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'Tis not nobler in the mind to suffer

The slings and arrows of outrageous fortune,
'Tis nobler, and ennobling,

To get off the ground and fight like hell.



In Memoriam
My beloved mother and father,
Hema and Harbans Lal



Preface to the Second Edition

The idea of writing a second edition within slightly more than a decade of the
publication of the first is a consequence of the considerable new understandings of
Quantal Density Functional Theory (Q—-DFT) achieved over this period. But there
have also been further insights into Schrddinger theory, and to the significance
of the first theorems of Hohenberg-Kohn and Runge-Gross density functional
theory (DFT). The book is still comprised of the three principal components: a
description of Schrodinger theory from the new perspective of the ‘Quantal
Newtonian’ second and first laws for the individual electron; traditional
Hohenberg-Kohn, Runge-Gross, and Kohn-Sham density functional theory; and Q-
DFT together with applications to explicate the theory, and the physical insights it
provides into traditional DFT, Slater theory, and local effective potential energy
theory in general. However, each component has been revised to incorporate the
new understandings. Then there is the new material on the extension of Q-DFT to
the added presence of an external magnetostatic field. It was the attempt to extend
the theory to the presence of magnetic fields that forced the reexamination of both
traditional DFT and Q-DFT, thereby leading to many of the new insights. The
extension to external magnetic fields required a critical reevaluation of the existing
literature. This in turn led to the proof of the corresponding Hohenberg-Kohn
theorems for uniform magnetostatic fields, one that is distinct from but in the
rigorous sense of the original. The Q—DFT in a magnetic field is then explicated by
an example in two-dimensional space. Working on the second edition has been akin
to writing a new book.

The pedagogical nature of the book has been maintained. Most of the new
derivations are once again given in detail. And as a result of the new understand-
ings, it has been possible to present Q—DFT for arbitrary external electromagnetic
fields whether they be time-dependent or time-independent in a most general and
comprehensive manner. The common thread of the ‘Quantal Newtonian’ laws for
the individual electron is now weaved throughout the book.

Xioayin Pan has been a principal contributor to the new developments. Our
collaboration has been productive, and working with Xiaoyin has been a pleasure.
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X Preface to the Second Edition

Together with Doug Achan, a former graduate student, and Lou Massa, a friend and
colleague, new physics of the Wigner low-density high-electron correlation regime
of a nonuniform density system has been discovered. Thus, an additional charac-
terization of the Wigner regime is proposed. The example studied also provides a
contrast to the high-density low-electron correlation regime of atoms and
molecules.

Thanks are also due to Xiaoyin and Lou for their critical comments on various
chapters.

Once again I wish to acknowledge Brooklyn College for the support and free-
dom afforded to me to pursue the research of my interest.

Finally, with much gratitude, I wish to thank my wife Catherine for typing the
book despite the travails of life.

Brooklyn, NY, USA Viraht Sahni



Preface to the First Edition

The idea underlying this book is to introduce the reader to a new local effective
potential energy theory of electronic structure that I refer to as Quantal Density
Functional Theory (Q-DFT). It is addressed to graduate students who have had a
one year course on Quantum Mechanics, and to researchers in the field of electronic
structure. It is pedagogical, with detailed proofs, and many figures to explain the
physics. The theory is based on the first Hohenberg—Kohn theorem, and is distinct
from Kohn—Sham density functional theory. No prior understanding of traditional
density functional theory is required as the theorems of Hohenberg and Kohn, and
Kohn—-Sham theory, and their extension to time-dependent phenomenon are
described. There are other excellent texts on traditional density functional theory,
and as such I have kept the overlap with the material in these texts to a minimum. It
is also possible via Q-DFT to provide a rigorous physical interpretation of Kohn—
Sham theory and other local effective potential energy theories such as Slater theory
and the Optimized Potential Method. A second component to the book is therefore
the description and the explanation of the physics of these theories.

My interest in density functional theory began in the early 1970s simultaneously
with my work on metal surface physics. The origins of Q-DFT thus lie in my
attempts to understand the physics underlying the formal framework of Kohn—
Sham density functional theory and of various approximations within it in the
context of the nonuniform electron gas at a metal surface. My work with Manoj
Harbola [1, 2] constitutes the ideas seminal to Q-DFT. The history of how these
ideas developed, and of their evolution to Q-DFT, is a classic example of how
science works. This is not the place to describe the many twists and turns in the path
to the final version of the theory. However, together with a further understanding
[3] noted, credit must also be afforded Andrew Holas and Norman March whose
work [4] helped congeal and close the circle of ideas.

I wish to gratefully acknowledge my graduate students Cheng Quinn Ma, Abdel
Mohammed, Manoj Harbola, Marlina Slamet, Alexander Solomatin, Zhixin Qian,
and Xiaoyin Pan whose creative work has contributed both directly and indirectly to
the writing of this book.
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xii Preface to the First Edition

Then there is my friend and colleague Lou Massa whose enthusiasm for the
subject matter of the book and whose consistent support and critique during its
writing have proved invaluable.

Brooklyn College has been home, and I thank the College for its support of my
research.

The book was typed by Suzanne Whiter, throughout with a smile. To her my
heartfelt thanks.

To my wife, Catherine, I owe an immense debt of gratitude. She has suffered
happily over the years through the many referee reports of my papers. I thank her
for being there with me every step of the way.

Brooklyn, NY, USA Viraht Sahni
October 2003
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Chapter 1
Introduction

Abstract The introductory chapter provides a brief description of Quantal density
functional theory (Q-DFT), a physical local effective potential energy theory of the
electronic structure of matter. The theory is based on a more recent perspective of
the Schrodinger theory of electrons. This is a perspective of the individual electron
in a sea of electrons in the presence of external fields. The corresponding equation
of motion is described by the ‘Quantal Newtonian’ second law for each electron, the
first law being a special case for the description of stationary state systems. Q-DFT
is also based on a further understanding of the first Hohenberg-Kohn theorem of
density functional theory, and the concept derived therefrom of the properties that
constitute the basic variables of quantum mechanics. The Introduction is a descrip-
tion of the forthcoming chapters in the context of their relationship to Q-DFT and to
each other: Schrodinger theory from the new perspective; Q—DFT, the correspond-
ing ‘Quantal Newtonian’ laws, and its application to model and realistic systems; the
rigorous generalization of the Hohenberg-Kohn theorems to the added presence of
an external uniform magnetostatic field; the subsequent generalization of Q—-DFT to
such an external field; the Hohenberg-Kohn, Runge-Gross and Kohn-Sham density
functional theories; the further insights into the fundamental theorems of density
functional theory via density preserving unitary transformations and corollaries; the
physical interpretation via Q-DFT of the energy and action functionals and cor-
responding functional derivatives of Kohn-Sham theory, and of other aspects of
traditional density functional and other local effective potential theories.

Introduction

Since the publication in 2004 of the original edition of Quantal Density Functional
Theory [1] (referred to now as QDFTI), there has been a significant evolution in the
understanding and development of the theory (Q—DFT). This in turn has arisen from
a deeper understanding of the Schrodinger theory of electrons in external fields from
the perspective of the properties of the individual electron in the sea of electrons. This
perspective, based on the ‘Quantal Newtonian’ second and first laws for each electron,
differs from that of traditional treatises on quantum mechanics. It is one that is both
more tangible and insightful. Thus, it is my sense that Schrodinger theory taught
from this perspective would be more efficacious in explaining the subject matter.
There has also been a further appreciation of the proof and implications of the first

© Springer-Verlag Berlin Heidelberg 2016 1
V. Sahni, Quantal Density Functional Theory, DOI 10.1007/978-3-662-49842-2_1



2 1 Introduction

Hohenberg-Kohn [2] theorem. These insights too are not part of the literature on
traditional density functional theory (DFT). A significant consequence of these new
understandings has been the generalization [3], in the rigorous sense of the original
proofs, of the Hohenberg-Kohn theorems to the added presence of an external uniform
magnetostatic field. All the new understandings within Schrodinger and Hohenberg-
Kohn theories have contributed to the further development of Q-DFT. The focus
of ODFTI was the theoretical framework of Q-DFT. Additionally, the rigorous
physical interpretation of Kohn-Sham [4] and Slater [5] theories, as well as physical
insights into local effective potential energy theory in general, as arrived at via Q—-DFT
were described. Approximation methods within Q-DFT and various applications
are described in Quantal Density Functional Theory II: Approximation Methods
and Applications [6] (referred to now as QDFT2). The focus on the theoretical
underpinnings of Q-DFT and the overall structure of QDFTI is maintained in this
second edition. However, although there is revision in each chapter, the foundational
chapters on Schrodinger theory, and the traditional DFT of Hohenberg-Kohn and
Runge-Gross [7] have been revised to a considerable degree. Then there are the new
chapters and affiliated appendices on the generalization [3, 8] of the Hohenberg-Kohn
theorems and Q-DFT to the presence of both external electrostatic and magnetostatic
fields.

Quantal density functional theory (Q-DFT) is a local effective potential energy
theory of electronic structure of both ground and excited states. It is based on the
new description of Schrédinger theory, and on the concept of a basic variable of
quantum mechanics, one that originates from the first Hohenberg-Kohn theorem.
The definition of a local effective potential energy theory is the following. Consider
asystem of N electrons in an arbitrary time-dependent external electromagnetic field
F(rt) : E(xt) = —Vou(rt) + O[A(rt)/c]ot, B(rt) = V x A(rt), where v(rt) and
A(rt) are the scalar and vector potentials. This system of interacting particles and
its evolution in time is described by the non-relativistic time-dependent Schrédinger
equation. As noted above, there is a new description [9] of Schrddinger theory based
on the ‘Quantal Newtonian’ second law for each electron [10-12], one that is in
terms of ‘classical’ fields, and their quantal sources which are expectations of Her-
mitian operators. The fields are termed ‘classical’ because as in classical physics
they pervade all space. A basic variable is defined as a gauge invariant quantum-
mechanical property, knowledge of which determines the wave function of the system.
The identification of a property as a basic variable is achieved via the proof of the
one-to-one relationship or bijectivity between the property and the external potential
experienced by the electrons. Q-DFT is a mapping from the interacting system of
electrons described via Schrodinger theory in terms of fields and quantal sources
to one of noninteracting fermions possessing the same basic variable or variables.
The Q-DFT description of the model fermions is thus also in terms of ‘classical’
fields and quantal sources. The model system is referred to as the S system. For the
external field considered, the basic variables are [13] the electronic density p(rf) and
the current density j(rz): there is a one-to-one relationship between {p(r?), j(rt)}
and the external potentials {v(r?), A(r?)} (to within a time-dependent function and
the gradient of a time-dependent scalar function). Within Q—-DFT, it is possible to
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map [14] to a model system of noninteracting fermions possessing the same basic
variable properties of {p(r?), j(r?)}.

For the description of time-dependent Q—-DFT [10-12] in Chap. 3, we will con-
sider as in the first edition, the example of the external time-dependent electric field
F*(rt) = E(rt) = —Vu(rt). In this case, in spite of there being no magnetic
component to the external field, the basic variables are [7] the density p(r¢?) and the
current density j(r?): there is a one-to-one relationship between both p(rf) and j(r?),
and the external potential v(rt) (to within a time-dependent function C(¢)). Within
Q-DFT, it is possible to map to a model system possessing either the same density
p(rt), or one with the same density p(rt) and current density j(r?). The latter map-
ping, such that the model system possesses both the basic variable properties, turns
out to be more advantageous. The equivalent non-conserved total energy E(¢) of the
interacting system is also thereby obtained in each mapping. As the model fermi-
ons are noninteracting, the effective potential energy of each such model fermion
is the same at each instant of time, and can therefore be represented by a local or
multiplicative potential energy operator v,(rt). With the assumption that the model
fermions are subject to the same external field F**'(rt) as that of the interacting
electrons, the operator v(rt) is the sum of the external potential energy operator
v(rt), and an effective local electron-interaction potential energy operator ve.(r?)
that accounts for all the quantum many-body correlations. The corresponding S sys-
tem wave function is a single Slater determinant of the noninteracting fermion spin
orbitals. The mapping to such a model system is what is meant by a local effec-
tive potential energy theory. Thus, Q-DFT is a theory that describes the physics of
mapping from the Schrédinger description of electrons in an external field to one of
noninteracting fermions possessing the same basic variables.

For the mapping from the Schrodinger description of the interacting electrons
to the model system of noninteracting fermions possessing the same basic variable
properties, one must understand how all the many-body correlations of the former
are incorporated into the local electron-interaction potential energy operator ve.(rt)
of the latter. Further, one must understand how the energy E(f) may be expressed
in terms of the model S system properties. The many-body correlations that must
be accounted for by the S system are the following: (a) Electron correlations due to
the Pauli exclusion principle, or equivalently the requirement of antisymmetry of the
wave function (referred to as Pauli correlations), and (b) Electron correlations due to
Coulomb repulsion (referred to as Coulomb correlations). Furthermore, the kinetic
energy and current density of the interacting and model systems differ. These differ-
ences constitute the correlation contributions to these properties, and must also be
accounted for by the model system. We refer to these correlations as (c) Correlation-
Kinetic, and (d) Correlation-Current-Density effects. If, for the example of the exter-
nal field F**'(rt) = £(rt) = —Vu(rt) considered, the mapping is to a model system
such that only the density p(rt) of the interacting and S systems are the same, then
the corresponding Q-DFT equations indicate that all the above correlations must be
accounted for. However, if the mapping is to a model system with the same density
p(rt) and current density j(rt), then within Q-DFT, only those correlations due to
the Pauli exclusion principle, Coulomb repulsion, and Correlation-Kinetic effects
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must be accounted for. The more general statement [ 14] with regard to Q-DFT is the
following. Irrespective of the type of external field F**'(rt) to which the electrons are
subjected, whether it be a time-dependent or time-independent electromagnetic field,
if (a) the model fermions are subject to the same external field, and (b) the mapping
is to a model system which possesses all the basic variable properties, then in each
case the electron correlations that must be accounted for by the model S system are
always only those due to the Pauli principle, Coulomb repulsion, and Correlation-
Kinetic effects. If the mapping to the model system is such that only the density p(rt)
is reproduced, then additional correlations such as the Correlation-Current-Density
and Correlation-Magnetic effects must also be accounted for.

As the Q-DFT description of the mapping to the S system is in terms of fields and
quantal sources, the local electron-interaction potential energy operator ve.(rt) of
the model fermions is provided a rigorously derived physical definition [10-12]. The
potential energy Ve (rt) is the work required at each instant of time to move the model
fermion in the force of a conservative effective field F<T (rt). As the effective field
]:eff(rt) is conservative, the work done is path-independent. The field feff(rt) is a
sum of component fields. These components of F°I (rt), through the quantal sources
that give rise to them, are separately representative of the Pauli and Coulomb corre-
lations, and of the Correlation-Kinetic and Correlation-Current-Density effects. The
sources of the component fields are quantum-mechanical expectations of Hermitian
operators taken with respect to the Schrodinger and S system wave functions. The
non-conserved total energy E(t), and its components are also expressed in integral
virial form in terms of these component fields. In particular, its separate Hartree, Pauli,
Coulomb, and Correlation-Kinetic contributions can be so expressed. Thus, unlike
Schrodinger theory in which the contributions to the energy E(¢) of correlations due
to the Pauli principle and Coulomb repulsion cannot be separated, within Q—-DFT it
is possible to determine the contribution of each type of correlation. Furthermore,
via Q-DFT, it is possible to determine the contribution of electron correlations to
the kinetic energy, viz. the Correlation-Kinetic contribution. Note that all these prop-
erties are determined from the same model S system, and one for which the basic
variables are those of the interacting system.

As in Schrodinger theory, stationary state Q—DFT constitutes a special case of the
time-dependent theory discussed above. For a system of N electrons in an external
electrostatic field F**'(r) = £(r) = —Vu(r), it is proved via the first Hohenberg-
Kohn theorem [2] that the single basic variable is the nondegenerate ground state
density p(r). The identification of this property as the basic variable is via the proof
of bijectivity between the density p(r) and the external potential v(r) (to within a
constant C). The proof is for arbitrary external potential v(r) but for fixed electron
number N. The equations governing the Q—-DFT mapping to an S system with the
equivalent density p(r) are thus the same [15, 16], but with the time parameter and
Correlation-Current Density field absent. The equations are based on the ‘Quantal
Newtonian’ first law [17] which is the stationary state version of the ‘Quantal New-
tonian’ second law [10—12]. Again, with the assumption that the model fermions are
subject to the same external electrostatic field, a mathematically rigorous physical
definition of the corresponding local electron-interaction potential energy ve.(r) in
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which all the many-body effects are incorporated follows. The potential energy ve (r)
is the work done to move a model fermion in the force of a conservative effective
field F*(r). As this field is conservative, the work done is path-independent. The
components of the effective field F° (r) are separately representative of the Pauli
and Coulomb correlations, and Correlation-Kinetic effects. The total energy E, and
in particular its Hartree, Pauli, Coulomb, and Correlation-Kinetic components can
be expressed in integral virial form in terms of these fields. It is reiterated, that the
separate Pauli and Coulomb correlation contributions to the total energy E are for the
same density p(r). (In contrast, in traditional quantum chemistry, a separate Hartree-
Fock theory calculation must be performed. The Hartree-Fock theory density differs
from that of the fully interacting system. Hence, the quantum chemistry definition of
the Coulomb correlation energy as the difference between the total energy E and the
Hartree-Fock theory value, is based on two different densities, and is thereby differ-
ent from that of Q—-DFT.) When the interacting system of electrons is described
within the Hartree-Fock and Hartree theory approximations, the corresponding
Q-DFT mapping [15, 16] to model systems having the same density p(r) is similar,
leading thereby to the Q—DFT of Hartree-Fock and Hartree theory.

There is a further generality to the Q-DFT description of local effective potential
energy theory, or equivalently the mapping from the interacting system of electrons
to one of noninteracting fermions with the same basic variables. Consider a stationary
state of electrons in a nondegenerate ground state with density p(r), total energy E,
and ionization potential /. It is possible via Q-DFT to map this interacting system
of electrons to one of noninteracting fermions in their ground state with the same
basic variable of the density p(r). However, it is also possible to map the interacting
system to a model system of noninteracting fermions in an excifed state with a
different electronic configuration but again possessing the same density p(r). In
each case, the same total energy E is obtained, and in each case, the highest occupied
eigenvalue is the negative of the ionization potential /. What this means, in other
words, is that there exist an infinite number of local effective potentials v,(r) that
can generate the nondegenerate ground state density p(r). Consider next, a system
of electrons in a nondegenerate excited state with density p°(r). Via Q-DFT, it is
possible to map this interacting system of electrons to a system of noninteracting
model fermions in an excited state having the same electronic configuration and
density p°(r). It is, however, also possible to map the excited state of the interacting
electrons to model fermions in a ground state with density p°(r). Itis furthermore also
possible to map to a system of model fermions in other excited states with different
electronic configurations but with the same density p°(r). Once again the total energy
E is obtained, and in each case, the highest occupied eigenvalue corresponds to
the negative of the ionization potential /. Hence, once again, there exist an infinite
number of local effective potentials vy(r) that can generate an excited state density
p°(r). Note that the density p°(r) of the lowest excited state of a given symmetry
different from that of the ground state is also a basic variable [18, 19]. However,
the densities p°(r) of other excited states are not. There is therefore yet a further
generality to Q-DFT with regard to these excited states. It is possible to map to
model fermion systems possessing the same excited state density p°(r) even though
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for these states the density is not a basic variable. In the Q—-DFT mapping, the state
of the S system is thus arbitrary. It is proved that irrespective of the state of the S
system fermions, the contributions due to Pauli and Coulomb correlations to each
local effective potential ve.(r) and to the total energy E remains the same. It is the
Correlation-Kinetic contributions that differ.

The mapping via Q—DFT and the arbitrariness of the state and electronic con-
figuration of the model system, are explicated for the example of the analytically
solvable Hooke’s atom [20]. This is a two-electron atom in which the electrons inter-
act Coulombically, but are confined by an external potential v(r) that is harmonic.
As such this model atom is particularly useful for the study of electron correlations.
A nondegenerate ground state [21] and a first excited singlet state [22, 23] of the
atom are both mapped to model S systems in a ground state having the requisite
densities. (For the mapping from the ground state to an S system in an excited sin-
glet state, and for a discussion of the arbitrariness of the S system wave function,
see ODFT2 and references to the original literature therein.) These applications of
Q-DFT correspond to the high-density low-electron-correlation regime in which
the electron-interaction energy is less than the kinetic energy. An additional applica-
tion [24, 25] to the Wigner low-electron-density high-electron-correlation regime in
which the electron-interaction energy is greater than the kinetic energy is also pro-
vided. A key conclusion of this work is that in addition to a low density and a high
value of the electron-interaction energy, the Wigner high-electron-correlation regime
must now be also characterized by a high Correlation-Kinetic energy value. The new
concepts of ‘quantal compression’ and ‘quantal decompression’ of the kinetic energy
density are then introduced to explain the difference in results between the low- and
high-electron-correlation regimes.

Within time-independent Q—DFT, it is also possible (see Chap. 6) to map a ground
or excited state of a system of electrons in an external field F*'(r) = £(r) =
—Vu(r), to one of noninteracting bosons in their ground state such that the equiv-
alent density, energy, and ionization potential are obtained. We refer to the model
of noninteracting bosons as the B system. The wave function of the B system is the
density amplitude +/p(r). The eigenvalue of the B system differential equation is the
negative of the ionization potential /. Once again, the Q—DFT description of the local
effective potential energy vp(r) of the bosons as well as the system total energy E is
in terms of ‘classical’ fields and quantal sources. For any two-electron system, the
mapping to a B system is the same as the mapping to an S system in its ground state.
Hence, the examples of the mapping from the Hooke’s atom in a ground and excited
state to one of noninteracting fermions as discussed above also constitute examples
of the mappings to the B system. For further examples of the mappings to a B system,
see [26] and @DFT2. The Q-DFT mapping also makes evident that the B system
is a special case of the model S system. Finally, the S and B systems are related by
what is referred to in the literature as the Pauli kinetic energy and the Pauli potential.
The equations of Q—DFT clearly show that these properties are solely due to kinetic
effects.

In this edition, Q-DFT has been extended [8, 14] in Chap.9 to the added pres-
ence of an external magnetostatic field B(r) = V x A(r), with A(r) the vector
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potential. This first requires knowledge of which gauge invariant properties consti-
tute the basic variables in this case. Hence, prior to discussing the Q—-DFT, the first
Hohenberg-Kohn theorem is generalized [3] in Chap. 8 to the presence of a uniform
magnetostatic field B(r) = Bi,. Proofs for spinless electrons for the corresponding
Schrodinger Hamiltonian, and one for electrons with spin for the Schrodinger-Pauli
Hamiltonian, are provided. The proofs of the generalized theorems differ in signif-
icant ways from that of the proof of the original Hohenberg-Kohn theorem. This
is because in the presence of a magnetostatic field, there is a fundamental change
in the physics relating the external potentials and the nondegenerate ground state
wave function, and this difference must be accounted for in the proof. It is proved
that there is a bijective relationship between the external potentials {v(r), A(r)} and
the nondegenerate ground state density p(r) and the current density j(r), so that
the basic variables in this case are {p(r), j(r)}. (In the presence of a magnetostatic
field, the current density j(r) is a sum of its paramagnetic and diamagnetic compo-
nents.) The constraints in this case, in addition to that of fixed electron number N, are
those of either fixed canonical orbital angular momentum L (corresponding to the
Schrodinger Hamiltonian for spinless electrons) or of both fixed canonical orbital L
and spin S angular momentum (for the Schrédinger-Pauli Hamiltonian for electrons
with spin). The Q-DFT mapping from a system of electrons in both an external
electrostatic £(r) = —Vu(r) and magnetostatic B(r) = V x A(r) field to one of
noninteracting fermions with the same {p(r), j(r)} is then described [8, 14]. The
equations of the mapping are based on the corresponding ‘Quantal Newtonian’ first
law [8, 27]. The Q-DFT mapping is then explicated for a quantum dot as represented
by the analytically solvable Hooke’s atom in a magnetic field [28, 29]. The mapping
in this two-dimensional example is from a ground state of the interacting system to a
model fermionic system with the same {p(r), j(r)} also in its ground state. As this is
a two-electron system, the mapping may also be considered as one to noninteracting
bosons in their ground state.

As Q-DFT is a description of the mapping from an interacting system of electrons
as defined by Schrodinger theory to one of noninteracting fermions or bosons with
the same basic variables, it is necessary to first describe [9] Schrodinger theory as in
Chap. 2 from the perspective of ‘classical’ fields and quantal sources. This is a ‘New-
tonian’ description of the electronic system from the perspective of the individual
electron in the sea of electrons subject to an external field. In addition to the external
field, the ‘Quantal Newtonian’ second and first laws describe the infernal field expe-
rienced by each electron, and in the time-dependent case, its response. The internal
field is a sum of fields that are separately representative of electron correlations due
to the Pauli exclusion principle and Coulomb repulsion, the kinetic effects, and the
density. In the added presence of a magnetostatic field, there is yet another contri-
bution to the internal field arising from the magnetic field. As in classical physics,
the internal field summed over all the electrons vanishes, thus leading to a more
insightful derivation [30] of Ehrenfest’s theorem, the quantal equivalent of Newton’s
second law. Examples of Schrodinger theory from the ‘Newtonian’ perspective are
provided via the Hooke’s atom for both a ground and excited state. There are other
facets of Schrodinger theory not described in the literature that emanate from the
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‘Quantal Newtonian’ laws. The external scalar potential is shown to arise from a
curl-free field, and hence its path-independence demonstrated. The laws also show
that the external scalar potential is a known functional of the system wave function
via the quantal sources of the fields. Thus, by replacing the external scalar potential in
the Schrodinger equation by this functional, the intrinsic self-consistent nature of the
Schrodinger equation is exhibited. A new expression for the Schrodinger equation
is obtained in the presence of a magnetic field B(r). When written in self-consistent
form, the magnetic field B(r) now appears explicitly in the Schrédinger equation in
addition to the vector potential A (r) which appears in traditional form. The ‘Quantal
Newtonian’ laws also help explain [31] the relationship between Schrodinger theory
and quantum fluid dynamics.

The concept of a basic variable which is fundamental to all local effective potential
energy theories such as Q-DFT, and Kohn-Sham and Runge-Gross theories, stems
from the first Hohenberg-Kohn theorem. Accordingly, a basic variable is a gauge
invariant property, knowledge to which determines the external potential, hence
the Hamiltonian, and therefore via solution of the Schrodinger equation, the wave
functions of the system. The theorem proves that the nondegenerate ground state
density p(r) is a basic variable. The proof of bijectivity between the density p(r) and
the external scalar potential v(r) is for v-representable densities, i.e. for densities
obtained from wave functions of interacting particle Hamiltonians, and for fixed
electron number N. The theorem thus proves that the wave functions are functionals
of the basic variable: v = [p(r)]. This is the Hohenberg-Kohn path from the
basic variable p(r) to the wave function ). Chapter 4 on the Hohenberg-Kohn (HK)
and Runge-Gross (RG) density functional theories has been revised with a greater
focus on the first theorem of each theory. The first HK theorem is generalized [32]
via a density preserving unitary transformation to show that the wave function 1)
must also be a functional of a gauge function a(R),R = ry,...,ry, ie. ¥ =
Y[p(r), a(R)]. In this manner, the wave function 1) when written as a functional is
gauge variant as it must be. Further, the theorem is valid for each choice of gauge
function a(R). Similarly [32], in the RG time-dependent case, for which a basic
variable is shown to be the density p(rf), the wave function v (f) is a functional
of a gauge function a(R?) : ¥ () = Y[p(rt), a(Rr)]. (The other basic variable is
the current density j(rt)). This then leads to a hierarchy in the theorems in terms
of the gauge functions. For example, when a(Rf) = «, a constant, one obtains
the original HK theorem. When a(Rf) = «(f), one obtains the RG theorem. In
the presence of a magnetic field B(r), it is proved [3] for v-representable densities,
and for fixed electron number N and canonical orbital angular momentum L and
spin angular momentum S, that the basic variables are the nondegenerate ground
state density p(r) and the physical current density j(r). Via a density and current
density preserving unitary transformation, it is shown that the wave function 1 is
the functional ¢ = ¥[p(r), j(r), a(R)]. As each physical system is independent of
the gauge, the choice of the gauge function is arbitrary, and can be chosen so as to
vanish.

The first HK theorem is also fundamental in a different context. As noted above,
the proof of bijectivity between the density p(r) and the external scalar potential v(r)
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is for v-representable densities and for a nondegenerate ground state. The variational
constrained-search generalization of the theorem by Percus-Levy-Lieb [33] (PLL)
to N-representable densities and to degenerate states—the PLL path from p(r) to
1)—is only possible [34] provided one knows a priori that it is the ground state
density p(r) which is the basic variable. That knowledge is gleaned from the first
HK theorem. Without this knowledge, one would not know to constrain the search
to functions that reproduce the density p(r) and not some other property. In a similar
vein, when a magnetostatic field B(r) is present, a PLL constrained-search path and
the generalization to N-representable densities and degenerate states is possible only
following the proof that the basic variables in this case are {p(r), j(r)}.

A corollary to both the first HK and RG theorems is also provided [35] These
corollaries show that it is possible to construct degenerate Hamiltonians [H H (3]
that correspond to different physical systems but yet possess the same density
[p(r); p(rt)]. The physical systems differ by [C; C(¢)], where C is an intrinsic con-
stant and C(¢) an intrinsic temporal function. By intrinsic is meant as being part
of the Hamiltonian. Thus, in such examples, knowledge of the density [p(r); p(r?)]
cannot uniquely determine the physical system. These examples, however, do not
violate the HK and RG theorems because the degenerate Hamiltonians constructed
still differ by a constant C or function C (). The proofs of the HK and RG theorems
are independent of whether [C; C(¢)] are extrinsically additive or intrinsic to the
Hamiltonian.

The final component on traditional density functional theory (DFT) is a description
in Chap. 4 of Kohn-Sham (KS) theory. KS—DFT, the precursor to Q—-DFT, is based on
the two Hohenberg-Kohn theorems. The theory is another but different description of
the mapping from an interacting system of electrons in an external electrostatic field
E(r) = —Vu(r) to one of noninteracting fermions possessing the same basic variable
property of the nondegenerate ground state density p(r). With the wave function a
functional of the density, the energy E—the expectation value of the Hamiltonian—is
a unique functional of the density: E = E[p(r)]. The theory further employs the sec-
ond Hohenberg-Kohn theorem according to which the energy variational principle is
valid for arbitrary variations of the density. Each density variation is for fixed electron
number N. The ground state energy E can then be obtained via the functional E[p(r)]
from the corresponding variational Euler-Lagrange equation for the density p(r). The
energy E is a minimum for the true density p(r). However, instead of solving the
Euler-Lagrange equation, it is assumed that there exists a model system of nonin-
teracting fermions that possesses the same density p(r). As the model fermions are
noninteracting, their kinetic energy can be determined exactly. With the assumption
that the model fermions are subject to the same external field £ (r), the many-body
correlations due to the Pauli exclusion principle, Coulomb repulsion, and the corre-
lation contributions to the kinetic energy—the Correlation-Kinetic effects—are all
subsumed into the KS electron-interaction energy functional EXS[p(r)] component
of the total energy E. The corresponding local electron-interaction potential energy
Ve (1) of the model fermions is then defined (via the Euler-Lagrange equation) as the
functional derivative SEX5[p(r)]/6p(r). Thus, the KS description of the mapping to
the noninteracting system is strictly mathematical in that it is in terms of functionals
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of the density and functional derivatives. KS—DFT does not describe how the various
many-body correlations are incorporated into the functional EXS[p(r)] or its deriva-
tive v, (r). Furthermore, KS—DFT is a ground state theory. As such the KS mapping
can only be from the ground state of the interacting system to the model system also
in its ground state. This is why in the DFT literature it is stated that the local potential
Ve (r) which generates the ground state density p(r) is unique. (Of course, we now
know via Q-DFT that there exist an infinite number of potentials that can generate
the density p(r). In this context, KS—DFT constitutes a special case of Q—DFT,)

For excited states, the HK theorems can be proved [18, 19] only for the lowest
excited state of a given symmetry different from that of the ground state. The proof is
for v-representable densities derived from wave functions that have the excited state
symmetry. Thus, there exists a one-to-one relationship between the density p¢(r) of
such an excited state and the external potential v(r) (to within a constant), and hence
p°(r) is a basic variable. Thus, the excited state wave function ¢° is a functional
of the density p°(r). The corresponding energy variational principle for arbitrary
variations of the density p°(r) for fixed electron number N follows. This is referred
to as the Gunnarsson-Lundqvist theorem [19] as these authors originally proved this
theorem for the special case of spin-density functional theory. The reason why the HK
theorems can be extended to these excited states is that within Schrodinger theory, the
variational principle is also applicable to the lowest excited state of a given symmetry.
In the variational procedure, one restricts the approximate wave functions to have the
given excited-state symmetry, and the lowest state of that symmetry is achieved by
energy minimization. For the other excited states, it is known [18, 36, 37] that there is
no equivalent of the HK theorem. As knowledge of the density p°(r) of these excited
states does not uniquely determine the external potential v(r), the implication is that
there could exist several potentials v(r) for which the corresponding Schrédinger
equations all generate the same excited state density p°(r). For a demonstration of
the satisfaction of the Gunnarsson-Lundqvist theorem, i.e. the uniqueness of the
external potential v(r) for a lowest excited state of density p°(r), and the multiplicity
of the potentials for other excited states, the reader is referred to [19]. It is reiterated
that within Q—-DFT, an infinite number of local potentials that can generate the density
p°(r) of any excited state may be constructed.

The final component of the book is a description of physical insights arrived at
via Q-DFT of Kohn-Sham DFT and Slater theory, and of local effective potential
energy theory in general.

As noted above, the KS-DFT mapping to the S system is intrinsically mathemat-
ical in that it is a description in terms of energy functionals of the density and of
their functional derivatives. How the electron correlations due to the Pauli exclusion
principle, Coulomb repulsion, and Correlation-Kinetic effects are incorporated in
the KS electron-interaction energy functional EXS[p(r)] or its functional derivative
Vee (1) is not described by the theory. As the Q—DFT mapping is physical, and in terms
of quantal sources and fields representative of the various electron correlations, it is
possible to provide as in Chap. 5 a rigorous physical interpretation of the functional
derivative v, (r) and to explain how the various electron correlations are incorporated
into the functional EeKES [p(r)]. For the noninteracting fermions (or bosons) to have a
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component of the total energy and a corresponding local potential energy in which
all the many-body effects are incorporated, there must exist a force field. That field
is identified and defined by Q-DFT. The potential energy is the work done in this
conservative field. The total energy component in turn is defined in integral virial
form in terms of the components of the conservative field or in terms of their quantal
sources. It is further shown [38] via adiabatic coupling-constant perturbation theory,
that what is referred to as KS ‘exchange’ is not solely due to Pauli correlations,
but in fact due to Pauli correlations and lowest-order Correlation-Kinetic effects.
Similarly, KS ‘correlation’ is comprised of Coulomb correlations and second- and
higher-order Correlation-Kinetic effects. In a similar manner, Runge-Gross DFT
and its action functionals and functional derivatives can be provided [12] a rigor-
ous physical interpretation via Q-DFT. The Optimized Potential Method [39], yet
another mathematically based local effective potential theory, is also provided [40] a
physical interpretation. Slater theory [5], the original local effective potential energy
theory, is explained in Chap. 10. As a consequence of the quantal-source and field
perspective, it is shown [41, 42] that the Slater ’potential’ does not represent the
potential energy of an electron.

A consequence of the mapping from the interacting system of electrons to one
of noninteracting fermions or bosons is that the potential energy of these model
fermions exhibits a discontinuity as the electron number passes through an integer
value. In Chap.7 the origin of the discontinuity is explained. It is proved [43] both
analytically and by example via Q-DFT that correlations due to the Pauli exclusion
principle and Coulomb repulsion do not contribute to the discontinuity, and that it is
solely a consequence of Correlation-Kinetic effects.

In Kohn-Sham DFT, the ground state energy functional E[p(r)] is not known
because the component involving the many-body effects EXS[p(r)] is unknown.
Hence, this functional is approximated in application of the theory. (The varia-
tional rigor of the second Hohenberg-Kohn theorem is thus lost because this is
akin to approximating the Hamiltonian.) The most extensively employed approx-
imation within KS-DFT, and one that constitutes the leading order term in most
other approximations, is the local density approximation (LDA). The understanding
of the electron correlations in this approximation according to KS—DFT is as follows.
At each point of the nonuniform density system, the electron correlations are those
of the uniform electron gas, but for a density corresponding to the local value at that
point. In Chap. 10 it is proved [44—47] via Q-DFT that at each point, in addition to
the uniform electron gas correlations, the approximation explicitly accounts for the
nonuniformity of the electron density via a term proportional to the gradient of the
density at that point. Thus, the representation of electron correlations in the LDA is
in fact far more accurate than previously understood to be the case. This constitutes
the principal reason for the accuracy of the approximation.

The Epilogue is Chap. 11. In the previous edition, the epilogue was concluded with
the results of application of Q—DFT to the determination of the asymptotic structure
of the electron-interaction potential energy v..(r) and of its Pauli, Coulomb, and
Correlation-Kinetic contributions in the classically forbidden region of atoms and
metal surfaces. This material with detailed derivations is now given in QDFT2, and
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is thus not repeated in this edition. More recent work [48] on the metal-vacuum
inhomogeneity reaffirms and furthers the original analytical work presented there.

Finally, the choice of nomenclature of Quantal Density Functional Theory based
on prior understandings is as follows. The word ‘quantal’ is employed because
the sources of the fields are expectations taken with respect to the Schrodinger and
noninteracting model system wave functions. Itis a density functional theory because
these wave functions are functionals of the nondegenerate ground state density, and
the interacting Schrodinger system is being mapped to one of noninteracting fermions
with the same density. The present understanding is more general. The fundamental
property of interest is no longer solely the density but rather the basic variables of
quantum mechanics. It is the fact that the wave functions are functionals of the basic
variables that is now employed. As such it is efficacious to map to model systems with
the same basic variables as that of the interacting system. The original terminology
of Quantal Density Functional Theory is, however, still maintained.
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Chapter 2

Schrodinger Theory from the ‘Newtonian’
Perspective of ‘Classical’ Fields Derived
from Quantal Sources

Abstract Schrodinger theory of the electronic structure of matter—N electrons in
the presence of an external time-dependent field—is described from the perspective
of the individual electron. The corresponding equation of motion is expressed via
the ‘Quantal Newtonian’ second law, the first law being a description of the station-
ary state case. This description of Schrodinger theory is ‘Newtonian’ in that it is
in terms of ‘classical’ fields which pervade space, and whose sources are quantum-
mechanical expectations of Hermitian operators taken with respect to the system
wave function. In addition to the external field, each electron experiences an internal
field, the components of which are representative of correlations due to the Pauli
Exclusion Principle and Coulomb repulsion, the kinetic effects, and the density. The
resulting motion of the electron is described by a response field. Ehrenfest’s theorem
is derived by showing the internal field vanishes on summing over all the electrons.
The ‘Newtonian’ perspective is then explicated for both a ground and excited state of
an exactly solvable model. Various facets of quantum mechanics such as the Integral
Virial Theorem, the Harmonic Potential Theorem, the quantum-mechanical ‘hydro-
dynamical’ equations in terms of fields, coalescence constraints, and the asymptotic
structure of the wave function and density are derived. The equivalence of the ‘Quan-
tal Newtonian’ second law and the Euler equation of Quantum Fluid Dynamics is
proved.

