. Further applications in electrodynamics are the calculation of
the induced dipole moment of a metal sphere, the electric polarization expressed as
dipole density, the determination of the energy of multipole moments in an external
field, as well as the multipole-multipole interaction. An application of the multipole
expansion for the pressure and velocity in hydrodynamics yields the Stokes force
acting on sphere.

Multipole potentials are tensorial solutions of the Laplace equation Δφ... = 0.
Depending on their behavior for r → ∞ and at r = 0, descending and ascend-
ing multipole potentials are distinguished. More specifically,

descending multipole potentials approach 0 for r → ∞, and diverge for r → 0,
ascending multipole potentials are 0 at r = 0 and diverge for r → ∞.

10.1 Descending Multipoles

10.1.1 Definition of the Multipole Potential Functions

As noticed before, cf. Sect. 7.6.3, the spherical symmetric solution of the Laplace
equation, which vanishes for r → ∞, is

X0 = r−1. (10.1)

It is understood that r > 0. The spatial derivative ∇μr−1 ≡ ∂
∂rμ

r−1 is also a solution
of the Laplace equation. This follows from

Δ

(

∂

∂rμ

r−1
)

= ∂2

∂rλ∂rλ

(

∂

∂rμ

r−1
)

= ∂

∂rμ

Δ r−1 = 0.
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The same applies for a �-fold spatial differentiation of r−1. In this spirit, Cartesian
tensors of rank � are defined by

Xμ1μ2···μ�
≡ (−1)�

∂�

∂rμ1∂rμ2 · · · ∂rμ�

r−1 = (−1)� ∇μ1∇μ2 · · · ∇μ�
r−1. (10.2)

The tensorial functions X ... approach 0 for r → ∞. By definition, these tensors are
symmetric. Whenever two subscripts are equal and summed over, these two spatial
derivatives are equivalent to Δ and consequently 0 is obtained. Thus the spatial
differentiation (10.2) yields irreducible tensors of rank �. These are the descending
multipole potentials. Due to the definition (10.2), the �-th multipole potential is
related to the � − 1 function by

Xμ1μ2···μ�−1μ�
= − ∂

∂rμ�

Xμ1μ2···μ�−1 = −∇μ�
Xμ1μ2···μ�−1 . (10.3)

10.1.2 Dipole, Quadrupole and Octupole Potentials

Examples for multipole potential tensors of rank � = 1, 2, 3 are the

dipole potential

Xμ = r−3 rμ = r−2 r̂μ, (10.4)

the quadrupole potential

Xμν = 3 r−5
(

rμrν − 1

3
r2 δμν

)

= 3 r−5 rμrν = 3 r−3 r̂μr̂ν , (10.5)

and the octupole potential

Xμνλ = 15 r−7 rμrνrλ = 15 r−4 r̂μr̂ν r̂λ . (10.6)

The reason for the names dipole, quadrupole and octupole potential is seen in
Sect. 10.3.

10.1.3 Source Term for the Quadrupole Potential

The formulas presented here and in the following for the multipole potential tensors
are valid for r > 0. When a source term is included at r = 0, the second rank
multipole tensor obeys the relation
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∇μ ∇ν r−1 = Xμν(r) − 4π

3
δμν δ(r), (10.7)

where Xμν(r) is given by (10.5).
To verify (10.7), integrate it over a sphere with a finite radius R, centered at r = 0.

More specifically, use the Gauss theorem for
∫ ∇μ(∇νr−1)d3r to obtain

∫

∇μ ∇ν r−1d3r = R2
∫

r̂μ

(

∇ν r−1
)

r=R
d2r̂ = −

∫

r̂μ r̂νd
2r̂ = − (4π/3) δμν.

Notice that d3r = r2drd2r̂ , that the integral of the symmetric traceless tensor Xμν

over the sphere vanishes since
∫

r̂μr̂ν d2r̂ = 0, and that the δ-function has the
property

∫

δ(r)d3r = 1.
The trace of (10.7) yields

Δ r−1 = −4π δ(r). (10.8)

The Poisson equation of electrostatics or the electric potential φ ∼ r−1 in vacuum,
caused by a point charge q located at r = 0, viz. ε0Δφ = −4πqδ(r), is mathemat-
ically equivalent to (10.8). The Poisson equation, in turn, is a consequence of the
Gauss law of electrodynamics, cf. Sect. 7.5.

10.1.4 General Properties of Multipole Potentials

In general, the �-th multipole potential can be written as

Xμ1μ2···μ�
= (2� − 1)!! r−(2�+1) rμ1rμ2 · · · rμ�

, (10.9)

or equivalently

Xμ1μ2···μ�
(r) = r−(�+1) Yμ1μ2···μ�

(r̂), (10.10)

with the tensors

Yμ1μ2···μ�
(r̂) = (2� − 1)!! r̂μ1 r̂μ2 · · · r̂μ�

. (10.11)

The irreducible tensors Y... depend on the direction of r only. With the unit vector
r̂ expressed in terms of the polar angles, the components of the �-th rank Cartesian
tensor are isomorphic to the spherical harmonics Ym

� .
Clearly, cf. (10.10), the �-th rank multipole potential is proportional to

r−(�+1).

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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Multiplication of Xμ1μ2···μ�
by the components of r yields a tensor of rank � + 1.

The contraction with the position vector, on the other hand, gives a tensor of rank
� − 1, which is proportional to a multipole potential, viz.

rμ�
Xμ1μ2···μ�−1μ�

= � Xμ1μ2···μ�−1 . (10.12)

The proof is as follows. On account of (10.3) and rμ�

∂
∂rμ�

= r ∂
∂r , the left hand

side of (10.12) is equal to −r ∂
∂r Xμ1μ2···μ�−1 . The multipole potential of rank �− 1 is

proportional to r−�, cf. (10.10). Thus the differentiationwith respect to themagnitude
r yields the result (10.12).

Let g = g(r) be a function which depends on r only via the magnitude r = |r|.
Then the Laplace operator applied on the product of g(r) and the multipole potential
of rank � is equal to

Δ
(

g(r)Xμ1μ2···μ�

) =
(

g′′ − 2 �r−1 g′) Xμ1μ2···μ�(r) = r2 �
(

r−2 �g′)′
Xμ1μ2···μ�(r)

� ≥ 1, (10.13)

where the prime ′ indicates the derivative with respect to r . When the case � = 0 is
associated with the monopole function r−1, then (10.13) also applies for � = 0. The
proof of (10.13) is transferred to the following exercise.

10.1 Exercise: Prove the Product Rule (10.13) for the Laplace Operator
Hint: use Δ( f g) = f Δg + 2(∇κ f )(∇κ g) + gΔ f , for any two functions f and g.

10.2 Exercise: Multipole Potentials in D Dimensional Space
InDdimensions, r (2−D) is the radially symmetric solution of theLaplace equation, cf.
Exercise 7.6, for D ≥ 3. By analogy with (10.2), D dimensional multipole potential
tensors are defined by

XD
μ1μ2···μ�

≡ (−1)�
∂�

∂rμ1∂rμ2 · · · ∂rμ�

r (2−D) = (−1)� ∇μ1∇μ2 · · · ∇μ�
r (2−D),

(10.14)

where now ∇ is the in D dimensional nabla operator. For D = 2, r (2−D) is replaced
by − ln r . Compute the first and second multipole potentials, for D ≥ 3 and for
D = 2.

10.2 Ascending Multipoles

The factor (g′′ − 2�r−1g′) = r2�(r−2�g′)′ in (10.13) is equal to zero not only for
g = 1, but also for g = r (2�+1). This implies: the tensors

X̃μ1μ2···μ�
≡ r (2�+1) Xμ1μ2···μ�

= r� Yμ1μ2···μ�
(10.15)

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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are also solutions of the Laplace equation. These are the ascending multipole
potentials. They are proportional to r� and thus 0 for r = 0. Apart from the fac-
tor (2 � − 1)!!, the ascending multipoles are just the irreducible tensors constructed
from the components of r, viz.

X̃μ1μ2···μ�
= (2 � − 1)!! rμ1rμ2 · · · rμ�

. (10.16)

Examples for � = 0, 1, 2, 3 are X̃ = 1, X̃μ = rμ and

X̃μν = 3 rμrν = 3 rμrν − r2 δμν, (10.17)

X̃μνλ = 15 rμrνrλ = 3
(

5 rμrνrλ − r2 (rμδνλ + rνδμλ + rλδμν)
)

. (10.18)

By analogy to (10.12), the multiplication of the symmetric traceless tensor of rank �,
constructed from the components of the vector r, by a component of this vector and
subsequent contraction, yields a corresponding tensor of rank � − 1. In particular,
(10.12) implies

rμ�
rμ1rμ2 · · · rμ�−1rμ�

= �

2 � − 1
r2 rμ1rμ2 · · · rμ�−1 . (10.19)

Similarly, from ∇μ�
Xμ1μ2···μ�−1μ�

= 0 and (10.9) follows

∇μ�
rμ1rμ2 · · · rμ�−1rμ�

= �
2 � + 1

2 � − 1
rμ1rμ2 · · · rμ�−1 . (10.20)

For � = 1, the relations rμrμ = r2 and ∇μrμ = 3 are recovered. The nontrivial case
� = 2 can be used to verify the factors occurring on the right hand side of (10.19)
and (10.20).

10.3 Multipole Expansion and Multipole Moments
in Electrostatics

10.3.1 Coulomb Force and Electrostatic Potential

The Coulomb force exerted on a charge q at the position r, by a charge Q, located
at the position r′ = 0, is

F = q Q

4π ε0

1

r3
r,
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cf. (8.81). This force can bewritten as the negative gradient ofqφ, viz. Fμ = −∇μqφ,
where

φ = Q

4π ε0

1

r
,

is the electrostatic potential. For N charges qi, located at positions ri the correspond-
ing expression is

φ = 1

4π ε0

N
∑

i=1

qi

|r − ri| . (10.21)

The generalization to a continuous charge density ρ(r′) is the electrostatic potential
φ(r) given by the integral

φ(r) = 1

4πε0

∫

ρ(r′)
|r − r′| d3r ′. (10.22)

By analogy to the mass density, cf. Sect. 8.3.2, the charge density can also be written
as ρ(r′) = ∑

i qiδ(r′ − ri). Insertion of this expression for the charge density into
(10.22) yields (10.21).

10.3.2 Expansion of the Electrostatic Potential

In the following, it is understood that the charge distribution is centered around r′ = 0
and that r is a point further away from this center than any of the charges generating
the electrostatic potential, cf. Fig. 10.1.

So it makes sense to expand |r − r′|−1, occurring in (10.22), around r′ = 0.
Due to

∂

∂r ′
μ

|r − r′|−1 = − ∂

∂rμ

|r − r′|−1,

the Taylor series expansion of |r − r′|−1 reads

Fig. 10.1 Charge cloud
centered around r′ = 0. The
point r is outside of the cloud

http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_8


10.3 Multipole Expansion and Multipole Moments in Electrostatics 169

|r − r′|−1 =
∞
∑

�=0

1

�!
(−1)� ∂� r−1

∂rμ1∂rμ2 · · · ∂rμ�

r ′
μ1

r ′
μ2

· · · r ′
μ�

. (10.23)

The spatial derivatives of r−1 are the descending multipole potential tensors. Since
the tensors r ′

μ1
r ′
μ2

· · · r ′
μ�
, in (10.23), are contracted with irreducible tensors X ...,

the irreducible part r ′
μ1

r ′
μ2

· · · r ′
μ�

only contributes in the product. Thus (10.23) is
equivalent to

|r − r′|−1 =
∞
∑

�=0

1

�! Xμ1μ2···μ�
(r) r ′

μ1
r ′
μ2

· · · r ′
μ�

. (10.24)

Insertion of this expansion into (10.22) leads to

φ = 1

4π ε0

∞
∑

�=0

1

�! (2� − 1)!! Xμ1μ2···μ�
(r) Qμ1μ2···μ�

. (10.25)

Here

Qμ1μ2···μ�
=

∫

ρ(r′)(2� − 1)!! r ′
μ1

r ′
μ2

· · · r ′
μ�

d3r ′ =
∫

ρ(r)X̃μ1μ2···μ�
d3r,

(10.26)

is the 2�-pole moment of the charge distribution. The quantity X̃μ1μ2···μ�
is the

ascending multipole defined in (10.16).
Due to (10.9), the expansion (10.25) is equivalent to

φ = 1

4π ε0

∞
∑

�=0

1

�! r−(2�+1) rμ1rμ2 · · · rμ�
Qμ1μ2···μ�

. (10.27)

With the integration variable denoted by r instead of r′, thefirst four of thesemultipole
moments are the

total charge or monopole moment

Q =
∫

ρ(r)d3r,

the dipole moment

Qμ ≡ pelμ =
∫

ρ(r) rμd
3r, (10.28)

the quadrupole moment

Qμν =
∫

ρ(r) 3 rμrν d3r, (10.29)
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and the octupole moment

Qμνλ =
∫

ρ(r) 15 rμrνrλ d3r. (10.30)

Up to � = 3, the expansion (10.27) of the electrostatic potential reads

φ = 1

4πε0

(

r−1Q + r−3rμQμ + 1

2
r−5 rμrν Qμν + 1

6
r−7 rμrνrλ Qμνλ + . . .

)

.

(10.31)

The next higher moment, pertaining to � = 4, is the hexadecapole moment. The
parts of the potential associated with the monopole, dipole, quadrupole, octupole
and hexadecapole moments are proportional to r−1, r−2, r−3, r−4 and r−5, respec-
tively. Thus at large distances from the charges, the contribution of the lowest order
multipole moment will be most important for the electrostatic potential.

Just the lowest non-vanishing multipole moment is independent of the choice of
the origin chosen in the integral (10.26) for the evaluation of the multipole moments.
Notice, all multipole moments with � ≥ 1 vanish, when the charge density has
spherical symmetry. Furthermore, when the charge density is an even function of r,
i.e. when ρ(−r) = ρ(r), all odd multipoles with � = 1, 3, . . . are zero. Similarly,
for an odd charge density where ρ(−r) = −ρ(r), all even multipoles with � =
0, 2, 4, . . . vanish.

10.3.3 Electric Field of Multipole Moments

The electric field Eμ, caused by the electrostatic potential φ, is determined by Eμ =
−∇μφ. Due to (10.3), the expansion (10.27) yields

Eμ = 1

4π ε0

∞
∑

�=0

1

�! (2� − 1)!! Xμμ1μ2···μ�
(r) Qμ1μ2···μ�

. (10.32)

Notice, that in this sum, the multipole potential tensor of rank � + 1 is multiplied
with the �-th multipole moment.

The first few terms in the expansion (10.32) for the electric field are

Eμ = 1

4π ε0

(

r−3 rμ Q + 3 r−5 rμrν Qν + 5

2
r−7 rμrνrλ Qνλ + . . .

)

.

(10.33)

The parts of the electric field associated with the monopole, dipole and quadrupole
moments are determined by the dipole, quadrupole and octupole potential tensors,
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and are proportional to r−2, r−3 and r−4, respectively. At large distances from the
field-generating charges, the contribution of the lowest order multipole moment will
be most important for the electric field.

10.3.4 Multipole Moments for Discrete Charge Distributions

The multipole expansion can also be applied to the electrostatic potential (10.21) of
N charges qi, located at positions ri. The formula for the evaluation of the multipole
moment tensors, corresponding to (10.26), is

Qμ1μ2···μ�
(r) =

N
∑

i=1

qi (2� − 1)!! r iμ1
r iμ2

· · · r iμ�
. (10.34)

Obviously, a single charge can just have a monopole. Two charges with opposite
sign possess a dipole moment. For example, consider two charges separated by the
distance a, the unit vector parallel the vector joining them is denoted by u, viz.
q1 = q, q2 = −q and r1 = (a/2)u, r2 = −(a/2)u. Clearly one has Q = 0 and
all other even multipole moments vanish due to the dipolar symmetry. The dipole
moment is equal to

Qμ = pelμ = q a uμ = pel uμ,

where pel = qa is the magnitude of the electric dipole moment. All higher order odd
multipole moments, with � = 3, 5, . . ., are also non-zero. In particular, the octupole
moment is

Qμνλ = q a3 15

4
uμuνuλ = a2 pel

15

4
uμuνuλ .

At the distance r from the center of the charge distribution, the contribution from the
octupole moment in the electrostatic potential has an extra factor (a/r)2, compared
with that from the dipole moment. In most applications this factor is exceedingly
small. Hence, in this case, the octupole and higher moments can be disregarded.

Four charges, two positive and two negative ones, can be arranged such that they
constitute a quadrupole. For example q1 = q, q2 = q, q3 = −q, q4 = −q and
r1 = r2 = 0, r3 = (a/2)u, r4 = −(a/2)u. In this case, one has Q = 0 and the
dipole moment as well as all other odd multipole moments are zero. The quadrupole
moment is

Qμν = −3

2
q a2 uμuν .
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The hexadecapole moment, corresponding to � = 4, and the higher even moments
are also non-zero. However, due to extra factors (a/r)2, (a/r)4 . . ., they can be dis-
regarded in the electrostatic potential, when a/r 	 1. On the other hand, there exist
charge distributions where the hexadecapole is the lowest non-vanishing multipole
moment. Examples are charges on the corners of a cube or of a regular octahedron,
compensated by an appropriate opposite charge in the center.

10.3.5 Connection with Legendre Polynomials

The reciprocal distance |r − r′|−1 occurring in (10.24), is equal to

|r − r′|−1 = r−1
[

1 − 2 (r ′/r) cos θ + (r ′/r)2
]−1/2

, (10.35)

with cos θ = r̂ · r̂′. Clearly, the angle between r and r′ is denoted by θ . Assuming
r > r ′, the expression [. . .]−1/2 in (10.35) is the generating function of the Legendre
polynomials P� = P�(cos θ). The resulting expansion of |r − r′|−1 with respect to
Legendre polynomials reads

|r − r′|−1 = r−1
∞
∑

�=0

(

r ′

r

)�

P�(cos θ), r > r ′. (10.36)

Due to Xμ1μ2···μ�
= (2� − 1)!!r−(2�+1) rμ1rμ2 · · · rμ�

, see also (10.10) and (10.11),
comparison with (10.24) yields

P�(cos θ) = 1

�!Yμ1μ2···μ� r̂ ′
μ1

r̂ ′
μ2

· · · r̂ ′
μ�

= (2� − 1)!!
�! r̂μ1 r̂μ2 · · · r̂μ�

̂r ′
μ1

̂r ′
μ2

· · · ̂r ′
μ�

,

(10.37)
which is equivalent to (9.10) with (9.11).

10.4 Further Applications in Electrodynamics

10.4.1 Induced Dipole Moment of a Metal Sphere

Consider a piece of metal placed into an electric field. The conduction electrons
inside the metal feel the force caused by the electric field. When the piece of metal
is electrically isolated, the ‘free’ charges are displaced just within the metal, such
that an electric dipole is induced. This dipole modifies the surrounding electric field.
For the special case of a metallic sphere with radius R, the induced electric dipole
moment pind is computed as follows.

http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
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The center of the sphere is put at r = 0. The electric field, far from the sphere,
i.e. for r → ∞ is the imposed field E∞. The electric potential φ obeys the Laplace
equation Δφ = 0. The boundary condition is φ = const., on the surface of a
conductor. Here φ = 0 is chosen for r = R. The electrostatic potential is a scalar,
and it should be linear in the imposed vectorial field E∞. For r > R, the ansatz

φ(r) = a rμ E∞
μ + b r−3rμ E∞

μ

is made. It obeys the required symmetry and it is a solution of the Laplace equation
because it involves the ascending and descending vectorial multipole potential func-
tions. The coefficients a and b are determined by the boundary conditions. First,
notice that the electric field is given by

Eμ = −∇μ φ(r) = −a E∞
μ + 3 b r−5 rμrν E∞

ν .

Now, the condition E → E∞, for r → ∞, implies a = −1. Then, φ = 0 for r = R,
leads to b = R3. Thus the solution for the present potential problem is

φ(r) = −rμ E∞
μ + R3

r3
rμ E∞

μ = −rμ E∞
μ + 1

4πε0
r−3 rμ pindμ . (10.38)

The second term of the computed potential has the form typical for a dipole potential.
The induced dipole moment is introduced by

pindμ = 4π R3 ε0 E∞
μ = α ε0E∞

μ . (10.39)

The coefficient

α = 4π R3 = 3 Vsph, (10.40)

is the polarizability, cf. Sect. 5.3.3. It is proportional to the volume Vsph = (4π/3)R3

of the sphere.

10.4.2 Electric Polarization as Dipole Density

The total charge density of a material is the sum of the density ρ of the free charges
and the density ρi of the bound internal charges, i.e. of the atomic nuclei and the
electrons bound in atoms and molecules. When all charges are counted, the Gauss
law is

ε0∇μEμ = ρ + ρi,

http://dx.doi.org/10.1007/978-3-319-12787-3_5
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cf. Sect. 7.5. Thus the electric polarization P = D − ε0E, cf. (7.58) of dielectric
material is determined by

ρi = −∇ν Pν . (10.41)

The volume integral over ρi vanishes. Multiplication of ρi by rμ and subsequent
integration over a volume V which totally encloses the internal charges, yields the
macroscopic electric dipolemoment pelμ of this charge distribution, see (10.28). From
(10.41) follows

pelμ =
∫

V
ρ(r)i rμd

3r = −
∫

V
rμ ∇ν Pνd

3r. (10.42)

Due to

rμ ∇ν Pν = ∇ν (rμ Pν) − Pν∇νrμ = ∇ν (rμ Pν) − Pμ,

and the application of the Gauss theorem, one finds

pelμ = −
∫

∂V
nν Pνrμd

2s +
∫

V
Pμd

3r.

The surface integral, taken over a surface outside the internal charge distribution,
yields zero. Thus the macroscopic electric dipole moment is the volume integral
over the electric polarization:

pelμ =
∫

Pμd
3r. (10.43)

This means, the electric polarization P is the density of electric dipole moments.
These dipole moments can be permanent dipoles of molecules or dipoles induced by
an electric field.

10.4.3 Energy of Multipole Moments in an External Field

The electrostatic energy of a cloud of particles with charges qj located at the positions
r + rj, in the presence of an electrostatic potential φ is W = ∑

j qjφ(r + rj).
It is assumed that the position r is in the center of the charge cloud and that φ is
generated by other charges, which are far away. Alternatively, when the charges are
characterized by a charge density ρ, the energy is

W =
∫

ρ(r′) φ(r + r′). (10.44)

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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An expansion of the potential in powers of r′ yields

φ(r + r′) = φ(r) + r ′
μ ∇μ φ(r) + 1

2
r ′
μr ′

ν ∇ν∇μ φ(r) + . . . ,

or, equivalently

φ(r + r′) = φ(r) − r ′
μ Eμ(r) − 1

2
r ′
μr ′

ν ∇ν Eμ(r) − . . . .

Notice that δμν∇ν∇μφ(r) = −δμν∇ν Eμ = 0, for electrostatic fields, r ′
μr ′

ν in these
equations can be replaced by r ′

μr ′
ν −(1/3)r ′

κr ′
κδμν . Thus, the expansion of the energy

(10.44) reads

W = φ(r)
∫

ρ(r′)d3r ′ − Eμ

∫

r ′
μ ρ(r′)d3r ′

− 1

2
∇ν Eμ

∫ (

r ′
μr ′

ν − 1

3
r ′
κr ′

κ δμν

)

ρ(r′)d3r ′ − . . .

The integrals over the charge density can be expressed in terms of the multipole
moments. This leads to

W = Q φ(r) − pelμ Eμ − 1

6
Qμν ∇ν Eμ − . . . , (10.45)

where Q is recalled as the total charge, pelμ is the electric dipole moment, and Qμν

is the quadrupole moment tensor.

10.4.4 Force and Torque on Multipole Moments in an
External Field

The force on a cloud of particles with charges qj located at the positions r + rj, in
the presence of an external electric field E is Fμ = −∑

j qjEμ(r + rj), or, in terms
of the charge density

Fμ = −
∫

ρ(r′) Eμ(r + r′)d3r ′. (10.46)

A power series expansion with respect to r′ yields, by analogy to (10.45),

Fμ = Q Eμ(r) + pelν ∇ν Eμ + 1

6
Qνκ ∇κ∇ν Eμ − . . . (10.47)
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As expected, this force is also obtained as a spatial derivative of the energy W , as
given by (10.45), viz.

Fμ = −∇μ W (r). (10.48)

Notice, there is no force acting on an electric dipole moment subjected to a homo-
geneous electric field with ∇μEν = 0.

A torque, however is exerted on an electric dipole in a spatially constant electric
field. For discrete charges, the torque is Tμ = εμνλ

∑

j r
j
ν Eλ(r+rj). The correspond-

ing expression for a continuous charge density is

Tμ = εμνλ

∫

r ′
ν Eλ(r + r′)d3r ′. (10.49)

The torque can be expanded by analogy to (10.47). The leading term is

Tμ = εμνλ pelν Eλ(r). (10.50)

10.4.5 Multipole–Multipole Interaction

The multipole–multipole interaction of a cloud 1 of charges, located around the
position r, in a potential and electric field generated by a group of charges 2, centered
around the position r = 0, can be inferred from (10.31) with (10.33) and (10.45). The
corresponding total charges are by Q1, Q2. The electric dipole moments and electric
quadrupole moment tensors are denoted by p(1)

μ , p(2)
μ , and Q(1)

μν , Q(2)
μν , respectively.

The pole–pole, the pole–dipole and the pole–quadrupole interaction energies are

W pole−pole = 1

4π ε0
Q1 r−1 Q2,

W pole−dip = 1

4π ε0
Q1 Xμ p(2)

μ = 1

4π ε0
Q1 r−3 rμ p(2)

μ , (10.51)

W pole−quad = 1

4π ε0

1

6
Q1 Xμν Q(2)

μν = 1

4π ε0

1

2
Q1 r−5 rμrν Q(2)

μν . (10.52)

Just as the pole–quadrupole interaction, the dipole–dipole interaction is governed by
the second multipole potential tensor, which decreases, with increasing distance r ,
like r−3,

W dip−dip = − 1

4π ε0

1

2
p(1)
μ Xμν p(2)

ν = − 1

4π ε0

3

2
r−5 p(1)

μ rμrν p(2)
ν . (10.53)
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The interaction between two magnetic dipoles has the same functional form, the
factor 1

4πε0
, however is replaced by μ0

4π . The dipole–quadrupole and the quadrupole–
quadrupole interactions involve the third and the fourth multipole potentials, which
are proportional to r−4 and r−5, respectively,

W dip−quad = − 1

4π ε0

1

6
p(1)
μ Xμνλ Q(2)

νλ = − 1

4π ε0

5

2
r−7 p(1)

μ rμrνrλ Q(2)
νλ .

(10.54)

W quad−quad = 1

4π ε0

1

36
Q(1)

μν Xμνλκ Q(2)
λκ = 1

4π ε0

35

12
r−9 Q(1)

μν rμrνrλrκ Q(2)
λκ .

(10.55)

These multipole-multipole interactions are of importance for the anisotropy of the
long range interaction between two molecules, labelled by 1 and 2. The multipole
moments depend on the orientation of the molecules. For electrically neutral linear
molecules, without permanent dipole moments, the quadrupole-quadrupole interac-
tion is the lowest order contribution. The induced dipole-dipole interaction, referred
to as van der Waals interaction, as well as the repulsive interaction, associated with
the shape of the molecules, in general, possess anisotropic parts. The van der Waals
interaction is proportional to α

(1)
μν Xνλα

(2)
λκ Xκμ, where α

(1)
μν and α

(2)
λκ are the molecular

polarizability tensors of particles 1 and 2.

10.5 Applications in Hydrodynamics

10.5.1 Stationary and Creeping Flow Equations

In a stationary situation, the local momentum conservation equation (7.52), for an
isotropic fluid with the spatially constant shear viscosity η, cf. (7.55), is

ρ vν ∇νvμ + ∇μ p = η Δ vμ. (10.56)

Here ρ is the constant mass density, p is the hydrostatic pressure which may depend
on the position r. The right hand side of (10.56) is obtained from (7.52) with the
Newton ansatz (7.55) for the friction pressure tensor

pνμ = −2η ∇νvμ = −η (∇νvμ + ∇νvμ), ∇λvλ = 0.

Due the incompressibility condition ∇μvμ = 0, application of∇μ to (10.56) implies

ρ ∇μvν ∇νvμ + Δ p = 0. (10.57)

The solutions of these equations, for specific hydrodynamic applications, have to
obey the relevant boundary conditions.

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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In the creeping flow approximation, applicable for slow velocities, the nonlinear
terms involving vν∇νvμ are disregarded in (10.56) and (10.57). Applications thereof
are the calculation of the Stokes force acting on a solid bodymoving in a viscous fluid
or the torque acting on a rotating body. The special case of a sphere is considered
next.

10.5.2 Stokes Force on a Sphere

The friction force F acting on sphere with radius R, which undergoes a slow
translational motion, with velocity V in a viscous fluid, is

Fμ = −6πηRVμ. (10.58)

The expression for the force, first derived by Stokes and referred to as Stokes force,
is remarkable since is not proportional to the cross section π R2 of the sphere, but
rather linear in R. This is an effect typical for hydrodynamics. The minus sign in
(10.58) means that the force is damping the motion.

The derivation of the Stokes force starts from the creeping motion version of
(10.56). For convenience, the dimensionless position vector r∗ = R−1r is used.
When no danger of confusion exists, r∗ is written as r and it is understood that
∇ stands for the derivative with respect to the dimensionless position vector. The
differential equations then read

∇μ p = ηR−1 Δvμ, Δ p = 0. (10.59)

The equation is linear in the velocity. The situation of a sphere moving with the
velocity −V and the fluid at rest, far away from the sphere, is equivalent to the
sphere at rest, with its center corresponding to r = 0, and the fluid flowing with
the constant velocity V, far away, i.e. for r → ∞. Furthermore p → const. for
r → ∞ should hold true. In the following p is associated with the deviation of the
pressure from its constant value at r → ∞. In addition to these boundary conditions,
the behavior of the velocity at the surface of the sphere has to be prescribed for the
solution of (10.59). The Stokes force (10.58) pertains to the stick or no slip boundary
condition vμ = 0 at the surface of the sphere, corresponding to r = 1. Of course,
for the sphere to stay fixed in the streaming fluid, it has to be held by a force which
has to balance the Stokes force.

Solutions of (10.59) must be linear in V. Symmetry and parity considerations
suggest the ansatz

p = A(r) Xν Vν, vμ = a(r)Vμ + b(r)Xμν Vν, (10.60)

where the X ··· are multipole potential functions and the coefficients A, a, b have yet
to be determined. The equation Δp = 0 implies A = const. The spatial derivatives
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of the functions p and v are

∇μ p = −A Xμν Vν,

and

∇μvν = a′r̂μVν + b′r̂μ XνλVλ − bXμνλ.

The divergence of this expression for the velocity field is

∇μvμ = a′r̂μVμ + b′r̂μ XμλVλ = (a′ + 2r−3 b′) r̂μVμ = 0.

Thus a′ + 2r−3b′ = 0 has to hold true. Due to

Δvμ = Δa Vμ + (b′′ − 4r−1b′) Xμν Vν,

cf. (10.13), the creeping flow equation (10.59) implies

a′′ + 2r−1a′ = 0, −A = ηR−1(b′′ − 4r−1b′).

The boundary conditions impose

r → ∞ : r−2A → 0, a(∞) = 1, r−3 b → 0, (10.61)

and

a(1) = 0, b(1) = 0. (10.62)

The solution of the differential equations (10.59), which obey the boundary
conditions, are determined by

A = 3

2
η R−1, a = 1 − r−1, b = 1

4
(1 − r2). (10.63)

To verify that (10.60), with (10.63) are solutions of the creeping flow equation, make
use of (10.13). The presence of the fixed sphere in the streaming fluid has far reaching
consequences. There are parts of the distortion of the velocity field which decrease
with increasing distance from the sphere, both upstream and downstream, only like
r−1. This is an effect typical for hydrodynamics.

The part of the velocity difference Vμ − vμ proportional to r−1 is r−1(δμν +
1
4r3Xμν)Vν . The tensor r−1(δμν + 1

4r3Xμν) = 3
4r−1(δμν + r̂μr̂ν) is proportional to

the Oseen tensor

(8πη r)−1 (δμν + r̂μr̂ν),

which determines the hydrodynamic interaction between colloidal particles [29–33].
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According to (8.91), the force acting on a solid body is given by the surface integral
− ∮

∂V nν pνμd2s. For the case of the sphere, the outer normal n is equal to r̂, and
d2s = R2d2r̂. As used before, cf. (7.55), the pressure tensor pνμ is the sum of the

isotropic part pδμν and the symmetric traceless part pνμ = −ηR−1(∇νvμ+∇μvν).
The part of the force associated with the distorted pressure field is

FStp
μ ≡

∮

A Xν Vν r̂μ R2d2r̂ = 4π

3
R2A Vμ = 2π R η Vμ. (10.64)

Here
∮

r̂μr̂νd2r̂ = 4π
3 δμν was used.

The contribution of the force associated with v requires the computation of

r̂ν∇ν vμ + r̂ν ∇μvν.

The first of these two terms is

r̂ν ∇ν vμ = ∂

∂r
vμ = a′ Vμ + (b′ − 3r−1b)XμνVν .

On the other hand, one has

∇μvν = a′r̂μVν + b′r̂μ XνλVλ − bXμνλ,

and

r̂ν ∇μvν = a′r̂μr̂ν Vν + b′r̂μ2 r−3 r̂λVλ − br̂μ Xμνλ.

Due to the compressibility condition ∇μvμ = 0, one has and a′ + r−3b′ = 0, and

r̂ν ∇μvν = −br̂μ Xμνλ.

The term involving r̂μ Xμνλ ∼ Xνλ, however, vanishes in the integration over the
surface of the sphere.

Thus the additional force is

FStv
μ ≡ η R−1

∮

r̂ν∇ν vμ R2d2r̂ = 4π η R Vμ. (10.65)

The term involving Xμν gives no contribution to the integral over the surface of the
sphere.

Notice, in the calculation, the sphere was at rest and the fluid, far away from
the sphere, moved with the velocity V. As mentioned before, this corresponds to a
situation, where the sphere moves with the velocity −V and the fluid is at rest, far
away from the obstacle. This explains the opposite sign in the expression for the
friction force.

http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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With the help of the multipoles in D dimensions, expressions analogous to
the Stokes force and the torque acting on a rotating body can be computed for the
D-dimensional case [38]. This is of particular interest for the case D = 2, cf. [39].

10.3 Exercise: Compute the Torque on a Rotating Sphere
A sphere rotating with the angular velocity Ω experiences a friction torque

Tμ = −8πη R3 Ωμ.

Derive this result from the creeping flow equation by considerations similar to those
used for the Stokes force.



Chapter 11
Isotropic Tensors

Abstract This chapter deals with isotropic Cartesian tensors. Firstly, the isotropic
Delta-tensors of rank 2� are introduced which, when applied on a tensor of rank
�, project onto the symmetric traceless part of that tensor. The Δ-tensors can be
expressed in terms of � fold products of the second rank isotropic delta-tensor. Sec-
ondly, a generalized cross product between a vector and symmetric traceless tensor
of rank � is defined via the �-tensors. These isotropic tensors of rank 2� + 1 can
be expressed in terms of the product of epsilon-tensors and � − 1-fold products of
delta-tensors. They describe the action of the orbital angular momentum operator
on tensors. Furthermore, isotropic tensors are defined in connection with the cou-
pling of vectors and second rank tensors with tensors of rank �. Scalar product of
three irreducible tensors and their relevance for the interaction potential of uniaxial
particles are discussed.

11.1 General Remarks on Isotropic Tensors

A tensor which does not change its form when the Cartesian coordinate system is
replaced by a rotated one, is referred to as isotropic tensor. A scalar is isotropic, per
definition. Except for the zero-vector, no isotropic tensor of rank 1 exists. Isotropic
tensors of rank 2 and 3 are the delta- and epsilon-tensors δμν and εμνλ, discussed
before.

Isotropic tensors of rank � ≥ 4 can be constructed as products of δ-tensors and
the ε-tensor. Notice, the product of two ε-tensors can be expressed by δ-tensors, cf.
Sect. 4.1.2. Thus isotropic tensors of odd rank � = 5, 7, . . . can be expressed by one
ε-tensor and products of δ-tensors. Isotropic tensors of even rank � = 4, 6, . . . are
expressed by products of �/2 second rank δ-tensors. The projection tensors discussed
in Sect. 3.1.5 are isotropic tensors of rank 4.

© Springer International Publishing Switzerland 2015
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11.2 Δ-Tensors

11.2.1 Definition and Examples

Of special interest among the tensors of rank 2� are those, which project onto the

symmetric traceless, i.e. irreducible part A of a tensor A of rank �. By analogy to
the δ-tensor, these tensors are denoted as Δ(�)-tensors. They are defined by

Δ
(�)

μ1μ2···μ�,μ
′
1μ

′
2···μ′

�

Aμ′
1μ

′
2···μ′

�
= Aμ1μ2···μ�

. (11.1)

Examples for this type of isotropic tensors are

Δ(0) = 1, Δ(1) = δμν,

and

Δ
(2)
μν,μ′ν′ ≡ Δμν,μ′ν′ = 1

2
(δμμ′δνν′ + δμν′δνμ′) − 1

3
δμνδμ′ν′ . (11.2)

11.2.2 General Properties of Δ-Tensors

The Δ(�)-tensors are symmetric against the exchange of any fore pair or hind pair of
subscript, as well as against the exchange of all fore against all hind indices, viz.

Δ
(�)

μ1μ2···μ�,μ
′
1μ

′
2···μ′

�

= Δ
(�)

μ′
1μ

′
2···μ′

�,μ1μ2···μ�
. (11.3)

The Δ(�)-tensors obey the product rule

Δ(�)
μ1μ2···μ�,ν1ν2···ν�

Δ
(�)

ν1ν2···ν�,μ
′
1μ

′
2···μ′

�

= Δ
(�)

μ1μ2···μ�,μ
′
1μ

′
2···μ′

�

, (11.4)

which is the relation typical for a projection tensor. On the other hand, the following
contraction of a Δ(�)-tensor with a Δ(�−1)-tensor yields zero, more specifically:

Δ(�)
μ1μ2···μ�,ν1ν2···ν�

Δ
(�−1)
ν1ν2···ν�−1,ν�μ

′
1···μ′

�−2
= 0. (11.5)

TheΔ(�)-tensors are traceless in the sense that they vanish, whenever any pair of hind
indices or any pair of fore indices are equal and summed over. On the other hand,
when one fore subscript is equal to one hind subscript, and the standard summation
convention is used, a Delta-tensor with � − 1 is obtained:
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Δ
(�)

μ1μ2···μ�−1λ,μ′
1μ

′
2···μ′

�−1λ
= 2 � + 1

2 � − 1
Δ

(�−1)
μ1μ2···μ�−1,μ

′
1μ

′
2···μ′

�−1
. (11.6)

The total contraction of the fore with the hind subscripts yields

Δ(�)
μ1μ2···μ�,μ1μ2···μ�

= 2 � + 1, (11.7)

which is the number of the independent components of an irreducible tensor of rank �.
In the following product of two Δ(�)-tensors, fore and hind subscripts are mixed:

Δ(�)
μ1μ2···μ�−1ν,μ�ν1ν2···ν�−1

Δ
(�)

ν ν1ν2···ν�−1,μ
′
1μ

′
2···μ′

�

= 1

�(2 � − 1)
Δ

(�)

μ1μ2···μ�,μ
′
1μ

′
2···μ′

�

.

(11.8)
The special case � = 2 of this equation corresponds to

Δμλ,νκ Δλκ,μ′ν′ = 1

6
Δμν,μ′ν′ . (11.9)

The total contraction {μ1μ2 · · ·μ�} = {μ′
1μ

′
2 · · ·μ′

�} in (11.8) yields

Δ(�)
μ1μ2···μ�−1ν,μ�ν1ν2···ν�−1

Δ(�)
ν ν1ν2···ν�−1,μ1μ2···μ�

= 2 � + 1

�(2 � − 1)
. (11.10)

The contraction μ′
� = μ�, renamed as μ, in (11.8) and use of (11.6), yields

Δ(�)
μ1μ2···μ�−1ν,μν1ν2···ν�−1

Δ
(�)

ν ν1ν2···ν�−1,μμ′
1μ

′
2···μ�−1

= 2� + 1

�(2� − 1)2
Δ

(�−1)
μ1μ2···μ�−1,μ

′
1μ

′
2···μ′

�−1
.

(11.11)

The special case � = 2 of (11.11) corresponds to

Δμλ,νκ Δλκ,νμ′ = 5

18
δμμ′ . (11.12)

The next contraction μ′ = μ gives

Δμλ,νκ Δλκ,νμ = 5

6
. (11.13)

The relations (11.12) and (11.13) can also be inferred from (11.9). For comparison,
it is recalled that Δμλ,νκΔνκ,λμ = Δμλ,λμ = 5, cf. (11.7). The order of subscripts
matters!

11.1 Exercise: Contraction Rules for Delta-Tensors
Verify (11.6) for � = 2.
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11.2.3 Δ-Tensors as Derivatives of Multipole Potentials

The �-fold spatial derivative of the �-th rank irreducible tensor constructed from
the components of r is proportional to the isotropic Δ(�)-tensor. More specifically,
one has

∇μ1∇μ2 · · · ∇μ�
rν1rν2 · · · rν�

= �! Δ(�)
μ1μ2···μ�,ν1ν2···ν�

. (11.14)

Notice, the tensor . . . with the ν-indices imposes its property of being traceless onto
the μ-indices. As an exercise, verify (11.14), for � = 1 and � = 2. Due to

rμ1rμ2 · · · rμ�
= 1

(2� − 1)!! r (2�+1) Xμ1μ2···μ�
,

see (10.9), and with the multipole potential given by (10.2), (11.14) leads to

�!(2� − 1)!!(−1)�Δ(�)
μ1μ2···μ�,ν1ν2···ν�

= ∇μ1∇μ2 · · · ∇μ�

(

r (2�+1)∇ν1∇ν2 · · · ∇ν�
r−1

)

.

(11.15)

It is remarkable that the differentiation, with unrestricted subscripts, on the right
hand side of (11.15), yields an expression, on the left hand side, which is traceless
with respect to any pair of either μ- or ν-subscripts.

11.2 Exercise: Determine Δ
(3)
μνλ,μ′ν′λ′

Hint: compute Δ
(3)
μνλ,μ′ν′λ′ , in terms of triple products of δ-tensors, from (11.15) for

� = 3.

11.3 Generalized Cross Product, �-Tensors

11.3.1 Cross Product via the �-Tensor

The isotropic tensor of rank 2� + 1, defined by

�(�)

μ1μ2···μ�,λ,μ′
1μ

′
2···μ′

�

≡ Δ(�)
μ1μ2···μ�,ν1ν2···ν�−1ν�

εν�λν′
�
Δ

(�)

ν′
�ν1ν2···ν�−1,μ

′
1μ

′
2···μ′

�

,

(11.16)

allows to link a vector with the symmetric traceless part of a tensor of rank � such
that the result is a symmetric traceless, i.e. irreducible tensor of rank �. Here and in
the following, it is understood that � ≥ 1.

http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_10
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Let w be a vector and A a tensor of rank �. The generalized cross product is
given by

(w × A)μ1μ2···μ�
= �(�)

μ1μ2···μ�,λ,μ′
1μ

′
2···μ′

�

wλ Aμ′
1μ

′
2···μ′

�
. (11.17)

For a symmetric traceless tensor S, the generalized cross product can also be writ-
ten as

(w × S)μ1μ2···μ�
= �(�)

μ1μ2···μ�,λ,μ′
1μ

′
2···μ′

�

wλ Sμ′
1μ

′
2···μ′

�
= εμ1λν wλ Sνμ2···μ�

.

(11.18)
For � = 1, one has

�(1)
μ,λ,ν = εμλν.

Thus, in this case, (11.17) and (11.18) correspond to the standard vector product,
cf. Sects. 3.3 and 4. For � = 2, the �-tensor is explicitly expressed by a linear
combination of products of epsilon- and delta-tensors, viz.

�(2)
μν,λ,μ′ν′ ≡ �μν,λ,μ′ν′ = 1

4
(εμλμ′δνν′ + εμλν′δνμ′ + ενλμ′δμν′ + ενλν′δμμ′).

(11.19)

Theproperties�μμ,λ,μ′ν′ = 0 and�μν,λ,μ′μ′ = 0 follow from the explicit expression
given above, due to the antisymmetry of the epsilon-tensor, e.g. εν′λμ′ = −εμ′λν′ .
The contraction μ′ = μ, in (11.19), yields

�μν,λ,μν′ = 5

4
ενλν′ . (11.20)

The cross product of a vector w with a symmetric traceless second rank tensor S is,
in accord with (11.18), given by

(w × S)μν = �μν,λ,μ′ν′wλSμ′ν′ = εμλκwλSκν = 1

2
(εμλκwλSκν + ενλκwλSκμ).

(11.21)

As an alternative to (11.16), the �(�)-tensor can also be defined in terms of the
epsilon-tensor and one Δ-tensor of rank � + 1, more specifically:

�(�)

μ1μ2···μ�,λ,μ′
1μ

′
2···μ′

�

= � + 1

�

2� + 1

2� + 3
Δ

(�+1)
μ1μ2···μ�μ,μ′μ′

1μ
′
2···μ′

�

εμμ′λ. (11.22)

http://dx.doi.org/10.1007/978-3-319-12787-3_3
http://dx.doi.org/10.1007/978-3-319-12787-3_4
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11.3.2 Properties of �-Tensors

The�-tensors are antisymmetric against the exchange of the fore and hind subscripts,
viz.

�(�)

μ1μ2···μ�,λ,μ′
1μ

′
2···μ′

�

= −�(�)

μ′
1μ

′
2···μ′

�,λ,μ1μ2···μ�
, (11.23)

furthermore, they vanish whenever the middle index is equal to one of the fore or
hind indices, e.g.

�(�)

μ1μ2···μ�,μ�,μ
′
1μ

′
2···μ′

�

= 0. (11.24)

For � = 2, in particular, one has

�μν,μ,στ = 0.

Due to the product properties of epsilon-tensor, cf. Sect. 4, the multiplication of a
�-tensor with an epsilon-tensor or the product of two �-tensors, yields Δ-tensors
which, in turn, are products of δ-tensors. For example, one has

εμ�λμ′
�
�(�)

μ1μ2···μ�,λ,μ′
1μ

′
2···μ′

�

= � + 1

�

2� + 1

2� − 1
Δ

(�−1)
μ1μ2···μ�−1,μ

′
1μ

′
2···μ′

�−1
, (11.25)

and

�(�)
μ1μ2···μ�,λ,ν1ν2···ν�

�(�)

ν1ν2···ν�,λ,μ′
1μ

′
2···μ′

�

= −� + 1

�
Δ

(�)

μ1μ2···μ�,μ
′
1μ

′
2···μ′

�

. (11.26)

The special case � = 1 of this relation corresponds to εμλνενλμ′ = −2δμμ′ , cf.
Sect. 4.1.2.

Some additional relations are listed for the case � = 2, which follow from the
explicit form of the �-tensor (11.18):

�λκ,ν,στ�στ,λ,μκ = 5

4
δμν, (11.27)

and

�μν,λ,στ �μ′ν,λ′,στ = 1

8
(9 δμμ′δλλ′ − 6 δμλ′δμ′λ − δμλδμ′λ′). (11.28)

The relation (11.27) is recovered from (11.28) with the contraction μ = λ′, the use
of (11.23) and the appropriate renaming of indices.

http://dx.doi.org/10.1007/978-3-319-12787-3_4
http://dx.doi.org/10.1007/978-3-319-12787-3_4
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11.3.3 Action of the Differential Operator
L on Irreducible Tensors

Applicationof thedifferential operatorLλ = ελνκrν∇κ , cf. (7.80), on the components
of the position vector r yields

Lλrμ = εμλν rν.

Likewise, the action ofL on the symmetric traceless tensors of rank �, constructed
from the components of r, can be expressed with the help of the �-tensors:

Lλ rμ1rμ2 · · · rμ�
= ��(�)

μ1μ2···μ�,λ,μ′
1μ

′
2···μ′

�

rμ′
1
rμ′

2
· · · rμ′

�
. (11.29)

Application of the second derivative LλLλ on the �-th rank tensor yields

LλLλ rμ1rμ2 · · · rμ�
= �2 �(�)

μ1μ2···μ�,λ,ν1ν2···ν�
�(�)

ν1ν2···ν�,λ,μ′
1μ

′
2···μ′

�

rμ′
1
rμ′

2
· · · rμ′

�
.

(11.30)

Use of (11.26) leads to

LλLλ rμ1rμ2 · · · rμ�
= −� (� + 1) rμ1rμ2 · · · rμ�

. (11.31)

Thus the tensors rμ1rμ2 · · · rμ�
are eigenfunctions of the operator L 2 with the

eigenvalues −�(� + 1). The same applies to the corresponding tensors constructed
from the components of the unit vector r̂, aswell as to themultipole tensors Xμ1μ2···μ�

,
cf. Sect. 10.1, since the differential operatorL acts just on the angular part of r, but
not on its magnitude.

The result (11.31) can be derived via an alternative route. The irreducible tensors
rμ1rμ2 · · · rμ�

are solutions of the Laplace equation, cf. Sect. 10.2. On the other
hand, the Laplace operator Δ can be split into its radial part Δr and the angular part
involving L · L , cf. (7.90) with (7.91). Thus one has

(Δr + r−2LλLλ) rμ1rμ2 · · · rμ�
= 0.

Due to

Δr = r−2 ∂

∂r

(

r2
∂

∂r

)

,

and rμ1rμ2 · · · rμ�
∼ r�, the application of the radial part of the Laplace operator

on the tensor yields

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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Δr rμ1rμ2 · · · rμ�
= �(� + 1) r−2 rμ1rμ2 · · · rμ�

,

and consequently the result (11.31) is recovered.This, incidentally, proves the validity
of the �-dependent factors in (11.26) and (11.29).

11.3.4 Consequences for the Orbital Angular Momentum
Operator

In spatial representation, the orbital angular momentum operator L, in units of �, is
related to the differential operator L by

Lμ = 1

i
Lμ,

cf. (7.86). The action of the operator L on irreducible tensors rμ1rμ2 · · · rμ�
is

immediately inferred from (11.29). Thanks to the imaginary unit i occurring here,
application of L · L = LλLλ on rμ1rμ2 · · · rμ�

yields

LλLλ rμ1rμ2 · · · rμ�
= � (� + 1) rμ1rμ2 · · · rμ�

. (11.32)

Thus the irreducible tensors of rank �, constructed from the components of r or of its
unit vector r̂, as well as the multipole potential tensors Xμ1μ2···μ�

are eigenfunctions
of the square of the angular momentum with the eigenvalues �(� + 1). Since � is the
rank of a tensor, the possible values for � are non-negative, integer numbers. This
underlies the quantization of the magnitude of the orbital angular momentum.

Spherical components of irreducible tensors, cf. Sect. 9.4.2, which involve the
components of the position vector r, like rμ1rμ2 · · · rμ�

, the multipole potentials

X ···, or the spherical harmonics Y (m)
� , are eigenfunctions of the z-component Lz of

the orbital angular momentum operator L. For � = 1, with the components of r
denoted by {x, y, z}, this is inferred from Lz(x ± iy) = ±i x − y, which implies
Lz(x ± iy) = ±(x ± iy), and Lzz = 0 = 0 · z. Obviously, the eigenvalues occurring
here are m = ±1 and m = 0. For general �, the eigenvalue equation is

Lz Y (m)
� = m Y (m)

� . (11.33)

Due to Lz = (1/ i)∂/∂ϕ, this relation follows from Y (m)
� ∼ exp(miϕ), cf. (9.29).

Since the operator L does not affect the magnitude r of r, but only the angles, the
spherical components of rμ1rμ2 · · · rμ�

and of the multipole potentials X ··· intro-
duced in Sect. 10.1.1, also obey the eigenvalue equation (11.33).

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_10
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11.4 Isotropic Coupling Tensors

11.4.1 Definition of Δ(�,2,�)-Tensors

Isotropic tensors Δ
(�3,�2,�1)··· ,··· ,··· can be constructed from δ-tensors and zero or one ε-

tensor, such that they generate an irreducible tensor of rank �3 from the product of
irreducible tensors of ranks �1 and �2. These tensors are also referred to as Clebsch-
Gordan tensors, [16, 17].

Special cases of coupling tensors, discussed so far, are the Δ
(�)··· ,···-tensors of

Sect. 11.2, and the �(�)··· ,···-tensors of Sect. 11.3, pertaining to �3 = �1 ≡ �, �2 = 0
and �3 = �1 ≡ �, �2 = 1, respectively. The next and only other case to be considered
here corresponds to �3 = �1 ≡ �, �2 = 2. These tensors are defined by

Δ
(�,2,�)
μ1μ2···μ�,λκ,μ′

1μ
′
2···μ′

�

= Δ(�)
μ1μ2···μ�,ν1ν2···ν�−1σ

Δ
(2)
στ,λκ Δ

(�)

τν1ν2···ν�−1,μ
′
1μ

′
2···μ′

�

.

(11.34)

Let S and A be irreducible tensors of rank 2 and �. The tensor Δ(�,2,�) accomplishes
their multiplicative coupling of these tensors to a tensor of rank �. This can be
expressed as

( S · A )μ1μ2···μ�
≡ Sμ1λ Aλμ2···μ�

= Δ
(�,2,�)
μ1μ2···μ�,λκ,μ′

1μ
′
2···μ′

�

Sλκ Aμ′
1μ

′
2···μ′

�
.

(11.35)
For � = 1, the expression (11.34) reduces to

Δ
(1,2,1)
μ,λκ,ν = Δ

(2)
μν,λκ ≡ Δμν,λκ .

Of particular interest is the case � = 2. Here one has

Δ
(2,2,2)
μν,λκ,αβ ≡ Δμν,λκ,αβ = Δμν,μ′ν′ Δμ′λ′,λκ Δν′λ′,αβ . (11.36)

This tensor is symmetric against the interchange of any pair of subscripts, e.g.

Δμν,λκ,αβ = Δμν,αβ,λκ = Δλκ,μν,αβ . (11.37)

Further properties are:

Δμν,λκ,κσ = 7

12
Δμν,λσ , Δμν,λκ,λκ = 0, Δμν,νκ,κμ = 35

12
, (11.38)
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Δμν,λκ,στ Δμ′ν′,λκ,σ ′τ ′ = 5

48
(Δμν,μ′ν′ Δστ,σ ′τ ′ + Δμν,σ ′τ ′ Δστ,μ′ν′)

− 1

24
Δμν,στ Δμ′ν′,σ ′τ ′ . (11.39)

The double contraction {στ } = {σ ′τ ′}, in the last equation, yields

Δμν,λκ,στ Δμ′ν′,λκ,στ = 7

12
Δμν,μ′ν′ , (11.40)

and consequently

Δμν,λκ,στ Δμν,λκ,στ = 35

12
,

which implies Δμν,λκ,στΔμν,λκ,στ = Δμν,νκ,κμ, see the last equation of (11.38).
The following contraction of four isotropic tensors yields the same numerical value,
viz.

Δμν,βγ,μ′ν′ Δμ′ν′,αγ,στ �στ,λ,μν εβλα = 35

12
. (11.41)

Furthermore, by analogy to (11.22), the tensor defined by (11.36) can also be
expressed by

Δμν,λκ,αβ = 5

2
Δ

(3)
μνσ,αβτ Δλκ,στ . (11.42)

11.4.2 Tensor Product of Second Rank Tensors

For irreducible second rank tensors S and A, the expression (11.35) reduces to

( S · A )μν ≡ Sμλ Aλν = Δμν,λκ,μ′ν′ Sλκ Aμ′ν′ . (11.43)

Products of the coupling tensor Δμν,λκ,στ with symmetric traceless dyadic tensors
constructed from the components of two vectors a and b are listed next:

aμaλ bλbν ≡ Δμν,λκ,στ aλaκ bσ bτ

= a · b aμbν − 1

3

(

b2 aμaν + a2 bμbν

)

, (11.44)

aμbλ aλbν ≡ Δμν,λκ,στ aλbκ aσ bτ

= −1

6
a · b aμbν + 1

4

(

b2 aμaν + a2 bμbν

)

, (11.45)
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aμbλ aλaν ≡ Δμν,λκ,στ aλbκ aσ aτ

= 1

6
a2 aμbν + 1

6
a · b aμaν . (11.46)

Putting b = a, in these equations yields

aμaλ aλaν ≡ Δμν,λκ,στ aλaκ aσ aτ = 1

3
a2 aμaν . (11.47)

Multiplication of the last equation by aμaν leads to

aμaν aνaλ aλaμ = Δμν,λκ,στ aμaν aλaκ aσ aτ = 2

9
a6. (11.48)

11.5 Coupling of a Vector with Irreducible Tensors

The product of a vector b with an irreducible tensor A of rank � yields a tensor of
rank � + 1 which can be decomposed into an irreducible tensor of rank � + 1 and
terms involving irreducible tensors of ranks � and � − 1. With the help of isotropic
Δ-tensors and the �-tensor, this decomposition reads:

bμ Aμ1μ2···μ�
= Δ(�+1)

μμ1μ2···μ�,νν1ν2···ν�
bν Aν1ν2···ν�

− �(2� − 1)

�(2� + 1) − 1
�(�)

μ1μ2···μ�,μ,ν1ν2···ν�
(b × A)ν1ν2···ν�

+ (2� − 1)

(2� + 1)
Δ(�)

μ1μ2···μ�,ν ν1ν2···ν�−1
(b · A)ν1ν2···ν�−1 . (11.49)

The first term on the right hand side of (11.49) corresponds to

bμ Aμ1μ2···μ�
. (11.50)

The cross product and the dot product occurring in the second and third term are
given by

(b × A)ν1ν2···ν�
= εν1λκ bλ Aκ ν2···ν�

, (11.51)

and
(b · A)ν1ν2···ν�−1 = bλ Aλν1ν2···ν�−1 . (11.52)

For � = 1, i.e. when A is a vector, these relations reduce to the expressions given in
Chap.6 for the decomposition of dyadics.

http://dx.doi.org/10.1007/978-3-319-12787-3_6
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Now, let A be the traceless tensor constructed from the components of the vector

b, viz. Aν1ν2···ν�
= bμ1bμ2 · · · bμ�

. Then, the second term on the right hand side of
(11.49), involving the cross product, vanishes. Due to

bμ bμ bμ1bμ2 · · · bμ�−1 = �

(2� − 1)
b2 bμ1bμ2 · · · bμ�−1 ,

cf. (10.19), the relation (11.49), with (11.50) and (11.52), reduces to

bμ bμ1bμ2 · · · bμ�
= bμ bμ1bμ2 · · · bμ�

(11.53)

+ �

(2� + 1)
b2 Δ(�)

μ1μ2···μ�,μ ν1ν2···ν�−1
bν1bν2 · · · bν�−1 .

For � = 1, this relation reduces to bμbν = bμbν + 1
3δμν . The case � = 2 yields

bμ bνbλ = bμbνbλ + 2

5
b2 Δνλ,μκ bκ . (11.54)

Multiplication of (11.53) by the components aμaμ1 · · · aμ�
of the vector a, use of

aμ aμaμ1aμ2 · · · aμ�−1 = �/(2� − 1)a2 aμ1aμ2 · · · aμ�−1 , cf. (10.19), and of the

abbreviation, cf. (9.10), P�(a, b) = aμ1aμ2 . . . aμ�
bμ1bμ2 . . . bμ�

yields

a · bP�(a, b) = P�+1(a, b) + �

(2� + 1)

�

(2� − 1)
a2 b2 P�−1(a, b). (11.55)

Due toP�(a, b) = a� b� N� P�(x), with x = â ·̂b and N� = �!/(2�−1)!!, cf. (9.11),
the (11.55) is equivalent to the recursion relation for the Legendre polynomials

x P�(x) = � + 1

2� + 1
P�+1(x) + �

2� + 1
P�−1(x). (11.56)

11.6 Coupling of Second Rank Tensors with Irreducible
Tensors

The product of second rank tensor with an irreducible tensor of rank � can be decom-
posed by analogy to (11.49), where now irreducible tensors of ranks � + 2, � + 1, �,
� − 1, � − 2 occur. Here, the special case is considered where both the second rank
tensor and the �-th rank tensor are constructed from the components of the vector b.
Then the tensors of ranks � ± 1 vanish and the desired result can be obtained by a
twofold application of (11.53). Thus one finds

http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
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bνbλ bμ1bμ2 · · · bμ�
= bνbλbμ1bμ2 · · · bμ�

+ 2�

2� + 3
b2 Δ

(�,2,�)
μ1μ2···μ�,νλ,ν1ν2···ν�

bν1bν2 · · · bν�
(11.57)

+ �(� − 1)

(2� + 1)(2� − 1)
b4Δ(�)

μ1μ2···μ�,νλν1ν2···ν�−2
bν1bν2 · · · bν�−2 .

For � = 1, the (11.54) is recovered. Of special interest is the case � = 2. Here (11.57)
is equivalent to

bμbν bλbκ = bμbνbλbκ + 4

7
b2Δμν,λκ,στ bσ bτ + 2

15
b4Δμν,λκ . (11.58)

Multiplication of this equation with symmetric tensors aμν and cλκ yields

aμν bμbν cλκ bλbκ = aμνcλκ bμbνbλbκ + 4

7
b2aμν bνbλ cλμ + 2

15
b4aμνcμν.

(11.59)
Applications of these relations involving the products of irreducible tensors are found
in the following sections.

11.7 Scalar Product of Three Irreducible Tensors

11.7.1 Scalar Invariants

Consider three symmetric irreducible tensors a, b, c, viz. aμ1μ2·μ�1
, bν1ν2·ν�2

and
cκ1κ2·κ�

. Provided that � = �1 + �2, their product and total contraction yields the
scalar

aμ1μ2·μ�1
bν1ν2·ν�2

cμ1μ2···μ�1ν1ν2···ν�2
.

However, using in the product of the tensors a, b two subscripts which are equal
and summed over, one also obtains a scalar, when � = �1 + �2 − 2 applies and the
appropriate contractions are performed. In this case one has

aμ1·μ�1−1λ bν1·ν�2−1λ cμ1μ2···μ�1−1ν1ν2···ν�2−1 .

Obviously, this can be generalized to form scalars from the product of three tensors
of ranks �1, �2 and � with

� = �1 + �2, �1 + �2 − 2, . . . , |�1 − �2|.
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All these triple products of three tensors are invariant under a rotation of the coordi-
nate system.

Now let the tensors a, b, c be constructed from the components of unit vectors a,
b and c, viz.

aμ1μ2·μ�1
= aμ1aμ1 · · · aμ�1

,

bν1ν2·ν�2
= bν1bν1 · · · bν�2

,

cκ1κ2·κ�
= cκ1cκ2 · · · cκ�

.

Then the scalar quantity

P(�1,�2,�)(a, b, c), � = �1 + �2, �1 + �2 − 2, . . . , |�1 − �2|, (11.60)

constructed in themanner just described, defines a generalized Legendre polynomial,
apart from a numerical factor. For �1 = �, �2 = 0, one hasP(�,0,�) ∼ P�, where P�

is a Legendre polynomial, cf. Sect. 9.3. For the cases �1 = 0, �2 = �, and �1 = �2,
� = 0, the generalization also reduces to ordinary Legendre polynomials. An explicit
example for � = �1 + �2 is

P(�1,�2,�1+�2)(a, b, c) = aμ1..μ�1
bν1..ν�2

cμ1..μ�1ν1..ν�2

= aμ1 ..aμ�1
bν1 ..bν�2

cμ1 ..cμ�1
cν1 ..cν�2

. (11.61)

The special case �1 = �2 = � = 2 is

aμaλ bλbν cνcμ .

The interaction potential between non-spherical particles, see e.g. [34], involves
scalar invariants of the kind discussed here.

11.7.2 Interaction Potential for Uniaxial Particles

Consider two uniaxial non-spherical particles whose symmetry axes are specified
by the unit vectors u1 and u2. These particles can be rod-like or disc-like. In many
cases, weakly biaxial particles can be treated as effectively uniaxial. The centers of
mass of the two particles are at the positions r1 and r2, r = r1 − r2 is their relative
position vector. The interaction potential � between the particles depends on their
orientations, viz. on u1 and u2, and on r = r r̂. The angle dependence of � can be
described by the functions P(�1,�2,�) defined above. Thus the potential function is
expressed as the expansion

http://dx.doi.org/10.1007/978-3-319-12787-3_9
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� = �(u1, u2, r) =
∑

�

′ ∑

�1

∑

�2

φ(�1,�2,�)(r)P(�1,�2,�)(u1, u2, r̂). (11.62)

The prime in the summation over � indicates that only the “allowed” values are used,
as indicated in (11.60), viz. � = �1 + �2, �1 + �2 − 2, . . . , |�1 − �2|.

The scalar functions φ(�1,�2,�)(r) characterize the radial dependence of the differ-
ent angular contributions. The function φ(0,0,0) is the spherical symmetric part, also
referred to as isotropic part of the potential. The dipole-dipole, dipole-quadrupole
and quadrupole-quadrupole interactions considered in Sect. 10.4.5 are examples for
the cases (�1, �2, �) equal to (1, 1, 2), (1, 2, 3) and (2, 2, 4). The anisotropic part
of the interaction between Janus spheres, these are spherical particles with two dif-
ferent ‘faces’, can be modeled, cf. [35], with three terms proportional to u1 · u2, to
u1 · r − u2 · r and to u1 · r u2 · r − 1

3u1 · u2. These correspond to (�1, �2, �) equal
to (1, 1, 0), (1, 0, 1) − (0, 1, 1) and (1, 1, 2). A non-spherical interaction poten-
tial for nematic liquid crystals, introduced in [36], involves the anisotropic terms
u1u1 : u2u2 and ( u1u1 + u2u2 ) : rr , corresponding to (�1, �2, �) equal to
(2, 2, 0) and (2, 0, 2) + (0, 2, 2). This potential is simpler than the commonly used
Gay-Berne potential, cf. [37].

http://dx.doi.org/10.1007/978-3-319-12787-3_10


Chapter 12
Integral Formulae and Distribution
Functions

Abstract This chapter is devoted to integral formulae and distribution functions.
Firstly, integrals over the unit sphere are considered, in particular, results are pre-
sented for integrals of the product of two and more irreducible tensors. Then the
orientational distribution function needed for orientational averages and the expan-
sion of the distribution with respect to irreducible tensors are introduced, Applica-
tions to the anisotropic dielectric tensor, field-induced orientation of non-spherical
particles, Kerr effect, Cotton-Mouton effect, non-linear susceptibility, the orienta-
tional entropy and the Fokker-Planck equation governing the orientational dynamics,
are discussed. Secondly, averages over velocity distributions are treated, expansions
about a global or a local Maxwell distribution are analyzed and applied for kinetic
equations. Thirdly, anisotropic pair correlation functions and static structure factors
are considered. Examples for two-particle averages are the potential contributions to
the energy and to the pressure tensor of a liquid. The shear-flow induced distortion of
the pair-correlation is discussed, in particular for a plane Couette flow. The pair cor-
relation for a system with cubic symmetry is described. The chapter is concluded by
a derivation of the quantum-mechanical selection rules for electromagnetic radiation
using the expansion of wave functions with respect to irreducible Cartesian tensors.

