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Foreword

The paradox of quantum physics resides in the contrast between its extraordinary
power and its strangeness. Every physicist will agree that it is the most successful
theory ever invented. It has given us the keys to understand the microscopic
world and to derive from this understanding the modern technologies that have
revolutionized our lives. Indeed, there is hardly a single apparatus in use, nowadays,
that does not in part or totally rely on quantum phenomena. Lasers, computers,
atomic clocks, the GPS, magnetic resonance imaging, the cell phones to name only
a few exploit in one way or another quantum concepts and they would have been
unimaginable by a classical physicist. Yet, in spite of this huge power, quantum
physics remains highly counterintuitive, leading to many conflicting interpretations
some of which are discussed in this book.

The tension between these two aspects of quantum physics, its power and its
strangeness, has constantly been present during the 100 years this theory has been
with us. During the formative years of the theory (from 1900 to 1930 roughly), the
bizarre quantum concepts have given rise to fierce debates between the founding
fathers. Then when the successes of the calculations based on quantum ideas
had become overwhelming (from the 1930s to the 1970s), the discussions about
interpretation took a backseat, most physicists being content to use this powerful
tool without too much afterthought, in order to understand the world and to master
it. This was the shut up and calculate! period. Those physicists, including Einstein
and de Broglie, who struggled to reconcile quantum concepts with their ideas about
physical reality, were a minority. With their disciples, they lost contact with the
mainstream of research of that time, and one might argue that they did not contribute
much to the tremendous progresses of physics during that period.

Feynman, a leader of the successful physics school that used quantum concepts
without challenging them, could dismiss their efforts by saying that the kind of
paradoxes they were struggling with were just a contradiction between what Nature
is and what they wanted it to be. In other words, Feynman agreed with the famous
phrase Bohr is supposed to have told Einstein: Stop telling God what to do with
His dice. At the same time, Feynman acknowledged, however, the strangeness of
quantum physics by saying nobody really understands quantum physics. In this
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somewhat “tongue in cheek” way, this provocative sentence again echoes what Bohr
is supposed to have said: Anyone who is not shocked by quantum theory has not
understood it. This state of affairs is illustrated by an anecdote Steven Weinberg is
telling in one of his books. In an elevator of the Physics Department, he once met a
colleague and a former student whom he had lost track of. After the student left, he
asked his colleague: “What happened with this guy?” and the colleague answered:
Oh, he is lost for physics, he got interested in the Interpretation Thing.

I must say that during my early years in physics, I tended to be an adept of the
shut up and calculate school. This is undoubtedly due to having learned quantum
mechanics from Messiah’s books and directly from the lectures of Claude Cohen-
Tannoudji (who had not yet written his own textbook on the subject). He described
the principles with great clarity and used them efficiently to lead us directly to
calculations explaining important effects and beautiful historical experiments. And
when I started my own research for my Ph.D. under his supervision and later on
in my own lab with my students, I realized that quantum calculations allowed me
to predict with high precision how atoms were behaving in the resonance cells I
was experimenting with. I could not see the atoms directly then, but all observations
pointed to the fact that they were certainly there and that they did exactly what
quantum mechanics was predicting. Among these experiments, some had to do with
observing cascades of successive photons emitted by atoms as they decayed step-by-
step from an excited state. The pattern of emission of polarized light was predicted,
beautifully and precisely by simple calculations based on the quantum theory of
angular momentum, with the help of some Racah algebra.

At that time, Claude received the visit of a young and enthusiastic student
working in another laboratory at Orsay who was interested in challenging the laws
of quantum physics precisely by performing an experiment that would enable him to
study the correlations of photons emitted by atoms in a fluorescence cascade. Alain
Aspect, this is his name, was trying to implement in the lab an experiment suggested
by a CERN physicist, then unknown to Claude and of course to me, namely John
Bell. With this experiment, he was trying to improve on earlier work of the same
kind performed by an American physicist, John Clauser. It is to the credit of Claude,
whom we all considered the “pope” of orthodox quantum physics that not only did
he not dissuade Alain Aspect, but he actually encouraged him to do the experiment.
Claude told me about it and I remember being puzzled. I could very simply calculate
what quantum physics was predicting in such a simple situation and that the result
could be different was unthinkable for me. My reasoning was simple. If Bell’s
inequality is right and quantum mechanics wrong in this simple case, how come that
its predictions have been vindicated in thousands of experiments (including mine)
that were monitoring atomic cascades under similar conditions? We would have to
build a new theory that should still agree with all the data accumulated so far and at
the same time, explain why, under the particular conditions of Aspect’s experiment,
it was yielding another result.

Later on, I understood that Aspect (and Claude who had encouraged him) were
right, even if in the end Alain’s experiment vindicated quantum physics. In most
experiments so far, the observations were dealing with big samples containing huge
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numbers of atoms, and were recording only average signals. Aspect’s experiment
was one of the first that revealed the correlations between the photons emitted by
an atom in a single event (these correlations averaged, later, over many realizations
of the same experiment in order to build the expression violating Bell’s inequality
in agreement with quantum theory). Instead of first averaging data and looking at
the relationships between these averages, he was recording individual correlations
before performing averages. It was important to find out whether the theory was
right under these new conditions.

Here the concept of entanglement was central. Of course, we all knew that
entanglement was a feature of quantum physics. After all, the ground state of the
simplest of all atoms, Hydrogen is an entangled state of an electronic and nuclear
spin, and this fact has been well known since the beginning of quantum physics.
Entanglement, however, is not as spectacular when the entangled partners are only
one Angstrom apart as when they are distant from each other by metres. Even if
quantum theory did not put any limit to the distance at which entanglement should
manifest itself, it was certainly worthwhile testing it. Future developments amply
demonstrated that entanglement at a distance could lead to applications, unforeseen
at that time, for quantum communication in particular and this largely explains the
renewed interest in Bell’s inequality tests decades after Aspect’s early work.

For a long time however, Aspect’s experiment remained an isolated tour de force.
He went to work in other directions exploring first with Claude Cohen—Tannoudji,
then with his own group, properties of atoms cooled and manipulated with laser
light. Other physicists started cooling individual ions in traps and controlling with
ever increasing precision their evolution. In my own group, with my colleagues
Jean-Michel Raimond and Michel Brune, we focused on the study of photons
trapped in high-Q superconducting cavities and interacting with Rydberg atoms,
this domain being now known as Cavity Quantum Electrodynamics.

In all these experiments, single isolated quantum systems were monitored.
Concepts that had been discussed in the context of thought experiments in the early
days of quantum physics such as complementarity, quantum jumps and, of course,
entanglement came back to the forefront of discussions among physicists since their
manifestation became directly observable in real experiments. I remember that the
existence of quantum jumps was challenged by some physicists, before such jumps
became directly observable first in ion trap work, then in Cavity QED experiments.
While, in the old times, experimentalists in atomic and molecular physics could
explain their observations with the help of a density operator which dealt with
ensemble averages evolving smoothly and without jumps, the new experiments
required the description of single quantum trajectories, for which the density matrix
approach was inadequate. Monte Carlo calculations, in which random quantum
jumps were introduced in computer simulations of single quantum histories became
the new tool replacing the Bloch equation approach of the density matrix formalism.
With these tools, it became easy to compute high order correlations observed when
measuring all kinds of observables in a long time sequence and to test the results
of these predictions in increasingly complex experiments. So far, all of them have
vindicated quantum mechanics.
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One of the nagging questions remaining open has to do with the quantum-to-
classical boundary, the so-called Schrodinger cat paradox. Is there a maximum size
up to which quantum behaviour is directly observable? This question naturally arises
in the field of quantum information, where we try to harness the strange laws of
the quantum domain to communicate or calculate in new powerful ways. Quantum
information science will make it necessary to manipulate quantum systems of
macroscopic extension and made of large numbers of particles. We have of course to
define the meaning of “size” for these systems. If we take it as meaning the distance
between parts of a quantum object, we have learned from recent experiments, by
the Gisin and Zeilinger groups notably, that entanglement can survive over many
kilometres, without any indication of limitation so far. If we mean the number of
particles in the system, we know that large molecules made of thousands of nuclei
and electrons can give rise to interference effects and that fields made of hundreds of
photons can exist in superposition states. Not to speak of superconducting circuits
or degenerate quantum gases made of thousands to millions of particles, which can
be prepared in state superpositions involving two or more components.

These superpositions are very fragile and are eventually destroyed by decoher-
ence, a phenomenon linked to the coupling of the system to its environment. Some
physicists believe that, beyond the mundane decoherence process, which involves
entanglement with the environment well explained within the “orthodox” quantum
theory, there may exist a yet undiscovered mechanism that makes the quantum
laws invalid for large enough systems. I suspect that, behind this idea, there is
the circumstance that some physicists still find it unacceptable that God is playing
dice. The fact that the theory is at its heart probabilistic is bothering them and
they would like to find a way to escape from it at least when large objects such
as measuring devices are concerned. In fact, they are looking for a mechanism that
would determine in which state the Schrodinger cat is after the box is opened. That
decoherence has destroyed the coherence between the live and dead cat state is not
enough for them. They want to explain how the fate of the cat is finally decided and
they do not like the idea that it is left to pure chance.

In the end, the question of the validity of quantum physics for large objects
will have to be decided by experiments. What I think about the likely outcome
of such experiments or what those who are trying to perform them expect or
hope is not really relevant. The answer will have to be given by Nature, and
if quantum physics shows some kind of limitation, it will have to be modified
(even if it is hard to imagine how). The development of quantum information
theory and the concomitant multiplication of experiments manipulating quantum
objects of all kinds—atoms, molecules, photons, quantum dots, superconducting
circuits, mesoscopic cantilevers, etc.—make us much more conscious than in the
1960s or 1970s of the questions about quantum physics that can be answered by
experiments. Developing methods to control or counteract decoherence—quantum
error correction or quantum feedback—is not only necessary for implementing
future quantum logic machines, but is also important to make us probe the true limits
of the quantum world. If new ideas “a la John Bell” emerged to discriminate between
various interpretations of quantum theory or to look for decoherence beyond the
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“environment induced model”, we would certainly try to test them with the new
tools we are developing. The right attitude for experimentalists towards quantum
theory should thus be to trust but verify, rather than to shut up and calculate.

For now, we have to live with the present theory, which has been and still is so
successful at explaining and predicting. This is not such a bad situation. Beyond that,
do I find it bizarre that a physical quantity such as the polarization of a particle or the
number of photons in a box has no meaning before it is measured? or that quantum
systems undergo random jumps which cannot be predicted deterministically?, or
else that it makes no sense to even talk about these jumps if there is not a detector
to observe them? At some level, yes of course, I find all this weird, because this is
contrary to my classical intuition, formed by the observation of macroscopic events,
which occur even if you do not look at them.

I try to convince myself that there is even a Darwinian explanation to that
apparent strangeness of the quantum world. Our brain has evolved over generations
to adapt to the classical world, in which the underlying quantum phenomena are
“veiled”, according to the poetic statement by D’Espagnat. It is useful, for our
survival, to have an intuition about the classical trajectory of a stone thrown at us,
but not about how an atom crosses a double slit, in a superposition of trajectories.
We have not even coined words in our everyday language to describe that weirdness.
Thus, at some level, the world of atoms is indeed strange to us. We have, however, a
beautiful language to describe it, the language of mathematics. Using simple math,
we experimentalists in quantum physics have been generally able to predict what
happens in our atomic beam machines or in our resonance cells when we design an
experiment. This is a different form of intuition than the one of laymen, but it is still
an intuition of sorts.

However, there are situations where this simple mathematical “intuition” eventu-
ally fails. Even with the help of the most powerful “classical” computers, we cannot
solve the Schrodinger equation of a quantum system containing more than a few
tens of two-level atoms and we are thus unable to predict in detail what happens
in situations where complex massive entanglement is involved. Novel effects such
as exotic quantum phases of matter in two or three dimensions may thus escape
our understanding. We hope that, here, experiments will come to our help. We are
developing methods using cold atoms in optical lattices or ions in traps, or connected
superconducting circuits, to emulate these complex situations by reproducing, at a
different scale, the precise conditions of the real situation involving tens to hundreds
of particles. By having these artificial systems evolve and observing them in our
labs, we hope to find out how real system behaves. These quantum simulators,
predicted by Feynman in a prescient article 30 years ago, are the new tools we
will try to use in order to keep probing the mysteries of the quantum world.

Serge Haroche






Preface

A little less than 3 years ago, the editors of this book organized a program
on recent developments and modern problems in quantum physics, entitled The
Message of Quantum Science—Attempts Towards a Synthesis, which took place at
the “Zentrum fiir interdisziplindre Forschung” (ZiF) of the University of Bielefeld.
Thus, between the middle of February and the middle of May 2012, a series of
seminars and discussions and two workshops took place that attracted quite a
number of distinguished theorists and experimentalists.

It was the very lively and stimulating atmosphere prevailing during our program
and, in particular, during the two workshops that gave rise to the idea to put some of
the insights gained in the course of our activities on record and attempt to publish a
book containing essays by a certain number of participants. We are most grateful to
all people who participated in and enriched our program and who helped to promote
and deepen our understanding of quantum physics. Although not all of them have
made contributions to this book, we would like to acknowledge that, without them,
this book would not exist.

One might be tempted to say that Quantum Mechanics (QM) is so exceedingly
well established and understood that attempting to publish a book like this one is
a little like “carrying coals to Newcastle”. Our distinguished colleague Berthold-
Georg Englert has argued that QM is spectacularly successful and reliable; there
is no experimental fact, not a single one, that contradicts a quantum-theoretical
prediction." Yet, it is an experience made very frequently that when grown-up
physicists and, in particular, theorists start to discuss problems concerning the
foundations and the interpretation of QM, it does not take long until a state of
considerable confusion is reached, and their deliberations usually tend to become
quite emotional. In his paper Introductory Article: Quantum Theory,” Gianfausto
Dell’Antonio writes: Quantum mechanics today is a refined and incredibly success-
ful instrument ... but its internal consistency is still standing on a shaky ground.

'Eur. Phys. J.D. (2013) 67 238.
Encyclopedia of Mathematical Physics, Elsevier (2002).

xi
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Although we do not see any compelling reasons to doubt the internal consistency
of QM, we do think that there are many issues concerning the foundations and the
interpretation of QM that are still rather puzzling and not nearly as well understood
as they ought to be. This opinion or conviction was among our reasons to organize
a program on Quantum Science.

Other reasons why we were eager to convene specialists in quantum physics are
related to—among others—the following exciting developments: Recent years have
seen major experimental advances in the exploration of realms of the “quantum
world” that had previously been inaccessible. These advances vastly augmented
our capabilities to test fundamental features of Quantum Mechanics and quantum
many-body systems and to manipulate quantum systems, such as individual atoms,
atom gases and light. Some of this progress relies on major experimental and tech-
nological breakthroughs in exploiting the electromagnetic field and, in particular,
its quantum properties and its interactions with matter—new lasers, laser cooling,
optical lattices, magnetic traps, cavity QED, microscopy, etc.—and on advances in
semi-conductor technology. The former has led, for example, to the experimental
realization of Bose—Einstein condensates in dilute atom gases confined in magnetic
traps and of other exotic quantum fluids, to the configuration of artificial crystals
consisting of atoms located at the sites of optical lattices, and to numerous other
exciting discoveries in the manipulation of quantum systems. The latter has given
rise to new quantum Hall liquids (i.e., 2D electron gases exhibiting the quantum Hall
effect) and novel possibilities of manipulating them and exploring their properties,
e.g., measuring the fractional charges of quasi-particles, and to the discovery of
novel states of matter in two and three dimensions called “topological insulators”.
One may also think of the discovery of graphene and its exotic quantum properties,
such as the occurrence of “relativistic Dirac fermions” as quasi-particles. Some
of these advances and discoveries were featured in lectures at our workshops,
although it was not possible to do justice to all the exciting recent developments
and breakthroughs.

Another direction in Physics that has seen tremendous progress, in recent years,
is concerned with the study of the early universe and, in particular, with phenomena
studied in cosmology and astro-particle physics that are suspected to belong to the
realm of the “quantum world”, such as structure formation in the early universe,
dark matter and dark energy. This direction holds enormous promise for important
future discoveries, including ones affecting the foundations of fundamental physics.
Unfortunately, it could not be featured adequately, in our program—not least for
lack of competence on the side of the organizers.

In order not to end up with too broad and voluminous a book, we had to decide
to put the focus of this book on a more or less well-defined area in quantum physics.
We have chosen to emphasize the foundations of Quantum Mechanics and the
puzzling effects observed in the “quantum world”. There are many new experiments
in this general area, such as interference experiments with very large molecules
passing through double-slits, ones that test the validity of the Kochen—Specker
theorem, new tests of the violation of Bell’s inequalities and of consequences
of entanglement, new non-demolition measurements and tests of “wave-function



Preface xiii

collapse”, experiments realizing quantum-teleportation, etc. One might also think
of the progress in the study of open quantum systems, quantum transport and
decoherence. Many of the effects encountered and studied in such experiments have
real or tentative applications in the fields of quantum information science, quantum
cryptography and quantum computation. Some of these applications have actually
already been implemented in devices.

The experimental developments just alluded to have raised many challenging
questions for theorists, some of which have been actively addressed and answered
in recent years. All this has led to a new surge of interest in the foundations of
Quantum Mechanics, which have puzzled physicists ever since the discovery of this
theory, almost 90 years ago.

One main goal of our program was thus to gather experimentalists and theorists
studying fundamental aspects of quantum physics and have them review and discuss
the present state of affairs and draw our attention to some of the important open
problems in their particular areas. We are deeply grateful to all the speakers in our
seminars and at the workshops for the efforts they made to communicate their views
to an interested audience, which, by and large, turned out to be very successful. Most
contributions to this book have grown out of lectures presented to the participants
of our program. We thank all the authors of the chapters appearing in this book for
the care they took in writing their contributions and, in particular, Serge Haroche for
having agreed to write an Introduction. We very much hope that the reader will find
the material included in this book as stimulating and enlightening as the lectures
were, and we wish him/her pleasant reading and much benefit in studying it.

To conclude, we have the pleasure to express our sincere gratitude to the direction
and the staff of the ZiF for hosting our program and for generous support. We are
very grateful to Marina Hoffimann for her invaluable help and assistance before and
during our program at the ZiF. We thank Hanne Litschewsky for her dedicated help
in collecting the manuscripts of the contributions to this book, editing them and
preparing them for publication.

“In the name of all his friends we would like to dedicate this book to the memory
of our dear colleague and friend Walter Schneider (1938-2014). It has been a great
privilege for us to profit from his vast knowledge and his critical comments on
innumerable occasions. His loyalty, generosity and fine humor have been exemplary
and will be remembered. - Er wird uns fehlen!”

Bielefeld, Germany Philippe Blanchard
Ziirich, Switzerland Jiirg Frohlich
August 2014
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Chapter 1

Theory of the Decoherence Effect in Finite
and Infinite Open Quantum Systems Using
the Algebraic Approach

Philippe Blanchard, Mario Hellmich, Piotr Lugiewicz, and Robert Olkiewicz

1.1 Preliminaries

Quantum mechanics is the greatest revision of our conception of the character of the
physical world since Newton. Consequently, David Hilbert was very interested in
quantum mechanics. He and John von Neumann discussed it frequently during von
Neumann’s residence in Gottingen. He published in 1932 his book Mathematical
Foundations of Quantum Mechanics. In Hilbert’s opinion it was the first exposition
of quantum mechanics in a mathematically rigorous way. The pioneers of quantum
mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor
much interest in it. Conceptually, quantum theory as developed by Bohr and
Heisenberg is based on the positivism of Mach as it describes only observable
quantities. It first emerged as a result of experimental data in the form of statistical
observations of quantum noise, the basic concept of quantum probability.

The central concept in von Neumann’s book is an abstract Hilbert space. The
unexpected usefulness of Hilbert spaces arises from the fact that the equation of
motion of quantum mechanics, Schrodinger’s equation, is linear.

For the description of systems with infinitely many degrees of freedom the theory
needs a generalization of the standard Hilbert space formulation. Von Neumann
liked to spell out physical problems in an abstract and general language, and
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therefore formulated quantum mechanics as a theory of operators on Hilbert space
(what is today known as the theory of C*-algebras and von Neumann algebras).
He was influenced by Heisenberg’s quantum matrix dynamics, a new and highly
original approach to the mechanics of the atom, and obtained remarkable—though
incomplete—results.

Quantum mechanics is incredibly successful: no phenomenon up to now has been
found which contradicts it. The Copenhagen rules as formulated by Bohr can be
used as a pragmatic recipe to arrive at experimentally testable conclusions from the
Hilbert space formalism. Despite the puzzling nature of the measurement process in
quantum mechanics, these rules work very well in practice, so they are justified “for
all practical purposes” (FAPP), as it was put by John Bell.

Von Neumann'’s algebraic framework of quantum mechanics is general enough
to accommodate both classical and quantum systems, and thus facilitates the
description of situations in which quantum systems develop classical behavior in
a FAPP fashion. For this reason, foundational issues of quantum physics are best
discussed in this framework. Nevertheless, despite the possibility of formulating
classical physics in the algebraic framework, the von Neumann epistemic principle
claims that, at a fundamental level, there is only one kind physical laws, and
these are the quantum principles—in this picture, classicality only emerges as their
consequence.

In any experiment, two phases can be distinguished: the preparation of the
system under study and the actual measurement. This situation can be idealized
in the following way. Two systems, the observed system and the observing system,
influence each other, and we observe for each preparation @ and each measure-
ment A one of several possible outcomes {a; };c;, a; € R, the possible measurement
results. In general, for given w and A, the theory only determines a probability
distribution PA(a;), i € I, for the individual outcomes, where P2(a;) > 0 and
> ic; PXa;) = 1.1f for a given w and A there is always one unique (up to
experimental error) outcome when the same experiment is repeated, then we have
a deterministic theory; an example is classical mechanics. In contrast, classical
statistical mechanics and quantum mechanics are examples for theories which are
nondeterministic, or probabilistic.

Standard quantum mechanics is the only probabilistic theory where the proba-
bilities are postulated ab initio and are not a consequence of hidden deterministic
processes at a deeper level. Such processes are called hidden variables and reflect
the ignorance of the observer. However, the majority of physicists today believe
that the probabilities in quantum mechanics are not attributable to the ignorance of
hypothetical hidden variables, but are of a fundamentally different nature. This is
corroborated by Bell’s inequalities, which hold in any theory with (local) hidden
variables, and which were experimentally found to be violated.

If quantum theory is the fundamental principle of nature, the question arises
how the laws of classical physics, which in particular govern the objects of our
daily lives, follow from the more fundamental quantum laws. The most promising
answer to this question seems to be the one offered by the program of environmental
decoherence. Environmental decoherence contends that one has to take into account
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the fact that the objects of classical physics, and in particular macroscopic objects,
are strongly interacting with their environment, and that precisely this interaction is
the origin of classicality in the physical world. Thus classicality is a dynamically
emergent phenomenon due to the unavoidable interaction of quantum systems with
other quantum systems surrounding them.

Since decoherence is based on nothing else than the application of the standard
formalism of quantum physics to the description of the interaction between a system
and its environment, decoherence is neither an extraneous theory distinct from
quantum physics nor something that we would freely choose to include or neglect.
Decoherence is ubiquitous in nature and has to be taken into account to arrive at
a realistic description of a physical system. Moreover, decoherence is not to be
viewed as a disturbance of the system by its environment, on the contrary the system
disturbs the environment: the quantum coherence immanent in the system is not
lost but only delocalized in the environment. For recent reviews of the theory of
decoherence see [25, 28, 31].

In our work the aim was to obtain a rigorous definition of decoherence in a
general mathematical framework, which allows a classification of possible scenarios
of decoherence, and which is sufficiently general to accommodate also systems with
infinitely many degrees of freedom.

1.2 Algebraic Framework and Open Systems

Everybody agrees that concepts of classical and quantum physics are almost
diametrically opposed. Therefore, in order to discuss for instance the emergence of
classical behavior of quantum systems, we need a single mathematical framework
which allows a coherent description of the quantum and classical worlds. Just as
Newton invented calculus to describe classical mechanics, von Neumann invented
a splendid theory of algebras of operators to describe quantum theory. The
algebraic framework of quantum physics is an abstraction and generalization of von
Neumann’s formulation, which was pioneered by Segal, Haag, Kastler and Araki.
It is a mathematical model for states, observables and their dynamics, covering all
known physical applications and admitting a sufficiently rich structure to facilitate
rigorous developments.

1.2.1 Algebraic Framework

Given a specific preparation  (state) of a physical system and a specific mea-
surement A (observable), the role of the (kinematical part of the) theory is to
predict a probability distribution P(-) on the set of all possible outcomes of the
measurement. The set of all observables generate an operator algebra A/, which,
for mathematical convenience, is taken to be a C*-algebra or, when represented on
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a Hilbert space, as a von Neumann algebra. The observables then correspond to
the self-adjoint elements of A/, whereas the states are the positive and normalized
linear functionals on A/. The probability distribution P/ (-) is obtained by spectral
decomposition of a self-adjoint element A € A in the same way as in the standard
Hilbert space formulation of quantum mechanics. In this context, if A describes
a classical system, it is commutative, whereas an algebra with a trivial center
corresponds to a system with a pure quantum character.

1.2.2 Time Evolution

In modern physics the time evolution of physical systems is formulated using the
Hamiltonian approach, in which the dynamical law is described by a Hamiltonian
operator H. This assumption seems to be a very fundamental one and is valid
on all energy scales encountered today (see, e.g., [23]). In particular, in the
algebraic framework, the time evolution is given by a mapping on the algebra of
observables A into itself, and is formulated in the so-called Heisenberg picture:

x(t) = ef'xe™ " forany x e N, t € R, (1.1

where x € N is an observable at time = 0, and x(¢) the observable at time ¢.
A key issue in theoretical physics is to build the Hamiltonian H in an appropriate
way, and the basic criterion for its acceptability is its suitability for modeling
all phenomena of interest. To construct a Hamiltonian one first has to build its
domain D(H). This task is essentially related to the choice of the underlying Hilbert
space H for the system. Let (-, -)3; denote the scalar product of the Hilbert space .
Then the Hamiltonian H is given as a linear self-adjoint operator on H which is
densely defined. When a Hamiltonian has been fixed, one can next decide which
von Neumann subalgebra A C B(#) can be used to represent the set of observables
of the system, then the dynamics can be introduced by (1.1). The construction of
Hamiltonians in physics is one of the most difficult tasks, and is in many situations
an unsolved problem. Even the simplest models like the Hydrogen atom are far
away from being mathematically trivial. Moreover, the inclusion of a all physical
phenomena needed to describe the physical situation on hand makes the structure of
Hamiltonians complex, even at a formal level without any attempts of mathematical
rigor. A good example is the Hamiltonian of the electroweak interaction—a part
of the standard model considered today as a one of the main achievements of
theoretical physics [16]. Up to now there is still no mathematically rigorous theory
describing all the physics inherent in the standard model, despite the many efforts
directed towards this goal [11, 23].

This fact determines our attitude in the sequel, where we emphasize the analysis
of the general mathematical structure, avoiding discussions concerning particular
constructions of physical Hamiltonians for concrete interactions.
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There is some convenient mathematical abstraction of the idea associated
with (1.1), which can be stated in a purely algebraic way. The mapping A 3 x
x(t) € N, which is bijective for any fixed ¢, has some purely algebraic properties
that can be summarized easily:

a x(t)* = (x*)(¢) for any x € N, here * is the Hermitian conjugation in the
operator algebra B(H),
b (xy)(t) = x(¢)y(¢) forany x,y € N,

for any ¢ € R. Any linear bijective mapping & : N/ —> N obeying the algebraic
rules a and b is called a *-automorphism. The dynamics of the quantum system is
then described by a one-parameter group of *-automorphisms {«; };cr, called the
*-automorphic evolution, which in above terms in given by «,;(x) = x(t). The
group law reads o4+ = o4 o oy for all 7,5 € R, and o denotes the ordinary
composition of mappings. Some regularity property in the time variable ¢ are usually
introduced. For instance, if the function ¢ +— (V, a,(x)@) is continuous for all
fixed vectors ¥,¢ € H and all x € N, we speak of weak continuity of the
one-parameter group {«,};cg. Note that an arbitrary *-automorphic evolution is
not of the form (1.1) for some Hamiltonian H, but can be more general. Finally,
we mention that a *-automorphic evolution is it completely positive, which is a
notion whose physical significance has been realized by Kraus, Lindblad, Gorini,
Kossakowski and Sudarshan [1]. This concept of positivity can be explained in terms
of physical requirements. Fix some instant ¢ and consider the mapping defined by
N 3 x = a,(x) = x(t), where x(¢) is given by (1.1). Obviously, one obtains
that o, is a positive map on the algebra NV, i.e., o, (x?) > 0 for any element x € N/
such that x* = x (this follows, e.g., from property a and b). Consider now our
system as a part of a bigger system by adding to our system another quantum system
described by a n-dimensional Hilbert space C", which has a trivial Hamiltonian
H, = 0. The algebra of observables for the joint system is the von Neumann algebra
generated by all elements x ® A € B(H ® C"), with x € A and 4 € B(C"),
the algebra of all n x n-matrices with complex entries. We assume that the added
system is far away from our original system, so that the interaction between the
two systems is negligible. Let 1, be the unit matrix. The total Hamiltonian of the
two noninteracting systems is then H ® 1,, and the corresponding time evolution
is o = o, ® id,, with ¢ € R, and where id, is the trivial automorphism acting on
the matrix algebra B(C"). Using the same argument as before we get o (x2) > 0
for any observable x = x™* of the joint system. This positivity property holds
true for all positive integers n, and therefore the mapping «; is called a completely
positive map. Every *-automorphism is completely positive, but we emphasize that
not every positive linear map on a von Neumann algebra taking values in another
von Neumann algebra is completely positive. Below we give some examples of such
completely positive maps which are not arising from a *-automorphic evolution.
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1.2.3 Open Systems

We already alluded to the fact that our understanding of the physical world is very
limited and partial. A glimpse of this deficiency is present in the concept of an open
system. We shall see in the next section that this concept is of major relevance for our
understanding of appearance of classical physics in a world which, at a fundamental
level, is governed by the quantum laws. Hence we elaborate a bit on this subject. An
open system S is a physical system which is not (well) isolated from the influence
of its surroundings. This is a typical situation; in fact, a perfectly isolated system is
rather an exception since a perfect isolation can be achieved only approximately in
practice. We include the interaction of the system S with its environment E, which
can be thought of that part of the rest of the world which is in interaction with our
system S, in the mathematical description of S. To be more specific we assume that
the total Hamiltonian has the form

Hy = Hs @ 1g + 1s ® Hg + Hin,

where Hg describes the time evolution of the perfectly isolated system, and
similarly Hg corresponds to the environment alone. The term Hj, describes the
interaction of the system and its environment. The total system S + E can be
considered as a perfectly isolated system, since it includes all interactions between
all of its parts. It is this assumption that allows us to use Hamiltonian dynamics for
the total system. Note that by assumption we do not perform any observation of the
environment, all measurements are entirely confined to the system S (if we want to
perform measurements on parts of E we would include those parts in S as well). In
particular, using (1.1) one can write for the observables of the system S

x(t) = el (x @ 1g)e ! forany x ® 1g e N, t € R,

with ' = M & Mg, where M is the algebra of observables of the system S
and M is the algebra of observables for the environment E. Here V is the smallest
von Neumann algebra containing M ® Clg and Clg ® M.

In general, x(t) ¢ M ® Clg for t # 0. To mathematically describe the fact
that the experimental capabilities are confined to measurements on S alone we need
to find the resulting time evolution in M. To do this we consider some fixed initial
state wg of the environment and consider the linear mapping I1“E : N — M ®
Clg = M, determined uniquely by the condition

N (x ® X) = wg(X)x ® 1Ig forall x € M, and X € Mg.

Note that TI“E is a norm-one projection since wg(1g) = 1. The map IT*® is called
a conditional expectation. We shall often write x as an abbreviation for x ® 1,
which will cause no confusion. The state wg is usually called a reference state.
The physical meaning is that the influence of the system S on the environment E is
negligible, so that the state of E is not changed by the presence of S in a significant
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way. A typical example is an environment in thermodynamical equilibrium, whose
temperature is unchanged after some exchange of energy due to the thermal contact
with some small system. We extend this assumption to quantum states and neglect
the influence on the environment due to its interaction with the system S (of course
this assumption must be justified on a physical basis). As a matter of fact, this is not
the only simplification that is usually made. The time evolution of the system S now
follows the law

x(t) = Si(x) = N[ (x @ 1g)e '] forallx € Mandr e R, (1.2)

and this is not a *-automorphic evolution any longer. Moreover, the family of
mappings {S;};>0 does not constitute a one-parameter group. The only properties
inherited by the S; are complete positivity and contractivity, i.e., ||.S;(x)|| < ||x||
for all x € M, where ||| is the norm on M. The time evolution as given by (1.2)
has in general a complicated form and is difficult to study. Therefore, some further
simplifications are welcome. A simplification of great technical impact is achieved
when the dynamics (1.2) is approximately memory free, i.e., the family {S;};>0 can
be approximated by a semigroup {7;};>0. A semigroup satisfies the memoryless
property Ty o T; = T, for all ¢, s > 0. There are some physical regimes in which
this kind of approximation can be justified rigorously. For a nice account of this
approximation technique we refer to the book [1]. We remark that a Markovian
approximation of the time evolution given by (1.2) is often unavoidable in order to
arrive at concrete results. Nevertheless, below we give some examples where the
dynamics {S;},>0 is given by a semigroup from the outset, without the need for any
approximations.

1.2.4 Summary

To sum up our discussion: we are interested in an open quantum system S. The time
evolution of such a system results from the interaction of S with its environment E,
and we focus on cases where the time evolution can be well approximated by
a Markovian dynamics, i.e., by a semigroup {7;};>0 of completely positive and
contractive linear maps acting on the von Neumann algebra M representing the
observables of the system S. For our applications to decoherence, a central issue
is the long time behavior of such semigroups. In fact, we shall pay less attention
to short time behavior of the semigroup here, which is intimately connected to
regularity properties in the time parameter ¢ and the notion of the infinitesimal
generator of the semigroup. We only mention weak™* continuity as a natural notion of
continuity in the von Neumann algebra setting. Let M™ be the dual space, consisting
of all norm-continuous linear forms on M. We consider the topology generated by
all seminorms

Pig, 5,3 () = > 1(xEn. Cu) el

n=1
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on M, where §,,, € H forn = 1,2,...such that > o2 [&:ll% - |Cull < +o0.
Here ||-|[% = +/ (-, )% denotes the Hilbert space norm of H.

This topology is called the o-weak topology on M. Finally, we say that ¢ is
normal if ¢ € M?™ and if it is continuous in the o-weak topology; the space
of all normal linear functionals is denoted by M. As a matter of fact the dual
space of M. is the algebra M, and the o-weak topology coalesces with the weak*
topology when M is considered as the Banach space dual of M. Sometimes we
refer to M as the predual space of M.

The Markov semigroup is weakly* continuous (or o-weakly continuous) if the
map ¢t +— ¢(T;(x)) is continuous for all fixed x € M and ¢ € M.,. This notion
of weak* continuity will be used in some constructions and in the examples below.
We also shall use occasionally the strong operator topology on M, which is given
by the family of seminorms x > ||x¢|| with ¢ € H.

1.3 Decoherence

In the following we recall the notion of decoherence which we have proposed in
the algebraic approach to quantum physics. It describes a physical process resulting
from the interaction of an open system with its environment. Let M be the algebra
of observables representing the kinematical degrees of freedom of the system. Due
to its openness the time evolution of the system follows an irreversible dynamical
law, given by a family of completely positive maps {7;};>0 on the algebra M, i.e.,
M 3 x> Ti(x) € M, wheret > 0.

1.3.1 Definition of Decoherence

Definition 1 We say that decoherence takes place if the following decomposition
holds true: There exist two Banach subspaces 9t and 91 of M such that

M=Me N,

where 901 is a von Neumann subalgebra of M. The restrictions 7; [on of the
maps 7; to 91 are given by a reversible time evolution associated to some group
of *-automorphisms { R, };egr of the subalgebra 9, i.e., R, = T; |9y forall r > 0.
Moreover, we require that

tlim ¢(T;(x)) =0 forall¢p € My and x € N. (1.3)

Let us make some comments concerning the physical content of this definition.
Due to decoherence, any observable x € 1 starts to be out of the range of any
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measurement device after some lapse of time (which is finite in practice), i.e.,
|¢(T;(x))| <e foranyt > tg,

uniformly for any x € 91, where the bound ¢ for the average values of the
observables is small enough to be considered as not relevant in all measurements.
The time 74, which is found to be very short in all practical situations, is called the
decoherence time. It marks a time scale after which the reversible dynamics { R, };er
on the subalgebra 91 starts to be dominant in the system, and at the same
time it effectively describes the system. This phenomenon is modeled by the
requirement (1.3).

We call the algebra 901 the algebra of effective observables, and the dynam-
ics on 9 given by {R;};er the effective dynamics of the system [4, 17]. The
pair (O, {R;}/cr) is called the effective dynamical system. We emphasize that
due to the process of decoherence a part of the kinematical degrees of freedom
represented by 91 are suppressed as a consequence of the interaction of the system
with its environment. Mathematically, this interaction is inherent in the family
of maps {7;};>¢. It is believed that the notion of a strong decoherence is more
appropriate physically. For strong decoherence one assumes that the convergence
in (1.3) is uniform for all observables from any set that is bounded in the operator
norm ||-|.

Finally, note that it is sometimes convenient to replace condition (1.3) by the
weaker requirement

tlim ¢(T;(x)) =0 forallp € My andx € Ny C N, 1.4)

where 9 is a subspace dense in 1 with respect to the o-weak topology (see below
for an example where 91y = 91N €, with € a C*-algebra).

1.3.2 Environment Induced Superselection Rules

If the family {7;},>0 of operators admits predual operators Ty, acting on 91, for
any ¢ > 0, then one can express decoherence in the language of dual objects, and in
particular in terms of states, as it is often done in the physics literature.

Indeed, historically the notion of decoherence has origin in this dual picture. If
one considers two states both represented by unit vectors ¢ and ¥ from H, then one
can form their superposition, y) = (¥ +A¢)/||¥ +A¢|#, where A is some complex
number. The vector y,, in agreement with the superposition principle of quantum
mechanics, describes a new possible state of the system S. But in general there are
some very serious obstacles to accept this point of view in its full generality. One of
the basic example is provided by elementary particle physics, where no observation
of any superposition of states with different electrical charges or a superpositions
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of states with integer and half-integer spin have ever observed in laboratories. More
striking examples touching our everyday experience are obtained when one tries
to understand the behavior of macroscopic systems using principles of quantum
mechanics. The most famous example is the Gedanken experiment proposed by
Schrodinger in 1935 [26]. A cat is enclosed in a nontransparent box together with
a poisoning substance. A lethal portion of this substance is released when a Geiger
counter inside the box registers the radioactive decay of one atom. The quantum
mechanical description of this situation suggests that the cat is neither dead nor
alive, but that its state is given by a superposition of “dead” and “alive” states of the
cat until we open the box and check its condition. This grossly contradicts common
sense. Obviously, if one opens the box then one finds the cat either dead or alive
with some probability which is given by the laws of radioactive decay. This example
touches not only the measurement problem in quantum theory, in particular the wave
packet reduction postulate, but poses a fundamental question as well: Why does the
superposition rule, valid in the micro-world of particles, ceases to be valid in the
macro-world, which is made up from these microscopic particles?

The concept of superselection rules, originally introduced in the context of
elementary particle physics [27], is a natural and simple solution: Superpositions
of states not realizable in the physical world have to be excluded from the Hilbert
space H. This means, in particular, that the Hilbert space of physical states H, has
to be written as a direct sum of distinguished subspaces: H = H; & H,, where the
superposition rule is valid without any limitation exclusively within each coherent
subspace H, and H,, but not between elements of #; and H,. In that case the
algebra of observables A can no longer be equal to B(H), as was first realized
by von Neumann. Indeed, assuming that the linear combinations y, with ¥ € H,
and ¢ € H, have no physical meaning then the algebra of observables should not

P +ﬂP and the
v

make any distinction between the statistical mixture W p Fe
state given by P,, , where P, is the orthogonal projection onto the one-dimensional
subspace spanned by y; (the projections Py and P, are defined in a similar way).

In other words,

AP

Tw(q),xq))H forall x € NV.

(X xx)n (Y, xy)w +

T+ AP

This means that the commutant A/ contains orthogonal projectors Q1 and Q»
onto H; and H,, respectively. Hence N # B(H), since the commutant of B(H)
is trivial, i.e., B(H#)" = CI. The superselection rules can thus be introduced by
the so called superselection operators (0, which are given by all elements of the
commutant A/’ of the algebra V.

The addition of the postulate of superselection rules in quantum mechanics
poses new questions for physicists: how can one justify them? This question, on
a purely mathematical ground, partially overlaps with the question concerning
the phenomenon of wave packet reduction in the measurement theory, or more
generally, the question of a restriction of the superposition principle for macroscopic
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objects (i.e., the appearance of a classical world). Indeed, one wants to find a
physical mechanism resulting in the following condition:

(Y, xp)y =0 forallx € NV,

for all pairs states ¥ and ¢ which cannot be superposed in the presence of
superselection rules, or for all pairs of states { and ¢ which are macroscopically
different, as in the case of measurement theory. The Hamiltonian dynamics has a
fundamental character, but evidently it cannot account for the above goal. Since
Hamiltonian evolution transforms each state y € H into another state in , it cannot
transform a pure state into a statistical mixture. In other words, the orthogonal
projection P, will evolve into another orthogonal projection under any Hamiltonian
evolution, but never into a mixture wPy + (1 — w) Py, with w € (0, 1).

1.3.3 Zurek’s Description of a Quantum Measurement

In this section we briefly present Zurek’s idea of environment induced superselec-
tion rules, which was proposed in [29, 30] and further developed in [12, 21]. The
starting point is the von Neumann scheme [26] of a measurement device A which
measures an observable S = Y s|s)(s| of a system S, which is initially prepared in
the state |/o) = Y, ¢,|s). Von Neumann’s formulation of the measurement process
can be divided into two phases. The first phase—often called the premeasurement—
consists of forming quantum correlations between the measurement device A and
the system S that is being measured, i.e.,

|¥0) ® |4o) = chls ® |4o)

Zc |s) ® |As).

Note that initially there are no correlations between A and S. The second phase is
often called the wave packet reduction and is connected to the transition from the
superposition of states to a statistical mixture, which is also called the decoherence
process. In symbols,

Hiy: <—>A

ch|s®|A :>Z|c|2 Ml @ |As) (Al

This transition cannot be realized by a Hamiltonian time evolution. Here the
initial state |) of S has been destroyed. Note that the coefficients ¢, have not
been changed in the decoherence process, which means that certain information
concerning the initial state |yo) of the system S has been transported to the
measuring device without any losses (we are considering an ideal measurement
process).
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Now Zurek argued that this scheme cannot be completely realistic since, in
accordance with quantum theory, the state produced in the premeasurement can
be represented by a superposition of eigenstates |r) of another observable R =
> r|r){r| as well, which need not commute with the original observable S in
general. As a particular consequence, this would mean that the measurement device
itself would have contained the whole information about two non-commuting phys-
ical quantities at the same time. But as a consequence of their non-commutativity,
they are subject to the Heisenberg uncertainty principle and hence cannot be
determined simultaneously with arbitrarily high accuracy. Moreover, one could
not say that the device A is related to a particular physical quantity in an unique
way, contradicting our experience with real measurement devices in real laboratory
situations. As a conclusion, if we believe that the device A obeys the quantum
laws after the premeasurement process, we must contend that we still do not fully
understand the wave packet reduction process. Zurek himself wrote:

...quantum mechanics alone, when applied to an isolated, composite object consisting of
apparatus and a system, cannot in principle determine which observable has been measured.

The solution proposed by Zurek bridges the gap described above and removes
the loopholes in our understanding of the premeasurement process, and at the
same time it indicates the mechanism of the wave packet reduction process. In
Zurek’s proposal, the measurement device consists not only of the part A, but it
is a composite system A’ = A + E, where the part E is called by convention
the environment of the device A. It seems to be natural that the measuring device
consists of one part which has direct contact with the system S on which the
measurement is performed. This part of the measurement device directly collects
the information about the state |) of S. It is identified in Zurek’s scheme with
the quantum subsystem A of the total system A’. The second part E decides which
part of the information transferred by the interaction between S and A is actually
displayed by the measurement apparatus A’, i.e., which observable it actually
measures. Note that we consider the part E to interact only with A, but it does not
influence the measured system S. Moreover, the part E is entirely ignored during the
whole process of measurement. Mathematically, this corresponds to computing a
partial average with respect to the ignored state of E. This averaging leads to a non-
Schrodinger type dynamics in the state space of A, or equivalently, to an irreversible
dynamics on the corresponding algebra of observables. This resulting dynamics
is typically complicated, but at the same time it leaves room for the dynamical
appearance of the phenomenon of wave packet reduction.

Summing up our discussion: On physical grounds we have argued that one has
to take into account the essential openness of systems in order to understand the
decoherence process. The main idea presented above is based on the pragmatic
assumption that only partial information about the dynamics of the total system A +
E is available in practice, which is given by averaging over the degrees of freedom
of E. Due to ignoring E the renouncement of the genuine *-automorphic dynamics
is unavoidable.
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1.4 Some General Results About Decoherence

Having clarified the basic mathematical notion of decoherence and having dis-
cussed its physical interpretation we are now ready to develop some mathematical
consequences of the point of view we have chosen. We first state some theorems
(without giving them in the most general form that is possible, instead we refer to
the cited literature). After that, in the following section, we shall give some typical
examples which give the flavor of the theory; however, they do not exhaust all
known models to date (we have always chosen the simplest mathematical version
and have avoided obvious generalizations). However, we keep our considerations
mathematically rigorous. The price to pay for mathematical rigor is the loss of a
complete connection to exact physical realizations as is met in the laboratory. We
hope to be able to fill this gap in the future by a further development of the models.
Nevertheless, the discussion below presents the main line of our idea in full detail.

It is clear that different scenarios for the algebra 20t and the dynamics {R;};>0
are possible, including the case in which the dynamics {R;};>¢ is trivial—this is
a typical situation if the algebra 91 is isomorphic to a discrete one, e.g., M =
£>°, the space of all bounded sequences of complex numbers, which becomes a
von Neumann algebra when multiplication is defined by {a,}{b,} = {a,b,} and
involution by {a,}* = {a,}. This situation is described by the Theorem 1 below
(see also [20]).

Let T(H) < B(#H) be the set of all linear operators of trace class, and
let 74+ (H) € T(H) the set of all non-negative operators. Moreover, 74 1 (H) C
T+ (H) denotes the set of all non-negative elements with trace equal to one. This set
is identified with the set of all states of the system. For the proof of the next theorem,
recall that 7 (H)* = B(H). We assume that we are given a semigroup {7}};>0
of superoperators T; : B(H) —> B(#), for all t+ > 0, which describes the
time evolution of an open system in the Markovian approximation—refer to our
discussion in Sect. 1.2.3 for details. We assume that {7} },>¢ satisfies the following
properties:

al Foreacht > 0 we have T, (1) < 1.

a2 For each t > 0 there exists the map Ty : T(H) —> T (H), the predual
operator of 7;.

a3 Foreacht > 0 the map 7; is two-positive.

a4 Foreacht > 0 the map T; is contractive in the operator norm ||| s on B(H),
and 7T; |73 is contractive in the trace norm |-||;, defined on the trace class
operators T ().

We assumed that the initial algebra of observables M is given by the full operator
algebra B(H), i.e., it is a factor of type I. This assumption is natural in the sense
that we want to consider a system with a “maximal” quantum character, without
any superselection rules, in which the whole Hilbert space H constitutes the set of
physically realizable states. In this situation we want to investigate the appearance
of possible superselection sectors due to decoherence. We assume two-positivity
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instead of the more physical assumption of complete positivity since it turns
out that two-positivity is enough for our purposes. In particular, this positivity
condition together with the conservation condition 7;(1) = 1 guarantees that the
density matrices p € T+ () are transformed into density matrices 7;+(p) by the
mappings T;«. This allows us to consider the dynamics in the state space in a natural
way.

Theorem 1 Let {T;};>0 be a weak* continuous semigroup on B(H) satisfying the
above properties al—a4. Then there exist linear subspaces 9 and N of B(H) having
the properties described in Definition 1, together with the condition (1.4). If M
contains the unit 1, then it is additionally a von Neumann algebra which can be
decomposed into a direct sum of factors My, k =0,1,2,..., ie.,

m = P M. (1.5)
k

where each factor My, is of type 1. Moreover, the effective evolution { R, },er is given
by a unitary evolution

R/(x) = exe ™ forall x € M,

where H is a self-adjoint operator.

Sketch of Proof Let HS(H) € B(H) denote the set of Hilbert—Schmidt operators,
which can be considered as a Hilbert space with inner product (x, y), = trx*y,
and define a subspace of HS(#) by

R={x e HS(H) : [T« () [l2 = IT;(X)|l2 = ||x]|> for all z > 0}, (1.6)

where ||-||, denotes the Hilbert—-Schmidt norm, which is defined by ||x|, =
Vtr(x*x). We assume that £ is nontrivial, i.e., & # {0}. As a matter of fact, the
map T;, when restricted to HS(7{), can be considered as the Hilbert space adjoint
of T« acting on HS(#), i.e. the extension of T;«, which is denoted in (1.6) again
by T}« and is given by the restriction of the dual operator T; (s to HS(H). The
space R is invariant under the action of both 7} and its adjoint operator. The same
holds true for the orthogonal complement HS(H) © K. The actions of T;x and T;
are isometric on R and suppressing on HS(#H) © R, i.e., lim;— o tr(¢T; (x)) = O for
all x € HS(H) © R and all ¢ € HS(H). Let P be the orthogonal projection onto the
subspace K. One can show that tr P(¢) < tre for all ¢ € T4 (H). In particular, P
transforms 7 () into 7 (7). Hence, one can consider the restriction P |7 (%),
which induces a decomposition of the space 7 () into the isometric (iso) and
suppressing (s) parts

T(H) = T(H)iso 7 T(H)Ss
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where 7 (H)iso = P(T(H)) = &N T(H), and T(H)s = (@(d—P)(T(H)).
Finally, one defines the algebra 9t as the dual space of 7 (H)iso. Let E be equal to
(P M@y )*, ie., the dual operator of P when considered as an operator in 7 (H).
Then 9 = E(B(H)) and 91 = (id —E)B(H). For any compact operator x from 91
one has the suppression property, lim;_, tr(p7;(x)) = 0 for all ¢ € T (#). This
can be easily seen if one notes that HS(7) is a dense subset of the set of all compact
operators in the operator norm topology of B(H).

The decomposition of the algebra 2t in (1.5) is described in detail in [20].
Having established this decomposition, we note that the dynamics should preserve
each subalgebra 91, and hence cannot generate “transitions” between different
sectors M. Hence we need to analyze the restriction TO =T, o, » which
is a *-automorphic evolution. A closer analysis shows that K is generated by
orthogonal projections (denote the collection of all of them by P(R)), which are
finite-dimensional since £ is a subset of the space of Hilbert—Schmidt operators.
Moreover, Ty« and T;, as operators on K, transform orthogonal projectors into
orthogonal projectors of the same finite dimension, and they are evidently bijective
mappings when restricted to P(R), as T;«(T;(e)) = e for all e € P(R). They
satisfy the multiplication rule, i.e., T;(ee’) = T,(e)T;(¢’) for all e, ¢’ € P(K). The
operator 7; is normal, and P () generates 21, hence each 7; is a *-automorphism
of M. The same conclusion holds for each T,(k) . Now, as 91 is a factor of type I, it
is spatially isomorphic to B(#y), where Hy is some Hilbert space. Let y : D —
B(Hy) denote this isomorphism. Finally, each *-automorphism of B(#y) is inner,
so we conclude that y o T,(k)(-) oyl = V,(k)(-) V,(k) * for some unitary operator V,
in Hy. The family {V,(k) }rer, With V_(]f) = V,(k) * for ¢t > 0, is a strongly continuous
one-parameter group of unitary operators in Hy. O

Note that when {7« },>0 is relatively compact in the strong operator topology one
obtains strong decoherence. We shall not dwell on all the different cases covered by
this theorem as it is more adapted for the discussion of superselection rules (which
are not our central issue here) and the measurement process if M =~ £°°, giving a
set of discrete outputs.'

To address situations with nontrivial continuous effective dynamics {R;};er on
an abelian algebra 91 we need to go beyond the realm of type I von Neumann
algebras. Theorem 2 below covers the cases of type II von Neumann algebras, but
it can be stated in a more general form which applies to type III von Neumann
algebras as well (we invite interested readers to consult [18]). Let us first introduce
some notation. Let t a be semifinite faithful and normal trace on the factor M. One
defines the set M, € M by

M, = lin{x € My : t(x) < +00}.

'We do not consider random dynamics on £°° given by some continuous Markov chain.
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We make similar assumptions as in the case of Theorem 1:

Al Foreacht > 0 we have T, (1) < 1.

A2  For each t > 0 there exists Ty« : My —> M., i.e., the predual operator
of T;.

A3 Foreacht > 0 the mapping 7; is two-positive.

A4 For each t > 0 the mapping 7; is contractive in the operator norm ||||o
on M, and T; |, is contractive in the trace norm ||-||; defined on the trace class
operators M.

Theorem 2 Let {T;},>0 be a weak* continuous semigroup on M satisfying the
above properties AI-A4. Then there exist T;-invariant linear subspaces M and N
such that the decomposition M = 9 @& N holds. Both M and N are weak* closed
and invariant under the involution in M. Moreover, M is a subalgebra of M. If
1 € M then M is a von Neumann algebra. Moreover, T; |sn gives rise to the
*-qutomorphic evolution { R, },;er. We also have

tlim o(T;(x)) =0 forallp € Myandx e NNC, 1.7
—00

where € is a C*-algebra which is weak* dense in M. If {T;+}1>0 is relatively
compact in the strong operator topology then we get strong decoherence. Finally, if
the trace t is finite on M then the condition (1.7) is satisfied with € = M.

To further simplify our discussion we formulate our next Theorem 3 only for the
case of a finite von Neumann algebra of type II;. We consider a normalized trace
on M, i.e., (1) = 1. First note that in this case any von Neumann subalgebra 9t
of M can be considered as a result of some decoherence process induced by a
semigroup {7;};>0 of operators satisfying the above conditions A1-A4. We are
particularly interested in the case in which 91 is a maximal abelian subalgebra
in M. In this case one can describe the effective dynamics {R;};cr in a canonical
way. Indeed, by the Riesz representation theorem 9t ~ L°°([0, 1], 8,dx) = L*°,
where f is the Borel o-algebra of [0, 1] and dx is the normalized Lebesgue measure.
To simplify the notation we identify both algebras 901 and L°°. According to
Theorem 2, R; is a *-automorphism of L preserving the trace 7, i.e., one gets

1 1
/ (R(f))(x)dx :/ f(x)dx forall f € L.
0 0

Using classical theorems about Lebesgue spaces the existence of bijective map-
pings ®; can be established, which have the property that both ®, and ®;!
are measurable and invariant under the Lebesgue measure, and which are related
to R; by

RI(XA) = X(DI_I(A) fOl‘ all A S 137
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where y 4 denotes the characteristic function of the Borel set A. Using the group law
of {R;};er and the above relation one gets &, o &, = ®,, forall ¢,r € R. Hence
we have obtained a measurable flow {®; };cr. We can now formulate the next result.

Theorem 3 Let M be a factor of type 1} with a normalized trace t. If the
effective algebra M is a maximal abelian subalgebra of M then the effective
dynamics {R;};er can be viewed as a classical dynamics on the phase space [0, 1]
which is given by a measurable flow ®, : [0,1] — [0,1] for t € R, where
R (x) = &, 4 (x) for all x € M, with (P, «(x))(w) = x(P;(w)) a. e. with respect
to Lebesgue measure on [0, 1].

1.5 Examples

Let us now present some examples. We focus our attention on cases with nontrivial
effective dynamics as they seem to be most interesting. First, we consider an
example with a factor of type II;. Then we move on to examples of infinite von
Neumann algebras.

1.5.1 Newtonian Motion on the Circle

One of the simplest C*-algebras describing infinite systems is the Glimm algebra,
which we now introduce. Consider the set of all complex matrices with 2" rows and
columns (n = 0,1,2,...). We shall denote this set by .4,. One then defines the
involution *, on A, as the Hermitian conjugation of matrices. The norm ||x||,, of an
element x € A, is defined as the square root of the biggest eigenvalue of the matrix
x*rx. Notice that 4, is the algebra of observables for the spin degrees of freedom
of a set of n spin-% particles (the Planck constant 7 is set to 1). For n < m each
C*-algebra A, is *-isometrically included in the C*-algebra A,,, i.e., |x[l, = [|1x||m
and x*» = x*n_ where the element x € A, is identified with its image in A,,. This
inclusion can be easily constructed. For the sake of simplicity let us take m = n + 1.
Then the matrices of the algebra A, 4, which are built from diagonal blocks of

size 2 x 2 of the form (?) 2), can be identified with elements of the algebra 4, in

a natural way. Using this inclusion A, <> A,y it is intuitively clear that one gets
a normed *-algebra | J;—, A,. This algebra can be next completed with respect to
the norm ||-||, where ||-|| '4,= |‘|l»- The resulting C*-algebra is called the Glimm
algebra. This construction can be stated in a more precise fashion if one uses the
concept of inductive limit [14], which we do not introduce here. The Glimm algebra
describes the spin degrees of freedom of an infinite system of spin-% particles.
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Consider the factor generated by the Glimm algebra A in its trace representation
via the GNS construction, i.e., M = 7,,(A)”. We shall consider the dynamics
on M given by

%x = 8(x) + Lo(x) = i[H, x] + Lo(x),

where § generates a weak*® continuous one-parameter group of *-automorphisms of
the algebra M, and L is the dissipative part of the dynamics, which is responsible
for the suppression of certain observables due to decoherence. These two ingredients
are chosen as follows:

Step 1: Let D, be the algebra of diagonal 2" x 2"-matrices and let {4, be the set
of all unitary matrices U of size 2" x 2" which preserve the diagonal algebra D,,.
Let U (2%) be the element of the group U, which is defined as

U(zin)*diag(dn,dzz,...)U(zin) — diag(doran, dv1, doa, .. ),

where diag(d11, d2, . ..) denotes the diagonal matrix with entries dy1, da, ... on
the diagonal. Since there is a natural homomorphic inclusion of the groups U, <
U, 41, one can consider the set U,j':og U,,, which is an abelian group isomorphic
to the group of dyadic numbers D of the interval [0, 1] with addition modulo 1,

k n
D:{z—n:k=o,1,2...,2 _1, andn:l,z,...}.

This isomorphism is given as follows: to each dyadic number d = 2% we attach
a unitary operator U(d) = U (2%)]‘. Now we can give the representation of the
group D of dyadic numbers as a subgroup of the group of inner *-automorphisms
of the algebra M, i.e.

D>d+ a(d) € Aut M,

where a(d)x = U(d)*xU(d) for any x € M. The following result has
been shown in [17]: There is a weak* continuous group homomorphism « :
R > t +— AutM such that «(m) = idy for any integer m € Z, and for
all dyadic numbers d € D we have a(d) = U(d)* - U(d). Moreover, any
*-automorphism «(t) is spatial, i.e., a(t) = U(t)* - U(t) for some strongly
continuous group {U(¢)};er of unitary operators in the Hilbert space ,,, the
space on which the representation m,, acts. In particular, we can represent the
generator § of the group {& };er in the form 6(-) = i[H,-], where H is a
self-adjoint operator in the Hilbert space H,,, which, in turn, generates the

group {U(?)}er.
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Step 2:  Let® C Abe the Banach algebra generated by the infinite matrices of the
formo} = 1® - ®1®063Q1®- -, with 1 = ((1) (1)) and with the Pauli matrix

03 = ((1) 01), which appears in the k-th position of the above tensor product.

