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Supervisor’s Foreword

Observations of the spatial distribution of galaxies suggest that our universe is
approximately homogeneous and isotropic at very large length scales. Galaxies are
not distributed randomly, however. There are patterns and prominent “structures”
that extend over millions of light years. The origin of such a large-scale structure
of the universe has attracted much attention not only from professional astronomers
but also from the general public.

The standard theory of cosmic structure formation posits that the structure is
formed through nonlinear gravitational growth of tiny density fluctuations gener-
ated in the very early universe. A broad range of astronomical observations have
provided a consistent picture overall with the above notion, but there remain
important questions regarding the source of gravity that enabled the formation
of the large-scale structure. The nature of the so-called dark matter, which amounts
to nearly 80 % of the total matter content in the universe, holds a key to understand
the evolution of the universe and the formation of the rich structure we see today.

Gravitational lensing provides a direct physical method to probe the distribution
of matter in the universe. Collective information of distorted images of distant
galaxies can be utilized to map out the distribution of intervening matter. Recently,
wide-area surveys by large ground-based telescopes have begun providing an
enormous amount of data from which we can study in detail the matter distribution
in and around galaxies and galaxy clusters.

Dr. Shirasaki explored novel methods for revealing the nature of dark matter and
the evolution of the universe using primarily gravitational lensing observations.
A large set of numerical simulations of cosmic structure formation was also used to
derive crucial statistical quantities for precision cosmology. The contents of this
thesis are timely in that the main results can be readily applied to the data from the



vi Supervisor’s Foreword

ongoing large observational program Subaru Hyper Suprime-Cam survey.
A promising example of cross-correlation analysis is also presented. Altogether,
this doctoral thesis lays out the foundation for weak lensing cosmology.

Tokyo, Japan Naoki Yoshida
May 2015
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Chapter 1
Introduction to Observational Cosmology

1.1 Cosmic Acceleration

In 1917, Albert Einstein first considered the cosmological model with his theory of
General Relativity [1]. There, he adopted the simple assumptions: the universe would
be static and homogeneous on large scales. In order to realize the static universe with
a matter-filled space, he introduced the additional constant in the field equation,
which is so-called the cosmological constant. Is the cosmological constant really
needed in order to make the universe static? This question have been answered by
the discovery of the expanding universe [2]. In 1929, Edwin Hubble reported the
relation of distance and radial velocity among galaxies. His finding is summarized as

cz = Hod, (L.1)

where c is light speed, d represents the distance to galaxy and z is the redshift of
galaxy. Ho is some constant number known as Hubble constant. Since cz corresponds
to the radial velocity of galaxy moving away from us, the coherent motion of galaxies
discovered by Hubble provided the evidence of the expansion of the universe. There-
fore, the original motivation to introduce the cosmological constant were removed
at that time. The situation, however, have been changed as the observational cosmol-
ogy developed. To tell the truth, a number of observational studies indicates that the
expansion of the universe is accelerating. Such observational results seem to be in
conflict with the simple cosmological model without the cosmological constant. In
this chapter, we summarize the representative observational results which revealed
the cosmic acceleration.

© Springer Science+Business Media Singapore 2016 1
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2 1 Introduction to Observational Cosmology

1.1.1 Type Ia Supernovae

Supernova is one of the most energetic phenomena in the universe, which is thought
to occur late in life of a massive star. Type la supernovae are among the most interest-
ing supernovae in context of observational cosmology. Type Ia supernovae have no
absorption line of hydrogen with the presence of silicon in their spectrum. A white
dwarf in a binary system can increase its mass by up to the Chandrasekhar mass limit
with accretion from a binary companion or the merger of two white dwarfs. Once
its mass exceeds the Chandrasekhar mass, gravitational collapse induces a runaway
fusion reaction and leads to complete explosion of the white dwarf, that is Type Ia
supernova.

The absolute magnitude of Type la supernovae at peak luminosity is roughly con-
stant with some dispersion (e.g., [3-5]). The observed dispersion can be reduced by
the novel technique based on the empirical correlation between the intrinsic magni-
tude and the shape of light curve (i.e. more luminous supernovae tend to decline its
luminosity slower [6]). These results guarantee the usefulness of Type Ia supernovae
as standard candle, which enable us to measure the distance precisely. With appro-
priate corrections (e.g., dust extinction, K-correction for redshifting effect, and so
on), the observational programs have been conducted on for measuring the distance
of Type Ia supernovae at higher redshift [7, 8].

Effort is rewarded. The two independent detailed analysis of tens of Type Ia
supernovae at cosmological redshifts have been utilized to measure the luminosity
distance of those objects [9, 10]. Their conclusion is that a universe curved by
ordinary matter (the simple expectation from Ref. [2]) is ruled out at high significance.
The observed luminosity distances can be explained by the cosmological model with
ordinary matter and the cosmological constant.

1.1.2 Baryon Acoustic Oscillations

According to the discovery by Hubble [2], the early universe should be in the state
of very large matter density and very high temperature. The model with such initial
state of a universe is so called Big-Bang cosmology. In the Big-Bang cosmology,
baryons and photons had experienced non-thermal processes as the universe expands
or the temperature of radiation decreases [11]. Once electron and proton combined to
form hydrogen atom, photons were able to travel through the space, i.e. the universe
become transparent [12]. This epoch is called recombination epoch. Thus, the photon
emitted when hydrogen atom formed contains the information of the earliest uni-
verse that we can observe from measurements of radiation field. This last-scattered
photon is currently called cosmic microwave background (CMB), which is one of
the essential pieces of the Big-Bang cosmology.

Atlast scattering surface where CMB photons were released, there remains various
interesting features in spatial variation of CMB temperature [13]. Baryonic acoustic
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oscillation is an example illustrative of the property of CMB photons. Before hydro-
gen atom formed, a photon-baryon fluid had played an important role to determine
the dynamics of the universe. When the primeval fluctuations exist in the fluid, grav-
ity affects the growth of perturbation, whereas radiation pressure resists. This simple
framework finally induces the acoustic waves in the photon-baryon fluid, and the
oscillating feature on the anisotropy of CMB sky. The oscillation have been actually
conformed by CMB analysis in harmonic space (e.g., [14]). The characteristic scale
of acoustic oscillation is determined by the sound horizon of the photon-baryon fluid
at last scattering surface. Thus, the sound horizon at last scattering surface can be
measured by the detailed analysis of CMB temperature anisotropy.

There exists another tracer of baryonic acoustic oscillation. Galaxies are expected
to form in high matter density region where matter have been assembled initially.
Since baryons have experienced acoustic oscillation in the early universe and should
be abound at the acoustic peak, galaxy clustering would also show imprint of bary-
onic acoustic oscillation. SDSS collaboration [15] performed the correlation analysis
of 46,748 galaxies and clearly detected the feature of the acoustic peak in galaxy
correlation function. With the sound horizon measured from CMB, we can regard
the acoustic peak found in galaxy clustering as standard ruler. The idea is very sim-
ple; ruler looks smaller as it is more distant. Considering two different cases where
ruler locates enables us to determine the expansion rate of the universe. The current
measurement of CMB (e.g., [16]) and galaxy clustering (e.g., [17]) is in favor with
the presence of the cosmological constant.

1.2 Astrophysical Evidence of Dark Matter

First astrophysical implication on the existence of dark matter is found in Ref. [18].
Fritz Zwicky analyzed the velocity dispersion of galaxies in the Coma cluster and
estimated the mass in the system from the virial theorem. He found that the ratio
of mass and luminosity of member galaxies in this system to be ~400 solar masses
per solar luminosity, which is larger than that of the solar neighborhood by a factor
of 100. Theoretically, in 1970s, numerical studies (e.g., Ref. [19]) indicated that the
existence of dark mass seems to be required for the gravitational stability of the
disk of galaxy. Also, the observed anisotropies on cosmic microwave background
in 1980s (e.g., [20-22]) seemed to be inconsistent with the cosmological model
which is composed of simple baryonic matter. Here, we summarize some examples
of astrophysical “evidences” of the existence of dark matter (without attempting to
be complete). The following astrophysical evidences are one of the reasons why most
astronomers believe that dark matter exists if we can not see it.
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1.2.1 Rotation Curves of Galaxies

The observation of the 21 cm line of HI clouds in galaxies in 1980s (e.g., [23]) provide
us the new insight of matter distribution at galactic scales.
In Newtonian dynamics, the circular velocity of an object with off-centric distance
of r is given by
GM(r)

v(r) = pa (1.2)

where M (r) is the inner mass which is defined by M(r) = f drdnr?p(r), and
p(r) describes the matter density profile in the system of interest. If the measured
light distribution would exactly trace the matter distribution in galaxies, the circular
velocity would decrease as ~+/1/r beyond the optical disc. However, the observed
circular velocity of HI clouds in spiral galaxies reaches to almost constant value as r
increases. This is so-called flat rotational curve problem. One of the solution to this
problem is to suppose invisible mass distribution in halo region of galaxies. If one
assume M (r) o r or p(r) r~2 in outer region, the observed circular velocity can
be explained. However, there is another solution of this problem actually. That is the
modified Newtonian dynamics (MOND) which can solve the flat rotational curve
problem with an appropriate parameter (e.g., [24]). In order to distinguish these two
models, we require another observational data which clearly shows the baryonic and
dark matter distribution separated. In fact, we have already found such observational
data, as known as bullet cluster [25, 26]. We revisit how we know the invisible dark
matter distribution later.

1.2.2 Mass Estimate of Clusters of Galaxies

Clusters of galaxies are one of the most important targets in terms of dark matter as
Zwicky demonstrated in 1930s [18]. Modern astrophysical techniques enables us to
study the mass distribution in clusters of galaxies in more sophisticated ways.

X-ray emission is one of the promising observables to estimate the mass of a
galaxy cluster. Suppose the virialized object which holds the thermal equilibrium. In
such system, the virial theorem should hold

1 GmyMq
kBTeq=§R—Cl, (1.3)

where m , is proton mass and M) and R represent the mass and the radius of cluster,
respectively. For typical clusters, the virial temperature is given by

Mcl Rcl !
kpTeq ~ 2keV , (1.4)
d 1014 Mo ) \2Mpc
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which corresponds to X-ray. Thus, the observation of the X-ray emission profile of
galaxy cluster is aimed at measuring the mass under the hydrostatic equilibrium.
Combining with optical luminosity of member galaxies, one can constrain on the
mass-to-luminosity ratio over various samples of galaxy clusters (e.g., [27, 28]).

An alternative method for mass estimation is based on gravitational lensing. Grav-
itational lensing is known as the relativistic effect on trajectory of photon in the
universe. According to General Relativity, intervening mass distribution can affect
the path of photon emitted from distant objects. This effect would be observed by
the distortion of images of source objects, or arc like images in some cases. Thus,
the detailed analysis of images of background galaxies behind galaxy clusters can
be useful to reconstruct the mass distribution of galaxy clusters itself. Such recon-
struction technique are adopted to very interesting system, so-called bullet cluster
[25, 26]. Bullet cluster has very unique characteristics of the gas distribution inferred
from X-ray observation. It is found that a pair of clusters are colliding and the hot
interstellar gas has a shock front. Reference [26] adopted the mass reconstruction
technique to this system and first showed the direct evidence of dark matter, of which
density distribution clearly separated from gas density distributions.

1.2.3 Global Energy Budget of Universe

Precise measurements of anisotropies on cosmic microwave background (CMB)
are one of the most stringent cosmological probes. Although anisotropies in the
temperature fluctuation are of a level of 107>, the physics of CMB can be understood
in a simple but robust framework based on General Relativity and fluid dynamics
[13]. The expected angular dependence of anisotropies can be well characterized
by six parameters, which represent the fundamental quantities. Such parameters
include the mean matter density and the baryonic matter density of universe. Recent
measurement of cosmic microwave background (e.g., [16]) determines the mean
density of dark matter and baryonic matter as follows;

Qeamh?® = 0.1138 £ 0.0045, (1.5)
Quh% = 0.02264 =+ 0.00050, (1.6)

where the former represents the (normalized) mean density of dark matter and the
latter is for baryonic matter. These results indicate that we must consider the non-
baryonic matter to explain the observed CMB anisotropies and the significance of
the existence of dark matter is 0.1138/0.0045 ~ 25¢.
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1.3 Cosmology with Gravitational Lensing

Entering the twenty-first century, technological progress enables us to conduct wider
and/or deeper surveys. Statistical analysis with a huge sample reveals the dynamics
(e.g., [29, 30]) and the composition (e.g., [16, 31, 32]), of the universe.

The “standard” cosmological model called ACDM model is currently consistent
with the observational results.! In this concordance model, an exotic form of energy,
now called dark energy, dominates the present universe and causes the cosmic accel-
eration. If dark energy density does not evolve in time as the universe expands, such
energy is essentially equivalent to the cosmological constant introduced by Einstein.
Dark matter is invisible mass and is considered to be a different form from normal
matter like stars and planets. A large part of galaxy and cluster of galaxies seems to
be made up of dark matter. Dark matter plays an important role in the formation of
rich structure in the universe.

Next goal of observational cosmology is, probably, to understand the nature of
dark energy and the physical properties of dark matter. Gravitational lensing is one
of the important cosmological tools to tackle the problem.

Gravitational lensing provides a powerful method to probe matter distribution in
the universe. According to gravitational lensing, intervening large-scale structures
induce small image distortion of distant galaxies. The small distortion is called cos-
mic shear which contains, in principle, rich information on the matter distribution at
small and large scales. Gravitational lensing also has the advantage of not requiring
any assumptions such as the relation between luminosity and mass and/or hydro-
static equilibrium. This indicates that it is an optimal tool to investigate dark matter
distribution in the universe. The strength of lensing effect is also sensitive to the dis-
tance to background galaxies and lensing objects. It can thus be utilized to provide
the meaningful information of both expansion history and gravitational growth of
structure in the universe.

Although cosmic shear contains rich cosmological information, image distortion
induced by gravitational lensing is very small in general. Therefore, we need the
statistical analysis of cosmic shear signal over a large number of distant galaxies in
order to extract cosmological information from gravitational lensing. The conven-
tional statistics of cosmic shear are two-point correlation function or power spectrum.
If the statistical property of cosmic shear field follows Gaussian, this quantity can
describe all the information of cosmic shear. However, this is not the case in reality
because cosmic shear has non-Gaussian information either of primordial origin (e.g.,
[34]) or caused by non-linear gravitational growth [35]. We have not understood yet
how to make the best use of gravitational lensing for constraints on the nature of dark
energy and dark matter. In this thesis, we explore the applicability and the utility of
statistical analyses of gravitational lensing for understanding dark matter and dark
energy.

LAt small scale (less than galactic scales), the validity of ACDM model is controversial (see, e.g.,
[33] for review).



1.3 Cosmology with Gravitational Lensing 7

Many proposals are found in literature. The statistical analyses differ between the
two classes.

1. Extension of two-point statistics
Reference [36] shows the prospects of two-point statistics of cosmic shear in terms
of measurement of cosmological parameters. Reference [37] proposed the simple
extension of the method in Ref.[36] in order to extract the redshift information of
large-scale structure. This methodology is called tomography which causes the
improvement of the cosmological parameter estimation due to reconstruction of
the structure along the line of sight. Reference [38] shows the potential contam-
inant in tomography, called intrinsic alignment. Intrinsic alignment of galaxy’s
shape could be caused by correlation between the ellipticity of galaxy and the tidal
field at large scale. This alignment induces the additional correlation of shape of
galaxy between two different redshifts. The impact of intrinsic alignment on two-
point statistics of cosmic shear have been investigated with both theoretical (e.g.,
[39]) and observational method (e.g., [40]). Also, various systematics associated
with the shape measurement can affect a cosmic shear analysis [41, 42].
Another extension is the cross-correlation of the shape of background galaxies and
the position of foreground galaxies. This method is called galaxy-galaxy lensing
which have been proposed for purpose of measuring galaxy mass [43]. References
[44, 45] have recognized this technique as a direct probe of the relation between
the mass and the light, as known as galaxy bias. Reference [46] has derived the
constraint on cosmological parameters with combination of the information of
galaxy clustering and galaxy bias estimated from galaxy-galaxy lensing. This
combined analysis is another path to extract the dark matter clustering directly. In
order to maximize the information content we can gain from this method, more
sophisticated algorithm is proposed in Ref. [47] and have been applied to the real
data set [48]. Similar method can be applied to observables of clusters of galaxies
and the expected cosmological constraints would be comparable with current
CMB measurements [49]. Joint analysis of three different statistics (i.e. two point
correlation of galaxy, two point correlation of cosmic shear, and galaxy-galaxy
lensing) have been studied in e.g., Ref. [50].

2. Higher-order statistics
Cosmic shear contains the information of non-linear gravitational growth as well.
This information typically appear as non-Gaussian property of cosmic shear. In
order to extract non-Gaussianity of cosmic shear, a promising way is to consider
the higher-order statistics beyond two-point statistics.
Three-point statistics or bispectrum of cosmic shear is one of the candidates.
References [51, 52] show that the skewness of lensing field can, in principle,
break the degeneracy between cosmological parameter dependences found in
two-point statistics of cosmic shear. The cosmological information content in
bispectrum of lensing field and the utility of bispectrum tomography with power
spectrum have been discussed in Refs. [53, 54].
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Peak statistics in lensing field are also useful to constrain on cosmological para-
meters. In Ref. [55], the authors utilize a large set of numerical simulations and
show that peaks of lensing field can be associated with massive clusters along
the line of sight. Thus, number of lensing field peaks would be correlated with
number of very massive object in the universe such as galaxy clusters and be sen-
sitive to cosmological parameters [56, 57]. References [58, 59] have investigated
cosmological information obtained from combined analysis of peak count and
angular correlation of cosmic shear. In addition to number counts, the correlation
of peaks and cross correlation of peak and cosmic shear would provide fruitful
cosmological information [60]. Some systematical effects in peak statistics have
been studied in detail [61-63].

1.4 Objective of This Thesis

Future lensing surveys are aimed at measuring cosmic shear over a wide area of
more than a thousand square degrees. Such ongoing observational programs include
Subaru Hyper Suprime-Cam (HSC),? the Dark Energy Survey (DES),? and the Large
Synoptic Survey Telescope (LSST).* Space missions such as Euclid and WFIRST
are also promising. In these programs, the statistical error of shape measurement of
galaxies would be improved dramatically. It is therefore crucial to construct the well-
calibrated and accurate statistical approach of cosmic shear for providing important
clues to the mysterious dark component.

In this thesis, we examine the two different methods of gravitational lensing for
constraints on the nature of dark energy and dark matter. Each statistical analysis
can be categorized in “higher-order statistics” or “extension of two-point statistics”
as we mentioned in Sect. 1.3.

In order to reveal the nature of dark energy, we study the cosmological information
content of morphological statistics of comic shear field, called Minkowski funtionals
(MFs). We extend the previous morphological studies by including various observa-
tional effects such as sky masking, systematics associated with shape measurement,
photometric redshift errors, and shear calibration correction. We generate a large set
of mock cosmic shear data with numerical simulations to study possible systematics
in detail one by one. We then apply all the methods developed and examined in
numerical simulations to the real data obtained by Canada-France-Hawaii Telescope
Lensing survey (CFHTLenS).

In order to explore the physical property of dark matter, we study the cross-
correlation of cosmic shear and another possible probe of dark matter distribution,
the extragalactic gamma-ray background (EGB). The origin of EGB is still unclear
and the potential contributors to the EGB includes the emission due to dark matter

Zhttp://www.naoj.org/Projects/HSC/j_index.html.
3http://www.darkenergysurvey.org/.
“hitp://www.Isst.org/Isst/.
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annihilation. One of the most plausible candidates for dark matter is a weak interact-
ing massive particle (WIMP). WIMP with the mass of 10 GeV-10 TeV can naturally
explain the abundance of dark matter today if their annihilation cross section is the
same order as the cross section for weak interaction. If dark matter particles anni-
hilate into standard model particles, they will produce gamma rays that contribute
to the observed EGB. The dark matter distribution that causes cosmic shear would
also be a gamma-ray source. Thus, the cross-correlation of cosmic shear and the
EGB can be a powerful probe of signature of dark matter annihilation. We perform
the first measurement of the cross-correlation using the real data set obtained from
CFHTLenS and the Fermi Large Area Telescope. Comparing the result to theoretical
predictions based on structure formation, we place a cosmological constraint on dark
matter annihilation with our measurement.

The rest of the thesis is organized as follows. In Chap. 2, we summarize the basics
of structure formation. In Chap.3, we describe the formulation of weak gravita-
tional lensing and summarize how to perform statistical analyses with observables.
In Chap. 4, we show the results of the impact of observational effects on lensing MFs.
Various effects are investigated with numerical simulations and the real data set. The
analysis presented in Sect. 1.4 is based on Refs. [64, 65]. In Chap. 5, we present the
cross correlation analysis of cosmic shear and extragalactic gamma-ray background.
We there summarize the detail of theoretical model and methodology. A large part of
Sects.5.2-5.5 is based on Ref. [66]. Concluding remarks and discussions are given
in Chap. 6.
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Chapter 2
Structure Formation in the Universe

2.1 The Standard Cosmological Model

2.1.1 Friedmann Equation

The universe has a rich variety of structure. We know that galaxies are made of stars,
and galaxies show a tendency to cluster into groups. Clusters of galaxies are a build-
ing block of larger structure such as superclusters and filaments. Even though the
universe has the hierarchical structure, the matter distribution in the universe on a
sufficient large scale should be homogenous and isotropic. This assumption is called
the cosmological principle. In four space-time dimensions, the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric fulfills the requirement of the cosmological prin-
ciple, i.e. a homogeneity and isotropy of space. This metric is given by

dr?
2 _ 24,2 2
ds® = —c*dt“ +a (t) I:m

+ r2(d6? + sin? 9d¢2)} , 2.1)
where a(¢) is the scale factor and K is the spatial curvature of the space. The spatially
closed, flat and open universe correspond to the case of K > 0, K = 0and K < 0,
respectively. In the FLRW metric, the scale factor determines the time evolution of
the space. In this thesis, we normalize as a = 1 at the present. In an expanding
universe, it is useful to define the comoving distance x as follows;

dr?
dy’= ——. 22
X 1 —Kr? 22)
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With the definition of the comoving distance, the proper distance r is described as a
function of x, which is given by

sinh(~—K x)/~—K (K < 0)
r(x) =1 x (K=0) . (2.3)
sin(vVK x)/vVK (K > 0)

The time evolution of a(¢) can be determined by the Einstein equations;

1 &G
GMU = RMU — (ER — A) gp,v = c—4TMU. (24)

Let us consider the case of a perfect isotropic fluid under the FLRW metric. In this
case, the energy-momentum tensor is given by

T = (o + puyuy + pguv, (2.5)

with density p and pressure p. The time-time and the space-space components of
the Einstein equations then leads to

a\> 8xG 2K A
(;) =32 e T (26
a 4 G Ac?
Z=—?(p+3p)+7’ 2.7)

where ~ denotes d/d¢. Equations (2.6) and (2.7) would reduce to the single equation
as

p=—ﬂp+mg. 2.8)

The property of the fluid is specified by its equation of state, that is p = wp.
The parameter w is zero for non-relativistic pressure-less components such as dark
matter, while w is set to be one third for relativistic components, e.g., radiation. Using
Eq. (2.8) and w of each component, we can derive the time evolution of the density
as: pm o a > for non-relativistic component and Py X a~* for relativistic one. In
this thesis, we call non-relativistic components “matter’” and relativistic components
“radiation”. In general, the time evolution of energy density p () is given by

0 O exp (—3/ (Li/(l + w(a/))) ) (2.9)
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Suppose that a hypothetical fluid corresponding to cosmological constant A. We can
obtain the following conditions of energy fluid from Egs. (2.6) and (2.7):

_ A (2.10)
Pr=g :
wpg = 24 = 1. 2.11)

PA

Hence, we can regard cosmological constant effectively as the energy fluid specified
by Egs. (2.10) and (2.11). Hereafter, we introduce dark energy p 4 instead of cosmo-
logical constant. The density of dark energy with the same properties as A does not
evolve in time.

In modern cosmology, the expansion history of the universe can be described by
the following parameters called cosmological parameters: Hubble parameter H, den-
sity parameter £2,, critical density p. and the curvature parameter 2k . The definition
of these parameters are summarized as follows:

i
=2 (2.12)
a
Q4 = ‘;—", (2.13)
C
3H?
Pec = 872G’ (2.14)
Kc?
2 = . (2.15)

With these parameters, Eq. (2.6) is given by

2mo 2,0 $2x0
H?*(a) = HA| /2= 4 =22 2
(a) 0|:a3 +a4 2

+QA03XP[_3/dai,(1 ~I—WDE(a’))”, (2.16)

where the index O denotes the present value of each parameter. Once cosmological
parameters are specified at present, the expansion history of the universe can be
determined by Eq. (2.16). In the following, we summarize the expansion rate of the
universe at the dominant epoch of radiation £2,, matter £2,,, curvature K and dark
energy §24.

1. Radiation domination

a = (2Hy)' 22 't 2.17)
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2. Matter dominatation

9 1/3
a= (Z g:zmo) 1?3, (2.18)

3. Curvature domination
Curvature can dominate the universe when 24 = 0, K < 0,a > —$2m0/52Ko.

a=HoQust (2.19)
4. Dark energy domination
We consider the case of wpg = —1 for simplicity.
1/2
a = exp [9 12 Fo e — to)] (2.20)

Current astrophysical observations yield the present value of dark energy density
£240 ~ 0.7. The simplest candidate of dark energy with wpg = —1 is thought to be
vacuum energy. However, if dark energy is vacuum energy, there appears to be a huge
discrepancy between the observed amount of dark energy and the expected amount
of vacuum energy at the present. This is one of the main motivation of other proposals
for the candidate of dark energy. Among various models of dark energy, wpg(a) is
one of the key parameters to identify dark energy. It is crucial to determine wpg(a)
precisely by observation for understanding what dominates the present universe and
why the current expansion of the universe is accelerating. In practice, the following
parameterization of wpg(a) is often used:

wpe(a) =wo+wi(l —a) +---. (2.21)

In this thesis, we pay particular attention to constraints on the parameter of wy.

2.1.2 Cosmological Redshift and Angular-Diameter Distance

Here, we consider cosmological redshift as the time coordinate and define the angular
diameter distance. Cosmological redshift is caused by a stretch of the wavelength
of photon due to the expansion of the universe. Consider that the photon emitted at
t = 11 from the point (r1, 61, ¢1). The photon path in a FLRW universe is determined
by null geodesics, i.e. ds = 0 in Eq. (2.1). It is given by

/m cdt _/” dr (222)
noaty  Jo 1—Kr? '
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where 1 is the arrival time of photon and we setd0 = d¢p = 0 because of homogeneity
and isotropy of space. The right hand side of Eq. (2.22) is independent of the time.
This leads to the following equation when considering the case of another emitted
time #; + 6¢; and arrival time ty + &fg:

0 cdt 04310 ¢dy
/ - = / — (2.23)
15 a(t) 11 +6t a(t)
Suppose that the evolution of a(t) is negligible during é¢; and 8#y. Then, we can

obtain the following relation with the Tayler expansion of Eq. (2.23) around f
and 11:

8 Sto
= . (2.24)
a(rny)  a(to)
This result can be described in terms of redshift z as follows:
lpo=t0_ L (2.25)
= ——= . .
Al oa(n)

where the wavelength of photon A; is defined by ¢6t; and a(#p) is set to be unity.