12.1 Integrals Over Unit Sphere

Here, an integral over the unit sphere means a surface integral, as discussed in
Sect. 8.2.4. As in (8.31), d2̂r stands for the surface element of the unit sphere which
is equal to sin θdθdϕ, when spherical polar coordinates are used. The surface of
the unit sphere is recalled:

∫

d2̂r = 4π . Many integrals of interest can be evaluated
effectively, without any explicit integration over angles, by taking the isotropy of
the sphere and the symmetry properties of the integrands into account, and by using
properties of isotropic tensors.

© Springer International Publishing Switzerland 2015
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12.1.1 Integrals of Products of Two Irreducible Tensors

Integrals
∫

. . . d2̂r of products of irreducible tensors r̂μ1 r̂μ2 · · · r̂μ�
and r̂ν1 r̂ν2 · · · r̂ν�′

over the surface of the unit sphere must be proportional to an isotropic tensor, since
a sphere possesses no preferential direction. Furthermore, the particular isotropic
tensor must have the same subscripts with the same symmetry properties as the
integrands. There is no isotropic tensor which is symmetric traceless in both sets
of subscripts, unless �′ = � holds true. So the integral must be proportional to the
Kronecker delta δ��′ and to the Δ(�)-tensor. Thus the ansatz

∫

r̂μ1 r̂μ2 · · · r̂μ�
r̂ν1 r̂ν2 · · · r̂ν�′ d

2̂r = C� δ��′ Δ(�)
μ1μ2···μ� , ν1ν2···ν�

.

The coefficientC� is determined via the total contraction {μ1μ2· · ·μ�}={ν1ν2· · ·ν�}.
With r̂μ1 r̂μ2 · · · r̂μ�

r̂μ1 r̂μ2 · · · r̂μ�′ = �!/((2 �− 1)!!, cf. Sect. 9.3, ∫ d2̂r = 4π and

Δ
(�)
μ1μ2···μ�,μ1μ2···μ�

= 2�+1, one obtains C� = 4π�!/((2�+1)!!, and consequently
1

4π

∫

r̂μ1 r̂μ2 · · · r̂μ�
r̂ν1 r̂ν2 · · · r̂ν�′ d

2̂r = �!
(2� + 1)!! δ��′ Δ(�)

μ1μ2···μ�,ν1ν2···ν�
.

(12.1)

Notice, the integral 1
4π

∫

. . . d2̂r is an orientational average. The orientational average
of corresponding tensors constructed from the vector r rather than the unit vector r̂
is given by the right hand side of (12.1), multiplied by r2�.

Some special cases of (12.1) are

∫

r̂μd
2̂r =

∫

r̂μr̂ν d2̂r =
∫

r̂μr̂ν r̂λd
2̂r = 0, (12.2)

and

1

4π

∫

r̂μr̂νd
2̂r = 1

3
δμν , (12.3)

1

4π

∫

r̂μr̂ν r̂λr̂κ = 2

15
Δμν,λκ . (12.4)

The numerical factor occurring here can be checked immediately by observing that

δμμ = 3, r̂μr̂ν r̂μr̂ν = 2/3, and Δμν,μν = 5.
In terms of the Y···-tensors defined in Sect. 10.1.4, equation (12.1) is equivalent to

1

4π

∫

Yμ1μ2···μ�
Yν1ν2···ν�′d

2̂r = �! (2 � − 1)!! δ��′
1

2� + 1
Δ(�)

μ1μ2···μ�,ν1ν2···ν�
.

(12.5)

http://dx.doi.org/10.1007/978-3-319-12787-3_9
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12.1 Integrals Over Unit Sphere 201

The orientational average of the corresponding multipole potential tensors X··· rather
than the Y···-tensors is given by the right hand side of (12.5), multiplied by r−2(�+1).

12.1.2 Multiple Products of Irreducible Tensors

Integrals involving products of more than two irreducible tensors can also be evalu-
ated with the help of symmetry considerations and the contraction of tensors.

For instance, the orientational average of the fourfold product r̂μr̂ν r̂λr̂κ of com-
ponents of the unit vector must be proportional to the isotropic fourth rank tensor
with the appropriate symmetry, viz. δμνδλκ + δμλδνκ + δμκδλν . By analogy to the
consideration given above, one finds

1

4π

∫

r̂μr̂ν r̂λr̂κd
2̂r = 1

15
(δμνδλκ + δμλδνκ + δμκδλν). (12.6)

To check the numerical factor on the right hand side, put λ equal to κ and compare
with (12.3).

The integral of three irreducible second tensors

r̂μr̂ν r̂λr̂κ r̂σ r̂τ ,

over the unit sphere must be proportional to the sixth rank isotropic tensorΔμν,λκ,στ ,
defined by (11.36). The resulting equation is

1

4π

∫

r̂μr̂ν r̂λr̂κ r̂σ r̂τ d2̂r = 8

105
Δμν,λκ,στ . (12.7)

The numerical factor 8/105 can be verified in the following exercise.
The integral of four irreducible second tensors

r̂μ1 r̂ν1 r̂μ2 r̂ν2 r̂μ3 r̂ν3 r̂μ4 r̂ν4

can be found in the same spirit. Here, the result must be proportional to an isotropic
tensor of rank 8 with the required symmetry properties. There are two expressions
of this type, viz.

Δμ1ν1,λκ Δμ2ν2,κσ Δμ3ν3,στ Δμ4ν4,τλ ,

which is a generalization of the Δ(2,2,2)-tensor, cf. Sect. 11.4, and

Δμ1ν1,μ2ν2 Δμ3ν3,μ4ν4 + Δμ1ν1,μ3ν3 Δμ2ν2,μ4ν4 + Δμ1ν1,μ4ν4 Δμ2ν2,μ3ν3 ,

which is constructed by analogy to the fourth rank tensor occurring on the right hand
side of (12.6). Multiplication of these isotropic tensors with Sμ1ν1Sμ2ν2Sμ3ν3Sμ4ν4 ,

http://dx.doi.org/10.1007/978-3-319-12787-3_11
http://dx.doi.org/10.1007/978-3-319-12787-3_11
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where S is symmetric traceless second rank tensor, yields a product of the form
SμνSνλSλκSκμ, in the first case and 3(SμνSνμ)2, in the second case. Both terms are
proportional to each other, see (5.52). Thus also the two isotropic tensors of rank 8
are equivalent, apart from a numerical factor. More specifically, one has

Δμ1ν1,λκ Δμ2ν2,κσ Δμ3ν3,στ Δμ4ν4,τλ

= 1

6
(Δμ1ν1,μ2ν2Δμ3ν3,μ4ν4 + Δμ1ν1,μ3ν3Δμ2ν2,μ4ν4 + Δμ1ν1,μ4ν4Δμ2ν2,μ3ν3) .

(12.8)

Thus it suffices to consider one of these isotropic tensor, e.g. the second one. Then
the desired integral is

1

4π

∫

r̂μ1 r̂ν1 r̂μ2 r̂ν2 r̂μ3 r̂ν3 r̂μ4 r̂ν4 d
2̂r

= 4

105

1

3
(Δμ1ν1,μ2ν2Δμ3ν3,μ4ν4 + Δμ1ν1,μ3ν3Δμ2ν2,μ4ν4 + Δμ1ν1,μ4ν4Δμ2ν2,μ3ν3) .

(12.9)

Multiplication of this equation with Sμ1ν1Sμ2ν2Sμ3ν3Sμ4ν4 implies

1

4π

∫

(

Sμν r̂μr̂ν

)4
d2̂r = 4

105
(Sμν Sμν)

2. (12.10)

12.1 Exercise: Verify the Numerical Factor in (12.7) for the Integral over
a Triple Product of Tensors
Hint: Put ν = λ, κ = σ , τ = μ and use the relevant formulae given in Sect. 11.4.

12.2 Orientational Distribution Function

12.2.1 Orientational Averages

The orientation of a single molecule or particle with uniaxial symmetry can be
specified by a unit vector u. When needed, the vector u can be expressed in terms of
the spherical polar angles θ and ϕ, just as the unit vector r̂.

The orientation of many of those molecules in a molecular liquid or a nematic
liquid crystal or of rod-like particles in a colloidal solution, is characterized by an
orientational distribution function f = f (u). With the normalization

∫

f (u)d2u = 1, (12.11)

http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_11
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where d2u is the surface element on the unit sphere, the average 〈ψ〉 of an angle
dependent quantity ψ = ψ(u), is given by

〈ψ〉 =
∫

ψ(u) f (u)d2u. (12.12)

In an isotropic state, where no preferential direction exists, the orientational distrib-
ution function f0 does not depend on u. Due to the normalization condition one has
f0 = (4π)−1. Averages over this isotropic distribution are denoted by 〈· · · 〉0, viz.

〈ψ〉0 = 1

4π

∫

ψ(u)d2u. (12.13)

12.2.2 Expansion with Respect to Irreducible Tensors

In general, the orientational distribution function f (u) can be expanded in terms of
irreducible tensors constructed from the components of u. It is convenient to use the
tensors

φμ1μ2···μ�
≡

√

(2� + 1)!!
�! uμ1uμ2 · · · uμ�

. (12.14)

The basis functions φ... are orthogonal and normalized according to

1

4π

∫

φμ1μ2···μ�
φν1ν2···ν�′d

2u = 〈φμ1μ2···μ�
φν1ν2···ν�′ 〉0 = δ��′Δ(�)

mu1μ2···μ�,ν1ν2···ν�
,

(12.15)
cf. (12.1). Then the expansion reads

f (u) = f0(1 + Φ) , f0 = (4π)−1 , Φ =
∞
∑

�=1

aμ1μ2···μ�
φμ1μ2···μ�

. (12.16)

Clearly, Φ is the deviation of f from the isotropic distribution f0. The expansion
coefficients a... are the moments of the distribution function, viz.

aμ1μ2···μ�
=

∫

φμ1μ2···μ�
f (u)d2u ≡ 〈φμ1μ2···μ�

〉. (12.17)

These quantities are referred to as alignment tensors or order parameter tensors. In
general, they may depend on the time t and the position r in space.
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The expansion tenors pertaining to � = 1, 2, 3 and � = 4 are

φμ = √
3 uμ , φμν =

√

15

2
uμuν , φμνλ = 1

2

√
70 uμuνuλ ,

φμνλκ = 3

4

√
70 uμuνuλuκ .

The first few terms of f (u) = 1
4π (1 + aμφμ + aμνφμν + . . .) of the expansion can

also be written as

f (u) = 1

4π

(

1 + 3〈uμ〉uμ + 15

2
〈 uμuν 〉 uμuν + . . .

)

. (12.18)

The second rank alignment tensor aμν ∼ 〈 uμuν 〉 has the same symmetry as the

quadrupole moment tensor, cf. (10.29). For this reason the tensor 〈 uμuν 〉 is also
denoted by Qμν and referred to as Q-tensor, in the liquid crystal literature, [67].

12.2.3 Anisotropic Dielectric Tensor

The anisotropy of the dielectric tensor gives rise to birefringence, cf. Sect. 5.3.4. In
fluids of optically anisotropic, uniaxial particles, the symmetric traceless part of the
dielectric tensor is proportional to the alignment tensor:

εμν = εa aμν. (12.19)

The proportionality coefficient εa depends on the density n of the system and on the
difference α‖ − α⊥ of the molecular polarizabilities parallel and perpendicular to u,
cf. Sect. 5.3.3.

The electric polarization P is the average of the induced dipole moment, which is
proportional to the electric field ‘felt’ by the particle. In dilute systems, this is equal
to the applied field E. Then one has

Pμ = ε0 n 〈αμν〉 Eν

and consequently

εμν = n (α‖ − α⊥)〈 uμuν 〉 .

In dense systems, the particles ‘feel’ a local field Eloc, modified by the surrounding
particles. The Lorentz field approximation

Eloc = ELor ≡ E + 1

3ε0
P ,

http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_5
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leads to

εμν = n

(

εiso + 2

3

)2

〈 αμν 〉 + . . . ,

where εiso is the orientationally averaged dielectric coefficient. This result is equiv-
alent to (12.19) with

εa = n

(

εiso + 2

3

)2

(α‖ − α⊥) ζ−1
2 , (12.20)

where ζ2 =
√

15
2 is the normalization factor occurring in the definition of the align-

ment tensor.

12.2.4 Field-Induced Orientation

In the presence of electric or magnetic fields, the energy H of a particle with per-
manent or induced electric or magnetic dipole moments depends on its orientation
relative to the direction of the applied field. For a uniaxial particle, one hasH = H(u).
In thermal equilibrium, the orientational distribution function f = feq is proportional
to exp[−H/kBT ] = exp[−βH]:

feq = Z−1 exp[−βH(u)] , Z =
∫

exp[−βH]d2u , β = 1

kBT
. (12.21)

It is assumed that 〈H〉0 = 0 where 〈. . .〉0 = (4π)−1
∫

. . . d2u indicates the unbiased
orientational average in an isotropic state. Then the high temperature expansion for
the state function Z reads

Z = (4π)

(

1 + 1

2
β2〈H2〉0 − 1

6
β3〈H3〉0 + 1

24
β4〈H4〉0 ∓ . . .

)

.

First, the interaction of an electric or magnetic dipole moment is considered, which
is parallel to u and subjected to an electric or magnetic field, which is denoted by F.
Then H is equal to

H = H(1) ≡ Hdip = −d Fμuμ ,

where d stands for the magnitude of the relevant dipole moment. In this case, −βH
is written as β1Fμφμ with φμ = √

3uμ and β1 = βd/
√
3, and Z , in lowest order in

β1, reduces to

Z = (4π) (1 + 1

2
β2
1 FμFμ + . . .) .
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Likewise, up to second order in β1, the distribution function is equal to

feq = (4π)−1

(

1 + β1 Fμφμ +
√

3

10
β2
1FμFνφμν + . . .

)

. (12.22)

In this high temperature approximation, the first two moments are given by

aμ = 〈φμ〉 = β1Fμ , aμν = 〈φμν〉 =
√

3

10
β2
1 FμFν =

√

3

10
aμaν . (12.23)

These relations imply

〈 uμuν 〉 = c(2|11) 〈uμ〉〈uν〉 . (12.24)

The numerical factor c(2|11) is equal to 3/5 in the high temperature approximation.
For a very strong orienting field which induces a practically perfect orientation,
c(2|11) = c(2|11)(β1F) approaches 1.

In the case of a dipolar orientation, the distribution and consequently all its
moments have uniaxial symmetry. Let e be a unit vector parallel to the field F,
viz. Fμ = Feμ, where F is the strength of the field. Then the energy can be writ-
ten as Hdip = −dFeμuμ = −dFx, where x = eμuμ| is the cosine of the angle
between u and the direction of the field. Furthermore, one has eμφμ = √

3x and
−Hdip/kBT = √

3β1Fx. The average 〈xn〉 is evaluated according to

〈xn〉 = 1

2
Z−1

∫ 1

−1
xn exp

[√
3β1 F x

]

dx ,

with the state function Z given by

Z = L
(√

3β1 F
)

, L(z) = 1

2z
(exp[z] − exp[−z]) = 1 + z2/6 + z4/120 + . . . .

(12.25)

Let Lk be the k-derivative of L(z) with respect to z, viz. Lk = dkL/dzk. The average
〈xk〉 is then determined by Lk(z)/L(z), with z = √

3β1F = βdF. The results for the
lowest moments are

〈x〉 = 1 + z + exp[2z](z − 1)

z exp[2z] − z
= z/3 − z3/45 ± . . . , (12.26)

〈x2〉 − 1

3
= 1 + z + exp[2z](z − 1)

z exp[2z] − z
− 1

3
= 2z2/45 − 4z4/945 ± . . .(12.27)

For z → ∞, both 〈x〉 and 〈x2〉 approach 1.
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The coefficient c(2|11) defined in (12.24) is given by

c(2|11) = 〈P2(x)〉/〈P1(x)〉2 = 3

2

(

〈x2〉 − 1

3

)

/〈x〉2. (12.28)

The high-temperature approximation is

c(2|11) = 3/5 + 4z2/175 + 4z4/2625 + . . . , (12.29)

for z → ∞ one has c(2|11) → 1.
Next the case is considered where the orientational energy involves the scalar

product of the symmetric traceless tensor field Fμν and the tensor φμν = √
15/2

uμuμ , viz.

H = H(2) ∼ −Fμν uμuμ , −H(2)/kBT = β2 Fμν φμν. (12.30)

Interactions of this type occur for linear molecules with anisotropic polarizability in
the presence of an electric field E, cf. Sect. 5.3.3, and for particles with an electric
quadrupole moment in the presence of an electric field gradient ∇E. In the first case,

the field tensor Fμν = EμEν is uniaxial, in the second case, where Fμν = ∇μEν

applies, the field tensor is biaxial, unless the gradient is parallel to the E-field.
The distribution function pertaining to (12.30) is

feq = Z−1 exp[β2 Fμν φμν]
= Z−1

(

1 + β2 Fμν φμν + 1

2
β2
2 FμνFλκ φμνφλκ + . . .

)

,

with

Z = (4π)−1
(

1 + 1

2
β2
2 FμνFμν + z(3) + z(4) + . . .

)

.

The third and fourth order terms are

z(3) = 1

6
β3
2FμνFλκFστ 〈φμνφλκφστ 〉0 ,

z(4) = 1

24
β4
2FμνFλκFστ Fαβ〈φμνφλκφστφαβ〉0 .

The relation (12.7) implies

FμνFλκFστ 〈φμνφλκφστ 〉0 = √
30

2

7
FμνFνκFκμ

http://dx.doi.org/10.1007/978-3-319-12787-3_5
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and similarly, from (12.10) follows

FμνFλκFστ Fαβ〈φμνφλκφστφαβ〉0 = 15

7
(FμνFμν)

2 .

Thus up to terms of fourth order in the field tensor, the partition function Z is

Z = (4π)−1
(

1 + 1

2
β2
2FμνFμν + 1

27

√
30β3

2FμνFνκFκμ + 5

56
β4
2 (FμνFμν)2 + . . .

)

.

(12.31)

For H given by (12.30), the equilibrium average aμν = 〈φμν〉 can also be evaluated
according to

aμν = β−1
2 Z−1 ∂Z

∂Fμν

= β−1
2

∂ ln Z

∂Fμν

. (12.32)

With the help of (11.59) and φμνλκ = 3
4

√
70 uμuνuλuκ , the second order term in

the expression for feq is rewritten as

FμνFλκ φμνφλκ = 15

2
FμνFλκ

(

3

4

√
70

)−1
φμνλκ + 4

7

√

15

2
FμλFλνφμν + FμνFμν .

Thus in high temperature approximation, up to second order in β2, the second and
fourth rank alignment tensors are given by

aμν = β2 Fμν + 1

7

√
30 β2

2 FμλFλν , aμνλκ = 1

2

√

10

7
β2
2 FμνFλκ . (12.33)

A relation similar to (12.24) links the fourth rank alignment tensor with the product
of two second rank alignment tensors, viz. aμνλκ ∼ aμνaλκ and

〈 uμuνuλuκ 〉 = c(4|22) 〈 uμuν 〉〈 uλuκ 〉 . (12.34)

The coefficient c(4|22) depends on the field strength. The high temperature approxi-
mation is c(4|22) = 5/7.

12.2.5 Kerr Effect, Cotton-Mouton Effect, Non-linear
Susceptibility

The birefringence induced by an applied electric field or by a magnetic field are
called Kerr effect, named after J. Kerr, and Cotton-Mouton effect, named after A.
Cotton and H. Mouton, who discovered these effects in 1875 and 1907, respectively.

http://dx.doi.org/10.1007/978-3-319-12787-3_11
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Phenomenologically, the electro-optic Kerr effect is described by

εμν = 2K EμEν , (12.35)

where the Kerr coefficient K quantifies this effect. Due to (12.35), the difference
δν = ν‖ − ν⊥ of the indices of refraction of the optical electric field parallel and
perpendicular to the applied electric field E is determined by ν2‖ − ν2⊥ = 2KE2 =
(ν‖ + ν⊥)δν. Thus, with average index of refraction ν̄ = (ν‖ + ν⊥)/2, one has

ν̄ δν = K E2 .

In the corresponding relations for the Cotton-Mouton effect, the applied electric field
E and K are replaced by the magnetic field and another characteristic coefficient.
Sometimes, K/ν̄2 is referred to as Kerr coefficient. The term ‘electro-optic Kerr
effect’ is used in order to distinguish this effect from another one associated with
Kerr, viz. the magneto-optic Kerr effect.

Several mechanisms contribute to these effects. Firstly, strong fields influence
the electronic structure and change the ‘shape’ of atoms and molecules. Secondly,
the field-induced orientation of optically anisotropic particles, in fluids, gives rise
to birefringence. While the first contribution is independent of the temperature T ,
the second one, in general, contains contribution proportional to T−1 and T−2, in
the low-field and high-temperature limit. The key is the relation (12.19) between the
symmetric traceless part of the dielectric tensor and the alignment tensor, viz. εμν =
εaaμν , for = εa see (12.20). In the high temperature approximation, permanent
dipole moments yield a contribution proportional to T−2, cf. (12.23). Induced dipole
moments linked with an anisotropic polarizability lead to a contribution to K which
is proportional to T−1, as given by the first term on the right hand side of (12.33).

In (12.35) it is understood, that E is an applied electric field which is to be
distinguished from the electric field Elight of the light. When the optical electric field
Elight is strong enough and denoted by E, the Kerr effect gives rise to a nonlinear
susceptibility, cf. (2.59), where the third order contribution to the electric polarization
is P(3) = ε0χ

(3)
μνλκEνEλEκ with the susceptibility tensor χ

(3)
μνλκ = 2KΔμνλκ .

12.2.6 Orientational Entropy

The entropy of a system in an ordered state is lower than that in an isotropic state.
The entropy, per particle, associated with the orientation, characterized by the orien-
tational distribution function f (u), is determined by the Boltzmann like expression
−kB

∫

f ln f d2u. This should be compared with the corresponding expression for the
isotropic distribution f0, viz. s0 = −kB

∫

f0 ln f0d2u = −kB
∫

f ln f0d2u. The sec-
ond equality follows from the fact that ln f0 is a constant and that the normalization
imposes

∫

f d2u = ∫

f0d2u = 1. Thus the difference between the entropy, per particle,

http://dx.doi.org/10.1007/978-3-319-12787-3_2
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in the ordered and the isotropic state is

sa = −kB

∫

f ln(f /f0)d
2u = −kB〈ln(f /f0)〉. (12.36)

Use of f = f0(1 + Φ), cf. (12.16) yields

sa = −kB〈(1 + Φ) ln(1 + Φ)〉0. (12.37)

With the help of the power series expansion

(1 + x) ln(1 + x) = x +
∞
∑

n=2

(−1)n
1

n(n − 1)
xn ,

and due to 〈Φ〉0 = 0, the entropy (12.37) is equivalent to

sa = −kB

∞
∑

n=2

(−1)n
1

n(n − 1)
〈Φn〉0. (12.38)

The first few terms in this series are

sa = −kB

(

1

2
〈Φ2〉0 − 1

6
〈Φ3〉0 + 1

12
〈Φ4〉0 ± . . .

)

. (12.39)

In lowest order inΦ, the orthogonality and the normalization (12.15) of the expansion
tensors imply

sa = −kB

(

1

2

∞
∑

�=1

aμ1μ2···μ�
aμ1μ2···μ�

± . . .

)

. (12.40)

The dots stand for terms associated with third and higher powers in Φ. Examples for
the role of higher order terms are discussed in the Exercise 15.1.

12.2.7 Fokker-Planck Equation for the Orientational
Distribution

In the absence of any orientating torque and for a spatially homogeneous system, the
distribution function for the orientation of (effectively) uniaxial particles immersed
in a fluid obeys the dynamic equation, frequently called orientational Fokker-Planck
equation,

∂f (u)

∂t
− ν0 LμLμ f (u) = 0. (12.41)

http://dx.doi.org/10.1007/978-3-319-12787-3_15
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HereLμLμ, with

Lμ = εμνλuν

∂

∂uλ

,

is the Laplace operator on the unit sphere. The properties of L as used here are
equivalent to those discussed in Sect. 7.6 where the unit vector r̂ parallel to the
position vector r occurred instead of the unit vector u which is parallel to the figure
axis of a non-spherical particle. The relaxation frequency coefficient ν0 > 0 has
the dimension one over time. The (12.41) essentially describes a diffusional motion
on the unit sphere. For this reason, the coefficient ν0 is referred to as orientational
diffusion coefficient.

By analogy to (11.31), the irreducible tensors φμ1μ2···μ�
defined by (12.14), are

eigenfunctions of the orientational Laplace operator with the eigenvalues −�(�+1),
viz.

LλLλ φμ1μ2···μ�
= −�(� + 1) φμ1μ2···μ�

. (12.42)

Multiplication of the dynamic equation (12.41) by φμ1μ2···μ�
, subsequent integration

over d2u, use of the expansion (12.16) for the distribution function and of the ortho-
normalization (12.1) yields the relaxation equations

daμ1μ2···μ�

dt
+ ν� aμ1μ2···μ�

= 0 , � ≥ 1, (12.43)

for the tensorial moments aμ1μ2···μ�
. The relaxation coefficients ν� are given by

ν� = �(� + 1) ν0. (12.44)

Equation (12.43) implies an exponential relaxation

aμ1μ2···μ�
(t) = exp(−t/τ�) aμ1μ2···μ�

(0) , t > 0 ,

with the relaxation time τ� = ν−1
� . Clearly, higher moments pertaining to larger

values of � relax faster. In the long time limit all moments approach zero and the
distribution is isotropic, corresponding to the equilibrium state of an isotropic fluid.

Some Historical Remarks

A dynamic equation for an orientational distribution function as discussed here was
first introduced by Adriaan Fokker in his thesis in 1913 and published 1914 [43].
So the (12.41) should actually be called Fokker equation. How got Planck involved?
In 1917, Max Planck was asked by colleagues to explain the work of Fokker. So
at a meeting of the Prussian Academy of Science, in 1917, he presented what he
was inspired to, viz. a dynamic equation for the velocity distribution function of a
Brownian particle immersed in a liquid [44]. So his equation might be called Planck
equation. However, it is common practice to refer to both types of these equations
and generalizations thereof as Fokker-Planck equation.

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_11
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In the presence of an external torque T, which can be derived from a potential
function H = H(u) according to

Tλ = −LλH(u), (12.45)

the orientational Fokker-Planck equation contains an additional term. More specifi-
cally, the kinetic equation now reads

∂f (u)

∂t
− ν0 Lμ

(

Lμ f (u) + β f (u)LμH(u)
) = 0 , β = 1

kBT
. (12.46)

In this case, the stationary solution of the Fokker-Planck equation is the equilib-
rium distribution f = feq which is proportional to exp[−βH] = exp[−H/kBT ], cf.
Sect. 12.2.4.

Multiplication of the (12.46) by a function ψ = ψ(u), integration over d2u
and integrations by part leads to the moment equation for the time change of the
average 〈ψ〉:

d

dt
〈ψ〉 − ν0

(〈LμLμ ψ〉 − β 〈(Lμψ) (LμH)〉) = 0. (12.47)

Examples for suchmoment equations, however for the caseH = 0, are the relaxation
(12.43). For H �= 0, the relaxation equation for the �th rank tensor aμ1μ2···μ�

is
coupled with tensors of different ranks, in general. In particular, when H(u) involves
the first and second rank tensors uμ and uμuν , as considered in Sect. 12.2.4, the
tenor of rank � is coupled with tensors of ranks �±1 and �±2, respectively, quite in
analogy to the quantummechanical selection rules for electric dipole and quadrupole
radiation, cf. Sect. 12.5. Applications of a generalized Fokker-Planck equation to the
dynamics of liquid crystals is discussed in Sect. 16.4.4.

12.2 Exercise: Prove that the Fokker-Planck Equation Implies an Increase of
the Orientational Entropy with Increasing Time
Hint: The time change of an orientational average is d〈ψ〉/dt = ∫

∂(ψ f )/∂td2u,
use the expression (12.36) for the orientational entropy.

12.3 Averages Over Velocity Distributions

Atoms and molecules never sit still. In equilibrium, they move in all directions with
equal probability and their average speed is higher, at higher temperatures. In non-
equilibrium situations, preferential direction can be favored. The velocity distribution
function characterizes this behavior. The distribution is isotropic in equilibrium and,
in general, anisotropic in non-equilibrium. Here the relevant tools needed in the

http://dx.doi.org/10.1007/978-3-319-12787-3_16
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Kinetic Theory of Gases are presented. Physical phenomena associated with the
velocity distribution, both for an equilibrium situation and for non-equilibrium, in
particular for transport processes, are e.g. discussed in [40], see also [13].

12.3.1 Integrals Over the Maxwell Distribution

Let v be the velocity of an atom or molecule in a gas or liquid. The distribution
of the different velocities is characterized by the velocity distribution function, also
denoted by f = f (v), which is conventionally normalized such that

∫

f (v)d3v = n. (12.48)

Here n is the number density. The average 〈ψ〉 of a function ψ(v) is given by

〈ψ〉 = 1

n

∫

ψ(v) f (v)d3v. (12.49)

In thermal equilibrium, at temperatures and densities, where quantum effects play
no role, f is equal to the Maxwell distribution f0

f0(v) ≡ n0

(

m

2πkBT0

)3/2

exp

(

− m v2

2kBT0

)

, (12.50)

where m is the mass of a particle. The constant density n0 = N/V , of the N particles
confined to the volume V and the constant temperature T0 characterize the absolute
equilibrium state. The Boltzmann constant is denoted by kB. It is convenient to
introduce a dimensionless velocity variable V via

V 2 = m v2

2kBT0
, (12.51)

which implies

v = √
2 c0 V , c0 = √

kBT0/m, (12.52)

and to use the velocity distribution F = F(V), linked with f (v), such that

f (v)d3v = F(V)d3V .

Instead of (12.49), averages are then evaluated according to

〈ψ〉 = 1

n

∫

ψ(V) F(V)d3V . (12.53)
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In thermal equilibrium, F is equal to the absolute Maxwellian F0, which is the
Gaussian function

F0(V) ≡ n0 π−3/2 exp(−V 2). (12.54)

Averages evaluated with this Maxwell velocity distribution function are denoted by
〈 . . .〉0, viz.

〈ψ〉0 ≡ π−3/2
∫

ψ(V) exp(−V 2)d3V = 1

n0

∫

ψ(V) F0(V)d3V . (12.55)

The equilibrium average of powers of the magnitude V of the dimensionless velocity
V are

〈V n〉0 = 2π−1/2 Γ

(

n + 3

2

)

, (12.56)

where n is a positive integer number and Γ (x) is the gamma-function, with the
property Γ (n+1) = n!. For the first few even powers, (12.56) implies 〈1〉0 = 1, and

〈V 2〉0 = 3

2
, 〈V 4〉0 = 15

4
, 〈V 6〉0 = 105

8
, 〈V 8〉0 = 945

16
. (12.57)

Clearly, the Maxwell distribution is isotropic. Thus equilibrium averages of the irre-

ducible tensors Vμ1Vμ2 · · · Vμ�
vanish:

〈 Vμ1Vμ2 · · · Vμ�
〉0 = 0. (12.58)

This is not the case for products of irreducible tensors of the same rank. In particular,
from (12.1) and (12.56), with 2π−1/2Γ ( 2�+3

2 ) = (2�+1)!!
2� , follows

〈 Vμ1Vμ2 · · · Vμ�
Vν1Vν2 · · · Vν�′ 〉0 = �!

2�
δ��′ Δ(�)

μ1μ2···μ�,ν1ν2···ν�
. (12.59)

The special cases � = �′ = 1, 2 correspond to

〈VμVν〉0 = 1

2
δμν , 〈 VμVν VλVκ 〉0 = 1

2
Δμν,λκ . (12.60)

12.3.2 Expansion About an Absolute Maxwell Distribution

Clearly, the Maxwell distribution is isotropic. In a non-equilibrium situation, how-
ever, this is not the case. In general, the velocity distribution is anisotropic. The
directional properties of the velocity distribution can be characterized by irreducible
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tensors constructed from the components of the velocity variable V. However, addi-
tional scalar polynomial functions, depending on V 2, are needed the characterize the
full dependence of f on the magnitude and direction of the velocity. These scalar
functions are the Sonine polynomials [12, 13], which are closely related to the asso-
ciated Laguerre polynomials. The orthogonal expansion functions are, cf. [13, 41],

φ(s+1)
μ1μ2···μ�

∼ (−1)s+1S(s)
(�+1/2)(V 2) Vμ1Vμ2 · · · Vμ�

, (12.61)

where the label s characterizes the different Sonine polynomials. The Sonine poly-
nomials are defined by

S(s)
(k)(x) = (s!)−1 ∂s

∂zs
(1 − z)−(1+k) exp[zx/(z − 1)], z → 0. (12.62)

The first few of these polynomials are S(0) = 1 and

S(1)
(k)(x) = k+1−x , S(2)

(k)(x) = (1/2)(k+1)(k+2)−(k+2)x+(1/2) x2. (12.63)

The functions (12.61) are orthogonal and normalized according to

〈φ(s)
μ1μ2···μ�

φ(s′)
ν1ν2···ν�′ 〉0 = δss′ δ��′ Δ(�)

μ1μ2···μ�,ν1ν2···ν�
. (12.64)

The velocity distribution is written as

F(V) = F0(V) (1 + Φ), (12.65)

where Φ(t, r, V) characterizes the deviation of F from the Maxwellian F0. The
expansion of Φ reads

Φ =
∞
∑

�=0

∞
∑

s=1

a(s)
μ1μ2···μ�

φ(s)
μ1μ2···μ�

. (12.66)

The expansion coefficients

a(s)
μ1μ2···μ�

= 〈φ(s)
μ1μ2···μ�

〉 (12.67)

are the moments of the velocity distribution.
Just the first few terms of the expansion are of importance in most applications, so

only the first few expansion functions are listed here. The first three scalar expansion
functions are,

Φ(1) = 1, Φ(2) =
√

2

3

(

V 2 − 3

2

)

, Φ(3) =
√

2

15

(

V 4 − 5 V 2 + 15

4

)

.

(12.68)
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These functions are orthogonal and normalized according to 〈Φ(s)Φ(s′)〉0 = δss′ . The
first two vectorial expansion functions are

Φ(1)
μ = √

2 Vμ, Φ(2)
μ = 2√

5

(

V 2 − 5

2

)

Vμ. (12.69)

Here the normalization corresponds to 〈Φ(s)
μ Φ

(s′)
ν 〉0 = δss′δμν . The first second rank

tensorial expansion functions are

Φ(1)
μν = √

2 VμVν , Φ(2)
μν = 2√

7

(

V 2 − 7

2

)

VμVν . (12.70)

For comparison with [13] notice that s − 1 corresponds to the label r used by
Waldmann, which is the number of zero-values of the Sonine polynomials involved.

Thefirst two scalar andfirst vectorialmoments are essentially the relative deviation
of the number density n from the constant density n0, the relative deviation of the
temperature T from T0, and the average flow velocity 〈v〉, viz.

a(1) = n/n0 − 1, a(2) =
√

3

2
(T/T0 − 1), a(1)

μ = c−1
0 〈vμ〉, c0 = (kBT0/m)1/2.

(12.71)

In pure gases, these are associated with conserved quantities. The number density,
thusa(1), is the only conservedquantity for colloidal particles in liquids. Themoments
a(2)
μ and a(1)

μν are proportional to the parts of the heat flux and of the friction pressure
tensor which are associated with the translational motion. The specific relations are
stated in Sect. 12.3.4.

12.3.3 Kinetic Equations, Flow Term

The time change ∂f /∂t of the velocity distribution f = f (t, r, v) contains a contribu-
tion due to the translational motion of the particles, viz. vλ∇λf which is referred to as
flow term. The corresponding expression in the kinetic equation for the dimensionless
distribution function F = F(t, r, V) is

∂

∂t
F + √

2 c0 Vλ∇λ F −
(

δF

δt

)

..

= 0. (12.72)

Here ( δF
δt ).. stands either for the collision term ( δF

δt )coll of the Boltzmann equation
or for the damping term ( δF

δt )FP of Planck’s version of the Fokker-Planck equation.
In any case, these terms guarantee the approach to equilibrium. The Fokker-Planck
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expression, used for the dynamics of colloidal Brownian particles, is

−
(

δF

δt

)

FP
= FM ΩFP(Φ) = −1

2
ν0

∂

∂Vκ

(

FM
∂

∂Vκ

Φ

)

. (12.73)

Here ν0 > 0 is the translational relaxation frequency. For particles with a radius R
larger than the molecules of the surrounding liquid, the hydrodynamic result for the
Stokes friction force (10.58) applies. Then one has ν0 = m−16πηR. The quantity
ΩFP(Φ), defined by (12.73), is referred to as the Fokker-Planck relaxation operator.
The expansion tensors used here are eigenfunctions of this operator.

The implications of the flow term for the moment equations apply to both the
Boltzmann and the Fokker-Planck equations. After an insertion of the expansion
(12.66) into the flow term of (12.72), the multiplication of the expansion tensors of

rank �, e.g. φ(s′+1)
ν1ν2···ν�′ with the vector Vλ yields irreducible tensors of ranks �′ −1 and

�′ +1, see Sect. 11.5. Multiplication of (12.72) by the function φ
(s)
μ1μ2···μ�

, subsequent
integration over d3V and the use of the relevant orthogonality relations leads to

∂

∂t
a(s)
μ1μ2···μ�

+
∑

s′
c(�s|� − 1s′)∇λa(s′)

λμ2···μ�−1

+
∑

s′
c(�s|� + 1s′) ∇λa(s′)

μ1μ2···μ�−1 + . . . = 0 . (12.74)

The terms which stem from the collision term or from the damping term of the
Fokker-Planck equation are indicated by the dots. Due to

〈φ(s)
μ1μ2···μ�

Vμ φ(s′)
ν1ν2···ν�−1

〉0 ∼ Δ(�)
μ1μ2···μ�,μν1ν2···ν�−1

,

and (11.7), the flow term coefficients c(. . .) are determined by

c(�s|� − 1s′) = √
2c0 (2� + 1)−1 〈φ(s)

μ1μ2···μ�
Vμ�

φ(s′)
μ1μ2···μ�−1

〉0. (12.75)

The coefficient c(�s|� + 1s′) can be inferred from c(� − 1s′|�s) = c(�s|� − 1s′) and
subsequent replacement � → � + 1 and the interchange of s and s′. The first few of
the coefficients c(. . .) are

c(01|1s′) = c0 δ1,s′ , c(11|0s′) = c0 δ1,s′ +
√

2

3
c0 δ2,s′ , c(11|2s′) = √

2 c0 δ1,s′ .

For the Fokker-Planck case, the first two of the moment equations are

∂

∂t
a(1) + c0 ∇μ a(1)

μ = 0 ,

∂

∂t
a(1)
μ + c0∇μ a(1) +

√

2

3
c0 ∇μ a(2) + √

2 c0 ∇ν a(1)
νμ + ν1 a(1)

μ = 0, (12.76)

http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_11
http://dx.doi.org/10.1007/978-3-319-12787-3_11
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with the relaxation frequency ν1 = ν0. Clearly, the flow term couples the moment
a(1)
μ , which is essentially the average velocity of the Brownian particles, with the

scalar a(2) and the second rank tensor a(1)
μν . When these terms can be disregarded, the

(12.76) and (12.77) are equivalent to the following equations for the number density
n and the flux density j = n〈v〉 of the colloidal particles:

∂

∂t
n + ∇μ jμ = 0 , (12.77)

∂

∂t
jμ + c20 ∇μ n + ν1jμ = 0 . (12.78)

For time changes which are slow compared with the relaxation time τ1 = ν−1
1 , the

second of these equations reduces to jμ = −D∇μn with the diffusion coefficient

D = c20 τ1 = kBT

mν1
= kBT

6πηR
. (12.79)

The third equality is based on the Stokes friction law (10.58).

12.3.4 Expansion About a Local Maxwell Distribution

The expansion of the velocity distribution function about an absolute Maxwellian, as
used in [13] and [21] is appropriate for small deviations from equilibrium. In general,
it is more advantageous, cf. [41], to expand the velocity distribution of gases about
a local Maxwellian, as treated next.

The difference between the velocity of a particle, at position r, and the local
average flow velocity 〈vμ〉 = 〈vμ〉(r, t), viz.

cμ = vμ − 〈vμ〉, (12.80)

is referred to as thepeculiar velocity of the particle. The local temperatureT = T(r, t)
is linked with the average peculiar kinetic energy via (m/2)〈c2〉 = (3/2)kBT .

The distribution of the peculiar velocities is also denoted by f . It is normalized
according to

∫

f (c)d3c = n, (12.81)

The average 〈ψ〉 of a function ψ(c) is given by

〈ψ〉 = 1

n

∫

ψ(c) f (c)d3c. (12.82)

http://dx.doi.org/10.1007/978-3-319-12787-3_10
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In local thermal equilibrium, at temperatures and densities, where quantum effects
play no role, f is equal to the local Maxwell distribution fM

fM(c) ≡ n

(

m

2πkBT

)3/2

exp

(

− mc2

2kBT

)

, (12.83)

where m is the mass of a particle.
It is convenient to introduce a dimensionless velocity variable V, cf. (12.51),

now via

Vμ =
√

m

2kBT
cμ =

√

m

2kBT
(vμ − 〈vμ〉), (12.84)

which implies

V 2 = mc2

2kBT
, (12.85)

and to use the velocity distribution F = F(V), linked with f (c), such that

f (c)d3c = F(V)d3V .

Averages are now evaluated according to

〈ψ〉 = 1

n

∫

ψ(V) F(V)d3V, (12.86)

which is mathematically identical to (12.53).
In thermal equilibrium, F is equal to the local Maxwellian FM

FM(V) ≡ n π−3/2 exp(−V 2). (12.87)

Averages evaluated with this Maxwell velocity distribution function are denoted by
〈 . . .〉M, viz.

〈ψ〉M ≡ π−3/2
∫

ψ(V) exp(−V 2)d3V = 1

n

∫

ψ(V) FM(V)d3V . (12.88)

The results given above for 〈. . .〉0, in particular (12.56)–(12.60), apply also to the
averages 〈. . .〉M, evaluated with the local Maxwell distribution function.

Similar to (12.65), the full distribution function is now written as

F(V) = FM(V) (1 + Φ), (12.89)

where Φ(t, r, V) characterizes the deviation of F from the local Maxwellian FM.
The expansion of Φ is formally similar to (12.66), with one fundamental difference:
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nowΦ has to be orthogonal to the moments associated with the conserved quantities,
with the number density, the kinetic energy and the velocity. This means, the first and
second scalar, viz. 1 and V 2−3/2, as well as the first vectorial expansion function V,
must not be included in the expansion. Instead of (12.66), the expansion now reads

Φ =
∞
∑

s=3

a(s) φ(s) +
∞
∑

s=2

a(s)
μ φ(s)

μ +
∞
∑

�=2

∞
∑

s=1

a(s)
μ1μ2···μ�

φ(s)
μ1μ2···μ�

. (12.90)

As before, the expansion coefficients

a(s)
μ1μ2···μ�

= 〈φ(s)
μ1μ2···μ�

〉 (12.91)

are the moments of the velocity distribution.
Notice, the variable V depends on the time t and on the position r via the temper-

ature and the average velocity. This is a second fundamental point which has to be
observed in applications, e.g. see [41].

In many applications, the most relevant terms of the expansion (12.90) involve

the translational or kinetic parts qkinμ and pkinμν of the heat flux vector and of the
symmetric traceless friction pressure tensor. These quantities are given by

qkinμ = n

〈(

m

2
c2 − 5

2
kBT

)

cμ

〉

= nkBT(kBT/m)1/2
√
2

〈(

V 2 − 5

2

)

Vμ

〉

,

(12.92)

or, equivalently,

qkinμ = nkBT(kBT/m)1/2

√

5

2
〈φμ〉, (12.93)

and

pkinμν = nm〈 cμcν 〉 = nkBT 2〈 VμVν 〉 = nkBT
√
2〈φμν〉. (12.94)

The relevant vectorial and tensorial expansion functions occurring here are

φμ ≡ φ(2)
μ = 2√

5

(

V 2 − 5

2

)

Vμ, φμν ≡ φ(1)
μν = √

2 VμVν . (12.95)

In the approximation where only these two expansion functions and the correspond-
ing moments characterize the deviation Φ from the local equilibrium, one has

Φ = 〈φμ〉φμ + 〈φμν〉φμν

= (nkBT)−1

[

(kBT/m)−1/2

√

2

5
qkinμ φμ +

√
2

2
pkinμν φμν

]

. (12.96)
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The thirteen moments approximation of kinetic gas theory [45] employs just these 3
plus 5 moments describing the heat flux and the friction pressure tensor, in addition
to the 5 variables associated with the conserved quantities, viz. the number density
n, the temperature T and average flow velocity v.

In addition to the heat conductivity and the viscosity, also a contribution to the
symmetric traceless part of the pressure tensorwhich is proportional to the gradient of
the heat fluxq and thus proportional to the second spatial derivative of the temperature
T is described by the thirteenmoments approximation. This phenomenon, where one
has

pμν ∼ − ∇μqν ∼ ∇μ∇ν T ,

was already predicted by Maxwell, it is referred to as Maxwell’s thermal pressure.
An experimental manifestation of this effect is provided by light-induced velocity
selective heating or cooling in gases, cf. [46]. For some applications, however, more
than thirteenmoments have to be included for the solution of the Boltzmann equation
[41, 47].

A side remark: in dilute gases and in the hydrodynamic regime, the heat flux
and the viscous friction pressure tensor are independent of the density n. The factor
(nkBT)−1 in (12.96) implies that the deviation Φ from the Maxwell velocity distri-
bution is proportional to n−1, thus it is the larger the smaller the density n is. At a
lower density, fewer particles have to ‘work’ harder to transport the energy and the
linear momentum. Maxwell’s thermal pressure is also proportional to n−1.

12.3 Exercise: Second Order Contributions of the Kinetic Heat Flux and
Friction Pressure Tensor to the Entropy
The ‘non-equilibrium’ entropy, per particle, associated with the velocity distribution
function f = fM(1+Φ), is given by s = −kB〈ln(f /fM)〉 = −kB〈(1+Φ) ln(1+Φ)〉M,
where fM is the local Maxwell distribution and Φ is the deviation of f from fM.
By analogy with (12.39), the contribution up to second order in the deviation is
s = −kB

1
2 〈Φ2〉M.

Determine the second order contributions to the entropy associated with heat flux
and the symmetric traceless pressure tensor.

12.4 Anisotropic Pair Correlation Function
and Static Structure Factor

The particles surrounding any given reference particle in a dense fluid, in a liquids
or a colloidal solution, possess a short ranged order which is also referred to as the
structure of a liquid. This property is characterized by the pair correlation function
or by the static structure factor. For fluids composed of spherical particles, these
functions are isotropic, in thermal equilibrium. In non-equilibrium situations, these
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quantities become anisotropic. The basics and examples for the use of tensors needed
to characterize the anisotropic properties are presented here. For more information
on the physics of liquids e.g. consult [48–52].

12.4.1 Two-Particle Density, Two-Particle Averages

Consider a fluid of N spherical particles with positions ri, i = 1, 2, . . . N , contained
within a volumeV . The two-particle probability density tofindoneparticle at position
ra and another one at rb is the two-particle density n(2)(ra, rb). It is given by

n(2)(ra, rb) =
〈

∑

I

∑

j �=i

δ(ra − ri) δ(rb − rj)

〉

, (12.97)

where the bracket 〈. . .〉 indicates a N-particle average. It can e.g. be a canonical
average or a time-average, but it need not to be specified here. The integral of n(2)

over both ra and rb yields the number of pairs {i, j} viz. N(N − 1).
Consider a quantity

Ψ =
∑

I

∑

j �=i

ψ(ri, rj) ,

where ψ is a function which depends on the position vectors of two particles. Then
its average is given by

〈Ψ 〉 =
∫

ψ(r1, r2) n(2)(r1, r2)d3r1d
3r2, (12.98)

where now the integration variables are denoted by r1, r2 rather than ra, rb. When
the functionψ depends on the difference between two position vectors only, just like
the binary interaction potential, the average 〈Ψ 〉 can be written as

〈Ψ 〉 = N2

V

∫

ψ(r) g(r)d3r. (12.99)

Here the pair-correlation function g = g(r) is defined by

g(r) = V

N2

∫

n(2)(r2 + r, r2)d3r2. (12.100)

The vector

r = r1 − r2



12.4 Anisotropic Pair Correlation Function and Static Structure Factor 223

is not an ordinary position vector but it is the difference vector in the {r1, r2} pair-
space. Due to (12.97), g is also given by the N-particle average

N

V
g(r) = 1

N

〈

∑

I

∑

j �=i

δ(r − rij)

〉

, rij = ri − rj. (12.101)

Clearly, rij is the difference vector between the position vectors of particles i and j.
Notice that g as given by (12.100) does not depend on the absolute positions of

two particles within the volume V , but rather on their relative position vector. The
definition (12.100) and consequently (12.101) also apply to spatially inhomogeneous
systems. For a spatially homogeneous case, where the two-particle density n(2) =
n(2)(r1, r2) depends on the difference r = r1 − r2 only, g(r) can also be defined by

n(2)(r) =
(

N

V

)2

g(r) = n2 g(r), (12.102)

where it is understood that n = N/V is the spatially constant number density. For
a ‘pure system’, i.e. a substance composed of one type of particles, the interchange
of the labels 1, 2 of two particles, which implies the replacement of r by −r, should
not make any difference for g. Thus g is an even function of r:

g(r) = g(−r). (12.103)

For particles which cannot penetrate each other due to their short range repulsion one
has g(0) = 0. On the other hand, particles in isotropic media without long-ranged
correlations are uncorrelated when they are separated by distances r large compared
with their size. Then g → 1 holds true for r → ∞. Typically, the orientationally
averaged part of g has amaximum at a value r which corresponds to the first neighbor
distance. In dense systems there are several additional maxima at larger distances,
with smaller height, however.

Examples for averages which can be evaluated as integrals over g(r) are the
potential contributions to the energy and to the pressure tensor as well as the static
structure factor.

12.4.2 Potential Contributions to the Energy
and to the Pressure Tensor

Assuming that the total potential energy of the particles is given by the sum of the
binary interaction potential φ = φ(r) = φ(−r), the total potential energy is

Φ = 1

2

∑

i

∑

j �=i

φ(ri − rj). (12.104)
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The factor 1
2 stems from the fact that the interaction between two particles i and j has

to be counted only once whereas the summation over i and j contains the equivalent
pairs {i, j} and {j, i}. The average potential energy per particle is upot = 〈Φ〉/N . The
corresponding integral over the pair correlation function is

upot = 1

2
n

∫

φ(r) g(r)d3r, (12.105)

where n = N/V is the average number density.
The force associated with the binary interaction φ is

Fμ = Fμ(r) = − ∂

∂rμ

φ(r) .

The potential contribution to the pressure tensor ppotνμ then is given by the integral

ppotνμ = 1

2
n2

∫

rν Fμ(r) g(r)d3r. (12.106)

For a substance composed of spherical particles, the force F is parallel to r, thus the
pressure tensor (12.106) is symmetric. It can be decomposed into its isotropic part
pδμν and its symmetric irreducible (traceless) part pμν , cf. Chap.6

ppotνμ = ppot δμν + ppotμν ,

with

ppot = 1

6
n2

∫

rλ Fλ(r) g(r)d3r , ppotμν = 1

2
n2

∫

rν Fμ(r) g(r)d3r. (12.107)

The pressure tensor is the sum of its kinetic and potential contributions.

12.4.3 Static Structure Factor

The static structure factor S = S(k) can be measured in experiments where electro-
magnetic radiation or particles, like neutrons, are scattered. The scattered intensity
is determined by the form factor, which reflects the shape of the scatters, and by the
static structure factor, which contains the information on the correlations between the
positions of the particles. The scattering wave vector k = ksc − kin is the difference
between the wave vectors ksc and kin of the detected scattered and the incident beam,
see Fig. 12.1.

http://dx.doi.org/10.1007/978-3-319-12787-3_6
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Fig. 12.1 Schematic
scattering geometry with
wave vectors kin and ksc for
the incoming and the
scattered beams

The scattering is elastic, i.e. one has k2
sc = k2

in. The quantity S(k)−1 is essentially
the spatial Fourier transform of g(r) − 1, viz.

S(k) = 1 + n
∫

exp[−i k · r] (g(r) − 1)d3r. (12.108)

Due to g(r) = g(−r), the exponential function in (12.108) can be replaced by
cos(k ·r). At first glance, curves of the isotropic part of S as function of k look similar
to those of g as function of r. Typically, there is a first maximum at k ≈ 2π/rnn,
where rnn is the nearest neighbor distance associated with the first maximum of g.
The behavior of S for k approaching zero is fundamentally different from that of
g(0) = 0. More specifically, one has S(0) = 〈(δN )2〉/N , where N is the number
of scatters in the open scattering volume and δN = N − 〈N 〉 is its fluctuation.
The mean square fluctuation of the number of particles is related to the isothermal
compressibility κT = n−1(∂n/∂p)T .More specifically, one has S(0) = nkBTκT. This
quantity is small, but finite, in dense liquids. Close to the critical point, however, S(0)
becomes very large, this underlies the critical opalescence.

12.4.4 Expansion of g(r)

In thermal equilibrium, the pair correlation function of a fluid composed of spherical
particles is isotropic, i.e. it depends on r of the vector r, but not on its direction
specified by the unit vector r̂. In general, however, in particular in non-equilibrium
situations, g is a function of both r and r̂. The angular dependence, also called
directional dependence, of g can be taken into account explicitly by an expansion
with respect to irreducible tensors of rank � constructed from the components of the
unit vector r̂. Since g is an even function of r, only even values � = 0, 2, 4, . . . occur
in the expansion. The first terms are

g(r) = gs + gμν r̂μr̂ν + gμνλκ r̂μr̂ν r̂λr̂κ + . . . , (12.109)
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where it is understood, that the “spherical” part gs of the pair correlation function, as
well as the expansion tensors g··· are function of the inter-particle distance r. They
depend also on the time t when the pair correlation function applies to a general
non-equilibrium situation.

Due to the orthogonality relation (12.5), the quantities g··· are tensorial moments
of g(r), more specifically, one has

1

4π

∫

r̂μ1 r̂μ2 · · · r̂μ�
g(r)d2̂r = �!

(2� + 1)!! gμ1μ2···μ�
. (12.110)

For � = 2 and � = 4 this relation implies, see also (12.1),

gμν = 15

2

1

4π

∫

r̂μr̂ν g(r)d2̂r, (12.111)

and

gμνλκ = 315

8

1

4π

∫

r̂μr̂ν r̂λr̂κ g(r)d2̂r. (12.112)

Insertion of the expansion (12.109) into (12.107) leads to expressions which involve
just the integration over r, but no longer over the angles. These relations are

ppot = 2π

3
n2

∫

rλ Fλ gs(r) r2dr, ppotμν = 4π

15
n2

∫

rλ Fλ gμν(r) r2dr. (12.113)

Notice that rλFλ = −rφ′. Here the prime indicates the differentiation with respect
to r.

For a fluid composed of spherical particles, all moments with � ≥ 2 vanish
in thermal equilibrium. This, however, is no longer the case in non-equilibrium
situations. In particular, certain components of gμν are non-zero for a viscous flow.
This is already the case in the limit of small shear rates. At higher shear rates, also
higher moments, e.g. with � = 4, cf. Sect. 12.4.5 and Exercise 12.4.

The expansion (12.109) is equivalent to an expansion with respect to spherical
harmonics Y (m)

� = Y (m)
� (̂r), cf. Sect. 9.4.2. The first few terms corresponding to

(12.109) are

g(r) = gs +
2

∑

m=−2

g2m Y (m)
2 +

4
∑

m=−4

g4m Y (m)
4 + . . . , (12.114)

where the expansion coefficients are functions of r. The Y (m)
� obey the ortho-

normalization
∫

Y (m)
� (Y (m′)

�′ )∗d2̂r = δ��′δmm′ , thus

g�m(r) =
∫

(Y (m)
� (̂r)∗ g(r)d2̂r. (12.115)

http://dx.doi.org/10.1007/978-3-319-12787-3_9
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It depends on the geometry of applications whether an expansion with respect to
spherical or to Cartesian tensors is preferred. In the case of the distortion of the pair
correlation function caused by a simple shear flow pertaining to the plane Couette
geometry, cf. Fig. 7.6, the Cartesian version (12.109) is more appropriate.

12.4.5 Shear-Flow Induced Distortion of the Pair Correlation

The time change of the pair density n(2)(r1, r2) involves the flow term

[

vμ(r1)
∂

∂r1μ
+ vμ(r2)

∂

∂r2μ

]

n(2)(r1, r2) .

When n(2) = n2g, with constant number density n, depends on the difference
variable r = r1 − r2 only, this expression reduces to

(

vμ(r1) − vμ(r2)
) ∂

∂rμ

n2g(r) .

Consider a linear flow profile, cf. Sect. 7.2.2,

vμ(r) = rν (∇νvμ) = rν(ενμλ ωλ + γμν). (12.116)

The vorticity ωλ and the deformation rate or shear rate tensor γμν are given by

ωλ = 1

2
ελκτ∇κvτ , γμν = ∇νvμ . (12.117)

Here ∇νvν = 0, i.e. a divergence-free flow is assumed.
The flow term in the kinetic equation for g can be split into two contributions

involving ωλ and γμν , which induce a local rotation and deformation, respectively,
in pair-space. This equation reads

∂

∂t
g + ωλ Lλ g + γμν Lμν g + D(g) = 0 (12.118)

with the differential operators

Lλ = ελκτ rκ

∂

∂rτ

, Lμν = rμ
∂

∂rτ
. (12.119)

The vector operatorLλ, cf. (7.80), is the generator of the infinitesimal rotation. The
symmetric traceless second rank tensor operator Lμν is associated with an infin-
itesimal volume conserving deformation. The damping term D(g) guarantees the

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7


228 12 Integral Formulae and Distribution Functions

approach of g to its equilibrium value geq = geq(r) when the flow is switched off.
A specific expression for D was proposed by Kirkwood [53], which is analogous to
what Smoluchowski had used for the diffusion in the presence of an external poten-
tial. For this reason, the kinetic equation is referred to as Kirkwood-Smoluchowski
equation. The potential used by Kirkwood is an effective potential φeff determined
by the equilibrium pair correlation function geq according to φeff = −kBT ln geq.
A generalization and applications are discussed in [54]. The simple relaxation time
approximation

D(g) = τ−1 (g − geq) ,

suffices to analyze the essential features associated with the shear flow induced
distortion of g. Here τ is a structural relaxation time, sometimes also called Maxwell
relaxation time. With g = geq + δg and Lλgeq = 0, the kinetic equation (12.118)
reduces to

∂

∂t
δg + ωλ Lλ δg + γμν Lμν δg + τ−1 δg = −γμν Lμν (geq − 1), (12.120)

where Lμνgeq = Lμν(geq − 1) was used.
Next, a stationary situation is considered, where the time derivative of g vanishes.

Furthermore, g is written as

g = geq + δg(1) + δg(2) + . . . ,

where g(k) is of the order k in the shear rate. In first order, the kinetic equation
(12.120) yields

δg(1) ≡ −τ γμν Lμν geq = −τ γμν rμrν r−1g′
eq, (12.121)

where the prime denotes the differentiation with respect to r. Comparison with
(12.109) shows that

gμν = −τ γμν rg′
eq, (12.122)

in this approximation.
The contribution of second order in the shear rate is given by

δg(2) = −τ (ωλ Lλ + γμν Lμν) δg(1) = τ 2 (ωλ Lλ + γμν Lμν) γκσ Lκσ geq .

Due to (12.121), the term involving the vorticity yields

2 τ 2 εμκλ ωλγκν rμrν r−1g′
eq .
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The term involving the product LμνLκσ gives contributions to the isotropic part
of g and to its second and fourth rank irreducible parts. More specifically, the term
γμνLμνγκσLκσ geq is rewritten and computed as

γμν Lμν γκσ rκrσ r−1g′
eq = 2γμνγκν rκrμ r−1g′

eq + γμν γκσ rνrμrκrσ r−1(r−1g′
eq)

′ .

Due to rκrμ = rκrμ + 1
3 r2δμν and with the help of relation (11.59), the second

order distortion δg(2) can be decomposed into the parts δg(2)
� , associated with tensors

of ranks � = 0, 2, 4. The term involving the vorticity contributes to δg(2)
2 only. Thus

one has

g = geq + δg(1) + δg(2) + . . . , δg(2) = δg(2)
0 + δg(2)

2 + δg(2)
4 , (12.123)

with

δg(2)
0 = τ 2γμνγμν

(

2

3
rg′

eq + 2

15
r3(r−1g′

eq)
′
)

,

δg(2)
2 = 2τ 2εμκλωλγκν rμrν r−1g′

eq + τ 2γμκγκν rνrμ

(

2r−1g′
eq + 4

7
r(r−1g′

eq)
′
)

,

δg(2)
4 = τ 2γμνγκσ rνrμrκrσ r−1(r−1g′

eq)
′ . (12.124)

Consequences of corresponding relations for a plane Couette flow are presented
in [55], see also the Exercise 12.4. Symmetry considerations for this simple flow
geometry are discussed next.

The shear-induced distortion of the structure of a liquid or of a colloidal disper-
sion can be detected in scattering experiments where the static structure factor, cf.
Sect. 12.4.8 is analyzed. Direct observations of the distorted pair correlation func-
tion is possible in confocal microscopy experiments [56] and, in particular in Non-
Equilibrium Molecular Dynamics (NEMD) computer simulations [57, 58].

12.4.6 Plane Couette Flow Symmetry

A plane Couette flow geometry is considered with the velocity v = v(r) in the
x-direction and its gradient in the y-direction, cf. (7.28), thus

vμ = exμ eyν rν = y exμ, (12.125)

http://dx.doi.org/10.1007/978-3-319-12787-3_11
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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with x = exνrν and y = eyνrν , where ex and ey are unit vectors parallel to the x-axis
and y-axis, respectively. The unit vector parallel to the z-axis is ez. The constant shear
rate is

γ = ∂vx

∂y
. (12.126)

The vorticity and the shear rate tensor, cf. are

ωλ = −1

2
γ ezλ, γμν = γ eyνexμ = 1

2
γ (eyνexμ + eyμexν). (12.127)

Here, the first order expression (12.121) implies

δg(1) = −τ γ x y r−1g′
eq ,

and one has

gμν = −τ γ rg′
eq eyνexμ ,

in this approximation. The more general ansatz

gμν = g+ eyνexμ + g−
1

2
(exνexμ − eyνeyμ) + g0 ezνezμ (12.128)

contains all terms which obey the plane Couette symmetry, viz. which are invariant
when both ex and ey are replaced by −ex and −ey. The remaining two terms of the 5
components of the irreducible second rank tensor which, however, do not have this

symmetry, are proportional to ezνexμ and ezνeyμ .
The quantities g+, g− and g0 are functions of r. In first order in the shear rate γ ,

one has g+ = −τγ r−1g′
eq and g− = g0 = 0. In second order, g− = γ τg+, g0 �= 0

is found. The calculation is deferred to the next exercise.

12.4 Exercise: Pair Correlation Distorted by a Couette Flow
Compute the functions g+, g− and g0 in first and second order in the shear rate γ , in
steady state, from the plane Couette version of the kinetic equation (12.120)

γ y
∂

∂x
δg + τ−1δg = −γ y

∂

∂x
geq.

Hint: use y2 = (x2+y2)/2−(x2−y2)/2 and x2+y2 = r2−z2 = 2r2/3−(z2−r2/3),
furthermore decompose x2y2 = exμexνeyλeyκrμrνrλrκ into its parts associated with
tensors of ranks � = 0, 2, 4 with the help of (9.6). Compare g− with g+.

http://dx.doi.org/10.1007/978-3-319-12787-3_9
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12.4.7 Cubic Symmetry

When a crystal melts, its highly anisotropic structure relaxes to an isotropic state
typical for a liquid in equilibrium. For an initial state with cubic symmetry, cubic
harmonics are appropriate to characterize the anisotropic pair correlation, as e.g.
studied in [25]. The pair correlation function is expanded with respect to the cubic
harmonics with full cubic symmetry, cf. Sect. 9.5.2, viz.

g(r) = g(0)(r) + g4(r) K4(̂r) + g6(r) K6(̂r) + g8(r) K8(̂r) + . . . . (12.129)

The functions K4, K6, K8 are defined in (9.33)– (9.35). In general, the radially sym-
metric part g(0) as well as the partial correlation functions g4, g6, g8 characterizing
the anisotropy of g(r) are functions of the time t. Examples, from [25], are shown
in Figs. 12.2, 12.3 and 12.4. The ‘data’ stem from a molecular dynamics computer
simulation. Initially the particles are put on body centered cubic (bcc) lattice sites at
a temperature and density where the system is fluid. Thus g(0) approaches a pair cor-
relation function typical for a dense liquid, the functions g4, g6, . . . associated with
the anisotropy decay to zero. The simulation [25] was performed for 1024 particles
interacting with a r−12 potential cut off appropriately, which is also referred to as
‘soft sphere’ potential. Periodic boundary conditions and a ‘thermostat’ were used.

The decay of the cubic anisotropy, in the first coordination shell, is relatively
slow compared with the approach of the thermodynamic variables, like the pressure
and the energy, to their equilibrium values in the liquid state. This slowing down
of the relaxation becomes more pronounced when the initial state is closer to the
thermodynamic state where the solid phase is stable.

Fig. 12.2 Perspective view of the isotropic part of the pair correlation function. The variable r2

runs right-upward, the time t runs left. The initial state shows the positions of the first, second, . . .
coordination shells in the bcc solid

http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
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Fig. 12.3 The cubic pair correlation function g4, variables r2 and t are as in Fig. 12.2. The sign
changes from one coordination shell to next

Fig. 12.4 The cubic pair correlation function g6, variables r2 and t are as in Fig. 12.2

12.4.8 Anisotropic Structure Factor

By analogy to (12.109), the static structure factor S = S(k) can be expanded with
respect to the unit vector̂k specifying the direction of the scattering wave vector k:

S(k) = Ss + Sμν
̂kμ

̂kν + Sμνλκ
̂kμ

̂kν
̂kλ

̂kκ + . . . , (12.130)

where it is understood, that the isotropic or spherical part Ss of S, as well as the
expansion tensors S··· are function of k, viz. of the magnitude of the vector k. In
general, they depend also on the time t.