The algebra ® is a maximal abelian subalgebra algebra (m. a. s. a.). Moreover, ©
is *-isomorphic to the algebra C(C) of all continuous complex valued functions
on the Cantor set C.

Step 3:  We consider a system similar to the one considered by Bell [3] in his
discussion of the wave packet reduction.> So we have a single particle which
plays the role of the environment for our spin system. The particle moves past
the spins, interacts with them and thereby induces changes in the spin system. In
the laboratory one observes only the macroscopical behavior of the measurement
device, forgetting about the small particle whose presence can be registered only
indirectly by a measuring device. In our example the measurement device is
represented by the spin system, and the particle is a part of its environment. We
“forget” about the particle by looking only at the degrees of freedom of the spin
system. The state space of the particle is the Hilbert space Hg = L%(R,dm),
where dm is again the Lebesgue measure on the real line R. Its kinematical
degrees of freedom are described by the algebra of all bounded operators on Hg,
i.e., Mg = B(Hg). The algebra of the joint system is given by the von Neumann
algebra 91 ® Mig which acts on the Hilbert space H,, ® Hg. The interaction
Hamiltonian is taken to be

+o00 1 , R
Hin = 1y ( 32 5701 | ® P, (1.8)
k=1

where p is the momentum operator of the particle in #g. The reduced dynamics
is obtained by

T}O(.X) — HwE(eitHimx ® ]].Ee_itHim),

where T1“® : I ® Mg —> 9N is the conditional expectation with respect to the
reference state wg = |) (|, where the vector |y) is given by

ipx

1 e

and where 16 (x ® A) = wp(A4)(x ® 1g) = we(A4)x.

2Bell worked within the Hamiltonian formulation and without averaging over the degrees of
freedom of the environment.
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The following fact has been proved in [17]: The family of maps {Tfo}zzo is
a semigroup on M which satisfies the above properties A1-A4. Moreover, the
generator L of this semigroup is a bounded operator on M. It follows that we
have a well defined generator § + L, and we denote the corresponding semigroup
by {T}}:>0. Then the following theorem [17] can be established.

Theorem 4 The von Neumann subalgebra M of effective observables is *-iso-
morphic to the algebra mw,, (D) = L*(C,du). Moreover, the group {R;}ier
of *-automorphisms is isomorphic to the group of *-automorphisms of the alge-
bra L*°(S!,dm) generated by the smooth flow ®, : S' — S! (t € R), which
describes the uniform motion of a particle along a unit circle S'. More precisely,
for x € L®(S',dm) one gets x — x; with x,(a) = x(a+2nt) fora € [0, 1),
where 4 denotes addition modulo 2.

1.5.2 Newtonian Motion in Euclidean Space

In this example we show that a similar construction can be carried through for the
case of the classical system with a non-compact configuration space. Let G = D x
D x D be Cartesian product of the group D of dyadic numbers on the real line R. Let
H = P; L*(R?, dm), where dm is the Lebesgue measure on R?, which we take as
the Hilbert space describing the system dynamics, which will be defined below. The
group G acts on the algebra L>®° = L%°(R?, dm) by ag(f)(r) = f(r + g) for any
r € R3. This action is free and ergodic [14]. The kinematical degrees of freedom
are described by the von Neumann algebra M = L*° ®, G, where ®,, denotes the
crossed product [14]. The application of the crossed product to physical problems
was pioneered by Landsman in [15]. He used it to obtain a quantization procedure
of classical systems. We will use the crossed product in the opposite direction since
our result can be regarded as a “dequantization”, i.e., we start from a system with
quantum character and then arrive at a classical one.

The algebra M is a factor of type Ilo,. We define a faithful normal semifinite
trace T @ My —> [0,+o0] by 7(x) = [x(0,0)dm. Let 7, be the canonical
normal *-isomorphism of the algebra L* into M. Then m, (L°°) is a commutative
subalgebra of the von Neumann algebra M. The environment is described by
the Hilbert space Hg = L?(R?,dm) and by the algebra B(Hg) of all bounded
operators on Hg. The algebra of the total system is then given by the von Neumann
algebra M ® B(Hg), acting on % ® Hg. In the following theorem the total
Hamiltonian of the system and its environment is constructed. For a proof refer
to [18].

Theorem S The total Hamiltonian of the total system is given by the following
essentially self-adjoint operator

3

A 1 A . .

HSE:_U'P®]1E+§]1®p'p+§ ke (Xk) @ Pk,
k=1
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where ¢, > O withk = 1,2,3, v = (v1,v2,v3) € R3, & = (X1, %, %3) is the
position operator and p = (p1, p2, p3) is the momentum operator in L*(R?, dm).
Moreover, P = (131, P, 133), P = D¢ pr and o (%) = [ A (dEi (X)), where
dEy is the spectral measure of the operator Xy. The domain of H is given by

D(H) = {é e H @Mz E(g) € SR} xRY), E(g) =0 fora.a g € G},

where S is the space of Schwartz test functions vanishing at infinity together with
all their derivatives faster than any polynomial.

We choose the state of the environment as wg = |¥)(¥|, where the vector ¢ €
L*(R?,dm) is defined by ¥/ (r) = []; ¥o(rx), and where  is determined by the
Fourier transform of (1.9). The reduced dynamics of the system is given by

Ty (x) = M (e'BsEx @ Lgeifise) (1.10)

for all x € M, which, in fact, is a semigroup [18]. Then the following theorem [18]
can be proved.

Theorem 6 The algebra of effective observables induced by the semigroup (1.10)
has the form 9 = 1w, (L), and for all n € My and x € N one gets n(T;(x)) — 0
when t — o0o. Moreover, I, R;) =~ (L%, ®;). Consequently, the effective
dynamics { R, };er leads to the flow ® on R® which is given by

O, (r)=r +tv, forallr € R

This flow describes a uniform motion on the Euclidean space R>.

With this example we finish the review of basic models leading to an effective
dynamical system which has a structure as in classical mechanics.

1.5.3 Spin System Coupled to a Phonon Bath

The previous two examples show that in the algebraic framework it is possible to
arrive at a consistent description of classical aspects by decoherence in a very natural
way, including Newtonian dynamics, starting from the rules of quantum mechanics.

The next model shows that it is possible to obtain an effective dynamical
system (901, R;) having again a pure quantum character [6]. To this end we consider
the same spin algebra M = m,,,(A)” as above, where A is the Glimm algebra. This
spin system is now coupled to the free phonon bath of a one dimensional harmonic
crystal at nonzero temperature 7' (we write f = ﬁ for the inverse temperature,
with k the Boltzmann constant [10]). The Hilbert space of a spin-zero phonon is the
space Hs = L*(R, dm). The Hilbert space describing the whole crystal is given by
F ® F, where F is the boson Fock space over the single particle space Hy [22].
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The phonon quantum field ¢ is given by the formula ¢ (f) = %(a( ) +a*(f)),

with f € H;. Here a(f) and a*(f) are the annihilation and creation operators in
the Araki—-Woods representation [2], which are given by

a(f) =ar((1+p)° f) @ 1+ 1@ af (o> f)
a*(f)=at((1+p7f) ® L+ 1@ ar(p? ])

and where af, a5 are annihilation and creation operators in Fock space [22] (at zero
temperature). Let p be the Planck distribution

1
pl) = o1
with dispersion relation w(k) = |k|. The Hamiltonian describing the system of
noninteracting phonons is given by Hg = Hy ® 1 + 1 ® Hy with Hy =
[ o(k)as (k)ar(k) dk. The representation of the CCR algebra (cf. also Sect. 1.5.4)
corresponds to the state wg given by

wop(a*(fa(g)) = / p(k)z (k) £ (k) dk.

The state wg is the reference state of the environment which we will use below to
determine the dynamics of the spin system. The dynamics of the total system is now
given by the Hamiltonian

H=m,(H)® 1+ 1s ® He + 1 Y 7(0)) ® p(f)).
=1

where Hé) =Y 1o h;a,3. The matrix crll is the Pauli matrix ((1) (1)) corresponding

to the /-th spin of the lattice. For the sake of simplicity we consider the coupling
of the spin system with only a single mode of the phonon field, i.e., f, = a,g,
where a, is a sequence such that a,, > Zfin+l a; forn = 1,2,..., for instance
we can take a, ~ 2L" Under some technical conditions concerning the field mode g
(the interested reader is referred to [5, 6]) one can derive the following dynamics of
the spin system, making use of a singular coupling limit [1]: The reduced dynamics
on M is approximated by a semigroup {7 },>0 with generator

L(x) = i[twy (HS) + btwy (A)%, X] + AaT0y (A)X 0, (A) — %a{frwo (4)%,x},

ie. ; = e, where A = Y /2, a0/, and where the constants ¢ > 0 and
b € R depend on the environment parameters. The bracket {-,-} above denotes
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the anti-commutator. Below we present some long-time analysis of the semigroup
generated by this operator. Note that the standard approach [9] based on the analysis
of some prelimit expressions for the generator restricted to local algebras generated
by A, cannot be used here as the local algebras are not preserved by the generator
(infinite tails involving all local algebras are present). Some global analysis is
therefore welcome at the beginning.

First, we observe that the algebra of effective observables )t can be represented
in a purely algebraic way by

o0
M = () ker(Lp o 8%). (1.11)
1=0
where 8p () = i[Hs,-], with the effective Hamiltonian of the system Hs =

Ty (HY) + b1y, (A)*. Here Lp is the dissipative part Lp = L — §y,. Keeping
in mind this remark we can establish the following theorem.

Theorem 7 Let the sequences {h;};=12..
interval (0, +00) be chosen such that the following conditions are satisfied.:

and {a;}i=1,... with values in the

o0 o0
hy > Z h; and a, > Z a; foranym=1,2,....
I=m+1 I=m+1

Then I = C1, i.e., the system is ergodic.

We sketch the proof of this theorem in the Appendix.

Thus we have discussed in detail the ergodic property of the spin system. More
generally, the coupling of the spin system with the harmonic crystal can be chosen in
a specific way to generate a nontrivial effective algebra 9t with a nontrivial effective
dynamics {R;};eg. This can be done quite intuitively, e.g., just by excluding some
(not necessarily finite) set of spins from the interaction. This procedure leads to
a quite interesting variety of examples. But here we restrict ourselves only to the
simplest case, i.e., we put @; = 0 and thereby exclude just one spin from the
interaction. In this case the following theorem can be proven.?

Theorem 8 Suppose that the assumptions of Theorem 5 are satisfied, except that
we now put a; = 0. Then M = A;. Moreover, the effective dynamics {R;};er is
given by

Ri(x) =UxU, foreveryx € A,

where U, = e o the unitary Schrodinger evolution.

3We recall that the algebra A; is the algebra of all complex 2 X 2-matrices.
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To save space we do not provide the proof here, instead we refer the interested reader
to [6].

1.5.4 Dissipative Quantum Dynamical Systems

The construction of semigroups for the evolution of physically interesting open
systems is one of the most outstanding problems to be solved. Therefore, this
section is devoted to some constructions of semigroups [8] which can be used
to obtain decoherence-induced effective dynamical systems [7]. Here we provide
some introduction to the subject by studying a simple toy model. Consider the
standard Schrodinger representation of the canonical commutation relations (CCR)
in L?(R, dm), where dm is the Lebesgue measure on the real line R. They can be
described by the position and momentum operators ¢ and p acting on the Hilbert
space L*(R, dm). The domain of § and p can be chosen in the standard way, but
we consider them on a core which is most convenient for our purpose, namely the
Schwartz space S(R) of smooth complex valued functions decreasing at infinity
together with all their derivatives faster than any polynomial. Let ¢’ denote the
derivative of ¥ with respect to g. The position and momentum operators are defined
by (@¥)(@) = q¥(g) and (pY)(q) = —iY’(q), respectively, for all ¢ € R and
¥ € S(R). Then [¢, p] = §p— pg = il on S(R) (in appropriate units with # = 1).
We consider the symplectic form o on R? given by o'(£,¢) = £4¢_ — £_C, where
we write § = (§4,£-) € R%. Let AL§ = (§4,0) and A_E = (0,£-). In the
symplectic space (R?, o) one can introduce a complex structure J : R*> — R?
by J(E+,6-) = (—&_,&1). Any element & can be expressed as (§4,6-) =
£:(1,0)4+£_J(1,0). By noting that J? = — idg> the space R? can be regarded as the
complex plane C using the identification (§+,£-) = &4 +ié_. The symplectic form
can then be written as o(£,{) = Im(£¢), the bar denoting complex conjugation.
Having the complex structure available one can introduce the Euclidean bilinear
form s(£,¢) = o (&, J¢) forall £, ¢ € R?. Recall that a linear map S : R?> — R? is
called symplectic if 0(S€, S¢) = o (£,¢) forall £, ¢ € R?.

We consider the field operator ¢ in the “zero-dimensional” space, i.e., a linear
operator-valued function R? 3 £ > ¢(£). It is defined by the relations ¢(1,0) = §
and ¢(0, 1) = p. The commutation relation for the field operator reads

[0(§). 9] =i0(£,¢) forall §,¢ € R,

which in turn can be represented by the unitary Weyl operators W(£) = ¢'¢®, since
the operators ¢(§) are essentially self-adjoint on S(R). Using the Weyl operators
the commutation relation can be expressed as

WEW () = e CEOW (@)W (E) forall &, ¢ e R2. (1.12)
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Finally, the Weyl algebra is defined as the C*-subalgebra of B(L?*(R?, dm)) that is
generated by all Weyl operators W(£), £ € R?. We shall denote it by W.

The simplest way to introduce a *-automorphic dynamics on }V is by using a
symplectic mapping S : R? — R? and the characters y of the group R? [19]. Let
us introduce the notion of a dynamical character { y; }er with respect to a generator §
of some one-parameter group of symplectic transformations: Each y; is a character
of the group R?, and additionally we require them to satisfy the relation

1 () xe(€%8) = yiy(§) forallt,r € Rand § € R%. (1.13)

Then a family of *-automorphisms «; : YW — WV can be uniquely defined by the
formula

a (W(€) = x(x)W(e’€) forall§ € R*.
It is easy to show that the family {o; };cr is a one parameter group,

a0 ar (W(€) = xo(§)ay (W(e§))
= 11 W ()
= Xt (W (" T%)
= a1 (W(§)).

Instead of analyzing the most general case [7, 8, 19] we consider a particular exam-
ple where everything can be checked directly without much technical complication.
Consider a dynamical character of the form

xi(§) = e FEe TP EEL2 forallt € R and £ € R,

Here E is a real parameter whose physical meaning will be seen shortly. Next we
choose a symplectic evolution as §+ = JA, and hence e/®+§f = & + tJA &
(we shall also consider — = JA_ and the corresponding one-parameter group).
A direct inspection shows that the family {y,};er indeed constitutes a dynamical
character with respect to §4. Note that the evolution is not unitary in the complex
Hilbert space C. Let us put

a,(W(§)) = e_i"‘EE*e_i"‘zEg*/zW(é +tJALE) forallf € Rand & € R%
(1.14)

As a matter of fact, this dynamics can not only be extended to linear combinations
of Weyl operators, but to the whole Weyl algebra V. Moreover, it can be extended
to the whole algebra B(L?(R?,dm)) as well. To see this consider the Hamilton
operator H = %(pz(O, 1) + E¢(1,0), which is essentially self-adjoint on the
set S(R). Its closure has purely continuous spectrum. The physical interpretation
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is clear: the Hamiltonian describes a charged quantum particle (with unit charge)
moving in an external electrostatic field of strength E. The time evolution of the
field ¢ is easily found to be

eoE)e™™ = p(§) + 1(5+9(0. 1) —£-E) — %E+El2 forallz € R.

Hence the evolution of the Weyl operators is spatial, and it leads to a natural
extension of the dynamics introduced at the beginning,

o, (x) = e xe ™ forallt € Rand x € B(L*(R?, dm)).
We use the same symbol «; for this extended group of automorphisms. So far the

time evolution is Hamiltonian. Now we consider a perturbation of this evolution by
introducing a modification of the dynamical character y;,

O,(&) = x: (&) exp(— /Ot s(g,e_”g— Qe”s+$) d‘l,') forall > 0 and £ € R>.
(1.15)

Here Q is an arbitrary non-negative matrix on R2. The family {®, },cr satisfies an
equation similar to (1.13),

O,(6)0,(e"+E) = O, (&) forallt,7 > 0and & € R?,
hence the expression

T,(W()) = ©,(E)W(e+§)

defines a semigroup. Again it can be extended to the algebra B(L*(R?, dm)). To see
this note that the function in (1.15) which perturbs y, is the Fourier transform of
some family of probability measures, i.e.,

t
exp( [ s6.e Qe par) = [ 69 a0,
0 R
so the canonical commutation relations in Weyl form (1.12) give

[ WaoweWI) 46 = oW,
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The extension (using the same notation 7;) is then given by an appropriate Bochner
integral

T,(x) = /R WO (T dp(©)

forall # > 0 and x € B(L*(R,dm)). To illustrate the dissipative behavior of this
dynamical system let us assume for simplicity that

0= (Cll _01) with a > 0.

Then we obtain
O, (£) = e VEE- eTIPEEH 26 forall > 0 and £ € R%.

Note that lim,—, 4o, ©;(§) = O for any & with the property that £, # 0.Ifé4 = 0
then we see that ©,(§) = e “£f-, and moreover e’*+§ = £. Hence the Weyl
operators W(§) with £ # 0 are suppressed and vanish as time goes to infinity.
On the other hand, Weyl operators W(§) with £ = 0 evolve in time in a unitary
way only by a phase factor, i.e., W(§) — e "E&~W(§) if £ = 0. This behavior
can be extended to more general elements of the Weyl algebra W. To this end let us
introduce some auxiliary notation. Let V_ be the one-dimensional subspace of R?
generated by the vector (0, 1). Then we have a decomposition

W = W) & WR\V_)

of the Weyl algebra, where VW(2) is the Banach subspace of WV generated by the
linear hull of the Weyl operators W(£) with £ € Q for some subset @ € R?. As V_is
a linear subspace of R? the corresponding Banach space YW (V_) is a C*-subalgebra
of W. Moreover, the algebra YW(V_) is commutative. We conclude that

lim T,(x) =0 forany x € W(R*\V.)
——+o0

t

relative to the norm topology of the Weyl algebra. On the other hand,
T(x) = e xe ™ forallt > 0and x € W(V_).

This semigroup can be extended in a natural way to a one-parameter group of *-
automorphisms { R; };er. This group is spatial, but not inner as the Hamiltonian H
is not affiliated with the von Neumann algebra W(V_)". Note that this effective
dynamics {R;};er on W(V_) has got a classical counterpart. This can be seen
if one uses the momentum representation, i.e., the Fourier image of the position
representation. The algebra WW(V_) can be identified with the algebra AC(R) of



28 P. Blanchard et al.

all almost periodic continuous functions on R. The action of* R, can be expressed
as (Rix)(p) = x(p—tE)foral p € R,t € Rand x € AC(R). Again, the
effective dynamics is given by a classical evolution on R, i.e., ®,(p) = p — tE for
all p € Rand ¢ € R. The parameter —E corresponds to the rate of change of the
“observed” momentum p, i.e., it corresponds to the force, in full agreement with
the interpretation of the parameter — E as the field strength of an electrostatic field,
which indeed is equal to the electrostatic force acting on the (positive) unit charge.
It is interesting to look at the predual semigroup {77« }:>0. It describes the wave
packet reduction in the momentum representation in a similar way as in [13], i.e.,
one obtains the evolution of the density matrices in the momentum representation

Tu(p(p, q)) = e P07 p(d,(p), B, (q)).

The novel aspect in comparison to [13] is the presence of the nontrivial classical
evolution ®; in addition to the wave packet reduction. This model, as well a model
given below, can be generalized to von Neumann algebras of type III [8]. In partic-
ular, one can consider the Araki-Woods nonzero temperature representation [2] as
a starting point for this generalized construction and analysis.

If one chooses a different Q, e.g.,

Q:(O_l) with a > 0,
1 a

then the dynamics {7} },>0 is ergodic, i.e.,

lim 7,(x) =0 forany x € W(R?\{0})

t—>—+00

relative to the norm topology of the Weyl algebra. Moreover, 7;(1) = 1 for all
t>0.

Using the unitary equivalence of the operators ¢ and p, one can repeat the
analysis discussed above for a Hamiltonian of the type H = ¢(0,1) + %goz(l, 0)
on the domain S(R). This Hamiltonian, in some sense, is similar to the one Bell
used in his discussion of the wave packet reduction [3]. Again, one either arrives at
a uniform motion on R, namely, ®;(q) = g — ¢ forallg € Rand ¢ € R, or one
obtains ergodic behavior by an appropriate choice of the matrix Q.

4We mean the image of R, under the identification of W(V_) and AC(R).
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Appendix

Sketch of Proof of Theorem 7 The proof is organized by successively proving the
following three properties.

Pl x € L*®(m,,(A)) if and only if [77,, (A), [T, (4), x]] = 0.
P2 L®(my,(A)) N L® (e, (HY)) = C1.
P3 9t = Cl if and only if ker Lp N L*°(Hs) = C1.

Given these properties the proof is easily carried through. If x € ker Lp N L*°(Hs)’
then [y, (A), [0 (A),x]] = 0 and [Hs,x] = 0. Consequently, by P1 we
get x € L™®(my,(A)), and hence [rm,,(HJ),x] = [Hs,x] = 0, ie, x €
L*®(774,(A)) N L®(my,(HJ)) = C1 according to P2. In this way we obtained
ker Lp N L*°(Hs)' = CL, i.e., M = CI1 according to P3. To complete the proof
we therefore need to establish properties P1, P2 and P3.

Proof of P1: ~ We start by proving the direction “<=". Let us define the derivation
85 () = i[, x]. If [, (A), [Ta, (A), x]] = 0 then [74,(A4), x] € L (,,(A)) as
L*(my,(A)) is m. a. s. a. (see the proof of P2 below). Let P be any polynomial,
then

8x(P(7Tw0(A))) = i[P(ﬂwo(A))vx] = i[ﬂwo(A)vXP/(”wo(A))] € Loo(”wo(A))-

This means that 8, (L°°(7,,(A))) S L% (7, (A)) since §y is continuous in the
weak operator topology. But L°°(7m,,(A)) is abelian, thus 6,(E£) = 0 for any
projector E from the domain of the derivation . On the other hand, § is defined
on the whole algebra and in particular L*°(;r(A)) is contained in its domain.
Hence

8x [ Loo(yy(4)= 0.

In particular, [, (A), x] = —i8x (74, (A)) = 0. But L>(7,,(A4)) isam.a.s. a.,
hence x € L*°(m,,(A)). The proof of the converse is obvious.
Proof of P2:  Let C;3 € A be C*-algebra generated by the set

{0, ®-®0;, 81 Q-+, iy =03fork=1,....,n, n =1,2,...}.

Then 7,,(C3)” is a m.a.s.a. If we substitute o3 by o, we can define C; in
a similar fashion and get another m.a.s.a. 7,,(C;)”. Evidently, n,,(C5)" N
7w, (C1)” = CI1. Now the choice of the sequences {/;};=i . and {a;};1=12,.
in the statement of the Theorem ensures that L (7, (Hé))) = 7y, (C3)", and
L (74, (A)) = 74,(C1)” as is proven below. Let us introduce some notation.
As the Cantor set C is homeomorphic to {0, 1}**° we shall use the representation
of elements € C by

w = {il,iz,...} with iy,i,,... € {O, 1}
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We say that two elements w( and w; constitute a pair of adjoint points if

wy = {il,iz,...,im,o,l,1,1,...} and
w] = {il,iz,...,im,1,0,0,0,...}

for some non-negative integer m. Let Cy be the set of pairs of adjoint points.
Moreover, let @ : m,,(C3) —> C(C) denote the Gelfand—Naimark isomorphism,
where C(C) is the set of all continuous functions defined on Cantor set. Let us
consider the unique extension of ® to the normal isomorphism ¥ : 7,,,(C3)” —>
L°°(C, n), where i = [ po with the measure o on {0, 1} defined by 10({0}) =
mo({1}) = 5

Finally, Cy(C) is the set of all continuous functions f such that f(wo) = f(w1)
for some pair of adjoint points wy and ;. Let h = ®(r,, (HY)), then

o0
h({ir ...} =Y (=1)"hy.
I1=1
We can evaluate the difference at the pair of adjoint points to obtain

h(wo) — h(wy) = 2(hm+1 - Z hz) >0,

I=m+2

so the function /i takes different values to different points, except perhaps a
pair of adjoint points of Cy. Repeating the standard argument we get Co(C) C
O(C*(1, 7, (HY))), where C*(D) denotes the smallest C*-algebra generated
by the set D.

Let Pijiyoi,, = Tepy(Piy @ Pi, ® - ® P;,, ® 1 ® --+) be one of the generating
projectors of 7(C3). Then

Pijiyeiyy € L (70, (HY)) (1.16)
for any iy,i2,...,im € {0,1}, and m = 1,2,.... Consequently, m,,(C3) <
L% (7, (HY)) and hence 7, (C3)” < L*®(m,,(HS)). We give the proof

of (1.16) only in the special case of the projector Py (m = 1,i; = 0) to avoid the
complex notation of the general case. Let { f,} be the sequence in Cy(C) given by

Iil =0
o0 n
Z )l"+[2]+1 Iil =1, le =0
=1 1=2 ’
=1, i #0
=2

l\)l'—"_‘

fliria,...}) =

o
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where 0 < f,11 < fy < lforn = 1,2,.... As f, € Cy(C), there exists
F, € C*(]l,nwO(HsO)) such that f, = ®(F,) and moreover0 < F,;; < F, <1
foralln = 1,2,.... Hence F,, — F in the strong operator topology. The map W
is normal, hence 1 — W(F) = sup(l — f,) = 1 — W(P,), where we have used
©({1,0,0,...}) = 0. Consequently, Py = F € L*®(m,,(HJ)). This ends the
proof of P2.

Proof of P3:  We start by proving the direction “<=". Using (1.11) we deduce that

8 s (M) € M, so we can introduce another derivation defined by

81 ESHS [‘gm

The derivation §; is inner, i.e., §;(-) = i[H], -] for some Hermitian operator H, €
M (see, e.g., [24]). In particular, for each spectral projector P € L°°(H,) we
get P € ker Lp. On the other hand, [Hs, P] = —i6;(P) = [H;, P] = 0, hence
P € L*°(Hs)'. Summarizing, we have P € ker Lp N L*°(Hs) = C1. This
means that H;, = A1, and consequently [Hs, x] = —i§;(x) = [AL1,x] = O for
any x € 2. We conclude that 9t C ker Lp N L*°(Hs)' = CI.
For the direction “=" notice that for a projector P € L°°(Hs) we have
[Hs, P] = 0 and hence Lp o 5%8 = 0 for any m = 1,2,.... This means that
P € 9t if and only if P € ker Lp. Consequently, if P € ker Lp N L*°(Hg)'
then P € 91 = CI1. This in turn means that P = 1 or P = 0. Hence
ker Lp N L*®°(Hs)' = C1.

O
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Chapter 2
Quantum Systems and Resolvent Algebras

Detlev Buchholz and Hendrik Grundling

2.1 Introduction

The conceptual backbone for the modeling of the kinematics of quantum systems
is the Heisenberg commutation relations which have found their mathematical
expression in various guises. There is an extensive literature analyzing their
properties, starting with the seminal paper of Born, Jordan and Heisenberg on the
physical foundations and reaching a first mathematical satisfactory formulation in
the works of von Neumann and of Weyl.

These canonical systems of operators may all be presented in the following
general form: there is a real (finite or infinite dimensional) vector space X equipped
with a non-degenerate symplectic form o : X x X — R and a linear map ¢ from
X onto the generators of a polynomial *-algebra P(X, o) of operators satisfying the
canonical commutation relations

[6(f). (@] =ia(f. )L () =¢(f).

In the case that X is finite dimensional, one can reinterpret this relation in terms
of the familiar quantum mechanical position and momentum operators, and if X
consists of Schwartz functions on some manifold one may consider ¢ to be a
bosonic quantum field. As is well-known, the operators ¢ ( /) cannot all be bounded.
Moreover, the algebra P(X, o) does not admit much interesting dynamics acting
on it by automorphisms; in fact there are in general only transformations induced
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by polynomial Hamiltonians which leave it invariant [7]. Thus P(X, o) is not a
convenient kinematical algebra in either respect.

The inconveniences of unbounded operators can be evaded by expressing the
basic commutation relations in terms of bounded functions of the generators ¢ ( f).
In the approach introduced by Weyl, this is done by considering the C*-algebra
generated by the set of unitaries W( f) = exp(i¢(f)), f € X (the Weyl operators)
satisfying the Weyl relations

W(HIW(g) = e VORW(f +g), W(f)"=W(-f).

This is the familiar Weyl (or CCR) algebra W(X, o). Yet this algebra still suffers
from the fact that its automorphism group does not contain physically significant
dynamics [9]. This deficiency can be traced back to the fact that the Weyl algebra is
simple, whereas any unital C*-algebra admitting an expedient variety of dynamics
must have ideals [4, Sec. 10], cf. also the conclusions.

For finite systems this problem can be solved by proceeding to the twisted
group algebra [10] derived from the unitaries W(f), f € X. By the Stone-von
Neumann theorem this algebra is isomorphic to K(J), the compact operators on a
separable Hilbert space, for any finite dimensional X . This step solves the problem
of dynamics for finite systems, but it cannot be applied as such to infinite systems
since there X is not locally compact. Moreover, one pays the price that the original
operators, having continuous spectrum, are not affiliated with K(J). So one forgets
the specific properties of the underlying quantum system.

This unsatisfactory situation motivated the formulation of an alternative version
of the C*-algebra of canonical commutation relations, given in [4]. Here one con-
siders the C*-algebra generated by the resolvents of the basic canonical operators
which are formally given by R(A, f) = (iA1—¢(f))"! for A € R\{0}, f € X.All
algebraic properties of the operators ¢ ( /) can be expressed in terms of polynomial
relations amongst these resolvents. Hence, in analogy to the Weyl algebra generated
by the exponentials, one can abstractly define a unital C*-algebra R(X, o) generated
by the resolvents, called the resolvent algebra.

In accordance with the requirement of admitting sufficient dynamics the resol-
vent algebras have ideals. Their ideal structure was recently clarified in [1], where it
was shown that it depends sensitively on the size of the underlying quantum system.
More precisely, the specific nesting of the primitive ideals encodes information
about the dimension of the underlying space X. This dimension, if it is finite,
is an algebraic invariant which labels the isomorphism classes of the resolvent
algebras. Moreover, the primitive ideals are in one-to-one correspondence to the
spectrum (dual) of the respective algebra, akin to the case of commutative algebras.
The resolvent algebras are postliminal (type I) if the dimension of X is finite and
they are still nuclear if X is infinite dimensional. Thus these algebras not only
encode specific information about the underlying systems but also have comfortable
mathematical properties.

The resolvent algebras already have proved to be useful in several applications
to quantum physics such as the representation theory of abelian Lie algebras of
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derivations [5], the study of constraint systems and of the BRST method in a
C*-algebraic setting [4, 6], the treatment of supersymmetric models on non-compact
spacetimes and the rigorous construction of corresponding JLOK-cocycles [3].
Their virtues also came to light in the formulation and analysis of the dynamics
of finite and infinite quantum systems [2, 4].

In the present article we give a survey of the basic properties of the resolvent
algebras and an outline of recent progress in the construction of dynamics, shedding
light on the role of the ideals. The subsequent section contains the formal definition
of the resolvent algebras and some comments on their relation to the standard Weyl
formulation of the canonical commutation relations. Section 2.3 provides a synopsis
of representations of the resolvent algebras and some structural implications and
Sect.2.4 contains the discussion of observables and of dynamics. The article
concludes with a brief summary and outlook.

2.2 Definitions and Basic Facts

Let (X, o) be a real symplectic space; in order to avoid pathologies we make the
standing assumption that (X, o) admits a unitary structure [11]. The pre-resolvent
algebra Ry(X, o) is the universal *-algebra generated by the elements of the set
{R(A, ) : A e R\{0}, f € X} satisfying the relations

R, f) = R(w, [)=i(u = MRA, /IR, f) Q.1)
R, f)*=R(=A. f) 22)
[R(L, ), R, &)]=io(f,8) R, ) R(i, &)°R(A, ) (2.3)
v RwA, vf)=R(A, f) 2.4)

R, /)R(1, =R + 1, [ + &) (R, f) + R, )
+io(f,Q)RM, )’ R(1, ) (2.5)
R(A,0)=—11 (2.6)

where A, u, v € R\{0} and f, g € X, and for (2.5) we require A + p # 0. That
is, start with the free unital *-algebra generated by {R(A, f) : A € R\{0}, f € X}
and factor out by the ideal generated by the relations (2.1) to (2.6) to obtain the
*-algebra Ry (X, 0).

Remarks (a) Relations (2.1), (2.2) encode the algebraic properties of the resolvent
of some self-adjoint operator, (2.3) amounts to the canonical commutation
relations and relations (2.4) to (2.6) correspond to the linearity of the initial
map ¢ on X.



36 D. Buchholz and H. Grundling

(b) The *-algebra R (X, o) is nontrivial, because it has nontrivial representations.
For instance, in a Fock representation (7, () one has self-adjoint operators
¢ (f), feX satisfying the canonical commutation relations over (X,o)
on a sufficiently big domain in the Hilbert space HH so that one can define
7(R(A, f)) = (iA1 — ¢, (f))! to obtain a representation 7 of Ro(X,0).

It has been shown in [4, Prop. 3.3] that the following definition is meaningful.

Definition 2.1 Let (X, o) be a symplectic space. The supremum of operator norms
with regard to all cyclic *-representations (ir, H) of Ro(X,0)

IRI = (SU£) [r(R)llsc, R € Ro(X,0)

exists and defines a C*-seminorm on Ry(X, o). The resolvent algebra R(X, o) is
defined as the C*-completion of the quotient algebra Ry (X, o)/ ker || - ||, where here
and in the following the symbol ker denotes the kernel of the respective map.

Of particular interest are representations of the resolvent algebras, such as the
Fock representations, where the abstract resolvents characterized by conditions
(2.1), (2.2) (sometimes called pseudo-resolvents) are represented by genuine resol-
vents of self-adjoint operators.

Definition 2.2 A representation (77, H) of R(X, o) is said to be regular if for each
f € X there exists a densely defined self-adjoint operator ¢, ( /) such that one has
T(R(A, f)) = (iA1 — ¢ (f))"", A € R\{0}. (This is equivalent to the condition
that all operators w(R(A, f)) have trivial kernel.)

The following result characterizing regular representations, cf. [4, Thm. 4.10 and
Prop. 4.5], is of importance, both in the structural analysis of the resolvent algebras
and in their applications. It implies in particular that the resolvent algebras have
faithful irreducible representations (e.g. the Fock representations), so their centers
are trivial.

Proposition 2.3 Let (7, H) be a representation of R(X, 0).

(a) If (, ) is regular it is also faithful, i.e. |t (R)||sc = ||R]| for R € R(X, 0).
(b) If (wr, ) is faithful and the weak closure of w(R(X, 0)) is a factor, then (7w, H)

is regular.

The regular representations of the resolvent algebras are in one-to-one correspon-
dence with the regular representations of the Weyl-algebras, cf. [4, Cor. 4.4]. (Recall
that a representation (7, }) of W(X, o) is regular if the maps v € R > (W (vf))
are strong operator continuous for all f € X.) In fact one has the following result.

Proposition 2.4 Let (X, 0) be a symplectic space and

(a) let (mw,H) be a regular representation of the resolvent algebra R(X,0)
with associated self-adjoint operators ¢ ( f) defined above. The exponentials
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Wi (f) = exp(id.(f)), f € X satisfy the Weyl relations and thus define a
regular representation of the Weyl algebra W(X, o) on H;

(b) let (,H) be a regular representation of the Weyl algebra W(X, o) and let
¢ (f) be the self-adjoint generators of the Weyl operators. The resolvents
R, f) = (A — ¢ (f) " withd € R\{0}, f € X satisfy relations (2.1) to
(2.6) and thus define a regular representation of the resolvent algebra R(X, o)
on I

Whilst this proposition establishes the existence of a bijection between the
regular representations of R(X, o) and those of W(X, o), there is no such map
between the non-regular representations of the two algebras. In order to substantiate
this point consider for fixed nonzero f € X the two commutative subalgebras
C*{R(1l,sf) : s € R} C R(X,0) and C*{W(sf) : s € R} C W(X,0). These
algebras are isomorphic respectively to the continuous functions on the one point
compactification of R, and the continuous functions on the Bohr compactification
of R. Now the point measures on the compactifications having support in the com-
plement of R produce non-regular states (after extending to the full C*-algebras by
Hahn-Banach) and there are many more of these for the Bohr compactification than
for the one point compactification of R. Proceeding to the GNS-representations it
is apparent that the Weyl algebra has substantially more non-regular representations
than the resolvent algebra.

2.3 Ideals and Dimension

Further insight into the algebraic properties of the resolvent algebras is obtained by
a study of its irreducible representations. In case of finite dimensional symplectic
spaces these representations have been completely classified [4, Prop. 4.7], cf.
also [1].

Theorem 3.1 Let (X, o) be a finite dimensional symplectic space and let (7, )
be an irreducible representation of R(X, o). Depending on the representation, the
space X decomposes as follows, cf. Fig. 2.1.

(a) There is a unique subspace Xr C X such that there are self-adjoint operators
¢ (fr) satisfying w(R(A, fr)) = (iA1= ¢ (fr)™" for A € R\{0}, fk € Xr.

(b) Let X7 = {f € Xgr :0(f,g) =O0forall g € Xg}. Then ¢ restricts on Xt to
a linear functional ¢ : X7 — R such that 1(R(A, fr)) = (iA —@(fr))~"1 for
fT € Xr, A € R\{O}

(c) For fs € Xs = X\Xg and A € R\{0} one has w(R(A, fs)) = 0.

Conversely, given subspaces Xt C Xg C X and a linear functional ¢ : X7 — R
there exists a corresponding irreducible representation (w, H) of R(X, o), unique
up to equivalence, with the preceding three properties.
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Xr Xr

Fig. 2.1 Decomposition of X fixed by an irreducible representation

This result may be regarded as an extension of the Stone—von Neumann
uniqueness theorem for regular representations of the CCR algebra. It shows that the
only obstruction to regularity is the possibility that some of the underlying canonical
operators are infinite and the corresponding resolvents vanish. This happens in
particular if there are some canonically conjugate operators having sharp (non-
fluctuating) values in a representation, as is the case for constraint systems [4,
Prop. 8.1]. But, in contrast to the Weyl algebras, the non-regular representations
of the resolvent algebras only depend on the values of these canonical operators. So
the abundance of different singular representations of the Weyl algebras shrink to a
manageable family on the resolvent algebras.

The preceding theorem is the key to the structural analysis of the resolvent
algebras for symplectic spaces of arbitrary finite dimension. We recall in this context
that the primitive ideals of a C*-algebra are the (possibly zero) kernels of irreducible
representations and that the spectrum of the algebra is the set of unitary equivalence
classes of irreducible representations. The following result has been established
in [1].

Theorem 3.2 Let (X, 0) be a finite dimensional symplectic space.

(a) The mapping @ + ker 7w from the elements 7t of the spectrum (dual) of the
resolvent algebra R(X, o) to its primitive ideals ker 7 is a bijection.

(b) Let L = sup{l € N : kerm; C ker7,--- C ker7;} be the maximal length of
proper inclusions of primitive ideals of R(X, 0). Then L = dim(X)/2 + 1.

Remarks Property (a) is a remarkable feature of the resolvent algebras, shared with
the abelian C*-algebras. It rarely holds for non-commutative algebras and also
fails if X is infinite dimensional. The quantity L defined in (b) is an algebraic
invariant, so this result shows that the dimension dim(X) of the underlying systems
is algebraically encoded in the resolvent algebras. As a matter of fact, L is a
complete algebraic invariant of resolvent algebras in the finite dimensional case.

As indicated above, there is an algebraic difference between the resolvent
algebras for finite dimensional X and those where X has infinite dimension. A
further difference is seen through the minimal (nonzero) ideals [1].

Proposition 3.3 Let (X,0) be a symplectic space of arbitrary dimension and let
J C R(X, 0) be the intersection of all nonzero ideals of R(X, o).
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(a) If dim(X) < oo then J is isomorphic to the C*-algebra X(H) of compact
operators. Moreover, in any irreducible regular representation (7w, H) one has
w(J) = K(3H).

(b) If dim(X) = oo then J = {0}. In fact, there exists no nonzero minimal ideal of
R(X,0) in this case.

If (X, 0) is infinite dimensional the resolvent algebra R (X, o) is the C*-inductive
limit of the net of its subalgebras R(Y,0) where Y C X ranges over all finite
dimensional non-degenerate subspaces of X, cf. [4, Thm. 4.9]. This fact in
combination with the first part of the preceding result is a key ingredient in the
construction of dynamics, see below. It also enters in the proof of the following
statement [1].

Proposition 3.4 Let (X, o) be a symplectic space of arbitrary dimension.

(a) R(X, o) is a nuclear C*-algebra,
(b) R(X,0) is a postliminal (type 1) C*-algebra if and only if dim(X) < oo.

Recall that a C*-algebra is said to be postliminal (type I) if all of its irreducible
representations contain the compact operators and that postliminal C*-algebras as
well as their C*-inductive limits are nuclear, i.e. their tensor product with any other
C*-algebra is unique. It should be noted, however, that the resolvent algebras are
not separable [4, Thm. 5.3]. With this remark we conclude our outline of pertinent
algebraic properties of the resolvent algebras.

2.4 Observables and Dynamics

The main virtue of the resolvent algebras consists of the fact that it includes
many observables of physical interest and admits non-trivial dynamics. In order
to illustrate this important feature we discuss in detail a familiar example of a finite
quantum system and comment on infinite systems at the end of this section.

Let (X,0) be a finite dimensional symplectic space, i.e. dim(X) = 2N for
some N € N. Since regular representations of the resolvent algebras are faithful,
cf. Proposition 2.3, it suffices to consider any regular irreducible representation
(70, Hop) of R(X, o) (which is unique up to equivalence). Choosing some symplectic
basis fr,gr € X and putting P = ¢ (fk), Ok = Pr (k). k=1,...N we
identify the self-adjoint operators fixed by the corresponding resolvents with the
momentum and position operators of N particles in one spatial dimension.

The (self-adjoint) quadratic Hamiltonian

N
m a)2
Ho =) G PO+ 75500
k=1
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describes the free, respectively oscillatory motion of these particles, where my are
the particle masses and w; > 0 the frequencies of oscillation, k = 1,... N. The
interaction of the particles is described by the operator

V=) V(Qi— Q)

1<k<I<N

where we assume for simplicity that the potentials Vj; are real and continuous,
vanish at infinity, but are arbitrary otherwise. Since V' is bounded, the Hamiltonian
H = Hy+ YV is self-adjoint on the domain of Hj and its resolvents are well defined.

Proposition 4.1 Let H be the Hamiltonian defined above. Then
(ipl— H)™' € mp(R(X,0)), e R\{0}.

Remark Since m is faithful its inverse 7r;! @ 7mo(R(X,0)) — R(X,0) exists, s0
this result shows that H is affiliated with the resolvent algebra. Note that this is
neither true for the Weyl algebra W(X, o) nor for the corresponding twisted group
algebra () if one of the frequencies w; vanishes. Thus R(X, o) contains many
more observables of physical interest than these conventional algebras.

Proof Let X; C X be the two-dimensional subspaces spanned by the symplectic
pairs (fx,gk), let o = o | Xix x Xj and let (), Hy) be regular irreducible
representations of R(Xy,0x),k = 1,...N. Then myp = 71 ® --- ® 7y defines an
irreducible representation of the C*-tensor product R(X,01) ®---QR(Xy,0oy) on
the Hilbert space Hy = H; ® - - - ® Hy . It extends by regularity to the Weyl algebra
W(X,0) ~ W(X,01) ® --- @ W(Xn,on) and hence to a regular representation
of R(X, 0), cf. Proposition 2.4.

One has Hy, = (ipl — 5 P2 — "% 02)7 € m(R(X;.00)) k = 1.... N,
disregarding tensor factors of 1. If w;x > O this follows from the fact that the
resolvent of the harmonic oscillator Hamiltonian is a compact operator and hence
belongs to the compact ideal of myx (R(Xk,0%)), cf. Proposition 3.3. If w, = 0
one resorts to the fact that the abelian C*-algebra generated by the resolvents
(iA1= P71, A € R\{0} coincides with Cy(Py), the algebra of all continuous
functions of Pj vanishing at infinity. Hence Co(Px) C mx (R(Xg,0%)). Since
(inl— ﬁsz)_1 € Cy(Pr) the preceding statement holds also for w; = 0.

As is well known Co(R{Y) = Co(R4) ®---® Co(R+) and it is also clear that
ui,...,uy — (ipt —up---—uy)~" is an element of Co(R4Y). Since the resol-
vents of the positive self-adjoint operators Ho; generate the abelian C*-algebras
Co(Hou), k = 1,...,N, it follows from continuous functional calculus that
(iud — Ho) ' =(ipd — Hor-— Hox) ™ €Co(Ho1)® - - ®Co(Hon ) Cro(R(X. 0)).

Similarly, for the interaction potentials one uses the fact that the abelian C*-
algebras generated by the resolvents (iAl — (Qx — Q;))~", A € R\{0} coincide
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with Co(Qx — Q). So as Vi, € Cy(R), one also has that

V=" VulQi— Q) € mR(X,0)).

1<k<I<N

In summary one gets (1 — (iul — Ho)~'V) € mo(R(X,0)). Its inverse exists if
|l > V] and (ipl—H)™" = (1=(ipl—Ho)™'V) " (ipl—Ho) ™" € my(R(X.0))
for such u. The statement for arbitrary u € R\{0} then follows from the resolvent
equation for H, completing the proof.

As a matter of fact, the preceding proposition holds for a much larger class
of interaction potentials, including discontinuous ones. It does not hold, however,
for certain physically inappropriate Hamiltonians such as that of the anti-harmonic
oscillator [4, Prop. 6.3]. The characterization of all Hamiltonians which are affiliated
with resolvent algebras is an interesting open problem.

We turn now to the analysis of the dynamics induced by the Hamiltonians
given above. The exponentials of the quadratic Hamiltonians Hj induce symplectic
transformations, so one has (Ad e )(ny(R(X,0))) = m(R(X,0)) fort € R.
For the proof that the resolvent algebra is also stable under the adjoint action of
the interacting dynamics the crucial step consists of showing that the cocycles
['(¢t) = e™e~™Mo are elements of mo(R(X, 0)). Putting V(¢) = (Ade™0)(V) one
can present the cocycles in the familiar form of a Dyson series

o0 t 1 Ih—1
r(z)=1+zl‘"/ dt1/ dtz.../ dt, V(ty) -+ V(1)
o 0 0 0

and this series converges absolutely in norm since the operators V(¢) are uniformly
bounded. Moreover, the functions ¢ + V(¢) have values in the algebra 77y (R(X, 0));
but since they are only continuous in the strong operator topology it is not clear
from the outset that their integrals, defined in this topology, are still contained in
this algebra. Here again the specific structure of the resolvent algebra matters. It
allows to establish the desired result.

Proposition 4.2 Let H be the Hamiltonian defined above. Then
(Ade™ ) (my(R(X,0))) = mo(R(X,0)), teR.

Remark Since my is faithful it follows from this result that o, = 75 ' (Ad €™ )7,
t € R defines a one-parameter group of automorphisms of R(X, o). It should be
noted, however, that its action is not continuous in the strong (pointwise norm)
topology of R(X, 0).

Proof Let k,l € 1,...,N be different numbers, let (fx,gr) and (f;,g;) be

symplectic pairs as in the previous proof and let Xj; C X be the space spanned

by (1) = ((cos wyt) gk — (coswyt) g1 + (sinwit) /mywy fi — (sinwit)/mw; fi),
t € R, where we stipulate (sinw?)/w = t if = 0. This space is non-degenerate
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and, depending on the masses and frequencies, either two or four dimensional.
We put oy = o | Xy x Xg. Let Vig(t) = (Ade™)(Vu(Qr — Q1)), where
Viu(Qr — Q) is any one of the two-body potentials contributing to V. Then, for
any t € R,

Via(t) = Via((cos wit) O — (cos wyt) Q1 + (sinwyit) /mywy Py — (sinwyt)/myw; Pr)
€ mo(R(Xp, our)) .

Now the function s1,...55 +  Vi(s1)---Vu(sq) is continuous in the strong
operator topology and, for almost all sy, ...ss, an element of the compact ideal
of mo(R(Xy;, 01r)), provided d > dim(Xy). The latter assertion follows from the
fact that Vj,(s) is, for given s, an element of the abelian C*-algebra generated by
the resolvents mo(R(A, hu(s))), A € R\{0} and that the compact ideal coincides
with the principal ideal of 7o (R(Xy, o)) generated by wo(R(A1, A1) -+ R(Ag, hg))
for any choice of A1,...44; € R\{0} and of elements A;,...h; € X which span
Xy [2]. Tt is then clear that ( f;ds Va($))! = Jodst -+ [ydsa Via(s1) -+ Via(sa) is
contained in the compact ideal of 7o(R(Xy, 0y)). But this is then also true for
the operator f(; ds Viy(s) since it is self-adjoint. As k,[ were arbitrary this implies
[ydtiV(tr) € mo(R(X, 0)).

That all other terms in the Dyson series are elements of mo(R(X, o)) is seen
by induction. Let I,(t) = [ydt; [y'dta... [ dty V(ty) -+ V(1) € mo(R(X,0)),
t € R;then I,,4,(t) = fotdtl I,(t))V(t1), where the integrals are defined in the
strong operator topology. Now ¢ > I,,(¢) is continuous in norm, hence /,,+(¢) can
be approximated according to

J jt)
L) = Jim S LG [ dnve.
% G=Di/J
where the limit exists in the norm topology. Since each term in this sum is
an element of 7p(R(X,0)) according to the induction hypothesis it follows that
I,+1(t) € mo(R(X, 0)). Because of the convergence of the Dyson series this implies
I'(t) € mo(R(X,0)),t € R, completing the proof of the statement.

Having illustrated the virtues of the resolvent algebras for finite systems we
discuss now the situation for infinite systems. There the results are far from being
complete, though promising. For the sake of concreteness we consider an infinite
dimensional symplectic space (X, o) with a countable symplectic basis f, gx € X,
k € Z. Similarly to the case of finite systems one can analyze the observables
and dynamics associated with R(X, o) in any convenient faithful representation
(7m0, Ho), such as the Fock representation.

As before, we identify the self-adjoint operators fixed by the resolvents with the
momentum and position operators of particles, Py = ¢, (fi), Ok = ¢ (8k),
k € Z. In view of Haag’s Theorem [8] it does not come as a surprise that global
observables, such as Hamiltonians having a unique ground state or the particle
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number operator are no longer affiliated with the resolvent algebras of such infinite
systems. In fact, one has the following general result [2].

Lemma 4.3 Let (X, 0) be an infinite dimensional symplectic space, let (7o, Hy) be
a faithful irreducible representation of R(X, o) and let N be a (possibly unbounded)
self-adjoint operator on Hy with an isolated eigenvalue of finite multiplicity. Then
(inl = N)7' ¢ mo(R(X, 0)) for u € R\{0}, i.e. N is not affiliated with R(X, o).

Observables corresponding to finite subsystems of the infinite system are still
affiliated with R(X, o). Relevant examples are the partial Hamiltonians of the form
given above,

Hy = Z(ﬁpkz + mk;),3 00 + Z Va(Qr — Q1)

keA kleA

where A C Z is any finite set. By exactly the same arguments as in the proof
of Proposition 4.1 one can show that any such H, is affiliated with R(X, o).
Clearly, these Hamiltonians may have isolated eigenvalues, but these have infinite
multiplicity. By the preceding arguments one can also show that the resolvent
algebra is stable under the time evolution induced by the partial Hamiltonians.
Moreover, for suitable potentials the evolution converges to some global dynamics
in the limit A ' Z. The precise results are as follows.

Proposition 4.4 Let Hy, A C Z be the partial Hamiltonians introduced above,
where Vi are continuous functions tending to 0 at infinity, k,l € Z.

(a) Then (Ade™n) (my(R(X,0))) = mo(R(X,0)), t €R.

(b) Let C, D be positive constants such that | V|| < C and Viy = 0 for |k—I| > D,
k,l € Z. Then limp ~7 (Ade™* ), t € R exists pointwise on wo(R(X, 0)) in
the norm topology.

A proof of this statement is given in [2]. It generalizes the results on a class of
models describing particles which are confined to the points of a one-dimensional
lattice by a harmonic pinning potential and interact with their nearest neighbors [4].
In the present more general form it also has applications to other models of physical
interest. These results provide evidence to the effect that the resolvent algebras are
an expedient framework also for the discussion of the dynamics of infinite systems.
Yet a full assessment of their power for the treatment of such systems requires
further analysis.

2.5 Conclusions

In the present survey we have outlined some recent structural results and instructive
applications of the theory of resolvent algebras. These algebras are built from the
resolvents of the canonical operators in quantum theory and their algebraic relations
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encode the basic kinematical features of quantum systems just as well as the Weyl
algebras. But, as we have shown, the novel approach cures several shortcomings of
this traditional algebraic setting.

The resolvent algebras comply with the condition that kinematical algebras of
quantum systems must have ideals if they are to carry various dynamics of physical
interest. This requirement can easily be inferred from the preceding arguments in
case of a single particle: there the cocycles I'(t) = e ™™o appearing in the
interaction picture have the property that the differences (I'(#) — 1) are compact
operators for generic interaction potentials. Hence (e We ™ — eitHoy ¢ ~itHoy jg
a compact operator for any choice of bounded operator W. It is then clear that any
unital C*-algebra which is stable under the action of these dynamics must contain
compact operators and consequently have ideals.

The resolvent algebras, respectively their subalgebras corresponding to finite
subsystems, contain these ideals from the outset. As we have demonstrated by
several physically significant examples, the ideals play a substantial role in the con-
struction of dynamics of finite and infinite quantum systems. For they accommodate
the terms in the Dyson expansion of the cocycles resulting from the interaction
picture and thereby entail the stability of the resolvent algebras under the action of
the perturbed dynamics. In order to cover a wider class of models it would, however,
be desirable to invent some more direct argument, avoiding this expansion and the
ensuing questions of convergence.

The ideals of the resolvent algebras also play a prominent role in their classifi-
cation. The nesting of primitive ideals encodes precise information about the size
of the underlying quantum system, i.e. its dimension. It is a complete algebraic
invariant in the finite dimensional case. There is also a sharp algebraic distinction
between finite and infinite quantum systems in terms of their minimal ideals.
In either case the resolvent algebras have comfortable algebraic properties: they
are nuclear, thereby allowing to form unambiguously tensor products with other
algebras which plays a role in the discussion of coupled systems.

In company with the resolvents of the canonical operators all their continuous
functions vanishing at infinity are contained in the resolvent algebras. This feature
ensures, as we have shown, that many operators of physical interest are affiliated
with the resolvent algebras. It also implies that these algebras contain multiplicative
mollifiers for unbounded operators which appear in the algebraic treatment of
supersymmetric models [3] or of constraint systems [4, 6]. Thus the resolvent
algebras provide in many respects a natural and convenient mathematical setting
for the discussion of finite and infinite quantum systems.
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Chapter 3
What the Philosophical Interpretation
of Quantum Theory Can Accomplish

Martin Carrier

3.1 Introduction: What Philosophy Can Do for Science

Some physicists are anxious to understand quantum theory without being misled
by philosophers [11, pp. 111-112]. However, approaching a subject matter with
a philosophical attitude tends to make us aware of problems, issues and all sorts of
contentious claims that might remain hidden and unconscious otherwise. Philosophy
can be good at making issues explicit, while it usually fails to resolve these issues.
Plato realized that being amazed or astonished or unsettled, faumazein, is the
first step toward the gain of knowledge. Speaking more specifically, philosophy
of science approaches the sciences in a reflective attitude. It aims at clarification.
Philosophy is unable to supply data or to decide between rival theories. It rather
aims at sorting out concepts, elucidating relations and illuminating the broader
impact a scientific theory might have on understanding the pertinent phenomena.
In particular, conceptual, epistemological, and ontological issues constitute primary
challenges to philosophical reflection. I will attend to quantum theory in what
follows, but as a preliminary, let me briefly address the similar case of space-time
theory.

Philosophical reflection on space and time represents an earlier version of this
reflecting attitude that also characterizes quantum philosophy. Thus, the former
can serve as a role model of the latter in methodological respect. As regards
conceptual analysis, a major challenge has been to reconstruct clearly in which
sense general relativity theory has abandoned, or still retains, an absolute under-
standing of spatiotemporal properties. Such a clarification can be achieved by
introducing suitable counterconcepts. An absolute space-time property, in contrast
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to a relational one, can stand alone and be couched without reference to what
happens in space-time. An absolute space-time property, in contradistinction to
a relative one, is independent of the frame of reference chosen. An absolute
space-time property, in opposition to a dynamical one, is independent of processes
in space-time [14, pp. 62—64]. Such counterconcepts serve to distinguish between
various aspects that remain interwoven and undifferentiated in the original notion.
Introducing distinctions of this sort contributes to illuminating the meaning of
spatiotemporal notions, as understood in general relativity.

A second dimension of philosophical reflection concerns epistemological anal-
ysis. Recall Ernst Mach’s objections against Isaac Newton’s absolute space that
strongly shaped Albert Einstein’s position on the subject. Mach criticized that
absolute space was inaccessible to experience and that Newton’s notion was not
a legitimate part of scientific theory for this reason. A third branch is ontological:
if the theory under consideration should turn out to be completely true, what is
the ensuing appropriate picture of nature? Regarding space-time theory, one of the
relevant issues is whether the spatiotemporal metric or the metric field is rather to
be taken as a part of space-time or of matter-energy [8, pp. 28-31].

These considerations are intended to make plausible, in a preliminary fashion,
that there are interesting and non-trivial interpretational questions that cannot be
decided by recourse to experience alone. There are sensible challenges left to the
philosophical reflection of physical theories. Conceptual clarification, epistemolog-
ical analysis, and ontological exploration can contribute to a deeper understanding
of what the relevant theory is all about.

I begin by recounting some traditional puzzles and their attempted resolutions
in the philosophy of quantum theory. Then I turn to the EPR-correlations as a
task for conceptual and ontological investigation. Afterward, I address the quantum
measurement problem as an example of an epistemological challenge.

3.2 Traditional Puzzles and Positions in Quantum Philosophy

The Copenhagen Interpretation is at the origin of the philosophy of quantum
mechanics. This interpretation takes macroscopic measuring instruments as being
correctly describable by the concepts of classical physics. By contrast, quantum
phenomena do not fit together so as to yield physical bodies in the familiar,
macroscopic sense, bodies, that is, with a fixed set of properties and another set
of properties that change in accordance with observable interactions with other
bodies. The Copenhagen claim was that physical theory is prevented from getting
any coherent picture of a quantum object, a picture that is capable of capturing the
phenomena in causal and in spatiotemporal terms at the same time. Wave-particle
duality or complementarity are indications of this inability to come up with a single,
coherent notion that could make sense of quantum events [18, pp. 68—69, 87-94].
This failure prompted Copenhagen instrumentalism, according to which
Schrodinger’s equation does not represent physical processes directly but merely
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predicts the outcome of certain quantum measurements. Werner Heisenberg took an
operationalist stance that was advertised as being analogous to Einstein’s approach
to distant simultaneity. The registered relationships are the only phenomena of
relevance. As Heisenberg put it: “Physics ought to describe only the correlation
of observations” (quoted after [4, p. 455]). A quantum phenomenon is always
characterized by its relation to a particular experimental setup, and this essentially
relational nature of quantum states is supposed to imply that there is no independent
quantum reality behind these observations—at least no reality that is subject to
human knowledge. By contrast, the measuring instruments were considered real,
and this is why the need arose to draw a line between these two realms of the
quantum phenomena, on the one hand, and classical objects or bodies, on the other.
This line is known as “Heisenberg’s cut.” As a result, it is illicit to apply quantum
theory to the measuring apparatus [19, p. 115].