Introduction

In order to understand quantal density functional theory (Q-DFT), it is necessary
to first understand Schrodinger theory [1] from the new perspective of the ‘Quantal
Newtonian’ second and first laws, the latter being the time-independent version of the
former. These laws represent the equations of motion of the individual electrons. The
description of these laws is in terms of ‘classical’ fields and their quantal sources [2].
The terminology ‘classical’ is employed in the original sense of fields as pervading
all space, and not necessarily as solutions of Maxwell’s equations. The description
of a quantum system, and of its energy and energy components in terms of fields,
provides a new perspective on Schrodinger theory, one that is physically tangible.
This different perspective, however, still lies within the rubric of the theory’s proba-
bilistic description of a quantum system in that the sources of the fields are quantum
mechanical expectations of Hermitian operators or of complex sums of Hermitian
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operators taken with respect to the system wavefunction. Thus, these fields may be
thought of as being inherent to the quantal system, (just as the solution to Maxwell’s
equations are inherent to an electromagnetic system), with each field, or sum of
fields, contributing to a specific energy component. Another important facet of this
new perspective is that it reveals the intrinsic self-consistent nature of the Schrodinger
equation. This chapter is a description of Schrodinger theory from this ‘Newtonian’
perspective of fields and quantal sources. The equivalence of Schrédinger theory as
described by its field perspective to the corresponding Euler equation of Quantum
Fluid Dynamics (QFD) is also derived.

2.1 Time-Dependent Schrodinger Theory

Consider a system of N electrons in the presence of a time-dependent (TD) exter-
nal field F**'(rt) such that F*'(rt) = —Vu(rt), where v(r?) is the scalar poten-
tial energy of an electron. The TD Schrodinger equation in the Born—Oppenheimer
approximation [3] is (in atomic units: e = A = m = 1)

HOWXr) = NAd (Xt)

2.1)

where W (X7) is the wavefunction, X = X, X», ..., Xy, X = ro, rand o are the spatial
and spin coordinates. The Hamiltonian operator H (r) is a sum of the kinetic energy T,
external potential energy V (1), and electron—interaction potential energy U operators:

HO) =T+ V(@) +U, (2.2)
where
TR o) (2.3)
=2V .
V() = Z v(r;t), (2.4)
and
p-ly | 2.5)
24—l ‘

As electrons are fermions, the wave function W (X¢) is antisymmetric in an inter-
change of the coordinates of the particles including spin, and thus accounts for elec-
tron correlations due to the Pauli exclusion principle. Due to the electron-interaction
term in the Hamiltonian, the wave function also accounts for correlations due to
Coulomb repulsion. Also implicit in the writing of the Hamiltonian is the fact that
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the external potential energy function v(rt) is path-independent at each instant of
time. By providing a rigorous physical interpretation for v(rt) in terms of the system
wave function W (Xt), this will be shown to be the case.

In quantum mechanics, properties of a system are determined in terms of the posi-
tion probability density, or equivalently as expectation values of the corresponding
operators taken with respect to the wavefunction. These expectations are functions of
time since the wavefunction depends upon time, and the spatial and spin coordinates
are integrated out. Thus, with W (X¢) = W (¢), the (non conserved) energy E(¢) is the
expectation

0 .
E@) = (V@) img: [ V@) = (@) [HO [ V©). (2.6)

The energy in turn may be written in terms of its kinetic 7'(¢), external potential
Ecx (1), and electron—interaction potential E..(¢) energy components:

E(t) =T(t) + Ecx(t) + Eee (1), (2.7

where .
T =(V®) | T|V@®), (2.8)
Eeu(t) = (¥(1) | V(1) | W(0)), (2.9)

and .
Eee(t) = (W() | U | ¥(1)). (2.10)

The quantum-mechanical system described by the time-dependent Schrodinger
equation (2.1) can alternately be described from a ‘Newtonian’ perspective. Thus,
there exists a ‘Quantal Newtonian’ second law. A special case is the ‘Quantal New-
tonian’ first law, which in turn is an equivalent description of the time-independent
Schrodinger equation. These ‘Newtonian’ laws are in terms of ‘classical’ fields
derived from quantal sources that are quantum-mechanical expectations of Hermitian
operators or of the complex sum of Hermitian operators taken with respect to the
system wave function. The fields obtained from these sources are separately repre-
sentative of the kinetic, external, and electron-interaction components of the physical
system. Thus, with each property is associated a ‘classical’ field.

‘We next describe the quantal sources.

2.2 Definitions of Quantal Sources

In this section we define the quantum—mechanical sources of the fields intrinsic
to the system. These sources are the electronic density p(rf), the spinless single—
particle density matrix ~y(rr'z), the pair—correlation density g(rr’t) and from it the
Fermi—Coulomb hole charge distribution p (rr'z), and the current density j(rz). The
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current density may also be expressed in terms of the density matrix. The sources

are written both in terms of their probabilistic definitions and as expectations of
Hermitian operators.

2.2.1 Electron Density p(rt)

The electron density p(rt) is N times the probability of an electron being at r at
time f:

p(rt) = NZ/\IJ (ro, XY 1) W (ro, XV 1) aXV T, (2.11)

where XV =x,,x3,...,xy,dX"" ! =dx,,...,dxy, and [dx=)"_ [dr. The
density is also the expectation of the Hermitian density operator

pr) =D 5(r—ry), 2.12)
so that
p(rt) = (V@) | p(r) | W(0)). (2.13)
The total electronic charge is
/p(rt)dr =N. (2.14)

The electron density is a static or local charge distribution in that its structure remains
unchanged as a function of electron position for each instant of time.

2.2.2 Spinless Single—Particle Density Matrix ~(Rr’t)

The spinless single—particle density matrix v (rr’t) is defined as

y(rr't) :NZ/\I’* (ro, XN L)W (Fo, XV 1) aXV (2.15)

and it may also be expressed as the expectation of the density matrix operator 4 (rr’)
(4, 5]:
¥ (rr'e) = (w(@) 14 (') | w (), (2.16)

where . .
4 (rr') =A+iB, 2.17)
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1

A= 3 Z [6(rj—r) Ti(@) + 6 (r; — ') Ty(—a)], (2.18)

~ i ,

B=‘§JZ[5 (rj = 1) Ty@) = 6 (i — ') Ti(-a)] (2.19)
Tj(a) is a translation operator such that 7;(a)W(...,rj,..., 1) =V (..., 1; +a,

...,1),and a = r’ — r. The operators A and B are each Hermitian.
To prove (2.16) we note that

o ~ 1

(A) = (POIAIV (@) = 3 [y(xr't) + y(x'rp)] (2.20)

and since
~(r'rt) = v*(xr't) (2.21)

we have .

(A) = Ry (rr'p). (2.22)

Similarly
(B) = —é [y(rr's) — y(x'rn)] (2.23)
= Jv(rr't). (2.24)

Thus, the single-particle density matrix is the expectation of the complex sum of
Hermitian operators. It is a nonlocal source since it depends on both r and r’.

Another property of the single particle density matrix, which distinguishes it from
the Dirac density matrix to be defined later, is that it is not idempotent and satisfies
instead the inequality

/fy (rr”1) v (X"Y't) dr” < ~ (rr't). (2.25)

The diagonal matrix element of the density matrix is the density: y(rrt) = p(r?).

2.2.3 Pair-Correlation Density g(rr't), and Fermi—Coulomb
Hole px (rr't)

The pair—correlation density g(rr't) is a property representative of electron correla-
tions due to the Pauli exclusion principle and Coulomb repulsion. At each instant of
time, it is the conditional density at r’ of all the other electrons, given that one electron
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is at r. It is defined as the ratio of the expectations of two Hermitian operators:

P(rr't
g(rr't) = (re's) , (2.26)
p(rt)
with the pair function P(rr’t) being the expectation
P(rr't) = (W(0)|P(rr) | W (1)), (2.27)
where P(rr’) is the Hermitian pair-correlation operator
/
P(rr'y =" 5 — r)d(r; — r). (2.28)

iJ

The pair function P(rr'z) is the probability of simultaneously finding electrons at r
and 1’ at time ¢.
The total charge of the pair-correlation density for each electron position r at time
tis
/g(rr’t)dr’ =N-—-1. (2.29)

To prove the sum rule of (2.29) we rewrite the pair function P(rr't) as

P(rr't) = (W (1] 25(ri —1)é(; — )W (@)
ij

—(W(0)] D8 — 1) — )| W () (2.30)

= (V)] D60 =1) D55 =) W(0) = 6(r —r')p(r). 231)
i J
On integrating:

/ P(rr't)dr’ = (¥ ()] Zé(ri —r) Z / 5(rj — r')dr'|W (1))
i J
—p(rt)/é(r —r')dr’ (2.32)
= Np(rt) — p(rt), (2.33)

so that 1
- / P(xrr't)dr’ = N — 1. (2.34)
p(r1)
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The pair-correlation density is a dynamic or nonlocal charge distribution in that its
structure changes as a function of electron position for nonuniform density systems. If
there were no electron correlations, the density at r’ would simply be p(r't). However,
due to electron correlations—the keeping apart of electrons—there is a reduction in
the density at r’. Hence, the pair-correlation density is the density p(r't) at r’ plus
the reduction in this density at r’ due to the electron correlations. The reduction in
density about an electron which occurs as a result of the Pauli exclusion principle and
Coulomb repulsion is the Fermi—Coulomb hole charge distribution p.(rr'z). Thus,
we may write the pair-correlation density as

g(rr't) = p(r't) + pxe(rr's). (2.35)

In this manner, the pair density is separated into its local and nonlocal components.
Further, as a consequence, the total charge of the Fermi—Coulomb hole, for arbitrary
electron position at r, is

/pxc(rr’t)dr’ =—1. (2.36)

Note that there is no self—interaction in the pair-correlation density. This is evident
from its definition (2.26). In its definition of (2.35), the self—interaction contribution
to the Fermi—Coulomb hole charge is cancelled by the corresponding term of the
density.

An associated property is the pair—correlation function a(rr't) defined as

/
t
ner'sy = 250, (2.37)
p(r't)
which is symmetrical in an interchange of r and r’:
h(rr't) = h(r'rt). (2.38)

This property of symmetry of the pair function is of value in various proofs to follow.

2.2.4 Current Density j(rt)
The current density j(r¢) at point r and at time ¢ is defined as

j(rt) =ReN >’ / * (ro, XV 1) lvqf (ro, XY 1) ax¥ (2.39)
l

It may also be expressed in terms of the single—particle density matrix ~(rr’t) non-
local source as )
l

jarr) = 5 [V/ - VN] vy (I'/l’”t) e =r"=r (2.40)
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or as the expectation value

Jn) = (W@ [ jr) | $(@), (2.41)

where}‘(r) is the Hermitian current density operator:

4 1
o= Z [V (5 — 1) + 6@, — 1)V, ]. (2.42)

The quantal sources defined above then give rise to ‘classical’ fields that pervade all
space. These fields are defined below.

2.3 Definitions of ‘Classical’ Fields

The different fields associated with the quantum system defined by (2.1) are the
electron—interaction €. (rt) field which is a sum of the Hartree £y (rt) and Pauli—
Coulomb &,.(r?) fields, the differential density D(rt), kinetic Z(rt), and current—
density J (r?) fields.

2.3.1 Electron—-Interaction Field & . (rt)

The electron—interaction field £ (r?) is representative of electron correlations due
to the Pauli exclusion principle and Coulomb repulsion. The quantal source of this
field is the pair-correlation density g(rr’t). It is obtained from this charge distribution
via Coulomb’s law as

E.o(rt) = / gurnE—r) . (2.43)

|lr—1r |3

The field .. (r) may be rewritten in terms of an electron-interaction ‘force’ e, (r)
and the density p(r?) as

€. (1t
Eee(rt) = (1) , (2.44)
p(rt)
where e, (rt) is obtained via Coulomb’s law from the pair function P(rr'z):
Par't)(r —r’
e..(rt) = / M(ir’. (2.45)
r —r/|?

(The quantal source of the field €. (r?) can thus also be thought of as being the pair
function P(rr’t).) With the pair-correlation density expressed as in (2.35), the field
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E..(rr) may be written as a sum of its Hartree £y (rt) and Pauli-Coulomb &,.(r?)
components as

Eee(rt) = Ex(rt) + Exc(11), (2.46)
where , ,
En(rr) = / paHE=r) (2.47)
[r—r |
and , )
£.o(r1) = / P = 1) (2.48)
lr—1 |3

The Hartree field £y (rt) is conservative as its source is a local charge distribu-
tion p(rt), so that V x Ey(rr) = 0. In general, nonlocal sources such as the pair-
correlation density and Fermi—Coulomb hole charge do not lead to conservative
fields. Thus, the fields €. (rt) and E4.(rt) are in general not conservative, i.e.
V X Eee(rt) #0and V x Ex.(r1) # 0.

2.3.2 Differential Density Field D(rt)

The differential density field D(rt) is defined as

d(rt
D(rr) = o (2.49)
p(re)
where the differential density ‘force’
|
d(rr) = _ZVV p(rt). (2.50)

This field also arises from a local source, the electronic density p(rt), so that it too
is conservative, and V x D(rt) = 0. The vanishing of the curl of the ‘force’ d(rt)
is evident since the curl of the gradient of a scalar function vanishes. (Although the
field D(r?) is intrinsic to Schrodinger theory, it plays no role within Q-DFT as will
become clear in the following chapter.)

2.3.3 Kinetic Field Z(rt)

The kinetic field Z(rf) is so named because the kinetic energy density, and hence,
the kinetic energy may be obtained from it. The field, whose source is the nonlocal
single—particle density matrix y(rr'r), is defined as

z(rt; [v])

20 = e

) (2.51)
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where the kinetic ‘force’ z(r?) is defined by its component z,,(r?) as
Za(rt) =2 it (r1) (2.52)
« == - arﬂ aff s .

and where 7,4(r?) is the second-rank kinetic-energy-density tensor defined in turn as

ey = 1| ey (2.53)
=4 orary " arsory |7 v :

The field Z(r?) is ‘classical’ in the sense that it is derived as the derivative of a tensor.
Its source (rr'r), however, is quantum mechanical. As the source is nonlocal, in
general the field Z(r?) is not conservative and V x Z(rt) # 0.

2.3.4 Current Density Field J (rt)

The current density field J (rt), whose source is the nonlocal single particle density
matrix y(rr'r), is defined as

0

1
Jt) = —— tj(rl), (2.54)

p(rt) 0

where j(r?) is the current density. This field too may be thought of as being ‘clas-
sical’ from the perspective of the hydrodynamic continuity and force equations to
be discussed later in this chapter. In general, this field too is nonconservative so that
V x J(rt) #0.

The fields Eec(rt), Exc(rt), Z(rt), and J (rt) are in general not conservative.
However, their sum always is, so that

V X [Eee(rt) + Z(rt) + T (r1)] = 0. (2.55)

If the system in the presence of the time-dependent external field 7' (rt) has a sym-
metry which reduces these fields to being one dimensional, or when such a symmetry
is imposed as by application of the central field approximation, the individual fields
are then separately conservative. In such cases

V X Eee(rt) =0, (2.56)
V x Z(rt) =0, (2.57)
V x J(xt) = 0. (2.58)

The central field approximation can be achieved by spherically averaging the fields.
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2.4 Energy Components in Terms of Quantal Sources
and Fields

The kinetic T(t), external Ec (¢), and electron—interaction E..(#) energies as defined
by the expectations of (2.8)—(2.10), may be expressed directly in terms of the quantal
sources, and also in integral virial form in terms of the respective fields described
above.

2.4.1 Electron—Interaction Potential Energy E¢¢(t)

The electron—interaction energy E.. (f) may be interpreted as the energy of interaction
between the density p(rf) and the pair-correlation density g(rr'z):

Eeet) = = / / PO Jar (2.59)

— r/
Employing the decomposition of g(rr’t) as in (2.35), we may write
Eee(t) = En(t) + Exc(1), (2.60)

where Ey () is the Hartree or Coulomb self—energy:

En(t) = = //p(”)p(”) dr’, 2.61)

—r

and Ex.(t) the quantum—mechanical exchange—correlation—Pauli-Coulomb—
energy
1 1) pxe (XYt
E () = = // Mdrdr/. (2.62)
2 r—1|

The energy FEx.(f) may in turn be interpreted as the energy of interaction between
the density p(rt) and the Fermi—Coulomb hole charge distribution py.(rr'z).

These energy components may also be expressed in terms of the fields as follows.
Since

1 a-r)-ad-r) r-@-r)-r (r-r)

= = : 2.63
r—r/| e —r? e —rp? 269

we may write Fe(¢) in terms of the pair-correlation function A(rr'r) of (2.37) as

r-r—r)—r.(r—r) , ,
Ee(t) = // p(xt) p(r')h(xr't). (2.64)

Ir—r|3
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On interchanging r and r’ in the second term of (2.64) and employing the symmetry
property of h(rr't), we see that it is the same as the first, so that

Eee(t) = / / £ = DI gy

r—r/?

/(rt)r/ (rrt)(r:r ar
r'|

= / p(ro)r - Eeo(rr)dr. (2.65)

Employing the decomposition of £ (r?) of (2.46), we then have

Eu(®) =/p(rt)r-€H(rt)dr, (2.66)

and

E..(?) =/p(rt)r~£xc(rt)dr. (2.67)

Note that the expressions for the energy components in terms of the fields is inde-
pendent of whether or not the fields are conservative.

2.4.2 Kinetic Energy T (¢)

The kinetic energy 7(f) may be written in terms of its quantal source, the single—
particle density matrix ~(rr't) as

T(t) = / t(rt)dr, (2.68)
where the kinetic energy density 7(r?) is the trace of the kinetic energy density tensor

laﬂ(rl): q
t(rt) = ;rm(rr) = Ve Ve (r'D) e (2.69)

The kinetic energy 7 (¢) may also be expressed in terms of the kinetic field Z(r?) as
1
T = —z/p(rt)r - Z(rt)dr, (2.70)
or in terms of the kinetic ‘force’ z(rt) as

T(t) = —% / r - z(rt)dr. @271
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Equation (2.70) can be shown to be equivalent to (2.68) by partial integration and by
employing the fact that the wavefunction and hence the single—particle density matrix
vanishes as r, r’ tend towards infinity. Once again, the expression for 7'(¢) in terms
of the kinetic field Z(rt) is independent of whether or not the field is conservative.

2.4.3 External Potential Energy Ex(t)

The external potential energy E.x; (f) may be expressed in terms of the electronic den-
sity p(rt) and the potential energy v(r?) of an electron in the external field F**' (rt) as

Eet(t) = / p(rt)v(rt)dr. (2.72)

Through the external potential energy v(rt), this component of the total energy
depends on all the fields present in the quantal system. As the quantal sources of these
fields are expectations taken with respect to the wave function W(z), the potential
energy v(rt) is a functional of W(¢), i.e. v(rf) = v[W(#)]. The explanation of this is
arrived at via the ‘Quantal Newtonian’ second law to be discussed next.

2.5 Schrodinger Theory and the ‘Quantal Newtonian’
Second Law

The Schrodinger theory description of a quantum system can alternatively be inter-
preted in terms of fields representative of the various electron correlations and prop-
erties. This description is based on the pure state ‘Quantal Newtonian’ second law
or time-dependent differential virial theorem [6—8]. (A state is said to be pure if it is
described by a wavefunction i.e. by the solution of (2.1). It is said to be mixed if it can-
not be so described. A system in a mixed state can be characterized by a probability
distribution over all accessible pure states).

As a prelude to the description of this quantal law, let us review the classical
mechanics of a system of N particles that obey Newton’s third law of action and
reaction, and exert forces on each other that are equal and opposite, and lie along the
line joining them. Then Newton’s second law for the ith particle is

d
FX 4+ > Fji = b (2.73)
J

where Ff"‘ is the external force, F); the internal force on the ith particle due to the jth
particle, and p; is the linear momentum. Summing over all particles, (2.73) reduces
to Newton’s second law for the system of particles:

d2
> (N
F¢ —d7 E r;, (274)
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where F*' = 3" F*' is the total external force. The internal forces corresponding
to the term Z: ; Fji vanish as a consequence of Newton’s third law.

The ‘Quantal Newtonian’ second law is the quantum-mechanical counterpart of
the classical equation of motion (2.73) for the individual particles. Its statement is

F(xt) + F(xt) = T (r1), (2.75)
where each electron experiences the external field F™(rt):
FX(rr) = —Vu(re), (2.76)

and a field infernal to the system F™™(rr) that is representative of the correlations
between the electrons, the density, and the kinetic effects:

Fil(rt) = &,.(rt) — D(rt) — Z(r1), (2.77)

where the component fields E..(rt), D(rt), Z(rt) are defined by (2.43), (2.44),
(2.49), and (2.51). The response of each electron to the external and internal fields
is the current density field J (rf) defined by (2.54) which is the quantum analog of
the time derivative of p; of (2.73). The internal field ™ (r) is discussed more fully
in Sect.2.8.

From the ‘Quantal Newtonian’ second law of (2.75) a rigorous physical inter-
pretation of the external potential energy v(rt) follows: It is the work done, at each
instant of time, to move an electron from some reference point, say at infinity, to its
position at r in the force of a conservative field F (rt):

v(rt) =/ Vu('t) - db’ =/ F@'t)-db (2.78)
where '
F(rt) = F™(rt) — J(rt). 2.79)

The work done is path-independent since V x F(rt) = 0. The fact that the field
J(rt) is conservative is consistent with the assumption in the construction of the
Hamiltonian of (2.2) that the potential energy v(rt) at each instant of time is path-
independent.

As the external potential energy v(rt) depends upon the internal ™ (r) and the
response J (rt) fields, and these fields in turn are obtained from quantal sources that
are expectations taken with respect to the wave function W(¢), the potential energy
v(r?) is a functional of the wave function: v(rt) = v[W(¢)]. The time-dependent
Schrddinger equation (2.1) may then be written as

Iy, Iy ! G0)
[_zzi:vi+§z|ri_rj|+Zvi[w(t)]]w(t)—z T (2.80)

ij
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where v; = v(r;t). More explicitly it may be written in terms of the conservative field
F(rt) of (2.79) as

/

IS g2, ! L g 0w
Ao e oo o 22 o

ij

The purpose of rewriting the Schrodinger equation as in (2.80) or (2.81) is to empha-
size the self-consistent nature of its solution W (#). One begins with an approximate
wave function W (¢). With this wave function one determines the quantal sources and
thereby the field F (rt) and the corresponding work done at each instant of time.
The differential equation is then solved to obtain a new solution W (¢). The true wave
function is obtained when the solution of the differential equation W (¢) is the same
as that employed for the determination of the field F (r7). This understanding of the
self-consistent nature of the Schrodinger equation is a consequence of the ‘Quantal
Newtonian’ second law. The derivation of the second law is given in Appendix A.
The proof is for arbitrary F**'(r¢), and hence valid for both adiabatic and sudden
switching on of the field.

An equation of motion similar [9] to the pure state expression (2.75) can be
derived for nonequilibrium phenomena described by systems in a time-dependent
external field 7°*'(r) and finite temperature 7. Such systems are described in terms
of a mixed state, the expectation value of operators being defined in terms of the
grand canonical ensemble of statistical mechanics. This grand canonical ensemble
in turn is defined at the initial time in terms of the eigenfunctions and eigenvalues
of the time-independent Hamiltonian. The physics underlying this similar equation
of motion is intrinsically different since properties such as the density and current
density are in terms of statistical averages. Furthermore, the expression in terms of
the grand canonical ensemble is valid for sudden switching on of the external field
at some initial time.

2.6 Integral Virial Theorem

The time-dependent integral virial theorem can be obtained from the ‘Quantal New-
tonian’ second law (2.75) by operating on it with [ drp(rt)r- to obtain

/p(rt)r CFEUrndr + Eeo (1) + 2T (1) = /p(rt)r - J (rt)dr. (2.82)

The last term on the right hand side of (2.82) may be expressed entirely in terms of
the density p(rz) as follows. The integral

/p(rt)r - J(t)dr = %/r - j(rt)dr. (2.83)
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Thus, consider the integral

1
/xjx(rt)dr = E/jx(rt)dxzdydz

1
=-3 / x2dj (rt)dydz

L[ L0
= / B, (2.84)

where we employ the vanishing of the current density j,(r?) at the boundaries at
x = +00, —00. Now, since for the same reason

Ojy (rt 0j,(rt
/xzﬂdr —0 and/xz @) e o, (2.85)
dy 0z
we have 1
/ xjx (rt)dr = -5 / x*V - j(rt)dr. (2.86)
Therefore

/r -jrt)dr = —%/rZV - j(rt)dr

L[ ,0p(rn)
=3 / PP . (2.87)

where in the last step we have employed the continuity equation V - j(r?) =
—0p(rt) /0t (see Sect.2.7). Thus,

2
/ p(ror - J (rt)dr = %% / r?p(rt)dr, (2.88)

and the integral virial theorem may alternatively be written as

2

/ p(XOY - FEUrt)dr + E,o(t) + 2T(t) = %% r2p(rt)dr. (2.89)

The reason for writing the current density field term of (2.82) in terms of the density
is to later draw an equivalence to the corresponding equation of the S system of
noninteracting fermions for which the density, and hence the corresponding term is
the same.



2.7 The Quantum—Mechanical ‘Hydrodynamical’ Equations 31

2.7 The Quantum-Mechanical ‘Hydrodynamical’
Equations

The electron density p(rt) and current density j(rt) may also be determined by
solution of the quantum-mechanical ‘hydrodynamical’ equations. The first of these,
the continuity equation, is derived [10] from the Schrédinger equation and is

dp(rt)
ot

= -V -j@n. (2.90)

The second, the force equation, describes the evolution of the quantum system. The
field perspective of Schrodinger theory allows for the force equation to be written
explicitly in terms of the fields inherent to the quantum system. Thus, we have
from the ‘Quantal Newtonian’ second law (2.75) which is also derived from the
Schrodinger equation, that
0j(rt)
o

P(r?), 291

where the force P(r?) is

P(rt) = p(rt) [F'(xt) + F™(x1)] = p(rt) [F™ + Eee(xt) — D(xt) — Z(11)].
(2.92)
In this manner the force P(r?) is described in terms of the different electron corre-
lations. The internal field is discussed in the next section. The force P(rt) may also
be expressed [11] as the expectation value of the commutator of the current density
operator and the Hamiltonian. This follows from the quantum mechanical equation
of motion for the expectation value of an operator A(r) which is [10]

A OA
T YOW: (I <%> (2.93)

d(A(r))
dt

Substitution of the current density operator j(r) into (2.93) leads to (2.91) with

P =i | [j. O] | w0). (2.94)

The continuity equation may also be derived from the equation of motion (2.93) for
the density operator p(r).

The continuity and force equations have a counterpart in Quantum Fluid Dynam-
ics in which the electron gas is treated as a classical fluid. The equivalence of
the Schrodinger theory equations to those of quantum fluid dynamics is proved in
Sect.2.12.
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2.8 The Internal Field of the Electrons and Ehrenfest’s
Theorem

The Schrodinger theory analogue of Newton’s second law of motion is Ehrenhest’s
theorem [10, 12]. For a system of electrons in some arbitrary time-dependent external
field F**(rt), Ehrenhest’s theorem states that the mean value of the field (F'(r)) (¢)
is equal to the second temporal derivative of the average position (r)(z) of the elec-
trons. In order that the average position (r)(f) actually follow Newton’s classical
equation, one must be able to replace the mean value of the external field (F=*(r))(¢)
by its value F*'({r))(¢). This is the case when either the force vanishes or when it
depends linearly on r. The substitution is also justified if the wavefunction remains
localized in a small region of space so that the force has a constant value over that
region. Thus, Ehrenfest’s theorem describes the evolution of the system in terms of
its average position as governed by the averaged external field. What Ehrenfest’s
theorem does not describe is the evolution in time of each individual electron as the
entire system evolves. As described by the ‘Quantal Newtonian’ second law (see
Sect. 2.5 and (2.75)), in addition to the external force field, each electron also expe-
riences an internal field F™ (rt). It is the sum of these fields that then describes the
behavior of the electron and its evolution with time. Furthermore, for Ehrenfest’s
theorem to be satisfied, the averaged internal field (F int(¢))(£) must vanish. Sim-
ilarly, the average torque of the internal field (r x .’Fim(r))(t) too must vanish. In
this section, we draw a rigorous parallel with the equations of classical mechanics
by proving that on summing over all electrons, the contribution of the internal field
vanishes, thereby leading to Ehrenfest’s theorem.

We first derive Ehrenfest’s theorem in the traditional manner. Substituting the
operator

f':/r,(')(r)dr, (2.95)
into the equation of motion (2.93) leads to
d () = d /l‘ (rt)dr = —i([f, H(1)]) (2.96)
a ' Ta) " -k ' ’

On differentiating (2.96) again with respect to time and applying the equation of
motion to the resulting right hand side, one obtains

2

d A .
E/rp(rt)dl’ = —([l[F, HD], HD)]), (2.97)

since A[H (1), F] /0t = 0. Evaluating the double commutator leads to Ehrenfest’s
theorem:

2
/p(rt).?—'e’“(rt)dr = %/rp(rt)dr. (2.98)

This equation is the quantal analogue of Newton’s second law of motion (2.74).
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The quantal analog of Newton’s equation of motion for the ith particle is the
‘Quantal Newtonian’ second law of (2.75). When summed over all the electrons, it
must lead to Ehrenfest’s theorem (2.98), with the contributions of the internal fields
vanishing. Thus on operating with [ drp(rz) on (2.75) we have

/p(rt)]:e’“ (rt)dr + / p(et) F™ (rf)dr = /p(rt),_’f(rt)dr. (2.99)
To simplify the right hand side of (2.99), consider the integral
: . Ijx
jx(tydr = — | x djx dy dz = — xa—dx dy dz, (2.100)
X

where the second step is a consequence of the vanishing of the current density at the
boundaries x = +00, —o0. Now, for the same reason

djy B Jjz _
x—=dxdydz=0 and | x——dxdydz =0, (2.101)
dy 0z
so that
/jx(rt)dr = —/xV - j(rt)dr. (2.102)
Thus,
/j(rt)dr =— / rV - j(rt)dr, (2.103)

and on employing the continuity equation (2.90) we have the right hand side of (2.99)
to be

/p(rt)j(rt)dr = —g/rV - jrt)dr
82
= ﬁ/rp(rt)dr. (2.104)

In order for Ehrenfest’s theorem to be satisfied, what remains to be proved is that the
average value of each component of F™ (rt) of (2.77) vanish:

/p(rt)gee(rt)dr =0, (2.105)

/p(rt)’D(rt)dr =0, (2.106)

and
/p(rt)Z(rt)dr =0. (2.107)
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In order to prove (2.105) we rewrite the left hand side in terms of the pair-
correlation function A(rr't) of (2.37):

(r—r)

Ep— drdr’. (2.108)

/p(rt)Eee(rt)dr=/p(rt)p(r/t)h(rr’t)

On interchanging r and r’, the right hand side of (2.108) is

(' —r)

pp— drdr’. (2.109)

/ p(xt) p(r't)h(x'rr)

As h(rr't) is symmetric in an interchange of r and r’ (see (2.38)), (2.108) is

(r'—r)

Ir—r'|3

/p(rt)p(r’t)h(rr’t) drdr’ = —/p(rt)é'ee(rt)dr, (2.110)

which proves (2.105). Equation (2.106) follows from partial integration and the
vanishing of the density at the boundary at infinity. To prove (2.107) we show that
(8]

/Z(rt)dr =0. (2.111)

Consider the integral for the component

0
/ Zo(rt)dr = 22 / 6—mtma(rt)dr. (2.112)
The integral
/gtax(rt)dx/dy dz =0, (2.113)
ox

etc., since the tensor vanishes at the boundary x = +o00, —oco. Thus, (2.111) and
hence (2.107) is proved.
As a consequence, the averaged internal force vanishes:

/ p(rt) F (rt)dr = 0, (2.114)

and Ehrenfest’s theorem is recovered. An alternate way of expressing Ehrenfest’s
theorem in terms of the response of the system to the external field as represented
by the current density field J (r?) is

/ p(rt) [F'(rt) — T (r1)] = 0. (2.115)
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The vanishing of the average of the internal field (F™) may then be thought of as
being a consequence of the quantal analog to Newton’s third law. Note that although
Coulomb’s law, and hence the electron interaction field obeys Newton’s third law,
the vanishing of the averaged differential density and kinetic fields is not a direct
consequence of the third law.

Returning to Newton’s second law for the ith particle (2.73), one obtains the total
angular momentum L of the system by performing the cross product r;x on it and
summing over all particles to obtain

@ = N, (2.116)
dt
where L = > ,(r x p;), and N*' = >.(r; x F{*') is the torque of the external force
about a given point. The torque of the internal forces ZZJ r; x Fj; once again vanishes
as a consequence of Newton’s third law.

For the quantal equivalent of (2.116), operate by f drp(rt)x on (2.75) to obtain

/ p(rHr x F*(rH)dr = g / r x j(rt)dr, (2.117)

where once again it can be proved [8] along the lines described above, that the
averaged torques of the individual components of the internal field vanish: (r x
F™(rt)) = 0. Defining a velocity field v (rt) of the electrons by the equation

J(xr) = p(rnv(ro), (2.118)

and a momentum field p(rt) = mv (rt), we have (with m = 1) the quantum analogue
of the classical torque equation

/p(rt)./\fe’“(rt)dr = %/p(rt)[,(rt)dr, (2.119)

where L(rt) = r x p(rt) is the angular momentum field at each instant of time.

Thus, each electron in a sea of electrons, experiences in addition to the external
field, an internal field. This internal field defined by (2.77) is representative of the
motion of the electrons, and the fact that they are kept apart as a result of the Pauli
exclusion principle and Coulomb repulsion. As in classical physics, the average of
this field and its averaged torque vanish at each instant of time. The structure of the
components of the internal field is exhibited for both a ground and excited state of
an exactly solvable model in Sect.2.11.
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2.9 The Harmonic Potential Theorem

A theorem that can be employed to demonstrate the field perspective of Schrodinger
theory as well as the corresponding perspective within Q-DFT is the Harmonic
Potential Theorem (HPT) [13]. The HPT is concerned with the system of N electrons
for the case when the potential energy v(rt) of (2.4) is of the form

v(rt) = %r-Km—F(t) ‘T, (2.120)

where K is a symmetric spring constant matrix, and F(¢) a spatially uniform time-
dependent external force. For example, F(¢) could correspond to the electric field
of a high intensity laser pulse employed in the study of atoms and molecules. The
Hamiltonian for the system is then

ﬁ:ﬁo—F(z).Zri, (2.121)
Ay = Z Ho:. (2.122)
1 1 | - 1
Hy=—-V’4-r-Kr+-> — 2.123
08 =T Vit T r+22|ri_rj| @129

J

and the Schrodinger equation is

N OWypr (¢
H(t)Wipr (1) = i%(), (2.124)
with Wypr the corresponding solution. Let ¢, (ry, . . ., rx) be any (ground or excited)
many—body eigenstate of the Hamiltonian Hy so that
Hothy = Eythn. (2.125)
Next apply a position—independent, time-dependent shift y(#) to the coordinates
ry, ...,y in ¥,, and write the solution of the time-dependent Schrodinger equa-
tion as .,
H y - —- —
Wypr (1) = e B A NVONG Ry, (B, Ty, ..., EN), (2.126)

where ¥; = r; — y(¢) is the shifted coordinate operator, R = >".r;/N the center of
mass operator, and the phase angle

1 1
S@) = / [EY(I’)z - zy(t’) K- y(t’)] dr'. (2.127)
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Substitution of Wypr(¢) of (2.126) into the Schrédinger equation leads to
- .0 .
H(r) — i Yypr(1) = [¥() + K- y@) — F()] - Zri Wypr(#). (2.128)

Thus, Wypr(7) is a solution of the Schrodinger equation provided that y(¢) satisfies
the classical driven harmonic oscillator equation

¥y +K-y@) —F() =0. (2.129)

The wavefunction Wypr(f) is then the solution 1, to the time-independent
Schrodinger equation (2.125) shifted by y(¢) and multiplied by a phase factor. Hence,
if the solution to (2.125) is known, then the time-evolution of all properties,—
quantal sources and fields—is known. In particular, observables represented by
non-differential operators such as the density p(r?) possess the translational prop-
erty p(rt) = po(r — y(¢)), where py(r) is the density corresponding to the time-
independent system of (2.125). This is because the phase factor cancels out, How-
ever, because of the phase factor, such a translational property is not obeyed for
observables involving differential operators such as the current density j(r?).

By a suitable choice of K, the time-independent model describes a wide range
of physical situations such as Hooke’s atom [14-16], Hooke’s species ([17] and
Sect. 4.8), and spherical nuclear models [18]. The Hooke’s atom is comprised of two
electrons harmonically confined to a nucleus, whereas the species is comprised of two
electrons harmonically confined to an arbitrary number of nuclei. The significance of
these models lies in the fact that the interaction between the electrons is Coulombic.
For these models systems, closed-form analytical solutions of the time-independent
Schrodinger equation exist for both the ground and excited states for a denumerably
infinite set of force constants. These solutions may then be employed to determine
the structure of the various fields, and their evolution with time via the Harmonic
Potential Theorem.

The proof of the HPT given above due to Dobson [13] assumes the structure of
the wave function as the starting point. With the same ansatz, the HPT can also be
proved via the ‘operator’ method as given in Appendix B. However, in Appendix B,
the HPT wave function is derived [19] from first principles via the Feynman Path
Integral method [20, 21]. In this manner, the wave function is revealed as a result of
the derivation. For completeness, the HPT wave function has also been derived [22]
via the ‘interaction’ representation of quantum mechanics.
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2.10 Time-Independent Schrodinger Theory: Ground
and Bound Excited States

For a system of N electrons in a time-independent external field F**'(r) such that
F™'(r) = —Vuv(r), the Schrodinger equation (2.1) is

HY, (X1) = By, (X1) = w (2.130)

where now the Hamiltonian operator H is

=——ZV2+Zv(r,)+ Z|r1 - 2.131)

and where the wavefunction W, (X¥) are eigenfunctions of H , and E,, the eigenvalues
of the energy. The solutions of the (2.131) are of the form

U, (X1) = P (X)e 5, (2.132)

where the functions 1, (X) and eigenvalues E,, of the energy are determined by the
time-independent Schrddinger equation

Ho(X) = Enthn(X). (2.133)

2.10.1 The ‘Quantal Newtonian’ First Law

Time-independent Schrodinger theory can also be described in terms of ‘classical’
fields and quantal sources via the ‘Quantal Newtonian’ first law. The description of the
time-independent Schrodinger system for both the ground and bound excited states in
terms of fields [23-25] is the same as for the time-dependent case, but with the time-
independent quantal sources and fields now determined by the functions ¢/, (X). The
phase factor of (2.132) vanishes in the determination of the source expectation values.
Further, the current density field J (rt) = 0, so that the total energy components
Eee, Ey, Ex., T and the potential energy v(r) are defined as before but by the time-
independent fields £..(r), D(r), and Z(r).
The ‘Quantal Newtonian’ first law is the time-independent version of the second
law of (2.75) [23-26]:
F(r) + F'(r) = 0, (2.134)

where
F(r) = Eee(r) — D(r) — Z(1). (2.135)
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The fields € (r), D(r), and Z(r) are representative of correlations between the
electrons due to the Pauli exclusion principle and Coulomb repulsion, the density,
and kinetic effects, respectively. Since, by assumption, the external field F**'(r) is
conservative (V x Vu(r) = 0), so is the internal field F™(r).

Again, the external potential energy v(r) can be afforded a rigorous physical
interpretation via the ‘Quantal Newtonian’ first law: It is work done to move an
electron from some reference point at infinity to its position at r in the force of the
conservative internal field F™(r):

v(r) = /er(r’) cdl = /ry-'im(r’) e (2.136)

[e¢] o0

The work done is path-independent.

