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Preface

Since the 1960s, the waveguide optics has evolved into an emerging discipline and
had a tremendous impact on our information society. It attracted considerable
attention of scientists and technologists because of the potential applications for
signal processing, biochemical sensing, etc. The parallel development of material
science, optoelectronics, and micromachining technology has overcome several
technical obstacles and made possible the implementation of optical waveguide
system to perform those fascinating applications. In addition to this, optical
waveguide devices with new principles, new materials, and new structures are
constantly proposed, and some of them, including planar optical integrated circuits,
photonic crystal structure, nano-array structure, and plasmonics, become the
research hot spots in academic and industry. In one word, waveguide optics is an
extremely promising and fast-growing field.

This book is intended to serve as a general text on planar optical waveguide
structure for senior undergraduates. The Chinese version has published 7 years ago,
and the idea of writing this book is a result of frequent enquiries about the possi-
bility of publishing an English version. Because many significant advances on
waveguide optics have been made during the intervening years, it is felt that a direct
translation is hardly appropriate. Instead, a substantially new book is prepared,
which I am now placing before the readers. This book is intended to summarize our
recent research results and introduce the current progresses in optical waveguides.
Therefore, some relatively old contents written in the Chinese version have been
omitted. The following characteristics can be found in this book:

1. Some mature theories, such as optical fiber theory, coupled modes theory, and a
number of numerical methods, have already analyzed in other equivalent books.
These contents are not contained in this book because I designed to restrict its
scope to a narrow field, which is only a collection of some of our researches on
waveguide optics.
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Preface

. Both the analytical transfer matrix methods and the perturbation analysis are the

mathematical basis of this book. By applying these two methods, several
waveguide optics problems can be depicted with the formulae in the analytical
form and the corresponding derivation processes are quite simple.

. The field distribution function of the optical waveguide is not expressed by the

conventional sine or cosine form, but the exponential form, and thus, a
transmission-type dispersion equation with more clear physical insight is
obtained. Moreover, a newly defined concept, i.e., the scattered subwaves, is
firstly proposed. The neglect of the scattered subwaves in other semiclassical
theories, such as WKB and SWKB, results in various confusions and paradoxes.
Based on this new concept, an analytical dispersion equation for the
graded-index waveguide is also given.

. The Goos—Hénchen shift occurred at the total reflection is an interesting and

important issue in waveguide optics. Several causality paradoxes originated
from this issue have been discussed, and our debate to these paradoxes is
presented in this book. The experimental applications of Goos—Hénchen shift
and other non-specular effects are also added.

. The surface plasmon wave, the metal-cladding waveguide, and the corre-

sponding principle of attenuated total reflection are one of my top and main
research topics. In this book, the basic theories and experimental applications of
our proposed symmetrical metal-cladding waveguide, free-space coupling
technology, ultrahigh-order modes, wideband slow light, conical reflection, and
oscillating wave sensors are included.

I would like to express my thanks to my Ph.D. students, Yi Jiang, Xiangming

Liu, Fan Chen, Yi Wang, Wen Yuan, Cheng Yin, and Xianping Wang. I would like
to express my sincere gratitude to Prof. J.Z. Li (Shenzhen University) and
Prof. H. Ming (University of Science and Technology of China) for their help in
recommending and editing the English version of the book.

Although great care has been exercised, some errors may still occur in this book.

Therefore, I appreciate any comments from readers.

Zhuangqi Cao
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Chapter 1
Basic Analysis on Optical Waveguides

Abstract Dielectric optical waveguide, including circular section waveguide
(optical fiber), slab waveguide, and strip waveguide, is used to confine the prop-
agation of light in the application of optical waveguide devices and optical inte-
grated circuits. The working frequency is in the range of visible and near-infrared
region. The theory of dielectric optical waveguide is based on the conventional
electromagnetic theory and the optical properties of optical materials. In this
chapter, the Maxwell’s equations governing the optical propagation characteristics
of the optical waveguide are introduced and the derived wave equations are given.

Keywords Maxwell’s equation - Snell’s laws - Fresnel formula - Goos—Hénchen
shift

1.1 Basic Theory of Wave Optics

This section briefly summarizes the Maxwell’s equations, matter equations, and
boundary conditions that are necessary to understand waveguide optics. The
important concept such as reflection, transmission, and Goos—Hénchen shift is also
introduced.

1.1.1 Maxwell’s Equation

Light is a kind of electromagnetic waves, which are related to the four field
quantities described by the Maxwell’s equations. The electric and magnetic field
intensities E and H are measured in units of [volt/m] and [ampere/m], respectively.
The quantities D and B are referred as the electric and magnetic flux densities and
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are in units of [coulomb/mz] and [weber/mz], or [tesla]. These four quantities fulfill
the following equations:

OB
VxE=-">". (1.1)
vxu=24y (1.2)

ot

where J[A/m?] is the electric current density, which is related to the volume charge
p[C/m?] via the charge conservation or current continuity equation

__o
V-I=-20 (1.3)

in view of the identical equation V - (V x A) = 0. It is easy to obtain the following
equations from Eqgs. (1.1) and (1.2):

V-B=0, (1.4)
V-D=p, (1.5)

The above Egs. (1.1), (1.2), (1.4), and (1.5) form the Maxwell’s equations.

1.1.2 Matter Equation

In order to determine all the field vector functions from the given current and charge
distribution, equations on the material electromagnetic properties should be added.
These equations are called as the matter equations, or the constitutive relations.
For the linear, isotropic, and non-magnetic media, they can be written as

D =¢E, (1.6)

B = uH, (1.7)
where the permittivity ¢ and the permeability u of a material are defined by

& = €&, (1.8)

1= Holy, (1.9)

where ¢y and p,, refer to the permittivity and permeability of vacuum, respectively,
and ¢ and p, are known as the relative permittivity and permeability, respectively.
For a non-magnetic material, we have g, = 1. If the light speed in vacuum is c, then
there will be
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1
8o = —— ~ 8.854188 x 10~ " [F/m], (1.10)
C"Ho
toy = 4m x 107" [H/m]. (1.11)

In the conductor, the relation between the current density J and the electric field
E is defined via the conductivity ¢[S/m]
J =o0E. (1.12)
The material’s refractive index is defined by

n=./¢. (1.13)

In isotropic materials, ¢ and u are scalar quantities, but for anisotropic materials,
these quantities depend on the x, y, and z directions and should be written as
tensors. Consequently, Eqgs. (1.6) and (1.7) should be transferred into

3
D= &E;, (1.14)
j=1
3
B= (1.15)
j=1

where i, j =1, 2, 3 that are corresponding to the x, y, and z directions of the
Cartesian coordinate. If the media is non-absorptive, we have

&; = &, (1.16)

where the superscript “*” represents the conjugate of a complex number.

1.1.3 Wave Equation

By imagining a plane wave of angular frequency w[rad/s] propagating in a
homogeneous lossless medium, and by assuming the harmonic time dependence,
we can cast its field components into

E(r,t) = Re[E(r)exp — (iwt)], (1.17)
H(r,7) = Re[H(r)exp(—iwt)], (1.18)

D(r,7) = Re[D(r)exp(—iwt)], (1.19)
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B(r,7) = Re[B(r) exp( — iwt)]. (1.20)

In the absence of free charge and current densities (p = 0,J = 0), and assuming
non-magnetic (i, = 1), the time-independent Maxwell’s equation can be written as

V x E = ioB = iopoH, (1.21)
V xH=—iowD = —iwe¢E, (1.22)
V-H=0, (1.23)

V- (&E) =0. (1.24)

Applying the curl to Eq. (1.21), and substituting it into Eq. (1.22), one will have
V x (V x E) = w’guysE. (1.25)
In view of
V x (VxA)=V(V-A)-V?A, (1.26)
one can recast Eq. (1.24) into
V- (4E)=Ve -E+6V-E=0,
and can obtain

Ve,

&r

V-E =

-E, (1.27)
Combining Eqgs. (1.26) and (1.27), the vector wave equation for the electric field
E takes the form

Ve,

T

V2E+v< E) +kieE =0, (1.28)

where the wave number k, of the vacuum is given by
ko = @ Souo=% (1.29)

and the wave number k in the material can be obtained by the refractive index
n = /¢ and written as

k = kon. (1.30)
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If the relative permittivity of the material is constant, then we can simplify the
vector wave Eq. (1.28) into the Helmholtz equation

V’E + K°E = 0. (1.31)

Using a similar procedure, it is not difficult to derive the Helmholtz equation for
magnetic field H

V’H + K*H = 0. (1.32)

1.1.4 Boundary Condition for Electromagnetic Field

Consider an interface between two materials with a different refractive index as
plotted in Fig. 1.1, and let n be the unit vector in the normal direction of the
interface; then, the boundary condition can be expressed as

(1) The components of E-field parallel to the interface are continuous across the
boundary

nx (E; —E;) =0, (1.33)
or
E][ = E2t7 (1.34)
where ¢ denotes the tangential direction.
Fig. 1.1 Interface between

two dielectrics with refractive
index of n; and n,
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(2) The parallel components of H-field are discontinuous across the boundary due
to the existence of surface current density.

n Xx (H] — Hz) = Js, (135)
where Js [A/m] represents the surface current density, in case that Js = 0, there is
nx (H —H) =0. (1.36)

So if there is no surface current, the tangential component of the magnetic field is
continuous across the boundary, and Eq. (1.36) is equivalent to

Hlt :H2t- (1.37)

(3) The component of D-field perpendicular to the interface is discontinuous if the
surface charge density is nonzero

n- (Dl — D2) = Ps, (138)

where pg [C/m?] is the surface charge density. In case of the absence of surface
charge, there is

n-(D; —D;) =0, (1.39)
or equivalently
Dy, = Dy, (1.40)

which can be explained as the normal component of the D that is continuous at the
boundary.

(4) The normal component of B-field at the boundary is continuous

n- (B, —B,) =0, (1.41)
or equivalently

By, = Ba,. (1.42)
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1.1.5 Poynting Vector

Because the electric potential U is the integral of the electric field, and magnetic
field can produce current, as a result it is natural to relate the cross product of the
electric field and the magnetic field with the energy of the electromagnetic field.
If the operator V is applied to E x H, it follows

V-(ExH)=H-(VxE)—E-(VxH). (1.43)

Substituting Egs. (1.1), (1.2), and (1.12) into Eq. (1.43), there will be

H E
V- (ExH) = —,uH-a——sE-a——o—Ez
ot ot
o, 1 i (1.44)

Taking the integral of (1.44) over a volume in a closed surface, and applying the
Gauss theorem, we will have

/V~(E><H)dV:/(E><H)-ndS

N

0 1 1
8t/(28 +2u )dV /a dv,
|4

14

(1.45)

where S is the closed surface, V is the volume inside, and n denotes the unit vector
of the normal direction of the surface. The first integral on the right-hand side is the
total energy stored in both the electric field and the magnetic field. The second term
represents the work done (or the Joule heat) during per unit time. Evidently, the
term Js (E x H) - ndS denotes the rate at which energy is carried out through the
closed surface.

The Poynting vector

S =E x H [w/m?], (1.46)
is the energy transported by the field per unit time and per unit area, and it is also
known as the energy flux density. If we replace the outward pointing vector n by

the inward pointing vector p, it is possible to express the power entering into the
volume V though the surface by

P:S/—(ExH)-ndS:S/(ExH)-pdS. (1.47)
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According to Egs. (1.17) and (1.18), the electromagnetic field can be written in the
complex amplitude form

E(r,7) = = [E(r)e " + E*(r)e'], (1.48)

N =

H(r,?) = = [H(r)e ™" + H*(r)e™"]. (1.49)

N =

Consequently, the time-averaged normal component of the Poynting vector is

(S-p) = ((ExH)-p

<[(Eefiwz +E*eirut) % (Hefiu)t _’_H*eiwr)} u>

<[E % H* +E* ~ H—|—E % He—i2mt_|_E* X H*ei2(ut] . ll> (150)

=—(ExH'+E"xH) -p

Re[(E x H') -y

1
4
1
4
1
4
1
2

where < > represents the time average. The time-averaged power flow can be
written as

p— /%Re[(E « H') - p]dS. (151)
N

In the analysis of optical waveguide, E x H* is usually real, so we can also directly
write Eq. (1.51) as

P:/%(Exﬂ*)-uds. (1.52)
S

1.2 Reflection and Transmission of the Plane Waves

This section summarizes the reflection and transmission of an incident plane wave
at the interface between two different dielectric media without presenting the
derivation.
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Fig. 1.2 Reflection and X
transmission at a planar
interface separating two
media

np 0, C

n

0,| 6,
A B

1.2.1 Snell’s Laws

Consider a planar interface at x = 0, which separates two lossless isotropic media n;
and n, (n; > ny). In Fig. 1.2, alphabet “A” denotes the complex amplitude of a
monochromatic plane wave incident on medium #n;, which results in a reflected
wave with a complex amplitude “B” in the same media and a transmitted wave with
a complex amplitude “C” in the second media. Assuming that the incident,
reflected, and transmitted angles are 6;, 6,, and 8,, respectively, then it is simple to
draw the following conclusions based on the boundary conditions:

(1) Angles of reflection and incidence are equal

0; = 0, (1.53)

which is known as Snell’s law of reflection.

(2) The transmitted angle 6, and that of incidence 6; obey the Snell’s law of
refraction, which has the form

ny sin 0; = n, sin 0,. (1.54)

1.2.2 Fresnel Formula

While the relations between the angles of incident, reflected, and transmitted waves
are specified by the Snell’s law, the Fresnel formula determined the relation of the
amplitude and phase of the three waves. Usually, the Fresnel reflection coefficient
determines the ratio of the complex amplitude B of the reflected wave and the
incident wave, and the Fresnel transmission coefficient gives the ratio of the
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Fig. 1.3 TE-polarized light x
incident on an interface
ny>n
( 1 2) E3
ny
6, H,
4
L/
m 6, 6,
E 1 E2

H,

H,

complex amplitude C of the transmitted wave and the incident wave. These coef-
ficients depend on the incident angle and the polarization of the light.

(1) Figure 1.3 shows a TE-polarized incident wave, whose electric field is per-
pendicular to the plane of incidence, and its magnetic fields lie in the plane. For
the TE polarization, we can obtain

(1.1) The reflection coefficient is

nycos 0 —nycos 0,  sin(0, — 0;)

= = . 1.55
"TE nycos 0y +nycosb,  sin(6, + 0y) ( )

(1.2) The transmission coefficient is
2n; cos 0 725in0200591. (1.56)

()]

B i cosO +macosly sin(6, + 6;)

Figure 1.4 shows a TM-polarized incident wave, whose magnetic field is
perpendicular to the plane of incidence, and its electric fields lie in the plane.
For the TM polarization, we can obtain

Fig. 1.4 TM-polarized light

X
incident on an interface
(n1 > ny) H;
n
2 02 E,%
Z
L/
2 01 01
H, H,

E;

E,
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(2.1) The reflection coefficient is

nycos0p —nycos, tan(0; — 0)

= = . 1.57
™ nycos ) +nycosty tan(0; + 0,) ( )
(2.2) The transmission coefficient is
2 0 in 20

—_— ny cos 0 __ sin 260, . (1.58)

nycos by +nycosf,  sin(0y + 6,) cos(6; — 6)

For both polarizations, their reflection probability can be defined as
R=r"= |r‘27 (159)

and their transmission probability is given by

T =1 =i (1.60)

It is easy to demonstrate that for both the TE and TM polarizations, there is
R+T =1, (1.61)

which obeys the conservation of energy.

1.2.3 Brewster’s Angle

According to the Snell’s law of refraction, when the condition

0140, =2, (1.62)
is fulfilled, there is tan(0; + 0,) = oo, so that Ry = 0 and Rrg # 0. As is shown in
Fig. 1.5, if both TM and TE waves are incident on the interface, only TE-polarized
waves will be reflected in the case that the reflected light and the transmitted light
are perpendicular to each other.

Using n; sin 0; = ny sin 6, and Eq. (1.62), we find

sinf, = sin (g — 91) = cos0;.
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Fig. 1.5 Brewster’s angle

X
n; 02
VA
ny
0.0,

Together with the Snell’s law of refraction, one can deduce that

ny
tanf; = —.
ny

So the Brewster’s angle is found to be

0p = tan"! <@> (1.63)

ni

In principle, it is possible to generate polarized waves via this Brewster’s angle,
but the efficiency is very low, since the reflection probability of the TE mode is also
small. The widely used method to generate a polarization wave is based on the
multilayer structures.

1.2.4 Total Internal Reflection

From Egs. (1.55) and (1.57), it is clear that if the light is incident from a denser to a
lighter material, the transmission angle can reach its maximum value

s
92 = 57
which follows

rrg = rmv = 1,

and

tte = ttm = 0.
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Meanwhile, the incident angle 6, can be calculated via n; sin §; = n,, which is
known as the critical angle of incidence. We can rewrite this angle in the form
12

0. =sin" " —. 1.64
sin " (1.64)

In summary, when a laser is incident from a denser to a lighter dielectric with
incident angle equal to the critical angle 0; = 6., the transmitted laser travels along
the interface; when the incident angle is larger than the critical angle 6; > 0., all the
energy returns to the first dielectric, and this phenomenon is known as the total
internal reflection. Since there is n;sin0; > n,, the reflection coefficient is no
longer real, indicating that the reflected laser suffers a phase shift which is
dependent on its polarization.

(1) TE Polarization
From Eq. (1.55), there is

ni cos 0; — ny cos 6,

I''TE =

ny cos 01 + n, cos 0,
222 222
\/nl—nlsm 91—\/n2—nlsm 0y

\/n% — n?sin’ 0y + \/n} — n? sin® 0,

(1.65)
\/n% —n?sin? 0; — l\/l’l% sin® 0; — n3
\/n% — 3 sin® 0 + z\/n% sin® 0, — n3
= exp( — 2Drg),
where
® ran-! n? sin® 0 — n} (1.66)
= tan 4= 2], )
" n? — n?sin? 0,

The above formula indicates that the reflection coefficient rpg has an unit amplitude,
so the intensity of the reflected and incident laser is equal, but a relative phase
between these two light beams has been changed by —2®qg.

(2) TM polarization

According to Eq. (1.57), the reflection coefficients are given by
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1y cos 0 — ny cos 0

™ = ny cos 0; +ny cos 6,
o n? — n?sin? 0, —Z—;\/n% — njsin’ 0
[t — i sin )+ "y /n3 — n} sin® 0, (1.67)
s, i e 03
L2\ /n} — nisin® 6, —&-ifl—;\/nf sin” 0, — n}
= exp(—i2®@1y),
where
(I)TM = tanfl (Zl 7 . (168)
2

In Fig. 1.6, the half phase shift ®rg at a total internal reflection as a function of
the incident angle 6, is plotted. As the incident angle increases from the critical
angle to the grazing angle 6; = 90°, the phase change ®g also changes from zero
to n/2. The derivative of the curve has an infinite derivative at the critical angle

01 = 0., but approaches (1 —n}/ nf)fl/ ? when the incident angle 0; = 90°. The
curve of the phase change ®y; has a similar variation, which is also clear from the
figure.

Fig. 1.6 ®g as a function x
of 91 E
T x

P
0
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1.2.5 Goos-Hiinchen Shift

In the above discussion, it was assumed that the light is reflected at the point of
incidence, which only induces a phase shift. But in fact this assumption is not exact,
and in 1947, Goos and Héinchen demonstrated experimentally that the light
undergoes a small lateral shift at a total internal reflection, which can be evaluated
by the following formula quantitatively:

cnp A
D= , 1.69
(n? sin” 0 — n2)"/? (1.69)

where ¢ is a constant, if n; = 1.52 and n, = 1, then there is ¢ = 0.52, and A denotes
the wavelength. The physics behind is that an actual laser beam has a certain spatial
spectrum width, so that a finite sized beam is the superposition of infinite plane
waves with a slightly different incident angle, and these plane waves interfere with
each other.

In order to determine the amount of the lateral shift 2z, we imagine a simple
wave packet including just two plane waves with a different angle of incidence. If
the z-component of the corresponding wave vector is f £+ Ap, respectively, the
complex amplitude of the incident wave packet at the boundary x = 0 can be written
as

A(2) = [expliAB2) + exp(—iApz)] expliz) w70

= 2cos(APz) exp(ifiz). '
Instead of applying the reflection law to each plane wave, we choose to expand the
phase shift of reflection. Since the phase shift is a function of incident angle 6 or £,
when both A¢ and Af are very small, it is simple to approximate the ¢ via the
differential formula

do
dp

It follows that the complex amplitude of the reflected wave packet at x = 0 is

@(B£AB) = @(B) == Ap. (1.71)

B(z) = {expi(Afz — 2A¢)] + exp[—i(Afz — 2A¢)]} expli(fz — 2¢)]

= 2cos[Af(z — 2z5)] expli(fz — 2¢)], (1.72)
where
_de
ST up (1.73)

is the simple formula for the lateral shift of the reflected wave packet.
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Fig. 1.7 Ray diagram of the
total reflection at an interface

Thin film /5

Using Egs. (1.55) and (1.57), for the TE polarization, we have
kozs = (N> —n3) " tan 0, (1.74)

and for the TM mode, we have
(N —n2) P tan 0

N2 N?
5
n; om

As shown in Fig. 1.7, the light penetrates a finite amount into the second media
before it returns to the first media, and the effective penetration depth x; is given by

kon = (1.75)

Xy = S (1.76)

By comparing the result with the electromagnetic field solution which will be
presented later, it will be clear that an evanescent field e~ exists in the substrate,
and the effective penetration length is of the order of 1/a,.



Chapter 2
Transfer Matrix Method
and the Graded-Index Waveguide

Abstract The transfer matrix method used in thin-film optics is extremely useful
when applied to analyze the propagation characteristics of electromagnetic waves in
planar multilayer optical waveguides. This chapter aims to extend the transfer
matrix method to treat the bound modes of the graded-index waveguide. Beginning
with a brief introduction of the transfer matrix, we derived the eigenvalue equations
and studied the multilayer optical waveguides. Different from the widely used
WKB approximation, the transfer matrix obtained some important but different
conclusions when applied to the graded-index waveguide, such as the exact phase
shift at the classical turning points.

Keywords Transfer matrix method - Eigenvalue equation - WKB approximation -
Graded-index waveguide

2.1 The Transfer Matrix and Its Characteristics

The 2 x 2 transfer matrix is a fruitful tool widely applied in optics to treat layered
systems, such as superlattices or multilayered waveguide. And it is receiving more
and more attention for its advantages such as easy computing and high accuracy.
For example, it was used by M. Born and E. Wolf to investigate the transmission
and reflection characteristics of light propagation through multilayer structures [1].
When dealing with multi-lens optical device or media, at each interface, the light is
partially transmitted and partially reflected, and the matrix method can also provide
good results [2]. In this section, we use some special solutions of the wave equation
to construct a transfer matrix, which is a real matrix with clear physical insight. And
in the rest of this chapter, the reader may find this method approachable and
intriguing.

In optics, the regions with variable refractive index are usually approximated as
a series of steps at a group of points, and between two adjacent points, the refractive
index is treated as constant. So the polarization transfer matrix of the TE and TM

© Shanghai Jiao Tong University Press and Springer-Verlag Berlin Heidelberg 2016 17
X. Wang et al., Progress in Planar Optical Waveguides,
Springer Tracts in Modern Physics 266, DOI 10.1007/978-3-662-48984-0_2
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mode can be derived from the one-dimensional scalar wave equation to characterize
the optical properties of these thin segments.

Considering the refractive index profile n(x) of arbitrary shape as plotted in
Fig. 2.1, without loss of generality, and we divide the region between the points of
x = a and x = b into [ subregions, and the width of each subregion is given by

Wi = Xj — Xj—1 021,2,...,1), (21)

which becomes smaller with increasing /. In that case, the refractive index in the
subregion can be viewed as homogeneous, and its strength is given by

Xio1 4+ X; )
nj:n(%) G=1,2,...0. (2.2)

Take the TE mode, for example, and let y;(x) denotes any field component of the
electromagnetic distribution in the jth subregion (x;-;, x;), which satisfies the fol-
lowing scalar wave equation

2 X
diéz( ) +iY() =0 (=1,2,...,0), (2.3)

with sz(x) = kgnf — 52. Here, f is the propagation constant and x; denotes the
wave number. At the interface x = x;_; between the (j — 1)th and jth subregions, the
continuity conditions of the wave function requires that

-]

24
ey 24
Solving Eq. (2.3), the wave function in the jth subregion has the following form

wj/(x) — in(Ajeinx _ Bje—ilcjx) ) ( :
n(x) , —
— n; 7 X
74 N 471
n; n ¥
a x Xj1 Xj Xja1 xb

Fig. 2.1 One-dimensional refractive index profile of arbitrary distribution
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which can be recast into a matrix form

Y] [ e e 14 (26)
l//j/ (X) inem,vx _inefnc,'x Bj . .
So at the point x = x;, there is
Yi(x) ] ei"{"f e’“‘f*f'f A; (27)
Yilg) | |ike™y  —ike ™ | | B; | :
and at x = x;—;, we can write down a similar matrix equation as follows:
¥;(x-1) - ei’”ff"f*‘ e’i"i"{*l A; (2.8)
lpj’ (xj—l ) - ine”"fo" _ inefnq,-X,ffl Bj . .

Combining Egs. (2.7) and (2.8) yields

V;(xj)} _ { e/ e H i1 e i ]_1[‘/’{(?&1)]

lp]/ (xj) ineinxj _ine—iK/xj ineinx,-,l _ine—inxjfl J(xjfl)
(2.9)

Through some basic matrix operations, Eq. (2.9) becomes

V{(xj)} _ A/Ij[l//,/‘(le)]y (2.10)

lpj<xj) l//_,'()Cj—l)
where
_ [ cos(igw)  EsinGowy) ]
M; = |:—Kj sin(kjw;)  cos(kjw;) } =12,....0). 211

and w; = x; - x;—; is the width of the subregion. Equation (2.11) is known as the
transfer matrix in the subregion (x;-;, x;), which connects the wave function and its
first derivative at the two boundaries of the jth subregion. And according to the
boundary condition Eq. (2.4), the wave function and derivative at the boundary of
the jth subregion are further connected with those at the (j — 1)th subregion’s
boundary by

[i,:(x»} Y {wp(ﬁl)} (2.12)
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Take the TM mode into consideration, and the more generalized transfer matrix
has the following form

| cos(xw) ’% sin(xw)
M(w) = [—}—‘sin(xw) cos(kw) ]’ (2.13)
where
f= {nlz ((TTE)) (2.14)

Before embarking on complicated issues, it is necessary to provide some dis-
cussion on the basic characteristics of the transfer matrix. For convenience, the
2 x 2 transfer matrix is rewritten as follows:

_|mn mp
nmpp  mp

(a) Combining Egs. (2.13) and (2.14), it is easy to found that in a non-absorptive
medium, the matrix is a unimodular matrix with real coefficient

mpp mp2

= mymy — mpny; =1 (2.15)
npp My ’

det(M) = ‘

where “det” represents a determinant. The physical insight of Eq. (2.15) is the
conservation of energy.

(b) The energy eigenvalues A of the transfer matrix can be determined via the
secular equation

M — 21| =0, (2.16)

where I denotes the units matrix. Solving Eq. (2.16), and note that the modulus
of the matrix equals unit, one can obtain the following equation:

22— (my 4+ mp)i+1=0. (2.17)

Equation (2.17) shows that the two eigenvalues of the matrix A; and 1, are
reciprocal to each other. Generally, the two eigenvalue can be expressed as
follows:

/ll — ei;cw
{ /12 — efi}cw7 (218)
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where the physics behind x and / is determined by the specific structure. And
according to Eq. (2.17), apparently there is

1

cos(xw) = 3 (my +my) = %TrM(w), (2.19)

where “Tr” denotes the trace of the matrix. Equation (2.19) is an important
formula for studying periodic structures, which is intimately connected with
the Bloch theorem.

Consider a stepped double potential well, and let M(w;) and M(w,) be the

transfer matrix of the two adjacent homogeneous wells, respectively.
According to Eq. (2.12), we have

Vo] =m0 220
and
Vo e = [0 220
So there is
XS
where
M(wi +wa) = M(w2)M(w1). (2.23)

Note that M(w,) and M(w;) in Eq. (2.23) cannot be swapped. The above
consequent can be extended immediately to multilayer structure. Assume the
respective width of a N-layer structure is wy, wy, ..., wy, the corresponding
matrixes of these homogeneous layers are M(wy), M (wy),...,M(wy), and the
transfer matrix of the whole structure is

M(Wl +wy+ - +WN) = M(WN)M(WNfl) ------ M(Wg)M(Wl) (224)

Periodic refractive index distribution, i.e., one-dimensional photonic crystal is
common but extremely important. If the lattice length is A, and the transfer
matrix for a single cell is

M(A) = [m” m‘z], (2.25)

npp My
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then we can write down the transfer matrix for the whole lattice as

M(NA) = M(A) - M(A) ---M(A) = [M(A)]". (2.26)

N times

It is easy to prove from the above formula
M(A)]¥= Uy (x)M(A) = Uy 2(2)E, (2.27)
where Un(y) denotes the second-class Chebyshev polynomial

_sin[(N + 1) arccos y]

Un(y 2.28
Equation (2.26) can also be written as follows:
M(NA) = M(A)]"
nipp mpp 1 0
= U 1 - U —2()
w-12) |:m21 mzz} n-2(2) [0 1} (2.29)
B |:m11UN1(X) = Un-2(%) miaUn-1(x) }
ma1 Un—1(x) mpuUy—1(x) — Un—2(0) |
By setting
coskA  LsinkA
M(4) —Jésin kA  coskA |’ (2.30)
we can recast Eq. (2.29) into
| cos(NkA)  Lsin(NkA)
M(NA) = — #sin(NkA) Kcos(N;cA) ‘ (2.31)
The inverse of the transfer matrix is defined by
MM~ =1, (2.32)

and for the transfer matrix, it is easy to find

M’I: nyp —nmj3 (233)
—my my | ’
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Using the inverse matrix, one can obtain the reverse transfer relationship. By
multiplying M~!(h) on both sides of Eq. (2.12) yields

{‘le(le)} _ { cos(ih;) _%Sin("jhj)} {wj(xj):|
/ = . ! 7 . (2.34)
Vi1 (x-1) iisin(ihy) - cos(rhy) | [ ¥09)
Since both the transfer matrix and its inverse can relate the wave function at
two points, they are both referred as transfer matrix in the rest of the book,
while the only difference is the different transfer direction.

(f) If we have kZn®<f® in a thin layer, then the solution of the scalar wave
equation in this region is the superposition of two exponential functions, while
the transverse wave number « corresponding to oscillating field is replaced by
an attenuation coefficient o, and there is

K = id. (2.35)
Note that
sin(ix) = isinh(x)
{cos(ix) = cosh(x)’ (2.36)

Equation (2.13) should also be replaced by the following expression

o [ co.sh(ocjhj) aljsinh(ocjhj)} (2.37)
o sinh(ayhy)  cosh(ayh;)
while its inverse is
—oysinh(ash;)  cosh(ayhy)

2.2 The Eigenvalue Equation

Consider a simple planar waveguide, whose refractive index distribution is plotted
in Fig. 2.2, and this section is aimed to calculate its eigenvalue spectrum. Since the
transfer matrix, which connects the wave function and its first derivative at the two
interfaces of a thin layer, represents the characteristic parameters of the dielectric
slab, the field distribution in the guiding layer is not need to be considered. As a
result, this procedure will be much simplified if the transfer matrix is applied, we
only need to determine the wave function in the regions of x < 0 and x > w.
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nxh
@4,

n;

ny

0 w X

Fig. 2.2 Refractive index distribution of a planar waveguide with three dielectric layers

For the refractive index as plotted in Fig. 2.2, the transverse component of the
TE mode transmitted in the guiding layer between the dielectric layer of ny and n, is
as follows:

[ Aexp(pox) —0o<x<0
Ey(x) = {DZXI;)[—Opz(x —w)] w<x<+o0’ (2.39)

and it follows

Ey(o) =A
E(0) = poA
“ (2.40)
EV<h) =D
Ei(h) = —p2D
Substituting the above equation into Eq. (2.12), one obtains
1] _ [ cos(xih) —-LsinGeh) ][ 1
A |:p0:| n |:K1 sin(r i h) ccl)s(;clh) —p> D. (2.41)

Multiply both sides of the above equation by a row vector [—py 1], there is

_ cos(kih)  —LsinGeh) [[ 1 ] _
[—po 1] [Kl sin(xkih)  cos(kih) —p| 0, (2.42)
and by solving the above equation, it yields

tan(se ) = —L0 T2 (2.43)

__ Pbop2 '
a(1-02)

Eq. (2.43) can be called as the mode eigenvalue equation of TE polarization. If
we take the boundary condition of the TM mode into consideration, the mode
eigenvalue equation for TM mode can be written as follows:
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St

g e B[]0

A sin(eih) - cos(iih) ..
and the equivalent phase-type dispersion equation by solving Eq. (2.44) is as
follows:

nii (n3po + ngps)

2,22 4 '
ngh; K1 — nypop2

tan(ric h) = (2.45)

2.3 WKB Approximation [3, 4]

Before we embark on the bound states of the graded-index optical waveguide, we
first review briefly the widely applied WKB approximation, which has also found
wide application in optical waveguide theory. Let us begin with the mathematical
derivation of the WKB wave function, and consider again the solutions of the scalar
wave equation:

&y (x)
A2

+ (Kn*(x) — B2y (x) = 0. (2.46)

If we suppose the potential varies very slowly, then we can write the trial
solution as a combination of two plane waves traveling leftward and rightward,
respectively:

W (x) = A(0) exp(ikS(x)) + B(0) exp(—ikS(x)), (2.47)
which is a good approximation only when the refractive index varies very slowly.

How slow? For simplicity, inserting a rightward traveling plane wave into the wave
equation, one will get a differential equation of S(x):

ds\* 1ds ia
> ——c - 24
(m) T W (2.48)
We now expand S(x) in the power series in 1/k and write as follows:

1 1\
S:S0+kSl+(k> So4 - (2.49)

Feeding this into Eq. (2.48) and requiring that all terms of O(7") vanish inde-
pendently, there is
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dA
— 1. 2.50
‘dx < ( )
where
2
PR S— (2.51)
Kn(x)* - 2

Equation (2.50) requires that the refractive index should vary slowly, and there is

2n<n(x)2_vﬁ2/k2) < (2.52)

If Eq. (2.52) is satisfied, and we ignore all terms of O(1/k")(n>2) in Eq. (3.4),
we can rewrite down Sy, S; as follows:

{ So = ¢ [ (Kn(x)* — )"/ 2dx 2.53)

and the first-order WKB wave function Eq. (2.47) as follows:

+ \%exp[—ifx kdx] k2 =K2n*(x) — B >0
exp[i [* pdx]| + %exp[—ifxpdx] pr = —kni(x) >0’
(2.54)

Equation (2.54) shows that we should anticipate an oscillatory behavior in a
region where k’n®(x) > B* and an evanescent behavior in the opposite region. In
the region of turning point given by kn(x) = f§, the WKB wave function breaks
down since Eq. (2.52) is no longer fulfilled. In order to construct a globally WKB
wave function, connection formulas at turning points are required to match to the
WKB solutions on both sides of the turning point regions, where the local wave-
length 4 is singular. Here, we present the connection formulas directly, and the
mathematics progresses are referred to the related references. Suppose the position
of the turning point is given by x,, and let us identify the region k*n’(x) > > with
x < x; and vice versa. The corresponding connecting formula is as follows:

ﬁeXp <_éjp(x)dx> — %\,cos (é?P(X)dx _Z) (2.55)

(k*n?(x) <ﬁ2) (k*n?(x) > ﬂz)
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However, in some issues that the wave function in the optically dense media is not
the superposition of two waves propagate in the opposite directions, such as the
transmitted waves left the optically sparse media and traveled to infinite, the con-
nection formula should be replaced by

X

(k*n?(x) <ﬂ2) (K*n?(x) > [32)

Lexpl [ o —Lexolif in
\/ﬁexp<xfp(x)dx> JReXp (zficdx—k 4> (2.56)

Instead of the two conventional expressions above, Prof. Friedrich [5] proposed
that the application of the WKB approximation can be significantly extended if the
connection formulas in the most general case can be used. These expressions can be
written as follows:

2 r ) N /
%cos /p(x)dx 5| 7ﬁexp - /pdx , (2.57)
\/chos /de —% o %exp /p(x)dx . (2.58)

There are four parameters N, N, ¢, and ¢ to be determined by considering the
specific problems. And the conventional formulas can be retrieved by setting N = 1
and ¢ = n/2. If we consider a superposition of the above two expressions =
A x (3.39) + B x (3.40) with arbitrary complex coefficients A and B, the conser-
vation condition of the current density on the two sides of the turning point requires
that

NN = sin <¢ ; ‘}), (2.59)

which can be used to determine the undetermined parameters. Imagine a refractive
index profile that varies slowly, where the two turning points x, and x,, are defined
via n(xy) = n(x,) = f/x, so there will be oscillatory behavior in the region
Xy < x < x, and evanescent behavior elsewhere. The WKB waves in the region
Xy < X < X, can be defined as follows:

Wi (x) o ! cos /K(x')dx’—% ) (2.60)
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from the left turning point, or equivalently

Xir

kg (X) o< \/%cos X/ k(X )dx — % , (2.61)

from the right turning point. ¢; and ¢, are the reflection phases at the left and right
turning points, respectively, and x is an arbitrary point in the well away from the
turning points. According to connection expression (2.55), we have ¢, = ¢, = n/2
here. So the two expressions above must agree with each other, and this require-
ment can only be satisfied when the sum of the two arguments equals an integral
multiple of 7, which yields the following:

/ K()dx = (n+ D), (2.62)

where n =0, 1, 2, ... The above expression is the famous WKB resonance condition
and may be used to find the eigenvalue equation for a graded-index waveguide with
n as the mode number. The above formula is valid, provided that the two turning
points are positioned sufficiently far apart.

In conclusion, in this section, we review briefly the semiclassical WKB
approximation, including its wave function and the eigenvalue equation (quanti-
zation condition). And it should be note that the basic WKB wave function ignores
all terms of O(1/k") (n>2), and the phase shift ¢;, ¢, at the turning points in the
original WKB approximation is equal to z/2.

2.4 Multilayer Optical Waveguides
2.4.1 Asymmetric Four-Layer Slab Waveguide [6]

In the beginning of this section, we use a simple asymmetric slab waveguide to
demonstrate the existence of the scattered subwaves, which can be simply defined
as follows: All the waves being reflected at non-classical turning points for at least
once are referred as the scattered subwaves. In contrast, the waves that only
reflected at classical turning points are called as the main waves. This is the first
time we proposed the concept of the scattered subwaves in this book. Like many
other basic concepts, the seemingly simple concept of scattered subwaves is not as
straightforward as one might assume.

We are now in a position to deal with the four-layer dielectric slab waveguide
via the transfer matrix method. As plotted in Fig. 2.3, two uniform isotropic
dielectric of refractive indexes n; and n, and thicknesses /; and h,, are sandwiched
between two semi-infinite layers of lower index ny and n3. For definiteness,
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Fig. 2.3 The refractive index n(x)
distribution of a four-layer
dielectric slab waveguide n
n,
| e
, ! |
' l
| I
0 h, h +h, X

considering the situation n; > n, > n3 > ny, which yields an asymmetric guiding
structure, and we are interested in those guide modes, whose power is confined
largely to the central layer of the guide. So in this chapter, we only consider two
cases for the propagation constant 3, including (A) kny > f§ > kns, that both regions
1 and 2 are the regions of electromagnetic confinement; (B) kn; > f > knj, that only
region 1 is the primary region of energy confinement. The discussion on the case of
leaky waves is left to the fourth chapter.

For case A of kny > f > kns, the eigenvalue equation of the matrix form can be
immediately written as follows:

[=po 1M {—LJ =0, (2.63)
where
_ | cos(kih) Lsin(x1h)
Mi= {m sin(llqllzl) éos(xlhll) }’ (2.64)
_ | cos(iahy)  —sin(iahy)
My = |:K2 Sin(lzczilz) éos(K2h22)2 } (2.65)
= (kgni — )1/2
(kzn )12
= (p - ’ )1/2 (2.66)
= (B — KBn2)

Substituting the matrixes into Eq. (2.63), the eigenvalue equation of the asym-
metric four-layer slab waveguide is as follows:

kihy = mn+ tan™! (%) + tan~! (%), (m=0,1,2,...), (2.67)
1 1
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where

P> = Ko tan [tan_1 <I;—z> — thz:l . (2.68)

In order to see the physical insight of the above expression, we define a new
quantity @,, which is given by the following:

®, = tan"! (172)7 (2.69)
K2
and which can be rewritten in the following form according to Eq. (2.68):
Kohy + ®, = m'n + tan™! (12>, (m' =0,1,2,...). (2.70)
9}

Combine Egs. (2.69) and (2.70) with the equation below:

tan~"! (’2) — tan"! [Z—?tan(cbz)] . (2.71)

K1

We finally obtain an eigenvalue equation that has a similar form of the
three-layer slab waveguide

K1 K (2.72)

(m=0,1,2,...)