Of course, this nomological split between parts of the world appeared unappeal-
ing to many. After all, the Scientific Revolution of the seventeenth century had come
into being by removing the alleged nomological divide between the celestial and
the sublunar spheres. Further, restricting oneself to correlations among observables
seems to rule out any deeper understanding of nature’s contrivances. In addition,
no clear reason was given why quantum theory should not be applied to measuring
instruments. After all, the latter consisted of atoms, too. To make things worse, Niels
Bohr, the Copenhagen champion, had been inconsistent enough to apply quantum
theory to measuring procedures in his debate with Einstein in the late 1920s about
the coherence of the theory ([18, pp. 127-136]; [19, p. 110]; [5, pp. 294-295]). It
was only natural that this road was explored more systematically. This is what John
von Neumann achieved in 1932 with his approach, sometimes called the “orthodox
interpretation.” Von Neumann conceived of the measuring instrument as a quantum
system and analyzed its interaction with the object in quantum theoretical terms. The
result was the emergence of the “quantum measurement problem.” The interaction
between apparatus and quantum object produces entangled states between the two,
but no prediction of any observation. In other words, judged on the basis of quantum
theory, no definite measuring values should ever occur. But they regularly do.

The so-called “collapse postulate” or the “reduction of the wave function” was
introduced as a separate process in addition to the Schrodinger evolution. While the
wave function evolved continuously in ways governed by Schrodinger’s equation,
an abrupt change was supposed to occur whenever a measurement was made. This
collapse is not captured by this equation so that two categorically distinct kinds
of behavior of the wave function were assumed to exist. It is only in virtue of
this latter, non-Schrodinger-like type of evolution that definite measuring values
turn up. The point is not that quantum mechanics fails to predict which particular
measuring value emerges. This inability might simply arise from the indeterminate
nature of quantum processes according to which a particular value is taken by
chance. Which value turns up may be objectively uncertain and this indeterminacy
is reflected by quantum mechanics. There is nothing mysterious about that. The
point rather is that the Schrédinger evolution suggests that a superposition of states,
rather than a particular state corresponding to a particular measuring value, results
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from coupling the observed particle to the measuring apparatus. Accordingly, what
appears anomalous and mysterious from the point of view of Schrodinger’s equation
is that a definite measuring value ensues from the interaction between the particle
and the apparatus in the first place. This is the gap the collapse postulate was
supposed to bridge.

The Copenhagen instrumentalism is now considered obsolete in many quarters.
In the physics community the view has gained prominence that quantum theory
describes natural processes and not just human interventions in such processes. As a
result, the distinguished notion of observation or measurement, that is characteristic
of the Copenhagen approach, has lost its earlier appeal. Rather, observations are
increasingly considered as a special kind of interaction and not as a categorically
distinct sort of intervening in nature. In the Copenhagen vein, only observations
and measurements, but not physical interactions in general, manage to produce the
collapse of the wave packet. Accordingly, quantum theory was not supposed to
describe nature objectively but rather the relationship between human interventions
and nature’s response. By contrast, beginning around 1980, a realist interpretation
of quantum theory has increasingly gained acceptance. This attitude is also based
on the fact that quantum theory has proven robust. During the early decades of
the development of the theory, the general idea had been that all the mysteries
and puzzles would be resolved by a future theory that would supersede and replace
quantum theory in its present shape. Quantum theory is provisional and makeshift,
and the most sensible strategy to follow is to extract robust results from this
ramshackle scheme, results that need be and will be recovered by the expected
future account. Yet now everybody believes that quantum theory is here to stay.
No emergence of a new distinct physical theory is in the offing.

As aresult, many physicists grant quantum theory explanatory or realist import.
However, this is not tantamount to the realism suggested by classical physics. The
latter had pursued the project of accounting for nature by abstracting from ourselves,
as it were, by disregarding or correcting for human interaction with nature. This
approach cannot be upheld in the quantum realm. Reference to human intervention
and interaction with an apparatus is indispensable for marshaling the phenomena
appropriately. Quantum realism needs to be of a perspectival character which is not
the same thing as introducing subjectivity into our understanding of reality. Still, this
perspectivalism involves a dependence of our understanding of nature on how we
interact with nature. Even if observation and measurement lose their special position
and are reintegrated into the realm of physical interaction, the ensuing realism is of
a particularly relational character.

Such a relational view of physical reality is genuinely different from the realism
suggested by classical physics. It is sometimes argued that prequantum approaches
to nature should as well have given rise to a relational understanding of objects.
After all, we come to know the properties of objects by entering into a relation
with them. We need to connect the object under scrutiny to a measuring device.
Accordingly, classical realism granted that measuring physical quantities involves
an interaction with the pertinent quantity and is thus bound to interfere with
its magnitude. However, first, this interaction can be made arbitrarily small in
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principle, and, second, it can possibly be accounted for by the physical theories
of the measurement process and thus be corrected. Third, the readings of various
instruments may agree with each other which suggests that these measuring devices
register the same property consistently. Although it is true indiscriminately for the
classical realm and the quantum realm that observing an object means interacting
with this object, the coherence among classical measuring values suggests that
the object and its properties exist independently of this interaction. The numerical
agreement among the results of different methods of measurement suggests that
the results do not essentially depend on these methods. Rather, this agreement
indicates that the results are produced by intrinsic properties of the object under
consideration. After all, this is how Jean Perrin argued for the reality of atoms in
1913. Since 13 dissimilar methods yield the same numerical value of Avogadro’s
constant, something real is referred to by this constant [21, pp. 217-220]. That
is, although we need to rely on establishing a relation with an object in order to
register its properties, the agreement and coherence among the outcome of diverse
approaches of this sort suggest that the nature of these relations is inessential. This
argument provides a basis for taking such measurement results as revealing intrinsic
properties of the object.

Precisely this is different in quantum theory. For example, in many instances,
changing the order of measurements affects the outcome. Under such circumstances
it is clearly unjustified to abstract from the kinds of interactions used for exploring
objects. This is why the relational interpretation of quantum states is non-trivial.
It was not anticipated by classical physics, it was not an unrecognized aspect of
classical physics. It is a feature truly different from classical physics.

Such considerations are often appealed to in favor of what is called “structural
realism,” or “ontological structural realism,” to be more precise. The idea is
that reality does not consist of separate objects with their intrinsic properties,
but is rather made of relations. Bohr’s notion of complementarity is frequently
suggested in support of structural realism. The properties a quantum object exhibits
depend essentially on the apparatus it interacts with. Complementarity in Bohr’s
sense means that two modes of description are appealed to that would contradict
each other if they were applied at the same time. Yet both are necessary for a
comprehensive elucidation of the phenomena. Bohr made this more concrete by
saying that we can either give a spatiotemporal description by measuring positions
at a certain time or a causal description by registering momentum and energy. Using
the two in combination is ruled out by the indeterminacy relations. The bottom line
is that there are two different accounts that are essentially tied to the use of specific
apparatus. In other words, what the phenomena are is determined by how they
interact with other objects. Quantum systems are characterized by their relations
with other quantum systems [7, pp. 219-220].
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3.3 Entanglement and the EPR-Correlations

One of the chief puzzles emerging against this background is entanglement. The
philosophical challenge posed by entanglement is to understand which deeper
property of nature it reveals. It is clear what entanglement, or the EPR-correlations
at that, is not. The EPR-correlations are not produced by local preparation and
distributed subsequently by usual signaling processes. In other words, the EPR-
correlations are not brought about by common causation. It is more difficult to say
how they are fashioned alternatively. It is helpful for any such venture to heed a
distinction introduced by Jon Jarrett in 1983. John Bell’s locality condition attempts
to capture the intuition that the measurement results in each of the two correlated
wings of an EPR-experiment depends only on the local circumstances. The empiri-
cal violation of this condition shows that quantum mechanics is non-local. However,
it conduces to clarity to split this condition up into two. The distinction Jarrett
drew is now mostly called “parameter independence” and “outcome independence.”
Parameter independence is intended to express the independence of a measurement
result in one wing of an EPR-setup from the selection of the observable to be
measured in the other wing. Outcome independence means the independence of
a measurement result in one wing from the result obtained in the other wing. These
two independence claims are sufficient for deriving Bell’s theorem. This conceptual
analysis suggests that the violation of Bell’s theorem means that at least one of these
claims needs to go. Parameter independence is satisfied in quantum mechanics while
outcome independence is violated.

The philosophical impact comes out more clearly if Jarrett’s two conditions
are further sharpened by conceptual analysis. Parameter independence means that
the measurement results in one wing are stochastically independent from the
experimental setup at the second wing. This property is a consequence of special
relativity and says that the state of a system is unaffected by events in spacelike
regions. Accordingly, parameter independence captures a locality condition that
is more specific than Bell-locality and entails that any causal influence spreads at
most with the speed of light. Second, as Don Howard has pointed out, outcome
independence is equivalent to saying that each of the two EPR-correlated systems
has its own physical state and that the joint state is the product of these separate
states. In other words, outcome independence is equivalent to the separability of the
two systems. Jarrett’s result can now be rephrased to the effect that any theory that
satisfies locality and separability in this sense is in conformity with Bell’s theorem. It
follows from the violation of this theorem that one of these conditions must be given
up. In fact, quantum mechanics denies separability by abandoning factorizability.
In entangled states, it is the composite state that is primary since it cannot be
neatly divided into two states that unambiguously pertain to the partial systems.
Rather, superpositions between these partial states obtain that do not belong to either
part and rather belong to both simultaneously. The formal treatment in quantum
mechanics agrees with the experimental results in that quantum mechanics assumes
physical states that are local, but non-separable [16, pp. 226-228].
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It is striking that Einstein in his 1948 presentation of the EPR argument
proceeded precisely along these lines. Einstein was not happy with the 1935 EPR
paper. He thought that it buried the chief message by erudition. The approach he
sketched in 1948, 13 years after the initial publication,had been, for all we know,
the nucleus of the earlier EPR argument, that had been transformed and altered
by Boris Podolsky and Nathan Rosen. This original Einsteinian thought involved
the demonstration that the EPR-correlations meant either a violation of locality
in the sense of limited speed of causal propagation or separability in the sense
of factorizability or both. Einstein spoke of “Nahewirkung” and “Trennbarkeit.”’
Yet Einstein thought that both conditions were prerequisites for doing science
so that none of them could possibly be given up. In particular, he argued that
separability is necessary for individuating systems and believed that individuation
is a presupposition of testability. Individuating systems is necessary for testing,
since testing presupposes the assigning of some property to a system. Without
individuation, each property could only be assigned to the whole universe. Since
Einstein believed that the spatiotemporal interval is the only objective basis for
individuation, he took separability as imperative for testing theories. Yet he also
thought that locality is necessary for securing the existence of closed systems.
Closed systems are indispensable for testing as well. Otherwise, any discrepancy
between theory and evidence could always be attributed to a distant, instantaneous
influence [12, 15, 16].

Einstein’s conclusion in his 1948 paper was that quantum mechanics is not in
accordance with at least one of these two essential requirements, and he challenged
the physics community by demanding a stark choice: either adhere to quantum
mechanics in its present shape and give up separability or hold fast to separability
and grant that quantum mechanics is incomplete. That is, the distant correlations
are fixed by additional states in the quantum systems involved, but unknown to and
unrecognized by quantum mechanics. In other words, Einstein opted for a local
hidden variable theory [12]. We know today that this is of no avail. Today, the most
prominent way out of this Einsteinian quandary is jettisoning separability.

But what does it mean to give up separability? Abandoning separability is
tantamount to accepting entanglement as a basic trait of nature. If a quantum system
consists of various parts, it is the total state that is primary. Two entangled electrons
may have a definite total spin value in each direction, but no one of the two electrons
has a definite spin value in itself in any direction. The components stand in a
certain relation, but the total state of the composite system cannot be derived from
the non-relational properties of these components. In contrast to classical objects,
quantum objects are not characterized by intrinsic properties but by being part of
more comprehensive systems. In other words, total states cannot be traced back to
properties that the parts possess independently of each other; total states are not
produced by an interaction among the parts. Rather, the parts are only created by an
intervention in or outside interaction with the comprehensive system. In entangled
systems, no such parts are realized. This is the precise opposite of separability ([13,
p- 5657]; [3, pp- 129-130]).
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This feature can be interpreted in ontological terms as suggesting a holist picture
of nature. Holism involves the primacy of the whole over its parts. In entangled
systems, the total state determines the properties of the parts, while the reverse
is not true. The violation of Bell’s inequalities demonstrates that locally prepared
properties of the parts are insufficient for fixing the total state. The correlations
are so strong that they cannot be produced by the pre-established properties of the
parts. Yet the correlations are generated by the total quantum state ([17, pp. 15-16];
[13, pp. 77-78]). This involves a reversal of traditional mereological supervenience.
The latter notion suggests that the properties of the parts define the properties
of the whole. This is expressed by the condition that there is no change in the
composite system without an accompanying change in at least one of the parts.
Further, supervenience entails that the converse is not true. It is considered well
possible that the properties of the parts change while the traits of the whole remain
invariant. This feature is usually called multiple realization; it means that the same
effect can be produced by different means [17]. Take statistical mechanics: the
same macroscopic or thermodynamic properties can be brought about by different
distributions of the relevant molecules across the pertinent configuration space. This
is precisely the contrary of what quantum theory entails. Quantum holism means a
primacy of the whole over its parts, and this is an asymmetric relation. Classical
thought, by contrast, is governed by the inverse primacy of the parts over the whole.

Entanglement has become part of many attempts to capture the structure of
reality on the basis of physical theory. In this vein, entanglement is sometimes
included in the arguments for structural realism. As I mentioned in Sect. 3.2,
structural realism takes relations to be the stuff of which reality is made. Yet I
wonder whether entanglement really fits well with such a structuralist approach.
Entanglement produces a sort of union of the two original states that cannot be split
up into two separate quantum systems. After all, this is what the loss of separability
means in this context. Entangled states are undivided wholes that do not consist of
interacting objects. The total system is the basic entity. Yet this holism does not
seem to square well with structural realism and its emphasis on relations rather
than intrinsic properties. Holism is usually thought to be tantamount to a relational
interpretation of reality. But such a relational interpretation says that the parts are
tied to each other by relations that do not hook up with the properties that the parts
possess independently of each other. However, the fusion of initial objects into an
undivided whole suggests a more intimate connection than the relation between
parts, even if the parts are granted no separate existence and no intrinsic properties.
Accordingly, I suggest distinguishing more clearly between holism and a relationist
ontology, as supported by structural realism [7, p. 221].

I mentioned that abandoning separability is often thought to be the right way
to go. Giving up separability and endorsing holism leads to the following account
of the EPR correlations. The two wings of an EPR system do not possess definite
values of measuring quantities, such as spin. There is only one comprehensive state.
This total state is changed by registering a spin value in one wing. This change
of the total state affects the probabilities of measuring values in other parts of the
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comprehensive system. This change becomes manifest if a local interaction with a
measuring device at the other wing occurs [13, p. 69].

3.4 Puzzling Features of Entanglement

I hope these considerations have added some plausibility to the supposition that
conceptual clarification and ontological exploration provides a deeper understand-
ing of what quantum mechanics is all about. The introduction of a sharper notion
of locality and its distinction from separability suggests that, in contradistinction
to a widespread sentiment, quantum mechanics respects locality and rather parts
company with classical physics when it comes to separability. Further, and likewise
in opposition to a widely received view, the EPR-correlations do not embody a
causal interaction between the two systems at hand but rather flow from the holistic
or inseparable nature of quantum states. I take it that such reconstructions are
conducive to an improved understanding of quantum theory—in spite of the fact that
no new predictions are made. However, it also belongs to the professional duties of
philosophy to avoid glossing over difficulties and to prevent premature agreement.
Philosophy is called upon to confess its confusion, to produce taumazein, and to
insist that certain notions or ideas are still obscure.

Regarding entanglement, two such murky spots can be identified. The first one is
connected to the question how the EPR-correlations can be understood. A prominent
notion of understanding emphasizes causal processes. We understand a phenomenon
if we know how it is brought about [21]. Along such lines, James Cushing argues
that understanding a physical process must always rely on a mechanism or process
that can be pictured. Yet the two major roads to a causal explanation of the EPR-
correlations are blocked: neither can they be accounted for by a direct causal link,
nor can they be traced back to common causation. So we need to face the possibility
that quantum theory represents the “endgame for understanding” [9]. It is to be
granted that we don’t have the faintest idea as to how the EPR-correlations come
about. There is no causal mechanism that could produce such correlations. However,
there are other modes of producing understanding, and the challenge is to explore
whether other avenues might be suitable for providing a non-causal understanding.
The trouble is that a simple appeal to holism is of no help. Holism operates with
extended wholes as primitive states that are destroyed if they are divided. It is in
virtue of their extended nature that distant states look as if they were adjusted by
instantaneous action at a distance. Yet, the extended total state changes if some
local alterations are performed. Two entangled electrons do not possess spin values
separately, and this is why a measurement performed at one electron changes the
total state and thereby the probability distributions of spin values measured at
the other electron [13, p. 69]. Yet it is difficult to make sense of this non-causal
instantaneous adjustment over arbitrary distances. Introducing relational states go
some way in the desired direction. If an electron is moved by 1 m, the distance of
a second electron to the one moved has increased as well. The problem is not that
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the relational properties of an object may change without intervening in this object.
The trouble rather is that these changes also extend to relations that this untouched
object bears to further objects such as measuring devices. Such puzzling features
are responsible for the lack of any idea of a mechanism that could underlie the EPR-
correlations.

Yet it is not written in stone that all explanation needs mechanisms. Explaining
phenomena by appeal to conservation laws is a traditional avenue for producing
understanding. Such pathways to understanding are captured by the unificatory
account of understanding, advocated, among others, by Philip Kitcher. Under-
standing is produced by realizing that a variety of seemingly different phenomena
instantiate a common explanatory pattern [20]. There is no doubt that entanglement
serves to unify a variety of different effects and produces understanding in this sense.
Yet another notion of understanding conforms well to the quantum mechanical
practice of giving explanations. On the “contextual approach” entertained by Henk
de Regt and Denis Dieks [10], understanding is the ability to apply scientific
conceptions properly and to see their full implications. Understanding helps us
recognize qualitatively characteristic consequences of a theory and thus facilitates
the construction of test opportunities for this theory. This approach takes up Richard
Feynman’s quip that he understands an equation if he knows what the solutions are
like without actually solving it.

One thing is worth emphasizing, when the nature of understanding is at issue.
Understanding is in no way necessarily tied to familiarity. Exploring the kind of
understanding that quantum mechanics can provide ought not to be abused for
insisting on bringing back pictures and models familiar from classical physics.
Quantum phenomena and processes are different from classical ones. Nature
behaves in an unaccustomed way in the quantum realm, and philosophy can do
nothing about it. The challenge is different: we want to realize how the different
aspects of quantum phenomena hang together. We want to produce a coherent
picture that expounds interconnections between the quantum phenomena in an
orderly way and thus allows us to make sense of them—even if some premises and
principles need to be granted that look foreign from the macroscopic point of view.

As a result, quantum mechanics is not in need of justifying the introduction of
unfamiliar properties, such as relational or holistic ones. Fundamental properties
can never be explained; this is what makes them fundamental. The principle of
inertia was met with amazement in the seventeenth century, and it would not have
been a legitimate question to ask René Descartes (who conceived rectilinear inertial
motion) why bodies that are free of external influences continue to move uniformly.
Alternatively, a legitimate question is what the basic states that a theory introduces
and appeals to are like, and how the theory proceeds from these pure states to
more complex ones that are subject to experience. Inertial motion is a basic state
in classical mechanics, relational states and holistic properties are basic entities in
quantum mechanics. The requirement only is to produce a coherent account on such
grounds.
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Another puzzling feature is the relation between the EPR-correlations and special
relativity theory. It goes without saying that there is no formal contradiction
between the two since no information can be transmitted by taking advantage of
the correlations. Light rays remain the fastest signal. This is why Abner Shimony
characterized the relationship between these two established parts of scientific
knowledge as a “peaceful coexistence” [22]. However, on closer inspection this
is not that obvious. The trouble is that the EPR-correlations (to all appearances)
establish an instantaneous relationship between events located at arbitrary distances.
But this suggests that quantum mechanical non-separability introduces a relation
of absolute simultaneity. The correlations obtained between distant measurements
seem to be simultaneous in a frame-independent sense; they seem to be located at a
preferred spacelike hyperplane [2].

I take it that it does not really help to stress that no information can be
transmitted along such absolute simultaneity planes. This would mean to stick to
special relativity in letter, but abandon it in spirit. On that account, the speed of
light would assume the character of a technical barrier of information transmission
while nature at more profound levels remains unfettered by such limitations. At
the level of ontology, such an account would rather resemble the one developed by
Hendrik Lorentz and Henri Poincaré rather than by Einstein. Lorentz and Poincaré
assumed absolute simultaneity, introduced an upper bound of signal transmission
as a technical constraint and derived the principle of relativity for electrodynamics.
The latter principle originated in these technical limitations, whereas at the level of
the natural processes themselves the distinction between absolute rest and absolute
motion was unscathed. By contrast, Einstein took the principle of relativity as being
engrained in the workings of nature and built a new structure of space-time on
this basis. It is not obvious whether this privileged position can be retained for
the principle of relativity if the EPR-correlations establish a relation of absolute
simultaneity behind our back, as it were.

This section is intended to show that philosophical attempts to produce additional
clarity may end up with recognizing further obstacles to clarification. Although it
may sound paradoxical, it means making progress in understanding when gaps in
understanding are identified and when challenges are elaborated that still lie ahead.

3.5 Quantum Measurement and Decoherence

The quantum measurement problem is a serious one and has haunted quantum
theory and quantum philosophy since von Neumann performed his now classic
analysis of the measurement process in 1932. Von Neumann applied quantum
mechanical principles to the system composed of the object under scrutiny and
the measuring apparatus and obtained a series of terms, some of which referred to
properties of the object, others to properties of the apparatus, and additional interfer-
ence terms that involve a superposition of both entities. Two challenges arose from
this analysis: First, quantum mechanics did not predict that any measuring value
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occurs in the first place; the measuring process gets stuck in unfolding a spectrum
of possibilities. Yet we regularly obtain a measuring value (see Sect. 3.2). Second,
the spectrum of possibilities contains superpositions of states of the object and
the device. Yet such interferences are never observed as a measurement outcome.
Accordingly, quantum mechanics is faced with a serious empirical problem or an
anomaly.

Another way to present the problem is to emphasize the conceptual incoherence
it involves. Consider a system consisting of a quantum object and a measurement
apparatus. On the first approach, the apparatus is treated as a macroscopic object and
as being subject to classical physics. The usual story runs that the apparatus serves to
reduce the quantum mechanical state description. This collapse of the wave function
makes a definite measuring value emerge (see Sect. 3.2). On the second approach,
the same situation is redescribed by construing the apparatus as a quantum object,
too, so that the composite system is subject to a quantum mechanical analysis. In
this framework, the Schrodinger evolution should continue. No collapse occurs and
no measuring value shows up. We get two different predictions depending on how
we treat the composite system. As a result, the quantum measurement problem is an
internal inconsistency of quantum theory [24, pp. 211-212].

Major progress has been made in the past decades by the development of the
decoherence approach. Decoherence exclusively proceeds from the Schrodinger
evolution. The treatment is based on nothing but ordinary quantum mechanics;
no interpretation, no additions are necessary. Decoherence takes the fact into
consideration that a measurement process does not only involve the object and
the measuring apparatus. Rather, the two are part of the larger environment and
enter into a relation with this environment. A measurement is never performed in
isolation from surrounding objects, and yet these further relations have not been
included in the traditional accounts of quantum measurements. As a result, the
environmental objects also enter into a superposition with the quantum object under
scrutiny and the measuring apparatus. Decoherence theory is able to show that these
superposed states are inaccessible to local observers. For instance, a photon hits
upon a quantum object, enters into an entangled state and moves away from the
observer. The interference terms are still there, but do not become manifest in any
measuring instrument. The superpositions are not destroyed, but they are moved
aside and do not show up anywhere. Decoherence makes interference terms vanish
not by suppressing them but by delocalizing them. The only states left pertain
unambiguously to the object or the apparatus, respectively. This is how quantum
objects assume their separate existence and their definite properties. For instance,
a quantum state appears particle-like since the continual collisions with ambient
molecules and photons amount to a series of position measurements [5, p. 296].

The decoherence approach provides an epistemological analysis by applying
quantum theory to the process of observation and measurement. In general, this is a
familiar scheme that has been subsumed under the label of “measuremental theory-
ladenness.” Physical theories are used for reconstructing the measuring process and
for showing that this process is suitable for registering and representing the quantity
at hand. As the case may be, an observation theory of this sort may coincide with



3 What the Philosophical Interpretation of Quantum Theory Can Accomplish 59

the corresponding explanatory theory which is expected to account for the results
obtained with the instrument. Consider measuring current intensity with an old-
fashioned moving-coil galvanometer. The electromagnetic interactions that make
this device a reliable indicator of current intensity are governed by the same theory
of electromagnetism that also introduces and characterizes the notion of current
intensity. A theory that is able to figure as its own observation theory is sometimes
called “complete” [6, pp. 20-27]. The application of quantum mechanics to the
process of quantum mechanical registration, as begun by von Neumann and heavily
improved in the decoherence approach, shows that quantum mechanics is a complete
theory (if understood in a sense different from the one employed in the EPR-debate).

This advanced analysis of the measuring process brings two things to the fore.
First, the unobserved interference states are actually unobservable for a local
observer. The observable states clearly belong either to the quantum object or the
apparatus. This resolves an anomaly of quantum theory. Second, one item from this
reduced set of properties will actually show up as a measurement reading. This
resolves another anomaly of quantum theory (see Sect. 3.2). So it looks pretty clear
at first sight that decoherence gives us a solution to the measurement problem.

Yet, in fact, this claim is highly contentious. Critics object that decoherence
does not account for the transition from the superposition to one of its elements.
Decoherence does not entail the collapse of the wave function. Instead, there is
no collapse, and all the superpositions are still there—if unobservable. This is why
critics have objected that, conceptually speaking, nothing has changed regarding the
quantum measurement problem. We obtain a spectrum of options but none of these
options is actually selected and turns up as measurement outcome. This is why early
proponents of decoherence, such as H. Dieter Zeh, think that the true selection of
a measuring value demands a branching of causal histories and thus leads to the
“many-worlds interpretation.”

Other pioneers of decoherence, such as Wojciech Zurek, are more optimistic
regarding the explanatory potential of decoherence. The central questions to ask are:
what is the evidence that a collapse occurs in the first place? How do we know that
one item from the range of possible results is really picked by the measurement?
Conversely, is it possible to rule out that the superpositions are never broken up
and that the situation only looks as if a particular property emerged? Advocates
of the view that decoherence solves the measurement problem indeed claim that it
is sufficient to show that the measurement appears to disrupt superpositions. It is
sufficient to expound that the world appears classical, although it is of a quantum
nature all the way up ([24, pp. 213-215]; [5, p. 296]).

The objective of an epistemological analysis of quantum measurement is to
clarify what the demands are for considering the quantum measurement problem
settled. The decoherentist answer suggests that the problem is ill-posed in that in
reality there is no selection of a measuring value from the set of alternatives. Yet,
it looks as if one such value was selected. In this vein, the quantum measurement
problem is rather dissolved than solved. The transition from the quantum world
to the classical world, a cornerstone of the Copenhagen interpretation, does never
occur, in fact. The world is and remains thoroughly a quantum world but looks
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classical because of human limitations to getting hold of quantum states. The human
grip remains local and thus misses global interferences that extend through the
universe. Objects possess definite properties because of human epistemic frailty.
Critics demand the true emergence of classical objects.

I have tried to elaborate two questions of philosophical import in this section.
The first one concerns the issue what is, precisely, the quantum measurement
problem and what do we require considering it settled. Some critics suggest that
a solution means to show which measurement outcome actually turns up. This
seems clearly overdemanding since the quantum world may be truly indeterministic
(and was assumed to be so for quite some time). Which measuring value will
turn up may be due to genuine chance. Others insist that it needs to be shown
that one such outcome is actually selected. This is tantamount to demanding
that macroscopic objects truly possess definite properties. Most of the opponents
to the claim that decoherence solves the measurement problem take this avenue
and require that superpositions actually be destroyed (see [1]). A solution of the
measurement problem needs to demonstrate how classical objects emerge from
quantum states and how the collapse of the wave function actually proceeds.
Advocates of the decoherentist solution respond that such requirements aim at the
wrong explanandum: strictly speaking, no classical objects exist, and the attempt
to derive their existence is ill-conceived and bound to fail. Dealing appropriately
with such contentious issues obviously demands addressing conceptual questions
and the in part normative issue what the appropriate explanandum and a satisfactory
explanation is.

The second question to which philosophy may have something to contribute is
the relation between decoherence and other interpretations of quantum mechanics,
in particular, the many-worlds interpretation and the Copenhagen interpretation.
The many-worlds interpretation claims that it is complete in the sense that no
additional observation theory is needed to interpret quantum mechanical predictions
[6, pp. 94-96]. Opponents reject the inference to many worlds and maintain that
the mixture of states obtained by applying decoherence refers to different possible
outcomes of a measurement on one and the same quantum system.' That is,
decoherence is not necessarily tied up with the many-worlds interpretation. Another
question at this juncture is the connection of decoherence to the Copenhagen
view. On the one hand, decoherence can be credited with actually deriving the
boundary between the classical and quantum areas that is pivotal for the Copenhagen
view [5, p. 297]. On the other hand, this boundary is claimed to be deceptive
and not to coincide with any demarcation in nature, which deviates from the
Copenhagen view.

't is granted within this approach that the Born rule needs to be postulated in addition in order
to translate the quantum mechanical coefficients into relative frequencies of measurement results
whereas many-worlds champions claim to be able to derive the Born rule.
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3.6 What the Philosophical Interpretation of Quantum
Theory Can Accomplish

Philosophical analysis addresses conceptual, ontological, and epistemological
issues. Regarding conceptual analysis, the challenge is to contribute to a clarification
of the questions, to analyze the requirements of a satisfactory answer and to
suggest criteria for judging about the appropriateness of such requirements.
Consider the following example of a conceptual clarification. In the early days
of quantum mechanics, the presumption prevailed that the predictions of measuring
values involved a particular relationship to experimental devices and observers.
Consider a double-slit experiment. Only if the experiment was set up such that
no information about the trajectory of a particle could be obtained so that the
observer was prevented from telling through which of the slits the particle had
passed, interference patterns and a wavelike behavior emerged. If, by contrast, an
observer could possibly glean the particle’s path from the experiment, then the
results suggested a more localized, particle-like event. Decoherence theory has
suggested a different picture in the past years according to which this dependence
of the results on the observer is only apparent. The crucial point rather is whether
the quantum system is sufficiently isolated to avoid the occurrence of decoherence.
If the quantum system interacts with its environment, it is possible to obtain
information about what is going on in the system. Photons are emitted and allow
the observer to identify more specific features of the system. At the same time, this
interaction produces decoherence which is in turn tantamount to make entanglement
and interference terms invisible [23, p. 57]. As a result, underlying the seemingly
subjective feature whether or not information about a particle trajectory can be
obtained is the objective, process-related feature whether or not decoherence occurs
in the system. Conceptual analysis serves to identify the impact of certain premises
and principles.

Ontological reconstruction is another major field of philosophical analysis. Such
reconstruction is shaped by what kind of understanding of the world quantum
mechanics is able to supply. Different notions of understanding are invoked in the
debate about achievements of quantum theory and these notions can be clarified
by conceptual analysis. The various camps and opposing factions can be identified
more easily if a distinction between different notions of understanding is introduced.
In pragmatic or action-oriented approaches as well as in intuitive approaches,
understanding has to do with the capacity to anticipate the impact of certain
premises and principles. Understanding in this sense is connected to being able to
foresee the outcome of certain actions or assumptions. By contrast, understanding
in a coherentist sense refers to an overall account that serves to integrate the various
aspects of a situation or a theory into an articulate whole. In particular, no gaps
or lacunae distort the comprehensiveness of the picture; no murky parts leave
room for conflicting interpretations. Understanding in this coherentist sense conveys
the impression that things are marshaled in an ordered, transparent, and sensible
fashion. This does not mean to feature principles familiar from classical physics;
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the point rather is to realize how the different aspects of quantum phenomena are
connected to each other. It appears that quantum theory has managed to produce
understanding in pragmatic or intuitive respect but has some way to go to generate
understanding in coherentist respect as well.

Developing such a coherentist understanding of quantum theory is an urgent
challenge. If science is supposed to transcend the mere technical business of
anticipating future experience and is also thought to provide some sort of grasping
nature’s workings, then we need a coherent picture of what physical theory tells us
about the world. In particular, one of the relevant ambitions is to spell out the kind
of holism that quantum theory instantiates. The ambition is to develop a coherent
picture that allows us to make sense of quantum phenomena—even if some premises
and principles need to be granted that are unfamiliar from the macroscopic point of
view. The goal of fundamental research in the natural sciences is understanding
nature, and this challenge is not appropriately met by merely relating equations to
experimental results. We also want to relate the equations among themselves such
that they form a coherent whole and reciprocally support each other. This is part of
the philosophical endeavor to explore the broader consequences of physical theories
and to trace their impact on what might be called a scientific worldview.

Third, epistemological analysis. Quantum theory has been plagued by anomalies
and inconsistencies regarding the relation between the formalism and its predictions.
The relation between theory and experience has been a particularly problematic
one in this area, and many attempts to come to terms with this relation have been
criticized as being nothing but hand-waving and sloganeering.? Yet in the past three
decades this debate has gained in prominence and maturity. Philosophical analysis
of the relationship between theoretical states and observed result in quantum theory
may provide deeper insights into the epistemic potential and limitations of scientific
research.
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Chapter 4
On the Sufficiency of the Wavefunction

Roger Colbeck and Renato Renner

4.1 Introduction

Theorem IV: Whoever endows W with more meaning than is needed for computing
observable phenomena is responsible for the consequences. [1]

Physical theories allow us to make predictions about future observations from
preexisting data. For example, we may have data about the configuration C of
a collection of particles at time #y, based on which we can predict the particles’
positions X at some later time ¢ > to.! Some of our theories are deterministic, such
as classical mechanics. In this case, if C consists of a complete description of all
relevant particle positions and momenta, so that the system’s state is completely
determined, the corresponding prediction for X would be a certain one.

What about quantum theory? We could use the data C to infer the particles’
(joint) state at time #y, which may be represented as a wavefunction W. Then,
employing Schrodinger’s equation and the Born rule, we could establish a proba-
bility distribution over X, telling us how likely we are, at time ¢, to find the particles
at certain positions. However, due to the probabilistic nature of the Born rule, even
when W is known to arbitrary accuracy, the corresponding prediction for X is in
general uncertain.

'We may of course also employ physical theories to infer past events, corresponding to a
retrodiction (rather than a prediction).
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The question then arises as to whether the quantum-mechanical wavefunction
W is “sufficient” to generate the most precise predictions. This question is closely
related to that raised in 1935 by Einstein, Podolsky, and Rosen who asked whether
the quantum-theoretic description of physical reality can be considered complete [2]
(cf. Footnote 2). A longstanding debate was initiated [3—6] that is still ongoing
today. This matter, besides its relevance for the foundations of quantum theory,
has recently gained practical importance. For example, the sufficiency of the
wavefunction is a prerequisite for standard security proofs in quantum cryptography,
or for establishing that quantum random number generators are “truly random” [7].

The aim of this chapter is to review a recent line of work [8—11] in which we
presented arguments supporting the sufficiency of the wavefunction for optimal
predictions—and hence that quantum theory is complete. More precisely, we show
that any extension of quantum theory yielding predictions that are more informative
than those based on the wavefunction necessarily has a rather undesirable feature: it
is incompatible with a natural notion of “free” choice.

The chapter is organised as follows. In Sect. 4.2 we describe the main claims
and their underlying assumptions on an informal level. We then continue with a
more formal treatment. Section 4.3 presents a simple mathematical framework that
allows us to study and compare the predictions made by different physical theories.
The notion of free choice, which is central to our considerations, is defined and
discussed in Sect. 4.4. Sections 4.5—4.9 are devoted to the mathematical formulation
and proofs of (some of) our claims, first in a basic (Sects. 4.7 and 4.8) and then in a
generalised form (Sect. 4.9). The concluding Sect. 4.10 discusses limitations of the
approach and its relation to similar results.

4.2 Overview of the Main Claims

Suppose (as above) that we would like to predict a future observation, X, based on
available data, C. Most generally, C and X may be modelled as random variables,
with joint probability distribution Pcx. That the setup admits a quantum-mechanical
description means that there exists a wavefunction, ¥ (which we model as another
random variable that may be correlated with C') such that the probability distribution
of X conditioned on W, Py |y, obeys the Born rule. For our considerations, we will
usually assume that the available data C allows us to infer the wavefunction W to
arbitrary precision, so that W is a function of C, i.e., V = W(C).

To formulate our claims, we need to compare the quantum-mechanical pre-
dictions to those obtained from possible alternative theories. For any alternative
theory, we denote by A the collection of variables that it uses to describe a given
experimental setting. One may think of A as a ““state variable” within the alternative
theory, analogously to the wavefunction W in quantum theory. In our framework, A
is simply a random variable, and the prediction of the alternative theory for a future
observation X corresponds to the conditional distribution Py .
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We now describe a few basic properties that an alternative theory may (or may
not) have. They play a crucial role for our considerations and will be defined more
formally in the subsequent sections.

(QM) Compatibility with Quantum Theory The alternative theory can be
applied to any quantum-mechanical experiment. More precisely, any experimental
data that admits a quantum-mechanical description (in the sense that it is compatible
with the predictions based on W) also admits a description using the alternative
theory (with predictions based on A).

(FR) Compatibility with Free Choice If an experimental parameter can be chosen
independently of certain other values according to quantum theory, then this should
also be allowed according to the alternative theory.

(¥-S) Sufficiency of ¥ No prediction of quantum theory (based on W) is improved
by the alternative theory (i.e., when taking into account A ).

These properties are all we need to describe our main claim.
Claim 1 Properties (QM) and (FR) imply (W-S).

It can be argued that Properties (QM) and (FR) are quite reasonable requirements
in light of experiments. Property (QM) merely demands that the alternative theory
can be used whenever quantum theory can (without contradicting it), and hence can
be considered an “extension” of quantum theory. Given that quantum theory has so
far not been falsified by any experiment, there is at least no experimental evidence
that speaks against this assumption. We also note that in a recent experiment [12],
the validity of Property (QM) has been verified to good accuracy for a particular
setup relevant to our claims. Furthermore, Property (FR) means that if, according
to quantum theory, we can choose an experimental parameter at random then this
should also be the case according to the extended theory.

Theories that satisfy Properties (QM) and (FR) may be termed free extensions of
quantum theory. Claim 1 then reads as follows.

Claim 1! The wavefunction V is sufficient within any free extension of quantum
theory.

An interesting corollary of this result is that the wavefunction is determined
uniquely by the state variable A of any free extension of quantum theory, provided
A is sufficiently informative. To make this more precise, consider any alternative

2In previous work, we have sometimes used the term “completeness” rather than “sufficiency” to
describe Property (W-S). The notion is indeed closely related to what Einstein, Podolsky and Rosen
(EPR) [2] called “completeness of quantum theory”. They characterised this by the requirement
that “every element of the physical reality must have a counterpart [in quantum theory]”, where
the “elements of physical reality” correspond to quantities that can be predicted with certainty.
This means that, if the prediction based on A is deterministic then also the prediction based on ¥
must be deterministic. Hence, Property (W-S) implies completeness of quantum theory according
to EPR.
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theory with state variable A. The theory may have the following property, which is
the counterpart to (W-S).

(A-S) Sufficiency of A No prediction of the alternative theory (based on A) is
improved by quantum theory (i.e., when taking into account W).

The corollary may now be phrased as follows.
Claim 2 Properties (QM), (FR), and (A-S) imply that \V is determined by A.

Remarkably, this claim is in some sense a converse to Claim 1. To see this, we
reformulate it analogously to Claim 1’.

Claim 2’ Any sufficient free extension of quantum theory contains the wavefunc-
tion W.

The claim is closely related to a recent result by Pusey, Barrett, and Rudolph [13],
who showed that the wavefunction W is uniquely determined by the “real physical
state” of a system (and is therefore also “real”). Indeed, the same conclusion can
be obtained from Claim 2, if one interprets the “real physical state” of a system as
a variable A that satisfies Properties (QM), (FR), and (A-S). Further discussion on
this point is deferred to Sect. 4.10.

We conclude this introductory section by noting that Claims 1’ and 2/, taken
together, imply that any sufficient free extension of quantum theory is essentially
equivalent to quantum theory. More precisely, the variable A, on which the
predictions of the extended theory is based, is in one-to-one correspondence with
the quantum-mechanical wavefunction W (up to possible redundancies).

4.3 Predictions

It should be clear from the informal description above that our approach is
operational. To illustrate this, it is useful to imagine an experimental setup where
each of the components (e.g., sources and measurement devices) is equipped with
a printer that continuously prints all relevant information (such as its configuration
or the result of a measurement) on a slip of paper. Our arguments may then be
formulated in terms of statements about the printed values. Mathematically, the
printed values are modelled as random variables, and our technical claims will refer
to their joint probability distribution.?

When we analyse a given experiment, there is usually a well-defined set of
quantities, in the following denoted by Y, about which we want to make statements.

3We note that there is some tension between quantum systems undergoing unitary evolution and
the existence of classical random variables describing print-outs. We take the view that random
variables are defined from the point of view of an observer and that it makes sense for an observer to
assign random variables to distant devices prior to the outcome reaching him. (See also Sect. 4.10.)



4 On the Sufficiency of the Wavefunction 69

Record of

measurements

Time: t
g Outcome: X

Source Detector

b’/

Knob settings

Time: t,
Position: C

Random
Number
Generator

Fig. 4.1 Basic experiment. Physical theories can be used to predict the outcome of a measurement
X based on data C. The figure shows a simple example, where X is the measurement output of
a detector at time ¢, and where C is the configuration of a source at some earlier time fy. For our
argument, we will often assume that this configuration is chosen at random

As a simple (but rather generic) example, consider a setup consisting of a particle
source and a detector, as depicted by Fig. 4.1. Here Y could comprise two quantities,
C and X, where C corresponds to a print-out of the source’s configuration at time 7,
when the particle is emitted, and X is the print-out of the detector at time ¢, after
the particle has interacted with it. We could then ask how well we can predict X
from C.

In general, when talking about predictions, it is convenient to distinguish between
“future” observations, which we want to predict, and “past” ones, on which our
predictions are based. This time ordering could be obtained naturally from our
operational interpretation, by associating to each value in Y the point in spacetime
at which it is printed. For our purposes, the exact location of the values is not
relevant, and we merely need to know their relative order in time. This motivates
the following definition.

Definition 1 A chronological structure Y is a set of random variables equipped
with a binary relation, denoted by —, such that*

e X — X (reflexivity);
e X >YandY — Z imply X — Z (transitivity).

The statement X — Y should be interpreted as “X was printed before Y.
Note that two elements of Y may be incomparable, i.e., it could be that neither

“#In mathematics, such a binary relation is called a preorder or quasiorder.
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X — Y nor Y — X holds. This is useful to model situations where X and Y
correspond to values observed at spacelike separated locations.’

Another concept that is central to our considerations is that of “sufficient”
information. To define this, let IV and X be elements of a chronological structure Y.

Definition 2 V is sufficient for predicting X (with respect to T ) if
Pxly = Pxjvv, 4.D

holds almost surely (over the values of V, V), where V) ={W € T : W — V}.

We will also use a straightforward extension of this definition, where X and V'
are sets of variables from Y. In this case, V| is meant to consist of all variables that
lie in the past of at least one of the variables from V.

To illustrate Definition 2, let us return to our generic example (cf. Fig. 4.1) for
which the natural chronological structure comprises C — X. Assume that the
experiment admits a quantum-theoretic description as follows. The state of the
particle emitted at time 7y is given by a wavefunction W on a Hilbert space H.
Furthermore, the evolution of the particle’s state from time 7y (when it leaves the
source) to ¢ (when it reaches the detector) is given by a unitary U on H. Finally,
the measurement carried out by the detector may be modelled by a family {I1,} ex
of projectors on H. The probability distribution Py |y of the measurement result X,
conditioned on any value of the wavefunction ¥ = v, is then given by the Born
rule,®

Py (x|y) = (| UTTLU |y) . (4.2)

To treat this quantum-mechanical description within our framework, it is con-
venient to consider extending the chronological structure Y to Y, which
additionally includes the random variable W together with the relations’

C oV 4.3)

The latter reflects that we are interested in the quantum state W that the system has
at the time when C is chosen.® That the wavefunction W is sufficient for predicting

SWhile it is natural to use a chronological structure compatible with relativistic spacetime, we
stress that this is not necessary for our technical claims.

%Note that we do not consider more general states (described by density operators) or
measurements (described by POVMs) here—such generalised states and measurements already
have “extensions” within quantum theory as a consequence of Naimark’s theorem.

"We use C <> W as a shorthand for the two relations C — W and C < .

8To comply with our operational approach, one may imagine that the source, upon printing the
value C at time f, also prints W.
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X w.rt. Y then corresponds to the condition

Px\y = Pxjuc -

Sufficiency of ¥ w.r.t. Y thus means that W contains all information about the
configuration C of the particle source that is relevant for predicting the measurement
outcome X.

Analogously to quantum theory, in which the predictions are based on the
wavefunction W, an alternative theory may give predictions based on other variables,
which we collectively denote by A. To study the alternative theory, we consider an
extended chronological structure TEXt that, in addition to the variables of YM,
contains A, as well as the relations C <> A, generalising (4.3). Property (¥-S),
specified informally in Sect. 4.2, then corresponds to the requirement that W is
sufficient for predicting X w.r.t. the extended chronological structure YEXt (Pxjw =
Px|yac and, in particular, Pyjy = Pyx|ga). Similarly, Property (A-S) means that A
is sufficient for predicting X w.r.t. YEX (in particular, Px|a = Px|aw).

4.4 Free Choice

It is difficult to imagine talking about physics without free choice. It is a notion
that finds itself embedded within the usual language we use to describe physical
scenarios. We ask questions of the form “What would happen if ...” and reason
about the consequences. For example, we may ask what peak altitude a ball obtains
if we throw it at different angles and speeds. Clearly, this is only meaningful under
the premise that it is possible to set up, at least in principle, the different scenarios
in question.

Thus, free choice is a property of the way we describe the world, with an
interventionist picture. We would not find a theory satisfying if it were unable to
compute the future evolution for certain choices of the initial conditions. Sometimes
free choice has been called a no-conspiracy assumption, the idea being that if free
choice were not to hold—i.e., were it impossible to set up a particular scenario—it
would be a conspiracy on the part of nature preventing certain experiments being
performed in certain situations.

The concept of free choice also plays an important role for the formulation of
our main claims. We view it as a property of a theory, capturing the idea that certain
parameters of the theory can be chosen independently. While, as argued above, any
(reasonable) physical theory should have this property (in some form), it is usually
not described explicitly. One of the notable exceptions is the work of Bell [14], who
characterised the “free” variables of a theory as follows:

For me this means that the values of such variables have implications only in their future
light cones.
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The definition we use here (Definition 3 below) may be seen as a formal version
of this criterion. Although some bespoke definitions have been used in particular
scenarios, as far as we are aware, no other consistent criterion has been proposed in
the literature that is applicable to a general scenario (see also [15] for a discussion).”

Consider, once again, our generic setting consisting of a particle source and a
detector (cf. Fig.4.1). Suppose that the source has a knob that allows selection
among a set of possible configurations, and that, at time fy, its setting C is
determined by a random number generator. Note that C may determine the
properties of the emitted particle, which could in turn influence the detector output
X obtained at time 7. Hence, despite C being chosen “freely” at random, it will
in general be correlated with X . Crucially, however, C can only be correlated with
things generated after it is chosen, and if X was obtained at a time ¢ < #,, before C
is randomly generated, we would expect them to be independent, i.e.,'°

PCX = PC X PX . (44)
This motivates the following definition. Let Y be a chronological structure that

contains C as an element.

Definition 3 C is free (with respect to ) if
Pccy = Pc X Pey 4.5)

where C; ={X € T :C A X}.

In words, C is free if it is statistically independent of all other variables in Y,
except those that lie in its future.

Note that because in general the chronological structure contains incomparable
elements, Cy is a larger set of variables than those that lie in the past (see Fig. 4.2 for
examples). One may therefore wonder whether a weakened variant of Definition 3,
where C4 was replaced by the set C, = {X € T : X — C}, would be sensible,
i.e., whether the independence criterion (4.5) could be replaced by

PCC¢ = PC X PC¢ . (46)

To illustrate that it cannot, consider a set Y consisting of two variables, C and C’,
and assume that their chronological structure is trivial, i.e., C /& C’and C' 4 C.

The definitions given in the literature usually refer to specific scenarios, e.g., where the measure-
ments applied to a fixed initial state are chosen freely. However, it is unclear how to generalise
these definitions, for instance, to the case where the initial state may also be chosen freely. Indeed,
while these definitions ensure that a freely chosen measurement setting is independent of certain
hidden variables (such as the particle positions according to Bohmian mechanics), this requirement
would make little sense for the free choice of an initial state.

10Tn relativistic spacetime, we would expect the independence condition (4.4) to be satisfied
whenever ¢ < t; holds in some inertial frame.
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Fig. 4.2 Two examples of a bx Y
chronological structure. In a
(a), F being free implies
Prigg = Pp, whilein (b), if F H
A is free then Pyjgyz; = Py,
for example A B
E G
VA

Specifically, one may imagine that C and C’ correspond to the configuration of two
distant devices, and that C and C' are chosen simultaneously at time #y (W.r.t. some
inertial frame) by two experimentalists sitting next to the devices. Suppose that we
ask the two experimentalists to choose the respective configurations at random, but
that we later find that C and C’ are perfectly correlated. Then it would be natural
to conclude that (at least) one of the choices was not “free” (for any reasonable
interpretation of this term). Indeed, neither C nor C’ meet the requirement of
Definition 3, which demands that Pccr = P¢ x Pc¢r. Nevertheless, both C and
C’ would meet criterion (4.6), because C| is the empty set. This weaker criterion is
therefore not sufficient for characterising free variables.

We also note that, although Definition 3 refers to probability distributions, it is
equally applicable to deterministic theories. For example, we may use classical
mechanics to compute the trajectory of a particle even if its initial conditions,
C, were chosen using a random number generator. As long as we only use the
output of the random number generator, but do not require that its internal workings
be described within classical mechanics, we can safely consider a chronological
structure that does not include any variables correlated to C that lie in its past.
Hence, C could still be considered free according to Definition 3.

4.5 Bipartite Measurement Scenario

To formulate our Claims 1 and 2 on a technical level, we will refer to a particular
experimental setup, similar to the one considered by Einstein et al. [2] and by
Bell [3]. It consists of a source, which we call Charlie, and two detectors, called
Alice and Bob, arranged symmetrically around Charlie (see Fig. 4.3). Charlie emits
a signal (e.g., a photon pulse) at time fy. Later, at time ¢ when the signal reaches
Alice and Bob, they carry out measurements, whose outcomes we denote by X
and Y, respectively. Furthermore, each of the devices is equipped with a knob to
choose between different configurations, and the knobs are set using random number
generators at time .

The experiment may be described within the framework introduced above.
For this, we consider a chronological structure Y (cf. Fig.4.4) that contains the
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Record of
measurements

Record of
measurements

Time: t Time: t

.~ Charlie

Knob settings Knob settings Knob settings

Time: t,
Position: A

Time: t,
Position: C

Time: t,
Position: B

Random Random Random
Number Number Number
Generator ~ Generator ~ Generator

Fig. 4.3 Bipartite measurement scenario. A source, Charlie, sends signals to detectors, Alice and
Bob. The configurations A, B, and C of the detectors and the source are randomly chosen at time
to, and the detectors yield measurement outcomes X and Y at time 7. Under the condition that
¢(t — to) is smaller than the distance between Alice and Bob, the two measurement processes are
spacelike separated

NP

Fig. 4.4 Bipartite chronological structure. The bipartite chronological structure Y consists of all
values relevant to the bipartite measurement scenario depicted in Fig. 4.3. The properties we need
for our statements are (4.7) and (4.8); the relations C — A and C — B may or may not hold

random variables C, A, B, X, and Y, corresponding to the knob settings and
measurement outcomes. Y is equipped with the relations

A—->X, B-—->Y C->X, C->Y, “@.7
which reflect the fact that C and A are chosen before outcome X is obtained, and
that C and B are chosen before outcome Y is obtained. Furthermore, we will use

that

AAY, BAX, (4.8)
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i.e., there is no definite time-ordering between the two measurements by Alice and
Bob. One may think of the devices being located far enough apart that the two
measurement processes are spacelike separated. In the following we will refer to
this particular Y as the bipartite chronological structure.

Note that we have, up to this point, not said anything about the probability
distribution of the random variables of Y. To specify this distribution, we will from
now assume that the experiment admits a particular description within quantum
theory. More precisely, we assume that the state of the signal emitted at time ¢,
is given by a wavefunction W, i.e., a unit vector in a Hilbert space H, which may
depend on C. Furthermore, for any possible knob setting A = a, the measurement
carried out by Alice at time ¢ is represented by a family {I1¢},cx of projectors on a
Hilbert space H with ), I1¢ = idy. Similarly, for any B = b, Bob’s measurement
is given by a family {Hl;}yey of projectors on H’. Finally, we assume that the
evolution of the system from time # to time ¢ corresponds to an isometry U from
H to H ® H'. We can then apply the Born rule, according to which the conditional
probability distribution Pxyjspy is given by

Pxyapw(x, yla, b, ¥) = (| UT($ @ U |y) . (4.9)

As in Sect. 4.3 [see the text around Eq. (4.3)], we denote by TM the chronological
structure obtained by adding W to Y, together with the relations C <« W (cf.
Fig.4.5).

The variables defined within the bipartite measurement scenario have natural
properties w.r.t. the chronological structure YQM: the wavefunction W is sufficient
for predictions within quantum theory (Remark 1), and 4, B, and C can be chosen
freely (Remark 2). These properties hold under the assumption that the Born
rule (4.9) is valid conditioned on any value of the source configuration C, i.e.,

Pyyiapvc = Pxylapw - (4.10)

>
O € T >
lvs]

Fig. 4.5 Extended bipartite chronological structure. The bipartite chronological structure Y
(see Fig.4.4) may be supplemented with additional random variables. We denote by T the
chronological structure that includes the wavefunction W, and by YE*! the one that also contains
the state variable A of an extended theory



76 R. Colbeck and R. Renner

Because W may depend arbitrarily on C, this assumption is fulfilled whenever the
experiment admits a quantum-mechanical description.

Remark 1 {W, A, B} is sufficient for predicting {X, Y} w.r.t. Y, In particular, ¥
is sufficient for predicting X and Y conditioned onany A = a and B = b.

Proof By the definition of sufficiency (cf. Definition 2 as well as the extension
described thereafter) and because {W, A, B}, = {C} the claim is equivalent
to (4.10). O

Note that sufficiency of ¥ w.rt. Y is a strictly weaker condition than
Property WS introduced in Sect. 4.2. The latter corresponds to the requirement
that W is not only sufficient w.r.t. YO, but also w.r.t. any extended chronological
structure, denoted YEX!, which may include additional variables defined within an
alternative theory (see Fig. 4.5). Proving this stronger sufficiency condition (W-S) is
one of the main aims of this chapter (cf. Claim 1).

Before stating the next property, we remark that quantum theory does not
prescribe how A, B, and C are chosen. We may thus, in particular, choose A and B
independently of C and W, i.e., such that

Papcw = P4 X Pp X Pcy . 4.11)

Remark2 A, B, and C are free w.r.t. YO whenever they are chosen according
to (4.11).

Proof That C is free follows directly from the fact that C4 can only contain A
and B, and that Pygc = Pap X Pc, according to (4.11). Furthermore, we have
Ay ={B,C,V¥,Y}. Hence, to verify that A is free it suffices to check the condition

Pspcwy = P4 X Ppcoy . (4.12)
But using (4.9), (4.10), and ), I1¢ = idy we find that

Pyppcu(yla,b,c,¥) = Z Pxyapcw(x, yla,b,c,¥)
X

=Y (UM e n)U y)
= (V| U (idy, @ I))U |W) .

Since the right hand side is independent of A = a, we conclude that Pyjpcy =
Py |pcy. Furthermore, (4.11) implies that Pgcyjy = Ppcy. We thus find that
Pypcwia = PyiapcwPrcwia = PyipcwPscw is independent of A = a, which
proves (4.12). That B is free follows by symmetry. O
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Remark 2 explains our formulation of Property (FR) given in Sect. 4.2. There we
refer to the variables that can be chosen freely within quantum theory. Following
Remark 2, these include A, B, and C. Property (FR) demands that these can also
be chosen freely within an alternative theory. Technically, this means that 4, B,
and C should not only be free w.r.t. Y@M, but also w.r.t. the extended chronological
structure, YEX, which includes all variables used by the alternative theory.

We conclude this section with the remark that the bipartite nature of the
chronological structure, in particular condition (4.8), is crucial for the formulation
of our technical claims and for their operational interpretation. For example, if we
used a chronological structure that includes the relations A <> B, the assumption
that A and B are free (w.r.t. this structure) would not suffice to guarantee that they
are uncorrelated.

4.6 Free Choice and Local Causality

The notion of “local causality”, introduced formally by Bell [16], captures the idea
that physical influences propagate continuously in spacetime. It is implicitly used
in Einstein, Podolsky, and Rosen’s argument [2], and it is an assumption of Bell’s
theorem, which asserts that quantum correlations cannot be reproduced by a realistic
model [3]. While our claims do not rely on this assumption, there is a connection
between local causality and the concept of free choice, as defined in Sect. 4.4. In the
following we briefly discuss this.!! In addition, note that Lemma 1 will play a role
in the proof of our main claims.

Consider the bipartite measurement scenario described in Sect. 4.5 and let Y be
the bipartite chronological structure, which consists of the choices A, B, and C as
well as the measurement outcomes X and Y (cf. Fig.4.4). Bell argued that, if the
latter are correlated then they must have a common cause that lies in their past. We
may model this common cause by an additional variable A, which is added to Y,
together with the relations

A—>X, A=Y, (4.13)

The latter reflect the idea that A is in the common past of X and Y. The
resulting extended chronological structure then corresponds to YE*' defined above
(cf. Fig.4.5).2

Local causality demands that, given the information in the past of a measurement,
there is no other information that can be correlated to the outcome. Applied to the

For a general discussion of local causality we refer to [17].

21n this section we don’t make reference to the variables C and ¥ (which are also part of Y&),
However, one may include them by replacing A with the triple (A, C, ¥).
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two measurements in our scenario, this criterion corresponds to the conditions

Pxiupyn = Pxjan and  Pyjapxa = Py|sa - (4.14)

Note that these imply

Pxiupn = Pxjan and  Pyjupa = Pyipa . (4.15)

as well as

Pxiasyan = Pxjapa  and  Pypupxa = Pyjasa - (4.16)

The term “parameter independence” is often used for the conditions (4.15), while
“outcome independence” is used for (4.16)." Bell’s theorem can be summarised as
saying that quantum theory is incompatible with local causality and free choice in
the bipartite measurement scenario [6]. We discuss how this follows from our result
in Sect. 4.10.

It turns out that, in this scenario, parameter independence (4.15) is implied by
free choice w.r.t. the bipartite chronological structure.'* This follows directly from
Lemma 1 below. Local causality and free choice are thus connected in that both
have parameter independence as a consequence.