We next define the angular diameter distance da. The angular diameter distance
to an object is defined by the object’s size £ and the apparent angular size of the
object Af. In the FLRW metric, the relation of ¢ between A6 is given by

r

£ =arAb = AB. (2.26)
14z
Thus, dy is obtained by
dy = & = " (2.27)
ATA0 T T+ '

In general, the angular diameter distance between two redshifts z; and z2 (z1 < z2)
can be calculated by

da(z1, 22) = % (2.28)
22 cdz

o H@'

where r(z1, z2) is defined by
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2.2 Growth of Matter Density

2.2.1 Evolution of Density Fluctuations

We can not explain the rich structure of the universe observed today only assuming
FLRW metric because FLRW metric describes the homogeneous universe. According
to the observation of cosmic microwave background (CMB), there exist tiny fluc-
tuations in the CMB temperature map. These fluctuations are expected to amplify
its amplitude mainly due to gravitational growth and develop the rich structure of
the universe such as galaxies and clusters of galaxies. The gravitational growth of
density fluctuations is governed by the fluid equation and the Poisson equation under
the background expansion of the universe with FLRW metric. The matter density of
fluid p (X, t) can be decomposed into the homogeneous and inhomogeneous part;

p(x,1) = pt)+8p(x, 1), (2.29)
Sp(E, 1) = p()SG, 1), (2.30)

where p and dp are the homogeneous and inhomogeneous part, respectively. The
fluid equation and the Poisson equation under the background FLRW universe are
given by

R 1 R
S+ =V [(1+8)i] =0, (2.31)
a
it Yy i@ v vp ¢ (2.32)
u+-u+-u -Vu=——-—--—-V—, .
a a ap(l+9) a
AD = 47 G pa’s, (2.33)

where u is the velocity field of matter fluid, @ = ¢ + %xz, ¢ represents the gravi-

tational potential and V is the derivative operator by the comoving coordinate x. The
evolution of density fluctuations can be determined by a set of non-linear equations
Eqgs. (2.31)-(2.33).

2.2.2 Linear Perturbation

Itis difficult to determine the evolution of matter density analytically in general. How-
ever, perturbations of matter density can be understood with the linearized equations
when the amplitude of perturbations is sufficiently small, i.e. § < 1. For matter
components with p = 0, we can obtain the following equation of § by considering
the first order of Eqgs. (2.31)—(2.33)
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.. a. _
§5+228 —4xGps = 0. (2.34)
a

Thus, the evolution of § is determined as a function of time over various physical
scales at the level of the first order in Eqgs. (2.31)—(2.33). The linear growth of §
would be affected by the expansion history of the universe. Here, we summarize the
linear growth of § in various cosmological models.

1. Radiation domination and equality epoch
Let us consider the evolution of § from radiation domination to the equality
time. The equality time is defined by the cosmic epoch when the energy density
of radiation in the universe is equal to that of matter. At this epoch, a mixture
of radiation and matter dominates the universe. Hubble parameter H is then
calculated by

H(a) = Ho\/.Qmoa_B’ + .Qy()a_4
H 91/2

= a—zw/(l‘l'aeqa (2.35)

where aeq is the scale factor at the equality time, defined by aeq = £2,0/$2mo.
We can rewrite Eq. (2.34) by the new time coordinate y = a/aeq instead of ¢ as
follows;

d?s 243y ds 38
5+ 2ty o 0 = (2.36)
dy? " 2y +ydy  2y(1+y)
There are two kinds of solutions of Eq. (2.36). One is given by
3
5ocl+ 7y (2.37)

and another is expressed as

5 o (1+ 2)1 (ﬁ“)—s\/ﬁ (2.38)

This result indicates that the density fluctuation of matter density can grow grad-
ually (i.e. by a factor of 2.5) in radiation domination.

2. Matter Domination
In matter domination, Hubble parameter H is equal to 2/(3¢). Using the relation
between p and the time at this epoch (p = 1/(6x G t2)), we can rewrite Eq. (2.34)

as follows;
s+ 4 5 2 §=0 (2.39)
3t 3127 ‘
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We can solve Eq. (2.39) by considering the case of § o< ¢". The solution can be
expressed as
§=Ar*3 + Bt~ (2.40)

Thus, the evolution of § is determined by § 213 x a.

ACDM model

Here, we consider the case of ACDM model that is consistent with current mul-
tiple astrophysical observations. In this model, the radiation density 2, and the
curvature K is negligible and the equation state of dark energy wpg is setto be —1.
Therefore, Hubble parameter H is given by

H(a) = Hyv/ 2moa=3 + 2 0. (2.41)

One can find that Eq. (2.41) is actually the specific solution of Eq. (2.34) in
ACDM model with the relation of 47 Gp = 3/2H?$2,,. Hence, one can obtain
another solution of Eq. (2.34) by assuming D(a) = H(a) f (a). The solution is
given by

a da/
D(a) x H(a)/ (2.42)
(a

"H( a/))3 !
Note that H(a) represents the decline of the linear growth and D(a) describes
the linear growth of § in ACDM model. We also extend ACDM model by con-
sidering wpg = const. # —1. In this model, the linear growth of matter density
perturbation can be expressed as

1 —1 5
D(a) xaF (——— "PEZ 4 _ x), (2.43)
3wpe  2wpE 6WpE
Q
— A0 —3wpp (2.44)
QmO

where F («, B, y, x) is known as the hypergeometric function. An integral giving
the hypergeometric function is

F(a,B,y,x) = P71 — BN — 1) "%dr. (2.45)

) /1
') I'(y —B) Jo

We here emphasize that all the results above are correct only when matter over-

density § is significantly small, i.e. § <« 1. We can not predict the evolution of §
in the way as shown above once the amplitude of § becomes larger and the mode
coupling of § (the coupling term such as § - u etc.) becomes important.
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2.2.3 Non-linear Perturbation

The spherical collapse model is one of the simplest models to describe non-linear
growth of matter density in the universe. Suppose that matter density around a given
point distributes in a spherical manner. The gravitational force at a shell with a offset
distance of r from the center of system can be determined by the inner mass M within
this shell. The equation of motion for the shell is given by

&r  GM (2.46)

a2~ 27 '
and the solution of the above equation under the condition of dr/df > O and r = 0
atr =0is

r = A%*(1 — cosf), (2.47)
3
t = m(e —sin6). (2.48)

When considering the matter domination for simplicity, one can find that the over-
density within the shell is given by

2 0 0)2
5 — IGMt _ :2(6—sm9) .y (2.49)
2r3 2 (1 —cosb)?

where we use the relation of mean matter density and cosmic time i.e. p =
1/(6w Gt%). As you can see from Eq. (2.47), the shell will expand from 6 = 0
to & = m and then contrast from # = . Finally, the overdensity within this shell
would diverge when 6 = 2. Let us assume this system would be virialized through
the contraction of each shell and the formation of object with a finite size of ry;;
occurs. In this scenario, the following relations should be realized according to the
energy conservation of system and the virial theorem;

2Kyir + Uyir = 0, (2.50)
Kyir + Uvir = U, (251)

where Uy is the potential energy of the shell at 6 = 7 and K., and U, represent
the kinematic energy and the potential energy of shell, respectively. These equations
provide rvi; = A2. Thus, broadly speaking, the overdensity when the system is
virialized can be evaluated as

3M 1 2
Ayip=—F———1=187"—-1x=177, (2.52)
3
47-[rvir o (teoll)
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where 7. is the free fall time given by 1(0 = 2rw) = 243 /~/G M. Therefore, we
can estimate the overdensity within an virialized region as ~177.

It is useful to consider the linear overdensity in a virialized system. The linear
density in the spherical model is defined by the lowest order of Eq. (2.49) in terms

of 6, T h
3 (6«/GMI) :

=551 "7 (2.53)

The linear overdensity at ¢ = fcop is ~1.69.

We can easily extend the above calculation to the case of various cosmologi-
cal models. Reference [1] provided the useful fitting formula in ACDM model as
follows;

Avir = 1872(1 4 0.4093w 22952, (2.54)
3(127)%/3

S~ %(1 — 0.00123 log, £2¢), (2.55)

1
=— —1, 2.56
w o (2.56)
2mo(l 3
X mo(l +2) (2.57)

T 2w+ 23+ 240

How does matter distribute in virialized system such as galaxy and cluster of
galaxies? Reference [2] has performed cosmological N-body simulation with various
cosmological model and the authors found that matter density profile of virialized
dark matter halo can be described by the universal function as follows;

Os

(r/rs)( +r/rs)2’ (2.38)

on(r) =

where p; and r, are the scale density and the scale radius, respectively. These para-
meters can be condensed into one parameter, the concentration cyi. (M, z), by the
use of two halo mass relations; namely, M = 47Trv31rAvir(Z),0crit(Z) /3, where ry;; is
the virial radius corresponding to the overdensity criterion A, (z) as shown, e.g.,
in Eq. (2.54), and M = f dV pn(ps, ry) with the integral performed out to ryjr. At
present, the density profile shown in Eq. (2.58) is called NFW profile. NFW profile
have been conformed for wide range of mass scales (from earth-size halos to clusters
of galaxies) at different epochs in current (dark matter only) N-body simulations
[3-6]. Once NFW profile is assumed, one can easily calculate the various observ-
ables such as rotation curve of galaxies (e.g., [7, 8]), gravitational lensing effect of
clusters of galaxies (e.g., [9]), hot gas distribution in galaxy clusters (e.g., [10]), and
two-point statistics of density perturbations (e.g., [11]).
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2.3 Statistics of Matter Density Perturbation

2.3.1 Two Point Statistics

One needs the statistical method to investigate gravitational growth of density pertur-
bations in the universe with a large data set obtained from photometric and/or spec-
troscopic astronomical surveys. One of the simplest statistics is two point correlation
function. Two point correlation function represents the clustering of astrophysical
sources such as galaxies, which is defined by

E(IX1 — X2) = (8, (X1)8g(X2)), (2.59)
8,(X) = (n(¥) — )/, (2.60)

where n(X) is the number density of objects and 7 represents the mean number
density. In general, number density of astrophysical objects 7(X) can be biased from
underlying matter density o (X). We here consider the simplest case that n(X) can be
proportional to p(X), i.e. matter overdensity § is equal to &,.

It is useful to consider two point correlation function in fourier space instead of
real space. In fourier space, density perturbation & (l:) is related to 8 (X) as follows;

8(%) / a3k §(k) exp(ik - %), 2.61)

T @)
S(k) = / dx 8(¥) exp(—ik - X). (2.62)

Thus, two point correlation between two different wave numbers k and k' is given
by

@GSy = @m)38) (k + K / dr £(r) exp(—ik - 7), (2.63)

where SS) (¥) represents three-dimensional dirac function. The integral in Eq. (2.63)
is called power spectum and often is denoted by P (k). Power spectrum depends on
only the amplitude of k if the universe is isotropic.

The initial condition of power spectrum of matter density is usually assumed to
be a power law function, i.e. Piji(k) o< k"s. This originates from early works by
Harrison [12] and Zeldovich [13] in 1970s (The similar approximation is also found
in Ref. [14]). In their prescription, all perturbations that come within the horizon
have the same amplitude. In this case, n; is found to be unity and the case of ny = 1
is called Harrison—Zeldovich spectrum. Most of inflation models also predict the
power law type of primordial power spectrum.

The shape of power spectrum would be affected by growth of primordial density
perturbation through various physical processes. In the linear regime (i.e. 6 < 1),
power spectrum would be modified in an independent way of wave number mode k
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because the evolution of § can be determined by a function of time not k as shown
in Eq. (2.34). Thus, overdensity §(k, a) should be decomposed into a function of k

and a as follows;
~ T(k)D(a) -
d(k,a) = ————=38(k, ainiv), (2.64)
D (ainit)

where D(a) is the growth factor given by the solution of Eq. (2.34) and T (k) rep-
resents the evolution of density perturbation at different scales, which is called the
transfer function. Therefore, power spectrum at a given k and a can be written as

T2(k)D%(a)

Pk, a) = D?(init)

Pini (k). (2.65)

Note that the above formula should be valid in the linear regime (i.e. 6 < 1). In
order to obtain the specific shape of T (k), we need to solve the Boltzmann equation
coupled with General Relativity. Although it is difficult to derive 7 (k) analytically,
one can obtain 7' (k) numerically with the Boltzmann equation solver [15] or the
fitting formula shown in Ref. [16].

The normalization of power spectrum is determined by observations. One possible
way is based on the variance of smoothed overdensity og with comoving scale of R
Mpc/ h at present. oR is given by

3k
= | Gy Plk-a=DIWr®P (2.66)

where Wr (k) is the window function, which is set to be the top-hat function in
practice. R = 8 Mpc/h is the conventional scale for the normalization of power
spectrum. We can also use another observational result in the early universe, e.g.,
the power spectrum of primordial curvature perturbation generated by inflation at
some pivot wave number of k¢. In matter domination, power spectrum of curvature
perturbation is related to one of matter density through Poisson equation as follows;

P00 (292 ) prre () e
@Qmyp oA SHG 2mo ko .
5 _4nk3P,%"(k)
sy = TR 2.68)

where Py (ko) represents power spectrum of curvature perturbation which is deter-
mined by observations.
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2.3.2 Mass Function and Halo Bias

The abundance of massive objects such as clusters of galaxies is one of the powerful
tools to probe cosmology at lower redshift. Let us consider the number of virialized
objects with mass range of M ~ M + dM which is called mass function. One of the
simplest way to calculate the mass function is Press-Schechter formalism [17]. In
Press-Schechter formalism, virialized objects with mass of M are assumed to form
where the density perturbation in an sphere with radii of R = (3M /47 5)'/3 is larger
than the critical value &,. . is often considered to be ~1.69 as shown in Eq. (2.53).
Smoothed density perturbation with smoothing scale of R is given by

SR(Y) = /d3x’ Wr(|¥ — X'D8 (), (2.69)

where WR(|55 - 5c"|) represents window function for smoothing. Top-hat window
function is often used in literature. Suppose that smoothed density perturbation
follows Gaussian, the probability of formation of virialized objects with mass of
M = 47 /3pR? can be written as

F(M) 2/Ood5 ! 15 2 ! f ( e ) (2.70)
= R eXpy 7 — = X —ericy — 1), .
3¢ 27.[01% 20'1% 2 «/EUR

where oR is the variance of smoothed density perturbation given by Eq. (2.66).
The factor of 2 in Eq. (2.70) is the multiplicative correction so that F(0) would
be equal to unity when R — 0. (Note that o — oo with limit of R — 0.) In
this thesis, n(M)dM denotes the number density of virialized objects with mass
range of M — M + dM. Thus, the mass fraction of virialized objects with mass of
M can be written as n(M)MdM /p. This fraction should be equal to be F(M +
dM) — F(M) = |0F/0M|,; dM. Therefore, we can evaluate n(M) by equating
n(MYMdM /p with |0F /OM |, dM;

o OF
"= am

p [2 6, 182\ dor
=TV 2P\ 5 5 o
M T oR ZUR oM

5\ P
fPS (g) m

fes(v) = \Eve”z/ 2, (2.72)

dlnoy !
din M

: 2.71)
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Although Press-Schechter formalism relies on various approximations, it can
explain overall feature of mass function found in cosmological N-body simulation.
The detailed shape of mass function have been calibrated with numerical simulations
(e.g., [18-20]). There are some previous works based on the analytic approach with
ellipsoidal collapse model [21, 22]. In the case of ellipsoidal collapse model, fps
can be replaced with the following function;

fer(v) = A,/z—“ [1 + (avz)_pi| ve—av*/2, (2.73)
4

where « and p represent the parameter of ellipsoidal collapse model and A is the
normalization factor. Numerical simulation have been utilized for calibration of these
parameters, which are given by A = 0.322, « = 0.707, and p = 0.3.

Virialized objects such as galaxies and galaxy clusters are biased tracer of under-
lying matter distribution. Thus, the clustering of virialized objects would be different
from one of matter density perturbation. The peak-background split formalism [23]
give a simple framework to calculate the clustering of virialized objects at large
scale. One can split underlying density perturbation into long-wavelength mode &,
and short-wavelength mode J;;

p(@) = p(1 + 8¢+ 85), (2.74)

where ¢ represents the coordinate in the Lagrangian space. The number density of
virialized object with mass of M at the position of ¢ would be modulated by presence
of the long-wavelength mode of density perturbation. Hence, the simple model of
the number density field of virialized objects is given by a local shift in the density
threshold, i.e. replacing 8, with §. — 8¢(¢) in Eq. (2.71). In this context, the number
density contrast of virialized objects in the Lagrangian space is given by

(@M

3n(gIM) = )

1, (2.75)

where nj,(g| M) is the number density field of objects with mass of M at g and n(M)
represents the mean number density which is given by e.g., Eq. (2.71). By expanding
this equation into Taylor series of §; in Eq. (2.75), one can relate &;, with §, as follows;

3n(qIM) = br(M)S¢(q), (2.76)

1 any,
by = — . 2.77
BT (3513 )5520 @70

by is the large-scale bias of virialized objects in Lagrangian space. In Eulerian space,
one needs to add the correction of the Eulerian space clustering. Therefore, the total
or Eulerian bias is given by b = by + 1. by, can be calculated once the function




2.3 Statistics of Matter Density Perturbation 29

form of mass function is specified. For example, in the case of the functional form
in Eq. (2.72), by, is given by
21
%
Se

b (M) = , (2.78)

where v is given by §./or(M).
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Chapter 3
Weak Gravitational Lensing

3.1 Basic Equation

According to General Relativity, the path of photon from a distant object would be
affected by intervening matter distribution between the object and us. This relativistic
effect is called gravitational lensing and more effective when photon goes through
more massive objects along the line of sight. Photon from every galaxy at a cos-
mological distance would experience gravitational lensing effect due to large-scale
structure in the universe. Hence, the image of distant galaxies would be distorted by
multiple deflections of the path of photon. Although the distortion of images is very
weak in general, we can extract the information of matter density distribution along
the line of sight with statistical analysis of image of galaxies.

Let us consider the path of photon from a distant source object in the presence of
inhomogeneous matter distribution. The path of a light ray can be determined by the
null geodesic equation;

d2xk u dx® dx?
w2 = e o G-
dx® dxV _0 (32)
BT an T '

where FDZS represents the Christoffel symbol given by a function of metric g,

y7aY

s = =5 (8uep + 8upa = 8apun) (3.3)

where 8g,m/8x/3 = gue,p and so on. In this chapter, Roman letter (e.g., i, j) is
running from 1 to 3 and Greek character (e.g., «, ) is running from O to 3. When
gravitational potential @ is very small, the metric of inhomogeneous expanding
universe can be described as follows;
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20 20
ds? = — (1 + —2) c*dr? +a* (1) (1 - —2) [dx2 + r(x)zdaz] . (34
C C

We can approximate do? as (d91)2 + (d6?)2 when the deflection angle of interest is
small (this approximation is valid because the typical value of 6 is of the order of arc-
minutes for distant galaxies). Suppose that the position of alightray x’ = (6", 2, x),
the derivative with respect to affine parameter can be written as follows;

d dxd
dr — drdy
dy dx° d
~ dx0 dx dy
__P_Oi (3.5)
a dy’ ’

where P = dx®/dx. Therefore, the transverse components (i = 1, 2) of the null
geodesic equation can be expressed as the differential equation with respect to co-
moving distance x . We can obtain the following equation by expanding Taylor series
about 8!, 62, and @ / c2 up to first order in the geodesic equation;

d2(ro") Ko 2 99 3.6)
rg" = —— —. .
dy? c2 3(roh)

The solution of Eq. (3.6) is given by

r(x —x)

———da,q> ,
/x (xH——= 0

(3.7)

where f! is the unlensed position of source on sky and d; is the derivative with respect
to 0. Equation (3.7) is the basic equation in weak gravitational lensing.

When we denote the observed position of a source object as 6 and the true position
as /3 we can characterize the distortion of image of a source object by the following

2D matrix: )
ap' l—k—y1 —»
- = , 3.8

Y80 ( -y l—k+p (3-8)

where « is convergence and y is shear. The component of A;; can be decomposed

as
(1=« O Vi~V
A’f‘( 0 1—K)+(—V2+V1 ’ G2
where the first part of the right-hand side represents an amplification of the size of
the image and the second part describes an anisotropic stretching of its shape.
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By using Eq. (3.7), we can relate each component of A;; to the second derivative
of the gravitational potential as follows;

Aij = 8ij — Pij, (3.10)
2 X I / /
Pij = 6_2/0 dx'g(x, x)0;i9;P(x ), (3.11)
rO=xre)
gx. x) = DX Z XX (3.12)
r(x)

We can find 2k = @11 + P2, from the above equations. On the other hand, gravita-
tional potential @ can be related to matter density perturbation according to Poisson
equation;

3H; ¢

Therefore, convergence can be expressed as the weighted integral of § along the line
of sight;
K= —2/ dx'g(x, x)A - 3;1®
¢ Jo

3 (Ho\’ X § 1 [X
2 (_) Qm(’/ dx"s(x: XD = —2/ dx'gx. x)2P. (3.14)
¢ 0 a C 0

We can safely neglect the term related to the second derivative with respect to x
when considering small angle separation [1]. Thus, convergence « can be written as

3 (Hy 2 x ;.68
k=s\7 £2mo [ dx'g(x, x)—- (3.15)
c 0 a
The relation between convergence and shear in fourier space is given by
7 (k) = 71(k) + i (k)
ki — k3 +ikiky _ -
— %,}(/{)’ (3.16)

R (k) = 71 (k) cos 2¢ + y» (k) sin 2¢z, (3.17)

where )2(12) is the fourier coefficient of X(é) and k = (k1, k2) = k(cos ¢z, sin ¢p).
Inverse fourier transform of Eq. (3.17) provides that (e.g., [2])

k(@) = _l/dze’%e [D*(§ _ (5’))/(67’)], (3.18)
4
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2_ 2 ;
- 27— 25 +2iz1z0
D(z) = —24 .

(3.19)
One of the most common observables is the angle average of lensing quantities
around some objects like galaxy or galaxy clusters. From Eq. (3.10), we can derive
the following equations by taking a polar coordinate (61, 62) = (6 cos ¢, 6 sin¢);

1 1 1
K=z (Cbee + 54’9 + 9—2(%(;7) , (3.20)
1 1 1
ve=-3 Doy — 5959 - 6—2¢¢¢ , (3.21)
1
Yx = 00 (5%) , (3.22)

where the origin is set to be the center of the object. Here, y; and yx represents the
tangential and cross component of shear which are defined as

Yt = —Y1€082¢ — y28in2¢, (3.23)
Yx = y18in2¢ — y» cos2¢. (3.24)

Then, the average of «, y; and y« within an annulus [0, 6 + df] is given by

1 1
() (0) = = ((%9) + 5(%)) ; (3.25)
1 1
r)©) = =3 ((‘1)99) - 5(%)) ; (3.26)
(r<)(0) =0, (3.27)

where (X)(6) is given by f02n X (0, ¢)d¢ /27 and we use the fact that (Py) = 0.
Hence, for a given point on sky, one can test any systematic effects on cosmic shear
measurement by checking whether (yx) = 0 or not. Also, (x) and (y;) are related
as follows;

(¥1)(0) = —(k)(©0) + k(0), (3.28)

where i () represents the circler average of convergence defined by

%
%(0) = #/0 27d0'0' (i) (0),

l 0 / /
_ 9_2/0 46'3 (6 .

1
= 2 (®0). (3.29)
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3.2 Observable

Here, we consider the relationship between the observable and the cosmological
signal in weak lensing measurement.

Weak lensing measurement roughly consists of two methods: measurement of
shape of images and measurement of size and magnitude of images. Gravitational
lensing causes amplification of size and distortion of shape of an image. The size
amplification is called magnification and leads to fluctuation in the size and the
magnitude of distant galaxies. In a magnitude-limited survey, number density of
background galaxies is expected to change by the magnification due to foreground
matter density distribution. This magnification effect have been already detected by
cross correlation analysis of background and foreground populations (e.g., [3, 4])
and use of a tight scaling relation between galaxy’s properties such as apparent size
and surface brightness [5]. Nevertheless, at present, the shape measurement of distant
galaxies is more commonly used in weak gravitational lensing measurement. In the
following, we focus on the shape of image of a distant object in terms of measurement
of shear y [6, 7].

Suppose the observed surface brightness of galaxies f (5 ), we can define the center
of an image 6; as follows;

PRE SO £@)
L [Rew® FO)

(3.30)

where W (6) determines the apparent size of image. Then, the quadruple moment of
image can be evaluated by

[ d2oW©B)©O; — 6:)(O; — Q_j)f(é)
[d20 W) f©6) ’

01t = (3.31)

The position of observed galaxies would change due to gravitational lensing effect by
foreground matter distribution. When the unlensed position is denoted by B , We can
define the quadruple moment of images on source plane ,5 . The surface brightness on
source plane f© >(5 ) should be equal to the observed surface brightness according
to conservation of photon energy;

@) = fOp). (3.32)

Therefore, the quadruple moment on source plane is given by

JE2BW BB — BB — B (B)
Jd2BWEB) f ()
[ d20det A W(AO) A (O — O1) Aj.(6, — 6) £ (6)
B [ d26 det A W(AB) f(6)
= Air(0) QrrAjr(0). (3.33)

(8) _
0} =
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Here, we define two good measures of ellipticity € = 1 + igp as

¢ = 01— 0 ’ (3.34)
011 + Q2 +2,/01102 —207%,
& = 2012 (3.35)

On+02+2,/0110»— 2Q%2.

This complex parameter ¢ can be defined in the same way on source plane. Thus,
the relation of ellipticity between source plane and observed plane is given by

&int + &
= —" 3.36
1+ g*&int (-39
where we use Eq. (3.33) and the above relation is valid for |g| < 1. Complex reduced
shear g is defined by

- n )
g_l—K+ll—K

(3.37)

In the weak lensing regime (i.e. «, y; < 1), the observed ellipticity can be an esti-
mator of shear as follows;

€=y + &int (3.38)

where eiy¢ represents the intrinsic ellipticity of source galaxies. The current ground-
based observations indicate ojy; = +/{(|in¢|?) == 0.4 (e.g., [8]). This value is much
larger than the expected signal of cosmic shear of each galaxy by a factor of ~10-100.
Thus, the statistical analysis of galaxy’s ellipticity is crucial to extract the cosmolog-
ical information from the shape measurement of galaxies.

3.3 Statistics

3.3.1 Two Point Correlation Function

In the presence of the intrinsic ellipticity called shape noise, we need to perform some
statistical analysis of ellipticities of source galaxies in order to use it as cosmological
probe. The conventional statistical quantity is two point correlation function of ellip-
ticity of galaxies. Here, we will summarize the formulation of two point correlation
function of ellipticity of galaxies.

