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’Tis not nobler in the mind to suffer
The slings and arrows of outrageous fortune,
’Tis nobler, and ennobling,
To get off the ground and fight like hell.



In Memoriam
My beloved mother and father,
Hema and Harbans Lal



Preface to the Second Edition

The idea of writing a second edition within slightly more than a decade of the
publication of the first is a consequence of the considerable new understandings of
Quantal Density Functional Theory (Q–DFT) achieved over this period. But there
have also been further insights into Schrödinger theory, and to the significance
of the first theorems of Hohenberg-Kohn and Runge-Gross density functional
theory (DFT). The book is still comprised of the three principal components: a
description of Schrödinger theory from the new perspective of the ‘Quantal
Newtonian’ second and first laws for the individual electron; traditional
Hohenberg-Kohn, Runge-Gross, and Kohn-Sham density functional theory; and Q–
DFT together with applications to explicate the theory, and the physical insights it
provides into traditional DFT, Slater theory, and local effective potential energy
theory in general. However, each component has been revised to incorporate the
new understandings. Then there is the new material on the extension of Q–DFT to
the added presence of an external magnetostatic field. It was the attempt to extend
the theory to the presence of magnetic fields that forced the reexamination of both
traditional DFT and Q–DFT, thereby leading to many of the new insights. The
extension to external magnetic fields required a critical reevaluation of the existing
literature. This in turn led to the proof of the corresponding Hohenberg-Kohn
theorems for uniform magnetostatic fields, one that is distinct from but in the
rigorous sense of the original. The Q–DFT in a magnetic field is then explicated by
an example in two-dimensional space. Working on the second edition has been akin
to writing a new book.

The pedagogical nature of the book has been maintained. Most of the new
derivations are once again given in detail. And as a result of the new understand-
ings, it has been possible to present Q–DFT for arbitrary external electromagnetic
fields whether they be time-dependent or time-independent in a most general and
comprehensive manner. The common thread of the ‘Quantal Newtonian’ laws for
the individual electron is now weaved throughout the book.

Xioayin Pan has been a principal contributor to the new developments. Our
collaboration has been productive, and working with Xiaoyin has been a pleasure.
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Together with Doug Achan, a former graduate student, and Lou Massa, a friend and
colleague, new physics of the Wigner low-density high-electron correlation regime
of a nonuniform density system has been discovered. Thus, an additional charac-
terization of the Wigner regime is proposed. The example studied also provides a
contrast to the high-density low-electron correlation regime of atoms and
molecules.

Thanks are also due to Xiaoyin and Lou for their critical comments on various
chapters.

Once again I wish to acknowledge Brooklyn College for the support and free-
dom afforded to me to pursue the research of my interest.

Finally, with much gratitude, I wish to thank my wife Catherine for typing the
book despite the travails of life.

Brooklyn, NY, USA Viraht Sahni
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Preface to the First Edition

The idea underlying this book is to introduce the reader to a new local effective
potential energy theory of electronic structure that I refer to as Quantal Density
Functional Theory (Q–DFT). It is addressed to graduate students who have had a
one year course on Quantum Mechanics, and to researchers in the field of electronic
structure. It is pedagogical, with detailed proofs, and many figures to explain the
physics. The theory is based on the first Hohenberg–Kohn theorem, and is distinct
from Kohn–Sham density functional theory. No prior understanding of traditional
density functional theory is required as the theorems of Hohenberg and Kohn, and
Kohn–Sham theory, and their extension to time-dependent phenomenon are
described. There are other excellent texts on traditional density functional theory,
and as such I have kept the overlap with the material in these texts to a minimum. It
is also possible via Q–DFT to provide a rigorous physical interpretation of Kohn–
Sham theory and other local effective potential energy theories such as Slater theory
and the Optimized Potential Method. A second component to the book is therefore
the description and the explanation of the physics of these theories.

My interest in density functional theory began in the early 1970s simultaneously
with my work on metal surface physics. The origins of Q–DFT thus lie in my
attempts to understand the physics underlying the formal framework of Kohn–
Sham density functional theory and of various approximations within it in the
context of the nonuniform electron gas at a metal surface. My work with Manoj
Harbola [1, 2] constitutes the ideas seminal to Q–DFT. The history of how these
ideas developed, and of their evolution to Q–DFT, is a classic example of how
science works. This is not the place to describe the many twists and turns in the path
to the final version of the theory. However, together with a further understanding
[3] noted, credit must also be afforded Andrew Holas and Norman March whose
work [4] helped congeal and close the circle of ideas.

I wish to gratefully acknowledge my graduate students Cheng Quinn Ma, Abdel
Mohammed, Manoj Harbola, Marlina Slamet, Alexander Solomatin, Zhixin Qian,
and Xiaoyin Pan whose creative work has contributed both directly and indirectly to
the writing of this book.
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Then there is my friend and colleague Lou Massa whose enthusiasm for the
subject matter of the book and whose consistent support and critique during its
writing have proved invaluable.

Brooklyn College has been home, and I thank the College for its support of my
research.

The book was typed by Suzanne Whiter, throughout with a smile. To her my
heartfelt thanks.

To my wife, Catherine, I owe an immense debt of gratitude. She has suffered
happily over the years through the many referee reports of my papers. I thank her
for being there with me every step of the way.

Brooklyn, NY, USA Viraht Sahni
October 2003
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Chapter 1
Introduction

Abstract The introductory chapter provides a brief description of Quantal density
functional theory (Q–DFT), a physical local effective potential energy theory of the
electronic structure of matter. The theory is based on a more recent perspective of
the Schrödinger theory of electrons. This is a perspective of the individual electron
in a sea of electrons in the presence of external fields. The corresponding equation
of motion is described by the ‘Quantal Newtonian’ second law for each electron, the
first law being a special case for the description of stationary state systems. Q–DFT
is also based on a further understanding of the first Hohenberg-Kohn theorem of
density functional theory, and the concept derived therefrom of the properties that
constitute the basic variables of quantum mechanics. The Introduction is a descrip-
tion of the forthcoming chapters in the context of their relationship to Q–DFT and to
each other: Schrödinger theory from the new perspective; Q–DFT, the correspond-
ing ‘Quantal Newtonian’ laws, and its application to model and realistic systems; the
rigorous generalization of the Hohenberg-Kohn theorems to the added presence of
an external uniform magnetostatic field; the subsequent generalization of Q–DFT to
such an external field; the Hohenberg-Kohn, Runge-Gross and Kohn-Sham density
functional theories; the further insights into the fundamental theorems of density
functional theory via density preserving unitary transformations and corollaries; the
physical interpretation via Q–DFT of the energy and action functionals and cor-
responding functional derivatives of Kohn-Sham theory, and of other aspects of
traditional density functional and other local effective potential theories.

Introduction

Since the publication in 2004 of the original edition of Quantal Density Functional
Theory [1] (referred to now as QDFT1), there has been a significant evolution in the
understanding and development of the theory (Q–DFT). This in turn has arisen from
a deeper understanding of the Schrödinger theory of electrons in external fields from
the perspective of the properties of the individual electron in the sea of electrons. This
perspective, based on the ‘QuantalNewtonian’ second andfirst laws for each electron,
differs from that of traditional treatises on quantum mechanics. It is one that is both
more tangible and insightful. Thus, it is my sense that Schrödinger theory taught
from this perspective would be more efficacious in explaining the subject matter.
There has also been a further appreciation of the proof and implications of the first
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2 1 Introduction

Hohenberg-Kohn [2] theorem. These insights too are not part of the literature on
traditional density functional theory (DFT). A significant consequence of these new
understandings has been the generalization [3], in the rigorous sense of the original
proofs, of theHohenberg-Kohn theorems to the addedpresence of an external uniform
magnetostatic field. All the new understandings within Schrödinger and Hohenberg-
Kohn theories have contributed to the further development of Q–DFT. The focus
of QDFT1 was the theoretical framework of Q–DFT. Additionally, the rigorous
physical interpretation of Kohn-Sham [4] and Slater [5] theories, as well as physical
insights into local effective potential energy theory in general, as arrived at viaQ–DFT
were described. Approximation methods within Q–DFT and various applications
are described in Quantal Density Functional Theory II: Approximation Methods
and Applications [6] (referred to now as QDFT2). The focus on the theoretical
underpinnings of Q-DFT and the overall structure of QDFT1 is maintained in this
second edition. However, although there is revision in each chapter, the foundational
chapters on Schrödinger theory, and the traditional DFT of Hohenberg-Kohn and
Runge-Gross [7] have been revised to a considerable degree. Then there are the new
chapters and affiliated appendices on the generalization [3, 8] of theHohenberg-Kohn
theorems and Q-DFT to the presence of both external electrostatic and magnetostatic
fields.

Quantal density functional theory (Q–DFT) is a local effective potential energy
theory of electronic structure of both ground and excited states. It is based on the
new description of Schrödinger theory, and on the concept of a basic variable of
quantum mechanics, one that originates from the first Hohenberg-Kohn theorem.
The definition of a local effective potential energy theory is the following. Consider
a system ofN electrons in an arbitrary time-dependent external electromagnetic field
F ext(rt) : E(rt) = −∇v(rt) + ∂[A(rt)/c]∂t, B(rt) = ∇ × A(rt), where v(rt) and
A(rt) are the scalar and vector potentials. This system of interacting particles and
its evolution in time is described by the non-relativistic time-dependent Schrödinger
equation. As noted above, there is a new description [9] of Schrödinger theory based
on the ‘Quantal Newtonian’ second law for each electron [10–12], one that is in
terms of ‘classical’ fields, and their quantal sources which are expectations of Her-
mitian operators. The fields are termed ‘classical’ because as in classical physics
they pervade all space. A basic variable is defined as a gauge invariant quantum-
mechanical property, knowledge of which determines thewave function of the system.
The identification of a property as a basic variable is achieved via the proof of the
one-to-one relationship or bijectivity between the property and the external potential
experienced by the electrons. Q–DFT is a mapping from the interacting system of
electrons described via Schrödinger theory in terms of fields and quantal sources
to one of noninteracting fermions possessing the same basic variable or variables.
The Q–DFT description of the model fermions is thus also in terms of ‘classical’
fields and quantal sources. The model system is referred to as the S system. For the
external field considered, the basic variables are [13] the electronic density ρ(rt) and
the current density j(rt): there is a one-to-one relationship between {ρ(rt), j(rt)}
and the external potentials {v(rt),A(rt)} (to within a time-dependent function and
the gradient of a time-dependent scalar function). Within Q–DFT, it is possible to
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map [14] to a model system of noninteracting fermions possessing the same basic
variable properties of {ρ(rt), j(rt)}.

For the description of time-dependent Q–DFT [10–12] in Chap.3, we will con-
sider as in the first edition, the example of the external time-dependent electric field
F ext(rt) = E(rt) = −∇v(rt). In this case, in spite of there being no magnetic
component to the external field, the basic variables are [7] the density ρ(rt) and the
current density j(rt): there is a one-to-one relationship between both ρ(rt) and j(rt),
and the external potential v(rt) (to within a time-dependent function C(t)). Within
Q–DFT, it is possible to map to a model system possessing either the same density
ρ(rt), or one with the same density ρ(rt) and current density j(rt). The latter map-
ping, such that the model system possesses both the basic variable properties, turns
out to be more advantageous. The equivalent non-conserved total energy E(t) of the
interacting system is also thereby obtained in each mapping. As the model fermi-
ons are noninteracting, the effective potential energy of each such model fermion
is the same at each instant of time, and can therefore be represented by a local or
multiplicative potential energy operator vs(rt). With the assumption that the model
fermions are subject to the same external field F ext(rt) as that of the interacting
electrons, the operator vs(rt) is the sum of the external potential energy operator
v(rt), and an effective local electron-interaction potential energy operator vee(rt)
that accounts for all the quantum many-body correlations. The corresponding S sys-
tem wave function is a single Slater determinant of the noninteracting fermion spin
orbitals. The mapping to such a model system is what is meant by a local effec-
tive potential energy theory. Thus, Q–DFT is a theory that describes the physics of
mapping from the Schrödinger description of electrons in an external field to one of
noninteracting fermions possessing the same basic variables.

For the mapping from the Schrödinger description of the interacting electrons
to the model system of noninteracting fermions possessing the same basic variable
properties, one must understand how all the many-body correlations of the former
are incorporated into the local electron-interaction potential energy operator vee(rt)
of the latter. Further, one must understand how the energy E(t) may be expressed
in terms of the model S system properties. The many-body correlations that must
be accounted for by the S system are the following: (a) Electron correlations due to
the Pauli exclusion principle, or equivalently the requirement of antisymmetry of the
wave function (referred to as Pauli correlations), and (b) Electron correlations due to
Coulomb repulsion (referred to as Coulomb correlations). Furthermore, the kinetic
energy and current density of the interacting and model systems differ. These differ-
ences constitute the correlation contributions to these properties, and must also be
accounted for by the model system. We refer to these correlations as (c) Correlation-
Kinetic, and (d) Correlation-Current-Density effects. If, for the example of the exter-
nal fieldF ext(rt) = E(rt) = −∇v(rt) considered, the mapping is to a model system
such that only the density ρ(rt) of the interacting and S systems are the same, then
the corresponding Q–DFT equations indicate that all the above correlations must be
accounted for. However, if the mapping is to a model system with the same density
ρ(rt) and current density j(rt), then within Q–DFT, only those correlations due to
the Pauli exclusion principle, Coulomb repulsion, and Correlation-Kinetic effects
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must be accounted for. The more general statement [14] with regard to Q-DFT is the
following. Irrespective of the type of external fieldF ext(rt) to which the electrons are
subjected, whether it be a time-dependent or time-independent electromagnetic field,
if (a) the model fermions are subject to the same external field, and (b) the mapping
is to a model system which possesses all the basic variable properties, then in each
case the electron correlations that must be accounted for by the model S system are
always only those due to the Pauli principle, Coulomb repulsion, and Correlation-
Kinetic effects. If the mapping to the model system is such that only the density ρ(rt)
is reproduced, then additional correlations such as the Correlation-Current-Density
and Correlation-Magnetic effects must also be accounted for.

As the Q–DFT description of the mapping to the S system is in terms of fields and
quantal sources, the local electron-interaction potential energy operator vee(rt) of
the model fermions is provided a rigorously derived physical definition [10–12]. The
potential energy vee(rt) is the work required at each instant of time to move the model
fermion in the force of a conservative effective field F eff(rt). As the effective field
F eff(rt) is conservative, the work done is path-independent. The field F eff(rt) is a
sum of component fields. These components ofF eff(rt), through the quantal sources
that give rise to them, are separately representative of the Pauli and Coulomb corre-
lations, and of the Correlation-Kinetic and Correlation-Current-Density effects. The
sources of the component fields are quantum-mechanical expectations of Hermitian
operators taken with respect to the Schrödinger and S system wave functions. The
non-conserved total energy E(t), and its components are also expressed in integral
virial form in termsof these component fields. In particular, its separateHartree, Pauli,
Coulomb, and Correlation-Kinetic contributions can be so expressed. Thus, unlike
Schrödinger theory in which the contributions to the energy E(t) of correlations due
to the Pauli principle and Coulomb repulsion cannot be separated, within Q–DFT it
is possible to determine the contribution of each type of correlation. Furthermore,
via Q–DFT, it is possible to determine the contribution of electron correlations to
the kinetic energy, viz. the Correlation-Kinetic contribution. Note that all these prop-
erties are determined from the same model S system, and one for which the basic
variables are those of the interacting system.

As in Schrödinger theory, stationary state Q–DFT constitutes a special case of the
time-dependent theory discussed above. For a system of N electrons in an external
electrostatic field F ext(r) = E(r) = −∇v(r), it is proved via the first Hohenberg-
Kohn theorem [2] that the single basic variable is the nondegenerate ground state
density ρ(r). The identification of this property as the basic variable is via the proof
of bijectivity between the density ρ(r) and the external potential v(r) (to within a
constant C). The proof is for arbitrary external potential v(r) but for fixed electron
number N . The equations governing the Q–DFT mapping to an S system with the
equivalent density ρ(r) are thus the same [15, 16], but with the time parameter and
Correlation-Current Density field absent. The equations are based on the ‘Quantal
Newtonian’ first law [17] which is the stationary state version of the ‘Quantal New-
tonian’ second law [10–12]. Again, with the assumption that the model fermions are
subject to the same external electrostatic field, a mathematically rigorous physical
definition of the corresponding local electron-interaction potential energy vee(r) in
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which all themany-body effects are incorporated follows.The potential energy vee(r)
is the work done to move a model fermion in the force of a conservative effective
field F eff(r). As this field is conservative, the work done is path-independent. The
components of the effective field F eff(r) are separately representative of the Pauli
and Coulomb correlations, and Correlation-Kinetic effects. The total energy E, and
in particular its Hartree, Pauli, Coulomb, and Correlation-Kinetic components can
be expressed in integral virial form in terms of these fields. It is reiterated, that the
separate Pauli and Coulomb correlation contributions to the total energy E are for the
same density ρ(r). (In contrast, in traditional quantum chemistry, a separate Hartree-
Fock theory calculation must be performed. The Hartree-Fock theory density differs
from that of the fully interacting system. Hence, the quantum chemistry definition of
the Coulomb correlation energy as the difference between the total energy E and the
Hartree-Fock theory value, is based on two different densities, and is thereby differ-
ent from that of Q–DFT.) When the interacting system of electrons is described
within the Hartree-Fock and Hartree theory approximations, the corresponding
Q–DFT mapping [15, 16] to model systems having the same density ρ(r) is similar,
leading thereby to the Q–DFT of Hartree-Fock and Hartree theory.

There is a further generality to the Q-DFT description of local effective potential
energy theory, or equivalently the mapping from the interacting system of electrons
to one of noninteracting fermionswith the same basic variables. Consider a stationary
state of electrons in a nondegenerate ground state with density ρ(r), total energy E,
and ionization potential I . It is possible via Q–DFT to map this interacting system
of electrons to one of noninteracting fermions in their ground state with the same
basic variable of the density ρ(r). However, it is also possible to map the interacting
system to a model system of noninteracting fermions in an excited state with a
different electronic configuration but again possessing the same density ρ(r). In
each case, the same total energy E is obtained, and in each case, the highest occupied
eigenvalue is the negative of the ionization potential I . What this means, in other
words, is that there exist an infinite number of local effective potentials vs(r) that
can generate the nondegenerate ground state density ρ(r). Consider next, a system
of electrons in a nondegenerate excited state with density ρe(r). Via Q–DFT, it is
possible to map this interacting system of electrons to a system of noninteracting
model fermions in an excited state having the same electronic configuration and
density ρe(r). It is, however, also possible to map the excited state of the interacting
electrons tomodel fermions in a ground statewith density ρe(r). It is furthermore also
possible to map to a system of model fermions in other excited states with different
electronic configurations but with the same density ρe(r). Once again the total energy
E is obtained, and in each case, the highest occupied eigenvalue corresponds to
the negative of the ionization potential I . Hence, once again, there exist an infinite
number of local effective potentials vs(r) that can generate an excited state density
ρe(r). Note that the density ρe(r) of the lowest excited state of a given symmetry
different from that of the ground state is also a basic variable [18, 19]. However,
the densities ρe(r) of other excited states are not. There is therefore yet a further
generality to Q–DFT with regard to these excited states. It is possible to map to
model fermion systems possessing the same excited state density ρe(r) even though
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for these states the density is not a basic variable. In the Q–DFT mapping, the state
of the S system is thus arbitrary. It is proved that irrespective of the state of the S
system fermions, the contributions due to Pauli and Coulomb correlations to each
local effective potential vee(r) and to the total energy E remains the same. It is the
Correlation-Kinetic contributions that differ.

The mapping via Q–DFT and the arbitrariness of the state and electronic con-
figuration of the model system, are explicated for the example of the analytically
solvable Hooke’s atom [20]. This is a two-electron atom in which the electrons inter-
act Coulombically, but are confined by an external potential v(r) that is harmonic.
As such this model atom is particularly useful for the study of electron correlations.
A nondegenerate ground state [21] and a first excited singlet state [22, 23] of the
atom are both mapped to model S systems in a ground state having the requisite
densities. (For the mapping from the ground state to an S system in an excited sin-
glet state, and for a discussion of the arbitrariness of the S system wave function,
see QDFT2 and references to the original literature therein.) These applications of
Q–DFT correspond to the high-density low-electron-correlation regime in which
the electron-interaction energy is less than the kinetic energy. An additional applica-
tion [24, 25] to theWigner low-electron-density high-electron-correlation regime in
which the electron-interaction energy is greater than the kinetic energy is also pro-
vided. A key conclusion of this work is that in addition to a low density and a high
value of the electron-interaction energy, theWigner high-electron-correlation regime
must now be also characterized by a high Correlation-Kinetic energy value. The new
concepts of ‘quantal compression’ and ‘quantal decompression’ of the kinetic energy
density are then introduced to explain the difference in results between the low- and
high-electron-correlation regimes.

Within time-independent Q–DFT, it is also possible (see Chap.6) to map a ground
or excited state of a system of electrons in an external field F ext(r) = E(r) =
−∇v(r), to one of noninteracting bosons in their ground state such that the equiv-
alent density, energy, and ionization potential are obtained. We refer to the model
of noninteracting bosons as the B system. The wave function of the B system is the
density amplitude

√
ρ(r). The eigenvalue of the B system differential equation is the

negative of the ionization potential I . Once again, the Q–DFT description of the local
effective potential energy vB(r) of the bosons as well as the system total energy E is
in terms of ‘classical’ fields and quantal sources. For any two-electron system, the
mapping to a B system is the same as the mapping to an S system in its ground state.
Hence, the examples of the mapping from the Hooke’s atom in a ground and excited
state to one of noninteracting fermions as discussed above also constitute examples
of the mappings to the B system. For further examples of the mappings to a B system,
see [26] and QDFT2. The Q–DFT mapping also makes evident that the B system
is a special case of the model S system. Finally, the S and B systems are related by
what is referred to in the literature as the Pauli kinetic energy and the Pauli potential.
The equations of Q–DFT clearly show that these properties are solely due to kinetic
effects.

In this edition, Q-DFT has been extended [8, 14] in Chap.9 to the added pres-
ence of an external magnetostatic field B(r) = ∇ × A(r), with A(r) the vector

http://dx.doi.org/10.1007/978-3-662-49842-2_6
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potential. This first requires knowledge of which gauge invariant properties consti-
tute the basic variables in this case. Hence, prior to discussing the Q–DFT, the first
Hohenberg-Kohn theorem is generalized [3] in Chap.8 to the presence of a uniform
magnetostatic field B(r) = Biz. Proofs for spinless electrons for the corresponding
Schrödinger Hamiltonian, and one for electrons with spin for the Schrödinger-Pauli
Hamiltonian, are provided. The proofs of the generalized theorems differ in signif-
icant ways from that of the proof of the original Hohenberg-Kohn theorem. This
is because in the presence of a magnetostatic field, there is a fundamental change
in the physics relating the external potentials and the nondegenerate ground state
wave function, and this difference must be accounted for in the proof. It is proved
that there is a bijective relationship between the external potentials {v(r),A(r)} and
the nondegenerate ground state density ρ(r) and the current density j(r), so that
the basic variables in this case are {ρ(r), j(r)}. (In the presence of a magnetostatic
field, the current density j(r) is a sum of its paramagnetic and diamagnetic compo-
nents.) The constraints in this case, in addition to that of fixed electron numberN , are
those of either fixed canonical orbital angular momentum L (corresponding to the
Schrödinger Hamiltonian for spinless electrons) or of both fixed canonical orbital L
and spin S angular momentum (for the Schrödinger-Pauli Hamiltonian for electrons
with spin). The Q–DFT mapping from a system of electrons in both an external
electrostatic E(r) = −∇v(r) and magnetostatic B(r) = ∇ × A(r) field to one of
noninteracting fermions with the same {ρ(r), j(r)} is then described [8, 14]. The
equations of the mapping are based on the corresponding ‘Quantal Newtonian’ first
law [8, 27]. The Q-DFTmapping is then explicated for a quantum dot as represented
by the analytically solvable Hooke’s atom in a magnetic field [28, 29]. The mapping
in this two-dimensional example is from a ground state of the interacting system to a
model fermionic system with the same {ρ(r), j(r)} also in its ground state. As this is
a two-electron system, the mapping may also be considered as one to noninteracting
bosons in their ground state.

As Q–DFT is a description of the mapping from an interacting system of electrons
as defined by Schrödinger theory to one of noninteracting fermions or bosons with
the same basic variables, it is necessary to first describe [9] Schrödinger theory as in
Chap.2 from the perspective of ‘classical’ fields and quantal sources. This is a ‘New-
tonian’ description of the electronic system from the perspective of the individual
electron in the sea of electrons subject to an external field. In addition to the external
field, the ‘Quantal Newtonian’ second and first laws describe the internal field expe-
rienced by each electron, and in the time-dependent case, its response. The internal
field is a sum of fields that are separately representative of electron correlations due
to the Pauli exclusion principle and Coulomb repulsion, the kinetic effects, and the
density. In the added presence of a magnetostatic field, there is yet another contri-
bution to the internal field arising from the magnetic field. As in classical physics,
the internal field summed over all the electrons vanishes, thus leading to a more
insightful derivation [30] of Ehrenfest’s theorem, the quantal equivalent of Newton’s
second law. Examples of Schrödinger theory from the ‘Newtonian’ perspective are
provided via the Hooke’s atom for both a ground and excited state. There are other
facets of Schrödinger theory not described in the literature that emanate from the

http://dx.doi.org/10.1007/978-3-662-49842-2_8
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‘Quantal Newtonian’ laws. The external scalar potential is shown to arise from a
curl-free field, and hence its path-independence demonstrated. The laws also show
that the external scalar potential is a known functional of the system wave function
via the quantal sources of the fields. Thus, by replacing the external scalar potential in
the Schrödinger equation by this functional, the intrinsic self-consistent nature of the
Schrödinger equation is exhibited. A new expression for the Schrödinger equation
is obtained in the presence of a magnetic field B(r). When written in self-consistent
form, the magnetic field B(r) now appears explicitly in the Schrödinger equation in
addition to the vector potentialA(r)which appears in traditional form. The ‘Quantal
Newtonian’ laws also help explain [31] the relationship between Schrödinger theory
and quantum fluid dynamics.

The concept of a basic variablewhich is fundamental to all local effective potential
energy theories such as Q-DFT, and Kohn-Sham and Runge-Gross theories, stems
from the first Hohenberg-Kohn theorem. Accordingly, a basic variable is a gauge
invariant property, knowledge to which determines the external potential, hence
the Hamiltonian, and therefore via solution of the Schrödinger equation, the wave
functions of the system. The theorem proves that the nondegenerate ground state
density ρ(r) is a basic variable. The proof of bijectivity between the density ρ(r) and
the external scalar potential v(r) is for v-representable densities, i.e. for densities
obtained from wave functions of interacting particle Hamiltonians, and for fixed
electron number N . The theorem thus proves that the wave functions are functionals
of the basic variable: ψ = ψ[ρ(r)]. This is the Hohenberg-Kohn path from the
basic variable ρ(r) to the wave function ψ. Chapter 4 on the Hohenberg-Kohn (HK)
and Runge-Gross (RG) density functional theories has been revised with a greater
focus on the first theorem of each theory. The first HK theorem is generalized [32]
via a density preserving unitary transformation to show that the wave function ψ
must also be a functional of a gauge function α(R),R = r1, . . . , rN , i.e. ψ =
ψ[ρ(r),α(R)]. In this manner, the wave function ψ when written as a functional is
gauge variant as it must be. Further, the theorem is valid for each choice of gauge
function α(R). Similarly [32], in the RG time-dependent case, for which a basic
variable is shown to be the density ρ(rt), the wave function ψ(t) is a functional
of a gauge function α(Rt) : ψ(t) = ψ[ρ(rt),α(Rt)]. (The other basic variable is
the current density j(rt)). This then leads to a hierarchy in the theorems in terms
of the gauge functions. For example, when α(Rt) = α, a constant, one obtains
the original HK theorem. When α(Rt) = α(t), one obtains the RG theorem. In
the presence of a magnetic field B(r), it is proved [3] for v-representable densities,
and for fixed electron number N and canonical orbital angular momentum L and
spin angular momentum S, that the basic variables are the nondegenerate ground
state density ρ(r) and the physical current density j(r). Via a density and current
density preserving unitary transformation, it is shown that the wave function ψ is
the functional ψ = ψ[ρ(r), j(r),α(R)]. As each physical system is independent of
the gauge, the choice of the gauge function is arbitrary, and can be chosen so as to
vanish.

The first HK theorem is also fundamental in a different context. As noted above,
the proof of bijectivity between the density ρ(r) and the external scalar potential v(r)

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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is for v-representable densities and for a nondegenerate ground state. The variational
constrained-search generalization of the theorem by Percus-Levy-Lieb [33] (PLL)
to N-representable densities and to degenerate states—the PLL path from ρ(r) to
ψ—is only possible [34] provided one knows a priori that it is the ground state
density ρ(r) which is the basic variable. That knowledge is gleaned from the first
HK theorem. Without this knowledge, one would not know to constrain the search
to functions that reproduce the density ρ(r) and not some other property. In a similar
vein, when a magnetostatic field B(r) is present, a PLL constrained-search path and
the generalization toN-representable densities and degenerate states is possible only
following the proof that the basic variables in this case are {ρ(r), j(r)}.

A corollary to both the first HK and RG theorems is also provided [35]. These
corollaries show that it is possible to construct degenerate Hamiltonians [Ĥ; Ĥ(t)]
that correspond to different physical systems but yet possess the same density
[ρ(r); ρ(rt)]. The physical systems differ by [C;C(t)], where C is an intrinsic con-
stant and C(t) an intrinsic temporal function. By intrinsic is meant as being part
of the Hamiltonian. Thus, in such examples, knowledge of the density [ρ(r); ρ(rt)]
cannot uniquely determine the physical system. These examples, however, do not
violate the HK and RG theorems because the degenerate Hamiltonians constructed
still differ by a constant C or function C(t). The proofs of the HK and RG theorems
are independent of whether [C;C(t)] are extrinsically additive or intrinsic to the
Hamiltonian.

Thefinal component on traditional density functional theory (DFT) is a description
in Chap.4 of Kohn-Sham (KS) theory. KS–DFT, the precursor to Q–DFT, is based on
the twoHohenberg-Kohn theorems. The theory is another but different description of
the mapping from an interacting system of electrons in an external electrostatic field
E(r) = −∇v(r) to one of noninteracting fermions possessing the same basic variable
property of the nondegenerate ground state density ρ(r). With the wave function a
functional of the density, the energyE—the expectation value of theHamiltonian—is
a unique functional of the density: E = E[ρ(r)]. The theory further employs the sec-
ond Hohenberg-Kohn theorem according to which the energy variational principle is
valid for arbitrary variations of the density. Each density variation is for fixed electron
numberN . The ground state energy E can then be obtained via the functional E[ρ(r)]
from the corresponding variational Euler-Lagrange equation for the density ρ(r). The
energy E is a minimum for the true density ρ(r). However, instead of solving the
Euler-Lagrange equation, it is assumed that there exists a model system of nonin-
teracting fermions that possesses the same density ρ(r). As the model fermions are
noninteracting, their kinetic energy can be determined exactly. With the assumption
that the model fermions are subject to the same external field E(r), the many-body
correlations due to the Pauli exclusion principle, Coulomb repulsion, and the corre-
lation contributions to the kinetic energy—the Correlation-Kinetic effects—are all
subsumed into the KS electron-interaction energy functional EKS

ee [ρ(r)] component
of the total energy E. The corresponding local electron-interaction potential energy
vee(r) of the model fermions is then defined (via the Euler-Lagrange equation) as the
functional derivative δEKS

ee [ρ(r)]/δρ(r). Thus, the KS description of the mapping to
the noninteracting system is strictlymathematical in that it is in terms of functionals

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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of the density and functional derivatives. KS–DFT does not describe how the various
many-body correlations are incorporated into the functional EKS

ee [ρ(r)] or its deriva-
tive vee(r). Furthermore, KS–DFT is a ground state theory. As such the KS mapping
can only be from the ground state of the interacting system to the model system also
in its ground state. This is why in the DFT literature it is stated that the local potential
vee(r) which generates the ground state density ρ(r) is unique. (Of course, we now
know via Q–DFT that there exist an infinite number of potentials that can generate
the density ρ(r). In this context, KS–DFT constitutes a special case of Q–DFT.)

For excited states, the HK theorems can be proved [18, 19] only for the lowest
excited state of a given symmetry different from that of the ground state. The proof is
for v-representable densities derived from wave functions that have the excited state
symmetry. Thus, there exists a one-to-one relationship between the density ρe(r) of
such an excited state and the external potential v(r) (to within a constant), and hence
ρe(r) is a basic variable. Thus, the excited state wave function ψe is a functional
of the density ρe(r). The corresponding energy variational principle for arbitrary
variations of the density ρe(r) for fixed electron number N follows. This is referred
to as the Gunnarsson-Lundqvist theorem [19] as these authors originally proved this
theorem for the special case of spin-density functional theory. The reasonwhy theHK
theorems can be extended to these excited states is that within Schrödinger theory, the
variational principle is also applicable to the lowest excited state of a given symmetry.
In the variational procedure, one restricts the approximate wave functions to have the
given excited-state symmetry, and the lowest state of that symmetry is achieved by
energyminimization. For the other excited states, it is known [18, 36, 37] that there is
no equivalent of the HK theorem. As knowledge of the density ρe(r) of these excited
states does not uniquely determine the external potential v(r), the implication is that
there could exist several potentials v(r) for which the corresponding Schrödinger
equations all generate the same excited state density ρe(r). For a demonstration of
the satisfaction of the Gunnarsson-Lundqvist theorem, i.e. the uniqueness of the
external potential v(r) for a lowest excited state of density ρe(r), and the multiplicity
of the potentials for other excited states, the reader is referred to [19]. It is reiterated
that withinQ–DFT, an infinite number of local potentials that can generate the density
ρe(r) of any excited state may be constructed.

The final component of the book is a description of physical insights arrived at
via Q–DFT of Kohn-Sham DFT and Slater theory, and of local effective potential
energy theory in general.

As noted above, the KS–DFT mapping to the S system is intrinsically mathemat-
ical in that it is a description in terms of energy functionals of the density and of
their functional derivatives. How the electron correlations due to the Pauli exclusion
principle, Coulomb repulsion, and Correlation-Kinetic effects are incorporated in
the KS electron-interaction energy functional EKS

ee [ρ(r)] or its functional derivative
vee(r) is not described by the theory. As theQ–DFTmapping is physical, and in terms
of quantal sources and fields representative of the various electron correlations, it is
possible to provide as in Chap.5 a rigorous physical interpretation of the functional
derivative vee(r) and to explain how the various electron correlations are incorporated
into the functional EKS

ee [ρ(r)]. For the noninteracting fermions (or bosons) to have a

http://dx.doi.org/10.1007/978-3-662-49842-2_5
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component of the total energy and a corresponding local potential energy in which
all the many-body effects are incorporated, there must exist a force field. That field
is identified and defined by Q–DFT. The potential energy is the work done in this
conservative field. The total energy component in turn is defined in integral virial
form in terms of the components of the conservative field or in terms of their quantal
sources. It is further shown [38] via adiabatic coupling-constant perturbation theory,
that what is referred to as KS ‘exchange’ is not solely due to Pauli correlations,
but in fact due to Pauli correlations and lowest-order Correlation-Kinetic effects.
Similarly, KS ‘correlation’ is comprised of Coulomb correlations and second- and
higher-order Correlation-Kinetic effects. In a similar manner, Runge-Gross DFT
and its action functionals and functional derivatives can be provided [12] a rigor-
ous physical interpretation via Q-DFT. The Optimized Potential Method [39], yet
another mathematically based local effective potential theory, is also provided [40] a
physical interpretation. Slater theory [5], the original local effective potential energy
theory, is explained in Chap.10. As a consequence of the quantal-source and field
perspective, it is shown [41, 42] that the Slater ’potential’ does not represent the
potential energy of an electron.

A consequence of the mapping from the interacting system of electrons to one
of noninteracting fermions or bosons is that the potential energy of these model
fermions exhibits a discontinuity as the electron number passes through an integer
value. In Chap.7 the origin of the discontinuity is explained. It is proved [43] both
analytically and by example via Q–DFT that correlations due to the Pauli exclusion
principle and Coulomb repulsion do not contribute to the discontinuity, and that it is
solely a consequence of Correlation-Kinetic effects.

In Kohn-Sham DFT, the ground state energy functional E[ρ(r)] is not known
because the component involving the many-body effects EKS

ee [ρ(r)] is unknown.
Hence, this functional is approximated in application of the theory. (The varia-
tional rigor of the second Hohenberg-Kohn theorem is thus lost because this is
akin to approximating the Hamiltonian.) The most extensively employed approx-
imation within KS–DFT, and one that constitutes the leading order term in most
other approximations, is the local density approximation (LDA). The understanding
of the electron correlations in this approximation according to KS–DFT is as follows.
At each point of the nonuniform density system, the electron correlations are those
of the uniform electron gas, but for a density corresponding to the local value at that
point. In Chap.10 it is proved [44–47] via Q–DFT that at each point, in addition to
the uniform electron gas correlations, the approximation explicitly accounts for the
nonuniformity of the electron density via a term proportional to the gradient of the
density at that point. Thus, the representation of electron correlations in the LDA is
in fact far more accurate than previously understood to be the case. This constitutes
the principal reason for the accuracy of the approximation.

TheEpilogue is Chap.11. In the previous edition, the epiloguewas concludedwith
the results of application of Q–DFT to the determination of the asymptotic structure
of the electron-interaction potential energy vee(r) and of its Pauli, Coulomb, and
Correlation-Kinetic contributions in the classically forbidden region of atoms and
metal surfaces. This material with detailed derivations is now given in QDFT2, and
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is thus not repeated in this edition. More recent work [48] on the metal-vacuum
inhomogeneity reaffirms and furthers the original analytical work presented there.

Finally, the choice of nomenclature of Quantal Density Functional Theory based
on prior understandings is as follows. The word ‘quantal’ is employed because
the sources of the fields are expectations taken with respect to the Schrödinger and
noninteractingmodel systemwave functions. It is a density functional theory because
these wave functions are functionals of the nondegenerate ground state density, and
the interacting Schrödinger system is beingmapped to one of noninteracting fermions
with the same density. The present understanding is more general. The fundamental
property of interest is no longer solely the density but rather the basic variables of
quantum mechanics. It is the fact that the wave functions are functionals of the basic
variables that is now employed. As such it is efficacious tomap tomodel systemswith
the same basic variables as that of the interacting system. The original terminology
of Quantal Density Functional Theory is, however, still maintained.
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Chapter 2
Schrödinger Theory from the ‘Newtonian’
Perspective of ‘Classical’ Fields Derived
from Quantal Sources

Abstract Schrödinger theory of the electronic structure of matter—N electrons in
the presence of an external time-dependent field—is described from the perspective
of the individual electron. The corresponding equation of motion is expressed via
the ‘Quantal Newtonian’ second law, the first law being a description of the station-
ary state case. This description of Schrödinger theory is ‘Newtonian’ in that it is
in terms of ‘classical’ fields which pervade space, and whose sources are quantum-
mechanical expectations of Hermitian operators taken with respect to the system
wave function. In addition to the external field, each electron experiences an internal
field, the components of which are representative of correlations due to the Pauli
Exclusion Principle and Coulomb repulsion, the kinetic effects, and the density. The
resulting motion of the electron is described by a response field. Ehrenfest’s theorem
is derived by showing the internal field vanishes on summing over all the electrons.
The ‘Newtonian’ perspective is then explicated for both a ground and excited state of
an exactly solvable model. Various facets of quantum mechanics such as the Integral
Virial Theorem, the Harmonic Potential Theorem, the quantum-mechanical ‘hydro-
dynamical’ equations in terms of fields, coalescence constraints, and the asymptotic
structure of the wave function and density are derived. The equivalence of the ‘Quan-
tal Newtonian’ second law and the Euler equation of Quantum Fluid Dynamics is
proved.

Introduction

In order to understand quantal density functional theory (Q-DFT), it is necessary
to first understand Schrödinger theory [1] from the new perspective of the ‘Quantal
Newtonian’ second and first laws, the latter being the time-independent version of the
former. These laws represent the equations of motion of the individual electrons. The
description of these laws is in terms of ‘classical’ fields and their quantal sources [2].
The terminology ‘classical’ is employed in the original sense of fields as pervading
all space, and not necessarily as solutions of Maxwell’s equations. The description
of a quantum system, and of its energy and energy components in terms of fields,
provides a new perspective on Schrödinger theory, one that is physically tangible.
This different perspective, however, still lies within the rubric of the theory’s proba-
bilistic description of a quantum system in that the sources of the fields are quantum
mechanical expectations of Hermitian operators or of complex sums of Hermitian
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16 2 Schrödinger Theory from the ‘Newtonian’ Perspective …

operators taken with respect to the system wavefunction. Thus, these fields may be
thought of as being inherent to the quantal system, (just as the solution to Maxwell’s
equations are inherent to an electromagnetic system), with each field, or sum of
fields, contributing to a specific energy component. Another important facet of this
newperspective is that it reveals the intrinsic self-consistent nature of the Schrödinger
equation. This chapter is a description of Schrödinger theory from this ‘Newtonian’
perspective of fields and quantal sources. The equivalence of Schrödinger theory as
described by its field perspective to the corresponding Euler equation of Quantum
Fluid Dynamics (QFD) is also derived.

2.1 Time-Dependent Schrödinger Theory

Consider a system of N electrons in the presence of a time-dependent (TD) exter-
nal field F ext(rt) such that F ext(rt) = −∇v(rt), where v(rt) is the scalar poten-
tial energy of an electron. The TD Schrödinger equation in the Born–Oppenheimer
approximation [3] is (in atomic units: e = � = m = 1)

Ĥ(t)�(Xt) = i
∂�(Xt)

∂t
, (2.1)

where�(Xt) is thewavefunction,X = x1, x2, . . . , xN , x = rσ, r andσ are the spatial
and spin coordinates. TheHamiltonian operator Ĥ(t) is a sum of the kinetic energy T̂ ,
external potential energy V̂ (t), and electron–interaction potential energy Û operators:

Ĥ(t) = T̂ + V̂ (t) + Û, (2.2)

where

T̂ = −1

2

∑

i

∇2
i , (2.3)

V̂ (t) =
∑

i

v(rit), (2.4)

and

Û = 1

2

′∑

i,j

1

|ri − rj| . (2.5)

As electrons are fermions, the wave function �(Xt) is antisymmetric in an inter-
change of the coordinates of the particles including spin, and thus accounts for elec-
tron correlations due to the Pauli exclusion principle. Due to the electron-interaction
term in the Hamiltonian, the wave function also accounts for correlations due to
Coulomb repulsion. Also implicit in the writing of the Hamiltonian is the fact that
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the external potential energy function v(rt) is path-independent at each instant of
time. By providing a rigorous physical interpretation for v(rt) in terms of the system
wave function �(Xt), this will be shown to be the case.

In quantummechanics, properties of a system are determined in terms of the posi-
tion probability density, or equivalently as expectation values of the corresponding
operators taken with respect to the wavefunction. These expectations are functions of
time since the wavefunction depends upon time, and the spatial and spin coordinates
are integrated out. Thus, with �(Xt) = �(t), the (non conserved) energy E(t) is the
expectation

E(t) = 〈�(t) | i
∂

∂t
| �(t)〉 = 〈�(t) | Ĥ(t) | �(t)〉. (2.6)

The energy in turn may be written in terms of its kinetic T(t), external potential
Eext(t), and electron–interaction potential Eee(t) energy components:

E(t) = T(t) + Eext(t) + Eee(t), (2.7)

where
T(t) = 〈�(t) | T̂ | �(t)〉, (2.8)

Eext(t) = 〈�(t) | V̂ (t) | �(t)〉, (2.9)

and
Eee(t) = 〈�(t) | Û | �(t)〉. (2.10)

The quantum-mechanical system described by the time-dependent Schrödinger
equation (2.1) can alternately be described from a ‘Newtonian’ perspective. Thus,
there exists a ‘Quantal Newtonian’ second law. A special case is the ‘Quantal New-
tonian’ first law, which in turn is an equivalent description of the time-independent
Schrödinger equation. These ‘Newtonian’ laws are in terms of ‘classical’ fields
derived fromquantal sources that are quantum-mechanical expectations ofHermitian
operators or of the complex sum of Hermitian operators taken with respect to the
system wave function. The fields obtained from these sources are separately repre-
sentative of the kinetic, external, and electron-interaction components of the physical
system. Thus, with each property is associated a ‘classical’ field.

We next describe the quantal sources.

2.2 Definitions of Quantal Sources

In this section we define the quantum–mechanical sources of the fields intrinsic
to the system. These sources are the electronic density ρ(rt), the spinless single–
particle density matrix γ(rr′t), the pair–correlation density g(rr′t) and from it the
Fermi–Coulomb hole charge distribution ρxc(rr′t), and the current density j(rt). The
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current density may also be expressed in terms of the density matrix. The sources
are written both in terms of their probabilistic definitions and as expectations of
Hermitian operators.

2.2.1 Electron Density ρ(rt)

The electron density ρ(rt) is N times the probability of an electron being at r at
time t:

ρ(rt) = N
∑

σ

∫
�∗ (rσ, XN−1, t

)
�
(
rσ, XN−1, t

)
dXN−1, (2.11)

where XN−1 = x2, x3, . . . , xN , dXN−1 = dx2, . . . , dxN , and
∫

dx=∑
σ

∫
dr. The

density is also the expectation of the Hermitian density operator

ρ̂(r) =
∑

i

δ(r − ri), (2.12)

so that
ρ(rt) = 〈�(t) | ρ̂(r) | �(t)〉. (2.13)

The total electronic charge is ∫
ρ(rt)dr = N . (2.14)

The electron density is a static or local charge distribution in that its structure remains
unchanged as a function of electron position for each instant of time.

2.2.2 Spinless Single–Particle Density Matrix γ(Rr′t)

The spinless single–particle density matrix γ(rr′t) is defined as

γ(rr′t) = N
∑

σ

∫
�∗ (rσ, XN−1, t

)
�
(
r′σ, XN−1, t

)
dXN−1, (2.15)

and it may also be expressed as the expectation of the density matrix operator γ̂(rr′)
[4, 5]:

γ
(
rr′t

) = 〈�(t) | γ̂
(
rr′) | �(t)〉, (2.16)

where
γ̂
(
rr′) = Â + iB̂, (2.17)
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Â = 1

2

∑

j

[
δ
(
rj − r

)
Tj(a) + δ

(
rj − r′) Tj(−a)

]
, (2.18)

B̂ = − i

2

∑

j

[
δ
(
rj − r

)
Tj(a) − δ

(
rj − r′) Tj(−a)

]
, (2.19)

Tj(a) is a translation operator such that Tj(a)�(. . . , rj, . . . , t) = �(. . . , rj + a,

. . . , t), and a = r′ − r. The operators Â and B̂ are each Hermitian.
To prove (2.16) we note that

〈Â〉 = 〈�(t)|Â|�(t)〉 = 1

2

[
γ(rr′t) + γ(r′rt)

]
(2.20)

and since
γ(r′rt) = γ�(rr′t) (2.21)

we have
〈Â〉 = �γ(rr′t). (2.22)

Similarly

〈B̂〉 = − i

2

[
γ(rr′t) − γ(r′rt)

]
(2.23)

= �γ(rr′t). (2.24)

Thus, the single-particle density matrix is the expectation of the complex sum of
Hermitian operators. It is a nonlocal source since it depends on both r and r′.

Another property of the single particle density matrix, which distinguishes it from
the Dirac density matrix to be defined later, is that it is not idempotent and satisfies
instead the inequality

∫
γ
(
rr′′t

)
γ
(
r′′r′t

)
dr′′ < γ

(
rr′t

)
. (2.25)

The diagonal matrix element of the density matrix is the density: γ(rrt) = ρ(rt).

2.2.3 Pair–Correlation Density g(rr′t), and Fermi–Coulomb
Hole ρxc(rr′t)

The pair–correlation density g(rr′t) is a property representative of electron correla-
tions due to the Pauli exclusion principle and Coulomb repulsion. At each instant of
time, it is the conditional density at r′ of all the other electrons, given that one electron
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is at r. It is defined as the ratio of the expectations of two Hermitian operators:

g(rr′t) = P(rr′t)
ρ(rt)

, (2.26)

with the pair function P(rr′t) being the expectation

P(rr′t) = 〈�(t)|P̂(rr′)|�(t)〉, (2.27)

where P̂(rr′) is the Hermitian pair-correlation operator

P̂(rr′) =
′∑

i,j

δ(ri − r)δ(rj − r′). (2.28)

The pair function P(rr′t) is the probability of simultaneously finding electrons at r
and r′ at time t.

The total charge of the pair-correlation density for each electron position r at time
t is ∫

g(rr′t)dr′ = N − 1. (2.29)

To prove the sum rule of (2.29) we rewrite the pair function P(rr′t) as

P(rr′t) = 〈�(t)|
∑

i,j

δ(ri − r)δ(rj − r′)|�(t)〉

−〈�(t)|
∑

i

δ(ri − r)δ(ri − r′)|�(t)〉 (2.30)

= 〈�(t)|
∑

i

δ(ri − r)
∑

j

δ(rj − r′)|�(t)〉 − δ(r − r′)ρ(r). (2.31)

On integrating:

∫
P(rr′t)dr′ = 〈�(t)|

∑

i

δ(ri − r)
∑

j

∫
δ(rj − r′)dr′|�(t)〉

−ρ(rt)
∫

δ(r − r′)dr′ (2.32)

= Nρ(rt) − ρ(rt), (2.33)

so that
1

ρ(rt)

∫
P̂(rr′t)dr′ = N − 1. (2.34)
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The pair-correlation density is a dynamic or nonlocal charge distribution in that its
structure changes as a function of electron position for nonuniformdensity systems. If
therewere no electron correlations, the density at r′ would simply be ρ(r′t). However,
due to electron correlations—the keeping apart of electrons—there is a reduction in
the density at r′. Hence, the pair-correlation density is the density ρ(r′t) at r′ plus
the reduction in this density at r′ due to the electron correlations. The reduction in
density about an electron which occurs as a result of the Pauli exclusion principle and
Coulomb repulsion is the Fermi–Coulomb hole charge distribution ρxc(rr′t). Thus,
we may write the pair-correlation density as

g(rr′t) = ρ(r′t) + ρxc(rr′t). (2.35)

In this manner, the pair density is separated into its local and nonlocal components.
Further, as a consequence, the total charge of the Fermi–Coulomb hole, for arbitrary
electron position at r, is ∫

ρxc(rr′t)dr′ = −1. (2.36)

Note that there is no self–interaction in the pair-correlation density. This is evident
from its definition (2.26). In its definition of (2.35), the self–interaction contribution
to the Fermi–Coulomb hole charge is cancelled by the corresponding term of the
density.

An associated property is the pair–correlation function h(rr′t) defined as

h(rr′t) = g(rr′t)
ρ(r′t)

, (2.37)

which is symmetrical in an interchange of r and r′:

h(rr′t) = h(r′rt). (2.38)

This property of symmetry of the pair function is of value in various proofs to follow.

2.2.4 Current Density j(rt)

The current density j(rt) at point r and at time t is defined as

j(rt) = ReN
∑

σ

∫
�∗ (rσ, XN−1, t

) 1
i
∇�

(
rσ, XN−1, t

)
dXN−1. (2.39)

It may also be expressed in terms of the single–particle density matrix γ(rr′t) non-
local source as

j(rt) = i

2

[∇′ − ∇′′] γ
(
r′r′′t

) |r′=r′′=r, (2.40)
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or as the expectation value

j(rt) = 〈�(t) | ĵ(r) | �(t)〉, (2.41)

where ĵ(r) is the Hermitian current density operator:

ĵ(r) = 1

2i

∑

j

[∇rj δ
(
rj − r

) + δ(rj − r)∇rj

]
. (2.42)

The quantal sources defined above then give rise to ‘classical’ fields that pervade all
space. These fields are defined below.

2.3 Definitions of ‘Classical’ Fields

The different fields associated with the quantum system defined by (2.1) are the
electron–interaction Eee(rt) field which is a sum of the Hartree EH(rt) and Pauli–
Coulomb Exc(rt) fields, the differential density D(rt), kinetic Z(rt), and current–
density J (rt) fields.

2.3.1 Electron–Interaction Field Eee(rt)

The electron–interaction field Eee(rt) is representative of electron correlations due
to the Pauli exclusion principle and Coulomb repulsion. The quantal source of this
field is the pair-correlation density g(rr′t). It is obtained from this charge distribution
via Coulomb’s law as

Eee(rt) =
∫

g(rr′t)(r − r′)
| r − r′ |3 dr′. (2.43)

The field Eee(r) may be rewritten in terms of an electron-interaction ‘force’ eee(r)
and the density ρ(rt) as

Eee(rt) = eee(rt)

ρ(rt)
, (2.44)

where eee(rt) is obtained via Coulomb’s law from the pair function P(rr′t):

eee(rt) =
∫

P(rr′t)(r − r′)
|r − r′|3 dr′. (2.45)

(The quantal source of the field Eee(rt) can thus also be thought of as being the pair
function P(rr′t).) With the pair-correlation density expressed as in (2.35), the field
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Eee(rt) may be written as a sum of its Hartree EH(rt) and Pauli–Coulomb Exc(rt)
components as

Eee(rt) = EH(rt) + Exc(rt), (2.46)

where

EH(rt) =
∫

ρ(r′t)(r − r′)
| r − r′ |3 dr′, (2.47)

and

Exc(rt) =
∫

ρxc(rr′t)(r − r′)
| r − r′ |3 dr′. (2.48)

The Hartree field EH(rt) is conservative as its source is a local charge distribu-
tion ρ(rt), so that ∇ × EH(rt) = 0. In general, nonlocal sources such as the pair-
correlation density and Fermi–Coulomb hole charge do not lead to conservative
fields. Thus, the fields Eee(rt) and Exc(rt) are in general not conservative, i.e.
∇ × Eee(rt) 	= 0 and ∇ × Exc(rt) 	= 0.

2.3.2 Differential Density FieldD(rt)

The differential density field D(rt) is defined as

D(rt) = d(rt)

ρ(rt)
, (2.49)

where the differential density ‘force’

d(rt) = −1

4
∇∇2ρ(rt). (2.50)

This field also arises from a local source, the electronic density ρ(rt), so that it too
is conservative, and ∇ × D(rt) = 0. The vanishing of the curl of the ‘force’ d(rt)
is evident since the curl of the gradient of a scalar function vanishes. (Although the
field D(rt) is intrinsic to Schrödinger theory, it plays no role within Q-DFT as will
become clear in the following chapter.)

2.3.3 Kinetic Field Z(rt)

The kinetic field Z(rt) is so named because the kinetic energy density, and hence,
the kinetic energy may be obtained from it. The field, whose source is the nonlocal
single–particle density matrix γ(rr′t), is defined as

Z(rt) = z(rt; [γ])
ρ(rt)

, (2.51)
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where the kinetic ‘force’ z(rt) is defined by its component zα(rt) as

zα(rt) = 2
∑

β

∂

∂rβ
tαβ(rt), (2.52)

and where tαβ(rt) is the second-rank kinetic-energy-density tensor defined in turn as

tαβ(rt) = 1

4

[
∂2

∂r′
α∂r′′

β

+ ∂2

∂r′
β∂r′′

α

]
γ(r′r′′t)|r′=r′′=r. (2.53)

The fieldZ(rt) is ‘classical’ in the sense that it is derived as the derivative of a tensor.
Its source γ(rr′t), however, is quantum mechanical. As the source is nonlocal, in
general the field Z(rt) is not conservative and ∇ × Z(rt) 	= 0.

2.3.4 Current Density Field J (rt)

The current density fieldJ (rt), whose source is the nonlocal single particle density
matrix γ(rr′t), is defined as

J (rt) = 1

ρ(rt)

∂

∂t
j(rt), (2.54)

where j(rt) is the current density. This field too may be thought of as being ‘clas-
sical’ from the perspective of the hydrodynamic continuity and force equations to
be discussed later in this chapter. In general, this field too is nonconservative so that
∇ × J (rt) 	= 0.

The fields Eee(rt),Exc(rt),Z(rt), and J (rt) are in general not conservative.
However, their sum always is, so that

∇ × [Eee(rt) + Z(rt) + J (rt)] = 0. (2.55)

If the system in the presence of the time-dependent external fieldF ext(rt) has a sym-
metry which reduces these fields to being one dimensional, or when such a symmetry
is imposed as by application of the central field approximation, the individual fields
are then separately conservative. In such cases

∇ × Eee(rt) = 0, (2.56)

∇ × Z(rt) = 0, (2.57)

∇ × J (rt) = 0. (2.58)

The central field approximation can be achieved by spherically averaging the fields.
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2.4 Energy Components in Terms of Quantal Sources
and Fields

The kinetic T(t), external Eext(t), and electron–interaction Eee(t) energies as defined
by the expectations of (2.8)–(2.10), may be expressed directly in terms of the quantal
sources, and also in integral virial form in terms of the respective fields described
above.

2.4.1 Electron–Interaction Potential Energy Eee(t)

The electron–interaction energyEee(t)may be interpreted as the energy of interaction
between the density ρ(rt) and the pair-correlation density g(rr′t):

Eee(t) = 1

2

∫∫
ρ(rt)g(rr′t)
| r − r′ | drdr′. (2.59)

Employing the decomposition of g(rr′t) as in (2.35), we may write

Eee(t) = EH(t) + Exc(t), (2.60)

where EH(t) is the Hartree or Coulomb self–energy:

EH(t) = 1

2

∫∫
ρ(rt)ρ(r′t)
| r − r′ | drdr′, (2.61)

and Exc(t) the quantum–mechanical exchange–correlation—Pauli–Coulomb—
energy

Exc(t) = 1

2

∫∫
ρ(rt)ρxc(rr′t)

|r − r′| drdr′. (2.62)

The energy Exc(t) may in turn be interpreted as the energy of interaction between
the density ρ(rt) and the Fermi–Coulomb hole charge distribution ρxc(rr′t).

These energy components may also be expressed in terms of the fields as follows.
Since

1

|r − r′| = (r − r′) · (r − r′)
|r − r′|3 = r · (r − r′) − r′ · (r − r′)

|r − r′|3 , (2.63)

we may write Eee(t) in terms of the pair-correlation function h(rr′t) of (2.37) as

Eee(t) = 1

2

∫∫ [r · (r − r′) − r′ · (r − r′)]
|r − r′|3 ρ(rt)ρ(r′t)h(rr′t). (2.64)
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On interchanging r and r′ in the second term of (2.64) and employing the symmetry
property of h(rr′t), we see that it is the same as the first, so that

Eee(t) =
∫∫

r · (r − r′)ρ(rt)g(rr′t)
|r − r′|3 drdr′

=
∫

ρ(rt)r ·
∫

g(rr′t)(r − r′)
|r − r′|3 dr′

=
∫

ρ(rt)r · Eee(rt)dr. (2.65)

Employing the decomposition of Eee(rt) of (2.46), we then have

EH(t) =
∫

ρ(rt)r · EH(rt)dr, (2.66)

and

Exc(t) =
∫

ρ(rt)r · Exc(rt)dr. (2.67)

Note that the expressions for the energy components in terms of the fields is inde-
pendent of whether or not the fields are conservative.

2.4.2 Kinetic Energy T(t)

The kinetic energy T(t) may be written in terms of its quantal source, the single–
particle density matrix γ(rr′t) as

T(t) =
∫

t(rt)dr, (2.68)

where the kinetic energy density t(rt) is the trace of the kinetic energy density tensor
tαβ(rt):

t(rt) =
∑

α

tαα(rt) = 1

2
∇r′ · ∇r′′γ(r′r′′t) |r′=r′′=r . (2.69)

The kinetic energy T(t) may also be expressed in terms of the kinetic fieldZ(rt) as

T(t) = −1

2

∫
ρ(rt)r · Z(rt)dr, (2.70)

or in terms of the kinetic ‘force’ z(rt) as

T(t) = −1

2

∫
r · z(rt)dr. (2.71)
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Equation (2.70) can be shown to be equivalent to (2.68) by partial integration and by
employing the fact that thewavefunction and hence the single–particle densitymatrix
vanishes as r, r′ tend towards infinity. Once again, the expression for T(t) in terms
of the kinetic field Z(rt) is independent of whether or not the field is conservative.

2.4.3 External Potential Energy Eext(t)

The external potential energy Eext(t)may be expressed in terms of the electronic den-
sity ρ(rt) and the potential energy v(rt) of an electron in the external fieldF ext(rt) as

Eext(t) =
∫

ρ(rt)v(rt)dr. (2.72)

Through the external potential energy v(rt), this component of the total energy
depends on all the fields present in the quantal system.As the quantal sources of these
fields are expectations taken with respect to the wave function �(t), the potential
energy v(rt) is a functional of �(t), i.e. v(rt) = v[�(t)]. The explanation of this is
arrived at via the ‘Quantal Newtonian’ second law to be discussed next.

2.5 Schrödinger Theory and the ‘Quantal Newtonian’
Second Law

The Schrödinger theory description of a quantum system can alternatively be inter-
preted in terms of fields representative of the various electron correlations and prop-
erties. This description is based on the pure state ‘Quantal Newtonian’ second law
or time-dependent differential virial theorem [6–8]. (A state is said to be pure if it is
described by awavefunction i.e. by the solution of (2.1). It is said to bemixed if it can-
not be so described. A system in a mixed state can be characterized by a probability
distribution over all accessible pure states).

As a prelude to the description of this quantal law, let us review the classical
mechanics of a system of N particles that obey Newton’s third law of action and
reaction, and exert forces on each other that are equal and opposite, and lie along the
line joining them. Then Newton’s second law for the ith particle is

Fext
i +

∑

j

Fji = d

dt
pi, (2.73)

where Fext
i is the external force, Fji the internal force on the ith particle due to the jth

particle, and pi is the linear momentum. Summing over all particles, (2.73) reduces
to Newton’s second law for the system of particles:

Fext = d2

dt2
∑

i

ri, (2.74)
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where Fext = ∑
i Fext

i is the total external force. The internal forces corresponding
to the term

∑′
i,j Fji vanish as a consequence of Newton’s third law.

The ‘Quantal Newtonian’ second law is the quantum-mechanical counterpart of
the classical equation of motion (2.73) for the individual particles. Its statement is

F ext(rt) + F int(rt) = J (rt), (2.75)

where each electron experiences the external field F ext(rt):

F ext(rt) = −∇v(rt), (2.76)

and a field internal to the system F int(rt) that is representative of the correlations
between the electrons, the density, and the kinetic effects:

F int(rt) = Eee(rt) − D(rt) − Z(rt), (2.77)

where the component fields Eee(rt), D(rt), Z(rt) are defined by (2.43), (2.44),
(2.49), and (2.51). The response of each electron to the external and internal fields
is the current density field J (rt) defined by (2.54) which is the quantum analog of
the time derivative of pi of (2.73). The internal fieldF int(rt) is discussed more fully
in Sect. 2.8.

From the ‘Quantal Newtonian’ second law of (2.75) a rigorous physical inter-
pretation of the external potential energy v(rt) follows: It is the work done, at each
instant of time, to move an electron from some reference point, say at infinity, to its
position at r in the force of a conservative field F(rt):

v(rt) =
∫ r

∞
∇v(r′t) · d�′ =

∫ r

∞
F(r′t) · d�′ (2.78)

where
F(rt) = F int(rt) − J (rt). (2.79)

The work done is path-independent since ∇ × F(rt) = 0. The fact that the field
F(rt) is conservative is consistent with the assumption in the construction of the
Hamiltonian of (2.2) that the potential energy v(rt) at each instant of time is path-
independent.

As the external potential energy v(rt) depends upon the internalF int(rt) and the
responseJ (rt) fields, and these fields in turn are obtained from quantal sources that
are expectations taken with respect to the wave function �(t), the potential energy
v(rt) is a functional of the wave function: v(rt) = v[�(t)]. The time-dependent
Schrödinger equation (2.1) may then be written as

{
− 1

2

∑

i

∇2
i + 1

2

′∑

i,j

1

|ri − rj| +
∑

i

vi[�(t)]
}
�(t) = i

∂�(t)

∂t
, (2.80)
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where vi = v(rit). More explicitly it may be written in terms of the conservative field
F(rt) of (2.79) as

[
− 1

2

∑

i

∇2
i + 1

2

′∑

i,j

1

|ri − rj| +
∑

i

{∫ ri

∞
F(rt) · d�

}]
�(t) = i

∂�(t)

∂t
. (2.81)

The purpose of rewriting the Schrödinger equation as in (2.80) or (2.81) is to empha-
size the self-consistent nature of its solution �(t). One begins with an approximate
wave function�(t). With this wave function one determines the quantal sources and
thereby the field F(rt) and the corresponding work done at each instant of time.
The differential equation is then solved to obtain a new solution �(t). The true wave
function is obtained when the solution of the differential equation �(t) is the same
as that employed for the determination of the fieldF(rt). This understanding of the
self-consistent nature of the Schrödinger equation is a consequence of the ‘Quantal
Newtonian’ second law. The derivation of the second law is given in Appendix A.
The proof is for arbitrary F ext(rt), and hence valid for both adiabatic and sudden
switching on of the field.

An equation of motion similar [9] to the pure state expression (2.75) can be
derived for nonequilibrium phenomena described by systems in a time-dependent
external fieldF ext(rt) and finite temperature T . Such systems are described in terms
of a mixed state, the expectation value of operators being defined in terms of the
grand canonical ensemble of statistical mechanics. This grand canonical ensemble
in turn is defined at the initial time in terms of the eigenfunctions and eigenvalues
of the time-independent Hamiltonian. The physics underlying this similar equation
of motion is intrinsically different since properties such as the density and current
density are in terms of statistical averages. Furthermore, the expression in terms of
the grand canonical ensemble is valid for sudden switching on of the external field
at some initial time.

2.6 Integral Virial Theorem

The time-dependent integral virial theorem can be obtained from the ‘Quantal New-
tonian’ second law (2.75) by operating on it with

∫
drρ(rt)r· to obtain

∫
ρ(rt)r · F ext(rt)dr + Eee(t) + 2T(t) =

∫
ρ(rt)r · J (rt)dr. (2.82)

The last term on the right hand side of (2.82) may be expressed entirely in terms of
the density ρ(rt) as follows. The integral

∫
ρ(rt)r · J (rt)dr = ∂

∂t

∫
r · j(rt)dr. (2.83)
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Thus, consider the integral

∫
xjx(rt)dr = 1

2

∫
jx(rt)dx2dydz

= −1

2

∫
x2djx(rt)dydz

= −1

2

∫
x2

∂jx(rt)

∂x
dr, (2.84)

where we employ the vanishing of the current density jx(rt) at the boundaries at
x = +∞,−∞. Now, since for the same reason

∫
x2

∂jy(rt)

∂y
dr = 0 and

∫
x2

∂jz(rt)

∂z
dr = 0, (2.85)

we have ∫
xjx(rt)dr = −1

2

∫
x2∇ · j(rt)dr. (2.86)

Therefore
∫

r · j(rt)dr = −1

2

∫
r2∇ · j(rt)dr

= 1

2

∫
r2

∂ρ(rt)

∂t
dr, (2.87)

where in the last step we have employed the continuity equation ∇ · j(rt) =
−∂ρ(rt)/∂t (see Sect. 2.7). Thus,

∫
ρ(rt)r · J (rt)dr = 1

2

∂2

∂t2

∫
r2ρ(rt)dr, (2.88)

and the integral virial theorem may alternatively be written as

∫
ρ(rt)r · F ext(rt)dr + Eee(t) + 2T(t) = 1

2

∂2

∂t2

∫
r2ρ(rt)dr. (2.89)

The reason for writing the current density field term of (2.82) in terms of the density
is to later draw an equivalence to the corresponding equation of the S system of
noninteracting fermions for which the density, and hence the corresponding term is
the same.
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2.7 The Quantum–Mechanical ‘Hydrodynamical’
Equations

The electron density ρ(rt) and current density j(rt) may also be determined by
solution of the quantum–mechanical ‘hydrodynamical’ equations. The first of these,
the continuity equation, is derived [10] from the Schrödinger equation and is

∂ρ(rt)

∂t
= −∇ · j(rt). (2.90)

The second, the force equation, describes the evolution of the quantum system. The
field perspective of Schrödinger theory allows for the force equation to be written
explicitly in terms of the fields inherent to the quantum system. Thus, we have
from the ‘Quantal Newtonian’ second law (2.75) which is also derived from the
Schrödinger equation, that

∂j(rt)

∂t
= P(rt), (2.91)

where the force P(rt) is

P(rt) = ρ(rt)
[F ext(rt) + F int(rt)

] = ρ(rt)
[F ext + Eee(rt) − D(rt) − Z(rt)

]
.

(2.92)
In this manner the force P(rt) is described in terms of the different electron corre-
lations. The internal field is discussed in the next section. The force P(rt) may also
be expressed [11] as the expectation value of the commutator of the current density
operator and the Hamiltonian. This follows from the quantum mechanical equation
of motion for the expectation value of an operator Â(t) which is [10]

d〈Â(t)〉
dt

= −i〈[Â(t), Ĥ(t)]〉 +
〈

∂Â(t)

∂t

〉
. (2.93)

Substitution of the current density operator ĵ(r) into (2.93) leads to (2.91) with

P(rt) = −i〈�(t) |
[
ĵ(r), Ĥ(t)

]
| �(t)〉. (2.94)

The continuity equation may also be derived from the equation of motion (2.93) for
the density operator ρ̂(r).

The continuity and force equations have a counterpart in Quantum Fluid Dynam-
ics in which the electron gas is treated as a classical fluid. The equivalence of
the Schrödinger theory equations to those of quantum fluid dynamics is proved in
Sect. 2.12.
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2.8 The Internal Field of the Electrons and Ehrenfest’s
Theorem

The Schrödinger theory analogue of Newton’s second law of motion is Ehrenhest’s
theorem [10, 12]. For a system of electrons in some arbitrary time-dependent external
fieldF ext(rt), Ehrenhest’s theorem states that themean value of the field 〈F ext(r)〉(t)
is equal to the second temporal derivative of the average position 〈r〉(t) of the elec-
trons. In order that the average position 〈r〉(t) actually follow Newton’s classical
equation, onemust be able to replace themean value of the external field 〈F ext(r)〉(t)
by its value F ext(〈r〉)(t). This is the case when either the force vanishes or when it
depends linearly on r. The substitution is also justified if the wavefunction remains
localized in a small region of space so that the force has a constant value over that
region. Thus, Ehrenfest’s theorem describes the evolution of the system in terms of
its average position as governed by the averaged external field. What Ehrenfest’s
theorem does not describe is the evolution in time of each individual electron as the
entire system evolves. As described by the ‘Quantal Newtonian’ second law (see
Sect. 2.5 and (2.75)), in addition to the external force field, each electron also expe-
riences an internal fieldF int(rt). It is the sum of these fields that then describes the
behavior of the electron and its evolution with time. Furthermore, for Ehrenfest’s
theorem to be satisfied, the averaged internal field 〈F int(r)〉(t) must vanish. Sim-
ilarly, the average torque of the internal field 〈r × F int(r)〉(t) too must vanish. In
this section, we draw a rigorous parallel with the equations of classical mechanics
by proving that on summing over all electrons, the contribution of the internal field
vanishes, thereby leading to Ehrenfest’s theorem.

We first derive Ehrenfest’s theorem in the traditional manner. Substituting the
operator

r̂ =
∫

rρ̂(r)dr, (2.95)

into the equation of motion (2.93) leads to

d

dt
〈r̂〉 = d

dt

∫
rρ(rt)dr = −i〈[r̂, Ĥ(t)]〉. (2.96)

On differentiating (2.96) again with respect to time and applying the equation of
motion to the resulting right hand side, one obtains

d2

dt2

∫
rρ(rt)dr = −〈[[r̂, Ĥ(t)], Ĥ(t)]〉, (2.97)

since ∂[Ĥ(t), r̂]/∂t = 0. Evaluating the double commutator leads to Ehrenfest’s
theorem: ∫

ρ(rt)F ext(rt)dr = ∂2

∂t2

∫
rρ(rt)dr. (2.98)

This equation is the quantal analogue of Newton’s second law of motion (2.74).
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The quantal analog of Newton’s equation of motion for the ith particle is the
‘Quantal Newtonian’ second law of (2.75). When summed over all the electrons, it
must lead to Ehrenfest’s theorem (2.98), with the contributions of the internal fields
vanishing. Thus on operating with

∫
drρ(rt) on (2.75) we have

∫
ρ(rt)F ext(rt)dr +

∫
ρ(rt)F int(rt)dr =

∫
ρ(rt)J (rt)dr. (2.99)

To simplify the right hand side of (2.99), consider the integral

∫
jx(rt)dr = −

∫
x djx dy dz = −

∫
x
∂jx
∂x

dx dy dz, (2.100)

where the second step is a consequence of the vanishing of the current density at the
boundaries x = +∞,−∞. Now, for the same reason

∫
x
∂jy
∂y

dx dy dz = 0 and
∫

x
∂jz
∂z

dxdydz = 0, (2.101)

so that ∫
jx(rt)dr = −

∫
x∇ · j(rt)dr. (2.102)

Thus, ∫
j(rt)dr = −

∫
r∇ · j(rt)dr, (2.103)

and on employing the continuity equation (2.90) we have the right hand side of (2.99)
to be

∫
ρ(rt)J (rt)dr = − ∂

∂t

∫
r∇ · j(rt)dr

= ∂2

∂t2

∫
rρ(rt)dr. (2.104)

In order for Ehrenfest’s theorem to be satisfied, what remains to be proved is that the
average value of each component of F int(rt) of (2.77) vanish:

∫
ρ(rt)Eee(rt)dr = 0, (2.105)

∫
ρ(rt)D(rt)dr = 0, (2.106)

and ∫
ρ(rt)Z(rt)dr = 0. (2.107)
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In order to prove (2.105) we rewrite the left hand side in terms of the pair-
correlation function h(rr′t) of (2.37):

∫
ρ(rt)Eee(rt)dr =

∫
ρ(rt)ρ(r′t)h(rr′t)

(r − r′)
|r − r′|3 drdr′. (2.108)

On interchanging r and r′, the right hand side of (2.108) is

∫
ρ(rt)ρ(r′t)h(r′rt)

(r′ − r)
|r − r′|3 drdr′. (2.109)

As h(rr′t) is symmetric in an interchange of r and r′ (see (2.38)), (2.108) is
∫

ρ(rt)ρ(r′t)h(rr′t)
(r′ − r)
|r − r′|3 drdr′ = −

∫
ρ(rt)Eee(rt)dr, (2.110)

which proves (2.105). Equation (2.106) follows from partial integration and the
vanishing of the density at the boundary at infinity. To prove (2.107) we show that
[8] ∫

z(rt)dr = 0. (2.111)

Consider the integral for the component

∫
zα(rt)dr = 2

∑

β

∫
∂

∂rβ
tαβ(rt)dr. (2.112)

The integral ∫
∂

∂x
tαx(rt)dx

∫
dy dz = 0, (2.113)

etc., since the tensor vanishes at the boundary x = +∞,−∞. Thus, (2.111) and
hence (2.107) is proved.

As a consequence, the averaged internal force vanishes:

∫
ρ(rt)F int(rt)dr = 0, (2.114)

and Ehrenfest’s theorem is recovered. An alternate way of expressing Ehrenfest’s
theorem in terms of the response of the system to the external field as represented
by the current density field J (rt) is

∫
ρ(rt)

[F ext(rt) − J (rt)
] = 0. (2.115)
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The vanishing of the average of the internal field 〈F int〉 may then be thought of as
being a consequence of the quantal analog to Newton’s third law. Note that although
Coulomb’s law, and hence the electron interaction field obeys Newton’s third law,
the vanishing of the averaged differential density and kinetic fields is not a direct
consequence of the third law.

Returning to Newton’s second law for the ith particle (2.73), one obtains the total
angular momentum L of the system by performing the cross product ri× on it and
summing over all particles to obtain

dL
dt

= Next, (2.116)

where L = ∑
i(r × pi), and Next = ∑

i(ri × Fext
i ) is the torque of the external force

about a given point. The torque of the internal forces
∑′

ij ri × Fji once again vanishes
as a consequence of Newton’s third law.

For the quantal equivalent of (2.116), operate by
∫

drρ(rt)× on (2.75) to obtain

∫
ρ(rt)r × F ext(rt)dr = ∂

∂t

∫
r × j(rt)dr, (2.117)

where once again it can be proved [8] along the lines described above, that the
averaged torques of the individual components of the internal field vanish: 〈r ×
F int(rt)〉 = 0. Defining a velocity field ν(rt) of the electrons by the equation

j(rt) = ρ(rt)ν(rt), (2.118)

and a momentum field p(rt) = mν(rt), we have (with m = 1) the quantum analogue
of the classical torque equation

∫
ρ(rt)N ext(rt)dr = ∂

∂t

∫
ρ(rt)L(rt)dr, (2.119)

where L(rt) = r × p(rt) is the angular momentum field at each instant of time.
Thus, each electron in a sea of electrons, experiences in addition to the external

field, an internal field. This internal field defined by (2.77) is representative of the
motion of the electrons, and the fact that they are kept apart as a result of the Pauli
exclusion principle and Coulomb repulsion. As in classical physics, the average of
this field and its averaged torque vanish at each instant of time. The structure of the
components of the internal field is exhibited for both a ground and excited state of
an exactly solvable model in Sect. 2.11.
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2.9 The Harmonic Potential Theorem

A theorem that can be employed to demonstrate the field perspective of Schrödinger
theory as well as the corresponding perspective within Q-DFT is the Harmonic
Potential Theorem (HPT) [13]. The HPT is concerned with the system of N electrons
for the case when the potential energy v(rt) of (2.4) is of the form

v(rt) = 1

2
r · K · r − F(t) · r, (2.120)

where K is a symmetric spring constant matrix, and F(t) a spatially uniform time-
dependent external force. For example, F(t) could correspond to the electric field
of a high intensity laser pulse employed in the study of atoms and molecules. The
Hamiltonian for the system is then

Ĥ = Ĥ0 − F(t) ·
∑

i

ri, (2.121)

Ĥ0 =
∑

i

H0i, (2.122)

H0i = −1

2
∇2

i + 1

2
ri · K · ri + 1

2

′∑

j

1

|ri − rj| , (2.123)

and the Schrödinger equation is

Ĥ(t)�HPT(t) = i
∂�HPT(t)

∂t
, (2.124)

with�HPT the corresponding solution. Letψn(r1, . . . , rN) be any (ground or excited)
many–body eigenstate of the Hamiltonian Ĥ0 so that

Ĥ0ψn = Enψn. (2.125)

Next apply a position–independent, time-dependent shift y(t) to the coordinates
r1, . . . , rN in ψn, and write the solution of the time-dependent Schrödinger equa-
tion as

�HPT(t) = e−i(Ent + NS(t)−N dy
dt ·R)ψn(r̄1, r̄2, . . . , r̄N), (2.126)

where ri = ri − y(t) is the shifted coordinate operator, R = ∑
i ri/N the center of

mass operator, and the phase angle

S(t) =
∫ t

t0

[
1

2
ẏ(t′)2 − 1

2
y(t′) · K · y(t′)

]
dt′. (2.127)
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Substitution of �HPT(t) of (2.126) into the Schrödinger equation leads to

(
Ĥ(t) − i

∂

∂t

)
�HPT(t) = [ÿ(t) + K · y(t) − F(t)] ·

[
∑

i

ri

]
�HPT(t). (2.128)

Thus, �HPT(t) is a solution of the Schrödinger equation provided that y(t) satisfies
the classical driven harmonic oscillator equation

ÿ(t) + K · y(t) − F(t) = 0. (2.129)

The wavefunction �HPT(t) is then the solution ψn to the time-independent
Schrödinger equation (2.125) shifted by y(t) andmultiplied by a phase factor. Hence,
if the solution to (2.125) is known, then the time-evolution of all properties,—
quantal sources and fields—is known. In particular, observables represented by
non-differential operators such as the density ρ(rt) possess the translational prop-
erty ρ(rt) = ρ0(r − y(t)), where ρ0(r) is the density corresponding to the time-
independent system of (2.125). This is because the phase factor cancels out, How-
ever, because of the phase factor, such a translational property is not obeyed for
observables involving differential operators such as the current density j(rt).

By a suitable choice of K, the time-independent model describes a wide range
of physical situations such as Hooke’s atom [14–16], Hooke’s species ([17] and
Sect. 4.8), and spherical nuclear models [18]. The Hooke’s atom is comprised of two
electrons harmonically confined to a nucleus,whereas the species is comprised of two
electrons harmonically confined to an arbitrary number of nuclei. The significance of
these models lies in the fact that the interaction between the electrons is Coulombic.
For these models systems, closed-form analytical solutions of the time-independent
Schrödinger equation exist for both the ground and excited states for a denumerably
infinite set of force constants. These solutions may then be employed to determine
the structure of the various fields, and their evolution with time via the Harmonic
Potential Theorem.

The proof of the HPT given above due to Dobson [13] assumes the structure of
the wave function as the starting point. With the same ansatz, the HPT can also be
proved via the ‘operator’ method as given in Appendix B. However, in Appendix B,
the HPT wave function is derived [19] from first principles via the Feynman Path
Integral method [20, 21]. In this manner, the wave function is revealed as a result of
the derivation. For completeness, the HPT wave function has also been derived [22]
via the ‘interaction’ representation of quantum mechanics.

http://dx.doi.org/10.1007/978-3-662-49842-2_4


38 2 Schrödinger Theory from the ‘Newtonian’ Perspective …

2.10 Time-Independent Schrödinger Theory: Ground
and Bound Excited States

For a system of N electrons in a time-independent external field F ext(r) such that
F ext(r) = −∇v(r), the Schrödinger equation (2.1) is

Ĥ�n(Xt) = En�n(Xt) = i
∂�n(Xt)

∂t
, (2.130)

where now the Hamiltonian operator Ĥ is

Ĥ = −1

2

∑

i

∇2
i +

∑

i

v(ri) + 1

2

′∑

i,j

1

|ri − rj| , (2.131)

and where the wavefunction �n(Xt) are eigenfunctions of Ĥ, and En the eigenvalues
of the energy. The solutions of the (2.131) are of the form

�n(Xt) = ψn(X)e−iEn t, (2.132)

where the functions ψn(X) and eigenvalues En of the energy are determined by the
time-independent Schrödinger equation

Ĥψn(X) = Enψn(X). (2.133)

2.10.1 The ‘Quantal Newtonian’ First Law

Time-independent Schrödinger theory can also be described in terms of ‘classical’
fields andquantal sources via the ‘QuantalNewtonian’ first law.Thedescription of the
time-independent Schrödinger system for both the ground and bound excited states in
terms of fields [23–25] is the same as for the time-dependent case, but with the time-
independent quantal sources and fields now determined by the functions ψn(X). The
phase factor of (2.132) vanishes in the determination of the source expectation values.
Further, the current density field J (rt) = 0, so that the total energy components
Eee, EH, Exc, T and the potential energy v(r) are defined as before but by the time-
independent fields Eee(r),D(r), and Z(r).

The ‘Quantal Newtonian’ first law is the time-independent version of the second
law of (2.75) [23–26]:

F ext(r) + F int(r) = 0, (2.134)

where
F int(r) = Eee(r) − D(r) − Z(r). (2.135)
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The fields Eee(r), D(r), and Z(r) are representative of correlations between the
electrons due to the Pauli exclusion principle and Coulomb repulsion, the density,
and kinetic effects, respectively. Since, by assumption, the external field F ext(r) is
conservative (∇ × ∇v(r) = 0), so is the internal field F int(r).

Again, the external potential energy v(r) can be afforded a rigorous physical
interpretation via the ‘Quantal Newtonian’ first law: It is work done to move an
electron from some reference point at infinity to its position at r in the force of the
conservative internal field F int(r):

v(r) =
∫ r

∞
∇v(r′) · d�′ =

∫ r

∞
F int(r′) · d�′. (2.136)

The work done is path-independent.
Since the internal field F int(r) is obtained from quantal sources that are expec-

tations of Hermitian operators taken with respect to the eigenfunctions ψn(X), the
potential energy v(r) is a functional of these eigenfunctions: v(r) = v[ψn]. Thus,
the time-independent Schrödinger equation (2.133) may be written as

{
− 1

2

∑

i

∇2
i + 1

2

′∑

i,j

1

|ri − rj| +
∑

i

vi[ψn]
}
ψn = Enψn, (2.137)

where vi = v(ri). This demonstrates the self-consistent nature of the Schrödinger
equation. Written more explicitly in terms of the internal field F int(r) we have
(2.137) to be

[
− 1

2

∑

i

∇2
i + 1

2

′∑

i,j

1

|ri − rj| +
∑

i

{∫ ri

∞
F int(r) · d�

}]
ψn = Enψn. (2.138)

In order to solve the Schrödinger equation, one begins with an approximation to ψn.
With this wave function one obtains the quantal sources and thereby the internal field
F int(r), and solves the integro-differential equation (2.138) to obtain the new solution
ψn and eigenvalue En. This process is continued till self-consistency is achieved, and
the exact ψn, En obtained.

The integral virial theorem is the time-independent version of (2.82):

∫
ρ(r)r · F ext(r)dr + Eee + 2T = 0. (2.139)

Finally, the average and averaged torque of the internal field F int(r) vanishes:

∫
ρ(r)F int(r)dr = 0, (2.140)
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∫
ρ(r)r × F int(r)dr = 0, (2.141)

since the contribution of each component vanishes.
To reiterate, the perspective of time-independent Schrödinger theory in terms of

fields and quantal sources representative of the different electron correlations, is valid
for both ground and bound excited pure states whether non-degenerate or degenerate.
In Sect. 2.11 this perspective is described for a ground and excited state of theHooke’s
atom. In addition, the perspective brings out the intrinsic self-consistent nature of the
Schrödinger equation. The self-consistent form of the Schrödinger equation (2.138)
also makes clear that for different self-consistently obtained solutions ψn, there exist
different external potentials v(r).

2.10.2 Coalescence Constraints

As a consequence of the Coulomb interaction, the Hamiltonian (2.131) is singular
when two electrons coalesce. It is also singular for the casewhere the potential energy
v(r) is Coulombic as when an electron coalesces with the nucleus of charge Z . In
order for the wavefunction ψ(X) to satisfy the Schrödinger equation (2.133) and
remain bounded, it must satisfy a coalescence condition at each singularity. These
coalescence constraints play a significant role in Q-DFT and other local effective
potential energy theories as discussed later in the section. There are two forms of
these coalescence constraints: the integral and differential forms. The integral form
is more general in that it retains the angular dependence of the wave function at
coalescence, and the differential form can be readily derived from it. Historically, it
was the differential form that was originally derived [27], and we follow that path of
description in this section.

With s = r − r′, and r, r′ the positions of the two particles, the differential form
of the coalescence condition on the wavefunction is

dψsp.av

ds
|s=0 = ζψ|s=0 , (2.142)

where ψsp.av is the spherical average of the wavefunction about the singularity:

ψsp.av(s) = 1

4π

∫
ψd�s. (2.143)

For the electron–electron cusp condition, the coeffiecient ζ = 1
2 ; for the electron–

nucleus cusp condition ζ = −Z .
The electron–nucleus coalescence condition may also be expressed [28] in terms

of the derivative of the density and density at the nucleus. Thus, with the time-
independent density defined as (see (2.11))
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ρ(r) = N
∑

σ

∫
ψ∗ (rσ, XN−1

)
ψ
(
rσ, XN−1

)
dXN−1, (2.144)

we have on taking the derivative in the limit of the electron–nucleus coalescence

lim
r→0

dρ(r)
dr

= N
∑

σ

∫ {
dψ∗(rσ, XN−1)

dr

∣∣
r→0ψ

(
r = 0,σ; XN−1

)

+ ψ∗(r = 0,σ; XN−1)
dψ(rσ, XN−1)

dr

∣∣
r→0

}
dXN−1. (2.145)

Integrating the previous equation over the angular variables of the coalescing electron
we obtain

lim
r→0

dρ(r)

dr
= N

∑

σ

∫ {
dψ∗

sp.av(rσ, XN−1)

dr

∣∣
r→0ψ

(
r = 0,σ; XN−1

)

+ ψ∗(r = 0,σ; XN−1 dψsp.av(rσ, XN−1)

dr

∣∣
r→0

}
dXN−1, (2.146)

which on substituting the cusp condition on the right hand side leads to

= −2ZN
∑

σ

∫
ψ∗(r = 0,σ; XN−1)ψ(r = 0,σ; XN−1)dXN−1. (2.147)

The electron-nucleus coalescence or cusp condition in terms of the density is then

lim
r→0

dρ(r)

dr
= −2Zρ(r = 0). (2.148)

Thus, the densities in atoms, molecules, and solids exhibit a cusp at the nuclei. The
cusp for electron–electron coalescence is exhibited in the structure of the Fermi–
Coulomb hole charge distribution.

The integral form of the cusp coalescence constraint for an arbitrary state of a
system of N charged particles as particles 1 and 2 coalesce is

ψ(r1, r2, . . . rN ) = ψ(r2, r2, r3, . . . rN )(1 + ζr12)

+ r12 · C(r2, r3, . . . rN ) + O(r212). (2.149)

Here r12 = |r1 − r2|, r12 = r1 − r2, andC(r2, r3, . . . rN ) an undetermined vector.
The spin index is suppressed. The integral form of the coalescence condition was
originally [29] a conjecture. It can, however be derived [30, 31] directly from the
Schrödinger equation. The integral form of the coalescence condition retains the
angular dependence of thewave function at coalescence, and is thusmore general and
useful. The differential form of the coalescence condition (2.142) is readily obtained
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by taking the spherical average and differentiating about the point of coalescence. It
is evident from the integral cusp coalescence condition (2.149) and the definition of
the density (2.144), that there can be no differential form similar to (2.148) in terms
of the density of the cusp condition for electron-electron coalescence. However, it is
possible to derive the integral and differential forms of the coalescence constraints
for the time-independent pair function P(rr′) of (2.27) (see [32] and Chap.2 of
QDFT2). Note that the integral coalescence expression is equally valid even if the
wave function vanishes at the point of coalescence, i.e. ifψ(r2, r2, . . . , rN ) = 0. This
is referred to as a node coalescence condition as opposed to the cusp coalescence
condition.

Employing the integral form of the electron-nucleus coalescence constraint, it can
be proved [33] (see also Chap.8 of QDFT2) that the local effective potential energy
function within Q-DFT which incorporates all the many-body effects is finite at the
nucleus. This is also the case for all other local effective potential theories. (Prior to
[33–35], there was controversy in the literature with regard to the structure of the
potential at and near the nucleus. For a brief historical description of this controversy,
and for the derivation of this structure, see Chap. 8 of QDFT2.)

For the generalization of the derivation of the integral coalescence condition to
dimensions D ≥ 2 see [32] and Chap.2 of QDFT2

2.10.3 Asymptotic Structure of Wavefunction and Density

Another important property of the wavefunction and density is their asymptotic
structure in the classically forbidden region because this structure is related to the
first ionization potential. (This fact is significant in providing a rigorous physical
interpretation of the highest occupied eigenvalue within Q-DFT (see Sect. 3.4.8) and
other local effective potential energy theories.) To show this [36, 37] we rewrite the
N–electron Hamiltonian of (2.131) as

Ĥ = −1

2
∇2 + v(r) +

N∑

i=2

1

|r − ri| + ĤN−1, (2.150)

where the (N − 1) electron Hamiltonian ĤN−1 is

Ĥ(N−1) = −1

2

N∑

i=2

∇2
i +

N∑

i=2

v(ri) + 1

2

N∑

i 	=j 	=1

1

|ri − rj| . (2.151)

Now the complete set of eigenfunctions and eigenenergies of the (N − 1)–electron
system are defined by the equation

ĤN−1ψ(N−1)
s (XN−1) = E(N−1)

s ψ(N−1)
s (XN−1). (2.152)

http://dx.doi.org/10.1007/978-3-662-49842-2_8
http://dx.doi.org/10.1007/978-3-662-49842-2_8
http://dx.doi.org/10.1007/978-3-662-49842-2_3
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Next expand the N–electron wavefunction ψn(X) (see 2.133) in terms of the eigen-
functions ψ(N−1)

s :

ψn(rσ, XN−1) =
∑

s

Csσ(r)ψ(N−1)
s (XN−1), (2.153)

and rewrite the Schrödinger equation (2.133) as

(
−1

2
∇2 + v(r) +

N∑

i=2

1

|r − ri| + Ĥ(N−1)

)
∑

s

Csσ(r)ψ(N−1)
s (XN−1)

= En

∑

s

Csσ(r)ψ(N−1)
s (XN−1). (2.154)

For asymptotic positions of the electron we have by Taylor expansion

1

|r − ri| = 1

r
+ ri · r

r3
+ 1

2

∑

α,β

riαriβ
∂2

∂rα∂rβ

1

r
+ . . . , (2.155)

so that on retaining just the leading term, (2.154) becomes

[
−1

2
∇2 + v(r) + N − 1

r

]∑

s

Csσ(r)ψ(N−1)
s (XN−1)

=
∑

s

[
En − E(N−1)

s

]
Csσ(r)ψ(N−1)

s (XN−1). (2.156)

Multiplying (2.156) by ψ(N−1)∗
s (XN−1) from the left, integrating over

∫
dXN−1, and

employing the orthonormality condition

〈
ψ(N−1)

s′ |ψ(N−1)
s

〉
= δss′ , (2.157)

we have (
−1

2
∇2 + v(r) + N − 1

r
+ Is,n

)
Csσ(r) = 0, (2.158)

where the ionization potential Is,n is

Is,n = E(N−1)
s − En. (2.159)

The Is,n are the ionization potentials from the N–electron state with energy En into
various states of the (N − 1)–electron ion. It is assumed that Is,n < Is+1,n etc.