K1hy + Kyhy + ®(s) = mn+ tan~! <p0> + tan™! (173)

where

D(s) = O — tan™" (ﬂtan CI)Z) . (2.73)
K1

To clarify the physics behind the unknown ®(s), let us consider the special case
2_ 2

of i 5 i < 1, which follows that =2 < 1. Using differential formula, there is
nj !
tan~! (Etan @2) = tan~! [(1 _az Kz) tan @2}
1 A 1 (2.74)
~ Dy — L "Zgin2d,,

K1
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and according to Eq. (2.73), one can obtain

D(s) = ’“2_ "2 in 20, (2.75)

K1

The amplitude of the right-hand side of Eq. (2.75) under first-order approxi-
mation is as follows:

Kl =Ky K| —Kp
2K K1+’

(2.76)

which denotes the reflection coefficient of light incident from region 1 to region 2.
Consequently, ®(s) can be viewed as the reflection phase contribution of the
first-order scattered subwaves. Of course, the term ®(s) denotes the phase contri-
bution of all the scattered subwaves if we did not carry out any approximation. On the
contrary, if n; = n, holds, there is @(s) = 0. As a summary, ®(s) is the phase
contribution induced by the reflection occurs at the interface between regions 1 and 2,
and is determined by the difference of the refractive index between the two regions.
So when dealing with multilayer waveguide, both phase contribution of the main
waves and the scattered subwaves should be taken into consideration.

For case B kony > f > kon,, whose guiding layer locates in the region of (0, /).
In this case, the matrix form of the eigenvalue equation can still be written as
Eq. (2.63), but the x, in Eq. (2.65) should be modified as follows:

1/2

o =i(f —kgn3) "= i (2.77)

Consequently, the sine and cos in the matrix should be replaced as sinh and cosh,
that is,

sin(kahy) = isinh(ahy), cos(kahy) = cosh(onhy). (2.78)

And the transfer matrix M, becomes

(2.79)

M,y — [ cosh(aphy) —isinh(azhz)}

—op sinh(ophy) cosh(aphy)

So the eigenvalue equation for this case is mathematically the same with
Eq. (2.67), except that p, is defined by

p2 = o tanh {tamh_1 <{§> + oczhz] . (2.80)
2

To see the scattered subwaves in the four-layer slab waveguide in another way,
let us reconsider the case A for TE mode, whose transverse electric field may be
expressed as follows:



32 2 Transfer Matrix Method and the Graded-Index Waveguide

Ao exp(pox) —c0<x<0
E(x) Ay exp(icix) + By exp(—ikix) 0<x<h
(x) =
i’ Aj explira(x — hy)] 4+ Baexp[—ika(x — hy)] hy<x<h +hy
Az exp[—p3(x — hy — hy)] hi+h<x<+o00
(2.81)
where
( )1/2
= (kg 0”2 )1/2
(/32 )”0)1/2
= (F —1gn3)'"?

Using the continuity condition of E, and 9E,/dx at boundaries x = 0, x = &, and
x = hy + hy, one may write down the dispersion equation as follows:

— K .
2 expli2(k1hy — @yo)]

i2(1c1h hy —®jp— D
exp[i2(kihy + K2hy 10 23)] + P

_ (2.82)
Ky — Ki .
2(kohy — O =1
+ P exp[i2(rahy — Da3)]
where

Do = tan~! (@> (2.83)

K1
@5 = tan”! (’ﬁ> (2.84)

K2

What does Eq. (2.82) means? See Fig. 2.4 for the zigzag path of rays in the slab
waveguide. Clearly, the first term on the left-hand side of Eq. (2.82) denotes the
main waves which are plotted with solid lines in Fig. 2.4. Starting from the interface
between regions O and 1, the main waves travels through the interface between
regions 1 and 2 and then is total-reflected at the boundary of region 3. In summary,
the main waves only is total-reflected at the boundaries of regions 0 and 3. On the
contrary, the dotted lines shown in Fig. 2.4 represent the second and third terms in
Eq. (2.82), which are reflected at the interface between regions 1 and 2. So these
two terms denote the scattered subwaves. The guided modes in the slab waveguide
are in fact the coherent superposition result of the main waves and the scattered
subwaves, which are ignored in the semiclassical theories. It can be proved
mathematically that Eq. (2.82) can be recast as follows:
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Fig. 2.4 Zigzag path of the main waves (a) and the scattered subwaves (b, c) in the four-layer
dielectric waveguide

exp{i2[;<1h1 + rohy + (I)(S) — Oy — (1323]} =1. (285)

In view of exp(i2mn) = 1, (m =0, 1,2, ...), the above equation is equivalent with
Eq. 2.72).

2.4.2 Multilayer Slab Waveguide

In this section, we expand the conclusions of the four-layer slab waveguide to the
multilayer slab waveguide. Suppose there are / layers of index ny, ny, ... n;, and
thickness of hy, h,, ... h;, embedded in two cladding layers of index ng and ny, . For
the structure consider here, there is n; > np, > ... > n; > ny 1 >ng (Fig. 2.5).

Let us extend Eq. (2.63) to this waveguide structure, consider the guided modes
with kn; > f > kn;, 1, and the eigenvalue equation for the TE mode in the matrix
form can be written as follows:

! 1
- 1 M; =0, 2.86
o 1] ] (2.56)
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where the matrix corresponding to the ith layer M; has the following form:

cos(kih;)  —-Lsin(k;h;)

M; = (2.87)

K; SiIl(Kihi) COS(Kihi)
where

K; = (kgnj — B
po = (B —Kn})"?
pre1 = (B — kgt )"

Equation (2.86) can be simplified via direct algebraic manipulations as

— ~1(Po —1(P2
K1h; = mm + tan (K1> + tan <K1> 7 (2.88)

(m=0,1,2,...)
where

pi = K;tan [tan’1 (”k—*") — K,'h,}

i=(2,3,...0) (2.89)

The two formula above completly specify the dispersion characteristics of the
asymmetric multilayer slab waveguide. However, Eq. (2.89) is a recurrence for-
mula, which requires all the information of p;(j > i) to calculate p;. To see the
different roles of the main waves and the scattered subwaves, we define

¢; = tan~! (’ﬁ), (2.90)

i

According to Eq. (2.89), one obtains

¢i = min—i— tan_l (]ﬂ) — Kih,'

Ki

= mym+ tan”! (KHI tan ¢i+1> — K;h; (2.91)
(m=0,1,2..;i=1,2,..,1— 1),
which can be modified as
1 Ki+1
Kihi + | i, —tan™! tan ¢; =min+ (p; 1 — ¢,
e (Stng )| e (g0

(m=0,1,2,..;i=12,...,1—1)
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When i = [, there is

Kihy = mym+ tan”! (%) — @, (2.93)
I

Based on the three equations above and sum up over i, one can write down

l -1

E Kihi + E {4’”1 —tanl<Mtan¢>i+l)]
" - K;

i=1 i=1

! (2.94)
= mn+ tan”! (pl—+1> — ¢
K
On the other hand, it is easy to prove
¢, = mym+ tan”! (12> — Kihy, (2.95)
K1
which can be rewritten by inserting Eq. (2.88)
¢, =mm—tan"! <@> (2.96)
K1
Finally, we transformed Eq. (2.94) into
!
e = —1(po —1(prt1
i:zl Kih; + ®(s) = mn + tan (vc.) + tan ( - ) ’ (2.97)

(m=0,1,2,...)

with the phase contribution of the scattered subwaves

-1
Ofs) =S {dml —an! ("'K“ tan mﬂ . (2.98)
i=1 i

We can obtain the eigenvalue equation of the three-layer or four-layer slab
structure from Eq. (2.97) by setting [ = 1, or [ = 2, respectively. It is obvious that
this formula can be applied to any multilayer structures without any approximation.
Furthermore, it has a clear physical explanation that both the main waves and
scattered subwaves contribute to the total phase contribution. Although the dis-
cussion above consider only the case of S < kon,, it is not difficult to obtain the
corresponding result related to the case of § > kon;, by just replacing the x; with ia;
in the matrix M; for all the j > i. Interesting readers can also derive the eigenvalue
equation for TM modes by using the appropriate matrix.
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2.5 The Transfer Matrix Treatment of the Graded-Index
Waveguide

2.5.1 The Eigenvalue Equation

In this section, the transfer matrix method is extended to treat the graded-index
waveguide, and it is demonstrated strictly that the phase shifts at the turning points
are exact equal to 7. Since this section deals with the general graded-index structure
with arbitrary refractive index profile, the strategy is as follows: We first approx-
imate the graded-index waveguide with a multilayer waveguide with n layers and
then take the limit as the n approaches infinite. At the beginning, let us consider a
simple case in which only one turning point exists (Fig. 2.6).

Assume that the turning point locates at the position x = x,, and the index profile
extends to infinite. In order to apply the transfer matrix method, we should truncate
infinite at x; = x; + x,. for sufficient large x., and set n(x) = n, for x > x,. Then, the
regions (0, x;) and (x;, x,) are divided into [ and m segments, with each layer has the
same thickness £, so that x; = [h and x. = mh. For TE mode, the transfer matrix for
these segments is as follows:

ih)  —Lsin(x;h
= [ CO.S(K ) sinl )] (i=1,2,...), (2.99)
Kk;sin(k;h)  cos(k;h)
and
cosh (ocjh) —Lsinh (ocjh)
M; = % i =14+1,1+2,...14m), 2.100
! [ —a;sinh(ah)  cosh(ash) U m, )
where
K = k2n? X;) — 21172
[02 () ﬁ]l/z (2.101)
% = [ = kon* ()]
Fig. 2.6 Graded-index
structure with only one
turning point
n,
XXX ;
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According to the transfer matrix method, the corresponding matrix equation is as
follows:

EO] [, T ] B0
[E;(O) = [HMl LI;LM]} B ) | (2.102)

while the evanescent behavior in both the outer claddings in the approximated
multilayer structure are given by

[ Agexp(pox) (x<0)
B0 = Y ot x) (ren 2109
where
po= (1K) (2,104

ps = (B —Kn2)"%,

Substituting Eq. (2.103) into Eq. (2.102), we have

(—po (HM) CHIM> ( ) =0. (2.105)

By a simple algebraic process, the above formula can be recast into

(=po (ﬁ M,> (_pm) =0, (2.106)

sinh (o5h) + % cosh (ash)
% cosh(otjh) + p’“ smh( h)

where

pj=

(2.107)
(j:l+l,l+2,...7l+m)

Pi+m+1 = Ps

So it is clear that in Eq. (2.106), the field distribution outside the turning point is
treated as a exponentially decaying field, that is,

Ey(x) =Arexp[—pii1(x —x)] (x> x). (2.108)

Similar with the process we used in the last section, the exact eigenvalue
equation can be derived from Eq. (2.106)
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1
) _ -1 @ —1(P1+1
i:Zl kih+ ®(s) = Nu+ tan <K1> -+ tan (Kl > ’ (2.109)
(N=0,1,2,..))
where
1-1 .
= Z {(I),-H —tan—1< it tan@,-H)], (2.110)
i—1 Ki
®; = tan”! <—> (2.111)
Ki
pi = K;tan [tanl (1%) - Kih] (i=1,2,...1), (2.112)

and tan~! (” L “) denotes the phase shift at the turning point.

Next considering the graded-index structure, i.e., [ — 0o, m — 00, the first term
in the left-hand side of Eq. (2.109) becomes integral

i ¥
> b = [ x(x)dx, (2.113)
> oh= [

and the second term becomes

: g dx
, = [ 4 _Eax 2.114
+1>:| /q2+K2dx ( )
0

where ¢(x) = —E'(x)/E(x). Finally, the exact eigenvalue equation of the
graded-index slab waveguide can be written as follows:

¥ ¥ q dk _i1({Po _i(Pr+1

Kdx + D(s) = K+ dx = Nm+ tan — | 4 tan —_—

({ (5 of< 4+2dx) (Kl) <K1>-
(N=0,1,2,...)

-1
Z{ t<

i=1

(2.115)

It should be note that the term ®(s) denotes the phase contribution of the

scattered subwaves, and 7 z;& % represents its wave number. The above equation

can be generalized to the case with two turning points without difficult. Consider
the graded-index waveguide with two turning points at x,; and x,,, and extend to
infinity on both sides (Fig. 2.7).
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Fig. 2.7 A graded-index n(x)
waveguide with two turning
points

Take the similar process used above, first we truncate the index profile n(x) at x¢
and xp, respectively, and divide the regions (xc, x;1), (X;1, X»2), and (X2, Xp) into I, m,
and n segments of the same thickness 4. Then, the dispersion equation via the
transfer matrix can be written as follows:

X2
J kdx+®(s) = Nn+ tan~! <L> + tan~! (M)

1 Ki+1 Kl +m (2.116)
(N=0,1,2,...)
where
1+m—1 i
(D(S) - Z |:(Dj+1 - tan_l ( ] tan (I)j+1):|
U & (2.117)

®; = tan~! <p_])
Kj

p; and py,,.41 are the effective attenuation coefficients for the regions (x < x;;) and
(x > xp), respectively, which are specified by

sinh(oxh) + P cosh(oyh)
o
Pk = %
cosh(oyh) + Diy1

sinh(oyh) (2.118)

Ol
(k=l4+m+1L1l4+m+2,....l1+m+n),

1/2
where py = pe and pe = [f* — Kin?(x.)] 7,

sinh(o;h) + Pl cosh(o;h)

o
l cosh(a;h) + pizt sinh(a;h)
&;
(i=1,2,...0)

pi=a (2.119)

1/2
where p;y a1 = pp and pp = [ﬁ2 - k(2)"2(xD)] / .
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2.5.2 The Phase Shift at Turning Point [7]

From the last section, it is clear that we can replace the field distribution outside the
turning point with an exponentially decaying field without introducing any calcu-
lation error. So it is possible to treat the index profile outside the turning point as
with a constant n,,, which is smaller than n(x,) (see Fig. 2.8).

According to the analysis above, the effective attenuation coefficient can be
written as follows:

1/2
pi = (ﬁ2 - kéniq) : (2.120)

If we restrict ourselves with the bound electromagnetic modes, p, must be a finite
and positive quantity. Let us prove this statement briefly below.

(1) For j = l+m, consider Eqgs. (2.101), (2.104), and (2.107), and there is

Pe =Pltm+1 > Ugm; (2121)
since both o; and h are positive real number, it follows
cosh(oy 4 ;) > sinh(oy 4 ,h); (2.122)

and then, in view of (2.107), one can prove that p;,,, > a,,,- Repeat the above
process, and finally, there is

Pie1 > 0y (2123)

(2) Let us rewrite Eq. (2.107) into the following formation

cosh(oyh) + ij sinh(oyh)
i =Dj1 ek . (2.124)

cosh(ah) + Pixt sinh(ajh)

)

Fig. 2.8 Replace the index

distribution outside the n(x) 1
turning point with an effective
refractive index ngq
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Obviously, p; <p;+ holds, which leads to

Pt =DPi+1<Pi+m+1 = De- (2125)
(3) According to Egs. (2.123) and (2.125), one obtains
%1 <P <Pe, (2.126)

which shows that p, is a finite and real number. However, according to
Eq. (2.101), as I — oco(h — 0), there holds

K = [Rn2 () — 7] = [Rn2(x) — £]*=0. (2.127)

Finally, the phase shift at the turning point can be calculated as follows:

2 2.2

—kin

an ! () = [ 2 o) .128)
k kn2(x) — p° 2

which is exact twice the result in the basic WKB approximation. In the modified
WKB approximation, the non-integral Maslov index is used, which allows the
reflection phase at the turning points approaches #/2 in the semiclassical limit, and
approaches 7 in the anticlassical limit. Compared with the WKB approximation, the
result we derived has the following features:

(1) The phase shift at the turning point is constant 7z, which is independent of the
propagation constant and the refractive index distribution; it is a general result.

(2) The phase shift does not related to the position of the turning points, and it
does not vary if the turning point is near truncated points, discontinuous
points, or other turning points.

(3) The phase shift is the same for different wavelengths.

Using Eq. (2.128), we can further simplify the eigenvalue equation Eq. (2.115)
of an arbitrary graded-index waveguide with only one turning point as plotted in
Fig. 2.6 as

Xt

/de+(l)(s)=mn+tan<?)+g (m=0,1,2,...), (2.129)
1
0

and the eigenvalue equation of graded-index waveguide with two turning points in
Fig. 2.7 as

/kdx—l-d)(s):(m—i—l)n (m=0,1,2,...). (2.130)

Xi1
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In conclusion of this section, we started with the transfer matrix and applied to
multilayer and graded-index waveguide to obtain an exact and general eigenvalue
equation with clear physics. The notion of scattered subwaves, which is completely
neglected in semiclassical theories, was proposed and appeared in all the obtained
eigenvalue equations.
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Chapter 3
Periodic Waveguides and MQW
Waveguide

Abstract In research field of optics, diffraction gratings are widely investigated
and applied; on the other hand, periodic metal waveguide is familiar to those
worked with microwave waveguide. The early studies on periodic waveguide have
a profound impact on the development of the waveguide optics. Currently, periodic
waveguide has become an important integrated optical element and obtains a wide
range of applications in functional devices such as the grating couplers, filters,
distributed feedback lasers, and the distributed Bragg reflector lasers. The most
common analysis method on the periodic waveguide is the coupled mode theory
(Yariv in Quantum electronics. Wiley, New York, 1975), which is extremely
effective to deal with the coupling between different modes. However, the method
is cumbersome in mathematics and lack of clearness in giving physical insight. In
this chapter, we introduce another method (viz. the transfer matrix method) to
analyze the periodic waveguide. The simple rectangular periodic waveguide is
discussed first, and then, the periodic waveguide of arbitrary shape is also studied.

Keywords Periodic waveguides - Transfer matrix - Coupling coefficient -
Multiple quantum well optical waveguide

3.1 Rectangular Corrugated Periodic Waveguide [2]

A simple method to study the rectangular periodic waveguide is presented in this
section. It is able to present exact analytical expressions with a clear physical picture.

3.1.1 From Corrugated Optical Waveguide to Rectangular
Periodic Waveguide

Rectangular periodic waveguide is shown in Fig. 3.1, where the refractive index of
the guiding layer, substrate, and the covering layer is denoted by n,, n,, and ns,
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Fig. 3.1 Rectangular n
periodic waveguide
i I s o I N
x=-Aw
L] L] L]
23 ”
L] L} L]
L] L] L]
= b=
z=0 a at+b= n,

respectively. Light travels along the z direction. Characters a and b in Fig. 3.1 are
the width of the corrugated well and the barrier regions, respectively. A = a+b is
the period of corrugated structure. w is the thickness of the guiding layer, while Aw
is the height of the corrugated structure. Usually, the waveguide with the corrugated
structure is called as the perturbed waveguide, and those without the corrugated
structure are named as the unperturbed waveguide. For simplicity, this chapter only
discusses the TE mode. The TM mode is left for the readers.
The eigenmode equation of TE polarization in the unperturbed waveguide is

kw=mn+tan (L) 4 an' (2), (m=0,1,2,...), (3.1)
ky ey

where

g= (K — i)'

p=(K—&n2)"?, (3.2)
ko= (Kt —i2)"”

k; is the propagation constant of the guided modes. Using the relation between k,
and k,, the expressions for g and p can be expressed as functions of k,, namely

(3.3)

As a result, if the refractive index of the three layers in the waveguide and the
wavelength is fixed, Eq. (3.1) depends only on the k, and w. Solving Eq. (3.1),
dk,/dw can be written as

dk, dw
h_ v 3.4
ky Wefs (3.4)

where the effective thickness of the waveguide is
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1 1
Weff = W+ — + —. (35)
q P

In case that Aw < w, perturbation method can be applied to simplify Eq. (3.4)
approximately as

Ak, A
. (3.6)
kx Weff
From the relation between k, and k,, we have
k Ak, = —k,Ak,. (3.7)

Substituting Eq. (3.7) into (3.6), it yields

Ak, (kA

Z = (-) v (3.8)
k; k.) Wetr
Equation (3.8) indicates the eigenvalue of the guided mode will vary if the guiding
layer thickness changes. We can rewrite Eq. (3.8) in the notion of effective

refractive index as follows:
2
AN _ N (n _ 7 (3.9)
Aw Weff N 2

where N = k;/ko. Since the effective refractive index of the waveguide ranges
between the substrate and the guiding layer, i.e., np <N <ny, it can be seen from
Eq. (3.9) that

AN
An >0, (3.10)
which shows that the effective refractive index N of the waveguide is a monotone
increasing function of the guiding layer thickness w. So in the rectangular corru-
gated periodic waveguide plotted in Fig. 3.1, it is reasonable to argue that those
regions of the corrugated barriers have a larger effective refractive index than the
rest regions, and the resulted effective refractive index of a periodic perturbed
waveguide is a periodic function of the space. In other words, it is possible to treat
the rectangular corrugated periodic waveguide in Fig. 3.1 as an optical multilayer
film structure as plotted in Fig. 3.2 whose refractive index is also periodic in space.
The above discussion that turning the two-dimensional electromagnetic problem
into a simple one-dimensional problem lays the foundation for further studying the
propagation characteristics of the periodic waveguide.
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1

b a—t—p—

Fig. 3.2 Optical multilayer film with periodic refractive index

3.1.2 Transfer Matrix and the Coupling Coefficient

The planar wave travels in the optical periodic multilayer film satisfies the fol-
lowing wave equation
O’Ey
072

+kE, = 0. (3.11)

The propagation constant of the optical film corresponding to the corrugated well
regions in the waveguide is k, = o, and that for the corrugated barrier regions in the
waveguide is k;, = f. Form Eq. (3.10), it is obvious that § > «, and let us define

o=pf—Ap. (3.12)
Since Aw < w, there is

Ap < B. (3.13)

In the corrugated well regions 0 <z<a as shown in Fig. 3.1, the solution to
Eq. (3.11) can be written as

Ey(z) = Ce™ + De ™. (3.14)
The first-order derivative of E, (z) on z is
/ s 1o —io
Ey(z) = io(Ce™ — De™ ™). (3.15)
Inserting z = 0 and z = a into Egs. (3.14) and (3.15), we can get the matrix equation

Ey(a)
E\(a)

E,(0)

:[ cos(aa) ésin(ota)} 2o | (3.16)

—o sin(oa)  cos(oa)

By defining
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cos(aa)  Lsin(aa)

Mf(a) = —o sin(oa)  cos(aa)

: (3.17)

it is clear that the matrix M(a) is mathematically equivalent to the transfer matrix
introduced in Chap. 2. But in this case, the transfer matrix connects the field and its
first derivative of the two boundaries in the longitudinal direction (in the z direc-
tion). So the application range of the transfer matrix is very broad.

Using the same step, the corresponding matrix of the corrugated barrier region
(a<z<a+Db)is

_ | cos(pb) %sin(ﬁb)
M(b) —B sin(Bb)  cos(pb) | (3.18)

Using the characteristics of the transfer matrix, it is clear that the matrix represents
the perturbation period (A = a + b) is the product of the two matrix M(a) and M(b),
namely

M(A) = M(b) - M(a). (3.19)

The multiplication order of Eq. (3.19) cannot be varied, which indicates the
propagation direction of the light. The propagation direction defined in Eq. (3.19) is
along the negative z-axis direction, and if the light travels in the positive z-axis
direction, the two matrixes in the right side of Eq. (3.19) should be replaced by their
inverse matrix and the multiplication order should be changed.

Combing Egs. (3.17), (3.18), and (3.19), it is not difficult to derive the transfer
matrix for a perturbation period

M(A) = [m“ m”], (3.20)

mpp  mp

where
my; = cos(fb) cos(oa) — %sin([ib) sin(oa)

myy = écos(ﬂb) sin(oa) + %sin(ﬁb) cos(aa) . (3.21)

my1 = —f sin(pb) cos(oa) — o cos(pb) sin(aa)

my, = cos(fib) cos(ua) — gsin(ﬂb) sin(oa)

Assume the periodic waveguide has n perturbation period, and the matrix is the
same for all the perturbation periods, as a result the whole waveguide can be
represented by n th power of a single matrix, namely


http://dx.doi.org/10.1007/978-3-662-48984-0_2
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M(nA) = M(A) - M(A). .. M(A) = [M(A)]". (3.22)

According to the characteristics of the transfer matrix, there is

Un- (7) - Un72(7) leUnfl(y)
M(nA) = | 11U ‘ ( , 3.23
(1) = | oy U (1) U1 (7) — Una(2) (3.23)
where
1
A= 5 (m11 +m22), (3.24)

and U,(y) is the second kind of the Chebyshev polynomial

Un(y) = sin[(n+ 1) cos™! y] . (3.25)

V1= 2

In order to facilitate the later calculation, we define

M(nA):{“” “12}, (3.26)
Hor Moo

and based on Eqgs. (3.21) and (3.24), it is easy to derive

7 = cos(fb) cos(aa) —% (g + %) sin(Sb) sin(aa). (3.27)

In view of Egs. (3.12) and (3.13), treating Af/f as first-order infinitesimal, and
Eq. (3.27) can be approximated as the following equation when the second-order
infinitesimal is reserved.

2
y = cos(fib+ oa) — % (Aﬂﬁ) sin(fd) sin(aa). (3.28)
Setting
1 = cos(B'A), (3.29)

And according to the physical meaning of f§ and «, it is clear that ' is the prop-
agation constant in the equivalent periodic optical waveguide and the Bloch wave
vector of the matter wave in the periodic perturbed lattice. When the optical period
of the perturbation period equals an odd times of a quarter of wavelength, two cases
are of particular importance:
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1. When the thickness of the corrugated barrier equals that of the corrugated well,
equivalently

sa=pb~(2+1)=, (1=0,1,2,..)). (3.30)

SE

2. When the difference between these two parts equals a half of wavelength, for
example,

oa ~ (2z+1)§, and pb = (2z+3)§. (3.31)
Apparently, in both cases there are
oa+fb=mn, (m=0,1,2,...). (3.32)

Considering Eq. (3.28), we can find |y/| is larger than 1, and following the definition
of Eq. (3.29), it can be shown that the propagation constant ' in the periodic
perturbed region is complex. Assume /' satisfies the following relation

B = By +is, (3.33)
where f§, = mn/A and s, which is the attenuation coefficient, is a real number. If we
call aa + pb = mm as the phase-matching condition, then its minor deviation can be
defined as

0 = mn — (ca+ pb). (3.34)

Using Egs. (3.29) and (3.33), we can have

= cos(f'A)
= cos(mm + isA) (3.35)
= (—1)" cosh(sA),
and
cos(Bb + aa) = cos(mn — §) = (—1)" cos J. (3.36)

Checking the second term on the right side of Eq. (3.28), when Eq. (3.30) holds
(m is odd), the product of two sine functions is positive; when Eq. (3.31) holds (m is
even), the product of the two sine functions is negative. In both cases, Eq. (3.28)
becomes
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2
cosh(sA) = cos d + % <%> . (3.37)

When s and § are sufficiently small, applying the series expansion method and
ignoring all the infinitesimal higher than two orders, Eq. (3.37) can be simplified as

52 = (%)2— (%)2 (3.38)

_AB
Kc—ﬁ_Aa

Define
(3.39)

which denotes the relative variation of the propagation constant in a perturbation
period. Comparing with the relative parameter in the coupled wave analysis [1], it
shows that x, is the coupling coefficient. The magnitude of the coupling coefficient
reflects the energy exchanging rate between the “forward traveling wave” and the
“backward traveling wave.”

It can be drawn from Eq. (3.8) that

% B K2 Aw
B /))2Weff ’

(3.40)

where the k, and k, have been replaced by x and f, and the coupling coefficient
expression can be obtained via inserting Eq. (3.40) into (3.39)

K2 Aw

=—. 3.41
ﬁzAWeff ( )

Ke

The physics behind the above coupling coefficient is rather clear: The magnitude of
the . is proportional to the perturbation Aw and the square of the transverse wave
vector k> and inversely proportional to the perturbation period A, effective thick-
ness weg of the waveguide, and the square of the longitudinal wave vector ﬁz. In the
coupled wave analysis, the coupling coefficient is expressed via the integral of the
transverse mode, and it is far more complicate than Eq. (3.41). In the next section,
we will see that the result obtained by the transfer matrix method is more accurate.
Moreover, the physical meaning of the approximation condition Aw < w applied in
this section is clearer than the approximation condition used in the coupled wave
analysis.
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3.1.3 Forward and Backward Traveling Waves

In this section, the corresponding matrix M (nA) of the whole perturbed periodic

waveguide is derived, and the explicit expressions of the forward and backward

traveling waves are also derived from the boundary conditions of the perturbed

region. Finally, the transmission and reflectivity of the periodic waveguide are

obtained. For clarity, in this section, we only consider the case of m = 1.
Combining Egs. (3.25) and (3.33), we can have

sin(ncos™! )

vi-7 (3.42)
B » sinh(nsA)
== sinh(sA)

Unfl (X) =

Considering Egs. (3.12), (3.13), and (3.21), it follows
A
my; = cos(fb+ aa) + ?ﬁsin pb sin oa

1 A
myp = —sin(pb + oa) + —fcos pb sin oa
B p . (343)
my; = —f sin(fb+ oa) + Af cos fb sin aa

2
% + (%) ] sin fb sin aa

my,; = cos(fb+ aa) — 5 5

Then, the below expressions can be derived via Egs. (3.28), (3.29), (3.32), (3.33),
and (3.34)

cos(fb + aa) = — cosh(sA) + 1 (Aﬁ> 2sin pb sin oa
B 2\ B (3.44)

sin(fb + aa) ~ o

Inserting Eq. (3.44) into (3.43), and using Eq. (3.23), the corresponding matrix of
whole perturbed periodic waveguide can be written as

(—1)"'cosh(nsA) + A1y (—=1)"gZgsinh(nsA) + A

(—1)"71§ sinh(nsA) + Az (—1)" 'cosh(nsA) + Ax

M(nA) = (3.45)
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where

. asinh(nsA) [AB 1 AR\ . _

Ay = (=1) sohGsA) | B +5 < 5 sin f3b sin oa,
B L sinh(nsA) Ap :

Ap=(-1) Snh(sA) cos fib sin oa,
B » sinh(nsA) .

Ay = (—1) m AP cos fb sin aa,
. persinh(nsA) [AB 1 /AB\? .

Ay =(—1) SinhGsA) | p + 2\ 5 sin fb sin aa.

Although the above quantities are small when compared with the main parts of the
matrix elements, they cannot be ignored in the calculation.

The next step is to solve the exact expression of the forward and backward
traveling waves based on the transfer matrix M(nA) of the whole perturbed periodic
waveguide. For this aim, the boundary condition must be determined. Let us
assume the amplitude of the incident wave on the boundary z = 0 is 1, and the
reflected wave has an amplitude of A, while the amplitude of the transmitted wave
on the boundary of z = nA is denoted by B. According to Fig. 3.3, the incident,
reflected, and transmitted waves can be related by

pli e = 2] [t ) (3.46)

It is not difficult via Eq. (3.46) to find the incident wave at the boundary of z = nA

Beibnh — 2if
(B 112 — tar) + By + p2) (3.47)
is eiﬂonA '
~ 2sinh(nsA) — is cosh(nsA)’
Fig. 3.3 The structure of a z
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And the reflected wave at the boundary z = 0 is

(21 + BPua) +iBligy — 111)

(B2 - ,u2.1) +if (g + o) (3.48)
B ik, sinh(nsA)

- 2 sinh(nsA) — is cosh(nsA)

A=

The two equations above are the same with the corresponding results derived from
coupled wave analysis.
The transmission probability can be derived from Eq. (3.47)

T = BB”

s (3.49)
(%)zsinh2 (nsA) + 52 cosh(nsA)

Similarly, the reflectivity can be derived via Eq. (3.48):

R = AA”

K2 sinh? (nsA) (3.50)
(%)zsinhz(nsA) + 52 cosh?(nsA)

If we calculate the sum of Eqgs. (3.49) and (3.50), and using the following relation

5\ 2
K2 =5+ (K) , (3.51)

it is easy to find that
TH+R=1. (3.52)

This demonstrates the physical significance of the fact that the transfer matrix is a
unit matrix, and in other words, this characteristic of the transfer matrix reflects the
conservation of energy.

Combing Eqgs. (3.34) and (3.40), we have

0 K2 Aw

A B 2Bwesr

— (B—=Fo), (3.53)

and from Eq. (3.38), the condition for s to take its maximum is

5
=0 (3.54)
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In this case s = k., so the corresponding value of the perturbation period based on
Eq. (3.53) is found to be

2 —1
A=n <[g - ﬂ)
2Bwesr
T i K2 Aw
B 2B wer

(3.55)

For a fixed mode, when Eq. (3.55) is satisfied, the reflectivity of the waveguide
reaches its maximum.
The condition for s = 0 is

0
L=+, 3.56
Ke =t (3.56)
and this corresponds to the threshold value of the perturbation period
+2)K’A
AT [1 (n £ 2 Aw (3.57)
i 28 Aweg

The threshold value means that for a fixed mode, no observable reflected waves
occur if the perturbation period A is smaller than the threshold value. In conclusion,
if s is not zero, the allowable range of the perturbation period is

—2)K*A 2)K*A
E_,_(n K W AT (m+2)Kx*Aw

B 2B Wesr B 2B wetr (3.58)

The A in the denominator of the second terms on both sides of Eq. (3.58) is
replaced by n, and since these two terms are first-order infinitesimal, such
replacement is allowed.

Since A = 1/p,, the forbidden range of the propagation constant is

ZA ZA ZA
_;ﬁw:f <p- <ﬁ0+ %) <%, (3.59)
or, equivalently
2
—K.<f — <ﬁ0+ ;ﬁ—vAv:) <Ke. (3.60)
Here, we introduce the notion of effective refractive index and set

DN g AW (3.61)

c 2 Bwesr
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SO
ON=~p, (3.62)
C

where the operator “~” has two meanings: (1) the dispersion of the optical
waveguide is nonlinear; (2) if @ and wy are close, the effective refractive index can
be approximated as constant, so we have

w — W

—Ke < N <k.. (3.63)

From Egs. (3.33), (3.38), (3.39), and (3.53), the propagation constant of the periodic
corrugated waveguide can be expressed as

/3/ = fo L is

2 172 3.64
—ﬁozti;cg—<¥) (w—wo)zl . (364)

For later convenience, we multiply both sides of Eq. (3.64) by A, which yields

2 1/2
BA=n+i|(kA)?— (A%’) (0 — wo)zl . (3.65)

When ﬁ' is real, the corresponding mode suffers no reflection attenuation, and there
is
CK,

Aw = |o — wo| > N (3.66)

It is not difficult to see that the forbidden range of the frequency is

CK. CK.
(D()—W<(U<(U()+ W, (367)

so the width of the forbidden region is

2cK,
gp - N

(Aw) . (3.68)

B is complex in the forbidden region, and based on Eq. (3.65), one can write

Im(BA) =

(keA) — (Ag)Z(w - wo)Z] . (3.69)
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Fig. 3.4 The real and imaginary components of propagation constant 8’ versus frequency for the
periodic waveguide

When o = wy, it is obvious that
[Im(/}’/\)]max = Kk.A. (3.70)

This shows when @ = wy, the maximum of attenuation coefficient s equals the
coupling coefficient x.. Consequently, a short section of the periodic waveguide
acts as a highly reflected mirror of the wavelength near the Bragg frequency wy, and
the maximum of the reflectivity according to Eq. (3.50) is

Rax = [tanh(xL)]?, (3.71)

where L is the length of the perturbed region. Obviously, Rn.x ~ 1 when x.L > 1.
The curves of the real component Re(f'A) and the imaginary component
Im(B'A) as a function of w in case of m = 1 are plotted in Fig. 3.4.

3.2 Corrugated Periodic Waveguide of Arbitrary
Shape [3]

The above section has investigated the rectangular corrugated periodic waveguide
via the transfer matrix method and obtained the analytical expression for the dis-
tributed feedback coefficient (or the coupling coefficient). In this section, we will
extend to the corrugated periodic waveguide of arbitrary shape.
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3.2.1 Analytical Expression for Coupling Coefficient

In the distributed feedback semiconductor laser, instead of using reflected mirror,
the optical feedback is provided by the corrugated periodic waveguide. This is the
reason why the coupling coefficient is also called as the distributed feedback
coefficient. Since there are numerous kinds of the corrugated periodic waveguide,
the primary object is to solve the distributed feedback coefficient of the periodic
waveguide of arbitrary shape.

Consider the three-layer periodic waveguide in the distributed feedback laser as
plotted in Fig. 3.5. For the sake of simplicity, we define the z-axis properly to let the
corrugated shape function f(z) satisfy the following equation

A

/ f(z)dz =0, (3.72)

0

where A is the perturbation period.

For the corresponding unperturbed waveguide, its upside boundary is repre-
sented by z-axis. Set the thickness of the middle film of the unperturbed waveguide
to be w, and the highest point and lowest point of the corrugated region are denoted
by x = g and x = —gy, respectively. And the following equation holds

g1t =g<w. (3.73)

Let us divide a perturbation period A into [ parts and set the width of each region
as a. For the unperturbed waveguide of thickness w, the propagation constant of the
TE mode is f3, and there is fA ~ mmn, where m is an integer. In this section, we only
focus on the case of m = 1. Based on the previous section, the transfer matrix of the
ith part is given by

x
A
Ny
g1--
'801 _______ S A \v-" R >z
n,
- W
n,

Fig. 3.5 Three-layer periodic waveguide in the distributed feedback laser
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. cos(f+AB;)a Frag sin(B+AB;)a , (3.74)
—(B+ApB;) sin(f+ Af;)a  cos(f+AB;)a
where
CKfl@)
A =50 (=120, (3.75)

From Eq. (3.73), it is clear that Af; < f.
Expanding the matrix M; in the series of Af;a leads to the follow expression

M; =

cos(fa) %sin(ﬁa) ]
—p sin(fa) cos(fa)

+(ABa) —sin(Ba) %cos(ﬁa) — ﬁsin(ﬁa)
" [ ~Bsin(pa) —sin(pa)

+ (ABa)? —1cos(Ba) ﬁsin(ﬁa) — 5psin(fa) — ﬁcos(ﬁa)
" {45 sin(Ba) — Leos(pa) —Leos(pa)

(3.76)

For the sake of simplicity, let us represent the three matrices in Eq. (3.76) by A, B,
and C, respectively, so Eq. (3.76) can be recast into

M; = A+ (AB,a)B+ (A;a)’C. (3.77)
The matrix of a whole perturbation period takes the form

M(A) = MiM,_,.. M)M, . (3.78)
——————
1

And as shown in the last section, in order to calculate the coupling coefficient, the
rank of the transfer matrix should be obtained in advance. Two general laws on the
matrix rank are listed below:

Tr(M +N) = Tr(M) + Tr(N), (3.79)
Tr(MN) = Tr(NM). (3.80)

Using the two relations above, and ignoring all the terms whose order is higher than

(Aﬁia)3, we can derive the rank corresponding to the transfer matrix of the per-
turbation period, which is written as
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Tr(M(A)) = Tr(A") + Tr(BA"™") Z (Apa)

1

+Tr(CA™) Y (Apa)’ + %Z > (ABa)(ABa)Tr(BAT ' BAT )
i J [

G=1,2,... i=12...1),
(3.81)

where Tr(A') is the rank of the product of all the matrix A, which is the first term of
the matrix M;, and Tr(BA'"!) 3", (AB;a) is the rank of the product of (/ — 1) matrix
A and one matrix B; similarly, Tr(CA"') 3", (AB.a)* corresponds to the product of
(I — 1) matrix A and one matrix C. Let us consider the fourth term in Eq. (3.81) in
detail, which is determined by the product of (/ — 2) matrix A and two matrix B.
If the two matrixes B are referred as index of i and j, which are arbitrarily chosen,
then the array of all matrixes in the multiplication can be written as

AA... A B AA... A B AA.. A
SN N =
(-1 i G-i=l) (=)

If we swap i and j, the array will be the same, so in order to eliminate double
counting, a factor of 1/2 must be introduced.

Let us calculate Eq. (3.81) term by term, and according to Egs. (3.23), (3.24),
and (3.25), we can write

Tr(A") =2 cos BA. (3.82)

Meanwhile, when / — oo, there is a — 0, so in view of Egs. (3.72) and (3.75), we
obtain

) A
K

Tr(BA™") Y (Aia) = Tr(BA™") / f(z)dz=0. (3.83)

: B Pwesr
0

l

For the third term on the right side of Eq. (3.81), when [ — oo, it can be written in
the form of below integration

2 A
Tr(CA™") > (ABa)® = ( i ) Tr(CA™Y) -a / (2)dz, (3.84)

- BWete
0

which also approaches zero as a — 0.
If we consider the foruth term on the right side of Eq. (3.81), by matrix oper-
ations, it is not difficult to find
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Tr(BA™'BA+11) = —2 cos BA+2 (S“;f =
a

> cos[l —2(j — i)]fa (3.85)

=2 —2cos[2(j — i)|fa.

In the above calculation, we already make use of the approximation A ~ = and the
below limit

sin fla
lim —ﬁ =

1.
a—0 ﬁa

Consequently, there is
1 . L
5 > > (Apia)(ABa)Tr(BAT - BAT T
i

(3.86)
— Z Z (AB;a)(AB:a){1 — cos[2(j — i)Ba]}.

In order to turn the above summations into integration, let us take the limit / — oo,
a — 0. Set ia = z;, ja = 73, and Ai = Aj =1, and then, Eq. (3.86) can be trans-
formed into

5 2 A A
( ; ) / / FEf@){1 - cos[2B(z — 21) }dzrdz,
0

f(z1)f (z2) cos[2f(z2 — z1)]dz1dz,

/A ./\

0 0

' eizfg(Zz*Zl) _ e*i2l}(22*21)

//f(zl)f(12) 5 dz1dz; (3.87)
0 0

/A /A

0 0
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which yields

7= TIMA)

A 2
1 KZ 2z
= cos A — 3 <[3Weff> O/f(z)e dz| .