Since the internal field ™™ (r) is obtained from quantal sources that are expec-
tations of Hermitian operators taken with respect to the eigenfunctions 1, (X), the
potential energy v(r) is a functional of these eigenfunctions: v(r) = v[v,]. Thus,
the time-independent Schrédinger equation (2.133) may be written as

/

i _%Zvlz_'_%z |r'1l"| +Zvl[¢n]]¢n= nwna (2137)
i i — I ;

i.J

where v; = v(r;). This demonstrates the self-consistent nature of the Schrodinger
equation. Written more explicitly in terms of the internal field F™(r) we have
(2.137) to be

1

! 2 ! / i int o
[_EZVf+§iZj:|ri_rj|+ZI/OOf (r)~d€H¢n— WU (2.138)

In order to solve the Schrodinger equation, one begins with an approximation to /,,.
With this wave function one obtains the quantal sources and thereby the internal field
F"(r), and solves the integro-differential equation (2.138) to obtain the new solution
1, and eigenvalue E,,. This process is continued till self-consistency is achieved, and
the exact ¢, E,, obtained.

The integral virial theorem is the time-independent version of (2.82):

/p(r)r - FX(r)dr + E,. + 2T = 0. (2.139)
Finally, the average and averaged torque of the internal field ™ (r) vanishes:

/ p(r) F™ (r)dr = 0, (2.140)
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/ p(r)r x F(r)dr = 0, (2.141)

since the contribution of each component vanishes.

To reiterate, the perspective of time-independent Schrodinger theory in terms of
fields and quantal sources representative of the different electron correlations, is valid
for both ground and bound excited pure states whether non-degenerate or degenerate.
In Sect.2.11 this perspective is described for a ground and excited state of the Hooke’s
atom. In addition, the perspective brings out the intrinsic self-consistent nature of the
Schrodinger equation. The self-consistent form of the Schrédinger equation (2.138)
also makes clear that for different self-consistently obtained solutions ,,, there exist
different external potentials v(r).

2.10.2 Coalescence Constraints

As a consequence of the Coulomb interaction, the Hamiltonian (2.131) is singular
when two electrons coalesce. Itis also singular for the case where the potential energy
v(r) is Coulombic as when an electron coalesces with the nucleus of charge Z. In
order for the wavefunction ¥ (X) to satisfy the Schrodinger equation (2.133) and
remain bounded, it must satisfy a coalescence condition at each singularity. These
coalescence constraints play a significant role in Q-DFT and other local effective
potential energy theories as discussed later in the section. There are two forms of
these coalescence constraints: the integral and differential forms. The integral form
is more general in that it retains the angular dependence of the wave function at
coalescence, and the differential form can be readily derived from it. Historically, it
was the differential form that was originally derived [27], and we follow that path of
description in this section.

With s = r — 1/, and r, 1’ the positions of the two particles, the differential form
of the coalescence condition on the wavefunction is

d¢sp.av

s ls=0 = C¥li=o , (2.142)

where ), 4y is the spherical average of the wavefunction about the singularity:

1
Yspav(s) = E/wdQs- (2.143)

For the electron—electron cusp condition, the coeffiecient ( = %; for the electron—
nucleus cusp condition { = —Z.

The electron—nucleus coalescence condition may also be expressed [28] in terms
of the derivative of the density and density at the nucleus. Thus, with the time-
independent density defined as (see (2.11))
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p(r) = NZ/W (ro, XX N ¢ (ro, XV axV !, (2.144)
a

we have on taking the derivative in the limit of the electron—nucleus coalescence

. dp(r) dyp*(ra, XN _
lim ZNE/[TL_Mw (r:O,U;XN 1)

r—0 dr

di(ro, XV

y | _otdX" ™' (2145
.

+9*(r=0,0: X"

Integrating the previous equation over the angular variables of the coalescing electron
we obtain

d XN
lim dp(r) —NZ/[ q/)tpav(rg )|r_)01/) (r=0, o XN—I)

r—0 d}"

d , XN—I
(=0, 07 XV wsl"“(:la ) |HO] axV", (2.146)
r

which on substituting the cusp condition on the right hand side leads to

= —ZZNZ/ v (r=0,0; X""HY(r =0, 0; XV HaxV 1 (2.147)

The electron-nucleus coalescence or cusp condition in terms of the density is then

m PO _ —2Zp(r = 0). (2.148)
r—0 dr

Thus, the densities in atoms, molecules, and solids exhibit a cusp at the nuclei. The
cusp for electron—electron coalescence is exhibited in the structure of the Fermi—
Coulomb hole charge distribution.

The integral form of the cusp coalescence constraint for an arbitrary state of a
system of N charged particles as particles 1 and 2 coalesce is

P(ry, 1y, ... ty) = P(ry, 1, 13, ... 18 (1 + Crin)
+112-C(ry, 13, ... 1Y) + O(rdy). (2.149)

Hererj; = |r; — r3|,r;2 = r; — rp,and C(r», r3, ... ry) an undetermined vector.
The spin index is suppressed. The integral form of the coalescence condition was
originally [29] a conjecture. It can, however be derived [30, 31] directly from the
Schrodinger equation. The integral form of the coalescence condition retains the
angular dependence of the wave function at coalescence, and is thus more general and
useful. The differential form of the coalescence condition (2.142) is readily obtained
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by taking the spherical average and differentiating about the point of coalescence. It
is evident from the integral cusp coalescence condition (2.149) and the definition of
the density (2.144), that there can be no differential form similar to (2.148) in terms
of the density of the cusp condition for electron-electron coalescence. However, it is
possible to derive the integral and differential forms of the coalescence constraints
for the time-independent pair function P(rr’) of (2.27) (see [32] and Chap.2 of
ODFT2). Note that the integral coalescence expression is equally valid even if the
wave function vanishes at the point of coalescence, i.e. if ¢ (12, I, . . ., ry) = 0. This
is referred to as a node coalescence condition as opposed to the cusp coalescence
condition.

Employing the integral form of the electron-nucleus coalescence constraint, it can
be proved [33] (see also Chap. 8 of @DFT?2) that the local effective potential energy
function within Q-DFT which incorporates all the many-body effects is finite at the
nucleus. This is also the case for all other local effective potential theories. (Prior to
[33-35], there was controversy in the literature with regard to the structure of the
potential at and near the nucleus. For a brief historical description of this controversy,
and for the derivation of this structure, see Chap. 8 of QDFT2.)

For the generalization of the derivation of the integral coalescence condition to
dimensions D > 2 see [32] and Chap.2 of QDFT2

2.10.3 Asymptotic Structure of Wavefunction and Density

Another important property of the wavefunction and density is their asymptotic
structure in the classically forbidden region because this structure is related to the
first ionization potential. (This fact is significant in providing a rigorous physical
interpretation of the highest occupied eigenvalue within Q-DFT (see Sect. 3.4.8) and
other local effective potential energy theories.) To show this [36, 37] we rewrite the
N—electron Hamiltonian of (2.131) as

N

. 1 1
H=—§v2+v(r)+zf+H’V ! (2.150)

1

where the (N — 1) electron Hamiltonian V1 is

AND = ZV2+Zv(rz)+ Z

t;é #1

(2.151)
|rl - rj|

Now the complete set of eigenfunctions and eigenenergies of the (N — 1)—electron
system are defined by the equation

I:\IN—IZ/)EN—I)(XN—I) — EiN—l)wiN—l)(xN—l)' (2152)
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Next expand the N—electron wavefunction ¢, (X) (see 2.133) in terms of the eigen-
functions ¢V~

Ya(re, XV =" Crpmp® (XN, (2.153)

and rewrite the Schrodinger equation (2.133) as

1 Yoo L _ _
(—5V2+v(r)+§—+1‘1w ”)2%@)1&9’ DxNh

Ir —r;
=E, Z Coo ()N D (XN, (2.154)

For asymptotic positions of the electron we have by Taylor expansion

1 1 r-r 1 ?

(nryls Ly (2.155)
=4 — 4+ = Tialipm———+ ..., .
r—r;| r r3 2 — ‘Baraarg r

so that on retaining just the leading term, (2.154) becomes

1 N-1 o
[—Evz + v(r) + T} ZCso(r)wéN D(xVh

= [E. = EM V] Coompp ™D (XN, (2.156)

Multiplying (2.156) by ¢y =D*(XN~1) from the left, integrating over [ dX"~!, and
employing the orthonormality condition

(B VD) = 6y, (2.157)

we have
1 5 N-—1
_EV +v(r)+ ——+ Is,n Cyr(r) =0, (2.158)
r

where the ionization potential I, is

Is,n = E_gNil) —E,. (2159)
The I, , are the ionization potentials from the N—electron state with energy E, into
various states of the (N — 1)—electron ion. It is assumed that /,, < I;1; , etc.

For atomic systems, v(r) = —Z/r. For molecules in the far asymptotic region,
v(r) = —Q/r, where Q is the total nuclear charge. Thus, the Schrodinger equation
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in the asymptotic region is of the form

1 Z—N+1
|:__V2 - g +Is,n:| Cso'(r) = 01 (2160)
2 r
and the asymptotic solution is
Coo (1), 500 7 e X (0), (2.161)

where (1 + G,) = (Z — N + 1)/ay, and oy = /21, ,,. The satisfaction of the differ-
ential equation (2.160) with this solution occurs on neglecting the 0(1/r?) term of
V2C,, (r).

The density p(r) defined by (2.144) employing (2.153) is then

p(r) =N DD |Cir(mP, (2.162)
a N
so that asymptotically

P(1), =00 €XP (—2057) = exp (—2,/215_,,r). (2.163)

Thus, the asymptotic structure of the density is related to the first ionization poten-
tial I; ,. This is the case whether the system is in a ground or excited state. For
asymptotic positions of the electron in finite systems, it has been shown [38] that if
the (N — 1)—electron ion ground state is degenerate, then the eigenfunctions 1"~
and hence the ground—state wavefunction 1, depend parametrically on the direction
of electron removal. This then translates to a parametric dependence on this direc-
tion for the asymptotic structure of the single particle density matrix ~(rr’) and the
pair-correlation density g(rr’) [38].

For the derivation of the asymptotic structure to higher order of the wave func-
tion v, (X), density p(r), single-particle density matrix v(rr’), and pair-correlation
density g(rr’), see Chap.7 of QDFT2

2.11 Examples of the ‘Newtonian’ Perspective: The Ground
and First Excited Singlet State of the Hooke’s Atom

2.11.1 The Hooke’s Atom

The physics underlying the ‘Newtonian’ perspective of Schrodinger theory is demon-
strated in this section by application to the analytically solvable Hooke’s atom [14]
in both its ground and first excited singlet state. This atom comprises of two electrons
in an external field such that the potential energy v(rt) due to the field is of the form


http://dx.doi.org/10.1007/978-3-662-49842-2_7
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v(rt) =vo(r) for t <t
=v(r) + vy(rr) for t > 1y, (2.164)

where vy(r) = %kr2, k is the spring constant, v;(rt) = —F(¢) - r, with the force
F(¢) arbitrary. The Coulomb interaction between the electrons is treated exactly
in this model atom. Based on the Harmonic Potential Theorem of Sect.2.9, the
wavefunction for ¢ > £y is the time-independent solution for ¢ < fy, multiplied by
a phase factor, and shifted by the function y(#) satisfying (2.129). Thus, the time
evolution of all observables is known exactly for ¢t > t,. However, for properties
that are the expectation value of Hermitian operators such as the density, the time
evolution is the same as that of the property derived for ¢ < #;, but translated by a
finite time-dependent value. Hence, we describe here a study via the ‘Newtonian’
perspective of the system in its stationary state.
The time-independent Hamiltonian for the Hooke’s atom is

. 1 1 1
H=--V] — -V} + -

2 1 2 1
: R (2.165)

2 Iry — 1|’

where r; and r; are the coordinates of the electrons. This Hamiltonian is separable
by transforming to the relative and center of mass coordinates:

r+r
s=r—r; R= ‘2 2 (2.166)
so that s s
r1=R+§; 1’2=R—§; (2.167)
and
2 1, 2 ) 1, 2
Vi, = ZVR+VS + Vr -V V. = ZVR—i—VS — Vg -V, (2.168)
The Hamiltonian is then
i = I, + Fi (2.169)
where
o , 1., 1
Hy = -V, + st + -, (2.170)
)

N 1
Hg = _ZV‘Z‘ + kR?. (2.171)
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As the Hamiltonian is both separable and independent of spin, the wavefunction
1 (X1X) may be written as

Y(x1X2) = P(rir2)x(0102) = ¢(8)ER) x(0102), (2.172)

where 1 (r ;) is the spatial part of the wave function, x(c07) the spin component,
and where ¢(s), ((R) are orbital functions. Since R is symmetric in an interchange
of the spatial electronic coordinates, the function &£(R) is symmetric. According
to the Pauli exclusion principle then, if the spin function x(cj0,) is symmetric
(triplet state) in an interchange of the electrons, then the orbital function ¢(s) must
be antisymmetric [¢(—s) = —@(s)], and if x(o107) is antisymmetric (singlet state),
then ¢(s) must be symmetric [¢(—s) = ¢(s)]. There are no constraints on the orbital
function £(R) due to its symmetry.
The Schrodinger equation Hiy = E1) then separates into the equations

H(s) = ed(s), (2.173)
Hr&ER) = nE(R), (2.174)

with the total energy
E=c+1. (2.175)

The normalization condition on v also separates into

/|¢(s)|2ds=1 and /|§(R)|2dR= 1. (2.176)

The equation for &£(R), (2.174), is the harmonic oscillator equation whose solutions
are analytical. The reader is referred to the original literature [14] for the solution
of (2.173) for the orbital ¢(s). It turns out that closed form analytical solutions exist
only for certain discreet values of the spring constant k. Further, excited states of the
Hooke’s atom are defined in terms of the number of nodes of ¢(s). Those solutions
with zero nodes are ground states, those with one node correspond to the first excited
state, and so on. However, the analytical solutions for the ground and excited states
correspond to different values of the spring constant k. The properties of the Hooke’s
atom in a ground and first excited singlet state, and the fields representative of the
different electron correlations, are described in the following subsections [39, 40].
The analytical expressions for these properties are given in Appendix C.

2.11.2 Wavefunction, Orbital Function, and Density

The ground tgo(rr2) and first excited singlet 1o, (r;r,) state wavefunctions we
consider are
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Yoo (rirz) = E(R)do(s), (2.177)
3/4
&(R) = (2—w) ek, (2.178)
i
Po(s) = age™* (1 + ws), (2.179)

where  agy = w¥*Br/T)2 + 87w + 21/ 2mw) V2 = 1/14.55670, k = 1/4,
w=+vk=1/2;

Yo1 (r1r2) = ER) P (s) (2.180)
> 32
b1(s) = age= N [1 + Cl\/gs + czgf +Cs (g) s3:| , (2.181)

where ag; = w¥4[8/2m(Cy + 2C1Cy +2C5 4+ 6C2C3) + m3/2m(R €3 + 182 +
3C? 4+ 6C, + 15C1C5 + 2)171/2 = 1/13.21931, C; = 1.146884, C; = —0.561569,
C3 = —0.489647, k = 0.144498, w = v/k = 0.380129.

In order to provide a pictorial representation [41] of the wave function and to
exhibit the electron-electron coalescence in its structure, we plotin Fig. 2.1 the ground
state wave function oo (rr2) of (2.177) for 6y, r, = 0°, where 6, ., is the angle

Fig. 2.1 Structure of the ground state wave function o (rir2) for ¢, r, = 0°, where 0y, r, is the
angle between vectors r; and r, which are oriented along both the positive and negative z-axis
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Fig. 2.2 Same as in Fig. 2.1 but for 0y, r, = 90°. The vector ry is along the z-axis, and the vector
I in the xy-plane

between the vectors r; and r,. Figure2.2 is a plot for 6, r, = 90°. Figure2.3 is the
same as Fig. 2.2 except that the r; vector has been confined to the positive quadrant
of the xy-plane. Observe that the electron-electron coalescence cusp is clearly visible
along the diagonal defined by ; = r, in Fig.2.1, and at r; = r, = 0 at the nucleus
in Fig.2.3.

In both the ground and first excited singlet state, the atom is spherically symmetric.
The orbital functions ¢y (s) and ¢;(s) are plotted in Fig.2.4. Note that there are no
nodes in ¢y(s), and one node in ¢;(s) corresponding to a first excited state. Also
observe the electron-electron coalescence cusp at the coalescence of the two electrons
for s = 0. In Fig. 2.5 the ground pgo(r) and excited py; (r) state densities are plotted.
Recall that this source is static in that its structure is independent of and remains
unchanged as a function of electron position. Since the potential energy v(r) is not
Coulombic, these densitites do not exhibit a cusp at the nucleus. The corresponding
radial probability densities r2pg(r) and r2pg; (r) are plotted in Fig.2.6. Observe
the distinct shoulder in r2p01 (r) prior to the maximum indicative of a ‘shell’ type
structure with each electron being in a different shell.
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Fig. 2.3 Same as in Fig.2.2 except that the r, vector has been confined to the positive quadrant of
the xy-plane
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coordinate component of the
wavefunction for the ground
¢o(s) and the first excited
singlet ¢ (s) states
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Fig. 2.5 The electron
density p(r) of the ground
and first excited singlet states

Fig. 2.6 The radial
probability density 2 p(r) of
the ground and first excited
singlet states. The arrows
indicate the position of the
maxima
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2.11.3 Fermi—Coulomb Hole Charge Distribution px.(rr’)

In Figs. 2.7, 2.8, 2.9 and 2.10, the Fermi—Coulomb hole charge distribution px(rr’)
for both the ground and excited states is plotted for electron positions at the nucleus
r=20,and at r = 0.5, 1, 2, 10, 20, 50, and 200 a.u. The electron position is indi-
cated by an arrow. For the electron at the nucleus Fig.2.7a, the hole is spherically
symmetric about the electron. Further, at the electron position, the hole exhibits
a cusp representative of the electron—electron coalescence condition of (2.149). In
Figs.2.7b, 2.8, 2.9 and 2.10, the electron is along the z-axis corresponding to 6 = 0°.
The cross sections plotted correspond to 6’ = 0° with respect to the electron—nucleus
direction. The graph for ' < 0 is the structure for # = 7 and ' > 0.

The dynamic or nonlocal nature of the Fermi—Coulomb hole as a function of
electron position is clearly evident in these figures, as is the cusp at the electron
position in Figs.2.7b, 2.8a, 2.9b, and the fact that these holes are not spherically
symmetric about the electron. For asymptotic positions of the electron, these charge
distributions become essentially spherically symmetric about the nucleus as well as
static (Fig.2.10b). In other words, the change in the structure for these asymptotic
positions is minimal. Finally, observe that the structure of the holes for the ground
and excited states is distinctly different, although their broad features are similar.

(a) (b)
0.02 0.02
Electron at Electron at

’; r=0.5a.u.
<
~ 0.00
o 0.00
-
E

Q
Qf -0.02 F
° -0.02
©
an)
o -0.04F
g
2 -0.04 |
E
[}
[I) -0.06
£
[}-4) — Ground state -0.06

-0.08 | --- Excited state
-4 -2 0 2 4 -4 -2 0 2 4
1’ (a.u.) 1’ (a.u.)

Fig. 2.7 Cross—section through the Fermi—~Coulomb hole charge pxc(rr’) for the ground and first
excited singlet states. In (a) the electron is at the nucleus r = 0, and in (b) at » = 0.5 a.u. The
electron is on the z-axis corresponding to 6§ = 0. The graphs for ' < 0 correspond to the structure
for =7, >0
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Fig. 2.8 Same as in Fig.2.7 but for the electron at (a) r = 1 a.u. and (b) r =2 a.u

—_
=)
~

o S o o
(=] o (=] o
[\S] — o —

Fermi-Coulomb Hole p,. (1,r") (a.u.)
=)
)

-0.04

(b)

— Ground state
-—- Excited state
1 1

0.01

0.00

{Electron at
A ir=20a.u.

-0.01

-0.02

-0.03

4 2 0 2 4
1’ (a.u.)

1’ (a.u.)

Fig. 2.9 Same as in Fig.2.7 but for the electron at (a) »r = 10 a.u. and (b) r = 20 a.u
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Fig. 2.10 Same as in Fig.2.7 but for the electron at (a) r = 50 a.u. and (b) r = 200 a.u

2.11.4 Hartree, Pauli-Coulomb, and Electron—Interaction
Fields Eyy(r), Exc(r), Eee(r) and Energies
EH’ EXC9 Eee

The Hartree field £y4(r) whose source is the density p(r) (see (2.47)) is plotted
in Fig.2.11 for the ground and excited states. Since for each state, the density is
spherically symmetric, the field vanishes at the nucleus. The fact that there is a single
‘shell’ is evident from the ground state plot. A careful examination of the field for
the excited state shows a slight shoulder between r = 2 and 4 a.u. indicating the
existence of the second ‘shell’. As the density is static, localized about the nucleus,
and of total charge 2 a.u., the structure of the Hartree field £y(r) for asymptotic
positions of the electron is

eu = [ g [ owrar =% (2.182)
r r

e —r'|’

The fields £y (r) for both the ground and excited state are observed to merge asymp-
totically with the function 2/r? also plotted in Fig.2.11.

The Pauli—-Coulomb field €. (r) for both states is plotted in Fig.2.12. Since for
the electron position at the nucleus, the Fermi—Coulomb hole charge py.(rr’) is
spherically symmetric about the electron (see Fig.2.7a), the fields €. (r) vanish
there. Further, as the atom is spherically symmetric, the field €. (r) has only a radial
component and is dependent only on the radial coordinate. This is the case in spite of
the fact that the Fermi—Coulomb hole is not spherically symmetric about the nucleus
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Fig. 2.11 The Hartree field 0.4
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for other electron positions. The fields are negative because the Fermi—Coulomb
hole charge is negative. The two ‘shells’ are clearly evident in the field € (r) for
the excited state, and the single shell for the ground state. As noted previously, for
asymptotic positions of the electron, the Fermi—Coulomb hole is essentially a static
charge and spherically symmetric, and localized about the nucleus. Since the total
charge of the hole is negative unity, the asymptotic structure of the Pauli-Coulomb
field is

ch(r)r:m - riz (2.183)
Once again, the field €. (r) for both the ground and excited state merge asymptot-
ically with the function —1/r2 also plotted in Fig.2.12. This result is general and
valid for any finite system.

The electron—interaction field £..(r) which is the sum of the Hartree £y (r) and
Pauli—-Coulomb &,.(r) fields is plotted in Fig.2.13 for both states. Since the total
charge of its source, the pair-correlation density, is unity, the fields decays as 1/r2
asymptotically. For purposes of comparison with the other components of the internal
field F™ (r) experienced by the electrons, E..(r) is also plotted in Fig.2.16 for the
ground state and in Fig.2.17 for the excited state.

The Hartree Ey, Pauli-Coulomb E., and electron—interaction E.. energies as
determined from the corresponding fields are given in Table2.1. A comparison of
the fields for the ground and excited states makes clear why the Hartree and Pauli—
Coulomb energies for the former are greater in magnitude. The graphs of the fields
also show the region of space from which the principal contribution to the energy
arises.

Fig. 2.13 The
electron—interaction field
Ece (1) for the ground and
excited states
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0
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Table 2.1 Properties of the Hooke’s atom in its ground (k = 0.25) and first excited singlet (k =

0.144498) states in atomic units

Property Ground state® Excited state®
E 2.000000 2.280775
n 0.750000 1.710581
€ 1.250000 0.570194
EN=! 0.750000 0.570194
I —1.250000 —1.710581
T 0.664418 0.876262
Eee 0.447448 0.352142
Ey 1.030250 0.722217
Exc —0.582807 —0.370075
Eext 0.888141 1.052372
(r) 3.489025 4.971112
() 7.105114 14.565898
=N 1.442940 1.053870
(r=2 1.926359 0.936753
(0(r)) 0.089319 0.047243

4 From [39]

b From [40]

2.11.5 Kinetic Field Z(r) and Kinetic Energy T

As the Hooke’s atom is spherically symmetric in both its ground and first excited
singlet states, the kinetic-energy-density tensor z,3(r; [y]) is of the form

i’al’[j

P S (r) + dapk(r), (2.184)

tapg(r; [7]) =

where the functions f(r) and k(r) for the ground state are given in Appendix C.
(The detailed derivation of (2.184) for the ground state is given in Appendix D.) The
second term contributes only to the diagonal elements of the tensor.

The kinetic ‘force’ z(r) for the ground and excited states is plotted in Fig.2.14.
The kinetic field Z(r) for the ground state is plotted in Fig.2.16 and for the excited
state in Fig.2.17. The kinetic ‘force’ vanishes at the nucleus, and asymptotically as
a power series times a Gaussian function (see Appendix C). The fields too vanish at
the nucleus, but diverge asymptotically in the classically forbidden region. Observe
the greater structure in the kinetic ‘force’ and field for the excited state representative
of ‘shell’ structure. The corresponding values for the kinetic energy for the two states
are given in Table2.1.
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Fig. 2.14 The kinetic 0.03
‘force’ z(r) for the ground
and excited states

0.02 |-

— Ground state
---- Excited state

0.01

Kinetic ‘force’ z(r) (a.u.)

0.00

2.11.6 Differential Density Field D(r)

The differential density ‘force’ d(r) is plotted in Fig. 2.15 for the ground and excited
states, and the corresponding fields D(r) in Figs.2.16 and 2.17, respectively. Again,
‘shell’ structure is clearly evident. The ‘force’ vanishes at the nucleus, and asymp-
totically in the classically forbidden region. The fields thus vanish at the nucleus, but
are divergent asymptotically.

For comparison, the components E..(r), D(r), and Z(r) of the internal field
F™(r) are plotted together in Figs.2.16 and 2.17 for the ground and excited state,
respectively. Observe that although both D(r) and Z(r) diverge asymptotically,
their sum ~ —kr in this region as €. (r) vanishes there. Further, the sum —&. (r) +
D(r) + Z(r) = —F"(r) = —kr throughout space, as must be the case because it
is the statement of the ‘Quantal Newtonian’ first law for this model problem.

2.11.7 Total Energy E and Ionization Potential 1

The total energy E for the ground EY =2 and first excited singlet EY=2 states, and their
eigenvalue components € and 7 (see (2.175)) are quoted in Table 2.1. The energy of
the ions EN=! = w(n + %), n = 0, and the corresponding ionization potentials / for
the ground state Iogp = E) ="' — E)=? and excited state Ip; = E)=' — E¥=? are also
quoted in the table.
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Fig. 2.15 The differential
density ‘force’ d(r) for the
ground and excited state

Fig. 2.16 The electron
interaction Eg (1),
differential density D(r),
and kinetic Z(r) field
components of the internal
field F™(r) for the ground
state. The sum D(r) + Z(r),
and —Eee(r) + D(r) + Z(r)
are also plotted
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Fig. 2.17 Same as in 1.0
Fig.2.16 but for the first
excited singlet state
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2.11.8 Expectations of Other Single—Particle Operators

In Table 2.1 the expectations <Zi r)y,n=—-2,—1,1,2and (6(r)) are also quoted for
the ground and first excited state. In terms of the density p(r), the expectation

<Zri"> = <¢|Zr{'|¢> =/r"p(r)dr. (2.185)

i

These expectations emphasize different regions of the electronic density distribution.
They are also related to various properties of atoms [42]: (r) is the average size of the
atom; the diamagnetic susceptiblity is proportional to (r?); the expectation (1/r) is
required for the determination of the nuclear magnetic shielding constant; the electric
field gradient, the magnetic dipole interaction, and spin—orbit coupling depends on
(1/r3); the electron density at the nucleus p(0) = (5(r)) is required for the Fermi
contact term when electron spin—nuclear spin interactions are considered.

2.12 Schrodinger Theory and Quantum Fluid Dynamics

In quantum fluid dynamics (QFD) [43—45] the electron gas of a many—electron
system is treated as a classical fluid moving under the action of the external field
F(rt) as well as of the quantal internal field ™ (rf) described in Sect.2.8. As
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with the quantum mechanical hydrodynamical equations of Sect. 2.7—the continuity
and force equations—, the equations of QFD—the continuity and Euler equations—
are also derived from the Schrodinger equation, and hence the two theories are
intrinsically equivalent. Thus, whereas in deriving (See Appendix A) the ‘Quantal
Newtonian’ second law of (2.75), the wavefunction W (Xr¢) is explicitly written in
terms of its real and imaginary parts, the QFD equations are obtained by expressing
the wavefunction or spinless single particle density matrix ~(rr’¢) in polar form.
Here we show [46] the equivalence of the ‘Quantal Newtonian’ second law to the
Euler equation for both the single—electron and many—electron cases.

2.12.1 Single-Electron Case

For a single electron in an external field F**'(rt) = —Vv(r?), the Schrodinger equa-
tion (2.1) is

o2 1o | wien = i 2200 (2.186)
—— v = . .
2 o
Substitution of the polar form of the wavefunction:
W(rt) = R(rt) exp [iS(r1)], (2.187)

where R(r?), S(rt) are real, into (2.186) leads to the QFD continuity and Euler equa-
tions, respectively:

dp(rt) .
D'/D(:t) — ]:-exl(rt) _ Vf(rt), (2189)

where the density p(rt) = R2(rt), the current density j(rt) = p(rt)VS(rt), the veloc-
ity field v (rt) = j(rt)/p(rt) = VS(rt), the scalar functionf (rt) = — % (V2R/R), and
the total time derivative

Dv(rt) ov(rt)
= o + [v@rt) - Vip(r). (2.190)

The Euler and continuity equations lead to an expression for the current density field
J (rt) of (2.54) as follows. Multiplying (2.189) by p(r?) leads to

ov

o +j- Vv =pF= — pVf. (2.191)

p
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From the definition of the current density j(rz) and the continuity equation we have

v  Jj )
Thus,
1 9j(rr) . 1 .
— =FX _Vf_ —[vV. -Vul. 2.1
T = o =T =V~ Vi vyl (2.193)

The differential density field (2.49) is

1 /1
doe) 1 (§V|We|2 + VRVzR) +VF. (2.194)

D= e TR

The kinetic—energy—density tensor of (2.53) is

ov* ov  QW* OU
t(yﬁ(r) =

1
3\ on o5 " ory o
1
2

OR OR oS oS
= — — 4+ R — ). 2.195
(8ra Org + Ors ara) ( )

Thus, the kinetic field (2.51) is

200 _ 1 (G 9Re 4 VRYR) 4 LWV i 4j Vi), (2.196)
- - — (v . . V). .
p(rr)  R*\2 R e

Z(rt) =

On adding the fields J (rt), D(rt), and Z(rt), one recovers the ‘Quantal Newtonian’
second law for the single electron:

FXUrt) + F'(rt) = T (rt), (2.197)

where the internal field ™ (rt) = —D(rt) — Z(rt).

2.12.2 Many—-Electron Case

For the many—electron case with the Hamiltonian of (2.2), the continuity and Euler
equations of QFD are derived from the equation of motion for the spinless single
particle density matrix v(rr'z) defined by (2.15). The equation of motion, which may
be derived directly from the Schrédinger equation or from the quantum mechanical
equation of motion (2.93) for the expectation value of the density matrix operator
A(rr’) of (2.17), is
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oy (x'r’t) _

1 2 2
_ v/ _ V// ) r/r//t
5 ( YD)

i t 2
+ 2/ [U( —r)—U (" —rx)] T (', x'r; 1) dr
+ [v (r't) — v (1) ]y (r'x"2), (2.198)

where U(r —r') = [r — r'|~! is the electron—interaction term, and I', the two—
particle density matrix defined in Appendix A.
The QFD equations are obtained by first expressing the density matrix ~(r'r”t)
in polar form:
Y('r"t) = R('r"t) exp [iS (r'r"1)] (2.199)

where the amplitude is symmetric: R(r'r”t) = R(r"r't), the phase antisymmetric:
S'r”t) = —=S(x"r’t), and S(rrt) = 0. The next step is to transform to the center of
mass and relative coordinates:

_ 1 2 " . - v
r=s@+r;  s=r-r, (2.200)
/ S /! S
— 2 =r— —, 2.201
r=r+ 5 r=r 3 ( )
so that |
V., =V +V"; Vs = E(V/ -V (2.202)
and | 1
V/ = EVr + Vs 5 V// - EVI‘ - VS- (2203)

The density p(rt) and current density j(r?) are then obtained as (dropping the explicit
time dependence in the following equations)

'y . S S
() = /O g = lim 5 (r +3r- E) , (2.204)
. i / " 7 ) .12 S S
§0) = S[V/ = V) [peprey = i lim Vg (r For— -) . (2.205)
2 s—0 2 2

Further, employing the polar form (2.199), the current density may be written as

Jj(@@) = p(r)v(r), (2.206)
where the velocity field v(r) is
— lim VS (r+ > S) (2.207)
V(I’)—SI_I)I(I) s (r E,r 5) .
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The equation of motion in the transformed coordinates is then

0
i—fy(r—{—g,r—i):—Vr-st(r—kE,r—E)

ot 2 2 2 2
+0(r+ 20— 2) (2.208)
2’ 2/

where
0 (r'r") = 2/ [U(r' —r) —=U(r" —r)] T2('r; r'r)dr
+[v@) —v@")] v (r'r”). (2.209)

The continuity equation

Optrn) o .
o =V, (2.210)

is obtained from the equation of motion (2.208) on employing the definitions of the
density and current density, and on taking the limit s — 0. The term Q(rr) = 0.

The Euler equation is derived by taking the derivative of the equation of motion
(2.208) with respect to the relative coordinate s and then taking the limit as s — 0.
The last term on the right hand side of the equation thus yields

ﬁII(l) V.0 (r + E, r— E) = —2/ V.U —r)[hr’; rr)dr’
s—

2 2
—p(mVou). (2211

The diagonal matrix element of the two particle density matrix is related to the pair-
correlation density by ', (rr’; rr’) = p(r)g(rr’) /2. Thus, the previous equation may
be expressed in terms of fields as

lim V0 (r + % r— %) = p(r)Eee(r) + p(r) F(r). (2.212)

The contribution of the first term on the right hand side of (2.208) is obtained by first
showing that

.0 0 S S
~lim ooy (r+3r—3) =2h® +p@umwnm, @213

where T,gZ is the k£th element of a tensor T° defined as

1 O*R
0 _ .
T = =7 i o o,

(2.214)
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and 05 as
P (r)ve(r) = hm R——. (2.215)
aSk aSg

In deriving (2.213), the symmetry properties of the amplitude R, and phase S together
with S(rr) = 0 have been employed. The left hand side of (2.208) is

S) _ 9w (2.216)

0 . S
’Elﬂ%vﬂ(”i’hi or

The Euler equation of QFD is then

T (xt) = F(rt) 4 Eee(rt) — ﬁv 2o + paenvenvan]. (2217

All that is required to prove the equivalence of the Euler equation to the ‘Quantal

Newtonian’ second law is to show that the sum of the other components of the internal
field F™ (rt) satisfy

D(rt) + Z(rt) = %V [2T@n) + paenv v ], (2.218)
p

where D(rt) = — le VV2p(rt)/p(rt) and Z(rt) = z(rt)/p(rt). This is readily seen to
be the case by writing the kinetic ‘force’ z(r) in terms of the transformed coordinates
to obtain

'y(r—i— f,r—f), (2.219)

so that

2

0 0 0 S s
=—> —1i — - 2.220
%:8173 20 (8&, 8Sg)7(r+2’r 2)’ ( )

which proves (2.218). The ‘Quantal Newtonian’ second law of (2.75) is therefore
recovered, which proves that for the many—electron system, Schrodinger theory as
described in terms of ‘classical’ fields and quantal sources, and the Euler equation
of quantum fluid dynamics are equivalent.

1 o0 . 0 0 S
- - —lim |{ —— fy(r—i-—,r——)—i—za(r)
B 2
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Chapter 3
Quantal Density Functional Theory

Abstract Quantal density functional theory (Q-DFT) is a physical local effective
potential theory of electronic structure of both ground and excited states. It consti-
tutes the mapping from any state of an interacting system of N electrons in a time-
dependent external field as described by Schrodinger theory to one of noninteracting
fermions in the same external field and possessing the same quantum-mechanical
properties of the basic variables. Time-independent Q—DFT constitutes a special
case. The Q-DFT mapping can be to any arbitrary state of the model system. Q—
DFT is based on the ‘Quantal Newtonian’ second and first laws of both the interacting
and noninteracting systems. As such it is a description in terms of ‘classical’ fields
derived from quantal sources as experienced by each model fermion. The internal
field components are separately representative of electron correlations due to the
Pauli Exclusion Principle, Coulomb repulsion, kinetic effects and the density. Thus,
as opposed to Schrodinger theory, within Q-DFT, the separate contributions to the
total energy and local potential due to the Pauli principle, Coulomb repulsion, and the
correlation contribution to the kinetic energy—the Correlation-Kinetic effects—are
explicitly defined in terms of fields representative of these correlations. The local
potential incorporating all the many-body effects is the work done in the force of a
conservative effective field which is the sum of these fields. The many-body com-
ponents of the energy are expressed in integral virial form in terms of the individual
fields representative of the different electron correlations. Various sum rules for the
model system such as the Integral Virial Theorem, Ehrenfest’s Theorem, the Zero
Force and the Torque Sum Rule are derived. Q—DFT is explicated by application to
both a ground and excited state of a model system in the low electron-correlation
regime, and to a ground state in the Wigner high-electron correlation regime. A
new characterization of the Wigner regime based on the newly discovered signif-
icance of Correlation-Kinetic effects is proposed. The multiplicity of potentials as
obtained via Q-DFT which can generate the same basic variables, and the signifi-
cance of Correlation-Kinetic effects in such mappings, is discussed. The Q-DFT of
degenerate states is described, as is the Q—DFT of Hartree and Hartree-Fock theories.
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Introduction

Quantal density functional theory (Q-DFT) is a local effective potential energy
theory [1-21] along the lines of Slater theory [22, 23] and traditional Hohenberg-
Kohn-Sham [24-26] (KS) and Runge-Gross (RG) [27-29] density functional theories
(DFT). It is based on the ‘Quantal Newtonian’ first and second laws discussed in the
previous chapter, and is thus a description in terms of ‘classical’ fields and quantal
sources. As is the case in Schrodinger theory, time-independent Q-DFT constitutes
a special case of the time-dependent theory. The basic idea underlying the theory,
one in common with traditional DFT, is the mapping from the Schrédinger theory of
interacting electrons in an external field ' (rt) /F*' (r) = —V[v(rt)/v(r)] to one
of noninteracting fermions with the same density p(rt)/p(r) as that of the interact-
ing system. (The notation f (rt) /f (r) refers to the time-dependent/time-independent
property as the case may be.) A more recent understanding of time-dependent Q-
DFT is that it is efficacious to map to a model system with the same basic variables
as that of the interacting system. In the time-dependent case the basic variables are
the density p(rt) and the current density j(rz). (A property that constitutes a basic
variable of quantum mechanics is defined below.) In the time-independent case the
basic variable is the nondegenerate ground state density p(r). However, the mapping
in time-independent Q-DFT is not restricted solely to this density but is more general
in that it is applicable to all nondegenerate and degenerate ground and excited state
densities. From these model systems the corresponding total energy (non-conserved)
E(t)/E, the ionization potential I or electron affinity A, equivalent to that of the
interacting system can be obtained. There are two additional attributes of Q-DFT
that distinguish it from Schrodinger theory. For one, it allows for the separation of
the contributions to the energy E(¢)/E (and local effective potential) of correlations
due to the Pauli exclusion principle and Coulomb repulsion. Second, the contribu-
tion to the kinetic energy and current density due to the electron correlations—the
Correlation-Kinetic and Correlation-Current-Density components—is determinable.
There is also a Q-DFT of the Hartree and Hartree-Fock theory approximations to the
interacting system whereby the corresponding densities and energies are determined.
(The Q-DFT mapping from the interacting system of electrons to one of noninter-
acting bosons such that the same density and energy are obtained will be described
in Chap.6.)