For atomic systems, v(r) = −Z/r. For molecules in the far asymptotic region,
v(r) = −Q/r, where Q is the total nuclear charge. Thus, the Schrödinger equation
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in the asymptotic region is of the form

[
−1

2
∇2 − (Z − N + 1)

r
+ Is,n

]
Csσ(r) = 0, (2.160)

and the asymptotic solution is

Csσ(r)r→̃∞ rβs e−αsrχ(σ), (2.161)

where (1 + βs) = (Z − N + 1)/αs, and αs = √
2Is,n. The satisfaction of the differ-

ential equation (2.160) with this solution occurs on neglecting the 0(1/r2) term of
∇2Csσ(r).

The density ρ(r) defined by (2.144) employing (2.153) is then

ρ(r) = N
∑

σ

∑

s

|Csσ(r)|2 , (2.162)

so that asymptotically

ρ(r)r→̃∞ exp (−2αsr) = exp
(
−2

√
2Is,nr

)
. (2.163)

Thus, the asymptotic structure of the density is related to the first ionization poten-
tial Is,n. This is the case whether the system is in a ground or excited state. For
asymptotic positions of the electron in finite systems, it has been shown [38] that if
the (N − 1)–electron ion ground state is degenerate, then the eigenfunctions ψ(N−1)

s
and hence the ground–state wavefunction ψ0, depend parametrically on the direction
of electron removal. This then translates to a parametric dependence on this direc-
tion for the asymptotic structure of the single particle density matrix γ(rr′) and the
pair-correlation density g(rr′) [38].

For the derivation of the asymptotic structure to higher order of the wave func-
tion ψn(X), density ρ(r), single-particle density matrix γ(rr′), and pair-correlation
density g(rr′), see Chap.7 of QDFT2

2.11 Examples of the ‘Newtonian’ Perspective: The Ground
and First Excited Singlet State of the Hooke’s Atom

2.11.1 The Hooke’s Atom

The physics underlying the ‘Newtonian’ perspective of Schrödinger theory is demon-
strated in this section by application to the analytically solvable Hooke’s atom [14]
in both its ground and first excited singlet state. This atom comprises of two electrons
in an external field such that the potential energy v(rt) due to the field is of the form

http://dx.doi.org/10.1007/978-3-662-49842-2_7
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v(rt) = v0(r) for t ≤ t0
= v0(r) + v1(rt) for t > t0, (2.164)

where v0(r) = 1
2kr2, k is the spring constant, v1(rt) = −F(t) · r, with the force

F(t) arbitrary. The Coulomb interaction between the electrons is treated exactly
in this model atom. Based on the Harmonic Potential Theorem of Sect. 2.9, the
wavefunction for t > t0 is the time-independent solution for t ≤ t0, multiplied by
a phase factor, and shifted by the function y(t) satisfying (2.129). Thus, the time
evolution of all observables is known exactly for t > t0. However, for properties
that are the expectation value of Hermitian operators such as the density, the time
evolution is the same as that of the property derived for t ≤ t0 but translated by a
finite time-dependent value. Hence, we describe here a study via the ‘Newtonian’
perspective of the system in its stationary state.

The time-independent Hamiltonian for the Hooke’s atom is

Ĥ = −1

2
∇2

r1 − 1

2
∇2

r2 + 1

2
kr21 + 1

2
kr22 + 1

|r1 − r2| , (2.165)

where r1 and r2 are the coordinates of the electrons. This Hamiltonian is separable
by transforming to the relative and center of mass coordinates:

s = r1 − r2; R = r1 + r2
2

(2.166)

so that
r1 = R + s

2
; r2 = R − s

2
; (2.167)

and

∇2
r1 = 1

4
∇2

R + ∇2
s + ∇R · ∇s; ∇2

r2 = 1

4
∇2

R + ∇2
s − ∇R · ∇s. (2.168)

The Hamiltonian is then
Ĥ = Ĥs + ĤR (2.169)

where

Ĥs = −∇2
s + 1

4
ks2 + 1

s
, (2.170)

ĤR = −1

4
∇2

R + kR2. (2.171)
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As the Hamiltonian is both separable and independent of spin, the wavefunction
ψ(x1x2) may be written as

ψ(x1x2) = ψ(r1r2)χ(σ1σ2) = φ(s)ξ(R)χ(σ1σ2), (2.172)

where ψ(r1r2) is the spatial part of the wave function, χ(σ1σ2) the spin component,
and where φ(s), ζ(R) are orbital functions. Since R is symmetric in an interchange
of the spatial electronic coordinates, the function ξ(R) is symmetric. According
to the Pauli exclusion principle then, if the spin function χ(σ1σ2) is symmetric
(triplet state) in an interchange of the electrons, then the orbital function φ(s) must
be antisymmetric [φ(−s) = −φ(s)], and if χ(σ1σ2) is antisymmetric (singlet state),
then φ(s) must be symmetric [φ(−s) = φ(s)]. There are no constraints on the orbital
function ξ(R) due to its symmetry.

The Schrödinger equation Hψ = Eψ then separates into the equations

Ĥsφ(s) = εφ(s), (2.173)

ĤRξ(R) = ηξ(R), (2.174)

with the total energy
E = ε + η. (2.175)

The normalization condition on ψ also separates into

∫
|φ(s)|2ds = 1 and

∫
|ξ(R)|2dR = 1. (2.176)

The equation for ξ(R), (2.174), is the harmonic oscillator equation whose solutions
are analytical. The reader is referred to the original literature [14] for the solution
of (2.173) for the orbital φ(s). It turns out that closed form analytical solutions exist
only for certain discreet values of the spring constant k. Further, excited states of the
Hooke’s atom are defined in terms of the number of nodes of φ(s). Those solutions
with zero nodes are ground states, those with one node correspond to the first excited
state, and so on. However, the analytical solutions for the ground and excited states
correspond to different values of the spring constant k. The properties of the Hooke’s
atom in a ground and first excited singlet state, and the fields representative of the
different electron correlations, are described in the following subsections [39, 40].
The analytical expressions for these properties are given in Appendix C.

2.11.2 Wavefunction, Orbital Function, and Density

The ground ψ00(r1r2) and first excited singlet ψ01(r1r2) state wavefunctions we
consider are
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ψ00(r1r2) = ξ0(R)φ0(s), (2.177)

ξ0(R) =
(
2ω

π

)3/4

e−ωR2
, (2.178)

φ0(s) = a00e−ωs2/4(1 + ωs), (2.179)

where a00 = ω5/4(3π
√

π/2 + 8π
√

ω + 2π
√
2πω)−1/2 = 1/14.55670, k = 1/4,

ω = √
k = 1/2;

ψ01(r1r2) = ξ0(R)φ1(s) (2.180)

φ1(s) = a01e−ωs2/4

[
1 + C1

√
ω

2
s + C2

ω

2
s2 + C3

(ω

2

)3/2
s3
]

, (2.181)

where a01 = ω3/4[8√2π(C1 + 2C1C2 + 2C3 + 6C2C3) + π
√
2π( 152 C2

2 + 105
4 C2

3 +
3C2

1 + 6C2 + 15C1C3 + 2)]−1/2 = 1/13.21931, C1 = 1.146884, C2 = −0.561569,
C3 = −0.489647, k = 0.144498,ω = √

k = 0.380129.
In order to provide a pictorial representation [41] of the wave function and to

exhibit the electron-electron coalescence in its structure,weplot in Fig. 2.1 the ground
state wave function ψ00(r1r2) of (2.177) for θr1,r2 = 0◦, where θr1,r2 is the angle

Fig. 2.1 Structure of the ground state wave function ψ00(r1r2) for θr1,r2 = 0◦, where θr1,r2 is the
angle between vectors r1 and r2 which are oriented along both the positive and negative z-axis
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Fig. 2.2 Same as in Fig. 2.1 but for θr1,r2 = 90◦. The vector r1 is along the z-axis, and the vector
r2 in the xy-plane

between the vectors r1 and r2. Figure2.2 is a plot for θr1,r2 = 90◦. Figure2.3 is the
same as Fig. 2.2 except that the r2 vector has been confined to the positive quadrant
of the xy-plane. Observe that the electron-electron coalescence cusp is clearly visible
along the diagonal defined by r1 = r2 in Fig. 2.1, and at r1 = r2 = 0 at the nucleus
in Fig. 2.3.

In both the ground and first excited singlet state, the atom is spherically symmetric.
The orbital functions φ0(s) and φ1(s) are plotted in Fig. 2.4. Note that there are no
nodes in φ0(s), and one node in φ1(s) corresponding to a first excited state. Also
observe the electron-electron coalescence cusp at the coalescence of the two electrons
for s = 0. In Fig. 2.5 the ground ρ00(r) and excited ρ01(r) state densities are plotted.
Recall that this source is static in that its structure is independent of and remains
unchanged as a function of electron position. Since the potential energy v(r) is not
Coulombic, these densitites do not exhibit a cusp at the nucleus. The corresponding
radial probability densities r2ρ00(r) and r2ρ01(r) are plotted in Fig. 2.6. Observe
the distinct shoulder in r2ρ01(r) prior to the maximum indicative of a ‘shell’ type
structure with each electron being in a different shell.
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Fig. 2.3 Same as in Fig. 2.2 except that the r2 vector has been confined to the positive quadrant of
the xy-plane

Fig. 2.4 The relative
coordinate component of the
wavefunction for the ground
φ0(s) and the first excited
singlet φ1(s) states
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Fig. 2.5 The electron
density ρ(r) of the ground
and first excited singlet states

Fig. 2.6 The radial
probability density r2ρ(r) of
the ground and first excited
singlet states. The arrows
indicate the position of the
maxima
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2.11.3 Fermi–Coulomb Hole Charge Distribution ρxc(rr′)

In Figs. 2.7, 2.8, 2.9 and 2.10, the Fermi–Coulomb hole charge distribution ρxc(rr′)
for both the ground and excited states is plotted for electron positions at the nucleus
r = 0, and at r = 0.5, 1, 2, 10, 20, 50, and 200 a.u. The electron position is indi-
cated by an arrow. For the electron at the nucleus Fig. 2.7a, the hole is spherically
symmetric about the electron. Further, at the electron position, the hole exhibits
a cusp representative of the electron–electron coalescence condition of (2.149). In
Figs. 2.7b, 2.8, 2.9 and 2.10, the electron is along the z-axis corresponding to θ = 0◦.
The cross sections plotted correspond to θ′ = 0◦ with respect to the electron–nucleus
direction. The graph for r′ < 0 is the structure for θ = π and r′ > 0.

The dynamic or nonlocal nature of the Fermi–Coulomb hole as a function of
electron position is clearly evident in these figures, as is the cusp at the electron
position in Figs. 2.7b, 2.8a, 2.9b, and the fact that these holes are not spherically
symmetric about the electron. For asymptotic positions of the electron, these charge
distributions become essentially spherically symmetric about the nucleus as well as
static (Fig. 2.10b). In other words, the change in the structure for these asymptotic
positions is minimal. Finally, observe that the structure of the holes for the ground
and excited states is distinctly different, although their broad features are similar.

Fig. 2.7 Cross–section through the Fermi–Coulomb hole charge ρxc(rr′) for the ground and first
excited singlet states. In (a) the electron is at the nucleus r = 0, and in (b) at r = 0.5 a.u. The
electron is on the z-axis corresponding to θ = 0. The graphs for r′ < 0 correspond to the structure
for θ = π, r′ > 0
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(a) (b)

Fig. 2.8 Same as in Fig. 2.7 but for the electron at (a) r = 1 a.u. and (b) r = 2 a.u

(a) (b)

Fig. 2.9 Same as in Fig. 2.7 but for the electron at (a) r = 10 a.u. and (b) r = 20 a.u
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(a) (b)

Fig. 2.10 Same as in Fig. 2.7 but for the electron at (a) r = 50 a.u. and (b) r = 200 a.u

2.11.4 Hartree, Pauli–Coulomb, and Electron–Interaction
Fields EH(r), Exc(r),Eee(r) and Energies
EH,Exc,Eee

The Hartree field EH(r) whose source is the density ρ(r) (see (2.47)) is plotted
in Fig. 2.11 for the ground and excited states. Since for each state, the density is
spherically symmetric, the field vanishes at the nucleus. The fact that there is a single
‘shell’ is evident from the ground state plot. A careful examination of the field for
the excited state shows a slight shoulder between r = 2 and 4 a.u. indicating the
existence of the second ‘shell’. As the density is static, localized about the nucleus,
and of total charge 2 a.u., the structure of the Hartree field EH(r) for asymptotic
positions of the electron is

EH(r) =
∫

ρ(r′)(r − r′)
|r − r′|3 dr′

r→̃∞
1

r2

∫
ρ(r′)dr′ = 2

r2
. (2.182)

The fields EH(r) for both the ground and excited state are observed to merge asymp-
totically with the function 2/r2 also plotted in Fig. 2.11.

The Pauli–Coulomb field Exc(r) for both states is plotted in Fig. 2.12. Since for
the electron position at the nucleus, the Fermi–Coulomb hole charge ρxc(rr′) is
spherically symmetric about the electron (see Fig. 2.7a), the fields Exc(r) vanish
there. Further, as the atom is spherically symmetric, the field Exc(r) has only a radial
component and is dependent only on the radial coordinate. This is the case in spite of
the fact that the Fermi–Coulomb hole is not spherically symmetric about the nucleus
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Fig. 2.11 The Hartree field
EH(r) for the ground and
excited states

Fig. 2.12 The
Pauli-Coulomb field Exc(r)
for the ground and excited
states
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for other electron positions. The fields are negative because the Fermi–Coulomb
hole charge is negative. The two ‘shells’ are clearly evident in the field Exc(r) for
the excited state, and the single shell for the ground state. As noted previously, for
asymptotic positions of the electron, the Fermi–Coulomb hole is essentially a static
charge and spherically symmetric, and localized about the nucleus. Since the total
charge of the hole is negative unity, the asymptotic structure of the Pauli–Coulomb
field is

Exc(r) ∼
r→∞

− 1

r2
. (2.183)

Once again, the field Exc(r) for both the ground and excited state merge asymptot-
ically with the function −1/r2 also plotted in Fig. 2.12. This result is general and
valid for any finite system.

The electron–interaction field Eee(r) which is the sum of the Hartree EH(r) and
Pauli–Coulomb Exc(r) fields is plotted in Fig. 2.13 for both states. Since the total
charge of its source, the pair-correlation density, is unity, the fields decays as 1/r2

asymptotically. For purposes of comparisonwith the other components of the internal
field F int(r) experienced by the electrons, Eee(r) is also plotted in Fig. 2.16 for the
ground state and in Fig. 2.17 for the excited state.

The Hartree EH, Pauli–Coulomb Exc, and electron–interaction Eee energies as
determined from the corresponding fields are given in Table2.1. A comparison of
the fields for the ground and excited states makes clear why the Hartree and Pauli–
Coulomb energies for the former are greater in magnitude. The graphs of the fields
also show the region of space from which the principal contribution to the energy
arises.

Fig. 2.13 The
electron–interaction field
Eee(r) for the ground and
excited states
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Table 2.1 Properties of the Hooke’s atom in its ground (k = 0.25) and first excited singlet (k =
0.144498) states in atomic units

Property Ground statea Excited stateb

E 2.000000 2.280775

η 0.750000 1.710581

ε 1.250000 0.570194

EN=1 0.750000 0.570194

I −1.250000 −1.710581

T 0.664418 0.876262

Eee 0.447448 0.352142

EH 1.030250 0.722217

Exc −0.582807 −0.370075

Eext 0.888141 1.052372

〈r〉 3.489025 4.971112

〈r2〉 7.105114 14.565898

〈r−1〉 1.442940 1.053870

〈r−2〉 1.926359 0.936753

〈δ(r)〉 0.089319 0.047243
a From [39]
b From [40]

2.11.5 Kinetic Field Z(r) and Kinetic Energy T

As the Hooke’s atom is spherically symmetric in both its ground and first excited
singlet states, the kinetic-energy-density tensor tαβ(r; [γ]) is of the form

tαβ(r; [γ]) = rαrβ

r2
f (r) + δαβk(r), (2.184)

where the functions f (r) and k(r) for the ground state are given in Appendix C.
(The detailed derivation of (2.184) for the ground state is given in Appendix D.) The
second term contributes only to the diagonal elements of the tensor.

The kinetic ‘force’ z(r) for the ground and excited states is plotted in Fig. 2.14.
The kinetic field Z(r) for the ground state is plotted in Fig. 2.16 and for the excited
state in Fig. 2.17. The kinetic ‘force’ vanishes at the nucleus, and asymptotically as
a power series times a Gaussian function (see Appendix C). The fields too vanish at
the nucleus, but diverge asymptotically in the classically forbidden region. Observe
the greater structure in the kinetic ‘force’ and field for the excited state representative
of ‘shell’ structure. The corresponding values for the kinetic energy for the two states
are given in Table2.1.



2.11 Examples of the ‘Newtonian’ Perspective: The Ground and First Excited … 57

Fig. 2.14 The kinetic
‘force’ z(r) for the ground
and excited states

2.11.6 Differential Density FieldD(r)

The differential density ‘force’ d(r) is plotted in Fig. 2.15 for the ground and excited
states, and the corresponding fieldsD(r) in Figs. 2.16 and 2.17, respectively. Again,
‘shell’ structure is clearly evident. The ‘force’ vanishes at the nucleus, and asymp-
totically in the classically forbidden region. The fields thus vanish at the nucleus, but
are divergent asymptotically.

For comparison, the components Eee(r),D(r), and Z(r) of the internal field
F int(r) are plotted together in Figs. 2.16 and 2.17 for the ground and excited state,
respectively. Observe that although both D(r) and Z(r) diverge asymptotically,
their sum ∼ −kr in this region as Eee(r) vanishes there. Further, the sum −Eee(r) +
D(r) + Z(r) = −F int(r) = −kr throughout space, as must be the case because it
is the statement of the ‘Quantal Newtonian’ first law for this model problem.

2.11.7 Total Energy E and Ionization Potential I

The total energy E for the ground EN=2
0 and first excited singlet EN=2

1 states, and their
eigenvalue components ε and η (see (2.175)) are quoted in Table2.1. The energy of
the ions EN=1 = ω(n + 3

2 ), n = 0, and the corresponding ionization potentials I for
the ground state I00 = EN=1

0 − EN=2
0 and excited state I01 = EN=1

0 − EN=2
1 are also

quoted in the table.
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Fig. 2.15 The differential
density ‘force’ d(r) for the
ground and excited state

Fig. 2.16 The electron
interaction Eee(r),
differential density D(r),
and kinetic Z(r) field
components of the internal
field Fint(r) for the ground
state. The sumD(r) + Z(r),
and −Eee(r) + D(r) + Z(r)
are also plotted
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Fig. 2.17 Same as in
Fig. 2.16 but for the first
excited singlet state

2.11.8 Expectations of Other Single–Particle Operators

In Table2.1 the expectations 〈∑i rn
i 〉, n = −2, −1, 1, 2 and 〈δ(r)〉 are also quoted for

the ground and first excited state. In terms of the density ρ(r), the expectation

〈
∑

i

rn
i

〉
= 〈ψ|

∑

i

rn
i |ψ〉 =

∫
rnρ(r)dr. (2.185)

These expectations emphasize different regions of the electronic density distribution.
They are also related to various properties of atoms [42]: 〈r〉 is the average size of the
atom; the diamagnetic susceptiblity is proportional to 〈r2〉; the expectation 〈1/r〉 is
required for the determination of the nuclear magnetic shielding constant; the electric
field gradient, the magnetic dipole interaction, and spin–orbit coupling depends on
〈1/r3〉; the electron density at the nucleus ρ(0) = 〈δ(r)〉 is required for the Fermi
contact term when electron spin–nuclear spin interactions are considered.

2.12 Schrödinger Theory and Quantum Fluid Dynamics

In quantum fluid dynamics (QFD) [43–45] the electron gas of a many–electron
system is treated as a classical fluid moving under the action of the external field
F ext(rt) as well as of the quantal internal field F int(rt) described in Sect. 2.8. As
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with the quantummechanical hydrodynamical equations of Sect. 2.7—the continuity
and force equations—, the equations of QFD—the continuity and Euler equations—
are also derived from the Schrödinger equation, and hence the two theories are
intrinsically equivalent. Thus, whereas in deriving (See Appendix A) the ‘Quantal
Newtonian’ second law of (2.75), the wavefunction �(Xt) is explicitly written in
terms of its real and imaginary parts, the QFD equations are obtained by expressing
the wavefunction or spinless single particle density matrix γ(rr′t) in polar form.
Here we show [46] the equivalence of the ‘Quantal Newtonian’ second law to the
Euler equation for both the single–electron and many–electron cases.

2.12.1 Single–Electron Case

For a single electron in an external fieldF ext(rt) = −∇v(rt), the Schrödinger equa-
tion (2.1) is [

−1

2
∇2 + v(rt)

]
�(rt) = i

∂�(rt)

∂t
. (2.186)

Substitution of the polar form of the wavefunction:

�(rt) = R(rt) exp [iS(rt)], (2.187)

where R(rt), S(rt) are real, into (2.186) leads to the QFD continuity and Euler equa-
tions, respectively:

∂ρ(rt)

∂t
= −∇ · j(rt), (2.188)

Dν(rt)

Dt
= F ext(rt) − ∇f (rt), (2.189)

where the density ρ(rt) = R2(rt), the current density j(rt) = ρ(rt)∇S(rt), the veloc-
ity fieldν(rt) = j(rt)/ρ(rt) = ∇S(rt), the scalar function f (rt) = − 1

2 (∇2R/R), and
the total time derivative

Dν(rt)

Dt
= ∂ν(rt)

∂t
+ [ν(rt) · ∇]ν(rt). (2.190)

The Euler and continuity equations lead to an expression for the current density field
J (rt) of (2.54) as follows. Multiplying (2.189) by ρ(rt) leads to

ρ
∂ν

∂t
+ j · ∇ν = ρF ext − ρ∇f . (2.191)
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From the definition of the current density j(rt) and the continuity equation we have

ρ
∂ν

∂t
= ∂j

∂t
+ ν∇ · j. (2.192)

Thus,

J (rt) = 1

ρ(rt)

∂j(rt)

∂t
= F ext − ∇f − 1

R2
[ν∇ · j + j · ∇ν]. (2.193)

The differential density field (2.49) is

D(rt) = d(rt)

ρ(rt)
= − 1

R2

(
1

2
∇|∇R|2 + ∇R∇2R

)
+ ∇f . (2.194)

The kinetic–energy–density tensor of (2.53) is

tαβ(r) = 1

4

(
∂�∗

∂rα

∂�

∂rβ
+ ∂�∗

∂rβ

∂�

∂rα

)

= 1

2

(
∂R

∂rα

∂R

∂rβ
+ R2 ∂S

∂rβ

∂S

∂rα

)
. (2.195)

Thus, the kinetic field (2.51) is

Z(rt) = z(rt)

ρ(rt)
= 1

R2

(
1

2
∇|∇R|2 + ∇R∇2R

)
+ 1

R2
(ν∇ · j + j · ∇ν). (2.196)

On adding the fieldsJ (rt),D(rt), andZ(rt), one recovers the ‘Quantal Newtonian’
second law for the single electron:

F ext(rt) + F int(rt) = J (rt), (2.197)

where the internal field F int(rt) = −D(rt) − Z(rt).

2.12.2 Many–Electron Case

For the many–electron case with the Hamiltonian of (2.2), the continuity and Euler
equations of QFD are derived from the equation of motion for the spinless single
particle density matrix γ(rr′t) defined by (2.15). The equation of motion, which may
be derived directly from the Schrödinger equation or from the quantum mechanical
equation of motion (2.93) for the expectation value of the density matrix operator
γ̂(rr′) of (2.17), is
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i
∂γ(r′r′′t)

∂t
= −1

2

(
∇′2 − ∇′′2

)
γ(r′r′′t)

+ 2
∫ [

U
(
r′ − r

) − U
(
r′′ − r

)]
�2

(
r′r, r′′r; t

)
dr

+ [
v
(
r′t
) − v

(
r′′t

)]
γ
(
r′r′′t

)
, (2.198)

where U(r − r′) = |r − r′|−1 is the electron–interaction term, and �2 the two–
particle density matrix defined in Appendix A.

The QFD equations are obtained by first expressing the density matrix γ(r′r′′t)
in polar form:

γ(r′r′′t) = R(r′r′′t) exp
[
iS
(
r′r′′t

)]
, (2.199)

where the amplitude is symmetric: R(r′r′′t) = R(r′′r′t), the phase antisymmetric:
S(r′r′′t) = −S(r′′r′t), and S(rrt) = 0. The next step is to transform to the center of
mass and relative coordinates:

r = 1

2
(r′ + r′′) ; s = r′ − r′′, (2.200)

r′ = r + s
2

; r′′ = r − s
2
, (2.201)

so that

∇r = ∇′ + ∇′′ ; ∇s = 1

2
(∇′ − ∇′′) (2.202)

and

∇′ = 1

2
∇r + ∇s ; ∇′′ = 1

2
∇r − ∇s. (2.203)

The density ρ(rt) and current density j(rt) are then obtained as (dropping the explicit
time dependence in the following equations)

ρ(r) = γ(r′r′′)|r′=r′′=r = lim
s→0

γ
(

r + s
2
, r − s

2

)
, (2.204)

j(r) = i

2
[∇′ − ∇′′]γ(r′r′′)|r′=r′′=r = i lim

s→0
∇sγ

(
r + s

2
, r − s

2

)
. (2.205)

Further, employing the polar form (2.199), the current density may be written as

j(r) = ρ(r)ν(r), (2.206)

where the velocity field ν(r) is

ν(r) = lim
s→0

∇sS
(

r + s
2
, r − s

2

)
. (2.207)
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The equation of motion in the transformed coordinates is then

i
∂

∂t
γ
(

r + s
2
, r − s

2

)
= −∇r · ∇sγ

(
r + s

2
, r − s

2

)

+Q
(

r + s
2
, r − s

2

)
, (2.208)

where

Q
(
r′r′′) = 2

∫ [
U
(
r′ − r

) − U
(
r′′ − r

)]
�2(r′r; r′′r)dr

+ [
v(r′) − v(r′′)

]
γ
(
r′r′′) . (2.209)

The continuity equation
∂ρ(rt)

∂t
= −∇ · j(rt), (2.210)

is obtained from the equation of motion (2.208) on employing the definitions of the
density and current density, and on taking the limit s → 0. The term Q(rr) = 0.

The Euler equation is derived by taking the derivative of the equation of motion
(2.208) with respect to the relative coordinate s and then taking the limit as s → 0.
The last term on the right hand side of the equation thus yields

lim
s→0

∇sQ
(

r + s
2
, r − s

2

)
= −2

∫
∇rU(r − r′)�2(rr′; rr′)dr′

−ρ(r)∇v(r). (2.211)

The diagonal matrix element of the two particle density matrix is related to the pair-
correlation density by �2(rr′; rr′) = ρ(r)g(rr′)/2. Thus, the previous equation may
be expressed in terms of fields as

lim
s→0

∇sQ
(

r + s
2
, r − s

2

)
= ρ(r)Eee(r) + ρ(r)F ext(r). (2.212)

The contribution of the first term on the right hand side of (2.208) is obtained by first
showing that

− lim
s→0

∂

∂sk

∂

∂s�

γ
(

r + s
2
, r − s

2

)
= 2T 0

k�(r) + ρ(r)νk(r)ν�(r), (2.213)

where T 0
k� is the k�th element of a tensor T0 defined as

T 0
k�(r) = −1

2
lim
s→0

∂2R

∂sk∂s�

, (2.214)
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and

ρ(r)νk(r)ν�(r) = lim
s→0

R
∂S

∂sk

∂S

∂s�

. (2.215)

In deriving (2.213), the symmetry properties of the amplitudeR, and phase S together
with S(rr) = 0 have been employed. The left hand side of (2.208) is

i
∂

∂t
lim
s→0

∇sγ
(

r + s
2
, r − s

2

)
= ∂j(r)

∂t
. (2.216)

The Euler equation of QFD is then

J (rt) = F ext(rt) + Eee(rt) − 1

ρ(rt)
∇ · [2T0

(rt) + ρ(rt)ν(rt)ν(rt)
]
. (2.217)

All that is required to prove the equivalence of the Euler equation to the ‘Quantal
Newtonian’ second law is to show that the sumof the other components of the internal
field F int(rt) satisfy

D(rt) + Z(rt) = 1

ρ(rt)
∇ · [2T0

(rt) + ρ(rt)ν(rt)ν(rt)
]
, (2.218)

whereD(rt) = − 1
4∇∇2ρ(rt)/ρ(rt) andZ(rt) = z(rt)/ρ(rt). This is readily seen to

be the case by writing the kinetic ‘force’ z(r) in terms of the transformed coordinates
to obtain

zα(r) =
∑

β

∂

∂rβ
lim
s→0

{
1

4

∂

∂rα

∂

∂rβ
− ∂

∂sα

∂

∂sβ

}

γ
(

r + s
2
, r − s

2

)
, (2.219)

so that

− 1

4

∑

β

∂

∂rβ
lim
s→0

(
∂

∂rα

∂

∂rβ

)
γ
(

r + s
2
, r − s

2

)
+ zα(r)

= −
∑

β

∂

∂rβ
lim
s→0

(
∂

∂sα

∂

∂sβ

)
γ
(

r + s
2
, r − s

2

)
, (2.220)

which proves (2.218). The ‘Quantal Newtonian’ second law of (2.75) is therefore
recovered, which proves that for the many–electron system, Schrödinger theory as
described in terms of ‘classical’ fields and quantal sources, and the Euler equation
of quantum fluid dynamics are equivalent.
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Chapter 3
Quantal Density Functional Theory

Abstract Quantal density functional theory (Q–DFT) is a physical local effective
potential theory of electronic structure of both ground and excited states. It consti-
tutes the mapping from any state of an interacting system of N electrons in a time-
dependent external field as described by Schrödinger theory to one of noninteracting
fermions in the same external field and possessing the same quantum-mechanical
properties of the basic variables. Time-independent Q–DFT constitutes a special
case. The Q–DFT mapping can be to any arbitrary state of the model system. Q–
DFT is based on the ‘Quantal Newtonian’ second and first laws of both the interacting
and noninteracting systems. As such it is a description in terms of ‘classical’ fields
derived from quantal sources as experienced by each model fermion. The internal
field components are separately representative of electron correlations due to the
Pauli Exclusion Principle, Coulomb repulsion, kinetic effects and the density. Thus,
as opposed to Schrödinger theory, within Q–DFT, the separate contributions to the
total energy and local potential due to the Pauli principle, Coulomb repulsion, and the
correlation contribution to the kinetic energy—the Correlation-Kinetic effects—are
explicitly defined in terms of fields representative of these correlations. The local
potential incorporating all the many-body effects is the work done in the force of a
conservative effective field which is the sum of these fields. The many-body com-
ponents of the energy are expressed in integral virial form in terms of the individual
fields representative of the different electron correlations. Various sum rules for the
model system such as the Integral Virial Theorem, Ehrenfest’s Theorem, the Zero
Force and the Torque Sum Rule are derived. Q–DFT is explicated by application to
both a ground and excited state of a model system in the low electron-correlation
regime, and to a ground state in the Wigner high-electron correlation regime. A
new characterization of the Wigner regime based on the newly discovered signif-
icance of Correlation-Kinetic effects is proposed. The multiplicity of potentials as
obtained via Q–DFT which can generate the same basic variables, and the signifi-
cance of Correlation-Kinetic effects in such mappings, is discussed. The Q–DFT of
degenerate states is described, as is the Q–DFT of Hartree and Hartree-Fock theories.
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Introduction

Quantal density functional theory (Q–DFT) is a local effective potential energy
theory [1–21] along the lines of Slater theory [22, 23] and traditional Hohenberg-
Kohn-Sham [24–26] (KS) andRunge-Gross (RG) [27–29] density functional theories
(DFT). It is based on the ‘Quantal Newtonian’ first and second laws discussed in the
previous chapter, and is thus a description in terms of ‘classical’ fields and quantal
sources. As is the case in Schrödinger theory, time-independent Q-DFT constitutes
a special case of the time-dependent theory. The basic idea underlying the theory,
one in common with traditional DFT, is the mapping from the Schrödinger theory of
interacting electrons in an external fieldF ext(rt)/F ext(r) = −∇[v(rt)/v(r)] to one
of noninteracting fermions with the same density ρ(rt)/ρ(r) as that of the interact-
ing system. (The notation f (rt)/f (r) refers to the time-dependent/time-independent
property as the case may be.) A more recent understanding of time-dependent Q-
DFT is that it is efficacious to map to a model system with the same basic variables
as that of the interacting system. In the time-dependent case the basic variables are
the density ρ(rt) and the current density j(rt). (A property that constitutes a basic
variable of quantum mechanics is defined below.) In the time-independent case the
basic variable is the nondegenerate ground state density ρ(r). However, the mapping
in time-independent Q-DFT is not restricted solely to this density but is more general
in that it is applicable to all nondegenerate and degenerate ground and excited state
densities. From these model systems the corresponding total energy (non-conserved)
E(t)/E, the ionization potential I or electron affinity A, equivalent to that of the
interacting system can be obtained. There are two additional attributes of Q-DFT
that distinguish it from Schrödinger theory. For one, it allows for the separation of
the contributions to the energy E(t)/E (and local effective potential) of correlations
due to the Pauli exclusion principle and Coulomb repulsion. Second, the contribu-
tion to the kinetic energy and current density due to the electron correlations—the
Correlation-Kinetic andCorrelation-Current-Density components—is determinable.
There is also a Q-DFT of the Hartree and Hartree-Fock theory approximations to the
interacting systemwhereby the corresponding densities and energies are determined.
(The Q-DFT mapping from the interacting system of electrons to one of noninter-
acting bosons such that the same density and energy are obtained will be described
in Chap.6.)

As the model fermions are noninteracting, the effective potential energy vs(rt)/
vs(r) of each fermion is the same. The corresponding quantum mechanical operator
representative of this potential energy is multiplicative, and it is said to be a local
operator.We refer to thismodel as theS system,S being amnemonic for ‘singleSlater’
determinant. Within Q-DFT the potential energy of the noninteracting fermions is
defined (at each instant of time) as the work done in a conservative effective field.
The effective field, in turn, can be expressed as a sum of fields each representative
of the different electron correlations that must be accounted for by the S system in
order to ensure it possesses the same basic variable properties as that of the interacting
system. These correlations are comprised of those due to the Pauli exclusion principle
and Coulomb repulsion. But in addition the S system must also account for the

http://dx.doi.org/10.1007/978-3-662-49842-2_6
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difference in the kinetic energy and physical current density between the interacting
and noninteracting systems, i.e. the correlation contributions to these properties.
These are the Correlation-Kinetic and Correlation-Current-Density contributions.
The total energy, equivalent to that of the interacting system, as obtained from the
model system, can also be expressed in terms of these individual fields in integral
virial form.

Q-DFT generalizes and thereby provides a broader perspective to local effective
potential theory. For example, in time-independent Q-DFT, a nondegenerate ground
state of the interacting system with density ρ(r) can be mapped to an S system in
a ground state with the same density. (This mapping is akin to that in KS-DFT).
But the ground state of the interacting system can also be mapped via Q-DFT to
an S system in any arbitrary excited state with a different local effective potential
which also generates the same density ρ(r). In other words, there exist an infinite
number of local effective potentials that can generate the ground state density ρ(r).
Similarly, an interacting system in an excited state with density ρe(r) can be mapped
to an S system which is either in a ground state; or in an excited state having the
same configuration as that of the interacting system (as in excited-state KS-DFT);
or in any other arbitrary excited state, each with a different local effective potential.
Each such potential, however, generates the same excited state density ρe(r). Once
again, we learn that there exist an infinite number of local effective potentials that
can generate the density ρe(r) of an excited state of the interacting system. In this
context, it is evident that KS-DFT constitutes a special case of Q-DFT.

In RG and KS-DFT, the description of the mapping to the S system is in terms of
action/energy functionals of the density ρ(rt)/ρ(r), and of their functional deriva-
tives. In that regard, these theories are strictly mathematical. As the Q-DFT descrip-
tion of the mapping is in terms of fields and quantal sources representative of the
different electron correlations, it therefore provides a rigorous physical interpreta-
tion of the RG and KS-DFT functionals and functional derivatives. The physical
interpretation of RG and KS-DFT via Q-DFT in terms of electron correlations is
described in Chap.5.

The justification for the construction of the model S system stems from the first
of the two Hohenberg-Kohn theorems [24] to be discussed more fully in a following
chapter. The theorem was originally derived for a nondegenerate ground state of
electrons in the presence of an external electrostatic fieldF ext(r) = −∇v(r), where
the external potential v(r) is arbitrary. The theorem is derived for fixed electron
number N . It was extended [26] later to degenerate states. In the theorem, it is first
proved that there is a one-to-one relationship between the external potential v(r) (to
within an additive constant) and the nondegenerate ground statewave functionψ0(X).
Employing this bijectivity, it is then proved that there is a one-to-one relationship
between ψ0(X) and the nondegenerate ground state density ρ(r). Thus, knowledge
of the nondegenerate ground state density ρ(r) uniquely determines the external
potential v(r) to within an additive constant. Hence, since the kinetic T̂ and electron-
interaction Û operators of the electrons is assumed known, so is theHamiltonian. The
solution of the corresponding Schrödinger equation then leads to the nondegenerate
ground state wave function ψ0(X). (Note that the Schrödinger equation can also be

http://dx.doi.org/10.1007/978-3-662-49842-2_5
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solved for the wave function of an excited state.) The wave function ψ0(X) is thus
a functional of the nondegenerate ground state density ρ(r) i.e. ψ0(X) = ψ0[ρ]. As
such the expectation value of any operator is a unique functional of this density. The
theorem, however, does not describe the explicit dependence of the wave function on
thedensity, andhence the unique functionals of the various expectations are unknown.
The profundity of the theorem lies in the fact that all the information about the
electronic system as determined from its wave functions is contained in the ground
state density ρ(r), and it is for this reason that a model system of noninteracting
fermions with equivalent density ρ(r) is constructed. However, in contrast to KS–
DFT, the fact that the wave function is a functional of the density is not explicitly
employed in the Q-DFT mapping to the S system.

The concept of a basic variable of quantum mechanics of electrons in an external
field also stems from the first Hohenberg-Kohn theorem [24]. A basic variable is
a gauge invariant property of the system of electrons that has a unique one-to-one
relationship with the external potential. Thus, knowledge of this property determines
the Hamiltonian of the system uniquely, and thereby via solution of the Schrödinger
equation, the wave functions of the system. The nondegenerate ground state density
ρ(r) is thus a basic variable. So is the density ρe(r) of the lowest excited state of a
given symmetry [30] that differs from that of the ground state. This is theGunnarsson-
Lundqvist theorem [31]. That knowledge of such an excited state density leads to a
unique external potential has been shown by example [31].

The extension of the first Hohenberg-Kohn theorem to time-dependent external
electric fieldsF ext(rt) = −∇v(rt) is the Runge-Gross (RG) theorem [27–29] which
then provides the justification for time-dependent Q-DFT. The RG theorem is proved
for external potential energies v(rt) that are Taylor expandable about some initial
time. It is first proved that there is a one-to-one relationship between the external
potential v(rt) (to within an additive function of time) and the current density j(rt).
Employing this fact, it is then proved that there is a one-to-one relationship between
the external potential v(rt) (to within an additive function of time) and the density
ρ(rt). Thus, in the time-dependent case, both ρ(rt) and j(rt) are basic variables
since the relationship of each with the external potential is one-to-one. With the
kinetic T̂ and electron-interaction Û operators of the electrons assumed known, the
Hamiltonian is known, and solution of the time-dependent Schrödinger equation
then leads to the wave function �(Xt) of the system. The wave function �(Xt) is
thus a functional of either ρ(rt) or j(rt) i.e. �(Xt) = �[ρ(rt)] or �[j(rt)] to within
a purely time-dependent phase. In the calculation of expectation values, the phase
factor cancels out, and once again the expectations are a unique functional of either
ρ(rt) or j(rt). But as in the HK case, the RG theorem does not define the explicit
dependence of the wave function on ρ(rt) or j(rt). The fact that the wave function
is a functional of either ρ(rt) or j(rt) is not employed in the Q-DFT mapping to the
S system. It simply constitutes the justification for the mapping.

In time-independent Q-DFT, as in KS-DFT, the existence of the S system is an
assumption. In time-dependent RG-DFT, the existence of the S system for Taylor
expandable external potentials is predicated [32] on the constraints that the corre-
sponding wave function yield the correct density and its time derivative at the initial
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time. (There has been a critique [33] of this proof, and responses [34, 35]. See also
[36] for the response to a different aspect of the critique, and to other critiques [37,
38] of time-dependent DFT.) Time-dependent Q-DFT assumes the existence of the
S system. The Q-DFT mapping to the S-system is accomplished via the ‘Quantal
Newtonian’ second laws for the interacting and noninteracting fermion systems. In
this manner, the equivalence of the density ρ(rt) (or of the density ρ(rt) and the
current density j(rt)) of the two systems is ensured at the outset.

In the next section the Q-DFT mapping (Part I) from an interacting system with
density ρ(rt) to one of noninteracting fermions possessing the same density ρ(rt) is
described. This description is in terms of ‘classical’ fields and quantal sources repre-
sentative of the different electron correlations. Various sum rules such as the Integral
Virial Theorem, Ehrenfest’s Theorem, the Zero Force SumRule, and the Torque Sum
Rule, are then derived. In the section that follows, the Q-DFT mapping (Part II) to
an S system with the same density ρ(rt) and current density j(rt) is described. The
equations governing the latter mapping constitute a special case of the former, and
are therefore simpler. Further, the mapping such that both the basic variables ρ(rt)
and j(rt) are reproduced leads to a consistency [39] within Q-DFT with regard to
the electron correlations that must be accounted for by the model S system. If the
Q-DFT mapping is such that all the basic variables are reproduced, then the only
correlations that must be accounted for are those of the Pauli exclusion principle,
Coulomb repulsion and Correlation–Kinetic effects. This is the case irrespective of
whether the external field additionally includes a time-dependent electromagnetic
field, or whether it is comprised of an electrostatic and magnetostatic field, or solely
an electrostatic field. In this chapter, the description is restricted to an external field
of the form F ext(rt) = −∇v(rt). As the scalar external potential v(rt) is arbitrary,
the Q-DFT equations are valid for both adiabatic and sudden switching on of the
field. To explicate the theory, the application to both a ground and an excited state
of the exactly solvable Hooke’s atom is provided.

As the ‘Quantal Newtonian’ first law is a special case of the second law, time-
independentQ-DFT, as noted previously, constitutes a special case of time-dependent
Q-DFT. Time-independent nondegenerate and degenerate Q-DFT are subsequently
described. Nondegenerate Q-DFT is then applied to the Wigner low-density high-
electron-correlation regime of a nonuniform density system as represented by the
weakly confined Hooke’s atom. Finally, the Q–DFT of the Hartree-Fock and Hartree
theory approximations are described. Once again, these Q-DFT’s are based on the
corresponding ‘Quantal Newtonian’ first law for each approximation.

3.1 Time-Dependent Quantal Density Functional Theory:
Part I

In this section we describe the Q-DFT mapping from a system of N electrons in an
external field F ext(rt) = −∇v(rt) to an S system with the same density ρ(rt). The
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Hamiltonian for the corresponding N model noninteracting fermions is

Ĥs(t) =
∑

i

ĥs(rit), (3.1)

where the Hamiltonian for each fermion is

ĥs(rt) = −1

2
∇2 + vs(rt), (3.2)

with vs(rt) their effective potential energy. The time-dependent Schrödinger equation
for these fermions is

ĥs(rt)φi(xt) = i
∂φi(xt)

∂t
, (3.3)

We assume that the model fermions are subjected to the same external field as that
of the interacting system of electrons. Thus, the potential energy vs(rt) is the sum of
the potential energy v(rt) of these model fermions in the external field, and an effec-
tive ‘electron-interaction’ potential energy vee(rt) representative of all the electron
correlations that the S system must account for in order that its density ρ(rt) be the
same as that of the interacting system:

vs(rt) = v(rt) + vee(rt). (3.4)

The fundamental correlations that must be accounted for by vee(r) are those due
to the Pauli exclusion principle and Coulomb repulsion. But in addition to these
correlations, theS systemmust also account forCorrelation–Kinetic andCorrelation–
Current–Density effects. These latter correlations arise as a consequence of the differ-
ences in kinetic energy and current density between the interacting and noninteracting
systems. Thus, for themodel system to reproduce the trueTDdensityρ(rt), the poten-
tial energy vee(rt) must incorporate the effects of four distinct electron correlations.
These correlations are then intrinsically incorporated in the wavefunction of the S
system which is a Slater determinant �{φi} of the orbitals φi(xt). The assumption
of existence of the effective potential energy vee(rt) of the model fermions in which
all the many-body effects are incorporated implies that there exists a corresponding
conservative effective field F eff(rt) such that F eff(rt) = −∇vee(rt). The S system
is therefore fully defined by this effective field.

3.1.1 Quantal Sources

Here we define quantal sources within the framework of the S system parallel-
ing those of the interacting case discussed in the previous chapter. These sources
are the density ρ(rt), the Dirac spinless single-particle density matrix γs(rr′t), the
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pair–correlation density gs(rr′t) and from it the nonlocal Fermi hole charge distribu-
tion ρx(rr′t), and the current density js(rt). Since the wavefunction of the S system is
a Slater determinant, the definition of the Fermi hole representation of Pauli correla-
tions follows naturally. This then permits a definition of the nonlocal Coulomb hole
distribution ρc(rr′t) within the S system framework. The definitions of the sources
as expectations of Hermitian operators taken with respect to the Slater determinant
results in their being expressed explicitly in terms of the orbitals φi(xt) of the S
system.

A. Electron Density ρ(rt)

The electronic density ρ(rt) is the expectation of the density operator ρ̂(r) of (2.12):

ρ(rt) = 〈�{φi}|ρ̂(r)|�{φi}〉 =
∑

σ

∑

i

|φi(xt)|2, (3.5)

and satisfies the normalization condition
∫

ρ(rt)dr = N . (3.6)

Note that the density is the same as for the interacting system.

B. Dirac Spinless Single–Particle Density Matrix γs(rr′t)

The Dirac spinless single-particle density matrix γs(rr′t) is the expectation of the
density matrix operator γ̂(rr′) of (2.17):

γs(rr′t) = 〈�{φi}|γ̂(rr′)|�{φi}〉 =
∑

σ

∑

i

φ∗
i (rσ, t)φi(r′σ, t). (3.7)

The properties of the Dirac density matrix are that

γs(rrt) = ρ(rt), (3.8)

γs(r′rt) = γ∗
s (rr

′t), (3.9)

and that it is idempotent:

∫
γs(rr′′t)γs(r′′r′t)dr′′ = γs(rr′t). (3.10)

The interacting system density matrix of (2.15, 2.16) and the Dirac density matrix
are inequivalent. It is only their diagonal matrix elements that are equal.

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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C. Pair–Correlation Density gs(rr′t); Fermi ρx(rr′t) andCoulomb ρc(rr′t)Holes

The pair–correlation density gs(rr′t) is the ratio of the expectations of the pair-
correlation and density operators of (2.28) and (2.12), respectively,

gs(rr′t) = 〈�{φi}|P̂(rr′)|�{φi}〉
ρ(rt)

, (3.11)

and satisfies the condition ∫
gs(rr′t)dr′ = N − 1 (3.12)

for arbitrary electron positron r at each instant of time.
As was the case for the interacting system, the pair–correlation density gs(rr′t)

may also be separated into its local and nonlocal components as

gs(rr′t) = ρ(r′t) + ρx(rr′t), (3.13)

where ρx(rr′t) is the Fermi hole charge distribution. The Fermi hole [40] is the
reduction in density at r′ due to the presence of an electron of parallel spin at r for
each instant of time. It represents the reduction in probability of two electrons of
parallel spin approaching each other. The Fermi hole is derived in terms of the S
system orbitals to be

ρx(rr′t) = −

∑

i,j(spin j‖spin i)

φ∗
i (rt)φ

∗
j (r

′t)φi(r′t)φj(rt)

∑

σ

∑

k

φ∗
k(xt)φk(xt)

= −|γs(rr′t)|2
2ρ(rt)

, (3.14)

and satisfies the following sum rules for arbitrary electron position r at each instant
of time:

∫
ρx(rr′t)dr′ = −1 (3.15)

ρx(rrt) = −ρ(rt)/2, (3.16)

ρx(rr′t) ≤ 0. (3.17)

Note that the self-interaction term in the Fermi hole is cancelled by a similar term
in the density, and as such there is no self-interaction in the pair–correlation density.
The S system pair–correlation function hs(rr′t) is defined as

hs(rr′t) = gs(rr′t)
ρ(r′t)

, (3.18)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2


3.1 Time-Dependent Quantal Density Functional Theory: Part I 75

and it is symmetrical in a interchange of r and r′:

hs(rr′t) = hs(r′rt). (3.19)

This property of symmetry is employed in various proofs.
Since in the S system, the effects of Pauli correlation can be explicitly accounted

for via the Fermi hole, it is possible to define a Coulomb hole ρc(rr′t) which is
a nonlocal charge distribution representative of Coulomb correlations. The Coulomb
hole at r′ for an electron at r at each instant of time is defined as

ρc(rr′t) = g(rr′t) − gs(rr′t) (3.20)

= ρxc(rr′t) − ρx(rr′t), (3.21)

where g(rr′t) and ρxc(rr′t) are the interacting system pair–correlation density and
Fermi–Coulomb hole charge, respectively. As the total charge of the Fermi–Coulomb
and Fermi holes is the same (see (2.36) and (3.15)), the charge sum rule satisfied by
the Coulomb hole for each electron position r at each instant of time is

∫
ρc(rr′t)dr′ = 0. (3.22)

D. Current Density js(rt)
The current density js(rt) which is the expectation of the current density operator

ĵ(r) of (2.42) is

js(rt) = 〈�{φi}|ĵ(r)|�{φi}〉
= 1

2i

∑

σ

∑

k

[
φ∗
k(xt)∇φk(xt) − φk(xt)∇φ∗

k(xt)
]
, (3.23)

or it may be expressed in terms of the Dirac density matrix as

js(rt) = i

2
[∇′ − ∇′′]γs(r′r′′t)|r′= r′′= r. (3.24)

The quantal sources defined above then give rise to ‘classical’ fields corresponding
to the S system

3.1.2 Fields

The fields required for the description of the potential energy vee(rt) of the S system
and total (nonconserved) energy E(t) are the electron-interaction field Eee(rt) of
(2.43), or its Hartree EH(rt), Pauli Ex(rt) and Coulomb Ec(rt) components, the

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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Correlation–Kinetic Z tc(rt), and Correlation–Currrent–Density J c(rt) fields. To
ensure that the model S system density ρ(rt) is the same as that of the interacting
case, the difference in kinetic energy and current density between the interacting
and noninteracting systems must be accounted for. Thus, the fields describing the
S system are in terms of the properties of both systems. As noted previously there
must therefore exist an effective field F eff(rt) in which the potential energy of the
model fermions is vee(rt).

A. Electron-Interaction Field Eee(rt), and Its Hartree EH(rt), Pauli Ex(rt),
and Coulomb Ec(rt) Components

We begin by further subdividing the electron–interaction field Eee(rt) (see (2.43)–
(2.48)) of the interacting system. The S system electron–interaction field Eee,s(rt) is
obtained from its quantal source, the pair–correlation density gs(rr′t) via Coulomb’s
law as

Eee,s(rt) =
∫

gs(rr′t)(r − r′)
|r − r′|3 dr′. (3.25)

This field may be rewritten in terms of a corresponding electron-interaction ‘force’
and the density ρ(rt) as

Eee,s(rt) = eee,s(rt)
ρ(rt)

, (3.26)

where eee,s(rt) is determined via Coulomb’s law from the pair function Ps(rr′t) =
〈�{φi}|P̂(rr′)|�{φi}〉 obtained from the Slater determinant �{φi} with P̂(rr′) the
pair–correlation operator of (2.28). Thus, the ‘force’ is

eee,s(rt) =
∫

Ps(rr′t)(r − r′)
|r − r′|3 dr′. (3.27)

(The quantal source of the field Eee,s(rt) can thus also be thought of as being the pair
function Ps(rr′t).)

On employing the decomposition (3.13), the field Eee,s(rt) may then be written
as the sum

Eee,s(rt) = EH(rt) + Ex(rt), (3.28)

where the Hartree field EH(rt) is defined by (2.47), and the Pauli field Ex(rt) due to
the Fermi hole charge ρx(rr′t) is

Ex(rt) =
∫

ρx(rr′t)(r − r′)
|r − r′|3 dr′, (3.29)

The interacting system electron-interaction field Eee(rt) can on employing the
definition of the Coulomb hole ρc(rr′t) of (3.21) be then written as

Eee(rt) = Eee,s(rt) + Ec(rt), (3.30)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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so that with (3.28) we have

Eee(rt) = EH(rt) + Ex(rt) + Ec(rt), (3.31)

where the Coulomb field Ec(rt) due to the Coulomb hole charge ρc(rr′t) is

Ec(rt) =
∫

ρc(rr′t)(r − r′)
|r − r′|3 dr′. (3.32)

In this manner, Pauli correlations are represented by the Pauli field Ex(rt), and
Coulomb correlations beyond those incorporated in the Hartree field EH(rt) by the
Coulomb fieldEc(rt). Since both the Fermi and Coulomb holes are nonlocal sources,
the fields Ex(rt) and Ec(rt) are in general not conservative.

B. Kinetic Z s(rt) and Correlation–Kinetic Z tc(rt) Fields

The S system kinetic field Z s(rt) is defined in a manner similar to the kinetic field
Z(rt) (2.51) of the interacting system, but its quantal source is the Dirac density
matrix γs(rr′t). Thus

Z s(rt) = zs(rt; [γs])
ρ(rt)

, (3.33)

where the S system kinetic ‘force’ is defined by its component zs,α(rt) as

zs,α(rt) = 2
∑

β

∂

∂rβ
ts,αβ(rt), (3.34)

and where ts,αβ(rt) is the S system kinetic-energy-density tensor defined in turn as

ts,αβ(rt) = 1

4

[
∂2

∂r′
α∂r′′

β

+ ∂2

∂r′
β∂r′′

α

]
γs(r′r′′t)|r′=r′′=r. (3.35)

The kinetic field Z s(rt) leads to the S system kinetic energy density and hence to
the kinetic energy of the noninteracting fermions (see Sect. 3.1.3).

The Correlation–Kinetic field Z tc(rt) is defined as the difference between the
interacting and noninteracting system kinetic fields:

Z tc(rt) = Z s(rt) − Z(rt). (3.36)

Thus, Z tc(r) is the correlation component of the interacting system kinetic field
Z(rt).

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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C. Current Density J s(rt) and Correlation–Current–Density J c(rt) Fields

The S system current density field J s(rt) is defined in a manner similar to that of
the interacting system field J (rt) of (2.54) as

J s(rt) = 1

ρ(rt)
∂

∂t
js(rt), (3.37)

where js(rt) is the corresponding current density. The Correlation–Current–Density
field J c(rt) which represents the difference in current densities of the interacting
and noninteracting systems is then

J c(rt) = J s(rt) − J (rt), (3.38)

where J (rt) is the interacting system current density field.

D. Differential Density Field D(rt)

In the S system there also exists a differential density field D(rt). The definition of
this field is the same as for the interacting case (2.49), and since the densities of the
two systems are the same, the fields are equivalent.

The fields Eee(rt),Ex(rt),Ec(rt),Z s(rt),Z tc(rt), and J c(rt) are in general
not conservative. However, the sums [Zs(rt) + J s(rt)] and [Eee(rt) + Z tc(rt) +
J c(rt)] are conservative so that

∇ × [Z s(rt) + J s(rt)] = 0, (3.39)

and
∇ × [Eee(rt) + Z tc(rt) + J c(rt)

] = 0. (3.40)

The condition of (3.39) follows from the S system ‘Quantal Newtonian’ second
law proved in Appendix E. The proof of (3.40) is given in Sect. 3.1.4 For certain
symmetries, or when such symmetry is imposed, the individual fields may sepa-
rately be conservative so that then∇ × Ex(rt) = 0,∇ × Ec(rt) = 0, ∇ × Z s(rt) =
0,∇ × J s(rt) = 0, ∇ × Z tc(rt) = 0,∇ × J c(rt) = 0.

3.1.3 Total Energy and Components in Terms of Quantal
Sources and Fields

As was the case for the interacting system, the energy components in the S system
framework may be expressed directly in terms of the quantal sources, or in integral
virial form in terms of the respective fields. The latter expressions are independent
of whether or not the fields are conservative.

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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A. Electron-Interaction Potential Energy Eee(t), and Its Hartree EH(t), Pauli
Ex(t), and Coulomb Ec(t) Energy Components

We first write the electron-interaction energy Eee(t) of the interacting system in
terms of its components. The S system electron-interaction potential energy Eee,s(t)
is the energy of interaction between the density ρ(rt) and the pair–correlation density
gs(rr′t):

Eee,s(t) = 1

2

∫∫
ρ(rt)gs(rr′t)

|r − r′| drdr′, (3.41)

which on employing the decomposition (3.13) may be written as the sum

Eee,s(t) = EH(t) + Ex(t), (3.42)

where theHartree energyEH(t) is defined by (2.61), and the exchange or Pauli energy
Ex(t) is the energy of interaction between the density ρ(rt) and the Fermi hole charge
ρx(rr′t):

Ex(t) = 1

2

∫∫
ρ(rt)ρx(rr′t)

|r − r′| drdr′. (3.43)

These energies may be expressed in terms of fields by following the procedure of
Sect. 2.4 and employing the symmetry property of the S system pair–correlation
function hs(rr′t). Thus, we obtain

Eee,s(t) =
∫

ρ(rt)r · Eee,s(rt)dr, (3.44)

Ex(t) =
∫

ρ(rt)r · Ex(rt)dr, (3.45)

and EH(t) is defined in terms of EH(t) as in (2.66). Next, by employing the definition
of the Coulomb hole ρc(rr′t) of (3.21), the interacting system electron-interaction
energy Eee(t) of (2.59) may be written in terms of its Hartree, Pauli, and Coulomb
components as

Eee(t) = EH(t) + Ex(t) + Ec(t), (3.46)

where the Coulomb energy Ec(t) is the energy of interaction between the density
ρ(rt) and the Coulomb hole charge ρc(rr′t):

Ec = 1

2

∫∫
ρ(rt)ρc(rr′t)

|r − r′| drdr′, (3.47)

or equivalently in terms of the Coulomb field Ec(rt) as

Ec(t) =
∫

ρ(rt)r · Ec(rt)dr. (3.48)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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http://dx.doi.org/10.1007/978-3-662-49842-2_2
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B. Kinetic Ts(t) and Correlation–Kinetic Tc(t) Energies

The S system kinetic energy Ts(t) may be expressed in terms of its quantal source,
the Dirac density matrix γs(rr′t), as

Ts(t) =
∫

ts(rt)dr, (3.49)

where the kinetic energy density ts(rt) is the trace of the kinetic-energy-density tensor
ts,αβ(rt):

ts(rt) =
∑

α

ts,αα(rt) = 1

2
∇r′ · ∇r′′γs(r′r′′t)|r′=r′′=r. (3.50)

It may also be expressed in terms of the kinetic field Zs(rt) and ‘force’ zs(rt) as

Ts(t) = −1

2

∫
ρ(rt)r · Z s(rt)dr (3.51)

= −1

2

∫
r · zs(rt)dr. (3.52)

The proof of the equivalence of (3.49) and (3.51) is again based on the vanishing of
the Dirac density matrix on the boundaries at infinity. The energy Ts(t) may also be
obtained directly in terms of the S system orbitals φi(xt) as the expectation

Ts(t) = 〈�{φi}|T̂ |�{φi}〉 =
∑

i

∑

σ

〈φi(rσ, t)| − 1

2
∇2|φi(rσ, t)〉. (3.53)

The Correlation–Kinetic energy Tc(t) is the correlation contribution to the kinetic
energy:

Tc(t) = T(t) − Ts(t), (3.54)

and may be expressed in terms of the Correlation–Kinetic field Z tc(rt) as

Tc(t) = 1

2

∫
ρ(rt)r · Z tc(rt)dr. (3.55)

C. External Potential Energy Eext(t)

Since the electrons in the interacting case, and the noninteracting fermions of the S
system experience the same external field F ext(rt), and are constrained to have the
same density ρ(rt), the expression for the external potential energy Eext(t) for both
systems is the same:

Eext(t) =
∫

ρ(rt)v(rt)dr. (3.56)
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In a manner similar to that of the interacting system of electrons (see Sect. 2.5), the
external potential v(r), and hence the energy component Eext(t), can be expressed
in terms of all the fields present within the S system. This follows from the ‘Quantal
Newtonian’ second law for the S system described in the next section.

As noted previously in Sect. 3.1.2, the S system must account for correlations
due to the Pauli exclusion principle, Coulomb repulsion, Correlation-Kinetic, and
Correlation-Current-Density effects. The fields Eee(rt) and Z tc(rt) give rise to the
electron-interaction Eee(t) and Correlation-Kinetic Tc(t) energy, respectively. The
field J c(rt) does not contribute to the total energy directly. However, it does so
indirectly because it contributes to the potential vee(rt) as shown in the next section.
The proof that there is no direct contribution to the total energy follows readily.

As in Sect. 2.6, it can be shown that

∫
ρ(rt)r · J s(rt)dr = 1

2

∂2

∂t2

∫
r2ρ(rt)dr, (3.57)

where the continuity equation ∇ · js(rt) = −∂ρ(rt)/∂t is employed.
Therefore, together with (2.88) we have

∫
ρ(rt)r · J c(rt)dr = 0. (3.58)

Thus, the total energy E(t) may be expressed as

E(t) = Ts(t) +
∫

ρ(rt)v(rt)dr + Eee(t) + Tc(t), (3.59)

or by employing the decomposition of Eee(t) as

E(t) = Ts(t) +
∫

ρ(rt)v(rt)dr + EH(t) + Ex(t) + Ec(t) + Tc(t). (3.60)

In this manner, the separate contributions of the various electron correlations to the
total energy are clearly delineated.

3.1.4 The S System ‘Quantal Newtonian’ Second Law

The ‘Quantal Newtonian’ second law for the S system of noninteracting fermions
derived in Appendix E is

F ext(rt) + F int
s (rt) = J s(rt) = 1

ρ(rt)
∂js(rt)

∂t
, (3.61)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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where each model fermion experiences the external field F ext(rt):

F ext(rt) = −∇v(rt), (3.62)

and an internal field F int(rt):

F int(rt) = −∇vee(rt) − D(rt) − Z s(rt), (3.63)

with the component fieldsD(rt),Zs(rt), and J s(rt) being defined previously. The
response of the model fermion to the external and internal fields is the S system
current density field J s(rt).

From the ‘Quantal Newtonian’ second law of (3.61), the external potential v(rt)
can be expressed in terms of the various S system fields as

v(rt) = −
∫ r

∞
F s(r′t) · d�′, (3.64)

where

F s(rt) = J s(rt) − F int
s (rt) (3.65)

= J s(rt) + ∇vee(rt) + D(rt) + Z s(rt). (3.66)

Thus, the external potential v(rt) can be interpreted solely in terms of S system
properties as the work done in the conservative field F s(rt). This work done is
path-independent since ∇ × F s(rt) = 0. The expression for v(rt) of (3.64) can be
employed to determine the external energy Eext(t). Of course, with an assumed exter-
nal field F ext(rt), the energy Eext(t) can be obtained directly from (3.56).

In Q-DFT, one assumes the external field F ext(rt) of the interacting and model
fermions to be the same. In order to fully define the S system Hamiltonian ĥs(rt)
of (3.2), what remains then is the determination of the electron-interaction potential
energy vee(rt). This is accomplished by further ensuring that the density ρ(rt), the
basic variable, is the same for the interacting and model systems. For there to be such
a local potential energy function vee(rt), there must exist an effective field F eff(rt)
which encompasses all the many-body effects the S system must account for. Hence,
in the ‘Quantal Newtonian’ second law (3.61) we associate the term −∇vee(rt) with
this effective field:

F eff(rt) = −∇vee(rt). (3.67)

As the curl of the gradient of a scalar function vanishes, the effective field F eff(rt)
is conservative.

In the following section we determineF eff(rt) via the ‘Quantal Newtonian’ sec-
ond law for the interacting and model fermions.
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3.1.5 Effective Field F eff(rt) and Electron-Interaction
Potential Energy vee(rt)

The electron-interaction potential energy vee(rt) of the model fermions, whose den-
sity ρ(rt) is the same as of the interacting system is defined as follows. It is the work
done at each instant of time to move a model fermion from some reference point at
infinity to its position at r in the force of the conservative effective field F eff(rt):

vee(rt) = −
∫ r

∞
F eff(r′t) · d�′, (3.68)

where
F eff(rt) = Eee(rt) + Z tc(rt) + J c(rt). (3.69)

This work done is path–independent since ∇ × F eff(rt) = 0. The vanishing of the
curl implies (3.68) providedF eff(rt) is smooth in a simply connected region. (A func-
tion is smooth if it is continuous, differentiable, and has continuous first derivatives.
By definition, a region is simply connected if any closed curve lying entirely within
this region can shrink down to a point without leaving the region.) The component
fields Eee(rt),Z tc(rt), andJ c(rt) are in general not conservative. Their sum always
is.

The proof of the above description of the potential energy vee(rt) is as follows.
The ‘Quantal Newtonian’ second law for the interacting system of electrons is (2.75)
(see Appendix A)

F ext(rt) + F int(rt) = J (rt), (3.70)

where the internal field F int(rt) is

F int(rt) = Eee(rt) − D(rt) − Z(rt). (3.71)

The ‘Quantal Newtonian’ second law for the S system is (3.61) (see Appendix E)

F ext(rt) + F int
s (rt) = J s(rt), (3.72)

where the corresponding internal field is

F int
s (rt) = −∇vee(rt) − D(rt) − Z s(rt). (3.73)

Employing the constraints that the external field F ext(rt) and the density ρ(rt) are
the same for the interacting and model systems in (3.70) and (3.72) one obtains

− ∇vee(rt) = Eee(rt) + [Z s(rt) − Z(rt)] + [J s(rt) − J (rt)] (3.74)

= Eee(rt) + Z tc(rt) + J c(rt) = F eff(rt), (3.75)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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from which the definition for vee(rt) of (3.68) and (3.69) follows.
In addition to providing a rigorous physical interpretation for the potential energy

vee(rt), the above derivation leads to insights, and relates the interacting and model
systems in a rigorous quantum-mechanical sense. It shows that the electron corre-
lations due to the Pauli exclusion principle and Coulomb repulsion are accounted
for in the mapping to the S system via the electron-interaction field Eee(rt). Further,
what emerges from the derivation is that in this mapping to the model system, one
must additionally account for the difference in kinetic energy and current density
between the interacting and model systems. This in turn is accomplished via the
Correlation-Kinetic Z tc(rt) and Correlation-Current-Density J c(rt) fields.

For systems of symmetry such that each component of F eff(rt) is irrotational
(conservative):

∇ × Eee(rt) = 0, (3.76)

∇ × Z tc(rt) = 0, (3.77)

∇ × J c(rt) = 0, (3.78)

the potential energy vee(rt) may be expressed as the sum

vee(rt) = Wee(rt) + Wtc(rt), (3.79)

where Wee(rt) and Wtc(rt) are respectively the work done in the fields Eee(rt) and
Z tc(rt):

Wee(rt) = −
∫ r

∞
Eee(r′t) · d�′, (3.80)

Wtc(rt) = −
∫ r

∞
Z tc(r

′t) · d�′. (3.81)

For systems of such symmetry, the field J c(rt) = 0, and does not contribute
to the potential energy. The field J c(rt) vanishes because both ∇ × J c(rt) = 0
and ∇ · J c(rt) = 0, the latter following from the continuity equations ∇ · j(rt) =
−∂ρ(rt)/∂t and ∇ · js(rt) = −∂ρ(rt)/∂t.

Employing the decomposition of the electron–interaction field Eee(rt) into its
Hartree EH(rt), Pauli Ex(rt), and Coulomb Ec(rt) components, the effective field
F eff(rt) may be written as

F eff(rt) = EH(rt) + Ex(rt) + Ec(rt) + Z tc(rt) + J c(rt). (3.82)

Thus, as for the total energy, the separate contributions of the different electron
correlations to the potential energy vee(rt) are delineated.



3.1 Time-Dependent Quantal Density Functional Theory: Part I 85

Since the source ρ(rt) of the Hartree field EH(rt) is a local charge distribution,
for each instant of time, the field may be written as

EH(rt) = −∇WH(rt), (3.83)

where WH(rt) is a scalar function. This shows that the field EH(rt) is irrotational
(conservative): ∇ × EH(rt) = 0. Thus, the scalar function WH(rt), which equiva-
lently is the work done in the field EH(rt), may be expressed as

WH(rt) = −
∫ r

∞
EH(r′t) · d�′ (3.84)

=
∫

ρ(r′t)
|r − r′|dr

′. (3.85)

Hence, the potential energy vee(rt) for arbitrary symmetry may be written as

vee(rt) = WH(rt)

+
(

−
∫ r

∞
[Ex(r′t) + Ec(r′t) + Z tc(r

′t) + J c(r′t)] · d�′
)

. (3.86)

For systems with symmetry such that (3.76)–(3.78) are satisfied, vee(rt) is the sum
of the work done in the individual fields:

vee(rt) = WH(rt) + Wx(rt) + Wc(rt) + Wtc(rt), (3.87)

where

Wx(rt) = −
∫ r

∞
Ex(r′t) · d�′, (3.88)

Wc(rt) = −
∫ r

∞
Ec(r′t) · d�′, (3.89)

Wtc(rt) = −
∫ r

∞
Z tc(r

′t) · d�′. (3.90)

Each work done, at each instant of time, is separately path–independent.
The S system of noninteracting fermions whereby the density ρ(rt) and total

energy E(t) equivalent to that of electrons in the same time-dependent external field
F ext(rt) is thus fully defined. The total energy E(t) and the effective potential energy
vs(rt) are described in terms of component fields representative of the properties
and different electron correlations present within the model system. The delineation
in terms of the various fields then allows for an understanding of the contribution
of each type of electron correlation to a property. Further, it is the same source,
and hence field, representative of a specific electron correlation that contributes to
the corresponding component of both the total energy E(t) and potential energy
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vee(rt). The delineation thus also allows for the construction of approximations
whereby each type of electron correlation—Pauli, Coulomb, Correlation–Kinetic,
Correlation–Current–Density—is systematically introduced.

3.2 Sum Rules

In this section we derive sum rules satisfied by the effective field F eff(rt) and the
resulting S system integral virial theorem, Ehrenfest’s theorem, and the zero force
and torque sum rules.

3.2.1 Integral Virial Theorem

Operating by
∫
drρ(rt)r· on (3.67) and (3.69) leads on using (2.65) and (3.55) to

−
∫

ρ(rt)r · ∇vee(rt)dr = Eee(t) + 2Tc(t) +
∫

ρ(rt)r · J c(rt)dr. (3.91)

Since the last term vanishes (see (3.58)), we have

Eee(t) + 2Tc(t) =
∫

ρ(rt)r · F eff(rt)dr. (3.92)

This is the S system integral virial theorem.

3.2.2 Ehrenfest’s Theorem and the Zero Force Sum Rule

The model fermions of the S system too must satisfy Ehrenfest’s Theorem (2.98).
This requirement then leads to the zero force sum rule for the effective fieldF eff(rt).

Operating with
∫
drρ(rt) on the S system ‘Quantal Newtonian’ second law (3.72)

and employing (3.67) we have

∫
ρ(rt)F ext(rt)dr +

∫
ρ(rt)F int

s (rt)dr =
∫

ρ(rt)J s(rt)dr. (3.93)

Employing the continuity equation ∇ · js(rt) = −∂ρ(rt)/∂t, it can be shown by
following the procedure of Sect. 2.8 that

∫
ρ(rt)J s(rt)dr = ∂2

∂t2

∫
rρ(rt)dr. (3.94)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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As was the case for the interacting system,
∫

ρ(rt)D(rt)dr = 0 and
∫

ρ(rt)Z s

(rt)dr = 0. Hence, for Ehrenfest’s theorem (2.98) to be satisfied requires that the
averaged effective field vanish:

∫
ρ(rt)F eff(rt)dr = 0. (3.95)

Further, the contribution of the components Eee(rt),Z tc(rt), andJ c(rt) to the inte-
gral also separately vanish. The proofs are similar to those of Sect. 2.8. (See (2.104)–
(2.107), and (3.94).) This is the zero force theorem.

The above sum rule is the S system analogue of 〈F int〉 = 0 of Schrödinger theory
(2.114), and of

∑′
i,j Fji = 0 of Newton’s theory. Note that it is only the electron–

interaction Eee(rt) field component that obeys Newton’s third law. Hence, the van-
ishing of its average maybe attributed to it. However, the vanishing of the averaged
Correlation–Kinetic Z tc(rt) and Correlation–Current–Density J c(rt) fields is not
a direct consequence of the law. Rather, as in the case of the interacting system, it is
a quantum mechanical effect.

Within the framework of the S system then, Ehrenfest’s theorem may be stated in
terms of the corresponding response of the system J s(rt) as

∫
ρ(rt)[F ext(rt) − J s(rt)]dr = 0. (3.96)

3.2.3 Torque Sum Rule

The S system torque sum rule for the effective field F eff(rt) is

∫
ρ(rt)r × [F eff(rt) − J c(rt)]dr = 0. (3.97)

Note that in contrast to Schrödinger andNewton’s theories, the averaged torque of the
effective field does not vanish. It vanishes only when ∇ × j(rt) = ∇ × js(rt) = 0
because then∇ × [js(rt) − j(rt)] = ∇ × J c(rt) = 0, and from the continuity equa-
tions ∇ · [js(rt) − j(rt)] = ∇ · J c(rt) = 0 because the density ρ(rt) of the inter-
acting and S systems is the same. Then, from the Helmholtz theorem, J c(rt) = 0.
When these conditions aremet, then the averaged torque of the effective fieldF eff(rt)
vanishes: ∫

ρ(rt)r × F eff(rt)dr = 0. (3.98)

We provide two proofs of (3.97).
(i) For the first of these proofs apply the operator

∫
drρ(r)r × on the definition

(3.69) of F eff(rt) to obtain

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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∫
ρ(rt)r × F eff(rt)dr =

∫
ρ(rt)r × Eee(rt)dr +

∫
ρ(rt)r × Z tc(rt)dr

+
∫

ρ(rt)r × J c(rt)dr. (3.99)

That the integral ∫
ρ(rt)r × Eee(rt)dr = 0 (3.100)

is proved by once again employing the symmetry property of the pair-correlation
function h(rr′t) as in Sect. 2.8. For the proof of

∫
ρ(rt)r × Z tc(rt)dr = 0, (3.101)

we need to show
∫

r × z(rt)dr = 0 and
∫

r × zs(rt)dr = 0. (3.102)

Consider the component

[ ∫
r × z(rt)dr

]

i

= 2
∫ ∑

jkl

εijkrj
∂

∂rl
tkl(rt; [γ])dr

= −2
∑

jk

∫
εijk tkj(rt; [γ])dr = 0, (3.103)

wherewehave again employed the vanishingof the tensor at the boundaries at infinity,
and the properties tkj(rt) = tjk(rt) and εijk = −εikj. This proves the first condition of
(3.102). The second is similarly proved. Thus, the torque sum rule of (3.97) is proved.

(ii) The second proof is along the lines of [28] and employs the quantum-
mechanical equation of motion for the expectation value of an operator Q̂(t):

d

dt

〈
�(t)|Q̂(t)|�(t)

〉 = 〈�(t)|∂Q̂(t)

∂t
− i[Q̂(t), Ĥ(t)]|�(t)

〉
. (3.104)

For the angle operator φ̂ =∑i ri × pi, we have for the difference

d

dt
[〈�(t)|φ̂|�(t)〉 − 〈�(t)|φ̂|�(t)〉]

= −
∫

ρ(rt)r × F eff(rt)dr. (3.105)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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Now
d

dt

〈
�(t)|φ̂|�(t)

〉 = −i
d

dt

∫ ∑

i

ri × ��(Xt)∇i�(Xt)dX, (3.106)

with a similar equation for the S system so that the left hand of (3.105) is

= − ∂

∂t

∫
r × [js(rt) − j(rt)]dr (3.107)

= −
∫

ρ(rt)]r × J c(rt)dr. (3.108)

Equating (3.105) and (3.108) proves the torque sum rule.
Thus, the torque of the effective field F eff(rt) is finite, and due solely to

Correlation-Current-Density effects represented by the field J c(rt). It is only for
cases when J c(rt) = 0 does the torque of F eff(rt) vanish. The torque due to the
electron-interaction Eee(rt) and Correlation-KineticZ tc(rt) fields are proved to sep-
arately vanish.

3.3 Time-Dependent Quantal Density Functional Theory:
Part II

In the previous three sections, we described the Q-DFT mapping of a system of N
electrons in an external time-dependent field F ext(rt) = −∇v(rt) to one of nonin-
teracting fermions having the same density ρ(rt). The choice of the density ρ(rt), as
explained in the Introduction to the chapter, is because it constitutes a basic variable
of quantum mechanics as proved by the Runge-Gross theorem [27–29]. That is, the
choice of property is governed by the fact that there is a one-to-one relationship
between the density ρ(rt) and the external potential v(rt). (This mapping is akin to
that of time-dependent KS-DFT.) But then in the mapping to the model system, one
must account for the Correlation-Current-Density effects.

However, as noted in the Introduction, the current density j(rt) is also a basic
variable since it too has a one-to-one relationship with the external potential v(rt). In
this section we describe the Q-DFT mapping to a system of noninteracting fermions
whose density ρ(rt) and current density j(rt) are the same as those of the interacting
system of electrons. In other words the response of the two systems is the same.
Hence, in this time-dependent Q-DFT one ensures that the model fermions are (a)
subject to the same external fieldF ext(rt), and (b) possess the same basic variables,
as that of the interacting system of electrons. The idea that the mapping be such as
to reproduce the basic variables leads to an overall consistency within the broader
context of Q-DFT. Irrespective of whether the external field includes additionally a
time-dependent electric and magnetic field [39], or if the external field is comprised
only of an electrostatic and magnetostatic field (see Chap.9), or just an electrostatic

http://dx.doi.org/10.1007/978-3-662-49842-2_9
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field (see time-independent Q-DFT, Sect. 3.4), the correlations that the model system
must account for in each case are then always only those due to the Pauli exclusion
principle, Coulomb repulsion, and Correlation-Kinetic effects.

For this version of time-dependent Q-DFT, we impose the constraints that the
interacting electrons and noninteracting model fermions experience the same exter-
nal field F ext(rt) = −∇v(rt), and that the response of each system to this field,
i.e. the density ρ(rt) and current densities (j(rt), js(rt)) are the same. As a conse-
quence, the Correlation-Current-Density field of (3.38) J c(rt) = 0. On imposing
the constraints, it then follows from the ‘Quantal Newtonian’ second laws (3.70) and
(3.72) of these systems that the local electron-interaction potential energy vee(rt) of
the model fermions in the S system differential equation (3.3) is the work done in a
conservative effective field F eff(rt):

vee(rt) = −
∫ r

∞
F eff(r′t) · d�′ (3.109)

where
F eff(rt) = Eee(rt) + Z tc(rt), (3.110)

with Eee(rt) and Z tc(rt) the electron-interaction and Correlation-Kinetic fields as
defined in (2.43) and (3.36), respectively. This work done is path-independent since
∇ × F eff(rt) = 0. Note that since the effective fieldsF eff(rt) of (3.69) and (3.110)
differ, the corresponding potentials vee(rt) and the orbitals φi(rt) of the S system
differential equation also differ. (Of course, for systems with symmetry such that
the field J c(rt) vanishes, i.e. for systems for which both the curl and divergence of
the field vanish, the effective field F eff(rt), potential vee(rt), and orbitals φi(rt) are
the same.)

The expressions for the energy, and the various sum rules forF eff(rt) are special
cases of those derived previously. For completeness they are the following:

Energy

E(t) = Ts(t) +
∫

ρ(rt)v(rt)dr + Eee(t) + Tc(t). (3.111)

Integral Virial Theorem

Eee(t) + 2Tc(t) =
∫

ρ(rt)r · F eff(rt)dr. (3.112)

Zero Force Sum Rule ∫
ρ(rt)F eff(rt)dr = 0. (3.113)

Zero Torque Sum Rule ∫
ρ(rt)r × F eff(rt)dr = 0. (3.114)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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3.4 Time-Independent Quantal Density Functional Theory

We next describe time-independent Quantal Density Functional theory. Consider
a system of N electrons in the presence of an arbitrary external field F ext(r) =
−∇v(r). The theory is a description of the physics of mapping from any ground
or bound excited, nondegenerate or degenerate pure state of the time-independent
Schrödinger equation to that of an S system of noninteracting fermions such that the
equivalent density ρ(r), energy E, and ionization potential I (or electron affinity A)
are thereby obtained. It is assumed that the model fermions are subject to the same
external field F ext(r).

3.4.1 The Interacting System and the ‘Quantal Newtonian’
First Law

The interacting system of N electrons is governed by the time-independent
Schrödinger equation (in atomic units e = � = m = 1) (see (2.133))

Ĥψ(X) = Eψ(X) (3.115)

where ψ(X),E are the eigenfunctions and energy eigenvalues, respectively; X =
x1, x2, . . . , xN ; x = rσ, r and σ are the spatial and spin coordinates. (No symbolic
differentiation between ground and excited states ismade.) TheHamiltonian operator
Ĥ is the sum of the kinetic energy T̂ , external potential energy V̂ , and electron-
interaction potential energy Û operators:

Ĥ = T̂ + V̂ + Û, (3.116)

where

T̂ = −1

2

∑

i

∇2
i (3.117)

V̂ =
∑

i

v(ri), (3.118)

and

Û = 1

2

′∑

i,j

1

|ri − rj| . (3.119)

The energy E is the expectation

E = 〈ψ(X)|Ĥ|ψ(X)〉, (3.120)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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which is a sum of its kinetic T , external potential Eext, and electron-interaction
potential Eee energy components:

T = 〈ψ(X)|T̂ |ψ(X)〉, (3.121)

Eext = 〈ψ(X)|V̂ |ψ(X)〉, (3.122)

Eee = 〈ψ(X)|Û|ψ(X)〉. (3.123)

The ‘Quantal Newtonian’ first law (see (2.134)) which is the stationary state case of
the ‘Quantal Newtonian’ second law of (2.75) is

F ext(r) + F int(r) = 0, (3.124)

where the internal field F int(r) is the sum of the electron-interaction Eee(r), differ-
ential density D(r), and kinetic Z(r) fields:

F int(r) = Eee(r) − D(r) − Z(r). (3.125)

The definition and interpretation of these fields is the same as in Sect. 2.3 but with
the quantal sources being time-independent.

3.4.2 The S System and Its ‘Quantal Newtonian’ First Law

The time-independent Schrödinger equation for the S system of N noninteracting
fermions in the same external field F ext(r) = −∇v(r) as that for the interacting
system is

[− 1

2
∇2 + vs(r)

]
φi(x) = εiφi(x); i = 1, . . . ,N, (3.126)

with the local effective potential vs(r) = v(r) + vee(r). Here vee(r) is the local
electron-interaction potential energy which ensures that the Slater determinant wave
function �{φi} of the orbitals φi(x) leads to the same density ρ(r) as that of the
interacting system. The potential energy vee(r) must then incorporate electron cor-
relations due to the Pauli exclusion principle and Coulomb repulsion. It must also
account for Correlation-Kinetic effects since the kinetic energy of interacting and
noninteracting fermions of the same density ρ(r) differ.

The S system ‘Quantal Newtonian’ first law is the stationary state case of the
‘Quantal Newtonian’ second law of (3.72), and is

F ext(r) + F int
s (r) = 0, (3.127)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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where the corresponding internal field F int
s (r) is

F int
s (r) = −∇vee(r) − D(r) − Z s(r). (3.128)

The definitions of the fields D(r) and Zs(r) are the same as in Sect. 3.1.2 but are
obtained by time-independent quantal sources.

The assumed existence of the electron-interaction potential energy vee(r) implies
that there must exist an effective field F eff(r) such that

F eff(r) = −∇vee(r). (3.129)

This effective field is derived in Sect. 3.4.6.
In time-independent Q-DFT, the state of the model S system of noninteracting

fermions is arbitrary [1, 2, 5, 10, 11, 14–16, 18, 20]. For the mapping from a pure
ground state of the interacting system, it is best to map to an S system that is also
in its ground state. However, it is possible to map to an S system in an excited state
with a different electronic configuration. For the mapping from a pure excited state
of the interacting system, the model S system may be in an excited state with the
same configuration, or an excited state with a different electronic configuration, or
in a ground state with yet another different electronic configuration. The difference
in the electron-interaction potential vee(r) of these model systems is solely due to
Correlation-Kinetic effects as will be proved in Sect. 3.4.9 [18, 20]. The fact of
the different mappings means that there exist an infinite number of local electron-
interaction potential energy functions vee(r) that can generate a given density ρ(r).

Another important physical point of note is that whether the mapping is from a
ground or excited state of the interacting system, the highest occupied eigenvalue of
the model S system, corresponds to the negative of the ionization potential for that
state [10, 14, 16, 41–43]. This is the case irrespective of whether the S system is in
a ground or excited state. The reason for this is explained in Sect. 3.4.8.

The other critical equations and interpretations governing time-independent Q-
DFT follow.

3.4.3 Quantal Sources

The sources: the electron density ρ(r), Dirac density matrix γs(rr′), and the pair–
correlation density gs(rr′) are defined as in Sect. 3.1.1 as the expectations of the
corresponding Hermitian operators taken with respect to the time-independent Slater
determinant �{φi}. The Fermi hole charge ρx(rr′) is the nonlocal component of
gs(rr′). The pair–correlation density g(rr′) of the interacting system is obtained from
the eigenfunctions ψ(X) of the time-independent Schrödinger equation (3.115) as
g(rr′) = 〈ψ(X)|P̂(rr′)|ψ(X)〉/ρ(r). The Fermi–Coulomb hole charge ρxc(rr′) is the
nonlocal component of g(rr′). The Coulomb hole ρc(rr′) is the difference between
the Fermi–Coulomb and Fermi hole charge distributions. The various sum rules
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satisfied by these sources are the same as those of Sect. 3.1.1. The interacting system
density matrix γ(rr′) is obtained via the eigenfunctions ψ(X) of the Schrödinger
equation (3.115) as the expectation of the density matrix operator as defined in
Sect. 2.2.

3.4.4 Fields

The definitions of the S system electron-interaction Eee,s(r), Hartree EH(r), Pauli
Ex(r), differential densityD(r), and kineticZ s(r)fields are the same as in Sect. 3.1.2
but obtained for stationary-state quantal sources determined as expectations of the
appropriate Hermitian operators taken with respect to the Slater determinant �{φi}
wave function. The definitions of the interacting system electron-interaction Eee(r),
Hartree EH(r), Pauli-Coulomb Exc(r), differential density D(r), and kinetic Z(r)
fields are the same as those of Sect. 2.3. Here the stationary-state quantal sources are
determined as expectations of the requisite operators taken with respect to the wave
function ψ(X) of the time-independent Schrödinger equation (3.115). In a manner
similar to the definitions of Sect. 3.1.2, the Coulomb field Ec(r) is the difference
between the Pauli-Coulomb Exc(r) and Pauli Ex(r) fields; the Correlation-Kinetic
Z tc(r) field is the difference between the kinetic fieldsZs(r) andZ(r) of the model
fermions and the interacting electrons, respectively.

In the time-independent case, in addition to the Hartree field EH(r), the kinetic
field Z s(r) is also conservative: ∇ × EH(r) = 0, and ∇ × Z s(r) = 0, the latter
following from the ‘Quantal Newtonian’ first law of (3.127). The remaining fields
Eee(r),Ex(r),Ec(r),Z(r), and Z tc(r) are in general not conservative. However,
for systems of certain symmetry such as closed–shell atoms, open–shell atoms in
the central field approximation, jellium metal clusters and surfaces, etc., these fields
are separately conservative: ∇ × Eee(r) = 0, ∇ × Ex(r) = 0, ∇ × Ec(r) = 0, ∇ ×
Z(r) = 0, and ∇ × Z tc(r) = 0.

3.4.5 Total Energy and Components

The expressions for the total energy E, and of its components are, of course, the same
as for the time-dependent case. Thus, without any symbolic differentiation between
ground and excited states, we have

E = Ts +
∫

ρ(r)v(r)dr + Eee + Tc, (3.130)

= Ts +
∫

ρ(r)v(r)dr + EH + Ex + Ec + Tc, (3.131)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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where the S system kinetic energy Ts is the expectation

Ts =
∑

σ

∑

i

〈φi(rσ)| − 1

2
∇2|φi(rσ)〉, (3.132)

and where in integral virial form the electron–interaction energy Eee is

Eee =
∫

ρ(r)r · Eee(r)dr, (3.133)

the Hartree or Coulomb self energy EH is

EH =
∫

ρ(r)r · EH(r)dr, (3.134)

the Pauli (exchange) energy Ex is

Ex =
∫

ρ(r)r · Ex(r)dr, (3.135)

the Coulomb energy Ec is

Ec =
∫

ρ(r)r · Ec(r)dr, (3.136)

and the Correlation–Kinetic energy Tc is

Tc = 1

2

∫
ρ(r)r · Z tc(r)dr. (3.137)

Note that these expressions are valid whether or not the individual fields are conser-
vative.

The total energy may also be expressed in terms of the eigenvalues εi of the S
system differential equation (3.126). Multiplying (3.126) by φ∗

i (rσ), summing over
all the fermions, and integrating over spatial and spin coordinates leads to

Ts =
∑

i

εi −
∫

ρ(r)v(r)dr −
∫

ρ(r)vee(r)dr, (3.138)

which on substitution into (3.130) for the total energy E gives

E =
∑

i

εi −
∫

ρ(r)vee(r) + Eee + Tc. (3.139)

Note that as in Hartree [44, 45] and Hartree–Fock [46, 47] theory, E 
=∑i εi. This
is because the model S system accounts for electron correlations due to the Pauli
principle and Coulomb repulsion, and Correlation–Kinetic effects.
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3.4.6 Effective Field F eff(r) and Electron–Interaction
Potential Energy vee(r)

The effective electron–interaction potential energy vee(r) of the model fermions is
the work done to move such a fermion from its reference point at infinity to its
position at r in the force of a conservative effective field F eff(r):

vee(r) = −
∫ r

∞
F eff(r′) · d�′, (3.140)

where
F eff(r) = Eee(r) + Z tc(r). (3.141)

Thiswork done ispath–independent since∇ ×F eff(r)= 0.As in the time-dependent
case, the proof of these statements follows by equating the time-independent ‘Quantal
Newtonian’ first law for the interacting and S systems (see Appendix A and E)
assuming the external potential v(r) and density ρ(r) of the two systems are the
same.

Observe that the expression for the time-independent vee(r) of (3.140, 3.141) is
the same as that of the time-dependent vee(rt) of (3.109, 3.110) of Sect. 3.2 except for
the time factor. Recall that in deriving the time-dependent expression we had ensured
the external potential v(rt) of the interacting and noninteracting systems were the
same. But we had also ensured that the basic variables of the density ρ(rt) and current
density j(rt) of the two systems too were the same. Thus, if the external potential and
the basic variables of the interacting and model systems are ensured to be the same,
thenwithin Q-DFT the only correlations themodel systemmust account for are those
of the Pauli exclusion principle, Coulomb repulsion, and Correlation-Kinetic effects.

Decomposing the electron–interaction field Eee(r) into its Hartree EH(r), Pauli
Ex(r), and Coulomb Ec(r) components, and employing the fact that EH(r) is con-
servative, we may write the potential energy vee(r) as

vee(r) = WH(r) +
(

−
∫ r

∞

[Ex(r′) + Ec(r′) + Z tc(r
′)
] · d�′

)
, (3.142)

where the Hartree potential energy

WH(r) =
∫

ρ(r′)
|r − r′|dr

′. (3.143)

For systems in which the fields Ex(r),Ec(r), andZ tc(r) are separately conservative,
we may write the potential energy vee(r) as the sum

vee(r) = WH(r) + Wx(r) + Wc(r) + Wtc(r), (3.144)
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whereWx(r),Wc(r), andWtc(r) are the work done, respectively, in the force of these
fields:

Wx(r) = −
∫ r

∞
Ex(r′) · d�′, (3.145)

Wc(r) = −
∫ r

∞
Ec(r′) · d�′, (3.146)

Wtc(r) = −
∫ r

∞
Z tc(r

′) · d�′. (3.147)

Each work done is separately path–independent.
Note that if the individual time-dependent and time-independent fields Ex(rt) and

Ex(r), etc., are separately conservative, the expressions for the potential energies
vee(rt) of (3.79) of Sect. 3.1.5 and (3.109, 3.110) of Sect. 3.3 are the same, and
therefore the same as that for vee(r) of (3.140, 3.141) except for the time factor.
Hence, for systems of such symmetry, the model systems must account for only
Pauli, Coulomb and kinetic correlations.

3.4.7 Sum Rules

The sum rules for the effective field F eff(r) are a special case of those derived for
the time-dependent S system, and their proofs are also the same. The stationary state
integral virial theorem is (see (3.92))

Eee + 2Tc =
∫

ρ(r)r · F eff(r)dr, (3.148)

and is the same as for the time-dependent case. So is the zero force sum rule for the
vanishing of the averaged field (see (3.95)):

∫
ρ(r)F eff(r)dr = 0, (3.149)

and of its electron–interaction Eee(r) and Correlation–Kinetic Z tc(r) components
separately. Again, the vanishing of the averaged electron–interaction Eee(r) compo-
nent is attributable to Newton’s third law. That of the Correlation–Kinetic component
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Z tc(r) is not. Finally, in the stationary state case, the averaged torque of the effective
field vanishes (see (3.98)):

∫
ρ(r)r × F eff(r)dr = 0, (3.150)

as do the averaged torque of itsEee(r) andZ tc(r) components separately. Once again,
it is only the vanishing of averaged torque of the electron–interaction component that
may be attributed to Newton’s third law.