First of all, we will start to consider the convergence power spectrum, i.e. two
point correlation in fourier space. The convergence power spectrum contains the
information of the power spectrum of density fluctuation § because convergence
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relates to § through Eq.(3.15). Although we consider the specific case that all the
sources locate at the same redshift in Eq. (3.15), source galaxies have the distribution
of redshift in practice. We can take into account the effect of redshift distribution of
source galaxies on Eq. (3.15) as follows;

N XH N
k(@) = /0 dx gGO8( r(00), (3.39)
3 ([ Hy\>
900 =3 (7”) szmoWGL(x)%, (3.40)
XH
WGL(x>=/ dx'G(x )M, (3.41)
X r(x"

where G () represents the redshift distribution of source galaxies and xg is the
comoving distance up to z — co. Let us calculate the convergence power spectrum
with Eq. (3.39). The two point correlation function of convergence is defined by

(Kk(O)c(6") = / dxq(x) / dx'q (xS rGOOS(, r(xH8)).  (3.42)

The fourier transform of the above equation provides the relation between the con-
vergence power spectrum and matter density power spectrum. We can obtain the
following equation by fourier transforming of §;

S d3k a3k’
(K (O)k (@) =/dx q(x)/dx q(x )/ o3 | g (B(x. )8 K))
X exp [—ir(x)kj_ G —ir(xOK, -6 — ikx —ikl’lx/], (3.43)

where k 1 and k) represent the wave vector in the perpendicular and the parallel
direction on the line of sight, respectively. Assuming that the comoving distance r ()
does not change significantly at angular scale of interest, i.e. ¥ (x') ~ r(x), g(x") =
q(x), we can calculate the two point correlation of convergence as

5 o d%k P
(e @)c(@)) = / dx >0 / G POk e [=irGokL - @ = 3)]. G44)
The power spectrum in two dimensional space is expressed as

P.(0) = / 420 (c (B (@) T =0, (3.45)

Therefore, the convergence power spectrum is given by

l
O S
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We can also calculate the power spectrum of y; by using Eq.(3.11). Here, we
generalize Eq.(3.11) in the same way as Eq. (3.39);

o XH
P;j(0) =/0 dxWo ()3;9;P(x), (3.47)
2 [ rc=xr)
Wo (x) = —zr(x)/ dy' GoH L (3.48)
c X r(x)
Then, the power spectrum of @;; is defined by
(@i (O P () = @) 8P (L + )P, (0) (3.49)
with the two-dimensional power spectrum of
X W2 000
P, (0) = /O dy F—;%Pqﬂk =1/r), (3.50)

where Py (k) represents the power spectrum of gravitational potential. We can easily
obtain the power spectrum of lensing quantities « and y; in terms of Pg (k) as follows;

£4 XH W2
P.(t) = —/ dx =2 Pp(k =t/r), (3.51)
4 0 r
Py, (L1, €2) = Pc(£) cos*(2¢y), (3.52)
P, (L1, £2) = P (£)sin®(2¢y), (3.53)

where €1 = £cos(¢¢) and €» = {€sin(¢,). Therefore, the two point correlation
function of y; is given by

@) = —— [Taees [ ax Ve pyge =
(r1(0)y1(0)) = Tor J, /0 X 5 Polk=t/r) (3.54)
X [Jo(£0) + J4(£0) cos(49)],
N 00 5 XH W_é -
(nOr@®) = 1— A d”/o dx —¢ Polk =¢/r) (3.55)
x [Jo(£0) — J4(£0) cos(4¢)],
NS 00 5 XH W_(% _
NOp@) = 1 [ dee /0 dx T Pk =1t/r) (3.56)

x [J4(£0) sin(49)]

where Jo(x) (J4(x)) is the zero-th (fourth) bessel function and 8; = 6 cos ¢ and
6r = 0 sin ¢.

Then, we can construct the correlation functions of shear which is defined the
tangential and cross component of y = y; +iy; as
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v = —Re(ye ?), (3.57)
Yx = —Im(ye H?). (3.58)

Finally, we can obtain the linear combination of the cross-correlation function of y,
and yy as follows [9];

££(0) = (1 (01 (0)) £ (yx (0)yx (D)), (3.59)
= i/dK LP.(£)Jy4(£0), (3.60)
2w ’

where the Bessel function Jy (J4) corresponds to the correlation function of & (§_).
Eq.(3.59) can relate to the convergence power spectrum (i.e. Eq.(3.46)) and is a
function of separation angle only. Thus, &1 is easily measurable in practice and
enables us to compare with theoretical prediction for a given cosmological model.

Reference [10] shows that the two point correlation functions are estimated in an
unbiased way by averaging over pairs of galaxies. In practice, the estimator éi is
calculated by

1
N, (®)

£L(0) = > wiw (e @e @) % ex @ex @) 40 G — ). (36D

ij

Np(©) =D wiwj Ag(6; — 6)), (3.62)
ij

where w; is weight related to shape measurement, Ag(cg) =1forf —A0/2 <¢ <
6 — A6/2 and zero otherwise, and &« (5,-) is the tangential and cross component of
ith source galaxy’s ellipticity. The expectation value of this estimator is evaluated
by an ensemble average of the shear field y. According to Eq.(3.38), an ensemble
average (&;&;j £ £x;€x ) is given by

(sri61) £ Exibx ) = 058ij + E+(6), (3.63)

where we here assume the source ellipticity to be oriented randomly. Thus, we can
see that this estimator is unbiased, i.e. (§+(0)) = £+ (0). Then, we can calculate the
covariance of &1, which is defined by

Cov(Ey, 01, Ex, 02) = ((E£(01) — Ex(0))Ex(02) — Ex(62))).  (3.64)

In the calculation of Eq. (3.64), the four point correlation function of ellipticity ap-
pears. The four point correlation function of ellipticity can be given by

2

o
(eaitpjepkeve) = (YaiVBjYukYve) T (int,wiint, 8 €int, ukEint,ve) + %(5,//55&()@[)/#@

+ 8,88 (Vai Yve) + 8ie8av (V8j Viuk) + SikSa (¥ vve)): (3.65)
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where the above equation is valid for i # j and k # £ and Greek letters represent
1 or 2. It is difficult to calculate the four point correlation of the shear field without
numerical simulations at present [11]. Here, assuming that the shear field and the
source ellipticity are Gaussian, we can write the four point correlation as the product
of the two point function as follows;

(eaitpjeukeve) = VaiVpj) VukYve) + Vai Yk ¥gjvve) + Yai Vo) (VBj Viuk)

2
+(a§“) (8ik8jeBapdpy + 88 jkSavdpy) + %%[(Sjusﬁv(yaimk)
+ 8188 (Vai Yve) + 8ie8av (V8 Viuk) + Sikdap (VB vve))- (3.66)
From Eq. (3.66) and the fact that
£1i€1j T Exiexj = €1i€1j + €22, (3.67)

E1i81j — Exifxj = (1;81 — &2i€2j) cosde;j + (e1;81; + £2;€2;) sind¢;j, (3.68)

where ¢;; is the polar angle of é; - éj, we can express the covariance of éi as
follows;

~ ~ 1
C 016,06 :7[45 2w2 A (i
ov(Ey, 01,6+, 02) Ny OONy @) 01186, 6, ;W, wi g, (i)

+202, 3" whwjwi Ag, (i) Ag, (()E (k)
ijk

+ D wiwjwewg Ag, (i) Ag, (k€)
ijke

X (E+ (08 (K) + cos[4(@ie — 0] - (06— (0) | (3.69)

. 1
Cov(E_, 01,2 .0 =7[0-46 212 Ag, (i
(E-,01,6-,00) Ny Ny @ LT 6162 lzi,wt wj Ao, (/)

202 > wiwjwi A, (i) Ag, (IK)EL (jk) cos [4(¢i — i)

ijk
+ > wiwjwiwe Ag, (i) Ag, (kb)
ijke
x (cos [4(¢ij — die — bjk + dre) | E-((OE_(jk)

+c0s [491) — k)| 4G OEL ()] (3.70)

1
) (200 D" whwjwe Ao, (i) Aoy (K)E- () cos [4(@ix — 450)]

Cov(y. 01,6 .0)) = ————
Ny 6N, 52 <

+2 Wi wiwe A, (1) Ay (kO o 41 — deol -0 (0|, (3.T1)

ijke

where we use the result of Egs. (3.54), (3.55), and (3.56).
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3.3.2 Lensing Mass Reconstruction

Reconstruction of mass density (or convergence) field from observed ellipticity of
galaxies is first proposed in Ref. [12] (KS92). The primary motivation of the re-
construction of mass density in KS92 is to investigate mass distribution in clusters
and the method proposed in KS92 have been applied to real data set by Ref. [13].
However, Seitz and Schneider have pointed out that the reconstruction algorithm in
KS92 would be problematic in practice because of the boundary artifacts on finite
sky coverage [2]. They then have proposed the modification of the method in KS92
by taking into account the finite field in observation.

On the other hand, instead of the reconstruction of convergence field itself,
Ref. [14] has proposed the statistical analysis based on the smoothed convergence
field with some smoothing function for the purpose of detection of dark matter con-
centration. The statistics of the smoothed convergence field are currently known as
the powerful tool to measure the abundance of dark matter haloes (e.g., [15-17])
and the higher-order moments of underlying dark matter field (e.g., [18, 19]). In the
following, we focus on the smoothed convergence field as a cosmological probe.

Let us first define the smoothed lensing convergence field:

H @) = / P @ - HU@), (3.72)

where U is the filter function to be specified below. We can calculate the same
quantity by smoothing the shear field y as

H () = / ¢ 1($:6)0: (), (3.73)

where y; is the tangential component of the shear at position 5 relative to the point
6. The filter function for the shear field Q; is related to U by

0
0:0) = / do’ 0'U©®") — U (0). (3.74)
0

We consider Q; to be defined with a finite extent. In this case, one finds

9/
% — 0:(0), (3.75)

o
U®) =2/ do’
0

where 0, is the outer boundary of the filter function.
In this thesis, we consider the truncated Gaussian filter (for U) as

Ue) = — o L (1 % (3.76)
=——5expl——F5)—-——F\|1l—-exp{—7F1) .
6% P 02 ] no? P 02
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1 62 02
Q,(@):m 1— 1+% exp —% , (3.77)

for & < 6, and U = Q; = 0 elsewhere. Throughout this thesis, we adopt 6 = 1
arcmin and 6, = 15 arcmin. Note that this choice of 6 is considered to be an optimal
smoothing scale for the detection of massive galaxy clusters using weak-lensing for
source redshift of zgource = 1.0 [20].

It is important to use appropriately the weight associated with shape measure-
ment when making smoothed convergence maps. In practice, we can estimate .Z~ by
generalizing Eq. (3.73):

> Qt(¢;j)Wj€z(<i;j £ 6;)
> 0idw;

A (6;) = (3.78)

where the summation in Eq. (3.78) is taken over all the source galaxies that are located
within 6, from ith pixel.

3.3.3 Minkowski Functionals

In 1970s-1980s, there has been a debate about the nature of the topology of large
scale structure in the universe. At that time, there were two competing models:
the hierarchical clustering model [21] and the cell structure model [22]. The former
model appears in a cold dark matter (CDM) scenario, i.e. high-density regions would
be seen as isolated clumps and low-density regions are connected. The latter model
predicts that the largest structure first forms and then fragment into smaller objects.
The cell structure model is so-called “top—down” type model of structure formation
in the universe. In order to examine the connectedness of the high- and the low-
density regions in the universe, Ref. [23] has proposed a measure of topology by
using of a density contour of galaxy distribution and they have found that both
the high- and low-density region are connected, which can be explained naturally
by the initial Gaussian condition in the inflationary models. The more qualitative
studies in measuring the topology of galaxy distribution have been presented in,
e.g., Refs. [24-26]. In particular, Gott et al. (1989) [26] have applied their developed
technique of measuring of topology to real data set and they have found that the CDM
model give a good fit to the observed measure of the topology of galaxy distribution.

On the other hand, the measure of two dimensional topology has been initiated
in e.g., Refs. [27-29]. Coles (1988) [27] has studied the statistical geometry of the
two-dimensional random field in order to examine the conventional assumption that
the primordial density fluctuations are a Gaussian random field. This interesting idea
has been applied to the current data of comic microwave background [30, 31] and the
topological analysis on sky can be a powerful probe to constrain on non-Gaussianity
in underlying random field.
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Minkowski functionals (MFs) are among the most useful statistics to extract non-
Gaussian information from a two-dimensional or three-dimensional field. MFs are
morphological statistics for some smoothed random field above a certain threshold.
In general, for a given D-dimensional smoothed field SP. one can calculate D + 1
MFs V;. On S?, one can thus define 2 + 1 MFs Vo, V1, and V5. For a given threshold,
Vo, V1, and V; describe the fraction of area, the total boundary length of contours,
and the integral of the geodesic curvature K, along the contours, respectively. MFs
are defined, for threshold v, as

1
Vo(v) = E/ ds, (3.79)
Oy
1 1
Vilv) = E/ Zdﬁ, (3.80)
o
Vo(v) ! / ! K,d¢ (3.81)
V) = — — , .
2 4 90, 2 §

where 0, and 9Q, represent the excursion set and the boundary of the excursion
set for a smoothed field u#(6). They are given by

0, = {6]u@) > v}, (3.82)
30, = (0 |u(d) = v). (3.83)

Here, geodesic curvature is defined as
Ky = |Vidl, (3.84)

where ¢ is the tangent vector along the contour curve ¢ and V; represents the co-
variant derivative along the curve. Note that V, equals to the genus statistic in a
two-dimensional space as found in e.g., Ref. [32]. The genus statistic has been used
as the measure of topology in the three-dimensional galaxy distribution [24-26] and
the two-dimensional anisotropy of cosmic microwave background [27]. The genus
statistic G2(v) in a two-dimensional space is defined by

Go(v) = [(the number of contours surrounding regions higher than the threshold value v)

— (the number of contours surrounding regions lower than the threshold value v):l , (3.85)

per unit area of the surface. We summarize the schematic picture of MFs for two-
dimensional random field in Fig.3.1.

For a two-dimensional Gaussian random field, we can calculate the expectation
values for MFs analytically [33];

[1 —erf(v_ﬂ):|, (3.86)
00

Vo(v) =

| =
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Wr===-==

Pixel value Pixel value ixel value

White : Area above a given threshold

Fig. 3.1 The schematic picture of Minkowski functionals (MFs). The upper panels show each MF
for a given threshold. The blue, yellow and red line represent lower, medium and higher threshold,
respectively. The lower panels show that three examples of the excursion sets on the hypothetical
two-dimensional random field. In lower panels, white region shows area with a pixel value above
a threshold and threshold increases from left to right

1 o v —w?
Vi) = —=—expl ———— 1, (3.87)
8v200 " oy
2 2
vV—W® 0y (v—nw)
1% =——"— -—— 3.88
2(v) 20 o exp 2 ) (3.88)
where 1 = (u), 0f = (u?) — p% and o = (|Vu/?).
In general, the expectation values for MFs can be expressed as [32]
Vi(v) = ! @2 ll ke—xz/zv (x) (3.89)
K= )& D2 wy o \ Va0, k :
2k/2
= 3.90
T Tk 1) G50

where x = (v — w)/oo and wy represents the volume of the unit ball in the k-
dimensional space, thus wg = 1, w1 = 2, and wy = 7. v in a general random field
can be obtained by the cumulant expansion theorem of the multiplicative probability
function of the series of spatial derivatives of u [32]:

v ) = @) + vV oo + v + - (3.91)
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where vlg()) = Hi_1 and Hy is the kth Hermite polynomial. Here, vlgl) is given by
) S kSt k(k — 1)Sy
v (x) = ng+2(X) - THk(x) - THk—z(X), (3.92)
where S, St and Sy are defined by
(F?)
S=— (3.93)
9
(F2V2F)
I o) (3.94)
0001
2(|[VF|2VZF)
Si=—"71—. (3.95)

0

where F' = (u — p)/ogp. From Eq.(3.92), one can expect that MFs contain the
information of higher-order moments of an underlying random field.
Reference [34] constructed the estimator of MFs in pixelated maps as follows;

Npix
Vi(Fo) = Mo jz;fi(Fo,éj), (3.96)
So(Fo.6)) = O(F — Fy), (3.97)
S1(Fo, 0j) = i(%)‘l (O(F — Fo+8Fo/2) — O(F — Fy — §Fy/2)) o
x \/WF; '
S (Fo, 5/) = %(t‘Wo)_1 (OF —Fo+38F/2) — O(F — Fo —0Fu/2))
| 2EFyFry = F2Fy, — F2Fy, (3.99)

s

F2+F}

where Npix is the number of pixels on the map and F;, = (3F/30,)g,=0,, ; and
Fy = (aF/aey)9y=9y,j-

There are several previous studies on MFs of weak gravitational lensing. Matsub-
ara and Jain (2001) [35] and Sato et al. (2001) [36] studied §2m0-dependence of weak
lensing MFs. While these studies mainly focus on the relatively weak non-Gaussian
information of lensing MFs, Taruya et al. (2002) [37] have considered the highly
non-Gaussian information and constructed the phenomenological model of lensing
MFs based on numerical simulations. More recently, Kratochvil et al. (2012) [38]
showed that the lensing MFs contain significant cosmological information, beyond
the power-spectrum, whereas Ref. [39] showed weak lensing MFs can be used to
constrain the statistical properties of the primordial density fluctuations.
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According to these works, lensing MFs is receiving renewed attention as a cosmo-
logical probe in upcoming galaxy imaging surveys. However, cosmic shear field or
convergence field show highly non-Gaussian feature due to the nature of non-linear
gravitational growth of matter density fluctuations. Thus, it is difficult to construct
the theoretical template of lensing MFs by the analytic approach. The simplest but
powerful methodology is to utilize a large set of mock weak lensing catalogs which
are taken into account non-linearity due to gravitational growth and observational
effects (e.g., intrinsic ellipticity of sources and finite sky coverage, etc.) simultane-
ously. In this thesis, we try to construct the theoretical template of lensing MFs with
mock galaxy lensing catalogs and examine the utility and the applicability of lensing
MFs as a cosmological probe.

3.4 Numerical Simulation of Weak Lensing

Here, we summarize the algorithm to simulate weak lensing effects of distant source
objects with cosmological N-body simulations.

We first run a number of cosmological N-body simulations to generate a three-
dimensional matter density field. We use the parallel Tree-Particle Mesh code
Gadget?2 [40]. We generate the initial conditions using a parallel code developed by
Refs. [41, 42], which employ the second-order Lagrangian perturbation theory, e.g.,
[43]. The initial redshift is set to zipir = 50, where we compute the linear matter trans-
fer function using CAMB [44]. Our fiducial cosmology adopts the following parame-
ters: matter density §2m0 = 0.279, dark energy density §240 = 0.721, the amplitude
of curvature fluctuations A; = 2.41 x 1072 at the pivot scale k = 0.002 Mpc~!,
the parameter of the equation of state of dark energy wyo = —1, Hubble parameter
h = 0.700 and the scalar spectral index n; = 0.972. These parameters are consistent
with the WMAP 9-year results [45]. To investigate the degeneracy of the cosmo-
logical parameters in lensing statistics, we also run the same set of simulations but
with slightly different £2,9, wo and Ag. The simulation parameters are summarize
in Table3.1.

Table 3.1 Cosmological parameters for our N-body simulations used in this thesis

2mo wo Ay x 10° | o3 # of N-body sims | # of maps
Fiducial 0279 | —1.0 | 241 0.823 4 40
High 20 0.304 | —1.0 | 241 0.878 |4 40
Low £2m0 0254 | —1.0 | 241 0.763 |4 40
High wo 0.279 | —0.8 | 241 0.768 |4 40
Low wo 0279 | —1.2 | 241 0.862 |4 40
High A; 0279 | —1.0 | 251 0.840 |4 40
Low Ay 0279 | —1.0 | 231 0.806 |4 40

We also show the resulting og. For each parameter set, we run 4 N-body realizations and generate
40 weak-lensing shear maps. We utilize the set of simulations shown here to generate the mock
weak lensing catalog for CFHTLenS data
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For ray-tracing simulations of gravitational lensing, we generate light-cone out-
puts using multiple simulation boxes in the following manner. Our small- and large-
volume simulations are placed to cover the past light-cone of a hypothetical observer
with some angular extent, similarly to the methods in Refs. [46, 47].

All the quantities associated with weak lensing effects can be determined by the
lens equation as shown in Eq.(3.7). According to the lens equation, the deflection
angle can be described by the weighted integral of gravitational potential along a
line of sight. In the standard multi-plane algorithm, the integral found in the lens
equation is divided into N intervals with the separated comoving distance of Ay.
The surface matter density on lens planes is obtained by the projection of the three-
dimensional matter density field realiz;d in N-body simulations. Hence, the surface
matter density on pth lens plane X7 (6) is calculated by

N Xp o
=7 @) =/ dx 8(xB. 1), (3.100)
X

p—1

where § = p/p — 1, x is the comoving distance of pth lens plane and 6 represents
the angular coordinate on sky. According to Poisson equation, X'7 () can be related
to the two-dimensional gravitational potential as follows;

. 3Q2uH{ _, -
Vior () = ;"2 L 2P ), (3.101)

where @7 (5) is the gravitational potential on pth lens plane. One can obtain the first
and second derivatives of ®”(6) under the periodic boundary condition by fourier-
transforming Eq. (3.101). The derivatives of @7 (0) is used to evaluate the distortion
tensor and the deflection angle on nth lens plane;

n—1

> D K] rOn =X g g (3.102)
—1 (Xp)r(Xn)
p_
n—1
A =1 3 LU0 = X (3.103)
=l a(Xp)V(Xn)
oh o
P _ 11 £ 12
Ul-j = (45,112 ¢Z2) (3.104)
2P
P=__ (3.105)
o 8x,~8Xj
where x; = x6; and A" and o" represent the distortion tensor and the deflection

angle on nth lens plane, respectively. In practice, we evaluate the matter density field
in N-body simulations with the triangular shaped cloud (TSC) assignment scheme
[48]. Then, the surface matter density is obtained as follows in Eq.(3.100) and the
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derivatives of the gravitational potential on each plane is provided by Eq. (3.101). In
these steps, the pixelation on the surface matter density maps is required. Therefore,
we have the following numerical parameters in weak lensing simulations: the number
of particles in N-body simulation Ngjp,, the box size of N-body simulation on a side
Lyox, an angular extent in lensing simulations 6y, the comoving width in multi-
plane algorithm Ay, and the number of pixels in the surface matter density maps
on each lens plane Nix. First of all, 65, can be determined by the request how
large sky coverage is needed. In this thesis, gy, is set to be 10°, which is large
enough to consider the case of the current lensing data set. Ngim, Lpox, Npix and Ay
are associated with generating the surface mass density on each lens plane. Let us
consider the simple case: Lpox is chosen so that they are multiples of A . In this case,
Ref. [47] tested some cases and found that Ngjm /(Lvox /A x) ~ O(1) X Npix is optimal
in considering the case of source redshift of zsource ~ 1 and the spatial resolution of
~0.1 arcmin. In order to take into account the objects with mass of ~10'* Mgoh~!
appropriately in simulations, the mass of particle in N-body simulation should be
set to an order of ~10!! M@h’1 at least. From these conditions, we choose that
Ngim = 5123, Lpox = 480 or 960 2~ 'Mpc (to cover 10 x 10 deg?, from z = 0 to 3),
Ax =120 h_lMpc, and Npix = 81922. The similar set-up has been tested in e.g.,
Ref. [49]. The configuration of our simulation is found in Fig.3.2. Note that we
reduce the number of pixel on a side by a factor of 2in the step of Eq.(3.102) and
Eq.(3.103). This is because the path of each ray does not necessarily pass through
the pixel on each lens plane due to the deflection of path of each ray. Therefore, the
angular grid size of our maps is 10°/4096 ~ 0.15 arcmin and 40967 rays are traced
backward from the observer point. For each ray, we first computed ray positions
on all lens planes in an iterative manner, using the lens equation Eq.(3.102). The
derivatives of gravitational potentials on a ray position are linearly interpolated from
four nearest grids on the pre-computed maps with 81922 pixels. We use outputs from

Fig. 3.2 The configuration redshift
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independent realizations when generating the light-cone outputs. We also randomly
shift the simulation boxes in order to avoid the same structure appearing multiple
times along a line of sight. In total, 40 independent shear maps are generated from
four N-body simulations for each cosmological model.
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Chapter 4
Weak Lensing Morphological Analysis

Here, we will study the true utility and applicability of weak lensing Minkowski
functionals (MFs) in terms of statistical tool for precision cosmology. The previous
studies on weak lensing MFs shown in Sect. 3.3.3 often consider idealized cases.
However, there are many observational effects in real weak lensing measurements,
for example, imperfect shape measurement due to seeing and optical distortion, selec-
tion effects of galaxies, uncertain redshift distribution of galaxies due to photometric
redshift error (e.g., [1]), noise-rectification biases (e.g., [2—4]), and complicated sur-
vey geometry due to masked regions. References [5, 6] have studied some of these
effects on cosmic shear power spectrum analysis. A comprehensive study of obser-
vational effects on lensing MFs is also necessary for purpose of making the best use
of the data from upcoming wide cosmological surveys.

4.1 Impact of Masked Region

First, we investigate the impact of masked regions on the measurement of weak
lensing MFs. Masking effect on sky could be one of the major systematics because
MFs are defined by morphological quantities such as contours. We use a large set
of numerical simulations of weak lensing to examine the masking effect. We then
compare the measured MFs from real data obtained from a Subaru survey with the
results of our ray-tracing simulations that include the effect of masked regions as
same as the observed sky.
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4.1.1 Estimation of Lensing MFs from Cosmic Shear Data

The smoothed lensing map (i.e. #") would be constructed from the observed ellip-
ticity of source galaxies by the method in Sect. 3.3.2. In the measurement of lensing
MFs, we convert a weak lensing field J# to x = (JZ — (J£')) /oy where oy is the
standard deviation of J#". In binning the thresholds, we set Ax = 0.2 from x = —5
to x = 5. We then follows the method shown in Sect. 3.3.3 in order to estimate the
lensing MFs from %  field. The above normalization can affect the MFs through the
variance of og for each field. In light of this problem, there is an alternative definition
of the threshold suggested in Ref. [7] as follows:

f= (271)_1/2/00 e /24t @.1)

vv

where vy is a density contour with a certain threshold and f represents the fraction
of volume. We can apparently avoid the normalization issue by using vy instead of
x for measurement of MFs. However, even with vy, it is difficult to eliminate the
effect of the variance between multiple fields because we have to use the f — vy
mapping for each field or for each sample, rather than by using some global quantity
calculated for all the samples. Here, we have tested the effect of the sample variance
of op on MFs against vy and x with 1000 Gaussian simulations.!