Using the Egs. (3.28) and (3.39), we finally arrive at the distributed feedback
coefficient for corrugated periodic waveguide of arbitrary shape

(3.88)

A

o= 1 / f2)ed (3.89)

.= z)ePidz|. .
BAWess J

Replacing A with 7, the above formula becomes

W,

5 A
— / F(2)eadz|. (3.90)
eff 0

The phase factor in the above integration shows that the derived distributed
feedback coefficient can be applied to describe the energy transfer between the
forward and backward traveling waves since the latter wave experiences a phase
shift twice that of the former wave. So the physical insight of Eq. (3.90) is rather
clear. Besides, when compared with the coupled wave analysis, three apparent
differences can be observed:

1. Equation (3.90) is the integration along the direction of the perturbation period
instead of its perpendicular direction.

2. The integration is independent of the transverse eigenmode field in the
unperturbed waveguide.

3. The coupling coefficient is related to the corrugated shape function of the
waveguide, and it is not related to the Fourier coefficients of the shape
function.

Based on the above characteristics, the expression of the distributed feedback
coefficient derived from the transfer matrix method is simple, and the calculation for
a specific corrugated shape function is not difficult. Analytical expression can be
easily derived, and no numerical simulation is required.
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3.2.2 Typical Corrugated Periodic Waveguide

This section will discuss four kinds of typical corrugated periodic waveguide,
whose distributed feedback coefficients are calculated via the integration. The
results are satisfactory when compared with numerical simulations.

1. Rectangular corrugated periodic waveguide (Fig. 3.6)

_ 82, 0§Z<t7
f) {_gl’ < a<A. (3.91)

Inserting Eq. (3.91) into (3.90), one can obtain

K’g

Ke = sin(ft). 3.92
TBWesr (B1) ( )
when ¢ = A/2, there is
K’g
Ke = . 3.93
T BWetr ( )

In view of fA =m, it is clear that Eq. (3.93) is the same result with that of
Eq. (3.41).

2. Sinusoidal corrugated periodic waveguide
The sinusoidal corrugated periodic waveguide is shown in Fig. 3.7, whose
corrugated function is given by

g . (2=n
z) ==sin| —z 3.94
6 =$sin (%), (3.94)
Fig. 3.6 Rectangular X
corrugated periodic A
waveguide
4!
o »Z
H A
- &
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Fig. 3.7 Sinusoidal
corrugated periodic
waveguide

ety
y gl
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Inserting Eq. (3.94) into Eq. (3.90), it yields

K’g
Ke = . 3.95
4BWet ( )

3. Symmetrical triangle corrugated waveguide
The symmetrical triangle corrugated waveguide is plotted in Fig. 3.8, whose
corrugated function takes the form of

22 0<z<?%,
f@) =S g—%z, 4<z<, (3.96)
3A

87-2g, B <z<A
The following result can be obtained via substituting Eq. (3.96) into (3.90)

2i%g
Ke =———. 3.97
7 fWess ( )

4. Zigzag corrugated periodic waveguide

The zigzag corrugated periodic waveguide is plotted in Fig. 3.9, whose corru-
gated shape can be described by

Fig. 3.8 Symmetrical
triangle corrugated waveguide

N~
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Fig. 3.9 Zigzag corrugated
periodic waveguide

P>

f(@) =%z—§. (3.98)

Substituting Eq. (3.98) into (3.90), it is clear that

K2g
K. = .
‘ 27 Wesy

(3.99)

As can be seen from the above discussion, the difference between the distributed
feedback coefficients of the four kinds of typical corrugated periodic waveguide is
just a constant factor. All the results derived in this section are less complicated than
those derived via the coupled wave analysis. And this calculation process is much
simpler, and also, the clear physical insight is provided.

Figure 3.10 plots the distributed feedback coefficient of the TE; mode of the four
structures as a function of the corrugated height variation. The parameters used in
the plotting are provided below:

Fig. 3.10 The coupling ¥
coefficient curve as a function 100 1 TE a
of the corrugated height

-
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ny = n3 = 3.4,

ny = 36,
A =0.85 pm,
w =1 pum.

It can be seen from the figure, the rectangular corrugated waveguide has the highest
coupling coefficient, while the zigzag corrugated waveguide has the lowest
coefficient.

3.3 Step-Index Multiple Quantum Well (MQW) Optical
Waveguide

The dispersion of the step-index multiple quantum well (MQW) optical waveguide
is analyzed by the transfer matrix method, while the effective index is also derived
as an analytical expression.

3.3.1 Effective Permittivity of the Infinite Periodic
Multilayers [4]

Let us consider the periodic multilayer structure, which is composed of two media
with permittivity ¢; and &, respectively, as illustrated in Fig. 3.11. If the film
thickness of the two media are /; and h,, then the period is A = h; + h;. For the
semiconductor MQW or superlattice, the period is composed of several atom layers.
From the view of symmetry, the permittivity of these structures has the same form
of the uniaxial crystal, i.e., &, = ¢, = ¢, & = €. As a result, the y (or z)-com-
ponent of the averaged electric displacement vector in a period is

Fig. 3.11 Infinitely long X
periodic multilayers

L]
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(1B + 2P ). (3.100)

v

T

where Eﬁl) and E§2) are the y-component of the electric field in the medium 1 and 2,

respectively. Since both E_y) and Ey) are continuous on the interface, and 11, < 4

(4 represents the optical wavelength), the electric field variation in the thin film can
be ignored and one can yield

(3.101)

where E| is the average of the electric field in a period, and D, is determined by

Dy = SJ_E_‘y,

where

&1 (Slhl +82h2). (3102)

Tt h
Similarly, the x-component E, of the electric field in a period has an average value
as
— 1 (p  p¥
E,. = hy + hy |. 3.103
hy+hy < &1 ! & 2 ( )

In view of the continuity of D, at the interface, and ignoring its variation in the thin
film, we have

pV =p? =D, (3.104)
Combining the above equation with
S
E.=¢ /) Dy,

it is clear that

1 1 h h
<‘+2>. (3.105)
&)/ h+hy \ g &

Equations (3.102) and (3.105) are the effective index expressions for TE and TM
polarizations of the infinitely long periodic multilayer structures, respectively. It is
easy to see that this structure is similar to the uniaxis crystal and demonstrates the
effect of birefringence. ¢, corresponds to the permittivity of the ordinary light,
while ¢/, corresponds to the extraordinary light.
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3.3.2 Effective Index of the MQW Waveguide

MQW optical waveguide and the infinitely long periodic multilayer structure are
different. But when dealing with MQW optical waveguide, its effective index is
usually approximated by Eqgs. (3.102) and (3.105) [5]. This approximation is not
reasonable, so Ohke [6, 7] and Skinner [8] try to solve this problem by a different
approach, but their methods can only be applied to the TE mode in the MQW
optical waveguide, while the TM mode remains unsolved. Combining the transfer
matrix and Floquet theory, we derived the effective index for both polarizations of
the MQW optical waveguide in the thin-film approximation and explained the
birefringence effect in the MQW optical waveguide [9].

Let us consider the refractive index distribution of the MQW optical waveguide
as plotted in Fig. 3.12, in which the square of the refractive index is plotted for
convenience. Assuming the thickness of the film with refractive index n; is h,
while £, is the film thickness with refractive index n,, so the total period is given by
A = hy + hy, and the thickness of the whole quantum well region is

w=NA+h, (3.106)

where N is the cell number of the quantum well region. ng and n5 are the refractive
index of the cover layer and the substrate, respectively. Without loss of generality,
we assume that

ny > nz > np > ng. (3.107)

Based on the electromagnetic theory of the dielectric slab waveguide, the electric
field decays exponentially in the cover layer and the substrate, so we assume their
exponential decay coefficients are g and p, respectively. In the A, thick film, the
electric field is the superposition of two oscillating waves traveling in opposite
directions, while in the &, thick film, the field is represented by the superposition of

n?(x)
2
m 5
A3
LN
2
3 M2}
Ao
i i A ‘-.;x
O By by +hy =A W

Fig. 3.12 Step-index MQW optical waveguide
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two exponential decay fields. Defining the characteristic parameter of the oscillating
and exponential decay field to be x and «, it is easy to prove that the four char-
acteristic parameters are given by

(3.108)

The transfer matrix representing the /; thick film is

K

(3.109)

M) = [COS(K”!]) —f—lsin(Khl)]'

#sin(xhy)  cos(ichy)

Since the h, thick film supports two exponential decay fields, its transfer matrix
takes the form

Mhs) = cosh(ahy) —%sinh(ahg) (3.110)
- #sinh(o/y)  cosh(ahy) '
where
1, TEmode, 3111
h= n?, TMmode, (j=0,1,2,3). (3.111)

Combining the above two matrixes, the matrix corresponds to a whole period A is
M(A) = M(hy) - M(h2), (3.112)

which can also be expressed as

M(A) = | ™! m”] 3.113
= [ e, G.113)
where
ot . .
my; = cos(ihy) cosh(ohy) + Esm(xhl) sinh(othy), (3.114)
2

mp; = —f;l sin(kh ) cosh(ahy) —%cos(tchl) sinh(ah,), (3.115)



3.3 Step-Index Multiple Quantum Well (MQW) Optical Waveguide 69

my = Esin(rchl) cosh(ohy) — Ecos(ichl) sinh(othy), (3.116)
h e
Kf2 . :
my, = cos(khy) cosh(ah,) — Esm(;chl) sinh(oh,). (3.117)
i

Based on the Floquet theory, the propagation constant K in the periodic structure
obeys

cos(KA) = %Tr[M(A)]. (3.118)

Based on Eqgs. (3.114) and (3.117), it can be derived that

1
COS(KA) = E(m“ —|—m22)
3.119)
AW . (
= h h(ah — == —-—= h h(ah
cos(ichy) cosh(ahy) + 3 (Kf2 Otfl) sin(xhy ) sinh (o),
and the wave number of the Bloch wave is
K = (k2 — )", (3.120)

where the n, is clearly the effective index of the core layer of the MQW optical
waveguide.

In the typical MQW waveguide, the core layer usually contains fifty to several
hundred periods, whose length A is around 10 nm. Therefore, the inequality £; » <
A (4 is the optical wavelength) holds, and the characteristic parameters K, x, and o
are of the scale of the reciprocal of wavelength. Expanding the trigonometric and
hyperbolic functions in Eq. (3.119) and taking the second-order approximation, it
follows

242 242
wfi — Kk

N2

Using Egs. (3.108) and (3.120), the effective index of the core layer of the MQW
waveguide can be derived from Eq. (3.121) as

1 —%(KA)Z = {1 - % (Khl)z} [1 + %(ahg)z] + %hlhz (3.121)

2hy + n3h hih — )

nz:nl 1 +mhy 112 2‘(fl ) (ﬂ/ko)z- (3.122)

hy +hy (hy +ho) Sif2

Based on the above discussion, the core layer of the MQW optical waveguide can

be treated as a single film with refractive index n,, and the MQW optical waveguide
can be treated as a simple three-layer slab waveguide. If one defines
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| 1, TEmode,
fe= n2,  TM mode,

e’

(3.123)

then the transfer matrix of the core layer of the MQW optical waveguide is

cos(Kw) — % sin(Kw)

Fsin(Kw)  cos(Kw)

M(w) = (3.124)

With the help of Egs. (2.42) and (2.43), the dispersion relation of the MQW optical
waveguide can be cast into

{_

1]M(w) q|=0. (3.125)

s

By simplification, one has

Kj_ﬂ) _5</£ 2)
<fez o tan(Kw)—fe 3+fo . (3.126)

Combining with Eqgs. (3.122) and (3.120), the transcendental Eq. (3.126) can
completely specify the propagation and dispersion characteristics of the MQW
optical waveguide under two polarizations.

Let us discuss the physics behind Eq. (3.122) in more detail.

1. For the TE mode, according to Eq. (3.122), the effective index of the TE mode
in the core layer of the MQW optical waveguide is

tEN2  MThi +n5hy
(n,") = R (3.127)
which is identical with the effective permittivity Eq. (3.102) of the infinitely
long periodic multilayer structure. This is reasonable; since the boundary
condition exerts no influence for TE mode, the effective index of the TE mode
is the same for the MQW optical waveguide and the infinitely long periodic
multilayer structure.
2. For TM mode, the effective index of the TM mode in the core layer of the
MQW optical waveguide can be obtained from Eq. (3.122)

(nTM)z— n%hl +n%h2 . h]hz

2 22
(”1 - ”2) 2
. ko)~ 3.128
hit+hy (b4 hy)® ming (B/ko) ( )

e

It is clear that the effective index of the TM mode is no longer constant,
but varies as a function of the characteristic parameter of the optical
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waveguide, i.e., the refractive index (f8/ko). There was some misunderstanding
on this point [6], and some attempt has been made to modify Eq. (3.128). In
fact, TM mode has an electric field component E,, which is perpendicular to
the waveguide interface, so it is natural that different boundary condition will
affect this component. It is obvious that the effective index of the TM mode
should be connected to the parameters of the waveguide.

3. When w — oo, the MQW optical waveguide turns into the infinitely long
periodic multilayer structure. If the thickness of the core layer in a three-layer
slab waveguide increases, the effective refractive index of the waveguide
increases as well. Consequently, if the core layer thickness of the MQW
optical waveguide increases, its refractive index (fi/ko) also increases. And
when w approaches infinite, we have

B/ko — (m™) _, (3.129)

where the subscript “oo” denotes the limit when the core layer thickness

approaches infinite. Meanwhile, (neTM)OC becomes the effective index of the

TM mode of the infinitely long periodic multilayer structure. Inserting
Eq. (3.129) into (3.128), and notice that the n™ in the left-hand side of
Eq. (3.128) should be replaced by (n]™)_ . one can write

2 hi+h
(EM)oo:ﬁ’

2 2
m m

(3.130)

which is exactly the same as Eq. (3.105) and confirms that the effective index
given by Eq. (3.128) is correct.

4. If the two media in the core layer have the same refractive index, i.e., nj = np,
the MQW optical waveguide reduces to a simple three-layer slab waveguide,
and Eq. (3.128) becomes

nt™M = pTE (3.131)

This is due to the core layer effective index is always constant for the simple
three-layer slab waveguide and independent of the light polarization.
5. If ny # ny, it is easy to see from Eq. (3.128) that

n™ £ Tk, (3.132)

This is the feature that MQW optical waveguide is different from the
three-layer slab waveguide. And this inequality is the physical reason for the
birefringence effect of the MQW optical waveguide.

6. If the refractive index n3 of the substrate of the MQW optical waveguide
fulfills the following inequality
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n™ <ny<nlF, (3.133)

then the MQW optical waveguide can only support TE mode. So Eq. (3.133)
provides a new strategy to design a novel polarizer based on optical
waveguide.

3.4 MQW Optical Waveguide with Arbitrary Refractive
Index Distribution

The above section has analyzed the simple MQW optical waveguide with a
step-index distribution. But due to the various factors in the manufacturing process,
the refractive index distribution of the MQW optical waveguide is usually con-
tinuous. So in this section, we will deal with arbitrary refractive index distribution.
Two methods, including the effective index approximation and the non-effective
index method, are developed.

3.4.1 Effective Index Method [10]

Let us consider the MQW optical waveguide with an arbitrary refractive index
profile as plotted in Fig. 3.13, and assume the light travels along the z-axis. The
period of the quantum well (barrier) is set to be A, and the length of the MQW
region is w, which includes N periods. The refractive index of the cover layer and
substrate is ng and n3, respectively, while the refractive index of the core layer
ranges from n, to n;. The refractive index profile of a period is given by the
function n(x), which obeys the periodic condition

n(x+A) =n(x). 3.134
(
n’{x)
2
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Fig. 3.13 MQW optical waveguide with arbitrary refractive index profile



3.4 MQW Optical Waveguide with Arbitrary Refractive Index Distribution 73

Without loss of generality, let us assume
ny > nz > ny > ny. (3135)

In order to apply the transfer matrix, we divide a period A into [ sections with an
equal width. If the width of a small section is A, then there is x; = lh = A.
Generally, the transfer matrix for the ith section can be written as

K

| cos(rih) L sin(ic;h)
| Ssin(k;h)  cos(ih)

], (i=1,2,...0), (3.136)

fi
where
e { 1, TE mode, (3.137)
" 1n*(x), TMmode, '
K = [Kn2 () — 7). (3.138)

Clearly, x; is a function of x, and it can be real or complex. When kon(x;) > f, the
electric field in the ith section is oscillating, and the matrix given by Eq. (3.136) is
real. When 8 > kon(x;), k should be replaced by ix due to the exponential decay
field. If we applied the following formula

cos(ioh) = cosh(ah),

sin(iah) = i sinh(ah),
the corresponding matrix can still be represented by Eq. (3.136).

In case of N > 1, A is usually of the scale of 100 A, and when [ — oo, there is
h — 0, so the following condition holds

Kih < 1. (3.139)
And the thin-film approximation can be applied, expanding the sine and cosine

functions in the matrix M; into series, and ignoring all the terms higher than the
second order, we can rewrite Eq. (3.136) as

1—L(ch)®  —fh
h 1 — (k)

Lo 0 17 & [0 0] 1, L[l 0
[0 Jﬁh{o 0]+fh[1 0}2(“‘) [0 1}

M; =

Y

(3.140)
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Clearly, the first term on the right-hand side is the dominant term, while the second
and third terms are the first-order infinitesimal, and the fourth term is the
second-order infinitesimal. Denote that

2
%h>3 - % (:h)’E, (3.141)

i

Mi:E—(ﬁh)A—&-(

where E represents the unit matrix, and A and B are given by

e=[o 0 a-[0 o] o[ 8]

The transfer matrix for a period A is the product of [ matrix, i.e., M;(i = 1,2, - ,1),
so we have

M(A) = M\M;. . M;_M,. (3.142)

The trace of the sum or product of two matrixes M and N should obey the following
rules:

Tr(M +N) = Tr(M) + Tr(N),
Tr(MN) = Tr(NM).

So using the feature of the matrix trace and inserting Eq. (3.141) into (3.142), the
trace of the transfer matrix corresponds to a period A can be cast into:

Tr[M(A)] = Tr(E') — thTrE’ '4) +Z< )TrE’ 'B)
772 Kih) Tr(E') + ZZ(fh(;; )Tr(AE~TAE i1

(#J)
K2 o (3.143)
+2ZZ< )( >Tr( BE'BE!+Y)
(i#)
—ZZ(f, ( )Tr (AE-IBE IR,
(17&])

Below, we calculate each term on the right-hand side of Eq. (3.143). Based on
the characteristics of the unit matrix E and two special matrixes A and B, it is easy
to see
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Tr(E') = =2,
Tr(E™ ‘A) A) =0,
Tr(E"'B) = Tr(B) =0,
Tr(AE1AE 1) = Tr(A%) =0,
Tr(BE"'BE™711) = Tr(B?) =
Tr(AE " 'AE™ 1) = Tr(AB) = 1.
Using the above conclusion, Eq. (3.143) turns into
K2
THM(A)] =2-) " (kh)*= > (fh) f—fh . (3.144)
i i J

(i#)

The second and third terms on the right-hand side of Eq. (3.144) are the sum of the
diagonal elements and the rest elements, respectively. In order to be more specific,
considering the case of [ = 3, the matrix takes the form:

2 2

K K
h-—Lh fih-22h  fih-2h
N fl N fzz N %
K2 K 2
foh-th foh-Z2h fth—;h (3.145)
K2 2 2
h-—L h-—2h i}
/3 A /3 % fih 3h_

It is clear that when [ — oo, there is &7 — 0, so the sum of the matrix elements
becomes a double integral. Using Eqgs. (3.137) and (3.136), we can derive the below

results.
For the TE mode

and for the TM mode

(3.146)
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K2
2%#+ZZW(#)

i

(i#)
[ [P -
~ | Ry [ R P 3.147
[ e [ B a 147
0 0
A A A |
KA | n?(x)dx — 7 [ n?(x)dx s dx.
[ s [ [t

Based on the Floquet theorem, and applying the thin-film approximation, the trace
of the transfer matrix of a period A is found to be

Tr[M(A)] = 2cos KA
) (3.148)
=2—(KA)",

where K is the transverse wave vector of light in the MQW optical waveguide
obtained from the definition in Eq. (3.120). And the core layer effective index of the
MQW optical waveguide with arbitrary refractive index distribution can be cal-
culated by Eq. (3.144).

For TE mode, there is

A
1
(nF)’ =+ [ n(x)dx, (3.149)
A!

and for TM mode, it becomes

A A A
(nfM)2=%/n2(X)dx— %/nz(x)dx/0 n%(x)dx—1 (B/ko)%.  (3.150)
0 0

In order to verify the exactness of Egs. (3.149) and (3.150), let us consider a
simple step-index MQW optical waveguide, which is given by

n?(x) =

{n%7 O<x<hy, (3.151)

I’l%, h <x<h1+h2,

where h; + hy = A. Inserting Eq. (3.151) into Egs. (3.149) and (3.150), it is easy to
derive expressions exactly the same with Eqs. (3.127) and (3.128).

In the actual application, there will be another MQW optical waveguide with
refractive index distribution based on trigonometric and hyperbolic functions, so
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Egs. (3.149) and (3.150) are very useful dealing with these problems based on the
effective index approximation.

3.4.2 Non-Effective Index Method [11]

The approximation used in the above section is called as the effective index
approximation, which uses a constant refractive index to represent the periodic
refractive index distribution of the core layer of the MQW optical waveguide. So
this method only requires the knowledge of the trace of the transfer matrix corre-
sponds to a period A of the MQW optical waveguide. First, the MQW optical
waveguide should be approximated as a simple three-layer slab waveguide, which
is easy to analyze, but the method is not exact and some physics is also lost. For
example, the dispersion in the two media of the core layer cannot be the same.
A completely different strategy is adopted in this section, which derives directly the
transfer matrix of a period A of the MQW optical waveguide, and solves the
dispersion equations of the TE and TM polarizations of the MQW optical
waveguide with arbitrary refractive index distribution via the boundary condition.

Considering the MQW optical waveguide with arbitrary refractive index as
plotted in Fig. 3.13, it is clear that the transfer matrix of a period ¢; in the MQW
optical waveguide is the product of [ matrix M;(i = 1,2,...,1). And M; is given by
Egs. (3.140) or (3.141). Different from the last section, it is the transfer matrix
M(A) itself needed in this section, not its trace. The product of the [ matrix M; can
be calculated as follows:

M(A) = M\M;. . My_ M,

— Z () (ETTAE™) + ) (%Zh) (E-'BE™)

i

- ;Z (i:h)*E' + ;Z zj: (fh) () (ET'AE 1 AE')

(i)
3 Zz(ﬁ >< >(El BETRET) (3152
(i#)
1 K2 e
—EZZ(f,-h) 7’/1 (E~'AE~BE')
i j J
(i)

——ZZ( ) )(E'BETAE).

(i#)
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The first term on the right side of Eq. (3.152) is the product of the first elements of the
I matrix M,. The second, third, and fourth terms are the sum of all the products, which
are obtained by multiplying the (I — 1) first elements of the M; and the second, third,
and fourth element of the one matrix left, respectively. Different from Eq. (3.143),
the order of the matrix multiplication cannot be varied. The fifth term is calculated by
multiplying the (I — 2) first element of the M; and the two second elements of the two
matrixes of M; left and then taking the sum of different i and j. The sixth term is
similar with the fifth term, which is calculated by multiplying the (/ — 2) first element
of the M; and the two third elements of the two matrixes of M; left and then taking the
sum of different i and j. The seventh term uses the product of the (I — 2) first elements
of M; and the second and the third elements of the two matrixes left. Switching the
two positions of the second and third elements in the multiplication, we can obtain
the eighth term. In the above derivation, only the second-order infinitesimal is
considered, while all the higher-order terms are ignored.
Based on the characteristics of matrixes E, A, and B, it is clear that

E’—E—{l 0}
7o 1)

Ei*lAElfi —A= |:0 1:|

0 )
0
1

oS O

E-'BE- =B = [

o
OO

ETAETTIAET = A =

S
=]

o]
[«
[ E—

E-'BETIBE = B? = {

(=)
o <

o
[ —

ET'AE'BE = AB = [

S O O =
o

E"'BETAE" = BA = [

—_

So Eq. (3.152) can be rewritten as

ERCTIE S LICH) R
' I(i%j') I
M(A) = . :
= (59) EEEED DI
(i) (3153)
s v
R ORI

In Eq. (3.153), the special case of i = j is already included.
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When [ — oo and & — 0, the summation in Eq. (3.153) becomes into integra-
tion. For TE mode, there is

A A A
L= 1] dr- | () — Bl ~Jar
M(A) = OA ’ A A 0 J
Of[kSnQ(X) — [*dx 1 —%Ofdx-of[kénz(X) — p*dx
(3.154)
and for TM mode, we have
_ 1 / 2 k(z)nz(x)_ﬁz / 2 _
lfi/n(x)dx / 20 dxf//n(x)dx
may=| ° Co L . (3.155)
2,200 _ 2
T R LT
Lo 0 J

Based on the Floquet theorem, the propagation wave vector K in a periodic
structure should obey

cos(KA) = %TY[M(A)L

so from Eq. (3.154), we have

cos(KA)

l\)l*-‘

A A
/ dx - / [k3n? (x) — B*]dx. (3.156)
0 0

In the thin-film approximation, i.e., KA < 1, the second term on the right-hand side
of the above equation can be treated as a second-order infinitesimal, so

A A
sin(KA) = [l—cosz(KA)]m;z/dx / kin*( *]dx. (3.157)
0 0

Inserting Egs. (3.156) and (3.157) into (3.154), the transfer matrix corresponds to a
period A of the MQW optical waveguide is

M(A) = {

cos(KA) —;sin(KA)} 7 (3.158)

n sin(KA)  cos(KA)
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where

A

A 1/2
/k2 2 ﬁz}dx/o/dx : (3.159)

0

For a core layer of MQW optical waveguide with N periods, its transfer matrix
takes the form

(3.160)

M(NA) = [COS(NKA) —;Sin(NKA)}

nsin(NKA) cos(NKA)

For TM mode, the transfer matrixes M(A) and M(NA) have the similar forms as
Egs. (3.158) and (3.160), but the variables KA and 5 will be defined by

A

1 kZ 2
cos(KA) E/nz / dx, (3.161)

0

) — /"2 n(x // (3.162)

0

In fact, the transfer matrix of a period A will be represented by Eqs. (3.154) and
(3.155), which are difficult to be extended to the case with several periods. So it is
necessary to write Eq. (3.158) by the Floquet theorem first, and then, the transfer
matrix of N periods can be obtained via the Chebyshev polynomials, e.g.,
Equation (3.160).

Using the transfer matrix theory and based on Egs. (2.44) and (2.45), the dis-
persion relation of the two polarizations of the MQW optical waveguide can be
obtained.

For TE mode, there is

( cos(NKA)  —1sin(NKA) }
1 n sin (NKA) cos(NKA)

1] =0, (3.163)

or equivalently

rt+q

tan(NKA) = = pa/ii)’

(3.164)
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where the KA and 7 in the two equations above are defined by Egs. (3.156) and
(3.159).
For TM mode, there is

1 cos(NKA)  —1lsin(NKA)][1
[—,72‘1 1] . " 1| =0 (3.165)
3 1 sin(NKA) cos(NKA) 2P
or
2 2
an(NKA) = —P/M+a/m (3.166)

n[1—paq/(ngn3n?)]’

where the KA and # are defined by Eqgs. (3.161) and (3.162), respectively.
In order to verify these results, consider a step-index MQW optical waveguide
made up of GaAs/GaAlAs, and the typical parameters are

n = 3.50, n, =3.20, n3 = 1.0, np =3.30, w=1pm, hy = h, = w/2N.

The exact dispersion equation is provided by Lenz and Salzman [12]. The results
obtained by theory in this section are shown in Fig. 3.14, where the effective
refractive index f3/ko is plotted as a function of the wavelength A.

As can be seen, when N = 10, our result suffers a error of 0.1 % when compared
with the exact result. But as the N increases, the accuracy improves significantly.
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Fig. 3.14 Effective refractive index f/ko varies as a function of wavelength 1
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When N = 100, the two curves coincided with each other. This confirms that the
theory of this section can be used under the thin-film approximation, i.e., KA < 1.

(a) N =10, and solid and the dashed lines denote the exact and the approximated

solution, respectively.

(b) N = 100, and solid line is the exact solution, the black dots are the approxi-

mated solution.
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Chapter 4
Characterizing the Feature Parameters
of Planar Optical Waveguide

Abstract In the linear planar optical waveguide, the most interested feature
parameters include the guiding layer’s refractive index and thickness, the propa-
gation constant, and the propagation loss. On the other side, the feature parameters
frequently investigated in the nonlinear planar optical waveguide are the linear and
quadratic electro-optical coefficients and the thermo-optical coefficient. Our aim in
this chapter was to show the mechanisms and experiment methods of how to
exactly characterize these feature parameters, which could lay the groundwork for
optimally designing and manufacturing the optical waveguide devices.

Keywords Four-layer leaky waveguide - M-line spectroscopy - Attenuated total
reflection spectrum - Inverse WKB method - Inverse analytical matrix method -
Propagation loss - Nonlinear optical coefficient

4.1 Four-Layer Leaky Waveguide

Compared to a three-layer planar waveguide (as described in Chap. 2), the
four-layer leaky waveguide has an additional layer with a high refractive index
(RI) material above its cladding layer. As a result, the guided modes and the
radiation modes will couple with each other because the evanescent field produced
in the cladding layer can reach to and reflect at the interface between the cladding
layer and the added high RI material.

4.1.1 Dispersion Equation

The diagram of light ray propagated in a four-layer leaky waveguide, where the
prism is much thicker than the guiding layer and can be regarded as a semi-infinite
medium, is shown in Fig. 4.1. Since the RI of prism (n3) is larger than that of

© Shanghai Jiao Tong University Press and Springer-Verlag Berlin Heidelberg 2016 83
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Fig. 4.1 Structure of
four-layer leaky waveguide

guiding layer (n;), the energy of guided modes will continuously radiate into the
prism through the air cladding layer (n;). If the air cladding layer is extended to be
large enough, the energy loss radiated from the guided modes will be extremely
small and such prism-guide coupling system can be considered as a perturbation
model of the three-layer waveguide. Therefore, the dispersion equation of four-layer
leaky waveguide can be obtained with a minor modification on that of three-layer
waveguide by taking the existence of prism into account. Results indicate that the
eigenvalue of guided modes in the four-layer leaky waveguide is not a real but a
complex number, which has a real and an imaginary part representing the propa-
gation constant and the attenuation coefficient, respectively.

From bottom to up, we use subscripts 0, 1, 2, and 3 to denote the physical
quantities of substrate, guiding layer, air cladding layer, and prism, respectively,
and subscripts with two numbers are to represent the physical quantities at the
interface between two mediums. Moreover, the thicknesses of guiding layer and air
cladding layer are marked as d and s, respectively. The chosen coordinate system is
given in Fig. 4.1. Note that the electromagnetic field is uniform in Y-direction and
we present only the discussion of TE mode. By setting the propagation factor of
electromagnetic field as exp[i(fiz — wr)], TE mode satisfies the following:

O’Ey
Ox?

+ (kgn; — B)Ey, =0, (j=0,1,2,3). (4.1)

The distribution of electrical field in each layer of the four-layer leaky waveguide is
described as follows:

Bj expliks(x — s)], (

E,(x) = As exp(pax) + By exp(—pax),
Y Aj exp(—ix1x) + By exp(irix), (
Ap explpo(x+d)], (

s<x< +00),
0<x<s),
d<x<0),
co<x< —d).
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Substituting Eq. (4.2) into Eq. (4.1), we get the following:

5 = (kg — f)'?,

i = (gt — )2, 43)
p2= (B —Kgnd)"?, '
po= (B —kgnd)'%.

By applying the boundary continuity conditions at x = s, 0, —d, the transmission
type dispersion equation is obtained as follows:

expli2(k1d — ¢ — ¢1p)] — 1 = {exp[i2(k1d — ¢py)] — exp(—2i¢y,)}

-exp(—2igs,) - exp(—2pys). (4.4)
where
Po
= 1 —
¢ o = arctan (m)’
— ”
K1
P2
= arctan [ 2= ).
¢3, = arctan (K3>

If the thickness of air gap is extended to infinite, i.e., s — oo, Eq. (4.4) will be
reduced into the dispersion equation of three-layer waveguide

expli2(k{d — ¢}y — ¢1,)] = 1, (4.6)

(1321

where the superscript
waveguide.

represents the physical quantities in the three-layer

4.1.2 Variation in the Propagation Constant

In the weak coupling situation, the thickness of air cladding layer s is of the order of
light wavelength and stratifies the following inequality

exp(—2pss) < 1. (4.7)

By utilizing the perturbation theory, the variation in the propagation constant,
which is originated from the energy radiation induced by the existence of prism, can
be expressed by
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AﬂL = il ——sin2¢, - exp(—i2¢ds,) exp(—2pas), (4.8)
ﬁdef
where
1 1
degi =d+ — + — (4.9)
po P2

In Eqgs. (4.8) and (4.9), the superscript “°” representing the physical quantities in
three-layer waveguide is omitted for brevity.

The A" in Eq. (4.8) is a complex number. It means that the existence of prism
not only brings an energy loss through radiating (i.e., the imaginary part in the
variation of propagation constant), but also leads to a movement of guided modes
(i.e., the real part in the variation of propagation constant). Its imaginary part is
given as

m(AB") = (—2p2s), (4.10)
and real part satisfies
Re(ApF) = sin 2¢p,, cos 2¢3, exp(—2pas), (4.11)

ﬂe

respectively. Equation (4.10) clearly shows that there is an intimate relationship
between the radiative energy loss and the thickness of air cladding layer s, namely
the larger s, the smaller radiative energy loss. Consequently, the propagation
constant of four-layer leaky waveguide can be expressed as a sum of the propa-
gation constant of three-layer waveguide and a correction

B = B+ Ap~. (4.12)

4.1.3 Analytical Transfer Matrix Method [1]

The analytical transfer matrix (ATM) method (described in Chap. 2) is another
efficient way to derive the obtained results in Sect. 4.1.2. The matrix equation of
four-layer leaky waveguide shown in Fig. 4.1 is written as follows:

E,(s)
E;(S)} , (4.13)

Ey(_d)
E|(—d)

1:1141-M2

where
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— (r1d) —Kilsin(;c d)
= [Kcl(;?n’(cflﬁd) COS(ch} ]’ (4.14)
_ [ cosh(pas)  —-sinh(pas)
M, = |:_p2 sinh(pzs) COSh(pzs) :| (415)

Substitution of Eq. (4.2) into Eq. (4.13) yields

(=po 1) MiM; ( Ki) =0, (4.16)

K3

which can be formally rewritten as the phase-type dispersion equation of four-layer
leaky waveguide

Kid =mn+ ¢+ ¢, Mm=0,1,2,...), (4.17)
where
D,
$1, = arctan( ), (4.18)
1
and
. IK3
sinh(pys) — —cosh(pas .
r_ (p25) D2 (p29) _ 1+ exp(—i2¢s3,) - exp(—2p2s) 4.19
P2 =Pz iK3 TP T (—i2¢3,) - exp(—2pas) (4.19)
cosh(p,s) — —sinh(pas) PLm1203 Pi=p2
P2

When the weak coupling condition (i.e., inequality (4.7)) is satisfied, Eq. (4.19) can
be approximately expressed as

Py = o[l +2exp(—2ips,) exp(—2pss)]. (4.20)

Using the differential formula, we obtain

/
¢}, = arctan <&>
K1

2
= arctan <p2> + pzi/xlzexp(—ﬂd)n) - exp(—2pas) (4.21)
K1 1+ (p2/x1)

= @12 + sin 29y, exp(—i2¢3,) exp(—2p»s).
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Therefore, Eq. (4.17) can be modified as

Kid = mn+ ¢yo+ P1p + sin 2y exp(—i2sy) exp(—2p2s), (m=0,1,2,...).
(4.22)

With the application of perturbation theory, the propagation constant of four-layer
leaky waveguide f can be expanded in terms of the propagation constant of
three-layer waveguide f°, and its first-order Taylor expansion is identical with
Eq. (4.8).

4.2 Prism-Waveguide Coupling System

The problem of how to effectively couple the light from the prism with a high RI
into a planar waveguide structure is an eternal theme of optics. In 1946, the first
experiment for investigating the prism coupling system was reported by Osterberg
and Smith [2]. Subsequently, the exciting condition of surface plasmon along the
interface between metal film and prism attracted much attention [3]. However, it
was not until 1969 that the excitation of guided modes in the dielectric waveguide
with a prism coupling structure and a high coupling efficiency was accomplished by
a research group in Bell laboratory [4].

4.2.1 Operational Principle and M-Line Spectroscopy [4]

The structure of prism-waveguide coupling system is similar to the four-layer leaky
waveguide (see Fig. 4.1). It composes of a high RI prism, a narrow coupling gap
(air or metal), a thin film, and a substrate. After passing through the prism, the
incident light is totally reflected at the bottom side of the prism and an evanescent
field is generated at the interface between prism and coupling gap. Since the
thickness of coupling gap is smaller than the decay length of evanescent field, the
energy arrived at the interface of coupling gap-thin film can be reflected and another
evanescent field with opposite propagation direction is generated. These two
evanescent fields interact with each other, and as a result, the incident light from the
prism is coupled into the guiding layer (thin film). Note that the coupling process is
reversible, namely the energy of guided modes in thin film can also be recoupled
into the prism. This energy exchange process between guided modes and radiative
modes is called as the optical tunneling effect, which is an optical version of the
quantum tunneling effect for particles penetrating through a potential barrier.
Mathematically, the scale wave equation for the optical waveguide is quite similar
to the Schrodinger equation and the material with a high and a low RI can be
regarded as a potential well and a potential barrier, respectively. Therefore, the
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Fig. 4.2 Quantum analog of the three-layer optical waveguide
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‘ n3 Prism my Air gap
Fig. 4.3 Prism-waveguide coupling system and its RI distribution

three-layer optical waveguide is equivalent to a potential well as shown in Fig. 4.2.
Because the potential barriers on both sides of the potential well are semi-infinite, it
means that the light energy of optical waveguide can be well localized in the
guiding layer.

The RI distribution of the prism-waveguide coupling system is shown in
Fig. 4.3. Because the RI of prism is higher than that of guiding layer, the light
energies in prism and guiding layer will couple with each other through the optical
tunneling effect. Note that such optical tunneling effect only happens when the
phase-matching condition is satisfied. It requires that the optical wave vector along
z direction in prism should be equal to the propagation constant of guided mode in
the guiding layer, i.e.,

k()}’l3 sin 93 = ﬁ (423)

The above equation is the so-called synchronous condition and 65 is the syn-
chronous angle.

The schematic layout of m-line spectrum is shown in Fig. 4.4. The incident light
from a side of an isosceles prism (n3) is coupled into the guiding layer (r;) and then
is recoupled through another side of prism to display the reflected light on a screen.
Under the synchronous condition, the energy of incident light will be well coupled
into the guiding layer and a guided mode is excited. But in a real guiding layer,
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Fig. 4.4 Schematic layout of |
the m-line spectrum
1

n,, Air gap
ny, Thin film

ny, Substrate

optical scattering is inevitable and some part of energy in the excited guided mode
is likely to be coupled into other adjacent guided modes, which result in several
intensity dips at different reflect angles and a set of dark lines emerge on the screen.
By measuring these synchronous angles and solving dispersion equation of the
prism-waveguide coupling system, both the guiding layer’s RI and the thickness
can be worked out. The above measuring technique is called as the m-line spec-
troscopic methodology.

4.2.2 Reflectivity Formula and Attenuated Total Reflection
(ATR) Spectrum

1. Reflectivity formula

The structure parameters and the selected reference frame of the
prism-waveguide coupling system are shown in Fig. 4.5. The distribution of
electromagnetic field in this system differs somewhat from that of the four-layer
leaky waveguide (see Fig. 4.1). That is to say, there is an added incident light ray in
the prism-waveguide coupling system. The profile of TE mode excited in the
prism-waveguide coupling system is

Aszexp[—iks(x — s)] + Bz explirs(x — 5)], (s<x< 4 o0),
B = { o s henln, AP S EY
Ap explpo(x+d)], (—
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Fig. 4.5 .Structure pa}rameters A 3 B 3
of the prism-waveguide

coupling system and the

reference frame
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Ny

where the expressions for x;, k3, pg, p» are described by Eq. (4.3).
By applying the boundary continuity conditions at interfaces, we get the
reflection coefficient

. By _ matrio exp(—2p»s)
As 1+ rprigexp(—2pas)’

(4.25)

where

32 = exp(—i2¢3),
exp(—i2¢y,) — expi2(i1d — ¢y)] (4.26)
expli2(xid — 1o — p12)] — 1

110 =
and ¢,9, ¢3,, and ¢, are given by Eq. (4.5). The propagation constant of the
guided mode is determined by the measured synchronous angle

P = kon sin 03, (4.27)

and the reflectivity is written as

R=rr=|r]%. (4.28)

2. Ideal system

For an ideal system, all the RIs of four medium are real numbers and there is no
optical scattering and no optical absorption. It is easy to find that the parameters f3,
K3, K1, p2, and po are real numbers, and consequently ¢, ¢,,, and ¢, are also real
numbers. As a result, we obtain



92 4 Characterizing the Feature Parameters of Planar Optical Waveguide

1y = exp(i2¢3,) = 1/r3, (4.29)
S exp(i2¢,) — exp[—i2(x1d — ¢yp)] _ expli2(k1d — ¢yg)] — exp(—i2¢,)
210 exp[—i2(k1d — ¢19 — ¢12)] — 1 1 —expli2(k1d — ¢19 — ¢10)]
= 1o,
(4.30)

and

o rip + 7310 eXp(=2pas) _ 13 + 210 €xp(—2pss) _ 1
L+r5r50exp(—2pas) 14 r3 rioexp(—2pas) 1

(4.31)

It indicates that
R=r"=1. (4.32)

and the incident light in the ideal system cannot be coupled into the guiding layer
even when the phase-matching condition is satisfied. In other words, the loss is a
necessary condition to cause the energy coupling process in the ideal system.