Lemma 1 If A and B are free w.r.t. Y5 then Pxaiup = Pxaja and Pyppap =
Py g (wherever these conditional distributions are defined).

Proof The distribution Pysp can be decomposed as

Pxpap = PxajapPaPpa

Pxpag = PxpajaPaPpixas -

By definition, if B is free then Pgj4ax = Pg. This implies that the last factors on
the right hand side of the two equalities, Pg|4 and Pg|xa 4, are equal. Since the left
hand side is also equal, we find Pyajap = Pxa|a as desired. The second part of the
claim follows by symmetry. O

Although this argument shows that free choice implies parameter indepen-
dence (4.15), it does not imply outcome independence (4.16), and hence is strictly
weaker than local causality. Indeed, while “plain” quantum theory (where the
common cause A consists only of the wavefunction W) is perfectly compatible with

BParameter independence (4.15) is also related to “no-signalling” in the sense that if Bob (for
example) has access to A then the condition Py|agn = Py|pa follows from the assumption that
Alice cannot signal to Bob by choosing different values for A.

“We do not have a general definition of parameter independence, hence we speak only of the
bipartite scenario here.



4 On the Sufficiency of the Wavefunction 79

free choices (see Remark 2), it violates outcome independence.'” This also points to
an important difference between the usual formulation of Bell’s theorem [6] (as well
as similar results, such as Leggett’s theorem [18]) and Claim 1. The assumptions of
the latter (in particular freedom of choice) are perfectly compatible with quantum
theory. In contrast, Bell’s theorem is based on local causality, so that plain quantum
theory is already excluded by assumption.

In general, if a particular theory violates outcome independence (4.16), this need
not imply that no locally causal explanation exists. Instead, the violation could be
due to the insufficiency of A, i.e., there could be correlations between X and Y
beyond those mediated by A. If so, one possibility is that introduction of additional
variables restores outcome independence. However, in the case of quantum theory,
Bell’s theorem implies that no such additional variables can exist.

We also note that certain “non-local” extensions of quantum theory violate the
parameter independence conditions (4.15). This is for example the case for Bohmian
mechanics, if we include the hidden particle positions in the variable A. For these
theories, it follows directly from Lemma 1 that they cannot be compatible with free
choice w.r.t. the bipartite chronological structure.

Possibly due to such considerations, the definition of free choice we use has
sometimes been mistaken for a locality assumption. However, as explained above,
it is strictly weaker than local causality. Indeed, because the free choice assumption
is satisfied by plain quantum theory, it may be motivated by experimental observa-
tions: in our bipartite measurement scenario, for example, one would always find
that the statistics obeys the condition Py|4p = Px|4. Furthermore, this observation
holds whether or not the measurements are spacelike separated. This motivates
taking this as a feature of an alternative theory, the rationale being that it would
be strange if Pyj4pa Were not equal to Py| 44, but that averaging over A happens in
just the right way to ensure Pyjap = Px|4.

4.7 Basic Claims

The goal of this section is to provide formal versions of Claims 1 and 2 (cf.
Sect. 4.2). For this, we consider the bipartite measurement scenario described in
Sect. 4.5, for specific choices of states prepared by the source and measurements
carried out by the detectors.

Let 7 and ' be d -dimensional Hilbert spaces with orthonormal bases {|z) }.¢[a],
where [d] = {0,...,d — 1}. Let ¥4 be an arbitrary state on H and let U be an

5The outcomes X and Y of a measurement on an entangled state ¥ are generally correlated and
thus violate outcome independence (4.16) for A = W.
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isometry from H to H ® H’ such that

Ulya) =" Y ) @) e HRH' . 4.17)

z€[d]

We denote by X; = > cea) 12Xz @ 1] the generalised Pauli operator (where &

means addition modulo d). For any n € N and for any rational values'® a,b €
[0,1]g = [0,1] N Q we define the families of projectors {I1¢} efs; on H and
{Hf,}ye[d] onH’ by

¢ = (X)) x)x| (X)) (4.18)
5 = (Xo)" )yl (X))° . (4.19)

Finally, let YEX be the extended bipartite chronological structure defined in Sect. 4.5
(see Fig. 4.5), with random variables A, B, C, X, Y, A, and V.

Theorem 1 below is a formal version of Claim 1. This version is however
restricted, as it applies only to local measurements on the particular state defined
by (4.17). Later, in Sect. 4.9, we will provide a generalisation of the theorem to
arbitrary measurements on arbitrary states.

Theorem 1 (Restricted Version) If

* (QM) conditioned on V = 4, the Born rule (4.9) holds;
 (FR) A and B are free (w.r.t. Y¥) and their support contains [0, 1]g

then, conditionedon A = 0 and ¥ = 4,
o (U-S) W is sufficient for predicting X (w.r.t. YEX!),

Claim 2 can be obtained as a corollary from this theorem. We first provide a
restricted version where the wavefunction W is chosen from a set of two different
wavefunctions, ¥, and ¥, both of which satisfy (4.17) for the same, appropriately
chosen isometry U .

Corollary 1 (Restricted Version) Assume that ¥V takes values only from the set
{Va, ¥} forsomer,d e N, withr < d. If

* (QM) the Born rule (4.9) holds;
* (FR) A and B are free (w.r.t. YE) and their support contains [0, 1]g;
* (A-S) conditioned on A = 0, A is sufficient for predicting X (w.r.t. YEX)

then there exists a function f such that f(A) = WV holds almost surely.

Note that for any two wavefunctions ¥,; and v, on H with overlap
(Va|¥r) = {/7/a there exists an isometry U such that (4.17) holds for both d

16We restrict to the set of rational values since these are the only ones required for the proof.
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and r. Since, in addition, d and r can be any positive integers, Corollary 1 is
applicable to any two wavefunctions whose overlap is the square root of a rational
number. In Sect. 4.9 we will provide a more general version of the corollary which
extends the claim to any countable set of wavefunctions.

4.8 Proof of the Basic Claims

In this section we give an overview of the proofs of Theorem 1 and Corollary 1. For
more details, we refer to [9] and [19]. The argument uses the idea of “non-signalling
correlations”, which we explain first.

Let d,n € N, let X and Y be random variables that take values from
the set [d] = {0,1,...,d — 1}, and suppose that A and B take values A €
Ay =10, 2,.... 22 and B € B, = {5-.5..... %1} Define the quantity
I, 0 (Pxy|aB), a function of the conditional distribution Pxy|4p, as follows

Lia(Pyyap) = P(X® 1 #Y|A=0,B =21

+ Y PX#Y[A=a.B=h),

|a7b7;1 /2n
where the addition & is modulo d, and where

P(X#Y[A=a,B=b)=1-Y Pyyup(x.x|a.b).

The quantity [, ;4 is an extension of a quantity used to formulate chained Bell
inequalities [20, 21]. That a large violation of these implies low correlation with
other variables was first shown in [22], where it was used for a novel key distribution
scheme.

Consider an arbitrary additional random variable A. As we shall see (Lemma 2
below), if Pxyaap satisfies the non-signalling conditions"’

Pxaiup = Pxaja and  Pyajap = Pyas (4.20)

then the value of 1, 4 (Pxy|ap) gives an upper bound on the maximum information
that A can provide about X (or Y'). Note that I, ; is a function of the distribution
without A, so can be estimated from the correlations between X and Y even if A is
unknown.

7"Whereas the proof does of course not depend on the interpretation of these conditions, we note
that the term “non-signalling” originates from the operational meaning described in Footnote 13.
Alternatively, the conditions could be interpreted as mirroring an analogous property of the
wavefunction W (namely Pxyjag = Pxw|4) to the variable A.
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To illustrate the idea behind the proof of Lemma 2, let d = n = 2 and consider
the distribution Pxyj4p = PXY‘ p» known as the “non-local box distribution” [23,
24], defined by

oSy if(a,b) € {(0,9). G, ). G. D)}

PNL X, a’b =
wriap (Y- la. b) 28y i@y if (a,b) = (0, 3).

The distribution satisfies
P(X$£Y|074)_P(X¢Y474)_P(X7éY474)_P(X Y|074)_0

which is equivalent to /. 2,2(Pg}‘ 4p) = 0. Now let A be such that the non-signalling
conditions (4.20) hold and let Z = Z(A) be an arbitrary binary value computed
from A (one may think of Z as a guess for X). We then have Pxzjap = Pxz4 and

PYZ|AB = Pyz|B. USiIlg thiS, we find

P(Z=X|A=0.B=3) =) Puup20.3) = > Pxzap(z.20.})
= Z Pyziap(2.2]0, §) = Z Pyzias(z.21%. 3)
. z
= Z Pxzap(z.2|3. 1) = Z Pyziap(z.21%. 3)
= Z Pyzap(z.2]3.3) = Z Pyz1a5(2.2/0, 3)
. z
= Pous(1©220.3) = P(Z # X[A=0,B=1)

3
=1-P(Z=X[A=0,B=1).

The equality implies that P(Z = X|4A =0,B = %) = 1/2.18 This implies that Z
is uncorrelated to X . Since Z is an arbitrary function of A, the same holds for A,
that is, A cannot be used to predict X .

Although this is for a specific case, there is a general connection between I, 4
and the ability to make improved predictions. The latter is measured in terms of the
distance between the conditional distribution Py |, = Pyxaja (-, -]a) and the product
distribution Py x Py|,, where Py is the uniform distribution. The following lemma,
whose proof can be found in [11], provides an upper bound on this distance.'”

18 An analogous argument works for any ¢ and b, so P(Z = X|A =a, B = b) = '».

Note that for two distributions, Py and Qy, defined on a set X, |Pxy — Qx| =
SUPX’QX(PX (X)) — Ox (X))
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Lemma 2 Let Pyyp|ap be defined forany X € [d], Y €[d], A€ A,, and B € B,.
If (4.20) holds then

_ d
| Pxala — Px x Prpa, < Eln,d(PXY\AB) ;

forany a € A,, with Px(x) = /a for x € [d].

We saw that 12,2(P§1;“ ) = 0 for the non-local box distribution P}("YL‘ 5 and the
lemma thus implies that X is uniform and independent of A, in agreement with
our derivation above. More generally, for any n and d, there exist distributions
Pxyjap for which I, s(Pxyjap) = 0. However, such distributions cannot be
realised by local measurements on two parts of a quantum system in the bipartite
measurement scenario described in Sect. 4.5. Nevertheless, for the particular state

and measurements defined in Sect. 4.7, for any d, I, ; approaches O for large n.

Lemma 3 Let Pyyjagy, = Pxyjapu (-, |, -, ¥a) be the probability distribution given
by the Born rule (4.9), for U, ¥ = ¥4, {I1$} xejq), and {Hg}ye[d] defined by (4.17)—
4.19),a € A, and b € B,,. Then

2
Lia (PxyiaBy,) < e
The statement follows from a relatively straightforward calculation, whose
details are given in [11].
We are now ready to prove the claims formulated in Sect. 4.7.

Proof of Theorem 1 Note first that distinction between the random variables A and
C is irrelevant for the statement of the theorem. We can therefore without loss
of generality think of C as being included in A, which simplifies the notation.
Furthermore, since the claim only needs to hold conditioned on ¥ = v, it
suffices to consider the conditional probability distribution Pyyspa|y, . Because of
Property (FR), Lemma 1 implies that this distribution satisfies the non-signalling
conditions (4.20) (see also Footnote 12). Furthermore, because of Property (QM),
we have by Lemma 3 that for any ¢ > 0

I .a(PxyaBy,) < —
for sufficiently large n € N. Hence, by Lemma 2 we find that
| Pxatays = Px % Pajay, ||, <

for any a € A,. Note that, for the particular choice a = 0, this upper bound holds
for any ¢ > 0, as @ = 0 is an element of A, for any n. We thus have

Pxnlaye = Px X Pajay,
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for a = 0. The only variable in the past of W is A (as well as C, which we assume
to be included in A). As we have shown that A is independent of X, conditioned on
A = a = 0, Property (¥-S) follows. O

Proof of Corollary 1 1f one of the events ¥ = ; and ¥ = 1, has probability 0
then the statement is trivially true. We therefore assume in the following that both
events have strictly positive probability. In particular, the conditional distribution
Pxajw(,+[¥q) is well defined and hence, because of Assumption (FR), also

Pxajaw(,-la, ¥a) fora € [0, 1]q.

Let £ be the set of values A in the range of A such that the conditional
probability Py|4aw(d — 1]0, A, ¥,) is defined and equal to !/a. By Theorem 1, if
we conditionon ¥ = y; and A = 0, W is sufficient for predicting X, which means
that

Pxjaaw(d — 10,4, Y¥q) = Pxjaw(d — 1|0,vq)

holds almost surely over the values A for A. Furthermore, it follows from
Property (QM) that X is uniformly distributed over [d], so that

Pyjanw(d — 1|0, A, ¥q) = 1/a
holds almost surely. This implies that the set £ must have weight 1, i.e.,
Prjo(LlYa) = Prjaw(L]0,¥q) = 1. y
Likewise, Property (A-S) implies the existence of a set £ such that
Pplaw(L£]0,94) =1, and, for A € L,
Pyjanw(d — 110, A, %4) = Pyjan(d —1]0, 1) . (4.21)

Defining £ = £ N L, we have that for A € L, Pxjaa(d — 110,1) = a
with

Pajaw(L]0,94) = 1. (4.22)

Using Property (QM), for ¥ = v, we have Px|4u(d — 1|0,%,) = 0 (since
r < d). From (A-S), it follows that

Praw(d — 10.9,) = / APy 1w (110, ¥7) Py an(d — 110, 2) | 4.23)

and hence that there exists a set £ with

Pajaw(L'10,9,) =1, (4.24)
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such that for A € £/, Pyx4a(d —1]|0, 1) = 0. It follows that LN L = @, and hence
we can define the function f such that

Ve ifAel

1) = _
f& v, ifrerl.

It follows from (4.22) and (4.24) that f(A) = W holds with probability 1.

4.9 Generalised Claims

Theorem 1, as stated in Sect. 4.7, holds for local measurements on a bipartite
maximally entangled state, but is silent about other measurements. In this section we
provide a more general formulation of the theorem, which applies to any projective
measurement, in the following denoted {IT.} «e> ON any pure state ¥ in a finite
dimensional Hilbert space H.

To formulate the assumptions of the generalised theorem, it is no longer sufficient
to assume validity of the Born rule for the particular measurements considered in
Sect. 4.7. Instead we need to construct additional measurements, depending on
the measurement of interest, {I1.} vei> and on . The additional measurements
are defined on an extended Hilbert space, which contains H as a subsystem.
Property (QM) of the generalised theorem then demands that the Born rule is valid
for the additional measurements on the extended space.

To construct the additional measurements, we first note that, according to
quantum theory, a projective measurement {II,} ceq corresponds to a physical
evolution specified by a trace-preserving completely positive mapping (TPCPM)
that takes any density operator p on H to a convex combination of the (mutually
orthogonal) post-measurement states. This may be seen as part of a reversible
evolution on a larger space, known as the Stinespring dilatation. Formally, the latter
is given by an isometry U from # to a product space H ® H’ such that*

e (UpUT) = Tepfle (Vp) | (4.25)
x€X

20ne may argue that any implementation of the measurement defined by {I1,} c % admits such
a description, as the only condition on U is that it is a Stinespring dilation of the projection
operation, cf. (4.25). The physical reason for this is that the measurement process (at least for
a short time) corresponds to a unitary evolution of an extended system, which may include part of
the measurement apparatus. We also remark that this claim only refers to standard quantum theory
and is (at least in principle) experimentally testable.
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Fig. 4.6 Illustration of the general argument. (a) The measurement of interest, defined by
projectors II,, entangles the system with another system such that a subsequent measurement on
that system, with projectors |y} y|, reveals the outcome of the original measurement. (b) After the
interaction between the two systems corresponding to the quantum description of the measurement,
one can consider sets of local measurements, one set that act on the first system and one half
of an embezzling state, and the other set that act on the second system and the other half of
the embezzling state. These measurements are chosen such that Pxyj4p is the same as if the
measurements given in (4.18) and (4.19) are applied to a state of the form given in (4.17). In
addition, a measurement labelled B = 0 is included, which corresponds to measuring the second
system with projectors |y)}(y| (and ignoring the second half of the embezzling state), in other
words, when B = 0, the outcome of the original measurement is read out

and we can take U to be

U=) el . (4.26)
xex

where {|x)} .5 is a family of orthonormal vectors on 7{'. Thus the original
measurement can be thought of as the concatenation of this isometry with a
measurement defined by the projectors {|x)(x|} ¢ on H’ (see also Fig. 4.6a).”!
For our construction, we will further expand this space by adding a bipartite
system H ® H’ initialised in a specific state |#). We then consider measurements

21 One may think of #’ as representing (part of) the measurement device used to measure w.r.t.
{I1,},c % and the subsequent measurement on H’ as reading the value from the device.
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given by families of projectors {f[fé}xe/—y and {ﬁﬁ}yey onH ® Hand H @ H’,
respectively. The Born rule, adapted to this situation, reads

Pyviasw(x, yla.b,y) = (W|UT @ (0)) (M4 @ T)(Uly) ®16)) . (4.27)

With these preparatory remarks, we are ready to state the general version of
Claim 1. As before, the chronological structure TEXt is the one defined in Sect. 4.5.
The theorem applies to any random variables A, B, C, X, Y, A, and W.

Theorem 1 (General Version) Let |) € H, {l:Ix}xE & be a projective mea-
surement on H and let U be an isometry such that (4.26) holds (i.e., U is a
Stinespring dilatation). Then there exists |0) and projective measurements {I:If(} xeX
and {ﬁﬁ}yey parameterised by a, b € [0, 1]g such that

=0 = )yl ®idg  (Vy e d) (4.28)

and such that the following holds. If

* (QM) conditioned on V¥ = , the Born rule (4.27) holds;
» (FR) A and B are free (w.r.t. Y¥') and their support contains [0, 1]g;

then, conditionedon B = 0 and ¥ = v,
o (W-S) W is sufficient for predicting Y (w.r.t. YEV),

Note that, for the case B = b = 0, which is relevant for Property (\W-S), the
outcome Y is obtained by a measurement that corresponds to the measurement
of interest, i.e., the one defined by the projectors { l:Ix}xE % Indeed, it follows
from (4.26) and (4.28) that, for any y € X,

YW (ONI1L @ E=)(U ® 16) = U(idy & [y}yls)U =10, .
’ (4.29)

The theorem is proved in [19]. It is not our intention to repeat the argument here,
but rather to explain the ideas behind the result at a more informal level through two
examples.

The first simple example is the projective measurement {IIo, I1;} =
{|0X0[,|1)X1|} on the state |¢) = \/%(|0) + |1)). For this measurement the
isometry U can be taken to be

U = (|0)5 ®10)3,/) (Ol + (11) 3 ® [1)3) (15 (4.30)
so that

UlY) = V112103, ® 10)5y + [1)5 ® [1)5,/) - 4.31)

It is easy to see that this U satisfies (4.26).
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We now show that in this case the claim of the generalised version of Theorem 1
follows from its restricted version stated in Sect. 4.7 for d = 2. We do not need |6),
i.e., we can set H = ' = C. Furthermore, we take [1¢ = 1% and ﬁl; = Hl; to
be the projectors defined by (4.18) and (4.19), respectively. Note that this choice is
compatible with condition (4.28). Furthermore, (4.31) implies that (4.17) holds for
U as defined above and ¥; = 1. With (4.17)—(4.19) satisfied, all requirements of
the restricted form of Theorem 1 are fulfilled and we can conclude that, provided A
and B can be chosen freely and that the Born rule holds, W is sufficient for predicting
the measurement outcome X in the case A = 0.

In order to extend this conclusion to the case B = 0, note that the Born rule
gives Pxyjapy (x, »]0,0,v%) = 0 whenever x # y, in other words, when A = 0 and
B = 0 the outcomes X and Y are always equal. It follows that W is also sufficient
for predicting the outcome Y when B = 0.

For more general states and projective measurements, using an isometry U with
the same form as (4.30) won’t necessarily lead to a maximally entangled state of
the form (4.17), and hence won’t directly allow the restricted form of Theorem 1 to
be applied. Hence, to derive the claim we need a slightly stronger argument. This
involves some pre-shared entanglement, corresponding to the state |6) in (4.27). The
next example illustrates this idea (see also Fig. 4.6).

Suppose that the state [/) = 1/2(|0) + +/3|1)) is measured with projectors
{Io, I1;} = {|0)O].|1)(1]|}. In this case, the isometry U can be chosen as in the
previous example [see Eq. (4.30)] and gives rise to the state

UlY) = 1/2(10)3, ® [0y + V3 [1)5 ® [1)5,) .

and, as before, a subsequent measurement of {|0)0]|,|1}1]} on H  reads out the
outcome. Suppose now that an additional entangled state, |0) ;7. is available. This
is taken to be in a special state, called an embezzling state [25]. The key feature
of this state is that for all m € N there exist isometries V,, : H— H ® H and
Wy : H + H' ® H’ such that

(Vi @ W) 10) 5777/ 1/fZ|m ® [m)y, ®10)575

Using these, we can define V' : HOH->HRHQHandW : H' @ H —
HOH @H viaV = |0)0|® Vi +|1)1|® V3 and W = |0)0| @ W; + |1)(1| ® W3,
so that the state (V. ® W)(U|y¥) ® |6)) has the form

+ 150 Mg + 1255 112)550,) @ 10) g
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which is isomorphic to
2(10) 7 10) 7 + )7 1D + 12)57 12)57 + 13)52 13)2) ® 10)

(i.e. H = H ® H with the isometry [00),,5 = [0)57, [10),,5 = [1)5, [11) 4,5 =
12)52 112),,57 > |3)5; and, similarly, H' = H' @ H').

Take 1:[£=0 = |yXy| ® idg,, and use V and W to construct the measurements
¢ = VIV and 115 = WITISW (b # 0) in terms of the projectors 1§ and
Hl; defined as in (4.18) and (4.19) (except that they are now defined on H and

7). Note that the isometries 1 and W are controlled on 7 and H’ respectively, and
hence the outcome of the measurement corresponding to A = 0 (which is equivalent
to a measurement with projectors {|x)(x|;;} on (V ® W)(U|y) ® |0))) allows
direct determination of the outcome of a measurement on U |y) with projectors
{lyXyl4y}. In other words, when both A = 0 and B = 0 the outcome Y is a
function of X (in our example, Y = 0if X =0and Y =1if X € {1,2,3}).

The restricted form of Theorem 1 applies to |¢;) = |[¢) ® |6) using the Born
rule (4.27), and hence in the case A = 0, W is sufficient for predicting X . Since
for A = 0and B = 0, Y is a function of X, it follows that W is also sufficient
for predicting the outcome Y when B = 0. (Somewhat remarkably, using the same
embezzling state but varying the isometries V' and W always allows us to generate
a state arbitrarily close to one for which the restricted form of Theorem 1 applies.)

Finally, we give a generalised version of Corollary 1, which in Sect. 4.7 is stated
for the case where W is chosen from a set of only two wavefunctions.

Corollary 1 (General Version) Let S be a countable set of wavefunctions on H
such that |(Y|v')| < 1 for any |¥),|¥’) € S. Then there exist measurements
{I1¢}xex and {Hé’,}yey parameterised by a,b € [0, 1]g such that the following
holds whenever WV takes values from the set S. If

e (QM) the Born rule (4.9) holds;
« (FR) A and B are free (w.r.t. YE') and their support contains [0, 1]g;
* (A-S) conditioned on A = 0, A is sufficient for predicting X (w.r.t. YBX)

then there exists a function f such that f(A) = WV holds almost surely.

For a proof of this extended version of the corollary we refer to [11].

4.10 Discussion

We begin this section by briefly discussing the relation between our work and others
in the literature.

One of the most prominent results of this type, Bell’s theorem [6], follows as a
corollary of Theorem 1 (the restricted version given in Sect. 4.7 is sufficient). To see
this, let us first consider the original version of Bell’s theorem [3]. The theorem
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refers to “hidden variables” A that determine the measurement outcome X for any
fixed choice of measurement A. In our notation, this means that Pxj4o € {0, 1}.
But since the outcomes of quantum measurements are generally not deterministic,
i.e., Pxjaw ¢ {0, 1}, this contradicts Property (W-S). Theorem 1 thus implies that,
provided the Born rule holds and the measurement settings can be chosen freely,
there cannot exist any hidden variable A that determines X. This is exactly the
statement of Bell’s theorem [3].

In later variants of Bell’s theorem, the requirement of determinism was weakened
to “local causality”, as defined in Sect. 4.6, cf. (4.14). In fact, in our framework
we can obtain this more general variant from Theorem 1 using only outcome
independence (4.16), which is a consequence of local causality. One way to do
this was sketched in [19]. However, a more direct way was recently given by
Forster [26], who proved the following lemma.

Lemma 4 Properties (QM), (W-S) and outcome independence (4.16) are
incompatible.

Proof According to Property (QM), the outcomes of the measurements (4.18)
and (4.19) on entangled states are generally correlated, so that

Pxyiap # PxjapPy|as (4.32)

(we consider the state, W, to be fixed so suppress it in the distributions here).
If Property (¥-S) holds then Pyapn = Pxup, and similarly for Y. Using
outcome independence (4.16) followed by this relation, and writing Pxyjap, for
Pxylaga (-, -+, -A), we have

Pxyjap = /dPAIAB(A)PXYIABA
= /dPAIAB(/\)PXIABlPYIABl

= /dPAIAB(/\)PXIABPY\AB = Px|agPyaB

which is in contradiction with (4.32). O

Since Theorem 1 asserts that Properties (QM) and (FR) imply (W-S), it follows
that (QM), (FR) and outcome independence are incompatible, which is another way
to state Bell’s theorem.

Our second claim, Corollary 1, has also been established by Pusey et al. [13]
using a different argument. Instead of being based on free choice, i.e., Property (FR),
they assume “preparation independence”. The latter means that in situations where
quantum theory assigns a product state, so does the alternative theory. More
precisely, if independent preparations of N quantum systems are made, so that
the joint quantum state is p; ® p» ® --- ® pn, then the “real physical state” A
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[in our language, the state of an alternative theory that satisfies Property (A-S)]
takes a similar product form, i.e., A can be divided into A, A,, etc., where A;
represents the physical state of the ith system. As discussed in [11, 19], preparation
independence and free choice are related. Furthermore, it has been shown that a
setup consisting of at least two systems (as in Sect. 4.5) is necessary to arrive at the
claim [27].

One may also ask whether it is possible to further strengthen the claims of
Theorem 1 and Corollary 1 by relaxing the assumptions. In particular, it would be
interesting to weaken assumption (FR), as this assumption cannot be experimentally
verified (without access to A). This has led to the question of “randomness
amplification”: given a random value that satisfies (FR) only approximately, is
it possible to generate a random value that satisfies (FR) to arbitrarily good
accuracy [28]? This question has been studied recently in a series of work. The
conclusion is that randomness amplification is indeed possible, even if the initial
randomness satisfies (FR) only with arbitrarily small probability [29-31].

Although this chapter is about quantum theory, we have talked about the
predictions it makes from the point of view of a classical observer. For example,
we considered the maximum knowledge we can have about the state of a system
within quantum theory to be a (classical) description of a pure state. Likewise,
in a higher theory we have also considered the predictions based on an additional
classical parameter (or set of parameters), A.%? In fact, we can make an analogous
argument in the case that the predictions of the higher theory are made based on
a hypothetical additional system that has both an input and an output [9]. Such a
system can be modelled in terms of its (classical) input-output behaviour (this is
the higher theory analogue of modelling a quantum system by its behaviour under
measurement).

The use of classical random variables also appears to be in tension with our
modelling of a quantum measurement as a unitary interaction. If all quantum
processes are unitary, what is the meaning of a random variable? This is not an easy
question, and is related to the question of why we don’t experience superpositions. If
all processes are quantum, then when we read out a measurement outcome, our brain
will become entangled with the measured particle and the measurement device.
However, we experience a single outcome occurring.

Thus, any random variables are defined from an observer’s perspective. Being
observer-centred is the way most theories evolved, their main purpose being to
enable observers to make predictions. In quantum theory, the random variables do
not have universal meaning: in principle, the process of making an observation could
be undone if the unitary enacting that observation is reversed. After the reversal, the
“outcome” would no longer have any meaning, and the observer would have no

22The parameters are classical in the sense of being modelled as random variables. However, they
may be derived from measurements on a quantum (or more general) system, so the correlations
between them need not have a locally causal explanation (which is often taken to be a property of
classicality).
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memory of it. Thus, the notion of a measurement having taken place only makes
sense from the point of view of an observer. In addition, the question of when an
outcome occurred is observer-dependent. (An observer may not be able to give a
precise moment, but can at least give a time after which it makes sense (from their
perspective) to say that the measurement has taken place.)

A more general theory may dispense with such classical notions and consider
the predictions of a quantum observer (one could think of this as a machine that
processes information in a quantum way). This goes beyond the scope of this
chapter.
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Chapter 5
The Role of the Probability Current

for Time Measurements

Nicola Vona and Detlef Diirr

5.1 Introduction

Think of a very simple experiment, in which a particle is sent towards a detector.
When will the detector click?

Imagine to repeat the experiment many times, starting a stopwatch at every run. The
instant at which the particle hits the detector will be different each time, forming a
statistics of arrival times. Experiments of this kind are routinely performed in almost
any laboratory, and are the basis of many common techniques, collectively known
as time-of-flight methods (TOF). In spite of that, how to theoretically describe an
arrival time measurement is a very debated topic since the early days of quantum
mechanics [22]. It is legitimate to wonder why it is so easy to speak about a position
measurement at a fixed time, and so hard to speak about a time measurement at a
fixed position. An overview of the main attempts and a discussion of the several
difficulties they involve can be found in [18-20].

In the following, we will discuss the theoretical description of time measurements
with particular emphasis on the role of the probability current.
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5.2 Whatis a Measurement?

We will start recalling the general description of a measurement in quantum
mechanics in terms of positive operator valued measures (POVMs). This framework
is less common than the one based on self-adjoint operators, but is more general and
more explicit than the latter.

5.2.1 Linear Measurements: POVMs

When we speak about a measurement, what are we speaking about?

A measurement is a situation in which a physical system of interest interacts
with a second physical system, the apparatus, that is used to inquire into the former.
In general, we are interested in those cases in which the experimental procedure is
fixed and independent of the state of the system to be measured given as input; these
cases are called linear measurements. The meaning of this name will be clarified in
the following. The analysis of the general properties of a linear measurement, and of
the general mathematical description of such a process, has been carried out mostly
by Ludwig [16], and finds a natural completion within Bohmian mechanics [8]. In
the following, we will present a simplified form of this analysis [6, 21].

We will denote by x the configuration of the system and by v its initial state,
element of the Hilbert space L?(R*"), while we will use y for the configuration of
the apparatus and ®y € L*(R3") for its ready state; moreover, we will denote by
(0, T) the interval during which the interaction constituting the measurement takes
place. The evolution of the composite system is a usual quantum process, so the
state at time 7T is

Wiy = (Ur Wo)xey) = Ur (Yo Do) (x.y), (5.1

where Ur is a unitary operator on L?(R3W+")) We call such an interaction a
measurement if for every initial state ¥ it is possible to write the final state Wr as

Ureen = D Yal) Palr), (5.2)

with the states @, normalized and clearly distinguishable, i.e. with supports G, =
{y| Py # 0} macroscopically separated. This means that after the interaction it
is enough to “look™ at the position of the apparatus pointer to know the state of the
apparatus. Each support G, corresponds to a different result of the experiment, that
we will denote by A,. One can imagine each support to have a label with the value
Ay written on it: if the position of the pointer at the end of the measurement is inside
the region Gy, then the result of the experiment is A,. The probability of getting the
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outcome A, is

Py =/dX/dy [ U7 e =/dX/dy [V () <I>a<y>|2=/|x/fa<x)|2dx,
Ga Go

(5.3)

indeed @, (y) = 0 Vy € Gy, ' # a, and the ®, are normalized. Consider now the
projectors P, that act on the Hilbert space L?(R3+)) of the composite system and
project to the subspace L*(R* x G,) corresponding to the pointer in the position
o, i.e. in particular

PV = Yo Dy 5.4
Through the projectors P, we can define the operators R, such that
Pa\IJT = 1,/foz q)oz = (Ral/IO) q)oza (55)

that means R,Y¥o = V¥,. Finally, we can also define the operators O, = Rl R,.
These operators are directly connected to the probability (5.3) of getting the
outcome o

Py = ||1/fa||2 = <w0|0a1/f0) . (5.6)

Therefore, the operators Oy together with the set of values Ao are sufficient to
determine any statistical quantity related to the experiment. The fact that any
experiment of the kind we have considered can be completely described by a set of
linear operators, explains the origin of the name linear measurement. Equation (5.6)
implies also that the operators O, are positive, i.e.

(Y0|Oato) =0 Vi € L*(R™). (5.7)

In addition, they constitute a decomposition of the unity, i.e.
> 0, =1. (5.8)

as a consequence of the unitarity of Ur and of the orthonormality of the states ®,,
that imply
L= (Y@l = [Wr ] =D [Val® =D (Yol Oatho) Vo € L2(R™).
o o
(5.9)

A set of operators with these features is called discrete positive operator valued
measure, or simply POVM. It is a measure on the discrete set of values A,. In case
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the value set is a continuum, the POVM is a Borel-measure on that continuum,
taking values in the set of positive linear operators.

It is important to note that in the derivation of the POVM structure the
orthonormality of the states ®, and the unitarity of the overall evolution play a
crucial role, while in general, the states ¥/, do not need to be neither orthogonal nor
distinct.

In case the operators O, happen to be orthogonal projectors, then the usual
measurement formalism of standard quantum mechanics is recovered by defining
the selfadjoint operator A= >4 Aq Oy. Physically, this condition is achieved for
example in a reproducible measurement, i.e. one in which the repetition of the
measurement using the final state v, as input, gives the result « with certainty.

We remark that calculating the action of a POVM on a given initial state requires
that the initial state is evolved for the duration of the measurement together with
an apparatus, and therefore its evolution in general differs from the evolution of
the system alone. This circumstance is evident if one thinks that the state of the
system after the measurement will depend on the measurement outcome.' Usually,
if the measurement is not explicitly modeled, this evolution is considered as a black
box that takes a state as input and gives an outcome and another state as output. It
is important to keep in mind that the measurement formalism always entails such
a departure from the autonomous evolution of the system, even if not explicitly
described.

5.2.2 Not Only POVMs

Although a linear measurement is a very general process, there are many quantities
that are not measurable in this sense. An easy example is the probability distribution
of the position |1/|. Indeed, suppose to have a device that shows the result A, if the
input is a particle in a state for which the position is distributed according to |y |?,
and A, if it is in a state with distribution |y|?. If the process is described by a
POVM, the linearity of the latter requires that when the state ¥, 4 v, is given as
input, the result is either A1 or A5, as for example the result of a measurement of spin
on the state [up) 4+ |down) is either “up” or “down”. On the contrary, if the device
was supposed to measure the probability distribution of the position, the result had
to be A, corresponding to |y, + |2, possibly distinct both from A; and from 2,.

To overcome a limitation of this kind, the only possibility is to give up on
linearity, accepting as measurement also processes different than the one devised
in the previous section. These processes use additional information about the
x-system, for example giving a result dependent on previous runs, or adjusting
the interaction according to the state of the x-system. In particular, to measure

Tt will be an eigenstate of the selfadjoint operator corresponding to the measurement, in case it
exists.
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the probability distribution of the position one exploits the fact that | (x)|> =
(¥ Ox|¥), where O, = |x) (x| is the density of the POVM corresponding to
a position measurement. Instead of measuring directly |/|?, one measures x,
and repeats the measurement on many systems prepared in the same state .
The distribution [y/|? is then recovered from the statistics of the results of the
position measurements. The additional information needed in this case is that all
the x-systems used as input were prepared in the same state. The outcome shown
by the apparatus depends then on the preparation procedure of the input state: if we
change it, we have to notify the change to the apparatus, that needs to know how to
collect together the single results to build the right statistics.

For other physical quantities not linearly measurable, like for example the
wave function, a similar, but more refined strategy is required. This strategy is
known as weak measurement [1]. An apparatus to perform a weak measurement
is characterized first of all by having a very weak interaction with the x-system;
loosely speaking, we can say that the states ¥, are very close to the initial state
Yo. As a consequence of such a small disturbance, the information conveyed to the
y-system by the interaction is very little. The departure from linearity is realized in
a way similar to that of the measurement of |1/|?: the single run does not produce
any useful information because of the weak coupling, therefore the experiment is
repeated many times on many x-systems prepared in the same initial state v; the
result of the experiment is recovered from a statistical analysis of the collected data.

The advantage of this arrangement is that the output state ¥, can be used as
input for a following linear measurement of usual kind (strong), whose reaction is
almost as if its input state was directly 1. In this case the experiment yields a joint
statistics for the two measurements, and it is especially interesting to postselect on
the value of the strong measurement, i.e. to arrange the data in sets depending on the
result of the strong measurement and to look at the statistics of the outcomes of the
weak measurement inside each class. For example, a weak measurement of position
followed by a strong measurement of momentum, postselected on the value zero for
the momentum, allows to measure the wave function [17].

The nonlinear character of weak measurements becomes apparent if one under-
stands the many repetitions they involve in terms of a calibration. Indeed, one can
think of the last run as the actual measurement, and of all the previous runs as a
way for the apparatus to collect information about the x-system used in the last run,
profiting from the knowledge that it was prepared exactly as the x-systems of the
previous runs. The x-systems used in the preliminary phase can be then considered
part of the apparatus, used to build the joint statistics needed to decide which
outcome to attribute to the last strong measurement. For example, the result of the
experiment could be the average of the previous weak measurements postselected
on the strong value obtained in the last run. If we then change the initial wave
function ¥, to some 7, the calibration procedure has to be repeated. In this case,
the apparatus itself depends on the state of the x-system to be measured, breaking
linearity.
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5.3 Time Statistics

Now we finally come to our topic: time measurements. At first, we have to note
that there are several different experiments that can be called time measurements:
measurements of dwell times, sojourn times, and so on. We will refer in the present
discussion exclusively to arrival times, although it is possible to recast everything
to fit any other kind of time measurement. More precisely, we will consider the
situation described at the beginning: a particle is prepared in a certain initial state
and a stopwatch is set to zero; the particle is left evolving in presence of a detector
at a fixed position; the stopwatch is read when the detector clicks. The time read on
the stopwatch is what we call arrival time.

A measurement of this kind is necessarily linear, and we can ask for the statistics
of its outcomes given the initial state of the particle. If, for example, we measure
the position at the fixed time ¢, then we can predict the statistics of the results by
calculating the quantity

(Ve lx) (x[¥r) . (5.10)

Which calculation do we have to perform to predict the statistics of the stopwatch
readings with the detector at a fixed position?

5.3.1 The Semiclassical Approach

Arrival time measurements are routinely performed in actual experiments, and they
are normally treated semiclassically: essentially, they are interpreted as momentum
measurements. The identification with momentum measurements is motivated by
the fact that the detector is at a distance L from the source usually much bigger
than the uncertainty on the initial position of the particles, so one can assume that
each particle covers the same length L. Hence, the randomness of the arrival time
must be a consequence of the uncertainty on the momentum, and the time statistics
must be given by the momentum statistics. For a free particle in one dimension,
the connection between time and momentum is provided by the classical relation
pt) = m L/t. By a change of variable, this relation implies that the probability
density of an arrival at time ¢ is

dpw)

~ o mL
- . 5.11
” Vool (5.11)

[V oy

where v/ is the Fourier transform of the wave function .

This semiclassical approach is justified by the distance L being very big, that is
true for most experiments so far performed. On the other hand, we tacitly assumed
that the particle moves on a straight line with constant velocity v, whose ignorance
is the source of the arrival time randomness: such a classical picture is inadequate
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to describe the behavior of a quantum particle in general conditions, and is expected
to fail in future, near-field experiments. A deeper analysis is needed.

5.3.2 An Easy but False Derivation

Consider that the particle crosses the detector at time ¢ with certainty. This implies
that the particle is on one side of the detector before 7, and on the other side after ¢.
One can therefore think that it is possible to connect the statistics of arrival time
to the probability that the particle is on one side of the detector at different times.
Because the latter is known, this seems like a good strategy.

For simplicity we will consider only the one dimensional case, that already
entails all the relevant features that we want to discuss.> The detector is located
at the origin; we will assume the evolution of the particle in presence of the detector
to be very close to that of the particle alone. We consider the easiest possible case:
a free particle, initially placed on the negative half-line and moving towards the
origin, i.e. prepared in a state 1 such that

Yox) ~ 0 Vx > 0; (5.12)
Ypm=0 Vp<o, (5.13)

where 1} denotes the Fourier transform of v, and Eq.(5.12) is a shorthand for
foool//o(x)dx <« 1. The particle can only have positive momentum, therefore it will
get at some time to the right of the origin and thus it has to cross the detector from
the left to the right.

One might think that the probability to have a crossing at a time t later than ¢ is
equal to the probability that the particle at ¢ is still in the left region,

Pt >1) =P(x <0;t) = /0 dx |y, % (5.14)
Conversely, the probability that the particle arrived at the detector position before 7 is
Pr<t)=1-P(x>1t) = /oodx [, ). (5.15)
0
Therefore, the probability density I1() of a crossing at ¢ is

d oo
M) = EP(T <1) =/ dx 3 |y, . (5.16)

0

2The same treatment is possible in three dimensions, provided that the detector is sensitive only
to the arrival time and not to the arrival position, and that the detecting surface divides the whole
space in two separate regions (i.e. it is a closed surface or it is unbounded).
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We can now make use of the continuity equation for the probability

O (1Y @)?) + dxjr =0, (5.17)

that is a consequence of the Schrédinger equation, with the probability current

Jo = %Sl//t*(x) 0x Y (x). (5.18)

Substituting,

o) = —/ dx 0, j (x0) = J(x=0,). (5.19)
0

Thus, the probability density I1() of an arrival at the detector at time ¢ is equal to
the probability current j (x=0.r), provided everything so far has been correct. Well, it
hasn’t. Equation (5.14) is problematical. It is only correct if the right hand side is a
monotonously decreasing function of time, or, equivalently, if the current in (5.19)
is always positive. But that is in general not the case and it is most certainly not
guaranteed by asking that the momentum be positive. Indeed, even considering
only free motion and positive momentum, there are states for which the current
is not always positive, a circumstance known as backflow (for an example, see the
Appendix). But a probability distribution must necessarily be positive, hence, the
current can not be equal to the statistics of the results of any linear measurement,
i.e. there is no POVM with density O; such that

(YolO:[¥o) = J x=0.1). (5.20)

This problem is well known [2] and has given rise to a long debate, aiming at
finding a quantum prediction for the arrival time distribution with the needed POVM
structure [18].

One might wonder: How can it be that the momentum is only positive, and yet
the probability that the particle is in the left region is not necessarily decreasing?
A state with only positive momentum is such that, if we measure the momentum,
then we find a positive value with certainty. This is not the same as saying that the
particle moves only from the left to the right when we do not measure it. Actually,
in strict quantum-mechanical terms, it does not even make sense to speak about
the momentum of the particle when it is not measured, as it does not make sense
to speak about its position if we do not measure it, and therefore there is no way
of conceiving how the particle moves in this framework. Think for example of a
double slit setting: we can speak about the position of the particle at the screen, but
we can not say through which slit the particle went.

Although the quantum-mechanical momentum is only positive, the conclusion
that the particle moves only once from the left to the right is unwarranted. Even
more: it simply does not mean anything.
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5.3.3 The Moral

The problem with the simple derivation of the arrival time statistics is quite
instructive, indeed it forces us to face the fact that quantum mechanics is really
about measurement outcomes, and therefore it is a mistake to think of quantum-
mechanical quantities as of quantities intrinsic to the system under study and
independent of the measurement apparatus.

5.4 The Bohmian View

Bohmian mechanics is a theory of the quantum phenomena alternative to quantum
mechanics, but giving the same empirical predictions (see [6, 10]). The two
theories share at their foundation the Schrédinger equation. Quantum mechanics
complements it by some further axioms like the collapse postulate, and describes
all the objects around us only in terms of wave functions. On the contrary,
according to Bohmian mechanics the world around us is composed by actual point
particles moving on continuous paths, that are determined by the wave function.
The Schrodinger equation is in this case supplemented by a guiding equation that
specifies the relation between the wave function and the motion of the particles.
The usual quantum mechanical formalism is recovered in Bohmian mechanics as an
effective description of measurement situations (see [6]).

The main difference between quantum and Bohmian mechanics is that the first
one is concerned only with measurement outcomes, while the second one gives
account of the physical reality in any situation. Although every linear experiment
corresponds to a POVM according to quantum mechanics as well as to Bohmian
mechanics [8], for the former POVMs are the fundamental objects the theory is all
about, while for the latter they are only very convenient tools that occur when the
theory is used to make predictions.

We saw already how interpreting quantum-mechanical quantities as intrinsic
properties of a system is mistaken, and how the framework of quantum mechanics is
limited to measurement outcomes. In Bohmian mechanics the particle has a definite
trajectory, so it makes perfectly sense to speak about its position or velocity also
when they are not measured, and it is perfectly meaningful to argue about the
way the particle moves. In doing so, one has just to mind the difference between
the outcomes of hypothetical (quantum) measurements, and actual (Bohmian)
quantities.
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Fig. 5.1 Bohmian T A
trajectories in the vicinity of

the detector, placed at x = 0.

The trajectories, that cross the t+dt
detector between the times ¢

and ¢ + dt, are those that at

time ¢ have a distance from

the detector smaller than the

distance they cover during the
interval dr, that is v() dt

la 4

5.4.1 The Easy Derivation Again. ..

Let’s review the derivation of Sect.5.3.2 from the point of view of Bohmian
mechanics.

To find out the arrival time of a Bohmian particle it is sufficient to literally follow
its motion and to register the instant when it actually arrives at the detector position.
A Bohmian trajectory Q () is determined by the wave function through the equation

. Jjw.n
On =

= 1= (5.21)
Y m.nl?

with j defined in Eq.(5.18). Hence, the Bohmian velocity, that is the actual
velocity with which the Bohmian particle moves, is not directly related to the
quantum-mechanical momentum, that rather encodes only information about the
possible results of a hypothetical momentum measurement. Even if the probability
of finding a negative momentum in a measurement is zero, the Bohmian particle can
still have negative velocity and arrive at the detector from behind, or even cross it
more than once.? It is in these cases that the current becomes negative.

We can now repeat the derivation of Sect.5.3.2 using the Bohmian velocity
instead of the quantum-mechanical momentum. We consider again an initial state
Yo such that ¥y(x) & 0if x > 0, but we do not ask anymore the momentum to be
positive: we rather ask the Bohmian velocity to stay positive for every time after the
initial state is prepared. The particle crosses the detector between the times ¢ and
t 4 dr if at time ¢ they are separated by a distance less than v(x=0.) df (cf. Fig.5.1).
The probability that at time ¢ the particle is in this region is v(0.) |w(0,r)|2 dz, thus
the probability density of arrival times is simply

o) = vou [Yon)> = joon. (5.22)

3Note that the notion of multiple crossings of the same trajectory is genuinely Bohmian, with no
analog in quantum mechanics.
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If the velocity does not stay positive, it is still true that the particle crosses the
detector during (¢, t +dt) if at z they are closer than v(x=0,r) d¢, but now this distance
can also be negative. In this case the current j(o,) still entails information about
the crossing probability, but it also contains information about the direction of the
crossing. To get a probability distribution from the current we have to clearly specify
how to handle the crossings from behind the detector and the multiple crossings
of the same trajectory. For example, one can count only the first time that every
trajectory reaches the detector position, disregarding any further crossing, getting
the so-called truncated current [4, 13].

The Bohmian analysis is readily generalized to three dimensions with an
arbitrarily shaped detector, in which case also the arrival position is found. More
complicated situations, like the presence of a potential, or an explicit model for the
detector, can be easily handled too. Note that the presence of the detector can in
principle be taken into account by use of the so-called conditional wave function
[7, 23], that allows to calculate the actual Bohmian arrival time in exactly the
same way as described in this section, although the apparatus needs to be explicitly
considered.

5.4.2 Is the Bohmian Arrival Time Measurable
in an Actual Experiment?

Any distribution calculated from the trajectories conveys some aspects of the actual
motion of the Bohmian particle. Such a distribution does not need in principle to
have any connection with the results of a measurement, similarly to the Bohmian
velocity that is not directly connected to the results of a momentum measurement.
The Bohmian level of the description is the one we should refer to when arguing
about intrinsic properties of the system rather than measurement outcomes. Since,
in the framework of Bohmian mechanics, an intrinsic arrival time exists, namely
that of the Bohmian particle, one should ask the intrinsic question that constitutes
the title of this section rather than asking the apparatus dependent question

When will the detector click?

We do not mean that the latter question is irrelevant, to the contrary, it points towards
the prediction of experimental results, that is of course of high value. We shall
continue the discussion of the latter topic in Sect. 5.5.

5.4.2.1 Linear Measurement of the Bohmian Arrival Time
We now ask if a linear measurement exists, such that its outcomes are the first

arrival times of a Bohmian particle. For sure, this can not be exactly true, indeed,
if this was the case, then the outcomes of such an experiment would be distributed
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according to the truncated current, that depends explicitly on the trajectories and is
not sesquilinear with respect to the initial wave function as needed for a POVM.

However, it is reasonable to expect it to be approximately correct for some set of
“good” wave functions. That is motivated by the following considerations. A typical
position detector is characterized by a set of sensitive regions {A; C R};—¢_.. n,each
triggering a different result. If the measurement is performed at a fixed time ¢, and if
we get the answer 7, then the Bohmian particle is at that time somewhere inside the
region A;. A time measurement is usually performed with a very similar set up: one
uses a position detector with just one sensitive region Ay (in our case located around
the origin) and waits until it fires. In the ideal case, the reaction time of the detector
is very small, and we can consider that the click occurs right after the Bohmian
particle entered the sensitive region. As a consequence, if the Bohmian trajectories
cross the detector region only once and do not turn back in its vicinity, then we can
expect the response of the actual detector to be very close to the quantum current.
This puts forward the set of wave functions such that the Bohmian velocity stays
positive as a natural candidate for the set of good wave functions. Surprisingly, it
can be shown that there exists no POVM which approximates the Bohmian arrival
time statistics on all functions in this set [25].

On the other hand, it is easy to see that the Bohmian arrival time is approximately
given by a measurement of the momentum for all scattering states, i.e. those states
that reach the detector only after a very long time, so that they are well approximated
by local plane waves. Numerical evidence for a similar statement for the states with
positive Bohmian velocity and high energy was also produced [25], but a precise
determination of the set of good wave functions on which the Bohmian arrival time
can be measured is still missing.

An explicit example of a model detector whose outcomes in appropriate condi-
tions approximate the Bohmian arrival time can be found in [3].

5.4.2.2 Nonlinear Measurement

An alternative to a linear measurement that directly detects the arrival time of a
Bohmian particle is the reconstruction of its statistics from a set of measurements
by a nonlinear procedure.

A first possibility in this direction starts by rewriting the probability cur-
rent (5.18) as

Jen = (Wil 5 (1) (x[ 5+ plx) (xl) 190) (5.23)

where p = —i#h dy is the momentum operator. The operator f = ﬁ (|x) (x| p +
plx) (x|) is selfadjoint, therefore it could be possible to measure the current at the

position x and at time ¢ by measuring the average value at time ¢ of the operator f .
Unfortunately, the operational meaning of this operator is unclear.
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A viable solution is offered by weak measurements. As showed by Wiseman
[27], it is possible to measure the Bohmian velocity, and therefore the current, by
a sequence of two position measurements, the first weak and the second strong,
used for postselection. Wiseman’s proposal has been implemented with small
modifications in an experiment with photons* [15]. A detailed analysis of the weak
measurement of the Bohmian velocity and of the quantum current has been carried
out by Traversa et al. [24].

It is worth noting that the weak measurement of the Bohmian velocity, if intended
as a calibration of a non-linear measurement as explained in Sect.5.2.2, gives rise
to a genuine measurement, i.e. one whose outcome reveals the actual velocity
possessed by the particle in that run [9].

5.5 When Will the Detector Click?

We still have to answer the question we posed at the beginning:
When will the detector click?

Surely, for any given experiment there is a POVM that describes the statistics of
its outcomes. Such an object will depend on the details of the specific physical
system and of the measurement apparatus used for the experiment. That is true
not only for time measurements, but for any measurement, and for quantum
mechanics as for Bohmian mechanics. Yet, we can speak for example of the position
measurement in general terms, with no reference to any specific setting, as it was
disclosing an intrinsic property of the system. How can that be?

One can speak of the position measurement and of its POVM in general terms
because a POVM happens to exist, that has all the symmetry properties expected
for a position measurement and that does not depend on any external parameter.
That suggests that some kind of intrinsic position exists independently of the
measurement details. Recalling how the POVMs have been introduced in Sect. 5.2.1,
it is readily clear that they inherently involve an external system (the apparatus) in
addition to the system under consideration, and therefore they encode the results
of an interaction rather than the values of an intrinsic property. We also saw in
Sect. 5.3.2 how interpreting quantum-mechanical statistics as intrinsic objects leads
to a mistake. It is therefore very important to keep in mind that all POVMs describe
the interaction with an apparatus. Having this clear, it still makes sense to look for
a POVM that does not explicitly depend on any external parameter, meaning with
this simply that one does not want to give too much importance to the details of
the apparatus. Such a POVM may be regarded for example as the limiting element
of a sequence of finer and finer devices, and it does not necessarily correspond to

“4This experiment did not, of course, show the existence of a pointlike particle actually moving on
the detected paths, but only the measurability of the Bohmian trajectories for a quantum system.
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any realizable experiment. Nevertheless, the fortunate circumstance that occurs for
position measurements, for which such an idealized POVM exists, does not need to
come about for all physical quantities one can think of.

For the arrival time it is possible to show that some POVMs exist that have
the transformation properties expected for a time measurement [16], but in three
dimensions it is not possible to arrive at a unique expression in the general case,
i.e. to something independent of any external parameter. To do so, one needs to
restrict the analysis to detectors shaped as infinite planes, or similarly to restrict the
problem to one dimension ([14, 26]; see also [11, 12, 18]). In this case, for arrivals
at the origin, one finds the POVM

n
Kany =) / dT |T,a) (T, af, (5.24)
a==41"1
. | p| T
with  (p|T,a) = {/ — O(p) e2nh (5.25)
mh

that corresponds to the probability density of an arrival at time #

2
(5.26)
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a==+1 a==+1

Note that K is not a projector valued measure because (T, +|7T,—) # 0. For
scattering states K becomes proportional to the momentum operator, and the
density (5.26) gets well approximated by the probability current [5]. The general
conditions under which this approximation holds are still not clear.

5.5.1 The Easy Derivation, Once Again

The analysis of Sect.5.4.2.1 of the measurability of the Bohmian arrival time
translates quite easily in an approximate derivation of the response of a detector:
essentially what we tried to do in Sect. 5.3.2, just right.

Consider again the setting described in Sect. 5.3.2, but with an initial state such
that the Bohmian velocity stays positive. That is equivalent to ask that the probability
current stays positive, and therefore that the probability that the particle is on the
left of the detector decreases monotonically in time. As described in Sect.5.4.2.1,
thinking of the arrival time detector as of a position detector with only one sensitive
region Aq around the origin, it is reasonable to expect that for some set of good
wave functions the detector will click right when the particle enters Ay. Hence,
the probability of a click at time 7 is approximately equal to the increase of the
probability that the particle is inside Ay at that time, i.e. to the probability current
through the detector. Therefore, for the good wave functions, the probability current
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is expected to be a good approximation of the statistics of the clicks of an arrival
time detector. As remarked in Sect. 5.4.2.1 the set of the good wave functions is not
exactly known, although it is clear that the scattering states are among its elements,
and possibly also the states with positive probability current and high energy.

Appendix: Example of Backflow

We mentioned that, even for states freely evolving and with support only on positive
momenta, the quantum current can become negative. We provide now a simple
example of this circumstance, depicted in Fig.5.2. We use units such that 4 = 1,
and choose the mass to be one.

We consider the superposition of two gaussian packets, both with initial variance
of position equal to 3, corresponding to a variance of momentum of 1/6. The first
packet is initially centered in x = —10 and moves with average momentum p =
2, while the second packet is centered in x = —34 and has momentum p = 6.
The probability of negative momentum is in this case negligible. The second packet
overcomes the first when they are both in the region around the origin, where the
detector is placed. In this area the two packets interfere, but then they separate again
(cf. Fig. 5.2a).

In Fig.5.2d the Bohmian trajectories are shown on a big scale. One can see
that they never cross, but rather switch from one packet to the other. Moreover,
they are almost straight lines, except for the interference region. In that region, it
is interesting to look at a higher number of trajectories, making apparent that the
trajectories bunch together, resembling the interference fringes (cf. Fig. 5.2b, e).

Looking at the trajectories more in detail (Fig.5.2f), one can see that they
suddenly jump from one fringe to the next, somewhen even inverting the direction
of their motion. In this case, it can happen that the particle crosses the detector
backwards, leading to a negative current, as shown in Fig. 5.2c.

One could argue that gaussian packets always entail negative momenta, and that
this could be the cause of the negative current. To show that this is not the case, we
can compare the probability to have negative momentum

0

)
P(p <0) = / [V m|*dp ~ 1073 (5.27)

with the probability to have a negative Bohmian velocity

P(ve) < 0) = / P, dx, (5.28)

t

where K; := {x € R|j.n < 0}. For instance, at time ¢ = 5.2 this probability is
0.008 (numerically calculated), therefore the negative current can not be caused by
the negative momenta.
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Fig. 5.2 Example of backflow: superposition of two gaussian packets (for the parameters see text).
The dashed line always represents the detector. (a) Probability density of the position at time = 0
(gray), t = 5.2 (blue), and t = 12 (red). (b) Probability density of the position as a function of
position and time. (c) Probability current at the screen as a function of time. (d) Overall structure
of the Bohmian trajectories. The blue and the red rectangles are magnified in (e, f) (Color figure
online)
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Chapter 6
Quantum Field Theory on Curved Spacetime
and the Standard Cosmological Model

Klaus Fredenhagen and Thomas-Paul Hack

6.1 Introduction

The attempt to incorporate gravity into quantum theory meets great conceptual
difficulties. The main reason for these problems seems to be the rather different roles
played by space and time in quantum theory and in Einstein’s theory of gravity. In
quantum theory, an a priori notion of space and time enters the formulation and the
interpretation of the theory in a crucial way. In Einstein’s theory of gravity, on the
other side, the structure of space and time is dynamical and strongly influenced by
the distribution of matter which is treated classically.

These severe conceptual problems are accompanied by hard technical problems,
hence testing ideas for solving the problem turns out to be extremely time
consuming, and it is difficult to obtain reliable conclusions. In despair, rather radical
approaches have been proposed as e.g. string theory and loop quantum gravity, but
we think that it is fair to say that none of these approaches has reached its goal, up
to now, nor could either of them be ruled out, neither by empirical results nor by
inner theoretical reasons.

If one is less ambitious and takes into account, that gravitational forces tend to be
very small compared to other forces, one may consider, in a first step, gravity as an
external field, producing a curved spacetime, and treat quantum matter by quantum
field theory on such a background. One may then, in a second step, treat quantum
gravity as a quantum field fluctuating around a given background.
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The second step meets severe problems: the arising theory is nonrenormalizable,
which means that in every order of perturbation theory new interaction terms appear
whose coupling constants have to be determined by experiments. Moreover, the
causal structure of the theory is determined by the background metric, whereas
physics would require that it depends only on the full metric, including the quan-
tum fluctuations. Nevertheless, a consistent perturbative formulation was recently
presented by Brunetti, Rejzner and one of us in [7].

Surprisingly, already the first step is by no means trivial. The reason is, that
quantum field theory in its standard formulation heavily depends on the symmetries
of Minkowski space. These symmetries are used to define the vacuum and the
concept of a particle, and one can then, under quite general conditions, derive the
existence of scattering states and of an S-matrix.