On account of the orthogonality relation (12.5), the quantities S··· are tensorial
moments of S(k), thus

1

4π

∫

̂kμ1
̂kμ2 · · ·̂kμ�

S(k)d2̂k = �!
(2� + 1)!! Sμ1μ2···μ�

. (12.131)
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For � = 2 this relation implies, see also (12.1),

Sμν = 15

2

1

4π

∫

̂kμ
̂kν S(k)d2̂k, (12.132)

the case � = 4 is analogous to (12.112).
The static structure factor and the pair correlation function are related to each other

by a spatial Fourier transformation, see (12.108), so there exist also interrelations
between the tensors Sμ1,μ2···μ�

and gμ1,μ2···μ�
. The key for this connection is the

Rayleigh expansion

exp[−i k · r] =
∞
∑

�=0

(−i)� (2� + 1)j�(k r) P�(̂k · r̂), j�(k r) =
( π

2kr

) 1
2

J�+ 1
2
(k r),

(12.133)

where the J.. are Bessel functions and the j� are referred to as spherical Bessel
functions, [66], sometimes also called Sommerfeld’s Bessel functions. The Legendre
polynomial P� is the scalar product of the �th rank irreducible tensors constructed
from the components of the unit vectorŝk and r̂, cf. Sect. 9.3. The integral relation
analogous to (12.1) leads to

1

4π

∫

̂kμ1
̂kμ2 · · ·̂kμ�

P�′(̂k · r̂)d2̂k = δ��′ (2� + 1)−1 r̂μ1 r̂μ2 · · · r̂μ�
. (12.134)

As a consequence, insertion of (12.108) into (12.131), use of the relations just stated
and of

∫

. . . d3r = ∫

. . . d2drd2̂r leads to

Sμ1μ2···μ�
(k) = (−i)�

∫

j�(k r) gμ1μ2···μ�
(r) r2dr, (12.135)

for � ≥ 1. The interrelation between the spherical parts, corresponding to the case
� = 0, is

Ss(k) − 1 =
∫

j0(k r) (gs(r) − 1) r2dr .

The first few of the spherical Bessel functions are

j0(x) = x−1 sin x , j1(x) = x−1(x−1 sin x − cos x)

j2(x) = 3x−2(x−1 sin x − x/3 − cos x) .

The spherical Bessel functions obey the recursion relation

j�+1(x) = �

x
j� − d

dx
j� = −x� d

dx
(x−�j�) .

http://dx.doi.org/10.1007/978-3-319-12787-3_9
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The shear flow induced distortion of the pair correlation function implies a corre-
sponding anisotropy of the static structure factor. This anisotropy has been observed
in computer simulations [59], in light scattering [60] and in neutron scattering exper-
iments [61].

12.5 Selection Rules for Electromagnetic Radiation

12.5.1 Expansion of the Wave Function

Let Ψ = Ψ (t, r) be the wave function, in spatial representation, which obeys the
Schrödinger equation for a quantum mechanical single particle problem, e.g. the
electron boundby the proton, in the hydrogen atom.ThepertainingHamilton operator
is the sum of the operator for the kinetic energy, viz.

Hop
kin = − �

2

2m
Δ = − �

2

2m
Δr − �

2

2m
r−2LμLμ ,

cf. Sect. 7.6.4, and the potential energy V = V (r). For the radial part Δr of
the Laplace operator see (7.91). The angular part of the Laplacian involves the
differential operator Lμ = εμλνrλ∂/∂rν , cf. (7.80).

To describe the angle dependence of the wave function Ψ (t, r) an expansion can
be made with respect to spherical harmonics, as found in text books on Quantum
Mechanics, or with respect to Cartesian basis tensors, as presented here. With the
help of the normalized basis functions, see also (12.14),

φμ1···μ�
≡

√

(2� + 1)!!
�! r̂μ1 · · · r̂μ�

, (12.136)

the expansion is written as

Ψ (t, r) =
∞
∑

�=0

cμ1···μ�
(t, r) φμ1···μ�

(̂r). (12.137)

In general, the moment tensors cμ1···μ�
, depend on the time t and on r = |r|. There

is no explicit time dependence when Ψ is a solution of the stationary Schrödinger
equation. Being symmetric traceless, the �th rank tensor cμ1···μ�

has 2� + 1 inde-
pendent components, in accord with the same number of m-values of the spherical
components.

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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The normalization condition
∫ |Ψ |2d3r = 1 implies

∞
∑

�=0

|c�|2 = 1 , |c�|2 = 4π
∫

c∗
ν1···ν�

cν1···ν�
r2dr. (12.138)

In the following, it is assumed that the part

Ψ� = cμ1···μ�
φμ1···μ�

of the wave function associated with orbital angular momentum � is a solution of the
stationary Schrödinger equation H Ψ� = EΨ� with a radially symmetric potential
V . The function c.. then obeys the equation

[

− �
2

2m
Δr + �(� + 1)

�
2

2m
r−2 + V (r)

]

cμ1···μ�
= E cμ1···μ�

,

and the appropriate boundary and integrability conditions. For a radially symmetric
interaction potential, the tensor functions c.. are the product of a scalar radial wave
function R�(r) and a tensor Cμ1···μ�

, which is complex, in general., viz.

cμ1···μ�
= R�(r) Cμ1···μ�

.

The radial functions R�(r) are characterized by additional quantum numbers, like
the main quantum number of the H-atom. Explicit expressions are not needed for the
discussion of the selection rules. Assuming C∗

ν1···ν�
Cν1···ν�

= 1, the normalization
condition (12.138) implies

∞
∑

�=0

4π
∫

|R�(r)|2 r2dr = 1.

The orientational properties of a state described by a wave function is determined by
its angle dependent part φ�(̂r). Assuming that both the radial and the angular parts
are appropriately normalized, the expectation value of an operatorO = O(L), which
is a function of the angular momentum operator L, is given by

〈O(L)〉 = (4π)−1
∫

Φ∗
� O(L)Φ�d

2̂r , Φ� = Cμ1···μ�
φμ1···μ�

. (12.139)

The tensors C.. are complex, in general. Examples for O are the vector polarization

〈Lμ〉 and the tensor polarization 〈 LμLν 〉. Exercise 12.5 deals with an application.
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12.5.2 Electric Dipole Transitions

Electromagnetic waves, induce transitions between an ‘initial’ stationary state 1
and a ‘final’ state 2 with the energies E1 and E2, provided that the radiation has
the right frequency ω = (E2 − E1)/�. Furthermore, for weak fields, the transition
has to be ‘allowed’ by the selection rules. These rules follow from expressions for
the transition rate which, in turn, is proportional to the absolute square of a ‘matrix
element’ 〈Ψfinal|Hpert|Ψinitial〉, whereHpert stands for the time independent part of the
‘perturbationHamiltonian’ which characterizes the interaction between the atom and
the electromagnetic field. In spatial representation, the matrix element is computed
as an integral over space.

The electric dipole transitions are associated with the perturbation Hamiltonian
Hpert = Hdip ≡ −pe · E with the electric dipole moment pe = qr, where q is the
electric charge. The unit vector parallel to the electric field E is denoted by e. Now
Ψ�, i.e. a state with a well defined magnitude of the angular momentum is chosen as
initial state. Then Hdip|Ψinitial〉 is proportional to

eλr̂λφν1···ν�cν1···ν�

=
(

√

� + 1

2� + 3
φν1···ν�λ +

√

�

2� + 1
Δ

(�)
ν1···ν�,λκ1···κ�−1

φκ1···κ�−1

)

eλcν1···ν� . (12.140)

Here the (11.53) was used: the product of a vector with an irreducible tensor of rank
� constructed from this vector yield an irreducible tensor of rank � + 1 and another
one of rank � − 1. This is already the essence of the selection rule for the electric
dipole transitions. Multiplication of the expression (12.140) by Ψ ∗

�′ and subsequent
integration over d3r yields non-zero contributions only for

�′ = � ± 1 .

The resulting dipole transition matrix elements are

(4π)−1
∫

Ψ ast
�+1 eλ rλΨ�d

3r =
√

� + 1

2� + 3
eν�+1

∫

r c∗
ν1···ν�+1

cν1···ν�
r2dr ,

(4π)−1
∫

Ψ ∗
�−1 eλ rλΨ�d

3r =
√

�

2� + 1
eν�

∫

r c∗
ν1···ν�−1

cν1···ν�
r2dr .

The selection rule determines which angular momentum state can be reached in an
‘allowed’ transition. The strength of the transition rate is determined by the remaining
‘overlap integral’

∫ · · · dr. The Cartesian indices characterize properties, e.g. the
direction of the electric field and the orientational sub-states of the initial and final
state.

The electric-field-induced transition from an � = 0 to a � = 1 state prepares
an orientationally well defined state, depending on the polarization of the incident

http://dx.doi.org/10.1007/978-3-319-12787-3_11
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radiation. According to (12.140) the angle dependent part of the � = 1 wave function
is Φ1(̂r) = Cμφμ, with Cμ = eμ ≡ E−1Eμ, thus

Φ1 = Φ1(r) = √
3 eλ r̂λ. (12.141)

Clearly, e is the unit vector parallel to the field. For linearly polarized light, propagat-
ing in z-direction, e = ex can be chosen. The field orientation of circular polarized
light is described by e = 2−1/2(ex ± iey). Notice that the wave function is complex,
in this case. The vector and tensor polarizations in this exited state are

〈Lμ〉 = 0 , 〈 LμLν 〉 = exμexν , (12.142)

for the linearly polarized light. For circular polarization, one obtains

〈Lμ〉 = ezμ , 〈 LμLν 〉 = − ezμezν . (12.143)

The computations leading to these results are deferred to the Exercise 12.5.

12.5 Exercise: Compute the Vector and Tensor Polarization for a � = 1 State
Hint: use the wave function (12.141) with eμ = exμ and eμ = (exμ + ieyμ)/

√
2 for

the linear and circular polarized cases. For the angular momentum operator and its
properties see Sect. 7.6.2.

12.5.3 Electric Quadrupole Transitions

The Hamiltonian Hquad inducing electric quadrupole transitions is proportional to
rλrκkκEλ, where k = k̂k is the wave vector of the incident electric field E = Ee.
From (11.57) follows, that the application of Hquad on the wave function Ψ� yields
three contributions Ψ�′ with

�′ = �, � ± 2 .

More specifically, one has

eλ
̂kκ r̂λr̂κ φμ1···μ� cμ1···μ�

=
(

√

(� + 2)(� + 1)

(2� + 5)(2� + 3)
φμ1···μ�λκ + 2�

2� + 3
Δ

(�,2,�)
μ1μ2···μ�,λκ,ν1ν2···ν�

φν1···ν�

+
√

�(� − 1)

(2� + 1)(2� − 1)
Δ

(�)
μ1μ2···μ�,νλ ν1ν2···ν�−2

φν1···ν�−2

)

eλ
̂kκ cμ1···μ� . (12.144)

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_11
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Multiplication of (12.144) by Ψ ∗
�′ and subsequent integration over d3r yields non-

zero contributions only for �′−� = 0,±2. The resulting quadrupole transitionmatrix
elements are

(4π)−1
∫

Ψ ∗
�+2eλ

̂kκ r̂λr̂κ Ψ�d
3r =

√

(� + 2)(� + 1)

(2� + 5)(2� + 3)
eν�+1

̂kν�+2

×
∫

r2c∗
ν1···ν�+1ν�+2

cν1···ν�
r2dr ,

(4π)−1
∫

Ψ ∗
� eλ

̂kκ r̂λr̂κ Ψ�d
3r = 2�

2� + 3
eλ

̂kκ

∫

r2c∗
λν2···ν�

cκν2···ν�
r2dr ,

(4π)−1
∫

Ψ ∗
�−2eλ

̂kκ r̂λr̂κ Ψ�d
3r =

√

�(� + 1)

(2� + 1)(2� − 1)
eν�−1

̂kν�

×
∫

r2c∗
ν1···ν�−2

cν1···ν�
r2dr .

The selection rule determines which angular momentum state can be reached in an
allowed transition. The strength of the transition rate is determined by the remaining
overlap integral

∫ · · · dr.
The relevant perturbation Hamiltonian for two-quantum absorption processes is

proportional to rλrκEκEλ, thus of second order in the radiation field E. Here the
quadrupole selection rules �′ − � = 0, ±2 apply as well.



Chapter 13
Spin Operators

Abstract Spin operators are introduced in this chapter. The spin 1/2 and 1 are
looked upon explicitly. Projectors into magnetic sub-states and irreducible spin ten-
sors are defined. Spin traces of multiple products of these tensors and their role for
the expansion of density operators and the evaluation of averages are elucidated.
The last section deals with the rotational angular momenta of linear molecules, in
particular with tensor operators. One application is the anisotropic dielectric tensor
of a gas of rotating molecules.
The orbital angular momentum of particles is linked with their linear momentum.
Most elementary particles, like electrons, protons, neutrons, neutrinos posses an
intrinsic angular momentum, conventionally called ‘spin’, which is not caused by
their translational motion. Here properties of spin operators are discussed and rules
are presented for tensors constructed from the Cartesian components of the spin
operators. Furthermore, tensor operators associated with the rotational motion of
linear molecules are treated.

13.1 Spin Commutation Relations

13.1.1 Spin Operators and Spin Matrices

The spin operator of a particle with spin s, in units of �, is denoted by s. The
components of this operator can be represented by hermitian (2s + 1) × (2s + 1)
matrices. For s = 1

2 , e.g. these are the two-by-two Pauli matrices. The quantity s is
a positive integer or halve-integer number, viz. s = 1

2 , or s = 1, or s = 3
2 , or etc.

The Cartesian components of the spin operator obey the angular momentum com-
mutation relations, analogous to those of the dimensionless orbital angular momen-
tum, cf. Sect. 7.6.2. The spin commutation relations

sμ sν − sν sμ ≡ [sμ, sν]− = i εμνλ sλ. (13.1)

© Springer International Publishing Switzerland 2015
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Here, [.., ..]− indicates the commutator. Much as (7.87) implies the relation (7.88),
the spin commutation relation is equivalent to

ελμν sμ sν = i sλ, (13.2)

or

s × s = i s. (13.3)

Clearly, the components of the quantummechanical angular momentum do not com-
mute, in contradistinction to the components of the classical angular momentum for
which the corresponding cross product vanishes.

The scalar product of two spin s vector operators is

s · s = sμ sμ = s (s + 1) 1. (13.4)

Here 1 stands for the unit operator in the spin space. In matrix representation, this
is just the (2s + 1) × (2s + 1) unit matrix. This unit operator is omitted frequently,
when no danger of confusion exists.

13.1.2 Spin 1/2 and Spin 1 Matrices

The spin matrices for s = 1/2, the spin matrices sx, sy, sz are

1

2

(

0 1
1 0

)

,
i

2

(

0 −1
1 0

)

,
1

2

(

1 0
0 −1

)

. (13.5)

Apart from the factor 1/2, these are the Pauli matrices σx, σy, σz.
For s = 1, the spin matrices sx, sy, sz are

1√
2

⎛

⎝

0 1 0
1 0 1
0 1 0

⎞

⎠ ,
i√
2

⎛

⎝

0 −1 0
1 0 −1
0 1 0

⎞

⎠ ,

⎛

⎝

1 0 0
0 0 0
0 0 −1

⎞

⎠ . (13.6)

13.1 Exercise: Verify the Normalization for the Spin 1 Matrices

Compute explicitly s2x + s2y + s2z for the spin matrices (13.6) in order to check the
normalization relation (13.4).

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7


13.2 Magnetic Sub-states 241

13.2 Magnetic Sub-states

13.2.1 Magnetic Quantum Numbers and Hamilton Cayley

The spin operator possesses sub-states, which are eigenstates of one of its Cartesian
components. Let this preferential direction be parallel to the unit vector h. The
symbol h alludes to the direction of a magnetic field H. Frequently, the z-direction
of a coordinate system is chosen parallel to h. The eigenvalues are referred to as
magnetic quantum numbers since they determine the strength of the interaction of
a magnetic moment, which is parallel or anti-parallel to the spin operator s, in the
presence of a magnetic field. More specifically, the energy of a magnetic moment m
in the presence of a magnetic field B = Bh is −m · B. With the magnetic moment
given by m = γ �s, where γ is the gyromagnetic ratio, the corresponding Hamilton
operator is Hmag = −�γ Bh · s.

The eigenvalues of h · s are denoted by m. These magnetic quantum numbers
m are of relevance, even when no magnetic field is applied. Due to the Richtungs-
Quantelung, the allowed values for m are

−s, −s + 1, . . . , s − 1, s,

for a spin s. The m are integer or halve-integer numbers, depending on whether s is
an integer or a halve-integer number. Altogether, there are 2s + 1 magnetic quantum
numbers and magnetic sub-states. Clearly, the smallest non-zero s is s = 1

2 .
The Hamilton-Cayley relation for the magnetic sub-states is

s
∏

m=−s

(h · s − m) = 0. (13.7)

This is a polynomial of degree 2s + 1, in h · s. Thus (h · s)(2s+1) is equal to a linear
combination of lower powers of h · s. The same applies for (h · s)p, when the power
p is larger than 2s + 1. The Hamilton-Cayley relation also implies, that symmetric
traceless tensors of rank �, constructed from the Cartesian components of the spin
operator, are non-zero only up to rank � = 2s, see the following section.

13.2.2 Projection Operators into Magnetic Sub-states

The projection operator P(m) into the sub-state with the eigenvalue m is defined via

P(m) h · s = m P(m). (13.8)
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These projectors have the properties

P(m) P(m′) = δmm′ P(m),

s
∑

m=−s

P(m) = 1. (13.9)

Thus they are orthogonal, idempotent as any projector, and they form a complete set.
The projectors can be expressed in termsof powersh·s, analogous to theHamilton-

Cayley relation. In particular, one has

P(m) =
∏

m′ �=m

(h · s − m′)
m − m′ . (13.10)

Clearly, in the product, the magnetic quantum numbers run over all allowed values,
except m. The highest power of h · s occurring in (13.10) is 2s.

For spin s = 1
2 , the projection operators are

P(1/2) = 1

2
+ h · s, P(−1/2) = 1

2
− h · s. (13.11)

It is understood, that additive numbers, like the 1
2 here, have to be multiplied by the

appropriate unit matrix, when the spin operators are represented by matrices.
For s = 1, the projection operators are

P(±1) = 1

2
h · s (1 ± h · s), P(0) = (1 − h · s) (1 + h · s). (13.12)

13.3 Irreducible Spin Tensors

13.3.1 Defintions and Examples

The �-rank irreducible tensor constructed from the components of the spin operator
s is the symmetric traceless tensor

sμ1sμ2 · · · sμ�
= Δ(�)

μ1μ2···μ�,ν1ν2···ν�
sν1sν2 · · · sν�

. (13.13)

Here the symmetrization matters. This is in contradistinction to tensors constructed
from vectors whose components commute.

The second rank irreducible tensor is explicitly given by

sμsν = 1

2
(sμsν + sμsν) − 1

3
s (s + 1) δμν. (13.14)
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As stated before, for a spin s, the irreducible tensors of ranks � ≥ 2s + 1 vanish. For
� = 2s + 1, the proof is indicated as follows. Multiplication of the left-hand side

of the Hamilton-Cayley relation (13.7) by the irreducible tensor hμ1hμ2 · · · hμ(2s+1)

and subsequent integration over d2h picks out the highest order term

(h · s)(2s+1) = hν1sν1hν2sν2 · · · hν2s+1sν(2s+1)

in the product, because terms of lower order in h give no contribution in the integral.
The only non-vanishing term is equivalent to

∫

hμ1hμ2 · · · hμ(2s+1) hν1hν2 · · · hν(2s+1)d
2h sν1sν2 · · · sν(2s+1) .

By analogy to (12.1), the integral is equal to the isotropic tensor Δ
(2s+1)··· ,··· , apart from

numerical factors. Multiplication of this tensor with the product of the Cartesian
components of s, cf. (13.13) yields the irreducible spin tensor of rank 2s + 1. Thus
the Hamilton-Cayley relation implies

sμ1sμ2 · · · sμ(2s+1) = 0. (13.15)

For particles with spin s, the existing irreducible spin-tensors are of ranks 2s or
smaller.

13.2 Exercise: Verify a Relation Peculiar for Spin 1/2

For spin s = 1/2, the peculiar relation

sμsν = −i

2
εμνλ sλ + 1

4
δμν

holds true. To prove it, start from sμsν = 0, for s = 1/2, and use the commutation
relation.

13.3.2 Commutation Relation for Spin Tensors

The angular momentum commutation relation (13.1) for spin vectors leads to a
generalization for irreducible spin tensors, which reads

[ sμ1sμ2 · · · sμ�
, sλ]− = i ��(�)

μ1μ2···μ�,λ,ν1ν2···ν�
sν1sν2 · · · sν�

. (13.16)

For � = 1, this relation is identical to (13.1). The case � = 2 corresponds to

[ sμsν , sλ]− = 2 i �μν,λ,αβ sαsβ . (13.17)

http://dx.doi.org/10.1007/978-3-319-12787-3_12
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In the Heisenberg picture, the time dependence of an operator O is governed by the
commutator with the relevant Hamilton operator H :

dO

dt
= i

�
[H ,O]−. (13.18)

For particles with a magnetic moment μsλ, in the presence of a magnetic field Bλ =
Bhλ, where h is unit vector, one hasH = −μBhλsλ. Then the commutation relation
(13.16) for the �-th rank spin tensor implies

d

dt
sμ1sμ2 · · · sμ�

= −�ωB hλ �(�)
μ1μ2···μ�,λ,ν1ν2···ν�

sν1sν2 · · · sν�
, (13.19)

with the precession frequency ωB = μB/�.
The commutation relation for two second rank spin tensors is

[ sμsν , sκsλ ]− = i
{

�μν,λ,αβ(sκ sαsβ + sαsβ sκ)

+ �μν,κ,αβ(sλ sαsβ + sαsβ sλ)
}

. (13.20)

Commutators of this type occur in applications, when the Hamilton operator involves
the second rank spin tensor, as in the case of a nucleus with an electric quadrupole
moment, e.g. the deuteron, in the presence of an electric field.

13.3.3 Scalar Products

The scalar product or total contraction of two irreducible spin tensors of rank � is
given by

sμ1sμ2 · · · sμ�
sμ1sμ2 · · · sμ�

= �!
(2� − 1)!! S2

0 S2
1 · · · S2

l−1. (13.21)

The factor N� = �!
(2�−1)!! occurs in the corresponding expression for the contraction

of irreducible tensors constructed from vectors with commuting components, cf.
(9.10) and (9.11). The factors

S2
k = s (s + 1) − k

2

(

k

2
+ 1

)

, (13.22)

reflect quantum mechanical features of the spin. Notice, one has S2
k = 0 for k =

2s, and the norm of the irreducible spin tensor of rank 2s + 1 is zero, in accord
with (13.15). On the other hand, for s � 1 and � � s, the product S2

0 S2
1 · · · S2

l−1
approaches its ‘classical’ value s2�.

http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
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For � = 2, (13.21) corresponds to

sμsν sμsν = 2

3
S2
0 S2

1 , S2
0 = s (s + 1), S2

1 = S2
0 − 3

4
. (13.23)

Clearly, one has S2
1 = 0 for s = 1/2.

Some relations, where the contraction is just over one subscript, also follow from
the properties of the spin operator, viz.

sλ sμsλ = (S2
0 − 1) sμ, sλ sμsλ = sμsλ sλ = 2

3
S2
1 sμ, (13.24)

sλ sμsν sλ = (S2
0 − 3) sμsν , (13.25)

sμsλ sλsν = 1

3

(

S2
0 − 2

3

)

sμsν + i

2
ενλκ sμsλ sκ + i

3
S2
1εμνκsκ + 2

9
S2
0 S2

1δμν.

(13.26)

13.4 Spin Traces

13.4.1 Traces of Products of Spin Tensors

In the following, spin traces are denoted by the symbol tr. When spin operators are
represented bymatrices, the tr-operation corresponds to the standard summation over
diagonal elements. For a spin s, the trace of the relevant unit matrix is 2s + 1, i.e. it
is equal to the number of magnetic sub-states. The expression

1

2s + 1
tr{. . .}

is equivalent to an orientational average. For classical variables, as discussed in
Chap.12 , e.g. in connection with the integration over the unit sphere, cf. Sect. 12.1,
or over the directions of the velocity, cf. Sect. 12.3.1, a continuum of directions is
possible. In contradistinction, the spin allows a discrete set of directions only. As
demonstrated above, results of classical orientational averages are obtained without
performing explicit integrations over angle variables, when symmetry properties are
employed. In the same spirit, the traces of products of spin operators are found, in the
following, without using an explicit matrix representation. The trace operation is a
rotationally invariant process. Consequently, isotropic tensors come into play again.

http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
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By analogy to symmetry arguments which lead to (12.1), the trace of the product
of two irreducible spin tensors is given by

1

2s + 1
tr{ sμ1sμ2 · · · sμ�

sν1sν2 · · · sν�′ }

= �!
(2� + 1)!! S2

0 S2
1 · · · S2

l−1δ��′Δ(�)
μ1μ2···μ�,ν1ν2···ν�

. (13.27)

For S2
k see (13.22). As a consequence, one has

tr{ sμ1sμ2 · · · sμ�
} = 0, (13.28)

for � ≥ 1.
Special cases of (13.27) are, for � = �′ = 1,

1

2s + 1
tr{sμsν} = 1

3
S2
0 δμν, (13.29)

and for � = �′ = 2,

1

2s + 1
tr{ sμsν sλsκ } = 2

15
S2
0 S2

1 Δμν,λκ . (13.30)

13.4.2 Triple Products of Spin Tensors

No classical analogue exists for the trace of the product of the spin vector components
and two irreducible spin tensors of rank �. Due to symmetry considerations, the trace
must be proportional to the �(�)-tensor. The result is

1

2s + 1
tr{ sμ1sμ2 · · · sμ�

sλ sν1sν2 · · · sν�
}

= i
�

2

�!
(2� + 1)!! S2

0 S2
1 · · · S2

l−1�
(�)
μ1μ2···μ�,λ,ν1ν2···ν�

. (13.31)

Special cases of this expression for � = 1 and � = 2 are

1

2s + 1
tr{sμ sλ sν} = i

6
S2
0 εμλν, (13.32)

and

1

2s + 1
tr{ sμsν sλ sκsσ } = 2 i

15
S2
0 S2

1�μν,λ,κσ . (13.33)

http://dx.doi.org/10.1007/978-3-319-12787-3_12
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13.4.3 Multiple Products of Spin Tensors

The trace of the fourfold product of the spin is similar to the classical expression
(12.6). Yet it differs due to the non-commutativity of the spin components:

1

2s + 1
tr{sμsνsλsκ} = S2

0

30

[

2 S2
2 δμλδνκ + (2 S2

0 + 1) (δμνδλκ + δμκδνλ)
]

.

(13.34)

To check the numerical factor on the right hand side, put λ equal to κ and compare
with (13.29).

The trace of the triple product of second rank spin tensors, analogous to (12.7), is

1

2s + 1
tr{ sμsν sλsκ sσ sτ } = 8

105
S2
0 S2

1 S2
3 Δμν,λκ,στ . (13.35)

Two trace formulas are listed which involve fourfold products of second rank spin
tensors, contracted such that the results are scalars:

1

2s + 1
tr{ sμsν sλsκ sμsν sλsκ } = S2

0 S2
1

(

7 + 4

9
S4
0 − 13

3
S2
0

)

, (13.36)

1

2s + 1
tr{ sμsν [ sλsκ , sμsν ]− sλsκ } = S2

0 S2
1

(

4S2
0 − 7

)

. (13.37)

13.5 Density Operator

13.5.1 Spin Averages

The orientation of the spins, in an ensemble, is described by the spin density operator
ρ. Just as the spin operator of a particlewith spin s, it can be represented by a hermitian
(2s + 1) × (2s + 1) matrix. For this reason, the ρ is also called spin density matrix.
In many applications, there is no need for an explicit matrix notation. Alternatively,
ρ = ρ(s) is considered as a function of the spin operator and its algebraic properties,
as given above, are used. In the following, ρ is normalized to 1, viz. it obeys the
condition tr{ρ} = 1.

The average 〈Ψ 〉 of a function Ψ = Ψ (s), assumed to be a polynomial of the spin
operator s, is determined by

〈Ψ 〉 = tr{Ψ (s) ρ(s)}, tr{ρ(s)} = 1. (13.38)

http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
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The density operator can be expressed as a linear combination of the projection
operators P(m), introduced in Sect. 13.2.2, viz.

ρ =
s

∑

m=−s

cm P(m), cm = 〈P(m)〉,
s

∑

m=−s

cm = 1. (13.39)

Notice that tr{P(m)} = 1. The coefficients cm determine the relative weight of the
magnetic sub-state m. For a system of N particles, where N (m) particles are in the
sub-state m, one has

cm = N (m)

N
, N =

s
∑

m=−s

N (m). (13.40)

The (13.39) is analogous to the representation of a vector as a linear combination of
basis vectors. The projectors P(m) play the role of the basis vectors, the coefficients
cm are the relevant components.

An ensemble of spins is said to be unpolarized, when all magnetic sub-states
occur equally, i.e. when cm = 1/(2s + 1), for all m. This means ρ does not depend
on s, it is just proportional to the unit operator 1. Due to the normalization condition,
the density operator ρ0 for an unpolarized state is

ρ0 = 1

2s + 1
1. (13.41)

Averages in the unpolarized state are denoted by 〈. . .〉0. The trace formulas presented
above are such averages. Averages in a partially polarized state are discussed in the
next section.

13.5.2 Expansion of the Spin Density Operator

The deviation of the quantum mechanical spin density operator ρ from its isotropic
or unpolarized state can be expanded with respect to irreducible spin tensors. This is
similar to the description of the deviation from isotropy of the orientational distrib-
ution function f (u) of Sect.12.2. There, the expansion is with respect to irreducible
tensors of rank �, constructed from the components of the classical vector u. In the
classical case, in principle, tensors of all ranks, from � = 1 up to � = ∞ are needed
for a complete characterization, cf. (12.6). For spin s, on the other hand, irreducible
tensors of ranks � > �max ≡ 2s vanish. Thus in the spin case, the expansion runs
from � = 1 up to � = 2s. Here the expansion is formulated as

http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
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ρ(s) = ρ0 (1 + Φ), ρ0 = (2s + 1)−1, Φ =
2s

∑

�=1

bμ1μ2···μ�
sμ1sμ2 · · · sμ�

.

(13.42)

Clearly,Φ is the deviation of ρ from the isotropic density operator ρ0. The expansion
coefficients b... are the moments of the density. Computation of the average of the
�-th rank spin tensor with ρ given by (13.42) and use of the trace formula (13.27)
yields

〈 sμ1sμ2 · · · sμ�
〉 ≡ tr{ sμ1sμ2 · · · sμ�

ρ(s)} = �!
(2� + 1)

S2
0 S2

1 · · · S2
�−1 bμ1μ2···μ�

.

(13.43)

The tensor polarization Pμ1μ2···μ�
of rank � is defined by

Pμ1μ2···μ�
≡ s−� 〈 sμ1sμ2 · · · sμ�

〉, � ≥ 1. (13.44)

In terms of these tensor polarizations, the expansion (13.42) is equivalent to

ρ(s) = ρ0

[

1 +
2s

∑

�=1

s�(2� + 1)!!
�! S2

0 S2
1 · · · S2

�−1

Pμ1μ2···μ�
sμ1sμ2 · · · sμ�

]

. (13.45)

For � = 1, the vector Pμ occurring here is called vector polarization. It is the only
type of polarization possible for particles with spin s = 1/2. Of course, particles
with a larger spin may also have a vector polarization. Frequently, the term tensor
polarization is used for Pμν , the case corresponding to � = 2. Particles with spin
s = 1, or with a higher spin, can have this type of tensor polarization. The special
cases s = 1/2 and s = 1 are discussed next.

13.5.3 Density Operator for Spin 1/2 and Spin 1

Electrons, protons and neutrons have spin 1/2, For them, the spin density operator
reads

ρ(s) = 1

2
[1 + 2 Pμ sμ]. (13.46)

It is understood, that additive numbers, like the 1
2 here, have to be multiplied by the

appropriate unit matrix, when the spin operators are represented by matrices.
Let N (1/2) and N (−1/2) be the number of particles in the magnetic substates m =

±1/2, N = N (1/2) + N (−1/2) is the total number of particles. The relative numbers
c±1/2 = N (±1/2)/N are determined by the averages 〈P(±1/2)〉 of the projection
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operators given in (13.11). Thus the relative difference of the occupation numbers is
a measure for the degree of polarization of spin 1/2 particles. It is determined by

c1/2 − c−1/2 = N (1/2) − N (−1/2)

N (1/2) + N (−1/2)
= 〈2hνsν〉 = hμ Pμ. (13.47)

To obtain the last equality, the spin density (13.46) and the trace formula (13.29) are
used. By definition, the coefficients cm are positive and bounded by 1. Thus one has
−1 ≤ h · P ≤ 1. A state with h · P = ±1, associated with c1/2 = 1, c−1/2 = 0
and c1/2 = 0, c−1/2 = 1, respectively, is completely polarized, with respect to the
preferential direction h. The cases in between the complete polarizations correspond
to a partially polarized state.

For spin s = 1, the expression (13.45) reduces to

ρ(s) = 1

3

[

1 + 3

2
Pμ sμ + 3 Pμν sμsν

]

. (13.48)

To link the vector polarization Pμ and the tensor polarization Pμν with the rela-
tive occupation numbers c1, c0, c−1, spin s = 1 projection operators (13.12) are
employed. Notice that P(1) −P(−1) = h · s, furthermore P(1) +P(−1) = (h · s)2, and
P(0) = 1 − (h · s)2. Thus one obtains

c1 − c−1 = N (1) − N (−1)

N
= hν 〈sν〉 = hμ Pμ, (13.49)

and

c1 + c−1 − 2 c0 = N (1) + N (−1) − 2 N (0)

N
= 3 hμhν 〈 sμsν 〉 = 3 hμhν Pμν.

(13.50)

13.3 Exercise: Compute the Tensor Polarization for Spin 1

Compute explicitly the relation (13.50) between relative occupation numbers and the
tensor polarization, for spin s = 1.

13.6 Rotational Angular Momentum of Linear Molecules,
Tensor Operators

13.6.1 Basics and Notation

Within reasonable approximation, the rotation of a linear molecule like H2, N2 or
CO2, can be treated as the rotational motion of a stiff linear rotator. The unit vector
parallel to the axis of the rotor is denoted by u. The rotational angular momentum
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is perpendicular to u. This also applies to the rotational momentum operator �J,
thus one has J · u = 0. The eigenvalues of J · J are j ( j + 1) where j can have the
integer values 0, 1, 2, 3, . . . for hetero-nuclear molecules like HD or CO. For homo-
nuclear molecules, j must be even or odd, depending on the nuclear spins, e.g. one
has j = 0, 2, 4, . . . for para-hydrogen, where the total spin of the two protons is
zero, and j = 1, 3, . . . for ortho-hydrogen the total nuclear spin is 1, in units of �.
Magnetic quantum numbers m, again in units of �, assume the values − j , − j + 1,
. . . j − 1, j . When the z-axis is identified with the quantization direction, one has,
in ‘bra-ket’ notation,

Jz| jm〉 = m | jm〉, J · J| jm〉 = j ( j + 1) | jm〉.

Here | jm〉 indicates the quantum mechanical state vector. Despite of this name, the
quantity | jm〉 is not a vector in the sense of being a tensor of rank 1, as defined in
Sect. 2.5 . The components of J obey the angular momentum commutation relations

Jμ Jν − Jν Jμ ≡ [Jμ, Jν]− = i εμνλ Jλ. (13.51)

In contradistinction to the spin operators s, cf. 13.1, the magnitude of the rotational
angular momentum is not fixed and it cannot have half-integer eigenvalues.

13.6.2 Projection into Rotational Eigenstates, Traces

A state with a fixed eigenvalue j is obtained with the help of the projection operator

Pj =
j

∑

m=−j

| jm〉〈 jm|. (13.52)

Applications may require the projection of an observable O = O(u) depending on
u, into rotational eigenstates. This means, expressions of the form

O jj′ ≡ PjO(u) Pj′ , (13.53)

are needed. The cases j = j ′ and j �= j ′ are often called ‘diagonal’ and ‘non-
diagonal’, without mentioning that these terms just refer to the rotational quantum
numbers and not to the magnetic quantum numbers. Examples for O are: the electric
dipole moment parallel to u, the electric quadrupole moment or the anisotropic part
of a molecular polarizability tensor, proportional to uu . The pertaining applications
are dipole and quadrupole radiation, birefringence and light scattering.

http://dx.doi.org/10.1007/978-3-319-12787-3_2
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The diagonal part ofO(u) can be expressed as a function of the angularmomentum
operator, viz.

∑

j

PjO(u) Pj′ = O(J). (13.54)

Examples are presented next, the case j �= j ′ is treated in Sect. 13.6.6.
The trace operation Tr involves the summation over the magnetic quantum num-

bers, just like the trace operation tr for a spin, and an additional summation over the
rotational quantum numbers of the diagonal elements of an operator O ,

Tr{O} =
∑

j

j
∑

m=−j

〈 jm|O| jm〉 =
∑

j

tr{O jj}. (13.55)

An unbiased orientational average of an operator corresponds to (2 j+1)−1 tr{..}. The
formulas for the traces tr of spins s also apply for the rotational angular momentum J.

13.6.3 Diagonal Operators

Observables O(u) which are even functions of u possess a part O(u) which is diag-
onal in j . As an instructive example, the second rank irreducible tensor uμuν is
considered. By symmetry, it should be proportional to the symmetric traceless ten-
sor constructed from the components of J. Thus the ansatz

( uμuν )jj = c Pj Jμ Jν

is made. To determine the proportionality coefficient c, multiply this equation by
Jμ Jν and use J · u = 0. The left hand side of the equation yields

Jμ Jν Pj uμuν Pj = −1

3
j ( j + 1) Pj.

The right hand side is found to be

Jμ Jν Jμ Jν Pj = 2

3
j20 j21 Pj,

by analogy to (13.23). One obtains c = − 1
2 j−2

1 . The abbreviations

j20 = j ( j + 1), j21 = j20 − 3

4
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are used. Thus the diagonal part ( umuuν )diag of uμuν is given by

( uμuν )diag = −1

2

(

J 2 − 3

4

)−1

Jμ Jν . (13.56)

The anisotropic part of the molecular polarizability tensor αμν is proportional to

uμuν , cf. Sect. 5.3.3 . The average of the diagonal part of this tensor is closely
related to the birefringence and the depolarized Rayleigh light scattering in gases of
rotating molecules, [22].

13.6.4 Diagonal Density Operator, Averages

Thepart of the density operator of a gas of rotating linearmolecules,which is diagonal
with respect to the rotational quantum numbers, can be considered as a distribution
function ρ = ρ(J) depending on the operator J. The average 〈Ψ 〉 of a function
Ψ = Ψ (J) is computed according to

〈Ψ 〉 = Tr{Ψ (J) ρ(J)} =
∑

j

tr{PjΨ (J) ρ(J)}, (13.57)

where it is understood that ρ is normalized, viz. Tr{ρ(J)} = 1.
In thermal equilibrium, and in the absence of orienting fields, the molecules

of a gas have a random orientation of their rotational angular momenta J. The
square of the angular momentum J 2 is distributed with the canonical weight factor
exp[−H /kBT ]. The Hamiltonian of a linear rotator with the moment of inertia θ is

H = 1

2 θ
�
2 J 2.

The equilibrium distribution operator is

ρeq = Z−1 exp[−H /kBT ] = Z−1 exp

[

− �
2 J 2

2 θ kBT

]

, (13.58)

with the ‘state sum’ Z given by

Z = Tr exp[−H /kBT ] =
∑

j

(2 j + 1) exp

[

−�
2 j ( j + 1)

2 θ kBT

]

. (13.59)

http://dx.doi.org/10.1007/978-3-319-12787-3_5
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Notice that

tr{Pj} = 2 j + 1.

The summation over j has to be taken with the allowed values, which may be all
integers, all even or all odd integers, depending on the symmetry and the nuclear
spin of the molecules.

By analogy to (12.65) and (13.42), the density operator is written as

ρ(J) = ρeq (1 + Φ), (13.60)

where the quantity Φ = Φ(t, J)) specifies the deviation from the equilibrium. Anal-
ogous to the expansion of the orientational and the velocity distribution functions, as
well as the spin density operator, it is possible to expand Φ with respect to orthog-
onal basis tensors which here depend on J. The first term of the expansion, and the
most relevant one in some applications, involves the second rank tensor polarization

proportional to 〈 Jμ Jν 〉. More specifically, the tensor operator

φT
μν =

√

15

2
c−1
0 c(J 2)

[

J 2
(

J 2 − 3

4

)]−1/2

Jμ Jν , (13.61)

is introduced,where the superscript T stands for Tensor. It is normalized according to

〈φμν φμ′ν′ 〉eq = Δμν,μ′ν′ .

Here

〈. . .〉eq = Tr{. . . ρeq} (13.62)

indicates the average evaluated with the isotropic equilibrium density operator ρeq.
The weight function c(J 2) can be chosen appropriately. The normalization requires
that c20 = 〈c2〉eq. The average

aT
μν = 〈φT

μν〉 (13.63)

is referred to as tensor polarization. The choice c = 1 in (13.61) means that the
basis tensor is essentially constructed from a unit vector parallel to J. The case
c(J 2) = [J 2 (J 2 − 3

4 )]1/2 implies an expansion tensor operator which is similar

to the expansion function VμVν used for the velocity distribution, just with the
classical velocity V replaced by the angular momentum operator J.

http://dx.doi.org/10.1007/978-3-319-12787-3_12
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13.6.5 Anisotropic Dielectric Tensor of a Gas
of Rotating Molecules

The anisotropic part εμν of the dielectric tensor, cf. Sect. 5.3.4, of a gas of rotating
linear molecules is related to the average of the anisotropic part of the molecular
polarizability tensor, cf. Sect. 5.3.3, by

εμν = n (α‖ − α⊥) 〈( uμuν )diag〉 = −1

2
n (α‖ − α⊥)

〈

(

J 2 − 3

4

)−1

Jμ Jν

〉

.

(13.64)

Here α‖ and α⊥ are the polarizability for an electric field parallel and perpendicular
to u, respectively, and n is the number density of the gas. The relation (13.56) was
used to obtain the second equality in (13.64).

The density operator needed for the evaluation of the averages is given by

ρ = ρeq (1 + aT
μν φT

μν + · · · ),

where the dots stand for terms involving higher rank tensors, for aT
μν and φT

μν see
(13.61) and (13.63). The resulting average needed for the dielectric tensor is

εμν = εTa aT
μν, εTa = −1

2
n (α‖ − α⊥)

√

2

15
ξT,

ξT = 〈c(J 2)2〉−1
eq

〈

c(J 2)

√

J 2

J 2 − 3
4

〉

eq

. (13.65)

For c = 1 and rotational states j = 4 and higher, the factor ξT approaches 1.
The interrelation (13.65) between the anisotropic part of the dielectric tensor and

the tensor polarization aT plays a key role in the kinetic theory for the depolarized
Rayleigh scattering and the flow birefringence of molecular gases [17, 22, 62–64].

13.6.6 Non-diagonal Tensor Operators

Spherical tensor operators are defined by

T jj′
�m =

∑

m′

∑

m′′
(−1)j−m′′

( j ′m′, j − m′′|�m) | jm′′〉〈 j ′m′|, (13.66)

where the symbol (.., ..|..) indicates a Clebsch-Gordan coefficient These coefficients
govern the coupling of two angular momentum states | j1m1〉 and | j2m2〉 to a state
| jm〉 according to, cf. [65],

http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_5
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∑

m1

∑

m2

| j1m1〉 | j2m2〉 ( j1m1, j2m2| jm) = | jm〉.

The nondiagonal elements of the spherical harmonic Y (m)
� (u) are related to the spher-

ical tensor operators by

[

Y (m)
� (u)

]jj′ = PjY (m)
� (u)Pj′ =

√

2 j + 1

4π

(

j 0, � 0 | j ′ 0
)

T jj′
�m. (13.67)

By analogy to (13.67), the operator form of the Cartesian tensor uμ1 · · · uμ�
is

( uμ1 · · · uμ�
)jj

′ =
√

�!
(2� + 1)!!

√

2 j + 1 ( j 0, � 0| j ′ 0) T jj′
μ1···μ�

. (13.68)

The tensor operators have the properties:

(i) The hermitian adjoint of T jj′
μ1···μ�

is

(T jj′
μ1···μ�

)† = (−1)j−j′ T j′j
μ1···μ�

. (13.69)

(ii) Orthogonality and normalization

tr{T jj′
μ1···μ�

(T jj′
ν1···ν�′ )

†} = δ��′ Δ(�)
μ1···μ�,ν1···ν�

. (13.70)

The theoretical description of the rotational Raman scattering involves the elements
of the anisotropicmolecular polarizability tensorwhich are non-diagonalwith respect
to the rotational quantum number, cf. (13.53). The relevant operators are

Pj uμuν Pj′ = ( uμuν )jj
′
,

with j ′ = j ± 2. In particular, one has

( uμuν )jj±2 =
√

2

15

√

2 j + 1 ( j 0, 2 0| j ± 2 0) T jj±2
μν . (13.71)

The Clesch-Gordan coefficients are

( j 0, 2 0| j + 2 0) =
√

3

2

√

( j + 1)( j + 2)

(2 j + 1)(2 j + 3)
,

( j 0, 2 0| j − 2 0) =
√

3

2

√

j ( j − 1)

(2 j + 1)(2 j − 1)
.
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Both coefficients approach 1
2

√

3
2 for large values of j .

The diagonal tensor operator T jj
μ1···μ�

is essentially the hermitian tensor operator

Pj Jμ1 · · · Jμ�
, viz.

T jj
μ1···μ�

= Pj Jμ1 · · · Jμ�

(

�!
(2� + 1)!!

)−1/2

(2 j + 1)−1/2( j0 j1 · · · j�−1)
−1.

(13.72)

The quantities jk are analogousl to the Sk, defined in (13.22), i.e.

j2k = j ( j + 1) − k

2

(

k

2
+ 1

)

.

The second rank tensor is

T jj
μν =

(

15

2

)1/2

(2 j + 1)−1/2( j0 j1)
−1 Pj Jμ Jν . (13.73)

Apart from the factor (2 j + 1)−1/2, the tensor operator T jj
μν is equal to PjφT

μν , as
defined in (13.61), with c = 1.



Chapter 14
Rotation of Tensors

Abstract This chapter is concerned with the active rotation of tensors. Firstly,
infinitesimal and finite rotations of vectors are described by second rank rotation
tensors, the connection with spherical components is pointed out. Secondly, the rota-
tion of second rank tensors is treated with the help of fourth rank projection tensors.
The fourth rank rotation tensor is a linear combination of these projectors. The scheme
is generalized to the rotation of tensors of rank � > 2. Thirdly, the projection tensors
are applied to the solution of tensor equations. An example deals with the effect of
a magnetic field on the electrical conductivity.

The active rotation of a tensor, to be considered here, has to be distinguished from the
rotation of the coordinate system, see Sect. 2.4. The passive rotation of the coordinate
system must not affect the physics. The rotation of a tensor, on the other hand,
describes physical changes. The rotation of vectors is discussed before second and
higher rank tensors are treated. This section follows and generalizes the material
given in the appendix of [42].

14.1 Rotation of Vectors

14.1.1 Infinitesimal and Finite Rotation

The rotation of a vector a by the infinitesimal angle δϕ about an axis, which is parallel
to the axial unit vector h, generates a vector a′, whose components are given by

a′
μ = aμ + δϕ εμλν hλ aν = aμ + δϕ Hμνaν = (δμν + δϕ Hμν) aν . (14.1)

The antisymmetric second rank tensor H is defined by

Hμν ≡ εμλν hλ. (14.2)
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260 14 Rotation of Tensors

The rotation by an finite angle ϕ = nδϕ is given by (1 + δϕH)n. With δϕ = ϕ/n,
the limit n → ∞ leads to

a′
μ = (exp[ϕ H])μν aν ≡ Rμν(ϕ) aν . (14.3)

In principal, the rotation tensor R can be expressed in terms of the power series

Rμν(ϕ) = δμν + ϕ Hμν + 1

2
ϕ2Hμκ Hκν + . . . . (14.4)

Due to the special properties of H, to be discussed next, R can be represented in a
more compact form.

14.1.2 Hamilton Cayley and Projection Tensors

Due to Hμκ Hκν = hμhν − δμν and hσ Hσν = 0, the tensor H obeys the relation

H3 + H = 0. (14.5)

This corresponds to a Hamilton-Cayley equation for H with the eigenvalues i m,
where m = 0, ±1. Second rank projection tensors P(m) are defined by

P(m) =
∏

m′ �=m

H − im′ 1
im − im′ , m, m′ = 0,±1. (14.6)

In (14.6), the symbol 1 stands for the second rank unit tensor, viz. for δμν . These
projectors are explicitly given by

P(0)
μν = hμhν, P(±1)

μν = 1

2
(δμν − hμhν ∓ i εμλν hλ). (14.7)

The projection tensors possess the following properties:

P(m)
μκ P(m′)

κν = δmm′ P(m)
μν , (14.8)

(P(m)
μν )∗ = P(−m)

μν = P(m)
νμ , (14.9)

1
∑

m=−1

P(m)
μν = δμν, P(m)

μμ = 1. (14.10)

The eigenvalue equation

P(m)
μκ Hκν = Hμκ P(m)

κν = i m P(m)
μν , (14.11)
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reflects that the P(m)
μν are ‘eigen-tensors’ of the tensor Hμν . On the other hand, Hμν

can be represented as a linear combination of the projection tensors, viz.

Hμν =
1

∑

m=−1

i m P(m)
μν . (14.12)

Some additional formulas involving second rank projection operators are:

hν hμaν =
(

2

3
P(0)

μν + 1

2
P(1)

μν + 1

2
P(−1)

μν

)

aν, (14.13)

hνhκ hμbνκ =
(

3

5
P(0)

μν + 8

15
P(1)

μν + 8

15
P(−1)

μν

)

bνκ hκ , (14.14)

where aν and bμν are a vector and a second rank tensor.

14.1.3 Rotation Tensor for Vectors

With the help of the projection tensors, the rotation tensor for vectors can now be
expressed as

Rμν(ϕ) =
1

∑

m=−1

P(m)
μκ (exp[ϕ H])κν =

1
∑

m=−1

exp[i m ϕ] P(m)
μν . (14.15)

Decomposition into real and imaginary parts leads to

Rμν(ϕ) = P(0)
μν + cosϕ

(

P(1)
μν + P(−1)

μν

)

+ sin ϕ i
(

P(1)
μν − P(−1)

μν

)

. (14.16)

Notice that

P(0)
μν = hμhν ≡ P‖

μν, P(1)
μν + P(−1)

μν = δμν − hμhν ≡ P⊥
μν, (14.17)

correspond to the projection tensors onto the direction parallel and perpendicular to
h, denoted by P‖ and P⊥, respectively. Furthermore, one has

i
(

P(1)
μν − P(−1)

μν

)

= Hμν. (14.18)

Thus the rotation tensor also reads

Rμν(ϕ) = hμhν + sin ϕ εμλν hλ + cosϕ (δμν − hμhν). (14.19)
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In hindsight, this result is not unexpected for the rotation of a vector. However, the
formal considerations presented here are suitable for a generalization to the rotation
of tensors.

The orthogonal transformation matrix U for the rotation of the coordinate system,
as introduced in Sect. 2.4.2, is related to R by Uμν(ϕ) = Rμν(−ϕ). To compare with
(2.41), choose h parallel to the 3-axis, also referred to as to the z-axis.

14.1 Exercise: Scalar Product of two Rotated Vectors
Let ãμ = Rμν(ϕ)aν and b̃μ = Rμκ(ϕ)aκ be the Cartesian components of the vectors
a and b which have been rotated by the same angle ϕ about the same axis. Prove that
the scalar products ã · b̃ is equal to a · b.

14.1.4 Connection with Spherical Components

The complex basis vectors e(m), introduced by (9.16) and employed with the defini-
tion of spherical components, cf. (9.18) and (9.19), are eigenvectors of the projection
tensors, provided that h is chosen parallel to the unit vector e(z), more specifically:

P(m)
μν e(m′)

ν = δmm′ e(m)
μ , m, m′ = −1, 0, 1. (14.20)

Thus, due to (9.18), application the projector on a vector a yields

P(m)
μν aν = a(m) e(m)

μ , (14.21)

where a(m) is a spherical component of this vector. Furthermore, the projection tensor
can be expressed by

P(m)
μν =

(

e(m)
μ

)∗
e(m)
ν , (14.22)

when one chooses h = e(z).

14.2 Rotation of Second Rank Tensors

14.2.1 Infinitesimal Rotation

Let Aμν = aμaν be a second rank tensor composed of the components of the vector
a. The infinitesimal rotation by the angle δϕ about an axis parallel to h, as described
by (14.1) with (14.2) implies that the rotated tensor A′

μν is

A′
μν = Aμν + δϕ (Hμμ′ δνν′ + Hνν′ δμμ′)Aμ′ν′ = Aμν + δϕ Hμν,μ′ν′ Aμ′ν′ .

(14.23)

http://dx.doi.org/10.1007/978-3-319-12787-3_2
http://dx.doi.org/10.1007/978-3-319-12787-3_2
http://dx.doi.org/10.1007/978-3-319-12787-3_9
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http://dx.doi.org/10.1007/978-3-319-12787-3_9
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14.2 Rotation of Second Rank Tensors 263

The fourth rank tensor H is defined by

Hμν,μ′ν′ ≡ εμλμ′ hλ δνν′ + ενλν′ hλ δμμ′ = Hμμ′ δνν′ + Hνν′ δμμ′ . (14.24)

The infinitesimal rotation of a symmetric tensor S is also described by H , viz.

S′
μν = Sμν + δϕ Hμν,μ′ν′ Sμ′ν′ . (14.25)

In the following, it is assumed that S is also traceless, i.e. it is an irreducible second

rank tensor: Sμν = Sμν . The rotated tensor S′
μν is also irreducible. Then one has

Hμν,μ′ν′ Sμ′ν′ = Hμν,μ′ν′ Sμ′ν′ ,

and H is equivalent to
Hμν,μ′ν′ = 2 hλ �μν,λ,μ′ν′ , (14.26)

for �... see (11.19).

14.2.2 Fourth Rank Projection Tensors

Fourth rank projection tensorsP(m1,m2) are defined via products of the second rank
projectors (14.7):

P(m1,m2)

μν,μ′ν′ = P(m1)

μμ′ P(m2)

νν′ . (14.27)

The fourth rank projectors have the property

P(m1,m2)
μν,λκ P

(m′
1,m

′
2)

λκ,μ′ν′ = P(m1,m2)

μν,μ′ν′ δ(m1m′
1)

δ(m2m′
2)

. (14.28)

The relation

Hμν,μ′ν′ Sμ′ν′ =
1

∑

m1=−1

1
∑

m2=−1

i (m1 + m2)P
(m1,m2)

μν,μ′ν′ Sμ′ν′

follows the definition ofH and the properties ofH. Insertion ofP into this equation
and use of (14.28) leads to

Hμν,λκ P
(m1,m2)

λκ,μ′ν′ = i (m1 + m2)P
(m1,m2)

μν,μ′ν′ . (14.29)

http://dx.doi.org/10.1007/978-3-319-12787-3_11
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Notice that m1 + m2 assumes the five values m = −2,−1, 0, 1, 2. The fourth rank
tensor obeys the eigenvalue equation

2
∏

m=−2

(H − i m 1) = 0, (14.30)

with these five eigenvalues for m. The corresponding eigen-tensors are

P(m)

μν,μ′ν′ =
1

∑

m1=−1

1
∑

m2=−1

P(m1)

μμ′ P(m2)

νν′ δ(m, m1 + m2), (14.31)

where the δ(m, m1 + m2) = 1 for m = m1 + m2, and δ(m, m1 + m2) = 0, for
m �= m1 + m2. In terms of these projectors, the spectral decomposition ofH reads

Hμν,μ′ν′ =
2

∑

m=−2

i m P(m)

μν,μ′ν′ . (14.32)

14.2.3 Fourth Rank Rotation Tensor

By analogy to the rotation of a vector, cf. (14.3), the rotation of a second rank tensor
by the finite angle ϕ is given by

A′
μν = (exp[ϕ H ])μν,μ′ν′ Aμ′ν′ ≡ Rμν,μ′ν′(ϕ) Aμ′ν′ , (14.33)

with the fourth rank rotation tensor

Rμν,μ′ν′(ϕ) =
2

∑

m=−2

exp[i m]P(m)

μν,μ′ν′ . (14.34)

Decomposition into real and imaginary parts yields, by analogy to (14.16)

Rμν,μ′ν′(ϕ) = P(0)
μν,μ′ν′ +

2
∑

m=1

[

cos(mϕ)
(

P(m)

μν,μ′ν′ + P(−m)

μν,μ′ν′
)

+ sin(mϕ)i
(

P(m)

μν,μ′ν′ − P(−m)

μν,μ′ν′
)]

. (14.35)

The comparison of the formulas for the rotation of second rank tensor with those for
the rotation of a vector indicates how the general case of a rotation of a tensor of
rank � can be treated.
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14.3 Rotation of Tensors of Rank �

The obvious generalization of the generator for the infinitesimal rotation of second
rank tensors, viz. (14.24), to tensors of rank �, is the 2�th rank tensorH (�) defined by

H (�)
μ1μ2···μ(�),ν1ν2···ν�

(14.36)

≡ εμ1λν1hλδμ2ν2 · · · δμ�ν�
+ . . . + δμ1ν1 · · · δμ�−1ν�−1εμ�λν�

hλ

= Hμ1ν1δμ2ν2 · · · δμ�ν�
+ δμ1ν1 Hμ2ν2 · · · δμ�ν�

+ . . . + δμ1ν1 · · · δμ�−1ν�−1 Hμ�ν�
.

The infinitesimal rotation of a symmetric tensor S is also described by H (�), viz.

S′
μ1μ2···μ�

= Sμ1μ2···μ�
+ δϕ H (�)

μ1μ2···μ(�),ν1ν2···ν�
Sν1ν2···ν�

. (14.37)

In the following, it is assumed that S is also traceless, i.e. it is an irreducible tensor.
The rotated tensor S′ is also irreducible. Then one has

H (�) � S = H (�) � S ,

where the symbol � indicates the �-fold contraction as occurring in the equations
above, and H (�) is equivalent to

H (�)
μ1μ2···μ(�),ν1ν2···ν�

= � hλ �(�)
μ1μ2···μ(�),λ,ν1ν2···ν�

, (14.38)

for �... see (11.16).
Projection tensorsP(m), wherem = −�,−�+1, . . . , 0, . . . , �−1, �, are defined

by analogy to (14.31). These projectors are eigen-tensors ofH (�), viz.

H (�) � P(m) = P(m) � H (�) = i m P(m). (14.39)

In terms of these projectors, the spectral decomposition of H (�) reads

H (�)
μ1μ2···μ(�),ν1ν2···ν�

=
�

∑

m=−�

i m P(m)
μ1μ2···μ(�),ν1ν2···ν�

. (14.40)

The obvious generalizations of equations (14.34) and (14.35) describing the rotation
of second rank tensors to those of �th rank tensors is

R(�)
μ1μ2···μ(�),ν1ν2···ν�

(ϕ) =
�

∑

m=−�

exp[i m]P(m)
μ1μ2···μ(�),ν1ν2···ν�

, (14.41)

http://dx.doi.org/10.1007/978-3-319-12787-3_11
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and

R(�)··· ,···(ϕ) = P(0)··· ,··· +
�

∑

m=1

[

(cos(mϕ)
(

P(m)··· ,··· + P(−m)··· ,···
)

+ sin(mϕ)i
(

P(m)··· ,··· − P(−m)··· ,···
)]

. (14.42)

The projection operators also allow the solution of tensor equations, as discussed
next.

14.4 Solution of Tensor Equations

14.4.1 Inversion of Linear Equations

Let aμ1·μ�
and bμ1·μ�

be irreducible tensors of rank � which obey the rotation-like
linear relation

aμ1μ2···μ�
+ ϕ H (�)

μ1μ2···μ(�) , ν1ν2···ν�
aν1ν2···ν�

= c0 bμ1μ2···μ�
, (14.43)

where c0 is a given coefficient. With the properties of the projectors P(m) given
above, this equation is inverted for aμ1·μ�

according to

aμ1μ2···μ�
=

�
∑

m=−�

c(m) P(m)
μ1μ2···μ(�),ν1ν2···ν�

bμ1μ2···μ�
, (14.44)

with
c(m) = c0 (1 + m i ϕ)−1. (14.45)

When a more general linear relation between two tensors is cast into the form

�
∑

m=−�

c(m) P(m)
μ1μ2···μ(�),ν1ν2···ν�

aμ1μ2···μ�
= bμ1μ2···μ�

, (14.46)

with given coefficients c(m), the inversion of this equation reads

aμ1μ2···μ�
=

�
∑

m=−�

(

c(m)
)−1

P(m)
μ1μ2···μ(�),ν1ν2···ν�

bμ1μ2···μ�
, (14.47)
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A simple application, for � = 1, is the computation of the electrical conductivity
in the presence of a magnetic field, as discussed next. The case of the fourth rank
viscosity tensor of a fluid in the presence of amagnetic field, is treated in Sect. 16.3.2.

14.4.2 Effect of a Magnetic Field on the Electrical
Conductivity

In a stationary situation, the linear relation between the electric flux density j and an
applied electric field E is described by

jμ = σμν Eν, (14.48)

where σμν is the electrical conductivity tensor. For the isotropic case, where σμν ∼
δμν , this corresponds to the local formulation of Ohm’s law. The influence of a
magnetic field B = Bh, with h · h = 1, on the conductivity is analyzed next for a
simple model. Consider the case of single carriers with mass m, charge e, number
density n and an average velocity v, then the flux density is j = nev. The velocity is
assumed to obey the damped equation of motion

mv̇ = e(E + v × B) − m τ−1 v,

where τ is a relaxation time. For a stationary situation, the time derivative v̇ vanishes
and the equation above for v reduces to an expression of the type (14.43), just for
� = 1, viz.

vμ + ϕHμν vν = c0 Eμ, (14.49)

with ϕ = e B τ/m and c0 = e τ/m. The solution of this equation for v, cf. (14.44), is

vμ = eτ

m

1
∑

k=−1

(1 + ik ϕ)−1P(k)
μν Eν . (14.50)

Thus the dc-conductivity tensor is

σμν = ne2τ

m

1
∑

k=−1

(

1 + ik
eBτ

m

)−1

P(k)
μν . (14.51)

This result is equivalent to

σμν = σ ‖ hμhν + σ⊥ (δμν − hμhν) + σ trans εμλν hλ, (14.52)

http://dx.doi.org/10.1007/978-3-319-12787-3_16
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with the longitudinal, perpendicular and transverse conductivity coefficients
determined by

σ ‖ = σ0 ≡ n e2 τ/m, σ⊥ = σ0 (1+ ϕ2)−1, σ trans = σ0 ϕ (1+ ϕ2)−1. (14.53)

The magnetic field is an axial vector, the same applies for h. The constitutive law
(14.48), with the conductivity tensor given here conserves parity. Notice that the
conductivity tensor has the symmetry property

σμν(h) = σνμ(−h). (14.54)

Since τ > 0, one has σ ‖ > 0 and σ⊥ > 0. The relation of the associated longitudinal
and perpendicular parts of the current density with the electric field violate time-
reversal invariance, typical for an irreversible process. The transverse coefficient
which underlies the Hall-effect, is of reversible character, the coefficient σ trans may
have either sign.

14.5 Additional Formulas Involving Projectors

The application of the fourth rank projection tensor on the symmetric traceless tensor
aμν is explicitly given by

P(0)
μν,μ′ν′ aμ′ν′ = 3

2
hμhν hμ′hν′aμ′ν′ , (14.55)

P(±1)
μν,μ′ν′ aμ′ν′ = 1

2
(hμhκaκν + hνhκaκμ) − hμhν aμ′ν′ hμ′hν′

∓ i

2
(hμHντ aτκhκ + hν Hμτ aτκhκ),

P(±2)
μν,μ′ν′ aμ′ν′ = 1

2
aμν − hμhκaκν + 1

4
hμhν hμ′hν′aμ′ν′ (14.56)

∓ i

4
(Hμτ aτν − hμHντ aτκhκ + Hντ aτμ − hν Hμτ aτκhκ).

Multiplication of the expressions aboveby the symmetric traceless tensorbμν leads to

bμνP
(0)
μν,μ′ν′ aμ′ν′ = 3

2
(hμbμνhν) (hμ′aμ′ν′hν′), (14.57)

bμνP
(±1)
μν,μ′ν′ aμ′ν′ = hμbμνaνκhκ − (hμbμνhν) (hμ′aμ′ν′hν′) ∓ i hμbμν Hντ aτκhκ ,
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bμνP
(±2)
μν,μ′ν′ aμ′ν′ = 1

2
bμνaμν − hμbμνaνκhκ + 1

4
(hμbμνhν) (hμ′aμ′ν′hν′)

∓ i

2
[bμν Hντ aτμ − hμbμν Hντ aτκhκ ]. (14.58)

Now let the tensor a be constructed from the components of the unit vectors e, viz.
aμν = eμeν . Then the real and imaginary parts of (14.55) and (14.56) are

P(0)
μν,μ′ν′ eμ′eν′ = 3

2
hμhν

[

(h · e)2 − 1

3

]

, (14.59)

(P(1)
μν,μ′ν′ + P(−1)

μν,μ′ν′) eμ′eν′ = 1

2
(hμeν + hνeμ)(h · e) − hμhν (h · e)2,

(P(2)
μν,μ′ν′ + P(−2)

μν,μ′ν′) eμ′eν′ = eμeν − 2 hμeν (h · e) + 1

2
hμhν [1 + (h · e)2],

i
(

P(1)
μν,μ′ν′ − P(−1)

μν,μ′ν′
)

eμ′eν′ = [hμ(h × e)ν + hν(h × e)μ](h · e),

i
(

P(2)
μν,μ′ν′ − P(−2)

μν,μ′ν′
)

eμ′eν′ = 1

2
[(h × e)μeν + (h × e)νeμ]

− 1

2
[hμ (h × e)ν + hν(h × e)μ] (h · e). (14.60)

The cross product (h × e) stems from Hμτ eτ = (h × e)μ. For e = h, all terms
on the right hand side of (14.60) and in the second and third equations of (14.59)
vanish. This is obvious since a rotation about an axis parallel to e does not change the
direction of e. For e perpendicular to h, the equations involving P(±1)

.. yield zero,
the remaining equations reduce to

P(0)
μν,μ′ν′ eμ′eν′ = −1

2
hμhν , (14.61)

(

P(2)
μν,μ′ν′ + P(−2)

μν,μ′ν′
)

eμ′eν′ = eμeν + 1

2
hμhν ,

i
(

P(2)
μν,μ′ν′ − P(−2)

μν,μ′ν′
)

eμ′eν′ = 1

2
[(h × e)μ eν + (h × e)ν eμ].

Next, the special case aμν = eμuν is considered, where the unit vectors are per-
pendicular to each other. Then (14.55) and (14.56) lead to

P(0)
μν,μ′ν′ eμ′uν′ = 3

2
hμhν (h · e)(h · u), (14.62)

(

P(1)
μν,μ′ν′ + P(−1)

μν,μ′ν′
)

eμ′uν′ = 1

4
[(hμuν + hνuμ)(h · e) + (hμeν + hνeμ)(h · u)]

−2 hμhν (h · e) (h · u),
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(

P(2)
μν,μ′ν′ + P(−2)

μν,μ′ν′
)

eμ′uν′ = eμuν + 1

2
hμhν (h · e)(h · u)

−[ hμeν (h · u) + hμuν (h · e)],

2 i
(

P(1)
μν,μ′ν′ − P(−1)

μν,μ′ν′
)

eμ′uν′ = [hμ(h × e)ν + hν(h × e)μ] (h · u) (14.63)

+[hμ(h × u)ν + hν(h × u)μ] (h · e),

4 i
(

P(2)
μν,μ′ν′ − P(−2)

μν,μ′ν′
)

eμ′uν′ = {

uμ(h × e)ν + uν(h × e)μ

+ eμ(h × u)ν + eν(h × u)μ
}

− {[hμ(h × e)ν + hν(h × e)μ] (h · u)

+ [hμ(h × u)ν + hν(h × u)μ] (h · e)
}

.