3. Reflectivity formula under the phase-matching condition

However, Eqs. (4.29)—(4.32) are not suitable for the prism-waveguide coupling
system because it contains loss (absorption and scattering). If there is no incident
light, i.e., A3 =0, the prism-waveguide coupling system is equivalent to the
four-layer leaky waveguide and Eq. (4.25) is reduced into

L+ r3prai0 exp(—2pas) = 0. (4.33)

By substituting Eq. (4.26) into Eq. (4.33), we once again obtain the dispersion
Eq. (4.4) of four-layer leaky waveguide. It means that the prism-waveguide cou-
pling system can be regarded as a four-layer leaky waveguide illuminated by an
incident light.

Now, let us consider a prism-waveguide coupling system consisting of a lossless
prism (i.e., n3 is real) and a loss guiding layer (i.e., n; is complex). The propagation
constant - is a complex number and expressed as

Bt = B°+AB" = [Re(B°) +Re(AB)] +i[Im(°) + Im(AB)], (4.34)

where Im(ﬁo) and Im(AﬁL) represent the intrinsic and the radiative dampings [5],
respectively. However, the wave vector of incident light in prism is still a real
number. As a result, these two wave vectors in prism and guiding layer cannot
match well with each other. Only when the imaginary part of * is small enough,
the phase-matching condition can be approximately satisfied
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B =Re(p’) +Re(AB"),

where f is defined by Eq. (4.27).
The reflection coefficient is

(4.35)

2+ exp(—2pas) _
 L+rnmoexp(—2pas)
. {expl2nd = gy -

* {expli2(kid — ¢y —

1+ 3510 exp(—2pas)
1+ r3ara10 exp(—2p2s)

$12)] — 1} + {exp(—2¢1,) — exp[i2(k1d — ¢10)]}73;' exp(—2pas)
$12)] — 1} + {exp(=2¢1,) — expli2(k1d — ¢10)]}r32 exp(—2pas) |
(4.36)

Under the conditions of weak coupling (exp(—2p»s) < 1), we replace 8 with its
Taylor’s expansion around ° (the propagation constant of three-layer waveguide)

and obtain

(B4 - zﬁd fexpli2(1d — b10) — exp(~212) b5 exp(~2pas)
r=rxn

(B-8") -

3 (P21 = o) —exp(—2)] o exp(~2ps)

(4.37)
It is easy to see that the second term in the denominator of Eq. (4.37) equals to Af3

(see Eq. 4.8). Due to Re(r3;') = Re(r3) and Im(r3)') = —Im(rs3,), Eq. (4.37) is
rewritten as

R [Re(B”) +Re(ABY)] — i[Im(p°) — Im(AB")] (438)
B — [Re(B°) +Re(AB)] — i[Im(B°) + Im(AB")] '

and the reflectivity is recast into

R:|r32|z{ﬁ—[Re(ﬁ°)+R( B)]} + [Im(§") — Im(AB )]j
{8~ [Re(§”) +Re(AB")] 1+ [1m(5°) + Im(AS")]
4Im( )Im(A L) )
+Re(A8")]} + [tm(6") + Im(AB")]’
(4.39)

respectively. Under the approximate phase-matching condition (Eq. 4.35), the
reflectivity approaches its minimum, i.e

= |rf? (1 — .
{8 - [Re(p)

(4.40)

R — |r32|2{1 B 4Im(ﬂ0>lm(AﬂL) }
[m(8°) +1m(a")]*
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Fig. 4.6 Setup for measuring the ATR spectrum

Moreover, if the intrinsic damping and the radiative damping are equal to each other
Im(f°) = Im(AB"), (4.41)
the minimum of reflectivity calculated from Eq. (4.40) is zero

Runin = 0. (4.42)

4.2.3 Measuring the Waveguide Layer’s Thickness and RI

The experimental setup for measuring the waveguide layer’s thickness and RI is
shown in Fig. 4.6. It consists of a semiconductor laser, a mirror, a polarizer, a
detector, and a computer-controlled 0/20 goniometer. By scanning the incident
angle 03, a series of ATR intensity dips will appear in the reflection spectrum and
each of them occurs at the corresponding synchronous angle.

A typical ATR spectrum calculated from the reflectivity formula as a function of
incident angle is plotted in Fig. 4.7. The dispersion equation is approximated by

K1h = mn + arctan (;—112> + arctan Gilﬁ), m=0,1,2,..., (4.43)
2 K1 3 K1
where

ki = (k@nt — )"

pr= (B - k%n%)l/z, (4.44)
ps = (F — k)"

and
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Fig. 4.7 A typical ATR 1.0
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[ is the propagation constant, kg = 27/ is the wave vector in vacuum, and A is the
wavelength of incident light. n; and n, are the RI of guiding layer and substrate
(air), n3 is the complex RI of the cladding layer (silver film), and 4 is the thickness
of guiding layer. The effective RI of guided mode is defined as

Neff = ﬁ/ko = Nprism sin 0, (446)

and the propagation constant 5 can be easily determined by the measurement of
synchronous angle 0. After the determination of propagation constants of three
adjacent guided modes (f,,_1, B,,» B, 1), two feature parameters, i.e., the guiding
layer’s thickness (4) and RI (n;) can be worked out through solving the tran-
scendental equations

n2 m—
Km_1th=(m—1)n+ arctan( 1’271) + arctan (é%),
2 2
Kmh = mn+ arctan( ”"’") + arctan( o ) (4.47)
2
Kmy1th=(m+1)n+ arctan(jﬁi’”“) + arctan(z% Zii)
In the above equation, the thickness (s) of coupling layer is assumed to be
semi-infinite, but the actual thickness (s) is a finite value; therefore, the guiding
layer’s thickness (k) and RI (n;) should be calculated by Eq. (4.4) with a known s.
However, there is a great difficulty in the accurate measurement of s. But in the
situation of weak coupling, the influence of prism can be ignored and thus the
guiding layer’s thickness (%) and RI (n;) derived from Eq. (4.47) are accurate.
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4.3 Determining the RI Profile of Inhomogeneous
Waveguide

The waveguide’s RI profile can give useful information about the waveguide’s
fabrication process and transmission properties. So, its determination is of funda-
mental importance. Given a set of mode indexes n,,, m =1,2,...,M, what is
waveguide’s RI profile n(x)? Basically, this is an inversion of the Sturm-Liouville
eigenvalue problem [6]. Since the given amount of information is finite, one
obviously cannot predict the continuous function n(x) exactly. Instead, many
approximate methods have been developed. In this subsection, two of them, i.e.,
inverse WKB method and inverse ATM method, are presented.

4.3.1 Inverse WKB Method [7]

Consider a step-asymmetrical RI profile, which is continuous and monotonically
decreasing for x > 0 with a peak RI n; at the surface boundary, shown in Fig. 4.8. n
and ny are the RI of the cladding layer and the substrate, respectively. Profiles of
this kind are typical in the diffused optical waveguides.

The WKB approximate dispersion equation is

¢ P
ko/ [n*(x) — nfn]l/zdx = mmn + tan~! <?0) + %,(m =0,1,2,...,.M — 1),
0

(4.48)

1/2
where Py = (ﬁ2 - kgn%)l/z, K= (k%n} - [32) , the mode index (effective RI) is

nm = B/ko, ko = 27/ 2 is the wave number in the vacuum, and the turning point x,, is
determined by n(x,,) = n,,. In the actual waveguide, ny is closer to n;, their differ-
ence is small, but the difference between ny and ny is relatively large; therefore, the

/

S
IR S

=
3

(o)

Fig. 4.8 RI profile of an inhomogeneous optical waveguide
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second term in the right side of Eq. (4.48) can be approximated as /2. By nor-
malizing the variable x to the free-space wavelength A, Eq. (4.48) is rewritten as
X
dm — 1
8 )

(2 (x) — n2]"dx = (m=1,2,....M), (4.49)

0
where the mode order m starts with 1 not the commonly used 0.
Since n,(m =1, 2,...,M) can be measured by using the m-line technology,
namely the position of n,, at vertical axis n(x) can be determined. To determine the

values of x,, from the values of n,,, one can proceed by writing Eq. (4.49) as a sum
of integrals

x
m dm — 1
> [ v - ) e = (4.50)
=1

X1-1

Next, we assume that n(x) is a piecewise linear function connecting the mea-
sured values of n,,,

nx) =+ — 0 —x), (-1 <x<x)). (4.51)
Let the integral variable in Eq. (4.50) is modified as

[ (x) = n2)*= [n(x) + )2 [n(x) = na] 2,

m

and n(x)+mn, is replaced by a midpoint value of [(m_;+mn)/2]+mn, for
(-1 <x<x), Eq. (4.50) can be rewritten as follows:

X
m !

s
n—1+mn )1/2 / n_1—mn ! dm — 1
E m — Ny, _— — dx = .
=1 ( 2 " (= )+x1—xz 1(XI ) 8

X1—1

The solution for x,, is given as

3 [y + 30, 172 _
()

dm—1 282 m+ny V2 (% — x4 32 32
X {T 3 2 ( ) +nm> m : [("l—l — 1) =y — ) } )
(m=2,3,.... M),

Xm = Xm—1+

(4.53)
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and

9 (ny+3n; 12 ~1)2
Therefore, we get a simple algorithm for calculating x;, x»,...,x) based on the
measured values of ny, ny, ..., n,. Finally, n(x) is determined approximately by
Eq. (4.51).

In the inverse WKB method, the surface index 7 is unknown. This could result
in a set of equations with one more freedom degree than the number of measured
parameters. The value of ny mainly affects the low-order modes and does not affect
the higher order modes. The value of ny is always derived from the minimizing the
sum of the squares of the second differences of the curve [7] and the function
extrapolation [8].

4.3.2 Inverse ATM Method [9]

The dispersion equation derived by the ATM method is given as

Xm

ko/ [ (x) — ni}l/zdx-k‘b(s) = (m — 1)n+ arctan <P0> + arctan <P’),

; Kr Ki
(m=1,2,..., M),
(4.55)

and all used parameters have been described in Chap. 2. The model of RI profile
shown in Fig. 4.8 can be depicted as

X — X1—1 (456)

nl+ u(xl—x) X[_lgxgxla
n(x) =
ng + b exp(—aox) X > Xy,

where b and o can be easily determined by the continuous condition at x.
With the assumed model of n(x) above, the RI profile can be constructed by the
following steps:

(i) Using the inverse WKB method to determine the surface index ny with the
measured mode indexes. Then assuming an initial set of n, denoted as

{nm}(o). Choose of {n,}” is quite flexible. {n,,}'”’ can be an arbitrary
increasing series as long as enough modes can be existed. For example,

{nm}(o) can be chosen as an equal-spaced increasing series. Then, we obtain
an initial {n(x)}\”) by substituting the {n,,}* into Eq. (4.56).
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(ii) Substituting the {n(x)}'”) into the Eq. (4.55), a new set of {x,,}'") is obtained.
Use the {x,}'" to get a new RI profiles {n(x)}"" from Eq. (4.56). Then

M
calculate the deviation 6 = > (n,, — n_m)z.
m=1
(iii) Repeat step (ii) till the deviation 6 — 0, then the RI profile of waveguide is
finally obtained.

After such iterations, 0 will be close to zero, which represents that the mode
indexes allowed by the waveguide with the obtained RI profile are almost equal to
those got from experiment. So, the inverse ATM method is self-consistent.

To illustrate the reliability of inverse ATM method, we take sets of mode
indexes calculated exactly by the ATM method from the exponential, Fermi, and
step RI profile distributions to predict the real RI profile, and compare the results
obtained by the inverse WKB method. In the following calculations, we choose air
as the cladding layer ny = 1.0 and the light wavelength is 632.8 nm. Figure 4.9
indicates that the inverse ATM method is reliable not only in the slowly changing
RI profiles but also in the rapidly changing RI profiles, in which the inverse WKB
method would produce an unacceptable calculation error.

4.4 Measuring the Waveguide’s Propagation Loss

The propagation loss, which is a vital parameter for evaluating the guiding layer,
can be classified into three categories:

(i) The scattering loss arising from the inhomogeneous RI distribution and the
roughness along the waveguide interfaces;
(i) The absorption loss originating from the material ions located at the crystal
lattice, and the impurity ions or electrons;
(iii) The radiative loss owing to the bend of waveguide and the optical tunneling
effect.

The above three categories of losses are described by a uniform parameter: the
attention coefficient a(cm~!) or the propagation loss ¢(dB/cm). Supposing that the
light is guided from z; to z and its intensity decreases from p; to p;, the uniform
parameters o and ¢ are defined as

1
o= — In (%) (4.57)
22— 2 1
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Fig. 4.9 Recovery of the RI profile by the inverse ATM method and the inverse WKB method.
a The exponential profile, n(x) = 1.735+0.150 exp(—x/1.8), (x,um). b The slowly changing
Fermi function profile, n(x) = 1.735+0.100/{1 — exp(—5.0) + exp[(x — 3.5)/0.7]}, (x, pm).
¢ The steeper changing Fermi function profile, n(x) = 1.735+0.100/{1 — exp(—25.0) +
exp[(x — 2.5)/0.1]}, (x, pm),. d Step function profile

and

1
- 10 4 (%) (4.58)
22— 1

respectively.
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Fig. 4.9 (continued)

4.4.1 Perturbation Analysis of the Propagation Loss

For calculating the propagation loss of optical waveguide, several numerical
methods can provide a high-precision result but are unable to give an explicit
analytical expression, and thereby several approximate methods have been devel-
oped. The physical picture of the frequently used approximate method, i.e., the ray
method, is quite clear but its calculation error is always beyond the tolerable level.
Here, we describe the perturbation method in detail. As an example, we set the
guiding layer as an absorptive material and regard a waveguide with loss (char-
acterizing by a complex RI) as a perturbation system of the ideal waveguide
(characterizing by a real RI).

A waveguide containing an absorptive guiding layer is shown in Fig. 4.10.
The RI of substrate (1) and cladding layer (n,) are real, but the guiding layer’s RI
is a complex number
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n,

m=n,+n,

n,

Fig. 4.10 The waveguide containing an absorptive guiding layer

ny = ny, +iny;, (4.59)
and
ny; < ny,. (4.60)
The dispersion equation is
Kih = mm+ arctan (l;—(l)) + arctan (‘Z—j), (4.61)

where py and p, are described by Eq. (4.3), and «; is

1/2

K| = (k(z)n% — [32) ~ Ky 4 ik, (4.62)

— 2,2 2
Kir = Y, kOnlr_ﬂ ’

kgni i (4.63)

=
k(z)n%r - ﬁ

where

Kii =

Only keeping the first-order perturbation term, we obtain

Po po Do . DoK1i
arctan| — ) = arctan| ————— | = arctan —i— -
K] K1y + 1K1 Kir Klr+p0

K1
arctan (22 ) = arctan [ —2%— ) = arctan[ 22 ) —; fz 1i N
K1 Kir + iK1 Kir K2 +p3

and get the rewritten dispersion equation

K1-h = mm + arctan (p_0> + arctan (p_z)
Kir Kir

. Po P2
— ik | h+ + , (m=0,1,2...). (4.65)
( Ki,+py KD

(4.64)
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We define a new variable as

Po T D2
KL +p5  Ki+p3

hioss = h + (4.66)

and it denotes the transverse attenuation length. With a close inspection on
Eq. (4.65), we find that the parameter x); represents the transverse attenuation
coefficient.

The perturbation of propagation constant (Af5) between the waveguide with loss

(B) and the ideal waveguide (f°) is expressed as

Po P2
A= .k§n1rnuh+ AT RT: _ iktz)”lr”“% (4.67)
B ht o+ ok B herr

(3321}

For brevity, the superscript in the above equation has been omitted.
On the basis of Eq. (4.34), we obtain

AB = ilm(p). (4.68)

The first-order perturbation theory indicates that the absorption in the guiding
layer leads to an energy loss but is not likely to change other waveguide’s
characteristics.

The propagation loss calculated by the perturbation theory and the exact
numerical method for the TEy mode excited in an actual waveguide is shown in
Fig. 4.11. The simulated waveguide parameters are as follows: n;, = 1.56,
ny =149, ny =133, h=0.4um, and A= 0.55pum. The perturbation method
agrees well with the exact numerical method if the extinction coefficient (ny;) is
smaller than 0.01. Therefore, we can conclude that the utilization of perturbation
theory to calculate the propagation loss of waveguide is fairly reliable since the case
of the extinction coefficient being larger than 107 is rare.

Fig. 4.11 Propagation loss as i T ' T i
a function of the extinction 1000 - ®m - Present 1
coefficient —— Exact

800 -

¢ (dB/cm)

u 1 1 1 1 1
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

i
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4.4.2 End-Face Coupling Method [10]

The schematic diagram for the end-face coupling method to measure the propa-
gation loss of waveguide is shown in Fig. 4.12. A laser beam passes through a
convex lens to be focused at one end face of the waveguide and then be coupled
into the guiding layer, and finally comes out from another end-face. The input
power (P;) and the output power (P,) at two end-faces are measured and the
propagation loss of waveguide is determined by Eq. (4.57) or Eq. (4.58). However,
because the coupling process also leads to energy loss, one has to repeatedly
measure a series of identical waveguides with different lengths to eliminate the
coupling induced influence. The method starts with a long waveguide, whose length
is gradually decreased by cutting down the end face and polishing the newly formed
end face after each measurement. To optimize the coupling process and maximize
the output power, the laser beam should be well aligned and focused on the same
point at the end face of waveguide. All attenuation coefficients from the multiple
measurements are located around a straight line in the logarithmic coordinate, and
its degree of scatter depends on the uniformity of coupling loss, namely relays on
the identity of the end-face polishing quality and the aligning state between laser
beam and end face. If these data points are well fitted by a straight line, it indicates
that the coupling condition for each measurement is almost the same and the
influence of coupling loss can be eliminated by employing the multiple
measurements.

The end-face coupling method has three-technique drawbacks to be conquered.
First, the guided light beam through a long waveguide would like to spread along
the guiding layer and cannot be well focused by a convex lens at the out end face.
This divergence of light beam inevitably causes a measurement error. Second, the
polishing quality of end face must be completely identical at each measurement,
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Fig. 4.13 The sliding-prism method to measure the propagation loss of waveguide

which is a near impossibility. Third, the requirement of the same alignment state for
each measurement is quite difficult to realize.

4.4.3 Sliding-Prism Method [11]

The setup of the sliding-prism method to measure the propagation loss of waveg-
uide is depicted in Fig. 4.13. The light is coupled into the guiding layer by a fixed
prism and then coupled out from the guiding layer by a slideable prism, which can
be mechanically slid along the waveguide since a small amount of refractive
index-matching oil (its RI is equal to or slightly smaller than that of prism) is
inserted between prism and waveguide. The propagation loss of waveguide can be
worked out by the dependence of output power on the distance between these two
prisms. Compared to the end-face coupling method, the sliding-prism method has
several merits, such as the nondestructiveness test and the elimination of end-face
polishing. However, a high-precision measurement of propagation loss is difficult
because the gap between prism and waveguide is varied and the out-coupling
coefficient is inconstant during the output prism sliding. To eliminate the inaccuracy
induced by the inconstant out-coupling coefficient, a propagation loss measurement
method with three prisms has been proposed. Unfortunately, it needs a longer
waveguide and a more complex optical arrangement.

4.4.4 Digital Scattering Method [12]

As described in Sect. 4.2.2, there is no scattering light in an ideal planar waveguide.
But part of guided mode energy would be scattered out from the actual waveguide
owing to the existence of interface roughness and impurity. The intensity of scat-
tered light is mainly determined by three parameters: the intensity of propagation
light, the degree of interface roughness, and the quantity of impurities. Generally,
the impurities are randomly distributed in the waveguide. Even though the strong
scattered light appears at certain points because of the impurities fluctuation, it can
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Fig. 4.14 The configuration of digital scattering method

be effectively eliminated by the aid of digital filtering technology. As a result, the
intensity of light scattered from each point is proportional to its local intensity of
propagation light. In the experiment, the intensity of scattered light along the
propagation path is recorded by a CCD camera and is linearly converted into the
local intensity of propagation light. Finally, the propagation loss is determined by
fitting the local intensity curve of propagation light.

The configuration of digital scattering method is illustrated in Fig. 4.14.
The CCD camera is placed further than 5 cm away from the waveguide to enable
that the record over the entire waveguide can be done in one shooting. Therefore, it
can minimize the disturbance of probe on guided modes and can avoid the mea-
surement error in the multiple shootings method, where the distance between probe
and waveguide is difficult to keep unchanged. A photograph of one waveguide with
a polymer guiding layer and the recorded scattered light intensity along the prop-
agation path are given in Fig. 4.15. The noise signals in Fig. 4.15b can be elimi-
nated by using the median filtering algorithm, which assumes that the noise signal is
random and independent on the intensities of adjacent points. Consequently, the
isolated noise signal at certain point should be removed while the median value of
all pixels located in a selected window is added to this point.

The median filtering algorithm is one kind of spatial convolution methods, and
each data performs the following convolution calculation

F()C,y) = sz(x —m,y— n)W(m,n)7 (469)

where f(x —m,y —n) and F(x,y) are the image data before and after the convo-
lution calculation, respectively, W(m,n) is a window function to evaluate the
median value. The photograph of waveguide and the intensity of scattered light
after the spatial convolution operation are shown in Fig. 4.16. With comparison to
Fig. 4.15, all the sharp noise signals have been effectively removed at the cost of
reduced image details.
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Fig. 4.16 The median filtering method resulted in a photograph of waveguide and b intensity of
scattered light

The intensity of propagation light is described adequately by an exponential
decay function dependent on the propagation distance

P = Pyexp(—az). (4.70)

The attention coefficient o and loss & are calculated by the least square fitting
method.

4.5 Evaluating Nonlinear Parameters of Waveguide

The study on the nonlinear waveguide optics has attracted considerable interest
since it is capable of bounding the light energy in a small area and largely
enhancing the density of optical power. In this subsection, we introduce the prin-
ciple and experiment for evaluating the electro-optical (EO) and thermo-optical
(TO) coefficients of a polymer layer by applying the prism-waveguide coupling
system.
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4.5.1 Measurement of the Electro-optic Coelfficients

In the experiment, the incident angle 6 is fixed at the middle point of the falling
edge or the rising edge of one selected resonance dip (see Fig. 4.17). The variation
of RI (Anj;) induced by the electric field (E) applied on the polymer layer will give
rise to a change in the reflected light intensity (AR). For a prism-waveguide cou-
pling system, the relation between AR and An;; is [13]

nz cos 0

where n3 is the RI of prism and k presents the slope of the linear area in the
resonance dip.

Here, we give a general formula to evaluate the EO coefficients. For a polymer
layer with both linear EO effect and quadratic EO effect, when an electric field (E)
is applied perpendicular on it, and the field-induced RI change is

1
Anjl = — En? (’))le+Sj1E2), (472)

where Vit (contracted notation) is the element of linear EO coefficient tensor, and s;;
is the element of quadratic EO coefficient tensor with j =1 or j =3 for TE- or
TM-guided mode, respectively. Substituting Eq. (4.72) into Eq. (4.71), we yield

kn3

AR= ———
2n3cos 0

(74 E + 51 E?), (4.73)

where n; is the RI of the polymer layer. The change of the reflected light intensity
appears to follow a parabolic function of the applied electric field.

If the polymer layer has only the linear EO effect, its linear EO coefficient is
derived as

Fig. 4.17 The change of the r
reflected light intensity in
response to the applied
electric field

Reflectiviity

Angle of incidence [Deg]
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Fig. 4.18 Configuration for the simultaneous evaluation of the linear and quadratic EO
coefficients

2n3 cos 0
vy = —————AR. 4.74
/]1 kn’l;E ( )

On the other hand, for an isotropic polymer layer, namely there is no linear EO
effect and the quadratic EO is the first nonlinear effect, Eq. (4.73) is reduced to

3
iy 2

AR = ———5;
2n3 cos OSJ1

(4.75)

It is clear that in this case the variation of the reflected intensity is quadratic to
the applied electric field. The linear EO coefficient [13] and quadratic EO coefficient
[14] can be separately measured because all parameters except y;; in Eq. (4.74) and
sj1 in Eq. (4.75) are experimentally measurable.

A question arose here is how to evaluate the linear and quadratic EO coefficients
simultaneously? The experimental setup [15] is shown in Fig. 4.18. It consists of (1) a
prism; (2) a gold layer; (3) a polymeric guiding layer; (4) a buffer layer; and (5) a base
gold layer. The applied triangular electric field has an amplitude ranging from —E,, to
E,,, the direction of which is perpendicular to the base surface of the polymer layer
along the z direction. The electric field reaches its maximum value E,, in the +z
direction, where the variation of reflected intensity is proportional to
V31 |Em| +S31|Em|2, whereas the maximum value E,, in the —z direction leads to
variation of the reflected intensity which is proportional to —ys;|E,|+ 531 |Em|2.
Therefore, the variation of reflected intensity turns out as an unsymmetrical parabolic
curve resulting from the combined action of linear EO and quadratic EO effects.

The polymeric guiding layer of the experimental sample is poly
(9,9-dioctyl-2,7-fluorene-co-benzo[c] [1, 2, 5] thiadiazole-co-9-hexyl-3,
6-carbazole) (PF8-BT-CZ). In the experiment, a triangular AC electric field with
260 V peak-to-peak value of about 250 Hz was applied across the two gold elec-
trodes of the sample. The oscilloscope traces of the applied electric field and the
variation of reflected light intensity versus time are shown in Fig. 4.19. The applied
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Fig. 4.19 Oscilloscope traces of applied voltage (fop) and the reflected intensity versus time
(bottom)

voltage is attenuated to be 10 % of its original value before put into the oscillo-
scope. With a linear increase or decrease in the applied electric field, the variation of
reflected light intensity exhibited a parabolic curve with different maximal values at
point A and point B because the variation of reflected light intensity is related not
only to E? but also to E. By measuring the variation of reflected intensity at which
the applied electric field reached its maximum E,, in the +z and —z directions,
respectively, we obtained two groups of experimental data, which is substituted into
Eq. (4.73) for constructing a set simultaneous equation to solve y;; and s;;.

4.5.2 Evaluating the Thermo-Optical Coefficient
of Polymer Layer

The steps of the conventional equipment Abbe refractometer to evaluate the TO
coefficient of polymer layer are as follows: (1) measuring the RI of polymer layer
under different temperatures and (2) fitting out the TO coefficient with the appli-
cation of the obtained data. This method remains several issues to be improved.
First, the polarization properties of TO coefficient cannot be studied since the
separate measurement of TM polarization and TE polarization by the Abbe
refractometer is impossible. Second, the Abbe refractometer is incapable of mea-
suring the properties of polymer layer embedded in a waveguide.

The prism-waveguide coupling system to measure the TO coefficient of polymer
layer [16, 17] is illustrated in Fig. 4.20. It consists of two components. The upper
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Fig. 4.20 Prism-waveguide Laser
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one is a glass prism with a thin metal film and a polymer layer coated on its base
surface. The bottom one is an automatic temperature control unit. The two com-
ponents are firmly placed together and mounted on a computer-controlled 6/26
goniometer. For the proof of concept, the RI of PMMA layer under two linearly
polarized states as functions of the temperature is measured by the prism-waveguide
coupling system, and the TO coefficients are calculated by the least squares fitting
of the experimental data shown in Fig. 4.21. The result is well consistent with other
measurement methods.
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Chapter 5
Surface Plasmon Wave

Abstract The pervious chapters introduce the dielectric slab waveguide, which is
composed by ideal lossless materials; meanwhile, the widely used RF transmission
lines and microwave waveguide is made of metallic lines, strip, and tubes. Metal is
treated as a perfect conductor in the low-frequency range. Due to its collective
electrons excitation, which is called as the plasmon, in the UV and visible region,
metal can no longer be treated as a perfect conductor; it can still be applied to build
low loss metal waveguide or metal-dielectric waveguide. In these two structures,
the electromagnetic field takes the form of evanescent field. On the other hand, for
noble metal such as gold, silver, and aluminum, their complex permittivity usually
has a relatively larger real part than its imaginary part. In the near infrared and
visible region, its real part is usually a large negative number

e =g +ig, & <0, & > ¢ (5.1)

Due to this optical property of metal, the surface plasmon wave (SPW) can prop-
agate along its interface with dielectric, and the long-range SPW can be excited
within a thin metal slab. These two surface waves illustrate different features from
the conventional waveguide. Some unique characteristics can be valid, for example,
the large range of the effective refractive index and the field enhancement effect.
The propagation of SPW not only riches the traditional research field of the
waveguide optics, but also finds a wide application in fields such as integrated
optics, nonlinear optics, and molecular biology. This chapter first discusses the
SPW bounded at a metallic interface and then analyzes the long-range SPW. The
excitation method via attenuated total reflection method of these surface waves is
introduced, and their applications are also discussed.

Keywords Surface plasmon wave - Long-range surface plasmon wave - Loss -
Field enhancement effect
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5.1 Optical Properties of Metal [1]

This section explains the origin of the complex permittivity of metal and interprets
qualitatively the dispersion and absorption characteristics of metal in the visible
frequencies by a simple physical model.

5.1.1 The Permittivity Constant of Metal

As is widely known, metal is a good conductor with a very high conductivity, and
this property must be taken into consideration when dealing with metal’s optical
properties. Assuming the dielectric constant of a homogeneous isotropic and
non-magnetic media to be ¢, and its permeability to be 1, the conductivity to be
g, where ¢ denotes its relative permittivity, the Maxwell’s equation can be recast
into the following form

VfoI:oE—&—sos%
r_ oH
VXE—*/J,O@

_ . 5.2

v Bl (5:2)
&pe
V- -H=0

Taking the divergence on both sides of the first equation, and substituting the
third equation into the first equation, there is

— 4+ —p=0 53
o Tas” =0 (53)

which follows
p=poe ", (5.4)

where
&oé€

== 5.5
=2t (55)

is known as the relaxation time. It is clear that for any media with conductivity of g,
the free charge density p decays exponentially with time. Metal has a large con-
ductivity and thus a small relaxation time, which is typically on the order of 10~ .
This value is much smaller when compared with the photon with the same fre-
quency, (about 107"> s for the visible light). So it is reasonable to assume that the
free charge density in metal is always equal to zero.

Taking the curl on both sides of Eq. (5.2), then inserting it into the first equation,
and considering the fact that the charge density is always zero, one can get
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. OE O’E
V’E = Ho® - +so,uosﬁ. (5.6)

Assuming in all generality a harmonic time dependence E = Ege~™ of angular
frequency o, the above equation can be simplified as

V2E+k’E =0, (5.7)

with

N 2
%2 :“’2<s+i”). (5.8)

c wen

Note that only if we let the permittivity to take the form of a complex number

Foeti—, (5.9)
wey

then Eq. (5.7) will be mathematically equal with the Helmholtz equation.
Combining Eqgs. (5.7) and (5.8), it is obvious that the only difference between the
plane wave propagating in a metallic media and in a transparent dielectric is that the

usual real ¢ and k are replaced by complex ¢ and % in the former media.

5.1.2 Elementary Electronic Theory of Metal

Based on the elementary electronic theory of metal, a simple physical model can be
established to qualitatively explain metal’s dispersion and absorption in the visible
regime of light and present some rough estimates of key parameters.

Usually, the bound electron dominates the dielectric characteristic and the free
electron determines that of metal, except at ultraviolet and higher frequencies. At
room temperature, a gas of free charges move randomly against a background of
fixed positive ion lattice, and the metal is electrically neutral since the sum of
negative free electrons per unit volume equals that of positive ions. Such a system
of unbound positive and negative particles, whose overall charge is roughly zero, is
called as plasma. When positive and negative charges separate, the ions can usually
be treated as fixed due to its large mass, and the electrons oscillate harmonically in
the electric field, and this phenomenon is called as plasma oscillations. The natural
frequency is named as plasma frequency, which is denoted by w,.

Imagine a bulk of plasma, whose density of positive or negative charges is N,
the electron gas shifts a distance x when subjected to an external electric field and
the positive ions remains fixed. As can be seen in Fig. 5.1, thin layers of negative
and opposite charge will appear on the left and right boundaries, respectively.
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Fig. 5.1 Separation of
positive and negative charges = ol it - +
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The density of surface charges is Nex, where e represents the charge amount of a
single electron. If an additional uniform electric field E = —Nex/¢, is exerted on
the plasma and a restoring force will be loaded on a single electron,

N2
Fo % (5.10)
€0

As a result, the oscillation behavior of a free charge is rather similar with a
spring oscillator with k = Ne? /&, and its natural angular frequency is

[Ne2
=4 /— 5.11
Wp - ( )

For metal, w), is typically on the order of 10'©s~!. When the electron gas in the
metal is subjected to an external electric field with an angular frequency o, it is
expected that a forced vibration can be observed. So when we apply the plasma
model, the motion of an electron will be governed by

mi+mpfi = ek, (5.12)

with the term mpf#, which is proportional to its speed, denotes the damping suffered
by the electron due to collisions and radiation.

Without any external electric field, the speed of an electron with an initial value
of vy decays exponentially

v=i=v-e (5.13)
where f3 is the attenuation constant and relates with the relaxation time by © = 1/,

which denotes the average time interval between two collisions of an electron, and
it is typically of the order of 10~ '*s.
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In case of electrostatic field or in the low-frequency region, Eq. (5.12) can be
rewritten as mfi- = eE by ignoring the electron’s inertia. Assuming the free charge
density is N, so the current density is

N 2
J = Nei = ~E, (5.14)
mf

and the corresponding conductivity is explicitly given by
o = Né&? /mp. (5.15)

When applying a harmonic time-dependent external field E = Ege ', the
particular solution of Eq. (5.12) takes the form r = rye ™™ and can be solved as

e
- = __E
m(w? +ifw)

the current density is

- dr Ne?

and the frequency-dependent conductivity is

Ne?

From the above equation, several conclusions can be drawn: (i) in case that
@ < B, o can be approximated by ¢y = Ne?/mp, (ii) in case that w > B, i.e., the
visible light region, ¢ has a larger imaginary part than its real part; (iii) in case of
high frequency, ¢ becomes purely imaginary, and the permittivity ¢ is positive and
real; consequently, metal acquires dielectric character.

As mentioned before, the free electrons govern the electromagnetic response of
metal, so the first term ¢ on the right side of the complex permittivity Eq. (5.8)
should be replaced by 1. Inserting the expression for ¢ and Eq. (5.11), one obtains
Ne? w;

a gomw(w +iff) -7 w(w+if) (5.18)

g=1

In the visible part of the spectrum f/w < 1, so the real and imaginary com-
ponents of the above complex permittivity are given by
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2
a1 9 L (0 2
Ret=1-—2o~1-(2),

Imi = — 20~ B (@)
(@]

(5.19)

When w < w,, the real component of & is negative. Via inserting = 2.5 x 10%
s7h, B=10"s71, w, =10'%s7!, so that w,/w =4, B/w =1/25, and the real
component of permittivity is negative Re¢ = —15, which is 25 times of its imag-
inary part. This illustrates the fact that in the frequency region of the visible light,
the real component is negative, and its magnitude is much bigger than that of the
imaginary part. From Eq. (5.16), it is obvious that when w > f, there is a 7/2
difference between the phases of the current density J and the electric field E. When
® > wp, the real component of ¢ becomes real, and the bound electrons become
more and more important when moving to higher frequency regime; therefore, the
metal becomes more transparent and acts like a dielectric.

It should be pointed out that, the above model can only provide some qualitative
explanation of the metal’s optical response and present some approximate esti-
mation of some key parameters, and a more strict theory will be needed to resort to
quantum mechanics.

5.2 SPW on the Interface Between Metal and Dielectric

Due to the special optical property of metal, surface wave is different from the
guided modes in an optical waveguide and can propagate along the interface
between metal and dielectric. These surface waves have a wider range of its
effective index and are evanescently confined in the perpendicular direction and
therefore a strong field enhancement effect is obtained. They enrich the content of
waveguide research, and thus, the metal-cladding waveguides find more application
in fields of integrated optoelectronics, and biochemical detection, etc.

5.2.1 Excitation Condition of SPW

Let us consider an interface between two semi-infinite isotropic media, where the
permittivity of the medium at x > 0 is written as & (w) and the permittivity of the
medium at x<0 is & (w) and set both media are non-magnetic, i.e., ; = g, = .
Based on the Maxwell’s equations
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. OB
VXE=—— 5.20
xE=-2", (520)
. 9D
VXH=—. 5.21
o (5.21)
Via inserting Eq. (5.21) into Eq. (5.20), there is
. D

where D = gye(w)E and &(w) denotes the relative permittivity.
Since the surface waves are confined to the interface and decay in the perpen-
dicular direction, the trial solution for the electric field should be

s
=
~

~

) = E{ exp(—oux) expli(fz — wrt)] (x > 0) } (5.23)

) = E exp(azx) expli(Bz — or)] (x<0)

5
PN
&

-

Inserting Eq. (5.23) into Eq. (5.22) and combing the divergence of the electric
field

V-E=0,

one will have

Ei(x) = (fEO E E?> exp(—ax) (x > 0)

120 =1y
(5.24)

Ba) = (~ LB B L) expan) (v<0)

In the above equations, the propagation factor exp[i(ffiz — wt)] has been omitted
for simplicity. The attenuation coefficients o; and o, are given by

2 2 g2
o] = P —k;e
' b , o (5.25)
o, =B —kyen
Similarly, the expressions for the magnetic field are
FI()—L iBEY @E‘) wEY ) exp(—opx) (x > 0)
1) = o IpLyy, o 1 Y1E7, p 1X) (X

: e (5.26)

i (. 3

Hy(x) = ohe (zﬁEgy, - 3—22Egz, —oczEgy> exp(onx) (x<0)
0
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Applying the boundary conditions, if follows that

E(l)y = Egyv (5.27)
E) =EY, (5.28)
&1 o & o
ZE =_ZFE 5.29
oy 1z o 279 ( )
o E), = —mE)y . (5.30)

Three conclusions can be drawn based on the above equations
. Since both o and a, are real positive number, combing Egs. (5.27) and (5.30), it
is clear that

E}, =E) =0, (5.31)

which shows that the SPWs are always TM polarized.
. Combing Egs. (5.28) and (5.29), the dispersion expression of the SPW takes the
form

o &1

=--1 5.32
e (5.32)

which demonstrates that this kind of waves can only be excited when the

permittivity of the two media take opposite signs.
. Inserting Eq. (5.25) into Eq. (5.32), the effective index of the SPW can be

written as
B £18
— = . 5.33
ko &+ & ( )

Based on the second conclusion, if one of the media in Fig. 5.2 is metal with

negative permittivity (strictly speaking, the metal’s permittivity is complex, but its

Fig. 5.2 Interface between two media of different permittivities
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Metal Dielectric

0

Fig. 5.3 Electric field distribution of the SPW

imaginary component has a much smaller magnitude), the excitation condition of
the SPW can be fulfilled. And the electromagnetic field distribution along the x-axis
perpendicular to the interface is plotted in Fig. 5.3.

5.2.2 Loss

The permittivity of metal is complex, where its imaginary part denotes the
absorption of the light energy inside the metal. Without losing generality, let us set
the & (w) in Fig. 5.2 to be complex, there is

& = &0 +igp, (8,‘2 > 0) (534)

The introduction of the complex permittivity of metal results in a complex
wavenumber for the SPW, while its imaginary component represents the loss
suffered by the surface during propagation. Let us consider two simple cases:

1. The first case is ¢, = 0, which represents that the metal is non-absorptive. (This
situation is physically unrealistic, but can still be served as an approximation
when |g,2| > & holds.) In this case, there is &, = ¢,2, and in general we can also
assume that |¢,2| > &, consequently the propagation constant of the SPW is

€182
=ko./ 5.35
ﬁr 0 & 8r2’ ( )

B, =0. (5.36)

Since the propagation constant is purely real, the corresponding attenuation
coefficients o; and o, are also real, which read now

o = koSl (537)
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1

Oy = k0|8,~2| m
T

(5.38)

2. For the second case ¢, # 0, then all the quantities f3, o1, and o are complex, so
based on Eq. (5.33) they can be solved analytically and be written as

1/2 1/2
PRt (v ad)”
B, = ko — 5 , (5.39)
(81 +8r2) +8i2
1/2
_ €1 V2epne
fi=lo (e1+¢ )2+8-2 . 2 o121 (5.40)
el gl (e da)]
where
& =& +eh+een. (5.41)

Usually, the permittivity of metal satisfies &, <0, |¢,2] > €p, and |en] > &,
which can further simplify the above two formula into the following form

€182
LRk [ ——— 5.42
ﬁ; 0 e + 5r27 ( )
&nél E1&r2
SN ¢ . . 5.43
Pix ko 2e0(e1 +e2) Ve +én (5.43)

In view of Egs. (5.42) and (5.43), we can see that f§, > ko+/¢; and f; is pro-
portional to &p. Comparing with Eq. (5.35), it is clear that if we ignore the
imaginary part of metal’s permittivity, the characteristics of the SPW will not be
varied except that its propagation loss is omitted.