But on a generic Lorentzian spacetime, no nontrivial symmetries exist, and as
a consequence, neither the concept of a vacuum state nor that of particles can be
intrinsically introduced. In particular, the classical picture of particles moving in an
empty spacetime is not supported by quantum field theory. The most spectacular
consequence of this fact is the evaporation of black holes as predicted by Hawking.

The problems of quantum field theory on a given curved back ground have been
solved within the last 20 years by using the concepts of algebraic quantum field
theory and by replacing techniques of operators on Fock space by methods from
microlocal analysis [25]. A compilation of references on algebraic quantum field
theory on curved spacetimes can be found in [3].

Algebraic quantum field theory was originally developed in order to understand
the relation between the local degrees of freedom of quantized fields and the
observed multi-particle states [17]. It was then observed by Dimock and Kay that
it provides a good starting point for formulating a theory on a curved spacetime
[13, 29]. The absence of a distinguished Hilbert space representation, however, was
a severe obstacle for extending the theory to nonlinear fields, the most prominent
being the energy momentum tensor.

For this purpose it was necessary to understand the singularities of correlation
functions. There was overwhelming evidence that the so-called Hadamard states
yield a class of states with the correct singularity structure. A direct characterization
of Hadamard states turned out to be rather complicated [30], and its use for the
determination of correlation functions of nonlinear fields seemed to be extremely
cumbersome.

The situation changed completely when Radzikowski discovered that the
Hadamard condition could equivalently be replaced by a positivity condition on
the wave front set of the 2-point function [41, 42]. This marked the breakthrough
for the modern theory of quantum fields on curved back grounds, and within a few
years it was possible to construct all kinds of composite fields [6] and to prove the
existence of renormalized time ordered products [5].

Renormalization, however, had still the problem that renormalization conditions
at different points of spacetime could not be compared with each other in the
absence of nontrivial symmetries. A new principle was needed, the principle of local
covariance [8]. This principle says that it is not meaningful to do physics on a special
spacetime; instead all structures should depend only on the local geometry. Based on
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this principle, Hollands and Wald were able to finish the renormalization program
[22, 23], which had been started by Brunetti and one of us [5]. One of the outcomes
of this generalization of algebraic quantum field theory is that it is meaningful to
consider the same field on different spacetimes.

A direct application of this fact is the use of the energy momentum tensor as a
source term for Einstein’s equation. But as long as gravity itself is not quantized
one has the problem to compare a quantum object with a classical object. On a
pragmatic level this may be solved by using the expectation value of the energy
momentum tensor. This might be reasonable as long as the fluctuations are small
enough. But here new problems arise. One is the fact that the correlation functions
of the energy momentum tensor diverge at coinciding points. One therefore looks at
appropriate averages; this, however, introduces a new parameter into the theory. The
other problem is even worse: whereas fields exist which can be considered to be the
same on different spacetimes, a corresponding identification of states on different
spacetimes does not exist.

The latter problem can presumably only be treated in a theory containing
quantized gravitational and matter fields. One may, however, restrict oneself to
situations with higher symmetries, as they arise in cosmological spacetimes of the
Friedmann—Robertson—Walker type. There, one may admit only states which are
invariant under the spatial symmetries. Still, this does not fix the states uniquely,
hence additional choices have to be introduced. Nevertheless, one can in this way
reproduce the standard cosmological model from first principles, by modelling the
matter-energy content of the universe entirely in terms of quantum fields rather than
effectively by means of a classical perfect fluid [18].

6.2 The Free Scalar Field and Its Normal Ordered Products

Classically, a configuration of a scalar field may be understood as a smooth function
on spacetime. Let C*°(M) be the set of all smooth functions on a spacetime M,
and let Sol(M) be the subset of smooth solutions of the Klein—-Gordon equation.
Classical observables are functions on C*°(M) modulo functions which vanish on
solutions. The observables of the quantum theory form a suitable subspace on which
the algebraic structures of quantum theory can be defined. This subspace can be
characterized in the following way.

We consider a globally hyperbolic time oriented spacetime. On such a spacetime
the Klein—Gordon equation

Pp=(V'V,+ER+m*)¢p =0,

with curvature scalar R, curvature coupling parameter £ and mass m, possesses
unique retarded and advanced Green’s functions Ag 4 considered as maps from
compactly supported densities to smooth functions. Their difference is the com-
mutator function A. A Hadamard solution of the Klein—Gordon operator P is a
distributional bisolution & with the properties:
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Lo h(x,y) —h(y.x) = i(A(x, y)).

2. WF(h) = {(x,x";k, k") € WE(A)|k € V.'} where V' is the closed forward
lightcone in 7) M .

3. h is a distribution of positive type.

We want to introduce an associative product %, on a subspace F (M) of the space
of maps {F : C*°(M) — C} by setting

h®n 8”_G
S’ S

(F 1 G) (@) =)

n=0

" <8"F >(¢) . 6.1)

n!

In order to make this definition meaningful we require for F € F(M):

1. F is polynomial, therefore the sum over 7 is finite.

2. F is smooth in the sense of the calculus on locally convex spaces, where C*° (M)
is equipped with its standard topology (uniform convergence of all derivatives on
any compact set). From these two conditions it follows that F is of the form

N

F(p) =) (f-9®")

n=0

with compactly supported distributional densities f, on M".

3. The wave front set of f, does not intersect (V)" nor (V' ~)". This condition
guarantees by Hormander’s theorem on the multiplicability of distributions, that,
in view of the wave front set of the Hadamard solution, the summands in the
definition of the product are well defined.

The product is associative. Complex conjugation induces an involution on F (M),

hence F (M) gets the structure of a unital *-algebra, where the unit is the constant
function F(¢) = 1. The subspace {F € F(M)|F(¢) = Ofor¢ € Sol(M)} is
an ideal, and the quotient is the enlarged CCR-algebra. It contains as a subalgebra
the CCR-algebra generated by linear functionals of the form F(¢) = (f, ¢) with
a smooth density f on M and in addition all local polynomials in the field and its
derivatives,

F(p) = / £ @)dvol(x)

where x > j(¢p) = {p+ | € C*°(M) with 3*y¥(x) = 0 for all multiindices o}
is the jet prolongation of ¢, and f is a smooth function on the jet bundle which is a
polynomial in ¢ and its derivatives at every point x € M, and which has compact
spacetime support

suppF = U supp(x = f(Jjx () -
¢
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The definition of the enlarged CCR-algebra depends on the choice of the
Hadamard solution 4. Since two Hadamard solutions differ by a smooth symmetric
and real valued bisolution w, the arising algebras are isomorphic with the isomor-
phism

1 8
I, =exp Eh <w, w> .

Every Hadamard solution /2 + w induces a family of coherent states by

oy (F) = (LWwF) ()

with ¢ € Sol(M). According to a result of Verch, the arising GNS-representations
are locally equivalent [49].

A further crucial ingredient for the interpretation of the theory are locally
covariant fields A. These are, for every spacetime M, linear maps Ay from the
space of (compactly supported) test tensors to the algebra F (M) such that, for every
isometric, time orientation and causality preserving embedding y : M — N into a
larger spacetime N one has the relation

Au(f)(@ox) = An(x=S)(@)

where y . denotes the push forward of test tensors. In other words, a locally covariant
field is a natural transformation between the functor D of test tensor spaces and the
functor F of observable algebras, both based on the category of globally hyperbolic
spacetimes with isometric, time orientation and causality preserving embeddings as
morphisms.

In a first attempt one may look at a polynomial p(d*¢, o € Ng) in ¢ and its
derivatives and set

Au(f)(@) = / £ H () dvol(x) .

But this definition violates the naturality condition for locally covariant fields since
there is no natural choice for the Hadamard solution, i.e. no choice which is
compatible with all possible embeddings of a spacetime into another one, a fact
which is responsible for the nonexistence of a vacuum state.

Let p(V) be a polynomial in covariant derivatives (with respect to the Levi-Civita
connection) and consider the functionals

A(x)(¢) = ePVo(x)
Under the isomorphism T, A(x) transforms as

I,A(x) = e 3P(V®p(V)w(x.x) A(x) .
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We now use the fact, that w is the difference of 2 Hadamard solutions. Hadamard
solutions admit an asymptotic expansion

u(x,y)
a(x.y)

=hy5(x, ) + wh(x, ).

N
+ D (e, o (x, ) (o (x, y)) + wh (x, )

n=0

h(x,y) =

Here x, y are points in a geodesically convex open set, o (x, y) is the signed square
of the geodesic distance between x and y, the functions u and v, are solutions of the
so-called transport equations and are uniquely determined by the local geometry.
is a free parameter with the dimension of inverse length. w’]\, is an 2N + 1 times
continuously differentiable function which depends on the choice of 7. We omit the
e-prescription necessary for iy to be well-defined, see [30].

We now set

Ap(x) = e%p(V)®p(V)W’,’v(x,X)A(x)

where N is larger than or equal to twice the degree of p, and find
Cpir A (x) = Ap(x) .

By expanding the exponential series we obtain a large class of locally covariant
fields. These correspond to Wick powers of the scalar field and its derivatives
regularised by point-splitting and suitable subtractions of derivatives of hj\l,ng. This
class may be enlarged by the ¢-independent locally covariant fields constructed
from the metric. Further details may be found e.g. in [16].

A locally covariant field of particular interest is the energy momentum tensor
T (x). However, it is by no means intrinsically clear which locally covariant
field is the observable whose expectation value is the “correct” source term for
Einstein’s equation. Essentially this is due to the fact that gravity is sensitive to
absolute energy densities rather than energy density differences. Wald [52] and
later Hollands and Wald [24] have suggested that a locally covariant field should
satisfy standard commutation relations, covariant conservation V47 ,(x)(¢) = 0
and suitable analyticity conditions in order to be a meaningful energy momentum
tensor. For a free scalar field this implies that the most general energy momentum
tensor is of the form

T (X) (@) = T (x)(P) + 1 8ap () + 2 Gap(x) + a3 Lp(x) + g Jup(x),  (6.2)

where G, is the Einstein curvature tensor whereas I, and J,;, are local curvature
tensors which are obtained as functional derivatives with respect to the metric of
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the action functionals [ /=g R?dvol(x) and i /=8 Ruy R™dvol(x) respectively.
Moreover, a possible “model” Ta(}, is the functional

, 1
T (@) = Ty ()(@) + lim (Dab - ggahPx) wi(x.y)  N=1 (63)

where Ta“,la“ is the classical energy momentum tensor of the scalar field, D,
is a second order bi-differential operator defined by lim,, Dyw(x,y) =
(w, 2
have a covariantly conserved Ta(}, [35]. The four parameters ¢; are free parameters
which can not be determined intrinsically within QFT on curved spacetimes, but
only by measurements or within a more fundamental theoretical framework.

An alternative “model” Ta(}, can be obtained by taking the functional derivative
with respect to the inverse metric of the “one-loop effective Lagrangean”

)713!"‘“(x)(¢>) and the modification term —%gub P, is necessary in order to

2

L@ = L= + (W

>£cla53(¢)(x) N > 1.

Here w},’\;’WS is the regular part of the deWitt-Schwinger Hadamard solution A s

which is a formal series in o (x, y) with purely geometric coefficients [19].

6.3 The Standard Cosmological Model in Quantum Field
Theory on Curved Spacetimes

In the standard cosmological model the universe is modelled by a Friedmann—
Lemaitre—Robertson—Walker (FLRW) spacetime (M, g) with manifold M = [ x
R?® C R* and metric g = dr ® dt — a*(t)dx’ ® dx;. We consider the case where
the spatial slices are diffeomorphic to R? for simplicity and because this is favoured
by observations. Here ¢ is cosmological time, whereas the scale factor a(?) is a
smooth non-negative function whose logarithmic #-derivative is the Hubble rate H,
which is assumed to be strictly positive in what follows. Further convenient time
variables are the conformal time 7, the scale factor a and the redshift z := ag/a — 1,

where ap = 1 is the scale factor of today. These time variables are related by
dt = adr = % = __&
aH (1+2)H *

Given the high symmetry of (M, g) and the Einstein equation G, = 87Ty,
the energy momentum tensor 7, must be of perfect fluid form and thus determined
by the energy density p = (9,)?(9;)? T, and pressure p, which are related by the
equation of state p = p(p). Moreover, the Einstein equation is equivalent to the
(first) Friedmann equation

81G
H? = = o
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and a conservation equation. According to the standard model of cosmology—the
ACDM-model—our universe contains matter, radiation, and Dark Energy, modelled
macroscopically as perfect fluids with equation of state p = wp, w = 0, %, -1
for matter, radiation and Dark Energy (assuming that the latter is just due to a
cosmological constant) respectively. Consequently, the Friedmann equation can be

conveniently rewritten as

H?  pacom Qp  Q 3H;
= = Q 1 = —L )
AT + pr Po 872G

i — 6.4
i = (6.4)

where H) is the present Hubble rate—the Hubble constant—and the constants €2,
Qn, 2, denote the present fractions of the energy density due to Dark Energy,
matter and radiation respectively. Observations indicate approximately

Qn=03 Q=10 Qr=1-Q,-%, (6.5)

see [1] for the latest exact values from the Planck collaboration. In the context
of cosmology the terms “matter” and “radiation” subsume all matter-energy with
the respective macroscopic equation of state such that e.g. “radiation” does not
encompass only electromagnetic radiation, but also the three left-handed neutrinos
present in standard model of particle physics (SM) and possibly so-called Dark
Radiation, and “matter” subsumes both the baryonic matter which is in principle
well-understood in the SM and Dark Matter. Here, Dark Matter and Dark Radiation
both quantify contributions to the macroscopic matter and radiation energy densities
which exceed the ones expected from the knowledge of the SM and are believed
to originate either from fields not present in the SM or from other sources, i.e.
modifications of classical General Relativity.

Notwithstanding, at least the contributions to the macroscopic matter and
radiation energy densities which are in principle well-understood originate micro-
scopically from excitations of quantum fields, thence it should be possible to derive
those from first principles within QFT on curved spacetimes. Such an analysis of the
standard cosmological model within QFT on curved spacetimes has been performed
by one of us in [18] and we shall review it in what follows.

A comprehensive analysis from this perspective could proceed as follows. One
considers the full standard model of particle physics plus potential other fields and
interactions as a perturbative interacting QFT on curved spacetime. One then aims
to find a pair (w, g), where @ is a Hadamard state on the algebra of this field model
and g is a metric on the manifold M = I x R?> C R* of FLRW type, such that (a)
(w, g) is a solution of the semiclassical Einstein equation

G = 8nGw(Ty)
where T, is the energy momentum tensor of the field model and (b) (6.4) are (6.5)

are satisfied up to suitably small corrections. Unfortunately such an analysis is quite
involved, but we can consider a number of simplifications. First, we disregard all
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field interactions. This is a legitimate approximation if we consider the cosmological
evolution only after the primordial synthesis of light nuclei—the so-called Big
Bang Nucleosynthesis (BBN)—as field interactions are usually assumed to be
irrelevant for the large-scale properties of the quantum state after this era. In the
standard cosmological model, this enters by assuming that the each component of
the perfect fluid in (6.4) satisfies an individual conservation equation. As a further
simplification, we disregard the spin of the quantum fields and model all massive
fields, i.e. “matter”, by a single massive scalar field, and all massless fields, i.e.
“radiation”, by a single massless scalar field, where both fields are considered to
be conformally coupled to the scalar curvature (§ = é). This is done for ease of
presentation as computations with higher spin fields are in principle straightforward,
see for instance [10, 11]; the conformal coupling £ = é is chosen because it
simplifies computations and because the massless Dirac equation and the Maxwell
equation are invariant under conformal isometries. Finally, provided one is able to
assign a state w to a FLRW metric g in a coherent way, o is in general a non-
trivial functional of g and thus obtaining an explicit solution of the semiclassical
Einstein equation is at best difficult. In a recent yet unpublished work, Pinamonti
and Siemssen have proven by a fixed point argument that the semiclassical Einstein
equation can be uniquely solved for a linear scalar field model and a large class of
initial conditions on a Cauchy surface, but for a quantitative analysis one needs to
know the solution explicitly. We thus solve the semiclassical Einstein equation in
the following approximate sense. We assume that the FLRW spacetime is given and
determined by (6.4) and (6.5). On this spacetime we seek to find a pair of quantum
states ™ and w° for the massive and massless scalar field such that the sum of the
energy densities in this states satisfies

°(p) + 0™ (p) —Qn+ & i & _ Pacom
Po a* = at Po

(6.6)

and (6.5) up to suitably small corrections in the time interval of interest z € [O, 109],
where z = 0 marks the present and z = 10° is the redshift at which BBN took place.

In order to follow this program, it is useful to have at ones disposal a map which
assigns a state @ to a FLRW metric g in a given coordinate system; indeed this is
necessary in order for the semiclassical Friedmann equation 3H? = 87 Gw(p) to be
well-defined in the first place. Such a construction is provided by the so-called states
of low energy introduced by Olbermann [36]. These states minimize the energy
density integrated in (cosmological) time with a sampling test function f and are
pure, Gaussian, isotropic and homogeneous states of Hadamard type. Their two-
point Wightman function is (barring an e-prescription) of the form

o(x,y) = m/dk )(k(fx))(k(fy)e'k(V »,
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where the modes yj satisfy the ordinary differential equation

(83 + k? + m*a® + (E — é) Raz) xe(r) =0 (6.7)
and the normalisation condition

k0 Xk — Xk yk =10 (6.8)

Here, k = |l€| and * denotes complex conjugation. The modes y;, which
determine the state, are obtained by choosing arbitrary but fixed reference modes.
The Bogoliubov coefficients in this mode basis are suitable functionals of the
reference modes and the sampling function f. Olbermann has proven the Hadamard
property of these states only for the case & = 0, but one can show that they
are at least sufficiently regular in order to compute the energy density also
in the case § = %. If & = % and m = 0, then the Hadamard property
follows from the fact that these states are related to the Minkowski vacuum
state by a conformal isometry. In the following, we set § = %. A further
assignment of a state to a FLRW spacetime in a given coordinate system is
given by the so-called adiabatic states of order O introduced in [38] and further
developed in [26, 34]. These are defined by the modes which satisfy (6.7) and
the initial conditions i (7)|r=z, = Xk(T)|r=rp> O )k (D)lr=ry = 07k (V) |r=r1o>
where

Jr(t) = \/ﬁ exp (—i /r: Wik, r’)dt’) . W(k,t) = VK% + m2a2.

(6.9)

The functions j(7) solve (6.8) exactly but (6.7) only approximately with error
terms quantified by % and B’W# A detailed discussion of the error terms can be
found in [37].

In the ACDM model, the radiation contribution % to the energy density is
mostly of thermal nature, while the matter contribution 2—? is mostly due to
Dark Matter, which in some scenarios is believed to be of thermal origin as
well. Motivated by this we look for states which satisfy (6.6) and (6.5) among
suitable “thermal excitations” of states of low energy. A fully satisfactory gen-
eralisation of the concept of thermal equilibrium to general curved spacetimes
or even FLRW ones does not exist so far. Probably the most elaborated idea is
the so-called local thermal equilibrium approach, see e.g. [45, 50] for a review.
Here we take a more pragmatic approach and consider the states introduced
in [11]. Given a pure, Gaussian, isotropic and homogeneous Hadamard state w
specified by modes yj, one can construct a family of Gaussian Hadamard states
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wpqp by defining the two-point Wightman function (up to an e-prescription)
as

1 = e [ @) xe(Ty)  xe () xe(zy)
, — dk ik(x—=y) y y ,
(%, y) 873a(zy)a(zy) / ¢ ( 1 — e Fko + eBko — 1
]R3

(6.10)

with ko 1= (/k? + mza%. If yi are the modes of a state of low energy, these states
match the almost equilibrium states introduced by Kiiskii in [33] up to the form
of ko. The Hadamard property of the states defined by (6.10) follows from results
of [40]. In the massless case, these states are independent of ar and satisfy the
conformal KMS condition with respect to the conformal Killing vector 9. In the
massive case, they are considered to describe approximately the quantum state of
a field which has been in thermal equilibrium in the distant past, and has “frozen
out” of equilibrium at the time @ = ar. This corresponds to the phenomenological
picture behind Dark Matter of thermal origin in the standard literature see e.g. [32].

Given this choice of quantum states we are left with the cumbersome task to
compute the energy density in these states. To this avail, we can rewrite the singular
part hj\l,ng (x, y) of a Hadamard solution in terms of a Fourier integral in order to
match the mode expansion of the states at hand, see [12, 14, 40, 43]. In this way we
obtain a Fourier integral expression for the regular part w’}\, (x, y) of the relevant two-
point Wightman function. The energy density is obtained by applying to this regular
object a second order bi-differential operator and then taking the limit x — y,
cf. (6.3). This is well-defined and independent of N if N > 1. As a result, we
obtain the energy density as a convergent integral over k. In the massless case,
this integral can be computed analytically. In the massive case however, both the
integrand and the integral have been computed in [18] partly numerically and partly
using analytical approximations. The reasons are manifold. To name a few, the mode
equation (6.7) can not be solved analytically on FLRW spacetimes of the form (6.4)
if m > 0. Moreover, even a numerical solution fails to be feasible for m > Hy—
which is the realistic case as Hy ~ 10733 eV—because the modes oscillate heavily.
To overcome the latter problem the approximate adiabatic modes j(7), cf.(6.9),
have been used as reference modes for the computation of the modes of the state of
low energy, as they approximate the exact adiabatic modes of order zero particularly
well exactly in the regime m > H.

Altogether the following results can be obtained. To discuss these, we rewrite the
total energy density of the massless and massive conformally coupled scalar fields
in the respective generalised thermal states (6.10) defined with respect to states of
low energy as follows

@°(p) + o™ Povac T Povac + Plin + Py H* H>
(p) (P): g g gth g‘h+y_4+QA+8—2+e—03.

£0 Lo H() HO HO
(6.11)
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Q4, 6 and € parametrise the freedom in the definition of the energy density as
per (6.2). The number of free parameters in this equation has been reduced to three,
because I, and J,;, are proportional in FLRW spacetimes. We take the point of view
that §, which effectively renormalises Newton’s constant, is not a free parameter
because Newton’s constant has been measured already. In order to do this, we have
to fix a value for the inverse length scale w in the singular part of a Hadamard
solution /2y (x, y), we do this by confining 1/ to be a scale in the range in which
the strength of gravity has been measured. Because of the smallness of the Planck
length, the actual value of 1/ in this range does not matter as changing 1/ in this
interval gives a negligible contribution to the energy density. One could also take a
more conservative point of view and consider § to be a free parameter, in this case
comparison with cosmological data, e.g. from Big Bang Nucleosynthesis, would
presumably constrain § to be very small once 1/ is in the discussed range.

On this occasion, we would like to highlight the point of view on the so-called
cosmological constant problem taken here, as well as in most works on QFT on
curved spacetimes in the algebraic approach and e.g. the review [4]. It is often said
that QFT predicts a value for the cosmological constant A and thus for 2, which
is way too large in comparison to the one measured. This conclusion is reached
by computing one or several contributions to the vacuum energy in Minkowski
spacetime Ay, and finding them all to be too large, such that, at best, a fine-tuned
subtraction in terms of a negative bare cosmological constant Ay, iS necessary
in order to obtain the small value Ay,c + Apae We observe. Here, we assume the
point of view that it is not possible to provide an absolute definition of energy
density within QFT on curved spacetimes, and thus neither Ay, nor Apy.e have
any physical meaning by themselves; only Ayac + Apare is physical and measurable
and any cancellation which happens in this sum is purely mathematical. The fact
that the magnitude of A,,. depends on the way it is computed, e.g. the loop or
perturbation order, cf. e.g. [44], is considered to be unnatural following the usual
intuition from QFT on flat spacetime. However, it seems more convincing to us to
accept that Ay, and Ay have no relevance on their own, which does not lead
to any contradiction between theory and observations, rather than the opposite. In
the recent work [21] it is argued that a partial and unambiguous relevance can be
attributed to Ay,. by demanding Apye to be analytic in all coupling constants and
masses of the theory; taking this point of view, one could give the contribution to
Ayac Which is non-analytic in these constants an unambiguous meaning. Indeed the
authors of [21] compute a non-perturbative and hence non-analytic contribution to
Avac, Which turns out to be small. In the view of this, one could reformulate the
above statement and say that contributions to Ay,. and Apye Which are analytic in
masses and coupling constants have no physical relevance on their own.

The term in (6.11) proportional to y, which is not present in the ACDM-model,
appears due to the so-called trace anomaly, which is a genuine quantum and state-
independent contribution to the quantum energy momentum tensor, see e.g. [51].
This term is fixed by the field content, y ~ 107'?? for two scalar fields. As



6 Quantum Field Theory on Curved Spacetime and the Standard Cosmological Model 125

H < Hoyz? in the ACDM-model for large redshifts, this term can be safely neglected
for z < 10°.

The first terms in (6.11) denote the genuinely quantum state dependent con-
tributions to the energy densities of the two quantum fields. We have split these
contributions into parts which are already present for infinite inverse temperature
parameter B in the generalised thermal states, and thus could be considered as
contributions due to the states of low energy as generalised vacuum states (pgy,c,
p(g)vac), and into the remaining terms, which could be interpreted as purely thermal
contributions (p’g"lh, pglh). One can show that, up to the freedom parametrised by 24,
8 and €, ,o(g)v,ch = 0 for arbitrary sampling functions f, whereas pgy,/pacom < 1
for small masses m ~ Hj, and large masses m > Hj if the sampling function
f defining the state of low energy has sufficiently large support in time. This
generalises results obtained by Degner on de Sitter spacetime [12] and indicates
that states of low energy with broad sampling functions are reasonable generalised
vacuum states on FLRW spacetimes (Fig. 6.1).

As for the thermal contributions, one finds in the massless case

2

Q
0 _ Mr : —
Poth = r with Q, = 305
Up to degree of freedom factors, this gives the ACDM value 2, ~ 107* if the
temperature parameter 1/8 is in the range of the Cosmic Microwave Background
temperature 1/ ~ 2.7K. In the massive case, one can take typical values of S,
ar and m from Chapter 5.2 in [32] computed by means of effective Boltzmann

3x10712 |

2x10712 | B Co \

) lx10-122 [ ' ,' N ;o
Qgvac,m r . ' oy

0ACDM ¥ o /

—1.x10712 F ~—— -

—2.x10712 |

1x 107 5x 107 0,001 0.005 0.010 0.050 0.100
z

Fig. 6.1 Apg,./pacpm for z < 1 for various values of m (rescaled for ease of presentation). The
dotted line corresponds to m = 100H, and A = 1072, the dashed line to m = 10H, and A = 1
and the solid line to m = Hj and A = 10%. One sees nicely how the energy density is minimal in
the support of the sampling function at around z = 102
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equations. A popular candidate for Dark Matter is a weakly interacting massive
particle (WIMP), e.g. a heavy neutrino, for which [32] computes

xp = Bapm ~ 15+ 3log(m/GeV)  ar ~107%(m/GeV)™".
Using this one finds for large m

1 m 3
m o A 2 ,—X
Petn = (27)3/2 '33a3xFe "

and thus €2, >~ 0.3 for m >~ 100 GeV.

At this stage, we have already seen that there exist states for the field model under
consideration for which the energy density in the time interval z € [0, 10°] is of the
form

w’(p) + 0™ (p) _ Q| Q Joo

Qr+—F+—F+te
00 AT T e TS

(6.12)
with ACDM values for 2,,, 2, and 2. This is the desired result up to the term
6% which is not present in the ACDM model, but quantified by the free parameter

0
€. To analyse the influence of this term, we solve the equation

H2 S-zm Qr JOO

H—(%:QA-F?-%?-FGH—S. (6.13)
As Joo contains second derivatives of H, this equation can be rewritten as a second
order ordinary differential equation for H(z) and solved by choosing e.g. ACDM
initial conditions at z = 0. This analysis is consistent as the derivation of (6.12)
does not only hold for ACDM-backgrounds (6.4), but also for backgrounds of the
form (6.13). One finds that for large redshifts z, the solution of (6.13) is of the form

with Q, (e) = Q,, thus the term € Jy effectively generates additional energy density
of radiation type in the early universe, i.e. Dark Radiation. Surprisingly, one finds
lim¢ o 2,(€) = Q, but limeq 2,(¢) = oo. This is well in line with earlier results
on the stability of the Einstein equation with additional higher order derivative
terms, e.g. [2, 15,20, 31, 39,46]. The value of 2, can be constrained by observations
of the primordial fractions of light nuclei as predicted by BBN, since the synthesis
of these nuclei depends sensitively on the Hubble rate at z =~ 10°. It turns out
that 2, (¢) is in conflict with observations for € < 0, but that the BBN data are
compatible with 0 < € < 2 x 10~ if all Dark Radiation is attributed to the origin
discussed here.
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The value of € can be constrained also by other means. On the one hand, a
further bound on ¢ can be obtained by analysing the effects of higher derivative
contributions to the gravitational Lagrangean in the context of Inflation. In fact,
an early inflationary model proposed by Starobinsky in [47] is based on an €Jy
contribution to the energy density. Confronting this inflationary model with current
Cosmic Microwave Background data yields ¢ ~ 10713 [27]. Thus, if Inflation
occurred due to the € Jyy contribution to the energy density, then € is too small for
generating a considerable amount of Dark Radiation. However, if Inflation has a
different origin or did not occur at all, then one obtains the lower bound € > 107113,
Finally, an upper bound on € can be obtained by considering the Newtonian limit of
the semiclassical Einstein equation. In this limit, the higher order derivative terms
1,» and J,;, in (6.2) generate two Yukawa corrections to the Newtonian potential of a
point mass of opposite sign [48]. Assuming that these corrections don’t cancel on the
relevant length scales, one can obtain bounds on the strength and typical length scale
of these Yukawa terms from torsion-balance experiments [28] and consequently the
upper bound € < 107 [9]. Again, this upper bound would imply that € is too small
for generating a considerable amount of Dark Radiation. However, it is still possible
that the aforementioned Yukawa corrections cancel each other on the length scales
relevant for the experiments described in [28], such that € could be as large as our
upper bound, which in this case would give a real bound on one and hence both
Yukawa corrections. Moreover, the bounds inferred from [28] and from the analysis
reviewed here stem from phenomena on completely different length scales. As a
rough estimate we note that the diameter of our observable universe, which today is
about 6/Hy ~ 10>’ m, was at e.g. z = 107 still 10'® m and thus much larger than the
submillimeter scales relevant for the torsion-balance experiments. Thus it could be
that effects we have not considered yet, e.g. state-dependent effects which are due to
the small-scale structure of the quantum states we have fixed only on cosmological
scales so far, affect the comparison between the two different sources of input for
the determination of e.

We conclude that a more fundamental understanding of the standard cosmo-
logical model appears to be possible within QFT on curved spacetimes. In this
framework one even finds a new free parameter not present in the standard model.
This parameter can potentially account for Dark Radiation, the existence and nature
of which are currently topics of active research.
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Chapter 7
Quantum Probability Theory
and the Foundations of Quantum Mechanics

Jiirg Frohlich and Baptiste Schubnel

7.1 A Glimpse of Quantum Probability Theory
and of a Quantum Theory of Experiments

By and large, people are better at coining expressions than at filling them with
interesting, concrete contents. Thus, it may not be very surprising that there are
many professional probabilists who may have heard the expression but do not
appear to be aware of the need to develop “quantum probability theory” into
a thriving, rich, useful field featured at meetings and conferences on probability
theory. Although our aim, in this essay, is not to contribute new results on quantum
probability theory, we hope to be able to let the reader feel the enormous potential
and richness of this field. What we intend to do, in the following, is to contribute
some novel points of view to the “foundations of quantum mechanics”, using
mathematical tools from “quantum probability theory” (such as the theory of
operator algebras).

The “foundations of quantum mechanics” represent a notoriously thorny and
enigmatic subject. Asking 25 grown up physicists to present their views on the
foundations of quantum mechanics, one can expect to get the following spectrum of
reactions': Two will refuse to talk—alluding to the slogan “shut up and calculate”—
two will say that the problems encountered in this subject are so difficult that it

I'This story is purely fictional, but quite plausible.
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might take another 100 years before they will be solved; five will claim that the
“Copenhagen Interpretation”, [75], has settled all problems, but they are unable to
say, in clear terms, what they mean; three will refer us to Bell’s book [9] (but admit
they have not understood it completely); two confess to be “Bohmians” [25] (but
do not claim to have had an encounter with Bohmian trajectories); two claim that
all problems disappear in the Dirac—Feynman path-integral formalism [23, 24, 30];
another two believe in “many worlds” [28] but make their income in our’s, and
two advocate “consistent histories” [41]; two swear on QBism [36], (but have never
seen “les demoiselles d’ Avignon™); two are convinced that the collapse of the wave
function [38]—spontaneous or not—is fundamental; and one thinks that one must
appeal to quantum gravity to arrive at a coherent picture, [60].

Almost all of them are convinced that theirs is the only sane point of view.
Many workers in the field have lost the ability to do technically demanding work or
never had it. Many of them are knowingly or unknowingly envisaging an extension
of quantum mechanics—but do not know how it will look like. But some claim that
“quantum mechanics cannot be extended” [18], (perhaps unaware of the notorious
danger of “no-go theorems”). See also [66, 72]

At least fifteen of the views those 25 physicists present logically contradict
one another. Most colleagues are convinced that somewhat advanced mathematical
methods are superfluous in addressing the problems related to the foundations of
quantum mechanics, and they turn off when they hear an expression such as “C *-
algebra” or “type-III factor”. Well, it might just turn out that they are wrong! What
appears certain is that the situation is somewhat desperate, and this may explain
why people tend to become quite emotional when they discuss the foundations of
quantum mechanics; (see, e.g., [74]).

When the senior author had to start teaching quantum mechanics to students,
many years ago, he followed the slogan “shut up and calculate”—until he decided
that the situation described above, namely the fact that we do not really understand,
in a coherent and conceptual way, what that most successful theory of physics called
“quantum mechanics” tells us about Nature, represents an intellectual scandal.

Our essay will, of course, not remove this scandal. But we hope that, with
some of our writings, (see also [32, 34]), we may be able to contribute some kind
of intellectual “screw driver” useful in helping to unscrew® the enigmas at the
root of the scandal, before very long. We won’t attempt to extend or “complete”
quantum mechanics (although we bear people no grudge who try to do so, and
we wish them well). We are convinced that starting from simple, intuitive, general
principles (“information loss” and “entanglement generation”) and then elucidating

2

2And that Heisenberg’s 1925 paper [46] cannot be understood.

3«dévisser les problémes” (in reference to A. Grothendieck).
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the mathematical structure inherent in quantum mechanics will lead to a better
understanding of its deep message. (Of course, we realize that our hope is lost
on people who are convinced that the mysteries surrounding the interpretation
of quantum mechanics can be unravelled without any use of somewhat advanced
mathematical concepts.)

Just to be clear about one point: We are not claiming to present any ‘‘revolution-
ary” new ideas; and we do not claim or expect to get much credit for our attempts.

But, by all means, let’s get started! Quantum mechanics is “quantum”, and it is
intrinsically “probabilistic” [11, 27]. We should therefore expect that it is intimately
connected to quantum probability theory, hence to “non-commutative measure
theory”, etc. However, in the end, “quantum mechanics is quantum mechanics and
everything else is everything else!”*

7.1.1 Might Quantum Probability Theory be a Subfield
of (Classical) Probability Theory?

And—if not—what’s different about it? These questions are related to one con-
cerning the existence of hidden variables. The first convincing results on hidden
variables and on “Bell non-locality” were brought forward by Kochen and Specker
[51] and (independently) by Bell [7-9]. These matters are so well known, by now,
that we do not repeat them here. The upshot is that, loosely speaking, quantum
probability theory cannot be imbedded in classical probability theory (except in the
case of a two-level system).

The deeper problems of quantum mechanics can probably only be understood if
we admit a notion of time, introduce time-evolution, proceed to consider repeated
measurements, i.e., time-ordered sequences of observations or measurements result-
ing in a time-ordered sequence of events, and understand in which way information
gets lost for ever, in the course of time evolution. (We believe that this will lead
to an acceptable “ontology” of quantum mechanics [2, 25]) not involving any
fundamental role of the “observer”.)

In both worlds, the classical and the quantum world, physical quantities or
(potential) properties are represented by self-adjoint operators, ¢ = a*, and
possible events by spectral projections, IT, or certain products thereof (POVM’s; see
Appendix 7.4.A to Sects. 7.4 and 7.5.4). A successful measurement or observation
of a physical quantity or property represented by an operator a = a* results in

4“The one thing to say about art is that it is one thing. Art is art-as-art and everything else is
everything else.” Ad Reinhardt, [63].
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one of several possible events, I1j,..., I1; (spectral projections of a), with the
properties that

() M2=T, =10} a=1,....,k,

(i) HeIlg = Saplly.

k
(iii) Y Mo =1.
a=1

Suppose we carry out a sequence of mutually “independent” measurements or
observations of physical quantities, ay,...,a,, ordered in time, i.e., a; before a,
before as ...before a, (a; < a, < ... < a,). A physical theory should enable us to
predict the probabilities for all possible “histories”,

(7.1)

M) = (..., I},
of events, where H(ll), e, H](;) are the possible events resulting from a successful
measurement of @;, i = 1,...,n. On the basis of what prior knowledge? Well, we
must know the time evolution of physical quantities and the “state”, @, of the system,
S, we observe. That means that, given a state w, there should exist a functional,
Prob,, that associates with each history {H&ll) e, nf;;) }—but for what family of

histories, i.e., for which properties ay, . . . , a, 7—a probability
0 < po(ai, ... o) = Prob {II), ... I} < 1. (7.2)

By property (iii) in Eq. (7.1),

> doler. ) =1, (7.3)
o,....0

because Prob,, is normalized such that Prob, {1, 1, ...} = 1. In a classical theory,
the projections {H,(;l.) }Io‘[‘l —1» 1 = 1,...,n, are characteristic functions on a measure
space, Mg, and a state, w, is a probability measure on M. It then follows from

property (iii) that

ki
> Prob {11, ... T, ... = Prob, {I1),.... I¢~D mi*h . miy,

—1 7 T4
a=1

(7.4)

for arbitraryi = 1,...,n.
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Fig. 7.1 Beam of photons passing through polarization filters

If we consider a quantum mechanical system with finitely many degrees of
freedom then the projections {Hg,.) } are orthogonal projections on a separable
Hilbert space, H, and, by Gleason’s theorem [39], w is given by a density matrix,
Pw, on H. Moreover, according to [50, 54, 64, 76],

Prob, {T1¢), ... . I} = Try (I ... ) p, T ... TI) . (1.5)

The problem with Eq.(7.5) is that, most often, it represents physical and
probability-theoretical nonsense. For example, it is usually left totally unclear what
physical quantities or properties of S will be measurable (i.e., which family of
histories will become observable), given a time evolution 7;; and a state w. But
such problems do not stop people from studying Eq. (7.5) again and again—and we
are no exception. To address one of the key problems with Eq. (7.5), we study an
example.

We consider a monochromatic beam of light, which, according to Einstein [26],
consists of individual photons of fixed frequency. We then bring three filters into the
beam that produce linearly polarized light. The direction of polarization is given by
an angle 6 that can be varied by rotating the filter around the axis defined by the
beam; see Fig.7.1.

With the filter i, we associate two possible events

H(J_) <> aphoton passes through filter i

no=1- H(E < aphoton does not pass through filter i.

Experimentally, one finds that, for any initially unpolarized beam of light, (meaning
that the photons are all prepared in a state wy o %Tr(cz ),

Prob,, (T, Y} = Ecosz(ei —0,). i <j. (7.6)
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if only filters i and j are present, with | <i < j < 3. It follows from Eq. (7.6) that
i ; 1
Prob,, {1, TY)} = Esmz(e,- —0)). i < J, (7.7)

the probability that a photon passes the first filter, i, being 1/2, because the initial
beam is unpolarized (or circularly polarized). Formulae (7.6) and (7.7) can be
tested experimentally by intensity measurements before and after each filter. If the

projections H(i) were characteristic functions on a measure space, Mphoton, then we
would have that

Proby, {1, T} < Prob,, (M1, T} + Prob,, (MY, m®}. (7.8)
For,

Prob,, {1, T} = Prob,, (I, T, T®} + Prob,, (M}, M7, 1%}
right side of Eq. (7.8),

IA

(7.9

where Eq. (7.9) follows from the sum rule (7.4), and the upper bound (7.8) from the
trivial inequality 0 < H(i) < 1. Plugging expression (7.7) into (7.8). we conclude
that

1 1 1
> sin?(0, — 63) < > sin’(0, — 6,) + > sin’(6; — 65). (7.10)

Setting 6, = 0, 6, = n/6 and 65 = /3, Eq.(7.10) would imply that
3/8 < 1/8+ 1/8, which is obviously wrong! What is going on? It turns out that the
sum rule (7.9) is violated. The reason is that the projections H(iz) and Hﬁ) do not
commute. This fact is closely related to non-vanishing interference between H(f)
and 1Y analogous to the interference encountered in the double-slit experiment.
Interference between H(f) and T1? is measured by

. n® | 0P, ng) = T,y n PP e, 1O IONG). (711
Choosing « = + and B = — (for example), we find a non-vanishing interference

term, which explains why the sum rule (7.9) is violated. What is the message? The
first filter, 1, may be interpreted as “preparing” the photons in the beam hitting the
filter 2 to be linearly polarized as prescribed by the angle 6;. In our experimental
set-up there is no instrument measuring whether a photon has passed filter 2, or not.
The only measurement is made after filter 3, where either a photon triggers a Geiger
counter to click, or there is no photon triggering the Geiger counter. Let us denote
the probability for the first event (Geiger counter clicks) by p4, the second by p_.
The histories contributing to p_ are
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+ + -
o ® ® prob pt
1 2 3
+ — —
[ { { prob p—
1 2 3
with p_ = p* + p~. These two histories show interference. Given that a photon

has passed filter 1, expressions (7.6) and (7.7) appear to imply that

pf = 0052(91 — 6,) sin?(#, — 03)

(7.12)
p= = sin’(6, — 6,).

The unique history contributing to pappears to be

+ + +
[ 4 @ L 4 prob p::_'
2 3

—_

with
pi = cos?(6; — 6,) cos*(6, — 63),
and, indeed,
pr+pf+p- =1
These findings can be accounted for by associating with the event “+” the operator
Xy =nPn?

w9

and with the event the operators

xF=n%n? ad x-Z =19
Then,

XiX4+ XX+ (XD)*XZ =1.

It should however be noted that

X+ X3+ XX+ XZ(XD)* #1.
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For this reason, some people may prefer to replace X4 by the pair X| := H(j) H(f) ,
X, = PN, and to set X3 := X+, X4 := ST, Then,

4 4
Yo XiXe=) XeXF=1. (7.13)
a=1 a=1

The family (X, X», X3, X4) is called (the “square root” of) a positive operator-
valued measure (POVM); (see [61], and Sects. 7.4.3 and 7.5.4). Note that

Try(X2pm0 X5) = Prob,, {T®, T}

corresponds to the “virtual history”

+ -~ +

which cannot be interpreted classically. This should not bother us, because no
measurement is carried out between filters 2 and 3.

There is a more drastic way to present these findings: Consider N filters in series,
the jth filter being rotated through an angle j/2N. The probability for an initially
vertically polarized photon (6y = 0) to be transmitted through all the filters is then
given by

2N
P+ = Probwe():o{l'[(l), cee H(f_v)} = (cos (%)) e 1. (7.14)

If however, all filters, except for the N th one, are removed, then
ro_ My — 02 (T =
P4 = Proby, _ {1} = cos 5)= 0. (7.15)

If H(i) AU H(Jiv) were “classical events”, i.e., non-negative random variables, then
one would have that p,. < p/, . (See [9, 55] for closely related arguments.)
Actually, the discussion presented above, although often repeated, is somewhat
misleading. The only measurement takes place after the last filter and is supposed
to determine whether a photon has passed all the filters, or not. The corresponding
physical quantity corresponds to the operators H(iN), where N is the label of the
last filter, and the measurement consists in verifying whether a Geiger counter
placed after the last filter has clicked, or not. The filters have nothing to do with
measurements, but determine (or, at least, affect) the form of the time evolution of
the photons. The use of POVM’s in discussing experiments like the ones above is not
justified at a fundamental, conceptual level. It merely substitutes for a more precise
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understanding of time-evolution that involves including the filters in a quantum-
mechanical description. It appears that, often, POVM’s are used to cover up a lack
of understanding of the time-evolution of large quantum systems. The role they play
in a quantum theory of experiments is briefly described in Sect. 7.5.4.

A more compelling way of convincing oneself that quantum probability cannot
be imbedded in classical probability theory than the one sketched above consists
in studying correlation matrices of families of (non-commuting) possible events in
two independent systems. One then finds that the numerical range of possible values
of the matrix elements of such correlation matrices is strictly larger in quantum
probability theory than in classical probability theory, as discovered by Bell [9, 71].
See [51] for an alternative approach.

7.1.2 The Quantum Theory of Experiments

We return to considering a system, S, and suppose that # consecutive measurements
have been carried out successfully, with the ith measurement described by spectral
projections H((;) = (Hg))*, a =1,...,k;, of a physical quantity a; = a}, with

ki
HS)HE) — 50{/31—[((;‘)’ an) =1, (7.16)
a=1

for all i. (We could also use POVM’s, instead of projections, but let’s not!) The
probability of a history {H,(Xll), ceey Hgfl) } in a state @ of S given by a density matrix
Do 18 then given by formula (7.5), above. The measurements can be considered to
be successful only if the sum rules (7.4) are very nearly satisfied, for all i. Whether
this is true, or not, can be determined by studying the interference between different
histories. Given a state w, we define N x N matrices, P® = (P, ), N = ki k,, by

o . 1 n) 7 My _ () 1) 1 n
Peyi=o(ny). . nwny . nl)) =1 (ny .. .nYe,nd. . .ne),
(7.17)

where w(a) is the expectation of the operator a in the state w. Measurements of the
quantities ay, . . ., a, can be considered to be successful only if P is approximately
diagonal, i.e.,

1
1Pyl < 5 (Pi+ Pibur) (7.18)

which is customarily called “decoherence”; see, e.g., [10, 37, 47, 49]. All this
is discussed in much detail in Sects. 7.4.3 and 7.5. In particular, we will show
that decoherence is a consequence of “entanglement generation” between the
system S and its environment E and of “information loss”, meaning that the
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original state of S vV E cannot be fully reconstructed from the results of arbitrary
measurements carried out after some time 7, long after the interactions between S
and E have set in; see Sect. 7.5, and [17, 31]. In local relativistic quantum theory
with massless particles (photons), the kind of information loss alluded to here is
a general consequence of Huyghens’ principle [14] and of “Einstein causality”.
It appears already in classical field theory. In local relativistic quantum theory it
becomes manifest in the circumstance that the algebra of operators representing
physical quantities measurable by a localized observer after some time 7" does not
admit any pure states. See [17].

y

The event at time #o < ¢* involving photons can never be observed by the observer O

The key problem in a quantum theory of experiments (or measure-
ments/observations) is, however, to find out which physical quantities will be
measured (i.e., what potential properties of a system will become “empirical”
properties, or what families of histories of events can be expected to be observed)
in the course of time, given the choice of a system, S, coupled to an environment,
E, of a specific time evolution of S v E, and of a fixed state, w, of S Vv E. This
is sometimes referred to as the problem of eliminating the mysterious role of the
“observer” from quantum mechanics (making many worlds superfluous), and of
determining the “primitive ontology” of quantum mechanics, [2]. This problem
will be reckoned with in Sects. 7.5.3 and 7.5 .4.

One customarily distinguishes between “direct (or von Neumann) measure-
ments” and (indirect, or) “non-demolition measurements” carried out on a physical
system S. It may be assumed that it is clear what is meant by a direct measurement.
A non-demolition measurement is carried out by having a sequence of “probes”
(E) interact with the system S, one after another, with the purpose of measuring
a physical quantity, a = a*, of S with (for simplicity) finite point spectrum,
spec(a) = {ai,...,a,}. If S is in an eigenstate, | «;), of a corresponding to the
eigenvalue ¢; right before it starts to interact with the kth probe, Ej, the time-
evolution of the composed system, S Vv Ej, is assumed to leave |o;) invariant but
changes the state of E; in a manner that depends non-trivially on «;, for each
i = 1,...,n. This leads to entanglement between S and E;, k = 1,2,3,...
If, for simplicity, it is assumed that the probes Ei, E», E3, ... are all independent
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of one another and that Ej interacts with S strictly after Ex—; and strictly before
Ei 41, then the state of S decohers exponentially rapidly with respect to the basis
lot), ..., |o,), as k — oo. More precisely, if p*) denotes the state of S after its
interaction with Ej and before its interaction with Ey 1, with

ng,)aj = (ot,-|p(k)|aj), (7.19)
then
P, — Sasar; Por (7.20)

exponentially rapidly. This is easily verified; (see Sect.7.5.6). A more subtle result
on decoherence involving correlated probes that lead to memory effects has been
established in [21].

One might ask what happens if a direct measurement is carried out on every
probe Ej. after it has interacted with S, k = 1,2, 3, .. .. (We assume, for simplicity,
that all probes Ej are identical, independent and identically prepared, and that they
are all subject to the same direct measurement.) Then one can show that, under
natural non-degeneracy conditions, the state, p*), of S, after the passage of k probes
Eq, ..., Ei, converges to an eigenstate of a, i.e.,

p® — Jou) (e, (7.21)

as k — oo, for some i, and the probability of approach of p® to |a;){c;| is given
by pq;.«; - This important result has been derived by Bauer and Bernard in [6] as a
corollary of the Martingale Convergence Theorem; (see [1, 5, 56] for earlier ideas in
this direction). The convergence claimed in Eq. (7.21) is remarkable, because it says
that, asymptotically as k — oo, a pure state (some eigenstate of @) is approached;
i.e., a very long sequence of indirect (non-demolition) measurements carried out on
S always results in a “fact” (namely, the state of S approaches an eigenvector of
the quantity a that one intends to measure). Somewhat related results (“approach to
a groundstate”) for more realistic models have been proven in [22, 33, 35].3

In order to control the rate of convergence in Eqs. (7.20) and (7.21), it is helpful
to make use of various notions of quantum entropy; (see, e.g., [20, 62]).

Some details concerning (indirect) non-demolition measurements and some
remarks concerning interesting applications are sketched in Sect.7.5.6; (but see
[1, 6,34, 42, 57]).

3 A result of the form of Eq.(7.21) was conjectured by I.F. in the 1990s. But the proof remained
elusive.
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7.1.3 Organization of the Paper

In Sect. 7.2, we introduce an abstract algebraic framework for the formulation of
mathematical models of physical systems that is general enough to encompass
classical and quantum mechanical models. We attempt to clarify what kind of
predictions a model of a physical system ought to enable us to come up with.
Furthermore, we summarize some important facts about operator algebras needed
in subsequent sections.

In Sect.7.3, we describe classical models of physical systems within our
algebraic framework and explain in which sense, and why, they are “realistic” and
“deterministic”.

In Sect. 7.4, we study a general class of quantum-mechanical models of physical
systems within our general framework. We explain what some of the key problems
in a quantum theory of observations and measurements are.

The most important section of this essay is Sect.7.5. We attempt to elucidate
the roles played by entanglement between a system and its environment and of
information loss in understanding “decoherence” and “dephasing”, which are key
mechanisms in a quantum theory of measurements and experiments; see also
[9, 37, 47, 49]. In particular, we point out that the state of the composition of a
system with its environment can usually not be reconstructed from measurements
long after interactions between the system and its environment have set in;
(“information loss”). We also discuss the problem of “time in quantum mechanics”
and sketch an answer to the question when an experiment can be considered to have
been completed successfully; (“when does a detector click?”). Put differently, the
“primitive ontology” of quantum mechanics is developed in Sects. 7.5.3 and 7.5.4.
Finally, in Sect.7.5.6, we briefly develop the theory of indirect non-demolition
measurements, following [6].

An outline of relativistic quantum theory and of the role of space-time in
relativistic quantum theory has been sketched in lectures and will be presented
elsewhere; (see also [4]).

The main weakness of this essay (which might be fatal) is that we do not
(and cannot) discuss sufficiently many simple, convincing examples illustrating the
power of the general ideas presented here. This would simply take too much space.
But examples will be discussed in [33, 34].

7.2 Models of Physical Systems

In this section, we sketch a somewhat abstract algebraic framework suitable to
formulate mathematical models of physical systems. Our framework is general
enough to encompass classical and quantum-mechanical models.
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Throughout most of this essay, we consider non-relativistic models of physical
systems, so that, in principle, all “observers” have access to the same observational
data. For this reason, reference to “observers” is superfluous in the framework to be
exposed here. This is radically different in causal relativistic models.

In every model of a physical system, S, one specifies S in terms of (all) its
“potential properties”, i.e., in terms of “physical quantities” or “observables”
characteristic of S; see, e.g., [S0]. No matter whether we consider classical or
quantum-mechanical systems, “physical quantities” are represented, mathemati-
cally, by bounded, self-adjoint, linear operators. Thus, a system S is specified by
alist

Ps ={ai}iers (7.22)

of physical quantities, a; = a", characteristic of S that can be observed or measured
in experiments.

In classical physics, a physical quantity, a, is given by a real-valued (measurable
or continuous) function on a topological space, Mg, which is the “state space” of S
(the phase space if S’ is Hamiltonian). Quantum-mechanically, more general linear
operators are encountered, and, as is well known, the operators in Ps = {a; }ier;
need not all commute with one another. It is natural to assume that if ¢ € Py is a
physical quantity of S then so is any polynomial, p(a), in a with real coefficients.
It is, however, not very plausible that arbitrary real-linear combinations and/or
symmetrized products of distinct elements in Ps would belong to Ps. But, in non-
relativistic physics, it has turned out to be reasonable to view Pgs as a self-adjoint
subset of an operator algebra, Ag, usually taken to be a C*— or a von Neumann
algebra, in terms of which a model of S can be formulated. Physicists tend to be
scared when they hear expressions like ‘C*-’ or ‘von Neumann algebra’. Well, they
shouldn’t!

7.2.1 Some Basic Notions from the Theory of Operator
Algebras

In order to render this paper comprehensible to the non-expert, we summarize some
basic definitions and notions from the theory of operator algebras; for further details
see [09, 70], and [16, 43, 44] .

An algebra, A, over the complex numbers is a complex vector space equipped
with a multiplication: If @ and b belong to A4, then

e da+ube A, A, ueC,
e a-beA,
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where “-” denotes multiplication in .A. One says that A is a *algebra iff there exists
an anti-linear involution, *, on A, i.e., * : A — A, with (a*)* = a, foralla € A,
such that

(Aa + pb)* = Xa* + mb*,
where A is the complex conjugate of A € C, and

(a-b)y* =b*-a*.

The algebra A is a normed algebra (Banach algebra) if it comes with a norm ||(+)||
satisfying

ION: A =10, o0

|la]| =0, forae A = a=0 (7.23)

e (Ais completein ||(+)], i.e., every Cauchy sequence in A converges to an element

of A).
A Banach algebra, A, is a C *-algebra iff

la*-all = |la-a*|| = |la|*. Va € A. (7.24)
We define the centre, Z 4, of A to be the subset of .4 given by
Zp:={aeAla-b=b-a,Vb e A}. (7.25)

A state, w, on a *algebra A with identity 1 is a linear functional v : A — C
with the properties that

w(a*) = w(a), w(a*a) > 0, (7.26)
foralla € A, and
w(l) = 1. (7.27)

A state w is pure if it cannot be written as a convex combination of two or more
distinct states.
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A representation, 7, of a C*-algebra A on a complex Hilbert space, H, is a
*homomorphism from A4 to the algebra, B(#), of all bounded linear operators on
H;i.e., 7w is linear, 7w(a - b) = n(a) - w(b), w(a*) = (w(a))*, and |7 (a)| < |,
(where || A|| is the operator norm of a bounded linear operator A on H).

A *automorphism, o, of a C *-algebra A is a linear isomorphism from .4 onto A
with the properties

ala-b) =ala)-alb),

(7.28)
a(@) = (a(a))”,
foralla,b € A.
With a C *-algebra 4 and a state @ on A we can associate a Hilbert space, H,,, a
unit vector € H,,, and a representation, 7, of A on H,, such that {7, (a)2 | a €
A} is dense in H,, (i.e. 2 is cyclic for 7, (A)), and

w(a) = (2, n,(a)2), (7.29)

where (-, -) is the scalar product on H,,. This results from the so-called Gel’fand-
Naimark—Segal (GNS) construction.

A theorem due to Gel’fand and Naimark says that every C*-algebra, A, can
be viewed as a norm-closed subalgebra of B(#) closed under *, for some Hilbert
space H.

Thus, consider a C*-algebra A C B(H), for some Hilbert space H. We define
the commuting algebra, or commutant, A’, of A by

A =1{aecB®H)|a-b=hb-a,VbeA. (7.30)
The double commutant of A, A”, is defined by
A=Y ={aeBH)|a-b=b-a,Vbe A} D A (7.31)

It turns out that 4" and A" are closed in the so-called weak * topology of B(H);
i.e., if {a;}ies is a sequence (net) of operators in A’ (or in A”), with

((pvaiw> - ((pvaw>v asi —> oo,

for all ¢, € H, where a € B(H), thena € A (ora € A”, respectively).
*Subalgebras of 5(#) that are closed in the weak * topology and contain the identity
are called von Neumann algebras (or W *-algebras). By a famous theorem of von
Neumann, a *algebra A of operators on a Hilbert space is a von Neumann algebra
if and only if A = A”.

Thus, if A is a C *-algebra contained in B(#), for some Hilbert space H, then A’
and A” are von Neumann algebras. A von Neumann algebra M C B(#H) is called
a factor iff its centre, Z, consists of multiples of the identity operator 1.



146 J. Frohlich and B. Schubnel

A von Neumann factor M is said to be of type [ iff M is isomorphic to B(H,),
for some Hilbert space Ho. A general von Neumann algebra, A/, is said to be of
type L iff A is a direct sum (or integral) over its centre, Zs, of factors of type I. A
C*-algebra A is called a type-I C *-algebra, iff, for every representation r, of A on
a Hilbert space H,

w(A) :={x(a) |a € A}

has the property that 7 (.A)” is a von Neumann algebra of type I. (For mathematical
properties of type-I C*-algebra see [40], and for examples relevant to quantum
physics see [15].)

We define

ANB:={becB|b-a=a-b, Yac A}, (7.32)

the “relative commutant” of A in B.

Given a set P = {a;};e; of operators in a C*-algebra B, we define (P) to
be the C*-subalgebra of B generated by P, i.e., the norm-closure of arbitrary
finite complex-linear combinations of arbitrary finite products of elements in the
set {a;,a’};er, where * is the * operation on B.

A trace T : M4 — [0, 00] on a von Neumann Algebra M is a function defined
on the positive cone, M, of positive elements of M (i.e., elements x € M of the
form x = y*y, y € M) that satisfies the properties

() tx+y)=t(x)+(y), x,yeMy
(@) t(Ax) = At(x), AeRy, x e M4

(i) T(x*x) = t(x"), x eM.

A trace t is said to be finite if t(1) < +o0. It can then be uniquely extended by
linearity to a state t on M. Conversely, any state T on M enjoying the property

t(a-b)=1t(b-a), VYa,b e M, (7.33)

defines a finite trace on M. We say that t is faithful if 7(x) > 0 for any non-zero
element x € M. A trace 7 is said to be normal if T(sup x;) = sup t(x;) for every
bounded net (x;);e; of positive elements in M, and semifinite, if, for any x € M4,
x # 0, there exists y € M4, 0 < y < x, such that t(y) < oo. Traces play an
important role in the classification of von Neumann algebras. It can be shown that a
von Neumann algebra M is a direct sum (or direct integral) of factors of type I,, and
type I1; if and only if it admits a faithful finite normal trace; see [69]. Similarly, M
is a direct sum (or direct integral) of type I, type II; and type Il factors iff it admits
a faithful semifinite normal trace. We use these results in Sect. 7.5 to characterize
the centralizer of a state w.
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For the time being, we do not have to know more about operator algebras than
what has just been reviewed here. We can test our understanding of the notions
introduced above on the example of direct sums of full finite-dimensional matrix
algebras (block-diagonal matrices) and by doing some exercises, e.g., reproducing
a proof of the GNS construction, or applying this material to group theory.