3.4.8 Highest Occupied Eigenvalue εm

With the exception of the highest occupied eigenvalue εm, the eigenvalues of the S
systemdifferential equation (3.126), both occupied and unoccupied, have no rigorous
physical interpretation. The highest eigenvalue εm, however, is equal to the negative
of the first ionization potential. This follows from the fact that since the effective
potential energy vs(r) of the model fermions is the same, the asymptotic structure of
the S system orbitals φi(x) in the classically forbidden region is governed by their
respective eigenvalues. Thus, the asymptotic decay of the density for finite systems
for which the eigenvalues are discrete, is due entirely to the highest occupied state
φm(x). Asymptotically, the density is then given by

lim
r→∞ ρ(x) = |φm|2 ∼ exp

[
−2
√−2εmr

]
. (3.151)

A comparison of this expressionwith that derived (2.163) for the asymptotic structure
of the density for the interacting Schrödinger system shows that

εm = −Ik,n = En − EN−1
k , (3.152)

where En,E
N−1
k are the total energies of the interacting N- and (N − 1)-electron

systems in states n and k respectively. Therefore the highest occupied eigenvalue εm
is the negative of the first ionization potential.

Since for the model system, the asymptotic structure of the density is always due
solely to the highest occupied orbital φm, it is irrelevant whether the Q-DFTmapping
is such that the system is in a ground or excited state. The corresponding highest
occupied eigenvalue εm must then invariably be the negative of the first ionization
potential.

http://dx.doi.org/10.1007/978-3-662-49842-2_2


3.4 Time-Independent Quantal Density Functional Theory 99

3.4.9 Proof that Nonuniqueness of Effective Potential Energy
Is Solely Due to Correlation-Kinetic Effects

In the mapping from an interacting system in a ground or excited state to model S
systemswith the same density, it is assumed that the external fieldF ext(r) = −∇v(r)
is the same for both the systems. This in turn leads to the interpretation (3.140, 3.141)
for the corresponding electron-interaction potential energy vee(r)of theS system.The
S systems can be in different states and hencewith different electronic configurations.
It is claimed [48, 49] that excited states, other than the lowest excited state of a given
symmetry different from the ground state, can be mapped to different S systems with
the same configuration. (See [31] for further remarks.) Here we prove [2, 18] that the
vee(r) of the different S systems differ solely in their Correlation-Kinetic component.
The component due to the Pauli exclusion principle and Coulomb repulsion remains
the same.

Consider the mapping from a ground or excited state of the interacting system
with density ρ(r). Next, consider two noninteracting fermion systems S and S′ that
in the presence of the same external field F ext(r) = −∇v(r), reproduce the same
density ρ(r). For the S system, the differential equation and the corresponding local
electron-interaction potential vee(r) are defined by (3.126) and (3.140), respectively.

For the S′ system, the differential equation is

[−1

2
∇2 + v′

s(r)] φ′
i(x) = ε′

iφ
′
i(x), (3.153)

where the corresponding local effective potential energy v′
s(r) is

v′
s(r) = v(r) + v′

ee(r), (3.154)

with v′
ee(r) being the electron-interaction potential energy. The resulting ‘Quantal

Newtonian’ first law is
F ext(r) + F ′int

s (r) = 0, (3.155)

where F ′int
s (r) is the internal field of the S′ model fermions:

F ′int
s (r) = −∇v′

ee(r) − D(r) − Z ′
s(r), (3.156)

with the definitions of the fields D(r) and Z ′
s(r) being the same as in Sect. 3.4.4.

A comparison of (3.155) with the interacting system first law of (2.134) then
yields

v′
ee(r) = −

∫ r

∞
[Eee(r′) + Z ′

tc(r
′)] · d�′, (3.157)

http://dx.doi.org/10.1007/978-3-662-49842-2_2


100 3 Quantal Density Functional Theory

where the Correlation-Kinetic field Z ′
tc(r) is

Z ′
tc(r) = Z ′

s(r) − Z(r). (3.158)

Here Eee(r) andZ(r) are the electron-interaction and kinetic fields of the interacting
system as defined in Chap.2.

The difference between vee(r) and v′
ee(r) of the S and S′ systems is then

vee(r) − v′
ee(r) = −

∫ r

∞
[Z tc(r

′) − Z ′
tc(r

′)] · d�′, (3.159)

or equivalently

vee(r) − v′
ee(r) = −

∫ r

∞
[Z s(r′) − Z ′

s(r
′)] · d�′. (3.160)

Note that both (3.159) and (3.160) are independent of the electron-interaction field
Eee(r). As such the contribution of Eee(r) to vee(r) and v′

ee(r) is the same.
Thus, the difference between the electron-interaction potential energies of the

different S systems arises solely due to the difference in their Correlation-Kinetic or
equivalently their kinetic fields. This completes the proof.

3.5 Application of Q-DFT to the Ground and First Excited
Singlet State of the Hooke’s Atom

We next apply Q–DFT to the ground and first excited singlet states of the Hooke’s
atom (Sect. 2.11). The potential energy v(rt)of themodel fermions due to the external
fieldF ext(rt) is the same as that for the Hooke’s atom, and defined by (2.164). Thus,
as a consequence of theHarmonic Potential theorem (Sect. 2.9), the properties of theS
system for t > t0 are the same as those for the stationary state solution valid for t ≤ t0
but translated by a finite value. Hence, it suffices to describe themappings to the time-
independent S systems.Wemap the stationary ground state of theHooke’s atom to an
S system in its ground state. To demonstrate the arbitrariness of the S system,wemap
the stationary first excited singlet state of the Hooke’s atom to an S system that is also
in a ground state. The mappings are such that the densities, energies, and ionization
potentials of the interacting Hooke’s atom are thereby obtained, with the ionization
potentials being the highest occupied eigenvalue of the S systemdifferential equation.

The properties of the ground state S systems are described in the following sub-
sections [5, 10, 11]. The analytical expressions for these properties are given in
Appendix C.

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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3.5.1 S System Wavefunction, Spin–Orbitals, and Density

In the S system ground state, both the model fermions occupy the same 1s orbital
and have opposite spins. Thus, the two one–particle spin–orbitals are

φ1(x) = ψ(r)α(σ), φ2(x) = ψ(r)β(σ), (3.161)

where the normalized ψ(r) is the spatial part of the spin–orbital, and α(σ),β(σ)

the spin functions. The spin coordinate σ can have only two values ±1. Following
standard convention, the spin functions have only two values 0 and 1 so that α(1) =
1,α(−1) = 0,β(1) = 0,β(−1) = 1. The normalized S systemwavefunction is then
the Slater determinant

�(x1x2) = 1√
2

∣∣∣∣
φ1(x1) φ1(x2)
φ2(x1) φ2(x2)

∣∣∣∣

= 1√
2
ψ(r1)ψ(r2) [α(σ1)β(σ2) − α(σ2)β(σ1)] . (3.162)

As the electrons have opposite spins, the density

ρ(r) = 〈�|ρ̂(r)|�〉

= 1

2

∑

σ1 ,σ2=±1
σ1 
=σ2

∫∫
ψ∗(r1)ψ∗(r2)

[
2∑

i=1

δ(r − ri)

]
ψ(r1)ψ(r2)dr1dr2

× [α(σ1)β(σ2) − α(σ2)β(σ1)]
2

=
∫∫

ψ∗(r1)ψ∗(r2)

[
2∑

i=1

δ(r − ri)

]
ψ(r1)ψ(r2)dr1dr2

= 2ψ∗(r)ψ(r). (3.163)

Thus, the S system orbitals ψ(r) are known in terms of the density ρ(r) as

ψ(r) =
√

ρ(r)
2

. (3.164)

Since the wavefunctions ψ00(r1r2),ψ01(r1r2), and hence the densities ρ00(r), ρ01(r)
of the ground and first excited singlet states of the Hooke’s atom, respectively, are
known, then so are the orbitals of the corresponding ground state S systems. This
allows for all the properties of the S system to be determined exactly.
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3.5.2 Pair–Correlation Density; Fermi and Coulomb Hole
Charge Distributions

The S system pair–correlation density gs(rr′) is

gs(rr′) = 〈�|P̂(rr′)|�〉/ρ(r)

=
√
2

ρ(r)

∫
�∗(x1x2)P̂(rr′)φ1(x1)φ2(x2)dX, (3.165)

where the second step follows as a result of the pair–correlation operator P̂(rr′) being
symmetric. Thus,

gs(rr′)

= 1

ρ(r)

∑

σ1 ,σ2=±1
σ1 
=σ2

∫
ψ∗(r1)ψ∗(r2)

⎡

⎢⎣
2∑

i,j=1
i 
=j

δ(r − ri)δ(r′ − rj)

⎤

⎥⎦

ψ(r1)ψ(r2)dr1dr2 [α(σ1)β(σ2) − α(σ2)β(σ1)]α(σ1)β(σ2)

= 2ψ∗(r)ψ(r)ψ∗(r′)ψ(r′)
ρ(r)

= ρ(r′)
2

. (3.166)

Hence, the pair–correlation density of the two model–fermion S system in its
ground state is independent of electron position r. Since gs(rr′)may also be expressed
as the sum of the density ρ(r′) and the Fermi hole ρx(rr′) (see (3.13)):

gs(rr′) = ρ(r′) + ρx(rr′), (3.167)

it is customary in local effective potential energy theory to define a Fermi hole for
the two model–fermion system in spite of the fact that the fermions have opposite
spin. This Fermi hole is then

ρx(rr′) = −ρ(r′)
2

, (3.168)

and is a local charge distribution independent of electron position. The ground-state
S system Coulomb hole ρc(rr′)which is the difference between the Fermi–Coulomb
ρxc(rr′) and Fermi ρx(rr′) holes is consequently

ρc(rr′) = ρxc(rr′) − ρ(r′)
2

, (3.169)

and it is a nonlocal charge distribution dependent on electron position.
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In Fig. 3.1 the Fermi hole ρx(rr′) for the ground and excited states is plotted. This
charge distribution is spherically symmetric about the nucleus and independent of
electron position.

In Figs. 3.2–3.4 the corresponding ground and excited state Coulomb holes are
plotted for electron positions at r = 0, 0.5, 1, 2, 10, 20, 50, and 200 a.u.The electron
position is along the z–axis corresponding to θ = 0◦. The cross–sections plotted are
those for θ′ = 0◦ with respect to the electron–nucleus direction. The part of the graph
for r′ < 0 is the structure for θ = π and r′ > 0. The electron–electron cusp condition
is clearly evident in the structure of the Coulomb holes as is their dynamic nature
(Figs. 3.2, 3.3). For an electron at the nucleus, the Coulomb holes are spherically
symmetric about the electron (Fig. 3.2a). For other electron positions they are not. For
asymptotic positions of the electron, the Coulomb holes are once again spherically
symmetric about the nucleus (Fig. 3.4). Furthermore, for these electron positions,
they are essentially static charges. Note that at the electron position, the Coulomb
hole for the ground state case is always negative. This is not the case for the excited
state for electron positions near the nucleus. The difference is strictly a consequence
of the definition of the Fermi hole for the two electron model. The center of mass
of the Coulomb holes 〈r′ρc(rr′)〉 is plotted in Fig. 3.5 a,b. It lies along the nucleus–
electron direction, and is on the other side from the electron, approaching the nucleus
asymptotically.

Fig. 3.1 The Fermi hole
charge ρx(rr′) for the ground
and first excited singlet state
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(a) (b)

Fig. 3.2 Cross–section through the Coulomb hole charge ρc(rr′) for the ground and first excited
singlet states. In (a) the electron is at the nucleus r = 0, and in (b) at r = 0.5 a.u. The electron,
indicated by the arrow, is on the z axis corresponding to θ = 0◦. The graphs for r′ < 0 correspond
to the structure for θ = π, r′ > 0

(a) (b)

Fig. 3.3 The same as in Fig. 3.2 but for the electron at (a) r = 1 a.u. and (b) r = 2 a.u.



3.5 Application of Q-DFT to the Ground and First Excited … 105

(b)(a)

Fig. 3.4 Same as in Fig. 3.2 but for but for electron positions at r = 10, 20, 50 and 200 a.u.:
(a) ground state, (b) first excited singlet state

Fig. 3.5 The center of mass
〈r′ρc(rr′)〉 of the Coulomb
hole charge: (a) ground state,
(b) first excited singlet state

(a)

(b)
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3.5.3 Hartree, Pauli, and Coulomb Fields EH(r),Ex(r),
Ec(r) and Energies EH,Ex,Ec

As the interacting and noninteracting system densities are the same, theHartree fields
EH and energies EH too are the same. (See Fig. 2.11 and Tables2.1 and 3.1). For both
the ground and excited states, the field EH(r) decays asymptotically as 2/r2.

The Pauli field Ex(r) for both states is plotted in Fig. 3.6. This field vanishes at
the nucleus because the Fermi hole is spherically symmetric about the electron at
that position. Since the total charge of the Fermi hole is negative unity, it decays
asymptotically as

Ex(r) ∼
r→∞ − 1

r2
. (3.170)

Themerging of the fields asymptotically with the function−1/r2 for both the ground
and excited states is evident in the figure. (The asymptotic structure of the fields
EH(r) and Ex(r) are to Gaussian accuracy.) The Pauli energy Ex for both states as
determined from these fields via (3.135) are quoted in Table3.1. Observe that the
magnitude (and sign) of these energies are a reflection of the magnitude (and sign)
of the corresponding fields.

The asymptotic structure of the Pauli field Ex(r) as given by (3.170) is a general
result valid for finite systems. It is a consequence of the fact that the Fermi hole charge
distribution of total charge unity becomes an essentially static charge localized about
the center of mass of the system for asymptotic positions of the electron.

Fig. 3.6 The Pauli field
Ex(r) for the ground and first
excited singlet state

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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Table 3.1 Q–DFT properties of the ground state S systems which reproduce the density, total
energy, and ionization potential of the ground and first excited singlet states of the Hooke’s atom
in atomic units

Property Ground state S system properties

Mapping from

Ground statea First excited singlet stateb

E 2.000000 2.280775

Ts 0.635245 0.327471

Eext 0.888141 1.052372

EH 1.030250 0.722217

Ex −0.515125 −0.361109

Ec −0.067682 −0.008966

Tc 0.029173 0.548791

εm 1.250000 1.710582
a[5]
b[11]

The Coulomb fields Ec(r) for the ground and excited states are plotted in Fig. 3.7.
As the Coulomb hole ρc(rr′) is spherically symmetric about the electron position
at the nucleus, both fields vanish there. The fields are both positive and negative,
reflecting the fact that the total charge of the Coulomb hole is zero. In the classically
forbidden region, both the Coulomb fields decay asymptotically as

Fig. 3.7 The Coulomb field
Ec(r) for the ground and first
excited singlet state
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Ec(r) ∼
r→∞ − δ

r4
, (3.171)

where the coefficient δ = 4 for the ground state and δ = 15.784129 for the excited
state. The Coulomb energy Ec for these states as determined from the respective
fields via (3.136) are given in Table3.1. For the ground state, the field Ec(r) is an
order of magnitude smaller than Ex(r) and consequently so is the Coulomb energy
Ec in comparison to Ex. For the excited state, the positive part of the field Ec(r) is
large, so that the corresponding Ec is two-orders of magnitude smaller than the Ex.
Thus, as may be expected for the excited state, the Coulomb energy Ec is very small.

3.5.4 Hartree WH(r), Pauli Wx(r), and Coulomb Wc(r)
Potential Energies

The Hartree WH(r), Pauli Wx(r), and Coulomb Wc(r) potential energies, calcu-
lated as the work done in the Hartree EH(r), Pauli Ex(r), and Coulomb Ec(r)
fields, are plotted in Figs. 3.8, 3.9, and 3.10, respectively. As these fields vanish
at the nucleus, the corresponding potential energies have zero slope there. The fields
[EH(r);Ex(r)] are [positive;negative] so that the potential energies [WH(r);Wx(r)]
are monotonic with [negative;positive] slope. In contrast, the potential energyWc(r)
is not monotonic since the field Ec(r) changes sign. Observe that the Coulomb
potential energies Wc(r) are an order of magnitude smaller than their Pauli Wx(r)
counterparts.

The asymptotic structure of these potential energies are

WH(r) ∼
r→∞

2

r
, (3.172)

Wx(r) ∼
r→∞ − 1

r
, (3.173)

Wc(r) ∼
r→∞ − η

r3
, (3.174)

where η = 4/3 for the ground state and η = 5.261376 for the excited state. The
merging of WH(r),Wx(r) with the functions 2/r,−1/r for both states is evident in
Figs. 3.8 and 3.9. The asymptotic structure of Wx(r) is a general result valid for all
finite systems. It is also interesting to note that the functional dependence of the
asymptotic structure of the fields and potential energies are the same for the ground
and excited states. Only the coefficients of the Coulomb field Ec(r) and potential
energy Wc(r) for each state differ.
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Fig. 3.8 The ground-state S
system Hartree potential
energy WH(r) for the ground
and first excited singlet states
of the Hooke’s atom

Fig. 3.9 The ground-state S
system Pauli potential energy
Wx(r) for the ground and
first excited singlet states of
the Hooke’s atom
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Fig. 3.10 The ground-state
S system Coulomb potential
energy Wc(r) for the ground
and first excited singlet states
of the Hooke’s atom

3.5.5 Correlation–Kinetic Field Z tc(r), Energy Tc,
and Potential Energy Wtc(r)

The transformation fromboth the ground andfirst excited singlet states of theHooke’s
atom is to an S system in its ground state. Thus, the corresponding S system kinetic–
energy–density tensor ts,αβ(r; [γs]) for each case is of the form

ts,αβ(r; [γs]) = rαrβ
r2

h(r), (3.175)

where

h(r) = 1

8ρ

(
∂ρ

∂r

)2

. (3.176)

The expression for the interacting system kinetic–energy–density tensor tαβ(r; [γ])
for the ground and excited state is given by (2.184).

For the ground state case, we compare in Fig. 3.11a the off–diagonal elements of
the interacting and noninteracting tensors by plotting the functions f (r) and h(r).
Observe that they are essentially the same, vanishing at the nucleus, and decaying in
a similar manner asymptotically. In Fig. 3.11b we compare the diagonal elements of
the tensors by plotting the functions h(r) and f (r) + 3k(r). Note that the diagonal
element of the interacting system tensor is now finite at the nucleus, and that the
difference in this element between the two tensors occurs in the interior region of the

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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Fig. 3.11 (a) Functions f (r)
and h(r) of the off–diagonal
elements of the interacting
and noninteracting system
kinetic–energy–density
tensors tαβ(r; [γ]) and
ts,αβ(r; [γs]), respectively.
(b) The functions
f (r) + 3k(r) and h(r) of the
diagonal elements of the
tensors tαβ(r; [γ]) and
ts,αβ(r; [γs]), respectively.
These plots are for the
mapping from the ground
state of Hooke’s atom

(a)

(b)

Fig. 3.12 The ground-state
S system kinetic ‘force’ zs(r)
for the mappings from the
ground and first excited
singlet state of the Hooke’s
atom

atom. This then is the region from which the correlation contribution to the kinetic
energy must arise.

The S system kinetic ‘force’ zs(r) for the ground and excited state mappings is
plotted in Fig. 3.12. A comparison with the corresponding figure Fig. 2.14 for the

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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‘force’ z(r) of the interacting system shows the following. For the mapping from the
ground state of Hooke’s atom, the ‘forces’ z(r) and zs(r) are essentially equivalent.
Thus, in this case, the S system kinetic energy Ts is 94% of the interacting system
kinetic energy T (see (3.52)) and Tables2.1 and 3.1). For the transformation from
the excited singlet state to a ground state S system, the ‘force’ zs(r) is much smaller
in magnitude than the interacting system ‘force’ z(r). In this case, therefore, Ts is
only 37% of T (see Tables2.1 and 3.1). (Note that the kinetic energies Ts and T may
also be determined from the corresponding kinetic–energy–density tensors as their
trace is the kinetic–energy–density.)

The Correlation–Kinetic fieldZ tc(r) for the ground and excited state cases is plot-
ted in Fig. 3.13. For the ground state case,Z tc(r) is negligible, so that theCorrelation–
Kinetic energy Tc obtained from this field via (3.137) is only 6% of the interacting
system kinetic energy T. For the excited state case, the situation is dramatically
different: the field Z tc(r) is large, and consequently Tc is 63% of T (see Tables2.1
and 3.1).

For both the ground and excited state cases, the fieldZ tc(r) decays asymptotically
as a positive function:

Z tc(r) ∼
r→∞

κ

r3
− μ

r4
, (3.177)

where κ = 1,μ = −8 for the ground state, and κ = 9.000750,μ = 31.580570 for
the excited state case. (For the ground state, the analytical asymptotic structure of
the ‘forces’ z(r), zs(r), and the density ρ(r), from which that of Z tc(r) is obtained,
is given in Appendix C.)

Fig. 3.13 The ground-state
S system
Correlation–Kinetic field
Ztc (r) for the mapping from
the ground and first excited
singlet states of the Hooke’s
atom

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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Fig. 3.14 The ground-state
S system
Correlation–Kinetic
potential energy Wtc (r) for
the mapping from the ground
and first excited singlet state
of the Hooke’s atom

The structure of the Correlation–Kinetic field Z tc(r) dictates that of the corre-
sponding work done plotted in Fig. 3.14. As the fieldZ tc(r) vanishes at the nucleus,
the potential energy Wtc(r) has zero slope there. For the ground state case, Z tc(r)
is positive, so that Wtc(r) is monotonic with negative slope over all space. For the
excited state case, Z tc(r) is both positive and negative, so that the resulting Wtc(r)
has structure. In both cases, the potential energyWtc(r) is positive throughout space.
In each case, it decays asymptotically as

Wtc(r) ∼
r→∞

α

r2
− β

r3
, (3.178)

where α = 1/2,β = 8/3 for the ground state, and α = 4.500375,β = 10.526857
for the excited state.

From these results we see that for the transformation from the ground state of
an interacting system to an S system in its ground state, Correlation–Kinetic effects
are small and can reasonably be ignored in a first approximation. On the other hand,
for the mapping from an excited state of the interacting system to a ground state
S system, these kinetic correlations are very significant, and must be accounted
for in any approximation. In contrast, for this latter case, Coulomb correlations are
negligible (see Figs. 3.10 and 3.14), and may be neglected in a first approximation.
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3.5.6 Total Energy and Ionization Potential

The total energy E of the ground and first excited state of the Hooke’s atom as deter-
mined from the corresponding ground-state S system energy components of (3.131)
are quoted in Table3.1. The values of E are the same as obtained by Schrödinger
theory for the interacting system given in Table2.1.

The single eigenvalue ε0 of the ground-state S systems,which is also themaximum
eigenvalue εm, corresponds to the negative of the ionization potential for the ground
and excited states of the Hooke’s atom. This eigenvalue may be determined from the
S system differential equation (3.126) via

ε = −1

2

∇2√ρ(r)√
ρ(r)

+ v(r) + vee(r), (3.179)

which is an expression valid for arbitrary r, andwhere the componentsWH(r),Wx(r),
Wc(r), andWtc(r) of vee(r) of (3.144) are as determined in the previous subsections.
Or, it may be determined by substituting the various components of vee(r) into the
differential equation (3.126), and solving numerically for the single zero node orbital
and single eigenvalue. The orbital leads to the density, and the eigenvalue quoted in
Table3.1 is the negative of the ionization potential.

In the case of the mapping from the ground state of Hooke’s atom, both the
Schrödinger wavefunction and the S system orbital are nodeless. In contrast, the
singlet excited state wavefunction has a single node. However, we see via Q–DFT
that it is possible to obtain the density, total energy, and ionization potential of the
excited state from a nodeless ground state S system orbital.

3.5.7 Endnote on the Multiplicity of Potentials

We conclude this section by remarks on the multiplicity of local effective potentials.
It is evident from Q-DFT and the examples above that there exist an infinite number
of local effective potentials that can generate the density of an interacting system of
electrons in a ground or excited state. This is further confirmed by the examples of the
Q-DFT mapping of the ground state Hooke’s atom to an S system in its first excited
singlet state [16], and that of the mapping from the first excited singlet state of the
Hooke’s atom to an S system also in its first excited singlet state [10]. (As it is also
possible to map an interacting system of electrons to one of noninteracting bosons
having the same density, there exists yet another such local effective potential.)

In the literature of the Hohenberg-Kohn-Sham (HKS) [24, 25] density functional
theory, it is stated that there only exists a unique local potential that can generate
the nondegenerate ground state density of an interacting system. HKS theory is a
ground state theory, and as such the mapping can only be to an S system in its ground
state. It then follows from theHohenberg-Kohn theorem, that the corresponding local

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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effective potential must be unique. The theory does not allow for arbitrary mappings
to S systems with different configurations. It is from this constrained perspective
that the statement of uniqueness is made. Similarly, in excited state density func-
tional theory [50], the mapping from the interacting system is to an S system of the
same configuration. Thus, in the context of the configuration-constrained mappings
permissible, traditional density functional theory constitutes a special case ofQ-DFT.

The above remarks are with reference to the mapping from an interacting system
of fermions to one of noninteracting fermions with the same density. Consider now
a system of fermions, either interacting or noninteracting, in some external field
F ext(r) = −∇v(r). The potential v(r) which then generates via the corresponding
Schrödinger equation the nondegenerate ground state density and the density of the
lowest excited state of symmetry different from that of the ground state is unique.
No other potential can generate these densities. This follows, respectively, from
the Hohenberg-Kohn [24] and Gunnarsson-Lundqvist [30, 31] theorems. For other
excited states of this system, however, there exist other potentials different from v(r)
that can generate the same density [31].

3.6 Quantal Density Functional Theory
of Degenerate States

TheQuantal density functional theory of themapping fromboth a degenerate ground
and excited state of the interacting system to one of noninteracting fermions such
that the equivalent density, energy and ionization potential are obtained is given
in [14] and in Appendix A of QDFT2. The cases of both pure state and ensemble
v-representable densities are considered. The reader is referred to these references
for the details, but the following are described in them.

(1) The Q-DFT of the individual degenerate pure state. For the mapping from a
degenerate ground or excited state, the state of the S system is arbitrary in that
it may be in a ground or excited state configuration. In either case, the highest
occupied eigenvalue is the negative of the ionization potential.

(2) For the ground and excited state ensemble cases, two different schemes within
Q-DFT are described: (a) In the first, the corresponding noninteracting system
ensemble density is obtained by constructing g S-systems, where g is the degen-
eracy of the state. Once again, the g S-systems may either be in a ground or
excited state or a combination of the two. (b) In the second, the Q-DFT whereby
the ensemble density is obtained from a single noninteracting fermion system
whose orbitals could be degenerate is described. The construction of this model
system is a consequence of the linearity of the ‘Quantal Newtonian’ first law.
Here the highest occupied eigenvalue is degenerate, and the ensemble density is
obtained from the resulting Slater determinants as described in [51]. Again, for
the mapping from an excited state, the S system may be in a ground or excited
state.
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(3) Examples demonstrating the above mappings within Q-DFT are provided.
(4) The above Q-DFT mappings also provide the rigorous physical interpretations

of the various Kohn-Sham theory [26, 51–53] degenerate state energy-density
and energy-bidensity functionals and of their functional derivatives. (See also
Chap.5.)

3.7 Application of Q-DFT to the Wigner
High-Electron-Correlation Regime
of Nonuniform Density Systems

The state of matter comprised of a low-electron-density gas in the presence of an
external field F ext(r) = −∇v(r) due to a neutralizing uniform positive charge (jel-
lium) background was one originally proposed by Wigner [54, 55]. As the electron
density becomes lower, the kinetic energy of the electrons becomes negligible in
comparison to the electron-interaction potential energy. It is the electron-interaction
termof theHamiltonian that then dominates in the determination of thewave function
and leads to a crystallization of the electronic assembly into a body-centered cubic
structure. In his work, Wigner also determined the correction to the energy due to the
zero-point oscillations of the electrons about the lattice points. The Wigner regime
of the electron gas is thus characterized in the literature by a low electronic den-
sity and an electron-interaction energy that is much greater than the kinetic energy.
This state of matter has been observed experimentally [56–59] in a two-dimensional
electron gas on the surface of liquid helium and in GaAs-GaAlAs heterostructures
in the presence of strong magnetic fields (The Q-DFT in the presence of an external
magnetostatic field is discussed in Chap.9.)

The Hooke’s atom is ideally suited to the application of Q-DFT to the Wigner
regime of a nonuniform electron gas. TheWigner regime is achieved in this model for
weak confinement of the electrons. In contrast, the low-electron-correlation regime is
characterized by a confinement such that the kinetic and electron-interaction energies
are of the same order of magnitude. The force constant of k = 1

4 for the ground state
and k = 0.144498 for the first excited singlet state studied previously corresponds
to this regime (see Table2.1).

A Q-DFT study of the Wigner regime along the lines of Sect. 3.6 has been per-
formed [60, 61] for a value of the force constant k = 3.00891 × 10−4. The corre-
sponding spatial part of the singlet ground-state wave function is

ψ00(r1, r2) = Ne−ωR2
e− 1

4ωs2
[
1 + s

2
+

4∑

j=2

aj

(
s

√
ω

2

)j]
, (3.180)

where R = (r1 + r2)/2, s = r1 − r2, N = 8.94669 × 10−6, ω = √
k = 1.73462 ×

10−2, a2 = 8.274917, a3 = 4.720056, and a4 = 0.879153. The Q-DFT mapping is

http://dx.doi.org/10.1007/978-3-662-49842-2_5
http://dx.doi.org/10.1007/978-3-662-49842-2_9
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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to a ground state of the S system. The results of the study are presented in Table3.2
together with those of the low-correlation regime corresponding to k = 1

4 for pur-
poses of comparison. For the details of the calculations, and the structures of the
various quantal sources, fields, and potentials, the reader is referred to the original
literature. Although there are similarities between the structures of the low- and high-
electron-correlation regimes, there are also significant differences as reflected in the
analysis below of the results in Table3.2.

As noted above, the Wigner high electron correlation regime is characterized
by a low electron density and an electron-interaction energy Eee greater than the
kinetic energy T . The reverse is the case for the low correlation regime. The ratio
Eee/T for the high- and low-correlation regimes is 249.3 and 67.3%, respectively. In
comparisonwith the total energyE, the ratioEee/E is 43.4% and 22.4% respectively.
In fact this trend in the difference is reflected in each component of Eee, i.e., in the
ratios EH/E, Ex/E, and Ec/E.

Table 3.2 Q-DFT values for the total E, kinetic T , correlation-kinetic Tc, noninteracting kinetic
Ts, external Eext , Hartree EH , Pauli Ex , Coulomb Ec, and electron-interaction Eee energies, and
noninteracting system eigenvalue ε in atomic units for the low correlation (k = 1

4 ) [5] and high
correlation (k ≈ 3.00891 × 10−4) regimes [61]. The Q-DFTmapping in each case is from a ground
state of the Hooke’s atom to an S system in its ground state

Property k = 1
4 k ≈ 3.00891 × 10−4

E 2.000000 0.1214235

Eee 0.447443 0.052739

T 0.664418 0.021158

Eee/T 67.3% 249.3%

Tc 0.029173 0.005700

Ts 0.635245 0.015457

Eext 0.888141 0.047527

EH 1.030250 0.151474

Ex −0.515125 −0.075735

Ec −0.067682 −0.022998

ε 1.250000 0.095404

Eee/E 22.4% 43.4%

EH/E 51.5% 124.7%

Ex/E 25.8% 62.4%

Ec/E 3.4% 18.9%

ε/E 62.5% 78.6%

T /E 33.2% 17.4%

Tc/T 4.4% 26.9%

Tc/E 1.45% 4.5%

(Tc + Eee)/E 24% 48%
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A new result discovered by this application of Q-DFT is that in theWigner regime,
not only is the electron-interaction energy Eee very significant, but so is the contribu-
tion of electron correlations to the kinetic energy, viz., the Correlation-Kinetic energy
Tc. Thus, the ratio Tc/T in the Wigner regime is 26.9%, as opposed to 4.4% for the
low-correlation case. The Correlation-Kinetic energy Tc thus constitutes a significant
fraction of the total energy E: the ratio Tc/E is 4.5% in the Wigner regime, whereas
it is only 1.45% in the low-correlation case. The total contribution of electron corre-
lations to the energy E is (Tc + Eee). The ratio (Tc + Eee)/E is 48% for the Wigner
and 24% for the low-correlation regime.

The result for the eigenvalue ε of the model S system is also interesting. This
eigenvalue, as explained previously, being the highest occupied eigenvalue, is the
negative of the ionization potential I . Even though the electrons are more weakly
bound to the nucleus in the Wigner regime, the ratio of this eigenvalue ε to the total
energy E is 78.6%, whereas for the low-correlation case it is 62.5%. Thus, in the
Wigner regime, the removal energy relative to the total energy is also greater than in
the low-electron-correlation case.

Yet another interesting and new result observed is that of the ratio of the kinetic
T to the total energy E is reduced from 33.2% in the low correlation case to 17.4%
in the Wigner regime. The reason for this is the difference of the corresponding
kinetic energy densities t(r). In the Wigner regime, there is a ‘quantal compression’
of the kinetic energy density t(r) towards the nucleus, whereas there is a ‘quantal
decompression’ of t(r) away from the nucleus for the low correlation case (see
Figs. 15 of [61], and 5 of [60] or Fig. 3.11). For an explanation of the concepts of
‘quantal compression’ and ‘quantal decompression’ of the kinetic energy density t(r)
for finite nonuniform density systems which in turn lead to the T /E ratios, see [61].

As the density is further diminished, all the above ratios become even more pro-
nounced relative to the low-correlation systems. In the limit of very low density
(k → 0), the Correlation-Kinetic energy Tc becomes the zero-point energy of the
electrons. Wigner, in his original papers on the uniform electron gas, did explicitly
consider the zero-pointmotion of the electrons. For nonuniform electron gas systems,
it is the Correlation-Kinetic energy Tc that is of significance.

What these results indicate is that in addition to characterizing theWigner regime
by a low density and hence a high value of the electron-interaction energy, the regime
also be characterized by a high Correlation-Kinetic energy.

3.8 Quantal Density Functional Theory of Hartree–Fock
and Hartree Theories

Just as it is possible to construct a Q–DFT for the interacting system defined by the
time-independent Schrödinger equation (2.133), it is also possible to construct a Q–
DFT for Hartree–Fock (HF) and Hartree (H) theories. In other words, it is possible
to construct model systems of noninteracting fermions such that the density and total

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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energy equivalent to those obtained by these theories is obtained. Once again, the
existence of these model systems is an assumption.

In Hartree–Fock Theory, the interacting system wavefunction is assumed to be
a single Slater determinant of spin orbitals, and since the determinant is antisymmet-
ric, electron correlations due to the Pauli exclusion principle are explicitly accounted
for within this framework. The Hartree theory wavefunction, which is assumed to
be a product of spin orbitals is, however, not antisymmetric, and thus does not obey
the Pauli exclusion principle. Instead, the equivalent statement of the principle that
no two electrons can occupy the same state is employed in application of the theory.
In neither Hartree or Hartree–Fock theory are the effects of Coulomb correlations
explicitly incorporated in the wavefunction.

As was the case for the interacting system ground state, a Hohenberg-Kohn the-
orem of the one-to-one relationship between the Hartree-Fock and Hartree theory
ground state densities and the external potential v(r) can be proved [62–64]. Thus, the
Hartree-Fock and Hartree theory wavefunctions are functionals of the corresponding
densities. This then provides a justification for the construction of themodel systems.
There is also the simplification of replacing the integral operator of Hartree–Fock
theory, and the orbital–dependent (individual electron) potential energies of Hartree
theory, by a multiplicative potential energy operator that is the same for all the model
fermions.

In the following subsections the key elements of Hartree–Fock and Hartree the-
ories, and their Q–DFT equivalents, are described. The Q–DFT description is for
both ground and excited states for which the Hartree–Fock theory wavefunction is
a single Slater determinant of spin orbitals, and the Hartree theory wavefunction
a product of them. The spin–orbitals of these wavefunctions are eigenfunctions of
the Hartree–Fock or Hartree theory differential equations. [The symbols φi(x), ρ(r)
in these subsections indicate the HF, H, and Q–DFT orbitals and density as the case
may be.]

The reader is referred to Chaps. 9 and 10 of QDFT2 for the application of the
Q-DFT of Hartree and Hartree-Fock theories, respectively, to atoms and mononeg-
ative ions.

3.8.1 Hartree–Fock Theory

In Hartree–Fock theory, the wavefunction ψ(X) of the interacting system defined by
the Hamiltonian Ĥ of (2.131) is approximated by ψHF(X) which is a Slater determi-
nant �{φi} of spin–orbitals φi(x) = ψi(r)χi(σ):

ψHF(X) = �{φi} = 1√
N ! det φi(rjσj). (3.181)

http://dx.doi.org/10.1007/978-3-662-49842-2_9
http://dx.doi.org/10.1007/978-3-662-49842-2_10
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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From the expectations of the operators ρ̂(r), γ̂(rr′), and P̂(rr′) of (2.12), (2.17)
and (2.28) taken with respect to this wavefunction, we have the HF theory quantal
sources: the density ρ(r), the Dirac spinless single–particle density matrix γHF(rr′),
and the pair–correlation density gHF(rr′) to be

ρ(r) =
∑

σ

∑

i

|φi(x)|2, (3.182)

γHF(rr′) =
∑

σ

∑

i

φ∗
i (rσ)φi(r′σ), (3.183)

and
gHF(rr′) = ρ(r′) + ρHFx (rr′), (3.184)

where the HF theory Fermi hole ρHFx (rr′) is defined as (see (3.14))

ρHFx (rr′) = −|γHF(rr′)|2
2ρ(r)

. (3.185)

As the wavefunction is a Slater determinant, these quantal sources satisfy the sum
rules of Sect. 3.1.1.

The total energy EHF is the expectation of the interacting system Hamiltonian Ĥ
of (2.131):

EHF =
〈
�{φi}|Ĥ|�{φi}

〉
, (3.186)

= THF +
∫

ρ(r)v(r)dr + EHF
ee , (3.187)

where THF and EHF
ee are the HF theory kinetic and electron–interaction energies,

respectively:

THF =
∑

i

∫
ψ∗
i (r)

(
−1

2
∇2

)
ψi(r)dr, (3.188)

EHF
ee = 1

2

∫∫
ρ(r)gHF(rr′)

|r − r′| drdr′. (3.189)

Employing the decomposition of gHF(rr′) given by (3.184) we may write

EHF
ee = EH + EHF

x , (3.190)

where the Hartree energy EH is

EH = 1

2

∫∫
ρ(r)ρ(r′)
|r − r′| drdr′, (3.191)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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and the HF theory exchange or Pauli energy EHF
x is the energy of interaction between

the density and Fermi hole charge:

EHF
x = 1

2

∫∫
ρ(r)ρHFx (rr′)

|r − r′| drdr′. (3.192)

As the energy is a functional of the wavefunction, the best single particle orbitals
φi(x) from the total energy perspective are obtained by application of the varia-
tional principle for the energy [65] employing the approximate wavefunction �{φi}.
This requires the first order variation of the energy, for arbitrary variations of the
wavefunction, to vanish. In HF theory, the orbital φi(x) is varied by an arbitrarily
small amount δφi(x) such that φi(x) → φi(x) + δφi(x), and the stationary condition
written as

δ

⎡

⎣EHF[�] −
N∑

i,j=1

λij〈φi|φj〉
⎤

⎦ = 0, (3.193)

where the λij = λ∗
ji are the Langrange multipliers introduced to satisfy the N(N +

1)/2 orthonormality conditions 〈φi|φj〉 = δij. This leads to the HF equations:

⎡

⎢⎣−1

2
∇2 + v(r) +

N∑

j=1
j 
=i

〈φj|Û|φj〉
⎤

⎥⎦φi(x) −
N∑

j=1
j 
=i

〈φj|Û|φi〉φj(x)

=
N∑

j=1

λijφj(x), (3.194)

where

〈φj|Û|φi〉 =
∑

σ′

∫
φ∗
j (x

′)φi(x′)
|r − r′| dr′ (3.195)

Including the self–interaction term in both the third (Hartree) and fourth (exchange)
components of the left hand side of (3.194) leads to the definition of the Hermitian
exchange operator v̂x,i(x):

v̂x,i(x)φi(x) = −
N∑

j=1

〈φj|Û|φi〉φj(x). (3.196)

The exchange operator is said to be nonlocal because operating with it on φi(x)
depends upon the value of φi(x) throughout all space, not just at x, as is evident
from (3.196). With the inclusion of the self–interaction term, the resulting Hamil-
tonian on the left hand side of (3.194) can be readily shown to beHermitian. Thus, the
Lagrange multipliers may be chosen as λij = εiδij with εi real. This, then leads to the
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Hartree–Fock theory eigenvalue equation, which in terms of the spatial component
ψi(r) is

[
−1

2
∇2 + v(r) + WH(r)

]
ψi(r)

−
N∑

j=1
spin j‖spin i

[∫
ψ∗
j (r

′)ψi(r′)
|r − r′| dr′

]
ψj(r) = εiψi(r), (3.197)

where WH(r) is the Hartree potential energy

WH(r) =
∫

ρ(r′)
|r − r′|dr

′. (3.198)

It is evident from the integro–differential equation (3.197) that theHF theory effective
single particle Hamiltonian is identical for each orbital. (By identical is not meant
the same, i.e. the integral exchange operator term is not multiplicative or local.)

In terms of the HF theory eigenvalues εi, the total energy may then be written as

EHF =
∑

i

εi − EH − EHF
x =

∑

i

εi − EHF
ee , (3.199)

with EH, EHF
x , and EHF

ee as defined above.

3.8.2 The Slater–Bardeen Interpretation of Hartree–Fock
Theory

Hartree–Fock theory may also be provided a physical interpretation that is due to
Slater [22] and Bardeen [66], analogous to that of Hartree theory to be described in
Sect. 3.8.5. By multiplying and dividing the exchange term of (3.197) by ψi(r), it
may be rewritten as

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫

⎛

⎜⎝−
N∑

j=1
spin j‖spin i

ψ∗
j (r

′)ψi(r′)ψj(r)/ψi(r)

⎞

⎟⎠

|r − r′| dr′

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

ψi(r). (3.200)
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The integral in the square parentheses may thus be interpreted as an orbital–
dependent multiplicative ‘exchange potential energy’

vx,i(r) =
∫

ρx,i(rr′)
|r − r′| dr

′, (3.201)

due to the orbital–dependent Fermi hole charge distribution ρx,i(rr′) at r′ for an
electron at r defined as

ρx,i(rr′) = −
N∑

j=1
spin j‖spin i

ψ∗
j (r

′)ψi(r′)ψj(r)

ψi(r)
. (3.202)

The orbital–dependent Fermi hole satisfies the same rules as those of the Fermi hole.
Thus

∫
ρx,i(rr′)dr′ = −1, (for each electron position r) (3.203)

ρx,i(rr) = −ρ(r)/2, (3.204)

ρx,i(rr′) ≤ 0. (3.205)

The Hartree–Fock theory eigenvalue equation (3.197) may then be written as

[
−1

2
∇2 + v(r) + WH(r) + vx,i(r)

]
ψi(r) = εiψi(r), (3.206)

and the theory interpreted as each electron having a potential energy that is the
sum of the external v(r) and Hartree WH(r) potential energies, which are the same
for all the electrons, and an ‘exchange potential energy’ vx,i(r) that depends on the
orbital the electron is in. Thus, Hartree–Fock theory may be thought of as being an
orbital–dependent theory, with each electron having a different potential energy.

In a rigorous sense, the expression for vx,i(r) of (3.201) does not represent a poten-
tial energy for nonuniform electron density systems. This is because, as explained
more fully in Sect. 10.2 on Slater theory, the orbital–dependent Fermi hole ρx,i(rr′)
is a dynamic charge distribution that depends upon the electron position. The expres-
sion would represent a potential energy provided the charge distribution were static
and independent of electron position as is the case for the uniform electron gas.
Additionally, as is evident from its definition, the orbital–dependent Fermi hole and
hence vx,i(r) are singular at the nodes of the orbitals as is the case for atoms. (In
Bardeen’s application [66] of this interpretation to the nonuniform density at metal
surfaces, the orbitals are nodeless.) Nonetheless, the function vx,i(r) represents the
effects of the Pauli exclusion principle, and hence the Slater–Bardeen interpretation
of Hartree–Fock theory as an orbital–dependent one is reasonable. Of course, for
systems for which vx,i(r) is not singular, the interpretation is rigorous.

http://dx.doi.org/10.1007/978-3-662-49842-2_10
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3.8.3 Theorems in Hartree–Fock Theory

There are four theorems of importance with regard to Hartree–Fock theory which
are described next. The reader is referred to the original literature or standard texts
for their proofs.

(i) According to Koopmans’ theorem [67], the eigenvalues εi of HF theory may be
interpreted as removal energies. The proof assumes that the orbitals of the neu-
tral system and those of the resulting ionized system with an electron removed
are the same, and that there is no relaxation of the orbitals of the latter. This
is rigorously the case for a many electron system with extended orbitals as in
a simple metal with s–p band character. Thus, the work function of a metal
as obtained in HF theory is the difference in energy between its barrier height
and Fermi energy [68]. However, for finite systems such as atoms, there is
a relaxation of the orbitals on electron removal. Hence, the interpretation of the
eigenvalues as removal energies is not quite rigorous. Consequently, the high-
est occupied eigenvalue εm of HF theory is not as good an approximation to
the experimental ionization potential as that of local effective potential energy
theories such as the Pauli–correlated approximation of Q–DFT [2, 69]. The
theorem and above remarks are equally valid for the case of the addition of an
electron to the neutral system. As such the highest occupied HF theory eigen-
value of negative ions is again not as accurate [2, 70] as the Pauli–correlated
approximation of Q–DFT when compared to experimental electron affinities.
(See Chap.10 of QDFT2.)

(ii) For external potential energies that vanish at infinity, the orbitals [71] of HF
theory all have the same asymptotic structure ψi(r) ∼

r→∞exp(−√
2εmr), where

εm is the corresponding highest occupied eigenvalue. Thus, all the orbitals con-
tribute to the asymptotic structure of the density in HF theory. Consequently, the
relationship between εm and the experimental ionization potential has meaning
only within the context of Koopmans’ theorem.

(iii) According to Brillouin’s theorem [72], if an electron is in an excited state, the
matrix element of the Hamiltonian Ĥ taken with respect to the excited and
ground state Slater determinants vanishes.

(iv) As a consequence of Brillouin’s theorem, the expectation values of single par-
ticle operators taken with respect to the HF theory ground state wavefunction
are correct to second order [73, 74] as is the energy.

3.8.4 Q–DFT of Hartree–Fock Theory

In this sectionwedescribe theQ–DFTof themodel systemof noninteracting fermions
such that the same density ρ(r) and total energyEHF as that of Hartree–Fock theory is

http://dx.doi.org/10.1007/978-3-662-49842-2_10


3.8 Quantal Density Functional Theory of Hartree–Fock … 125

determined. Again, as for the fully interacting system, the existence of such a model
S system is an assumption. The corresponding S system differential equation is then

[
−1

2
∇2 + v(r) + vHF

ee (r)
]

φi(r) = εiφi(r); i = 1, . . . ,N, (3.207)

where vHF
ee (r) is the effective electron–interaction potential energy which ensures

the orbitals φi(r) generate the HF theory density. Note that these orbitals dif-
fer from the HF theory orbitals, and hence the resulting Dirac density matrix
γs(rr′) =∑σ

∑
i φ

∗
i (rσ)φi(r′σ) is different from γHF(rr′) of (3.183). The diago-

nal matrix element of these density matrices which is the density, however, is the
same. The Q–DFT description of this model S system constitutes a special case of
the fully interacting system case described in Sect. 3.4. Instead of employing the
eigenfunctions ψn(X) of the time-independent Schrödinger equation to define the
quantal sources, fields, and energies, one employs instead the Hartree–Fock theory
Slater determinant ψHF(X) = �{φi} with φi(x) the corresponding orbitals. This is
a consequence of the fact that the HF theory wavefunction ψHF(X) satisfies a ‘Quan-
tal Newtonian’ first law and integral virial theorems [75]. In other words, the form
of the time-independent ‘Quantal Newtonian’ first law (see Appendix A) remains
unchanged with the fields now defined instead in terms of the HF theory quantal
sources. (The satisfaction of the ‘Quantal Newtonian’ first law implies that of the
integral theorem. The fact that the HF theory wavefunction satisfies the integral virial
theorem may also be arrived at independently by scaling arguments [76].) The proof
of the Q–DFT description is thus the same as that for the fully interacting case and
will not be repeated.

WithinQ–DFT, theS systemproperties are as follows. The potential energy vHF
ee (r)

is the work done to move the model fermion in a conservative field FHF(r):

vHF
ee (r) = −

∫ r

∞
FHF(r′) · d�′, (3.208)

where
FHF(r) = EHF

ee (r) + ZHF
tc (r). (3.209)

Here the HF theory electron interaction field EHF
ee (r) is obtained via Coulomb’s law

from the pair–correlation density gHF(rr′) of (3.184):

EHF
ee (r) =

∫
gHF(rr′)(r − r′)

|r − r′|3 dr′ = EH(r) + EHF
x (r), (3.210)

with the Hartree EH(r) and Pauli EHF
x (r) fields being defined as

EH(r) =
∫

ρ(r′)(r − r′)
|r − r′|3 dr′, (3.211)
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and

EHF
x (r) =

∫
ρHFx (rr′)(r − r′)

|r − r′|3 dr′. (3.212)

The Correlation–Kinetic field ZHF
tc (r) is defined as the difference between the non-

interacting system and HF theory kinetic fields:

ZHF
tc (r) = Z s(r) − ZHF(r), (3.213)

where the fields Zs(r) and ZHF(r) are obtained from the corresponding kinetic
‘forces’ zs(r; [γs]) and zHF(r; [γHF]):

Z s(r) = zs(r; [γs])
ρ(r)

and ZHF(r) = zHF(r; [γHF])
ρ(r)

. (3.214)

Thekinetic ‘forces’ in turn are derived from the noninteracting andHF theory kinetic–
energy–density tensors which are defined in terms of the density matrices γs(rr′) and
γHF(rr′), respectively (see (3.35)).

TheHartree fieldEH(r) is conservative. ThePauliEHF
x (r) andCorrelation–Kinetic

ZHF
tc (r) fields in general are not. Thus, the potential energy vHF

ee (r) for arbitrary
symmetry may be written as

vHF
ee (r) = WH(r) +

(
−
∫ r

∞

[EHF
x (r′) + ZHF

tc (r′)
] · d�′

)
, (3.215)

where

WH(r) =
∫

ρ(r′)
|r − r′|dr

′. (3.216)

For systems with symmetry such that the fields EHF
x (r) andZHF

tc (r) are conservative:
∇ × EHF

x (r) = 0,∇ × ZHF
tc (r) = 0, we may write vHF

ee (r) as the sum

vHF
ee (r) = WH(r) + WHF

x (r) + WHF
tc (r), (3.217)

where WHF
x (r) and WHF

tc (r) are the separate work done in the Pauli EHF
x (r) and

Correlation–Kinetic ZHF
tc (r) fields:

WHF
x (r) = −

∫ r

∞
EHF
x (r′) · d�′ and WHF

tc (r) = −
∫ r

∞
ZHF

tc (r′) · d�′. (3.218)

With the potential energy vHF
ee (r) defined as in (3.215) or (3.217), solution of the

S system differential equation generates orbitals φi(x) which lead to the HF theory
density ρ(r).
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The HF theory total energy EHF may be expressed in terms of the individual fields
as

EHF = Ts +
∫

ρ(r)v(r)dr + EHF
ee + THF

c (3.219)

= Ts +
∫

ρ(r)v(r)dr + EH + EHF
x + THF

c , (3.220)

where the S system kinetic energy Ts is the expectation

Ts =
∑

σ

∑

i

〈φi(rσ)| − 1

2
∇2|φi(rσ)〉, (3.221)

and where in integral virial form the electron–interaction energy and its components
are

EHF
ee =

∫
ρ(r)r · EHF

ee (r)dr, (3.222)

EH =
∫

ρ(r)r · EH(r)dr, (3.223)

and

EHF
x =

∫
ρ(r)r · EHF

x (r)dr, (3.224)

and where the HF theory Correlation–Kinetic energy THF
c is

THF
c = 1

2

∫
ρ(r)r · ZHF

tc (r)dr. (3.225)

The model system of noninteracting fermions described above determines the same
density and energy as that of HF theory. As was the case for the fully interacting
system, there is in addition to the electron–interaction term, a Correlation–Kinetic
component to both the potential and total energies of these model fermions. This
latter component is essential to ensuring the equality of the density and energy to
that of HF theory. (Note that the total energy is not determined as the expectation
value of the Hamiltonian takenwith respect to the S system Slater determinant�{φi}.
Since this wavefunction differs from the HF theory determinant, such an expectation
would constitute a rigorous upper bound to the HF theory total energy.)

3.8.5 Hartree Theory

In this approximation, the wavefunction �(X) of the interacting system defined by
the Hamiltonian Ĥ of (2.131) is determined by assuming each electron to move
in the external field, and the average field due to the charge distribution of all the

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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other electrons. Thus, the wavefunction is chosen to be of the form appropriate for
independent particles, i.e. a product of spin orbitals:

�H(X) = �N
i=1φi(x), (3.226)

where φi(x) = ψi(r)χi(σ). With the above assumptions, the Hartree theory differ-
ential equation may be written directly a

⎡

⎢⎣−1

2
∇2 + v((r) +

∑

j
j 
=i

∫
φ∗
j (x

′)φj(x′)
|r − r′| dx′

⎤

⎥⎦φi(x) = εiφi(x);

i = 1, . . . ,N . (3.227)

The corresponding expression for the total energy EH which is the expectation of the
interacting system Hamiltonian Ĥ of (2.131) is

EH = 〈�H|Ĥ|�H〉 = TH +
∫

ρ(r)v(r)dr + EH
ee, (3.228)

with ρ(r) =∑σ

∑
i |φi(rσ)|2 and where TH and EH

ee are the Hartree theory kinetic
and electron–interaction energies, respectively:

TH =
∑

i

∫
ψ∗
i (r)

(
−1

2
∇2

)
ψi(r)dr, (3.229)

EH
ee = 1

2

∑

i,j
i 
=j

∫∫ |ψi(r)|2|ψj(r′)|2
|r − r′| drdr′. (3.230)

In terms of the eigenvalues εi of the Hartree differential equation, the total energy is

EH =
∑

i

εi − EH
ee. (3.231)

Thus, Hartree theory is an orbital–dependent theory in which each electron has a
different potential energy. This is analogous to the Slater–Bardeen interpretation of
Hartree–Fock theory.

TheHartree theorydifferential equationmayalsobe rigorously derivedby applica-
tion of the variational principle for the energy. Thus, minimization of the expectation
EH with respect to arbitrary variations of the spin–orbitals subject to the normal-
ization constraint 〈φi|φi〉 = 1 leads to (3.227) and thereby to the best product type
wavefunction from the energy perspective. The Hartree theory Hamiltonian is Her-
mitian, and therefore the orbitals are orthogonal.

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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The equations of Hartree theory may be expressed in terms of the corresponding
quantal sources by rewriting the density of all but the i th electron as the density of
all the electrons minus that of the i th one:

∑

j
j 
=i

∑

σ

|φj(rσ)|2 = ρ(r) + qi(rσ), (3.232)

where qi(rσ) = −φ∗
i (rσ)φi(rσ). The Hartree theory differential equation is then

[
−1

2
∇2 + v(r) + WH(r) + vSIC

i (r)
]

ψi(r) = εiψi(r), (3.233)

where WH(r) is the Hartree potential energy (see (3.198), and vSIC
i (r) the orbital–

dependent self–interaction–correction (SIC) potential energy due to the static orbital
charge density qi(rσ):

vSIC
i (r) =

∫
qi(r′σ)

|r − r′|dx
′. (3.234)

The Hartree theory pair–correlation density gH(rr′) which is the expectation of the
pair–operator P̂(rr′) (2.28) taken with respect to �H(X) is

gH(rr′) = ρ(r′) + ρSIC(rr′), (3.235)

where ρSIC(rr′) = −∑σ

∑
i qi(rσ)qi(r′σ)/ρ(r). Thus, the Hartree theory electron–

interaction energy EH
ee may be rewritten as

EH
ee = 1

2

∫∫
ρ(r)gH(rr′)

|r − r′| drdr′, (3.236)

= EH + ESIC
H , (3.237)

where EH is the Hartree energy (3.191), and ESIC
H the SIC energy:

ESIC
H = 1

2

∫∫
ρ(r)ρSIC(rr′)

|r − r′| drdr′. (3.238)

In terms of the eigenvalues the total energy is then

EH =
∑

i

εi − EH − ESIC
H , (3.239)

analogous to the total energy expression in HF theory of (3.199).

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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3.8.6 Q–DFT of Hartree Theory

The Q–DFT description of the model S system of noninteracting fermions whereby
the same density ρ(r) and energy EH as that of Hartree theory is obtained, is similar
to the corresponding mappings of Schrödinger theory of the fully interacting system
and of HF theory. The assumption of existence of such an S system leads to the
differential equation for the model fermion spin orbitals φi(x):

[
−1

2
∇2 + v(r) + vH

ee(r)
]

φi(x) = εiφi(x); i = 1, . . . ,N, (3.240)

where vH
ee(r) is the effective electron–interaction potential energy which ensures the

orbitals φi(x) lead to the Hartree theory density. The orbitals φi(x) differ from those
of Hartree theory so that the corresponding Dirac density matrices differ: γs(rr′) =∑

σ

∑
i φ

∗
i (rσ)φi(r′σ) 
= γH(rr′). The diagonal elements of thesematrices, however,

are the same. Once again, the proof of the Q–DFT description is based on the fact
that the Hartree theory wavefunction �H(X) satisfies the ‘Quantal Newtonian’ first
law and the integral virial theorem, with the fields determined from quantal sources
derived from this wavefunction.

Therefore, the potential energy vH
ee(r) is the work done tomove themodel fermion

in a conservative field FH(r):

vH
ee(r) = −

∫ r

∞
FH(r′) · d�′, (3.241)

where
FH(r) = EH

ee(r) + ZH
tc (r). (3.242)

The Hartree electron–interaction field EH
ee(r) is obtained from the pair–correlation

density gH(rr′) of (3.235) via Coulomb’s law:

EH
ee(r) =

∫
gH(rr′)(r − r′)

|r − r′|3 dr′ (3.243)

= EH(r) + ESIC
H (r), (3.244)

with EH(r) the Hartree field (see (3.211), and where the SIC ESIC
H (r) field is:

ESIC
H (r) =

∫
ρSIC(rr′)(r − r′)

|r − r′|3 . (3.245)

The Correlation–Kinetic field ZH
tc (r) is the difference between the noninteracting

and Hartree theory kinetic fields:

ZH
tc (r) = Z s(r) − ZH(r), (3.246)
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where

Z s(r) = zs(r; [γs])
ρ(r)

and ZH(r) = zH(r; [γH])
ρ(r)

, (3.247)

with zs(r; [γs]) and zH(r; [γH]) the corresponding kinetic ‘forces’. These kinetic
‘forces’ are derived from the noninteracting and Hartree theory kinetic–energy–
density tensors defined in terms of the density matrices γs(rr′) and γH(rr′), respec-
tively.

For systems of arbitrary symmetry, the fields EH
ee(r) andZH

tc (r) are not necessar-
ily separately conservative. Their sum always is. But as the Hartree field EH(r) is
conservative, we may write the potential energy vH

ee(r) as

vH
ee(r) = WH(r) +

(
−
∫ r

∞

[ESIC
H (r′) + ZH

tc (r
′)
] · d�′

)
. (3.248)

For systems of symmetry such that ∇ × ESIC
H (r) = 0 and ∇ × ZH

tc (r) = 0, we have

vH
ee(r) = WH(r) + W SIC

H (r) + WH
tc (r), (3.249)

where

W SIC
H (r) = −

∫ r

∞
ESIC
H (r′) · d�′ and WH

tc (r) = −
∫ r

∞
ZH

tc (r
′) · d�′. (3.250)

W SIC
H (r) andWH

tc (r) are the separate path-independentwork done in the fieldsESIC
H (r)

and ZH
tc (r), respectively.

The Hartree theory total energy EH may be expressed in terms of the fields as

EH = Ts +
∫

ρ(r)v(r)dr + EH
ee + TH

c (3.251)

= Ts +
∫

ρ(r)v(r)dr + EH + ESIC
H + TH

c , (3.252)

where Ts is the S system kinetic energy (3.221), and where in integral virial form

EH
ee =

∫
ρ(r)r · EH

ee(r)dr, (3.253)

ESIC
H =

∫
ρ(r)r · ESIC

H (r)dr, (3.254)

TH
c = 1

2

∫
ρ(r)r · ZH

tc (r)dr, (3.255)

and EH is given by (3.223).
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The model S system described above leads to the same density and energy as
obtained from Hartree theory. Once again note that there is a Correlation–Kinetic
component to both the potential energy and total energy of the model fermions. This
component is essential to ensuring the equality of the resulting density and total
energy to that of Hartree theory.

For the application of the Q–DFT of Hartree theory to atoms for the determi-
nation of atomic shell structure and core-valence separation, total energies, and the
satisfaction of the aufbau principle, see Chap.9 of QDFT2.

References

1. V. Sahni, Quantal Density Functional Theory, (Springer-Verlag, Berlin, Heidelberg, 2004)
(Referred to as QDFT1)

2. V. Sahni, Quantal Density Functional Theory II: Approximation Methods and Applications,
(Springer-Verlag, Berlin, Heidelberg, 2010) (Referred to as QDFT2)

3. V. Sahni, Phys. Rev. A 55, 1846 (1997)
4. V. Sahni, Top. Curr. Chem. 182, 1 (1996)
5. Z. Qian, V. Sahni, Phys. Rev. A 57, 2527 (1998)
6. Z. Qian, V. Sahni, Phys. Lett. A 247, 303 (1998)
7. Z. Qian, V. Sahni, Phys. Lett. A 248, 393 (1998)
8. Z. Qian, V. Sahni, Phys. Rev. B 62, 16364 (2000)
9. Z. Qian, V. Sahni, Int. J. Quantum Chem. 78, 341 (2000)
10. V. Sahni, L. Massa, R. Singh, M. Slamet, Phys. Rev. Lett. 87, 113002 (2001)
11. M. Slamet, V. Sahni, Int. J. Quantum Chem. 85, 436 (2001)
12. Z. Qian, V. Sahni, Phys. Rev. A 63, 042 508 (2001)
13. V. Sahni, in Electron Correlations and Materials Properties 2, ed. by A. Gonis, N. Kioussis,

M. Ciftan (Kluwer Academic/Plenum Publishers, New York, 2002)
14. V. Sahni, X.-Y. Pan, Phys. Rev. Lett. 90, 123001 (2003)
15. M. Slamet, R. Singh, L. Massa, V. Sahni, Phys. Rev. A 68, 042504 (2003)
16. V. Sahni, M. Slamet, Int. J. Quantum Chem. 100, 858 (2004)
17. V. Sahni, M. Slamet, Int. J. Quantum Chem. 106, 3087 (2006)
18. V. Sahni, M. Slamet, X.-Y. Pan, J. Chem. Phys. 126, 204106 (2007)
19. X.-Y. Pan, V. Sahni, Phys. Rev. A 80, 022506 (2009)
20. V. Sahni, in Proceedings of the 26th International Colloquium on Group Theoretical Methods

in Physics, ed. by J.L. Birman, S. Catto, B. Nicolescu (Canopus Publishers, 2009)
21. T. Yang, X.-Y. Pan, V. Sahni, Phys. Rev. A 83, 042518 (2011)
22. J.C. Slater, Phys. Rev. 81, 385 (1951)
23. J.C. Slater, T.M. Wilson, J.H. Wood, Phys. Rev. 179, 28 (1969)
24. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)
25. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)
26. W. Kohn, in Highlights of Condensed Matter Theory, ed. by F. Bassani, F. Fumi, M.P. Tosi

(North Holland, Amsterdam, 1985), p. 1
27. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)
28. E.K.U. Gross, J.F. Dobson, M. Petersilka, Top. Curr. Chem. 181, 81 (1996)
29. C.A. Ullrich, Time-dependent Density Functional Theory (Oxford University Press, Oxford,

2012)
30. O. Gunnarsson, B. Lundqvist, Phys. Rev. B 13, 4724 (1976)
31. Y.-Q. Li, X.-Y. Pan, B. Li, V. Sahni, Phys. Rev. A 85, 032517 (2012)
32. R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999)

http://dx.doi.org/10.1007/978-3-662-49842-2_9


References 133

33. J. Schirmer, A. Dreuw, Phys. Rev. A 75, 022513 (2007)
34. N.T. Maitra, R. van Leeuwen, K. Burke, Phys. Rev. A 78, 056501 (2008)
35. J. Schirmer, A. Dreuw, Phys. Rev. A 78, 056502 (2008)
36. X.-Y. Pan, V. Sahni, Int. J. Quantum Chem. 108, 2756 (2008)
37. B.-X. Xu, A.K. Rajagopal, Phys. Rev. A 31, 2682 (1985)
38. A.K. Dhara, S.K. Ghosh, Phys. Rev. A 35, 442 (1987)
39. V. Sahni, X.-Y. Pan, T. Yang (manuscript in preparation)
40. M.K. Harbola, V. Sahni, J. Chem. Educ. 70, 920 (1993)
41. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)
42. M. Levy, J.P. Perdew, V. Sahni, Phys. Rev. A 30, 2745 (1984)
43. C.-O. Almbladh, U. von Barth, Phys. Rev. B 31, 3231 (1985)
44. D.R. Hartree, Proc. Cambridge Philos. Soc. 24, 39 (1928); 24, 111 (1928); 24, 426 (1928)
45. D.R. Hartree, The Calculation of Atomic Structures (John Wiley and Sons, Inc., New York,

1957)
46. V. Fock, Z. Phys. 61, 126 (1930)
47. J.C. Slater, Phys. Rev. 35, 210 (1930)
48. R. Gaudoin, K. Burke, Phys. Rev. Lett. 93, 173001 (2004)
49. P. Samal, M.K. Harbola, A. Holas, Chem. Phys. Lett. 419, 217 (2005)
50. M. Levy, A. Nagy, Phys. Rev. Lett. 83, 4361 (1999)
51. C.A. Ullrich, W. Kohn, Phys. Rev. Lett. 87, 093001 (2001)
52. C.A. Ullrich, W. Kohn, Phys. Rev. Lett. 89, 156401 (2002)
53. A. Nagy, M. Levy, Phys. Rev. A 63, 052502 (2001)
54. E.P. Wigner, Phys. Rev. 46, 1002 (1934)
55. E.P. Wigner, Trans. Faraday Soc. (London) 34, 678 (1938)
56. YuP Monrkha, V.E. Syvokon, Low. Temp. Phys. 38, 1067 (2012)
57. A.V. Chaplik, Zh. Eksp. Teor. Fiz. 62, 746 (1972); Sov. Phys. JETP 35, 395 (1972)
58. R.S. Crandall, R. Williams, Phys. Lett. A 34, 404 (1971)
59. R.S. Crandall, Phys. Rev. A 8, 2136 (1973)
60. D. Achan, L. Massa, V. Sahni, Comp. Theor. Chem. 1035, 14 (2014)
61. D. Achan, L. Massa, V. Sahni, Phys. Rev. A 90, 022502 (2014)
62. M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979)
63. P.W. Payne, J. Chem. Phys. 71, 190 (1979)
64. A. Holas, N.H. March, Y. Takahashi, C. Zhang, Phys. Rev. A 48, 2708 (1993)
65. B.L. Moiseiwitsch, Variational Principles (John Wiley and Sons Ltd, London, 1966)
66. J. Bardeen, Phys. Rev. 49, 653 (1936). (See footnote 18)
67. T. Koopmans, Physica 1, 104 (1933)
68. V. Sahni, C.Q. Ma, Phys. Rev. B 22, 5987 (1980)
69. V. Sahni, Y. Li, M.K. Harbola, Phys. Rev. A 45, 1434 (1992)
70. V. Sahni, Int. J. Quantum Chem. 56, 265 (1995)
71. N.C. Handy, M.T. Marron, H.J. Silverstone, Phys. Rev. 180, 45 (1969)
72. L. Brillouin, Actualités sci. et ind. 71 (1933); 159 (1934); 160 (1934)
73. C. Møller, M.S. Plesset, Phys. Rev. 46, 618 (1934)
74. J. Goodisman, W. Klemperer, J. Chem. Phys. 38, 721 (1963)
75. A. Holas, N.H. March, Top. Curr. Chem. 180, 57 (1996)
76. E.K.U. Gross, E. Runge, O. Heinonen, Many Particle Theory (IOP Publishing, 1991)



Chapter 4
Hohenberg–Kohn, Kohn–Sham,
and Runge-Gross Density Functional
Theories

Abstract The two nondegenerate ground-state theorems of Hohenberg-Kohn (HK)
are described with an emphasis on new understandings of the first theorem (HK1)
and of its proof. Via HK1, the concept of a basic variable of quantum mechanics, a
gauge invariant property knowledge of which uniquely determines the Hamiltonian
to within a constant, and hence the wave functions of the system, is developed. HK1
proves that the basic variable is the nondegenerate ground state density. HK1 is gen-
eralized via a density preserving unitary transformation to prove the wave function
must be a functional of the density and a gauge function of the coordinates in order
for the wave function written as a functional to be gauge variant. A corollary proves
that degenerate Hamiltonians representing different physical systems but yet pos-
sessing the same density cannot be distinguished on the basis of HK1. (This does not
constitute a violation of HK1 as the Hamiltonians differ by a constant.) The primacy
of the electron number N in the proof of the HK theorems is stressed. The Percus-
Levy-Lieb (PLL) constrained-search path from the density to the wave functions is
described. It is noted that the HK path is more fundamental, as knowledge of the
property that constitutes the basic variable, as gleaned from HK1, is essential for the
constrained-search proof of PLL. The Gunnarsson-Lundqvist theorems, the exten-
sion of the HK theorems to the lowest excited state of symmetry different from that of
the ground state are described. The Runge-Gross (RG) theorems for time-dependent
theory, with an emphasis on the first theorem (RG1), are explained. RG1 proves the
basic variables to be the density and the current density. A density preserving unitary
transformation generalizes RG1 to prove the wave function must be a functional of
the density and a gauge function of the coordinates and time. A hierarchy based on
gauge functions thereby exists for the fundamental first theorems of density func-
tional theory. A corollary to RG1 similar to that for the time-independent case is
proved. Kohn-Sham theory, a ground state theory, which constitutes the mapping
from the interacting system to one of noninteracting fermions of the same density,
is formulated. As this mapping is based on the HK theorems, the description of the
model system is mathematical in that the energy is in terms of functionals of the
density, and the local potentials defined as the corresponding functional derivatives.

© Springer-Verlag Berlin Heidelberg 2016
V. Sahni, Quantal Density Functional Theory, DOI 10.1007/978-3-662-49842-2_4

135



136 4 Hohenberg–Kohn, Kohn–Sham, and Runge-Gross …

Introduction

Hohenberg-Kohn, Kohn-Sham, and Runge-Gross density functional theories in an
approximate form are possibly the most extensively employed quantum-mechanical
formalisms for the determination of electronic structure in atomic and condensed
matter physics, and in quantum chemistry. In this chapter we describe the in principle
exact framework of these theories. We begin by explaining the two theorems of
Hohenberg and Kohn (HK) [1]. We also describe new insights gleaned about the
theorems: the primacy of the electron number N to the theory [2]; a corollary to the
first theorem [3], [QDFT1]; and the generalization of the first theorem to arbitrary
density preserving unitary transformations [4], [QDFT2]. The theorems of HK then
constitute the basis of Kohn-Sham density functional theory (KS-DFT) [5]. The
precursor to the HK theorems and KS-DFT is comprised of the work of Thomas
[6], Fermi [7], Dirac [8], von Weizscker [9], and Slater [10]. For a description of the
precursory material, and for the broader context of Hohenberg-Kohn-Sham density
functional theory, the reader is referred to the three original texts on the subject [11–
13], and to a more recent one [14]. Slater theory, and its approximations, will be
described more fully in Chap.10.

The first HK theorem defines the concept of a basic variable of quantummechan-
ics in the context of density functional theory. A basic variable is a gauge invariant
property, knowledge of which determines uniquely the external potential of the sys-
tem, hence the Hamiltonian, and by solution of the Schrödinger equation, the ground
and excited state wave functions. The theorem proves the nondegenerate ground
state density ρ(r) to be a basic variable. The proof is for pure-state v-representable
densities. (These are densities obtained from wave functions that are solutions of
the Schrödinger equation for interacting systems.) The knowledge that this density
is a basic variable is fundamental to local effective potential energy theories such
as KS-DFT and Q-DFT. It is also key [15] to the Percus-Levy-Lieb (PLL) [16–19]
constrained-search framework of density functional theory which in turn expands the
domain of HK theory to N -representable and degenerate ground state densities. The
PLL description of density functional theory will also be described in the chapter.
(In a later chapter, it will be shown that in the added presence of a uniform mag-
netostatic field, the basic variables are the nondegenerate ground state density ρ(r)
and the physical current density j(r) for fixed canonical orbital and spin angular
momentum.)

The fundamental proposition of HK density functional theory, as enunciated by
the first HK theorem, is that all the properties, both ground and excited state, of a
many-electron system in the presence of an external field F ext(r) = −∇v(r), can
be determined exactly from the nondegenerate ground state density ρ(r), the basic
variable. Thus, as will be shown, knowledge of this density uniquely determines the
systemHamiltonian to within a constant, and thereby via solution of the Schrödinger
equation, the ground and excited state wave functions of the system. Hence, HK
density functional theory can be thought of as a means of determining the system
wave functions. This is a profound conclusion, one that constitutes a milestone in the

http://dx.doi.org/10.1007/978-3-662-49842-2_10
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development of quantummechanics. But what this conclusion also achieves is that it
shifts the focus from the time-independent Schrödinger theory wave function to that
of the system ground state density ρ(r). (The PLL constrained-search method is also
a means of determining the Hamiltonian, and thereby the system wave functions,
from the ground state density ρ(r). The method, however, requires [15] the a priori
knowledge that the nondegenerate ground state density ρ(r) is the basic variable, a
fact gleaned from the first HK theorem.)

As knowledge of the nondegenerate ground state density ρ(r) determines the
wave functions of the system, thewave functions are functionals of this density.Wave
functions and Hamiltonians are gauge variant [20] quantities whereas the density is
gauge invariant. By a density preserving unitary transformation [4], [QDFT2] it is
shown that the wave function must also be a functional of a gauge function. It is
this dependence on the gauge function which ensures that when the wave function
is written as a functional it is gauge variant. This also shows that the HK proof
is generalized to be valid for each choice of the gauge function. The theorem as
originally enunciated is recovered when the gauge function is replaced by a constant.
Since for different gauge functions, the physical system remains unchanged, the
choice of a vanishing gauge function is equally valid.

As the wave function is a functional of the density ρ(r), properties of the system,
obtained as expectation values of Hermitian operators, are unique functionals of this
density. The energy is thus such a functional. The second HK theorem which is the
application of the variational principle to the energy functional, (for arbitrary varia-
tions of the density), then leads to the Euler-Lagrange equation for the nondegenerate
ground state density ρ(r). Since the kinetic and electron-interaction energy compo-
nent functionals of the total energy functional are unknown, they are approximated
in the Euler equation. This then harks back to the Thomas, Thomas-Fermi, Thomas-
Fermi-Dirac, and Thomas-Fermi-Dirac-von Weizsacker approximations, the equa-
tions of which then constitute special cases of the exact Euler-Lagrange equation for
the density. The inclusion of terms of higher-order in the gradients of the density for
both the kinetic and electron-interaction energy components then makes the solution
of the corresponding approximate Euler-Lagrange equation formidable.

Yet another point of note is that in HK density functional theory, the role of the
electron number N is primary [2]. The first HK theorem is proved and valid only
for fixed N . Further, with regard to the second HK theorem, the variational densities
must be such as to integrate to the electron number N . Thus, one must know N
prior to solving the Euler-Lagrange equation for the density. (In the chapter on the
added presence of a uniform magnetostatic field, which constitutes a new degree of
freedom, it will be seen that the parameters characterizing the system are the electron
number N and the canonical orbital angular momentum L and spin momentum S.)

The HK theorems are valid for arbitrary interaction between the electrons. Hence,
the theorems are equally applicable to noninteracting fermions in their ground state.
The energy of the model fermions is once again a functional of the density, and as
such there exists a corresponding Euler-Lagrange equation for the density. KS-DFT



138 4 Hohenberg–Kohn, Kohn–Sham, and Runge-Gross …

employs the fact that solution of this Euler-Lagrange equation is equivalent to solv-
ing the S system set of single-particle Schrödinger equations for the noninteracting
fermions.With the kinetic energy of the noninteracting fermions treated exactly, their
potential energy is defined via the equivalence to the Euler-Lagrange equation as the
functional derivative of the remaining component of the total energy functional taken
with respect to the density. Hence, the KS-DFTmapping from the interacting system
of electrons to the model S system having the same density ismathematical in that it
is a description in terms of energy functionals of the density and of their functional
derivatives. This description of the S system therefore differs fundamentally from
that of the physical ‘classical’ fields and quantal sources perspective of Q-DFT. The
existence of the S system within KS-DFT is, once again, an assumption. Hohenberg-
Kohn andKohn-Sham density functional theories are ground state theories. Thus, the
mapping within KS-DFT is always from the ground state of the interacting system
to an S system that is also in its ground state.

Within Schrödinger theory the variational principle is also applicable to the lowest
excited state of a given symmetry different from that of the ground state. In the
variational procedure, one then restricts the approximate wave functions to have the
given excited-state symmetry, and the lowest state of that symmetry is achieved by
energyminimization without any orthogonality constraints imposed on the trial wave
functions. The trial wave functions are automatically orthogonal to the exact ground
state wave function. A corresponding HK theorem for such states can therefore
be proved. The proof is for v-representable densities derived from wave functions
that have the given excited-state symmetry. Hence, knowledge of the density ρe(r)
for such an excited state then also determines the external potential v(r) uniquely to
within a constant, and thereby the Hamiltonian. Thus, the density ρe(r) is also a basic
variable of quantummechanics. This is referred to as theGunnarsson-Lundqvist (GL)
theorem [21, 22]. The excited-state wave function is a functional solely of the density
ρe(r), and of course of a gauge function to ensure that when written as a functional
it is gauge variant. The GL theorem is valid for each choice of gauge function. In
addition, all properties are also unique functionals of the density ρe(r).

For other excited states, it is known [21, 23, 24] that there is no equivalent of
the HK theorem. In other words there is no one-to-one relationship between these
excited-state densities ρe(r) and the external potential v(r). As knowledge of the
densityρe(r) of such excited states does not uniquely determine the external potential
v(r), the implication is that there could exist several potentials v(r) for which the
corresponding Schrödinger equations all generate the same excited-state density
ρe(r). The reader is referred to [22] for an example of the satisfaction of the GL
theorem, and for a demonstration of the multiplicity of potentials for excited states
other than the lowest excited state.

In spite of the fact that there is no equivalent of the HK theorem for other than
the lowest excited state of a symmetry that differs from that of the ground state,
the constrained-search approach has been generalized to the individual excited state
[24, 25]. The many-body effects are incorporated in a bidensity energy functional
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of the exact ground density and the excited state densities. The local potential in
the corresponding KS-DFT is then the functional derivative of this bidensity energy
functional. The mapping from the excited state of the interacting system to the model
system of noninteracting fermions is always to one in an excited state having the same
electronic configuration. References to other work on excited states in the context of
DFT are given in [25].

Time-dependent density functional theory (TD-DFT) is based on the extension
by Runge and Gross (RG) [26–28] of the first HK theorem to the time domain. The
theorem is valid for external fieldsF ext(rt) = −∇v(rt) such that the corresponding
potential energy v(rt) is Taylor expandable about some initial time t0. The basic
ideas parallel those of time-independent theory but with one important difference.
The RG theorem shows that in addition to the TD density ρ(rt), the current density
j(rt) as defined by (2.39–2.42) is also a basic variable i.e., knowledge of either ρ(rt)
or j(rt) uniquely determines the external potential v(rt) to within a TD function
C(t). Unlike TD Q-DFT in which it is possible to map the interacting system to an
S system of noninteracting fermions having either the same density ρ(rt) or one
with the same density ρ(rt) and current density j(rt), the focus of TD DFT is solely
on the density ρ(rt). In the time-independent case, the existence of the S system of
noninteracting fermions with the same density ρ(r) is an assumption. In TD DFT
there is the van Leeuven theorem [28, 29] based on the ‘Quantal Newtonian’ second
law [30–32] of (2.75) that purports to prove that such a system exists provided the
initial state of the model system reproduces the density and its derivative at the
initial time t0. (As noted in the Introduction to the previous chapter, there has been a
critique of this existence theorem, and a response to the critique [4, 33–37].) Again
paralleling the energy functional of the density ρ(r) and the variational principle for
the energywithin time-independent theory, RG introduced an action functional of the
density ρ(rt) and the stationary-action principle. The potential energy of the model
fermions is consequently defined as the functional derivative of the corresponding
component of the action functional. It turns out [38] that there is at present no action
functional of v-representable densities whose functional derivative corresponds to
the potential energy of the noninteracting fermions. (In TD DFT, a v-representable
density ρ(rt) is one derived from the solution of the TD Schrödinger equation in
which the external potential energy v(rt) is Taylor expandable.) An action functional
for a broader class of densities that satisfies the constraints on such an action integral
has, however been constructed [39–41]. For more recent developments in TD DFT,
the reader is referred to [28]. A brief description of the principal tenets of TD DFT is
given in the chapter. New insights into the RG theorem are described: a corollary [3],
[QDFT1] to the theorem; and its generalization [4], [QDFT2] via a time-dependent
density preserving unitary transformation.

Finally, it has been proved [42, 43] that for electrons in an external time-dependent
electromagnetic field, the basic variables are the time-dependent density ρ(rt) and
physical current density j(rt). A Q-DFT for such systems has been developed [44].

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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4.1 The Hohenberg–Kohn Theorems

The Hohenberg-Kohn (HK) theorems are proved for a system of N electrons in an
external electrostatic field F ext(r) = E(r) = −∇v(r). This then is the definition
employed (within non-relativistic quantum mechanics) of matter: atoms, molecules,
solids, clusters, lower dimensional systems such as heterojunctions, quantum dots,
graphene, etc. The Hamiltonian ĤN of this system of electrons in atomic units (e =
� = m = 1) is the sum of its kinetic T̂ , electron-interaction potential energy Û , and
external potential energy V̂ operator:

ĤN (R) = T̂ + Û + V̂ , (4.1)

where

T̂ = −1

2

N∑

i=1

∇2
i ; Û = 1

2

N∑

i �= j

1

|ri − r j | ; V̂ =
N∑

i=1

v(ri ), (4.2)

with R = r1, . . . , rN .
The corresponding Schrödinger equation is (see (2.133))

ĤNψn(X) = Enψn(X), (4.3)

with [ψn(X), En] the antisymmetric N electron eigenfunctions and eigenenergies,
respectively; X = x1, . . . , xN and x = rσ with r and σ the spatial and spin coordi-
nates. The energies En are the expectation

En = 〈ψn(X)|ĤN |ψn(X)〉, (4.4)

and the density ρn(r) the expectation

ρn(r) = 〈ψn(X)|ρ̂(r)|ψn(X)〉, (4.5)

with ρn(r) the Hermitian density operator of (2.12). The density integrates to the
electron number N : ∫

ρn(r)dr = N (4.6)

The HK theorems are proved for the nondegenerate ground state designated as
{ψ(X), E, ρ(r)}. The theorems are valid for arbitrary external potential v(r) and
electron number, but proved for fixed N . Following the statement and proof of the
first HK theorem we discuss the implications of the theorem.

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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4.1.1 The First Hohenberg-Kohn Theorem

The statement of the first theorem of Hohenberg and Kohn is the following:

Theorem 1 The nondegenerate ground state density ρ(r) determines the external
field E(r) or equivalently the external potential v(r) to within a trivial additive
constant.

Proof The theorem is proved for nondegenerate ground state densities that are
constrained to be v-representable. A density is said to be v-representable if it is
obtained from an antisymmetric ground state wave function of the time-independent
Schrödinger equation (4.3) for arbitrary external potential v(r).

Consider the case of nondegenerate ground states.With the kinetic T̂ and electron-
interaction Û potential energy operators known, different external fields with poten-
tial energy operators V̂ = ∑

i v(ri ) lead via solution of the time-independent
Schrödinger equation to different ground state wavefunctionsψ . (Note that the exter-
nal potential energies are not restricted to being Coulombic.) This defines the map
C between the potential energies v(r) and the wavefunctions ψ (see Fig. 4.1). These
different ground state wavefunctions then lead via (4.5) to different ground state
densities ρ(r). This establishes the map D between wavefunctions and densities (see
Fig. 4.1). The combination (CD) of themapsC andD thenmaps each potential energy
v(r) to a ground state density ρ(r).

The statement of Theorem1 is that the map (CD) is invertible. In other words, the
inverse map (CD)−1 ensures that the ground state density ρ(r) then determines the
external potential energy v(r) towithin an additive constant. To prove the invertibility
of map (CD), the separate inverse maps C−1 and D−1 must exist (see Fig. 4.1). That
is, for each ground state wavefunction ψ , there corresponds one potential energy
v(r). And for each ground state density ρ(r) there exists only one ground state
wavefunction ψ .

To show the invertibilityC−1 of map C, what needs be proved is that two different
external potential energy operators V̂ and V̂ ′ that differ by more than a constant such
that V̂ �= V̂ ′ + constant, must lead to different ground state wavefunctions ψ andψ ′.
The Schrödinger equations for the operators V̂ and V̂ ′ are

Ĥψ = (T̂ + Û + V̂ )ψ = Eψ, (4.7)

Fig. 4.1 Maps relating the correspondence between external potential energies, ground state wave-
functions, and ground state densities
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and
Ĥ ′ψ ′ = (T̂ + Û + V̂ ′)ψ ′ = E ′ψ ′, (4.8)

where E and E ′ are the respective ground state energies. Now if ψ = ψ ′, then on
subtraction we have

(V̂ − V̂ ′)ψ = (E − E ′)ψ. (4.9)

As the operators V̂ and V̂ ′ are multiplicative (local), the above equation reduces to

V̂ − V̂ ′ = E − E ′. (4.10)

Since (E − E ′) is a constant, (4.10) contradicts the assumption that V̂ and V̂ ′ must
differ by more that a constant. Thus, for every ground state wavefunction ψ there
corresponds a potential energy v(r), and the inverse mapC−1 is established. A bijec-
tive relationship between v(r) and the nondegenerate ground stateψ is consequently
proved. The explicit manner by which v(r) is obtained from ψ is via the ‘Quantal
Newtonian’ first law as described in Sect. 2.10. (See also Sect. 4.3.)

To show the invertibility D−1 of map D, one must employ the conclusions of Map
C, i.e. that there exists only one ψ for each v(r). One assumes there exists a ψ and
ψ ′ with ψ �= ψ ′ generated from different v(r) and v′(r), respectively, to prove then
that ρ(r) �= ρ ′(r). From the variational principle for the energy we have

E = 〈ψ |Ĥ |ψ〉 < 〈ψ ′|Ĥ |ψ ′〉. (4.11)

The inequality in (4.11) is justified by our assumption of considering nondegenerate
ground states. To see this, recall that according to the variational principle, for ψ ′ �=
ψ , the energy E ≤ 〈ψ ′|Ĥ |ψ ′〉. Thus, if E = 〈ψ ′|Ĥ |ψ ′〉, then Hψ ′ = Eψ ′, in
contradiction of the assumption of nondegeneracy of the ground state. Now

〈ψ ′|Ĥ |ψ ′〉 = 〈ψ ′|T̂ + Û + V̂ ′ + V̂ − V̂ ′|ψ ′〉
= 〈ψ ′|Ĥ ′|ψ ′〉 + 〈ψ ′|V̂ − V̂ ′|ψ ′〉
= E ′ +

∫
ρ ′(r)[v(r) − v′(r)]dr, (4.12)

so that (4.11) becomes

E < E ′ +
∫

ρ ′(r)[v(r) − v′(r)]dr. (4.13)

Similarly
E ′ = 〈ψ ′|Ĥ ′|ψ ′〉 < 〈ψ |Ĥ ′|ψ〉, (4.14)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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so that in this instance we obtain

E ′ < E +
∫

ρ(r)[v′(r) − v(r)]dr. (4.15)

(Note that the densities ρ(r) and ρ ′(r) are v–representable as they are obtained from
the solutions of the Schrödinger equation (4.3).) On adding the two inequalities with
the assumption that ρ(r) = ρ ′(r), then leads to the contradiction

E + E ′ < E + E ′. (4.16)

This proves that for each nondegenerate ground state density ρ(r), there exists one
and only one ground state wavefunction which would give rise to this density, and
hence the inverse map D−1 is established. A bijective relationship between the non-
degenerate ground state ψ and the density ρ(r) is thus proved.

(Note, however, that there exist an infinite number of antisymmetric N–particle
functions ψρ(X) that can lead to the ground state density. Methods for constructing
N–particle functions that yield a particular density ρ(r) are described byGilbert [45],
Harriman [46], and Cioslowski [47].) It is also possible to construct [48] antisym-
metric functions ψρ(X) that are functionals of functions χ , i.e. ψρ(X) = ψρ[χ ](X)

that also reproduce a given density ρ(r).
Having proved the existence of the inverse maps C−1 and D−1, the inverse map

(CD)−1 ensures that there is a one–to–one correspondence between ground state
densities ρ(r) and external potential energies v(r). That is, for each nondegenerate
ground state density ρ(r), there exists only one external potential energy v(r) that
leads to this density. Theorem1 is thus proved.

4.1.2 Implications of the First Hohenberg-Kohn Theorem

The following are some implications and consequences of the first HK theorem.
1. The first HK theorem can be interpreted as a method for determining the system

wave functions ψn(X) from the nondegenerate ground state density ρ(r). This is
the HK path [15] from the density ρ(r) to the Hamiltonian Ĥ(R) of the system.
Knowledge of the density ρ(r) uniquely determines the external potential v(r) to
within a constant, and since for fixed electron number N , the kinetic T̂ and electron-
interaction potential Û operators are assumed known, so is the Hamiltonian to within
a constant. Solution of the Schrdinger equation (4.3) then leads to both the ground
and excited state wave functions ψn(X) of the system. The HK path in equation
form is

ρ(r) → v(r) → Ĥ(R). (4.17)
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Tounderstand thismapping, consider the case of theCoulomb external potential v(r).
The electron number N is obtained from the ground state density ρ(r) by integration
via (4.6), and the potential v(r) via the first HK theorem. The cusps in the electron
density which satisfy the electron-nucleus coalescence condition (see Sect. 2.10.2)
determine the positions of the nuclei and their charge Z . With the kinetic T̂ and
potential Û energy operators known, knowledge of N and v(r) then fully determines
the Hamiltonian Ĥ of (4.1).

2. The statement of the first HK theorem is the basis of the concept of a basic
variable of quantummechanics. A basic variable is a gauge invariant propertywhose
knowledge uniquely determines the external potential. As there is a bijective relation-
ship between the nondegenerate ground state density ρ(r) and the external potential
v(r), the density ρ(r) constitutes a basic variable. (It is this HK definition of a basic
variable that must then be employed to determine the corresponding gauge invariant
properties when the electrons are subjected to an added external magnetostatic field.
The corresponding proof [49] for nondegenerate states with fixed canonical angular
momentum will be given in Chap. 8.)

3. The fact that knowledge of the nondegenerate ground state density ρ(r) deter-
mines the wave functions ψn(X) means that the wave functions are functionals of
the density: ψn(X) = ψn[ρ(r)]. Now the wave functions ψn(X) are gauge variant
[20] whereas the density ρ(r) is gauge invariant. By a density preserving unitary
transformation [4], it will be shown in Sect 4.2 that the wave functions must also be
functionals of a gauge function α(R), i.e. ψn(X) = ψn[ρ(r), α(R)]. In this manner,
the wave functions written as functionals will then be gauge variant. Such a unitary
transformation also generalizes the first HK theorem to external potential energy
operators, that in addition to the standard scalar potential energy operator v(r) also
include the momentum and curl-free vector potential energy operators. The theorem
as originally formulated by HK then constitutes a special case of this generalization.
Since for different gauge functions α(R), the physical system remains unchanged,
the choice of vanishing gauge function is equally valid. As such the expectation of
any operator Ô is a unique functional of the density:

〈Ô〉 = On[ρ(r)] = 〈ψn[ρ(r)]|Ô|ψn[ρ(r)]〉. (4.18)

Thus the energy En which is the expectation value of the Hamiltonian Ĥ(R) is a
functional of the density; En = En[ρ(r)].

Note that although Theorem1 establishes the fact that the wave function is a
functional of the ground state density ρ(r), it does not, however, prescribe the explicit
dependence of ψn(X) on ρ(r). Hence, all the unique expectation value functionals
On[ρ(r)] are unknown.

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_8
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4.1.3 The Second Hohenberg-Kohn Theorem

The statement and proof of the second Hohenberg-Kohn theorem are given below.

Theorem 2 The nondegenerate ground state density ρ(r) can be determined from
the ground state energy functional E[ρ] via the variational principle by variation
only of the density.