Figure4.1 shows the comparison of the mean of V, over our 1000 Gaussian maps
with the Gaussian prediction given by Eq. (3.88). For the Gaussian prediction, we
evaluate the quantities (%), op and o] by averaging over 1000 realizations; these
quantities serve as “global” values. The error bars in each panel represent the variance
of V, around the global mean. The three top panels show the different cases that the
MFs are plotted as a function of, from left to right, 2 — ("), ( —(£)) /op,and vy,
respectively. The apparent variation of the MF in the middle and right panels is partly
caused by the variance of the measured oy for each field. The lower panels represent
the difference between the mean V, and the Gaussian prediction. The difference
should be compared with the field variance, namely error bars. We find that the
difference from the Gaussian prediction is larger than the field variance when the
MFs are evaluated with normalization as (£ — (")) /og or by using vy associated
with volume fraction (see, Eq. (4.1)). As a matter of course, the Gaussian prediction
describes the mean MFs well as long as the MFs are evaluated without normalization
of JZ by op (left panel). However, we cannot use unnormalized weak lensing field
¢ on morphological analysis when we compare theoretical predictions with the
observation of a limited area (with masks). This is because theoretical predictions
for MFs are always given as a function of some normalized threshold. This means that

'We generate the Gaussian convergence maps for A CDM cosmology. In Gaussian simulation, we
use the fitting formula of Ref. [8] to calculate the matter power spectrum P (k; z). We then obtain
the convergence power spectrum by integrating the matter power spectrum over redshift z with a
weighting function for the source redshift zgource = 1. Each map is defined on 20482 grid points
with an angular grid size of 0.15 arcmin.
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Fig. 4.1 The effect of sample variance of field variance op on weak lensing MFs (taken from
[41]). The three panels show the comparison of the mean V> over 1000 maps with the Gaussian
prediction of Eq. (3.88) for three different estimations of V. In the left panel, V, is calculated
without normalization, while that in the middle panel is calculated for each . field normalized
by its variance and that in the right panel is calculated for each vy. The gray points in the lower
panels represent the differences between the mean V; and the Gaussian prediction. The differences
should be compared with the variance of V; estimated from our 1000 gaussian maps (black error
bars), that is the standard deviation of V; divided by +/1000

one needs either to de-normalize the theoretical prediction by using an appropriate
variance for the observed field, or to normalize the observed 2" in some way. In other
words, field-to-field variance of the weak lensing MFs is originated partly from the
variance og. Thus, in cosmological parameter estimation with such measurement,
one should take into account the field variance of og. In the rest of this thesis, we
simply use the normalized field x = (£ — (J¢"))/op for estimation of MFs. When
estimating lensing MFs on a .#" map with mask, we discard the pixels within 26
from the boundaries of mask, because .2 data on the vicinity of the mask boundaries
are affected by the lack of shear data.
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4.1.2 Data

4.1.2.1 Suprime-Cam

In this section, we summarize i’-band data from the Subaru/Suprime-Cam data
archive SMOKA.? The observation have been performed in the contiguous area
with at least four pointings. In the observation, the exposure time for each pointing is
longer than 1800 s and the seeing full width at half-maximum (FWHM) is better than
0.65 arcsec. The same data are found in Table A1 in Ref. [9], denoted to “COSMOS”.

In this thesis, we use the data only within a 15 arcmin radius from the field center
of Suprime-Cam, because the elongation of point spread function (PSF) becomes
significant outside of the central area, which makes PSF correction inaccurate in
the shape measurement. Then we performed mosaic stacking with SCAMP [10] and
SWarp [11]. We use SExtractor [12] and Afindpeaks of the software IMCAT
software [13], and then we merged the two catalogs by matching positions of the
detected objects with a tolerance of 1 arcsec.

For weak lensing analysis, we adopt the KSB method (e.g., [13—15]). We selected
stars in the standard way by finding the appropriate branch in the magnitude half-
light radius (&) plane, along with the detection significance cut S/N > 10. Number
density of stars is ~1 arcmin~2. We then select the galaxy images by the following
three conditions; (i) the detection significance of S/N > 3 and v > 10 where v is
an estimate of the peak significance given by hfindpeaks, (ii) rh is larger than the
stellar branch, and (iii) the AB magnitude is in the range of 22 < i’ < 25 (where
MAG_AUTO given by SExtractor is used for the magnitude and slightly different
from [9]). The resulting number density of galaxies ngy is then 15.8 arcmin—2. We
measured the shapes of the objects with getshapes in IMCAT, and corrected for
the PSF with the KSB method. The rms of the galaxy ellipticities after the PSF
correction is found to be 0.314.

We next define data and masked regions by the observed positions of the source
galaxies as follows. We consider the pixelated map on the observation area with
rectangular pixels of width 0.15 arcmin. For each pixel, we check whether there is
a galaxy within 6p = 0.4 arcmin from the pixel center or not. We set the value
of Op so that mean number of galaxies within n@% would be equivalent to ~3¢

confidence levels of poisson distribution (i.e. ngamef) / ,/ngalj'[O% ~ 3). If we can
find no galaxies, then the pixel is marked as a mask pixel. After performing the
procedure for all the pixels, the marked pixels are masked regions, whereas the other
pixels are data regions. However, we do not mask “isolated” masked pixels whose
surrounding pixels are all data pixels.

We computed weak lensing convergence field %" from the galaxy ellipticity data
as in Eq. (3.73) on regular grids with a grid spacing of 0.15 arcmin. Figure 4.2 shows
the resulting mass map and masked regions. The masked regions cover 0.34 deg?
in total. The area on unmasked regions are 1.79 deg”. Note that we use only 0.575

Zhttp://smoka.nao.ac.jp/.
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Fig. 4.2 The lensing field .#" reconstructed from the Subaru Suprime-Cam data. The ellipticity of
102342 source galaxies are used for reconstruction of the convergence .#". The masked survey area
(black portion) is found to be 0.34 degz. The color bar represents the value of (# — (%)) /oo

deg? in unmasked regions for lensing MFs analysis because we remove the pixels
within 260G = 2 arcmin from the mask boundaries.

4.1.2.2 Ray-Tracing Simulation from Sato et al. (2009)

In order to study the impact of masked regions on lensing MFs, we use 1000 weak
gravitational lensing ray-tracing simulations from Ref. [16].> The ray-tracing simu-
lations are to cover a past light-cone of a hypothetical observer with an angular extent
of 5° x 5°, from redshift z = 0 to z = 3.5, similarly to the methods in Sect. 3.4. We
use the ray-tracing simulations with the source redshift of zsource = 1. Each map is
defined on 20482 grid points with an angular grid size of 0.15 arcmin. Details of the
ray-tracing simulations are found in Ref. [16].

It is well-known that the intrinsic ellipticity of source galaxies is one of the main
contaminants on lensing shear maps. We take into account the noise by adding random
ellipticities drawn from a two-dimensional Gaussian to the simulated shear data. The
root-mean-square of intrinsic ellipticities is set to be 0.314 and we set the number of
source galaxies is 15.8 arcmin~2. Note that these values are obtained from the actual
weak lensing observations in Sect.4.1.2.1.

3For the simulations, the authors in Ref. [16] adopted the cosmological model which is consistent
with WMAP three-years results [17].
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4.1.3 Bias Due to Masking Effect

We then discuss the overall effect of masking on the lensing MFs. Here, we utilize
ray-tracing simulations of weak gravitational lensing in Sect.4.1.2.2. We focus on
non-Gaussian features in the case with masked regions. The total non-Gaussianity
probed by the lensing MFs A ViObs is given by

A\/l-‘)bS = V;(masked) — ViG (masked), 4.2)
where V;(masked) is i-th MF on a masked map and ViG (masked) is the Gaussian

term of V;(masked).
One can then decompose AV,.ObS into three components:

AV,'ObS — A‘/igraVity + AV,'biaS _ A‘/ibiaS,G, (43)

AVigraVity = V;(unmasked) — ViG (unmasked), “4.4)

AVP® = v, (masked) — V; (unmasked), (4.5)

AVP®S = vO(masked) — V¢ (unmasked), (4.6)

where A Vl.graVity is the non-Gaussianity induced by non linear gravitational growth,

AVibiaS represents the mask bias of MFs for non-Gaussian maps, and AVibias’G

describes the Gaussian term of AVibias. In order to evaluate these quantities, we
first consider ViG (masked) and Vl.G (unmasked). We measure the following three
quantities from 1000 masked ray-tracing maps:

w={(X), o5 = (A7) —p*, of = (VAP). (4.7)

The same quantities are also measured for the unmasked lensing maps. We can then
estimate ViG (masked) and ViG (unmasked) using these quantities and the theoretical
formula Eqs. (3.86)—(3.88). For the Gaussian terms, we also take into account the
correction of the finite binning effect pointed out by Ref. [18]. The correction is
caused by the fact that the threshold v to calculate the MFs Vi and V; is not continuous
but discrete with some finite width. We calculate the correction by integrating the
analytic formula (Egs. (3.87) and (3.88)) for finite binning width (see Ref. [18]
for details). V; (masked) and V; (unmasked) can be estimated directly from masked
and unmasked maps with the estimated ViG (masked) and VI.G (unmasked). We show
the various non-Gaussian contributions (Egs. (4.3)—(4.6)) calculated directly from
1000 masked ray-tracing maps in Fig.4.3. It is shown that AVibiaS is comparable to
AVE™Y in the ray-tracing maps. We also find that the mask bias A V"™ contributes
significantly to the observed non-Gaussianity AV, °*. Note that AViblaS’G is sub-
dominant although not negligible for V| and V5. This indicates clearly that the mask
bias can be a significant contaminant for cosmological parameter estimation with the
lensing MFs. The bias is expected to be induced for the following two reasons: (i) sky
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Fig. 4.3 The differences between the lensing MFs on masked ray-tracing simulation maps and
the Gaussian term (taken from [41]). In this figure, the various components are plotted: the total
non-Gaussianity obtained from the masked maps AVI."bs (black line with closed circle), the non-

Gaussianity caused by non-linear gravitational growth A Vl.graVily (black line with open circle), the
bias of lensing MFs due to masked regions for ray-tracing maps A Vibias (gray line with closed circle),

and the Gaussian term of AVib“‘s (gray line with open square). The definition of each component
is given by Egs. (4.2)-(4.6)

masking effectively reduce the number of sampling Fourier modes of cosmic shear
and (ii) masked regions introduce scatter of the variance of the reconstructed weak
lensing mass field. The former can be corrected analytically at least for a Gaussian
random field as shown in the Appendix A, while numerical simulations are needed
to include the latter effect accurately. In the following, we include the bias effect
when comparing simulation data and observations.

4.1.4 Impact of Masking on Cosmological Parameter
Estimation

We next consider cosmological information content in the lensing MFs with sky
masking. The cumulative signal-to-noise ratio S/N is often used for study of infor-
mation content. S/N is defined by

(S/N)? = uW'C 'y, (4.8)

where u is a data vector that consists of the lensing MFs Vj, Vi, and V;, and C is
the covariance matrix. In order to calculate (S/N )2, the data vector are constructed
from a set of lensing MFs as

{ni} = {Vox1), ..., Vo(x10), Vi(x1), ..., Vi(x10),
Va(x1), ..., Va(x10)}, 4.9)
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Fig. 4.4 The cumulative signal-to-noise ratio for the weak lensing MFs (taken from [41]). The
horizontal axis shows the maximum value of binned lensing field used in the calculation of S/N.
The open circles represent the S/N for unmasked ‘clean’ lensing maps whereas the black points
correspond to the case with masked regions. The solid line is S/N estimated with scaling the
covariance matrices of MFs with the effective survey area. In this figure, the masked regions are
same as the Subaru Suprime-Cam data (see Fig.4.2)

where x; = (J£; — () /oy is the binned normalized lensing field. We calculate the
covariance matrix of MFs using 1000 ray-tracing simulations.

We show the cumulative signal-to-noise ratio S/N as a function of x; in Fig.4.4.
One can find that clearly the information content is reduced by a factor of two in
the case with mask. We can explain the degradation by the reduced effective area.
The solid line corresponds to S/N by scaling C~! with the effective survey area. It
closely matches the S/N calculated directly from the masked maps. For a Gaussian
random field, it is expected that the variance of MFs should be inversely proportional
to the effective survey area (e.g., [19, 20]). Thus, we expect that the effective survey
area mainly would determine how much cosmological information we can gain from
weak lensing MFs.

We further perform the following analysis to investigate the effect of the mask
bias on cosmological parameter estimation. For each realization r of our simulations,
the x 2 value can be calculated as follows,

K20 = (i) — "N C () — 1), (4.10)

theory

where ; (1) represents the estimated lensing MFs from each realization  and u;

. . . . h
is the theoretical template for a given cosmology. In practice, we assume that ,u; oy

corresponds to the average over our 1000 ray-tracing simulations with or without
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masks. We estimate the lensing MFs u; (r) for each masked map, and then we use
the covariance matrices of the MFs obtained from a total of 1000 masked maps. If
wi(r) follows the Gaussian distribution, the distribution of x2(r) should follow a

genuine x 2 distribution. Hence, we can discuss the impact of bias due to masking on
cosmological constraints by comparing the resulting distribution of x?(r) for ,u;heory
estimated from unmasked maps.

We show the resulting distribution of x2(r) for our 1000 masked ray-tracing
simulations in Fig.4.5. The black histogram corresponds to the probability of x2(r)
for the corresponding model using the average MFs over the masked maps whereas
the gray one is for the unmasked maps. The thick solid line represents a genuine
x? distribution with 30 degrees of freedom, and the dashed line is the 1o region
for the x> values. We find an excellent agreement between the thin histogram and
the solid line. This means that the binned lensing MFs w; (r) can be described well
by a Gaussian distribution. Interestingly, most of the resulting x*(r) without mask
lie outside lo regions. When we do not include bias due to masked regions, 55.3,
59.4,74.9 and 85.4 % of the realizations lies outside 1o regions of the X2 values for
Vo, V1, V2 and all MFs. Therefore, we conclude that the bias of lensing MFs due to
masked regions can crucially affect a cosmological parameter estimation.

4.1.5 Application to Subaru Suprime-Cam Data

Here, we test whether we can extract cosmological information from masked noisy
shear data using the lensing MFs. In this section, we utilize available Subaru Suprime-
Cam data. In order to compare with the observed lensing map and the simulated maps,
we include two observational effects directly in our simulations, i.e., masked regions
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Fig. 4.6 The comparison the observed MFs with those from cosmological ray-tracing simulations
(taken from [41]). In the upper panels, the black line corresponds to the observed lensing MFs
and the gray one shows the simulation results. The gray error bars represent the cosmic variance
obtained from 1000 ray-tracing simulations. In the lower panels, the black line shows the difference
between the obtained MFs and the simulation results. The thin error bars indicate the sum of the
cosmic variance and the statistical error while the thick error bars show only the cosmic variance.
1000 randomized galaxy catalogues have been used for estimation of the statistical errors

and shape noises as described in Sect.4.1.2.2. Figure 4.6 shows the comparison with
the lensing MFs for the Subaru data and those calculated for the ray-tracing simu-
lations. The MFs Vj, V1, and V> are plotted in the top panels. In the bottom panels,
the thick error bars represent the cosmic variance of lensing MFs estimated from our
1000 simulated maps, whereas the thin error bars describe the sum of the cosmic
variance and the statistical error. The statistical error is estimated from 1000 random-
ized realizations, in which the ellipticity of each source galaxy is rotated randomly.
We find the statistical error is approximately ~1.5 times the cosmic variance for
each bin. In order to quantify the consistency of our results, a so-called x 2 analysis
is performed. We compute the y? statistics for the observed lensing MFs,

X% = (di —m)CLLyu(dj —m)) (4.11)

where d; is the lensing MFs in the i-th bin for observation, m; is the theoretical model,
and Cgy4stat 18 the covariance matrix of lensing MFs including the cosmic variance
and the statistical error. We again estimated the cosmic variances from 1000 ray-
tracing simulations and the statistical errors from 1000 randomized galaxy catalogs,
respectively. We estimate m; by averaging the MFs over 1000 ray-tracing simulations.
We adopt 10 linear binning in the range of x = [—3, 3] for each MF. For the binning,
we have a large number of simulations enough to evaluate the covariance matrix of
the lensing MFs. The resulting value of x2 per number of freedoms is found to be
x%/ndof = 3.35/10,9.69/10, 12.8/10 and 29.6/30 for Vj, Vi, V> and all the MFs.
Thus, we conclude that the observed lensing MFs are consistent with the standard
ACDM cosmology in the case of the observation with the small sky coverage (i.e.
0.575 deg?).
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4.2 Statistical and Systematic Error of Minkowski
Functionals

In Sect.4.1, we present the effect of masked regions on the measurement of weak
lensing MFs. There, we showed that sky masking induces large non-Gaussianities,
which could compromise measurement of the frue non-Gaussianity associated with
gravitational growth. This result leads that it is important to include directly realistic
observational effects in order to apply the lensing MFs to data from future cosmology
surveys. Here, we further explore several observational effects using the real data set
from the Canada-France-Hawaii Lensing Survey (CFHTLenS). We use a large set
of simulations described in Sect. 3.4 in order to study possible systematics in detail
one by one. We finally present a forecast for future surveys such as Subaru HSC and
LSST.

4.2.1 Mock Weak Lensing Catalogs

4.2.1.1 Canada-France-Hawaii Telescope Lensing Survey

We use the data from the Canada-France-Hawaii Telescope Lensing Survey
(CFHTLenS; [21]). CFHTLenS is a 154 deg® multi-color optical survey in the five
optical bands u*, g/, r’, i, and z’. CFHTLenS has been optimized for weak-lensing
analysis with a full multi-color depth of i, , = 24.7 with optimal sub-arcsecond
seeing conditions. The survey consists of four regions called W1, W2, W3 and W4,
with an area of ~72, 30, 50 and 25 degz, respectively.

The CFHTLenS survey analysis mainly consists of the following processes: weak-
lensing data processing with THELI [22], shear measurement with the lensfit [23],
and photometric redshift measurement [24]. A detailed systematic error study of the
shear measurements in combination with the photometric redshifts is presented in
Ref. [21]. The additional error analyses of the photometric redshift measurements
are presented in Ref. [25].

The ellipticities of the source galaxies in the data have been obtained with the
lensfit algorithm. The /ensfit performs a Bayesian model fitting to the imaging data
by considering various ellipticity and size of a galaxy, and by taking into account the
uncertainty of the centroid position. It also takes into account a forward convolution
process expressed by convolving the galaxy model with the point-spread function
(PSF) to estimate the posterior probability of the model given the data. The lensfit
estimates the ellipticity ¢ of each galaxy as the mean likelihood of the model posterior
probability after marginalizing over galaxy size, centroid position, and bulge fraction.
Then, an inverse variance weight w is given by the variance of the ellipticity likelihood
surface and the variance of the ellipticity distribution of the galaxy population. The


http://dx.doi.org/10.1007/978-981-287-796-3_3

64 4 Weak Lensing Morphological Analysis

lensfit algorithm has been tested with image simulations in detail. The observed
ellipticities £°° with any shape measurement method are calibrated in practice as

g% = (1 + m)e™® + ¢, (4.12)

where m is a multiplicative bias and c is an additive bias. In the case of lensfit, c is
consistent with zero for a large set of simulated images but m cannot be negligible
and it depends on both galaxy signal-to-noise ratio and size. On a weight average, this
multiplicative bias corresponds to a 6 % correction. In terms of statistical quantities
such as two point correlation function, this bias is easily corrected by multiplying an
overall factor (see Ref. [23] for further details).

In the catalog of source galaxies of CFHTLenS, the photometric redshifts z,
are estimated by the BPZ code [26, Bayesian Photometric Redshift Estimation].
Reference [25] has been shown that the true redshift distribution is well described by
the sum of the probability distribution functions (PDFs) estimated from BPZ. The
galaxy-galaxy lensing redshift scaling analysis in Ref. [21] confirms that contami-
nation is unimportant for galaxies selected at 0.2 < z, < 1.3. In this redshift range,
the weighted median redshift is found to be ~0.7 and the effective weighted number
density negr is 11 per arcmin?. In the following, we have used the source galaxies
with 0.2 < z, < 1.3 to make the smoothed lensing mass map.

The effective survey area is an important quantity for lensing MFs. Reference [21]
performs systematic tests in order to find clean data in terms of two point correlation
of cosmic shear. The fraction of data flagged by their procedure amounts to 25 %
of the total CFHTLenS; this is indeed significant. In Sect.4.1.4, it is shown that the
effective survey area mainly determines the cosmological information content in the
lensing MFs. More importantly, however, complicated geometries of the masked
regions induce non-Gaussianities that contaminate the lensing MFs as shown in
Fig.4.3. We thus have decided to use all the available data of CFHTLenS to make
a wide and continuous map. We expect the systematics associated with the PSF to
be relatively small compared to the masking effect on morphological statistics (see,
e.g., Refs. [21, 27]). When calculating the two point correlation function (2PCF),
we use the clean sample of Ref. [21].

In order to construct the smoothed lensing convergence field JZ°, we use the
estimator as in Eq. (3.73). We adopt the truncated Gaussian filter (for U) with the
parameters of g = 1 arcmin and 8, = 15 arcmin. The weak-lensing convergence
field J# is then computed from the galaxy ellipticity data on regular grids with a grid
spacing of 0.15 arcmin. In making the convergence map, we discard the pixels when
the denominator in Eq. (3.73) is equal to zero. We define the boundaries by masking
a pixel if the number of sources within 6, from the pixel is less than 5,/15762. This
critical value effectively sets the signal-to-noise ratio of the number of sources inside
a circle with radius of 6, to be less than 5, on the assumption that the distribution of
sources is approximated by a Poisson distribution. We repeat the above procedure
for all the pixels. Note that the details of the procedure do not affect the final results
significantly as long as we impose the same conditions to on all of the pixels, because
our analysis is based on the comparison of two maps that have the same configuration
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Fig. 4.7 Reconstructed convergence field .#” in the CFHTLenS W1 field (taken from [33]). In this
figure, the ellipticities of 2570270 source galaxies are used in the reconstruction of the .# map.
The color-scale bar represents the normalized value (2" — (7)) /oo

of source positions. Figure4.7 shows the obtained mass map in the CFHTLenS W1
field.

4.2.1.2 Algorithm for Mock Catalogs

In order to study observational effects on weak-lensing morphological statistics, we
generate realistic mock weak-lensing catalogs by combining ray-tracing simulations
and the CFHTLenS data [27]. The main advantage of these mock catalogs is that we
can directly use the observed positions on the sky of the source galaxies. This enables
us to keep all the characteristics of the survey geometry the same as in CFHTLenS.

We locate the source galaxies in the pixel unit of our lensing map and then calculate
the reduced shear signal g = y /(1 — «) at the galaxy positions. Ray-tracing is done
up to the redshift of the galaxy as described in Sect. 3.4. In this step, a galaxy’s redshift
is set to be at the peak of the posterior PDF obtained from BPZ. This could cause
systematic effects on morphological statistics originating from the inaccuracy of the
photometric redshift estimation. We discuss the impact of the redshift distribution of
sources on lensing morphological statistics later.

We next consider the intrinsic ellipticity that is known to be a major error source
in cosmic shear measurement. To model the intrinsic ellipticity of each galaxy, we
randomize the orientation of the observed ellipticity, while keeping its amplitude.
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The randomized ellipticity is then assigned as the intrinsic ellipticity ¢j,; at each
galaxy’s position. The final “observed” ellipticity is given by, as shown in Eq. (3.36),

&int + &

—m e 4.13
1 + g*eint ( )

Emock =

where emock 1S represented as a complex ellipticity.

Finally, we incorporate calibration correction in the shear measurement. We assign
the weight associated with the shape measurement of /ensfit and the shear calibration
correction following Ref. [21]. The two factors determine the potential additive shear
bias ¢ and multiplicative bias m. We then apply the shear calibration correction to
€mock DY using bias factors m and ¢ as

Emock —> (1 +m)&mock + C. (4.14)

In this step, we assume that there is no correlation between ¢ and m, c. We have
explicitly calculated the correlation between € and m, ¢ at the source galaxy positions
using the CFHTLenS data set, and found that there is indeed no significant correlation
between the quantities.

Through the above procedures, we have successfully included the following obser-
vational effects in the morphological analysis that all or many of these effects are
often ignored in previous works: (1) non-linear relation between the observed ellip-
ticities and cosmic shear, (2) non-Gaussian distribution of the intrinsic ellipticities,
(3) the masked survey area of CFHTLenS and the inhomogeneous angular distrib-
ution of the source galaxies, (4) imperfect shape measurements and (5) the redshift
distribution of the source galaxies.

Figure 4.8 shows the two point correlation function measured from 40 mock cat-
alogs. For simplicity, we estimate the two point correlation function without shape
noises and calibration biases. Also, the weight associated with shape measurements
is set to be unity. The colored points with error bars are the average £+ in our mock
lensing catalogs. The error bars show the standard deviation of estimator Eq. (3.61)
over 40 realizations. For comparison, we also represent the theoretical prediction
Eq. (3.60) with the model of non-linear matter power spectrum in Ref. [28]. Our
mock catalogs provide a reasonable fit of the theoretical prediction with a level of
two point statistics. In the following, we utilize these mock catalogs to discuss higher
order statistics of interest, i.e. Minkowski functionals of smoothed convergence field.

4.2.2 Realistic Forecast of Cosmological Constraints

4.2.2.1 Fisher Analysis

In this section, we perform a Fisher analysis to produce a forecast for parameter
constraints on £2n0, As, and wo with future weak-lensing surveys.
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For a multivariate Gaussian likelihood, the Fisher matrix F;; can be written as
1 —1
Fij = 3Tr [4i4;+C My 4.15)

where A; = C~13C/dp;, M;j = 2@un/dp;) (B,u/apj), C is the data covariance
matrix, u represents the assumed model, and p = (20, As, wo) are the main
parameters. Here, we consider only the second term in Eq. (4.15). Because C is
expected to scale proportionally inverse to the survey area, the second term will
be dominant for a large area survey (see, e.g., Ref. [29]). We model the theoretical
template by averaging the MFs over 40 convergence maps with appropriate noises for
each CFHTLenS field. Figure 4.9 shows the cosmological dependence of our model
MFs thus calculated. We find the clear behavior of the MFs as a function of p even
in the presence of various observational effects.

We also calculate the model 2PCFs using the fitting formula of non-linear matter
power spectrum of Ref. [28], on the assumption that the source redshift distribution
is well approximated by the sum of the posterior PDF with 0.2 < z,, < 1.3 givenin
Ref. [30].

To calculate the matrix M;;, we approximate the first derivatives of the 2PCF and
MFs with respect to cosmological parameter p; as

0 0
o w(p” + Ap) — u(p” — Api)
Ipi 24p; ’

(4.16)

where p© = (0.279, 2.41 x 1072, —1.0) gives our fiducial model parameters and
we set Ap = (0.025,0.1 x 1072,0.2).


http://dx.doi.org/10.1007/978-981-287-796-3_3

68 4 Weak Lensing Morphological Analysis

—— —— ‘
T 4 1r 4 1r .

E A 3 A 2 A

B 1 X A ] X A‘ _

S — vv S0 Su ﬁqv

= 1E £ 7

5 1o kS v

-1 F —high Q_ o —low Q_, 4 -1 F —high Al _low Aj 4 -1 F —highwy _low w, -
TR B B R T R B N T R B N
—4 -2 0 2 4 —4 -2 0 2 4 —4 -2 0 2 4
(k —<k>)/04 (k —<k>)/aq (k —<k>)/aq

Fig. 4.9 Variation of the lensing MFs for different cosmological parameters (taken from [33]).
Each panel shows the differences of Vy, Vi, and V, with respect to those of our fiducial cosmology.
In all of the panels, the thick (thin) black line represents the case of cosmological model with
higher (lower) §2m0. The thick (thin) red one corresponds to the result of the cosmological model
with higher (lower) Ay, and the thick (thin) blue one is for the model with higher (lower) wy. For
reference, the typical statistical errors of Vy, Vi, and V, at (# — (£))/op = 0 are ~1073, 1074,
and 107, respectively, for CFHTLenS

We construct the data vector D from a set of binned MFs and 2PCFs,

D; = {Vo(x1), ..., Vo(x10), Vi(x1), ..., Vi(x10), V2 (x1), ..., Va(x10),
§+(01), ..., §+(010), §-(01), ..., §—(610)}, 4.17)

where x; = (% — () /oy is the binned normalized lensing field. For the Fisher
analysis, we use 10 bins in the range of x; = [—3, 31.% In this range of x, Eq. (4.16)
gives smooth estimates for M; ;. For the 2PCFs, we use 10 bins logarithmically spaced
in the range of 6; = [0.9, 300] arcmin. A data vector has 50 elements, 3 x 10 MFs
and 2 x 10 2PCFs, in total.