7.2.2 The Operator Algebras Used to Describe
a Physical System

We have said that (a model of) a physical system, S, is specified by a list
Ps ={a;}ierg

of physical quantities or potential properties, a; = a} (i € Is), characteristic of
S that can be observed or measured in experiments. (What is meant by this will
hopefully become clear later, in Sects. 7.4 and 7.5.) We assume that Py is a self-
adjoint subset of a C *-algebra. As explained in Sect.7.2.1, we may then consider

As = (Ps), (7.34)

the smallest C*-algebra containing Ps. The algebra Ay is called the “algebra of
observables” defining S; (possibly a misnomer, because, a priori, only the elements
of Ps correspond to observable physical quantities—but let’s not worry about this).
For physical systems with finitely many degrees of freedom, A4y is usually a type-I
C*-algebra.

We would like to have some natural notions of symmetries of a system S,
including time evolution. Here we encounter, for the first but not the last time, the
complication that S is usually in contact with some environment, E, which may
also include experimental equipment used to measure some observables of S. The
environment is a physical system, too, and there usually are interactions between S
and E; in fact, only thanks to such interactions is it possible to retrieve information
from S, i.e., measure a potential property a;, i € Ig, of S in a certain interval of
time. One typically chooses E to be the smallest system with the property that the
composed system, S vV E, characterized by

Psve = {a,b | a e Ps,b S PE}, (7.35)

can be viewed as a “closed physical system”.

What is a “closed physical system”? Let S := S v E, and let Ag denote the
C*-algebra generated by Psvg; ie., Ay = (Psvg). We say that S is a closed
(physical) system if the time evolution of physical quantities characteristic of S is
given in terms of *automorphisms of Ag; i.e., given two times, s and ¢, 7,5 is a
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*automorphism of Ay that associates with every physical quantity in Asg specified
at time s an operator in Ag representing the same physical quantity at time ¢. We
must require that

Tts © Tsu = Trous (736)

for any triple of times (¢, s, u).

Given a physical system, S, we choose its environment E such that, within
a prescribed precision, S = S Vv E can be considered to be a closed physical
system. “For all practical purposes” (FAPP, see [9]), i.e., within usually astounding
precision, S is much ... much smaller than the entire universe; it does usually not
include the experimentalist in the laboratory observing S or the laptop of her theorist
colleague next door, etc. To say that S is a closed physical system does, however,
not exclude that S is entangled with another physical system, S’. Further discussion
and examples of closed systems are presented in [29].

Given S and S = S V E, as above, we call Az the “dynamical C*-algebra”
of S.

Let Gs denote a group of symmetries of S. We will assume that every element
g € Gs can be represented by a *automorphism, o, of Az, with the property that

Og) ©0gy = Ogjogy> (7.37)

ie., 0 : Gs — *Aut(Ag) is a representation of Gy in the group, *Aut(Ag), of
*automorphisms of Ag. We say that Gy is a group of dynamical symmetries of S
iff o, and time evolution 7, ; commute, for all g € Gg and arbitrary pairs of times
(t,5).

By a “state of a physical system” S we mean a state on the C *-algebra A, in the
sense of Eqgs. (7.26) and (7.27) in Sect.7.2.1. (This will turn out to be a misnomer
when we deal with quantum systems. But the expression appears to be here to stay.)
The set of all states of S is denoted by Ss.

To summarize, a (model of a) physical system, S, is specified by the following
data.

Definition 2.1 (Algebraic Data Specifying a Model of a Physical System)

(I) A list of physical quantities, or observables, Ps = {a; = a}}ieys, generating
a C*-algebra, Ag, of “observables”, that is contained in the C*-algebra
Az (the “dynamical C*-algebra” of S) of a closed system, S = S V E,
containing S.
(I) The convex set, Sy, of states of S, interpreted as states on the C *-algebra Asg.
(IMT) Time translations of S, represented as *automorphisms {7, }; ser ON A
satisfying Eq.(7.36), and a group, Gg, of symmetries of S represented by
*automorphisms, {0y }¢egy, of Asg; (see Eq. (7.37)).

We should explain what is meant by “time translations”: For each time t € R, we
have copies Ps(t) and Ag(t) = (Ps(¢)) *isomorphic to Ps and Ag, respectively,
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which are contained in Ag. If a(s) € Ps(s) and a(t) € Ps(¢) are the operators
in Ag representing an arbitrary potential property, or observable, a € Ps, of S at
times s and #, respectively, then

a(t) = 1 (a(s)), (7.38)

with t; ; = 7, 0 7,5, for arbitrary times 7, v and s in R.
We say that the system S = S V E is autonomous ift

Tts = Tt—s (7.39)

where {7, };er is a one-parameter group of *automorphisms of As.
We say that a system S is a subsystem of a system S’ iff

Ps C Ps (7.40)

and
Az € As. (7.41)
The composition, S; V S5, of two systems, S| and S,, can be defined by choosing
Ps,vs, == Ps, UPs, (7.42)

and Az, to contain the C*-algebra generated by Az, and Ag;. (A more precise
discussion would lead us into the theory of tensor categories.)

7.2.3 Potential Properties, Information Loss and Possible
Events

Let S be a physical system coupled to an environment E and described, mathemat-
ically, by data

(Ps, As—gv > {tt.s}tser. G5, S) (7.43)

with properties as specified in points (I) through (III) of Definition 2.1, Sect. 7.2.2.
A “potential property” of S is represented by an element a € Ps or, more
generally, by a self-adjoint operator a = a* in the algebra As. An observation of a
potential property, a, of S at time ¢ will be described in terms of the operator a(t) =
7.1, (a) € Ag, where 1) is a fiducial time at which the state of S is specified. Next,
we have to clarify in which sense information is lost, as time increases. In local,
relativistic quantum theory, a distinction between S and S becomes superfluous, and
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one may usually identify S with S. Moreover, the finiteness of the speed of light,
i.e., of the speed of propagation of arbitrary signals, and locality lead to an intrinsic
notion of information loss [17, 31]—at least in theories with massless particles that
satisfy Huyghens’ Principle [14] and are allowed to escape to spatial co (or fall into
black holes). This is not so when one considers non-relativistic models of physical
systems, with signals propagating arbitrarily fast (“Fernwirkung”). Nevertheless,
one may argue that whenever properties of S are observed successfully, thanks
to interactions of S with some environment/equipment E, then, as the price to
pay, information is lost irretrievably: It disperses into the environment E, where it
becomes inaccessible to experimental observation. Of course, this idea is plausible
only if the cut between “system S and “environment E”, given a closed system
S, is made at the right place. To determine this cut, one must specify the list Pg of
physical quantities characterising S that are measurable in experiments, using E.
Mathematically, the cut is determined by specifying the pair (Ag, Ayg) of algebras.

For the purpose of this essay, we adopt the point of view that the only
properties of S that can potentially be observed, experimentally, are properties of
S represented by self-adjoint operators

a(t) = a*(t), with a € Ps,t € R. (7.44)

In order to arrive at a mathematically precise concept of information loss (as time
goes by), it is convenient to introduce the following algebras.

Definition 2.2 The algebra, £5,;, of potential properties observable after time ¢
is the C*-subalgebra of Ag generated by arbitrary finite linear combinations of
arbitrary finite products

ai(ty)...a,(ty),n =1,2,3,...,

where t; > t anda; € Ag,i = 1,...,n, (with a(s) the operator in Ag representing
the operator a € Ag at time ).

It follows from this definition that
Est T &>y (7.45)
whenever ¢ > ¢/, with €5, C As, for all t € R. We speak of loss of information iff
Est S Esy, (7.46)

for some times ¢ and ¢/, with ¢ > t’. We define an algebra Es by

I
gS = \/ th (747)

teR
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It is one of the notorious problems in most approaches to a “quantum theory of
experiments” that it is left unclear which self-adjoint operators in some very large
algebra of operators correspond to potential properties of a quantum system that can
actually be measured or observed. Most authors consider far too many operators as
corresponding to potential properties of the system that are potentially measurable.
As we will discuss in Sect. 7.5, it appears to be a general principle (“Duality between
Observables and Indeterminates”) that &g & Ag and that the relative commutant
of &s inside Ay contains a subalgebra isomorphic to £s. (Obviously, for classical
systems—.Ag abelian, the commutant of £ is all of Asg.)

Let w € S be a state of the system. Let (H,,, 7,,, 2) denote the Hilbert space,
the representation of Ag on H,,, and the cyclic vector in #,,, respectively, associated
to the pair (Ag, w) by the GNS construction; see Sect.7.2.1, Eq.(7.29). By Ag we
denote the von Neumann algebra corresponding to the weak closure of m,,(Ag) in
the algebra, B(#,,), of all bounded operators on H,,.

Definition 2.3 Given a physical system S, as in Definition 2.1, (I)—(III), above, and
a state w € Sy, a possible event in S observable at time ¢ is a spectral projection,

Pun(I), (7.48)

of the operator m,(a(t)) € A% associated with a measurable subset I C
spec my(a(t)) € R, where a = a* € Py andt € R. (Here spec A denotes the
spectrum of a self-adjoint operator A on H,,.)

Definition 2.4 The algebra, Egt, of all possible events observable at times > 7, is
the von Neumann algebra corresponding to the weak closure of 7, (£5;) in B(H,,).
The von Neumann algebra £ is defined similarly.

Note that if @’ is a state that is normal with respect to the state w then A%/ = A%,
etc. The algebra £¢, contains the spectral projections P,y (/) describing possible
events at times s > 7; (see Eq.(7.48)). It is therefore justified to call £2, the “algebra
of possible events observable at times > t ”. Loss of information may manifest itself
in the property that the relative commutant

(&) née, (7.49)

is non-trivial, for some t > t'.
We note that the algebra £ carries an action of the group, R, of time translations
by *automorphisms, {7, };er, defined as follows: Fora (¢) ... a,(t,) € V Es;, with
teR —

ti €eRa; € As,i =1,...,n,

Z(ai(t)) ... an(ty)) == ai(t; +1)...an(ty +1). (7.50)
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The definition of T, extends to all of £ by linearity and continuity. One then has
that

T & —> Esprtr € Exy, (7.51)

for arbitrary t > 0.

Let a € Ps be a potential property of S, and let w be a state of S (i.e., w € S3).
Depending on the experimental equipment available to observe a, i.e., depending
on the choice of the time evolution of S = S Vv E, and depending on the choice
of a state @ € Sy, an observation of a may have different alternative outcomes;
in particular, the resolution in an observation of a at some time #, will depend on
the choice of (E, {1, s}:ser, ®). These alternative outcomes correspond to spectral
projections Py, (lo), @ = 1,...,k, where [, N Ig = @, fora # B, and U];:lla D)
spec 1, (a(t«)). Then

Pu(t*)(la)Pa(t*)(Iﬂ) = Saﬂ Pa(t*)(la)v (7.52)
and
k
Y Pagy(le) =1, (7.53)
a=1

for an arbitrary .

Traditionally, one says that the purpose of a model of a physical system, S, is to
enable us to make predictions of the following kind: Suppose we are interested
in testing some potential properties (or, put differently, measure some physical
quantities) ay, . .., a, characteristic of S during intervals of time A| < A, < ... <
A,, where

A< Aiff, Vi e A, V' e A': t <t. (7.54)

We assume that S is in a state @ € Ss. Then a model of S ought to tell us
whether ay,...,a, will actually be measurable (i.e., are “empirical” properties)
and predict the probability (frequency) that, in a test or measurement of a; at
some time #; € A;, the event corresponding to the spectral projection Py, ,)(/ O’;i),
a; = 1,...,k;, is observed, (i.e., property «; (¢;) has a value in the interval Ioili),
foralli = 1,...,n, given the state @ € Sx; (the properties of the projections
P, (ti)(lt)l;i) are as in Eqgs. (7.52), (7.53)).

We simplify our notation by setting

Y = 09) == Pyay(I)). (7.55)
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witht; € A;, a; € Ps, i = 1,...,n, Ay < A, < ... < A,. The time-ordered
sequence
R ={my), ... . I} (7.56)

of possible events Hg,.) (as in Eq. (7.55)) is conventionally called a “history”. Given
such a history, we define operators

Hi(e) =1 .. o&tondh (7.57)

O+1 ag ?

with T1{ as in Eq. (7.55).
Postulate 2.5 (see [59, 64, 76]) Given a model of a physical system S, as specified
in points (I)-(1ll) of Definition 2.1, Sect. 7.2.2, the probability of a history h' (o) =

{Hl(xll), . SZ)} in a state w € Sy is predicted to be given by
Prob,, 1} (e) = Prob, {TI{, ... . TI{} := w ((H{ (@)*H{ () , (7.58)
with H{' (o) as in Eq. (7.57). (Itis assumed here that ay, ..., a, are measurable, for

the given time-evolution and state of the system; see Sect. 7.5.)

Much discussion in the remainder of this essay is devoted to finding out
under what conditions formula (7.58), is meaningful, and—if it is—what it tells
us about S. To give away our secrets, Postulate 2.5 is perfectly meaningful for
classical models of physical systems, as discussed in Sect. 7.3, and it is most often
meaningless for quantum-mechanical models. While FMPP (“for many practical
purposes”), formula (7.58) is useful in quantum mechanics, conceptually it is
misleading and often nonsensical! It does, however, pass some tests indicating that
it defines a probability:

(1) Prob, satisfies

0 < Prob,{M\),... . I} <1, (7.59)
for every state w € Sy and an arbitrary history {H((Xll), cees Hg:,) }.
(2)
> Prob, {1, ..., I} = 1, (7.60)
aj=1,..ki(i=1,..n)
for arbitrary operators ay, . .., a, and time intervals A} < ... < A, (with Hg,.)

as in Eq. (7.55)).
Properties (1) and (2) show that Prob,, is a probability functional.
(3) Asobservedin [48,59] and references given there, formula (7.58) represents the
“only possible” definition of a probability functional on the lattice of possible
events.
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As already mentioned, formula (7.58) is perfectly adequate for an analysis of
the predictions of classical models of physical systems. Quantum-mechanically,
however, given

(-Aj» {Tt,s}t,se]Rs w € Sf),

one encounters plenty of sequences of potential properties,

lai(t), ..., an(tn)},

with a; € Ps, t;, € Aj,i = 1,...,n, Ay < ... < A,, which turn out
to be incompatible with one another. The question then arises which one among
such sequences of potential properties of S actually corresponds to a sequence of
empirical properties of S observed in the course of time; (assuming that there is
only one rather than “many worlds”). Formula (7.58) does not tell us much about
the answer to this question; but the idea of loss of information, as expressed in
Egs. (7.46) and (7.49), along with the phenomenon of entanglement, does! This is
discussed in Sects. 7.5.3 and 7.5.4.

7.3 Classical (“Realistic’’) Models of Physical Systems

We start this section by recalling the usual distinction between classical, realistic
models (abbreviated as “R-models”) and quantum-mechanical-models (abbreviated
as “Q-models”) of physical systems: An R-model of a system S is fully character-
ized by the property that its “dynamical C *-algebra” Ag (see Sect.7.2.2) is abelian
(commutative). Hence Ay is abelian, too.

A Q-model of a system S differs from an R-model only in that the algebra Ag
(and hence Ay) is non commutative. Apart from this crucial difference, the algebraic
data defining an R- or a Q-model are as specified in points (I)—(III) of Definition 2.1,
Sect.7.2.2.

7.3.1 General Features of Classical Models

We recall a well-known theorem due to .M. Gel’fand. Let B be an abelian C*-
algebra. The spectrum, M , of B is the space of all non-zero *homomorphisms from
B into C (the “characters” of 13); M is a locally compact topological (Hausdorff)
space. If B contains an identity, 1, then M is compact.
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Theorem 3.1 (Gel’fand) If B is an abelian C*-algebra then it is *isomorphic to
the C*-algebra, Co(M), of continuous functions on M vanishing at oo, i.e.,

B~ Co(M). (7.61)

Furthermore, every state, w, on B is given by a unique (Borel) probability measure,
diLy, on M (and conversely).

Every pure state is given by a Dirac §-function, é,, on M, for some x € M i.e.,
the space of pure states can be identified with M, (which is why M is called “state
space”). Thus, the set of pure states of B cannot be endowed with a linear or affine
structure.

If By C Bis a subalgebra of B then any pure state of B is also a pure state of By.
If B = Ag is the dynamical C *-algebra of a realistic (classical) model of a physical
system, S, we call M =: My the state space of S. It is homeomorphic to the space
of pure states of S and does not have a linear structure, i.e. there is no superposition
principle for pure states. If S = S; vV S5 is the composition of two subsystems,
S| and S, these systems are, of course, classical, too, and we have that any pure
state of S is also a pure state of S| and of Sy; i.e., there is no interesting notion of
entanglement.

7.3.2 Symmetries and Time Evolution in Classical Models

According to point (IIT) of Definition 2.1 in Sect.7.2.2, symmetries and time
evolution of a system S are given by *automorphisms of its dynamical C*-
algebra As. If B is an abelian C*-algebra and M denotes its spectrum then any
*automorphism, «, of B corresponds to a homeomorphism, ¢y, of M: If a is an
arbitrary element of /3, thus given by a bounded continuous function (also denoted
by a) on M, then

a@)(§) =:a(g,'(€). EeM. (7.62)

Conversely, any homeomorphism, ¢, from M to M determines a *automorphism,
Ay, by

ag(a)(§) = a(¢™'(§)), EeM. (7.63)
If {0 s} ser is a groupoid of *automorphisms of B, with ¢, s o5, = o4, then there
exists a groupoid of homeomorphisms, {¢; s }; ser, of M, with ¢, ;0¢s,, = ¢y, such
that

ars(a)(§) = algs (§)), §eM, (7.64)

where ¢, = ¢; .
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Let us suppose that there is a subalgebra B C B that is norm-dense in B such that
a; s(a) is continuously differentiable in ¢ (and in s), for arbitrary a € B. We define

d o
8s(a) = Eat,s(a)|t=sa a€bB. (7.65)

Then &, is a *derivation defined on lg’ An operator § : Domg — B is a *derivation
of B iff Domg C B is norm-dense in B, § is linear, §(a*) = (§(a))*, and

8(a-b)=26@)-b+a-b) (Leibniz rule), (7.66)

for arbitrary a, b € Domg. If B is abelian then a *derivation § of B corresponds to a
vector field X on M, (assuming that M admits some vector fields):

§(a)(§) = (Xa)(§), (7.67)

where a corresponds to an arbitrary continuously differentiable function on M. If
d satisfies Eq. (7.65) then, for a € B € Doms,,

d%oz,,s(a)\,:s = §5(a) = X;a, (7.68)

where, for each s € R, X is a vector field on M . Equation (7.68) can be rewritten as

d
6.6 = X, (9s€).  EeM. (7.69)

Hence, at least formally, the homeomorphisms ¢, ; can be constructed from a family
of vector fields {X,};er by integrating the ordinary differential equations (7.69).
These observations can be made precise if the spectrum M of B admits a tangent
bundle, TM, and the vector fields X; are globally Lipschitz and continuous in s, for
all s € R.If X; = X is independent of s then ¢; ; = ¢, is a one-parameter group
of homeomorphisms of M, (and conversely).

All these remarks can be applied to a classical (model of a) physical system, S,
with an abelian dynamical C *-algebra Ag. One may then interpret the parameters
t,s € R of a groupoid {7;};ser of * automorphisms of Ag as fimes; and we
say that S is autonomous iff 7, = t,—; belongs to a one-parameter group of
*automorphisms of Ay, or if the vector field X on Mg = specAg generating
is time-independent. 1t is straightforward to describe general symmetries of S in
terms of groups of homeomorphisms of M.
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7.3.3 Probabilities of Histories, Realism and Determinism

A physical quantity or property of a classical physical system S is given by a
continuous function, @, on M. We denote the family of all properties of S specified
at a fiducial time 7y by Ps = {a; }icis. A possible event in S at a time ¢ corresponds
to the characteristic function, X!y of an open subset, QII (1), of Mg given by

EeQlt)y & at)) el, (7.70)

where a; € Ps, a;(t) = t,4(a;), and I is an open subset of R; (see Definition 2.3
in Sect. 7.2.3).

Let ¢ ; denote the homeomorphism of M corresponding to 7, ;. Setting 2/ :=
b0 (21(2)), we have that

EeQl(t) & a)E) el & ty@)E) el
& i (. (£) €T & 1= i (£) € QL.

We choose n properties, ajy, ..., a,, of S tobe measured attimes #; <, <... <{,,
with the measured value of a; contained in the interval I;,i = 1,...,n. We let
Q; (#;) be the open subset of M given by

£€Qit) ©ai(t)E) el (7.71)

i - 15 ey n, and Ql = ¢f(),fi (Ql(tl))'
Let u be a state of S, i.e., a probability measure on M. Every theoretical
prediction concerning S is the prediction of the probability of a history, {&, =

¢f0,ti (é) € Qi };'l=1:

Proby (e - -+ At} = /M dp(®) [ xonn ®)
s i=l1

n (1.72)
= /A/I dﬂ(s)l—[XQ, (¢l‘0,l‘i (S))

i=1
If pu is a pure state, i.e., u = J¢,, for some & € My then
n n
Probs, {Xauw)s -+ X2uan} = | [ X&) = [ [ 12 @), (7.73)
i=1 i=1

i.e., the possible values of Probgéo are 0 and 1, for any & € My and all histories. If
& = ¢1,.1(£o) is the trajectory of states with initial condition & at time ¢, then

Probgéo{)(gl(,l), e X =1 =&, € Q;, (7.74)
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for all i = 1,...,n; otherwise, Probgso vanishes. If § ¢ €; then the event
{¢r,:(§) € Q;} is first observed at time ¢ = t,, where

t; =inf {t | &, = ¢y.: (60) € i}, (7.75)

and it is last seen at time 7;, where

1= sup {t | 50,: = ¢t0,t($0) € Q;}. (7.76)

These features of classical physical systems, in particular the “0O-1 laws” in
Eq. (7.74), are characteristic of realism and determinism: Given that we know the
state, &, of a system S at some time #,, we know its state, & = ¢y,,(&o), and the
value, a; (&), of an arbitrary property, a; € Ps, of S, at an arbitrary (earlier or
later) time t.

Remark 3.2 (i) A straightforward extension of Eq. (7.72) is the basis for a defini-
tion of the dynamical (Kolmogorov—Sinai) entropy of the state u; see [52, 65].

(i1) A special class of classical systems are Hamiltonian systems, S, for which
M is a symplectic manifold, and the homeomorphisms ¢, ; are symplecto-
morphisms.

7.4 Physical Systems in Quantum Mechanics

As indicated in the last section, the only feature distinguishing a quantum-
mechanical model of a physical system S (a Q-model) from a classical model
(an R-model) is that, in a Q-model, As and hence Ay are non-commutative
algebras. This has profound consequences! In this section, we recall some of the
better known ones among them; in particular those that concern problems with the
Schwinger—Wigner formula; see Postulate 2.5, Eq. (7.58).

7.4.1 Complementary Possible Events Do Not Necessarily
Exclude One Another

Let us recall the main task we are confronted with: We have to clarify what the
mathematical data (see Definition 2.1, Sect. 7.2.2)

(Ps, As, {tis}1ser, @ € S5) (7.77)
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tell us about the “behaviour” of the system S, as time goes by; in particular about the
empirical properties displayed by S and the events happening in S. This task will be
shouldered for quantum-mechanical models in Sect.7.5; it has been dealt with for
classical models in the last section, (see also [32]). To set the stage for the analysis
of Sect. 7.5, it is useful to return to formulae (7.52), (7.53), (7.57) and, in particular,
formula (7.58) for the probability of histories; see Sect.7.2.3. Thus, we consider n
possible events associated with physical quantities/potential properties, a; € Ps, of
S measured attimes; € A; CR,i =1,...,n,withA; <Ay <... < A,. Given
a state w on Ay, possible events are represented by spectral projections, HL’} € A%,

of the operators a; (t;) € Ag. The projections 1) are given by
Ht(lii) = Hl()cl;)(ti) = Pai(fi)(lgg,-)v (7.78)

o =1,...,ki,i =1,...,n, where I(ii are disjoint measurable subsets of R with
U];’l'_: 1. 2 spec m, (a; (1;)). It follows that

ki

Z nd =1, (7.79)

o =1

forall i. Asin Eq. (7.57), we set

Hi =1 .. .0, 1<k=<n (7.80)
A stretch, h;‘ (@), of a history i («) is defined by
hi() ={1,... .Y} 1<l<k=<n, (7.81)
with 1" := h' (). Furthermore, we set
o 1) (k=1) 1pk+1) (n)
hg =AM, 2 T T s IV (7.82)

In the Schwinger—Wigner formula (7.58), the probability of a history, h", of S, given
a state o, has been defined by

Prob, {1{}),... . I} := o (H' (@) *H (@) = o@PT) ... I .. IO,
(7.83)

with properties (1)—(3), (see Egs. (7.59) and (7.60)).
Here we wish to point out some fundamental problems with formula (7.83)
in quantum mechanics. Suppose that the complementary possible events
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Hg’), .. H(’) were mutually exclusive, given that H,(xll), .. H,(jl })H,(x’li}), ., H,(;Z)

are observed for some i < n, then we would imagine that the “sum rule”

ki
>~ Prob,, 7} (@) = Z Prob,, {T1{), ..., TI%, ... T}

o =1 o =1
) (i—=1) G+l (n) (7.84)
= Prob, {T1{),... . I{~), I+, ... I}
= Prob,, h?(g)

holds; see Eq.(7.82). If HSI.) commuted with the operator Hi"+1(g), for all o;—as
is the case in every classical model—then Eq. (7.84) would hold true. However,
because of the non-commutative nature of Asg,

(9, H' (@) # 0, (7.85)
in general. This leads to non-vanishing interference terms,
o ((H{™ @) 1Y (H] @) HYy @) H T @) (7.86)

with o; # pB;. In the presence of non-vanishing interference terms the sum
rule (7.84) is usually violated. This means that the complementary possible events

H(li) yen H(i) do, apparently, not mutually exclude one another, given future
events Hg ﬂ) ey Hf;;) that cause interference. Put differently, a history A" does,

in general, not result in the determination of a potential property a;, of S in the
i'" observation (or measurement), given the data in (7.77) (the time evolution
{Trs}rser, and a state w). If the sum rule (7.84) is violated, then the operator
a;(t;) does not represent an empirical property of S, given later observations of
physical quantities a; 41, ..., a,. Apparently, the operators a € Ps do, in general,
not represent properties of S that exist a priori, but only potential properties of S
whose empirical status depends on the choice of the time evolution {t; };ser Of
S = S Vv E and of the state . This will be made precise in Sect. 7.5.

7.4.2 The Problem with Conditional Probabilities

In Sect.7.2.3, (7.59) and (7.60), we have seen that

[t (@) == Prob, {1V, ... . TI{} (7.87)



7 Quantum Probability Theory and the Foundations of Quantum Mechanics 161

is a probability measure on Zy, X ... X Z,. Letus fix a1, ..., i1, Qit1,..., 0,
and ask what the conditional probability

Proby, {T1) | 7% (@)} (7.88)

of the possible event Hij} is, given i, and h:}; (see Eq.(7.82)). Since (7.87) defines
a probability measure, we may define

Mw(alv-‘-,aia-"5aﬂ)

Prob,,, {T1{) | A (@)} :== — .
! Yp—i Mo, o Biven o)

(7.89)

Unfortunately, there is a problem with this definition! Recall that H/(Bi,-) is a shorthand

for the spectral projection P, ;)(/ éi). We fix a subset [/, but introduce a new
decomposition of spec a; into subsets

Ii=1, R\I, =Up,Ij
with ié N i}f = @, for B # y, and define
TG o= Py, (I5).
Bi =1,...,m;. We define
Po(@1y. .y Biye.,y) = Probw{Hgfl), e I:Igi), el Hg;)}.
Then
ooy, ... 1, oo ) = (o, ..o, ..., 0);

but, most often, the putative “conditional probabilities” are different,

Proby, {T1$) | 7% (@)} # Proby, {T1Y) | A} (@)}, (7.90)
unless all possible interference terms vanish. Thus, in general, there is no meaning-
ful notion of “conditional probability” in quantum mechanics.

It may be of interest to note that if the operators a; have pure-point spectrum with
only two distinct eigenvalues then

M =10 = {35210,

and we have equality in Eq.(7.90). These findings may be viewed as a general
version of the Kochen—Specker theorem, [51].



162 J. Frohlich and B. Schubnel

Let us recall a “test” for one of the possible events {Hff,.)}zj _, to materialize in
a measurement at time #; of the potential property of S represented by the operator
a; € Ps; (see [32] and references given there). For this purpose, we introduce the
matrix

Pl i=o@y) .. Iy . n;?), (7.91)

with o, = «),; see (7.17). Classically, P* = (Pg“fg/) is always a diagonal matrix,

because all the operators Hij} commute with one another and by Eq. (7.52). We say
that a family of histories {4/ (a} is consistent iff the commutators

[T, HY'y (@)]

vanish, forall o, and i = 1,...,n; (see [41]). If {h(a)} is consistent then Py
is diagonal, and the sum rules (7. 84) are valid forall @ and alli = 1,...,n. We say
that a family {4 («)} of histories is §-consistent(0 < § < 1) iff

Img, Bl @]l < 1=, (7.92)

for all i.
A 1-consistent history is consistent. We define a diagonal matrix A“ by

Clearly inequality (7.92) implies that
| P — A®| < const.(1 —§). (7.93)

This shows that, for a §-consistent family of histories, with § =~ 1, the sum
rules (7.84) are very nearly satisfied, meaning that the events H() ye 1'[('
mutually exclude one another FAPP (“for all practical purposes”, [9]). In [32] we
have called

e? = 1—|P° - A?|

the “evidence” for 1'[(1'), .. H(') to mutually exclude one another, FAPP, i =
1,...,n. Apparently, if e® is very close to 1, then everything might appear to be
fine. Well, the appearance is deceptive, as we will explain below!

Dynamical mechanisms that imply that || P® — A®| becomes small, i.e., e®
approaches 1, in suitable limiting regimes are known under the names of “dephas-
ing” and “decoherence”; see [37, 47,49, 75]. Understanding decoherence is clearly
an important task. Here we summarize a few observations on those mechanisms; but
see Sects. 7.5.3 and 7.5.4. (Some instructive examples will be discussed elsewhere.)



7 Quantum Probability Theory and the Foundations of Quantum Mechanics 163
7.4.3 Dephasing/Decoherence

In our discussion of near (i.e., §-) consistency of families of histories, ", operators
Q7 (a), defined by

Q@) == (H (@) Hf' (@) = TP (%) ... I (tn) ... T (1), (7.94)

te <tgk+1 <...<ty, 1 <k <n,play an important role. Inequality (7.92) implies
that

IO, 0 @]l <2(1-8) < 1 (7.95)

if § is very close to 1. Condition (7.95) is slightly weaker than (7.92), so we will
work with (7.95). If (7.95) holds, for all i and all @, the sum rules (7.84) are
satisfied, up to tiny errors, and the matrix P® is very nearly diagonal; so there is
“decoherence”. A (very stringent) sufficient condition for

MY, 0% (@] =0 (7.96)

to hold, for all i and all ¢, i.e., for perfect decoherence to hold, is the following one:
We observe that

Oy(a) € &2, , forall , (7.97)
where the von Neumann algebras £, of possible events observable at times > ¢

have been introduced in Definition 2.4, Sect. 7.2.3. If there is loss of information, in
the sense of condition (7.49), more precisely if the relative commutants

(€2,,) NEL.  ti <h <, (7.98)
are non-trivial, for suitable choices of sequences of times ;1 < t, < ... < f,

f1 <t <...<1I,,and if the operator

a;i(t;) € (5§,l_+1)’ N ngi, (7.99)
and hence HS} belongs to (5§ti+l)’ﬂgi’;,for alla; = 1,... ki, witht;_ <f; <,
then B

[0S, 074 (@)] =0, (7.100)

for all o; and all . If (7.99) and hence Eq. (7.100) hold, for all i < n, then there is
perfect decoherence, and the histories {// («)} form a consistent family.
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The scenario for decoherence described here is encountered in relativistic
quantum field theories with a massless particle (e.g., the photon), as can be inferred
from results in [14, 17]. In non-relativistic quantum mechanics, the above scenario
for decoherence remains plausible, provided one allows for small changes of
the operators a; (#;) into operators d;(#;) that belong to (€2, +1)/ N 8;’?1_. In this
connection the following result may be of interest. -

Theorem 4.1 Let Hl(xll), ceey Hg;) be orthogonal projections, and let the operators
Qi (a) be defined as in Eq.(7.94). Suppose that

IME). QF @)l < e, (7.101)
foralli = 1,....n—1and all « = (o1,...,ay), with € sufficiently small
(depending on the total number, ZZ:.I ki, of n-tuples a, withoa; = 1,...,k;). Then
there exist orthogonal projections Hg,.), o =1,...,ki,i =1,...,n, with

. ki
IO = 64,509, Y MY =1, (7.102)
o =1
such that
IS =TS < Ce, (7.103)
and
09, 014, (@)] =0, (7.104)

forall @ and alli < n — 1. The constant C in Eq.(7.103) depends on y_;_, k;, and

€ must be chosen so small that Ce < 1; (in which case I:L(;,) and HSI.) are unitarily
equivalent).

Remark 4.2 The operators , QZ(Q) are defined as in Eq.(7.94), with HS} ) =
H,(jl.) replaced by I:Ifx',.) , foralli.

The proof of Theorem 4.1 can be inferred from Sect. 4.5 of [32], (Lemmata 7
and 8).

Interpretation of Theorem 4.1. Apparently, dephasing/decoherence in the form of
inequalities (7.101) implies that if one reinterprets the measurements made at times

) <ty <...<t, asobservations of events 1:[,()[11), R I:If)f?) that differ slightly from
the spectral projections H((Xll) AU nf;;) of potential properties aj, ...,a, of S then

all interference terms (see (7.86), (7.91)) vanish, the matrix P is diagonal, and the
sum rules (7.84) hold. The family of histories { l:ILII), el Hf{? } is consistent, and the
complementary possible events 1:[(11) ey I:I,({’_) mutually exclude one another.

i
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Critique of the Concept of ‘“Families of Consistent Histories”

®

(i)

Given a measurement of a potential property a; € Ps of S at some time
t;, the success of this measurement, as expressed in the decoherence of
(absence of interference between) the events H(ll), ceey H,((’i), apparently not
only depends on the past but seems to depend on the future, namely on
subsequent measurements of potential properties a;+1,...,a, at times > ;.
This is how conditions such as (7.92), (7.95) and (7.101) must be interpreted.
The consistency of a family {h’ (e)} of stretches of histories (see Eq.(7.81)
for the definition) can apparently only be assured if one also knows the family
{h? . (a)} of stretches of histories in the future of {h (@)}. This may be a deep
aspect of quantum mechanics; but it is more likely an indication that there is
something wrong with the concept of “consistent (families of) histories” and
with a formulation of decoherence in the form of inequalities (7.101).
Accepting, temporarily, the idea of “consistent (families of) histories”—e.g., in
the appealing form of conditions (7.99)—we encounter the following problem:
Fixing the data

(Ps, As., {t1.s}1.5er. 0 € Sy), (7.105)
see (7.77), we may consider two (or more) families of potential properties of S,
{ai,...,a,} and {b1,...,bn}, (7.106)

measured at times #; < ... < f, and ¢#{ < ... < t;,, respectively, with a; €
Ps and b; € Ps, for all i and j. Both families may give rise to families of
consistent histories (e.g., if conditions (7.99) hold for the a;’s and the b;’s).
Yet, there may not exist any family

{ci.....ends N > n+m,

of potential properties of S (c; € Ps, for all j) measured at times 77 < ... <
T, with
{Th,.... TN} 2 {t1, ...ty U], ... 00},

encompassing the two families in (7.106) and giving rise to a family of
consistent histories. Since the data (7.105) are fixed, the confusing question
arises which one of the two or more incompatible families of potential
properties {aj,...,a,}, {b1,...,bn}, ...will actually be observed in the
course of time, i.e., become real, (or, put differently, correspond to empirical
properties). Some people suggest, following Everett [28], that there is a world
for every family of potential properties of S giving rise to a family of consistent
histories to be observed. This is the “many-worlds interpretation of quantum
mechanics”, which we find entirely unacceptable!
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(iii)) Unfortunately, the problem described in (ii) persists even in the decoherence
scenario described in (7.96)—(7.100), above, because the von Neumann alge-
bras

M; = (g;fi+1)/ N S;E (l,'_l < fl < li) (7.107)
are usually non-commutative. If there are an a; and a b; from the sets of
operators in (7.106) belonging to the same M,, and if

i (1), b; (1)) # 0, (7.108)

then the problem described in (ii) appears on the scene. It could be avoided
if one assumed that a; (¢;) and b; (t;) must belong to the center, Z4,, of M,
because then the commutators on the left side in (7.108) would all vanish.
The right version of something like this idea will be formulated in Sects. 7.5.3
and 7.5.4.

(iv) It has tacitly been assumed, so far, that the times at which quantum-mechanical
measurements of potential properties of a system S are carried out (we are
talking of the times #; at which potential properties a; of S are observed) can
be fixed precisely (by an “observer”?). Obviously, this assumption is nonsense
in quantum mechanics, (as opposed to classical physics); see Sect. 7.5.4.

In an appendix, the reader may find some remarks on positive operator-valued
measures (POVM) [61] and their uses; (but see also the end of Sect. 7.5.4 and [33]).

7.4.A Appendix to Sect. 7.4: Remarks on Positive
Operator-Valued Measures (POVM)

It may and will happen sometimes that the commutators
[fo",.’, (3]

are not small in norm, and the matrix P“ defined in Eq.(7.91) has “large” off-
diagonal elements. Then some of the operators a; representing potential properties
of S are not measurable and do apparently not represent empirical properties of S,
given the data

(PS7 -A§7 {tt,S}I,SE]Rs w € Sf)

While this is a perfectly interesting piece of information, it raises the question
whether formula (7.83) continues to contain interesting information, although the
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sum rule (7.84) may be strongly violated. A conventional answer to this question
involves the notion of “positive operator-valued measures” (POVM): Fork~ < k™,
we define

HE (@ =0 nihndo. (7.109)

G+ Q=41 k=
We observe that

3 (H,ff(g))* H @ =1. (7.110)

o

(and
Y @ (B @) =1)

Consider

n = + n
Prob, {T1{}). ... . TI{"} = Prob, {h} ~'(). A= (@). B}, (@)}

- + + ok
= o (Y HE ) HY HE )
(7.111)

We may say that h’;t () represents a single experiment on the system S if the sum
rule (7.84) is violated substantially, foralli = k=, k= +1,...,k™, but

> Probo{hf @) A (@) B (@)} & Probu {hE T @), B (@),
Qe s -

(7.112)

up to an error that is so small that it is below the experimental resolution. In view of
Eq. (7.110), our discussion can be formalized as follows.

Definition 4.3 The “square root” of a positive operator-valued measure (POVM) is
a (finite) family of operators

X = {X.}0_, (7.113)

with the property that

N
d XiXy=1. (7.114)
a=1

The “positive operator-valued measure” is then given by the operators
(X Xa}a—i-
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Given a time-ordered sequence of (“square roots” of) POVM’s, X (1), X & s
the probability of observing a “generalized history”

M@ ={Xy,.... X} (7.115)
is given by
Prob, { XV, ... . X"} 1= o (XI)* ... (x)*x ... xV). (7.116)

The probabilities of such generalized histories have the desirable properties (7.59)
and (7.60). We say that {XV, ..., X™}, with X (the square root of) a POVM,
for all i, describes a time-ordered sequence of n successful experiments, or
observations, iff

Aj—1 T4

> “Prob, (X, XD, XY A~ Prob (XD, XD XD x
o

(7.117)

up to a tiny error below the experimental resolution, foralli = 1,...,n and all «.
An example of events described by POVM’s is described in Sect.7.5.4; (see also
[33D).

All the concepts and notions introduced in Sect. 7.4 can be carried over to this
generalized setup, after replacing @; by XV and Hij} = Hg,.) () by Xo(li) =
Xéf)(Ai) (or their adjoints), i = 1,...,n, with A} < ... < A,. Wherever possible,
we will, however, consider self-adjoint operators and their spectral projections,
instead of POVM’s, throughout this essay; (but see Remark 5.8, Sect. 7.5.4).

7.5 Removing the Veil: Empirical Properties of Physical
Systems in Quantum Mechanics

In a classical model of a physical system, .S, properties of S exist a priori. They
are represented by real-valued continuous (or measurable) functions on the state
space, M, of the system. In contrast, in a quantum-mechanical model of a physical
system, the system can still be characterized by a list, Ps, of potential properties
(represented by self-adjoint operators); but these properties do not exist a priori.
Whether they correspond to empirical properties of S, or not, depends on the choice
of the environment E; (e.g., on the experiments that are made). The question then
arises what the empirical properties are that will be observed in the course of
time, given the time evolution {t;;};ser of S = SV E and its state w € Ss;
(see Definition 2.1, Sect. 7.2.2). In (7.43), we have identified the fundamental data
underlying a model of S,

(Ps, As. {tis}iser C "Aut(As), w € Sy), (7.118)
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see also (7.77) and Sect.7.2.2. These data ought to determine which empirical
properties S exhibits and what family of histories of events (but, of course, not which
history) will be recorded in the course of time if S is monitored/observed when
coupled to a given environment/equipment £E. We have seen in Sect. 7.4 that the
answer to the question of what exactly the data in (7.118) determine is not obvious.

7.5.1 Information Loss and Entanglement

Let a be a potential property of S (¢ = a* € Pg). We assume, for simplicity,
that spec a consists of finitely many eigenvalues, oy, ®s,...,ar. Let w be the
state of S = S Vv E, and let us suppose that, thanks to an appropriate choice
of E, the potential property a is observed (i.e., becomes an empirical property
of §) around some time ¢. According to almost everybody’s understanding of
quantum mechanics, the following claim appears to be reasonably plausible: After
the observation of @ at a time ~ ¢, S evolves as if its state where given by

k
® —> Zpiwi, (7.119)

i=1

where p; is the probability to observe the value «; of a, and w; is a state with the
property that if a were observed in a system prepared in the state w; at time ~ ¢
then its value would be «; with certainty. If no measurements are made before a is
observed then, according to Born [11],

pi = o(I1; (1)),

where I1; (¢) is the spectral projection of the operator a(t) = t;4,(a) corresponding
to the eigenvalue ¢;, (with ¢ the time of measurement of a). Note that the state
in (7.119) is usually a mixed state, i.e., an incoherent superposition of the states
w;, even if w is a pure state. It is perceived as one aspect of the “measurement
problem” to understand how a pure state can evolve into a mixture. (Another aspect
is to understand why the state of S is given by w;, right after the measurement of a,
if a is measured to have the value «;, forsome i = 1, ..., k. This will be discussed
in Sects. 7.5.4 and 7.5.6.)

In order to explain why the first aspect of the measurement problem does not
represent a serious problem, we have to return to an analysis of two fundamental
phenomena: (LoZ) Loss of information into E; and () Entanglement between S
and E.

In Definition 2.2 of Sect.7.2.3, we have introduced algebras, £, of potential
properties of S observable/measurable after time t. These algebras are C*-
subalgebras of the algebra Ag. We have denoted by £ the smallest C *-algebra
containing &, for all 1 € R; see Eq. (7.47). Clearly & C Ag. As indicated
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in Sect.7.2.3, it is the consequence of a general principle— Duality between
Observables and Indeterminates”—that Es is properly contained in Ag (and that
the relative commutant of £ inside A5 contains a subalgebra isomorphic to Es).
This principle will be discussed in the context of examples in a forthcoming
communication.

The algebra Es carries an action of the group R of time translations by
*automorphisms {7, };eg, where 7, determines *«morphisms

T EZt’ — EZH—V - ng’s

forallt’ € R and all ¢ > 0; see (7.50) and (7.51).

Thus, in hindsight, the mathematical data enabling one to predict the behavior of
a physical system S in the course of time, given its state, can be chosen to consist
of the filtration of algebras

As D Es D E5 2 E5p D {C1}, t'>1, (7.120)
along with a specification of *morphisms (time translations)
T &5y —> Esiqr C Esy, (7.121)
fort’ € R, t > 0, and of a state w,
o : state on Ag. (7.122)

In Definition 2.4, Sect. 7.2.3, we have introduced the von Neumann algebras £2,,
t € R, and £¢. (We recall that if o’ is an arbitrary state on s normal with respect
to w then £¢" = £ and €2, = £2,, forall ¢.)

Loss of information (LoT) is the phenomenon that if successful measurements of
potential properties of S have been made between some times ¢ and ¢t/ > ¢ then >/
is strictly contained in £s,. Together with the phenomenon of entanglement (£), this
may entail that the restriction of the state w to the algebra Esp is a mixture (i.e.,
an incoherent superposition of approximate eigenstates of some physical quantity,
asin (7.119)), even if w is a pure state of Es.

While (L0Z) is common to classical and quantum-mechanical models of physical
systems, (£) and (7.119) (with p; > 0, for two or more choices of i) is
specific to quantum-mechanical models. We have seen in Sect. 7.2.3 that, quantum-
mechanically, (£LoZ) may manifest itself in the property that some of the relative
commutants,

(&) néee, (7.123)
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are non-trivial, for some ¢ > ¢’; (see (7.49)). If &2, is a factor (i.e., a von Neumann
algebra with trivial center, as defined in Sect.7.2.1, (7.25)) then (7.5.6) implies that

£2, S EL,. (7.124)

7.5.2 Preliminaries Towards a Notion of “Empirical
Properties” of Quantum Mechanical Systems

Let a = a* € &g be an operator representing a potential property (or physical

quantity) of S (i.e., a = 17 4/(c), ¢ € Ps), and let w denote the state of S. We
assume that @ has a finite spectrum,

k
a= Za,-l'[,-, k < o0, (7.125)

i=1

where «y, . . ., o are the eigenvalues of a (now viewed as a self-adjoint operator in

the von Neumann algebra £¢), and I1; = Hg,.) € &% is the spectral projection of a
corresponding to o;, i = 1,...,k. How should we define empirical properties of
S? To say that a is an empirical property of S at some time ¢’ earlier than ¢, i.e., that
a is measured (or observed) before time ¢, means that

k
w(b) ~ Y w(I;bI1), (7.126)
i=1

for all b € £Z; ie., wige, is close to an incoherent superposition (mixture) of

eigenstates, pi_lw(Hi(-)Hi) (pi # 0), of a, where p; = w(Il;), (and p; > 0,

for at least one choice of i). A sufficient condition for Eq. (7.126) to hold is that
ac (82)/ nes. (7.127)

If there existed a sequence of times, #; < t, < ... < t,, and self-adjoint operators
ai,...,a,, with finite point spectra, as above, and

ar € (2,41 NEL,,
I =1,...,n—1,a, € &, , then the family of histories

. (0)] ()
Ky =(mP,.. iy
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where Hyl) is the spectral projection of a; corresponding to the eigenvalue a%) of
a;,l = 1,...,n,is consistent; see (7.96)—(7.100), Sect. 7.4.3. For this observation
to be interesting, the relative commutants (€2, ;)" N €2, would have to be non-
trivial and if we wish to escape from critique (iii) at the end of Sect.7.4.3 the
algebras (£, )" N €2, would have to be abelian, for all /. This does not look
like a satisfactory or plausible assumption, and we have to continue our search for a
good notion of “empirical properties”!

Definition 5.1 (i) Given von Neumann algebras M C A/, a state @ on A/ and an
operator a € N, we define {a, w] A to be the bounded linear functional on M
defined by

{a, w]pm (D) := w([a, b)), b e M. (7.128)
(ii) The centralizer (or stabilizer), C% ,, of w is the subalgebra of M defined by
Coy={aeM]|{a,wlm =0} (7.129)

It is easy to see that w defines a frace on C%,. This means that C{, is a direct
sum (or integral) of finite-dimensional matrix algebras, type-II; factors and abelian
algebras.

Remark 5.2 Centralizers of states or weights on von Neumann algebras play an
interesting role in the classification of von Neumann algebras, (in particular in the
study of type-III factors); see [19, 45]. In an appendix to Sect. 7.5, we recall a few
relevant results on centralizers.

Obviously, strict equality in Eq. (7.126) follows from the assumption that
{a, w]ee, =0, ac€é&g,. (7.130)

In other words, condition (7.130) implies that, as a state on the algebra £%, of
possible events in S observable after time ¢,  is an incoherent superposition of
eigenstates of a, even if, as a state on &, w is pure. However, to convince oneself
that w is a mixture (incoherent superposition) it is often enough to assume that the
norm of the linear functional {a,a)]gg[, with a € 5;’{, is small. Let us suppose
that a is self-adjoint and that its spectrum consists of finitely many eigenvalues
o] >y > ... > . Then

k
a = ZO[,‘H,‘,

i=1

where I1y, ..., I1j are the spectral projections of a satisfying I1; = Hi*, I, 11, =
611y, forall i,/ = 1,...,k, and Z?=1 I1; = 1. The following result is easily
proven.



7 Quantum Probability Theory and the Foundations of Quantum Mechanics 173

Lemma 5.3 The following assertions are equivalent:

(i) l{a, @]ee, (b)| <€|b]l, Vb € £2,
(ii) |w(b) — Y r_, w(I1;bI1;)| < const. €||b||, Vb € E2,.

In view of Lemma 5.3, one might be tempted to identify elements of the
centralizer

2, = Cy (7.131)

with empirical properties of S observable at times > t. Yet, this is not quite the
right idea!

(1) A family of operators, ay, ..., a,, with
a; € Cgt; s

i =1,....,n, 1 < 1 < ... < 1, does not necessarily give rise to a
family of consistent histories. The reason is exceedingly simple: Let H;’_l) ,
Il =1,...,ki_, be the spectral projections of a;—; € C>;,_,. Let w; denote the
state

w1 (b) = pi o Ve ),

where p; = a)(l'[f'_l)) > 0. Let us assume that p; > 0 for at least two distinct
values of /. The problem is that, in general, the assumption that a; € CZ, does
not imply that a; € Cg’,i, foralll = 1,...,k;—; for which p; > 0; this is the
phenomenon of “spontaneous symmetry breaking”. This means that the “sum
rule” (7.84), Sect. 7.4.1, may be violated at the ith slot, for some 1 < i < n.
Hence the family ay, . . ., a, may not give rise to a family of consistent histories.

(2) In general, the centralizers C%, are non-abelian algebras. If the centralizers
C2, are non-commutative algebras then identifying empirical properties of
S observable at times > ¢ with elements of C2, is subject to critique (ii),
Sect.7.4.3. Our task is then to find out which elements of C2, may correspond
to empirical properties of S. (The center of C2, is denoted by Z2,.1If Z2, were
known to contain operators representing potential properties of S then these
operators could be interpreted as empirical properties of S observed at some
times > ¢, and critique (ii) of Sect.7.4.3 would not apply, anymore.)

7.5.3 So, What are “Empirical Properties”
of a Quantum-Mechanical System?

Consider the data characterizing a physical system as specified in (7.120)—(7.122).
Let &, be the algebra of physical quantities pertaining to a system S that can be
observed at times > ¢, and let Es be the C*-algebra obtained as the norm closure
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of VR&. Let @ be a state on £s. By CZ, we have denoted the centralizer of the state
te -

o (viewed as a state on the von Neumann algebra £¢; corresponding to the weak
closure of £5; in the GNS representation associated with (s, ®)). We have seen,
after definition (7.129), that w|ce, is a frace on Cgt. This implies that

&
2 = /A Lias (7.132)

where every algebra Cﬁm, A e A = A,, is either a finite-dimensional matrix

algebra, ~ M, (C), of n, x n, matrices, with 1 < n, < oo, or a type-II; factor;
(see [69], Theorem 8.21 in Chapter 4, and Theorem 2.4 in Chapter 5). If CSM is
isomorphic to M, (C) then N
wicy,, X trem (). (7.133)
Let us assume, temporarily, that A is discrete, and
Ce = &C,, (7.134)
= AEA =
with
Sia = My, (O, n < oo, (7.135)
forall A € A. Then £2, is a von Neumann algebra of type I and
wige, =t pgt, (7.136)

where p2, is a density matrix, so that

P2, =" pa(OTL (), (7.137)
reA
and the operators IT,(r) = TI{(z) are the eigenprojections of pZ,, with

dim(IT5(t)) = np < oo, the weights p;(t) = py(t) > O are the eigenvalues
of pgt, arranged in decreasing order, and

(o) = Y pa(O)dim(I,(1) = 1.
AEA

Then CZ, ; >~ M, (C) is the algebra of all bounded operators from the eigenspace

Ran IT; (¢) to itself, and

wiee,, = PA(OwIIL(@)()).

>t,4
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Any operator a € £2, commuting with all the projections I, (¢), A € A, belongs to
CZ,, and any operator in the center 22, of CZ, is a function of the projections Iy (7),
A € A, Inparticular IT, (1) € 22, C C2,, forall A, (and hence the eigenprojections
of p2, might qualify as empirical properties of S).

Henceforth, we consider the special case specified in Eqgs. (7.134)—(7.137); (but
see Remark (1) of Sect.7.5.5, and Appendix 7.5.A).

Definition 5.4 Leta = a™ be an operator in £2,. We define
.Y 1
at = —t(I1)(t)a). (7.138)
ny

If A is such that p) (¢) > 0 then

1
—A
a’ = w(ITy(t)a).
o, O
Note that T* = 1. We set
a® =Y @', () € 22, C C2, (7.139)
AEA

and define the “variance of a in ®” by

Ava:= Y pp(O)Tr(I(1) (@ —a* - 1)%) = Yo(la —a®)?). (7.140)

AEA

We observe that if A’a = 0 then a € C¢,, and, on the range of p{’, d|Ranpp =
a® |Ranpe is a function of p?’, i.e., a|ranpe € Z<,. For a general element, a, of £¢,,

Ha. wleg (b)] = |w([a. b])| = |o([a — a®, b])|

(7.141)
<2vVo((a —a®))w(b*b) < 2A%a |b|,

for arbitrary b € £2,. Thus, if APa is small then [{a, w]ee, || is small, too, and
Lemma 5.3 then tells us that w|go is close to an incoherent superposition of
eigenstates of a.

Let duy () denote the spectral measure of the operator a = a* € £2, in the
state

ny (T (1) ().
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Then
0<w((@a=—a®)’) =Y pat)m itr(m(a —a")?)
reh g
= ¥ mtom [ du@e-a>
AEA
Thus,

pa(Ons / dis (@)@ — a2 < (A%a),

forevery A € A. We conclude that if, for some A € A,

Aa) 2 2’
oy, A4 <€

for some € > 0, then a has spectrum at a distance less than € from @.In particular,
if a has discrete spectrum then a has at least one eigenvalue oy, with

lay —a@| < e. (7.142)

Next, let a € Pg be the operator representing some potential property of S. Then
a(t) ==t y(a) € €L,

Definition 5.5 We say that a potential property of S represented by an operator
a € Pgs is an empirical property of S at time t within an uncertainty (of size) 6 > 0 iff

APa(t) <. (7.143)

Remark 5.6 1f § is below the resolution threshold of the equipment used to monitor
S then, FAPP, a(¢) indeed represents an empirical property of S at time ¢, in the
following sense:

(1) [H{a(?), w]ge, || is so small that it cannot be distinguished from 0;

(2) w(b) ~ Y., o(I1;(t)bI1; (1)), for all b € E2,, where I1(¢), [15(7),.. . are the
spectral projections of a(t), (assuming ¢ = a* has discrete spectrum; see
Lemma 5.3 for a precise statement);

(3) on the range of the density matrix p2,, a(t) is “close” to the operator a(¢)®” €
Z2

(4) a has eigenvalues near the numbers mk, for all A € A, for which
(pa(t)ny)~18? is small.
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One may then argue that if A{a(f) is very small, and if a measurement or

. . .. . —A
observation of @ € Py at a time = ¢ indicates that it has a value @ &~ a(¢) then one
may use the state

W) = %tr(l’[x(t)(-)) (7.144)

to predict the behavior of the system S at times later than ¢. This idea, reminiscent
of “state collapse”, will be further discussed below.

Note that the maximal uncertainty § admissible in statement (2) above depends
on the spectrum of the operator a.

7.5.4 When Does an Observation or Measurement
of a Physical Quantity Take Place?

Leta = a* € Ps represent a potential property of a quantum-mechanical system
S, which is assumed to be prepared in a state w on the algebra £s. We propose to
analyze whether and when a corresponds to an empirical property of S, in the sense
that, given the time evolution {7, s}; ;er of S and the state w, a is measurable (i.e.,
the value of @ can be measured or observed) at some finite time. Definition 5.5 and
the discussion thereafter suggest to consider the variance APa(t) (a(t) = 14 (a)),
of a(t) as a function of time t. This function is non-negative and bounded. Let § be
some non-negative number below the resolution threshold of the equipment used to
monitor S. Let ¢, be defined as the smallest time such that

AP a(ty) < 6. (7.145)

Then it is reasonable to say that a is observed/measured—put differently, a becomes
an empirical property of S within an uncertainty of size §—at a time 2 f. If the
equipment E used to monitor S is only sensitive to observing the eigenvalue «;
of a, i.e., to the possible event I1; (spectral projection of a corresponding to the
eigenvalue ;) then one may plausibly say that the possible event IT; is observed at
atime = t, iff

AP a(ts) + 1 — o(I1; (24))

is very small. In this case, we say that the equipment E prepares the state of S to lie
in the range of the projection IT;(¢) = ZAGA(I-) I, (¢), with t = t«, where Ag) is

defined by the property that |o; — mﬂ <68, forall A € AY. Thus, the function

Toa(t) == A%(1) (7.146)
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contains all important information on the time around which the potential property
a of S becomes an empirical property; and the function

Toa(t) == APa(t) + 1 — o(I1;(1)) (7.147)

tells us when (around which time) a detector sensitive to the possible event IT;
“clicks”; (see also [13, 73] for some ideas on this matter that will not be pursued
here).

Next, we analyze repeated observations/measurements, as in Sect.7.4.1. It
suffices to consider only two subsequent measurements. Let a = a* € Pg represent
a potential property of S, and let § > 0 be a measure for the resolution of the
equipment E used to monitor S in a measurement of a.

Definition 5.7 Fora = a* € Ps, 5§ > 0, and a time t, > —o0, we define a subset
of states on Ag (or on &5 C Ag) by

S(a,8.1) = {w € S | inf AVa(r) < 8}, (7.148)

where § is so small that properties (1) through (4) in Remark 5.6, above, are valid.

Apparently, S(a, §,t«) is the set of states of S with the property that, given the
time evolution {t; s }; ser, the operator a corresponds to an empirical property of S,
within an uncertainty of size §, that is measurable at some time after 7.

Next, we consider two potential properties of S represented by two self-adjoint
operators, a; and a,, and we suppose that, first, a; and, afterwards, a,, are measured.
For simplicity we suppose that the spectra of a; and a, consist of finitely many
eigenvalues ay), j=1,...ki <oo,i = 1,2. We assume that the state, w, of
S before the measurement of a;, belongs to S(ay, 61, t1x), for a sufficiently small
number §; (below a threshold of resolution). Then A;‘fal(tl) < §;, at some time
t; > f1«. A successful measurement of a; around some time #; > f14 results in the

assignment of a value a;l) ~ai(t) A e Afj ), to the physical quantity represented
by ai, where

AD = ke Ay | o) —al] <61, (7.149)

(For consistency, we assume that m?ién|a;l) — otl(l)| > 261.) The probability of this
j#

measurement outcome is given by

Pl = 3 oMm) = 37 prng = o @) + 06,
kEAz(A{) AeAif)
(7.150)

where p(t1) = pP(t1), ny = n§ = dimIl{(51), and I1,(11) = TI9(z1) are as
defined in Eqs. (7.136) and (7.137), (the superscript “®” is supposed to highlight the
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dependence on the state w), and H;l) (1) is the eigenprojection of the operator a; (¢1)

corresponding to the eigenvalue 0551) It P ;l)(tl) is very small one can ignore the
possibility that, for a system S prepared in the state @, an observation/measurement
of a; will yield a value ~ ajl).