Proof The ground state energy E which is a functional of the density is

E ≡ E[ρ] = 〈ψ[ρ]|Ĥ |ψ[ρ]〉. (4.19)

Consider a trial v–representable ground state density ρ̃(r). From Theorem1, this
density determines the corresponding external potential energy ṽ(r), and via the
resulting Hamiltonian the trialwavefunction ψ̃[ρ̃]. Equivalently, ψ̃[ρ̃] is determined
from the inverse map D−1. From the variational principle for the energy it follows
that

Ẽ ≡ E[ρ̃] = 〈ψ̃[ρ̃]|Ĥ |ψ̃[ρ̃]〉 > E for ρ̃(r) �= ρ(r)

= E for ρ̃(r) = ρ(r). (4.20)

Thus, the ground state density ρ(r) can be obtained by minimization of the func-
tional E[ρ] for arbitrary variations δρ(r) of v–representable densities. Introducing
a Lagrange multiplier μ to ensure particle number conservation (

∫
ρ(r)dr = N ),

the stationary point is achieved via the variational principle at the vanishing of the
first–order variation:

δ

{
E[ρ] − μ

[∫
ρ(r)dr − N

]}
= 0. (4.21)

Equivalently, the ground state densitymaybe obtained from the correspondingEuler–
Lagrange equation

δE[ρ]
δρ(r)

= μ. (4.22)

This proves Theorem2. �

Separating out the external potential energy component, the ground state energy
functional E[ρ] may be written as

E[ρ] =
∫

ρ(r)v(r)dr + FHK[ρ], (4.23)

where the functional
FHK[ρ] = 〈ψ[ρ]|T̂ + Û |ψ[ρ]〉. (4.24)



146 4 Hohenberg–Kohn, Kohn–Sham, and Runge-Gross …

Observe, that FHK[ρ] is independent of the external potential energy operator, and
depends only on the kinetic T̂ and electron–interaction Û operators. The functional
FHK[ρ] is thus universal in that it is the same functional for all electronic systems.
Furthermore, it is a functional of v–representable densities. However, as the explicit
functional dependence of ψ on ρ(r) is unknown, the functional FHK[ρ] is unknown.

An important point of note is that the Lagrange multiplier μ in the Euler–
Langrange equation (4.22) has the physical interpretation of being the chemical
potential. The proof is as follows. The chemical potential μ(N ) is a number that
depends on the electron number N. It represents the change in energy E (N ) with
respect to N :

μ(N ) = ∂E (N )

∂N
. (4.25)

If ρ(N )(r) is the solution of (4.22) for anN–electron systemwith ground state energy
E[ρ(N )], then the energy difference

E (N+ε) − E (N ) = E[ρ(N+ε)] − E[ρ(N )]
=

∫
δE[ρ]
δρ(r)

|ρ(N ) (ρ(N+ε)(r) − ρ(N )(r))dr. (4.26)

Employing (4.22), the right hand side reduces to

= μ(N )

∫
(ρ(N+ε)(r) − ρ(N )(r))dr

= μ(N )(N + ε − N ) = μ(N )ε, (4.27)

so that lim
ε→0

(E (N+ε) − E (N ))/ε = μ(N ), which is the desired result.

Finally, the requirement that in the Euler-Lagrange equation (4.21) one employs
only v-representable densities is stringent. The conditions for a density to be v-
representable are derived [12, 14, 18, 50–55] for extensions of the universal func-
tional FHK [ρ]. For v-representability in a lattice system see [56, 57]. The reader is
referred to the literature in traditional DFT for further details.

4.1.4 The Primacy of the Electron Number
in Hohenberg-Kohn Theory

In HK DFT, a key parameter defining the physical system and the consequent basic
variable, the nondegenerate ground state density ρ(r), is the electron number N . The
density ρ(r) integrates to the electron number N :

∫
ρ(r)dr = N . (4.28)
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(In a later chapter, we will see that in the added presence of a uniform magnetostatic
field, another parameter—the canonical orbital angularmomentum—is also essential
for both the description of the system aswell as the properties that constitute the basic
variables.) Here we discuss [2] the primacy of the electron number N in HK theory.

As we have seen, in the proof of the HK Theorem 1, the kinetic T̂ and electron-
interaction potential Û energy operators are assumed known and kept fixed. It is for
arbitrary local or scalar external potential energy v(r) operators that the proof is
formulated. Thus, since the system is comprised of N electrons, the ground state
energy E is a functional of the electron number N and the external potential energy
operator v(r):

E = 〈ψ(X)|ĤN |ψ(X)〉 (4.29)

= E[N , v]. (4.30)

The statement of HK Theorem 1 that there is a one-to-one correspondence between
v-representable nondegenerate ground state densities ρ(r) and the external potential
energy operators v(r) to within an additive constant C :ρ(r) ↔ v(r) + C , is only
valid for fixed N .

Employing this theorem, the energy E of (4.30)may then be seen to be a functional
of the electron number N and the ground state density ρ(r):

E = E[N , ρ]. (4.31)

This is an equivalent statement of the postulate that the energy E is aunique functional
of the ground state density ρ(r). The explicit dependence of the energy E on the
electron number N is retained in (4.31) to emphasize its role.

Traditionally, inHKDFT, the electron number N in (4.31) is replacedby
∫

ρ(r)dr.
By this replacement, the explicit dependence on N is thereby removed. (It is later
reintroduced as a constraint in the Euler-Lagrange equation (4.21) for the density.)
Thus, in stating that the energy E is a unique functional of the ground state density
ρ(r), it is the sole dependence on the ground state density that is emphasized. Thus,
the energy E is written as

E

[ ∫
ρ(r)dr, ρ(r)

]
= E[ρ] =

∫
ρ(r)v(r)dr + FHK [ρ], (4.32)

with FHK [ρ] defined by (4.23).
The functional FHK [ρ] is universal in the sense that it is independent of both

the electron number N and the external potential energy operator v(r). Note the
following with regard to the energy functional E[ρ] of (4.32):

(i) The functional E[ρ] via the first term on the right hand side of (4.32) depends
explicitly on the choice of v(r).

(ii) For an N -electron system, the v-representable densities employed in the
functional E[ρ] must all integrate to the electron number N . This is the constraint
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employed in the application of the HK Theorem 2 according to which the variational
principle for the energy may be applied to the functional E[ρ] in terms of arbitrary
variations of the density ρ(r) + δρ(r). On introducing the Lagrange multiplier μ,
one obtains the Euler-Lagrange equation (4.21) for the density. The v-representable
densities employed in the variational procedure are such that

∫
δρ(r)dr = 0. The

minimum of the energy E[ρ] is achieved for the true ground state density ρ(r). The
Lagrange multiplierμ, which was shown to be the chemical potential in the previous
section, is determined by the self-consistent solution of the Euler-Lagrange equation
(4.21) and the constraint to N -electron number of (4.28).

The above remarks make clear that in spite of the fact that the energy E is a unique
functional of the ground state density ρ(r), and that the functional FHK [ρ] is uni-
versal, the knowledge of both v(r) and N remains fundamental to the determination
of the energy E of a system. This is the case even if the universal functional FHK [ρ]
were known. Hence, in essence, one has returned to the original representation of the
energy as a functional of N and v(r) of (4.30). The operator v(r)may be replaced by
the density ρ(r) via the HK Theorem 1 as in (4.31), but this density must integrate to
N . Thus, in HK DFT, the role of the electron number N is primary. One must know
N prior to solving the Euler-Lagrange equation for the density ρ(r), and from this
density the energy E from E[ρ].

4.2 Generalization of the Fundamental Theorem
of Hohenberg-Kohn

The fundamental theorem of Hohenberg and Kohn (Theorem 1), of the bijectivity,
between the nondegenerate ground state density ρ(r) and the Hamiltonian Ĥ(R) to
within a constant C i.e., ρ(r) ↔ Ĥ(R) +C , is proved for the Hamiltonian Ĥ(R) of
(4.1) and (4.2), where R = r1, . . . , rN .

In this Hamiltonian, the external potential energy operator V̂ = ∑
i v(ri ) is a

scalar. Furthermore, in the proof of the theorem it is assumed that the kinetic energy
T̂ and electron-interaction potential energy Ŵ operators are known. (The symbol
Û of (4.2) is replaced here by Ŵ .) Thus, in the proof, these operators are kept
fixed. The theorem is then proved by considering different external potential energy
operators V̂ .

We generalize the theorem of bijectivity by a density preserving unitary transfor-
mation of the Hamiltonian Ĥ(R) to Hamiltonians Ĥ ′(R) which in addition to the
scalar potential energy v(r) operator also include the momentum p̂ and a curl-free
vector potential energy Â(r) operator.
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4.2.1 The Unitary Transformation

To generalize the fundamental theorem we perform a unitary transformation of the
Hamiltonian Ĥ(R). The unitary operator Û we employ is

Û = eiα(R), (4.33)

so that the transformed wave function ψ ′(X) is

ψ ′(X) = Û †ψ(X), (4.34)

and the transformed density ρ ′(r) is

ρ ′(r) =< ψ ′(X)|ρ̂(r)|ψ ′(X) >= ρ(r). (4.35)

The unitary transformation thus preserves the density.
The transformed Hamiltonian Ĥ ′(R) is

Ĥ ′(R) = Û † Ĥ(R)Û , (4.36)

so that the transformed time-independent Schrödinger equation is

Ĥ ′(R)ψ ′(X) = E ′ψ ′(X), (4.37)

with E ′ = E of (4.3). In a unitary transformation, the eigen energies remain
unchanged. (That E ′ = E also follows from the fact that the eigen energies E
are unique functionals of the ground state density ρ(r). As the density ρ(r) is invari-
ant in this unitary transformation, the eigen energies of the Hamiltonian Ĥ(R) and
Ĥ ′(R) are the same.)

We next obtain the transformed Hamiltonian Ĥ ′(R). From (4.36)

Ĥ ′(R) = e−iα(R)
∑

i

(
−1

2
∇2
i

)
eiα(R) + V̂ + Ŵ . (4.38)

Since
[∇2, eiα] = ∇2eiα − eiα∇2, (4.39)

the Hamiltonian Ĥ ′(R) is

Ĥ ′(R) = −1

2

∑

i

{
e−iα(R)[∇2

i , e
iα(R)] + ∇2

i

} + V̂ + Ŵ (4.40)
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or

Ĥ ′(R) = Ĥ(R) − 1

2

∑

i

{
e−iα(R)[∇2

i , e
iα(R)]} . (4.41)

Next we determine the commutator of (4.40). Employing the commutator rela-
tionship [∇2, f (r)

] = ∇2 f (r) + 2∇ f (r) · ∇, (4.42)

we have [∇2, eiα
] = ∇2eiα + 2∇eiα · ∇. (4.43)

With ∇eiα = ieiα∇α, then

∇2eiα = ∇ · ∇eiα

= −eiα(∇α)2 + ieiα∇2α. (4.44)

Thus, the commutator

[∇2, eiα
] = −eiα(∇α)2 + ieiα∇2α + 2ieiα∇α · ∇, (4.45)

and therefore
e−iα

[∇2, eiα
] = −(∇α)2 + i∇2α + 2i∇α · ∇. (4.46)

Employing the vector identity

∇ · (Cφ) = ∇φ · C + (∇ · C)φ, (4.47)

we have
∇ · (∇α) = ∇α · ∇ + ∇2α, (4.48)

so that
∇2α = ∇ · ∇α − ∇α · ∇. (4.49)

Therefore, on substituting (4.48) into (4.45), we have

e−iα
[∇2, eiα

] = −(∇α)2 + i∇ · ∇α + i∇α · ∇. (4.50)

Hence, the transformed Hamiltonian Ĥ ′(R) of (4.40) may be expressed as

Ĥ ′(R) = Ĥ(R) + 1

2

∑

i

(
p̂i · Âi + Âi · p̂i + Â2

i

)
, (4.51)
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where p̂i = −i∇i is the momentum operator, and where the vector potential energy
operator is defined as Âi = ∇iα(R) so that ∇ × Ai = 0. (It is implicit that for the
transformed system, the boundary conditions too are transformed.)

Note that by writing the transformed Hamiltonian Ĥ ′(R) as in (4.51), we empha-
size the fact that the operators T̂ and Ŵ are the same as those of the untransformed
Hamiltonian Ĥ(R) of (4.1)–(4.2). Thus, we preserve the Hohenberg-Kohn assump-
tion that the operators T̂ and Ŵ are fixed.

It is evident that Ĥ ′(R) may also be written as

Ĥ ′(R) = 1

2

∑

i

(
p̂i + Âi

)2 + V̂ + Ŵ . (4.52)

Note that as is the case for the Hamiltonian Ĥ(R), there is no magnetic field in the
transformed Hamiltonian Ĥ ′(R). The vector potential energy operator Âi as defined
above is curl-free.

As we have performed a unitary transformation, the physical system described
by Ĥ ′(R) and Ĥ(R) is the same. That Ĥ ′(R) and Ĥ(R) represent the same physical
systemmay also be seen by performing the following gauge transformation of Ĥ(R)

to obtain Ĥ ′(R). Rewriting Ĥ(R) as

Ĥ(R) = 1

2

∑

i

(
p̂i + Âi

)2
∣∣∣∣
Âi=0

+ V̂ + Ŵ , (4.53)

such that B = ∇ × Ai = 0, we make the transformation Âi → Â′
i = Âi + ∇iα(R)

with Âi = 0 so that B′ = ∇ × Â′
i = 0. One then reobtains the Hamiltonian Ĥ ′(R) as

written in (4.51). It is well known in quantum mechanics [20] that the above gauge
transformation for a Hamiltonian with nonzero but finite magnetic field B leaves the
Schrödinger equation invariant provided the wave functions are related by the gauge
transformation α(R) as in (4.34).

4.2.2 New Insights as a Consequence of the Generalization

As a consequence of the unitary transformation, there are several new insights that are
achieved with regard to the theorem of bijectivity between the ground state density
ρ(r) and the Hamiltonian Ĥ(R) of a system: ρ(r) ↔ Ĥ(R). We describe here these
insights together with other clarificatory remarks.

1. TheHamiltonian Ĥ ′(R)of (4.51), (4.52) obtained from thegauge functionα(R)

is the most general form of the Hamiltonian for which the Hohenberg-Kohn theorem
is valid. This Hamiltonian includes not only a scalar potential energy operator v(ri )
but also the momentum operator p̂i = −i∇i and a curl-free vector potential energy
operator Âi = ∇iα(R). The bijectivity of the fundamental theorem in its general
form is represented pictorially in Fig. 4.2. The figure shows that the bijectivity is
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Fig. 4.2 The generalization of the fundamental theorem of Hohenberg and Kohn demonstrating
the bijectivity between the nondegenerate ground state density ρ(r) and the Hamiltonians Ĥ(R)

and Ĥ j (R) representing that physical system. The figure is drawn for the most general form of
the time-independent theorem for which the gauge function is α j (R). The theorem as originally
enunciated is recovered when α(R) = α, a constant

ρ(r) ↔ Ĥ(R) with Ĥ(R) of (4.1)–(4.2), or equivalently ρ(r) ↔ Ĥ ′
j (R) with

Ĥ ′
j (R) of (4.51), (4.52), depending on the choice of the gauge function α j (R). It is

emphasized that the Hamiltonian Ĥ(R) and Hamiltonians Ĥ ′
j (R) all correspond to

the same physical system.
2. TheHohenberg-Kohn theorem as originally enunciated is recovered as a special

case when α(R) = α, a constant (see (4.51) and Fig. 4.2). (As an aside we point out
that the more general statement of the bijectivity between the density ρ(r) and the
wave function ψ(X), as proved and then employed in the proof of the fundamental
theorem, is that the latter is known to within a phase factor α.) Note, that for the
special case α(R) = α, there is no constant C present in (4.51). Of course, this
must be so because in this case Ĥ ′

j (R) = Ĥ(R), and the energies E ′ and E are
equivalent. Therefore the constant C of the Hohenberg-Kohn theorem is arbitrary
and extrinsically additive. This has also been the understanding since the advent of the
theorem. Put another way, the bijectivity ρ(r) ↔ Ĥ(R) or ρ(r) ↔ Ĥ(R)+C is for
the same physical system since the constant C simply adjusts the energy reference
level. (Note that as will be explained in the Corollary in Sect. 4.8.1, it is possible
to construct an infinite number of degenerate Hamiltonians {H} that differ by an
intrinsic constant C , represent different physical systems, and which all possess the
same density ρ(r). In this case, the density ρ(r) cannot distinguish between the
different physical systems, and consequently the theorem of bijectivity is no longer
valid.)
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3. It becomes evident from the above unitary or gauge transformation that in
the general case the wave function ψ(X) must be a functional of both the density
ρ(r) as well as the gauge function α(R) i.e., ψ(X) = ψ[ρ(r);α(R)]. If the wave
function ψ(X) was solely a functional of the density ρ(r), then that wave function
as a functional of the density would be gauge invariant because the density is gauge
invariant. However, it is well known in quantummechanics [20] that the Hamiltonian
Ĥ and wave function ψ(X) are gauge variant. It is the functional dependence of the
wave function functional on the gauge function α(R) that ensures it is gauge variant.

4. Because the bijectivity is between the density ρ(r) and the Hamiltonian rep-
resentation of the physical system Ĥ(R), Ĥ(R) + C , or Ĥ ′

j (R) (see Fig. 4.2), the
choice of gauge function is arbitrary. Thus the choiceα(R) = 0 is equally valid. This
provides a deeper understanding of the fundamental theorem of Hohenberg-Kohn.
In their original paper [1] they state: “Thus, v(r) is (to within a constant) a unique
functional of ρ(r); since, in turn, v(r) fixes H we see that the full many-particle
ground state is a unique functional of ρ(r).” (Our emphases). The statement implies
that the many-particle ground state wave function written as a functional is gauge
invariant. However, we now understand that their statement is consistent with the
fact that the choice of gauge function α(R) = 0 is valid.

5. As a point of information we note that the two Hohenberg-Kohn theorems can
be derived employing the original reductio ad absurdum argument for a general form
of the Hamiltonian Ĥ = Ĥ0 + V̂ , where V̂ is a local potential energy operator, and
Ĥ0 any Hermitian operator defined on the Hilbert space of quadratically integrable
functions. The only requirement that Ĥ0 must have is that it be bounded from below
and have normalizable eigen functions. The Hamiltonian Ĥ0 could contain a mag-
netic field or a vector potential with vanishing or non-vanishing curl. This form of the
generalization of the theorem to be derived in Chap.8 differs from the generalized
form derived via the unitary transformation in a fundamental way. For different Her-
mitian operators Ĥ0, the Hamiltonian Ĥ corresponds to different physical systems,
and therefore to different ground state densities. In the generalization derived via the
unitary transformation, the physical system is unchanged and therefore the density
is preserved.

6. As noted previously, the Hohenberg-Kohn theorems can be proved for different
Hamiltonians Ĥ as for example when different potential energy operators Ŵ such as
the Coulomb or Yukawa interactions are employed. Thus, one can state that the wave
functionψ(X) is a functional of the operator Ŵ . The physical systems corresponding
to different Ŵ are different, and hence the density for these different Hamiltonians
will be different. However, it is important to note that in proving theHohenberg-Kohn
theorems, the operator Ŵ is assumed known and kept fixed throughout the proof.
Hence the statement that the wave function ψ(X) is a functional of both the ground
state density ρ(r) and the gauge function α(R) is valid for each Hamiltonian Ĥ with
a fixed electron-interaction operator Ŵ .

In conclusion it is reiterated that in the most general case when the gauge function
is α(R), the functional dependence of the wave function ψ(X) on the gauge func-
tion is important because the corresponding Hamiltonian Ĥ ′(R) of (4.51) explicitly
involves the gauge function via the momentum p̂i and curl-free vector potential

http://dx.doi.org/10.1007/978-3-662-49842-2_8
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energy Âi operators. This functional dependence hence also enhances the signifi-
cance of the phase factor in density functional theory in a manner similar to that of
quantum mechanics. The understanding that the wave function ψ(X) is a functional
of both the density ρ(r) and the gauge function α(R) is fundamental.

4.3 Inverse Maps

In the proof of the first Hohenberg-Kohn theorem, the paths of the maps C and D (see
Fig. 4.1) are well defined. For map C, the Schrödinger equation is solved for each
external potential energy operator V̂ to determine the corresponding nondegenerate
ground state wave function ψ . For map D, the density ρ(r) is then obtained from ψ

via its definition as the expectation of the density operator. The question we address
next is what are the specific paths for the inverse mapsC−1 and D−1? In other words,
what is the path from the wave function ψ to the external potential v(r), and from
the density ρ(r) to the wave function ψ?

One approach to the path from the wave function ψ to the external potential v(r)
is to obtain the latter by inversion of the Schrdinger equation: V̂ = [(T̂ + Û )ψ]/ψ
to within a constant.

There is, however, another path from ψ to v(r) that is physically insightful. This
path follows from the ‘Quantal Newtonian’ first law of (2.134) and (2.135). Thus,
(see 2.136), the external potential v(r) is the work done to move an electron from
some reference point at infinity to its position at r in the force of the conservative
internal field F int[ψ](r) experienced by the electrons:

v(r) =
∫ r

∞
F int[ψ](r′) · d�′ (4.54)

where
F int[ψ](r) = Eee(r) − D(r) − Z(r), (4.55)

with the electron-interaction Eee[ψ](r), differential density D[ψ](r), and kinetic
Z[ψ](r) fields being functionals of the wave function ψ via their respective quantal
sources which are expectations of Hermitian operators taken with respect to ψ .
These fields, the corresponding ‘forces’, and the quantal sources defined previously
inChap.2 are noted here again for completeness. The electron-interactionfieldE ee(r)
and ‘force’ eee(r):

Eee(r) = eee(r)
ρ(r)

; eee(r) =
∫

P(rr′)(r − r′)
|r − r′|3 dr′, (4.56)

with P(rr′) = 〈ψ |P̂(rr′)|ψ〉 the pair function being the quantal source; the differ-
ential density field D(r) and ‘force’ d(r), with the density ρ(r) the quantal source:

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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D(r) = d(r)
ρ(r)

; d(r) = −1

4
∇∇2ρ(r), (4.57)

and the kinetic field Z(r) and ‘force’ zα(r):

Z(r) = z(r; [γ ])
ρ(r)

; zα(r) = 2
∑

β

∂

∂rβ
tαβ(r; [γ ]), (4.58)

with the kinetic-energy-density tensor

tαβ(r) = 1

4

[
∂2

∂r ′
α∂r ′′

β

+ ∂2

∂r ′
β∂r ′′

α

]
γ (r′r′′)

∣∣∣∣
r′=r′′=r

, (4.59)

and where γ (rr′), the reduced single particle density matrix, is the quantal source.
Note that the work done (4.54) is path-independent. Hence, the path of the inverse
map C−1, whereby for each nondegenerate ground state wave function ψ there
corresponds a potential energy v(r), is now defined. For examples of the inverse
map C−1, and applications of the expression (4.54), see Figs. 2.16 and 2.17.

A consequence of the first HK theorem (see Sect. 4.1.2), is that the nondegenerate
ground state wave function ψ is a functional of the density ρ(r), i.e. ψ = ψ[ρ]. As
also noted there, the explicit dependence of ψ on ρ(r) is unknown. Hence, for the
inversemap D−1, there is no explicit formulawhereby the ground statewave function
ψ can be determined from the ground state densityρ(r), as is the case of (4.54) for the
inverse map C−1 between ψ and v(r). There is, however, a related question that can
be answered. Consider a ground state wave functionψ and the corresponding density
ρ(r). As there exist an infinite number of antisymmetric functions ψρ that integrate
to this density, how then does one determine the true ground state wave function ψ

from amongst these functions? The answer to this query leads to the Percus-Levy-
Lieb [15–19] constrained-search path from the density ρ(r) to the wave function
ψ and to the Hamiltonian Ĥ . This path, to be described in the following section,
is predicated on the a priori knowledge that the density ρ(r) is a basic variable of
quantum mechanics. The attributes of this path are that it generalizes the first HK
theorem to N -representable densities and degenerate states.

4.4 The Percus-Levy-Lieb Constrained-Search Path

As we have seen, the first Hohenberg-Kohn (HK) theorem constitutes a path (see
(4.17)) from the nondegenerate ground state density ρ(r) of a system to its Hamil-
tonian Ĥ . There is a second independent path—the constrained-search path—from
ρ(r) to Ĥ due to Percus-Levy-Lieb [15–19] (PLL). Although in the literature, the
HK and PLL paths are considered at par with each other, the HK proof is more
fundamental, and this is the case in general when the electrons are subject to other

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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external fields such as a magnetostatic field. The reason for this is that it is solely via
the proof of bijectivity between the external potentials and certain gauge-invariant
properties of the system that determines what constitutes the basic variables of quan-
tummechanics. Consequently, the PLL proof, which requires the a priori knowledge
of what the basic variables are, is dependent on the conclusions of an HK-type proof
of bijectivity, and is therefore less fundamental. However, once the basic variable has
been identified—the nondegenerate ground state density ρ(r)—the PLL path shows
that it is valid for degenerate ground states and N -representable densities, hence
broadening the scope of the first HK theorem.

The PLL path from the ground state density ρ(r) to Ĥ begins with the answer to
the question raised at the end of the previous section, viz. of the infinite antisymmetric
functions ψρ that generate ρ(r), how does one then determine which of these is the
true ground state wave function ψ . The answer is as follows. From the variational
principle for the energy we have that

〈ψρ |Ĥ |ψρ〉 ≥ 〈ψ |Ĥ |ψ〉 = E, (4.60)

or equivalently

〈ψρ |T̂ + Û |ψρ〉 +
∫

v(r)ρ(r)dr ≥ 〈ψ |T̂ + Û |ψ〉 +
∫

v(r)ρ(r)dr, (4.61)

which in turn is equivalent to

〈ψρ |T̂ + Û |ψρ〉 ≥ 〈ψ |T̂ + Û |ψ〉. (4.62)

Thus, of all the antisymmetric functionsψρ that lead to the ground state density ρ(r),
the true ground state wave function ψ is that which minimizes the expectation value
〈T̂ + Û 〉. This then can be construed as the mechanism for the inverse map D−1.
This mechanism is referred to as the constrained search path from the density ρ(r)
to the wave function ψ . The search is over all antisymmetric functions ψρ that are
constrained to integrate to the ground state density ρ(r).

A comparison of the right hand side of (4.62)with the universal functional FHK [ρ]
of (4.24) shows them to be equivalent. Hence, the functional FHK [ρ] may be given
the interpretation

FHK [ρ] = inf
ψρ→ρ

〈ψρ |T̂ + Û |ψρ〉, (4.63)

where the notation inf
ψρ→ρ

means that one searches for the smallest (infimum) value

of the expectation 〈T̂ + Û 〉 taken with respect to all the antisymmetric functions ψρ

that lead to the ground state density ρ(r). (The set {ψρ} is a subset of all functions
ψ that could be employed in the expectation. The least value of the expectation for
the subset {ψρ} is the infimum.) This infimum can be shown to be a minimum [18].
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Recall that the variational principle for the energy functional E[ρ] as enunci-
ated by the second HK theorem (see (4.21)), the densities to be varied were v-
representable. As also noted, the requirement of v-representability is stringent. The
constrained-search definition of FHK [ρ] of (4.63), however, expands the domain of
applicability of the second HK theorem to N -representable densities. To see this,
one rewrites the variational principle for the energy for all N -particle functions ψ as
two nested infima. Thus, the ground state energy E which is

E = inf
ψ

〈ψ |T̂ + Û + V̂ |ψ〉 (4.64)

may be written as

E = inf
ρ(r)

[
inf

ψρ→ρ(r)
〈ψρ |T̂ + Û + V̂ |ψρ〉

]
, (4.65)

where the inner infinum is now restricted to all N -particle antisymmetric functions
ψρ that yield a given ρ(r), and the outer infinum is a search over all ρ(r). Separating
out the external potential energy component, the energy is then

E = inf
ρ(r)

[
inf

ψρ→ρ
〈ψρ |T̂ + Û |ρ〉 +

∫
v(r)ρ(r)dr

]
(4.66)

which on employing (4.63) is

E = inf
ρ(r)

[
FHK [ρ] +

∫
v(r)ρ(r)dr

]
(4.67)

= inf
ρ(r)

E[ρ], (4.68)

with E[ρ] defined by (4.23). The variations in (4.68) are thus over all N -representable
densities.

The conditions for a density to be N -representable are those of nonnegativity,
normalization, and continuity:

ρ(r) ≥ 0;
∫

ρ(r)dr = N ;
∫

|∇ρ(r)
1
2 |2dr < ∞. (4.69)

Thus far, when we have referred to a N -representable density, we have stated that
it is derived from an N -particle antisymmetric function. However, note that since
the density does not contain any information about the Pauli exclusion principle, the
same density could correspond to a fermion or boson system.Hence, the functionsψρ

need not be restricted to being antisymmetric. They could equally well be symmetric
or lack a symmetry. Thus, the constrained-search arguments are valid for a far broader
class of functions.
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We next address the constrained-search path from the ground state density ρ(r)
to the Hamiltonian Ĥ . As explained previously, of all the antisymmetric functions
ψρ that yield the density ρ(r), the true wave function ψ is the one that yields the
density ρ(r) and obtains the infinum of the expectation value of T̂ + Û :

inf
ψρ→ρ

〈ψρ |T̂ + Û |ψρ〉. (4.70)

This expectation value is independent of the external potential v(r). Nowaccording to
Levy [19], asψ cannot be an eigenfunction of more than one Ĥ with a multiplicative
potential, it follows that ρ(r) determines Ĥ uniquely within an additive constant.
More explicitly, as the operators T̂ and Û are known, the path from ψ to Ĥ requires
knowledge of the external potential v(r). But with ψ known, the potential v(r) may
be obtained by the inverse map C−1 as described by (4.54) of Sect. 4.3. Hence, the
constrained-search path is

ρ(r) → ψ → v → Ĥ . (4.71)

Note that if more than one ψ satisfies (4.69), then these functions all give the same
ground state energy. Thus, when degeneracies exist, the constrained-search path of
(4.71) is still valid. Hence, the PLL path encompasses the case of degenerate ground
states.

Finally, as noted above, the PLL constrained-search proof for the determination
of the wave function ψ (see 4.70) is independent of the external potential v(r). This
is a key attribute of the proof. But the proof requires the a priori knowledge that ρ(r)
is the basic variable. After all the constrained search is over allψρ that yield ρ(r) and
not some other property. As a consequence, there is an implicit dependence of the
proof on the external potential. This follows from HK via the bijective relationship
between the external potential and the basic variable: knowledge of the ground state
density ρ(r) uniquely determines v(r) to within a constant. Thus, the PLL proof
is intrinsically connected to the specific physical system of interest as defined by
the external potential in spite of the fact that one is searching for the infinum of
the expectation value of the operators T̂ + Û . In this manner, the first HK theorem
provides a deeper perspective into the PLL constrained-search proof.

4.5 Kohn–Sham Density Functional Theory

Kohn–Sham density functional theory (KS–DFT) is based on the Hohenberg-Kohn
(HK) theorems, and constitutes an alternate description of the mapping from the
interacting system to one of noninteracting fermions with the same density ρ(r)—
the S system. As (HK) theory is a ground state theory, the mapping can only be from
a nondegenerate ground state of the interacting system to an S system also in its
ground state.
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The starting point of the theory is the assumption of existence of the S system.
This assumption is referred to as noninteracting v–representability. The assumption
and terminology mean that the interacting system v–representable densities are also
noninteracting v–representable. However, as was the case for the interacting system,
the weaker constraint of N–representability suffices.

The basic equations defining the S system are the same as those of Q–DFT of
Sect. 3.4. It is the expressions for the total energy E and the electron–interaction
potential energy vee(r), however, that differ in the two theories. The S systemHamil-
tonian is

Ĥs = T̂ + V̂s =
∑

i

hs(ri ), (4.72)

T̂ = −1

2

∑

i

∇2
i ; V̂s =

∑

i

vs(ri ), (4.73)

ĥs(r) = −1

2
∇2 + vs(r), (4.74)

vs(r) = v(r) + vee(r). (4.75)

The corresponding Schrödinger single particle equations are (see (3.126))

ĥs(r)φi (x) = εiφi (x); i = 1, . . . , N , (4.76)

the wavefunction is the Slater determinant
{φi } of the orbitals φi (x), and the density
ρ(r) is obtained from the N lowest lying orbitals as

ρ(r) =
∑

iσ

|φi (rσ)|2. (4.77)

From the first Hohenberg–Kohn theorem, it follows that the density ρ(r) uniquely
determines the potential energy vs(r) of the noninteracting fermions (map (CD)−1

for the S system) to within a constant, and hence its electron–interaction potential
energy vee(r) component. TheHamiltonian Ĥs is then fully defined, and therefore the
corresponding wavefunction 
{φi } and orbitals φi (x) are functionals of the density:
φi (x) ≡ φi [ρ]. Thus, the kinetic energy of the noninteracting fermions is a unique
functional of the density:

Ts[ρ] =
∑

σ

∑

i

〈φi (rσ ; [ρ])| − 1

2
∇2|φi (rσ ; [ρ])〉. (4.78)

The kinetic energy functional Ts[ρ] may also be provided a PLL constrained-
search type definition. Consider the map D−1 of the S system whereby the ground
state density ρ(r) leads to the Slater determinant 
{φi }. Then of the infinite Slater
determinants 
ρ that lead to ρ(r), how does one determine the Slater determinant

http://dx.doi.org/10.1007/978-3-662-49842-2_3
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 which is the solution of the S system differential equation (4.76)? The answer,
obtained by following the procedure of the previous section but for the Hamiltonian
Ĥs , is

Ts[ρ] = inf

ρ→ρ

〈
ρ |T̂ |
ρ〉, (4.79)

where the notation inf
ρ→ρ means that one searches for the infimum value of the

expectation 〈T̂ 〉 taken with respect to all Slater determinants that yield the density
ρ(r). The minimum is achieved for the true Slater determinant 
{φi }. The existence
of this minimum has been proved [18]. As noted previously, Slater determinants can
be constructed to yield a particular density [45–47]. Hence, the constrained search
definition of Ts[ρ] is valid for N–representable densities.

TheKS–DFT definition of the potential energy vee(r) is obtained by application of
the variational principle in terms of the density (HK Theorem 2) to the corresponding
ground state energy functional expression E[ρ] for the S system. This expression
is obtained by adding and subtracting the kinetic energy functional Ts[ρ] of the
noninteracting fermions from the general ground state energy functional expression
(4.23). Thus, the S system energy expression is

E[ρ] = Ts[ρ] +
∫

ρ(r)v(r)dr + EKS
ee [ρ], (4.80)

where
EKS
ee [ρ] = FHK[ρ] − Ts[ρ], (4.81)

which then defines the KS–DFT electron–interaction energy functional EKS
ee [ρ]. As

in the previous chapter the ground state energy E[ρ] may be expressed in terms of
the eigenvalues εi of the S system. Thus, with Ts[ρ] obtained as in (3.138) we have

E[ρ] =
∑

i

εi −
∫

ρ(r)vee(r)dr + EKS
ee [ρ]. (4.82)

For the application of the variational principle, the density ρ(r) is varied by a small
amount such that ρ(r) → ρ(r) + δρ(r), and the stationary condition is

δE = E[ρ + δρ] − E[ρ]
=

∫
δE[ρ]
δρ(r)

δρ(r)dr

= 0. (4.83)

Note that the densities being varied are assumed to be N–representable. Substituting
for E[ρ] from (4.80), one obtains

δTs[ρ] +
∫

[v(r) + vee(r)]δρ(r)dr = 0, (4.84)

http://dx.doi.org/10.1007/978-3-662-49842-2_3
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where the electron–interaction potential energy vee(r) is the functional derivative of
EKS
ee [ρ]:

vee(r) = δEKS
ee [ρ]

δρ(r)
. (4.85)

For variations of the orbitals such that φi (x) → φi (x) + δφi (x) that lead to vari-
ations in the density ρ(r) + δρ(r), it is readily proved employing (4.76) and the
normalization condition of these orbitals that the first order variation

δTs[ρ] = −
∫

vs(r)δρ(r)dr. (4.86)

Substitution of (4.86) into (4.84) leads to

∫
[−vs(r) + v(r) + vee(r)]δρ(r)dr = 0. (4.87)

Now since the variations δρ(r) are arbitrary within the realm of N–representable
densities, we recover (4.75) with the electron–interaction potential energy vee(r)
defined by the functional derivative (4.85). This is the KS–DFT definition of the
local potential energy vee(r).

Thus, in KS–DFT, the S system differential (4.76) is solved self–consistently for
the orbitals φi (x) from which the ground state density ρ(r) and kinetic energy Ts
are obtained. The ground state energy is then determined either from the energy
functional E[ρ] of (4.80) or (4.82). If the expectation value functionals O[ρ] of
other operators Ô were known, these properties too could then be determined.

In the KS–DFT energy expression E[ρ] of (4.80), Ts[ρ] is the kinetic energy of
noninteracting fermions whose density is the true ground state density ρ(r). Hence,
the KS electron–interaction energy functional EKS

ee [ρ] and its functional derivative
vee(r) are representative of electron correlations due to the Pauli principle, Coulomb
repulsion, and Correlation–Kinetic effects. Since the Hartree or Coulomb self energy
EH[ρ] functional of the density is known:

EH[ρ] = 1

2

∫∫
ρ(r)ρ(r′)
|r − r′| drdr′, (4.88)

the functional EKS
ee [ρ] is customarily partitioned as

EKS
ee [ρ] = EH[ρ] + EKS

xc [ρ], (4.89)

which defines the KS ‘exchange–correlation’ energy functional. From (4.85), the
electron–interaction potential energy vee(r) within KS–DFT is then

vee(r) = vH(r) + vxc(r), (4.90)
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where the Hartree potential energy vH(r) is

vH(r) = δEH[ρ]
δρ(r)

=
∫

ρ(r′)
|r − r′|dr

′, (4.91)

and the KS ‘exchange–correlation’ potential energy vxc(r) is defined as

vxc(r) = δEKS
xc [ρ]

δρ(r)
. (4.92)

Note that the functional EKS
xc [ρ] and its functional derivative vxc(r) are representative

of Pauli and Coulomb correlations as well as Correlation–Kinetic effects.
The functional EKS

xc [ρ] is usually further partitioned into itsKS ‘exchange’ EKS
x [ρ]

and KS ‘correlation’ EKS
c [ρ] energy functional components. Thus

EKS
xc [ρ] = EKS

x [ρ] + EKS
c [ρ], (4.93)

so that the KS ‘exchange–correlation’ potential energy vxc(r) is

vxc(r) = vx(r) + vc(r), (4.94)

where theKS ‘exchange’ potential energy vx(r) is defined as the functional derivative

vx(r) = δEKS
x [ρ]

δρ(r)
, (4.95)

and the KS ‘correlation’ potential energy vc(r) as the functional derivative

vc(r) = δEKS
c [ρ]

δρ(r)
. (4.96)

The KS–DFT energy functionals EKS
ee [ρ], EKS

xc [ρ], EKS
x [ρ], EKS

c [ρ], and their
functional derivatives vee(r), vxc(r), vx(r), vc(r), respectively, satisfy [58] the fol-
lowing integral virial theorems:

EKS
ee [ρ] +

∫
ρ(r)r · ∇vee(r)dr = −Tc[ρ] ≤ 0, (4.97)

EKS
xc [ρ] +

∫
ρ(r)r · ∇vxc(r)dr = −Tc[ρ] ≤ 0, (4.98)

EKS
x [ρ] +

∫
ρ(r)r · ∇vx(r)dr = 0, (4.99)
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EKS
c [ρ] +

∫
ρ(r)r · ∇vc(r)dr = −Tc[ρ] ≤ 0. (4.100)

Further, for the KS ‘exchange’ energy functional EKS
x [ρ], the Hartree–Fock theory

expression for the exchange energy (3.192) is used, but the orbitals φi (x) of the S
system are employed instead. This choice for EKS

x [ρ] is ad hoc. Thus,

EKS
x [ρ] = 1

2

∫∫
ρ(r)ρx(rr′)

|r − r′| drdr′, (4.101)

where ρx(rr′) is the ground state S system Fermi hole.
Although it is known that the functional EKS

ee [ρ] and EKS
xc [ρ] are representative

of Pauli and Coulomb correlations and Correlation–Kinetic effects, KS–DFT does
not describe how these correlations are incorporated in the functionals. In addition,
it could be erroneously construed that since the Hartree–Fock theory expression
is employed for EKS

x [ρ] of (4.101), and the fact the functional and its functional
derivative vx(r) satisfy the sum rule (4.99) (with Tc absent), that EKS

x [ρ] and vx(r)
are strictly representative of Pauli correlations. Furthermore, as a consequence, the
functional EKS

c [ρ] and its derivative vc(r) are therefore representative of Coulomb
correlations and Correlation–Kinetic effects. This, however, is not the case. In the
following chapter it will be shown that EKS

x [ρ] and vx(r) are representative not
only of correlations due to the Pauli exclusion principle, but also of lowest–order
Correlation–Kinetic effects. And that the energy functional EKS

c [ρ] and its functional
derivative vc(r) are therefore representative of Coulomb Correlations and higher–
order Correlation–Kinetic effects.

Finally, the functional Ts[ρ] satisfies the sum rule

2Ts[ρ] =
∫

ρ(r)r · ∇vs(r)dr, (4.102)

where vs(r) is the effective potential energy of the noninteracting fermions as defined
by (4.75).

In the literature, it is stated that the local effective potential vs(r) of KS-DFT is
unique. This statement, based on the secondHK theorem as applied to noninteracting
fermions, is correct because in KS-DFT the mapping is from the interacting system
in a ground state to an S system (having the same density ρ(r)) which is also in
its ground state. However, as we have seen via Q-DFT in Chap.3, there exist an
infinite number of local potentials vs(r) that can generate the ground state density
ρ(r) by mapping to S systems that are in any arbitrary excited state. The fact of the
multiplicity of the local potentials that generate the ground state density cannot be
gleaned from HK or KS-DFT because these are ground-state theories.

http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
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4.6 Runge-Gross Time-Dependent Density
Functional Theory

This section presents a brief survey of the fundamental aspects of Runge-Gross [26]
(RG) time-dependent density functional theory (TD DFT) without proofs. For the
proof of the RG and other theorems within TD DFT, the reader is referred to [26–
28]. The description, however, highlights aspects of the RG theorem not stressed or
employed within RG theory.

The basis for TD DFT is the extension by Runge and Gross of Theorem1 of
Hohenberg and Kohn to the time-dependent case. The theory is proved for external
fields F ext(rt) = −∇v(rt) for which the potential energy v(rt) is expandable in
a Taylor series about some initial time t0 which is assumed to be finite. Further,
the initial state is not necessarily the ground or any other eigenstate of the initial
potential energy v(rt0) = v(r). These statements imply that TD DFT is valid for
sudden switching on of the external field. It is not valid for fields that are adiabatically
switched on in the standard adiabatic hypothesis manner via the switch eαt , where
α is a small positive constant, beginning at t0 = −∞. This is because the switch
function has an essential singularity at t0 = −∞, and cannot then be expanded in a
Taylor series. The problem can, however, be overcome by switching on the external
field at a large negative time such that α > 1/|t0|, which then allows the conditions
of the RG theorem to be satisfied.

The RG theorem proves that the density ρ(rt) and the current density j(rt) are
both basic variables of quantum mechanics. In other words, there is a one-to-one
relationship between the external potential and the basic variables i.e.ρ(rt) ↔ v(rt),
and j(rt) ↔ v(rt). Thus knowledge of either ρ(rt) or j(rt) corresponding to an
initial state ψ(t0) = ψ0 determines the external potential v(rt) to within an additive
purely time-dependent functionC(t). As the kinetic T̂ and the electron-interaction Û
operators are assumed known, theHamiltonian Ĥ (t) is consequently known towithin
a time-dependent functionC(t). TheHamiltonian, via theSchrödinger equation (2.1),
then determines the wave function ψ(t) to within a time-dependent phase α(t). In
equation form the RG path from either basic variable to the Hamiltonian is

[ρ(rt) or j(rt)] → v(rt) → Ĥ(t). (4.103)

The RG theorem as presented in the literature focuses principally on the relationship
between the density and the external potential. The proof of the RG theorem is
analogous to that of the time-independent case. The theorem is usually stated as:
Two densities ρ(rt) and ρ ′(rt) evolving from the same initial state ψ(t0) = ψ0

generated by two external potentials v(rt) and v′(rt) that are Taylor expandable
about t0 are always different provided the potentials differ by more than a purely
time-dependent function C(t), i.e.

v(rt) �= v′(rt) + C(t). (4.104)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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It is first proved that the potentials v(rt) and v′(rt) lead to different current densities
j(rt) and j′(rt). This proves that j(rt) is a basic variable. Then employing this fact,
it is further proved that ρ(rt) �= ρ ′(rt). Thus, ρ(rt) is also a basic variable. The fact
that j(rt) is a basic variable is not further considered or employed in RG theory. (In
contrast, as explained in Sect. 3.3, within Q-DFT, both the basic variables ρ(rt) and
j(rt) can be employed.)

The consequence of the one–to–one relationship between the density ρ(rt) and
the potential energy v(rt), is that the wavefunction �[�0](t) is a functional of the
density and the initial state �0, unique to within an arbitrary time-dependent phase
factor:

�[�0](t) = exp[−iα(t)]�̃[ρ;�0](t). (4.105)

This means that with α(t0) = 0 but otherwise arbitrary, the wavefunction �̃(t)
will give the same density ρ(rt) and have the same initial state �̃(t0) = �0. The
expectation value of any operator Ô(t) is therefore a unique functional of the density:

〈Ô(t)〉 = 〈�̃[ρ;�0](t)|Ô(t)|�̃[ρ;�0](t)〉, (4.106)

with the phase factors canceling out as was the case for the density. In other words,
all the properties of a quantum–mechanical system are determined entirely by the
density ρ(rt). The explicit dependence of the wavefunction on the density, however,
is not described by the theorem. Hence, the unique functionals of the expectation
values are unknown. As a consequence of the RG theorem proof, the above remarks
are equally valid for the basic variable j(rt).

In time-independent density functional theory, as a consequence of the variational
principle of Theorem2 of Hohenberg and Kohn, the density ρ(r) is determined
via the Euler–Lagrange equation (4.22). The basic idea underlying time-dependent
theory then is to replace the energy functional E[ρ] of the density ρ(r) by an action
functional A[ρ;�0] of the density ρ(rt) and the initial state �(t0). The stationary
point of this action functionalwith respect to variations inρ(rt) is thereby determined
by solution of the Euler–Lagrange equation

δA[ρ;�0]
δρ(rt)

= 0, (4.107)

with appropriate boundary conditions.
The basis for the construction of the action functional A[ρ;�0] is the quantum–

mechanical action integral:

A[�] =
t1∫

t0

〈�(t)|i ∂

∂t
− Ĥ(t)|�(t)〉dt. (4.108)

http://dx.doi.org/10.1007/978-3-662-49842-2_3
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At the stationary point of this action integral for which δA[ψ] = 0, the wavefunc-
tion �(t) with initial condition �(t0) satisfies the Schrödinger equation (2.1). The
variations δ� around �(t) are arbitrary but must satisfy [38, 41] the requirement
δ�(t0) = δ�(t1) = 0 at the time interval end points, and be such that the real and
imaginary parts can be varied independently. Since the wavefunction is a functional
of the density, a reasonable (and the original [26]) choice for the action functional
A[ρ;�0] is

A[ρ;�0] =
t1∫

t0

〈�[ρ;�0](t)|i ∂

∂t
− Ĥ(t)�[ρ;�0](t)〉dt. (4.109)

Unfortunately, this action functional does not satisfy the requirement δA[ρ,ψ0] = 0
and therefore cannot be used as the basis for time-dependent density functional
theory [28, 38]. (It has been concluded [38] that there is no action functional of
v-representable densities whose functional derivative satisfies the Euler-Lagrange
equation (4.107).) At present the only action functional free of paradoxes, and which
is stationary with respect to variations in the density, is the Keldysh action [39, 40].
This action is general in that it is not restricted to v-representable densities but is
valid for the broader class of time-contour densities.

The ideas underlying the Keldysh action are readily extended [40] to the S system
of noninteracting fermions with equivalent density ρ(rt) as defined by (3.1)–(3.4).
(As noted in the Introduction, this proof has been critiqued [4, 33–37].) A proof
[40] of the existence of such a model system for the time-dependent case, known
as the van Leeuwen theorem, based on the Quantal Newtonian Second Law [30–
32] of (2.75) has been provided for Taylor expandable external potentials v(rt).
The boundary conditions required for the equivalence of the density ρ(rt) of the
interacting and noninteracting systems in this proof are the following: The initial
state 
0(t0) of the model system must be such that it reproduces the true density
and its temporal derivative at the initial time t0. From the Keldysh action functional
As[ρ] of the S system, one can then formally define an electron–interaction action
functional Aee[ρ] that is representative of correlations due to the Pauli principle,
Coulomb repulsion, Correlation–Kinetic, and Correlation–Current–Density effects.
(Recall from Chap.3 that the interacting and noninteracting system current densi-
ties j(rt) and js(rt), respectively, are in general not equivalent. They are equivalent
only when both the divergence and curl of the Correlation–Current–Density field
J c(rt) of (3.38) vanishes. That ∇ ·J c(rt) = 0 follows directly from the continuity
equation (2.90) since the densities ρ(rt) of the two systems are the same. However,
∇ × J c(rt) �= 0 in general. Note that within Q-DFT, it is possible to explicitly
account for the difference between the current densities j(rt) and js(rt), and to
also construct a model system with equivalent ρ(rt) and j(rt).) The corresponding
electron–interaction potential energy vee(rt) of the model system is then defined
within (RG)KS–DFT as the functional derivative vee(rt) = δAee[ρ]/δρ(rt). The
dependence of the action Aee[ρ] and of its derivative vee(rt) on the various electron

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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correlations is not defined. The physical interpretation of vee(rt) in terms of these
correlations, however, is given via the Q–DFT definitions as described in Sect. 3.1.5.
In KS–DFT, the action functional Aee[ρ] is subdivided into a Hartree AH[ρ] and
a KS Axc[ρ] component. The corresponding potential energies vH(rt) and vxc(rt) are
the functional derivatives δAH[ρ]/δρ(rt) and δAxc[ρ]/δρ(rt), respectively. Finally,
Axc[ρ] is further partitioned into aKS ‘exchange’ Ax[ρ] and aKS ‘correlation’ Ac[ρ]
action component, with the potential energies vx(rt) and vc(rt) being their respective
functional derivatives. As in the time-independent case (see Chap.5), the correlations
contributing to these action functionals and their functional derivatives can be rig-
orously derived [32] via Q–DFT. Thus, for example, the KS ‘exchange’ potential
energy vx(rt) is representative not only of Pauli correlations, but also of lowest–
order Correlation–Kinetic and Correlation–Current–Density contributions. And the
KS ‘correlation’ potential energy vc(rt) is representative of Coulomb correlations
and higher–order Correlation–Kinetic and Correlation–Current–Density effects. We
refer the reader to [32] for details. However, it would be best to read the following
chapter on the physical meaning in terms of electron correlations of KS ‘exchange’
and ‘correlation’ in the time-independent case first.

4.7 Generalization of the Runge-Gross Theorem

In this section we generalize [4] the fundamental theorem of time-dependent (TD)
theory due to Runge and Gross [26] (RG) by a density preserving unitary or gauge
transformation along the lines of Sect. 4.2. New insights as a consequence of the
transformation are discussed. This generalization demonstrates the hierarchy that
exists in the fundamental theorems of density functional theory, both time-dependent
and time-independent.

To make this section self-standing, we redefine the physical system under consid-
eration. The system is comprised of N electrons in a time-dependent external field
F ext(rt) = −∇v(rt), with v(rt) a scalar external potential energy operator. The
Schrödinger equation for this system is (the same as (2.1) to (2.5))

Ĥ(Rt)�(Xt) = i
∂�(Xt)

∂t
, (4.110)

where �(Xt) is the wave function, X = x1, . . . , xN , x = rσ , r and σ are the spatial
and spin coordinates, and R = r1, . . . , rN . The Hamiltonian Ĥ(Rt) is the sum of
the kinetic T̂ , electron-interaction potential energy Ŵ , and external potential energy
V̂ operators:

Ĥ(Rt) = T̂ + Ŵ + V̂ , (4.111)

http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_5
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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with T̂ = ∑
i (− 1

2∇2
i ); Ŵ = 1

2

∑′
i, j 1/|ri − r j |; V̂ = ∑

i v(ri t). The TD density
ρ(rt) is the expectation

ρ(rt) = 〈
�(Xt)|ρ̂(r)|�(Xt)

〉
, (4.112)

where ρ̂(r) = ∑
i δ(r − ri ) is the density operator.

The RG theorem is proved for the Hamiltonian Ĥ(Rt) of (4.111). It is proved
on the assumption that the scalar operator v(rt) is Taylor expandable about some
initial time t0. Furthermore, in the proof, the operators T̂ and Ŵ , and the initial
many-particle state �(t0), are assumed known and kept fixed.

The TD unitary operator Û we employ is

Û = eiα(Rt), (4.113)

so that the transformed wave function � ′(Xt) is

� ′(Xt) = Û †�(Xt), (4.114)

and the transformed density ρ ′(rt) =< � ′(Xt)|ρ̂(r)|� ′(Xt) >= ρ(rt). The unitary
transformation thus preserves the density. The transformed Schrödinger equation is

Ĥ ′(Rt)� ′(Xt) = i
∂� ′(Xt)

∂t
, (4.115)

where the Hamiltonian Ĥ ′(Rt) of the transformed system is

Ĥ ′(Rt) = Û † Ĥ(Rt)U + dα(Rt)
dt

(4.116)

= Ĥ(Rt) − 1

2

∑

i

{
Û †

[
∇2
i , Û

]}
+ dα(Rt)

dt
. (4.117)

(Note that for the transformed system, the initial state and other boundary conditions
too are transformed.) The solution of the commutator of (4.117) is the same as given
in Sect. 4.2. Thus, the transformed Hamiltonian Ĥ ′(Rt) is

Ĥ ′(Rt) = Ĥ(Rt) + dα(Rt)
dt

+ 1

2

∑

i

(p̂i · Âi + Âi · p̂i + Â2
i ), (4.118)

where p̂i = −i∇i is the momentum operator, and where the vector potential energy
operator is defined as Âi = ∇iα(Rt) so that ∇ × Âi = 0.

The transformed Hamiltonian may also be written as

Ĥ ′(Rt) = 1

2

∑

i

(p̂i + Âi )
2 + Ŵ + V̂ ′, (4.119)
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where

V̂ ′ = V̂ + dα(Rt)
dt

. (4.120)

Note that as is the case for the Hamiltonian Ĥ(Rt) of (4.111), there is no magnetic
field in the transformed Hamiltonian Ĥ ′(Rt). The vector potential energy operator
Âi as defined above is curl-free.

That Ĥ(Rt) and Ĥ ′(Rt) represent the same physical system may also be seen by
performing the following gauge transformation of Ĥ(Rt) to obtain Ĥ ′(Rt) : V̂ →
V̂ ′ = V + dα(Rt)

dt and Âi → Â′
i = Âi +∇iα(Rt) with Âi = 0 so that Â′

i = ∇iα(Rt)
and the magnetic field B′ = ∇ × Â′

i = 0. In quantum mechanics it is well known
[20] that themore general gauge transformation above with nonzeromagnetic fieldB
leaves the Schrödinger equation invariant provided the wave functions of the original
and transformed Hamiltonians are related by the gauge transformation α(Rt) of
(4.114).

The Hamiltonian Ĥ ′(Rt) of (4.118), (4.119) is the most general form of the
Hamiltonian for which the RG theorem is valid. It includes the scalar potential energy
operator v(ri t), the TD function C(Rt) = dα(Rt)/dt , the momentum operator p̂i ,
and the TD curl-free vector potential energy operator Âi = ∇iα(Rt). Pictorially
the bijectivity of the RG Theorem in its general form is depicted in Fig. 4.3. The

Fig. 4.3 The generalization of the fundamental theorem of density functional theory demonstrating
the bijectivity between the density of a physical system and the infinite set of Hamiltonians rep-
resenting that physical system. The figure is drawn for (a) the most general time-dependent form
of the gauge function α(Rt). The figure reduces to the RG theorem for (b) when α(Rt) = α(t).
The figure further reduces to the most general form of the time-independent theorem when (c)
α(Rt) = α(R). Finally, the Hohenberg-Kohn theorem is recovered for (d) when α(Rt) = α, a
constant
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bijectivity is ρ(rt) ↔ Ĥ(Rt) with Ĥ(Rt) of (4.111), or equivalently ρ(rt) ↔
Ĥ ′

j (Rt) with Ĥ ′
j (Rt) of (4.118), (4.119), depending on the gauge function α j (Rt).

The Hamiltonian Ĥ(Rt) and the Hamiltonian Ĥ ′(Rt) all correspond to the same
physical system.

It is evident that the RG theorem in its original form is recovered from the
above generalization for the special case when the gauge function α(Rt) = α(t)
(see Fig. 4.3). The functions C(t) of RG are linked to the gauge function: C(t) =
dα(t)/dt . Furthermore, the Hamiltonians Ĥ ′(Rt) = Ĥ(Rt) + C(t) all correspond
to the same physical system because Ĥ ′(Rt) is obtained from Ĥ(Rt) by a unitary or
gauge transformation.

It is also clear from the unitary or gauge transformation that in the general case the
wave function �(Xt) must be a functional of both the density ρ(rt) and the gauge
function α(Rt) i.e., �(Xt) = �[ρ(rt);α(Rt)]. This functional dependence of the
wave function functional on the gauge function α(Rt) ensures that it is gauge variant.

Since the bijectivity is between the density ρ(rt) of a system and theHamiltonians
representing the same physical system (see Fig. 4.3), the choice of gauge function
is arbitrary. Thus, the choice α(Rt) = 0 is equally valid. Thus, in the RG case, the
choice of α(t) = 0 leads to a wave function functional that can be a functional only
of the density ρ(rt).

In the RG case, Fig. 4.3 shows that the bijectivity is between the density ρ(rt)
and the infinite number of Hamiltonians Ĥ(Rt) + C(t) representative of a physical
system. Thus, the density uniquely determines the system Hamiltonian to within a
function C(t). It is, however, possible to construct [3] as proved in the following
section, an infinite set of degenerate Hamiltonians {Ĥ} that differ by a functionC(t),
represent different physical systems, but yet possess the same density ρ(rt). In such
a case, the density ρ(rt) cannot distinguish between the different physical systems.
For such systems, the RG theorem is not valid.

Finally, as a consequence of the unitary or gauge transformation, the follow-
ing hierarchy exists in the fundamental theorem of density functional theory (see
Fig. 4.3). When the gauge function is α(Rt), one obtains the most general form of
the time-dependent theorem. For the gauge function α(t), one recovers the original
RG theorem. When the gauge function is α(R), one obtains the most general form
of the time-independent theorem. Finally, when the gauge function is the constant α,
one recovers the original Hohenberg-Kohn theorem. (Note that the function C(t) of
the RG theorem does not reduce to the constant C of the Hohenberg-Kohn theorem.)
This hierarchy makes the role of the phase factor as significant in density functional
theory as it is in quantum mechanics.

4.8 Corollary to the Hohenberg–Kohn
and Runge-Gross Theorems

In this section we provide further insight into Theorem1 of Hohenberg and Kohn
(HK), and of its extension to the time-dependent case due to Runge and Gross, by
describing a corollary to each theorem [3].
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According to Theorem1 of Hohenberg-Kohn, for a system of N electrons in
an external field F ext(r) = −∇v(r), the ground state electronic density ρ(r) for
a nondegerate state determines the external potential energy v(r) uniquely to within
an unknown trivial additive constant C. Since the kinetic energy T̂ and electronic–
interaction potential energy Û operators are known, the Hamiltonian Ĥ is explicitly
known.

For the extension to the time-dependent case, Runge and Gross (RG) [26] prove
that for a system of N electrons in a time-dependent external field F ext(rt) =
−∇v(rt), such that the potential energy v(rt) is Taylor–expandable about some ini-
tial time t0, the density ρ(rt) evolving from some fixed initial state�(t0), determines
the external potential energy uniquely to within an additive purely time-dependent
function C(t). Again, as the kinetic and electron–interaction potential energy opera-
tors are already defined, the Hamiltonian Ĥ(t) is known.

In the proofs of these theorems one considers Hamiltonians Ĥ/Ĥ(t) that differ
by an additive constant C/function C(t) to be equivalent. In other words, the physical
system under consideration remains the same on addition of this constant/function
which is arbitrary. Thus, measurements of properties of the system, other than for
example the total energy E/E(t), remain invariant. The theorem then proves that each
density ρ(r)/ρ(rt) is associated with one and only one Hamiltonian Ĥ/Ĥ(t) or
physical system: the densityρ(r)/ρ(rt)determines that uniqueHamiltonian Ĥ/Ĥ(t)
to within an additive constant C/functionC(t).

HK/RG, however, did not consider the case of a set of Hamiltonians {Ĥ}/{Ĥ(t)}
that represent different physical systems which differ by an intrinsic constant
C/functionC(t), but which yet have the same density ρ(r)/ρ(rt). By intrinsic con-
stant C/functionC(t) we mean one that is inherent to the system and not extrinsically
additive. Thus, this constant C/functionC(t) helps distinguish between the differ-
ent Hamiltonians in the set {Ĥ}/{Ĥ(t)}, and is consequently not arbitrary. That the
physical systems are different could, of course, be confirmed by experiment. Further,
the density ρ(r)/ρ(rt) would then not be able to distinguish between the different
Hamiltonians {Ĥ}/{Ĥ(t)} or physical systems, as it is the same for all of them.

In this chapter we construct a set of model systems with different Hamiltonians
{Ĥ}/{Ĥ(t)} that differ by a constant C/functionC(t) but which all possess the same
density ρ(r)/ρ(rt). This is the Hooke’s species: atom, molecule, all positive mole-
cular ions with number of nuclei N greater than two. The constants C/functionC(t)
contain information about the system, and are essential to distinguishing between
the different elements of the species.

The corollary to the HK/RG theorem is as follows: Degenerate Hamiltonians
{Ĥ}/{Ĥ(t)} that differ by a constant C/functionC(t) but which represent different
physical systems all possessing the same density ρ(r)/ρ(rt) cannot be distinguished
on the basis of the HK/RG theorem. That is, for such systems, the density ρ(r)/ρ(rt)
cannot determine each external potential energy v(r)/v(rt), and hence each Hamil-
tonian of the set {Ĥ}/{Ĥ(t)}, uniquely.

In the following sections,wedescribe theHooke’s species for the time-independent
and time-dependent cases to prove the above corollary.
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4.8.1 Corrollary to the Hohenberg-Kohn Theorem

Fig. 4.4 The Coulomb species comprises of two electrons and an arbitrary number N of nuclei,
the interaction between the electrons and between the electrons and nuclei being Coulombic: (a)
Helium atom; (b) Hydrogen molecule; (c), (d), . . ., Positive molecular ions. HereN is the number
of nuclei, Z the nuclear charge, e− the electronic charge. Note that each element of the species
corresponds to a different physical system
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Prior to describing theHooke’s species, let us consider the followingCoulombspecies
of two–electron systems andN nuclei as shown in Fig. 4.4: the Helium atom(N = 1;
atomic number Z = 2), the Hydrogen molecule (N = 2; atomic number of each
nuclei Z = 1), and the positive molecular ions (N > 2; atomic number of each
nuclei Z = 1).

In atomic units, the Hamiltonian of the Coulomb species is

ĤN = T̂ + Û + V̂N , (4.121)

where T̂ is the kinetic energy operator:

T̂ = −1

2

2∑

i=1

∇2
i , (4.122)

Û the electron–interaction potential energy operator:

Û = 1

|r1 − r2| , (4.123)

and V̂N the external potential energy operator:

V̂N =
2∑

i=1

vN (ri ), (4.124)

with

vN (r) =
N∑

j=1

fC(r − R j ). (4.125)

where

fC(r − R j ) = − 1

|r − R j | . (4.126)

Here r1 and r2 are positions of the electrons, R j ( j = 1, . . . ,N ) the positions of
the nuclei, and fC(r − R j ) the Coulomb external potential energy function. Each
element of the Coulomb species represents a different physical system. (The species
could be further generalized by requiring each nuclei to have a different charge.)

Nowsuppose the ground state densityρ(r)of theHydrogenmoleculewere known.
Then, according to the HK theorem, this density uniquely determines the external
potential energy operator to within an additive constant C:

V̂N=2 = − 1

|r1 − R1| − 1

|r1 − R2| − 1

|r2 − R1| − 1

|r2 − R2| . (4.127)
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Thus, the Hamiltonian of the Hydrogen molecule is exactly known from the ground
state density. Note that in addition to the functional form of the external potential
energy, the density also explicitly defines the positions R1 and R2 of the nuclei.

The fact that the ground state density determines the external potential energy
operator, and hence the Hamiltonian may be understood as follows. Integration of
the density leads to the number N of the electrons:

∫
ρ(r)dr = N . The cusps in

the electron density which satisfies the electron–nucleus coalescence condition [59]
(see Sect. 2.10.2), determine in turn the position of the N nuclei and their charge
Z . Thus, the external potential energy operator V̂N = ∑

i vN (ri ), and therefore the
Hamiltonian Ĥ are known.

The Hooke’s species (see Fig. 4.5) comprise of two electrons coupled harmoni-
cally to a variable numberN of nuclei. The electrons are coupled to each nuclei with
a different spring constants k j , j = 1, . . . ,N . The species comprise of the Hooke’s
atom of Sect. 2.11 (N = 1, atomic number Z = 2, spring constant k), the Hooke’s
molecule (N = 2; atomic number of each nuclei Z = 1, spring constants k1 and
k2), and the Hooke’s positive molecular ions (N > 2, atomic number of each nuclei
Z = 1, spring constants k1, k2, k3, . . . , kN ). The Hamiltonian ĤN of this species is
the same as that of the Coulomb species of (4.121) except that the external potential
energy function is fH (r − R j ), where

fH (r − R j ) = 1

2
k j (r − R j )

2. (4.128)

Just as for the Coulomb species, each element of the Hooke’s species represents a
different physical system. Thus, for example, the Hamiltonian for Hooke’s atom is

Ĥa = −1

2
∇2

1 − 1

2
∇2

2 + 1

|r1 − r2| + 1

2
k
[
(r1 − R1)

2 + (r2 − R1)
2
]
, (4.129)

and that of Hooke’s molecule is

Ĥm = − 1

2
∇2

1 − 1

2
∇2

2 + 1

|r1 − r2| + 1

2

{
k1

[
(r1 − R1)

2 + (r2 − R1)
2
]

+ k2
[
(r1 − R2)

2 + (r2 − R2)
2
]}

, (4.130)

where k �= k1 �= k2, and so on for the various Hooke’s positive molecular ions with
N > 2.

For theHooke’s species, however, the external potential energy operator V̂N which
is

V̂N = 1

2

N∑

j=1

[k j (r1 − R j )
2 + k j (r2 − R j )

2], (4.131)

may be rewritten as

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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Fig. 4.5 The Hooke’s species comprises of two electrons and an arbitrary number N of nuclei,
the interaction between the electrons is Coulombic, and that between the electrons and nuclei is
harmonic with spring constant k, k1, . . . , kN : (a) Hooke’s atom; (b) Hooke’s molecule; (c), (d), .
. . Hooke’s positive molecular ions. Here N is the number of nuclei, Z the nuclear charge, e− the
electronic charge. Note that each element of the species corresponds to a different physical system

V̂N (r) =
⎛

⎝1

2

N∑

j=1

k j

⎞

⎠ [(r1 − a)2 + (r2 − a)2] + C({k}, {R},N ), (4.132)
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where the translation vector a is

a =
N∑

j=1

k jR j

/ N∑

j=1

k j , (4.133)

and the constant C is
C = b − d (4.134)

with

b =
N∑

j=1

k jR2
j . (4.135)

d =
⎛

⎝
N∑

j=1

k jR j

⎞

⎠
2/ N∑

j=1

k j , (4.136)

or

C = 1

2

N∑

i �= j

ki k j
(
Ri − R j

)2
/ N∑

j=1

k j . (4.137)

From (4.132) it is evident that the Hamiltonians ĤN of the Hooke’s species are those

of a Hooke’s atom
(∑N

j=1 k j = k
)
, (to within a constant C({k}, {R},N )), whose

center of mass is at a. The constant C which depends upon the spring constants
{k}, the positions of the nuclei {R}, and the number N of the nuclei, differs from
a trivial additive constant in that it is an intrinsic part of each Hamiltonian ĤN , and
distinguishes between the different elements of the species. It does so because the
constant C({k}, {R},N ) contains physical information about the system such as the
positions {R} of the nuclei.

Now according to the HK theorem, the ground state density determines the exter-
nal potential energy, and hence the Hamiltonian, to within a constant. Since the den-
sity of each element of the Hooke’s species is that of the Hooke’s atom, it can only
determine the Hamiltonian of a Hooke’s atom and not the constant C({k}, {R},N ).
Therefore, it cannot determine the Hamiltonian ĤN for N > 1. This is reflected
by the fact that the density of the elements of the Hooke’s species does not satisfy
the electron–nucleus coalescence cusp condition. (It is emphasized that although the
‘degenerate Hamiltonians’ of the Hooke’s species have a ground state wavefunction
and density that corresponds to that of a Hooke’s atom, each element of the species
represents a different physical system. Thus, for example, a neutron diffraction exper-
iment on the Hooke’s molecule and Hooke’s positive molecular ions would all give
different results).

It is also possible to construct a Hooke’s species such that the density of each
element is the same. This is most readily seen for the case when the center of mass
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is moved to the origin of the coordinate system, i.e. for a = 0. This requires, from
(4.133), the product of the spring constants and the coordinates of the nuclei satisfy
the condition

N∑

j=1

k jR j = 0, (4.138)

so that the external potential energy operator is then

vN (r) = 1

2

N∑

j=1

k jr2 + 1

2

N∑

j=1

k jR2
j , (4.139)

where r is the distance to the origin. If the sum
∑N

j=1 k j is then adjusted to equal
a particular value of the spring constant k of Hooke’s atom:

N∑

j=1

k j = k, (4.140)

then the Hamiltonian ĤN of any element of the species may be rewritten as

ĤN ({k}, {R},N ) = Ĥa(k) + C({k}, {R},N ), (4.141)

where Ĥa(k) is the Hooke’s atom Hamiltonian and the constant C({k}, {R},N ) is

C({k}, {R},N ) =
N∑

j=1

k jR2
j . (4.142)

The solution of the Schrödinger equation and the corresponding density for each
element of the species are therefore the same.

As an example, again consider the case of Hooke’s molecule and atom. For
Hooke’s atomN = 1,R1 = 0 and let us assume k = 1

4 . Thus, the external potential
energy operator is

va(r) = 1

2
kr2 = 1

8
r2. (4.143)

For this choice of k, the singlet ground state solution of the time-independent
Schrödinger equation (ĤNψ = ENψ) is analytical and given by (2.177):

ψ(r1r2) = De−y2/2e−r2/8(1 + r/2), (4.144)

where r = r1 − r2, y = (r1 + r2)/2, and D = 1/[2π5/4(5
√

π + 8)1/2]. The
corresponding ground state density ρ(r) is (see Appendix C)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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ρ(r) = π
√
2π

r
D2e−r2/2{7r + r3 + (8/

√
2π)re−r2/2

+ 4(1 + r2)er f (r/
√
2)}, (4.145)

where

er f (x) = 2√
π

x∫

0

e−z2dz. (4.146)

For the Hooke’s molecule, N = 2,R1 = −R2, and we choose k1 = k2 = 1
8 , so that

the external potential energy operator is

vm(r) = 1

8
r2 + 1

16
(R2

1 + R2
2) = 1

8
r2 + 1

8
R2, (4.147)

where |R1| = R. Thus, the Hamiltonian for Hooke’s molecule differs from that of
Hooke’s atom by only the constant 1

8 R
2, thereby leading to the same ground state

wave function and density. However, the ground state energy of the two elements of
the species differ by 1

8 R
2.

The above example demonstrating the equivalence of the density of the Hooke’s
atom and molecule is for a specific value of the spring constant k for which the
wavefunction happens to be analytical. However, this conclusion is valid for arbitrary
value of k forwhich solutions of the Schrödinger equation exist but are not necessarily
analytical. For example, if we assume that for each element of the species (N ≥ 2),
all the spring constants k j , j = 1, 2, . . . ,N are the same and designated by k ′, then
for the three values of k for theHooke’s atom corresponding to k = 1

4 ,
1
2 , 1, the values

of k ′ for which the Hooke’s molecule and molecular ion (N = 3) wavefunctions are
the same are k ′ = 1

8 ,
1
12 ; k ′ = 1

4 ,
1
6 ; k ′ = 1

2 ,
1
3 , respectively.

Thus, for the case where the elements of the Hooke’s species are all made to
have the same ground state density ρ(r), the density cannot, on the basis of the HK
theorem, distinguish between the different physical elements of the species.

The corollary to the HK theorem, therefore, is as follows:

Corollary 1 Degenerate time-independent Hamiltonians {Ĥ} that represent differ-
ent physical systems, but which differ by a constant C, and yet possess the same
density ρ(r), cannot be distinguished on the basis of the Hohenberg–Kohn theorem.

4.8.2 Corollary to the Runge-Gross Theorem

We next extend the above conclusions to the Runge-Gross theorem. Consider again
the Hooke’s species, but in this case let us assume that the positions of the nuclei are
time-dependent, i.e. R j = R j (t). This could represent, for example, the zero point
motion of the nuclei. For simplicity we consider the spring constant strength to be
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the same (k ′) for interaction with all the nuclei. The external potential energy vN (rt)
for an arbitrary member of the species which now is

vN (rt) = 1

2
k ′

N∑

j=1

(r − R j (t))
2, (4.148)

may then be rewritten as

vN (rt) = 1

2
N k ′r2 − k ′

N∑

j=1

R j (t) · r + 1

2
k ′

N∑

j=1

R2
j (t), (4.149)

where at some initial time t0, we have R j (t0) = R j,0. (Note that a spatially uniform
time-dependent field F(t) interacting only with the electrons could be further incor-
porated by adding a term F(t) · r to the external potential energy expression.) The
Hamiltonian of an element of the species governed by the number of nuclei N is
then

ĤN (r1r2t) = ĤN ,0 − k ′
N∑

j=1

[R j (t) − R j,0] · (r1 + r2) + C(k ′,N , t), (4.150)

where ĤN ,0 is the time-independent Hooke’s species Hamiltonian (4.141):

ĤN ,0 = ĤN (k ′), (4.151)

and the time-dependent function

C(k ′,N , t) = k ′
N∑

j=1

[R2
j (t) − R2

j,0]. (4.152)

Note that the function C(k ′,N , t) contains physical information about the system:
in this case, about the motion of the nuclei about their equilibrium positions. It also
differentiates between the different elements of the species.

The solution of the time-dependent Schrödinger equation ĤN (t)�(t) = i∂�

(t)/∂t) employing the Harmonic Potential Theorem of Sect. 2.9 is

�(r1r2t) = exp{−iφ(t)}exp
[
−i

{
EN ,0t − 2S(t) − 2

dz
dt

· y
}]

�0(r1 r2), (4.153)

where ri = ri − z(t), y = (r1 + r2)/2,

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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S(t) =
t∫

t0

[
1

2
ż(t ′)2 − 1

2
kz(t ′)2

]
dt ′, (4.154)

the shift z(t) satisfies the classical harmonic oscillator equation

z̈(t) + kz(t) − k ′
N∑

j=1

[R j (t) − R j,0] = 0, (4.155)

where the additional phase factor φ(t) is due to the function C(k ′,N , t),

φ(t) =
t∫

t0

C(k ′,N , t ′)dt ′, (4.156)

and where at the initial time �(r1r2t0) = �0 which satisfies ĤN ,0�0 = EN ,0�0.
Thus, the wave function�(r1r2t) is the time-independent solution shifted by a time-
dependent function z(t), and multiplied by a phase factor. The explicit contribution
of the function C(k ′,N , t) to this phase has been separated out. The phase factor
cancels out in the determination of the density ρ(t) = 〈�(t)|ρ̂|�(t)〉 = ρ(r− z(t))
which is the initial time-independent density ρ(rt0) = ρ0(r) displaced by z(t).

As in the time-independent case, the ‘degenerate Hamiltonians’ ĤN (r1r2t) of
the time-dependent Hooke’s species can each be made to generate the same density
ρ(rt) by adjusting the spring constant k ′ such thatN k ′ = k, and provided the density
at the initial time t0 is the same. The latter is readily achieved as it constitutes the
time-independent Hooke’s species case discussed previously.

Thus, we have a set of Hamiltonians describing different physical systems but
which can be made to generate the same density ρ(rt). These Hamiltonians differ
by the function C(k ′,N , t) that contains information which differentiates between
them. In such a case, the density ρ(rt) cannot distinguish between the different
Hamiltonians.

The corollary to the RG theorem, therefore, is as follows.

Corollary 2 Degenerate time-dependent Hamiltonians {Ĥ(t)} that represent differ-
ent physical systems, but which differ by a purely time-dependent function C(t), and
which all yield the same density ρ(rt), cannot be distinguished on the basis of the
Runge–Gross theorem.

4.8.3 Endnote

The proof of the HK/RG theorems is general in that it is valid for arbitrary local
form (Coulombic, Harmonic, Yukawa, oscillatory, etc.) of external potential energy
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Fig. 4.6 A schematic representation of the Hohenberg-Kohn (and Runge-Gross) theorems, and of
the corollary to these theorems

v(r)/v(rt). (In the time-dependent case, there is the restriction that v(rt) must be
Taylor–expandable about some initial time t0.) For their proof, HK/RG considered
the case of potential energies, and hence Hamiltonians, that differ by an additive
constant C/function C(t) to be equivalent:

v(r)/v(rt) − v′(r)/v′(rt) = C/C(t). (4.157)

By equivalent is meant that the density ρ(r)/ρ(rt) is the same. The fact that the
constant C/function C(t) is additive means that although the Hamiltonians differ,
the physical system, however remains the same. The theorem then shows that there
is a one–to–one correspondence between a physical system (as described by all these
equivalent Hamiltonians), and the corresponding density ρ(r)/ρ(rt). The relation-
ship between the basic Hamiltonian Ĥ/Ĥ(t) describing a particular system and the
density ρ(r)/ρ(rt) is bijective or fully invertible. This case considered by HK/RG is
shown schematically in Fig. 4.6 in which the invertibility is indicated by the double–
headed arrow.

The case of a set of degenerate Hamiltonians {Ĥ}/{Ĥ(t)} that differ by a constant
C/functionC(t) that is intrinsic such that theHamiltonians represent different physi-
cal systemswhile yet all possessing the same density ρ(r)/ρ(rt), was not considered
by HK/RG. In such a case, the density cannot uniquely determine the Hamiltonian,
and therefore cannot differentiate between the different physical systems. This case,
also shown schematically in Fig. 4.6, corresponds to the Hooke’s species. The rela-
tionship between the set of Hamiltonians {Ĥ}/{Ĥ(t)} and the density ρ(r)/ρ(rt)
which is not invertible is indicated by the single–headed arrow.

We conclude by noting that the Hooke’s species, in both the time-independent and
time-dependent cases, does not constitute a counter example to the HK/RG theorem.
The reason for this is that the proof of the HK theorem is independent of whether
the constantC/function C(t) is additive or intrinsic. The Hamiltonians in either case
still differ by a constant C/function C(t). A counter example would be one in which
Hamiltonians that differ by more than a constant C/function C(t) have the same
density ρ(r)/ρ(rt).
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Chapter 5
Physical Interpretation of Kohn–Sham
Density Functional Theory via Quantal
Density Functional Theory

Abstract As time-independent ground state Quantal density functional theory
(Q-DFT) is a description in terms of ‘classical’ fields and quantal sources of the
mapping from the interacting system of electrons as described by Schrödinger the-
ory to one of noninteracting fermions possessing the same nondegenrate ground state
density, it provides a rigorous physical interpretation of the energy functionals and
functional derivatives (potentials) of Kohn-Sham (KS) theory. The KS ‘exchange-
correlation’ potential is the work done in a conservative effective field that is the sum
of the Pauli-Coulomb and Correlation-Kinetic fields. The KS ‘exchange-correlation’
energy is the sum of the Pauli-Coulomb and the Correlation-Kinetic energies, these
energies being defined in integral virial form in terms of the corresponding fields. Via
adiabatic coupling constant perturbation theory applied to Q-DFT, it is shown that
KS ‘exchange’ is representative of electron correlations due to the Pauli Exclusion
Principle and lowest-order Correlation-Kinetic effects. KS ‘correlation’ in turn is
representative of Coulomb correlations and second- and higher-order Correlation-
Kinetic effects. The Optimized Potential Method (OPM) integro-differential equa-
tions are derived. As the OPM is equivalent to KS theory, Q-DFT thus also provides
a physical interpretation of the OPM equations. It further provides the interpretation
of the energy functionals and functional derivatives (potentials) of the KS Hartree
and Hartree-Fock theories.

Introduction

This chapter provides a mathematically rigorous physical interpretation of Kohn-
Sham density functional theory (KS-DFT) via Quantal density functional theory (Q-
DFT). Q-DFT andKS-DFT are both descriptions of themapping from the interacting
system of electrons as described by Schrödinger theory to one of model noninteract-
ing fermions whereby the same nondegenerate ground state density ρ(r), the energy
E , and the ionization potential I (or electron affinity A) as that of the electrons is
obtained. Although both Q–DFT and KS–DFT are founded on the Hohenberg-Kohn
[1] theorems, their descriptions of the model S system are distinctly different. The
framework of KS–DFT [2] is strictly mathematical in basis. With the assumption
of existence of the model system, the theory is in terms of an energy functional
E[ρ] of the ground state density ρ(r). This energy functional is subdivided into a

© Springer-Verlag Berlin Heidelberg 2016
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component representing the kinetic energy of the noninteracting fermions, the exter-
nal potential energy, and an electron-interaction potential energy component EKS

ee [ρ]
in which all themany-body effects are incorporated. The local (multiplicative) poten-
tial energy of each model fermion is then defined through the variational principle
of the second Hohenberg-Kohn theorem as the functional derivative of the sum of
the potential energy components. The electron-interaction energy functional EKS

ee [ρ]
and its functional derivative are implicitly representative of all the different many-
body correlations that the model S system must account for in order to reproduce the
density ρ(r), and thereby the energy via the functional E[ρ]. In KS–DFT, these elec-
tron correlations, as noted previously, are those due to the Pauli exclusion principle,
Coulomb repulsion, and Correlation–Kinetic effects. The explicit dependence of the
potential energy functional and of its functional derivative on the various electron
correlations, however, is not described by the theory.

AsQ–DFT is a description of the S system in terms of ‘classical’ fields and quantal
sources, it is possible then to provide a rigorousphysical interpretation of the potential
energy functional and its various components, and of their respective functional
derivatives. Furthermore, as the fields are separately representative of the different
electron correlations, the physical interpretation allows for an explicit understanding
of the correlations these functionals and their derivatives are representative of.

In this chapter we describe the rigorous physical interpretation [3, 4] of Kohn–
Sham density functional theory. We begin with a description of the physics of the
KS electron–interaction energy functional EKS

ee [ρ], its Hartree EH[ρ] and ‘exchange–
correlation’ EKS

xc [ρ] energy components, and of their respective functional derivatives
vee(r), vH(r), and vxc(r). The physics underlying the KS ‘exchange’ EKS

x [ρ] and
‘correlation’ EKS

c [ρ] energy functionals and their derivatives vx(r) andvc(r) is arrived
at by application of adiabatic coupling constant perturbation theory. Hence, prior
to describing this physics, we explain the adiabatic coupling constant scheme [5–
7] as well as the modifications of both Q–DFT and KS–DFT required within this
framework for application of the perturbation theory. In this chapter we also explain
the physics of the KS–DFT of Hartree–Fock and Hartree theories.

In addition to Q–DFT and KS–DFT, there is [8, 9] a third way [10–12], referred
to as the Optimized Potential Method (OPM), whereby the model S system of non-
interacting fermions may be constructed. The OPM is also entirely mathematical in
construct. The starting point of the time-independent OPM is the recognition that
the total energy is a functional of the S system orbitals: E = E[φi ]. The energy is
then minimized with respect to arbitrary variations of the S system effective poten-
tial energy vs(r) (see (4.72)–(4.75)). This minimization leads to an integral equa-
tion for vs(r) in terms of the orbitals. The integral equation must then be solved
self–consistently together with the S system differential equation. As an additional
component to this chapter, the equations of the stationary state OPMwill be derived.
Having explained the physical interpretation of KS–DFT with all the correlations
present, we next provide a physical interpretation of the ‘exchange-only’ version of
the OPM.

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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As in the time-independent case, a rigorous physical interpretation of the various
action functionals and functional derivatives of Runge-Gross [13] time-dependent
density functional theory in terms of the various electron correlations is also provided
via time–dependent Q–DFT. In fact the time-independent theory interpretations con-
stitute a special case of the time-dependent explanations. The more general case of
the latter, however, is not described. The reader is referred to the original literature
[14] for the details.

5.1 Interpretation of the Kohn–Sham Electron–Interaction
Energy Functional EKS

ee [ρ] and Its Derivative vee(r)

A comparison of the general (ground and excited state) Q–DFT expression for the
total energy E of (3.130) and the KS–DFT ground state energy functional E[ρ] of
(4.80) leads to

EKS
ee [ρ] = Eee + Tc. (5.1)

Here Eee is the quantum–mechanical electron–interaction energy expressed in terms
of the electron–interaction field Eee(r) of (4.56) as

Eee =
∫

ρ(r)r · Eee(r)dr, (5.2)

and Tc the Correlation–Kinetic energy which in terms of the Correlation–Kinetic
field Z tc(r) is

Tc = 1

2

∫
ρ(r)r · Z tc(r)dr, (5.3)

where
Z tc(r) = Z s(r) − Z(r), (5.4)

with the kinetic field Zs(r) defined in a manner similar to that of (4.58) for Z(r)
but in terms of the Dirac density matrix γs(rr′). Thus, the partition of EKS

ee [ρ] into its
electron–interaction Eee and Correlation–Kinetic Tc components is explicitly defined
via Q–DFT. Recall from Chap.3, that the fields Eee(r) andZ tc(r) are not necessarily
separately conservative. Their sumalways is. However, the expressions for the energy
components are valid whether or not the fields are conservative.

Equating the Q–DFT and KS–DFT expressions (3.140) and (4.85) for the
electron–interaction potential energy we have

vee(r) = δEKS
ee [ρ]

δρ(r)
= −

∫ r

∞
F eff(r′) · d�′, (5.5)

http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_4
http://dx.doi.org/10.1007/978-3-662-49842-2_4
http://dx.doi.org/10.1007/978-3-662-49842-2_4
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with
F eff(r) = Eee(r) + Z tc(r). (5.6)

Hence, the physical meaning of the functional derivative δEKS
ee [ρ]/δρ(r) is that it is

the work done to bring the model fermion from some reference point at infinity to its
position at r in the force of the conservative fieldF eff(r). Since∇ × F eff(r) = 0, this
work done ispath independent. Once again, the electron–interaction andCorrelation–
Kinetic contributions to the functional derivative vee(r) are explicitly defined via
Q–DFT.

From the above interpretation of the potential energy vee(r) we have

∇vee(r) = ∇
(

δEKS
ee [ρ]

δρ(r)

)
= −F eff(r), (5.7)

or, equivalently employing (5.1) and (5.6) that

∇
(

δEee

δρ(r)
+ δTc

δρ(r)

)
= −(Eee(r) + Z tc(r)). (5.8)

This equation relates the functional derivatives of Eee and Tc to the component fields
Eee(r) and Z tc(r). Note, however, that

∇
(

δEee

δρ(r)

)
�= −Eee(r), (5.9)

and

∇
(

δTc
δρ(r)

)
�= −Z tc(r). (5.10)

These inequalities hold whether or not the fields Eee(r) andZ tc(r) are conservative.
The equality of the functional derivatives to the fields is that given by (5.5) or (5.8).

Since thepair–correlationdensitymayalsobewritten asg(rr′) = ρ(r′) + ρxc(rr′),
where ρxc(rr′) is the Fermi–Coulomb hole charge, the electron–interaction field
Eee(r) of (4.56)may be expressed as the sumof itsHartreeEH(r) and Pauli–Coulomb
Exc(r) components:

Eee(r) = EH(r) + Exc(r), (5.11)

where

EH(r) =
∫

ρ(r′)(r − r′)
|r − r′|3 dr′ and Exc(r) =

∫
ρxc(rr′)(r − r′)

|r − r′|3 dr′. (5.12)

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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As the field EH(r) is due to a static or local charge distribution ρ(r), it may be
expressed as

EH(r) = −∇WH(r), (5.13)

with the scalar potential energy WH(r) being

WH(r) =
∫

ρ(r′)
|r − r′|dr

′. (5.14)

Thus, ∇ × EH(r) = 0. Equivalently, the potential energy WH(r) is the work done in
the conservative field EH(r):

WH(r) = −
∫ r

∞
EH(r′) · d�′. (5.15)

A comparison of (4.91) and (5.14) shows that

vH(r) = WH(r). (5.16)

Thus, the physical interpretation of the functional derivative δEH[ρ]/δρ(r) is that
it is the work done to move a model fermion from its reference point at infinity to its
position at r in the force of the conservative field EH(r). Equivalently

∇
(

δEH[ρ]
δρ(r)

)
= −EH(r). (5.17)

TheHartree energy functional EH[ρ] of (4.88), which is the energy of self–interaction
of the density, may also be expressed in terms of the Hartree field EH(r) as

EH =
∫

ρ(r)r · EH(r)dr. (5.18)

Again, employing the partitioning of the pair–correlation density g(rr′) into its
local and nonlocal components, we can write the quantum–mechanical electron–
interaction energy Eee as

Eee = EH + Exc, (5.19)

where Exc is the Pauli–Coulomb energy. Thus, the KS electron–interaction energy
functional (5.1) is

EKS
ee = EH + Exc + Tc. (5.20)

Comparisonwith (5.19) thendefines theKS ‘exchange–correlation’ energy functional
in terms of the Pauli and Coulomb correlations and Correlation–Kinetic effects as

EKS
xc [ρ] = Exc + Tc, (5.21)

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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where Exc is expressed in terms of the Pauli–Coulomb field Exc(r) as

Exc =
∫

ρ(r)r · Exc(r)dr, (5.22)

and with Tc as previously defined by (5.3).
The KS ‘exchange–correlation’ potential energy vxc(r) is the work done to bring

the model fermion from a reference point at infinity to its position at r in the conser-
vative field Fxctc(r):

vxc(r) = δEKS
xc [ρ]

δρ(r)
= −

∫ r

∞
Fxctc(r

′) · d�′, (5.23)

where
Fxctc(r) = Exc(r) + Z tc(r). (5.24)

This follows from (5.5) using the fact that the Hartree field EH(r) is conservative so
that ∇ × Fxctc(r) = 0. Equivalently,

∇vxc(r) = ∇
(

δEKS
xc [ρ]

δρ(r)

)
= −(Exc(r) + Z tc(r)). (5.25)

Thus, the KS ‘exchange–correlation’ energy functional EKS
xc [ρ] and its functional

derivative vxc(r) can be expressed in terms of the Pauli–Coulomb Exc(r) and
Correlation–Kinetic Z tc(r) fields. Hence, the dependence of the functional E

KS
xc [ρ]

and its derivative vxc(r) on the separate electron correlations due to the Pauli princi-
ple, Coulomb repulsion, and Correlation–Kinetic effects is explicitly defined within
the framework of Q–DFT.

Substituting (5.21) into (5.25) leads to

∇
(

δExc

δρ(r)
+ δTc

δρ(r)

)
= −(Exc(r) + Z tc(r)), (5.26)

which relates the functional derivative of the quantum–mechanical exchange–
correlation Exc and Correlation–Kinetic Tc energies to the fields Exc(r) and Z tc(r)
that give rise to them, respectively. Again, irrespective of whether the field Exc(r) is
conservative or not

∇
(

δExc

δρ(r)

)
�= −Exc(r). (5.27)

Thus, we see that the mathematical entities of KS–DFT, viz. the electron-interaction
energy functional EKS

ee [ρ], its Hartree EH [ρ] and ‘exchange-correlation’ EKS
xc [ρ]

components, and their respective functional derivatives vee(r), vH (r), and vxc(r) can
all be afforded a rigorous physical interpretation.
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We next turn to the physical interpretation of the KS ‘exchange’ EKS
x [ρ] and

‘correlation’ EKS
c [ρ] energy functionals, and of their respective derivatives vx(r) and

vc(r) in terms of the various electron correlations. This is achieved [15, 16] via
adiabatic coupling constant perturbation theory [17] as applied to both Q–DFT and
KS–DFT. The interpretations then follow on comparison of terms of equal order. We
begin by first describing the adiabatic coupling constant scheme, and Q–DFT and
KS–DFT within this framework.

5.2 Adiabatic Coupling Constant Scheme

In the adiabatic coupling constant (λ) scheme [5–7], the Hamiltonian Ĥλ is defined
as

Ĥλ = T̂ + V̂λ + λÛ ; 0 ≤ λ ≤ 1, (5.28)

where T̂ and Û are the usual kinetic and electron interaction operators and where the
external potential energy operator V̂λ = ∑

i vλ(ri ). The corresponding Schrödinger
equation is

Hλψλ(X) = Eλψλ(X), (5.29)

where ψλ(X) is the ground state wavefunction for interaction strength λ. The real
interacting system corresponds to λ = 1. In (5.28), the operator V̂λ is constrained so
that its addition to λÛ leads to the density for the real system, i.e. the wavefunction
ψλ(X) is such that the expectation 〈ψλ|ρ̂(r)|ψλ〉 = ρλ=1(r) = ρ(r). Equivalently,
the ground state density is independent of λ. For each value of λ, the energy Eλ is

Eλ = T λ +
∫

ρ(r)vλ(r)dr + Eλ
ee, (5.30)

where T λ = 〈ψλ|T̂ |ψλ〉 is the kinetic energy, and Eλ
ee = 〈ψλ|λÛ |ψλ〉, the electron–

interaction energy. The equivalent constrained search definition of ψλ(X) is that it
is an antisymmetric wavefunction which yields the density ρ(r) and minimizes the
expectation 〈ψλ|T̂ + λÛ |ψλ〉.

The λ = 0 case corresponds to the S system of noninteracting fermions defined
by the differential equation (4.76). The potential energy (4.75) of these fermions is
vs(r) = vλ=1(r) + vee(r). Since the density ρ(r) is independent of λ, we may also
write

vs(r) = vλ(r) + vλ
ee(r). (5.31)

The ground state energy Eλ may then be expressed as

Eλ = Ts +
∫

ρ(r)vλ(r)dr + Eλ
ee + T λ

c (5.32)

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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or as

Eλ =
∑
i

εi −
∫

ρ(r)vλ
ee(r)dr + Eλ

ee + T λ
c , (5.33)

where T λ
c = T λ − Ts is the Correlation–Kinetic energy for coupling strength λ.