As the model fermions are noninteracting, the effective potential energy v,(rt)/
vs(r) of each fermion is the same. The corresponding quantum mechanical operator
representative of this potential energy is multiplicative, and it is said to be a local
operator. We refer to this model as the S system, S being a mnemonic for ‘single Slater’
determinant. Within Q-DFT the potential energy of the noninteracting fermions is
defined (at each instant of time) as the work done in a conservative effective field.
The effective field, in turn, can be expressed as a sum of fields each representative
of the different electron correlations that must be accounted for by the S system in
order to ensure it possesses the same basic variable properties as that of the interacting
system. These correlations are comprised of those due to the Pauli exclusion principle
and Coulomb repulsion. But in addition the S system must also account for the
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difference in the kinetic energy and physical current density between the interacting
and noninteracting systems, i.e. the correlation contributions to these properties.
These are the Correlation-Kinetic and Correlation-Current-Density contributions.
The total energy, equivalent to that of the interacting system, as obtained from the
model system, can also be expressed in terms of these individual fields in integral
virial form.

Q-DFT generalizes and thereby provides a broader perspective to local effective
potential theory. For example, in time-independent Q-DFT, a nondegenerate ground
state of the interacting system with density p(r) can be mapped to an S system in
a ground state with the same density. (This mapping is akin to that in KS-DFT).
But the ground state of the interacting system can also be mapped via Q-DFT to
an S system in any arbitrary excited state with a different local effective potential
which also generates the same density p(r). In other words, there exist an infinite
number of local effective potentials that can generate the ground state density p(r).
Similarly, an interacting system in an excited state with density p°(r) can be mapped
to an § system which is either in a ground state; or in an excited state having the
same configuration as that of the interacting system (as in excited-state KS-DFT);
or in any other arbitrary excited state, each with a different local effective potential.
Each such potential, however, generates the same excited state density p¢(r). Once
again, we learn that there exist an infinite number of local effective potentials that
can generate the density p°(r) of an excited state of the interacting system. In this
context, it is evident that KS-DFT constitutes a special case of Q-DFT.

In RG and KS-DFT, the description of the mapping to the S system is in terms of
action/energy functionals of the density p(rt)/p(r), and of their functional deriva-
tives. In that regard, these theories are strictly mathematical. As the Q-DFT descrip-
tion of the mapping is in terms of fields and quantal sources representative of the
different electron correlations, it therefore provides a rigorous physical interpreta-
tion of the RG and KS-DFT functionals and functional derivatives. The physical
interpretation of RG and KS-DFT via Q-DFT in terms of electron correlations is
described in Chap. 5.

The justification for the construction of the model S system stems from the first
of the two Hohenberg-Kohn theorems [24] to be discussed more fully in a following
chapter. The theorem was originally derived for a nondegenerate ground state of
electrons in the presence of an external electrostatic field 7' (r) = —Vu(r), where
the external potential v(r) is arbitrary. The theorem is derived for fixed electron
number N. It was extended [26] later to degenerate states. In the theorem, it is first
proved that there is a one-to-one relationship between the external potential v(r) (to
within an additive constant) and the nondegenerate ground state wave function ¥y (X).
Employing this bijectivity, it is then proved that there is a one-to-one relationship
between 1y(X) and the nondegenerate ground state density p(r). Thus, knowledge
of the nondegenerate ground state density p(r) uniquely determines the external
potential v(r) to within an additive constant. Hence, since the kinetic 7 and electron-
interaction U operators of the electrons is assumed known, so is the Hamiltonian. The
solution of the corresponding Schrodinger equation then leads to the nondegenerate
ground state wave function y(X). (Note that the Schrodinger equation can also be
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solved for the wave function of an excited state.) The wave function ¢y (X) is thus
a functional of the nondegenerate ground state density p(r) i.e. ¥ (X) = ¥o[p]. As
such the expectation value of any operator is a unique functional of this density. The
theorem, however, does not describe the explicit dependence of the wave function on
the density, and hence the unique functionals of the various expectations are unknown.
The profundity of the theorem lies in the fact that all the information about the
electronic system as determined from its wave functions is contained in the ground
state density p(r), and it is for this reason that a model system of noninteracting
fermions with equivalent density p(r) is constructed. However, in contrast to KS—
DFT, the fact that the wave function is a functional of the density is not explicitly
employed in the Q-DFT mapping to the S system.

The concept of a basic variable of quantum mechanics of electrons in an external
field also stems from the first Hohenberg-Kohn theorem [24]. A basic variable is
a gauge invariant property of the system of electrons that has a unigue one-to-one
relationship with the external potential. Thus, knowledge of this property determines
the Hamiltonian of the system uniquely, and thereby via solution of the Schrodinger
equation, the wave functions of the system. The nondegenerate ground state density
p(r) is thus a basic variable. So is the density p¢(r) of the lowest excited state of a
given symmetry [30] that differs from that of the ground state. This is the Gunnarsson-
Lundgqvist theorem [31]. That knowledge of such an excited state density leads to a
unique external potential has been shown by example [31].

The extension of the first Hohenberg-Kohn theorem to time-dependent external
electric fields F**' (rf) = —Vu(rt) is the Runge-Gross (RG) theorem [27-29] which
then provides the justification for time-dependent Q-DFT. The RG theorem is proved
for external potential energies v(rt) that are Taylor expandable about some initial
time. It is first proved that there is a one-to-one relationship between the external
potential v(r?) (to within an additive function of time) and the current density j(r?).
Employing this fact, it is then proved that there is a one-to-one relationship between
the external potential v(r?) (to within an additive function of time) and the density
p(rt). Thus, in the time-dependent case, both p(rf) and j(rt) are basic variables
since the relationship of each with the external potential is one-to-one. With the
kinetic 7" and electron-interaction U operators of the electrons assumed known, the
Hamiltonian is known, and solution of the time-dependent Schrédinger equation
then leads to the wave function W (Xt) of the system. The wave function W (X?) is
thus a functional of either p(rf) or j(r?) i.e. W (X¢) = W[p(rt)] or W[j(r?)] to within
a purely time-dependent phase. In the calculation of expectation values, the phase
factor cancels out, and once again the expectations are a unique functional of either
p(rt) or j(rt). But as in the HK case, the RG theorem does not define the explicit
dependence of the wave function on p(rf) or j(rt). The fact that the wave function
is a functional of either p(rf) or j(rt) is not employed in the Q-DFT mapping to the
S system. It simply constitutes the justification for the mapping.

In time-independent Q-DFT, as in KS-DFT, the existence of the S system is an
assumption. In time-dependent RG-DFT, the existence of the S system for Taylor
expandable external potentials is predicated [32] on the constraints that the corre-
sponding wave function yield the correct density and its time derivative at the initial
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time. (There has been a critique [33] of this proof, and responses [34, 35]. See also
[36] for the response to a different aspect of the critique, and to other critiques [37,
38] of time-dependent DFT.) Time-dependent Q-DFT assumes the existence of the
S system. The Q-DFT mapping to the S-system is accomplished via the ‘Quantal
Newtonian’ second laws for the interacting and noninteracting fermion systems. In
this manner, the equivalence of the density p(rt) (or of the density p(r?) and the
current density j(rz)) of the two systems is ensured at the outset.

In the next section the Q-DFT mapping (Part I) from an interacting system with
density p(rf) to one of noninteracting fermions possessing the same density p(rt) is
described. This description is in terms of ‘classical’ fields and quantal sources repre-
sentative of the different electron correlations. Various sum rules such as the Integral
Virial Theorem, Ehrenfest’s Theorem, the Zero Force Sum Rule, and the Torque Sum
Rule, are then derived. In the section that follows, the Q-DFT mapping (Part II) to
an S system with the same density p(rt) and current density j(rt) is described. The
equations governing the latter mapping constitute a special case of the former, and
are therefore simpler. Further, the mapping such that both the basic variables p(rt)
and j(rr) are reproduced leads to a consistency [39] within Q-DFT with regard to
the electron correlations that must be accounted for by the model § system. If the
Q-DFT mapping is such that all the basic variables are reproduced, then the only
correlations that must be accounted for are those of the Pauli exclusion principle,
Coulomb repulsion and Correlation—Kinetic effects. This is the case irrespective of
whether the external field additionally includes a time-dependent electromagnetic
field, or whether it is comprised of an electrostatic and magnetostatic field, or solely
an electrostatic field. In this chapter, the description is restricted to an external field
of the form F**'(rt) = —Vuv(rt). As the scalar external potential v(rt) is arbitrary,
the Q-DFT equations are valid for both adiabatic and sudden switching on of the
field. To explicate the theory, the application to both a ground and an excited state
of the exactly solvable Hooke’s atom is provided.

As the ‘Quantal Newtonian® first law is a special case of the second law, time-
independent Q-DFT, as noted previously, constitutes a special case of time-dependent
Q-DFT. Time-independent nondegenerate and degenerate Q-DFT are subsequently
described. Nondegenerate Q-DFT is then applied to the Wigner low-density high-
electron-correlation regime of a nonuniform density system as represented by the
weakly confined Hooke’s atom. Finally, the Q—DFT of the Hartree-Fock and Hartree
theory approximations are described. Once again, these Q-DFT’s are based on the
corresponding ‘Quantal Newtonian’ first law for each approximation.

3.1 Time-Dependent Quantal Density Functional Theory:
Part I

In this section we describe the Q-DFT mapping from a system of N electrons in an
external field F*'(rt) = —Vu(rt) to an S system with the same density p(rt). The
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Hamiltonian for the corresponding N model noninteracting fermions is

H(t) = ho(rin), 3.1)

where the Hamiltonian for each fermion is
~ 1 5
hs(rt) = _EV + v,(re), (3.2)

with v, (r?) their effective potential energy. The time-dependent Schrodinger equation
for these fermions is
0¢;(xt)

ot

hy(r1)¢i(x1) = ; (3.3)
We assume that the model fermions are subjected to the same external field as that
of the interacting system of electrons. Thus, the potential energy v, (r?) is the sum of
the potential energy v(rt) of these model fermions in the external field, and an effec-
tive ‘electron-interaction’ potential energy ve.(rt) representative of all the electron
correlations that the S system must account for in order that its density p(rt) be the
same as that of the interacting system:

Vs(rt) = v(r?) + Ve (11). 34

The fundamental correlations that must be accounted for by ve.(r) are those due
to the Pauli exclusion principle and Coulomb repulsion. But in addition to these
correlations, the S system must also account for Correlation—Kinetic and Correlation—
Current—Density effects. These latter correlations arise as a consequence of the differ-
ences in kinetic energy and current density between the interacting and noninteracting
systems. Thus, for the model system to reproduce the true TD density p(rt), the poten-
tial energy v (rf) must incorporate the effects of four distinct electron correlations.
These correlations are then intrinsically incorporated in the wavefunction of the S
system which is a Slater determinant ®{¢;} of the orbitals ¢;(x¢). The assumption
of existence of the effective potential energy v, (rt) of the model fermions in which
all the many-body effects are incorporated implies that there exists a corresponding
conservative effective field F° (rt) such that F° (r1) = — Ve (rr). The § system
is therefore fully defined by this effective field.

3.1.1 Quantal Sources

Here we define quantal sources within the framework of the S system parallel-
ing those of the interacting case discussed in the previous chapter. These sources
are the density p(r?), the Dirac spinless single-particle density matrix ~s(rr'z), the
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pair—correlation density gs(rr'zr) and from it the nonlocal Fermi hole charge distribu-
tion py (rr't), and the current density j,(rt). Since the wavefunction of the S system is
a Slater determinant, the definition of the Fermi hole representation of Pauli correla-
tions follows naturally. This then permits a definition of the nonlocal Coulomb hole
distribution p.(rr’t) within the S system framework. The definitions of the sources
as expectations of Hermitian operators taken with respect to the Slater determinant
results in their being expressed explicitly in terms of the orbitals ¢;(xt) of the S
system.

A. Electron Density p(r?)

The electronic density p(rt) is the expectation of the density operator p(r) of (2.12):
p(rt) = (D{e}HIO)|PLB}) = D D di(x0) P, (3.5)
and satisfies the normalization condition

/p(rt)dr =N. (3.6)

Note that the density is the same as for the interacting system.
B. Dirac Spinless Single-Particle Density Matrix ~;(rr't)

The Dirac spinless single-particle density matrix ~;(rr’t) is the expectation of the
density matrix operator 4 (rr’) of (2.17):

(') = (D{SHAOT) DB} = DD i (xo, Do, ). (37)

The properties of the Dirac density matrix are that

% (rTD) = p(r), (3.8)
Y5 (x'rt) = 47 (rr'n), (3.9)

and that it is idempotent:
/ s (" )Y (F'F ) dr” = ~,(rr't). (3.10)

The interacting system density matrix of (2.15, 2.16) and the Dirac density matrix
are inequivalent. It is only their diagonal matrix elements that are equal.


http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2
http://dx.doi.org/10.1007/978-3-662-49842-2_2

74 3 Quantal Density Functional Theory

C. Pair-Correlation Density g;(rr't); Fermi p, (rr't) and Coulomb p.(rr't) Holes

The pair—correlation density gs(rr't) is the ratio of the expectations of the pair-
correlation and density operators of (2.28) and (2.12), respectively,

(®{g}|P(rr)| D{¢i})
p(rt)

gs(xr't) = , (3.11)
and satisfies the condition
/gs(rr/t)dr’ =N-1 (3.12)

for arbitrary electron positron r at each instant of time.
As was the case for the interacting system, the pair—correlation density gs(rr'r)
may also be separated into its local and nonlocal components as

gs(xr't) = p(r't) + px(rr'n), (3.13)

where py(rr't) is the Fermi hole charge distribution. The Fermi hole [40] is the
reduction in density at r’ due to the presence of an electron of parallel spin at r for
each instant of time. It represents the reduction in probability of two electrons of
parallel spin approaching each other. The Fermi hole is derived in terms of the S
system orbitals to be

D GaDg X DG ) y(re)

i,j(spin j||spin i)
S g x0)du(xr)
a k

P
o 2p(rn)

px (rr't)

(3.14)

and satisfies the following sum rules for arbitrary electron position r at each instant
of time:

/px(rr/t)dr/ =1 (3.15)
px(rrt) = —p(rt)/2, (3.16)
pe(rr'n) < 0. (3.17)

Note that the self-interaction term in the Fermi hole is cancelled by a similar term
in the density, and as such there is no self-interaction in the pair—correlation density.
The S system pair—correlation function kg (rr'z) is defined as

gs(rr'e)

hy(rr't) = ,
s(rr's) D)

(3.18)
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and it is symmetrical in a interchange of r and r’:
hs(rr't) = hy(x'rt). (3.19)

This property of symmetry is employed in various proofs.

Since in the S system, the effects of Pauli correlation can be explicitly accounted
for via the Fermi hole, it is possible to define a Coulomb hole p.(rr't) which is
anonlocal charge distribution representative of Coulomb correlations. The Coulomb
hole at r’ for an electron at r at each instant of time is defined as

pe(rr't) = g(rr't) — gi(rr't) (3.20)

= pxe(Xr't) — py(rr'n), (3.21)

where g(rr't) and py.(rr't) are the interacting system pair—correlation density and
Fermi—Coulomb hole charge, respectively. As the total charge of the Fermi—Coulomb

and Fermi holes is the same (see (2.36) and (3.15)), the charge sum rule satisfied by
the Coulomb hole for each electron position r at each instant of time is

/pc(rr/t)dr’ =0. (3.22)

D. Current Density j(r?)
_ The current density j(r7) which is the expectation of the current density operator
j(r) of (2.42) is

Js(rt) = (LG} ()| D{ei))

1

5 22 2 [0 Veuxn — g (xn Vo (xn)], (3.23)
o k

or it may be expressed in terms of the Dirac density matrix as
J0) = SV = VI Dl e (3.24)
The quantal sources defined above then give rise to ‘classical’ fields corresponding

to the S system

3.1.2 Fields

The fields required for the description of the potential energy v..(r?) of the S system
and total (nonconserved) energy E(t) are the electron-interaction field £ (rt) of
(2.43), or its Hartree Ey(rt), Pauli £4(rt) and Coulomb E.(rt) components, the
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Correlation—Kinetic Z (rt), and Correlation—Currrent—Density J .(rt) fields. To
ensure that the model S system density p(r¢) is the same as that of the interacting
case, the difference in kinetic energy and current density between the interacting
and noninteracting systems must be accounted for. Thus, the fields describing the
S system are in terms of the properties of both systems. As noted previously there
must therefore exist an effective field < (rr) in which the potential energy of the
model fermions is Ve (r?).

A. Electron-Interaction Field £..(rf), and Its Hartree £y(rt), Pauli £,(rr),
and Coulomb & (rt) Components

We begin by further subdividing the electron—interaction field €. (rt) (see (2.43)—
(2.48)) of the interacting system. The S system electron—interaction field €. s(r?) is
obtained from its quantal source, the pair—correlation density g (rr'r) via Coulomb’s

law as
X 't Y )
oo (r1) = / grx —r) . (3.25)
’ r—r/?

This field may be rewritten in terms of a corresponding electron-interaction ‘force’
and the density p(r?) as
eee,x (I‘[)

gee K = ,
0=

(3.26)

where e, ;(rt) is determined via Coulomb’s law from the pair function P(rr't) =
(D{;}|P(rr’)|®{¢p;}) obtained from the Slater determinant ®{¢;} with P(rr’) the
pair—correlation operator of (2.28). Thus, the ‘force’ is

€ 5 (11) = / wdr’. (3.27)

Ir —r'|3

(The quantal source of the field £, ;(r?) can thus also be thought of as being the pair
function P,(rr'r).)
On employing the decomposition (3.13), the field £, ;(r?) may then be written
as the sum
Eees(rt) = E(rt) + E,(r1), (3.28)

where the Hartree field £y (r?) is defined by (2.47), and the Pauli field £, (r?) due to
the Fermi hole charge p, (rr't) is

£.(rt) = / Pl =) (3.29)

r —r'|3

The interacting system electron-interaction field £,..(rf) can on employing the
definition of the Coulomb hole p.(rr’t) of (3.21) be then written as

gee(rt) = gee,s(rt) + gc(rt)’ (330)
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so that with (3.28) we have
Eee(rt) = Ef(rt) + E.(xt) + E.(x1), (3.31)

where the Coulomb field £.(rt) due to the Coulomb hole charge p.(rr's) is

£.(r1) = / Pl —x) (3.32)

Ir—r|3

In this manner, Pauli correlations are represented by the Pauli field £, (rt), and
Coulomb correlations beyond those incorporated in the Hartree field £y (rt) by the
Coulomb field €. (rt). Since both the Fermi and Coulomb holes are nonlocal sources,
the fields £, (rt) and £.(rt) are in general not conservative.

B. Kinetic Z(r?) and Correlation—Kinetic Z, (rt) Fields

The S system kinetic field Z(r?) is defined in a manner similar to the kinetic field
Z(rt) (2.51) of the interacting system, but its quantal source is the Dirac density
matrix 7, (rr'r). Thus

Z(rt) = M (3.33)
p(rt)

where the S system kinetic ‘force’ is defined by its component z, ,, (r?) as
Zso(rt) = 22 9 fy 0 (r1) (3.34)
S, (v - - 8rg s, a3 5 .

and where , ,5(r?) is the § system kinetic-energy-density tensor defined in turn as

s = 1| 2 T ) (335)
s.ag(rt) = — o | —— .
=4 Grory T oy | T U
The kinetic field Z(r¢) leads to the S system kinetic energy density and hence to
the kinetic energy of the noninteracting fermions (see Sect. 3.1.3).

The Correlation—Kinetic field Z, (rt) is defined as the difference between the
interacting and noninteracting system kinetic fields:

Z,(xt) = Z,(xt) — Z(x1). (3.36)

Thus, Z (r) is the correlation component of the interacting system kinetic field
Z(rt).
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C. Current Density 7 (rt) and Correlation—-Current-Density 7 .(rt) Fields

The § system current density field Js(rt) is defined in a manner similar to that of
the interacting system field J (r?) of (2.54) as

1 0,
T(rt) = mws(”)’ (3.37)

where j,(rt) is the corresponding current density. The Correlation—Current—Density
field J.(rt) which represents the difference in current densities of the interacting
and noninteracting systems is then

T (rt) = Js(rt) — T (r1), (3.38)

where J (r?) is the interacting system current density field.
D. Differential Density Field D (r?)

In the S system there also exists a differential density field D(r?). The definition of
this field is the same as for the interacting case (2.49), and since the densities of the
two systems are the same, the fields are equivalent.

The fields E..(r1), Ex(xt), Ec(xt), Z4(rt), Z (rt), and J.(rt) are in general
not conservative. However, the sums [Z(r?) + Js(rt)] and [Ecc(rt) + Z (rt) +
J .(rt)] are conservative so that

V x [Z4(r1) + T(rt)] = 0, (3.39)

and
V x [Ece(rt) + 2, (xt) + T(r1)] = 0. (3.40)

The condition of (3.39) follows from the S system ‘Quantal Newtonian’ second
law proved in Appendix E. The proof of (3.40) is given in Sect.3.1.4 For certain
symmetries, or when such symmetry is imposed, the individual fields may sepa-
rately be conservative so thatthen V x Ex(rf) =0,V x E.(rt) =0,V x Z,(rt) =
0,VxTJirt)=0,VxZ,(rt) =0,V x J(rt) =0.

3.1.3 Total Energy and Components in Terms of Quantal
Sources and Fields

As was the case for the interacting system, the energy components in the § system
framework may be expressed directly in terms of the quantal sources, or in integral
virial form in terms of the respective fields. The latter expressions are independent
of whether or not the fields are conservative.
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A. Electron-Interaction Potential Energy E..(¢), and Its Hartree Ey(z), Pauli
E, (1), and Coulomb E. () Energy Components

We first write the electron-interaction energy E..(#) of the interacting system in
terms of its components. The S system electron-interaction potential energy Ee s(f)
is the energy of interaction between the density p(r¢) and the pair—correlation density

gs(rr'e):
Eee,s(t) — l// wdrdr,’ (341)
2 Ir —r’|

which on employing the decomposition (3.13) may be written as the sum
Eee s(1) = En(1) + Ex(1), (3.42)

where the Hartree energy Ey (7) is defined by (2.61), and the exchange or Pauli energy
E, (1) is the energy of interaction between the density p(r?) and the Fermi hole charge

px(rr't):
E(f) = - / / pat)p *(rr D rar’ (3.43)

These energies may be expressed in terms of fields by following the procedure of
Sect.2.4 and employing the symmetry property of the S system pair—correlation
function hg(rr't). Thus, we obtain

Eeos(t) = / PEDT - Eo (KD, (3.44)

E1) = /p(rt)r - Ex(rt)dr, (3.45)

and Ey (¢) is defined in terms of £y (¢) as in (2.66). Next, by employing the definition
of the Coulomb hole p.(rr’t) of (3.21), the interacting system electron-interaction
energy Ee.(t) of (2.59) may be written in terms of its Hartree, Pauli, and Coulomb
components as

Eee (1) = En(t) + Ex(1) + Ec(2), (3.46)

where the Coulomb energy E.(¢) is the energy of interaction between the density
p(rt) and the Coulomb hole charge p.(rr't):

/ / p(rt) pe(rr’ t) drdr’, (3.47)

r — 1’|

or equivalently in terms of the Coulomb field €. (r?) as

E.(t) = / p(ro)r - E(ro)dr. (3.48)
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B. Kinetic 7(¢) and Correlation—Kinetic 7. (f) Energies

The S system kinetic energy 7(¢) may be expressed in terms of its quantal source,
the Dirac density matrix ,(rr'z), as

T,(t) = /ts(rt)dr, (3.49)

where the kinetic energy density # (r?) is the trace of the kinetic-energy-density tensor
ts,aﬂ (rt):

() = >t myﬂv Vs (X'r"1)| (3.50)
S = A s, o =5Vr Vs r'=r’=r- .
It may also be expressed in terms of the kinetic field Z(rf) and ‘force’ z;(r?) as

T,(t) = —%/p(rt)r - Zi(rt)dr (3.51)
= —%/rzs(rt)dr. (3.52)

The proof of the equivalence of (3.49) and (3.51) is again based on the vanishing of
the Dirac density matrix on the boundaries at infinity. The energy 75() may also be
obtained directly in terms of the S system orbitals ¢;(x?) as the expectation

. 1
Ti(0) = (@UoITI®lo]) = 3 D (oiro, Dl = V2o, ). (353)

The Correlation—Kinetic energy T.(¢) is the correlation contribution to the kinetic
energy:
T.) =T — T, (3.54)

and may be expressed in terms of the Correlation—Kinetic field Z,, (r?) as

T.(t) = %/p(rt)r - Z (rt)dr. (3.55)

C. External Potential Energy E.(?)

Since the electrons in the interacting case, and the noninteracting fermions of the S
system experience the same external field F**'(r7), and are constrained to have the
same density p(rt), the expression for the external potential energy E.x (¢) for both
systems is the same:

@an/mmwmm. (3.56)
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In a manner similar to that of the interacting system of electrons (see Sect. 2.5), the
external potential v(r), and hence the energy component E. (), can be expressed
in terms of all the fields present within the S system. This follows from the ‘Quantal
Newtonian’ second law for the S system described in the next section.

As noted previously in Sect.3.1.2, the S system must account for correlations
due to the Pauli exclusion principle, Coulomb repulsion, Correlation-Kinetic, and
Correlation-Current-Density effects. The fields €..(rt) and Z, (rt) give rise to the
electron-interaction E.(t) and Correlation-Kinetic 7.(f) energy, respectively. The
field J.(rt) does not contribute to the total energy directly. However, it does so
indirectly because it contributes to the potential ve. (r?) as shown in the next section.
The proof that there is no direct contribution to the total energy follows readily.

As in Sect. 2.6, it can be shown that

2
/ p(ro)r - J(rt)dr = %% / rp(r)dr, (3.57)

where the continuity equation V - js(rf) = —0p(rt)/0t is employed.
Therefore, together with (2.88) we have

/p(rt)r - T (xt)dr = 0. (3.58)
Thus, the total energy E(¢) may be expressed as
E@) =T, + / pv(rndr + Eee (1) + Te(1), (3.59)
or by employing the decomposition of E..(¢) as
E(@) =T + / prHv(rdr + Ex(t) + Ex(t) + Ec(t) + Tc(2). (3.60)

In this manner, the separate contributions of the various electron correlations to the
total energy are clearly delineated.

3.1.4 The S System ‘Quantal Newtonian’ Second Law

The ‘Quantal Newtonian’ second law for the S system of noninteracting fermions
derived in Appendix E is

1 0j,(rn)
p(rt) ot

F(rt) + Fis“‘(rt) =Jt) = (3.61)
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where each model fermion experiences the external field F'(rt):

F*(rt) = =Vu(rt), (3.62)
and an internal field F™ (rt):

F(rt) = —=Vue(rt) — D(rr) — Z,(rt), (3.63)
with the component fields D(rt), Z,(rt), and J;(rt) being defined previously. The
response of the model fermion to the external and internal fields is the S system
current density field J;(r?).

From the ‘Quantal Newtonian’ second law of (3.61), the external potential v(rt)
can be expressed in terms of the various S system fields as

v(re) = — / ' F(x't)-ade, (3.64)

where
F(xt) = T (rt) — F™(re) (3.65)
= J(xt) + Ve (rt) + D(rt) + Z,(rt). (3.66)

Thus, the external potential v(rt) can be interpreted solely in terms of S system
properties as the work done in the conservative field F,(rt). This work done is
path-independent since V x F(rt) = 0. The expression for v(rz) of (3.64) can be
employed to determine the external energy E.x(?). Of course, with an assumed exter-
nal field F*'(rt), the energy E.(¢) can be obtained directly from (3.56).

In Q-DFT, one assumes the external field F**'(rt) of the interacting and model
fermions to be the same. In order to fully define the S system Hamiltonian A, (rt)
of (3.2), what remains then is the determination of the electron-interaction potential
energy ve.(rt). This is accomplished by further ensuring that the density p(rt), the
basic variable, is the same for the interacting and model systems. For there to be such
a local potential energy function ve.(rt), there must exist an effective field F° (rr)
which encompasses all the many-body effects the S system must account for. Hence,
in the ‘Quantal Newtonian’ second law (3.61) we associate the term —V ve. (rf) with
this effective field:

F(rt) = —Vvee (r1). (3.67)

As the curl of the gradient of a scalar function vanishes, the effective field Feit(rr)
is conservative.

In the following section we determine JF *ff (r1) via the ‘Quantal Newtonian’ sec-
ond law for the interacting and model fermions.
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3.1.5 Effective Field Felt (rt) and Electron-Interaction
Potential Energy vee(xt)

The electron-interaction potential energy v (rt) of the model fermions, whose den-
sity p(rt) is the same as of the interacting system is defined as follows. It is the work
done at each instant of time to move a model fermion from some reference point at
infinity to its position at r in the force of the conservative effective field F° (rt):

Vee(T1) = — / ' F(r't) - de, (3.68)
where
Fl(rt) = Ece(rt) + 2, (x1) + T o(x1). (3.69)

This work done is path—independent since V x F*I (rf) = 0. The vanishing of the
curl implies (3.68) provided F° (rr) is smooth in a simply connected region. (A func-
tion is smooth if it is continuous, differentiable, and has continuous first derivatives.
By definition, a region is simply connected if any closed curve lying entirely within
this region can shrink down to a point without leaving the region.) The component
fields Ee(rt), Z, (rt), and J .(rt) are in general not conservative. Their sum always
is.

The proof of the above description of the potential energy ve.(r?) is as follows.
The ‘Quantal Newtonian’ second law for the interacting system of electrons is (2.75)
(see Appendix A)

FXUrt) + F'(rt) = T (rt), (3.70)

where the internal field F™ (rt) is
F'(xt) = Eee(rt) — D(rt) — Z(xt). (3.71)
The ‘Quantal Newtonian’ second law for the S system is (3.61) (see Appendix E)
F(en) + FPren) = T o(xn), (3.72)
where the corresponding internal field is
Fi(rr) = — Ve (rt) — D(rr) — Z,(r1). (3.73)

Employing the constraints that the external field F**'(r¢) and the density p(rt) are
the same for the interacting and model systems in (3.70) and (3.72) one obtains

= Ve (11) = Eee(r1) + [Z(r1) = Z(aeD)] + [T (1) = T ()] (3.74)
= Eee(rt) + 2, (rt) + T (xt) = F(rn), (3.75)
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from which the definition for ve. (rf) of (3.68) and (3.69) follows.

In addition to providing a rigorous physical interpretation for the potential energy
vee (r?), the above derivation leads to insights, and relates the interacting and model
systems in a rigorous quantum-mechanical sense. It shows that the electron corre-
lations due to the Pauli exclusion principle and Coulomb repulsion are accounted
for in the mapping to the S system via the electron-interaction field €. (r?). Further,
what emerges from the derivation is that in this mapping to the model system, one
must additionally account for the difference in kinetic energy and current density
between the interacting and model systems. This in turn is accomplished via the
Correlation-Kinetic Z, (rt) and Correlation-Current-Density J . (r?) fields.

For systems of symmetry such that each component of F° (rr) is irrotational
(conservative):

V X Eee(rt) =0, (3.76)
V x Z,(rt) =0, (3.77)
V x J(rt) =0, (3.78)

the potential energy ve.(rf) may be expressed as the sum
Vee (1) = Wee (1) + Wy (r1), (3.79)

where Wee(rt) and W, (rt) are respectively the work done in the fields €. (rt) and
Z, (rt):

Wee (rt) = — / Eeo(r'D) - dl, (3.80)
W, (rt) = — / ' Z.(x't) - de. (3.81)

For systems of such symmetry, the field J.(rf) =0, and does not contribute
to the potential energy. The field J.(rf) vanishes because both V x J.(rt) =0
and V - J.(rt) = 0, the latter following from the continuity equations V - j(r?) =
—0p(rt)/Ot and V - js(rt) = —0p(rt)/0t.

Employing the decomposition of the electron—interaction field £ (r?) into its
Hartree £y (rt), Pauli £(r?), and Coulomb & (rf) components, the effective field
F°I (r) may be written as

Fl(rt) = Ex(re) + Ex(rt) + E.(rt) + Z, (1) + T (rt). (3.82)

Thus, as for the total energy, the separate contributions of the different electron
correlations to the potential energy v (r?) are delineated.
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Since the source p(rt) of the Hartree field Ey(rr) is a local charge distribution,
for each instant of time, the field may be written as

Eu(rt) = —VWy(re), (3.83)
where Wy (rt) is a scalar function. This shows that the field £g(rt) is irrotational

(conservative): V x Ey(rt) = 0. Thus, the scalar function Wy (r?), which equiva-
lently is the work done in the field £y (r?), may be expressed as

Wi (rf) = — / " ea(rn) - de (3.84)
P (3.85)
Ir — r/

Hence, the potential energy v, (r?) for arbitrary symmetry may be written as
Vee (1) = Wy(rr)

+ (— / [Ex(X'D) + Ec(X'D) + Z, (1) + T(X'n)] - de’) . (3:86)

For systems with symmetry such that (3.76)—(3.78) are satisfied, ve.(r?) is the sum
of the work done in the individual fields:

Vee (rt) = Wy(rt) 4+ Wi (rt) + We(rt) + W (r1), (3.87)
where
Wy(rt) = — / ' E.(r'1) - de, (3.88)
We(rt) = — /r E.r'r) - d, (3.89)
W, (r1) = — / ' Z, ('t -de. (3.90)

Each work done, at each instant of time, is separately path—independent.

The S system of noninteracting fermions whereby the density p(rz) and total
energy E(t) equivalent to that of electrons in the same time-dependent external field
FX(rt) is thus fully defined. The total energy E(¢) and the effective potential energy
vs(rt) are described in terms of component fields representative of the properties
and different electron correlations present within the model system. The delineation
in terms of the various fields then allows for an understanding of the contribution
of each type of electron correlation to a property. Further, it is the same source,
and hence field, representative of a specific electron correlation that contributes to
the corresponding component of both the total energy E(¢) and potential energy



86 3 Quantal Density Functional Theory

Vee(rt). The delineation thus also allows for the construction of approximations
whereby each type of electron correlation—Pauli, Coulomb, Correlation—Kinetic,
Correlation—Current—Density—is systematically introduced.

3.2 Sum Rules

In this section we derive sum rules satisfied by the effective field Fe(rr) and the
resulting S system integral virial theorem, Ehrenfest’s theorem, and the zero force
and torque sum rules.
3.2.1 Integral Virial Theorem
Operating by fdrp(rt)r~ on (3.67) and (3.69) leads on using (2.65) and (3.55) to

— / PIOY - Ve (r1)dr = Eee(t) + 2T.(2) + / pr)r - J(rt)dr. (3.91)
Since the last term vanishes (see (3.58)), we have

Eeo(t) +2T.(t) = / p(et)r - F (rr)dr. (3.92)

This is the S system integral virial theorem.

3.2.2 Ehrenfest’s Theorem and the Zero Force Sum Rule

The model fermions of the S system too must satisfy Ehrenfest’s Theorem (2.98).
This requirement then leads to the zero force sum rule for the effective field Feil(rr).

Operating with f drp(rt) on the S system ‘Quantal Newtonian’ second law (3.72)
and employing (3.67) we have

/p(rt)]:ex‘(rt)dr+/p(rt).7:§m(rt)dr=/p(rt)JS(rt)dr. (3.93)

Employing the continuity equation V - js(rt) = —0p(rt)/0t, it can be shown by
following the procedure of Sect. 2.8 that

2
/p(rt)Js(rt)drz %/rp(rt)dr. (3.94)
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As was the case for the interacting system, f p(rt)D(rt)dr = 0 and f p(rt) Z
(rt)dr = 0. Hence, for Ehrenfest’s theorem (2.98) to be satisfied requires that the
averaged effective field vanish:

/ p(et) F (rt)dr = 0. (3.95)

Further, the contribution of the components €. (r?), 2 (rt), and J.(r?) to the inte-
gral also separately vanish. The proofs are similar to those of Sect.2.8. (See (2.104)—
(2.107), and (3.94).) This is the zero force theorem.

The above sum rule is the S system analogue of (F™™) = 0 of Schrodinger theory
(2.114), and of Z:J Fj; = 0 of Newton’s theory. Note that it is only the electron—
interaction € (r?) field component that obeys Newton’s third law. Hence, the van-
ishing of its average maybe attributed to it. However, the vanishing of the averaged
Correlation—Kinetic Z, (rf) and Correlation—Current-Density J.(r?) fields is not
a direct consequence of the law. Rather, as in the case of the interacting system, it is
a quantum mechanical effect.

Within the framework of the S system then, Ehrenfest’s theorem may be stated in
terms of the corresponding response of the system J (r?) as

/p(rt)[.’Fe’“(rt) — J(H]dr =0. (3.96)

3.2.3 Torque Sum Rule

The S system torque sum rule for the effective field F< (rt) is

/ p(r)r x [F(rt) — T (r1)]dr = 0. (3.97)

Note that in contrast to Schrodinger and Newton’s theories, the averaged torque of the
effective field does not vanish. It vanishes only when V X j(rf) = V x js(rt) =0
because then V x [j,(rf) — j(rt)] = V x J.(rt) = 0, and from the continuity equa-
tions V - [js(rt) — j(rt)] = V - J.(rt) = 0 because the density p(rt) of the inter-
acting and S systems is the same. Then, from the Helmholtz theorem, [J .(r?) = 0.
When these conditions are met, then the averaged torque of the effective field F°I (rr)
vanishes:

/ p(ro)r x F (rt)dr = 0. (3.98)

We provide two proofs of (3.97).
(i) For the first of these proofs apply the operator [ drp(r)r x on the definition
(3.69) of F° (rt) to obtain
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/p(rt)r X feff(rt)dr = /p(rt)r X Eee(rt)dr + / p(x)r x Z (rt)dr
~|—/p(rt)r X Jc(rt)dr. (3.99)

That the integral
/p(rt)r X Eee(rt)dr =0 (3.100)

is proved by once again employing the symmetry property of the pair-correlation
function A(rr't) as in Sect.2.8. For the proof of

/p(rt)r x Z (rt)dr =0, (3.101)
we need to show
/r x z(rt)dr =0 and /r X zs(rt)dr = 0. (3.102)

Consider the component

|:/r X z(l‘t)dr:|‘ = 2/ Zeg;krjé%sz(l‘t; [vDdr

ki

=-2> / ety (vt [Y])dr = 0, (3.103)
jk

where we have again employed the vanishing of the tensor at the boundaries at infinity,
and the properties #;(rt) = ty (rt) and € = —eg;. This proves the first condition of
(3.102). The second is similarly proved. Thus, the torque sum rule of (3.97) is proved.
(ii) The second proof is along the lines of [28] and employs the quantum-
mechanical equation of motion for the expectation value of an operator Q(t):

d0(1)
ot

d A A N
E(‘P(I)IQ(I)I\I’(I)) = (v — [0, HOIW (1)). (3.104)

For the angle operator (;AS = >, 1; X p;, we have for the difference

d A A
LY DOIF @) = (()|9| P (1))]

=— / p(rtyr x F (rt)dr. (3.105)
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Now
d . d . A
E(xy(t)|¢>|qf(z)) = —ZE/Z‘Q x W*(X1) VW (X1)dX, (3.106)

with a similar equation for the S system so that the left hand of (3.105) is

- —%/r x [js(rt) — j(ro)ldr (3.107)

= —/p(rt)]r x J.(rt)dr. (3.108)

Equating (3.105) and (3.108) proves the torque sum rule.