Let w; denote the state

Yy @@L 1) @V @)bn1 (1)
PO () P

w;(b) = + O(81),

(7.151)

for an arbitrary operator b € 5%, with ¢ > 1;; (recall that Egt C Sgtl, fort > ty).
Let us suppose that, forall j € {1, ..., k;} for which P;l)(tl) > §, >0,

w; € S(az, 82.130), (7.152)

for some time tz(i) > t1. If §; is chosen small enough one may expect to be able to

successfully measure the quantity represented by a, at a time #, > tz(i) , assuming
that, at a time #; < tz(i) , a; was found to have a value =~ oc;l) .

The joint probability to find a value ~ aﬁ-l) in a measurement of @; around some

time #; and, in a subsequent measurement around a time 7, > #;, a value ~ a,(z) of
the quantity represented by a,, (with [ € {1,...,k,}), is given by

Prob,, {T1{"(11). ITT” (1)} = P{"(t1) > w; (I} (t2))
renl)

= oM )P () (1)) + 061 v 8).
(7.153)

where Ay) = {1 € Ay, | ax(@) —a®| < 8}, and 8; v 6, = max{8,.5,}.
The definitions of centralizers, Cg,l, etc., and of the variance AYa(t) readily
imply that

ki

> o )P ()b ()T (1)) = o2 ()T (1) + OG).
=1

! (7.154)

and if w; € S(az, 8, tz(i)) then

ko
Y 0@ )P ()b ()1 (1)) = 0@ )b (1)) + 061 v 62).
- (7.155)
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for an arbitrary operator b € &2, with t > max; tz(i). It is clear how to
extend our discussion to an arbitrary chronological (time-ordered) sequence of
measurements of quantities ay, .. .,a,, (a; € Ps, Vi). Moreover, the mathematical
relationship between Eqs. (7.154) and (7.155), on one side, and §-consistent families
of histories—see (7.92) and (7.93), Sect. 7.4.2—on the other side, is easy to unravel.
We do not wish to discuss further details.

Remark 5.8 (Remark on the Role of POVM’s) It may and will occasionally
happen that, given that a quantity represented by an operator a; has been
observed/measured, the quantity represented by the operator a, can be measured,
subsequently, only for certain, but not all, outcomes of the measurement of a;.
More precisely, it may happen that, for some eigenvalues a}, j € G, of ay,

w; € S(az.85.10), while, fori € B:={1,....ki}\G,
w; ¢ S(az, 52, Zz*), (7156)

for any #,. < o0; (8; and §; being chosen appropriately, depending on the resolution
of the corresponding measurements, as discussed above).

If B # @ then one must take the position that the observations of a; and
a, represent one single measurement, which must be described using “posi-
tive operator-valued measures” (POVM’s)—see Appendix 7.4.A, Eqgs. (7.113) and
(7.114):

X:{Xﬂ,Xi|j€G,l:1,...,k2,i€B} (7157)

where, for j € G,

Xp= > Y oy ehng @) ~ o e)n @), (7.158)

nend) aens)
(up to a small perturbation of O(8; V §,)), while, fori € B,

Xi= ) 090 ~ T @). (7.159)
reAd)

where t; and tz(j ) are the times of measurement of a; and a,, respectively. Then

ko
DD XX+ ) XX =1 (7.160)
j€G I=1 i€B

The use of POVM’s will be discussed in more detail and in connection with
concrete examples elsewhere. Here we just remark that simple examples showing
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why one needs to introduce POVM’s are encountered in the analysis of repeated
Stern—Gerlach measurements of atomic spins (followed by detectors sensitive to the
arrival of the atoms).

7.5.5 Generalizations and Summary

ey

)

In order to keep our exposition reasonably simple, we have made the simplify-
ing assumptions (7.134) and (7.135). It is, however, not very hard to develop our
ideas in full generality. For this purpose, we must return to formula (7.132): The
space A = A, appearing in (7.132) is the spectrum of the center, Z2,, of the
centralizer, C%,, of the state w, viewed as a state on the algebra £2,. The theory
of “conditional expectations” [68] enables us (under fairly general hypotheses)
to construct a conditional expectation é>; : £, — ZZ,, which permits us to
associate with every operator a € £2, an operator a® E_Zﬁt. The map a +— a®
is linear, and (a®)® = a®. (In the si)ecial case where Equ(7.134) and (7.135)
hold it is given by formula (7.139).) Having constructed a®, we set

APa := Jo((a —a®)?).

From this point on, we may follow the arguments from (7.141) onwards, and in
Sect.7.5.4.

In our approach to the “quantum theory of experiments/quantum measurement
theory”, the “ontology” underlying a quantum-mechanical model of a physical
system S is represented by

(a) aset, Ps, of physical quantities characterizing S;
(b) a filtration of C *-algebras
5326’2; QSZt/D{C']l}, ISI/,
and *morphisms

T 1 &y —> Exprqr S Esy,

fort > 0;
(c) astate w on &s;
(d) the centralizers Cgt of w|e., and their centers th.

If S is prepared in a state w before one attempts to measure a physical quantity
represented by an operator a € Ps then the measurement is successful around
some time ¢ if a(t) = 1,4 (a) is “close” to an operator in Z¢,, in the sense that
the variance, A?a(t), of a(¢) in w is small. -
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3)

“)

(&)

Let us return to the special situation described in Eq.(7.134) through
Eq.(7.137). Suppose that all the algebras £2,, ¢t € R, are isomorphic to a
fixed factor & ~ B(H) of type I». Then our approach is “dual” to one
where the density matrices {p?,},;er are interpreted as states on £ and are
considered to be the fundamental objects, and time evolution is described in
terms of completely positive maps on the space of density matrices. With
the idealization/approximation that time evolution is given by a groupoid of
completely positive maps, this is the point of view popular among quantum
information scientists; (see, e.g., [53]).

The trajectories of density matrices {p%,},er are then what replaces the
trajectories {£ = ¢, (£0)}:er Of a classical system (as discussed in Sect. 7.3).
However, because of the phenomena of information loss and entanglement, the
density matrices p%, tend to describe mixed states, even if the state w is a pure
state of the algebra g, and hence only yield probabilistic predictions, while the
states &, of a classical system are pure, for all ¢, provided the initial state is pure,
and hence yield deterministic predictions.

It is clearly important to extend our theory to local relativistic quantum theory
(LRQT). In LRQT, the algebras £>,, t € R, are replaced by algebras, Ep,
of “observables” localized inside the forward light cone of a point P (the
momentary position of an observer) on a time-like curve in space-time, (the
observer’s world line). If the theory describes a massless photon and if w
is a state normal to the vacuum then the von Neumann algebras £% are all
isomorphic to the hyperfinite factor of type III;, as discussed in [17]. Hence
the algebras £¢ do not have any pure states, and the principle of Loss of
Information (Lo0Z) is a fundamental feature of the theory. We will return to
this topic elsewhere.

It is clearly important to understand how quantum-mechanical systems can be
prepared in specific states (“preparation of states”). This topic will be discussed
in [34]; but see also (7.144) and the remark right above (7.146). Moreover, it is
quite crucial to back up the general analysis presented in this essay with simple
models of “information loss” and “decoherence/dephasing”. This will be done
in a forthcoming publication.

The last topic we briefly address in this essay is a theory of weak (non-

demolition) experiments, following [6]. This theory explains why in many experi-
ments, the system ends up being in an eigenstate of the operator representing the
quantity that is measured, i.e., why “facts” emerge in non-demolition measure-
ments.

7.5.6 Non-demolition Measurements

After having presented a long and rather abstract discussion of “direct (or von
Neumann) measurements”, in Sects. 7.5.3=7.5.5, we wish to sketch the theory of
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“indirect (non-demolition) measurements”. The main results described here have
recently appeared in [6]; see also [1]. The practical importance of these results
comes from recent experiments; see, e.g., [42].

We consider a physical system S (e.g., the quantized electromagnetic field in
a cavity). We wish to measure a physical quantity represented by an operator
a = a* € Ag (e.g., the photon number inside the cavity) with the help of
“non-demolition measurements”. For this purpose, we bring S into contact with a
sequence, E|, E,, E3,..., of identical “probes” (e.g., excited atoms passing through
the cavity); the interaction of Ej with S is supposed to take place in the time interval
[k — 1,k] and is supposed to be turned off during all other times. Actually, after
some direct measurement of a property by = b} € Ag, at a time later than k—as
described abstractly in Sect. 7.5.4—probe Ej “gets lost for ever”, in the sense that
no further information about Ey can be retrieved, anymore.

Let p denote the initial state of S and ¥*) := v the initial state of probe Ej,
(the same for all k). For simplicity, we assume that the spectrum of the operator a
representing the physical property of S to be measured is finite pure-point spectrum.
We denote the spectral projection corresponding to an eigenvalue « of a by 1, =
IT}. Then

MoMp =8upTe. Y Mo =1.

Next, we specify the time-evolution of the composed system S vV E; Vv E; V... ¢
Up to time k = 1,2,3,...,, the time evolution of E; is assumed to be trivial, for
all j > k. For the subsystem S v Ej V....V Ej itis specified as follows: Let A, o
be an arbitrary operator in .Ag mapping Ran Il to Ran I1,, with ITgAq o Ilgr =
S8uplurpr Awor- Let B; be an operator in Ag;, j < k. Then the time-evolution of
Ao ® Bl ® ... ® By from time 0 to time k in the Heisenberg picture is given by

T 0(Age ® BI® ... ® Bi) := Agww @ Uo BIU, @ ... Q Uy BLU,,,

where U, is a unitary operator in Ag, >~ Ag, for all « € spec a. Defining

U(i,i—l)::ZHQ®]I®...®UQ®]1®...,
o

with U, inserted in the (i + 1)*' factor of the tensor product, we have that

1 k
To(Avw ® BI®...® Bj) = [[Uli.i = DA ® Bi®...® B)) [[UG.i = D)*
i=k i=1

=70(Adee ®B1 ®...Q By) ® By+1 ® ... Q Bj,
(7.161)
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for arbitrary j > k. This is a typical (albeit highly idealized) example of time-

evolution in a non-demolition measurement. Let ¥ := p ® ¥ @ ¥ & ... denote the

initial state of the composed system, S v E; Vv E, Vv .. .. If we set
Bi=B,=...=B, =1,

for some ky < oo then

)\ (Tk,O(Aa,a’ RILIR...1Q® Bko+1 ®...® Bk0+1))

k kotl (7.162)
= p(Aec)VUUD ] vWuBUS) T] v(Bo).
i=ko+1 i=k+1

for kg < k < ko + 1. Because U, is unitary, for all ¢ € spec a,
W (U, U))| <1, for all «, o,
by the Cauchy—Schwarz inequality. We assume that
(WU US| < p <1, fora # o' (7.163)

Then, for o # o

U (140(Ape ®1T®...Q 1 ® Brys1 ® ... ® Biyyr)) | < 1o, (7.164)
which, by Eq.(7.163), tends to 0 exponentially fast, as kg — oo, for arbitrary
Ago's Big+1s- - s Big+1, With [|Ago/ ||, | Big+1lls- - -+ || Bky+1]| bounded by 1. This is

“decoherence” over the spectrum of the operator a representing the quantity to be
measured:

Ve, — D V(M) ey, (7.165)
o

as kg — 0o, where £y, is the algebra introduced in Definition 2.2. Henceforth, we
choose an initial state, p, for S satisfying

p=7 p(MaO)le) =) Papas

where

Po = p(Iy), pe = py p(Ta()T1,). (7.166)
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We assume that (after many identical probes have interacted with S, so that
decoherence over the spectrum of the observable a has set in) a direct measurement
of a physical quantity represented by an operator b = b* € Ag is carried out
on every probe E, ~ E, after it has interacted with S. We assume that the
spectrum of b is pure-point, with eigenvalues denoted by ¢ and corresponding
spectral projections written as 7g. Then ¢ = ng‘ and

gty = 555/7@, Zn’g =1. (7.167)
§

The probability, p(§ ‘ |), of a history

§k = {mg, ..., 5} (7.168)
of possible outcomes of those direct measurements in the state ¥, defined by
Uy =0, QY QY ®...,
with p, as in Eq. (7.166), is given by
k
i o) =[] rElw), (7.169)
i=1

where

péla) == Y (Uyme UY). (7.170)
Note that ZE p(€la) = 1, by Eq.(7.167) and the unitarity of U,. In the following,

we identify ¢ with § and use the notation § P = 3 1’ &). In the initial state W, the
probability of the history § f is then given by

RE) = Y Pl |o). (7.171)

Next, we calculate the probability, p® (| § k) of the possible event IT,, given that
a history § is observed on the first k probes, and given the initial state V. By
Eqgs. (7.166) and (7.169)—(7.171),

nE o)
nE)

pPP@lg,) = pe (7.172)
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(with p, = p(Ily); see Eq.(7.166)). These probabilities have the following
properties:

(1
0<p®@t) =<1, and Y p®(eft,) = 1.
(ii)
“ g, )
PO (@lg,) = pa e (&)
. nE, )
= p*D(alg,_) ué - p(Eila) (7.173)

Pl
S5 PV BE,_pElp)

because, by Eqgs. (7.171), (7.169) and (7.172),

nE,) L))

TN YT

=" p* N, _ 1B pElB)-
B

= p* (el )

p&|B)
(7.174)

(iii) The expectation, Ey, of p® (| £). givenaand £, , satisfies

Eep™(al§)) : . P (“@k—l’&)zau(gk_l,ék)
I ) ()
Yop (a|§k_l,sk)ﬂ(§€_l)

fk (7.175)
B w§, _ le)pErla) p(,)
- Ezk” UG )

= p*VlE,_DpEle) = p* (g, ),
€k

(see below Eq. (7.170)).
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Properties (i) and (iii) identify the random variables { p* («| § k) | @ € speca} as
bounded martingales. The Martingale Convergence Theorem (see e.g., [58]) then
implies that

PP (@lg) — p ),

where § = goo, and p(k)(a|§) does not depend on &1, k42, . . .. Property (ii) then
implies that, for every £ € spec b,

P(§oola)

(00) = p(* :
Pl = P e (1) p el B)

(7.176)

If for all o, B € spec a with o # B, there exists £ € spec b such that p(§, |«) #
p(&|B) then Equation (7.176) and

P (@l§) = Suay- (7.177)
for some g (depending on §).
Thus, for almost every history § = Eoo of outcomes of “von Neumann
measurements” of the probes E|, E», ... ., the state W o 1, conditioned on E

converges on Ag to an eigenstate of the operator a € Ag representing the physwal
quantity to be measured, as k — oco. The probability (with respect to the histories
E ) of convergence to an eigenstate corresponding to the eigenvalue @ of a is given
by Da; (see Eq.(7.166)). Stated differently, the range of values of the functions
p(oo) (|-) on the space of histories consists of {0, 1}, and, for almost every history

s >, P (af, ) 1. These are the results that have been announced in
Sect 7.1.2; see (7. 21)

It is not hard to see that the approach of the state of S to an eigenstate of a is
exponential in the time k. This is a “large-deviation estimate” established in [6].
It involves use of a “dynamical relative entropy”. The techniques sketched in this
subsection have interesting applications to Mott’s problem of “particle tracks” in
quantum theory.

For a mathematical theory of “preparation of states” in quantum mechanics, see
[33, 35]. Simple models of “information loss” and “decoherence” will be proposed
and studied in a separate publication.

7.5.A Appendix to Sect. 7.5

The purpose of this appendix is to describe some mathematical structure useful to
imbed the material in Sects. 7.5.3 and 7.5.4 into a more general context. In particular,
we do not wish to assume that the algebras £2, are type-I von Neumann algebras;
(i.e., we do not start from Eqgs. (7.134)—(7. 136)). To begin with, we summarize some
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further basic facts concerning von Neumann algebras; (see also Sect. 7.2.1). Let M
be a von Neumann algebra, and let w be a normal state on M. Then (7, H,, )
stands for the representation, 7, of M on the Hilbert space H,,, with Q2 the cyclic
unit vector in H,, (unique up to a phase) such that

w(a) = (2, 1,(@)2) - (7.178)

This is the GNS construction applied to (M, w); see Eq. (7.29), Sect. 7.2.1. We say
that w is separating for M iff, for any a € M,

w(ba) =0, Vb e M = a = 0; (7.179)
or, equivalently, w7, (¢)2 = 0 (in H,,) implies that a = 0; (it is assumed that 7, is
faithful, and we will henceforth write a for 7, (a)).

Given a separating state, w, on a von Neumann algebra M, Tomita—Takesaki
theory [12, 67] guarantees that there is a one-parameter unitary group {A%};cp,
where A, > 0 is a self-adjoint operator on H, (the Tomita—Takesaki modular
operator) and an anti-unitary involution, J,, on H,,, with the properties

ACaN" e M, J,al, e M, (7.180)
foralla € M and for all ¢ € R, (M’ is the commutant of M),

AQ =Q, J,Q =9Q, (7.181)
for all o, and

(Q,abQ) 3, = (2, bA,aQ)7, . (7.182)

for arbitrary a, b € M; (KMS condition). If ¢ is a linear functional on M we define

(b)
loll := sup £ (7.183)
pem NIl
Eqs. (7.178) and (7.182) then show that if w is separating for M,
Ha, lmll < € <= [(Awa —a)Q2l3, <e. (7.184)

for any a € M; (recall that {a, w]m(b) = w([a,b]), b € M—see Eq.(7.128),
Sect.7.5.2). In Eq. (7.129), we have defined the centralizer of w to be the subalgebra
of M given by

Coy={aeM|{a wlm =0} (7.185)

We recall that o defines a trace on C},. By (7.184),
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Coy={aeM|A,aQ =aQ}, (7.186)

assuming that w is separating for M. The following claim is easy to verify (using
Liouville’s theorem for analytic functions of one complex variable, and Eq. (7.186)):
If w is separating for M

{a,0]p =0 < Al%GA" =a, Vo eR, (7.187)

for any a € M; (see, e.g., [3]). The group, {a;}ser, of *automorphisms of
M defined by a,(a) = APaA}" is called the Tomita-Takesaki modular
automorphism group. The equivalence in (7.187) together with Eq. (7.185) show
that if @ is separating for M then the centralizer, C%, is nothing but the subalgebra
of M of fixed points under the Tomita—Takesaki modular automorphism group. The
following result is due to Takesaki, [68]: Let A/ be a von Neumann subalgebra of
M, and let w be a faithful, normal, separating state on M. Then the following
statements are equivalent:

(i) N is invariant under the modular automorphism group {¢, }secr associated with
M, ).

(i1) There exists a (o-weakly) continuous projection, €, of norm 1 (a “conditional
expectation”) of M onto A such that

w(a) = wn(e(a)), (7.188)
foralla € M.
Remark 5.9 Fora,b in N and x € M, we have that

€(x*x) = €(x)"e(x) = 0,

€(axb) = ae(x)b. (7.189)

As a corollary of Takesaki’s result on conditional expectations, we have that if w is
separating for M then

(a) there is a conditional expectation, € = €, from M onto the centralizer C}, of
o satistying (7.188); and

(b) there is a conditional expectation, é, from M onto the center, Z%,, of C%,
satisfying (7.188).

Definition 5.10 The variance of an operator a € M in the state w is defined by

wa = vo(la—a®)), (7.190)

where a® := €é“(a).

These general results can be applied to the considerations in Sects. 7.5.2-7.5.4,
with the following identifications:
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M= &2, C)—CL. Ziy— 2% (7.191)
We then use the notations € — egt, €P — égt and A% a — AYa; (see Eq. (7.140),
Sect.7.5.3). Concerning the special case introduced in Eqs. (7.134)—(7.136), we
remark that  is separating for £2, iff all eigenvalues of the density matrix p2,
introduced in Eq. (7.136) are strictly positive (which is generically the case). As an
exercise, the reader may enjoy deriving the explicit formulae for €2, and €2, ; (see
Eq. (7.139)). The material sketched here is important in relativistic quantum theory
(LRQT).
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Chapter 8

Can Relativity be Considered Complete?
From Newtonian Nonlocality to Quantum
Nonlocality and Beyond

Nicolas Gisin

8.1 Introduction

Hundred years after Einstein miraculous year and 70 years after the EPR paper [1], I
like to think that Einstein would have appreciated the somewhat provocative title of
this contribution. However, Einstein would probably not have liked its conclusion.
But who can doubt that relativity is incomplete? and likewise that quantum
mechanics is incomplete! Indeed, these are two scientific theories and Science is
nowhere near its end (as a matter of fact, I do believe that there is no end (in
contrast to [2])). Well, actually, I am, of course, not writing for Einstein, but for those
readers interested in a (necessarily somewhat subjective) account of the peaceful co-
existence [3] between relativity and quantum physics in the light of the conceptual
and experimental progresses that happened during the last 10 years, set in the broad
perspective of physics and nonlocality since Newton (for a lively account of the
history of quantum nonlocality and of the people who made it happen, see: [4]).

8.2 Non-locality According to Newton

Isaac Newton, the great Newton of Universal Gravitation, was not entirely happy
with his theory. Indeed, he was well aware of an awkward consequence of his
theory: if a stone is moved on the moon,' then our weight, of all of us, here on
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earth, is immediately modified. What troubled so much Newton was this immediate
effect, i.e. the nonlocal prediction of his theory. Let’s read how Newton described it
himself [5]:

That Gravity should be innate, inherent and essential to Matter, so that one Body may act
upon another at a Distance thro a Vacuum, without the mediation of any thing else, by and
through which their Action and Force may be conveyed from one to another, is to me so
great an Absurdity, that I believe no Man who has in philosophical Matters a competent
Faculty of thinking, can ever fall into it. Gravity must be caused by an Agent acting
constantly according to certain Laws, but whether this Agent be material or immaterial,
I have left to the Consideration of my Readers.

It would have been hard for Newton to be more explicit in his rejection of non-
locality! Note that this indicates that the no-signalling principle (see Sect. 8.10.1) is
part of Newton’s world view, not of relativity. However, most physicists didn’t pay
much attention to this aspect of Newtonian physics. By lack of alternative, physics
remained nonlocal until about 1915 when Einstein introduced the world to General
Relativity. But let’s start 10 years earlier, in 1905.

8.3 Einstein, the Greatest Mechanical Engineer

In 1905 Einstein introduced three radically new theories or models in physics.
Special relativity of course, but more relevant to this section are his descriptions
of Brownian motion and of the photo-electric effect. Indeed, both descriptions
show Einstein’s deep intuition about mechanics. Brownian motion is explained as
a complex series of billiard-ball-like-collisions between a visible molecule—the
particle undergoing Brownian motion—and invisible smaller particles. The random
collisions of the latter explaining the erratic motion of the former. Likewise, the
photo-electric effect is given a mechanistic explanation. Light beams contain little
billiard-balls whose energy depends on the color, i.e. wavelength, of the light. These
light-billiard-balls (today called photons and recognized as not at all billiard-ball-
like) hit the electrons on metallic surfaces and mechanically kick them out of the
metal, provided they have enough energy to do so.

General relativity can also be seen as a mechanical description of gravitation.
When a stone is moved on the moon, a bunch of gravitons (in modern terminology)
fly off in all directions at a finite speed, the speed of light. Hence, about a second
later, the earth is informed and only then is our weight affected. This is, I believe,
the greatest achievement of Einstein, the greatest mechanical engineer? of all times:
Einstein turned physics into a local theory!

My friends know well that in my mouth “engineer” has no negative connotation, quite the
opposite. For me, a physicist must be a good theorist and a good engineer! Well, I warned you,
dear reader, this is a somewhat subjective article.
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8.4 Quantum Mechanics Is Not Mechanical

Only about 10 years after general relativity came quantum mechanics. This was
quite an extraordinary revolution. Until then, greatly thanks to Newton and Ein-
stein’s genius, Nature was seen as made out of many little billiard-balls that
mechanically bang into each other. Yet, quantum mechanics is characterized by the
very fact that it no longer gives a mechanical description of Nature. The terminology
quantum mechanics is just a historical mistake, it should be called Quantum Physics
as it is a radically new sort of physical description of Nature.

But this new description let nonlocality back into Physics! And this was
unacceptable for Einstein.

It is remarkable and little noticed that since Newton, physics gave a local
description of Nature only during some 10 years, between about 1915 and 1925.
All the rest of the time, it was nonlocal, though, with quantum physics, in quite a
different sense as with Newton gravitation. Indeed, the latter implies the possibility
of arbitrarily fast signaling, while the former prohibits it.

8.5 Non-locality According to Einstein

In 1935 two celebrated papers appeared in respectable journals, both with famous
authors, both stressing the—unacceptable in their authors view—nonlocal predic-
tion of quantum physics [1, 6]. A lot has been written on the EPR “paradox” and I
won’t add to this. I believe that Einstein’s reaction is easy to understand. Here is the
man who turned physics local, centuries after Newton wrote his alarming text, he is
proud of his achievement and certainly deserves to be. Now, only a few years latter,
nonlocality reappears! Today one should add that quantum nonlocality is quite a
different concept from Newtonian nonlocality, but Einstein did not fully realize this.

What Einstein and his colleagues saw is that quantum physics describes spatially
separated particles as one global system in which the two particles are not logically
separated. What they did not fully realize is that this does not allow for signaling, in
particular no faster than light communication, hence it is not in direct conflict with
relativity. In the next section Il try to present this using modern terminology.

Most physicists didn’t pay much attention to this aspect of quantum physics.
A kind of consensus established that this was to be left for future examination, once
the technology would be more advanced. The general feeling was that quantum
nonlocality was nothing but a laboratory curiosity, not serious physics.

Young physicists may have a hard time to believe that such an important concept,
like quantum nonlocality, was, during many decades, not considered as serious. But
this was indeed the real state of affairs: ask any older professors, a vast majority of
them still believes that it is unimportant. Let me add two little stories that illustrate



198 N. Gisin

what the situation was like. John Bell, the famous John Bell of the Bell inequalities
and of the Bell states, never had any quantum physics student. When a young
physicist would approach him and talk about nonlocality, John’s first question was:
“Do you have a permanent position?”. Indeed, without such a permanent position
it was unwise to dare talking about nonlocality! Notice that John Bell almost
never published any of his remarkable and nowadays famous papers [7] in serious
journals: the battle with referees were too . ..time wasting (not to use a more direct
terminology). Further, if you went to CERN where John Bell held a permanent
position in the theory department and asked at random about John’s contributions to
physics, his work on the foundation of quantum physics would barely be mentioned
(true enough, he had so many other great contributions!).?

Anyway, so quantum nonlocality remained for decades in the curiosity lab and
no one paid much attention. But in the 1990s two things changed. First, a conceptual
breakthrough happened thanks to Artur Ekert and to his Ph.D. adviser David
Deutsch [9]. They showed that quantum nonlocality could be exploited to establish
a cryptographic key between two distant partners and that the confidentiality of the
key could be tested by means of Bell’s inequality. What a revolution! This is the
first time that someone suggested that quantum nonlocality is not only real, but
that it could even be of some use. A second contribution came from the progress
in technology. Optical fibers had been developed and installed all over the world.
And Mandel’s group at the University of Rochester (where I held a 1-year post-doc
position and first met with optics) applied parametric down-conversion to produce
entangled photon pairs [10]. This was enough (up to the detectors) to demonstrate
quantum nonlocality outside the curiosity laboratory. In 1997 my group at Geneva
University demonstrated the violation of Bell inequalities between two villages,
Bernex and Bellevue, around Geneva, see Fig. 8.1, separated by a little more than
10km and linked by a 15km long standard telecom fiber [11, 12] (since then, we
have achieved 50 km [13]). So quantum nonlocality became politically acceptable!
But what is it? (for an elementary introduction see [N. Gisin Quantum chance,
Nonlocality, Teleportation and Other Quantum Marvels, Springer 2014].) Let me
introduce the concept using students undergoing “quantum exams”.

8.6 Quantum Exams: Entanglement

Assume that two students, Alice and Bob, have to pass some exams. As always for
exams, the situation is arranged in such a way that the students can’t communicate
during the exam. Clearly however, they are allowed, and even encouraged, to

3 Another story happened to me while I was a young post-doc eager to publish some work. In
a paper [8] I wrote “A quantum particle may disappear from a location A and simultaneously
reappear in B, without any flow in-between”. The referee accepted the paper under the condition
that this outrageous sentence is removed. This referee considered his paternalist attitude so
constructive that he declared himself to me: “look how helpful I am to you” (admittedly, he was
politically correct).
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Fig. 8.1 Bernex and Bellevue are the two villages north and south of Geneva between which our
long-distance test of Bell inequality outside the lab was performed in 1997, Sect. 8.5. The inset
represent two player that toss coins, as explained in Sect. 8.7. In the real experiment the coins were
replaced by photons, the players by interferometers, their right and left hands by phase modulators
and head/tail by two detectors. The experimental results are similar to that of the game, with weaker
but still nonlocal correlations

communicate beforehand. Alice and Bob know in advance the list of possible
questions, they also know that this is a kind of exam allowing only for a very limited
number of possible answers, often only a binary choice between yes and no. During
the exam Alice receives one question out of the list, let’s denote it by x; Bob receives
question y. Finally, denote ¢ and b Alice and Bob’s answers, respectively. Hence,
an exam is a realization of a random process described by a conditional probability
function, often merely called a correlation:

P(a,blx,y) 8.1)

Clearly, the choice of questions x and y are under the professor’s control. However,
as all professors know, the students’ answers @ and b are not! This is similar to
experiments: the choice as to which experiment to perform is under the physicists
control, but not the answer given by Nature.
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In the following, we shall consider three kinds of exams, in order to understand
what kind of constraints they set on the correlation P(a, b|x, y).

8.6.1 Quantum Exam #1

In this first kind of quantum exam Alice is asked to tell which question is given
to Bob, and vice-versa. This is clearly an unfair exam! Why? Because Alice
and Bob are not supposed to communicate. How could they then succeed with a
probability greater than mere chance?* This simple example shows that prohibiting
signaling already limits the set of possible correlation P(a,b|x, y). For example
P(a,blx,y) = 8(a = y)§(b = x) is excluded.

Notice that a correlation P(a, b|x, y) is non-signaling if and only if its marginal
probabilities are independent of the other side input: ), P(a, b|x, y) is indepen-
dent of y and ), P(a, b|x, y) is independent of x, see Sect. 8.10.1.

8.6.2 Quantum Exam #2

The second kind of quantum exam is closer to standard exams. Alice and Bob
are simply requested to provide the same answer whenever they receive the same
question. This is clearly feasible: we all expect that good students give the same
answer to the same question. It suffices that they prepare for the exam well enough.
Note that the quantum exam #2 under consideration here is even easier than standard
exams, as there is no notion of correct or incorrect answers. All that is required is
that Alice and Bob give consistent answers: it suffices that they jointly decide in
advance which answer to give for each of the possible questions.

Now, a central problem: Could Alice and Bob succeed with certainty for such an
exam #2 by other means, that is without jointly deciding the answers in advance?
Think about it. If you found an alternative trick, then, if you are a student, you should
use your trick to pass the next examination: just apply your trick together with the
best student, you’ll get the same mark as him/her.’> And if you are a professor and
found a trick, then you should stop testing your student with standard exams! Well,
of course, there is no other trick, at least none applicable to classical students.

“Somewhat surprisingly, if there are only two possible questions, then there is a strategy such that
the probability that both players succeed is 50 %.

3 Admittedly, the danger is that both student get the bad mark! But, on average, the poor student
improves.
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Correlations that satisfy P(a = b|x = y) = 1 are necessarily of the form

P(a,blx,y) = ) p(})Q(alx, 1) Q(bly, }) (8.2)
A

for some probability function Q and some distribution p of common strategy A.
Historically, the A were called “local hidden variables”, computer scientist call them
“shared randomness”; here the A denote common strategies.

P(a = b|x = y) = 1is but one example of a local correlation, among infinitely
many others. Relation (8.2) characterizes all local correlations.

In summary, some exams require common strategies; in other words, some
observed correlations can’t be explained except by common causes.

8.6.3 Quantum Exam #3

The third kind of quantum exam is the most tricky and interesting. For (apparent)
simplicity let’s restrict the set of questions and answers to binary sets and let us label
them by bits, “0” and “1”. In this exam Alice and Bob are required to always output
the same answer, except when they both receive the question labelled “1” in which
case they should output different answers. Note that formally this exam requires
that Alice and Bob’s data satisfy the following equality, modulo 2: a + b = x - y.
This time it is not immediately obvious whether they can prepare a strategy that
guaranties success.

Assume first that the strategy forces Alice to output an answer that depends only
on her input x, i.e. Alice’s strategy is deterministic. But in such a case, whenever
Bob receives the question 1, he can’t decide on his output since it should depend on
Alice’s question. Next, if Alice’s output is random, this is clearly of no help to Bob.
Consequently there is no way for Alice and Bob to succeed with certainty.

Let us emphasize that successfully completing this exam does not necessarily
imply communication between Alice and Bob. Indeed, assume that, somehow, Alice
and Bob’s data would always satisfy @ + b = x - y. Would this allow Alice to
communicate to Bob, or vice-versa? Well, it depends! If Alice’s output a is known
to Bob, for instance they decide on a = 0 always, then whenever Bob receives
y = 1, he can deduce Alice’s question from a + » = x - y and from his output:
x = b in the example. But if Alice’s outcome is unknown to Bob, for instance if
Alice outcome is merely a random bit, then the relation a + b = x - y is of no help
to Bob. We shall come back to this concept of a non-signaling correlation satisfying
a+b =x-yin Sect. 8.10.3.
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Let us define the mark M of this quantum exam #3 as the sum of the success
probabilities [14]:

M =Pla+b=xylx =0,y =0)
+Pla+b=xyx=0,y=1)
+Pla+b=xylx=1,y =0)
+Pla+b=xylx=1,y=1) (8.3)

It is not difficult to realize that the optimal strategy for Alice and Bob consists in
deciding in advance on a common answer, independent of the questions they receive.
With such a strategy they are able to achieve the mark M = 3. This is indeed the
optimal mark achievable by common strategies:

M <3 (8.4)

This is an example of a Bell inequality: a constraint on correlations arising from
common strategies. Interesting Bell inequalities are those that can be violated by
quantum physics. In the case of (8.4), if Alice and Bob share entangled singlet
quantum states, then they can obtain the mark Mpp = 2 + V2 & 3.41. Tsirelson
proved that this is the highest mark achievable using quantum correlations [15].

Accordingly, quantum theory predicts that some tasks can be achieved that are
impossible with any local mechanical model, i.e. some exams are passed with higher
marks than classically possible. The fact that such tasks were invented for the pur-
pose of showing the superiority of quantum physics doesn’t affect the conclusion.
Still, it is only once some useful and natural tasks were found, concretizing the
superior power of quantum physics over all possible local strategies, that quantum
nonlocality became accepted by the physics community.®

8.7 Coin Tossing at a Distance

Another way to present nonlocality to non-physicist friends is the following.
Imagine two hypothetical players that toss coins. The players are separated in space
and toss their coin once per minute. They use their free-will to decide, for each toss,
whether to use their right hand or their left hand, independently of each other. And

ST wish someone establishes the statistics of the occurrences of the words “Bell inequality” and
“nonlocality” in Physical Review Letters. I bet that a phase transition happen in the early 1990s,
after Ekert’s paper on quantum cryptography, see [16]. In 1998 I started a PRL with the sentence
[11]: “Quantum theory is nonlocal.” and got considerable reactions to what was felt as a provocative
statement; today the same statement can be found in many papers, not provoking any reaction.
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they mark all results (time, hand and head/tail) in a big black laboratory notebook,
see Fig.8.1.

After thousands of tosses, they get bored. Especially, given that nothing inter-
esting happens: for each of the two players, heads and tails occur with a frequency
of 50 %, independently of which hand they use. Hence, the players decide to go
for a beer. There, in the bar, they compare their notes and get very excited. Indeed,
quickly they notice that whenever at least one of them happened to have chosen his
right hand for tossing his coin, both players always obtained the same result: either
both head or both tails. But whenever, by mere chance, they both chose the left hand,
then they always obtained opposite results: head/tail or tail/head. A very remarkable
correlation!

The observation of correlations and the development of theoretical models
explaining them is the essence of the scientific method. This is true not only in
physics, but also in all other sciences, like geology and medicine for instance. John
Bell used to say “correlations cry out for explanations!” [17].

So, why are our two players that excited by the correlation they observe? Note
that locally, nothing interesting happens; in particular there is no way for one player
to infer from his data which hand the other player chose. Even if one player decides
to always use the same hand, this has no effect on the statistics observed by his
colleague. Consequently, this game and the observed correlation do not imply any
signaling. So, why do we feel that this is impossible? Actually, frankly, I do not
know!

Classical correlations are always explained by either of two kinds of causes. The
first kind is “signaling”, one player somehow informs or influences the other player.
This is clearly not the case here, since we assumed the players were widely separated
in space (for the physicists we may add “space-like separated”). The second kind of
causes for classical correlations is a common cause. For example all hockey players
simultaneously stop running, because the umpire whistled. This kind of cause is
precisely equivalent to the assumption of a common strategy, as formalized by (8.2)
and excluded for the present correlation by Bell’s inequality (8.4). Consequently,
the correlation observed by our two players is of a different nature. The big surprise
is that some sort of cause beyond the two classical causes for correlation exists!
This is what Einstein and many others had a hard time to believe. But, today, if
one accepts this as a matter of theoretical prediction and experimental confirmation,
then the next big question is “why can’t the correlation observed by our hypothetical
players not be observed in the real world?”. Indeed, quantum physics (and tensor
products of Hilbert spaces) tell us that Bell’s inequality (8.4) can be violated, i.e.
not all quantum correlations can be explained by one of the two kinds of classical
causes for correlations, but quantum physics does not allow correlations as strong
as observed by our hypothetical players. Still, this game is illustrative of quantum
nonlocality, as we shall elaborate in Sect. 8.10
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8.8 Experiments: God Does Play Dice, He Even Plays
with Nonlocal Dice

Physics is an experimental science and experiments have again and again supported
the nonlocal predictions of quantum theory. All kind of experiments have been
performed, in laboratories [18] and outside [11, 12, 19], with photons and with
massive particles [20-22], with independent observers to close the locality loophole
[11, 12, 19, 23, 24], with quasi-perfect detectors [20, 25, 26] to close the detection
loophole, with high precision timing to bound the speed of hypothetical hidden
communication [27-31], with moving observers to test alternative models [32]
(multi-simultaneity [33] and Bohm’s pilot wave [34]).7 All these results proclaim
loudly: God plays dice. Note how ironic the situation is: the conclusion “God
plays dice” is imposed on us by the experimental evidence supporting quantum
nonlocality and by Einstein’s postulate that no information can travel faster than
light. Indeed, as mentioned in Sect. 8.6.3, a violation of (8.4) with deterministic
outputs leads to signaling. Consequently, the experimental violation of (8.4) and the
no-signaling principle imply randomness [35-37].

Actually, the situation is even more interesting: Not only does God play dice,
but he plays with nonlocal dice! The same randomness manifests itself at several
locations, approximating a + b & x - y better than possible with any local classical
physics model.

A very small minority of physicists still refuse to accept quantum nonlocality.
They ask (sometimes with anger) How can these two space-time locations, out
there, know about what happens in each other without any sort of communication?
I believe that this is an excellent question! I have slept with it for years [38] (at last,
we found the answer, see [31]). I summarize my conclusion in the next section.

8.9 Entanglement as a Cause of Correlation

Quantum physics predicts the existence of a totally new kind of correlation that
will never have any kind of mechanical explanation. And experiments confirm this:
Nature is able to produce the same randomness at several locations, possibly space-
like separated. The standard explanation is “entanglement”, but this is just a word,
with a precise technical definition [39, 40]. Still words are useful to name objects
and concepts. However, it remains to understand the concept. Entanglement is a new
explanation for correlations. Quantum correlations simply happen, as other things

"The conclusion that follows from all these experiments is so important for the physicist’s world-
view, that an experiment closing simultaneously both the locality and the detection loophole is
greatly needed.
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happen (fire burns, hitting a wall hurts, etc). Entanglement appears at the same
conceptual level as local causes and effects. It is a primitive concept, not reducible to
local causes and effects. Entanglement describes correlations without correlata [41]
in a holistic view [42]. In other worlds, a quantum correlation is not a correlation
between two events, but a single event that manifests itself at two locations.

Are you satisfied with my explanation of what entanglement is? Well, I am not
entirely! But what is clear is that entanglement exists. Moreover, entanglement
is incredible robust! The last point might come as a surprise, since it is still
often claimed that entanglement is as elusive as a dream: as soon as you try
to talk about it, it evaporates! Historically this was part of the suspicion that
entanglement was not really real, nothing more than some exotic particles that live
for merely a tiny fraction of a second. But today we see a growing number of
remarkable experiments mastering entanglement. Entanglement over long distances
[11-13, 19, 43], entanglement between many photons [44] and many ions [45],
entanglement of an ion and a photon [46, 47], entanglement of mesoscopic systems
(more precisely entanglement between a few collective modes carried by many
particles) [48-52], entanglement swapping [53-55], the transfer of entanglement
between different carriers [56], etc.

In summary: entanglement exists and is going to affect future technology. It is
a radically new concept, requiring new words and a new conceptual category. And
the time since this was first written amply confirmed the robustness and power of
entanglement.

8.10 From Quantum Nonlocality to Mere Nonlocality

So far we have seen that quantum physics produces nonlocal correlations. And
so what? Ok, this can be used for Quantum Key Distribution and other Quantum
Information processes, but that doesn’t help much to understand non-locality.
Conceptually, one would like to study non-locality without all the quantum physics
infrastructure: Hilbert spaces, observables and tensor products. Not too surprisingly,
once the existence of non-locality was accepted, the conceptual tools to study it
came very naturally. Actually, the tools were already there, in the mathematics [57]
and even the physics [35, 36] literature, waiting for a community to wake up! The
basic tool is simple, doesn’t require any knowledge of quantum physics and allows
one, so to say, to study quantum nonlocality “from the outside”, i.e. from outside
the quantum physics infrastructure.

Let us go back to the quantum exam #3 (Sect. 8.6.3). Assume that Alice and
Bob are not restricted by quantum physics, but only restricted by no-signaling.
Consequently, they would fail the quantum exam #1. But under this mild no-
signaling condition they could perfectly succeed in the quantum exam #3: Alice and
Bob would each output a bit which locally looks perfectly random and independent
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from their inputs—hence there would be no signaling—yet their 2 bits would satisfy
a+ b = x -y, exactly as in the coin tossing game of Sect. 8.7. The hypothetical
“machine” that produces precisely this correlation is a basic example of the kind of
conceptual tools we need to study nonlocality without quantum physics. Formally,
the correlation function is defined by:

P(a,b|x,y) = %S(G—Fb =x-y) (8.5)

where the §(z; = zp) function takes value 1 for z; = z, (modulo 2) and value 0
otherwise.

The correlation (8.5) is often referred to as a PR-box, to recall the seminal work
by Popescu and Rohrlich [35, 36], or as a NL-machine (a Non-Local machine®).
The idea of these terminologies is to emphasize the similarities between quantum
measurements on two maximally entangled qubits and the correlation (8.5): in both
cases the outcome is available as soon as the corresponding input is given (Alice
knows a as soon as she inputs x into her part of the machine and similarly Bob
knows b as soon as he inputs y, there is no need to wait for the other’s input) and in
both the quantum and the PR-box cases the “machine” can’t be used more than once
(once Alice has input x, she can’t change her mind and give another input). Notice
a third nice analogy, neither the quantum nor the NL machines allow for signaling.
Indeed, in all cases the marginals are pure noise, independently of any input.

Note that quantum physics is unable to produce the PR correlation (8.5). Indeed,
this correlation violates the Bell inequality (8.4) up to its algebraic maximum, M =
4, while Tsirelson’s theorem [15] states that quantum correlations are restricted
to M < 2 + /2. However, the correlation (8.5) is much simpler than quantum
correlations, while sharing many of their essential features. In particular (8.5) is
nonlocal but non-signaling.

In order to get some deeper understanding of the power of this hypothetical
machine (8.5) as a conceptual tool, let us consider three properties of quantum
correlations (many further nice aspects can be found in [59-61]). First we shall
consider the so-called quantum no-cloning theorem and see that it is actually
not a quantum theorem, but a no-signaling theorem. The next natural step is to
analyze quantum cryptography, whose security is often said to be based on the no-
cloning theorem, and as we would expect by now, we shall find “non-signaling
cryptography”. Finally, we consider the question of the communication cost to
simulate maximal quantum correlation. But before all this we need to recall some
facts about non-signaling correlations.

8 A “machine” is a physicists’s terminology for an input-output black-box that is not necessarily
mechanical. I believe that this terminology appeared in the quantum physics context with the
“optimal cloning machines” introduced by Buzek and Hillery [58].
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8.10.1 The Set of Non-signaling Correlations

Let us consider the set of all possible bi-partite correlations P(a, b|x, y), where the
inputs are taken from finite alphabets {x} and {y} and similarly for the outputs {a}
and {b}, and which are non-signaling’:

Z P(a,b|x,y) = P(a|x) is independent of y (8.6)
b
Z P(a,b|x,y) = P(b|y) is independent of x 8.7

A priori this set looks huge. But it has a nice structure. First, it is a convex set: convex
combinations of non-signaling correlations are still non-signaling. Second, there
are only a finite number of extremal points (mathematician call such sets polytopes
and the extremal point vertices); accordingly every non-signaling correlation can be
decomposed into a (not necessarily unique) convex combination of extremal points.
This is analog to quantum mixed states that can be decomposed into convex mixtures
of pure states.

Among the non-signaling correlations are the local ones, i.e. those of the
form (8.2), analog to separable quantum states. The set of local correlations also
forms a polytope, a sub-polytope of the non-signaling one. Moreover all vertices of
the local polytope are also vertices of the non-signaling polytope, see Fig.2 [60].
The facets of the local polytope are in one-to-one correspondence with all tight Bell
inequality.

Let us illustrate this for the simple binary case (which is in any case the only one
we need in this article), i.e. a, b, x, y are 4 bits. In this case, it is known that there
are only eight non-trivial Bell inequalities (i.e. not counting the trivial inequalities
of the form P(a,b|x,y) > 0), i.e. only eight relevant facets of the local polytope.
Interestingly, Barret and co-workers [60] demonstrated that the non-signaling
polytope has only eight vertices more than the local polytope, exactly one per Bell
inequality! Each of these eight vertices is equivalent to the PR correlation (8.5), up to
an elementary symmetry (flip an input and/or an output). Although these polytopes
live in an eight-dimensional space,'? their essential properties can be recalled from
the simple geometry of Fig. 8.2.

°Actually, there are at least three different concepts behind this word [62]. (1) There is the
mathematical definition given here. (2) No faster than light communication—though light plays
no special role in quantum physics. And (3), there is no-signalling as Newton thought of it: no
communication without a physical carrier of the information.

1"More precisely, 8 is the dimension of the space of non-signaling correlations [63].
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Fig. 8.2 Geometrical view of the set of correlations. The bottom part represents the convex set
(polytope) of local correlations, with the upper facet corresponding to the Bell inequality (8.4).
The upper triangle corresponds to the non-local non-signaling correlations that violate the Bell
inequality. The smooth thin curve limits the correlations achievable by quantum physics. The top
of the triangle corresponds to the unique non-signaling vertex above this Bell inequality, i.e. to the
non-local PR machine (8.5). The thin vertical line represents the isotropic correlations (8.8) with
the indication of some of the values of px.

8.10.2 No-Cloning Theorem

Details can be found in [59], as here we would merely like to present the intuition.
Let us assume that Alice (input and output bits x and a, respectively) shares the
correlation (8.5) both with Bob (bits y and b) and with Charly (bits zand c): a+b =
xy and a 4+ ¢ = xz. Note that this situation is different from the case where Alice
would share one “machine” with Bob and share another independent “machine”
with Charly: in the situation under investigation Alice holds a single input bit x and
a single output bit a. We shall see that the assumption that Alice’s input and output
bits x and a are correlated both to Bob and to Charly leads to signaling. Hence in
a Universe without signaling, Alice can’t share the correlation (8.5) with more than
one partner: the correlation can’t be cloned.

In order to understand this, assume that Bob and Charly come together, input
y = 1 and z = 0, and add their output bits b 4+ c¢. According to the assumed
correlations and using the modulo 2 arithmetic @ + a = 0, one gets: b + ¢ =
a+ b+ a+c = xy+ xz = x. Hence, they could determine from their data that
Alice’s input bit is x, i.e. Alice could signal to them!

A natural question is how noisy should the correlation (8.5) be to allow cloning?
The answer is interesting: as long as the Alice—Bob correlation violates the Bell
inequality (8.4), the Alice-Charly correlation can’t violate it; if not there is signaling.

We have just seen that the CHSH-Bell inequality (8.4) is monogamous, like well
kept secrets. Let’s now see that this is not a coincidence!
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8.10.3 Non-signaling Cryptography

In 1991 Artur Ekert’s discovery of quantum cryptography [9] based on the violation
of Bell’s inequality changed the (physicist’s) world: entanglement and quantum
nonlocality became respectable. Now, as we shall see in this subsection, the essence
of the security of quantum cryptography does not come from the Hilbert space
structure of quantum physics (i.e. not from entanglement), but is due to no-signaling
nonlocal correlation! The fact that quantum physics offers a way to realize such
correlation makes the idea practical. However, if one would find any other way to
establish such no-signaling nonlocal correlations (a way totally unknown today),
then this would equally well serve as a mean to establish cryptographic keys [64—
60].

Let us emphasize that the goal is to assume no restriction on the adversary’s
power, i.e. on Eve, except no-signaling'' (for an independent but related work see:
[67]). Obviously, if one assumes additional restrictions on Eve, like restricting her
to quantum physics, then Alice and Bob can distill more secret bits from their data
[68]. But qualitatively, the situation would remain unchanged.

Assume that two partners, Alice and Bob, hold devices that allow them to each
input a bit (make a binary choice of what to do, e.g. which experiment to perform)
and each receives an output bit (e.g. a measurement result). This can be cast into
the form of an arbitrary correlation: P(a, b|x, y), with a, b, x, y four bits. Assume
furthermore that the devices held by Alice and Bob do not allow signaling. This
simple and very natural assumption suffices to give a nice structure to the set
of correlations P(a,b|x,y): as we recall in Sect. 8.10.1 this set is convex and
has a finite number of extreme points, called vertices. The nice property is that
any correlation P(a,b|x,y) can be decomposed into a convex combination of
vertices, hence once one knows the vertices one knows essentially everything. If
the correlation is local, i.e. of the form (8.2), then it is not useful for cryptography;
indeed the adversary Eve may know the strategy A. Hence, let’s assume that
P(a, b|x, y) violates the Bell inequality (8.4). Consequently P(a, b|x, y) lies in a
well defined corner of the general polytope, a sub-polytope. Barrett and co-workers
found that this sub-polytope has only nine vertices [60], eight local ones for which
M = 3 and only one nonlocal vertex, that corresponding to our conceptual tool, i.e.
toa + b = xy, for which M = 4, see Fig. 8.2.

In the case that Alice and Bob are maximally correlated (maximally but non-
signaling!), i.e. their correlation correspond to the nonlocal vertex of Fig. 8.2, it
is intuitively clear that the adversary Eve can’t be correlated neither to Alice, nor
to Bob, by the no-cloning argument sketched in the previous subsection. Hence,
in such a case Alice and Bob receive from their apparatuses perfectly secret bits.

"No-signaling should be understood here as in the previous sub-section on the no-cloning theorem.
That is, even if two parties joint, for example Eve and Bob come together, then they should not be
able to infer any information about the third party’s input, e.g. Eve and Bob should not have access
no Alice’s input.
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However, these bits are not always correlated: when x = y = 1 they are anti-
correlated. But this can be easily fixed by the following protocol. After Alice and
Bob received their output bits, Alice announces publicly her input bit x and Bob
changes his output bit to ' = b + xy. Now Alice and Bob are perfectly correlated
and Eve still knows nothing about ¢ and b’.

Consider now that Alice and Bob are non maximally correlated:

1—pyr 1

P(a,b|x,y) = > 1

Sla+b=x-y)+

1+ pne 1
—_— 8.8
> (8.8)

2

For pyr > 0 this correlation violates the inequality (8.4), for pyr < V2 - 1, it can
be realized by quantum physics. Can Alice and Bob exploit such a correlation for
cryptographic usage secure against an arbitrary adversary who is not restricted by
quantum physics, but only restricted by the no-signaling physics? The full answer
to this fascinating question is still unknown. However, there is an optimistic answer
if one assumes that Eve attacks each realization independently of the others, the
so-called individual attacks. In such a case, one may assume that Eve does actually
distribute the apparatuses to Alice and Bob. Some apparatuses are ordinary local
ones, for these Eve knows exactly the relation between the input and output bits,
both for Alice and for Bob. For example, Eve sends to Alice an apparatus that
always outputs a 0, and to Bob an apparatus that outputs the input bit: b = y.
In this example Eve knows Alice’s bit a, but doesn’t know Bob’s bit. For some local
pairs of apparatuses Eve knows both ¢ and b, or b but not a. But, if the Alice—Bob
correlation (8.8) violates the Bell inequality (8.4), i.e. if pyr > 0, then Eve must
sometimes send to Alice and Bob the apparatuses that produce the maximal nonlocal
correlation @ + b = xy,'? in which case she knows nothing about Alice and Bob’s
output bits a and b. A detailed analysis can be found in [65]. Here we merely recall
the result. For py; > 0.318 the Shannon mutual information between Alice and Bob
is larger than the Eve-Bob mutual information [65]. Hence for py; > 0.318 Alice
and Bob can distil a cryptographic secret key out of their data, secure even against
an hypothetical post-quantum adversary, provided this adversary is still subject to
no-signaling.

Actually, in [65] we worked out a 2-way protocol for key distillation valid down
to pyz > 0.09. There, it is also proven that the intrinsic information is positive for all
positive pyg. It is thus tempting to conjecture that secret key distillation is possible
if and only if the Bell inequality is violated.'?

120One may think that Eve should sometimes send a weakly non-local machine. But all such
correlations are convex combinations of local and fully non-local NL-machines. Hence, it is
equivalent for Eve to always send either a local or a NL-machine, with appropriate probabilities.

BIn [59] we proved that a correlation P(a,b|x,y) is nonlocal iff any possible non-signaling
extensions P(a,b,el|x,y,z) has positive Alice-Bob condition mutual information, conditioned
on Eve, I(A, B|E), i.e. has positive intrinsic information. This nicely complements the similar
result that holds for entangled quantum states and purifications [69]. In [65] we proved that the
same relation between nonlocality and positive intrinsic information does also hold when Alice
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Another beautiful result is the observation of an information gain versus distur-
bance relationship, very similar to that of quantum physics, based on Heisenberg’s
uncertainty relations (Scarani, Private communication). Let us analyze separately
the cases where Alice announces x = 0 and x = 1, and denote the respective
Alice-Bob error rates QBER, and the Eve-Bob mutual informations I,(B, E),
ie. OBER, = >, P(a # b)|x,y) and I.(B,E) = H(B|x) — H(B|E,x).
Remarkably, Io(B, E) is a function of only QBER, and I,(B, E) of QBER,":
information gain for one input necessarily produces errors for the other input, in
analogy with the quantum case where information gain on basis necessarily perturbs
information encoded in a conjugated basis!

To conclude this subsection, let us emphasize that the distribution of the
correlation (8.8) by quantum means requires a protocol that differs from the famous
BB84 protocol [70]. Indeed, the data obtained by Alice and Bob following the BB84
protocol do not violate any Bell inequality, hence the BB84 protocol is not secure
against a non-signaling post-quantum adversary. Indeed, even the noise-free BB84
data can be obtained from quantum measurements on a separable state in higher
dimension. The additional dimension could, for the example of polarization coding,
be side-channels due to accidental additional wavelength coding. Consequently,
standard security proofs [71, 72] must make assumptions about the dimension of the
relevant Hilbert spaces (accordingly, no security proof of quantum key distribution
is unconditional, contrary to widespread claims). But it is easy to adapt the BB84
protocol, it suffices that Alice measures the physical quantities corresponding to
the Pauli matrices o, or oy, depending on her input bit value O or 1, respectively,
exactly as in BB84, and Bob measures in the diagonal bases: 0445 and o_450 for
y = 0and y = 1, respectively. In this way Alice and Bob’s data are never perfectly
correlated, but they can violate the Bell inequality and be thus exploited to distil a
secret key valid even against post-quantum adversaries. Note that the violation of a
Bell inequality guarantees that no side channels accidentally leak out information.
Furthermore, in this protocol, that we like to call the CHSH-protocol, in honor of the
four inventors [14] of the most useful Bell inequality (actually equivalent to (8.4)),
Alice announces her input bit x, i.e. her basis as in BB84, but Bob doesn’t speak,
he always accepts and merely flips his bit in case x = y = 1. In summary, in the
CHSH protocol Alice and Bob use all the raw bits, however their data are initially
noisier than in the BB84 protocol.

announces her input and Bob adapts his output in such a way as to maximize his mutual information
with Alice. Proving this in full generality would be a marvelous result.

4Precisely one has: Iy(B, E) = 2- QBER, and I,(B, E) = 2 - OBER,.
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8.10.4 Cost of Simulating Quantum Correlations

Among the many contributions of computer science to quantum information is
the beautifully simple question (actually anticipated by Maudlin [73]): what is the
cost of simulating quantum correlations? More precisely, Gilles Brassard, Richard
Cleve and their student Alain Tapp [74], and independently Michael Steiner [75],
asked the question: How many bits must Alice and Bob exchange in order to
simulate (projective) measurement outcomes performed on quantum systems? The
question concerns the communication during the measurement simulation, clearly
there must have been prior agreement on a common strategy. If the systems are in
a separable state, no communication at all is needed. On the contrary, if the state
allows measurements that violate a Bell inequality, i.e. if the state has quantum
nonlocality, then it is impossible to simulate it without some communication or
some other nonlocal resources.

For the simplest case of two 2-level systems (2 qubits), this game assumes that
Alice and Bob receive as input any possible observable, i.e. any vector a and b on
the Poincaré sphere. And they should output one bit, corresponding to the binary
measurement outcome “up” or “down” in the physicist’s spin % language. A simple
way to simulate the quantum measurements is that Alice communicates her input a
to Bob and outputs a predetermined bit (predetermined by Alice and Bob’s common
strategy). But communicating a vector corresponds to infinitely many bits! My first
intuition was that there is no way to do any better, after all the input space is a
continuum, quite the contrary to the case of Bell inequalities where the input space
is finite, usually even limited to a binary choice. Yet, Brassard and co-workers
came out with a model using only 8 bits of communication! What a surprise: is
entanglement that cheap? But this was only a start. Steiner published a model valid
only for vectors lying on the equator of the sphere, but this model was easy to
generalize to the entire sphere [76]: it uses only 2 bits! 2 bits, like in dense coding
and teleportation: that should be the end, I thought! But, yet again, I was wrong.
Bacon and Toner produced a model using one single bit of communication [77].
Well, by now we should be at the limit, isn’t it? But actually, not quite!