5.2.1 Q–DFT Within Adiabatic Coupling Constant
Framework

The ‘Quantal Newtonian’ first law and integral virial theorem derived for the fully
interacting case are equally valid for the adiabatically coupled system. Thus, the
corresponding Q–DFT equations are the same as described in Chap.3 but with the
appropriate λ dependence. (The S system components of these equations remain
unchanged.) TheQ–DFTequationswithin the adiabatic coupling constant framework
are summarized below.

The pair–correlation density gλ(rr′) quantal source is

gλ(rr′) = 〈ψλ|P̂(rr′)|ψλ〉/ρ(r), (5.34)

= ρ(r′) + ρλ
xc(rr

′), (5.35)

= ρ(r′) + ρx(rr′) + ρλ
c (rr

′), (5.36)

where theFermi–Coulombρλ
xc(rr

′), Fermiρx(rr′), andCoulombρλ
c (rr

′)holes satisfy
the charge conservation sum rules

∫
ρλ
xc(rr

′)dr′ = −1;
∫

ρx(rr′)dr′ = −1;
∫

ρλ
c (rr

′)dr′ = 0. (5.37)

The Fermi hole ρx(rr′) = −|γs(rr′)|2/2ρ(r), where γs(rr′) is the S system Dirac
densitymatrix. The spinless single–particle densitymatrix source of the adiabatically
coupled system is γλ(rr′) = 〈ψλ|γ̂(rr′)|ψλ〉.

The electron–interaction field Eλ
ee(r) is then

Eλ
ee(r) = λ

∫
gλ(rr′)(r − r′)

|r − r′|3 , (5.38)

= λEH(r) + λEλ
xc(r), (5.39)

= λEH(r) + λEx(r) + λEλ
c (r), (5.40)

http://dx.doi.org/10.1007/978-3-662-49842-2_3
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where

EH(r) =
∫

ρ(r′)(r − r′)
|r − r′|3 dr′; Eλ

xc(r) =
∫

ρλ
xc(rr

′)(r − r′)
|r − r′|3 dr′; (5.41)

Ex(r) =
∫

ρx(rr′)(r − r′)
|r − r′|3 dr′; Eλ

c (r) =
∫

ρλ
c (rr

′)(r − r′)
|r − r′|3 dr′. (5.42)

The Correlation–Kinetic field Zλ
tc(r) is

Zλ
tc(r) = 1

ρ(r)
[zs(r; [γs]) − zλ(r; [γλ])], (5.43)

where the component zλ
α(r) of the field zλ(r) is zλ

α = 2
∑

β ∂tλαβ(r)/∂rβ , and tλαβ(r)
is the kinetic energy density tensor tλαβ(r) = 1

4 (∂
2/∂r ′

α∂r ′′
β + ∂2/∂r ′

β∂r ′′
α)

γλ(r′r′′)|r′=r′′=r. The field zs(r) is similarly derived from the idempotent Dirac den-
sity matrix γs(rr′) via the S-system tensor ts,αβ(r).

For the system of electrons defined by the Schrödinger equation (5.29), the
electron–interaction potential energy vλ

ee(r) of the S system is the work done to
move the model fermion in the conservative field F eff,λ(r):

vλ
ee(r) = −

∫ r

∞
F eff,λ(r′) · d�′, (5.44)

where
F eff,λ(r) = Eλ

ee(r) + Zλ
tc(r), (5.45)

and ∇ × F eff,λ(r) = 0. For systems of symmetry such that the fields Eλ
ee(r) and

Zλ
tc(r) are separately conservative, the potential energy vλ

ee(r) may be written as

vλ
ee(r) = W λ

ee(r) + W λ
tc (r) (5.46)

= λWH(r) + λW λ
xc(r) + W λ

tc (r) (5.47)

= λWH(r) + λWx(r) + λW λ
c (r) + W λ

tc (r), (5.48)

whereW λ
ee(r),WH(r),W λ

xc(r),Wx(r),W λ
c (r),W λ

tc (r) are, respectively, the work done
in the fields Eλ

ee(r), EH(r), Eλ
xc(r), Ex(r), Eλ

c (r), andZλ
tc(r). The work done WH(r)

in the Hartree field EH(r) may also be expressed as WH(r) = ∫
dr′ρ(r′)/|r − r′|.

The electron–interaction Eλ
ee,Hartree E

λ
H, Pauli–Coulomb Eλ

xc, Pauli E
λ
x ,Coulomb

Eλ
c , andCorrelation–Kinetic T

λ
c energies are expressed in integral virial form in terms

of the respective fields as:

Eλ
ee =

∫
drρ(r)r · Eλ

ee(r); (5.49)
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Eλ
H = λEH, (5.50)

with

EH =
∫

drρ(r)r · EH(r); (5.51)

Eλ
xc = λ

∫
drρ(r)r · Eλ

xc(r); (5.52)

Eλ
x = λEx, (5.53)

with

Ex =
∫

drρ(r)r · Ex(r); (5.54)

Eλ
c = λ

∫
drρ(r)r · Eλ

c (r); (5.55)

and

T λ
c = 1

2

∫
drρ(r)r · Zλ

tc(r). (5.56)

Note that these energy expressions are valid irrespective of whether or not the indi-
vidual fields are conservative. Observe that the Hartree Eλ

H and Pauli Eλ
x energies

scale linearly with λ.

5.2.2 KS–DFT Within Adiabatic Coupling Constant
Framework

KS–DFT employs the fact that the wavefunction ψλ(X) of the adiabatically coupled
system is a functional of the density ρ(r). Hence, the ground state energy Eλ as
obtained from the model S system is expressed as

Eλ[ρ] = Ts +
∫

drρ(r)vλ(r) + EKS,λ
ee [ρ], (5.57)

where EKS,λ
ee [ρ] is the KS electron–interaction energy functional. The energy func-

tional EKS,λ
ee [ρ] is further divided into the Hartree Eλ

H[ρ] and KS ‘exchange–
correlation’ EKS,λ

xc [ρ] components, the latter functional being further subdivided into
an ‘exchange’ EKS,λ

x [ρ] and ‘correlation’ EKS,λ
c [ρ] component. Thus,

EKS,λ
ee [ρ] = Eλ

H[ρ] + EKS,λ
xc [ρ], (5.58)

= Eλ
H[ρ] + EKS,λ

x [ρ] + EKS,λ
c [ρ]. (5.59)
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Here Eλ
H[ρ], the Coulomb self–energy, is

Eλ
H[ρ] = λEH[ρ], (5.60)

with

EH[ρ] = 1

2

∫
ρ(r)ρ(r′)
|r − r′| drdr′, (5.61)

and [18]
EKS,λ
x [ρ] = λEKS

x [ρ], (5.62)

with

EKS
x [ρ] = 1

2

∫
ρ(r)ρx(rr′)

|r − r′| drdr′. (5.63)

The Hartree functional EH[ρ] is obviously equivalent to the Q–DFT Hartree energy
EH of (5.51). The KS ‘exchange’ energy functional EKS

x [ρ] expression is also equiv-
alent to the Q–DFT Pauli energy Ex of (5.54) since the source for these energies—the
Fermi hole or Dirac density matrix—is the same provided the orbitals are the same.
As a consequence, the scaling of these functionals with λ is also linear.

In KS–DFT, the electron–interaction potential energy vλ
ee(r) of the S system is

defined as the functional derivative of EKS,λ
ee (r), so that

vλ
ee(r) = δEKS,λ

ee [ρ]
δρ(r)

(5.64)

= vλ
H(r) + vλ

xc(r) (5.65)

= vλ
H(r) + vλ

x (r) + vλ
c (r), (5.66)

where

vλ
H(r) = δEλ

H[ρ]
δρ(r)

, (5.67)

vλ
x (r) = δEKS,λ

x [ρ]
δρ(r)

. (5.68)

vλ
c (r) = δEKS,λ

c [ρ]
δρ(r)

. (5.69)

Here vλ
x (r) and vλ

c (r) are the KS ‘exchange’ and ‘correlation’ potential energies,
respectively. From the scaling relationships for Eλ

H[ρ] and EKS,λ
x [ρ], we see that the

corresponding functional derivatives also scale linearly [18]:

vλ
H(r) = λvH(r), (5.70)
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with

vH(r) = δEH[ρ]
δρ(r)

=
∫

ρ(r′)
|r − r′|dr

′, (5.71)

and
vλ
x (r) = λvx(r), (5.72)

with

vx(r) = δEKS
x [ρ]

δρ(r)
. (5.73)

As noted previously, the functional derivative vH(r) = WH(r).

5.2.3 Q–DFT and KS–DFT in Terms of the Adiabatic
Coupling Constant Perturbation Expansion

The relationship between the KS ‘exchange’ EKS
x [ρ] and ‘correlation’ EKS

c [ρ] energy
functionals, their functional derivatives vx(r) and vc(r), and the fields of Q–DFT
is achieved [15, 16] by expressing these fields in terms of the coupling constant
perturbation expansion. Thus, the wavefunction ψλ(X) is expanded as

ψλ(X) = �{φi }(X) + λψ1(X) + λ2ψ2(X) + . . . (5.74)

where�{φi } is the Slater determinant of the S system. The resulting pair–correlation
density gλ(rr′) and single–particle density matrix γλ(rr′) are

gλ(rr′) = gs(rr′) + λgc1(rr
′) + λ2gc2(rr

′) + . . . , (5.75)

and
γλ(rr) = γs(rr′) + λγc

1(rr
′) + λ2γc

2(rr
′) + . . . , (5.76)

where
gs(rr′) = ρ(r′) + ρx(rr′), (5.77)

and Oc
1(rr

′) = 〈ψ1|Ô|ψ〉 + 〈ψ|Ô|ψ1〉, etc. The fields Eλ
ee(r) of (5.38) andZλ

tc(r) of
(5.43), which arise from these sources, are then

Eλ
ee(r) = λEH(r) + λEx(r) + λ2Ec,1(r) + λ3Ec,2(r) + . . . , (5.78)

and
Zλ

tc(r) = −λZ tc,1(r) − λ2Z tc,2(r) − λ3Z tc,3(r) − . . . , (5.79)
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where Ec,1(r) = ∫
dr′gc1(rr′)(r − r′)/|r − r′|3 and Z tc,1(r) = z(r; [γc

1])/ρ(r), etc.
The expansions of these fields can then be employed in the expressions for the
electron–interaction and correlation–kinetic energy and potential energy.

For systems with symmetry such that the individual fields are conservative, the
work done W λ

ee(r) and W λ
tc (r) in the fields Eλ

ee(r) and Zλ
tc(r), respectively, may then

be expressed as

W λ
ee(r) = λWH(r) + λWx(r) + λ2Wc,1(r) + λ3Wc,2(r) + . . . , (5.80)

and
W λ

tc (r) = −λWtc,1(r) − λ2Wtc,2 − . . . , (5.81)

whereWc,1(r),Wtc,1(r), etc. are the work done in the fields Ec,1(r), Z tc,1(r), respec-
tively, etc.

The scaling relationship for the KS–DFT functionals Eλ
H[ρ] and EKS,λ

x [ρ] are
given in the previous section. It has further been shown [17] that the KS ‘correlation’
energy functional EKS,λ

c [ρ] commences in second order:

EKS,λ
c [ρ] = λ2EKS

c,2 [ρ] + λ3EKS
c,3 [ρ] + . . . , (5.82)

so that the KS correlation potential too commences in second order:

vλ
c (r) = λ2vc,2(r) + λ3vc,3(r) + . . . , (5.83)

where vc,2(r) = δEKS
c,2[ρ]/δρ(r), etc., and EKS

c,2[ρ] is the O(λ2)KScorrelation energy.
From (5.44) we have

∇vλ
ee(r) = −F eff,λ(r), (5.84)

so that on substituting for the field F eff,λ(r) from (5.45) and the KS definition for
the potential vee(r) from (5.66), we have

∇[vλ
H(r) + vλ

x (r) + vλ
c (r)] = −[Eλ

ee(r) + Zλ
tc(r)]. (5.85)

On substitution of the expansions for the various terms as given in the previous
section, and on equating terms of equal order, we obtain the components of the KS
potential in terms of the fields as:

∇vH (r) = −EH (r), (5.86)

∇vx (r) = −[E x (r) − Z tc,1(r)], (5.87)

∇vc,2(r) = −[Ec,1(r) − Z tc,2(r)], (5.88)

∇vc,3(r) = −[Ec,2(r) − Z tc,3(r)], etc. (5.89)
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We are now in the position to provide a rigorous interpretation of the KS ‘exchange’
and ‘correlation’ energy functionals and their functional derivatives in terms of the
electron correlations that contribute to them. However, prior to explaining the inter-
pretation, note that (5.86) is equivalent to (5.17). The physical reason for this equiv-
alence between the functional derivative vH (r) and the field EH (r) is that the latter
is due to the density ρ(r) which is a static charge distribution.

5.3 Interpretation of the Kohn–Sham ‘Exchange’ Energy
Functional EKS

x [ρ] and Its Derivative vx(r)

The physical interpretation of the KS ‘exchange’ potential energy vx (r) follows from
(5.87). It is the work done to move the model fermion in a conservative field R(r):

vx (r) = δEKS
x [ρ]

δρ(r)
= −

∫ r

∞
R(r′) · d�′, (5.90)

whereR(r) = E x (r) − Z tc,1(r). Since∇ × R(r) = 0, this work done is path inde-
pendent. The fieldR(r), and hence the potential energy vx (r), is therefore represen-
tative both of Pauli correlations via the component field E x (r), as well as those due
to part of the Correlation–Kinetic effects through the field Z tc,1(r).

For systems with symmetry such that the fields E x (r) andZ tc,1(r) are separately
conservative, we may write

vx(r) = Wx (r) + Wtc,1(r), (5.91)

where Wx (r) is the work done in the field E x (r) due to the Fermi hole charge, and
Wtc,1(r) the work done in the field Z tc,1(r).

The KS ‘exchange’ energy functional EKS
x [ρ] is related to its functional derivative

vx (r) by the virial theorem of (4.99). Substituting (5.87) into this equation leads to

EKS
x [ρ] −

∫
ρ(r)r · [E x (r) − Z tc,1(r)]dr = 0. (5.92)

Now as noted in Sect. 5.2.2, EKS
x [ρ] is equivalent to the Q–DFT Pauli energy Ex

provided the same orbitals are employed in their determination. Thus, using the
relationship [19] between Ex and E x (r) of (5.54) in the above equation, it follows
that ∫

ρ(r)r · Z tc,1(r)dr = 0. (5.93)

Therefore, although the Correlation–Kinetic field Z tc,1(r) contributes explicitly to
the potential energy vx (r), it does not contribute directly to the KS ‘exchange’ energy

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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EKS
x [ρ]. Its contribution to the energy is implicit via the orbitals generated by vx (r).

Hence, the KS–DFT ‘exchange’ energy functional EKS
x [ρ] and its functional deriv-

ative vx (r) are representative of Pauli correlations and lowest–order Correlation–
Kinetic effects.

5.4 Interpretation of the Kohn–Sham ‘Correlation’ Energy
Functional EKS

c [ρ] and Its Derivative vc(r)

The interpretation of theKS ‘correlation’ potential energy vc(r) follows from (5.88)–
(5.89), etc. The components vc,2(r), vc,3(r), etc. are separately the work done in
a conservative field:

vc,2(r) = −
∫ r

∞
[Ec,1(r′) − Z tc,2(r

′)] · d�′, (5.94)

vc,3(r) = −
∫ r

∞
[Ec,2(r′) − Z tc,3(r

′)] · d�′, etc. (5.95)

The work done in each order is path independent. Further, both Coulomb correla-
tion and correlation–kinetic effects contribute to each order of the KS correlation
potential energy.

Next, turning to the energy, observe from (5.56), (5.79) and (5.93) that the
Correlation–Kinetic energy Tc also commences in O(λ2);

T λ
c = −1

2

∫
drρ(r)r · [λ2Z tc,2(r) + λ3Z tc,3(r) + . . . ]. (5.96)

Now the KS ‘correlation’ energy EKS,λ
c [ρ] and its functional derivative vλ

c (r) are
related by the virial theorem (see (4.100))

EKS,λ
c [ρ] +

∫
drρ(r)r · ∇vλ

c (r) = −T λ
c [ρ]. (5.97)

On substituting the expansions for the potential energy vλ
c (r) (5.83) and Correlation–

Kinetic energy T λ
c (5.96) into the virial theorem, we obtain

EKS,λ
c [ρ] +

∫
drρ(r)r · [λ2∇vc,2(r) + λ3∇vc,3(r) + . . .

− 1

2
λ2Z tc,2(r) − 1

2
λ3Z tc,3(r) − . . .

] = 0. (5.98)

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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However, it has been proved [15] that

∫
drρ(r)r · ∇vc,2(r) = 0. (5.99)

Employing (5.95) and (5.99) in (5.98), we then have

EKS,λ
c [ρ] = λ2

2

∫
drρ(r)r · Z tc,2(r)

+ λ3
∫

drρ(r)r ·
[
Ec,2(r) − 1

2
Z tc,3(r)

]
+ . . . . (5.100)

Comparison with (5.82) then shows that

EKS
c,2[ρ] = 1

2

∫
drρ(r)r · Z tc,2(r), (5.101)

EKS
c,3[ρ] =

∫
drρ(r)r ·

[
Ec,2(r) − 1

2
Z tc,3(r)

]
, (5.102)

etc. Thus to leading order, it is only the Correlation–Kinetic effects that contribute
to the KS correlation energy. The Coulomb correlations, which contribute explicitly
to the potential energy (see (5.94)), do not contribute explicitly to the KS correlation
energy in this order. For energy terms beyond the leading order, both Coulomb
correlation and Correlation–Kinetic effects contribute.

5.5 Interpretation of the KS–DFT of Hartree–Fock Theory

In a manner similar to the representation of the Schrödinger theory of electrons,
there also is a density functional theory representation of Hartree–Fock (HF)
theory. In other words, a Hohenberg–Kohn theorem [20] and the constrained search
approach [21] can be formulated to prove that the ground state HF theory Slater
determinant wavefunction ψHF(X) is a functional of the corresponding ground state
density ρ(r). Thus, there exists an energy functional EHF[ρ] that achieves its min-
imum at the HF theory ground state energy for the HF ground state density ρ(r).
(Similar remarks are valid for the Hartree approximation).

In KS–DFT, it is assumed that an S system of noninteracting fermions exists
such that the density ρ(r) and energy EHF[ρ] equivalent to that of HF theory can
be obtained. Thus, it is possible to define an electron–interaction energy functional
EKSHF
ee [ρ] such that the ground state energy may be written as

EHF[ρ] = Ts[ρ] +
∫

ρ(r)v(r)dr + EKSHF
ee [ρ], (5.103)
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with the S system differential equation generating the density being (3.207)

[
−1

2
∇2 + v(r) + vHF

ee (r)
]

φi (x) = εiφi (x); i = 1, . . . , N . (5.104)

Here Ts[ρ] is the kinetic energy functional of the noninteracting S System fermions
of density equivalent to that of HF theory. The corresponding electron–interaction
potential energy vHF

ee (r) of these model fermions that generates the HF theory
ground state density via ρ(r) = ∑

i,σ |φi (rσ)|2 is then the functional derivative
δEKSHF

ee [ρ]/δρ(r).
It is evident from (5.103) that the functional EKSHF

ee [ρ] is representative of electron
correlations due to the Pauli exclusion principle, and Correlation–Kinetic effects that
arise due to the difference T HF

c in the HF theory and S system kinetic energies. The
physical interpretation of the functional EKSHF

ee [ρ] and its functional derivative in
terms of these correlations then follows from the Q–DFT of HF theory described in
Sect. 3.8.4. A comparison of (5.103) with (3.219) shows that

EKSHF
ee [ρ] = EHF

ee + THF
c , (5.105)

where EHF
ee and THF

c are the HF theory electron–interaction and Correlation–Kinetic
energy, respectively. These energies in turn are defined in terms of the corresponding
HF theory fields EHF

ee (r) andZHF
tc (r). These fields and energies representative of the

different correlations are defined in Sect. 3.8.4.
The functional derivative vHF

ee (r) (see (3.208)) is the work done to move the model
fermion in the conservative field FHF(r):

vHF
ee (r) = δEKSHF

ee [ρ]
δρ(r)

= −
∫ r

∞
FHF(r′) · d�′, (5.106)

where
FHF(r) = EHF

ee (r) + ZHF
tc (r). (5.107)

We thus have a rigorous physical interpretation of the KS–DFT of HF theory.
As stated in Sect. (3.8.4), and reiterated here, the S system orbitals φi (x) that

generate the HF theory density differ from the HF theory orbitals. Furthermore,
Correlation–Kinetic effects contribute to both the total and potential energy of the
model fermions.

5.6 Interpretation of the KS–DFT of Hartree Theory

The equations governing the KS–DFT of Hartree theory, following the assumption
of existence of an S system such that the equivalent density ρ(r) and ground state
energy EH [ρ] may be obtained, are

http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
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EH [ρ] = Ts[ρ] +
∫

ρ(r)v(r)dr + EKSH
ee [ρ], (5.108)

and [
−1

2
∇2 + v(r) + vH

ee(r)
]

φi (x) = εiφi (x); i = 1, . . . , N . (5.109)

Ts[ρ] is the kinetic energy functional of the noninteracting fermions of density ρ(r)
equivalent to that of Hartree theory, EKSH

ee [ρ] the KS electron–interaction energy
functional, and vH

ee(r) the functional derivative δEKSH
ee [ρ]/δρ(r).

The physical interpretation of EKSH
ee [ρ] and vH

ee(r) follows from the Q–DFT
description of Hartree theory given in Sect. 3.8.6. Thus, a comparison of (5.108)
and (3.251) shows that

EKSH
ee [ρ] = EH

ee + T H
c (5.110)

where EH
ee and T H

c are the Hartree theory electron–interaction and Correlation–
Kinetic energy defined in terms of the corresponding Hartree theory fields EH

ee(r)
andZH

tc (r). The functional derivative vH
ee(r) (see (3.241)) is the work done to move

the model fermion in the conservative field F H (r):

vH
ee(r) = δEKSH

ee [ρ]
δρ(r)

= −
∫ r

∞
F H (r′) · d�′, (5.111)

where
F H (r) = EH

ee(r) + ZH
tc (r). (5.112)

Once again note that the S system and Hartree theory orbitals differ, and that
Correlation–Kinetic effects are intrinsic to both the total and potential energy of
the model fermions to ensure the equivalence of their density to that of Hartree
theory.

5.7 The Optimized Potential Method

The optimized potential method (OPM) is yet another way of constructing the S sys-
temof noninteracting fermions. InKS–DFT, the ground state energy E is expressed as
a functional of the density ρ(r), and the effective potential energy vs(r) of the model
fermions then defined via the variational minimization of the energy functional E[ρ]
with respect to arbitrary variations of the density. Now since the S system orbitals
φi (x) are functionals of the density, the energy may also be expressed as a func-
tional of these orbitals: E = E[φi ]. In the OPM, there is an integral equation that
defines the potential energy vs(r). This equation is obtained by minimization of the
functional E = E[φi ] with respect to variations of vs(r). The functional E = E[φi ]

http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
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is, of course, unknown, and consequently the integral equation cannot be solved
exactly. However, this equation for the potential energy vs(r) can be solved in the
‘exchange–only’ (XO) approximation, which is formally defined as follows [8, 9].
In the XO–OPM, the ground state energy is the expectation of the Hamiltonian:

EOPM
XO [φi ] = 〈�|T̂ + Û +

∑
i

v(ri )|�〉, (5.113)

taken with respect to that single Slater determinant �{φi } which is constrained to be
a ground state of some noninteracting Hamiltonian of the form T̂ + ∑

i w(ri ) and
which simultaneously minimizes the energy as defined by the above expectation.
Since this expectation is with respect to a Slater determinant, the expression for
EOPM
XO [φi ] is the same as that of Hartree–Fock theory, and therefore known. As such

the integral equation is entirely in terms of the S system orbitals and eigenvalues,
and thereby solvable. (Note, however, that the Hartree–Fock theory determinantal
wavefunction differs from that of theXO–OPM since there is no additional constraint
on it.) To understand how the integral equation of the OPM comes about, we next
derive it in the spin unpolarized XO case.

5.7.1 The ‘Exchange–Only’ Optimized Potential Method

In the XO–OPM, the noninteracting fermions are subject to the external field
F ext(r) = −∇v(r), and the wavefunction is assumed to be a Slater determinant
�{φi } of spin–orbitals φi (x) = ψi (r)χi (σ). The differential equation generating
these orbitals is further assumed to be

[
−1

2
∇2 + vs(r)

]
ψi (r) = εiψi (r); i = 1, . . . , N , (5.114)

where the effective potential energy vs(r) of the noninteracting fermions is the sum
of the external v(r), Hartree WH (r), and ‘exchange’ vOPM

x (r) potential energies:

vs(r) = v(r) + WH (r) + vOPM
x (r), (5.115)

where

WH (r) =
∫

ρ(r′)
|r − r′|dr

′, (5.116)

and ρ(r) = ∑
i

∑
σ |φi (rσ)|2. The expression for the ground state energy EOPM

XO [ψi ]
is the same as that of Hartree–Fock theory (see Sect. 3.8.1), but in terms of the
XO–OPM orbitals. Thus,

http://dx.doi.org/10.1007/978-3-662-49842-2_3


204 5 Physical Interpretation of Kohn–Sham Density Functional Theory …

EOPM
XO [ψi ] =

∑
i

∫
ψ∗
i (r)

(
− 1

2
∇2

)
ψi (r)dr

+
∫

ρ(r)v(r)dr + EH + EOPM
x , (5.117)

where EH and EOPM
x are the Hartree and ‘exchange’ energies, respectively.

EH = 1

2

∫
ρ(r)ρ(r′)
|r − r′| drdr′, (5.118)

EOPM
x = −1

2

∑
i, j

spin j=spin i

∫
ψ∗
i (r

′)ψ∗
j (r)ψi (r)ψ j (r′)
|r − r′| drdr′. (5.119)

The basic idea of the OPM is to determine the potential energy vs(r) by variational
minimization of the energy EOPM

XO with respect to arbitrary variations of vs(r). That
is, vs(r) is varied by a small amount δvs(r) such that vs(r) → vs(r) + δvs(r), and
the stationary condition determined at the vanishing of the first order variation of the
energy:

δEOPM
XO [ψi ]
δvs(r)

= 0. (5.120)

This functional derivative may be rewritten using the chain rule for functional dif-
ferentiation as

δEOPM
XO [ψi (r)]
δvs(r)

=
∑
i

∫
δEOPM

XO

δψi (r′)
δψi (r′)
δvs(r)

dr′ + c.c. = 0. (5.121)

The term δEOPM
XO /δψi (r′) is simply the Hartree–Fock theory variation so that

δEOPM
XO

δψi (r′)
=

[
−1

2
∇2 + v(r′) + WH (r′) + vx,i (r′)

]
ψ∗
i (r

′), (5.122)

where vx,i (r) is the orbital–dependent exchange function of (3.201):

vx,i (r) = 1

ψ∗
i (r)

δEOPM
x [ψi ]
δψi (r)

= −
∑

j
spin j=spin i

∫
ψ∗

j (r
′)ψi (r′)ψ j (r)

ψ∗
i (r)|r − r′| dr′. (5.123)

In the XO–OPM case, the function vx,i (r) is known explicitly in terms of the orbitals
ψi (r). Rewriting the OPM differential equation (5.114) as

http://dx.doi.org/10.1007/978-3-662-49842-2_3
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[
−1

2
∇2 + v(r) + WH (r)

]
ψi (r) = [εi − vOPM

x (r)]ψi (r), (5.124)

we have
δEOPM

XO

δψi (r′)
= [εi − vOPM

x (r′) + vx,i (r′)]ψ∗
i (r

′). (5.125)

To determine the term δψi (r′)/δvs(r) in (5.121), we introduce the variations δψi (r′)
and δvs(r′) in the OPM differential equation (5.114):

δ

[
−1

2
∇2 + vs(r′)

]
ψi (r′) = δ[εiψi (r′)]. (5.126)

To first order in δ, we have

[
−1

2
∇2 + vs(r′) − εi

]
δψi (r′) = [δεi − δvs(r′)]ψi (r′). (5.127)

The solution to this equation can be expressed in terms of the Green’s function
Gi (r′r′′) as

δψi (r′) =
∫

Gi (r′r′′)[δεi − δvs(r′′)]ψi (r′′)dr′′, (5.128)

where Gi (r′r′′), the solution of the differential equation
[
−1

2
∇2 + vs(r′) − εi

]
Gi (r′r′′) = δ(r′ − r′′), (5.129)

is

Gi (r′r′′) =
′∑
j

ψ j (r′)ψ∗
j (r

′′)
ε j − εi

. (5.130)

(The prime on the sum means that the sum over j is restricted to states for which
ε j �= εi .) The Green’s function Gi (r′r′′) is thus orthogonal to ψi (r′′):

∫
Gi (r′r′′)ψi (r′′)dr′′ =

′∑
j

ψ j (r′)
ε j − εi

∫
ψ∗

j (r
′′)ψi (r′′)dr′′ = 0. (5.131)

Thus, (5.128) reduces to

δψi (r′) = −
∫

Gi (r′r′′)δvs(r′′)ψi (r′′)dr′′, (5.132)
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so that
δψi (r′)
δvs(r)

= −Gi (r′r)ψi (r). (5.133)

Substituting (5.125) and (5.133) into (5.121) leads to the XO–OPM integral equation

∑
i

∫ [
vOPM
x

(
r′) − vx,i

(
r′)] ψ∗

i

(
r′)Gi

(
r′r

)
ψi (r)dr′ + c.c. = 0, (5.134)

where the term proportional to εi in (5.125) vanishes as a result of the orthogonality
condition of (5.131). The integral equation (5.134) is then solved for the ‘exchange’
potential energy vOPM

x (r) self consistently with the OPM differential equation
(5.114). The energy EOPM

XO [ψi ] is obtained from (5.117) via the solutions ψi (r).
The XO–OPM is also referred to in the literature [8, 9] as ‘exchange–only density

functional theory.’ The relationship between the XO–OPM and KS–DFT can be
established [12] as follows. If the ‘exchange’ energy EOPM

x [ψi ] is a functional of
only the density, i.e. EOPM

x [ψi ] = EOPM
x [ρ], then from the definition of the density

in terms of the orbitals ψi (r) and the chain rule for functional differentiation, the
orbital dependent exchange function vx,i (r) of (5.123) is

vx,i (r) = 1

ψ∗
i (r)

∫
δEOPM

x

δρ(r′)
δρ(r′)
δψi (r)

dr′ = δEOPM
x [ρ]
δρ(r)

, (5.135)

independent of i. Substituting (5.135) into the integral equation (5.134) and employ-
ing the orthogonality condition (5.131) then yields

vOPM
x (r) = δEOPM

x [ρ]
δρ(r)

, (5.136)

upto a trivial additive constant. This is the definition of vOPM
x (r) written within the

framework of KS–DFT as a functional derivative taken with respect to the density
ρ(r).

Note that the XO–OPM ‘exchange’ energy EOPM
x [ψi ] and potential energy

vOPM
x (r) are not equivalent to the KS–DFT ‘exchange’ energy EKS

x [ρ] and potential
energy vx (r) = δEKS

x [ρ]/δρ(r) of the fully–interacting system with all correlations
present. They would, however, be equivalent if the orbitals and eigenvalues of the
fully–interacting system were employed in the expression for EOPM

x [ψi ] and the
integral equation (5.134) for vOPM

x (r) instead.
The OPM exchange energy EOPM

x [ψi ] and potential energy vOPM
x (r) satisfy [22]

the OPM ‘Quantal Newtonian’ first law and integral virial theorem:

F ext(r) + F int,OPM(r) = 0, (5.137)
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with

F int,OPM(r) = EOPM
H (r) − ∇vOPM

x (r) − DOPM(r) − ZOPM
s (r), (5.138)

and

EOPM
x [ψi ] =

∫
ρ(r)r · ∇vOPM

x (r)dr, (5.139)

whereEH (r) is theHartree field,DOPM(r) = d(r)/ρ(r),d(r) = − 1
4∇∇2ρ(r),ZOPM

s
(r) = z(r; [γOPM

s ])/ρ(r), z(r) the kinetic force derived from the OPM kinetic–
energy–density tensor tαβ(r; [γOPM

s ]), and γOPM
s (rr′) the OPMDirac density matrix.

It is evident from (5.137) that since ∇ × F int,OPM(r) = 0, and ∇ × EH (r) = 0,
∇ × ∇vOPM

x (r) = 0, ∇ × D(r) = 0, that ∇ × ZOPM
s (r) = 0. Thus, within the XO–

OPM, each component of the field F int,OPM(r) is separately conservative.
The OPM ‘Quantal Newtonian’ first law and integral virial theorem equations

for the fully–correlated case are of the same form as that of XO theory. In these
equations, the ‘exchange’ potential energy vOPM

x (r) is replaced by vOPM
xc (r). The

ground state energy E is assumed to be a functional of the orbitals ψi (r), so that
in (5.117) EOPM

XO [ψi ] is replaced by E[ψi ], and EOPM
x [ψi ] by EKS

xc [ψi ]. That is the
KS ‘exchange–correlation’ energy is now assumed to be a functional of the orbitals
ψi (r). The derivation of the integral equation for vOPM

xc (r) is the same, but with
the explicit form of vx,i (r) replaced by the orbital–dependent exchange–correlation
function vxc,i (r) where

vxc,i (r) = 1

ψ∗
i (r)

δEKS
xc [ψi ]

δψi (r)
. (5.140)

The function vxc,i (r) is not known since the functional EKS
xc [ψi ] is unknown. Hence,

the OPM ‘exchange–correlation’ potential energy vOPM
xc (r) cannot be determined via

solution of the OPM equations. Once again, if the KS ‘exchange–correlation’ energy
functional EKS

xc [ψi ] is a functional of only the density, i.e. EKS
xc [ψi ] = EKS

xc [ρ], then
by repeating the steps leading to (5.136), it follows that

vOPM
xc (r) ≡ vxc(r) = δEKS

xc [ρ]
δρ(r)

, (5.141)

to within a trivial additive constant. Thus, vOPM
xc (r) is the KS theory ‘exchange–

correlation’ potential energy vxc(r). The total energy E[ψi ] is, of course, the ground
state energy.



208 5 Physical Interpretation of Kohn–Sham Density Functional Theory …

5.8 Physical Interpretation of the Optimized Potential
Method

As was the case with KS–DFT, the OPM is strictly a mathematical scheme for the
construction of the S system. It obtains the ground state energy E[ψi ] and the density
ρ(r) by determining the effective potential energy vs(r) of the S system through
self–consistent solution of an integral and a differential equation. It does not, for
example, describe how the various electron correlations contribute to this potential
energy. Consequently, when approximations to the OPM are made, it is not clear
what correlations are present. However, as KS–DFT and the OPM are intrinsically
equivalent the physical interpretation of the OPM ‘exchange–correlation’ energy
EOPM
xc and potential energy vOPM

xc (r), in terms of the electron correlations is the same
as described in Sect. 5.1. It is also possible to provide an understanding [22] of the
correlations that are intrinsic to the XO–OPM ‘exchange’ energy EOPM

x and potential
energy vOPM

x (r), and this is described next.

5.8.1 Interpretation of ‘Exchange–Only’ OPM

The XO–OPM ‘exchange’ energy EOPM
x and potential energy vOPM

x (r) can also be
afforded the interpretation that they each are comprised of a Pauli and Correlation–
Kinetic component. This is derived from the Q–DFT perspective via the ‘Quantal
Newtonian’ first law and integral virial theorem. It may also be obtained directly
from the XO–OPM integral equation. These derivations involve approximations,
and therefore they are not rigorous in the same sense as that of the interpretations of
the ‘exchange’ energy and potential energy of fully–interactingKS theory (Sect. 5.3),
or of the corresponding energies of the KS representation of Hartree–Fock theory
(Sect. 5.5). The approximations, made on the basis of applications that show them to
be extremely accurate, are therefore justified ex post facto.

5.8.2 A. Derivation via Q–DFT

Let us consider an S systemof noninteracting fermions inwhichCoulomb correlation
and Correlation–Kinetic effects are absent. This is the Pauli–Correlated (PC) approx-
imation within Q–DFT discussed more fully in QDFT2 [23]. Thus, within this
approximation, only correlations due to the Pauli exclusion principle are considered.
Further, let us assume a symmetry such that the inhomogeneity in the density ρ(r) is
a function of only one variable. Examples of such systems are closed–shell atoms,
open–shell atoms in the central field approximation, and jellium and structureless
pseudopotential models of a metal surface.
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For such systems, the S system differential equation is

[
−1

2
∇2 + v(r) + WH (r) + Wx (r)

]
ψi (r) = εiψi (r), (5.142)

where

Wx (r) = −
∫ r

∞
E x (r′) · d�′, (5.143)

is the work done in the field E x (r) = ∫
dr′ρx (rr′)(r − r′)/|r − r′|3 due to the Fermi

hole ρx (rr′) = −|γs(rr′)|2/2ρ(r), and where γs(rr′) is the Dirac density matrix
constructed from the orbitals ψi (r) of the differential equation (5.142). The corre-
sponding density ρ(r) = γs(rr). The work done Wx (r) is path independent since
∇ × E x (r) = 0 for systems of this symmetry. The exchange energy Ex and potential
energy Wx (r) satisfy the integral virial theorem so that

Ex =
∫

ρ(r)r · E x (r)dr. (5.144)

The corresponding ‘Quantal Newtonian’ first law is

F ext(r) + F PC = 0, (5.145)

where
F PC(r) = EH (r) + E x (r) − D(r) − Z s(r), (5.146)

with the fields D(r), Z(r) defined in terms of the density ρ(r) and Dirac density
matrix γs(rr′) in the usual manner. Since for the symmetry assumed∇ × E x (r) = 0,
it follows from (5.145) that ∇ × Z s(r) = 0.

On equating (5.137) and (5.145) we have

∇vOPM
x (r) = − [E x (r) + ZOPM

tc (r)
]

− [DOPM(r) − D(r)] + [EOPM
H (r) − EH (r)

]
(5.147)

where
ZOPM

tc (r) = ZOPM
s

(
r; [

γOPM
s

]) − Z s (r; [γs]) . (5.148)

Equation (5.147) is an exact relationship between the XO–OPM and the PC approx-
imation of Q–DFT. Next, we assume the densities, and therefore the Hartree and
derivative density fields of these two schemes to be equivalent. We make no assump-
tions with regard to the fields ZOPM

s (r) and Z s(r) because ZOPM
tc (r) depends upon

the difference between the off–diagonal matrix elements of the respective density
matrices. Equation (5.147) then reduces to

∇vOPM
x (r) = −[E x (r) + ZOPM

tc (r)], (5.149)
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so thatvOPM
x (r)maybe interpreted as theworkdone in the conservativefieldROPM(r):

vOPM
x (r) = −

∫ r

∞
ROPM(r′) · d�′, (5.150)

ROPM(r) = E x (r) + ZOPM
tc (r). (5.151)

This work done is path independent. Since ∇ × E x (r) = 0, we have from (5.149)
that∇ × ZOPM

tc (r) = 0. As both E x (r) andZOPM
tc (r) are separately conservative, we

may write vOPM
x (r) as

vOPM
x (r) = Wx (r) + WOPM

tc (r), (5.152)

where

Wx (r) = −
∫ r

∞
E x (r′) · d�′ and

WOPM
tc (r) = −

∫ r

∞
ZOPM

tc (r′) · d�′, (5.153)

with Wx (r) and WOPM
tc (r) the work done in the fields E x (r) and ZOPM

tc (r), respec-
tively.

Next, on substituting for ∇vOPM
x (r) from (5.149) into (5.139), the XO–OPM

exchange energy may be expressed as

EOPM
x [ψi ] =

∫
ρ(r)r · [E x (r) + ZOPM

tc (r)
]
dr. (5.154)

Thus, the ‘exchange’ energy EOPM
x [ψi ] andpotential energyvOPM

x (r)of theXO–OPM
are comprised of both a Pauli and a Correlation–Kinetic component. The approxima-
tions invoked to arrive at (5.152) and (5.154) are predicated by the results of appli-
cation to atoms, negative atomic ions, and jellium metal surfaces. For example, the
ground state energy of atoms in the PC approximation of Q–DFT [23, 24], lie above
those of theXO–OPM [25] by less than 25ppm, the difference for 35Br − 86Rn being
less than 5ppm. The expectation value of single–particle operators are also essentially
equivalent. The structure of the exchange potential energies Wx (r) and vOPM

x (r) are
also essentially the same with both decaying as −1/r in the classically forbidden
region, and both being finite with zero slope at the nucleus. They differ only in the
intershell region where Wx (r) is monotonic with positive slope whereas vOPM

x (r)
possesses bumps. These bumps and the fact that the XO–OPM ground state ener-
gies lie slightly below those of the PC approximation of Q–DFT, are consequently
attributable to the Correlation–Kinetic effects. The Correlation–Kinetic energy is
therefore negligible [22]. For an analysis of the XO–OPM for arbitrary symmetry,
the reader is referred to the original literature [22].
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5.8.3 B. Derivation via the XO–OPM Integral Equation

It is also possible to derive [22] an expression for ∇vOPM
x (r) in terms of its Pauli

field component EOPM
x (r) and a correction term to it directly from the XO–OPM

integral equation (5.134) by invoking the Sharp–Horton approximations [10]. Once
again these approximations are justified ex post facto by the results of application
[23, 24] to atoms and atomic ions. Following Sharp and Horton, the first of these
assumes that the eigenvalues ε j in the denominator of the Green’s function of (5.130)
do not differ significantly from some average value 〈εi 〉 �= εi for all j. In the second
approximation, each denominator (〈εi 〉 − εi ) in the Green’s function is replaced by
a constant �ε independent of the indices i. Thus, the Green’s function becomes

Gi (rr′) = 1

�ε

′∑
j

ψ j (r)ψ∗
j (r

′), (5.155)

which on employing the closure relationship may be rewritten as

Gi (rr′) = 1

�ε

[
δ(r − r′) − ψi (r)ψ∗

i (r
′)
]
. (5.156)

Substituting this expression for the Green’s function into the XO–OPM integral
equation leads to

vOPM
x (r) =

∑
i vx,i (r)ψ

∗
i (r)ψi (r)∑

i ψ
∗
i (r)ψi (r)

+ 1∑
i ψ

∗
i (r)ψi (r)

∑
i

ψ∗
i (r)ψi (r)

×
∫

ψ∗
i (r

′)[vOPM
x (r′) − vx,i (r′)]ψi (r′)dr′. (5.157)

On substituting for vx,i (r) from (5.123), the first term on the right hand side may be
written as

vS
x (r) =

∫
ρOPMx (rr′)
|r − r′| dr′, (5.158)

where ρOPMx (rr′) = −|γOPM
s (rr′|2/2ρ(r) is the XO–OPM Fermi hole charge. The

function vS
x (r) is known in the literature as the Slater potential energy [26]. However,

as will be explained in Chap.10, vS
x (r) does not represent the potential energy of an

electron. Hence, it is more appropriate to refer to it as the Slater function. The
expression for vOPM

x (r) is then

vOPM
x (r) = vS

x (r) +
∑
i

ρi (r)
ρ(r)

[〈vOPM
x (r) − vx,i (r)〉i ], (5.159)

http://dx.doi.org/10.1007/978-3-662-49842-2_10
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where ρi (r) = ψ∗
i (r)ψi (r), and the expectation 〈 〉i taken with respect to ψi (r). On

taking the gradient of (5.159) we obtain

∇vOPM
x (r) = −EOPM

x (r) +
{∫ ∇ρx (rr′)

|r − r′| dr′ +
∑
i

(
∇ρi (r)

ρ(r)

)

× [〈
vOPM
x (r) − vx,i (r)

〉
i

] }
, (5.160)

where

EOPM
x (r) =

∫
ρOPMx (rr′)(r − r′)

|r − r′|3 dr′. (5.161)

Equation (5.160) is similar to (5.149) derived via the ‘Quantal Newtonian’ first law.
Thus, the correction term in curly brackets may be thought of as being representative
of the kinetic field ZOPM

tc (r). (Of course, there is nothing in this derivation that
identifies this term as a Correlation–Kinetic field. It is only via comparison with
(5.149) that one can relate this field to kinetic effects). Thus, once again vOPM

x (r) can
be interpreted as the work done in a conservative field [E x (r) − { }] representative
of Pauli and Correlation–Kinetic contributions. This work done is path independent
since ∇ × [E x (r) − { }] = 0. On substitution of (5.160) into (5.139) one obtains an
expression for EOPM

x [ψi ] similar to (5.154). Finally, note that if only the delta function
term in the approximate Green’s function of (5.156) is retained, then vOPM

x (r) =
vS
x (r). Thus, the Slater function can be derived from the XO–OPM integral equation

[10]. Slater’s original derivation [26] of this function is described in Chap.10.
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Chapter 6
Quantal Density Functional Theory
of the Density Amplitude

Abstract The Quantal density functional theory (Q-DFT) mapping from a system
of electrons in an external electrostatic field in any state as described by Schrödinger
theory to one of noninteracting bosons in their ground state but with the same density
is described. The corresponding Schrödinger equation of the model bosons is for the
density amplitude,with the sole eigenvalue being the negative of the ionization poten-
tial. Via the ‘Quantal Newtonian’ first law for the model system, the local potential
representative of the many-body effects in this equation is the work done in a conser-
vative effective field. The field is the sum of a component representative of electron
correlations due to the Pauli Exclusion Principle and Coulomb repulsion, and another
of Correlation-Kinetic effects—the difference between these effects for the interact-
ing fermionic and noninteracting bosonic systems. The corresponding components of
the total energy are expressed in integral virial form in terms of the respective fields.
The traditional density functional theory definitions of these energies and potentials
in terms of energy functionals of the density and their functional derivatives are given.
The Levy-Perdew-Sahni definition of the local potential in terms of thewave function
written as the product of a marginal and conditional probability amplitude is derived.
The maps to the model systems of noninteracting bosons and fermions having the
same density are related by the Pauli potential and Pauli kinetic energy. By Q–DFT,
it is shown that these energies are not a consequence of the Pauli principle but rather
a consequence of kinetic effects of the model systems. The Q–DFT definitions of
these energies is given. Finally, the mapping to the model of noninteracting bosons
is shown to be a special case of that to noninteracting fermions.

Introduction

In time-independent quantal density functional theory (Q–DFT) and Kohn–Sham
density functional theory (KS–DFT), the basic idea is the mapping to the model
S system of N noninteracting fermions whereby the density ρ(r), the total energy
E , and the ionization potential I (or electron affinity A) equivalent to that of the
interacting electronic system are obtained. In Q–DFT, which is based on the ‘Quan-
tal Newtonian’ first law, both the total energy E and the local electron–interaction
potential energy vee(r) of the model fermions, are defined in terms of ‘classical’
fields and quantal sources. The potential energy vee(r) is the work done to move the
model fermion in a conservative effective field. The components of the total energy

© Springer-Verlag Berlin Heidelberg 2016
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E are expressed in integral virial form in terms of fields associated with these com-
ponents. The highest occupied eigenvalue of the corresponding S system differential
equation is the negative of the ionization potential I . In time-independent KS–DFT,
the energy E is expressed in terms of component energy functionals of the ground
state density ρ(r). The potential energy vee(r) of the model fermions is then defined
as the functional derivative of the KS electron–interaction energy functional com-
ponent. Once again the negative of the ionization potential I is the highest occupied
eigenvalue of the S system differential equation. Irrespective of the definition of
the potential energy vee(r) employed to generate the model fermion orbitals, the S
system differential equation must be solved N times to obtain the density ρ(r).

Now consider a system of N noninteracting bosons in an external fieldF ext(r) =
−∇v(r). This is the same external field as that of the interacting system of electrons.
Let us assume these bosons are in their ground state, and that they have the same
density ρ(r) as the interacting electronic system. As the bosons occupy the same
state, their wavefunction ψB(r) is defined by the equation

N [ψB(r)]2 = ρ(r), (6.1)

so that

ψB(r) = 1√
N

√
ρ(r), (6.2)

and the normalization condition is
∫

[ψB(r)]2dr = 1. (6.3)

If the Schrödinger equation for the model boson system wavefunction ψB(r) which
is proportional to the density amplitude

√
ρ(r) could be derived, then solution of this

differential equationwould lead directly to the density ρ(r). Note that this differential
equation would have to be solved only once in order to determine the density. In
addition, since the bosons are in their ground state, the wavefunction is nodeless.
Furthermore, as the bosons are noninteracting, each has the same potential energy.
Therefore, in the differential equation, this potential energy is represented by a local
(multiplicative) operator. The total ground state energy E could then be determined,
for example, by employing the fact that the energy is a functional of the ground state
density. We refer to the system of noninteracting bosons whereby the density and
energy equivalent to that of the interacting system is obtained as the B system.

The simplest derivation [1] of the B system differential equation and the cor-
responding total energy expression is via traditional density functional theory, and
we describe this first. This derivation is restricted to ground states because density
functional theory is a ground state theory. The local potential energy of the nonin-
teracting bosons is vB(r) = v(r) + vB

ee(r), with vB
ee(r) defined in this framework as

a functional derivative. However, the differential equation may also be derived [1]
directly from the Schrödinger equation for the electrons. Thus, the B system differ-
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ential equation is also valid for excited states of the interacting system. In this second
derivation which is described next, the potential energy vB

ee(r) is obtained in terms of
a conditional probability amplitude that describes the (N − 1) electron system when
the position of the remaining electron is fixed. Finally, via the ‘Quantal Newtonian’
first laws for the interacting and model boson systems, we derive the equations of
the corresponding Q–DFT mapping. In this framework, valid for both ground and
excited states of the interacting system, the total energy E and the potential energy
vB
ee(r) are once again described in terms of ‘classical’ fields and their quantal sources,
with vB

ee(r) being the work done in a conservative effective field. The sole eigenvalue
of the B system differential equation is proved to be the chemical potential.

The model S and B systems, which both generate the density ρ(r), are related by
what is referred to in the literature [2] as the Pauli kinetic energy TP and the Pauli
potential energy vP(r). These energies are not a consequence of the Pauli exclusion
principle as stated in the literature, but depend rather on the difference in the kinetic
aspects of the S and B systems as proved below. The traditional density functional
theory and Q–DFT definitions of these properties are also given.

6.1 Density Functional Theory of the B System

In Hohenberg–Kohn (HK) density functional theory, the nondegenerate ground state
energy functional of the density ρ(r) is written as (4.23)

E[ρ] =
∫

ρ(r)v(r)dr + FHK[ρ], (6.4)

where v(r) is the external potential energy, and FHK[ρ] the universal functional

FHK[ρ] = 〈ψ[ρ]|T̂ + Û |ψ[ρ]〉. (6.5)

The ground state density is determined by the Euler–Lagrange equation subject to
the constraint

∫
ρ(r)dr = N :

δ

(
E[ρ] − μ

∫
ρ(r)dr

)
= 0, (6.6)

or
δE[ρ]/δρ(r) = μ, (6.7)

where μ is the chemical potential.

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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Recall that in the KS–DFT description of the S system, the expression for the
ground state energy functional is obtained by adding and subtracting from (6.5) the
kinetic energy Ts[ρ] of noninteracting fermions with the same density ρ(r). Thus,
one obtains (4.80)

E[ρ] = Ts[ρ] +
∫

ρ(r)v(r)dr + EKS
ee [ρ], (6.8)

with the KS electron–interaction energy functional EKS
ee [ρ] defined as

EKS
ee [ρ] = FHK[ρ] − Ts[ρ]. (6.9)

The Euler–Lagrange equation for the density is then

δTs[ρ]
δρ(r)

+ v(r) + δEKS
ee [ρ]

δρ(r)
= μ. (6.10)

One could solve this equation if we knew the functional Ts[ρ]. However, as the
fermions are noninteracting, its solution is equivalent to solving the N single–particle
equations of the S system (see (4.76)):

[
−1

2
∇2 + vs(r)

]
φi (x) = εiφi (x); i = 1, . . . , N , (6.11)

with the Dirac density matrix being

γs(rr′) =
∑

σ

∑
i

φ∗
i (rσ)φi (r′σ), (6.12)

whose diagonal matrix element is the density: ρ(r) = γs(rr). The potential energy
vs(r) of the noninteracting fermions is

vs(r) = v(r) + vee(r), (6.13)

where

vee(r) = δEKS
ee [ρ]

δρ(r)
, (6.14)

is the electron–interaction potential energy.
In order to construct the B system, let us add and subtract the kinetic energy

TB[ρ] of N noninteracting bosons of density ρ(r) in their ground state to the energy
functional expression of (6.4). Assuming the mass of the bosons in atomic units is
unity, their kinetic energy TB[ρ] is

http://dx.doi.org/10.1007/978-3-662-49842-2_4
http://dx.doi.org/10.1007/978-3-662-49842-2_4
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TB[ρ] = N
∫

ψ∗
B(r)

(
−1

2
∇2

)
ψB(r)dr

=
∫ √

ρ(r)
(

−1

2
∇2

) √
ρ(r)dr. (6.15)

Note that in this case the kinetic energy functional of the density is explicitly defined.
The B system ground state energy expression is then

E[ρ] = TB[ρ] +
∫

ρ(r)v(r)dr + EB
ee[ρ] (6.16)

where
EB
ee[ρ] = FHK[ρ] − TB[ρ]. (6.17)

It is evident from (6.17) that the B system electron–interaction energy functional
EB
ee[ρ] accounts for electron correlations due to the Pauli exclusion principle and

Coulomb repulsion as well as Correlation–Kinetic effects. The Correlation–Kinetic
effects in turn arise due to the difference in the kinetic energy of the interacting
system and that of the noninteracting bosons.

The B system differential equation is obtained by application of the Euler–
Lagrange equation to (6.16). Noting that

δ

δρ(r)
TB[ρ] = − 1

2
√

ρ(r)
∇2

√
ρ(r), (6.18)

substitution of the functional derivative of (6.16) into (6.7) then leads to the B system
differential equation for the density amplitude

√
ρ(r):

[
−1

2
∇2 + vB(r)

] √
ρ(r) = μ

√
ρ(r). (6.19)

The potential energy of the bosons vB(r) is

vB(r) = v(r) + vB
ee(r), (6.20)

with its electron–interaction component vB
ee(r) obtained as the functional derivative

vB
ee(r) = δEB

ee[ρ]
δρ(r)

. (6.21)

Thus, in traditional density functional theory, the B system is described by the equa-
tions (6.16) and (6.19), with the potential energy vB

ee(r) defined by (6.21). The single
eigenvalue μ is the chemical potential. Depending upon the direction in which the
functional derivative is taken, a statement to be explained more fully in the next
chapter, the chemical potential μ is the negative of the ionization energy [3].
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The B system differential equation (6.19) for the density amplitude
√

ρ(r) may
also be derived [2, 4–6] via the von Weizsäcker [7] kinetic energy functional TW [ρ]
defined as

TW [ρ] = 1

8

∫ |∇ρ(r)|2
ρ(r)

dr. (6.22)

The functional TW [ρ] is equivalent to the kinetic energy TB[ρ] of the noninteracting
bosons. This is readily seen to be the case since

√
ρ(r)

(
−1

2
∇2

) √
ρ(r) = −1

4
∇2ρ(r) + 1

8

|∇ρ(r)|2
ρ(r)

, (6.23)

and the fact that the first term on the right hand side does not contribute to the energy
integral because the density vanishes at the surface.

As we have seen, in the construction of the model system, one is free to choose
the statistics of the noninteracting particles, as well as their masses and spins. The
advantage of choosing noninteracting bosons instead of fermions is that one then
obtains a differential equation directly for the density amplitude

√
ρ(r). This equation

is solved once to obtain the density. The ground state energy E is then determined
from (6.16). The single eigenvalue μ in turn gives the ionization potential. Thus, in
principle, the B system constitutes a more computationally efficient framework for
the determination of electronic structure than that of the S system.

6.1.1 DFT Definitions of the Pauli Kinetic and Potential
Energies

The relationship between the model B and S systems is expressed via the Pauli
kinetic energy TP [ρ] defined as

TP [ρ] = EB
ee[ρ] − EKS

ee [ρ], (6.24)

which on substituting for EKS
ee [ρ] and EB

ee[ρ] from (6.9) and (6.17), respectively,
leads to

TP [ρ] = Ts[ρ] − TB[ρ]. (6.25)

Hence, it is evident that TP [ρ] is representative only of kinetic effects. The Pauli
potential energy vP(r) is the functional derivative of TP [ρ]:

vP(r) = δTP [ρ]
δρ(r)

= δTs[ρ]
δρ(r)

+ 1

2
√

ρ(r)
∇2

√
ρ(r) (6.26)

= vB
ee(r) − vee(r) (6.27)

= vB(r) − vs(r). (6.28)
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The Pauli kinetic and potential energies are also related by the integral virial expres-
sion [8]

TP [ρ] = −1

2

∫
ρ(r)r · ∇vP(r)dr. (6.29)

For additional properties of vP(r) and TP , we refer the reader to [8, 9].

6.2 Derivation of the Differential Equation for the Density
Amplitude from the Schrödinger Equation

In this section we derive [1] the B system differential equation (6.19) for the density
amplitude

√
ρ(r) directly from the Schrödinger equation. As a consequence, the

potential energy vB
ee(r) is expressed as an expectation value taken with respect to a

conditional probability amplitude.
We partition the N–electron Hamiltonian of (2.131) as in (2.150):

Ĥ = −1

2
∇2 + v(r) +

N∑
i=2

1

|r − ri | + Ĥ N−1, (6.30)

where Ĥ N−1 is the (N − 1)–electron Hamiltonian (2.151). The ground or excited
state wavefunction ψ(X) of the time-independent Schrödinger equation (2.133) is
factored as [10]

ψ(X) = f (r)φ
(
XN−1,σ|r) , (6.31)

where f (r) is a marginal probability amplitude for an electron at r, and φN−1

(XN−1,σ|r) the conditional probability amplitude associated with the other (N − 1)
electrons atXN−1 when one electron is known to be at r. The conditional amplitude is
antisymmetric in the (N − 1) electrons, and depends parametrically on the position
vector r and spin coordinate σ of that electron. The normalization condition for the
wavefunction then dictates the normalizations

∑
σ

∫
φ∗ (

XN−1,σ|r)φ
(
XN−1,σ|r) dXN−1 = 1 for each r, (6.32)

and ∫
f ∗(r) f (r)dr = 1. (6.33)

Note that in the normalization condition (6.32), the integration is over the space–spin
coordinates of the (N − 1) electrons and the spin coordinateσ of the electron at r. (We
will assume this to be the case for all the integrations below: 〈 〉 ≡ ∑

σ

∫
dXN−1.)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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With the wavefunction ψ(X) expressed as by (6.31), the density ρ(r) is (see
(2.144))

ρ(r) = N
∑

σ

∫
ψ∗(X)ψ(X)dXN−1

= N f ∗(r) f (r)
∑

σ

∫
φ∗ (

XN−1,σ|r) φ
(
XN−1,σ|r) dXN−1

= N f ∗(r) f (r), (6.34)

so that the marginal amplitude f (r) is

f (r) = 1√
N

√
ρ(r). (6.35)

(Note that this is the B system wavefunction ψB(r).)
Thus, the wavefunction may be expressed as

ψ(X) = 1√
N

√
ρ(r)φN−1(XN−1,σ|r). (6.36)

With Ĥ andψ(X) defined by (6.30) and (6.31) respectively, the Schrödinger equation
is

(
−1

2
∇2 + v(r) +

N∑
i=2

1

|r − ri | + Ĥ N−1

)
f (r)φ(XN−1,σ|r)

= EN f (r)φ(XN−1,σ|r), (6.37)

where EN is the energy of the N–electron system. Multiplying (6.37) by φ∗(XN−1,

σ|r) and performing the integration described above leads to

〈φ| − 1

2
∇2 + v(r)|φ〉 f (r) + (N − 1)〈φ| 1

r − r2
|φ〉 f (r)

+ 〈φ|Ĥ N−1|φ〉 f (r) = EN f (r). (6.38)

Consider next the kinetic energy term

〈φ (
XN−1,σ|r) | − 1

2
∇2|φ (

XN−1,σ|r)〉 f (r) =

〈φ (
XN−1,σ|r) | − 1

2
∇2|φ (

XN−1,σ|r) f (r)〉. (6.39)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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Using ∇2(AB) = A∇2B + B∇2A + 2∇A · ∇B, we have

− 1

2
∇2(φ f ) = −1

2

[
φ∇2 f (r) + f (r)∇2φ + 2∇ f (r) · ∇φ

]
(6.40)

so that

〈
φ| − 1

2
∇2|φ f

〉 = −1

2
∇2 f (r) − 1

2
f (r)〈φ|∇2|φ〉 − 〈φ|∇ f · ∇φ〉. (6.41)

The last term of (6.41) on using (6.32) is

〈φ|∇ f · ∇φ〉 = 1

2
∇ f · ∇〈φ|φ〉 = 0, (6.42)

so that (6.38) becomes

[
−1

2
∇2 + ṽB(r)

]
f (r) = EN f (r), (6.43)

where

ṽB(r) = v(r) +
∫

ρ̃N−1(r′)
|r − r′| dr

′ + 〈
φ| − 1

2
∇2|φ〉

+ 〈φ|Ĥ N−1|φ〉, (6.44)

and ρ̃N−1(r) the electron density of that φ(XN−1,σ|r) associated with the electron at
r. Subtracting EN−1 f (r) from (6.44), where EN−1 is the (N − 1)–electron system
energy, and noting that f (r) ∼ √

ρ(r)we recover the B system differential equation

[
−1

2
∇2 + vB(r)

] √
ρ(r) = μ

√
ρ(r), (6.45)

with vB(r) = ṽB(r) − EN−1, and μ = EN − EN−1 the negative of the ionization
energy. In thismanner, the potential energy vB(r) is expressed in terms of expectation
values taken with respect to the conditional probability φ(XN−1,σ|r).

An important property of the potential energy vB(r) is obtained as follows. Since

∇2〈φ|φ〉 = 0 (6.46)

and
∇2〈φ|φ〉 = 2〈∇φ · ∇φ〉 + 2〈φ|∇2|φ〉, (6.47)

we have 〈
φ| − 1

2
∇2|φ

〉
= 1

2
〈∇φ · ∇φ〉 ≥ 0, (6.48)
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because the integrand is positive. Then rewriting the expression for vB(r) as

vB(r) = v(r) +
∫

ρ̃N−1(r′)
|r − r′| dr

′

+ 〈φ(XN−1,σ|r)|Ĥ N−1 − EN−1|φ(XN−1,σ|r〉
+ 1

2
〈∇φ(XN−1,σ|r) · ∇φ(XN−1,σ|r)〉, (6.49)

we note that
vB(r) − v(r) ≥ 0, (6.50)

as none of the other terms are negative.
Finally, it can be proved that the kinetic energy T of the interacting system is

greater than that of the noninteracting bosons TB with the same density ρ(r):

T ≥ TB . (6.51)

From (6.41), (6.42), and (6.48) we have that

〈
ψ(X)| − 1

2
∇2|ψ(X)〉 = 〈

f (r)| − 1

2
∇2| f (r)〉 + 1

2
〈∇φ · ∇φ〉 , (6.52)

so that

〈ψ(X)| − 1

2
∇2|ψ(X)〉 ≥ 〈

f (r)| − 1

2
∇2| f (r)〉. (6.53)

Multiplying both sides of (6.53) by N and using the symmetry of the wavefunction
ψ(X) we obtain

〈ψ(X)| −
N∑
i=1

1

2
∇2
i |ψ(X)〉 ≥

∫ √
ρ(r)

(
−1

2
∇2

) √
ρ(r)dr, (6.54)

which proves (6.51).

6.3 Quantal Density Functional Theory of the B System

As was the case of the Q–DFTmapping to the S system, the Q–DFT of the B system
is in terms of quantal sources and ‘classical’ fields. The B system, of course, must
account for electron correlations due to the Pauli principle and Coulomb repulsion.
In addition, as we have seen, the kinetic energy of the noninteracting bosons is
different from that of the interacting system. Thus, the B system must also account
for Correlation–Kinetic effects. Hence again, the fields describing the B systemmust
be in terms of the properties of both the B and interacting systems. And again, there
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must exist an effective fieldF eff
B (r) inwhich the electron–interaction potential energy

of the model bosons is vB
ee(r).

Within Q–DFT the potential energy vB
ee(r) of the noninteracting bosons is the

work done to move a model boson in the conservative effective field F eff
B (r):

vB
ee(r) = −

∫ r

∞
F eff

B (r′) · d�′. (6.55)

Since ∇ × F eff
B (r) = 0, this work done is path–independent. The effective field

F eff
B (r) is the sum of the interacting system electron–interaction field Eee(r), and a

Correlation–Kinetic field Z B
tc (r):

F eff
B (r) = Eee(r) + Z B

tc (r). (6.56)

The field Eee(r) is obtained from Coulomb’s law from the pair–correlation density
g(rr′) which constitutes its source:

Eee(r) =
∫

g(rr′)(r − r′)
|r − r′|3 dr′, (6.57)

where g(rr′) = 〈ψ(X)|P̂(rr′)|ψ(X)〉/ρ(r)withψ(X) the eigenfunctions of the time-
independent Schrödinger equation (2.133) and P̂(rr′) the pair operator of (2.28). The
fieldZ B

tc (r) is the difference of twokinetic fields,Z B(r) andZ(r) of themodel boson
and Schrödinger systems, respectively:

Z B
tc (r) = Z B(r) − Z(r), (6.58)

where

Z B(r) = zB(r; [γB])
ρ(r)

and Z(r) = z(r; [γ])
ρ(r)

. (6.59)

The B system kinetic ‘force’ zB(r; [γB]) is defined in terms of the corresponding
kinetic–energy–density tensor tB,αβ(r) as

zB,α(r) = 2
∑

β

∂

∂rβ
tB,αβ(r; [γB]), (6.60)

with

tB,αβ(r) = 1

4

[
∂2

∂r ′
α∂r ′′

β

+ ∂2

∂r ′
β∂r ′′

α

]
γB(r′r′′)|r′=r′′=r, (6.61)

and where the model boson system density matrix γB(rr′) quantal source is

γB(rr′) = Nψ∗
B(r)ψB(r′) = √

ρ(r)
√

ρ(r′). (6.62)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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The kinetic ‘force’ z(r; [γ]) is defined similarly in terms of the interacting system
density matrix γ(rr′).

The interacting system energy E may then be written as

E = TB +
∫

ρ(r)v(r)dr + Eee + T B
c , (6.63)

where the kinetic energy of the bosons TB is given by (6.15), and the electron–
interaction Eee andCorrelation–Kinetic T B

c energies expressed in integral virial form,
respectively, are

Eee =
∫

ρ(r)r · Eee(r)dr, (6.64)

and

T B
c = 1

2

∫
ρ(r)r · Z B

tc (r)dr. (6.65)

The expression for Eee and T B
c are independent of whether the fields Eee(r) and

Z B
tc (r) are conservative or not. Equations (6.55) and (6.63) constitute the Q–DFT of

the B system. These equations are valid for the transformation from both the ground
and excited states of the interacting system. Irrespective of the state of the interacting
system, the B system is always constructed to be in its ground state.

The proof of the Q–DFT mapping to the B system is as follows. The boson wave
function ψB(r) of (6.2) is the solution to the differential equation (6.19). It therefore
satisfies the ‘Quantal Newtonian’ first law:

F ext(r) + F int
B (r) = 0 (6.66)

where the internal field experienced by each boson is

F int
B (r) = −∇vB

ee(r) − D(r) − Z B(r), (6.67)

withD(r) = d(r)/ρ(r), d(r) = − 1
4∇∇2ρ(r), andZ B(r) is defined by (6.59). Note

that∇ × Z B(r) = 0. The ‘Quantal Newtonian’ first law for the interacting electrons
is (see Sect. 3.4.1)

F ext(r) + F int(r) = 0 (6.68)

where the corresponding internal field is

F int(r) = Eee(r) − D(r) − Z(r), (6.69)

http://dx.doi.org/10.1007/978-3-662-49842-2_3
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with the components of F int(r) as defined above. Equating (6.66) and (6.68) leads
to

∇vB
ee(r) = −F eff

B (r), (6.70)

with F eff
B (r) defined by (6.56). The interpretation of vB

ee(r) as the work done in the
field F eff

B (r) is thus proved. Note that although F eff
B (r) is conservative, the fields

Eee(r) and Z B
tc (r) are in general not curl free. For systems of symmetry such that

∇ × Eee(r) = 0 and ∇ × Z B
tc (r) = 0, the potential energy vB

ee(r) may by written as

vB
ee(r) = Wee(r) + WB

tc (r), (6.71)

where Wee(r) and WB
tc (r) are respectively the work done in the fields Eee(r) and

Z B
tc (r):

Wee(r) = −
∫ r

∞
Eee(r′) · d�′ and WB

tc (r) = −
∫ r

∞
Z B

tc (r
′) · d�′. (6.72)

The work done Wee(r) and WB
tc (r) are separately path-independent.

The kinetic energy TB of the noninteracting bosons (6.15) may also be expressed
in terms of the kinetic field Z B(r) as

TB = −1

2

∫
ρ(r)r · Z B(r)dr. (6.73)

The integral virial expression for the Correlation–Kinetic energy T B
c of (6.65) then

follows by subtracting TB from the kinetic energy T of the interacting system as
given by (2.70).

For two electron systems such as the Helium atom, Hydrogen molecule, and the
Hooke’s atom, the S system in its ground state and the B system are equivalent. This
is because the spatial part of each S system orbital φ(x) is ψ(r) = ψB(r) ∝ √

ρ(r)
(see Sect. 3.5). Hence, all the quantal sources, fields etc. of the two systems are the
same. The Q–DFT example of the ground state S system description of the ground
and first excited singlet states of the Hooke’s atom (Sect. 3.5) is therefore also that
of the Q–DFT B system representation of these states. The example thus clearly
demonstrates that B systems can be constructed for both ground and excited states
of the interacting system.

It is also possible to construct B systems whereby the density and total energy
of Hartree–Fock and Hartree theories is obtained. The basic Q–DFT equations are
the same but with the interacting system pair–correlation density g(rr′) and density
matrix γ(rr′) replaced by the corresponding Hartree–Fock and Hartree theory prop-
erties.

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
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6.3.1 Q–DFT Definitions of the Pauli Kinetic
and Potential Energy

The Q–DFT definition of the S system electron–interaction potential energy vee(r)
of (3.126) is given by (3.140):

vee(r) = −
∫ r

∞
F eff(r′) · d�′, (6.74)

where
F eff(r) = Eee(r) + Z tc(r), (6.75)

with
Z tc(r) = Z s(r) − Z(r). (6.76)

The S system kinetic field Z s(r) is obtained from its quantal source, the Dirac
density densitymatrixγs(rr′), from the corresponding kinetic–energy–density tensor
ts,αβ(r; [γs]). Employing the definition (6.27) for the Pauli potential energy vP(r),
we have then

vP(r) = −
∫ r

∞

[F eff
B (r′) − F eff(r′)

] · d�′. (6.77)

But from (6.56) and (6.75)

F eff
B (r) − F eff(r) = Z B(r) − Z s(r) = Z P(r), (6.78)

so that vP(r) is the work done in the conservative kinetic field Z P(r):

vP(r) = −
∫ r

∞
Z P(r′) · d�′. (6.79)

Note that the components Z B(r) and Z s(r) of Z P(r) are each separately conserv-
ative so that we may write

vP(r) = WB
k (r) − WS

k (r), (6.80)

where WB
k (r) and WS

k (r) are the work done in the kinetic fields Z B(r) and Z s(r),
respectively:

WB
k (r) = −

∫ r

∞
Z B(r′) · d�′ and WS

k (r) = −
∫ r

∞
Z s(r′) · d�′. (6.81)

http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
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Since the kinetic energy of the S system when expressed in terms of Z s(r) is

Ts = −1

2

∫
ρ(r)r · Z s(r)dr, (6.82)

we have on employing (6.73) and the definition (6.25) of the Pauli kinetic energy TP

that

TP = −1

2

∫
ρ(r)r · Z P(r)dr. (6.83)

From their Q–DFT expressions, it is again evident that TP and vP(r) are due entirely
to kinetic effects. They depend on the kinetic field Z P(r) which is the difference
between the kinetic fieldsZ B(r) andZ s(r) of the noninteracting boson and fermion
systems. Since for two electron systems, Z B(r) = Z s(r), then vP(r) = 0 and
TP = 0.

6.4 Endnote

As noted previously, for two–electron systems, the S and B model systems are
equivalent. It turns out, however, that the B system is a special case of the S system
[11]. To see this, let us write the spatial part ψi (r) of the S system orbital φi (x) as

ψi (r) = √
ρ(r)ci (r), i = 1, 2, . . . , N , (6.84)

where the coefficients ci (r) satisfy

∑
ci (r)2 = 1. (6.85)

Then with the choice
ci = 1/

√
N , (6.86)

we see thatψi (r) ∝ √
ρ(r), and that consequently themodel of noninteracting bosons

becomes a special case of the noninteracting fermion model.
A consequence of the above fact is that many general properties of the S system

then translate over to the B system. For example, it has been proved [11], [QDFT2]
that the S system electron–interaction potential energy vee(r) is finite at the nucleus,
irrespective ofwhether the system is in a ground or excited state orwhether the system
is an atom, a molecule, or a solid. (There is also a separate proof [12], [QDFT2] of
the finiteness of vee(r) at the nucleus of spherically symmetric systems.) The same is
therefore the case for the B system electron–interaction potential energy vB

ee(r). As
another example, to be discussedmore fully in the next chapter, the S systempotential
energy vee(r) is discontinuous as the electron number passes through an integer value.
Thus, the B system potential energy vB

ee(r) also exhibits such a discontinuity.
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For the application of the Q–DFT of the density amplitude to the Be andMg atoms
see [13], [QDFT2]. A key result of the mapping from the interacting electrons to
one of noninteracting bosons that are all in the same ground state with density ρ(r)
is that the Correlation–Kinetic effects become very significant.
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Chapter 7
Quantal Density Functional Theory of the
Discontinuity in the Electron–Interaction
Potential Energy

Abstract In the mapping from an interacting system of electrons in an external field
to one of noninteracting fermions possessing the same density, the local electron-
interaction potential of the latter, which incorporates all the many-body effects,
exhibits a discontinuity as the electron number passes through an integer value.
The origin of the discontinuity is explained, and an expression for it derived in terms
of the eigenvalues of the corresponding noninteracting fermion Schrödinger equa-
tion. According to Kohn-Sham density functional theory, all the different electron
correlations, viz. those due to the Pauli Exclusion Principle, Coulomb repulsion, and
Correlation-Kinetic effects, contribute to the discontinuity. Via Q–DFT it is shown,
both analytically as well as by examples, that neither the Pauli principle nor Coulomb
correlations contribute, and that the discontinuity is solely an artifact of Correlation-
Kinetic effects.

Introduction

The Quantal and Kohn–Sham density functional theory descriptions of the local
effective potential energy theories of the previous chapters have been restricted to
the case of integer (N ) electronic charge, i.e.

∫
ρ(r)dr = N . However, in order to

understand phenomenon such as the dissociation ofmolecules [1, 2] so that appropri-
ate integer charge exists on the fragments, or properties such as the band structure of
semiconductors [2–5], the framework of these theories must be extended to include
the case of fractional charge (N + ω; 0 < ω < 1). As a consequence of this exten-
sion a fundamental property of the local electron–interaction potential energy vee(r)
of the S system of noninteracting fermions emerges. It turns out that this potential
energy exhibits a discontinuity � as the electron number passes through an integer
value. Equivalently, as the fractional charge ω vanishes from above

� = lim
ω↓0[v

(N+ω)
ee (r) − v(N )

ee (r)]. (7.1)

(As the B system of noninteracting bosons is a special case of the S system, the
corresponding local electron–interaction potential energy vB

ee(r) also exhibits such
a discontinuity.) The existence of the discontinuity then explains the dissociation of
molecules and leads to the correct expression for the band gap of semiconductors.
Thus, for example, the band gap Egap which is defined as the difference between

© Springer-Verlag Berlin Heidelberg 2016
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the lowest energy level of the conduction band and the highest energy level of the
valence band, can be shown to be given by the expression

Egap = ε(N )
N+1 − ε(N )

N + �, (7.2)

where ε(M)
m is the m th eigenvalue of the S system differential equation (3.126) for

M model fermions. It is evident, therefore, that solution of the S system differential
equation for the ground state of a semiconductor to determine the difference between
the first unoccupied orbital energy ε(N )

N+1 and the last occupied orbital energy ε(N )
N in

itselfwill not lead to a correct value for the band gap. The addition of the discontinuity
� is essential to determining the gap accurately.

In Kohn–Sham density functional theory (KS–DFT), the electron–interaction
potential energy vee(r) is defined as the functional derivative δEKS

ee [ρ]/ δρ(r), where
EKS
ee [ρ] is the Kohn–Sham electron–interaction energy functional. As explained in

Chap.5, this energy functional is representative of electron correlations due to the
Pauli exclusion principle, Coulomb repulsion, and Correlation–Kinetic effects. As
the dependence of the functional EKS

ee [ρ] on the different electron correlations is
unknown, one must therefore conclude from the perspective of KS–DFT, that these
correlations all contribute to the discontinuity �. On the other hand, within Quantal
density functional theory (Q–DFT), the contribution of each of these correlations
to the potential energy vee(r) is delineated, and therefore their separate contribu-
tions to the discontinuity � can be studied. It will be shown [6] in this chapter that
Pauli and Coulomb correlations do not contribute to the discontinuity in the limit as
the fractional charge vanishes, and that the discontinuity is solely a consequence of
Correlation–Kinetic effects. Furthermore, for finite fractional charge, irrespective of
how small it is, there will always be a contribution to the discontinuity from each type
of correlation. The smaller the fractional charge, the smaller the Pauli and Coulomb
correlation and greater the Correlation–Kinetic contribution. An analytical expres-
sion for the discontinuity � in terms of fields representative of Correlation–Kinetic
effects for the fractionally charged and integer electron systems is consequently
derived.

We begin the chapter by explaining the origin of the discontinuity in the electron–
interaction potential energy vee(r). Next, an expression for the discontinuity for finite
systems is derived in terms of the S system eigenvalues. The Q–DFT of the discon-
tinuity, together with numerical examples explicating the theory, is then described.

7.1 Origin of the Discontinuity of the Electron–Interaction
Potential Energy

The understanding of the origin of the discontinuity in the S system electron–
interaction potential energy vee(r) is due to Perdew et al. [1, 2]. Accordingly, the
definition of the ground state energy functional E[ρ] of (4.23) must be extended to

http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_5
http://dx.doi.org/10.1007/978-3-662-49842-2_4
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densities integrating to fractional particle number. Hence, consider a system with a
fractional number of electrons N + ω whose density is ρ(N+ω)(r) so that

∫
ρ(N+ω)(r)dr = N + ω, N = integer; 0 ≤ ω ≤ 1. (7.3)

The corresponding ground state energy functional E (N+ω)[ρ] is then

E (N+ω)[ρ] =
∫

ρ(N+ω)(r)v(r)dr + F (N+ω)
HK [ρ], (7.4)

with the universal functional F (N+ω)
HK [ρ] in turn defined as

F (N+ω)
HK [ρ] = min

D̂→ρ(N+ω)

tr{D̂(T̂ + Û )}. (7.5)

In (7.5), the search for the minimum is over all ensemble density matrices D̂ con-
structed from an N - and an (N + 1)-electron function (ψ(N ),ψ(N+1)) which yield
the density ρ(N+ω)(r). (Note that the functions ψ(N ) and ψ(N+1) are not necessarily
the exact ground state wavefunctions of the N - and (N + 1)-electron systems.)

The density matrix is thus defined as

D̂ = α(N )|ψ(N )〉〈ψ(N )| + α(N+1)|ψ(N+1)〉〈ψ(N+1)|, (7.6)

with
α(N ) + α(N+1) = 1. (7.7)

It yields the density ρ(N+ω)(r) via

ρ(N+ω)(r) = tr{D̂ρ̂}
= α(N )〈ψ(N )|ρ̂|ψ(N )〉 + α(N+1)〈ψ(N+1)|ρ̂|ψ(N+1)〉
= α(N )ρ(N )(r) + α(N+1)ρ(N+1)(r), (7.8)

where ρ(N )(r), ρ(N+1)(r) correspond to the N - and (N + 1)-electron system ground
state densities. Integration of (7.8) then leads to

N + ω = α(N )N + α(N+1)(N + 1)

= (
α(N ) + α(N+1)

)
N + α(N+1), (7.9)

which on employing (7.7) yields

α(N+1) = ω and α(N ) = (1 − ω). (7.10)
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The ensemble density matrix D̂ is therefore

D̂ = (1 − ω)|ψ(N )〉〈ψ(N )| + ω|ψ(N+1)〉〈ψ(N+1)|, (7.11)

and the density ρ(N+ω)(r) is

ρ(N+ω)(r) = (1 − ω)ρ(N )(r) + ωρ(N+1)(r). (7.12)

The ground state energy E (N+ω)[ρ] of the (N + ω)-electron system is then obtained
by minimizing the energy functional (7.4) with respect to all densities ρ(N+ω)(r) that
integrate to (N + ω) electrons.

Thus

E (N+ω)[ρ] = min
ρ(N+ω)(r)∫

ρ(N+ω)(r)dr=N+ω

[∫
ρ(N+ω)(r)v(r)dr + F (N+ω)

HK [ρ]
]

(7.13)

= min
ρ(N+ω)(r)∫

ρ(N+ω)(r)dr=N+ω

min
ψ(N ),ψ(N+1)

(1−ω)ρ(N )(r)+ωρ(N+1)(r)=ρ(N+ω)(r)

×
[
(1 − ω)〈ψ(N )|Ĥ |ψ(N )〉 + ω〈ψ(N+1)|Ĥ |ψ(N+1)〉

]
. (7.14)

The energy minimum is obtained when |ψ(N )〉 and |ψ(N+1)〉 are the exact ground
statewavefunctions of the N - and (N + 1)-electron systems. Theminimizing density
ρ(N+ω)(r) is then given by (7.8) and the energy minimum of (7.14) is given by

E (N+ω) = (1 − ω)E (N ) + ωE (N+1), (7.15)

where E (N ) and E (N+1) are the ground state energies of the N - and (N + 1)-electron
systems. Rewriting (7.15) as

E (N+ω) = (
E (N+1) − E (N )

)
ω + E (N )

= −ANω + E (N ), (7.16)

where AN = E (N ) − E (N+1) is the electron affinity of the N -electron system, we see
that E (N+ω) as a function ofω is an equation of a straight line. Thus, the energy E (N+ω)

as a function of the fractional charge consists of straight line segments with possible
derivative discontinuities at integer N . Equation (7.16) is plotted [7] in Fig. 7.1 in
the range 0 ≤ ω ≤ 1. In the range −1 ≤ ω ≤ 0, the corresponding equation is

E (N+ω) = (
E (N ) − E (N−1)

)
ω + E (N )

= −INω + E (N ), (7.17)
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Fig. 7.1 The energy E (N+ω)

of a finite system such as an
atom with (N + ω) electrons
as a function of the fractional
charge ω [7]

where IN = E (N−1) − E (N ) is the ionization potential of the N -electron system. The
straight line of (7.17) is also plotted [7] in Fig. 7.1.

The chemical potential μ(N ) which is the change in the energy as a function of
particle number is then (see also Fig. 7.1)

μ(N ) = ∂E (N+ω)

∂ω
= −IN for − 1 ≤ ω ≤ 0

= −AN for 0 ≤ ω ≤ 1. (7.18)

Thus, the chemical potential is discontinuous with discontinuities at integer particle
numbers N .As shown inSect. 4.1, the chemical potential corresponds to theLagrange
multiplier in the Euler–Lagrange equation (4.22) for the density:

δ

δρ

{
E[ρ] − μ(N )

∫
ρ(r′)dr′

}
= 0. (7.19)

(Note that this equation has now been extended to the case of noninteger charge.)
Since the chemical potential is discontinuous, the functional derivative δE[ρ]/δρ(r)
is discontinuous as the electron number passes through an integer value. With the
energy functional E[ρ] written as within KS–DFT (4.80), we see that the S sys-
tem electron–interaction potential energy vee(r) = δEKS

ee [ρ]/δρ(r) is discontinuous.
Thus, the origin of the discontinuity in vee(r) is the discontinuous nature of the
chemical potential as a function of electron number.

http://dx.doi.org/10.1007/978-3-662-49842-2_4
http://dx.doi.org/10.1007/978-3-662-49842-2_4
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7.2 Expression for Discontinuity � in Terms of S System
Eigenvalues

We next derive [8, 9] an expression for the discontinuity� of (7.1) for finite systems.
This expression is in terms of the S system eigenvalue of the charge–neutral (N + 1)-
electron system such as an atom, and that of the corresponding N -electron positive
ion. We show � to be the difference between the highest occupied eigenvalue ε(N+1)

N+1

of the (N + 1)-electron system and the (N + 1) th eigenvalue ε(N )
N+1 of the N -electron

system. The proof follows.
Consider a fractionally charged (N + ω) S system with local potential energy

v(N+ω)
s (r). Such a system is defined by the equations

[
−1

2
∇2 + v(N+ω)

s (r)
]

φ(N+ω)
i (x) = ε(N+ω)

i φ(N+ω)
i (x), (7.20)

with

ρ(N+ω)(r) =
N∑

i=1

∣∣∣φ(N+ω)
i (r)

∣∣∣
2 + ω

∣∣∣φ(N+ω)
N+1 (r)

∣∣∣
2
, (7.21)

where the highest occupied orbital has the fractional charge ω. (The spin index σ is
suppressed in (7.21).) Equation (7.21) may equivalently be expressed as

ρ(N+ω)(r) = (1 − ω)

N∑

i=1

∣∣∣φ(N+ω)
i (r)

∣∣∣
2 + ω

N+1∑

i=1

∣∣∣φ(N+ω)
i (r)

∣∣∣
2
. (7.22)

Writing v(N+ω)
s (r) in terms of its Hartree v

(N+ω)
H (r) and KS ‘exchange–correlation’

v(N+ω)
xc (r) potentials, we have

v(N+ω)
s (r) = v(r) + v(N+ω)

ee (r)

= v(r) + v
(N+ω)
H (r) + v(N+ω)

xc (r), (7.23)

where

v
(N+ω)
H (r) =

∫
ρ(N+ω)(r′)
|r − r′| dr′. (7.24)

Equations (7.23) and (7.24) then define v(N+ω)
xc (r). Assuming the system under con-

sideration to be finite, we impose the condition that v(N+ω)
s (r) vanishes at infinity:

lim
r→∞ v(N+ω)

s (r) = 0. (7.25)
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Since the external and Hartree potential energies also vanish in this limit we then
have

lim
r→∞ v(N+ω)

xc (r) = 0. (7.26)

With this result, the S system orbital densities in general decay asymptotically as

|φi (r)|2 ∼
r→∞ e−2(−2εi )1/2r . (7.27)

The highest occupied fractionally charged orbital φ(N+ω)
N+1 (r) has the slowest decay

so that the asymptotic structure of the (N + ω)-electron system density is

ρ(N+ω)(r) ∼
r→∞ e−2(−2ε(N+ω)

N+1 )1/2r . (7.28)

On the other hand, the asymptotic decay of the N - and (N + 1)-electron system
densities from (2.163) is

ρ(N )(r) ∼
r→∞ e−2(2IN )1/2r , (7.29)

and
ρ(N+1)(r) ∼

r→∞ e−2(2IN+1)
1/2r , (7.30)

where IN and IN+1 are the ionization energies for the N - and (N + 1)-electron
systems, respectively. Because the ionization energy for an (N + 1)-electron system
is smaller than that of an N -electron system we have

IN+1 < IN , (7.31)

and the fact (see (7.12)) that ρ(N+ω)(r) is a linear combination of ρ(N )(r) and
ρ(N+1)(r), we have

ρ(N+ω) ∼
r→∞ ρ(N+1)(r) ∼

r→∞ e−2(2IN+1)
1/2r . (7.32)

A comparison of (7.32) with (7.28) leads to

ε(N+ω)
N+1 = −IN+1 = ε(N+1)

N+1 , (7.33)

where the second equality is a consequence of the fact that the highest occupied
eigenvalue of the S system isminus the ionization potential (see Sect. 3.4.8). Equation
(7.33) also shows that the highest occupied eigenvalue is independent of the fractional
charge ω.

In order to show that v(N+ω)
s (r) differs from v(N )

s (r) as ω approaches zero from
above, let us consider a radius R(ω) such that

ωρ(N+1)(R(ω)) = (1 − ω)ρ(N )(R(ω)), (7.34)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_3
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for r = R(ω). As a consequence of (7.31), ρ(N+1)(r) asymptotically decays more
slowly than ρ(N )(r) (see (7.29) and (7.30)). Thus, as ω approaches zero, R(ω)

becomes infinite. For r < R(ω) and ω approaching zero, the density ρ(N )(r) domi-
nates the ensemble density ρ(N+ω)(r) of (7.12). Thus, in this region

lim
ω→0

ρ(N+ω)(r) = ρ(N )(r) for r < R(ω). (7.35)

Therefore, in the region r < R(ω), both v(N+ω)
s (r) and v(N )

s (r) generate the same
density. As such these potential energies can differ at most by a constant � in this
region. Since by definition both v(N+ω)

s (r) and v(N )
s (r) become zero in the limit

r → ∞, we have

v(N+ω)
s (r) − v(N )

s (r) = � for r < R(ω)

= 0 for r � R(ω). (7.36)

In the limit ω → 0 the radius R(ω) becomes infinite and both potentials differ by
a constant � everywhere. Employing (7.36) in the differential equation (7.20) for
the (N + ω)-electron system, and the fact that for small ω in the region r < R(ω)

the orbitals φ(N+ω)
i (x) ∼ φ(N )

i (x), we obtain

[
−1

2
∇2 + v(N )

ee (r) + �

]
φ(N )
i (x) = ε(N+ω)

i φ(N )
i (x) for r < R(ω). (7.37)

The corresponding equation for the N -electron system is

[
−1

2
∇2 + v(N )

ee (r)
]

φ(N )
i (x) = ε(N )

i φ(N )
i (x). (7.38)

A comparison of (7.37) and (7.38) shows that

ε(N+ω)
i = ε(N )

i + � for ω → 0. (7.39)

In particular for i = N + 1 we have

� = lim
ω→0

[
ε(N+ω)
N+1 − ε(N )

N+1

]
= −IN+1 − ε(N )

N+1, (7.40)

where in the last step we have used (7.33). Since

v
(N+ω)
H (r) = v

(N )
H (r) = 0 for r → ∞, (7.41)
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we finally have

� = lim
ω→0

[
v(N+ω)
ee (r) − v(N )

ee (r)
]

= lim
ω→0

[
v(N+ω)
xc (r) − v(N )

xc (r)
]

= ε(N+1)
N+1 − ε(N )

N+1, (7.42)

where we have employed ε(N+1)
N+1 = −IN+1. We thus see that the discontinuity � is

finite. Equation (7.42) is the desired result.

7.3 Correlations Contributing to the Discontinuity
According To Kohn–Sham Theory

If in (7.1) one employs the KS–DFT definitions of the potential energies v(N+ω)
ee (r)

and v(N )
ee (r) (or v(N+ω)

xc (r) and v(N )
xc (r)) as the functional derivatives δEKS

ee [ρ]/δρ(r)
|N+ω and δEKS

ee [ρ]/δρ(r)|N (or δEKS
xc [ρ]/δρ(r)|N+ω and δEKS

xc [ρ]/δρ(r)|N ), respec-
tively, one is led to the conclusion that all the correlations present—Pauli, Coulomb,
and Correlation–Kinetic—contribute to the discontinuity. That this is the case may
also be surmised from (7.42), since these eigenvalues are generated via the full KS
potential energy. In earlier Q–DFT literature [10, 11], it was also implicitly assumed
that all the correlations contribute to the discontinuity.What we prove [6] via Q–DFT
in the sections to follow is that Pauli andCoulomb correlations do not contribute to the
discontinuity, and that this intrinsic property of the S system is solely a consequence
of Correlation–Kinetic effects.

7.4 Quantal Density Functional Theory of the Discontinuity

For this chapter to be self–contained,we next redefine the fields and potential energies
within Q–DFT with minor notational changes in order to distinguish between the
N - and (N + ω)-electron systems.