We therefore need a 50 x 50 data covariance matrix for the Fisher analysis. In
order to estimate the sampling variance, we use 1000 shear maps made by Ref. [16]
or in Sect.4.1.2.2. The maps have almost the same design as our simulations, but are
generated for slightly different cosmological parameters (consistent with WMAP
three-years results [17]). The actual parameter differences are small, and also the
dependence of the covariance matrix on cosmological parameters is expected to
be weak. We model the intrinsic ellipticities by adding random ellipticities drawn
from a two-dimensional Gaussian to the simulated shear data. We here set the rms
of the intrinsic ellipticities to be 0.38 and the number of source galaxies is set to
be 10 arcmin™2. These are reasonable choices for the study here. In making the
smoothed lensing map from the simulation outputs, we set the weight related to
shape measurement to be unity. From the 1000 shear maps with appropriate noises,

“In principle, one can use regions with x > 3 as well. Such regions usually correspond to the
positions of massive dark matter halos, which are thought to be sensitive to cosmological parameters.
On the other hand, such regions are extremely rare, and thus the first derivatives in Eq. (4.16) are not
evaluated accurately even with our large number of 2" maps. We thus do not use high /¢ regions
with x > 3 in the analysis.
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we can estimate the variances of the 2PCFs and MFs. The statistical errors can be
estimated from randomized catalogs with rotating the observed orientation of the
ellipticities. Using these randomized catalogs, the data covariance matrices in each
CFHTLenS field can be estimated by the sum of sampling variance and the statistical
error as

Aeach deg?
h—eg) + Cyar. (4.18)

Ceach = Ceosmic ( 25 deg2
where Cosmic 1S sampling variance, Cgy represents the statistical error in each
CFHTLenS field, and A¢,cn corresponds to the effective survey area. In the fol-
lowing, we assume that the four CFHTLenS fields are independent of each other
statistically. The total inverse covariance matrix for the whole CFHTLenS data is the
sum of C;llch over the W1, W2, W3 and W4 fields. We forecast for future lensing
surveys by simply scaling the data covariances by the survey area, assuming that
the statistical error is identical to that in CFHTLenS. When calculating the inverse
covariance, we include a debiasing correction, the so-called Anderson-Hartlap factor
o« = (Nreal — Nbin — 2)/ (Nreal — 1) With ngey = 1000 being the number of realization
of simulation sets and npi, = 50 being the number of total bins in the data vector
[31].

We expect that Eq. (4.18) provides a good approximation to the full covariance, but
the accuracy needs to be addressed here. In the case of shear correlation functions, the
covariance matrix consists of three components: a sampling variance, the statistical
noise, and a third term coupling the two as shown in Sect. 3.3.1. However, because the
MFs do not have the additivity of, e.g., Vi (vi +v2) = V;(v1) + V;(v2), itis not clear
if the MF covariance can be expressed similarly as the sum of the three contributions.
We thus resort to estimating the MF covariance in a direct manner by using the large
set of mock catalogs generated by the procedure shown in Sect.4.2.1.2. Note that,
in the procedure, we perform two randomization processes for a fixed cosmological
model. One is to generate multiple realizations of the large scale structure (by N-
body simulations) and the other is to randomize intrinsic ellipticities of the source
galaxies. We perform each process separately, technically by fixing a random seed of
the other process, to evaluate each term in Eq. (4.18). In principle, one can perform
both of the processes simultaneously and derive the full covariance. However, this
would require a huge number of mock catalogs. In Appendix C, we have done a
simple but explicit check to validate that Eq. (4.18) indeed provides a reasonably
good approximation. The details of our test and the result are shown there.

4.2.2.2 Forecast for Upcoming Survey
We now present a forecast for upcoming surveys such HSC and LSST. We first derive

constraints on the cosmological parameters for a 154 deg? area survey, for which we
have the full covariance matrix obtained in the previous sections. We then consider
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two wide surveys with an area coverage of 1400 deg> (HSC) and 20000 deg? (LSST).
We simply scale the covariance matrix by a factor of 154/1400 or 154/20000 for them.

Let us begin with quantifying the statistical error associated with the real data. We
have performed a Fisher analysis including the sampling variance and the statistical
error. When including the statistical error, we found that the cosmological constraints
are degraded by a factor of ~2 for the CHFTLens survey as shown in Fig.4.10.
In Fig.4.10, the red error circle corresponds to the 1o cosmological constraints
including the sampling variance and the statistical error, while the blue one is obtained
from the Fisher analysis without the statistical error.

We are now able to present a forecast for future lensing surveys covering larger
sky areas on the assumption that the data covariance is same as that of CFHTLenS.
Figure4.11 shows the derived parameter constraints. The blue error circles corre-
sponds to the 1o constraints from the shear 2PCFs, whereas the red circles are
cosmological constraints obtained from the lensing MFs. It is promising that, with
Subaru HSC, we can constrain the dark energy equation of state wo with an error of
Awg ~ 0.25 by the lensing MFs alone. Table 4.1 summarizes the expected constraints
by future surveys. Combining the 2PCFs and the MFs can improve the constraints
by a factor of ~2 by breaking the degeneracy between the three parameters. It should
be noted that this conclusion might seem slightly different from that of Ref. [32],
who argue that adding the power spectrum does not effectively improve the con-
straints when all three MFs are already used. Our result suggests that combining
the 2PCFs and the MFs improves cosmological parameter constraints appreciably.
A precise account for the difference is not given by our analysis only, but there are
many factors that can affect the parameter constraint. First of all, we characterize the
amplitude of the matter power spectrum by the amplitude of curvature perturbations

0.4 F T T T T |

I I
42 -15 -1 -0.5 0
RED: CV + stat, BLUE: CV only

0.2 < z, < 1.3
30*1 L 1 all MFs, CFHTLenS(154 deg?)
1 arcmin gaussian smoothing

-1.5 7 use 10 bins for each MF

Fig. 4.10 Impact of statistical errors on the cosmological parameter estimation (taken from [33]).
Each panel shows the expected 1o cosmological constraints by the lensing MFs in the CFHTLenS
case. The red error circle presents forecast that includes sampling variance and the statistical error
associated with the observational effects. The blue circle is obtained with only sampling variance
included
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0.2 < EN < 1.3

2 HSC (1400 deg?)

1 arcmin gaussian smoothing

6.y = 1 [aremin]

Fig.4.11 Forecast for cosmological parameter constants by lensing statistics for the Subaru Hyper
Suprime Cam survey (1400 deg2) (taken from [33]). The blue error circle shows the constraints
from the 2PCFs, whereas the red one is expected from the MFs. We can improve cosmological
constraints as indicated by the green circle by combining the two statistics. The data covariances
for this plot are estimated from 1000 ray-tracing simulations and 1000 randomized catalogs based
on the CFHTLenS data

Table4.1 The lo constrainton 210, A, and wo, when marginalized over the other two parameters
(taken from [33])

2mo Ay x 10° wo
MFs only (1400 deg?) 0.0190 0.143 0.248
MFs only (20000 deg?) 0.00503 0.0380 0.0658
MFs + 2PCFs (1400 deg?) 0.0110 0.132 0.139
MFs + 2PCFs (20000 deg?) 0.00293 0.0351 0.0369

In this table, we take into account the sampling variance and the statistical error estimated from
statistical analysis with CFHTLenS data. Two surveys are considered: one with a survey area of
1400 deg? (HSC) and another with 20000 deg? (LSST)

Ay at the cosmological recombination epoch whereas Ref. [32] adopt oy at the present
epoch as a parameter. The latter is the so-called derived parameter and has an inter-
nal degeneracy with 2, and wp. Our result suggests that including the 2PCFs in the
analysis can better constrain Ay, which in turn yields tighter constraints on the other
parameters. Furthermore, our analysis includes observational effects such as survey
mask regions and the source distribution directly. Altogether, these differences make
it difficult to compare our results with those of previous works that mostly adopt
idealized configurations.
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4.2.3 Possible Systematics

In this section, we examine the effect of known systematics on measurement of the
MFs. We follow Ref. [5] to estimate the bias in the cosmological parameter due to
some possible systematics

_9phd
8pu = g > Cif! (DI = DIy (4.19)
iJ

where §p,, is the bias in the ath cosmological parameter, Fyg is a Fisher matrix, D
is the data vector and C is the data covariance. The data vector D is the theoret-
ical template for the fiducial model and D™ is the test data vector that includes a
known systematics effect. In this section, we use the data vector D consisting of the
lensing MFs only. For D we use the average MFs over 40 mock catalogs from our
fiducial cosmological model described in Sect.4.2.1.2. The mock samples are used
as reference model, for which we have assumed that (1) the source galaxy redshift is
well approximated by the peak of the posterior PDF of photometric redshift, and (2)
the observed shear is perfectly calibrated by a functional form shown in Ref. [21].
We test these assumptions and quantify the net effects in a direct manner by gener-
ating and using another set of the mock catalogs for Dest using the same N-body
realizations as for our fiducial case.

4.2.3.1 Redshift Distribution

It is important to quantify the effect of the source redshift distribution and of the error
in photometric redshifts on the lensing MFs, or indeed on any lensing statistics. We
perform ray-tracing simulations by shooting rays to the farthest lens plane at z = 3,
weighting the lensing kernel using a redshift distribution function of the sources.
Specifically, we follow the same manner in Sect.3.4 to simulate the weak-lensing
effect but the lensing kernel is slightly different from their simulation because of
the wider source redshift distribution. When one assume z,, = 1 so that the lensing
kernel can be calculated by the simple expression, i.e., ¥ (xs — x))r (x1)/r (xs), where
Xs and x; are the comoving distance of sources and of the lens, respectively. When
one consider source redshift distribution p(y), the lensing kernel for the lensing
objects at yx; should be replaced with f)éH dxs p(xs)r(xs — x)r(x1)/r(xs). The
source positions on the sky and all the other characteristics are kept the same as in
the original mock catalogs, which themselves are derived from CHFTLenS. For the
redshift distribution, we adopt the sum of the posterior PDF of photometric redshift
for the galaxies with 0.2 < z, < 1.3. Figure4.12 compares the integrated redshift
distribution with the histograms of the source redshifts. The latter is used in the
fiducial simulations. The test data vector D' is calculated by averaging the MFs
over the new 40 catalogs with the posterior weight described above.


http://dx.doi.org/10.1007/978-981-287-796-3_3

4.2 Statistical and Systematic Error of Minkowski Functionals 73

redshift z

Fig. 4.12 Redshift distribution function of sources p(z) (taken from [33]). The red histogram
corresponds to the sum of the posterior PDF over galaxies with 0.2 < z, < 1.3. The black one
is calculated from the peak value of the posterior PDF, i.e., the best-fit photometric redshift. The
mean redshift is slightly different: 0.69 for the black histogram and 0.748 for the red one
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Fig. 4.13 Impact of possible systematics on lensing MFs (taken from [33]). Each panel plots
the differences of average MFs over 40 catalogs between the fiducial cosmology and another one
that includes a given systematic. The red line presents the difference owing to source redshift
distribution whereas the black one shows the effect of shear calibration correction on the lensing
MFs. For comparison, the case of a cosmological model with higher (lower) wy is plotted as the
thick (thin) blue line

The main difference caused by the different redshift distributions is the amplitude
of the standard deviation of .. Figure4.13 shows that the net difference is as large
as those found for cosmological models differing by Awg = 0.2; this can obviously
be a significant source of error in cosmological parameter constraints with upcoming
future surveys. We estimate the resulting bias in the derived wq by using Eq. (4.19).
The uncertainties in the photometric redshifts can indeed induce a Awgy ~ 0.1 bias
in wg. The exact values are summarized in Table4.2.

We have also studied the effect of source redshift clustering on the lensing MFs.
The results are presented in Appendix B. Briefly, the source redshift clustering is
found to be a minor effect, but we note that it could cause non-negligible bias in
“ultimate” galaxy imaging surveys, for example, the LSST lensing survey.
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Table 4.2 The bias of cosmological parameter estimation due to possible systematics (taken from

[33D

2mo Ay x 10° wo
Redshift distribution 0.00707 —0.0254 —0.122
Calibration correction | —0.0224 0.110 —0.234

Here, we show the bias of £21,0, Ay, and wg. We consider two possible systematics on morphological
analysis of weak lensing data: one is the uncertainty of redshift of source galaxies and another
corresponds to the calibration correction in shape measurement of galaxies

4.2.3.2 Shear Calibration Correction

We next study the effect of shear calibration correction. Here, we consider the stan-
dard correction that describes the calibration as € = (1 + m)epeck + ¢ with a mul-
tiplicative component m and an additive component c. The former is calibrated by
analyzing simulated images whereas the latter is calibrated empirically using the
actual data. An ideal case would be one with m = ¢ = 0, which might possibly
be realized if a perfect calibration is done. We compare the lensing maps with and
without the calibration factors m and c in order to quantify how important the shear
calibration is. We simply reanalyze the fiducial mock catalogs by settingm = ¢ =0
for all of the source galaxies. The resulting 40 mock catalogs are used to obtain the
data vector D'** for this study.

We find that the additive calibration induces negligible effect but that the multi-
plicative calibration affects the lensing MFs appreciably. In the case of CFHTLenS,
the multiplicative calibration results in a ~6 % correction with (1 + m) ~ 0.94.
Note that m is a function of both the galaxy signal-to-noise ratio and the size. Thus
the calibration differs from position to position and introduces effectively additional
non-Gaussianities to the 2" map. Figure 4.13 shows that the non-Gaussianities actu-
ally cause biases in the lensing MFs. The biases cannot simply be described by the
difference of the standard deviation of JZ’, i.e., by the normalization of the lensing
MFs. The resulting bias in the cosmological parameter estimate is close to the 1o
level for an HSC-like survey as shown in Table4.2. The study presented here sug-
gests that the multiplicative correction needs to be included in model predictions of
the MFs for producing robust forecasts for upcoming surveys. We here emphasize
that our theoretical templates are based on mock catalogs that directly include the
multiplicative correction obtained from the real observational data.

4.3 Application to CFHTLenS

We then apply all the methods developed and examined in the previous sections to
the CFHTLenS data. We have already shown in Sect.4.2.2.2 that the statistical error
in CFHTLenS degrades the constraints on cosmological parameters if we use only
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the lensing MFs. It would be ideal to utilize other cosmological probes to put tighter
constraints. We will use the CMB data from WMAP.

Even though the likelihood analysis in this section includes the systematics studied
in Sect.4.2.3, our result could be “correctly” biased. Hence we need comprehensive
studies to mitigate the effect of possible systematics for the more accurate cosmo-
logical constraints from lensing MFs. Although it is difficult to derive constraints on
the cosmological parameters by lensing MFs correctly at present, we can test how
helpful lensing MFs are for parameter estimation by using the current data set. In the
following analysis, we simply assume the flat universe with wy.

4.3.1 Data Sets

We utilize multiple data sets. As a probe of large-scale structure, we use data from the
nine-year WMAP data release [34, 35]. We use the output of Monte Carlo Markov
Chains (MCMC) derived from the likelihood analysis with the CMB temperature and
polarization power- and cross-spectrum in the WMAP9 data. Note that the MCMC
we use here does not include other external data sets, such as small-scale CMB
measurements, galaxy redshift surveys, and Hubble constant. We then calculate the
likelihood in the parameter space p = (£2mo, Ay, wo) after marginalizing over the
following three parameters: the reionization optical depth t, scalar spectral index n
and Hubble parameter Hj.

As a probe of matter distribution at low redshifts, we use the lensing MFs and the
2PCF calculated from the CFHTLenS data.

We evaluate a pixelated .# map in the same manner as Sect.4.2.1.1. We then
convert JZ to x = (J — (J£))/og where oy is the standard deviation of JZ". We
follow the method in Ref. [18] to calculate the MFs from pixelated .# maps. We set
Ax = 0.2 from x = —5 to x = 5 for binning the threshold value. We construct the
data vector and covariances in the same manner as in Sect.4.2.2.1, but we assume
no covariances between the MFs and the 2PCF. To validate the assumption, we
have actually calculated the expected parameter constraints by the Fisher analysis
with/without covariances between the MFs and the 2PCF. We have found that the
approximation does not affect the final results significantly for the current data set.
The error in §2m0 increases only by Af2mo = 5 x 1074,

We sample the posterior of the cosmological parameters from the lensing 2PCF
data set using the Population Monte Carlo (PMC) using the publicly available code
COSMO_PMC [36]. Details of the PMC are found in Ref. [37]. We adopt the method
described in Ref. [29], which incorporates the cosmological dependence of the shear
covariance. The same model parameters are adopted as in Ref. [30], with the smallest
and largest angular bins being 0.9 and 300 arcmin. The following set of cosmological
parameters are considered: p = (£2mo, 20, 08, Ho, 5, wo), Where £y is the baryon
density and og normalizes the matter power spectrum. For comparison the result
derived from CMB and that from the lensing MFs, we calculate the value of Ay at
each sample point in parameter space by using the following relation:
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2 2
SD~4 |
Ay = Ay g (&) +lia. (4.20)
08, fid SD%
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where D is the linear growth factor of matter density, T (k) is the transfer function,
and Wg(k) is the top-hat function with scale of 8 Mpc/h in the Fourier space. For the
fiducial parameter set, we adopt the same parameters as the WMAP9 best-fit values.

In the PMC run, we perform 30 iterations to find a suitable importance func-
tion compared to the posterior. Also 100,000 sample points are generated for each
iteration. To obtain a large sample set, we combine the PMC samples with the five
highest value of perplexity p, which is the conventional diagnostic that indicates the
quality and effectiveness of the sampling. The PMC run achieves p > 0.7 for the
final samples; this criterion is the same as that adopted in the analysis in Ref. [30].

In the following, we study the following three cases: (1) likelihood analysis with
the lensing MFs alone, (2) combined analysis with the lensing MFs and the 2PCF,
and (3) combined analysis with the lensing MFs and CMB anisotropies. In the last
analysis, we treat the lensing MFs data and the CMB data as being independent of
each other.

4.3.2 Likelihood Analysis of Lensing MF's

In the maximum likelihood analysis, we assume that the data vector Dis well approx-
imated by the multivariate Gaussian distribution with covariance C. This assumption
is reasonable for the case of joint analysis of the CMB and lensing power spectrum
[38]. In this case, the x 2 statistics (log-likelihood) is simply given by

x> = (D — i (PHC(Dj — 1 (p)) (4.22)

where j1(p) is the theoretical prediction as a function of cosmological parameters.
The theoretical prediction is computed in a three-dimensional parameter space. In
sampling the likelihood function, we consider the limited parameter region as fol-
lows: 2mo € [0, 1], A; x 10° € [0.1,8.0] and wy € [—6.5,0.5]. The sampling
number in each parameter is set to 100.

In order to estimate the MFs components in ji, we assume that the lensing MFs
depend linearly on the cosmological parameters with the first derivatives calculated
from Eq. (4.16). We consider two components of the contribution of the data covari-
ance in the likelihood analysis; one is the statistical error and sampling variance,
which are estimated as in Sect.4.2.2.1 while the other originates from the possible
systematics as studied in Sect.4.2.3. We denote the latter contribution as C5. We
estimate C** in a simple and direct manner using the differences of the MFs, as
shown in Fig.4.13:
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Fig. 4.14 Marginalized 2D confidence level (68 and 95 %) obtained from cosmic shear data (taken
from [33]). The red region shows the cosmological results by lensing MFs alone and the blue region
represents the cosmological constraints by 2PCF alone. The green circle corresponds to the result
of our combined analysis with the lensing MFs and 2PCF. The concordance ACDM model (i.e.,
wo = —1) are assumed in this figure

Cisjys — [(Dl_zdist _ Dzﬁd)z + (Dl_scc _ Diﬁd)Z] 81'2jD’ (4.23)

where Dfid is the template MFs for our fiducial mock catalogs, Dist s the average
MFs over 40 catalogs reflecting the different source redshift distribution as shown in
Fig.4.12, and D¢ is estimated by averaging the MFs over 40 catalogs without shear
calibration correction. The total covariance is the sum of the above two contributions.

4.3.3 Breaking Degeneracies

We would like to examine the ability of the lensing MFs to break degeneracies
between cosmological parameters. We first consider the concordance ACDM model,
i.e. wo = —1. Figure4.14 presents the marginalized constraints on £2( and og in the
two-parameter plane. This figure shows clearly the lensing MFs can break the well-
known degeneracy between 2 and oy that is apparent in the analysis using only the
2PCF. Interestingly, the marginalized constraints on each parameter can be improved
by a factor of five to eight by adding the MFs. The final constraints in the case of
ACDM model are summarized in Table4.3.

We expect that this improvement would be caused by the cosmological informa-
tion from the higher-order moment of the 2" map. As shown in Sect. 3.3.3, the lensing
MFs have the non-Gaussian correction originated from the third-order moment of
. We here present the qualitative interpretation how we can break degeneracy
between og and 21,0 by using the information from the higher-order moment of
J . As an order of magnitude calculations, we regard .#” as a quantity of O (£21,06)
where § is the matter over-density. In this case, the second-order moment of %2
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Table 4.3 Cosmological parameter constraints obtained from the maximum likelihood analysis

(taken from [33])

2m0 oy
0. .203
2PCF alone 0.3960-177 0.695+0303
MFs alone 0.295 + 0.020 0.855+9.9%
MFs + 2PCF 0.282 + 0.022 0.782+0:042

Weak lensing data set is obtained from CFHTLenS. We consider three analyses: Two-point correla-
tion function (2PCF), Minkowski Functionals (MFs) and the combined analysis of 2PCF and MFs.
The error bar corresponds to the 68 % confidence level. Note that the concordance ACDM model
is assumed in this table

would be expressed as O (.Qr%10 (68)) ~ .Qr%loagz, while the third-order moment of .2
is given by 0(.(2310 (686)). At weakly non-linear regime, the three-point correlation
function of § would be calculated by the standard perturbation theory (e.g., [39]),
which predicts O ({§838)) 0((88)2) ~ og . As a result, the third-order moment
of % would be the quantity of O(Qioaé ). Therefore, in principle, we can break
the degeneracy between £2y,0 and og by combining with measurement of two- and
three-point correlation of J#". Recently, Ref. [40] has measured the second- and
third-order moments of % as a function of smoothing scale in # map by using
CFHTLenS data set. They have confirmed that the 10 % improvement of the con-
straint on 0g$2[, where & ~ 0.5 — 0.7 when using smoothed maps with smoothing
scale of 2—15 arcmin. Their result indicates that we can extract some cosmological
information from higher-order moment of %" in the realistic case. Our analysis pre-
sented here would correspond to the extended analysis in Ref. [40] by taking into
account the moments higher than third-order one.

Figure4.15 shows a simple comparison of lensing MFs. In this figure, we consider
the two ACDM model: one is the best fit model shown in Table4.3 and another
model is consistent with lensing 2PCF with a ~2¢ level. In upper panel, we show
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Fig.4.15 The comparison with our theoretical template and the observed MFs. In upper panel, the
black point shows the observed MFs whereas the error bars are too small. The error bars include
the statistical and systematic error described in Sect.4.3.2. The colored line shows our model of
lensing MFs based on mock catalogs. The red line corresponds to the best fit ACDM model and the
green line represents the cosmological model with higher £21,0 and lower og. Bottom panels show
the differences of lensing MFs between our measurement and different models
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Fig. 4.16 Marginalized 2D confidence level (68 and 95 %) obtained from the lensing MFs and
additional probes. The left panel shows the cosmological constraints by our combined analysis with
the lensing MFs and the 2PCF. The right panel shows the result of the joint analysis with the lensing
MFs and CMB. In each panel, the red region shows the constraint from the lensing MFs alone and
the blue region shows those from the 2PCF or CMB alone. The green one shows the result of the
combined analysis with the lensing MFs and another data set

the measured MFs with statistical and systematic errors by black points. Although the
error bar is too small compared to the signal in upper panels, bottom panels clearly
show the magnitude relation of error bars and signals. In bottom panel, we show the
differences between our modelling MFs and the measured one. There, we simply
assume that lensing MFs can be describe as the linear function of cosmological
parameters. Even though we do not consider the detailed modeling of lensing MFs,
Fig.4.15 implies that lensing MFs might be useful to improve the cosmological
parameter estimation in a cosmic shear analysis.

Next, we explore models with a variant of dark energy. The equation of state
parameter wo serves as an additional parameter here. The left panel in Fig.4.16
presents the marginalized constraints in the 2D plane by the lensing MFs and 2PCF.
The red circle shows the result from the lensing MFs alone, whereas the green circle
is the estimate derived from combining the lensing MFs and 2PCF. Interestingly,
with the lensing MFs alone, the data set favors a low w0.5 ‘We have checked that our
theoretical MF template can recover correctly the input cosmological parameters for
the 40 mock data with a similar confidence level expected from the Fisher analysis.
We thus argue that the trend of favoring low wy is likely attributed to the possible
systematics as studied in Sect.4.2.3, or to imperfect modeling of the dependence of
the lensing MFs on the cosmological parameters.

5We have also examined which MFs (Vj, Vi, V2) cause this trend. We have performed likelihood
analysis using each MF only. Both V; and V; prefer lower wy. The 68 % marginalized constraints
on wy using each MF are found to be —0.30:t8:§‘7‘, —3.31 4+ 0.60, and —2.48:#:8:31 for Vp, V1, and
V,, respectively.
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Table 4.4 The parameter constraints obtained from the maximum likelihood analysis of lensing
MFs and others

2mo As x 10° wo
MFs alone 0.205 £ 0.060 2.18+00 —2.2+0.8
MFs + 2PCF 0.256£005¢ 1924583 —1.60+£0728
MFs + CMB 0.290£) 038 2.39 +0.07 —0.90 +0.11

The error bar indicates the 68 % confidence level

The right panel of Fig.4.16 presents the 68 and 95 % confidence regions obtained
from our joint analysis with the WMAP9 CMB data. The red region represents the
results from lensing MFs alone. The blue region is the result obtained from CMB,
and the green one represents constraints by combining the both. These figures show
clearly that the lensing MFs are useful to improve the cosmological constraints
by breaking the parameter degeneracies. The marginalized constraints for the three
parameters are summarized in Table4.4.

We derive the above cosmological constraints by assuming that our modeling of
lensing MFs is correct. However, there are possible systematics in lensing MFs as
shown in Sect.4.2.3. We consider the possible bias in parameter estimation with our
modeling of lensing MFs. As pointed outin Sect. 4.2.3, the uncertainty of photometric
redshift and imperfect shape measurement of source galaxies would cause the biased
parameter estimation with lensing MFs. For the main three parameters, we would
evaluate the systematic uncertainty as summarized in Table 4.2: A§2,0 = +0.0224+
0.00707, A(As x 10%) = £0.0254 £ 0.110, and Awy = +0.122 + 0.234. Here,
the former error corresponds to the systematic error related with the uncertainty of
photometric redshift, while the latter is the error associated with imperfect shape
measurement. We can easily relate these uncertainties to the uncertainty of og by
using Eq. (4.20): Aog = +0.042 £ 0.064. It is worth making further effort to reduce
the systematic errors in measurement of the lensing MFs.
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Chapter 5
Cross Correlation with Dark Matter
Annihilation Sources

Here, we present the first measurement of the cross-correlation between cosmic shear
and the extragalactic gamma-ray background (EGB). This measurement is performed
with the largest cosmic shear data set currently available from the Canada-France-
Hawaii Lensing Survey (CFHTLenS) and gamma-ray photon data from the Fermi
LAT telescope. The measured cross correlation is utilized to place constraints on
the dark matter annihilation cross section. The resulting constraint is based on the
information at cosmological scales, and is complementary to dark matter search
in local galaxies. In this chapter, we assume the standard cosmological parameters
Hy = 100hkm s~ with & = 0.7, 20 = 0.279, and 25 = 0.721.