Thus, the torque of the effective field Feff (rt) is finite, and due solely to
Correlation-Current-Density effects represented by the field J.(rt). It is only for
cases when J .(rt) = 0 does the torque of F°(rt) vanish. The torque due to the
electron-interaction €. (rt) and Correlation-Kinetic Z,, (rt) fields are proved to sep-
arately vanish.

3.3 Time-Dependent Quantal Density Functional Theory:
Part II

In the previous three sections, we described the Q-DFT mapping of a system of N
electrons in an external time-dependent field F**'(rt) = —Vv(rt) to one of nonin-
teracting fermions having the same density p(rt). The choice of the density p(r?), as
explained in the Introduction to the chapter, is because it constitutes a basic variable
of quantum mechanics as proved by the Runge-Gross theorem [27-29]. That is, the
choice of property is governed by the fact that there is a one-to-one relationship
between the density p(rf) and the external potential v(r?). (This mapping is akin to
that of time-dependent KS-DFT.) But then in the mapping to the model system, one
must account for the Correlation-Current-Density effects.

However, as noted in the Introduction, the current density j(r?) is also a basic
variable since it too has a one-to-one relationship with the external potential v(r?). In
this section we describe the Q-DFT mapping to a system of noninteracting fermions
whose density p(rt) and current density j(rt) are the same as those of the interacting
system of electrons. In other words the response of the two systems is the same.
Hence, in this time-dependent Q-DFT one ensures that the model fermions are (a)
subject to the same external field F*'(rt), and (b) possess the same basic variables,
as that of the interacting system of electrons. The idea that the mapping be such as
to reproduce the basic variables leads to an overall consistency within the broader
context of Q-DFT. Irrespective of whether the external field includes additionally a
time-dependent electric and magnetic field [39], or if the external field is comprised
only of an electrostatic and magnetostatic field (see Chap.9), or just an electrostatic
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field (see time-independent Q-DFT, Sect. 3.4), the correlations that the model system
must account for in each case are then always only those due to the Pauli exclusion
principle, Coulomb repulsion, and Correlation-Kinetic effects.

For this version of time-dependent Q-DFT, we impose the constraints that the
interacting electrons and noninteracting model fermions experience the same exter-
nal field F**'(rt) = —Vuv(rt), and that the response of each system to this field,
i.e. the density p(r?) and current densities (j(r?), js(rt)) are the same. As a conse-
quence, the Correlation-Current-Density field of (3.38) J.(rf) = 0. On imposing
the constraints, it then follows from the ‘Quantal Newtonian’ second laws (3.70) and
(3.72) of these systems that the local electron-interaction potential energy v, (rt) of
the model fermions in the S system differential equation (3.3) is the work done in a
conservative effective field < (r1):

Ve (Xt) = — / Fw'r) - al (3.109)
where
F(rt) = Eeelrt) + Z, (1), (3.110)

with E..(rt) and Z, (r?) the electron-interaction and Correlation-Kinetic fields as
defined in (2.43) and (3.36), respectively. This work done is path-independent since
V x F(rt) = 0. Note that since the effective fields F° (rt) of (3.69) and (3.110)
differ, the corresponding potentials ve.(rt) and the orbitals ¢;(r?) of the S system
differential equation also differ. (Of course, for systems with symmetry such that
the field J . (r?) vanishes, i.e. for systems for which both the curl and divergence of
the field vanish, the effective field F° (rt), potential v (r?), and orbitals ¢;(rt) are
the same.)

The expressions for the energy, and the various sum rules for F° (rr) are special
cases of those derived previously. For completeness they are the following:

Energy

E@) =T,(t) + / prt)v(rt)dr + Ec.(t) + T.(1). (3.111)
Integral Virial Theorem
Eee(t) + 2T (1) = /p(rt)r - F (rr)dr. (3.112)

Zero Force Sum Rule

/ p(et) F (rt)dr = 0. (3.113)

Zero Torque Sum Rule

/ p(r)r x F (ri)dr = 0. (3.114)
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3.4 Time-Independent Quantal Density Functional Theory

We next describe time-independent Quantal Density Functional theory. Consider
a system of N electrons in the presence of an arbitrary external field F**'(r) =
—Vu(r). The theory is a description of the physics of mapping from any ground
or bound excited, nondegenerate or degenerate pure state of the time-independent
Schrodinger equation to that of an S system of noninteracting fermions such that the
equivalent density p(r), energy E, and ionization potential / (or electron affinity A)
are thereby obtained. It is assumed that the model fermions are subject to the same
external field F<*'(r).

3.4.1 The Interacting System and the ‘Quantal Newtonian’
First Law

The interacting system of N electrons is governed by the time-independent
Schrodinger equation (in atomic units e = h = m = 1) (see (2.133))

Hp(X) = Ep(X) (.115)

where (X)), E are the eigenfunctions and energy eigenvalues, respectively; X =
X1, X2, ..., Xy; X = ro, r and o are the spatial and spin coordinates. (No symbolic
dlfferentlatlon between ground and exc1ted states is made.) The Hamiltonian operator
H is the sum of the kinetic energy T, external potential energy V, and electron-
interaction potential energy U operators:

H=T+V+10U, (3.116)
where {
N 2
T_—EZVZ. (3.117)
V=> v, (3.118)
and
=1 , ! (3.119)
) Ir; — 1)l '

The energy E is the expectation

= (W(X)|H[Y(X)), (3.120)


http://dx.doi.org/10.1007/978-3-662-49842-2_2

92 3 Quantal Density Functional Theory

which is a sum of its kinetic T, external potential E.y, and electron-interaction
potential E.. energy components:

T = (X)) T1H(X)), (3.121)
Eexe = (vX)|V ]9 (X)), (3.122)
Eee = (0(X)| U9 (X)). (3.123)

The ‘Quantal Newtonian’ first law (see (2.134)) which is the stationary state case of
the ‘Quantal Newtonian’ second law of (2.75) is

F(r) + F™(r) = 0, (3.124)

where the internal field ™ (r) is the sum of the electron-interaction & (r), differ-
ential density D(r), and kinetic Z(r) fields:

F(r) = Eee(r) — D(r) — Z(r). (3.125)

The definition and interpretation of these fields is the same as in Sect. 2.3 but with
the quantal sources being time-independent.

3.4.2 The S System and Its ‘Quantal Newtonian’ First Law

The time-independent Schrodinger equation for the S system of N noninteracting
fermions in the same external field F**'(r) = —Vv(r) as that for the interacting
system is

[~ %vz +u,0)]¢i® = ¢¢ix); i=1,....N, (3.126)

with the local effective potential vs(r) = v(r) + v (r). Here v, (r) is the local
electron-interaction potential energy which ensures that the Slater determinant wave
function ®{¢;} of the orbitals ¢;(x) leads to the same density p(r) as that of the
interacting system. The potential energy v..(r) must then incorporate electron cor-
relations due to the Pauli exclusion principle and Coulomb repulsion. It must also
account for Correlation-Kinetic effects since the kinetic energy of interacting and
noninteracting fermions of the same density p(r) differ.

The S system ‘Quantal Newtonian’ first law is the stationary state case of the
‘Quantal Newtonian’ second law of (3.72), and is

F(r) + F'(r) =0, (3.127)
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where the corresponding internal field .Fi“‘(r) is
fim(r) = =V, (r) — D(r) — Z,(r). (3.128)

The definitions of the fields D(r) and Z(r) are the same as in Sect.3.1.2 but are
obtained by time-independent quantal sources.

The assumed existence of the electron-interaction potential energy v, (r) implies
that there must exist an effective field F° (r) such that

F(r) = —Vu,.(r). (3.129)

This effective field is derived in Sect. 3.4.6.

In time-independent Q-DFT, the state of the model S system of noninteracting
fermions is arbitrary [1, 2, 5, 10, 11, 14-16, 18, 20]. For the mapping from a pure
ground state of the interacting system, it is best to map to an S system that is also
in its ground state. However, it is possible to map to an S system in an excited state
with a different electronic configuration. For the mapping from a pure excited state
of the interacting system, the model S system may be in an excited state with the
same configuration, or an excifed state with a different electronic configuration, or
in a ground state with yet another different electronic configuration. The difference
in the electron-interaction potential v, (r) of these model systems is solely due to
Correlation-Kinetic effects as will be proved in Sect.3.4.9 [18, 20]. The fact of
the different mappings means that there exist an infinite number of local electron-
interaction potential energy functions v, (r) that can generate a given density p(r).

Another important physical point of note is that whether the mapping is from a
ground or excited state of the interacting system, the highest occupied eigenvalue of
the model S system, corresponds to the negative of the ionization potential for that
state [10, 14, 16, 41-43]. This is the case irrespective of whether the S system is in
a ground or excited state. The reason for this is explained in Sect. 3.4.8.

The other critical equations and interpretations governing time-independent Q-
DFT follow.

3.4.3 Quantal Sources

The sources: the electron density p(r), Dirac density matrix ~(rr’), and the pair—
correlation density gs(rr’) are defined as in Sect.3.1.1 as the expectations of the
corresponding Hermitian operators taken with respect to the time-independent Slater
determinant ®{¢;}. The Fermi hole charge px(rr’) is the nonlocal component of
gs(rr’). The pair—correlation density g(rr’) of the interacting system is obtained from
the eigenfunctions 1(X) of the time-independent Schrodinger equation (3.115) as
gr’) = (Y(X) |f’(rr’)|w(X)) /p(r). The Fermi—Coulomb hole charge py.(rr’) is the
nonlocal component of g(rr’). The Coulomb hole p.(rr’) is the difference between
the Fermi—Coulomb and Fermi hole charge distributions. The various sum rules
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satisfied by these sources are the same as those of Sect. 3.1.1. The interacting system
density matrix y(rr’) is obtained via the eigenfunctions 1 (X) of the Schrédinger
equation (3.115) as the expectation of the density matrix operator as defined in
Sect.2.2.

3.4.4 Fields

The definitions of the S system electron-interaction €. s(r), Hartree £ (r), Pauli
&.(r), differential density D(r), and kinetic Z(r) fields are the same as in Sect. 3.1.2
but obtained for stationary-state quantal sources determined as expectations of the
appropriate Hermitian operators taken with respect to the Slater determinant ®{¢;}
wave function. The definitions of the interacting system electron-interaction .. (r),
Hartree £y (r), Pauli-Coulomb &,.(r), differential density D(r), and kinetic Z(r)
fields are the same as those of Sect.2.3. Here the stationary-state quantal sources are
determined as expectations of the requisite operators taken with respect to the wave
function ¥ (X) of the time-independent Schrodinger equation (3.115). In a manner
similar to the definitions of Sect.3.1.2, the Coulomb field £.(r) is the difference
between the Pauli-Coulomb £,.(r) and Pauli £,(r) fields; the Correlation-Kinetic
Z, (r) field is the difference between the kinetic fields Z;(r) and Z(r) of the model
fermions and the interacting electrons, respectively.

In the time-independent case, in addition to the Hartree field £4(r), the kinetic
field Z(r) is also conservative: V x €4(r) =0, and V x Z(r) = 0, the latter
following from the ‘Quantal Newtonian’ first law of (3.127). The remaining fields
Eee(r), Ex(r), Ec(r), Z(r), and Z, (r) are in general not conservative. However,
for systems of certain symmetry such as closed—shell atoms, open—shell atoms in
the central field approximation, jellium metal clusters and surfaces, etc., these fields
are separately conservative: V X E..(r) =0,V x E(r) =0,V x E.(r) =0,V x
Z(@r)=0,and V x Z (r) =0.

3.4.5 Total Energy and Components

The expressions for the total energy E, and of its components are, of course, the same
as for the time-dependent case. Thus, without any symbolic differentiation between
ground and excited states, we have

E=n+/mmmmrug+n, (3.130)

=n+/mwmm+@+a+a+n (3.131)
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where the S system kinetic energy T is the expectation
1
To= > (6iro)| — S V2|6i(ro)), (3.132)
and where in integral virial form the electron—interaction energy E.. is

E.. = /p(r)r - Eee(r)dr, (3.133)

the Hartree or Coulomb self energy Ey is

Ey = /p(r)r - Ex(r)dr, (3.134)
the Pauli (exchange) energy Ej is

E, =/p(r)r~$x(r)dr, (3.135)

the Coulomb energy E. is

E. :/p(r)r~80(r)dr, (3.136)

and the Correlation—Kinetic energy T is

T. = %/p(r)r - Z (r)dr. (3.137)

Note that these expressions are valid whether or not the individual fields are conser-
vative.

The total energy may also be expressed in terms of the eigenvalues ¢; of the S
system differential equation (3.126). Multiplying (3.126) by ¢} (ro), summing over
all the fermions, and integrating over spatial and spin coordinates leads to

T,=> - / p()v(r)dr — / P()vee (D), (3.138)
which on substitution into (3.130) for the total energy E gives
E=Y ¢ —/p(r)vee(r) + Epe +T.. (3.139)

Note that as in Hartree [44, 45] and Hartree—Fock [46, 47] theory, E # > . ¢;. This
is because the model S system accounts for electron correlations due to the Pauli
principle and Coulomb repulsion, and Correlation—Kinetic effects.
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3.4.6 Effective Field Felt (r) and Electron-Interaction
Potential Energy vee(r)

The effective electron—interaction potential energy ve.(r) of the model fermions is
the work done to move such a fermion from its reference point at infinity to its
position at r in the force of a conservative effective field Fei(r):

Vee(F) = — / FU) - de, (3.140)
where
F(r) = Ece(r) + Z (V). (3.141)

This work done is path—independent since V x F*i (r) = 0. As in the time-dependent
case, the proof of these statements follows by equating the time-independent ‘Quantal
Newtonian’ first law for the interacting and S systems (see Appendix A and E)
assuming the external potential v(r) and density p(r) of the two systems are the
same.

Observe that the expression for the time-independent v, (r) of (3.140, 3.141) is
the same as that of the time-dependent v, (r?) of (3.109, 3.110) of Sect. 3.2 except for
the time factor. Recall that in deriving the time-dependent expression we had ensured
the external potential v(r?) of the interacting and noninteracting systems were the
same. But we had also ensured that the basic variables of the density p(rf) and current
density j(rt) of the two systems too were the same. Thus, if the external potential and
the basic variables of the interacting and model systems are ensured to be the same,
then within Q-DFT the only correlations the model system must account for are those
of the Pauli exclusion principle, Coulomb repulsion, and Correlation-Kinetic effects.

Decomposing the electron—interaction field €. (r) into its Hartree £y (r), Pauli
&«(r), and Coulomb E.(r) components, and employing the fact that £y (r) is con-
servative, we may write the potential energy ve.(r) as

Vee(T) = Wiy (r) + (— / [£.() + E.() + Z.(0))] .de/) , (3.142)

o0

where the Hartree potential energy
Wit (r) = / PO (3.143)
Ir —r’|

For systems in which the fields £,(r), £.(r), and Z,_ (r) are separately conservative,
we may write the potential energy ve.(r) as the sum

Vee (1) = Wi (r) + Wy(r) + We(r) + W (r), (3.144)
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where Wy (r), W.(r), and W, (r) are the work done, respectively, in the force of these
fields:

Wi (r) = _/r E () -de, (3.145)
W.(r) = —/r E.(r)-adl, (3.146)
W, (r) = —/r Z.(x))-dt. (3.147)

Each work done is separately path—independent.

Note that if the individual time-dependent and time-independent fields £ (r7) and
E«(r), etc., are separately conservative, the expressions for the potential energies
Vee (1) of (3.79) of Sect.3.1.5 and (3.109, 3.110) of Sect.3.3 are the same, and
therefore the same as that for ve.(r) of (3.140, 3.141) except for the time factor.
Hence, for systems of such symmetry, the model systems must account for only
Pauli, Coulomb and kinetic correlations.

3.4.7 Sum Rules

The sum rules for the effective field F< (r) are a special case of those derived for
the time-dependent S system, and their proofs are also the same. The stationary state
integral virial theorem is (see (3.92))

Eee +2T. = / p(O)r - F (r)dr, (3.148)

and is the same as for the time-dependent case. So is the zero force sum rule for the
vanishing of the averaged field (see (3.95)):

/ p() F (r)dr = 0, (3.149)

and of its electron—interaction E..(r) and Correlation—Kinetic 2, (r) components
separately. Again, the vanishing of the averaged electron—interaction £ (r) compo-
nent is attributable to Newton’s third law. That of the Correlation—Kinetic component
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Z,(r) is not. Finally, in the stationary state case, the averaged torque of the effective
field vanishes (see (3.98)):

/ p()r x F(r)dr =0, (3.150)

as do the averaged torque of its £ (r) and Z,_ (r) components separately. Once again,
it is only the vanishing of averaged torque of the electron—interaction component that
may be attributed to Newton’s third law.

3.4.8 Highest Occupied Eigenvalue €,

With the exception of the highest occupied eigenvalue €, the eigenvalues of the S
system differential equation (3.126), both occupied and unoccupied, have no rigorous
physical interpretation. The highest eigenvalue €, however, is equal to the negative
of the first ionization potential. This follows from the fact that since the effective
potential energy vs(r) of the model fermions is the same, the asymptotic structure of
the S system orbitals ¢;(x) in the classically forbidden region is governed by their
respective eigenvalues. Thus, the asymptotic decay of the density for finite systems
for which the eigenvalues are discrete, is due entirely to the highest occupied state
¢m(X). Asymptotically, the density is then given by

Tim p(x) = gm[> ~ exp [—2,/—2emr] . (3.151)

A comparison of this expression with that derived (2.163) for the asymptotic structure
of the density for the interacting Schrodinger system shows that

em = —ln=E,—EY 7', (3.152)

where E,, E{(V ~! are the total energies of the interacting N- and (N — 1)-electron
systems in states n and k respectively. Therefore the highest occupied eigenvalue €,
is the negative of the first ionization potential.

Since for the model system, the asymptotic structure of the density is always due
solely to the highest occupied orbital ¢,,, it is irrelevant whether the Q-DFT mapping
is such that the system is in a ground or excited state. The corresponding highest
occupied eigenvalue €, must then invariably be the negative of the first ionization
potential.
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3.4.9 Proof that Nonuniqueness of Effective Potential Energy
Is Solely Due to Correlation-Kinetic Effects

In the mapping from an interacting system in a ground or excited state to model S
systems with the same density, it is assumed that the external field 7**'(r) = —Vu(r)
is the same for both the systems. This in turn leads to the interpretation (3.140, 3.141)
for the corresponding electron-interaction potential energy ve. (r) of the S system. The
S systems can be in different states and hence with different electronic configurations.
Itis claimed [48, 49] that excited states, other than the lowest excited state of a given
symmetry different from the ground state, can be mapped to different S systems with
the same configuration. (See [31] for further remarks.) Here we prove [2, 18] that the
Vee (1) Of the different S systems differ solely in their Correlation-Kinetic component.
The component due to the Pauli exclusion principle and Coulomb repulsion remains
the same.

Consider the mapping from a ground or excited state of the interacting system
with density p(r). Next, consider two noninteracting fermion systems S and S’ that
in the presence of the same external field F**'(r) = —Vu(r), reproduce the same
density p(r). For the S system, the differential equation and the corresponding local
electron-interaction potential v, (r) are defined by (3.126) and (3.140), respectively.

For the S’ system, the differential equation is

1
[=5 V2 + 0] 6(x) = eig(x). (3.153)
where the corresponding local effective potential energy v, (r) is
vi(r) = v(r) + v, (r), (3.154)
with v/, (r) being the electron-interaction potential energy. The resulting ‘Quantal
Newtonian’ first law is '
F*(r) + F™(r) =0, (3.155)
where F’ f"t (r) is the internal field of the §” model fermions:
Fi(r) = —Vul (r) — D(r) — Z.(r), (3.156)

with the definitions of the fields D(r) and Z/(r) being the same as in Sect. 3.4.4.
A comparison of (3.155) with the interacting system first law of (2.134) then
yields
r
%m=—/waﬁ+szdm (3.157)

o]
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where the Correlation-Kinetic field Z] (r) is

Z;'(r) = Z/(r) — Z(r). (3.158)
Here &..(r) and Z(r) are the electron-interaction and kinetic fields of the interacting

system as defined in Chap. 2.
The difference between v (r) and v, (r) of the S and S’ systems is then

Vee (1) — Vg (¥) = —/ [Z,@) - 2, ()]-d, (3.159)
or equivalently
Vee () — VL (r) = —/ [Z,() — Z.(x)]-dl. (3.160)

Note that both (3.159) and (3.160) are independent of the electron-interaction field
Ece(r). As such the contribution of £ (r) to ve.(r) and v., (r) is the same.

Thus, the difference between the electron-interaction potential energies of the
different S systems arises solely due to the difference in their Correlation-Kinetic or
equivalently their kinetic fields. This completes the proof.

3.5 Application of Q-DFT to the Ground and First Excited
Singlet State of the Hooke’s Atom

We next apply Q-DFT to the ground and first excited singlet states of the Hooke’s
atom (Sect.2.11). The potential energy v(rt) of the model fermions due to the external
field 7' (rt) is the same as that for the Hooke’s atom, and defined by (2.164). Thus,
as aconsequence of the Harmonic Potential theorem (Sect. 2.9), the properties of the S
system for ¢t > f are the same as those for the stationary state solution valid for ¢ < f
but translated by a finite value. Hence, it suffices to describe the mappings to the time-
independent S systems. We map the stationary ground state of the Hooke’s atom to an
S system in its ground state. To demonstrate the arbitrariness of the S system, we map
the stationary first excited singlet state of the Hooke’s atom to an § system that is also
in a ground state. The mappings are such that the densities, energies, and ionization
potentials of the interacting Hooke’s atom are thereby obtained, with the ionization
potentials being the highest occupied eigenvalue of the S system differential equation.

The properties of the ground state S systems are described in the following sub-
sections [5, 10, 11]. The analytical expressions for these properties are given in
Appendix C.
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3.5.1 S System Wavefunction, Spin-Orbitals, and Density

In the S system ground state, both the model fermions occupy the same 1 s orbital
and have opposite spins. Thus, the two one—particle spin—orbitals are

P1(x) = Y()a(0), 2(x) = p(r)f5(0), (3.161)

where the normalized v (r) is the spatial part of the spin—orbital, and (o), 5(0)
the spin functions. The spin coordinate o can have only two values +1. Following
standard convention, the spin functions have only two values 0 and 1 so that a(1) =
1,a(—1) =0, 6(1) =0, B(—1) = 1. The normalized S system wavefunction is then
the Slater determinant

o1(X1) ¢1(X2)
$2(X1) P2(X2)

Y(r)(r2) (o) f(o2) — alo2)F(o1)]. (3.162)

1
O (xi%) = E
L
V2

As the electrons have opposite spins, the density

p(r) = (@|p(r)| @)

. 2
=3 > / Y (r) YT () |:Z o(r — l'i):| Y(r)(ry)dridr,
i=1

op.0p=%1
o170

x [a(o1)B(02) — a(o2)Bo)]
2
=/ Y (r)yP*(ry) |:Z o(r — l‘i):| P(r)Y(ra)dridry
i=1

= 20" ()Y (r). (3.163)

Thus, the S system orbitals ¥ (r) are known in terms of the density p(r) as

P(r) = %. (3.164)

Since the wavefunctions gy (r13), ¥ (r;13), and hence the densities pgo (), po1 (T)
of the ground and first excited singlet states of the Hooke’s atom, respectively, are

known, then so are the orbitals of the corresponding ground state S systems. This
allows for all the properties of the S system to be determined exactly.



102 3 Quantal Density Functional Theory

3.5.2 Pair-Correlation Density; Fermi and Coulomb Hole
Charge Distributions

The S system pair—correlation density g,(rr’) is
g5(xr’) = (®|P(rr)|®)/p(r)

2 .
= p(—\/;)/<I>*(X1X2)P(rr’)¢1(xl)qﬁz(xz)dX, (3.165)

where the second step follows as a result of the pair—correlation operator P(rr)) being
symmetric. Thus,

gs(rr’)

1 2

) Z / Y)Y () gé(r—rim(r/ —r)
1772 i#f

Y)Y (r)dridr; [a(o1)5(02) — a(o2) Blo)] o) B(02)

_ 2"y @yt )y )
p(r)

o)
o2 (3.166)

Hence, the pair—correlation density of the two model-fermion S system in its
ground state is independent of electron position r. Since g (rr’) may also be expressed
as the sum of the density p(r’) and the Fermi hole p, (rr’) (see (3.13)):

gs(rr’) = p(r') + py(rr), (3.167)

it is customary in local effective potential energy theory to define a Fermi hole for
the two model-fermion system in spite of the fact that the fermions have opposite
spin. This Fermi hole is then

p(r’)
2 9

px(rr’) = — (3.168)
and is a local charge distribution independent of electron position. The ground-state
S system Coulomb hole p. (rr’) which is the difference between the Fermi—Coulomb
Pxe(rr’) and Fermi py (rr’) holes is consequently

pc(rr/) = ch(l'l'/) - p(; ) ’ (3.169)

and it is a nonlocal charge distribution dependent on electron position.
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In Fig. 3.1 the Fermi hole py (rr’) for the ground and excited states is plotted. This
charge distribution is spherically symmetric about the nucleus and independent of
electron position.

In Figs.3.2-3.4 the corresponding ground and excited state Coulomb holes are
plotted for electron positionsat » = 0, 0.5, 1, 2, 10, 20, 50, and 200 a.u. The electron
position is along the z—axis corresponding to § = 0°. The cross—sections plotted are
those for 8’ = 0° with respect to the electron—nucleus direction. The part of the graph
for " < 0is the structure for § = 7 and ' > 0. The electron—electron cusp condition
is clearly evident in the structure of the Coulomb holes as is their dynamic nature
(Figs. 3.2, 3.3). For an electron at the nucleus, the Coulomb holes are spherically
symmetric about the electron (Fig. 3.2a). For other electron positions they are not. For
asymptotic positions of the electron, the Coulomb holes are once again spherically
symmetric about the nucleus (Fig.3.4). Furthermore, for these electron positions,
they are essentially static charges. Note that at the electron position, the Coulomb
hole for the ground state case is always negative. This is not the case for the excited
state for electron positions near the nucleus. The difference is strictly a consequence
of the definition of the Fermi hole for the two electron model. The center of mass
of the Coulomb holes (r'p.(rr’)) is plotted in Fig.3.5 a,b. It lies along the nucleus—
electron direction, and is on the other side from the electron, approaching the nucleus
asymptotically.
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Fig. 3.2 Cross—section through the Coulomb hole charge p. (rr’) for the ground and first excited
singlet states. In (a) the electron is at the nucleus r = 0, and in (b) at r = 0.5 a.u. The electron,
indicated by the arrow, is on the z axis corresponding to # = 0°. The graphs for ¥’ < 0 correspond
to the structure for = 7,7 > 0
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Fig. 3.3 The same as in Fig.3.2 but for the electron at (a) » = 1 a.u. and (b) r =2 a.u.
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Fig. 3.4 Same as in Fig.3.2 but for but for electron positions at r = 10, 20, 50 and 200 a.u.:
(a) ground state, (b) first excited singlet state

Fig. 3.5 The center of mass
(r' pe(rr’)) of the Coulomb
hole charge: (a) ground state,
(b) first excited singlet state
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3.5.3 Hartree, Pauli, and Coulomb Fields Ex(r), Ex(r),
E.(r) and Energies Ey, Ex, E.

As the interacting and noninteracting system densities are the same, the Hartree fields
&y and energies Ey too are the same. (See Fig.2.11 and Tables 2.1 and 3.1). For both
the ground and excited states, the field £ (r) decays asymptotically as 2/r2.

The Pauli field £ (r) for both states is plotted in Fig.3.6. This field vanishes at
the nucleus because the Fermi hole is spherically symmetric about the electron at

that position. Since the total charge of the Fermi hole is negative unity, it decays
asymptotically as

1
Exr) L~ - (3.170)

The merging of the fields asymptotically with the function —1/r? for both the ground
and excited states is evident in the figure. (The asymptotic structure of the fields
Eu(r) and &, (r) are to Gaussian accuracy.) The Pauli energy Ey for both states as
determined from these fields via (3.135) are quoted in Table3.1. Observe that the
magnitude (and sign) of these energies are a reflection of the magnitude (and sign)
of the corresponding fields.

The asymptotic structure of the Pauli field £4(r) as given by (3.170) is a general
result valid for finite systems. It is a consequence of the fact that the Fermi hole charge
distribution of total charge unity becomes an essentially static charge localized about
the center of mass of the system for asymptotic positions of the electron.
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Table 3.1 Q-DFT properties of the ground state S systems which reproduce the density, total

energy, and ionization potential of the ground and first excited singlet states of the Hooke’s atom
in atomic units

Property Ground state S system properties
Mapping from
Ground state® First excited singlet state®
E 2.000000 2.280775
Ts 0.635245 0.327471
Eext 0.888141 1.052372
Ey 1.030250 0.722217
Ex —0.515125 —0.361109
E. —0.067682 —0.008966
T, 0.029173 0.548791
€m 1.250000 1.710582
REl
°[11]

The Coulomb fields £, (r) for the ground and excited states are plotted in Fig. 3.7.
As the Coulomb hole p.(rr’) is spherically symmetric about the electron position
at the nucleus, both fields vanish there. The fields are both positive and negative,
reflecting the fact that the total charge of the Coulomb hole is zero. In the classically
forbidden region, both the Coulomb fields decay asymptotically as

Fig. 3.7 The Coulomb field
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E(r) - —%, (3.171)
r—00 I

where the coefficient § = 4 for the ground state and 6 = 15.784129 for the excited
state. The Coulomb energy E. for these states as determined from the respective
fields via (3.136) are given in Table3.1. For the ground state, the field £.(r) is an
order of magnitude smaller than £(r) and consequently so is the Coulomb energy
E. in comparison to Ex. For the excited state, the positive part of the field £.(r) is
large, so that the corresponding E. is two-orders of magnitude smaller than the Ey.
Thus, as may be expected for the excited state, the Coulomb energy E. is very small.

3.5.4 Hartree Wy (r), Pauli Wy(r), and Coulomb W_(r)
Potential Energies

The Hartree Wy(r), Pauli W(r), and Coulomb W,(r) potential energies, calcu-
lated as the work done in the Hartree £g(r), Pauli £,(r), and Coulomb E£.(r)
fields, are plotted in Figs.3.8, 3.9, and 3.10, respectively. As these fields vanish
at the nucleus, the corresponding potential energies have zero slope there. The fields
[Eu(r); Ex(r)] are [positive;negative] so that the potential energies [ Wy (r); Wy (r)]
are monotonic with [negative;positive] slope. In contrast, the potential energy W, (r)
is not monotonic since the field £.(r) changes sign. Observe that the Coulomb
potential energies W, (r) are an order of magnitude smaller than their Pauli W (r)
counterparts.
The asymptotic structure of these potential energies are

2
Wa(r) - 7 (3.172)
1
Wi (r) rSe0 T 3 (3.173)
Wel®) 5 = 5. (3.174)

where 17 = 4/3 for the ground state and 1 = 5.261376 for the excited state. The
merging of Wy (r), Wx(r) with the functions 2/r, —1/r for both states is evident in
Figs.3.8 and 3.9. The asymptotic structure of W(r) is a general result valid for all
finite systems. It is also interesting to note that the functional dependence of the
asymptotic structure of the fields and potential energies are the same for the ground
and excited states. Only the coefficients of the Coulomb field £.(r) and potential
energy W.(r) for each state differ.
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Fig. 3.8 The ground-state S
system Hartree potential
energy Wy (r) for the ground
and first excited singlet states
of the Hooke’s atom

Fig. 3.9 The ground-state S
system Pauli potential energy
Wy (r) for the ground and
first excited singlet states of
the Hooke’s atom
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3.5.5 Correlation—Kinetic Field Z;_(r), Energy T,,
and Potential Energy W;_(r)

The transformation from both the ground and first excited singlet states of the Hooke’s

atom is to an S system in its ground state. Thus, the corresponding S system kinetic—
energy—density tensor 3 (r; [s]) for each case is of the form

r(lrﬁ
ts,aﬂ(r; [%]) = rz‘ h(r), (3.175)
where

1 (0p 2
h(r) = 8_p (E) . (3.176)

The expression for the interacting system kinetic—energy—density tensor #,3(r; [Y])
for the ground and excited state is given by (2.184).

For the ground state case, we compare in Fig. 3.11a the off-diagonal elements of

the interacting and noninteracting tensors by plotting the functions f(r) and h(r).
Observe that they are essentially the same, vanishing at the nucleus, and decaying in
a similar manner asymptotically. In Fig. 3.11b we compare the diagonal elements of
the tensors by plotting the functions i(r) and f(r) + 3k(r). Note that the diagonal
element of the interacting system tensor is now finite at the nucleus, and that the

difference in this element between the two tensors occurs in the interior region of the
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atom. This then is the region from which the correlation contribution to the kinetic
energy must arise.

The S system kinetic ‘force’ z;(r) for the ground and excited state mappings is
plotted in Fig.3.12. A comparison with the corresponding figure Fig.2.14 for the


http://dx.doi.org/10.1007/978-3-662-49842-2_2

112 3 Quantal Density Functional Theory

‘force’ z(r) of the interacting system shows the following. For the mapping from the
ground state of Hooke’s atom, the ‘forces’ z(r) and z(r) are essentially equivalent.
Thus, in this case, the S system kinetic energy 7T is 94 % of the interacting system
kinetic energy T (see (3.52)) and Tables2.1 and 3.1). For the transformation from
the excited singlet state to a ground state S system, the ‘force’ z;(r) is much smaller
in magnitude than the interacting system ‘force’ z(r). In this case, therefore, T is
only 37 % of T (see Tables 2.1 and 3.1). (Note that the kinetic energies 75 and T may
also be determined from the corresponding kinetic—energy—density tensors as their
trace is the kinetic—energy—density.)

The Correlation—Kinetic field Z,, (r) for the ground and excited state cases is plot-
ted in Fig. 3.13. For the ground state case, Z,, (r) is negligible, so that the Correlation—
Kinetic energy T, obtained from this field via (3.137) is only 6 % of the interacting
system kinetic energy T. For the excited state case, the situation is dramatically
different: the field Z,, (r) is large, and consequently T, is 63 % of T (see Tables2.1

and 3.1).
For both the ground and excited state cases, the field Z,, (r) decays asymptotically

as a positive function:
Kk p

2.0, 503" T (3.177)

r r

where k = 1, u = —8 for the ground state, and x = 9.000750, n = 31.580570 for

the excited state case. (For the ground state, the analytical asymptotic structure of

the ‘forces’ z(r), zs(r), and the density p(r), from which that of Z, (r) is obtained,

is given in Appendix C.)
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The structure of the Correlation—Kinetic field Z (r) dictates that of the corre-
sponding work done plotted in Fig. 3.14. As the field Z,_ (r) vanishes at the nucleus,
the potential energy W, (r) has zero slope there. For the ground state case, Z (r)
is positive, so that Wi (r) is monotonic with negative slope over all space. For the
excited state case, Z,(r) is both positive and negative, so that the resulting W,_(r)
has structure. In both cases, the potential energy W, (r) is positive throughout space.
In each case, it decays asymptotically as

o B
Wi, (r) rSe0y2 T 3 (3.178)
where o = 1/2, 3 = 8/3 for the ground state, and o = 4.500375, 8 = 10.526857
for the excited state.

From these results we see that for the transformation from the ground state of
an interacting system to an S system in its ground state, Correlation—Kinetic effects
are small and can reasonably be ignored in a first approximation. On the other hand,
for the mapping from an excifed state of the interacting system to a ground state
S system, these kinetic correlations are very significant, and must be accounted
for in any approximation. In contrast, for this latter case, Coulomb correlations are
negligible (see Figs.3.10 and 3.14), and may be neglected in a first approximation.
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3.5.6 Total Energy and Ionization Potential

The total energy E of the ground and first excited state of the Hooke’s atom as deter-
mined from the corresponding ground-state S system energy components of (3.131)
are quoted in Table3.1. The values of E are the same as obtained by Schroédinger
theory for the interacting system given in Table2.1.

The single eigenvalue ¢, of the ground-state S systems, which is also the maximum
eigenvalue €, corresponds to the negative of the ionization potential for the ground
and excited states of the Hooke’s atom. This eigenvalue may be determined from the
S system differential equation (3.126) via

_1Vp()
2 o)

which is an expression valid for arbitrary r, and where the components Wy (r), Wi (1),
We.(r), and W, (r) of ve.(r) of (3.144) are as determined in the previous subsections.
Or, it may be determined by substituting the various components of ve. (r) into the
differential equation (3.126), and solving numerically for the single zero node orbital
and single eigenvalue. The orbital leads to the density, and the eigenvalue quoted in
Table 3.1 is the negative of the ionization potential.

In the case of the mapping from the ground state of Hooke’s atom, both the
Schrodinger wavefunction and the S system orbital are nodeless. In contrast, the
singlet excited state wavefunction has a single node. However, we see via Q-DFT
that it is possible to obtain the density, total energy, and ionization potential of the
excited state from a nodeless ground state S system orbital.

+ V() + Vee(r), (3.179)

3.5.7 Endnote on the Multiplicity of Potentials

We conclude this section by remarks on the multiplicity of local effective potentials.
It is evident from Q-DFT and the examples above that there exist an infinite number
of local effective potentials that can generate the density of an interacting system of
electrons in a ground or excited state. This is further confirmed by the examples of the
Q-DFT mapping of the ground state Hooke’s atom to an S system in its first excited
singlet state [16], and that of the mapping from the first excited singlet state of the
Hooke’s atom to an S system also in its first excited singlet state [10]. (As it is also
possible to map an interacting system of electrons to one of noninteracting bosons
having the same density, there exists yet another such local effective potential.)

In the literature of the Hohenberg-Kohn-Sham (HKS) [24, 25] density functional
theory, it is stated that there only exists a unigue local potential that can generate
the nondegenerate ground state density of an interacting system. HKS theory is a
ground state theory, and as such the mapping can only be to an § system in its ground
state. It then follows from the Hohenberg-Kohn theorem, that the corresponding local
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effective potential must be unique. The theory does not allow for arbitrary mappings
to § systems with different configurations. It is from this constrained perspective
that the statement of uniqueness is made. Similarly, in excited state density func-
tional theory [50], the mapping from the interacting system is to an S system of the
same configuration. Thus, in the context of the configuration-constrained mappings
permissible, traditional density functional theory constitutes a special case of Q-DFT.

The above remarks are with reference to the mapping from an interacting system
of fermions to one of noninteracting fermions with the same density. Consider now
a system of fermions, either interacting or noninteracting, in some external field
F*(r) = —Vu(r). The potential v(r) which then generates via the corresponding
Schrodinger equation the nondegenerate ground state density and the density of the
lowest excited state of symmetry different from that of the ground state is unique.
No other potential can generate these densities. This follows, respectively, from
the Hohenberg-Kohn [24] and Gunnarsson-Lundqvist [30, 31] theorems. For other
excited states of this system, however, there exist other potentials different from v(r)
that can generate the same density [31].

3.6 Quantal Density Functional Theory
of Degenerate States

The Quantal density functional theory of the mapping from both a degenerate ground
and excited state of the interacting system to one of noninteracting fermions such
that the equivalent density, energy and ionization potential are obtained is given
in [14] and in Appendix A of QDFT?2. The cases of both pure state and ensemble
v-representable densities are considered. The reader is referred to these references
for the details, but the following are described in them.

(1) The Q-DFT of the individual degenerate pure state. For the mapping from a
degenerate ground or excited state, the state of the S system is arbitrary in that
it may be in a ground or excited state configuration. In either case, the highest
occupied eigenvalue is the negative of the ionization potential.