The N -electron Schrödinger equation and that for the corresponding S system
are, respectively,

⎡

⎣−1

2

N∑

i=1

∇2
i +

N∑

i=1

v(ri ) + 1

2

N∑

i �= j

1

|ri − r j |

⎤

⎦�(N )(X)

= E (N )�(N )(X), (7.43)
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and [
−1

2
∇2 + v(r) + v(N )

ee

]
φ(N )
i (x) = ε(N )

i φ(N )
i (x), (7.44)

where �(N )(X) is the wavefunction, E the ground state energy, and φi (x) and εi the
single particle orbitals and eigenenergies. The density ρ(N )(r) = 〈�(N )|ρ̂(r)|�(N )〉=
〈�{φ(N )

i }|ρ̂|�{φ(N )
i }〉 = ∑

σi |φ(N )
i (x)|2, where ρ̂(r) is the density operator (2.12),

and �{φ(N )
i } the Slater determinant of the orbitals φ(N )

i (x).
The work v(N )

ee (r) done to move the model fermion from a reference point at
infinity to its position at r in the force of the conservative effective field F (N )(r) is

v(N )
ee (r) = −

∫ r

∞
F (N )(r′) · d�′, (7.45)

where
F (N )(r) = E (N )

ee (r) + Z(N )
tc (r). (7.46)

The electron–interaction component field E (N )
ee (r), which is representative of Pauli

and Coulomb correlations, is obtained by Coulomb’s law from its nonlocal source
charge distribution g(N )(rr′), the pair–correlation density. Thus,

E (N )
ee (r) =

∫
g(N )(rr′)(r − r′)

|r − r′|3 dr′, (7.47)

where g(N )(rr′) = 〈�(N )|P̂(rr′)|�(N )〉/ρ(N )(r), and P̂(rr′) is the pair–correlation
operator (2.28). TheCorrelation–Kinetic component fieldZ (N )

tc (r) is defined in terms
of the kinetic ‘forces’ z(N )(r; [γ]) and z(N )

s (r; [γs]) for the interacting and S systems,
respectively, as

Z (N )
tc (r) = {

z(N )
s (r; [γs]) − z(N ) (r; [γ])}/ ρ(N )(r). (7.48)

The nonlocal sources of the kinetic ‘forces’ are the spinless single–particle γ(N )(rr′)
and Dirac γ(N )

s (rr′) density matrices, respectively, where

γ(N )(rr′) = 〈�(N )|γ̂(rr′)|�(N )〉 (7.49)

and

γ(N )
s (rr′) = 〈�{φ(N )

i }|γ̂(rr′)|�{φ(N )
i }〉

=
∑

σi

φ(N )∗
i (rσ)φ(N )

i (r′σ), (7.50)

and where γ̂(rr′) is the density matrix operator (2.17). The kinetic ‘forces’ are
defined such that the component z(N )

α (r) = 2
∑

β ∂tαβ(r; [γ])/∂rβ , where tαβ(r) =

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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( 14 )[∂2/∂r ′
α∂r ′′

β + ∂2/∂r ′
β∂r ′′

α]γ(N )(r′r′′)|r′=r′′=r is the kinetic–energy–density tensor.
The ‘force’ z(N )

s (r; [γs]) is similarly defined in terms of the S system tensor ts,αβ(r)
and Dirac density matrix γ(N )

s (rr′).
Within the Schrödinger theory framework, the fractionally charged (N + ω) case

is treated in terms of an ensemble of the N - and (N + 1)-electron systems. Thus,
with the ensemble density matrix defined as in (7.11), the pair–correlation density,
and the density matrix can be shown to be

g(N+ω)(rr′) = tr{D̂ P̂}/ρ(N+ω)(r)

= [
(1 − ω)ρ(N )(r)g(N )(rr′)

+ ωρ(N+1)(r)g(N+1)(rr′)
]/

ρ(N+ω)(r), (7.51)

and

γ(N+ω)(rr′) = tr{D̂ X̂}
= (1 − ω)γ(N )(rr′) + ωγ(N+1)(rr′). (7.52)

The local potential energy v(N+ω)
ee (r) in (7.23) can be rewritten as the work done in

a conservative field F (N+ω)(r):

v(N+ω)
ee (r) = −

∫ r

∞
F (N+ω)(r′) · d�′, (7.53)

with
F (N+ω)(r) = E (N+ω)

ee (r) + ˜Z (N+ω)

tc (r). (7.54)

The electron–interaction field E (N+ω)
ee (r) is obtained by Coulomb’s law from its

source charge g(N+ω)(rr′) as

E (N+ω)
ee (r) = [

(1 − ω)ρ(N )(r)E (N )
ee (r)

+ ωρ(N+1)(r)E (N+1)
ee (r)

]/
ρ(N+ω)(r). (7.55)

The Correlation–Kinetic field Z̃(N+ω)
tc (r) is defined as

˜Z (N+ω)

tc (r) = [
z̃(N+ω)
s

(
r; [

γ̃(N+ω)
s

])

− z(N+ω)
(
r; [

γ(N+ω)
])]/

ρ(N+ω)(r), (7.56)
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where the kinetic ‘force’ z(N+ω)(r) is obtained from its source γ(N+ω)(rr′). The
S system kinetic ‘force’ z̃(N+ω)

s (r) is similarly obtained from the density matrix
constructed from the orbitals φ(N+ω)

i (x) and is

γ̃(N+ω)
s (rr′) = (1 − ω)

N∑

σ,i=1

φ(N+ω)∗
i (rσ)φ(N+ω)

i (r′σ)

+ ω

N+1∑

σ,i=1

φ(N+ω)∗
i (rσ)φ(N+ω)

i (r′σ). (7.57)

We next prove that the discontinuity as defined by (7.1) is due to Correlation–Kinetic
effects.

7.4.1 Correlations Contributing to the Discontinuity
According To Q–DFT: Analytical Proof

A. Electron–Interaction Component

We first prove that correlations due to the Pauli exclusion principle and Coulomb
repulsion do not contribute to the discontinuity �.

From (7.45) and (7.53) we have

∇ [
v(N+ω)
ee (r) − v(N )

ee (r)
] = −�Eee(r) − �Z tc(r), (7.58)

where
�Eee(r) = E (N+ω)

ee (r) − E (N )
ee (r), (7.59)

and
�Z tc(r) = ˜Z (N+ω)

tc (r) − Z (N )
tc (r). (7.60)

From (7.47) and (7.55), we have

�Eee([r]) = [{
(1 − ω)ρ(N )(r) − ρ(N+ω)(r)

}E (N )
ee (r)

+ ωρ(N+1)(r)E (N+1)
ee (r)

]/
ρ(N+ω)(r). (7.61)

Substituting for (1 − ω)ρ(N )(r) = ρ(N+ω)(r) − ωρ(N+1)(r) into (7.61) leads to

�Eee(r) = ωρ(N+1)(r)
[E (N+1)

ee (r) − E (N )
ee (r)

]/
ρ(N+ω)(r). (7.62)

It follows from (7.62) that limω→0 �Eee(r) = 0. To see this consider the radius
R(ω) defined by (7.34). For r < R(ω) and smallω, the density ρ(N )(r) dominates the
ensemble density ρ(N+ω)(r). Thus, in this region ρ(N+ω)(r) ∼ ρ(N )(r), and�Eee(r) is
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linear inω, and vanishes asω → 0. For r � R(ω), the ensemble density ρ(N+ω)(r) ∼
ωρ(N+1)(r). Substitution into (7.62) shows that the ω’s cancel. But in this region the
difference [E (N+1)

ee (r) − E (N )
ee (r)] ∼ 1/r2 so that�Eee(r) once again vanishes. In the

region r ∼ R(ω), �Eee(r) vanishes essentially linearly with ω. We note, however,
that �Eee(r) is finite for positive definite ω, irrespective of how small ω is. It is only
in the limit of vanishing ω that the Pauli and Coulomb correlation contributions to
the discontinuity vanish.

Finally, since the pair-correlationdensitymaybewritten as g(N )(rr′) = ρ(N )(r′) +
ρ(N )
xc (rr′), where ρ(N )

xc (rr′) is the Fermi–Coulomb hole charge distribution, we
have �Eee(r) = �EH (r) + �Exc(r), where �EH (r) = [E (N+ω)

H (r) − E (N )
H (r)] and

�Exc(r) = [E (N+ω)
xc (r) − E (N )

xc (r)]. Here E (N )
H and E (N )

xc (r) are the Hartree and
Pauli–Coulomb fields arising from the component charge distributions ρ(N )(r′)
and ρ(N )

xc (rr′), respectively. Since�EH (r) = ω[E (N+1)
H (r) − E (N )

H (r)], it follows that
limω→0 �EH (r) = 0, and, consequently, the limω→0 �E xc(r) = 0.

B. Correlation–Kinetic Component

Since the quantum–mechanical electron–interaction contribution �Eee(r) in (7.58)
vanishes in the lim ω → 0, we have

lim
ω→0

∇ [
v(N+ω)
ee (r) − v(N )

ee (r)
] = −�Z tc(r), (7.63)

which proves the fact that the discontinuity is strictly a Correlation–Kinetic effect.
The discontinuity � is then the work done

� = −
∫ 0

∞

[
˜Z (N+ω)

tc (r′) − Z (N )
tc (r′)

]
· d�′. (7.64)

From (7.63) it also follows that this work done is path–independent. Equation (7.64)
is an alternate expression for the discontinuity �, in which it is evident that the
correlations that contribute to it are solely those due to Correlation–Kinetic effects.

To understand more fundamentally how Correlation–Kinetic effects contribute to
the discontinuity, we next explain the structure of �Z tc(r) for small ω. We rewrite
�Z tc(r) as

�Z tc(r) = ˜Z (N+ω)

tc (r) − Z (N )
tc (r) (7.65)

= A + B, (7.66)

where

A = 1

ρ(N+ω)(r)
z̃ (N+ω)
s (r) − 1

ρ(N )
z(N )
s (r) (7.67)
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and

B = − 1

ρ(N+ω)(r)

[
(1 − ω)z(N )(r) + ωz(N+1)(r)

]

+ 1

ρ(N )(r)
z(N )(r). (7.68)

For r < R(ω), the region where ρ(N )(r) dominates, γ̃(N+ω)
s

(rr′) ∼ ∑N
σ,i=1 φ(N )∗

i (rσ)φ(N )
i (r′σ), so that z̃(N+ω)

s (r) ∼ z(N )
s (r). Therefore, A = 0.

The term B = 0, since the terms linear in ω are negligible. Thus, in this region,
�Z tc(r) = 0.

In the r → ∞ limit, both ˜Z (N+ω)

tc (r) and Z (N )
tc (r) vanish, so that in this region

�Z tc(r) = 0.
For r � R(ω), we have φ(N+ω)

i (r) → φ(N+1)
i (r), so that γ̃(N+ω)

s (rr′)
∼ ω

∑N+1
σ,i=1 φ(N+1)∗

i (rσ)φ(N+1)
i (r′σ) and z̃(N+ω)

s (r) ∼ ωz(N+1)
s (r). Thus A ∼

{[z(N+1)
s (r)/ρ(N+1)(r)] − [z(N )

s (r)/ρ(N )(r)]} and B ∼ {[−z(N+1)(r)/ρ(N+1)(r)] +
[z(N )(r)/ρ(N )(r)]}, so that �Z tc(r) = Z (N+1)

tc (r) − Z (N )
tc (r). Thus, in this region,

�Ztc(r) is finite. In this limit, as ω → 0, the radius R(ω) becomes infinite, and the
difference �Z tc(r) stabilizes. We next demonstrate the above conclusions via two
numerical examples.

7.4.2 Numerical Examples

Example 1. As a demonstration of the above conclusions, we consider the
example where the integer system is the He+ ion (atomic number Z = 2, electron
number N = 1). Its wavefunction, which is hydrogenic, is known, as is the density
ρ(N=1)(r) ≡ ρ(1)(r). The ensemble density ρ(1+ω)(r) of (7.12) is then

ρ(1+ω)(r) = (1 − ω)ρ(1)(r) + ωρ(2)(r), (7.69)

where ρ(2)(r) ≡ ρ(N+1)(r) is the density of the He atom. For the He atom, a highly
accurate 491–parameter correlated wavefunction [12] is employed. This wavefunc-
tion is accurate upto r = 24 a.u. from the nucleus, which in essence is infinity for
the atom. Smaller and smaller fractional charge ω is added to the ls shell of the He+
ion. For the corresponding S system, there is therefore only one orbital φ(1+ω)(r).
Thus, the ensemble density ρ(1+ω)(r) in terms of the S system orbitals as given by
(7.22) is

ρ(1+ω)(r) = (1 − ω)|φ(1+ω)(r)|2 + ω2|φ(1+ω)(r)|2
= (1 + ω)|φ(1+ω)(r)|2. (7.70)
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Fig. 7.2 (a) Hartree field
difference �EH (r) for
different fractional charge ω.
The integer charge system is
He+. (b) Work done
�WH (r) in the field �EH

Thus, from (7.69) and (7.70), we have

φ(1+ω)(r) =
[
(1 − ω)ρ(1)(r) + ωρ(2)(r)

1 + ω

]1/2

. (7.71)

As the wavefunctions for He+ and He, and consequently the orbital φ(1+ω)(r), are
known, all the requisite sources and fields can then be determined for different values
of the fractional charge ω.

In Fig. 7.2(a) we plot the Hartree field difference �EH (r) for ω = 10−1, 10−2,
and 10−3. As the fractional charge diminishes, the difference �EH (r) becomes neg-
ligible. The corresponding work �WH (r) = − ∫ r

∞ �EH (r′) · d�′ is constant in the
interior as expected (Fig. 7.2(b)), but becomes smaller with decreasing fractional
charge, although it is still finite at ω = 10−3. As ω is decreased further, however,
both �EH (r) and �WH (r) vanish. Thus the Hartree component of the Coulomb
interaction does not contribute to the discontinuity.

In Fig. 7.3(a), the difference in the Pauli–Coulomb fields �Exc(r) is plotted
for fractional charges ω = 10−5, 10−8, and 10−10. As expected, it vanishes in the
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Fig. 7.3 (a) Pauli-Coulomb
field difference �Exc(r) for
different fractional charge ω.
The integer charge system is
He+. (b) Work done
�Wxc(r) in the field
�Exc(r)

interior, and is peaked in the surface region. It diminishes with decreasing ω, while
simultaneously the peak moves further into the classically forbidden region where
�Exc(r) decays as (1 − ω)/r2 for finiteω. Thus, the correspondingwork (Fig. 7.3(b))
�Wxc(r) = − ∫ r

∞ �E xc(r′) · d�′ is constant in the interior, with the region where
this difference is constant increasing with decreasing ω. Furthermore, as expected
the constant value of �Wxc(r) also diminishes with decreasing ω. For ω = 10−10

the constant value of �Wxc(r) in the interior is 0.052 a.u., Asymptotically, �Wxc(r)
decays as (1 − ω)/r . With vanishing fractional charge, the Pauli–Coulomb contri-
bution to the discontinuity will also vanish.

In Fig. 7.4 we plot the difference �Z tc(r) of the Correlation–Kinetic fields, for
fractional charges ω = 10−2, 10−5, 10−8, and 10−10 a.u., As expected, this differ-
ence vanishes in the interior region. However, in the surface region, these curves
are dramatically different from those of Figs. 7.2 and 7.3 in that as the fractional
charge ω is decreased, the magnitude of these curves increases (Fig. 7.4(a)). With
a further decrease in ω, the structure essentially stabilized (Fig. 7.4(b)) and remains
finite, while simultaneously moving further out into the classically forbidden region.
Thus the constant value of the work �Wtc(r) = − ∫ r

∞ �Z tc(r
′) · d�′ increases with
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Fig. 7.4 (a, b) Correlation
Kinetic field difference
�Ztc (r) for difference
fractional charge ω. The
integer charge system is
He+

decreasing fractional charge (Fig. 7.5), approaching the exact value of the dis-
continuity � from below. This value may be determined from the known result
� = ε(N+1)

N+1 − ε(N )
N+1 of (7.42), and the fact the highest occupied eigenvalue of the

S system corresponds to minus the ionization potential. Taking into consideration
the double occupancy of the 1s orbital, and that the ionization potentials of He and
He+ are 0.903 and 2 a.u., respectively, we have � = 1.097 a.u., The value of �Wtc
for ω = 10−10 is 1.035 a.u., Adding the value of �Wxc = 0.052 a.u. for the same ω
value, we obtain � = 1.087 a.u., which is essentially exact. In the limit of vanishing
ω, the contribution from �Wxc will vanish, and that due to �Wtc will equal �. This
confirms that the discontinuity in the electron–interaction potential energy is solely
due to Correlation–Kinetic effects.

Example 2. The calculations in this second example are performed within the
Pauli–correlated approximation of Q–DFT [13] as described in Sect. 5.8.1. (see
Chap.6 of QDFT2) (This is also the lowest–order of Q–DFT many–body pertur-
bation theory. See Chap.18 of QDFT2.) In this approximation, only correlations
due to the Pauli exclusion principle are considered beyond the Hartree term. Thus,
the corresponding pair–correlation density g(N )

s (rr′) is determined from a Slater

http://dx.doi.org/10.1007/978-3-662-49842-2_5
http://dx.doi.org/10.1007/978-3-662-49842-2_6
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Fig. 7.5 Work done
�Wtc (r) in the field �Ztc (r)
of Fig. 7.4

determinant�{φ(N )
i } of the S system orbitals φ(N )

i (x). The local electron–interaction
potential energy v(N )

ee (r) of the S system is then v(N )
ee (r) = v

(N )
H (r) + WN

x (r), where
W (N )

x (r), is the work done in the conservative field E (N )
x (r)due to the S system Fermi

hole charge ρ(N )
x (rr′). For the (N + ω)–electron system the Fermi hole charge is

ρ(N+ω)
x (rr′) = g(N+ω)

s (rr′) − ρ(N+ω)(r′), (7.72)

where g(N+ω)
s (rr′) is defined in a manner similar to (7.51) but in terms of the

g(N )
s (rr′) and g(N+1)

s (rr′). This is the ensemble definition of the Fermi hole. (The
use of the nonensemble definition [14] of the Fermi hole: ρ(N+ω)

x (rr′) = −|̃γ(N+ω)
s

(rr′)|2/2ρ(N+ω)(r), where γ̃(N+ω)
s (rr′) is given by (7.57), is inappropriate and will

not [10] lead to a discontinuity.)
The integer system we consider in this case is the Na+ ion (atomic number

Z = 11, electron number N = 10). In Fig. 7.6 we plot the difference �E x (r) =
E (N+ω)

x (r) − E (N )
x (r) for the Na+ ion for fractional charge of ω = 10−5, 10−10,

10−15 filling the empty 3s subshell. These calculations are performedwithin the spin–
unpolarized central field approximation [13]. Observe that the difference vanishes
except in the asymptotic region of the atom where it is peaked. Note also that as the
fractional charge decreases, this peak moves further into the classically forbidden
region as it must. The difference �E x (r) also decays asymptotically as 1/r2.

In Fig. 7.7 we plot the corresponding Pauli potential Wx (r) for the Na+ ion for
the case of the empty 3s subshell (dashed curve), and for the fractionally charged
ion with fractional charge ω = 10−5 in the 3s subshell (solid curve). The difference



7.4 Quantal Density Functional Theory of the Discontinuity 249

Fig. 7.6 Variation of
the difference �Ex =
E(N+ω)
x (r) − E(N )

x (r) of the
Pauli fields E(N+ω)

x (r) and
E(N )
x (r) for the (N + ω)

fractionally charged and
N -electron Na+ ions,
respectively. The fractional
charge of ω = 10−5, 10−10,
10−15, partially fills the
empty 3s subshell

Fig. 7.7 The Pauli potential
for the Na+ ion with integer
number (N = 10) of
electrons (dashed curve),
and with fractional charge
(10 + 10−5) (solid curve).
The fractional charge 10−5

fills the empty 3s subshell

�Wx (r) = W (N+ω)
x (r) − W (N )

x (r) of the Pauli potentials for the (N + ω) fractionally
charged and N -electron ions for ω = 10−5, 10−10, 10−15 is plotted in Fig. 7.8. As
is evident, the difference �Wx (r) is constant except in the asymptotic region where
it decays as 1/r . However, note that the constant value of �Wx (r) continues to
diminish with decreasing ω as was the case for �Wxc(r) of Fig. 7.3(b). In the limit
ω → 0, the difference �Wx (r) will vanish.
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Fig. 7.8 Variation of the
difference �Wx =
W (N+ω)

x (r) − W (N )
x (r) of

the Pauli potentials
W (N+ω)

x (r) and W (N )
x (r) for

the fractionally charged
(N + ω)–and N -electron
Na+ ions respectively

7.5 Endnote

As we have seen, the discontinuity in the S system electron–interaction potential
energy vee(r) as the electron number passes through an integer value is solely due
to Correlation–Kinetic effects. The discontinuity is therefore expressed as in (7.64)
entirely in terms of fields representative of these correlations. The magnitude of the
discontinuity is determined as the work done in a conservative field. Correlations due
to the Pauli principle and Coulomb repulsion do not contribute to the discontinuity.
Note however, that for finite fractional charge, irrespective of how small it is, there
are contributions to the discontinuity from all the three different types of electron
correlations. It is only in the limit of vanishing fractional charge that the contributions
due to Pauli and Coulomb correlations vanish. Thus an accurate approximation to the
discontinuitymaybeobtained, as in the example above, by summing the contributions
of the various correlations as determined for a small value of the fractional charge.

The analysis presented in this chapter also leads to a better understanding of the
correlations that contribute to the discontinuity exhibited by the KS–DFT ‘exchange’
vx (r) and ‘correlation’ vc(r) potential energies. The existence of the discontinuity in
vx (r) has been demonstrated [14] via calculations performed within the ‘exchange–
only’ optimized potential method (see Sect. 5.7.1). As proved in Sect. 5.3, the poten-
tial energy vx (r) is representative of electron correlations due to the Pauli exclusion
principle and lowest–order Correlation–Kinetic effects. Since Pauli correlations
do not contribute to the discontinuity, it is the lowest–order Correlation–Kinetic
component that is responsible for it. The KS–DFT ‘correlation’ potential energy
vc(r) is in turn representative (Sect. 5.4) of Coulomb correlations and higher–order

http://dx.doi.org/10.1007/978-3-662-49842-2_5
http://dx.doi.org/10.1007/978-3-662-49842-2_5
http://dx.doi.org/10.1007/978-3-662-49842-2_5
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Correlation–Kinetic effects. Thus, as Coulomb correlations do not contribute to
the discontinuity, the discontinuity in vc(r) is due to the higher–order Correlation–
Kinetic contributions.
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Chapter 8
Generalized Hohenberg-Kohn Theorems
in Electrostatic and Magnetostatic Fields

Abstract The Hohenberg-Kohn theorems for a system of N electrons in an external
electrostatic field are generalized to the added presence of a uniform magnetosta-
tic field. The theorems are proved for Hamiltonians of both spinless electrons and
electrons with spin. It is thereby shown that the basic variables in each case are
the nondegenerate ground state density ρ(r) and physical current density j(r), i.e.
knowledge of {ρ(r), j(r)} uniquely determines the external scalar v(r) and vector
A(r) potentials to within a constant and the gradient of a scalar function, respectively.
The proofs differ from the original HK proof because the relationship between the
potentials {v(r),A(r)} and the nondegenerate ground statewave function is no longer
one-to-one but many-to-one. Further, in addition to the constraint in the original HK
proof of fixed electron number N , the constraint of fixed canonical orbital angular
momentum L (for spin less electrons) and the added constraint of fixed spin angular
momentum S (for electrons with spin) is required. The consequence of these proofs
to the existing spin and current density functional theories is remarked upon.

Introduction

This chapter is concerned with the generalization [1] of the Hohenberg-Kohn (HK)
theorems to the presence of both an external electrostatic E(r) = −∇v(r) and a
magnetostatic B(r) = ∇ ×A(r) field, where v(r) and A(r) are the scalar and vector
potentials. The added presence of a magnetostatic field in the context of density
functional theory is an active area of theoretical research whose origins lie in the
original Kohn-Sham [2] paper. We provide here our most recent understandings and
proofs of the corresponding HK theorems. This then leads to the Q-DFT in the
presence of these fields as described in the following Chap. 9.

The physics of electrons differ in the added presence of a magnetic field. The
corresponding ‘Quantal Newtonian’ first law for each electron is thus modified
[3, 4]. In the law, there is of course the additional Lorentz field contribution to
the total external field experienced by each electron. Further, in addition to the com-
ponents of the internal field representative of the kinetic effects, the density, and the
correlations due to the Pauli exclusion principle and Coulomb repulsion, there is also
an added component due to the magnetic field. The Schrödinger theory of electrons
in the presence of a magnetostatic field B(r) in terms of ‘classical’ fields and their

© Springer-Verlag Berlin Heidelberg 2016
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quantal sources based on the ‘Quantal Newtonian’ first law will be described fully
in the following chapter.

There is yet another fundamental difference in the physics of the electrons in the
presence of amagnetostatic field, one that has a particular bearing on the proofs of the
corresponding generalized HK theorems. In the case when the only external field is
the electrostatic field E(r) = −∇v(r), HK prove in their first theorem (see Chap.4),
that there is a bijective or one-to-one relationship between the external potential v(r)
and the nondegenerate ground state wave function ψ. This fact is important because
it is then employed to prove a bijective relationship between the wave function ψ and
the nondegenerate ground state density ρ(r). Thus, there is a bijective relationship
between the external potential v(r) and the density ρ(r). The proof of this theorem
is predicated on the constraint of fixed electron number N [5]. Knowledge of the
density ρ(r) then uniquely determines the external potential v(r) to within a constant.
Since the kinetic T̂ and electron-interaction Ŵ operators are known, the Hamiltonian
is known. Solution of the Schrödinger equation then leads to the ground and excited
state wave functions of the system. As such the wave functions of the system are
functionals of the nondegenerate ground state density:ψ = ψ[ρ]. (Thewave function
ψ is also a functional of a gauge function α(R) because when written as a functional,
it must be gauge variant. (See Chap.4)) The one-to-one relationship between ρ(r)
and the external potential v(r) then defines the gauge invariant property of the density
ρ(r) as a basic variable of quantum mechanics. As the wave function ψ, and hence
the energyEv[ρ] are functionals of the density ρ(r), the secondHK theorem develops
an energy variational principle for arbitrary variations of v-representable densities.
The corresponding Euler-Lagrange equation is solved for fixed v(r) subject to the
constraint of known electron numberN (seeTable8.1 for a summary of the theorems).

When both an electrostaticE(r) = −∇v(r) and amagnetostaticB(r) = ∇×A(r)
field are present, the relationship between the external potentials {v(r),A(r)} and
the nondegenerate ground state wave function ψ is different from that of the orig-
inal HK case. It turns out that the relationship between {v(r),A(r)} and ψ can be
many-to-one [6–10] and even infinite-to-one [11, 12]. It is evident then that the
proof of bijectivity between any gauge invariant properties and the external poten-
tials {v(r),A(r)} must also be different. Furthermore, the proof must account for
this many-to-one relationship of the potentials {v(r),A(r)} and the wave function ψ.
Such a proof [1] of the bijectivity between the external potentials {v(r),A(r)} and
the gauge invariant properties of the nondegenerate ground state density ρ(r) and
the physical current density j(r) is provided for a uniform magnetic field. The proof
is for (v,A)-representable densities {ρ(r), j(r)}. Since the magnetic field consti-
tutes an added degree of freedom, there must be another constraint imposed. When
the interaction of the magnetic field is only with the orbital angular momentum,
the additional natural constraint imposed is that of fixed canonical orbital angular
momentum L. In the case when the interaction of the magnetic field is with both
the orbital and spin angular momentum, the constraint is that of fixed canonical
angular momentum L and spin angular momentum S. Knowledge of {ρ(r), j(r)}
then uniquely determines {v(r),A(r)} to within an arbitrary constant and the gradi-
ent of a scalar function, respectively. With the kinetic T̂ and electron-interaction Ŵ

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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8 Generalized Hohenberg-Kohn Theorems … 255

Table 8.1 Comparison of Hohenberg-Kohn and Generalized Hohenberg-Kohn theories

Theory Hohenberg-Kohn DFT Generalized HK DFT

Parameters characterizing
ground state

Electron Number N Electron Number N
Angular momentum L

Relationship between
potentials and wave function

One-to-one between v(r)
and �

Many-to-one between {v(r),A(r)}
and �

Properties characterizing
ground state

Electron density ρ(r) Electron density ρ(r)
Physical current density j(r)
Angular momentum L

Bijectivity theorem For fixed N
ρ(r) ↔ v(r)

For fixed N and L
{ρ(r), j(r)} ↔ {v(r),A(r)}

Wave function and energy
functionals

� = �[ρ,α]
For fixed v : E = Ev[ρ]

� = �[ρ, j,α]
For fixed
{v,A} : E = Ev,A[ρ, j]

Euler equations and
constraints

Variational principle for
fixed v and known N :
δEv [ρ]

δρ = 0∫
ρ(r)dr = N

Variational principle for fixed
{v,A} and known N,L:
δEv,A[ρ,j]

δρ

∣∣∣∣
j
= 0 δEv,A[ρ,j]

δj

∣∣∣∣
ρ

= 0
∫

ρ(r)dr = N∫
r × (j(r)− 1

c ρ(r)A(r))dr = L
∇ · j(r) = 0

operators assumed known, the Hamiltonian is known. Solution of the Schrödinger
equation then leads to the wave functions of the system. This then is the HK path
from the gauge invariant properties {ρ(r), j(r)} to the wave functions ψ. The wave
functions ψ are thus functionals of the properties {ρ(r), j(r)}, i.e. ψ = ψ[ρ, j]. Via
a density preserving unitary or gauge transformation, it can be shown that the wave
functions ψ must also be a functional of a gauge function α(R). This ensures that
when ψ is written as a functional it is gauge variant. The basic variables of the quan-
tum mechanics of electrons in the presence of a uniform magnetic field and constant
canonical angular momentum are thus {ρ(r), j(r)}.

As the ground state energy is a functional of the basic variables: E = Ev,A[ρ, j], a
variational principle for Ev,A[ρ, j] exists for arbitrary variations of (v,A)-
representable densities {ρ(r), j(r)}. The corresponding Euler-Lagrange equations
for ρ(r) and j(r) follow, and these must be solved with the constraints of charge
conservation, constant angular momentum, and the vanishing of the divergence of
the physical current density via the equation of continuity. Implicit in this variational
principle, as in all such energy variational principles, is that the external potentials
remain fixed throughout the variation.

With the knowledge of the properties that constitute the basic variables, a Percus-
Levy-Lieb (PLL) [13] type constrained-search path from the {ρ(r), j(r)} to the
nondegenerate or degenerate ground state wave function ψ is then possible. One
searches over all N-representable ψρ,j that reproduce {ρ(r), j(r)} and the fixed angu-
lar momentum. The minimum of the expectation 〈T̂ + Ŵ 〉 then yields the true
function ψ.



256 8 Generalized Hohenberg-Kohn Theorems …

Finally, it is possible to map the interacting system of electrons to one of nonin-
teracting fermions within both a Kohn-Sham-type framework and Q-DFT. The latter
mapping is described in the following Chap. 9. The generalized HK theorems proved
for both spinless electrons and electrons with spin are of particular value for yrast
states. These are states of lowest energy for fixed angular momentum. These states
have been studied experimentally and theoretically for both bosons and fermions,
e.g. rotating trapped Bose-Einstein condensates [14], and harmonically trapped elec-
trons in the presence of a uniform perpendicular magnetic field [15]. The theorems
derived are also applicable to all experimentation with a uniformmagnetic field such
as the magneto-caloric effect [16], the Zeeman effect, cyclotron resonance, magne-
toresistance, the de-Haas–van Alphen effect, the Hall effect, the quantumHall effect,
the Meissner effect, nuclear magnetic resonance, etc. The chapter begins with defi-
nitions and properties of electrons in a magnetic field. It continues with the proofs
of the generalized HK theorems for uniform magnetostatic fields for the cases of the
interaction of the field with only the orbital angular momentum, and with both the
orbital and spin angular momentum. The chapter concludes with remarks on spin,
paramagnetic and other current density functional theories, and an endnote for future
work.

8.1 The Classical Hamiltonian and Properties

To obtain the Hamiltonian and other relevant properties of electrons in an external
electrostatic and magnetostatic field, we begin with a description of a classical par-
ticle in the presence of these fields. This material is in various texts [17–19], but is
presented here for purposes of completeness.With this understanding of the classical
physics, we then apply the correspondence principle to obtain the resulting properties
within quantum mechanics.

8.1.1 Classical Physics

Consider a classical particle of charge Q, mass M, velocity v in an electrostatic
E = −∇φ and magnetostatic B = ∇ × A field where φ and A are the scalar
and vector potentials, respectively. The magnetic field definition follows from the
Maxwell equation ∇ · B = 0.

http://dx.doi.org/10.1007/978-3-662-49842-2_9
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Canonical and Physical Momentum

The total or canonical momentum p is comprised of the sum of its kinetic or
physical momentum

pphysical = Mv, (8.1)

and its potential or field momentum

pfield = Q

c
A, (8.2)

with c the velocity of light. Thus, the canonical momentum is

p = pphysical + pfield = Mv + Q

c
A, (8.3)

and the physical momentum is

pphysical ≡ � = p − Q

c
A. (8.4)

(It is the canonical momentum p on which we impose the canonical commutation
relations when we write the quantum mechanical Hamiltonian.) Whereas the physi-
cal momentum is gauge invariant, the canonical momentum is gauge variant.

Field Momentum

In the electromagnetic field, the field component of the momentum is obtained
from the Poynting’s vector [18, 19]:

pfield = 1

4πc

∫
E × B dr. (8.5)

The field E at r due to the charge Q at r′ is E = −∇φ, and satisfies Poisson’s
equation:

∇2φ = −4πQδ(r − r′). (8.6)

Thus,

pfield = − 1

4πc

∫
∇φ × (∇ × A) dr. (8.7)

Using a standard vector relation, the above volume integral may be written as

∫
∇φ × (∇ ×A) dr = −

∫
[A× ∇ × (∇φ) −A∇ · (∇φ) − (∇φ)∇ ·A]dr. (8.8)
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Since∇×(∇φ) = 0, and we can choose the Coulomb or transverse gauge∇ ·A = 0,
we have

pfield = − 1

4πc

∫
A∇2φ dr = Q

c

∫
Aδ(r − r′) dr = Q

c
A (8.9)

as noted in (8.2).
In amagnetic field, the kinetic energy of the particle is unchanged. Thus, from (8.3)

the kinetic energy is

1

2
Mv2 = 1

2M
(Mv)2 = 1

2M

(
p − Q

c
A

)2

. (8.10)

Thus, the total energy or Hamiltonian, which is the sum of the kinetic and potential
energies of the particle is

H = 1

2M

(
p − Q

c
A

)
+ Qφ. (8.11)

Rigorous Derivation of Hamiltonian

To determine the Hamiltonian in a more rigorous and general manner, we first
require the appropriate Lagrangian for the particle in the electromagnetic field. The
Lagrange function in generalized coordinates is [17]

L = 1

2
Mq̇2 − Qφ(q) + Q

c
q̇ · A. (8.12)

That this Lagrangian is correct is proved by the fact that the Euler-Lagrange equation

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0, (8.13)

then leads to the correct Lorentz force equation of motion for a charge Q in the
electromagnetic field:

F = Q

(
E + 1

c
v × B

)
, (8.14)

where

E = −∇φ − 1

c

∂A
∂t

and B = ∇ × A. (8.15)

The momentum p is then

p = ∂L

∂q̇
= Mq̇ + Q

c
A, (8.16)
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in agreement with (8.3). The Hamiltonian H(p,q) is [17]

H(p,q) = p · q̇ − L (8.17)

= Mq̇2 + Q

c
q̇ · A − 1

2
Mq̇2 + Qφ − Q

c
q̇ · A (8.18)

= 1

2M

(
p − Q

c
A

)2

+ Qφ, (8.19)

as obtained in (8.11).

Canonical and Physical Angular Momentum

The canonical angular momentum is defined in terms of the canonical momen-
tum as

L = r × p, (8.20)

and the kinetic or physical angular momentum as

� = r × � = r ×
(
p − Q

c
A

)
. (8.21)

Whereas the canonical angular momentum is gauge variant, the physical angular
momentum is gauge invariant.

8.2 The Quantum-Mechanical Hamiltonian and Properties

Consider a system of N electrons in an external electrostatic E(r) = −∇v(r) and
magnetostatic B(r) = ∇ × A(r) field, where {v(r),A(r)} are scalar and vector
potentials, respectively. In atomic units where we assume the charge of the electron
Q = −e, with |e| = � = m = 1, the Hamiltonian operator, on application of the
correspondence principle to the classical Hamiltonian of (8.19), is

Ĥ = T̂A + Ŵ + V̂ , (8.22)

where T̂A is the physical kinetic energy operator:

T̂A = 1

2

∑
k

(
p̂k + 1

c
A(rk)

)2

(8.23)

= T̂ + 1

2c

∑
k

[
p̂k · A(rk) + A(rk) · p̂k

]
+ 1

2c2
∑
k

A2(rk), (8.24)
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with T̂ the canonical kinetic energy operator:

T̂ = 1

2

∑
k

p2k; p̂k = −i∇rk , (8.25)

with p̂k the canonical momentum operator.
The electron-interaction potential energy operator is

Ŵ = 1

2

′∑
k,�

1

|rk − rl| , (8.26)

and scalar potential energy operator is

V̂ =
∑
k

v(rk). (8.27)

The time-independent Schrödinger equation is then

Ĥ(R)ψ(X) = Eψ(X) (8.28)

where {ψ(X),E} are the eigenfunctions and eigenergies of the system with R =
r1, . . . , rN ; X = x1, . . . , xN ; x = rσ, {r,σ} being the spatial and spin coordinates
of the electron.

The Hamiltonian operator of (8.22) can be expressed in terms of the physical
current density operator ĵ(r). To define this operator we revert to the definition
of the current density j(r) of (2.39). In terms of the physical momentum operator
p̂physical = (

p̂ + 1
cA

)
, the physical current density j(r) is defined as

j(r) = N�
∑

σ

∫
ψ�(rσ,XN−1)

(
p̂ + 1

c
A(r)

)
ψ(rσ,XN−1)dXN−1, (8.29)

with XN−1 = x2, . . . , xN . Separating the terms we have

j(r) = jp(r) + A(r)
c

N�
∑

σ

∫
ψ�(rσ,XN−1)ψ(rσ,XN−1)dXN−1 (8.30)

= jp(r) + 1

c
ρ(r)A(r) (8.31)

= jp(r) + jd(r), (8.32)

where jp(r) is the paramagnetic component

jp(r) = N�
∑

σ

∫
ψ�(rσ,XN−1)p̂ψ(rσ,XN−1)dXN−1, (8.33)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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(which is the same as that of (2.39)), and jd(r) the diamagnetic component.

jd(r) = 1

c
ρ(r)A(r). (8.34)

Thus, the physical current density operator is (see Sect. 2.2.4)

ĵ(r) = ĵp(r) + ĵd(r), (8.35)

with the paramagnetic and diamagnetic component operators defined as

ĵp(r) = 1

2

∑
k

[
p̂kδ(rk − r) + δ(rk − r)p̂k

]
, (8.36)

ĵd(r) = 1

c
ρ̂(r)A(r), (8.37)

and where ρ̂(r) is the density operator of (2.12).
Employing the commutator relationship between themomentum operator and any

function of the coordinates, we have

p̂ · A − A · p = −i∇ · A. (8.38)

Thus, in the Coulomb gauge ∇ ·A = 0, we see that p̂ and A(r) commute. Using this
fact, the physical kinetic energy operator may be written as

T̂A = T̂ + 1

c

∑
k

A(rk) · p̂k + 1

2c2
∑
k

A2(rk). (8.39)

In terms of the paramagnetic ĵp(r) and diamagnetic ĵd(r) current density operators,
the Hamiltonian of (8.22) is then

Ĥ = T̂ + Ŵ + V̂ + 1

c

∫
ĵp(r) · A(r)dr + 1

2c2

∫
ρ̂(r)A2(r)dr. (8.40)

From this expression it is evident that in the presence of a magnetic field, one can
define the physical current density operator ĵ(r) of (8.35) as

ĵ(r) = c
∂Ĥ

∂A(r)
= ĵp(r) + ĵd(r). (8.41)

In terms of the operator ĵ(r), the Hamiltonian (8.40) is

Ĥ = T̂ + Ŵ + V̂ + 1

c

∫
ĵ(r) · A(r)dr − 1

2c2

∫
ρ̂(r)A2(r)dr. (8.42)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
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Hence, the system energy E which is

E = 〈ψ|Ĥ|ψ〉 (8.43)

may be written in terms either of the paramagnetic jp(r) or physical j(r) current
densities as

E = T + Eee + V + 1

c

∫
jp(r) · A(r)dr + 1

2c2

∫
ρ(r)A2(r)dr, (8.44)

or as

E = T + Eee + V + 1

c

∫
j(r) · A(r)dr − 1

2c2

∫
ρ(r)A2(r)dr. (8.45)

Here the kinetic T , electron-interaction potential Eee and external scalar potential V
energies are the expectations (see Sect. 2.4)

T = 〈ψ|T̂ |ψ〉, (8.46)

Eee = 〈ψ|Ŵ |ψ〉, (8.47)

V = 〈ψ|V̂ |ψ〉, (8.48)

and the paramagnetic jp(r) and diamagnetic j(r) current densities the expectations

jp(r) = 〈ψ|ĵp(r)|ψ〉, (8.49)

and

j(r) = 〈ψ|ĵ(r)|ψ〉, (8.50)

respectively.
Finally, as the system is time-independent, the continuity equation for the physical

current density j(r) is

∇ · j(r) = ∇ · jp + ∇ · jd(r) = 0. (8.51)

Unitary Transformation

We next perform a density and physical current density preserving unitary trans-
formation [20]. The unitary operator we consider is

U = eiα(R); α(R) =
∑
j

α(rj), (8.52)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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where α(r) is an arbitrary smooth function of position. The transformed (see
Sect. 4.2) wave function ψ′(X) and Hamiltonian Ĥ ′(R) of (8.28) are, respectively,

ψ′(X) = U†ψ(X), (8.53)

and

Ĥ ′ = U†Ĥ(R)U (8.54)

= 1

2

∑
k

(
p̂k + A(rk) + ∇α(rk)

)2 + Ŵ + V̂ . (8.55)

The transformed Schrödinger equation is then

Ĥ ′(R)ψ′(X) = E′ψ′(X) (8.56)

with

E′ = E. (8.57)

Equivalently, if one performs a gauge transformation of the vector potential A(r)
such that

A′(r) = A(r) + ∇α(r) (8.58)

but let v′(r) = v(r), the Hamiltonian of (8.22) changes to that of (8.55). Thus,
the Hamiltonian is gauge variant. Because the physical system remains the same,
the wave function ψ(X) must be multiplied by a phase factor exp[−iα(R)], which
is (8.52). The system wave function is therefore also gauge variant. However, all
the physical properties of the system such as the energy E and its individual com-
ponents TA,Eee, V , the density ρ(r) and physical current density j(r) which are all
expectations of Hermitian operators remain the same and are gauge invariant. The
component paramagnetic jp(r) and diamagnetic jd(r) current densities, on the other
hand, are gauge variant. The choice of gauge function α(R) is arbitrary because the
physical properties of the system remain unchanged: the infinite number of Hamilto-
nians for different phase factors αi(R) correspond to the same physical system (see
Fig. 1 of [20]). Thus, one can conclude that the wave function ψ(X) is a functional
of the gauge function α(R) : ψ(X) = ψ[α(R)](X).

Canonical and Physical Angular Momentum

The canonical angular momentum operator L̂ is defined in terms of the canonical
momentum operatorOp as

L̂ = r × p̂ = r × (−i∇), (8.59)

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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and the physical angular momentum operator �̂ in terms of the physical momentum
operator p̂physical as

�̂ = r × p̂physical = r ×
(
p̂ + 1

c
A

)
(8.60)

The canonical L and physical � angular momentum are defined as the expectations

L = 〈ψ|L̂|ψ〉, (8.61)

and
� = 〈ψ|�̂|ψ〉, (8.62)

respectively.
It is readily seen that the canonical angular momentum is gauge variant. Employ-

ing the transformed wave function of (8.53) for a single electron, the transformed
property

L′ = 〈ψ′|L̂|ψ〉 =
∫

ψ′�(r × p̂)ψ′dr (8.63)

=
∫

ψ�e−iα[r × p̂ψ′]dr (8.64)

=
∫

ψ�e−iα[r × {eiαp̂ψ + ∇αψ′}]dr (8.65)

=
∫

ψ�(r × p̂)ψdr +
∫

ψ�(r × ∇α)ψdr (8.66)

= L +
∫

ψ�(r × ∇α)ψdr. (8.67)

On the other hand, the physical angular momentum is gauge invariant. Employing
the transformed wave function of (8.53) for a single electron, and the transformed
vector potential of (8.58), the transformed property

�′ = 〈ψ′|�̂|ψ′〉 (8.68)

=
∫

ψ�e−iα

[
r ×

(
p̂ + 1

c
A′

)]
ψ′dr′ (8.69)

=
∫

ψ�e−iα

[
r × eiα

(
p̂ + 1

c
A

)
ψ

]
dr (8.70)

=
∫

ψ�

[
r ×

(
p̂ + 1

c
A

) ]
ψdr = �. (8.71)
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8.3 Generalized Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems for N electrons in an external electrostatic field
E(r) = −∇v(r) are extended here to the case of the added presence of a magne-
tostatic field B(r) = ∇ × A(r). It is proved that for a uniform magnetic field and
fixed canonical angular momentum L, there exists a one-to-one or bijective relation-
ship between the external potentials {v(r),A(r)} and the nondegenerate ground state
density ρ(r) and physical current density j(r). In other words, the basic variables
of quantum mechanics in the presence of a uniform magnetic field are the densities
{ρ(r), j(r)}, and the systemwave functionsψ are thus functionals of these properties:
ψ = ψ[ρ, j]. The proof is for {v,A}-representable densities. The proof, however, dif-
fers in fundamental ways from that of the proof of the first HK theorem. In order to
elucidate these differences, let us first briefly summarize the proof of the first HK
theorem of Sect. 4.1 for the Hamiltonian of (4.1)).

In the HK proof, it is first proved (Maps C and C−1) that there is a bijective rela-
tionship between the external potential v(r) and the nondegenerate ground state wave
function ψ(X). Employing this relationship, it is then proved (MapsD andD−1) that
there is a bijective relationship between the wave function ψ(X) and the nondegen-
erate ground state density ρ(r). Maps D and D−1 are established for v-representable
densities. (The manner by which this is accomplished is via the assumption that
there exists a {ψ,E} and a {ψ′,E′} generated via different potentials v(r) and v′(r),
respectively, that lead to the same density ρ(r). This in turn leads to the contradic-
tion E + E′ < E + E′, thereby proving the bijectivity between ψ(X) and ρ(r). The
assumption of existence of a ψ(X) and a ψ′(X) that differ, because they arise from
different external potentials v(r) and v′(r), is based on and a consequence of Maps
C and C−1. Such an assumption would be invalid without the existence of Maps C
and C−1.) Thus, knowledge of ρ(r) determines the external potential v(r) to within
an additive constant, and thereby the Hamiltonian of the system. In the proof, the
electron number N is kept fixed.

In the presence of a magnetic field B(r) = ∇ × A(r), the Hamiltonian in terms
of the gauge invariant properties {ρ(r), j(r)} is given by (8.42). It would appear that
one could prove a one-to-one relationship between these properties and the external
potentials {v(r),A(r)} along the lines of the HK path. However, no such proof is
possible as the relationshipbetween thepotentials {v(r),A(r)} and thenondegenerate
ground state wave function ψ(X) can be many-to-one [6–10] and even infinite-to-
one [11, 12]:

{ v(r),A(r)} ↘
{ v′(r),A′(r)} −→
{ v′′(r),A′′(r)} −→ �(X)

... ↗ (8.72)

http://dx.doi.org/10.1007/978-3-662-49842-2_4
http://dx.doi.org/10.1007/978-3-662-49842-2_4
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Hence, in these cases, there is no equivalent of theMapsC andC−1, and therefore the
original HK path is not possible. The proof that {ρ(r), j(r)} are the basic variables
must then differ from the original HK proof. Furthermore, any proof of the bijectivity
between {ρ(r), j(r)} and {v(r),A(r)}must account for the many-to-one relationship
between {v(r),A(r)} and the nondegenerate ground state ψ(X). Finally, because the
added presence of a magnetic field B(r) constitutes an added degree of freedom,
there must exist an additional constraint beyond that of fixed electron number N .
The constraint is that of fixed canonical angular momentum L.

In the next subsection, we first consider the case of spinless electrons in which the
interaction of the magnetic field is only with the orbital angular momentum L of the
electrons. In the subsection that follows we consider the case of electrons with spin.
In this case, there is an added term to theHamiltonian corresponding to the interaction
of the magnetic field with the spin angular momentum S. Corresponding to this term
of the Hamiltonian, there is (for finite systems), a contribution to the physical current
density j(r) viz. the magnetization current density jm(r) component.

8.3.1 Proof of Generalized Hohenberg-Kohn Theorems:
Case I: Spinless Electrons

The proof of the first generalized HK theorem of the bijectivity between the nonde-
generate ground state {ρ(r), j(r)} and the potentials {v(r),A(r)} is also by reductio
ad absurdum. The proof is for (v,A)-representable densities {ρ(r), j(r)}. Consider
the Hamiltonian Ĥ of (8.22) or equivalently (8.42) for fixed electron number N and
canonical angular momentum L. Let us then consider two different physical systems
{v,A} and {v′,A′} that generate different nondegenerate ground state wave functions
ψ and ψ′. We assume the gauges of the unprimed and primed systems to be the same.
Let us further assume that these systems lead to the same nondegenerate ground state
{ρ(r), j(r)}. We prove this cannot be the case.

From the variational principle for the energy for a nondegenerate ground state

E = 〈ψ|Ĥ|ψ〉 < 〈ψ′|Ĥ|ψ′〉. (8.73)

Now the term on the right hand side of the inequality may be written as

〈ψ′|Ĥ|ψ′〉 = 〈ψ′|T̂ + Û + V̂ ′ + 1

c

∫
ĵ′(r) · A′(r)dr − 1

2c2

∫
ρ̂(r)A′2(r)dr|ψ′〉

+ 〈ψ′|V̂ − V̂ ′|ψ′〉
+ 〈ψ′|1

c

∫
[ĵ(r) · A(r) − ĵ′(r) · A′(r)]dr|ψ′〉

− 1

2c2
〈ψ′|

∫
ρ̂(r)[A2(r) − A′2(r)]dr|ψ′〉. (8.74)
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For the primed system, the physical current density operator is

ĵ′(r) = ĵp(r) + 1

c
ρ̂(r)A′(r), (8.75)

so that

j′(r) = 〈ψ′|ĵ′(r)|ψ′〉 = j′p(r) + 1

c
ρ′(r)A′(r). (8.76)

Employing the original assumption that ψ and ψ′ lead to the same ρ(r), we have

〈ψ′|ĵ(r)|ψ′〉 = j′p(r) + 1

c
ρ(r)A(r). (8.77)

and

〈ψ′|ĵ′(r)|ψ′〉 = j′p(r) + 1

c
ρ(r)A′(r). (8.78)

Therefore

〈ψ′|
∫

ĵ(r) · A(r)dr|ψ′〉 =
∫

j′p(r) · A(r)dr + 1

c

∫
ρ(r)A2(r)dr, (8.79)

and

〈ψ′|
∫

ĵ′(r) · A′(r)dr|ψ′〉 =
∫

j′p(r) · A′(r)dr + 1

c

∫
ρ(r)A′2(r)dr, (8.80)

so that in (8.74) the term

1

c
〈ψ′|

∫
[ĵ(r) · A(r) − ĵ′(r) · A′(r)]dr|ψ′〉

= 1

c

∫
j′p(r) · [A(r) − A′(r)]dr + 1

c2

∫
ρ(r)[A2(r) − A′2(r)]dr. (8.81)

Finally, employing again that ρ′(r) = ρ(r), the last term of (8.74) is

1

2c2
〈ψ′|

∫
ρ̂(r)[A2(r) − A′2(r)]dr|ψ′〉

= 1

2c2

∫
ρ(r)[A2(r) − A′2(r)]dr. (8.82)
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Therefore, the inequality of (8.73) is

E < E′ +
∫

ρ(r)[v(r) − v′(r)]dr + 1

c

∫
j′p(r) · [A(r) − A′(r)]dr

+ 1

2c2

∫
ρ(r)[A2(r) − A′2(r)]dr. (8.83)

On interchanging the primed and unprimed quantities,

E′ < E +
∫

ρ(r)[v′(r) − v(r)]dr + 1

c

∫
jp(r) · [A′(r) − A(r)]dr

+ 1

2c2

∫
ρ(r)[A′2(r) − A2(r)]dr. (8.84)

On adding the previous two equations one obtains the inequality

E + E′ < E + E′ + 1

c

∫
[j′p(r) − jp(r)] · [A(r) − A′(r)]dr. (8.85)

The inequality of (8.85) is a general result.
Consider next the third term on the right hand side of (8.85). With B(r) = Bîz,

B′(r) = B′ îz, and the symmetric gaugeA(r) = 1
2B×r,A′(r) = 1

2B
′ ×r, this term is

I =
∫ [

j′p(r) − jp(r)
] · [

A(r) − A′(r)
]
dr (8.86)

=
∫ [

j′p(r) − jp(r)
] · [1

2
�B × r

]
dr (8.87)

= 1

2
�B ·

∫
r × [

j′p(r) − jp(r)
]
dr, (8.88)

where �B = (B − B′)îz. First consider the integral

I1 =
∫

r × jp(r)dr (8.89)

= − i

2

∑
k

∫
r × { ∫

��(X)
[∇rkδ(r − rk)

+ δ(r − rk)∇rk

]
�(X)dX

}
dr (8.90)

= − i

2

∑
k

∫
dX

∫
dr��(X)

[
r × ∇rkδ(r − rk)

+ δ(r − rk)r × ∇rk

]
�(X) (8.91)
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Next consider the second integral of I1 of (8.91):

I12 = − i

2

∑
k

∫
dX��(X)

[ ∫
drδ(r − rk)r × ∇rk

]
�(X) (8.92)

= − i

2

∑
k

∫
dX��(X)rk × ∇rk�(X) (8.93)

= 1

2

∫
dX��(X)

(∑
k

rk × pk
)
�(X) (8.94)

= 1

2

∫
dX��(X)

∑
k

L̂k�(X) (8.95)

= 1

2
L, (8.96)

where L̂k = rk × pk is the canonical orbital angular momentum operator, and L the
total canonical orbital angular momentum defined by (8.95).

The first integral of I1 of (8.91) is

I11 = − i

2

∑
k

∫
dX

∫
dr��(X)r × ∇rkδ(r − rk)�(X) (8.97)

= − i

2

∑
k

∫
dX

∫
dr��(X)εαβγ

∂

∂rkγ

(
rβδ(r − rk)�(X)

)
. (8.98)

On integrating the inner integral by parts and dropping the surface term, one obtains

I11 = − i

2

∑
k

∫
dX

[ − εαβγ

∫
dr

∂��(X)

∂rkγ
rβδ(r − rk)�(X)

]
(8.99)

= − i

2

∑
k

∫
dX

[ − εαβγ
∂��(X)

∂rkγ
rkβ�(X)

]
. (8.100)

On integrating by parts again, one obtains

I11 = − i

2

∑
k

εαβγ

∫
dX��(X)

∂

∂rkγ

(
rkβ�(X)

)
(8.101)

= − i

2

∑
k

∫
dX��(X) (rk × ∇rk )�(X) (8.102)

= 1

2
L. (8.103)
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Hence, the integral I of (8.88) is

I = 1

2
�B · (L′ − L). (8.104)

If one imposes the constraint that the total canonical orbital angular momentum is
fixed so that L = L′, then the integral I of (8.88) vanishes. Hence, (8.85) reduces to
the contradiction

E + E′ < E + E′. (8.105)

What this means is that the original assumption ψ and ψ′ differ is erroneous, and
that there can exist a {v,A} and a {v′,A′} with the same nondegenerate ground state
wave function. The fact that ψ = ψ′ means that

ρ(r)
∣∣
ψ

= ρ′(r)
∣∣
ψ′ (8.106)

However, the corresponding physical current densities are not the same:

j(r)
∣∣
ψ

�= j′(r)
∣∣
ψ′ . (8.107)

This is because the diamagnetic components are not the same

jd(r)
∣∣
ψ

�= j′d(r)
∣∣
ψ′ , (8.108)

if one hews to the original assumption that A(r) is different from A′(r). This proves
that the assumption that there exists a different {v′,A′} (with the same N and L) that
leads to the same {ρ, j} as that due to {v,A} is incorrect. This step takes into account
the fact that there could exist many {v,A} that lead to the same nondegenerate
ground state ψ. Hence, there exists only one {v,A} for fixed N and L that generates
a nondegenerate ground state {ρ, j}. The one-to-one relationship between {ρ, j} and
{v,A} is therefore proved.

The statement of the first generalized HK theorem is then as follows:
Theorem 1 For electrons in an external electrostatic field and a uniform magneto-
static field, and for fixed electron number N and orbital angular momentum L, the
nondegenerate ground state density ρ(r) and physical current density j(r), determine
the external scalar v(r) and vector A(r) potentials to within an additive constant
and the gradient of a scalar function, respectively.

With the kinetic T̂ and electron-interaction Ŵ operators of the electrons known,
knowledge of {ρ, j} determines the potentials {v,A} and thereby the Hamiltonian Ĥ.
Solution of the Schrödinger equation (8.28) then leads to the wave function ψ(X) of
the system. Thus, the HK path to the wave function is

ρ(r), j(r) −→ v(r),A(r) −→ Ĥ(R) −→ ψ(X). (8.109)
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Thewave functionsψ(X) are therefore functionals of {ρ, j}. As shown in the previous
section, the wave functions are also functionals of a gauge function α(R). Hence,
the wave functions ψ(X) are functionals of {ρ, j,α} : ψ(X) = ψ[ρ, j,α]. As ρ(r)
and j(r) are gauge invariant, it is the presence of the gauge function α(R) in the
wave function written as a functional that ensures it is gauge variant. As a conse-
quence of the path of (8.109) the basic variables of quantum mechanics in a uniform
magnetostatic field are {ρ(r), j(r)}.

With the choice ofα(R) = 0, the ground state energy for fixed angular momentum
can be written as a functional of {ρ, j}. Thus,

Ev,A[ρ, j] = 〈ψ[ρ, j]|Ĥ(R)|ψ[ρ, j]〉 (8.110)

= F[ρ, j] +
∫

ρ(r)v(r)dr + 1

c

∫
j(r) · A(r)dr

− 1

2c2

∫
ρ(r)A2(r)dr, (8.111)

where
F[ρ, j] = 〈ψ[ρ, j]|T̂ + Ŵ |ψ[ρ, j]〉 (8.112)

is the universal internal energy functional. As the ground state energy is a functional
of {ρ, j}, a variational principle exists for arbitrary variations of (v,A)-representable
densities {ρ(r), j(r)}. Implicit in such a variational principle, as in all such energy
variational principles, is that the external potentials remain fixed throughout the
variation. The variational character of the energy functional of (8.110) follows from
the variational principle:

Ev,A[ρ′, j′] > Ev,A[ρ, j] for {ρ′, j′} �= {ρ, j}, (8.113)

Ev,A[ρ′, j′] = Ev,A[ρ, j] for {ρ′, j′} = {ρ, j}. (8.114)

Equivalently, the Euler-Lagrange equations that must be solved self-consistently for
ρ(r) and j(r) are

δEv,A[ρ, j]
δρ(r)

∣∣∣∣
j(r)

= 0; δEv,A[ρ, j]
δj(r)

∣∣∣∣
ρ(r)

= 0 (8.115)

subject to the constraints ∫
ρ(r)dr = N, (8.116)

∫
r × [j(r) − 1

c
ρ(r)A(r)]dr = L, (8.117)

∇ · j(r) = 0. (8.118)
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The statement of the second generalized HK theorem is then as follows:
Theorem 2 The nondegenerate ground state density ρ(r) and physical current den-
sity j(r), can be determined from the ground state energy functional Ev,A[ρ, j] via
the variational principle by variations only of these densities. The constraints on
the corresponding Euler-Lagrange equations are the conservation of charge and
canonical angular momentum, and the satisfaction of the equation of continuity.

That the properties {ρ(r), j(r)} for fixed orbital angular momentumL are the basic
variables is most readily seen for the case of N = 1. Writing the wave function in
polar form

ψ(r) = �(r)ei�(r), (8.119)

with �(r),�(r) real valued, we see that ρ(r) = �2(r) and j(r) = jp(r) + jd(r),
jp(r) = ρ(r)∇�(r), jd(r) = 1

cρ(r)A(r), so that 1cA(r) = j(r)
ρ(r) −∇�(r). Thus knowl-

edge of {ρ(r), j(r)} determines the potential A(r) to within the gradient of a scalar
function. Employing this and the fact that one can perform a gauge transformation
to eliminate the phase, the one-electron Schrödinger equation can be written as

[
1

2

(
p̂ + j(r)

ρ(r)

)2

+ v(r) − E

]
ρ

1
2 (r) = 0, (8.120)

from which the potential v(r) can be obtained to within the constant E since
{ρ(r), j(r)} are known. (This example is given in [21] butwithout the added constraint
on the angular momentum.)

What is interesting about this example is that the {ρ(r), j(r)} as basic variables
are not restricted to being solely the nondegenerate ground state densities. The above
arguments are equally valid for {ρ(r), j(r)} corresponding to any state and angular
momentum.

For a summaryof the generalizedHK theorems, and a comparisonwith the original
HK theorems, see Table8.1.

For other recent work see [22, 23]. The conclusions in [23] are based on the
assumption of existence of a HK theorem but one without the requirement of the
constraint on the angular momentum.

8.3.2 Proof of Generalized Hohenberg-Kohn Theorems:
Case II: Electrons with Spin

When the interaction of the magnetic field is with both the orbital and spin moment
of the electrons, the Hamiltonian is

Ĥ = 1

2

∑
k

[
p̂k + 1

c
A(rk)

]2 + Ŵ + V̂ + 1

c

∑
k

sk · B(rk), (8.121)
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where sk is the electron spin angular momentum vector operator of the kth electron.
(The last term is 2μB

∑
k sk · B(rk), where μB = e�/2mc is the Bohr magneton. We

employ the atomic units |e| = � = m = 1.) In nonrelativistic quantum mechanics,
this term was originally added on ad hoc by Pauli to account for the interaction of
the magnetic field with the electron spin magnetic moment. Hence, the designation
as Schrödinger-Pauli theory. However, for a spin 1

2 particle, the Hamiltonian can be
rigorously derived [24] if one starts with the definition of the kinetic energy operator
in the presence of a vector potential to be

T̂A = 1

2

(
σ · p̂phys

)(
σ · p̂phys

)
, (8.122)

where σ is the spin matrix and p̂phys = p̂ + 1
cA, the physical momentum operator.

Substituting this operator, we have

T̂A = 1

2
σ ·

(
p̂ + 1

c
A

)
σ ·

(
p̂ + 1

c
A

)
. (8.123)

Employing the vector relation

(σ · A)(σ · B) = A · B + iσ · (A × B) (8.124)

which holds even with A and B being operators, the kinetic energy operator is

T̂A = 1

2

(
p̂ + 1

c
A

)2

+ i

2
σ ·

[(
p + 1

c
A

)
×

(
p + 1

c
A

)]
(8.125)

= 1

2

(
p̂ + 1

c
A

)2

+ i

2
σ ·

[
1

c
A × p + 1

c
p × A

]
. (8.126)

Using the operator relation

p̂ × A = −i∇ × A − A × p, (8.127)

we then arrive at

T̂A = 1

2

(
p + 1

c
A

)2

+ 1

2c
σ · B (8.128)

= 1

2

(
p̂ + 1

c
A

)2

+ 1

c
s · B, (8.129)

where we have employed B = ∇ × A and s = 1
2σ. The spin magnetic moment

generated in this way has the correct gyromagnetic ratio g = 2 [25]. (Note that
the operator T̂A of (8.122) reduces to p2/2 in the absence of vector potentials.)
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The Hamiltonian of (8.121) can also be obtained from the Dirac equation in its
nonrelativistic limit.

The Schrödinger-Pauli Hamiltonian of (8.121) may also be written in terms of
the density ρ̂(r), physical current density ĵ(r), and local magnetization density m̂(r)
operators as

Ĥ = T̂ + Ŵ + V̂A −
∫

m̂(r) · B(r)dr, (8.130)

where the total external potential operator V̂A is

V̂A = V̂ + 1

c

∫
ĵ(r) · A(r)dr − 1

2c2

∫
ρ̂(r)A2(r)dr, (8.131)

and m̂(r) is defined as

m̂(r) = −1

c

∑
k

skδ(rk − r). (8.132)

The physical current density operator ĵ(r) is the sum of its paramagnetic ĵp(r) and
diamagnetic ĵd(r) components as in (8.35) or (8.41). With the same assumptions
made regarding the two different physical systems {v,A;ψ} and {v′,A′;ψ′} leading
to the same {ρ(r), j(r)} one obtains the inequality

E + E′ < E + E′ +
∫

[j′p(r) − jp(r)] · [A(r) − A′(r)]dr

−
∫

[m′(r) − m(r)] · [B(r) − B′(r)]dr, (8.133)

withm(r) the magnetization density being the expectation

m(r) = 〈ψ|m̂(r)|ψ〉. (8.134)

The inequality is once again a general result.
The third term on the right hand side of (8.133) vanishes if, as in the previous

section, a uniform magnetic field is assumed, and the constraint that the orbital
angular momentum of the unprimed and primed systems are the same is imposed.
Hence next consider the last term of (8.133). With B(r) = Bîz, the term

∫
m(r) · B(r)dr = B

∫
mz(r)dr, (8.135)
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where, with sk · îz = sz,k ,

mz(r) = −1

c

∑
σ

∫ ∑
k

sz,kδ(rk − r)

×ψ�(rkσ,XN−1)ψ(rkσ,XN−1)dXN−1drk (8.136)

= −1

c

∑
σ

∫ ∑
k

sz,k

∫
ψ�(rσ,XN−1)

×ψ(rσ,XN−1)dXN−1 (8.137)

= − 1

cN

∑
σ

Szγ(rσ, rσ), (8.138)

where Sz = ∑
k sz,k is the z-component of the total spin S, and γ(xx′) = N

∫
ψ�

(rσ,XN−1)ψ(r′σ′,XN−1)dXN−1, the density matrix. Since in the primed system, the
spin vectors are different, i.e. some s′k , we have

∫ [
m′(r) − m(r)

] · �B(r)dr

= �B
∫ [

m′
z(r) − mz(r)

]
dr (8.139)

= �B

cN

∑
σ

∫ [
S′
zγ

′(rσ, rσ) − Szγ(rσ, rσ)
]
dr, (8.140)

where �B = B − B′. Employing the original assumption that the diagonal matrix
elements γ(rσ, rσ) of the density matrix γ(xx′) are the same for the unprimed and
primed systems we have the right hand side of (8.140) to be

�B

cN

∑
σ

∫ [
S′
z − Sz

]
γ(rσ, rσ) = 0 (8.141)

provided S′
z = Sz. Hence, the last term of (8.133) vanishes.

Another way of arriving at this conclusion is by rewriting mz(r) as [26, 27]

mz(r) = − 1

2c
[ρα(r) − ρβ(r)], (8.142)

with ρα(r), ρβ(r) being the spin-up and spin-down spin densities. The last term of
the inequality of (8.133) is then

∫
[m′(r) − m(r)] · �B(r)dr = − 1

2c
�B

∫
[{ρ′

α(r) − ρ′
β(r)} − {ρα(r) − ρβ(r)}]dr.

(8.143)
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If the z-component of the total spin angular momentum Sz for the unprimed and
primed systems are the same, the corresponding spin densities are the same, so that
the last term of (8.133) vanishes. More generally, the magnetization densities m(r)
and m′(r) are the same if the total spin angular momentum S and S′ are the same.

The vanishing of the last two terms of (8.133) once again leads to the contradiction
E + E′ < E + E′. Employing the same reasoning as in the previous section one
concludes that the original assumption that ψ and ψ′ differ is erroneous, and that
there can exist a {v,A} and a {v′,A′}with the same nondegenerate ground state wave
function. With ψ = ψ′, we have ρ(r) = ρ′(r), but j(r) �= j′(r) since A(r) �= A′(r).
This proves that the original assumption that there exists a {v′,A′} with the same
N,L, and S as that of {v,A} but leads to the same {ρ, j} to be incorrect. Thus, there
can exist only one {v,A} for fixed N,L, and S that can generate the nondegenerate
ground state {ρ, j}. The bijective relationship between {ρ, j} and {v,A} for systems
defined by the Schrödinger-Pauli Hamiltonian is therefore proved.Note that the proof
explicitly accounts for the many-to-one relationship between the potentials {v,A}
and the nondegenerate ground state ψ.

In the above proof of bijectivity for the Schrödinger-Pauli Hamiltonian, the def-
inition of the physical current density j(r) employed was that of (8.29) or equiva-
lently (8.32), viz. one in terms of its paramagnetic and diamagnetic components.
However, for finite systems, yet another component—the magnetization current
density—due to the electron spin can be introduced [29]. Consider the last term
of the Hamiltonian of (8.130):

∫
m̂(r) · B(r)dr =

∫
m̂(r) · (∇ × A(r))dr (8.144)

=
∫

A(r) · (∇ × m̂(r))dr

+
∫

∇ · (A(r) × m̂(r))dr, (8.145)

where the vector identity

∇ · (C × D) = D · (∇ × C) − C · (∇ × D) (8.146)

is employed. The last term of (8.145) may be converted to an integral over a surface:∫ ∇ · (A× m̂)dr = ∫
(A× m̂) · dS, which vanishes in the usual way for an infinitely

distant surface. Thus, the Hamiltonian of (8.130) can be written as

Ĥ = T̂ + Ŵ + V̂ + 1

c

∫
ĵp(r) · A(r)dr + 1

2c2

∫
ρ̂(r)A2(r)dr

+ 1

c

∫
ĵm(r) · A(r)dr, (8.147)
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where the magnetization current density operator ĵm(r) is defined as

ĵm(r) = −c∇ × m̂(r). (8.148)

Hence the physical current density j(r) may also be defined as [29]

j(r) = c
∂Ĥ

∂A(r)
= jp(r) + jd(r) + jm(r), (8.149)

the sum of the paramagnetic, diamagnetic, andmagnetization current densities. Even
for this definition of the physical current density j(r), the proof of bijectivity between
{ρ, j} and {v,A} is valid provided the angular momentum L and S are fixed. (For
spin-compensated systems, the magnetization current density jm(r) vanishes.) The
corresponding energy variational principle for arbitrary variations of (v,A) repre-
sentable densities {ρ(r), j(r)} follows together with the constraints of fixed N,L,
and S, and the satisfaction of the equation of continuity for the physical current
density j(r).

8.4 Remarks on Spin and Current Density
Functional Theories

In the previous section we provided proofs of the generalized HK theorems in the
presence of a uniform magnetic field for the cases of both spinless electrons and
electrons with spin. There it was shown that for each type of electron, the basic
variables were the nondegenerate ground state density ρ(r) and physical current
density j(r), and a subsequent variational principle formulated in terms of these
properties. These theorems then constitute a {ρ(r), j(r)} functional theory in a generic
sense not to be confused with other existing theories. In the following subsections,
we make a few remarks on spin density functional theory (SDFT) [2, 6, 26–28] and
the paramagnetic current jp(r) density functional theory (CDFT) [30–32]. In neither
of these or other similar extensions is the added constraint on the orbital L or spin S
angular momentum considered.

8.4.1 Remarks on Spin Density Functional Theory

In SDFT it is assumed that the basic variables are the nondegenerate ground state
density ρ(r) and the magnetization density m(r). Equivalently, the assumed basic
variables are the density ρ(r) and the electron spin density which is the difference
between the spin-up ρα(r) and spin-down ρβ(r) densities (see [26, 27] and (8.142)).
The basis for this choice is that these properties appear in the corresponding assumed
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SDFT Hamiltonian or energy functional. A proof that these properties are the basic
variables is then attempted. We comment here on the proof. The Hamiltonian of
SDFT is an approximation to the Schrödinger-Pauli Hamiltonian of (8.121) and is
assumed to be

Ĥ = 1

2

∑
k

p̂2k + Ŵ + V̂ + (1/c)
∑
k

B(rk) · sk (8.150)

= T̂ + Ŵ + V̂ −
∫

m(r) · B(r)dr. (8.151)

The Hamiltonian corresponds to the energy functional E[ρ,m] originally proposed
by Kohn and Sham [2] to obtain a theory of spin susceptibility. The functional
proposed was

E[ρ,m] =
∫

ρ(r)v(r)dr + EH [ρ] −
∫

m(r) · B(r)dr + G[ρ(r),m(r)], (8.152)

where EH [ρ] = 1
2

∫
drdr′ρ(r)ρ(r)′/|r − r′| is the Coulomb self-energy, and G[ρ,

m(r)] a universal functional that includes contributions of the kinetic energy and
of the many-body effects. Both the Hamiltonian of (8.150) and energy functional
of (8.152) are ad hoc and not derivable from first principles: The expressions do
not include the field component of the electron momentum, and hence ignore the
interaction of themagnetic fieldwith the orbital angularmomentum.The contribution
of this component to the energy is not insignificant, and is of the same order of
magnitude as that of the interaction of the field with the spin angular momentum.

In writing the energy functional of (8.152) it is assumed that the wave function
corresponding to the Hamiltonian of (8.150) is a functional of {ρ,m}. This, of course,
is based on the assumption that there is a one-to-one relationship between {ρ,m}
and {v,B} along the lines of the original HK theorem. Subsequently, von Barth and
Hedin [6] showed that for noninteracting fermions, the relationship between {v,B}
and the nondegenerate ground state wave function was many-to-one, and as such
there was no equivalent of Map C for the Hamiltonian of (8.150). Ignoring this
fact, and assuming the basic variables to be {ρ,m} these and other authors [6, 28]
then focused on Map D between ψ and {ρ,m}. As in all reductio ad absurdum type
proofs, they begin with the assumption that there exists a {v,B} and a {v′,B′} that
generate the same {ρ,m}. One then has to prove that this statement is incorrect.
(Comment: Because the relationship between {v,B} and ψ is many-to-one, there do
exist other {v′,B′} that lead to the same {ρ,m}.) They next assume that there is a ψ
and a ψ′ with ψ �= ψ′, where Ĥ(v,B)ψ = Eψ and Ĥ ′(v′,B′)ψ′ = E′ψ′. (Comment:
This assumption presupposes the existence of a Map (C,C−1). But there is no Map
(C,C−1). Furthermore, there do exist a {v,B} and a {v′,B′} that generate the sameψ.)
Employing the above twoassumptions then leads to the contradictionE+E′ < E+E′.
Thus, these authors conclude (a) that the original assumption that there exists a
{v,B} and a {v′,B′} that lead to the same {ρ,m} to be incorrect, and (b) that two
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different nondegenerate ground state ψ and ψ′ always lead to {ρ,m} �= {ρ′,m′}.
Hence, Map (D,D−1) between ψ and {ρ,m} is proved, and consequently ψ is a
functional of {ρ,m}. It is evident that the error in this solely Map (D,D−1)-type
proof is the presupposition of the existence of aMap (C,C−1) between {v,B} and ψ.
Equivalently, the error is in neglecting the many-to-one relationship between {v,B}
and the nondegenerate ground state ψ There is no one-to-one relationship between
{ρ,m} and {v,B}, and therefore {ρ,m} are not basic variables in the rigorous HK
sense.

With the assumption that the basic variables are {ρ,m}, a PLL-type proof [26, 27,
33] can, of course, now be formulated. One searches over all antisymmetric functions
ψρ,m constrained to reproduce the ground state {ρ,m}. The true ground state wave
function ψ is that which minimizes the expectation of the operators T̂ + Ŵ . (Note
that in this minimization process, the magnetic field B(r) is kept fixed.) But there
is an inherent inconsistency in the PLL path for SDFT. Knowledge of the ground
state {ρ,m} does not uniquely determine {v,B}, and thus does not determine the
Hamiltonian.

For completeness, we note that with the assumption of {ρ,m} as the basic vari-
ables, there exists a “potential functional” theory [34], and a Legendre transform
approach [35, 36] to SDFT.

We conjecture that because of the fundamental significance of the concept of basic
variables to a physical system, no HK-type proof can exist for Hamiltonians that are
not derivable from the tenets of quantum mechanics.

8.4.2 Remarks on Paramagnetic Current Density
Functional Theory

Paramagnetic current jp(r) density functional theory (CDFT) [30–32] is with respect
to the spinless Hamiltonian of (8.22), which may be rewritten in terms of jp(r) as
in (8.40). The claim here is that the basic variables are the nondegenerate ground
state density ρ(r) and the paramagnetic current density jp(r). We remark here on the
rational for this choice, and the subsequent proof provided.

(a) At the outset, the choice of physical current density j(r) as a basic vari-
able is rejected. The reasoning [32] for this is the following: According to the first
Hohenberg-Kohn theorem, proved for the B(r) = 0 case, there is a unique one-
to-one relationship between the nondegenerate ground state density ρ(r) and the
ground state wave function ψ(X). However, in the case of B(r) �= 0, because the
wave function is gauge variant and can be multiplied by a phase factor, there can be
no one-to-one relationship between the physical current density j(r) which is gauge
invariant and the wave function ψ(X). Hence, j(r) cannot be a basic variable. How-
ever, as shown in Sect. 4.2 and [37], density preserving gauge transformations can
also be applied to the HK Hamiltonian and wave function of (4.1) for the B(r) = 0
case. The uniqueness of the one-to-one relationship between the density ρ(r) and

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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the wave function ψ(X) is for each choice of gauge function α(R). If the above
reasoning were applied to this case, the corresponding statement would be that there
can be no one-to-one relationship between the density ρ(r) which is gauge invari-
ant and the wave function ψ(X) which is gauge variant. As a consequence there
would be no density functional theory. The reason for rejecting j(r) as a basic vari-
able is thus inconsistent with quantum mechanics and the generalization of the first
Hoheneberg-Kohn theorem of Sect. 4.2.

(b) As in SDFT, the proof within CDFT that {ρ(r), jp(r)} are the basic variables
ignores the fundamental physical fact that the relationship between the potentials
{v(r),A(r)} and the nondegenerate ground statewave functionψ(X) ismany-to-one.
As such the proof, as in SDFT, is based solely on a Map (D,D−1)-type argument
of a one-to-one relationship between the assumed variables {ρ(r), jp(r)} and ψ(X).
Hence, the proof is not rigorous in the HK sense as a one-to-one relationship between
the variables {ρ(r), jp(r)} and the potentials {v(r),A(r)} is not proved.

(c) The fact [7–10] that there is no one-to-one relationship between {ρ(r), jp(r)}
and {v(r),A(r)} means that the former are not basic variables in the rigorous HK
sense. Equivalently, the wave function ψ(X) is not a functional of {ρ(r), jp(r)}.
As such {ρ(r), jp(r)} cannot determine uniquely all the properties of a system. For
example, knowledge of {ρ(r), jp(r)} cannot determine the physical current density
j(r). This is because j(r) = jp(r) + jd(r); jd(r) = ρ(r)A(r)/c and there are many
A(r) that generate the same ψ(X) and jp(r), but not the same j(r).

(d) Again, as in SDFT, the proof presupposes [38, 39] the existence of the gener-
alization of Map (C,C−1) of HK to the B(r) �= 0 case. In other words, the starting
point of the Map (D,D−1)-type proof is the assumption that such a Map (C,C−1)
exists. That, of course, is not the case. (A justification [40] of the validity of solely
Map (D,D−1)-type proofs in fact begins with the assumption of existence of a Map
(C,C−1).) (A similar Map (D,D−1)-type proof for {ρ(r), j(r)} as the basic variables
has also been given [41].)

(e) Finally, for CDFTs corresponding to the Schrödinger-Pauli Hamiltonian
of (8.121), the basic variables are assumed [42] to be {ρ(r), jp(r),m(r)} or [43]
{ρ(r), jp(r),m(r), jp,m(r)}, where jp,m(r) are the gauge variant paramagnetic cur-
rents of each component of the magnetization density. Once again, these conclusions
are based on solely Map (D,D−1)-type proofs with no relationship between these
properties and the external potentials {v(r),A(r)} proved.

In summary, the proofs on which SDFT and the various CDFTs are based (a) do
not account for the many-to-one relationship between the potentials {v(r),A(r)} and
the nondegenerate ground state wave function ψ(X), and (b) assume the existence
of a Map (C,C−1). Thus, although these theories are extensively employed in their
respective Kohn-Sham versions, they are not foundationally as strong as the original
Hohenberg-Kohn theorems or their generalizations to uniform magnetostatic fields
proved here.

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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8.5 Endnote

For completenesswenote that the idea of employing {ρ(r), j(r)} as the basic variables
goes back to the work of Ghosh-Dhara [44, 45] who employ these properties without
proof that they are basic variables. The relativistic case is discussed by Rajagopal-
Callaway [46]. Methods to circumvent the many-to-one relationship between the
external potentials and the ground state wave function employing the optimized
potential approach have been proposed [47, 48], but the underlying formal issues
still persist. Additionally, these methods employ the paramagnetic current density
jp(r) as a basic variable instead of the physical current density j(r). However, in none
of this or other prior work is the issue of the constraint on the angular momentum
considered. Finally, although most experimentation with magnetic fields is done for
uniform fields for which the proofs of the generalized Hohenberg-Kohn theorems
provided in this chapter are applicable, it would be best to have a more general proof
of {ρ(r), j(r)} as the basic variables for arbitrary magnetostatic field.What is learned
via the proofs provided here, however, is that the constraint on the constancy of the
angular momentum will play a critical role in any such more general proof. The
present generalized Hohenberg-Kohn theorems for uniform magnetic fields would
then constitute a special case.
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Chapter 9
Quantal-Density Functional Theory
in the Presence of a Magnetostatic Field

Abstract Quantal density functional theory (Q–DFT) of electrons in an external
electrostatic field is generalized to the added presence of a magnetostatic field. This
Q–DFT constitutes the mapping from the interacting system of electrons in an exter-
nal electrostatic and magnetostatic field in any state as described by Schrödinger the-
ory to one of noninteracting fermions with the same density, physical current density,
electron number, and canonical orbital and spin angular momentum. To formulate
this Q–DFT, Schrödinger theory from the perspective of the individual electron via
the corresponding ‘Quantal Newtonian’ first law is developed. It is shown that in
addition to the external fields, each electron experiences an internal field which is
comprised of components representative of electron correlations due to the Pauli
exclusion principle and Coulomb interaction, the density, the kinetic effects, and a
contribution due to the external magnetic field. These fields are derived from quantal
sources that are expectations of Hermitian operators taken with respect to the sys-
tem wave function. As such the intrinsic self-consistent nature of the Schrödinger
equation is demonstrated. With the Schrödinger equation written in self-consistent
form, the magnetic field, (in addition to the vector potential of the field component
of the momentum), now appears explicitly in it. The ’Quantal Newtonian’ first law
for the model system of noninteracting fermions is derived. It is shown that if the
model fermions are subject to the same external potentials, then the only electron
correlations that must be accounted for in the Q–DFT mapping are those of the
Pauli principle, Coulomb repulsion and Correlation-Kinetic effects. The resulting
local electron-interaction potential within Q–DFT is the work done in an effective
field that is the sum of fields representative of these correlations. The corresponding
many-body components of the total energy can be expressed in integral virial form in
terms of the separate fields. To explicate this Q–DFT, it is applied to a quantum dot
as represented by the exactly solvable two-dimensional Hooke’s atom in a magnetic
field. A key observation is that as a result of the reduction in dimensionality due to
the presence of the magnetic field, Correlation-Kinetic effects are significant.
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Introduction

As noted in the previous chapter, the study of the electronic properties ofmatter in the
presence of both an external electrostatic field E(r) = −∇v(r) and a magneotostatic
field B(r) = ∇ × A(r), where v(r) and A(r) are the scalar and vector potentials,
continues to be of interest. Properties such as the Zeeman effect in atoms and mole-
cules, and the magneto-caloric effect, the de Haas - van Alphen effect, the Hall
effect, and magnetoresistance in solids, have been studied. The more recent interest
has focused on electrons confined to two-dimensions: metal-oxide-semiconductor
structures, quantum wells and super lattices, the integer and fractional quantum Hall
effects, and quantum dots.

In this chapter, we generalize [1] the Q-DFT of a system of electrons in an exter-
nal electrostatic field E(r) = −∇v(r) to now include an external magnetostatic
field B(r) = ∇ × A(r). The first issue that must be addressed is what properties
constitute the basic variables of quantum mechanics in this case. As shown in the
previous chapter (and in [2]), for an external magnetic field that is uniform, the
basic variables for fixed electron number N and canonical angular momentum L, are
the nondegenerate ground state density ρ(r) and the physical current density j(r).
In other words, a bijective relationship between the properties {ρ(r), j(r)} and the
potentials {v(r),A(r)} (to within a constant and the gradient of a scalar function)
was proved. There is at present no such proof for arbitrary magnetic field B(r).
However, in the presence of an external time-dependent electromagnetic field, it has
been proved [3, 4] the basic variables are {ρ(rt), j(rt)} with j(rt) the physical cur-
rent density, i.e., there is a one-to-one relationship between {ρ(rt), j(rt)} and the
potentials {v(rt),A(rt)}. Extending this conclusion to the time-independent case,
we assume that for an arbitrary magnetic field B(r) and fixed angular momentum L,
that the basic variables are {ρ(r), j(r)}.

Q-DFT in the presence of a magnetic field B(r), constitutes the mapping from the
true interacting system of electrons in a nondegenerate ground or excited state to a
model S system of noninteracting fermions having the same density ρ(r), physical
current density j(r), and angular momentum L. From the model system, the same
total energy E as that of the interacting system may be obtained. The state of the
model system is arbitrary in that it may be in a ground- or excited-state configuration.
The existence of the model fermionic system is an assumption.

To develop this Q-DFT, one needs to first derive [1, 5] the ‘Quantal Newtonian’
first law for the individual electron for both the interacting and noninteracting sys-
tems. For the interacting system, as a result of the presence of the magnetic field
B(r), the total external fieldF ext(r) experienced by each electron now has the addi-
tional Lorentz field component. The magnetic field B(r) also contributes a term to
the internal fieldF int(r) seen by each electron. For the mapping to the S system, it is
assumed that the model fermions are subject to the same external fieldF ext(r). The
S system is of course designed to reproduce the same {ρ(r), j(r)} and L as that of
the interacting system. With these constraints, it turns out that the contribution of the
magnetic field B(r) to the corresponding internal field F int

s (r) experienced by each
model fermion, is the same as that of the interacting system. The significant further
consequence of these constraints is that the only correlations the model system must
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account for are those due to the Pauli exclusion principle, Coulomb repulsion, and
Correlation-Kinetic effects. These correlations are exactly the same as that of the
Q-DFT for the case of B(r) = 0. (In fact [6], irrespective of the external fields expe-
rienced by the interacting electrons, if the model fermions (a) experience the same
external fields, and (b) are constrained so as to reproduce the basic variables, then in
each case it is only Pauli and Coulomb correlations, and Correlation-Kinetic effects
that must be accounted for by the model system. The version of Q-DFT presented
here thus differs from that of [1] in that there are no Correlation-Magnetic effects to
account for, and is thus simpler. Recall that in time-dependent Q-DFT, the application
of these conditions eliminates Correlation-Current-Density effects).

In the sections to follow, we first describe Schrödinger theory from the perspective
of the ‘Quantal Newtonian’ first law. In classical electromagnetic theory, the vector
potential A(r) is introduced to simplify the writing of equations. It is assumed that
the magnetic field B(r) derived from this vector potential is a physical real quantity.
In quantum mechanics, it is the vector potential A(r) that appears explicitly in the
Hamiltonian (see (8.22)). (This fact is emphasized, for example, in explaining the
Ahranov-Bohm effect [7] in which a vector potential A(r) exists in a region where
there is no magnetic field B(r).) It is only following the assumption of gauge, e.g.
say the Landau gauge A(r) = Bxiy or symmetrical gauge A(r) = 1

2B(r) × r that
the magnetic field B(r) then appears in the Schrödinger equation. However, with the
Schrödinger equation rewritten via the ‘Quantal Newtonian’ first law, two important
insights are achieved: (a) the intrinsic self-consistent nature of the equation becomes
evident, (see also the case for B(r) = 0 described in Chap.2), and (b) in addition to
the vector potential A(r), the magnetic field B(r) now appears naturally in it via the
Lorentz field contribution. It is the self-consistent nature of the Schrödinger equation
that demands the explicit presence of the magnetic field B(r) in the Hamiltonian.
Next, themodel S systemof noninteracting fermions having the same {ρ(r), j(r)} and
L is then described from the perspective of the corresponding ‘Quantal Newtonian’
first law. From these laws for the interacting and model systems, the equations gov-
erning Q-DFT are then derived. We conclude the chapter by explicating this Q-DFT
by application to an exactly solvable model of a quantum dot as represented by the
two-dimensional Hooke’s atom [8, 9] in which the electrons are confined to a plane
by a magnetic field. The chapter is written to be self-contained.

9.1 Schrödinger Theory and the ‘Quantal Newtonian’
First Law

Consider a system of N electrons in the presence of an external electrostatic field
E(r) = −∇v(r) and amagnetostatic fieldB(r) = ∇×A(r), where v(r) andA(r) are
the corresponding scalar and vector potentials, respectively. We assume the charge
of the electron to be −e, and atomic units with |e| = � = m = 1. For simplicity of

http://dx.doi.org/10.1007/978-3-662-49842-2_8
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equation writing we further put c = 1. (To obtain the expressions in atomic units,
replace A(r) by A(r)/c.) The Hamiltonian Ĥ is then

Ĥ = T̂A + Û + V̂ , (9.1)

where T̂A is the physical kinetic energy operator:

T̂A = 1

2

∑

i

(p̂i + A(ri))2 (9.2)

= T̂ +
∑

i

ω̂(ri ;A(ri )), (9.3)

with T̂ the canonical kinetic energy operator

T̂ =
∑

i

p̂2i
2

= −
∑

i

1

2
∇2
i , (9.4)

and the operator ω̂(r;A) defined as

ω̂(r;A(r)) = 1

2
A2(r) − i�̂(r;A) (9.5)

with

�̂(r;A(r)) = 1

2
{∇ · A(r) + 2A(r) · ∇}. (9.6)

The electron-interaction potential energy operator Û is

Û =
∑′

i, j

u(rir j ) = 1

2

∑′

i, j

1

|ri − r j | , (9.7)

and the external electrostatic potential energy operator V̂ is

V̂ =
∑

i

v(ri ). (9.8)

The time-independent Schrödinger equation is

Ĥ(R;A)ψ(X) = Eψ(X), (9.9)

where {ψ(X), E} are the eigenfunctions and eigenenergies of the system, with
R = r1, . . . , rN ; X = x1, . . . , xN ; x = rσ, {rσ} being the spatial and spin coor-
dinates.
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The general statement of the ‘Quantal Newtonian’ first law derived in Appendix
F is, of course, the same as (2.134) for the B(r) = 0 case, viz. that the sum of the
external F ext(r) and internal F int(r) fields experienced by each electron vanishes:

F ext(r) + F int(r) = 0. (9.10)

The law is valid for arbitrary gauge and derived [1, 5] employing the continuity
condition

∇ · j(r) = 0. (9.11)

The definitions of the fields are as follows. The external field F ext(r) is the sum of
the electrostatic E(r) and Lorentz L(r) fields:

F ext(r) = E(r) − L(r) = −∇v(r) − L(r), (9.12)

where L(r) is defined in terms of the Lorentz ‘force’ l(r) as

L(r) = l(r)
ρ(r)

, (9.13)

and where

l(r) = j(r) × B(r), (9.14)

with its components given as

lα(r) =
3∑

β=1

[
jβ(r)∇αAβ(r) − jβ(r)∇β Aα(r)

]
. (9.15)

The internal fieldF int(r) is the sum of the electron-interaction Eee(r), kineticZ(r),
differential density D(r), and internal magnetic I(r) fields:

F int(r) = Eee(r) − Z(r) − D(r) − I(r). (9.16)

These fields are defined in terms of the corresponding ‘forces’ eee(r), z(r; γ), d(r),
i(r; jA), respectively, as

Eee(r) = eee(r)
ρ(r)

; Z(r) = z(r; γ)

ρ(r)
; D(r) = d(r)

ρ(r)
; I(r) = i(r; jA)

ρ(r)
. (9.17)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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The electron-interaction ‘force’ eee(r), representative of electron correlations due to
the Pauli exclusion principle and Coulomb repulsion, is obtained via Coulomb’s law
via its quantal source, the pair-correlation function P(rr′):

eee(r) =
∫

P(rr′)(r − r′)
|r − r′|3 dr′. (9.18)

The kinetic ‘force’ z(r; γ), representative of kinetic effects, is obtained from its
quantal source, the reduced single-particle density matrix γ(rr′). It is defined in
terms of its components as

zα(r; γ) = 2
3∑

β=1

∇β tαβ(r; γ), (9.19)

where the kinetic energy tensor tαβ(r) is

tαβ(r; γ) = 1

4

(
∂2

∂r ′
α∂r ′′

β

+ ∂2

∂r ′
β∂r ′′

α

)
γ(r′r′′)

∣∣∣∣
r′=r′′=r

. (9.20)

The differential density ‘force’ d(r) whose quantal source is the density ρ(r), is
defined as

d(r) = −1

4
∇∇2ρ(r). (9.21)

Finally, the contribution of the magnetic field to the internal ‘force’ i(r; jA) for
which the quantal source is the physical current density j(r) is defined in terms of
its components as

iα(r; jA) =
3∑

β=1

∇β Iαβ(r; jA), (9.22)

with

Iαβ(r; jA) = [
jα(r)Aβ(r) + jβ(r)Aα(r)

] − ρ(r)Aα(r)Aβ(r). (9.23)

The fieldsL(r),Eee(r),D(r), and the sum [Z(r)+I(r)] are gauge invariant [5]. The
‘forces’ and hence the fields arise from local and nonlocal quantal sources such as the
density ρ(r), the pair-correlation function P(rr′), the reduced single-particle density
matrix γ(rr′), and the physical current density j(r), which in turn are expectations of
Hermitian operators or the complex sum of Hermitian operators taken with respect
to the wave function ψ(X). Thus,

ρ(r) = 〈
ψ(X)|ρ̂(r)|ψ(X)

〉
, (9.24)
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P(rr′) = 〈
ψ(X)|P̂(rr′)|ψ(X)

〉
, (9.25)

γ(rr′) = 〈
ψ(X)|γ̂(rr′)|ψ(X)

〉
, (9.26)

j (r) = 〈
ψ(X)|ĵ(r)|ψ(X)

〉 = jp(r) + jd(r), (9.27)

with jp(r) and jd(r) the paramagnetic and diamagnetic components, and where the
density ρ̂(r), pair-correlation P̂(rr′), single-particle density matrix γ̂(rr′), and cur-
rent density ĵ(r) operators are defined as

ρ̂(r) =
∑

i

δ(ri − r), (9.28)

P̂(rr′) =
∑′

i, j

δ(ri − r)δ(r j − r′), (9.29)

γ̂(rr′) = Â + i B̂, (9.30)

Â = 1

2

∑

j

[
δ(r j − r)Tj (a) + δ(r j − r′)Tj (−a)

]
, (9.31)

B̂ = − i

2

∑

j

[
δ(r j − r)Tj (a) − δ(r j − r′)Tj (−a)

]
, (9.32)

Tj (a) is a translation operator such that Tj (a)ψ(. . . r j , . . .) = ψ(. . . r j +a, . . .), and
a = r′ − r, and

ĵ(r) = ĵp(r) + ĵd(r), (9.33)

with the paramagnetic current density operator

ĵp(r) = 1

2i

∑

k

[∇rkδ(rk − r) + δ(rk − r)∇rk

]
, (9.34)

and the diamagnetic current density operator

ĵd = ρ̂(r)A(r). (9.35)

The ‘Quantal Newtonian’ first law of (9.10) affords a rigorous physical interpre-
tation of the external electrostatic potential energy v(r): It is the work done to move
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an electron from some reference point at infinity to its position r in the force of a
conservative field [F int(r) − L(r)]:

v(r) =
r∫

∞
[F int(r′) − L(r′)] · d�′. (9.36)

This work done is path-independent. Observe that the external potential v(r) is
coupled to the internal fieldF int(r) and the Lorentz field L(r) experienced by each
electron. As these fields are obtained as expectations of Hermitian operators taken
with respect to the wave function ψ(X), the potential v(r) is a functional of the wave
function: v(r) = v[ψ]. The Schrödinger equation (9.9) can on substitution of (9.36)
be written as

[
1

2

∑

i

{p̂i +A(ri )}2 + 1

2

′∑

i, j

1

|ri − r j | +
∑

i

ri∫

∞

[F int(r) −L(r)
] · d�

]
ψ(X) = Eψ(X).