Direct application of the equation (14.31) defining the fourth rank projectors in terms
of the second rank tensors and use of symbolic notation, leads to

P(±1) : (eu + ue) = 1

2
[e‖u⊥ + u‖e⊥ + u⊥e‖ + e⊥u‖] (14.64)

∓ i

2
[e‖utr + u‖etr + utre‖ + etru‖],

P(±2) : (eu + ue) = 1

4
[e⊥u⊥ + u⊥e⊥ − utretr − etrutr] (14.65)

∓ i

4
[e⊥utr + u⊥etr + utre⊥ + etru⊥].

Here e and u are two arbitrary unit vectors which, in special cases, may be parallel or
perpendicular to each other. The parts of a vector e which are parallel, perpendicular
and transverse with respect to h, are defined by

e‖ = P‖ · e, e⊥ = P⊥ · e, etr = H · e = h × e.

Due to P(±2)
μν,μ′ν′δμ′ν′ = 0, the expressions (eu + ue) in the equations above may

be replaced by 2 eu . Furthermore, the resulting dyadics in (14.64) and (14.65)
are automatically traceless. This is not the case for the corresponding expression
involving the projector P(0) = P(0) P(0) + P(1) P(−1) + P(−1) P(1). Here one has
P(0)

μν,μ′ν′δμ′ν′ = P(0)
μν + P(1)

μν + P(−1)
μν = δμν . Thus one obtains

P(0)
μν,μ′ν′ 2 eμ′uν′ = e‖

μ u‖
ν + e‖

ν u‖
μ (14.66)

+1

2
[e⊥

μ u⊥
ν + u⊥

μe⊥
ν + utr

μetrν + etrμutr
ν ] − 2

3
e · u δμν.
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This expression is also traceless, notice that etrμutr
μ = e⊥

μ u⊥
μ and e‖

μu‖
μ+e⊥

μ u⊥
μ = e ·u.

The application of the fourth rank projectors onto a symmetric traceless tensor yields
a symmetric traceless tensor. By symmetry,

P(0)
μν,μ′ν′ 2 eμ′uν′ = c hμhν

is expected, with a proportionality factor c. Multiplication of this equation by hμhν

and use of (14.66) yields c = 3
2 [2h · eh · u − 2

3e · u]. This is in accord with

P(0)
μν,μ′ν′ = 3

2
hμhν hμ′hν′ ,

as already implied by (14.55).

Application of the fourth rank projector P(m) on hμhκ aκν, where aμν is an
irreducible second rank tensor, yields

P(m)

μν,μ′ν′ hμ′hκ aκν′ =
(

1

3
− m2

6

)

P(m)

μν,μ′ν′ aμ′ν′ . (14.67)

Furthermore,

hμ2 · · · hμ�
H (�)

μ1μ2···μ(�),ν1ν2···ν�
aν1ν2···ν�

= i
(

P(1)
μ1μ

′
1
− P(−1)

μ1μ
′
1

)

Aμ′
1
, (14.68)

with
Aμ′

1
= hμ′

2
· · · hμ′

�
aμ′

1μ
′
2···μ′

�
, (14.69)

where aμ′
1μ

′
2···μ′

�
is an irreducible �th rank tensor.



Chapter 15
Liquid Crystals and Other
Anisotropic Fluids

Abstract This chapter deals with equilibrium properties of liquid crystals and other
anisotropic fluids. After some remarks on nematic, cholesteric and smectic liquid
crystals and blue phases, the second rank alignment tensor is introduced as the rele-
vant order parameter for the nematic state. Theories for the phase transition isotropic-
nematic are presented. The orientational elastic behavior of nematics and cholesterics
is firstly described by the director elasticity involving the Frank coefficients and then
by the alignment tensor elasticity theory. Systems with cubic and with tetrahedral
symmetry, referred to as cubatics and tetradics, are characterized by fourth and third
rank order parameter tensors. Some examples for the energetic coupling of order
parameter tensors of equal and of different ranks are considered.

Crystalline solids are anisotropic. Fluids in thermal equilibrium, on the other hand,
are commonly looked upon as isotropic substances. However, fluids can also become
anisotropic, be it through the application of external fields or by a spontaneous phase
transition into an statewith orientational order.Liquid crystals are themost prominent
anisotropic fluids. Here the emphasis is on nematic liquid crystals. Properties of
some other anisotropic fluids are discussed briefly. In any case, tensors are the tools
needed to characterize the anisotropy of these substances. This section is devoted
to equilibrium properties. Non-equilibrium phenomena are treated in Sect. 16.4 and
Chap.17.

A standard publication for the physics of liquid crystals is the classic book of de
Gennes from 1973, a revised and extended second edition appeared in 1993 [67].
A good introduction is [68], for phase types and structures see also [69]. An extensive
survey of the literature up to 1980 is given in [70]. Concepts and experiments are
discussed in [71]. Classic papers on liquid crystals are reproduced and commented in
[72]. Optical experiments and their theoretical foundation are treated in [73] for equi-
librium and non-equilibrium properties of complex fluids, in particular for polymers
and liquid crystals.
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15.1 Remarks on Nomenclature and Notations

Liquid crystals are substanceswhich canflow, and thus are liquid-like and, at the same
time, exhibit anisotropic properties which are typical for crystalline solids. Around
1880, Otto Lehmann coined the words “flowing crystal” and “liquid crystal” to refer
to same types of anisotropic fluids. Some contemporary scientists opposed to his
ideas that fluid and crystalline properties can occur in a homogeneous substance and
that various liquid-crystalline states are phases in the sense of thermodynamics, just
as gas, isotropic liquid and crystalline solid. Nowadays the notion liquid crystal is
well accepted, in particular “LCD”, i.e. “LiquidCrystalDisplay” became a household
word.

Liquid crystals are composed of non-spherical particles which have an orienta-
tional degree of freedom. Prototypes for effectively axisymmetric or uniaxial parti-
cles have a rod-like or a disc-like shape. They are referred to as prolate and oblate
particles.

Themain types of liquid crystals are called nematic, cholesteric and smectic liquid
crystals.

The terms thermotropic liquid crystal and lyotropic liquid crystal are used to
indicate that the change of the temperature or of the concentration in a solution
drives the phase transition from an isotropic liquid to a liquid crystalline state.

15.1.1 Nematic and Cholesteric Phases, Blue Phases

Innematics, themain axis of the particles have a long range preferential orderwhereas
the positions of their centers of mass have no long range order. Usually, it is under-
stood that nematics are composed of prolate particles, otherwise the notion “discotic
nematic” is used for fluids composed of oblate particles. Symmetry considerations,
however, apply to both types of nematics: they are characterized by an order para-
meter which is a symmetric traceless second rank tensor.

In ordinary nematics, the phase has uniaxial symmetry, even when its constituents
are biaxial particles. Fluids with an overall biaxial symmetry, but without any long
ranged positional order are referred to as biaxial nematics. One has to distinguish
between the symmetry of the particles and the symmetry of the phase. In principle,
it is possible to have a biaxial phase composed of uniaxial particles and a uniaxial
phase composed of biaxial particles. Typically, however, the rare biaxial nematic
phase is found for substances composed of biaxial particles.

A cartoon of the orientation of ‘particles’ in the nematic phase is shown in
Fig. 15.1. Although ‘up and down’ or ‘head and tail’ can be distinguished for each
particle, the average orientation has head-tail symmetry.

A cholesteric liquid crystal is essentially a nematic, where the preferential direc-
tion of the phase is twisted in space, with a twist axis pointing in a certain direction.
Cholesterics possess a spontaneously formed helix, which is geometrically similar
to the steps of a spiral staircase. The twist axis is also called helical axis.
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Fig. 15.1 Cartoon of the
orientation of molecules in
the nematic phase, as shown
in [74]

Fig. 15.2 Schematic
double-twist configuration

When the local helical axis points in the radial directions perpendicular to another
fixed axis, the director configuration is referred to as double twist structure, cf.
Fig. 15.2. There the short lines indicate the director, the thin horizontal lines mark
the directions of two of the helical axes which are orthogonal to the cylinder axis. The
molecular arrangement in a double-twist cylinder with a diameter determined such
that the twist from the center of the cylinder axis is about 45◦, can be more stable
than the single-twist configuration of an ordinary cholesteric state. In larger volumes
3D supra-molecular structures are spontaneously formed in the blue phases. These
structures contain defects where three orthogonal double-twist cylinders touch each
other. The 3D arrangement of the defects determines the symmetry of the blue phase.
The phases referred to as ‘BP1 and BP2 have cubic symmetry of fcc and bcc type.
Blue phases with icosahedral symmetry and with an irregular structure also exist.

The blue phases are found in chiral substances between the ‘ordinary’ cholesteric
and the isotropic liquid phase. The name comes from the blue shine observed in
cholesteryl benzoate, as first reported by Reinitzer in 1888. He sent this substance to
Lehmann who studied the spontaneous birefringence as function of the temperature.
Lehman noticed that the ‘blue phase’ is optically isotropic, in contradistinction to the
optically anisotropic cholesteric phase which Lehmann then called ‘liquid crystal’,
a name he had previously used for substances now called superionic conductors.
Decades later it was recognized that there is not one blue phase but several types of
blue phases which occur in a very narrow temperature intervals. For over hundred



276 15 Liquid Crystals and Other Anisotropic Fluids

years, the research dealing with blue phases was considered as a rather exotic topic.
This changed in 2005 when substances with a wide temperature range of blue-phase
liquid crystalline state were found [75]. In the meantime, a blue phase LC display
has been developed.

Colloidal particles are localized at the defects of liquid crystals and theymay form
periodic structures [76]. Colloidal particles immersed in a blue phase liquid crystal
stabilize the blue phase [77]. The resulting 3D periodic structure has the optical
properties of ordinary colloidal crystals [78] but is mechanically more stable.

15.1.2 Smectic Phases

Smectic liquid crystals possess a partial positional ordering, in addition to an ori-
entational order. The different phases are labelled by the letters A, B, C, . . . in
the order they were originally identified as distinct thermodynamic phases, before
the underlying microscopic structure was identified. The most prominent cases
are the smectic A and smectic C phases, where the centers of mass of the mole-
cules are preferentially located in planes.

In the A-phase, the director specifying the average direction of the long axes of
the molecules is perpendicular to the planes, in theC-phase, it is tilted with respect to
the planes. A cartoon of the orientation of ‘particles’ in the smectic A and C phases
is shown in Fig. 15.3. The tilt angle ϑ which distinguishes the C from the A phase
can be used as an order parameter, e.g. see [67]. Alternatively, cf. [79], the transition
A → C can be looked upon as a spontaneous shear displacement u(r) of the centers
of mass of the molecules where u and its gradient are parallel and perpendicular,
respectively, to the director n. With u in x-direction and its gradient in y-direction,
the deformation ∂ux/∂y is equal to tan ϑ . In the ferro-electric smectic C∗ liquid
crystals, the electric polarization is proportional to the axial vector associated with
the antisymmetric part of the deformation tensor ∇μuν , [79].

The smectic B phase is similar to the A-phase but with an additional hexago-
nal short range order of neighbor molecules within a plane. The smectic D phase
has a 3D cubic order, rather than the layered structure typical for smectics. For
chiral and ferro-electric smectics, as well as columnar phases, and banana phases
see, e.g. [67–69].

Fig. 15.3 Cartoon of the
orientation of molecules in
the smectic A (left) and
smectic C (right) phases, as
shown in [74]
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15.2 Isotropic ↔ Nematic Phase Transition

15.2.1 Order Parameter Tensor

The existence of a non-zero second rank alignment tensor in thermal equilibrium,
distinguishes the nematic phase of a liquid crystal from its isotropic liquid state. The
order parameter tensor can be introduced phenomenologically via the anisotropic, i.e.
symmetric traceless part of the electric or magnetic susceptibility tensor or, and this
is preferred here, microscopically as an average over the orientational distribution
function. As in Sect. 12.2.2, particles with a symmetry axis parallel to the unit vector
u are considered. In most nematics, the orientational distribution f = f (u) does
not depend on the sign of u, even when the particles do have a polar character. The
property f (u) = f (−u) is referred to as head-tail symmetry. The lowest moment
which distinguishes an anisotropic distribution from an isotropic one is the second
rank alignment tensor, cf. (12.14) and (12.17),

aμν = 〈φμν〉, φμν = ζ2 uμuν , ζ2 =
√

15

2
. (15.1)

The bracket indicates the average over the orientational distribution, viz.

〈. . .〉 =
∫

. . . f (u)d2u.

The quadrupole moment tensor, cf. (10.29) has the same symmetry as the second
rank alignment tensor aμν ∼ 〈 uμuν 〉. Therefore, the tensor 〈 uμuν 〉 is also denoted
by Qμν and called Q-tensor, [67].

The general properties of symmetric second rank tensors discussed in Chap. 5
apply to the traceless tensor aμν defined in (15.1). In particular, in a principal axes
frame with the principal axes parallel to the mutually perpendicular unit vectors e(i),
i = 1, 2, 3, the tensor is expressed as,

aμν =
√

3

2
a0 e(3)

μ e(3)
ν +

√
2

2
a1

(

e(1)
μ e(1)

ν − e(2)
μ e(2)

ν

)

. (15.2)

The factors in front of the quantities a0 and a1 have been chosen such that the
magnitude of the alignment tensor, viz. the second scalar invariant I2 = aμνaμν is
equal to a2

0 + a2
1 . For a comparison with the relations given in Sect. 5.2.4, notice

that the quantities corresponding to S̄, s and q of (5.11) are 0,
√

3
2a0 and a1/

√
2. By

analogy to (5.13), the principal values a(i), i = 1, 2, 3 of the alignment tensor are

a(1) = − 1√
6

a0 + 1√
2

a1, a(2) = − 1√
6

a0 − 1√
2

a1, a(3) =
√

2

3
a0. (15.3)
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The alignment tensor is uniaxial for a1 = 0, with its symmetry axis parallel to e(3).
The tensor is planar biaxial for a0 = 0. For this reason, a0 and a1 are referred to
as uniaxial order parameter and biaxial order parameter. Notice, however, that the
alignment tensor is also uniaxial when a1 = ±√

3a0 holds true. In these cases, the
symmetry axis is parallel to e(2) and e(1), respectively.

In terms of a0 and a1, the third scalar invariant I3 ∼ aμνaνκaκμ, which is essen-
tially the determinant, cf. (5.44), is determined by

I3 = √
6 aμνaνκaκμ = a0 (a2

0 − 3 a2
1). (15.4)

The factor
√
6, which was not included in (5.44), is inserted here for convenience.

The biaxiality parameter b, cf. Sect. 5.5.2, is now given by

b2 = 1 − I 23 /I 32 . (15.5)

With

a0 = a cosα, a1 = a sin α, (15.6)

where a determines the magnitude of the alignment and the angle α is a measure for
the biaxiality, the scalar invariants and the biaxiality parameter are given by

I2 = a2
0 + a2

1 = a2, I3 = a3 cosα (cos2 α − 3 sin2 α) = a3 cos 3α, b = sin 3α.

(15.7)

The argument 3α reflect the fact that the roles of the three principal axes can be
interchanged without changing the physics described.

Ordinary nematic liquid crystals are uniaxial in thermal equilibrium and when no
distortions are imposed. Then one has α = 0, a1 = 0 and a0 = a. Furthermore,
the unit vector parallel to the space-fixed symmetry direction is denoted by n, rather
than e(3), and called director. The alignment tensor is written as

aμν =
√

3

2
a nμnν . (15.8)

Due to

nμnνaμν =
√

2

3
a,

and (15.1), the order parameter a is determined by

a =
√

3

2
ζ2 〈 uμuν 〉 nμnν = √

5 S2, S2 ≡ 〈P2(u · n)〉, (15.9)

http://dx.doi.org/10.1007/978-3-319-12787-3_5
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where P2(x) = 3
2 (x2 − 1

3 ) is the second Legendre polynomial. Frequently, the
quantity S2 is denoted by S and referred to as Maier-Saupe order parameter.

Theoretical approaches to the phase transition isotropic ↔ nematic are discussed
next.

15.2.2 Landau-de Gennes Theory

The Landau-de Gennes theory for the phase transition isotropic ↔ nematic is based
on finding the minimum of a free energyFa associated with the alignment. This free
energy is written as

Fa = N kBT Φ, (15.10)

where N is the number of particles, kB is the Boltzmann constant, T is the tempera-
ture and Φ is a dimensionless thermodynamic potential function which depends on
the scalar invariants I2, I3 of the alignment tensor. In the Landau de Gennes theory
the ansatz

Φ = ΦLdG ≡ 1

2
AI2 − 1

3
B I3 + 1

4
C I 22 , A = A0

(

1 − T ∗

T

)

, A0, B, C > 0,

(15.11)
or explicitly,

ΦLdG = 1

2
A aμνaνμ − 1

3
B

√
6 aμνaνκaκμ + 1

4
C (aμνaνμ)2, (15.12)

is made. The phenomenological coefficients A0, B, C > 0 are assumed to be practi-
cally constant in the vicinity of the phase transition, and T ∗ is a pseudo-critical tem-
perature, which is somewhat below the isotropic-nematic transition temperature Tni.

The equilibrium value of the alignment is inferred from the minimum of the free
energy, which in turn, is obtained by putting the first derivative of the potential Φ

with respect to the alignment tensor equal to zero. To compute the derivative ∂Φ/∂a,
replace a in Φ(a) by a + δa where δa is a small distortion. Then find the factor in
the term of δΦ = Φ(a + δa) − Φ(a) which is linear in δa. For the present case,
use of

δΦ =
(

∂Φ

∂ I2

∂ I2
∂aμν

+ ∂Φ

∂ I3

∂ I3
∂aμν

)

δaμν,

with

∂ I2
∂aμν

δaμν = 2aμνδaμν,

∂ I3
∂aμν

δaμν = 3
√
6aνκaκμδaμν = 3

√
6 aνκaκμ δaμν,
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or direct computation from (15.11) leads to

ΦLdG
μν ≡ ∂ΦLdG

∂aμν

= A aμν − B
√
6 aμκaκν + Caμν aλκaλκ . (15.13)

Before the equilibrium condition ΦLdG
μν = 0 is discussed further, the Landau de

Gennes potential (15.11) is expressed in terms of the variables a and α as introduced
in the previous Sect. 15.2.1. The result is

ΦLdG = 1

2
Aa2 − 1

3
Ba3 cos 3α + 1

4
Ca4. (15.14)

The conditions for an extremum of this function are

∂ΦLdG

∂α
= Ba3 sin 3α = 0,

and

∂ΦLdG

∂a
= a A − Ba2 cos 3α + Ca3 = 0.

Thefirst of these conditions implies that the biaxiality parameter b = sin 3α vanishes.
Thus the equilibrium state is uniaxial and α = 0 is used. Then the second condition is

a (A − Ba + Ca2) = 0. (15.15)

The solutions are a = 0 and, provided that B2 ≥ AC , also

a = a1,2 = B

2C
± 1

2C

√

B2 − 4AC .

The case a = 0 corresponds to an isotropic state. In an uniaxially ordered state
one has a 
= 0. Notice that A = A(T ) is a function of the temperature T . At the
isotropic-nematic coexistence temperature Tni, the potential has a minimum at the
value of a where ΦLdG(a) = 0 holds true. With Ani = A(Tni) = A0(1 − T ∗/Tni),
one has

1

2
Ani − 1

3
Ba + 1

4
Ca2 = 0. (15.16)

Since

Ani − Ba + Ca2 = 0,
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has to be obeyed at equilibrium, these relations imply

a = ani ≡ 2B

3C
, Ani = A0(1 − T ∗/Tni) = 1

3
Bani = 2B2

9C
. (15.17)

Typical thermotropic nematic liquid crystals have an order parameter S2 of about
0.4, at the transition temperature. This corresponds to ani = 0.9 ≈ 1. The relative
difference between the transition temperature Tni and T ∗, viz.

δni = (Tni − T ∗)/Tni = 2B2/(9A0C) = a2
niC/(2B0), (15.18)

is of the order 10−2. The Exercise 15.1 provides a derivation of the potential function
(15.12) and it yields specific values for the coefficients A0, B, C . In the literature,
variables referring to the nematic-isotropic phase transition are also labelled with the
letter “K”, rather than “ni”, like TK or aK instead of Tni and ani. The letter “K” stems
from “Klärpunkt”, meaning “clearing point”. The reason is: polycrystalline liquid
crystals are turbid and they become clear in the isotropic phase.

It is convenient to introduce the scaled alignment tensor a∗
μν , a reduced potential

Φ∗ and a reduced relative temperature ϑ via

aμν = ani a∗
μν, Φ = a2

ni Ani Φ
∗, (15.19)

ϑ = A(T )/Ani = (1 − T ∗/T )/(1 − T ∗/Tni) = (Tni/T ) (T − T ∗)/(Tni − T ∗).
(15.20)

Then the resulting expressions for the scaled Landau de Gennes potential

(ΦLdG)∗ = 1

2
ϑ a∗

μνa∗
νμ − √

6 a∗
μνa∗

νκa∗
κμ + 1

2
(a∗

μνa∗
νμ)2, (15.21)

is universal in the sense that the original coefficients A0, B, C no longer show up
explicitly. With a = ania∗, the scaled expression corresponding to (15.14) is

(ΦLdG)∗ = 1

2
ϑ (a∗)2 − (a∗)3 + 1

2
(a∗)4. (15.22)

The transition temperature Tni and the temperature T ∗ correspond to ϑ = 1 and
ϑ = 0, respectively. The relation corresponding to (15.15) is

a∗(ϑ − 3a∗ + 2(a∗)2) = 0.

The resulting equilibrium value of the order parameter in the nematic phase is

a∗
eq = 3

4
+ 1

4

√
9 − 8ϑ, ϑ ≤ 9

8
. (15.23)
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Clearly, a∗
eq = 1 for ϑ = 1. The nematic state is metastable in the range 1 < ϑ < 9

8
of the reduced temperature. The isotropic state corresponding to a = 0 is metastable
for 0 < ϑ < 1.

The scaled variables can be denoted by the original symbols without the star, when
no confusion arises. Notice that the scaled potential function (15.21) corresponds to
(15.12) with A = ϑ and the universal coefficients B = 3, C = 2.

By definition, the Maier-Saupe order parameter S2 = 〈P2〉 lies within the range
− 1

2 ≤ S2 ≤ 1. Consequently the order parameter a = √
5S2 is bounded by

−√
5/2 ≈ 1.12 and

√
5 ≈ 2.24. The bounds for the corresponding scaled vari-

able a∗ = a/ani involve the factor 1/ani. For typical thermotropic nematics,

−1.25 < a∗ < 2.5.

is the range of the scaled order parameter. The Landau-de Gennes free energy is
well suited to study the isotropic state and the nematic phase in the vicinity of the
transition temperature. The bounds on the order parameter just discussed, however,
are not taken care of. An amended version of a Landau-de Gennes type potential
function which implies an upper bound of the magnitude of the order parameter was
considered in [86].

15.1 Exercise: Derivation of the Landau-de Gennes Potential
In general, the free energy F is related to the internal energy U and the entropy S by
F = U − TS. Thus the contributions to these thermodynamic functions which are
associated with the alignment obey the relation

Fa = Ua − T Sa.

Assume that the relevant internal energy is equal to

Ua = −N
1

2
ε aμνaμν,

where ε > 0 is a characteristic energy, per particle, associated with the alignment.
It is related to the temperature T ∗ by kBT ∗ = ε/A0. Furthermore, approximate the
entropy by the single particle contribution

Sa = −N kB 〈ln( f/ f0)〉0,

cf. Sect. 12.2.6, where the entropy per particle sa was considered. Notice that
Sa = Nsa. Use f = f0(1 + aμνφμν) and (12.39) to compute the entropy and
consequently the free energy up to fourth order in the alignment tensor. Compare
with the expression (15.12) to infer A0, B, C . Finally, use these values to calculate
ani and δ = (Tni − T ∗)/Tni, cf. (15.17) and (15.18).

http://dx.doi.org/10.1007/978-3-319-12787-3_12
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15.2.3 Maier-Saupe Mean Field Theory

Although Maier and Saupe [80] followed a different line of reasoning, the essence
of their theory for the isotropic-nematic phase transition is based on a mean field
approach. More specifically, it is assumed that a molecule feels an orienting internal
field caused by the orientation of its neighbors which, in turn, is proportional to the
second rank alignment tensor. By analogy with (12.30), the Hamilton function for
the orientational interaction is determined by

H = H (MS) ∼ −aμν uμuμ , −H (MS)/kBT = βMS aμν φμν, βMS = T ∗/T .

(15.24)

The equilibrium distribution function is proportional to exp[βMSaμνφμν]. Thus
aμν = 〈φμν〉 evaluated with this distribution leads to a nonlinear equation for the
alignment tensor, from which the phase transition behavior can be inferred.

For a uniaxial alignment, and this is the case treated by Maier and Saupe, one has
aμν = √

3/2 nμnν with aμνaμν = a2 and a = √
5〈P2(n · n)〉. Then the Hamilton

function reduces to

H (MS) = −√
5 kBT ∗ a P2(n·u) = −5 kBT ∗ S P2(n·u), S = 〈P2(n·u)〉. (15.25)

The self-consistency relation determining the equilibrium values of the order para-
meter is

a = J (a), J (a) = Z(a)−1
√
5

∫ 1

0
P2(x) exp[(T ∗/T )

√
5 a P2(x)]dx,

Z(a) =
∫ 1

0
exp[(T ∗/T )

√
5 a P2(x)]dx . (15.26)

In terms of ã = (T ∗/T )a and F(ã) = J ((T/T ∗)ã), the relation (15.26) is
equivalent to

T

T ∗ ã = F(ã),

where now F(ã) is a function which does not depend on T . The intersection of
the straight lines, cf. Fig. 15.4, with the curve yields the self-consistent value for
ã = (T ∗/T )a.

The equilibriumvalue for the order parameter a can be plotted as function of T/T ∗
by a parametric plot of F(x)/x via F(x), with x instead of ã, in the appropriate range,
see Fig. 15.5. The pertaining Gibbs free energy has a minimum with the value 0 at
T = Tni = 1.099 T ∗ ≈ 1.1 T ∗. The order parameter, at the coexistence temperature
is ani = 0.98 ≈ 1, corresponding to the value 0.44 for the Maier-Saupe order
parameter S at the phase transition temperature Tni. The right end of the curve in

http://dx.doi.org/10.1007/978-3-319-12787-3_12
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Fig. 15.4 The Maier-Saupe graphical solution for the order parameter. The three straight lines are
for the temperatures T/T ∗ = 1.5, 1.0, and 0.75, from left to right

Fig. 15.5 The order
parameter a = √

5 S versus
the temperature T in units of
T ∗. The dashed part of the
curve corresponds to
unstable states
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Fig. 15.5 lies at the slightly higher temperature T ∗
ni = 1.114 T ∗. For this temperature,

the straight line in Fig. 15.4 just touches the curve rather than intersecting it. At this
point, the order parameter a is equal to 0.724 corresponding to S ≈ 0.33.

15.3 Elastic Behavior of Nematics

The elastic behavior of nematic liquid crystals and their great sensitivity to an applied
electric field play an essential role for the operation of liquid crystal displays (LCD).
The speed of switching a LCD is influenced by viscous properties, which are dis-
cussed in Sect. 16.4.1.

http://dx.doi.org/10.1007/978-3-319-12787-3_16
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15.3.1 Director Elasticity, Frank Coefficients

Standard nematic liquid crystals, in thermal equilibrium, are uniaxial, cf. (15.8),
(15.9), and their order parameter S = S2 is constant. The local director n, however,
depends on the spatial position r. The spatial variation, in general, is influenced
by boundary conditions and by orienting magnetic or electric fields. The functional
dependence n = n(r) of the director field is governed by an equation, which follows
from a variational principle for the relevant free energy density felast. The pertaining
free energy Felast = ∫

felastd3r is the spatial integral of the energy density. The
“elasticity” of the director field discussed here is of a different character as compared
with the elastic behavior of solids under deformations, cf. Sect. 16.2. The standard
ansatz for the free energy density associatedwith the ‘elasticity’ of the director field is

felast = 1

2

[

K1 (∇ · n)2 + K2 (n · (∇ × n)2 + K3 (n × ∇ × n)2
]

, (15.27)

with the Frank elasticity coefficients K1, K2, K3. The distortions of the director field
described by the divergence ∇ · n, by a rotation parallel to the director n · (∇ × n),
and by a rotation perpendicular to n, viz. n × ∇ × n), are referred to as splay, twist,
and bend deformations, as indicated in the sketch Fig. 15.6.

The undistorted, spatially homogeneous state has the lower free energy, provided
that Ki > 0, i = 1, 2, 3 holds true. Expressions like (15.27) were first introduced
by Oseen and Zocher, later refined by Frank [82]. In the literature, the coefficient Ki
are called Frank-Oseen elasticity, or mostly, Frank-elasticity coefficients.

The director n = n(r) is a unit vector, thus n · n = 1, and consequently one has

nν ∇λ nν = 0. (15.28)

In Cartesian component notation, the free energy density (15.27) reads

felast = 1

2
K1 (∇μnμ) (∇νnν) (15.29)

+1

2
K2

[

(∇νnμ)(∇νnμ) − (∇νnμ)(∇μnν) − nν (∇νnλ) nμ(∇μnλ)
]

+1

2
K3 nν (∇νnλ) nμ(∇μnλ).

Fig. 15.6 The splay, twist
and bend deformation of a
director field

http://dx.doi.org/10.1007/978-3-319-12787-3_16
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For the derivation of this expression from (15.27), the condition (15.28) equations
(4.8), (4.10) for the product of two epsilon-tensors have been used. With help of the
relation

∇μ(nν∇νnμ − nμ∇νnν) = (∇νnμ)(∇μnν) − (∇μnμ)(∇νnν),

Equation (15.29) can be cast into the form

felast = 1

2
K2 (∇νnμ)(∇νnμ) + 1

2
(K1 − K2) (∇μnμ) (∇νnν) (15.30)

+1

2
(K3 − K2) nν (∇νnλ)nμ (∇μnλ) − 1

2
K2 ∇μ(nν∇νnμ − nμ∇νnν).

The last term, being a total spatial derivative, contributes at the surface only, when
the free energy density is integrated over a volume. For typical lowmolecular weight
nematic liquid crystal, one has K2 < K1 < K3. Some qualitative features of the
nematic elasticity can be treated theoretically in the “isotropic” approximation K1 =
K2 = K3 = K . Then (15.30), with the surface term disregarded, reduces to

felast = f isoelast ≡ 1

2
K (∇νnμ)(∇νnμ). (15.31)

The Frank elasticity coefficients have the dimension of energy density times length
squared. On the other hand, ordinary elastic coefficients, like the shear modulus, as
treated in Sect. 16.2, have the dimension of an energy density or equivalently, of a
pressure.

In the presence of external electric or magnetic fields, the free energy density con-
tains additional contributions. For substances without permanent dipole moments,

but with anisotropic electric and magnetic susceptibilities χel
μν = χel

a nμnν and

χ
mag
μν = χ

mag
a nμnν , cf. (5.34), one has

ffield = −1

2
(ε0 χel

a Eμ Eν + μ−1
0 χ

mag
a Bμ Bν) nμnν = −1

2
Fμν nμnν , (15.32)

where χa = χ‖ − χ⊥ is the difference between the relevant susceptibilities parallel
and perpendicular to the director n. The symmetric traceless field tensor Fμν is
defined by (15.32).

The stationary director field is the solution of a spatial differential equation which
follows from a variational principle, viz. the spatial integral

F =
∫

f d3r =
∫

( felast + ffield)d
3r

http://dx.doi.org/10.1007/978-3-319-12787-3_4
http://dx.doi.org/10.1007/978-3-319-12787-3_4
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_5
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has to be a minimum. This implies δF = ∫

f (n + δn)d3r − ∫

f (n)d3r = 0. The
change δn must conserve the length of the director, thus n · δn = 0 has to hold true.
In the expression for felast, an integration by parts removes the spatial derivative
acting on δn. For the simple case of the isotropic elastic energy (15.31), the resulting
differential equation is

−K ∇ν∇νnμ − Fμνnν = 0.

The constraint ∇νnν = 1 can be taken care of by a cross product of this equation
with n,

ελκμnκ(K Δnμ + Fμνnν) = 0. (15.33)

This is essentially a torque balance, cf. (5.34). Of course, the differential equation
has to be supplemented by boundary conditions. An example for the director field
is shown in Fig. 7.7. The defect seen in the lower left corner of the right figure with
a ‘half integer winding number’ is typical for a tensor field. The winding number
counts the number of 360◦ turns of the director when one follows its direction on
a closed path, for 360◦, around the defect. The head-tail symmetry of the director
allows half integer winding numbers, viz. the turn of the director for 180◦ only.
Defects with integer winding number, the only ones allowed for a vector field, are
also possible for a director field.

15.3.2 The Cholesteric Helix

In cholesteric liquid crystals, the director field has a screw-like spatial behavior.
The cholesteric phase is essentially a spontaneously twisted nematic state with a
characteristic pitch P of the helix. For cholesterics, the twist-part of the free energy
density (15.27), involving the elasticity coefficient K2, contains a term linear in the
spatial derivative,

f cholelast = 1

2

[

K1 (∇ · n)2 + K2 [n · (∇ × n) + q0]
2 + K3 (n × ∇ × n)2

]

. (15.34)

Conservation of parity requires that the quantity q0 is a pseudo scalar. It is non-zero
only for substances containing chiral particles or which possess a helical short range
structure.

Let the spatial dependence of n be of the twist type

n = cosα ex + sin α ey, α = α(z).

Since ∇νnμ = α′ezν(− sin αexμ + cosαeyμ), where α′ stands for dα/dz, one has
nλελνμ∇νnμ = −α′, and (15.34) reduces to

f cholelast = 1

2
K2(α

′ − q0)
2.

http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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The free energy density has a minimum when α = q0z. The quantity P = 2π/q0
is referred to as the pitch of the helix. Due to the fact that n and −n are physically
equivalent, the periodicity of the cholesteric helix is π/q0.

15.3.3 Alignment Tensor Elasticity

The alignment tensor approach used for the description of the phase transition
isotropic↔ nematic, cf. Sect. 15.2.2, can be generalized to spatially inhomogeneous
systems. This allows to treat the elastic behavior and to derive expressions for the
Frank elasticity coefficients which are closer to a microscopic interpretation. The
free energyFa is written as an integral over a free energy density fa associated with
the alignment and its spatial derivatives, viz.Fa = ∫

fad3r with

fa = (ρ/m) kBT Φ + f inhoma .

Here ρ/m is the number density, of a fluid with the mass density ρ, composed of
particles with mass m. As in Sect. 15.2.2, Φ stands for the dimensionless free energy
functional dependingon the alignment, e.g. theLandaudeGennes expression (15.11),
(15.12) involving the second rank tensor a, which now depends on the position r.
The additional contribution f inhoma characterizes the ‘energy cost’ associated with
spatial derivatives of the alignment.

First, the ansatz (15.12) is used with

f inhoma = (ρ/m) ε0 ξ20

[

1

2
σ1(∇νaνμ)(∇λaλμ) + 1

2
σ2(∇λaνμ)(∇λaνμ)

]

, (15.35)

where ε0 and ξ0 are a reference energy and a reference length. The energy scale can
be associated with the transition temperature Tni, viz. ε0 = kBTni. The length scale
is of the order of a molecular length and can be linked with the average inter-particle
distance according to ξ30 = (ρ/m)−1. The dimensionless characteristic coefficients
σ1 and σ2 can be expressed in terms of integrals involving the anisotropic interaction
potential and the pair correlation function [83]. Here, these quantities are treated as
phenomenological coefficients.

In equilibrium, and in the absence of external orienting fields, the order parameter

tensor is uniaxial, cf. (15.8), thus one has aμν =
√

3
2aeq nμnν , where the order

parameter aeq = √
5Seq is essentially the equilibrium value of the Maier-Saupe

order parameter. Assuming that Seq is constant, the free energy (15.35) reduces to
the form (15.34) with the Frank elasticity coefficients given by

K1 = K3 = K0

(

1

2
k1 + k2

)

, K2 = K0 k2, (15.36)

K0 = (ρ/m) ε0 ξ20 = kBTni ξ
−1
0 , k1,2 = 3 a2

eq σ1,2 = 15 S2
eq σ1,2.
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Clearly, for k1 = 0, all three elasticity coefficients are equal, corresponding the
isotropic case (15.31). On the other hand, to obtain the full anisotropy of the elastic
energy with three different values for the Frank coefficients, the ansatz (15.35) has
to be extended. An approach discussed in [83] is the inclusion of the fourth rank
alignment tensor aμνλκ in the theoretical description. This means, instead of (15.12),
the potential

Φ = ΦLdG −
√
70

6
D aμνaλκaμνλκ + 1

2
E0 aμνλκaμνλκ ,

is used with two additional coefficients D and E0. In equilibrium, this implies

aμνλκ =
√
70

6

D

E0
aμνaλκ .

As a side remark, from a lowest order expansion of the entropy associated with the
single particle distribution function follows A0 = E0 = 1, B = √

5/7, C = 5/7,
see the Exercise 15.1, but also D = 3/7.

Furthermore, additional terms are included in the expression for the free energy
density involving the spatial derivatives of the type

(∇λaμν)(∇κaμνλκ), (∇κaμνλκ)(∇τ aμνλτ ), (∇τ aμνλκ)(∇τ aμνλκ).

The mixed term with the product of the spatial derivatives of the second and fourth
rank tensors provides the desired full anisotropy. The experimentally observed tem-
perature dependence of the elasticity coefficients of ten liquid crystals can be fitted
rather well when all terms are included in f inhoma , for details see the 1982 article
of [83]. An alternative approach for the computation of the elasticity coefficients is
presented in [84]. There a local perfect order is assumed which can be treated by
an affine transformation model. A microscopic method for calculations of the twist
elasticity coefficient K2 is derived and tested in [85].

The variational principle applied to a free energy density f = f (aμν,∇λaμν ,
∇λaλμ) leads to the differential equation

∂ f

∂aμν

− ∇λ

∂ f

∂∇λaμν

− ∇μ

∂ f

∂∇λaλν

= 0. (15.37)

In the simple case corresponding to the isotropic elasticity, this equation is

Φμν − Fμν − ξ2 Δ aμν = 0. (15.38)

Here Φμν is the derivative of the potential Φ, with respect to aμν , e.g. the Landau
deGennes expression (15.13), the tensor Fμν characterizes the influence of an orient-
ing electric or magnetic field, and the length ξ is linked with the quantities occurring
in (15.35) via ξ2 = ε0

kBT ξ20 σ2.
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The local orientation of liquid crystals, as observed optically via its birefringence,
i.e. between crossed polarizer and analyzer, may show defects. In the theoretical
description based on the director field, the defects are treated as mathematical singu-
larities. The alignment tensor theory, like (15.38) is closer to the physical reality. It
takes into account, that the defect is not a point, but rather a spatial region, where the
alignment tensor is no longer uniaxial, as assumed by the director theory. Further-
more, the magnitude of the order parameters are spatially dependent and in the core
of a defect, the alignment can even vanish, i.e. locally, within a small volume, the
fluid is isotropic [87]. For a specific example, the comparison between the alignment
tensor theory and the director description is presented in [88]. An example for the
alignment tensor field, in the vicinity of a point, which would be treated as a defect
in a director description, is shown in Fig. 7.8. Notice that the sides of the bricks are
the eigenvalues of a second rank tensor which is the sum of the alignment tensor and
a constant isotropic tensor, chosen such that all eigenvalues are positive.

In cholesterics and blue phase liquid crystals an additional term linear in the
spatial derivative of the alignment tensor has to be included in the free energy density
(15.35). The contribution to the free energy density associated with the chirality is

f chola = 1

2
(ρ/m) ε0 ξ0 σ ch ενλκ aμν ∇λ aκμ, (15.39)

where the coefficient σ ch is a pseudo-scalar. For a uniaxial alignment aμν =√
3/2aeq nμnν with a spatially constant order parameter aeq = √

5S, the expression
(15.39) reduces to

f chola = 1

2
(ρ/m)

15

2
S2 ε0 ξ0 σ chnνενλκ ∇λ nκ .

Comparison with (15.34) shows that the coefficients q0 and σ ch characterizing
the chiral behavior are linked according to 2K2q0 = (ρ/m) 152 S2ε0ξ0σ

ch, for K2
see (15.36).

The general structure of the free energy constructed from the spatial derivatives of
the alignment tensor up to second order and of all orders in the second rank alignment
tensor, with special emphasis on chiral terms, was studied in [89].

15.4 Cubatics and Tetradics

Some anisotropic fluids are composed of particles or have a local structures which
cannot be described by a tensor of rank two, but where higher rank tensors, e.g.
tensors of rank three or four are needed. These substances are referred to as tetradics

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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and cubatics. Here, as in [92, 93], the term ‘tetradic’ is meant as an abbreviation for
‘tetrahedratic’, indicating a tetrahedral symmetry. Due to the closer resemblance of
the theoretical treatment to that of the second rank case, cubatics are discussed first.

15.4.1 Cubic Order Parameter

Consider a reference particle in a dense liquid or solid and let u be a unit vector
pointing to a nearest neighbor. The fourth rank irreducible tensor

aμνλκ = ζ 〈 uμuνuλuκ 〉 (15.40)

is the lowest rank order parameter tensor which distinguishes a state with local cubic
symmetry from an isotropic state. The numerical factor ζ can be chosen conveniently.
The bracket 〈. . .〉 indicates an average evaluated with an orientational distribution
function f (u), just as in Sect. 12.2.1. To indicate that here u does not specify the
direction of a particle but rather the relative positions of particle neighbors, the term
bond orientational order is used.

When the order parameter tensor has the full cubic symmetry, as in cubic crystals,
and the coordinate axes are chosen parallel to the symmetry axes, the order tensor is
proportional to the fourth rank cubic tensor defined in Sect. 9.5.1:

aμνλκ =
√

5

6
aH (4)

μνλκ ,

H (4)
μνλκ =

3
∑

i=1

e(i)
μ e(i)

ν e(i)
λ e(i)

κ − 1

5
(δμνδλκ + δμλδνκ + δμκδνλ). (15.41)

The e(i), with i = 1, 2, 3 are unit vectors parallel to the cubic symmetry axes. Notice
that H (4)

μνλκ H (4)
μνλκ = 6/5 and consequently aμνλκaμνλκ = a2. The order parameter

a is essentially the average of a cubic harmonic, cf. (9.3.2),

a =
√

5

6
ζ 〈H4〉, H4 = H (4)

μνλκ uμuνuλuκ = u4
1 + u4

2 + u4
3 − 3

5
. (15.42)

The choice ζ = √
6/5 implies a = 〈H4〉. On the other hand, with ζ = (9!!)/(4!), one

has a = 〈K4〉, where K4 ≡ 5
4

√
21H4 has the normalization (4π)−1

∫

K 2
4d2u = 1,

cf. (9.33). In this case, the expansion of the distribution function reads f (u) =
(4π)−1(1+ aK4 + . . .). The dots . . . stand for components of the fourth rank tensor
which do not have the full cubic symmetry and for terms involving tensors of higher
ranks � = 6, 8, . . .

http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9


292 15 Liquid Crystals and Other Anisotropic Fluids

15.4.2 Landau Theory for the Isotropic-Cubatic
Phase Transition

A phenomenological theory for the phase transition of an isotropic state to one
with cubic symmetry can be made in analogy to the isotropic-nematic transition, cf.
Sect. 15.2.2. Such an approach was first proposed independently, in [90] and [91]
for cubic crystals. Notice, however, that the long range positional order typical for
crystalline solids is not treated explicitly in this theory which focuses on the bond
orientational order. To stress this point, the ordered state as treated here, is referred to
as “cubatic”, be it an ordered fluid like a smectic D liquid crystal, a fluid containing
oriented cubic particles, or a true cubic crystal.

By analogy with the Landau-de Gennes theory for nematics, cf. Sect. 15.2.2,
a dimensionless free energy potential is formulated:

Φ = ΦL ≡ 1

2
Aaμνλκaμνλκ − 1

3

√
30Baμνλκaλκστ aστμν + 1

4
C(aμνλκaμνλκ)2,

(15.43)

with

A = A0

(

1 − T ∗

T

)

, A0, C > 0,
2

9
B2 < A0C.

This ansatz is motivated as follows. The specific entropy is the sum of s0 for the
isotropic state and a contribution sa associated with the bond orientational order. It is
assumed that sa is givenby sa = kB

m [. . .],where [. . .] is equal toΦL as givenby (15.43)

but with A0 instead of A = A(T ). Similarly, the specific volume ρ−1 = ρ−1
0 + ρ−1

a
and the specific internal energy u = u0 + ua are made up from isotropic parts and
contributions linked with the order. The standard Gibbs relation ds0 = T −1(du0 +
Pdρ−1

0 ), where P is the hydrostatic pressure, then leads to

ds = T −1(du + Pdρ−1) − kB
m

∂Φ

∂aμνλκ

, (15.44)

with the potential defined by

− kB
m

Φ = sa − T −1(ua + Pρ−1
a ). (15.45)

The plausible assumption that the ordered state has a smaller energy and a smaller
specific volume, characterized by ε and va, respectively, viz. ua = − 1

2εaμνλκaμνλκ

and ρ−1
a = − 1

2vaaμνλκaμνλκ , leads to the expression (15.43) with

A = A0

[

1 − T −1 m

A0kB
(ε + P va)

]

= A0

[

1 − T ∗

T

]

,

T ∗ = T ∗(P) = m

A0kB
(ε + P va). (15.46)
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By analogy with the description of the alignment tensor elasticity, cf. Sect. 15.3.3,
the potential function

Φ = ΦL + 1

2
ξ20 (∇τ aμνλκ)(∇τ aμνλκ), (15.47)

is used for a spatially inhomogeneous situation. The pertaining equilibrium state
obeys the relation Φμνλκ ≡ ∂Φ

∂aμνλκ
= 0, with

Φμνλκ = A aμνλκ − √
30 B aμνστ aστλκ

+Caμνλκ (aμ′ν′λ′κ ′aμ′ν′λ′κ ′) − ξ20 Δ aμνλκ . (15.48)

When the order parameter tensor has the full cubic symmetry as described by (15.41),
the potential function reduces to

Φ = 1

2
A a2 − 1

3
Ba3 + 1

4
Ca4 + 1

2
ξ20 (∇σ a)(∇σ a).

The pertaining equilibrium condition is

∂Φ

∂a
= Aa − Ba2 + Ca3 − ξ20 Δ a. (15.49)

For the spatially homogeneous situation, the equilibrium condition a(A − Ba +
Ca2) = 0 is equal to that one discussed for nematics, cf. Sect. 15.2.2. In particular,
the equilibrium transition between the isotropic and cubic phases occurs at the tem-
perature Ts, where A(Ts) = 2B2/(9C). There the order parameter is as = 2B/(3C).
At the temperature T ∗, where A(T ∗) = 0, one has a(T ∗) = B/C . The sign of the
equilibrium value of the order parameter aeq = 1

2 BC−1(1 + √

1 − 4AC/B2), with
T < Ts, is determined by the sign of B. The cubic order parameter for particles in
the first coordination shell of simple cubic crystal is positive, that one of bcc and fcc
crystals is negative.

15.2 Exercise: Compute the Cubic Order Parameter 〈H4〉 for Systems with
Simple Cubic, bcc and fcc Symmetry
Hint: The coordinates of one the nearest neighbors, in the first coordination shells,
are (1, 0, 0) for simple cubic, (1, 1, 1)/

√
3 for bcc and (1, 1, 0)/

√
2 for fcc. Use

symmetry arguments!

15.4.3 Order Parameter Tensor for Regular Tetrahedra

Consider a fluid composed of regular tetrahedra or of practically spherical particles
which have first coordination shell with tetrahedral symmetry. Let ui, i = 1, 2, 3, 4
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Fig. 15.7 Tetrahedron
embedded within a cube.
The lines connecting the
center with the four corners
of the tetrahedron show the
directions of the vectors ui

be four unit vectors pointing from the center to the corners of the tetrahedron. In this
case, the orientational order is specified by a third rank tensor Tμνλ defined by

Tμνλ = ζ3

〈

4
∑

i=1

ui
μui

νui
λ

〉

∼
〈

exμeyνezλ

〉

, (15.50)

where ζ3 is a numerical factor which can be chosen conveniently. The corners of the
tetrahedron can be placed on the corners of a cube, cf. Fig. 15.7. The second relation
in (15.50) involves the body fixed unit vectors ex, ey and ez which are parallel to the
axes of this cube.

The tetradic third rank order parameter tensor T has negative parity, just like a
first rank dipolar order. This is in contradistinction to the second and fourth rank
order parameter tensors, which have positive parity. As first pointed out in [94], the
third rank order parameter is needed for the description of ‘banana phases’ of liquid
crystals which are composed of particles with a bent core.

15.5 Energetic Coupling of Order Parameter Tensors

Sometimes,more than one order parameter tensor is needed to describe the properties
of a substance and the relevant phenomena. In general, the pertaining free energy
contains coupling terms,whose structure depends on the ranks of the tensors involved.
The case of second and fourth rank tensors was already discussed in Sect. 15.3.3.
Three other examples, viz. the coupling of two second rank tensors, of a second rank
tensor with a vector and with a third rank tensor are presented here.

15.5.1 Two Second Rank Tensors

Let a and b be two symmetric traceless second rank tensors which describe the
orientational properties of a substance. Examples are the alignment tensor associated
with side groups andwith the backbone of a side-chain polymer, as studied in [95, 96],
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or the molecular alignment and the anisotropy of the pair-correlation function, in the
first coordination shell. The dimensionless free energy Φ = Φ(a, b) is written as

Φ = Φa + Φb + Φab, Φab = c1 aμν bμν + √
6 c2 aμκ aκν bμν, (15.51)

where Φa = Φa(a) and Φb = Φb(b) are e.g. expressions of Landau-de Gennes
type with coefficients Aa, Ba, Ca and Ab, Bb, Cb and Φab = Φab(a, b), with the
coefficients c1, c2 characterizes the coupling between the two tensors. A term
∼ aμκbκνbμν is possible, but disregarded here for simplicity. The derivatives of
the potential with respect to the tensors are

∂Φ

∂aμν

= Φa
μν + c1bμν + c2 2

√
6 aμκbκν ,

∂Φ

∂bμν

= Φb
μν + c1aμν + c2

√
6 aμκaκν . (15.52)

In thermal equilibrium, both expressions are zero. Then it is possible to determine
b as function of a from the second equation of (15.52) and to insert it into the first
equation of (15.52). This yields a derivative of a Landau-de Gennes potential, cf.
(15.13), with renormalized coefficients A, B, C .

For the special case Φb = 1
2 Abbμνbμν with Ab = 1 due to an appropriate choice

of the normalization of b, the result is

A = Aa − c21, B = Ba + 3 c1 c2, C = Aa − 2 c22. (15.53)

The derivation is deferred to the following exercise.
The renormalized coefficients A and C are smaller than Aa and Ca, irrespective

of the sign of c1 and c2. The coefficient B is larger or smaller than Ba depending on
whether the coupling coefficients c1 and c2 have equal or opposite sign.

The treatment of relaxation processes and other non-equilibrium phenomena of
the kind presented in Chap. 17 is based on differential equations which contain the
derivatives (15.52) of the relevant potential function, e.g. see [96].

15.3 Exercise: Renormalization of Landau-de Gennes Coefficients
Consider the special case where Φb = 1

2 Abbμνbμν , for simplicity put Ab = 1.
Determine bμν from ∂Φ

∂bμν
= 0 with the help of the second equation of (15.52).

Insert this expression into the first equation of (15.52) to obtain a derivative of a
Landau-de Gennes potential with coefficients A, B, C which differ from the original
coefficients Aa, Ba, Ca due to the coupling between the tensors.

Hint: use relation (5.51) for a, viz. aμκaκλaλν = 1
2aμνaλκaλκ .

http://dx.doi.org/10.1007/978-3-319-12787-3_17
http://dx.doi.org/10.1007/978-3-319-12787-3_5
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15.5.2 Second-Rank Tensor and Vector

Let d ∼ 〈e〉 and a ∼ 〈 uu 〉 > be a polar vector and a symmetric traceless second
rank alignment tensor which describe the orientational properties of a substance.
Here e is a unit vector parallel to a molecular electric dipole moment which need not
be parallel to u. The electric polarization P is proportional to d. The dimensionless
free energy Φ = Φ(d, a) is written as

Φ = Φd + Φa + Φda, Φda = −c1dμ∇νaνμ + 1

2
c2dμdν aμν, (15.54)

where Φa = Φa(a) is a Landau-de Gennes potential function, Φd = Φd(d) is
a similar expression for the vector d, and Φda = Φda(d, a), with the coefficients
c1, c2 characterizes the coupling between the vector and the tensor. Terms of higher
order are possible, but not included here, for simplicity. A scalar linear in both d
and a must involve an additional vector, here it is the nabla-vector. The coupling
coefficient c1 is a true scalar when d is a polar vector. The corresponding expression
for an axial vector must contain a coefficient c1 which is a pseudo-scalar in order to
conserve parity. The coefficient c2 is a true scalar, in any case.

The derivatives of the potential with respect to the vector and to the tensor are

∂Φ

∂dμ

= Φd
μ − c1 ∇νaνμ + c2dν aνμ,

∂Φ

∂aμν

= Φa
μν + c1 ∇μdν + 1

2
c2 dμdν .

(15.55)

In thermal equilibrium, these derivatives are equal to zero. For the special case where
Φd = 1

2dμdμ applies, one obtains

dμ + c2dν aνμ = c1 ∇ν aνμ. (15.56)

This relation underlies the flexo-electric effect, viz. an electric polarization P caused
by spatial derivatives of the director field n, in nematic liquid crystals. The phenom-
enological description of this effect is [67]

P = e1 n∇ · n + e3 (∇ × n) × n,

which, due to nν∇μnν = 0, is equivalent to

Pμ = e1 nμ ∇νnν + e3 nν∇νnμ. (15.57)

The phenomenological coefficients e1 and e3 characterize the electric polarization
caused by splay and by bend deformations, cf. Sect. 15.3.1. For the uniaxial alignment

aμν =
√

3
2aeq nμnν with the equilibrium order parameter aeq, an expression of the

form (15.57) is obtained from (15.56) with the help of the relation Pμ = P refdμ.
Here P ref is a reference value for the electric polarization which is proportional to
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the number density and to the permanent electric dipole moment of the molecules.
The result is derived in the following exercise. Both flexo-electric coefficients are
proportional to P ref and to c1, c2.

The description of non-equilibrium phenomena dealing with the dynamics of
the second rank tensor a, as presented in Chap.17, can be extended to include the
coupling with an electric dipole moment, cf. [97]. The differential equations contain
the derivatives (15.55) of the potential function. Flexo-electric effects in cholesteric
liquid crystals are treated in [98].

15.4 Exercise: Flexo-electric Coefficients
Start from (15.56) for the vector dμ, use aμν = √

32aeq nμnν and Pμ = P refdμ

in order to derive an expression of the form (15.57) and express the flexo-electric
coefficients e1 and e3 to c1, c2 and aeq = √

5S, where S is the Maier-Saupe order
parameter. Furthermore, compute the contribution to electric polarization which is
proportional to the spatial derivative of aeq = √

5S.

Hint: treat the components of P parallel and perpendicular to n separately.

15.5.3 Second- and Third-Rank Tensors

By analogy to the coupling between a second rank tensor with a vector, as treated
in Sect. 15.5.2, the dimensionless free energy Φ = Φ(a,T ) underlying the cou-
pling between the second rank tensor a and third rank tensor T , cf. Sect. 15.4.3, is
written as

Φ = Φa + ΦT + ΦaT , ΦaT = −c1Tμνλ∇μaνλ + 1

2
c2 Tμκλ Tκλν aμν,

(15.58)

where Φa = Φa(a) is a Landau-de Gennes potential function, ΦT = ΦT (T ) is
a similar expression for the third rank tensor T , and ΦaT , with the coefficients
c1, c2, characterizes the coupling between the second and third rank tensors. Terms
of higher order are possible, but not included here, for simplicity. A scalar linear
in both a and T must involve an additional vector, here it is the nabla-vector. The
coupling coefficient c1 is a true scalar when T has negative parity. The coefficient
c2 is a true scalar, in any case.

Thederivatives of the potentialwith respect to the second and third rank tensors are

∂Φ

∂aμν

= Φa
μν + c1∇λTλμν + 1

2
c2 TμλκTλκν ,

∂Φ

∂Tμνλ

= ΦT
μνλ − c1 ∇μaνλ + c2 Tμνκ aκλ . (15.59)

http://dx.doi.org/10.1007/978-3-319-12787-3_17
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In thermal equilibrium, these derivatives are equal to zero. In connection with the
treatment of non-equilibrium phenomena, as considered in Chap.17, the governing
differential equations contain these derivatives of the potential function. The cou-
pling between the friction pressure tensor and the tetrahedral order parameter tensor
as discussed in [93] is described analogous to (15.58). Combined tetrahedral and
nematic order in liquid crystals and the consequences for chirality are discussed
in [99].

http://dx.doi.org/10.1007/978-3-319-12787-3_17


Chapter 16
Constitutive Relations

Abstract In this chapter is devoted to constitutive laws describing equilibrium and
non-equilibrium properties in anisotropic media. Firstly, general principles, viz. the
Curie principle, energy requirements, positive entropy production and Onsager-
Casimir symmetry relations of irreversible thermodynamics are introduced. Sec-
ondly, phenomenological considerations and microscopic expressions are presented
for the elasticity coefficients describing linear elastic deformations of solids, with
emphasis on isotropic and cubic symmetries. Thirdly, the anisotropy of the viscous
behavior and non-equilibrium alignment phenomena are studied for various types of
fluids. The influence ofmagnetic and electric fields are analyzed for planeCouette and
plane Poiseuille flows. Results of the kinetic theory are presented for the Senftleben-
Beenakker effect of the viscosity. Consequences of angular momentum conservation
are pointed out for the antisymmetric part of the pressure tensor. The flow birefrin-
gence in liquids and in gases of rotating molecules is treated as well as heat-flow
birefringence in gases. The phenomenological description of visco-elasticity and of
non-linear viscous behavior is discussed. Vorticity-free flow geometries are consid-
ered. The fourth part of the chapter deals with the viscosity and alignment in nematic
liquid crystals. Viscosity coefficients are introducedwhich are needed to characterize
the anisotropy of the viscosity in an oriented liquid crystal as well as in a free flow.
Flow alignment and tumbling are considered. Model computations are presented for
the viscosity coefficients as well as the application of a generalized Fokker-Planck
equation for the non-equilibrium alignment. A unified theory for the isotropic and
nematic phases is introduced and limiting cases are discussed. Equations governing
the dynamics of the alignment in spatially inhomogeneous systems are formulated.

In addition to the general laws of physics, special relations are needed for the treat-
ment of physical phenomena in specific substances. These constitutive relations
involve material coefficients. Examples already encountered are relations between
the electric polarization and the electric field, between the electric current density
and the electric field or between the friction pressure tensor and the velocity gradient.
The constitutive relations have to obey certain rules. These, as well as examples for
and applications of constitutive relations are presented here.

© Springer International Publishing Switzerland 2015
S. Hess, Tensors for Physics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-12787-3_16
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16.1 General Principles

16.1.1 Curie Principle

Constitutive relations are laws of physics where, in general, tensors of rank � are
linked with tensors of rank k via equations like (2.51), viz.

bμ1μ2...μ�
= Cμ1μ2...μ� ν1ν2...νk aν1ν2...νk. (16.1)

Here C is a tensor of rank � + k.
At about the same time, when Woldemar Voigt invented the notion ‘tensor’ and

presented many applications in physics, Pierre Curie [2] formulated the principle
which bears his name.

In our words, the Curie Principle says:

the coefficient tensor C has to be in accordance with
the symmetry of the physical system.

The statement can also be reverted: when both the tensors a and b are known, the
coefficient tensor C reflects or reveals the symmetry of the system. The symmetry
of the underlying physics should not be confused with the symmetry of tensors with
respect to an interchange of indices, although there may be a close interrelation.
When a microscopic physics model exists for the relation under study, the symme-
try properties are usually ‘obvious’. In many applications, however, the quantities
a and b are just phenomenologically defined macroscopic observables. Even when a
microscopic picture of the mechanisms underlying a constitutive relation like (16.1)
are not known, symmetry considerations provide information on the coefficient ten-
sor C. In particular, the number of independent elements needed to quantify the C
tensor is reduced by symmetry considerations.

Symmetry is closely associated with permanent or induced anisotropies. Exam-
ples for the latter are applied electric or magnetic fields, the gradients of these fields,
as well as the normal on a bounding surface which also imposes a preferential direc-
tion. Preferential orientations in liquid crystals and the structure of crystalline solids
are examples for anisotropies which are ‘permanent’ as long they are not partially
destroyed by irreversible processes or by symmetry breaking nonlinear phenomena.

Further information on C is provided by parity and time reversal arguments, cf.
Sects. 2.6 and 2.8. As a reminder: let Pa, Pb and PC be the parities of the tensors
occurring in (16.1). When one has

Pb = PC Pa,

cf. (2.57), the parity is not violated by the relation (16.1). Usually, the parities of a
and b are given by their physical meaning. Since the square of the parity value is

http://dx.doi.org/10.1007/978-3-319-12787-3_2
http://dx.doi.org/10.1007/978-3-319-12787-3_2
http://dx.doi.org/10.1007/978-3-319-12787-3_2
http://dx.doi.org/10.1007/978-3-319-12787-3_2
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1, parity invariance of the relation (16.1) requires that the parity of the coefficient
tensor C has to be

PC = Pa Pb.

The application of symmetry and parity considerations for the nonlinear electric
susceptibility is treated in Exercise 16.1.

Arguments similar to those used for the parity apply to the time reversal behavior.
Let Ta, Tb and TC, with T 2

.. = 1, specify the time reversal behavior of the tensors
involved. When time reversal invariance holds true, one has

Tb = TC Ta.

It is assumed that Ta and Tb are given by the physical meaning of a and b. For time
reversal invariance to be valid, the condition

TC = Ta Tb, (16.2)

has to be fulfilled. When
TC = −Ta Tb, (16.3)

applies, the relation (16.1) breaks the time reversal invariance, a feature typical for
irreversible processes. In some applications, the tensor C may not have a unique
time reversal behavior because it contains contributions which are of reversible and
others which are of irreversible character. Of course, this suffices to violate the time
reversible invariance.

Energy considerations may require that certain elements of the tensor C have
to be positive. The second law of thermodynamics also imposes conditions on the
sign of coefficients describing irreversible processes. Examples are the Ohm law for
electrical conduction, cf. Sect. 14.4.2 and the viscosity treated in Sect. 16.3.

16.1 Exercise: Nonlinear Electric Susceptibility in a Polar Material
In amediumwithout hysteresis, the electric polarizationP can be expanded in powers
of the electric field E, cf. (2.59), thus

Pμ = ε0

(

χ(1)
μν Eν + χ

(2)
μνλ Eν Eλ + . . .

)

.

The second rank tensor χ
(1)
μν ≡ χμν characterizes the linear susceptibility. The third

rank tensor χ
(2)
μνλ describes the next higher order contributions to P. Consider a

material whose isotropy is broken by a polar unit vector d. Formulate the expressions
for these tensors which are in accordwith the symmetry andwith parity conservation.
Consider the cases E parallel and perpendicular to d.

http://dx.doi.org/10.1007/978-3-319-12787-3_14
http://dx.doi.org/10.1007/978-3-319-12787-3_2
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16.1.2 Energy Principle

Consider a constitutive relation (16.1) where � = k applies and where the scalar
product

bμ1...μ�
aμ1...μ�

is proportional to a contribution to the energy, which has to be positive. From

bμ1...μ�
aμ1...μ�

= aμ1...μ�
Cμ1...μ� ν1...ν�

aν1...ν�
> 0, (16.4)

follows: the part of the tensor C which is symmetric under the interchange of the
front and back set of � indices, viz.

Csym
μ1...μ�ν1...ν�

= 1

2
(Cμ1...μ� ν1...ν�

+ Cν1...ν� μ1...μ�
)

is positive definite. Notice, the part of the tensor C which is antisymmetric under the
interchange is not necessarily zero.

As an example the dielectric tensor εμν of a linear medium is considered, where
the relation

Dμ = ε0 εμν Eν

applies. In this case, the energy density is uel = 1
2 DμEμ, cf. (8.118), and conse-

quently

uel = 1

2
Eμ εμν Eν = 1

4
(εμν + ενμ) EμEν ≥ 0.

In general, in particular in the presence of an external or an internal magnetic field,
the dielectric tensor possess an antisymmetric part ε

asym
μν = 1

2 (εμν − ενμ). The
condition uel > 0 poses a condition on the symmetric part of the dielectric tensor,
viz. εsymμν = 1

2 (εμν + ενμ) has to be positive definite.

16.1.3 Irreversible Thermodynamics, Onsager Symmetry
Principle

The density of the entropy production caused by irreversible processes is given by
expressions of the type [108]

(

δs

δt

)

irrev
= −

(

J (1)
μ1...μ�1

F (1)
μ1...μ�1

+ J (2)
μ1...μ�2

F (2)
μ1...μ�2

)

, (16.5)

http://dx.doi.org/10.1007/978-3-319-12787-3_8
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where the tensors J(..) and F(..) are referred to as thermodynamic fluxes and ther-
modynamic forces, respectively. Examples for such fluxes are the heat flux and the
friction pressure tensor, the pertaining “forces” are the temperature gradient and
velocity gradient tensor. Also a non-equilibrium alignment and its time derivative
is such a force-flux pair, cf. Sect. 16.4.5. Typically, the pertaining forces and fluxes
have opposite time reversal behavior, i.e. TJ = −TF. Here two force-flux pairs are
considered. The reduction to just one such pair is obvious. The generalization to
more than two pairs can be formulated along the lines presented here.

In irreversible thermodynamics, the linear ansatz

− J (1)
μ1...μ�1

= C (11)
μ1...μ�1 ν1...ν�1

F (1)
ν1...ν�1

+ C (12)
μ1...μ�1 ν1...ν�2

F (2)
ν1...ν�2

−J (2)
μ1...μ�2

= C (21)
μ1...μ�2 ν1...ν�1

F (1)
ν1...ν�1

+ C (22)
μ1...μ�2 ν1...ν�2

F (2)
ν1...ν�2

, (16.6)

is made for the constitutive relations. Positive entropy production requires

(

δs

δt

)

irrev
> 0, (16.7)

and consequently, in symbolic notation,

F(1) ·C(11) ·F(1)+F(2) ·C(22) ·F(2)+F(1) ·C(12) ·F(2)+F(2) ·C(21) ·F(1) > 0. (16.8)

This imposes conditions on the coefficient tensors, in particular, the parts of the
diagonal tensors C(11) and C(22), which are symmetric under the exchange of the
front and back indices, have to be positive definite. Furthermore, the magnitude of
the non-diagonal tensors C(12) and C(21) is bounded by the diagonal ones.