5.1 Dark Matter Annihilation

The existence of dark matter (DM) is supported with high significance by a number
of astrophysical observations as shown in Sect. 1.2. While we still know little of the
DM particle properties, if DM particles annihilate into standard model particles, as
is typically expected for their production in the early universe, underlying matter
density field in the universe will be a source of gamma rays.

5.1.1 Relic Density

Here, we summarize the relic density of the annihilating dark matter. A particle
in the early universe has to experience various interactions in efficient way. As the
universe expands and cools down, the local thermal equilibrium can not be maintained
because the interaction rate can not overcome the expansion rate of the universe at
some time. At that time, the particle is so-called decoupled and the time evolution
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of mean number density of the particle can be determined by the expansion rate of
the universe.

The time evolution of number density of a particle can be determined by the
Boltzmann equation. In the case of the annihilating DM, the governing equation is
given by

dngm
dt

2 2
+3Hngm = —{ov)(ng, — ndm‘eq)’ (5.1
where n4m is the number density of DM, n4m,eq represents the number density at
thermal equilibrium, H is Hubble constant and (ov) is the annihilation cross section
times the relative velocity averaged with the velocity distribution function. Here,
Ndm,eq 15 given by the Maxwell-Boltzmann approximation:

32
Mmdam T mq
Ndm,eq = & ( o ) exp (__m) , 5.2)

2 T

where g is the internal degrees of freedom, m gy, is the DM particle mass, and T rep-
resents the temperature of thermal equilibrium. It is useful to introduce the following
new variables;

y = Mdm (5.3)
N
Yeq = @ (5.4)

where s is the entropy density s = 2w g,T>/45 and g, represents the number of
relativistic degrees of freedom. With Y and Y., one can obtain the following equation
from Eq. (5.1) during the radiation domination';

dy  (ov)s ( » 2
T (r-2). (55

where we use the conservation of entropy per comoving volume and x is defined by
mdm/ T . Furthermore, we introduce the variable A = Y — Y4 and finally obtain the
equation as follows;

dA . dYeq
dx = dx

fo = ’%“mdmmmmx—z (5.7)

"During the radiation domination, the following equation holds; ¢ = 0.301g, 12 (mp1/ T?) where
mpy is the planck mass.

— f()AQRYeq + A), (5.6)

where f(x) is given by
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For simplicity, in this thesis, we consider the s-wave annihilation, i.e. the case where
(ov) is constant. In this case, Ref. [1] found the accurate approximate formula of ¥

in the limit of x — oo:
_ g _
v = /4—5*mdmmp1x 7o), (5.8)

where xr is evaluated at the freeze-out temperature where (o v)ngm|r = H|r. Then,
one can estimate the present mean matter density of the annihilating DM as ppyo =
MamsoYeo Where so = 2889.2 cm ™3 is the present entropy density. Finally, the relic
density of DM is given by

1.07 x 10°GeV~! xp 1

R2moh?* ~ ) (5.9)
" mp| V& (ov)
An order-of-magnitude estimate is found in Ref. [2]. That is given by
5 3x 1077 cm?s7!
moh” ~ . (5.10)

(ov)

The above estimate and the current constraints on $2,0h% ~ 0.1 (e.g., [3]) lead to
the canonical thermal cross-section of DM annihilation:

(V) themal = 3 X 1072 em’s™!. (5.11)

5.1.2 Gamma-Ray Intensity

The intensity is defined by the number of photons per unit energy, area, time, and
solid angle. Thus, the contribution of DM annihilation to the intensity at gamma-rays
I, can be expressed by

!/
¢ [q Py (Ey. 2) o T(EyD)

E, I, = — z
YT An H(z)(1 4 2)*

(5.12)
where E,, is the observed gamma-ray energy, E )// = (1 4+ 2)E, is the energy of the
gammaray atredshift z, H(z) = Ho[2mo (1l + 2)? + 22412 is the Hubble parameter
in a flat ACDM universe, and the exponential factor in the integral takes into account
the effect of gamma-ray attenuation during propagation owing to pair creation on
diffuse extragalactic photons. In this thesis, we adopt the model in Ref. [4] for the
gamma-ray optical depth t (E )’/, z). The volume emissivity, denoted by P, , defined

by the photon energy emitted per unit volume, time, and energy range. Hence, Py, is
given by
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P, (Ey,z)=E (5.13)

AN, (0v) [ pam(F12) T2
"dE, 2 Mdm ’

where dN, /dE,, is the gamma-ray spectrum per annihilation and pam(X|2) is the
DM mass density distribution at redshift z as a function of spatial coordinate X.

Since the DM annihilation rate is proportional to the DM density squared, highly
over-dense regions in the universe would dominate the volume emissivity. Therefore,
it is useful to consider the intensity at gamma-ray in terms of an overdensity §(z) =
Pdm/ Pdm(z) where pam(z) = §2m0Pcrit,0(1 + Z)3 and pcrit,0 is the critical density
today. Let us consider the mean intensity at gamma-ray originated from the DM
annihilation. In order to calculate the mean value of Eq. (5.12), we need to evaluate
the ensemble average of the overdensity squared, (8%(z)) = <P§m )/ ,Egm (z). This
factor is called the intensity multiplier (or the clumping factor), and characterizes
the enhancement in the DM annihilation rate due to dense DM halos. It is obtained
by integrating over the DM halo mass function n(M, z),

9]

(6%(2)) = dM n(M, 7) / dVpl (1M, z), (5.14)

P30 J M

where pgm (r| M, z) describes the density profile as a function of radius r for a DM
halo with mass M at redshift z, and M,;, is the smallest DM halo mass.
Therefore, the contribution to mean intensity of gamma-rays is obtained by

_ {ov) dN, e TEpD pam(2) | )
Iy = g/CdZdEy ( ) (67(2)). (5.15)

g, H@+ 23\ mam

Equation (5.15) clearly shows that the particle properties of DM — mgp,, (ov), and
dN, /dE, —are conveniently decoupled from the physics determining its spatial dis-
tribution, (82(z)). Note that Eq.(5.14) would provide us the contribution at “extra-
galactic scales”. Although the galactic dark matter distribution would also contribute
to the observed gamma-ray emission (see e.g., Ref. [5]), it is not of great importance
as long as we consider the cross correlation analysis of cosmic shear, which is the
subject of this thesis.

Estimates of the flux multiplier depend on the value of Mn;y, the halo mass func-
tion, the DM density profile, and how the DM profile depend on halo mass and evolve
in redshift. Among these, the value of My, has the largest impact. The smallest DM
halo mass could be determined from the DM particle properties, being the Jeans
mass of dark matter particles. For supersymmetric neutralinos and ~MeV DM, this
is some 107%M, [6], while other DM particles have My, that vary by orders of
magnitudes [7-9]. However, the situation would be more complicated because of
hierarchical structure formation thorough various processes such as accretion, strip-
ping and mergers. These processes make some DM halos destructed. In particular,
much of the smallest DM halos may be absorbed into larger halos and their central
densities disrupted before they appreciably contribute to the extragalactic gamma-
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ray emission (e.g., [10, 11]). The DM Jeans mass is therefore simply a lower limit.
Furthermore, the additional gamma-ray could be produced by interactions of the
annihilation products with the environment. Such gamma-rays are called secondary
gamma-rays. An example of secondary gamma-ray emission is when DM annihila-
tion produces a positron, which, in turn, finds an electron in the galactic halo and
annihilates to produce gamma rays. For secondary gamma-ray emission, the rele-
vant minimum mass is set by the Jeans mass of the baryons, which is on the order of
~10°M¢ (e.g., [6]).

The gamma-ray emission due to DM annihilation is expected to be anisotropic
because of the highly non-linear gravitational growth of the DM density distribution
(e.g., [12]). Hence, the expected anisotropy should correlate with another tracer of
the DM density distribution, e.g., gravitational lensing effects of distant galaxies
called cosmic shear. Although the DM distribution in the universe can be traced in
a number of ways, among the most powerful is gravitational lensing, which has the
advantage of not requiring any assumptions such as the relation between luminos-
ity and mass and/or hydrostatic equilibrium. The simple idea naturally occurs: the
DM distribution that generate cosmic shear would also be a gamma-ray source. In
Ref. [13], the authors first consider the cross-correlation between cosmic shear and
the extragalactic gamma-ray background (EGB) and also explored how astrophysi-
cal sources contribute to the cross-correlation signal. Their conclusion is that even
without detailed astrophysical modeling, the additional information derived by the
cross-correlation would be helpful for exploring the DM contribution in extragalactic
gamma-ray emission.

5.2 Extragalactic Gamma-Ray Background

The origin of the extragalactic gamma-ray background (EGB) emission is among
the most interesting problems in astrophysics. The EGB was first detected by the
0OSO0-3 satellite [14] and subsequently deduced by the SAS-2 satellite [15] and the
Energetic Gamma-Ray Experiment Telescope onboard the Compton Gamma-ray
Observatory [16]. Most recently, the Large Area Telescope (LAT) onboard the Fermi
Gamma-ray Space Telescope has derived the most accurate EGB based on new data
and improved modeling of the Galactic gamma-ray foreground emission. The Fermi
LAT observation shows a featureless power-law spectrum for the EGB in the energy
range 0.1-300 GeV [17].

Multiple astrophysical sources of gamma rays have been proposed as contributors
to the EGB. Unresolved astrophysical point sources, such as blazars and star-forming
galaxies (SFG), are guaranteed sources and have been investigated by many groups.
However, the modeling of the sources’ faint end distributions is non-trivial, and
estimates of the contribution to the EGB from unresolved blazars range from ~15 %
to ~100 % (e.g., [18-20]). On the other hand, the intrinsic spectral and flux properties
of blazars constructed by Fermi LAT data, as well as the auto-correlation of EGB
anisotropies [21], suggest that unresolved blazars can only contribute up to ~20 % of
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EGB (e.g., [22-25]). Similarly, the contribution from SFGs and radio galaxies to the
EGB can be significant but is subject to large uncertainties [26, 27]. These previous
works show that while the EGB intensity can be explained by the superposition of
multiple astrophysical source classes, there appears to remain large uncertainties and
thus, at present, an appreciable contribution from unknown or unconfirmed sources
of gamma rays is allowed.

5.2.1 Data

In this thesis, we use Fermi-LAT Pass 7 Reprocessed gamma-ray photon data taken
from August 2008 to January 2014.? Our interest is the cross correlation analysis
of cosmic shear data obtained from CFHTLenS as summarized in Sect.4.2.1.1. For
each CFHTLenS patch, we download photons within a circle of radius 10° around
the center of each region and work with a 14° x 14° square region of interest (ROI).
In analyzing the data, we use the Fermi Tools version v9r32p5.? Using the grmktime
tool, we remove data taken during non-survey modes and when the satellite rocking
angle exceeds 52° with respect to the zenith (DATA_QUAL=1,LAT CONFIG=1,and
ABS (ROCK_ANGLE) <52). This standard procedure removes epochs with poten-
tially significant contamination by the gamma-ray bright Earth limb. Unless other-
wise stated, we work with only ULTRACLEAN-class photons, which are events that
pass the most stringent quality cuts, and we use photons between 1 and 500 GeV
in energy. In Sect.5.4.1, we discuss using SOURCE-class photons. Then, using the
gtbin tool, we bin the photons in a stereographic projection into pixels of 0.2° x 0.2°
and into 30 equal logarithmically-spaced energy bins. These binning sizes are taken
from the official recommended values that are chosen to ensure reasonable analysis
outcomes, namely, to ensure that rapid variations of the effective area with energy is
taken into account (e.g., as discussed in the binned likelihood tutorial of the Fermi
Analysis Threads). With the data selection cuts in place, we use the gtltcube tool to
generate integrated live times and the grexpcube? tool to generate the integrated expo-
sure maps. Throughout, we work with the P7REP_ULTRACLEAN_V15 instrument
response function (IRF), unless otherwise stated.

In order to obtain the extragalactic diffuse photons, for each ROI we subtract the
best fit Galactic foreground emission model from the raw data. We then mask out
point sources using a mask of 2° radius around each point source. The mask size

2We also performed the cross correlation analysis for Pass 7 Reprocessed gamma-ray photon data
take from different two periods: August 2008 to May 2012 (datal) and May 2012 to January 2014
(data2). Even though we consider only CFHTLenS W1 field for this analysis, we find that the
resulting signal is also consistent with a null signal. The value of chi-squared statistics for 10 bins
is found to be 7.93 and 3.64 for datal and data2, respectively.

3http://fermi.gsfc.nasa.gov/ssc/data/analysis/.
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corresponds to a generous estimate of the PSF of the Fermi-LAT detector, which
decreases with energy: the 68% containment angle is ~0.9° at 1 GeV and ~0.26°
at 10 GeV, both for combined front and back conversion tracks. Since most point
sources have steep spectra and hence dominated by low-energy photons, our adopted
mask is chosen to be sufficiently larger than the containment angle at our lower energy
limit of 1 GeV. When we adopt a smaller mask of 1° radius around each point source,
we find that the final constraint would change with a level of only 10 %.

We also estimate the best fit Galactic diffuse emission model separately for each
ROI, by including all the point sources in the ROI in the 2FGL catalog, together
with the recommended Galactic diffuse emission model (g11_iem_wv05) and the
recommended isotropic emission model (iso_clean_v05). We have checked that
our four ROIs are sufficiently far from the large-scale diffuse gamma-ray sources
such as the Fermi bubbles [28] which would otherwise complicate fitting. We find 9,
11, 11, and 12 point sources in W1, W2, W3 and W4 field, respectively. In order to
perform a binned likelihood analysis, we use the gtlike tool by varying all point source
spectra as well as the diffuse emission normalizations. We then use the gtmodel tool
to generate photon counts maps based on the best fit Galactic diffuse model and
exposure maps. Finally, we subtract these from the raw counts maps. We checked
that the procedure yields a flux spectrum for the EGB, estimated as the raw counts
minus a model without the isotropic component, divided by the exposure map, that
is very similar to the —2.41 power-law spectrum of the EGB reported in Ref. [17].
In Fig.5.1, we show how the residuals of the raw counts minus the Galactic diffuse
model, demonstrate structureless spatial maps in all four CFHTLenS fields.

Reference [29] modeled the point spread function (PSF) in the case of Fermi-LAT
with the following functional form:

Wesr (0, Ey) = A(Ey) [fcoreK(Jﬁ Ocores Yeore) T (1 — feore) K (X, Otails Vtail)] , (5.16)

1
PO (5.17)
core 1+ Ntailo'éil/ Gczore
1 1 1 X277
Kx,0,7) = —= (1-=)|1+—=]| . 1
(x,0,%) 27102( y)[ +2y02] o9

where x is a scaled-angular deviation defined by x = 6/Sp(E},) and A(E), ) is the
normalization factor such that f d%0 Wpsg(0, E,) = 1. The scale factor Sp(E,) is
found in [29],

E _312
Sp(Ey) = [co(m) i|+c%, (5.19)

and the normalization is given by A(E,) = [Sp(Ey)]z. In this thesis, we adopt
the parameters estimated in the latest in-flight PSF for ULTRACLEAN photons,*

“Made publicly available at http:/fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/
Cicerone_LAT_IRFs/IRF_PSF.html.
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Fig. 5.1 Residual maps in the CFHTLenS W1, W2, W3, and W4 fields, where residual is defined
as the fluctuation in the EGB photon count map from its mean value (taken from [50]). In each
panel, the color-scale bar represents both the positive and negative difference between the EGB
count map and the mean of each field indicated above the panels: 0.66, 0.70, 0.86, and 0.20 in W1,
W2, W3 and W4 fields, respectively. Overlaid by thick lines are the average ellipticities of source
galaxies over 1 deg? with arbitrary scaling. The circles represent the point-source masked regions.
For visualization purposes, a Gaussian smoothing is performed on the map with a width of 0.6°

i.e., cop = 3.16° and c; = 0.034° for front-converting events, and ¢y = 5.32° and
c1 = 0.096° for back-converting events, along with § = 0.8, Ny = 0.08639,
Ocore = 0.5399, 01,451 = 1.063, Yeore = 2.631, and 1,51 = 2.932 for both events [29].
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5.3 Cross Correlation of Extragalactic Gamma-Ray
Background and Cosmic Shear

5.3.1 Theoretical Model

In this section, we summarize our benchmark model for the cross-correlation signal
between cosmic shear and the EGB. The theoretical framework for the angular power
spectrum analysis of the EGB has been developed in Refs. [12, 13, 30, 31]. We
calculate the cross-correlation of cosmic shear and the EGB as follows.

In general, the number of EGB photons along the line of sight 6 can be expressed
by

sn(0) = / dx g, O)We(X), (5.20)

where x is the comoving distance, g is the relevant field for gamma-ray sources, and
Wy is the window function. As shown in Sect.5.1.2, for gamma-ray emission from
DM annihilation, the relevant field is the overdensity squared §2. With Eq.(5.12),
the window function in Eq. (5.20) is given by

E.max n 2
Wg(x)=/ " ag, 12 (pd”"O) [+ 2o 2y

Y 87 Mdm dE,

y,min

£,
X exp [—r (E;, x)] n(E,). (5.21)

where pgm,o is the mean density of DM at present, EJ’, =0 +z(x)E, and E,,
are the energy of the gamma ray when it is emitted at x and when it is observed,
respectively. Here, n(E, ) is the exposure which is the integral of effective area over
time taking into account the orbits of Fermi and data cuts. We use a standard model of
7 [4], and we estimate 1 (E) ) by averaging the exposure maps over the ROl in each of
the CFHTLenS patches. For the gamma-ray spectrum per annihilation dN,, /dE,, , we
adopt two characteristic spectra corresponding to annihilation with 100 % branching
ratios to bb and Tt~ final states. These are calculated with the PPPC4DMID package
[32] that is based on PYTHIA (v8.135) and HERWIG (v6.510) event generators. The
spectra are dominated by emission from the decay of neutral pions. These are primary
gamma-ray emissions, and are distinguished from secondary emission. Also, the
gamma-ray emission can be noticeably softened by the bremsstrahlung emission
from leptonic final states [33]. We do not include secondary emission in this thesis
simply because their effect depends strongly on the astrophysical environment and
furthermore since they would be only critical for annihilation in regions of high
baryon density, e.g., the planes of galaxies. Additional contributions can arise from
three-body final states such as internal bremsstrahlung [34]. However, we do not
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include this because it can only be included in the framework of a precise DM model
e.g., [32].

We next consider gravitational lensing by large-scale structure. Weak lensing
convergence field is then given by

k(0) =/dx W (x)8(6. x)., (5.22)
where window function for « is given by

3

Ho\> o0
We(x) = 3 (70) 2mo(l +z(x))/ dx" p(xDHe(x', x), (5.23)
X

where we denote the source distribution by p(x). In this thesis, for p(x), we use the
sum of the posterior probability distribution function of photometric redshift [35].

Using Eqgs. (5.20) and (5.22) with Limber approximation [36, 37], we obtain the
angular cross power spectrum of §n and « as

d
Psn—ic (0) :/X_)éwg(X)WK(X)PS—(SZ(E/XvZ(X))‘ (5.24)

The direct observable in the present study is the cross-correlation function in real
space, which is calculated as

dee
Esn—y, () =/—2 Psn—ic (£) J2(£6), (5.25)
T

where J(x) represents the second-order Bessel function [38, 39].

We adopt the so-called halo model approach [40] to estimate the integrand
Ps_s2(k, z) in Eq. (5.24). The halo model is a useful approach for incorporating the
non-linear growth of the overdensity § that determines the anisotropy of the EGB.
With the halo model approach, Ps_s2(k, z) can be expressed as a sum of two terms
called the one-halo term and the two-halo term. The former represents the two-point
correlation within a given DM halo, and the latter corresponds to the correlation due
to clustering of DM haloes. These two terms can be written as, respectively,

1 3
Palhsz(k,z)z(_—) /M dM n(M, )M u(k|M, z)

m

x (1 + bgp(M))v(k|M, Z)/dV,o,%(HM, 2), (5.26)

Pm

3
Pk, z) = PP (k, 2) (i) [ / dM”(M,Z)bh(M,Z)MM(k|M,Z):|
Mmin
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B [/ dM n(M, 2)bp (M, 2)(1 + bsp(M))v(k|M, z)
Mmin
/ dVor (M, 2], (5.27)

where n(M, z) is the halo mass function, and by, (M, z) is the linear halo bias
[41, 42]. We adopt the Navarro-Frenk-White (NFW) DM density profile as shown in
Eq. (2.59). In this thesis, we adopt the functional form of the concentration parameter
in Ref. [43]. The volume integral of the density squared with Eq.(2.59) is then

47'rr3,o2 1
dVpr(r|M,7) = —355 |1 — ) 5.28
/ py(rIM, z) 3 [ (1+Cvir)3} (5.28)

Here, u(k|M, z) and v(k|M, z) describe the fourier transform of density profile and
density squared profile, respectively. Both u (k| M, z) and v(k| M, z) are normalized so
as to become unity in the limit of k — 0. We use the fourier transform of normalized
NFW profile for u (k| M, z) as given in Ref. [40], and the functional form of v(k| M, z)
in Ref. [31]. Finally, by, is the boost factor, which is essentially equal to the flux
multiplier (82(z)) described in Sect. 5.1.2. However, another important effect should
be considered: the DM annihilation rate could be boosted due to subhalos that reside
within halos. We adopt the fitting formula for by, provided by Ref. [44] that includes
this extra effect. Based on recent high-resolution dissipationless N-body numerical
simulations, they find that by, = 1.6 x 1073 (M/M@)O'39 provides a satisfactory fit.

The minimum halo mass Mp;, in Egs.(5.26) and (5.27) is one of the largest
model uncertainties. As discussed in Sect.5.1.2, it has a large range of possibilities.
In this thesis, we consider two cases: a conservative case with My, = 106M@
that corresponds to the typical baryonic Jeans mass [6], and an optimistic case with
Mmin = 107°Mg which is the typical free streaming scale for neutralino DM. In
our benchmark model, we find that the difference in Mp,;, changes the amplitude
of cross-correlation signal &s,,—,, (6) by a factor of ~10. We regard this variation
as our model uncertainty. Namely, the uncertainty of our benchmark model is a
factor of ~10. Note that this model uncertainty likely dominates over the systematic
uncertainties in the Galactic diffuse template and those due to sample variance in
our weak lensing shear measurement.

Recently, Refs. [45, 46] have argued that the halo profile concentration shows a
peculiar dependence on the halo mass, and that the simple power-law extrapolation
for concentration used in Ref. [44] results in an overestimate of the boost factor by
a factor of ~50 depending on Mp,,. Because most of the cross-correlation signal
comes from clustering at large angular scales (see Fig.5.9 later in Sect.5.5.2), our
results are not strongly affected by the choice. Also, the universality of density profile
of DM halo is still unclear. Although we assume the NFW profile in our benchmark
model, there exist the different parameterizations of density profile p; (e.g., [47]).
Since the cross correlation signal is of the order of [dV ,0}21, the inner slope of
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density profile could affect the cross-correlation signal even at large angular scales.
We discuss these points further in detail in Appendix D.

5.3.1.1 Astrophysical Source Contribution

Next, we consider astrophysical contributors to the EGB, i.e. blazars and SFGs. The
contribution to Ps;_, (£) can be calculated as

d
Psny (€) = / Wt GOWe (0 Po—t (1, G0 (529)

where W, a5t(x) is the window function of gamma rays from astrophysical sources
and Ps_p (k, z) represents the three dimensional cross power spectrum of matter over
density and luminosity. The weight function Wy .5 is given by

Emax dEV E;’ - /
Wea) = [ ?NO(X)(E—O) exp[—7 (. x) | n(Ey). (530

min

where Ey = 100 MeV, E)// = (1+z(x))E,, and No(x) (EV/EO)_a represents the
gamma-ray energy distribution of the astrophysical sources. In modeling Ps_1 , one
can use a similar formalism to Egs. (5.26) and (5.27) but replacing the mass function
n(M, z)dM by the luminosity function @ (L, z)dL [13]. Assuming blazars and SFGs
are well approximated as point sources, Ps_j can be divided into two terms,

1 Lmax (2)
P k)= ————— dL @(L,z)L u(k|M(L), z) (5.31)
oL ALY J L 2)

, 1
P (k,7) = Pk, (—) [/ dM n(M, 2)by,(M, 2)u(k|M, }
51 (k, 2) (k, 2) D00 . n(M, 2)by (M, 2)u(k|M, z)

Lmax(Z)
« / dL & (L, 2)L by(M(L), 2), (532)
L

min (2)

where (L)(x) represents the mean luminosity at z(x) and M (L) is the mass-
luminosity relation of astrophysical sources. We therefore need to set the specific
functional form of No(x), ®(L, z), M (L), and the power-law index of energy distri-
bution of gamma-ray « in order to calculate Ps,_, (£) for each astrophysical source.

For the gamma-ray luminosity function of blazars, we adopt the luminosity-
dependent density evolution model [19, 30] with parameters in Ref. [31]. We set
the power law index o for blazars to be 2.4, which is consistent with the spectra
of resolved blazars. The gamma-ray luminosity of blazars is evaluated as vL, at
100 MeV. In this case, Ny is given by (L) /E(2). We adopt the mass-luminosity rela-

tion M(L) = 10" M¢, (L/10%7 erg s_l)]'7 that yields the desired bias of blazer
host halos [30]. We assume that there are no blazars fainter than the luminosity
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Linin = 10%2 erg s~lat any redshift. In estimating Lyax (z), we assume a blazar can be
resolved if the gamma-ray flux F at E > 100 MeV is larger than 2 x 10~ cm™2 s,

For the gamma-ray luminosity function of SFGs, we use the tight correlation
between the infrared (IR) luminosity and the gamma-ray luminosity [26], and use the
observed IR luminosity function [48]. We define gamma-ray luminosity in the energy
range between 0.1 GeV and 100 GeV, and we assume a power-law spectrum with
index o = 2.7 for SFGs. This leads to No(x) = ((L)/Eg)(o( —-2)/(1 + z(X))z_“
so that the mean luminosity is obtained as (L) = deV E, No(x) (Ey/EO)_a
with the integral performed from (1 + z)Eg to (1 + z)E1, where Eg = 100 MeV
and E1 = 100 GeV. We use the mass-luminosity relation for SFGs, M(L) =
102 Mg (L/IO39 erg s_l)o'5 that is calibrated by the Milky Way properties [13].
The minimum luminosity is set to 10% erg s~! at any redshift, while the maximum
luminosity is estimated in the same way as in the case of blazars.