(2) For the ground and excited state ensemble cases, two different schemes within
Q-DFT are described: (a) In the first, the corresponding noninteracting system
ensemble density is obtained by constructing g S-systems, where g is the degen-
eracy of the state. Once again, the g S-systems may either be in a ground or
excited state or a combination of the two. (b) In the second, the Q-DFT whereby
the ensemble density is obtained from a single noninteracting fermion system
whose orbitals could be degenerate is described. The construction of this model
system is a consequence of the linearity of the ‘Quantal Newtonian’ first law.
Here the highest occupied eigenvalue is degenerate, and the ensemble density is
obtained from the resulting Slater determinants as described in [51]. Again, for
the mapping from an excited state, the S system may be in a ground or excited
state.
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(3) Examples demonstrating the above mappings within Q-DFT are provided.

(4) The above Q-DFT mappings also provide the rigorous physical interpretations
of the various Kohn-Sham theory [26, 51-53] degenerate state energy-density
and energy-bidensity functionals and of their functional derivatives. (See also
Chap.5.)

3.7 Application of Q-DFT to the Wigner
High-Electron-Correlation Regime
of Nonuniform Density Systems

The state of matter comprised of a low-electron-density gas in the presence of an
external field 7*'(r) = —Vv(r) due to a neutralizing uniform positive charge (jel-
lium) background was one originally proposed by Wigner [54, 55]. As the electron
density becomes lower, the kinetic energy of the electrons becomes negligible in
comparison to the electron-interaction potential energy. It is the electron-interaction
term of the Hamiltonian that then dominates in the determination of the wave function
and leads to a crystallization of the electronic assembly into a body-centered cubic
structure. In his work, Wigner also determined the correction to the energy due to the
zero-point oscillations of the electrons about the lattice points. The Wigner regime
of the electron gas is thus characterized in the literature by a low electronic den-
sity and an electron-interaction energy that is much greater than the kinetic energy.
This state of matter has been observed experimentally [56—59] in a two-dimensional
electron gas on the surface of liquid helium and in GaAs-GaAlAs heterostructures
in the presence of strong magnetic fields (The Q-DFT in the presence of an external
magnetostatic field is discussed in Chap.9.)

The Hooke’s atom is ideally suited to the application of Q-DFT to the Wigner
regime of a nonuniform electron gas. The Wigner regime is achieved in this model for
weak confinement of the electrons. In contrast, the low-electron-correlation regime is
characterized by a confinement such that the kinetic and electron-interaction energies
are of the same order of magnitude. The force constant of k = }1 for the ground state
and k = 0.144498 for the first excited singlet state studied previously corresponds
to this regime (see Table?2.1).

A Q-DFT study of the Wigner regime along the lines of Sect. 3.6 has been per-
formed [60, 61] for a value of the force constant k = 3.00891 x 10~*. The corre-
sponding spatial part of the singlet ground-state wave function is

4 J
Yoo(ry, 12) = Ne K =3 |:1 + % + Zaj (S\/g) i|, (3.180)
=2

where R = (r; +12)/2, s =1 — 15, N = 8.94669 x 107°, w = vk = 1.73462 x
1072, ay = 8.274917, a3 = 4.720056, and a4 = 0.879153. The Q-DFT mapping is
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to a ground state of the S system. The results of the study are presented in Table 3.2
together with those of the low-correlation regime corresponding to k = % for pur-
poses of comparison. For the details of the calculations, and the structures of the
various quantal sources, fields, and potentials, the reader is referred to the original
literature. Although there are similarities between the structures of the low- and high-
electron-correlation regimes, there are also significant differences as reflected in the
analysis below of the results in Table 3.2.

As noted above, the Wigner high electron correlation regime is characterized
by a low electron density and an electron-interaction energy E,. greater than the
kinetic energy T. The reverse is the case for the low correlation regime. The ratio
E../T for the high- and low-correlation regimes is 249.3 and 67.3 %, respectively. In
comparison with the total energy E, the ratio E,, /E is 43.4 % and 22.4 % respectively.
In fact this trend in the difference is reflected in each component of E,,, i.e., in the
ratios Ey /E, E,/E, and E./E.

Table 3.2 Q-DFT values for the total E, kinetic 7', correlation-kinetic 7., noninteracting kinetic
Ts, external E,y,, Hartree Ey, Pauli Ey, Coulomb E., and electron-interaction E,. energies, and
noninteracting system eigenvalue e in atomic units for the low correlation (k = %) [5] and high
correlation (k ~ 3.00891 x 10~*) regimes [61]. The Q-DFT mapping in each case is from a ground
state of the Hooke’s atom to an S system in its ground state

Property k=1 k ~ 3.00891 x 1074
E 2.000000 0.1214235
Eee 0.447443 0.052739
T 0.664418 0.021158
Eee/T 673% 249.3%

T, 0.029173 0.005700
T, 0.635245 0.015457
Eox 0.888141 0.047527
En 1.030250 0.151474
E, —0.515125 —0.075735
E, —0.067682 —0.022998
€ 1.250000 0.095404
Eeo/E 22.4% 43.4%
Ey/E 51.5% 124.7%
E/E 25.8% 62.4%
E./E 3.4% 18.9%

¢/E 62.5% 78.6%
T/IE 332% 17.4%
T./T 4.4% 26.9%
T./E 1.45% 45%

(T, + E.)/E 24% 48%
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A new result discovered by this application of Q-DFT is that in the Wigner regime,
not only is the electron-interaction energy E,, very significant, but so is the contribu-
tion of electron correlations to the kinetic energy, viz., the Correlation-Kinetic energy
T.. Thus, the ratio T, /T in the Wigner regime is 26.9 %, as opposed to 4.4 % for the
low-correlation case. The Correlation-Kinetic energy 7, thus constitutes a significant
fraction of the total energy E: the ratio T../E is 4.5 % in the Wigner regime, whereas
itis only 1.45 % in the low-correlation case. The total contribution of electron corre-
lations to the energy E is (T, + E,.). The ratio (T, + E,.)/E is 48 % for the Wigner
and 24 % for the low-correlation regime.

The result for the eigenvalue e of the model S system is also interesting. This
eigenvalue, as explained previously, being the highest occupied eigenvalue, is the
negative of the ionization potential /. Even though the electrons are more weakly
bound to the nucleus in the Wigner regime, the ratio of this eigenvalue € to the total
energy E is 78.6 %, whereas for the low-correlation case it is 62.5 %. Thus, in the
Wigner regime, the removal energy relative to the total energy is also greater than in
the low-electron-correlation case.

Yet another interesting and new result observed is that of the ratio of the kinetic
T to the total energy E is reduced from 33.2 % in the low correlation case to 17.4 %
in the Wigner regime. The reason for this is the difference of the corresponding
kinetic energy densities #(r). In the Wigner regime, there is a ‘quantal compression’
of the kinetic energy density #(r) towards the nucleus, whereas there is a ‘quantal
decompression’ of t(r) away from the nucleus for the low correlation case (see
Figs. 15 of [61], and 5 of [60] or Fig.3.11). For an explanation of the concepts of
‘quantal compression’ and ‘quantal decompression’ of the kinetic energy density #(r)
for finite nonuniform density systems which in turn lead to the 7/F ratios, see [61].

As the density is further diminished, all the above ratios become even more pro-
nounced relative to the low-correlation systems. In the limit of very low density
(k — 0), the Correlation-Kinetic energy 7, becomes the zero-point energy of the
electrons. Wigner, in his original papers on the uniform electron gas, did explicitly
consider the zero-point motion of the electrons. For nonuniform electron gas systems,
it is the Correlation-Kinetic energy T that is of significance.

What these results indicate is that in addition to characterizing the Wigner regime
by alow density and hence a high value of the electron-interaction energy, the regime
also be characterized by a high Correlation-Kinetic energy.

3.8 Quantal Density Functional Theory of Hartree—Fock
and Hartree Theories

Just as it is possible to construct a Q—-DFT for the interacting system defined by the
time-independent Schrodinger equation (2.133), it is also possible to construct a Q—
DFT for Hartree—Fock (HF) and Hartree (H) theories. In other words, it is possible
to construct model systems of noninteracting fermions such that the density and total
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energy equivalent to those obtained by these theories is obtained. Once again, the
existence of these model systems is an assumption.

In Hartree—Fock Theory, the interacting system wavefunction is assumed to be
a single Slater determinant of spin orbitals, and since the determinant is antisymmet-
ric, electron correlations due to the Pauli exclusion principle are explicitly accounted
for within this framework. The Hartree theory wavefunction, which is assumed to
be a product of spin orbitals is, however, not antisymmetric, and thus does not obey
the Pauli exclusion principle. Instead, the equivalent statement of the principle that
no two electrons can occupy the same state is employed in application of the theory.
In neither Hartree or Hartree—Fock theory are the effects of Coulomb correlations
explicitly incorporated in the wavefunction.

As was the case for the interacting system ground state, a Hohenberg-Kohn the-
orem of the one-to-one relationship between the Hartree-Fock and Hartree theory
ground state densities and the external potential v(r) can be proved [62—64]. Thus, the
Hartree-Fock and Hartree theory wavefunctions are functionals of the corresponding
densities. This then provides a justification for the construction of the model systems.
There is also the simplification of replacing the integral operator of Hartree—Fock
theory, and the orbital-dependent (individual electron) potential energies of Hartree
theory, by a multiplicative potential energy operator that is the same for all the model
fermions.

In the following subsections the key elements of Hartree—-Fock and Hartree the-
ories, and their Q—DFT equivalents, are described. The Q-DFT description is for
both ground and excited states for which the Hartree—Fock theory wavefunction is
a single Slater determinant of spin orbitals, and the Hartree theory wavefunction
a product of them. The spin—orbitals of these wavefunctions are eigenfunctions of
the Hartree—Fock or Hartree theory differential equations. [The symbols ¢;(x), p(r)
in these subsections indicate the HF, H, and Q-DFT orbitals and density as the case
may be.]

The reader is referred to Chaps.9 and 10 of QDFT2 for the application of the
Q-DFT of Hartree and Hartree-Fock theories, respectively, to atoms and mononeg-
ative 1ons.

3.8.1 Hartree-Fock Theory

In Hartree—Fock theory, the wavefunction ¢ (X) of the interacting system defined by
the Hamiltonian H of (2.131) is approximated by "F(X) which is a Slater determi-
nant ®{¢;} of spin—orbitals ¢;(x) = ;(r)x;(0):

PP (X) = d{¢y) = det ¢;(rjo;). (3.181)

1
V/N!
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From the expectations of the operators p(r), 4 (rr’), and 13(rr’) of (2.12), (2.17)
and (2.28) taken with respect to this wavefunction, we have the HF theory quantal
sources: the density p(r), the Dirac spinless single—particle density matrix v1F (rr’),
and the pair—correlation density g"'f (rr’) to be

pr) =D > g, (3.182)
) =2 > ¢ x0)eio), (3.183)

and
g ar') = p(r') + pF (rr), (3.184)

where the HF theory Fermi hole ot (rr’) is defined as (see (3.14))

HF N2
P r’) = —%. (3.185)

As the wavefunction is a Slater determinant, these quantal sources satisfy the sum
rules of Sect.3.1.1.

The total energy E'F is the expectation of the interacting system Hamiltonian H

of (2.131):
E = (0(g)1A10(01)). (3.186)
=T 4 / p()v(r)dr + ENF, (3.187)

where THF and E!F are the HF theory kinetic and electron—interaction energies,

respectively:
= Z/W(r) (—%Vz) Yi(r)dr, (3.188)

HF
// POITET) o, (3.189)
[r — |

Employing the decomposition of g"F (rr’) given by (3.184) we may write
EN = Eq + EIF, (3.190)

where the Hartree energy Ey is

[ om
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and the HF theory exchange or Pauli energy E!'F is the energy of interaction between
the density and Fermi hole charge:

HF
EFF — / / PP e (3.192)

Ir —r'|

As the energy is a functional of the wavefunction, the best single particle orbitals
¢;(x) from the total energy perspective are obtained by application of the varia-
tional principle for the energy [65] employing the approximate wavefunction ®{¢;}.
This requires the first order variation of the energy, for arbitrary variations of the
wavefunction, to vanish. In HF theory, the orbital ¢;(x) is varied by an arbitrarily
small amount §¢;(x) such that ¢;(x) — ¢;(x) + §¢;(x), and the stationary condition
written as

N
0| EMFL@] = > Ajtildy) | =0, (3.193)

ij=1

where the \; = A} are the Langrange multipliers introduced to satisfy the N(V +
1)/2 orthonormality conditions (¢;|¢;) = d;;. This leads to the HF equations:

1 N N
=5 V2 o) + 2 (651016 | 6:0) = D (0510161650

J# J#

z

= > Nig(x),  (3.194)

where

FG)
(651 01) = Z/¢ X)oitx (3.195)

r—r|

Including the self—interaction term in both the third (Hartree) and fourth (exchange)
components of the left hand side of (3.194) leads to the definition of the Hermitian
exchange operator 0, ;(X):

N
Dei()Gi(X) = — D (¢1U1¢i) 5 (%) (3.196)

j=1

The exchange operator is said to be nonlocal because operating with it on ¢;(x)
depends upon the value of ¢;(x) throughout all space, not just at x, as is evident
from (3.196). With the inclusion of the self—interaction term, the resulting Hamil-
tonian on the left hand side of (3.194) can be readily shown to be Hermitian. Thus, the
Lagrange multipliers may be chosen as \;; = €;0;; with ¢; real. This, then leads to the
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Hartree—Fock theory eigenvalue equation, which in terms of the spatial component

P;(r) is
[_%vz +u() + WH(r)} Pi(r)

N * (v \oly. (v

> [ / Mdﬂ} Uy0) = (o), (3.197)
pn r—1r|

spin j|spin i

where Wy (r) is the Hartree potential energy

WH(r)z/ PO (3.198)

Ir —r'|

Itis evident from the integro—differential equation (3.197) that the HF theory effective
single particle Hamiltonian is identical for each orbital. (By identical is not meant
the same, i.e. the integral exchange operator term is not multiplicative or local.)

In terms of the HF theory eigenvalues ¢;, the total energy may then be written as

E"™ = e¢—Ea—EF =) ¢—Eyr, (3.199)

with Ey, E)I({F, and Eel'iF as defined above.

3.8.2 The Slater—Bardeen Interpretation of Hartree—Fock
Theory

Hartree—Fock theory may also be provided a physical interpretation that is due to
Slater [22] and Bardeen [66], analogous to that of Hartree theory to be described in
Sect.3.8.5. By multiplying and dividing the exchange term of (3.197) by ¢;(r), it
may be rewritten as

N
— D> Y E)Y) () /()
/ pobnd dr’ | i(r). (3.200)

Ir —r|
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The integral in the square parentheses may thus be interpreted as an orbital—
dependent multiplicative ‘exchange potential energy’

(yr/
T r(ril) ar, (3.201)

Ux,i(r) =

due to the orbital-dependent Fermi hole charge distribution p, ;(rr’) at ¥’ for an
electron at r defined as

N / /
P ()Y (') (r)
Px,i(l’l‘/) = - Z WTJ (3.202)

j=1
spin jl|spin i

The orbital-dependent Fermi hole satisfies the same rules as those of the Fermi hole.
Thus

/ pr.i(rr)dr’ = —1, (for each electron position r) (3.203)
pr,i(rr) = —p(r)/2, (3.204)
Pri(rr’) < 0. (3.205)

The Hartree—Fock theory eigenvalue equation (3.197) may then be written as

1
[—EVZ + v(r) + Wa(r) + vx,l-<r)} Yi(r) = eahi(r), (3.206)

and the theory interpreted as each electron having a potential energy that is the
sum of the external v(r) and Hartree Wy (r) potential energies, which are the same
for all the electrons, and an ‘exchange potential energy’ v, ;(r) that depends on the
orbital the electron is in. Thus, Hartree—-Fock theory may be thought of as being an
orbital-dependent theory, with each electron having a different potential energy.

In arigorous sense, the expression for v, ;(r) of (3.201) does not represent a poten-
tial energy for nonuniform electron density systems. This is because, as explained
more fully in Sect. 10.2 on Slater theory, the orbital-dependent Fermi hole py ;(rr’)
is a dynamic charge distribution that depends upon the electron position. The expres-
sion would represent a potential energy provided the charge distribution were static
and independent of electron position as is the case for the uniform electron gas.
Additionally, as is evident from its definition, the orbital-dependent Fermi hole and
hence vy ;(r) are singular at the nodes of the orbitals as is the case for atoms. (In
Bardeen’s application [66] of this interpretation to the nonuniform density at metal
surfaces, the orbitals are nodeless.) Nonetheless, the function v, ;(r) represents the
effects of the Pauli exclusion principle, and hence the Slater—Bardeen interpretation
of Hartree—Fock theory as an orbital-dependent one is reasonable. Of course, for
systems for which v, ;(r) is not singular, the interpretation is rigorous.
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3.8.3 Theorems in Hartree—Fock Theory

There are four theorems of importance with regard to Hartree—Fock theory which
are described next. The reader is referred to the original literature or standard texts
for their proofs.

®

(i)

(iii)

(iv)

According to Koopmans’ theorem [67], the eigenvalues ¢; of HF theory may be
interpreted as removal energies. The proof assumes that the orbitals of the neu-
tral system and those of the resulting ionized system with an electron removed
are the same, and that there is no relaxation of the orbitals of the latter. This
is rigorously the case for a many electron system with extended orbitals as in
a simple metal with s—p band character. Thus, the work function of a metal
as obtained in HF theory is the difference in energy between its barrier height
and Fermi energy [68]. However, for finite systems such as atoms, there is
arelaxation of the orbitals on electron removal. Hence, the interpretation of the
eigenvalues as removal energies is not quite rigorous. Consequently, the high-
est occupied eigenvalue €, of HF theory is not as good an approximation to
the experimental ionization potential as that of local effective potential energy
theories such as the Pauli—correlated approximation of Q-DFT [2, 69]. The
theorem and above remarks are equally valid for the case of the addition of an
electron to the neutral system. As such the highest occupied HF theory eigen-
value of negative ions is again not as accurate [2, 70] as the Pauli—correlated
approximation of Q-DFT when compared to experimental electron affinities.
(See Chap. 10 of ODFT2.)

For external potential energies that vanish at infinity, the orbitals [71] of HF
theory all have the same asymptotic structure wi(r)r_;ooexp(—\/Er), where
€m 18 the corresponding highest occupied eigenvalue. Thus, all the orbitals con-
tribute to the asymptotic structure of the density in HF theory. Consequently, the
relationship between €, and the experimental ionization potential has meaning
only within the context of Koopmans’ theorem.

According to Brillouin’s theorem [72], if an electron is in an excited state, the
matrix element of the Hamiltonian H taken with respect to the excited and
ground state Slater determinants vanishes.

As a consequence of Brillouin’s theorem, the expectation values of single par-
ticle operators taken with respect to the HF theory ground state wavefunction
are correct to second order [73, 74] as is the energy.

3.8.4 Q-DFT of Hartree-Fock Theory

In this section we describe the Q—DFT of the model system of noninteracting fermions
such that the same density p(r) and total energy E''F as that of Hartree—Fock theory is
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determined. Again, as for the fully interacting system, the existence of such a model
S system is an assumption. The corresponding S system differential equation is then

[—%vz + v(r) + vff(r)} ¢i(r) = ¢i(r); i=1,...,N, (3.207)

where v!IF(r) is the effective electron—interaction potential energy which ensures
the orbitals ¢;(r) generate the HF theory density. Note that these orbitals dif-
fer from the HF theory orbitals, and hence the resulting Dirac density matrix
Y@’y =D > ¥ (ro)¢i(r'o) is different from M (rr’) of (3.183). The diago-
nal matrix element of these density matrices which is the density, however, is the
same. The Q-DFT description of this model S system constitutes a special case of
the fully interacting system case described in Sect.3.4. Instead of employing the
eigenfunctions v, (X) of the time-independent Schrédinger equation to define the
quantal sources, fields, and energies, one employs instead the Hartree—Fock theory
Slater determinant ¥ (X) = ®{¢;} with ¢;(x) the corresponding orbitals. This is
a consequence of the fact that the HF theory wavefunction 1'F (X) satisfies a ‘Quan-
tal Newtonian’ first law and integral virial theorems [75]. In other words, the form
of the time-independent ‘Quantal Newtonian® first law (see Appendix A) remains
unchanged with the fields now defined instead in terms of the HF theory quantal
sources. (The satisfaction of the ‘Quantal Newtonian’ first law implies that of the
integral theorem. The fact that the HF theory wavefunction satisfies the integral virial
theorem may also be arrived at independently by scaling arguments [76].) The proof
of the Q-DFT description is thus the same as that for the fully interacting case and
will not be repeated.

Within Q-DFT, the S system properties are as follows. The potential energy v}l (r)
is the work done to move the model fermion in a conservative field FF (r):

Ve (1) = — / FE - de, (3.208)
where
Flr) = €L @+ Z ). (3.209)

Here the HF theory electron interaction field £ ?f(r) is obtained via Coulomb’s law
from the pair—correlation density gHF (rr’) of (3.184):

HF / _
EN(r) = / %d“ = Eu(r) + £ (), (3.210)

with the Hartree £y(r) and Pauli € EF (r) fields being defined as

E4(r) = / PN —1) (3211)

Ir—r|3
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and

HF / R
EMF(r) = / p @) =) (3.212)
X r —r'|3

The Correlation—Kinetic field ZSF (r) is defined as the difference between the non-
interacting system and HF theory kinetic fields:

ZFr) = Z,x) - 2™ (), (3.213)

where the fields Z4(r) and ZHF (r) are obtained from the corresponding kinetic
“forces’ z,(r; [s]) and 2 (r; [yHF]):
. HF (.. [~ HF

Z.(r) = zs(ry([’}/s]) and ZHF(I‘) _ 20 [y '

3.214
p(r) p(r) ( :

The kinetic ‘forces’ in turn are derived from the noninteracting and HF theory kinetic—
energy—density tensors which are defined in terms of the density matrices v, (rr’) and
fyHF(rr/), respectively (see (3.35)).

The Hartree field £y (r) is conservative. The Pauli £ ]:F (r) and Correlation—Kinetic
ZEF (r) fields in general are not. Thus, the potential energy v!lF(r) for arbitrary
symmetry may be written as

U(I;LF(I‘) = Wu(r) + (—/ [ngF(r/) + ZEF(r/)] d(’) , (3.215)

where )
Wi (r) = / T (3.216)
r —r/|

For systems with symmetry such that the fields £ EF (r) and ZSF (r) are conservative:
V x EF(r) =0,V x Z7(r) = 0, we may write v} (r) as the sum

Ve (r) = W (r) + Wy ) + W (r), (3.217)

where W (r) and W' (r) are the separate work done in the Pauli EMF(r) and
Correlation—Kinetic ZEF (r) fields:

r r

WHE(r) = — / EMF(ry . de’ and W (r) = — / zZWay.dat.  (3.218)
o0 ¢ o0 ¢

With the potential energy v?eF(r) defined as in (3.215) or (3.217), solution of the

S system differential equation generates orbitals ¢;(x) which lead to the HF theory
density p(r).
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The HF theory total energy EF'F may be expressed in terms of the individual fields
as

EWF =T, + / p(®)v(r)dr + EXF 4 THF (3.219)
=T+ / p(v(r)dr + Ey + EXF + THF, (3.220)

where the S system kinetic energy T is the expectation
1
To= > (¢i(ro)| = 5 V2I6i(ro). (3.221)
o i

and where in integral virial form the electron—interaction energy and its components
are

EX = / p)r - EMF(rydr, (3.222)

Ey =/p(r)r~8H(r)dr, (3.223)
and

EMNF = / pr - EMF (r)dr, (3.224)

and where the HF theory Correlation—Kinetic energy T:'F is
1
THF = 3 / p)r - ZF (r)dr. (3.225)

The model system of noninteracting fermions described above determines the same
density and energy as that of HF theory. As was the case for the fully interacting
system, there is in addition to the electron—interaction term, a Correlation—Kinetic
component to both the potential and total energies of these model fermions. This
latter component is essential to ensuring the equality of the density and energy to
that of HF theory. (Note that the total energy is not determined as the expectation
value of the Hamiltonian taken with respect to the S system Slater determinant ®{¢;}.
Since this wavefunction differs from the HF theory determinant, such an expectation
would constitute a rigorous upper bound to the HF theory total energy.)

3.8.5 Hartree Theory

In this approximation, the wavefunction W (X) of the interacting system defined by
the Hamiltonian H of (2.131) is determined by assuming each electron to move
in the external field, and the average field due to the charge distribution of all the
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other electrons. Thus, the wavefunction is chosen to be of the form appropriate for
independent particles, i.e. a product of spin orbitals:

H(X) = Y ¢i(x), (3.226)

where ¢;(x) = ¥;(r)x;(o). With the above assumptions, the Hartree theory differ-
ential equation may be written directly a

- GG |
EAREICEDY [ | i = oo

J#i

i=1,...,N. (3.227)

The corresponding expression for the total energy E H which is the expectation of the
interacting system Hamiltonian H of (2.131) is

EM = (wH gty = 71 4+ / p(r)v(r)dr + EX

ee’

(3.228)

with p(r) = > > |¢:(ro)|* and where T and EY! are the Hartree theory kinetic
and electron—interaction energies, respectively:

= Z / Y (r) (—%W) i(r)dr, (3.229)

r — 1’|

7\ 12
_ Z / WP EPR (3.230)
1#/

In terms of the eigenvalues ¢; of the Hartree differential equation, the total energy is
=> & —EL. (3.231)

Thus, Hartree theory is an orbital-dependent theory in which each electron has a
different potential energy. This is analogous to the Slater—Bardeen interpretation of
Hartree—Fock theory.

The Hartree theory differential equation may also be rigorously derived by applica-
tion of the variational principle for the energy. Thus, minimization of the expectation
E™ with respect to arbitrary variations of the spin—orbitals subject to the normal-
ization constraint (¢;|¢;) = 1 leads to (3.227) and thereby to the best product type
wavefunction from the energy perspective. The Hartree theory Hamiltonian is Her-
mitian, and therefore the orbitals are orthogonal.
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The equations of Hartree theory may be expressed in terms of the corresponding
quantal sources by rewriting the density of all but the i th electron as the density of
all the electrons minus that of the i th one:

Z Z |6;(xo)* = p(r) + gi(ro), (3.232)
J#'

where g;(ro) = — ¢! (ro)¢;(ro). The Hartree theory differential equation is then
1
[—Evz +o(r) + Wa(r) + v?l%r)} Uir) = e (r), (3.233)

where Wy (r) is the Hartree potential energy (see (3.198), and viSIC (r) the orbital—
dependent self—interaction—correction (SIC) potential energy due to the static orbital
charge density g;(ro):
(v
oSy = [ 4T 4 (3.234)
Ir —r’|

The Hartree theory pair—correlation density g (rr’) which is the expectation of the
pair—operator P(rr’) (2.28) taken with respect to WH(X) is

gar) = pc) + pCar)), (3.235)

where pS€(rr’) = — X" >, qi(ro)qi(r'c) /p(r). Thus, the Hartree theory electron—
interaction energy EXL may be rewritten as

H
- / / PO far (3.236)

Ir —r'|
= Ey + E5°, (3.237)

where Ey is the Hartree energy (3.191), and EJI€ the SIC energy:
sIC

ESC = / / P (r|)p (,” drdr’. (3.238)

r—r|

In terms of the eigenvalues the total energy is then

E"=>" €& — Eq — Ej°, (3.239)

i

analogous to the total energy expression in HF theory of (3.199).
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3.8.6 Q-DFT of Hartree Theory

The Q-DFT description of the model S system of noninteracting fermions whereby
the same density p(r) and energy Ey as that of Hartree theory is obtained, is similar
to the corresponding mappings of Schrodinger theory of the fully interacting system
and of HF theory. The assumption of existence of such an S system leads to the
differential equation for the model fermion spin orbitals ¢;(x):

[—%vz +u(r) + v};(r)] i(X) = €i(x); i=1,...,N, (3.240)

where v!l (r) is the effective electron—interaction potential energy which ensures the
orbitals ¢;(x) lead to the Hartree theory density. The orbitals ¢;(x) differ from those
of Hartree theory so that the corresponding Dirac density matrices differ: 74 (rr’) =
DD Pr(ro)gi(r'o) # ~H(rr’). The diagonal elements of these matrices, however,
are the same. Once again, the proof of the Q-DFT description is based on the fact
that the Hartree theory wavefunction WH(X) satisfies the ‘Quantal Newtonian’ first
law and the integral virial theorem, with the fields determined from quantal sources
derived from this wavefunction.

Therefore, the potential energy v'l
in a conservative field FH(r):

(r) is the work done to move the model fermion

v (r) = — / ) FRa) - de, (3.241)
where
Fir) = ELm®) + Z(r). (3.242)
H

The Hartree electron—interaction field £ (r) is obtained from the pair—correlation
density g™ (rr’) of (3.235) via Coulomb’s law:

H / I
el (r) = / %dﬂ (3.243)
= En(r) + EFC), (3.244)

with £4(r) the Hartree field (see (3.211), and where the SIC Sﬁlc(r) field is:

SIC (g (40 1/
E3C(r) = / prar)a—r) (3.245)
Ir —r'|?

The Correlation—Kinetic field Zg(r) is the difference between the noninteracting
and Hartree theory kinetic fields:

2l = Z,@r) - 24(), (3.246)



3.8 Quantal Density Functional Theory of Hartree—Fock ... 131

where

_ Zs(r; [

H/... H
Z.(r) = and i) = 207D

- , 3.247
p(r) p(r) ( )

with z,(r; [7s]) and zH(r; [y1]) the corresponding kinetic ‘forces’. These kinetic
‘forces’ are derived from the noninteracting and Hartree theory kinetic—energy—
density tensors defined in terms of the density matrices ~,(rr’) and v/ (rr’), respec-
tively.

For systems of arbitrary symmetry, the fields £ i(r) and Zg (r) are not necessar-
ily separately conservative. Their sum always is. But as the Hartree field Ey4(r) is
conservative, we may write the potential energy vl (r) as

vl (r) = Wu(r) + (— / ' [EXCa) + 21 ()] .de’) . (3.248)

For systems of symmetry such that V x SIS_IIC (r)=0and V x ZE (r) = 0, we have
Ve (r) = Wa(r) + W) + W), (3.249)
where

W) = — / EXC() - dt and W!(r) = — / 2l - de. (3.250)

W}SIIC (r) and WE (r) are the separate path-independent work done in the fields £ IS{IC (r)
and ZE (1), respectively.
The Hartree theory total energy EF may be expressed in terms of the fields as

Ev=T,+ / p(v()dr + EL + T (3.251)
_ SIC H
=T, + [ p(r)v(r)dr + Ey + EJC + TH, (3.252)

where T is the S system kinetic energy (3.221), and where in integral virial form

EY = / p(r)r - EL (r)dr, (3.253)
EJC = / p(o)r - EC(r)dr, (3.254)
TH = % / pm)r - Z(r)dr, (3.255)

and Ey is given by (3.223).
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The model S system described above leads to the same density and energy as
obtained from Hartree theory. Once again note that there is a Correlation—Kinetic
component to both the potential energy and total energy of the model fermions. This
component is essential to ensuring the equality of the resulting density and total
energy to that of Hartree theory.

For the application of the Q-DFT of Hartree theory to atoms for the determi-
nation of atomic shell structure and core-valence separation, total energies, and the
satisfaction of the aufbau principle, see Chap.9 of ODFT2.
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Chapter 4
Hohenberg—Kohn, Kohn—-Sham,

and Runge-Gross Density Functional
Theories

Abstract The two nondegenerate ground-state theorems of Hohenberg-Kohn (HK)
are described with an emphasis on new understandings of the first theorem (HK1)
and of its proof. Via HK1, the concept of a basic variable of quantum mechanics, a
gauge invariant property knowledge of which uniquely determines the Hamiltonian
to within a constant, and hence the wave functions of the system, is developed. HK1
proves that the basic variable is the nondegenerate ground state density. HK1 is gen-
eralized via a density preserving unitary transformation to prove the wave function
must be a functional of the density and a gauge function of the coordinates in order
for the wave function written as a functional to be gauge variant. A corollary proves
that degenerate Hamiltonians representing different physical systems but yet pos-
sessing the same density cannot be distinguished on the basis of HK1. (This does not
constitute a violation of HK1 as the Hamiltonians differ by a constant.) The primacy
of the electron number N in the proof of the HK theorems is stressed. The Percus-
Levy-Lieb (PLL) constrained-search path from the density to the wave functions is
described. It is noted that the HK path is more fundamental, as knowledge of the
property that constitutes the basic variable, as gleaned from HK1, is essential for the
constrained-search proof of PLL. The Gunnarsson-Lundqvist theorems, the exten-
sion of the HK theorems to the lowest excited state of symmetry different from that of
the ground state are described. The Runge-Gross (RG) theorems for time-dependent
theory, with an emphasis on the first theorem (RG1), are explained. RG1 proves the
basic variables to be the density and the current density. A density preserving unitary
transformation generalizes RG1 to prove the wave function must be a functional of
the density and a gauge function of the coordinates and time. A hierarchy based on
gauge functions thereby exists for the fundamental first theorems of density func-
tional theory. A corollary to RG1 similar to that for the time-independent case is
proved. Kohn-Sham theory, a ground state theory, which constitutes the mapping
from the interacting system to one of noninteracting fermions of the same density,
is formulated. As this mapping is based on the HK theorems, the description of the
model system is mathematical in that the energy is in terms of functionals of the
density, and the local potentials defined as the corresponding functional derivatives.
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Introduction

Hohenberg-Kohn, Kohn-Sham, and Runge-Gross density functional theories in an
approximate form are possibly the most extensively employed quantum-mechanical
formalisms for the determination of electronic structure in atomic and condensed
matter physics, and in quantum chemistry. In this chapter we describe the in principle
exact framework of these theories. We begin by explaining the two theorems of
Hohenberg and Kohn (HK) [1]. We also describe new insights gleaned about the
theorems: the primacy of the electron number N to the theory [2]; a corollary to the
first theorem [3], [ODFTI1]; and the generalization of the first theorem to arbitrary
density preserving unitary transformations [4], [QDFT2]. The theorems of HK then
constitute the basis of Kohn-Sham density functional theory (KS-DFT) [5]. The
precursor to the HK theorems and KS-DFT is comprised of the work of Thomas
[6], Fermi [7], Dirac [8], von Weizscker [9], and Slater [10]. For a description of the
precursory material, and for the broader context of Hohenberg-Kohn-Sham density
functional theory, the reader is referred to the three original texts on the subject [11-
13], and to a more recent one [14]. Slater theory, and its approximations, will be
described more fully in Chap. 10.

The first HK theorem defines the concept of a basic variable of quantum mechan-
ics in the context of density functional theory. A basic variable is a gauge invariant
property, knowledge of which determines uniquely the external potential of the sys-
tem, hence the Hamiltonian, and by solution of the Schrodinger equation, the ground
and excited state wave functions. The theorem proves the nondegenerate ground
state density p(r) to be a basic variable. The proof is for pure-state v-representable
densities. (These are densities obtained from wave functions that are solutions of
the Schrodinger equation for interacting systems.) The knowledge that this density
is a basic variable is fundamental to local effective potential energy theories such
as KS-DFT and Q-DFT. It is also key [15] to the Percus-Levy-Lieb (PLL) [16—-19]
constrained-search framework of density functional theory which in turn expands the
domain of HK theory to N-representable and degenerate ground state densities. The
PLL description of density functional theory will also be described in the chapter.
(In a later chapter, it will be shown that in the added presence of a uniform mag-
netostatic field, the basic variables are the nondegenerate ground state density o (r)
and the physical current density j(r) for fixed canonical orbital and spin angular
momentum.)

The fundamental proposition of HK density functional theory, as enunciated by
the first HK theorem, is that all the properties, both ground and excited state, of a
many-electron system in the presence of an external field F**'(r) = —Vu(r), can
be determined exactly from the nondegenerate ground state density p(r), the basic
variable. Thus, as will be shown, knowledge of this density uniquely determines the
system Hamiltonian to within a constant, and thereby via solution of the Schrodinger
equation, the ground and excited state wave functions of the system. Hence, HK
density functional theory can be thought of as a means of determining the system
wave functions. This is a profound conclusion, one that constitutes a milestone in the
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development of quantum mechanics. But what this conclusion also achieves is that it
shifts the focus from the time-independent Schrédinger theory wave function to that
of the system ground state density p(r). (The PLL constrained-search method is also
a means of determining the Hamiltonian, and thereby the system wave functions,
from the ground state density p(r). The method, however, requires [15] the a priori
knowledge that the nondegenerate ground state density p(r) is the basic variable, a
fact gleaned from the first HK theorem.)

As knowledge of the nondegenerate ground state density p(r) determines the
wave functions of the system, the wave functions are functionals of this density. Wave
functions and Hamiltonians are gauge variant [20] quantities whereas the density is
gauge invariant. By a density preserving unitary transformation [4], [QDFT2] it is
shown that the wave function must also be a functional of a gauge function. It is
this dependence on the gauge function which ensures that when the wave function
is written as a functional it is gauge variant. This also shows that the HK proof
is generalized to be valid for each choice of the gauge function. The theorem as
originally enunciated is recovered when the gauge function is replaced by a constant.
Since for different gauge functions, the physical system remains unchanged, the
choice of a vanishing gauge function is equally valid.

As the wave function is a functional of the density p(r), properties of the system,
obtained as expectation values of Hermitian operators, are unique functionals of this
density. The energy is thus such a functional. The second HK theorem which is the
application of the variational principle to the energy functional, (for arbitrary varia-
tions of the density), then leads to the Euler-Lagrange equation for the nondegenerate
ground state density p(r). Since the kinetic and electron-interaction energy compo-
nent functionals of the total energy functional are unknown, they are approximated
in the Euler equation. This then harks back to the Thomas, Thomas-Fermi, Thomas-
Fermi-Dirac, and Thomas-Fermi-Dirac-von Weizsacker approximations, the equa-
tions of which then constitute special cases of the exact Euler-Lagrange equation for
the density. The inclusion of terms of higher-order in the gradients of the density for
both the kinetic and electron-interaction energy components then makes the solution
of the corresponding approximate Euler-Lagrange equation formidable.

Yet another point of note is that in HK density functional theory, the role of the
electron number N is primary [2]. The first HK theorem is proved and valid only
for fixed N. Further, with regard to the second HK theorem, the variational densities
must be such as to integrate to the electron number N. Thus, one must know N
prior to solving the Euler-Lagrange equation for the density. (In the chapter on the
added presence of a uniform magnetostatic field, which constitutes a new degree of
freedom, it will be seen that the parameters characterizing the system are the electron
number N and the canonical orbital angular momentum L and spin momentum S.)

The HK theorems are valid for arbitrary interaction between the electrons. Hence,
the theorems are equally applicable to noninteracting fermions in their ground state.
The energy of the model fermions is once again a functional of the density, and as
such there exists a corresponding Euler-Lagrange equation for the density. KS-DFT
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employs the fact that solution of this Euler-Lagrange equation is equivalent to solv-
ing the § system set of single-particle Schrédinger equations for the noninteracting
fermions. With the kinetic energy of the noninteracting fermions treated exactly, their
potential energy is defined via the equivalence to the Euler-Lagrange equation as the
Sfunctional derivative of the remaining component of the total energy functional taken
with respect to the density. Hence, the KS-DFT mapping from the interacting system
of electrons to the model S system having the same density is mathematical in that it
is a description in terms of energy functionals of the density and of their functional
derivatives. This description of the S system therefore differs fundamentally from
that of the physical ‘classical’ fields and quantal sources perspective of Q-DFT. The
existence of the S system within KS-DFT is, once again, an assumption. Hohenberg-
Kohn and Kohn-Sham density functional theories are ground state theories. Thus, the
mapping within KS-DFT is always from the ground state of the interacting system
to an S system that is also in its ground state.