5.2.3 The Excitation Scheme of the SPW

From the previous sections, we know there are certain conditions for the excitation
of SPW at the interface between metal and dielectric. The pioneer work was done
by Otto et al. [2] and Kretschmann et al. [3] on the issue of optical excitation of the
SPW. They adopted the prism coupling structure as shown in Fig. 5.4, where the
refractive index of prism is sufficiently large. The incident angle at the bottom of the
prism can be tuned, so that the wave vector along the interface of the incident TM
wave can be matched with the wave vector of the SPW. By adjusting the thickness
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(a) (b) \

Fig. 5.5 Actual ATR structure

of the air gap in Otto’s setup or the thickness of the metal film in the Kretschmann’s
configuration, the SPW can be effectively excited, namely, most of the incident
power is coupling into the surface waves and the intensity of the reflected light
beam is significantly reduced. As a result, a resonance absorption dip can be
observed in the reflection spectrum. This excitation method is known as the
attenuated total reflection technology, or ATR technology for short.

Let us take the Kretschmann’s structure, for example, to derive the expression of
its reflection probability and consider the actual structure and the coordinate as
plotted in Fig. 5.5. The permittivity of the prism and dielectric is set to be &, and &,
respectively, and the complex permittivity of metal to be ¢; = ¢, +i¢;1, and the
thickness of the metal film to be d. The SPW propagates along the z-axis, and the
incident angle at the prism/metal interface is 0,. According to the SPW’s charac-
teristics, the magnetic field distribution can be written as

Aye2=d) 4 Bre—mlx—d) (x> d),
Hy(x) = { Ae™ + Bye ™, (0<x<d), (5.44)
Ape™,  (x<0).

with

12 .
% = (ﬁz_k(%gj) ) (1207172)7 (5.45)
ﬂ = k()\/stin 92.

The optical field in the prism is oscillating, the parameter o, should be imaginary;
meanwhile, the parameter «; corresponding to metal is complex due to the complex
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permittivity ¢;. Using the continuous condition of Hy and %Hy’ at the interface of
x = 0 and x = d for TM mode, the expression for reflection coefficient can be
solved as

2

B 2 —20d
R = |22 = [zt _ (5.46)
Az L+ 7067
with
&0l — €100
= 5.47
Yo1 Eool1 + €10 ( )
€10 — &0
=27 e 5.48
V12 e100, + E2001 ( )

After the specific parameters of the experimental setup are fixed, Eq. (5.46) can be
applied to plot the reflection probability R as a function of incident angle 0.
A concrete example is presented in Fig. 5.6 with parameters ¢y = 1.0,
g1 = —18.0+10.7, &, = 3.24, d = 50.0 nm, and A = 632.8 nm. When the incident
angle 0, is equal to a specific angle of Oa1r, the reflection probability R reaches its
minimum. This denotes that the z-component of the incident wave vector equals the
propagation constant 3,7z of the SPW, the surface wave is excited, and energy is
transferred to the metal/dielectric interface. The half width of the resonance rep-
resents the energy loss induced by the metal absorption.

The permittivity and the thickness of the metal film are the key parameters in
many related experiments, so it is usually required that these parameters must be
measured. The conventional measurement method is the double-wavelength exci-
tation method [4], i.e., using two wavelength to excite SPW and measuring their
reflection spectrum, then determining the complex permittivity and thickness via

Fig. 5.6 Reflection spectrum 1.0
of ATR
R 051
0.0 T T
34 36
0

ATR
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numerically fitting method. Similarly, we proposed another method to test these
quantities via changing the dielectric adjacent the metal [5] and yield good results.
Note that SPW can also be excited via grating coupling method, which facilitates
the miniaturization of the related optoelectronic devices.

5.2.4 Field Enhancement Effect

As mentioned before, the SPW is a kind of electromagnetic wave propagates along
the metal/dielectric interface and decays exponentially from the interface. In short,
the field intensity is strongest at the interface. Taking Kretschmann’s structure, for
example, setting the refractive index of the prism to be n, = 1.515, and the per-
mittivity of the 45-nm-thick silver film to be &, = —17.3 +i0.68, and the refractive
index for air ny = 1.0, the electric field distribution of the SPW is plotted in Fig. 5.7.
If we normalize the electric amplitude of the incident light in the prism, at the
boundary |E,| is enhanced by 18.8 times, while |E,| is enhanced by 4.2 times and
the enhancement of the Poynting vector is as high as 335.4 times. Due to this field
enhancement effect, the SPW obtains a wide range of applications in fields of
biology, chemistry, materials science, and designing optoelectronic devices.

Fig. 5.7 Field enhancement

effect in the Kretschmann’s | Silver film
structure
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5.3 Measurement of Metal Film’s Thickness
and Permittivity by Double-Wavelength Method

The optical characteristics of metal are dominated by its frequency-dependent
complex permittivity &(®), and various methods have been developed to determine
&(w) experimentally. Among all these methods, the SPW technology is particularly
suitable to study the metal film with nanometer-scale thickness. During the late
seventies of the last century, Lopez-Rios and Vuye [6] proposed a numerical fitting
method to determine the metal film thickness d and permittivity &(w) simultane-
ously via exciting the SPW. But this method requires that the functional form of
&(w) should be given in advance, but that it is unrealistic in most cases. So there is a
need to measure these key parameters of a metal film experimentally without the
knowledge of the functional form of ¢(w). In this section, a widely applied
double-wavelength method is introduced [4].

5.3.1 Measurement Principle

Let us consider the excitation of SPW via the Kretschmann’s configuration as
plotted in Fig. 5.8 and denote the permittivity of air, metal film and prism as &g, &;
and &, respectively, the thickness of metal film as d. A laser of TM polarization and
angular frequency o is incident onto the prism/metal interface via incident angle 0.
When the wave vector of incident matches - via adjusting incident angle, the SPW
can be excited, the energy can be transferred into the surface wave and a resonance
dip plotted in Fig. 5.9 can be formed in the reflection spectrum. Oa1r represents the
resonance angle, wy is the width of the resonance dip, and R, denotes the min-
imum of the reflection probability.

The wave vector of the SPW is complex due to the metal’s absorption and the
energy leakage from the prism. On the other hand, the wave vector of the incident
light along the interface is purely real, so the match between these two wave vectors
is approximate, where

B =Re(p"). (5.49)
b4
#
0 Z
[gl -d
£y

Fig. 5.8 The excitation of SPW via Kretschmann’s structure
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Fig. 5.9 ATR spectrum of a R a
SPW
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As a result, the resonance angle is
Re (ﬁL)
Oatr = sin ' |———=2]. 5.50
ATR koy/e2 ( )
The derivation of the reflection probability is not difficult, and R can be written as
—20,d) |?
R = |12t roexp( 3, )‘ , (5.51)
1 —+ rior2 exp(—2oc1d)
where
€100 — €pl1
= 5.52
o &0 + €00ty ( )
€10 — &2001
= 5.53
2 €10 + &0 ( )
and

o = (B — Keo) ',
m = (B —ker)'?, (5.54)
Ky = (k(z]Sz — Bz)l/z.

As the incident angle 0 approaches the resonance angle Oatr, a good approxi-
mation of the reflection probability R can be derived as

g Am(P)mA) (5.55)
[8—Re(p)]" + [tm(8")])°
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where
B- = B+ AB-. (5.56)

In the above formula,  is the complex wave vector with the presence of the prism,
while ° is the wave vector of the free SPW without the prism. So it is clear that
AB" is the perturbation on ° due to the energy leakage from the prism. For the
metal film, there is &, = &, + &1; and |g;,| > &y;, which follows

€180 é1réo . €180 £1i€0
B0 = koy | ——— & koy | ———+ ik : ) 5.57
&1+ & &1, + &0 eir+e0 2e1-(e1-+ &) (5:57)

A =ty (25 )
~ O e s e P

&1
—2kodm] . (5.58)

The imaginary components of f° and AB" are called as the intrinsic and the
radiation attenuation, respectively. The former is the Joule loss in the metal, while
the latter represents the energy leakage from the prism. These two kinds of loss
determine the half width of the absorption dip in the reflection spectrum, and we
can write

Im(ﬁl‘) = A(ko+/e2 sin Oatr) = ko+/€2 cOs Oatr - AD, (5.59)
and
2Im(p")
=20 = —n——~-—. .
@0 ko\/€2 cos Oatr (5.60)

Equation (5.49) holds at the resonance angle Oatg, and the reflectivity reaches its
minimum value

o
Rmm - 1 (1 +’7)27 (561)
where
n =1Im(p°)/Im(AB"). (5.62)

Based on the above analysis and the experimentally measured ATR spectrum,
the complex permittivity &; and thickness d of the metal film can be determined.
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5.3.2 Experiment and Measurement

The experiment process includes the preparation of the sample and the measure-
ment of the ATR spectrum. The detailed steps of the calculation of the complex ¢;
and d are listed below:

. Inserting the measured Org into Eq. (5.49), we can solve the Re(");

. Since Re(AﬁL) < Re(ﬁo), we can assume that Re(ﬁo) = Re(ﬁL);

. Determine ¢;, via the real part of Eq. (5.57);

. Inserting the measured Oatgr and W into Eq. (5.60) to determine the term
Im(p"). Note that Im(f") = Im($°) +Im(AB");

5. Substituting the measured Rp, into Eq. (5.61) to solve the value of

Im(ﬁo) /Im (AﬁL);

6. The terms Im(B°) and Im(AB") can be solved based on the two steps above;

7. Combine the value of Im(ﬁo), &1, and Eq. (5.57), ); is available;

8. Finally, based on Im(AﬁL), OaTR, €15, and &;, the thickness d can be obtained

using Eq. (5.58).

W N =

Since Eq. (5.61) has two reciprocal sets of solution, where one set corresponds to
the case that intrinsic attenuation is greater than the radiation attenuation (less
coupling situation); the other set presents the contrary case, i.e., the radiation
attenuation is greater than the intrinsic attenuation (over coupling). The thickness
corresponding to the former set of solution is larger than the other one. In the
first-order approximation, these two sets of solutions are difficult to discern based
on the ATR spectrum, since both sets can be used as initial values to produce very
good fitting curves. In order to determine a set of real solutions, two different ATR
curves excited by two different wavelength 1, and /1, must be measured. Although
each wavelength can produce two sets of ¢; and d, the thickness of the metal film is
wavelength independent, we can always find two values of d corresponding to
different wavelengths are closed to each other. Consequently, the exact thickness
and the metal permittivity corresponding to the two wavelength 4; and 4, can be
obtained from these two sets of solutions.

For example, if the two sets of solutions corresponding to wavelength 1; =
632.8 nm are

l.eg = —17.45+i0.92, d=38.7nm
2.6 =—16.72+i1.66, d =483 nm

and for A, = 488.0 nm, the two sets of solutions are

1. = —8.39+i0.60, d=56.7 nm
2.6 =—831+i0.68, d=47.1 nm
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The values of thickness d in the second sets corresponding to both wavelength 4,
and 4, are close to each other. So we can determine that the properties of the metal
film at the two frequencies are

g = —16.724il1.66, d=47.7nm, 1=632.8nm

& = —831+41i0.68, d=47.7nm, A= 488.0 nm

5.4 Long-Range SPW of a Metal Film Structure

Different from the SPW, the long-range SPW (LRSPW) can be excited in a sym-
metric structure. The confinement of the coupled SPW to the metal film decreases,
and most energy is stored in the homogeneous dielectric. Consequently, a drasti-
cally increase in the propagation length is observed, and this kind of surface wave is
called as the long-range SPW.

5.4.1 Dispersion

Consider the metal film structure as shown in Fig. 5.10, regions 1 and 3 denote
non-absorptive media with permittivity written as ¢; and &3, respectively. Region 2
is the metal film of thickness d and complex permittivity &, = ¢, + i¢;». The optical
characteristics of metal implies that ¢, <0, |¢,2| > &, and |e,2| > &, 3. For the
convenience of analysis, let us ignore the absorption at beginning, so there is
& = ¢ and & = 0. We will discuss two different situations: (1) asymmetric
structure and (2) symmetric structure.

£

£y = £y +IE'-12

£ 0

Fig. 5.10 Metal film structure
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1. Asymmetric structure

Consider the TM wave travels along the z direction at the thin metal film, where
the field distribution in the three media is given by

Ale“?x, x<0,
Hy(x) = § Aye™ +Bye ™™, 0<x<d, (5.63)
Bie 50D x> 4.

The superscript (0) denotes the ideal system without absorption, and there are

= (B~ k)"
o= (p*— k(z)sz)l/z : (5.64)
= (B~ Res) "

Based on the transfer matrix method, the matrix equation for the magnetic field
is

H,(0) H,(d)
1 =M| 1 ; (5.65)
—H, (0 —H,(d
SH,(0) CH@)
where
0 & . 0
cosh (oczd) -0 sinh (oczd)
M, = 0 2 , (5.66)
o
— (0—2 sinh (agd) cosh (09d)
2

Using Eq. (5.63) and inserting the boundary conditions into Eq. (5.65), the
matrix equation reduces to

0 1
<_°“ 1>M2 o) =o. (5.67)
€1 &

The dispersion relation of the LRSPW on the asymmetric thin metal film
structure can be obtained by solving the above equation, namely

&0l eod

0 0

0 . €100 &30y

tanh (oczd) = — W . (568)
T Gk

E10y &30
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2. Symmetric structure

If the regions 1 and 3 contain the same materials, i.e., & = &3, then Eq. (5.68)
can be simplified as

0
&
joJhat s

RN
2007

1+ (=5
€10y

In this case, Eq. (5.69) can be split into two equations: one corresponds to the
1| <1 and By /A, > 0 [see Eq. (5.63)].

(5.69)

0]
0
€10,

even mode, which fulfills the inequalities

The dispersion relation of this mode is

1 cr00
tanh (E agd) =——1. (5.70)

The other equation corresponds to the odd mode, which satisfies the inequalities

| > 1 and B,/A, <0 [see Eq. (5.63)]. And its dispersion relation is

&
100

1 &109
tanh( =odd | = — 2. 5.71
an (2a2 ) ) (5.71)

From Egs. (5.70) and (5.71), it is obvious as d — oo, both dispersion relations
evolve into

0
!
— = ——. 5.72

Compared with Eq. (5.32), it is clear that both the even and odd modes reduce to the
SPW propagating at the metal/dielectric interface. These two states and their
propagation constant become degenerate for infinitely large d

0 182
=koy/ . 5.73
p 0 &+ é& ( )

These two surface waves do not affect each other and travel freely when the
thickness is very large, but as the film thickness decreases, they couple mutually
and turn into even and odd modes. Let us consider the other limit of d — 0, these
two modes show different characteristics:

1. According to the dispersion relation Eq. (5.70) of even mode, there is oc? =0,
which corresponds to f° = Ko+/€1.
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Fig. 5.11 Dispersion relation da
for the SPW on a symmetric
metal film structure

2. Based on the dispersion relation Eq. (5.71) of the odd mode, both of and o9
approach infinite, so that f° — oo.

In view of the above analysis and the dispersion relation plotted in Fig. 5.11,
clearly for a metal film of finite thickness d both even and odd modes will have their

own propagation constants: ﬁ(l) for the even mode and /33 for the odd mode. The
allowed range for the even mode is

€18
k O <koy | —=— 5.74
0ver <fy < Voo (5.74)

and the allowed range for the odd mode is

€182

ki
0 &g+ &

<) <o0. (5.75)

5.4.2 Loss

This section focuses on the loss feature of metal film structure. Due to the optical
property of metal in the optical frequency range, first-order perturbation method can
be applied to deal with this issue. The main idea is to view the actual metal film
with complex permittivity as a perturbed version of an ideal metal film, which is
characterized by a real permittivity. If the perturbation of the ideal system’s
propagation constant is derived, its imaginary component represents the loss factor
of the actual system.
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1. Asymmetric metal film structure

According to the last section, when &, = ¢,2 + i¢j, the dispersion relation of the
asymmetric metal film is

Ep0(1 Ep003
/ /
e &30
/ — 2 2
tanh (ohd) = TR (5.76)

1+

g10y €300

where

O(lz = \/ﬁz — k(z)(srz =+ i£,‘2)

k2
~ A B — R — e — e
2\/ B = Ken (5.77)

kg
=0 — & 27(6)2
= 0 — A(Xz.
For convenience, Eq. (5.76) is recasted into the following form
oyd + Py + Py = 0, (5.78)

where ¢, and ¢ are defined as

Ex001
tanh ¢/21 = @ s (579)
tanh ¢y = 22 (5.80)
&30l

Using Eq. (5.77), it follows

202 4+ k2en €00
tanh ¢, = 2P T Rtz or

€0 (1+' 205+ kgen

ign = tanh ¢, +igp
20360 ) '

206%8,2 &100 '
(5.81)

e102

Similarly, it is easy to derive

20(% + k%&‘,-z ) & 03

€203 (1 e 203 + k3epn

tanh ¢, = . it — 5 ) = tanh ¢,; +iepp
20r.

206%8,2 &30 '
(5.82)
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Consequently, we have

tanh ¢, — tanh ¢,,

A =
el 1 — tanh? ¢,,
s s (5.83)
. 205 +kGen &0
= 1&; . 3
2 2, ol — el
tanh ¢}, — tanh ¢
A¢23 _ 23 - 23
1 — tanh” ¢,3
s s (5.84)
2065 + ke £3003
= 1 . .
> 24, o — e4,03
Finally, the perturbed dispersion relation can be rewritten as
tod + Py + P23 = Az - d — Ay — Ay, (5.85)

and the dispersion relation for the ideal metal film structure Eq. (5.68) can be
modified as

o9d + ¢, + ¢ = 0. (5.86)

Subtracting Eq. (5.85) from (5.86) and using differential formula, we get the
perturbed propagation constant

k2 dioss
AP = igp 22 5.87
P 2Bdesr (5.87)
where the effective thickness of the metal film is defined as
2 2 2 2
gne1 (05 — o en&3(05 — o
dett = d + 221(22 212 223(22 23)2 ’ (5.88)
o (6705 — eho)  o3(e303 — e93)
and the loss length is given by the equation below
g 205 4 kger &1 €303 (5.89)
o = B \GB -l | Bl -7 |

It is worth to point out that all the parameters in Egs. (5.87) to (5.89) are from the
ideal system, while the superscript (0) is omitted for clarity. This fact shows that the
perturbed parameters of the actual metal film structure can be solved by the three
equations above once the propagation constant of the ideal system is calculated via
Eq. (5.68). From the expression (5.87) of the perturbed propagation constant, it is
clear that Af is purely imaginary, which illustrates that the imaginary part of the
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complex metal permittivity can only effect the system’s loss under the first-order
perturbation approximation. This conclusion is consistent with that in Sect. 5.2.
2. Symmetric metal film structure

In the case of symmetric structure, i.e., & = &3, the dispersion relation of the
perturbed system can be simplified as

2820(1

10

80 2
1 20
+ &0

The dispersion relation of the ideal system is given by Eq. (5.68) and the
perturbed propagation constant is still presented by Eq. (5.87), but the definitions in
Egs. (5.88) and (5.89) should be replaced by

tanh (a5d) = — (5.90)

2e081 (oc% — oc%)

dett = d + ) (5.91)
o (7153 — 27
202 + k3¢, 2&100
digss = d — 20" ) 5.92
loss k(z) 8%06% — 8’2.2OC2 ( )

In order to study the loss characteristics of the odd and even modes, considering
the limit case as d — 0 and inserting Egs. (5.91) and (5.92) into Eq. (5.87), it leads
to

o3 (28 + o)
2Bera (o5 — o)
o2 (20(% + k%e,z)

—i8i .
? 2Bern - k(&1 — &)

Aﬁ >~ —jepn
(5.93)

Based on the analysis of Sect. 5.4.1, two important conclusions can be drawn:

1. For the even mode, oy — 0 when d — 0; and from Eq. (5.93), we find A — 0.
So in the extremely thin metal film structure, this even mode with very small
loss can travel a relatively long distance, and that is the reason why this mode is
called as LRSPW. Although the LRSPW can propagate a longer distance than
the ordinary SPW, its propagation distance is only of millimeter scale.

2. For the odd mode, both «; and o, approach infinite as d — 0. Consequently,
Af — oo indicates that the loss is infinitely large. So the odd mode cannot be
excited in the limit of extremely thin metal film.
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5.4.3 Excitation of the LRSPW

LRSPW can also be excited via a prism of high dielectric constant, Sarid [7] first
proposed that it is theoretically possible to excite LRSPW via a symmetric structure
(¢0 = &) as shown in Fig. 5.8. Soon Deck et al. [8] excited this kind of LRSPW via
the ATR technology experimentally.

As shown in Fig. 5.12, the prism has a permittivity of &3, and a metal film of
permittivity ¢; = &,1 + ig;; and thickness d; is sandwiched between two dielectrics
of & and &,. The thickness of dielectric 2 is d», and dielectric O is a half-infinite
medium. The incident angle of a TM polarized light at the bottom interface of prism
is 03. So the magnetic field distribution of the LRSPW is

ASeO(}()Cfdz) + B3e*(13<x7d2), (x > dz),

Are™ + Bre™™,  (0<x<ds)
o) — , ) .94
}(X) AlealX‘FBleialx, (*d] <X<0), (5 9 )
Aot (i< dy),
where
1/2 .
w=(F —ke) " (1=0,1,2,3), (5.95)

f = ko+/e3 sin 03.

The oscillating field in the prism results in an imaginary parameter o3 in that
region. o; is complex due to the complex permittivity ¢; of metal, and both
parameters of oy and a, are real. Using the boundary condition, the expression of
reflectivity is

B 2 —23{2(12 2
R — _3 — ’y23 _|_’y012e — , (596)
As L+ 2370126772
where
V12 + Yore” 214
VYojg = —— 5.97
Y012 1+V12V0167211d1 ) ( )
Ep0l3 — &30
VPoy = —— = 5.98
V23 tats + E3007 ( )
and
Eo1 — €10
1 B — (5.99)

)
€00 + €100
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Fig. 5.12 Experimental setup Fpie

for LRSPW excitation

dz"'

- {I 1T

E10p — &2001

2 = (5.100)

e10n + &0
For the experimental setup in Fig. 5.12, once the incident wavelength and structure
parameters are fixed, the reflectivity curve as a function of incident angle 65 can be
plotted via Eq. (5.96). A concrete example is presented in Fig. 5.13, the related
parameters are A = 632.8nm, & = & = 2.295, & =3.24, ¢ = —18.0+1i0.7,
d; = 17nm, and d, = 1200 nm. The resonance dip is very sharp, indicating that the
loss of LRSPW is very small and this wave can travel a longer distance. Compared
with the ATR spectrum of the SPW in Fig. 5.6, it is obvious that the width of the
resonance dip of SPW is almost one order of magnitude of that of the LRSPW.

5.4.4 Field Enhancement Effect of the LRSPW

Different from the SPW propagates along a single interface of metal, the LRSPW is
generated by the coupling between the two SPW excited on both interfaces of a
metal film. This coupling decreases the proportion of the energy that dwells inside

Fig. 5.13 The ATR spectrum 1.0 1
of the LRSPW

00 T v T
58.0 584



54 Long-Range SPW of a Metal Film Structure 139

Fig. 5.14 The magnetic field
(a) and Poynting vector
(energy flux), (b) distribution
of the LRSPW

(b)

H(9 S®)

magnetic field energy flux

the metal and drastically enhances the field intensity at the metal boundary.
Figure 5.14a, b plots the distributions of the magnetic field and Poynting vector
(energy flux) of the LRSPW, respectively. From these figures, we can see that the
energy almost decreases to zero inside the metal, which reduces the loss and enable
a long-distance transport.

5.5 Determination of Thickness and Permittivity of Thin
Metal Films via a Modified ATR Configuration

Besides the double-wavelength method in Sect. 5.3, which was applied to measure
the thickness and permittivity of a thin metal film, we proposed another method via
exchanging the medium adjacent to the metal film [5]. Different from using two
wavelengths to excite the SPW, our method uses only one wavelength to excite two
different kinds of SPW in the ATR configurations, where the metal film is covered
by different dielectrics. Both methods work very well and require two measure-
ments, which may introduce more uncertainty in the experiment, e.g., the variation
of the temperature, laser intensity, and the error of the angular scan. So in this
section, we propose a new ATR configuration, in which both SPW and modified
LRSPW can be excited. The resulted reflection spectrum has two resonance dips
corresponding to these two kinds of surface waves, which enable the single angular
scan measurement become possible [9]. This new method can avoid the dispersion
problem of the double-wavelength method and eliminate the uncertainty between
two measurements.

5.5.1 Measurement Principle

As shown in Fig. 5.15, the modified ATR structure consists of the prism with a high
refractive index, an polymer film and the metal film, which is laid on the base side
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Fig. 5.15 Modified ATR
configuration

Prism &y

polymer &, d,

Metal £, d,
Air £

of polymer film. The extra polymer film has a refractive index /&, which is smaller
than the prism’s |/g3. When the laser passes through the prism and enters into the
polymer film, and its wave vector component along the interface matches the
SPW’s wave vector at the metal/air interface, the SPW can be excited. This is
similar with the case of the traditional Kretschmann’s structure. When the incident

angle 0 > sin~!(e,/ 83)1/ 2, total reflection occurs at the prism/polymer interface and
an evanescent field generates in the polymer film. Meanwhile, modified LRSPW
can be excited on both sides of the metal film. However, the LRSPWs are excited in
the symmetric structure where the metal film is sandwiched between the same
medium, and the configuration in Fig. 5.15 is not symmetric, that is the reason why
this kind of surface wave is called as the modified LRSPW.

The reflectivity expression of the modified ATR structure can be derived by the
Fresnel formula

2

3 + 1210 exp(—20ad,) (5.101)

147351210 exp(—202d,)

R =

where

1+ rio exp(fZaldl) 2

5.102
1+rr0 CXp(—ZOCldl) ( )

i = s

€10 — &0
- )
g102 + €20
&0 — &1
- )

&0 + €1
EK3 — i830(2

21

10 (5.103)

r3 = .
EK3 + 1€300 ’

12 .
{aj = (ﬁz - k(%gj) ) (J =0, 172)7 (5 104)
2 2\1/2 )
k3 = (kjes — p7) "7,
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Fig. 5.16 The reflection spectrum of the modified ATR configuration
and
f = koy/e3 sin 6. (5.105)

When the incident angle 6 matches one of the resonance angles of the two surface
waves, the corresponding surface waves can be excited. We use 0atr and GIATR to
represent the resonance angle of the SPW and the modified LRSPW in this ATR
configuration. The reflectivity spectrum calculated by Eq. (5.101) is plotted in
Fig. 5.16, where the first resonance dip is due to the traditional SPW, and the
second dip corresponds to the modified LRSPW. From the resonance dip of the
SPW, information of the resonance angle 01g, the half width of the dip Wj, and the
reflectivity minimum R, can be measured. By the numerical fitting, two sets of
solutions on the metal film thickness and permittivity can be obtained. Additional
information must be provided to choose the correct set of solution. While
double-wavelength method uses another wavelength and the exchanging media
method adopts another dielectric, this method produces an extra resonance dip of
the modified LRSPW. And the correct set of solution can be easily picked up by
numerically fitting the 0%,

5.5.2 Experiment and Measurement

Let us see a concrete example, the parameters of the sample are
g =1.0, & =22201, & =3.0625,
dy =0.72pum, A =0.788 pm.

The laser of 0.788 um is applied to the angular scan of the sample, which
generates the ATR spectrum as shown in Fig. 5.16. Using the conventional reso-
nance dip of the SPW, two sets of solutions can be calculated.
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Fig. 5.17 Comparison between the numerical simulation and experimental results. a the first set
solution, b the second set solution

1. = —-26.5+i1.47, d = 68.5nm,
2.6y =-27.64i0.24, d=463nm

Let’s insert these two sets of solutions into the reflectivity expression
Eq. (5.101), and compare the two sets of numerical simulations with the experi-
mental measured data, which are plotted in Fig. 5.17. The comparison of the first set
of ¢g = —26.5+4+11.47,d = 68.5 nm is shown in Fig. 5.17a, where the solid line
denotes the numerical simulated reflectivity. Figure 5.17b corresponds to the sec-
ond set of solution.

It is clear from the above figure that the first set solution is true. It should be
pointed out here in order to effectively excite the modified LRSPW, the thickness of
the polymer film must be chosen carefully. In this example, numerical simulation
shows that the LRSPW can be excited when the thickness of the polymer film is in
the range of 0.5 ~ 0.8 um.
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Chapter 6
Symmetrical Metal-Cladding Waveguide

Abstract In this chapter, we first briefly discuss the dispersion equation of the
symmetrical metal-cladding waveguide (SMCW), and review some particular
properties of the TMy, mode and TM; mode excited in the SMCW. Then, we give
the principle of the free-space coupling technology and the characteristics of the
ultrahigh-order mode. Finally, two amusing optical phenomena observed in the
SMCW, i.e., the wideband slow light effect and the conical reflection, are analyzed
in detail.

Keywords Symmetrical metal-cladding waveguide - Dispersion equation
Free-space coupling technology - Ultrahigh-order mode - Wideband slow light -
Conical reflection

In Chap. 5, we have discussed the surface plasmon wave excited along the interface
between a metal and a non-absorb dielectric, the long-range surface plasmon wave
propagated in a thin metal film, and several practical applications of these two
surface modes. However, since the metal is a strongly absorbing material, the
propagation lengths of the above modes are not large enough to construct the
integrated optical devices for the purpose of optical communication. Nevertheless,
the metal is frequently employed as a cladding layer in some waveguide structures.
For example, the metal-dielectric—metal structure can function as a negative
refraction lens [1], which is important for the manipulation of optical waves in the
nanoscale. Moreover, the metal film can be used as an electrode in the electro-optic
modulator and as a mirror to reflect or enlarge the electromagnetic field along the
metal—dielectric interface. Therefore, the existence of metal would largely change
the dispersion relation and bring many unique optical properties, which are different
from those of the dielectric planar waveguides.
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6.1 Dispersion Equation

6.1.1 Dispersion Properties

The configuration of the SMCW is illustrated in Fig. 6.1. A dielectric slab with
thickness d and dielectric constant e; acting as the guiding layer is sandwiched by
two metal films, which serve as the coupling layer and the substrate, respectively.
By denoting the dielectric constant of metal film as &, and ignoring its imaginary
part, the dispersion equation of the SMCW for TE mode is written as follows:

Kid = mn+2arctan(%). (6.1)
1
and for TM mode:
k1d = mn + 2 arctan <%> (6.2)
&K1
where
2 2\1/2
{ =G -F) (63)
o0 = (B — ker)

Several important conclusions can be summarized from the above dispersion
equations.

(i) The effective refractive index (RI) of the guided mode is bounded by

0<f/ko<+/e1, (6.4)
which is larger than the corresponding range of the dielectric planar
waveguide and the metal clad leaky waveguide [2].

(i) The TMy and TM; modes have some particular properties. More details will
be given in the next subsection.
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(iii) For the given light frequency @ and the thickness of guiding layer d, the
propagation constant f of the mth TE mode is smaller than that of the mth TM
mode. This property of the SMCW is identical with that of the metal clad
leaky waveguide, but is different from that of the dielectric planar waveguide.

(iv) Besides the TM, mode, other excited modes have each own cutoff thickness
d,. When the mode is cut off, the propagation constant tends to zero, i.e.,
f — 0, for TE mode:

mT €r2
kodTEn = + —arctan —, (6.5)
CVE VA 2
and for TM mode:
kod™» = ﬂ - iarctan o (6.6)
' \/ \/ &r2

Clearly, for the same mode order, we obtain
dfEn > g™, (6.7)

But for the dielectric planar waveguide, the cutoff thickness of the same mode order
is determined by

mm

kod P = kod M = ——. 6.8
ody od; NeET (6.8)

By setting m = 0, Eq. (6.8) is recast into
di¥ = d™ = 0. (6.9)

It implies that there is no cutoff thickness for the TM, and TM; modes of the
dielectric planar waveguide.
Moreover, by using the identical equation

arctan(|u|) = g — arctan(|u| "), (6.10)
and comparing Eq. (6.5) with Eq. (6.6), it is easy to get
diFr = ™M (6.11)

which indicates that the cutoff thicknesses of the mth TE mode and the (m + 1)th
TM mode in the SMCW structure are identical.
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6.1.2 TM, Mode and TM; Mode

1. TM, mode
By substituting m = 0 into Eq. (6.2), we have

k1d = 2 arctan (w) . (6.12)

&K1

Several key conclusions can be summarized here:

(i) Since the real part of ¢, is negative, Eq. (6.12) has no solution in the range of
ﬁ/k0<ivﬁi.

(ii)) In the case of fi/ko > /&1, k1 can be represented as ia;. As a result, the
oscillating wave in the guiding layer is replaced by a superposition of two
exponential decay evanescent waves and Eq. (6.12) is recast into

1 £100
tanh| —oyd | = ———. 6.13
an (2011 ) e ( )
When d — oo, we get
A%y (6.14)
&0

which is a surface plasmon wave excited along the interface between the upper
metal layer and the dielectric slab, and the effective RI is expressed as follows:

B €162
— = > /€. 6.15
ko &1+ & ! ( )

As d — 0, it is easy to prove «; — oo and oy — o0, and then
p/ko — oc.

Thus, it is clear that the effective RI of the TM, mode is bounded by

182
< — <00, 6.16
ert+e ko (6.16)

which is out of the range of guided modes (see Eq. (6.4)). Therefore, we can
conclude that the TM,, mode is a surface mode.
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2. TM; mode

By using the identical Eq. (6.10), the dispersion equation of TM; mode can be
rewritten as follows:

k1d = 2 arctan < %> (6.17)
100

Clearly, it can be solved in the range of 0 < f//ky <./e1. In this case, the TM; mode
is a guided mode.
By setting f/ky = 0, the cutoff thickness of the TM; mode is as follows:

d™ = 2 arctan | |— 2. (6.18)

 kov/Er 31

If one sets /ky = /1, the critical thickness of the TM; mode can be derived from
Eq. (6.17)

282
dM — = 6.19
¢ koe1\/e1 — & (6.19)
For the case of ﬁ/ko > /€1, there is k1 = ia;, and Eq. (6.17) is recast into
anh (L ad £201 (6.20)
anh( —a =—-——. .
2 £100

Combined with the discussions given in Chap. 5, we can conclude that the TM,
mode expressed by Eq. (6.13) and the TM; mode expressed by Eq. (6.20) are the
symmetric and antisymmetric superpositions of two surface plasmon waves excited
in the thin metal film sandwiched by two identical dielectric layers, respectively.
When d — oo, Eq. (6.20) is rewritten as follows:
&0

~ 2o, 6.21
o (6.21)

In this case, the effective RI is as follows:

o €182
Blko = 4 /—81 o (6.22)

According to Egs. (6.15) and (6.22), it is found that both the TMy mode and
the TM; mode will degenerate with each other on condition of d — ©0. From the
physical perspective, if the thickness of the guiding layer is infinitely large, the
surface plasmon waves excited at two metal—dielectric interfaces cannot coupled
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with each other because these two modes are the free-surface plasmon waves in the
case of d — oo,

From the above discussion, it is easy to obtain that the effective RI of the TM,

mode is bounded by
€18
0<PB/hko<y|——. 6.23
ko<1 (623)

Combined with Egs. (6.16) and (6.23), the effective RI of the SMCW (including the
guided modes and the surface mode) is bounded by

0<f/ko<oc. (6.24)

The dispersion curves of the SMCW and the symmetrical dielectric waveguide are
shown in Fig. 6.2a, b, respectively. The solid curves are for TM modes, and the
dashed curves are for TE modes. In addition, the dispersion properties of the TM,
mode and the TM; mode excited in the SMCW are listed in Table 6.1.

kyed

L

Fig. 6.2 Dispersion curves of (a) symmetrical metal-cladding waveguide and (b) symmetry
dielectric waveguide

Table 6.1 The dispersion properties of the TM; mode and the TM; mode excited in the SMCW

Plko d Mode types

0<B/ko<\/&1 dy<d<d, TM; is a guided mode

VeEr<B/ko </ dy<d< o TM, is a surface mode
s::lfeg <B/ko<oo 0<d< oo TMp is a surface mode
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6.1.3 The Degeneracy of TM, Mode and TM; Mode

As shown in Fig. 6.2a, the TM, mode and the TM; mode of the SMCW will be
degenerated with each other when the thickness of the guiding layer is infinitely
large. Actually, the degeneracy of these two modes will occur once the thickness of
the guiding layer is increased beyond one certain finite value (defined as the
degeneracy thickness). The reason is that the attenuated total reflection (ATR) dip
has a nonzero resonance width, which is attributed to the existence of the intrinsic
and radiative damping in the SMCW structure. To illustrate this issue, a demon-
stration experiment is given. A prism made from k9 glass (n = 1.507 @
A =780 nm) is coated with an about 50-nm-thick silver film (e, = =28 + il.0 @
A =780 nm) to serve as the coupling layer. A 200-nm-thick silver film is sputtered
on a glass slab to act as the substrate. These two components are then clamped
together to form an SMCW structure in which the middle air gap is employed as the
guiding layer. The thickness of the air gap can be adjusted via changing the pressure
of the clamper. The transformation from the separation state of the TM, mode and
the TM; mode to their degeneracy state is shown in Figs. 6.3, 6.4, and 6.5.

In Fig. 6.5, the thickness of the guiding layer is already beyond the degeneracy
thickness; it therefore can be confirmed that the first ATR dip from the right side is
the degenerated dip of the TMy mode and the TM; mode; and the second and third
resonant dips represent the TM, mode and the TM3 mode, respectively. In Fig. 6.3,
the TM mode and the TM; mode are apart from each other since the thickness of
the guiding layer is smaller than the degeneracy thickness; therefore, the three ATR
dips from the right side to the left side represent the TM,, TM;, and TM, modes,
respectively. Clearly, Fig. 6.4 illustrates the critical state of the degeneracy between
the TMy mode and the TM; mode. Until here, we find that the mode order of the
ATR spectrum can be exactly identified only after a careful distinguishing on the
separation state and the degeneracy state of these two fundamental modes. More
details about the identification of mode order have been given in [3].
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Fig. 6.4 The ATR curve with A
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6.2 Free-Space Coupling Technology

In the guided-wave optics, how to efficiently couple the light into the optical
waveguide is an important issue and has attracted considerable interest. The
commonly used coupling techniques are the end-face coupling [4], the prism
coupling [5], the grating coupling [6], and the tapered film coupling [7]. In this
subsection, we report on a new coupling technology [8], which can directly transfer
energy of a light beam from the free space into a SMCW structure without
employing any coupling components. In order to understand the physical mecha-
nism of this new coupling technology, a full discussion of prism—waveguide cou-
pling system is necessary.

The prism—waveguide coupling system is shown in Fig. 6.6. The prism—
waveguide coupling system is in essence a system of four stratified layers, which
are the substrate, the guiding layer, the cover, and the prism and denoted by the
subscripts j = 0, 1,2, 3, respectively. Without loss of any generality, we assume

ny >ng > nyp. (625)
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no substrate
Fig. 6.6 The prism—waveguide coupling system
The effective RI is limited to the range

ny > N > ny, (626)

in which the light guiding is possible. If there is no prism and the light beam is
directly coupled from the cover layer (the incident angle is assumed as 6,), then the
effective RI has the form

N = ny sin 02. (627)

From Egs. (6.25), (6.26), and (6.27), we get sin 8, > 1. Therefore, it is impossible
for the waveguide structure sketched in Fig. 6.6 to couple the light energy directly
from the free space (here the cover layer is assumed to be air) into the guiding layer.

In order to couple the light beam into the guiding layer, the most well-known
method is placing over the cover layer with a higher refractive index prism, that is,

n3 > N. (6.28)

Here, the light coupling is possible since the incident angle 85 satisfies sin 65 < 1. In
this case, the light fields propagate as oscillating waves in the prism and the guiding
layer but as evanescent waves in the cover layer and the substrate. As described in
Chap. 4, this prism—waveguide coupling process is called as an optical tunneling
effect, whose quantum analogue is the phenomenon of the microparticle tunneling
through a potential barrier.

As shown in Fig. 6.7, the thickness of the upper metal film is a finite value
(denoted as S). We have known that the effective RI of the guided modes in the
SMCW structure satisfies Eq. (6.4). When the light beam is directly incident from
the free space (n; = 1), the modes with the effective RI that obeys N < n3 can be
excited. It means that the light beam can be coupled into the guiding layer of the
SMCW directly from the free space without using any couple components. The
physical mechanism of this new coupling technology can also be understood as
following: When the beam is incident from the air to the upper metal film, it will
generate an evanescent wave in the metal; since the upper metal film is thin
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Fig. 6.7 The free-space 4
coupling technology in the
SMCW structure

ns air n2 ns ni

n2 S n(x)
ni d > N le———
no

(typically dozens of nanometer), the tail of evanescent wave can reach the
metal-guiding layer interface, and then, it is reflected at this interface resulting in
another evanescent wave with an opposite propagation direction; due to the inter-
action between these two evanescent waves, the incident light energy can be
coupled into the waveguide.

The experimental demonstration of the free-space coupling technology is pre-
sented. A BKT glass flat with a thickness 106 um is sandwiched between two gold
films to form the SMCW structure, where the upper gold film with a thickness
46 nm acts as the coupling layer and the bottom gold film with a thickness 200 nm
serves as the substrate, respectively. The dielectric constant of the glass and the
gold is e; = 2.25 and &, = —15 + il.5, respectively. A collimated light beam from a
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Fig. 6.8 ATR spectrum obtained from the SMCW
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diode laser of 780 nm is incident on the top surface of the gold film, and the angular
scan is carried out by a computer-controlled 6/26 goniometer. Experimental result
of the free-space coupling is shown in Fig. 6.8 (solid curve). A series of dips in
reflectivity spectrum due to the resonant transfer of energy into guided modes
(TE) can be clearly observed. The theoretical (dashed curve) result is also given. It
indicates that more than 50 % light energy has been fed into the optical waveguide.