Now it is assumed that �1 = �2 = � and that both forces F(1) and F(2) have the
same behavior under time reversal, in obvious notation TF1 = TF2, and both fluxes
J(1) and J(2) have the opposite behavior, viz TJ1 = −TF1, TJ2 = −TF2. Then the
Onsager symmetry relation, also called reciprocal relations [109]

C(12) = C(21) (16.9)

holds true. This symmetry relation for coefficients governing irreversible macro-
scopic behavior is based on the time reversal invariance of the underlyingmicroscopic
dynamics, For �1 �= �2 still a symmetry relation like (16.9) applies, but the back and
front indices have to be transposed on one side. Examples for the applications of
Onsager symmetry relation are e.g. given in Sects. 16.3.6 and 16.4.5.

When the two forces have opposite time reversal behavior, i.e. when one has
TF1 = −TF2, the Onsager-Casimir symmetry relation

C(12) = −C(21) (16.10)

applies, instead of (16.9).
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16.2 Elasticity

A property typical for a solid body is its elastic response to a small deformation. Of
course, ‘small’ is relative, and really small for brittle substances. On the other hand,
an elastic stick can be bent to a considerable amount. The elastic behavior is described
by a linear constitutive relation between the stress tensor and the deformation tensor.
The fourth rank elasticity tensor characterizes the elastic properties of specific solids.

16.2.1 Elastic Deformation of a Solid, Stress Tensor

Let r be the position vector to a volume element within a solid body. When this
solid is subjected to a small deformation, this volume element is displaced to the
position r′ = r + u(r). Now consider two neighboring points which are separated
by dr in the undeformed state. After the deformation, the difference vector between
these two points is dr′ = dr + du. The difference in the displacement is duμ =
drν∇νuμ+. . .where the higher order terms, indicated by the dots, can be disregarded
for neighboring points. The distance squared, between these two points is dr2 =
drμdrμ in the undeformed state and

(dr ′)2 = dr ′
μdr ′

μ = (drμ + drν∇νuμ)(drμ + drκ∇κuμ),

in the deformed state. Thus one has

(dr ′)2 = (δμν + 2uνμ)drμdrν, uνμ = 1

2

[∇νuμ + ∇μuν + (∇μuλ)(∇νuλ)
]

,

(16.11)
where uνμ = uμν is the deformation tensor. Like any symmetric tensor, uνμ can be
diagonalized. With the principal values of the deformation tensor denoted by u(i),
i = 1, 2, 3, relation (16.11) is equivalent to

(dr ′)2 =
(

1 + 2 u(1)
)

dr21 +
(

1 + 2 u(2)
)

dr22 +
(

1 + 2 u(3)
)

dr23 ,

in the principal axes system. The relative deformation-induced change of the length,
along the principal direction i , is ((dr)′i−dri)/dri = √

1 + 2u(i) −1 ≈ u(i). Accord-
ingly, the volume dV ′ in the deformed state is related to the original volume dV by

dV ′ =
√

1 + 2 u(1)
√

1 + 2 u(2)
√

1 + 2 u(3)dV ≈
(

1 + u(1) + u(2) + u(3)
)

dV .

Thus the relative change δV/dV of the volume

δV/dV = (dV ′ − dV )/dV = u(1) + u(2) + u(3) = uλλ, (16.12)
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is determined by the trace of the deformation tensor. The symmetric traceless part is
associated with volume conserving squeeze, stretch or shear deformations.

In linear approximation to be used in the following, the deformation tensor defined
by (16.11), reduces to

uνμ = 1

2
(∇νuμ + ∇μuν). (16.13)

Bydefinition, thedeformation tensor,which is also called strain tensor, is symmetric:
uνμ = uμν . An antisymmetric part of uνμ would induce an infinitesimal rotation but
not a deformation.

Adeformation of a solid causes a stress.Apart from the sign, the stress tensorσμν is
essentially the deviation of the pressure tensor pμν from its value in the undeformed
state. The elastic properties of a solid are expressed in terms of the fourth rank
elasticity tensor, which relates the stress tensor to the deformation tensor, viz.

−(pμν − Pδμν) ≡ σμν = Gμν,λκ uλκ . (16.14)

In this linear constitutive relation, which is essentially Hooke’s law, σμν = σνμ

is presupposed. This assumption is common practice in solid state mechanics. The
symmetry of the stress tensor holds true for substances composed of particles with
a spherical symmetric interaction potential. In general, however, the the pressure
tensor and consequently also the stress tensor can possess an antisymmetric part, cf.
Sect. 16.3.5.

The deformation costs energy, this means

σμν uμν = uμν Gμν,λκ uλκ > 0, (16.15)

i.e. the elasticity tensor is positive definite, in a thermodynamically stable state. The
symmetric tensors σμν and uμν have 6 independent components, thus the elasticity
tensor has 36 components, some of which can be zero. In accord with the Curie
principle, the number of independent components of the elasticity tensor is consider-
ably smaller, for certain types of the symmetry of the undeformed solid. In fact, just
two coefficients suffice to characterize the linear elastic properties of an isotropic
solid. For cubic symmetry, three different material coefficients are needed. These
cases are discussed in Sect. 16.2.4. Group theoretical methods for the general crystal
symmetries are found in text books devoted to Solid State Physics, in particular to
the Mechanics of Solids.

16.2.2 Voigt Coefficients

A notation introduced by Voigt replaces the information contained in the fourth
rank elasticity tensor Gμν,λκ by a six by six elasticity coefficient matrix cij. To this
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purpose, an appropriate Cartesian coordinate system is chosen and the components
of σμν and uμν are related to the components of σi and uI, i = 1, 2, .., 6 according to

σ1 = σxx, σ2 = σyy, σ3 = σzz,

σ4 = σyz = σzy, σ5 = σxz = σzx, σ6 = σxy = σyx

u1 = uxx, u2 = uyy, u3 = uzz,

u4 = uyz + uzy, u5 = uxz + uzx, u6 = uxy + uyx. (16.16)

In this notation, the linear relation (16.14) between the stress and the strain tensors
reads

σi =
6

∑

j=1

cij uj. (16.17)

The matrix cij of the Voigt elasticity coefficients is symmetric, cij = cji. The connec-
tion with the fourth rank elasticity tensor follows from (16.16), e.g. c11 = Gxx xx,
c12 = Gxx yy, c44 = 2Gyz yz.

The coordinate axes are chosen such that they match the crystallographic axes.
The choice is obvious for a cubic system. In the case of a hexagonal system, the z-axis
is put parallel to the sixfold symmetry axis. There are crystallographic conventions
for the general case.

16.2.3 Isotropic Systems

The trace of the deformation tensor is essentially the relative volume change δV/V =
uλλ. The symmetric traceless part uμν describes a squeeze or shear deformation.
In an isotropic system, the trace of the stress tensor is linked with the trace of the
strain tensor, σλλ ∼ uλλ. Similarly, the symmetric traceless parts of these tensors are
proportional to each other, σμν ∼ uμν . Thus two material coefficients only occur
in the linear elastic relation. These are the bulk modulus B and the shear modulus G.

The ansatz for an isotropic elastic solid is

σμν = Buλλδμν + 2G uμν . (16.18)

In this case, the fourth rank elasticity tensor is given

Gμν,λκ = Bδμνδλκ + 2G Δμν,λκ . (16.19)

Mechanical stability requires B > 0 and G > 0. The moduli B and G are related to
the tensor by

B = 1

9
Gμμ,λλ, G = 1

10
Δμν,λκ Gμν,λκ . (16.20)
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The Voigt coefficients are

c11 = c22 = c33 = B + 4

3
G, c12 = c23 = c31 = B − 2

3
G, c44 = c55 = c66 = G,

other coefficients, like c14 or c45 are equal to zero. In terms of the c-coefficients, the
bulk and shear moduli ate given by

B = 1

3
(c11 + 2c21), G = 1

5
(c11 − c21 + 3c44).

Hooke’s law (15.19) can be inverted to express the deformation in terms of the stress
tensor. The relative volume change is given by

uλλ = 1

3B
σλλ.

The full strain tensor obeys the relation

uμν = 1

9B
σλλ δμν + 1

2G
σμν . (16.21)

A simple application is a homogeneous deformation of a body, e.g. the elongation or
compression of a brick-shaped solid by a force Fz stretching or squeezing it along
the z-direction. Than one has σzz = Fz/A = kz, where A is the area of the face
normal to the z-direction. In this case, all non-diagonal components of the strain
tensor vanish and the diagonal ones are given by

uzz = 1

3

(

1

3B
+ 1

G

)

kz = 1

E
kz, uxx = uyy = −1

3

(

1

2G
− 1

3B

)

kz = −σ uzz.

Here E is the Young elastic modulus and σ is the contraction number. These material
properties are related to the bulk and shear moduli by

E = 9BG

3B + G
, 2 σ = 3B − 2G

3B + G
. (16.22)

For a practically incompressible substance, where B 
 G applies, these expressions
reduce to E = 3G and σ = 1/2.

16.2.4 Cubic System

For a system with cubic symmetry, the elastic tensor, cf. the Hooke’s law (16.14), is

Gμν,λκ = Bδμνδλκ + 2G Δμν,λκ + 2Gc H (4)
μνλκ . (16.23)

http://dx.doi.org/10.1007/978-3-319-12787-3_15
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In addition to the bulk and shear moduli B and G, which already occur for isotropic
systems, a third modulus Gc, specifically associated with the cubic symmetry, is
needed here. The fourth rank tensor, cf. Sect. 9.5.1,

H (4)
μνλκ ≡

3
∑

i=1

e(i)
μ e(i)

ν e(i)
λ e(i)

κ =
3

∑

i=1

e(i)
μ e(i)

ν e(i)
λ e(i)

κ − 1

5
(δμνδλκ + δμλδνκ + δμκδνλ),

reflects the full cubic symmetry. The unit vectors e(i) are identified with the unit
vectors ex, ey and ez parallel to the coordinate axes. Due to H (4)

μνλκδμνδλκ = 0,

H (4)
μνλκΔμν,λκ = 0, and H (4)

μνλκ H (4)
μνλκ = 6

5 , multiplication of (16.23) by the cubic

tensor H (4)
μνλκ yields

Gc = 5

12
H (4)

μνλκ Gμν,λκ. (16.24)

For the cubic symmetry, the Voigt coefficients are

c11 = B + 4

3
G + 4

5
Gc, c12 = B − 2

3
G − 2

5
Gc, c44 = G − 2

5
Gc. (16.25)

By symmetry, one has c11 = c22 = c33, c12 = c23 = c31, and c44 = c55 = c66. Other
coefficients, like c14 or c45 are equal to zero. The coefficient c66 = c44 is the shear
modulus for a displacement u in the x-direction with its gradient in the y-direction.
The shear modulus for a deformation in the xy-plane rotated by an angle of 45◦ from
these directions is

c̃66 = c̃44 = G + 3

5
Gc. (16.26)

In contradistinction to B and G, the cubic coefficient may have either sign. In fact, it
is negative for body centered (bcc) and face centered (fcc) cubic crystals, while it is
positive for simple cubic (sc) crystals. Mechanical stability requires that both shear
moduli c44 and c̃44 be positive. This sets lower and upper bounds on Gc:

− 5

3
G < Gc <

5

2
G. (16.27)

In terms of the c-coefficients, the bulk and shear moduli are given by

B = 1

3
(c11 + 2c12), G = 1

5
(c11 − c12 + 3c44), Gc = 1

2
(c11 − c12 − 2c44).

(16.28)

http://dx.doi.org/10.1007/978-3-319-12787-3_9
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16.2.5 Microscopic Expressions for Elasticity Coefficients

Consider a system of N particles, located at the positions ri, i = 1, 2, . . . N within
a volume V . The interaction potential is denoted by Φ = Φ(r1, r2, . . . , rN). When
the potential is pairwise additive, one has Φ = ∑

i<j φ
ij = ∑

i<j φ(rij), where
rij = ri−rj, and φ = φ(r) is the binary interaction potential. In thermal equilibrium,
at the temperature T , the configurational part of the free energy Fpot is given by

βFpot = − ln Zpot, Zpot =
∫

exp[−βΦ] dr {N }, β = 1

kbT
,

where Zpot is the configurational partition integral, dr {N } is the 3N -dimensional
volume element. The difference between the free energy, where the position vectors
are displaced according to r iν → r iν + r iμuμν and the original free energy, δFpot =
V ppotμν uμν yields the expression

V ppotμν = 〈

Φμν

〉

, Φμν =
∑

i

r iμ∂ iνΦ = −
∑

i

r IμF i
ν, ∂ iν = ∂

∂r iν
, (16.29)

for the potential contribution to the pressure tensor. Here F i
ν is the force acting on

particle i . In the absence of external forces, the total force vanishes:
∑

i F i
ν = 0. The

bracket 〈· · · 〉 indicates the configurational canonical average

〈. . .〉 = Z−1
pot

∫

. . . exp[−βΦ] dr {N }.

The change of the pressure tensor (16.29) under a deformation r jλ → r jλ + r jκuκλ

yields a relation between the potential contribution σμν of the stress tensor and
the deformation tensor, and consequently a microscopic expression for the elastic
moduli. Starting from

σμν = −
(

ppot,defμν − ppot,0μν

)

= −δppotμν = δ
(

V −1〈Φμν〉
)

,

where ppot,defμν and ppot,0μν are the pressure tensors in the strained and in the unstrained
states, and using σμν = Gμν,λκ uλκ , one obtains

VGμν,λκ = 〈Φμν,λκ 〉0 + V ppot δμν, δλκ − β
(〈ΦμνΦλκ 〉0 − 〈Φμν〉0〈Φλκ 〉0

)

.

(16.30)
The subscript 0 in 〈. . .〉0 indicates the average in the undeformed state. The first term
viz.

Φμν,λκ =
∑

j

∑

i

r iμ∂ iν r jλ∂
j
κΦ (16.31)
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represents the deformation-induced variation of Φμν . The second term on the right
hand side of (16.30) stems from the volume change δV , since δV/V = uλλ and
−〈Φμν〉0 = V ppotδμν , where ppot is the potential contribution to the pressure P .

For pairwise additive interaction, (16.31) reduces to

Φμν,λκ =
∑

i<j

φ
ij
μν,λκ, φ

ij
μν,λκ = φμν,λκ(rij), φμν,λκ(r) = rμ∂ν rλ∂κ φ(r).

(16.32)
As before, the abbreviation rij = ri − rj is used, and φ(r) is the pair potential. For
spherical particles where φ = φ(r), with r = |r|, holds true, one has

φμν = rμrνφ
′, φμν,λκ(r) = (rμrκδνλ + rνrλδμκ)r−1φ′ + rμrνrλrκr−1(r−1φ′)′.

(16.33)

The prime denotes the differentiation with respect to r .
TheBorn-Green expression for the elasticmodulus tensor [100, 101], corresponds

to the first and second terms of (16.30), when the total interaction potential is the sum
of pair potentials. The remaining terms with the factor β are referred to as fluctuation
contributions. In solids, the fluctuation parts of the elastic properties are small at low
temperatures [102]. They are of crucial importance, however, for the fact that the
low frequency shear modulus of a liquid vanishes whereas it has a finite value for a
solid [103]. This underlies the fundamental difference in the mechanical behavior of
a solid and a liquid.

The Born-Green part of the orientationaly averaged shear modulus is

GBG = 1

15 V

〈

∑

i>j

(

r3(r−1φ′)′
)ij

〉

0

− ppot = 1

15 V

〈

∑

i>j

(

r−2(r4φ′)′
)ij

〉

0

.

(16.34)

The shear modulus GBG can be expressed in terms of an integral over the pair
correlation function g according to

GBG = 1

30
n2 kBT

∫

r−2 (r4φ′)′ g(r)d3r. (16.35)

Here n = N/V is the number density. The quantityGBG is also called high frequency
shear modulus. It is not only well defined in solid state, but also for liquids, where it
reflects a rigidity, observable on a short time scale only. The pair correlation function
can be written as g(r) = χ(r) exp[−βφ(r)]. The quantity χ approaches 1 for small
densities, corresponding to a dilute gas. Notice that GBG is not zero even in this limit.
The total shear modulus G = GBG + Gfluct, on the other hand, vanishes in the liquid
state and the more in a gas. This cancellation of GBG by the fluctuation part Gfluct is
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remarkable, since the computation of Gfluct involves not only two-particle, but also
three- and four-particle correlations. Let Gpair be the approximation for GBG+Gfluct

in a fluid state and for low densities, where three- and four-particle correlations can
be disregarded. This quantity can be expressed as an integral over the pair correlation
function g(r) = χ(r) exp[−βφ(r)] which assumes the form

Gpair = 1

30
n2 kBT

∫

r2 χ(r)′ (exp[−βφ(r)])′ d3r. (16.36)

In contradistinction to GBG, the shear modulus Gpair vanishes in the small density
limit where χ(r)′ = 0 applies.

For pairwise additive interaction, the Born-Green contributions to the bulk mod-
ulus B and to the cubic shear modulus Gc are

BBG = 5

3
GBG + 2ppot, (16.37)

and

GBG
c = 5

12V

〈

∑

i>j

(

H (4)(r) r−1(r−1φ′)′
)ij

〉

0

, H (4)(r) = x4 + y4 + z4 − 3

5
r4,

(16.38)
where H (4) is a cubic harmonic of order 4, with full cubic symmetry, cf. Sect. 9.5.2.

The fluctuation contributions to the elastic moduli are given by

VBfluct = −β
(

〈Φ2
iso〉0 − (〈Φiso〉0)2

)

, (16.39)

VGfluct = −1

5
β

(

3〈Φ2+〉0 + 2〈Φ2−〉0
)

, V Gfluct
c = −β

(

〈Φ2+〉0 − 〈Φ2−〉0
)

.

Here the abbreviations

Φiso = 1

3

∑

i<j

(rφ′)ij, Φ+ =
∑

i<j

(xyr−1φ′)ij, Φ− = 1

2

∑

i<j

(

(x2 − y2) r−1φ′)ij ,

(16.40)
are used. The elastic moduli are the sum of the Born-Green and fluctuation contri-
butions, e.g. G = GBG + Gfluct.

The total shear modulus tensor also contains the kinetic contribution nkBTδμν

δλκ . This does not affect the shear moduli, but the total Voigt coefficients ctotal11 and
ctotal12 are related the coefficients c11 and c12 used here, and to the moduli c011 and c012,
where the pressure P = nkBT + ppot is zero, by

ctotal11 = c11 + nkBT = c011 − P, ctotal12 = c12 + nkBT = c012 + P.

http://dx.doi.org/10.1007/978-3-319-12787-3_9
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For zero pressure and at temperatures, where the fluctuation contributions to the
elasticity coefficients B and G are negligible, (16.37) implies the Cauchy relation

3B = 5G. (16.41)

Upon the assumptions just mentioned, the Cauchy relation holds true for solids
composed of spherical particles interacting with any pairwise additive potential, then
the ratio G/B is equal to 3/5 = 0.6. Experimental values for this ratio are smaller,
e.g. one has G/B ≈ 0.5 for themetals copper, nickel, iron, G/B ≈ 0.3 for silver, and
G/B ≈ 0.2 for gold. The deviations from the Cauchy relation are closely associated
withmany particle interactions. An efficientway to include the relevantmany particle
interactions is provided by the embedded atom method [104, 105]. The basic idea of
this method is stressed in [106]: the interaction of two particles is influenced by the
density of the other particles within a well defined vicinity involving twenty to fifty
particles. When this local density is too high or too low, compared with a prescribed
density, the two particles under consideration feel an extra repulsion or attraction,
respectively. Use of this method does not increase significantly the time needed in
molecular dynamics computer simulations. A variant of the embedded atommethod,
realistic enough to model the elastic properties and simple enough to allow extended
non-equilibrium molecular dynamics simulations of the visco-plastic behavior of
metals, is presented in [107].

16.3 Viscosity and Non-equilibrium Alignment Phenomena

While the elasticity of solids is an equilibrium property, the viscous flow behavior
of fluids is a typical non-equilibrium phenomenon. In both cases, symmetry consid-
erations and the use of tensors play an important role. In this section, the viscosity
in simple and in molecular fluids, the influence of external fields on the viscosity, as
well as flow birefringence, heat-flow birefringence and visco-elasticity are treated.

16.3.1 General Remarks, Simple Fluids

In thermal equilibrium, the pressure tensor of a fluid is isotropic and it is given by
pνμ = Pδμν , where P is the hydrostatic pressure. The part of the pressure tensor
linked with non-equilibrium is decomposed into its irreducible isotropic, symmetric
traceless and antisymmetric parts, cf. (7.53), according to

pνμ − Pδμν = p̃ δμν + pνμ + 1

2
ενμλ pλ,

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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with pλ = ελαβ pαβ . The contributions to the entropy production ( δs
δt )

dv
irrev associated

with the flow velocity v = v(t, r) follows from the local Gibbs relation linking
the entropy density with the internal energy density and the time change of the
macroscopic kinetic energy which, in turn, is governed by the local conservation law
of the linear momentum, cf. Sect. 7.4.3. The resulting expression is

ρ

m
T

(

δs

δt

)dv

irrev
= −(pνμ − Pδμν)∇νvμ,

and consequently, after decomposition into the irreducible parts,

ρ

m
T

(

δs

δt

)

irrev
= −

(

p̃ ∇λvλ + pνμ ∇νvμ + ωλ pλ

)

, ωλ = 1

2
ελνμ∇νvμ.

(16.42)
The first and second terms are force-flux pairs involving tensors of ranks � = 0 and
� = 2. The discussion of the case � = 1 associated with the antisymmetric part of
the pressure tensor and the vorticity ω, is postponed to Sect. 16.3.5.

First, the attention is focussed on the symmetric pressure tensor. This is the case
in simple fluids, where the pressure tensor is symmetric, on account of its symmetric
kinetic and potential constituents, cf. (12.94) and (12.107). It also applies to more
complex molecular fluids when the hydrodynamic processes described by the con-
stitutive relations are slow compared on the time scale over which the antisymmetric
part of the pressure tensor relaxes to zero.

In an isotropic fluid and in the absence of any external fields, the constitutive laws
governing the viscous behavior are, cf. (7.55)

p̃ = −ηV ∇λvλ, pνμ = −2η ∇νvμ .

This ansatz is in accord with the Curie principle and it obeys the condition of positive
entropy production when both the shear viscosity η and the volume viscosity ηV are
non-negative.

The general scheme describing the viscous behavior of a fluid with s symmetric
pressure tensor is

pμν = −2ημνμ′ν′ ∇μ′vν′ − ζ (20)
μν ∇λvλ,

p̃ = −ζ (02)
μν ∇μvν − ηV ∇λvλ. (16.43)

Here, ημνμ′ν′ is the fourth rank shear viscosity tensor, ηV is the volume viscosity and
the symmetric traceless coupling tensors ζ (..)

.. obey the Onsager relation

ζ (20)
μν = ζ (02)

μν . (16.44)

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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Positive entropy production requires that

η
sym
μνμ′ν′ = 1

2
(ημνμ′ν′ + ημ′ν′μν)

is positive definite, and that ηV ≥ 0, as stated before. For the isotropic fluid without
external fields, the shear viscosity tensor is proportional to the isotropic fourth rank
tensor Δμν,μ′ν′ , thus one has

ημνμ′ν′ = η Δμν,μ′ν′ , η > 0,

and ζ
(20)
μν = ζ

(02)
μν = 0, in this case. Next, the more specific expressions for the

viscosity tensors are discussed for applied magnetic and electric fields.

16.3.2 Influence of Magnetic and Electric Fields

Amagnetic field influences the viscosity via theLorentz force,when thefluid contains
mobile electric charges, or via the precession of magnetic moments in electrically
neutral fluids. Examples for the latter substances are ferro-fluids, i.e. colloidal solu-
tions containing particles with permanent or induced magnetic moments [110–112],
as well as gases of rotating molecules [17]. The influence of orienting fields on the
viscous behavior of liquid crystals deserves a separate discussion in Sect. 16.4.1.

Application of an electric field E on a fluid containing particles with permanent or
induced electric dipole moments also renders the viscosity anisotropic. The resulting
geometric symmetries are alike. The parity of the B and E fields, however, are
different. This implies that terms of odd power in E violate parity invariance and are
identical to zero, unless one is dealing with chiral substances.

Consider first an isotropic fluid which is subjected to a magnetic field B = Bh,
where h is a constant unit vector. The viscosity coefficients have to be in accord
with this uniaxial symmetry. The obvious ansatz for the coupling tensors occurring
in (16.43) is

ζ (20)
μν = ζ (02)

μν = ζ hμhν , (16.45)

with a scalar phenomenological coefficient ζ = ζ(B), which is an even function
of B.

There are multiple ways to construct the fourth rank shear viscosity tensors in
accord with symmetry of the physical situation. First, the fourth rank projection
tensors of Sect. 14.2.2 are employed as basis tensors. By analogy to the construction
of the rotation tensors, cf. Sect. 14.2.3, the viscosity tensor is written as, cf. [42],

ημνμ′ν′ =
2

∑

m=−2

η(m) P(m)

μν,μ′ν′ . (16.46)

http://dx.doi.org/10.1007/978-3-319-12787-3_14
http://dx.doi.org/10.1007/978-3-319-12787-3_14
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The 5 complex viscosity coefficients η(m) have the properties η(m) = (η(−m))∗ and
η(0), as well as the real parts of η(±1) and η(±2) are positive.

An alternative, but equivalent representation with real viscosity coefficients is

ημν,μ′ν′ = η(0)P(0)
μν,μ′ν′ (16.47)

+
2

∑

m=1

[

η(m+)
(

P(m)

μν,μ′ν′ + P(−m)

μν,μ′ν′
)

+ η(m−)i
(

P(m)

μν,μ′ν′ − P(−m)

μν,μ′ν′
)]

.

The coefficients η(m+) = (η(m) + η(−m))/2 and η(m−) = (η(m) − η(−m))/2i are the
real and imaginary parts of the coefficients η(m). The three non-negative coefficients
η(0), η(1+) and η(2+) are even functions of B. The two coefficients η(1−) and η(2−)

may have either sign and they are odd functions of B. The latter two coefficients are
also referred to as transverse viscosity coefficients.

The shear viscosity tensor, as given by (16.46) or (16.47) obeys the symmetry
property

ημνμ′ν′(h) = ημ′ν′μν(−h). (16.48)

The deGroot-Mazur viscosities ηdGMi of [108] are related to the coefficients η(m) by

η(0) = ηdGM1 , η(1) = ηdGM2 + iηdGM5 , η(2) = 2ηdGM2 − ηdGM1 i − ηdGM4 . (16.49)

For an electric field E acting on an electrically neutral fluid containing particles with
permanent or induced electric dipole moments the ansatz (16.47) can be used with
the axial vector h replaced by a polar unit vector parallel to the electric field, but
the Hall-effect like coefficients η(1−) and η(2−) are zero, due to parity conservation.
In fluids containing chiral particles, however, these coefficients can be non-zero. A
pseudo-scalar, characterizing the chirality, occurring as a factor in the Hall-effect
like terms, ensures that the parity is still conserved.

16.3.3 Plane Couette and Plane Poiseuille Flow

To elucidate themeaning of the viscosities introduced in (16.46) and (16.47), a simple
plane Couette flow is considered first. Again, the velocity is in the x-direction and

its gradient in the y-direction. Then the velocity gradient tensor ∇μvν = γ e(y)
μ e(x)

ν

with the shear rate γ = ∂vx/∂y, is a tensor with the same symmetry as considered in
(14.62) and (14.63). An effective shear viscosity ηCouette(h), which depends on the
direction of h, is defined by

pyx = −ηCouette(h)γ, ηCouette(h) = 2e(y)
μ e(x)

ν ημνμ′ν′(h)e(y)
μ′ e(x)

ν′ . (16.50)

http://dx.doi.org/10.1007/978-3-319-12787-3_14
http://dx.doi.org/10.1007/978-3-319-12787-3_14
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Its interrelation with the viscosity coefficients occurring in (16.47) can be inferred
with the help of (14.62). The result is

ηCouette(h) = 3h2xh2y η(0) +
[

h2x + h2y − 4h2xh2y
]

η(1+) +
[

1 + h2xh2y − h2x − h2y
]

η(2+).

(16.51)
The Couette viscosities for h parallel to the flow velocity, to its gradient and its
vorticity, viz. the cases h = ex, ey, ez are denoted by η1, η2, and η3, respectively.
From (16.51) follows

η1 = η(1+), η2 = η(1+), η3 = η(2+). (16.52)

The effective viscosity for the field parallel to the bisector between the x- and y-
direction, viz. for h2

x = h2
y = 1/2 is denoted by η45, referring to the 45◦ direction.

Here (16.51) implies

η45 =
(

3η(0) + η(2+)
)

/4.

In the liquid crystal literature, the coefficients η1, η2, η3 are called Miesowicz vis-
cosities and 4 times the difference between the viscosity η45 and one half of the sum
of η1 and η2, viz.

η12 ≡ 4η45 − 2(η1 + η2) = 3η(0) + η(2+) − 4η(1+). (16.53)

is called Helfrich viscosity. The four effective viscosity coefficients linked with the
Couette flow geometry, η1, η2, η3 and η12 suffice to characterize the anisotropy of
the shear viscosity.

The anisotropic viscosity tensor also gives rise to normal pressure differences,
e.g. pxx − pyy, as well as to transverse components like pyz. The meaning of these
terms is elucidated for a plane Poiseuille flow.

Consider a plane Poiseuille flow in x-direction between two fixed flat plates which
are perpendicular to the y-direction. The geometry is akin to that of the planeCouette,

in as much as ∇μvν = γ eyμexν . The shear rate γ = ∂vx
∂y is now, however, not

constant, but a linear function of y, such that ∂γ
∂y = ∂2vx

∂y2
= const.

For a stationary flow and in the absence of external accelerating forces, the linear
momentum balance (7.52) implies

∇ν pνμ = ∇μδP + kμ = 0, kμ = ∇ν pfricνμ . (16.54)

Here δP is the flow-induced change of the hydrodynamic pressure and kμ is the

force density associated with the friction pressure tensor pfricνμ = pνμ + · · · , where
the dots stand for term involving the scalar part p̃ and the antisymmetric part of the
tensor. When the two latter terms are zero or can be neglected, cf. (7.53), one has

http://dx.doi.org/10.1007/978-3-319-12787-3_14
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7


16.3 Viscosity and Non-equilibrium Alignment Phenomena 317

∇μδP = −kμ = 2∇νημνμ′ν′ ∇μ′vν′ . (16.55)

For the geometry considered here, this relation is equal to

∇μδP = −kμ = γ ′ eyνημνμ′ν′ ey
μ′exν′ , (16.56)

where ∂γ /∂y = γ ′ is the derivative of the shear rate. The ratio between the lon-
gitudinal pressure gradient exμ∇μδP and γ ′ defines the effective shear viscosity
ηPois = ηPois(h), is equal to the effective viscosity for the Couette geometry (16.51),
viz.

exμ∇μδP/γ ′ = exμeyν ημνμ′ν′ ey
μ′exν′ = ηPois = ηCouette(h).

Similarly, the effective normal viscosity and transverse viscosity coefficients ηnorm

andηtrans can be defined via the normal pressure gradient eyμ∇μδP and the transverse
pressure gradient −ezμ∇μδP . These relations are

eyμ∇μδP = γ ′eyμeyνημνμ′ν′ ey
μ′exν′ = γ ′ηnorm, (16.57)

ηnorm = hxhy

[

η(0)
(

3h2
y − 1

)

+ η(1+)
(

2 − 4h2
y

)

+ η(2+)
(

h2
y − 1

)]

+ hy

[

2η(1−)h2
y + η(2−)

(

1 − h2
y

)]

,

ezμ∇μδP = γ ′ezμeyνημνμ′ν′ ey
μ′exν′ = γ ′ηtrans, (16.58)

ηtrans = hxhz

[

3η(0)h2
y + η(1+)

(

1 − 4h2
y

)

+ η(2+)
(

h2
y − 1

)]

+ hz

[

η(1−)
(

1 − 2h2
y

)

+ η(2−)
(

h2
y − 1

)]

.

In contradistinction to the longitudinal viscosity, which is positive, the normal and
transverse effective viscosity coefficients may have either sign. The contributions to
ηnorm and ηtrans, which involve the coefficients η(1−), η(2−), change sign when h is
replaced by −h.

As above, in connection with the effective shear viscosity, the labels 1, 2, 3 are
used for the field parallel to the x-, y- and z-directions. From (16.57) to (16.58)
follows

ηnorm1 = 0, ηnorm2 = 2η(1−), ηnorm3 = 0,

ηtrans1 = 0, ηtrans2 = 0, ηnorm3 = η(1−) − η(2−).
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When the field points in the direction of the bisector between the x- and y-axes, viz.
for h = (ex + ey)/

√
2, as in (16.51), the (16.57) implies

2ηnorm45 = η(0) − η(2+) +
(

2η(1−) − η(2−)
)

/
√
2.

The corresponding expression for the transverse pressure gradient with h parallel to
the bisector between the x- and z-axes, now for h = (ex + ez)/

√
2, is denoted by

ηtrans45′ and given by

2ηtrans45′ = 3

2
η(0) + η(1+) − η(2+) + √

2
(

η(1−) − η(2−)
)

.

Effective viscosities for other directions of the field, e.g. for h = (ex + ey + ez)/
√
3

can be inferred from (16.57) to (16.58).

16.3.4 Senftleben-Beenakker Effect of the Viscosity

The influence of a magnetic field on the transport properties of electrically neutral
gases is referred to asSenftleben-Beenakker effect. This phenomenonwasfirst noticed
around 1930 for the paramagnetic gases O2 and NO [113]. About thirty years later,
Beenakker and coworkers [114] demonstrated that the influence of a magnetic field
also occurs in diamagnetic gases like N2. In fact, the effect is typical for all gases
composed of rotating molecules [17], which have a rotational magnetic moment of
the order of the nuclear magneton μN. The field-induced change of the transport
properties is small, but relative changes can be detected with a high sensitivity.

The Senftleben-Beenakker effect of the viscosity is mainly due to the collisional
coupling between the kinetic part of friction the pressure tensor pμν and the tensor
polarization aT

μν , see Sect. 13.6.4. The equations governing the dynamics of these
tenors can be derived from a kinetic equation referred to as Waldmann-Snider equa-
tion [17, 115]. It is a generalized Boltzmann equation for the distribution function
operator f = f (t, r, p, J), where the the position r and the linear momentum p
are treated as classical variables, the internal angular momentum J is a quantum
mechanical operator, as discussed in Sect. 13.6. Furthermore, the collision processes
are treated quantum mechanically. In the presence of the magnetic field B = Bh, the
kinetic equation contains a commutator of the distribution operator f with the rele-
vant Hamilton operator HB = −grotμN J · B, where grot the a gyromagnetic factor
specific for particular molecules. The quantity ωB = (grotμNB)/� is the frequency
with which the internal angular momentum precesses about the applied field.

Next, for simplicity of notation, pμν ≡ pμν

kin
and aμν ≡ aT

μν are used. Fur-
thermore, the ideal pressure of a gas with the number density n and the temperature
T is denoted by p0 = nkBT . The resulting transport-relaxation equations are

http://dx.doi.org/10.1007/978-3-319-12787-3_13
http://dx.doi.org/10.1007/978-3-319-12787-3_13
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∂

∂t
pμν + 2 p0 ∇μvν + νp pμν + νpa

√
2 p0 aμν = 0, (16.59)

∂

∂t
aμν − ωB Hμν,μ′ν′ aμ′ν′ +

(√
2p0

)−1
νap pμν + νa aμν = 0.

The fourth rank tensor Hμν,μ′ν′ , defined by (14.26), emerges from the computation of

the commutator hλ[Jλ, Jμ′ Jν′ ]− by analogy to (13.17), see also (13.19). The colli-
sion frequencies ν.. can be expressed in terms of collision integrals which involve the
scattering amplitude in a binaryway. The non-diagonal coefficients obey theOnsager
symmetry relation νap = νpa and the inequalities νa > 0, νp > 0, νaνp > ν2ap.

For a stationary situation and in the absence of the magnetic field, the equations
(16.59) imply

pμν = −2η ∇μvν , η = ηiso (1 − Apa)
−1, ηiso = p0

νp
, Apa = νpaνap

νp νa
.

(16.60)
The viscosity η is larger than ηiso which would be the value of the viscosity for an
absolutely isotropic state where aμν = 0.

For a stationary situation, with amagnetic field present, the solution of the coupled
equations (16.59) with the methods discussed in Sect. 14.4, yields a viscosity tensor
of the form (16.47) with the coefficients given as functions of ϕa = ωB/νa by

η(0) = η, η(m+) − η = −ηApa
(mϕa)

2

1 + (mϕa)2
, η(m−) = −ηApa

mϕa

1 + (mϕa)2
,

(16.61)
for m = 1, 2. Clearly, here the coefficient η(0) is not affected by the magnetic field.
The even coefficients η(1+) and η(2+) decrease with increasing field strength from
the zero field value η to the value ηiso. The ratio Apa of the relaxation frequencies
determines themagnitude of the relative change of the viscosity. The odd coefficients
η(1−) and η(2−) vanish both for weak and for very strong magnetic fields and they
have an extremum at mϕa = 1, i.e., where the precession frequency mωB is equal
to the collision frequency νa = τ−1

a . The relaxation time τa is of the order of the
average time between two collisions, which is the longer, the lower the pressure
p0 is. Due to νa ∼ p0, one has ϕa = ωB/νa ∼ B/p0. Thus the smaller magnetic
moment of diamagnetic gases, compared with paramagnetic ones, is compensated
by smaller pressures p0, while the coefficients η and ηiso are independent of p0, in
gases at moderate pressures, say between 10−3 and 10 times the ambient pressure at
room temperature.

Some historical remarks with a personal touch: The occurrence of Hall-effect like
transverse terms η(1−) and η(2−) is surprising for a fluid without free electric charges.
In fact, after the publication of the first measurements with paramagnetic gases, Max
von Laue discussed the tensorial behavior of the viscosity, following the symmetry
arguments ofW.Voigt for the shearmodulus andhe claimed thatHall-effect like terms
should not exist in this case. The transverse effects for transport in molecular gases
were first treated theoretically in 1964 in the diploma thesis of the present author, in

http://dx.doi.org/10.1007/978-3-319-12787-3_14
http://dx.doi.org/10.1007/978-3-319-12787-3_13
http://dx.doi.org/10.1007/978-3-319-12787-3_13
http://dx.doi.org/10.1007/978-3-319-12787-3_14
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Erlangen, Germany and, at about the same time independently by F.R. McCourt in
his PhD work in Vancouver, Canada. Both advisers of the young scientists, viz. L.
Waldmann and R.F. Snider approved the results of the calculations but considered
them not worth being published since such effects cannot be measured. However,
less than two years later, experiments were performed successfully.

16.3.5 Angular Momentum Conservation, Antisymmetric
Pressure and Angular Velocity

Consider a fluid composed of particles with a rotational degree of freedom. Let the
fluid have an average rotational velocity w. The pertaining average internal angular
momentum is denoted by J, and J = θw is assumed, with an effective moment of
inertia θ . In the absence of torques due to external fields, the total angularmomentum,
i.e. the sum of the orbital angular momentum �λ = mελνμrνvμ, associated with
average flow velocity v and the internal angular momentum obey a local conservation
equation. Here m is the mass of a particle, ρ/m is the number density. From the local
conservation of the linear momentum, cf. (7.54), follows

(ρ/m)
d�λ

dt
+ ελκμ∇ν(rκ pνμ) = ελνμ pνμ = pλ,

where pλ is the axial vector associated with the antisymmetric part of the pressure
tensor. The corresponding equation for the internal angular momentum reads

ρ

m

dJλ

dt
+ . . . = −pλ, (16.62)

where the dots on the left hand side indicate gradient terms linked with the flux of
internal angular momentum. The opposite sign of pλ in the equations for �λ and
Jλ guarantees the conservation of the total angular momentum. The change of the
rotational energyw ·dJ/dt , taken into account in the energy balance, leads to an extra
term wλ pλ in the entropy production (16.42). Thus the part of the entropy production
involving axial vectors is

ρ

m
T

(

δs

δt

)axvec

irrev
= −pλ(ωλ − wλ). (16.63)

The ansatz
pλ = −2 ηrot (ωλ − wλ), ηrot > 0, (16.64)

is made where the rotational viscosity ηrot is a phenomenological coefficient. As
a consequence, for a spatially homogeneous system, the average internal angular
momentum obeys the relaxation equation

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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dJλ

dt
+ τ−1

rot (Jλ − θωλ) = 0, τ−1
rot = 2

m

ρθ
ηrot, (16.65)

with the rotational relaxation time τrot. In the absence of external torques, the angu-
lar momentum J relaxes to θω, in a time span long compared with τrot. Then the
average rotational velocity w matches the vorticity ω and the antisymmetric part of
the pressure tensor vanishes.

Side Remarks:
(i) Spin Particles

An equation of the type (16.65) which relates, in a stationary situation, the average
internal angular momentum with the vorticity, also applies for particles with spin,
even for electrons. The Barnett effect, viz. the electron spin polarization and the
ensuing magnetization caused by the rotation of a metal, is an experimental evidence
for this phenomenon [117]. Here the question arises: what is the relevant moment of
inertia θ in this case? Heuristic considerations [21] and a derivation from a general-
ized quantum mechanical Boltzmann equation with a nonlocal collision term [116]
show: θ is determined by the mass of the electron times its thermal de Broglie wave
length squared.

(ii) Polymer Coils

Let m be the mass and ri, i = 1, . . . N be the position vectors of the monomers of
a polymer chain molecule. Its angular momentum is L = ∑

i mri × ṙi. In a liquid,
the polymer molecule forms a coil which is spherical, on average, when the system
is in thermal equilibrium. When the liquid is flowing, the polymer coil is stretched
and it undergoes nonuniform rotations. A remarkable, though approximate, relation
between the average angular velocity w and the shape of the polymer coil was put
forward by Cerf [118]. The shape of the coil is expressed in terms of the radius of
gyration tensor Gμν , cf. Sect. 5.3.2. More specifically, the long time average 〈L〉 of
the angular momentum is assumed to be equal to m〈∑i ri × v(ri)〉 where v is the
flow velocity field of the liquid. For a plane Couette flow with the velocity in x- and
its gradient in y-direction, this relation corresponds to

〈Lz〉 = −γ m 〈Gyy〉,

where γ is the shear rate. The resulting average rotational velocity wz is obtained by
dividing 〈Lz〉 by the effective moment of inertia m(〈Gxx〉 + 〈Gyy〉), thus

wz = −γ
〈Gyy〉

〈Gxx〉 + 〈Gyy〉 = ωz

(

1 − 〈Gxx〉 − 〈Gyy〉
〈Gxx〉 + 〈Gyy〉

)

. (16.66)

For a weak flow, where the polymer coil retains its effectively spherical shape, one
has 〈Gxx〉 = 〈Gyy〉 and consequently wz = − 1

2γ = ωz, i.e. the average angular
velocity matches the vorticity. For larger shear rates, the coil is stretched in the flow

http://dx.doi.org/10.1007/978-3-319-12787-3_5
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direction such that 〈Gxx〉 is larger than 〈Gyy〉, then the average rotational velocity is
smaller than the vorticity. Non-EquilibriumMolecular Dynamics (NEMD) computer
simulations presented in [119] show that the relation (16.66) is obeyed rather well.
Simple models for the test of (16.66) are studied in [120, 121].

16.3.6 Flow Birefringence

A fluid composed of non-spherical, i.e. optically anisotropic particles, has optical
isotropic properties in its isotropic phase. A viscous flow, however, causes a partial
orientation of the particles. As a consequence, the symmetric traceless part of the
dielectric tensor becomes non-zero. The resulting double refraction or birefringence
is called flow birefringence or streaming double refraction. This effect was looked
for, first observed and described by Maxwell [122], it is also referred to as Maxwell
effect. The phenomenological ansatz is

εμν = 2M εiso η ∇μvν = −2β ∇μvν . (16.67)

Here M is the Maxwell coefficient, εiso and η are the orientationally averaged dielec-
tric coefficient and the viscosity. The flow birefringence coefficient β is related to the
Maxwell coefficient by β = −Mεisoη. For a plane Couette flow, with the velocity in
x-direction and its gradient in y-direction, two of the principal axes of the dielectric
tensor are parallel to the unit vectors e(1,2) = (ex ± ey)/

√
2, the third axis is parallel

to ez.
The relation (16.67) holds true in the absence of additional external fields and for

small shear rates. In general, flow birefringence is described by a fourth rank tensor,
analogous to the shear viscosity tensor (16.43). The constitutive relation for flow
birefringence is

εμν = −2 βμνμ′ν′ ∇μ′vν′ . (16.68)

The simple case (16.67) corresponds to βμνμ′ν′ = βΔμν,μ′ν′ .
The symmetric traceless part of the dielectric tensor of molecular liquids and

colloidal dispersions is proportional to the alignment tensor, viz. εμν = εaaμν , for
εa see (12.20). Here flow birefringence is due to the shear flow induced alignment
which results from a coupling between the alignment tensor and the friction pressure
tensor. Point of departure for a treatment within the framework of irreversible ther-
modynamics is an expression for the contribution of the alignment to the entropy.
In lowest order, this contribution is proportional to −aμνaμν , see Sect. 12.2.6. The
time change of this expression is proportional to −aμνdaμν/dt . For the time change
of the alignment tensor the educated guess

daμν

dt
− 2 εμλκωλaκν =

(

δaμν

δt

)

irrev
(16.69)

http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
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is made. The term involving the vorticity describes the time change due to a rotation
with an average angular velocity equal to the vorticity. This holds true, when the anti-
symmetric part of the pressure tensor vanishes, see the previous section. The operator
d
dt − 2ω× is referred to as co-rotational time derivative. The term (

δaμν

δt )irrev is the
time change due to irreversible processes which occurs in the entropy production.
The part associated with second rank tensors is now

ρ

m
T

(

δs

δt

)(2)

irrev
= −

[

pνμ ∇νvμ + ρ

m
kBT aμν

(

δaμν

δt

)

irrev

]

. (16.70)

With aμν and (
√
2 ρ

m kBT )−1 pνμ chosen as fluxes, and (
δaμν

δt )irrev and
√
2 ∇νvμ as

forces, constitutive laws for the second rank tensors are

− aμν = τa

(

δaμν

δt

)

irrev
+ τap

√
2 ∇νvμ , (16.71)

−
(√

2
ρ

m
kBT

)−1
pνμ = τpa

(

δaμν

δt

)

irrev
+ τp

√
2 ∇νvμ .

Here the quantities τ.. are relaxation time coefficients where the subscripts a and p
refer to “alignment” and “pressure”. The non-diagonal coefficients obey the Onsager
symmetry relation

τap = τpa. (16.72)

Positive entropy production is guaranteed by the inequalities

τa > 0, τp > 0, τa τp > τ 2ap. (16.73)

Use of the first of the (16.71) in (16.69) yields the inhomogeneous relaxation equation

daμν

dt
− 2 εμλκωλaκν + τ−1

a aμν = −τ−1
a τap

√
2 ∇νvμ . (16.74)

The term involving the vorticity gives rise to effects nonlinear in the shear rate.When
these are disregarded, and for the stationary case, where the time derivative vanishes,
(16.74) leads to flow alignment

aμν = −τap
√
2 ∇νvμ , (16.75)

and consequently. The flow birefringence coefficient is given by

β = − εa√
2

τap. (16.76)

Clearly, the coupling coefficient τap is essential for the flow birefringence.
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To study the effect of the vorticity on the flow birefringence, a plane Couette
geometry is considered, with the flow velocity in x-direction and its gradient in
y-direction, cf. (7.28), Fig. 7.6, and Sect. 12.4.6. In this case, the shear rate tensor

and the vorticity are given by γμν = ∇νvμ = γ exνeyμ and ωλ = − 1
2γ ezλ, where

γ = ∂vx/∂y is the shear rate and ei, i = x, y, z are the unit vectors parallel to the
coordinate axes. Insertion of the symmetry adapted ansatz

aμν = a1 (exνeyμ − exνeyμ)/
√
2 + a2

√
2 exνeyμ

into the inhomogeneous relaxation equation (16.74) leads to coupled equations for
the coefficients a1 and a2. These equations are

ȧ1 − γ a2 + τ−1
a a1 = 0, (16.77)

ȧ2 + γ a1 + τ−1
a a2 = −τap τ−1

a γ.

For a stationary situation, one obtains a1 = γ τa and a2 = −γ τap(1 + γ 2τ 2a )−1. In
the small shear rate limit where γ τa � 1 applies, this result for a2 corresponds to
(16.75), for the geometry considered here. Due to a1 = a cos 2ϕ, a2 = a sin 2ϕ,
where a2 = a2

1 + a2
2 , the stationary solutions are equivalent to

a = |τap| γ
√

1 + γ 2 τ 2a

, tan 2 ϕ = 1

γ τa
. (16.78)

For large shear rates, themagnitude a of the alignment saturates at the value |τap|τ−1
a .

The angle ϕ, in the present context referred to as flow angle, indicates the directions
of the principal axes of the alignment tensor, within the xy-plane. More specifically,
one of these axes encloses the angle ϕ with the x-direction, the other one the angle
ϕ + 90◦, the third principal direction is parallel to the z-axis. In the small shear rate
limit, one has ϕ = 45◦. At higher shear rates, this principal axis approaches the
flow direction.

The results (16.77) and (16.78) pertain to (16.74) where terms nonlinear in the
shear rate enter only via the co-rotational time derivative. In general, other nonlin-
earities occur in the dynamic equation for the alignment tensor. These are, e.g. an
additional termproportional to γμκaκν and terms nonlinear in the alignment tensor, as
encountered in connection with the phase transition isotropic-nematic. The relevant
equations and their consequences are discussed in Sects. 16.4.4, 16.4.5, and 17.3.

For gases of rotating molecules, cf. (13.65), one has εμν = εTa aT
μν , where aT

μν is
the tensor polarization associated with the rotational angular momenta. In this case
not only a theoretical treatment analogous to that one above is possible, but a kinetic
theory approach based on the Waldmann-Snider equation, a generalized quantum
mechanical Boltzmann equation. The resulting inhomogeneous relaxation equations
(16.59) are similar to the ansatz (16.71), just with the role of forces and fluxes

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_17
http://dx.doi.org/10.1007/978-3-319-12787-3_13
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exchanged. This means the relaxation time “matrix” formed by the τ.. coefficients is
the reciprocal of the relaxation frequency ν.. matrix. Here, reciprocal relaxation time
coefficients have a microscopic interpretation since they are expressed in terms of
collision integrals involving the binary scattering amplitude [17, 62, 64]. To be more
specific, consider a stationary situation in the absence of a B field. Then the second
equation of (16.59) implies

aμν = −
(√

2 p0
)−1

ν−1
a νap pμν

and, with pμν = −2η ∇μvν , cf. (16.60), one obtains

aμν = 2η
(√

2 p0
)−1

ν−1
a νap ∇μvν .

Thus in this case the flow birefringence coefficient is given by [62]

β = − εT
a√
2

τap , τap = − νap (νp νa)−1 (1 − Apa)−1. (16.79)

This relation is similar to (16.76), butwith εTa insteadof εa and the coupling coefficient
τap is expressed in terms of the relaxation frequencies ν... Whereas the Maxwell
effect in colloidal dispersions, molecular liquids and polymeric fluids [123] has been
studied experimentally for over a century, the flow birefringence in molecular gases
was first measured by F. Baas in 1971 [124], see also [17, 125].

The flow birefringence is the manifestation of a cross effect: a viscous flow causes
an alignment. There is a reciprocal effect: a non-equilibrium alignment gives rise to

an extra contribution paνμ to the symmetric traceless pressure tensor [126]. The
alignment, in turn, influences the flow properties. This back-coupling underlies the
influence of a magnetic field on the viscosity in molecular gases as discussed above,
and the nonlinear flow behavior in molecular liquids and colloidal dispersions of
non-spherical particles, as treated in Sect. 16.3.9.

16.2 Exercise: Acoustic Birefringence
Sound waves cause an alignment of non-spherical particles in fluids. The ensuing
birefringence is called acoustic birefringence. Use (16.74) to compute the sound-
induced alignment tensor for the velocity field v = v0k−1k cos(k · r − ωt) where k
and ω are the wave vector and the frequency of the sound wave, v0 is the amplitude.

Hint: Use the complex notation vμ ∼ exp[i(k ·r−ωt)] and aμν ∼ exp[i(k ·r−ωt)]
to solve the inhomogeneous relaxation equation, then determine the real and the
imaginary part of aμν .
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16.3.7 Heat-Flow Birefringence

Also a heat flux q can give rise to birefringence. By analogy to the Maxwell effect
(16.67), the constitutive relation for the heat-flow birefringence is

εμν = −2 βq ∇μqν = 2 βq λ ∇μ∇ν T . (16.80)

Here βq is the heat-flow birefringence coefficient. The second equality in (16.80),
involving the second spatial derivative of the temperature field T follows from qν =
−λ∇νT where λ is the heat conductivity. The existence of the effect (16.80) was
predicted [62] and calculated [127] for rarefied molecular gases. First measurements
were presented in [128], see also [17].

In gases, the flow birefringence, just like the viscosity, does not depend on the
density, whereas the heat-flow birefringence is inversely proportional to the density.
Theoretical considerations [129] predict the existence of heat-flow birefringence also
in dense fluids. Experiments in a nematic glass [130] are amanifestation of this effect.

In mixtures, a preferential alignment can also be caused by the gradient of a diffu-
sion flux j. The resulting birefringence is referred to as diffusio-birefringence [131].

16.3.8 Visco-Elasticity

Elasticity,which is a reversible process, is a typical property of solids. The irreversible
viscous flow behavior is typical for fluids. On a short time scale or for shear rates
varying with high frequencies, however, also fluids show elasticity. The Maxwell
model for the symmetric traceless friction pressure tensor pμν , viz.

τM
∂

∂t
pμν + pμν = −2η ∇μvν , η = GτM, (16.81)

is a prototype for the description of the visco-elastic behavior. Here τM is theMaxwell
relaxation time, η is the shear viscosity and G is the high frequency shear modulus.

Notice that ∇μvν = ∂
∂t uμν . Thus for fast varying processes, where τM| ∂

∂t pμν | 

| pμν |, (16.81) reduces to ∂

∂t pμν = −2G ∂
∂t uμν or − pμν = σμν = 2G uμν ,

which corresponds to the constitutive law (16.21) for elasticity.
For a periodic velocity gradient proportional to exp[−iωt], the linear equation

(16.81) implies that the friction pressure has the same dependence on the frequency

ω and the time t . In this case (16.81) can be written as pμν = −2η(ω) ∇μvν with
the complex frequency dependent viscosity

η(ω) = η (1 − iω τM)−1 = η′(ω) + iη′′(ω), (16.82)

η′(ω) = η
1

1 + (ωτM)2
, η′′(ω) = η

ωτM

1 + (ωτM)2
.
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The pertaining complex shear modulus G(ω) is given by

G(ω) = −iω τM η(ω) = G ′(ω) − iG ′′(ω), (16.83)

G ′(ω) = G
(ωτM)2

1 + (ωτM)2
, G ′′(ω) = G

ωτM

1 + (ωτM)2
.

For low frequencies where ωτM � 1, the real part η′ of the viscosity approaches the
viscosity η, its imaginary part η′′, as well as G ′ and G ′′ vanish. For high frequencies
where ωτM 
 1, the real part G ′ of G(ω) approaches the “high frequency shear
modulus” G, whereas G ′′, as well as η′ and η′′ become zero.

Maxwell derived the ‘Maxwell model’ equation from the Boltzmann equation for
the velocity distribution function of a gas. In that case, pμν is the kinetic contribution

pkinμν to the symmetric traceless friction pressure tensor, see the first equation of

(16.59) with τ−1
M = νp and νpa = 0. Here the Maxwell relaxation time is determined

by a Boltzmann collision integral and one has G = p0 = nkBT .
Multiplication of the kinetic equation (12.120) for the pair correlation function

by rν Fμ, and use of (12.107) yields a Maxwell model equation for the potential
contribution of the pressure tensor. In this case, τM is equal to the relaxation time
τ introduced in (12.120) and the high frequency shear modulus G is given by the
Born-Green expression (16.35).

The Maxwell model equation can also be derived within the framework of irre-
versible thermodynamics. Taking into account that the entropy density contains a
contribution proportional to G−1 pμν pμν , where G is the high frequency shear
modulus. The ensuing entropy production associated with the second rank tensors
is proportional to G−1 pμν d pμν /dt . The Extended Irreversible Thermodynam-
ics, cf. [132, 133], takes into account additional contributions to the entropy and
consequently to the entropy production, which then contains time derivatives of
‘non-conserved’ quantities, like of the friction pressure considered here, or of the
heat flux. An expression for the extended non-equilibrium entropy, valid for gases, is
derived in Exercise 12.3. More general schemes for the treatment of non-equilibrium
phenomena are presented in [134, 135].

In molecular fluids and colloidal dispersions containing non-spherical particles,
the visco-elastic behavior is associated with the dynamics of the alignment as
described by (16.74), cf. [136, 137]. The constitutive equation (16.133) for the fric-
tion pressure tensor is equivalent to

pνμ = −2 ηiso ∇νvμ + pνμ

align
, pνμ

align = √
2

ρ

m
kBT

τap

τa
aμν. (16.84)

Here pνμ

align
is the part of the pressure tensor associated with the alignment. The

viscosity coefficient ηiso, corresponding to a situation, where the alignment vanishes,
is smaller than the Newtonian viscosity η = ηNew pertaining to the case where the
time derivative of the alignment and effects nonlinear in the shear rate vanish. These

http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
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viscosity coefficients are given by

ηiso = ηNew

(

1 − τ 2ap

τaτp

)

, ηNew = ρ

m
kBT τp. (16.85)

Similarly, the pressure tensor is also given by

pνμ = −2ηNew ∇νvμ + pνμ

Gies
, (16.86)

pνμ

Gies = −√
2

ρ

m
kBT τpa

(

daμν

dt
− 2 εμλκωλaκν

)

.

The superscript Gies refers to Giesekus [138].
In analogy to (16.82), the real and imaginary parts of the complex viscosity coef-

ficient are now given by

η′(ω) = (ηNew − ηiso)
1

1 + (ωτa)2
+ ηiso, η′′(ω) = (ηNew − ηiso)

ωτa

1 + (ωτa)2
,

(16.87)
with

ηNew − ηiso = ηNew
τ 2ap

τaτp
. (16.88)

Here η′(ω) approaches the viscosity ηiso for high frequencieswhereωτa 
 1 applies.
Depending on the type of fluids, the relative viscosity difference (ηNew −ηiso)/ηNew
ranges from 10−2 to 102, or higher.

The expressions (16.82) and (16.87) show, and this is true in general, a fluid
can reveal its visco-elastic behavior only, when the frequency ω is not too small
compared with the reciprocal relaxation time. Depending on the type of fluid and on
the temperature, values for the relaxation time vary over many orders of magnitude.
Similarly, a non-linear flow behavior can be observed when the shear rate is not
too small compared with the reciprocal relaxation time. For this reason, typical
viscoelastic fluids also show nonlinear viscous behavior.

16.3.9 Nonlinear Viscosity

The study of the viscoelastic and nonlinear viscous properties of complex fluids is
called Rheology [139, 140]. The nonlinear effects of the shear rate on the mater-
ial properties which are due to shear-induced distortions of the local structure or
the shear-induced partial orientation of particles, are also referred to as rheological
properties.
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This type of nonlinearity is to be distinguished from the nonlinear flow effects, e.g.
the turbulence, resulting from the convective term v ·∇ in the local linear momentum
balance equation (7.52).

Within a phenomenological description, the nonlinear viscous behavior of a plane
Couette flow is characterized by three material coefficients, which depend on the
imposed shear rate γ . The first of these coefficients is the non-Newtonian viscosity
η(γ ) defined via the ratio of the yx-component of the pressure or stress tensor and
the shear rate γ = ∂vx/∂y:

σyx = −pyx = η(γ ) γ. (16.89)

It is understood that η(γ ) approaches the Newtonian, i.e. shear rate independent,
viscosity ηNew in the limit of small shear rates. When nonlinear effects play no role,
it is common practice to use the symbol η instead of ηNew.

The appropriate ansatz for the friction pressure tensor adapted to the planeCouette
symmetry is

pμν = 2 exμeyν Π+ + (exμexν − eyμeyν)Π− + 2 ezμezν Π0. (16.90)

Viscosity coefficients ηi, with i = +,−, 0 are defined by

Π+ = −η+γ, Π− = −η−γ, Π0 = −η0γ. (16.91)

The coefficient η+ is the non-Newtonian viscosity η(γ ), the coefficients η− and η0
characterize the normal pressure differences pxx − pyy = 2Π− and pzz − 1

2 (pxx +
pyy) = 2Π0. Equivalently, and this is common practice in the rheological literature,
the normal pressure differences pxx − pyy and pyy − pzz are used and referred
to as “first” and “second” normal pressure differences. The corresponding stress
differences, denoted by N1 and N2, are defined by

N1 = σxx − σyy = pyy − pxx = Ψ1 γ 2, N2 = σyy − σzz = pzz − pyy = Ψ2 γ 2.

(16.92)
The viscometric functions Ψ1 and Ψ2 are related to the viscosity coefficients η− and
η0 according to

Ψ1 γ = 2 η−, Ψ2 γ = −2 η0 − η−. (16.93)

In contradistinction to η+, which is positive in order to guarantee positive entropy
production, the coefficients η−, η0, and also Ψ1, Ψ2 may have either sign.

The normal pressure differences pxx− pyy and pyy− pzz are zero in the linear flow
regime, however, they are non-zero at higher shear rates. In general, the viscometric
functions depend on the shear rate. When the nonlinearity of the friction pressure
is analytic in γ , i.e. when it can be expressed in terms of a power series in γ , one
has pxy ∼ γ and pxx − pyy ∼ γ 2, pyy − pzz ∼ γ 2, for γ → 0. Consequently,

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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the shear viscosity and the viscometric functions approach constant values at small
shear rates.

A genericmodel for a non-linear viscous behavior is aMaxwellmodel, cf. (16.81),
with a co-rotational time derivative and an additional deformational contribution, viz.

∂

∂t
pμν − 2 εμλκωλ pκν − 2κ ∇μvλ pλν + τ−1

M pμν = −2 G ∇μvν . (16.94)

The pertaining Newtonian viscosity is ηNew = η = GτM. The coefficient κ char-
acterizes the influence of the symmetric traceless part of the velocity gradient on
the dynamics of the friction pressure tensor. The case κ = 0 is referred to as the
co-rotational Maxwell model or as Jaumann-Maxwell model. For a plane Couette
flow, this special model yields η0 = 0, and η+, η− are given by the expressions
(16.82) for the real and imaginary parts of the complex viscosity coefficient η(ω),
with the frequencyω replaced by the shear rate γ . The resulting decrease of the shear
viscosity with increasing shear rate is termed shear thinning.

Due to η0 = 0, one has Ψ2 = −0.5Ψ1, in this case. For many polymeric liquids,
however, typically Ψ2 ≈ −0.1Ψ1 is observed in the small shear rate limit. As will
be pointed out in Sect. 16.4.6, this behavior follows from κ ≈ 0.4. In general, the
parameter κ is non-zero, as it can e.g. be inferred frommicroscopic approaches based
on kinetic equations [41, 141]. The phenomenological Maxwell model equation
(16.94) with κ �= 0 is also referred to as Johnson-Segalman model [142, 143], the
cases κ = ±1 are called co-deformational or convected Maxwell model.

By analogy, the nonlinear viscous properties associated with the alignment are
essentially described by (16.87). Assuming that the dynamics of the alignment is
governed by the co-rotational time derivative, η+ and η− are given by the expressions
for η′ and η′′ with ω replaced by the shear rate γ , and η0 = 0. Again, the nonlinear
viscosity shows a shear thinning behavior, however, it approaches a finite value, viz.
ηiso which is also called second Newtonian viscosity.

More general cases with κ �= 0 and where terms nonlinear in the alignment and
in the friction pressure tensor are included in the dynamic equations, are treated in
Sects. 16.4.6 and 17.4.

16.3.10 Vorticity Free Flow

A flow field for which the velocity gradient tensor has no antisymmetric part is
referred to as vorticity free. Two main types are distinguished: uniaxial and planar
biaxial flow fields.

(i) The uniaxial extensional or compressional flow is considered with the special
geometry vz = 2εz and vx = −εx , vy = −εy. Here ε = 1

2∂vz/∂z = −∂vx/∂x =
−∂vy/∂y is the extension or compression rate. The symmetry of the flow field is that
of the uniaxial squeeze-stretch field as sketched in Fig. 7.3. The velocity gradient

http://dx.doi.org/10.1007/978-3-319-12787-3_17
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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tensor ∇νvμ is symmetric traceless and one has

∇νvμ = ε
[

2 ezνezμ − (exνexμ + eyνeyμ)
] = 3ε ezνezμ . (16.95)

By analogy to (16.90), here the symmetry adapted ansatz for the friction pres-

sure tensor is pμν = 2 ezμezν Π0. In the linear flow regime, where one has

pμν = −2ηNew ∇νvμ , with the Newtonian viscosity ηNew. In this case, the viscos-
ity coefficient η0, defined byΠ0 = −η0ε, cf. (16.91), is η0 = 3ηNew. This coefficient
is also referred to as extensional viscosity or Trouton viscosity. The nonlinear case,
an equation governing the component Π0 of the pressure tensor, follows from the

the Maxwell model (16.94). Due to ezμezλ ezλezν = 1
3 ezμezν , the resulting equation

for Π0 is

τM
∂

∂t
Π0 − 2κ ετM Π0 + Π0 = −3ηNew ε, ηNew = GτM. (16.96)

For a stationary situation this leads to

Π0 = −η0 ε, η0 = 3 ηNew (1 − 2 κ ετM)−1, (16.97)

provided that 2κετM < 1. This inequality plays no role for κε < 0, where the
viscosity is decreasing with an increasing magnitude of the deformation rate. For
κε > 0, (16.97) yields an increasing viscosity and the stationary solution breaks
down at the finite deformation rate εlim = (2κ)−1.
(ii) The planar biaxial extensional or compressional flow is considered with the
special geometry vx = εx , vy = −εy, and vz = 0. Here ε = ∂vx/∂x = −∂vy/∂y is
the extension or compression rate. The symmetry of the flowfield is that of the biaxial
squeeze-stretch field as sketched in Fig. 7.4. Again, the velocity gradient tensor∇νvμ

is symmetric traceless and one has

∇νvμ = ε (exνexμ − eyνeyμ). (16.98)

By analogy to (16.90), here the symmetry adapted ansatz for the friction pressure

tensor is pμν = (exμexν −eyμeyν)Π−+2 ezμezν Π0. Viscosity coefficients η− and η0 are

defined by Π− = −η−ε and Π0 = −η0ε. In the linear flow regime, where pμν =
−2ηNew ∇νvμ applies, with the Newtonian viscosity ηNew, one has η− = 2ηNew
and η0 = 0. For the planar biaxial flow, the Maxwell model (16.94), and the use of

(exμexλ − eyμeyλ)(e
x
λexν − eyλeyν) = exνexμ + eyνeyμ = − ezνezμ

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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and

(exμexλ − eyμeyλ) ezλezν = −1

3
(exμexν − eyμeyν),

lead to two coupled equations for Π− and Π0:

τM
∂

∂t
Π− + 4

3
κ ετM Π0 + Π− = −2 ηNew ε, (16.99)

τM
∂

∂t
Π0 + κ ετM Π− + Π0 = 0.