We first present the effective redshift of cross correlation of cosmic shear and
EGB. Figure 5.2 shows the mean intensity of EGB I from each contributor. There,
d1In 7/dz for SFG, blazer and DM annihilation are summarized as blue, cyan and
green line, respectively. Also, we show the lensing kernel function found in Eq. (5.22)
with source galaxy distribution in CFHTLenS. Clearly, we can extract the informa-
tion at cosmological scales (z = 0.2 — 0.4) from cross correlation analysis. Then,
in Fig. 5.3, we summarize our benchmark model of cross-correlation signals in the
case of DM annihilation with mgy, = 100 GeV and (ov) = 3 x 10726 cm? 571,
In this figure, the results for two annihilation channels are shown, the 777~ chan-
nel (red lines) and the bb channel (green lines). We represent the level of model
uncertainty due to the minimum halo mass M, by plotting both the optimistic case

1 F 4
_— ]
0.1 ¢ -
0.01 W,_ CFHTLenS
N
T107®
g
107*
107 . 3
- Star Forming Galaxy E
Blazar = ]
1078 [ DM annihilation ]
7L o ]
1 2 3
Redshift z

Fig. 5.2 The effective redshift of cross correlation analysis. The black line shows the window func-
tion appeared in lensing convergence field (see, Eq.(5.22)). The colored line represents d1In I /dz
for each contributor of EGB where I is the mean intensity. In this figure, we consider three contri-
butions: SFG (blue), blazers (cyan), and DM annihilation (green). We assume that a 100 GeV DM
annihilates into bb with annihilation cross section (ov) =3 x 10720 ¢m3 s~!
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Fig. 5.3 The expected cross-correlation signals of cosmic shear and important components of the

EGB: from SFG (blue), blazers (cyan), and DM annihilation. For DM annihilation, the two cases
are shown: a 100GeV DM particle with annihilation cross section (ov) = 3 x 10726 c¢m?3 !

and annihilation channels Tt~ (red) and bb (green). Furthermore the model uncertainty is also
considered. In this figure, we set two values for the minimum halo mass; Mpin, = 10*6M@ (solid)
and My, = 106M@ (dashed). This figure is taken from [50]

with Mpyin = 10’6M@ (solid lines) and the conservative case with My, = lOﬁM@
(dashed lines). The figure clearly shows the sensitivity of the results on My, and the
different annihilation channels. The blue and cyan line in Fig.5.3 show the cross-
correlation signals of cosmic shear and EGB contributed by unresolved SFGs and
blazars, respectively. Clearly, the contribution from astrophysical sources can be
significant at all angular scales. We note that our adopted model of blazars is dif-
ferent from the one in the previous work of Ref. [13]. Our model reproduces the
observed flux counts of resolved blazars, whereas the model in Ref. [13] is aimed
at reproducing the flux counts as well as the anisotropy of the EGB [24]. The main
difference lies in the faint slope of the gamma-ray luminosity function. Overall,
our model predicts a larger contribution from blazers to the EGB intensity than the
model of Ref. [13] by a factor of ~10. In this thesis, we first examine the case where
DM annihilation is the sole contributor to the cross-correlation signal. Our analysis
under this assumption should provide a conservative constraint on DM annihilation,
because the cross-correlation signals due to astrophysical sources are expected to be
positive unless the sources are distributed in an anti-correlated manner with respect
the underlying DM density field. Furthermore, we find that the statistical error in the
current dataset is larger than the expected cross-correlation signals due to astrophys-
ical sources. Therefore, the final result is not strongly affected by the details of the
modelling for the astrophysical sources.
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5.3.1.2 Point Spread Function

Let us consider the smoothing effect of the point spread function. The observed
number of EGB photons along a line of sight 0 is expressed by the convolution of
the underlying number of EGB photons with the PSF of the detector,

sno% @) = / d20’ Wpsg(6 — 0)8n ("), (5.33)

where §n° is the observed number of EGB photons and Wpsr is the PSF. This
induces an additional scale dependence of the weight function of EGB counts in
Egs.(5.21) and (5.30). Taking into account the energy dependence of the PSF, the
scale-dependent weight function is given by

Ey,max (V) (B 2 dN.
We(x) — Wel(x, 0) =/ dE), E(njzlo) [1+Z(X)]3dTV
m Y

y,min

Ey

X exp [—t (E;, X)] ﬂ(Ey)WPSF(ev E),),

(5.34)
Emax dEy E;’ —
Wg,ast(X) - Wg,ast(Xv £) :/ H No(x) E_O

Emin
X exp [—t (EJ/, X)] n(Ey)WPSF(ev E),),
(5.35)

where WPSF(E, E,) is the fourier transform of the PSF.

The effect of the PSF on the cross-correlation analysis can be evaluated with
the specific functional form shown in Eq.(5.16). Figure5.4 shows the effect. In
Fig.5.4, we consider the cross-correlation signal due to the annihilation of DM with
Mam = 100 GeV and (ov) = 3 x 1072 cm? s~!. To account for the PSF, we first
calculate the cross-correlation signals with the scale-dependent weight function in
Eqgs. (5.34) and (5.35) for front- and back-converting events, respectively. We then
average these two signals at a given angular separation assuming the number of front-
converting events is equal to that of back-converting events. Clearly, the smoothing
effect significantly affects the cross-correlation signal especially at smaller angular
scales than the typical size of the PSF, i.e. ~50 arcmin. We also expect that the
pixelization effect would be unimportant in our analysis, because the pixel size is
smaller than the size of the PSF (the pixel size = 12 arcmin).
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Fig. 5.4 The smoothing effect due to the PSF on the cross-correlation signals of cosmic shear and
EGB (taken from [50]). The thin lines show the original expected signal as in Fig.5.3: annihilation

of a 100GeV mass DM with annihilation cross section (ov) = 3 x 10726 cm? s~! and minimum

halo mass M, = 10_6M@; red and green lines are for the ¥t~ and bb channel, respectively.
The thick lines represent the signal with smoothing due to the PSF

5.3.2 Cross-Correlation Estimator and Covariance

We summarize the properties of the estimator for cross-correlation analysis. When we
measures galaxies’ ellipticities (¢) and counts extragalactic gamma-ray photons (6n)
from an observed data set precisely, the cross-correlation estimator is expressed by

Npixel Ngal
Esny (0) = ——— D" D (e (il Aa(di — 4)).  (5.36)
Np(0) < I
Npixel Ngal
(5.37)

Np®) = DD Ao(di — ).
J

i

where Npix is the number of pixels in the gamma-ray counts map, Ny is the number of
galaxies, dn(¢;) is the observed number of EGB photons in pixel i in the gamma-ray
counts map, and &;(¢;|¢;) is the tangential component of the jth galaxy’s ellipticity
with respect to the ith pixel of the gamma-ray counts map, defined by

£1($516i) = —e1(@) cos2aij) — e2(¢)) sin(2at;), (5.38)
where «;; is defined as the angle measured from the right ascension direction to a line
connecting the ith pixel and the jth galaxy. We define the function Ay(¢) = 1 for

0 — A9/2 < ¢ <0 + AH/2 and zero otherwise. Np(0) represents the effective pair
number in cross-correlation analysis. We can find that this estimator is an unbiased
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estimator of of cross-correlation signal &,,_,, (6) by taking the ensemble average of
Eq.(5.36).

In order to discuss statistical significances of the measured estimator from real
data, one need to estimate the covariance of égn_y, (0). In particular, the covariance

in the case of (ég,,_y, (6)) = 0 is required for detection of cross-correlation signals.
The covariance matrix of Eq.(5.36) is defined by

CoV 31 01), &, 62)] = (Gnys ©1) = E31—3, 1) Gsny, 62) — 31y, ©2)))

1
Np(el)Np(QZ)

[ D> (n(@)e (s 1¢n( e (beldr)

i,jk, 2
X Ag, ($i — 67) Ao, (b — d&)}
_Eénfy, (Ql)génfy, (92)7 (539)

where i and k represent the indices of summation over gamma-ray counts, and j and £
are for galaxies. When two fields §n and ¢ are independent of each other, the ensemble
average (6n &; 8n ;) would simply reduce the product of the ensemble average of
each field, i.e. (6n én)(¢; &;). For shape of galaxies, the two point correlation function
(&r £+) would be expressed by the summation of intrinsic variance and the correlation
signal due to large scale structure;

2

";“ Sj0+E4(16) — pil). (5.40)

(:(d e () =

where oy represents the variance of intrinsic shape of galaxies and £ (0) is the two
point correlation signal due to weak gravitational lensing. In a concordance ACDM
universe, £ (6) would be expected to be on the order of 10~*. The latest cosmic shear
measurement [35] confirmed this expectation with high significance and shows that
the typical value of oy to be ~0.4. For extragalactic gamma-ray counts, the origin
is still unknown. Hence, it is difficult to estimate the exact contribution to the two
point correlation function (§n dn). At least, we expect that Poisson processes would
dominate on scales larger than the point spread function in gamma-ray surveys. We
here assume that photon count fluctuations follow a Poisson distribution with mean
corresponding to 810 ((5), where 8n°bs(q;) is the observed gamma-ray count map.
In this case, two point correlation function (§n én) would be expressed by

(8n(@)dn(¢r)) = 8n°P ($i)8ix + 5n°% (;)8n° (), (5.41)

where the first term represents Poisson fluctuations in count maps and the second
term includes the effect of correlation due to the point spread function in gamma-ray
surveys. Equation (5.41) would be a reasonable approximation when considering
scales larger than the size of point spread function, i.e. ~1° in our analysis.
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Using Egs. (5.40) and (5.41), and (§5n,% (0)) = 0, one can divide the covariance
of our estimator into four contributions as follows:

COV [E31y, 01, E3n- (62)] = Conp(®1, 62) + CaLp(61. )
+ CsN+obs (01, 02) + CwL+obs (01, 02),  (5.42)

1 obs Gi%l .. ..
CSN+p(91, 92) = m ;8” b (¢1) 2[A9| (lj)Agz(lJ),
(5.43)
_ obs /7. Y
Cwiipr. 02) = oo JZan (@) (1) — o)
x Ag, (ij)Ag, (il), (5.44)
C 01 0,) — 1 ZBDbS _"BDbS_'Ui%l[
SN-+obs (01, 02) = Wuk n”>(¢;i)dn (d’k)T
X Qg (ij)Ag, (kj), (5.45)
_ 1 obs, 7\, obs, Y
CWLsons 01, 02) = i Np(gz)[i%]esn (@)n°* (P& (16 — bel)
x Ag, (ij)Ag, (kﬁ)], (5.46)

where Ag, (ij) = Ay, (qgl- - d; ;) and so on. According to the observational fact that & .
is smaller than ai%n by afactor of 1073, the first term C SN+p and the third term CsNobs
would be the dominant contributions in Eq. (5.42). Csn+p can be estimated from the
observed galaxy catalogue and random count maps based on Poisson distribution.
We can also estimate Csn4obs by cross-correlating the observed photon counts and
randomized galaxy catalogues. The estimation of Csn4p and Csnyobs from the real
data set is found in Sect.5.4.1.

5.4 Application to Real Data Sets

We consider the cross correlation function of cosmic shear and EGB with real data
sets obtained from CFHTLenS surveys and Fermi LAT telescope. In this section, we
have used the source galaxies with 0.2 < z, < 1.3 to measure the cross-correlation
of cosmic shear and EGB. We use a total of 2570270, 679070, 1649718, and 770356
galaxies in the W1, W2, W3, and W4 fields, respectively.



5.4 Application to Real Data Sets 103

5.4.1 Analysis

In order to calculate the cross-correlation of cosmic shear and EGB, we generalize
the formula of Eq. (5.36) as follows:

Npixel Ngal . ~ . - .
DD () — nE™(@i))wje ()16 Ao (i — b))

! J

Esn—y, (0) = (5.47)

Npixel Ngal ’
A+K©) D D wide(¢i —))

4 J

where n°P gqgi) is the observed number of photons in pixel i in the gamma-ray counts
map, n8™(¢;) is the contribution from the Galactic emission model estimated using
the Fermi-LAT diffuse template and detector modeling, and w is the weight related
to the shape measurement. The overall factor 14 K (6) in Eq. (5.47) is used to correct
for the multiplicative shear bias m in the shape measurement with lensfit [49], which
is given by

Npixel Ngal
DD wil+m@))As(pi — b))
L
Npixel Ngz\]

> ZWjAG(ff;i —¢))

i J

1+ K(@©) = (5.48)

We have checked that our estimator is consistent with a zero signal when applied
to randomized shear catalogues and the observed photon count map. We have also
tested a combination of random photon count map with the observed shear catalogue.

For binning in angular separation 6, we set the innermost separation bin to 1 arcmin
and use 10 bins logarithmically spaced in A log;, 6 = 0.2. In calculating Eq. (5.47),
we do not perform pixelization in the galaxy catalogue. We simply consider the
center of each pixel in the gamma-ray map as the angular position of the gamma-
ray photons to perform the summation in Eq. (5.47). To be precise, this induces an
artificial smoothing over smaller scales than the pixel size in our gamma-ray map,
i.e., 0.2°. However, we do not expect to detect physically important correlations over
such small angular scales due to blurring by the PSF of the Fermi-LAT detector,
as we show in Sect.5.3.1. In this thesis, we take the PSF smoothing into account
in theoretical models (see Fig.5.4). Note that the pixelization effect in the gamma-
ray map is included in the covariance of our estimator. The pixelization effect is
found to be unimportant in detection of the cross-correlation signals at large angular
separations.

The statistical properties of our estimator Eq. (5.47) are summarized in Sect. 5.3.2.
There, we summarize the exact formulation of the covariance of our estimator and
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derive two dominant contributions; they arise from the intrinsic shape variance of
galaxies, called shape noise, and the finite number of photon counts per pixel in the
gamma-ray maps, called photon noise. We utilize randomized shear catalogues in
order to estimate the statistical errors associated with the shape noise. We generate
500 randomized shear catalogues by rotating the direction of each galaxy ellipticity
but with fixed amplitude. We then estimate the covariance matrix C;; of the estimator
Eq.(5.47) by

1 - -
Cij = No 1 D Euy O = Esny OD)VES, (0)) — Esny, (6))), (5.49)

where & 5’”_% (6;) is the estimator for the ith angular bin obtained from the rth realiza-
tion, and Nre = 500 is the number of randomized catalogues. The ensemble average
of the ith angular bin over 500 realizations, &s,—,, (6;), is simply given by

= 1
sén—y, (91) = N_ Zégn_% (91) (550)

To estimate the statistical error associated with the photon count noise, we generate
500 randomized count maps assuming the photon counts in each pixel follows a
Poisson distribution with a mean of n°b ((E). We repeat the cross-correlation analysis
with the 500 count maps and the observed galaxy shear catalogue. We then estimate
the statistical error related to the photon noise in the same manner shown in Eq. (5.49).
In total, we estimate the statistical error associated with the shape measurement and
the photon noise by summing these two contributions. Figure 5.5 shows the variance
of the cross-correlation signal estimated from the two sets of randomized catalogs as
described above. In each panel, the red line shows the contribution from the shape
noise and the black line shows the variance due to the photon noise. Overall, the
shape noise and the photon noise contribute to the statistical error of our estimator
at similar levels.

The cross-correlation estimator adopted here is also dependent on the model for
the foreground astrophysical diffuse emission of our own Galaxy. We therefore inves-
tigate alternate LAT diffuse models provided by the Fermi collaboration to assess
differences in the estimated EGB photons. First we work with Fermi LAT Pass 7
reprocessed SOURCE-class photons. This class is made with a weaker set of cuts to
remove cosmic-ray induced backgrounds. We analyze them adopting the appropriate
diffuse model and IRF. Second, we work with the Fermi LAT Pass 7 photon pipeline
instead of Pass 7 reprocessed photons with respectively the appropriate diffuse emis-
sionmodel (gal_2yearp7v6_v0and iso_p7véclean)andIRF. Inboth cases,
we first find the best fit diffuse model normalizations, subtract the best fit Galactic
diffuse maps from the raw data, and then mask the point sources, to obtain finally the
EGB photons. We have explicitly checked that the different Galactic diffuse models
do not significantly affect our cross-correlation analyses at present. We discuss this
issue later in Sect.5.4.2.
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Fig. 5.5 The variance of cross-correlation signals estimated from a set of randomized realizations
and the observed map (taken from [50]). The red line in each panel shows the statistical error
associated with the shape measurement. The black line represents the statistical error associated
with the Poisson error from the finite number of gamma-ray counts

It may be necessary to consider another important contribution to the covariance,
i.e., the sampling variance. To estimate the sampling variance, one could use the
halo model approach as shown in Sect.5.3.1, but it is uncertain how the astrophys-
ical sources are included in the model. We expect the sampling variance to be less
important compared to the uncertainty of the halo model izself. In this thesis, we
simply ignore the sampling variance but include the model uncertainty as presented
in Sect.5.3.1 when deriving the constraints on DM annihilation.

The PSF in optical imaging surveys is one of the major systematics of galaxy
shape measurement. The optical PSF originates from diffraction, the atmospheric
turbulence, optical aberration, the misalignment of CCD chips on a focal plane,
and pixelization effects. Anisotropy of the PSF causes a coherent deformation of
images that might mimic the tangential shear pattern due to large scale structure
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in the universe. Often in cosmic shear measurement, systematic effects are tested
through statistical analyses of the 45° rotated component of galaxy ellipticities. This
is because the 45° rotated component of cosmic shear should vanish statistically as
shown in Sect.3.1. In Sect.5.4.2, we perform statistical analysis by using the 45°
rotated component of galaxy ellipticities and we quantify systematics, if any, of the
lensing data set.

5.4.2 Result

Here, we present the measurement of the cross-correlation signals of the cosmic
shear and the EGB. Figure 5.6 shows the cross-correlation signals obtained for each
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Fig. 5.6 The cross-correlation signal of cosmic shear and the EGB. Each panel corresponds to
each of the CFHTLenS patches W1-W4 (taken from [50]). The red points correspond to the result
using tangential shear y.., while the black points are for y, . The error bars represent the standard
deviation estimated from our 500 randomized shear catalogues and 500 randomized photon count
maps
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Table 5.1 The impact of Fermi Galactic diffuse model on the cross-correlation analysis of cosmic
shear and the EGB (taken from [50])

SOURCE/Pass 7 | SOURCE/Pass7 rep | ULTRACLEAN/Pass 7 | ULTRACLEAN/Pass7 rep
W1| 6.91/10 6.22/10 8.58/10 7.80/10
W21 12.26/10 12.32/10 6.98/10 6.87/10
W3| 7.62/10 7.11/10 8.77/10 6.49/10
W4 | 12.88/10 12.95/10 7.57/10 7.39/10

The x2 value of the cross-correlation signal in each CFHTLenS patch are summarized with different
models and photon selections

CFHTLenS patch. In each panel of Fig. 5.6, we also show the cross-correlation using
another component of weak lensing shear that is rotated 45° from the tangential
shear component. We refer to this component as y. In practice, yx is often used as
an indicator of systematics in the shape measurement. In the case of perfect shape
measurement and no intrinsic alignment, the correlation signal with y should vanish
statistically. In order to quantify the significance of the measured cross-correlation
signals with respect to the statistical error, we use the x? statistics defined by

X2 =D Esny (0)C] Esny, (6)), (5.51)
iJj

where C~! denotes the inverse covariance matrix estimated from the randomized
realization shown in Sect.5.4.1. In our analysis, the number of deg of freedom is
10. The resulting values of x2/nqor for y; and for y are shown in each panel. The
result is consistent with null detection in each CFHTLenS patch. We confirm that
the combined four field together is also consistent with null detection ( X2 /ndof =
[7.80 4 6.87 4 6.49 + 7.39]/40 = 28.55/40 in total).

For the diffuse model subtraction, we have made an attempt to estimate the sys-
tematics by employing different gamma-ray datasets and different Galactic diffuse
emission models. The resulting x2 values in each of the CFHTLenS patches are
summarized in Table 5.1, and show how the typical systematic error associated with
Fermi photon analysis are very small (Ax? ~ 1-5).

5.5 Constraint and Forecast

5.5.1 DM Annihilation Constraint

We are now able to use the null detection of the cross-correlation to place constraints
on the DM annihilation cross-section. For this purpose, we use the maximum Like-
lihood analysis. We assume that the data vector D is well approximated by the
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multivariate Gaussian distribution with covariance C. In this case, x? statistics (log-
likelihood) is given by

x2(p) = D (D — wi(P)HC; (D) — 1j(p)), (5.52)
ij

where j1(p) is the theoretical prediction as a function of parameters of interest. In
this thesis, we use the halo model approach shown in Sect.5.3.1 to calculate the
theoretical prediction. For parameters of interest p, we simply adopt the DM particle
mass and the annihilation cross-section, mgm and (ov).> The data vector D consists
of the measured cross-correlation signals with the range of & = [1, 100] arcmin as

D; = {ESn—y, (01), ESn—V, @2), ..., Ean—y, (910)}7 (553)

where 6; is the ith bin of angular separation. The inverse covariance matrix C~!
includes the statistical error of the shape measurement and the photon Poisson error. In
our likelihood analysis, we assume that the four CFHTLenS patches are independent
of each other. With this assumption, the total log-likelihood is given by the summation
of Eq.(5.52) in each CFHTLenS patch. In order to constrain mgy, and (ov), we
consider the 68 % confidence level of posterior distribution function of parameters.
This is given by the contour line in the two dimensional space (mgm and (o'v)), which
is defined as

Ax*(P) = x*(P) — x*(ji = 0) = 2.30. (5.54)

As discussed in Sect. 5.3.1, the minimum halo mass causes the uncertainty of the
theoretical predictions by a factor of about ten. We therefore derive constraints based
on the optimistic case with Mpi, = 10_6M® and on the conservative case with
Mpin = 10°M,.

In Fig.5.7, we show the result of our likelihood analysis on the DM parameter
space mgm and (ov). We plot the constraints for two representative particle physics
model, the 77~ channel and the bb channel. We also show the results for the
two choices of Mpi,. The constraint for the case of My, = 10_6MO is signifi-
cantly stronger, as expected. At low DM mass, the annihilation cross-section is more
severely constrained for the 777~ channel, because of its harder gamma-ray spectra
that contribute photons at sensitive energies than for the bb channel of the same DM
mass. For reference, the horizontal dashed line indicates the canonical cross section
of (ov) =3 x 10729 cm? s~! for a thermally produced DM.

3Strictly speaking, we need to consider other parameters associated with the model of substructure
within DM haloes. These are, for example, the concentration parameter cyj; of host halo, subhalo
density profile and subhalo mass function. Although we do not include these parameters explicitly
in our analysis, we explore the overall effect by considering two cases with the different minimum
halo mass Mp;, as the most important effective uncertainty of our benchmark model.
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Fig. 5.7 The 68 % confidence level upper limits on (ov) as a function of DM mass (taken from
[50]). The red shaded region represents the upper bound for the 7+t~ channel and the green region
is for the bb channel. Here, the widths of the shaded regions indicate the model uncertainty: for
each shaded region, the upper curve is derived by our benchmark model with My, = 100 Mg and
the lower curve is obtained from the model with M, = 10_6M@

5.5.2 Future Forecast

Itis interesting to explore the discovery potential of the upcoming cosmology surveys
in terms of the DM particle properties. In this section, we consider two of these
wide surveys with an area coverage of 1400 deg? (HSC) and 20000 deg? (LSST),
by simply scaling the covariance matrix by a factor of 154/1400 or 154/20000,
respectively. Assuming the same number density and redshift distribution of source
galaxies as in the CFHTLenS, the expected constraints can be scaled by the effective
survey area. The result suggests that the upper limit will be improved by a factor
of /1400/154 ~ 3 for HSC and by a factor of ,/20000/154 ~ 11 for LSST.
In particular, for a 100 GeV DM, the upper limit of (ov) with 68 % confidence
level could reach 2.7 — 22.2 x 10726 ¢cm? s~! for bb channel and 1.1 — 8.51 x
1072 c¢cm? s~! for t7~ channel in the case of the LSST-like survey. It will be
important to include the uncertainty in the model template of galactic emission and
also the sampling variance that is neglected in this thesis. Then we will be able
to derive robust and complementary probes of DM annihilation from the cross-
correlation signal of cosmic shear and EGB.

As shown in Fig. 5.3, the expected cross-correlation of astrophysical sources can
be comparable to the DM annihilation signal with mg, = 100 GeV and (ov) =
3 x 10726 ¢cm3 s~!. Thus it will be even more important to accurately take into
account of the contribution of astrophysical sources such as blazars and SFG for
future surveys. We include the contribution from the astrophysical sources on the
assumption that the contribution of blazars and SFGs can be estimated as in our
benchmark model described in Sect.5.3.1. The sum of the three contributions is
given by
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Fig. 5.8 The expected 68 % confidence level upper limit on {(ov) as a function of the DM mass for
upcoming surveys (taken from [50]). This figure shows the case with a sky coverage of survey area
1400 deg?. The red shaded region corresponds to the expected upper limit for the T+t~ channel
and the green one for the bb channel. The left panel represents that the conservative case assuming
the DM annihilation contribution only, while the right panel shows the optimistic case taking into
account astrophysical sources

Esn—y, (0) = £, (Olmam, (0V)) + ENT(0) + £330, (0). (5.55)

Using this as a theoretical model template, we perform the likelihood analysis to
make forecast for DM constraints. For simplicity, we assume that the observed cross-
correlation is identical to the one of the CFHTLenS W1 patch but that the covariance
matrix can be scaled by the survey area. The expected constraint from the HSC-like
survey is found in Fig.5.8. The left panel represents the conservative case with no
contribution from the astrophysical sources whereas the right panel shows the case
with including the astrophysical sources. With the astrophysical sources in the model
prediction, we can place tighter upper bound by ~40-70 % for the sky coverage of
1400 deg?. It is clearly important to treat the contribution from the astrophysical
sources carefully for future wide-field surveys.

We further study information content in the cross-correlation signal of cosmic
shear and EGB. An important quantity is the cumulative signal-to-noise ratio S/N,
which is defined by

(S/N)? =D mi(H)C;; 1 (P). (5.56)
iJ

3 1

In order to calculate S/ N, we consider DM models with (ov) =3 x 10726 cm? s~
for a 10 and 100 GeV dark matter and use the covariance matrix estimated by the
randomized method shown in Sect.5.4.1.

Figure 5.9 shows the S/N as a function of the minimum angular scale included in
the cross-correlation analysis. In this figure, we consider the annihilation signal of a
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Fig. 5.9 The cumulative signal-to-noise ratio for the cross-correlation of cosmic shear and the
EGB (taken from [50]). The figure shows the case with a sky coverage of survey area 20000 deg?,
i.e., a LSST like survey. The red shaded region corresponds to the signal-to-noise ratio for the
7+ 7~ channel and the green one for the bb channel. In this figure, we consider the sum of the DM
annihilation contribution of a 10 GeV mass DM and the astrophysical sources for these plots

10 GeV DM particle and we set the maximum angular scale to 100 arcmin. Large-
scale cross-correlations determine the information content, and including data at
small angular scales does not improve the significance. The same can be said of a 100
GeV DM particle. This is simply because we can not extract information from cross-
correlations on scales smaller than the size of the gamma-ray PSF. At large angular
scales, 6 ~ 100 arcmin, the signals are mainly contributed by the DM annihilation.
We expect that the cross-correlation analysis with upcoming survey with a large sky
converge of ~1000 deg® will be a powerful probe of dark matter annihilation. We
also discuss the detectability of the cross-correlation signal with upcoming lensing
surveys. In our benchmark model, the S/N is almost proportional to (ov) because
the DM contribution dominates over astrophysical contributions. We can thus detect
at a 3-o0 confidence level the DM signature with (ov) >~ 3 x 10726 cm? 57! for a
10 GeV dark matter and (ov) >~ 1 x 1072 cm? s~! for a 100 GeV dark matter in a
LSST-like survey. It is important to note that S/N will likely increase significantly
if cross-correlations at very large angular scales (2100 arcmin) are included. In this
thesis, the statistical error estimated from the real dataset is limited to the range
of 1-100 arcmin. However, for upcoming wide-field surveys, we can measure the
cross-correlation signal to much larger angular scales where the smoothing effect
due to PSF is unimportant.
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Chapter 6
Summary and Conclusion

In this thesis, we have paid special attention to statistical analyses of gravitational
lensing for purpose of understanding the nature of dark energy and dark matter.

6.1 Lensing Minkowski Functionals

In order to constrain on the nature of dark energy, we consider the morphological sta-
tistics called Minkowski Functionals (MFs). We have studied various observational
effects on lensing MFs with numerical simulations and real data set of cosmic shear
in Chap. 4.