6.3 Ultrahigh-Order Mode

When the thickness of the guiding layer reaches a millimeter scale, the SMCW can
accommodate thousands of guided modes. For example, using the parameters:
& = —28 +il1.8, £, = 2.278, S =30 nm, d = 0.38 mm, and A = 859.8 nm, m is
1333 for the highest mode. When the light beam is coupled from the free space with
a large incident angle, it is difficult to differentiate the adjacent guide modes because
the mode density in the SMCW is extremely large and the corresponding ATR dips
overlap with each other. On the other hand, a series of discrete guided modes can be
excited at certain extremely small incident angles. These modes are called as the
ultrahigh-order modes [9] in our terminology since the order of these modes is
extremely large and their effective RI is small. From the ray-optical perspective,
within the same longitudinal propagation distance, the ultrahigh-order mode is
rebounded at the interfaces with more times and the ray propagation length is longer
since the incident angles of the ultrahigh-order mode at the top and bottom inter-
faces of the guiding layer are extremely small. As a result, the ultrahigh-order
modes hold many peculiar optical properties different from the low-order modes.

(i) The ATR dips of the ultrahigh-order modes are discrete.
On the basis of dispersion Egs. (6.1) and (6.2) of the SMCW, we can obtain an
approximate formula

Am o sin 203 . A03 (629)

Since Am = 1, when the incident angle 5 is smaller, a bigger Ad; is obtained.
So the ATR dips of the ultrahigh-order modes are discrete. Such property is
convenient to design a comb filter for the optical communication applications
(as described in Chap. 8).
(i) The polarization independence

In the dispersion Egs. (6.1) and (6.2), the maximum of the absolute value of
the second term on the right-hand side is #. For the ultrahigh-order modes,
the deletion of the second term will not introduce a significant error.
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Consequently, both dispersion equations for TE and TM modes can be simply
approximated by

kid = mm. (6.30)

It means that the ultrahigh-order modes are independent on the polarization of
incident light.

(iii) Responding to a tiny change with a high sensitivity
Because the ultrahigh-order modes have a longer propagation time in the
guiding layer, any tiny change of 4, ny, and d will cause a dramatic variation of
N. The theoretical sensitivity s is defined as the derivative of the effective RI
with respect to a certain characteristic parameter, that is,

s = %, (6.31)

where ¢ represents A, n1, or d. By the total differential of Eq. (6.30), we obtain
2—2 - ’;V—‘ (6.32)

oA

Z_’;’ _n ];dN ’ (6.34)

From the above three equations, it is clear that the sensitivity is in inverse
proportion to the effective RI. As a result, the sensitivity of the ultrahigh-order
modes (N — 0) is large and this property is extremely useful for designing the
optical sensors and modulators.

(iv) The slow light effect

According to Eq. (6.33), tiny change of wavelength can generate dramatic
variation of the effective RI. It indicates that the ultrahigh-order modes have the
strong dispersion property and the slow light effect. Using Eq. (6.30), we obtain the
group velocity of the ultrahigh-order mode

7dw7N c

o @ o a . (I’ll —I—wdnl/da)) ’ (635)

Ve

where the right-hand side of the equation is composed of two contributions: One
originates from the first-order dispersion of the material and the other from N/n;,
which is called as the slow light factor and is proportional to the effective RI of the
ultrahigh-order modes. The deduced results offer us a new physical mechanism for
realizing the wideband slow light, and more details will be given in the next
subsection.
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6.4 WideBand Slow Light

Slow light, emerging as a technology for optical delays, is expected to be instru-
mental in enabling various applications, e.g., optical buffer, on next-generation
optical communication networks. According to [10], the ideal slow light devices are
those whose RI and attenuation characteristics should be able to maximize the
slow-down factor and minimize distortion by the frequency-dependent attenuation
and dispersion. Generally, in the conventional slow light schemes [11-13], the

group index (slow-down factor) is given by n, = n+ wd—(’z Given that n, is much
larger than n, then

An
ng RO (6.36)
If An is a fixed value, the normalized bandwidth An/Aw must be narrow for n, to
be extremely large. That is the reason why the reduction of the group velocity of
light is always via exploiting the large dispersion associated with nearby optical
resonances. However, it implies that there is a limitation of delay-bandwidth pro-
duct (DBP), which refers to the fundamental trade-off between the total group delay
At and the bandwidth Aw. In other words, the realization of the wideband slow light
is quite difficult by using those conventional slow light schemes.
When the actual material dispersion is neglected, the group velocity of the
ultrahigh-order modes (see Eq. (6.35)) can be simplified as follows:

NNC

Vg R 5. (6.37)

T
Unlike the conventional slow light schemes, the mechanism of ultrahigh-order
modes assisted slow light [14, 15] does not rely on enlarging the dispersive term
wdn/dw, but rather on tuning the effective refractive index N to zero. The under-
lying physics can be interpreted in terms of the anomalous dispersion of the
ultrahigh-order modes, which is depicted in Fig. 6.9. It is demonstrated that
anomalous dispersion curves of the SMCW structure exhibit an extremely flattened
region (slow light region) in the vicinity of zero wave number (N — 0).
Consequently, this wideband slow light scheme is extremely simple and not subject
to limitations of DBP. Another concerning issue is whether the ultrahigh-order
modes could be efficiently confined in the guiding layer over a long transmission
distance. This should be feasible, since the decay coefficient in the metal films can
be written as o = ko,/—&, > 0, which is quite large, as || > 1 for a visible or red
light beam. That means the ultrahigh-order modes are still confined better and its
corresponding propagation loss is small even the existence of metal films.

The schematic diagram of the SMCW for verifying the wideband slow light
effect is illustrated in Fig. 6.10. An additional silver stripe (about 500 nm thick and
1.1 cm wide) is sputtered on the middle of the coupling layer (sliver) to prevent
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Fig. 6.9 Dispersion curves and group index characteristics of the ultrahigh-order modes

light leakage. Two photodiodes are set up to detect the light intensity. The first one
(PD1) is placed in the reflected light beam, which serves as the reference beam. The
second photodiode (PD2) and an oscilloscope are used to measure the time delay of
the slow light beam. In [14], the light source is a collimated light beam and a group
velocity less than 0.017c has been achieved. In [15], the light source is replaced by
a femtosecond pulse, which has a wide frequency span over 10 THz (FWHM). The
experimental measured time delay at different incident angles is illustrated in
Fig. 6.11. Typical spectra of the input and output pulses are shown in the inset,
which proves the capability of generating wideband slow light. The maximum DBP
exceeding 1400 has been achieved.

Incident Reflection Slow light

500 nm 30 nm

_ “——2mm
500 nm

Fig. 6.10 Schematic layout of the SMCW for verifying the slow light effect
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Fig. 6.11 a Measured absolute time delay and pulse expansion at different incident angles.
Self-correlation width of the incident pulse is 1.11 ps. The solid curve is the theoretical fitting.
(Inset) A typical input and output spectra. b Self-correlation trace of the optical pulse at each time
delay denoted by the yellow filled circles plotted in (a)

6.5 Conical Reflection [16]

We start with a comparison between a conventional micron-scale dielectric
waveguide and a SMCW, as shown in Fig. 6.12. From the perturbation theory
[17, 18], the coupling coefficient between two modes by periodic perturbation can
be written in the form of

Ke / Fx)e?AP x|, (6.38)

2
" P Ao
Weff

where « is the transverse component of the wave vector, A is the perturbation
period, w. is the effective thickness, f(x) is the perturbation function along the
propagation direction, and Aff = (f, — 5;)/2 is the propagation constant mismatch
between the coupled modes. For a conventional micron-scale optical waveguide
with scattering perturbation, the right integral term equals zero over a long distance.
The coefficient x%/> = n*/N* — 1 of low-order modes is also rather small because
their effective RI is smaller but very close to the RI of the guided layer, i.e.,
N =~ n. The result is that the inter- and intra-mode coupling is rather weak in
uniform thin dielectric waveguides. Therefore, periodic perturbation would be
necessary for efficient coupling of two different order guided modes over long
propagating length. Usually, only short m lines (see Fig. 6.12b) can be observed
because of mode coupling induced by the scattering in the guided layer.

On the other hand, the coefficient %/ of the ultrahigh-order modes is orders of
magnitude larger, since their effective RI approaches to zero. Therefore, the mode
coupling between ultrahigh-order modes is greatly enhanced. By denoting the
scattering perturbation as a §(7) function, where 7 is in the x — y plane, then the
coupling of ultrahigh-order modes can be recast as follows:
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Fig. 6.12 Excitation of the m line in an all-dielectric waveguide and a SMCW. a Prism coupling
of light into a thin dielectric optical waveguide. b A multiple short m line occurs when there is
coupling among different guided modes due to light scattering. ¢ Light coupling into SMCW by
means of the free-space coupling technique. d The conical reflection pattern of SMCW, which is
actually closed m-line circles
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. —
/ RO(F)e2T q7 | =

where R is a defined parameter including total scattering perturbation and is of order
unity. Equation (6.39) suggests that strong coupling among all mode orders and in
all directions (see Fig. 6.12d) for the ultrahigh-order modes is possible without
periodic perturbation. Consequently, the excited ultrahigh-order modes can easily
be scattered to various directions of the same order and with other mode orders by
the imperfection in the guiding layers, such as Rayleigh scattering. Due to the thin
upper-layer cladding, leakage of the guided mode power cannot be neglected. The
interesting result is that besides the normal reflection of light, there is also a conical
reflection phenomenon at the certain critical angles.

The experimental setup is depicted in Fig. 6.13a. A beam from a He—Ne laser
was slightly focused by a long focal length lens, reflected by the SMCW placed at
the focus and then projected on a screen. There was a hole in the screen to let
through the incident light. The pattern on the screen was recorded by use of a
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Fig. 6.13 Experimental setup (a)
for the observation of conical
reflection by SMCW. a Top

view of the setup. b Normal

reflection away from the

mode coupling condition.

¢ The observed extraordinary —
conical reflection pattern

He-Ne laser

-
o
=
(7]

SMCwW

on =
* rotation stage
Camera -

camera. The SMCW is composed of a 90 um thick of glass slab sandwiched by two
layers of silver film (34 nm upper layer and 200 nm substrate). Away from critical
angles, the incident light experienced normal reflection, as shown in Fig. 6.13b. The
left blur spot is the hole in the screen for laser incidence. The right blur spot is the
reflection light projected on the screen because of scattering due to the imperfection
of either the metal-cladding layer or the glass slab. When the incident angle satisfied
the mode coupling condition, the extraordinary reflection (conical reflection)
emerged as a concentric ring pattern projected on the screen, as shown in
Fig. 6.13c. The intensity of each ring was measured to be equal in all directions,
with outer rings having a slightly lower intensity. It should be mentioned that no
microstructure was pre-introduced in the guided layer or on the cladding layer.
Therefore, the ultrahigh-order mode assisted conical reflection is different from
Newton’s rings or multiple-beam interference as in Fabry—Perot resonance.
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Chapter 7
Goos-Hianchen Shift

Abstract This chapter introduces the readers to the related issues of the
non-specular reflection effects and in particular of the Goos—Hénchen (GH) shift.
We first briefly review two causality paradoxes in the optical reflection and their
corresponding solutions with the consideration of GH time. Then, we elaborately
describe the current work on the theoretical explanation and the experimental
enhancement of the GH shift. Finally, we give a unified theory for all non-specular
reflection effects.

Keywords Non-specular reflection - Causality paradox - Goos—Hénchen shift -
Imbert-Fedorov shift - Group velocity - Stationary-phase approach - Enhancement

7.1 Obstacle in the Ray Theory

7.1.1 Contradiction Between the Ray Theory
and the Electromagnetic Field Theory

It is well known that the reflected point will undergo a lateral discrepancy from its
incident counterpart when a bounded light beam is totally reflected by an interface
between two different materials (see Fig. 7.1). This discrepancy is called as the
Goos—Héanchen (GH) shift [1], and the magnitude is given by [2]

204

Ay = = 2%
SRV R

(7.1)

where k1 = kgn; cos @ is the vertical component of the wave vector, kg = 27/ is the
wave number with light wavelength 4 in the free space, € is the incident angle,
and —2¢ is the total reflection phase shift between the reflected point B and the
incident point A.

Is the above statement right? Let us consider the light ray propagated in the
waveguide, which is shown in Fig. 7.2. From the ray theory described in Chap. 2,
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we know that after the light ray traveling through one period (the area between two
vertical dotted lines), the accumulated phase shift along the vertical direction of the
incident plane must be an integer multiple of 2z, namely

Kth=mn+ ¢+ ¢p, (m=0,1,2,-). (7.2)

According to the stationary-phase approach [2], where —2¢ is the phase shift of
light ray reflected from point D to point E, and —2¢,, is the phase shift of light ray
reflected from point B to point C. The ray theory predicts that the accumulated
phase shift of one period (i.e., the light ray travels from point A to point B, then is
reflected at the top interface to point C, sequentially travels to point D, and is finally
reflected at the bottom interface to point E) is

@ = 2kon —2(¢10+ P12)- (7.3)

cos 0

In the electromagnetic field theory, the accumulated phase shift of one guided mode
with propagation constant f traveling along the distance / is

@, = fL. (7.4)
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If the ray theory is self-consistent with the electromagnetic field theory, we get
O — &, =2mm. (7.5)

Combined with Eq. (7.2), ®; can be rewritten as

h
@, = 2kon, wosh 2(kony cos 0 - h — mmn) = 2fhtan 0 + 2mm. (7.6)

The length of one period is
I =2htan 0+ (Azo + Azp), (7.7)
and it is easy to obtain
D) — O, =2mn — f(Az0+ Az). (7.8)

Apparently, two theories are not self-consistent with each other.

7.1.2 The Addition of Lateral Phase Shift

What cause the above contradiction between the ray theory and the electromagnetic
field theory? Resch et al. [3] proposed that the total phase shift at the total reflection
should contain two components: the vertical phase shift component and a lateral
phase shift component. The total phase shift is written as

Oror = —2¢ +kony sin 0 - Az. (7.9)

Based on the above assumption, Eq. (7.3) is wrong and should be modified as

h
@, = 2komy o5l 2(¢1o+ ¢12) + B(Azo + Az2)

= 2Bhtan 0+ B(Azo + Azp) + 2mm.

(7.10)

Now, it is easy to verify that Eq. (7.5) is correct. By adding the lateral phase shift
component to the total phase shift, the contradiction between two theories has been
solved. The above equation can also be expressed as

®; = 2fBhes tan 0 + 2mm, (7.11)

where /. is the effective thickness of the waveguide. Equation (7.11) indicates that
the propagation behavior of the light ray in the waveguide is the same as that in a
thin film with a thickness of &g by omitting the phase shift of the total reflection.
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7.2 Causality Paradoxes in Gires—Tournois
Interferometer and Plasma Mirror

7.2.1 Causality Paradox in Gires—Tournois
Interferometer [4]

Let us consider the configuration of the Gires—Tournois interferometer shown in
Fig. 7.3 and set n; > n3 > n,. When the incident angle is larger than the critical angle
of the total reflection between medium 7, and medium ns, the electromagnetic fields
in the medium 7, and medium 73 are evanescent. The reflection coefficient is

r = By exp(—i2¢y,) + a3 exp(—2ad)

= = , 7.12
Al 1 —|—I’23 CXp(—i2¢12) exp(—Zuzd) ( )
where
2%}
arctan <—>, for TE mode,
K1
¢12 = 2 o (7~13)
arctan <; 2), for TM mode,
n; Ki
M, for TE mode,
R (7.14)
3 = 2 2 :
M, for TM mode,
n3oc2 — I’ZZOC3
K1 = k0n1 COoS 9,
_ 2 2 2\1/2
oy = ko(nsin® 0 —n3) ", (7.15)

. 1/2
o = ko(n% sin? 6 — n%) 2

If all mediums are non-absorbing and non-dispersive, the relationship between two
complex amplitudes in the medium »; can be expressed as

Bl :Alexp(—i2q’>), (716)

n,

- d
All/éf\\g x

1

Fig. 7.3 The Gires—Tournois interferometer
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where —2¢ is the phase shift of the total reflection from the Gires—Tournois
interferometer. On comparing Eq. (7.12) with Eq. (7.16), we find

1 — razexp(—20,d)
t =t . 7.17
an d) an ¢12 1+ 3 CXp(—Zszd) ( )
The group delay time is written as
P00 (802d/w) tan ¢, - r23 exp(—20nd)
£ 0w [1 + 13 CXp(—20(2d)}2 + tan2 ¢12 . [1 — 3 CXp(—20€2d)]2 .
(7.18)

Owing to n3 > n,, therefore, a, is larger than o3, and the Fresnel coefficient r,3 is
always larger than zero for both two linear polarizations. It can be concluded that
the group delay time in Eq. (7.18) is negative, i.e., f, < 0. However, the negative
group delay time violates the relativistic causality. Tournois [4] cannot interpret this
unbelievable result, which is termed as a causality paradox.

7.2.2 Interpretation of Causality Paradox
in the Gires—Tournois Interferometer

Actually, the encountered problem in the above causality paradox is identical with
that in the waveguide. The solution to the causality paradox is also that the lateral
phase shift component should be added. The total phase shift of the total reflection
from the Gires—Tournois interferometer is determined by Eq. (7.9), and the total
delay time should be

d®ror  ,0¢

np .
5 72% + ?sm0~ (Az), (7.19)

where the first term is the group delay time t,, which is resulted from the dispersion
of the phase shift, and the second term is the GH time, which is originated from the
lateral phase shift and can be derived from Eq. (7.1)

_ny . 2 0p\ 2tan00¢
fou = sin 0 (konl cos 0 89) o 00 (7.20)

With the addition of GH time, Resch has proved that the total delay time of the total
reflection is positive

t=ty+1tgu >0, (7.21)

namely the above causality paradox does not exist. The detailed derivation process
of Eq. (7.21) is described in [3].
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7.2.3 Causality Paradox Associated with Total Reflection
upon the Plasma Mirror

Even though Resch had proved that the total delay time of total reflection is pos-
itive, Tournois did not accept Resch’s opinion and put forward an example of the
total reflection of a TM plane wave from vacuum upon an ideal non-absorbing
plasma mirror to illustrate that the total delay time is negative in spite of taking the
GH time into account [5].

The plasma frequency and the light frequency are denoted by w, and o,
respectively, and their ratio is marked as u = w/w,. The RI of plasma is n, = —i
(1 = u»"?/u, where 0 < u < 1. If a TM plane wave incidents upon the interface
between the vacuum (n; = 1) and the plasma mirror with a incident angle 6, the
phase shift —2¢ can be derived from Eq. (7.13) and expressed as

u(1 — u? cos? 9)1/2
t =— 7.22
an ¢ (1 —u?)cosf (7.22)
The group delay time is
0 2cos 0 1 — u?cos 20
tg:—2—¢: cos (1 —u”cos20) 7 (7.23)
o w,(1 — u? cos? 0)!/? (cos? 0 — u* cos 20)
and it is clear that z, > 0. The expression of GH time is
tGH:2tan0 ¢ _ 2 tan Osin 0 _ (1 —u?) (724
00 w,(1 — 12 cos? 0)!/2 (cos? 0 — u? cos 20)
It is easy to confirm that gy <O.
When the incident angle 6 satisfies
) tan® 0 — 1
<— 7.25
S an? 0 - cos 20’ (7.25)
the total delay time is
t=t;+1tcH <0. (726)

The group delay time #,, GH time g, and the total delay time (t = #, + fGu) as
functions of u are depicted in Fig. 7.4. It is easy to see that when u < 0.8, the total
delay time ¢ is negative. The example of the total reflection upon plasma mirror
illustrates that the causality paradox does not exist since the group delay time ¢, is
positive. However, by following the Resch’s opinion, namely adding the GH time
tcu to the group delay time, the total delay time is still possible to be negative.
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Fig. 7.4 The group delay time, GH time, and the total delay time as functions of u

Therefore, Tournois concluded that Resch’s opinion is wrong and there is only the
existence of the phase shift-induced group delay time and no existence of the GH
time.

7.2.4 Interpretation of Causality Paradox
in the Plasma Mirror [6]

In our opinion, the GH time associated with the total reflection does always exist,
but its expression written by Eq. (7.24) is incomplete. Actually, the reflection point
of a TM plane wave totally reflected upon the plasma mirror is not located at the
interface but at the front of interface (see Fig. 7.5) since n,z, < 0. By denoting the
reflection point as O and the lateral shift AB as Az, the total reflection phase shift
will consist of three parts: one part is the conventional reflection phase shift —2¢,
the second part is the lateral shift-induced phase shift, and the third part is the
accumulated phase shift of the light ray propagating from point O to point A and
from point B to point O, namely

DOror = —2¢ + kony (Az)(sin 6 — 1/sin ), (7.27)
Therefore, the accurate expression for GH time is

2(1 — u?)cos 0
w, (1 — u? cos? 0)'/(cos? 0 — u? cos 20)

(7.28)

TGH = % (Az)(sin O — 1/sin 0) =
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Fig. 7.5 Total reflection upon plasma mirror

Apparently, tgg > 0. The total delay time is also positive since z, > 0. Thus, one
can claim that the causality paradox in the plasma mirror does not exist.

7.2.5 Detailed Analysis of the Optical Waveguide

In order to test whether the opinion in above subsection is right or not, let us
consider the symmetrical planar waveguide shown in Fig. 7.6. The guiding layer
(vacuum) is symmetrically covered by the non-absorbing plasma. The dispersion
equation for TM mode is

Kih=mn+2¢, (m=0,1,2,--+), (7.29)

where the phase shift —2¢ of the total reflection at the upper interface and the
bottom interface is defined by

| (N 2 1/2
t =—|—2 7.30
g n;(l_Nz) | (7.30)

and N is the effective RI of the guided mode.The group velocity v, of the guided
mode is

LB N N

v, OJdw ¢ 29w’ (7.31)

Fig. 7.6 Ray model of the
symmetrical plasma cladding n
planar waveguide
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Applying the differential operation on Eq. (7.29), we obtain

ON 1—N? 1—n? 2N? — n?
= h+2 7 ‘ p1/2 ) (7.32)
dw  Nhest nt(1—N?)+ (N2 - n,%) ko (N2 —n?

By substituting Eq. (7.32) into Eq. (7.31), we get

1 N 1-N? 1—n oN? —n (733)
Ve € CNheg n;(l —N?) + <N2 _ ”%) ko (N2 B nl%)l/z

Since length of one period for the light ray propagating in the waveguide is
I =2htan 0+ 2(Az) = 2heg tan 0, (7.34)
as a result, the propagation time of the guided mode traveling through one period [ is

Tiotal = 2Megr tan 0 / Vg

2 tan 0 ”1%(1 _nzza) N?
Y ht2 4 2 > 0\ 1/2
n(1—N?)+ (N - np) ko (N2 _ n{z)) (735)
(1 — l’lz) (2N2 — l’lg) 1 _N2
+2

’ 172
ni(1—N?)+ (N2 - n;) ko (Nz B ng)

Combined with N = sin 6, Eqgs. (7.23 and 7.24), Eq. (7.35) can be recast as

S 2h 4 tan 6 sin 6 (1 —u?)
© T ccos 0 ,(1 — u? cos? 0)1/2 (cos? 0 — u? cos 20)
4 cos 0 (1 — u?cos 20) (736)
@, (1 — u? cos? 0)"/? (cos? 0 — u? cos 20)
2h
= 2t 2t,.
ccos b + Slon + 2

It is very clear that the total delay time t, consists of three parts, (i) the propa-
gation time 2 A/(c cos 0) of the light ray in the guiding layer, (ii) the GH time 2¢gy
at the two interfaces, and (iii) the group delay time 2z, at the two interfaces. Note
that 7 in Eq. (7.36) is the thickness of the guiding layer, and the GH time only
contains the time of light ray propagating through the lateral shift Az. To take
account of the actual reflection points, we can rewrite Eq. (7.36) into
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_ 2het 4cos 0 (1-u?)
foal = s 0 @, (1 — u? cos? 0) /2 (cos? 0 — u? cos 20)
7.37
N 4cos 0 (1 — u? cos 20) 737

w,(1 — 2 cos? )"/ (cos? 0 — u? cos 26)

where the first term is the propagation time of light ray in the effective thickness of
the guiding layer, the second term is the actual GH time, which is defined by
Eq. (7.28) and contains the time of light ray propagating through the lateral shift
and the time of light ray propagating from the actual reflection point to the surface
of plasma mirror, and the third term is still the group delay time. The conversion
from Eq. (7.36) into Eq. (7.37) illustrates that the expression of GH time defined by
Eq. (7.28) is correct.

In conclusion, the total delay time of the total reflection not only in the Gires—
Toumois interferometer but also in the plasma mirror is always positive because,
besides the group delay time induced by the reflection phase shift, the total delay time
also contains the GH time. Therefore, both above causality paradoxes do not exist.

7.3 Generalized Form of the GH Time [7]

We have demonstrated the existence of GH time in the waveguide constituted by
the non-absorbing plasma mirror. Here, the generalized planar waveguide, whose
each layer is dispersive, is discussed in detail to study the group delay time and GH
time of the total reflection and to derive a generalized form of the GH time.

7.3.1 Group Velocity of the Planar Waveguide

Let us consider a planar waveguide shown in Fig. 7.7. The material of each layer is
dispersive, and the dispersion equation of the waveguide is

22 nhcos 0 = 2mn + 2, + 215, (m=0,1,2,---), (7.38)
c

1/2
(n% sin® 0 — n}z)

0 ,  For TE mode,

1| COS

tan ¢,; = 12 (7.39)
n (nf sin® 0 — njz)
— For TM d
n? ny cos 0 por mode,

J

where w is the angular frequency, c is the light velocity in the vacuum, % is the
thickness of the guiding layer, @ is the incident angle, m is the order of the guided
mode, and j = 2, 3 represent the medium of two cladding layers, respectively.



7.3  Generalized Form of the GH Time 173

Fig. 7.7 A generalized planar
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The group RI m, is defined as

my = ny + wdn; /do. (7.40)

Taking the derivation of Eq. (7.40) with respect to the angular frequency, we obtain

2— 0 — 2 hsinf - — —2 — =2 —
€08 nl sin dw ony; dw ony do 50 do

7.41
Bm do an do 00 do
According to the definition of the group delay 7, = —20¢ /0w, we get
(12 _ 0P S Pndu,00,dm
8 8(0 On dw Ony, do’ (7.42)
13) — 3¢13 8d’13 d”l _9 Od13 % '
8 860 8n1 do Ony do”
By substituting Eq. (7.42) into Eq. (7.41), we find
do 22k cos 0 + r((gl 24 réls) (7.43)
dco 2“n hsm0+20¢‘2—|—2a§(}3. .
The group velocity of the guided mode is expressed as
dw 1
7.44
"¢ T 4p T dp/de’ (7.44)

where the propagation constant is

B =L sino. (7.45)
Cc
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The derivative of the propagation constant with respect to the angular frequency is

d_[)’_m1 Sm@—i—gnlcosO-d—g. (7.46)
dw

dw c c

By substituting Eq. (7.43) and Eq. (7.46) into Eq. (7.44), the group velocity of the
guided mode is

2 2
2 tan 0+ c  O0¢p c 093
o — wnycosO 00 wnycosO 00 (7.47)
&7 2mh mytan 0 0¢p oM tan 0 0¢p 5 12 4 1) .
ccosl wn; 00 wn; 00 g 8

7.3.2 Generalized Form of the GH Time

The numerator in Eq. (7.47) is divided into three terms, and the physical meanings
of the each term are

2htan O = BC' + D'E,

_ 2 09y = Azps,
wnycost 00 (7.48)
2c 6¢13

_. = Az3.
wnicosf 90 3

Therefore, the sum of above three terms is the length [ (see Fig. 7.7), which is the one
period of the light ray propagating in the waveguide. The denominator in Eq. (7.47)
consists of five terms. The physical meaning of the first term 2mh/(c cos 6) is the
sum of propagating time of the light ray through BC and DE because 2 A/cos 6 is the
total length of propagation paths BC and DE. 12,1’2) and 121’3) are the group delay times
of the total reflection occurring at the interfaces AB and CD, respectively. The

second and the third terms are expressed as

)M tan0 O¢;, mysin0

= Az,
mitan0 O¢z3 mysind :
: = Z13-
wny o0 c

Apparently, the expression of Eq. (7.49) is quite different from the above definition
of the GH time. Therefore, it is necessary to restudy the GH time from the aspect of
its physical meaning. The total phase shift is

dror = —20+kAz = =2+ " sing - A (7.50)
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By taking the derivation of total phase shift with respect to the angular frequency,
we obtain

ror _ 5‘15

—+—sm9 Az+—d—s 0- Az*fZaqs
dw c do

+ —sm 0- Az,
(7.51)

where the first term is still the group delay time, and the second term is the
generalized form of the GH time, which is identical to Eq. (7.49) derived from the
group velocity of waveguide. Therefore, in case of incidence medium being a
dispersive material, the generalized form of the GH time is

m sinH'AZ_zml tanH.%

TGH — c = wny 20 . (752)

A full analysis for the physical meaning of each term in the group velocity of
Eq. (7.47) has been carried out. The expression of group velocity can be rewritten as

b — 2htan 0 4+ Azyp + Azy3 (7.53)
8 om 12 12 13 13) " :
T

It is clear that the propagation time of the length 2k tan 6 is 2m h/(c cos 6), the

propagation time of Az, is the sum of r(Glﬂz ) and 1(1*2) and the propagation time of

Azy3 is the sum of ‘céH> and ‘c Equatlon (7.53) evidently indicates that the total

delay time of the total reﬂectlon is the sum of the group delay time and the GH time.

7.4 Theoretical Models for the GH Shift

7.4.1 Stationary-Phase Approach [2]

The reason for the emergence of GH shift is that the actual incident light is not an
ideal monochromatic plane wave but a beam with a certain spatial spectral width.
Consequently, the incident light can be decomposed into a series of monochromatic
plane waves, and the wave vector of each one plane wave possesses a slightly
different tangential component when compared to the other ones. In the total
reflection, the reflection phase shift of each one plane wave is slightly different from
that of the other ones and the actual reflected light beam is composed of a series of
such reflected plane waves. As a result, there is a lateral shift, which is called as GH
shift, between the maximal intensity position of the reflected light and that of the
incident light.

Let us consider the interface between two semi-infinite medium shown in
Fig. 7.1. When the incident angle is larger than the critical angle, namely
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6 > 6. = arcsin (n,/n;), where n; and n, are the RI of the two mediums and n; > n,,
the incident light will be totally reflected and its reflection coefficient is r = exp
(ip) = exp (—i2¢), where the reflection phase shift for the TM and the TE polar-

izations is
\/n}sin® 0 — n3
R — (7.54)

¢p = arctan

ny cos 0 ’
2 2 o 29 a2
n,\ 2/ 11 sin n;
=arctan||— | ———«——— . 7.55
&Y <n2> ny cos 0 (7:55)

To determine the magnitude of the lateral shift 2z, let us consider a simple wave
packet consisting of two plane waves with slightly different incident angles.
Supposing that the z-component of the wave vector is £+ Af, the complex
amplitude of the incident wave packet at the interface can be expressed as

A(z) = [exp(iAPz) + exp(—iAPz)] exp(ifiz) = 2 cos(Afz) exp(ifiz). (7.56)

Ap is a small quantity, and the total reflection phase shift can be expanded by the
differential formula

BB £ 88) = 6(8) = 55 85 (7.57)

Therefore, the complex amplitude of the reflected wave packet at the interface is

B(z) = {expli(Afz — 2A¢)] + exp[—i(Afz — 2A¢)]} exp(ifz — 2¢)

= 2cos[AB(z — 2z)] expli(fz — 2¢)], (7.58)
where
& %7 (7.59)

is the simple form for the lateral shift of the wave packet. The vertical distance
between the actual reflected light beam and the theoretical reflected light beam
predicted by the geometrical optics is

S =2z,cos0 = %cos@

2 do

o df (7.60)

The obtained expression of the GH shift is identical to Eq. (7.1), and its derivation
procession is called as the stationary-phase approach, which is proposed by



7.4  Theoretical Models for the GH Shift 177

Artmann [2]. Substituting Egs. (7.54) and (7.55) into Eq. (7.60), the GH shift at the
total reflection between two semi-infinite mediums is obtained as

STE = 25in0 ; (7.61)
koy/n? sin® 0 — n3
S
Stm = T . (7.62)
[(n]/nz)2 ¥ 1} sin20 — 1

7.4.2 Gaussian Beam Model [8]

As shown in Fig. 7.8, an interface is illuminated by a Gaussian light, whose field at
the interface z = 0 is expressed as

2

Vi(x,z=0) = exp(—x + iﬁ0x>. (7.63)

2
2w

This Gaussian shape beam can be rewritten as the Fourier integral

Vi(xz=0) = Lﬁ / A(B) exp(ifir)dp, (7.64)

where w, = wg sec 8 with wy as the width of waist, and £ is the x-component of the
wave vector with the incident angle 6. The angular spectrum distribution of the
incident beam is

A(B) = weexp |~ (w2 /2) (B - fu)?]. (7.65)

Fig. 7.8 The Gaussian beam Z A
model
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Upon contacting with the interface, the incident beam is reflected and the reflection
coefficient of each frequency component is non-uniform. The profile of the reflected
beam is given by

Y2 = 0) :%2_” / H(B)A(B) exp(ifix)dp. (7.66)

The corresponding GH shift can be calculated from the above integral by finding
the x-component position of max |y, (x, z = 0)|. The range of integral is (—k, k),
where k is the wave vector in the incident medium, because the range of incident
angle is (—x/2, n/2).

Actually, the Gaussian light beam is similar to the plane wave and can be
regarded as an ideal plane wave when its width of the waist is increased to be
infinite. Here, a detailed analysis on the relationship between the stationary-phase
approach and the Gaussian beam model is given. Supposing that the width of the
incident beam is large enough, namely the half width in  space is extremely small,
the reflection phase shift in the reflection coefficient r(8) = |r| exp (ip) can be
regarded as a linear function of £. On performing the Taylor expansion of ¢ around
S = o, we obtain

do

@(B) = o(fo) + a5 o

(B —Bo) +o(B— Bo)- (7.67)

With the ignorance of the higher-order infinitesimal, the reflection coefficient is
approximately written as

r(B) ~ Irlexpli! (By)] exp (j—‘g ﬁ) , (7.68)
B=PBo
where
/ do
= - . 7.69
® (50) (P(ﬁo) ap ﬁ:ﬂoﬁo ( )

By substituting Eq. (7.68) into Eq. (7.66), the profile of the reflected beam is
expressed as

0,(x,z=0) = \/12_7'5 |r| explig’(By)] x /A(ﬁ) eXP{iﬁ[ B <_(:1(g B=B )] }dﬁ.
(7.70)

Compared Eq. (7.70) with Eq. (7.63), it can see that besides an added constant term
|r| and an added phase factor exp [ip'(fo)], the centric position of the reflected light
distribution moves from that of the incident light distribution x = O to the position
x = —(dg/dp)|s_p,. which is identical to the GH shift defined by Eq. (7.60).
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Therefore, the stationary-phase approach is the first-order approximation of the
Gaussian beam model.

7.4.3 Interference Approach [9]

Considering the refection of a plane wave upon a prism—waveguide coupling
system (see Fig. 7.9) from the viewpoint of the interference, it is shown that the
reflected beam is a result of the interference between two beams: the beam directly
reflected from the prism and the leaky beam coming from the guided mode. The
incident wave is uniformly distributed at the base of the prism, and we only draw
one light ray A; at x,, (shown in Fig. 7.10). In the distance between x,—; and x,
(one propagation period of the guided mode), as shown in Fig. 7.10a, the light ray
(A3),—1 in the guiding layer is reflected into ray Bjs at the interface between medium
ns and ny, and ray Bj is reflected as ray A5’ at the interface between medium n, and
n3 and is transmitted as ray B;' (or leaky wave). The rays B3’ B;', and A3’ form a
self-consistent set in the vicinity of x = x,,, and their amplitudes are related to each
other by the boundary conditions at z = d, and z = 0. The reflection and trans-
mission coefficients r3,; and #3; in Fig. 7.10a are obtained as

rip) = Ay _ It exp(i2r,ds) ’
B3 1+ ri2r23 CXp(i2K2d2) (7 71)
t = By _ (1= r2)(1 = r3)(i2r2dy)

B3 1+r1om3 CXp(iZszz)

Therefore, we get A3, = (A3)n,1r34r321 exp (12K3d3) and Bl' = (A3)n71}’34l‘31 exp
(i2x3d3). In Fig. 7.10b where the prism and the guiding layer are considered as
semi-infinite medium, the incident ray A, is reflected as B,"” and is transmitted as
Aj3", so the rays A’ B,", and A;" form a self-consistent set, and their amplitudes are
related to each other by the boundary conditions at z = 0 and z = d,. The reflection
and transmission coefficients r;,3 and #;5 are

-

e
0| «
/ n

d

3

d,

B[l —
N

YZ

Fig. 7.9 Schematic diagram of the prism—waveguide coupling system: / prism, 2 coupling layer,
3 guiding layer, and 4 substrate



180 7 Goos—Hénchen Shift

(c)

Ay : B1= B1I+B I"

Ny

(Ag)=Ag'+As"

Xl xﬂ x., Kol xn

Fig. 7.10 The rays in the prism—waveguide coupling system: (a) the guided mode is recoupled
into a semi-infinite medium 7, (the prism) through the coupling layer n,, (b) the light beam in a
semi-infinite medium 7, is coupled into another semi-infinite medium 75 through the coupling
layer n,, and (c¢) the combination of multiple rays

— EY _ rip+raexp(i2xads)
123 Ay 14+ rar; exp(iZszg) ’

iy = 45— (L) (L4 ) (22a)
Ay 1 + rior3 exp(i2i2d,)

(7.72)

So B," = ri34 is the directly reflected ray, and A3" = #1534, is the ray coupled into
the guiding layer and becomes a part of guided mode. At the starting point of
coupling x,, which is not shown in Fig. 7.10, A3" is the whole guided mode (A3)o,
ie., (A3)o = 113A;. According to Fig. 7.10c, the ray Az at x,, is the result of the
interference between A;" and As” and is written as

(A3)n = Ag +Ag’ = 11341 + (A3)n71r34r321 GXp(i2K3d3), (773)

which is a recurrent formula with (A3)y = #134;. The reflected wave By in Fig. 7.10c
is a result of the interference between the directly reflected ray B,"” and the total
leaky wave B’ that originates from the guided mode Bs. Therefore, the reflection
coefficient of the prism—waveguide coupling system at x, is r = (B," + B{')/A;,
which can be expanded as

A
¥ = rip3 + rst3 CXp(i2K3d3) ( 134)"_1 . (774)
1

According to Eqs. (7.73) and (7.74), the coupling between the ray in the prism and
the ray in the guiding layer is realized by two transmission coefficients 7,3 and #3;.
By using the recurrent formula (Eq. (7.73)), Eq. (7.74) becomes
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r=>y_r, (7.75)

and

{an . (7.76)
rl = [}’34}"321 CXp(i2K3d3)]17 - 113131134 CXp(i2K3d3), (]Z 1)

where # is explained as follows: A represents the directly reflected wave; part of
ray A, in prism at x,—; is coupled into guiding layer as #,3A, undergoing propa-
gation from x,—; to x, in guiding layer (one propagation period) (¢;3A; becomes
t13A1134 €xp (i2x3d3), and part of it is recoupled into the prism as the leaky wave
r'Ay; PA, originates from the ray A, in the prism at X,—; and undergoes j propa-
gation periods in the guiding layer.

By introducing Eq. (7.75) into Eq. (7.66), the field of the reflected beam is

bnz=0) =S itz =0 =Y [ FpAE expipap. (177)
Jj=0 j=0 V4T

By defining ' = Z;;olri , the field of the reflected beam can be rewritten as

v, =)+, (7.78)

where 1 represents the field of the directly reflected beam from the base of the
prism, and y,’ represents the field of the leaky beam originating the guided mode. It
is shown that the reflected beam is the result of the interference between the

multiple reflected beam constituents y/(x, z = 0).