Within Schrodinger theory the variational principle is also applicable to the lowest
excited state of a given symmetry different from that of the ground state. In the
variational procedure, one then restricts the approximate wave functions to have the
given excited-state symmetry, and the lowest state of that symmetry is achieved by
energy minimization without any orthogonality constraints imposed on the trial wave
functions. The trial wave functions are automatically orthogonal to the exact ground
state wave function. A corresponding HK theorem for such states can therefore
be proved. The proof is for v-representable densities derived from wave functions
that have the given excited-state symmetry. Hence, knowledge of the density p¢(r)
for such an excited state then also determines the external potential v(r) uniquely to
within a constant, and thereby the Hamiltonian. Thus, the density p¢(r) is also a basic
variable of quantum mechanics. This is referred to as the Gunnarsson-Lundqvist (GL)
theorem [21, 22]. The excited-state wave function is a functional solely of the density
p¢(r), and of course of a gauge function to ensure that when written as a functional
it is gauge variant. The GL theorem is valid for each choice of gauge function. In
addition, all properties are also unique functionals of the density p°(r).

For other excited states, it is known [21, 23, 24] that there is no equivalent of
the HK theorem. In other words there is no one-to-one relationship between these
excited-state densities p°(r) and the external potential v(r). As knowledge of the
density p°(r) of such excited states does not uniquely determine the external potential
v(r), the implication is that there could exist several potentials v(r) for which the
corresponding Schrodinger equations all generate the same excited-state density
p¢(r). The reader is referred to [22] for an example of the satisfaction of the GL
theorem, and for a demonstration of the multiplicity of potentials for excited states
other than the lowest excited state.

In spite of the fact that there is no equivalent of the HK theorem for other than
the lowest excited state of a symmetry that differs from that of the ground state,
the constrained-search approach has been generalized to the individual excited state
[24, 25]. The many-body effects are incorporated in a bidensity energy functional
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of the exact ground density and the excited state densities. The local potential in
the corresponding KS-DFT is then the functional derivative of this bidensity energy
functional. The mapping from the excited state of the interacting system to the model
system of noninteracting fermions is always to one in an excited state having the same
electronic configuration. References to other work on excited states in the context of
DFT are given in [25].

Time-dependent density functional theory (TD-DFT) is based on the extension
by Runge and Gross (RG) [26-28] of the first HK theorem to the time domain. The
theorem is valid for external fields F**'(rt) = —Vu(rt) such that the corresponding
potential energy v(r?) is Taylor expandable about some initial time 7. The basic
ideas parallel those of time-independent theory but with one important difference.
The RG theorem shows that in addition to the TD density p(r?), the current density
j(rt) as defined by (2.39-2.42) is also a basic variable i.e., knowledge of either p (r?)
or j(rt) uniquely determines the external potential v(rt) to within a TD function
C(t). Unlike TD Q-DFT in which it is possible to map the interacting system to an
S system of noninteracting fermions having either the same density p(rt) or one
with the same density p(rt) and current density j(r?), the focus of TD DFT is solely
on the density p(r?). In the time-independent case, the existence of the S system of
noninteracting fermions with the same density p(r) is an assumption. In TD DFT
there is the van Leeuven theorem [28, 29] based on the ‘Quantal Newtonian’ second
law [30-32] of (2.75) that purports to prove that such a system exists provided the
initial state of the model system reproduces the density and its derivative at the
initial time 7y. (As noted in the Introduction to the previous chapter, there has been a
critique of this existence theorem, and a response to the critique [4, 33-37].) Again
paralleling the energy functional of the density p(r) and the variational principle for
the energy within time-independent theory, RG introduced an action functional of the
density p(rt) and the stationary-action principle. The potential energy of the model
fermions is consequently defined as the functional derivative of the corresponding
component of the action functional. It turns out [38] that there is at present no action
functional of v-representable densities whose functional derivative corresponds to
the potential energy of the noninteracting fermions. (In TD DFT, a v-representable
density p(rt) is one derived from the solution of the TD Schrodinger equation in
which the external potential energy v(rt) is Taylor expandable.) An action functional
for a broader class of densities that satisfies the constraints on such an action integral
has, however been constructed [39—41]. For more recent developments in TD DFT,
the reader is referred to [28]. A brief description of the principal tenets of TD DFT is
given in the chapter. New insights into the RG theorem are described: a corollary [3],
[ODFTI] to the theorem; and its generalization [4], [QDFT2] via a time-dependent
density preserving unitary transformation.

Finally, it has been proved [42, 43] that for electrons in an external time-dependent
electromagnetic field, the basic variables are the time-dependent density p(rt) and
physical current density j(r?). A Q-DFT for such systems has been developed [44].
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4.1 The Hohenberg—Kohn Theorems

The Hohenberg-Kohn (HK) theorems are proved for a system of N electrons in an
external electrostatic field F**'(r) = £(r) = —Vu(r). This then is the definition
employed (within non-relativistic quantum mechanics) of matter: atoms, molecules,
solids, clusters, lower dimensional systems such as heterojunctions, quantum dots,
graphene, etc. The Hamiltonian Hy of this system of electrons in atomic units (¢ =
K =m = 1) is the sum of its kinetic 7', electron-interaction potential energy U, and
external potential energy 1% operator:

AHyR) =T +U +V, 4.1
where
R 1 N R 1 N 1 . N
T=—>V U==) —; V= ), 4.2
3 2.V 2Z|r,»—rj| 2. v “2
i=1 i#j i=1
withR=r,...,ry.

The corresponding Schrodinger equation is (see (2.133))
Hyy,(X) = E, i (X), (4.3)

with [, (X), E,] the antisymmetric N electron eigenfunctions and eigenenergies,
respectively; X = Xi, ..., Xy and X = ro with r and o the spatial and spin coordi-
nates. The energies E, are the expectation

Ey = (Y (X)| Hy |92 (X)), 4.4)

and the density p,(r) the expectation

Pn(®) = (¥ (X) 5 (1) [ (X)), (4.5)

with p,(r) the Hermitian density operator of (2.12). The density integrates to the
electron number N:

/MmazN (4.6)

The HK theorems are proved for the nondegenerate ground state designated as
{v(X), E, p(r)}. The theorems are valid for arbitrary external potential v(r) and
electron number, but proved for fixed N. Following the statement and proof of the
first HK theorem we discuss the implications of the theorem.
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4.1.1 The First Hohenberg-Kohn Theorem

The statement of the first theorem of Hohenberg and Kohn is the following:

Theorem 1 The nondegenerate ground state density p(xr) determines the external
field E(r) or equivalently the external potential v(xr) to within a trivial additive
constant.

Proof The theorem is proved for nondegenerate ground state densities that are
constrained to be v-representable. A density is said to be v-representable if it is
obtained from an antisymmetric ground state wave function of the time-independent
Schrodinger equation (4.3) for arbitrary external potential v(r).

Consider the case of nondegenerate ground states. With the kinetic T and electron-
interaction U potential energy operators known, different external fields with poten-
tial energy operators vV = > . v(r;) lead via solution of the time-independent
Schrddinger equation to different ground state wavefunctions . (Note that the exter-
nal potential energies are not restricted to being Coulombic.) This defines the map
C between the potential energies v(r) and the wavefunctions v (see Fig.4.1). These
different ground state wavefunctions then lead via (4.5) to different ground state
densities p(r). This establishes the map D between wavefunctions and densities (see
Fig.4.1). The combination (CD) of the maps C and D then maps each potential energy
v(r) to a ground state density p(r).

The statement of Theorem 1 is that the map (CD) is invertible. In other words, the
inverse map (CD)~! ensures that the ground state density p(r) then determines the
external potential energy v(r) to within an additive constant. To prove the invertibility
of map (CD), the separate inverse maps C ' and D~ must exist (see Fig.4.1). That
is, for each ground state wavefunction ¥, there corresponds one potential energy
v(r). And for each ground state density p(r) there exists only one ground state
wavefunction .

To show the invertibility C~! of map C, what needs be proved is that two different
external potential energy operators V and V' that differ by more than a constant such
that V * V' + constant, must lead to different ground state wavefunctions y and v
The Schrodinger equations for the operators V and V' are

Hy =T +U+ V)y = Evy, 4.7
Map C Map D
v(r) ¥(X) p(r)
Map C” Map D'

Fig.4.1 Maps relating the correspondence between external potential energies, ground state wave-
functions, and ground state densities
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and . . . .
HY' =T +U+ V)Y =EY, (4.8)

where E and E’ are the respective ground state energies. Now if ¢ = 1/, then on
subtraction we have o
V=V =(E-ENY. (4.9)

As the operators V and V' are multiplicative (local), the above equation reduces to

A A

V-V =E-FE. (4.10)

Since (E — E’) is a constant, (4.10) contradicts the assumption that V and V' must
differ by more that a constant. Thus, for every ground state wavefunction i there
corresponds a potential energy v(r), and the inverse map C ! is established. A bijec-
tive relationship between v(r) and the nondegenerate ground state v is consequently
proved. The explicit manner by which v(r) is obtained from v is via the ‘Quantal
Newtonian’ first law as described in Sect.2.10. (See also Sect.4.3.)

To show the invertibility D~! of map D, one must employ the conclusions of Map
C, i.e. that there exists only one v for each v(r). One assumes there exists a i and
¥’ with ¢ # ' generated from different v(r) and v'(r), respectively, to prove then
that p(r) # p’(r). From the variational principle for the energy we have

E = (y|H|Y) < (W HIY). (4.11)

The inequality in (4.11) is justified by our assumption of considering nondegenerate
ground states. To see this, recall that according to the variational principle, for Y £
¥, the energy E < (Y/|H|¥'). Thus, if E = (y/|H|y’), then HY' = Ev/, in
contradiction of the assumption of nondegeneracy of the ground state. Now
WIAWY) = W7+ 0+ V' +V = V)
= (YIH'|Y) + IV = V'IY)
= &'+ [ /Wi - voldr, @.12)

so that (4.11) becomes
E <E' +/,o/(r)[v(r) —v/(r)]dr. (4.13)

Similarly

A A

E'= (' |H'lY") < (YIHY), (4.14)
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so that in this instance we obtain
E' <E —i—/p(r)[v/(r) —v(r)]dr. (4.15)

(Note that the densities p(r) and p’(r) are v—representable as they are obtained from
the solutions of the Schrodinger equation (4.3).) On adding the two inequalities with
the assumption that p(r) = p’(r), then leads to the contradiction

E+E <E+E. (4.16)

This proves that for each nondegenerate ground state density p(r), there exists one
and only one ground state wavefunction which would give rise to this density, and
hence the inverse map D! is established. A bijective relationship between the non-
degenerate ground state i and the density p(r) is thus proved.

(Note, however, that there exist an infinite number of antisymmetric N—particle
functions v, (X) that can lead to the ground state density. Methods for constructing
N-particle functions that yield a particular density p (r) are described by Gilbert [45],
Harriman [46], and Cioslowski [47].) It is also possible to construct [48] antisym-
metric functions v, (X) that are functionals of functions x, i.e. ¥,(X) = ¥, [ x 1(X)
that also reproduce a given density p(r).

Having proved the existence of the inverse maps C~! and D~!, the inverse map
(CD)~! ensures that there is a one—to—one correspondence between ground state
densities p(r) and external potential energies v(r). That is, for each nondegenerate
ground state density p(r), there exists only one external potential energy v(r) that
leads to this density. Theorem 1 is thus proved.

4.1.2 Implications of the First Hohenberg-Kohn Theorem

The following are some implications and consequences of the first HK theorem.

1. The first HK theorem can be interpreted as a method for determining the system
wave functions v, (X) from the nondegenerate ground state density o(r). This is
the HK path [15] from the density p(r) to the Hamiltonian H (R) of the system.
Knowledge of the density po(r) uniquely determines the external potential v(r) to
within a constant, and since for fixed electron number N, the kinetic T and electron-
interaction potential U operators are assumed known, so is the Hamiltonian to within
a constant. Solution of the Schrdinger equation (4.3) then leads to both the ground
and excited state wave functions ¥, (X) of the system. The HK path in equation
form is

o(r) —> v(@r) — HR). (4.17)
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To understand this mapping, consider the case of the Coulomb external potential v(r).
The electron number N is obtained from the ground state density p (r) by integration
via (4.6), and the potential v(r) via the first HK theorem. The cusps in the electron
density which satisfy the electron-nucleus coalescence condition (see Sect.2.10.2)
determine the positions of the nuclei and their charge Z. With the kinetic T and
potential U energy operators known, knowledge of N and v(r) then fully determines
the Hamiltonian H of (4.1).

2. The statement of the first HK theorem is the basis of the concept of a basic
variable of quantum mechanics. A basic variable is a gauge invariant property whose
knowledge uniquely determines the external potential. As there is a bijective relation-
ship between the nondegenerate ground state density p(r) and the external potential
v(r), the density p(r) constitutes a basic variable. (It is this HK definition of a basic
variable that must then be employed to determine the corresponding gauge invariant
properties when the electrons are subjected to an added external magnetostatic field.
The corresponding proof [49] for nondegenerate states with fixed canonical angular
momentum will be given in Chap. 8.)

3. The fact that knowledge of the nondegenerate ground state density p (r) deter-
mines the wave functions ¥, (X) means that the wave functions are functionals of
the density: ¥,,(X) = ¥, [p(r)]. Now the wave functions ¥, (X) are gauge variant
[20] whereas the density p(r) is gauge invariant. By a density preserving unitary
transformation [4], it will be shown in Sect 4.2 that the wave functions must also be
functionals of a gauge function «(R), i.e. ¥,,(X) = ¥,[p(r), «(R)]. In this manner,
the wave functions written as functionals will then be gauge variant. Such a unitary
transformation also generalizes the first HK theorem to external potential energy
operators, that in addition to the standard scalar potential energy operator v(r) also
include the momentum and curl-free vector potential energy operators. The theorem
as originally formulated by HK then constitutes a special case of this generalization.
Since for different gauge functions «(R), the physical system remains unchanged,
the choice of vanishing gauge function is equally valid. As such the expectation of
any operator Oisa unique functional of the density:

(0) = 0,[p()] = (WYl pIO 1P, ()]). (4.18)

Thus the energy E, which is the expectation value of the Hamiltonian H(R) is a
functional of the density; E,, = E,[p(r)].

Note that although Theorem 1 establishes the fact that the wave function is a
functional of the ground state density p (r), it does not, however, prescribe the explicit
dependence of v, (X) on p(r). Hence, all the unique expectation value functionals
0,[p(r)] are unknown.
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4.1.3 The Second Hohenberg-Kohn Theorem

The statement and proof of the second Hohenberg-Kohn theorem are given below.

Theorem 2 The nondegenerate ground state density p(x) can be determined from
the ground state energy functional E[p] via the variational principle by variation
only of the density.

Proof The ground state energy E which is a functional of the density is

E = Elpl = (¥ [pllH IV [p)). (4.19)

Consider a trial v-representable ground state density p(r). From Theorem 1, this
density determines the corresponding external potential energy v(r), and via the
resulting Hamiltonian the rial wavefunction ¥ [4]. Equivalently, v[4] is determined
from the inverse map D~!. From the variational principle for the energy it follows
that
E = E[p] = (V[plIHIY¥[p]) > E for p(r) # p(r)

= E for p(r) = p(r). (4.20)

Thus, the ground state density p(r) can be obtained by minimization of the func-
tional E[p] for arbitrary variations §p (r) of v—representable densities. Introducing
a Lagrange multiplier x to ensure particle number conservation ([ p(r)dr = N),
the stationary point is achieved via the variational principle at the vanishing of the
first—order variation:

8 HE[,O] —u [/ p(r)dr — N“ —=0. 421

Equivalently, the ground state density may be obtained from the corresponding Euler—

Lagrange equation
SElp] _

spm

(4.22)

This proves Theorem 2. O

Separating out the external potential energy component, the ground state energy
functional E[p] may be written as

E[p] =/p(r)v(r)dr + Fuklel, (4.23)

where the functional . .
Fuxlpe]l = (¢ [elIT + Ul¥Le]). (4.24)
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Observe, that Fg|[p] is independent of the external potential energy operator, and
depends only on the kinetic T and electron—interaction U operators. The functional
Fux[p] is thus universal in that it is the same functional for all electronic systems.
Furthermore, it is a functional of v—representable densities. However, as the explicit
functional dependence of ¥ on p(r) is unknown, the functional Fyk[p] is unknown.

An important point of note is that the Lagrange multiplier p in the Euler—
Langrange equation (4.22) has the physical interpretation of being the chemical
potential. The proof is as follows. The chemical potential ©(N) is a number that
depends on the electron number N. It represents the change in energy E®Y) with
respect to N:

QEM)

W(N) = N

(4.25)

If o™ (r) is the solution of (4.22) for an N—electron system with ground state energy
E[p™)], then the energy difference

EWN+e _ p(N) _ E[p(N+€)] _ E[p(N)]
SE[p]

- / m|p<m(pw+e)(r) — pM(r))dr. (4.26)

Employing (4.22), the right hand side reduces to

= u(N) / (M9 ) — p™ (r))dr
= w(N)(N +¢€ — N) = u(N)e, 4.27)

so that !i_l}}](E(N“) — EM) /e = j1(N), which is the desired result.

Finally, the requirement that in the Euler-Lagrange equation (4.21) one employs
only v-representable densities is stringent. The conditions for a density to be v-
representable are derived [12, 14, 18, 50-55] for extensions of the universal func-
tional Fyk[p]. For v-representability in a lattice system see [56, 57]. The reader is
referred to the literature in traditional DFT for further details.

4.1.4 The Primacy of the Electron Number
in Hohenberg-Kohn Theory

In HK DFT, a key parameter defining the physical system and the consequent basic
variable, the nondegenerate ground state density p(r), is the electron number N. The
density p(r) integrates to the electron number N:

/ p(r)dr = N. (4.28)
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(In a later chapter, we will see that in the added presence of a uniform magnetostatic
field, another parameter—the canonical orbital angular momentum—is also essential
for both the description of the system as well as the properties that constitute the basic
variables.) Here we discuss [2] the primacy of the electron number N in HK theory.

As we have seen, in the proof of the HK Theorem 1, the kinetic T and electron-
interaction potential U energy operators are assumed known and kept fixed. It is for
arbitrary local or scalar external potential energy v(r) operators that the proof is
formulated. Thus, since the system is comprised of N electrons, the ground state
energy E is a functional of the electron number N and the external potential energy
operator v(r):

E = (y X)|Hy |y (X)) (4.29)
= E[N, v]. (4.30)

The statement of HK Theorem 1 that there is a one-to-one correspondence between
v-representable nondegenerate ground state densities p (r) and the external potential
energy operators v(r) to within an additive constant C:p(r) < v(r) + C, is only
valid for fixed N.

Employing this theorem, the energy E of (4.30) may then be seen to be a functional
of the electron number N and the ground state density p(r):

E = E[N, pl. 431)

This is an equivalent statement of the postulate that the energy E is a unigue functional
of the ground state density p(r). The explicit dependence of the energy E on the
electron number N is retained in (4.31) to emphasize its role.

Traditionally, in HK DFT, the electron number N in (4.31) is replaced by f p(r)dr.
By this replacement, the explicit dependence on N is thereby removed. (It is later
reintroduced as a constraint in the Euler-Lagrange equation (4.21) for the density.)
Thus, in stating that the energy E is a unique functional of the ground state density
p(r), it is the sole dependence on the ground state density that is emphasized. Thus,
the energy E is written as

E[ / p(r)dr, p(r)] _ Elp] = / PO u(E)dr + Fax (o], 432)

with Fyk[p] defined by (4.23).

The functional Fyg[p] is universal in the sense that it is independent of both
the electron number N and the external potential energy operator v(r). Note the
following with regard to the energy functional E[p] of (4.32):

(1) The functional E[p] via the first term on the right hand side of (4.32) depends
explicitly on the choice of v(r).

(i) For an N-electron system, the v-representable densities employed in the
functional E[p] must all integrate to the electron number N. This is the constraint
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employed in the application of the HK Theorem 2 according to which the variational
principle for the energy may be applied to the functional E[p] in terms of arbitrary
variations of the density p(r) + §p(r). On introducing the Lagrange multiplier u,
one obtains the Euler-Lagrange equation (4.21) for the density. The v-representable
densities employed in the variational procedure are such that [ §p(r)dr = 0. The
minimum of the energy E[p] is achieved for the true ground state density p(r). The
Lagrange multiplier 1, which was shown to be the chemical potential in the previous
section, is determined by the self-consistent solution of the Euler-Lagrange equation
(4.21) and the constraint to N-electron number of (4.28).

The above remarks make clear that in spite of the fact that the energy E is a unique
functional of the ground state density p(r), and that the functional Fyg[pe] is uni-
versal, the knowledge of both v(r) and N remains fundamental to the determination
of the energy E of a system. This is the case even if the universal functional Fyg[p]
were known. Hence, in essence, one has returned to the original representation of the
energy as a functional of N and v(r) of (4.30). The operator v(r) may be replaced by
the density p(r) via the HK Theorem 1 as in (4.31), but this density must integrate to
N. Thus, in HK DFT, the role of the electron number N is primary. One must know
N prior to solving the Euler-Lagrange equation for the density p(r), and from this
density the energy E from E[p].

4.2 Generalization of the Fundamental Theorem
of Hohenberg-Kohn

The fundamental theorem of Hohenberg and Kohn (Theorem 1), of the bijectivity,
between the nondegenerate ground state density p(r) and the Hamiltonian H (R) to
within a constant C i.e., p(r) < H (R) + C, is proved for the Hamiltonian H (R) of
(4.1)and (4.2), where R =ry, ..., ry.

In this Hamiltonian, the external potential energy operator vV = v isa
scalar. Furthermore, in the proof of the theorem it is assumed that the kinetic energy
T and electron-interaction potential energy 1% operators are known. (The symbol
U of (4.2) is replaced here by W.) Thus, in the proof, these operators are kept
fixed. The theorem is then proved by considering different external potential energy
operators V.

We generalize the theorem of bijectivity by a density preserving unitary transfor-
mation of the Hamiltonian H (R) to Hamiltonians i (R) which in addition to the
scalar potential energy v(r) operator also include the momentum p and a curl-free
vector potential energy A(r) operator.
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4.2.1 The Unitary Transformation

To generalize the fundamental theorem we perform a unitary transformation of the
Hamiltonian H (R). The unitary operator U we employ is

A

U =e*®, (4.33)
so that the transformed wave function ¥’ (X) is
¥ (X) = Uy (X), (4.34)
and the transformed density p’(r) is
p'(r) =<' X)pm Y (X) >= p(r). (4.35)

The unitary transformation thus preserves the density.
The transformed Hamiltonian H’(R) is

H®R) =UHR)U, (4.36)
so that the transformed time-independent Schrodinger equation is
H Ry (X) = E'y/'(X), (4.37)

with E/ = E of (4.3). In a unitary transformation, the eigen energies remain
unchanged. (That E' = E also follows from the fact that the eigen energies E
are unique functionals of the ground state density p(r). As the density p(r) is invari-
ant in this unitary transformation, the eigen energies of the Hamiltonian H(R) and
H'(R) are the same.)

We next obtain the transformed Hamiltonian H "(R). From (4.36)

. . 1 . SN
H'(R) = ¢ ¢® z (—Evf) P LV LW, (4.38)
Since ‘ ' '
[V2, el%] = V2el® — ¢@V?2, (4.39)
the Hamiltonian A'(R) is

A 1 , . N o
H'®R) = -2 D e PV P+ VI 4V + W (4.40)

i
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or
A A 1 . .

H'R) = HR) — 5 Z [eTie®y2 pla®]) (4.41)

Next we determine the commutator of (4.40). Employing the commutator rela-

tionship
[V2, f)] =V f@®) +2V f(r) -V, (4.42)

we have ‘ ' '
[V2, €] = VZe!* +2Ve® . V. (4.43)

With Vel = jel®Va, then

Vi = V. Ve
= —¢“(Va)? +ie"*Va. (4.44)
Thus, the commutator
[V2, 6] = =" (Va)® +ie'* VP +2ie“Va - V, (4.45)
and therefore . A
e [V?, ] = =(Va)’ +iVia +2iVa - V. (4.46)
Employing the vector identity
V.(Cop)=Vep -C+ (V- -0, (4.47)
we have
V.-(Va)=Va-V+ Va, (4.48)
so that
Via=V-Va—Va-V. (4.49)

Therefore, on substituting (4.48) into (4.45), we have
e *[V2, "] = —(Va)* +iV - Va+iVa - V. (4.50)

Hence, the transformed Hamiltonian H '(R) of (4.40) may be expressed as

H'[R) = AR) + %Z(ﬁi A+ A B +A?), 4.51)

1
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where p; = —i'V; is the momentum operator, and where the vector potential energy
operator is defined as Ai = V,;a(R) so that V x A; = 0. (It is implicit that for the
transformed system, the boundary conditions too are transformed.)

Note that by writing the transformed Hamiltonian H '(R) as in (4.51), we empha-
size the fact that the operators T and W are the same as those of the untransformed
Hamiltonian H (R) of (4.1)—(4.2). Thus, we preserve the Hohenberg-Kohn assump-
tion that the operators T and W are fixed.

It is evident that H ’(R) may also be written as

ﬁnn=%ZX@+&Y+?+W. (4.52)

1

Note that as is the case for the Hamiltonian H (R), there is no magnetic field in the
transformed Hamiltonian A’(R). The vector potential energy operator A, as defined
above is curl-free.

As we have performed a unitary transformation, the physical system described
by H '(R) and H (R) is the same. That H "(R) and H (R) represent the same physical
system may also be seen by performing the following gauge transformation of H(R)
to obtain H '(R). Rewriting H (R) as

AR =Y (bi+A) |

A;=0

+V+W, (4.53)

l

such that B =V x A; = 0, we make the transformation A,» — A; = A,- + V;ax(R)
with A; = Osothat B’ = V x A; = 0. One then reobtains the Hamiltonian H’(R) as
written in (4.51). It is well known in quantum mechanics [20] that the above gauge
transformation for a Hamiltonian with nonzero but finite magnetic field B leaves the
Schrodinger equation invariant provided the wave functions are related by the gauge
transformation «(R) as in (4.34).

4.2.2 New Insights as a Consequence of the Generalization

As aconsequence of the unitary transformation, there are several new insights that are
achieved with regard to the theorem of bijectivity between the ground state density
p(r) and the Hamiltonian H (R) of asystem: p(r) < H (R). We describe here these
insights together with other clarificatory remarks.

1. The Hamiltonian H’ (R) of (4.51), (4.52) obtained from the gauge function o (R)
is the most general form of the Hamiltonian for which the Hohenberg-Kohn theorem
is valid. This Hamiltonian includes not only a scalar potential energy operator v(r;)
but also the momentum operator p; = —i V; and a curl-free vector potential energy
operator A; = V;a(R). The bijectivity of the fundamental theorem in its general
form is represented pictorially in Fig.4.2. The figure shows that the bijectivity is
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Fig. 4.2 The generalization of the fundamental theorem of Hohenberg and Kohn demonstrating
the bijectivity between the nondegenerate ground state density o(r) and the Hamiltonians H (R)
and H;(R) representing that physical system. The figure is drawn for the most general form of
the time-independent theorem for which the gauge function is o;(R). The theorem as originally
enunciated is recovered when o (R) = «, a constant

p(r) < H(R) with H(R) of (4.1)~(4.2), or equivalently p(r) < H/(R) with
H J/ (R) of (4.51), (4.52), depending on the choice of the gauge function o ;(R). It is

emphasized that the Hamiltonian H (R) and Hamiltonians H J/ (R) all correspond to
the same physical system.

2. The Hohenberg-Kohn theorem as originally enunciated is recovered as a special
case when o (R) = «, a constant (see (4.51) and Fig.4.2). (As an aside we point out
that the more general statement of the bijectivity between the density p(r) and the
wave function ¥ (X), as proved and then employed in the proof of the fundamental
theorem, is that the latter is known to within a phase factor «.) Note, that for the
special case «(R) = «, there is no constant C present in (4.51). Of course, this
must be so because in this case H ]’ R) = A (R), and the energies E’ and E are
equivalent. Therefore the constant C of the Hohenberg-Kohn theorem is arbitrary
and extrinsically additive. This has also been the understanding since the advent of the
theorem. Put another way, the bijectivity p(r) < H (R) or p(r) < H (R) 4 C is for
the same physical system since the constant C simply adjusts the energy reference
level. (Note that as will be explained in the Corollary in Sect.4.8.1, it is possible
to construct an infinite number of degenerate Hamiltonians {H} that differ by an
intrinsic constant C, represent different physical systems, and which all possess the
same density p(r). In this case, the density p(r) cannot distinguish between the
different physical systems, and consequently the theorem of bijectivity is no longer
valid.)
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3. It becomes evident from the above unitary or gauge transformation that in
the general case the wave function ¥ (X) must be a functional of both the density
p(r) as well as the gauge function «(R) i.e., ¥ (X) = ¥ [p(r); «(R)]. If the wave
function 1/ (X) was solely a functional of the density p(r), then that wave function
as a functional of the density would be gauge invariant because the density is gauge
invariant. However, it is well known in quantum mechanics [20] that the Hamiltonian
H and wave function v (X) are gauge variant. It is the functional dependence of the
wave function functional on the gauge function «(R) that ensures it is gauge variant.

4. Because the bijectivity is between the density p(r) and the Hamiltonian rep-
resentation of the physical system HR), HR) + C, or H j/ (R) (see Fig.4.2), the
choice of gauge function is arbitrary. Thus the choice o (R) = 0is equally valid. This
provides a deeper understanding of the fundamental theorem of Hohenberg-Kohn.
In their original paper [1] they state: “Thus, v(r) is (to within a constant) a unique
functional of p(r); since, in turn, v(r) fixes H we see that the full many-particle
ground state is a unique functional of p(r).” (Our emphases). The statement implies
that the many-particle ground state wave function written as a functional is gauge
invariant. However, we now understand that their statement is consistent with the
fact that the choice of gauge function a(R) = 0 is valid.

5. As a point of information we note that the two Hohenberg-Kohn theorems can
be derived employing the original reductio ad absurdum argument for a general form
of the Hamiltonian H = Hy + V, where V is a local potential energy operator, and
H, any Hermitian operator defined on the Hilbert space of quadratically integrable
functions. The only requirement that Hy must have is that it be bounded from below
and have normalizable eigen functions. The Hamiltonian H, could contain a mag-
netic field or a vector potential with vanishing or non-vanishing curl. This form of the
generalization of the theorem to be derived in Chap. 8 differs from the generalized
form derived via the unitary transformation in a fundamental way. For different Her-
mitian operators Hy, the Hamiltonian H corresponds to different physical systems,
and therefore to different ground state densities. In the generalization derived via the
unitary transformation, the physical system is unchanged and therefore the density
is preserved.

6. As noted previously, the Hohenberg-Kohn theorems can be proved for different
Hamiltonians H as for example when different potential energy operators W such as
the Coulomb or Yukawa interactions are employed. Thus, one can state that the wave
function v (X) is a functional of the operator W. The physical systems corresponding
to different W are different, and hence the density for these different Hamiltonians
will be different. However, it is important to note that in proving the Hohenberg-Kohn
theorems, the operator W is assumed known and kept fixed throughout the proof.
Hence the statement that the wave function ¥ (X) is a functional of both the ground
state density p(r) and the gauge function o« (R) is valid for each Hamiltonian H with
a fixed electron-interaction operator w.

In conclusion it is reiterated that in the most general case when the gauge function
is @ (R), the functional dependence of the wave function 1/ (X) on the gauge func-
tion is important because the corresponding Hamiltonian H "(R) of (4.51) explicitly
involves the gauge function via the momentum p; and curl-free vector potential
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energy A, operators. This functional dependence hence also enhances the signifi-
cance of the phase factor in density functional theory in a manner similar to that of
quantum mechanics. The understanding that the wave function ¥ (X) is a functional
of both the density p(r) and the gauge function « (R) is fundamental.

4.3 Inverse Maps

In the proof of the first Hohenberg-Kohn theorem, the paths of the maps C and D (see
Fig.4.1) are well defined. For map C, the Schrédinger equation is solved for each
external potential energy operator V to determine the corresponding nondegenerate
ground state wave function . For map D, the density p(r) is then obtained from v
via its definition as the expectation of the density operator. The question we address
next is what are the specific paths for the inverse maps C ~!' and D~'? In other words,
what is the path from the wave function ¥ to the external potential v(r), and from
the density p(r) to the wave function i ?

One approach to the path from the wave function ¥ to the external potential v(r)
is to obtain the latter by inversion of the Schrdinger equation: V=[T+0U YWl/y
to within a constant.

There is, however, another path from v to v(r) that is physically insightful. This
path follows from the ‘Quantal Newtonian’ first law of (2.134) and (2.135). Thus,
(see 2.136), the external potential v(r) is the work done to move an electron from
some reference point at infinity to its position at r in the force of the conservative
internal field ™[ ](r) experienced by the electrons:

v(r) = / Fry ) - de’ (4.54)

where '
FM[Y)(r) = Eee(r) — D(r) — Z(r), (4.55)

with the electron-interaction E..[v](r), differential density D[y ](r), and kinetic
Z[¢¥](r) fields being functionals of the wave function i via their respective quantal
sources which are expectations of Hermitian operators taken with respect to .
These fields, the corresponding ‘forces’, and the quantal sources defined previously
in Chap. 2 are noted here again for completeness. The electron-interaction field £ (r)
and ‘force’ eq.(r):

_ el _ / Paryr—r) . (4.56)
IO |r _ I./|3

with P(rr’) = (Wﬁ(rr/)W) the pair function being the quantal source; the differ-
ential density field D(r) and ‘force’ d(r), with the density p(r) the quantal source:
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d) __lyw2
o)’ d(r) = 4VV p(r), 4.57)

and the kinetic field Z(r) and ‘force’ z,(r):

D(r) =

z(r; [y])

0
Z(r) = o zy(r) = 2; Etaﬁ(r’ vD, (4.58)

with the kinetic-energy-density tensor

) (4.59)

r'=r'=r

t (r)—1 o + il x'r")
=4 argary " argary |V

and where y (rr’), the reduced single particle density matrix, is the quantal source.
Note that the work done (4.54) is path-independent. Hence, the path of the inverse
map C~!, whereby for each nondegenerate ground state wave function v there
corresponds a potential energy v(r), is now defined. For examples of the inverse
map C~', and applications of the expression (4.54), see Figs.2.16 and 2.17.

A consequence of the first HK theorem (see Sect.4.1.2), is that the nondegenerate
ground state wave function v is a functional of the density p(r), i.e. ¥ = {¥[p]. As
also noted there, the explicit dependence of i/ on p(r) is unknown. Hence, for the
inverse map D', there is no explicit formula whereby the ground state wave function
Y can be determined from the ground state density p (r), as is the case of (4.54) for the
inverse map C ~! between ¥ and v(r). There is, however, a related question that can
be answered. Consider a ground state wave function v and the corresponding density
p(r). As there exist an infinite number of antisymmetric functions v, that integrate
to this density, how then does one determine the true ground state wave function
from amongst these functions? The answer to this query leads to the Percus-Levy-
Lieb [15-19] constrained-search path from the density p(r) to the wave function
Y and to the Hamiltonian H. This path, to be described in the following section,
is predicated on the a priori knowledge that the density p(r) is a basic variable of
quantum mechanics. The attributes of this path are that it generalizes the first HK
theorem to N-representable densities and degenerate states.

4.4 The Percus-Levy-Lieb Constrained-Search Path

As we have seen, the first Hohenberg-Kohn (HK) theorem constitutes a path (see
(4.17)) from the nondegenerate ground state density p(r) of a system to its Hamil-
tonian H . There is a second independent path—the constrained-search path—from
p(r) to H due to Percus-Levy-Lieb [15-19] (PLL). Although in the literature, the
HK and PLL paths are considered at par with each other, the HK proof is more
fundamental, and this is the case in general when the electrons are subject to other
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external fields such as a magnetostatic field. The reason for this is that it is solely via
the proof of bijectivity between the external potentials and certain gauge-invariant
properties of the system that determines what constitutes the basic variables of quan-
tum mechanics. Consequently, the PLL proof, which requires the a priori knowledge
of what the basic variables are, is dependent on the conclusions of an HK-type proof
of bijectivity, and is therefore less fundamental. However, once the basic variable has
been identified—the nondegenerate ground state density p (r)—the PLL path shows
that it is valid for degenerate ground states and N-representable densities, hence
broadening the scope of the first HK theorem.

The PLL path from the ground state density p(r) to H begins with the answer to
the question raised at the end of the previous section, viz. of the infinite antisymmetric
functions v, that generate p(r), how does one then determine which of these is the
true ground state wave function 1. The answer is as follows. From the variational
principle for the energy we have that

(WolHIy,) = (WIHIY) = E, (4.60)
or equivalently
(WolT + U1, +/v<r)p(r)dr > <w|f+0|w>+/v(r>p(r>dr, (4.61)
which in turn is equivalent to
Wl T+ Tl = (WIT +Uy). (4.62)

Thus, of all the antisymmetric functions v, that lead to the ground state density o (r),
the true ground state wave function y is that which minimizes the expectation value
(T +U ). This then can be construed as the mechanism for the inverse map D~'.
This mechanism is referred to as the constrained search path from the density p(r)
to the wave function . The search is over all antisymmetric functions v, that are
constrained to integrate to the ground state density p(r).

A comparison of the right hand side of (4.62) with the universal functional F g[p]
of (4.24) shows them to be equivalent. Hence, the functional Fyx[p] may be given
the interpretation o

Falpl = int (,|T +01y,). (4.63)
P

where the notation inf means that one searches for the smallest (infimum) value

Yo—>p
of the expectation (T + U) taken with respect to all the antisymmetric functions v,
that lead to the ground state density o (r). (The set {v,,} is a subset of all functions
Y that could be employed in the expectation. The least value of the expectation for
the subset {1/,} is the infimum.) This infimum can be shown to be a minimum [18].
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Recall that the variational principle for the energy functional E[p] as enunci-
ated by the second HK theorem (see (4.21)), the densities to be varied were v-
representable. As also noted, the requirement of v-representability is stringent. The
constrained-search definition of Fyg[p] of (4.63), however, expands the domain of
applicability of the second HK theorem to N-representable densities. To see this,
one rewrites the variational principle for the energy for all N-particle functions v as
two nested infima. Thus, the ground state energy E which is

E:i{/lf WIT + U+ Viy) (4.64)
may be written as
E:inf|: inf <¢p|f+0+f/|1/fp>], (4.65)
p) | ¥p,—>p(r)

where the inner infinum is now restricted to all N-particle antisymmetric functions
¥, that yield a given o (r), and the outer infinum is a search over all p(r). Separating
out the external potential energy component, the energy is then

E= inf|: inf (y,|T + Ulp) +/v(r)p(r)dr] (4.66)

p) | Ypo—p

which on employing (4.63) is

E = inf [FHK[pl + / v(r)p(r)dr] (4.67)
p(r

= inf E[p], (4.68)
p(r)

with E[p] defined by (4.23). The variations in (4.68) are thus over all N-representable
densities.