Here the stationary solution is given by Π− = −η−ε, Π0 = −η0ε, with

η− = 2 ηNew

(

1 − 4

3
(κετM)2

)−1

, η0 = −κ ετM η−, (16.100)

provided that 4(κετM)2 < 3.

16.4 Viscosity and Alignment in Nematics

16.4.1 Well Aligned Nematic Liquid Crystals and Ferro Fluids

A viscous flow with a moderate shear rate does not affect the magnitude of the order
parameter of a nematic liquid crystal, cf. Sect. 15.2.1. The direction of the director
n, however, is influenced by the flow geometry and by external fields. First, the case
is considered, where a magnetic field is applied, which is strong enough such that it
practically fixes the orientation of the director. On the other hand, it should not be so
strong, that it alters the order parameter. The tensor nn determines the anisotropy
of the fluid. It is understood that n is parallel or anti-parallel to the direction of the
applied magnetic field B = Bh, the sign of n has no meaning for nematics. The
symmetry considerations used for the viscosity coefficients of well aligned nematic
liquid crystals also apply to ferro-fluids in the presence a of strong magnetic field.
Ferro-fluids are colloidal dispersions containing practically spherical particles with
permanent or induced magnetic dipoles [110].

Point of departure for the set up of the constitutive relations governing the friction
pressure tensor are the expression (16.42) for the entropy production, and the second

rank tensor nn , or equivalently hh specifying the anisotropy of the unperturbed
state. The external field exerts a torque on the system. As a consequence, the antisym-
metric part of the pressure tensor is not zero. Compared with the ansatz (16.43), an
additional constitutive relation is needed and coupling terms between the symmetric
traceless and antisymmetric parts of the pressure tensor occur:

http://dx.doi.org/10.1007/978-3-319-12787-3_15
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pμν = −2η ∇μvν − 2η̃1 nμnλ ∇λvν − 2η̃3 nμnν nκnλ ∇λvκ

−2η̃2

(

− εμλκ ωλ nκnν

)

− ζ nμnν ∇λvλ, (16.101)

pμ = −γ1 (ωμ − nμ nνων) + γ2 εμνλ nνnκ ∇κvλ ,

p̃ = −ηV ∇λvλ − ζ nμnν ∇μvν .

The shear viscosity η, the twist viscosity coefficient γ1 and the bulk viscosity ηV are
positive, all other coefficients may have either sign. The coefficient ζ characterizes
the coupling between the irreducible tensors of rank 0 and 2, the Onsager symmetry
is already taken into account. The coupling between the irreducible tensors of rank
1 and 2 is specified by γ2 and η̃2. These coefficients obey the Onsager relation

2 η̃2 = γ2. (16.102)

The coefficients γ1 and γ2 occurring in the equation for the axial vector associ-
ated with the antisymmetric part of the pressure tensor are called Leslie viscosity
coefficients.

The Miesowicz viscosity coefficients ηi, i = 1, 2, 3, [144], see also Sect. 16.3.3,
are defined for a plane Couette flow with the velocity in the x-direction and its
gradient in the y-direction, are inferred from

pyx = −ηi
∂vx

∂y
, (16.103)

where the cases i = 1, 2, 3 correspond to the direction of the field and thus n parallel
to the x-, y- and z-axes, respectively. The ηi are related to the viscosities defined in
(16.101) by

η1 = η + 1

6
η̃1 + 1

2
η̃2 + 1

4
γ1 + 1

4
γ2,

η2 = η + 1

6
η̃1 − 1

2
η̃2 + 1

4
γ1 − 1

4
γ2,

η3 = η − 1

3
η̃1. (16.104)

Notice that η = (η1 + η2 + η3)/3 is the average of the ηi . Furthermore, one has

η1 − η2 = η̃2 + 1

2
γ2 = γ2. (16.105)

The second equality follows from the Onsager symmetry relation (16.102). The
experimentally observed difference betweenη1 andη2 is an evidence for the existence
of an antisymmetric part of the pressure tensor.



334 16 Constitutive Relations

The three Miesowicz coefficients do not involve the viscosity coefficient η̃3. This
is different for η45 corresponding to the case where n points along the bisector in the
xy-plane. The resulting Helfrich viscosity coefficient η12 = 4η45 − 2(η1 − η2), cf.
(16.53), is given by

η12 = 2 η̃3. (16.106)

In the theoretical approach of Ericksen and Leslie, the local anisotropy of a nematic
liquid crystal is characterized by the director n, which depends on the time t and
may also depend on the position r. A frequently used ansatz for the pressure tensor
of a nematic is

− pνμ = α1 nνnμ nκnλ ∇λvκ + α2 nν Nμ + α3 Nνnμ (16.107)

+α4 ∇μvν + α5 nνnλ ∇λvμ + α6 ∇νvλ nλnμ,

where

Nμ = ∂nμ

∂t
− εμλνωλnν (16.108)

is the co-rotational time derivative of the director. For a constant director field,
(16.107) is equivalent to (16.101) when one has ∇λvλ = 0 and ζ = 0 applies. The
Leslie viscosity coefficients αi, i = 1, 2, .., 6 are related to the viscosities introduced
in (16.101), by

η = 1

2
α4 + 1

6
(α5 + α6), η̃1 = 1

2
(α5 + α6), η̃2 = 1

2
(α2 + α3), η̃3 = 1

2
α1,

(16.109)

γ1 = α3 − α2, γ2 = α6 − α5. (16.110)

The symmetry (16.102) corresponds to the Onsager-Parodi relation [145]

α2 + α3 = α6 − α5. (16.111)

The Miesowicz viscosities of nematic liquid crystals composed of prolate particles
obey the inequalities η2 > η3 > η1 and consequently γ2 = η1 − η2 is negative. For
nematics composed of discotic particles, the order of the Miesowicz coefficients is
reversed and γ2 is positive. An affine transformation model considered next gives an
instructive insight into the anisotropy of the viscosity.

The connectionbetween the frictionpressure tensor involving thevarious viscosity
coefficients of nematics and the alignment tensor is elucidated in Sects. 16.4.4 and
16.4.5. Alternative approaches are, e.g. found in [149, 150].

The rotational viscosity coefficient γ1 has been measured for many nematics. The
full set of viscosity coefficients, viz. γ1, γ2 and η1, η2, η3, η12 has been determined
for a few liquid crystals only, e.g. cf. [151]. For model systems, the anisotropy of the
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viscous behavior of liquid crystals can also be analyzed by computer simulations.
Non-Equilibrium Molecular Dynamics (NEMD) simulations were first performed
for perfectly oriented nematics in [147]. Nematics composed of particles interact-
ing via a Gay-Berne potential were studied both in NEMD simulations, cf. [152],
and in equilibrium Molecular Dynamics (MD) calculations, e.g. see [153]. In MD
simulations, time correlation functions, cf. Sect. 17.1, are determined, the transport
coefficients then are obtainedwith the help of Green-Kubo relation, viz. as an integral
over the time. Viscosity coefficients were inferred from the dependence of the flow
resistance on the strength of orienting electric or magnetic fields, both in experiments
and in NEMD computer simulations [154]. Results from NEMD computations were
presented in [155] for the viscosity coefficients γ1, γ2 and η1, η2, η3, η12, as func-
tions of the density of the Gay-Berne fluid. For densities approaching the nematic↔
smectic A transition, the smallest of the viscosity coefficient, viz. η1 increases and
it overtakes η3 and η2. The rod-like particles form disc-like clusters in anticipation
of the smectic layers.

16.4.2 Perfectly Oriented Ellipsoidal Particles

With the help of an volume conserving affine transformation, cf. Sect. 5.7, the viscous
behavior of a fluid composed of perfectly oriented ellipsoidal particles can bemapped
onto that of a fluid of spherical particles [146, 147]. The affine transformation model
provides a good qualitative description for the anisotropy of the viscosity [148] of
nematics.

Within the framework of this model, the binary interaction potential Φ of the
non-spherical particles are expressed in terms of the interaction potentials Φsph of a
reference fluid composed of spherical particles according to

Φ(r) = Φsph(rA), rAμ = A1/2
μν rν .

The vector r in real space is linked with rA via an affine transformation, as given
by (5.5.3). This means, the equipotential surfaces are ellipsoids. In simple liquids,
the pressure is mainly determined by its potential contribution, see (16.29). For
simplicity, the kinetic contribution to the friction pressure tensor is disregarded here.
The spatial derivative is transformed according to

∇A
μ = A−1/2

μν ∇ν .

The transformation of the pressure tensor Pνμ, between the affine and the real space is

PA
νμ = A1/2

νλ Pλκ A−1/2
κμ .

http://dx.doi.org/10.1007/978-3-319-12787-3_17
http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_5
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The friction pressure pAνμ, in the affine space, obeys the constitutive law

−pAνμ = 2ηA Γ A
νμ + ηAV ∇A

λ vAλ δμν,

which is standard for an isotropic fluid with the shear viscosity ηA and the bulk
viscosity ηAV, cf. Sect. 16.3. Notice that ∇A

λ vAλ = ∇λvλ. The symmetric traceless
deformation rate tensor Γ A

νμ in affine space is related to the velocity gradient in real
space by

Γ A
μν = 1

2

(

A−1/2
μλ A1/2

νκ + A−1/2
νλ A1/2

μκ

)

∇λvκ − 1

3
∇λvλ δμν.

The friction pressure tensor, in real space, and for ∇ · v = 0,

pνμ = −ηA
(

A−1
νλ Aμκ ∇λvκ + ∇νvμ

)

, (16.112)

contains symmetric traceless and antisymmetric parts.
For ellipsoids of revolution, with their symmetry axis parallel to the unit vector

u, which is identical with the director n of the perfectly oriented fluid, the volume
conserving transformation is governed by

Aμν = Q2/3
[

δμν + (Q−2 − 1)nμnν

]

, A−1
μν = Q−2/3

[

δμν + (Q2 − 1)nμnν

]

,

cf. (5.58). Here Q = a/b is the axes ratio of an ellipsoid with the semi-axes a and
b = c.

Comparison of the resulting friction pressure in real space with the ansatz for the
anisotropic viscosity made in the previous section leads to

η =
[

1 + 1

6
(Q − Q−1)2

]

ηA, η̃1 = 1

2
(Q − Q−1)2 ηA,

η̃2 = 1

2
(Q−2 − Q2) ηA, η̃3 = −1

2
(Q − Q−1)2 ηA,

and
γ1 = (Q − Q−1)2 ηA, γ2 = (Q−2 − Q2) ηA. (16.113)

The pertaining Miesowicz and the Helfrich viscosity coefficients are

η1 = Q−2ηA, η2 = Q2ηA, η3 = ηA, η12 = −(Q − Q−1)2ηA. (16.114)

TheOnsager-Parodi relation η1−η2 = γ2 is fulfilled. Furthermore, one has ηV = ηAV.
Thus all the viscosity coefficients of this perfectly ordered nematic liquid are related
to the shear and volume viscosities of the reference liquid with the same density and
to the axes ratio Q of the ellipsoids. Clearly. for prolate particles with Q > 1, the

http://dx.doi.org/10.1007/978-3-319-12787-3_5
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Miesowicz coefficients obey the inequalities η2 > η3 > η1 and γ2 < 0. For oblate
particles, i.e. for Q < 1, one has η2 < η3 < η1 and γ2 > 0. An adaption of this
model to partially ordered nematics and comparison with experimental data is found
in [148]. The alternative approach, where the dynamics of the alignment tensor is
taken into account, is discussed in Sects. 16.4.4–16.4.6.

The anisotropy of the heat conductivity and of the diffusion tensor can also be
treated by the affine transformation approach. For diffusion, see the following exer-
cise. An amended affine transformation model which takes the partial alignment
into account and a comparison with molecular dynamics computer simulations is
presented in [156].

16.3 Exercise: Diffusion of Perfectly Oriented Ellipsoids
In the nematic phase, the flux j of diffusing particles with number density ρ obeys
the equation

jμ = −Dμν∇νρ, Dμν = D‖nμnν + D⊥(δμν − nμnν),

where D‖ and D⊥ are the diffusion coefficients for the flux parallel and perpendicular
to the director n.

Use the volume conserving affine transformation model for uniaxial particles, cf.
Sect. 5.7.2, to derive

D‖ = Q4/3 D0, D⊥ = Q−2/3 D0

for perfectly oriented ellipsoidal particles with axes ratio Q. Here D0 is the reference
diffusion coefficient of spherical particles.

Furthermore, determine the anisotropy ratio R = (D‖ − D⊥)/(D‖ + 2D⊥),
the average diffusion coefficient D̄ = 1

3 D‖ + 2
3 D⊥ and the geometric mean D̃ =

D1/3
‖ D2/3

⊥ . Discuss the cases Q > 1 and Q < 1 for prolate and oblate particles.

16.4.3 Free Flow of Nematics, Flow Alignment and Tumbling

The antisymmetric part of the pressure tensor vanishes for a free flow, i.e. when no
orienting external field is applied. This implies

pμ = εμνλnν

[

γ1

(

∂nλ

∂t
− ελκτ ωκnτ

)

+ γ2 nκ ∇κvλ

]

= 0. (16.115)

For a spatially inhomogeneous situation and in the presence of external fields the
torque associated with (16.115) is not zero but balanced by the elastic and field-
induced torques εμνλnν(KΔnλ + Fλκnκ) as described by (15.33).

Provided that |γ2| > γ1 holds true, a stationary plane Couette flow leads to a sta-
tionary flow alignment where the director is in the plane spanned by the flow velocity

http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_15
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and its gradient. In particular, for the geometry used above, e.g. in Sect. 12.4.6, one
has nx = cosχ , ny = sin χ , nz = 0, then (16.115) implies

γ1

(

∂χ

∂t
+ Γ/2

)

+ (Γ /2) γ2 cos 2χ = 0,

where the shear rate ∂vx
∂y has been denoted by Γ . In a stationary situation, where

∂χ
∂t = 0, the flow alignment angle χ is determined by

cos 2χ = −γ1

γ2
. (16.116)

This result is independent of the shear rate. For (16.116) to be applicable, the tumbling
parameter

λ ≡ −γ2

γ1
(16.117)

has to obey the condition |λ| > 1. The viscosity for this “free” flow in a flow aligned
state is

ηfree = 1

2
(η1 + η2 − γ1) + η12 (1 − γ 2

1 /γ 2
2 ). (16.118)

In many nematics, the flow alignment angle is small, typically around 10◦, such
that ηfree is not much larger than the smallest Miesowicz viscosity η1. On the other
hand, close to the isotropic-nematic transition temperature Tni, the average viscosity
η = (η1 + η3 + η3)/3 > ηfree in the nematic phase is approximately equal to the
viscosity in the isotropic phase. This explains the surprising result that the viscosity
below the phase transition is smaller than the viscosity above Tni.

For |λ| < 1, no stationary solution of (16.115) is possible, even when the imposed
shear rate is constant. Then the director undergoes a tumbling motion, similar to that
one described by Jeffrey [161] for an ellipsoid in a streaming fluid.More specifically,
the tumbling period is related to the Ericksen-Leslie tumbling parameter λ by PJ =
4π/(γ

√
1 − λ2), for a full rotation of the director.

16.4.4 Fokker-Planck Equation Applied to Flow Alignment

The equation governing the orientational dynamics of liquid crystals, both in the
isotropic and nematic phases, can be derived from a generalized Fokker-Planck equa-
tion [157–159]. To indicate the physics underlying this approach, the Langevin type
equation of a single non-spherical particle, immersed in streaming fluid, is consid-
ered first. Let the orientation of the particle be specified by the unit vector u, its
angular velocity is written as ω +Ω , where ω is the vorticity 1

2∇ × v. Then the time
change of u is given by u̇μ = εμλνωλuν + εμλνΩλuν , and Ω obeys the equation:

http://dx.doi.org/10.1007/978-3-319-12787-3_12
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Ω̇λ = −νr Ωλ + θ−1T syst
λ + θ−1T flct

λ .

Here νr > 0 is a rotational damping coefficient due to a frictional torque, θ is the
relevant moment of inertia, Tsyst and Tflct denote the systematic and the fluctuating
torques acting on a particle. The systematic torque can be derived from aHamiltonian
function H according to T syst

λ = −Lλ H(u), cf. (12.45). It is recalled that

Lλ = ελκτ uκ

∂

∂uτ

.

In the following, the dimensionless function H = −βH is used, where β =
(kBT )−1, and T is the temperature. Then one has βT syst

λ = LλH (u), and the
generalized Fokker-Planck equation pertaining to this Langevin equation reads

∂ f (u)

∂t
+ ωλLλ f (u) − ν0 Lλ (Lλ f (u) − f (u)LλH (u)) = 0. (16.119)

The relaxation frequency ν0 is related to the rotational damping coefficient νr by

ν0 = kBT

θνr
. (16.120)

For spherical particles with radius R, one has νr ∼ R3, see the Exercise 10.3,
provided that hydrodynamics applies. For non-spherical particles νr depends on the
shape of the particle, but an effective radius Reff can be defined such that νr ∼ R3

eff ,
and ν0 ∼ R−3

eff . For vanishing vorticity, the kinetic equation (16.119) is similar to
(12.46), where the systematic torque was assumed to be due to external orienting
fields. Here, however, the orienting torques are due to the viscous flow and an internal
field which, in turn, is caused by the alignment of the surrounding particles. Both
torques are of the form T syst

λ ∼ ελμκuμFκνuν such that

H = Fμν φμν, φμν = ζ2 uμuν , ζ2 =
√

15

2
. (16.121)

The specific expression for the symmetric traceless tensor Fμν is

Fμν = (6ν0)
−1R ∇μvν + T −1T ∗ aμν, aμν = 〈φμν〉. (16.122)

The first term in (16.122) involving the shape parameter R describes the orient-
ing effect of the velocity gradient. When hydrodynamics applies, this parameter is
given by

R =
√

6

5

Q2 − 1

Q2 + 1
, (16.123)

http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_12
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for uniaxial ellipsoids with the axis ratio Q. Values Q > 1 and Q < 1 pertain to
prolate, i.e. rod-like and oblate, i.e. disc-like particles, respectively. One has R >

0 and R < 0 for these cases. The quantity R vanishes for spherical particles,
corresponding to Q = 1.

The second term in (16.122) is associated with the internal field proportional to
the alignment tensor. The characteristic temperature T ∗ is linked with the strength
of the alignment energy, just as in the Maier-Saupe theory, cf. Sect. 15.2.3. In the
absence of a flow, the stationary solution of the kinetic equation (16.119) is

f = feq ∼ exp[T −1T ∗ aμν φμν],

which is essentially the Maier-Saupe distribution function.
Multiplication of the kinetic equation (16.119) by φμν = ζ2 uμuν and integration

over d2u and use of (16.121) with (16.122) leads to a nonlinear, inhomogeneous
equation for aμν , which is, however, not yet a closed equation for the second rank
alignment tensor. More specifically, the moment equation for aμν , as inferred from
(16.119), is

∂

∂t
aμν − 2 εμλκωλaκν + ν2 aμν − ν0

〈

(Lλφμν)(Lλφαβ)
〉

Fαβ = 0,

with ν2 = 6ν0, cf. (12.44). Computation of the expression within the bracket 〈. . .〉
of the last term yields

4 ζ 2
2 ελκμuκuν ελσαuσ uβ Fαβ = 4 ζ 2

2

(

uνuβ Fμβ − uμuν uαuβ Fαβ

)

.

Use of uνuβ = 1
3δνβ + uαuβ in the first term on the right hand side and of the

relation

uμuν uαuβ Fαβ = 2

15
Fμν + 4

7
uμuκ Fκν + uμuνuαuβ Fαβ,

cf. (11.58), leads to

(Lλφμν)(Lλφαβ) = 4 ζ 2
2

(

1

5
Fμν + 3

7
uμuκ Fκν − uμuνuαuβ Fαβ

)

.

The orientational average of this expression involves the fourth rank alignment tensor

aμναβ = 〈φμναβ〉, φμναβ = ζ4 uμuνuαuβ , ζ4 = 3

4

√
70,

http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_11
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cf. Sect. 12.2.2. Thus the moment equation for the second rank alignment tensor
becomes

∂

∂t
aμν − 2 εμλκωλaκν + ν2 aμν

−4ν0 ζ 2
2

(

1

5
Fμν + 3

7
ζ−1
2 aμκ Fκν − ζ−1

4 aμναβ Fαβ

)

= 0.

Use of the explicit expression (16.122) for the tensor F.. leads to

∂

∂t
aμν − 2 εμλκωλaκν − 2κ ∇μvκ aκν + ν2 (Aaμν − √

6B aμκaκν )

+ 5ν2ζ
−1
4 T −1T ∗aμναβaαβ = R

(

∇μvν − 5 ζ−1
4 aμναβ ∇αvβ

)

,

(16.124)

with

A = 1 − T ∗

T
, B =

√
5

7

T ∗

T
, (16.125)

and

κ = 1

7
ζ2 R = 3

7

Q2 − 1

Q2 + 1
. (16.126)

The second equality in (16.126) pertains to the hydrodynamic expression (16.123)
the parameterR. For long, rod-like particles, corresponding to Q 
 1, the quantity
κ approaches 3/7 ≈ 0.4.

In the isotropic phase and for small alignment where terms nonlinear in the second
rank alignment tensor and the fourth rank alignment tensor can be disregarded,
(16.124) reduces to an equation similar to (16.74), viz.

∂

∂t
aμν − 2 εμλκωλaκν − 2κ ∇μvκ aκν + τ−1

a Aaμν = −τ−1
a τap

√
2 ∇νvμ ,

(16.127)
where the relaxation time coefficients are now related to the parameters occurring in
the Fokker-Planck approach by

τa = ν−1
2 = (6 ν0)

−1,
√
2 τap = −R τa. (16.128)

The comparison of (16.127) with (16.74) shows two additional features. The first
is the term involving the parameter κ , which describes an effect of the deformation
rate on the alignment. The second is the occurrence of the factor A = 1 − T ∗/T .
This implies the pre-transitional increase of the relaxation time τ = A−1τa and
of the flow birefringence ∼A−1, when the temperature T approaches the transition

http://dx.doi.org/10.1007/978-3-319-12787-3_12
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temperature Tni, from above. Notice that Tni is slightly larger than the pseudo-critical
temperature T ∗, cf. Sect. 15.2.2.

In general, however, and in particular in the nematic phase, terms nonlinear in the
alignment matter and the fourth rank tensor has to be taken into account. Then an
equation is needed for aμναβ , in (16.124). Multiplication of the generalized Fokker-
Planck equation (16.119) by the fourth order expansion function φμναβ and subse-
quent integration leads to an equation for the fourth rank alignment tensor, that is
analogous to that of the second rank tensor. There, however, not only a coupling
with the second rank but also with the sixth rank tensor occurs. Clearly, the game
may be continued leading to a hierarchy of coupled equations for tensors with rank
� = 2, 4, 6, . . .. The equation for the second rank tensor is the only one which con-
tains an inhomogeneous term. The tensors of rank � > 2 relax faster than the second
rank tensor, cf. (12.44). In [157], a closure of the set of equations was achieved by
disregarding the tensors of rank 6 and higher. When furthermore, the co-rotational
time derivative of the fourth rank tensor and terms nonlinear in the deformation rate
∇v are disregarded, this approximation amounts to putting aμναβ ∼ aμνaαβ with
a proportionality coefficient analogous to that one occurring for equilibrium align-
ment, cf. Sect. 12.2.4. Use of the relation (12.34) for uniaxial alignment in the high
temperature approximation, which is equivalent to

ζ−1
4 aμναβ = 5

7
ζ−2
2 aμνaαβ , (16.129)

leads to the closed equation governing the second rank alignment tensor

∂

∂t
aμν − 2 εμλκωλaκν − 2κ ∇μvκ aκν + ν2Φμν

= R

(

∇μvν − 10

21
aμνaλκ ∇αvβ

)

. (16.130)

Here

Φμν = A aμν − B
√
6 aμκaκν + C aμν aλκaλκ ,

is the derivative of the Landau-de Gennes potential, cf. Sect. (15.2.2), where now the
coefficients A and B are given by (16.125) and C is found to be

C = 12

49

(

T ∗

T

)2

. (16.131)

Apart from the last term on the right hand side of (16.130), this equation is equivalent
to (16.127) where now Φμν appears in the relaxation term instead of Aaμν . The
limiting case of a weak alignment in the isotropic phase was already discussed above.
The other limiting case corresponds to a weak flow in the nematic phase where the

http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_15
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velocity gradient does not alter the uniaxial character of the alignment nor affect the
magnitude of the alignment.

The equation for the alignment tensor which underlies a unified theory valid both
for the isotropic and the nematic phases of a liquid crystal, can also be derived within
the framework of irreversible thermodynamics, see the following section. The flow
alignment and also the viscous properties of nematics are treated by this approach.
Dynamic phenomena, such as a time dependent and even chaotic response of the
alignment to a stationary shear rate are discussed in Sect. 17.3.

Some historical remarks: The application of a Fokker-Planck equation to the flow
birefringence in colloidal dispersions was initiated by A. Peterlin and H.A. Stuart in
1939 and reviewed 1943 [160]. They used the torque caused by the flow as derived
by Jeffery [161]. The inclusion of a torque associated with the alignment, which
allows the treatment of both the isotropic and nematic phases, was first presented
by the author [157]. An independent derivation was given later by Doi [158], who
considered the application to rod-like polymers, see also [162]. In the literature, both
the generalized Fokker-Planck equation and the resulting equation for the second
rank alignment tensor are referred to as Doi-theory or Doi-Hess-theory, see e.g.
[163]. Different assumptions were made for the closure of the hierarchy equations.
A discussion of the dynamic equations and the underlying physics is also presented
in [164–167].

16.4.5 Unified Theory for Isotropic and Nematic Phases

The first unified theory for the flow alignment and the viscous properties of liquid
crystals in the isotropic and nematic phases [168], as well as the study of the influence
of a shear flow on the phase transition [169] was based on a generalized version of
irreversible thermodynamics, where the alignment tensor is treated as an additional
macroscopic variable, as in Sect. 16.3.6. As before, the point of departure for a
treatment within the framework of irreversible thermodynamics is an expression for
the contribution of the alignment to the free energy or the free enthalpy. Now it is
assumed that this contribution is proportional to the Landau-de Gennes potential Φ,
its time change is proportional to −Φμνdaμν/dt , where Φμν is the derivative of Φ

with respect to aμν . When the co-rotational time derivative of the alignment is used
as in (16.69), the resulting entropy production is similar to the expression (16.70),
just with aμν(

δaμν

δt )irrev replaced byΦμν(
δaμν

δt )irrev. The ensuing constitutive relations
are similar to (16.133), now aμν , in the first of these equations replaced by Φμν . As
a consequence, the inhomogeneous equation for the alignment tensor analogous to
(16.74) contains the nonlinear relaxation term τ−1

a Φμν , instead of τ−1
a aμν .

Motivated by the first three terms of (16.124), the more general ansatz

daμν

dt
− 2 εμλκωλaκν − 2κ ∇μvκ aκν =

(

δaμν

δt

)

irrev
, (16.132)

http://dx.doi.org/10.1007/978-3-319-12787-3_17
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is made. Then the entropy production is given by

− ρ

m
T

(

δs

δt

)(2)

irrev
= pνμ ∇νvμ + ρ

m
kBT Φμν

[

(

δaμν

δt

)

irrev
+2κ ∇μvκ aκν

]

=
[

pνμ+2κ
ρ

m
kBT Φμκaκν

]

∇μvν + ρ

m
kBT Φμν

(

δaμν

δt

)

irrev
.

(16.133)

With Φμν and (
√
2 ρ

m kBT )−1( pνμ + 2κ ρ
m kBT Φμκaκν ) chosen as fluxes, and

(
δaμν

δt )irrev and
√
2 ∇νvμ as forces, as suggested in [171], the constitutive laws for

the second rank tensors now are

− Φμν = τa

(

δaμν

δt

)

irrev
+τap

√
2 ∇νvμ ,

−
(√

2
ρ

m
kBT

)−1 (

pνμ +2κ
ρ

m
kBT Φμκaκν

)

= τpa

(

δaμν

δt

)

irrev
+τp

√
2 ∇νvμ .

(16.134)

As before, the quantities τ.. are relaxation time coefficients where the subscripts a
and p refer to “alignment” and “pressure”. The non-diagonal coefficients obey the
Onsager symmetry relation, cf. (16.72), τap = τpa. Positive entropy production is
guaranteed by the inequalities τa > 0, τp > 0, τaτp > τ 2ap.

Use of the first of the (16.133) in (16.69) yields the inhomogeneous relaxation
equation

daμν

dt
−2 εμλκωλaκν −2κ ∇μvκ aκν +τ−1

a Φμν = −τ−1
a τap

√
2 ∇νvμ . (16.135)

Apart from the last term on the right hand side of (16.130), the phenomenological
equation corresponds to the equation derived from the Fokker-Planck equation, when
τ−1
a and

√
2τ−1

a τap are identified with ν2 and −R, as in (16.128).
The symmetric traceless part of the pressure tensor, as it follows from the con-

stitutive relations, is given by pνμ = −2ηiso ∇νvμ + pνμ

align
, with ηiso =

ηNew(1− τ 2ap
τaτp

), ηNew = ρ
m kBT τp, cf. (16.84) and (16.85), where the friction pressure

associated with the alignment is now

pνμ

align = ρ

m
kBT

(√
2
τap

τa
Φμν − 2κ Φμνaκν

)

. (16.136)

A remark on the antisymmetric part of the pressure tensor is in order. Prior to putting
the average angular velocity wμ equal to the vorticity ωμ, the entropy production
involving pseudo-vectors is proportional to pμ(wμ − ωμ), where pμ is the pseudo
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vector associated with the antisymmetric part of the pressure tensor, cf. Sect. 16.3.5.
This contribution vanishes, when the average angular velocity is equal to the vortic-
ity, as already assumed above. In the presence of an external field, which exerts a
torque Tμ, the entropy production contains an additional contribution proportional to
wμ(Tμ + 2kBT εμνλaνκΦκλ). The entropy production, however, should not depend
explicitly on the vorticity, since ωμ �= 0 can also be achieved by a solid body like
rotation. This implies that Tμ = −2kBT εμνλaνκΦκλ has to hold true. When fur-
thermore, the relaxation of the internal angular momentum J is fast, compared with
the orientational relaxation, one has effectively dJ/dt = 0 and pμ matches the
torque density, viz. pμ = (ρ/m)Tμ. Thus the pseudo-vector associated with the
antisymmetric part of the pressure is related to the alignment by

pμ = −2
ρ

m
kBT εμνλaνκΦκλ. (16.137)

As expected, both the symmetric traceless and the antisymmetric parts of the pressure
tensor associated with the alignment vanish in thermal equilibrium where one has
Φμν = 0.

Multiplication of (16.135) by τaελκνaκμ yields

τa Mλ + ελκνaκμΦμν = −ελκνaκμ

(

τap
√
2 ∇μvν − 2κ τa ∇μvσ aσν

)

,

with

Mλ = ελκνaκμ

(

daμν

dt
− 2 εμαβωαaβν

)

. (16.138)

Then (16.137) is equal to

pλ = 2
ρ

m
kBT Mλ + 2

ρ

m
kBT ελκνaκμ

(

τap
√
2 ∇μvν − 2κτa ∇μvσ aσν

)

.

(16.139)

16.4.6 Limiting Cases: Isotropic Phase, Weak Flow
in the Nematic Phase

For a plane Couette flow, a symmetry adapted ansatz for the alignment and for
the pressure tensors can be made in analogy to (16.90). Then each of the tensorial
equations reduces to three coupled equations for the relevant 3 components. In detail,
these can be inferred from the more general case of all 5 components as presented
in Sect. 17.3. Here just some results are stated for the nonlinear viscous behavior in
the isotropic phase, where terms nonlinear in the alignment tensor are disregarded.

http://dx.doi.org/10.1007/978-3-319-12787-3_17
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The non-Newtonian viscosity coefficient η+, cf., Sect. 16.3.9, is found to be

η+ = ηNewH+(Γ ), H+(Γ ) = 1 + τ 2ap

τaτp

[

1 + Γ 2(1 + κ2/3)

(1 + Γ 2(1 − κ2/3)2
− 1

]

. (16.140)

The dimensionless viscosity coefficient H+(Γ ) is a function of the dimensionless
shear rate Γ , here defined by

Γ = τγ = A−1 τa
∂vx

∂y
. (16.141)

Notice that
τ 2ap
τaτp

= (ηNew − ηiso)/ηNew < 1, cf. (16.85). For |κ| < 1, (16.140)

describes a shear thinning behavior, for 1 < |κ| <
√
3, shear thickening, i.e. an

increase of the shear viscosity with increasing shear rate results for smaller values of
Γ , followed by a shear thinning at higher shear rates. In any case, ηiso is approached
for Γ → ∞. Similarly, the viscosity coefficients η− and η0 are given by

η− = (η+(Γ ) − ηiso) Γ, η0 = −κ (ηNew − ηiso)
[

1 + Γ 2(1 − κ2/3)
]−1

Γ.

(16.142)
Both η− and η0 approach 0 for Γ � 1 and Γ 
 1. The normal pressure differences
and the pertaining viscometric functions, as defined in Sect. 16.3.9, can be inferred
from (16.142). In particular, the ratio between the first and the second viscometric
function is found to be

−Ψ2

Ψ1
= 1

2
− κ

[

1 + Γ 2(1 − κ2/3)
]−1 (

1 + Γ 2(1 + κ2/3)
)

. (16.143)

The special case κ = 0, corresponding to a pure co-rotational time derivative of the
alignment tensor, implies η0 = 0 and the small shear rate limit Ψ2/Ψ1 = −0.5. The
value κ ≈ 0.4, suggested by the Fokker-Planck approach, yields Ψ2/Ψ1 ≈ −0.1,
which is typical for many polymeric liquids.

For a weak flow in the nematic phase, the alignment tensor maintains its uniaxial
form aμν = aeq

μν = √
3/2aeq nμnν , where the director n, in general, depends on the

time and the position. The equilibrium order parameter aeq = √
5S, where S = S2

is recalled as the Maier-Saupe order parameter, is assumed not to be affected by the
flow. In this case M reduces to

Mλ = 3

2
a2
eq ελκνnκ Nν, Nν = dnν

dt
− ενλκωλnκ . (16.144)

The vector N is the co-rotational time derivative of the director n, cf. (16.108). For
dn/dt = 0, as considered in (16.136), the pseudo-vector M is proportional to the
component of the vorticity, which is perpendicular to n, viz. Mλ = − 3

2a2
eq(ωλ −

nλnκωκ). In the weak flow limit, (16.139) reduces to
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pμ = εμνλnν

(

γ1Nλ + γ2 ∇λvκ nκ

)

, (16.145)

γ1 = 3
ρ

m
kBT a2

eq τa, γ2 = ρ

m
kBT

(

2
√
3 aeqτap − κa2

eqτa

)

.

In this expression, the Ericksen-Leslie coefficients γ1 > 0 and γ2, already introduced
in Sect. 16.4.1, are related to the equilibrium alignment aeq = √

5S, and to the model
parameters occurring in the dynamic equation for the alignment tensor.Notice that the
Fokker-Planck approach yields τap < 0 for rod-like particles, cf. (16.126), (16.128),
and consequently γ2 < 0. For disc-like particles, on the other hand, one has γ2 > 0. In
general, terms of higher power in the order parameter aeq contribute to the Ericksen-
Leslie coefficients, when higher rank tensors are taken into account in the solution of
the Fokker-Planck equation. The expressions given here contain the leading terms.

In the weak flow approximation, the relation (16.136) for the symmetric traceless
part of the friction pressure tensors leads to an expression for pμν , as presented in
(16.101), now with the viscosity coefficients η, η̃1, η̃2, η̃3 given by

η = ρ

m
kBT

(

τp + 1

6
κ2 a2

eq τa

)

, η̃1 = − ρ

m
kBT κ aeq

(

2
√
3τap + 1

2
κ aeq τa

)

,

η̃2 = ρ

m
kBT κ aeq

(√
3τap − 1

2
κ aeq τa

)

, η̃3 = 1

2

ρ

m
kBT κ2 a2

eq τa. (16.146)

The Onsager symmetry relation 2η̃2 = γ2 is obeyed. Notice that κ = 0 implies
η̃1 = η̃3 = 0. In lowest order in the alignment, one has η̃1 = −κγ2. This relation
can be used to obtain an estimate for the size of the parameter κ from experimental
data.

16.4.7 Scaled Variables, Model Parameters

The relaxation term of the inhomogeneous equation (16.135) for the second rank
alignment tensor involves the derivative of the Landau-de Gennes potential, which in
turn contains the three parameters A, B, C . When the alignment is expressed in units
of the nematic order parameterani = 2B/(3C), cf. Sect. 15.2.2, the coefficients B and
C are replaced by specific numbers.More precisely, the alignment tensor is written as
aμν = ania∗

μν , the derivative of the potential is expressed as Φμν(a) = ΦrefΦ
∗
μν(a

∗)
with the reference value Φref = ani2B2/(9C) = aniδniA0. As in Sect. 15.2.2, the
scaled temperature variable ϑ = A(T )/A(Tni) = (1 − T ∗/T )(1 − T ∗/Tni) is
used. The time is scaled in units of a reference time equal to the relaxation time, at
coexistence temperature Tni, viz.

t = τref t∗, τref = τa(1 − T ∗/Tni)
−1A−1

0 = τa
9C

2B2 = τa ani Φ
−1
ref . (16.147)

http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
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Shear rates, in units of τ−1
ref are now denoted by Γ , thus one has Γ = γ τref . Further-

more, the tumbling parameter, cf. Sect. 16.4.3, is written as

λeq = λK
ani
aeq

+ 1

3
κ, λK = −2

3

√
3

τap

τa
a−1
ni . (16.148)

The equilibrium order parameter, in the nematic phase, aeq is given by aeq/ani =
3
4 + 1

4

√
9 − 8ϑ , ϑ ≤ 9

8 , see (15.23). Notice that λeq decreases with increasing order
aeq. For small shear rates, λeq determines the flow alignment angle χ , within the
Ericksen-Leslie theory, cf. Sect. 16.4.3, according to cos(2χ) = −γ1/γ2 = 1/λeq,
provided that λeq > 1. For λeq < 1, no stable flow alignment exists. The actual
dynamics following from the alignment tensor theory, as discussed in Sect. 17.3, is
more complex than the tumbling motion inferred from the Ericksen-Leslie director
approach. The quantity λK which is the tumbling parameter at the transition temper-
ature, for κ = 0, is used as a model parameter in the scaled dynamic equation for
the alignment tensor.

In the following, when no danger of confusion exists, the scaled alignment tensor

a∗
μν is denoted by the original symbol aμν . Let Ωλ = ωλτref and Γμν = ∂vμ/∂rν

be the dimensionless vorticity and deformation rate tensor. The (16.135) governing
the dynamics of the alignment then is equivalent to

daμν

dt
− 2 εμλκΩλaκν − 2κ Γμκaκν + Φμν =

√

3

2
λKΓμν, (16.149)

where it is understood thatΦμν stands for the scaled derivative of the relevant poten-
tial, viz.

Φμν = ϑ aμν − 3
√
6 aμκaκν + 2aμνaλκaλκ . (16.150)

This corresponds to the derivative of a Landau-de Gennes potential with A = ϑ ,
B = 3, C = 2.

A scaled symmetric traceless stress tensor Σal
μν , associated with the alignment is

introduced via

− pμν

align = √
2 Gal Σ

al
μν, Gal = 3

4

ρ

m
kBT λ2K δni A0 a2

ni, (16.151)

where δni = 1 − T ∗/Tni, and Gal is a shear modulus linked with the alignment. For

pμν

align
see (16.136). The scaled version of this equation corresponds to

Σal
μν = 2√

3
λ−1
K Φ̃μν, Φ̃μν = Φμν + 2κ

3λK

√
6 aμκΦκν . (16.152)

The Fokker-Planck equation approach implies 2κ/(3λK ) = √
5 ani/7.

http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_17
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The model parameters occurring in the scaled equations are the reduced temper-
ature ϑ , the dimensionless shear rate Γ , the tumbling parameter λK, and κ . Notice
that λK serves as a measure for the coupling between the alignment and the flow. In
some applications of the equations, as presented in Sect. 17.3, it suffices to treat the
special case κ = 0.

16.4.8 Spatially Inhomogeneous Alignment

In a spatially inhomogeneous situation, the equation governing the dynamics of the
alignment tensor contains terms linkedwith spatial derivatives. There are two sources
for terms of this kind: firstly, the divergence of the flux tensor bλμν ∼ 〈cλ uμuν 〉,
where c is the peculiar velocity of a particle, and secondly, the terms characterizing
the elasticity in the free energy and its derivative with respect to the alignment, see
e.g. (15.38). More specifically, the relaxation equation for the alignment tensor is

daμν

dt
− 2 εμλκωλaκν − . . . + ∇λbλμν + τ−1

a

(

Φμν − ξ20 Δ aμν

)

+ . . . = 0,

where the dots . . . indicate the terms involving the deformation rate tensor ∇μvν ,

as in (16.135). It is understood that daμν

dt stands for the substantial derivative, i.e.
daμν

dt = ∂aμν

∂t + vλ∇λaμν . As before, Φμν is the derivative of the potential Φ, with
respect to aμν , e.g. the Landau de Gennes expression (15.13). The term involving
ξ20Δaμν corresponds to the simple case of an isotropic elasticity. The length ξ0 is
linked with the quantities occurring in (15.35) via ξ20 = ε0

kBT ξ2refσ2, where ξref is
the reference length which, in (15.35), was denoted by ξ0. Equations for the three
irreducible parts of the tensor bλμν , which are tensors of ranks 1, 2, 3, can be derived
by kinetic theory or by irreversible thermodynamics. When the relaxation times for
these three parts are practically equal to a single relaxation time τb, the approximation

bλμν = −Da∇λ

(

Φμν − ξ20Δaμν

)

, Da = kBT

m
τb,

is obtained. With the diffusion length �a defined by �2a = Daτa, the generalization of
(16.135) to a spatially inhomogeneous fluid becomes, [172],

d

dt
aμν − 2 εμλκωλaκν − 2κ ∇μvκ aκν (16.153)

+τ−1
a

[

1 − �2aΔ
] (

Φμν − ξ20Δaμν

)

= −τ−1
a τap

√
2 ∇νvμ .

Second and fourth order spatial derivatives occur. The second order terms involve
diffusional and elastic contributions proportional to �2a and ξ20 , respectively. In the

http://dx.doi.org/10.1007/978-3-319-12787-3_17
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
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isotropic phase, where Φμν ≈ Aaμν applies, these contributions are additive. In the
nematic phase, and close to equilibrium, one has Φμν ≈ 0 and the relaxation term
reduces to −τ−1

a ξ20 [Δaμν − �2aΔ
2aμν]. The fourth order term is proportional to the

product �2aξ
2
0 , in any case.

The part of the friction pressure tensor associated with the alignment is also
modified by additional terms involving the spatial derivatives [172]. The solution of
a spatial differential equation requires boundary conditions, those appropriate for the
(16.153) and some applications are discussed in [173, 174].



Chapter 17
Tensor Dynamics

Abstract This chapter presents examples for dynamical phenomena involving ten-
sors. Firstly, linear tensor equations are considered which provide the basis for the
computation of time-correlation functions and of spectral functions describing the
frequency dependence, e.g. of scattered radiation. Secondly, nonlinear relaxation
phenomena involving the second rank alignment tensor are treated. Basis tensors are
introduced which lead to coupled non-linear equations for the relevant components
of the tensor. The stability of stationary solutions is analyzed. Thirdly, the effect of an
imposed shear flow on the alignment tensor is considered. Depending on the model
parameters, stationary as well as periodic and chaotic solutions are obtained. Similar
features are found for a nonlinear Maxwell model governing the shear stress tensor.

17.1 Time-Correlation Functions and Spectral Functions

The dynamics of small fluctuations about an equilibrium state, as well as of small
macroscopic deviations from equilibrium are described by time-correlation func-
tions. Spectral functions are obtained by a time-Fourier transformation.

17.1.1 Definitions

Let ψi = ψi(t) with i = 1, 2, . . . be functions which depend on the time t via
their dependence on dynamic variables like the position, the linear momentum or the
internal angular momentum of a particle. Appropriately defined averages 〈. . . 〉0 of
these quantities are assumed to vanish, viz. 〈ψi 〉0 = 0. In general, the ψi fluctuate
about their average values, their squares averaged are non-zero: 〈ψ2

i 〉0 > 0. The
average

Cij(t) = 〈

ψi(t0 + t)ψj(t0)
〉

0 , i = 1, 2, . . . , j = 1, 2, . . . , (17.1)

© Springer International Publishing Switzerland 2015
S. Hess, Tensors for Physics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-12787-3_17

351



352 17 Tensor Dynamics

defines time-correlation functions. It is assumed that the distribution underlying the
average is stationary, e.g. pertaining to an equilibrium state. Thus the correlation
function just depends on the time difference, i.e. it is independent of the time t0.
Then t0 = 0 can be chosen. On the other hand, the choice t0 = −t yields

〈

ψi(0)ψj(−t)
〉

0 = 〈

ψj(−t)ψi(0)
〉

0,

which implies the symmetry relation

Cij(t) = Cji(−t). (17.2)

Consequently the diagonal correlation functions pertaining to i = j are even func-
tions of the time. The correlation functions with i = j are referred to as auto-
correlation functions, those with i �= j as cross-correlation functions. In the follow-
ing, the notation Cij(t) is used for the normalized correlation functions which are
defined by

Cij(t) = 〈

ψi(t0 + t)ψj(t0)
〉

0

{〈ψi(t0)ψi(t0)〉0
〈

ψj(t0)ψj(t0)
〉

0

}−1/2
, (17.3)

where i = 1, 2, . . . , j = 1, 2, . . . , as before. One has Cii(0) = 1 for the normalized
auto-correlation functions.

Now a non-equilibrium state is considered where 〈ψi〉 = 〈ψi〉(t) �= 0 applies.
When the distortion which caused the deviation from equilibrium, is switched off,
the quantity 〈ψi〉(t) relaxes to 0, in the long time limit. The original derivation of
the Onsager symmetry relation was based on the assumption that fluctuations and
small macroscopic deviations from thermal equilibrium decay alike [108]. With this
argument, time-correlation functions can also be defined via a linear relation between
time dependent averages

〈ψi〉(t) = Cij(t) 〈ψj〉(0), i = 1, 2, . . . , j = 1, 2, . . . (17.4)

This allows the calculation of time-correlation functions from linear macroscopic
equations.

The averages 〈ψi〉 may depend on the position r in space 〈ψi〉 = 〈ψi〉(t, r). The
spatial Fourier transform is

〈ψi〉(t | k) =
∫

exp[−i k · r] 〈ψi〉(t, r) d3r,

where k is the relevant wave vector. Applications in spectroscopy and light scattering
involve wave vector dependent time-correlation functions defined by

〈ψi〉(t | k) = Cij(t | k)〈ψj〉(0 | k), i = 1, 2, . . . , j = 1, 2, . . . (17.5)
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The pertaining spectral functions Sij are the Fourier-Laplace transform of the
time-correlation functions, viz.

Sij(ω, k) = π−1 Re
∫ ∞

0
exp[iωt] Cij(t | k)dt. (17.6)

When the averages 〈ψi〉 and 〈ψj〉 are components of irreducible tensors of ranks �

and n, the corresponding time-correlation and spectral functions are tensors of rank
� + n. With 〈ψi〉 and 〈ψj〉 replaced by Aμ1···μ�

and Bν1···νn , equation (17.5) becomes

Aμ1···μ�
(t | k) = CAB

μ1···μ�,ν1···νn(t | k) Bν1···νn(0 | k), (17.7)

The pertaining spectral function, evaluated according to (17.6), is denoted by

SAB
μ1···μ�,ν1···νn(ω, k).

The symmetry, parity and time reversal consideration discussed in connection with
linear constitutive relations, cf. Sect. 16.1, apply to these functions as well. The
depolarized Rayleigh scattering, to be discussed in the next section, corresponds to
a case, where one has � = n = 2.

Examples for the computation of auto- and cross-correlation functions of the
friction pressure tensor and the tensor polarization of a gas of linear molecules, are
found in [175]. These correlation functions are linked with the viscosity and the flow
birefringence. The influence of a magnetic field also studied there is associated with
the Senftleben-Beenakker effect of the viscosity, cf. Sect. 16.3.4.

As originally pointed out by Green and Kubo [101, 176], transport coefficients
can be computed as time-integrals of correlation functions. The relevant equations
are referred to asGreen-Kubo- or asKubo-relations. For details of themethod e.g. see
[48–50]. The Green-Kubo relations imply that material coefficients characterizing
non-equilibrium processes can be inferred from fluctuations in an equilibrium state.
Instead of performing a time integral, the material coefficients can also be obtained
from the dependence of the magnitude of the fluctuations on the length of the time
interval, over which the fluctuations are pre-averaged. This has been demonstrated
in [177] for the viscosity and the viscoelasticity of a simple fluid.

17.1.2 Depolarized Rayleigh Scattering

Light scattering is caused by fluctuations of the dielectric tensor εμν . The Rayleigh
scattering and the Brillouin scattering are associated with the fluctuations of the
isotropic part which, in turn, are mainly caused by density fluctuations. In this case,
the electric field of the scattered light is parallel to that of the incident light, this
is polarized scattering. Fluctuations of the anisotropic part εμν lead to a scattered

http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16
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Fig. 17.1 Depolarized
Rayleigh scattering, VH- and
HH-geometries. The double
arrows indicate the
directions of the electric field
vectors of the incident and of
the scattered light

light with a weaker intensity, whose electric field, however, has also a component
perpendicular to that of the incident light. For this reason, the term depolarized
scattering is used. Thename“Rayleigh” indepolarized Rayleigh scattering indicates,
that the frequency of this contribution to the scattered light is centered about the
frequency of the incident light, just as the ordinaryRayleigh scattering. The rotational
Raman scattering, where the frequency is shifted, also has a depolarized component.
Let e′ and e be unit vectors parallel to the electric field vectors of the incident and of
the scattered light. The intensity of the scattered light is proportional to

Iscat = e′
μeν Sμν,λκ e′

λeκ . (17.8)

The spectral function S.. depends on ω = ω1 − ω2 and k = k1 − k2, where ω1, k1
and ω2, k2 are the frequencies and the wave vectors of the incident and of the scat-
tered light. Depolarized scattering means: e is perpendicular to e′. Two scattering
geometries, referred to by VH and HH are sketched in Fig. 17.1. The letters V and
H stem from ‘vertical’ and ‘horizontal’, with respect to the scattering plane spanned
by k1 and k2. The HH-case is for 90◦ scattering only.

Orientational fluctuations of molecules cause fluctuations of εμν . Thus the
time-correlation function and consequently the spectral function of the depolarized
Rayleigh scattering can be inferred from relaxation equation of the second rank align-
ment tensor aμν of liquids, cf. (12.19) or of the tensor polarization aT

μν in gases of
linear molecules, cf. (13.64).

In the absence of external fields and when the coupling with the friction pressure
tensor is ignored, the (16.59) and (16.74) describe a simple exponential relaxation
for the alignment tensor:

∂aμν

∂t
+ τ−1 aμν = 0,

with a relaxation time τ . This equation implies

aμν(t) = Cμν,λκ(t)aλκ(0), Cμν,λκ(t) = Δμν,λκ C(t), C(t) = exp[−t/τ ],
(17.9)

with an isotropic time-correlation tensor. The resulting spectral function has the
Lorentz line shape

http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_13
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16
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SLor(ω) = π−1 τ

1 + ω2τ 2
= π−1 ν

ω2 + ν2
, ν = τ−1. (17.10)

The line width is determined by the relaxation frequency ν = τ−1.
The scattered intensity is proportional to

Iscat = e′
μeνΔμν,λκe′

λeκ SLor(ω) = e′
μeν e′

μeν SLor(ω)

= 1

2

(

1 + 1

3
(e′ · e)2

)

SLor(ω). (17.11)

The depolarized component, with e′ · e = 0, is 1
2 SLor(ω).

The time-correlation function and the spectral function are no longer isotropic, as
in (17.9) when external fields or an ordered structure render the system anisotropic.
An instructive example, as treated in [64], is considered next. Application of a mag-
netic field to a gas of rotating molecules causes a precessional motion of their rota-
tional angularmomentawith the frequencyωB, cf. Sect. 16.3.4. Ignoring the coupling
with the friction pressure tensor, the second of the (16.59) reduces to

∂

∂t
aμν − ωB Hμν,μ′ν′ aμ′ν′ + ν aμν = 0,

with the relaxation frequency ν = νa. With the help of the projection tensors intro-
duced in Chap.14 in connection with the rotation of tensors, the solution of this
equation is written as

aμν(t) = Cμν,λκ(t)aλκ(0), Cμν,λκ(t) = exp[−ν t]
2

∑

m=−2

exp[imωBt]P(m)
μν,λκ .

(17.12)
Now the scattered intensity is proportional to

Iscat = e′
μeν e′

μeν

2
∑

m=−2

Wm SLor(ω + m ωB),

e′
μeν e′

μeνWm = 1

2
e′
μeν

(

P(m)
μν,λκ + P(−m)

μν,λκ

)

e′
λeκ . (17.13)

According to the relations presented in Sect. 14.5, the weight coefficients Wm, with
the property

∑2
m=−2 Wm = 1, are explicitly given by

W0 = 3(e · h)2(e′ · h)2, W1 = W−1 = 1

2

[

(e · h)2 + (e′ · h)2
] − 2(e · h)2(e′ · h)2,

W2 = W−2 = 1

2
− 1

2
W0 − W1. (17.14)

http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_14
http://dx.doi.org/10.1007/978-3-319-12787-3_14
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The unit vector h is parallel to the magnetic field. Consider the HH-geometry and
put h perpendicular to both e′ and e. Then one has W0 = W±1 = 0 and resulting
spectral line is split by the frequency 4|ωB|, provided that the line width ν is not
larger than about |ωB|. Similarly, for the VH-geometry, W0 = W±2 = 0 is obtained,
when h is parallel to either e′ or to e. Then the line splitting is 2|ωB|.

17.1.3 Collisional and Diffusional Line Broadening

The examples of time-correlation and spectral functions considered so far do not
depend on the wave vector k. For depolarized Rayleigh scattering in gases, this
applies when the density n of the gas is large enough, such that k� � 1, where
� ∼ n−1 is themean free path, i.e. the average distance traveled by amolecule, in free
flight, between two collisions. Under these conditions, the line width is determined
by the collision frequency ν which is proportional to the number density. This type
of broadening is called collisional broadening or also pressure broadening, since
the density increases with increasing pressure. In the opposite limiting case, realized
at low densities where k� 
 1 applies, the line broadening is determined by the
Doppler broadening where the line shape, reflecting the velocity distribution of the
particles, is Gaussian. For intermediate cases, where one has k� ≈ 1, diffusional
processes contribute to the line width. This diffusional broadening is described by
spatial derivatives in the relevant equations.

For a spatially inhomogeneous system, the alignment tensor obeys the equation

∂aμν

∂t
+ ∇λbλμν + ν aμν = 0, (17.15)

where bλμν ∼ 〈cλ Jμ Jν 〉 is the flux of the tensor polarization, c is the velocity
of a molecule. Equations for the three irreducible parts of the tensor bλμν , which
are tensors of ranks 1, 2, 3, can be derived by kinetic theory. When the collision
frequencies for these three parts are practically equal to a single collision frequency
νb and large compared with ν, the approximation

bλμν = −Da ∇λ aμν, Da = kBT

m
ν−1
b (17.16)

can be made. Due to collisional changes of the rotational angular momenta, the
diffusion coefficient Da is smaller than a self diffusion coefficient. Insertion of the
relation for the flux into the equation for the tensor polarization aμν leads to

∂aμν

∂t
− DaΔ aμν + ν aμν = 0. (17.17)
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In a spatial Fourier transform of this equation, the Laplacian Δ is replaced by −k2.
The resulting time-correlation function is

C(t |k) = exp
[

−(ν + Dak2) t
]

,

and the corresponding spectral function is a Lorentzian with the line width deter-
mined by

ν + Dak2, ν ∼ n, Da ∼ n−1. (17.18)

The density dependence of the line width (17.18) shows a minimum at an interme-
diate density. Such a minimum, referred to as Dicke narrowing, is actually observed
provided that the collisions change the direction of the velocity of a particle more
effectively than its rotational angular momentum. Relation (17.18) does not apply to
lower densities where the Doppler broadening takes over [178, 179].

In general, the diffusional broadening is anisotropic in the sense that the
k-dependent contribution to the line width is different for the VH and HH scat-
tering geometries. The replacement of Dak2aμν in the spatial Fourier transformer
equation (17.17) by

Da

(

k2 aμν + β kμkκ aκν

)

,

leads to such an effect [180, 181]. The parameter β characterizes the anisotropy of
the effective diffusion coefficient.

17.2 Nonlinear Relaxation, Component Notation

In the absence of a flow and of any orienting torque, (16.149) describes a nonlinear
relaxation process which can be significantly different from the exponential relax-
ation following from a linear equation. The symmetric traceless second rank tensor
has 5 independent components. A convenient choice of components is introduced
next, based on appropriately defined basis tensors.

17.2.1 Second-Rank Basis Tensors

The tensor aμν is decomposed as

aμν =
4

∑

i=0

ai T i
μν, ai = T i

λκ aλκ . (17.19)

http://dx.doi.org/10.1007/978-3-319-12787-3_16
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The basis tensors Ti are defined by

T 0
μν =

√

3

2
ezμezν , T 1

μν = 1

2

√
2

(

exμexν − eyμeyν
)

,

T 2
μν = √

2 exμeyν , T 3
μν = √

2 exμezν , T 4
μν = √

2 eyμezν , (17.20)

where the ex, ey, ez are unit vectors parallel to the coordinate axes. In a principal
axes system, just the first two of these tensors occur, cf. Sect. 15.2.1. The first three
of these tensors have the symmetry of the plane Couette geometry. In general, all 5
components are needed.

In matrix notation, the basis tensors (17.20) read

√
6T0 =

⎛

⎝

−1 0 0
0 −1 0
0 0 2

⎞

⎠,
√
2T1 =

⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠,
√
2T2 =

⎛

⎝

0 1 0
1 0 0
0 0 0

⎞

⎠,

√
2T3 =

⎛

⎝

0 0 1
0 0 0
1 0 0

⎞

⎠,
√
2T4 =

⎛

⎝

0 0 0
0 0 1
0 1 0

⎞

⎠. (17.21)

The basis tensors obey the ortho-normalization relation

T i
μν T k

μν = δik. (17.22)

The square of the alignment tensor is equal to the sum of its squared components, viz.

a2 = aμνaμν =
4

∑

i=0

a2
i . (17.23)

Furthermore, as presented in [182], the symmetric traceless part of the product of
two of these tensors is explicitly given by

√
6 T 0

μλT 0
λν = T 0

μν,
√
6 T 1

μλT 1
λν = √

6 T 2
μλT 2

λν = −T 0
μν, T 1

μλT 2
λν = 0,

√
6 T 0

μλT 1
λν = −T 1

μν,
√
6 T 0

μλT 2
λν = −T 2

μν,
√
6 T 0

μλT 3
λν = 1

2
T 3

μν,

√
6 T 0

μλT 4
λν = 1

2
T 4

μν,
√
6 T 1

μλT 3
λν = √

6 T 2
μλT 4

λν = 1

2

√
3T 3

μν,

√
6 T 1

μλT 4
λν = −1

2

√
3T 4

μν,
√
6 T 2

μλT 3
λν = 1

2

√
3T 4

μν,
√
6 T 3

μλT 4
λν = 1

2

√
3T 2

μν,

√
6 T 3

μλT 3
λν = 1

2
(T 0

μν + √
3T 1

μν),
√
6 T 4

μλT 4
λν = 1

2
(T 0

μν − √
3T 1

μν). (17.24)

http://dx.doi.org/10.1007/978-3-319-12787-3_15
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The scalar constructed from the triple product of these tensors is determined by

√
6 T i

μλ T j
λνT k

νμ ≡ C(i, j, k). (17.25)

The coupling coefficient C(i, j, k) is symmetric under the interchange of any two
of the labels i, j, k, e.g. C(i, j, k) = C(i, k, j) = C(k, j, i). From (17.24) and
the orthogonality relation, one infers: apart from interchanges, the only nonzero
coefficients are

C(0, 0, 0) = 1, C(0, 1, 1) = C(0, 2, 2) = −1, C(0, 3, 3) = C(0, 4, 4) = 1

2
,

C(1, 3, 3) = C(2, 3, 4) = 1

2

√
3, C(1, 4, 4) = −1

2

√
3. (17.26)

17.1 Exercise: Components of a Uniaxial Alignment
Consider a uniaxial alignment given by aμν = √

3/2a nμnν . Determine the com-
ponents ai in terms of the polar coordinates ϑ and ϕ. Use nx = sin ϑ cosϕ,
ny = sin ϑ sin ϕ, nz = cosϑ .
Consider the special cases ϑ = 0, 45, 90◦ and cos2 ϑ = 1/3.

17.2.2 Third-Order Scalar Invariant and Biaxiality Parameter

The third-order scalar invariant is defined by I3 = √
6aμνaνκaκμ, cf. (15.4). Due to

(17.25) with (17.26), I3 = √
6aμνaνκaκμ is expressed in terms of the components

ai by

I3 = a0

[

a2
0 − 3(a2

1 + a2
2) + 3

2
(a2

3 + a2
4)

]

+ 3

2

√
3a1(a

2
3 − a2

4) + 3
√
3a2a3a4.

(17.27)
The square of the biaxiality parameter b, cf. Sect. 5.5.2, in particular (15.5), is

b2 = 1 − I 23 /I 32 .

17.2.3 Component Equations

The relaxation equations for the 5 components, which correspond to (16.149), with
(16.150), in the absence of a flow, are

∂

∂t
ai + Φi = 0, Φi = (ϑ + 2 a2) ai + Qi, i = 0, 1, 2, 3, 4. (17.28)

http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16


360 17 Tensor Dynamics

The quantity Qi = −√
6T i

μνaνλaλμ is explicitly given by

Q0 = −3 a2
0 + 3 (a2

1 + a2
2) − 3

2
(a2

3 + a2
4), (17.29)

Q1 = 6 a0a1 − 3

2

√
3 (a2

3 − a2
4), Q2 = 6 a0a2 − 3

√
3 a3a4,

Q3 = −3 a0a3 − 3
√
3 (a1a3 + a2a4), Q4 = −3 a0a4 + 3

√
3 (a1a4 − a2a3).

TheΦi occurring in the relaxation equation (17.28) are the derivatives of the potential
function Φ with respect to the components ai, viz. Φi = ∂Φ/∂a1, where

Φ = 1

2
ϑ a2 + Q + 1

2
(a2)2, Q = −√

6 aμνaνλaλμ. (17.30)

Apart from the sign and a numerical factor, Q is the determinant of the alignment
tensor, cf. (5.44). In terms of the ai, it is given by

Q = −a3
0 + 3 a0

(

a2
1 + a2

2 − 1

2
a2
3 − 1

2
a2
4

)

− 3

2

√
3 a1

(

a2
3 − a2

4

)

− 3
√
3 a2 a3 a4.

(17.31)
Since Q, obviously, is not a function of a2, the potential Φ is highly anisotropic in
the 5-dimensional space of the ai components.

17.2.4 Stability of Stationary Solutions

Let ast
μν be a stationary solution of the inhomogeneous relaxation equation (16.149)

with Φμν given by (16.150). Insertion of aμν = ast
μν + δaμν into the equation and

disregard of terms nonlinear in the small deviation δaμν from the stationary state
yields

∂

∂t
δaμν − 2 εμλκΩλδaκν − 2κ Γμκδaκν + Φμν,λκ δaλκ = 0, (17.32)

with the second derivative of the potential, viz.

Φμν,λκ = ∂

∂aλκ

Φμν = (ϑ +2 a2)Δμν,λκ +4 aμνaλκ −6
√
6Δ(2,2,2)

μν,αβ,λκaαβ, (17.33)

evaluated at the stationary value for the alignment tensor. For the isotropic coupling
tensor Δ

(2,2,2)··· see (11.36).

http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_11
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In the absence of a flow, one has ast
μν = aeqT 0

μν , when the z-direction is put
parallel to the director n. The equilibrium value of the order parameter is aeq =
3
4 + 3

4

√
9 − 8ϑ , ϑ < 9

8 . The relaxation equation for δaμν then reduces to

∂

∂t
δaμν + (ϑ + 2 a2

eq) δaμν + 4 a2
eq T 0

μν δa0 − 6
√
6 aeq T 0

μλ δaλν = 0. (17.34)

Due to (17.24), the last term in this equation is equivalent to

−6
√
6aeq T 0

μλδaλν

= aeq
(

−6T 0
μνδa0 + 6T 1

μνδa1 + 6T 2
μνδa2 − 3T 3

μνδa3 − 3T 4
μνδa4

)

.

The resulting equations for the i components of the distortion can be written as

∂

∂t
δai + ν(i) δai = 0, i = 0, . . . , 4, (17.35)

with dimensionless relaxation frequencies ν(i) = ν(i)(aeq). The stationary solution
is stable against these different distortions δai when ν(i) > 0 holds true. The case
ν(i) = 0 pertains to a marginal linear stability. Then terms nonlinear in δai have to
be taken into account.

For a uniaxial distortion where δaμν = T 0
μνδa0 applies, one obtains the relaxation

frequency

ν(0) = ϑ − 6aeq + 6a2
eq = 3aeq − 2ϑ.

The last equality follows from the equilibrium condition ϑ − 3aeq + 2a2
eq = 0.

At the phase transition temperature Tni one has ϑ = 1, aeq = 1 and consequently
ν(0) = 1. At lower temperatures ν(0) becomes larger and the exponential relaxation
of a uniaxial distortion is even faster. The highest temperature where a meta-stable
nematic phase exists, corresponds to ϑ = 9/8, with aeq = 3/4 and consequently
ν(0) = 0. This is a marginal stability.

The linear stability analysis for biaxial distortions, in particular the determination
of the relaxation frequencies ν(1) = ν(2) and ν(3) = ν(4), are deferred to the next
exercise.

17.2 Exercise: Stability Against Biaxial Distortions
Compute the relaxation frequencies ν(1) and ν(3) for biaxial distortions δaμν =
T 1

μνδa1 and δaμν = T 3
μνδa3 from the relevant relations given in Sect. 17.2.4.

Solve the full nonlinear relaxation equation for a3 with a1 = a2 = a4 = 0 and
a0 = aeq.
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17.3 Alignment Tensor Subjected to a Shear Flow

17.3.1 Dynamic Equations for the Components

In the presence of a shear flow the equation (16.149), viz.

daμν

dt
− 2 εμλκΩλaκν − 2κ Γμκaκν + Φμν =

√

3

2
λK Γμν,

is governing the dynamics of the alignment tensor. For a plane Couette flow with
the velocity in x-direction and its gradient in y-direction and with the imposed shear
rate Γ , this equation is equivalent to 5 coupled equations for the ai:

∂

∂t
a0 + 1

3

√
3 κΓ a2 + Φ0 = 0, (17.36)

∂

∂t
a1 − Γ a2 + Φ1 = 0,

∂

∂t
a2 + Γ a1 + 1

3

√
3 κΓ a0 + Φ2 = 1

2

√
3 λK Γ,

∂

∂t
a3 − 1

2
Γ (1 + κ)a4 + Φ3 = 0,

∂

∂t
a4 + 1

2
Γ (1 − κ)a3 + Φ4 = 0,

where Φi = (ϑ + a2)ai + Qi, i = 0, .., 4. For Qi see (17.29).
Stationary solutions of these equations correspond to problems discussed in

Sects. 16.3.6 and 16.4.6. Another application is the study of the effect of a shear
flow on the phase transition isotropic-nematic, as first presented in [169] and inde-
pendently treated in [170]. The solutions found for equation (17.36), however, are
much richer, cf. [183].