(9.37)

In this manner, the self-consistent nature of the Schrödinger equation becomes evi-
dent. To solve the equation, one begins with an approximation to ψ(X). With this
approximate ψ(X) one then determines the fields F int(r) and L(r) (for an external
B(r)), and the work done in the sum of these fields. One then solves the integro-
differential equation to determine a new approximate solution ψ(X) and eigenen-
ergy E . This process is continued till self-consistency is achieved to obtain the true
ψ(X) and E .

Yet another insightful result is achieved by writing the Schrödinger equation via
the ‘Quantal Newtonian’ first law as in (9.37). In texts on quantum mechanics, it is
noted that in the presence of an external magnetic field B(r), it is only the vector
potentialA(r) that appears in the Hamiltonian as in (9.1). But since the Lorentz field
L(r) depends on the field B(r) (see (9.13)), the latter now appears explicitly in the
Schrödinger equation. It is the intrinsic self-consistent nature of the equation that
demands the dependence on B(r) to be present in the Hamiltonian. Thus, writing the
Schrödinger equation in this manner shows that the magnetic field B(r) does appear
explicitly in it.

The energy E is then the sum of the kinetic T , external Eext, electron-interaction
Eee, and internal magnetic contribution I energies:

E = Eext + (T + Eee + I ), (9.38)

where in integral virial form in terms of the respective fields

T = −1

2

∫
ρ(r)r · Z(r)dr (9.39)
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Eext =
∫

ρ(r)r · F ext(r)dr (9.40)

Eee =
∫

ρ(r)r · Eee(r)dr (9.41)

I =
∫

ρ(r)r · I(r)dr. (9.42)

Finally, by operating on the first law of (9.10) by
∫
drρ(r)r· one obtains the integral

virial theorem [5, 10]

Eext + Eee + 2T − I = 0. (9.43)

The above is a description of the Schrödinger theory of electrons in an external
electrostatic and magnetostatic field from the perspective of ‘classical’ fields and
quantal sources as arrived at via the ‘Quantal Newtonian’ first law for each electron.
This perspective gives rise to three insights into the theory not known previously:
(a) In addition to the external Lorentz field, each electron also experiences an internal
field due to the presence of themagnetic fieldB(r); (b) TheSchrödinger equationmay
be written so that its intrinsic self-consistent nature becomes evident; (c) In writing
the Schrödinger equation in this manner, the magnetic field B(r) appears explicitly
without having to assume any gauge for the vector potential A(r) which appears in
the equation via the definition of the field component of the electron momentum.

9.2 Quantal Density Functional Theory

As proved in the previous Chap. 8, the basic variables for a system of electrons in an
external electrostaticE(r) = −∇v(r) and a uniformmagnetostaticB(r) = ∇×A(r)
field are the nondegenerate ground state density ρ(r) and the physical current density
j(r) for a fixed angular momentum L. Thus, within Q-DFT, one maps the interacting
system of electrons to one of noninteracting fermions having the same properties.
The existence of such a model S system is an assumption. The further assumption
made is that the external fields experienced by the model fermions are the same as
those of the interacting system. (This Q-DFT is thus akin to that described in Sect. 3.3
in which the model fermions have the same basic variables and experience the same
external fields as those of the true interacting electrons. It, therefore, differs from the
Q-DFT described in [1].) The advantage gained by the requirement of the same basic
variables and external fields is that in the mapping to such a model system, the only
correlations that must be accounted for are once again only those due to the Pauli
exclusion principle, Coulomb repulsion, and Correlation-Kinetic effects.

The model S system Hamiltonian is then

Ĥs = T̂A + V̂s =
∑

i

ĥs(ri ) (9.44)

http://dx.doi.org/10.1007/978-3-662-49842-2_8
http://dx.doi.org/10.1007/978-3-662-49842-2_3
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where

T̂A = 1

2

∑

i

[p̂i + A(ri )]2, (9.45)

V̂s =
∑

i

vs(ri ) =
∑

i

[v(ri ) + vee(ri )], (9.46)

with vee(r) an effective scalar electron-interaction potential in which the many-body
correlations are incorporated. Thus,

ĥs(r) = 1

2
[p̂ + A(r)]2 + v(r) + vee(r), (9.47)

and the S system orbital equation is

{
1

2
[p̂ + A(r)]2 + v(r) + vee(r)

}
φi (x) = εiφi (x);

i = 1, . . . , N , (9.48)

and the corresponding wave function is a Slater determinant �{φi } of the orbitals
φi (x). The {ρ(r), j(r)} as obtained from the S system are the expectations

ρ(r) = 〈�{φi }|ρ̂(r)|�{φi }〉 =
∑

σ

∑

i

φ�
i (rσ)φi (r′σ), (9.49)

and

j(r) = 〈�{φi }|ĵ(r)|�{φi }〉 = jp,s(r) + jd,s(r) (9.50)

with

jp,s(r) = 〈�{φi }|ĵp(r)|�{φi }〉 (9.51)

jd,s(r) = 〈�{φi }|ĵd(r)|�{φi }〉 (9.52)

with the operators ĵ(r), ĵp(r), and ĵd(r) defined as in (9.33)–(9.35). (Note that as
the orbitals are to be designed such that the {ρ(r), j(r)} of the interacting and model
systems are the same, andA(r) is the same, jd,s(r) = ρ(r)A(r) = jd(r), and therefore
jp,s(r) = jp(r).)

The ‘Quantal Newtonian’ first law for the S system derived employing the conti-
nuity condition of (9.11) is

F ext(r) + F int
s (r) = 0, (9.53)
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where F ext(r) is the same as in (9.12) by assumption. The internal field F int
s (r) of

the S system is

F int
s (r) = −∇vee(r) − Z s(r) − D(r) − I(r) (9.54)

in which the differential densityD(r) and internal magnetic I(r) field components
are the same as for the interacting system (see (9.17), (9.21)–(9.23)) because once
again {ρ(r), j(r)} and A(r) are the same. The S system kinetic field Z s(r) is

Z s(r) = zs(r; γs)

ρ(r)
, (9.55)

where the kinetic ‘force’ is defined in terms of its quantal source, the Dirac density
matrix γs(rr′) as

zs,α(r; γs) = 2
3∑

β=1

∇β ts,αβ(r; γs), (9.56)

where the kinetic energy tensor ts,αβ(r; γs) is

ts,αβ(r; γs) = 1

4

[
∂2

∂r ′
α∂r ′′

β

+ ∂2

∂r ′
β∂r ′′

α

]
γs(r′r′′)

∣∣∣∣
r′=r′′=r

, (9.57)

and the source

γs(rr′) = 〈
�{φi }|γ̂(rr′)|�{φi }

〉 =
∑

σ

∑

i

φ�
i (rσ)φi (r′σ). (9.58)

Equating the internal fields F int(r) and F int
s (r) then leads to following rigorous

physical interpretation of the local effective potential energy vee(r). It is the work
done to move a model fermion from some reference point at infinity to its position at
r in the force of a conservative effective field F eff(r):

vee(r) = −
r∫

∞
F eff(r′) · d�′, (9.59)

where F eff(r) is the sum of the electron-interaction Eee(r) and correlation-kinetic
Z tc(r), fields:

F eff(r) = Eee(r) + Z tc(r), (9.60)

and where

Z tc(r) = Z s(r) − Z(r). (9.61)
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As in theB = 0 case (see Chap.2), the fieldEee(r)may be subdivided into its Hartree
EH (r), Pauli E x (r), and Coulomb Ec(r) field components. The quantal sources for
these fields are the densityρ(r), the Fermi holeρx (rr′), and theCoulombholeρc(rr′),
respectively. Thus, the effective field may be expressed as

F eff(r) = EH (r) + E x (r) + Ec(r) + Z tc(r), (9.62)

with each field being representative of a specific electron correlation. Note that
∇ × F eff(r) = 0 so that the work done vee(r) is path-independent. The individual
components of F eff(r) are separately curl free for systems with certain symmetry,
as in the example of the following section which is one of cylindrical symmetry. The
work done in each field is then path-independent.

The total energy E of the interacting electrons can also be written in terms of the
model system properties. Splitting the kinetic energy T into its noninteracting Ts and
Correlation-Kinetic Tc components, the energy E of the interacting system as given
by (8.45) may be written as

E = Ts + Eee +
∫

ρ(r)v(r)dr +
∫

j(r) · A(r)dr

− 1

2

∫
ρ(r)A2(r)dr + Tc. (9.63)

By multiplying the S system differential equation (9.48) by φ�
i (x) and summing over

all the model fermions, the noninteracting system kinetic energy Ts is obtained as

Ts =
∑

i

εi −
∫

ρ(r)v(r)dr −
∫

ρ(r)vee(r)dr −
∫

j(r) · A(r)dr

+ 1

2

∫
ρ(r)A2(r)dr. (9.64)

On substituting (9.64) into (9.63), the expression for the energy E is

E =
∑

i

εi −
∫

ρ(r)vee(r)dr + Eee + Tc, (9.65)

where Eee is given by (9.41) and Tc is

Tc = 1

2

∫
ρ(r)r · Z tc(r)dr. (9.66)

Note that the expression for E and vee(r) are the same as those of the B(r) = 0 case
of Sects. 3.4.5 and 3.4.6. It is also to be understood that Ts is the kinetic energy of

http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_8
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
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the model fermions having the same density ρ(r) and physical current density j(r)
as that of the interacting system.

On applying
∫
drρ(r)r· to (9.60), one obtains the corresponding integral virial

theorem for the S system.

Eee + 2Tc =
∫

ρ(r)r · F eff(r)dr. (9.67)

This expression too is the same as the B(r) = 0 case (see Sect. 3.4.7).
The ‘Quantal Newtonian’ first law of (9.10) is of course valid for both ground

and excited states. Hence, the mapping via Q-DFT is applicable to both ground and
excited states of the interacting system. Furthermore, as in the B(r) = 0 case, the
mapping to the S system is arbitrary in that the model fermions may be in a ground or
excited state. Thus, once again, there exist an infinite number of local potentials vs(r)
that can generate {ρ(r), j(r)} of either a ground or excited state of the interacting
system.

Finally, the requirement that the orbital angular momentum L of the model fermi-
ons be the same as for the interacting electrons is automatically satisfied. This is
readily seen to be the case from the relation

L =
∫

r × (
j(r) − ρ(r)A(r)

)
dr, (9.68)

since by construction the {ρ(r), j(r)} are the same, andA(r) the same by assumption.

9.3 Application of Quantal Density Functional Theory
to a Quantum Dot

We next apply Q-DFT in the presence of a magnetostatic field to investigate the prop-
erties of a quantum dot. A quantum dot is a two-dimensional electron gas confined
to a circular region of approximately tens of Angstroms. It can be thought of as an
atom in two-dimensions with a confining external scalar potential that is harmonic.
Further confinement is achieved via the presence of amagnetic field. Experimentally,
quantum dots may be fabricated from AlAs/AlGaAs heterostructures.

Such a system is well described by the Hooke’s atom which is comprised of two
electrons in a harmonic external potential of frequency ω0 in which the electrons are
confined to the x-y plane by a magnetic field B(r) applied in the z-direction [8, 9].
The Hamiltonian for this system (in a.u. with the charge of an electron = −e; |e| =
� = m = 1) is

Ĥ =
2∑

i=1

{
1

2

(
p̂i + 1

c
A(ri )

)2

+ 1

2
ω2
0r

2
i

}
+ 1

|r1 − r2| . (9.69)

http://dx.doi.org/10.1007/978-3-662-49842-2_3
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The procedure for the solution of the corresponding Schrödinger equation Ĥψ = Eψ
is the same as described in Sect. 2.11.1 and is valid for any gauge and dimension.
With the assumption of the symmetric gauge A(r) = 1

2B(r) × r, there then exist
closed-form analytical solutions to the Schrödinger equation for effective oscillator

frequencies ω̃ =
√

ω2
0 + ω2

L belonging to certain denumerably infinite set of values,

where ωL = B/2c is the Larmor frequency. For ω̃ = 1, the spatial part of the singlet
ground state wave function is

ψ(r1r2) = C(1 + r12)e
− 1

2 (r21+r22 ), (9.70)

where r12 = |r1 − r2| and C2 = 1/π2(3 + √
2π). The corresponding ground state

energy is E = 3 a.u. The total angular momentum L = 0.
For the wave function of (9.70), many properties of the Q-DFT mapping to the

model fermion system are obtained in closed analytical or semi-analytical form.
These expressions and their asymptotic behavior near and at the nucleus and in the
classically forbidden region are given in Appendix G. A derivation of the kinetic-
energy-density tensor tαβ(r; γ), which differs from that of Appendix D, is given in
Appendix H. We next discuss the individual properties.

9.3.1 Quantal Sources

9.3.1.1 Electron Density ρ(r) and Physical Current Density j(r)

The ground state electron density ρ(r) is

ρ(r) = 2

π(3 + √
2π)

e−r2
{√

πe− 1
2 r

2
[(

1 + r2
)
I0

(
1

2
r2

)
+ r2 I1

(
1

2
r2

)]
+

(
2 + r2

)}
,

(9.71)

where I0(x) and I1(x) are the zeroth- and first-order modified Bessel functions [11].
(Note that the expression given in [12] is incorrect.) The density has cylindrical
symmetry: ρ(r) = ρ(r). The density ρ(r) and the radial probability density rρ(r)
are plotted in Fig. 9.1. As expected for this harmonic external potential, the density
does not exhibit a cusp at the nucleus. The asymptotic structure of the density near
the nucleus and in the classically forbidden region are given in Appendix G.

As the wave function is real, the paramagnetic current density jp(r) = 0. Thus,
the physical current density

j(r) = 1

c
ρ(r)A(r), (9.72)

and satisfies the continuity condition ∇ · j(r) = 0.

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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Fig. 9.1 Electron density ρ(r) and radial probability density rρ(r)

For the mapping of the above interacting system in its ground state to an S system
also in its ground state, the corresponding S system orbitals φi (x) are of the general
form

φi (r) =
√

ρ(r)
2

eiθ(r); i = 1, 2, (9.73)

where θ(r) is an arbitrary real phase factor. The S system paramagnetic current
density jp,s(r) is then

jp,s(r) = −ρ(r)∇θ(r). (9.74)

As the phase factor is arbitrary, we set θ(r) = 0, so that jp,s(r) = 0. This means
that the model system then has the same physical current density j(r). Additionally,
the single particle orbitals are φi (r) = √

ρ(r)/2. The S system differential equation
is then

[
1

2
p̂2 + 1

2
ω̃2r2 + vee(r)

]√
ρ(r) = ε

√
ρ(r), (9.75)

were vee(r) is defined by equations (9.59)–(9.61) and accounts for electron correla-
tions due to the Pauli principle, Coulomb repulsion, and Correlation-Kinetic effects.
As the model fermions are in their ground state, the total angular momentum L = 0.
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9.3.1.2 Pair-Correlation Density g(rr′), Fermi ρx(rr′)
and Coulomb ρc(rr′) Holes

It is best to study the electron-interaction properties due to the Pauli exclusion prin-
ciple and Coulomb repulsion via the pair-correlation density g(rr′) which is defined
in terms of the quantal source P(rr′) as g(rr′) = P(rr′)/ρ(r). The pair-density may
be separated into its local and non-local components as g(rr′) = ρ(r′) + ρxc(rr′),
where ρxc(rr′) is the Fermi-Coulomb hole charge distribution. In turn ρxc(rr′) may
be further subdivided into its Fermi ρx (rr′) and Coulomb ρc(rr′) hole charge com-
ponents. The Fermi hole is defined in terms of the S system Dirac density matrix
as ρx (rr′) = −|γs(rr′)|2/2ρ(r). These charge distributions satisfy the sum rules:∫
g(rr′)dr′ = N − 1;

∫
ρxc(rr′)dr′ = −1;

∫
ρx (rr′)dr′ = −1; ρx (rr′) ≤ 0;

ρx (rr) = −ρ(r)/2;
∫

ρc(rr′)dr′ = 0.
For the ground state then ρx (rr′) = −ρ(r′)/2 independent of the electron position

r, so that the non-local nature of the pair-correlation density is exhibited by the
dynamic Coulomb hole ρc(rr′). In Fig. 9.2 cross-sections of the Fermi-Coulomb
ρxc(rr′), Fermi ρx (rr′), and Coulomb ρc(rr′) holes are plotted for an electron at the
nucleus.Observe that for this electronposition, all the holes are spherically symmetric
about it. Also observe that both the Fermi-Coulomb and Coulomb holes exhibit a
cusp at the electron position representative of the two-dimensional electron-electron
coalescence condition on the wave function [13] [QDFT2].

In Figs. 9.3, 9.4, 9.5, 9.6 cross-sections through theCoulomb hole ρc(rr′) in differ-
ent directions corresponding to θ′ = 0◦, 45◦, 90◦ with respect to the nucleus-electron
direction are plotted. The electron positions considered, as indicated by arrows, are

Fig. 9.2 Cross-sections through the quantal Fermi-Coulomb ρxc(rr′), Fermi ρx (rr′), and Coulomb
ρc(rr′) holes for an electron at the nucleus as indicated by the arrow
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Fig. 9.3 Cross-sections through the Coulomb hole ρc(rr′) in different directions corresponding to
θ′ = 0◦, 45◦, 90◦ with respect to the nucleus-electron direction. The electron is at r = 0.5 a.u.

Fig. 9.4 Same as in Fig. 9.3 except that the electron is at r = 1.585 a.u.

r = 0.5, 1.585, 3.0, and 18.0 a.u. Observe the dynamic structure of the Coulomb
hole and the fact that it is not symmetric about the electron. For asymptotic electron
positions (Fig. 9.6), the Coulomb hole becomes more and more spherically symmet-
ric about the nucleus. The cusp [13] [QDFT2] in the hole at the electron position is
also clearly evident in Fig. 9.3. The Coulomb hole also becomes an essentially static
charge distribution for far asymptotic positions of the electron.
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Fig. 9.5 Same as in Fig. 9.3 except that the electron is at r = 3 a.u.

Fig. 9.6 Same as in Fig. 9.3 except that the electron is at r = 18 a.u.

9.3.1.3 Single-Particle γ(rr′) and Dirac γs(rr′) Density Matrices

The expressions for the reduced single-particle γ(rr′) and Dirac γs(rr′) density
matrices are given in Appendix G.
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9.3.2 Fields and Energies

9.3.2.1 Electron-Interaction Field E ee(r) and Energy Eee

The analytical expression for the electron-interaction field Eee(r) and the corre-
sponding value of the energy Eee are given in Appendix G (see also Table9.1).
The field Eee(r) and energy Eee can be split into their Hartree [EH (r), EH ], Pauli-
Coulomb [E xc(r), Exc], Pauli [E x (r), Ex ], and Coulomb [Ec(r), Ec] components.
As the respective quantal sources for the fields are all spherically symmetric about
the electron position at the nucleus, all the fields vanish at the origin. The asymptotic
structure of the fields in the classically forbidden region is

Eee(r) ∼
r→∞

1

r2
+ 2

r3
, EH (r) ∼

r→∞
2

r2
+ 5

r3
, Exc(r) ∼

r→∞ − 1

r2
− 3

r3

Ex (r) ∼
r→∞ − 1

r2
− 5

2r3
, Ec(r) ∼

r→∞ − 1

2r3
. (9.76)

The asymptotic structure is a consequence of the quantal source charge sum rules
and the fact that these dynamic charge distributions become static for asymptotic
positions of the electron. The asymptotic structure of Eee(r) near the nucleus is

Eee(r) ∼
r→0

1

2(2 + √
π)

[(
4 + 3

√
π
)
r − 1

4

(
13

√
π + 16

)
r3

]
. (9.77)

The fields are plotted in Figs. 9.7, 9.8, 9.9. The corresponding energies obtained
from these fields are quoted in Table9.1. It is interesting to note that in contrast to
the Hooke’s atom in the absence of a magnetic field [14], [Sect. 3.5] for which the
Coulomb field is an order of magnitude smaller than the Pauli field, the Coulomb
field in the presence of the magnetic field though still smaller is of the same order
of magnitude as the corresponding Pauli field. Nevertheless, the Coulomb energy
is again an order of magnitude smaller than the Pauli energy (see Table9.1). The
reason for this is that the Coulomb field (see Fig. 9.9) is both positive and negative.

Table 9.1 Quantal density
functional theory properties
of the ground state S system
that reproduces the density,
physical current density, and
total energy of the Hooke’s
atom in a magnetic field in a
ground state with effective
oscillator frequency ω̃ = 1.

Property Value (a.u.)

E 3.000000

Eee 0.818401

EH 1.789832

Exc −0.971431

Ex −0.894916

Ec −0.076515

Eext 1.295400

Ts 0.780987

Tc 0.105212

ε 2.000000

http://dx.doi.org/10.1007/978-3-662-49842-2_3
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Fig. 9.7 The electron-interaction Eee(r), and its Hartree EH (r) and Pauli-Coulomb Exc(r) compo-
nents. The function 1/r2 is also plotted

Fig. 9.8 The Pauli field Ex (r). The function −1/r2 is also plotted
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Fig. 9.9 The Coulomb field Ec(r). The function −1/2r3 is also plotted

Yet another point of contrast is that in the case when the magnetic field is present,
the Coulomb field decays asymptotically as O(− 1

r3 ) whereas in the absence of the
magnetic field it decays as O(− 1

r4 ).

9.3.2.2 Correlation-Kinetic Field Z tc(r) and Energy Tc

The Correlation-Kinetic fieldZ tc(r) and energy Tc are obtained from the interacting
and S system kinetic-energy tensors tαβ(r; γ) and ts,αβ(r; γs), respectively. As a
consequence of the cylindrical symmetry, these tensors are of the form

tαβ(r; γ) = rαrβ
r2

f (r) + δαβk(r) (9.78)

and

ts,αβ(r; γs) = rαrβ
r2

h(r), (9.79)

where the functions f (r), k(r), and h(r) are given in Appendix G. For the derivation
of tαβ(r; γ) see Appendix H. To compare the off-diagonal matrix elements of the ten-
sors, we plot in Fig. 9.10 the functions f (r) and h(r). Observe that they are extremely
close, both vanishing at the nucleus, and decaying in a similarmanner asymptotically.
Hence, the contribution of the off-diagonal elements to the corresponding kinetic
‘forces’ are similar, and therefore their contribution to the Correlation-Kinetic field
Z tc(r) very small. To compare the diagonal matrix elements of the tensors, we plot
in Fig. 9.11 the functions f (r) + 2k(r) and h(r). Observe that the diagonal matrix
element of the interacting system tensor is now finite at the nucleus and differs from
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Fig. 9.10 Functions f (r) and h(r) of the off-diagonal elements of the interacting and non-
interacting kinetic energy tensors tαβ(r; γ) and ts,αβ(r; γs), respectively

Fig. 9.11 The functions f (r) + 2k(r) and h(r) of the diagonal elements of the tensors tαβ(r; γ)

and ts,αβ(r; γs), respectively

that of the S system in the interior region of the atom. Hence, the contribution to the
Correlation-Kinetic fieldZ tc(r) arises principally from the diagonal matrix elements
and from the interior of the atom. This is also the region from which the contribution
to the Correlation-Kinetic energy Tc arises.

The expressions for the interacting and S system kinetic ‘forces’ zα(r; γ) and
zs,α(r; γs), respectively, and their corresponding asymptotic structure are given in



9.3 Application of Quantal Density Functional Theory to a Quantum Dot 305

Fig. 9.12 Correlation-Kinetic field Ztc (r), and its components Zs(r) and Z(r) for the noninter-
acting and interacting systems. The function 3/r3 is also plotted

Appendix G. The Correlation-Kinetic field Z tc(r) and its components Z s(r) and
Z(r) are plotted in Fig. 9.12. Observe that Z tc(r) is positive throughout space. Its
asymptotic structure obtained from (G7), (G20) and (G23) is

Ztc(r) ∼
r→∞

3

r3
− 12

r5
. (9.80)

(Note the cancelation of the asymptotic structure of the ‘forces’ z(r) and zs(r) from
terms of O(r5) to O(r0).)

The kinetic energy of the interacting and S systems, T and Ts , may be obtained
either from the fieldsZ(r) andZ s(r), respectively, or from the corresponding system
kinetic energy densities t (r) and ts(r). (The kinetic energy density is the trace of
the kinetic energy tensor.) The value of T = 0.886 199 a.u.; Ts = 0.780 987 a.u.;
Tc = 0.105 212 a.u. In contrast to the case with nomagnetic field [14], [see Table3.1]
forwhich Tc is an order ofmagnitude smaller than Ts , in the present case the Tc though
still smaller is of the same order of magnitude as Ts .

9.3.3 Potentials

9.3.3.1 Electron-Interaction Potential Wee(r)

Due to cylindrical symmetry, the electron-interaction field Eee(r) is conservative.
Hence, the contribution of Pauli and Coulomb correlations Wee(r) to the effective
electron-interaction potential energy vee(r) is the work done in this field:

http://dx.doi.org/10.1007/978-3-662-49842-2_3
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Wee(r) = −
r∫

∞
Eee(r′) · d�′. (9.81)

This work done is path-independent. The electron-interaction potential Wee(r) may
be further subdivided into its Hartree WH (r), Pauli-Coulomb Wxc(r), Pauli Wx (r)
and CoulombWc(r) components, each being the work done in the conservative fields
EH (r), E xc(r), E x (r), and Ec(r), respectively.

The structure of the individual potentials follows directly from the corresponding
fields. Thus, for example, since the field E xc(r) is negative throughout space and
vanishes at the nucleus, the corresponding potential Wxc(r) is negative and has zero
slope at the nucleus. The asymptotic structure of the potentials follows from (9.76):

Wee(r) ∼
r→∞

1

r
+ 1

r2
, WH (r) ∼

r→∞
2

r
+ 5

2r2
, Wxc(r) ∼

r→∞ −1

r
− 3

2r2

Wx (r) ∼
r→∞ −1

r
− 5

4r2
, Wc(r) ∼

r→∞ − 1

4r2
. (9.82)

Note that the Coulomb potentialWc(r) decays as O(−1/r2), whereas in the absence
of a magnetic field Wc(r) decays as O(−1/r3).

The potentialsWH (r),Wxc(r),Wx (r),Wc(r), andWee(r) are plotted in Figs. 9.13,
9.14, 9.15, 9.16, 9.18.

Fig. 9.13 The Hartree potential energy WH (r)
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Fig. 9.14 The Pauli-Coulomb potential energyWxc(r). The function −1/r − 3/2r2 is also plotted

Fig. 9.15 The Pauli potential energy Wx (r). The function −1/r − 5/4r2 is also plotted

9.3.3.2 Correlation-Kinetic Potential Wtc(r)

Once again, as a consequence of cylindrical symmetry, the correlation-kinetic field
Z tc(r) is conservative, and therefore the contribution of this effect to the effective
electron-interaction potential energy vee(r) is the work done in this field:
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Fig. 9.16 The Coulomb potential energy Wc(r). The function −1/4r2 is also plotted

Fig. 9.17 The correlation-kinetic potential energy Wtc (r). The function 3/2r2 is also plotted

Wtc(r) = −
r∫

∞
Z tc(r

′) · d�′. (9.83)

This work done is also path-independent. The potential energy Wtc(r) is plotted in
Figs. 9.17, 9.18. It is positive throughout space as a result of the field Z tc(r) being
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Fig. 9.18 The electron-interaction Wee(r), correlation-kinetic Wtc (r), and effective electron-
interaction vee(r) potential energies. The function 1/r is also plotted

positive. Its asymptotic structure obtained from (9.80) is

Wtc(r) ∼
r→∞

3

2r2
. (9.84)

It is evident from (9.82) and (9.84) (see also Fig. 9.18) that Wtc(r) decays asymp-
totically much faster than the electron-interaction potential Wee(r). This decay of
Wtc(r) of O( 1

r2 ) is the same as in the absence of a magnetic field.

9.3.3.3 Effective Electron-Interaction Potential vee(r)

The effective electron-interaction potential vee(r) is then the sum of the electron-
interaction Wee(r) and Correlation-Kinetic Wtc(r) potentials:

vee(r) = Wee(r) + Wtc(r). (9.85)

The potential vee(r) is plotted in Fig. 9.18. Its structure near the nucleus and in
the classically forbidden region are

vee(r) ∼
r→0

1.50 − 0.99r2, (9.86)
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vee(r) ∼
r→∞

1

r
+ 5

2r2
. (9.87)

Observe (see Figs. 9.16 and 9.17), that the Coulomb Wc(r) and correlation-kinetic
Wtc(r) components of vee(r) are of the same order of magnitude but opposite in
sign. Hence, there is a substantial cancelation of these effects in the potential vee(r).
There is also a significant cancelation between the Hartree WH (r) and Pauli Wx (r)
potentials (see Figs. 9.13 and 9.14). It is due to this cancelation that the asymptotic
structure of vee(r) is 1/r (see (9.82)), and is due to the residual Hartree potential.
The Pauli and Coulomb correlations, and correlation-kinetic effects, all contribute
to the term of O(1/r2) of vee(r).

9.3.4 Eigenvalue

The eigenvalue ε of the S system differential equation (9.75) can be obtained directly
from it since the solution

√
ρ(r) is known. Or it may be determined by writing vee(r)

with ω̃ = 1 as

vee(r) = ε + 1

2

∇2√ρ√
ρ

− 1

2
r2. (9.88)

Since vee(r) vanishes at infinity, and ∇2 = ∂2/∂r2 + (1/r)∂/∂r , we obtain ε = 2
a.u.

9.3.5 Single-Particle Expectations

With the density ρ(r) known, the expectations of the single-particle operators
Ô = ∑

i r
n
i , n = 2, 1,−1 and Ô = ∑

i δ(ri ) may be determined and are given
in Appendix G.

9.3.6 Concluding Remarks

In the example described above, Q-DFT is applied to a quantum dot as modeled by
the Hooke’s atom in an external magnetostatic field. Thereby the interacting system
is mapped to one of noninteracting fermions possessing the same {ρ(r), j(r)} and
angular momentum L. The mapping is from a singlet ground state of the atom to a
model system also in its singlet ground state.

The role played by each individual electron correlation is clearly demonstrated in
the above application. Thus, for example, Correlation-Kinetic effects contribute pos-
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itively to the effective electron-interaction potential energy vee(r) of the model sys-
tem, whereas the correlations due to Coulomb repulsion contribute negatively. Both
these potentials are also of the same order of magnitude. Additionally, it also turns
out that the lowest-order contribution of both the Correlation-Kinetic and Coulomb
potentials in the classically forbidden region is of O(1/r2). As a consequence, there
is a significant cancellation of the contributions of these two correlations to both the
potential energy vee(r) as well as to the total energy E . In a similar manner, contri-
butions of correlations arising from the Pauli exclusion principle and those due to
the Coulomb self-energy, also tend to cancel.

A comparison of the present results with those of the mapping for the Hooke’s
atom in the absence of a magnetic field [14], [Sect. 3.5] shows both similarities and
differences, the latter arising as a consequence of the difference in dimensionality.
Thus, for example, the three-dimensional dynamic Coulomb hole for the Hooke’s
atom exhibits a cusp at the position of the electron thereby indicating the satisfac-
tion of the electron-electron coalescence condition for the wave function in three-
dimensions [13, 15–19]. Similarly, the two-dimensional Coulomb hole of the present
work exhibits a cusp at each electron position representative of the two-dimensional
electron-electron coalescence constraint [13]. On the other hand, the asymptotic
decay structure of the corresponding Coulomb fields and potentials in the classi-
cally forbidden region differ in spite of the fact that in each case the Coulomb hole
satisfies the same sum rule of having a total charge of zero. This difference in the
structure is a result of the difference in dimensionality. Another striking difference
due to the reduced dimensionality is that Correlation-Kinetic effects which are rel-
atively insignificant in the three-dimensional case are far more significant in two-
dimensions. The correlation-kinetic energy in the latter case is greater in magnitude
than the Coulomb energy and over ten percent of the Pauli energy. This fact is impor-
tant in the traditional density functional theory description of the mapping [2], the
application of which requires the construction of approximate energy functionals of
{ρ(r), j(r)} and their functional derivatives. Contributions due to Correlation-Kinetic
effects cannot therefore be ignored in any approximations to the functionals.

Finally, we note that for any two-electron atom in an external magnetostatic field,
the mapping from a ground state to a model system in its singlet ground state can
be thought of as being to either noninteracting fermions or noninteracting bosons.
The reason is that the solution of the differential equation for the model system of
noninteracting bosons with the same {ρ(r), j(r)} is the density amplitude

√
ρ(r).

This is also the case for the mapping from an excited state of the two-electron atom
to a model system in its singlet ground state.
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Chapter 10
Physical Interpretation of the Local Density
Approximation and Slater Theory
via Quantal Density Functional Theory

Abstract As stationary-state Quantal density functional theory (Q–DFT) is a
physical description of the mapping from an interacting system of electrons in an
external electrostatic field to one of noninteracting fermions having the same density,
it can provide a rigorous physical interpretation of various approximation schemes
within local effective potential theory. Here Q–DFT is employed to explain how
electron correlations are represented in the local density approximation (LDA) of
Kohn-Sham density functional theory (KS-DFT), and to show that the exact Slater
‘potential’ is unphysical in that it does not represent the potential energy of an elec-
tron. According to KS-DFT, it is assumed that the electron correlations within the
LDA are those of the uniform electron gas, taken at the local value of the nonuniform
density. On the other hand, it is proved via Q-DFT that the correlations within the
LDAnot only involve the local value of the density but also the gradient of the density
at each electron position. This explains the success of the LDA in a more fundamen-
tal manner. From basic electrostatics, it is shown that the exact Slater ‘potential’,
and hence the LDA to this ‘potential’, does not represent a potential energy. The
physically correct way to obtain the potential within Slater theory is explained, and
shown to be the Pauli-correlated approximation of Q–DFT.

Introduction

In this chapter we explain insights arrived at via Quantal density functional theory
(Q–DFT) of two popular approximation schemes within the framework of local
effective potential energy theory. The first of these is the local density approxi-
mation (LDA) for ‘exchange’ [1] and ‘exchange–correlation’ [2] as applied within
Kohn–Sham (KS) density functional theory [3]. The second is Slater theory [4]
for ‘exchange’, the LDA within its context [4], and the Slater Xα approximation
scheme [5]. The LDA and Slater theory are both ad hoc formulations.

The description of KS–DFT given in Chap.4 is the in principle exact formulation
of the theory. However, as the KS ‘exchange–correlation’ energy functional E K S

xc [ρ]
is unknown, it must be approximated in any application of the theory. Thus, approx-
imate KS–DFT means approximating the functional E K S

xc [ρ]. The LDA is one such
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approximation. The LDA also constitutes the leading term in the majority of approx-
imations to the exact functional E K S

xc [ρ] presently employed in the literature, and
those that have evolved from the gradient and various generalized gradient expan-
sion approximations. The corresponding ‘exchange–correlation’ potential energy
is the functional derivative of the approximate energy functional employed. The
approximate functional derivative then generates the orbitals and density within the
approximation by self–consistent solution of the corresponding S system differential
equation. The ground state energy in turn is determined from the approximate total
energy functional expression.

The local density approximation as originally understood is as follows. In the con-
struction of the LDA ‘exchange–correlation’ energy functional, it is assumed that
each point of an inhomogeneous electron density system is homogeneous, but with
a density corresponding to the local value at that point. In otherwords, the correlations
between the electrons as described by this picture are those of the uniform electron
gas. It is further assumed that the corresponding approximate functional deriva-
tive is also representative of the same electron correlations. That is, the correlations
assumed in the construction of the approximate energy functional are also those that
give rise to the potential energy. Therefore, theLDAwavefunction for the nonuniform
electron gas system at each electron position is the uniform electron gas wavefunc-
tion corresponding to the value of electron density at that position. Thus, within
the LDA, the Fermi–Coulomb hole charge distribution at each electron position of
the nonuniform density system is spherically symmetric about that position. (For the
uniform electron gas, the Fermi–Coulomb hole charge distribution about an electron
is spherically symmetric for all electron positions due to translational invariance.)
When viewed from the perspective of KS–DFT, the understanding arrived at is that
the correlations within the LDA are those of the uniform electron gas. Analysis of
results obtained within the LDA are consequently based on this uniform electron gas
description of the correlations.

However, when viewed from the field perspective of Q–DFT, it becomes evi-
dent that this cannot be the correct representation of the electron correlations in the
approximation. The field at each electron position due to the spherically symmetric
Fermi–Coulomb hole charge distribution vanishes. Therefore, the electron cannot
have a potential energy as there is no force field present. On the other hand we know
that the function represented by the functional derivative in the LDA is well defined
and behaved. For the electron to have a potential energy, a force field must exist.
A force field can exist at each electron position only if the Fermi–Coulomb hole
charge distribution is asymmetric about the electron. It will be shown via Q–DFT in
Sect. 10.1 that the LDAgoes beyond uniform electron gas theory, and explicitly incor-
porates the non–uniformity of the electron density in its representation of electron
correlations [6–9]. The LDA wavefunction thus incorporates, albeit in an approxi-
mate manner, the physics apropos to regions where the potential energy is rapidly
varying and in the classically forbidden region. As such, the corresponding Fermi–
Coulomb hole charge distribution in the LDA is asymmetric about the electron at
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each position in space. The work done in the field of this charge distribution, which is
the potential energy of the electron, is then equivalent to the function corresponding
to the LDA functional derivative. The representation of electron correlations within
the LDA is therefore far more accurate than understood to be the case via KS–DFT.

The electron correlationswithin theLDAexplicitly account for the non–uniformity
of the system via a term proportional to the gradient of the density at each electron
position. This is proved for the case when only correlations due to the Pauli exclu-
sion principle are considered. The analytical expression for the true Fermi hole in
the LDA is derived in Appendix I. As an example, the structure of the Fermi hole in
the LDA and its spherically symmetric component are then contrasted with the exact
Fermi hole in an atom.

The second component of this chapter is concerned with Slater theory [4] and
the LDA within its framework. Slater theory is the original local effective potential
energy theory. What Slater did was to simplify Hartree–Fock theory by replacing the
non–local integral exchange operator in the differential equation by a local (multi-
plicative) operator. The expression for the total energy, however, remains the same. In
Sect. 10.2 the reasoning employed in the construction of the exact ‘Slater exchange
potential’ will be described. As will be shown, the ‘Slater potential’ depends upon
the Fermi hole charge distribution ρx (rr′). Thus, although the exchange operator
within Slater theory is local, the numerical solution of the corresponding differen-
tial equation was at that time still difficult due to the intrinsic non–locality of the
Fermi hole distribution. (This is not the case at present, and results for the energy of
closed-shell atoms employing the exact ‘Slater exchange potential’ are obtained and
compared to those of Hartree-Fock theory.) Hence, Slater made a further approx-
imation. He approximated the expression for the exact ‘Slater exchange potential’
by the corresponding expression for the uniform electron gas and assumed it valid
for each point of the nonuniform density system. In other words, he constructed the
LDA for the exact ‘Slater exchange potential’. As this expression for the potential
differs by a factor of 2/3 from the Dirac-Gaspar-Kohn-Sham value [1], in later work
Slater et al. [5] introduced a parameter α to be determined by the energy variational
principle. This Xα method is thus intrinsically a LDA.

When Slater theory is viewed from the quantal source and field perspective of
Q–DFT, it becomes clear that the ‘Slater exchange potential’ does not represent the
potential energy of an electron. It is, therefore, more appropriate to refer to it as
the Slater function. The underlying reason why the Slater function is not a potential
energy has to do with the non–local (dynamic) nature of the Fermi hole charge
distribution [10–12], as will be explained. The physically incorrect description of
the potential energy of an electron representative of Pauli correlations then explains
why the results of Slater theory are not accurate.
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10.1 The Local Density Approximation
in Kohn–Sham Theory

10.1.1 Derivation and Interpretation of Electron
Correlations via Kohn–Sham Theory

In the context of Kohn–Sham (KS) density functional theory (see Sect. 4.5), the
assumption underlying the LDA is that each point of the nonuniform electron den-
sity is uniform but with a density corresponding to the local value at that point.
Equivalently, the wavefunction ψ{r1, . . . , rN ; ρ(r)} for the nonuniform system at
each electron position corresponds to the wavefunction of a uniform electron gas
with a density equal to the local value at that position. In the LDA the ground state
energy functional of the density E L D A[ρ] is therefore (see 4.80)

E L D A[ρ] = Ts[ρ] +
∫

v(r)ρ(r)dr + E L D A
ee [ρ], (10.1)

where E L D A
ee [ρ] is the LDA approximation to the KS electron–interaction energy

functional E K S
ee [ρ]. The functional E L D A

ee [ρ] is defined as

E L D A
ee [ρ] = 1

2

∫∫
ρ(r)g0{rr′; ρ(r)}

|r − r′| drdr′, (10.2)

where g(0){rr′; ρ(r)} is the pair–correlation density for the uniform electron gas (as
indicated by the superscript (0)) corresponding to the local value of the density ρ(r)
at r. Since we may subdivide g(0){rr′; ρ(r)} into its local and nonlocal components
as

g(0){rr′; ρ(r)} = ρ(r′) + ρ(0)
xc {rr′; ρ(r)}, (10.3)

with ρ(0)
xc {rr′; ρ(r)} the Fermi–Coulomb hole charge for the uniform system, the

energy E L D A
ee [ρ] is

E L D A
ee [ρ] = EH [ρ] + E L D A

xc [ρ], (10.4)

where the Hartree energy EH [ρ] is

EH [ρ] = 1

2

∫∫
ρ(r)ρ(r′)
|r − r′| drdr′, (10.5)

and the LDA exchange–correlation energy E L D A
xc [ρ] is defined as

E L D A
xc [ρ] = 1

2

∫∫
ρ(r)ρ(0)

xc {rr′; ρ(r)}
|r − r′| drdr′. (10.6)

http://dx.doi.org/10.1007/978-3-662-49842-2_4
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In the literature, E L D A
xc [ρ] is more commonly expressed as

E L D A
xc [ρ] =

∫
ε(0)

xc {ρ(r)}ρ(r)dr, (10.7)

where ε(0)
xc {ρ(r)} is the average exchange–correlation energy per electron for the

homogeneous electron gas.
The S system differential equation in the LDA is

[
−1

2
∇2 + v(r) + vL D A

ee (r)
]

φi (x) = εiφi (x), i = 1, . . . , N , (10.8)

where the LDA electron-interaction potential energy vL D A
ee (r) is

vL D A
ee (r) = vH (r) + vL D A

xc (r), (10.9)

with the Hartree potential energy vH (r) as

vH (r) = δEH [ρ]
δρ(r)

=
∫

ρ(r′)
|r − r′|dr′, (10.10)

and the LDA exchange–correlation potential energy obtained as

vL D A
xc (r) = δE L D A

xc [ρ]
δρ(r)

= d

dρ
[ε(0)

xc {ρ(r)}ρ(r)]. (10.11)

The orbitals φi (x) are then employed to determine the kinetic energy Ts and the
density ρ(r), with the latter being used to obtain the remaining components of the
ground state energy E L D A[ρ] via (10.1).

Since for the uniform electron gas the Fermi–Coulomb hole charge is spherically
symmetric about an electron, the hole charge ρ(0)

xc {rr′; ρ(r)} for the nonuniform elec-
tron gas is also spherically symmetric about the electron irrespective of its position.
Furthermore, the hole ρ(0)

xc {rr′; ρ(r)} consequently satisfies the charge conservation
constraint of the exact Fermi–Coulomb hole

∫
ρxc(rr′)dr′ = −1. It is on the basis

of the definitions ((10.2) or (10.6)) of E L D A
xc [ρ] and the fact that ρ(0)

xc {rr′; ρ(r)} by
construction satisfies the charge conservation sum rule, that one assumes the correla-
tions between the electrons in the LDA to be those of the homogeneous electron gas.
As a consequence, the resulting Fermi–Coulomb hole charge is always spherically–
symmetric about the electron. However, as will be shown in the following section,
this is not the case.

The fact that the correlations in the LDA are not those of the uniform electron
gas is best illustrated for the case when only correlations due to the Pauli prin-
ciple are considered as the expressions for various properties may be determined
analytically. The Kohn–Sham LDA equations for the Pauli correlated case are the
same as described above but with E L D A

xc [ρ], ρ(0)
xc {rr′; ρ(r)}, and ε(0)

xc {ρ(r)} replaced
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by E L D A
x [ρ], ρ(0)

x {rr′; ρ(r)}, and ε(0)
x {ρ(r)}. Thewavefunction�(0){r1, . . . , rN ; ρ(r)}

for the nonuniform system at each electron position is now a Slater determinant of
plane waves corresponding to a density equal to the value at that position. The result-
ing pair–correlation density g(0)

x {rr′; ρ(r)} is then

g(0)
x {rr′; ρ(r)} = ρ(r′) + ρ(0)

x {rr′; ρ(r)}, (10.12)

where

ρ(0)
x {rr′; ρ(r)} = −1

2
ρ(r)

[
9 j21 (x)

x

]
(10.13)

is the uniform electron gas Fermi hole [13], j1(x) is the first–order spherical Bessel
function, x = kF R, kF is the Fermi momentum, kF (r) = [3π2ρ(r)]1/3 is the local
value of the Fermi momentum, and R = r′ − r. (Recall that the Fermi hole is
defined as ρx (rr′) = −|γs(rr′)|2/2ρ(r), where γs(rr′) = ∑

σ,i φ∗
i (rσ)φi (r′σ) is the

Dirac density matrix, and that the hole satisfies the sum rules
∫

ρx (rr′)dr′ = −1;
ρx (rr′) ≤ 0; ρx (rr) = −ρ(r)/2.) The Fermi hole ρ(0)

x {rr′; ρ(r)} is by construction
spherically symmetric about the electron irrespective of its position, and satisfies all
the sum rules. The expression for the average exchange energy per electron ε(0)

x {ρ(r)}
assumed valid locally as obtained from uniform electron gas theory [13] is

ε(0)
x {ρ(r)} = −3kF (r)

4π
= −3

4

(
3

π

)1/3

[ρ(r)]1/3. (10.14)

The LDA exchange energy E L D A
x [ρ] is then

E L D A
x [ρ] = 1

2

∫∫
ρ(r)ρ(0)

x {rr′; ρ(r)}
|r − r′| drdr′, (10.15)

=
∫

ε(0)
x {ρ(r)}ρ(r)dr, (10.16)

= −3

4

(
3

π

)1/3 ∫
ρ4/3(r)dr, (10.17)

and the corresponding LDA exchange potential energy vL D A
x (r) is

vL D A
x (r) = δE L D A

x [ρ]
δρ(r)

= −
(
3

π

)1/3

[ρ(r)]1/3 (10.18)

= −kF (r)
π

. (10.19)

The resulting LDA electron–interaction potential energy with only Pauli correlations
considered vL D AX

ee (r) is therefore
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vL D AX
ee (r) = vH (r) − kF (r)

π
. (10.20)

Once again, it is on the basis of the definition of the LDA exchange energy E L D A
x [ρ],

and the fact that the resulting Fermi hole ρ(0)
x {rr′; ρ(r)} by construction satisfies

the requisite sum rules, that one assumes the electron correlations to be those of
the uniform electron gas. This, however, is not how electrons are correlatedwithin the
LDA for exchange. We next derive via Q–DFT the explicit analytical representation
of electron correlationswithin the local density and Pauli–correlated approximations.

10.1.2 Derivation and Interpretation of Electron
Correlations via Quantal Density Functional Theory

We begin our analysis of electron correlations in the LDA via Q–DFT by first con-
sidering the case of correlations due to the Pauli exclusion principle. Let us initially
analyze via Q–DFT the case when the electron correlations are as described in the
previous section by KS theory. In other words we assume the wavefunction to be
a Slater determinant of plane waves, and then further assume these uniform electron
gas correlations to be valid at each point of the nonuniform density of the system.
With this wavefunction, the pair–correlation density g(0)

x {rr′; ρ(r)} and Fermi hole
ρ(0)

x {rr′; ρ(r)} are given by (10.12) and (10.13), respectively. Now since the Fermi
hole charge ρ(0)

x {rr′; ρ(r)} is spherically symmetric about the electron irrespective
of its position, there is no contribution of this charge to the force field at the electron
position. The force field E (0)

ee (r) of the pair–correlation density g(0)
x {rr′; ρ(r)} then

arises only from the term ρ(r′) of (10.12) so that

E (0)
ee (r) =

∫
g(0)

x {rr′; ρ(r)}(r − r′)
|r − r′|3 = EH (r), (10.21)

where the Hartree field EH (r) is

EH (r) =
∫

ρ(r′)(r − r′)
|r − r′|3 dr′. (10.22)

Therefore, the corresponding work done W (0)
ee (r) in the field E (0)

ee (r) is the Hartree
potential energy vH (r):

W (0)
ee (r) = −

∫ r

∞
E (0)
ee (r′) · d�′ (10.23)

= −
∫ r

∞
EH (r′) · d�′ (10.24)
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=
∫

ρ(r′)
|r − r′|dr′ = vH (r). (10.25)

Thus we see that electron correlations as represented by g(0)
x {rr′; ρ(r)} give rise

via Coulomb’s law to the Hartree potential energy vH (r). The S system electron–
interaction potential energy vee(r) ≡ W (0)

ee (r) = vH (r), and the corresponding dif-
ferential equation is

[
−1

2
∇2 + v(r) + vH (r)

]
φi (x) = εiφi (x), i = 1, . . . , N , (10.26)

with ρ(r) = ∑
σ,i |φi (rσ)|2. The resulting electron–interaction energy E (0)

ee which is
the energy of interaction between the density and pair–correlation density is then

E (0)
ee = 1

2

∫∫
ρ(r)g(0)

x {rr′; ρ(r)}
|r − r′| drdr′ (10.27)

= EH [ρ] + E L D A
x [ρ], (10.28)

with E L D A
x [ρ] as defined by (10.15)–(10.17). This is the same expression as in

KS theory of the previous section. However, the numerical value of E (0)
ee and of

the ground state energy is different from that of the KS LDA scheme because the
orbitals employed to determine these energies are generated by the differential equa-
tion (10.26). The total energywill therefore by an upper bound to theKSLDAground
state energy (See Table1 of [7]).

Whatwe have learned from the aboveQ–DFT analysiswithin the Pauli–correlated
approximation is the following. If the electrons of the nonuniform system are
assumed correlated at each point as in a uniform electron gas, then the corresponding
pair–correlation density g(0)

x {rr′; ρ(r)} gives rise via Coulomb’s law to an effective
electron–interaction potential energy vee(r) that is the Hartree potential energy vH (r)
and not that of (10.20) of the KS LDA scheme. Thus, the corresponding S system
differential equation is different. Hence, this is not how electrons are correlated
within the LDA of Kohn–Sham theory. The same conclusion is arrived at for the
more general case when both Pauli and Coulomb correlations are considered, and
the electron correlations represented by the pair–correlation density g(0){rr′; ρ(r)}
of (10.3) obtained from uniform electron gas theory.

Although, as we have seen, the wavefunction corresponding to the LDA in the
Pauli–correlated case is not a Slater determinant of planewaves assumedvalid locally,
it is nevertheless a Slater determinant of single–particle orbitals. Thus, in order to
obtain the pair–correlation density gL D A

x {rr′; ρ(r)} in the LDA for exchange, we
expand the general expression for gs(rr′) = ρ(r′) + ρx (rr′) in gradients of the
density about the uniform electron gas result, and then assume these correlations to
be valid at each electron position. To do so one requires the corresponding expansion
of the Dirac density matrix γs(rr′) because both terms of gs(rr′), viz. the density
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ρ(r′) and the Fermi hole ρx (rr′) are defined in terms of it. The expression for the
expansion of γs(rr′) to 0(∇) in the gradients of the density is

γs(rr′) = k3
F

π2

j1(kF R)

kF R
+ 1

4π2
(∇k2

F · R̂) sin kF R, (10.29)

where R̂ = R/R and the remaining quantities are as defined previously. The deriva-
tion [7] of this result by the Kirzhnits [14] method is given in Appendix I. It is
evident from this expression that the lowest–order gradient correction to the density
ρ(r) which is the diagonal matrix element γs(rr), is of 0(∇2). The expression for
the density to 0(∇2) is [15]

ρ(r) = k3
F

3π2
+ 1

24π2

∇2k2
F

kF
− 1

96π2

(∇k2
F )2

k3
F

. (10.30)

The pair–correlation density gL D A
x {rr′; ρ(r)} is obtained by considering the expan-

sions of γs(rr′) and ρ(r) up to terms of 0(∇), and then assuming the resulting
expressions to be valid at each point of the nonuniform density system. Note that the
density ρ(r) and the local value of the Fermi momentum kF (r) are as a result once
again related by the uniform electron gas expression: kF (r) = [3π2ρ(r)]1/3. Thus
gL D A

x {rr′; ρ(r)} is given as

gL D A
x {rr′; ρ(r)} = ρ(r′) + ρ(0)

x {rr′; ρ(r)} + ρ(1)
x {rr′; ρ(r)}, (10.31)

where ρ(0)
x {rr′; ρ(r)} is as given by (10.13) and

ρ(1)
x {rr′} = 9

4
ρ(r)

[
j0(x) j1(x)

k3
F

R̂ · ∇k2
F

]
, (10.32)

j0(x) = sin x/x is the zeroth–order spherical Bessel function, R̂ = R/R, and where
the superscript (1) indicates the expression to be of O(∇). To see that gL D A

x {rr′; ρ(r)}
is the pair–correlation density in the LDA for exchange, we next determine the
potential energy due to this charge distribution via Coulomb’s law. Once again the
spherically symmetric component ρ(0)

x {rr′; ρ(r)} of this charge does not contribute
to the force field at the electron position. However, in addition to ρ(r′), the term
ρ(1)

x {rr′; ρ(r)} is also not spherically symmetric about the electron position at r, and
thus contributes to the force field E L D AX (r) due to gL D A

x {rr′; ρ(r)}. This contribu-
tion [16, 17] is ∇kF (r)/π, so that

E L D AX (r) =
∫

gL D A
x {rr′; ρ(r)}(r − r′)

|r − r′|3 dr′ (10.33)

= EH (r) + ∇
(

kF (r)
π

)
. (10.34)



322 10 Physical Interpretation of the Local Density Approximation …

Note that the curl of this force field vanishes, i.e. ∇ × E L D AX (r) = 0. The work
done W L D AX (r) to move the model fermion in this force field is then

W L D AX (r) = vH (r) − kF (r)
π

, (10.35)

which is the same as the Kohn–Sham electron interaction potential energy vL D AX
ee (r)

of (10.20). Thus, the S system differential equation derived from the pair–correlation
density gL D A

x {rr′; ρ(r)} via Coulomb’s law is the same as that of the Kohn–Sham
LDA scheme obtained via a functional derivative. Further, the fact that the curl of
E L D AX (r) vanishes explainswhy the potential energy vL D AX

ee (r) is path–independent.
The corresponding expression for the electron–interaction energy component E L D A

ee
of the total energy obtained from gL D A

x {rr′; ρ(r)} is also the same as that of theKohn–
Sham LDA. This energy is the energy of interaction between the density ρ(r) and the
pair–correlation density gL D A

x {rr′; ρ(r)}. However, the non–spherically symmetric
component ρ(1)

x {rr′; ρ(r)} does not contribute to the energy integral so that

E L D A
ee = 1

2

∫∫
ρ(r)gL D A

x {rr′; ρ(r)}
|r − r′| drdr′ (10.36)

= EH + E L D A
x , (10.37)

which is the Kohn–Sham LDA expression. Note that the numerical value of the
electron–interaction energy; and therefore of the total ground state energy, is also
the same as the Kohn–Sham scheme because the orbitals are identical. Thus, we see
that the equations of the local density approximation for exchange of Kohn–Sham
theory can be rederived via Q–DFT. The derivation therefore provides a rigorous
physical interpretation of the approximation. The local potential energy (functional
derivative) representing electron correlations in the LDA for exchange is the work
done to move an electron in the force field of the quantum–mechanical source charge
distribution gL D A

x {rr′; ρ(r)}, and the electron interaction energy is the energy of
interaction between the electronic density and this source charge. Furthermore, the
Q–DFT derivation shows that the source charge gL D A

x {rr′; ρ(r)}, which is the pair–
correlation density in this approximation, contains a term proportional to the gradient
of the density. Therefore, the nonuniformity of the electronic density is explicitly
accounted for in the representation of electron correlations within the LDA. The
existence of the additional correlations, and the fact that it is these correlations
which generate the LDA exchange potential energy vL D A

x (r) and orbitals, cannot be
gleaned from Kohn–Sham theory.

From the expression for gL D A
x {rr′; ρ(r)} of (10.31) it is evident that the Fermi

hole in the LDA is given by the expression

ρL D A
x {rr′; ρ(r)} = ρ(0)

x {rr′; ρ(r)} + ρ(1)
x {rr′; ρ(r)}. (10.38)
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This charge distribution is not spherically symmetric about the electron and contains
a term proportional to the gradient of the density. The LDA Fermi hole satisfies the
constraints of charge neutrality and the value at the electron position since its non–
spherical component ρ(1)

x {rr′; ρ(r)} does not contribute to either sum rule. It does not,
however, satisfy the constraint of negativity and this is one source of error in the LDA.
It is also important to note that it is the nonsymmetric component ρ(1)

x {rr′; ρ(r)} of the
LDA Fermi hole charge that generates the force field and thereby the local exchange
potential energy vL D A

x (r) and the orbitals of the differential equation in the LDA.
However, it is only its symmetric component ρ(0)

x {rr′; ρ(r)} that contributes to the
LDA exchange energy E L D A

x . The structure of the LDA Fermi hole ρL D A
x {rr′; ρ(r)}

for the Be atom is described in the following section. The resulting structure of the
exchange potential energy vL D A

x (r) and the accuracy of the exchange energy E L D A
x

is then explained on the basis of these charge distributions.
When both Pauli and Coulomb correlations are considered, the corresponding

LDA Fermi–Coulomb hole charge ρL D A
xc {rr′; ρ(r)} is also not spherically sym-

metric about the electron, and is the sum of a spherically symmetric component
ρ(0)

xc {rr′; ρ(r)} obtained fromuniformelectron gas theory, and a non–spherically sym-
metric component ρ(1)

xc {rr′; ρ(r)} proportional to the first–order in the gradient of the
density determined by an expansion about the uniform gas value. The non–spherical
component gives rise to the LDA exchange–correlation potential energy vL D A

xc (r) and
the orbitals, and its spherically symmetric component to the exchange–correlation
energy E L D A

xc . An expression for the non–spherically symmetric component has not
yet been derived.

We thus see that the representation of electron correlations within the LDA are
far more physically realistic than understood to be the case via Kohn–Sham theory.
The approximation does not correspond to one in which the nonuniform electron gas
is considered uniform at each point, but rather one in which the non–uniformity of
the electronic density is explicitly accounted for at each electron position. The LDA
pair–correlation density gL D A{rr′; ρ(r)} in fact contains a term proportional to the
gradient of the density, and may be written as

gL D A{rr′; ρ(r)} = g(0){rr′; ρ(r)} + 0(∇ρ), (10.39)

with g(0){rr′; ρ(r)} given by (10.3). From this fact, and from its definition in terms
of the corresponding LDA wave function ψL D A{r1, . . . , rN ; ρ(r)} which is

gL D A{rr′; ρ(r)} = 〈ψL D A|P̂(rr′)|ψL D A〉/ρ(r), (10.40)

with P̂(rr′) the pair–correlation operator, we see thatψL D A{r1, . . . , rN ; ρ(r)} explic-
itly incorporates (in an approximate manner) elements of the physics appropriate to
regions of space where the effective potential energy is rapidly varying as well as of
the classically forbidden region. The fact that the LDAwavefunction possesses these
properties is the fundamental reason for the accuracy achieved by the approximation.

The understanding of the LDA achieved via Q–DFT also allows for a more accu-
rate description of the explanation [18, 19] for the success of the LDA given in the
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past. The starting point of this explanation is also the Kohn–Sham LDA exchange–
correlation energy functional E L D A

xc [ρ], with the subsequent assumption that the
LDA Fermi–Coulomb hole is that derived from uniform electron gas theory, viz.
ρ(0)

xc {rr′; ρ(r)}. Further, it is noted that the exact exchange–correlation energy Exc

can be written in terms of the spherical average of the true Fermi–Coulomb hole
charge ρxc(rr′). Thus, Exc, which is defined as

Exc = 1

2

∫∫
ρ(r)ρxc(rr′)

|r − r′| drdr′, (10.41)

may also be written as

Exc =
∫

ρ(r)
[∫ ∞

0
ρxc(rR)Rd R

]
dr, (10.42)

where ρxc(rR) is the spherically averaged hole charge:

ρxc(rR) = 1

2

∫
ρxc(r, r + R)d�R, (10.43)

with R = r′ − r. It is then observed that in the interior of atoms where the principal
contribution to the energy arises, and in the higher density regions at a metal surface,
the spherically–averaged uniform electron gas theory hole is a reasonable approx-
imation to the spherical average of the true hole. The approximate equivalence of
these spherically averaged holes is then given as the reason for the accuracy of the
atomic ground-state energies achieved by the LDA. However, we know now that the
LDA Fermi–Coulomb hole ρL D A

xc {rr′; ρ(r)} is a far more accurate representation of
electron correlations than that assumed on the basis of Kohn–Sham theory. Thus,
although the spherical averages of ρ(0)

xc {rr′; ρ(r)} and ρL D A
xc {rr′; ρ(r)} turn out to be

the same, we understand that the spherical average is in fact that of a more accurate
representation of the hole charge. This is why the spherical average of the LDA hole
in high density regions is a good approximation to that of the exact hole.

10.1.3 Structure of the Fermi Hole in the Local Density
Approximation

In this section we apply the above understanding of the electron correlations within
the LDA to plot the self–consistently determined structure of the LDA Fermi hole
charge for the Be atom. This in turn explains the structure of the corresponding
LDA exchange potential energy vL D A

x (r) and the accuracy of various atomic ground-
state properties obtained from it. As the explanation of how electrons are correlated
in the LDA is achieved via Q–DFT, the LDA results are compared with those of
self–consistent calculations performed within the Pauli–correlated approximation of



10.1 The Local Density Approximation in Kohn–Sham Theory 325

Table 10.1 Self–consistent ground-state energy E , exchange energy Ex , and highest occupied
eigenvalue εm of the Be atom in the Pauli–correlated approximation as determined within (a)
the local density approximation (LDA), (b) Quantal density functional theory (Q–DFT), and (c)
Hartree–Fock theory (HF). The energy of (a) is obtained from the ground-state energy expression
as written in the LDA for exchange, whereas those of (b) and (c) are the expectation values of the
Hamiltonian taken with respect to the Slater determinant of orbitals of the corresponding theory.
The negative values of the energies in Rydbergs are quoted. (The experimental ionization potential
is 0.685 Ryd)

Property LDA Q–DFTa HFb

E 14.2233 14.5714 14.5730

Ex 2.2778 2.6665 2.6669

εm 0.3401 0.6263 0.6185
aFrom [20]
bFrom [21]

Q–DFT (see Sect. 5.8.1 and QDFT2). The orbitals, density, and ground-state energy
determined [20] (and QDFT2) within this approximation of Q–DFT are essentially
equivalent to those ofHartree–Fock theory [21]. (The difference between the results is
an accurate estimate of Correlation-Kinetic effects that arise due to Pauli correlations
(see QDFT2)). In Table10.1 the ground-state energy E , the exchange energy Ex ,
and the highest occupied eigenvalue εm for the Be atom as determined within the
LDA, Q–DFT, and Hartree–Fock theory are given.

In Fig. 10.1 we plot the LDA Fermi hole ρL D A
x {rr′; ρ(r)} of (10.38) and its spher-

ically symmetric component ρ(0)
x {rr′; ρ(r)} of (10.13), and compare it to the Fermi

hole ρx (rr′) of Q–DFT. The three electron positions considered (as indicated by
arrows) are in the high density regions at the nucleus r = 0, and at the posi-
tions of maximum radial probability density in the K and L shells which are at
r = 0.266 a.u. and r = 2.05 a.u., respectively. (The electron is along the z-axis
corresponding to θ = 0◦. The cross-section through the Fermi hole corresponds to
θ′ = 0◦. The graph for r ′ < 0 corresponds to the structure for θ = π and r ′ > 0.)
In Fig. 10.2 we plot the Fermi holes for the electron positions in the low probability
density regions of the atom at r = 1.1 a.u. which is at the position of the intershell
minimum of the radial probability density, and at r = 4.1 a.u. in the classically
forbidden region. Observe in all these figures that the LDA Fermi hole is not spheri-
cally symmetric about the electron position. Further, it develops decaying oscillations
which indicate that it does not satisfy the constraint of negativity. The positive part
of these oscillations have no physical meaning, since the effect of the Pauli exclusion
principle is in terms of a reduction in density. In addition, these oscillations though
decaying, extend well into the classically forbidden region so that the LDA hole is
not located about the nucleus as is the case for the exact hole.

In Fig. 10.3a we plot the LDA force field E L D AX (r) of (10.34) and the exact
Q–DFT field E x (r), and in Fig. 10.4 the corresponding exchange potential energies
vL D A

x (r) of (10.19) and Wx (r). For an electron at the nucleus, the Q–DFT Fermi hole
is spherically symmetric (Fig. 10.1a), so that the corresponding force fieldE x (r) there
is zero (Fig. 10.3a). Thus, the potential energy Wx (r) has zero slope at the nucleus.

http://dx.doi.org/10.1007/978-3-662-49842-2_5
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(a) (b)

(c)

Fig. 10.1 Cross–sections of the Fermi holes for the Be atom for different electron positions. The
Fermi holes plotted are those of the local density approximation for exchange (LDA), its spherically
symmetric component (sph. comp. of LDA), and that of the Pauli–correlated approximation of
Q–DFT. The electron positions, indicted by the arrow, are at (a) the nucleus, (b) and (c) at the
first and second maximum of the radial probability density corresponding to the K and L shells,
respectively, of the LDA for exchange

(a) (b)

Fig. 10.2 The figure caption is the same as that of Fig. 10.1 except that in (a) the electron is at the
intershell minimum of the radial probability density, and in (b) at a point in the classically forbidden
region
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Fig. 10.3 (a) The force field
EL D AX (r) for the Be atom
obtained within the local
density approximation for
exchange. The corresponding
exact force field Ex (r) in the
Pauli–correlated
approximation of Q–DFT is
also plotted. (b) Plots of
r2EL D AX

x (r) and r2Ex (r)

(a)

(b)

On the other hand, the LDA Fermi hole is not symmetrical about the electron at
the nucleus (Fig. 10.1a), and the force field E L D AX (r) there is finite (Fig. 10.3a).
Consequently, the LDA exchange potential energy vL D A

x (r) has a finite slope at
the origin. (See Fig. 10.4 and its inset.) (This will also be the case when Coulomb
correlations are incorporated within the LDA.)

In the high density regions from which the principal contribution to the energy
arises, the LDA hole is a fair approximation to the Q–DFT hole (Fig. 10.1) although
it does not possess any of its structure (Fig. 10.1c). Consequently, in the interior
of the atom, the potential energy vL D A

x (r) arising from this hole charge is a good
approximation toWx (r) (Fig. 10.4). This explainswhy theLDAground state energy is
reasonably accurate (2.4%) in comparison to the Q–DFT and Hartree–Fock theory
results (see Table10.1). On the other hand, the spherically symmetric component
of the LDA hole (Fig. 10.1) is not very accurate in this region. Since this is the
component that contributes to the exchange energy expression (10.15), it becomes
obvious why the LDA exchange energy, for Be is in error by 13% when compared
to the Hartree–Fock theory value (see Table10.1).

In regions of low probability density and in the classically forbidden region, the
LDA Fermi hole is a poor approximation to the exact hole. The amplitude of the
first positive oscillation is a substantial fraction of the primary negative part, and
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Fig. 10.4 The exchange
potential energies vL D A

x (r)
and Wx (r) for the Be atom in
the local density
approximation for exchange
and the Pauli–correlated
approximation of Q–DFT,
respectively. The function
−1/r is also plotted

the oscillations extend for substantial distances beyond the surface of the atom. The
error in the corresponding force field E L D AX (r) is therefore significant as may be
observed from Fig. 10.3b where we plot r2E L D AX (r) and compare it to the exact
r2E x (r). Whereas, the Q–DFT result tends asymptotically to −1 as it must, the
LDA result approaches zero. Thus, the potential energy vL D A

x (r) is in error in the
classically forbidden region, decaying exponentially as does the density, rather than
as −1/r (Fig. 10.4). Consequently, the highest occupied eigenvalue of the LDA
differential equation is a poor approximation to that of Q–DFT (see Table10.1) and
to the experimental ionization potential which is −0.685Ryd [20].

The differences between the electron correlations as represented by the pair–
correlation densities g(0)

x {rr′; ρ(r)}, gL D A
x {rr′; ρ(r)}, and the Q–DFT gx(rr′) are

also reflected in the structure of the corresponding electron–interaction potential
energies vH (r), vL D AX

ee (r) of (10.20), and [vH (r)+ Wx (r)], respectively. In Fig. 10.5
we plot these potential energies. Observe the striking difference between vH (r) and
[vH (r)+vL D A

x (r)]. The effect of the additional correlations represented by the 0(∇)

gradient term in gL D A
x {rr′; ρ(r)} is obviously significant. Observe also that [vH (r)+

vL D A
x (r)] is a reasonable approximation to [vH (r)+Wx (r)]. This again explains why

the total ground-state energy in the LDA is as accurate as it is.
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Fig. 10.5 Electron–
interaction potential energies
vH (r), vL D AX

ee (r) =
vH (r) + vL D A

x (r), and
[vH (r) + Wx (r)] as
determined from their
respective source charges
g(0)

x {rr′; ρ(r)};
gL D A

x {rr′; ρ(r)} and gx (rr′)

10.1.4 Endnote

The rigorous physical understanding of the LDA of Kohn–Sham theory is therefore
as follows. The correlations within this approximation are not those of the uniform
electron gas. The correlations in this approximation are determined by expanding the
pair–correlation density about the uniform electron gas value to terms of 0(∇). Thus,
it is only the leading termof the expansion that corresponds to the uniformgas expres-
sion. Both the local (the density) and nonlocal (the Fermi–Coulomb hole charge)
components of the pair density are so expanded. The terms of 0(∇), which explicitly
account for the non–uniformity of the density, appear in the nonlocal part. Thus, the
correlations in the approximation are far more accurate than previously understood
to be the case. The LDA Fermi–Coulomb hole is not spherically symmetric about
the electron. The corresponding LDA exchange–correlation energy E L D A

xc [ρ] is the
energy of interaction between the density and the LDA Fermi–Coulomb hole charge,
and the LDA exchange–correlation potential energy vL D A

xc (r) is the work done in the
field of this charge distribution. Thiswork done is path independent as the field is con-
servative. Further, it is the non–spherically symmetric component of this charge that
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gives rise to the potential energy vL D A
xc (r), and its spherically symmetric component

that contributes to the energy E L D A
xc [ρ].

The graphs of the LDA Fermi hole ρL D A
x {rr′; ρ(r)} of Figs. 10.1 and 10.2 are

a representation of how electrons of parallel spin are correlated in this approxima-
tion. It is also evident from these figures that the manner in which the electrons
are assumed correlated within the approximation is different from the true corre-
lations. This points to an important difference between approximate KS–DFT and
approximation methods within Schrödinger theory and Q–DFT. Approximating the
functional E K S

xc [ρ] thus means approximating how electrons are correlated in the sys-
tem. In effect this in turn means that the Hamiltonian of the system is approximated.
For approximate KS–DFT, the rigor of the Hohenberg–Kohn theorems is thereby
lost. Hence, unlike variational methods within Schrödinger theory and Q–DFT in
which the physical system as described by its Hamiltonian remains unchanged, in
approximate KS–DFT it is the Hamiltonian that is approximated. The corresponding
total energy thus determined may then not constitute a rigorous upper bound to the
true value. Total energies that lie below the exact result could be obtained.

Finally, we note that the LDA as practiced does account for Correlation–Kinetic
effects, albeit approximately. In the LDA expression for the exchange–correlation
energy E L D A

xc [ρ] of (10.7), the average exchange–correlation energy per electron
ε(0)

xc {ρ(r)} as determined by solution of the Schrödinger equation for the uniform
electron gas is not employed. This is because ε(0)

xc {ρ(r)} thus obtained does not con-
tain any Correlation–Kinetic contributions as the kinetic energy in the solution of
the Schrödinger equation is that of the interacting system. Instead one employs the
sum of εx {ρ(r)} of (10.14) which is the expression derived when only Pauli corre-
lations are considered, and an average ‘correlation’ energy per electron ε(0)

c {ρ(r)}.
The energy ε(0)

c {ρ(r)} is obtained from the difference between the fully–interacting
system ground-state energy as determined by solution of the Schrödinger equation
for the uniform system and the Hartree–Fock theory energy corresponding to the
same density. The ε(0)

c {ρ(r)}, and therefore the sum ε(0)
x {ρ(r)} + ε(0)

c {ρ(r)}, thereby
contain the correlation contribution to the kinetic energy of the uniform electron gas
for the particular density.

For a discussion along similar lines of the gradient expansion approximation of
KS–DFT, which too is ad hoc, the reader is referred to [7].

10.2 Slater Theory

10.2.1 Derivation of the Exact ‘Slater Potential’

The reasoning underlying the exact ‘Slater potential’ vS
x (r) stems from Slater’s inter-

pretation of Hartree–Fock theory as described in Sect. 3.8.2. In this interpretation,
Hartree–Fock theory is described as being orbital–dependent so that the potential
energy of each electron is different and depends upon the orbital it is in. This orbital

http://dx.doi.org/10.1007/978-3-662-49842-2_3
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dependence results from the orbital–dependent ‘exchange potential energy’ vx,i (r)
of (3.201) due to the orbital–dependent Fermi hole ρx,i (rr′) as defined by (3.202).
Slater’s reasoning in deriving the ‘potential’ vS

x (r) is as follows.
Each orbital–dependent Fermi hole ρx,i (rr′) satisfies the sum rule of charge neu-

trality (3.203), value at the electron position (3.204), and negativity (3.205) at each
electron position. As such Slater assumed that the ρx,i (rr′) corresponding to different
orbitals i for each electron position were not very different. Based on this assump-
tion, it seems reasonable to use instead a weighted mean of these orbital–dependent
Fermi holes, weighting over all electrons of one kind of spin for each electron posi-
tion. The orbital dependence of these holes and of the resulting ‘potential’ is thereby
eliminated.

The weighting factor employed by Slater is the probability pi (r) that an electron
at r is in the state i :

pi (r) = ψ∗
i (r)ψi (r)∑

k ψ∗
k (r)ψk(r)

. (10.44)

The expression for the orbital–dependent Fermi hole ρx,i (rr′) of (3.202) may be
rewritten on multiplying and dividing by ψ∗

i (r) as

ρx,i (rr′) = −
N∑

j=1
spin j=spin i

ψ∗
i (r)ψ

∗
j (r

′)ψi (r′)ψ j (r)

ψ∗
i (r)ψi (r)

. (10.45)

Slater weighted the ρx,i (rr′) with the probability pi (r) over all electrons with the
same spin. It turns out the expression derived by this weighting procedure is that of
the true Fermi hole charge ρx (rr′). In other words, the weighted mean corresponds
to the reduction in density at r′ in the distribution of electrons of a particular spin
when an electron of the same spin is at r. Thus,

∑

i

ρx,i (rr′)pi (r) = −|γs(rr′)|2/2ρ(r) (10.46)

= ρx (rr′), (10.47)

where γs(rr′) is the Dirac density matrix, with γs(rr) = ρ(r).
The exact ‘Slater exchange potential’ vS

x (r) is defined in terms of the weighted
average or Fermi hole ρx (rr′) in a manner similar to that of the orbital–dependent
exchange potential vx,i (r) of (3.201). The Slater representation of the exchange
potential energy is therefore

vS
x (r) =

∫
ρx (rr′)
|r − r′|dr′. (10.48)

http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
http://dx.doi.org/10.1007/978-3-662-49842-2_3
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This is a local ormultiplicative operator, and replaces the non-local integral exchange
operator of Hartree–Fock theory. The resulting differential equation is

[
−1

2
∇2 + v(r) + vH (r) + vS

x (r)
]

φi (x) = εiφi (x); i = 1, . . . , N , (10.49)

in which each electron now has the same effective potential energy. Thus Slater
theory is a local effective potential energy theory. We refer to this equation as the
Hartree–Fock–Slater equation because this was the original approximation made
by Slater. (Historically, what is referred to as the Hartree–Fock–Slater equation is
when the function vS

x (r) of (10.48) is replaced in the differential equation by its local
density approximation as discussed in Sect. 10.2.4.)

The ground state energy is determined as the expectation value of the Hamil-
tonian Ĥ of (2.131) taken with respect to the Slater determinant of the orbitals φi (x)
of (10.49). The expression for the energy is therefore the same as that of Hartree–
Fock theory. However, as a consequence of the variational principle, the energy
thus obtained constitutes an upper bound to the Hartree–Fock theory value because
the Hartree–Fock–Slater wavefunction is not the same as the Hartree–Fock theory
determinant.

Ground state energies of ten closed–shell atoms as obtained by solution of the
Hartree–Fock–Slater equation together with those of Hartree–Fock theory [21] are
quoted in Table10.2. The relative differences between the two in parts per million
(ppm) are plotted in Fig. 10.6. Observe that the Slater theory energies are above
those of Hartree–Fock theory, the relative difference between the two diminishing
with increasing atomic number. This difference varies from 800 ppm for Be to 64
ppm for Xe.

Table 10.2 Ground state energies of closed shell atoms as determined by Slater theory, the Pauli–
correlated approximation of Quantal density functional theory (Q–DFT), and Hartree–Fock theory.
The negative values of the energies in Rydbergs are quoted

Atom Slater Theorya Q–DFTb Hartree–Fock Theoryc

Be 14.561 14.571 14.573

Ne 128.501 128.542 128.547

Mg 199.533 199.606 199.615

Ar 526.703 526.804 526.818

Ca 676.606 676.743 676.758

Zn 1777.576 1777.820 1777.848

Kr 2751.756 2752.030 2752.055

Sr 3131.209 3131.519 3131.546

Cd 5464.700 5465.093 5465.133

Xe 7231.672 7232.101 7232.138
aFrom [12]
bFrom [20]
cFrom [21]

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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Fig. 10.6 Ground-state
energy differences (in parts
per million (ppm)) of Slater
theory and the
Pauli–correlated
approximation of Q–DFT
taken with respect to the
Hartree–Fock theory values

It is an interesting fact that the Slater weighted average of the orbital–dependent
Fermi hole ρx,i (rr′) turns out to be the Fermi hole ρx (rr′). Furthermore, as the energy
expression is the same as that of Hartree–Fock theory, the exchange energy in Slater
theory is also the energy of interaction between the corresponding density and Fermi
hole charge. However, the assumption by Slater that the orbital–dependent Fermi
holes ρx,i (rr′) are similar is not correct. A study of these holes shows them to be
distinctly different for the uniform electron gas [22] as well as for the nonuniform
density system at metal surfaces [22] and in atoms [23].

There is yet another aspect of Slater theory that needs to be addressed. We have
seen that Slater’s weighting procedure leads to the physically meaningful Fermi
hole charge ρx (rr′). In other words, this weighting correctly describes the intrinsic
nonlocality that is a consequence of the Pauli exclusion principle. The question that
arises is whether Slater theory correctly accounts for this nonlocality of the Fermi
hole via its definition of the ‘exchange potential’ vS

x (r) of (10.48). In the following
section we show why it does not, and therefore why the ‘Slater exchange potential’
does not represent a potential energy.

10.2.2 Why the ‘Slater Exchange Potential’ Does Not
Represent the Potential Energy of an Electron

The conclusion that the ‘Slater exchange potential’ does not represent the potential
energy of an electron is proved by analogy to classical physics. Let us first consider
a static or local charge distribution Q(r) as in Fig. 10.7. The term local is used here
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Fig. 10.7 The static Q(r)
and dynamic Q(rr′) charge
distributions at r′, and the
test charge q at r

to indicate that this charge is independent of the position of any external test charge
q. The electric field due to this charge distribution is given by Coulomb’s law as

E(r) =
∫

Q(r′)(r − r′)
|r − r′|3 dr′. (10.50)

The potential energy W (r) of a test charge q at r (see Fig. 10.7) in this field is the
work done to move it against the force of this field from some reference point, say
at infinity, to its position at r:

W (r) = −q
∫ r

∞
E(r′) · d�′. (10.51)

The electric field E(r) may also be written as

E(r) = −
∫

Q(r′)
[
∇ 1

|r − r′|
]

dr′. (10.52)

As the gradient operation is with respect to the coordinate r, it can be pulled out of
the integral, so that we may write the field as

E(r) = −∇
∫

Q(r′)
|r − r′|dr′ = −∇V (r), (10.53)

where

V (r) =
∫

Q(r′)
|r − r′|dr′. (10.54)
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Thus, the work done W (r) is

W (r) = q
∫ r

∞
∇V (r′) · d�′ = qV (r). (10.55)

Since ∇ ×E(r) = 0, the work done W (r) is path–independent. Therefore, qV (r) is
the potential energy of the test charge q in the electrostatic field of Q(r).

Next consider a dynamic or nonlocal charge distribution Q(rr′) whose structure
at r′ changes as a function of the position of the test charge q at r (see Fig. 10.7).
(An example of such a changing charge distribution is the charge induced at a metal
surface due to a test charge q in the vacuum region outside the metal.) The electric
field due to this charge distribution is once again obtained by Coulomb’s law as

E(r) =
∫

Q(rr′)(r − r′)
|r − r′|3 dr′ (10.56)

= −
∫

Q(rr′)
[
∇ 1

|r − r′|
]

dr′. (10.57)

Provided the ∇ × E(r) = 0 in a simply connected region, the potential energy of
a test charge q at r in this field is the work done to move from infinity to its position
at r against the force of this field:

W (r) = −
∫ r

∞
E(r′) · d�′. (10.58)

This work done is path–independent. The expressions for the field and work done
are, of course, the same as for the case of the static charge.

However, in the case of the dynamic charge Q(rr′), one cannot pull the gradient
operator ∇ in (10.57) outside the integral. Thus, in this case

E(r) �= −∇V (r), (10.59)

and
W (r) �= qV (r), (10.60)

where

V (r) =
∫

Q(rr′)
|r − r′|dr′. (10.61)

One, therefore, cannot interpret qV (r), with V (r) as defined by (10.61) to be the
potential energy of the test charge q in the field of the nonlocal charge Q(rr′). (In
the example of a test charge q a distance z from a metal surface, the image potential
energy −q2/4z is obtained as the work done in the field of the induced charge. The
V (r) determined from the induced charge via (10.61) leads to the erroneous result
of −q2/2z.)
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The ‘Slater exchange potential’ vS
x (r) of (10.48) due to the dynamic quantum–

mechanical Fermi hole charge ρx (rr′) is similar to the expression for V (r) of (10.61).
The reasoning above, taken from classical physics, thus proves that vS

x (r) cannot be
interpreted as a potential energy. It is therefore best to refer to vS

x (r) as the Slater
exchange function.

For the same reasons, the orbital–dependent exchange potential vx,i (r) of (3.201)
ofHartree–Fock theorywhich is expressed similarly in termsof the orbital–dependent
Fermi hole ρx,i (rr′) cannot be interpreted as a potential energy.

Although the principles of classical physics lead to an understanding of Slater’s
quantum theory, there is an important point of distinction that needs to noted. In
the definition of the Fermi ρx (rr′) or Fermi–Coulomb ρxc(rr′) hole charge (at r′),
the electron at r is one of the N electrons of the charge neutral system under con-
sideration whether that system is an atom, a molecule, or a metal with a surface.
On the other hand, in the classical physics case, the test charge q is extrinsic to the
system. Thus, the overall physical system is no longer charge neutral. This distinc-
tion becomes significant when determining the asymptotic structure of the effective
potential energy vs(r) of the S system. Different results and conclusions are arrived
at if the electron in the classically forbidden asymptotic region is treated as a test
charge rather than as a fermion that is part of the N–electron system [24, 25] (see
QDFT2).

10.2.3 Correctly Accounting for the Dynamic
Nature of the Fermi Hole

It is evident from the explanation of the previous section that the dynamic nature
of the Fermi hole ρx (rr′) is correctly accounted for within the framework of local
effective potential energy theory by Q–DFT. Accordingly, the field E x (r) due to this
charge distribution must first be determined:

E x (r) =
∫

ρx (rr′)(r − r′)
|r − r′|3 dr′. (10.62)

The exchange potential energy Wx (r) is then the work done in this field:

Wx (r) = −
∫ r

∞
E x (r′) · d�′. (10.63)

This work done is path–independent provided the field E x (r) is conservative. The
corresponding differential equation in the Pauli–correlated approximation of Q–DFT
is (see also QDFT2)

[
−1

2
∇2 + v(r) + vH (r) + Wx (r)

]
φi (x) = εiφi (x), i = 1, . . . , N , (10.64)

http://dx.doi.org/10.1007/978-3-662-49842-2_3
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with the ground state energy determined as the expectation value of the Hamiltonian
Ĥ of (2.131) taken with respect to the Slater determinant�{φi } of the orbitals φi (x),
or from the integral virial expressions in terms of the various individual fields.

The self–consistently determined Slater exchange function vS
x (r) and the Q–DFT

exchange potential energy Wx (r) for the Argon atom are plotted in Fig. 10.8. (The
Pauli fieldE x (r) is conservative for closed–shell atoms.) It is evident that the potential
energy Wx (r) is smaller in magnitude than the function vS

x (r) throughout most of
space. It is only in the classically forbidden asymptotic region that they are equivalent,
both decaying as −1/r . This is because for these asymptotic electron positions, the
Fermi hole ρx (rr′) is an essentially static charge distribution. For these positions,
the Slater exchange function vS

x (r) expression (10.48) does represent the potential
energy of an electron. Therefore, asymptotically, vS

x (r) is equivalent to Wx (r).
The ground-state energies of ten closed–shell atoms as determined [20] (and

QDFT2) in this Pauli–correlated approximation of Q–DFT are also quoted in
Table10.2. These results too constitute an upper bound to the Hartree–Fock theory
values. The differences between the results of the two theories plotted in Fig. 10.8
vary from 137 ppm for Be to 5 ppm for Xe. These differences are an order of mag-
nitude smaller than the corresponding differences of Slater theory. Thus, when the
physics of the nonlocality of the Fermi hole ρx (rr′) is correctly accounted for, results
that are essentially equivalent to those of Hartree–Fock theory are obtained. (To
obtain the Hartree–Fock theory density and energy within a local effective potential
energy framework, Correlation–Kinetic effects must be incorporated as explained in
Sect. 3.8.4). The difference between the Q–DFT Pauli-correlated approximation and
Hartree–Fock theory results (see Table10.2 and Fig. 10.6) are an accurate estimate
of these Correlation–Kinetic effects.

Fig. 10.8 The Slater
exchange function vS

x (r),
and the Q–DFT exchange
potential energy Wx (r), for
the argon atom

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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10.2.4 The Local Density Approximation in Slater Theory

Although the Slater exchange function vS
x (r) of (10.48) is a local operator, its deter-

mination still requires the self–consistent calculation of the nonlocal Fermi hole
charge distribution ρx (rr′). Hence, Slater made a further approximation. He deter-
mined the function vS

x (r) for the uniform electron gas i.e. by employing plane wave
orbitals, and then invoked the local density approximation (LDA) on the resulting
expression. In other words, he assumed this expression to be valid at each point of
the nonuniform density system but for a density corresponding to the local value at
that point. The expression for the Slater LDA exchange function vS,L D A

x (r) is

vS,L D A
x (r) = −3kF (r)

2π
, (10.65)

where the local value of the Fermi momentum kF (r) and the density ρ(r) are
related by the uniform electron gas result of kF (r) = [3π2ρ(r)]1/3. The expression
for vS,L D A

x (r) is then substituted for vS
x (r) in the Hartree–Fock–Slater differential

equation (10.49). This equation is simpler to solve self–consistently as all the nonlo-
cality has now been eliminated. The ground state energy is once again the expectation
of the Hamiltonian of (2.131) taken with respect to the determinant of the resulting
orbitals.

Note that the Kohn–Sham theory LDA expression for the exchange potential
of (10.19) and that of the Slater LDA (10.65) differ by a factor of 2/3. As a result,
Slater introduced a variational parameterα, so that the Slater LDAexchange potential
is written as

vS,L D A
x (r) = −α

3kF (r)
2π

. (10.66)

The corresponding Hartree–Fock–Slater differential equation can be solved self–
consistently for each value of the parameter till the energy taken as the expectation
value of the Hamiltonian of (2.131) is minimized. These results would constitute
rigorous upper bounds to the Hartree–Fock theory energy values just as those of
the exact ‘Slater exchange potential’ of Table10.2. Alternatively, the value of α has
been adjusted [26] so as to reproduce the Hartree–Fock theory value. The use of
the parameter α in the Slater LDA is referred to as the Xα method. For a historical
perspective on Slater theory see [27].
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Chapter 11
Epilogue

Abstract The three major pillars of the book are summarized. These are: (a)
Schrödinger theory of electronic structure from the perspective of the individual
electron. This is a new description of the theory in terms of the ‘Quantal New-
tonian’ second and first laws. These laws describe the various external and inter-
nal ‘classical’ fields experienced by each electron, the sources of the fields being
quantum-mechanical expectations of Hermitian operators taken with respect to the
wave function. The new perspective elucidates the intrinsic self-consistent nature of
the Schrödinger equation, and is explicated by examples. (b) Hohenberg-Kohn (HK),
Runge-Gross (RG), and Kohn-Sham (KS) density functional theory are described.
The emphasis here is on the first theorem of HK which establishes the concept of
a basic variable of quantum-mechanics: gauge invariant properties, knowledge of
which uniquely determines the external potentials, and thereby the wave functions
of the system. There are further understandings of the respective first theorems of
HK and RG arrived at via density preserving unitary transformations and corollaries.
The theorems of HK are generalized to the added presence of an external uniform
magnetostatic field. (The proof of the theorems is rigorous in the HK sense of the
relationship between the basic variables and external potentials, but differs from the
original proof of HK.) (c) Quantal-density functional theory (Q–DFT) is the princi-
pal component of the book. It is the description of the mapping from the interacting
system as defined by Schrödinger theory to one of noninteracting fermions or bosons
possessing the same basic variables. This mapping is in physical terms of ‘classi-
cal’ fields and quantal sources via the interacting and corresponding model system
‘Quantal Newtonian’ second and first laws. The theory is generalized to the pres-
ence of an external magnetostatic field. Examples of the application of the theory
are given. Q–DFT provides the rigorous physical interpretation of the mathematical
constructs of KS and other local effective potential theories, and approximations to
them. It thereby provides further physical insights into such theories.

As was the case in the first edition, this is a natural point to conclude the book. The
book presents the theoretical foundations of Quantal Density Functional Theory
(Q–DFT) togetherwith examples that elucidate the theory for both ground and excited
states. Time-dependent Q–DFT, and its stationary-state version are described, as is
stationary-state Q–DFT in the added presence of a magnetostatic field. Physical
insights arrived at via Q–DFT of model noninteracting fermion systems or local
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effective potential energy theory in general, and of other such theories, are explained
and demonstrated by example. The overall structure of the book remains the same as
in the first edition but with enhancements to each component due to the further under-
standings achieved over the years and the inclusion of new material. For the various
approximation methods and applications of stationary-state Q–DFT, the reader is
referred to QDFT2. The book is comprised of three components, which each stand
in their own right. The first two of these are foundational to Q–DFT, the principal
component.

