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Preface

General relativity (GR), one of the most and best checked physical theories of our
time, exhibits singularities: The theory predicts that when a sufficient large mass
collapses, no known force is able to stop it until all mass is concentrated at a point.
The theory also predicts so-called coordinate singularities. These are singularities
in the metric which vanish after a transformation to different coordinates. For
example, when an astronaut falls freely towards a black hole, he will not see
anything special, except the gravitational force with its deadly tidal effect. However,
a fixed observer at a safe distance will see at a certain distance from the center, the
Schwarzschild radius for a nonrotating black hole, an event horizon. No informa-
tion can reach the observer from places at smaller radial distances! This is a rather
discomforting observation, telling that part of the space is excluded from the
observation by a nearby observer. On the other hand: Why should GR still be valid
in extremely strong gravitational fields, as one encounters near the Schwarzschild
radius?

This was the reason why two of the authors of this book (P.O. Hess and
W. Greiner) started to discuss this point several years ago. We believe that no
acceptable physical theory should have a singularity (!), not even a coordinate
singularity of the type discussed above! The appearance of a singularity shows the
limitations of the theory. In GR this limitation is the strong gravitational force
acting near and at a supermassive concentration of a central mass. There are other
very successful theories, like the Quantum Electrodynamics (QED), which exhibits
singularities, infinities, due to taking into account the very large momenta corre-
sponding to very small distances in space-time. Most of the physicists would agree
that any field theory should not apply at very small distances. Methods of regu-
larizing field theories have been developed, giving a recipe how to remove the
infinite contribution. But that is what they are: Recipes! In 2007 the authors of this
book published a new field theory, called pseudo-complex Field Theory, where they
introduced pseudo-complex variables, which will play an important role in this
book. Owing to the extension to pseudo-complex fields and operators, it is shown
that the theory is automatically regularized. This is due to the appearance of a
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minimal length as a parameter. Because it appears only as a parameter, Lorentz
transformation does not affect it, thus, all continuous and discrete symmetries of
nature are maintained! However, due to the extremely small effects and the min-
imal length, there is no hope to measure the deviations in near future.

This was the reason why we started to look for extreme physical situations, such
as strong gravitational fields near a large mass. The first question was: Is there a
possibility to avoid the formation of the event horizon? This would mean that the
large mass concentrations, for example at the center of galaxies, are still there but
these objects are no black holes! It will be shown that there is one natural algebraic
extension of GR, namely to pseudo-complex (pc) coordinates. We developed the
pseudo-complex General Relativity (pc-GR) and found several observational effects
which can be measured in near future (See Chap. 5 of this book). The very long
baseline interferometry (VLBI), to which ALMA, the European observatory in the
Atacama dessert in Chile belongs, will be able to resolve the central massive objects
at the centers of our galaxy and in M87. Thus, as GR, also pc-GR is a testable
theory!

This book contains several exercises with explicit and detailed solutions. It is
therefore also of interest for students working in GR. Many of the exercises cor-
respond to considerations not published in text books or at least not in detailed
form. We therefore are convinced that this book is helpful also for students only
starting to work in General Relativity.

The book is divided into seven chapters. In Chap. 1, the necessary basis is led to
deal with pc-variables. This chapter is necessary to understand the content from the
second chapter and further on. The noninterested reader can skip it but surely he
will have to return soon to the first chapter.

Chapter 2 is a central piece of this book, where the pc-GR is introduced and the
basic philosophy is discussed. First, a historical overview is given on former
attempts to extend GR (which includes Einstein himself), all with distinct moti-
vations. It will be shown that the only possible algebraic extension is to introduce
pc-coordinates, otherwise for weak gravitational fields, nonphysical ghost solutions
appear. Thus, the need to use pc-variables. We will see that the theory contains a
minimal length with important consequences. After that, the pc-GR is formulated
and compared to the former attempts. A new variational principle is introduced,
which requires in the Einstein equations an additional contribution. Alternatively,
the standard variational principle can be applied, but one has to introduce a con-
straint with the same former results. The additional contribution will be associated
to vacuum fluctuation, whose dependence on the radial distance can be approxi-
mately obtained, using semiclassical quantum mechanics. The main point is that
pc-GR predicts that mass not only curves the space but also changes the vacuum
structure of the space itself. In the following chapters, the minimal length will be set
to zero, due to its smallness. Nevertheless, the pc-GR will keep a remnant of the
pc-description, namely that the appearance of a term, which we may call
“dark energy,” is inevitable.

The first application will be discussed in Chap. 3, namely solutions of central
mass distributions. For a nonrotating massive object, it is the pc-Schwarzschild
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solution; for a rotating massive object, the pc-Kerr solution; and for a charged
massive object, it will be the Reissner–Nordström solution. This chapter serves to
become familiar on how to resolve problems in pc-GR and on how to interpret the
results. One of the main consequences is that we can eliminate the event horizon
and thus, there will be no black holes! The huge massive objects in the center of
nearly any galaxy and the so-called galactic black holes are within pc-GR still there,
but with the absence of an event horizon!

Chapter 4 gives another application of the theory, namely the Robertson–Walker
solution, which we use to model different outcomes of the evolution of the universe.
New solutions will appear as the limit of constant acceleration, the limit of zero
acceleration after a period of a nonzero acceleration. We also discuss the possibility
of an oscillating universe, with repeated big bangs, with no need to explain the
smoothness of the universe.

The success of a theory depends on the capability to predict new phenomena.
Chapter 5 is just dedicated to this purpose. We will see that at a large distance from
a large massive object, GR and pc-GR will show no differences. However, near the
Schwarzschild radius significant deviations of pc-GR from GR are predicted. The
orbital frequency of a particle in a circular orbit and stable orbits in general will be
calculated. As a distinct feature, in pc-GR there will be a maximal orbital fre-
quency. We show that above a given spin of the star, there will be no innermost
stable circular orbit (ISCO) and an accretion disk will reach the surface of the star.
This has important consequences for the physics of the accretion disk: It will appear
brighter (emit more light) and due to the maximum in the orbital frequency, a dark
ring is predicted by pc-GR. Also the redshift will be calculated. This is of great
importance: One observes so-called quasi-periodic oscillations (QPO) and the
redshift of Fe Kα lines. Knowing the orbital frequency of a QPO and the redshift,
GR and pc-GR get for each observable a radius for the position of the QPO. Both
radii, obtained from both observables, should coincide. They do not in GR, but they
do in pc-GR! Of course, this depends still on the interpretation of the nature of the
QPO and the discussion is still on.

In Chap. 6, neutron stars are discussed and a primitive model for the coupling of
mass to the dark energy is proposed. This chapter is of conceptional nature and is
meant to show that large masses for neutron stars can be obtained. The jewel of this
chapter is the discussion of the so-called energy conditions. They are used to see if
an ansatz for an energy–momentum tensor, treating for example ideal fluids, makes
sense. We found no book or article in the literature where these conditions are
treated as extensively as here with detailed solutions. Thus, this chapter serves also
for people interested only in the standard theory of GR.

Finally, in Chap. 7, the geometric differential structure of pc-GR is investigated.
The motivation for this chapter is to complete the presentation of pc-GR in a
rigorous manner. For a noninterested reader of differential geometry, this chapter
can be skipped. However, he may find it to be useful, to learn more of this topic.
No explicit knowledge of differential geometry is required, because all necessary
definitions will be given. This makes this chapter especially useful.
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The book appears within the series of the FIAS Lecture Notes, which is meant to
publish on topics of interdisciplinary interest and new developments. We think that
this is an ideal place for resuming all results obtained within pc-GR.

Finally, we would like to express our sincere thanks to all the people who
contributed with their help to the realization of this book. We thank Gunther Caspar
and Thomas Schönenbach for their contribution to Chaps. 3 and 5, Thomas Boller
and Andreas Müller for their contribution to Chap. 5 and Isaac Rodríguez for his
contribution to Chap. 6. The Chap. 3 is based mainly on the master theses of
Thomas Schönenbach and Gunther Casper, Chap. 5 is on the Ph.D. thesis of
Thomas Schönenbach, and Chap. 6 is based on the Ph.D. thesis of Isaac Rodríguez.
We acknowledge useful comments by J. Kirsch. We also thank Laura Quist for their
patience and logistic help. P.O.H. wants also to acknowledge financial help from
DGAPA-PAPIIT (IN100315). M.S. acknowledges the support from Stiftung
Polytechnische Gesellschaft.

Mexico City Peter O. Hess
Frankfurt am Main Mirko Schäfer
Frankfurt am Main Walter Greiner
March 2015
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Chapter 1
Mathematics of Pseudo-complex General
Relativity

In this chapter we give a short introduction to the mathematics of pseudo-complex
variables and functions. For now, we provide a rather informal presentation of the
necessary mathematical tools, such that the reader is familiarized with the notation
and concepts and is prepared to follow the construction of the new theory of pseudo-
complex General Relativity in the next chapters. In Chap.7 we will then treat various
concepts of pseudo-complex mathematics in a more formal and extensive way.

1.1 Definitions and Properties

Every physicist is familiar with the algebra of real numbersR and the calculus of real
valued functions. We know how to add, subtract, multiply and divide these numbers,
and have a clear understanding of such terms as “0” as a zero element of addition,
“1” as a unity element of multiplication, and−x and x−1 as the inverse elements with
respect to addition and multiplication of the element x , respectively. But sometimes
the real numbers are just not enough to solve a certain problem, and we want to
construct another, more general number system. A familiar problem is finding a
solution of the equation x2 = −1, which is not possible within the realm of real
numbers, but has a solution using the well-known complex numbers C. An analogy
from physics is the historical approach of Dirac, who searched for a relativistic
covariant wave equation of the Schrödinger form

i�
∂ψ

∂t
= Ĥψ, (1.1)

which was not possible using only real or complex numbers, but needed the incor-
poration of the algebra of Dirac matrices.
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2 1 Mathematics of Pseudo-complex General Relativity

One intuitive way to introduce a new number system involves another well-known
mathematical concept: vector spaces over the real numbers. As an example, consider
the two-dimensional vector space R

2. Addition and subtraction of vectors, as well
as multiplication of vectors with real numbers are well-defined and every physicist
is familiar with these concepts, which are often performed using vector components
with respect to some basis. What we additionally have to define is a multiplication
of vectors. Let us use a basis {e1, e2} of R

2, such that we can write every vector X as
X1e1 + X2e2. A straightforward way to define a multiplication of two vectors is to
write

X · Y = (X1e1 + X2e2) · (Y1e1 + Y2e2)

= X1Y1 (e1 · e1) + X1Y2 (e1 · e2) + X2Y1 (e2 · e1) + X2Y2 (e2 · e2) . (1.2)

Since X1, X2, Y1, Y2 are real numbers, we perform the multiplications X1Y1, etc. in
the usual way. It follows that we can define multiplication of two arbitrary vectors
entirely by providingmultiplication rules for the basis vectors, for instance choosing

e1 · e1 := e1,

e1 · e2 := e2 · e1 := e2,

e2 · e2 := −e1. (1.3)

These rules become much more familiar once we write “1” instead of e1, and “i”
instead of e2. As the reader certainly already noticed, we just have reproduced the
complex numbers C. The important point is, that in (1.3) we could also have chosen
different multiplication rules, thus obtaining another algebra. Once we have fixed
these rules, we have to study the properties of the resulting algebra, looking for a
unity element of multiplication, inverse elements, and all that.

Instead of using complex numbers, let us now introduce another algebra, called
pseudo-complex numbers. Following our previous argument, all we have to do is to
provide the multiplication rules for a given basis:

e1 · e1 := e1,

e1 · e2 := e2 · e1 := e2,

e2 · e2 := e1. (1.4)

We facilitate the notation by writing e1 = 1, and e2 = I , thus also emphasizing the
difference to the complex numbers:

1 · 1 = 1, 1 · I = I · 1 = I, I · I = 1. (1.5)

These numbers togetherwith the respectivemultiplication rules are called the pseudo-
complex numbers P. For convenience we often omit writing the basis element “1”
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and use the notation X R + I X I for a pseudo-complex number X . In Exercise 1.1 we
explicitly show how pseudo-complex numbers are multiplied and divided.

Instead of the set {1, I } one can chose an arbitrary linear combination of these ele-
ments as the basis for the pseudo-complex numbers.We introduce the basis {σ+, σ−},
defined by

σ+ = 1

2
(1 + I ) , σ− = 1

2
(1 − I ) , (1.6)

with the inverse relations

1 = σ+ + σ−, I = σ+ − σ−. (1.7)

We can write a pseudo-complex number X either as

X = X R + I X I (1.8)

or

X = X+σ+ + X−σ−. (1.9)

Defining the pseudo-complex conjugate of I as −I , the pseudo-complex conjugate
X∗ of X is given by

X∗ = X R − I X I = X+σ− + X−σ+, (1.10)

where we have used σ ∗± = σ∓. This allows us to define the norm of a variable as

|X | = X X∗ = (
X2

R − X2
I

) = X+ X−. (1.11)

It can be shown, that in the σ±-basis all mathematical operations are performed in
the ±-part separately, respectively (see exercises). That is, for two pseudo-complex
numbers X and Y we have

X + Y = (X+σ+ + X−σ−) + (Y+σ+ + Y−σ−)

= (X+ + Y+) σ+ + (X− + Y−) σ−, (1.12)

X · Y = (X+σ+ + X−σ−) · (Y+σ+ + Y−σ−)

= (X+Y+) σ+ + (X−Y−) σ−. (1.13)

This product structure is themain feature of the algebra of pseudo-complex numbers.
Later we will see that it allows to formulate two copies of General Relativity, which
then have to be connected by a new principle to yield a new, modified theory.

We now introduce the concept of zero divisors as a “generalized zero” of pseudo-
complex numbers. First consider the equation
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a · b = 0, (1.14)

where a and b are real numbers. We know that for real numbers the only solution
of this equation is either a = 0 or b = 0, or zero both. But we have learned that for
pseudo-complex numbers it holds

(X+σ+) · (Y−σ−) = X+Y− (σ− · σ+) = X+Y− · 0 = 0. (1.15)

That is, in the algebra of pseudo-complex numbers we have nonzero solutions of the
equation

X · Y = 0, (1.16)

which belong to the set of so-called zero divisors, given by pseudo-complex numbers
which have only a component in the σ+-sector or σ−-sector, respectively:

X = X+σ+ or X = X−σ−. (1.17)

Since these numbers solve an equation, which for the real numbers has only the zero
element as a solution, zero divisors can be interpreted as a kind of “generalized zeros”.
It can be shown, that the zero divisors are just given by the pseudo-complex numbers,
which do not have an inverse (see Exercise 1.2). That is, if X is a zero divisor, there
is no pseudo-complex number X−1 such that X · X−1 = 1. Since division is defined
as multiplication with an inverse element, we obtain the important statement that in

Fig. 1.1 Illustration of the
pseudo-complex plane for
the variable X = X R + I X I
= X+σ+ + X−σ−. The
horizontal and vertical line
correspond to the
pseudo-real and
pseudo-imaginary axes,
respectively. The diagonal
lines represent the zero
divisor branch

σ +

−σ

1

I

XR

XI

X+

X−
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the algebra of pseudo-complex numbers we cannot divide by zero divisors, similar
to the real numbers, where we cannot divide by zero. In the following we denote the
set of zero divisors by P:

P = {X ∈ P|X = X+σ+ or X = X−σ−} = {X ∈ P|X2
R = X2

I }. (1.18)

In Fig. 1.1 we illustrate the pseudo-complex numbers P as a two-dimensional plane,
with the axes either given by the {1, I } or the {σ+, σ−} basis elements. A point X in
this plane is associated with coordinates (X R, X I ) or (X+, X−), respectively.

Exercise 1.1 (Multiplication and division of pseudo-complex numbers)

Problem.

(a) Calculate explicitly the product XY of two pseudo-complex numbers X =
X R + I X I and Y = YR + I YI .

(b) What is the unity element of multiplication for pseudo-complex numbers?
(c) What is the inverse X−1 of a pseudo-complex number X? Does every

pseudo-complex number has an inverse?

Solution.

(a)

X · Y = (X R1 + X I I ) · (YR1 + YI I )

= X RYR(1 · 1) + X RYI (1 · I ) + X I YR(I · 1) + X I YI (I · I )

= (X RYR)1 + (X RYI )I + (X I YR)I + (X I YI )1

= (X RYR + X I YI ) + (X RYI + X I YR) I.

Note that the multiplication of two pseudo-complex number is commuta-
tive.

(b) The unity element E is determined by the equation E ·Y = Y for arbitrary
Y . According to the previous calculation we obtain

E · Y = (ERYR + EI YI ) + (ERYI + EI YR) I
!= YR + YI I. (1.19)

It follows ER = 1 and EI = 0, and thus the unity element is the basis
element, E = 1. Note that the unity element is unique in the way that it is
the only pseudo-complex number such that for every X it holds E · X = X .
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(c) The inverse X−1 of a pseudo-complex number X is determined by the
condition X · X−1 = 1. For convenience denote the inverse of X by Y
and consider the calculation in part (a) of this exercise. The condition then
reads

X RYR + X I YI = 1, X RYI + X I YR = 0. (1.20)

Solving the second equation for YI , and inserting into the first equation
yields

X RYR + X I

(
− X I YR

X R

)
= 1,

⇒ X2
RYR − X2

I YR = X R,

⇒ YR = X R

X2
R − X2

I

. (1.21)

The second equation can be rewritten as

YI = − X I

X R
YR, (1.22)

and we obtain

YI = − X I

X2
R − X2

I

. (1.23)

The inverse of a pseudo-complex number X R + I X I thus is given by

X−1 = X R

X2
R − X2

I

− I
X I

X2
R − X2

I

. (1.24)

We immediately see that for all numbers with X2
R = X2

I the inverse X−1 is
not defined and hence such numbers do not have a multiplicative inverse,
which answers (c).

Exercise 1.2 (The {σ+, σ−} basis)

Problem.

(a) Derive the relations between the components X R, X I and X+, X− of a
pseudo-complex number X in the {1, I } basis and the {σ+, σ−} basis,
respectively.
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(b) The algebra of pseudo-complex numbers is determined by the multiplica-
tion rules in (1.5). How do these multiplication rules read in terms of the
{σ+, σ−} basis?

(c) Calculate explicitly the product of two pseudo-complex numbers in terms
of the {σ+, σ−} basis. Determine the inverse element of a pseudo-complex
number X . Which numbers do not have a multiplicative inverse?

Solution.

(a) Using the definition of the basis elements σ± we write

X = X+σ+ + X−σ−

= X+
1

2
(1 + I ) + X−

1

2
(1 − I )

= 1

2
(X+ + X−) + I

1

2
(X+ − X−) . (1.25)

This yields the relations

X R = 1

2
(X+ + X−) , X I = 1

2
(X+ − X−) , (1.26)

and

X+ = X R + X I , X− = X R − X I . (1.27)

(b) Using the definition of the basis elements and the multiplication rules for
pseudo-complex numbers we obtain

σ+ · σ+ = 1

2
(1 + I ) · 1

2
(1 + I )

= 1

4
(1 · 1 + 1 · I + I · 1 + I · I )

= 1

4
(1 + I + I + 1)

= 1

2
(1 + I ) = σ+. (1.28)

In the same way we obtain

σ− · σ− = 1

2
(1 − I ) · 1

2
(1 − I )

= 1

4
(1 − I − I + 1)

= 1

2
(1 − I ) = σ− (1.29)
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and

σ+ · σ− = 1

2
(1 + I ) · 1

2
(1 − I )

= 1

4
(1 + I − I − 1)

= 0. (1.30)

(c) Consider two pseudo-complex number X and Y . From the calculations in
part (b) of this exercise it follows

X · Y = (X+σ+ + X−σ−) · (Y+σ+ + Y−σ−)

= X+Y+(σ+ · σ+) + X+Y−(σ+ · σ−)

+X−Y+(σ− · σ+) + X−Y−(σ− · σ−)

= X+Y+σ+ + X+Y− · 0 + X−Y+ · 0 + X−Y−σ−
= X+Y+σ+ + X−Y−σ−. (1.31)

We observe that in the {σ+, σ−} basis multiplication takes place in the σ±-
part separately. Since also addition is performed in both parts separately,
in this basis a product structure of the pseudo-complex numbers becomes
apparent, with theσ±-parts as two separated sectors. This product structure
allows us to determine the inverse immediately. Since the unity element
is given by

1 = σ+ + σ−, (1.32)

the inverse of X has the form

X−1 = 1

X+
σ+ + 1

X−
σ−, (1.33)

which can be easily checked by calculating

X · X−1 = (X+σ+ + X−σ−) ·
(

1

X+
σ+ + 1

X−
σ−

)

= X+
X+

σ+ + X−
X−

σ−

= σ+ + σ− = 1. (1.34)

We also observe that for all pseudo-complex numbers with X+ = 0 or
X− = 0 the inverse X−1 is not defined, and consequently these numbers
do not have a multiplicative inverse. Note that this condition is equivalent
to the condition X2

R = X2
I obtained in Exercise 1.1.
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1.2 Calculus

After introducing pseudo-complex numbers and their basic properties, we nowdefine
pseudo-complex functions f : P → P and their derivatives. For convenience in the
following we will often abbreviate “pseudo-complex” by “pc”, thus speaking of
pc-numbers, pc-functions, etc.

A pc-function f (X) maps a pc-number X to another pc-number f (X). Using the
{1, I } or the {σ+, σ−} basis, we represent f by two real-valued functions with two
real arguments, respectively:

f (X) = f (X R + I X I )

= fR(X R, X I ) + I f I (X R, X I )

= f (X+σ+ + X−σ−)

= f+(X+, X−)σ+ + f−(X+, X−)σ−. (1.35)

In the following we will usually write fR,I (X) and f±(X) and keep in mind that
these functions depend on the components of X with respect to the basis {1, I } and
{σ+, σ−}, respectively.

In many cases real functions are defined as power series. In this case we can
adopt the definition of the corresponding pseudo-complex function by replacing the
real variable x with a pseudo-complex variable. The separation of the then pseudo-
complex function into its σ±-part assures the convergence of the power series. As an
example consider the exponential function exp[X ] defined by the series expansion

exp[X ] =
∞∑

n=0

Xn

n! . (1.36)

Using the basis {σ±} we can write this as

exp[X+σ+ + X−σ−] =
∞∑

n=0

(X+σ+ + X−σ−)n

n!

=
∞∑

n=0

(X+)n

n! σ+ +
∞∑

n=0

(X−)n

n! σ−

= exp[X+]σ+ + exp[X−]σ−, (1.37)

where we have used the multiplication rule (1.13), and exp[X±] are the well-known
real-valued exponential functions. As is shown in Exercise 1.3, in terms of the {1, I }
basis the exponential function reads

exp[X ] = exp[X R] (cosh[X I ] + I sinh[X I ]) , (1.38)

where cosh[X I ] and sinh[X I ] are again real-valued functions.
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We now give a definition for differentiability of a pc-function. For simplicity, we
always assume that the real functions fR,I and f± are smooth functions with respect
to each of its arguments. Then we define the pseudo-complex derivative f ′(X0) at
X0 by

f ′(X0) = D f

DX

∣∣∣
∣

X=X0

= lim
X→X0

f (X) − f (X0)

X − X0
.

with (X − X0) /∈ P (1.39)

This is analogous to the definition of the derivative of a real function, apart from the
additional requirement (X − X0) /∈ P. Recall that P denotes the set of zero divisors,
that is, all pseudo-complex numbers which do not have a multiplicative inverse. So
if X − X0 would be a zero divisor, the number (X − X0)

−1 would not exist, and
we could not perform the division in (1.39). For this reason we can take the limit
X → X0 along an arbitrary path in the pseudo-complex plane P, but have to make
sure that we do not cross the set of zero divisors P. Since we want to have the unique
derivative f ′(X) independent from the path we follow in the limit X → X0, we
also have to apply an additional condition on the partial derivatives of the functions
fR,I and f±. This is completely analogous to the complex case, where in this context
one speaks of holomorphic functions and demands the fulfillment of the Cauchy-
Riemann equations. It can be shown [1, 2], that for the pseudo-complex case the
argument leads to the following pseudo-complex Cauchy-Riemann equations:

∂ fR(X)

∂ X R
= ∂ f I (X)

∂ X I
,

∂ fR(X)

∂ X I
= ∂ f I (X)

∂ X R
, (1.40)

If these equations are fulfilled, the pseudo-complex function f is pseudo-complex
differentiable with a unique pc-derivative f ′(X) and is called pseudo-holomorphic.
We can write this derivative in terms of its components (see [1, 2] and Chap.7 for
details):

f ′(X) = ∂ fR

∂ X R
+ I

∂ f I

∂ X R
= ∂ f I

∂ X I
+ I

∂ fR

∂ X I
. (1.41)

In terms of the {σ+, σ−} basis the pseudo-complex Cauchy-Riemann equations have
an even simpler form (see Exercise 1.4):

∂ f+(X)

∂ X−
= 0,

∂ f−(X)

∂ X+
= 0. (1.42)

It follows the important statement that a pseudo-holomorphic function f can be
written as

f (X) = f+(X+)σ+ + f−(X−)σ−, (1.43)

http://dx.doi.org/10.1007/978-3-319-25061-8_7
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with the derivative

f ′(X) = ∂ f+
∂ X+

σ+ + ∂ f−
∂ X−

σ−. (1.44)

That is, for a pseudo-holomorphic function the product structure of pseudo-complex
numbers is carried over to its functional properties and its derivative.

After introducing the derivative of a pc-function, as the final piece of this intro-
ductory section we now define pseudo-complex integration. Similar to integration
in R

n or C, for the integration of pseudo-complex functions f we have to provide a
curve γ : (a, b) → P to determine the path alongwe integrate in the pseudo-complex
plane. We write

γ (t) = γR(t) + IγI (t), (1.45)

where t ∈ (a, b) is the real-valued parameter. We define pseudo-complex integration
by

∫

γ

f DX (1.46)

with the pseudo-complex differential

DX = d X R + I d X I = d X+σ+ + d X−σ−. (1.47)

Using the now already familiar rules of pseudo-complex multiplication we get

∫

γ

f DX =
∫

γ

( fR + f I I ) (d X R + I d X I )

=
∫

γ

( fRd X R + f I d X I ) + I
∫

γ

( f I d X R + fRd X I )

=
∫

γ

( f+σ+ + f−σ−) (d X+σ+ + d X−σ−)

= σ+
∫

γ

f+d X+ + σ−
∫

γ

f−d X−. (1.48)

Exercise 1.3 (The pseudo-complex exponential function)

Problem.Write the pc-exponential function exp[X ] in terms of the {1, I } basis.

Solution. We have shown that

exp[X ] = exp[X+]σ+ + exp[X−]σ−. (1.49)
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With the relations

σ± = 1

2
(1 ± I ) , X± = X R ± X I (1.50)

this reads

exp[X ] = exp[X R + X I ]1
2

(1 + I ) + exp[X R − X I ]1
2

(1 − I ) . (1.51)

Using exp[X R ± X I ] = exp[X R] exp[±X I ] and some rearranging we obtain

exp[X ] = exp[X R]
(1
2

(exp[X I ] + exp[−X I ]) + I
1

2
(exp[X I ] − exp[−X I ])

)
.

(1.52)

Since exp[X I ] here is a real function, we can use the definitions

cosh[x] = 1

2
(exp[x] + exp[−x]) , sinh[x] = 1

2
(exp[x] − exp[−x]) , (1.53)

and finally obtain

exp[X ] = exp[X R]
(
cosh[X I ] + I sinh[X I ]

)
. (1.54)

Exercise 1.4 (The pseudo-complex Cauchy-Riemann equations)

Problem. Which relations for the partial derivatives of f± with respect to X±
follow from the pseudo-complex Cauchy Riemann equations (1.40)?

Solution. The pseudo-complex Cauchy Riemann relations read

∂ fR(X R, X I )

∂ X R
= ∂ f I (X R, X I )

∂ X I
,

∂ fR(X R, X I )

∂ X I
= ∂ f I (X R, X I )

∂ X R
, (1.55)

where we have explicitly written the dependency on X R and X I . Recall the
following relations:

f± = fR ± f I , X R = 1

2
(X+ + X−) , X I = 1

2
(X+ − X−) . (1.56)
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Using these relations, we can write

∂ f+(X+, X−)

∂ X+
= ∂

∂ X+
fR

(
X R(X+, X−), X I (X+, X−)

)

+ ∂

∂ X+
f I

(
X R(X+, X−), X I (X+, X−)

)

= ∂ fR(X R, X I )

∂ X R

∂ X R

∂ X+
+ ∂ fR(X R, X I )

∂ X I

∂ X I

∂ X+

+∂ f I (X R, X I )

∂ X R

∂ X R

∂ X+
+ ∂ f I (X R, X I )

∂ X I

∂ X I

∂ X+

= 1

2

∂ fR(X R, X I )

∂ X R
+ 1

2

∂ fR(X R, X I )

∂ X I

+1

2

∂ f I (X R, X I )

∂ X R
+ 1

2

∂ f I (X R, X I )

∂ X I

= ∂ fR(X R, X I )

∂ X R
+ ∂ fR(X R, X I )

∂ X I
. (1.57)

In the last line we have used the pseudo-complex Cauchy-Riemann equations,
and thus could also have written the same expression with R and I inter-
changed. Performing an analogous calculation we get

∂ f+(X+, X−)

∂ X−
= ∂

∂ X−
fR

(
X R(X+, X−), X I (X+, X−)

)

+ ∂

∂ X−
f I

(
X R(X+, X−), X I (X+, X−)

)

= ∂ fR(X R, X I )

∂ X R

∂ X R

∂ X−
+ ∂ fR(X R, X I )

∂ X I

∂ X I

∂ X−

+∂ f I (X R, X I )

∂ X R

∂ X R

∂ X−
+ ∂ f I (X R, X I )

∂ X I

∂ X I

∂ X−

= 1

2

∂ fR(X R, X I )

∂ X R
− 1

2

∂ fR(X R, X I )

∂ X I

+1

2

∂ f I (X R, X I )

∂ X R
− 1

2

∂ f I (X R, X I )

∂ X I

= 0. (1.58)

In the same way we also get

∂ f−(X+, X−)

∂ X−
= ∂ fR(X R, X I )

∂ X R
− ∂ fR(X R, X I )

∂ X I
(1.59)
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and

∂ f−(X+, X−)

∂ X+
= 0. (1.60)

It follows that for a pseudo-holomorphic function f we can write

f = f+(X+)σ+ + f−(X−)σ−. (1.61)
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Chapter 2
Pseudo-complex General Relativity

The theory of General Relativity (GR) has passed numerous high precision tests,
from the measured perihelion shift of Mercury, indirect hints to gravitational waves
up to frame dragging effects (Frame dragging effects will be discussed in Chap.5.
The effect itself refers to particles which orbit a central mass counter-clockwise in a
weak gravitational field, but which are dragged to rotate clock-wise in the extreme
situation of a very strong gravitational field.). GR also implies the existence of
so-called black holes, which even trap light. Such massive objects are claimed to
exist in the center of almost any galaxy. Physics nearby such objects is investigated
and GR is up to now the only theory which is claimed to describe the phenomena
around these dense objects. The existence of black holes has become commonly
accepted despite the fact that the existence of event horizons cannot be proved from
observational data [1].

Having a successful theory one may ask the question: Why to search for exten-
sions/corrections? The answer is simple: From a theoretical point of view, GR has
still problems. For example, the black hole consists of a singularity at the center of a
very compact mass distribution, which is hidden by an event horizon. A sufficiently
far observer can not see inside (though an astronaut falling into a black hole can pass
the event horizon until he is shredded by huge tidal forces). For a nearby observer
(at a save distance) the region marked by the event horizon is excluded from observa-
tion: it cannot be accessed by him. This is from a philosophical point unsatisfactory.
No part of the (nearby) space should be excluded from physical studies!

Furthermore, GR has not been tested in extremely strong gravitational fields, as
they appear near the Schwarzschild radius, the radial distance of the event horizon
from the singularity. All effects observed near massive objects correspond to dis-
tances of several Schwarzschild radii, where the gravitational field is still strong but
not as intense as at the distance of one Schwarzschild radius. Therefore, there is no
valid argument that GR should continue to be correct when the Schwarzschild radius
is approached [1]. Also, GRmay be contained in amore general theory, which should
allow deviations.

© Springer International Publishing Switzerland 2016
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There are other reasons why in the past several attempts have been made to extend
GR, for example to unify GR with Electrodynamics [2, 3], eliminate inconsistencies
with Quantum Mechanics [4, 5] or to introduce effects of a minimal length [6]. All
are related to algebraical extensions of the theory, using instead of real coordinates
complex ones or more general constructions. Our motivation is based on the leading
principle that a theory should have no singularity. As long as in theoretical models
singularities appear, these models are incomplete. This holds not only for General
Relativity but for any theory, i.e., also for QED and QCD! Although it is no trivial
task to define a singularity in General Relativity in a precise and coordinate-invariant
way [7, 8], there are at least twowell-known singularities related to non-hypothetical,
but rather concrete physical systems. This is on the one hand the singularity at the
beginning of the universe, and on the other hand the (hidden) singularity at the center
of a so-called black hole. In the latter case, an event horizon, which in most cases
can be approximated by a surface from which no signal can escape, is supposed to
hide the singularity at the center. We seek for a form of GR for which the singularity
of GR, i.e. in particular for the Schwarzschild singularity, at the center for large,
highly concentrated masses can be avoided and also whether the event horizon can
be eliminated. If this is the case, then the massive objects, called up to now black
holes, would disappear and instead rather dark areas (or dark stars) would occur.
Though they mimic a black hole, looking at them from far away, in reality one would
be able to study their structure.

In the following sections, we will shortly describe attempts of modifying GR and
finally propose ours, called the pseudo-complex General Relativity (pc-GR).

2.1 The Attempt by A. Einstein

The motivation of A. Einstein was to search for a unified field theory, in particular of
GR and Electrodynamics [2, 3]. He mentions as an example of such a unification the
theory of Special Relativity, especially the relativistic transformation of electric to
magnetic fields and vice versa. In fact, electric and magnetic fields can not be treated
independently but are resumed into the skew symmetric field tensor (Fμν), whose
matrix elements are related to either electric or magnetic field components. Applying
a Lorentz transformation converts them, one into the other. A similar phenomenon he
expected for a unified field theory of GR and Electrodynamics. This is an example,
that there may exist different motivations to extend GR, not only related to get rid of
the event horizon.

The analog to the electromagnetic tensor Fμν = −Fνμ is the metric tensor gμν =
gνμ in General Relativity. For the unified field theory, Einstein proposed [2, 3] to
extend the metric tensor to a complex field

Gμν = gμν + i Fμν (2.1)
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which satisfies the hermitian condition

G∗
μν = Gνμ. (2.2)

Using (2.1) and (2.2) leads to the conclusion that the real part is symmetric and
the imaginary part has to be anti-symmetric. The real part represents the metric in
standard GRwhile the imaginary part is attributed to the electromagnetic field tensor.
In such a way, an apparent unification is obtained.

In order to define the parallel displacement of complex vectors, Einstein had to
introduce complex connection coefficients Γ λ

μν , which are hermitian with respect
to the lower indices. This shows some similarity with a theory based on real, but
asymmetric connection coefficients (torsion). We will not go into the detail here, but
rather refer to our chapter on the geometric differential formulation (Chap. 7), which
shows similarities to Einstein’s extended theory.

It should be noted, that Einstein did not introduce complex coordinates, but only
complex fields defined for real variables. The same approach was taken in a mathe-
matically more elaborate way by Kunstatter and Yates [9]. Nevertheless, they made
the remark that in principle one could also consider complex coordinates

Xμ = Xμ

R + i Xμ

I , (2.3)

which would lead to additional degrees of freedom. For instance, one would have
to define not only the parallel displacement of complex vectors under real, but also
under complex coordinate displacement, thus doubling the degrees of freedom for
the connection coefficients compared to the extended theory as proposed by Einstein.
We will describe such a theory in the later section on Hermitian Gravity.

2.2 Caianiello’s Observation

E.R. Caianiello investigated the properties of the length element

dω2 = gμν

[
dxμdxν + dyμdyν

]
. (2.4)

where he identified the components yμ with the four-velocity, The four-velocity uμ

is defined here as dxμ

ds = dxμ

cdτ
, with τ denoting the eigentime. This definition is due

to the common notation in literature.

yμ = luμ → dyμ = lduμ. (2.5)

The parameter l is introduced in order to maintain the units of length. That is, dif-
ferently to the approach by Einstein, he did not consider some extended algebraic
(complex) structure on real coordinates, but rather extended the coordinates to eight
dimensions, with the new coordinates given by the respective four-velocities. He

http://dx.doi.org/10.1007/978-3-319-25061-8_7
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then considered the real space as embedded into this generalized space, with the
procedure leading to an additional contribution based on accelerations.

In terms of the coordinates and the 4-velocity, the length element is

dω2 = gμν

[
dxμdxν + l2duμduν

]
. (2.6)

In standard GR, the length element along a trajectory is given by ds2 =
gμνdxμdxν . For simplicity, we consider for a moment a flat space, with gμν = ημν

and ημν = diag(−1,+1,+1,+1). Using that ds2 = −c2dτ 2 = gμνdxμdxν , where
τ is the proper time, one defines the 4-acceleration components as

aμ = duμ

(−c)dτ
= d2xμ

ds2
. (2.7)

we have

− ημνaμaν = a0a0 − ai ai = − a2. (2.8)

This is the negative of the acceleration squared, where the sign is taken from the
second term (the spatial components). This identification with the 4-velocity is gen-
eralized to a curved space (gμν �= ημν). Identifying the first term in (2.6) with ds2,
the length element can be rewritten as

dω2 = [
1 − l2a2

]
ds2 = [

1 − l2a2
]

gμνdxμdxν . (2.9)

This corresponds to a modified metric

Gμν = [
1 − l2a2

]
gμν (2.10)

due to the acceleration.
Considering that a particle moves only along world lines with a negative length

square (positive proper time, otherwise the proper time passed would be imaginary),
this implies that the correction factor in (2.9) has to be positive, or

a2 ≤ 1

l2
, (2.11)

which corresponds to a maximal acceleration, or equivalently to a minimal length.
A beautiful property of this approach is that the minimal length l is a parameter not
affected by Lorentz transformations. Thus, all continuous symmetries are maintained
and there is no need to deform them such that a physical minimal length is constant.

An interesting consequence is obtained when dω2 is identified with an extended
proper time −c2d τ̃ 2. Let us consider again a flat space (gμν = ημν). With the
identification of the proper time we have
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− c2d τ̃ 2 = [
1 − l2a2

] (−c2dt2 + dx2 + dy2 + dz2
)

= − [1 − l2a2
] [

1 − v2

c2

]
dt2, (2.12)

were v is the velocity of the system moving with respect to an observer, or

dt = d τ̃
√
1 − (la)2

√
1 − v2

c2

. (2.13)

This is nothing but the time dilation of two system, moving with respect to each
other. There is the usual contribution due to the relative velocity v and in addition a
correction due to the acceleration. This implies that the observation depends on the
state of motion and thus the strong principle of GR, that gravitational and accelerated
systems can not be distinguished by a local observer, is violated. Consequences
should be worked out. However, due to the smallness of l (probably of the order of
the Planck length of 10−33 cm) it is not possible up to now to measure deviations.

Exercise 2.1 (Maximal acceleration in the Schwarzschild metric)

Problem. Consider Caianiello’s modified Lagrangian for a spherical symmet-
ric metric, e.g. as in the Schwarzschild case (see also (2.9)), using now the
definition that a dot refers to the derivative with respect to ω.

L = dω2

dω2
= 1 = Σ2gμν ẋμ ẋν

= Σ2
{−eν ṫ2 + eλṙ2 + r2

(
ϑ̇2 + sin2ϑϕ̇2

)}
, (2.14)

with

Σ2 =
(

1 +
(

l

c

)2

gμν ẍμ ẍν

)

. (2.15)

Restrict to the equatorial plane motion (ϑ = π
2 , ϑ̇ = 0) and use λ = −ν.

Show that an equation can be obtained for the determination of Σ2, which
is a function on r and conservative quantities.

The steps, presented here, are due to [10, 11] within the standard GR.
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Solution. The partial derivatives of the Lagrangian with respect to the coordi-
nates t , φ and their velocities are

∂L

∂ ṫ
= −2Σ2eν ṫ,

∂L

∂t
= 0,

∂L

∂ϕ̇
= 2Σ2r2ϕ̇,

∂L

∂ϕ
= 0. (2.16)

This results into the Euler-Lagrange equations

d

dω

∂L

∂ ṫ
− ∂L

∂t
= d

dω

(−2Σ2eν ṫ
) = 0,

d

dω

∂L

∂ϕ̇
− ∂L

∂ϕ
= d

dω

(
2Σ2r2ϕ̇

) = 0. (2.17)

These equations give us conserved quantities, defined as

E = Σ2eν ṫ, L = −Σ2r2ϕ̇. (2.18)

In order to get an expression for ṙ , it is preferable not to use the correspond-
ing Euler-Lagrange equation, but rather to resolve (2.14) for ṙ2 and substitute
for the velocities ṫ and ϕ̇ by (2.18). With the Lagrangian L = 1 one gets

1 = Σ2 [−eν ṫ2 + e−ν ṙ2 + r2ϕ̇2] , (2.19)

where we have used λ = −ν. Substituting ṫ and ϕ̇ by the conserved quantities
we obtain

1 = Σ2

[
−e−ν E2

Σ4
+ e−ν ṙ2 + L2

Σ4r2

]
. (2.20)

Resolving for ṙ2 gives

ṙ2 = 1

Σ4

{
E2 + eν

[
Σ2 − L2

r2

]}
. (2.21)

Next, the accelerations of t and φ are determined:

ẗ = −Ee−ν

{
1

Σ4

∂Σ2

∂r
+ 1

Σ2

∂ν

∂r

}
ṙ ,

ϕ̈ = L

{
1

r2Σ4

∂Σ2

∂r
+ 2

r3Σ2

}
ṙ . (2.22)
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For the acceleration of r we use

d

dω
ṙ2 = 2ṙ r̈

=
{
− 2

Σ6

∂Σ2

∂r

[
E2 + eν

(
Σ2 − L2

r2

)]

+∂ν

∂r

eν

Σ4

[
Σ2 − L2

r2

]
− eν

Σ4

[
∂Σ2

∂r
− 2L2

r3

]}
ṙ , (2.23)

which yields

r̈ = −
{[

E2

Σ6
+ eν

[
1

2Σ4
− L2

r2Σ6

]]
∂Σ2

∂r

+ eν

2Σ4

[
∂ν

∂r

(
Σ2 − L2

r2

)
+ 2L2

r3

]}
. (2.24)

The expressions for the accelerations have to be substituted into

F(r,Σ2) = gμν ẍμ ẍν

= −eν(ẗ)2 + e−ν(r̈)2 + r2(ϕ̈)2. (2.25)

One then has to solve the equation

Σ2 =
(

1 +
(

l

c

)2

F(r,Σ2)

)

. (2.26)

Since this equation can not be solved in closed form, one has to apply an
iteration scheme. The first step is to calculate the second derivatives for the
case Σ2

(0) = 1, thus neglecting the effects of a maximal acceleration. Using
this first iteration, one then can calculate the new value for Σ2:

Σ2
(1) =

(

1 +
(

l

c

)2

F(r,Σ2
(0))

)

. (2.27)

This new value Σ2
(1) then is used to determine the updated second derivatives,

using the functions derived above. It has been shown that already afirst iteration
leads to interesting results [10, 11].

The length square element (2.6) is the starting point of several other contributions
[12–18]. In [16–18] the geometric differential formulation of this modified theory is
given. A difficulty arises due to the fact that uμ = dxμ

ds is a tangential vector on the
world line, i.e., it is an element of the so-called tangent space (see Chap.7 on the

http://dx.doi.org/10.1007/978-3-319-25061-8_7
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geometric differential formulation) and, thus, transforms differently than xμ. Due to
that in [16–18] the transformations related to the combined spaces (in the manifold
given by (xμ) and the tangent space given by (uμ)) acquire a very complicated
structure. In [12–15] further properties of themodified theory areworked out, relating
it to a Finsler space (which we will not discuss explicitly here).

Interesting to mention is [19], where the invariant properties of the length square
element is investigated and the group theory is discussed.

2.3 Concerns Brought Forward by M. Born

The main motivation of M. Born was to unify Quantum Mechanics with GR, a
problem which remains unresolved until today. M. Born observed an inconsistency
between Quantum Mechanics and General Relativity, which he tried to circumvent
in [4, 5]. His idea will be sketched in what follows.

In Quantum Mechanics the position and momentum operators satisfy the com-
mutation relations

[
xμ, pν

] = i�δμ
ν ,

[
xμ, xν

] = 0,
[

pμ, pν
] = 0, (2.28)

where x0 = ct and p0 = �

i
∂

∂(ct) . Obviously, the coordinates and momenta have a
symmetrical relation: Applying a canonical transformation, interchanging the coor-
dinates with the momenta, i.e.,

xμ → pμ, pμ → − xμ, (2.29)

the above equationsmaintain their structure.M. Born denoted it a reciprocal relation.
(Born notes [4] that “the word” “reciprocity” is chosen because it is already generally
used in the lattice theory of crystals where the motion of the particle is described in
the p-space with help of the “reciprocal lattice” [sic]).

The situation is different in GR. There the dominant object is the length element
square ds2 = gμνdxμdxν . There is no place for the momenta, which are treated
distinctly.

M. Born proposed a modification, namely

dω2 = gμνdxμdxν +
(

l

mc

)2

gμνdpμdpν, (2.30)

(actually M. Born uses in general different metrics for the x and p component, but
for simplicity it is not done here) with pμ being the contravariant component of the
momentum and m the mass of a particle under consideration. The factor before the
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metric in the second term serves to maintain the units. Note, that this formulation
is glued to a specific particle with mass m. This contradicts the convention that the
length element square is a geometric object and should be independent of the particle.
A way around is to use 4-velocities, i.e.,

dω2 = gμνdxμdxν + l2gμνduμduν . (2.31)

The 4-velocity can be considered as the tangent vector with respect to a given point
(xμ) in the coordinatemanifold and it can be arbitrary. Only later on,when themotion
of a particle is considered, the components of the 4-velocity acquire specific values.
Note also, that the length element square has the same form as in (2.6) and, thus,
all consequences will be the same, like the appearance of a maximal acceleration.
According to M. Born, due to the smallness of the minimal length l, the second term
in the modified length element square contributes only in the small world, when
momenta are large, while in the big world the standard form is recovered, because
the second term can then be neglected.

2.4 Hermitian Gravity

Several of the ideas presented above are united into the Hermitian Gravity [20,
21]. A further basic ingredient is the algebraic extension to complex coordinates
Xμ = Xμ

R + i Xμ

I . For the complex conjugate we use the equivalent notations
(Xμ)∗ = X

μ = Xμ

R − i Xμ

I . Sometimes it is convenient to use (Xμ, X
μ
) as the set

of independent coordinates instead of (Xμ

R, Xμ

I ). We presented in a previous chapter
Einstein’s idea of a complexified theory of general relativity. He used complex fields
for real coordinates, and thus doubled the degrees of freedom for the metric, intro-
ducing a real and an imaginary part. These degrees of freedom were then reduced
by demanding the symmetry of the real part, and the antisymmetry of the imaginary
part. For a more general theory, which also considers complex coordinates, we have
even more degrees of freedom. This is due to the introduction of complex coordinate
displacements like

d Xμ = d Xμ

R + id Xμ

I . (2.32)

Using the coordinates (Xμ, X
μ
) the generalized complex line element is then written

as

dω2 = Gμνd Xμd X ν + Gμν̄d Xμd X
ν + Gμ̄νd X

μ
d X ν + Gμ̄ν̄d X

μ
d X

ν
. (2.33)

The bar over the indicesμ, ν refer to the index of the components of the pc-conjugate
coordinates X̄μ, X̄ ν . This corresponds to four complex-valued metric tensors, thus
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eight times the degrees of freedom for the metric tensor in real four-dimensional
space-time. Using a more formal language, this approach corresponds to a complex-
ification of the tangent and cotangent space of a differential manifold with complex
coordinates, and the introduction of a complex metric on this structure. See Chap. 7
for a similar procedure for the corresponding pseudo-complex objects.

The first thing which is demanded is the symmetry of this complex metric, that is

Gμν = Gνμ, Gμν̄ = G ν̄μ, Gμ̄ν = Gνμ̄, Gμ̄ν̄ = G ν̄μ̄. (2.34)

The next step is to assume a real line element, that is

dω2 = (
dω2

)∗
. (2.35)

Since this condition has to hold for arbitrary complex coordinate displacements, we
obtain the conditions

(Gμν)
∗ = Gμ̄ν̄ , (Gμν̄)

∗ = Gμ̄ν . (2.36)

There are two different kinds of gravities considered in the literature, depending
on the definition of the length element square. In [9, 22] a rather technical definition
is given, which can be understood having read our later Chap. 7. Here we use a more
pedestrian method, though completely equivalent to the before mentioned theories.

(a) Hermitian metric: For the Hermitian metric one sets

Gμν = Gμ̄ν̄ = 0. (2.37)

The metric has the structure of an 8 × 8 matrix, namely

(
Gαβ

) =
(

0 Gμν̄

Gμ̄ν 0

)
, (2.38)

with Gμ̄ν = (Gμν̄)
∗. The indices μ and ν run from 1 to 4 and μ̄ and ν̄ also run in the

same interval. The α and β run from 1 to 8.
This yields the length element square

dω2 = Gμν̄d Xμd X
ν + Gμ̄νd X

μ
d X ν (2.39)

We now write

Gμν̄ = 1

2

(
gR

μν + igI
μν

)
, Gμ̄ν = (Gμν̄)

∗ = 1

2

(
gR

μν − igI
μν

)
, (2.40)

http://dx.doi.org/10.1007/978-3-319-25061-8_7
http://dx.doi.org/10.1007/978-3-319-25061-8_7
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and using the definition of Xμ and X
μ
we obtain

dω2 = 1

2

(
gR

μν + igI
μν

) {
d Xμ

Rd X ν
R − id Xμ

Rd X ν
I + id Xμ

I d X ν
R + d Xμ

I d X ν
I

}

+1

2

(
gR

μν − igI
μν

) {
d Xμ

Rd X ν
R + id Xμ

Rd X ν
I − id Xμ

Rd X ν
I + d Xμ

I d X ν
I

}

= gR
μν

{
d Xμ

Rd X ν
R + d Xμ

I d X ν
I

}+ gI
μν

{
d Xμ

Rd X ν
I − d Xμ

I d X ν
R

}
. (2.41)

Using the symmetries G ν̄μ = Gμν̄ and Gμ̄ν = Gνμ̄ we can write

gI
νμ = i

(
G ν̄μ − Gνμ̄

) = i
(
Gμν̄ − Gμ̄ν

) = −gI
μν. (2.42)

and observe that gI
μν is antisymmetric. In the same way one can show that gR

μν is
symmetric. We thus obtain the line element square

dω2 = gR
μν

{
d Xμ

Rd X ν
R + d Xμ

I d X ν
I

}+ 2gI
μνd Xμ

Rd X ν
I . (2.43)

As shown in [23], this theory suffers from ghost or tachyon solutions (see more
detailed remarks in Exercise 2.2), a reason why also Einstein’s unified theory was
not further pursued.

(b) Anti-hermitian metric:
The Anti-hermitian metric is defined by

Gμν̄ = Gμ̄ν = 0. (2.44)

In matrix form this reads

(
Gαβ

) =
(

Gμν 0
0 Gμ̄ν̄

)
. (2.45)

The length element square reads

dω2 = Gμνd Xμd X ν + Gμ̄ν̄d X
μ

d X
ν
. (2.46)

Similar to the case of the hermitian metric we write

Gμν = 1

2

(
gR

μν + igI
μν

)
, Gμ̄ν̄ = (Gμν)

∗ = 1

2

(
gR

μν − igI
μν

)
. (2.47)
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This leads to

dω2 = 1

2

(
gR

μν + igI
μν

) {
d Xμ

Rd X ν
R + id Xμ

Rd X ν
I + id Xμ

I d X ν
R − d Xμ

I d X ν
I

}

+1

2

(
gR

μν − igI
μν

) {
d Xμ

Rd X ν
R − id Xμ

Rd X ν
I − id Xμ

Rd X ν
I − d Xμ

I d X ν
I

}

= gR
μν

{
d Xμ

Rd X ν
R − d Xμ

I d X ν
I

}− gI
μν

{
d Xμ

Rd X ν
I + d Xμ

I d X ν
R

}

= gR
μν

{
d Xμ

Rd X ν
R − d Xμ

I d X ν
I

}− 2gI
μνd Xμ

Rd X ν
I . (2.48)

In the last step we used that for the anti-hermitian metric both gR
μν and gI

μν are
symmetric. In [21] it is shown that this theory does not suffer from ghost solutions.
However, the form of the length element square is rather strange, since it is, due to the
negative sign, not invariant under an orthogonal transformation in the 8-dimensional
space but rather under a hyperbolic transformation. This line element does not have
a maximal acceleration, as in the former case and as exposed further above.

2.5 The Approach in pc-GR

Philosophically we remember Dirac’s procedure of taking the square of

E = ±
√

p2c2 + m2
0c4, (2.49)

with m0 as the rest mass of a particle, in a different—at that time unconventional
way—namely

E = γ μpμ, (2.50)

where γ μ are the well known Dirac matrices. This leads to the Dirac equation,
yielding spin for the particles (in particular spin 1

2 for the electrons), the predictions
of anti-particles and a model for the vacuum. It shows that new concepts may lead to
new physics. Our goal is similar: We want to have no singularities (no black holes)
in General Relativity with all its consequences. Of course, the new theory should
reproduce all experimental data so far obtained but show essential differences in very
strong gravitational fields. As we will see, a new Weltbild (view of the world) will
emerge!

As in [22], pseudo-complex variables (called in the mentioned publication as
hyperbolic) are introduced. The algebraic extended variables are given by

Xμ = xμ + I yμ = xμ + I x μ̄, (2.51)

where in the second equation an alternative notation for the pseudo-imaginary com-
ponent is introduced,whichwill be of use in an 8-dimensional formulation. The index
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“μ” refers to the first four components while “μ̄” does to the last four components
(5–8).