17.3.2 Types of Dynamic States

For a stationary imposed shear rate, not only stationary solutions exist. Also periodic
and even chaotic behavior is found for the alignment tensor, subjected to a plane
Couette flow. In the following, the name main director is used for the direction of
the principal axis associated with the largest eigenvalue of the tensor. The various
types of dynamic states are

• Symmetry adapted states with a3 = a4 = 0:

A Aligning: stationary in-plane flow alignment with a0 < 0. Furthermore, one
may distinguish states A+ and A− pertaining to positive and negative values

http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_17
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for the flow alignment angle χ . For nematics composed of rod-like particles the
first case occurs for small, the latter one for very large shear rates.

T Tumbling: in-plane tumbling of the alignment tensor, the main director is in the
flow plane and rotates about the vorticity axis.

W Wagging: in-plane wagging or librational motion of the main director about the
flow direction.

L Log-rolling: stationary alignment with a1 = a2 = 0 and a0 > 0. This out-of-
plane solution is instable, in most cases.

• Symmetry breaking states with a3 �= 0, a4 �= 0:

SB Stationary symmetry breaking states, which occur in pairs of a3, a4 and −a3,
−a4.

KT Kayaking-tumbling: the projection of the main director onto the flow plane
describes a tumbling motion.

KW Kayaking-wagging: a periodic orbit where the projection of the main director
onto the flow plane describes a wagging motion.

C Complex: complicated motion of the alignment tensor. This includes periodic
orbits composed of sequences ofKTandKWmotionwithmultiple periodicity
as well as aperiodic, erratic orbits. The largest Lyapunov exponent for the
latter orbits is positive, i.e., these orbits are chaotic.

For a given choice of parameters, in general, only a subset of these solutions are found
by increasing the shear rate Γ . The T and W states can be distinguished in a plot of
a1 versus a2. The point (a1, a2) = (0, 0) is included in the cycle for tumbling and
excluded for wagging. Similarly, in a plot of a3 versus a4, the point (a3, a4) = (0, 0)
is included in the cycle for the KT orbits and excluded for the KW orbits. ‘Phase
portraits’ of this kind are also useful to recognize more complicated periodic and
also irregular orbits. Examples for orbits pertaining to kayaking tumbling, kayaking
wagging, and chaotic solutions are shown in Figs. 17.2, 17.3 and 17.4. All curves
are computed for ϑ = 0, where aeq = 3/2, for λK = 1.25, and κ = 0, the tumbling
parameter is λ = 5/6 ≈ 0.833. The initial state has small, but finite values a0, .., a4.
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Fig. 17.2 Kayaking tumbling orbits in the 1–2- and 3–4-planes of the alignment
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Fig. 17.3 Kayaking wagging orbits in the 1–2- and 3–4-planes of the alignment
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Fig. 17.4 Chaotic orbits in the 1–2- and 3–4-planes of the alignment

The shear rates for the KT and KW solutions are Γ = 2.0 and 1.75, for the chaotic
solution it is 3.75.

The kayaking type of solutions, also referred to as “out of plane solutions”, were
first discussed in [190]. For a discussion of the complex dynamics of polymeric liquid
crystals and of related computer simulation studies see also [165, 191]. Observations
of the complex orientational dynamics in solutions of rod-like viruses are reported
in [192].

The scenarios for the route to chaos in nonlinear dynamics [194, 195], e.g. tran-
sitions via period doubling and via intermittent states do occur for the equations
considered here which govern the dynamics of the alignment tensor in the presence
of a Couette flow, cf. [183–187]. Equation (17.36) can be supplemented by an equa-
tion for the shear rate in order to control the shear stress, cf. [193]. Then it is possible
to stabilize stationary or periodic solutions for parameters where a constant shear
rate leads to chaotic behavior. For a survey of chaos control in other areas see [196].
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17.3.3 Flow Properties

The type of orientational behavior strongly affects the rheological behavior of the
fluid, due to the coupling between alignment and flow. The expansion with respect
to the basis tensors and the component notation can also be used for the symmetric
traceless part of the pressure tensor or the stress tensor. From (16.151) to (16.152)
one deduces expressions for the (dimensionless) shear stress σxy, and the normal
stress differences N1 = σxx −σyy and N2 = σyy −σzz in terms of the dimensionless
tensor components Σi ≡ Σal

μνT i
μν . These relations are

σxy = ηiso Γ + Σ2, N1 = 2Σ1, N2 = −√
3Σ0 − Σ1. (17.37)

Here ηiso stands for the scaled second Newtonian viscosity and one has

Σ2 = 2√
3

λ−1
K

[

φ2 − κ̃

(

a2φ0 + a0φ2 −
√
3

2
(a4φ3 + a3φ4)

)]

,

Σ1 = 2√
3

λ−1
K

[

φ1 − κ̃

(

a1φ0 + a0φ1 −
√
3

2
(a3φ3 − a4φ4)

)]

, (17.38)

Σ0 = 2√
3

λ−1
K

[

φ0 − κ̃

(

a0φ0 − a1φ1 − a2φ2 + 1

2
(a3φ3 + a4φ4)

)]

,

with κ̃ = 2κ/(3λK).
Examples for the rheological properties like the shear stress, the non-newtonian

viscosity and the normal stress differences as functions of the shear rate for a few
selected values of the temperature and for the other model parameters λK and κ are
e.g. found in [185–188]. Rheochaos, a term coined by Cates [197], is found for those
parameter ranges, where the dynamics of the alignment tensor is chaotic.

Solutions of the coupled equations for the velocity and the alignment tensor, for
a boundary driven plane Couette flow, show pulsed jets in the velocity field, [189].

The coupled dynamics of the alignment and the electric polarization was studied
in [97]. An extension of the theory to active materials involving swimmers was
introduced in [198], see also [199].

17.4 Nonlinear Maxwell Model

TheMaxwell model equation, cf. (16.81) and (16.94), governing the dynamics of the
friction pressure tensor contains a linear relaxation term. The model can be extended
to include damping terms nonlinear in the pressure tensor [200]. Here the notation
follows [201].

http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16
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17.4.1 Formulation of the Model

Here, the stress tensor rather than the pressure tensor is used. The symmetric traceless
part σμν of the stress tensor is written as

σμν = √
2Gref πμν + 2η∞Γμν, (17.39)

where Gref is a reference shear modulus, also calledMaxwell modulus GM or G. The
symmetric traceless tensor πμν is the dimensionless stress tensor, η∞ is the second
Newtonian viscosity and

Γμν = ∇μvν

is the symmetric traceless part of the deformation rate tensor. The generalized non-
linear Maxwell model is formulated for the dimensionless stress tensor [200]

∂

∂t
πμν − 2 εμλκωλπκν − 2κ Γμλπλν + τ−1

0 (Φμν − �20Δπμν) = √
2Γμν,

Φμν = ∂

∂πμν

Φ. (17.40)

The relevant relaxation time is called τ0 and �0 is a characteristic length. The tensor
Φμν is the derivative of a potential function Φ with respect to πμν . The standard
Maxwell model with the linear relaxation term corresponds to Φ = 1

2 Aπμνπμν

and Φμν = Aπμν , with a dimensionless coefficient A > 0. In terms of the scalar
invariants I2 = πμνπμν and I3 = √

6πμνπνλπλμ = 3
√
6 det(π), cf. Sect. 5.5 and

(15.4), the ansatz for the potential, up to the sixth power in π , is written as

Φ = 1

2
AI2 − 1

3
BI3 + 1

4
CI22 + 1

5
DI2 I3 + 1

6
EI32 + 1

6
FI23. (17.41)

The dimensionless coefficients A, B, C, D, E, F are model parameters. The deriv-
atives of I2 and I3 with respect to πμν are 2πμν and 3

√
6 πμλπλν , respectively.

17.4.2 Special Cases

The most widely studied special case is D = E = F = 0 with A = A0(1 − T0/T )

and A0, B, C > 0. Then the potential is analogous to theLandau-de Gennes potential
and the generalized nonlinear Maxwell model (17.40) is mathematically equivalent
to the dynamic equation for the alignment tensor. For a spatially homogeneous equi-
librium situation, a uniaxial stress tensor πμν = √

3/2π nμnν is found, where the

http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_15
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scalar stress π is π = B/(2C) ± √

B2/(4C2) − A/C , provided that A < B∗/(4C),
otherwise one has π = 0. The case π �= 0, in the absence of a flow corresponds to a
solid state with a yield stress. At the transition temperature, here called Tc, one has
π = πc ≡ 2B

3C , by analogy to the Landau-de Gennes theory for the isotropic-nematic
phase transition. Scaled variables can be introduced in analogy to the treatment in
Sect. 16.4.7. In particular, πμν is expressed in units of πc. For convenience, the
scaled stress tensor is also denoted by πμν . Then Φμν occurring in the Maxwell
model equation assumes the form

Φμν = A∗ πμν − 3
√
6 πμλπλν + 2πμν πλκπλκ,

A∗ = AA−1
c , Ac = 2B2

9C
. (17.42)

Furthermore, just as in Sect. 16.4.7, the time is expressed in units of a reference
time, here called τc, the shear rate and the vorticity are made dimensionless by
multiplication with τc = τ0A−1

c . A model parameter equivalent to the tumbling
parameter of nematics is λK = 2/(

√
3πc). The nonlinear Maxwell model equation

leads to non-stationary periodic and even chaotic solutions of ‘stick-slip’ type, when
the stick-slip parameter, defined by

λ = 2
(√

3πcπeq

)−1 + κ/3, πeq = 1

4

(

3 + √
9 − 8A∗

)

, A∗ < 1.125, (17.43)

is less than 1. For λ > 1, nonlinear flow behavior with shear thinning and shear
thickening are found, even for κ = 0.

Anexample for the non-steady response of the system to an applied steady shear, of
stick-slip type, is presented in Fig. 17.5 for the model parameters πc = 1.0, κ = 0.0,
η∞ = 0.1/A∗, and for A∗ = 0.25, 0.35, 0.42, from top to bottom, at the shear rate
3.2. Such a behavior is strikingly similar to that one seen in solid friction processes.
Notice that the friction force is proportional to the shear stress. When the plastic

Fig. 17.5 Shear stress
versus time for stick-slip
motion
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flow responsible for the friction occurs in a layer which is approximately constant, a
constant velocity corresponds to a constant velocity gradient. The nonlinear dynamics
observed here is linked with a Shilnikov bifurcation [195].

So far, a plane Couette flow with an imposed the shear rate was considered here.
In general, however, the stress tensor has to be inserted into the momentum balance
equation and the velocity field has to be solved, in accord with boundary conditions.
Calculations for a 3D flow problem show that the generalized nonlinear Maxwell
model yields turbulent flowbehavior at lowReynolds numbers [202]. Such a behavior
is typical for ‘elastic turbulence’, [204, 205].

The special case of an ‘isotropic’ potential function which just depends on I2, but
not on I3, viz. the case B = D = F = 0 with A = A0(1 − T0/T ) and A0, E > 0,
C < 0, was also treated in [206].



Chapter 18
From 3D to 4D: Lorentz Transformation,
Maxwell Equations

Abstract This chapter provides an outlook onto Special Relativity Theory and the
four-dimensional formulation of the Maxwell equations of electrodynamics. Co-
and contra-variant four-dimensional vectors and tensors are introduced, the Lorentz
transformation is discussed, properties of the four-dimensional epsilon tensor are
stated, some historical remarks are added. The formulation of the homogeneous
Maxwell equations involves the field tensors derived from the four-dimensional elec-
tric potential. The inhomogeneous Maxwell equations, which can also be derived
from a Lagrange density, contain the four-dimensional flux density as a source term.
The transformation behavior of the electromagnetic fields is stated. A discussion of
the four-dimensional force density and the Maxwell stress tensor conclude the final
chapter. The Maxwell equations in four-dimensional form are closely linked with
the Lorentz-invariance of these equations. Similarities and differences between the
3D and 4D formulation are discussed. First the Lorentz transformation as well as
four-dimensional vectors and tensors are introduced.

18.1 Lorentz Transformation

18.1.1 Invariance Condition

The Maxwell equations imply that the speed of light c, in vacuum, observed in
a coordinate system which moves with a constant velocity v with respect to the
original coordinate system, is the same as in the original system. And this is in
accordwith experiments. Consequently, the rule for the transformation of coordinates
between these two systems must be supplemented by a transformation of the time,
as formulated by the Lorentz transformation.

Let r, t be the position vector and the time in the original coordinate system,
r′, t ′ the corresponding variables in the system moving with the constant velocity.
The Maxwell equations enforce an invariance condition, viz. the square of the line
element or “length” s, viz.

s2 = c2t2 − r2

© Springer International Publishing Switzerland 2015
S. Hess, Tensors for Physics, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-12787-3_18
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is invariant, for two coordinate systems moving with a constant velocity with respect
to each other. More specifically, the linear relation between the coordinates and the
time

r → r′, t → t ′

has to be such that s2 = (s′)2, i.e.

c2t2 − r2 = c2(t ′)2 − r′2, (18.1)

or, with x, y, z instead of r1, r2, r3,

c2t2 − (x2 + y2 + z2) = c2(t ′)2 − (x ′2 + y′2 + z′2). (18.2)

When the coordinate systems are chosen such that the x- and also the x ′-direction is
parallel to the constant velocity v, one has y′ = y, z′ = z and (18.2) reduces to

c2t2 − x2 = c2(t ′)2 − x ′2.

The same relation applies for differences dt and dx between times t and positions
x . From

c2dt2 − dx2 = c2 (dt ′)2 − dx ′2 = 0

follows

dx

dt
= dx ′

dt ′
= c,

i.e. the speed of light is the same in both coordinate systems.
Four-dimensional vectors, endowed with the appropriate metric, allow to express

c2t2 − r2 as a 4D scalar product. Then (18.1) becomes analogous to the condition
that the 3D scalar product is invariant under a rotation of the coordinate system.

18.1.2 4-Vectors

Contra- and co-variant 4-vectors x i and xi, with i = 1, 2, 3, 4, are introduced by

x i = (r1, r2, r3, ct), xi = (−r1,−r2,−r3, ct). (18.3)

With the Einstein summation convention for the four Roman indices, the scalar
product of the 4-vectors is
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x i xi = −(r21 + r22 + r23 ) + c2t2 = −r2 + c2t2. (18.4)

The condition (18.1) for the Lorentz invariance is equivalent to

x i xi = (x ′)i (x ′)i. (18.5)

In this notation, the summation index always occurs as a pair of subscript and super-
script. Just as for the components of a position vectorwith respect to a non-orthogonal
basis, cf. Sect. 2.2.2, the contra- and co-variant components of the 4-vector are linked
with each other by

x i = gik xk, xi = gik xk. (18.6)

In matrix notation, the metric tensor is given by

gik = gik :=

⎛

⎜

⎜

⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟

⎟

⎠

. (18.7)

Notice that

gi� g�k = δki :=

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

, (18.8)

which is the 4-dimensional unit matrix. Furthermore, one has

x ixi = gikxixk = gikx ixk. (18.9)

The parity operatorP replaces r by −r, the time reversal operator T replaces t by
−t , cf. Sects. 2.6.1 and 2.8. Clearly, the combined operation PT is needed for all
components of the 4-vector to reverse sign at once, viz.

PT x i = −x i. (18.10)

Remarks on notation are in order. Sometimes, ct is treated as the first component
and the counting of the four components runs from 0 to 3, viz. the notation x0 = ct ,
x i = ri, i = 1, 2, 3 is used. Then the metric tensor has the diagonal elements
1,−1,−1 − 1.

The notation due to Minkowski, where the fourth component of the vector is ict,
with the imaginary unit i , avoids the use of a metric tensor. In this case, the square
of the pseudo-Euclidian norm of the vector is xkxk = r21 + r22 + r23 − c2t2.

The formulation of vectors and tensors in 4D-space with a metric tensor is pre-
ferred since it is more apt for the generalization from Special to General Relativity.

http://dx.doi.org/10.1007/978-3-319-12787-3_2
http://dx.doi.org/10.1007/978-3-319-12787-3_2
http://dx.doi.org/10.1007/978-3-319-12787-3_2
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18.1.3 Lorentz Transformation Matrix

Components of the 4-vector in two coordinate systems which move with a constant
velocityvwith respect to eachother are linearly related via theLorentz transformation
matrix L, viz.

(x ′)i = L i
k xk, (x ′)i = Lk

i xk. (18.11)

The condition (18.5) implies
L i
k Ln

i = δnk . (18.12)

This relation is analogous to the unitarity condition (2.31) for the 3-dimensional
rotation matrix. In (18.12) the summation is over the fore indices. The corresponding
relation with a summation over the hind indices also holds true:

Lk
i L i

n = δkn . (18.13)

As in the case of the orthogonal transformation discussed in Sect. 2.41 for a rotation in
3D, the reciprocal of the 4DLorentz transformationmatrixL is equal to its transposed
matrix L̃, thus L−1 = L̃.

18.1.4 A Special Lorentz Transformation

Consider a ‘primed’ coordinate system which moves with the constant velocity v in
the 1- or x-direction. With the abbreviations

β := v

c
, γ := 1

√

1 − β2
, (18.14)

the rule proposed by Lorentz for the interrelation of the components with respect to
these coordinate systems are

x ′ = γ (x − vt) = γ (x − βct), y′ = y, z′ = z, ct ′ = γ (ct − βx). (18.15)

Clearly, for β � 1 and consequently γ ≈ 1, the Lorentz transformation rule (18.15)
reduces to the corresponding Galilei transformation where x ′ = x − vt and t ′ = t .

A contra-variant Lorentz vector a is transformed according to

(a′)1 = γ (a1−βa4), (a′)2 = a2, (a′)3 = a3, (a′)4 = γ (a4−βa1). (18.16)

The pertaining Lorentz transformation matrix, cf. (18.11), is

http://dx.doi.org/10.1007/978-3-319-12787-3_2
http://dx.doi.org/10.1007/978-3-319-12787-3_2
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L i
k :=

⎛

⎜

⎜

⎝

γ 0 0 −βγ

0 1 0 0
0 0 1 0

−βγ 0 0 γ

⎞

⎟

⎟

⎠

. (18.17)

18.1.5 General Lorentz Transformations

The product

L i
k = L i

n(1)Ln
k(2)

of two Lorentz transformations L i
k(1) and L i

k(2) is also a Lorentz transformation. A
general Lorentz transformation can be expressed as a (multiple) product of special
Lorentz transformations. Notice that a rotation of the coordinate system, where r2 =
(r′)2 and t = t ′ also obeys the invariance condition (18.1). A 4 by 4 matrix where
the first 3 by 3 elements are given by the matrix elements of the orthogonal matrix
U pertaining to the 3D rotation, with furthermore, L4

4 = 1 and the other elements in
the fourth row and fourth column put equal to zero, is also a Lorentz-transformation.

Thus the general Lorentz-transformation governs the interrelation between the
position and the time of two coordinate systems, one of which is rotated and moving
with a constant velocity with respect to the other coordinate system.

18.2 Lorentz-Vectors and Lorentz-Tensors

18.2.1 Lorentz-Tensors

The 3D scalars, vectors and tensors, as presented in Sect. 2.5.2, are defined via their
transformation behavior under a rotation of the coordinate system.By analogy, the 4D
scalars, vectors and tensors needed for special relativity are defined via the behavior
of their components under a Lorentz transformation.

A quantity a with the 4 components a1, a2, a3, a4 is a Lorentz vector when its
components in the primed coordinate system are related to those in the original
system by the same transformation rule as obeyed by the 4-vector (r, ct), cf. (18.11),
i.e. when

(a′)i = L i
k ak, (a′)i = Lk

i ak (18.18)

holds true. A Lorentz scalar is a quantity which does not change under a Lorentz
transformation. A Lorentz tensor of rank � requires a �-fold product of Lorentz
matrices for the transformation of its 4 times � components. As an example, the
contra-variant components of a second rank tensor T are transformed according to

http://dx.doi.org/10.1007/978-3-319-12787-3_2
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(T ′)ik = L i
n Lk

m T nm. (18.19)

Equations of physics, properly formulated in terms of Lorentz tensors of ranks
� = 0, 1, 2, . . . are Lorentz invariant and consequently are in accord with Special
Relativity.

18.2.2 Proper Time, 4-Velocity and 4-Acceleration

Let τ be the time in the co-moving coordinate system, i.e. in a system moving with
a particle. It is called proper time (Eigenzeit). Time differences dt in a space-fixed
coordinate system are related to the proper time differences dτ by

dt = γ dτ = dτ
√

1 − β2
. (18.20)

This time-dilation explains the prolonged live timeof fastmovingπ -mesons observed
in high altitude radiation.

The proper time

dτ =
√

1 − β2dt (18.21)

is a Lorentz scalar, i.e. it is invariant under Lorentz transformations. This is inferred
from

dτ 2 =
(

1 − v2

c2

)

dt2 = 1

c2
(dt2 − dr · dr) = 1

c2
gikdx idxk.

Here v2 = dv · dv and dr = vdt were used.
The 4-velocity, defined by

ui = dx i

dτ
, (18.22)

is a Lorentz vector. Its components are

u1 = γ v1, u2 = γ v2, u3 = γ v3, u4 = γ c.

Notice that the 3D velocity v is the derivative of the position vector with respect to
t whereas the proper time τ occurs in (18.22).

The norm of the 4-velocity is constant, its square is given by

uiui = gik ui uk = c2. (18.23)
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Thus the 4-velocity, divided by c, is a 4-dimensional unit vector. As a consequence,
the 4-acceleration defined by

bi = dui

dτ
= d2x i

dτ 2
, (18.24)

obeys the relation
uibi = gik ui bk = 0, (18.25)

i.e. the 4-acceleration is orthogonal to the 4-velocity.
The 4-momentum pi of a particle with the rest m, is

pi = mui. (18.26)

The first three components of pi are equal to

pμ = m(v) vμ,

where the effective mass m(v) is defined by

m(v) := γ m = m
√

1 − v2/c2
. (18.27)

Here, the variable v occurring in γ is the magnitude of the velocity v of the moving
particle, as seen from the rest frame. The fourth component of pi is equal to the
energy E of a free particle moving with speed v, divided by c, viz.

p0 = m(v) c = E

c
,

where

E := m(v) c2 = mc2
√

1 − v2/c2
. (18.28)

The pertaining kinetic energy is

Ekin = E − mc2 = mc2
(

1
√

1 − v2/c2
− 1

)

.

In the limit v � c, this expression reduces to the non-relativistic limit Ekin = 1
2mv2.
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18.2.3 Differential Operators, Plane Waves

The 4D generalization of the nabla differential operator ∇ is

∂i = ∂

∂x i
:=

(

∂

∂r1
,

∂

∂r2
,

∂

∂r3
,

∂

∂ct

)

. (18.29)

Clearly, ∂ix i = 4 is a scalar, thus ∂i is a Lorentz-vector.
The second derivative

∂i ∂
i = −	 + ∂2

c2 ∂t2
= −� (18.30)

is a Lorentz scalar. Here	 = ∇μ∇μ is the 3D Laplace operator,� is the d’Alembert
operator, cf. (7.62).

A plane wave proportional to

exp [−i (−kν rν + ωt)] ,

is a solution of the wave equation � . . . = 0, cf. (7.64), provided that the wave
vector kν and the circular frequency ω obey the dispersion relation kνkν = ω2/c2,
or equivalently, ω = kc, cf. (7.65). Here, k is the magnitude of the wave vector.

The 4-wave vector K i is defined by

K i :=
(

k1, k2, k3,
ω

c

)

, Ki :=
(

−k1,−k2,−k3,
ω

c

)

. (18.31)

Thus the phase factor occurring in the expression for the plane wave is equal to the
Lorentz scalar

Ki x i = K i xi = −kν rν + ωt.

Let the function Ψ = Ψ (r, t) be the plane wave

Ψ ∼ exp[−i Kn xn].

Here, the summation index “i” is not used in order to avoid any confusion with the
imaginary unit i . Then one has

∂n Ψ = −i Kn Ψ, ∂n Ψ = −i K n Ψ.

Consequently, the wave equation

∂n ∂n Ψ = −Kn K n Ψ = −�Ψ = 0

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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yields
Kn K n = −k2 + ω2/c2 = 0. (18.32)

This 4D version of the dispersion relation is equivalent to (7.65).

18.2.4 Some Historical Remarks

The appropriate rules for the transformations underlying theMaxwell equationswere
studied by a number of scientists from about 1890 to 1910. Hendrik Lorentz (1853–
1928) published his findings in 1899 and 1904. The distance r travelled by light with
speed c during the time t is determined by r2 = c2t2. Then the invariance of the
speed of light implies the invariance condition

(r/t)2 = (r ′/t ′)2, (18.33)

which is a special case of (18.1). Lorentz noticed that the more general rule

x ′ = � γ (x − vt), y′ = � y, z′ = � z, t ′ = � γ
(

t − v

c2
x
)

, (18.34)

with an yet unspecified scale function � = �(v2) guarantees the validity of (18.33). It
is understood that the velocity has the components vx = v and vy = vz = 0. In 1905,
Henri Poincaré pointed out that the scale function should be � = 1, then (18.34)
reduces to the special transformation (18.15). Poincaré coined the term ‘Lorentz-
transformation’ for this transformation rule. In the same year, Albert Einstein gave
an alternative derivation of the transformation rules and elucidated their meaning. In
particular, he postulated that the transformation rule should also apply for the motion
of particles, not just for the propagation of light. He also introduced a scale function,
similar to �, and presented arguments for � = 1. In 1905, Einstein did not refer to the
work of Lorentz and Poincaré, later he also used the term Lorentz transformation.

Woldemar Voigt, who introduced in 1898 the word and the notion tensor in the
sense we still use it nowadays, had already noticed in 1887: the Maxwell equations
and the invariance of the speed of light require the invariance condition (18.5). For
the case where the primed coordinate systemmoves in x-direction, as in Sect. 18.1.4,
Voigt proposed the transformation rule

x ′ = x − vt, y′ = γ −1 y, z′ = γ −1 z, ct ′ = ct − v

c
x . (18.35)

This corresponds to themore general transformation (18.34)with the choice � = γ −1

for the scale function. It was by analogy to a volume conserving elastic deformation
of a solid body, which shrinks in two directions, when it is stretched in one, which led
Voigt to assume also a change of the y- and z-components. This is in contradistinction

http://dx.doi.org/10.1007/978-3-319-12787-3_7


378 18 From 3D to 4D: Lorentz Transformation, Maxwell Equations

to the simpler assumption made by Lorentz and Einstein: the y- and z-components
are not affected when the motion is in x-direction.

The time t ′ shown by a clock moving with the primed system, as seen from the
original systemat theposition x = vt , is t ′ = �γ t (1−v2/c2) = �γ −1. The timedelay,
expressed by t ′/t is �γ −1 and consequently equal to

√

1 − v2/c2 for the Lorentz-
transformation (18.15) and 1− v2/c2, for the Voigt-transformation. Experiments on
time delay confirm the validity of the Poincaré-Einstein choice � = 1 and thus the
Lorentz-transformation (18.15).

18.1 Exercise: Doppler Effect
Let ω0 be the circular frequency of the electromagnetic radiation in a system which
moves with velocity v = vex with respect to the observer, who records the frequency
ω. Determine the Doppler-shift δω = ω0 − ω for the two cases, where the wave
vector of the radiation is parallel (longitudinal effect) and perpendicular (transverse
effect) to the velocity, respectively.

Hint: use the Lorentz transformation rule (18.16) for the components of the 4-wave
vector K i, cf. (18.31). Furthermore, identify ω′ with ω0 and use k1 ≡ kx.

18.3 The 4D-Epsilon Tensor

18.3.1 Levi-Civita Tensor

In 4D, the totally antisymmetric isotropic tensor, which is analogous to the 3D epsilon
tensor, is a tensor of rank 4. Here ‘isotropic’ means, the tensor is form invariant
under a Lorentz transformation, just as the unit tensor and the metric tensor. The
antisymmetric 4D-epsilon tensor is also called Levi-Civita tensor. By analogy to
(4.1), it is defined according to

εk�mn = −εk�mn :=

∣

∣

∣

∣

∣

∣

∣

∣

δ1k δ1� δ1m δ1n
δ2k δ2� δ2m δ2n
δ3k δ3� δ3m δ3n
δ4k δ4� δ4m δ4n

∣

∣

∣

∣

∣

∣

∣

∣

. (18.36)

This implies

εi�mn =
1, k, �, m, n = even permutation of 1234

−1, k, �, m, n = odd permutation of 1234
0, k, �, m, n = else,

(18.37)

e.g. one has ε1234 = 1 and ε2134 = −1.

http://dx.doi.org/10.1007/978-3-319-12787-3_4
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18.3.2 Products of Two Epsilon Tensors

Formulas for the product of two 4D epsilon tensors, similar to those presented for
the 3D tensor in Sect. 4.1.2, follow from the definition (18.36). The product of two
epsilon-tensors is a tensor of rank 8 which can be expressed in terms of fourfold
products of the unit second rank tensor. Contractions yield tensors of ranks 6, 4, 2, 0,
in analogy the formulas valid for the 3D epsilon tensor, cf. Sect. 4.1.2. In particular,
the first contraction of the product is

εk�mn εk
′�′m′n = −

∣

∣

∣

∣

∣

∣

δk
′

k δ�′
k δm

′
k

δk
′

� δ�′
� δm

′
�

δk
′

m δ�′
m δm

′
m

∣

∣

∣

∣

∣

∣

. (18.38)

In many applications, the two-fold contracted version of the product of two epsilon-
tensors is needed. For m = m′, (18.38) reduces to

εk�mn εk
′�′mn = −2

∣

∣

∣

∣

∣

δk
′

k δ�′
k

δk
′

� δ�′
�

∣

∣

∣

∣

∣

= −2 (δk
′

k δ�′
� − δ�′

k δk
′

� ). (18.39)

The further contraction of (18.39), with � = �′, yields

εk�mn εk
′�mn = −6 δk

′
k . (18.40)

The total contraction of two epsilon tensors is equal to −24, viz.:

εk�mn εk�mn = −24. (18.41)

This numerical value 24 = 4! is equal to the number of non-zero elements of the
epsilon tensor in 4D.

18.3.3 Dual Tensor, Determinant

In 3D, the antisymmetric part of a second rank tensor has 3 independent components
which can be related to a vector. In 4D, the antisymmetric part of a second rank
tensor has 6 independent components. Here a similar duality relation exists, which,
however, links an antisymmetric second rank tensor with another second rank tensor
referred to as its dual tensor. More specifically, let A be an antisymmetric tensor
with Ak� = −A�k, then its dual Ã is defied by

Ãk� = 1

2
εk�mn Amn. (18.42)

http://dx.doi.org/10.1007/978-3-319-12787-3_4
http://dx.doi.org/10.1007/978-3-319-12787-3_4
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This implies, e.g. Ã12 = (A34 − A43)/2 = A34, Ã13 = −(A24 − A42)/2 = −A24,
and Ã14 = −(A23 − A32)/2 = −A23.

As an example, consider a special antisymmetric tensor associated with two vec-
tors a and b according to

Aik =

⎛

⎜

⎜

⎝

0 b3 −b2 a1
−b3 0 b1 a2

b2 −b1 0 a3
−a1 −a2 −a3 0

⎞

⎟

⎟

⎠

. (18.43)

The components of the contra-variant tensor have just the opposite sign in the fourth
row and column, viz.

Aik =

⎛

⎜

⎜

⎝

0 b3 −b2 −a1
−b3 0 b1 −a2
b2 −b1 0 −a3
a1 a2 a3 0

⎞

⎟

⎟

⎠

. (18.44)

In the dual tensor the role of the a- and b-components are interchanged, in particular

Ãik =

⎛

⎜

⎜

⎝

0 a3 −a2 −b1
−a3 0 a1 −b2
a2 −a1 0 −b3
b1 b2 b3 0

⎞

⎟

⎟

⎠

. (18.45)

The double contracted product of the tensor with its dual is a Lorentz scalar. For the
special case (18.43) and (18.45), the result is

Ãik Aik = −(a1b1 + a2b2 + a3b3) = −a · b. (18.46)

For comparison, the product of the contra-variant tensor with its co-variant version
is, in this special case,

Aik Aik = 2 (b · b − a · a). (18.47)

The determinant det(A) of the tensor A is equal to

det(A) = ( Ãik Aik)
2 = (a · b)2. (18.48)

The determinant is also determined by a fourfold product of A according to

εk
′�′m′n′

Akk′ A��′ Amm′ Ann′ = − det(A) εk�mn, (18.49)

or, equivalently

det(A) = 1

24
εk�mn εk

′�′m′n′
Akk′ A��′ Amm′ Ann′ . (18.50)
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18.4 Maxwell Equations in 4D-Formulation

18.4.1 Electric Flux Density and Continuity Equation

The 4-flux density J i is defined by

J i := ( j1, j2, j3, cρ), (18.51)

where j is the 3D electric flux density and ρ is the charge density. The continuity
equation, cf. (7.59),

∂ρ

∂t
+ ∇μ jμ = 0,

is equivalent to
∂i J i = 0. (18.52)

The differential operator ∂i is a Lorentz vector, thus the 4-flux density is also aLorentz
vector.

18.4.2 Electric 4-Potential and Lorentz Scaling

In terms of the 3D vector potential A and the scalar potential φ, the electrodynamic
4-potential is defined by

Φ i :=
(

A1, A2, A3,
φ

c

)

, Φi :=
(

−A1,−A2,−A3,
φ

c

)

. (18.53)

The Lorentz scaling, cf. (7.67),

∂

∂t
φ + ∇λ Aλ = 0,

corresponds to
∂i Φ

i = 0. (18.54)

Clearly, the 4-potential is a Lorentz vector.

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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18.4.3 Field Tensor Derived from the 4-Potential

In the 3D formulation of electrodynamics, the B-field and the E-field are related to
the vector and scalar potential functions by

B = ∇ × A, E = −∇φ − ∂A
∂t

.

The first components, e.g. of these equations are

B1 = ∂ A3

∂r2
− ∂ A2

∂r3
= ∂Φ2

∂x3
− ∂Φ3

∂x2
, E1 = − ∂φ

∂r1
− ∂ A1

∂t
= c

(

∂Φ1

∂x4
− ∂Φ4

∂x1

)

.

The equations for the other components can be inferred by analogy. All these equa-
tions are combined by introducing the second rank field tensor F:

Fik := ∂Φi

∂xk
− ∂Φk

∂x i
= ∂kΦi − ∂iΦk. (18.55)

Its contra-variant version is

F ik := ∂kΦ i − ∂ iΦk.

The field tensor is antisymmetric:

Fik = −Fki. (18.56)

In matrix notation, the field tensor is related to the components of the magnetic and
electric fields by

Fik :=

⎛

⎜

⎜

⎜

⎜

⎝

0 B3 −B2
1
c E1

−B3 0 B1
1
c E2

B2 −B1 0 1
c E3

− 1
c E1 − 1

c E2 − 1
c E3 0

⎞

⎟

⎟

⎟

⎟

⎠

. (18.57)

Notice, the top-left 3 × 3 part of this antisymmetric 4 × 4 matrix is just the mag-
netic field tensor introduced in Sect. 7.5.5. Thus (18.57) can be regarded as the 4-
dimensional extension of (7.70) made such that the components of E are also incor-
porated. This works because an antisymmetric tensor, in 4D, has 6 components, just
like B and E together.

The matrix for the contra-variant tensor F ik is given by an expression analogous
to (18.57) where the terms involving the E-field have the opposite sign.

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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18.4.4 The Homogeneous Maxwell Equations

From the definition Fik = ∂kΦi − ∂iΦk, cf. (18.55) follows

∂n Fik + ∂i Fkn + ∂k Fni = 0. (18.58)

The left hand side of this equation is identical to zero unless all three indices (n, i, k)

are different. The case (1, 2, 3) corresponds to ∇μBμ = 0, the cases (2, 3, 4),
(3, 1, 4), (1, 2, 4) are equivalent to the induction law

εμνλ ∇ν Eλ = −∂ Bμ

∂t
,

cf. (7.57). Thus (18.58) is the 4D formulation of the homogeneous Maxwell equa-
tions, which are a consequence of the field tensor being given in terms of the 4-
potential by (18.55).

The dual field tensor, cf. (18.42), is

F̃ ik = 1

2
εikmn Fmn = εikmn ∂mΦn. (18.59)

One has

∂k F̃ ik = εikmn ∂k∂mΦn = 0,

since ∂k∂m is symmetric under the interchange of k andm, while the epsilon-tensor is
antisymmetric. Thus the homogeneous Maxwell equations (18.58) are equivalent to

∂k F̃ ik = 0. (18.60)

18.4.5 The Inhomogeneous Maxwell Equations

By analogy to (18.57), the four-dimensional H -tensor is defined by

Hik :=

⎛

⎜

⎜

⎝

0 H3 −H2 c D1
−H3 0 H1 c D2
H2 −H1 0 c D3

−c D1 −c D2 −c D3 0

⎞

⎟

⎟

⎠

. (18.61)

The field tensor H ik has the same form as Hik, just with the opposite sign of the
terms involving D1, D2, D3.

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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The inhomogeneous Maxwell equations (7.56), viz.

∇μ Dμ = ρ, εμνλ ∇ν Hλ = jμ + ∂

∂t
Dμ,

are equivalent to
∂k H ik = J i. (18.62)

To complete the set of Maxwell equations, constitutive relations are needed which
link the field tensors Hik and Fik. In vacuum, the simple linear relation

Hik = 1

μ0
Fik (18.63)

applies. Hereμ0 = 4π10−7As/Vm is themagnetic induction constant of the vacuum,
As/Vm stands for the SI-units Ampere seconds/Volt meter.

18.4.6 Inhomogeneous Wave Equation

For currents and fields in vacuum, where (18.63) applies, the inhomogeneous
Maxwell equations, with (18.55) lead to

J i = ∂k H ik = 1

μ0
∂k F ik = ∂k(∂

kΦ i − ∂ iΦk).

Due to ∂kΦ
k = 0, cf. (18.54) and with the d’Alembert operator �, cf. (7.62) and

(18.30), the inhomogeneous wave equation reads

�Φ i = −μ0 J i. (18.64)

18.4.7 Transformation Behavior of the Electromagnetic Fields

The field tensor F ik is a Lorentz tensor which transforms according to (18.19).
For the special case where the primed coordinate system moves with the constant
velocity v = v1 = βc, with respect to the original coordinate system, the resulting
transformed tensor is

(F ′)ik := γ

⎛

⎜

⎜

⎝

0 F12 + βF24 F13 + βF34 γ −1F14

−(F12 + βF24) 0 γ −1F23 F24 + βF12

−(F13 + βF34) −γ −1F23 0 F34 + βF13

−γ −1F14 −(F24 + βF12) −(F34 + βF13) 0

⎞

⎟

⎟

⎠

.

(18.65)

http://dx.doi.org/10.1007/978-3-319-12787-3_7
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18.4 Maxwell Equations in 4D-Formulation 385

As before, the abbreviation γ = (1 − β2)−1/2 is used. In terms of the pertaining
components of the E- and B-fields, (18.65) corresponds to

E ′
1 = E1, E ′

2 = γ (E2 − vB3), E ′
3 = γ (E3 + vB2), (18.66)

and

B ′
1 = B1, B ′

2 = γ (B2 + vE3/c2), B ′
3 = γ (B3 − vE2/c2). (18.67)

The components of the electromagnetic fields perpendicular to the direction of the
relative velocity v are modified and do depend on v. In vector notation, the relations
(18.66) and (18.67) correspond to

E′ = γ (E + v × B), B′ = γ (B − v × E/c2).

Notice that

E′ · B′ = E · B, E′ · E′ − c2B′ · B′ = E · E − c2B · B. (18.68)

Due to (18.47) and (18.48), these transformation properties of the fields are associated
with the scalar invariants of the field tensor, viz.

FikF ik = 2 (B2 − E2/c2), det(F ik) = (E · B)2/c2. (18.69)

Relations analogous to (18.65) and (18.66), (18.67) apply for the field tensor H ik

and for the field vectors D and H.

18.4.8 Lagrange Density and Variational Principle

The Maxwell equations can be derived from a variational principle involving a
Lagrange density depending on the relevant scalar invariants. For electric charges
and currents in vacuum, where F ik = μ0H ik applies, the Lagrange density L is
defined by

L = −
(

J i Φi + 1

4μ0
FikF ik

)

. (18.70)

Its 4D ‘action’ integral is denoted by

S :=
∫

L d4x . (18.71)

The variational principle states: the action integral S is extremal under a variation
δΦ of the 4-potential Φ such that
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δS :=
∫

δL d4x = 0. (18.72)

It is understood that δΦ is zero at the ‘surface’ of the 4D integration range. Use of
the variational principle (18.72) leads to

(

J i − (μ0)
−1 ∂n F in

)

δΦi = 0,

and consequently
J i = (μ0)

−1 ∂n F in. (18.73)

This is the relation (18.62) for the special case where F ik = μ0H ik applies, i.e. for
charges, currents and fields in vacuum. The derivation of (18.73) from (18.72) is
deferred to the Exercise (18.2).

The scalars J iΦi and FikF ik occurring in the Lagrange density (18.70) are invari-
ant under the parity operation P and the time reversal T , despite the fact that the
quantities J i, Φi and Fik have a well defined symmetry only under the combined
operation PT .

The Lagrange density (18.70) leading to the inhomogeneous Maxwell equations
involves just the first one of the scalar invariants associated with the field tensor, cf.
(18.69). Inclusion of the second scalar invariant, as suggested by Born and Infeld
[207], leads to extended Maxwell equations with terms nonlinear in the E and B
fields, even in vacuum. The resulting electrostatic potential of an electron located at
r = 0, no longer diverges for r → 0.

18.2 Exercise: Derivation of the Inhomogeneous Maxwell Equations
Derive the inhomogeneous Maxwell equations for fields in vacuum from the varia-
tional principle (18.72) with the Lagrange density (18.70).

18.5 Force Density and Stress Tensor

18.5.1 4D Force Density

The 4D force density f i or fi is defined by

f i = Jk Fki, fi = J k Fki. (18.74)

The first three components of f i correspond to the 3D force density k with

kμ = ρ(Eμ + εμνλ vν Bλ) = ρ Eμ + εμνλ jν Bλ,

whereρ is the charge density and the 3Dflux density is j = ρv. The fourth component
of f i is the power density associated with k, more specifically
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f 4 = jν Eν/c = ρ vν Eν/c = vν kν/c. (18.75)

By analogy to the 3D description, where the force density is expressed as a spatial
derivative of the Maxwell stress tensor Tμν according to kμ = ∇νTμν , cf. Sect. 8.5.4,
the force density f i is related to the 4D stress tensor T ki by

f i = ∂k T ki. (18.76)

18.5.2 Maxwell Stress Tensor

The explicit expression for the stress tensor in terms of the field tensor is obtained
from (18.74) with the help of the Maxwell equations (18.58), (18.62). The derivation
is deferred to the Exercise 18.3. For a linear medium, the result is

T ki = g�m Fmi H �k − 1

4
gik F�m H �m. (18.77)

For a comparison with the 3D tensor Tμν notice that gik, in (18.77) plays the role of
δμν in (8.120) and (8.121), furthermore one has

1

4
F�m H �m = 1

2
(E · D − B · H).

The top-left 3 by 3 part of the 4D tensor, i.e. elements in the which do not involve the
component 4, are equal to the components of the 3D Maxwell stress tensor (8.122).
The components T 14, T 24, T 34 are linked with the Poynting vector S = E × H, cf.
(8.110), while the components T 41, T 42, T 43 are proportional to the density of the
linear momentum of the electromagnetic fields, cf. (8.125), viz.

jS = D × B. (18.78)

The T 44 component is essentially the energy density u = 1
2 (E ·D+B ·H). In matrix

notation, one has

T ik =

⎛

⎜

⎜

⎜

⎝

TMax
11 TMax

12 TMax
13 − 1

c S1

TMax
21 TMax

22 TMax
23 − 1

c S2

TMax
31 TMax

32 TMax
33 − 1

c S3
−c jS1 −c jS2 −c jS3 −u

⎞

⎟

⎟

⎟

⎠

. (18.79)

Here the components of the 3D Maxwell tensor are denoted by TMax
.. . For electro-

magnetic fields in vacuum and for linear isotropic media one has T ik = T ki. In
general, however, the stress tensor T ik is not symmetric.

http://dx.doi.org/10.1007/978-3-319-12787-3_8
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18.3 Exercise: Derivation of the 4D Stress Tensor

18.4 Exercise: Flatlanders Invent the Third Dimension and Formulate their
Maxwell Equations
The flatlanders of Exercise 7.3 noticed, they can introduce contra- and co-variant
vectors

x i = (r1, r2, ct), xi = (−r1,−r2, ct).

With the Einstein summation convention for the three Roman indices, the scalar
product of their 3-vectors is

x i xi = −(r21 + r22 ) + c2t2 = −r2 + c2t2.

They use the differential operator

∂i =
(

∂

∂r1
,

∂

∂r2
,

∂

∂ct

)

,

and form the 3-vectors

J I = ( j1, j2, cρ), Φ i = (A1, A2, φ/c)

from their current and charge densities and their vector and scalar potentials.
How are the relations

B = ∂1A2 − ∂2A1, Ei = −∂iφ − ∂ A/∂t, i = 1, 2,

which are equivalent to the homogeneousMaxwell equations, cast into the pertaining
three-dimensional form? Introduce a three-by-three field tensor Fij and formulate
their homogeneous Maxwell equations.
How about the inhomogeneous Maxwell equations in flatland?

http://dx.doi.org/10.1007/978-3-319-12787-3_7


Appendix
Exercises: Answers and Solutions

Exercise Chapter 1

1.1 Complex Numbers as 2D Vectors (p. 6)
Convince yourself that the complex numbers z = x + iy are elements of a vector
space, i.e. that they obey the rules (1.1)–(1.6). Make a sketch to demonstrate that
z1 + z2 = z2 + z1, with z1 = 3 + 4i and z2 = 4 + 3i , in accord with the vector
addition in 2D.

Exercise Chapter 2

2.1 Exercise: Compute Scalar Product for given Vectors (p. 14)
Compute the length, the scalar products and the angles betwen the three vectors a,
b, c which have the components {1, 0, 0}, {1, 1, 0}, and {1, 1, 1}.
Hint: to visualize the directions of the vectors, make a sketch of a cube and draw
them there!

The scalar products of the vectors with themselves are: a · a = 1, b · b = 2,
c · c = 3, and consequently

a = |a| = 1, b = |b| = √
2, c = |c| = √

3.

The mutual scalar products are

a · b = 1, a · c = 1, b · c = 2.

The cosine of the angle ϕ between these vectors are

1√
2
,

1√
3
,

2√
6
,
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respectively. The corresponding angles are exactly 45◦ for the angle between a and
b, and ≈70.5◦ and ≈35.3◦, for the other two angles.

Exercises Chapter 3

3.1 Symmetric and Antisymmetric Parts of a Dyadic in Matrix Notation (p. 38)
Write the symmetric traceless and the antisymmetric parts of the dyadic tensor Aμν =
aμbν in matrix form for the vectors a : {1, 0, 0} and b : {0, 1, 0}. Compute the norm
squared of the symmetric and the antisymmetric parts and compare with Aμν Aμν

and Aμν Aνμ.
In matrix notation, the tensor Aμν is equal to

A =
⎛

⎝

0 1 0
0 0 0
0 0 0

⎞

⎠. (A.1)

The trace of this matrix is zero. So its symmetric part coincides with its symmetric
traceless part

A = 1

2

⎛

⎝

0 1 0
1 0 0
0 0 0

⎞

⎠. (A.2)

The antisymmetric part of this tensor is

Aasy = 1

2

⎛

⎝

0 1 0
−1 0 0
0 0 0

⎞

⎠. (A.3)

The tensor product A · A yields

Aμλ Aλν = 1

4

⎛

⎝

1 0 0
0 1 0
0 0 0

⎞

⎠, (A.4)

and consequently

Aμλ Aλμ = 1

2
.

Similarly, the product of the antisymmetric part with its transposed, viz.

Aasy
μλ Aasy

νλ

http://dx.doi.org/10.1007/978-3-319-12787-3_3
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yields the same matrix as in (A.4). Thus one has also

Aasy
μλ Aasy

μλ = 1

2
.

Due to

Aμν Aμν = 1, Aμν Aνμ = 0,

this is in accord with (3.10), viz.

Aμν Bνμ = 1

3
Aλλ Bκκ + Aasy

μν Basy
νμ + Aμν Bνμ ,

with Bνμ = Aμν .

3.2 Symmetric Traceless Dyadics in Matrix Notation (p. 39)
(i) Write the symmetric traceless parts of the dyadic tensor Cμν = Cμν(α) = 2aμbν

in matrix form for the vectors a = a(α) : {c,−s, 0} and b = b(α) : {s, c, 0}, where
c and s are the abbreviations c = cosα and s = sin α. Discuss the special cases
α = 0 and α = π/4.

The desired tensor is

Cμν =
⎛

⎝

2cs c2 0
−s2 −2cs 0
0 0 0

⎞

⎠, (A.5)

and consequently, due to 2cs = sin 2α, c2 − s2 = cos 2α, one obtains

Cμν (α) =
⎛

⎝

sin 2α cos 2α 0
cos 2α − sin 2α 0

0 0 0

⎞

⎠. (A.6)

For α = 0 and α = π/4, this tensor reduces to

⎛

⎝

0 1 0
1 0 0
0 0 0

⎞

⎠,

⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠, (A.7)

respectively. The diagonal expression follows from the first of these tensors when
the Cartesian components of the vectors and tensors are with respect to a coordinate
system rotated by 45◦.
(ii) Compute the product Bμν(α) = Cμλ (0) Cλν (α), determine the trace and the
symmetric traceless part of this product. Determine the angle α, for wich one has
Bμμ = 0.

http://dx.doi.org/10.1007/978-3-319-12787-3_3
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The result is

Bμν(α) =
⎛

⎝

cos 2α − sin 2α 0
sin 2α cos 2α 0
0 0 0

⎞

⎠. (A.8)

Consequently. one has

Bμν (α) = 1

3
cos 2α

⎛

⎝

1 0 0
0 1 0
0 0 −2

⎞

⎠, (A.9)

and Bμμ = 2 cos 2α. Thus one has Bμμ = 0 for α = π/4, or 45◦. For this angle,
the two tensors (A.7) are ‘orthogonal’ in the sense that the trace of their product
vanishes.

3.3 Angular Momentum in Terms of Spherical Components (p. 43)
Compute the z-component of the angular momentum in terms of the spherical
components.
For a particle with mass m, the z-component of the angular momentum is Lz =
m(x ẏ − yẋ), in cartesian coordinates. In polar coordinates, cf. Sect. 2.1.4, one has
x = r sin ϑ cosϕ, y = r sin ϑ sin ϕ, z = r cosϑ . The time change of x and y is

ẋ = ṙ r−1x + ϑ̇r cosϑ cosϕ − ϕ̇r sin ϑ sin ϕ,

ẏ = ṙr−1y + ϑ̇r cosϑ sin ϕ + ϕ̇r sin ϑ cosϕ.

In the calculation of Lz, the terms involving ṙ and ϑ̇ cancel, the remaining terms add
up to

Lz = mr2ϕ̇.

3.4 Torque Acting on an Anisotropic Harmonic Oscillator (p. 44)
Determine the torque for the force

F = −kr · ee − (r − r · ee),

where the parameter k and unit vector e are constant. Which component of the
angular momentum is constant, even for k �= 1?

The torque isT = r×F = −(k−1)(r·e)r×e. Clearly, the torque vanishes for k = 1.
For k �= 1, the torque still is zero, when r × e = 0 or (r · e) = 0 hold true. The first
case corresponds the one-dimensional motion along a line parallel to e which passes
through the origin r = 0. This is a one-dimensional harmonic oscillator. The second
case is a motion in the plane perpendicular to e. This corresponds to an isotropic
two-dimensional harmonic oscillator.

http://dx.doi.org/10.1007/978-3-319-12787-3_2
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3.5 Velocity of a Particle Moving on a Screw Curve (p. 46)
Hint: Use α = ωt for the parameter occurring in the screw curve (3.48), ω is a
frequency.
Differentiation with respect to the time t yields the velocity

v = ρω [−e sin(ωt) + u cos(ωt)] + χ
ω

2π
e × u,

where it is assumed that not only the orthogonal unit vectors e and u, but also the
radius ρ and the pitch parameter χ are constant.

Exercise Chapter 4

4.1 2D Dual Relation in Complex Notation (p. 54)
Let the two 2D vectors (x1, y1) and (x2, y2) be expressed in terms of the complex
numbers z1 = x1 + iy1 and z2 = x2 + iy2. Write the dual relation corresponding to
(4.25) in terms of the complex numbers z1 and z2. How about the scalar product of
these 2D vectors?
Hint: the complex conjugate of z = x + iy is z∗ = x − iy.
The product z∗

1z2 is x1x2 + y1y2 + i(x1y2 − x2y1), thus the dual scalar is

x1y2 − x2y1 = 1

2i
(z∗

1z2 − z1 z∗
2).

Similarly, the scalar product of the two vectors is

x1y1 + x2y2 = 1

2
(z∗

1 z2 + z1 z∗
2).

In other words, the scalar product is the real part and the dual scalar is the imaginary
part of z∗

1z2.

Exercises Chapter 5

5.1 Show that the Moment of Inertia Tensors for Regular Tetrahedra and
Octahedra are Isotropic (p. 62)
Hint: Use the coordinates (1, 1, 1), (−1,−1, 1), (1,−1,−1), (−1, 1,−1) for the four
corners of the tetrahedron and (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1),
(0, 0,−1), for the six of the octahedron.

http://dx.doi.org/10.1007/978-3-319-12787-3_3
http://dx.doi.org/10.1007/978-3-319-12787-3_4
http://dx.doi.org/10.1007/978-3-319-12787-3_4
http://dx.doi.org/10.1007/978-3-319-12787-3_5
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(i) Tetrahedron: the position vectors of the corners are

u1 = ex + ey + ez, u2 = −ex − ey + ez,

u3 = ex − ey − ez, u4 = −ex + ey − ez.

In the products ui
μui

ν the mixed terms involving exμeyν , exμezν , eyμezν have the signs
(+,+,+), (+,−,−), (−,−,+), (−,+,−) for i = 1, 2, 3, 4, respectively. The
sum of these mixed terms vanishes and one finds

4
∑

i=1

ui
μui

ν = 4(exμexν + eyμeyν + ezμezν) = 4 δμν,

thus the moment of inertia tensor

Θμν = 8m δμν

is isotropic.
(ii) Octahedron: here the sum

∑6
i=1 ui

μui
ν yields 2(exμexν + eyμeyν + ezμezν) and conse-

quently

Θμν = 4m δμν.

5.2 Verify the Relation (5.51) for the Triple Product of a Symmetric Traceless
Tensor (p. 72)
Hint: use the matrix notation

⎛

⎝

a 0 0
0 b 0
0 0 c

⎞

⎠ ,

with c = −(a + b), for the symmetric traceless tensor in its principal axis system.
Compute the expressions on both sides of (5.51) and compare.
In matrix notation, the left hand side of

a · a · a = 1

2
a(a : a)

is

⎛

⎝

2a3/3 − b3/3 − c3/3 0 0
0 2b3/3 − c3/3 − c3/3 0
0 0 2c3/3 − a3/3 − b3/3

⎞

⎠ . (A.10)

http://dx.doi.org/10.1007/978-3-319-12787-3_5
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Due to c3 = −(a3+3a2b+3ab2+b3), the diagonal elements are equal to a3+a2b+
ab2 = a(a2 +ab +b2), b3 +a2b +ab2 = b(a2 +ab +b2), and −a3 −b3 −2a2b −
2ab2. On the other hand, the 11-element of a(a : a) is equal to (a2 + b2 + c2)a =
2a3 + 2b3 + 2a2b = 2a(a2 + ab + b2). Similarly, one finds for the 22-element
2b(a2 +ab +b2). The 33-element is (a2 +b2 + c2)c = −2(a +b)(a2 +ab +b2) =
−2(a3 + b3 + 2a2b + 2ab2). Comparison of the diagonal matrix elements shows
the validity of the relation (5.51).

Exercises Chapter 7

7.1 Divergence, Rotation and the Symmetric Traceless Part of the Gradient
Tensor for the Vector Fields iv to vi of Sect.7.2.1 (p. 90)
(iv) Uniaxial Squeeze-stretch Field

vμ = 3 eμ eνrν − rμ.

The gradient is ∇νvμ = 3eμeν − δμν . One finds

∇ · v = 0, ∇ × v = 0, ∇νvμ = 3 eνeμ .

(v) Planar Squeeze-stretch Field

vμ = eμ uνrν + uμ eνrν,

where e and u are two orthogonal unit vectors, e · u = 0. Since here ∇νvμ =
eμuν + eνuμ,

∇ · v = 0, ∇ × v = 0, ∇νvμ = 2 eνuμ ,

is found. When the coordinate axes are rotated by 45◦, this vector field reads

vμ = eμ eνrν − uμ uνrν .

Now one finds

∇ · v = 0, ∇ × v = 0, ∇νvμ = eνeμ − uνuμ .

(vi) Solid-like Rotation or Vorticity Field. A circular flow with a constant angular
velocity w:

vμ = εμκλwκrλ.

http://dx.doi.org/10.1007/978-3-319-12787-3_5
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Here one has ∇νvμ = εμκνwκ , and consequently

∇ · v = 0, (∇ × v)λ = ελνμεμκνwκ = 2wλ, ∇νvμ = 0.

7.2 Test Solutions of the Wave Equation (p. 102)
Proof that both the ansatz (7.63) and the plane wave (7.64) obey the wave equation.
Furthermore, show that the E-field is perpendicular to the wave vector, and that the
B-field is perpendicular to both.
(i) Ansatz (7.63). From (7.63), i.e. from

Eμ = E (0)
μ f (ξ), ξ = ̂kν rν − ct,

follows

∇ν Eμ = (∇νξ) E (0)
μ f (ξ)′ = ̂kν E (0)

μ f (ξ)′,

where the prime indicates the derivative with respect to ξ . Clearly,∇ν Eν = 0 implies
̂kν E (0)

ν = 0, the E-field is perpendicular to its direction of propagation. The second
spatial derivative of the field yields

∇ν∇ν Eμ ≡ Δ Eμ = E (0)
μ f (ξ)′′.

Similarly, the time derivative of the ansatz for the the E-field is given by

∂

∂t
Eμ =

(

∂

∂t
ξ

)

E (0)
μ f (ξ)′ = −cE (0)

μ f (ξ)′,

and the second time derivative is

∂2

∂t2
Eμ = c2E (0)

μ f (ξ)′′.

Thus the wave equation

ΔE − 1

c2
∂2

∂t2
E = 0,

cf. (7.60), is obeyed.
For the B-field, the ansatz

Bμ = B(0)
μ f (ξ), ξ = ̂kν rν − c t,

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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is made. The Maxwell equation −∂ Bμ/∂t = εμνλ∇ν Eλ leads to

cB(0)
μ = εμνλ

̂kν E (0)
λ .

Thus the magnetic field is perpendicular to both the wave vector and the electric
field.
(ii) Plane Wave (7.64). From the plane wave ansatz

Eμ = E (0)
μ exp[i kν rν − i ω t]

follows, by analogy to the calculations above,

∇ν Eμ = i kν Eμ.

Again ∇ν Eν = 0, corresponding to kν Eν = 0, implies that the E-field is perpendic-
ular to the wave vector k. The second spatial derivative leads to

ΔEμ = −k2 Eμ.

The first and second time derivatives of the field are

∂

∂t
Eμ = −i ω Eμ,

∂2

∂t2
Eμ = −ω2 Eμ.

Thus the wave equation (7.60) imposes the condition

k2 = ω2/c2,

which proofs the dispersion relation (7.65).
Here −∂ Bμ/∂t = εμνλ∇ν Eλ leads to

ω Bμ = εμνλ kν Eλ.

As expected, also for plane waves, the magnetic field is perpendicular to both the
wave vector and the electric field.

7.3 Electromagnetic Waves in Flatland? (p. 105)
In flatland, one has just 2 dimensions. Cartesian components are denoted by Latin
letters i, j, . . ., i = 1, 2, j = 1, 2, etc. The summation convention is used. In vacuum,
and for zero charges and currents, the adapted Maxwell equations are

∇iEi = 0, −∇iHij = ε0
∂

∂t
Ej, ∇iEj − ∇jEi = −μ0

∂

∂t
Hij.

In 2D, there is no equation corresponding to ∇λ Bλ = 0. It is not defined and not
needed in 2D. The magnetic field tensors have only one independent component.

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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Differentiation of the second of these equations with respect to t , insertion of the
time change of the magnetic field tensor as given by the third equation and use of
the first one leads to the wave equation

∇i∇iEj = ε0μ0
∂2

∂t2
Ej.

Again, the speed c of the radiation is determined by c2 = (ε0μ0)
−1. The electric

field is perpendicular to the direction of the propagation, even in 2D.
How about 1D? Obviously, the Maxwell equations loose their meaning in a true

one-dimensional world, thus electromagnetic waves do not exist in 1D. On the other
hand, longitudinal sound waves still can propagate in 1D.

7.4 Radial and Angular Parts of the Nabla Operator, Compare (7.81) with
(7.78) (p. 106)
Due to the definition (7.80), the term εμνλr̂νLλ in (7.81) is equal to

εμνλ r̂ν ελαβ r̂α

∂

∂ r̂β

= (δμαδνβ − δμβδνα) r̂ν r̂α

∂

∂ r̂β

= r̂μr̂ν

∂

∂ r̂ν

− ∂

∂ r̂μ

.

Here, the relation (4.10) was used for the product of the two epsilon-tensors. The
last term can be written as ∂

∂r̂μ
= δμν

∂
∂r̂ν

and hence

εμνλ r̂ν Lλ = εμνλ r̂ν ελαβ r̂α

∂

∂ r̂β

= (r̂μr̂ν − δμν)
∂

∂ r̂ν

.

Now (7.81) is seen to be equal to (7.78).

7.5 Prove the Relations (7.82) and (7.83) for the Angular Nabla Operator
(p. 106)
From the definition (7.80) of the differential operator L follows

LμLν = εμαβrα∇βενκτ rκ∇τ = εμαβrαενκτ δβκ∇τ + εμαβενκτ rαrκ∇β∇τ

= εμαβενβτ rα∇τ + εμαβενκτ rαrκ∇β∇τ .

Due to εμαβενβτ = εμαβετνβ = δμτ δνα − δμνδατ , cf. (4.10), one obtains

LμLν = rν∇μ − δμνrα∇α + εμαβ ενκτ rα rκ∇β∇τ .

The second term on the right hand side is obviously symmetric under the exchange of
μ and ν. The same applies to the third term. To see this, notice that the simultaneous
interchanges α ↔ κ and β ↔ τ corresponds to an interchange μ ↔ ν. Thus one
has

ελμνLμLν = ελμνrν∇μ = −Lλ,

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_4
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_4
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which is the relation (7.83), and

LμLν − LνLμ = rν∇μ − rμ∇ν .

The right hand side of the last equation can be written as −εμνλLλ, since one has
−εμνλLλ = −εμνλελαβrα∇β = −(rμ∇ν − rν∇μ). This proves the commutation
relation (7.82).

7.6 Determine the Radial Part of the Laplace Operator in D Dimensions (p. 108)
Let f = f (r) a function of the magnitude r = |r|. It does not depend on the
direction of r, it has no angular dependence. Thus only the radial part Δr of the
Laplace operator Δ ≡ ∇μ∇μ gives a contribution, when Δ is applied on f (r). Due
to ∇μ∇μ f = ∇μ(∇μ f ) and ∇μ f = d f

dr ∇μr = d f
dr r−1rμ, one obtains ∇μ∇μ f =

rμ∇μ(r−1 d f
dr ) + r−1 d f

dr ∇μrμ. Notice that rμ∇μ is r times the spatial derivative in
radial direction, here equal to r d

dr . On account of ∇μrμ = D, for D dimensions, one

finds ∇μ∇μ f = d2 f
dr2

+ (D − 1)r−1 d f
dr . For the case where the Laplace operator is

applied to a function which also depends on the direction of r, the derivative d
dr with

respect to r is replaced by the partial derivative ∂
∂r , in the previous expression. Thus

the radial part of the Laplace operator is inferred to be

Δr = ∂2

∂r2
+ (D − 1) r−1 ∂

∂r
= r−(D−1) ∂

∂r

(

r (D−1) ∂

∂r

)

.

Prove Δ r (2−D) = 0
Application of the expression given above yields Δrn = n(D + n − 2)r (n−2), where
the exponent n is a real number. Apart from the trivial solution n = 0, the requirement
Δrn = 0 implies n = 2 − D. Thus r−1 is a solution of the Laplace equation, for
D = 3. One finds r−2 for D = 4.

The case D = 2 has to be considered separately. Here ln(r/rref) is a solution of the
Laplace equation, please check it. The quantity rref is a reference length introduced
such that the argument of the logarithm ln is dimensionless.

Exercises Chapter 8

8.1 Compute Path Integrals Along a Closed Curve for Three Vector Fields
(p. 116)
The differential dr needed for the integration is recalled to be dx{1, 0, 0}, for the
straight line C1, and ρdϕ{− sin ϕ, cos ϕ, 0} for the semi-circle C2. The start and
end points are x = −ρ and x = ρ, for C1. For C2 one has ϕ = 0 and ϕ = π , see
Fig.8.3.

http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_7
http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_8
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(i) Homogeneous Field, where v = e = const., with e parallel to the x-axis.
The expectation is

∮

v · dr = I = 0 since the vector field is the gradient of a scalar
potential. The explicit calculation of the line integrals I1 and I2 along the curves
C1 and C2 yields

I1 =
∫

C1

v · dr =
∫ ρ

−ρ
dx = 2 ρ,

I2 =
∫

C2

v · dr = −ρ

∫ π

0
sin ϕdϕ = ρ cosϕ|π0 = −2 ρ.

Thus I = I1 + I2 = 0, is found, as expected.
(ii) Radial Field, where v = r.
Again

∮

v ·dr = I = 0 is expected since the vector field possesses a scalar potential
function, viz.: Φ = (1/2)r2. Here the integration along C1 yields

I1 =
∫

C1

r · dr =
∫ ρ

−ρ

xdx = (1/2) x2 |ρ−ρ = 0.

The integral I2, performed along C2, also gives zero since one has r · dr = 0
on the semi-circle. Thus again, the explicit calculation confirms the expectation
I = ∮

v · dr = 0.
(iii) Solid-like Rotation or Vorticity Field, where v = w × r, with the constant axial
vector w parallel to the z-axis.
In this case, the curl ∇ × v is not zero and no scalar potential exists. So

∮

v · dr =
I �= 0 is expected.