7.5 Enhancement of the GH Shift

Usually, the GH shift is too small (on the order of wavelength) to encumber the
quantification observations. Several configurations [10-14] have been proposed to
enhance the GH shift. Moreover, theoretical and experimental results show that the
magnitude of GH shift can be not only positive but also negative [13]. In this
subsection, three of these configurations for enhancing the GH shift are described in
detail.
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7.5.1 Near the Brewster Angle [10]

According to the stationary-phase approach (see Eq. (7.60)), it indicates that a more
abrupt change of the phase shift of the reflection coefficient can give rise to a larger
GH shift. In the case of reflection from an interface between two transparent
mediums, the real part of reflection coefficient for TM-polarized wave beam is well
known

r=tan(0 — 0,)/tan(0+0,), (7.79)

where 0, is the angle of refraction (or transmission). Whereas the reflection coef-
ficient vanishes at exactly the Brewster angle where 8 + 6, = 7/2, a closer look
indicates that r changes sign across the angle, and this means a sudden phase
change of amount 7. This infinite slope, which is accompanied by the null reflec-
tion, is of no interest. Yet in view of continuity, it is reasonable to expect a large
finite slope of the change of phase with a nonzero, albeit small, reflection if the
reflecting medium is weakly absorbing.The reflection coefficient for an incident TM
wave reflection from an absorbing medium is written as

ecos — Ve —sin? 0
r= ,
ecos 0+ Ve — sin® 0

where ¢ = ¢, + ie; is the dielectric constant of the medium. Let us consider a weakly
absorbing medium, i.e., e/e, < 1. Therefore, r can be expanded to the first order in
gile,. It is then not difficult to find that, near the Brewster angle, defined by
0, = tan"! \/z,, the real part of r is given by Eq. (7.79) if 6, = sin™'(sin 0/,/z,) is
defined, whereas the imaginary part is given by

(7.80)

. J— 1 2
Im(r) = g cos 0(e, — 2sin” 0) (7.81)

Ve, — sin® 0{8, cos 0+ /& — sin’ 0}2 ’

which reduces to
Im(ry) = (e, — 1)/4e2, (7.82)

at exactly the Brewster angle. Hence for €, > 1, one has a positive imaginary part
near the Brewster angle and a change of the real part from positive to negative
across that angle. The phase is thus limited to the range (0, 7); it is a small positive
value for 6 < 8, increases with angle and passed through the value #/2 at 6§ = 6,
and finally approaches 7 for 6 > 6,. The change of the phase shift of angle is
definitely positive across the Brewster angle. In fact, the phase shift and the slope
can be obtained from the real and the imaginary parts of the reflection coefficient in
Eq. (7.79) and Eq. (7.81), respectively. At exactly 6, the GH shift is
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&+ le,
/e &
It is negative and obviously approaches infinity in the limit of zero absorption.

Furthermore, it also tells us that, for a given ratio ¢,/¢;, a larger ¢, implies a grater
GH shift.

Sp =

A, (7.83)

7.5.2 Surface Plasmon Resonance [11]

To obtain a larger GH shift, Yin et al. [11] described a surface plasmon resonance
configuration, with which a GH shift of greater than 50 wavelengths was observed,
since much more light energy was coupled into the medium under the metal film.
The Kretschmann’s configuration for the surface plasma excitation is shown in
Fig. 7.11. The dielectric constants of the air, thin metal film, and the prism are
denoted as ¢, €, and &, respectively, and d is the thickness of metal thin film. As a
TM-polarized light beam incidents upon the interface between prism and metal and
the resonance condition is satisfied, the surface plasmon wave will be excited. In the
experiment, the position of reflected beam is detected by a position-sensitive
detector (PSD). By periodically modulating the incident polarization, the difference
of the lateral displacement between TE light and TM light is measured. However,
since the TE-polarized incidence cannot excite any surface plasmon resonance,
there is no enhanced GH shift. Therefore, it serves as a perfect reference beam, and
the measured relative beam shift between TM and TE excitation indeed indicates an
absolute beam displacement (see the solid line in Fig. 7.11) for a TM wave at the
surface plasmon resonance region.

As scanning the incident angle @, the minimal reflection intensity R, in the
attenuated-total-reflection curve is closely related to the thickness of the thin metal
film. Experimental results show the following:

Fig. 7.11 Kretchmann’s
configuration for the surface \ 2

plasma excitation P S
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(i) There is a critical thickness A, for the thin metal film. As the thickness of thin
metal film approaches to that critical thickness, R ;, decreases, but the GH shift
increases significantly. A GH shift of as high as 50 wavelengths is observed;

(i) The GH shift is positive if the thickness of thin metal film is smaller than the
critical thickness & < h.. Additionally, the GH shift becomes negative for thin
metal films thicker than the critical thickness i > h,.

7.5.3 Prism—Waveguide Coupling System [12]

Let us consider the prism—waveguide coupling system shown in Fig. 7.12. The
dielectric constants of the substrate, the guiding layer, the air gap, and the prism are
denoted as &, €1, €, and €3, respectively. The thickness of the guiding layer and the
air gap is d; and d,, respectively. Through the analysis described in Chap. 4, when
the phase-matching condition is satisfied, we get Eq. (4.39)

p= Re(ﬂo) +Re(AﬁL),

and the minimum of reflectivity (Eq. (4.44))

R — |r32|2{1 B 41m () Im (ABY) 2}.
[Im(B°) +Im(ABY)]

According to the stationary-phase approach [2], the GH shift of the prism—
waveguide coupling system is approximately expressed as [12]

Fig. 7.12 The prism—
waveguide coupling system

—b-l ENTRSS |-l—
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2Im(AB")
im(f°)’~Im(AB")*

S=- cos 0. (7.84)

By applying Eq. (7.84), we obtain two important conclusions:

(i) When the intrinsic damping is well matched with the radiative damping,
namely

Im(f°) = Im(AB"), (7.85)

the corresponding GH shift will be maximal.

(i) The sign of the GH shift is determined by the intrinsic and radiative dampings.
When the intrinsic damping is larger than the radiative damping
Im(p°) > Im(AB"), a negative GH shift S < 0 can be obtained. The positive

GH shift S > 0 corresponds to the reverse case, Im(ﬁo) <Im(A[3L). Since the
radiative damping mainly depends on the thickness of the air gap, there is also
a critical thickness in the prism—waveguide coupling system. The sign of GH
shift dependence on the comparison between the thickness of air gap and the
critical thickness [13] is identical to that of the surface plasmon resonance.

7.5.4 Symmetrical Metal-Cladding Waveguide [14]

The schematic diagram of the symmetrical metal-cladding waveguide (SMCW) is
shown in Fig. 6.1, which includes three layers: an upper metal film serving as the
upper cladding as well as the coupling layer, a glass slab with millimeter thickness
acting as the guiding layer, and a relatively thick metal film deposited upon the
other side of the glass slab working as the substrate. When Eq. (7.85) is satisfied in
the SMCW, the GH shift of the reflected light beam will be greatly enhanced.
The SMCW structure used in the experiment is a glass slab with two silver films
coated on both the upper and lower sides. Their thicknesses are 3.04 mm, 33.1, and
300 nm, respectively. The schematic diagram of the experimental arrangement is
shown in Fig. 7.13. A TE-polarized Gaussian beam emitted from a tunable laser
was introduced onto the SMCW. Before it reaches the coupling layer, the beam
passes through several devices: two apertures with a diameter of 2 mm and a
distance of 0.5 m, which are used to further confine the divergence of the incident
light; a beam splitter which is used to reject part of the beam into a wavemeter for
wavelength monitoring. The intensity of the reflected beam is detected by a pho-
todiode (PD). The angular scanning is carried out by a computer-controlled 6/26
goniometer. The incident angle is selected to be located at the maximum reflectivity
of one certain reflectivity dip, where the GH shift is not remarkable. Since the
magnitude of the GH shift is strongly dependent on the energy coupling between
the incident light and the guided mode, it is reasonable to take this position of the
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Fig. 7.13 Experimental setup for enhancing GH shift
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reflected beam as the reference of the GH shift. After removing the PD out of its
position without changing any position of the incident beam and the structure, we
put on the position-sensitive detector (PSD) and let the reflected beam impinge onto
the PSD at the center perpendicularly. Then, we change the wavelength of the
incident light from 859.401 to 859.415 nm and get a tremendous GH shift greater
than 1700 wavelengths, which to our knowledge is the largest result in experiment.

The GH shift of the reflected beam changes with the variation in the wavelength
as shown in Fig. 7.14. The simulation in the Gaussian beam model is also outlined
for comparison. The differences between the experimental observation and
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theoretical simulation most probably result from slight non-parallelism of the
guiding layers, instability of the laser, the defection of the silver films, and errors in
the measurements of the structure parameters. The result shows that the GH shift as
large as 1.5 mm is obtained with the working wavelength changing only by 14 pm.

7.6 Other Non-Specular Reflection Effects

It is well known that the interaction of a plane wave with an interface is described
by the Snell’s law and the Fresnel formulae. For a real optical beam which has a
finite width (i.e., a distributed plane wave spectrum), there are four non-specular
effects deviating from the geometrical optics picture. As shown in Fig. 7.15, besides
the GH shift, other non-specular shifts are the Imbert—Fedorov (IF) shift, (i.e., a
spatial shift perpendicular to the plane of incidence), the angular GH shift, and the
angular IF shift, respectively.

Consider a system consisting of two homogeneous isotropic mediums of
dielectric constants €; and &, filling the half spaces z < 0 and z = 0, respectively.
A monochromatic beam of light of wavelength 1 and waist w, propagates along the

central wave vector EO in the region z < 0 before impinging upon the plane interface
of equation z = 0 that separates medium 1 from medium 2. The expressions for four
non-specular effects can be written as [15, 16]

Fig. 7.15 Cartoonlike representation of the four non-specular effects: a the Goos—Héanchen shift,
b the angular Imbert-Fedorov shift, ¢ the Imbert—Fedorov shift, and d the angular Goos—Héanchen
shift
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A, = ApIm[D],

e 2[ ! (7.86)

0, = —(05/2)Re[Dy],

where A and O are the spatial and angular shifts, respectively, the index [ is a label
for the two linear polarizations parallel (I = p or TM) and perpendicular (I = s or TE)
to the central plane of incidence x — z, g = A/2x, and 0y = 24p/wy is the angular
spread of the incident beam. Equation (7.86) is valid for both the GH and the IF
shifts where the coefficient D, is equal to

0l 10R, .0
_Olnn _ 1+.ﬂ

D =—— 7.87
'“700 " R0 00 (7:87)

in the GH case and is equal to
Dy = 2i[(ry +ry) /1] cot0, (7.88)

in the IF case. In the latter case, the results calculated from Eq. (7.86) are the spatial
and angular separation between the two right circularly and left circularly polarized
components of the reflected beam generated by the reflection-induced splitting of
the I-polarized [ = {p, s} incident beam. Moreover, r; = r(0) = R; exp(i¢;) is the
Fresnel reflection coefficient evaluated at the central incident angle 6, where R; = |r|
and ¢; = arg r,.

Note that the studies of IF shift reveal more deep and sophisticated physics.
The IF shift has been connected with the angular momentum conservation [17] and
the spin Hall effect of light [18, 19]. Usually, the magnitude of the IF shift is one
order smaller than that of the GH shift. In 2008, the weak measurement approach
was presented to amplify and measure the IF shift experimentally [20]. The angular
GH shift and angular IF shift can also be simultaneously amplified and measured by
the weak measurement approach [21]. More details can be found in several
excellent review papers [22, 23].
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Chapter 8
Optical Devices Based on the Attenuated
Total Reflection

Abstract This chapter introduces several basic optical devices based on the
attenuated total reflection, including tunable filter, optical sensors, and
electro-optical devices. We mainly focus on the description of optical sensors
performance. It is found that the bigger the portion of power that propagates in the
sample, the higher the sensitivity will be. Moreover, the sensors based on the GH
shift are immune to the power fluctuation in the light source since the GH shift is
position encoded. Finally, our experiments to explore the magneto-optical modu-
lation and all-optical modulation in the ferrofluid-filled SMCW are given. The
results are contributed to the competition between the optical trapping effect and the
Soret effect.

Keywords Attenuated total reflection - Filter - Optical sensor - Oscillating wave -
Ferrofluid

8.1 Optical Waveguide Filters

Optical filters play an important role in the fields of optoelectronics and optical
telecommunications. However, most of the available optical filters are polarization
dependent. Furthermore, the dense wavelength-division multiplexing (DWDM) has
attracted considerable interest since it can send many independent channels in one
optical fiber simultaneously. In such a DWDM system, a comb filter is a key
component to decrease the cross talk between the neighboring channels. So far,
various technologies for generating a comb filter have been reported but rare can
work with the channel spacing down to 0.8 or 0.4 nm. In this section, we firstly
describe a tunable narrow band filter possessing a capability of the
polarization-insensitive operation and then propose a tunable comb filter based on a
symmetrical metal-cladding waveguide (SMCW) structure working with the
channel spacing of 0.8 nm.

© Shanghai Jiao Tong University Press and Springer-Verlag Berlin Heidelberg 2016 191
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8.1.1 Tunable Narrow Band Filter [1]

The structure of the tunable narrow band filter, which is built by a glass slab with
two gold films deposited on its upper and bottom sides, is illustrated in Fig. 8.1. The
thickness of the glass slab is of a submillimeter scale. The upper gold film of 30 nm
acts as a coupling layer, and the bottom one of 200 nm functions as a substrate. The
dielectric constant of the air, the glass slab, and the gold film is denoted as &, ¢,
and &, respectively.

If the filter is illuminated by a monochromatic light, a series of resonant dips will
be formed in the reflectivity spectrum because the energy of light with certain
incident angles can be free-space coupled into the glass slab. These resonant dips
have been proven to be polarization insensitive [2]. On the other hand, if a poly-
chromatic light is used and the incident angle is fixed, the resonant dips in the
reflectivity spectrum can also be excited by scanning the incident wavelength.

The experimental arrangement for obtaining a tunable narrow spectral resonance
bandwidth and a polarization-insensitive filter is shown in Fig. 8.2. A tunable diode
laser, whose precise wavelength tuning is implemented by a current control unit, is
operated at the central wavelength of 859 nm with a laser linewidth of 1 MHz. After
passing through a polarizer and a quarter-wave plate, the output light beam
becomes circularly polarized. A splitter is used to reflect a small portion of light to a
wavelength measurement system. A great portion of light is incident on the upper
gold film of the SMCW with an appropriate angle. Reflected light is divided into
equal TE- and TM-polarized components by a beam polarized splitter and recorded
by two detectors independently.

The calculated and experimental results of the normalized reflected intensity as a
function of wavelength are given in Fig. 8.3. The experimentally measured spectral
resonance bandwidth of the full width at half maximum (FWHM) is 0.08 nm. The
deviation between the calculation and the experimental results is mainly originated
from the beam divergence of the laser beam. Note that the reflection spectrum is
identical for both the TE and the TM modes; namely, the filter is polarization
insensitive.

The tunability of the filter can easily be obtained by slight rotation of the sample
with respect to the incident light beam. Different from the prism—waveguide cou-
pling system, the free-space coupling technology offers a maximum angular range

Fig. 8.1 Structure of the |
tunable narrow band filter el
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which can be varied from the normal to graze direction with respect to the
waveguide plane. According to the dispersion Eq. (6.1) of the SMCW and
negr = N sin 0y, one can obtain an approximate relationship between two peak
wavelengths of the filter at the normal reflection (0p = 0°, 4p) and at the graze

reflection (0 = 90°, A)

)\40 &1
— = . 8.1
A & — & ( )

The ratio of the maximal peak length to the minimal peak length is 1.34 in case
of & =2.25 and & = 1.0. It indicates that the tuning range can be larger than
100 nm. In addition, Eq. (6.33) reveals that the bandwidth (A/) of the filter is
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proportion to the effective refractive index (). Based on the strong dispersion effect
of the ultrahigh-order mode, the bandwidth of the filter can be further narrowed by
exciting more large order mode.

8.1.2 Tunable Comb Filter [2]

The experimental setup for comb filtering is shown in Fig. 8.4. A glass slab with
thickness 900 um is used as the guiding layer, which is sandwiched between two
gold films. When the light generated from a wideband source passes through a
self-focusing lens and irradiates the upper gold surface of the SMCW at an
appropriate angle, the reflected light, passing through another self-focusing lens, is
detected by an optical spectrum analyzer. The output spectrum from the comb filter
is depicted by the solid curve (see Fig. 8.5), which agrees well with the simulation
result (dashed curve).
The dispersion equation of the SMCW can be simplified as

2
ﬂnlhl Cos 01 = MT, (82)
&

where n; and h; are the RI and the thickness of the guiding slab, respectively. 0; is
the incident angle of the light rays inside the waveguide. v and ¢ are the frequency
and the velocity of the light in free space, respectively. m is the mode order.
Without considering the material dispersion of the waveguide, we can express the
frequency spacing between two neighboring channels as
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which is a constant when the incident angle of the light is fixed. In other words, all
the channel frequency spacings are equal in this comb filter. Furthermore, based on
Egs. (8.2) and (8.3), we find that both the center wavelength and the channel
spacing can be tuned by simply changing the incident angle. The experimental
results show that the channel isolation is larger than 12 dB, the insertion loss is
lower than 0.2 dB, and the wavelength spacing of loss peaks is just 0.8 nm.

8.2 Analysis on the Sensitivity

The sensitivity is defined as the magnitude of sensor transduction signal change in
response to the change in analyte. Physically, the sensitivity is determined by the
strength of light-matter interaction. Therefore, it is an important parameter to
evaluate the sensor performance.

8.2.1 Definition of Sensitivity

Sensitivity is the ratio of the change in sensor output to the change in the quantity to
be measured. Its expressions are closely related to the modulation methods. Here,
two of them are listed as follows:
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1. Angle modulation method
The variation in the quantity to be measured will lead to a collective movement
of the resonance dip and the corresponding resonance angle. Therefore, the
resonance angle can be used as a signal to determine the quantity to be mea-
sured. In such angle modulation method, the sensitivity is written as

d [(OR O?R 00
S‘a?(%) = (W>H,' (a—y)’ ®4)

where 0, is the position of the resonant angle, and y denotes the quantity to
measured (e.g., the RI, the absorption, and the thickness). The first term
describes the second derivative of the reflectivity with respect to the incident
angle and depends on the shape of the reflectivity curve. The second term is
connected with the sensing efficiency, whose physical meaning will be fully
detailed in the next section. It is clear that if the reflectivity curve has a sharper
slope or a smaller FWHM, its sensitivity will be higher.
2. Intensity modulation method

In this method, the incident angle is fixed at the middle point of the falling or the
rising edge of the resonant dip, where a good linearity and a high sensitivity can
be achieved. A change in the quantity to be measured will lead to a movement of
the reflectivity curve, which gives rise to a change in the reflected intensity. The
sensitivity formula is expressed as

OR OR a0
=5 (@), (&) 6

where 0, is the fixed incident angle, and y is the quantity to be measured.
The sensitivity also consists of two terms: The first one can be understood as the
sharpness of the falling or the rising edge of the resonant dip, and the second one
is also connected with the sensing efficiency. From Eq. (8.5), it is obvious that
the sensor’s sensitivity can be improved by minimizing the width of the reso-
nance dip.

8.2.2 Physical Meaning of the Sensing Efficiency

Herein, we discuss the physical meaning of 96/0y in the above two definitional
expressions of sensitivity. The parameter 00/0y denotes the resonance angle shift
of the whole resonance dip caused by the change in the quantity to be measured.
Obviously, it is equivalent to the variation in the effective RI of the resonant mode
responding to the changes in the quantity to be measured. Considering the
three-layer planar waveguide shown in Fig. 8.6 and taking the TE mode as an
example, we obtain
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where N is the effective RI, P, Py, P,, and P, represent the power flowing in the
whole waveguide structure, in the guiding layer, in the cladding layer, and in the
substrate, respectively. The sensing efficiency is proportional to the ratio of the
power in the sensing area to the power in the whole waveguide structure.
Furthermore, it is closely connected with the ratio of the RI of the measured
medium to the effective RI. For the evanescent wave sensors, N is always larger
than ng and n,, i.e., ng/N <1 and n, /N < 1. But for the SMCW-based oscillating
wave sensor, the allowed range of the effective RI is 0 <N <n;, which makes it
possible to obtain an enormously high sensitivity on condition that the
ultrahigh-order modes (N — 0) at small incident angles are used as the sensing
probe.

8.3 Evanescent Wave Sensors

Optical sensors are a powerful detection and analysis tool in several fields,
including biomedical research, environmental monitoring, and pharmaceuticals.
Generally, there are two categories of optical wave, i.e., the evanescent wave and
the oscillating wave, which can be employed to interact with the analyte. The
surface plasmon resonance (SPR) sensor [3-5], the leaky waveguide sensor, and the
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reverse symmetry waveguide fall into the first category, and the symmetrical
metal-cladding waveguide (SMCW) sensor belongs to the second one. All
above-mentioned optical sensors are immune to the electromagnetic interference.

8.3.1 SPR Sensor

As described in Chap. 5, SPR is a charge density oscillation that may exist at the
interface of two medium with dielectric constants of opposite signs, for instance, a
metal and a dielectric. In 1968, Otto and Kretschmann independently observed the
excitation of surface plasmon as a drop in the reflectivity in two different config-
urations by using the attenuated-total-reflection (ATR) method. Owing to the fact
that the vast majority of the field of a surface plasmon is concentrated in the
dielectric medium, the propagation constant is extremely sensitive to changes in the
dielectric medium. This property is the underlying physical principle of the SPR
sensors. The Kretschmann’s configuration for exiting surface plasmon is shown in
Fig. 8.7. A light wave is totally reflected at the interface between a prism coupler
and a thin metal layer, and the surface plasmon is excited at the outer boundary of
the metal by evanescently tunneling through the thin metal layer.

A tiny change in real part or imaginary part of the dielectric constant of the
sample will lead to a measurable variation in the resonance dip of the ATR spec-
trum. As depicted in Fig. 8.8, a resonant angle shift can be attributed to the change
in real part and a variation in the minimum reflectance is resulted from the change
in imaginary part, respectively. By measuring these variations in the resonance dip,
many biochemical processes can be monitored, including the antibody—antigen
interactions, the preparation of Langmuir-Blodgett membrane, and so on. However,
since the resonant dip possesses a flat bottom and a large FWHM, typically about
0.5—1 degree, it is very difficult to distinguish the resulted minute shift in resonant

Fig. 8.7 Kretschmann’s
configuration for exiting
surface plasmon

Prism ns
Metal film 17,

Sample 7, = 1, +N,;


http://dx.doi.org/10.1007/978-3-662-48984-0_5

8.3 Evanescent Wave Sensors 199

(a) (b)
10 10
084 7l o
[u)\
£ oo £ o
= =
g H
= 04 = 04-
o o
- -
02 02 <
N(b) (b)
00 . r v . 00 : .
© o @ ” L] M o 1] £
Angle of incidence Angle of incidence

Fig. 8.8 The change of reflectivity with respect to a the variation in the imaginary part of
dielectric constant: sample A ny;; = 0 and sample B nj; = 0.002 and b the variation in the real part
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angle. As shown in Fig. 8.9, the intensity modulation method is an appropriate
method to enhance the sensitivity. The incident angle is fixed at the middle point of
the falling or the rising edge (6y), and when the real part of the dielectric constant
changes, the resonant dip moves to the right or left side and the reflectivity changes
from R, to R;. Once the reflectivity variation AR = R; — R has been measured, the
variation in real part of the dielectric constant can be determined. The slope of the
falling or the rising edge is larger than that of the bottom, and therefore, the
sensitivity in this method can be greatly enhanced.
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8.3.2 The Leaky Waveguide Sensor

The SPR propagates along the interface between the metal and dielectric medium,
but the noble metals can absorb the visible light considerably. As a result, the small
slope (dR/d0) of ATR along the falling or the rising edge limits the sensitivity of
SPR sensors. To increase the sensitivity, Okamtoto et al. [6] proposed a leaky
waveguide sensor, whose structural configure is shown in Fig. 8.10. It contains no
metal film and composes of a glass prism, a cladding layer, a guiding layer, and a
sample substrate. As the light beam illuminates around the vicinity of resonant
angle, the reflectivity curve of ATR is a sensitive function with respect to the
complex RI of sample.

Besides the capability of detecting the concentration of the liquid sample, the
leaky waveguide sensor can be used to measure the absorption, namely the
extinction coefficient Im(n3) of the liquid solution. The simulated reflectivity as a
function of extinction coefficient is given in Fig. 8.11. The corresponding experi-
ment has been done by Okamoto, who demonstrated that the sensitivity of the leaky
waveguide sensor is larger than that of SPR sensors.

8.3.3 Reverse Symmetry Waveguide Sensor

As demonstrated in Sect. 8.2.2, a bigger proportion of light energy interacting with
the sample would bring a higher sensitivity. In the conventional waveguide
geometry, the substrate has a RI higher than that of the cladding layer, which
usually consists of water and has a RI of 1.33. Therefore, the waveguide mode has a
light intensity more concentrated toward the substrate layer, thus leaving less light
to interact with the analyte. As shown in Fig. 8.12b, in a reverse symmetry
waveguide [7, 8], nanoporous silica is used as the substrate. Nanoporous silica has a
RI of 1.193, much lower than that of water. As a result, more light can be con-
centrated near the sensing surface to enhance the sensor sensitivity. Furthermore,
the penetration depth of evanescent wave in the reverse symmetry waveguide
sensor is bigger than that of the conventional waveguide, and consequently, the

Fig. 8.10 The structure of
leaky waveguide sensor
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Fig. 8.12 Comparison of penetration depth between the conventional waveguide (a) and the
reverse symmetry waveguide sensor (b)

reverse symmetry waveguide is very suitable for the detection of cells that are
typically a few microns in size [7]. A comparison of penetration depth between
conventional waveguide and the reverse symmetry waveguide sensor is shown in
Fig. 8.12. The detection limit of RI is estimated to be 5 x 1073 [8], a few dozen
times better than that in the conventional waveguide.

8.4 Oscillating Wave Sensors Based on the Light Intensity

The common feature of the evanescent wave sensor is that the sample to be detected
locates in the region where the evanescent wave of the resonant modes propagates.
It has shown that the sensitivity of such sensors depends strongly on the power
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distribution of the resonance mode. The bigger the portion of power that propagates
in the sample, the higher the sensitivity will be. To achieve a higher sensitivity, it is
essential to get as much of the optical power as possible to propagate in the sensing
region. Investigation of the mode power distribution suggests us to design a con-
figuration that contains the sample in the guiding layer of the waveguide, where
oscillating wave locates and most of the mode power concentrates.

However, this idea is blocked by two barriers in the conventional waveguide.
Firstly, only when the RI requirement of 7gyiding > substrates Acladding 1S satisfied, a
sandwiched structure can form a waveguide that light wave can propagate stably in
the guiding layer. Since the RI of aqueous solutions is usually lower than the
conventional waveguide materials, it is hard to find suitable material to fabricate the
substrate and the cladding layer of the waveguide. Secondly, in the conventional
waveguide structure, the thickness of guiding layer is usually around micrometer
scale, and this limited sample room would make the sample into and out of sample
room to be very difficult.

In the following sections, we elaborately describe our proposed oscillating wave
sensors based on the SMCW structure. In SMCW, the above-mentioned problems
are no longer obstacles. As the real part of dielectric constant of metal claddings is
negative, it suggests that not only aqueous analyte but also gas can work as the
guiding layer to be probed. So the detect range of this proposed sensor can vary
from gas with RI as low as 1 to liquid samples with RI of more than 2.0.
Furthermore, the thickness of guiding layer can be expanded to the submillimeter
scale, which makes it possible for the aqueous sample to flow in the guiding layer.

8.4.1 Aqueous Solution Concentration Sensor [9, 10]

The configuration of oscillating wave sensor for the aqueous solution concentration
sensing is shown in Fig. 8.13 [9]. A spacer O ring is sandwiched between two thin
gold films coated on a coupling prism and a substrate glass plate, respectively, to
form a sealed sample cell. The coupling prism is made of glass, with RI of 1.5.
A gold film of 30 nm is deposited on its bottom face, with dielectric constants of
—11.4 + i1.5 at the wavelength of 650 nm. The thickness of the spacer O ring is
h =500 pm and hence the same thickness for the sample layer. Another gold film
with the thickness of 300 nm is deposited on a glass plate substrate. Aqueous sample
is pumped through the inlet and the outlet hole on the glass plate into the sample cell
by a peristaltic pump. In such a manner, an oscillating wave sensor is constructed, in
which the sample sealed in the flow cell serves as the guiding layer of the SMCW.

After passing through a spatial filter, a collimated TE-polarized beam is focused
by a lens and incident into the sensor structure, and its aperture angle is about 0.7°.
The lens and the sensor structure are adjusted carefully to put the focal plane on the
base of the coupling prism. At the synchronized angles, energy of the incident light
is coupled into the waveguide structures to excite the ultrahigh-order modes.
Several fringes will then be presented in the reflectivity pattern and captured by a
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Fig. 8.13 Sensor structure
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charge-coupled device (CCD) camera. A set of NaCl water solutions with con-
centration change of 250 ppm is used as sample analytes to be probed. As the
concentration of analytes pumped in the flow cell is changed, the fringe position
will shift due to the minute RI change. The experimental results show that a
250 ppm NaCl concentration change in the sample, corresponding to a change of
33 x 107° RIU (refractive index unit), will consequently result in a fringe shift of
around 0.014°, as shown in Fig. 8.14. That means a sensitivity of 424°/RIU for TE

Fig. 8.14 Fringe shift
captured by CCD, the lattice
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a pure water, b 250 ppm NaCl
solution, ¢ 500 ppm NaCl
solution, and d 750 ppm NaCl
solution
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mode. For comparison, in the reserve symmetrical waveguide sensor presented by
Horvath et al. [8], the experimental achieved sensitivities of TM and TE modes are
33.5°/RIU and 18.8°/RIU, respectively.

A minute variation in the concentration of the aqueous solution leads to a RI
change of the guiding layer, which will cause an angular shift of the resonance
dip. If the incident angle is fixed at the middle point of the falling or the rising edge,
the reflected intensity is another desired variable to monitor the concentration of
aqueous solution [10]. An aqueous solution concentration sensor based on the
intensity modulation method is shown in Fig. 8.15. The detailed structure param-
eters can be found in [10].

The experimental sensor response is illustrated in Fig. 8.16, a 50 ppm NaCl
water solution can cause a reflectance change of about 15 %, and a 150 ppm NaCl
solution sample even causes a reflectance change of about 52 %. As the relationship
between the concentration of NaCl water solution and its RI is known, it means that
a 50 ppm NaCl water solution can bring an RI change of 6.6 x 10° over pure
water, and a 150 ppm NaCl solution corresponds to a 2 x 107> RIU change. So the
ideal resolution of the sensor is then calculated to be 8.8 x 10~%, by assuming the
detectable reflectance change to be 0.2 % [4].

8.4.2 Trace Chromium (VI) Sensor [11]

In addition to the weathering of rocks and the erosion of soils, trace chromium
(Cr) is usually found in environment as a result of the discharge of many industrial
manufacturing activities, such as stainless-steel production, leather tanning, elec-
troplating, and pigment fabrication. Cr is generally in two most stable states of Cr
(IIT) and Cr (VI). The physiological effect of these two states on the biological
systems is totally opposite: Cr (III) is essential to human health at trace level,
whereas Cr (VI) is readily absorbed by the lungs, digestive tracts, mucous
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Fig. 8.16 Sensor response for NaCl water solution samples. The first intensity measurement for
the pure water sample starts at B/, B2, and B3 with 1-min intervals. 1 min after a 50 ppm NaCl
solution is pumped in, a second set of measurement starts at C/, C2, and C3 with 1-min intervals.
Other timing spots are DI, D2, and D3 for 150 ppm NaCl water solution; E/, E2, and E3 for newly
pumped in 150 ppm NaCl water solution; FI, F2, and F3 for 50 ppm NaCl solutions again and
back to purewater at G/, G2, and G3

membranes, and skins, is toxic and carcinogenic, and is considered as a serious
pollutant in environment. The determination of Cr (VI) in environmental and at

industrial sites is consequently important.
The minimum reflectivity of the ultrahigh-order mode is well described by
Eq. (4.40) and can be cast in the form

(8.9)

where Im(f°) and Im(AB") represent the intrinsic damping and the radiative
damping, respectively. The relationship between the concentration of solution and
the imaginary part of dielectric constant can be derived from the Beer—Lambert law
as below [12]

nk,,

=— 1
In 10 - ko ¢ (8.10)

Im(e)

where C is the concentration of solution, K,, is the molar absorptivity, and n is the
real part of RI of the solution. As the concentration of Cr (VI) in aqueous solution
changes, the extinction coefficient of the solution and the intrinsic damping of
SMCW change too. Combining Eqs. (8.9) and (8.10), we can get the relationship
between reflectivity and the concentration of solution.
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Fig. 8.17 The structure sensor (a) and experimental arrangement (b) for trace chromium
(VI) sensing

As shown in Fig. 8.17a, the SMCW structure in the experiment is composed of
three parts: (i) a polished glass substrate of 0.5 mm thickness has a thin silver film
coated on the top side to act as a coupling layer, (ii) two parallel glass strips of
0.5 mm thickness are placed at a distance of 4 mm to form the sample confinement
walls, (iii) another polished glass substrate of 0.5 mm thickness has a relatively
thick silver film deposited on the base side to prevent light leakage. The experi-
mental setup is shown in Fig. 8.17b. A TE-polarized laser beam from a solid-state
laser is incident on the upper silver film at certain optical angles. An aperture with a
diameter of 1 mm was inserted into the beam path to further confine the divergence
angle to about 0.4 mrad. The sample solution was pumped into and out the cell
room by a syringe through inlet and outlet pipes with 0.5 mm inner diameter.
A computer-controlled 6/20 goniometer was used to carry out the angular scans.
The intensity of the reflected beam was detected by a photodiode.

Determination of Cr (VI) was based on the color reaction with 1,
5-Diphenylcarbazide (DPC, C13H14N40). The reaction takes place at a pH of
1.0 £ 0.3 and forms absorbing complex at the wavelength around 540 nm.
Therefore, a laser of 532 nm was used as the light source in the experiment. Sulfuric
acid (1:1) and phosphoric acid (1:1) were prepared by diluting 50 ml of acid in
50 ml of water. Chromogenic reagent was prepared by dissolving 2 g of DPC in
50 ml acetone and then diluting in water with a 100 ml measuring flask.
Chromogenic reagent was prepared just before use. A 400 pg/l of Cr (VI) stock
solution was prepared by dissolving 0.2829 + 0.0001 g of potassium dichromate in
water with a 250-ml measuring flask. The Cr (VI) working standard solutions were
prepared by appropriate dilution by water. Color reaction took place by adding
0.25 ml of sulfuric acid (1:1), 0.25 ml of phosphoric acid (1:1), and 1 ml of
chromogenic reagents to 25 ml of each Cr (VI) working standard solution. The
reaction lasted for 7 min. The concentration of Cr (VI) working standard solution
selected in this experiment was 0, 0.24, 0.48, 0.72, 0.96, 1.2, 1.44, 1.92, 2.16, and
2.64 pg/l. After reaction, the mixed solutions were injected into sensor chip. And
then reflectivity spectrum of each solution was measured by rotating the
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Fig. 8.18 The reflectivity spectrums (a) and the minimum reflectance (b) with respect to different
concentration of Cr (VI)

goniometer. Before the injection of each solution, the sensor chip was washed by
pumping 20 ml of deionized water to avoid residue.

Figure 8.18a shows the reflectivity spectrums of the sample solutions. As the Cr
(VD) concentration increases, the reflectivity at coupled angle varies from 0.097 to
0.118. Figure 8.18b shows the relationship between minimum reflectivity and the
concentration of Cr (VI). It produces an approximate linear response about Cr
(VI) concentrations:

Ruin = (0.007965 4 0.000814) - C(Cr (V1)) + (0.09763 +0.00117),  (8.11)

with the fitting relation coefficient, where C(Cr (VI)) is the concentration of Cr
(VI) in pg/l. The limit of detection, defined as three times of the standard deviation
of the measurement blank (a concentration of zero), is % = 0.064 ng or
12 nM, which represents a 16-fold improvement compared to the surface plasmon
field applied to the determination of Cr (VI) [13].

8.4.3 Displacement Sensor [14-16]

Displacement sensors have long been used in ultra precision measurements of
geometrical quantities, such as positioning, vibration, and profile measurement of
shafts and surfaces. As one of the commonly used displacement measurement
techniques, interferometer method usually suffers from a relatively complicated
optical arrangement and limited resolution. In this section, we describe our pro-
posed displacement sensor based on the SMCW by analyzing the fringe shift [14]
and by monitoring changes in the reflected intensity [15, 16]. These displacement
sensors can work in real time and can provide accuracy better than those obtained
by using photorefractive interferometer and speckle correlation technique.
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The experimental arrangement for the measurement of the displacement by
analyzing the fringe shift is shown in Fig. 8.19. The SMCW consists of a stationary
part 1 and a moving part 2. Part 1 is a glass prism, with a thin gold film of 50 nm
deposited on its base, which is rigidly attached to a heavy bar in brass. Part 2, as an
object of the measurement mounted on a translation stage, is a piece of flat glass
coated with a relatively thick gold film of 200 nm. The thickness of the air gap is
controlled by a differential micrometer fixed on the translation stage. A light beam
from a laser passes through a Glan Thomson prism P and two apertures Al and A2
and is then reflected by a mirror M. Being spatially filtered by a spatial filter, the
input beam is finally focused by lens L1 at its rear focal plane, where the base of the
prism is located. The reflective pattern, which is collected by another lens L2 and
then recorded by a CCD camera, is placed a distance away from the focal plane of
L2 along the optical axis. As a result of the energy transfer from the incident light
into the guided mode, a fringe, which is attributed to the reduction in the intensity
of the reflected bright spot, can be observed at the position of the resonance angle of
the guided mode. If the moving part of the sample undergoes a slight displacement
driven by the differential micrometer, the guide thickness will then be changed with
the same amount of the displacement. Substantially, the fringe will shift its angular
position as well. Using this known fringe shift quantity, the displacement of the
object can be determined absolutely. The measurement range of our experiment is
—12.5-240 pm, the accuracy of the displacement is about 50 nm, and the relative
error is less than 0.4 %.

As shown in Fig. 8.20, the configuration of displacement sensor by monitoring
the reflected intensity is composed of two parts: One is a glass prism on its base
precoated with a thin gold film; the other is a 500-pum-thick LiNbOj3 slab sand-
wiched between two 400-nm-thick gold films and serves as a piezoelectric trans-
lator. The two components, separated by an air gap with a thickness of 100 pm, are
rigidly mounted on a heavy platform. As applying a dc voltage on the pair elec-
trodes of the piezoelectric translator, the air gap changes its thickness due to the
piezoelectric effect of the LiNbOj slab. As a result, the reflection dip shifts its peak
position and results in a change of the reflectivity. According to the resolution of the
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reflectivity variation, displacement can be evaluated from the applied voltage and
the piezoelectric coefficient of the LiNbOj slab.

The obtained displacement sensitivity is shown in Fig. 8.21. The waveguide
thickness (k) is increased and decreased in steps by increasing and reducing the
voltages applied on the electrodes of the piezoelectric translator. The step-style
change of voltage is 50 V. According to the piezoelectric coefficient of a Z-cut
LiNbOj slab, ds3 = 33.45pm/V, the value of the displacement resolution for the
proposed configuration is determined as § = 50 x 33.45 x 1073 = 1.7 nm, which
corresponds to the reflectivity change of AR=1% .

Subsequently, an improved scheme for displacement measurement based on
intensity modulation and lock-in amplification techniques is proposed [16]. The
noise can be restrained by the lock-in amplifier. From the experimental result, a
displacement resolution of 3.3 pm is obtained.
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8.4.4 Angular Displacement Sensor [17]

Angle displacement plays an important role not only in the alignment, assembly,
and calibration of machine tools, but also in the fields of earthquake measurement
and scientific experiments. There are two main ways to measure small angle: the
electronic methods and the optical methods. As one of the most effective methods,
capacitive transducers convert angular displacement to capacitance signal. By the
technique of capacitance bridge, the method reaches the angle resolution of
1.0 x 1077 rad. Optical methods have an excellent performance for measurement of
angular displacement. Conventionally, the measurement for angle is based on the
principle of the optical lever [18]. The method can amplify the angular information
infinitely. However, it is extremely difficult to construct an angle sensor that
incorporates both high resolution and compactness, and the stability of the angle
sensor decreases as the size is increased to increase the resolution.

A layout of angular displacement sensor based on the SMCW is illustrated in
Fig. 8.22. The device is composed of two components: a prism and an oscillator.
The prism is attached tightly on a platform, and the oscillator, which is suspended
separately by a thin tungsten fiber, runs parallel with the hypotenuse face of the
prism. The oscillator freely rotates around its suspending point O as external torque
is applied. There is an air gap with thickness h; between the prism and the
oscillator.

Under action of the external torque, the oscillator rotates around the suspension
point O with an angle of 6, and the variation in thickness of the air gap is expressed
as

hy = hyo+ 10, (8.12)

where hy is the thickness of the air gap in the absence of external torque, and [ is
the distance between the incident point of the laser beam and the suspending point
O. In the intensity measurement scheme, a photodiode is employed to monitor the

Fig. 8.22 Layout of angular
displacement sensor based on .
the SMCW PMT Prism
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variation in the optical intensity of reflected light. The minimum detectable angular
displacement is 1.0 x 107! rad with a range of +2.5 x 10™° rad.

8.4.5 Wavelength Sensor [19]

Wavelength sensing, which can monitor and stabilize the spectrum of semicon-
ductor diode lasers, is an important task in many fields of applications. In order to
obtain high sensitivity, a probe with strong wavelength dispersion is often needed.
Various probes such as arrayed-waveguide grating, chirped grating, three-layer slab
waveguide, and the Fabry—Pérot etalon have been proposed. Among these methods,
the guided mode of a three-layer slab waveguide structure is a preferable choice in
wavelength sensing due to the high index contrast between the guiding layer and
the cladding layer, which allows for strong optical confinement. However, the fact
that a large part of the guided mode energy still disperses into the evanescent field
decreases the sensitivity.