The length element square is defined as (use the rules explained in Chap.1)

dω2 = gμνd Xμd X ν

= g+
μνd Xμ

+d X ν
+σ+ + g−

μνd Xμ
−d X ν

−σ+
= (

gR
μν

[
dxμdxν + dyμdyν

]+ gI
μν

[
dxμdyν + dyμdxν

])

+ I
(
gI

μν

[
dxμdxν + dyμdyν

]+ gR
μν

[
dxμdyν + dyμdxν

])
, (2.52)

with

gR
μν = 1

2

(
g+

μν + g−
μν

)
,

gI
μν = 1

2

(
g+

μν − g−
μν

)
. (2.53)

When a pseudo-real metric is used (gI
μν = 0), this simplifies to

dω2 = gR
μν

[
dxμdxν + dyμdyν

]+ IgR
μν

[
dxμdyν + dyμdxν

]
. (2.54)

The first term has the same form as the length element squared proposed by M. Born
and the last term corresponds to the dispersion relation, when the dyμ is identified
with

(
l
c

)
uμ. For the motion of a real particle, this term has to vanish, in order that

the dω2 remains real.
Why to use pc-variables? The answer is that when other types of algebraic exten-

sions are used, always ghost solutions exist [22, 23]. Theway to show it is to consider
weak gravitational fields

gμν = ημν + hμν (2.55)

and to expand the Lagrangian in terms of hμν . Field equations are obtained, which
result in operators, corresponding to unphysical particles, called ghosts and tachyons
[23]. A ghost particle has an opposite sign in the propagator as compared to physical
particles. A tachyon has an imaginary mass, which also can be seen as follows: The
mass of a relativistic moving particle is m = m0√

1− v2

c2

, where v is the velocity of the

particle andm0 its restmass. A tachyonmoves at a velocity larger than c and therefore
the square root is imaginary and thus also the mass. As proved in [23], this does not
happen in the pseudo-complex algebraic extension.

http://dx.doi.org/10.1007/978-3-319-25061-8_1
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Exercise 2.2 (Ghost and tachyon solutions)

Problem.

(a) What is the characteristic of a ghost and a tachyon solution?
(b) Show that in the limit of week gravitational fields, the pc-GR does not

have ghost and tachyon solutions, however, a complex algebraic exten-
sion does have at least ghost solutions. Please, consult also [23] for more
information.

Solution.
In this exercise some knowledge of field theory is required. For details, see
[24]. Derivatives with respect to coordinates are pseudo-complex or complex
derivatives, except when stated differently.

(a) For simplicity, we restrict to real, scalar fields (bosons). The kinetic part of
the Lagrange density is

±Φ
(∇ · ∇ − M2

)
Φ, (2.56)

with M being the mass of the particle. The propagator is given by [24]

± 1
(∇ · ∇ − M2

) , (2.57)

which in the Fourier representation and for M = 0 is± 1
k2 , k being the absolute

value of the 4-wave vector.
The positive sign represents normal propagating solutions, while the neg-

ative sign corresponds to ghost solutions, which are not allowed to propagate
freely.

When the mass M is imaginary, one has a tachyon solution (see comments
in the last paragraph, before this exercise).
(b) For week gravitational fields one usually expands the metric up to first
order:

gμν = ημν + hμν

gμν = ημν − hμν. (2.58)

The ημν is the metric in flat space and hμν describes the deviations to the flat
metric. The gμν is the inverse metric of gμν while hμν is the inverse of hμν and
the same for ημν , i.e.,
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ημληλν = δμν

hμλhλν = δμν

gμλgλν = (
ημλ − hμλ

)
(ηλν + hλν)

≈ (
ημληλν + ημλhλν − hμληλν

)

= δμν,

(2.59)

where terms of second and higher order in hμν were neglected.
Let us take as the Lagrange density

L = √−gR = √−ggμνRα
μαν, (2.60)

with (−g) as the determinant of the metric, multiplied by (–1),R the curvature
scalar and Rα

μαν the Riemann tensor, once contracted.
In the next step, we will expand

√−g up to first order, using gμν as given
in (2.58).

The determinant (−g) is given by

−

∣∣∣∣∣∣
∣∣

−1 + h00 h01 h02 h03

h10 1 + h11 h12 h13

h20 h21 1 + h22 h23

h30 h31 h32 1 + h03

∣∣∣∣∣∣
∣∣

. (2.61)

Expanding it up to first order gives, with (ημμ) = (− + ++) and noting that
only the diagonal elements of the determinant contribute,

(−g) ≈ 1 + (−h00 + h11 + h22 + h33)

= 1 + (
η00h00 + η11h11 + η22h22 + η33h33

)

= 1 + hμ
μ = 1 + h. (2.62)

We have defined h = hμ
μ. For

√−g, this gives

√−g ≈ 1 + 1

2
h. (2.63)

The contracted Riemann tensor is given by [25, 26]

Rα
μαν = Γ α

νμ,α − Γ α
αμ,ν + Γ λ

νμΓ α
αλ − Γ λ

αμΓ α
νλ, (2.64)
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where the comma “,” at the end of the Γ -symbols, followed by an index μ,
refers to the derivative with respect to the coordinate Xμ.

The Γ α
βγ is defined as [25]

Γ α
βγ = 1

2
gαρ

(
gγρ,β + gρβ,γ − gβγ,ρ

)

≈ 1

2
ηαρ

(
hγρ,β + hρβ,γ − hβγ,ρ

)
. (2.65)

In the last step we expanded up to first order in hμν and used that deriving with
respect to a coordinate only the linear term in hμν remains.

Substituting this result into (2.64) gives (two indices, following the comma
in the symbol hμν , refer to a double derivative)

Rα
ναμ ≈ 1

2
ηαρ

(
hμρ,να + hρν,μα − hνμ,ρα

)

− 1

2
ηαρ

(
hμρ,αν + hρα,μν − hαμ,ρν

)

+ 1

4
ηλρηαξ

(
hμρ,ν + hρν,μ − hνμ,ρ

) (
hλξ,α + hξα,λ − hαλ,ξ

)

− 1

4
ηλρηαξ

(
hμρ,α + hρα,μ − hαμ,ρ

) (
hλξ,ν + hξν,λ − hνλ,ξ

)
.

(2.66)

Using the symmetric character of hμν and the definitions

h = ημλhλμ

A μ
,μ = ∇ · ∇ A

h μ
μ = hμ

μ

etc., (2.67)

Equation (2.66) can be written as

Rα
μαν ≈ 1

2

(
hα

ν,μα − ∇ · ∇hνμ − h,νμ + hα
μ,αν

)

+ 1

4

[(
hλ

μ,ν + hλ
ν,μ − h,λ

νμ

)
h,λ

− (
hλ

μ,α + hλ
α,μ − h,λ

αμ

) (
hα

λ,ν + hα
ν,λ − h,α

νλ

)]
(2.68)

Substituting it into the Lagrange density, gives
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L ≈
(
1 + 1

2
h

)
(ημν − hμν)Rα

μαν

≈
(

ημν + 1

2
hημν − hμν

)
Rα

μαν

≈
(
1 + 1

2
h

) (
hαν

,αν − ∇ · ∇h
)

− hμνhα
μ,αν + 1

2
hμν∇ · ∇hμν + 1

2
hμνh,μν

+ 1

4

[(
2hμλ

,μ − h,λ
)

h,λ

− (
hμλ

,α + h λ,μ
α − h μ,λ

α

) (
hα

λ,μ + hα
μ,λ − h,α

μλ

)]
, (2.69)

where we have used the symmetry ημν = ηνμ and interchanged in some places
μwith ν, after havingmultiplied by ημν and summed overμ and ν. In addition,
only terms of up to second order in hμν have been taken into account.

The first line contains terms linear in h, with derivatives, e.g., h μ
,μ . Using

partial integration and setting surface terms to zero, in the action integral a term
of the form

∫
C A,μd4X changes to − ∫ C,μ Ad4X . Because C is a constant,

this term vanishes. Thus, linear terms in hμν do not contribute.
With this in mind, the Lagrange density changes to an effective one, given

by

L → L ′ = 1

2
hμν∇ · ∇hμν + V (h)

V (h) = −hμνhα
μ,αν + 1

2
hμνh,μν

+ 1

4

[
(
2hμλ

,μ − h,λ
)

h,λ

− (
hμλ

,α + h λ,μ
α − h μ,λ

α

) (
hα

λ,μ + hα
λ,μ − h,α

μλ

)]
. (2.70)

We have written explicitly the kinetic energy part and the interaction part V (h)

is only indicated.
Up to here, the hμν is either pseudo-complex or complex:

hμν = h R
μν + I h I

μν

I 2 = ±1, (2.71)

where the index R refers to the (pseudo-)real and I to the (pseudo-)imaginary
component. The positive sign in I 2 refers to the pseudo-complex case, while
the negative sign refers to the complex case.
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Considering the kinetic energy part and looking at the diagonal part only,
we have

hμν∇ · ∇hμν → hμν

R ∇x · ∇x h R
μν + I 2hμν

I ∇y · ∇yh I
μν, (2.72)

where we have used

∇ · ∇ = D2

DX2

=
(

∂

∂xμ∂xμ
+ ∂

∂yμ∂yμ

)
+ 2

∂

∂xμ∂yμ

∇μ
x = ∂

∂xμ

, ∇μ
y = ∂

∂yμ

, (2.73)

where xμ and yμ are the pseudo-real and pseudo-imaginary components of
the pc-variable Xμ, and only the diagonal contributions are taken.

Inspecting (2.72), the real part of the diagonal kinetic energy has a positive
sign, meaning that it yields a normal propagator. However, the diagonal part of
the kinetic energy, coming from the imaginary component squared, has only
a positive sign in the pseudo-complex case, i.e. no ghost propagator, while for
the complex case (I 2 = −1) the propagator acquires a negative sign, i.e. it
corresponds to a ghost propagator.

Because in both cases no mass term (with a constant M) appears, there are
no tachyon solutions.

In conclusion, in the pseudo-complex case there are neither ghost nor
tachyon solutions. In the complex case there are no tachyon solutions but
there are ghost solutions. Thus, only the pseudo-complex case represents a
consistent algebraic extension of GR.

There are other possible algebraic extensions [23], like quaternions, but all
of them contain a standard complex part and, thus, ghost solutions.

In [27] a pseudo-complex field theory was proposed. The main property is that
it contains a minimal length as a parameter, which is not affected by a Lorentz
transformation. Due to the appearance of such a minimal length parameter, the the-
ory is automatically regularized, i.e. there are no infinities. The pc-field Lagrange
density is such that the theory is linear. The resulting propagator is the one of Pauli-
Villars, which in standard field theory can only be obtained using a highly non-
linear Lagrange density. Therefore, extending to pc-variables and fields the theory
stays simple (linear) while the results include the minimal length. Also all con-
tinuous symmetries are maintained, which simplifies enormously the calculation
of Feynman diagrams. This example proves that the use of pc-variables allows to
describe systems, which are very complicated in standard theories, in an easy, elegant
manner. It indicates that nature may have a pseudo-complex structure, as Quantum
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Mechanics showed that it has a complex structure, although the final physical quan-
tities are real.

Though, we will discuss only examples where the minimal length is set to zero,
the use of pc-variables in GR may have important consequences in future: The
appearance of a minimal length in pc-GR may help to quantize pc-GR!

As will be shown in the next section and in Chaps. 3 and 4 on applications,
using a mapping to the four dimensional space, now physically motivated, allows
an additional contribution to the Einstein equations, with the property of a repulsive
energy. This energy accumulates around a large mass concentration. A collapse of
a large mass is halted due to this repulsive energy, avoiding the formation of an
event horizon. Though, in our “classical” theory we are only able to parametrize its
contribution, demanding that no event horizon appears, the scenario is not unrealistic:
As shown by Visser et al. [28–31], who discussed the Casimir effect near a mass
concentration, the larger the mass, the larger the vacuum fluctuations. However, he
investigated the vacuum fluctuations with a fixed back-ground metric, i.e. no back-
reaction of the fluctuations to the metric was taken into account (in the absence of
a quantized GR, this is a standard semi-classical treatment). Nevertheless, his work
shows that the presence of mass creates, increasing with mass, vacuum fluctuations
which can be associated to a dark energy. The advantage of the approach is that
the density of the dark energy can be determined, however, the disadvantage is that
due to the semi-classical treatment no back-reaction to the metric can be considered.
Compared to this, our procedure has the advantage that a back-reaction to the metric
is included, leading to a modified metric without an event horizon. However, there
is also a disadvantage; Namely, that the density of the dark energy can only partly
be determined from first principles: some model assumptions are necessary. As we
shall see, this is rather natural.

The main point is that mass not only curves the space, as proposed in GR, but also
changes the vacuum properties, implying the presence of the dark energy (vacuum
fluctuations). This dark energy also distorts the space such, that space itself finally
stops the collapse of a star with an arbitrary mass.

The notion of dark energy has to be taken here with care, because we do not
know yet if it has the same origin as the cosmological dark energy, responsible for
the acceleration of the universe, though we will construct such a model in Chap.4
discussing the pc-Robertson-Walker universe.

2.6 Construction of Pseudo-complex General Relativity

The starting point is to extend the real variables of the four-dimensional space to
pseudo-complex variables

Xμ = Xμ
+σ+ + Xμ

−σ−, (2.74)

http://dx.doi.org/10.1007/978-3-319-25061-8_3
http://dx.doi.org/10.1007/978-3-319-25061-8_4
http://dx.doi.org/10.1007/978-3-319-25061-8_4
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which corresponds to a product space W+⊗W−, whereW± is themanifold describing
the σ± components. Because each variable has a pseudo-real and pseudo-imaginary
component, one has effectively an eight-dimensional space, with the four pseudo-real
and the four pseudo-imaginary components.

Due to the fact that each variable and function can be written in terms of the
zero-divisor basis (see Chap.1), we denote the metric in the form

gμν = g+
μν(X+)σ+ + g−

μν(X−)σ−. (2.75)

The two metric terms, g+
μν and g−

μν , may have the same functional dependence on
their corresponding variables, but even then they are different because the argu-
ments Xμ

+ and Xμ
− are different! In this chapter, we will assume the same functional

dependence, i.e. g+
μν(X+) = gμν(X+) and g−

μν = gμν(X−) and a symmetric metric,
but the consideration can also be extended to a non-symmetric metric, as done by
Moffat et al. [22].

In what follows, we use the same presentation as in [32–34] for the summary
of geometric properties of the pc-GR: The metric is assumed to be a pseudo-
holomorphic function (see Chap.1 on the mathematics of pc-variables), i.e., it has
to satisfy the pc-Riemann-Cauchy conditions

∂gR
μν

∂ Xλ
R

= ∂gI
μν

∂ Xλ
I

∂gR
μν

∂ Xλ
I

= ∂gI
μν

∂ Xλ
R

, (2.76)

where gR
μν is the pseudo-real and gI

μν the pseudo-imaginary component, with Xλ
R =

xλ being the pseudo-real part and Xλ
I the pseudo-imaginary part of the 4-coordinate

Xλ = Xλ
R + I Xλ

I .
As a distinguished property of the theory, we associate to the pseudo-imaginary

component a four-velocity, i.e.,

Xλ
I = luλ. (2.77)

where the factor l is introduced for dimensional reasons, such that Xλ
I has the dimen-

sion of length. For the special examples, discussed in this book, we set l to zero.
The proposal (2.77) has its origin in the ideas of Born [4, 5] but the identification
of yμ with luμ has to be considered as an additional boundary condition. When we
want to neglect the contributions of the minimal length, then the pseudo-imaginary
term is zero and we return to the standard real coordinates xμ. Care has to be taken
with the identification (2.77). Strictly speaking, it is only valid in flat space-time and

http://dx.doi.org/10.1007/978-3-319-25061-8_1
http://dx.doi.org/10.1007/978-3-319-25061-8_1
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a more general identification has to be found. (See Exercise 2.4 and Chap.7) We
retain here (2.77) with the purpose to show that several formerly developed models
are contained in pc-GR.

For l > 0, the length square element is given by

dω2 = gμν(X,A )DXμ DX ν

= g+
μν(X+,A+)d Xμ

+d X ν
+σ+ + g−

μν(X−,A−)d Xμ
−d X ν

−σ−
= gμν(X,A )

(
dxμdxν + l2duμduν

)+ gμν(X,A )2l I dxμduν .

(2.78)

We have used the abbreviation A for all parameters of the theory. Note, that the
(symmetric) metric depends on the coordinates and the parameters only.

Because the zero-divisor components act independently, it is allowed to use the
same definitions and methods as given in detail in [25, 35]. For example, the parallel
displacement of a pc-vector is given by

DW μ = −Γ
μ
νλ DX νW λ

= −Γ
+ μ
νλ DX ν

+W λ
+σ+ − Γ

− μ
νλ DX ν

−W λ
−σ−

= dW μ
+σ+ + dW μ

−σ−, (2.79)

where DX ν refers to the change of the pseudo-complex coordinate X ν and W μ are
the components of a vector. For the moment, we exclude torsion and therefore the
connections Γ

μ
νλ are symmetric in their lower indices (Levi-Civita connection [25]).

The pc-Christoffel symbols are written in terms of the zero-divisor basis as

Γ λ
μν =

{
λ

νμ

}

=
{

λ

νμ

}

+
σ+ +

{
λ

νμ

}

−
σ−, (2.80)

which are expressed in terms of Christoffel symbols of the second kind [25] as

Γ ± λ
μν =

{
λ

νμ

}

±
= gλκ

± [νμ, κ]± . (2.81)

The Christoffel symbols of the first kind are defined as in [25]

[μν, κ] = 1

2

(
Dgμκ

DX ν
+ Dgνκ

DXμ
− Dgμν

DXκ

)
. (2.82)

(In general, torsion can be included, leading to additional terms in (2.81).)

http://dx.doi.org/10.1007/978-3-319-25061-8_7
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From (2.80) the real and pseudo-imaginary components are deduced:

{
λ

νμ

}

R

= 1

2

({
λ

νμ

}

+
+
{

λ

νμ

}

−

)

{
λ

νμ

}

I

= 1

2

({
λ

νμ

}

+
−
{

λ

νμ

}

−

)
. (2.83)

The 4-derivative of a contravariant vector is given by

W μ

||ν = W μ

|ν +
{

μ

νλ

}
W λ

=
(

W μ

+|ν +
{

μ

νλ

}

+
W λ

+

)
σ+

+
(

W μ

−|ν +
{

μ

νλ

}

−
W λ

−

)
σ−, (2.84)

where W μ

|ν = DW μ

DX ν . The rules for deriving covariant vectors and tensors can be
directly copied from [25] (with the change in the signature of the metric).

An important point is that in this new formulation the 4-derivative of the metric
will again be zero. To show this, we copy the arguments, as given in [25], Chap. 3.
We have

g±
μν|λ − g±

μκ

{
κ

νλ

}

±
= [μλ, ν]±, (2.85)

where the symmetry property of the metric tensor was used. Equation (2.85) is
proved by substituting the Christoffel symbol of the second kind (2.81) and using
the definition of the Christoffel symbol of the first kind (2.82).

The divergence of g±
μν is given by

g±
μν||λ = g±

μν|λ −
{

κ

νλ

}

±
g±

μκ −
{

κ

μλ

}

±
g±

κν

= [μλ, ν]± − g±
κν

{
κ

μλ

}

±
(2.86)

The first line is nothing but the covariant transformation of a tensor with two
indices [25], while in the second line (2.85) was substituted.

Utilizing the definition of the Christoffel symbol of the second kind, this expres-
sion is identical to zero. Thus, also the 4-derivative of the pseudo-complex metric is
zero:

gμν||λ = g+
μν||λσ+ + g−

μν||λσ− = 0, (2.87)
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or equivalently

g±
μν||λ = 0, (2.88)

where the derivative is with respect to the coordinates Xλ±.
This result is very important because it states that a universal pc-metric, namely a

metric which is invariant under the transformation to another system, can be defined.

Exercise 2.3 (A relation involving the covariant derivative of the metric)

Problem. Prove (2.85), which is used in (2.86).

Solution. The first line in (2.86) is nothing but the covariant derivative of
a second rank tensor with two covariant indices [25]. What has to be shown is
that the first two terms are expressed with the Christoffel symbols of the first
kind (see (2.85)). The prove is taken from [25].

We skip for the moment the ±-indices, because what will be shown is
equivalent for each zero-divisor component.

Let us start, considering a vector field W ν(s) at each point of a curve satis-
fying the equation

dW ν

ds
+
{

ν

ξλ

}
dxλ

ds
W ξ = 0. (2.89)

These are ordinary first-order differential equations and the W ν(s) are defined
along the curve, once initial values have been chosen.

Consider the quantity

P(s) = gμνV μW ν, (2.90)

where W ν the contra-variant components of an arbitrary 4-vector and s the
curve parameter. P(s), defined for each point of a curve is clearly a scalar.
This implies that

d P(s)

ds
= P ′(s) (2.91)

is also a scalar. Written explicitly gives, using the product and chain rule for
differentiation:

P ′(s) = gμν|λ
dxλ

ds
V μW ν + gμνV μ

|λ
dxλ

ds
W ν + gμνV μW ν

|λ
dxλ

ds
. (2.92)
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On the right hand side of (2.92) we relabel in the first and second term ν to
ξ and in the last term we substitute (2.89). This gives

P ′(s) = gμξ |λ
dxλ

ds
V μW ξ + gμξ V μ

|λ
dxλ

ds
W ξ − gμνV μ

{
ν

ξλ

}
dxλ

ds
W ξ

=
[

V μ

(
gμξ |λ − gμν

{
ν

ξλ

})
+ gμξ V μ

|λ

]
dxλ

ds
W ξ

= Tξλ

dxλ

ds
W ξ , (2.93)

where the matrix Tξλ has been defined. The left hand side of this equation
is a scalar and dxλ

ds , W ξ are arbitrary vectors at xλ. Therefore, by the quotient
theorem [25] the Tξλ has to be a tensor. The formof this tensor can be simplified
using the definitions of the Christoffel symbols of the first and second kind,
whose relation is given in (2.81). One obtains finally

gμξ |λ − gμν

{
ν

ξλ

}
= gμξ |λ − gμνgνκ [ξλ, κ]

= gμξ |λ − δμκ [ξλ, κ]

= gμξ |λ − [ξλ, μ]

= gμξ |λ − 1

2

(
gξμ|λ + gλμ|ξ − gξλ|μ

)

= 1

2

(
gμξ |λ + gλξ |μ − gλμ|ξ

)

= [μλ, ξ ] , (2.94)

which proves relation (2.85) and thus (2.86), one has only to add the indices
±. In (2.94) the symmetric nature of the metric tensor was used.

Finally, the expressions for the Riemann scalar, Ricci tensor and Riemann tensor
can be readily copied from [25, 35], with the difference that the Christoffel symbols
are substituted by their pc-counterparts and a derivative by a pc-derivative.

In this manner, the formulation of pc-GR is very similar to the standard GR.

2.7 A Modification of the Variational Principle

In [36, 37] a modified variational principle was proposed, such that the pc-extension
of a theory produces a new theory. The argument goes as follow: When the variation
of the action
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S =
∫

L d4x (2.95)

is set to zero, one obtains

δS± = 0, (2.96)

because the σ± components separate and do not mix. The two independent compo-
nents can be treated as two different theories and nothing new is obtained. Therefore,
[36, 37] proposes to modify the metric such that

δS = δS+σ+ + δS−σ− ∈ zero divisor. (2.97)

The element in the zero divisor is either proportional toσ+ or toσ− and has zero norm,
as was shown in Chap.1. Therefore, it is allowed to call this object a generalized
zero. As an example, let us assume that the variation of S is proportional to σ−, i.e.
λσ−. The following discussion is completely the same when σ+ is used instead. The
variation of the action gives the equations

F+σ+ + F−σ− = λσ−, (2.98)

with F± some particular differential operators, depending on S. In [36, 37] one
proceeds bymultiplying (2.98) with its pseudo-complex conjugate, using σ+σ− = 0,
σ 2± = σ± and (σ+ + σ−) = 1. The results is

(F+σ+ + F−σ−) (F+σ+ + F−σ−)∗

= (F+σ+ + F−σ−) (F+σ− + F−σ+)

= F+F− (σ+ + σ−)

= F+F− = λσ−σ+ = 0. (2.99)

which appears like a usual equation of motion. However, while F± are linear opera-
tors, the product is a highly non-linear operator.

An alternative, but equivalent way is to start from (2.98) and to exploit the linear
independence of the zero-divisor components. This leads to

F+ = 0 and F− = λ. (2.100)

It is not difficult to repeat these steps in order to obtain the equations when the
element in the zero-divisor is proportional to σ+. The formulation is symmetrical.

In the case of pc-GR, the σ± components of the Einstein tensor are

G±
μν = R±

μν − 1

2
g±

μνR
±, (2.101)

http://dx.doi.org/10.1007/978-3-319-25061-8_1
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with R±
μν the Ricci tensor in each zero-divisor component and R± is the curvature

scalar. The g±
μν is the metric in each component.

Exercise 2.4 (An alternative justification for the modified variational princi-
ple)

The objective of this to give a foundation of the modified variational principle.
For that, one has to show how to implement the constraint that the pseudo-
imaginary component of the pc-length element squared, dω2

I , is zero. This
component is the difference of the σ+ to the σ− component, thus,

g−
μν Ẋμ

− Ẋ ν
− = g+

μν Ẋμ
+ Ẋ ν

+, (2.102)

with Ẋμ
± = d Xμ

±
ds , i.e., one assumes that s± = s the same in both zero-divisor

components. Here, when s is the proper time−τ , one assumes that dτ+ = dτ−.
The method to use is the one of Lagrange multipliers, which is well

explained in any book on Classical Mechanics. The main idea is, that due
to a constraint (let us restrict to only one), not all variables, which are varied,
are linear independent. In case of one constraint expressed only in the variable
f (gμν) = 0, one variable can be substituted by the other ones. However, this
not always gives an easy expression and it is recommended to use Lagrange
multipliers.

In GR (including pc-GR), the variables to vary are gμν (in fact, one has to
bear in mind that due to the symmetry properties there are only 4(4−1)/2 = 6
independent variables (“coordinates”)). In pc-GR we have the variables g±

μν .
The variation with respect to the metric is applied to the action:

δS

δgμν

δgμν = δS+
δg+

μν

δg+
μνσ+ + δS−

δg−
μν

δg−
μνσ− = 0. (2.103)

Note, that it is not set to a zero-divisor, because we want to show that the
additional contribution is the consequence of the constraint (2.102). Note also,
that in the σ+ sector, only a variation with respect to g+

μν is applied, while in
the σ− sector the variation is only with respect to g−

μν! Thus, adding a function
which also depends on g+

μν in the σ− sector, the g+
μν has to be treated as a

constant.
Applying the variation independently in the two zero-divisor sectors, leads

to
∫ [

Rμν
± − 1

2
gμν

± R±
]

δg±
μνds = 0 (2.104)
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One can not set the expressions in the square bracket to zero, because the
δg±

μν are not linearly independent. (μ ≤ ν).
To overcome this situation, the constraint (2.102) is varied with respect

to g−
μν and added to the σ− component. One can do it also the other way

around and vary g+
μν and add it to the σ+ component. This is just a matter

of definition where to add the constraint. One considers the Ẋμ
− as arbitrary

put fixed components of a vector in the tangent space. These are, thus, not
considered as the variables to vary with.

The variation of the constraint is

δ
(
g+

λρ Ẋλ+ Ẋρ
+ − g−

λρ Ẋλ− Ẋρ
−
)

δg−
μν

δg−
μν = − (Ẋμ

− Ẋ ν
−
)
δg−

μν. (2.105)

Adding this to (2.104) and considering only the σ− component, because
only there the constraint is added and therefore changes the expression, we
obtain

∫ [
Rμν

− − 1

2
gμν

− R− − λ
(
Ẋμ

− Ẋ ν
−
)]

δg−
μνds = 0, (2.106)

where λ is the Lagrange multiplyer.
The λ is chosen such that the term corresponding to the linear dependent

variable, say g−
00 vanishes. This gives one equation. Then only termsmultiplied

with a linear independent differential δg−
μν appear and the expressions in the

square parenthesis can all be set to zero. This gives (6 − 1) = 5 equations.
Note, that one has not to do the explicit calculation, because all what matters
here is that it can be done. At the end one has 6 equations which appear equal.

This leads to the following equations

Rμν
− − 1

2
gμν

− R− − λ
(
Ẋμ

− Ẋ ν
−
) = 0

g−
μν Ẋμ

− Ẋ ν
− = g+

μν Ẋμ
+ Ẋ ν

+. (2.107)

One has to pay the price to have in addition of the equations, coming from the
variation, also the constraint equation. All equations in (2.107) together have
to be solved.

Lowering all indices in the first equation in (2.107) and using

Ẋ−
μ = ẋμ − ẏμ = uμ − ẏμ, (2.108)

we can rewrite it as follows
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R−
μν − 1

2
g−

μνR− = λ
(
Ẋ−

μ Ẋ−
ν

)

= λuμuν + λ
(
ẏμ ẏν − uμ ẏν − uν ẏμ

)
. (2.109)

Care has to be taken in raising and lowering indices. One can not do it individ-
ually but only in combinations, i.e. only the upper index of Xμ

− can be lowered
by g−

μν and the lower index X−
μ can be raised by gμν

− .
The right hand side of the Einstein equation can be written in terms of a

tensor which has to be identified with an energy-momentum tensor, multiplied
with − 8πκ

c2 . For that, we redefine the Lagrange multiplier as

λ = 8πκ

c2
λ̃. (2.110)

There are two expressions

(
T Λ
)
μν

= λ̃
[
uμuν + ẏμ ẏν − uμ ẏν − uν ẏμ

]

→
(
T fluid)

μν
=
(
εΛ + pΛ

c2

)
uμuν + p

c2
gμν, (2.111)

where the last row refers to a mapping to make, in case the energy-momentum
tensor is identified as a fluid. The above expression permits also other inter-
pretations.

Here, one has to make a parenthesis: A fluid is a macroscopic concept,
where granular, microscopic structures are averaged out. Thus, also here the
granular structure due to the minimal length is averaged out and the minimal
length does not appear any more. Also, the metric which has to be used is the
projected, approximated metric (gμν), which does not depend any more on the
minimal length.

This discussion on constraints not only gives the foundation for themodified
variational principle, but also shows the symmetry between the σ+ and σ−
component, i.e. that the same can be done by adding the constraint equation
to the σ+ component. It also gives a hint on how to obtain yμ.

Using the modified variational procedure, leads to an additional contribution
λσ− (having used the convention that only elements in the σ− direction are used).
The λ must be a tensor with the indices (μν), which can be rewritten in terms of
− 8πκ

c2
(
T Λ
)
μν
, κ being the gravitational constant, c the velocity of light and Λ points

to its character as a dark energy. Thus, the modified Einstein equations are

G+
μν = 0 and G−

μν = − 8πκ

c2
(
T Λ
)
μν

, (2.112)
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where
(
T Λ
)
μν

is an energy-momentum tensor. We will see in the pc-Schwarzschild
and pc-Kerr solutions (Chap. 3) that this energy is repulsive and provides the possi-
bility to eliminate the event horizon. Thus, the massive object is not a black hole but
rather a dark star (the notation is loaned from [28]).

The basic concept behind this is the one explained in the preface, namely that a
mass not only curves the space, as in GR, but also modifies the local structure of
space around the mass.

To solve (2.112), in order to obtain the metric, one has to solve each zero divisor
component separately. Because the σ+ component obeys the same rules as standard
GR, the solutions (Schwarzschild, Kerr, etc.) are the same, however the σ− compo-
nents has to be solved in the presence of an additional energy momentum tensor. It
is similar to solve GR in the presence of an energy distribution. The final result leads
to an apparently different function g±

μν .
The problem is, once the pc-metric is obtained, how we map to the physical four-

dimensional space? We will justify a possibility, discussing as an example the group
theoretical structure of the pc-Lorentz group. It leads to the rule for the mapping to
the physical space.

The generators of the pc-Lorentz group are given by the antisymmetric operators

Lμν = Xμ Pν − Xν Pν

= (
X+

μ P+
ν − X+

ν P+
μ

)
σ+ + (

X−
μ P−

ν − X−
ν P−

μ

)
σ−

= L+
μνσ+ + L−

μνσ−, (2.113)

where Xμ and Pν are pc-coordinates and -momenta. The division into the zero-divisor
components is also given and L±

μν are the corresponding generators of the Lorentz
transformation in each sector.

A finite pc-Lorentz transformation is

e−iωμνLμν = e−iωμν
+ L +

μν σ+ + e−iωμν
− L −

μν σ−, (2.114)

having in each zero divisor component a Lorentz transformation and thus a Lorentz
group SO±(3, 1). The parameters of the transformation are also pseudo-complex and
have the structure

ωμν = ω
μν
+ σ+ + ω

μν
− σ−. (2.115)

Because the expression in the σ+ sector commutes with the one in the σ− sector
(remember that σ+σ− = 0), the group structure is given by

SOP(3, 1) = SO+(3, 1) ⊗ SO−(3, 1) ⊃ SO(3, 1). (2.116)

The pc-Lorentz group is therefore a direct product of two independent Lorentz
groups.

http://dx.doi.org/10.1007/978-3-319-25061-8_3
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This can be reduced to the usual Lorentz group by setting ω+ = ω− and l = 0,
which implies that Xμ → xμ and Pν → pν . Setting l = 0 is equivalent to neglecting
the effects of a maximal acceleration (in a previous section we showed that the
appearance of a minimal length implies a maximal acceleration of 1

l2 , i.e., when l is
set to zero, there is no limit any more). Another way to put it is to set the pseudo-
imaginary component of Xμ, which is given by luμ, to zero. Therefore, one can
state that the reduction to the standard Lorentz group is achieved by substituting all
parameters and variables in the theory by their pseudo-real components, i.e. setting
all pseudo-imaginary components to zero.

Exercise 2.5 (Properties of the pc-Lorentz transformation I)

Problem.
(a) The infinitesimal generators of the pseudo-complex Lorentz transformation
are

Lμν = Xμ Pν − Xν Pμ

with

Pμ = �

i

D

DXμ
.

Determine the commutation relations.
(b) Map Lμν to

Lμν = xμ pν − xν pμ

with

pμ = �

i

∂

∂xμ
(2.117)

and consider the finite transformation

Λ = eiωμν Lμν ,

with ωμν as the pseudo-complex transformation parameters.
Show that Λ can be written as a standard Lorentz transformation, with

purely real parameters, and a transformationwith purely pseudo-complex para-
meters.

Solution. (a) The commutator of two generators is
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[
Lμν,Lλδ

] = [
Xμ Pν − Xν Pμ, Xλ Pδ − Xδ Pλ

]
. (2.118)

The commutator between Xμ and Pν is given by

[
Xμ, Pν

] =
[

Xμ,
�

i

D

DX ν

]
= i�δμν. (2.119)

This implies that

[
Xμ, Pν

] = gμη

[
Xη, Pν

] = i�gμηδην = i�gμν. (2.120)

The appearance of the metric component is due to the fact that the metric
is non-euclidean. In an euclidean space the gμν is just −δμν .

With this, the commutation relations give

[
Xμ Pν, Xλ Pδ

]− [
Xμ Pν, Xδ Pλ

]− [
Xν Pμ, Xλ Pδ

]+ [
Xν Pμ, Xδ Pλ

]

= Xμ [Pν, Xλ] Pδ + Xλ

[
Xμ, Pδ

]
Pν

− Xμ [Pν, Xδ] Pλ − Xδ

[
Xμ, Pλ

]
Pν

− Xν

[
Pμ, Xλ

]
Pδ − Xλ [Xν, Pδ] Pμ

+ Xν

[
Pμ, Xδ

]
Pλ + Xδ [Xν, Pλ] Pμ

= − i�
(
gνλ Xμ Pδ − gμδ Xλ Pν − gνδ Xμ Pλ + gμλ Xδ Pν

+ gμλ Xν Pδ + gνδ Xλ Pμ + gμδ Xν Pλ − gνλ Xδ Pμ

)

= i�
(
gλν

(
Xδ Pμ − Xμ Pδ

)+ gδμ (Xλ Pν − Xν Pλ)

+ gλμ (Xν Pδ − Xδ Pν) + gδν

(
Xμ Pλ − Xλ Pμ

))
.

(2.121)
On the right hand side appear again generators of the pc-Lorentz group.

With this, the final result for the commutation relation of the generators is

[
Lμν,Lλδ

] = i�
(
gλνLδμ + gδμLλν + gλμLνδ + gδνLμλ

)
. (2.122)

(b)We use the mathematical properties of pseudo-complex variables and func-
tions, as explained in Chap.1.

The finite Lorentz transformation, with Lμν as the generators is written in
terms of pc-transformation parameters ωμν as follows:

Λ = eωμν Lμν = e(ω
μν

R +Iωμν

I )Lμν = eω
μν
+ Lμνσ++ω

μν
− Lμνσ−

= eω
μν
+ Lμν σ+ + eω

μν
− Lμν σ−

= Λ+σ+ + Λ−σ−. (2.123)

http://dx.doi.org/10.1007/978-3-319-25061-8_1
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Using ω
μν
± = ω

μν

R ± ω
μν

I we can write this transformation as

Λ = e(ω
μν

R +ω
μν

I )Lμν σ+ + e(ω
μν

R −ω
μν

I )Lμν σ−
=
(

eω
μν

I σ+ + e−ω
μν

I σ−
)

(
eω

μν

R σ+ + e+ω
μν

R σ−
)

=
(
Λ

(2)
+ σ+ + Λ

(2)
− σ−

) (
Λ

(1)
+ σ+ + Λ

(1)
− σ−

)

= Λ(2)Λ(1), (2.124)

where the real proper Lorentz transformations Λ(k) (k = 1, 2) have been
introduced.

The following properties can be deduced from (2.124):

Λ
(1)
− = Λ

(1)
+ , Λ

(2)
− =

(
Λ

(2)
+
)−1

, (2.125)

because

Λ(1) = eω
μν

R Lμν σ+ + eω
μν

R Lμν σ− = eω
μν

R Lμν

Λ(2) = eω
μν

I Lμν σ+ − eω
μν

I Lμν σ− = eIωμν

I Lμν . (2.126)

The last equations are the required answer of the problem.

Exercise 2.6 (Properties of the pc-Lorentz transformation II)

Problem.
Show that the pc-Lorentz transformation

Λ = eiωμν Lμν

implies a maximal acceleration.

Hint: Consider a boost in the x-direction and use the results of Exercise 2.5.

Solution. The basis is the solution of the Lorentz transformation as given
in Problem No. 1. A boost in the x direction for Λ

(2)
+ is given by
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⎛

⎜⎜
⎝

γ −βγ 0 0
−βγ γ 0 0
0 0 0 0
0 0 0 1

⎞

⎟⎟
⎠ , (2.127)

with β = v
c and γ =

√(
1 − v2

c2

)
.

Define the rapidity φ via

γ = coshφ

βγ = sinhφ, (2.128)

from which follows

β = tanhφ. (2.129)

The Λ
(2)
+ is then given by

Λ
(2)
+ =

⎛

⎜⎜
⎝

coshφ −sinhφ 0 0
−sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ . (2.130)

The inverse of this matrix is

(
Λ

(2)
+
)−1 =

⎛

⎜⎜
⎝

coshφ sinhφ 0 0
sinhφ coshφ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ , (2.131)

which is verified easily.
Using, that the transformation Λ(2) is given by

Λ(2) = 1

2

(
Λ

(2)
+ +

(
Λ

(2)
+
)−1

)
+ I

2

(
Λ

(2)
+ −

(
Λ

(2)
+
)−1

)

= Λ
(2)
R + IΛ(2)

I (2.132)

and using (2.130), (2.131),we obtain for the pseudo-real and pseudo-imaginary
component
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Λ
(2)
R = 1

2

⎡

⎢⎢
⎣

⎛

⎜⎜
⎝

coshφ −sinhφ 0 0
−sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠+

⎛

⎜⎜
⎝

coshφ sinhφ 0 0
sinhφ coshφ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦

= 1

2

⎛

⎜⎜
⎝

2coshφ 0 0 0
0 2coshφ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

= coshφ

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ (2.133)

and

Λ
(2)
I = 1

2

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

coshφ −sinhφ 0 0
−sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠−

⎛

⎜
⎜
⎝

coshφ sinhφ 0 0
sinhφ coshφ 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

= 1

2

⎛

⎜⎜
⎝

0 2sinhφ 0 0
2sinhφ 0 0 0

0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠

= sinhφ

⎛

⎜⎜
⎝

0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 1

⎞

⎟⎟
⎠ (2.134)

With all this, the Frenet-Serret matrix is given by

Θ = 1

l

(
Λ

(2)
R

)−1
Λ

(2)
I

= 1

l

⎛

⎜
⎜
⎝

1
coshφ 0 0 0
0 1

coshφ 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

0 −sinhφ 0 0
−sinhφ 0 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

=

⎛

⎜⎜
⎝

0 − 1
l tanhφ 0 0

− 1
l tanhφ 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ . (2.135)
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Because −1 ≤ tanhφ ≤ 1, we have

− 1

l
≤ Θ1

0 = −1

l
tanhφ ≤ 1

l
. (2.136)

The Θ1
0 describe acceleration in the x-direction and (2.136) implies that this

acceleration is limited from above by 1
l .

The Frenet-Serret tensor [25] appears in the Lorentz transformation of
Exercise 2.5: Applying Λ(2) to an orthonormal frame, given by the vectors
eμ. The result is

Λ(2)eμ =
(
Λ

(2)
R + IΛ(2)

I

)
eμ

= Λ
(2)
R (1 + l IΘ) eμ, (2.137)

with the Frenet-Serret tensor

Θ = 1

l

(
Λ

(2)
R

)−1
Λ

(2)
I . (2.138)

As shown above and in [25], this tensor is related to the acceleration of a
system.

This procedure is applied to the construction of a real metric for l = 0. First,
one has to get the same functional form for the metrics g±

μν . The same function
for g±

μν is constructed as follows: As will be seen, the g±
μν(X±) differ by one term

which includes in g−
μν a function Ω−(X−, B), where B may be one parameter or a

set of parameters. Let us write as an example the structure for the pc-Schwarzschild
solution (see Chap.3):

g+
00 = 1 − M+

R+

g−
00 = 1 − M−

R−
+ Ω−(R−, B)

R−
(2.139)

(M± are integration parameters and identified both with m (half the Schwarzschild
radius), in order to reproduce for large, but not so large, radial distances the standard
Schwarzschild solution) and let us suppose that this function can be written as

Ω− =
∞∑

n=2

B−
n

Rn−
. (2.140)

http://dx.doi.org/10.1007/978-3-319-25061-8_3
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The restriction to n ≥ 2 is due to the following reason: In the Parametrized Post
Newtonian Formalism (PPN) (see for details [35]), a new radial variable r̄ , called
isotropic distance (i.e., the preferred system of coordinates by astronomers are the
isotropic coordinates [35]) is defined by

r = r̄
(
1 + m

2r̄

)2
. (2.141)

Considering as a particular example the metric component g00 in the standard
Schwarzschild solution, it transforms to

(
1 − 2m

r

)
= 1 − 2m

r̄
(
1 + m

2r̄

)2

= r̄
(
1 + m

2r̄

)2 − 2m

r̄
(
1 + m

2r̄

)2

=
[
1 + m

r̄ + (
m
2r̄

)2 − 2m
r̄

]

(
1 + m

2r̄

)2

=
[
1 − m

r̄ + (
m
2r̄

)2]

(
1 + m

2r̄

)

=
(
1 − m

2r̄

)2
(
1 + m

2r̄

)2 . (2.142)

This is expanded in powers of m
2r̄ . The r̄ is for large radial distances proportional to r

and thus very large compared to m. For example, for the sun 2m is about 3 km, while
r is several million kilometers. Therefore, in solar system experiments it suffices to
assume the expansion parameter to be very small.

Expanding (2.142) up to the second power yields

(
1 − (

m
r̄

)+ (
m
2r̄

)2) (
1 − 2

(
m
2r̄

)+ 3
(

m
2r̄

)2)

= 1 − 2m
r̄ + 2

(
m
r̄

)2 + · · · . (2.143)

This is the result for the Schwarzschild solution in standard GR. Astronomers change
(2.143) into

1 − α m
r̄ + β

(
m
r̄

)2 + · · · , (2.144)

introducing the parameters α and β, to be adjusted in solar system experiments. The
observations, performed up to now [35, 38]) in the solar system, are consistent with
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α = 2 and β = 2. For example, the error for β is smaller than 3 × 10−3, obtained
through the perihelion shift of Mercury.

When in g00 a correction term proportional to 1
r2 is introduced, due to (2.141) the

leading term of that correction in the isotropic radial distance is also proportional to
1
r̄2 . This is excluded bymeasurements [38]which showed that the 1/r̄2 corrections are
extremely well reproduced by Einstein’s theory, leaving little space for a contribution
of the type B/r̄2 with a large B. Taking into account that no 1/r̄2 corrections are
measured, a correction with a sufficient large parameter in order to erase the event
horizon can only start with 1

r̄ n , with n ≥ 3.
In what follows, we will introduce a notation which allows us to write the σ±

components of the metric in the same functional form, adding terms which are zero
because the newparameters added are zero. Thefinal formhas amuchnicer symmetry
between both zero-divisor components and allows to define the projection:

Due to the just exposed argument, we make the following ansatz for the metric:
To the g+

μν(X+) in (2.139) we add the same function as in (2.140), with the minus
sign changed to the plus sign. Defining the pc-parameters

Bn = B+
n σ+ + B−

n σ− = Bn−σ−, (2.145)

allows us to write the pc-parameter Bn in a symmetric form, by adding a parameter
Bn+ in the σ+ component. Of course the Bn+ parameter has to be set later on to
zero, in order to obtain our previous result. To the term in the σ− component, one is
allowed to add the same form of the term in the σ+ component, namely

Ω+ =
∞∑

n=2

B+
n

Rn+
(2.146)

to g+
μν , thus yielding the same functional form as g−

μν . When the mapping to the real
metric is performed, we proceed as in the case of the Lorentz transformations, setting
Xμ

± → xμ and all parameters Bn → Re(Bn) = 1
2

(
B+

n + B−
n

)
= 1

2 Bn− (because Bn+
is zero).

In order to relate the theory to already existing ones, we estimate the dominant
contributions in the length element square, i.e., for the moment we still use l > 0.

Once the pc-metric gμν(X,A ) is obtained, the above proposed rule of themapping
results into

gμν(X,A ) → gμν(x,AR), (2.147)

where the index R refers to the real component. The justification for (2.147) is as
follows: The pc-variables also depend on luμ. Because the four velocity is limited
by c, this expression is very small and one can approximate the metric by expanding
it in terms of powers in luμ, i.e.,

gμν(X,A ) ≈ gμν(x,A ) + fμλ(x,A )luλ. (2.148)
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Because uλ ≤ c and theminimal length l is probably of the order of the Planck length,
it implies that the contribution of uμ and l to the metric can be safely neglected.
Finally, we substitute the parameters by their real component, as was discussed
further above when the pc-Lorentz transformation was investigated and mapped to
the standard Lorentz transformation. There we defined the mapping to the four-
dimensional subspace, where the contributions of the minimal length are neglected.

The argument just exposed can not be applied to differences in velocity duμ, repre-
senting the acceleration. In the vicinity of a very large mass the acceleration becomes
very large. When the acceleration approaches its maximal possible value, then such
terms including duμ are getting important. However, as long as the acceleration is
small, compared to the maximal one, we also can skip the l-dependent terms.

This is exploited in the length element squared (2.78), which now becomes

dω2 = gμν(X,A )DXμ DX ν

= gμν(X,A )
(
dxμdxν + l2duμduν

)+ gμν(X,A )2l I dxμduν

→ gμν(x,AR)
(
dxμdxν + l2duμduν

)+ gμν(x,AR)2l I dxμduν

→ gμν(x,AR)
(
dxμdxν + l2duμduν

)
. (2.149)

In the first step the pc-variables were substituted and in a second step (third line) the
metric components were approximated in the limit of l = 0. In the fourth line the
mixed term dxμduν is skipped, because we require that the length element of the
motion of a physical particle has to be real. This is only the case when the pseudo-
imaginary component in (2.149) is set to zero. This condition is nothing else as the
dispersion relation, which results as a necessary by-product of the pc-formulation.
Most authors add this condition by hand.

Note, that (2.149) is the length element squared as used in [6, 12–18]. Thus, all
the former mentioned theories with a minimal length parameter l are contained in
pc-GR as a special limit!

The procedure just outlined, did lead to the metrics as discussed in the pc-
Schwarzschild, pc-Reissner-Nortström and pc-Kerr solution [32, 33] (Chap.3) and
also of the pc-Robertson-Walker Model of the universe [34] (Chap.4).

At the end of this chapter we resume the main results:

• The main features of the pc-GR is that it includes a minimal length and that due to
the modified variational principle there is always a contribution to the equation of
motion, which we interpret as a dark energy. This contribution has to be different
from zero. A justification of the modified variational principle was given through
the implementation of a real valued length element, using the Lagrange multiplyer
formalism.

• It was shown that for a very small minimal length but allowing large accelerations
the theory reduces to the ones discussed by Caianiello [6] and more subsequent
contributions by others. Also the length element is equal to the one in hermitian
gravities. Thus, all these theories are contained in pc-GR, which thus can be con-
sidered as a covering theory.

http://dx.doi.org/10.1007/978-3-319-25061-8_3
http://dx.doi.org/10.1007/978-3-319-25061-8_4
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• The pc-GR treats coordinates and velocities on the same level, thus giving the
possibility to satisfy Born’s reciprocity condition [4, 5].

• This shows that pc-GR is more general and the investigation of the influence of the
minimal length is necessary in order to exploit the most general form of pc-GR.

• In practical applications, however, the minimal length and the acceleration are too
small, as that one could observe an effect. Only when the metric becomes nearly
singular, the minimal length might play an observable role. The part of pc-GR
which remains is the contribution of the dark energy, which has to be there due
to the modified variational principle. About these applications will treat the next
chapters.
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Chapter 3
Solutions for Central Masses:
pc-Schwarzschild, pc-Kerr
and pc-Reissner-Nordström

In this chapter the solutions for systems with spherical or axial symmetries are
presented within the pseudo-complex (pc) General Relativity (pc-GR). First a non-
rotating central mass is considered, which is the pc-Schwarzschild solution. The
steps for solving the Einstein equations are in line to those presented in [1], with
some new ingredients. In the second part, the solution for a rotating central mass will
be discussed, which is the pc-Kerr solution. There, one has to take a different path as
presented in [1] due to the complexities involved in its derivation and the additional
presence of an energy-momentum tensor representing the dark energy. Finally, we
discuss the pc-Reissner-Nordström solution, which describes a charged central mass.
The main source of reference for all cases is [2].

In order to follow this chapter, we recommend to study the first two chapters.

3.1 Modified Variational Procedure in an 8-dimensional
Space

Working in the 8-dimensional pseudo-complex space, one has to consider a change
in the variational procedure, which is also applicable when the minimal length l,
emerging in this theory, is set to zero.

We apply the modified variational principle as introduced in Chap.2, i.e.,

δS = δ

∫
dX4√−gR, (3.1)

where g is the determinant of the metric, R the Riemann scalar and both are pseudo-
complex functions. The variation of the pc-action is proportional to an element in
the zero-divisor (see Chap. 2), or

δS = λσ−. (3.2)
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The λ-function gives us a great liberty, which will be used to eliminate the event
horizon of a formerly black hole. In fact it must be constructed such that our general
principle of a singularity-free theory holds. This modified variational principle also
leads to the appearance of the dark energy tensor which is non-zero, otherwise one
arrives at two independent theories, as stated above.

After variation one obtains

Rμν − 1

2
gμνR = 8πκ

c2
(
TΛ

)
μν

σ−, (3.3)

where on the right hand side the factor 8πκ
c2 is intentionally extracted in order to

identify the contribution from the modified variational principle as an additional
energy-momentum tensor. The superscript Λ indicates that we will identify this
contribution with a dark energy.

For convenience, we assume that the functional dependence of themetric g+
μν(X+)

in terms of Xλ+ is the same as g−
μν(X−) in terms of Xλ−. In case when g−

μν differs only
by one term with respect to g+

μν , in particular by a function with the structure

Fμν(R−) =
∑

n

(
B−

n

)
μν

Rn−
, (3.4)

where we assumed that this function is expressible in terms of a Laurent series,
we can add to g+

μν (for the case of the central mass problem, which we are mainly
interested in) the function

Fμν(R+) =
∑

n

(
B+

n

)
μν

Rn+
, (3.5)

and define

(Bn)μν = (
B+

n

)
μν

σ+ + (
B−

n

)
μν

σ− (3.6)

for the expansion coefficients, with
(
B+

n

)
μν

= 0. In this manner, a zero is added
to g+

μν . Due to this trick, the functional dependence is now formally equal in both
zero-divisor components.

For l = 0, or assuming that the contributions of the minimal length are very small,
we expect

Xμ
± → xμ

g±
μν(X±) → gμν(x)

R±
μν → Rμν

R± → R. (3.7)
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For the pseudo-complex parameters (Bn)μν =
((

B+
n

)
μν

σ+ + (
B−

n

)
μν

σ−
)
we have

(
B+

n

)
μν

= 0 and, thus, (Bn)μν = (
B−

n

)
μν

σ−. The pseudo-real part of σ− = 1
2 (1 − I)

is 1
2 . Therefore, the mapping of the pc-parameters yields

(Bn)μν → 1

2

(
B−

n

)
μν

. (3.8)

On the right hand side of (3.3) there is an additional contribution of an energy-
momentum tensor, which is a consequence of the pc-description. Since we require
a vanishing singularity, the functional dependence of

(
TΛ

)
μν

on xλ has to be con-
structed such, that the singularity indeed vanishes.

3.1.1 Isotropic and Anisotropic Fluids

Two different examples for the dark energy will be discussed, namely a fluid model
which is either isotropic or anisotropic. As will be seen further below, for the fluid
outside the star an anisotropic fluid has to be assumed, otherwise the only solution
is a constant density. For an isotropic fluid the standard expression holds, namely

Tμν = εuμuν + p

c2
(
uμuν + gμν

)

=
(
ε + p

c2

)
uμuν + p

c2
δμν. (3.9)

The 4-velocity satisfies the condition gμνuμuν = −1, with the choice of u0 =
1√|g00| and uμ = 0, for μ �= 0 (see Exercise6.1 of Chap.6).
The energy-momentum tensor acquires the form (see Exercise6.1 of Chap.6)

T ν
μ =

⎛

⎜⎜
⎝

−ε 0 0 0
0 p

c2 0 0
0 0 p

c2 0
0 0 0 p

c2

⎞

⎟⎟
⎠ , (3.10)

with T ν
μ = gνλTμλ.

For an anisotropic fluid, the energy momentum tensor is

Tμν = (ε + pϑ

c2
)uμuν + pϑ

c2
gμν + 1

c2
(pr − pϑ)kμkν, (3.11)

with kμ being a space-like vector satisfying kμuμ = 0 and kμlμ = 0, with lμ a null-
vector. The ansatz can be explained as follows: The uμ is a time-like vector. In order
to have an anisotropy, one has to add a term similar to uμuν , but with a space-like

http://dx.doi.org/10.1007/978-3-319-25061-8_6
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vector kμ, which is by construction orthogonal to uμ. The pr is the radial component
and pϑ the tangential component.

The factors in front of the terms in (3.11) are obtained when one considers a
particular coordinate system, in which the 4-velocity has only a component in time
and the space-like vector has only a radial component k1. In this special frame we
have gμνuμuν = −1 = g00

(
u0
)2
and gμνkμkν = 1 = g00

(
v1
)2
. Thus, u0 = 1/

√|g00|,
uk = 0 (k = 1, 2, 3) and kk = 1/

√
g11, kμ = 0 with μ �= k (k = 2, 3), having used

gμνkμkν = +1, this energy-momentum tensor acquires the form

T ν
μ =

⎛

⎜⎜
⎝

−ε 0 0 0
0 pr

c2 0 0
0 0 pϑ

c2 0
0 0 0 pϑ

c2

⎞

⎟⎟
⎠ . (3.12)

It is easy to verify that (3.12) reduces to (3.10) when pϑ = pr .
In the following applications we always will assume the pressure and density to

be real.