Let’s come back to the real central question: How does Nature manage to produce
random data at space-like separated locations that can’t be explained by common
causes? The idea that Nature might be exploiting some hidden communication
(hidden to us, humans) is interesting. With my group at Geneva University we spent
quite some time trying to explore this idea, both experimentally and theoretically.
We could set experimental bounds of the speed of this hypothetical hidden
communication [27-31]. We also investigated the idea that each observer sends out
hidden information about his result at arbitrary large speeds as defined in its own
inertial reference frame [32]. The measured bounds on the speed of the hypothetical
hidden communication were very high and the latter assumption contradicted by
experiments. Also our theoretical investigation cast serious doubts on the existence



8 Can Relativity be Considered Complete? From Newtonian Nonlocality to. . . 213

of hidden communication. Analyzing scenarios involving three parties we could
prove that if all quantum correlations would be due to hidden communication, then
one should be able to signal (i.e. the hidden communication do not remain hidden)
[78, 79]! Hence, the only remaining alternative is that Nature exploits both hidden
communication and hidden variables: each one separately contradicts quantum
theory, but both together could explain quantum physics. However, recently, we
could prove all such models impossible [31]. Hence, let’s face the situation: Nature
is able to produce nonlocal data without any sort of communication. But is she doing
so using all the quantum physics artillery? Aren’t there logical building blocks of
nonlocality? A partial answer follows.

Let us come back to the problem of simulating quantum measurements, but
instead of a few bits of communication let us give Alice and Bob a weaker resource:
one instance of the nonlocal machine ¢ + b = xy. That this is indeed a weaker
resource follows from the observation that the correlation ¢ + b = xy can’t
be used to communicate any bit, but that by sending a single bit one can easily
simulate the nonlocal correlation (since Alice’s input is only a bit x, it suffices that
she communicates it to Bob). The nice surprise is that this elementary resource
is sufficient to simulate any pair of projective measurements on any maximally
entangled state of two qubits! For the proof the reader is referred to the original
article [80] and to the beautiful account in [81] where the relations between all
these models are presented.

The above results are very encouraging. One can get the feeling that, at last, one
can start understanding nonlocality without the Hilbert space machinery, that, at last,
one can study quantum physics from the outside, i.e. from the perspective of future
physical theories (assuming these will keep Einstein’s no-signaling constraint) and
no longer from the perspective of the old classical mechanical physics. But there
is still a lot to be done! For instance, it is surprising (and annoying in my opinion)
that one is still unable to simulate measurement on partially entangled states using
the nonlocal correlation (actually we could prove that this is impossible with a
single instance of the NL-machine, but there is hope that one can simulate partially
entangled qubit pairs with two instances [82], see also [83]). Let me emphasize that
all of today’s known simulation models for partially entangled qubits include some
sort of communication'> [77], let’s say from Alice to Bob. Consequently, in all these
models Bob can’t output his results before Alice was given her input. This contrasts
with the situation in quantum measurements where Bob doesn’t need to wait for
Alice (he does not even need to know about the existence of Alice) and with the
simulation model for maximally entangled qubits using the PR-box. It would be
astonishing if partially entangled state could not be simulated in a time-symmetric
way (For another recent results sustaining the conjecture the partially entangled state
are more nonlocal than maximally entangled states see: [85]).

5Using the reduction of an OT-box (Oblivious Transfer to a PR-box) [84] one can simulate any
2-qubit state with one OT-box.
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8.11 Conclusion

The history of non-locality in physics is fascinating. It goes back to Newton
(Sect. 8.2). It first accelerated around 1935 with Einstein’s EPR and Schrodinger
cat’s papers. Next, it slowly evolved, with the works of John Bell, John Clauser and
Alain Aspect among many others, from a mere philosophical debate to an exper-
imental physics question, or even to experimental metaphysics as Abner Shimony
nicely put it [86]. Now, during the last decade, it has run at full speed. Conceptually
the two major breakthroughs were, first Artur Ekert’s 1991 PRL which strongly
suggests a deep link between non-locality and cryptography, Sect. 8.10.3. The
second breakthrough, in my opinion, is the PR-box, Sect. 8.10.1, the understanding
that non-signaling correlations can be analyzed for themselves, without the need
of the usual Hilbert space artillery, thus providing a simple conceptual tool for
the unravelling of quantum non-locality [N. Gisin Quantum chance, Nonlocality,
Teleportation and Other Quantum Marvels, Springer 2014]. We have reviewed
that the no-cloning theorem, the uncertainty relation, the monogamy of extreme
correlation and the security of key distribution, all properties usually associated to
quantum physics are actually properties of any theory without signaling, Sect. 8.10.
In particular we emphasized that the second breakthrough, the PR-box, allows one
to confirm the first breakthrough: there is an intimate connection between violation
of a Bell inequality and security of quantum cryptography.

And relativity, can it be considered complete? Well, if nonlocality is really real,
as widely supported by the accounts summaries in this article, then all complete
theories should have a place for it. Hence, the question is: “Does relativity hold a
place for non-signaling nonlocal correlations?”.

Acknowledgements This article has been inspired by talks I gave in 2005 at the IOP conference
on Einstein in Warwick, the QUPON conference in Vienna, the Annus Mirabilis Symposium in
Zurich, le séminaire de I’Observatoire de Paris and the Ehrenfest Colloquium in Leiden. This work
has been supported by the EC under projects RESQ and QAP (contract n. IST-2001-37559 and
IST-015848) and by the Swiss NCCR Quantum Science and Technology.

References

—

. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality
be considered complete? Phys. Rev. 47, 777-780 (1935)

2. Weinberg, S.: Dreams of a Final Theory. Vintage/Random House, New York (1994)

3. Shimony, A.: In: Kamefuchi, S. (ed.) Foundations of Quantum Mechanics in the Light of New

Technology. Physical Society of Japan, Tokyo (1983)

4. Gilder, L.L.: The Age of Entanglement. Knopf Publishing, New York (2006)

5. Cohen, B., Schofield, R.E. (eds.): Isaac Newton, Papers & Letters on Natural Philosophy and
Related Documents, p. 302. Harvard University Press, Cambridge (1958)

. Schrodinger, E.: Naturwissenschaften 23, 807 (1935)

7. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum

Philosophy. Cambridge University Press, Cambridge (1987/Revised edition 2004)

[=)}



e

11.
12.

13.
14.

15.
16.

17.

18.

19.
20.
. Matsukevich, D.N., et al.: Phys. Rev. Lett. 100, 150404 (2008)
22.
23.
24.
25.
26.

21

217.

28.

29.

30.
31
32.

33.
34.

35.
36.
37.
38.

Can Relativity be Considered Complete? From Newtonian Nonlocality to. . . 215

. Gisin, N.: J. Math. Phys. 24, 1779-1782 (1983)

Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

. Mandel, L.: Optical Coherent & Quantum Optics. Cambridge University Press, Cambridge

(1995)

Tittel, W., Brendel, J., Gisin, N., Zbinden, H.: Phys. Rev. Lett. 81, 3563-3566 (1998)

Tittel, W., Brendel, J., Gisin, N., Zbinden, H.: Long-distance Bell-type tests using energy-time
entangled photons. Phys. Rev. A 59, 4150-4163 (1999)

Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Legré, M., Gisin, N.: Phys. Rev. Lett.
93, 180502 (2004)

Clauser, J.F., Horne, M.A., Shimony, A., Holt, R A.: M < 3 is equivalent to the famous
CHSH-Bell inequality. Phys. Rev. Lett. 23, 880 (1969)

Cirel’son, B.S.: Lett. Math. Phys. 4, 93 (1980)

Gisin, N.: Bell inequalities: many questions, a few answers. In: Myrvold, W.C., Christian, J.
(eds.) Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. The Western
Ontario Series in Philosophy of Science, pp. 125-140. Springer, Berlin (2009). Essays in
honour of Abner Shimony

Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, p. 152. Cambridge University
Press, Cambridge (1987)

Freedman, J., Clauser, J.F.: Phys. Rev. Lett. 28, 938-941 (1972); Aspect, A., Grangier, P.,
Roger, G.: Phys. Rev. Lett. 47, 460463 (1981); Ou, Z.Y., Mandel, L.: Phys. Rev. Lett. 61, 50—
53 (1988); Shih, Y.H., Alley, C.O.: Phys. Rev. Lett. 61, 2921 (1988); Kwiat, P.G., Mattle, K.,
Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.H.: Phys. Rev. Lett. 75, 4337 (1995);
Rarity, J.G., Tapster, PR.: Phys. Rev. Lett. 64, 2495-2498 (1990); Brendel, J., Mohler, E.,
Martienssen, W.: Europhys. Lett. 20, 575-580 (1992); Tapster, PR., Rarity, J.G., Owens,
P.C.M.: Phys. Rev. Lett. 73, 1923-1926 (1994)

Weihs, G., Reck, M., Weinfurter, H., Zeilinger, A.: Phys. Rev. Lett. 81, 5039 (1998)

Rowe, M.A., et al.: Nature 149, 791-794 (2001)

Barreiro, J.T., Bancal, J.-D.: Nat. Phys. (2013). arXiv:1303.2433

Aspect, A., Dalibard, J., Roger, G.: Phys. Rev. Lett. 49, 1804 (1982)

Gisin, N., Zbinden, H.: Phys. Lett. A 264, 103—-107 (1999)

Giustina, M., et al.: Nature 497, 227-230 (2013)

Christensen, B.G., et al.: Detection-Loophole-Free Test of Quantum Nonlocality, and Applica-
tions. Phys. Rev. Lett. 111, 130406 (2013)

Zbinden, H., Brendel, J., Tittel, W., Gisin, N.: Phys. Rev. A 63, 022111 (2001); Zbinden, H.,
Brendel, J., Gisin, N., Tittel, W.: J. Phys. A: Math. Gen. 34, 7103-7109 (2001)

Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H.: Testing the speed of spooky action
at a distance. Nature 454, 861-864 (2008)

Cocciaro, B., Faetti, S., Fronzoni, L.: A lower bound for the velocity of quantum communica-
tions in the preferred frame. Phys. Lett. A 375, 379-384 (2011)

Yin, J., et al.: Phys. Rev. Lett. 110, 260407 (2013)

Bancal, J.D., et al.: Nat. Phys. 8, 867-870 (2012)

Gisin, N., Scarani, V., Tittel, W., Zbinden, H.: 100 years of Q theory. Proc. Ann. Phys. 9,
831-842 (2000). quant-ph/0009055; Stefanov, A., Zbinden, H., Gisin, N.: Phys. Rev. Lett. 88,
120404 (2002); Gisin, N.: Sundays in a quantum engineer’s life. In: Bell, J.S. (ed.) Proceedings
of the Conference in Commemoration, Vienna, 10—14 November 2000; Scarani, V., Tittel, W.,
Zbinden, H., Gisin, N.: Phys. Lett. A 276, 1-7 (2000)

Suarez, A., Scarani, V.: Phys. Lett. A 232, 9 (1997)

Bohm, D.: Phys. Rev. 85, 166—193 (1952); Bohm, D., Hilley, B.J.: The Undivided Universe.
Routledge, New York (1993)

Popescu, S., Rohrlich, D.: Found. Phys. 24, 379 (1994)

Robhrlich, D., Popescu, S.: quant-ph/9508009 and quant-ph/9709026

Pironio, S., et al.: Nature 464, 1021-1024 (2010)

Gisin, N.: Science 326, 1357-1358 (2009). quant-ph/0503007



216

39.
40.
41
42.
43.
44.
45.
46.
47.
48.
49.
50.
SI.
52.
53
54.
55.
56.
57.
58.
59

61.

62.

63.
64.
65

67.
68.
69.

70.

71.
72.
73.
74.
75.
76.
71.
78.
79.
80.
81.

N. Gisin

Werner, R.F.: Phys. Rev. A 40, 4277 (1989)
Terhal, B.M., Wolf, M.M., Doherty, A.C.: Physics Today 56, 46-52 (2003)

. Mermin, N.D.: quant-ph/9609013 and quant-ph/9801057

Esfeld, M.: Stud. Hist. Philos. Mod. Phys. 35B, 601-617 (2004)

Peng, C.-Z., et al.: Phys. Rev. Lett. 94, 150501 (2005)

Zhao, Z., et al.: Nature 430, 54-58 (2004)

Haeffner, H., et al.: Appl. Phys. B 81, 151 (2005)

Blinov, B.B., Moehring, D.L., Duan, L.M., Monroe, C.: Nature 428, 153-157 (2004)
Volz, J., et al.: quant-ph/0511183

Julsgaard, B., Sherson, J., Cirac, J.I., Polzik, E.S.: Nature 432, 482-486 (2004)
Altewischer, E., et al.: Nature 418, 304 (2002)

Fasel, S., et al.: Phys. Rev. Lett. 94, 110501 (2005)

Fasel, S., et al.: New J. Phys. 8, 13 (2006)

Chou, C.W., et al.: Nature 438, 828-832 (2005)

. Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Phys. Rev. Lett. 80, 3891 (1998)

Jennewein, T., Weihs, G., Pan, J.-W., Zeilinger, A.: Phys. Rev. Lett. 88, 017903 (2002)
de Riedmatten, H., et al.: Phys. Rev. A 71, 050302 (2005)

Tanzilli, S., et al.: Nature 437, 116-120 (2005)

Tsirelson, B.S.: Hadronic J. Suppl. 8, 329 (1993)

Buzek, V., Hillery, M.: Phys. Rev. A 54, 1844 (1996)

. Masanes, L., Acin, A., Gisin, N.: Phys. Rev. A. 73, 012112 (2006)
. Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., Roberts, D.: Phys. Rev. A 71,

022101 (2005)

van Dam, W.: quant-ph/0501159; Wolf, S., Wullschleger, J.: Proceedings of 2006 IEEE
Information Theory Workshop (ITW) (2006); Buhrman, H., Christandl, M., Unger, F., Wehner,
S., Winter, A.: Proc. R. Soc. A 462, 1919-1932 (206); Short, T., Gisin, N., Popescu, S.: Quant.
Inf. Proc. 5, 131-138 (2006); Barrett, J., Pironio, S.: Phys. Rev. Lett. 95, 140401 (2005); Jones,
N.S., Masanes, L.: Phys. Rev. A 72, 052312 (2005); Barrett, J.: Phys. Rev. A 75, 032304 (2007)
Gisin, N.: Quantum correlations in Newtonian space and time: arbitrarily fast communication
or nonlocality. In: Struppa, D.C., Tollaksen, J.M. (eds.) Quantum Theory: A Two-Time Success
Story, Yakir Aharonov Festschrift, pp. 185-204. Springer (2013)

Collins, D., Gisin, N.: J. Phys. A: Math. Gen. 37, 1775 (2004)

Masanes, L., Acin, A., Gisin, N.: Phys. Rev. A 73, 012112 (2006)

. Acin, A., Gisin, N., Masanes, L.: Phys. Rev. Lett. 97, 120405 (2006)
. Acin, A., Masanes, L., Pironio, S.: New J. Phys. 8, 126 (2006)

Barrett, J., Hardy, L., Kent, A.: Phys. Rev. Lett. 95, 010503 (2005)

Pironio, S., et al.: New J. Phys. 11, 1-25 (2009)

Gisin, N., Wolf, S.: Phys. Rev. Lett. 83, 4200 (1999); Gisin, N., Wolf, S.: Proceedings of
CRYPTO 2000. Lecture Notes in Computer Science, vol. 1880, p. 482. Springer, Berlin (2000).
quant-ph/0005042; Acin, A., Gisin, N.: Phys. Rev. Lett. 94, 020501 (2005). quant-ph/0310054
Bennett, C.H., Brassard, G.: Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, p. 175. IEEE Press, New York (1984)

Shor, P.W., Preskill, J.: Phys. Rev. Lett. 85, 441 (2000)

Kraus, B., Gisin, N., Renner, R.: Phys. Rev. Lett. 95, 080501 (2005). quant-ph/0410215
Maudlin, T.: Philos. Sci. Assoc. 1, 404-417 (1992)

Brassard, G., Cleve, R., Tapp, A.: Phys. Rev. Lett. 83, 1874 (1999)

Steiner, M.: Phys. Lett. A 270, 239 (2000)

Gisin, B., Gisin, N.: Phys. Lett. A 260, 323 (1999)

Toner, B.F,, Bacon, D.: Phys. Rev. Lett. 91, 187904 (2003)

Scarani, V., Gisin, N.: Phys. Lett. A 295, 167-174 (2002). quant-ph/0110074

Scarani, V., Gisin, N.: Braz. J. Phys. 35, 328-332 (2005). quant-ph/0410025

Cerf, N.J., Gisin, N., Massar, S., Popescu, S.: Phys. Rev. Lett. 94, 220403 (2005)

Degorre, J., Laplante, S., Roland, J.: Phys. Rev. A 72, 062314 (2005)



8 Can Relativity be Considered Complete? From Newtonian Nonlocality to. . . 217

82. Brunner, N., Gisin, N., Scarani, V.: New J. Phys. 7, 1-14 (2005). quant-ph/0412109

83. Brunner, N., Gisin, N., Popescu, S.: Phys. Rev. A 78, 052111 (2008)

84. Wolf, S., Wullschleger, J.: quant-ph/0502030

85. Acin, A., Gill, R., Gisin, N.: Phys. Rev. Lett. 95, 210402 (2005). quant-ph/0506225; and for a
recent review read: Methot, A., Scarani, V.: Quantum Inf. Comput. 7, 157-170 (2007)

86. Cohen, R.S., Horne, M., Stachel, J. (eds.): Experimental Metaphysics. Kluwer, Boston (1997)



Chapter 9
Faces of Quantum Physics

Rudolf Haag

Preface

We review conceptual structures met in quantum physics and note changes of basic
concepts and language partly due to a maturing process in the 80 odd years since
their first evocation by the founding fathers in Copenhagen, partly demanded or
suggested by the passage from quantum mechanics to relativistic quantum field
theory, local quantum physics and high energy experiments. It is in particular the
concept of “observable” which lost its central role as a description of the measure-
ment of some hypothetical property of a “physical system” under investigation and
shifted to an auxiliary position as referring to a detector whose signals serve for the
reconstruction of a history described in equations like (9.6), (9.7). The primary role
is taken over by the notion of a (microscopic) event constituting the bridge to reality
and to finer features of space-time.

9.1 Introduction

Do you understand quantum theory? Confronted with this blunt question I can
neither say yes nor no. Since my student days I was fascinated by it and struggled
with it. Sixty years ago, in 1953, I had the good fortune to spend a year in
Copenhagen. Niels Bohr, then 70 years old, had retired from the activities of the
institute but I did get a chance for a lengthy discussion with him due to the fact
that T had been assistant to Fritz Bopp, who had tried for years to improve the
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interpretation of quantum mechanics and had sent several preprints to Niels Bohr
who could not understand their motivation at all. Today I regret and am somewhat
ashamed of my behaviour in this encounter with the great man, the principal
architect of the first coherent theory of quantum mechanics called the Copenhagen
interpretation. With the self assurance of a young post doc who had read the book
by J. von Neumann on the mathematical foundations of quantum mechanics I came
with the prejudice that Bohr’s explanations were too vague. So I understood nothing
of his speech, nor the meaning of his parting words: “Of course you can change
the mathematics but that changes nothing in the essence of what we learned.” It
took me many years till I understood some of Bohr’s insights. The essence for
him was “complementarity”, felt as a deep and general principle governing all
scientific effort. It asserts that in our attempts to describe nature we have to employ
symbols and pictures which can never give a full view. To any such choice there
is a complementary one illuminating some other aspect. Prime examples are the
uncertainty relations between canonically conjugate variables. Another example is
the alternative description of matter in terms of particles or waves. An extreme
example is the proclaimed complementarity between space-time and causality. We
shall return to this later. Niels Bohr distrusted the reliance on a single chain of linear
logical reasoning. One of his favorite lines of poetry was:

Nur die Fiille fiihrt zur Klarheit,
und im Abgrund wohnt die Wahrheit. [1]

I do not dare to translate this.

In the physics community the uncertainty relations and complementarity left
in their wake an insecurity about the ground on which we stand. This insecurity
is still there as witnessed by the heading: “Mysteries, puzzles and paradoxes in
quantum mechanics” chosen as title of a series of high class workshops at Gargnano,
Italy, 70 years after the birth of quantum mechanics. There, recent experiments
in atomic physics and quantum optics, made possible by an incredible advance in
experimental techniques, were presented. Some mystery may remain unexplainable
but puzzles can be solved and paradoxes lifted. To gain some firm ground on which
to stand let me first try to clarify some points of departure and terminology.

9.2 Reality, Individuality, Phenomena

9.2.1 Reality

In daily life we mostly take it as evident that we are tiny parts of a huge world which
is largely independent of our wishes and perceptions and we regard the impressions
in our consciousness as images of parts of this outside world. We do not reflect
about the relation of this world to the part we call “I”. Experimental physicists have
to regard their efforts as a dialogue with a sometimes hostile outside world called
nature and the individual observed phenomena as “facts”, i.e. irreversible elements
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of reality, where “nature” and “reality” are essentially synonymous. This outside
world is felt to be distinct from the human mind, obeying laws independent of our
will. This corresponds to a dualistic picture of the universe, with two co-existing
parts: human consciousness and will on one side, nature on the other. The question
about the relation between these two parts, known as the “mind-body-problem”, has
been a topic in philosophy for ages. Attempts at unification by eliminating one of
the two sides led to the two extreme positions of idealism and materialism.

The advent of quantum mechanics suggested that physics could tip the balance in
this dispute in favor of a primacy of the mind. In particular there is the discrepancy
between the deterministic development of wave functions by the Schrodinger
equation and the statistical nature of all predictions. J. von Neumann observed
that the Schrodinger equation alone could not explain the gain of knowledge by
experiments. The process would never end unless the observer decides to end it due
to his consciousness. Schrodinger illustrated this by his drastic story of the poisoned
cat, who is neither dead nor alive. For such reasons the standard interpretation had
withdrawn to the safe position that the task of the theory is fulfilled if it is able to
predict the results of experiments. I have always felt that this is too modest a view
and does not do justice to the motivation of physicists who hoped to learn about the
working of nature.

The reality issue received a new impulse by the observation of persistent long
range entanglement and the violation of Bell’s inequality. It kindled many debates
as to whether reality or locality have to be sacrificed. B. D’Espagnat discussed the
pro and contra for the assumption of a “mind-independent reality” [2].

In spite of all this, I maintain that physics cannot contribute to the solution of the
mind-body-problem. For the purpose of physics it is not relevant to which ideology
(if any) one adheres. The experimentalist is safeguarded against becoming the prey
of illusions by the extremely stringent requirements for accepting a phenomenon
as real. It needs the agreement with many other observers, possibly attainable
by documentation; it needs reproducibility by independent work elsewhere. The
essential criterion for accepting an element of consciousness as the cognition of
a counterpart in reality is the consensus between many observers, which lifts the
impression from one individual consciousness to a collective one. If this is satisfied,
the agreement of all people concerned is adequate for treating the said observation
“as if” it were an element of an outside world.

The theory is in another situation. If it transcends pure phenomenology it is a
creation of the human mind. Not all of its concepts and pictures need to have a
counterpart in reality. Since a consensus can only be reached about coarse features
of phenomena there remains an open end for extrapolations whose merits can only
be judged with criteria like fruitfulness, simplicity, naturalness.

9.2.2 Individuality, Division

Any gain of knowledge starts by the distinction of different things: different objects,
phenomena, even words in a language, different individuals of any kind. Our
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ability to distinguish individual elements leads us to the concept of numbers, sets
and ultimately to the whole structure of mathematics. Physics begins with the
observation of individual phenomena and the perception of individual objects. The
projection of phenomena into nature we call “events”. The singling out of individual
elements demands a division of the world. The least objectionable way of doing
this starts from the consideration of simple hypothetical universes, allowed by the
theory, which could exist without anything else. Among these there are minimal
ones consisting of a single, lonely, stable particle. Here, the term “stable particle”
denotes anything which permanently stays together, be it an electron, an atom, a
molecule or even a piece of solid material.

In quantum physics the relation of a particle to space-time is somewhat subtle.
The lonely particle does not produce an event due to the lack of a partner. For
its perception we need a detector. The interaction of the particle with the detector
produces an event and this is localized in space-time. Prior to this event we cannot
assume any localization of the particle because there exist interference effects
described by the wave aspect of matter. They tell us that the same particle may
be partly here, partly there. But the property of “staying together” means that in a
battery of detectors the particle can excite at most one detector at any given time.
A particle, though it has no sharp position, is “permanently singly localized”, i.e. it
cannot produce any twofold equal time coincidences. This constitutes an operational
definition of the concept “particle” and is equivalent to the well known requirement
that it is a state with sharp mass value.

In pursuit of the old dream of understanding the variety of appearances in
terms of a few elements, the division process was carried further and further. The
explanation of the structure of matter in terms of electrons and nuclei, of nuclei in
terms of protons and neutrons, constitute the most spectacular triumph of quantum
mechanics. However, we must note that in these divisions the individuality of the
parts becomes blurred. It disappears already in the example of entangled 2-particle
states.

9.2.3 Phenomena, Events, Observation

In his contribution to the Einstein centennial symposium in Princeton 1979 John
Archibald Wheeler formulated two paradoxa which, taken together, might constitute
a clue for the next step in the progress of the theory. Unfortunately, I forgot one
of them, but the other one sounded: “No phenomenon is a phenomenon unless
it is observed.” I thought that he wanted to stress the customary doctrine that
quantum theory deals with laws governing the observation of nature as distinct
from properties of nature itself. So I asked him later what he meant with this
statement in view of the common belief that the evolution of stars preceded by a
wide margin the appearance of life and consciousness and that cosmologists use
quantum physics in the description of such processes. His answer “It has nothing
to do with the mind” surprised and satisfied me. However, there remained a need
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for interpretation. One might generalize the meaning of the term “observation”,
dissociating it from human consciousness and replacing it by the existence of a
document. Still, there remain many unobserved happenings needed as links between
or causes of genuinely observed phenomena. We may call them “unobserved
events”. Among their attributes must be some approximate localization in space
and time and irreversibility marking a transition between a factual past and an open
future in the relative present; a jump into reality from a possibility. If one wants,
one may evoke the picture of an entrance into a universal consciousness in nature.
This suggests the replacement of the picture of a universe existing from eternity to
eternity by the picture of an evolutionary universe [3-5].

9.3 Observables in Quantum Mechanics

9.3.1 Brief Sketch of the Formalism and Interpretation

Observables and states are the central concepts of quantum theory. In quantum
mechanics they both refer to a “physical system”, i.e. some part of the universe
singled out for study. It usually consists of a certain number of electrons and
nuclei interacting by Coulomb forces and they may be subjected to external fields
(electromagnetic or gravitational) described classically. The notion of photons
representing the quantum nature of electromagnetic radiation lies, strictly speaking,
outside the domain of non-relativistic quantum mechanics, but it is unavoidable and
freely used. Parts of nuclear physics in which the structure of nuclei is explained in
terms of mechanical forces between protons and neutrons may be included but will
not be considered here. In Quantum Field Theory the notion of “physical system” is
different. This demands some reconsideration of standard terminology.

The specific way of describing predictions in quantum mechanics arises from two
features. The first was formulated by Niels Bohr in the words: “We cannot assign
any conventional attributes to an atomic object.” The “conventional attributes”,
like position and momentum are replaced by “unconventional attributes”, called
“observables”, mathematically represented by self-adjoint operators in a Hilbert
space associated to the system. They are used to label the measuring procedures
to which the system may be subjected. Numerical attributes arise only after the
application of such a measuring procedure to an individual system. As measuring
results only spectral values of the corresponding self-adjoint operator can appear
and they should not be interpreted as properties of the system existing prior to
the measurement. They are created in the interaction process between measuring
instrument and system. !

IThis aspect of the “Copenhagen interpretation” has been violently embattled, and is still not
accepted by some. However, it is inescapable if one is not prepared to sacrifice the mathematical
structure supported by many experiments, e.g. [6].
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The second feature is the lack of deterministic predictability. To ensure repro-
ducibility of findings it is necessary to consider ensembles of individual systems
which are (to the best of our knowledge) equally prepared. We must be satisfied
with statistical statements. The so called “state of the system” characterizes such
an ensemble. Its mathematical description is a positive operator in Hilbert space,
normalized to have unit trace. The probability assignments are derived from Born’s
rule. If the observable F is measured in the state p the probability for finding a result
within the spectral range A of F is

p = TrpPpa 9.1)

where Tr denotes the trace, and Pg  is the spectral projector of F for the range A.

Obviously, different ensembles may be thrown together in arbitrary proportions
to form a new resulting ensemble. This “mixing process” implies that the set of all
states of a system is a convex body within the set of all operators. For any subset
{p;} of states the convex combination

p= Zkfpi; Ai > 0; Zki =1 9.2)

is again a state. The convex body has extremal points, the “pure states” which
cannot be written as convex combinations of others. They are represented by one-
dimensional projectors. The salient feature of quantum physics is that the convex
body of states is not a simplex. This means that the decomposition of an impure
state into pure components, while always possible, is highly non-unique. In physical
terms the decomposition of a state into a convex combination corresponds to a
decomposition of the ensemble into subensembles. Therefore it is often not possible
or meaningful to assume that each individual system is in some pure state. The
assignment of a particular pure state to an individual system means only that this
system is filed as a member of a particular subensemble whose choice remains rather
arbitrary.

Several eminent scientists have expressed dissatisfaction with the scheme
sketched above. Albert Einstein could not make his peace with the indeterminacy
and lack of reference to reality. We shall return to this later. John Bell in his search
for an ontological description of the universe wanted to throw out the notion of
observables in favor of “beables” [7].

For a critical assessment of the standard terminology in quantum physics it is
useful to look at its origins and at the gradual shifting of emphasis.

9.3.2 Origins

The enormous amount of knowledge about atomic structure accumulated in the
quarter century preceding the advent of quantum mechanics is documented in the
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book by Sommerfeld [8]. Two features there should be mentioned because of their
decisive influence on subsequent development. First, the treatment of the orbital
motion of electrons by the canonical formalism governed by a Lagrange function
with the formulation of quantum conditions selecting the stable orbits. Secondly, the
formulas for the intensity of radiation due to a quantum jump from a higher level
E; to a lower level Ej. In this, there occur doubly indexed quantities: an oscillator
strength f; and dipole moment dj; obeying sum rules. This was the decisive cue
for Heisenberg leading him to “matrix mechanics” by postulating that all canonical
variables should be replaced by matrices whose kinematical relations are expressed
by matrix multiplication [9].

Quite different were the observations which led Schrodinger to his formulation
of wave mechanics. There was de Broglie’s relation between momentum and
wavelength supplementing Planck’s relation between energy and frequency; there
were the interference phenomena found by Davisson and Germer. Centuries earlier
such interference phenomena for light had led to the replacement of the corpuscular
picture of light by a wave theory.

In this analogy between optics and mechanics the light rays of geometric optics
in a medium correspond to the trajectories of a particle in mechanics. This allowed
Schrodinger to guess the form of a wave equation describing the propagation of
a particle in a potential. Its application to the discussion of atomic structure was
heralded by the title of his decisive paper: “Quantisierung als Eigenwertproblem”
[10]. For this, one additional idea was needed: the natural boundary conditions
at infinity expressed by the square integrability of wave functions. It introduced
the notion of Hilbert space into theoretical physics, which has become one of the
essential mathematical concepts in quantum physics. The quantities energy and
momentum of classical mechanics become operators acting in Hilbert space.

9.3.3 Discussion

The creators of matrix mechanics and wave mechanics had to consider only
a few basic observables: position, momentum, energy, angular momentum. But
in the development of a general, mathematically elegant theory it was assumed
that every self-adjoint operator in Hilbert space represents some observable. This
generalization is in itself harmless and useful.

It leads, however, to the often voiced pseudo-problem: “How can we construct a
measuring apparatus for a given self-adjoint operator?” and it may veil the central
point that all measurements in atomic physics ultimately end by the detection of an
event with its localization in space and time. The observed phenomena are dots
in a photographic emulsion, flashes on a scintillation screen, clicks of a Geiger
counter or signals from some other localized detector. The great variety of different
observables arises only due to the possibility of manipulating the system between
state preparation and ultimate detection. In the simplest but important case of the
manipulation by an external field this demands the solution of the Schrodinger
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equation which leads to a unitary transformation of the initial wave function. In
the measurement of a spin orientation we determine the position after the deflection
by a Stern-Gerlach magnet. A momentum measurement either uses the relation to a
mean velocity or one studies the contrast in an interference pattern after the passage
of the particle through a lattice. Of particular interest is the measurement of energy
levels of atoms. If we separate off the center of mass motion, the isolation of the
atom ensures that we shall find it in its ground state. An ensemble of such atoms is
automatically described by a pure state, namely the ground state; an isolated atom
is (almost) a “beable” as desired by John Bell. The level differences are typically
measured by absorption or emission of photons whose energy is determined by
the deflection in passing through a spectrometer. The ground state energy itself is
determined by studying the ionization process and measuring the momentum of a
projectile.

At this point, we should also consider the difference between measurement and
detection. The former leads to a measuring result giving a number belonging to the
spectrum of the observable. The latter registers a fact or, in the case of a battery
of detectors, it offers the choice between various mutually exclusive alternatives.
Mathematically, the former corresponds to the self-adjoint operator itself with its
spectrum, the latter to a set of orthogonal spectral projectors representable by the
Abelian algebra of functions of the observable. There is no natural numbering
for detector signals; this is different for preferred observables, like energy and
momentum, where such a natural numbering exists. Then, the bridge from the
position of the registered event to the spectral value has to be established.

9.3.4 Continuous Propagation, Discrete Events

Let us now discuss in some detail the simple but illuminating case: manipulation of
a single particle by a classically described external field. Here we see most clearly
the division of the process into two stages described and idealized in different ways.
First, the (relatively mild) interaction of the particle with the external field. This
is described by the Schrodinger equation leading to a unitary transformation of
the initial wave function. It is reversible and conserves coherence but by itself it
cannot produce any gain in knowledge. All possibilities remain open. Secondly, the
catastrophic interaction in the detector leading to an unresolved, irreversible fact.
One obvious difference distinguishing the interaction in the first stage from that
in the second is that an external field is by definition inert. It acts on the atomic
system but does not encounter any appreciable back reaction. Of course we cannot
expect that this idealization is perfect but typically it is well satisfied in countless
interference experiments with electrons, X-rays, slow neutrons. For interference
experiments with much heavier particles see [11]. Reversibility is demonstrated in
a so called “quantum eraser experiment” [12]. It shows conservation of coherence
in beam splitting, various polarization changes and recombination of beams. It is
important to stress here, that the quantum eraser cannot erase any facts. In the
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intermediate stage when a state is reached for which we can predict with certainty
the result of some specific measurement, there remains the essential difference
as to whether this measurement has or has not been performed. If the detection
process is not performed, the state remains in the coherent reversible stage. If it is
performed, an irreversible fact is created. Included in this list of coherent processes
may even be experiments in which an atomic beam is crossed by laser light forcing
the atoms to oscillate between the ground state and an excited state. After several
such encounters an interference between parts of the atomic beam having undergone
different histories can still be observed [13]. The reason in this case is that the
laser beam may be idealized as an external field. It contains almost infinitely many
photons so that absorption or emission of one photon has no effect on it. Still another
example is the technique of “parametric down conversion” by the passage of a
photon beam through a nonlinear crystal which splits one photon into a coherent
superposition of two photons with half energy. This has been extensively used in
entanglement experiments, which will be discussed later.

Let us turn now to the detection process. To fix the ideas, let us consider the
detection of a charged particle moving against a battery of detectors, say Geiger
counters. The transversal coherence length of the wave function of the particle shall
be far extended beyond the battery of detectors. The ensuing history can again be
divided into two stages. First, a microscopic, triggering event, here the ionization of
some molecule in one of the detectors. It is followed by a chain reaction in which
an exponentially growing avalanche of secondary ionization processes develops,
so that a signal perceptible by our senses results. The customary description of
the formation of the avalanche is also given in terms of individual ionization
processes, each involving one incoming electron and one molecule. There are good
reasons to believe that this picture of breaking up the complex total process into a
triggering event and many subsequent secondary ionization processes is a very good
approximation. On the side of experiments, the efficiency of a detector can be tested
and is typically found to be close to 100 %. This means that if any microscopic event
occurs within some detector, it will almost certainly be amplified to a visible signal.
On the side of the theory the separation of a triggering event from the rest depends
on the mean free path between events in relation to the sharpness of localization
in space and time which we may assign to this event. This in turn depends on
many factors, which have been discussed in [14]. Still a thorough treatment of the
detection process under realistic circumstances would be highly desirable.

The above discussion of the detection process implies some change of emphasis
in comparison to the standard treatment of measurement theory. In the idealization
of the measuring process by J. v. Neumann one starts from an initial state p of the
system and the “neutral state” of the measuring device p’. The total state is the
tensor product p’ ® p. After the measurement (if the system survives) a particular
result corresponds to a pair p;, p;. The total state is represented by the mixture
> pip, ® pi, where p; denotes the probability of occurrence of the respective
result. Assuming that the initial states o’ and p are pure, which, though unrealistic,
is not forbidden, the process transforms the pure state into a mixture, which is
impossible within the known formalism. Much of the effort in measurement theory
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was devoted to the resolution of this apparent paradox. One strategy is to refer to the
macroscopic nature of the measuring device. The interaction process of the system
with this device leads to entanglement with more and more degrees of freedom.
One shows that some coarse grained distinctions of properties (projections into high
dimensional subspaces) approach stationary limits. These are the states p; appearing
as partners of states p; of the system. If one idealizes the notion “macroscopic” by
infinite this argument may be put in precise mathematical language invoking the
concept of weak convergence.

The appearance of a highly impure final state is evident for many reasons [15].
There is interaction with uncontrollable partners leading to decoherence [16].
Moreover the initial state of the detector is usually far from purity. Furthermore
each reaction involving charged particles is accompanied by a Bremsstrahlung of
soft photons which escapes detection. The consequences of this for irreversibility
have been discussed [17]. In any case this is not the main part of the paradox.

The essential point is, however, that among the various possibilities precisely
one is realized in each individual case. A very weak source will generate a temporal
sequence of results with a lawfully determined relative frequency of occurrence for
each of them, but no knowledge of which event may occur next. The realization
of one specific unpredictable result among many alternatives involves a decision,
of which we see at least the distinction between clicks of the different detectors. A
decision by whom? Einstein wanted to make God responsible, or instead one might
say nature, or one may leave it open as unknown and call it just the “principle of
random realization” [14]. We emphasize that the decision arises already on the level
of a microscopic triggering event, and that the transition to a macroscopic signal
plays only the role of “freezing” this result in a document.

9.3.5 Persistent Entanglement, Bell Inequalities and Sequels

In 1964 J. Bell presented an inequality which exhibited a quantitative difference
between the quantum mechanical prediction for some probabilities and any expla-
nation of the process in terms of “hidden variables” [19]. He discussed the following
process mentioned a few years earlier by D. Bohm: A spin-0 particle decays into
two spin-1/2 particles moving in opposite directions for a long time till one of them
enters the lab of Alice, the other one the lab of Bob. In both cases the arriving
particle is subjected to a measurement of the spin orientation by a Stern-Gerlach
arrangement. This can yield two possible outcomes: parallel or antiparallel to the

2Einstein to James Franck: “Schlimmstenfalls kann ich mir noch vorstellen, daB Gott eine Welt
hitte schaffen konnen, in der es keine natiirlichen Gesetze - also kurz gesagt: ein Chaos - gibt.
Aber daB es statistische Gesetze mit endgiiltigen Losungen geben soll, d. h. Gesetze, die Gott in
jedem einzelnen Fall zwingen zu wiirfeln, das finde ich im hochsten Malle unangenehm.” quoted
from [18].
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orientation of the Stern-Gerlach magnet. We denote this result by (a, ), where a
is the unit vector describing the direction of the magnet; « = %1 distinguishes the
two possible results. The spin-part of the two-particle wave function after the decay
is a singlet state and this will remain so practically unchanged up to the detection
process. This singlet state is a pure two-particle state which cannot be decomposed
into any mixture, in particular not into a convex combination of products of single-
particle states. This is meant by the term “entanglement” or “non-separability” and
this suggests that not only it is impossible to assign any “conventional attributes”
(“hidden variables”) but even no quantum state to the individual particles. The
former impossibility has been demonstrated by Bell, the latter by Clauser, Horne,
Shimony and Holt [20]. We shall follow here the arguments by Clauser et al. in
deriving the inequality which delimits the second impossibility.

The ensemble of all particles received by Bob may be described by an impure
one-particle quantum state pp. Since the twin particles are correlated due to their
common birth it is not surprising that the probability for a particular measuring
result of Bob depends on the result of Alice’s measurement on the twin. However,
entanglement is more than ordinary correlation.

Suppose now that a particle is endowed with some objective property A and the
joint probability in the ensemble of pairs of particles is given by a distribution
function p(A;, A2) which describes ordinary correlation between A; and A,. We
assume further that A determines the probability w(A; a, o) for the measuring result
(a, o), yielding for the expectation value

(a;A) =w(A;a,+) —w(A;a,—).

We note that w(4; a, +) + w(A;a, —) = 1 because in the measurement a, one of the
alternatives =1 must occur. The joint probability for (a, ; b, B) is then

Wea.aib.p) = [dhdspG i) wkiia.a) wikzib.f). 93)
For the expectation value in the joint measurement, which is defined by

(a;b) = w(a,+;b,+) —w(a,+;b,—) —w(a,—; b, +) + w(a,—; b, —)

one obtains the representation

(a:b) =/dxldxzpul,xz)<a,xl><b,xz>. 9.4)

From this, together with the positivity and normalization of the distribution function
p(A1, ;) one obtains inequalities between expectation values for combinations of
measurements with different orientations of the apparatuses,

|(a;b) + (a;b’) + (a’;b) — (a";b")| < 2. 9.5)
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The experimentally observed violation of this inequality shows that the assumption
of an ordinary correlation between assumed properties A1, A, is not tenable. Instead
one has the following situation: If Bob receives the full information from Alice
about what she has done and found in her measurements, he can split his ensemble
into two subensembles according to Alice’s measuring result « = =1 on the twin.
Then these subensembles define two orthogonal pure states which depend on the
orientation of Alice’s device. It must be stressed that this has nothing to do with any
physical effect of Alice’s measurement on the particles received by Bob. Nor is it
important how fast the information is transmitted. Bob and Alice can get together
leisurely after the experiments are finished to evaluate their records. They only have
to establish the correct pairing of the events, which can be found for example from
the records of the arrival times. No witchcraft is involved. It shows, however, that the
pure state of the particle has no objective significance. It does not describe a property
of an individual particle but only the defining information about the subensemble
in which the particle is filed. And here this is determined by the result of Alice’s
measurement on the twin.

This implies an enhancement of Bohr’s tenet mentioned in the introduction.
Not only can we “not assign any conventional attribute to an atomic object”
but we cannot even assign any individual quantum state to the particle. It puts
in question our traditional picture of the reality of “atomic objects” (particles).
Nicholas Maxwell has coined the term “Propensiton” for such an object [21]. It
propagates according to a deterministic law such as a Schrodinger equation which
is invariant under time reversal. But it does not represent any phenomenon. It is the
carrier of propensity contributing to probability assignments.

9.4 Field Theory and High Energy Experiments

9.4.1 Quantization and Second Quantization

The way from classical mechanics to quantum mechanics discovered by Heisenberg
became the prototype for the development of quantum theories in various regimes.
This method called quantization is described in the terminology introduced by
Dirac as the replacement of “c-numbers” by “g-numbers”. The former denote the
conventional variables of the classical theory which have numerical values. The
latter denote elements of a noncommutative algebra which can be represented
by operators in a Hilbert space. In the case of Hamiltonian mechanics this
correspondence has a group theoretic background. The Poisson brackets of the
c-number theory are replaced by the commutators of the corresponding q-numbers.
The former define the Lie algebra of the group of canonical transformations, the
other the Lie algebra of unitary transformations in the Hilbert space of wave
functions. Since one can show that these two groups are not isomorphic, this formal
correspondence can only hold for some subset of preferred variables. Among these
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are the generators of the geometric invariance group which, in the non-relativistic
case, is the inhomogeneous Galilei group consisting of translations in space and
time, rotations and proper Galilei transformations, i.e. transitions to a uniformly
moving coordinate system. By Noether’s theorem the generators of these relate to
momentum, energy, angular momentum and the position of the center of mass at
time ¢t = 0. The irreducible ray representations of this group can be found in the
book by Hammermesh [22]. They describe the quantum theory of a single particle
with Heisenbergs commutation relations between position and momentum.

This work was motivated by the seminal work by Wigner, who classified all
irreducible, unitary ray representations of the inhomogeneous Lorentz group and
found that those with positive energy correspond to the quantum theory of a single
particle in empty space. They are distinguished by the value of mass and spin [23].

Already in 1930 Heisenberg and Pauli applied the rules of quantization to
electrodynamics [24]. It took, however, 20 years with numerous modifications and
other ideas till a viable theory, quantum electrodynamics, was established. We must
restrict us here to a few comments.

1. The starting point for quantization must be the Dirac Maxwell system, considered
as a classical field theory. It involves the complex Dirac field W (x) representing
charged matter and a vector potential A4, (x) for the Maxwell field. Since
the Dirac field originally appeared as the wave function of an electron in
quantum mechanics its quantization led to the unfortunate expression “second
quantization”. This added fuel to mystifications surrounding the concept of
quantization lifting it from the position of a heuristic crutch to the level of a
fundamental principle. The c-number version of the Dirac field is on the same
level as Maxwell’s theory. Both describe continuous waves. The quantum aspect
does not arise until this is combined with the picture of discrete individual
particles, interpreting the wave function as a probability amplitude of an electron
resp. a photon.

2. There is a common geometric background of the c-number and g-number
versions. They both describe a fiber bundle over space-time. The value of the
Dirac field at a base point is recorded on the respective fiber, the fundamental
group being U(1) which changes the phase. The vector potential establishes the
connection between fibers.

9.4.2 Field Theory

Comparing the physical interpretation of quantum mechanics with that of quantum
field theory we see one important change: The notion of “physical system” has
disappeared or rather it was absorbed in the notion of state. The object of observation
is no longer materially defined, but it is the condition of some region of space-time.
In quantum electrodynamics one might consider as the basic observable the electric
or magnetic field strength at a point or rather their average values in a small region.
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Bohr and Rosenfeld undertook it to study the possibility of such measurements and
to verify that the ensuing uncertainties are in accordance with the commutation
relations [25]. The proposed method appears, however, to be rather adventurous.
Concerning realistically available detectors we note that one cannot expect to know
the assignment of a specific operator to a given detector. From this we conclude
that we should not aim at giving a mathematical counterpart to a single detector
but describe the set of all detectors indicating an event in a specific space-time
region O. This leads to a correspondence between a space-time region O and a
noncommutative algebra A(O) specified by a net of algebras O — A(O), satisfying
a few natural requirements. This so-called “algebraic approach” or “Local Quantum
Physics” has been shown to carry sufficient information to determine the particle
content and collision cross sections of the theory [26].

9.4.3 High Energy Experiments

In the reaction area of a storage ring high intensity high energy beams of electrons
and positrons may cross each other and the results of possible collision processes
are registered in arrays of detectors. From these the individual histories of such
processes are reconstructed such as

et +em - ut +pu; ui—>ei+v + v (9.6)

or
et +e” —=q +7; 9.7

The quarks ¢ and g transform into hadronic jets in opposite directions. The detector
signals do not refer to any of the processes indicated by the arrow in (9.6) and (9.7).
They indicate the interaction of one of the charged particles listed on the right
hand side of (9.6) and (9.7) with molecules in one of the detectors. Therefore the
observables (detectors) play only an auxiliary role and the purpose of the experiment
is not the measurement of any observable; it is a reconstruction of a sequence of
events. The concept of observable does not fit here and the central role is taken over
by the concept of “event”.

9.5 Concluding Remarks and Outlook

In the foregoing section we have emphasized the need to regard the notion of
“event” as a fundamental, primary concept, ultimately replacing the concept of
observable. It establishes the bridge to reality and space-time. For many purposes
it suffices to understand by the term “event” just a detector signal. But, aiming at
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a fundamental theory, one can push this to finer distinctions: Invisible processes
like microscopic triggering events or elementary reactions as described in (9.6)
and (9.7) which are reconstructed from many secondary detector signals. If the
occurrence of events is not governed by strict deterministic laws but left to random
realizations, this necessarily leads to a bipartition of the theory. On one side there
must be the characterization of possible events with their attributes, on the other
side the assignments of probability for their occurrence, which is subsumed in the
notion of “quantum state”. These probability assignments change continuously with
the passage of time between events and may be pictured as the propagation of
“Propensitons” establishing links between events. The realization of a specific event
implies a discontinuous change of the quantum state.

One may note the parallelism between this bipartition and Bohr’s principle
of complementarity of wave aspects vs. particle aspects. The former refer to the
continuous change of the quantum state between events, the latter to the discrete
realization of an event. One may even recognize some similarity to Bohr’s somewhat
mystical complementarity between space-time and causality which was hailed by
Heisenberg as the deepest insight. If “causality” is understood as strict determinism
(e.g. the Schrodinger equation) and space-time stands for one of the essential
attributes of an event, namely its localization, then this complementarity refers to
the same bipartition. There is, however, one essential difference. We do not regard
the bipartition as a complementarity leaving us the choice to focus on the one or the
other aspect. Rather both are needed in succession.

Our discussion here concerned language, concepts and interpretation referring to
existing theory. This remains on a qualitative level. What is missing in all this is a
precise mathematical representation of possible events which would be needed for a
self contained formulation of the theory in terms of these concepts. It must include
the essential attributes of an event, namely: the final resulting impure state and the
localization in time as well as in space. M. Toller has reviewed existing attempts at
defining a time of occurrence and proposed a definition of localization in terms of
“positive operator valued measures” [27].

This addresses at least some part of the problem, though it remains far from
giving a satisfactory answer. A full solution of this problem could open a wide
perspective: the representation of possible histories as a category whose objects are
events and whose directed arrows are propensitons describing causal links between
events. It would include the description of possible space-times generated by the
processes and dependent on the energy-momentum flow.
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Chapter 10
Computation Through Neuronal Oscillations

K. Hepp

“Allerdings” (“Certainly”. Poem by Goethe (G) to a Physicist (P)):

P:  Ins Innre der Natur - P: Into the interior of Nature -
G: O du Pnilister! - G: Oh you Philistine! -
P:  dringt kein erschaffner Geist. P:  no created mind can enter.
P:  Gliickselig, wenn sie nur P:  Happy, if she only
die dussre Schale weist! shows the external shell!
G: Alles gibt sie reichlich und gern.  G:  All she gives richly and eagerly.

Natur hat weder Kern
noch Schale.
Alles gibt sie mit einem Male.

Natur has neither core
nor shell.
Everything she gives at once.

10.1 Introduction

Some of us believe that natural sciences are governed by simple and predictive
general principles. This hope has not yet been fulfilled in physics for unifying
gravitation and quantum mechanics. Epigenetics has shaken the monopoly of the
genetic code to determine inheritance [4]. It is therefore not surprising that quantum
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mechanics does not explain consciousness or more generally the coherence of the
brain in perception, action and cognition. In an other context, others [105] and
we [66, 67] have strongly argued against the absurdity of such a claim, because
consciousness is a higher brain function and not a molecular binding mechanism.
Decoherence in the warm and wet brain is by many orders of magnitude too strong.
Moreover, there are no efficient algorithms for neural quantum computations.
However, the controversy over classical and quantum consciousness will probably
never be resolved (see e.g. [50, 53]).

Are there new and powerful coherence generating mechanisms in the brain, based
on classical physics? This is the central question of this essay. Is Goethe’s poem
relevant for modern neuroscience?

The human brain is the most complex ‘stand-alone computer’ on our planet.
Each mm? of the gray matter in neocortex contains ~10° neurons and ~4km
wire. Humans have ~10'' neurons and each neuron is synaptically connected
to ~10* other neurons. We shall mainly deal with the vertebrate neocortex with
~80 % pyramidal neurons [102] and ~20 % interneurons [39]. The colocalization
of processing and memory provides an architecture for efficient parallel processing.
Parallel processing requires synchronization, a conventional wisdom from computer
science applied to the brain by Singer [100]:

‘The brain is a highly distributed system in which numerous operations are
executed in parallel and that lacks a single coordinating center. This raises the ques-
tions of (i) how the computations occurring simultaneously in spatially segregated
processing areas are coordinated and bound together to give rise to coherent percepts
and actions, (ii) how signals are selected and routed from sensory to executive
structures without being confounded, and finally (iii) how information about the
relatedness of contents is encoded. One of the coordinating mechanisms appears
to be the synchronization of neuronal activity by phase locking of self-generated
network oscillations.”

Looking back on the history of seven decades of investigating neural oscillations
in the brain, starting with [2] in the olfactory bulb and then brought to prominence
by Gray and Singer [46] in the visual cortex, we will critically contrast neuronal
oscillations in the brain with analogous operations in the Josephson quantum
computer (JQC).

A quantum computer using Josephson junction qubits is, from the point of
the microscopic electron-phonon interaction, a macroscopic device which obtains
its current-flux nonlinearity from a phase transition in the thermodynamic limit
of two weakly coupled BCS system ([8, 60]; caricaturized by Hepp [52]). By
combining such nonlinear inductors with other circuit elements one obtains a
classical Hamiltonian system which, when quantized, leads after truncation to qubits
(see [95]). These 2-level systems can be controlled by external electromagnetic
fields via the Jaynes-Cummings model of electron-photon interactions. Clearly, the
many approximations in this construction necessitate complicated error corrections,
with the hope that there is no macroscopic conspiracy of errors (see [29]).

On the ‘top-down’ level the JQC belongs to a well defined computational
framework [1]. The neglected degrees of freedom of the underlying nonrelativistic
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quantum electrodynamics (QED) only enter as ‘noise’, producing decoherence. The
most active research is ‘middle-out’, on the device level. The ‘bottom-up’ approach
to the JQC is absurd: nobody can describe the implementation of the Shor algorithm
to factor 15 on a JQC [73] in the formalism of microscopic QED. The three levels
are tightly coupled by common physical laws.

The human brain, on the contrary, is a construct shaped by the devious course
of evolution.The brain has many different scales. The microscale of O(1/1,000 mm)
involves individual neurons, glia cells and synapses. On the mesoscopic scale of
O(mm) one deals with groups of hundred thousand neurons and their circuits. On
the macroscopic level one would like to understand the whole brain with O(10'")
neurons. Before dealing with neuronal oscillations on the mesoscopic scale in
Chap. 4 we have to deal with the macroscopic scale in Chap.?2 and the microscale
in Chap. 3. The impatient readers can avoid the technical and highly incomplete
elaborations in Chaps. 2, 3 and 4 and jump directly to the conclusions in Chap. 5 or
to their favorite articles in the References.

It is impossible to explain here systematically the basic neurophysiological
notions. Fundamental neuroscience is treated in excellent textbooks [62, 103].
In my essay I will refer to them and to the many easily accessible reviews in
the Scholarpedia on the Internet. I will reformulate in less technical language the
careful wordings in the abstracts of several peer-reviewed papers, while being less
formal when providing the general background. This ‘picture gallery’ will convey
to a physicist a flavor of modern neuroscience.

10.2 Connectome

“I am my connectome!” [94]

Neuroanatomy is the basis for formulating and testing ideas about how computa-
tions are performed by neural circuits. Connectomes, complete wiring diagrams of
brains’ are scarce, the most famous and only example being that of the 302 neurons
of the roundworm Caenorhabditis elegans (C. elegans).

Helmstaedter [51] present for ~0.001 mm? of the mouse inner plexiform layer
(the main computational region in the mammalian retina) the dense reconstruction
of 950 neurons and their mutual contacts. This was achieved by applying a
combination of manual annotation using human experts and machine-learning-
based volume segmentation to serial block-face electron microscopy data. They
found a new type of retinal bipolar cell and many violations of Peter’s Rule (saying
that the synaptic connections in the brain are determined essentially by geometrical
proximity). Measured by this heroic technical effort the new results seem to be
meager. If achievable, however, connectomics of mammalian brains will probably
become as important as the human genome has become for the molecular biology
of the cell [4].

However, even if one had complete access to the connectome of the human retina
with its ~10° ganglion cells one would not understand how this important input
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station of the visual system works. Synaptic connections in the brain are constantly
changing, showing context sensitivity and time- and activity dependent effects.
These are manifest over a vast range of time scales, from synaptic depression lasting
a few milliseconds to long-term potentiation lasting weeks. In short, connectivity
is as transient, adaptive, and context sensitive as brain activity per se. Therefore,
it is unlikely that the characterization of the static connectome alone will furnish
deep insights about the dynamic processing of the brain. Helmstaedter’s next target
(private communication) is the dense reconstruction of layer 4 of a rodent’s cortical
barrel column. It will take many years to see what is microscopically true in the
claims by Hill et al. [54] and taken up in Chaps. 3 and 5 that Peter’s Rule and the
morphologies of cortical pyramidal neurons and interneurons ensure a robust and
invariant set of distributed inputs and outputs between specific pre- and postsynaptic
populations of neurons in a cortical column.

Neuroscience, however, can thrive with a macroscopic connectome provided by
light-microscope neuroanatomy [28]. Recent work in Henry Kennedy’s laboratory
started from a parcellation of the macaque neocortex into 93 areas (see Fig. 10.1,
[74])
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Fig. 10.1 Reconstruction of the cortex of monkey M132. (a, b) are side views from the outside
and inside of the two hemispheres. (c) is an inflated view and (d) a surface-area preserving map of
the parcellation into 93 areas. With permission from [74]
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Retrograde tracers were injected into 29 areas distributed over six regions in the
occipital, temporal, parietal, frontal, prefrontal, and limbic cortex. These regions
contained the areas, in which neuronal oscillations will be analyzed in Chap. 4: The
areas V1 [23], V2, V4 and TEO of the ventral visual stream, the areas MT, MST,
DP and LIP in the dorsal visual stream, and the frontal eye fields (FEF), areas 81 and
8m [104].

The neocortex can be divided ‘horizontally’ into six layers, the so-called
supragranular layers L1, L2 and L3, the granular layer L4, which receives the main
projections from the subcortical thalamus, and the infragranular layers L5 and L6.
Strongly simplified, feedforward (FF) anatomical pathways that connect different
areas of cortex originate mainly from supragranular layers and terminate in L4 in
hierarchically higher cortical areas, while feedback (FB) pathways originate mainly
in infragranular layers and L1 in higher areas and avoid L4 in hierarchically lower
areas. In the visual system a hierarchy can be established using the ‘SLN value’.
The SLN value s(i,j) of a projection from source i to target j is the fraction of
labeled neurons located in the superficial layers of area j after tracer injections in a
single area i. By fitting SLN to the parcellation of Fig. 10.1 [9] and [75] determined
hierarchical levels of the areas in the ventral and dorsal visual system (see Fig. 10.2).
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Fig. 10.2 (a) Canonical microcircuit [31] connecting ‘vertically’ two neocortical areas. (b) Car-
toon of the laminar distributions in a cortical mid-level area. (d) Cartoon of cortical counterstreams.
(e) Hierarchical organization of visual cortical areas using SLN as a distance measure. Left ventral,
right dorsal visual stream. With permission from [75]



240 K. Hepp

It was a new discovery that the foveal area 81 of the FEF (dedicated to the highest
density of receptors on the retina) has the same hierarchical level as V4.

Systematic injections in 29 typical areas of the parcellation determined a 29 x 29
matrix M of elements s(i,j) for each area-to-area pathway. The full macroscopic
connectone of the parcellation would be the 91 x 91 matrix, which is presently
unknown. The graph-theoretical analysis of M has brought many important insights
[76]. The data reveal high-density cortical graphs in which economy of connections
is achieved by weight heterogeneity and distance-weight correlations. These prop-
erties define a model that predicts many binary and weighted features of the cortical
network. FB and FF pathways between areas implement a dual counterstream
organization, and their integration into local circuits constrains cortical computation.

The functional interpretation of the anatomical hierarchy in Fig. 10.2 is still
unclear. In the visual system of the macaque the shortest latency for the onset of
a salient target determines another ordering in the dorsal stream: the latency in
response to a sudden visual stimulus of the fastest neurons in V1 is ~35 m