The ultrahigh-order modes excited in a SMCW have exhibited several attractive
properties such as polarization-independent and strong wavelength dispersion [see
Eq. (6.33)]. Experimental result is shown in Fig. 8.23. The required wavelength
variation is achieved by temperature tuning of the tunable laser. The step-style
change of wavelength is 0.5 pm, with the average 2.5 % change in the reflectivity
AR. The sensitivity of about 5 x 10! m~! is obtained with a range of 18 pm, which
covers the reflectivity from 0.1 to 0.7.
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8.5 Oscillating Wave Sensors Based
on the Goos—Hinchen Shift

The most popular sensing schemes in optical sensors are either monitoring the
change in the reflectivity by fixing the excitation wavelength and the incident angle
or monitoring the change in resonant wavelength or angle in response to the
environmental change. Nevertheless, the best performance is demonstrated by using
a phase-sensitive measurement. The reason is that the phase is shown to change far
more rapidly as a function of environmental parameters compared to the change in
reflectivity, wavelength, or angle. However, this improved performance always
comes at a cost of the complexity in the optics. On the other hand, the Goos—
Héanchen (GH) shift, which is a discrepancy of the reflected light point from its
incident one, is found to be proportional to the first derivative of the reflected phase.
As the environmental parameters can exert a significant influence on the GH shift,
direct monitoring of the GH shift seems to be a promising way to build a simple and
stable phase-sensitive detection scheme. In this section, we present various optical
sensors, which can avoid the complicated fabrication and reduce disturbing from
power fluctuation, by measuring the SMCW enhanced GH shift.

8.5.1 Aqueous Solution Concentration Sensor [20]

The schematic diagram of the aqueous solution concentration sensor is illustrated in
Fig. 8.24. A glass prism is coated with a 20-nm-thick gold film to serve as the
coupling layer. A 300-nm-thick gold film is sputtered on a glass slab to act as the
substrate. The air gap of 0.7 mm sandwiched between the two gold films works as
the guiding layer, where a gasket is used to form a sealed sample cell. With the help
of a peristaltic pump, sample liquids to be detected flow into the cell through the
inlet and the outlet tubes embedded in the substrate glass plate.

The theoretical sensitivity of the aqueous solution concentration sensor is
defined by the change rate of the GH shift (L) with respect to the RI of the guiding
layer (ng), and it can be written as

Fig. 8.24 Configuration of
the aqueous solution Incident
concentration sensor
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where N is the effective RI of the guided mode. A high sensitivity §; can be obtained
when the incident angle gets close to the resonance peak. According to the dispersion
equation for the ultrahigh-order modes in the SMCW, S, can be cast in the form

S, =-8-% (8.14)

where P, and Py represent the power flowing in the guiding layer and the whole
waveguide structure, respectively. For the SMCW, the energy is almost totally
coupled into the guiding layer (P, ~ Pr) due to the strong confinement effect.
Moreover, the allowed range of the effective refractive index is 0 <N <ng, which
makes it possible to obtain an enormously high sensitivity (S, > 1), when the
ultrahigh-order modes (N — 0) at small incident angles are used as sensing probe.

In the experiment, the incident angle is adjusted to coincide with an
ultrahigh-order mode. And this incident angle will be fixed to keep the stability of
the optics. In order to attain a high sensitivity and a good linearity, the light
wavelength is tuned by using a tunable laser. As the wavelength of the incident
light changes, the GH shift of the reflected beam varies correspondingly. The
operation wavelength is selected at the middle area of the falling edge of the
resonance peak where a good linearity and a high sensitivity can be achieved.
A tiny variation in the concentration of the sample solution, which corresponds to a
RI change of the guiding layer, will lead to a change of the GH shift due to the
translation of the resonance peak. The change of the GH shift is measured by using
a position-sensitive detector (PSD). A series of NaCl solutions with the change step
of 20 ppm in concentration is used as sample analyte to be probed. The experi-
mental result is shown in Fig. 8.25. The step change of 20 ppm NaCl solution in
concentration, which corresponds to a variation of 2.64 x 10°° RIU, induces a GH
shift change of at least 20 um. By considering the noise level in the experiment, the
probing sensitivity of 2.0 x 10”7 RIU is resolved since the measurement variation in
the GH shift is confined within 1.5 pm for each sample.

8.5.2 Displacement Sensor [21]

In Sect. 8.4.3, the oscillating wave for displacement sensing with high resolution
was developed by using SMCW structures. First, based on the fringe shift technique
in the non-scanning configuration, a displacement resolution of 50 nm is demon-
strated. Later, by monitoring the intensity of the reflected light, the displacement
resolution achieves 1.7 nm, but the sensitivity of this sensor is still limited by the
fluctuation of the laser source. In this section, an alternative approach based on
the enhanced GH effect is presented to obtain a higher resolution and prevent the
disturbance caused by the power fluctuation in the light source.
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Fig. 8.25 The GH shifts with respect to the solutions of different concentrations: a pure water,
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Fig. 8.26 Experimental structure of a displacement sensor based on the GH shift

Configuration for the displacement sensing is shown in Fig. 8.26. It consists of two
parts: One is a glass prism with a thin gold film on its base; the other one is a z-cut
LiNbOj slab sandwiched between two 300-nm-thick gold film electrodes and serves
as a PZT. Two components separated by an air gap with a thickness of 500 pm are
rigidly mounted onto a heavy platform to prevent the relative shift. While applying a
dc voltage on the pair of electrodes of the piezoelectric translator, the air gap then
changes its thickness owing to the piezoelectric effect of the LiNbOj slab.

The experimental result is shown in Fig. 8.27. The voltage applied on the
piezoelectric translator between each step is 10 V, and the piezoelectric coefficient
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Fig. 8.27 Experimental sensitivity of the displacement sensor

of the z-cut LiNbO3 is d33 = 8 x 1072 m/V. Thus, the thickness change per step is
determined as Ad = 8 x 10712 x 10m = 8 x 10~ m, which leads to a GH shift
change of 2 um. The experimental ripple of each step is confined to 0.5 pm. With
this noise level, the sensing resolution is evaluated to be 40 pm. Since the mag-
nitude of the GH shift is irrelevant to the incident light intensity, a power fluctuation
of the laser brings no disturbance to the resolution of the displacement sensor.

8.5.3 Wavelength Sensor [22]

In Sect. 8.4.5, an oscillating field for wavelength sensing based on the SMCW
structure by measuring the reflectivity is described. Here, we present a wavelength
sensor with a high resolution by monitoring the variation in GH shift of the
reflected beam in the SMCW structure.

The schematic diagram of the wavelength sensor is shown in Fig. 8.28, which
consists of two components. One is a glass prism with a gold thin film deposited on
the bottom base. The other is a glass slab with another gold thin film coated on the
upper surface. The mode dispersion for both TE and TM polarizations of the
SMCW can be expressed as

AN ey — N2

O NI (8.15)
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Fig. 8.28 Schematic diagram
of the wavelength sensor
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From Eq. (8.15), it is easy to obtain the wave vector dispersion as

dx
=0 8.16
o= (8.16)
for the normal component and
dﬁ 27‘[83jr
— = 8.17
d N2 (8.17)

for the interfacial component. It is seen that x retains invariant, while § changes
rapidly with respect to the wavelength under the condition of N — 0. The wave
vector of the guided mode exhibits completely different dispersion properties in the
two perpendicular directions, which indicates that the spatial position of the
reflected beam will be highly sensitive to the light wavelength.

Wavelength-shift monitoring is performed with different thicknesses of the
guiding layer in the SMCW, the results of which are shown in Fig. 8.29. Theoretical
simulations based on the Gaussian beam model are also given for comparison.
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Fig. 8.29 Experimental result of GH shift variation (AS) with respect to the light wavelength.
a TE polarization. b TM polarization. The datum points are of different parameters:
Idy =02mm, 0 = 3.72°; Il dyi; = 0.5mm, 0 = 3.84°; and IIl d,; = 1.0mm, 0 = 3.96°
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The sensitivity factor, which is defined as Fs = AS/AJ/, reaches an average value of
4.5 pm/pm in the case of dy; = 0.2 mm. The wavelength resolution of 0.33 pm is
obtained, taking into account the noise level of GH shift measurement that is about
1.5 pm. The dynamic range of the wavelength-shift monitoring is 100 pm. As dy;
increases, the probing sensitivity becomes higher correspondingly. The value of F
is 20 um/pm for dy; = 0.5 mm and 55 pm/pm for d;; = 1.0 mm in each spectral
region, which denote a wavelength resolution of 0.075 and 0.027 pm, respectively.
The dynamic range decreases to 40 pm for dy; =0.5mm and 20 pm for
dyie = 1.0 mm.

8.5.4 Enhanced Superprism Effect [23]

The superprism effect, which describes the unusual dispersion property much
stronger than that in conventional prism, has attracted much attention since it
promises  extensive  applications in  optical communications, e.g.,
wavelength-division-multiplexing devices. Research has demonstrated that the
anomalous dispersion could be obtained in one-dimensional (1D), two-dimensional,
and three-dimensional photonic crystals (PCs) as well as multilayer thin-film
structures. Instead of the limited effect based on material dispersion in conventional
prisms, light of different wavelengths is enormously dispersed owing to the
group-velocity dispersion and the phase-velocity dispersion near the bandgap of the
PCs, which finally results in wavelength-dependent beam separation at the exiting
facet. However, complicated fabrication and precise control were required in most
of these devices that were constructed in quasi-periodic structures or photonic
nanostructures.

As shown in Fig. 8.30, two gold thin films that are deposited on a prism base and
a glass slab, respectively, by the sputtering technology, together with the air gap
sandwiched between them, form the SMCW structure. The experimental result of
the reflected beam displacement (S) is plotted as a function of the incident light
wavelength. As depicted in Fig. 8.31, an extremely high spatial dispersion ability is
exhibited on both the rising and falling sides of the displacement curve, where the
GH shift rapidly changes with respect to the light wavelength. It is worth noting that

Fig. 8.30 Superprism effect
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a maximum GH shift as large as 900 um is obtained with the working wavelength
interval ranging from 858.396 to 858.636 nm. In fact, the working region of
wavelength can be tuned simply by changing the incident angle or the thickness of
the guiding layer. Further experiments reveal that the deeper the penetration depth,
the larger the GH shift becomes, namely the higher spatial dispersion ability will be.
Through a tuning of 14 pm in wavelength, a lateral displacement as large as 1.5 mm
is observed on the SMCW with a 3-mm-thick guiding layer [24].

8.6 Electro-optical Devices

8.6.1 Low-Voltage Electro-optic Polymer Modulator [25]

Electro-optic (EO) modulators are widely used in many photonic and
optical/millimeter-wave systems. Taking advantages of the transverse Pockels
effect, the transmission geometry can be arranged over a long interaction length to
provide modulation at low voltages and high speeds, but this introduces subsequent
alignment and propagation problems which lead to a large proportion of light
energy loss. To decrease the propagation loss, much attention has been paid to EO
modulators with reflection geometry. However, driving voltages for this type of
devices are still too high to meet practical uses. For the sake of solving this
problem, besides looking for materials, such as polymers, with much higher EO
coefficients, it is found that resonant modes are highly sensitive to the electrically
induced RI change in the guiding layer.

The schematic diagram of the low-voltage EO polymer modulator is shown in
Fig. 8.32. It consists of a high-index cylindrical prism, a thin silver film as the
coupling layer and also the top electrode, a poled polymer layer as the guiding
layer, and another silver film as the base electrode. When a collimated
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TM-polarized beam of light is incident upon the hypotenuse face of the prism, the
electromagnetic field in the silver film beneath the prism is evanescent. At a syn-
chronous incident angle, the evanescent field is phase matched to a guided wave in
the polymer guiding layer, and the energy is coupled from the incident light into the
guided wave. Applying an electrical field across the EO polymer film changes its RI
and also changes the propagation constant of the guided wave, so the energy
coupling efficiency and light reflectivity can be electrically modulated.

The process of the EO modulation is shown in Fig. 8.33. The modulation
relationship can be written as

_ Vaskm3E

Al =
2n;cos 0’

(8.18)

where Al is the light reflectivity that has been modulated, y;5; is the EO coefficient
of the polymer, 0 is the light incident angle, n; and nj3 are the refractive indices of
the prism and the polymer film, respectively, E is the applied electrical field, and
k = AI/AQ is the slope value of the fall-off in the resonance dip.
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The measured modulation reflectivity was 60 % at a driving voltage of 12 V.
This achievement is attributed to the extremely strong dependence of the guided
mode on the electrically induced RI change in the EO polymer film. Since the
propagation loss is absent, the total insertion loss of the modulator is below 1.5 dB,
which is also an improvement over the typical 3—6 dB modulation loss in an EO
modulator with transmission geometry.

8.6.2 Variable Optical Attenuator [26]

Variable optical attenuators are widely used in wavelength-division-multiplexing
telecommunication systems to adjust power variations caused by changes in source
power, amplifier gain, and other components. Commercially available variable optical
attenuator devices are mainly based on optomechanical and TO effects and usually
have response times of the order of milliseconds. With EO polymer, the response time
is typically of the order of tens to hundreds of femtoseconds, but the intrinsic optical
loss is usually higher than lithium niobate, resulting in a large proportion of light
energy loss in the transmission geometry EO polymer device, such as the Mach—
Zehnder interferometers. EO polymer device based on the reflection geometry does
not present a serious loss problem due to the absence of propagation loss.

The diagram of the attenuator is similar to that of the EO polymer modulator shown
in Fig. 8.32. Applying an electrical field across the EO polymer film changes its RI and
also changes the propagation constant of the guided wave, so the energy coupling
efficiency can be electrically controlled. Incident light can be totally absorbed or
reflected at this angle, depending on the electrical field applied, so the device acts as an
electrically controlled variable optical attenuator. Under the optimized gold film
thickness, the dependence of the attenuation on applied voltage at different working
interior angles is shown in Fig. 8.34. A maximum attenuation of 21.5 dB with the
driving voltage of 33 V has been achieved. In order to further increase the attenuation
range and decrease the working voltage, an EO polymer variable optical attenuator
based on the cascaded attenuated-total-reflection technique is presented [27]. Results
show that the dynamic range can reach 24.1 dB with an applied voltage aslow as 39.6 V.
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8.6.3 Tunable Polarization Beam Splitter [28]

The technology of polarization beam splitter (PBS), which enables a spatial separa-
tion of the two orthogonal polarizations of light beam, can be widely used in optical
systems, such as optical switches, data storage, and image processing. Different from
conventional methods which rely on the inherent birefringence of anisotropic mate-
rials or the Brewster angle effect, various configurations for PBS which utilize dif-
ferent responses of the structure for TE and TM polarizations have been proposed,
such as embedded metal-wire nanograting, coupled plasmonic waveguide arrays, and
anisotropic metamaterial slab. However, since the functionalities of all these struc-
tures have been fixed at the fabrication, no further tuning of the optical properties can
be performed, which is a limitation in many practical applications.

The nonlinear material LiNbOj is introduced in both the coupling prisms and the
guiding layer of the SMCW, where the optical properties of polarization-dependent
anisotropy and EO effect are put to use, respectively. As shown in Fig. 8.35, two
prisms, which act as the coupling layer, are made of x-cut LiNbOj crystal. It is
easily seen that TE- and TM-polarized beams are the extraordinary and ordinary
waves inside the prisms, respectively. So polarization-dependent kg is obtained for
the same light wavelength and incident angle owing to the different RIs of the
prisms for the two orthogonal polarizations. And the z-cut LiNbO; slab, together
with two air gaps, constitutes the guiding layers. The LiNbOj slab is the essential
component for electrical tuning of the guiding layer properties, in which both TE-
and TM-polarized beams can be considered as ordinary waves on condition of very
small incident angles. The guiding layers are sandwiched between two gold thin
films which are deposited on the bottom of the prisms. In the structure, the gold
films not only serve as cladding layers but also work as electrodes, on which
external electric field is applied.

As shown in Fig. 8.36, the spectral responses of the SMCW structure for both
TE- and TM-polarized beams are calculated at the light wavelength of 2 = 860 nm.

21 3 (456 0,6 x-cut LiNbO;
1,5 gold
2,4 air
3 z-cut LiNbO,

Z
TM (or TE) ‘

o S y

Fig. 8.35 Structure of the SMCW for tunable PBS

TE (or TM)
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The reflectivity and transmissivity for each polarization strongly vary with the
incident angle in the range of a guided mode. The coupling angles for TE and TM
modes are staggered from each other, which give rise to different reflections and
transmissions for different polarizations.

Initially, external voltage is not applied onto the structure, and the incident angle
is settled at § = 5.884°. This angle is a little smaller than the resonance angle of TM
mode, where the guided mode is not excited yet. The PBS effect is indistinct at this
operation point since both TE and TM polarizations are highly reflected
(Rte = 89.9%, Rrm = 91.1 %). Then, the applied electric field is adjusted to tune
the PBS effect in the SMCW structure. As shown in Fig. 8.37a, the status of TE
polarization remains nearly invariant with the augmentation of applied voltage,
whereas TM polarization gradually changes into large transmission. The trans-
mission of TM polarization reaches Tty = 60.3 % at U = 2200V, where a high
separation of polarization beams is achieved. The extinction ratios in reflection and
transmission are 16.9 and 15.7 dB, respectively. The situation of § = 5.941°, which
is a little smaller than the resonance angle of TE mode, is also measured in the
experiment (Fig. 8.37b). Similarly, high reflections for both TE and TM polariza-
tions (Rt = 90.4 %, Rty = 91.5 %) are demonstrated at U = 0. But it presents an
opposite way of PBS when adjusting the voltage, i.e., TM-polarized beam remains
highly reflected, while TE-polarized beam becomes largely transmitted. The
transmissivity (reflectivity) of TE (TM) polarization is Ttg = 60.0%
(Rtm = 90.8 %) at U = 2000V, with an extinction ratio of 17.0 dB (18.6 dB) in
TM (TE) polarization.

8.6.4 Electric Controlling of the Beam Position [29]

In this section, an optically nonlinear material is introduced into the guiding layer of
the SMCW to control the GH shift of the reflected beam by applying an external
electric field. As shown in Fig. 8.38, the configuration consists of two components.
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Fig. 8.37 Experimental measurements of tunable PBS. a 6 = 5.884°; b 6 = 5.941°

Fig. 8.38 The configuration
for electric controlling of
beam position

Prism n,

Gold £, d1
Air nz dl
LiNbO, n, d,
Gold °© g d,

One is a glass prism with a thin gold film coated on the base. The other is a z-cut
LiNbO; slab with another thin gold film deposited on the undersurface. Separated
by an air gap, the two components are firmly emplaced onto a heavy platform to
prevent relative moving.
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When a dc voltage is applied on the two gold films, the RI n3 and the thickness
d; of the LiNbOj slab are changed due to the EO and piezoelectric effects. Besides,
the thickness of the air gap d, is also changed during this process. The resonance
condition of the ultrahigh-order mode will be dramatically changed due to the
modification of the parameters of the guiding layers and finally give rise to a
variation in the GH shift, which is monitored by a one-dimensional PSD.
Figure 8.39 represents the observed relative GH shift of the reflected beam as a
function of external applied voltage. To simulate the beam with a finite width (waist
radius wy = 800 um), theoretical calculation based on the Gaussian beam model is
also given for comparison. In the experiment, the relative GH shift of the reflected
beam is continuously manipulated in a range of 720 um by adjusting the voltage.

8.7 Research on Ferrofluid

8.7.1 Ferrofluid and Its Magneto-Optical Effects

Ferrofluid is a kind of stable colloids consisting of the magnetic nanoparticles (see
Fig. 8.40) suspended in a carrier liquid. The most used nanoparticle material is
magnetite (Fe;0,), and its average diameter ranges from 5 to 12 nm. The carrier
liquids such as water, kerosene, or various oils are available. With the aid of coated
surfactants, these nanoparticles neither form sediment in the gravitational field nor
agglomerate together. As a result, each nanoparticle behaves as a constant magnetic
dipole moment and can be freely aligned by the affect of external magnetic fields.
The magnetically induced structures in ferrofluid and the related magneto-optical
effects have recently attracted the interests of many scientists due to their potential
applications.
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Fig. 8.40 The schematic
view of the surfactant coated
magnetic nanoparticles

To research the structure evolution, ferrofluid is usually sealed in a glass cell
with a thickness of several to tens of micrometers. When a parallel magnetic field is
applied, a portion of nanoparticles will agglomerate to form the needle-like chains.
If the field strength is further increased, more nanoparticles will participate in the
agglomeration to generate more needle-like chains. Meanwhile, two former sepa-
rated chains will merge together to produce a longer chain. As shown in Fig. 8.41, a
nearly one-dimensional periodic long-chain structure is obtained under the external
parallel magnetic fields [30, 31]. Furthermore, it was observed that the spacing

(a) (b)
(a) dH/dt =20 Oe/s, H=150e  (b1) H = 30 Oe, dH/dt = 10 Oels

505 I H

{bS) He 30 Oe, dHr‘dt

Fig. 8.41 Periodic long-chain structural patterns formed in a ferrofluid film subjected to parallel
fields at: a different field strength with constant sweep rate and b different sweep rate with a given
field strength
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(¢) H=2290e

Fig. 8.42 Magnified images of a typical column breaking process in a ferrofluid film subjected to
a perpendicular magnetic field

s between two neighboring long chains and the averaged chain width w decreased
as the magnetic field strength H is increased.

In contrast to the needle-like chains, the cylindrical columns are formed in a
ferrofluid film under a perpendicular magnetic field [32]. With an increase in the
magnetic field strength H, three stages of the ferrofluid structure are subsequently
evolved. In the beginning, the number of columns increases gradually. Columns are
located randomly in the film, and their size shows a broadened distribution. Next,
the ferrofluid structure evolves from a monodispersed state to an ordered one (see
Fig. 8.42a), which can be characterized by the averaged distance d between two
neighboring columns and the averaged diameter a of columns. The d is found to
decrease under a height H, whereas a remained almost constant. During the finally
stage, a column elongates from the original near circular shape (see Fig. 8.42b—d)
and splits into two columns (see Fig. 8.42e). This process continues until all the
columns split, and then, another order structure with a smaller a is formed (see
Fig. 8.42f).

Due to the occurrence of needle-like chains, the ferrofluid becomes optically
anisotropic and birefringent. Consequently, the transmission axis of the transmitted
light rotates by an angle with respect to that of a linearly polarized light passing
normally through the ferrofluid film [33]. Moreover, the transmittance and its
response time are also magnetic field dependent. Under a perpendicular magnetic
field, the resulted cylindrical column structure can diffract the visible light like an
optical grating [34]. Figure 8.43 is a typical chromatic ring that resulted from the
passage of a white light through the ferrofluid film. The spatial distribution of colors
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Fig. 8.43 Chromatic ring
resulting from the diffraction
as the parallel beam of white
light passing through the
ferrofluid film subjected to a
perpendicular magnetic field

in the chromatic ring depends on the wavelength of light; red appears on the
outmost ring, and, successively, orange, yellow, green, blue, and violet. These
versatile magneto-optical effects of the ferrofluid have found broad applications in
various functional optical devices, such as sensors, switches, modulators, and
photonic crystal fiber [35, 36].

8.7.2 Optical Trapping and Soret Effect

Optically based manipulation techniques are playing an increasingly important role
in the operation of microfluid. For instance, in the test of optical trapping technique
[37], when a laser beam is tightly focused with an objective lens of high numerical
aperture (NA), the dielectric particle near the focus will receive a force, which can
be decomposed into two components: (1) a scattering force, in the direction of light
propagation and (2) a gradient force, in the direction of the spatial light gradient.
The reasons for such two force components are given as follows. Incident light
impinges on the particle from one direction, but is scattered in a variety of direc-
tions. As a result, there is a net momentum transfer to the particle from the incident
photons and the particle experiences a scattering force. On the other hand, the
gradient force arises from the fact that a dipole in an inhomogeneous electric field
will undergo a force in the direction of the field gradient.

When the trapped sphere is much smaller than the wavelength of the trapping
laser, i.e., a < 1, the conditions for Raleigh scattering are satisfied and the optical
forces can be calculated by treating the particle as a point dipole. For a sphere of
radius a, the scattering component force is written as
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where I, is the intensity of incident light, ¢ is the scattering cross section of the
sphere, n,, is the index of refraction of the medium, c is the speed of light in
vacuum, m is the ratio of the index of refraction of the particle to the index of the
medium, and /A is the wavelength of the trapping laser. The gradient force can be
expressed as

2no
Fgrad = mvl(h (821)

m

where

21
o= nla (m ) (8.22)

m2 42

is the polarizability of the sphere. It shows that the gradient force is proportional to
the intensity gradient and points up the gradient when m > 1.

Recently, an experiment of using a visible light beam to optically trap the mag-
netic nanoparticles and thus to optically switch another near-infrared light beam was
demonstrated [38]. The configuration of optical switch is shown in Fig. 8.44a.
A capillary filled with a water-based ferrofluid is aligned in the x direction. A visible
light is used as the trapping light and focused onto the capillary along the z direction
by using an objective lens. Two optical fibers aligned in the y direction are used to
emit and collect the near-infrared signal light. The switching mechanism is illustrated
in Fig. 8.44b, c. In the absence of the trapping light (Fig. 8.44b), the signal light can
be transmitted through the ferrofluid, because its wavelength is much larger than the
diameter of the magnetic nanoparticles and the scattering is quite weak. Once the
trapping light is imposed, however, the signal light is strongly reflected because of
multiple scattering off laser-induced magnetic clusters, as shown in Fig. 8.44c.

(a) £ () (c)
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Fig. 8.44 Schematics showing a the structure of the proposed optical switch, b random
distribution of magnetic nanoparticles inside the capillary and the transmission of the signal light
through the capillary in the absence of the control light, and ¢ the formation of magnetic clusters
and enhanced backscattering of the signal light induced by the control light

objective
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The Soret effect [39] refers to the particle concentration variations due to laser
beam-induced thermal diffusion in liquid mixtures. At the steady state, the rela-
tionship between the temperature and the concentration gradients is called as Soret
constant S7. In the case Sy <0, the local increase of temperature attracts the par-
ticles into the warmer region. This yields increased light absorption, which further
increases the temperature. Such a positive feedback may lead to an avalanche jump
in the particle concentration and bistability. On the other side, the positive Soret
constant can push the particles escaping from the hot regions to the cooler parts,
thus decreasing the local temperature.

8.7.3 Magneto-optical Modulation

As described in Sect. 8.7.1, the transmittance of ferrofluid film is magnetic field
dependent. However, due to limited experimental accuracy, few works addressed
the issue of extremely dilute ferrofluids under weak field experimentally. By
injecting the ferrofluid into a SMCW structure, even a slight perturbation in the
formation structure of the nanoparticles will lead to a significant change in the
reflection intensity [40]. To make this point clear, a simple three-layer optical
waveguide consisting of a thin metal-coupling layer, a guiding layer, and a metal
substrate is analyzed. Under the approximate phase-matching condition (Eq. 4.35),
the reflectivity of the SMCW structure approaches its minimum and can be
expressed by Eq. (4.40). The half width of the resonance dip, which is completely
determined by the intrinsic and radiative dampings, is roughly approximated as

2[Im(B°) +Im(4p™)]
ko+/€1 cos 0 '

It is easy to deduce the following relation from the dispersion equation of the
guided modes

W =

(8.23)

1 n3

do = dN = dns.
V€ cos 0 g1 sinfcos 0 =

(8.24)

So a rather rough estimation of the intensity variation in the reflected beam can
be written as

1 — Ry, dO
AR~ ——"™0 " Anj. 8.25
W() dn3 "3 ( )

The subscripts 1 and 3 represent the free space and guiding layer, respectively
(Fig. 8.45).

A continuous wave laser was used as a light source. In order to obtain a
well-collimated, polarized laser beam, a polarizer and two apertures with a diameter
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of 1 mm were set between the laser and the SMCW structure. A solenoid that can
be placed at fixed positions marked as “T” or “II” was used to provide a uniform
magnetic field either perpendicular or parallel to the surface of the SMCW structure.
The magnetic field was measured by a Gauss meter. Figure 8.56 illustrates the
experiment setup, and its inset gives the Poynting vector and electric displacement
of the incident laser and the guided modes, respectively, when the incident light is
TM/TE polarized. The electric displacement vector of the TM-polarized incident
light will be perpendicular to the structure surface, while the electric displacement
vector of the TE-polarized light will be parallel to the structure surface. For sim-
plicity, we will refer to the rays whose electric displacement vector is
perpendicular/parallel to the magnetic field as ordinary/extraordinary rays.

From the above discussion, different choices of the polarization of incident light
and the direction of the magnetic field will result in a total of four cases. When an
external magnetic field is applied to the ferrofluids, a variation in the RI that results
from the agglomeration of magnetic nanoparticles will occur. The concentration of
the measured ferrofluids was 0.053 %; the incident angle was fixed at the middle
area of the falling edge; and the maximum magnetic field strength used was only 24
Oe. The reflectivity variations are measured as a function of the magnetic field
strength corresponding to all four cases, and the dependences of the normalized
reflectivity on the field strength are plotted in Fig. 8.46. The magnetic field-
dependent reflectivity shows different trends for ordinary and extraordinary rays.
The reason is that the RI of the extraordinary (ordinary) ray increases (decreases)
upon the application of the external field, no matter whether the magnetic field is
perpendicular or parallel to the SMCW structure. The difference between the top
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Fig. 8.46 Normalized reflectivity as a function of magnetic field for four different cases. The
concentration of the ferrofluids measured was 0.053 %

(bottom) two curves in Fig. 8.46 probably rises from the difference in the basic
Fresnel formula governing the reflection characteristic of multilayer planar
waveguide for TE (TM)-polarized light.

Besides the transmission, the response time of ferrofluid film is also magnetic
field dependent. A number of reports have pointed out that the agglomeration rate of
magnetic nanoparticles is usually in second scale [41] or even in minute scale [42].
Furthermore, it is demonstrated that a finite retardation exists between the switch
on/off of the external magnetic field and the variation in the transmission through the
ferrofluid films, and this corresponding retarding time ranges from several to tens of
milliseconds [43]. Our experimental results demonstrate that a switching time of a
ferrofluid-sealed SMCW can be shortened to less than 2 ms [44].

A uniform magnetic field is applied parallel to the metal film surface of SMCW
structure and perpendicular to the incident light beam. In Fig. 8.47, the
time-dependent reflectivity is normalized with respect to that obtained without the
magnetic field Ry. It was found that the reflectivity decreases quickly to a lower
level in less than 1.2 ms when the magnetic field is switched on and rises to Ry in
less than 0.9 ms when the magnetic field is switched off. Figure 8.47b shows that
when the modulation period of the magnetic field is prolonged to 4 s, the reflectivity
remains nearly unchanged until the magnetic field is withdrawn. Based on the
experimental results, the corresponding switching time is reduced by three orders of
magnitude shorter than that reported in the literature [41]. However, in Fig. 8.47c,
the switching times increase dramatically as the source is replaced by a confocal
laser beam.
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Fig. 8.47 Periodically applied magnetic fields and the corresponding dynamic variations in the
normalized reflectivity. a The modulation period of the magnetic field is 20 ms. b The modulation
period of the magnetic field is 4 s. ¢ The modulation period of the magnetic field is 4 s, and a
confocal laser beam is applied instead of the parallel laser beam

The experiments to investigate the intensity variations in the reflected beam upon
simply turning on/off the laser source were also carried out. As shown in Fig. 8.48,
the laser was turned on and off twice, while the incident angle is fixed at the middle
of a falling edge without any external magnetic field. It can be seen that (1) there is
an increase (AR = R, — Roy) in the reflectivity when the laser was switched on,
and (2) the reflectivity gradually declines to the stable level R,, within about 7 s.
Similar phenomenon can also be observed at the rising edge, and all these processes
can be stably repeated. As shown in Fig. 8.49, the time-dependent reflectivity also
exhibits the retarded effect upon the switching on/off of the external field. The
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retarding time to the switching-on of the magnetic field is about 0.06 ms, while the
retarding time to the switching-off of the magnetic field is about 0.01 ms.

To understand the physics behind the above phenomenon, the time-averaged
z-component of the Poynting vector, S,, of a pure ultrahigh-order mode is calculated
(see Fig. 8.50). The amplitude of S, in the guiding layer is enhanced by 68 times
than that in the air before coupling into the SMCW structure. Figure 8.51 shows the
electromagnetic energy distribution for an ultrahigh-order mode which oscillates
periodically in space along x-axis. Besides, the excited ultrahigh-order mode
propagates in z direction in the guiding layer, leading to the periodic distributed
electromagnetic energy along the z-axis. Thus, in the x—z plane, the mode field
pattern can be simplified as a checkerboard-like optical lattice. Due to the inho-
mogeneity of the electromagnetic energy, the magnetic nanoparticles within the
excited mode field will all be optically trapped. As shown in Fig. 8.51, the
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nanoparticles are trapped two dimensionally in x—z plane and distributed homo-
geneously along the y direction; thus, the column-like structure of nanoparticles
parallel to the magnetic field has already been formed before the magnetic field is
switched on. Consequently, when the external magnetic field is switched on, these
nanoparticles in the sample room simply need to rotate to align their magnetic
moment to the magnetic field direction and form nanoparticle chains, resulting in a
fast switching speed. The only difference between the use of a parallel laser beam
and that of a confocal laser beam is the energy distribution in the sample cell. Since
more than one ultrahigh-order modes in the guiding layer can be excited by a
confocal laser beam, the periodical structure of the electromagnetic energy distri-
bution along the x direction is significantly disrupted. Experimental results in
Fig. 8.47c show that the switching time is increased by three orders of magnitude
simply, when energy distribution along the x direction is changed. These results
show that the optical trapping effect is the main reason for the observed fast
switching speed.
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8.7.4 All-Optical Modulation [45, 46]

In this section, readers will find that the external magnetic field is not a prerequisite
for the formation of magnetic nanoparticle aggregation. The experimental
arrangement for all-optical modulation is shown in Fig. 8.52. The SMCW structure
is firmly mounted on a computer-controlled /26 goniometer. A probe laser with a
650.00-nm wavelength passes subsequently through two apertures to be further
collimated. The pump laser with an 860.00 nm wavelength is TE polarized and
further collimated by a polarizer and two apertures, and its light intensity is tuned
by an attenuator and real time measured with the help of a beam splitter and a
power meter. These two laser beams are incident upon the SMCW structure at the
same spot with two different incident angles. The incident angle of the pump laser is
fixed at the bottom of one certain resonance dip, so the vast majority of the incident
energy is coupled into the guiding layer and the light-matter interaction between
the pump laser and the ferrofluid is strongest. Meanwhile, the incident angle of the
probe laser locates at the middle point of the falling edge of another certain reso-
nance dip, because at that point both the reflectivity and the GH shift exhibit a good
linearity and a high sensitivity to the variation in the effective RI, which can be
easily altered by the microstructure transition of ferrofluid in the SMCW structure.
Since the intensity of the probe laser is much smaller compared with that of the
pump one, the light-matter interaction induced by the probe laser can be neglected.

As shown in Fig. 8.53, the reflectivity of the probe laser reaches a peak when the
pump laser power is about 10-50 MW. The dependence of the relative GH shift
(AS = Son — Soff) on the control beam (pump laser) power is presented in
Fig. 8.54a. With increasing the control beam power, AS drops rapidly to its min-
imum and then increases again slowly when the control beam power exceeds a
critical power. Figure 8.54b shows one representative time evolution of AS upon
switching on/off the control beam. These results reveal that the reflectivity and GH
shift of the ferrofluid-sealed SMCW can be all optically modulated and there is a
critical power for the control beam.

We suggest that the competition between the optical trapping effect and the Soret
effect is most likely responsible for the critical power. When the control beam is
absent, the magnetic nanoparticles are uniformly distributed in the carrier liquid.
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all-optical modulation Probe laser Apertures . .
650 nm ﬂ u W Waveguide
n - ‘ L‘hip
y \_

860 nm l | \ splitter 9./20
\ Apertures | goniometer
==
Optical Power PDI/ PD II

attenuator meter



236

[ee}

Optical Devices Based on the Attenuated Total Reflection

Fig. 8.53 Detected
reflectivity (normalized to its
maximum value) of the probe
laser as a function of the
pump laser power

Normalized Reflectivity

U ‘To i ' i A 'l " L A A i ' i
0 10 20 30 40 50 60 70 80

Pump Laser Power (mW)

Fig. 8.54 a Relative GH shift (@)
of the signal beam as a
function of the control beam
power, b one representative
time evolution of the relative
GH shift upon switching
on/off the control beam

=100

s
200 4 //

\-5( Critical Power

Relative GH shift (pm)

Iy 1 1 I L I I

00 PR U T WU W ——
0 10 20 30 40 50 60 70 0 2 4 6 8 10 12 14

Control Beam Power (mW) Time (s)

Once the control beam is imposed, the interference of the ultrahigh-order mode
between the two metal films will lead to a spatial periodic pattern of electromag-
netic energy distribution perpendicular to metal surface. Therefore, the generated
periodic energy pattern can push the magnetic nanoparticles to the high power
density areas via the optical trapping effect, and the magnetic nanoparticles will
aggregate together to form a periodic-like microstructure of ferrofluid. Since the
aggregation process is reversible, the magnetic nanoparticle aggregations will dis-
solve again after the control beam is switched off. All these microstructure tran-
sitions of ferrofluid can lead to a variation in the resonance condition of the
ultrahigh-order mode and finally give rise to a change in the reflectivity and the
relative GH shift. Noted that the Soret effect is another factor contributing to the
microstructure transitions of ferrofluid since the periodic energy pattern inevitably
causes a thermal gradient, where the high power density areas are “hotter” and the
low ones are “cooler.” In contrast to the optical trapping effect, the Soret effect will
cause the magnetic nanoparticles to escape from the “hotter” areas to the “cooler”
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areas. So the physical insight of the critical power in Figs. 8.53 and 8.54a can be
understood as a consequence from the competition between the optical trapping
effect and the Soret effect. As increasing the control beam power from 4.5 to
75.0 mW, if the control beam power is lower than the critical power, more magnetic
nanoparticles will be concentrated into the high power density areas from the low
ones due to the optical trapping effect; once the control beam power is larger than
the critical power, the Soret effect will gradually become dominant and lead to a
negative feedback, i.e., the magnetic nanoparticles will escape from the high power
density areas to the low ones.

8.8 Self-assembly Concentric Circular Grating [47]

Optical micromanipulation, with its capability of moving or trapping the micro- or
nanoobjects noninvasively by using light beam, has attracted significant research
attention and motivated many applications in biology, colloidal dynamics, and
particle sorting. Up to now, optical trapping of small objects such as dielectric
spheres, metal nanoparticles, or even bioparticles has been demonstrated. The key
operation of these optical trapping techniques is the enhancement of the gradient of
light intensity, which determines the trapping efficiency. But, to achieve a large
gradient, high NA lenses and a relatively high laser power are required. Another
important issue, namely how to trap many particles simultaneously, is rarely
reported.

The structure of SMCW is shown in Fig. 8.55. It consists of three glass slabs and
two silver films: The bottom layer is a glass slab of 0.3 mm coated with a
300-nm-thick silver; the center layer is a 0.5-mm-thick glass slab with a rectangular
cell of 10 x 4 mm? working as the sample room; and the top layer is another thin
glass slab (0.3 mm) coated with 35-nm-thick silver (Ag). All these components are
assembled together by using the optical cement technology. As shown in Fig. 8.50,

Fig. 8.55 Schematic diagram
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the light energy is largely enhanced in the guiding layer when an ultrahigh-order
mode is excited in the SMCW. The distribution of electromagnetic field of the
excited ultrahigh-order mode will emerge as a set of concentric ring patterns (see
Fig. 6.13c), which has been discussed in Sect. 6.5. The bright conical ring pattern
implies strong energy in the guiding layer. If the analyte fluid containing
nanoparticle is injected into the sample room of the SMCW, these nanoparticles can
be trapped and stacked in the ring pattern field area. It should be mentioned that no
micro- or nanostructure is preintroduced in our optical trapping method.

The experimental setup is shown in Fig. 8.56a. A pump laser beam comes from a
473-nm laser and incidents on a beam splitter. The reflected beam goes to a PD,
which is used to monitor the output power. The transmission beam passes a hole in
the projection screen and hits the SMCW, which is held on a rotation stage. By
tuning the incident angle, an ultrahigh-order mode can be excited at some certain
angle. The reflected conical concentric ring patterns are projected onto a screen and
captured by a camera. Another beam coming from a He—Ne laser, whose incident
power has been attenuated 80 %, is collimated and hit on the SMCW at a different
angle. This beam is used as a probe beam to monitor the trapping of nanoparticles in
the SMCW.

Nanoparticles were put into the solvent and mixed well. The prepared analyte is
then injected into the sample room. When the incident laser beam is turned on and
the stage is rotated to a resonance angle, the concentric ring pattern will be observed
on the projection screen. Shortly after the excitement of an ultrahigh-order mode,
the reflected beam of the probe laser shows a clear diffraction pattern (see
Fig. 8.56a). Based on this phenomenon, we conjecture that nanoparticles are
trapped in the area where the bright concentric ring pattern is formed. As the
nanoparticles accumulate, they will form a refractive index distribution with a
concentric ring pattern, which results in the diffraction pattern of the reflected probe

Injected into
(a) Beam Nano-particales
Splitter Aperture Aperture Optical
i filter

Tunable Laser
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Fig. 8.56 Schematic diagram of the SMCW


http://dx.doi.org/10.1007/978-3-662-48984-0_6
http://dx.doi.org/10.1007/978-3-662-48984-0_6

8.8 Self-assembly Concentric Circular Grating 239

beam. The trapping of the nanoparticles is stable during the experiment as long as
the incident beam is held on. When the incident laser beam is turned off,
nanoparticles become free and diffuse into the solution quickly under the effect of
Brownian motion, while the diffraction pattern of the reflected probe beam disap-
pears accordingly (see Fig. 8.56b).
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