3.2 The pc-Schwarzschild Solution

This metric is time-independent with a radial symmetry. Therefore, its general form
is

Dω2 = −eνc2Dt2 + eλDR2 + R2
(
sin2ϑDϕ2 + Dϑ2

)
, (3.13)

where ν(R) and λ(R) are free function, depending only on the radial coordinate.
These functions have to be derived from theEinstein equations. In Einstein’s equation
occurs the curvature tensor, which in turn depends on the Christoffel symbols, so we
have to start with their calculation.

This is achieved most easily via the use of the geodesic equation, for the motion
of a test particle,

Ẍμ +
{

μ

νλ

}
Ẋν Ẋλ = 0, (3.14)

where the coefficients of the equation identify the Christoffel symbols. Note, that the
metric is the solution of the Einstein equations (3.3). Once obtained, the question to
find the geodesic is a standard variational procedure.

The action to vary is

δ

∫ √
−Dω2 = δ

∫ √(
−Dω

Dω

)
dω = 0. (3.15)
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where ω is a pc-curve parameter.
A straightforward calculation yields (see Exercise 3.1)

Ẍ0 + ν ′ṘẊ0 = 0,

R̈ + 1

2
λ′Ṙ2 + 1

2
ν ′eν−λ(Ẋ0)2 − e−λRϑ̇2

−Rsin2ϑϕ̇2e−λ = 0,

ϑ̈ + 2

R
ϑ̇Ṙ − sinϑcosϑϕ̇2 = 0,

ϕ̈ + 2cotϑϕ̇ϑ̇ + 2

R
Ṙϕ̇ = 0. (3.16)

A prime indicates the derivative with respect to R, e.g., ν ′ = Dν
DR .

Exercise 3.1 (Proof of (3.16))

Problem. The Lagrange function to vary is

L = −
(

Dω

Dω

)2

= eν
(
Ẋ0)2 − eλṘ2 − R2 (sin2ϑϕ̇2 + ϑ̇2) , (3.17)

with X0 = ct . A dot denotes the derivative with respect to s. The variational
problem is equivalent to (3.15).

The derivatives of the Lagrangian with respect to the velocities and coor-
dinates are

DL

DẊ0
= 2eν Ẋ0,

DL

DX0
= 0,

DL

DṘ
= −2eλṘ,

DL

DR
= ν ′eν

(
Ẋ0
)2 − λ̇eλṘ2 − 2RṘ

(
sin2ϑϕ̇2 + ϑ̇2

)
,

DL

Dϕ̇
= −2R2sin2ϑϕ̇ ,

DL

Dϕ
= 0,

DL

Dϑ̇
= −2R2ϑ̇,

DL

Dϑ
= − 2R2sinϑcosϑϕ̇2. (3.18)

The prime indicates the derivative with respect to R.
Consider as an example the equation of the X0 component. Using (3.18)

the Euler-Lagrange equation reads
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D

Ds

DL

DẊ0
− DL

DX0
= D

(
2eν Ẋ0

)

ds
= 2ν ′eν ṘẊ0 + 2eν Ẍ0 = 0. (3.19)

Dividing by 2eν gives the first equation in (3.16).
The derivative of ν or λ with respect to ω, i.e. ν̇ and λ̇, can be written as

ν̇ = Dν

DR
Ṙ = ν ′Ṙ (3.20)

and similar for λ̇.
In a similar fashion all the other equations in (3.16) are derived.

Comparing (3.16) with (3.14), yields for the Christoffel symbols;

{
0
10

}
= 1

2
ν ′ =

{
0
01

}
,

{
1
00

}
= 1

2
ν ′eν−λ,

{
1
11

}
= 1

2
λ′,

{
1
22

}
= −Re−λ,

{
1
33

}
= −Rsin2ϑe−λ,

{
2
21

}
= 1

R
=

{
2
12

}
,

{
2
33

}
= −sinϑ cosϑ,

{
3
23

}
= cotϑ =

{
3
32

}
,

{
3
13

}
= 1

R
=

{
3
31

}
, (3.21)

which can be readily copied from [1], with the difference that now the variables R, ϑ
and ϕ are pseudo-complex. Though, the ϑ and the ϕ are in general pseudo-complex,
when we consider in both components of the zero divisor an identical spherical
problem, these angles can be set to be pseudo-real.

TheChristoffel symbols are used to derive theRiemann curvature andRicci tensor,
which appear in the modified Einstein equations
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R ν
μ − 1

2
g ν

μ R = 8πκ

c2
(
TΛ

) ν

μ
σ− ≡ Ξ ν

μ σ−, (3.22)

where we introduced a shorthand notation on the right hand side.
When additional matter distribution is present, then one has to add on the right

hand side of the Einstein equations

8πκ

c2
(
Tmat

) ν

μ
= 8πκ

c2
(
Tmat

) ν

μ
(σ+ + σ−) , (3.23)

where (σ+ + σ−) = 1 has been used. For this case, in each zero-divisor component
there appears the same contribution of the matter, indicated by “mat”. More on this
will be presented in Chap. 6, dedicated to the description of neutron stars, where
matter is present in its interior.

The solution of the σ+ part is obtained as in the standard GR. Both metric com-
ponents are given by

(
g±

μν

) =

⎛

⎜⎜⎜⎜
⎝

−
(
1 − 2M±

R± + Ω±
R±

)
e f± 0 0 0

0
(
1 − 2M±

R± + Ω±
R±

)−1
0 0

0 0 R2± 0
0 0 0 R2±sin

2θ

⎞

⎟⎟⎟⎟
⎠

.

(3.24)

The functions f± arise in general when
(
ν ′ + λ′) is not zero. An explicit example

can be found at the end of this chapter, or in Chap.6. The relations to the formerly
defined functions ν(r) and λ(r) are

eν±(R±) =
(
1 − 2M±

R±
+ Ω±

R±

)
e f±

eλ±(R±) =
(
1 − 2M±

R±
+ Ω±

R±

)−1

. (3.25)

The Ω± functions are supposed to be expressible in an expansion in 1/R±. The
expansion coefficients (Bn)+ are set to zero, as explained further above. The Bn+
serve only to remember that the same functional form for both metric components
is formally obtained.

For the σ− component, the inclusion of the additional dark energy-momentum
tensor has to be considered, which will be done now.

For the solution, one has to keep in mind that on the right hand side of the Einstein
equations there is a zero divisor contribution, proportional to σ−. The Ricci tensor
appears on the left hand side of the Einstein equations, where the right hand side
is proportional to σ−. Each Rμν gives a contribution proportional to σ− to the right
hand side of the Einstein equations. We separate these contributions and associate to

http://dx.doi.org/10.1007/978-3-319-25061-8_6
http://dx.doi.org/10.1007/978-3-319-25061-8_6


62 3 Solutions for Central Masses . . .

each component of the Ricci tensor the following contribution to the right hand side
of the Einstein equations:

R00 = 1

2
eν−λξ0σ−

R11 = −1

2
ξ1σ−

R22 = −ξ2σ−
R33 = −ξ3σ− = − ξ2sin

2ϑσ−. (3.26)

where the functions ξμ have been introduced and the relation R33 = R22sin2ϑ was
used.

The curvature scalarR on the left hand side of the Einstein equations is given by

R = R0
0 + R 1

1 + R 2
2 + R 3

3

= g00R00 + g11R11 + g22R22 + g33R33

= −e−νR00 + e−λR11 + R22

R2
+ R33

R2sin2ϑ
. (3.27)

For the (00) component, the left hand side of the Einstein equation reads

R 0
0 − 1

2
g 0
0 R = 1

2

(
R 0

0 − R 1
1 R 2

2 R 3
3

)

= −1

2

(
e−νR00 + e−λR11 + 1

R2
R22 + 1

R2sin2ϑ
R22

)
.(3.28)

Substituting (3.26) into this equations and restricting for a while to the σ− com-
ponent, yields

− 1

4
e−λ−ξ0 + 1

4
e−λ−ξ1 + ξ2

R2−
= Ξ 0

0 . (3.29)

Repeating these steps for the other components of the Einstein equations, i.e.
substituting (3.26) into the σ− component of the Einstein equations, we obtain a
relation between these ξ -functions and the Ξμ = Ξ μ

μ = 8πκ
c2 T μ

μ :

− 1

4
e−λ−ξ0 + 1

4
e−λ−ξ1 + ξ2

R2−
= Ξ0

1

4
e−λ−ξ0 − 1

4
e−λ−ξ1 + ξ2

R2−
= Ξ1

1

4
e−λ− (ξ0 + ξ1) = Ξ2

Ξ3 = Ξ2. (3.30)
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Resolving for ξμ we obtain

2ξ2
R2−

= Ξ0 + Ξ1

1

2
e−λ− (ξ0 − ξ1) = Ξ1 − Ξ0

1

4
e−λ− (ξ0 + ξ1) = Ξ2. (3.31)

Multiplying the last equation with 2 and adding to it the second equation and
subsequently subtracting the second equation from the last one, we obtain

e−λ−ξ0 = 2Ξ2 + Ξ1 − Ξ0

e−λ−ξ1 = 2Ξ2 − Ξ1 + Ξ0

2ξ2
R2−

= Ξ0 + Ξ1. (3.32)

Compared with the Schwarzschild result according to Einstein’s theory, addi-
tional dark energy terms appear. In general the dark energy will be described by an
anisotropic fluid. In the specific case of an isotropic fluid model, both pressures are
set equal. The assumption of an anisotropic fluid is not so far fetched and has already
been discussed in the literature [3–6].

We use for
(
T ν

μ

)
= gνλTμλ = diag(−ε,

pr
c2 ,

pϑ

c2 ,
pϑ

c2 ) the expression for an ideal
anisotropic fluid/gas [1] and obtain

Ξ 0
0 = Ξ0 = g00Ξ00 = −8πκ

c2
ε,

Ξ 1
1 = Ξ1 = g11Ξ11 = 8πκ

c2
pr

c2
,

Ξ 2
2 = Ξ2 = Ξ 3

3 = Ξ3 = g33Ξ33 = 8πκ

c2
pϑ

c2
. (3.33)

Substituting this into (3.32) gives

2ξ2
R2−

= 8πκ

c2

(
−ε + pr

c2

)

e−λ−ξ0 = 8πκ

c2

(
2

pϑ

c2
+ pr

c2
+ ε

)

e−λ−ξ1 = 8πκ

c2

(
−ε + 2

pϑ

c2
− pr

c2

)
. (3.34)

Now, we return to consider both zero-divisor component again. As shown in
Exercise 3.2, we obtain (Rμν = R λ

μ gλν)
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R00 = eν−λ

2

(
ν ′′ + ν ′2

2
− λ′ν ′

2
+ 2ν ′

R

)

R11 = −1

2

(
ν ′′ + ν ′2

2
− λ′ν ′

2
− 2λ′

R

)

R22 = − (
e−λR

)′ + 1 − Re−λ

(
ν ′ + λ′

2

)

R33 = − sin2 ϑ

[(
e−λR

)′ − 1 + Re−λ

(
ν ′ + λ′

2

)]
. (3.35)

The Ricci scalar is defined by

R = R μ
μ . (3.36)

Exercise 3.2 (Determination of Rμν)

Problem. Determine the relations of Rμν , enlisted in (3.35)

Solution.
The Ricci tensor is given in terms of the Christoffel symbols as [7]

Rμν = −
{

β

βν

}

|μ
+
{

β

μν

}

|β

−
{

β

τμ

}{
τ

βν

}

+
{

β

τβ

}{
τ

μν

}
. (3.37)

We now consider step by step the different components of the Ricci tensor,
using (3.37) and that only diagonal components appear.

(1) μ = ν = 0:
According to (3.37), he R00 component is given by

−
{

β

β0

}

|0
+
{

β

00

}

|β

−
{

β

τ0

}{
τ

β0

}

+
{

β

τβ

}{
τ

00

}
. (3.38)
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The first term vanishes because there is no time dependence and, thus, the
derivative with respect to X0 is zero. Using the list of the Christoffel symbols,
given in (3.21), this equation gives

1
2eν−λ

[
ν ′′ + (

ν ′ − λ′) ν ′]

+ 1
2eν−λ

[
− (

ν ′)2
]

+ 1
2eν−λ

[
(ν ′)

2

2 + λ′ν ′
2 + 2ν ′

R

]

=
1
2eν−λ

[
ν ′′ + (ν ′)

2

2 − λ′ν ′
2 + 2ν ′

R

]
. (3.39)

Each line corresponds to the same line as in (3.38).
(2) μ = ν = 1:

According to (3.37), he R11 component is given by

−
{

β

β1

}

|1
+
{

β

11

}

|β

−
{

β

τ1

}{
τ

β1

}

+
{

β

τβ

}{
τ

11

}
. (3.40)

Using the list of the Christoffel symbols, given in (3.21), this equation gives

− ν ′′+λ′′
2 + 2

R2 + λ′′
2

− (ν ′)
2

4 − (λ′)
2

4 − 2
R2

+ λ′ν ′
4 + (λ)2

4 + λ′
R

=
− 1

2

[
ν ′′ + (ν ′)

2

2 − λ′ν ′
2 − 2λ′

R

]
. (3.41)

Again, each line corresponds to the same in (3.40).
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(3) μ = ν = 2:
According to (3.37), theR22 component is given by

−
{

β

β2

}

|2
+
{

β

22

}

|β

−
{

β

τ2

}{
τ

β2

}

+
{

β

τβ

}{
τ

22

}
. (3.42)

Using the list of the Christoffel symbols, given in (3.21), this equation gives

1
sin2ϑ

− [
Re−λ

]′

+2e−λ − cot2ϑ

−
[

ν ′
2 + λ′

2 + 2
R

]
Re−λ

=
− (

e−λR
)′ − Re−λ ν ′+λ′

2 + 1
sin2ϑ

− cos2ϑ
sin2ϑ

=
− (

e−λR
)′ − Re−λ ν ′+λ′

2 + 1, (3.43)

where each line corresponds to the corresponding line in (3.42). In the last step
also

1

sin2ϑ
− cos2ϑ

sin2ϑ
= −

(
cos2ϑ − 1

)

sin2ϑ
= 1 (3.44)

was used.
For μ = ν = 3 the steps are similar to the case with μ = ν = 2. The only

difference is a factor sin2ϑ .

We obtain from these equations and R00 = 1
2eν−λξ0σ−, R11 = − 1

2ξ1σ−

ν ′′ + 1

2
ν ′2 − 1

2
λ′ν ′ + 2ν ′

R
= ξ0σ−

ν ′′ + 1

2
ν ′2 − 1

2
λ′ν ′ − 2λ′

R
= ξ1σ−. (3.45)

This is the same as in [8].
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Now, subtracting the second equation in (3.45) from the first one in (3.45) gives

(
ν ′ + λ′) = 1

2
R (ξ0 − ξ1) σ−. (3.46)

This reduces to the standard GR result, i.e. ν ′ + λ′ = 0, when ξ0 and ξ1 are set
to zero. Equation (3.46) also implies that the σ+ component fulfills the condition(
ν ′+ + λ′+

) = 0, as in standard GR, and
(
ν ′− + λ′−

)
= 1

2R− (ξ0 − ξ1) in the σ− com-
ponent.

A repeated differentiation of (3.46) gives

ν ′′ + λ′′ =
[
1

2
(ξ0 − ξ1) + R

2

(
ξ ′
0 − ξ ′

1

)
]

σ−. (3.47)

Using R22, as it is given in (3.35), and comparing it to (3.26), we obtain

[
Re−λ

]′ − 1 + Re−λ

(
ν ′ + λ′

2

)
= ξ2σ−. (3.48)

Performing the derivative and rearranging gives

e−λ

[
1 + Rν ′

2
− Rλ′

2

]
− 1 = ξ2σ−. (3.49)

Substituting again (3.46) and its derivative, given by (3.47), into the left hand side
of (3.45) and reordering terms leads to

−
(
λ′′ − λ′2 + 2λ′

R

)

+ [
1
2 (ξ0 − ξ1) + 1

2R
(
ξ ′
0 − ξ ′

1

)− 3
4λ

′R (ξ0 − ξ1) + 1
8R2 (ξ0 − ξ1)

2
]
σ−

= ξ1σ− .(3.50)

For the σ− component we have −
(
λ′′− − λ′2− + 2λ′−

R−

)
= eλ−

R−

(
R−e−λ−

)′′
in the first

term, which is verified directly. Shifting
[
R−e−λ−

]′
in (3.48) to one side and substi-

tuting this into eλ−
R−

(
R−e−λ−

)′′
, we arrive at

−
(

λ′′
− − λ′2

− + 2λ′−
R−

)
= eλ−

R−

(
R−e−λ−

)′′

= eλ−

R−

(
1 + ξ2 − R2−

4
(ξ0 − ξ1) e−λ−

)′

= eλ−

R−
ξ ′
2 − 1

2
(ξ0 − ξ1) − R−

4

(
ξ ′
0 − ξ ′

1

)+ λ′−R−
4

(ξ0 − ξ1) .

(3.51)
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This can be inserted into the first line in (3.50), which gives

eλ−

R−
ξ ′
2 + 1

4
R−

(
ξ ′
0 − ξ ′

1

)− 1

2
λ′

−R− (ξ0 − ξ1) + 1

8
R2

− (ξ0 − ξ1)
2 = ξ1. (3.52)

This is a general differential equation relating the ξμ functions, which helps to
constrain them further. If a fluid model is used, these functions are related to the
density and the pressure (radial and tangential) and can be transformed into the
Tolman-Oppenheimer-Volkov (TOV) equation [1], derived for the Einstein equations
with a matter distribution present, whose derivation will be given in Exercise 3.3:

p′
r

c2
= −

(
ε + pr

c2
)

R− (R− − 2M− + 2mde(R−))

[
4πκ

c2
R3

−
pr

c2
+ M− − mde

]

+ 2

R−
Δp

c2
,

(3.53)

with Δp = pϑ − pr . The function mde is defined further below in (3.71). In case of
an isotropic fluid pϑ = pr = p and therefore Δp = 0. Using the equation of state
pr

c2 = −ε (the standard equation of state for the dark energy, which however can
change) the factor

(
ε + pr

c2
)
=
(
ε + p

c2
)
is zero and the TOV equation reduces to

p′
r = 0, i.e. pr is constant and due to

pr

c2 r
∼ ε also ε is constant. This contradicts the

requirement that ε has to vanish for large distances. One is, therefore, forced to use
an anisotropic fluid. Only then Δp does not vanish. Resolving for pϑ one obtains a
relation between pϑ and pr :

pϑ = pr + R−
2

dpr

dR−
. (3.54)

When a particular behavior of pr as a function in R− is assumed, this determines
pϑ . The assumption of an anisotropic fluid is not new and appears naturally in
problems similar to our theory [3]. (Another example for an anisotropic fluid one
encounters toward the endof this chapter related to theReissner-Nordströmsolution.)

Exercise 3.3 (Derive the TOV-equation)

Solution
Using (3.30) and the definition of Ξμ leads to the following relations of the ξμ

functions to the density and pressures



3.2 The pc-Schwarzschild Solution 69

e−λ− (ξ0 − ξ1) = 16πκ

c2

(
ε + pr

c2

)
,

e−λ−
(
ξ ′
0 − ξ ′

1

) = 16πκ

c2

[
λ′

−
(
ε + pr

c2

)
+
(

ε′ + p′
r

c2

)]
,

2ξ2
R2−

= 8πκ

c2

(
−ε + pr

c2

)
,

2ξ ′
2

R2−
= 8πκ

c2

(
−ε′ + p′

r

c2

)
+ 16πκ

c2
1

R2−

(
−ε + pr

c2

)
,

e−λ−ξ1 = 8πκ

c2

(
−ε + 2

pϑ

c2
− pr

c2

)
, (3.55)

where, in order to obtain the second line, we first multiplied the first line with
eλ− , took the derivative and then multiplied by e−λ− . For the derivative in ξ2
we started from 2ξ2/R2−, multiplied by R2−/2, took the derivative and finally
multiplied by 2/R2−.

We also use the equation, derived further below,

e−λ− = 1 − 2M−
R−

+ 2mde(R−)

R−
(3.56)

All these expressions are substituted into (3.52), giving

16πκ
c2

1
R−

(−ε + pr

c2
)+ 8πκ

c2

(
−ε′ + p′

r
c2

)

+ 1
2
16πκ

c2

[
λ′−

(
ε + pr

c2
)+

(
ε′ + p′

r
c2

)]

−λ′−
16πκ

c2
(
ε + pr

c2
)+ R−eλ−

4

(
16πκ

c2
)2 (

ε + pr

c2
)2

=
− 2

R−
8πκ
c2
(
ε + pr

c2
)+ 2

R−
8πκ
c2 2 pϑ

c2 . (3.57)

As one can readily notes, the derivative in the density cancels. Resolving
for p′

r
c2 we obtain

p′
r

c2
= 2

R−
(pϑ − pr )

c2
+
(
ε + pr

c2

) λ′−
2

− 8πκ

c2
R−
2

(
ε + pr

c2

)2
. (3.58)

Next, the λ′− is determined. For that we use the relation of e−λ− , as given
in (3.56), deriving e−λ− with respect to R−, which gives

− λ−e−λ− = 2M−
R2−

− 2mde

R2−
+ 2m ′

de

R−
. (3.59)
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Resolving for λ′− gives

λ− = −e−λ−

R2−

(
2M− − 2mde + 2R−m ′

de

)
. (3.60)

Substituting this into (3.58) gives, with Δp = pϑ − pr ,

p′

c2
= 2

R−
Δp

c2
−
(
ε + pr

c2

) eλ−

R2−

[
M− − mde + R−m ′

de + 4πκ

c2
R3

−
(
ε + pr

c2

)]
,

(3.61)

Using that

m ′
de = −4πκ

c2
R2

−ε (3.62)

cancels the density dependence in the parenthesis and leads to the following
expression for the derivative of the radial pressure:

p′
r

c2
= −

(
ε + pr

c2
)

R− (R− − 2M− + 2mde)

[
4πκ

c2
R2

−
pr

c2
+ M− − mde

]
+ 2

R−
Δp

c2
,

(3.63)

which is nothing but the TOV equation for an anisotropic fluid. The TOV
equation for an isotropic fluid is obtained as a special case, where pϑ = pr .

Using the derivative of R−e−λ− as given in (3.48), integrating it and setting the
integration constant equal to −2M−, we obtain

R−e−λ− = R− − 2M− +
∫

ξ2dR− − 1

4

∫
e−λ−R2

− (ξ0 − ξ1) dR−.

(3.64)

The sum of the terms within the integral is nothing but Ξ0R2−, with Ξ0 as given
in (3.30) and is simply proportional to the energy density.

Now, we can use the connection of the ξμ functions in terms of the density ε and
pressures pr and pϑ , given in (3.34), with the result

R−e−λ− = R− − 2M− − 8πκ

c2

∫
R2

−εdR−. (3.65)

This general expression is always valid, i.e., the additional contribution depends
on ε only. It is the same for an isotropic and an anisotropic fluid!
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Exercise 3.4 (Equations (3.64) and (3.65))

Problem. Derive (3.64) and (3.65).

Solution. Starting from (3.48), resolving for
[
R−e−λ−

]′
, we get

[
R−e−λ−

]′ = ξ2 + 1 − R−e−λ−
(

ν ′ + λ′

2

)
. (3.66)

Using (3.46) and integrating yields

R−e−λ− = R− − 2M− +
∫

ξ2dR− − 1

4

∫
e−λ−R2

− (ξ0 − ξ1) dR−, (3.67)

where M− is an integration constant. This is (3.64), where the integrand of
the integral over R− is

ξ2 − R2−
4

e−λ− (ξ0 − ξ1) = R2
−Ξ0. (3.68)

We have used the first equation in (3.30), multiplied by R2−. Because Ξ0 =
− 8πκ

c2 ε, this integrand is nothing but − 8πκ
c2 R2−ε as it appears in (3.65).

The metric component e−ν− , has a more involved expression: Using (3.46), we
have ν ′− = −λ′− + R−

2 (ξ0 − ξ1). Integrating over R− gives ν− = −λ− + 1
2

∫
R−

(ξ0 − ξ1) dR−. Elevating this to the power of the exponential yields

eν− = e−λ−e
1
2

∫
R−(ξ0−ξ1)dR− (3.69)

From the secondequation in (3.31)wehave e−λ−
2 (ξ0 − ξ1)=Ξ1 − Ξ0 = 8πκ

c2
( pr

c2 + ε
)

(see (3.33)). Thus, the latter equation results into

e−λ−e
8πκ

c2

∫
R−eλ−

[(
pr
c2

)
+ε

]
dR− = e−λ−e f− . (3.70)

The factor e f− is a positive function in R− and apart from the density ε it depends
only on the radial pressure.

We now proceed in rewriting (3.65) and define

− 8πκ

c2

∫
R2

−εdR− = 2κ

c2
Mde(R−)

= 2mde(R−), (3.71)
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which gives the definition of mde used further below. Mde(R−) is the accumulated
mass of the dark energy. In order that the contribution 2mde

R− to the metric component

g−
00 is at least proportional 1/R3− (mde ∼ Mde), the Mde has to be at least proportional

to 1/R2−. This is only achieved if the density is proportional at least to 1/R5−. Thus, the
integrand −R2−ε is proportional to −1/R3−. Integrating gives an expression propor-
tional to +1/R2−. As one can see, the minus sign in (3.71) guarantees, for positive ε

and the upper integration limit larger than the lower one, that the dark energy mass is
positive. This may change when the integration limits are different and/or the energy
density has different signs, which will be explored in Chap. 6, where neutron stars
are investigated.

The metric element g11− is equal to e−λ− , which is obtained from (3.65) and sub-
stituting it in the integral by (3.71). The g11− is finally given by

e−λ− = 1 − 2M−
R

+ 2mde(R−)

R−
. (3.72)

In (3.70) the g−
00 = −eν− was related to e−λ− , which is the g11− metric component.

In general, an additional factor may appear, abbreviated by e f− . With this and (3.72),
the g−

00 component acquires the structure

g00 = −
(
1 − 2M−

R−
+ 2mde

R−

)
e f− . (3.73)

As was shown above, for an anisotropic fluid and the equation of state pr

c2 = −ε,
the function f− is zero and a simple expression for g−

00 is obtained.
In what follows, the final pc-Schwarzschild solution is constructed:
Up to here we obtained an analytic solution for the σ− component of the metric.

The one for the σ+ component is identical to the one derived by e.g. Adler et al.
[1], though having used a different signature. In the σ− component, the additional
contribution proportional to the functionΩ− = 2mde(R−) appears, where we stressed
that it is a function in R−. However such a function does not appear in the σ+
component. In order to rewrite the σ+ component in a form similar to the one in
the σ− component, we use the prescription enlisted in (3.4)–(3.8) and introduce
the definitions Ω+ = 0 and f+ = 0. With the help of this, both components can be
written as

(
g±

μν

) =

⎛

⎜⎜⎜⎜
⎝

−
(
1 − 2M±

R± + Ω±
R±

)
e f± 0 0 0

0
(
1 − 2M±

R± + Ω±
R±

)−1
0 0

0 0 R2± 0
0 0 0 R2±sin

2ϑ

⎞

⎟⎟⎟⎟
⎠

.

(3.74)

http://dx.doi.org/10.1007/978-3-319-25061-8_6


3.2 The pc-Schwarzschild Solution 73

Note, the metric tensor has now the same functional form in both the σ− and σ+
component. The following notation was used

R± = r ± lṙ

M = M+σ+ + M−σ−
M± = m

Ω = 2mdeσ− = Ω+σ+ + Ω−σ−

Ω+ = 0, Ω− = 2mde(R−) = B−
R2−

. (3.75)

M± = m, which is a consequence of the boundary condition that standard GR
should be obtained in the limit of large distances R−. The pseudo-real elements of
the parameters are

MR = m , BR = 1

2
(B+ + B−) = B−

2
. (3.76)

Because now the metric tensors in both σ -component have the same functional
form, the total pseudo-complex metric can be written as gμν(B, R) = gμν(B+, R+)σ+
+ gμν(B−, f−, R−)σ−, which gives

(
gμν

) =

⎛

⎜⎜
⎝

− (
1 − 2M

R + B
R3

)
e f 0 0 0

0
(
1 − 2M

R + B
R3

)−1
0 0

0 0 R2 0
0 0 0 R2sin2ϑ

⎞

⎟⎟
⎠ ,

(3.77)

with f+ = f− = 0 and therefore e f = 1. The projected metric, following our pre-
scription, is

(
gμν(r)

) =

⎛

⎜⎜⎜⎜
⎝

−
(
1 − 2m

r + B−
2r3

)
0 0 0

0
(
1 − 2m

r + B−
2r3

)−1
0 0

0 0 r2 0
0 0 0 r2sin2ϑ

⎞

⎟⎟⎟⎟
⎠

.

(3.78)

The real length element squared is finally given by (setting B− = B)
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dω2 = −
(
1 − 2m

r
+ B

2r3

)
(dx0)2 +

(
1 − 2m

r
+ B

2r3

)−1

(dr)2

+r2
[
(dϑ)2 + sin2ϑ(dϕ)2

]
.

(3.79)

In [8] we imposed the condition −g00(r) > 0, so that the signature for the time
stays the same. The condition −g00(r) > 0 then is

1 − 2m

r
+ B

2r3
> 0. (3.80)

To find a value for B which satisfies this condition for all r > 0 we will have a
look at the extremal value of g00. As we know from the limiting behavior of g00
(−g00 → 1 for r → ∞ and −g00 → +∞ for r → 0) its extremal value will be a
minimum. A quick calculation gives r = (

3
4

B
m

)1/2
for the value of the minimum of

g00. Inserting this into (3.80) yields

B >
64

27
m3. (3.81)

Exercise 3.5 (Limit for the parameter B)

Problem. Proof (3.81).

Solution. Define the function

f (r) = 1 − 2m

r
+ B

2r3
. (3.82)

The first derivative with respect to r is

f ′ = 2m

r2
− 3B

2r4
= 0, (3.83)

which is set to zero, in order to find the minimum. Multiplying with r4 and
resolving for r , changing r to r0 in order to indicate that the solution is related
to a minimum, the solution of this equation is
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r0 =
√

3B

4m
. (3.84)

In order to obtain the value of the function f (r0), (3.84) is substituted into
(3.82), giving

1 − 2m

√
4m

3B
+ B

2

(
4m

3B

)√
4m

3B
= 1 − 4

3
m

√
4m

3B
> 0, (3.85)

where we include the requirement that this function f (r) = −g00 is always
positive. If this is the case, the g00 is never zero and, thus, no event horizon
appears.

Resolving (3.85) for B gives the condition

B >
64

27
m3. (3.86)

The conclusions from [8] is that the redshift in the pc-Schwarzschild solution is
first increased until the minimum of g00 is reached, from which on it decreases again
until it turns into a blueshift. Because the potential is proportional to the square root
of g00(r) [9], this indicates a minimum in the potential, which is repulsive for lower
radial distances r (see Fig. 3.1). Our interpretation of this finding is that the collapse

 0

 0.5

 1

 0  1  2  3  4  5  6  7  8  9  10

g

r/m

Fig. 3.1 The function g = √−g00, which is proportional to the effective potential with angular
momentum equal to zero [9]. The solid line is the Schwarzschild solution and the dashed line the
pc-Schwarzschild solution, with B = 70

27m3. The x-axis is given in units of m, i.e., 2m corresponds
to the Schwarzschild radius. Note, that in the pc-case a repulsive core appears which is responsible
for halting the collapse of a large mass
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of a star is halted latest at the minimum and it can not contract to a singularity.
The star probably still oscillates around this minimum, which should be eventually
observable.

The result has to be taken with care for values of r smaller than r0. This is because
we assumed to be outside the mass distribution of the star. As soon as the surface of
the star is reached, which happens near the minimum of g00, the energy-momentum
tensor for the baryonic mass distribution has to be included. Thus, the behavior,
including its pole toward r = 0 is only of academic interest and should be modified
such that at r = 0 the −g00 =|g00| component of the metric approaches ≤1. This
should be the correct limit, because within the star mass is present, not taken into
account yet, and at the center of the star the gravitational attraction is lower. We
recommend to consult Chap.6 on neutron stars for further clarification.

3.3 The pc-Kerr Solution

In the last chapter we studied the solution of the Einstein equations for a spherical
symmetric body. This was the first non-trivial solution found by K. Schwarzschild
(please, see the references [1, 9]). Realistic stars are rotating, but for a long time no
solution was found until R. Kerr (please, see the references [1, 9]) encountered in
1963 a solution for rotating bodies. This is very important, because the large mass
concentrations at the center of nearly every galaxy, associated to so-called black
holes, must have a high rotational frequency. This is expected due to the fact that a
large mass collapses with an initial angular momentum and similar to the effect of
an ice skater, the rotational frequency increases when the mass is more concentrated
toward the rotational axis.

The derivation of the solution is done in complete analogy as given in the literature
cited in the text. The difference is the additional presence of an energy-momentum
tensor (for the dark energy), which will introduce some complications. The standard
solution in GR is obtained by setting the parameterB = bm3, describing the coupling
of the star’s mass to the vacuum fluctuations, to zero. As a useful byproduct, also the
solution in standard GR with the presence of a mass distribution is obtained, when
the additional energy-momentum tensor is interpreted as the one for mass.

As wewill see, specific assumptions have to bemade in order to solve the Einstein
equations. i.e. the solution is not themost general one.However, the solution obtained
describes a rotational body with the presence of a dark energy and is general enough
to describe highly rotational large mass concentrations. The solution will play a
central role in Chap.5, where we discuss experimental predictions of pc-GR applied
to rotating large masses as we encounter in the center of our galaxy.

Some intermediate steps of the calculations can be found in the appendix of [10]
and in [2].

To find a pseudo-complex Kerr solution is not at all trivial. We will follow an
ansatz proposed by Carter [11, 12]. The Klein-Gordon-Equation

1

Ψ

∂

∂xα

(√−ggαβ ∂Ψ

∂xβ

)
− m2

0

√−g = 0 (3.87)

http://dx.doi.org/10.1007/978-3-319-25061-8_6
http://dx.doi.org/10.1007/978-3-319-25061-8_5
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is required to be separable. For the structure of the metric tensor this implies

gμν = 1

Z

⎛

⎜⎜⎜
⎝

−Δr C2
μ + ΔμC2

r 0 0 −ΔμCr Zr + Δr CμZμ

0 Z2

Δr
0 0

0 0 Z2

Δμ
0

−ΔμCr Zr + Δr CμZμ 0 0 −Δr Z2
μ + ΔμZ2

r

⎞

⎟⎟⎟
⎠

, (3.88)

where,Δr andZr are functions of the variable r whileΔμ andZμ are functions ofμ =
cosϑ .Cμ andCr are constant factors, which are determined later. The definition forZ
is Z = Zr Cμ − ZμCr . The metric shows a high symmetry, but it is still quite involved
to compute the Einstein equation. A manageable solution can be obtained using
differential geometry, introduced by Cartan [13] into the problem under discussion.
For a detailed explanation the reader is referred to [2, 9, 14, 15]. The Einstein tensor
(Gμ

ν = Rμ
ν − 1

2gμ
ν R) obtained is given by

G0
0 = 1

2Z
Δμ|μμ + 1

Z2
Δr Zr |rr + a2

4Z3
Δμ

(
Zμ|μ2 + Zr |r 2

)

− 3

4Z3
Δr

(
Zμ|μ2 + Zr |r 2

)+ a

2Z2
Δμ|μZμ|μ + 1

2Z2
Δr |r Zr |r

G0
3 = − 1

2Z2

√
ΔrΔμ

(
aZr |rr + Zμ|μμ

)

G1
1 = 1

2Z
Δμ|μμ + a2

4Z3
Δμ

(
Zμ|μ2 + Zr |r 2

)− 1

4Z3
Δr

(
Zμ|μ2 + Zr |r 2

)

+ a

2Z2
Δμ|μZμ|μ + 1

2Z2
Δr |r Zr |r

G2
2 = 1

2Z
Δr |rr − a2

4Z3
Δμ

(
Zμ|μ2 + Zr |r 2

)+ 1

4Z3
Δr

(
Zμ|μ2 + Zr |r 2

)

− a

2Z2
Δμ|μZμ|μ − 1

2Z2
Δr |r Zr |r

G3
3 = 1

2Z
Δr |rr − a

Z2
ΔμZμ|μμ − 3a2

4Z3
Δμ

(
Zμ|μ2 + Zr |r 2

)

+ 1

4Z3
Δr

(
Zμ|μ2 + Zr |r 2

)− a

2Z2
Δμ|μZμ|μ − 1

2Z2
Δr |r Zr |r , (3.89)

where the constant factors are chosen as Cr = a, Cμ = 1 [11, 12, 16] and the sub-
script |μ,r stand for the derivative with respect to μ, r respectively. The calculations
are similar to the pc- Schwarzschild case. With the variational principle modified,
only the σ− component of the equation needs to be considered, as the σ+ part of
it is identical to the classical Einstein equation. To solve the Einstein equation
Gν

μ = Ξν
μσ−, we consider similar combinations of (3.89) as shown by Plebánski

and Krasiński [12]:
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− 1

2Z2

√
ΔR−Δμ−(aZR−|R−R− + Zμ−|μ−μ−) = Ξ 0

3

1

2Z
(Δμ−|μ−μ− + ΔR−|R−R−) = Ξ 1

1 + Ξ 2
2

a

Z2
Δμ−Zμ−|μ−μ− + a2

2Z3
Δμ−(Z2

μ−|μ− + Z2
R−|R−) = Ξ 2

2 − Ξ 3
3

1

Z2
ΔR−ZR−|R−R− − 1

2Z3
ΔR−(Z2

μ−|μ− + Z2
R−|R−) = Ξ 0

0 − Ξ 1
1

1

2Z
ΔR−|R−R− − a2

4Z3
Δμ−

(
Zμ−|μ−

2 + ZR−|R−
2
)− a

2Z2
Δμ−|μ−Zμ−|μ−

+ 1

4Z3
ΔR−

(
Zμ−|μ−

2 + ZR−|R−
2)− 1

2Z2
ΔR−|R−ZR−|R− = Ξ 2

2. (3.90)

The Ξν
μ are first considered as arbitrary functions in R− and μ−. This allows us

to choose them properly, so that the equations in (3.90) can be solved. The first step
consists in setting Ξ 3

0 = 0 and thus the first line in (3.90) becomes

aZR−|R−R− + Zμ−|μ−μ− = 0. (3.91)

ChoosingΞ 3
0 �= 0 would not allow an analytic solution, i.e., the assumptionΞ 3

0 =
0 is for convenience. (3.91) is formally identical to the classical case [12]. We have
a sum of two functions of different variables equal to a constant. Both have to be
constant and one can conclude that

ZR− = CR2
− + C1R− + C2 and Zμ− = −aCμ2

− + C3μ− + C4. (3.92)

Without further assumptions, no solution can be found yet. However, using as an
ad hoc choice Ξ 2

2 = Ξ 3
3, a solution can be found, as shown in what follows. Here,

identifying the index 2 with ϑ and 3 with ϕ, a symmetry is assumed, that the Ξ 2
2 has

the same form as Ξ 3
3, which allows still a quite general solution. Also with the third

equation in (3.90) we arrive, after a trivial calculation, at

C4 = C2

a
− C2

1 + C2
3

4aC
. (3.93)

Inserted into (3.91) we can observe, that the transformation μ− = μ′− + C3
2aC

together with a redefinition C2 = aC′
2 + C2

1
4C has the same effect as if we would

choose C3 = 0 [12]. Thus, we are left with

ZR− = C

(
R− + C1

2C

)2

+ aC′
2, Zμ− = −aCμ2

− + C′
2. (3.94)
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A different transformation for the variable R− yields the same as if we would set
C1 = 0.

Exercise 3.6 (Equations (3.92) and (3.94))

Problem. Show that (3.94) follows from (3.92).

Solution. The term (3.94) is written explicitly, i.e.

ZR− = C

(
R2

− + C1

C
R− + C2

1

4C2

)
+ aC′

2

= CR2
− + C1R− + C2

1

4C
+ aC′

2. (3.95)

Identifying C2
1

4C + aC′
2 with C2 in (3.92) shows the equivalence. This allows

to rescale
(
R− + C1

2C

)
to a new R−. In other words, instead of using an arbitrary

C1, it is save to assume in (3.92) that C1 = 0
The Zμ− in (3.94) is obtained from (3.92) in the same way, using the equiv-

alent rescaling for μ− as for R− in the former example, i.e., one can set C3 to
zero and just rename the parameter C4 to C′

2.

As the factor Z = ZR− − aZμ− is independent of C′
2 we can choose C′

2 = aC, just
as in the classical case [12]. The final step consists in setting C = 1, redefining Δμ−
and ΔR− . Therefore, we obtain the functions

ZR− = R2
− + a2, Zμ− = a(1 − μ2

−), (3.96)

which again are formally identical to the classical solution [11, 12].
We shift our attention to the second equation of (3.90) with the assumption Ξ 1

1 +
Ξ 2

2 = 1
2Z

∑∞
n=3

B̃n
Rn−

(the right hand side simulates the contribution of Tμν
Λ of the “dark

energy”), which yields

ΔR−|R−R− + Δμ−|μ−μ− −
∞∑

n=3

B̃n

Rn−
= 0. (3.97)

Again we have two functions in different variables and they have to be equal. This
leads to
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ΔR− = ER2
− − 2M−R− + E2 +

∞∑

n=3

1

(n − 1)(n − 2)

B̃n

Rn−2−
,

Δμ− = −Eμ2
− + E3μ− + E4. (3.98)

Inserting this and (3.96) into the last equation of (3.90) gives, after some algebra,

∞∑

n=3

(
B̃n

Rn−2
−

(
1

n − 2
+ 1

2

)
+ B̃na2μ2−

2Rn−

)

+ (E2 − E4a
2) = Z2Ξ 2

2. (3.99)

If we chose

Ξ 2
2 = 1

Z2

∞∑

n=3

(
B̃

Rn−2
−

(
1

n − 2
+ 1

2

)
+ B̃a2μ2−

2Rn−

)

, (3.100)

the previous equation can be fulfilledwhilemaintaining the condition (E2 − E4a2) =
0, as in the classical case.

In order to determine the remaining constants in ΔR− and Δμ− we will proceed
analogously to Plebánski and Krasiński [12]. First, we set E3 = 0, otherwise one
would obtain a term proportional to μ− = cosϑ , which violates the symmetry with
respect to a reflection on the equatorial plane. To avoid a coordinate singularity at
the poles, we set E = 1. Finally we choose E4 = 1 to get the correct Schwarzschild
metric in the limit a → 0. This leaves us with

ZR− = R2− + a2, Zμ− = a(1 − μ2−),

ΔR− = R2− − 2M−R− + a2 +∑∞
n=3

1
(n−1)(n−2)

B̃n

Rn−2−
,

Δμ− = 1 − μ2−, Z = ZR− − aZμ− = R2− + a2μ2−. (3.101)

With this inserted into (3.88) and, together with μ = cosϑ , we get the σ−-part of
the metric as

g−
00 = −

R2− − 2M−R− + a2 cos2 ϑ− +∑∞
n=3

1
(n−1)(n−2)

B̃n

Rn−2−

R2− + a2 cos2 ϑ−

g−
11 = R2− + a2 cos2 ϑ−

R2− − 2M−R− + a2 +∑∞
n=3

1
(n−1)(n−2)

B̃n

Rn−2−

g−
22 = R2

− + a2 cos2 ϑ−

g−
33 = (R2

− + a2) sin2 ϑ− +
a2 sin4 ϑ−

(
2M−R− −∑∞

n=3
1

(n−1)(n−2)
B̃n

Rn−2−

)

R2− + a2 cos2 ϑ−
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g−
03 =

−a sin2 ϑ− 2M−R− + a
∑∞

n=3
1

(n−1)(n−2)
B̃n

Rn−2−
sin2 ϑ−

R2− + a2 cos2 ϑ−
. (3.102)

Note, that in spite of all assumptions made, (3.102) represents a new Kerr solution
also in standard GR with a special Tμ

ν tensor.
The σ+-component matches the classical Kerr solution. Finally, projecting the

pc-metric on its real part, as described in the pc-Schwarzschild case and in the
introductory chapter on pc-GR, yields the metric

gRe
00 = −r2 − 2mr + a2 cos2 ϑ +∑∞

n=3
1

(n−1)(n−2)
B̃n

2rn−2

r2 + a2 cos2 ϑ

gRe
11 = r2 + a2 cos2 ϑ

r2 − 2mr + a2 +∑∞
n=3

1
(n−1)(n−2)

B̃n
2rn−2

gRe
22 = r2 + a2 cos2 ϑ

gRe
33 = (r2 + a2) sin2 ϑ +

a2 sin4 ϑ
(
2mr −∑∞

n=3
1

(n−1)(n−2)
B̃n

2rn−2

)

r2 + a2 cos2 ϑ

gRe
03 = −a sin2 ϑ 2mr + a

∑∞
n=3

1
(n−1)(n−2)

B̃n
2rn−2 sin2 ϑ

r2 + a2 cos2 ϑ
. (3.103)

In what follows, we only consider the case n = 3, i.e., the metric

gRe
00 = −r2 − 2mr + a2 cos2 ϑ + B

2r

r2 + a2 cos2 ϑ

gRe
11 = r2 + a2 cos2 ϑ

r2 − 2mr + a2 + B
2r

gRe
22 = −r2 + a2 cos2 ϑ

gRe
33 = (r2 + a2) sin2 ϑ + a2 sin4 ϑ

(
2mr − B

2r

)

r2 + a2 cos2 ϑ

gRe
03 = −a sin2 ϑ 2mr + a B

2r sin
2 ϑ

r2 + a2 cos2 ϑ
. (3.104)

Because (3.104) represents the pseudo-complex equivalent to the Kerr solution,
it is important to ask whether one can still identify the parameter a with the angular
momentum J . To do so, we follow Adler et al. [1] and expand the line element given
by (3.104) linear in a
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ds2 = −
(
1 − 2m

r
+ B

2r3

)
dt2 + 1

1 − 2m
r + B

2r3
dr2 − r2dϑ2 − r2 sin2 ϑdϕ2

+2a sin2 ϑ

(
−2m

r
+ B

2r3

)
dϕdt. (3.105)

This expansion represents the limit of a slowly rotating body. Next we expand
(3.105) linear in 1

r , which is the limit for large distances. The line element takes the
form

ds2 = −
(
1 − 2m

r

)
dt2 +

(
1 + 2m

r

)
dr2 + r2dϑ2 − r2 sin2 ϑdϕ2

+2a sin2 ϑ
2m

r
dϕdt. (3.106)

In what follows, we will focus on the term proportional to dϕdt .

+ 2a sin2 ϑ
2m

r
dϕdt. (3.107)

A comparison of this term with the metric far from a stationary rotating source
shows that the parameter m denotes the mass and a is proportional to the intrinsic
angular momentum [9]

ds2 = −
(
1 − 2m

ρ

)
dt2 +

(
1 + 2m

ρ

) [
dρ2 + ρ2

(
dϑ2 + sin2 ϑdϕ2

)]

+4κJ

c3ρ
sin2 ϑdϕdt. (3.108)

Note, that for large distances the two radial variables r and ρ (isotropic coordi-
nates, used by Lense and Thirring) coincide. This finally yields the same connection
between a and the angular momentum J as in the classical case

a = κJ

mc3
. (3.109)

Obviously, the parameter a can still be identified with the angular momentum of
the source.

The classicalKerr solution has particular hypersurfaceswhich are of great physical
interest. One of these is the same as in the classical Schwarzschild solution: In the
orbital plane the radius of this sphere is at r = 2m, a sphere with infinite red shift.
For corrections in the metric proportional to B

2r3 , the infinite redshift surface and the
singularity at the center vanish forB > (4/3m)3 (see (3.81)).Wewill now investigate
the influence of the additional term proportional to B on the existence of an event
horizon for the Kerr metric.
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As shown in [1] surfaces corresponding to g00 = 0 can be passed in both directions
by an observer (except at the poles), e.g., these surfaces are no event horizons.

The property of a surface to be an event horizon is determined by the norm of its
normal vector nα . Only if it is positive, physical observers can pass in both directions.
A normal vector with negative norm corresponds to a timelike surface. Such surfaces
can only be passed in one direction, which is due to the fact that one can neither go
backward in time nor side wise. For more details, please consult [1, 9].

In what follows, we look for time independent axially symmetric surfaces with a
null normal vector and the surfaces fulfill the condition [1]

u(r, ϑ) = const. (3.110)

Their normal vector is given by

nα =
(
0,

∂u

∂r
,

∂u

∂ϑ
, 0

)
. (3.111)

Setting the norm nαnα = 0 yields the equation

(
r2 − 2mr + a2 + B

2r

)(
∂u

∂r

)2

+
(

∂u

∂ϑ

)2

= 0, (3.112)

which can be solved by a product ansatz u = R(r)Θ(ϑ)

−
(

r2 − 2mr + a2 + B

2r

)( ∂R
∂r

R

)2

=
(

∂Θ
∂ϑ

Θ

)2

. (3.113)

Both sides of this equation depend on different variables and thus have to be
constant. In analogy to [1] we will call that constant λ which then gives

Θ = Ae
√

λϑ . (3.114)

This expression however is not periodic in ϑ and therefore can’t describe a surface
except for the case where λ = 0, for which Θ = const. The remaining equation for
R is

(
r2 − 2mr + a2 + B

2r

)( ∂R
∂r

R

)2

= 0. (3.115)

Excluding the trivial case ∂R
∂r = 0 we are left with the solution of

(
r2 − 2mr + a2 + B

2r

)
= 0. (3.116)
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Possible physical solutions for r are given by positive real roots of the cubic
polynomial

p(r) = r3 − 2mr2 + a2r + B

2
. (3.117)

Since the derivative
p′(r) = 3r2 − 4mr + a2 (3.118)

is positive for all r ≤ 0, from p(0) = B/2 > 0 and limr→−∞ p(r) = −∞ it follows
that p(r) has always exactly one negative real root, which is not relevant in our case.
Depending on the parameters a2 and B there may be two more real roots, which
have to be positive numbers and represent possible solutions of (3.116). This cubic
function has three distinct real roots if it has a positive discriminant [17]. For p(r)

the parameter dependent discriminant D(a2, B) reads

D(a2, B) = 1

27

(

4
(
4m2 − 3a2

)3 −
(
18ma2 − 16m3 + 27

2
B

)2
)

. (3.119)

It is easy to see that a first condition for D(a2, B) > 0 is already satisfied by
a2 < (4/3)m2. Rewriting the condition D(a2, B) > 0, using the parametrization
a2 = ε(4/3)m2, with ε ∈ [0, 1], one obtains

4
(
4(1 − ε)m2

)3
>

[
8m3(3ε − 2) + 27

2
B

]2
. (3.120)

Now, we determine the maximal parameter value B∗ for which this condition is
satisfied. The left hand term decreases monotonically with increasing ε, whereas
the right hand term increases monotonically as long as the term in the bracket is
positive. If for some ε and B the condition is met with a negative term in the bracket
on the right hand side, we can choose a larger B such that this term is positive and
the condition is still fulfilled. It follows that the maximum value B∗ satisfying the
condition (3.120) is obtained for ε = 0, or equivalently a = 0. In this case (3.120)
reads

4
(
4m2

)3 = (
16m3

)2
>

(
27

2
B − 16m3

)2

, (3.121)

which yields B∗ = (4/3)3m3. This value corresponds to the limiting case for the
Schwarzschild solution including corrections proportional to B

2r3 . We conclude that
also for a > 0, for B > B∗ there are no positive real roots of (3.116) and, therefore,
just as in the Schwarzschild case the modified Kerr solution shows no event horizons.
Note that there are no surfaces of infinite redshift as g00 = 0 is contained in our
discussion of (3.116) because a2 and a2 cos2 ϑ have the same range of values.
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The numerical studies of specific cases, like the massive object in the Sgr-A*,
in the center of our galaxy, will be presented in Chap.5 on possible experimental
verification of our theory.

3.4 The pc-Reissner-Nordström Solution

In standard GR, the Reissner-Nordström solution corresponds to a charged central
mass [18]. Here, we proceed in complete analogy to [1, 9]. The only difference is
the additional contribution due to the dark energy-momentum tensor. If the reader is
only interested in the standard GR result, he just has to set in each step the B = bm3

to zero. More details can be found in [19], besides in [1, 9].
Since we consider a central, charged mass at rest, the spherical symmetry is con-

served and the line element squared has the same structure as in the pc-Schwarzschild
case. Furthermore, we can adopt the Einstein equation after adding the energy-
momentum tensor for the electromagnetic field using the same notation for Ξμ as in
the section on the Schwarzschild solution (see (3.33)). Hence, the Einstein equation
reads

R ν
μ − 1

2
g ν

μ R = (
ΞRN

) ν

μ
σ− + 8πκ

c2
(
Tem

) ν

μ

= (
ΞRN

) ν

μ
σ− + 8πκ

c2
(
Tem

) ν

μ
(σ+ + σ−)

= 8πκ

c2
(
Tem

) ν

μ
σ+ +

((
ΞRN

) ν

μ
+ 8πκ

c2
(
Tem

) ν

μ

)
σ−

= (
Ξ+RN

) ν

μ
σ+ + (

Ξ−RN
) ν

μ
σ−, (3.122)

where (Tem) ν
μ is given by [1]

(
Tem

) ν

μ
= ε2

2c2R4

⎛

⎜⎜
⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ (3.123)

and ε depends on the charge Q in the following way

ε = Q

4πε0
. (3.124)

In standard GR, instead of R the r , the real part of R appears. In (3.122) we
used that (σ+ + σ−) = 1 and wrote the right hand side in terms of the zero divisor
components. Finally the Ξ±ν RN

μ functions where introduced in order to obtain a
symmetric expression. For both zero divisor components the equation appear now

http://dx.doi.org/10.1007/978-3-319-25061-8_5
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very similar and a solution can be obtained in complete analogy to the σ− component
in the Schwarzschild case!

There is, however, an important difference: The energy momentum tensor of
the electro-magnetic contribution (3.123) corresponds to an anisotropic “electro-
magnetic fluid”, because the T ν em

33 = T ν em
22 ∼ pem

ϑ tangential component is the neg-
ative of the T ν em

11 ∼ pem
r radial component. Because the T ν em

00 is the same as the
T ν em
11 , the density is equal to the radial pressure. The main point is that the combined

electro-magnetic and dark energy tensors describe an anisotropic fluid.
The ξRN

μ can be defined such that a relation in complete analogy to (3.30)- In the
Schwarzschild case, keeps valid, i.e.