For the explicit calculation of the integrals, the scalar product v · dr is needed.
With wz ≡ w, the vector field v has the components {−w y, w x, 0} and consequently
v · dr = w(−ydx + xdy). For the integral I1 this implies I1 = −w

∫ ρ

−ρ
ydx = 0,

since y = 0 along the line C1. The integration along the semi-circle yields

I2 =
∫

C2

v · dr = wρ2
∫ π

0
(sin2 ϕ + cos2 ϕ)dϕ = w ρ2

∫ π

0
dϕ = π w ρ2.

Thus the non-zero result I = I1 + I2 = πwρ2 is obtained here for
∮

v · dr.

8.2 Surface Integrals Over a Hemisphere (p. 124)
Consider a hemisphere with radius R and its center at the origin. The unit vector
pointing from the center to the North pole is u. Surface integrals Sμν = ∫

vνdsμ

are to be computed over the hemisphere.
(i) Homogeneous Vector Field vν = vv̂ν = const. By symmetry, the integral is
proportional to uμv̂ν . The ansatz

Sμν = c1 uμ v̂ν
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is made, with a scalar coefficient c1. Multiplication of this equation by uμv̂ν leads to

c1 = uμ v̂ν Sμν = v
∫

uμdsμ.

For the hemisphere, located on the x–y-plane, one has uμdsμ = R2 cos θ sin θdθdϕ.
With ζ = cos θ , where θ is the angle between u and the vector r̂, the integral for
c1 is

c1 = v 2π R2
∫ 1

0
ζdζ = v π R2.

The flux S = Sμμ is found to be

S = v · u π R2,

which, as expected, is equal to the flux through the circular base of the hemisphere.
(ii) Radial Field vν = rν . Here the ansatz

Sμν = c2 uμuν

is made. Multiplication of this equation by uμuν yields an expression for the scalar
coefficient c2, viz.

c2 =
∫

uνrνuμdsμ = 2π R3
∫ 1

0
ζ 2dζ = 2

3
π R3.

The resulting flux is just the area of the hemisphere.

8.3 Verify the Stokes Law for a Vorticity Field (p. 127)
The vector field is given by v = w × r with w = const. The curl of the field is
∇ × v = 2w, cf. Exercise 7.1.
Since the surface element ds is parallel to w, one has

S ≡
∫

(∇ × v) · ds = 2w
∫

ŵ · ds,

where w is the magnitude of w. Using the planar polar coordinates ρ and ϕ yields

S = 2w
∫ R

0
dρ

∫ 2π

0
dϕρ = 2π R2 w.

The line integral to be compared with is
∮

v · dr. Now v and dr are parallel to each
other and v · dr = RwRdϕ. This leads to
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I ≡
∮

v · dr = R2 w
∫ 2π

0
dϕ = 2π R2 w.

The equality S = I is in accord with the Stokes law.

8.4 Moment of Inertia Tensor of a Half-Sphere (p. 136)
A half-sphere with radius a and constant mass density is considered. The orientation
is specified by the unit vector u, pointing from the center of the sphere to the center
of mass of the half-sphere. For the present geometry, the moment of inertia tensor is
uniaxial and of the form

Θ‖uμuν + Θ⊥(δμν − uμuν).

The z-axis is chosen parallel to u, just as in examples discussed in Sects. 8.3.2 and
8.3.3. First, moments of inertia are computed with respect to the geometric center of
the sphere. The pertaining moment of inertia Θeff‖ is

Θeff‖ = ρ02π2
∫ a

0
r4dr

∫ 1

0
ζ 2dζ = 4π

15
ρ0a5 = 2

5
Ma2,

where M = (2π/3)ρ0a3 is the mass of the half-sphere. As before, ζ = cos θ

is used. The moment Θeff⊥ is inferred from the mean moment of inertia Θ̄eff , via
Θeff⊥ = (3Θ̄eff − Θeff‖ )/2. Equation (8.69) yields

3 Θ̄eff = 2
∫

V
ρ(r) r2d3r = 4π

5
ρ0a5 = 6

5
Ma2.

This implies Θeff⊥ = Θeff‖ , i.e. the moment of inertia tensor is isotropic, when evalu-
ated with respect to the geometric center. According to the law of Steiner (8.66), the
moment of inertia tensor with respect to the center of mass is

Θμν ≡ Θcm
μν = Θeff

μν − M(R2δμν − Rμ Rν) = 2

5
Ma2 δμν M R2(δμν − uμuν),

with R = 3
8a is the distance between the center of mass and the geometric center,

cf. (8.63). Thus one finds

Θ‖ = 2

5
Ma2, Θ⊥ = Θ‖ − 9

64
Ma2 = 83

128
Θ‖.

As expected, Θ⊥ is smaller than Θ‖.

http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_8
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Exercise Chapter 9

9.1 Verify the Required Properties of the Third and Fourth Rank Irreducible
Tensors (9.5) and (9.6) (p. 157)
The required symmetry of the third and fourth rank tensors aμaνaλ and aμaνaλaκ,
as given explicitly by (9.5) and (9.6) is seen by inspection, note that aμaν = aνaμ

and δμν = δνμ.
Setting λ = ν, in (9.5), leads to

aμaνaν = aμa2 − 1

5
a2(aμ 3 + aνδμν + aνδμν) = 0.

Here δνν = 3 and aνδμν = aμ are used.
Likewise, putting κ = λ in (9.6), yields

aμaνaλaκ = aμaνa2

− 1

7
a2(aμaν3 + aμaλδνλ + aμaλδνλ + aνaλδμλ + aνaλδμλ + a2δμν)

+ 1

35
a4(δμν3 + δμλδνλ + δμλδνλ)

= aμaνa2
(

1 − 1

7
7

)

− 1

7
a4δμν + 1

35
a4δμν5 = 0,

where, e.g. aλδμλ = aμ and δμλδνλ = δμν have been used.

Exercises Chapter 10

10.1 Prove the Product Rule (10.13) for the Laplace Operator (p. 166)
The proof of (10.13), viz.

Δ(g(r)Xμ1μ2···μ�
) = (g′′ − 2 �r−1 g′) Xμ1μ2···μ�

starts from the general relation

Δ( f g) = f Δg + 2 (∇κ f ) (∇κ g) + g Δ f,

for any two functions f and g. Now choose for f the �-th descendingmultipole tensor
Xμ1μ2···μ�

and assume that the scalar g depends on r = |r| only. Since ΔX ... = 0,
one obtains

Δ(g(r)Xμ1μ2···μ�
) = Xμ1μ2···μ�

Δg + 2 g′ r−1 rκ ∇κ Xμ1μ2···μ�
.

http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_10
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Due to rκ∇κ = r∂/∂r and Xμ1μ2···μ�
∼ r−(�+1), the second term in the preceding

equation is equal to

−2g′ r−1 ((� + 1)X ....

Use of Δg = g′′ + 2r−1g′ then leads to (10.13). The condition � ≥ 1 is obvious for
the validity of the present considerations. When the function r (−1) stands for X in
the case � = 0, the value � = 0 is also included in (10.13).

10.2 Multipole Potentials in D Dimensional Space (p. 166)
In D dimensions, r (2−D) is the radially symmetric solution of the Laplace equation, cf.
exercise 7.6, for D ≥ 3. By analogy with (10.2), D dimensional multipole potential
tensors are defined by

X (D)
μ1μ2···μ�

≡ (−1)�
∂�

∂rμ1∂rμ2 · · · ∂rμ�

r (2−D) = (−1)� ∇μ1∇μ2 · · · ∇μ�
r (2−D),

(A.11)
where now ∇ is the in D dimensional Nabla operator. For D = 2, r (2−D) is replaced
by − ln r . Compute the first and second multipole potentials, for D ≥ 3 and for
D = 2.
The first descending multipole is the D dimensional vector

X (D)
μ = (D − 2)r (1−D)r̂μ = (D − 2)r−Drμ, D ≥ 3, X (2)

μ = r−1r̂μ = r−2rμ.

The resulting second multipole potential X (D)
μν = −∇ν X (D)

μ , D ≥ 2, is

X (D)
μν = (D − 2)r−(D+2)(D rμrν − δμνr2), D ≥ 3, X (2)

μ = r−4(2 rμrν − δμνr2).

It is understood that δμν is the D dimensional unit tensor with δμμ = D. Thus the

tensors X (D)
μν are traceless.

10.3 Compute the Torque on a Rotating Sphere (p. 181)
A sphere rotating with the angular velocity Ω experiences a friction torque

Tμ = −8π η R3 Ωμ.

To derive this result from the creeping flow equation, considerations similar to those
used for the Stokes force, should be made.
The distortion of the pressure and the flow velocity should be linear in Ω and the
respective expressions should have the appropriate parity. The only scalar available
for p is proportional to XνΩν . This term, however has the wrong parity behavior,
thus one has p = 0, in this case. The possible vectors are proportional toΩμ, XμνΩν

and εμλνΩλ Xν . The first two of these expressions have the wrong parity. The only

http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_10
http://dx.doi.org/10.1007/978-3-319-12787-3_10
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polar vector is the ansatz vκ = c(r)εκλνΩλ Xν , with a coefficient c. For the present
problem, the creeping flow equation reduces to Δvκ = 0. Thus c = const. is a
solution, which has still to be specified by the boundary conditions.

The fluid is assumed to be at rest, far away from the sphere. This is obeyed by
the ansatz with c = const. A no-slip boundary condition at the surface of the sphere
means vκ = RεκλνΩλrν , at r = 1. Due to Xν = r−3rν , the solution for the flow
velocity is

vκ = R εκλν Ωλ Xν . (A.12)

According to (8.98), for the present problem, the torque is given by

Tμ = −εμαβ R2
∮

rα r̂τ pτβd
2̂r = η εμαβ R3

∮

r̂α r̂τ (∇τ vβ + ∇βvτ )d
2̂r .

The first term in the integrand involves

r̂τ ∇τ vβ = R−1 ∂

∂r
vβ = −2R−1 vβ.

The expression r̂τ∇βvτ , occurring in the second term of the integrand, is equal to

−r̂τ ετλν Ωλ Xνβ = r−3 r̂τ ετλβ Ωλ = −R−1 vβ.

Thus one obtains

Tμ = −3ηεμαβεβλτΩλ R3
∮

r̂α r̂τd
2̂r .

The surface integral
∮

r̂α r̂τd2̂r = (4π/3)δατ leads to

Tμ = −4πηR3εμαβεβλαΩλ = −8πηR3Ωμ,

which is the expression for the friction torque mentioned above. The minus sign and
η > 0 imply that the rotational motion is damped. Time reversal invariance is broken,
as typical for irreversible processes.

Exercises Chapter 11

11.1 Contraction Rules for Delta-Tensors (p. 185)
Verify (11.6) for � = 2.
The contraction rule for the �-th Δ�-tensor is

http://dx.doi.org/10.1007/978-3-319-12787-3_8
http://dx.doi.org/10.1007/978-3-319-12787-3_11
http://dx.doi.org/10.1007/978-3-319-12787-3_11
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Δ
(�)

μ1μ2···μ�−1λ,μ′
1μ

′
2···μ′

�−1λ
= 2� + 1

2� − 1
Δ

(�−1)
μ1μ2···μ�−1,μ

′
1μ

′
2···μ′

�−1
.

For � = 2, it reduces to Δμλ,νλ = 5
3δμν .

From the definition of the Δ-tensor follows

Δμλ,νλ = 1

2
(δμνδλλ + δμλδνλ) − 1

3
δμλδνλ =

(

2 − 1

3

)

δμν = 5

3
δμν,

as expected.

11.2 Determine Δ
(3)
μνλ,μ′ν′λ′ (p. 186)

Hint: compute Δ
(3)
μνλ,μ′ν′λ′ , in terms of triple products of δ-tensors, from (11.15) for

� = 3.
Use of (11.15) for � = 3 with (10.6) yields

Δ
(3)
μνλ,μ′ν′λ′ = 1

6
∇μ∇ν∇λ rμ′rν′rλ′

= 1

6
∇μ∇ν∇λ

[

rμ′rν′rλ′ − 1

5
r2(rμ′δν′λ′ + rν′δμ′λ′ + rλ′δμ′ν′)

]

.

Successive application of the differential operators ∇μ∇ν∇λ on the first term after
the second equality sign of the equation above yields

∇μ∇ν∇λ(rμ′rν′rλ′) = ∇μ∇ν(rμ′rν′δλλ′ + rμ′rλ′δλν′ + rλ′rν′δλμ′)

= ∇μ

[

(rμ′δνν′ + rν′δνμ′)δλλ′

+(rμ′δνλ′ + rλ′δνμ′)δλν′ + (rλ′δνν′ + rν′δνλ′)δλμ′
]

= (δμμ′δνν′ + δμν′δνμ′)δλλ′

+(δμμ′δνλ′ + δμλ′δνμ′)δλν′ + (δμλ′δνν′ + δμν′δνλ′)δλμ′ .

Likewise, the application of the same differential operators on r2rμ′ occurring above
as factor of δν′λ′ yields

∇μ∇ν∇λ(r
2rμ′) = ∇μ∇ν(2rλrμ′ + r2δλμ′) = 2∇μ(rμ′δνλ + rλδνμ′ + rνδλμ′)

= 2(δμμ′δνλ + δμλδνμ′ + δμνδλμ′).

The derivatives of r2rν′ and r2rλ′ which are factors of δμ′λ′ and δμ′λ′ are given by
analogous expressions where just μ′ is replaced by ν′ and λ′. All terms for Δ(3) put
together, with the numerical factors, leads to

http://dx.doi.org/10.1007/978-3-319-12787-3_11
http://dx.doi.org/10.1007/978-3-319-12787-3_11
http://dx.doi.org/10.1007/978-3-319-12787-3_10
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Δ
(3)
μνλ,μ′ν′λ′ = 1

6

[

(δμμ′δνν′ + δμν′δνμ′)δλλ′ + (δμμ′δνλ′ + δμλ′δνμ′)δλν′

+(δμλ′δνν′ + δμν′δνλ′)δλμ′
]

− 1

15

[

(δνλδμμ′ + δμλδνμ′ + δμνδλμ′)δν′λ′

+(δνλδμν′ + δμλδνν′ + δμνδλν′)δμ′λ′

+(δνλδμλ′ + δμλδνλ′ + δμνδλλ′)δμ′ν′
]

. (A.13)

Notice that all δ-tensors in the bracket [. . .] behind the factor 1
6 in (A.13) contain

one primed and one unprimed subscript. On the other hand, the triple products of
δ-tensors behind the factor 1

15 contain one unit tensor with two primed subscripts,
one with two unprimed ones, and one with mixed subscripts.
The contraction λ′ = λ yieldsΔ

(3)
μνλ,μ′ν′λ = 7

5Δ
(2)
μν,μ′ν′ . This is in accord with (11.6).

Exercises Chapter 12

12.1 Verify the Numerical Factor in (12.7) for the Integral over a Triple Product
of Tensors (p. 202)
Hint: Put ν = λ, κ = σ, τ = μ and use the relevant formulae given in Sect.11.4.
The recommended contraction, on the left hand side of (12.7) involves

r̂μr̂ν r̂ν r̂κ r̂κ r̂μ = 1

3
r̂μr̂κ r̂κ r̂μ = 2

9
,

and the subsequent integration still yields 2
9 .

On the other hand, due toΔμν,νκ,κμ = 35
12 , cf. (11.38), the right hand side becomes

8
105

35
12 = 2

9 , just as expected.

12.2 Prove that the Fokker-Planck Equation Implies an Increase of the
Orientational Entropy with Increasing Time (p. 212)
Hint: The time change of an orientational average is d〈ψ〉/dt = ∫

∂(ψ f )/∂td2u.
The time change of f ln( f/ f0) is ln( f/ f0)∂ f/∂t + f f −1∂ f/∂t . Thus the time change
of the orientational entropy sa = −kB

∫

f ln( f/ f0)d2u is

d

dt
sa = −kB

∫

ln( f/ f0)
∂

∂t
f d2u = −kBν0

∫

ln( f/ f0)LμLμ f d2u,

where
∫

∂
∂t f d2u = 0 and (12.41) have been used. Here Lμ = εμνλuν

∂
∂uλ

is the
relevant differential operator. An integration by part leads to the expression

d

dt
sa = kB ν0

∫

f −1(Lμ f )Lμ f d2u,

http://dx.doi.org/10.1007/978-3-319-12787-3_11
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_11
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_11
http://dx.doi.org/10.1007/978-3-319-12787-3_12
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where the integrand is positive, furthermore ν0 > 0, and thus

d

dt
sa ≥ 0

holds true.

12.3 Second Order Contributions of the Kinetic Heat Flux and Friction
Pressure Tensor to the Entropy (p. 221)
The ‘non-equilibrium’ entropy, per particle, associated with the velocity distribution
function f = fM(1 + Φ), is given by s = −kB〈ln( f/ fM)〉 = −kB〈(1 + Φ) ln(1 +
Φ)〉M, where fM is the local Maxwell distribution and Φ is the deviation of f from
fM. By analogy with (12.39), the contribution up to second order in rhe deviation is
s = −kB

1
2 〈Φ2〉M.

Determine the second order contributions to the entropy associated with heat flux
and the symmetric traceless pressure tensor.
The quantity Φ to be used here is, cf. (12.96),

Φ = 〈φμ〉φμ + 〈φμν〉φμν,

where φμ and φμν are the expansion tensors pertaining to the kinetic contributions
to the heat flux and the friction pressure tensor, see (12.93) and (12.94). Due to
the orthogonality of the expansion tensors, the expression for the entropy becomes
s = −kB

1
2 (〈φμ〉〈φμ〉 + 〈φμν〉〈φμν〉). The dimensionless moments are related to the

heat flux vector qkin
μ and the pressure tensor pkinμν via (12.93) and (12.94). In terms

of these quantities, the desired contribution to the entropy is

s = −kB
1

2
(nkBT )−2

[

2

5

m

kBT
qkin
μ qkin

μ + 1

2
pkinμν pkinμν

]

.

Compared with thermal equilibrium, the non-equilibrium state has a smaller entropy
and thus a higher order.

12.4 Pair Correlation Distorted by a Plane Couette Flow (p. 230)
Compute the functions g+, g− and g0 in first and second order in the shear rate γ ,
in steady state, from the plane Couette version of the kinetic equation (12.120)

γ y
∂

∂x
δg + τ−1δg = −γ y

∂

∂x
geq.

Hint: Use y2 = (x2 + y2)/2− (x2 − y2)/2 and x2 + y2 = r2 − z2 = 2r2/3− (z2 −
r2/3), furthermore decompose x2y2 = exμexνeyλeyκrμrνrλrκ into its parts associated
with tensors of ranks � = 0, 2, 4 with the help of (9.6). Compare g− with g+.
The first order result is

δg(1) = −γ τ xy r−1g′
eq,

http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_9
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where the prime indicates the differentiation with respect to r . This corresponds to

g+ = −γ τrg′
eq,

see (12.128).
The second order contribution is given by

δg(2) = −γ τ y
∂

∂x
δg(1) = (γ τ)2

[

x2y2r−1(r−1g′
eq)

′ + y2r−1g′
eq

]

.

With the help of (9.6),

x2y2 = exμexνeyλeyκ rμrνrλrκ + 1

7
r2 (x2 + y2) − 1

35
r4

is obtained, where the first term involves irreducible tensors of rank 4. The resulting
second rank contributions proportional to x2 − y2 and z2 − r2/3, cf. (12.128), are

g− = −(γ τ)2rg′
eq,

g0 = −(γ τ)2
[

1

2
rg′

eq + 1

7
r3(r−1g′

eq)
′
]

= −(γ τ)2
1

7

[

5

2
rg′

eq + r2g′′
eq

]

,

and one has g− = γ τg+.

12.5 Compute the Vector and Tensor Polarization for a � = 1 State (p. 237)
Hint: use the wave function (12.141) with eμ = exμ and eμ = (exμ + ieyμ)/

√
2 for

the linear and circular polarized cases. For the angular momentum operator and its
properties see Sect.7.6.2.Furthermore, notice, the term polarization is used here with
two distinct, although related meanings. In connection with electric field, “polariza-
tion” indicates the direction of the field. In connection with angular momenta and
spins, this term refers to their average orientation.

Application of the angular momentum operator Lμ = −iLμ on the wave function
Φ1 = eνφν with φν = √

3̂rν yields

LμΦ1 = −iεμκτ r̂κ

∂

∂ r̂τ

φλeλ = −iεμκλφκeλ.

Multiplication by Φ∗
1 and subsequent integration over d2̂r leads to

〈Lμ〉 = −i εμκλ e∗
κ eλ.

Clearly, one has 〈Lμ〉 = 0 when e∗
κ = eκ , as in the case of linear polarization. On the

other hand, for the circular polarization, the unit vector is givenby eν = (exλ+ieyλ)/
√
2

and e∗
κ = (exκ − ieyκ )/

√
2. Thus one has 〈Lμ〉 = −iεμκλ(−ieyκexλ + iexκeyλ)/2 =

εμκλexκeyλ = ezμ.

http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_7
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For circular polarized light with its electric field vector parallel to e = ex ± iey,
the vector polarization is

〈L〉 = ±ez.

Application of Lν on LμΦ1 = −iεμκλφκeλ yields Lν LμΦ1 = −εναβ r̂α
∂

∂r̂β
εμκλφκ

eλ = −εναβεμβλφαeλ = δνμφλeλ−φμeν . Nowmultiplication byΦ∗
1 and subsequent

integration over d 2̂r leads to

〈Lν Lμ〉 = δνμe∗
λeλ − e∗

μeν .

Notice that e∗
λeλ = 1 and 〈Lν Lν〉 = 2, in accord with �(� + 1) for � = 1. The

symmetric traceless part of 〈Lν Lμ〉 is the tensor polarization

〈 LμLν 〉 = − e∗
μeν .

Thus for the linear polarization eν = exν , and for the circular polarization one finds

〈 LμLν 〉 = − exμexν ,

and

〈 LμLν 〉 = −1

2

(

exμexν + eyμeyν

)

= 1

2
ezμezν .

Exercises Chapter 13

13.1 Verify the Normalization for the Spin 1 Matrices (p. 241)
Compute explicitly s2x + s2y + s2z for the spin matrices (13.6) in order to check the
normalization relation (13.4), viz. s · s = s(s + 1)1.

Spin 1. Matrix multiplication yields

sxsx = 1

2

⎛

⎝

1 0 1
0 2 0
1 0 1

⎞

⎠ , sysy = 1

2

⎛

⎝

1 0 −1
0 2 0

−1 0 1

⎞

⎠ , szsz =
⎛

⎝

1 0 0
0 0 0
0 0 1

⎞

⎠, (A.14)

thus

s2x + s2y + s2z = 2

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠, (A.15)

in accord with (13.4), for s = 1.

http://dx.doi.org/10.1007/978-3-319-12787-3_13
http://dx.doi.org/10.1007/978-3-319-12787-3_13
http://dx.doi.org/10.1007/978-3-319-12787-3_13
http://dx.doi.org/10.1007/978-3-319-12787-3_13
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13.2 Verify a Relation Peculiar for Spin 1/2 (p. 243)
For spin s = 1/2, the peculiar relation

sμsν = i

2
εμνλ sλ + 1

4
δμν

holds true. To prove it, start from sμsν = 0, for s = 1/2, and use the commutation
relation.

For spin s = 1/2, one has, by definition,

2 sμsν = sμsν + sνsμ − 1

2
δμν.

The general commutation relation (13.1) implies sνsμ = sμsν − iεμμλsλ. Then, from

sμsν = 0, the desired relation for spin 1/2 is obtained.

Exercise Chapter 14

14.1 Scalar Product of two Rotated Vectors (p. 262)
Let ãμ = Rμν(ϕ)aν and b̃μ = Rμκ(ϕ)aκ be the cartesian components of the vectors
a and b which have been rotated by the same angle ϕ about the same axis. Prove
that the scalar products ã · b̃ is equal to a · b.

Application of (14.15) leads to

ãμb̃μ =
1

∑

m=−1

1
∑

m′=−1

exp[i m ϕ] exp[i m′ ϕ]P(m)
μν P(m′)

μκ aνbκ .

Due to P(m)
μν = P(−m)

νμ , cf. (14.9), and with the help of the orthogonality rela-

tion P(−m)
νμ P(m′)

μκ = δ−mm′
P(m′)

νκ the exponential functions cancel each other. The

completeness relation
∑

m P(m)
νκ = δνκ , cf. (14.10), then implies ãμb̃μ = aνbν , as

expected.

Exercises Chapter 15

15.1 Derivation of the Landau-de Gennes Potential (p. 282)
In general, the free energy F is related to the internal energy U and the entropy S
by F = U − T S. Thus the contributions to these thermodynamic functions which
are associated with the alignment obey the relation

Fa = Ua − TSa.

http://dx.doi.org/10.1007/978-3-319-12787-3_13
http://dx.doi.org/10.1007/978-3-319-12787-3_14
http://dx.doi.org/10.1007/978-3-319-12787-3_14
http://dx.doi.org/10.1007/978-3-319-12787-3_14
http://dx.doi.org/10.1007/978-3-319-12787-3_14
http://dx.doi.org/10.1007/978-3-319-12787-3_15
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Assume that the relevant internal energy is equal to

Ua = −N
1

2
ε aμνaμν,

where ε > 0 is a characteristic energy, per particle, associated with the alignment.
It is related to the temperature T ∗ by kBT ∗ = ε/A0. Furthermore, approximate the
entropy by the single particle contribution

Sa = −N kB〈ln( f/ f0)〉0,

cf. Sect.12.2.6 where the entropy per particle sa was considered, Notice that Sa =
Nsa. Use f = f0(1+aμνφμν) and (12.39) to compute the entropy and consequently
the free energy up to fourth order in the alignment tensor. Compare with the expression
(15.12) to infer A0, B, C . Finally, use these values to calculate ani and δ = (Tni −
T ∗)/Tni, cf. (15.17) and (15.18).

Due to (12.39), the alignment entropy per particle is given by

sa = −kB

(

1

2
〈Φ2〉0 − 1

6
〈Φ3〉0 + 1

12
〈Φ4〉0 ± . . .

)

,

where here Φ = aμνφμν is used. The normalization of φμν implies that the sec-
ond order contribution is 1

2aμνaμν . The third order term involves the triple product
aμνaμ′ν′aμ′′ν′′ 〈φμνφμ′ν′φμ′′ν′′ 〉0. Due to the integral relation (12.7), this expression
becomes 2

7

√
30aμνaνκaκμ and the third order contribution is − 1

21

√
30aμνaνκaκμ.

The fourth order term involves the quadruple product

aμ1ν1aμ2ν2aμ3ν3aμ4ν4〈φμ1ν1φμ2ν
′
2
φμ3ν3φμ4ν4〉0.

Due to the integral relation (12.9) and the use of (12.10), this expression becomes
15
7 (aμνaνμ)2 and the fourth order contribution is 5

28 (aμνaνμ)2.
As a consequence, the Landau-de Gennes ΦLdG, defined via Fa = Ua − T Sa =

NkBT ΦLdG is given by

ΦLdG = 1

2
Aaμνaμν − 1

3

√
6Baμνaνκaκμ + 1

4
C(aμνaμν)

2,

with

A = A0(1 − T ∗/T ), A0 = 1, kBT ∗ = ε, B =
√
5

7
, C = 5

7
.

These specific values, based on the single particle contribution only for the entropy,
yield for the order parameter ani = 2B/(3C) at the transition temperature Tni the
value 2

15

√
5, corresponding to a Maier-Saupe order parameter of 2

15 ≈ 0.133. The
quantity δ = (Tni − T ∗)/Tni, as given in (15.18), assumes the value 2

63 ≈ 0.032.

http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_12
http://dx.doi.org/10.1007/978-3-319-12787-3_15


Appendix: Exercises… 413

15.2 Compute the Cubic Order Parameter 〈H4〉 for Systems with Simple Cubic,
bcc and fcc Symmetry (p. 294)
Hint: The coordinates of one the nearest neighbors, in first coordination shells,
are (1, 0, 0) for simple cubic, (1, 1, 1)/

√
3 for bcc and (1, 1, 0)/

√
2 for fcc. Use

symmetry arguments!

By definition, one has H4 = u4
1+u4

2+u4
2− 3

5 , where the ui are the Cartesian compo-
nents of one of the nearest neighbors. Due to the symmetry of the first coordination
shell in these cubic systems, all nearest neighbors give the same contribution in the
evaluation of the average 〈H4〉, thus it suffices to consider one of them. The result
then is

〈H4〉 = 2

5
, − 4

15
, − 1

10
,

for simple cubic, bcc, and fcc symmetry, respectively.

15.3 Renormalization of Landau-de Gennes Coefficients (p. 296)
Consider the special case where Φb = 1

2 Abbμνbμν , for simplicity put Ab = 1.
Determine bμν from ∂Φ

∂bμν
= 0 with the help of the second equation of (15.52).

Insert this expression into the first equation of (15.52) to obtain a derivative of a
Landau-de Gennes potential with coefficients A, B, C which differ from the original
coefficients Aa, Ba, Ca due to the coupling between the tensors.

Hint: use relation (5.51) for a, viz. aμκaκλaλν = 1
2aμνaλκaλκ .

With the assumptions made here, ∂Φ
∂bμν

= 0, used for the second equation of (15.52),
implies

bμν = −
(

c1aμν + c2
√
6 aμκaκν

)

.

Insertion into the first equation of (15.52) yields

∂Φ

∂aμν

= Φa
μν −

(

c21aμν + 3
√
6c1c2 aμλaλν + 12c22 aμκ aκλaλν

)

.

Due to

aκλaλν = aκλaλν − 1

3
δκνaαβaαβ,

the triple product of the tensors in the last term is

aμκ aκλaλν = aμκaκλaλν − 1

3
aμνaαβaαβ

=
(

1

2
− 1

3

)

aμνaαβaαβ = 1

6
aμνaλκaλκ .

http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_5
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
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Since Φa
μν = Aaaμν − √

6Ba aμλaλν + Caaμνaλκaλκ ,

∂Φ

∂aμν

= Aaμν − √
6B aμλaλν + Caμνaλκaλκ

is obtained, where

A = Aa − c21, B = Ba + 3c1c2, C = Ca − 2c21,

in accord with (15.53).

15.4 Flexo-electric Coefficients (p. 297)

Start from equation (15.56) for the vector dμ, use aμν =
√

3
2aeq nμnν and Pμ =

P refdμ in order to derive an expression of the form (15.57) and express the flexo-
electric coefficients e1 and e3 to c1, c2 and aeq = √

5S, where S is the Maier-Saupe
order parameter. Furthermore, compute the contribution to the electric polarization
which is proportional to the spatial derivative of aeq = √

5S.

Hint: treat the components of P parallel and perpendicular to n separately.
With the recommended ansatz for aμν , the right hand side of (15.56) becomes

c1∇νaνμ =
√

3

2
c1

[

aeqnμ∇νnν + aeqnν∇νnμ + nμnν ∇νaeq
]

.

Likewise, the left hand side of (15.56) becomes

(

δμν +
√

3

2
c2aeq nμnν

)

dν =
(

1 +
√

2

3
c2aeq

)

d‖
μ +

(

1 −
√

1

6
c2aeq

)

d⊥
μ ,

where d‖
μ = nμnνdν and d⊥

μ = dμ − d‖
μ are the components parallel and perpendic-

ular to the director. The solution of (15.56) for d is

d‖
μ =

(

1 +
√

2

3
c2aeq

)−1 √

3

2
c1nμ

(

aeq∇νnν + 2

3
nν∇νaeq

)

,

d⊥
μ =

(

1 −
√

1

6
c2aeq

)−1 √

3

2
c1

(

aeqnν∇νnμ − 1

3
∇⊥

μ aeq

)

.

The resulting flexo-electric coefficients are

http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
http://dx.doi.org/10.1007/978-3-319-12787-3_15
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e1 = P ref

(

1 +
√

2

3
c2aeq

)−1 √

3

2
c1aeq,

e3 = P ref

(

1 −
√

1

6
c2aeq

)−1 √

3

2
c1aeq.

For c2 = 0 one has e1 = e3.

Exercises Chapter 16

16.1 Nonlinear Electric Susceptibility in a Polar Material (p. 302)
In a medium without hysteresis, the electric polarization P can be expanded in powers
of the electric field E, cf. (2.59), thus

Pμ = ε0

(

χ(1)
μν Eν + χ

(2)
μνλEν Eλ + . . .

)

.

The second rank tensor χ
(1)
μν ≡ χμν characterizes the linear susceptibility. The third

rank tensor χ
(2)
μνλ describes the next higher order contributions to P. Consider a

material whose isotropy is broken by a polar unit vector d.Formulate the expressions
for these tensors which are in accord with the symmetry and with parity conservation.
Treat the cases E parallel and perpendicular to d.

To conserve parity, even rank tensors must contain even powers of d, the third rank
tensor must be an odd function of d. The ansatz which fulfills the required proper-
ties is

χ(1)
μν = χ10δμν + χ12 dμdν ,

χ
(2)
μνλ = χ20dμδνλ + χ21 1

2
(δμνdλ + δμλdν) + χ23 dμdνdλ ,

with scalar coefficients χ10, . . . , χ23. The resulting expression for P = P(1)+P(2)+
. . . is

P(1)
μ = χ10Eμ + χ12 dμdν Eν,

P(2)
μ = χ20dμE2 + χ21Eμdν Eν + χ23 dμdνdλ Eν Eλ.

For E ‖ d one has P(1) = (χ10 + 2
3χ

12)E and P(2) = (χ20 + χ21 + 2
5χ

23)E2d.
Similarly, the result forE ⊥ d isP(1) = (χ10− 1

3χ
12)E andP(2) = (χ20− 1

5χ
23)E2d.

Here

http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_2
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dμdνdλ Eν Eλ = dμ(d · E)2 − 1

5

[

dμE2 + 2Eμ(d · E)
]

was used, cf. (9.5).

16.2 Acoustic Birefringence (p. 326)
Sound waves cause an alignment of non-spherical particles in fluids. The ensuing
birefringence is called acoustic birefringence. Use (16.74) to compute the sound-
induced alignment tensor for the velocity field v = v0k−1k cos(k · r − ωt) where k
and ω are the wave vector and the frequency of the sound wave, v0 is the amplitude.
Hint: Use the complex notation vμ ∼ exp[i(k · r − ωt)] and aμν = ãμν exp[i(k ·
r − ωt)] to solve the inhomogeneous relaxation equation. Discuss the meaning of
the real and imaginary parts of ãμν .

With the recommended ansatz, (16.74) yields

(−iωτa + 1)ãμν = −i
√
2τapv0k−1 kμkν .

Consequently, the alignment is determined by

ãμν = −i
√
2τapv0k ̂kμ

̂kν A (ω),

where

A (ω) = 1

1 − iωτa
= 1 + iωτa

1 + (ωτa)2
.

The real part ofA (ω), corresponding to the imaginary part of ãμν describes the part
of the alignment which is in phase with the velocity gradient, i.e. it is proportional to
sin(k · r − ωt). The imaginary part ofA (ω) is linked with the part of the alignment
which is in phase with the velocity, i.e. it is proportional to cos(k · r − ωt).

16.3 Diffusion of Perfectly Oriented Ellipsoids (p. 337)
In the nematic phase, the flux j of diffusing particles with number density ρ obeys
the equation

jμ = −Dμν∇νρ, Dμν = D‖nμnν + D⊥(δμν − nμnν),

where D‖ and D⊥ are the diffusion coefficients for the flux parallel and perpendicular
to the director n.

Use the volume conserving affine transformation model for uniaxial particles, cf.
Sect.5.7.2, to derive

D‖ = Q4/3D0, D⊥ = Q−2/3D0

for perfectly oriented ellipsoidal particles with axes ratio Q.Here D0 is the reference
diffusion coefficient of spherical particles.

http://dx.doi.org/10.1007/978-3-319-12787-3_9
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_16
http://dx.doi.org/10.1007/978-3-319-12787-3_5


Appendix: Exercises… 417

Furthermore, determine the anisotropy ratio R = (D‖ − D⊥)/(D‖ + 2D⊥),
the average diffusion coefficient D̄ = 1

3 D‖ + 2
3 D⊥ and the geometric mean D̃ =

D1/3
‖ D2/3

⊥ . Discuss the cases Q > 1 and Q < 1 for prolate and oblate particles.

The flux j transforms like the position vector, viz. jμ = A−1/2
μν jAν . The spatial

gradient in real space is linked with the nabla operator in affine space according
to ∇ν = A1/2

νκ ∇A
κ .

From the diffusion law in the affine space, jAλ = −DA
λκ∇A

ν ρ, where DA
λκ is the

diffusion tensor in that space, follows

jμ = A−1/2
μλ jAλ = −A−1/2

μλ DA
λκ∇A

ν ρ = −A−1/2
μλ DA

λκ A−1/2
κν ∇νρ.

Comparison with the diffusion law in real space and D A
λκ = D0 δλκ implies

Dμν = A−1/2
μλ DA

λκ A−1/2
κν = A−1

μν D0.

For uniaxial particles with their symmetry axis parallel to the director, one has

A−1
μν = Q−2/3

[

δμν + (Q2 − 1)nμnν

]

,

cf. (5.58). Here Q = a/b is the axes ratio of an ellipsoid with the semi-axes a and
b = c. Thus the abovementioned result D‖ = Q4/3D0, D⊥ = Q−2/3D0 is obtained.
This implies

R = (D‖ − D⊥)/(D‖ + 2D⊥) = (Q2 − 1)/(Q2 + 2),

and

D̄ = 1

3
D‖ + 2

3
D⊥ = 1

3
Q−2/3(Q2 + 2)D0,

for the ansotropy ratio R and for the average diffusion coefficient D̄. The geometric
mean diffusion coefficient D̃ = D1/3

‖ D2/3
⊥ = D0 is independent of the axes ratio Q.

As expected intuitively, prolate particles with Q > 1 diffuse faster in the direction
parallel to n, since D‖ > D⊥, in this case. For prolate particles, pertaining to Q < 1,
one has D‖ < D⊥. There the diffusion along n is slower compared with the diffusion
in a direction perpendicular to n. The anisotropy ratio R is positive for prolate and
negative for oblate particles.

http://dx.doi.org/10.1007/978-3-319-12787-3_5
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Exercises Chapter 17

17.1 Components of a Uniaxial Alignment (p. 359)
Consider a uniaxial alignment given by aμν = √

3/2a nμnν . Determine the com-
ponents ai in terms of the polar coordinates ϑ and ϕ. Use nx = sin ϑ cosϕ,
ny = sin ϑ sin ϕ, nz = cosϑ . Consider the special cases ϑ = 0, 45, 90◦ and
cos2 ϑ = 1/3.

By definition, the components are ai = T i
μνaμν . Thus, due to (17.20), one finds

a0 = a
3

2
(cos2 ϑ − 1

3
), a1 = 1

2

√
3a sin2 ϑ cos(2ϕ), a2 = 1

2

√
3a sin2 ϑ sin(2ϕ),

a3 = 1

2

√
3a sin(2ϑ) cosϕ, a4 = 1

2

√
3a sin(2ϑ) sin ϕ.

For ϑ = 0, one has a0 = a, a1 = a2 = a3 = a4 = 0, as expected. The result for
ϑ = 90◦ is a0 = −a/2, a1 = 1

2

√
3a cos(2ϕ), a2 = 1

2

√
3a sin(2ϕ), a3 = a4 = 0.

For ϑ = 45◦, one has cos2 ϑ = sin2 ϑ = 1/2, and a0 = a/4, a1 =
1
4

√
3a cos(2ϕ), a2 = 1

4

√
3a sin(2ϕ), a3 = 1

2

√
3a cosϕ, a4 = 1

2

√
3a sin ϕ.

For the case cos2 ϑ = 1/3, corresponding toϑ ≈ 55◦, the components are a0 = 0,
a1 = 1

3

√
3a cos(2ϕ), a2 = 1

3

√
3a sin(2ϕ), a3 = 1

3

√
6a cosϕ, a4 = 1

3

√
6a sin ϕ.

17.2 Stability against Biaxial Distortions (p. 362)
Compute the relaxation frequencies ν(1) and ν(3) for biaxial distortions δaμν =
T 1

μνδa1 and δaμν = T 3
μνδa3 from the relevant relations given in Sect.17.2.4.

Solve the full nonlinear relaxation equation for a3 with a1 = a2 = a4 = 0 and
a0 = aeq.

The expressions given in Sect. 17.2.4 yield

ν(1) = ϑ + 6aeq + 2a2
eq = 9aeq.

For all temperatures ϑ < 9/8, this relaxation frequency is positive and the stationary
nematic state is stable against biaxial distortions of this type described by δa1, the
same applies for δa2. On the other hand, one finds

ν(3) = ϑ − 3aeq + 2a2
eq = 0.

The last equality follows from the equilibrium condition. Thus the nematic state has
just marginal stability against biaxial distortions of the type δa3 and also δa4. In
this case the nonlinear equation for a3 has to be studied. From (17.28) with (17.29)
follows

da3
dt

+ 2a3
3 = 0.

http://dx.doi.org/10.1007/978-3-319-12787-3_17
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http://dx.doi.org/10.1007/978-3-319-12787-3_17
http://dx.doi.org/10.1007/978-3-319-12787-3_17
http://dx.doi.org/10.1007/978-3-319-12787-3_17
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Separation of variables yields a−2
3 (t) − a−2

3 (t0) = 4(t − t0) and, with t0 = 0,

a3(t) = a3(0)
√

1 + 4a3(0)2t
.

Still, the distortion relaxes to zero, but it is a non-exponential decay with a3(t) ∼
t−1/2 for long times.

Exercises Chapter 18

18.1 Doppler Effect (p. 378)
Let ω0 be the circular frequency of the electromagnetic radiation in a system which
moves with velocity v = vex with respect to the observer, who records the frequency
ω.Determine the Doppler-shift δω = ω0−ω for the two cases where the wave vector
of the radiation is parallel (longitudinal effect) and perpendicular (transverse effect)
to the velocity, respectively.

The Lorentz transformation rule (18.16) implies

(k′)x = γ (kx − βω), (k′)y = ky, (k′)z = kz, ω′ = γ (ω − vkx). (A.16)

When k is parallel or anti-parallel to the velocity, one has kx = ±ω/c and conse-
quently

ω = ω0

√

1 − β2/(1 ∓ β).

The longitudinal relative Doppler shift is

(ω − ω0)/ω0 =
√

1 − β2/(1 ∓ β) − 1 ≈ ±β + . . . , (A.17)

where . . . stands for terms of second and higher order in β = v/c. The ± signs
indicate: the frequency is enhancedwhen the light source is approaching the observer,
when it is moving away, the frequency is lowered.

When the velocity is perpendicular to the direction of observation, one has kx = 0.
Then the transverse relative Doppler shift is

(ω − ω0)/ω0 =
√

1 − β2 ≈ 1

2
β2 + . . . , (A.18)

where now . . . stands for terms of fourth and higher order in β.

http://dx.doi.org/10.1007/978-3-319-12787-3_18
http://dx.doi.org/10.1007/978-3-319-12787-3_18
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18.2 Derivation of the Inhomogeneous Maxwell Equations from the Lagrange
Density (p. 386)
Point of departure is the variational principle (18.72), viz.

δS =
∫

δL d4x = 0,

with the Lagrange density (18.70). It is understood that the variation ofL is brought
about by a variation δΦ of the 4-potential. Thus

δL = −
(

J iδΦi + 1

2μ0
F ikδFik

)

,

with

δFik = ∂kδΦi − ∂iδΦk,

cf. (18.55). Due to F ik = −Fki, one has

F ikδFik = 2F ik∂kδΦi.

Integration by parts and δΦi = 0 at the surface of the 4D integration range, leads to

δS = −
∫

δ

(

J i − 1

μ0
∂kF ik

)

δΦid
4x = 0. (A.19)

The 4D integration volume is arbitrary. Thus the integrand has to vanish and one
obtains (18.73), viz.

J i = (μ0)
−1∂kF ik.

This relation corresponds to the inhomogeneous Maxwell equation (18.62) for fields
in vacuum, where F ik = μ0H ik holds true.

18.3 Derive the 4D Stress Tensor (p. 388)
The force density f i = JkFki cf. (18.74), can be rewritten with help of the inhomo-
geneous Maxwell equation (18.62). Where necessary, co- and contra-variant com-
ponents are interchanged with the help of the metric tensor. The first few steps of the
calculation are

f i = JkFki = gk� J �Fki = gk�∂mH �mFki = gk�∂mH �mgkk′
gii′ Fk′i′ .

Due to gk�gkk′ = δ�k′ and with the renaming i → k of the summation indices, one
finds

f i = gikF�k∂mH �m = ∂m(gikF�kH �m) − gikH �m∂mF�k.

http://dx.doi.org/10.1007/978-3-319-12787-3_18
http://dx.doi.org/10.1007/978-3-319-12787-3_18
http://dx.doi.org/10.1007/978-3-319-12787-3_18
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The second term is related to the derivative of the energy density u. This is seen
as follows. Renaming the summation indices �m → m� and using H �m = −Hm�,
Fmk = −Fkm leads to H �m∂mF�k = H �m∂�Fkm and consequently

H �m∂mF�k = 1

2
H �m(∂mF�k + ∂�Fkm).

Due to the homogeneous Maxwell equation (18.58), this expression is equal to

H �m∂mF�k = −1

2
H �m∂kFm� = 1

2
H �m∂kF�m.

For the special case of a linear medium where H �m ∼ F�m applies, one has

H �m∂mF�k = 1

4
∂k(H �mF�m),

and this then leads to the expression (18.77) for the 4D stress tensor.

18.4 Flatlanders Invent the Third Dimension and Formulate their Maxwell
Equations (p. 388)
The flatlanders of Exercise 7.3 noticed, they can introduce contra- and contra-variant
vectors

x i = (r1, r2, c t), xi = (−r1,−r2, c t).

With the Einstein summation convention for the three Roman indices, the scalar
product of their 3-vectors is

x ixi = −(r21 + r22 ) + c2t2 = −r2 + c2t2.

They use the differential operator

∂i =
(

∂

∂r1
,

∂

∂r2
,

∂

∂ct

)

,

and form the 3-vectors

J I = ( j1, j2, cρ), Φ i = (A1, A2, φ/c)

from their current and charge densities and their vector and scalar potentials.
How are the relations

B = ∂1A2 − ∂2A1, Ei = −∂iφ − ∂ A/∂t, i = 1, 2,

http://dx.doi.org/10.1007/978-3-319-12787-3_18
http://dx.doi.org/10.1007/978-3-319-12787-3_18
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which are equivalent to the homogeneous Maxwell equations, cast into the pertaining
three-dimensional form? Introduce a three-by-three field tensor Fij and formulate
their homogeneous Maxwell equations. How about the inhomogeneous Maxwell
equations in flatland?

The antisymmetric field tensor is defined by

Fik := ∂kΦi − ∂iΦk, i, k = 1, 2, 3.

In matrix notation, it reads

Fik :=
⎛

⎜

⎝

0 B 1
c E1

−B 0 1
c E2

− 1
c E1 − 1

c E2 0

⎞

⎟

⎠
.

From the definition of the field tensor follows

∂1F23 + ∂2F31 + ∂3F12 = 0.

This Jacobi identity corresponds to

∂1E2 − ∂2E1 = −∂ B

∂t
,

The two-dimensional D-field and the H-field tensor are combined in the tensor

Hik :=
⎛

⎝

0 H c D1
−H 0 c D2

−c D1 −c D2 0

⎞

⎠ . (A.20)

The inhomogeneous Maxwell equations are equivalent to

∂kH ik = J i.

The case i = 3 corresponds to

∂1D1 + ∂2D2 = ρ.

The cases i = 1 and i = 2 are

∂2H = j1 + ∂ D1/∂t, −∂1H = j2 + ∂ D2/∂t.

Also in flatland, constitutive relations are needed to close the Maxwell equations.
In vacuum and in a linear medium, the linear relation Hik ∼ Fik applies. This
corresponds to Di ∼ Ei, i = 1, 2 and H ∼ B.
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Symbols
�-tensor, 186, 193
Δ-tensors, 184
Δ(�)-tensors, 184
4-acceleration, 375
4-momentum, 375
4-velocity, 374
4-wave vector, 376
4D-epsilon tensor, 378

A
Actio equal reactio, 81
Active rotation of a tensor, 259
Affine transformation, 17, 335
Aligning, 362
Alignment tensor, 95, 203
Alignment tensor elasticity, 288
Angular momentum, 43
Angular momentum balance, 151
Angular momentum commutation relations,

107
Angular momentum conservation, 320
Angular velocity, 51, 89
Anisotropic fluids, 274
Anisotropic part, 57
Antisymmetric part, 33, 40
Antisymmetric part of the pressure tensor,

344
Antisymmetric pressure, 320
Antisymmetric tensor, 50
Antisymmetric traceless part, 34
Ascending multipole potentials, 163
Auto-correlation functions, 352
Axes ratio, 336
Azimuthal component, 30

B
Banana phases, 276, 294
Barnett effect, 321
Basis tensors, 358
Bend deformations, 285
Bessel functions, 233
Biaxial distortions, 361
Biaxial extensional or compressional flow,

331
Biaxial nematics, 274
Biaxial tensor, 58
Biaxiality parameter, 70, 359
Bilinear form, 65
Biot-Savart relation, 103
Birefringence, 63, 204, 253
Blue phase liquid crystals, 290
Blue phases, 275
Boltzmann equation, 318, 327
Bond orientational order, 291
Born-Green expression, 310
Boundary conditions, 177, 368
Brillouin scattering, 353
Brownian particles, 217
Bulk modulus, 306
Bulk viscosity, 333

C
Cartesian components, 11
Cartesian coordinate system, 11
Cartesian tensors of rank, 23
Cauchy relation, 312
Center of mass, 132
Central force, 44, 83
Chaotic, 363
Charge density, 173, 381
Cholesteric, 274
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Cholesteric liquid crystal, 274, 287
Cholesterics, 290
Circular frequency, 102
Clebsch-Gordan tensors, 191
Clesch-Gordan coefficients, 256
Closed curve, 112
Co-rotational Maxwell model, 330
Co-rotational time derivative, 330
Collision frequency, 319
Collision integrals, 319
Collisional broadening, 356
Colloidal dispersions, 332
Commutation relation, 106, 239
Complex viscosity coefficients, 315
Component equations, 359
Component notation, 13
Conductivity coefficients, 268
Conductivity tensor, 267
Configurational canonical average, 309
Configurational partition integral, 309
Confocal microscopy, 229
Conservation of mass, 97, 140
Constitutive laws, 344
Constitutive relations, 299
Continuity equation, 97, 100, 140, 381
Contra- and co-variant components, 15
Contraction, 157
Contraction number, 307
Contraction of tensors, 35
Convected Maxwell model, 330
Convective transport, 97
Conventional classification of vector fields,

94
Cotton-Mouton effect, 208
Couette flow, 315
Couette flow geometry, 229
Coulomb energy, 145
Coulomb force, 139
Coupling tensors, 191
Creeping flow approximation, 178
Cross-correlation functions, 352
Cross effect, 325
Cross product, 41
Cubatics, 291
Cubic crystals, 161, 292, 308
Cubic harmonic, 162
Cubic order parameter, 291
Cubic symmetry, 161, 231, 307
Curie Principle, 300
Curl, 89
Curve integral, 112
Curve integral of a vector field, 114
Cylinder coordinates, 130

Cylinder mantle, 118, 122
Cylindrical geometry, 78, 82

D
d’Alembert operator, 101
Decomposition, 75
Deformation, 304
Deformation rate, 227
Deformation tensor, 304, 305
Depolarized Rayleigh light scattering, 253
Depolarized Rayleigh scattering, 354
Depolarized scattering, 354
Descending multipole potentials, 163
Determinant, 47, 380
Deviatoric part, 89
Diagonal operators, 252
Diamagnetic gases, 318
Dicke narrowing, 357
Dielectric permeability, 98
Dielectric tensor, 63, 145, 148, 255, 302
Differential change, 79
Differential operator, 189
Diffusional broadening, 356
Diffusion coefficient, 218
Diffusion length, 349
Diffusion tensor, 337
Dipolar orientation, 206
Dipolar symmetry, 171
Dipole moment, 169, 171
Dipole potential, 164
Dipole–quadrupole interactions, 177
Dipole transition matrix elements, 236
Director elasticity, 285
Disc-like particles, 347
Discotic nematic, 274
Dispersion relation, 102
Divergence, 89
Divergence-free, 91
Doi-Hess-theory, 343
Doi-theory, 343
Doppler broadening, 356
Double refraction, 63
Double twist structure, 275
Dual relation, 40
Dual tensor, 379
Dyad, 37
Dyadic, 37
Dyadic tensor, 37
Dynamic states, 362
Dynamics of the alignment tensor, 362
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E
Effective mass, 375
Effective shear viscosity, 315
Eigenvalues, 56
Einstein summation convention, 370
Elastic behavior, 284
Elastic modulus tensor, 310
Elastic properties, 304
Elastic turbulence, 368
Electric and magnetic torques, 64
Electric dipole transitions, 236
Electric displacement field, 63, 98
Electric field, 63, 98
Electric polarization, 99, 174, 204, 301
Electric quadupole transitions, 237
Electrodynamic 4-potential, 381
Electrodynamics, 98, 99, 138
Electromagnetic potential functions, 102
Electromagnetic waves, 101
Electro-optic Kerr effect, 209
Electroscalar potential, 102
Electrostatic energy, 174
Electrostatic force density, 146
Electrostatic potential, 168, 170
Electrostatics, 94, 145
Electrostatic stress tensor, 146
Ellipsoid, 66
Ellipsoidal particles, 335
Ellipsoids of revolution, 336
Embedded atom method, 312
Energetic coupling, 294
Energy balance, 147
Energy density, 146
Energy flux density, 147, 151
Energy principle, 302
Entropy production, 302, 313, 320, 323, 344
Epsilon-tensor, 47
Equal potential surfaces, 78
Equation of motion, 80
Equilibrium average, 214
Ericksen-Leslie coefficients, 347
Expansion, 225
Expansion coefficients, 203, 220
Expansion functions, 215
Extended irreversiblet thermodynamics, 327
Extensional viscosity, 331

F
Faraday induction, 101, 129
Ferro-fluids, 314, 332
Field, 77
Field tensor, 382

Field-induced orientation, 205
Flexo-electric effect, 296
Flow alignment, 337, 343
Flow alignment angle, 338
Flow birefringence, 322
Fluctuations, 351
Flux density, 140, 381
Flux of a vector field, 123
Fokker-Planck equation, 210
Fokker-Planck relaxation operator, 217
Force, 79, 175
Force balance, 144
Force density, 143, 386
Four-dimensional vectors, 370
Four-field formulation, 98
Fourier-Laplace transform, 353
Fourth rank projection tensors, 36, 263
Fourth rank rotation tensor, 264
Frank elasticity coefficients, 285
Frank-Oseen elasticity, 285
Free currents, 99
Free energy, 309
Free flow of nematics, 337
Frequency dependent viscosity, 326
Frictional torque, 339
Friction force, 178
Friction pressure tensor, 177, 220

G
Galilei transformation, 372
Gases of rotating molecules, 324
Gauss law, 100, 139
Gauss theorem, 136
Generalized cross product, 187
Generalized Fokker-Planck equation, 338
Generalized Gauss theorem, 136
Generalized Legendre polynomial, 196
Generalized Stokes law, 124
Geometric interpretation, 65
Gibbs relation, 292
Gradient, 79
Graphical representation, 95
Green-Kubo relation, 335
Gyromagnetic factor, 318

H
Hall-effect, 268
Hamilton-Cayley, 241, 260
Hamilton-Cayley theorem, 71
Head-tail symmetry, 274, 277
Hear deformations, 305
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Heat conductivity, 337
Heat flux vector, 220
Heat-flow birefringence, 326
Heisenberg picture, 244
Helfrich viscosity, 316
Helfrich viscosity coefficient, 334
Helical axis, 274
Hermitian operator, 107
Hexadecapole moment, 172
High frequency shear modulus, 310
High temperature approximation, 206
High temperature expansion, 205
Homgeneous field, 84, 89
Homogeneous Maxwell equations, 98, 383
Homogeneous vector field, 92, 115
Hooke’s law, 305
Hydrostatic pressure, 97
Hysteresis-free medium, 148

I
Incompressible flow, 141
Infinitesimal rotation, 262
InhomogeneousMaxwell equations, 98, 384
Integrability condition, 91
Integration by parts, 140
Interaction potential, 196
Intermittent states, 364
Internal angular momentum, 98, 320
Internal field, 340
Internal force density, 142
Internal rotational degree of freedom, 98
Invariance condition, 369
Inverse transformation, 18
Irreducible, 55
Irreducible tensor, 155, 186
Irreversible processes, 301
Irreversible thermodynamics, 303
Isotropic fluid, 314
Isotropic linear medium, 149
Isotropic part, 34
Isotropic phase transition, 279
Isotropic system, 306
Isotropic tensor, 56, 183

J
Janus spheres, 197
Jaumann-Maxwell model, 330
Johnson-Segalman model, 330

K
Kayaking tumbling, 363

Kayaking wagging, 363
Kerr effect, 208
Kinetic energy, 108, 375
Kinetic energy operator, 108
Kinetic equation, 216, 227
Kirkwood-Smoluchowski equation, 228
Kronecker symbol, 15

L
Lagrange density, 385
Landau-de Gennes potential, 343
Landau-de Gennes theory, 279
Laplace equation, 93, 163
Laplace fields, 93
Legendre polynomial, 157, 172
Leslie viscosity coefficients, 333, 334
Levi-Civita tensor, 47, 378
Line integral, 111, 113
Linear mapping, 25, 66
Linear medium, 146
Linear molecules, 60
Linear momentum density, 97, 142
Linear momentum of the electromagnetic

field, 151
Linear momentum operator, 107
Linear relation, 24, 27
Linear rotator, 250
Linear transformations, 16
Linearly increasing field, 85, 89
Liquid crystals, 273
Local momentum conservation equation,

143
Log-rolling, 363
Lorentz field approximation, 204
Lorentz force, 45, 314
Lorentz invariance, 104, 371
Lorentz invariant, 374
Lorentz scalar, 373
Lorentz scaling, 381
Lorentz tensor, 373
Lorentz transformation, 372
Lorentz vector, 373
Lyotropic liquid crystal, 274

M
Magnetic field, 98, 127
Magnetic field tensors, 103
Magnetic induction, 98
Magnetic moment, 241
Magnetic permeability, 148
Magnetic quantum numbers, 241
Magnetic susceptibility, 98
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Magnetic vector potential, 102
Magnetization, 99
Maier-Saupe distribution function, 340
Maier-Saupe mean field theory, 283
Maier-Saupe order parameter, 279
Main director, 362
Mapping, 73
Material coefficients, 299
Maxwell coefficient, 322
Maxwell distribution, 213
Maxwell effect, 322
Maxwell model, 326
Maxwell relaxation time, 228, 326
Maxwell stress tensor, 387
Maxwell’s thermal pressure, 221
Mean free path, 356
Miesowicz viscosities, 316
Miesowicz viscosity coefficients, 333
Model parameters, 349
Molecular polarizability tensor, 63
Moment equation, 217, 341
Moment of inertia, 52
Moment of inertia tensor, 52, 60, 134
Moments of the distribution function, 203
Momentum balance, 151
Momentum conservation equation, 97
Momentum flux density, 151
Monopole function, 166
Multipole moment tensors, 171
Multipole–multipole interaction, 176
Multipole potential, 163, 165
Multipole potential tensors, 164

N
Nabla operator, 79, 105
Navier-Stokes equations, 98
Nematic, 274
Nematic liquid crystal, 273, 332
Nematic phase transition, 279
Newton, 80
Newtonian viscosity, 331
Non-diagonal tensor operators, 255
Non-equilibrium alignment, 303
Non-Equilibrium Molecular Dynamics

(NEMD), 229, 322, 335
Non-Newtonian viscosity, 329
Non-Newtonian viscosity coefficient, 346
Non-orthogonal basis, 15
Non-spherical particles, 327
Nonlinear dynamics, 364
Nonlinear Maxwell model, 365
Nonlinear viscosity, 328

Normal pressure differences, 316, 329
Normal pressure gradient, 317

O
Octahedron, 172
Octupole moment, 170, 171
Octupole potential, 164
Oersted law, 101
Ohm’s law, 267
Onsager relation, 333
Onsager symmetry relation, 303, 323
Onsager-Casimir symmetry relation, 303
Onsager-Parodi relation, 334
Orbital angular momentum, 43, 97
Orbital angular momentum operator, 190
Order parameter tensor, 203, 277
Orientational average, 200
Orientational distribution function, 202
Orientational entropy, 209
Orientational fluctuations, 354
Ortho-normalization relation, 358
Orthogonal basis, 14
Orthogonal matrix, 20
Orthogonal transformation, 19
Orthogonality relation, 19
Out of plane solutions, 364

P
Pair-correlation function, 222
Paramagnetic gases, 318
Parameter representation, 112
Parameter representation of surfaces, 117
Parity, 25, 300
Parity operation, 25
Path integral, 112
Pauli matrices, 239
Peculiar velocity, 218
Period doubling, 364
Permanent dipoles, 174
Phase transition, 343
Planar biaxial, 69
Planar geometry, 78, 82
Planar squeeze-stretch field, 86
Plane, 118, 121
Plane Couette symmetry, 329
Poiseuille flow, 316
Poisson equation, 91, 165
Polar coordinates, 14
Polarizability, 173
Polarized scattering, 353
Pole–dipole interaction energies, 176
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Pole–pole interaction energies, 176
Pole–quadrupole interaction energies, 176
Polymer coils, 321
Polymeric liquids, 346
Position vector, 11
Potential energy, 223
Potential of a vector field, 114
Potentials, 78
Power density, 386
Poynting vector, 147
Pre-transitional increase, 341
Precession frequency, 319
Pressure broadening, 356
Pressure tensor, 97, 142, 224
Principal axes representation, 56
Principal values, 56
Principle of Archimedes, 143
Projection operator, 241
Projection tensor, 36, 260, 268
Proper rotation, 21
Proper time, 374

Q
Quadruple product, 72
Quadrupole moment, 169, 171
Quadrupole potential, 164
Quadrupole–quadrupole interactions, 177
Quantization axis, 161
Quantum mechanical angular momentum

operator, 106

R
Radial and angular parts, 105
Radial and cylindrical fields, 85, 90
Radial component, 30
Radius of gyration tensor, 62
Rayleigh expansion, 233
Rayleigh scattering, 353
Reciprocal effect, 325
Reciprocal relations, 303
Recursion relation, 194
Reduced mass, 81
Regular tetrahedra, 293
Relaxation coefficients, 211
Relaxation time, 211
Relaxation time approximation, 228
Rheochaos, 365
Rheological behavior, 365
Rheological properties, 328
Rheology, 328
Richtungs-Quantelung, 241
Rod-like particles, 347

Rotated coordinate system, 24
Rotation, 89
Rotation axis, 134
Rotation tensor, 260
Rotational damping, 339
Rotational eigenstates, 251
Rotational quantum numbers, 253
Rotational Raman scattering, 256, 354
Rotational velocity, 320
Route to chaos, 364

S
Scalar fields, 78, 113
Scalar invariants, 69, 195
Scalar product, 13
Scaled variables, 347
Scattering wave vector, 224
Schrödinger equation, 234
Screw curve, 45
Second law of thermodynamics, 301
Second rank alignment tensor, 277, 341
Selection rules, 236
Senftleben-Beenakker effect, 318
Shape parameter, 339
Shear flow, 343, 362
Shear-flow induced distortion, 227
Shear modulus, 306
Shear rate tensor, 227
Shear thickening, 346
Shear thinning, 330, 346
Shear viscosity, 98, 177, 333
Shear viscosity tensor, 313
Shilnikov bifurcation, 368
Simple shear field, 87
Simple shear flow, 87, 90
Smectic, 274
Smectic A, 276
Smectic B, 276
Smectic C, 276
Smectic liquid crystals, 276
Solid body, 304
Solid-like rotation, 87
Solid-like rotational flow, 92
Sonine polynomials, 215
Source free, 89
Spatial Fourier transform, 352
Spatially inhomogeneous alignment, 349
Special relativity, 374
Spectral functions, 353
Speed of light, 370
Spherical Bessel functions, 233
Spherical components, 158, 262
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Spherical coordinates, 130
Spherical geometry, 79
Spherical harmonic, 160, 165
Spherical symmetry, 83
Spherical tensor operators, 255
Spherical top molecules, 61
Spherical unit vectors, 158
Spin, 239
Spin averages, 247
Spin density, 98
Spin density matrix, 247
Spin density operator, 247
Spin matrices, 240
Spin operator, 239
Spin particles, 321
Spin tensors, 246
Spin traces, 245
Splay deformations, 285
Spontaneous birefringence, 275
Stability, 360
Static structure factor, 224
Stick-slip parameter, 367
Stokes force, 178
Stokes law, 124
Strain tensor, 305
Streaming double refraction, 322
Stress differences, 329
Stress tensor, 151
Substantial time derivative, 141
Summation convention, 12
Surface area, 67
Surface integrals, 120
Surface of a sphere, 119, 122
Susceptibility tensors, 27
Symmetric and antisymmetric parts, 33
Symmetric dyadic tensor, 59
Symmetric part, 33
Symmetric tensor, 55
Symmetric top molecules, 61
Symmetric traceless, 55
Symmetric traceless part, 34
Symmetric traceless tensor, 155
Symmetry, 300
Symmetry adapted ansatz, 324, 331
Symmetry adapted states, 362
Symmetry breaking, 300
Symmetry breaking states, 363
Symmetry relation, 352

T
Tangential component, 30
Tensor divergence, 96

Tensor polarization, 249
Tensor polarizations, 237
Tensor product, 192
Tetradics, 290
Tetrahedral symmetry, 291
Thermal equilibrium, 97
Thermodynamic fluxes, 303
Thermodynamic forces, 303
Thermotropic liquid crystal, 274
Third-order scalar invariant, 359
Thirteen moments approximation, 221
Time-correlation functions, 352
Time derivatives, 28
Time reversal, 30
Time reversal behavior, 301
Torque, 43, 176
Torque density, 152
Torque on a rotating solid body, 144
Trace of the tensor, 34
Trajectory, 29
Transformation behavior, 384
Transformation matrix, 22
Translation, 16
Transport-relaxation equations, 318
Transverse pressure gradient, 317
Transverse viscosity, 317
Transverse viscosity coefficients, 315
Transverse wave, 101
Triple product, 72
Trouton viscosity, 331
Tumbling, 363
Tumbling parameter, 338, 348
Turbulence, 329
Twist deformations, 285
Twist viscosity coefficient, 333
Two-particle density, 222
Typical for hydrodynamics, 178

U
Uniaxial ellipsoid, 73
Uniaxial extensional or compressional flow,

330
Uniaxial non-spherical particles, 196
Uniaxial squeeze-stretch field, 86
Uniaxial tensor, 57
Unified theory, 343
Unit vector, 13

V
Van der Waals interaction, 177
Variational principle, 286, 385
Vector field, 84, 114
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Vector polarization, 249
Vector potential, 91
Vector product, 41
Velocity, 29
Velocity distribution function, 212
Visco-elasticity, 326
Viscometric functions, 329, 346
Viscous behavior, 313
Viscous fluid, 178
Viscous properties, 343
Voigt elasticity coefficients, 306
Volume, 67
Volume integrals, 129
Volume viscosity, 98, 313
Vortex, 89

Vorticity field, 87
Vorticity free flow, 330

W
Wagging, 363
Waldmann-Snider equation, 318
Wave equation, 101, 384
Wave mechanics, 107
Wave vector, 102, 352

Y
Yield stress, 367
Young elastic modulus, 307
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