6.1.1 Subaru Suprime-Cam

At first, we have examined how mask regions affect the lensing MFs with a large
number of numerical simulations. We found that the weak lensing MFs are affected by
the lack of cosmic shear data due mostly to foreground contamination. The expected
values of the MFs are biased even for a Gaussian convergence field. Masked regions
induce the bias of lensing MFs due to (i) effective reduction in the number of sampling
Fourier modes of cosmic shear and (ii) scatter of variance of the reconstructed weak
lensing mass field for each field of view. The former can be corrected analytically as
shown in Appendix A, while it is difficult to study the latter effect without numerical
simulations.

Also, we have shown that masked regions significantly contaminate the pure grav-
itational signals in morphological analysis. We also have performed simple analysis
to study the impact of masked regions on cosmological parameter estimation. From
the cumulative signal-to-noise ratio for the lensing MFs, we have found that the
effective survey area largely determine the cosmological information content in the
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MFs. By studying the resulting distribution of x2 value for simulated maps with
masks, we have shown that most of the resulting x? values are found outside the
expected one sigma region, when the mask is not considered. Thus, the mask bias
could compromise significantly the cosmological parameter estimation.

Adopting the actual sky-mask used for a Subaru observation, we have compared
the observed lensing MFs with the results of cosmological simulations to test the
consistency of the observed MFs with the standard cosmological model. We have
calculated the lensing MFs to the observed weak lensing shear map obtained from a
Subaru Suprime-Cam imaging survey. Our analysis shows the resulting x2/ngot =
29.6/30 for all the MFs suggests that the observed MFs are consistent with the
adopted standard ACDM cosmology.

6.1.2 Canada-France-Hawaii Telescope Lensing Survey

Next, we have performed mock lensing observations by incorporating the three-
dimensional distribution of the source galaxies and the effect of imperfect shape
measurement in the same manner as in the analysis of the real Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS) data. We have made realistic forecast
for cosmological parameters from lensing MFs by using the mock catalogs and a
Fisher analysis. We have also studied the possible systematics in the lensing MFs
measurement that are crucial for cosmological studies. Finally, we have applied
the developed method to real cosmic-shear data, to show that the lensing MFs are
powerful probe of cosmology.

We found that the overall statistical error would be comparable to the sampling
variance for the CFHT survey area. This leads that the accuracy of cosmological
parameter constraints is degraded by a factor of ~2. Assuming that the statistical
error in upcoming wide-field surveys scales to the effective survey area, we found
that the lensing MFs can constrain the equation of state parameter of dark energy wy
with an error of Awg ~ 0.25 for Hyper Suprime-Cam survey with a sky coverage of
~1400 deg?.

We then have investigated the effects of the two major systematics; the uncer-
tainties in photometric redshifts of the source galaxies and the shear calibration
correction. We have found that an error of Az = 0.05 in the mean source redshift
induces biased dark energy parameter estimation of Awg ~ 0.2 for CFHTLenS.
Furthermore, the shear calibration correction causes non-negligible errors that can
bias cosmological parameter estimation as large as the 1o confidence level for HSC
survey.

We also have performed the Likelihood analysis with the lensing MFs template
based on our mock catalogs. Although our mock catalogs consist of the limited
cosmological models and our cosmological constraints shown in Chap.4 would be
biased, we found that the lensing MFs can, even in realistic case, break the degeneracy
of cosmological parameters appeared in the two-point statistics of cosmic shear.
This results indicate that lensing MFs enable us to constrain cosmological models
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by cosmic-shear observations even without any prior from the cosmic microwave
background (CMB) anisotropies or from the galaxy clustering measurement. Since
an independent probe is always important in cosmological analysis, lensing MFs
provide a robust test of the standard ACDM model which is in good agreement with
multiple cosmological analyses, e.g., CMB measurement.

6.1.3 Future Work

There still remain important issues when measuring the MFs from real data set.

With lensing MFs, we can probe the crucial length scales of structure where
perturbative approaches break down because of the non-linear gravitational growth
(e.g., [1, 2]). This means that we need accurate theoretical predictions of the lens-
ing MFs beyond perturbation methods [3, 4] in order to sample accurately like-
lihood functions for a wide range of cosmological parameters. Another important
issue is theoretical uncertainties associated with baryonic effects. Previous studies
(e.g., [5, 6]) studied the effect of including baryonic components to the 2PCFs and
consequently to cosmological parameter estimation. The baryonic effect could also
be important for the MFs analysis because the MFs generally contain the information
at arcminute scales, i.e., the typical virial radius of galaxy clusters. Reference [7]
shows appreciable baryonic effects on peak statistics using a simple model applied
to dark-matter-only simulations. Obviously the most straightforward way to include
the baryonic effect would be to perform weak-lensing simulations with outputs of
hydrodynamic simulations. We continue studying the MFs along this idea.

There are also other possible systematics than those studied in this thesis. For
example, source-lens clustering (e.g., [8]) and the intrinsic alignment (e.g., [9]) are
likely to compromise cosmological parameter estimation. The statistical properties
and the correlation of source galaxies and lensing structures are still uncertain but
could be critical when making lensing mass maps. A promising approach in theo-
retical studies would be associating the source positions with their host dark matter
halos on the light cone. This is along the line of our ongoing study using a large set
of cosmological simulations in combination with actual observations.

6.2 Cross-Correlation Analysis of Cosmic Shear
and Extragalactic Gamma-Ray Background

In Chap. 5, we have studied the utility of a cosmic shear analysis in terms of probe of
the nature of dark matter (DM). There, we have focused on a hypothetical annihilating
DM and examined the detectability of the imprint of DM annihilation in real data
sets.
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We have performed cross-correlation analysis of cosmic shear and extragalac-
tic gamma-ray background using observational data from the CFHTLenS and the
Fermi satellite. We found that the measured cross-correlation signal is consistent
with null detection for the 154 deg? sky coverage. Using theoretical models based
on large-scale DM structure formation and the statistical error estimated from real
data together with a large set of mock observations, we have placed constraints
on the DM annihilation cross section. We have considered different DM annihila-
tion channels and varied the minimum mass of DM halos. The derived constraint
is (ov) < 1072° —1072* cm?3 s~! for a 100GeV DM, depending on the assumed
parameters and annihilation channel. The constraint improves for smaller DM mass.

In fact, stronger constraints for DM annihilation is found in recent analyses of the
Fermi observations of dwarf galaxies [10—12]. However, our constraints are derived
using a completely different statistical method based on the cross-correlation of the
EGB and cosmic shear. More importantly, our method is based on exactly extragalac-
tic (or cosmological) scales where is completely different from galactic scales. Our
limits compete favorably with the constraints of Ref. [13] that use galaxy clusters
and those of Ref. [14] that use anisotropies of the EGB. Also, the cross-correlation
signal provides an opportunity for testing the DM interpretation of a ~GeV excess
towards the Galactic center [15-22].

We then have investigated the improvement expected with upcoming gravitational
lensing survey with the sky coverage of 20,000 deg®. We have shown that constraints
on DM annihilation cross section (ov) would reach 2.7 — 22.2 x 10726 ¢cm?3 s~! for
the bb channel and 1.1 — 8.51 x 102 c¢m? s™! for the Tt~ channel, both for a
100 GeV DM. For lighter DM motivated by the Galactic center excess, the constraints
would reach 1.34 — 10.96 x 1072 ¢cm? s~! for the bb channel (assuming 40 GeV
mass) and 0.39 — 3.24 x 10726 ¢cm3 s~! for the tT¢~ (assuming 10GeV mass),
allowing a test of the DM origin of the Galactic center excess. Furthermore, if we
can made accurate modeling of astrophysical contributions to the cross-correlation,
the expect constraints on (o v) would be improved by 40-70 % for a broad range of
DM mass.

We have studied some systematic effects on gamma-ray data. In Chap.5, we
have used a conservative mask of 2° around each point-source. While more aggres-
sive masks or point-source modeling will increase photon statistics, these must be
weighed by their larger systematic uncertainties. Also, at present, when we adopt
a smaller mask of 1° radius around each point source, we find that the errors on &
improved by only 10 %. For the galactic diffuse model subtraction, we have made an
attempt to estimate the systematics by employing different gamma-ray datasets and
different Galactic diffuse emission models. Table 5.1 shows the typical systematic
error associated with Fermi photon analysis (Ax > ~ 1-5). In the case of a LSST-like
survey (see Sect.5.5.2), this difference could induce a systematic error of (ov) for a
100GeV DM on the level of ~3 x 10720 cm? s~ for both the bb channel and the
Tt~ channel.
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6.2.1 Future Work

There are a few issues in the cross-correlation analysis of cosmic shear and the EGB
for upcoming surveys. First, in this thesis, we have only implemented a crude esti-
mate of the systematic error associated with the gamma-ray foreground subtraction.
Second, we have not included the sampling variance. While these are not expected
to be a significant source of uncertainties at present, mainly because of the large sta-
tistical error in the current data sets, they would become more important for analyses
using data from upcoming surveys.

Detailed comparisons with numerical simulations would also be required to test
the accuracy of our benchmark model based on halo model approach (see also
Appendix D). Combined with other observations such as the mean intensity of the
EGB, angular correlation of the EGB and the cross-correlation of galaxy position
and the EGB [23], one can expect that some of the degeneracies between the DM
annihilation and astrophysical sources may be broken. It is therefore important to
investigate how much information of the EGB can be extracted from such combined
analyses using multiple astrophysical datasets. Gamma-ray analyses with future cos-
mological surveys would be very powerful methods for understanding the origin of
the EGB and the indirect search of DM annihilation.
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Appendix A
Effect of Masks on Variance of Smoothed
Convergence Field

Here, we summarize the effect of masked regions on the variance of a smoothed
convergence field .# . In the presence of masked regions in a survey area, one needs
to follow a special procedure in order to construct a smoothed convergence field. Let
us define the masked region . (5) in a survey area as

1 where 6 lies in data region

0 otherwise. (A-D

V%@=[

When the area with mask .Z (5) is smoothed, there would exist ill-defined pixels
due to the convolution between . and a filter function for smoothing U (5 ). We thus
need to discard the ill-defined pixels to perform statistical analyses. The removal of
the ill-defined pixels is equivalent to pasting a new mask .# (5 ) so that we can mask
the ill-defined pixels as well. We then get

H G = M(0)10), (A2)

where
L%@w=/¥¢U@—$u%@w@y (A3)
The variance of the smoothed field is given by
%=§/¥m%m@ﬂ

_ é / 42040, 0) (A (B)2)
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Here, we assume that, with .Z} (é), there remains only clean regions where the
smoothed convergence is not affected by the original masked regions . (6). In this
case, the measured % field is given by

KO0 (G) = 1 (6) / d2p U@ — )k (). (A.6)
The fourier mode of .#°% can then be given by
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The variance of the smoothed convergence field is calculated as
2 l 2 obs
oy = 420 % 0)?)

2 2pr
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where the ensemble average of the Fourier mode is
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We have checked the validity of Eq. (A.6) by using 1000 Gaussian simulations.
They are the same set of simulations as in Sect. 4.1.1. For each Gaussian simula-
tion, we paste the observed masked region . (5) from the Subaru Suprime-Cam
observation. We then smoothed the map with a Gaussian filter of Eq. (3.72) with
smoothing scale of 1 arcmin. In order to avoid the ill-defined pixels, we paste a new
mask .#1(0), which is constructed conservatively to cover the regions within two
times the smoothing scale from the boundary of the original mask . (0). We then
calculate

POS(g) = (2P (0) (%) (D)) /S. (A.10)

If 27 °P can be well-approximated by Eq. (A.6), this quantity should be given by

‘ 1 [ d*¢ 5 5> o S 5
PO () ~ g/ (Zn)‘2|///1(e1)|2|U(e—e1>|2PK<|z—m). (A.11)

Figure A.1 compares Eqgs. (A.6) and (A.11). Clearly Eq. (A.6) is an excellent ap-
proximation for the observed survey geometry. The ill-defined pixels are efficiently
masked by .# (5). We also find the variance og decreases by a factor of O(5 %).
This causes the bias of MFs even if the lensing field is Gaussian.
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Fig. A.1 The test the validity of Eq. (A.6). The figure is taken from [1]. The gray points with error
bars represent P°P(¢) obtained from 1000 Gaussian maps with mask .# (9). The gray dashed line
is the theoretical prediction of Eq. (A.11). The black points with error bars show PO (¢) obtained
from 1000 maps without mask. The black dashed line is the input power spectrum smoothed by the
Gaussian filter U
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Appendix B

Effect of Source Redshift Clustering
on Variance of Smoothed Convergence Field

Here, we summarize the effect of source redshift clustering on the variance of a
smoothed convergence field. Weak lensing convergence « is given by the integral of
matter over density with a weight along the line-of-sight 6:

- 3 [ Hy\?> Xs 8 g,
K(e,xs>=§(7°) szmo/o dxw(mm@%, (B.1)

g, xe) = " Xe Z XOT(Xe) (B.2)
r(Xs)

where y is comoving distance, r () is angular diameter distance, and y; represents
the comoving distance to a source. One can assign a probability distribution p(xy)
of a source galaxy’s position, or in fact p(x;) for a population of source galaxies,
and integrate as,

- 3 (Hp\? XH Xs B g,
7@ =2 (—0) 0 / dxs PO / dxe glxs. o) X0 XD g 3
2\ ¢ 0 0 a(xe)

In the conventional multiple lens plane algorithm, one can calculate the both con-
vergence field k and « by using a suitable weight function in the integral. In practice
in ray-tracing simulations, we shoot rays from the observer point to the source red-
shifts to obtain «, whereas we shoot rays up to some certain (high-)redshift but
with weight p(x;) along the line-of-sights to obtain k. In the former case, the full
three-dimensional positions of the source galaxies are realized as in the observation
considered, i.e., CFHTLenS in our case. The difference between « and k can be
easily seen in a direct manner using the two sets of simulations, and the resulting
variances of smoothed convergence field can be explicitly compared.
The smoothed convergence field for « is given by

H(G) =D UG — k@i, Xsi)- (B.4)
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where U (67) is the filter function for smoothing and the summation is taken over the
source objects. The smoothed convergence field for « is also obtained in the same
way. The two-point correlation function of % is then given by

(A O)A (62) = (DD UG — U G2 — )i (i xsi)x (@ xs))

i
= /d2¢1d2¢2 UG — ¢)U 6 — ¢2)
X / dXsl dXs2 P(Xsl)P(st) [1 + 553(551 - <52, Xsl, XSZ)]
X (K(@1, s DK (B2, X52)) (B.5)

where (- - - ) represents the operator of ensemble average and &, represents the two
point correlation function of the sources. One can also calculate the two-point cor-
relation of . in the similar manner. We then obtain the non-vanishing difference
between (# ¢) and (¥ ) as

(A — KK = / d>¢1d%¢py UG — $1)U (62 — $2)

x [Es@1 — $owop(@1 — $2) = Vip(@1 — 8| (B.6)
Es (¢ — o) = / dxs1dxs2 POts ) P(Xs2)Ess @1 — b2, Xs1s Xs2)s (B.7)
Wwpp (@1 — $2) = (R($1R($2)), (B.8)

- - 9 (Hy 4 2 o o
Vop(d1 — é2) = 1 (7) 250 /dXsldXs2 P(Xs 1) P(Xs2)éss (D1 — 2, Xs1s Xs2)

x/dx“dx &(xs1> xe1)&(Xs2> Xe2)
a(xepa(xe2)

X (81r (ted1, xe1180r (xe2) 92, xe21).- (B.9)

This non-vanishing term arises if the source clustering & evolves over redshift. Note
also that the MFs of .# and those of % can be, in general, different if their variances
differ (see, e.g. Ref. [1]).

In practice, the smoothed convergence field is often estimated from the shear field
y. In this case, one can calculate ¢ using the following equation,

H @) =010 — )i (i xsi), (B.10)

where Q,(G) is the filter function for the shear field which is related to U (9) by
Eq. (3.74) and y; (0 Xs) 1s the tangential component of shear at the position 6 when a
source is at xs from the observer. Using Eq. (B.10), one can derive the corresponding
non-vanishing term
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N (Jo(«%lz) + J4(5¢12))
5 ,

where ¢ is the norm of (1_5)1 —qu and Ps(k, z) is the non-linear matter power spectrum
at redshift z.

Although we have derived the difference between .# and .# at the two-point
statistics, it is extremely difficult to derive an explicit form for the corresponding
difference in the lensing MFs. We thus resort to comparing directly the two sets
of simulated lensing MFs. One is our fiducial mock data used in Sect. 4.2.1.2. For
the other, new set of simulations, we calculate k at each source position on the sky
using the source redshift distribution (weight) that is shown as the black histograms
in Fig.4.12. Figure B.1 shows the results. The red line represents the difference
caused by the two different source redshift distributions as described in Sect. 4.2.3.
The green line shows the difference of the lensing MFs with and without source
redshift clustering. For reference, the difference of lensing MFs between the different
cosmological model by blue lines are also presented. The thick (thin) blue lines
correspond to the case of the cosmological model with higher (lower) wg. Although
the impact of source clustering (green) is smaller than the effect of different source
distribution (red), it or actually both could be a major source of systematics for future
survey with the sky coverage of 20000 deg®. The induced biases in cosmological
parameters due to the source clustering are estimated by Eq. (4.19); the results are
AQmo = 0.00642, AA; = —0.00467 x 10° and Awgy = 0.00487.
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Fig. B.1 Impact of a source redshift clustering on lensing MFs (taken from [2]). This figure shows
the differences of average MFs over 40 catalogs between our fiducial cosmology and another one
that includes a given systematic. The red line represents the impact of the difference of source
redshift distribution and the green one shows the effect of source redshift clustering on lensing
MFs. For comparison, the case of cosmological model with higher (lower) wy is also shown as the

thick (thin) blue line
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Appendix C
Estimating the Minkowski Functionals
Covariance Matrix

We describe an approximate way to evaluate the covariance matrix as given by
Eq. (4.18) and test its validity in this Appendix. We first generate 40 noise-free
lensing maps by the method in Sect. 3.4. For each realization of the 40 maps, we
use a different random seed for the intrinsic ellipticities to make mock source galaxy
catalogs described in Sect. 4.2.1.2. In this way, we generate 40 x 40 = 1600 catalogs
in total, which can be used to estimate the full covariance of the MFs.

Let us denote a mock catalogue as #"™", which is generated by the mth noise
free lensing map with an nth random seed of the intrinsic ellipticity distribution. We
then calculate the full covariance of Vj as follows:

40 40

i = w7 20 20 2™ = Vo)

m=1n=1 i,j
x (Vo) = Vo(x'"™)), (C.1)
40 40

Vo(x[™") = 160022 Vo(x"™"), (C2)

m=1n=1

where x["" = (™" — (£™")) /0" and we here use five bins in the range of
=[— 3 3]. We also calculate our estimator adopted in this thesis:

Cij ="V + ¢, (C.3)
where
40
cit = 40%1 DDVl = Vo ™M) (Vo(x ™) = Vox ™), (C4)
n=1i,j
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Table C.1 The ratio of the full covariance of Vj to our estimator (taken from [1])

X1 X2 X3 X4 X5

X1 1.96 0.35 1.96 4.07 1.87
X2 1.53 1.51 1.27 1.46
X3 1.82 2.12 1.92
X4 1.14 0.98
X5 1.82

The full covariance is derived from the new 1600 maps with Eq. (C.1), whereas our estimator is
given by Eq. (C.3). x is defined by (# — (') /o0

40

1 _ _
iV = g 22 200" h = Vo () = Vo). (€5)
m=1 i,j
) 1 40
Vo™ = 35 2 Vo™, (C.6)
n=1
. | L
Vox!y = o > Vo"h. (C.7)
m=1

The ratio Ci(;-‘o"‘o) /Cij then serves a check on the accuracy of our estimator.
The ratio for each component is summarized in Table C.1. The simple estimator
Eq. (C.3) indeed gives a good approximation to the full covariance. The ratio is
typically within a factor of two, and the same is also found for V| and V». Even if
the ratio of the full covariance and our estimator is 2 for all the matrix elements, the
cosmological forecast shown in this thesis would be degraded only by a factor of
~2173 (ie., ~20%).
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Appendix D

Effect of Dark Matter Halo Profile
Uncertainties on Cross-Correlation Signals

Here, we quantity the effect of uncertainties of the DM halo profiles on the cross- cor-
relation between cosmic shear and the EGB. In order to calculate the theoretical model
of cross-correlation signals, we follow the halo model approach as in Sect. 5.3.1. In
the halo model, there are mainly two contributions of the cross-correlation signal: the
one-halo term and the two-halo term. For a given length scale k, the main contribution
to the one-halo term as calculated by Eq. (5.26) comes from galaxy cluster size halos
with 10'3 — 10" M. This is valid for the two-halo term associated with density fluc-
tuations (i.e., the first integral in Eq. (5.27)). On the other hand, the two-halo term
associated with density squared (i.e., the second integral in Eq. (5.27)) is mainly
determined by the smoothed profile contribution f dV,o,% (r|M, z) with dominant
contribution from lower mass scales. Assuming the NFW profile and the concentra-
tion parameter cyir = rvir/7s o M® with & ~ —0.1, Mn(M, z) [ dVp}(rIM, 2)
would scaled as ~M3* for M < 10'> M. This fact indicates that the low mass halos
dominates the two-halo term and that the overall amplitude of the two-halo term is
sensitive to the minimum halo mass. Thus, along with M,,iy, cvir(z, M) is one of the
most important parameters in the halo model.

Recent numerical simulations (e.g. [1]) suggest a non-monotonic relation between
the concentration parameter and the mass of DM haloes. In this appendix, we test
the dependence of the cross-correlation signal on cyir(z, M) by comparing a simple
power-law model and the non-monotonic model. For the non-monotonic cyir(z, M)
model, we use the fitting function of Ref. [1] that determines cy;; as a function of the
linear rms density fluctuation o (z, M). This fitting function successfully reproduces
the complex feature of cy;; found in numerical simulations. For the power-law model,
we apply the functional form shown in Ref. [2] as in our benchmark model.

Even if we can determine the halo profile concentration, the inner shape of density
profile would make the cross-correlation signal uncertain. Although the inner slope
of density profile of DM halo is still unconcluded, e.g., [3, 4], we here examine the
alliterative model of DM density profile as proposed in Ref. [4]. This model is called
Einasto profile, which is defined by
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Fig. D.1 The typical uncertainty of cross-correlation signals of cosmic shear and EGB from DM

annihilation. We consider the signal from the annihilation of a 100 GeV mass DM particle with

annihilation cross section (ov) = 3 x 10726 cm? 5! separately for the 7+~ channel (red lines)

and the bb channel (green lines). The left panel shows the case of minimum DM halo mass My, =
10° Mg, while we assume M, = 10~°Mq in the right panel. The solid lines correspond to the
halo model with the power-law model of cvi; with the NFW profile. The dashed lines represent the
halo model with the power-law model of cy;; with the Einasto profile. The dashed-dotted lines show
the halo model calculation with the non-monotonic model of ¢, and the NFW profile

(6 I G

where p; and rg represent the scale density and radius, and « = 0.17. When using
the Einasto profile, we simply use the power-law concentration in Ref. [2] and derive
ps and rg in the same manner as in Sect. 5.3.1.

In Fig.D.1, we summarize the comparison between the halo model calculations
with the power-law and non-monotonic models of ¢, and/or the different parameter-
izations of density profile. Each solid line is the same as our benchmark model, while
each dashed line correspond to the case with the Einasto profile and the power-law
model of c¢yi;. The dashed-dotted lines show the halo model with the non-monotonic
model of cyi;. We assume the minimum halo mass My, = 1O6M@ and 10_6M@ in
the left and right panel, respectively. We also take into account the smoothing effect
of gamma-ray point spread function (PSF) in Fig.D.1.
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For the non-monotonic model of ¢y;;, we found that the final result is much less
sensitive to the minimum halo mass because of the flattening feature of ¢, at low
masses. The most important result is perhaps that the cross-correlation signals would
be dominated by the one-halo term for the non-monotonic model. This is different
from the result of our benchmark model and from previous work [5] mainly due
to the higher concentration in massive DM haloes than in our benchmark model.
Consequently, the expected signals for the non-monotonic model would be ten times
as large as our benchmark model for smaller angular scale at § < 10 arcmin when
we do not include the effect of gamma-ray PSF. However, for the angular scale larger
than 30 arcmin, the two models with the different cy;; show quite similar amplitudes
of the cross-correlation. Clearly, the choice of ¢y model would not affect the final
constraints of DM annihilation significantly because most of the information about
DM annihilation come from the large scale clustering as shown in Sect. 4.2.2.2. On
the other hand, the inner slope of p; has the larger impact on the calculation of
the expected cross-correlation. Assuming the Einasto profile, the inner slope would
gradually change as a function of radius. This induces the different scaling of the
volume integral f dv ,o,zl with respect to cyir. In both cases where M, = 106M@
and 107%M, the two-halo term of the cross correlation signal would change with
a level of ~50-70 %. Nevertheless, these uncertainties are smaller than an order of
~10, which is the model uncertainty in our benchmark model.

In Fig.D.2, we show the 68 % confidence upper limit of DM annihilation ob-
tained from the measurement shown in Sect. 5.4.2 with two different model of cross
correlation signals as discussed above. For constraints, we simply assume that DM
annihilation is the only contribution to the cross-correlation signals and take into
account the smoothing effect due to PSF in the same manner shown in Sect. 5.3.1.
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Fig. D.2 The 68 % confidence level upper limits on (ov) as functions of the DM mass (the left
panel is taken from [6]). The left panel corresponds to the constraint derived by the model with the
NFW profile and the non-monotonic model of cy;;. The right panel represents the case where the
model with the Einasto profile and the power-law model of cyj;. The red shaded region corresponds
to the upper limit for the T+ 7~ channel and the green one for the bb channel
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When assuming the non-monotonic model of cyir, we found the constraints on (o v)
degrade by ~10 % over a wide mass range of 5-1000 GeV. Also, the constraints
would be affected by the shape of DM density profile with a level of ~70 %.
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Research Statement

An array of recent astrophysical observations show us two unresolved mysteries
of cosmology; the accelerating expansion of the universe and the existence of dark
matter. In order to realize the cosmic acceleration in General relativity, an exotic
form of energy, now called dark energy, should be dominated in the present universe.
Another unknown content of the universe is dark matter. Dark matter dominates the
dynamics of the universe and plays an important role of formation of rich structure
of the universe.

A goal of my research is to understand the nature of dark energy and the physical
properties of dark matter. I approach these problems with the statistical analysis
of gravitational lensing (GL) effect of distant galaxies. GL provides a powerful
method to probe matter distribution; intervening large-scale structures induce small
image distortion of distant galaxies. The small distortion is called cosmic shear and
contains, in principle, rich information on the matter distribution at small and large
scales. However, we have not understood yet how to make the best use of GL for
constraints on the nature of dark energy and dark matter. Future lensing surveys
are aimed at measuring cosmic shear over a wide area of more than 1000 deg?.
Such observational programs include Subaru Hyper Suprime-Cam (HSC), the Dark
Energy Survey (DES), the Wide-Field Infrared Survey Telescope (WFIRST) and the
Large Synoptic Survey Telescope (LSST). In these programs, the statistical error
of shape measurement of galaxies would be improved dramatically. It is therefore
crucial to construct the well-calibrated and accurate statistical approach of cosmic
shear for providing important clues to the mysterious dark components.
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