− 1

4
e−λRN−ξRN

0 + 1

4
e−λRN−ξRN

1 + ξRN
2

R2−
= ΞRN

0

1

4
e−λRN−ξ0 − 1

4
e−λRN−ξ1 + ξRN

2

R2−
= ΞRN

1

1

4
e−λRN−

(
ξRN
0 + ξRN

1

) = ΞRN
2 . (3.125)

We shall now solve these equations:
As in the previous chapter the σ+ component does not differ from the usual GR

field equations, which can be obtained in the same way as done in [1]. Thus we only
have to solve for the σ− component. As further above, we take into account, that
the energy-momentum tensor of the electromagnetic contribution, T ν em

μ , is real, i.e.,
T ν em

μ = T ν em
μ (σ− + σ+). Thus the σ+ component is the same as the σ− component.

In addition the definition of the Riemann scalar is used, namely

R = R μ
μ = R 0

0 + R 1
1 + R 2

2 + R 3
3 . (3.126)

Inwhat follows, we restrict, as in the pc-Schwarzschild case, to the σ− component:
With (3.126) and gν

μ = δν
μ, the Einstein equations (3.122) for the σ− component are

1

2

(
R0

−0 − R1
−1 − R2

−2 − R3
−3

) = ΞRN
0 + 8πκ

c2 (Tem)00

1

2

(
R1

−1 − R0
−0 − R2

−2 − R3
−3

) = ΞRN
1 + 8πκ

c2 (Tem)11

1

2

(
R2

−2 − R0
−0 − R1

−1 − R3
−3

) = ΞRN
2 + 8πκ

c2 (Tem)22

1

2

(
R3

−3 − R0
−0 − R1

−1 − R2
−2

) = ΞRN
3 + 8πκ

c2 (Tem)33 . (3.127)

Taking the difference between the third and the fourth equation in (3.127) (see
Exercise 3.7) yields
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R2
−2 − R3

−3 = ΞRN
2 − ΞRN

3 + 8πκ

c2

((
Tem

)2
2 − (

Tem
)3
3

)
(3.128)

and since the spherical symmetry and (3.123) demand
R2−2 − R3−3 = 8πκ

c2
(
(Tem)22 − (Tem)33

) = 0 , we obtain

ΞRN
2 = ΞRN

3 . (3.129)

The difference of the first and second equation in (3.127) leads to (see Exer-
cise 3.7).

λ′
RN− + ν ′

RN− = R−eλRN−
(
ΞRN

1 − ΞRN
0

) = R−
2

(
ξRN
0 − ξRN

1

)
. (3.130)

After differentiation we get

ν ′′
RN− = −λ′′

RN− + 1
2

(
ξRN
0 − ξRN

1

)+ R−
2 (ξRN ′

0 − ξRN ′
1 ), (3.131)

which is similar to (3.47).
Adding two times the second equation of (3.127) to the last difference of the first

and second equation in (3.127), finally multiplying with eλRN− yields

ν ′′
RN− − λ′

RN−ν ′
RN−

2
+ ν ′2

RN−
2

− 2λ′
RN−

R−
= ξRN

1 + 2A

R4−
eλRN− , (3.132)

where we used the abbreviation (see (3.124) for the definition of ε)

A := +4πκε2

c4
. (3.133)

Exercise 3.7 (Equations (3.130)–(3.132))

Problem. Proof (3.130)–(3.132).

Solution.
In order to verify (3.130), we subtract the second equation in (3.127) from

the first one, giving

(
R0

−0 − R1
−1

) = ΞRN
0 − ΞRN

1 . (3.134)

The contribution of the electromagnetic tensor cancels, using (3.123).
The left hand side of this equation can be rewritten:
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R0
−0 − R1

−1 = g00R−
00 − g11R−

11

= −e−ν−R−
00 − e−λ−R−

11 (3.135)

Using (3.26), which expresses the diagonal components of the Ricci tensor
to the ξμ functions for the pc-Schwarzschild case (as stated above, we can use
the same steps) yields

−e−ν−
(
1

2

)
eν−−λ−ξRN

0 + 1

2
e−λ−ξRN

1 = −1

2
e−λ−

(
ξRN
0 − ξRN

1

)
, (3.136)

where the index RN refers now to the Reissner-Nordstöm case and the minus
index have been added in order to stress the fact that we consider the σ−
component.

Using (3.33) finally leads to

ΞRN
0 − ΞRN

1 . (3.137)

This gives the right hand side of (3.134).
The left hand side of (3.134) in terms of the ν− and λ− functions is obtained,

using (3.35), giving

− (
e−ν−R−

00 + e−λ−R−
11

) = −e−λ−

R−

(
λ′

− + ν ′
−
)
. (3.138)

After multiplying by −R−eλ− and together with (3.137) this yields (3.130).
In order to verify (3.132) we multiply the third equation in (3.127) by two

and add the difference of first and second equation, which we have calculated
in the previous steps of this exercise. This gives

(
R2

−2 − R0
−0 − R1

−1 − R3
−3

)+ (
R0

−0 − R1
−1

)

= R2
−2 − 2R1

−1 − R3
−3

= g22R−
22 − 2g11R−

11 + g33R−
33

= 1

R2
R−

22 − 2e−λ−R−
11 + 1

R2sin2ϑ
R−

33. (3.139)

Using (3.35) gives finally

e−λ−

[

ν ′′
− +

(
ν ′−
)2

2
− λ′−ν ′−

2
− 2λ′−

R

]

. (3.140)

For the left hand side, using (3.26), we have
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1

R2
R−

22 − 2e−λ−R−
11 + 1

R2sin2ϑ
R−

33

= − 1

R2
ξRN
2 + 2e−λ− 1

2
ξRN
1 + 1

R2sin2ϑ
ξRN
2 sin2ϑ

= −1

2
eλ−

(
ξRN
0 − ξRN

1

)+
(
2ΞRN

2 + 16πκ

c2
Tem 2
2

)
. (3.141)

Using for ΞRN
2 (3.30) leads to

− e−λ−

2

(
ξRN
0 − ξRN

1

)+ e−λ−

2

(
ξRN
0 + ξRN

1

)+ 16πκ

c2
T 2
2 . (3.142)

Multiplying (3.140) and (3.142) with eλ− and setting them equal, gives (3.132).

After including (3.130), the sum of the equations for the index 0 and 1 in (3.127)
leads to

(
R−e−λRN−

)′ = 1 + ξRN
2 − 1

4
R2

−e−λRN−
(
ξRN
0 − ξRN

1

)− A

R2−
,

(3.143)

which gives after an integration

e−λRN− = 1 − 2M−
R−

+ 1

R−

∫
ξRN
2 dR−

− 1

4R−

∫
e−λRN−R2

−
(
ξRN
0 − ξRN

1

)
dR− + A

R2−
.

(3.144)

With this, an equivalent equation is obtained as in (3.52) in complete analogy,
using exactly the same steps.

eλRN−
R− ξRN ′

2 − ξRN
1

=
− 1

4R−
(
ξRN ′
0 − ξRN ′

1

)+ 1
2λ

RN ′− R−
(
ξRN
0 − ξRN

1

)− 1
8R2−

(
ξRN
0 − ξRN

1

)2
.

(3.145)

This differential equation relates ξRN
0 , ξRN

1 and ξRN
2 and can further be rewritten

into a TOV equation (see (3.53)). This is not needed here, thus we limit ourself to
(3.145).

Using (3.130) and (3.144) we can calculate the g−
00-component of the metric

g−
00 = −eνRN− = −e−λRN−e

1
2

∫
R−(ξRN

0 −ξRN
1 )dR− . (3.146)
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Within the ideal fluid ansatz the metric terms can be written in the form

g−
11 =

(
1 − 2M−

R−
+ 2mRN

de (R−)

R−
+ A

R2−

)−1

(3.147)

g−
00 = −

(
1 − 2M−

R−
+ 2mRN

de (R−)

R−
+ A

R2−

)
e fA− , (3.148)

where, equivalent to (3.73), the function fA− = 1
2

∫
R−

(
ξRN
0 − ξRN

1

)
dR− has still to

be determined. The function fA− can be set to zero if an anisotropic fluid is assumed.
This was shown in the pc-Schwarzschild case. There it also was shown that the
integrand of f is proportional to

( pr

c2 + ρ
)
and using the equation of state pr

c2 = −ρ,
this integrand vanishes and e f = e0 = 1. In the pc-Reissner-Nordström case, this
assumption for the dark energy part can also be done.

We are now able to determine the real metric: We use the same notations as in the
Schwarzschild case and additionally define ( fA)+ =0 (remember that we introduced
this definition in order to have the same functional form of the metric tensor in both
σ -components) and fA = ( fA)+ σ+ + ( fA)− σ−. Defining

ΩRN = Ω+σ+ + Ω−σ− = B

R2−
σ−, (3.149)

the complete pseudo-complex metric is given by

(
gμν

)

=

⎛

⎜⎜
⎝

− (
1 − 2M

R + ΩRN
R + A

R2

)
e fA 0 0 0

0
(
1 − 2M

R + ΩRN
R + A

R2

)−1
0 0

0 0 R2 0
0 0 0 R2sin2ϑ

⎞

⎟⎟
⎠

(3.150)

and the projected metric is given by

⎛

⎜⎜
⎜⎜
⎝

−
(
1 − 2m

r + ΩRN−
2r + A

r2

)
e

fA−
2 0 0 0

0
(
1 − 2m

r + ΩRN−
2r + A

r2

)−1
0 0

0 0 r2 0
0 0 0 r2sin2ϑ

⎞

⎟⎟
⎟⎟
⎠

.

(3.151)

As mentioned above, the fA− can be set to zero for an anisotropic ideal fluid. For
an isotropic fluid this is not the case and, therefore, it is kept in the above equations.

With that we obtain the length element squared, which is
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dω2 = −
(
1 − 2m

r
+ ΩRN−

2r
+ A

r2

)
e

fA−
2 (dx0)2

+
(
1 − 2m

r
+ ΩRN−

2r
+ A

r2

)−1

(dr)2 + r2
[
(dϑ)2 + sin2ϑ(dϕ)2

]
.

(3.152)

Thus, both g00 and g11 do not just get a charge dependence added as in GR, but

the correction term is changed as well, due to the appearance of the factor e
fA−
2 .

Furthermore, all terms of g00 are multiplied with a charge dependent factor e
fA−
2 .

In conclusion the metric components of the Reissner-Nordström metric are not
the sum of the respective components of the Schwarzschild metric and the simple
GR charge term anymore. Obviously, we do predict stronger deviations to GR as a
priori expected. Note, that according to (3.133) the A is always positive, so that the
charge prevents the collapse to a singularity, as in standard GR.
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Chapter 4
Pseudo-complex Robertson-Walker Metric

This chapter is mainly concerned with the topic described in [1]. There are, though,
some new additions where novel solutions are presented, e.g. of an oscillating uni-
verse. Also, several corrections and improvements are presented here.

The point of partition is the so-called Cosmological principle. It states that the
distributionofmatter on the large scale can fairly be described to behomogenous.Any
observer at any location in the universe should see the same physics. This principle
implies also that to a good approximation one can define a global, absolute time
coordinate. The fact that on the large scale no detectable deviations for the matter
distribution is observed, lead to the question: Why the matter is homogeneously
distributed? A process must happened during the early epoch of the Big Bang where
all inhomogeneities were eliminated, a process commonly known as the inflation.

Let us first discuss the Robertson-Walker universe, following the steps in
Chap.12.3 of the book of Adler-Bazin-Schiffer [2]. A different signature for the
metric will be used, which is in line with [3]. We shall mainly repeat these steps,
for the sake of completeness, with the difference that the variables are now pseudo-
complex. The reader will note that the formulation is identical to standard GR, with
the difference of the appearance of additional functions due to the modified varia-
tional principle.

In order to proceed, one chooses so called Gaussian coordinates, in which a dis-
tinguished (absolute) time coordinate is used, thus a completely covariant treatment
of the cosmological problem is abandoned [2]. This is the usual price to pay for a
simplified cosmological model.

The pseudo-complex length element in Gaussian coordinates, before imposing
reality, is given by

dω2 = −(d X0)2 + eG(X0,R)
(
d R2 + R2dϑ2 + R2sin2ϑdϕ2

)

= −(d X0)2 + eG(X0,R)dΣ2, (4.1)

© Springer International Publishing Switzerland 2016
P.O. Hess et al., Pseudo-Complex General Relativity,
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where all coordinates are pseudo-complex. G is a function of time X0 and the
radial coordinate R. G can be written as the sum of the functions g(X0) and
f (R), the first one depending solely on time and the second one only on R, i.e.,
G(X0, R) = g(X0) + f (R). To prove this statement, the starting point is the equiv-
alence principle that two observers at two different points observe the same physics.
The only difference may be in the scale the two observers use. Thus the ratio of the
proper distance element at two different space points R1 and R2 must remain fixed
in time:

eG(X0,R1)

eG(X0,R2)
= const in time, (4.2)

i.e., this ratio must be independent of X0. Therefore one must have

G(X0, R1) = G(X0, R2) + F(R1, R2), (4.3)

which yields for (4.2)

eG(X0,R2)+F(R1,R2)

eG(X0,R2)
= eF(R1,R2). (4.4)

If one chooses a fixed value for R2, the G-function has the structure

G(X0, R1) = g(X0) + f (R1). (4.5)

Next, the Christoffel symbols are determined: The equation for the geodesics is
given by

δ

∫ [−(Ẋ0)2 + eG
(
Ṙ2 + R2ϑ̇2 + R2sin2ϑϕ̇2

)]
ds = 0, (4.6)

with s being an affine parameter. Here, we assume that the metric is already known,
having solved the Einstein equations. The equation for the geodesic is then nothing
but a standard variational problem.

After variation, the following equations of motion are obtained (a dot refers to
the derivation with respect to s, the curve parameter, and a prime indicates for the
function g a derivative with respect to X0 while for f it is a derivative with respect
to R).

Ẍ0 + 1
2g′eG

(
Ṙ2 + R2ϑ̇2 + R2sin2ϑϕ̇2

) = 0,

R̈ + 1
2 f ′ Ṙ2 + g′ Ẋ0 Ṙ

− (
1
2 f ′ + 1

R

) (
R2ϑ̇2 + R2sin2ϑϕ̇2

) = 0,

ϑ̈ + 2
(
1
2 f ′ + 1

R

)
Ṙϑ̇ + g′ Ẋ0ϑ̇ − sinϑcosϑϕ̇2 = 0,
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ϕ̈ + 2
(
1
2 f ′ + 1

R

)
Ṙϕ̇ + g′ Ẋ0ϕ̇ + 2ϑ̇ ϕ̇cotϑ = 0. (4.7)

Comparing this with the geodesic equation

Ẍμ +
{

μ

νλ

}
Ẋ ν Ẋλ = 0, (4.8)

yields the non-zero Christoffel symbols:

{
0
11

}
= 1

2
g′eG,

{
0
22

}
= 1

2
g′eG R2,

{
0
33

}
= 1

2
g′eG R2sin2ϑ,

{
1
01

}
= 1

2
g′,

{
1
11

}
= 1

2
f ′,

{
1
22

}
= −R2

(
1

2
f ′ + 1

R

)
,

{
1
33

}
= −R2

(
1

2
f ′ + 1

R

)
sin2ϑ,

{
2
02

}
= 1

2
g′ =

{
3
03

}
,

{
2
12

}
=

(
1

2
f ′ + 1

R

)
=

{
3
13

}
,

{
2
33

}
= −sinϑcosϑ,

{
3
23

}
= cotϑ. (4.9)

All others are either zero or obtained through the use of the symmetries of the
Christoffel symbols.

From the line element the determinant of the metric tensor is found as

ln
√−g = 3

2
g(X0) + 3

2
f (R) + 2lnR + ln|sin|ϑ. (4.10)
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Exercise 4.1 (Equation (4.10))

Problem. Verify (4.10).

Solution.
The length element square is given by (4.1)

dω2 = − (
d X0)2 + eg(X0)+ f (R)

[
(d R)2 + R2 (dϑ)2 + R2sin2ϑ (dϕ)2

]
, (4.11)

from which the metric matrix can be read off:

⎛

⎜
⎜
⎝

−1 0 0 0
0 eg(X0)+ f (R) 0 0
0 0 R2eg(X0)+ f (R) 0
0 0 0 R2eg(X0)+ f (R)sin2ϑ.

⎞

⎟
⎟
⎠ (4.12)

The negative of the determinant’(g) is given by

− g = e3(g(X0)+ f (R))R4sin2ϑ, (4.13)

i.e.,

√−g = e
3
2 (g(X0)+ f (R))R2|sin|ϑ (4.14)

and its logarithm gives (4.10).

Using the Christoffel symbols, as given in (4.9), one finds

{
μ

00

}

|μ
= 0,

{
μ

11

}

|μ
= 1

2
eG

(
g′′ + g′2) + 1

2
f ′′,

{
μ

22

}

|μ
=

[
1

2
eG

(
g′′ + g′2)

−
(
1

2
f ′′ + 1

R
f ′ + 1

R2

)]
R2,

{
μ

33

}

|μ
=

[
1

2
eG

(
g′′ + g′2) ,

−
(
1

2
f ′′ + 1

R
f ′
)]

R2sin2ϑ,

−cos2ϑ. (4.15)
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Exercise 4.2 (Equation (4.15))

Problem. Verify (4.15).

Solution. The left hand side of the first relation in (4.15) is explicitly written,
giving

{
0
00

}

|0
+

{
1
00

}

|1
+

{
2
00

}

|2
+

{
3
00

}

|3
. (4.16)

Using the list of the Christoffel symbols, as given in (4.9), one notes that all
Christoffel symbols appearing in (4.16) are zero, thus the final result is zero.

Now, let us consider the second equation in (4.15): We have

{
0
11

}

|0
+

{
1
11

}

|1
+

{
2
11

}

|2
+

{
3
11

}

|3
. (4.17)

Using (4.9) we obtain with G = g(X0) + f (R)

d

d X0

(
g′

2
eG

)
+ d

d R

(
f ′

2

)
= 1

2

(
g′′ + g′2) eG + 1

2
f ′′. (4.18)

For the third equation in (4.15) we have

{
0
22

}

|0
+

{
1
22

}

|1
+

{
2
22

}

|2
+

{
3
22

}

|3
. (4.19)

Using the Christoffel symbols (4.9), we obtain

d

d X0

(
1

2
g′eG R2

)
− d

d R

(
R2

[
f ′

2
+ 1

R

])
, (4.20)

which leads directly to the third relation in (4.15).
For the last relation in (4.15) analogous steps are applied.

The following relations are also useful

{
μ

0ν

}{
ν

0μ

}
= 3

4
g′2,

{
μ

1ν

}{
ν

1μ

}
= 1

2
eG g′2 + 3

4
f ′2 + 2

R
f ′ + 2

R2
,

{
μ

2ν

}{
ν

2μ

}
=

[
1

2
eG g′2 − 1

2
f ′2 − 2

R
f ′
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− 2

R2
+ 1

R2
cot2ϑ

]
R2,

{
μ

3ν

}{
ν

3μ

}
=

[
1

2
eG g′2 − 1

2
f ′2 − 2

R
f ′ ,

− 2

R2
+ 2

R2
cot2ϑ

]

×R2sin2ϑ. (4.21)

Exercise 4.3 (Equation (4.21))

Problem. Verify (4.21)

Solution. We show the steps applied for the first relation in (4.21). For the
others the steps are in complete analogy.

The left hand side of the first relation in (4.21) is given by

{
0
0ν

}{
ν

00

}

+
{

1
0ν

}{
ν

01

}
+

{
2
0ν

}{
ν

02

}

+
{

3
0ν

}{
ν

03

}
. (4.22)

Thefirst termvanishes, because theChristoffel symbols are zero.What remains
is

{
1
01

}2

+
{

2
02

}2

+
{

3
03

}2

. (4.23)

Using (4.9) this is

g′2

4
+ g′2

4
+ g′2

4
= 3

4
g′2. (4.24)

Analogous for the other relations.
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With this, the non-vanishing components of the Ricci tensor are

R00 = −3

2
g′′ − 3

4
g′2,

R11 = − f ′′ − 1

R
f ′ + eG

(
1

2
g′′ + 3

4
g′2

)
,

R22 = −
[
1

2
f ′′ + 1

4
f ′2 + 3

2R
f ′ − eG

(
1

2
g′′ + 3

4
g′2

)]
R2,

R33 = −
[
1

2
f ′′ + 1

4
f ′2 + 3

2R
f ′ − eG

(
1

2
g′′ + 3

4
g′2

)]

×R2sin2ϑ. (4.25)

All other components are zero.
To obtain the tensor component R μ

ν the expression for the metric tensor and its
inverse are needed:

gμν =

⎛

⎜⎜
⎝

−1 0 0 0
0 eG 0 0
0 0 eG R2 0
0 0 0 eG R2sin2ϑ

⎞

⎟⎟
⎠ (4.26)

and

gμν =

⎛

⎜
⎜
⎝

−1 0 0 0
0 e−G 0 0
0 0 e−G

R2 0
0 0 0 e−G

R2sin2ϑ

⎞

⎟
⎟
⎠ . (4.27)

With this we have (R ν
μ = gνρRμρ)

R 0
0 = 3

2
g′′ + 3

4
g′2,

R1
1 =

(
1

2
g′′ + 3

4
g′2

)
− e−G

(
f ′′ + f ′

R

)
,

R 2
2 = R 3

3 =
(
1

2
g′′ + 3

4
g′2

)

−e−G

(
1

2
f ′′ + 1

4
f ′2 + 3 f ′

2R

)
. (4.28)
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The Riemann curvature scalar is

R = R μ
μ = 3

(
g′′ + g′2) − 2e−G

(
f ′′ + f ′2

4
+ 2

R
f ′
)

(4.29)

Exercise 4.4 (Equation (4.29))

Problem. Verify (4.29).

Solution. The Riemann curvature is given by

R = R 0
0 + R 1

1 + R 2
2 + R 3

3

=
(
3

2
g′′ + 3

4
g′2

)

+
((

1

2
g′′ + 3

4
g′2

)
− e−G

(
f ′′ + f ′

R

))
+ 2

[(
1

2
g′′ + 3

4
g′2

)

−e−G

(
1

2
f ′′ + 1

4
f ′2 + 3 f ′

2R

)]
. (4.30)

Joining terms leads to the required relation.

Denoting the energy momentum tensor by T μ
ν and exploiting the above results,

the Einstein equations are

8πκ

c2
T 0
0 + 8πκ

c2
T 0

Λ0 (2σ−) =
[

e−G

(
f ′′ + f ′2

4
+ 2 f ′

R

)
− 3

4
g′2

]
,

8πκ

c2
T 1
1 + 8πκ

c2
T 1

Λ1 (2σ−) =
[

e−G

(
f ′2

4
+ f ′

R

)
− g′′ − 3

4
g′2

]
,

8πκ

c2
T 2
2 + 8πκ

c2
T 2

Λ2 (2σ−) =
[

e−G

(
f ′′

2
+ f ′

2R

)
− g′′ − 3

4
g′2

]
,

8πκ

c2
T 3
3 + 8πκ

c2
T 3

Λ3 (2σ−) =
[

e−G

(
f ′′

2
+ f ′

2R

)
− g′′ − 3

4
g′2

]
,

8πκ

c2
T μ

ν = 0, μ �= ν. (4.31)

The 2 in front of σ− is introduced in order to take into account the mapping to the real
space, in which case the real pseudo-component of σ−, namely 1

2 , is taken. On the left
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hand side the contribution of the dark energy due to the changed variational principle
are added. Intentionally it is written in terms of an energy momentum tensor. The
indexΛ indicates its interpretation as a dark energy. We stress, that within the pc-GR
the appearance of the dark energy term is a consequence of the pc-description!

Exercise 4.5 (Equation (4.31))

Problem. Verify (4.31)

Solution. Again, we show it for the first relation in (4.31):
The Einstein tensor G ν

μ is given by

G ν
μ = R ν

μ − 1

2
g ν

μ R, (4.32)

where g ν
μ = δμν .

For the zero-zero component this gives, using (4.28) and (4.32),

G 0
0 = R 0

0 − 1

2

(
R 0

0 + R 1
1 + R 2

2 + R 3
3

)

= 1

2

(
R 0

0 − R 1
1 − R 2

2 − R 3
3

)

= 1

2

⎧
⎨

⎩

⎛

⎝3

2
g′′ + 3

4
g′2

⎞

⎠

−
(
1

2
g′′ + 3

4
g′2

)
+ e−G

(
f ′′ + f ′

R

)

−2

(
1

2
g′′ + 3

4
g′2

)

+ 2e−G

(
1

2
f ′′ + 1

4
f ′2 + 3 f ′

2R

)}
. (4.33)

Joining terms, leads to the required relation.

In what follows, we will abbreviate for convenience the contribution of the dark
energy by

Ξμ = +2
8πκ

c2
T μ

Λμ (4.34)

(remember that the extra factor of 2 is due to the mapping of 2σ− to its pseudo-real
part, which is 1, and also that no summation over μ is performed in (4.34)). With
this and using the relation between the energy-momentum tensor components in a
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fluid model to the energy density and pressure (see the pc-Schwarzschild solution in
Chap.3), the relation of the pressure and the density to the Ξμ-functions are

− 2εΛ = c2

8πκ
Ξ0

2
pΛk

c2
= c2

8πκ
Ξk, (4.35)

where pk refers to the pressure in the variable xk . This form allows to consider, in
general, anisotropic fluid models.

4.1 Solving the Equations of Motion

Homogeneity of the matter distribution requires that

T 1
1 = T 2

2 = T 3
3 . (4.36)

Because the Ξμ-functions are proportional to the T μ
μ , the same argument can be

used for the Ξ functions, i.e.,

Ξ1 = Ξ2 = Ξ3 . (4.37)

The Ξk (k = 1, 2, 3) are allowed to depend on time or equivalently on the scale a of
the radius of the universe.

Subtracting the second equation of (4.31) from the third one and exploiting the
symmetry (4.36), due to which the left hand side vanishes, we arrive at the equation

f ′′ − 1

2
( f ′)2 − f ′

R
= 0, (4.38)

i.e., the same equation as given in [2]. The solution is also supplied, as proposed
in [2]:

e f = b2

[
1 − ab

4 R2
]2 , (4.39)

with a and b as constants.

http://dx.doi.org/10.1007/978-3-319-25061-8_3
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Exercise 4.6 (Equation (4.39))

Problem. Verify (4.39).

Solution. Equation (4.38) is resolved by

f ′ = αRe
f
2 , (4.40)

where α is one integration constant. That the last equation is a solution can be
verified directly by inserting it into (4.38), using

f ′′ = αe
f
2 + αR

2
f ′e

f
2

= αe
f
2 + α2R2

2
e f

= f ′

R
+ 1

2

(
f ′)2 . (4.41)

We obtain

f ′′ − 1
2

(
f ′)2 − f ′

R

= αe
f
2 + α2 R2

2 e f

−α2 R2

2 e f

−αe
f
2 = 0. (4.42)

Redefining |α|β as 1/a2
0, we obtain

e f = b2

[
1 + k R2

4a2
0

]2 , (4.43)

where k = 0,+1 or−1, corresponding to αβ = 0, negative or positive respec-
tively.

Writing out the length element squared (4.1), we can absorb the constant
β2 into the function eG(X0) and use the constant |α|β = 1

a2
0
[2].
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With the redefinition of the constants α and β, as given in Exercise 4.6, the length
square element takes the form

dω2 = −(d X0)2 + eg(X0) 1
(
1 + k R2

4a2
0

)2 dΣ2. (4.44)

The a0 is a new constant, whose interpretation will be given later. It is exactly of
the same form as in standard GR, with the difference that the coordinates are now
pseudo-complex. This is in distinction to the pseudo-complex Schwarzschild metric
[4], where the differences appear already in the functional form of the metric. The
k acquires the values k = 0, ±1. The function g(X0) is yet undetermined. The k-
values of 0, ±1 can be used to model different universes. As shown in [2], the k = 0
corresponds to a flat universe, which is the observed curvature of our universe [5].
Therefore, the only case which we will consider here is for k = 0.

In what follows, the co-moving pseudo-complex coordinates [2] are used, i.e.,
Ẋ0 = 1 and Ẋ1 = Ẋ2 = Ẋ3 = 0, where the dot refers to the derivative with respect to
the eigentime.

The energy-momentum tensor takes the form

(
T μ

ν

) =

⎛

⎜⎜
⎝

−ε
p
c2

p
c2

p
c2

⎞

⎟⎟
⎠ , (4.45)

for an isotropic fluid. Here, ε is the matter density and p the pressure.
The relevant functions in the length element take the form

eG(X0,R) = a(t)2

a2
0

[
1 + k R2/(4a2

0)
]2 ,

eg(X0) = a(t)2

a2
0

,

e f (R) = 1
[
1 + k R2/(4a2

0)
]2 , (4.46)

which are obtained from the expression of the length square element, with some
redefinitions. a is interpreted as a pseudo-complex scale for the radius of the universe.
In the present epoch we can set a0 = 1.
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Exercise 4.7 (Equation (4.46))

Problem. Verify (4.46).

Solution. The length element squared is given by (see (4.1))

dω2 = −(d X0)2 + eG(X0,R)
(
d R2 + R2dϑ2 + R2sin2ϑdϕ2

)
, (4.47)

with G = g(X0) + f (R).
The third equation in (4.46) was resolved in Exercise 4.6.
The second equation is just a definition of a scale, i.e, it redefines g.
The first equation is due to eG = eg+ f , taking the second and last equation,

for eg and e f respectively, of (4.46).

Let us substitute X0 by its pseudo-real part ct . For example a(X0) will be written
as a(t). The derivative with respect to X0 is converted into a derivation with respect
to t , i.e., da

d(ct) =
1
c

da
dt = a′

c .
In what follows, we will develop models for the universe, which describe how the

radius of the universe evolves with time. The first who have done such an investi-
gation where Friedmann [6] and Lemaitre [7]. Today we know several versions and
extensions of such models, a couple we will present here.

We part from the above equations of motion (4.31). The expressions in the func-
tions f and g and their derivatives can be re-expressed in terms of the variable R
using (4.46). For example f = −2ln

(
1 + k R2/(4a2

0)
)
and g = 2lna − 2lna2

0. This
and their derivatives have to be inserted into (4.31). Using the symmetry conditions of
homogeneity (4.36) and (4.37) and the form of the energy-momentum tensor (4.45),
the equations of motion acquire the form

8πκ

c2
ε = Ξ0σ− +

[
3k

a(t)2
+ 3

c2
a′(t)2

a(t)2

]
,

8πκ

c2
p

c2
= −Ξ1σ− −

[
k

a(t)2
+ a′(t)2

c2a(t)2
+ 2a′′(t)

c2a(t)

]
. (4.48)

Exercise 4.8 (Equation (4.48))

Problem. Verify (4.48).

Solution.
From Exercise 4.6 we know that

f ′′ = f ′

R
+ 1

2

(
f ′)2 , (4.49)
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and from the solution of f = −2ln
(
1 + k R2/(4a2

0)
)
, we also know that

f ′ = −2
2k R

4a2
0

1
(
1 + k R2

4a2
0

)

= −k R

a2
0

1
(
1 + k R2

4a2
0

) . (4.50)

With these ingredients and that g = 2ln(a) − 2ln(a0), we have

(

f ′′ +
(

f ′)2

4
+ 2 f ′

R

)

= 3 f ′
(

f ′

4
+ 1

R

)

g′ = 2
a′

a0
. (4.51)

These are the terms which appear on the right hand side of the first equation
in (4.31). Before substituting (4.51) into (4.31), the first equation in (4.51) will
be simplified further. We get, using (4.50)

f ′

4
+ 1

R
= − k R

4a2
0

1
(
1 + k R2

4a2
0

) + 1

R

=
− k R2

4a2
0

+ 1 + k R2

4a2
0

R
(
1 + k R2

4a2
0

)

→
3 f ′

(
f ′

4
+ 1

R

)
= −3k R

a2
0

1

R
(
1 + k R2

4a2
0

)

= −3k

a2

a2

a2
0

1
(
1 + k R2

4a2
0

)

= −3k

a2
eG, (4.52)

having used in the last step that eG = eg+ f .
With all this, the right hand side in the first equation of (4.31) is given by
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e−G

(

f ′′ +
(

f ′)2

4
+ 2 f ′

R

)

− 3

4

(
g′)2

= e−GeG

(
−3k

a2

)
− 3

4
4

(
a′)2

a2
0

= −
[
3k

a2
+ 3

(
a′)2

a2

]

. (4.53)

Using also (4.35), the left hand side of the first equation in (4.31) is

− 8πκ

c2
ε + Ξ0. (4.54)

Combining both sides gives the first equation in (4.48). For the second
equation in (4.48) the steps are analogous.

In deriving (4.54) the first Friedmann equation, given in (4.50), was used
too. This equation was substituted into (4.51), which finally leads to (4.54).

Mapping to the pseudo-real part, σ− is substituted by 1
2 and from (4.48) one

obtains

8πκ

c2
ε = Ξ0

2
+

[
3k

ar (t)2
+ 3

c2
a′

r (t)
2

ar (t)2

]
,

8πκ

c2
p

c2
= −Ξ1

2
−

[
k

ar (t)2
+ a′

r (t)
2

c2ar (t)2
+ 2a′′

r (t)

c2ar (t)

]
. (4.55)

Note that we can rewrite this equation as

8πκ

c2
(ε + εΛ) =

[
3k

ar (t)2
+ 3

c2
a′

r (t)
2

ar (t)2

]
,

8πκ

c2

( p

c2
+ pΛ

c2

)
= −

[
k

ar (t)2
+ a′

r (t)
2

c2ar (t)2
+ 2a′′

r (t)

c2ar (t)

]
, (4.56)

where (4.35) has been used.
After projection, the pseudo-complex approach in the limit taken here is thus

equivalent to the classical case with an additional energy-momentum tensor with
energy density εΛ and pressure pΛ, which can be interpreted as a dark energy.

In the next couple of pages we search for an approximate relation between pΛ

c2 and
εΛ, in order to estimate later an improved solution: The Hubble constant is defined
as

a′
r

ar
= H with H′ � 1, (4.57)
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where the prime refers to the derivative with respect to time. Because a = ar + laI ,
aI being the pseudo-imaginary component of a, and l is the length parameter of the
theory, which is extremely small (see (I)), one also assumes that a ≈ ar and, because
aI = 1

2 (a+ − a−), we can set a± ≈ ar . Using this and assuming H ′ � 1 we can

approximately write, assuming a nearly constant H = a′
r

ar
,

a′′
r

ar
= a′′

r

a′
r

a′
r

ar
= (lnar

′)′
a′

r

ar
= [ln(Har )]

′ a′
r

ar

= [lnH + lnar ]
′ a′

r

ar

≈
(

a′
r

ar

)2

= H 2. (4.58)

With that, utilizing (4.56) and k = 0 and neglecting the contributions of ε and
p/c2 (for dust, p = 0 and the density is usually small), we can write the Ξ0 and Ξ1

approximately as

− 8πκ

c2
εΛ = − 3

c2
H2

8πκ

c2
pΛ

c2
≈ − 3

c2
H2

→ pΛ

c2
≈ − εΛ. (4.59)

Further below we will see that this exactly corresponds to the case of a cosmo-
logical constant not changing with the redshift. Knowing that H is changing in time,
implies that theremust be a dependence on the radius of the universe, i.e., the redshift
z. For that we have to solve the equation of motion exactly. As we will see further
below, it is not easy to get a relation between pΛ and εΛ but rather the use of a
parametrization is appropriate.

Let us now continue to solve the pc-RW model:
Let us take first the first equation of (4.56) plus three times the second equation of

(4.56) and then let us take the first equation of (4.48) plus the second one, dividing
by a global 2 and using the projection σ− → 1

2 . This leads to two equations

4πκ

c2

(
ε + 3p

c2

)
= −4πκ

c2

(
εΛ + 3pΛ

c2

)
− 3a′′

r

c2ar
(4.60)

4πκ

c2

(
ε + p

c2

)
= −4πκ

c2

(
εΛ + pΛ

c2

)
+ k

a2
r

+ a′2
r − ar a′′

r

c2a2
r

.

(4.61)
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The following equation is also useful

ar a′′
r − a′2

r

c2a2
r

= d

dt

(
a′

r

c2ar

)
, (4.62)

which can be verified directly. With this, we arrive for the second equation
in (4.61) at

d

dt

(
a′

r

c2ar

)
= k

a2
r

− 4πκ

c2

[(
ε + p

c2

)
+

(
εΛ + pΛ

c2

)]
. (4.63)

Differentiation of the first equation in (4.48) with respect to time gives

8πκ

c2
d (ε + εΛ)

dt
= −6k

a3
r

a′
r + 6a′

r

ar

d

dt

(
1

c2
a′

r

ar

)
. (4.64)

Substituting (4.63) into (4.64) and multiplying the result by c2

8πκ
a3

r , yields

a3
r

d (ε + εΛ)

dt
= −3a2

r a′
r

[
(ε + p

c2
) + (εΛ + pΛ

c2
)
]
. (4.65)

Note that 3a2
r a′

r = da3
r

dt . Shifting the last term of this equation to the left hand side
leads to

d

dt

(
εa3

r

) + p

c2
da3

r

dt
= − d

dt

(
εΛa3

r

) − pΛ

c2
da3

r

dt
. (4.66)

Exercise 4.9 (Equation (4.66))

Problem. Verify (4.66).

Solution. Shifting the last term on the right hand side in (4.65) to the left hand
side of the equation gives

a3
r

dε

dt
+ 3a2

r a′
r

(
ε + p

c2

)
=

[
a3

r

dε

dt
+ da3

dt
ε

]
+ d R3

r

dt

( p

c2

)

= d

dt

(
εa3

r

) + d R3
r

dt

( p

c2

)
. (4.67)

We have used da3
r

dt = 3a2
r a′

r .
For the terms remaining on the right hand side of (4.64) we apply the same

rule and obtain (4.66).
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Identifying the mass within a given volume of the universe by M = εV , with
V = a3

r as a given volume, the last equation can be written as

d M

dt
+ p

c2
dV

dt
= −dεΛV

dt
− pΛ

c2
dV

dt
. (4.68)

This is a local energy balance! In order to maintain local energy conservation sepa-
rately for the baryonic mass (left hand side of the equation) and for the dark energy
(right hand side of the equation), we have to require that the right and left hand side
have to be zero independently. This reflects the assumption that dark energy and
mass do not exchange energy. This leaves us with the condition

− dεΛ

dt
= d(lna3

r )

dt

( pΛ

c2
+ εΛ

)
. (4.69)

Any solution for εΛ and pΛ has to fulfill this differential equation. Using pΛ

c2 = −εΛ

leads to dεΛ

dt = 0, or εΛ = Λ = const. I.e., for this case we recover the model with
a cosmological constant not changing with time. This equation is not sufficient to
solve for εΛ and pΛ

c2 ; in fact one condition is missing.
The equation in (4.61) has the usual interpretation when εΛ = pΛ = 0. Then the

left hand side is the sum of two positive quantities, the density and the pressure. The
right hand side of (4.61) is proportional to the acceleration a′′

r of the radius of the
universe, ar , multiplied by (−1). This equation tells us that the acceleration of ar has
to be negative, i.e., we get a decelerated universe. In contrast, in the pseudo-complex
description there is an additional term in pΛ and εΛ present, which might be positive.
Transferring it to the left hand side may give in total a negative function in time, i.e.,
depending of the functional form of εΛ and pΛ

c2 in time, an accelerated phase may
be reproduced or not. Even an oscillating universe can be obtained, choosing an
adequate equation of state, as will be shown further below.

Let us first verify whether we can get also acceleration, i.e., that a′′
r > 0 in

the pseudo-complex version of GR:
Using the left hand side of (4.66) (the right hand side is set to zero as argued

below (4.68)), we obtain, after multiplying with dt ,

a3
r dε + 3a2

r εdar + p

c2
3a2

r dar = 0. (4.70)

Dividing by 3a3
r we obtain

dε

3
+

(
ε + p

c2

) dar

ar
= 0. (4.71)

Finally, dividing by (ε + p
c2 ) yields
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dε

3
(
ε + p

c2
) + dar

ar
= 0. (4.72)

Now we have to make an assumption on the equation of state! This is a delicate
part and the results can change, depending on which equation of state we take. The
equation of state may also depend on different time epochs (as we will use for the
solution of an oscillating universe). The basic assumptions are that i) the distribution
of the mass in the universe can be treated as an ideal gas, dust or radiation, the mass
being equally distributed (because locally there are mass concentrations, as galaxies
and galaxy clusters, the homogeneous assumption is only approximately true). The
equation of state is

p

c2
= αε, (4.73)

where ε is the energy density and α is zero for a model with dust, 2
3 for a classical

ideal gas and 1
3 for a relativistic ideal gas (radiation). For dust, there is no pressure,

i.e. α = 0. For the cases of a classical ideal gas and for radiation (ultra-relativistic
gas) the thermodynamical equation of states have the α = 2

3 and 1
3 respectively [8]

With this, (4.72) can be solved with the solution

ε = ε0a−3(1+α)
r , (4.74)

where the ε0 is a pseudo-complex integration constant, referring to its value at the
present epoch.

When this result is substituted into the first equation of (4.61), solving for a′′
r , one

finds

a′′
r = −4πκ

3

(
3pΛ

c2
+ εΛ

)
ar − 4πκ

3
(1 + 3α)ε0a−(2+3α)

r .

(4.75)

We will also need the relation

dlnV

dt
= 1

V

dV

dt
= 1

a3
r

d

dt
a3

r = 3a′
r

ar

= dlna3
r

dt
. (4.76)

Now we remember our former result that pΛ

c2 has to be approximately equal to
−εΛ (see (4.59)). Due to this we can assume that the following relation also holds
approximately:

pΛ

c2
= −βεΛ, (4.77)
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where β is an additional parameter of the theory, describing the deviation from a
constant Hubble parameter H . In principle, one can also use a power expansion of
pΛ

c2 in terms of εΛ, or a power expansion in ar , which would only introduce more
parameters. The β will later be related to observable quantities, like the Hubble
constant. Equation (4.77) gives us the missing condition, with the prize of having to
introduce an additional parameter.

Using (4.69), we obtain for the differential equation for εΛ

dεΛ

dt
= (β − 1)

d(lna3
r )

dt
εΛ

= d(lna3(β−1)
r )

dt
εΛ, (4.78)

with the solution

εΛ = Λa3(β−1)
r . (4.79)

Equation (4.79) leaves us with the two, yet undetermined, parameters Λ and β.
There are several scenarios:

(i) β = 1: Then εΛ = Λ is constant.
(ii) β �= 0: This will lead (see further below) to decelerated and accelerated systems,

depending on the value of β. Also the acceleration as a function of the radius of
the universe (which can be correlated to time of evolution) depends on β and Λ.

Using (4.77) and (4.79) gives the final form of the equation of motion for the
radius of the universe (see (4.75))

a′′
r = 4πκ

3
(3β − 1)Λa3(β−1)+1

r

−4πκ

3
(1 + 3α)ε0a−3(1+α)+1

r . (4.80)

Exercise 4.10 (Equation (4.80))

Problem. Verify (4.80).

Solution.
We start from (4.75) and substitute εΛ using (4.79). This gives

a′′
r = −4πκ

3

(
3

pΛ

c2
+ εΛ

)
a(3β−2)

r − 4πκ

3
(1 + 3α)ε0a−(2+3α)

r

= 4πκ

3
(3β − 1)εΛa(3β−2)

r − 4πκ

3
(1 + 3α)ε0a−(2+3α)

r . (4.81)
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Substituting εΛ, using the solution (4.79) and rewriting the exponent
− (2 + 3α) of ar in the second term as [− (3 + 3α) + 1], leads to (4.80).

4.2 Some Consequences

When β = 1 (cosmological constant), the sign of the first term in (4.80) is positive
and contributes to the acceleration of the universe. The acceleration increaseswith the
radius of the universe. For a general β, the acceleration is positive, as long as β > 1

3
and it is negative (deceleration) for β < 1

3 . For β = 1
3 no additional acceleration

nor deceleration takes place. The last term in (4.80) is always negative. How the
accelerating term behaves as a function in ar is also determined by β. If the exponent
of ar is positive, the acceleration increases with ar , for β > 2

3 , while it decreases
with ar for β < 2

3 .
Let us now discuss several particular values of β. The Λ is taken as positive [5]

and the equation of state is pΛ

c2 = −εΛ.
We can now rewrite (4.80) by, dividing by

(
4πκ
3

)
ε0, and have, i.e., α = 0:

ã′′
r = a′′

r(
4πκ
3

)
ε0

= Λ(3β − 1) a3(β−1)+1
r − (1 + 3α) a−2

r . (4.82)

In the following, we discuss the case of a dust dominated universe, i.e., α = 0. For
the case of a relativistic ideal gas α = 1

3 , the results show the same characteristics.
We take arbitrarily different values of β, which are chosen such that we have as a
special case the cosmological constant Λ and further possibilities where the dark
energy density varies over time. New solutions will arise, which are not necessarily
present in nature, i.e., β might have a different intermediate value as those presented
in the following examples. The discussion is mainly of conceptual nature. With this
we get for
(a) β = 1: (εΛ = Λ, i.e., the case of a constant dark energy density)

ã′′
r = 2Λar − a−2

r . (4.83)

The universe is accelerated by the first contribution and decelerated by the second
one. For small ar the second term dominates and the universe is decelerated. For
large ar the first term starts to dominate and the universe is from then on accelerated.
The turning point (a′′

r = 0) is at

ar = 1

(2Λ)
1
3

≈ 0.79/Λ
1
3 . (4.84)
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If we set the scale of the radius of the present epoch to a0 = 1, the result implies that
for Λ = 1 acceleration sets in after the universe passed 80% of its radius. This case
corresponds to a constant cosmological function Λ.
(b) β = 4

3 :
Using α = 0 in (4.82) leads to

ã′′
r = 3Λa2

r − a−2
r . (4.85)

In this case, the acceleration increases with the second power in ar , stronger than
only with a cosmological constant. The εΛ function (4.79) is then given by Λar , i.e.,
the dark energy density, increases with the radius of the universe. As a consequence,
repulsion would increase indefinitely, finally breaking all structures, like galaxies,
planetary systems and even atoms, apart. This is known in the literature as the so-
called big rip-off.

The break-even point (a′′
r = 0) is reached for

ar = 1/(3Λ)
1
4 ≈ 0.76

Λ
1
4

. (4.86)

For Λ = 1 the break-even point is reached when the universe is 1/3 of its present
radius, thus, sightly earlier than in case a).
(c) β = 1

2 : Remember that α = 0 (dust dominated universe)! Then, from (4.82) we
get

ã′′
r = 1

2
Λa

− 1
2

r − a−2
r . (4.87)

In this situation, the dark energy density behaves as (use (4.79)) εΛ = Λ

a3/2
r
, i.e., the

density of the dark energy decreases with the radius scale (time) of the universe.
This is really a new solution! The accelerating and the decelerating parts are

decreasing with the size of the universe, but at a different rate. For small ar , the
second term dominates and the universe is decelerated, while for sufficient large ar

the first, accelerating, term dominates and the universe is accelerated! The break-even
point (a′′

r ) is at

ar ≈ 2
2
3 /Λ

2
3 , (4.88)

i.e., forΛ = 1 the universe at this point will be at about 2
2
3 ≈ 1.59 times of its present

radius. ForΛ = 3 the break-even point is at 76% of the radius of the universe, which
is plotted in Fig. 4.1. The universe starts accelerating after having reached ar = 0.76
(units in ar0). However, having reached the radius ar ≈ 1.9, i.e., nearly twice the
actual radius of the universe, it reaches a maximum and after that the acceleration
is decreasing, reaching asymptotically zero. The position of the maximum is well
appreciated in Fig. 4.1 by the horizontal line. Also the slow decrease with larger
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Fig. 4.1 Dependence of the scaled acceleration as a function of ar (solid line), the radius of the
universe, for β = 1

2 . In this figure Λ = 3. The maximum of this function can be deduced from

(4.87), giving amax = (8/Λ)
2
3 = 1.923. The maximum can be barely seen in the figure due to the

extreme slow decrease of the function

radii can be seen. This universe will never collapse but reach an asymptotically
non-accelerating state.

The maximum for the acceleration (4.87) is obtained, setting the derivative of
(4.87) to zero. This gives the equation

− Λ

4a
3
2
r

+ 2

a3
r

= 0. (4.89)

Resolving this equation leads to

amax =
(
8

Λ

) 2
3

. (4.90)

(d) β = 2
3 : Then, from (4.82) we get

ã′′
r = Λ − a−2

r . (4.91)

This is also a new solution. The break-even point is now at

ar ≈ 1/
√

Λ. (4.92)
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Fig. 4.2 Dependence of the scaled acceleration as a function in ar , the radius of the universe, for
β = 2

3 . In this figure, the Λ = 4

This solution is also special in the sense that the asymptotic acceleration of the
universe is constant (a′′

r = Λ). Using (4.79) leads to the dependence εΛ = Λ/ar of
the dark energy density on the radius of the universe, i.e., it also decreases with the
radius scale (time) of the universe. For the case just studied, the acceleration of the
universe versus its radius is depicted in (Fig. 4.2).

In all cases Λ can be fitted to the observation at which stage the net acceleration
did set in, overcoming the deceleration term in (4.82). The new part here is that other
solutions exist than the standard ones:

(i) There is the possibility of a constant asymptotic acceleration.
(ii) In another solution, the expansion of the universe, after its decelerating period,

gets accelerated. The accelerations reach a maximum and vanish asymptotically.
In this case the universe approaches, for large times, an ever expanding, non-
accelerating phase.

(iii) In all cases, the universe is first decelerated and after a so-called break-even point
it starts to accelerate.

(iv) Of course, all standard solutions are obtained (cosmological constant and rip-
off).

In order to calculate numerically observable consequences, we have to know the
exact form of εΛ, which we were unable to deduce from first principles. One pos-
sibility is to use the calculated distribution of dark energy, as for example done in
[9]. An alternative is to use the parametrization given in (4.77). This implies the
use of an additional parameter (β) and is equivalent to known considerations in
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the literature [5]. The acceleration in each solution is a consequence of the Ξk func-
tions. As discussed above, they represent contributions to the energy-momentum
tensor, which can be interpreted as dark energy. This dark energy stems from
modified equations of motion for the universe due to the pseudo-complex for-
mulation of the theory. In the model considered, this dark energy is in general
not a constant but may vary in time, i.e., with the radius of the universe. The
last statement is important for an oscillating universe, as an additional solution.

Dependence of β:

The question is now: Can we say something about the dependence of β on time,
or -equivalently- on the radius scale ar? This will be now investigated:

For that, we start from (4.58), without the approximation in the last line. Applying
the derivative and with H = a′

r
ar
, we get

a′′
r

ar
=

[
H ′

H
+ a′

r

ar

]
a′

r

ar

=
[

H ′

H
+ H

]
H = H ′ + H 2. (4.93)

With this and (4.56) we obtain for pΛ

c2 and εΛ (k = 0)

− 8πκ

c2
pΛ

c2
= 1

c2
H 2 + 2

c2
(
H ′ + H 2

) + 8πκ

c2

( p

c2

)

= 3

c2
H 2 + 2

c2
H ′ + 8πκ

c2

( p

c2

)
,

8πκ

c2
εΛ = 3

c2
H 2 − 8πκ

c2
ε. (4.94)

Exercise 4.11 (Equations (4.93) and (4.94))

Problem. Verify (4.93) and (4.94).

Solution.
We start from (4.58) and use some trivial manipulations:

a′′
r

ar
= [lnH + lnar ]

′ a′
r

ar

=
[

H ′

H
+ a′

r

ar

]
a′

r

ar
, (4.95)

where we have used the properties of the ln-function under derivations.
Using the definition of the Hubble function, i.e., H = a′

r
ar
, we obtain
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[
H ′

H
+ H

]
H = H ′ + H 2. (4.96)

For reproducing (4.94), we part from the second equation in (4.55), setting
k = 0 (which is the condition for a flat universe), resolving for pΛ

c2 We obtain

− 8πκ

c2
pΛ

c2
= 8πκ

c2
p

c2
+

[
a′

r (t)
2

c2ar (t)2
+ 2a′′

r (t)

c2ar (t)

]
(4.97)

Finally, substituting a′
r

ar
by the Hubble function H and a′′

r
ar
by the above equation

in terms of H and its derivative, leads to the first equation in (4.94).
The same steps for the first equation in (4.55), for ε leads to the second

equation in (4.94).

Parting from (4.94), we get (see Exercise 4.11).

− 3
8πκ

c2
pΛ

c2
= 1

c2
H 2 + 2

c2
(
H ′ + H 2

)

= 3

c2
H 2 + 2

c2
H ′,

3
8πκ

c2
εΛ = 3

c2
H 2. (4.98)

The ratio of pΛ

c2 with εΛ, which is β, gives

p
c2

−εΛ

= β = 1 + 2

3

H ′

H 2
. (4.99)

The consequence of this equation is that β is always different from one and larger
than 1 when H ′ > 0. The relation to the w parameter, as defined in literature by
pΛ

c2 = wεΛ [5], is obtained using (4.99) and pΛ

c2 = −εΛ, i.e. w = −1 and thus
β = −w = +1 (see also below (4.115))!

In conclusion, a measurement of the change of the Hubble constant with time
will lead to a determination of the parameter β as a function of time. Though, the
last considerations clarify the role of β, we are suffering still by the problem that we
have to know the solution of H = a′

r
ar
. This can be done up to now only through the

experimental measurement of the Hubble parameter H .

A model including dust and radiation, k = 0:

Up to now, we did only consider one density component (dust or radiation) and
the pseudo-complex contribution. Realistic models involve both components, as can
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be seen in [5]. Expressing the ratio of the radii ar0 and ar , the present radius of the
universe and the one at a redshift z respectively, in terms of the redshift z itself,
gives [2, 5]

ar0

ar
= (1 + z). (4.100)

We obtain for the square of the ratio of the velocity and of the scale of the
universe [5]

(
a′

r

ar

)2

= H 2 = H 2
0

{
Ωd(1 + z)3 + Ωr (1 + z)4 + ΩΛ f (z)

}
, (4.101)

where the index d refers to the dust part and the index r to the radiation part. We do
not include the contribution due to k �= 0, because we consider a flat universe. The
factor H 2

0 is the square of the present Hubble constant.

Exercise 4.12 (Equation (4.101))

Problem. Verify (4.101).

Solution. In this exercise we will treat two contributions only, namely from a
mass with the equation of state p = αε plus from the dark energy. When more
contributions, like radiation, are present, one has just to repeat the “mass” term
with different values of α and sum up. For example. when dust (α = 0) and
radiation (α = 1

3 ) are considered, one has to sum the expression for dust and
radiation.