(a) There is the new description of the Schrödinger theory of electronic structure
based on the ‘Quantal Newtonian’ second and first laws for the individual electron.
This is a perspective in terms of ‘classical’ fields and the quantal sources that give
rise to them. The sources are quantum-mechanical in that they are expectations of
Hermitian operators takenwith respect to the systemwave function. Once the quantal
sources corresponding to different properties are defined, the quantum-mechanical
system can then be described solely in terms of the resulting ‘classical’ fields. There
is a significant degree of new physics that is gleaned from this more tangible per-
spective: (i) In addition to the external time-dependent electric or electrostatic field,
each electron experiences an internal field. This internal field is the sum of fields rep-
resentative of electron correlations due to the Pauli exclusion principle and Coulomb
repulsion, the kinetic energy, and the density; (ii) As in classical physics, the sum
over all the electrons of each component of the internal field is shown to vanish,
thereby leading to a new proof of Ehrenfest’s theorem, the quantal equivalent to
Newton’s second law; (iii) The external scalar potential v(rt)/v(r) is shown to arise
from a curl-free field and thus its path-independence demonstrated; (iv) By writing
the external scalar potentials v(rt)/v(r) via the ‘Quantal Newtonian’ second and
first laws as the known functionals of the wave function, the time-dependent and sta-
tionary state Schrödinger equations can be written respectively so as to exhibit their
intrinsic self-consistent nature; (v) The self-consistent form of the Schrödinger equa-
tion then makes it evident that there exist an infinite number of possible solutions to
the equation with each possible self-consistent solution leading to a different external
scalar potential. In the added presence of an external magnetostatic field B(r), there
are other insights into Schrödinger theory achieved via the new ‘classical’ field and
quantal source perspective: (vi) The corresponding ‘Quantal Newtonian’ first law
shows that in addition to the external Lorentz field experienced by each electron,
there is an added component to the internal field arising from the magnetic field;
(vii) The external scalar potential is again shown to arise from a curl-free field and
thus its path-independence proved; (viii) Once again, via the ‘Quantal Newtonian’
first law, it is shown that the Schrödinger equation can be written so as to exhibit its
intrinsic self-consistent nature; (ix) Most significantly, in rewriting the Schrödinger
equation in its self-consistent form, the external magnetic field B(r) now appears
explicitly in the equation as opposed to only the vector potential A(r) as is the case
when written in traditional form. It is the self-consistent nature of the Schrödinger
equation that demands this be the case. The ‘Newtonian’ perspective on Schrödinger
theory is explicated for a ground and excited state of an exactly solvable model atom
in which the electron-electron interaction is Coulombic.
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(b) The focus of the second foundational component is on the fundamental the-
orems of density functional theory: those of Hohenberg-Kohn, their extension to
the time-dependent case of Runge-Gross, and on the more recent generalization of
the theorems to the added presence of a uniform magnetostatic field B(r) = Biz . In
particular, the significance of the first theorem of Hohenberg-Kohn of the bijectivity
between the nondegenerate ground state density ρ(r) and the external scalar potential
v(r) is noted as the basis of the concept of a basic variable of quantum mechanics.
A basic variable is thus defined as a gauge invariant property, knowledge of which
determines the external scalar potential, hence the system Hamiltonian, and thereby
the wave functions of the system. This is the HK path from the basic variable to the
wave functions of Schrödinger theory, an alternate approach to electronic structure.
Thus, the stationary state ground state density ρ(r), and the time-dependent den-
sity ρ(rt) are basic variables. The electron number N plays a fundamental role in
HK theory as its theorems are proved for fixed N . It is further proved that in the
presence of a uniform magnetostatic field, the basic variables for spinless electrons
are the nondegenerate ground state density ρ(r) and the physical current density
j(r) for fixed electron number N and canonical angular momentum L. For elec-
trons with spin, the basic variables are the same but for fixed electron number N
canonical L and spin S angular momentum. These theorems of density functional
theory are proved for v(r)/v(rt)-representable and {v(r),A(r)}-representable den-
sities. However, once a basic variable is so identified, it is then possible to extend
the domain to N -representable densities and degenerate states via the Percus-Levy-
Lieb constrained-search method. With the knowledge that the wave function is a
functional of the basic variable or variables, one then employs this fact to write the
correspondingEuler-Lagrangevariational equations for these properties—the second
theorem of the various density functional theories. The second theorem then justifies
the mapping of the interacting electronic system to model systems of noninteracting
fermions or bosons that possess the same basic variable properties. This then is the
Kohn-Sham theory version of local effective potential theory, a description in terms
of energy and action functionals of the density, and of their functional derivatives.
Generalizations of these theorems obtained via density preserving unitary transfor-
mations then lead to further insights into the theorems. In particular, it is shown that
the wave function must also be a functional of a gauge function. Only then will the
wave function when expressed as a functional be gauge variant. A corollary to the
theorem of bijectivity between the density and the external scalar potential of both
Hohenberg-Kohn and Runge-Gross leads to a more fundamental understanding of
the respective theorems.

(c) Quantal density functional theory (Q–DFT) then evolves from the above foun-
dational understandings. Q–DFT is a local effective potential energy theory, i.e.
one that maps the interacting electronic system to one of noninteracting fermions
or bosons possessing the same basic variables. It is based on the ‘Quantal New-
tonian’ second and first laws for both the interacting and model noninteracting sys-
tems. Hence, in contrast to Kohn-Sham theory, its description of the mapping is in
terms of ‘classical’ fields and their quantal sources. For the mapping which ensures
that the model system possesses all the same basic variables: [{ρ(rt), j(rt)} for the
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time-dependent case, and {ρ(r)} and {ρ(r), j(r)} for the stationary-state case with-
out and with a magnetostatic field], the electron correlations that need be accounted
for by the model system in each case are those due to the Pauli exclusion principle,
Coulomb repulsion and Correlation-Kinetic effects. Within Q–DFT, the contribu-
tion of these correlations to the local effective potential of the model system and
to the corresponding components of the total energy, are separately delineated and
explicitly defined. (If, in the time-dependent case, the mapping to the model system
were such as to only ensure that the density ρ(rt) were the same, as is the case in
Runge-Gross theory, then Correlation-Current-Density effects would also have to be
accounted for. Within Q–DFT, the contribution of this effect to both the potential
and energy is also explicitly defined.) The framework of Q–DFT is general and the
same for both the ground and excited states. There is, however, an important facet
of time-independent Q–DFT that further generalizes local effective potential theory.
Within Q–DFT, it is possible to map the interacting system of electrons in either
a ground or excited stationary state to a model noninteracting fermion system in
an arbitrary state with either a ground or excited state configuration. Hence, there
exist an infinite number of local effective potentials that can generate, for example,
the same density as that of the interacting system whether in a ground or excited
state. The difference between the potentials is a consequence solely of Correlation-
Kinetic effects. Stationary state Kohn-Sham theory is thus seen to be a special case
of Q–DFT as the mapping within it from the interacting system can only be to a
model system of noninteracting fermions with the same electronic configuration.
As is the case in Schrödinger theory, the stationary-state version of Q–DFT consti-
tutes a special case of the time-dependent theory. There are, however, two important
points of distinction with Schrödinger theory: (i) In Schrödinger theory, the descrip-
tion of the electron correlations due to the antisymmetry of the wave function, or
equivalently the Pauli exclusion principle, and those of Coulomb repulsion, are not
separable. These correlations perforce are treated together in Schrödinger theory via
the quantal source of the pair-correlation density or the pair function. The traditional
quantum chemistry manner by which these correlations are separated is by perform-
ing a separate Hartree-Fock theory calculation. However, the density as obtained via
Hartree-Fock theory differs from that of the fully-interacting electrons, and as such
this method of separation is not physically rigorous. Within Q–DFT, the Pauli and
Coulomb correlations are separable within the same framework. Further, each corre-
lation component corresponds to the density of the interacting electrons. (ii) Within
Schrödinger theory, it is not possible to determine the contribution of the electron
correlations to the kinetic energy. One simply obtains the total kinetic energy. On the
other hand, within Q–DFT, this Correlation-Kinetic contribution can be explicitly
determined. Furthermore, the theory ensures that this property corresponds to the
density of the interacting system. The Q–DFT description of the mapping in terms
of ‘classical’ fields and quantal sources provides a rigorous physical interpretation
to the mathematical framework of Kohn-Sham and Runge-Gross theory. In particu-
lar, the manner in which the various electron correlations contribute to the unknown
‘exchange-correlation’ action and energy functionals of the density, and of their
functional derivatives, is explained. The Q–DFT mapping also explains the physics
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underlying the Local Density Approximation (LDA) of Dirac, Gaspar, and Kohn-
Sham, and provides a physical understanding of Slater theory and the Optimized
Potential Method. Further insights into the properties of the model noninteracting
systems or local effective potential energy theory are also arrived at via Q–DFT. For
example, it is shown that Pauli and Coulomb correlations do not contribute to the
discontinuity in the local electron-interaction potential as the electron number passes
through an integer. The discontinuity is solely a consequence of Correlation-Kinetic
effects. Q–DFT, and the various physical insights and interpretations arrived at via
the theory, are all explicated by examples.

It is evident from the remarks above that the description of both Schrödinger
theory and of its local effective potential energy theory equivalent of Q–DFT in
terms of ‘classical’ fields and quantal sources provides a deeper understanding of the
electronic structure of matter. This new perspective is physical, and as such much
new physics is gleaned from it. I hope that in reading the book you have enjoyed this
different path taken, and the subsequent insights derived therefrom.
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Appendix A
A Derivation of the ‘Quantal Newtonian’
Second Law

In this Appendix the pure state ‘Quantal Newtonian’ second law or differential virial
theorem [1, 2] is derived.

The time-dependent (TD) Schrödinger equation is

Ĥ(t)�(Xt) = i
∂

∂t
�(Xt), (A.1)

where the Hamiltonian

Ĥ(t) = −1

2

N∑

i=1

∇2
i +

N∑

i=1

v(ri t) + 1

2

N∑

i �= j

1

|ri − r j | , (A.2)

X = x1, x2, . . . , xN, x = rσ , and σ the spin coordinate. The quantal TD spin-
less single–particle γ (r1r′

1t) and two–particle �(r1r2; r′
1r′

2, t) density matrices are
defined respectively as

γ
(
r1r′

1t
) = N

∑

σ

∫
�∗ (r1σ, XN−1, t

)
�

(
r′
1σ, XN−1, t

)
dXN−1, (A.3)

�
(
r1r2; r′

1r′
2, t

) = N (N − 1)

2

∑

σ1σ2

∫
�∗ (r1σ1r2σ2, XN−2, t

)

�
(
r′
1σ1, r′

2σ2, XN−2, t
)
dXN−2, (A.4)

where XN−1 = x2, x3, . . . , xN etc., dXN−1 = dx2, . . . dxN etc., and
∫
dx =∑

σ

∫
dr.The diagonalmatrix element γ (rrt) is the TDdensity ρ(rt), and the diago-

nal matrix element �(rr′; rr′, t) ≡ �(rr′t) is related to the TD pair–correlation den-
sity defined as g(rr′t) = 〈�(t)|∑i �= j δ(ri − r)δ(r j − r′)|�(t)〉/ρ(rt) by g(rr′t) =
2�(rr′t)/ρ(rt). By writing the wave function as �(Xt) = �R(Xt) + i� I (Xt),
where �R(Xt) and � I (Xt) are its real and imaginary parts, we have on substitution
into (A.1)
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i
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)
, (A.5)

where the dependence of � on the electronic coordinates X is implicit. Equating the
real parts of (A.5) yields
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R(t). (A.6)

On differentiating (A.6) with respect to r1α , where r1α is the α coordinate component
of r1, and then multiplying both sides by (�R(t))2 we obtain
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the right side of (A.7) is
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Thus (A.7) is
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A similar derivation from the imaginary part of (A.5) leads to
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Using the fact that

(
�R(t)

)2 ∂

∂r1α

(
1

�R(t)

∂

∂t
� I (t)

)
− (

� I (t)
)2 ∂

∂r1α

(
1

� I (t)

∂

∂t
�R(t)

)

= ∂

∂t

[
�R(t)

∂

∂r1α
� I (t) − � I (t)

∂

∂r1α
�R(t)

]
, (A.12)

we have on summing (A.10) and (A.11), and then operating by N
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On substituting the complex formof thewave function into the expression for γ (rr′t),
the kinetic-energy-density tensor tαβ(rt) of (2.53) may be written as
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Employing the definition of zα(rt) of (2.52) and the expression for tαβ(rt) of (A.14),
(A.13) is then
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where we have employed the relation
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Since the wavefunction and its derivative vanish at infinity, the last term of (A.15)
vanishes on integration over dr jβ . Consequently, (A.15) may be written in terms of
the density ρ(rt), the diagonal matrix element �(rr′t) of the two–particle density
matrix, and the current density j(rt) of (2.39) as

ρ(r1t)
∂

∂r1α
v(r1t) + 2
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4
∇2 ∂
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ρ(r1t) − zα(r1t). (A.17)

The ‘Quantal Newtonian’ second law corresponding to TD Schrödinger theory is
then

F ext(rt) + F int(rt) = J (rt), (A.18)
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where

F ext(rt) = −∇v(rt), (A.19)

F int(rt) = Eee(rt) − D(rt) − Z(rt), (A.20)

with the individual fields Eee(rt),D(rt),Z(rt), and J (rt) defined in Sect. 2.3.
The pure state ‘QuantalNewtonian’ first lawor differential virial theorem for time-

independent Schrödinger theory [3–5] inwhich the external fieldF ext(r) = −∇v(r),
is a special case of the time-dependent law with the time parameter t and current
density field J (rt) absent. Furthermore, the law is valid for any nondegenerate or
degenerate ground or any bound excited state of the time-independent equation. Thus,
for the nth eigenstate �n(X) of the time-independent Schrödinger equation

Ĥ�n(X) = En�n(X), (A.21)

we have the ‘Quantal Newtonian’ first law to be

F ext(rt) + F int
n (rt) = 0, (A.22)

F ext
n (rt) = Eee(rt) − D(rt) − Z(rt), (A.23)

and where the fields Eee(r),D(r), and Z(r) are defined as in Sect. 2.3 but for the
state �n(X).
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Appendix B
Derivation of the Harmonic
Potential Theorem

In this Appendix, we first prove the Harmonic Potential Theorem (HPT) [1] via
the ‘operator’ method, and then derive [2] the HPT wave function by the Feynman
Path–Integral method [3, 4].

B.1 Proof via ‘Operator’ Method

For the Hamiltonian defined by (2.121)–(2.123), the solution to the time–dependent
Schrödinger equation when a shift y(t) is applied to the electronic coordinates ri is
written as

�HPT (t) = e−i(Ent+NS(t)−N dy
dt ·R)

�n
[
r1 − y(t), r2 − y(t), . . . , rN − y(t)

]
, (B.1)

where

S(t) =
∫ t

t0

[
1

2
ẏ(t ′)2 − 1

2
y(t ′) · K · y(t ′)

]
dt ′, (B.2)

and R = (1/N )
∑

i ri . Defining the unitary translation operator T̂ (y(t)) as

T̂ (y(t)) = e−iy(t)·∑i p̂i (B.3)

where p̂i = −i∇ri , we have

T̂ (y(t))�n(r1, r2, . . . , rN ) = �n(r1 − y(t), r2 − y(t), . . . , rN − y(t)). (B.4)
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Thus, with P = (1/N )
∑

i p̂i , the wavefunction�HPT (t) may be written as

�HPT (t) = e−i(Ent+NS(t)−N ẏ·R)e−i Ny(t)·P�n(r1, . . . , rN ), (B.5)

so that

i
∂�HPT (t)

∂t
= [

En + N Ṡ(t) − N ÿ(t) · R
]
�HPT (t)

+ Ne−i(Ent+NS(t)−N ẏ(t)·R)ẏ(t) · P�n, (B.6)

where

Ṡ(t) = 1

2
ẏ(t)2 − 1

2
y(t) · K · y(t). (B.7)

We next determine

Ĥ(t)�HPT (t) = (Ĥ0 − NF(t) · R)�HPT (t). (B.8)

Defining the operators
Â(t) = i N ẏ(t) · R, (B.9)

B̂(t) = −i Ny(t) · P, (B.10)

and

C(t) = −i(Ent + NS(t)), (B.11)

we have

Ĥ0�HPT (t) = H0 e
C(t) eÂ(t)eB̂(t) �n

= En�HPT (t) + eC(t)
[
Ĥ0, eÂ(t) eB̂(t)

]
�n. (B.12)

Now
[
Ĥ0, e

Â(t)eB̂(t)
]

=
[
Ĥ0, e

Â(t)
]
eB̂(t) + eÂ(t)

[
Ĥ0, e

B̂(t)
]
, (B.13)

[
Ĥ0, eÂ(t)

]
=

(
Ĥ0 − eÂ(t) Ĥ0 e

− Â(t)
)
eÂ(t), (B.14)

and

eÂ(t) Ĥ0e
− Â(t) = Ĥ0 +

[
Â(t), Ĥ0

]
+ 1

2!
[
Â(t), [ Â(t), Ĥ0]

]
+ . . . . (B.15)
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Next, we evaluate the various commutators:

[
Â(t), Ĥ0

]
= −N ẏ · P, (B.16)

[
Â(t), [ Â(t), Ĥ0]

]
= N ẏ(t)2, (B.17)

[
B̂(t), Ĥ0

]
= −Ny(t) · KR, (B.18)

[
B̂(t), [B̂(t), Ĥ0]

]
= Ny(t) · K · y(t), (B.19)

[
Ĥ0, e

Â(t)
]

=
{
N ẏ(t) · P − 1

2
N ẏ(t)2

}
eÂ(t), (B.20)

[
Ĥ0, e

B̂(t)
]

=
{
Ny(t) · KR − 1

2
Ny(t) · K · y(t)

}
eB̂(t). (B.21)

Note that the higher order commutators in (B.15) vanish. Thus, employing the above
commutators we have

Ĥ0�HPT (t) = En�HPT (t) + NeC(t)eÂ(t)ẏ · P�n

+ N

{
1

2
ẏ(t)2 + y(t) · KR − 1

2
y(t) · K · y(t)

}
�HPT , (B.22)

and

i
∂�HPT (t)

∂t
= En�HPT + N

{
1

2
ẏ(t)2 − 1

2
y(t) · K · y(t) − ÿ(t) · R

}
�HPT

+ NeC(t)eÂ(t)ẏ(t) · P�n, (B.23)

so that

(
Ĥ(t) − i

∂

∂t

)
�HPT (t) = [

ÿ(t) + K · y(t) − F(t)
] ·

[
∑

i

ri

]
�HPT (t), (B.24)

which proves the theorem.

B.2 Derivation of Wave Function via Feynman
Path-Integral Method

Consider a system of N particles with arbitrary interaction u(ri − r j ) in an external
harmonic potential v(r) = 1

2r · K · r, with K the spring constant matrix. The time-
independent Schrödinger equation for this system is
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Ĥ0�n = E0
n�n, (B.25)

where the Hamiltonian Ĥ0 is

Ĥ0 = 1

2m

∑

i

p2i + 1

2

∑

i

ri · K · ri +
∑

i �= j

u(ri − r j ), (B.26)

andwhere�n(r1, r2, . . . , rN ) and E0
n are then-th eigenstate and eigen energy, respec-

tively. We choose the coordinate system where K is diagonal: K = diag(kx , ky, kz),
so that

1

2
ri · K · ri = 1

2
m(ω2

x x
2
i + ω2

y y
2
i + ω2

z z
2
i ) (B.27)

with kx = mω2
x etc. A spatially homogenous time-dependent field E = −f(t)/e is

turned on at t = 0. (Assume f(t) = 0, t ≤ 0). The corresponding time-dependent
Schrödinger equation and Hamiltonian Ĥ are, respectively,

Ĥ(r1, r2, . . . , rN , t)�HPT (r1, r2, . . . , rN , t) = i� ∂�HPT (r1, r2, . . . , rN , t)/∂t,
(B.28)

and

Ĥ(r1, r2, . . . , rN , t) = Ĥ0 − f(t) ·
∑

j

r j . (B.29)

We next derive that �HPT is

�HPT (r1, r2, ...rN , t) = exp[− i

�
(E0

n t + S0(t) − Nm
dy
dt

· R)]�n(r1, r2, ...rN ).

(B.30)
where r i is the shifted coordinate operator, R the center of mass operator:

ri = ri − y(t), R = 1

N

∑

i

ri , (B.31)

with S0(t) the phase angle

S0(t) = N
∫ t

0

[
m

2
ẏ(t ′)2 − 1

2
y(t ′) · K · y(t ′)

]
dt ′. (B.32)

and where the translation y(t) satisfies the classical driven harmonic oscillator
equation

m ÿ(t) + K · y(t) = f(t). (B.33)
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Define the center of mass and relative coordinates, and momentum as [2]

R(1) = R = 1

N

∑

i

ri , P̂(1) =
∑

i

p̂i (B.34)

and

X (2) = x1 − x2,

X (3) = x1 + x2 − 2x3, ...,

X (N ) = x1 + x2 + ... + xN−1 − (N − 1)xN , (B.35)

and similarly for Y (2), ...Y (N ), Z (2), ...Z (N ), and P (2), ...P (N ). The Hamiltonian of
(B.29) can be rewritten as

Ĥ = ĤCM + Ĥrel , (B.36)

where

ĤCM = P̂2

2M
+ M

2
(ω2

x X
2 + ω2

yY
2 + ω2

z Z
2) − F(t) · R, (B.37)

with M = Nm, F(t) = N f(t). Here, ĤCM is the Hamiltonian describing the motion
of the center of mass only. Ĥrel is a function of only the relative coordinates and con-
tains the effects of interaction. For the two-particle system, a closed form analytical
expression for Ĥrel can be written (see Sect. 2.11). For the general case of N parti-
cles, the expression for Ĥrel is complicated [2]. However, it can be readily shown that
[ĤCM , Ĥrel ] = 0. Thus the center-of-mass and the relative motions are separable.
Therefore, the eigenstate of the Hamiltonian is the product of the eigenstates of the
center-of-mass and the relative motions:

�(r1, r2, ...rN , t) = 
(R, t)ϕrel(R(2), ..., R(N )). (B.38)

The relative motion wave function ϕrel(R(2), ..., R(N )) satisfies

Ĥrelϕrel(R(2), ..., R(N )) = E0
relϕrel(R(2), ..., R(N )), (B.39)

where E0
rel is the corresponding eigenvalue. For simplicity, we set E0

rel = 0.
It is evident that the external driving force f(t) does not affect the relative motion,

and that it is only the center-of-massmotionwhich is time-dependent. Thus, we focus
our attention on the center-of-mass motion wave function 
(R, t), which satisfies
the Schödinger equation

i�
∂
(R, t)

∂t
= (ĤCM + E0

rel)
(R, t) = ĤCM
(R, t), (B.40)

http://dx.doi.org/10.1007/978-3-662-49842-2_2
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with the initial condition


(R, 0) = 
0
n(R) = NHn(αx X)Hn(αyY )Hn(αz Z) exp

[
−1

2
(α2

x X
2 + α2

yY
2 + α2

z Z
2)

]
,

(B.41)

being the n-th state of a three dimensional harmonic oscillator with Hn the corre-

sponding Hermite polynomial, and where αi = (Mωi
�

) 1
2 , i = x, y, z, and N the

normalization constant.
It is evident that ĤCM describes a driven oscillator. For convenience, we first

consider a driven oscillator in one dimension,withmassM , frequencyω, and external
force F(t), the equation-of-motion for which is

M
d2X

dt2
+ Mω2X (t) − F(t) = 0. (B.42)

Employing the path-integral formulation of Feynman, we have


(X, t) =
∫ +∞

−∞
K (X, t; X0, 0)
(X0, 0)dX0, (B.43)

where the initial state


(X0, 0) = 
0
n(X0) = N0Hn(α0X0) exp

{
−1

2
α2
0X

2
0

}
, (B.44)

with α0 = (
Mω
�

) 1
2 , N0 =

(√
α0
π

1
2nn!

) 1
2
the normalization constant. The correspond-

ing eigenvalue is E0
R = E0

n = (
n + 1

2

)
�ω. The propagator for a driven oscillator

[5, 6] is,

K (X, t; X0, 0) =
∫

exp

{
i

�
S[X (t)]

}
D[X (t)], (B.45)

where

S[X (t)] =
∫ t

0
L(X, Ẋ , t ′)dt ′, (B.46)

the classical action functional, and

L(X, Ẋ , t) = Ẋ2

2M
− Mω2

2
X2 + F(t)X, (B.47)
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the Lagrangian. The propagator can be evaluated analytically,

K (X, T ; X0, 0) =
√

Mω

2π i� sin(ωT )
exp

{
i

�
S

}
, (B.48)

where

S(xb, tb; xa, ta) = Mω

2 sin(ωT )

[
(x2b + x2a ) cos(ωT ) − 2xaxb

]

+ xb
sin(ωT )

∫ tb

ta

F(t) sin[ω(t − ta)]

+ xa
sin(ωT )

∫ tb

ta

F(t) sin[ω(tb − t)]

− 1

Mω sin(ωT )

∫ tb

ta

∫ t

ta

F(t)F(τ )

× sin[ω(tb − t)] sin(ω(τ − ta)]dτdt. (B.49)

is the general expression for the action, with T = tb − ta, X (tb) = xb, X (ta) = xa .
Notice that here we have set ta = 0, xa = 0. Inserting (B.48) into (B.43), we obtain


(X, T ) = N0

√
Mω

2π i� sin(ωT )
exp{ iM

2�
(c0X

2 + 2c3X − c5)}

×
∫ +∞

−∞
exp{ iM

2�
[(c1 − �α2

0

iM
)X2

0 + 2(c2X + c4)X0]}
Hn(α0X0)dX0, (B.50)

where the coefficients

c0 = c1 = ω cot(ωT ), c2 = − ω

sin(ωT )
, c3 =

∫ T
0 F(t) sin(ωt)dt

M sin(ωT )
,

c4 =
∫ T
0 F(τ ) sin[ω(T − τ)]dτ

M sin(ωT )
,

c5 = 2

M2ω sin(ωT )

∫ T

0

∫ t

0
F(t)F(s) sin[ω(tb − t)] sin(ωs)dsdt. (B.51)

Employing the following identity [7]

∫ +∞

−∞
exp{−(x − y)2}Hn(ax)dx = √

π(1 − a2)
n
2 Hn

[
ay(1 − a2)−

1
2

]
, (B.52)
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one arrives at


(X, T ) = N0 exp

{
iM

2�
(c0X

2 + 2c3X − c5)

}
exp

{
−α2

0

2
(X − y0(T )2

}

× Hn[α0(X − y0(T ))]
× exp

[
−i

(
n + 1

2

)
ωT − i

α2
0

2
cot(ωT )(X − y0(T ))2

]

= exp

{
−i

E0
n

�
T − i

2�

[
Mc5 + Mω cot(wT )y0(T )2

]

+ i
M

�
ẏ0(T ) · X

}

(X − y0(T ), 0),

(B.53)

where

y0(T ) =
∫ T
0 F(t) sin[ω(T − t)]dt

Mω
, (B.54)

which satisfies the classical equation of motion (B.42), with the initial condition
y0(0) = ẏ(0) = 0. Inserting (B.53) into (B.38), we see that the wave function is the
shifted initial wave function times a phase factor.

All that remains to prove the HPT is to show the phase factor obtained above is
the same as that of �HPT with the shift y0(t), i.e.

exp

{
− i

2�

[
Mc5 + Mω cot(wT )y0(T )2

]} = exp

{
− i

�
S0[y0(t)]

}
, (B.55)

where

S0[y0(t)] =
∫ T

0

[
M

2
ẏ20 (t) − Mω

2
y20 (t)

]
dt. (B.56)

For a general path y(t) which satisfies the classical equation of motion (B.42)
with the conditions y(ta) = ya, y(tb) = yb, we have

y(t) = ya cos[ω(t − ta)] +
∫ t

ta

F(τ )

Mω
sin[ω(t − τ)]dτ +

[ yb − ya cos[ω(tb − ta)] − ∫ tb
ta

F(τ )

Mω
sin[ω(tb − τ)]dτ

sin[ω(tb − ta)]
]

× sin[ω(t − ta)]. (B.57)
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Notice that

S0[y(t)] =
∫ tb

ta

[M
2
ẏ2(t) − Mω

2
y2(t)]dt

= M

2
y(t)ẏ(t)|tbta −

∫ tb

ta

1

2
y(t)F(t)dt. (B.58)

Substituting (B.57) into the two terms on the right hand side of (B.58), we obtain

M

2
y(t)ẏ(t)|tbta = Mω

2 sin(ωT )

{
(y2a + y2b ) cos(ωT ) − 2ya yb

+ yb

∫ tb

ta

F(t)

Mω
sin[ω(t − ta)]dt

+ ya

∫ tb

ta

F(t)

Mω
sin[ω(tb − t)]dt

}
, (B.59)

and

∫ tb

ta

1

2
y(t)F(t)dt = Mω

2 sin(ωT )

{
yb

∫ tb

ta

F(t)

Mω
sin[ω(t − ta)]dt

+ ya

∫ tb

ta

F(t)

Mω
sin[ω(tb − t)]dt

− 2
∫ tb

ta

dτ

∫ τ

ta

dt
F(τ )

Mω

F(t)

Mω

× sin[ω(tb − τ)] sin[ω(t − ta)]
}
. (B.60)

From (B.58), (B.59) and (B.60), we obtain

S0[y(t)] = Mω

2 sin(ωT )

{
(y2a + y2b ) cos(ωT ) − 2ya yb

+ 2
∫ tb

ta

dτ

∫ τ

ta

dt
F(τ )

Mω

F(t)

Mω
sin[ω(tb − τ)] sin[ω(t − ta)]

}
.(B.61)

Notice that y0(ta) = y0(0) = 0. Thus, we see that (B.55) is correct.

Inserting (B.55) into (B.53), we have


(X, T ) = exp

{
−i

E0
n

�
T − i

�
S0[y0(t)] + i

M

�
ẏ0(T ) · X

}

× 
0
n(X − y0(T )). (B.62)
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The three dimensional generalization of the above equation is


(R, T ) = exp

{
−i

E0
n

�
T − i

�
S0[y0(t)] + i

M

�
ẏ0(T ) · R

}

× 
0
n(R − y0(T )), (B.63)

where y0(t) is the classical path satisfying the three dimension equation of motion

M
d2R
dt2

+ NK · R(t) − F(t) = 0, (B.64)

with initial conditions y0(0) = ẏ(0) = 0. Inserting (B.63) into (B.38), we obtain the
wave function

�(r1, r2, ...rN , t) = exp

{
−i

E0
n

�
t − i

�
S0[y0(t)] + i

M

�
ẏ0(t) · R

}

× 
0
n(R − y0(t))ϕrel(R(2), ..., R(N ))

= exp

{
−i

E0
n

�
t − i

�
S0[y0(t)] + i

M

�
ẏ0(t) · R

}

× �n(r1, r2, ...rN ). (B.65)

As (B.64) is exactly the same as (B.33), we see that the wave function of (B.65) is
the same as �HPT (r1, r2, ...rN , t) of (B.30). This then is the derivation of the HPT
wave function from first principles.
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Appendix C
Analytical Expressions for the Properties
of the Ground and First Excited Singlet
States of the Hooke’s Atom

In this appendix we give the properties [1, 2] of the ground and first excited sin-
glet states of the Hooke’s atom, and of the corresponding S systems in their ground
(singlet) state. In other words, the expressions of the latter correspond to the map-
ping via Q–DFT of the interacting system in the ground and excited state to one of
noninteracting fermions in its ground state.

C.1 Ground State (k = 1/4)

Wavefunction normalization constant C = 1/[2π5/4(5
√

π + 8)1/2] = 0.029112a.u.

Electron Density ρ(r)

ρ00(r) = π
√
2πC2

r
e−r2/2

{
7r + r3 + (8/

√
2π)re−r2/2

+ 4(1 + r2)erf(r/
√
2)
}

, (C.1)

where

erf(x) = 2√
π

∫ x

0
e−y2dy (C.2)

is the error function [3].

ρ(r) ∼
r→∞

√
2π π C2r2

(
1 + 4

r

)
e−r2/2. (C.3)
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Pair-Correlation Density g(rr′)

g(rr′) = C2

2ρ(r)
e−(r2+r ′2)/2(2 + |r − r′|)2. (C.4)

Single–Particle Density Matrix γ (r′r′′)

γ (r′r′′) = 2C2e−(r ′2+r ′′2)/4
∫ (

1 + |r′ − r|
2

)

×
(
1 + |r′′ − r|

2

)
e−r2/2dr. (C.5)

Dirac Density Matrix γs(r′r′′)

γs(r′r′′) = √
ρ(r′)ρ(r′′). (C.6)

Kinetic–Energy–Density Tensor tαβ(r; [γ ])

tαβ(r; [γ ]) = rαrβ
r2

f (r) + δαβk(r), (C.7)

where

f (r) = 1

8

(
r2ρ(r) − 4πC2

r3
e−r2/2

[√
2πr5

− 2
√
2πr2

(
1 − r2

)
erf

(
r/

√
2
)

+ 4r3e−r2/2

−6
√

πdaw
(
r/

√
2
)

− √
2πr(r2 − 3)

])
, (C.8)

k(r) =
(√

2π
)3

C2

4r3

[
r − √

2daw
(
r/

√
2
)]

e−r2/2, (C.9)

and

daw(x) = e−x2
∫ x

0
et

2
dt (C.10)

is Dawson’s integral [3].

Kinetic–Energy–Density Tensor ts,αβ(r; [γs])

ts,αβ(r; [γs]) = rαrβ
r2

h(r), (C.11)



Appendix C: Analytical Expressions for the Properties of the Ground … 367

where

h(r) = 1

8ρ

(
∂ρ

∂r

)2

. (C.12)

Electron–Interaction Field Eee(r)

Eee(r) = 1

r2

C2
(√

2π
)3

2ρ(r)
e−r2/2

{
(r2 + 3)erf

(
r/

√
2
)

− 3
√
2/πre−r2/2 − 4

√
2 daw

(
r/

√
2
)

+ 4r

}
. (C.13)

Hartree Field EH(r)

EH(r) = 1

r2
(2πC)2

{
10πerf

(
r/

√
2
)

− 4
√
2π

(
3 + r2

)
e−r2/2 erf

(
r/

√
2
)

+ 16
√

π erf(r)

− 8re−r2 − √
2π

(
10r + r3

)
e−r2/2

}
. (C.14)

Kinetic ‘Force’ z(r; [γ ])

z(r; [γ ]) = π C2

4r2
e−r2/2

{√
2πr(−r6 + 3r4 + 8r2 + 16)

−4
√
2π(r6 − 6r4 + 5r2 − 2)erf(r/

√
2)

−8r(r4 − 7r2 + 2)e−r2/2

−32
√

π daw(r/
√
2)
}

. (C.15)

z(r) ∼
r→∞ −

√
2ππC2

4

(
r5 + 4r4 − 3r3 − 24r2

−8r + 20 − 16

r
− 8

r2
+ · · ·

)
e−r2/2. (C.16)

Kinetic ‘Force’ zs(r; [γs])

zs(r; [γs]) = 1

2ρ

(
∂ρ

∂r

)[
1

r

(
∂ρ

∂r

)
− 1

2ρ

(
∂ρ

∂r

)2

+ ∂2ρ

∂r2

]
. (C.17)

zs(r) ∼
r→∞ −

√
2ππ C2

4

(
r5 + 4r4 − 3r3 − 24r2

−8r + 20 − 20

r
+ 8

r2
+ · · ·

)
e−r2/2. (C.18)



368 Appendix C: Analytical Expressions for the Properties of the Ground …

Electron–Interaction Energy Eee

Eee = (4πC)2
[
π/2 + √

π
] = 0.447443 a.u. (C.19)

Hartree or Coulomb Self–Energy EH

EH = 4(2πC)4
{
20

3
π2 + 507

32
π3/2 + 9

√
3π + 4

√
2π

+√
π

(
23 arcsin

7

9
− 32 arcsin

1

3

)}
= 1.030250 a.u. (C.20)

External Energy Eext

Eext =
∫

ρ(r)
1

2
kr2dr = 2(πC)2[9π + 14

√
π ] = 0.888141 a.u. (C.21)

Kinetic Energy T [ρ]

T [ρ] = π2C2[14π + 20
√

π ] = 0.664418 a.u. (C.22)

Electron–Interaction Potential Energy Wee(r)

Wee(r) = −C2(
√
2π)3

∫ r

∞
1

2r ′2ρ(r ′)
e−r ′2/2

{
(r ′2 + 3)erf(r ′/

√
2)

−3
√
2/πr ′e−r ′2/2 −4

√
2daw(r ′/

√
2) + 4r ′

}
dr ′. (C.23)

Wee(0) = 0.65959 a.u. (C.24)

Hartree Potential Energy WH(r)

WH(r) = (2πC)2
√
2π

r

{
5
√
2πerf

(
r/

√
2
)

− 12e−r2/2 erf
(
r/

√
2
)

+ 8
√
2 erf(r)

+ 2
√
2πr

(
1 − erf2

(
r/

√
2
))

− re−r2/2

}
. (C.25)

WH(0) = (2πC)2
[
9
√
2π + 4π + 8

]
= 1.442941 a.u. (C.26)
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Slater Electron–Interaction Function vS
ee(r)

vS
ee(r) =

∫
g(rr′)
|r − r′|dr′ = πC2

rρ(r)
e−r2/2

{
4
√
2πr + 2re−r2/2

+√
2π

(
5 + r2

)
erf

(
r/

√
2
)}

. (C.27)

vS
ee(0) =

4
(√

2π + 3
)

7
√
2π + 16

= 0.656598 a.u. (C.28)

Expectations

〈r〉 =
∫

ρ(r)rdr = 2(2πC)2
[
4π + 11

√
2π + 12

]
= 3.489025 a.u. (C.29)

〈r2〉 =
∫

ρ(r)r2dr = (4πC)2
[
9π + 14

√
π
] = 7.105114 a.u. (C.30)

〈
1

r

〉
=

∫
ρ(r)

1

r
dr = (2πC)2

[
4π + 9

√
2π + 8

]
= 1.442940 a.u. (C.31)

〈
1

r2

〉
=

∫
ρ(r)

1

r2
dr = (2πC)2

[
11π + 8

√
π

+4
√
2π ln

(
1 + √

2
)]

= 1.926359 a.u. (C.32)

〈δ(r)〉 = ρ(0) = πC2
[
7
√
2π + 16

]
= 0.089319a.u. (C.33)

C.2 First Excited Singlet State (k = 0.144498;
ω = √

k = 0.381029)

(TheError function andDawson’s integral are given in (C.2) and (C.10), respectively,)

Electron Density ρ(r)

ρ01(r) = e−ωr2
{
a0 + a2r

2 + a4r
4 + a6r

6 + (b0 + b2r
2 + b4r

4)e−ωr2

+
(c−1

r
+ c1r + c3r

3 + c5r
5
)
erf(

√
ωr)

}
, (C.34)



370 Appendix C: Analytical Expressions for the Properties of the Ground …

Table C.1 The coefficients in the analytical and semianalytical expressions for the density ρ01(r),
the kinetic ‘force’ z(r; [γ ]), electron–interaction Eee(r), and Hartree EH(r) fields for the first
excited singlet state

ρ01(r) z(r) Eee(r) EH(r)

a−1 0.0323711 0.0323711 −0.752256

a0 0.0252562

a1 0.0215704 −0.00423799 −0.0848432

a2 −0.00156184

a3 −0.00892724 0.000280366 −0.0168259

a4 0.000527316

a5 0.0000538074 −0.000880796

a6 0.00005328761

a7 0.000111470

a9 −0.00000585396

b−1 −0.0228867 −0.0223222 −0.215024

b0 0.00766804

b1 0.0258860 −0.000351275 −0.0195676

b2 −0.000840943

b3 −0.00729833 0.0000487625 −0.00424068

b4 0.000256559

b5 0.000796754

b7 −0.0000281844

c−2 0.0328975 0.0320861 −0.990167

c−1 0.0205823

c0 −0.00739862 −0.000472655 −0.247069

c1 0.00620070

c2 0.0140838 −0.000313782 −0.0274789

c3 −0.000550207

c4 −0.00672378 0.0000532876 −0.00463420

c5 0.000280366

c6 0.000830180

c8 −0.0000307999

where the coefficients are given in Table C.1.

ρ01(r) ∼
r→∞e−ωr2

×
[
b−1

r
+ b0 + b1r + b2r

2 + b3r
3 + b4r

4 + b5r
5 + b6r

6

]
, (C.35)

where b−1 = 0.0205823, b0 = 0.0252562, b1 = 0.00620070, b2 = −0.00156184,
b3 = −0.000550207, b4 = 0.000527316, b5 = 0.000280366, b6 = 0.0000532876.
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Pair–Correlation Density g(rr′)

g(rr′) = 2C2

ρ01(r)
e−ω(r2+r ′2)

(
1 + C1

√
ω

2
|r − r′| + C2

(ω

2

)
|r − r′|2 + C3

(ω

2

)3/2 |r − r′|3
)2

, (C.36)

where C = 0.0261005, C1 = 1.146884, C2 = −0.561569, C3 = −0.489647.

Single–Particle Density Matrix γ (r′r′′)

γ
(
r′r′′) = 2C2e−ω(r ′2+r ′′2)/2

×
∫ (

1 + C1

√
ω

2
|r′ − r| + C2

(ω

2

)
|r′ − r|2 + C3

(ω

2

)3/2 |r′ − r|3
)

×
(
1 + C1

√
ω

2
|r′′ − r| + C2

(ω

2

)
|r′′ − r|2

+C3

(ω

2

)3/2 |r′′ − r|3
)
e−ωr2dr, (C.37)

where C = 0.0261005, C1 = 1.146884, C2 = −0.561569, C3 = −0.489647.

Dirac Density Matrix γs(r′r′′)

γs(r′r′′) = √
ρ(r′)ρ(r′′). (C.38)

Electron–Interaction Field Eee(r)

Eee(r) = e−ωr2

ρ01(r)

{(a−1

r
+ a1r + a3r

3
)

+
(
b−1

r
+ b1r + b3r

3

)
e−ωr2

+
(c−2

r2
+ c0 + c2r

2 + c4r
4
)
erf(

√
ωr)

−0.0525039 daw(
√

ωr)

r2

}
, (C.39)

where all the coefficients are given in Table C.1.

Hartree Field EH(r)

EH(r) = e−ωr2
{
a−1

r
+ a1r + a3r

3 + a5r
5 +

(
b−1

r
+ b1r + b3r

3

)
e−ωr2

+
(c−2

r2
+ c0 + c2r

2 + c4r
4
)
erf(

√
ωr)

}

+d1 erf(
√

ωr) + d2 erf(
√
2ωr)

r2
, (C.40)
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where d1 = 1.08130, d2 = 0.918704, and the other coefficients are given in
Table C.1.

Kinetic ‘Force’ z(r; [γ ])

z(r; [γ ]) = e−ωr2
{a−1

r
+ a1r + a3r

3 + a5r
5 + a7r

7 + a9r
9

+
(
b−1

r
+ b1r + b3r

3 + b5r
5 + b7r

7+
)
e−ωr2

+
(c−2

r2
+ c0 + c2r

2 + c4r
4 + c6r

6 + c8r
8
)
erf(

√
ωr)

−0.0525039 daw(
√

ωr)

r2

}
, (C.41)

where all the coefficients are given in Table C.1.

Kinetic ‘Force’ zs(r; [γs])

zs (r; [γs]) = 1

2ρ

(
∂ρ

∂r

)[
1

r

(
∂ρ

∂r

)
− 1

2ρ

(
∂ρ

∂r

)2

+
(

∂2ρ

∂r2

)]
. (C.42)

Electron–Interaction Potential Energy Wee(r)

Wee(r) = −
∫ r

∞
e−ωr ′2

ρ01(r ′)

{(a−1

r ′ + a1r
′ + a3r

′3
)
+
(
b−1

r ′ + b1r
′ + b3r

′3
)
e−ωr ′2

+
(c−2

r ′2 + c0 + c2r
′2 + c4r

′4
)
erf

(√
ω
)
r ′

− 0.0525039 daw
(√

ωr ′)

r ′2

}
dr ′, (C.43)

where all the coefficients are given in Table C.2.

Wee(0) = 0.556156 a.u. (C.44)

Hartree Potential Energy WH(r)

WH(r) = e−ωr2
{
a0 + a2r

2 + a4r
4 + (

b0 + b2r
2 + b4r

4) e−ωr2

+
(c−1

r
+ c1r + c3r

3
)
erf

(√
ωr

)}

+d +
(
f

r
+ g erf

(√
ωr

))
erf

(√
ωr

) + h

r
erf(

√
2ωr), (C.45)
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Table C.2 The coefficients
in the analytical and
semianalytical expressions
for the electron–interaction
Wee(r) and Hartree WH(r)
potential energies for the first
excited singlet state

Wee(r) WH(r)

a−1 0.0323711

ao −0.185855

a1 −0.00423799

a2 −0.0282273

a3 0.000280366

a4 −0.00115855

b−1 −0.0223222

bo −0.0842051

b1 −0.000351275

b2 −0.0151002

b3 0.0000487625

b4 −0.00131433

c−2 0.0320861

c−1 −0.990167

c0 −0.000472655

c1 −0.0601975

c2 −0.000313782

c3 −0.00609556

c4 0.0000532876

where d = 0.320194, f = 1.081298, g = 0.320194, h = 0.918704, and the other
coefficients are given in Table C.2.

WH(0) = 1.017414 a.u. (C.46)

Expectations

〈r〉 =
∫

ρ(r)rdr = 4.971112 a.u. (C.47)

〈r2〉 =
∫

ρ(r)r2dr = 14.565898 a.u. (C.48)
〈
1

r

〉
=

∫
ρ(r)

1

r
dr = 1.053870 a.u. (C.49)

〈
1

r2

〉
=

∫
ρ(r)

1

r2
dr = 0.936753 a.u. (C.50)

〈δ(r)〉 = ρ(0) = 0.0472434 a.u. (C.51)
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Appendix D
Derivation of the Kinetic–Energy–Density
Tensor for Hooke’s Atom in Its Ground State

In this Appendix, we derive the kinetic-energy-density tensor for Hooke’s atom in
its ground state.

The density matrix for a two–electron system is (see (2.15))

γ (r′r′′) = 2
∑

σ

∫
ψ∗(r′σ, x2)ψ(r′′σ, x2)dx2, (D.1)

where x = r, σ and
∫
dx2 = ∑

σ2

∫
dr2. Substituting the ground-state wavefunction

of (2.177) into the above equation, we obtain,

γ (r′r′′) = 2C2e−(r ′2+r ′′2)/4
∫ [

1 + |r′ − r|
2

]

×
[
1 + |r′′ − r|

2

]
e−r2/2dr. (D.2)

Now let us make the transformation to the coordinates

x = (r′ + r′′)/2, y = (r′ − r′′)/2. (D.3)

Equation (D.2) then becomes

γ (r′r′′) = 2C2e−(x2+y2)/2
∫ [

1 + |r − y|/2]

× [
1 + |r + y|/2] e−|r+x|2/2dr. (D.4)

Substitution of (D.4) into the time-independent version of the kinetic–energy–density
tensor (2.53) then leads to

tαβ(r; [γ ]) = 1

8

[
∂2

∂xα∂xβ

− ∂2

∂yβ∂yα

]
γ (r′r′′)x=r,y=0. (D.5)
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The first term on the right side of (D.5) can be evaluated readily as

∂2

∂xα∂xβ

γ (r′r′′)|x=r,y=0 = ∂2

∂rα∂rβ
ρ(r). (D.6)

After complicated but straightforward algebra, the second term is evaluated as

− 1

2

∂2

∂yα∂yβ

γ (r′r′′)|x=r,y=0 = δαβC
2e−r2/2 I (r) + C2e−r2/2 Jαβ(r), (D.7)

where the integrals I (r) and Jαβ(r) are defined as

I (r) =
∫ [

1 + r ′/2 − 1/r ′] [1 + r ′/2
]
e−|r′+r|2/2dr′, (D.8)

Jαβ(r) =
∫ r ′

αr
′
β

r ′3 (1 + r ′)e−|r+r′ |2/2dr′, (D.9)

respectively. Jαβ(r) can be further expressed as a sum of two integrals

Jαβ(r) = J1αβ(r) + J2αβ(r), (D.10)

where, respectively,

J1αβ(r) =
∫ r ′

αr
′
β

r ′3 e−|r′+r|2/2dr′, (D.11)

and

J2αβ(r) =
∫ r ′

αr
′
β

r ′2 e−|r′+r|2/2dr′. (D.12)

The integrals I (r), J1αβ(r) and J2αβ(r) are evaluated as

I (r) = 2π

{
5

4

√
2π + √

2π/4r2 + 2e−r2/2 + √
2πr erf(r/

√
2)

}
, (D.13)

J1αβ(r) = −2π
∂2

∂rα∂rβ

{
2e−r2/2 + √

2π

(
r + 1

r

)
erf(r/

√
2)

}

+δαβ(2π)3/2
1

r
erf(r/

√
2), (D.14)

and

J2αβ(r) = e−r2/2
√
2(2π)3/2

∂2

∂rα∂rβ

[
er

2/2 daw(r/
√
2)/r

]
. (D.15)
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Thus, from (D.5–D.7), and (D.10), (D.13–D.15), we obtain

tαβ(r; [γ ]) = rαrβ
r2

f (r) + δαβk(r), (D.16)

where f (r) and k(r) are given by (C.8) and (C.9) of Appendix C.



Appendix E
Derivation of the S System
‘Quantal Newtonian’ Second Law

In this Appendix we derive [1, 2] the TD ‘Quantal Newtonian’ second law or dif-
ferential virial theorem for the S system of noninteracting fermions with the same
density ρ(rt) as that of the interacting Schrödinger system. The proof is for arbitrary
external field F ext(rt) = −∇v(rt), and not restricted to potential energies v(rt)
that are expandable in a Taylor series about an initial time. The corresponding TD
equations for the S system are

i
∂

∂t
φ j (xt) =

[
−1

2
∇2 + vs(rt)

]
φ j (xt), (E.1)

where vs(rt) = v(rt) + vee(rt). Writing the orbitals as φ j (xt) = φR
j (xt) + iφ I

j (xt),
where φR

j (xt) and φI
j (xt) are its real and imaginary components, we have on equating

the real and imaginary parts of the differential equation

vs(rt) + 1

φR
j (t)

∂

∂t
φ I
j (t) = 1

2

1

φR
j (t)

∇2φR
j (t), (E.2)

vs(rt) − 1

φI
j (t)

∂

∂t
φR
j (t) = 1

2

1

φI
j (t)

∇2φI
j (t). (E.3)

Performing operations similar to those for the interacting Schrödinger system in
Appendix A leads to

|φ j (t)|2 ∂

∂rα
vs(rt)+ ∂

∂t

{
φR
j (t)

∂

∂rα
φ I
j (t) − φ I

j (t)
∂

∂rα
φR
j (t)

}

= 1

2

∑

β

{
∂3φR

j (t)

∂r2β∂rα
φR
j (t) + ∂3φ I

j (t)

∂r2β∂rα
φ I
j (t)

− ∂2φR
j (t)

∂r2β

∂φR
j (t)

∂rα
− ∂2φ I

j (t)

∂r2β

∂φ I
j (t)

∂rα

}
. (E.4)
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On using the relations

1

4

∂3(φA
j (t))

2

∂r2β∂r1α
− ∂

∂rβ

(
∂φA

j (t)

∂rα

∂φA
j (t)

∂rβ

)

= − 1

2

{
∂2φA

j (t)

∂r2β

∂φA
j (t)

∂rα
− φA

j (t)
∂3φA

j (t)

∂r2β∂rα

}
, (E.5)

with A = R, I, and

φR
j (t)

∂

∂rα
φ I
j (t) − φ I

j (t)
∂

∂rα
φR
j (t)

= i

2

{
φ j (t)

∂

∂rα
φ∗
j (t) − φ∗

j (t)
∂

∂rα
φ j (t)

}
, (E.6)

in (E.3), we obtain

|φ j (t)|2 ∂

∂rα
vs(rt) + i

2

∂

∂t

{
φ j (t)

∂

∂rα
φ∗
j (t) − φ∗

j (t)
∂

∂rα
φ j (t)

}

= 1

4
∇2 ∂

∂rα
|φ j (t)|2 −

∑

β

∂

∂rβ

{
∂φR

j (t)

∂rα

∂φR
j (t)

∂rβ
+ ∂φ I

j (t)

∂rα

∂φ I
j (t)

∂rβ

}
. (E.7)

Now, for the noninteracting system

ts,αβ(rt) = 1

2

∑

σ

N∑

j=1

{
∂φR

j (t)

∂rα

∂φR
j (t)

∂rβ
+ ∂φ I

j (t)

∂rα

∂φ I
j (t)

∂rβ

}
. (E.8)

Finally, by operating on (E.7) by
∑

σ

∑N
j=1, we obtain the TD noninteracting system

‘Quantal Newtonian’ second law or differential virial theorem as

F ext(rt) + F int
s (rt) = J s(rt), (E.9)

where

F ext(rt) = −∇v(rt), (E.10)

and

F ext
s (rt) = −∇vee(rt) − D(rt) − Zs(rt), (E.11)

with the individual fields D(rt), Zs(rt), and J s(rt) defined in Sect. 3.1.2.
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The time-independent ‘Quantal Newtonian’ second law for the S system
[3, 4] in which the external field F ext(r) = −∇v(r) is a special case of the time-
dependent theoremwith the time parameter t and current density fieldJ s(rt) absent.
Furthermore, the theorem is valid for the ground or any bound excited state of the
time-independent S system.With no distinction beingmade for the ground or excited
state, the S system differential equation is

[
−1

2
∇2 + v(r) + vee(r)

]
φi (x) = εiφi (x) ; i = 1, . . . , N . (E.12)

The corresponding ‘Quantal Newtonian’ second law is

F ext(r) + F int
s (r) = 0, (E.13)

where

F ext(r) = −∇v(r), (E.14)

and

F int
s (r) = −∇vee(r) − D(r) − Z s(r), (E.15)

and where the fields D(r) and Z s(r) are defined as in Sect. 3.1.2 but for the time-
independent case.
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Appendix F
Derivation of the ‘Quantal Newtonian’ First
Law in the Presence of a Magnetic Field

In this appendix we derive [1] the ‘Quantal Newtonian’ first law in the presence of a
magnetostatic field. The method employed is the same as in Appendix A. (This law
has also been derived [2] via the equation of motion for the single-particle density
matrix.)

Consider the Hamiltonian Ĥ of (9.1) and the corresponding Schrödinger equation
(9.9). Writing the wave function as � = �R + i� I , where �R and � I are the real
and imaginary parts, we have on substitution into (9.9)

[Û + V̂ + 1

2
A2(r) − E](�R + i� I ) = [−T̂ + i�̂](�R + i� I ), (F.1)

or, since T̂ and �̂ have differential operators:

Û + V̂ + 1

2
A2(r) − E = (−T̂�R − �̂� I )

�R
= (−T̂� I + �̂�R)

� I
. (F.2)

With ∇2
i = ∑3

β=1
∂2

∂r2iβ
, we have on differentiating the individual terms on the right

hand side of (F.2) with respect to r1α

∂

∂r1α
[ T̂�R

�R
] = − 1

2�R

N∑

i=1

3∑

β=1

∂3�R

∂riβ∂riβ∂r1α

+ 1

2(�R)2

∂�R

∂r1α

N∑

i=1

3∑

β=1

∂2�R

∂r2iβ
, (F.3)
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and

∂

∂r1α

[
�̂� I

�R

]
=

N∑

i=1

3∑

β=1

{
1

�R

∂

∂r1α

(
Aiβ

∂� I

∂riβ

)
− 1

(�R)2
Aiβ

∂� I

∂riβ

∂�R

∂r1α

}

+1

2

N∑

i=1

3∑

β=1

{
1

�R

∂

∂r1α

(
� I ∂Aiβ

∂riβ

)

− 1

(�R)2
� I ∂Aiβ

∂riβ

∂�R

∂r1α

}
. (F.4)

Differentiating the left hand side of (F.2) with respect to r1α , employing (F.3) and
(F.4), we arrive at

[
∂

∂r1α

{
v(r1) + 1

2
A2(r1) +

N∑

j=2

u(r1, r j )

}]
(�R)2

=
N∑

i=1

3∑

β=1

[
1

2
�R ∂3�R

∂riβ∂riβ∂r1α
− 1

2

∂�R

∂r1α

∂2�R

∂r2iβ

]

−
N∑

i=1

3∑

β=1

[
�R ∂

∂r1α

(
Aiβ

∂� I

∂riβ

)
− Aiβ

∂� I

∂riβ

∂�R

∂r1α

]

−1

2

N∑

i=1

3∑

β=1

{
�R ∂

∂r1α

(
� I ∂Aiβ

∂riβ

)
− � I ∂Aiβ

∂riβ

∂�R

∂r1α

}
. (F.5)

The right hand side of (F.5) can be further simplified by using the following relations:

1

4

∂3�R�R

∂riβ∂riβ∂r1α
= 1

2

∂2�R

∂r2iβ

∂�R

∂r1α
+ ∂�R

∂riβ

∂2�R

∂riβ∂r1α

+ 1

2
�R ∂3�R

∂riβ∂riβ∂r1α
, (F.6)

and

− ∂

∂riβ

[
∂�R

∂r1α

∂�R

∂riβ

]
= −∂�R

∂r1α

∂2�R

∂riβ∂riβ
− ∂2�R

∂r1α∂riβ

∂�R

∂riβ
. (F.7)

Adding (F.6) and (F.7) we obtain

1

4

∂3�R�R

∂riβ∂riβ∂r1α
− ∂

∂riβ

[
∂�R

∂r1α

∂�R

∂riβ

]
= 1

2
�R ∂3�R

∂riβ∂riβ∂r1α
− 1

2

∂�R

∂r1α

∂2�R

∂r2iβ
, (F.8)
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where the right hand side of (F.8) then corresponds to the terms in the first set of
square parenthesis of (F.5).

Thus, (F.5) for the real part of the wave function �R becomes

[
∂

∂r1α

{
v(r1) + 1

2
A2(r1) +

N∑

j=2

u(r1, r j )

}]
(�R)2

=
N∑

i=1

3∑

β=1

{
1

4

∂3(�R�R)

∂riβ∂riβ∂r1α
− ∂

∂riβ

(
∂�R

∂r1α

∂�R

∂riβ

)}

−
N∑

i=1

3∑

β=1

[
�R ∂

∂r1α

(
Aiβ

∂� I

∂riβ

)
− Aiβ

∂� I

∂riβ

∂�R

∂r1α

]

−1

2

N∑

i=1

3∑

β=1

{
�R ∂

∂r1α

(
� I ∂Aiβ

∂riβ

)
− � I ∂Aiβ

∂riβ

∂�R

∂r1α

}
. (F.9)

Similarly, the equation for the imaginary part of the wave function � I is

[
∂

∂r1α

{
v(r1) + 1

2
A2(r1) +

N∑

j=2

u(r1, r j )

}]
(� I )2

=
N∑

i=1

3∑

β=1

{
1

4

∂3(� I� I )

∂riβ∂riβ∂r1α
− ∂

∂riβ

(
∂� I

∂r1α

∂� I

∂riβ

)}

+
N∑

i=1

3∑

β=1

[
� I ∂

∂r1α

(
Aiβ

∂�R

∂riβ

)
− Aiβ

∂�R

∂riβ

∂� I

∂r1α

]

+1

2

N∑

i=1

3∑

β=1

{
� I ∂

∂r1α

(
�R ∂Aiβ

∂riβ

)
− �R ∂Aiβ

∂riβ

∂� I

∂r1α

}
.(F.10)

Note that the terms in the first parenthesis in (F.9) and (F.10) correspond to the
derivation in the B = 0 case [3]. The terms in the second two parenthesis are the
additional terms in the presence of a vector potential.

Adding (F.9), and (F.10) yields

[
∂

∂r1α

{
v(r1) + 1

2
A2(r1) +

N∑

j=2

u(r1, r j )

}]
|�|2

=
N∑

i=1

3∑

β=1

{
1

4

∂3|�|2
∂riβ∂riβ∂r1α

− ∂

∂riβ

(
∂�R

∂r1α

∂�R

∂riβ
+ ∂� I

∂r1α

∂� I

∂riβ

)}

+
[
Aiβ

(
∂� I

∂riβ

∂�R

∂r1α
− ∂�R

∂riβ

∂� I

∂r1α

)
+

(
� I ∂

∂r1α

(
Aiβ

∂�R

∂riβ

)
− �R ∂

∂r1α

(
Aiβ

∂� I

∂riβ

))]
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+ 1

2

N∑

i=1

3∑

β=1

{
� I ∂

∂r1α

(
�R ∂Aiβ

∂riβ

)
− �R ∂Aiβ

∂riβ

∂� I

∂r1α

−�R ∂

∂r1α

(
� I ∂Aiβ

∂riβ

)
+ � I ∂Aiβ

∂riβ

∂�R

∂r1α

}
. (F.11)

The terms of the first parenthesis on the right hand side of (F.11) may be rewritten
by splitting each term into its i = 1 and i ≥ 2 contributions as

N∑

i=1

3∑

β=1

1

4

∂

∂riβ

∂

∂riβ

∂

∂r1α
|�|2 =

[
1

4
∇2

1
∂

∂r1α
|�|2 + 1

4

N∑

j=2

3∑

β=1

∂

∂r jβ

∂

∂r jβ

∂

∂r1α
|�|2

]
,

(F.12)
and

N∑

i=1

3∑

β=1

∂

∂riβ

(
∂�R

∂r1α

∂�R

∂riβ
+ ∂� I

∂r1α

∂� I

∂riβ

)

=
[ 3∑

β=1

∂

∂r1β

(
∂�R

∂r1α

∂�R

∂r1β
+ ∂� I

∂r1α

∂� I

∂r1β

)

+
N∑

j=2

3∑

β=1

∂

∂r jβ

(
∂�R

∂r1α

∂�R

∂r jβ
+ ∂� I

∂r1α

∂� I

∂r jβ

)]
. (F.13)

Again, the only new terms in (F.11) that arise on the right hand side due to the
presence of the magnetic field or vector potential A are those of the second two
parentheses of (F.11). These terms can be further simplified to

N∑

i=1

3∑

β=1

[
Aiβ

(
∂� I

∂riβ

∂�R

∂r1α
− ∂�R

∂riβ

∂� I

∂r1α

)
+

(
� I ∂

∂r1α

(
Aiβ

∂�R

∂riβ

)
− �R ∂

∂r1α

(
Aiβ

∂� I

∂riβ

))

+� I ∂Aiβ
∂riβ

∂�R

∂r1α
− �R ∂Aiβ

∂riβ

∂� I

∂r1α

]
. (F.14)

Once again, we split these terms into their i = 1 and i ≥ 2 contributions.

The i = 1 term of (F.14) is

3∑

β=1

[
A1β

(
∂� I

∂r1β

∂�R

∂r1α
− ∂�R

∂r1β

∂� I

∂r1α

)
+

(
� I ∂

∂r1α

(
A1β

∂�R

∂r1β

)
− �R ∂

∂r1α

(
A1β

∂� I

∂r1β

))]

=
[

∂A1β
∂r1α

(
� I ∂�R

∂r1β
− �R ∂� I

∂r1β

)
+

(
∂

∂r1β

(
A1β� I ∂�R

∂r1α
− A1β�R ∂� I

∂r1α

))]
.

(F.15)
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The i ≥ 2 contribution of (F.14) is

=
N∑

i=2

3∑

β=1

∂

∂riβ

[
Aiβ

(
� I ∂�R

∂r1α
− �R ∂� I

∂r1α

)

+ � I ∂Aiβ

∂riβ

∂�R

∂r1α
− �R ∂Aiβ

∂riβ

∂� I

∂r1α

]
. (F.16)

We next operate by N
∑

σ1

∫
dXN−1 on (F.11) employing (F.12, F.13, F.15, F.16)

for its right hand side. For the left hand side of (F.11) one obtains

∂

∂r1α

{
v(r1) + A2(r1)

}
ρ(r1) + N

N∑

j=2

∑

σ1

∫
∂u(r1r j )

∂r1α
|�|2dXN−1. (F.17)

For the right hand side of (F.11) we note that the contributions of the second terms
of (F.12) and (F.13), and that of the term (F.16) vanish for |r j | → ∞. Thus, the result
of the above operation on the right hand side of (F.11) is

1

4
∇2

1
∂

∂r1α
ρ(r1) − 2N

3∑

β=1

∑

σ1

∫
1

2

∂

∂r1β

(
∂�R

∂r1α

∂�R

∂r1β
+ ∂� I

∂r1α

∂� I

∂r1β

)
dXN−1

+ N
3∑

β=1

∑

σ1

∫ [
∂A1β

∂r1α

(
� I ∂�R

∂r1β
− �R ∂� I

∂r1β

)

+
{

∂

∂r1β

(
A1β� I ∂�R

∂r1α
− A1β�R ∂� I

∂r1α

)}]
dXN−1. (F.18)

It can be readily seen that in the second term of (F.18), the terms within the
parenthesis

N
∑

σ1

∫
1

2

(
∂�R

∂r1α

∂�R

∂r1β
+ ∂� I

∂r1α

∂� I

∂r1β

)
dXN−1 = tαβ(r), (F.19)

where the kinetic energy tensor tαβ(r) is

tαβ(r) = 1

4

(
∂2

∂r ′
α∂r ′′

β

+ ∂2

∂r ′
β∂r ′′

α

)
γ (r′r′′)

∣∣∣∣
r′=r′′=r

, (F.20)

with γ (r′r′′) the reduced single particle densitymatrix quantal source of (9.26). Thus,
the second term of (F.18) is the component zα(r) of the kinetic ‘force’ z(r; γ ):
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zα(r) = 2
3∑

β=1

∂

∂rβ
tαβ(r). (F.21)

The third term of (F.17) may be expressed in terms of the pair-correlation function
P(rr′) of (9.25):

N
N∑

j=2

∑

σ1

∫
∂u(r1r j )

∂r1α
|�|2dXN−1 =

∫
∂u(rr′)

∂rα
P(rr′)dr′. (F.22)

In vector form (F.22) is

∫
∇u(rr′)P(rr′)dr′ = −

∫
P(rr′)(r − r′)

|r − r′|3 dr′ (F.23)

= −eee(r), (F.24)

with eee(r) the electron-interaction ‘force’ as obtained by Coulomb’s law.
The last term of (F.18) may be expressed in terms of the paramagnetic current

density jp(r) as

kα(r; jpA) =
3∑

β=1

[(
∂A1β

∂r1α

)
jpβ(r1) + ∂

∂r1β

(
A1β jpα(r1)

)]
. (F.25)

On putting together (F.17) and (F.18) in terms of their further simplifications
expressed as ‘forces, we have in vector form

ρ(r)
[
∇v(r) + 1

2
∇A2(r)

]
− eee(r) + z(r; γ ) + d(r) + k(r; jpA) = 0, (F.26)

where the differential density ‘force’ d(r) is

d(r) = −1

4
∇∇2ρ(r). (F.27)

Equation (F.26) is the differential virial theorem derived by Holas and March [2]
via the equation of motion for the single particle density matrix.

Now since the physical current density j(r) is

j(r) = jp(r) + ρ(r)A(r), (F.28)

we have

k(r; jpA) + 1

2
ρ(r)∇A2(r) = k(r; jA) −

3∑

β=1

∇β[ρ(r)A(r)Aβ(r)], (F.29)
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so that

kα(r; jA) =
3∑

β=1

[ jβ(r){∇αAβ(r)} + ∇β{Aβ(r) jα(r)}]. (F.30)

Equation (F.26) is then

ρ(r)∇v(r) − eee(r) + z(r; γ ) + d(r) + k(r; jA) −
3∑

β=1

∇β[ρ(r)A(r)Aβ(r)] = 0.

(F.31)
The last two terms of (F.31) which are the only terms that depend upon the

vector potential can be afforded a rigorous physical interpretation. Their sum can
be expressed as the sum of a contribution of the external Lorentz ‘force’ l(r) and
a corresponding contribution i(r) to the internal ‘force’. The Lorentz ‘force’ l(r)
defined in terms of the physical current density j(r) is

l(r) = j(r) × B(r). (F.32)

With B = ∇ × A, we have

lα(r) =
3∑

β=1

[ jβ(r)∇αAβ(r) − jβ(r)∇β Aα(r)]. (F.33)

The contribution of the magnetic field to the internal force i(r) is defined via its
components as

iα(r) =
3∑

β=1

∇β Iαβ(r), (F.34)

where

Iαβ(r) = [ jα(r)Aβ(r) + jβ(r)Aα(r)] − ρ(r)Aα(r)Aβ(r). (F.35)

On applying the continuity condition ∇ · j(r) = ∑
β ∇β jβ(r) = 0, it is readily

seen that

lα(r) + iα(r) = kα(r; jA) −
3∑

β=1

∇β[ρ(r)Aα(r)Aβ(r)]. (F.36)

Thus, (F.31) may be written in ‘Quantal Newtonian’ form in terms of external
F ext(r) and internal F int(r) fields as

F ext(r) + F int(r) = 0 (F.37)



390 Appendix F: Derivation of the ‘Quantal Newtonian’ First Law …

with the external field defined as

F ext(r) = E(r) − L(r) (F.38)

where the external electrostatic E(r) field is

E(r) = −∇v(r), (F.39)

and the magnetostatic Lorentz field L(r) is

L(r) = l(r)
ρ(r)

. (F.40)

The internal field F int(r) is

F int(r) = Eee(r) − Z(r) − D(r) − I(r), (F.41)

where the electron-interaction Eee(r), kinetic Z(r), differential density D(r), and
internal magnetic I(r) fields are defined in terms of their corresponding forces as

Eee(r) = eee(r)
ρ(r)

;Z(r) = z(r; γ )

ρ(r)
;D(r) = d(r)

ρ(r)
;I(r) = i(r; jA)

ρ(r)
. (F.42)

Equations (F.37)–(F.42) constitute the ‘Quantal Newtonian’ first law in the pres-
ence of both an external electrostatic and magnetostatic fields.
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Appendix G
Analytical Expressions for the Ground
State Properties of the Hooke’s Atom
in a Magnetic Field

In this appendix we give the Q–DFT analytical and semi-analytical expressions [1]
for the mapping from a ground state of the interacting two-dimensional Hooke’s
atom in a magnetic field [2] as described by the wave function of (9.70) to one of
noninteracting fermions in a ground state with equivalent density ρ(r) and physical
current density j(r). The expressions derived are for an effective oscillator frequency
ω̃ = 1.

Electron density ρ(r)

ρ(r) = 2πC2e−r2
{√

πe− 1
2 r

2

[(
1 + r2

)
I0

(
1

2
r2
)

+ r2 I1

(
1

2
r2
)]

+ (2 + r2)

}
,

(G.1)
withC2 = 1/π2(3+√

2π), and where I0(x) and I1(x) are the zeroth- and first-order
modified Bessel functions Iν(x) [3] with

Iν(x) =
∞∑

n=0

1

n!�(n + ν + 1)

(
1

2
x

)2n+ν

(G.2)

and �(x) the Gamma function [3]. The asymptotic structure of ρ(r) near the
nucleus is

ρ(r) ∼
r→0

2

π(3 + √
2π)

{
2 + √

π −
(
1 + 1

2

√
π

)
r2 − 1

16

√
πr4 + · · ·

}
, (G.3)

with

ρ(0) = 0.436132 a.u. (G.4)
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Employing the asymptotic behavior of the Bessel functions:

I0(z) ∼
r→∞

ez√
2π z

∞∑

n=0

(−1)n

(2z)n
�(n + 1

2 )

n!�(−n + 1
2 )

+ e−z

√
2π z

∞∑

n=0

i

(2z)n
�(n + 1

2 )

n!�(−n + 1
2 )

,

(G.5)
and

I1(z) ∼
r→∞

ez√
2π z

∞∑

n=0

(−1)n

(2z)n
�(n + 3

2 )

n!�(−n + 3
2 )

− e−z

√
2π z

∞∑

n=0

i

(2z)n
�(n + 3

2 )

n!�(−n + 3
2 )

,

(G.6)
the asymptotic structure of the density in the classically forbidden region is

ρ(r) ∼
r→∞

2

π(3 + √
2π)

e−r2
{
r2 + 2r + 2 + 1

2r
+ 1

16r3
+ · · ·

}
. (G.7)

Pair-correlation density g(rr′)

g(rr′) = 2C2(1 + R)2e−(r2+r ′2)

ρ(r)
(G.8)

where R = |r − r′|.
Single-particle density matrix γ (rr′)

γ (rr′) = 2C2e− 1
2 (r2+r ′2)

∫
(1 + |r − y|)(1 + |r′ − y|)dy (G.9)

Dirac Density matrix γs(rr′)

γs = √
ρ(r)ρ(r′) (G.10)

Electron-interaction field Eee(r)

Eee(r) = 2π
3
2C2

ρ(r)
r
r
e− 3

2 r
2

[
2I 1

2

(
1

2
r2
)

+ 3r

2
I0

(
1

2
r2
)

− r

2
I1

(
1

2
r2
)]

(G.11)

Electron-interaction energy Eee

Eee = 4π
5
2C2

∫ ∞

0
r2e− 3

2 r
2

[
2I 1

2

(
1

2
r2
)

+ 3r

2
I0

(
1

2
r2
)

− r

2
I1

(
1

2
r2
)]

dr

(G.12)

= 4π
5
2C2

[√
2π

4
+ 1

2

]
= 0.818401 a.u. (G.13)
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Kinetic energy tensor tαβ(r; γ )

tαβ(r; γ ) = rαrβ
r2

f (r) + δαβk(r), (G.14)

where

f (r) = πC2e−r2
{
r4 + 1 − 1 − e−r2

r2
+ √

πe−r2/2
[
r4 I0

(
1

2
r2
)

+
(
r4 − r2

)
I1

(
1

2
r2
)]}

,

(G.15)
and

k(r) = πC2e−r2 (1 − e−r2)

2r2
. (G.16)

Kinetic energy tensor ts,αβ(r; γs)

ts,αβ(r; γs) = rαrβ
r2

h(r), (G.17)

where

h(r) = 1

8ρ(r)

(
∂ρ

∂r

)2

. (G.18)

Kinetic ‘force’ zα(r; γ )

zα(r; [γ ]) = 2
∑

β

∇β tαβ(r; [γ ]) = 2rα
r

[
∂( f (r) + k(r))

∂r
+ f (r)

r

]

= 2πC2rα
r

e−r2
{[

−2r5 + 5r3 − 2r + 2(1 − e−r2 )

r

]

+√
πe−r2/2

[
(−2r5 + 4r3)I0

(
r2

2

)
+ (−2r5 + 6r3 − r)I1

(
r2

2

)]}
. (G.19)

z(r) ∼
r→∞ 2πC2e−r2

(
−2r5 − 4r4 + 5r3 + 11r2 − 2r − 33

8

+2

r
− 15

33r2
+ 6

r3

)
(G.20)

z(r) ∼
r→0

2πC2
[(

4 + 15

4

√
π

)
r3 −

(
17

3
− 49

8

√
π

)
r5
]

. (G.21)
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Kinetic ‘force’ zs,α(r; γs)

zs,α(r; [γs ]) = 2
∑

β

∇β tαβ(r; [γs ]) = rα
2rρ

(
∂ρ

∂r

)[
− 1

2ρ

(
∂ρ

∂r

)2

+ ∂2ρ

∂r2
+ 1

2r

(
∂ρ

∂r

)]
.

(G.22)

zs(r) ∼
r→∞ 2πc2e−r2

(
−2r5 − 4r4 + 5r3 + 11r2 − 2r − 33

8

+5

r
− 15

33r2
− 5

r3

)
. (G.23)

zs(r) ∼
r→0

0.33r + 0.40r3 − 0.76r5. (G.24)

Kinetic Energy T

T = 2π2C2[3
2

+ 3

8

√
2π ] = 0.886199 a.u. (G.25)

External Energy Eext

Eext =
∫

ρ(r)
r2

2
dr = 2π2C2

[
2 + 5

√
2π

8

]
= 1.295400 a.u. (G.26)

Electron-interaction potential Wee(r)

Wee(r) = −2π
3
2C2

∫ r

∞
1

ρ(y)
e− 3

2 y
2

[
2I 1

2

(
y2

2

)
+ 3

2
y I0(

y2

2
) − 1

2
y I1

(
y2

2

)]
dy.

(G.27)

Wee(0) = 1.217891 a.u. (G.28)

Hartree potential WH (r)

In two-dimensions the term 1/|r − r′| can be rewritten as

1

|r − r′| = 4

π

∫ ∞

0

{
1

2
I0(kr<)K0(kr>) +

∞∑

m=1

cos[m(φ − φ′)]Im(kr<)Km(kr>)

}

= 4

π

{
1

2r>
K

(
r2<
r2>

)
+

∞∑

m=1

√
π�

(
m + 1

2

)(
r2<
r2>

)m

cos[m(φ − φ′)]

× 2F1

(
1

2
,
1

2
+ m,m + 1; r

2
<

r2>

)
1

2r>�(m + 1)

}
, (G.29)

where r<(r>) is the smaller (larger)of r and r ′, Ii and Ki are the modified Bessel
functions of i − th order, 2F1(a, b, c; x) is the Hypergeometric function [3], and
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K (x) is the complete elliptic integral of the first kind [3]

K (k) =
∫ 1

0
dt[(1 − t2)(1 − kt2)]−1/2 = π

2
2F1

(
1

2
,
1

2
, 1; k

)
. (G.30)

Using the above equations and performing the angular integral, we obtain

WH (r) =
∫

ρ(r′)
|r − r′|dr′

= 4
∫ r

0
dr ′ r

′

r
ρ(r ′)K

(
r ′2

r2

)
+ 4

∫ ∞

r
dr ′ρ(r ′)K

(
r2

r ′2

)
. (G.31)

Expectations

〈r〉 =
∫

ρ(r)rdr

= 4π2C2
∫

e−r2
{
2r2 + r4 + √

πe− r2
2

[
(r2 + r4)I0

(
1

2
r2
)

+ r4 I1

(
1

2
r2
)]}

dr

= 4π2C2

[
7

8

√
π +

√
6π

18

(
2F1

(
3

4
,
5

4
, 1,

1

9

)
+ 2F1

(
5

4
,
7

4
, 1,

1

9

))
+ 5

√
6π

216
2F1

(
7

4
,
9

4
, 2,

1

9

)]

= 2.037 89 a.u. (G.32)

〈r2〉 =
∫

ρ(r)r2dr

= 4π2C2
∫

e−r2
{
2r3 + r5 + √

πe− r2
2

[
(r3 + r5)I0

(
1

2
r2
)

+ r5 I1

(
1

2
r2
)]}

dr

= 4π2C2
[
2 + 3

√
π

8
√
2

+ 19
√

π

32
√
2

+ 9
√

π

32
√
2

]

= 4π2C2

[
2 + 5

√
2π

8

]

= 2.590 8 a.u. (G.33)

〈 1
r
〉 =

∫
ρ(r)

1

r
dr

= 4π2C2
∫

e−r2
{
2 + r2 + √

πe− r2
2

[
(1 + r2)I0

(
1

2
r2
)

+ r2 I1

(
1

2
r2
)]}

dr

= 4π2C2[ 5
4

√
π +

√
6

6
π2F1(

1

4
,
3

4
, 1,

1

9
) +

√
6

18
π2F1(

3

4
,
5

4
, 1,

1

9
) +

√
6

72
π2F1(

5

4
,
7

4
, 2,

1

9
)]

= 2.996 87 a.u. (G.34)
〈δ(r)〉 = ρ(0) = 2πC2[2 + √

π] = 0.436132 a.u. (G.35)
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Appendix H
Derivation of the Kinetic-Energy-Density
Tensor for the Ground State of Hooke’s
Atom in a Magnetic Field

In this appendix we provide an alternate derivation [1, 2] to that given in Appendix
D for the kinetic-energy-density tensor tαβ[r; γ ]. We consider here the case of the
ground state ofHooke’s atom in amagnetic field forwhich the expression for tαβ [r; γ ]
is given in Appendix G, (G.14)–(G.16). The tensor tαβ[r; γ ] is defined as

tαβ[r; γ ] = 1

4

[
∂2

∂rpα∂rqβ
+ ∂2

∂rpβ∂rqα

]
γ (rprq)

∣∣∣∣
rp=rq=r

(H.1)

where the single-particle density matrix is

γ (rprq) = 2
∫

ψ�(rpr2)ψ(rqr2)dr2. (H.2)

The spatial part of the singlet ground state wave function (see (9.70)) is

ψ(rpr2) = C(1 + |r2 − rp|)e− 1
2 (r2p+r22 ), (H.3)

with C = 1/π2(3 + √
2π). Due to the symmetry of rq and rp in γ (rprq) and the

fact that the wave function is real, the tensor of (H.1) reduces to

tαβ[r; γ ] =
∫

∂ψ(rpr2)
∂rpα

∂ψ(rqr2)
∂rqβ

dr2

∣∣∣∣
rp=rq=r

. (H.4)

Substituting the wavefunction of (H.3) into (H.4) and employing the relations

∂|r2 − rp|
∂rpα

= − (r2α − rpα)

|r2 − rp| , (H.5)
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and

∂

∂rpα
e− 1

2 (r2p+r22 ) = −rpαe
− 1

2 (r2p+r22 ), (H.6)

the resulting tαβ[r; γ ] is a sum of 4 terms listed below:

Term 1 = C2e−r2
∫

(r2α − rα)(r2β − rβ)

|r2 − r|2 e−r22 dr2, (H.7)

Term 2 = C2e−r2rβ

∫
(r2α − rα)

|r2 − r| (1 + |r2 − r|)e−r22 dr2, (H.8)

Term 3 = C2e−r2rα

∫
(r2β − rβ)

|r2 − r| (1 + |r2 − r|)e−r22 dr2, (H.9)

Term 4 = C2e−r2rαrβ

∫
(1 + |r2 − r|)2e−r22 dr2, (H.10)

= 1

2
rαrβρ(r), (H.11)

where ρ(r) is the electron density given in (G.1).
Next in (H.7) transform the coordinates to r3 = r2 − r. Then

Term 1 = C2e−r2
∫

r3αr3β
r23

e−(r2+r23+2r·r3)dr3. (H.12)

Since

r3αr3βe
−2r·r3 = 1

4

∂2

∂rα∂rβ
e−2r·r3 , (H.13)

then

Term 1 = 2π

4
C2e−2r2 ∂2

∂rα∂rβ

∫ ∞

0

1

r3
e−r23 I0(2rr3)dr3, (H.14)

where

∫ 2π

0
e−2rr3 cos θ3dθ3 = 2π I0(2rr3), (H.15)

and I0(r) the zeroth-order Bessel function. To eliminate the singularity at r3 = 0,
employ

∂

∂rβ
I0(2rr3) = 2rβr3

r
I1(2rr3), (H.16)
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where I1(r) is the first-order Bessel function. Thus, we have

Term 1 = πC2e−2r2 ∂

∂rα

[
rβ
r

∫ ∞

0
e−r23 I1(2rr3)dr3

]
(H.17)

= πC2e−2r2 ∂

∂rα

[
rβ f1(r)

]
, (H.18)

where

f1(r) = er
2 − 1

2r2
. (H.19)

Now for a general function f (r),

∂

∂rα
[rβ f (r)] = δαβ f (r) + rαrβ

r

∂ f (r)

∂r
. (H.20)

Thus, (H.18) is

Term 1 = δαβ[πC2e−2r2 f1(r)] + rαrβ
r

[
πC2e−2r2 ∂ f1(r)

∂r

]
. (H.21)

The steps to obtain Terms 2 and 3, which are identical, are the same as described
above: apply the coordinate transformation, employ r3β exp(−2r · r3) = −( 12 )∂[exp−2r·r3]/∂rβ , and rβ∂ f (r)/∂rα = (rαrβ/r)∂ f (r)/∂r where f (r) is any function
of r , to obtain

Term (2 + 3) = −(rαrβ
r

)[
2πC2e−2r2 ∂ f2(r)

∂r

]
, (H.22)

where

f2(r) = 1

2
er

2 +
√

π

2
e

1
2 r

2
I0(

r2

2
). (H.23)

On summing (H.11), (H.21) and (H.22), one obtains (G.14) for tαβ(r; γ ).
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Appendix I
Derivation of the Pair–Correlation Density
in the Local Density Approximation
for Exchange

In this appendix we derive [1] the analytical expression for the pair–correlation
density gLDA

x {rr′; ρ(r)} in the local density approximation (LDA) for exchange by
the method of Kirzhnits [2].

For a Slater determinant 
{φi } of orbitals φi (r), the pair–correlation density
gx(rr′) = ρ(r′) + ρx (rr′). Both the density ρ(r) and the Fermi hole charge ρx (rr′)
are defined in terms of the idempotent Dirac density matrix γs(rr′), which with the
spin index suppressed is

γs(rr′) =
∑

j :ε j≤εF

φ∗
j (r)φ j (r′). (I.1)

Thus, ρ(r) = γs(rr), and

ρx (rr′) = −|γs(rr′)|2/2ρ(r). (I.2)

The orbitals φ j (r) are in turn solutions of the S system type differential equation:

[
−1

2
∇2 + vs(r)

]
φi (r) = εiφi (r), (I.3)

with vs(r) a local multiplicative operator. Therefore, to obtain gLDA
x {rr′; ρ(r)}, one

must expand the density matrix γs(rr′) in gradients of the density about the uniform
electron gas result.

The density matrix is first written in terms of the Fermi energy εF as

γs(rr′) =
∞∑

j=1

�(εF − ε j )φ
∗
j (r)φ j (r′)

=
∞∑

j=1

�(εF − t̂ − v̂s)φ
∗
j (r)φ j (r′), (I.4)
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where�(x) is the step function, and t̂ = − 1
2∇2 the kinetic energy operator. Defining

the operator T̂F (r) = 1
2k

2
F (r) for the local Fermi energy TF (r) = εF − vs(r), the

density matrix can then be written as

γs(rr′) = �(T̂F − t̂)
∞∑

j=1

φ∗
j (r)φ j (r′). (I.5)

Employing the completeness of the single–particle orbitals φ j (r) i.e.
∑∞

j=1 φ j (r)φ∗
j

(r′) = δ(r − r′) together with the representation of the delta function δ(r − r′) in
terms of plane–wave orbitals one obtains

γs(rr′) = 2

(2π)3

∫
dk�(T̂F − t̂)eik·re−ik·r′

, (I.6)

where the factor of 2 is for the spin. The step function �(T̂F − t̂) ≡ �(k̂2F − k̂2) can
simply be written as f (â + b̂), where f = �, â = −k̂2 = ∇2, and b̂ = k2F (r). Thus
(I.6) becomes

γs(rr′) = 2

(2π)3

∫
dk f (â + b̂)eik·re−ik·r′

. (I.7)

This leads to a mathematical problem of the following general nature: given the
eigenfunction |a〉 of an operator â, where â|a〉 = a|a〉with |a〉 = eik·r and a = −k2,
how can one compute the quantity f (â + b̂)|a〉 if the operator â does not commute
with b̂ : [â, b̂] �= 0. To tackle this problem, f (â + b̂)|a〉 is rewritten in terms of its
Laplace (or Fourier) transformation as

f (â + b̂)|a〉 =
∫

dτ F(τ )Ê(τ )|a〉, (I.8)

where τ is a real (or imaginary) parameter, and Ê(τ ) = eτ(â+b̂). Since â does not
commute with b̂, the operator Ê(τ ) does not simply equal to (eτ âeτ b̂) nor (eτ b̂eτ â).
Thus, a supplementary operator K̂ is introduced such that Ê(τ ) can be put into
normal form, which means a product in which all k̂ operators are to the right of the
r̂ operators, so that the k̂ and r̂ operators can be treated as classical variables:

Ê(τ ) = eτ(â+b̂) = eτ b̂ K̂ (τ )eτ â . (I.9)

Thus

Ê(τ )|a〉 = eτ b̂ K̂ (τ )eτ â|a〉 = eτ b̂ K̂ (τ )eτa|a〉, (I.10)
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and consequently

Ê(τ )|a〉 = eτ(a+b̂) K̂ (τ )|a〉. (I.11)

Note that the eigenvalue a has now replaced the operator â in the argument of the
exponential function, and consequently it now commutes with the operator b̂ such
that the dependence on the commutators [â, b̂] appears only in the operator K̂ (τ ).

Now in order to determine K̂ (τ ), one must first determine an expression for the
differential equation of K̂ (τ ) by differentiating both sides of (I.9) with respect to τ .
One then obtains

∂ K̂

∂τ
= e−τ b̂âeτ b̂ K̂ − K̂ â. (I.12)

The expansion of K̂ in powers of τ is obtained by expanding both of the exponential
functions of (I.12) in a Taylor series. This results in the expansion

e−τ b̂âeτ b̂ =
(
1 − τ b̂ + 1

2!τ
2b̂2 − 1

3!τ
3b̂3 + · · ·

)

â

(
1 + τ b̂ + 1

2!τ
2b̂2 + 1

3!τ
3b̂3 + · · ·

)

= â − τ
[
b̂, â

]
+ τ 2

2!
[
b̂,

[
b̂, â

]]
− · · · (I.13)

In general form

e−τ b̂âeτ b̂ =
∞∑

n=0

(−τ)n

n!
[
b̂,

[
b̂,

[
b̂, . . . ,

[
b̂, â

]]
. . .

]]
n times. (I.14)

By substituting (I.13) into (I.12) one obtains

∂ K̂

∂τ
=

(
â − τ

[
b̂, â

]
+ τ 2

2!
[
b̂,

[
b̂, â

]]
− · · ·

)
K̂ − K̂ â. (I.15)

The solution K̂ (τ ) of this differential equation is determined via iterationwhereby the
(i+1)th order solution of K̂ is obtained from the i th order solution by substituting the
latter into the right hand side of (I.15), and then integrating the differential equation.
Thus K̂i+1 = ∫

(∂ K̂i+1/∂τ)dτ = ∫
ÔKidτ , where Ô K̂i is the entire right hand side

of (I.15) with K̂i substituted in it. The zeroth order solution of K̂ implies that there
is no dependence on the commutator [b̂, â], and thus it is determined by substituting
τ = 0 into (I.9), which results in: K̂0 = 1. The first order solution of K̂ which implies
that only the commutator [b̂, â] is considered to be non-zero, is then obtained as the
integral over

∫
dτ of (I.12) which is then
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∂ K̂1

∂τ
=

(
â − τ

[
b̂, â

])
K̂0 − K̂0â

= −τ
[
b̂, â

]
, (I.16)

and which results in

K̂1(τ ) = 1 − 1

2
τ 2

[
b̂, â

]
. (I.17)

Then by using (I.8), (I.11), and (I.17) one obtains

f
(
â + b̂

)
|a〉 =

(∫
dτ F(τ )e

τ
(
a+b̂

))
|a〉

− 1

2

(∫
dτ F(τ )τ 2e

τ
(
a+b̂

)) [
b̂, â

]
|a〉. (I.18)

Since the parameter τ acts as an operator for differentiating the function f with
respect to its argument, the right hand side of (I.18) can be rewritten as

f
(
â + b̂

)
|a〉 = f

(
a + b̂

)
|a〉 − 1

2
f ′′

(
a + b̂

) [
b̂, â

]
|a〉, (I.19)

where

f
(
a + b̂

)
= �

(
k2F − k2

)
,

f ′
(
a + b̂

)
= δ

(
k2F − k2

)
,

and f ′′
(
a + b̂

)
= δ′ (k2F − k2

)
. (I.20)

The commutator [b̂, â] acting on |a〉 in the second term of the right hand side of
(I.19), i.e. [b̂, â]|a〉 = −[k2F , k̂2]eik·r, is evaluated by employing the relationship

k̂ = 1
i ∇ so that

[
b̂, â

]
|a〉 = − (∇2k2F + 2i∇k2F · k

)
eik·r. (I.21)

Since we are interested in determining the density matrix γs(rr′) only to lowest order
in ∇, we drop the first term in the parentheses. Then by using (I.7), (I.19)–(I.21) we
obtain

γs(rr′)

= 2

(2π)3

∫
dk

(
�(k2F − k2) + 1

2
δ′(k2F − k2)2i∇k2F · k

)
eik·(r−[r′). (I.22)
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The integral of this equation can easily be solved by shifting the origin of the position
vector r′ to the tip of the position vector r, such that R = r′ − r, and then choosing
the direction of R along the z-axis such that k · (r − r′) = −kR cos θ . The first term
of the integral of (I.22) is evaluated in a straight forward manner, and results in

2

(2π)3

∫
dk�(k2F − k2)eik·(r−r′) = k3F j1(kF R)

π2kF R
, (I.23)

where

j1(x) = sin x − x cos x

x2
(I.24)

is the first–order spherical Bessel function. The second term of the integral of (I.22)
is evaluated by partial integration and by rewriting

δ′(k2F − k2) = − 1

2k

∂

∂k
δ(k2F − k2) (I.25)

in order to first eliminate the first derivative of the delta function. Then by employing
the relation

δ[ f (x)] =
∑

i

δ(x − xi )

| f ′(xi )| , (I.26)

where f (xi ) = 0, f ′(xi ) �= 0, we have

δ(k2F − k2) = δ(k − kF )

2kF
+ δ(k + kF )

2kF
. (I.27)

The second delta function on the right does not contribute to the integral so that
finally one obtains

2

(2π)3

∫
dk

(
1

2
δ′(k2F − k2)2i∇k2F · k

)
eik·(r−r′)

= (∇k2F · R) sin(kF R)/4π2. (I.28)

Thus, to first order in ∇, the Dirac density matrix is

γs(rr′) = k3F
π2

j1(kF R)

kF R
+ 1

4π2
(∇k2F · R̂) sin(kF R), (I.29)

with R̂ = R/R. It is thus evident from (I.29) that the density ρ(r) = γs(rr) is of
O(∇2) to lowest order in the gradients of the density. Since j1(x) ∼ x/3 for small
x , then to O(∇2) the density ρ(r) and local Fermi momentum kF (r) are related by
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the first term of (I.29), so that ρ(r) = k3F (r)/3π2 which is the uniform electron gas
relationship.

Finally by considering the expansions of γs(rr′) and ρ(r′) to terms of 0(∇)

assumed valid locally, one obtains from (I.28), (I.2) and (I.29) the expression for
the LDA pair–correlation density as

gLDA
x {rr′; ρ(r)} = k3F (r′)

3π2
+ ρLDA

x {rr′; ρ(r)} (I.30)

where the Fermi hole in the LDA is given by

ρLDA
x

{
rr′; ρ(r)

}

= −ρ(r)
2

[
9 j21 (kF R)

(kF R)2
+ 9 j0(kF R) j1(kF R)

2k3F
(R̂ · ∇k2F )

]
, (I.31)

and where

j0(x) = sin x

x
(I.32)

is the zeroth–order spherical Bessel function.
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