Let us start from the first equation in (4.61) and substitute pΛ

c2 by −βεΛ =
−βΛa2(β−1)

r (see (4.77) and (4.79)). We get

4πκ

c2

(
ε + 3p

c2

)
= −4πκ

c2

(
3

pΛ

c2
+ εΛ

)
− 3a′′

r

c2ar

= (3β − 1)
4πκ

c2
εΛ − 3a′′

r

c2ar
. (4.102)

For the second equation in (4.61) we obtain

4πκ

c2

(
ε + p

c2

)
= −4πκ

c2

( pΛ

c2
− εΛ

)
+ 1

c2

(
a′

r

ar

)2

− 1

c2

(
a′′

r

ar

)

= (β − 1)
4πκ

c2
2εΛ + 1

c2

(
a′

r

ar

)2

− 1

c2

(
a′′

r

ar

)
. (4.103)
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Resolving (4.102) for a′′
r

ar
and substituting it into (4.103) leads to

4πκ
c2

(
ε + p

c2
)

= (β − 1) 4πκ
c2 εΛ + 1

c2

(
a′

r
ar

)2 + 4πκ
c2

1
3

(
ε + 3p

c2

)
− (3β − 1) 4πκ

3c2 2εΛ.

(4.104)

Resolving for
(

a′
r

ar

)2
, gives

(
a′

r

ar

)2

= 8πκ

3
ε + 8πκ

3
εΛ. (4.105)

Next, we substitute the solutions for εΛ and ε, obtained earlier:

εΛ = Λa3(β−1)
r ,

ε = ε0a−3(1+α)
r , (4.106)

leading to

(
a′

r

ar

)2

= 8πκ

3
ε0a−3(1+α)

r + 8πκ

3
Λa3(β−1)

r . (4.107)

Using ar,0

ar
= (1 + z) gives finally, where ar,0 is the radius of the universe in

the present,

(
a′

r

ar

)2

= 8πκ

3
ε0a−3(1+α)

r,0 (1 + z)3(1+α) + 8πκ

3
Λa3(β−1)

r,0 (1 + z)3(β−1)

= 8πκ

3

[
ε0a−3(1+α)

r,0 (1 + z)3(1+α) + Λa3(1−β)

r,0 (1 + z)3(β−1)
]
.

(4.108)

Next we introduce

Ω = εk

εcrit
= 8πκ

3H 2
0

εi

with

εcrit = 3H 2
0

8πκ
, (4.109)
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where εcrit is the critical density and εk refers to the different density com-
ponents at the current time, e.g. k = 1 refers to Λ and k = 2 to the matter
component, with a given α. H0 is the current Hubble constant.

With this and defining ε0i = ε0a−3(1+α)
r,0 , εΛ,0 = Λa3(1−β)

r,0

H 2 =
(

a′
r

ar

)
= 8πκ

3

[
ε0i (1 + z)3(1+α) + εΛ,0 (1 + z)3(1−β)

]
. (4.110)

Taking, as an example, the present epoch, the ratio of the velocity and the
present radius is just the Hubble constant. Then, from (4.109) we get

H 2
0 = 8πκ

3

[
ε0 + εΛ,0

] = 8πκ

3
εtot, (4.111)

where εtot is the total density.
Using (4.110) and extracting the total density, leads to

H 2 = H 2
0

[
Ωm (1 + z)3(1+α) + ΩΛ (1 + z)3(1−β)

]
, (4.112)

which is the desired result (4.101). The model just described was first intro-
duced by Friedmann and Lemaitre [6, 7].

A further useful relation is obtained, starting from (4.102) and resolving

for
(

a′′
r

ar

)
. Using the above solutions for the densities and using p = αε, we

obtain
(

a′′
r

ar

)
= 4πκ

3
(3β − 1) Λa3(β−1)

r − 4πκ

3
(1 + 3α) ε0a−3(1+α)

r .(4.113)

Inserting again the dependence on the redshift and the current radius of the
universes and introduce the Ωm and ΩΛ, gives

(
a′′

r

ar

)
= H 2

0

[− (1 + 3α) Ωm (1 + z)3(1+α) + (3β − 1)ΩΛ (1 + z)3(1−β)
]
.

(4.114)

We use our result for the function f (z), as given in Exercise 4.12, namely

f (z) = (1 + z)3(1−β) = (1 + z)3(1+w), (4.115)

where wemade a connection to the notation used in [5]. This again yields the relation
β = −w. Our result states that when the Hubble constant changes in time, there must
be a deviation from β = 1, which corresponds due to β = −w to w = −1, the case
of a cosmological constant, independent of time. The deviation from β = 1 cannot
be large when H ′, the time derivative of the Hubble constant, is small.
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4.3 An Oscillating Universe

In this section we will show that within the pc-GR exists also an oscillating universe
as a possible solution. This leads us to some proposals, which are however not more
speculative than other accepted scenarios for the evolution of the universe. The main
point is that interesting predictions can be made about the future of the universe! As
we will see, a new Weltbild emerges.

The oscillating universe also has a great philosophical advantage: The problem
about the apparent present thermal equilibrium of the universe does not exist, because
after the big crunch the universe stays thermalized due to its thermalization in the
highly compressed phase,which lead to the expansion phase! The question of increas-
ing entropy will be addressed at the end, showing that in relativistic thermodynamics
[10, 11], the model presented indeed satisfies the second law of thermodynamics.

We start from (4.75), use (4.56) and (4.69), set α equal to zero and arrive at

a′′
r

ar
= −4πκ

3

(
3

pΛ

c2
+ εΛ

)
− 4πκ

3

ε0

a3
r

(
a′

r

ar

)2

= −8πκ
pΛ

c2
− 2

a′′
r

ar
,

−dεΛ

dar
= 3

ar

( pΛ

c2
+ εΛ

)
, (4.116)

where we repeat that ar is the scale factor, which is related to the radius of the
universe. Today, its value is 1!

Exercise 4.13 (Equation (4.116))

Problem. Verify the equations in (4.116).

Solution. Let us repeat first in this order (4.75), (4.56) and (4.69) and in addition
k = 0 and α = 0,

a′′
r = −4πκ

3
(3

pΛ

c2
+ εΛ)ar − 4πκ

3
ε0a−2

r ,

8πκ

c2
ε = −8πκ

c2
εΛ +

[
3

c2

(
a′

r (t)

ar (t)

)2
]

,

8πκ

c2
p

c2
= −8πκ

c2
pΛ

c2
−

[(
a′

r (t)

c2ar (t)

)2

+ 2a′′
r (t)

c2ar (t)

]

,

dεΛ

dt
= −d(lna3

r )

dt

( pΛ

c2
+ εΛ

)
. (4.117)
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The last equation in (4.116) is immediately reproduced, using the rules to

derive the logarithm, i.e. dlna3
r

dar
= 3

ar
.

Thefirst equation in (4.116) is obtained, dividing thefirst equation in (4.117)
by ar

a′′
r

ar
= −4πκ

3

(
3

pΛ

c2
+ εΛ

)
− 4πκ

3

ε0

a3
r

. (4.118)

In order to obtain the second equation in (4.116), we start from the third
equation in (4.117), which expresses the pressure in terms of ar , its velocity
and acceleration. In this equation we can set p = 0, because the equation of
state considered is p

c2 = αε and for α = 0 (dust) the pressure is zero. This
leads to, multiplying by c2,

0 = −8πκ
pΛ

c2
−

(
a′

r

ar

)2

− 2

(
a′′

r

ar

)
. (4.119)

Resolving for
(

a′
r

ar

)2
, leads to the second equation in (4.116).

Using (4.35) the following form for pΛ

c2 and εΛ can be used:

− pΛ

c2
= Λ − α̃ar ,

εΛ = Λ − β̃ar . (4.120)

One can also use an an
r dependence, with n being an integer, but we prefer to keep

the discussion as simple as possible and use n = 1. The α̃ and β̃ are extremely small,
such that at the present epoch one can consider εΛ = Λ and pΛ

c2 = −εΛ. This is the
case for constant dark energy.

The ansatz (4.120) for pressure and density is now substituted into the differential
equation (4.116), giving the condition

β̃ = 3
(
α̃ − β̃

)

→
α̃ = 4

3
β̃. (4.121)

With this, we obtain

− pΛ

c2
= Λ − 4

3
β̃ar ,

εΛ = Λ − β̃ar . (4.122)
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For the acceleration (see (4.116)) this is

a′′
r

ar
= 4πκ

3

(
2Λ − 3β̃ar

)
− 4πκ

3

ε0

a3
r

. (4.123)

For small ar (beginning of our universe) one can neglect the β̃-term and we have
the usual model, where the acceleration changes from negative to positive at the

point a0 = (
ε0
2Λ

) 1
3 . For large ar , however, the (4.123) approaches − 4πκ

c2 β̃ar . This
happens for very large ar , considering the β̃ is very small. This situation we call
super-decelerating, because the deceleration increases by a2.

In order to assure that the acceleration passes though an intermediate phase of
positive acceleration (accelerating universe), we consider the function

f (ar ) = 2Λ − 3β̃ar − ε0

a3
r

, (4.124)

which appears in (4.123). Its derivative is

f ′ = −3β̃ + 3ε0
a4

r

= 0

→
amax =

(
ε0

β̃

) 1
4

. (4.125)

This we substitute into (4.124), which gives

f (amax) = 2Λ − 4ε
1
4
0 β̃

3
4 . (4.126)

Requiring that this is positive, implies

β̃ <
Λ

4
3

2
4
3 ε

1
3
0

. (4.127)

Considering that Λ � ε0, this is a very small value.
Nowwe look for the maximum of (4.124) for very large ar . We will do it approx-

imately, because the general equation is of fourth order. For very large ar we can
neglect the term proportional to ε0 and this tells us that the acceleration is again zero
for approximately

ar = a2 ≈ 2

3

(
Λ

β̃

)
. (4.128)

Let us look at the velocity (4.105), applying the Eqs. (4.118), (4.120), we obtain
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(
a′

r

ar

)2

= 8πκ

3

{
Λ − β̃ar + ε0

a3
r

}
. (4.129)

Equation (4.129) is zero for

Λ − β̃ar + ε0

a3
r

= 0, (4.130)

which is a fourth order equation. We solve it for very large a, neglecting the ε0-term:

ar = a3 ≈
(

Λ

β̃

)
, (4.131)

which is larger than a2, were the acceleration turns negative.
In conclusion, the velocity of the expansion is zero at a3, while the acceleration

is negative (deceleration). Thus, a3 represents a turning point and the universe starts
to contract again.

It is interesting to see what the equation of state for the dark energy is, within this
model. For that, we calculate the ratio

pΛ

c2

εΛ

= Λ − 4
3 β̃ar

Λ − β̃ar→
pΛ

c2
= g(ar )εΛ = wεΛ

with g(ar ) = −
(

Λ − 4
3 β̃ar

Λ − β̃ar

)

, (4.132)

which gives a relation of the proportionality factor w in the equation of state to ar .
The function g(ar ) produces an equation of state where for small ar the pressure
is proportional to minus the density. However, at ar = 3Λ

4β̃
this function is zero, i.e.

the pressure is zero, and at a3 (see (4.131)), the point where the expansion of the
universe is reversed, the function approaches infinity, which might be due to the
approximation made. This is a strange equation of state but there is, at the moment,
no experimental evidence that it is wrong!

The main point is that exotic assumptions can be made, where the universe is
oscillating, as exotic as other solutions one can encounter in the literature. The above
consideration refer only to one part of the oscillation, namely the time from the
beginning toward the end. What happens at the birth and at the crush of the universe
can not be deduced. At these points, first the effects of the minimal length have to be
taken into account explicitly and second quantum effects have to be included, which
is out of the scope in the present form of the theory. Thus, no definite prediction of the
fate of the universe can be made! The question is which scenario is more attractive.
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This depends on the philosophical view of each scientist. Of course, the question is
also: Which scenario is real? Up to now, no definite answer can be made.

Next, we determine the history of the pressure and density of the dust, which
serves as a consistency check. In this case, the pressure is given in (4.55), which
depends on the velocity (4.129) and on their acceleration (4.123) (k is set to zero).

Using for pΛ

c2 and εΛ, as given in (4.122), substituting them into (4.56), we obtain
step by step the following expression:

8πκ

c2
p

c2
= 8πκ

c2
p

c2
− 1

c2

(
a′

r

ar

)2

− 2

c2
a′′

r

ar

= −8πκ

c2

(
Λ − 4

3
β̃ar

)
− 1

2c2
8πκ

3

(
Λ − β̃ar + ε0

a3
r

)

− 2

c2

(
−4πκ

c2

)[
3

(
Λ − 4

3
β̃ar

)
+

(
Λ − β̃ar

)
+ ε0

a3
r

]

= 0. (4.133)

This results was to be expected, because in the equation of state for the matter we
did set α = 0.

Using the same previous steps and equations, we obtain for the density

8πκ

c2
ε = 8πκ

c2
εΛ + 3

c2

(
a′

r

ar

)2

= 8πκ

c2

(
Λ − β̃ar

)
+ 3

c2
8πκ

3

(
Λ − β̃ar + ε0

a3
r

)

−8πκ

c2
ε0

a3
r

. (4.134)

This result is to be expected because it is consistent with (4.74).
In the present epoch ar = 1, thus ε = ε0, as it was defined. (4.134) tells us that

in the early epoch the density was very large, with a singularity at ar = 0. This is,
of course, not physical, because quantum effects will set in; these are not considered
here. For increasing ar the density decreases and approaches very small values. In
the above considerations on the dark energy and pressure we have neglected the mass
term for very large ar . In fact, there have to be corrections due to the

ε0
a3

r
-term and εΛ

does not vanish at a3. Thus, the singularity is the result of the approximation. This
finding is also consistent, if we assume that there is a coupling between the mass and
the dark energy distribution: When the mass density is very small, then also the dark
energy gets very small.
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One may ask, what the explicit time dependence of the radius of the universe is.
For that, we start from (4.129), take the square root and multiply by ar :

a′
r =

√
8πκ

3
ar

√
Λ − β̃ar + ε0

a3
r

. (4.135)

Applying a separation of variables gives the equation

dar

ar

√
Λ − β̃ar + ε0

a3
r

=
√
8πκ

3
dt, (4.136)

which is easily rewritten as

T − Ti =
√

3

8πκ

∫ ar

ari

dar

ar

√
Λ − β̃ar + ε0

a3
r

. (4.137)

The T denotes the time of the present epoch, Ti when the integration starts in the
past (for example Ti = 0), ar is the present radius of the universe while ari its initial
value (for example, when Ti = 0 then ari = 0).

This integral can be put into a more convenient form, namely

T − Ti =
√
6

c

∫ ar

ari

√
ar dar√

Λa3
r − β̃a4

r + 2C
. (4.138)

This is an integral which can only be solved numerically.

4.3.1 The Adiabatic Expansion and Contraction
of the Universe

This subsection serves to give a short resumé on the thermodynamical properties of
the oscillating universe in our theory. An excellent introduction to Thermodynamics
in Special Relativity and General Relativity can be found in [10, 11] and we refer
the reader to it for deeper understanding.

In the work of Friedmann and Tolman [6, 10–12] the possibility of oscillatory
universes were discussed. As shown in [10–12] strictly periodic universes, were the
velocity of expansion at minimal and maximal radius is zero, do not exist and leads
to a contradiction. However, quasi-periodic solutions do exists, where the velocity
towards minimal radius becomes in the theory of Friedmann and Tolman singular
(in our theory this singularity will be avoided due to the appearance of a minimal
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length). The last statement is in accordance to the previous discussion, i.e. in our
model the velocity becomes singular at small values of ar . In [10–12] a relativistic
thermodynamics was developed, showing that in certain models the expansion and
contraction is adiabatic, thus the total number of entropy does not increase, though
it might appear so for a local observer. The reason is that there is a contribution of
the metric, due to the expansion (contraction) of the universe, which compensates
apparent increases of the entropy.

The detailed reason is as follows: The local change of entropy satisfies the
equation [11]

d

dt
(sδV ) ≥ 0, (4.139)

where s is the entropy density and δV the small volume accessible for the measure-
ments of an observer. In case of an adiabatic change this is equal to zero. Setting δV
constant is equivalent to saying that the entropy in a given volume can only increase
or being constant, the latter for an adiabatic change. This is what is usually observed.
However, as stated by R.C. Tolman, the volume itself depends on the metric! The
above equation can formally be rewritten as

δV
d

dt
s ≥ −s

d

dt
δV . (4.140)

For δV = 0 this is just the classical statement that the entropy can only increase or
stay constant.

Restricting now to our specific model with the length element, as given in (4.1)
with (4.46), the volume element is given by

δV = r2a3
r sinϑδrδϑδϕ, (4.141)

with a3
r = e

3
2 g , as defined in (4.46). The metric contribution is the a3

r factor. Due to
this dependence, the entropy density may increase, compensated by a change in the
metric. In such a universe, the expansion and contraction is adiabatic with no net
change of the entropy!

Let us see if our model does satisfy these assumptions. For that we start from
(4.139), using the equal sign for an adiabatic change, with the volume element given
by (4.140). The only time- (ar -)dependent factor is a3

r . Thus, we can extract the other
factors leading to

d

dt

(
sa3

r

) = 0. (4.142)

The final step is to realize that for an non-interacting gas with an equation of state of
the form p

c2 = αε, the entropy will be proportional to the number of particles, thus
the entropy density is proportional to the mass density (s ∼ ε). The proportionality
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factor depends on numbers and natural constants. Extracting these constant factors
we finally arrive at

d

dt

(
εa3

r

) = 0. (4.143)

This is nothing but (4.66) with the right hand side set to zero and the pressure
p = 0 (dust). This is the model we have discussed above in which, obviously,
Eq. (4.143) is satisfied! Thus, our model presents a universe which expands and
contract adiabatically!

Of course, the model does not take into account the presence of radiation, which
should, according to [10, 12] still lead to an oscillatory universe. The main approx-
imation is the isotropy of the universe, i.e., local variations are excluded, which
finally might -or might not- lead to a net increase of entropy. The main point here
is to state that a universe still may expand and contract adiabatically, i.e. being a
periodic universe, without running into problems with the increase of entropy.

However, because irreversible processes take place locally, the total entropy of
the universe has to increase. This is also discussed in [10, 11] and deduced that
each posterior cycle takes longer. Inversely, each previous cycle takes a shorter time,
such that at one point one reduces the problem again to a beginning of the universe.
A possible alternative is to investigate how so-called irreversible processes, as the
production of elements, can be turned into be reversible, which means that in a final
crush of the universe all elements dissociate again into protons and electrons. We
believe that such a formulation should exist.

A more involved model was published in [13, 14], including matter, radiation and
the contribution of the (phenomenological) dark energy. The latter is described via a
scalar field and an interaction between matter and the scalar field is proposed. Scalar
fields are identified with the dark energy, i.e., the scalar field Lagrangian describes
the dynamics of the dark energy (in our theory we treat it via a classical fluid and
not through a quantum field). This is particular interesting in our case, because we
belief that the microscopic origin probably lies in a coupling of matter with vacuum
fluctuations. Though, the model in [13] does not have necessarily a connection to
string theory, the authors include a discussion of deeper origin where string theory
enters. The final model is the one of two world branes which periodically collide.
In [13] the entropy is also maintained constant, i.e. the expansion and contraction is
adiabatic. Also here, the inclusion of real irreversible processes, like changes in the
chemical composition as argued in [10, 11], are not considered. It is interesting to us
that in [14] the equation of state variable w also is near to −1 in the present epoch,
while for later times it is increasing, as in our theory.

There is a similarity of our theory to these early models, because both include the
dark energy. We did not treat the dark energy as a quantum field but as a classical
fluid. However, the coupling of matter to the dark energy is implicitly included (see
Chap.2 on the general formulation of pc-GR) by letting the dark energy density
approach zero for very dilute mass density and increase for larger mass density.

http://dx.doi.org/10.1007/978-3-319-25061-8_2
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A periodically universe in pc-GR is tremendously interesting: There is never a
beginning of the world and never an end. There is no big bang, only big-bang-like
epochs within the vibrating universe. The question of what is/was before the big
bang is irrelevant. The universe was always there; it always existed! No singularity
is present. Indeed, we have thus created a new Weltbild, quite beautiful!
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Chapter 5
Observational Verifications of pc-GR

In the previous chapters, the pc-solution for a non-rotating dark star (Schwarzschild),
a charged dark star (Reissner-Nordström) and a rotating dark star (Kerr) were dis-
cussed. The theory was applied to the Robertson-Walker model of the universe,
encountering new solutions, like a finite or vanishing acceleration of the Universe
for very large times and an oscillating universe.

It is important to investigate what are the predictions of pc-GR and how they can
be experimentally verified. This is what we address now:

Especially in the last decades a lot of progress has been achieved in radioastron-
omy, working in electromagnetic wave lengths which penetrates easily the dust in
our and other galaxies. At the very beginning of radioastronomy, one of the main
difficulties was the poor angular resolution. This was overcome by the Baseline
Interferometry, where two or more radio dishes are connected by, e.g., coaxial opti-
cal cables, joining the measured signals. In such an array of antennas one has to take
into account the spatial distance to each other and measuring the time differences
between two points as exactly as possible. With this, several radio antennas behave
as one huge antenna, the size of the array.

In the present, one has developed the Very Long Baseline Interferometry (VLBI),
where radio antennas around the whole world are connected. The time is measured,
using local atomic clocks. Antennas in North- and South-America and Asia are
connected through huge distances, forming an effective radio antenna of the size of the
Earth! ALMA (Atacama Large Millimeter/Submillimeter Array [1]) in the Atacama
desert in Chile is one of largest local arrays and has recently started observations.
The angular resolution to be achieved is about 8µas, enough to resolve the supposed
black hole in the center of our galaxy, with about 4 million solar masses, and the
super-massive one in the active galaxy M87. This gives hope to directly observe the
accretion disk around M87.

© Springer International Publishing Switzerland 2016
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The massive object in the center of our galaxy (in Sgr A∗) seems not to have an
accretion disk, which is the reason that it is not active. However, a dense gas cloud
has been detected falling into the aggregation zone of the Galactic Center [2]. The
gas will be attracted by the Galactic Center from the second half of 2013 on and as
the lower limit of the absolute value of the black hole spin is larger than 0.5m. This
will allow for additional tests of theories in the strong field limit.

There is another puzzle: One observes at centers of active galaxies Quasi Periodic
Oscillations (QPO) [3–5]. These are thought to be local emissions in the accretion
disk, moving in an orbit around the central mass. Such QPO’s are also observed in
galactic “black holes” [6–10]. There, the situation is more complicated, due to the
presence of a stellar partner, providing mass to the accretion disk. The advantage of
these so-called galactic black holes is that the frequency and Fe-K lines are observed
simultaneously! If one assumes that the QPO’s are local emissions in the accretion
disk, orbiting around the central mass (as in the center of active galaxies), then this
permits to deduce the distance to the center using the predicted dependence of the
orbital frequency on r . The Fe-K lines permit to deduce the redshift, which is given
in a theory also as a function on the radial distance. In a consistent theory, the r
deduced from the QPO’s frequency and from the redshift have to agree. And there is
the problem: They do not agree! One possible solution is to assume an influence of
the stellar partner on the accretion disk, provoking oscillations within the disk [11].
However, not all astronomers accept this interpretation, but rather assume that the
physics of the accretion disk around large masses at the center of a galaxy is the same
for galactic “black holes”.

As one can see, astronomy has developed in the last decades from an purely obser-
vational science with large errors to an exact science with extremely accurate mea-
surements. This is the reason why we have to calculate observational consequences
of our theory and compare it to the standard GR. In the near future gravitational
theories will be able to be tested in extremely strong gravitational fields. Tests of
GR are numerous for weak gravitational fields [12], i.e. all tests in the solar system
(e.g., perihelion shifts, frame dragging and time measurements (GPS)) or, one of
the best known, the Hulse-Taylor pulsar [13], which gave the first indirect hint to
gravitational waves, but is still in the weak gravitational limit.

This chapter is, therefore, dedicated to make definite predictions of pc-GR and
compare them to standard GR, in very strong gravitational fields. First, the orbital
motion of a particle in a circular orbit is discussed, simulating the motion of a QPO.
Also the redshift is calculated and we show that pc-GR can reconcile the observation
with theory, under the assumption that QPO’s are local emissions moving with the
accretion disk and are not oscillations provoked by a stellar partner. Because the first
observation to be published will be probably a picture of the accretion disk, we also
reconstruct the images of such a disk using the raytracing method [14, 15]. The name
has its origin in the method, where a light ray is traced back from the camera of the
observer to the point of origin. The method will be discussed in more detail in the
corresponding section.
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5.1 Motion of a Particle in a Circular Orbit: Orbital
Frequency and Redshift

The Kerr-metric is the most relevant one, because the probability for high spin for
large masses is great. This is due to the fact that even when the original mass before
collapse has a low rotational frequency, when concentrated in a small volume this
frequency increases.

First, the pc-Kerr metric is resumed. The detailed derivation can be found in
Chap. 3. We have respectively

g00 = −r2 − 2mr + a2 cos2 ϑ + B
2r

r2 + a2 cos2 ϑ
,

g11 = r2 + a2 cos2 ϑ

r2 − 2mr + a2 + B
2r

,

g22 = r2 + a2 cos2 ϑ,

g33 = (r2 + a2) sin2 ϑ + a2 sin4 ϑ
(
2mr − B

2r

)

r2 + a2 cos2 ϑ
,

g03 = −a sin2 ϑ 2mr + a B
2r sin2 ϑ

r2 + a2 cos2 ϑ
, (5.1)

where a is he spin-parameter, describing the spin of the central object (see Chap. 3).
For a = 0 the Kerr metric reduces to the pseudo-complex Schwarzschild solution.

5.1.1 Radial Dependence of the Angular Frequency
and Stable Orbits

Instead of describing explicitly the whole accretion disk, we will for the moment
simulate the motion of one particle within this disk on a circular orbit. Later, the
physics of the accretion disk will be discussed, including the emission of light from
there.

The first observable is the orbital frequency, which can be measured probably in
near future [2]. Flares are already observed at the galactic center black hole candidate
Sgr A* [3, 4].

To determine the angular velocity, one proceeds similar as in [16, 17]. The Lagrange
function is given by

L = g00c2 ṫ2 + g11ṙ2 + g22ϑ̇
2 + g33ϕ̇

2 + 2g03cṫ ϕ̇ = ds2

ds2
= −1, (5.2)

http://dx.doi.org/10.1007/978-3-319-25061-8_3
http://dx.doi.org/10.1007/978-3-319-25061-8_3
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with ṙ = dr
ds and similar for the other variables. The s represents the curve parameter,

where the dot represents d
ds . The variation of L yields the geodesic equations from

which only the radial one is of interest, namely

d

ds
(2g11ṙ) = g′

00c2 ṫ2 + g′
11ṙ2 + g′

22ϑ̇
2 + g′

33ϕ̇
2 + 2g′

03cṫ ϕ̇. (5.3)

The prime denotes the derivative ∂
∂r . For simplicity, the calculations are restricted

to circular orbits in the equatorial plane, i.e. r = r0, ṙ = 0, ϑ = π
2 and ϑ̇ = 0.

Equation (5.3) becomes

0 = g′
00(r0)c

2 ṫ2 + g′
33(r0)ω

2 ṫ2 + 2g′
03(r0)ωcṫ2, (5.4)

where the angular frequency ω = dϕ

dt = ϕ̇

ṫ has been introduced.
The quadratic equation (5.4) has two solutions:

ω± = −c
g′

03

g′
33

± c

√√√√
(
g′

03

)2 − g′
00g′

33

g′2
33

. (5.5)

Inserting the Kerr metric (5.1) yields

ω± = c
−ah(r) ± √

2rh(r)

2r − a2h(r)
= c

√
h(r)

a
√

h(r) ± √
2r

, (5.6)

with

h(r) = 2m

r2
− 3B

2r4
. (5.7)

Exercise 5.1 (Angular frequency)

Problem. Proof (5.6) with (5.7).

Solution. We start from (5.4) and divide it by ṫ2. The resulting equation is

g′
33ω

2 + 2g′
03ωc + g′

00c2

= ω2 + 2 g′
03

g′
33

ωc + g′
00

g′
33

c2 = 0, (5.8)

where in the last step we divided also by g′
33. This is a quadratic equation

whose solution is (5.5).
Now, we insert the Kerr-metric, given in (5.1). We do it in steps, first express-

ing the metric components, which appear in the formula of ω±, in terms of r .
The ϑ is set to π

2 (orbital plane). We have
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g00 = −
(

1 − 2 m

r
+ B

2r3

)
,

g03 = −a

[
2 m

r
− B

2r3

]
,

g33 = (
r2 + a2

)+ a2

(
2 m

r
− B

2r3

)
. (5.9)

The derivatives with respect to r are

g′
00 = −2 m

r2
+ 3B

2r4
= − h(r),

g′
03 = a

[
2 m

r2
− 3B

2r4

]
= ah(r),

g′
33 = 2r − a2

(
2 m

r2
− 3B

2r4

)
= 2r − a2h(r), (5.10)

where also the definition of h(r) is given.
In the square root of (5.5), extracting g2

33 is given by −g33, because g33 is
positive. Substituting this into the solution (5.5), we obtain

ω± = c

[
−ah(r) ±√

a2h2(r) + 2rh(r) − a2h2(r)
]

2r − a2h(r)

= c

[−ah(r) ± √
2rh(r)

]

2r − a2h(r)

= −c

[
ah(r) ∓ √

2rh(r)
]

[
a
√

h(r) + √
2r
] [

−a
√

h(r) + √
2r
]

= ±c
√

h(r)

√
2r ∓ a

√
h(r)

[
a
√

h(r) + √
2r
] [

−a
√

h(r) + √
2r
]

= −c
√

h(r)

[
a
√

h(r) ∓ √
2r
]

[
a
√

h(r) + √
2r
] [

−a
√

h(r) + √
2r
]

= c
√

h(r)
[
a
√

h(r) ± √
2r
] . (5.11)

For h(r) > 0, (5.6) displays two real solutions, one for co-rotation (which orbits
in the same direction as the central body rotates, also called prograde) and one
for counter–rotation (which orbits in the opposite direction as the central object
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rotates, also called retrograde) with respect to the rotating central body. Note, that the
condition h(r) > 0 is equivalent to require r2 > (3B)/(4 m), which for B = Bmin

= 64
27 m3, implies r > (4/3) m. In Exercise 5.2 one has to show which sign of a

corresponds to the prograde and retrograde orbit.

Exercise 5.2 (Prograde and retrograde orbital motion)

Problem. Show that ω+ corresponds to the prograde and ω− to the retrograde
orbital motion.

Solution. The angular momentum of the central mass is given by J , which
can have a positive or a negative sign, were the positive sign is usually chosen.
For convenience we say that the angular momentum for this rotation points
towards the north pole of the central mass. One has to use the connection
between the parameter a and the angular momentum J as given in [16, 17],
namely

a = κ J

mc3
. (5.12)

The J is chosen positive and accordingly the a is positive. Inspecting (5.6),
the sign of ω is determined by the denominator (the numerator is always pos-
itive). Since h(r) > 0, for ω− the denominator is a

√
h(r) − √

2r , which is
always lower in its absolute value than a

√
h(r) + √

2r , which is the denomi-
nator for ω+. Thus |ω−| > |ω+| always holds.

Consider now the limit of large radial distances. There, the frame dragging
effect is small and the prograde and retrograde orbits are well defined. In
this limit 2r > a2h(r) always holds. Then, ω+ is positive and ω− is negative.
Consequently ω+ describes prograde orbits, whereas ω− describes retrograde
orbits. The clear identification of prograde and retrograde orbits vanish for
small radial distances. There one has 2r < a2h(r). In this case ω+ and ω−
are both positive, which means that the particle in the formerly retrograde
orbit gets dragged and can rotate in the same direction as the central object
(prograde).

In Fig. 5.1 the angular frequency ω+ of a mass in a co-rotation (prograde) orbit is
plotted versus the radial distance, the rotational parameter a = 0.995 m. In Fig. 5.2
the same is shown for a retrograde orbit. For such a large value of a the last stable
orbit ends at a fixed value, given by the position of the star’s surface (this will be
shown further below when stable orbits are discussed in general). The radial distance
is given in units of m, and ω in units of c/m. For a mass of 4 millions times the mass
of the sun [4], as is the case for the object at the center of our galaxy, a value of 0.219,
at the maximum of ω = 2πν corresponds to a orbital period of 9.4 min. In Fig. 5.1
the frequency shows a maximum below r = 2, which is below the Schwarzschild
radius.



5.1 Motion of a Particle in a Circular Orbit: Orbital Frequency and Redshift 137

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1  2  3  4  5  6

ω
[c

/m
]

r[m]

ω− in pc−GR
ω− in GR

Fig. 5.1 Orbital frequency as a function of r , for stable geodesic prograde circular motion. The
value ω = 0.219, for a mass of 4 million suns of the dark star, corresponds to about 9.4 min for a
full circle. The plot is done for parameter values of a = 0.995 m and B = 64
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Fig. 5.2 Orbital frequency as a function of r , for retrograde circular motion. The parameters for
this plot are a = 0.995m and B = 64
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The reason for the maximum can be found in (5.5): The frequency depends on
the derivative of the metric. In the Kerr case this derivative increases continuously
toward the event horizon, which implies that ω always increases toward smaller
radial distances. In pc-Kerr, however, there is a minimum in the metric coefficient
g00, below the Schwarzschild radius, which requires that the derivative of the metric
coefficients have a turning point, before reaching the absolute minimum, from which
on it decreases again. This turning point generates the maximum.

A particular form of (5.6) is given by

ω± = c

a ±
√

2r
h(r)

, (5.13)

from which one can deduce that the position of this maximum in the frequency is
independent of the value of a. This is an important finding, because once a maximum
in ω− is observed, the position of this maximum together with the mass will determine
B. We also refer to the section on the simulation of the accretion disk, later in this
chapter. There, a dark ring is predicted (see section on raytracing), which is intimately
related to the position of this maximal frequency. Thus, the position of the maximum
should be clearly observable.

Exercise 5.3 (Maximal angular frequency for prograde rotation)

Problem. Determine the position of the maximum of ω−, for prograde rotation.

Solution. The maximum of ω+ can be deduced starting from (5.6), calculating
its derivative. We resume Eq. (5.6) and give its derivative:

ω+ = c
√

h(r)

a
√

h(r) + √
2r

,

ω′
+ = ch′

2
√

h
[
a
√

h + √
2r
] − c

√
h

[
a h′

2
√

h
+ 1√

2r

]

[
a
√

h + √
2r
]2

=
[

ch′
2
√

h

√
2r − c

√
h√

2r

]

[
a
√

h + √
2r
]2 . (5.14)

The derivative has to be zero, which is satisfied by

h′ = h
r . (5.15)
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The function h is given in (5.7) and its derivative is

h′ = −4 m

r3
+ 6B

r5
, (5.16)

which gives for (5.15)

r =
√

5B

4 m
. (5.17)

Using for B its minimal value 64
27 m3, gives

r =
√

80

27
m ≈ 1.72 m, (5.18)

in excellent agreement to the numerical value in Fig. 5.1.

Noticeable differences to standard GR appear around the Schwarzschild radius
and starting from near twice this value. The main feature for the orbital time of a
particle is that it takes more time to circle the center than in GR. In both theories one
obtains the angular frequency as a function of the radial distance, which are different
near the Schwarzschild radius. In pc-GR there are two solutions, namely one for
small r and one for large r , while in GR there is always one solution, which agrees
more with the solution at large r in pc-GR. Therefore, in order to distinguish between
both theories a second observable is needed. This second observable is the redshift,
whose function in r will be different in both theories. A consistent description is
obtained, when in a theory both values of r , one deduced in adjusting the orbital
frequency and the other adjusting the redshift, result in the same r .

As will be shown in the section on stable orbits, a stable orbit for prograde motion
and a ≥ 0.4 always exists. In the case of retrograde orbits we do not expect to see
big differences as a last stable orbit exists at r > 8 (for a = 0.995 m). Below that
value there are no stable orbits anymore. For such large radial distances, there is no
detectable difference between GR and pc-GR. Thus, we restrict to prograde orbits.

5.1.1.1 General Orbits

Up to now, only stable orbits were considered, However, one can also derive con-
straints on the orbital frequencies for more general orbits. Following [18] we require
that the line element

ds2 = g00c2dt2 + g11dr2 + g22dϑ2 + g33dϕ2 + 2g03cdtdϕ (5.19)

is negative.
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The difference to the former discussion is that the Lagrangian of (5.2) was varied in
order to obtain the geodesic equation, while now this is not the case any more. Again,
we restrict the calculations to circular motions in the equatorial plane (dr = 0, dϑ =
0, ϑ = π

2 ). The limiting case ds2 = 0 corresponds to a circular rotating photon. This
will produce two limiting lines between where the solutions for massive particles lie.
For a photon, we get

g00c2dt2 + g33ω
2dt2 + 2g03cωdt2 = 0, (5.20)

where again ω = dϕ

dt is used. This is a quadratic equation with the solution

ω̄± = −c
g03

g33
± c

√
(g03)

2 − g00g33

g2
33

. (5.21)

This seems to be equal to (5.5), but one clearly notes that instead of the derivatives
of the metric now the metric without the derivatives appear.

Inserting (5.1), with ϑ = π
2 , we obtain

ω̄± = c
a f (r) ± √

D
(
r2 + a2

)+ a2 f (r)
, (5.22)

with

f (r) = 2 m

r
− B

2r3
,

D = r2 + a2 − 2 mr + B

2r
. (5.23)

In [17] it has been shown that for B ≥ Bmin = (4/3)3m3 it holds D ≥ 0 (see Exercise
4 in Chap. 3), so ω̄± has always two real solutions. It also holds f (r) ≥ 0 for r ≥
(3B)/(4 m), that is r ≥ (4/3) m for B = Bmin.

As before, a positive J is chosen and accordingly the a is positive. For positive sign
ω̄+ > 0 and |ω̄+| ≥ |ω̄−|, so ω̄+ describes again the angular frequency of a prograde
orbiting photon. Since for large r it holds D � f (r), in this range ω̄− is negative
and corresponds to counter–rotation. For smaller r the term proportional to 1/r leads
to an increasing f (r), and ω̄− might become zero. In classical GR the sphere where
ω̄− = 0 is called the ergosphere. Since g33 > 0, from (5.22) it follows that the radius
of the ergosphere is given by the condition g00 = 0. In pc-GR −g00 > 0, so ω− is
always negative. However, if B = Bmin + ε with ε 	 1, at a certain radius ω̄− can
become very close to zero.

This result of (5.22) is depicted in Fig. 5.3, where the allowed range for circular
movement is plotted and pc-GR is compared to Einstein’s GR.

http://dx.doi.org/10.1007/978-3-319-25061-8_3
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Fig. 5.3 Limits to orbital frequencies of circular motion in the equatorial plane. The frequencies
of particles moving on circular orbits must lie between the shown limiting curves. The parameters
are a = 0.995 m and B = 64

27 m3. (Explanation for gray shades: The upper solid curve corresponds
to the limit to prograde rotation in pc-GR and the lower one to standard GR. The upper dashed
line corresponds to the limit to retrograde orbits in standard GR while the lower one corresponds
to pc-GR)

The curves for pc-GR show a significant different behavior compared to those
for Einstein’s GR. In standard GR there is a certain radius where the ergosphere
begins. For smaller radii, particles have to co-rotate with the central mass [16, 18].
This behavior can be seen in Fig. 5.3 as the limiting curve for counter–rotating orbits
changes its sign. The curves finally meet at the event horizon, where all particles
have to rotate with the same frequency and in the same direction as the black hole,
which is called frame–dragging.

The behavior is very different in pc-GR. The curve for counter–rotating orbits
also shows the frame-dragging effect, approaching zero from large radial distances
to smaller ones. However, approaching the Schwarzschild radius the frame-dragging
effects gets weaker and there is no point where the two limiting curves coincide. In
fact the point where the curve for counter–rotating orbits reaches zero also marks a
maximum of this curve.

This discussion demonstrates that we have definite predictions for the orbital
frequency with clear differences to standard GR as already discussed above.
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5.1.2 Redshift for Schwarzschild- and Kerr-Type of Solutions

The redshift can be measured through the observation of Fe − K lines, which are
observed in accretion discs of galactic black holes, but unfortunately not yet in centers
of active galaxies. The new observations of the Very Large Basis Array (VLBA) give
hope to change that in the near future.

Again we make simplified assumptions, considering the emission of light emitted
from a massless particle in its rest-frame. In the section, where a model of the
accretion disk is discussed, we will show that corrections have to be implemented
due to the motion of the particle. Nevertheless, the main features can be described
with the just mentioned simplified assumptions. The light is assumed to be detected
by a motionless observer at infinite distance.

The formula for the redshift is obtained relating the proper time of a particle in a
strong gravitational field with the coordinate time of the observer, namely

ds2 = c2dτ 2 = g00c2dt2 + g11dr2 + g22dϑ2 + g33dϕ2 + 2g03cdtdϕ. (5.24)

Since the particle is considered at rest the equation simplifies to

dτ 2 = |g00|dt2. (5.25)

In most cases we can assume, that the metric does neither change in the time between
two wave peaks (here denoted by τ0 respectively tobs) nor for the space between the
particle and the observer, meanwhile the ray is traveling. With these assumptions,
the equation can be integrated and the result is obviously

τ0 = √|g00|tobs . (5.26)

Because the time interval represents the time between two wave peaks, which is
the inverse of the frequencies, there are two different time intervals (frequencies), one
measured in the rest-frame of the particle and the other in the frame of the observer
at infinity. Using (5.26), we obtain

νobs = √|g00|ν0. (5.27)

The redshift z is defined as

z := ν0 − νobs

νobs
= 1√|g00| − 1. (5.28)

Using (5.1) we get for the pc-Kerr metric

z =
√

r2 + a2 cos2(ϑ)
√

r2 − 2mr + a2 cos2(ϑ) + B
2r

− 1. (5.29)
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Fig. 5.4 Redshift for an emitter in the equatorial plane at the position r in the outside field of a
spherically symmetric, uncharged and static mass (Schwarzschild metric) and also for the field at
the equator of a rotating mass. B is set to 64

27 m3

Note that the redshift at the equator of the Kerr solution is exactly the one as in
the Schwarzschild case! In Fig. 5.4 the redshift is shown for ϑ = π

2 , in the limiting
case B = 64

27 m3. A difference between both theories is clearly seen starting between
two to three times the Scwarzschild radius. The pc-GR predicts smaller redshifts for
the same radius, so that one can look further inside the central mass. In the limiting
case for B, the redshift still diverges at r = 4

3 m. Because we required that there is
no event-horizon the B has to be at least slightly larger, resulting in very large but
finite values for the redshift. Therefore, observing the massive object from far away,
looking at events near or in the equatorial plane, the central massive object looks
pretty much like a black hole, though it is not! Another main feature is that the curve
of the redshift looks similar to standard GR but shifted to smaller radial distances.

Again, these features are definite predictions and can be compared to standard
GR. In both theories, the redshift is a function in r and from the measured redshift
one can deduce the radial distance. As explained in the former section, on the orbital
frequency of a particle in a circular orbit, both deduced values of r have to agree for
a consistent theory.

This result is not the whole picture for the Kerr solution, since so far we neglected
the dependence on the inclination ϑ . Compared to the previous result the other
extremes are the poles i.e. ϑ = 0 or ϑ = π . This case is shown in Fig. 5.5, where we
see a completely different behavior, since the maximal redshift is roughly 1 and the
central object should be visible. However, if the central object has an accretion disk
(only then our predictions can be verified) a collimated beam is emitted at the poles,
thus overshining possible emissions from the star’s surface.
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Fig. 5.5 Redshift for an emitter at the position r in the outside field of a spherically symmetric,
uncharged and rotating mass (Kerr metric) at the poles. The parameter B is again chosen to be
64
27 m3

Therefore, the observation of a heavy object from strongly different angles could
test our predictions. The crucial difference between classical GR black holes and
the pc-GR dark stars is that the pc-GR object appear brighter for the same mass. A
problem which might arise in this context is that one can hardly distinguish standard
black holes from pc-GR objects because one might take a pc-dark star for a standard
black hole but underestimate the mass. To prevent this, astronomers should combine
various methods to weigh black holes (see e.g. [19] for a review on black hole mass
and spin determination).

5.1.3 Effective Potentials and Circular Orbits

As shown in [18] it is very instructive to construct an effective potential, which gives
information on stable orbits and trajectories a particle will take.

We derive the effective potential for the radial motion of a geodesic in the equa-
torial plane (ϑ = π/2). For this case the variation of the Lagrangian (5.2) leads to
the following geodesic equations for t and ϕ:

0 = d

ds

∂L

∂ ṫ
= d

ds

(
2g00c2 ṫ + 2g03cϕ̇

)
,

0 = d

ds

∂L

∂ϕ̇
= d

ds

(
2g33ϕ̇ + 2g03cṫ

)
. (5.30)
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These equations define conserved quantities. The first equation is the energy conser-
vation and the second one the angular momentum conservation. We have

g00cṫ + g03ϕ̇ = : −Ẽ,

g33ϕ̇ + g03cṫ = : L̃, (5.31)

where Ẽ and L̃ can be identified with the energy Ẽ = E/μc2 and the angular momen-
tum L̃ = L/μc per mass μ of a test particle [16]. An elementary rearrangement
yields

Dcṫ = g03 L̃ + g33 Ẽ,

Dϕ̇ = −g03 Ẽ − g00 L̃, (5.32)

where again D = (−g00g33 + g2
03

)
was used. Inserting (5.32) in (5.2) yields

ṙ2 = 1

g11 D

(
Ẽ2g33 + 2g03 L̃ Ẽ + g00 L̃2 − D

)
, (5.33)

which is rewritten as

1

2
Ẽ2 = 1

2
ṙ2 + V (r, Ẽ, L̃), (5.34)

with

V (r, Ẽ, L̃) = − 1

2g11 D

(
Ẽ2(g33 − Dg11) + 2L̃ Ẽg03 + L̃2g00 + D

)

= L̃2

2r2
−
(

m

r
− B

4r3

)
⎛

⎜
⎝1 +

(
L̃ + aẼ

)2

r2

⎞

⎟
⎠+ (1 − Ẽ2)a2

2r2
+ 1

2
. (5.35)

Exercise 5.4 (Equations (5.32)–(5.35))

Problem. Derive (5.32)–(5.35).

Solution. Let us repeat (5.31):

g00cṫ + g03ϕ̇ =: −Ẽ,

g33ϕ̇ + g03cṫ =: L̃. (5.36)
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Subtracting the second equation, divided by g33, from the first equation,
divided by g03, we obtain

(
g00

g03
− g03

g33

)
cṫ = − Ẽ

g03
− L̃

g33
, (5.37)

from which follows

g33 Ẽ + g03 L̃ = − [
g00g33 − g2

03

]
cṫ . (5.38)

With the definition

D = g2
03 − g00g33, (5.39)

we arrive at

Dcṫ = g33 Ẽ + g03 L̃. (5.40)

The other equation is found by dividing the first equation in (5.36) by g00

and subtracting from it the second equation, divided by g03, with the result

Dϕ̇ = −g03 Ẽ − g00 L̃. (5.41)

In order to determine ṙ2, it is preferable to start from the Lagrangian (5.2).
Resolving for ṙ2 gives

ṙ2 = −g00

g11
(cṫ)2 − g33

g11
ϕ̇2 − 2g03

g11
(cṫ)ϕ̇ − 1. (5.42)

Substituting (5.40) and (5.41), one gets

ṙ2 =
(

−g00g2
33

g11 D2
− g33g2

03

g11 D2
+ 2

g33g2
03

g11 D2

)
Ẽ2

−2

(
g00g33g03

g11 D2
− g3

03

g11 D2

)
Ẽ L̃

+
(

−g00g2
03

g11 D2
− g33g2

00

g11 D2
+ 2

g00g2
03

g11 D2

)
L̃2

−1. (5.43)



5.1 Motion of a Particle in a Circular Orbit: Orbital Frequency and Redshift 147

The factors are treated separately, giving the final expression for ṙ2

ṙ2 = 1

g11 D

[
g33 Ẽ2 + 2g03 Ẽ L̃ + g00 L̃2 − D

]
. (5.44)

In order to get the desired expression, we resolve for Ẽ and divide by 2,
obtaining

1

2
Ẽ = 1

2
ṙ2 − 1

g11 D

{
Ẽ2 [g33 − g11 D] + 2g03 Ẽ L̃ + g00 L̃2 − D

}
. (5.45)

The expression in the curly bracket, times its factor, is defined to be V (r, Ẽ, L̃).

With (5.34) the radial motion of a geodesic in the equatorial plane is equivalent
to the classical motion of a body with unit mass and energy Ẽ2/2 in a complicated
effective potential V (r, Ẽ, L̃). This concept becomes particularly instructive for the
Schwarzschild solution. In this case one has a = 0, and the effective potential does
not depend on Ẽ :

VS(r, L̃2) = 1

2
− m

r
+ L̃2

2r2
− mL̃2

r3
+ B

4

(
1

r3
+ L̃2

r5

)

. (5.46)

The terms −m/r and L̃2/r2 correspond to the classical gravitational and centrifugal
potential, respectively. In GR the negative term proportional to 1/r3 causes the fall of
particles into the singularity at r = 0, which is avoided in pc-GR due to the repulsive
potential proportional to (1/r3 + L̃2/r5).

Although for the Kerr metric the effective potential is more complicated and
depends not only on r and L̃ , but also on Ẽ , it can be used to study the motion
of geodesics. Of particular importance are circular orbits, which are given by the
simultaneous solutions of V = Ẽ2/2 and ∂V

∂r = 0. That is, we consider the set of r -

dependent functions V (r; Ẽ, L̃) with parameter values Ẽ and L̃ . These parameters
are varied until a curve V (r; Ẽ(rc), L̃(rc)) is obtained, such that this curve takes on
a minimum at r = rc, and has the value V (r; Ẽ(rc), L̃(rc)) = Ẽ2/2. The radius rc

together with the parameters Ẽ(rc), L̃(rc) corresponds to a stable circular orbit. It
is convenient to consider the potential V̂ = V − Ẽ2/2 rather than V . The condition
for stable circular orbits is then V̂ = 0 and ∂ V̂

∂r = 0.
Instead of trying to solve these conditions directly via (5.35) and its derivative,

we use ωṫ = ϕ̇ as introduced in Sect. 5.1.1 together with (5.32). We get

Ẽ = −L̃
cg00 + ωg03

cg03 + ωg33
. (5.47)
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At this point we can use (5.33) for geodesic circular orbits (ṙ = 0) and insert
(5.47):

0 = L̃2g33

(
cg00 + ωg03

cg03 + ωg33

)2

− L̃2g03
cg00 + ωg03

cg03 + ωg33
+ L̃2g00 + D. (5.48)

A straightforward rearrangement of this equation yields (together with (5.47))

L̃2 = L2

μ2c2
= (cg03 + ωg33)

2

−g33ω2 − 2g03ωc − g00c2
,

Ẽ2 = E2

μ2c4
= (cg00 + ωg03)

2

−g33ω2 − 2g03ωc − g00c2
. (5.49)

In these equations Ẽ and L̃ are constants of motion, which correspond to energy
and angular momentum of a test particle on a circular geodesic. Both Ẽ and L̃ are
real numbers, and accordingly the right hand side of (5.49) has to be positive. The
denominator corresponds to (5.20) in Sect. 5.1.1 and thus can be written as

g33ω
2 + 2g03ωc + g00c2 = g33

(
ω − ω̂+

) (
ω − ω̂−

)
, (5.50)

where we have used the respective limiting orbital frequencies for general orbits. It
is easy to see, that the constraint of positive Ẽ2 and L̃2 is equivalent to the constraint,
that the orbital frequency ω of a stable circular orbits is in the limits given by ω̄±
derived for general orbits.

It will be shown now, that for classical GR the conditions V̂ = 0 and ∂ V̂
∂r = 0 can

only be fulfilled for Ẽ2 < 1 [20]. Let us, for the moment, consider the classical GR,
from (5.35) with B = 0 and V̂ = V − Ẽ2/2 one obtains the expression

V̂ (r, Ẽ, L̃) = L̃2

2r2
− m

r
−

m
(

L̃ + aẼ
)2

r3
+ (1 − Ẽ2)a2

2r2
+ 1

2

(
1 − Ẽ2

)
. (5.51)

For r → 0 it holds V̂ → −∞, which has the consequence that if V̂ has a minimum
at rc with V̂ (rc) = 0, there has to be another root in the interval (0, rc).

The roots of V̂ are identical to the roots of the polynomial

P(r, Ẽ, L̃) = r3V̂ (r, Ẽ, L̃)

= 1

2

(
1 − Ẽ2

)
r3 − mr2 + 1

2

(
L̃2 +

(
1 − Ẽ2

)
a2
)

r

−m
(

L̃ + aẼ
)2

. (5.52)

According to Descartes’ rule of signs the number of positive roots is less than or
equal to the number of variations in the sign in the polynomial, with multiple roots
counted separately [21]. Given a double root at rc and another root in the interval
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(0, rc), this demands three changes of sign in the polynomial P(r, Ẽ, L̃). This is
only possible if Ẽ2 < 1, so this is a necessary (but not sufficient) condition for the
occurrence of a stable circular orbit.

We now turn to the case of pc-GR with B �= 0. From (5.35) with V̂ = V − Ẽ2/2
we obtain

V̂ (r, Ẽ, L̃) = L̃2

2r2
− m

r
−

m
(

L̃ + aẼ
)2

r3
+ (1 − Ẽ2)a2

2r2

+1

2

(
1 − Ẽ2

)
+ B

4r3
+

B
(

L̃ + aẼ
)2

4r5
. (5.53)

For r → 0 it holds V̂ → ∞ (repulsive potential), whereas for r → ∞ it goes to
1
2

(
1 − Ẽ2

)
from below. It follows that if we have a minimum of V̂ at rc with

V̂ (rc) = 0, for Ẽ2 ≥ 1 there is another positive root at some value r ′ > rc. In this
case and as well for Ẽ2 < 1, there might be additional roots, but their existence is
not a necessary condition for a double root which is a minimum at rc.

The roots of V̂ are identical to the roots of the polynomial

P(r, Ẽ, L̃) = r5V̂ (r, Ẽ, L̃)

= 1

2

(
1 − Ẽ2

)
r5 − mr4 + 1

2

(
L̃2 +

(
1 − Ẽ2

)
a2
)

r3

+
[

B

4
− m

(
L̃ + aẼ

)2
]

r2 + B
(

L̃ + aẼ
)2

. (5.54)

For Ẽ2 < 1 there are always two changes of sign in the first three terms, so the
necessary condition for the existence of a stable circular orbit is always fulfilled. For
Ẽ2 > 1, the polynomial has to show three changes of sign (recall that the double root
at the minimum is counted separately), so it has to hold

L̃2 +
(

1 − Ẽ2
)

a2 > 0,

B

4
− m

(
L̃ + aẼ

)2
< 0. (5.55)

It follows, that in pc-GR not the general requirement Ẽ2 < 1, but the weaker restric-
tion (5.55) for Ẽ2 > 1 is a necessary condition for the occurrence of stable circular
orbits.

There might be various combinations rc, Ẽ(rc), L̃(rc) corresponding to stable
circular orbits. The last stable orbit can be found by setting ∂2V

∂r2 |rc = 0 Together with
(5.49) and (5.35) this is equivalent to

g′′
33(g00 + ωg03)

2 + g′′
00(g03 + ωg33)

2 − 2g′′
03(g00 + ωg03)(g03 + ωg33)

+D′′(ω2g33 + 2ωg03 + g00) = 0. (5.56)
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Unfortunately (5.56) has a quite complicated form when we insert the pc-Kerr
metric [22]

1
r(4r5+a2(3B−4mr2))

2

[−6a4
(
15B2r − 32Bmr3 + 16m2r5

)

± 4ar5/2
√−3B + 4mr2

(
15B2 + 24mr4(2m + r) − 10Br2(4m + 3r)

)

+4r5
(−15B2 + 8mr4(−6m + r) + 2Br2(20m + 3r)

)

+a2
(
45B3 − 18B2r2(10m + 17r) − 96mr6

(
2m2 + 5mr + r2

)

+ 8 Br4
(
38m2 + 96mr + 15r2

))± 8a3
(

4mr9/2(4m + 3r)
√−3B + 4mr2

−3Br5/2(8m + 5r)
√−3B + 4mr2 + 9B2

√−3Br + 4mr3
)]

= 0 (5.57)

For B = 0 this equation greatly simplifies to

r2 − 6 mr ± 8a
√

mr − 3a2 = 0, (5.58)

which is the same as in [23]. The upper sign here refers to a co-rotating object. Up
to now we have not found analytical solutions for (5.57). Numerical investigations
showed, that (5.57) has two solutions for retrograde objects (see Fig. 5.6). However
only the outer one of these solutions is physically relevant as one has to consider the
constraints given by (5.21).
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Fig. 5.6 Critical stable orbits for retrograde objects—the parameter B is chosen as B = 64
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Equation (5.57) also has two solutions for co-rotating objects but only up to a
value of a > 0.416 m (see Fig. 5.7). For higher absolute values of a, Eq. (5.57) has
no positive real roots for co-rotating objects. For this case, the second derivative of
the potential is always positive, i.e., a stable orbit always exists.

As we encounter a new physical phenomenon, namely the existence of two critical
orbits compared to only one in the classical Kerr metric, we will investigate Fig. 5.7
a little bit further. All values of ∂2V

∂r2 are negative in the shaded area enclosed by the
dark blue dashed (second curve from top) and red (dash–dotted) curve together with
the ordinate. Thus in this area circular geodesic orbits are not stable. This is true
for both pc-GR and GR. The light shaded area enclosed by the red and black dotted
curves is excluded as here the constraint (5.21) is not fulfilled (i.e. ds2 < 0 in this
area). But on the outside—especially for values of a > 0.416 m—we have ∂2V

∂r2 > 0
(and E ≤ μc2) which means that the circular orbits are stable again for radii greater
than 4

3 m. Therefore we call the dark blue (dashed) curve the “last” stable orbit with
quotation marks as there is another curve (red dash–dotted) which we call the “first”
stable orbit from which on orbits are stable again. This is a significant difference to
standard GR.
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For smaller radii than 4
3 m the equations turn imaginary and the orbital frequency

is imaginary. However, r = 4
3 m is the position of the global minimum of g00 (and

therefore the effective potential), describing the final radius of a large mass. In other
words, it has no sense to go further below, due to the presence of mass. For a descrip-
tion at lower radial distances, the distribution of the star’s mass has to be included.

In total the physical behavior for retrograde orbits is not that different to the
standard GR except that the last stable orbit is a little bit closer to the central mass.
For prograde orbits however we get a new physical behavior.

5.1.4 Galactic “Black-Holes” and Observational Verification
by pc-GR

As mentioned in the introduction to this chapter, observations of so-called “galactic
black holes” seem to contradict standard GR [6–10]. The correctness of the conclu-
sions in this section depends on the interpretation, that we can assume the Quasi
Periodic Oscillations (QPO) observed to be interpreted as local emissions in the
accretion disk, following its motion. This interpretation is correct for the accretion
disk in the center of active galaxies, because there are no nearby stellar partners. By
extrapolation, we assume the same interpretation for the galactic black holes.

And there is the problem (not for pc-GR but for standard GR): the measured
orbital frequency give radii of 20–50 rg (the standard definition of rg is just m, i.e.
half of the Schwarzschild radius), while from the measured redshift radii of 2–5 rg

are deduced [6–10] (see also [24]). This is a big difference!
As an example we discuss the galactic object, called GRO J1655-40. Its estimated

mass is M = 0.30 ± 0.5 solar masses and the spin parameter is a = 0.92 ± 0.2. In
Fig. 5.8 the frequency of the observed QPO’s is plotted versus the radial distance. Two
curves are visible, the one with a steady increase is due to GR and the one with the
maximum is pc-GR. The thickness of the curves is due to observational errors. The
range of possible radial distances, as deduced from the frequency measurements,
is indicated by the two vertical dashed lines on the right part of the figure. The
horizontal dashed lines indicate the measured limits of the frequencies. From there,
the r should be between 17 and 14 rg . The redshift, however, gives values around
2 rg , as indicated by the vertical dashed lines on the left part of the figure, as deduced
from the redshift curves of GR. Note, that in pc-GR the redshift curve is shifted to
the left, which brings it into agreement with pc-GR. Also it is in agreement with the
measured orbital frequency!

Thus, pc-GR permits to have large redshifts with low orbital frequency at small
radial distances! This presents the first evidence that pc-GR describes the physics
correctly near a large massive object, with a very strong gravitational field, which
standard GR can not do.
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Fig. 5.8 Angular orbital frequency ω, in units of c
m , versus the radial distance, in units of rg = m.

The steady increasing curve toward smaller r (blue curve) is the result of GR, while the other, with
the maximum, is pc-GR. The width corresponds to the insecurity in knowing the mass and the spin
of the central object

GR J1655-40 is not the only observed galactic “black hole”, in contradiction
with standard GR. There are three further objects [6–10], with the names GX 339-4,
J1752-223 and XTE J1550-564.

There are more possible observations in near future, which may provide further
evidence in favor of pc-GR. This is, picturing the appearance of an accretion disk as
seen from far away. This will be the topic of the next section, related to the raytracing
method.

5.2 Raytracing Method and the Imaging
of the Accretion Disk

A so-called black hole can not be observed when completely isolated, because it is
black. In pc-GR this object is rather a dark star, but it behaves very similar to a black
hole. Only when mass is falling in, like through an accretion disk, the light emitted
from this infalling matter can be observed, and here GR and pc-GR predict different
behavior! In the last section we already demonstrated that particles move differently
in circular orbits. In this section the accretion disk, if formed, is investigated and we
will see that also GR and pc-GR will give distinct predictions, with clearer observable
consequences. We will image this central object and its strong gravitational field
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Fig. 5.9 Illustration of the raytracing technique: Two rays, originating from the accretion disk,
are shown. The red line represents a light path which reaches on a geodesic path the observer at
infinity, having been distorted by the gravitational field. The blue-dotted light curve represents a
second order effect, where the light makes a near complete turn around the star. The raytracing
method follows the ray back, starting from the observer. In each path the conservation laws and the
Carter constant are verified, until one reaches a point at the accretion disk. In such a way, only light
rays are taken into account which really reaches the observer, which reduces the numerical effort
enormously

by following light rays coming from a source near this object. A powerful standard
technique is called raytracing. The basic idea is to follow light rays (on null geodesics)
in a curved background space-time from their point of emission, for example from a
point of an accretion disk, around a massive object (Technically this is not correct.
It is computationally less expensive to follow light rays from an observers screen
back to their point of emission.). This permits us to create an image in the direct
neighborhood of an massive object. The raytracing method is illustrated in Fig. 5.9.
There are numerous groups using raytracing for this purpose [14, 15, 25, 26]. Aside
from creating an image, it is also possible to calculate emission line profiles using
the same technique, but adding in a second step the evaluation of an integral for the
spectral flux. This is of particular interest as the emission profile of the iron Kα line
is one of the few good observables in regions with strong gravitation, from which
the redshift can be deduced (see last section). (For more details, see [27]).

In the following, the theoretical background on the methods used will briefly
reviewed, where we will also discuss the model to describe accretion disks. After that
we will present results obtained with the open source ray-tracing code Gyoto [26]
for the simulation of disk images and emission line profiles.

5.2.1 Theoretical Background

For convenience, the velocity of light c is set to one in order to agree with the standard
notation in models for the accretion disk.

We will use the Boyer-Lindquist coordinates of the Kerr metric and its pseudo-
complex equivalent, which is written in a slightly different form than in [17] as (see
also Exercise 5.5)
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g00 = −
(

1 − ψ

Σ

)
,

g11 = Σ

Δ
,

g22 = Σ,

g33 =
(

(r2 + a2) + a2ψ

Σ
sin2 ϑ

)
sin2 ϑ,

g03 = −a
ψ

Σ
sin2 ϑ, (5.59)

with

Σ = r2 + a2 cos2 ϑ,

Δ = r2 + a2 − ψ,

ψ = 2 mr − B

2r
. (5.60)

The m = κ M is the gravitational radius rg of a massive object. One can easily see
that this metric differs from the standard Kerr metric only in the use of the function
ψ which reduces to 2 mr in the limit B = 0. Bearing this in mind one can simply
follow the derivation of the Lagrange equations given, as in [28], which are the basis
for the implementation in [26]) and modify the occurrences of the Boyer-Lindquist
Δ-function and the new introduced ψ .

Exercise 5.5 (Equation 5.59)

Problem. Relate (5.59) with (5.1).

Solution. Substituting the expressions (5.60) in (5.59), leads to

g00 = −
[

1 − ψ

Σ

]
= −

[

1 −
(
2 mr − B

2r

)

r2 + a2cosϑ

]

= −
[
r2 + a2cos2ϑ − 2 mr + B

2r

]

r2 + a2cos2ϑ
,

g11 = +Σ

Δ
= r2 + a2cos2ϑ

r2 + a2 − 2 mr + B
2r

,

g22 = +Σ = r2 + a2cos2ϑ,

g33 =
[
(r2 + a2) + a2ψ

Σ
sin2ϑ

]

= (r2 + a2)sin2ϑ + sin4ϑ
a2
(
2 mr − B

2r

)

r2 + a2sin2ϑ
. (5.61)

This is the expression for the Kerr metric as given in (5.1) at the start of this
chapter.
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In oder to derive the final equations of motion all the possible conserved quantities
along geodesics are introduced, which are:

(i) The test particle’s mass m0,
(ii) the energy at infinity E ,

(iii) the angular momentum Lz and
(iv) the Carter constant Q [28, 29] (see also explanations further below).

The usual way to proceed from this, is to use the Jacobi formalism [29] and
demand separability of Hamilton’s principal function (see also Exercise (5.6) further
below).

S = −1

2
λ − Et + Lzϕ + Sϑ + Sr . (5.62)

The λ is an affine parameter and Sr and Sϑ are functions in r and ϑ , respectively.
Demanding separability for (5.62) leads [29] to

(
d Sr

dr

)2

= R

Δ2
,

(
d Sϑ

dϑ

)2

= Θ, (5.63)

with the auxiliary functions

R(r) := [
(r2 + a2)E − aLz

]2

−Δ
[
Q + (aE − Lz)

2 + m2
0r2

]
,

Θ(ϑ) := Q −
[

L2
z

sin2 ϑ
− a2 E2 + m2

0a2

]
cos2 ϑ. (5.64)

The second equation contains the Carter constant Q.
Taking these together with

ẋμ = gμα pα = gμα ∂S

∂xα
(5.65)

leads to a set of first order equations of motion in the coordinates

ṫ = 1

ΣΔ

{[(
r2 + a2

)2 + a2Δ sin2 ϑ
]

E − aψ Lz

}
,

ṙ = ±
√

R

Σ
,

ϑ̇ = ±
√

Θ

Σ
,

ϕ̇ = 1

ΣΔ

[(
Δ

sin2 ϑ
− a2

)
Lz + aψ E

]
, (5.66)

where the dot represents the derivative with respect to the proper time τ .
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In [28] it is however argued, that those equations contain an ambiguity in the sign
for the radial and azimuthal velocities. In addition to that, using Hamilton’s principle
to get the geodesics leads to the integral equation [29]

robs∫

rem

dr√
R

=
ϑobs∫

ϑem

dϑ√
Θ

. (5.67)

To solve this equation, in [14, 15] one makes use of the fact that R is a fourth order
polynomial in r . In pc-GR, however, the order of the polynomial is larger, due to the
additional term, thus the procedure used in [14, 15] can not be followed anymore.

Fortunately, the equations used in Gyoto are based on the use of different equa-
tions of motion derived in [28], which does not suffer from the sign ambiguity.
Therefore we follow [28] who make use of the Hamiltonian formulation in addition
to the separability of Hamilton’s principal function: The canonical 4-momentum of
a particle is given as

pμ := ẋμ. (5.68)

The Lagrangian is given by

L = 1

2
gμν ẋμ ẋν . (5.69)

Given explicitly in their covariant form the momenta one has [28]

p0 = −
(

1 − ψ

Σ

)
ṫ − ψa sin2 ϑ

Σ
ϕ̇,

p1 = Σ

Δ
ṙ ,

p2 = Σϑ̇,

p3 = sin2 ϑ

(
r2 + a2 + ψa2 sin2 ϑ

Σ

)
ϕ̇ − ψa sin2 ϑ

Σ
ṫ . (5.70)

After a short calculation the Hamiltonian H = pμ ẋμ − L = 1
2 gμν pμ pν can be

rewritten as [28] (see also Exercise 5.6)

H = Δ

2Σ
p2

1 + 1

2Σ
p2

2 − R(r) + ΔΘ(ϑ)

2ΔΣ
− m0

2
. (5.71)

The momenta associated with time t and azimuth ϕ are conserved and are iden-
tified with the energy at infinity p0 = −E and the angular momentum p3 = Lz ,
respectively [29].

Hamilton’s equations ẋμ = ∂ H
∂pμ

and ṗμ = − ∂ H
∂xμ

yield the wanted equations of
motion [26, 28], replacing the p0 and p3 by the constants of motion −E and Lz :
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ṫ = 1

2ΔΣ

∂

∂ E
(R + ΔΘ),

ṙ = Δ

Σ
p1,

ϑ̇ = 1

Σ
p2,

ϕ̇ = − 1

2ΔΣ

∂

∂Lz
(R + ΔΘ),

ṗ0 = 0,

ṗ1 = −
(

Δ

2Σ

)

|r
p2

1 −
(

1

2Σ

)

|r
p2

2 +
(

R + ΔΘ

2ΔΣ

)

|r
,

ṗ2 = −
(

Δ

2Σ

)

|ϑ
p2

1 −
(

1

2Σ

)

|ϑ
p2

2 +
(

R + ΔΘ

2ΔΣ

)

|ϑ
,

ṗ3 = 0. (5.72)

The notation |r and |ϑ stand for the partial derivatives with respect to r and ϑ .

Exercise 5.6 (Hamilton-Jacobi formalism)

Problem. Give a detailed description of the Hamilton-Jacobi formalism used.

Solution. The basis for the raytracing technique are the geodesic equations for
orbits. We part from the Lagrange function

L = 1

2
gμν ẋμ ẋν . (5.73)

With the new signature used, one has gμν ẋμ ẋν = −ζ , where ζ = 1 for
time-like trajectories, ζ = −1 for space-like and ζ = 0 for null geodesics.
The corresponding Hamilton function is given by

H = 1

2
gμν pμ pν = −1

2
ζ (5.74)

with the momenta
pμ = gμν ẋν . (5.75)

As the metric, we use the pseudo-complex equivalent to the Kerr solution,
slightly deviated from the standard definition. This we listed above and here,
for convenience, it will be repeated namely
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g00 = −
(

1 − ψ

Σ

)
,

g11 = Σ

Δ
,

g22 = Σ,

g33 =
(

(r2 + a2) + a2ψ

Σ
sin2 ϑ

)
sin2 ϑ,

g03 = −a
ψ

Σ
sin2 ϑ. (5.76)

We did introduce besides the known auxiliary functions Σ and Δ the addi-
tional auxiliary function ψ , i.e.,

Σ = r2 + a2 cos2 ϑ,

Δ = r2 + a2 − ψ,

ψ = 2mr − B

2r
. (5.77)

The components of the inverse metric are given by

g00 = − (r2 + a2)2 − a2Δ sin2 ϑ

ΣΔ
,

g11 = Δ

Σ
,

g22 = 1

Σ
,

g33 = Δ − a2 sin2 ϑ

ΣΔ sin2 ϑ
,

g03 = − aψ

ΣΔ
. (5.78)

With (5.76) the components of the momentum are given by

pt = g00 ṫ + g03ϕ̇ = −
(

1 − ψ

Σ

)
ṫ − a

ψ

Σ
sin2 ϑϕ̇,

pr = g11ṙ = Σ

Δ
ṙ ,

pϑ = g22ϑ̇ = Σϑ̇,

pϕ = g30 ṫ + g33ϕ̇ = −a
ψ

Δ
sin2 ϑ ṫ +

[
(r2 + a2) + a2 ψ

Σ
sin2 ϑ

]
sin2 ϑϕ̇. (5.79)
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The symmetry of space-time, which we describe by the present metric,
determines certain restrictions, i.e., the momentum components pt = −E , the
energy, and pϕ = Lz , the angular momentum, both at infinity. In addition, the
condition of a constant Hamilton function corresponds to the conservation of
the rest-mass of the particle. A forth constant of motion can be found through
the requirement of separability of the Hamilton-Jacobi equation (this leads to
the Carter constant). The Hamilton-Jacobi equation is given by

∂S

∂λ
= 1

2
gαβ

(
∂S

∂xα

∂S

∂xβ

)
, (5.80)

and with the requirement of separability one can apply the following ansatz

S = −1

2
ζλ − Et + Lzϕ + Sϑ + Sr , (5.81)

where λ is an affine parameter and where the two functions Sϑ and Sr depend
only on ϑ and r , respectively. Substituting this ansatz into the Hamilton-Jacobi
equation yields

2
∂S

∂λ
= g00

(
∂S

∂t

)2
+ g11

(
∂S

∂r

)2
+ g22

(
∂S

∂ϑ

)2
+ g33

(
∂S

∂ϕ

)2
+ 2g03 ∂S

∂t

∂S

∂ϕ

⇔ −ζ = g00 E2 + g33L2
z − 2g03 E Lz + g11

(
∂S

∂r

)2
+ g22

(
∂S

∂ϑ

)2
. (5.82)

Now, we substitute the inverse matrix elements of the Kerr metric (5.78)
and with some minor manipulations we obtain

−ζ = − (r2 + a2)2 − a2Δ sin2 ϑ

ΣΔ
E2 + Δ

Σ

(
∂S

∂r

)2

+ 1

Σ

(
∂S

∂ϑ

)2

+ Δ − a2 sin2 ϑ

ΣΔ sin2 ϑ
L2

z + 2
aψ

ΣΔ
E Lz

⇔ −ζΣ = Δ

(
∂S

∂r

)2

+
(

∂S

∂ϑ

)2

− (r2 + a2)2

Δ
E2 + a2 sin2 ϑ E2 + 1

sin2 ϑ
L2

z − a2

Δ
L2

z + 2aψ

Δ
E Lz

⇔ −ζΣ = Δ

(
∂S

∂r

)2

+
(

∂S

∂ϑ

)2

− 1

Δ

(
(r2 + a2)E − aLz

)2 − 2

Δ
(r2 + a2)aE Lz

+ 1

sin2 ϑ

(−Lz + a sin2 ϑ E
)2 + 2aE Lz + 2aψ

Δ
E Lz . (5.83)
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All mixing terms vanish, i.e.,

− 2

Δ
(r2 + a2)aE Lz + 2aE Lz + 2aψ

Δ
E Lz = 2E Lz

(
− 1

Δ

(
(r2 + a2)a − aψ

)
+ a

)

= 2E Lz (a − a) = 0, (5.84)

Therefore, we get

−ζΣ = Δ

(
d Sr

dr

)2

+
(

d Sϑ

dϑ

)2

− 1

Δ

(
(r2 + a2)E − aLz

)2 + 1

sin2 ϑ

(−Lz + a sin2 ϑ E
)2

. (5.85)

One further algebraic manipulations leads us to the separation of the equa-
tion. The following relation is valid:

1

sin2 ϑ

(
−Lz + a sin2 ϑ E

)2 = L2
z

sin2 ϑ
+ a2 sin2 ϑ E2 − 2aLz E

= L2
z

sin2 ϑ
+ a2 E2 − a2 cos2 ϑ E2 − 2aLz E + L2

z − L2
z

= L2
z − L2

z sin2 ϑ

sin2 ϑ
− a2 cos2 ϑ E2 + (aE + Lz)

2

=
(

L2
z

sin2 ϑ
− a2 E2

)

cos2 ϑ + (aE − Lz)
2,

which we can substitute into (5.85) and finally makes it possible to separate
the equation into one depending on ϑ only and the other in r :

−ζr2 − Δ

(
d Sr

dr

)2

+ 1

Δ

(
(r2 + a2)E − aLz

)2 − (aE − Lz)
2

=
(

ζa2 + L2
z

sin2 ϑ
− a2 E2

)
cos2 ϑ +

(
d Sϑ

dϑ

)2

. (5.86)

Both sides depend on different variables, which implies that both sides can
be set to a constant Q, which is called the Carter constant. Therefore, we can
introduce the functions R(r) and Θ(ϑ) and write

(
d Sr

dr

)2

= R

Δ2
and,

(
dSϑ

dϑ

)2

= Θ, (5.87)
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where the two introduced functions are given by

R := [
(r2 + a2)E − aLz

]2 − Δ
[
C + (aE − Lz)

2 + ζr2
]
,

Θ := Q −
(

a2(ζ − E2) + L2
z

sin2 ϑ

)
cos2 ϑ. (5.88)

This allows us to built the equations of motion. For this, we use

ẋμ = gμα pα = gμα ∂S

∂xα
(5.89)

and obtain

ẋ0 = ṫ = 1

ΣΔ

{[(
r2 + a2

)2 + a2Δ sin2 ϑ
]

E − aψ Lz

}
,

ẋ1 = ṙ = ±
√

R

Σ
,

ẋ2 = ϑ̇ = ±
√

Θ

Σ
,

ẋ3 = ϕ̇ = 1

ΣΔ

[(
Δ

sin2 ϑ
− a2

)
Lz + aψ E

]
. (5.90)

However, we will choose a different path than the standard one, in order to
be in line with [26], the program which uses the raytracing method.

We write (5.74) explicitly, inserting the elements of the inverse metric, i.e.,

H = 1

2

Δ

Σ
p2

r + 1

2

1

Σ
p2

ϑ + f (r, ϑ, pt , pϕ). (5.91)

The remaining terms were joined into the auxiliary function f (r, ϑ, pt , pϕ).
The dependence of f on r and ϑ is introduced via gμν . Now, we substitute
pr = ∂S

∂r = d Sr
dr and pϑ = ∂S

∂ϑ
= d S

dϑ
, with the help of (5.87) and (5.88)

H = R

2ΔΣ
+ Θ

2Σ
+ f (r, ϑ, pt , pϕ). (5.92)

Here, we can use again (5.74) and determine with it the function f , namely

H = R

2ΔΣ
+ Θ

2Σ
+ f (r, ϑ, pt , pϕ) = −1

2
ζ

⇒ f (r, ϑ, pt , pϕ) = − R + ΔΘ

2ΔΣ
− 1

2
ζ . (5.93)
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With this, the Hamilton function acquires the form

H = Δ

2Σ
p2

r + 1

2Σ
p2

ϑ − R + ΔΘ

2ΔΣ
− 1

2
ζ. (5.94)

The dependence on pt and pϕ is implicitly contained in the functions R and
Θ , due to their dependence on −E and Lz .

The equations of motion are obtained, using the Hamilton equations, i.e.,

ṗμ = − ∂ H

∂xμ
, ẋμ = ∂ H

∂pμ

. (5.95)

The results is

ṫ = ∂ H

∂pt
= −∂ H

∂ E
= 1

2ΔΣ

∂

∂ E
(R + ΔΘ),

ṙ = ∂ H

∂pr
= Δ

Σ
pr ,

ϑ̇ = ∂ H

∂pϑ

= 1

Σ
pϑ ,

ϕ̇ = ∂ H

∂pϕ

= ∂ H

∂Lz
= − 1

2ΔΣ

∂

∂Lz
(R + ΔΘ),

ṗt = −∂ H

∂t
= 0,

ṗr = −∂ H

∂r
= −

(
Δ

2Σ

)

|r
p2

r −
(

1

2Σ

)

|r
p2

ϑ +
(

R + ΔΘ

2ΔΣ

)

|r
,

ṗϑ = −∂ H

∂ϑ
= −

(
Δ

2Σ

)

|ϑ
p2

r −
(

1

2Σ

)

|ϑ
p2

ϑ +
(

R + ΔΘ

2ΔΣ

)

|ϑ
,

ṗϕ = −∂ H

∂ϕ
= 0. (5.96)

The |r and |ϑ denote the partial derivatives through r and ϑ respectively.
Equation (5.96) represents advantages compared to the classical used form,

which are not unique in the sign of the radial and polar coordinate. Therefore,
in the classical case one has to discuss two possibilities.

In obtaining the geodesic equations, the use of the Hamilton principle yields
the integral equation

robs∫

rem

dr√
R

=
ϑobs∫

ϑem

dϑ√
Θ

. (5.97)
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In order to solve this equation, one uses the fact that R is a polynomial of
fourth order in r . However, in the modified metric in pc-GR this is not the case
anymore. As a result, one can not use the solution proposed in literature.

The Eq. (5.96) do not contain square roots anymore and, thus, can be solved
without having to consider two distinct cases. They can be applied directly to
the modified Kerr metric.

In addition to the modification of the metric and thus the evolution equations one
has to modify the orbital frequency of particles around a compact object. This has
been done in the previous section [30] and the formula for the orbital frequencies is
repeated:

ω± = 1

a ±
√

2r
h(r)

, (5.98)

where ω+ describes prograde motion and h(r) = 2m
r2 − 3B

2r4 . Equation (5.98) reduces
to the well known ω± = 1

a±
√

r3
m

for B = 0.

Finally the concept of an Innermost Stable Circular Orbit (ISCO) has to be revised,
as the pc-equivalent of the Kerr metric only shows an ISCO for some values of the
spin parameter a. For values of a greater than 0.416 m and B = 64

27 m3 there is no
region of unstable orbits anymore [30] (see also previous section). We can not explain
all the details of the disk model, because this would be out of the scope of this section.
We refer to the literature.

After including all those changes due to correction terms of the pseudo-complex
equivalent of the Kerr metric one can straightforwardly adapt the calculations done
in Gyoto. The modified GYOTO program, which includes the B term, can be found
in [31].

5.2.1.1 Deducing the Observed Flux

Here, the physical observables, used in raytracing studies, are discussed. We will
restrict to null-geodesics, i.e. light rays. The first quantity of interest is the intensity
of the radiation, emitted between a point s0 and the position s in the emitters frame,
is given by [26, 32]

Iν(s) =
s∫

s0

exp

⎛

⎝−
s∫

s ′

αν(s
′′)ds ′′

⎞

⎠ jν(s
′)ds ′. (5.99)

Here αν is the absorption coefficient and jν the emission coefficient in the comoving
frame.
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Using the invariant intensity I = Iν/ν3 [18], the observed intensity is

Iνobs = g3 Iνem , (5.100)

where the relativistic generalized redshift factor g := νobs
νem

was introduced. The flux
F is the quantity observed

dFνobs = Iνobs cos ϑdΩ, (5.101)

where ϑ describes the angle between the normal of the observers screen and the
direction of incidence and Ω gives the solid angle in which the observer sees the
light source [26].

This emission model considers a geometrically thin, infinite accretion disk, pro-
posed by Page and Thorne [33]. The intensity profile is strongly dependent on the
metric used and some modifications have to be done. Fortunately most of the results
of [33] can be inherited and only at the end one has to insert the modified metric.
Equation (12) in [33]

f = −ω|r (E − ωLz)
−2

r∫

rms

(E − ωLz)Lz |r dr (5.102)

builds the core for the computation of the flux [33]

F = Ṁ0

4π
√−g

f. (5.103)

Ṁ0 is the mass flux through the disk. Assuming Ṁ0 = 1 as done automatically in
the program published in [26], just to define the units, and observing that the square
root of the determinant of the metric

√−g is the same for both GR and pc-GR, we
see that the only difference in the flux lies in the function f given by (5.102).

Exercise 5.7 (Determinant of the metric in GR and pc-GR)

Problem. Show that for the Kerr metric
√−g is the same in GR and pc-GR.

Solution. The metric in matrix form is given by

(
gμν

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
(

1 − ψ

Σ

)
0 0 −a ψ

Σ
sin2ϑ

0 Σ
Δ

0 0
0 0 Σ 0

−a ψ

Σ
sin2ϑ 0 0

(
r2 + a2

)
sin2ϑ + a2 ψ

Σ
sin4ϑ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.(5.104)
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The only dependence on the parameter B is in ψ and Δ, which depends
on ψ .

With this, the negative determinant of the metric, called −g, is given by

− g = −Σ2

Δ

{
−
(

1 − ψ

Σ

)(
r2 + a2

)
sin2ϑ + a2 ψ

Σ
sin4ϑ

}

= −Σ2

Δ

{
−
(

r2 + a2
)(

1 − ψ

Σ

)
sin2ϑ − a2 ψ

Σ
sin4ϑ

}

= −Σ

Δ

{
−
(

r2 + a2
)

Σsin2ϑ +
(

r2 + a2
)

ψsin2ϑ − a2ψsin4ϑ
}

= −Σ

Δ
sin2ϑ

{
−
(

r2 + a2
)

Σ +
(

r2 + a2
)

ψ − a2ψsin2ϑ
}

. (5.105)

Substituting the expression of Σ leads to

− g = −Σ

Δ
sin2ϑ

{
−
(

r2 + a2
) [(

r2 + a2
)

− a2sin2ϑ
]

+
(

r2 + a2 − a2sin2ϑ
)

ψ
}

= −Σ

Δ
sin2ϑ

{
−
(

r2 + a2
) [

r2 + a2cos2ϑ
]

+
[
r2 + a2cos2ϑ

]
ψ
}

= −Σ

Δ
sin2ϑ

(
r2 + a2cos2ϑ

) [
−
(

r2 + a2
)

+ ψ
]
. (5.106)

The last factor is just −Δ, canceling the delta in the denominator. Finally we
obtain

− g = +Σsin2ϑ
(
r2 + a2cos2ϑ

)
, (5.107)

which does not have anymore a dependence on ψ and Δ, thus it is independent
of B.

Exercise 5.8 (Brief Revision of the thin-disk model of Page and Thorne)

We will not give a complete account of the model, which would be out of scope
for this chapter. A detailed and very good description is given in [33].

Page and Thorne proposed in [33] a model for an accretion disk. The
assumptions are:

(1) The central body determines the external space-time geometry and the
influence of the disk is neglected.

(2) The accretion disk lies in the equatorial plane and has infinite extension.
(3) The disk is thin, which means that the thickness Δz = 2h of the disk is

always much less than the value of the radial distance r .
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(4) There exists a time interval Δt , which is small enough that during the
external geometry of the central mass practically does not change, but that
Δt is large enough that at a given r the total mass that flows inward across
r during Δt is large compared with the typical mass contained between r
and 2r .

(5) The ansatz for the energy-momentum tensor is

Tμν = ε0 (1 + �) uμuν + tμν + uμqν + qμuν . (5.108)

where � is the specific internal energy, tμν are the tensorial components
of the stress tensor in averaged rest frame (the stress is generated through
interactions between particles in different orbits), uμ are the components
of the 4-velocity and qμ is the energy flow 4-vector orthogonal to the 4-
velocity, i.e. uμqμ = 0. The orthogonality of the energy-flow vector and
the velocity means that the particle with a given 4-velocity is moving
within the disk, while the energy is emitted perpendicular to the disk.

(6) The particles move in a circular orbital and [33] define the 4-velocity
within the disk.

(7) The energy emitted from the disk is only done through the emission of
photons, i.e. only radiation exits.

(8) One can neglect the energy and momentum transport from one region of
the disk to another one by the photons emitted from the disk’s surface.

The ε0 denotes the mass density in the accretion disk.
The flux function F(r) is defined as (see also Fig. 5.10)

F(r) = 〈qz(r, z = h)〉 = 〈−qz(r, z = −h)〉. (5.109)

The flux is only emitted into the positive z-direction at the upper surface of
the disk, while at the lower surface it is emitted in the negative z-direction.

Also a torque term appears and the time-average torque per unit circumfer-
ence acting across a cylinder at radius r , due to the stresses within the disk, is

W r
ϕ(r) =

∫ +h

−h
〈tr

ϕ〉dz. (5.110)

The tr
ϕ is the ϕ-r component of the torque tensor defined in (5.108).

In [33] one proceeds in combining the geodesic equation to obtain a relation
between the energy and angular momentum

E|r = ωL |r , (5.111)
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important for the later solution of the equations coming from conservation
laws. The lower index |r denotes the simple derivative with respect to r .

Then, the conservation laws for mass, energy and angular momentum are
used to get further equations. For example

∇ (ε0u) = 0, (5.112)

where uμ are the components of the 4-velocity in the local frame of the particle.
Starting from (5.110), an integral version of the conservation law is obtained

by integrating from r to r + Δr , z = −h until z = +h and in time from t up to
t + Δt . This surface integral results into an equation for Ṁ0, the change of
mass, or the time-averaged rate of the accretion’s mass, which is independent
of the radial distance.

The conservation of energy and angular momentum finally leads to the
differential equations

(Lz − w)|r = f Lz,

(E − ωw)|r = f E, (5.113)

with the definitions

f = −ω|r
(E − ωLz)

2 I ,

w = (E − ωLz)

−ω|r
f = i

(E − ωLz)
I ,

I =
∫

(E − ωLz) Lz|r dr + const. (5.114)

The origin of w is the torque transported within the disk, due to the collision
of particles in neighboring orbits. In this way, particles in an orbit with a larger
rotational frequency transport through collisions energy to particles in an orbit
with a lower angular frequency. In standard GR, this implies a transport from
lower r to larger r . The f is proportional to the ratio of the flux F with Ṁ0 and
w is proportional to the torque W r

ϕ divided by Ṁ0, i.e. there is a normalization
to the unknown value Ṁ0.

Equation (5.113) can be solved by combining them, giving

Lz|r −
(

ω|r Lz

(E − ωLz)
2 I + 1

(E − ωLz)I|r

)
= f Lz . (5.115)
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The interpretation, given in [33], for the different terms in (5.115) is, that
the first term describes the angular momentum transported by the mass through
the disk, the second term (in the parenthesis) describes the angular momentum
transported through the mechanical stresses.

The interesting part is the flux calculated. The normalized flux f is taken,
from which F can be deduced. The solution is given in (5.114), where still the
integration limits have to be defined. In GR, the lower integration limit is given
by the last stable orbit, from which on the energy within the disk is transported
further outside, until reaching r , which the position of the emission by light.
Thus in standard GR

f = −ω|r (E − ωLz)
−2
∫ r

lso
(E − ωLz) Lz|r dr, (5.116)

where the index “lso” refers to the last stable orbit, also called ISCO (Innermost
Stable Circular Orbit).

In pc-GR this is changed, because a maximum in ω appears. At the max-
imum, two neighboring orbitals have nearly the same speed, thus, no energy
and torque is transported. From this point on (rωmax ), energy and torque are
transported to larger radial distances, because at r = rωmax the orbital speed is
larger than for r > rωmax . But also this orbital speed is larger than for r < rωmax ,
thus from r = rωmax energy and torque is also transported to lower values of
r . When the flux in (5.114) is calculated, one has to take this into account,
leading to

for r > rωmax : f = −ω|r (E − ωLz)
−2

∫ r

rωmax

(E − ωLz) Lz|r dr,

for r < rωmax : f = −ω|r (E − ωLz)
−2

∫ rωmax

r
(E − ωLz) Lz|r dr.

(5.117)

This division into two cases is necessary, because otherwise the flux would
be negative, due to the derivative in ω in r , which changes sign at the point
r = rωmax .

For more details, please consult [33].

In addition to the assumptions made by [33] we have to include the further assump-
tion that the stresses inside the disk carry angular momentum and energy from faster
to slower rotating parts of the disk (see Exercise 5.8). Physically, this can be under-
stood as follows: In standard GR, for two neighboring orbitals, the inner one rotates
faster. Colliding with particles just outside, energy is transferred to orbits at larger
r , which can be described by torques. In pc-GR there s a distinct orbit, namely the
one with maximal orbital frequency. There, two neighboring orbitals have nearly the
same orbital speed and, thus, no collisions appear and no energy is transferred. Thus,
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<qz(r,z=−h)>

<qz(r,z=h)>

Fig. 5.10 Schematic illustration of an accretion disk. The flux function is indicated by the arrows
above and below the disk, showing the direction of emission

this radial distance represents a final position from which on, no further energy can
be transported. For r > rωmax energy is transported from this point outwards and for
r < rωmax it is transported inwards. Because at r = rωmax no collisions take place (or
at least are very soft) no heating happens around this point and, thus, a dark ring will
appear. In pc-GR, Eq. (5.102) then has to be modified to

f = −ω|r (E − ωLz)
−2

r∫

rωmax

(E − ωLz)Lz |r drex : thin − disk model (5.118)

where ωmax describes the orbit where the angular frequency ω has its maximum.
Equation (5.118) gives a concise way to write down the flux in the two regions (rin

describes the inner edge of an accretion disk):

1. rωmax < rin ≤ r : This is also the standard GR case, where ω|r < 0 and the flux in
Eqs. (5.102) and (5.118) is positive.

2. rin ≤ r < rωmax : Here ω|r > 0, but the upper integration limit in (5.118) is smaller
than the lower one. Thus there are overall two sign changes and the flux f is
positive again.

Thus if we consider a disk whose inner radius is below rωmax , which is the case in the
pc-GR model for a > 0.416 m, Eq. (5.118) guarantees a positive flux function f .

All quantities E, Lz, ω in (5.118) were already computed in the previous section
(see also [30]). The angular frequency ω is given in (5.98), E and Lz are given as.

L2
z = (g03 + ωg33)

2

−g33ω2 − 2g03ω − g00
,

E2 = (g00 + ωg03)
2

−g33ω2 − 2g03ω − g00
. (5.119)
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Table 5.1 Values for the
inner edge of the disks rin in
pc-GR for the parameter
B = 64/27 m3

Spin parameter a (m) rin (m)

0.0 5.24392

0.1 4.82365

0.2 4.35976

0.3 3.81529

0.4 2.99911

0.5 and above 1.334

Unfortunately the derivatives of E and Lz become lengthy in pc-GR and the integral
in (5.102) has no analytic solution anymore. Nevertheless it can be solved numerically
and thus we are able to modify the original disk model by [33] to include pc-GR
correction terms.

5.2.2 Predictions

As shown above, the concept of an ISCO is modified in the pc-GR model. For the
following results we used as the inner radius for the disks in the pc-GR case the
values depicted in Table 5.1. Values of rin for a ≤ 0.4 m correspond to the modified
last stable orbit.

The value of rin for values of a above 0.416 m is chosen slightly above the value
r = (4/3) m. (Remember that in pc-Schwarzschild this is the radial distance where
the surface of the star should be, using the minimal value of B). For smaller radii, Eq.
(5.98) has no real solutions anymore in the case of B = (64/27) m3. The same also
holds for general (not necessarily geodesic) circular orbits, where the time component
u0 = 1√

−g00−2ωg03−ω2g33

of the particles four-velocity also turns imaginary for radii

below r = (4/3) m in the case of B = (64/27) m3.
We assume that the compact massive object extends up to at least this radius. For

all simulations however we did neglect any radiation from the compact object, which
is a simplification and has to be addressed in future.

The angular size of the compact object is also modified in the pc-GR case. It
is proportional to the radius of the central object [19], which varies in standard
GR between 1 and 2 m, leading to angular sizes of approximately 10–20µas for
Sagittarius A*. The size of the central object in pc-GR is fixed at r = (4/3) m in the
limiting case for B = (64/27) m3 thus leading to an angular size of approximately
13µas.

5.2.2.1 Images of an Accretion Disk

In Fig. 5.13 we show images of infinite geometrically thin accretion disks according
to the model of [33] in certain scenarios. Shown is the bolometric intensity I [erg
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cm−2s−1ster−1] which is given by I = 1
π

F [26]. To make differences comparable,
we adjusted the scales for each value of the spin parameter a to match the scale
for the pc-GR scenario. The plots of the Schwarzschild object (a = 0.0 m) and the
first Kerr object (a = 0.3 m) use a linear scale whereas the plots for the other Kerr
objects (a = 0.6 m and a = 0.9 m respectively) use a log scale for the intensity. This
is a compromise between comparability between both theories and visibility in each
plot. One has to keep in mind, that scales remain constant for a given spin parameter
a and change between different values for a.

The overall behavior is similar in GR and pc-GR. The most prominent difference
is that the pc-GR images are brighter. An explanation for this effect is the amount
of energy which is released for particles moving to smaller radii. This energy is
then transported via stresses to regions with lower angular velocity, thus making the
disk overall brighter. In Fig. 5.11 we show this energy for particles on stable circular
orbits.

It might be at first puzzling, that the fluxes differ significantly for radii above 10 m
although here the differences between the pc-GR and standard GR metric become
negligible. However the flux f in (5.118) at any given radius r depends on an integral
over all radii starting from rωmax up to r . Thus the flux at relatively large radii is
dependent on the behavior of the energy at smaller radii, which differs significantly
from standard GR.

It is important to stress that the difference in the flux between the standard GR and
pc-GR scenarios is also strongly dependent on the inner radius of the disk. This is
due to the fact that the values for the energy too are strongly dependent on the radius,
see Fig. 5.11a. In Fig. 5.12b we compare the pc-GR and GR case for the same inner
radius. There is still a significant difference between both curves but not as strongly
as in Fig. 5.12a.

The next significant difference to the standard disk model by [33] is the occurrence
of a dark ring in the case of a ≥ 0.416. This ring appears in the pc-GR case due to the
fact that the angular frequency of particles on stable orbits now has a maximum at
r = rωmax ≈ 1.72m [30] and the disks extend up to radii below rωmax . At this point the
flux function vanishes, which was explained above: Two neighboring orbitals have
nearly the same speed and due to this collisions are soft and heating is minimal. As a
consequence, a dark ring appears in the accretion disk. Going further inside, the flux
increases again, which is a new feature of the pc-GR model. This is the reason of the
ring-like structure for a > 0.416m. Note that the bright inner ring may be mistaken
for second order effects although these do not appear as the disk extends up to the
central object.

In Fig. 5.12a we show the radial dependency of the flux function, see (5.102) and
(5.118).

For small values of a we still have an ISCO in the pc-GR case and the flux looks
similar to the standard GR flux—it is comparable to standard GR with higher values
of a. If a increases and we do not have a last stable orbit in the pc-GR case, the flux
gets significantly larger and now has a minimum. This minimum can be seen as a
dark ring in the accretion disks in Fig. 5.13.
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Fig. 5.11 Normalized energy of particles on stable prograde circular orbits. The pc-parameter B is
set to the critical value of (64/27) m3. In the pc-GR case more energy is released as particles move to
smaller radii, where the amount of released energy increases significantly in the case where no last
stable orbit is present anymore. The lines end at the last stable orbit or at r = 1.334 m, respectively.
a = 0.3 m. b = 0.3 m

Another feature is the change of shape of the higher order images. For spin values
of a ≥ 0.416m the disk extends up to the central object in the pc-GR model, as it is
the case for (nearly) extreme spinning objects in standard GR. Therefore no higher
order images can be seen in this case. The ringlike shape in Fig. 5.13 is not an image
of higher order but still parts of the original disk, as described above.
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Fig. 5.12 Shown is the flux function f from (5.102) and (5.118) for different values of a (and
B). If not stated otherwise B = (64/27) m3 is assumed for the pc-GR case. a Flux function f for
varying spin parameter a and inner edge of the accretion disk. In the standard GR case the ISCO is
taken as inner radius, for the pc-GR case see Table 5.1. b Dependence of the flux function f on the
inner radius of the disk
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Fig. 5.13 Infinite, counter clockwisely geometrically thin accretion disk around static and rotating
compact objects viewed from an inclination of 70◦. The left panel shows the original disk model
by [33]. The right panel shows the modified model, including pc-GR correction terms as described
in Sect. 5.2.1.1. Scales change between the images. The first row corresponds to the spin parameter
a = 0, which gives the result for the Schwarzschild case. The second row is for a = 0.9 m

5.2.2.2 Emission Line Profiles for the Iron Kα Line

As mentioned earlier, emission line profiles allow to investigate regions of strong
gravity. All results in this section share the same parameter values for the outer radius
of the disk (r = 100m), the inclination angle (ϑ = 40◦) and the power law parameter
α = 3 (as suggested for disks first modeled by [34]). We use this simpler model to
simulate emission lines as it is widely used in the literature and thus results are easily
comparable. The angle of ϑ = 40◦ is just an exemplary value and can be adjusted.
As rest energy for the iron Kα line we use 6.4 keV. The inner radius of the disks is
determined by the ISCO in GR and by the values in Table 5.1 for pc-GR, and varies
with varying values for a. Shown is the flux in arbitrary units. In Figs. 5.14a and 5.16b
we compare the influence of the objects spin on the shape of the emission line profile
in GR and pc-GR separately. Both in GR and pc-GR we observe the characteristic
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Fig. 5.14 Several line profiles for different values of the spin parameter a. a pc-GR. b Standard
GR

broad and smeared out low energy tail, which grows with growing spin. It is more
prominent in the case of pc-GR. The overall behavior is the same in both theories.

A closer comparison of both theories and their differences is given in Figs. 5.15
and 5.16, where we compare the two theories for different values of the spin parameter
a. For slow rotating objects (Schwarzschild limit), almost no difference is observable.
As the spin grows, we observe an increase of the low energy tail in the pc-GR scenario
compared to the GR one. The blue shifted peak however stays nearly the same.
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Fig. 5.15 Comparison between theories. The plots are done for parameter values r = 100 m for the
outer radius of the disk, ϑ = 40◦ for the inclination angle and α = 3 for the power law parameter.
The inner radius of the disks is determined by the ISCO and thus varies for varying a. a a = 0.0m.
b a = 0.3m

If we compare both theories for different values of the spin parameter a they get
almost indistinguishable for certain choices of parameters, see Fig. 5.17.

To better understand the emission line profiles we have a look at the redshift in
two ways. The redshift can be written as [14]
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Fig. 5.16 Comparison between theories. The plots are done for parameter values r = 100 m for the
outer radius of the disk, ϑ = 40◦ for the inclination angle and α = 3 for the power law parameter.
The inner radius of the disks is determined by the ISCO and thus varies for varying a. a a = 0.6 m.
b a = 0.9 m

g = 1

u0
em(1 − ωλ)

, (5.120)

where u0
em = 1√

−g00−2ωg03−ω2g33

is the time component of the emitters four-velocity,

ω is the angular frequency of the emitter and λ is the ratio of the emitted photons
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Fig. 5.17 Comparison between theories for different values for the spin parameter. The plot is done
for parameter values r = 100 m for the outer radius of the disk, ϑ = 40◦ for the inclination angle
and α = 3 for the power law parameter. The inner radius of the disks is determined by the ISCO

energy to angular momentum. Reference [35] derived an expression for photons
emitted directly in the direction of the emitters movement.

λcis =
−g03 −

√
g2

03 − g00g33

g00
(5.121)

We take this expression and use it to approximate the redshift viewed from an incli-
nation angle ϑobs as

g ≈ 1

u0
em(1 − ωλcis sin ϑobs)

(5.122)

To obtain the full frequency shift one needs in general to know the emission angle
of the photon at the point of emission, which can be obtained by using ray-tracing
techniques.

5.3 Conclusions

To conclude this chapter, several observables have been calculated, namely

• The orbital frequency of a particle in a circular motion.
• The redshift as a function of the radial distance
• The pictures of accretions disks as a function in the rotational parameter a.
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The main findings are

• A orbital frequency is lower than in GR, thought the differences become apparent
only near the Schwarzschild radius.

• There is a maximal orbital frequency in pc-GR which decreases from this point
on toward smaller r .

• The redshift in the equatorial plane is similar to GR, but the function in r is shifted
to smaller r and the redshift is not infinity but becomes very large. On the poles
this redshift is smaller.

• In the accretion disk a dark ring is predicted to appear, due to the presence of the
maximal orbital frequency.

It seems, that galactic “black holes” are not in agreement to observation, because
QPO’s do show an orbital frequency suggesting large radial distances, while the red-
shift of Fe-K lines suggest small radial distances. In pc-GR there is a good agreement.
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Chapter 6
Neutron Stars Within the Pseudo-complex
General Relativity

For convenience, in this chapterwe use natural units c = κ = 1,which are commonly
used in the field of neutron stars.

Until here, the pc-metric outside a mass distribution was considered. However,
one of the most interesting effects is encountered when a mass distribution is added,
for example inside a star. As we have seen up to now, sensible differences between
pc-GR and standard GR do only appear near the Schwarzschild radius. Therefore,
consideringnormal starswill not showanydifferences.The situation is differentwhen
compact objects like neutron stars are considered. Neutron stars are one possible
outcome of the collapse of amassive star. Once the nuclear fuel is consumed, massive
stars undergo a supernova explosion where the outer layers of the star are blown off.
Gravity makes the inner region to collapse in such a way that protons and electrons
combine to form neutrons.

In some cases sufficient matter remains in the central object, which is formed
during the collapse, that it continues to collapse to a black hole, at least according
to the standard theory. The existence of black holes has become commonly accepted
despite the fact that the existence of event horizons cannot be proved from observa-
tional data [1].

In the former chapters we stressed our philosophical point of view, that in a theory
no singularities are allowed to appear, not even nearby coordinate singularities. If
such singularities are present, it is rather a sign of the incompleteness of such a
theory. We argue that no black hole should exist and that large masses, which in the
standard theory would form a black hole, will resemble huge, heavily compressed
stars. If these stars have an inner structure as a neutron star has to be determined
yet. We can not exclude exotic stars, like quark stars or stars with an internal matter
structure not known up to now! This is beyond the current theory of GR and pc-GR.

We have proposed an alternative to the black hole, namely that the Einstein equa-
tions have an additional, repulsive contribution due to the accumulation of dark
energy. Dark energy is used in order to explain the present phase of acceleration of
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184 6 Neutron Stars Within the Pseudo-complex General Relativity

the universe and there is no argument to exclude the accumulation of dark energy
aroundmasses.We gave arguments in favor of it in the former chapters and identified
the accumulation of the dark energy due to vacuum fluctuations. It is reasonable to
expect that this component, commonly called dark energy, also affects smaller scale
phenomena like the gravitational collapse of bound objects.

Let us first shortly mention some contributions, which also include dark energy, in
order to emphasize later on the differences to our theory: Amodel of dark energy stars
has been formulated in [2] where the event horizon is proposed to be a quantum phase
transition analogous to the critical point of a Bose fluid. Another model with similar
characteristics is the gravitational vacuum star (“gravastar”) model [3]. A phase
transition for the quantum vacuum takes place near the location where the horizon is
expected to be. The model is a static, spherical symmetric five layer solution of the
GR equations. It assumes the existence of a compact object with an interior de Sitter
geometry and an equation of state p = −εwhich ismatched to a finite thickness shell
with p = ε. The latter is then matched to an exterior Schwarzschild vacuum solution
and the three regions are connected by two thin anisotropic layers with distributions
of surface tension and surface energy density. The solution presents no singularities
and no event horizons. A simplified version of this model is studied in [4] where the
thick shell and the two thin ones are combined into a single thin one which matches a
de-Sitter interior with a vacuum Schwarzschild exterior. The simplicity of this model
allows for a full dynamical analysis where stability is found for some physically
reasonable equations of the state of the thin shell. In [5] similar models exhibiting
a continuous pressure profile, without the presence of thin shells are studied. It is
found that gravastars cannot be perfect fluids, the presence of anisotropic pressures is
unavoidable. Related models have also been analyzed in [6, 7] and a generalization
of the gravastar picture has been given in [8].

As pointed out in [9] the conservation of energy implies a constant energy density
for a fluid of the cosmological constant type in the absence of matter or other fields.
Thus, dark energy must be coupled to matter in order to form a condensate. This can
be achieved by a direct proportionality between these two components. In our theory
such a relation has been chosen but negative values of the coupling parameter have
been taken. The theoretical possibility of the existence of negative energy densities
have been described in [10–13] where vacuum fluctuations have been discussed in
presence of matter using different approaches for the vacuum. A semi-classical study
of the gravitational collapse outcome has been carried in [14] where the standard
black hole picture is questioned as the appropriate end point of a realistic collapse.
The possibility of negative energy is also mentioned.

In the present chapter we mainly copy the results of our calculations for neutron
stars, which were published in [15]. For simplicity, non-rotating stars are considered,
i.e., the pc-Schwarzschild solution with mass present (please, refer to Chap.3).

http://dx.doi.org/10.1007/978-3-319-25061-8_3
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6.1 Theoretical Background

Within the pc-GR theory, the Einstein equations include an extra term associated to
the nature of space-time itself (see Chap.3). This term is believed to halt the collapse
of matter distributions avoiding the standard GR predictions of black hole creation as
the final stage [14]. In order to proceedwithin a familiar framework, we represent this
term by an energy momentum tensor

(
T Λ

)
μν

which describes its contribution. The
physical origin of this term may arise from micro-scale phenomena where vacuum
fluctuations could become considerable under certain conditions [14].

6.1.1 Interior Region

With the presence of a standard matter distribution characterized by an energy
momentum tensor (T m)μν the real projection (which has to be done within the frame-
work of pc-GR) of the modified Einstein equations takes the form

R μi
ν − 1

2
g μi

ν Ri = 8π
(
T Λ

) μi

ν
+ 8π

(
T m

) μ

ν
, (6.1)

(i stands for interior) where R μ
ν denotes the real projection of the Ricci tensor, R

the real projection of the Ricci scalar and g μ
ν the corresponding projection of the

metric. Within the scope of this chapter, only static spherical symmetric objects will
be analyzed:

ds2 = −eνi (r)c2dt2 + eλi (r)dr2 + r2(dϑ2 + sin2 ϑdϕ2). (6.2)

For both components, the isotropic perfect fluid assumption will be considered as
well: (see Exercise6.1),

(
T Λ

) μi

ν
=

⎡

⎢⎢
⎣

−εΛi 0 0 0
0 pΛi 0 0
0 0 pΛi 0
0 0 0 pΛi

⎤

⎥⎥
⎦ , (6.3)

(
T m

) μ

ν
=

⎡

⎢
⎢
⎣

−εm 0 0 0
0 pm 0 0
0 0 pm 0
0 0 0 pm

⎤

⎥
⎥
⎦ , (6.4)

where ε and p denote energy density and pressure respectively. Given the symmetry,
both are going to be functions only of the radius. The Ricci tensor and the Ricci
scalar are expressed as usual [16] (see also Chap.3 on the pc-Schwarzschild metric):

http://dx.doi.org/10.1007/978-3-319-25061-8_3
http://dx.doi.org/10.1007/978-3-319-25061-8_3
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R00 = 1

2
eν−λ

[
ν

′′ + ν
′2

2
− ν

′
λ

′

2
+ 2ν

′

r

]
, (6.5)

R11 = −1

2

[
ν

′′ + ν
′2

2
− ν

′
λ

′

2
− 2λ

′

r

]
, (6.6)

R22 = −(
e−λr

)′ + 1 − r
(λ

′ + ν
′

2

)
e−λ, (6.7)

R33 = sin2 ϑRϑϑ (6.8)

R = −e−λ

[
ν

′′ − ν
′
λ

′

2
+ ν

′2

2
+ 2ν

′

r
− 2λ

′

r
+ 2

r2

]
+ 2

r2
. (6.9)

(“i”, for “interior”, will be removed temporarily and then added at final expressions).
Using expressions (6.3) and (6.4) together with the previous expressions for the Ricci
tensor and scalar, Eq. (6.1) can be split into components.After someminor algebraical
work (see Exercise6.2) the following expression is obtained for the temporal one:

e−λ

[

−λ
′

r
+ 1

r2

]

− 1

r2
= −8πεm − 8πεΛ. (6.10)

Proceeding analogously a similar relation is obtained for the radial component:

e−λ

[
ν

′

r
+ 1

r2

]

− 1

r2
= πpm + 8πpΛ, (6.11)

and also for the angular one:

e−λ

[
ν

′′

2
− ν

′
λ

′

4
+ ν

′2

4
+ ν

′

2r
− λ

′

2r

]
= 8πκpm + 8πpΛ. (6.12)

After some transformations, Eq. (6.10) can be used to express the radial metric coef-
ficient:

e−λi (r) = 1 − 2mm(r)

r
+ 2mΛi (r)

r
, (6.13)

where mm and mΛi are defined by:

mm(r) = 4π
∫ r

0
r ′2εm(r ′) dr ′, (6.14)

mΛi (r) = −4π
∫ r

0
r ′2εΛi (r

′) dr ′. (6.15)
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Exercise 6.1 (Form of the energy-momentum tensor of a perfect isotropic
fluid)

Problem. Show that for an isotropic fluid the energy-momentum tensor has the
structure as given in (6.3) and (6.4). Use a system were the only non-vanishing
component of the 4-velocity is u0.

Solution.
The dispersion relation is given by

gμνuμuν = −1. (6.16)

In a system were only u0 is different from zero, we have

g00
(
u0

)2 = −1, (6.17)

from which follows that, considering that g00 is negative,

u0 = 1√| g00 | . (6.18)

For the u0 follows

u0 = g00u0 = −√| g00 |. (6.19)

The energy-momentum tensor for an isotropic ideal fluid is given by

T ν
μ = (ε + p) uμuν + pgν

μ. (6.20)

with gν
μ = δν

μ.
With this, for T 0

0 and T 1
1 we have

T 0
0 = (ε + p) u0u0 + p = (ε + p) (−1) + p = −ε,

T 1
1 = (ε + p) u1u1 + p = p, (6.21)

where for T 1
1 we used that u1 = u1 = 0. For the remaining two components

the same holds
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Exercise 6.2 (Some proofs)

Problem. Proof (6.10)–(6.13).

Solution. The left hand side of the Einstein equations, with μ = ν is given for
the temporal part by

G0
0 = R 0

0 − 1

2
R = 1

2

(
R 0

0 − R 1
1 − R 2

2 − R 3
3

)

= 1

2

(
g00R00 − g11R11 − g22R22 − g33R33

)

= −1

2

(
e−νR00 + e−λR11 + 1

r2
R22 + 1

r2sin2ϑ
R33

)
. (6.22)

The last two terms can be joint because R33 = sin2ϑR22.
The same for μ = ν = 1, 2:

G 1
1 = 1

2

(
e−λR11 + e−νR00 − 1

r2
R22 − 1

r2sin2ϑ
R33

)
,

G 2
2 = 1

2

(
1

r2
R22 + e−νR00 − e−λR11 − 1

r2sin2ϑ
R33

)
.

(6.23)

Let us start with the 00-component. Substituting into it (6.5)–(6.8), we
obtain

− 1
2

{
e−λ 1

2

(
ν ′′ + (ν ′)

2

2 − ν ′λ′
2 + 2ν ′

r

)

−e−λ 1
2

(
ν ′′ + (ν ′)

2

2 − ν ′λ′
2 − 2λ′

r

)

− 2
r2

(
re−λ

)′ + 2
r2 − 2

r

(
λ′+ν ′
2

)
e−λ

}
, (6.24)

were we made use of the relation between R33 and R22. Most terms cancel and
what remains is

1

r2
(
re−λ

)′ − 1

r2
= e−λ

[
−λ′

r
+ 1

r2

]
− 1

r2
. (6.25)

This gives the left hand side of (6.10). The right hand side is simply obtained,
using the definition of the energy momentum tensors of mass and dark energy.
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We proceed in a similar way for the radial component (6.11): The compo-
nent G 1

1 of the Einstein tensor is given by

G 1
1 = 1

2

(
R 1

1 − R 0
0 − R 2

2 − R 3
3

)

= 1

2

(
e−λR11 + e−νR00 + 1

r2
R22 + 1

r2sin2ϑ
R33

)
. (6.26)

UsingR33 = sin2ϑ R22 and substituting into it (6.5)–(6.8), we get

− e−λ

4

(
ν ′′ + (ν ′)

2

2 − ν ′λ′
2 − 2λ′

r

)

+ e−λ

4

(
ν ′′ + (ν ′)

2

2 − ν ′λ′
2 + 2ν ′

r

)

+ 2
2r2

[(
e−λr

)′ − 1 + r
(

λ′+ν ′
2

)
e−λ

]
, (6.27)

where in the last term the factor 2 in the numerator originates in the symmetry
between the 2 and 3 diagonal component. Several terms cancel in (6.27) and
what remains is

e−λ

r

(
λ′ + ν ′) + e−λ

(
−λ′

r
+ 1

r2

)
− 1

r2
= e−λ

(
ν ′

r
+ 1

r2

)
− 1

r2
,

(6.28)

which is the left hand side of (6.11). The right hand side is a direct result of
the definition of the energy-momentum tensors for the baryonic and the dark
energy mass.

What remains is (6.12): The Einstein tensor element G 2
2 is given by

G 2
2 = 1

2

(
R 2

2 − R 0
0 − R 1

1 − R 3
3

)

= 1

2

(
1

r2
R22 + e−νR00 − e−λR11 − 1

r2sin2ϑ
R33

)
. (6.29)

Using R33 = sin2ϑR22, we get

G 2
2 = 1

2
− (

e−λR11 + e−νR00
)
. (6.30)
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Substituting into it (6.5) snf (6.6), we obtain

e−λ

4

(
ν ′′ + (ν ′)

2

2 − ν ′λ′
2 − 2λ′

r

)
+ e−λ

4

(
ν ′′ + (ν ′)

2

2 − ν ′λ′
2 + 2ν ′

r

)

= e−λ

2

[
ν ′′ + (ν ′)

2

2 − ν ′λ′
2 + (ν ′−λ′)

r

]
, (6.31)

which is the left hand side of (6.12). The right hand side is again the direct
result of the definitions of the energy momentum tensors for the baryonic and
dark energy part.

In order to obtain (6.13), we start from (6.10), multiply by r2, use e−λ
(−rλ′ + 1

)
=

(
re−λ

)′
and integrate from 0 to r , which gives

(
re−λ

) − r = −8π

c2

∫ r

0
r2 (εm + εΛi ) dr = −2mm + 2mΛi , (6.32)

where the definition of (6.14) and (6.15) have been used.
Dividing this equation by r gives the desired result of (6.13).

The temporalmetric coefficient can be related to the radial one ifwe subtract (6.11)
from (6.10) and make subsequent changes. The obtained relation follows:

eνi (r) = e−λi (r)e
fi (r)+Ci

2 , (6.33)

where fi (r) is defined by:

fi (r) = 8π
∫ r

0
r ′eλi (r ′)

×
(

εm(r ′) + εΛi (r
′) + pm(r ′) + pΛi (r

′)
)

dr ′, (6.34)

and the constant Ci is used for the sake of continuity (see Sect. 6.1.5). Hydrostatic
equilibrium equations are derived by going further with the algebraical transforma-
tions and including (6.12). They can be expressed as the following coupled system
of differential equations:

dpm

dr
= −

(
εm(r) + pm(r)

)

r
[
r − 2mm(r) + 2mΛ(r)

]

×
[

mm(r) − mΛ(r) + 4πr3(pΛ(r) + pm(r))

]
, (6.35)
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dpΛi

dr
= −

(
εΛi (r) + pΛi (r)

)

r
[
r − 2mm(r) + 2mΛi (r)

]

×
[

mm(r) − mΛi (r) + 4πr3(pΛi (r) + pm(r))

]
. (6.36)

The last equations were derived in Chap.3 of this book, leading to (3.53) of this
chapter. In order to obtain the above equations, one has to double (3.53), one for the
baryonic and the other for the dark energy pressure and on the right hand side of
(51) the pressure by the sum of the baryonic and the dark energy pressure. One also
assumes that the only interaction between the two fluids is the gravitation, allowing
this separation.

When one goes back to standard GR, Eqs. (6.35) and (6.36) reduce to the standard
Tolman-Oppenheimer-Volkoff (TOV) equations [17, 18]. These equations, together
with the derivative of (6.14), (6.15) form a systemwhich can be closed only if another
couple of relations are given. The current study considers an equation of state for the
standard matter (i.e. a relation between pm and εm) and a linear coupling between
baryonic and Λ-term energy densities.

6.1.2 Equation of State for Standard Matter

In recent decades many different equations of state for star matter have been devel-
oped and employed in the study of compact star properties. These equations of state
originate from different model assumptions for ground state matter and dense mat-
ter. Thus, in case the three-flavor quark matter is the real ground state of strongly
interacting matter, the correct equation of state would be that of a strange quark star.
The more conventional picture assumes nuclear matter to constitute the ground state
of strongly interacting matter. In this scenario compact stars consist of hadrons and,
depending on parameters, might contain a mixed phase of quarks and hadrons in the
core of the star, which is then termed hybrid star. Themost simple descriptions of neu-
tron stars only take into account neutrons and some protons and electrons as degrees
of freedom. However, as is known from hyper nuclear physics at least the Λ baryon
is bound with about 30 MeV in nuclear matter, thus exhibiting attraction in matter,
and most likely the � hyperon is bound as well. Therefore any realistic hadronic
model of neutron star matter should also contain hyperons as degrees of freedom
that exhibit realistic optical potentials. An approach that fulfills those requirements
was discussed for the case of star matter in [19]. The underlying framework is a
flavor-SU(3) effective chiral model that includes all low-lying baryonic and mesonic
SU(3) multiplets including the strangeness degree of freedom, thus allowing for the
possibility of hyperons in the star. Details of the model are described in various
publications [19–22]. Baryon masses are generated by their coupling to the scalar
mesonic fields. As the fields change in the dense medium so do the baryon masses,
effectively generating a scalar attraction. The effective masses m∗

i read

http://dx.doi.org/10.1007/978-3-319-25061-8_3
http://dx.doi.org/10.1007/978-3-319-25061-8_3
http://dx.doi.org/10.1007/978-3-319-25061-8_3
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m∗
i = giσ σ + giζ ζ + giδδ + δmi , (6.37)

including couplings to the scalar fields (σ, δ, ζ ) whose expectation values represent
the scalar quark condensates, i.e. σ ∼ 〈uu + dd〉, ζ ∼ 〈ss〉, and δ ∼ 〈uu − dd〉,
with an additional mass term δmi that breaks chiral and SU(3) symmetry explicitly.
The various couplings contained in the equation result from the SU(3) coupling
scheme [20]. The scalar fields σ and ζ attain non-zero vacuum expectation values
due to their self interaction [19]. Following (6.37) this generates the baryonic masses
in the vacuum, while the change of the scalar fields at finite density or temperature
reduces the masses and thus generate scalar attraction. The corresponding effective
baryonic chemical potentials read

μ∗
i = μi − giωω − giρρ − giϕϕ, (6.38)

where the different fields ω, ρ and ϕ are the analogous vector fields to the scalar
σ, δ, and ζ , respectively. These fields (in mean-field approximation) can have non-
zero values in dense matter, which shifts the effective chemical potentials of the
particles, generating a repulsive interaction. As in other non-chiral relativistic nuclear
models the interplay between the scalar attraction and vector repulsion leads to the
binding of nuclear matter, yielding realistic values for the properties of saturated
matter [19]. The maximum star mass in this approach for standard general relativity
is M = 2.06M� [19]. Thus, the model results are in very good agreement with the
recent observations of neutron stars with 2 solar masses [23, 24].

Themodel equation of state (EoS), i.e. the relation between pressure p and energy
density ε, that is the defining quantity for the star masses and radii can be seen in
Fig. 6.1. For comparison the stiffest EoS with p = ε and an EoS for free masses
particles p = ε/3 is shown. The latter one would correspond to a bagmodel equation
of state for quark stars, which in addition would also include a constant bag pressure
that can be fixed to shift the EoS and thus change the resulting star masses and radii.

6.1.3 Equation of State for the Λ-term

As mentioned before, a quantum or semi-classical theory is needed in order to prop-
erly describe the vacuum fluctuations in the presence of matter, see [10–13] where
different vacuum approaches are used on a Schwarzschild background. Within a
classical theory one can only but assume an expression for the energy density. For
the sake of simplicity a linear relation between εΛ and εm is proposed:

εΛ = αεm . (6.39)

A relation of this kind is employed in [9] where positive values for α are used and
the linear relation does not hold for the whole distribution but only for some range
where the energy density is higher than some critical value. Here five negative values
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Fig. 6.1 Equation of State for star matter resulting for the standard matter component. Also shown
are the EoS for p = ε and p = 1

3 ε

of α are studied and the relation will be used for all values of εm . These values also
satisfy |α| < 1 in order to maintain a positive total energy density.

It is expected that the coupling between matter and dark energy, as given in (6.39)
is too simplistic. However, this is all what we can do for the moment, due to the
absence of a quantized theory of gravitation. A future possibility is to apply semi-
classical Quantum Mechanics, i.e. with a fixed back-ground metric, and resolve the
Einstein equations in the presence of mass. This is a difficult endeavor and would
break the scope of this book, also because these calculations have not been done yet.

6.1.4 Exterior Shell

The Λ-term pressure pΛ does not vanish at r = R0, it decreases from that point until
it does vanish at some larger distance. As previously mentioned, pc-GR predicts the
presence of a term (expressed as an energy momentum tensor) even when normal
baryonic matter is absent (e stands for exterior):

R μe
ν − 1

2
g μe

ν Re = 8πT Λ μe
ν . (6.40)
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The failure of isotropic pressures within the gravastar context has been discussed
in [5] where a continuous radial pressure profile has also been employed avoiding
the need of introducing infinitesimally thin shells [9, 25–27]. Following these ideas
our exterior shell is chosen to have a non-isotropic energy momentum tensor:

T Λ μe
ν =

⎡

⎢⎢
⎣

−εΛe 0 0 0
0 pΛre 0 0
0 0 pΛϑe 0
0 0 0 pΛϑe,

⎤

⎥⎥
⎦ (6.41)

where r and ϑ stand for radial and tangential respectively. If the analysis given
between (6.1) and (6.36) is reproduced for the former energy momentum tensor,
analogous expressions to the interior quantities are obtained for the exterior region:

e−λe(r) = 1 − 2m

r
+ 2mΛe(R0, r)

r
, (6.42)

where:

mΛe(R0, r) = −4π
∫ r

R0

r
′2
εΛe(r

′
) dr

′
, (6.43)

m being some integration constant and R0 a specific distance from the center (more
details in Sect. 6.1.5). The exterior temporal metric coefficient is

eνe(r) = e−λe(r)e
fe (r)+Ce

2 , (6.44)

where Ce is used for the sake of continuity (see Sect. 6.1.5). The hydrostatic equi-
librium equations for this region have now an extra term related to the non-isotropy
(See also (3.53)):

dpΛre

dr
= −

(
εΛe(r) + pΛre(r)

)

r
[
r − 2m + 2mΛe(r)

]

×
[

m − mΛe(r) + 4πr3 pΛre(r)

]
+ 2(pΛϑe − pΛre)

r
. (6.45)

Analogously to the interior case, complementary relations are needed in order
to close the system of differential equations (6.43), (6.45). In the current case two
relations are also needed. Different models can in principle be proposed as long as
they satisfy two constrains: radial pressure continuity and strong fall-off dependence
with distance. The former is related to our will of avoiding infinitesimally thin shells
and the latter comes in order to satisfy standard Schwarzschild solutions at large
enough distances. In the current study two models are considered:

http://dx.doi.org/10.1007/978-3-319-25061-8_3
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• Model A: Continuous energy density at R0.
The following expression:

εΛe(r) = εΛi R0

(
R0

r

)5

+ B

8π

(r − R0)

r6
(6.46)

where εΛi R0 = εΛi (R0) (units have been already expressed with κ = c = 1) and
B is in arbitrary constant makes theΛ-term energy density to be continuous at R0.
Note, that the fall off in the radial distance is stronger than proposed earlier.

• Model B: Discontinuous energy density at R0.
Here the following profile is proposed:

εΛe = B

8πr5
, (6.47)

where B is again an arbitrary constant. The fall off in the radial distance is here
the same as proposed earlier.

Each of these possibilities will be complemented with a tangential pressure of the
form:

pΛϑe(r) = PΛϑ R0

(
R0

r

)5

, (6.48)

where PΛϑ R0 = pΛϑ i (R0). Both energy density and tangential pressure do not have
to be necessary continuous functions of the radius [5].Within our study discontinuity
is explored only for the former. The tangential pressure has been always considered
continuous and with a similar dependence to that of the energy density.

6.1.5 Boundary Conditions

Discontinuous equations of state can lead in general to discontinuous metric coef-
ficients and their first derivatives [27]. The presence of a rather regular matching
between the different regions (instead of discontinuous radial pressure profiles which
lead to infinitesimally thin shells) allows us to work with metric coefficients which
are going to behave continuously at the boundaries. There are going to be two relevant
distances: the first is where the baryonic pressure vanishes (denoted by R0) and the
second where the pc-metric practically does not differentiate itself from the standard
Schwarzschild one (denoted by RΛ, at this point the local effect of the Λ-term can
be neglected). The radial metric coefficients can be determined by demanding from
them to be equal at R0. With (6.13), (6.42) m is restrained to be

m = Mm − MΛi (6.49)
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with

Mm = mm(R0), MΛi = mΛi (R0), (6.50)

where mΛe(R0, R0) = 0 was used.
At sufficient large distance (bigger than RΛ) it needs to behave Schwarzschild-

alike, i.e. it should take the following form:

e−λe(r) = 1 − 2m
′

r
r > RΛ, (6.51)

where m
′
has to be constant (whose value will depend on the model used). At these

large enough distances the well known Schwarzschild relation eν(RΛ) = −e−λ(RΛ)

should be restored. Then, from (6.44):

Ce = − fe(RΛ). (6.52)

With this value equating now between (6.44) and (6.33) at R0:

Ci = − fe(R1) − fi (R0). (6.53)

The value of m given by (6.49) was used as well as the property fe(R0) = 0. Using
these values for Ci and Ce the temporal metric coefficients, from the interior and the
exterior respectively, can be expressed as:

eνi (r) = e−λi (r)e
fi (r)− fe (R1)− fi (R0)

2 , (6.54)

eνe(r) = e−λe(r)e
fe (r)− fe (R1)

2 . (6.55)

6.1.6 Energy Conditions

The Einstein equations of GR can be in principle satisfied for a large number of
energy-momentum tensors. The energy conditions (EC) precisely reduce their arbi-
trariness by making some “standard physics” demands for the energy-momentum
tensor Tμν . Although the violation of these conditions does not mean the violation
of energy conservation, it is always convenient to analyze to what extent they are
satisfied. It follows a short summary with their content according to [28]:

• Weak Energy Condition (WEC):
Tμν tμtν ≥ 0 for all timelike vectors tμ.

• Null Energy Condition (NEC):
Tμνlμlν ≥ 0 for all null vectors lμ.
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• Dominant Energy Condition (DEC):
WEC: Tμν tμtν ≥ 0 for all timelike vectors tμ.
T μν tμ non-spacelike vector.

• Null Dominant Energy Condition (NDEC):
As the DEC but for null vectors instead of timelike ones.

• Strong Energy Condition (SEC):
Tμν tμtν ≥ 1

2T λ
λtσ tσ for all timelike vectors tμ.

As time has passed different judgments about the EC have been formulated and some
of them have been partially or totally abandoned [29]. In the current study only the
first four will be analyzed. Depending on the properties of the energy-momentum
tensor Tμν the EC can be expressed as specific restrictions on the values of both the
energy density and pressure (The EC will be proven in Exercise 6.3 for isotropic
fluids and in 6.4 for anisotropic fluids.).

• Isotropic fluids:
The energy-momentum tensor Tμν for an isotropic fluid can be expressed as [28]:

Tμν = (ε + p)uμuν + pgμν (6.56)

where ε, p, uμ, gμν stand for energy density, pressure, four-velocity and metric
coefficients, respectively. In this case the EC take the following form [28]:

– WEC:
ε ≥ 0, (6.57)

ε + p ≥ 0. (6.58)

– NEC:
Special case of the WEC where only (6.58) must be satisfied.

– DEC:
The WEC condition together with the additional demand of the vector T μν tμ
being non-spacelike can be expressed as:

ε ≥ | p | . (6.59)

– NDEC:
In addition to the energy density and pressure values allowed by the DEC (6.59)
this condition also allows negative energy densities as long as they satisfy
p = −ε.

• Anisotropic fluids:
When fluids are anisotropic their energy-momentum tensor Tμν can be expressed
as [30]:

Tμν = (ε + pϑ)uμuν + pϑ gμν + (pr − pϑ)kμkν, (6.60)

where ε, pϑ , pr , uμ, gμν denote energy density, tangential pressure, radial pressure,
four-velocity and metric coefficients, respectively. The vector kμ is an unitary
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space-like vector in the radial direction. In this case the EC take the following
form [10]:

– WEC:
ε ≥ 0, (6.61)

ε + pϑ ≥ 0, (6.62)

ε + pr ≥ 0. (6.63)

– NEC:
Special case of the WEC where only (6.62), (6.63) must be satisfied.

– DEC:
The WEC condition together with the additional demand of the vector T μν tμ
being non-spacelike can be expressed as:

ε ≥ |pϑ |, (6.64)

ε ≥ |pr |. (6.65)

– NDEC:
In addition to the energy density and pressure values allowed by the DEC (6.64),
(6.65)) this condition also allows negative energy densities as long as they satisfy
pϑ = −ε and pr = −ε.

Exercise 6.3 (Energy conditions for an isotropic fluid)

Problem. Derive the relations between the pressures and densities for the
WEC, NEC, DEC and NDEC, assuming an isotropic fluid.

Solution. The energy-momentum tensor is represented as:

Tμν = (ε + p) uμuν + pgμν. (6.66)

Let tμ be an arbitrary time-like vector and let us express it as a linear combi-
nation of the four-velocity uμ and an arbitrary null vector lμ:

tμ = auμ + blμ. (6.67)

Let us now see which values of a, b assure tμ will remain being time-like:

gμν tμtν < 0

gμν (auμ + blμ) (auν + blν) < 0

gμν

(
a2uμuν + 2abuμlν + b2lμlν

)
< 0. (6.68)
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Taking into account that gμνuμuν = −1 and gμνlμlν = 0 the condition for the
time-like character becomes

− a2 + 2abgμνuμlν < 0

or a2 − 2abgμνuμlν > 0, (6.69)

an equation which will be of importance later on.

(a) WEC:

Tμν tμtν = Tμν

[
a2uμuν + 2abuμlν + b2lμlν

]

Tμνuμuν = (ε + p)
(
uμuμ

)2 + pgμνuμuν = ε

Tμνuμlν = (ε + p)
(
uμuνuμlν

) + pgμνuμlν = −εuμlμ

Tμνlμlν = (ε + p)
(
uμuνlμlν

) + pgμνlμlν = (ε + p)
(
uμlμ

)2
. (6.70)

With the last three equations in (6.70) substituting into the first one in (6.70)
gives and using (6.69):

ε
[
a2 − 2abgμνuμlν

] + (ε + p) b2
(
uμlμ

)2 ≥ 0. (6.71)

If we want (6.71) to be satisfied for all a and b, then:

ε ≥ 0

ε + p ≥ 0. (6.72)

(b) NEC:
This condition is given by (6.70) and therefore is satisfied only by the second

equation in (6.72).

(c) DEC:
Includes WEC, i.e. equations in (6.72) must be satisfied. In addition to that

it also requires the vector T μν tμ to be non space-like, or equivalently:

TμνT ν
λtμtλ ≤ 0

[
(ε + p) uμuν + pgμν

] [
(ε + p) uνuλ + pδν

λ

]
tμtλ ≤ 0

[(
ε2 − p2) uμuλ + p2gμν

]
tμtλ

= − (
ε2 − p2) (

uμtμ
)2 + p2gμλtμtλ ≤ 0. (6.73)
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If we want the last equation in (6.73) to be satisfied for all tμ then (remember
that gμλtμtλ = tμtμ < 0):

|ε| ≥ | p | . (6.74)

Equations (6.74) and (6.72) can be summarized by:

ε ≥ | p | . (6.75)

Equivalently, this condition can be expressed as:

(ε + p) (ε − p) ≥ 0 . (6.76)

(d) NDEC:
It is like DEC but for null vectors. Therefore the second equation in (6.72)

must be satisfied but densities may now be negative. From the second equation
in (6.73), now with null vectors, we have

(
ε2 − p2) (

uμlμ
)2 ≤ 0, (6.77)

which is then satisfied for all uμ, lν if (6.74) (or (6.76)) is satisfied. The same
values of pressure and energy density as in DEC are included plus those with
negative energy density as long they satisfy p = −ε.

Exercise 6.4 (Energy conditions for an anisotropic fluid)

Problem. Derive the relations between the pressures and densities for the
WEC, NEC, DEC and NDEC, using an anisotropic fluid.

Solution. The energy-momentum tensor is now given by:

Tμν = (ε + pϑ) uμuν + pϑ gμν + (pr − pϑ) kμkν . (6.78)

where uμuμ = −kνkν = −1, uηkη = 0.
As you can check this tensor satisfies the diagonal structure.
Let us express again an arbitrary time-like vector tμ according to (6.79),

tμ = auμ + blμ, (6.79)
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and analyze then each one of the energy conditions:

(a) WEC:

Tμν tμtν = a2Tμνuμuν + 2abTμνuμlν + b2Tμνlμlν . (6.80)

Each of these terms gives the following results:

a2Tμνuμuν = a2ε

2abTμνuμlν = −2abε (uνlν)

b2Tμνlμlν = b2
[
(ε + pϑ) (uνlν)2 + (pr − pϑ)

(
kμlμ

)2]
. (6.81)

Then the following relation is obtained:

ε
[
a2 − 2ab (uνlν)

] + (ε + pϑ) b2 (uνlν)2 + (pr − pϑ) b2
(
kμlμ

)2 ≥ 0.

(6.82)

Fromwhere one could say the conditions for satisfyingWECare (remember
from the former exercise that the factor a2 − 2ab (uνlν) is positive):

ε ≥ 0,

ε + pϑ ≥ 0,

pr − pϑ ≥ 0. (6.83)

These relations are correct and they assure (6.82) is satisfied for all values
of a, b. These relations can be converted to relations which are only between
the energy density and the radial pressure (in principle one should never make
such a conversion since the former relations are the ones which are directly
obtained within this analysis). The argument is given by the inequalities: If
ε + pϑ ≥ 0 then pϑ ≥ −ε. On the other hand if pr ≥ pϑ , then pr ≥ −ε will
be also satisfied. Therefore (6.83) can be replaced by:

ε + pr ≥ 0. (6.84)

(b) NEC:
This condition is given by the third equation in (6.81) which only needs

the fulfillment of the last two equations in (6.83) or equivalently the second
equation in (6.83) and (6.84).
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(c) DEC:
The WEC condition has to be satisfied. Therefore (6.83) (or using instead

of the third equation the (6.84)) must be satisfied. From now on we will refer
to the last set of conditions. In addition to that the vector Tμν tν has to be non
space-like:

TμνT ν
λtμtλ ≤ 0

[
(ε + pϑ) uμuν + pϑ gμν + (pr − pϑ) kμkν

]

× [
(ε + pϑ) uνuλ + pϑδν

λ + (pr − pϑ) kνkλ

]
tμtλ ≤ 0. (6.85)

Doing some algebraical work the former expression can be expressed as:

− (
ε2 − p2

ϑ

) (
uμtμ

)2 − (
p2

ϑ − p2
r

)
(kν tν)

2 + p2
ϑ gμν tμtλ ≤ 0. (6.86)

which is satisfied for all vectors uμ, vμ, tμ if:

ε2 − p2
ϑ ≥ 0,

p2
ϑ − p2

r ≥ 0. (6.87)

Following analogous arguments, the former expression can be replaced by

ε2 − p2
r ≥ 0. (6.88)

These expression can be expressed also as:

|ε| ≥ |pr |
|ε| ≥ |pϑ |. (6.89)

Another way to express them is:

(ε + pϑ) (ε − pϑ) ≥ 0,

(ε + pr ) (ε − pr ) ≥ 0. (6.90)

(d) NDEC:
Placing null vectors in the first equation in (6.85) the following relation is

obtained:

− (
ε2 − p2

ϑ

) (
uμlμ

)2 − (
p2

ϑ − p2
r

)
(kνlν)2 ≤ 0, (6.91)

which is satisfied for all vectors if (6.89) is fulfilled. Since now (6.83) is not
demanded, negative values of the energy density are allowed as long as they
satisfy pϑ = −ε and pr = −ε.
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6.2 Numerical Framework, Results and Discussions

The system of four differential equations (6.14), (6.15), (6.35) and (6.36) comple-
mentedwith twoequations of state havebeennumerically integrated using a 4th-order
Runge-Kutta algorithmwhich solves the system for a given value of the central bary-
onic energy density εmc and the central Λ-term pressure pΛc. The system is solved
initially for the values of r, pm, mm, mΛ at the center and then these values are used
to compute for the next radial step. This procedure is done until some boundary
condition is reached, in our case the criteria of vanishing baryonic pressure pm has
been employed. The number of iterations N is directly related to the length of the
radial step δr , convergence of solutions has been checked for different values of these
parameters.

Pressure and energy density have been treated in km−2 while distance and masses
in km. In order to compare with GR final results have been converted into standard
units, i.e. MeV· fm−3 and solar masses M�. Since the same units for both pressure
and energy density have been employed during calculations, multiples of the nuclear
energy density ε0 = 141 MeV· fm−3 have been used as measure of the given values
of εmc and pΛc.

Exercise 6.5 (Schwarzschild radius of the sun)

Calculate the mass of the sun in terms of length (km). What is the value of the
Schwarzschild radius of the sun?

Solution. The mass of the sun, in terms of km, is given by

m = κ

c2
M, (6.92)

with κ being the gravitational constant, c the light velocity and M the mass of
the sun in kg.

The basis values, available in any book on units, are

κ = 6.67384 × 10−11 m3

kg s2
,

c = 2.99792458 × 108
m

s
,

MS = 1.98855 × 1030 kg, (6.93)

where MS is the mass of the sun.
Substituting these values into (6.92) gives

mS = 1.476627323 × 103 m = 1,476627323 km, (6.94)

i.e., the Schwarzschild radius of the sun is 2m, i.e., about 3 km.
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Exercise 6.6 (Units)

Problem. Suppose, you use the natural units

κ = 1 and c = 1. (6.95)

What are the units of time, mass, density and energy in these units?

Solution. Using the list of values for the gravitational constant and velocity of
light, we have

κ = 6.67384 × 10−11 m3

kg s2
= 1,

c = 2.99792458 × 108
m

s
. (6.96)

From the second equation we get

1 s = 2.99792458 × 108 m. (6.97)

This implies that time is measured in length!
In order to get the units of the mass, we part from the first equation in (6.96)

and (6.97)

1 kg = 6.67384 × 10−11 m3

s2

= 6.67384

(2.99792458)2
× 10−11−16 m

= 0.74256 × 10−27 m, (6.98)

where we made use of the new units of c.
Multiplying this value with the mass of the sun, gives just m ≈ 1.5 km,

half of the Schwarzschild radius, which confirms the result of Exercise6.5.
The units of energy are 1 J = 6.2422 × 1013 MeV. One J is given by

1
kg m2

s2
= 8.2622 × 10−45 m, (6.99)

where we made use of the new units of time and kg, derived above. Equating
this with one J in units of MeV gives

1 MeV = 1.3236 × 10−58 m. (6.100)
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The energy density is given in units of MeV/fm3. One fm is 10−15 m. One
MeV can also be given in meters, according to (6.100). The nuclear density is
known to be

ε0 = 141
MeV

fm3 . (6.101)

Converting in (6.101) the fm in m and using (6.100) leads to

ε0 = 141
1.3236 × 10−58

10−45

1

m2

= 1.866276 × 10−11 1

m2

= 1.866276 × 10−5 1

km2 . (6.102)

The same procedure has been carried out in order to solve the systemof differential
equations corresponding to the exterior shell.

TheΛ-term,which is contained in pc-GR equations in a natural way,may be phys-
ically interpreted as the average contribution of vacuum fluctuations. As pointed out
before, a semi-classical study of this phenomena has been carried out on a Schwarz-
schild background having, for specific types of vacuum, energy densities with strong
falling-off terms as 1/r6 [10–13]. In [14] speculations have been made about this
contribution being responsible for halting gravitational collapses under certain con-
ditions. Baryonic properties are expected to change once the Λ-term is included
within the equations. Understanding these changes is very important since, given
the local character of vacuum fluctuations, it may be only the baryonic component
what is measured at large distances after all. Under the same conditions, calculations
for standard GR were carried out in order to compare between both theories. Since
only one model has been studied for the interior its results are going to be shown
first. Figures6.2 and 6.3 show the set of results for a single star which has a fixed
value of the baryonic central energy density, εmc = 5ε0, but different values of the
coefficient α.

Figure 6.2 shows the energy density profile εm for different values of α. For a fixed
radius, higher εm are obtained as |α| increases within the selected range, showing that
increasing the accumulation of the Λ-term results in a higher baryon compactness.
This causes the stars radii to increase, i.e. bigger stars.

This effect can be also interpreted in terms of pressure profiles. Figure6.3 shows
how the baryonic pressure increases as |α| increases within the selected range. The
surface of the star was defined to be located at the radial value for which the baryonic
pressure vanishes.

Remarkably, high baryonic masses can be predicted within this model. Calcula-
tions for a family of stars with central baryonic energy densities within the range
[1–10]ε0 have also been made. These results help us to gain a wider insight about the
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Fig. 6.2 Baryonic energy density profile for different values of the coefficientα. The centralΛ-term
pressure pΛc has been fixed to 1ε0

Fig. 6.3 Baryonic pressure profile for different values of the coefficient α. The central Λ-term
pressure pΛc has been fixed to 1ε0
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Fig. 6.4 Baryonic total mass versus total radius for different values of the coefficient α. The central
Λ-term pressure pΛc has been fixed to 1ε0

properties of these compact objects. Figure6.4 shows the total baryonic mass of the
stars as function of the total radius, within this range keeping constant the Λ-term
central pressure at pΛc = 1ε0 while α is changed in the same range as before. It can
be seen how within this model configurations which may be stable can be achieved
up to 6M� when the highest value of |α| is used.

In Fig. 6.5 the total baryonicmass is again plotted, but this time as a function of the
central baryonic energy density. It can be observed the necessary stability condition
d Mm
dεmc

> 0 being always satisfied at some range. As |α| is increased the former range
gets narrower expressing that for a specific central baryonic energy density there are
fewer compact objects which may be stable as more baryons are pulled together.
Nevertheless, obtaining larger baryonic masses is not possible within this linear
coupling assumption.

Other models need to be employed, but from a classical point of view there are
no obvious arguments in order to improve such a selection.

The baryonic compactness is shown in Fig. 6.6, where it can be appreciated how
the high-mass objects present a compactness close to the unity. This may in principle
allow, as long as certain conditions are satisfied in the exterior region, to mimic the
properties of black holes. As previously mentioned two models were studied for
the non-isotropic exterior shell. The tangential pressure was kept continuous at the
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Fig. 6.5 Baryonic total mass versus central baryonic energy density for different values of the
coefficient α. The central Λ-term pressure pΛc has been fixed to 1ε0

Fig. 6.6 Baryonic compactness versus total radius for different values of the coefficient α. The
central Λ-term pressure pΛc has been fixed to 1ε0
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boundary r = R0 following the power law given by (6.48), while the energy density
obeyed the following expressions

• Model A: Continuous energy density at R0.
Placing (6.46), (6.49) into (6.42) the following expression for the radial exterior
metric coefficient is obtained:

e−λe(r) = 1 − 2

r

(
Mm − MΛ + 2πεΛi R0 R3

0 + B

12R2
0

)

− B R0

3r4
+ 8πεΛi R0 R5

0 + B

2r3
. (6.103)

The constant B has been so far just an arbitrary constant. By simple inspection
of (6.103) one realizes that picking B to be:

Bm = 12MΛi R2
0 − 24πεΛi R0 R5

0 . (6.104)

Equation (6.103) transforms to:

e−λe(r) = 1 − 2Mm

r
− 4MΛi R3

0 − 8πεΛi R0 R6
0

r4

+6MΛi R2
0 − 8πεΛi R0 R5

0

r3
. (6.105)

Giving the possibility that at large enough distances only the baryonic compo-
nent will make a contribution behaving Schwarzschild alike (i.e. proportional to
the inverse of the distance). Figure6.7 (and its zoom for a section of the exterior
region Fig. 6.8) show how the Λ-term energy density looks like. There is a con-
tinuous matching with the interior (black), a relative small cusp and then a strong
fall-off takes place.

The tangential Λ-term pressure has a similar form (Fig. 6.9) only with a stronger
fall-off character. The difference between them can be better appreciated in Fig. 6.9
where both pressures have been plotted in a single plot. Figure6.10 shows the radial
metric coefficient.

• Model B: Discontinuous energy density at R0.
Placing now (6.47), (6.49) into (6.42), the following expression for the radial
exterior metric coefficient is obtained:

e−λe(r) = 1 −
2

(
Mm − MΛi + B

4R2
0

)

r
+ B

2r3
. (6.106)
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Fig. 6.7 Λ-term energy density profiles for different values of the coefficient α. The centralΛ-term
pressure pΛc has been fixed to 1ε0. The parameter Bm has been chosen (Model A)

Fig. 6.8 Zoom from Fig. 6.7 (Model A)
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Fig. 6.9 Λ-term radial and tangential pressure profiles for α = −0.5. The central Λ-term pressure
pΛc has been fixed to 1ε0. The parameter Bm has been chosen (Model A)

Fig. 6.10 Radial metric coefficients profiles for different values of the coefficient α. The central
Λ-term pressure pΛc has been fixed to 1ε0. The parameter Bm has been chosen (Model A)
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Fig. 6.11 Λ-term energy density profiles for different values of the coefficient α. The central
Λ-term pressure pΛc has been fixed to 1ε0. The parameter Bm has been chosen (Model B)

If B is chosen now to be Bm = 4MΛi R2
0 , Eq. (6.106) becomes:

e−λe(r) = 1 − 2Mm

r
+ 2MΛi R2

0

r3
. (6.107)

Giving again the possibility of having only baryonic contributions at large enough
distances. Figure6.11 shows the analogous quantities to those previously shown
to the continuous case.
Despite they behave quite similar, there is a discontinuity now on the derivative
of the temporal coefficients coming as a consequence of the equation of state
discontinuity. Finally, in (Fig. 6.12) the pressure pΛ of the dark energy is depicted
versus the radial distance r . Having used an anisotropic fluid outside the star,
produces a different behavior for the radial to the tangential pressure, the latter
being consistently smaller.
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6.3 Resuming the Results Presented in This Chapter

The pc-GR theory includes itself aΛ-termwhich is believed to represent the vacuum
fluctuations contribution. Within this frame a study of neutron stars has been made
describing the mentioned term as an additional energy-momentum tensor.

The interior region was characterized by having a linear coupling between the
energy densities of both components. The main purposes of such a model were:

• A negative dark interior energy density.
• A positive total interior energy density.
• Simplicity.

Within this approach, the baryonic mass of the neutron stars can be raised to values
of almost 6M� without having the formation of an event horizon. Higher baryonic
masses could in principle be obtained but a more realistic model for the coupling of
the components has to be employed. This cannot be achieved from a purely classical
point of view.

Since pc-GR includes thementioned extra-term, evenwhere there is no other form
of matter, there is going to be a surrounding Λ-term shell which has been studied
under two possible models with continuous (model A) and discontinuous (model B)

Fig. 6.12 Λ-term radial and tangential pressure profiles for α = −0.5. The centralΛ-term pressure
pΛc has been fixed to 1ε0. The parameter Bm has been chosen (Model B)
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energy density at the boundary r = R0. Discontinuities at the derivative of the
temporal metric coefficient on model B has driven us to conclude that a continuous
energy density profile is needed, therefore model A is preferable.

A particularly noteworthy feature is the possibility of letting the baryonic mass
be the only one to influence at enough large distances. As discussed in Sect. 6.2 this
can be achieved by picking a particular value of the constant B denoted by Bm . As a
result the Λ-term component influence will strongly decay with distance making the
differenceswith respect to Schwarzschild noticeable only for close enough observers.

The baryonic compactness increases as |α| increases and it approaches the one of
standard GR black holes for high baryonic masses, i.e. these massive neutron stars
have their Schwarzschild radii just under their surface. To a distant observer they
will resemble a black hole since they may be highly redshifted but unlike the former
their redshift should remain finite.
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Chapter 7
Pseudo-complex Differential Geometry

General Relativity is a theory of gravitation, with the metric as the dynamical field
describing the curvature of space-time itself. This is different to other field theo-
ries, where one considers the propagation of a field on a predetermined, indepen-
dently given space-time. In this sense, General Relativity is a theory very much
connected with geometry, although it should not be considered only as an applica-
tion of pseudo-Riemannian geometry to physical space and time [1]. One important
symmetry principle of General Relativity is that of general covariance, according to
which the physics should be independent of its specific coordinate representation.
Such a coordinate-independent formulation is conducted using tools from pseudo-
Riemannian differential geometry. In the literature one often observes two, not nec-
essarily mutually exclusive ways of formulating the theory. In the more classical
algebraic approach one considers coordinates, vector components, etc. with respect
to some specific coordinate system, but emphasizes the transformation properties of
these quantities with respect to a coordinate transformation [1, 2]. In this way one
assures to follow the principle of general covariance, but is able to keep the language
on a less abstract and formal level suitable to physical applications. The second,
modern geometric approach uses a more formal language, describing points in the
space-time, vectors, etc. independently from specific coordinate systems as abstract
mathematical entities. In this formulation general covariance is inherently ensured.
It should be emphasized, that both approaches describe the same physics, but in a
slightly different language. Despite the price of using mathematically elaborate con-
cepts, the modern language of differential geometry has the advantage of an often
more elegant formulation, with its application not restricted to General Relativity,
but of importance to other fields as well, especially high energy physics [3–5].

© Springer International Publishing Switzerland 2016
P.O. Hess et al., Pseudo-Complex General Relativity,
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7.1 A Short Introduction to Differential Geometry

7.1.1 Topology

The fundamental mathematical structure we are interested in is a differential man-
ifold, which is a topological space with some specific properties which allows to
define coordinates of points in this space in a suitable way. As a preliminary work
we have to introduce the concept of a topological space. These are very general math-
ematical structures, of which differential manifolds are only a subset. That is, every
manifold is a topological space, but not every topological space is a manifold [5].

A topological space consists of some set M together with a collection of subsets
T , which are often called the open sets. This pair (M,T ) is a topological space if
it fulfills the following conditions:

• The empty set ∅ and the full set M itself are members of the collection T .
• The union of any number of subsets which are elements of T is again a member
of T .

• The intersection of a finite number of subsets which are elements of T is again a
member of T .

We want to make this concept clear by considering open sets in R
2. The Euclidean

distance between two points (x1, x2) and (y1, y2) ∈ R
2 is given by

d(x, y) =
√

(y1 − x1)2 + (y2 − x2)2. (7.1)

The open ball Uε(x) around a point x is determined by all points in R
2 which have

a distance less than ε to x :

Uε(x) = {
y ∈ R

m : d(x, y) < ε
}
. (7.2)

We now define a set U to be open if for every x ∈ U there is an open ball Uε(x)

around x , which is entirely contained in U (that is Uε(x) ⊂ U ). From this definition
it is easy to see, that R

2 itself is open, whereas we technically have to define the
empty set ∅ to be open as well. If we now denote the collection of all such open sets
as T , then the pair (R2,T ) is a topological space. Note that this procedure is still
valid for R

m with arbitrary dimension m. This example also illustrates, why in the
above definition we have to demand finite intersections only. If we would consider
the intersection of infinitely many subsequently shrinking open balls around some
point x , we ultimately would obtain only the point x itself, which does not represent
an open set. This does not happen for a finite number of intersections of such open
balls.
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It should be emphasized, that for a given set M in general several topologies are
possible. For instance one can always choose the trivial topology, where only the set
M and the empty set ∅ are defined to be open, that is T = {∅, M}, or the discrete
topology, where T contains all possible subsets of M .

For two topological spaces M, M ′, we can define maps f : M → M ′. Such a map
is called continuous, if the inverse image of an open set in M ′ is an open set in M . It
should be emphasized, that the inverse statement does not have to be true.Consider for
example the open interval (−1, 1) ∈ R, which under the continuous map f (x) = x2

is mapped to the interval [0, 1), which is not open due to the closed lower boundary.
However, we will mostly consider homeomorphisms, which are continuous maps
having a continuous inverse. Such a homeomorphism f : M → M ′ bijectively maps
open sets from M to open sets in M ′ and vice versa.

7.1.2 Differential Manifolds

In the last section we presented the general definition of a topological space and
showed how this concept can be realized by the well-known open sets inR

m . We also
introduced homeomorphisms, which map open sets bijectively from one topological
space to another. We now use these concepts to define a differential manifold, which
is basically a topologically space together with a set of homeomorphisms providing
points of the given topological space with coordinates in R

m . Consider some open
set U of a topological space M , that is U ⊂ M . Assume there is a homeomorphism
φ : U → R

m . This homeomorphism maps the open set U bijectively to an open set
φ(U ) in R

m . We thus have for every point p ∈ U exactly one point x ∈ R
m , or

φ(p) = {
x1(p), . . . , xm(p)

} = xμ(p). (7.3)

The open set U is called the coordinate neighborhood, while the homeomorphism
φ as well as the set xμ(p) is called the coordinate (function). The coordinate neigh-
borhood together with the coordinate function is often called a chart or a coordinate
system. Using this chart, we thus have identified every point p of the coordinate
neighborhood, which lies in the abstract topological space, with a coordinate xμ(p),
which lies in the well-known space R

m . The next step is to assure that not only the
points in this specific coordinate neighborhood U are provided with a coordinate,
but all points of the topological space M . For this purpose we assume a collection of
charts {(Ui , φi )}, such that the respective coordinate neighborhoods cover the entire
space M :

M =
⋃

i

Ui . (7.4)

Such a collection of charts is called an atlas. This atlas provides for every point
p ∈ M at least one coordinate φ(p) according to some chart (U, φ). But since the
coordinate neighborhoods have to overlap in order to cover the entire manifold, often
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a point p will be part of two or more coordinate neighborhoods. We thus have to take
care of coordinate transformations. Consider two charts (Ui , φi ) and (U j , φ j ) with
overlapping coordinate neighborhoods:

Ui j = Ui ∩ U j �= ∅. (7.5)

Since the overlap Ui j is contained in both charts, we have two different coordinates
for all points p ∈ Ui j :

φi (p) = xμ, φ j (p) = yν . (7.6)

We now can connect these coordinates by the map

Ψi j = φi ◦ φ−1
j , (7.7)

which takes a coordinate yν(p), maps it to the corresponding point p ∈ M , and then
maps this point to the other coordinate xμ(p). This yields a coordinate transfor-
mation xμ(yν) = [Ψi j (yν)]μ, with Ψi j as a map R

m → R
m . We demand that these

coordinate transformations are infinitely differentiable in the sense well-known from
real analysis [5].

This approach gives us the definition of an m-dimensional differentiable manifold
as a topological space M , together with an atlas of charts {(Ui , φi )} which provide
coordinatesφi (p) = xμ(p) for each point p ∈ U , respectively, andwhose coordinate
transformations Ψi j : R

m → R
m are infinitely differentiable.

Note that referring to the formulation of General Relativity, an algebraic approach
as mentioned in the introductory remarks at the beginning of this chapter, would
mainly refer to the coordinates xμ, yν and the respective coordinate transformations.
An approach based on differential geometry rather puts the focus on the abstract
point p as an element of the manifold M , and considers the coordinate xμ(p)merely
as a coordinate of this point obtained using some specific chart.

7.1.3 Vectors and Tensors

After presenting the mathematical structure of a differentiable manifold, we now
want to introduce some basic objects.

A function f is defined as a map from a manifold M into the real numbers R,
that is

f : M → R, p 
→ f (p). (7.8)

Note that this function is defined on the abstract space M , but for a given coordinate
system (U, φ) it can be written in terms of the respective coordinates:

f ◦ φ−1 : R
m → R, xμ 
→ f [φ−1(xμ)] = f (xμ). (7.9)
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Recall that the homeomorphism φ(p) associates to every point p ∈ U a coordinate
xμ(p), so the inverse φ−1(xμ) yields the abstract point p ∈ U corresponding to
the coordinate xμ. The coordinate representation of the function f then maps the
coordinate xμ to a real value f (xμ). Note that the same function f in general has
different representations for different coordinate systems (Ui , φi ) [5].

The complimentary object to a function is a curve c(λ), which is a map from an
interval (a, b) in R into the manifold M :

c : (a, b) → M, λ 
→ c(λ). (7.10)

Given a coordinate system (U, φ), such a curve has a coordinate representation
xμ(λ):

λ 
→ xμ(λ) = (φ ◦ c)(λ), (7.11)

that is, a curve in the abstract space M is mapped to the coordinate space R
m .

An obvious next step is to consider the composition ( f ◦ c)(λ), that is the value
of a function on a curve:

f ◦ c : (a, b) → R, λ 
→ f [c(λ)]. (7.12)

We can calculate the change of f along the curve:

d f [c(λ)]
dλ

. (7.13)

Note that this expression does not depend on any particular coordinate system. Using
the chain rule, we can associate this general expression with the coordinate repre-
sentations of the function f and the curve c(λ):

d f [c(λ)]
dλ

= ∂ f (xμ)

∂xμ

dxμ(λ)

dλ
. (7.14)

One observes that this expression is a combination of two contributions:

• The change of the function f (xμ) with respect to the coordinates xμ (differential
of f ).

• The change of the coordinate representation of the curve xμ(λ) with respect to the
curve parameter λ (tangent vector to the curve c).

We now consider both contributions separately as operators. The tangent vector to a
curve xμ(λ) is defined as the operator

d

dλ
= dxμ(λ)

dλ

∂

∂xμ
, (7.15)
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which acts on a function f according to

d

dλ
[ f ] = dxμ(λ)

dλ

∂

∂xμ
[ f ] = dxμ(λ)

dλ

∂ f (xμ)

∂xμ
, (7.16)

where we assume that these expressions are evaluated at one specific point p = c(λ0)

of the curve. It can be shown that the set of all these operators forms a vector space,
called the tangent space Tp M at the point p,with the set {∂/∂xμ} called the coordinate
basis of this vector space. Any tangent vector then can be written as

X = Xμ ∂

∂xμ
(7.17)

with the tangent vector to a curve xμ(λ) having components

Xμ = dxμ(λ)

dλ
. (7.18)

It should be emphasized, that the tangent vector X ∈ Tp M is a mathematical object
which exists independently from any coordinate system. If we consider two coordi-
nate systems with coordinates xμ and xμ′

, respectively, we have two different sets of
coordinate basis vectors and vector components, both representing the same abstract
vector X :

X = Xμ ∂

∂xμ
= dxμ(λ)

dλ

∂

∂xμ
= Xμ′ ∂

∂xμ′ = dxμ′
(λ)

dλ

∂

∂xμ′ . (7.19)

Using the chain rule, we can write

Xμ′ = dxμ′ [xμ(λ)]
dλ

= ∂xμ′

∂xμ

dxμ(λ)

dλ
= ∂xμ′

∂xμ
Xμ. (7.20)

This yields the transformation rules for vector components and basis vectors:

Xμ′ = ∂xμ′

∂xμ
Xμ,

∂

∂xμ′ = ∂xμ

∂xμ′
∂

∂xμ
. (7.21)

In some classical texts this is the definition of a vector, that is a vector is defined as
an object whose components transform in this way.

We now consider the second part of (7.14), which refers to the change of the
function dependent on the coordinates. We have treated tangent vectors as operators
acting on functions. Analogously we can introduce the differential of a function as
an operator acting on tangent vectors. The corresponding vector space is the dual or
cotangent space T ∗

p M , with the differential d f ∈ T ∗
p M given by
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d f = ∂ f

∂xμ
dxμ, (7.22)

where dxμ are the basis vectors of T ∗
p M , which are dual to the coordinate basis

vectors ∂/∂xμ of Tp M :

〈dxμ,
∂

∂xν
〉 = δμ

ν . (7.23)

The change of a function f , represented by the differential d f , along a curve c(λ),
represented by the tangent vector d/dλ, is then given by

d f

dλ
= 〈d f,

d

dλ
〉 = 〈 ∂ f

∂xμ
dxμ,

dxν

dλ

∂

∂xν
〉 = ∂ f

∂xμ

dxν

dλ
〈dxμ,

∂

∂xν
〉 = ∂ f

∂xμ

dxμ

dλ
.

(7.24)

Let us conclude at this point. Starting from the change of a function along a curve,
we introduced tangent vectors (change of the curve) and differentials (change of the
function) as operators on each other, forming the tangent space Tp M and the dual
or cotangent space T ∗

p M . The advantage of this treatment lies in the existence of
these objects independently from any specific coordinate systems, in the same way
as points of the manifold exist independently from any specific coordinate system.

7.1.4 Metric and Curvature

From the vector space Tp M of tangent vectors at p and the vector space T ∗
p M of

dual or cotangent vectors we can construct the Cartesian product

	r
q = ⊗q T ∗

p M ⊗r Tp M, (7.25)

which is the ordered set of q dual vectors and r tangent vectors (ω(i), X( j)). A tensor
T of type (q, r) is a multilinear operator acting on elements of 	r

q :

T (ω(i), X( j)) = T
μ1...μq
ν1...νr ω

(1)
μ1 . . . ω

(r)
μq X ν1

(1) . . . X νr
(r) ,

T = T
μ1...μq
ν1...νr

∂

∂xμ1
⊗ · · · ⊗ ∂

∂xμq
⊗ dxν1 ⊗ · · · ⊗ dxνr . (7.26)

A Riemannian metric g is a type (0, 2) tensor which satisfies

• The metric is symmetric, that is g(X, Y ) = g(Y, X) for X, Y ∈ Tp M .
• The metric is positive-definite, that is g(X, X) ≥ 0, with g(X, X) = 0 only for

X = 0.
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The metric is called pseudo-Riemannian if the second conditioned is weakened
to the form

• If for a given Y ∈ Tp M it holds g(X, Y ) = 0 for all X ∈ Tp M , then Y = 0
(non-degenerate metric [6]).

We can write the metric as

g = gμνdxμ ⊗ dxν, (7.27)

and obtain

g(X, Y ) = gμνdxμ ⊗ dxν(Xσ ∂

∂xσ
, Y ρ ∂

∂xρ
)

= gμν Xσ Y ρ〈dxμ,
∂

∂xσ
〉〈dxν,

∂

∂xρ
〉

= gμν Xσ Y ρδμ
σ δν

ρ

= gμν XμY ν . (7.28)

In the literature the metric is often introduced together with the line element
[2, 7]. Given infinitesimal coordinate displacements dxμ, the line element ds2 reads
(c = 1)

ds2 = gμνdxμdxν, dτ 2 = −gμνdxμdxν, (7.29)

where τ is the proper time.1 From this rather informal definition not involving tangent
vectors or the metric as a type (0, 2) tensor, one can go on to a path through space-
time represented by a parametrized curve xμ(λ). Determining derivatives dxμ/dλ,
the path length along a space like curve is defined by

s =
∫ √

gμν

dxμ

dλ

dxν

dλ
dλ, (7.30)

and along a timelike path as

τ =
∫ √

−gμν

dxμ

dλ

dxν

dλ
dλ. (7.31)

It should be emphasized, that in this definition the parameter λ does not have to
correspond to the proper time τ or the path length s. Let us consider for now only
timelike paths. If we perform the calculation in (7.31), we obtain the function τ(λ),
that is, the proper time along the curve parametrized by the parameter λ. We can
invert this relation, obtaining λ(τ), and parametrize the path by xμ(τ). Using this
parametrization, the respective tangent vector to the curve is denoted as the four-
velocity Uμ:

1We choose the signature such that ημν = diag(−1, 1, 1, 1).
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Uμ = dxμ

dτ
. (7.32)

From the (informal) definition in (7.31), we immediately obtain

gμνUμU ν = −1. (7.33)

Using the more formal definition including tangent vectors X, Y ∈ Tp M and the
metric as a type (0, 2) tensor, the inner product

g(X, Y ) = gμν XμY ν . (7.34)

determines the norm of a vector X [8]

‖X‖ = ±√|g(X, X)|, (7.35)

with the negative sign for time-like vectors, and the positive sign for space-like
vectors.

Considering again a curve xμ(λ) with parametrization λ, we have the tangent
vector (dxμ/dλ)∂/∂xμ ∈ Tp M at a point p ∈ M , and the proper time functional
along the curve

τ =
∫ √

−gμν

dxμ

dλ

dxν

dλ
dλ =

∫ ∥∥∥∥g

(
dxμ

dλ
,

dxν

dλ

)∥∥∥∥ dλ, (7.36)

which does not depend on the parametrization λ.
We want to compare the informal definition in (7.29) and the definition involving

tangent vectors in (7.34). Consider a curve defined in some chart by xμ. Let us now
calculate the proper time functional along the curve for an infinitesimal segment:

dτ =
λ+dλ∫

λ

√

−gμν

dxμ

dλ′
dxν

dλ′ dλ′ (7.37)

≈
√

−gμν

(
dxμ

dλ′

∣∣∣∣
λ′=λ

) (
dxν

dλ′

∣∣∣∣
λ′=λ

)
dλ. (7.38)

This yields

dτ 2 = −gμν

[
dxμ

dλ
dλ

] [
dxν

dλ
dλ

]
= −gμνdxμdxν, (7.39)

wheredxμ nowdenotes the change of the coordinates corresponding to themovement
along the curve xμ(λ) under an infinitesimal parameter change λ → (λ + dλ).

These considerationsmight appear self-evident, butwewant to clarify the notation
with respect to the line element. Whereas the inner product of two vectors as given
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in (7.34) is defined for two vectors X, Y ∈ Tp M at some point p ∈ M , there is no
immediate notion of a curve involved. Of course one can define a curve crossing the
point p ∈ M , such that X is the respective tangent vector, and then consider the
line element of this curve as the inner product of X with itself, but the starting point
from this point of view is the vector, not the curve. For the proper time functional
as given in (7.36), however, one assumes some curve xμ(λ) from the beginning, and
then calculates the respective line elements along the curve using the norm of the
well-defined tangent vectors. So from this point of view, one starts with a curve and
then introduces tangent vectors as a means of calculating the proper time functional
along the curve.

Up to now we considered tangent spaces Tp M and the metric at one specific point
p of the manifold. A vector field X over a manifold M is a smooth assignment of
vectors to each point of M . The union of all tangent spaces is denoted as the tangent
bundle T M :

T M =
⋃

p∈M

Tp M. (7.40)

A vector field X is then a map

X : M → T M, p 
→ X (p), (7.41)

with χ(M) denoting the set of all vector fields on M . Given a coordinate system, one
usually describes a vector field by means of the respective components with respect
to the coordinate basis:

X = Xμ(p)
∂

∂xμ

∣∣∣∣
p

. (7.42)

In the same way we can define the cotangent or dual bundle T ∗M , or in general
tensor bundles.

We now introduce the concept of an affine connection, which is closely related to
theparallel displacement of a vector.Aconnectionon the tangent bundleT M is amap
∇ : T M → T ∗M ⊗ T M fulfilling additivity and the product rule of derivatives [9]:

∇(X + Y ) = ∇ X + ∇Y,

∇( f X) = d f ⊗ X + f ∇ X. (7.43)

Here X and Y are vector fields, f is some smooth function, and T ∗M is the cotangent
bundle on M . We define

∇X Y = 〈X,∇Y 〉, (7.44)

where 〈,〉 denotes the pairing between T M and T ∗M . It follows, that∇X Y is a vector
field on M, which is called the absolute differential quotient or the covariant deriva-
tive. Consider a coordinate neighborhood U of a manifold M , with local coordinates
xμ. At every point p ∈ U we can write [5, 9]
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∇ ∂

∂xλ
= Γ ν

μλdxμ ⊗ ∂

∂xν
. (7.45)

We sometimes use the abbreviations

∇μ

∂

∂xλ
= 〈 ∂

∂xμ
,∇ ∂

∂xλ
〉 = Γ ν

μλ

∂

∂xν
. (7.46)

With the definition
ων

λ = Γ ν
μλdxμ (7.47)

this is

∇ ∂

∂xλ
= ων

λ ⊗ ∂

∂xν
. (7.48)

A smooth vector field X can be expressed as

X = Xμ ∂

∂xμ
, (7.49)

and by definition we have

∇ X = ∇(Xμ ∂

∂xμ
)

= dXμ ⊗ ∂

∂xμ
+ Xμ∇ ∂

∂xμ

= dXμ ⊗ ∂

∂xμ
+ XμΓ λ

νμdxν ⊗ ∂

∂xλ

=
(

∂ Xμ

∂xν
+ Γ

μ
νλ Xλ

)
dxν ⊗ ∂

∂xμ
. (7.50)

which is the well-known expression for the covariant derivative [2]. We thus obtain
the result, that if Xμ are the components of a vector X , the covariant derivative is a
tensor with the components

∇νV μ := V μ

||ν = V μ

|ν + Γ
μ
νλV λ = ∂V μ

∂xν
+ Γ

μ
νλV λ, (7.51)

where we have introduced various notations as used in [2, 5, 7]. With our previous
notations, for some tangent vector Y ∈ Tp M we then can write

∇Y X = Y ν∇ν X

= Y ν (∇ν X)μ
∂

∂xμ

= Y ν

(
∂ Xμ

∂xν
+ Γ

μ
νλ Xλ

)
∂

xμ
. (7.52)
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This notion can be generalized to the covariant derivative of a general tensor. Let for
example

T = T μν
λ

∂

∂xμ
⊗ ∂

∂xν
⊗ dxλ, (7.53)

be a tensor, then its covariant derivative reads

∇T = ∇ρT μν
λ

∂

∂xμ
⊗ ∂

∂xν
⊗ dxρ ⊗ dxλ, (7.54)

with the components

∇ρT μν
λ = T μν

λ ||ρ
∂T μν

λ

∂xρ
+ Γ μ

ρκ T κν
λ + Γ ν

ρκ T μκ
λ − Γ κ

ρλT μν
κ . (7.55)

We now introduce the concept of parallel displacement. Let c(λ) be a curve, and
X = (dxμ/dλ)∂/∂xμ its tangent vector.We say that a vector Y is parallel transported
along c(λ), if the covariant derivative ∇X Y vanishes everywhere on c(t), that is

∇X Y = X ν (∇νY μ)
∂

∂xμ
= 0, (7.56)

which is equivalent to

X ν (∇νY μ) = dxν

dλ

(
∂Y μ

∂xν
+ Γ

μ
νλY λ

)
= dY μ

dλ
+ Γ

μ
νλ

dxν

dλ
Y λ = 0. (7.57)

By multiplication with dλ we get the law of parallel displacement (analogously to
the formulation in [2], but with a negative sign):

dV μ = −Γ
μ
νλdxν V λ. (7.58)

Up to now we introduced the metric and the affine connection as two separate math-
ematical structures. One can demand metric compatibility:

∇g = 0, (7.59)

which is equivalent to the condition that the inner product between to parallel trans-
ported vectors remains constant along the curve [5]. It can be shown [10, 11] that
such a metric connection can be written as

∇λ Aμ = {}∇λ Aμ + K μ
λκ Aκ , (7.60)

with the definition
{}∇λ Aμ = ∂ Aμ

∂xν
+

{
μ

λκ

}
Aκ . (7.61)
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Here we have introduced the Christoffel symbols

{
λ

μν

}
:= −1

2
gλα

(
∂αgμν − ∂μgνα − ∂νgαμ

)
. (7.62)

In the classical theory of General Relativity one has a vanishing contorsion tensor
K λ

μν in (7.60), and thus

∇λ Aμ = {}∇λ Aμ = ∂ Aμ

∂xν
+

{
μ

λκ

}
Aκ . (7.63)

Such a torsionless and metric-compatible connection is called a Levi-Civita or
Christoffel connection [5]. In some modified theories incorporating torsion [10, 11],
one assumes asymmetric connection coefficients, which yields the torsion tensor

Sλ
μν = Γ λ

[μν] = 1

2

(
Γ λ

μν − Γ λ
νμ

)
. (7.64)

This torsion tensor then leads to the addition contribution in the covariant deriva-
tive (7.60), called the contorsion tensor:

K λ
μν = − (

Sλ
μν − Sλ

μν − Sλ
νμ

)
. (7.65)

We finally introduce the Riemann curvature tensor, which depends on the connection
∇. In this short introductory chapter we will mainly present the definitions and
refer the reader for more information and the physical interpretation to the literature
[2, 5–7]. Given vector fields X, Y, Z , the Riemann curvature tensor is given by

R(X, Y )Z = ∇X∇Y Z − ∇Y ∇X Z − ∇[X,Y ] Z , (7.66)

where [X, Y ] is the Lie bracket of two vector fields, which in a coordinate basis
{∂/∂μ} can be written as

(
Xμ ∂Y ν

∂xμ
− Y μ ∂ X ν

∂xμ

)
∂

∂xν
. (7.67)

We now define the components of the curvature tensor with respect to some coordi-
nate basis. We write

R(X, Y )Z = (
Rκ

λνμ XμY ν Zλ
) ∂

∂xκ
, (7.68)

which corresponds to

Rκ
λνμ = 〈dxκ ,R(

∂

∂xμ
,

∂

∂xν
)

∂

∂xλ
〉. (7.69)
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It can be shown [7], that the components can be written in the form

Rκ
λμν Zλ = (∇μ∇ν − ∇ν∇μ

)
Z κ + (

Γ λ
μν − Γ λ

νμ

)∇λ Z κ

= Z κ
||ν||μ − Z κ

||μ||ν + (
Γ λ

μν − Γ λ
νμ

)
Z κ

||λ, (7.70)

where the last expression is written in a notation analogously to the one used in [2].
The components of the Riemann tensor then can be derived in a straightforward way
[2, 7]:

Rκ
λμν = ∂Γ κ

νλ

∂xμ
− ∂Γ κ

μλ

∂xν
+ Γ κ

μηΓ
η

νλ − Γ κ
νηΓ

η

μλ. (7.71)

For the Levi-Civita or Christoffel connection, one can derive the Bianchi identities
of the curvature tensor R(X, Y )Z [5]:

R(X, Y )Z + R(Z , X)Y + R(Y, Z)X = 0,

(∇XR)(Y, Z)V + (∇ZR)(X, Y )V + (∇YR)(Z , X)V = 0. (7.72)

With respect to some specific coordinate system, these identities read [7]

Rρ[λμν] = Rρλμν + Rρμνλ + Rρνλμ

= 0,

∇[λRρλ]μν = ∇λRρλμν + ∇ρRλλμν + ∇λRλρμν

= 0, (7.73)

where we have written
Rρλμν = gρκR

κ
λμν. (7.74)

The Ricci tensor follows from the curvature tensor by contraction [5]:

R(X, Y ) = 〈dxν,R(X,
∂

∂xν
)Y 〉, (7.75)

where we have used the same symbolR for both the Riemann curvature tensor and
the Ricci tensor, since the context and the number of indices always gives a clear
indication to which object we refer to. In terms of the components this is given by

Rμ
λμν = ∂Γ

μ
νλ

∂xμ
− ∂Γ

μ
μλ

∂xν
+ Γ μ

μηΓ
η

νλ − Γ μ
νηΓ

η

μλ. (7.76)

Recall that the connection in general is a geometrical object independently defined
from the metric, and so is the Riemann curvature and the Ricci tensor. If we assume
a symmetric connection (that is, torsionless) which is compatible with the metric
(that is, the covariant derivative of the metric vanishes), this connection is uniquely
determined by the metric, and accordingly the metric and the connection are no
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longer independent geometrical objects. It follows, that also in this case also the
curvature and Ricci tensor are determined by the metric. It is written as

Rκ
λμν = ∂μ

{
κ

νλ

}
− ∂ν

{
κ

μλ

}
+

{
κ

ημ

}{
η

νλ

}
−

{
κ

ην

} {
η

μλ

}
, (7.77)

For the scalar curvature R one needs both the metric and the connection (which
determines the curvature):

R = gλνRλν. (7.78)

7.2 Pseudo-complex Differential Geometry

In the last sectionwe gave a short introduction to selected topics from real differential
geometry. We now turn to the pseudo-complex case. We will observe that a pseudo-
complex manifold corresponds to a real product manifold. To obtain the full pseudo-
complex structure of such manifolds, we have to pseudo-complexify the respective
tangent and cotangent spaces.

In the following we will often use the abbreviation “pc” for pseudo-complex, as
well as “ph” for pseudo-holomorphic. For the definition of a pseudo-holomorphic
function consult Chap.1.

7.2.1 Pseudo-complex Manifolds as Product Manifolds

A pseudo-complex manifold is defined as a topological space M with a family of
charts or coordinate systems {(Uı, Φi )}, where

Φi : Ui → P
m (7.79)

is a homeomorphism and the family of sets {Ui } covers M . The set P
m as the pc-

equivalent to R
m denotes the space of all m-tupel of pseudo-complex numbers.

If (Ui , Φi ) and (U j , Φ j ) are two coordinate systems and p ∈ Ui ∩ U j , then the
coordinate transformation

Φβ ◦ Φ−1
α : Φα(Uα ∩ Uβ) → Φβ(Uα ∩ Uβ) (7.80)

is a pseudo-holomorphic function. For a given chart (Ui , Φi ), we write for a point
p ∈ Uα

Φi (p) = xμ = xμ

R + I xμ

I = xμ
+σ+ + xμ

−σ−. (7.81)

http://dx.doi.org/10.1007/978-3-319-25061-8_1
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We also use the notation

xR = φR
i (p), xμ

R = (
φR

α (p)
)μ

, (7.82)

and analogously for φ I
i and φ±

i .
For two different pseudo-complex coordinate systems xμ and xμ′

, the condition
of pseudo-holomorphic transformation functions reads

∂xμ

R

∂xμ′
R

= ∂xμ

I

∂xμ′
I

,
∂xμ

R

∂xμ′
I

= ∂xμ

I

∂xμ′
R

, (7.83)

or
∂xμ

+
∂xμ′

−
= 0,

∂xμ
−

∂xμ′
+

= 0. (7.84)

The topological space M togetherwith the atlas {(Uα, (φR
α , φ I

α))} or {(Uα, (φ+
α , φ−

α ))}
as a real 2m-dimensional differential manifold, and with transformation functions
obeying (7.83) or (7.84), respectively, it is equivalent to a pseudo-complex manifold
with pseudo-complex dimension m. In the following we will use the different nota-
tions interchangeably, speaking either of the pseudo-complex coordinates xμ, or the
real coordinate pairs xμ

+, xμ
− or xμ

R , xμ

I , respectively.
The relation (7.84) shows, that a pseudo-complex manifold can be associated

with a real differentiable manifold, whose atlas displays a product structure in the
sense that the coordinates xμ

± transform independently. This motivates to construct a
pseudo-complexmanifold based on a real productmanifold from the start. Let W ± be
twom-dimensional real differentiable manifolds with atlas {(φ±

α , U±
α )}, respectively.

The (real) productmanifoldW +×W − togetherwith the atlas {(U+
α ×U−

β , (φ+
α , φ−

β ))}
then can be associatedwith a pseudo-complexmanifold by choosing as the coordinate
functions Φαβ = φ+

α (p)σ+ + φ−
β (q)σ−, were (p, q) ∈ U+

α × U−
β .

7.3 Pseudo-complex Tangent and Cotangent Spaces

7.3.1 Real Tangent and Cotangent Space of a Pseudo-complex
Manifold

Consider a pseudo-complex manifold M , which can be constructed from a product
manifold of two real manifolds W + and W −. As stated in the last section, such a
pseudo-complex manifold can be either interpreted as a real differentiable manifold
with a product structure, or as a pseudo-complex manifold. The coordinate bases of
the (real) tangent space Tp M of M as a real differentiable manifold are given by
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{
∂ R
μ , ∂ I

μ

}
or

{
∂+
μ , ∂−

μ

}
, (7.85)

wherewe have used abbreviations of the type ∂ R
μ = ∂

∂xμ

R
.We denote the basis {∂ R

μ , ∂ I
μ}

as the associated basis, and the basis {∂+
μ , ∂−

μ } as the product basis [12]. The corre-
sponding dual bases of the cotangent space T ∗

p M are

{
dxμ

R , dxμ

I

}
,

{
dxμ

+, dxμ
−
}
. (7.86)

From xμ
± = xμ

R ± xμ

I it follows

∂±
μ = 1

2

(
∂ R
μ ± ∂ I

μ

)
,

dxμ
± = dxμ

R ± dxμ

I . (7.87)

At the point p, the set {∂+
μ } spans the subspace Tp M+ ⊂ Tp M (equivalently

Tp M− ⊂ Tp M), and thus it is easy to see that Tp M = Tp M+ ⊕ Tp M− is the sum of
two vector spaces. Due to the product structure of the pseudo-complex manifold, this
decomposition holds globally on all charts. In case we have constructed the pseudo-
complex manifold from the product manifold W + ×W −, we can also identify Tp M±
with TpW ±. For the cotangent space T ∗

p M analogous considerations hold.
Since up to now we do not consider a pseudo-complexification of the tangent and

cotangent space, every tangent vector can be associated with a curve c(λ),

X = d

dλ
, X = dxμ

R

dλ
∂ R
μ + dxμ

I

dλ
∂ I
μ = dxμ

+
dλ

∂+
μ + dxμ

−
dλ

∂−
μ , (7.88)

and every dual vector with the differential of a function f ,

ω = d f, ω = ∂ f

∂xμ

R

dxμ

R + ∂ f

∂xμ

I

dxμ

I = ∂ f

∂xμ
+
dxμ

+ + ∂ f

∂xμ
−
dxμ

−. (7.89)

Note that here c is a curve depending on a real parameter, c : R → M , and the
function f maps into the real numbers f : M → R.

If we use different coordinate systems, we have to apply the usual transformation
rules for tangent vectors and dual vectors [5]. Consider two sets of coordinates
xμ

± and xμ′
± , where we have interpreted M as a real differentiable manifold. The

transformation rule for the components of a tangent vector X in the product basis is [5]

X = Xμ
+

∂

∂x+
μ

+ Xμ
−

∂

∂x−
μ

= Xμ′
+

∂

∂x+
μ′

+ Xμ′
−

∂

∂x−
μ′

, Xμ
± = ∂xμ

±
∂xμ′

±
Xμ′

± . (7.90)

Note that for a coordinate basis with respect to the product coordinates, the
±-components do not mix due to the pseudo-holomorphic transformation functions
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between the two different charts. Nevertheless, we can use a non-coordinate basis
for the tangent space Tp M , where the ±-components are mixed.

If we use the associated basis, which is also a coordinate basis, we obtain

X = Xμ

R

∂

∂x R
μ

+ Xμ

I

∂

∂x I
μ

= Xμ′
R

∂

∂xμ′
R

+ Xμ′
I

∂

∂xμ′
I

,

Xμ

R = ∂xμ

R

∂xμ′
R

Xμ′
R + ∂xμ

R

∂xμ′
I

Xμ′
I , Xμ

I = ∂xμ

I

∂xμ′
R

Xμ′
R + ∂xμ

I

∂xμ′
I

Xμ′
I , (7.91)

with
∂xμ

R

∂xμ′
R

= ∂xμ

I

∂xμ′
I

,
∂xμ

R

∂xμ′
I

= ∂xμ

I

∂xμ′
R

(7.92)

due to pseudo-holomorphicity.
We have the following relations between the partial derivative operators:

∂

∂xμ

R

= ∂xν+
∂xμ

R

∂

∂xν+
+ ∂xν−

∂xμ

R

∂

∂xν−
= ∂

∂xμ
+

+ ∂

∂xμ
−

,

∂

∂xμ

I

= ∂xν+
∂xμ

I

∂

∂xν+
+ ∂xν−

∂xμ

I

∂

∂xν−
= ∂

∂xμ
+

− ∂

∂xμ
−

, (7.93)

which corresponds to the relations for the different basis tangent vectors in (7.87). It
follows

∂xμ

R

∂xμ′
R

= 1

2

(
∂

∂xμ′
+

+ ∂

∂xμ′
−

)
(
xμ

+ + xμ
−
) = 1

2

(
∂xμ

+
∂xμ′

+
+ ∂xμ

−
∂xμ′

−

)

= ∂xμ

I

∂xμ′
I

,

∂xμ

R

∂xμ′
I

= 1

2

(
∂

∂xμ′
+

− ∂

∂xμ′
−

)
(
xμ

+ + xμ
−
) = 1

2

(
∂xμ

+
∂xμ′

+
− ∂xμ

−
∂xμ′

−

)

= ∂xμ

I

∂xμ′
R

. (7.94)

7.3.2 Pseudo-complexified Tangent and Cotangent Space

Up to now we considered a pseudo-complex manifold M with real tangent and
cotangent spaces. We obtain pseudo-complex tangent and cotangent spaces by the
process of pseudo-complexification, which can be performed analogously to the
complex case [5]:

Tp MP = {VR + I VI |VR, VI ∈ Tp M},
T ∗

p MP = {ωR + IωI |ωR, ωI ∈ T ∗
p M}, (7.95)
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or equivalently

Tp MP = {V+σ+ + V−σ−|V+, V− ∈ Tp M},
T ∗

p MP = {ω+σ+ + ω−σ−|ω+, ω− ∈ T ∗
p M}. (7.96)

It should be emphasized that every pseudo-complex tangent (dual) vector is build up
from two real tangent (dual) vectors. For clarity consider some pseudo-complexified
tangent vector V ∈ Tp MP, which we can write in terms of its basis vectors as

V = VR + I VI = V μR
R ∂ R

μ + V μI
R ∂ I

μ + I
(
V μR

I ∂ R
μ + V μI

I ∂ I
μ

)

= V+σ+ + V−σ− = (
V μ++ ∂+

μ + V μ−+ ∂−
μ

) + (
V μ+− ∂+

μ + V μ−− ∂−
μ

)
σ−. (7.97)

In the same way we can write a pseudo-complex dual vector ω ∈ T ∗
p MP in terms of

the basis dual vectors.
We introduce use new bases of Tp MP and T ∗

p MP:

Dμ = 1

2

(
∂ R
μ + I∂ I

μ

) = σ+∂+
μ + σ−∂−

μ ,

Dμ = 1

2

(
∂ R
μ − I∂ I

μ

) = σ−∂+
μ + σ+∂−

μ ,

Dxμ = dxμ

R + Idxμ

I = σ+dxμ
+ + σ−dxμ

−,

Dxμ := dxμ

R − Idxμ

I = σ−dxμ
+ + σ+dxμ

−. (7.98)

Wehave defined pseudo-complex tangent and dual vectors by algebraically extending
the corresponding real vector spaces.Wenow try to interpret these definitions in terms
of pseudo-complex derivatives of pseudo-complex functions along pseudo-complex
curves.

Define a pc-curve c as

c : P → M, λR + IλI = λ+σ+ + λ−σ− = λ 
→ c(λ). (7.99)

The coordinate representation of the curve in a chart (U, Φ) we write as

xμ(λ) = (Φ ◦ c(λ))μ

= xμ

R(λR, λI ) + I xμ

I (λR, λI ) = xμ
+(λ+, λ−)σ+ + xμ

−(λ+, λ−)σ−. (7.100)

Define a pc-function f as

f : M → P, p 
→ f (p) = fR(p) + I f I (p) = f+(p)σ+ + f−(p)σ−. (7.101)
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We define the operators

D

Dλ
= 1

2

(
∂

∂λR
+ I

∂

∂λI

)
= σ+

∂

∂λ+
+ σ−

∂

∂λ−
,

D

Dλ
= 1

2

(
∂

∂λR
− I

∂

∂λI

)
= σ−

∂

∂λ+
+ σ+

∂

∂λ−
. (7.102)

Note that these are up to now only operators containing partial derivatives. The first
one is equivalent to the pseudo-complex derivative D

Dλ
in case it acts on a pseudo-

holomorphic function g(λ), where λ = λR + IλI .
A vector V ∈ Tp MP associated with a pseudo-complex curve c can be written as

V μ Dμ + V μ̄ Dμ, where

V μ = D

Dλ
xμ(t)

∣
∣∣∣
c−1(p)

= 1

2

(
dxμ

R

dλR
+ dxμ

I

dλI
+ I

(
dxμ

R

dλI
+ dxμ

I

dλR

))∣∣∣∣
c−1(p)

=
(
dxμ

+
dλ+

σ+ + dxμ
−

dλ−
σ−

)∣∣
∣∣
c−1(p)

, (7.103)

and

V μ̄ = D

Dλ
xμ(λ)

∣∣∣
∣
c−1(p)

= 1

2

(
dxμ

R

dλR
− dxμ

I

dλI
+ I

(
dxμ

R

dλI
− dxμ

I

dλR

))∣
∣∣∣
c−1(p)

=
(
dxμ

+
dλ−

σ+ + dxμ
−

dλ+
σ−

)∣∣∣∣
c−1(p)

. (7.104)

Note that if we define two real curves2 cR : R → M , cI : R → M by cR = c(·, λ∗
I )

and cR(λ∗
R, ·), where (λ∗

R, λ∗
I ) = c−1(p), this definition is completely equivalent to

constructing a pseudo-complex tangent vector from two real tangent vectors, which
correspond to these two real curves.

Analogously to the previous paragraph, we define for a pseudo-complex variable
x the operator

2‘Real’ in this context means, that the curve depends on one real parameter, whereas a pc-curve
depends on one pseudo-complex, that is two real parameters. The coordinate representations of
both real and pc-curves in our pseudo-complex manifold are pseudo-complex coordinates.
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D

Dx
= 1

2

(
∂

∂xR
+ I

∂

∂xI

)
= σ+

∂

∂x+
+ σ−

∂

∂x−
,

D

Dx
= 1

2

(
∂

∂xR
− I

∂

∂xI

)
= σ−

∂

∂x+
+ σ+

∂

∂x−
. (7.105)

Again, note that these are up to now only operators containing partial derivatives,
with the first one corresponding to the pseudo-complex derivative D

Dx in case it acts
on a pseudo-holomorphic function g(x), where x = xR + I xI .

A general dual vector ω ∈ T ∗
p MP associated with a pseudo-complex function f

can be written as
ω = ωμ Dxμ + ωμ̄ Dxμ, (7.106)

where

ωμ = D

Dxμ
f (x)

∣∣∣∣
φ−1(p)

= 1

2

(
∂ fR

∂xμ

R

+ ∂ f I

∂xμ

I

+ I

(
∂ fR

∂xμ

I

+ ∂ f I

∂xμ

R

))∣∣∣∣
φ−1(p)

=
(

∂ f+
∂xμ

+
σ+ + ∂ f−

∂xμ
−

σ−
)∣∣∣∣

φ−1(p)

, (7.107)

and

ωμ̄ = D

Dxμ
f (x)

∣∣∣∣
φ−1(p)

= 1

2

(
∂ fR

∂xμ

R

− ∂ f I

∂xμ

I

− I

(
∂ fR

∂xμ

I

+ ∂ f I

∂xμ

R

))∣∣∣∣
φ−1(p)

=
(

∂ f+
∂xμ

−
σ+ + ∂ f−

∂xμ
+

σ−
)∣∣∣∣

φ−1(p)

. (7.108)

Obviously this construction is equivalent to the construction of a pc-cotangent vector
from two real cotangent vectors, which are associated with the two real functions
fR, f I : M → R.
We define a pc-curve c to be pseudo-holomorphic (ph), if its coordinate represen-

tation xμ(λ), where λ ∈ P, fulfills the pc-Cauchy-Riemann relations with respect to
the partial derivatives ∂

∂λI
, ∂

∂λR
. A pc-function f is defined to be pseudo-holomorphic,

if its coordinate representation fulfills the pc-Cauchy-Riemann relations with respect
to the partial derivatives ∂

∂xμ

R
, ∂

∂xμ

I
.

From the relations in the last paragraphs we immediately see, that if V = V μ Dμ+
V μ̄ Dμ is a pc-vector associated to a pseudo-holomorphic curve, then V μ̄ = 0 for
all μ. Analogously, if a pc-dual vector ω is associated with a pseudo-holomorphic
function, then ωμ̄ = 0 for all μ. In this case it holds

Xμ = Dxμ(t)

Dλ
= dxμ

R

dλR
+ I

dxμ

I

dλR
= dx+

dλ+
σ+ + dx−

dλ−
σ−, (7.109)



238 7 Pseudo-complex Differential Geometry

where we have used the pc-Cauchy-Riemann relations, and have written D
Dλ

instead
of D

Dλ
, since the operator now acts on a pseudo-holomorphic function and thus can

be interpreted as the total pc-derivative.
Analogously we get for a pc-dual vector ω ∈ T ∗

p M associated with a pseudo-
holomorphic function f the components

ωμ = D f (x)

Dxμ
= ∂ fR

∂xμ

R

+ I
∂ fR

∂xμ

I

= ∂ f+
∂x+

σ+ + ∂ f−
∂x−

σ−, (7.110)

where again the pc-Cauchy-Riemann relations have been used, and we used inten-
tionally D

Dx rather than D
Dx . It follows that for a pseudo-complex tangent vector X

associated with a ph-curve c, and a pseudo-complex cotangent vector ω associated
with a ph-function f , we get

X ( f ) = 〈ω, X〉 = Xμωμ = D f

Dxμ

Dxμ

Dλ
= D f

Dλ
, (7.111)

which is the total pc-derivative of a ph function along a ph-curve. Thus the inter-
pretation of tangent (dual) vectors as directional derivatives of curves (differentials
of functions) is a concept completely analogous to the real case, as long as we con-
sider only ph-curves (ph-functions). In the following we will sometimes denote a
pc-tangent vector associated to a ph curve c by the derivative ċ, and the pc-cotangent
vector associated to a ph function f as the pc-differential D f .

We will now show that these tangent and dual vectors corresponding to ph curves
and functions form a subspace of the respective vector spaces.3 Define a linear map
Jp : Tp M → Tp M by

Jp(∂
R
μ ) = ∂ I

μ, Jp(∂
I
μ) = ∂ R

μ , (7.112)

with J 2
p = id. The extension of Jp to V = (VR + I VI ) ∈ Tp MP, VR, VI ∈ Tp M is

defined by Jp(V ) := Jp(VR) + I Jp(VI ) [5]. We thus get

Jp(Dμ) = I Dμ, Jp(Dμ) = −I Dμ, (7.113)

and
Tp MP = Tp Mx ⊕ Tp Mx , (7.114)

where

Tp Mx = {V ∈ Tp MP|Jp(V ) = I V },
Tp Mx = {V ∈ Tp MP|Jp(V ) = −I V }. (7.115)

3The pseudo-complexified tangent and cotangent spaces are actually not vector spaces, butmodules,
since they are build of the ring of pseudo-complex numbers, and not over a field like the real or
complex numbers. For our purpose this difference is not of importance, so for simplicity we use the
term vector space.
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It is obvious that the set {Dμ} represents a basis for Tp Mx , whereas the set {Dμ}
represents a basis for Tp Mx . In an analogous way we obtain T ∗

p Mx and T ∗
p Mx .

Note that in (7.109) only the parameter λR occurs, and thus the real curve cR :=
c(λR + Iλ∗

I ) determines the pc-tangent vector (here (λ∗
R + Iλ∗

I ) = c−1(p) are the
parameter values corresponding to the point p). Nevertheless no information is lost,
since this curves entirely determines the ph-curve c(λ). Accordingly we could have
also used the real curve cI (λI ) := c(λ∗

R + IλI ). Analogously in (7.110) only the
real4 function fR occurs, although we could have chosen f I instead. If we use the
{σ+, σ−} basis, we need two curves c+(λ+) := c(λ+σ+ + λ∗−σ−), and c−(λ−) :=
c(λ∗+σ+ + λ−σ−), where again (λ∗+σ+ + λ∗−σ−) = c−1(p).

One could askwhywehave introduced ph curves and ph functions,when at the end
we are able to equivalently consider one real curve and one real function anyway. The
reason is, that the pc-curves and pc-functions in their coordinate representation are
maps from and into the pseudo-complex numbers, and so in every step we can freely
decide, if we use the {1, I } basis or the {σ+, σ−} basis. If wewould have startedwith a
real curve and a real function from the beginning, there is no coordinate-independent
way to switch from one basis representation to the other.

7.4 Metric

In the following we always consider only Tp Mx ⊂ Tp MP and T ∗
p Mx ⊂ T ∗

p MP, that
is the pseudo-complexified tangent and cotangent space associated with ph curves
and functions.

Assume that we have a Riemannian metric g with gp : Tp M × Tp M → R on M
as a real differentiable manifold (recall that a metric g is a tensor field, and gp is the
field at point p ∈ M). We then extend this metric to gp : Tp Mx × Tp Mx → P by

gp(VR + I VI , WR + I WI ) = gp(VR, WR) + gp(VI , WI ) + I (gp(VR, WI ) + gp(VI , WR)),

(7.116)

where VR, VI , WR, WI ∈ Tp M . Note that we could define an even more general
expression by allowing a pseudo-complex value for gp(VR, WR), for instance. Given
a chart (Φ, U ) with the usual coordinate bases, we define gμν(p) : U → P by

gμν(p) = gp(Dμ, Dν)

= 1

4

(
gp(∂

R
μ , ∂ R

ν ) + gp(∂
I
μ, ∂ I

ν ) + I (gp(∂
R
μ , ∂ I

ν ) + gp(∂
I
μ, ∂ R

ν ))
)

= gR
μν(p) + IgI

μν(p)

= gp(∂
+
μ , ∂+

ν )σ+ + gp(∂
−
μ , ∂−

ν )σ−
= g+

μνσ+ + g−
μνσ−. (7.117)

4Here a real function f denotes f : M → R, although f ◦ φ−1
α depends on a pseudo-complex

coordinate.
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Here we have used the linearity of the tensors with respect to σ± and 1, I . This
linearity allows us to write for instance

gp(σ+∂+
μ , σ−∂−

ν ) = σ+ · σ− · gp(∂
+
μ , ∂−

ν ) = 0. (7.118)

The expressions σ± thus act like a kind of mathematical device which keeps the
±-spaces separated. This concept remains valid also for other tensors (curvature,
torsion) and the connection.

On the coordinate neighborhood U we can write

gp = gμν(p)Dxμ ⊗ Dxν . (7.119)

Let us calculate gp(V, V ), where V = d/dλwith V μ = Dxμ

Dλ
is the pc-tangent vector

on a ph curve c. Using the {σ+, σ−} basis we obtain

gp(V, V ) = g+
μνV μ+ V ν+σ+ + g−

μνV μ− V ν−σ−

= g+
μν

dxμ
+

dλ+
dxν+
dλ+

σ+ + g−
μν

dxμ
−

dλ−
dxν−
dλ−

σ−. (7.120)

We observe that the line element Dω2(V, V ) = g(V, V ) in general is not real, but
pseudo-complex.

7.5 Connection and Curvature

Consider the pseudo-complexified tangent space Tp MP = Tp Mx ⊕ Tp Mx̄ of the
pseudo-complex manifold M . The pc-tangent bundle T MP is given by the union of
all tangent spaces at the different points p ∈ M :

T MP =
⋃

p∈M

Tp MP. (7.121)

Analogously
T Mx =

⋃

p∈M

Tp Mx , T Mx̄ =
⋃

p∈M

Tp Mx̄ , (7.122)

and
T MP = T Mx ∪ T Mx̄ . (7.123)

As before, we only consider pseudo-holomorphic tangent and dual vectors and
demand that this restriction remains valid under the covariant derivative. That is,
at every point p ∈ M we have the ph tangent and cotangent spaces Tp Mx and
T ∗

p Mx .
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Consider a chart (U, Φ) of the pseudo-complex manifold M . On U , we chose the
basis {Dμ} as the local frame field. We define the pseudo-holomorphic connection
∇ by

∇Dλ = ων
λ ⊗ Dν, ων

λ = Γ ν
μλ Dxμ. (7.124)

Note that the coefficients Γ ν
μλ are in general pseudo-complex numbers. On U a

smooth vector field V can be expressed as

V = V μ Dμ, (7.125)

whereV μ is a pc-functiononU .Weexpect the following relation to hold (analogously
to the real case):

∇V = ∇(V μ Dμ)

= DV μ ⊗ Dμ + V μ∇Dμ

= DV μ ⊗ Dμ + V μΓ λ
νμ Dxν ⊗ Dλ

=
(
DV μ

Dxν
+ V λΓ

μ
νλ

)
Dxν ⊗ Dμ. (7.126)

Here we have used that the pc-differential of a ph function can be written in terms
of the coordinate basis using the pc-derivative:

DV μ = DV μ

Dxν
Dxν . (7.127)

Relation (7.126) is true, as long as the vector field V is pseudo-holomorphic in its
dependence on the coordinate, that is, ∂V μ±

∂xν∓
= 0. In this case, we can easily show

that (7.126) is valid by using the σ±-representation of the pseudo-complex tangent
fields, dual fields and components:

∇V = ∇ ((
V μ

+ σ+ + V μ
− σ−

) (
∂+
μ σ+ + ∂−

μ σ−
))

= ∇(V μ
+ ∂+

μ )σ+ + ∇(V μ
− ∂−

μ )σ−

=
[(

∂V μ
+

∂xν+
+ V λ

+(Γ +)
μ
νλ

)
dxν

+ ⊗ ∂+
μ

]
σ+

+
[(

∂V μ
−

∂xν−
+ V λ

−(Γ −)
μ
νλ

)
dxν

− ⊗ ∂−
μ

]
σ−. (7.128)

That is, we obtain a pseudo-complex covariant derivative, which can be decomposed
into a real covariant derivative in theσ±-sectors, with connection coefficients (Γ ±)

μ
νλ.

It should be emphasized that here the vector field V is pseudo-holomorphic in two
ways: On the one hand it holds V ∈ T Mx , on the other hand for some chart (U, φ)

the components of V on U are pseudo-holomorphic functions.
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The generalization of the curvature tensor, Ricci tensor and scalar curvature to
the corresponding pseudo-complex expressions is obtained analogously to the pro-
cedure described for the metric. In case we restrict our considerations to the pseudo-
holomorphic tangent and cotangent spaces, one only has to perform the replacements

∂μ → Dμ, dxμ → Dxμ, (7.129)

and write the components as pseudo-complex numbers. Using the {σ+, σ−}-basis,
these components can be written completely analogous to the real case:

Rκ
λμν =

(
∂(Γ +)κνλ

∂xμ
+

− ∂(Γ +)κμλ

∂xν+
+ (Γ +)κμη(Γ

+)
η

νλ − (Γ +)κνη(Γ
+)

η

μλ

)

σ+

+
(

∂(Γ −)κνλ

∂xμ
−

− ∂(Γ −)κμλ

∂xν−
+ (Γ −)κμη(Γ

−)
η

νλ − (Γ −)κνη(Γ
−)

η

μλ

)

σ−,

Rλν = (R+)λνσ+ + (R−)λνσ−,

R = (
gλν

+ (R+)λν

)
σ+ + (

gλν
− (R−)λν

)
σ−. (7.130)

It should be emphasized that the scalar curvature is now a pseudo-complex number.
By considering the σ+- and the σ−-part separately, it can be shown that all relations
(for instance the Bianchi identities) derived for the real curvature tensor also hold
for its pseudo-complex equivalent.

7.6 Pseudo-complex General Relativity

In the last section we have shown, that a pseudo-complex extension of geometrical
concepts in the language of differential geometry can be formulated in a straightfor-
ward way. This extension is essentially equivalent to the occurrence of two separated
sectors (denoted as σ− and σ+). One could now go on in the usual way and define
the Einstein-Hilbert action in both sectors, respectively, and perform the variation
with respect to the metric, again in both sectors separately [5, 7]. This would yield
two independent copies of General Relativity. In order to obtain a new theory, a
new principle is needed. In the algebraic formulation of Pseudo-Complex General
Relativity a modified variational principle together with a projection to the real part
is proposed. Since the so-called zero divisors of pseudo-complex numbers can be
considered as generalized zeros, it is proposed that the variation of a function has to
be such a zero divisor instead of being strictly zero:

δS = δS+σ+ + δS−σ− = εσ±. (7.131)
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Using this modified principle, one gains a certain freedom to add an additional term
to the right hand side of Einstein’s equation, interpreted as the contribution of a
dark energy. See also Chap.2 for an alternative justification, using constraints. The
subsequent argument is, that this additional term necessarily has to be different from
zero in order to obtain a different theory than just two copies of General Relativity.
One obtains a pseudo-complex metric with g+

μν �= g−
μν , since the additional term

occurs only in one of both sectors. This pseudo-complex metric is then mapped to a
real metric.

In a first attempt to obtain a geometric formulation of pseudo-complex General
Relativity, we now try to replace the algebraic mapping procedure to the real part by
an approach similar to the ideas by Crumeyrolle [13]. For this purpose, we define
the real diagonal subspace by Xμ

+ = Xμ
−, or equivalently Xμ

I = 0. One has to take
some additional care in the construction of the pseudo-complex manifold to achieve
a coordinate-invariant definition of this subspace, but we set aside these technical
details and refer the reader to the literature [12–15]. If we consider a curve only in
this subspace, it obviously holds

d̂Xμ

I

dλ
= 0, (7.132)

where we introduced the notion that a “hat”-symbol indicates the evaluation of an
expression on the real diagonal subspace. We observe that the line element on this
subspace is then given by

D̂s2 =
(

ĝR
μν + I ĝ I

μν

) (
̂dXμ

R

dλ

d̂X ν
R

dλ

)

(7.133)

Wenowdemand that the line element as a physical expression,which canbemeasured
in experiments, has to obtain a real value in the real diagonal subspace. It follows,
that we demand

ĝ I
μν = 0, (7.134)

which is equivalent to
ĝ+

μν = ĝ−
μν. (7.135)

Since the real diagonal subspace is defined by xμ
+ = xμ

−, this means that g+
μν and g−

μν

have to be the same function ĝR
μν . But since the ‘standard’ Levi-Civita connection

is entirely determined by the metric, also the curvature tensor only depends on the
metric [5]. It follows, that if g+

μν and g−
μν are the same functions, also the connection

and the curvature in the σ±-sector coincide, respectively. Using now the standard
variation principle and derive Einstein’s equation by varying the Einstein-Hilbert
action in both sections with respect to the metric, respectively, we obtain simply two
copies of standard General Relativity, which is reduced to the same theory on the real
diagonal subspace. If on the other hand we use the modified variational principle,

http://dx.doi.org/10.1007/978-3-319-25061-8_2
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we obtain a different metric in the σ±-sector, respectively, and thus cannot fulfill the
demand of a real line element.

One possibleworkaroundwould be the introduction of torsion, that is a connection
with non-symmetric lower indices [10, 11]. For such a connection one can have the
same metric in the σ+ and σ− sector, but a different curvature tensor, respectively.
This gives rise to an additional contribution in Einstein’s equation, which could be
interpreted as a dark energy. Nevertheless, such a contribution would be based on
the introduction of torsion, but not on the pseudo-complex structure of the manifold
and a subsequent introduction of a physical space-time.

Another possibility is to introduce the condition of a real length element squared
via a constraint, as was discussed in Chap.2. This reduces the number of degrees of
freedom of themetric by the number of constraints. The constraint in Chap. 2 can also
be formulated in a symmetricway, namely using as a constraint the pseudo-imaginary
part of the length element square:

0 = I
(
g+

μν Ẋμ
+ Ẋ ν+ − g−

μν Ẋμ
− Ẋ ν−

)

= (σ+ − σ−)
(
g+

μν Ẋμ
+ Ẋ ν+ − g−

μν Ẋμ
− Ẋ ν−

)
, (7.136)

which is more symmetrical. The difficulty is to formulate constraints within a geo-
metric differential language. Investigations are on the way.
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Accretion disk, 131, 133, 142, 152, 153, 171
Action, 38
Adiabatic contraction of the universe, 127,

129
Adiabatic expansion of the universe, 127,

129
Affine connection, 226
Angular frequency, 134
Angular frequency, complete solution, 134
Angular momentum parameter, 82, 136
Anisotropic fluid, 57, 197
Associated basis, 233
Asymptotical state of no acceleration, 116
Asymptotic non-accelerating state, 115
Atacama Large Millimeter/Submillimeter

Array (ALMA), 131

B
B-parameter, limit of, 74
Baseline interferometry, 131
Basis vectors, 2
Big ripp-off, 114
Born, M., 22
Boundary conditions, 195
Boyer-Lindquist coordinates, 154

C
Calculus of pc-Variables, 9
Carter constant, 154, 156, 160, 161
Cauchy-Riemann equation, 10, 12, 34
Charge of a massive object, 85
Chemical potential, 192
Christoffel connection, 229
Christoffel symbol, first kind, 35
Christoffel symbol, second kind, 35
Christoffel symbols, 229
Christoffel symbols, Robertson-Walker, 95,

96
Christoffel symbols, Schwarzschild, 60
Circular orbits, 133, 153
Continuous map, 219
Contorsion tensor, 229
Coordinate basis, 222, 233
Coordinate function, 219
Coordinate neighborhood, 219
Coordinate transformation, 220
Cosmological constant, 114
Cotangent space, 222
Covariant derivative, 37, 226
Covariant derivative, pseudo-complex, 241
Curve, 221

D
Dark energy, 56, 72, 101
Dark energy density, 102
Dark energy density, oscillating universe,

123
Dark energy pressure, oscillating universe,

123
Dark energy tensor, 101
Dark energy-momentum tensor, 86
Dark star, 153
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Differential geometry, pseudo-complex, 231
Differential manifold, 218, 219, 232
Differentiation, 10
Discrete topology, 219
Dispersion relation, 187
Dominant Energy Condition (DEC), 197
Dual space, 222
Dual vector, 237

E
Effective masses, 191
Effective potentials, 144, 147, 148
Einstein A., 16
Einstein equations, 185
Einstein equations, neutron star, 193
Einstein equations, Reissner-Nordström, 86
Einstein equations, Robertson-Walker, 100
Einstein equations, Schwarzschild, 60
Einstein tensor, 39
Emission line profiles, 176
Energy conditions, 196
Energy conditions for an anisotropic fluid,

explicit derivation, 200
Energy conditions for an isotropic fluid, ex-

plicit derivation, 198
Energy-momentum tensor, 42, 56
Energy-momentum tensor, anisotropic fluid,

57, 197
Energy-momentum tensor, isotropic, 104
Energy-momentum tensor, isotropic fluid,

57, 187, 197
Energy-momentum tensor, matter, 61
Energy-momentum tensor, Reissner-

Nordström, 85
Energy-momentum tensor, thin disk, 167
Entropy density, 128
Entropy, change of, 128
Equation of motion, Robertson-Walker, 107
Equation of state, 111
Equation of state, dark energy, 111, 192
Equation of state, expansion of the universe,

108
Equation of state, matter distribution, 111
Equation of state, oscillating universe, 125
Equation of state, standard matter, 191
Ergosphere, 140
Euclidean distance, 218
Exponential function, 9, 11

F
Finite intersection, 218
Flux, 164

Fr-K lines, 142
Frame-dragging, 141
Frenet-Serret matrix, 48
Frenet-Serret tensor, 49
Friedmann-Lemaitre equation, 121
Function on a manifold, 220

G
Galactic black holes, 132, 152
Galactic center, 132
General orbits, 139
Generalized redshift factor, 165
Generalized zero, 242
Geodesic equation, 58
Geodesic equation, Robertson-Walker, 95
Ghost solutions, 28
Gravastar, 184, 194
GYOTO, 157

H
Hamilton equations, 157, 163
Hamilton function, 163
Hamilton-Jacobi formalism, 158
Hermitian gravity, 23
Homeomorphism, 219
Hubble constant, 107
Hulse-Taylor Pulsar, 132

I
Inner product, 225
Inner radius, 170
Innermost Stable Circular Orbit (ISCO),

164, 169, 171, 175
Invariant intensity, 165
Iron Kα line, 176
Isotropic fluid, 57, 185, 197

K
Kerr metric, 154
Kerr solution, 76
Klein-Gordon equation, 76

L
Lagrange density, weak gravitational field,

30
Last stable orbit, 169
Lenght element, Robertson-Walker, 93
Length element, Born, 22
Length element, Hermitian gravity, 23
Length element, Kerr, 81
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Length element, pseudo-complex, 27, 35
Length element, Reissner-Nordström, 91
Length element, Robertson-Walker, 104
Length element, Schwarzschild, 58, 74
Length, minimal, 17, 34
Length-element with minimal length, 18
Levi-Civita connection, 229
Line element, 224
Linear coupling assumption, 207
Linear coupling between dark energy and

matter, 192
Local energy balance, 110
Lorentz group, pseudo-complex, 43

M
M87, 131
Mapping to the real part, 56
Mean field approximation, 192
Metric compatibility, 228
Metric connection, 228
Metric tensor, Caianiello, 17
Metric tensor, complex, 16
Metric tensor, Kerr, 80
Metric tensor, Kerr, ansatz, 77
Metric tensor, Robertson-Walker, 99
Metric tensor, Schwarzschild, 61, 72
Metric, pseudo-complex, 27, 34
Metric, Reissner-Nordström, 90
Modified variational principle, 39
Modified variational principle, alternative

formulation, 40
Multiplication of pc-numbers and division,

5
Multiplication of pc-variables, 2

N
Neutron stars, 183
Non-degenerate metric, 224
Non-spacelike vectors, 197
Norm of a vector, 225
Nuclear matter, 191
Null Dominant Energy Condition (NDEC),

197
Null Energy Condition (NEC), 196
Null-geodesic, 164
Null vectors, 196

O
Open ball, 218
Open set, 218
Orbital frequency, 164

Oscillating universe, 122

P
Parallel displacement, 35, 226
Parametrized Post Newtonian Formalism

(PPN), 50
Pc-coordinates, 26, 33
Pc-General Relativity, 26
Pc-integration, 11
Pc-Kerr metric, 133
Pc-length element, expansion in minimal

length, 52
Pc-Lorentz group, generators, 43
Pc-metric, expansion in minimal length, 51
Plebánski-Krasinski ansatz, 77
Pressure, anisotropic, 68
Pressure, central �-term, 203
Pressure, dark energy, 102
Product basis, 233
Product structure, 3
Prograde rotation, 135
Pseudo-complex Cauchy-Riemann equa-

tions, 237
Pseudo-complex cotangent space, 233, 234
Pseudo-complex differential geometry, 231
Pseudo-complex function, 237
Pseudo-complex manifold, 231
Pseudo-complex metric, 239
Pseudo-complex tangent space, 233, 234
Pseudo-complexification, 233
Pseudo-complexified cotangent space, 239
Pseudo-complexified tangent space, 239
Pseudo-holomorphic, 231
Pseudo-holomorphic cotangent space, 242
Pseudo-holomorphic function, 241
Pseudo-holomorphic tangent space, 242
Pseudo-Riemannian metric, 224

Q
Quark matter, 191
Quasi Periodic Oscillations (QPO), 132, 152

R
Radioastronomy, 131
Radius of the universe, 104
Raytracing method, 132, 153
Redshift, 142, 177
Reissner-Nordström solution, 85
Relation of dark energy density and pressure

to Hubble constant, 117
Retrograde rotation, 136
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Ricci scalar, 185
Ricci scalar, Schwarzschild, 64
Ricci tensor, 185
Ricci tensor, Robertson-Walker, 99
Ricci tensor, Schwarzschild, 63
Riemann curvature tensor, 229
Riemann scalar, Reissner-Nordström, 86
Riemann scalar, Robertson-Walker, 100
Riemann tensor, 29, 38, 230
Riemannian metric, 223

S
Sagittarius A*, 171
Schwarzschild metric, 19
Schwarzschild radius, 152
Schwarzschild radius of the sun, 203
Spin of a massive object, 82
Strong Energy Condition (SEC), 197
Subset, 218

T
Tachyon solutions, 28
Tangent space, 222
Tangent vector, 221
Tensor, 223
Thin-disk model, 166
Time, extended, 18
Timelike path, 224
Timelike vectors, 196
Tolman-Oppenheimer-Volkov

equation (TOV), 68

Topological space, 218, 219
Torque, 167
Torsion, 244
Torsion tensor, 229
TOV, 190, 194
TOV equation, anisotropic, 68
Trivial topology, 219
Turning point, 138

U
Units, natural, 204
Universal metric, 37
Universe with dust and radiation, 118

V
Variational principle, modified, 40, 55
Velocity of expansion, 107
Very Large Basis Array (VLBA), 142
Very Long Baseline Interferometry (VLBI),

131

W
Weak Energy Condition (WEC), 196
Weak gravitational field expansion, 27

Z
Zero divisor, 3
Zero-divisor basis, 6
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