The conditions for a density to be N-representable are those of nonnegativity,
normalization, and continuity:

o(r) > 0; /p(r)dr = N; /|Vp(r)%|2dr < 0. (4.69)

Thus far, when we have referred to a N-representable density, we have stated that
it is derived from an N-particle antisymmetric function. However, note that since
the density does not contain any information about the Pauli exclusion principle, the
same density could correspond to a fermion or boson system. Hence, the functions /,,
need not be restricted to being antisymmetric. They could equally well be symmetric
or lack a symmetry. Thus, the constrained-search arguments are valid for a far broader
class of functions.
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We next address the constrained-search path from the ground state density p(r)
to the Hamiltonian H. As explained previously, of all the antisymmetric functions
Y, that yield the density p(r), the true wave function 1 is the one that yields the

density p(r) and obtains the infinum of the expectation value of T+0U:

inf (Y,|T + Uy,). (4.70)
Wp%p

This expectation value is independent of the external potential v(r). Now according to
Levy [19], as ¢ cannot be an eigenfunction of more than one H witha multiplicative
potential, it follows that p(r) determlnes H uniquely within an addltlve constant.
More explicitly, as the operators T and U are known, the path from ¥ to H requires
knowledge of the external potential v(r). But with ¥y known, the potential v(r) may
be obtained by the inverse map C~' as described by (4.54) of Sect.4.3. Hence, the
constrained-search path is

p(r) > ¥ — v— H. (4.71)

Note that if more than one i satisfies (4.69), then these functions all give the same
ground state energy. Thus, when degeneracies exist, the constrained-search path of
(4.71) is still valid. Hence, the PLL path encompasses the case of degenerate ground
states.

Finally, as noted above, the PLL constrained-search proof for the determination
of the wave function ¥ (see 4.70) is independent of the external potential v(r). This
is a key attribute of the proof. But the proof requires the a priori knowledge that p (r)
is the basic variable. After all the constrained search is over all v, that yield o (r) and
not some other property. As a consequence, there is an implicit dependence of the
proof on the external potential. This follows from HK via the bijective relationship
between the external potential and the basic variable: knowledge of the ground state
density p(r) uniquely determines v(r) to within a constant. Thus, the PLL proof
is intrinsically connected to the specific physical system of interest as defined by
the external potential in spite of the fact that one is searching for the infinum of
the expectation value of the operators T + U. In this manner, the first HK theorem
provides a deeper perspective into the PLL constrained-search proof.

4.5 Kohn-Sham Density Functional Theory

Kohn—Sham density functional theory (KS-DFT) is based on the Hohenberg-Kohn
(HK) theorems, and constitutes an alternate description of the mapping from the
interacting system to one of noninteracting fermions with the same density p(r)—
the S system. As (HK) theory is a ground state theory, the mapping can only be from
a nondegenerate ground state of the interacting system to an S system also in its
ground state.
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The starting point of the theory is the assumption of existence of the S system.
This assumption is referred to as noninteracting v—representability. The assumption
and terminology mean that the interacting system v—representable densities are also
noninteracting v—representable. However, as was the case for the interacting system,
the weaker constraint of N—representability suffices.

The basic equations defining the S system are the same as those of Q-DFT of
Sect.3.4. It is the expressions for the total energy E and the electron—interaction
potential energy ve. (r), however, that differ in the two theories. The S system Hamil-
tonian is

Hy=T+V, =) hy(x), 4.72)
el 3VE =3 um. “.73)
hy(r) = —%vz + v, (1), (4.74)
V(1) = v(r) + Ve (T). 4.75)

The corresponding Schrodinger single particle equations are (see (3.126))
hi(0¢i(x) = i ();  i=1,....N, (4.76)

the wavefunction is the Slater determinant ®{¢, } of the orbitals ¢; (x), and the density
p(r) is obtained from the N lowest lying orbitals as

p(r) =" I¢i(ro). 4.77)

From the first Hohenberg—Kohn theorem, it follows that the density p(r) uniquely
determines the potential energy v (r) of the noninteracting fermions (map (CD)~!
for the S system) to within a constant, and hence its electron—interaction potential
energy Ve (r) component. The Hamiltonian H, is then fully defined, and therefore the
corresponding wavefunction ®{¢;} and orbitals ¢, (x) are functionals of the density:
¢i(x) = ¢;[p]. Thus, the kinetic energy of the noninteracting fermions is a unique
functional of the density:

1
Tlpl = 2 D {61 (xos [pD] = 5 V2Ii(rors [o]). (4.78)

1

The kinetic energy functional 7;[p] may also be provided a PLL constrained-
search type definition. Consider the map D! of the S system whereby the ground
state density p(r) leads to the Slater determinant ®{¢;}. Then of the infinite Slater
determinants &, that lead to p(r), how does one determine the Slater determinant
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® which is the solution of the S system differential equation (4.76)? The answer,
obtained by following the procedure of the previous section but for the Hamiltonian
H,, is .

Tipl= inf (@,[T|®,). (4.79)

where the notation inf ®,—p Means that one searches for the infimum value of the

expectation (f’) taken with respect to all Slater determinants that yield the density
p(r). The minimum is achieved for the true Slater determinant ®{¢, }. The existence
of this minimum has been proved [18]. As noted previously, Slater determinants can
be constructed to yield a particular density [45—47]. Hence, the constrained search
definition of T[p] is valid for N-representable densities.

The KS-DFT definition of the potential energy ve. (r) is obtained by application of
the variational principle in terms of the density (HK Theorem 2) to the corresponding
ground state energy functional expression E[p] for the S system. This expression
is obtained by adding and subtracting the kinetic energy functional T;[p] of the
noninteracting fermions from the general ground state energy functional expression
(4.23). Thus, the S system energy expression is

Elp] = Ty[p] + / p@v(r)dr + EL[p], (4.80)

where
EXS[p] = Fuklpl — Tilp], (4.81)

which then defines the KS-DFT electron—interaction energy functional E elis [p]. As
in the previous chapter the ground state energy E[p] may be expressed in terms of
the eigenvalues ¢; of the S system. Thus, with 7[p] obtained as in (3.138) we have

Elpl= Y~ [ ptrds + ESIpL (482)

For the application of the variational principle, the density p(r) is varied by a small
amount such that p(r) — p(r) 4 5p(r), and the stationary condition is

SE = E[p+dp]l — Elp]

[ SElp]
_/ so(r) O (4T

=0. (4.83)

Note that the densities being varied are assumed to be N-representable. Substituting
for E[p] from (4.80), one obtains

5T, 0] + / [0(F) + vee (1) 189 (X)dr = 0, (4.84)
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where the electron—interaction potential energy v (r) is the functional derivative of
EXS[pl:

SEXS SEL[p]
Vee(T) = 8,0 o (4.85)

For variations of the orbitals such that ¢;(x) — ¢;(x) + 8¢;(x) that lead to vari-
ations in the density o(r) + 8p(r), it is readily proved employing (4.76) and the
normalization condition of these orbitals that the first order variation

§T,[p] = — / vy (1)8p (r)dr. (4.86)

Substitution of (4.86) into (4.84) leads to

/[_Us (r) + v(r) + vee(r)18p (r)dr = 0. (4.87)

Now since the variations §p(r) are arbitrary within the realm of N-representable
densities, we recover (4.75) with the electron—interaction potential energy vee(r)
defined by the functional derivative (4.85). This is the KS—-DFT definition of the
local potential energy ve(r).

Thus, in KS-DFT, the S system differential (4.76) is solved self—consistently for
the orbitals ¢; (x) from which the ground state density p(r) and kinetic energy 7
are obtained. The ground state energy is then determined either from the energy
functional E[p] of (4.80) or (4.82). If the expectation value functionals O[p] of
other operators O were known, these properties too could then be determined.

In the KS—-DFT energy expression E[p] of (4.80), T;[p] is the kinetic energy of
noninteracting fermions whose density is the true ground state density p(r). Hence,
the KS electron—interaction energy functional Eelis[,o] and its functional derivative
Vee () are representative of electron correlations due to the Pauli principle, Coulomb
repulsion, and Correlation—Kinetic effects. Since the Hartree or Coulomb self energy
Ey[p] functional of the density is known:

// p(r)p(t'/) ar. (4.88)
l' — I‘

the functional EXS[p] is customarily partitioned as
Eellp] = Enlp] + EC[pl. (4.89)

which defines the KS ‘exchange—correlation’ energy functional. From (4.85), the
electron—interaction potential energy v, (r) within KS-DFT is then

Vee (1) = VH(T) + vy (T), (4.90)
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where the Hartree potential energy vy (r) is

o (r) = SEulp] =/ |f(_r2/|dr’, 4.91)

dp(r)

and the KS ‘exchange—correlation’ potential energy vy (r) is defined as

SEXS[p]

4.92
p(r) 92

Vye(r) =

Note that the functional E )Ifcs [p] and its functional derivative vy (r) are representative
of Pauli and Coulomb correlations as well as Correlation—Kinetic effects.

The functional EXS[p]is usually further partitioned intoits KS ‘exchange’ EXS[p]
and KS ‘correlation’ Efs[,o] energy functional components. Thus

EfS[pl = ES[p] + EX[p]. (4.93)
so that the KS ‘exchange—correlation’ potential energy vy (r) is
Uxe (1) = v (1) + e (1), (4.94)

where the KS ‘exchange’ potential energy vy (r) is defined as the functional derivative

SEXS[p]
v (r) = —=——, (4.95)
dp(r)
and the KS ‘correlation’ potential energy v.(r) as the functional derivative
(SEKS
ve(r) = C—[m (4.96)
ép(r)

The KS-DFT energy functionals Eelfes [p], E}fcs[,o], E)Ifs [p], Egs[,o], and their
functional derivatives vee(I), vxc(T), vx(T), vc(r), respectively, satisfy [58] the fol-
lowing integral virial theorems:

EXS[pl + / p@)r - Ve (r)dr = —T¢[p] <0, 4.97)
EX[p] + / p()r - Vo (rydr = —=T¢[p] <0, (4.98)

EXS[p] + / p(O)r - Vo (r)dr =0, (4.99)
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Efs[p] + / p(mr - Vu.(r)dr = —T.[p] <O0. (4.100)

Further, for the KS ‘exchange’ energy functional EXS[p], the Hartree—Fock theory
expression for the exchange energy (3.192) is used, but the orbitals ¢, (x) of the S
system are employed instead. This choice for EX5[p] is ad hoc. Thus,

EXS[p] // POLET) i (4.101)

r — 1’|

where px (rr’) is the ground state S system Fermi hole.

Although it is known that the functional EXS[p] and EXS[p] are representative
of Pauli and Coulomb correlations and Correlation—Kinetic effects, KS—DFT does
not describe how these correlations are incorporated in the functionals. In addition,
it could be erroneously construed that since the Hartree—Fock theory expression
is employed for E}fs[p] of (4.101), and the fact the functional and its functional
derivative v (r) satisfy the sum rule (4.99) (with 7, absent), that EX5[p] and vy(r)
are strictly representative of Pauli correlations. Furthermore, as a consequence, the
functional Efs [p] and its derivative v.(r) are therefore representative of Coulomb
correlations and Correlation—Kinetic effects. This, however, is not the case. In the
following chapter it will be shown that EXS[p] and vy(r) are representative not
only of correlations due to the Pauli exclusion principle, but also of lowest—order
Correlation—Kinetic effects. And that the energy functional EXS[p] and its functional
derivative v.(r) are therefore representative of Coulomb Correlations and higher—
order Correlation—Kinetic effects.

Finally, the functional T[p] satisfies the sum rule

27[p] = / p(O)F - Vo, (r)dr, 4.102)

where v (r) is the effective potential energy of the noninteracting fermions as defined
by (4.75).

In the literature, it is stated that the local effective potential v, (r) of KS-DFT is
unique. This statement, based on the second HK theorem as applied to noninteracting
fermions, is correct because in KS-DFT the mapping is from the interacting system
in a ground state to an S system (having the same density p(r)) which is also in
its ground state. However, as we have seen via Q-DFT in Chap. 3, there exist an
infinite number of local potentials v, (r) that can generate the ground state density
p(r) by mapping to S systems that are in any arbitrary excited state. The fact of the
multiplicity of the local potentials that generate the ground state density cannot be
gleaned from HK or KS-DFT because these are ground-state theories.
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4.6 Runge-Gross Time-Dependent Density
Functional Theory

This section presents a brief survey of the fundamental aspects of Runge-Gross [26]
(RG) time-dependent density functional theory (TD DFT) without proofs. For the
proof of the RG and other theorems within TD DFT, the reader is referred to [26—
28]. The description, however, highlights aspects of the RG theorem not stressed or
employed within RG theory.

The basis for TD DFT is the extension by Runge and Gross of Theorem 1 of
Hohenberg and Kohn to the time-dependent case. The theory is proved for external
fields F**'(rt) = —Vu(rt) for which the potential energy v(rt) is expandable in
a Taylor series about some initial time 7y which is assumed to be finite. Further,
the initial state is not necessarily the ground or any other eigenstate of the initial
potential energy v(rty) = v(r). These statements imply that TD DFT is valid for
sudden switching on of the external field. It is not valid for fields that are adiabatically
switched on in the standard adiabatic hypothesis manner via the switch e*’, where
o is a small positive constant, beginning at ty = —oo. This is because the switch
function has an essential singularity at fo = —o0, and cannot then be expanded in a
Taylor series. The problem can, however, be overcome by switching on the external
field at a large negative time such that « > 1/|#o|, which then allows the conditions
of the RG theorem to be satisfied.

The RG theorem proves that the density p(r?) and the current density j(rt) are
both basic variables of quantum mechanics. In other words, there is a one-to-one
relationship between the external potential and the basic variablesi.e. p (rt) < v(rt),
and j(rt) < v(rr). Thus knowledge of either p(rt) or j(rt) corresponding to an
initial state ¥ (zp) = v determines the external potentlal v(rt) to within an addltlve
purely time-dependent function C (). As the kinetic T and the electron-interaction U
operators are assumed known, the Hamiltonian H (1) is consequently known to within
atime-dependent function C(¢). The Hamiltonian, via the Schrodinger equation (2.1),
then determines the wave function v (¢) to within a time-dependent phase «(¢). In
equation form the RG path from either basic variable to the Hamiltonian is

[p(rt) or jirH)] — wv(rr) — H(). (4.103)

The RG theorem as presented in the literature focuses principally on the relationship
between the density and the external potential. The proof of the RG theorem is
analogous to that of the time-independent case. The theorem is usually stated as:
Two densities p(rt) and p'(rt) evolving from the same initial state ¥ (ty) = g
generated by two external potentials v(xt) and v'(rt) that are Taylor expandable
about ty are always different provided the potentials differ by more than a purely
time-dependent function C (t), i.e.

v(rt) # v/ (rt) + C(2). (4.104)
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It is first proved that the potentials v(rz) and v’(r?) lead to different current densities
j(rt) and j'(rt). This proves that j(rz) is a basic variable. Then employing this fact,
it is further proved that p(rt) # p’(rt). Thus, p(rt) is also a basic variable. The fact
that j(rr) is a basic variable is not further considered or employed in RG theory. (In
contrast, as explained in Sect. 3.3, within Q-DFT, both the basic variables p(r?) and
j(rt) can be employed.)

The consequence of the one—to—one relationship between the density p(rt) and
the potential energy v(rt), is that the wavefunction W[Wy](¢) is a functional of the
density and the initial state Wy, unique to within an arbitrary time-dependent phase
factor: _

W[Wol(2) = expl[—ia(t)]W[p; Wol(1). (4.105)

This means that with a(fyp) = 0 but otherwise arbitrary, the ngvvefunction l’Ivl(t)
will give the same density p(rt) aAlnd have the same initial state W (zy) = Wy. The
expectation value of any operator O (¢) is therefore a unique functional of the density:

(0(1)) = (W[p; Wol(1)| O (1) T[p; Wol(1)), (4.106)

with the phase factors canceling out as was the case for the density. In other words,
all the properties of a quantum—mechanical system are determined entirely by the
density p(rf). The explicit dependence of the wavefunction on the density, however,
is not described by the theorem. Hence, the unique functionals of the expectation
values are unknown. As a consequence of the RG theorem proof, the above remarks
are equally valid for the basic variable j(r?).

In time-independent density functional theory, as a consequence of the variational
principle of Theorem2 of Hohenberg and Kohn, the density p(r) is determined
via the Euler—Lagrange equation (4.22). The basic idea underlying time-dependent
theory then is to replace the energy functional E[p] of the density p(r) by an action
functional A[p; Wy] of the density p(rt) and the initial state W(#y). The stationary
point of this action functional with respect to variations in p (rt) is thereby determined
by solution of the Euler-Lagrange equation

3ALp; %ol _ (4.107)
Sp(rt)

with appropriate boundary conditions.
The basis for the construction of the action functional A[p; W] is the quantum—
mechanical action integral:
151 a
A[V] = /(\Il(t)|i5 — H®)|V(t))dt. (4.108)

fo
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At the stationary point of this action integral for which § A[y/] = 0, the wavefunc-
tion W(¢) with initial condition W (#y) satisfies the Schrodinger equation (2.1). The
variations W around W (¢) are arbitrary but must satisfy [38, 41] the requirement
SW(ty) = 6W(¢;) = 0 at the time interval end points, and be such that the real and
imaginary parts can be varied independently. Since the wavefunction is a functional
of the density, a reasonable (and the original [26]) choice for the action functional
Alp; Wl is

1

a N
Alp; Wol = /(‘I’[p; YolDli o — H()V[p; Wol(1))dr. (4.109)

fo

Unfortunately, this action functional does not satisfy the requirement §A[p, Y] = 0
and therefore cannot be used as the basis for time-dependent density functional
theory [28, 38]. (It has been concluded [38] that there is no action functional of
v-representable densities whose functional derivative satisfies the Euler-Lagrange
equation (4.107).) At present the only action functional free of paradoxes, and which
is stationary with respect to variations in the density, is the Keldysh action [39, 40].
This action is general in that it is not restricted to v-representable densities but is
valid for the broader class of time-contour densities.

The ideas underlying the Keldysh action are readily extended [40] to the S system
of noninteracting fermions with equivalent density p(rt) as defined by (3.1)—(3.4).
(As noted in the Introduction, this proof has been critiqued [4, 33-37].) A proof
[40] of the existence of such a model system for the time-dependent case, known
as the van Leeuwen theorem, based on the Quantal Newtonian Second Law [30-
32] of (2.75) has been provided for Taylor expandable external potentials v(rz).
The boundary conditions required for the equivalence of the density p(r?) of the
interacting and noninteracting systems in this proof are the following: The initial
state ®g(#p) of the model system must be such that it reproduces the true density
and its temporal derivative at the initial time 7. From the Keldysh action functional
A;[p] of the S system, one can then formally define an electron—interaction action
functional Ac.[p] that is representative of correlations due to the Pauli principle,
Coulomb repulsion, Correlation—Kinetic, and Correlation—Current—Density effects.
(Recall from Chap. 3 that the interacting and noninteracting system current densi-
ties j(rr) and j,(r?), respectively, are in general not equivalent. They are equivalent
only when both the divergence and curl of the Correlation—Current—Density field
J .(rt) of (3.38) vanishes. That V - J .(rt) = 0 follows directly from the continuity
equation (2.90) since the densities p (rt) of the two systems are the same. However,
V x J.(rt) # 0 in general. Note that within Q-DFT, it is possible to explicitly
account for the difference between the current densities j(rt) and j,(rt), and to
also construct a model system with equivalent p(r?) and j(r?).) The corresponding
electron—interaction potential energy ve.(rz) of the model system is then defined
within (RG)KS-DFT as the functional derivative ve.(rt) = 8Acc[p]/dp(rt). The
dependence of the action A..[p] and of its derivative ve. (rt) on the various electron
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correlations is not defined. The physical interpretation of ve.(rt) in terms of these
correlations, however, is given via the Q—DFT definitions as described in Sect. 3.1.5.
In KS-DFT, the action functional A..[p] is subdivided into a Hartree Ayx[p] and
aKS A,.[p] component. The corresponding potential energies vy (rz) and vy (rt) are
the functional derivatives § Ag[p]/8p (rt) and § Ax.[p]/8p(rt), respectively. Finally,
Axc[p]is further partitioned into a KS ‘exchange’ Ax[p] and a KS ‘correlation” A.[p]
action component, with the potential energies vy (rt) and v (rt) being their respective
functional derivatives. As in the time-independent case (see Chap. 5), the correlations
contributing to these action functionals and their functional derivatives can be rig-
orously derived [32] via Q-DFT. Thus, for example, the KS ‘exchange’ potential
energy vy (rt) is representative not only of Pauli correlations, but also of lowest—
order Correlation—Kinetic and Correlation—Current—Density contributions. And the
KS ‘correlation’ potential energy v.(rt) is representative of Coulomb correlations
and higher—order Correlation—Kinetic and Correlation—Current—Density effects. We
refer the reader to [32] for details. However, it would be best to read the following
chapter on the physical meaning in terms of electron correlations of KS ‘exchange’
and ‘correlation’ in the time-independent case first.

4.7 Generalization of the Runge-Gross Theorem

In this section we generalize [4] the fundamental theorem of time-dependent (TD)
theory due to Runge and Gross [26] (RG) by a density preserving unitary or gauge
transformation along the lines of Sect.4.2. New insights as a consequence of the
transformation are discussed. This generalization demonstrates the hierarchy that
exists in the fundamental theorems of density functional theory, both time-dependent
and time-independent.

To make this section self-standing, we redefine the physical system under consid-
eration. The system is comprised of N electrons in a time-dependent external field
F*(rt) = —Vu(rt), with v(rt) a scalar external potential energy operator. The
Schrodinger equation for this system is (the same as (2.1) to (2.5))

N LW (Xr)

HRHVXrt) =i FYat (4.110)
where W (X7) is the wave function, X = X, ...,Xy,X =ro, T zlnd o are the spatial
and spin cogrdinates, and R =ry,...,ry. The HaAmiltonian H (Rt) is the sum of

the kinetic 7', electron-interaction potential energy W, and external potential energy
V operators:
HR)=T+W+V, 4.111)
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with T = 3. (=3V2): W = 1 3 1/Ir; — x;1: V = X, v(x;t). The TD density
p(rt) is the expectation

p(rr) = (W (X0)|p(0)| ¥ (X1)), (4.112)

where o(r) = >, §(r — r;) is the density operator.

The RG theorem is proved for the Hamiltonian H (R?) of (4.111). It is proved
on the assumption that the scalar operator v(rt) is Taylor expandable about some
initial time #;. Furthermore, in the proof, the operators T and W, and the initial
many-particle state W (¢y), are assumed known and kept fixed.

The TD unitary operator U we employ is

U = e@®0, (4.113)
so that the transformed wave function W' (Xt) is

U'(Xt) = UTw(Xp), (4.114)

and the transformed density p’(rt) =< W' (X#)|o(r)|W' (Xt) >= p(rr). The unitary
transformation thus preserves the density. The transformed Schrédinger equation is

H ROV (X1) = i%, (4.115)

where the Hamiltonian H '(Rt) of the transformed system is
A'Re) = 0TARNU + do‘gt) (4.116)
= AR — %Z {UT [V,?, U]} + da;?t). (4.117)

i

(Note that for the transformed system, the initial state and other boundary conditions
too are transformed.) The solution of the commutator of (4.117) is the same as given
in Sect.4.2. Thus, the transformed Hamiltonian H'(R¢) is

N A da(Rt) 1 . 2 I <5
H'(Rt) = H(Rt - i A +A; P+ AY), 4.118
(Re) = HR) + — +212<p +A; i +A)) (4.118)
where p; = —iV; is the momentum operator, and where the vector potential energy

operator is defined as Ai = V;x(Rt) so that V x A[ =0.
The transformed Hamiltonian may also be written as

. 1 . s N
HR) =2 > (0 +A)+ W+ 7, (4.119)
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where
_p 4 4R (4.120)
_ = .

Note that as is the case for the Hamiltonian H (Rt) of (4.111), there is no magnetic
field in the transformed Hamiltonian H'(R¢). The vector potential energy operator
Ai as defined above is curl-free.

That H (R¢) and H'(R?) represent the same physical system may also be seen by
performing the following gauge transformation of H (R?) to obtain H®R?t): V —
V' =V+ %R and A; — A] = A; + V;a(Rr) with A; = 0so that A] = V;a(R¢)
and the magnetlc field B’ = V x A/ = 0. In quantum mechanics it is well known
[20] that the more general gauge transformation above with nonzero magnetic field B
leaves the Schrodinger equation invariant provided the wave functions of the original
and transformed Hamiltonians are related by the gauge transformation «(R?#) of
(4.114).

The Hamiltonian H '(Rt) of (4.118), (4.119) is the most general form of the
Hamiltonian for which the RG theorem is valid. It includes the scalar potential energy
operator v(r;f), the TD function C(R¢) = da(Rt)/dt, the momentum operator p;,
and the TD curl-free vector potential energy operator A; = V,a(Rp). Pictorially
the bijectivity of the RG Theorem in its general form is depicted in Fig.4.3. The

P(X1) A(RY)
P(X) = e R pXp) 1,/(Rt) = A(RY) + doy (ReY/dt \
/
/ Sam(?
p(rt TP A+ A Pt A% Z;ﬂsy;n;al
\x P(Xt) = e 4R gxy) H,'(Rt) = H(Rt) + dop(Rt)/dt
7 /
\ Y (P An+ Ay Pt AY)

Fig. 4.3 The generalization of the fundamental theorem of density functional theory demonstrating
the bijectivity between the density of a physical system and the infinite set of Hamiltonians rep-
resenting that physical system. The figure is drawn for (a) the most general time-dependent form
of the gauge function «(R¢?). The figure reduces to the RG theorem for (b) when «(R?) = «(t).
The figure further reduces to the most general form of the time-independent theorem when (c)
a(R?r) = «(R). Finally, the Hohenberg-Kohn theorem is recovered for (d) when a(R?) = «, a
constant
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bijectivity is p(rt) < H(Rt) with H(Rr) of (4.111), or equivalently p(rr) <
ﬁj/ (Rt) with I-AIJ/ (R?) of (4.118), (4.119), depending on the gauge function o ; (R?).
The Hamiltonian A (Rt) and the Hamiltonian H '(Rt) all correspond to the same
physical system.

It is evident that the RG theorem in its original form is recovered from the
above generalization for the special case when the gauge function a(R?) = «/(t)
(see Fig.4.3). The functions C(¢) of RG are linked to_ the gauge function: C(t) =
da(t)/dt. Furthermore, the Hamlltonlans H' (Rt) = H (R1) + C(1) all correspond
to the same physical system because H'(R¢) is obtained from H (Rr) by a unitary or
gauge transformation.

Itis also clear from the unitary or gauge transformation that in the general case the
wave function W (X7) must be a functional of both the density p(r?) and the gauge
function «(R?) i.e., ¥ (Xt) = V[p(rr); a(R¢)]. This functional dependence of the
wave function functional on the gauge function « (R¢) ensures that it is gauge variant.

Since the bijectivity is between the density p (rz) of a system and the Hamiltonians
representing the same physical system (see Fig.4.3), the choice of gauge function
is arbitrary. Thus, the choice a(R#) = 0 is equally valid. Thus, in the RG case, the
choice of @(#) = 0 leads to a wave function functional that can be a functional only
of the density p(r?).

In the RG case, Fig.4.3 shows that the bijectivity is between the density p(r?)
and the infinite number of Hamiltonians HR?) + C(1) representative of a physical
system. Thus, the density uniquely determines the system Hamiltonian to within a
function C(¢). It is, however, possible to construct [3] as proved in the following
section, an infinite set of degenerate Hamiltonians {I:I } that differ by a function C(¢),
represent different physical systems, but yet possess the same density p(r?). In such
a case, the density p(r?) cannot distinguish between the different physical systems.
For such systems, the RG theorem is not valid.

Finally, as a consequence of the unitary or gauge transformation, the follow-
ing hierarchy exists in the fundamental theorem of density functional theory (see
Fig.4.3). When the gauge function is o(R?), one obtains the most general form of
the time-dependent theorem. For the gauge function «(¢), one recovers the original
RG theorem. When the gauge function is @ (R), one obtains the most general form
of the time-independent theorem. Finally, when the gauge function is the constant «,
one recovers the original Hohenberg-Kohn theorem. (Note that the function C(¢) of
the RG theorem does not reduce to the constant C of the Hohenberg-Kohn theorem.)
This hierarchy makes the role of the phase factor as significant in density functional
theory as it is in quantum mechanics.

4.8 Corollary to the Hohenberg—Kohn
and Runge-Gross Theorems

In this section we provide further insight into Theorem 1 of Hohenberg and Kohn
(HK), and of its extension to the time-dependent case due to Runge and Gross, by
describing a corollary to each theorem [3].
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According to Theorem I of Hohenberg-Kohn, for a system of N electrons in
an external field F**'(r) = —Vu(r), the ground state electronic density p(r) for
a nondegerate state determines the external potential energy v(r) uniquely to within
an unknown trivial additive constant C. Since the kinetic energy T and electronic—
interaction potential energy U operators are known, the Hamiltonian His explicitly
known.

For the extension to the time-dependent case, Runge and Gross (RG) [26] prove
that for a system of N electrons in a time-dependent external field F*'(rt) =
—Vu(rt), such that the potential energy v(rt) is Taylor—expandable about some ini-
tial time #y, the density p (rt) evolving from some fixed initial state W(#y), determines
the external potential energy uniquely to within an additive purely time-dependent
Sfunction C(t). Again, as the kinetic and electron—interaction potential energy opera-
tors are already defined, the Hamiltonian H (1) is known.

In the proofs of these theorems one considers Hamiltonians H / H (1) that differ
by an additive constant C/function C(?) to be equivalent. In other words, the physical
system under consideration remains the same on addition of this constant/function
which is arbitrary. Thus, measurements of properties of the system, other than for
example the total energy E/E(t), remain invariant. The theorem then proves that each
density p(r)/p(rt) is associated with one and only one Hamiltonian H / H (1) or
physical system: the density p (r)/p (rt) determines that unique Hamiltonian H / H (1)
to within an additive constant C/functionC(?).

HK/RG, however, did not consider the case of a set of Hamiltonians {I—AI Y {I-AI )}
that represent different physical systems which differ by an intrinsic constant
C/functionC(t), but which yet have the same density p(r)/p(rt). By intrinsic con-
stant C/functionC(t) we mean one that is inherent to the system and not extrinsically
additive. Thus, this constant C/functionC{(z) helps distinguish between the differ-
ent Hamiltonians in the set {H Y {H (t)}, and is consequently not arbitrary. That the
physical systems are different could, of course, be confirmed by experiment. Further,
the density p(r)/p(rt) would then not be able to distinguish between the different
Hamiltonians { H 1% {I:I (1)} or physical systems, as it is the same for all of them.

In this chapter we construct a set of model systems with different Hamiltonians
{ﬁ } {I:I (z)} that differ by a constant C/functionC(z) but which all possess the same
density p(r)/p(rt). This is the Hooke’s species: atom, molecule, all positive mole-
cular ions with number of nuclei N greater than two. The constants C/functionC(t)
contain information about the system, and are essential to distinguishing between
the different elements of the species.

The corollary to the HK/RG theorem is as follows: Degenerate Hamiltonians
{ﬁ } {I:I (z)} that differ by a constant C/functionC(¢) but which represent different
physical systems all possessing the same density p(r)/p(rt) cannot be distinguished
on the basis of the HK/RG theorem. That is, for such systems, the density p(r)/p(rt)
cannot determine each external potential energy v(r)/v(rt), and hence each Hamil-
tonian of the set {I:I } {I:I (t)}, uniquely.

In the following sections, we describe the Hooke’s species for the time-independent
and time-dependent cases to prove the above corollary.
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4.8.1 Corrollary to the Hohenberg-Kohn Theorem

Coulomb Species
Number of Electrons N = 2

Number of Nuclei N arbitrary
= Coulomb Interaction

N=1 N=2
e e~ e e
Z=2 Z=1 Z=1
Helium Atom Hydrogen Molecule
(a) (b)
N=E3 i :
e e”
Z=1 Z=1 Zw e e

Positive Molecular lons
(c), (d), weeeeneen

Fig. 4.4 The Coulomb species comprises of two electrons and an arbitrary number N of nuclei,
the interaction between the electrons and between the electrons and nuclei being Coulombic: (a)
Helium atom; (b) Hydrogen molecule; (¢), (d), . . ., Positive molecular ions. Here N is the number
of nuclei, Z the nuclear charge, e~ the electronic charge. Note that each element of the species
corresponds to a different physical system
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Prior to describing the Hooke’s species, let us consider the following Coulomb species
of two—electron systems and N nuclei as shown in Fig. 4.4: the Helium atom(N = 1;
atomic number Z = 2), the Hydrogen molecule (N' = 2; atomic number of each
nuclei Z = 1), and the positive molecular ions (N > 2; atomic number of each
nuclei Z = 1).

In atomic units, the Hamiltonian of the Coulomb species is

Hv=T+U+Vy, 4.121)

where T is the kinetic energy operator:

2
T=--> V. (4.122)
i=1

N =

U the electron—interaction potential energy operator:

A 1
U= —, (4.123)
[r; — 12|
and \7/\/ the external potential energy operator:
2
Vy =D on(m), (4.124)
i=1
with
N
op(r) = ch(r—Rj). (4.125)
j=1
where 1
fcr—R)=————. (4.126)
/ Ir —R;|
Here r; and r, are positions of the electrons, R;(j =1, ... , ) the positions of

the nuclei, and fc(r — R;) the Coulomb external potential energy function. Each
element of the Coulomb species represents a different physical system. (The species
could be further generalized by requiring each nuclei to have a different charge.)

Now suppose the ground state density p (r) of the Hydrogen molecule were known.
Then, according to the HK theorem, this density uniquely determines the external
potential energy operator to within an additive constant C:

‘A/ 1 1 1 1
N=2 = — - - - .
7 It —Ry| In—-Ry |n—R| |r,—Ry

(4.127)
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Thus, the Hamiltonian of the Hydrogen molecule is exactly known from the ground
state density. Note that in addition to the functional form of the external potential
energy, the density also explicitly defines the positions R; and R; of the nuclei.

The fact that the ground state density determines the external potential energy
operator, and hence the Hamiltonian may be understood as follows. Integration of
the density leads to the number N of the electrons: [ p(r)dr = N. The cusps in
the electron density which satisfies the electron—nucleus coalescence condition [59]
(see Sect.2.10.2), determine in turn the position of the A/ nuclei and their charge
Z. Thus, the external potential energy operator Vy = > unr(r;), and therefore the
Hamiltonian H are known.

The Hooke’s species (see Fig.4.5) comprise of two electrons coupled harmoni-
cally to a variable number N\ of nuclei. The electrons are coupled to each nuclei with
a different spring constants k;, j = 1, ..., N. The species comprise of the Hooke’s
atom of Sect.2.11 (N = 1, atomic number Z = 2, spring constant k), the Hooke’s
molecule (M = 2; atomic number of each nuclei Z = 1, spring constants k; and
k»), and the Hooke’s positive molecular ions (A > 2, atomic number of each nuclei
Z = 1, spring constants ki, k2, k3, . . ., kar). The Hamiltonian H '\ of this species is
the same as that of the Coulomb species of (4.121) except that the external potential
energy function is fx (r — R;), where

1
fu(—R;) = Ekj(r—Rj)z. (4.128)

Just as for the Coulomb species, each element of the Hooke’s species represents a
different physical system. Thus, for example, the Hamiltonian for Hooke’s atom is

A I, 1_, 1 1 2 2
H, = _EV‘ - Evz + m + Ek [(rl — R+ (r2 —Ry) ], (4.129)
L=

and that of Hooke’s molecule is

Ap=— vty
T2t 272 =y

+ ky [(r; = Ry)* + (r; — Ry)*]} (4.130)

1
+ 3 {ki [(r1 = R)* + (12 — Ry)?]

where k # k; # k», and so on for the various Hooke’s positive molecular ions with
N > 2.
For the Hooke’s species, however, the external potential energy operator V which
is
1 N
y 2 2
VNZEZI‘UQ(I-l —R;)? +kj(rs — R, (4.131)
J:

may be rewritten as
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Hooke’s Species
Number of Electrons N = 2
Number of Nuclei N arbitrary

Coulomb Interaction
Harmonic Interaction

M

= N=2

e e” e- e-
k k

Z=2 Z=1 Z=1

Hooke’s Atom Hooke’s Molecule
(a) (b)
N=3,........
e” e

Hooke’s Positive Molecular lons
(YN C) F—

Fig. 4.5 The Hooke’s species comprises of two electrons and an arbitrary number N of nuclei,
the interaction between the electrons is Coulombic, and that between the electrons and nuclei is
harmonic with spring constant k, k1, ..., kar: (@) Hooke’s atom; (b) Hooke’s molecule; (¢), (d), .
.. Hooke’s positive molecular ions. Here A is the number of nuclei, Z the nuclear charge, e~ the
electronic charge. Note that each element of the species corresponds to a different physical system

N
~ 1
Vv = | 5 > ki | [ —a)” + (r; — @)1+ C({k). (RLN),  (4.132)
Jj=1
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where the translation vector a is

N N
a= > kR; [ >k (4.133)
j=1 j=1
and the constant C is
C=b—d (4.134)
with
N
b=> kR (4.135)
j=1
N PN
d= D kR; > k), (4.136)
j=1 j=1
or

1 ¥ N
C= 5> kikj (Ri— R./)Z/ij- 4.137)
=1

i

From (4.132) it is evident that the Hamiltonians H '» of the Hooke’s species are those
of a Hooke’s atom (Zj\; kj = k), (to within a constant C({k}, {R}, NV)), whose

center of mass is at a. The constant C which depends upon the spring constants
{k}, the positions of the nuclei {R}, and the number N of the nuclei, differs from
a trivial additive constant in that it is an intrinsic part of each Hamiltonian béi '\» and
distinguishes between the different elements of the species. It does so because the
constant C ({k}, {R}, \) contains physical information about the system such as the
positions {R} of the nuclei.

Now according to the HK theorem, the ground state density determines the exter-
nal potential energy, and hence the Hamiltonian, to within a constant. Since the den-
sity of each element of the Hooke’s species is that of the Hooke’s atom, it can only
determine the Hamiltonian of a Hooke’s atom and not the constant C ({k}, {R}, V).
Therefore, it cannot determine the Hamiltonian H v for NV > 1. This is reflected
by the fact that the density of the elements of the Hooke’s species does not satisfy
the electron—nucleus coalescence cusp condition. (It is emphasized that although the
‘degenerate Hamiltonians’ of the Hooke’s species have a ground state wavefunction
and density that corresponds to that of a Hooke’s atom, each element of the species
represents a different physical system. Thus, for example, a neutron diffraction exper-
iment on the Hooke’s molecule and Hooke’s positive molecular ions would all give
different results).

It is also possible to construct a Hooke’s species such that the density of each
element is the same. This is most readily seen for the case when the center of mass
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is moved to the origin of the coordinate system, i.e. for a = 0. This requires, from

(4.133), the product of the spring constants and the coordinates of the nuclei satisfy
the condition

N
Zk,Rj =0, (4.138)
j=1
so that the external potential energy operator is then
1 Y Al
up(r) = 2§k1r + zgk.,k, (4.139)

where r is the distance to the origin. If the sum Zfi | kj is then adjusted to equal
a particular value of the spring constant k of Hooke’s atom:

N
> kj=k, (4.140)
j=1

then the Hamiltonian Hy of any element of the species may be rewritten as
Hy (k). (R}, N) = H, (k) + C({k}, (R}, \), (4.141)

where H, (k) is the Hooke’s atom Hamiltonian and the constant C ({k}, {R}, NV) is
N
C({k}. (R} N) =D kR (4.142)
j=1

The solution of the Schrodinger equation and the corresponding density for each
element of the species are therefore the same.

As an example, again consider the case of Hooke’s molecule and atom. For
Hooke’s atom N = 1, R; = 0 and let us assume k = %. Thus, the external potential
energy operator is

(r)—1k2—1 2 (4.143)
Vg _2r_8r. .

For this choice of k, the singlet ground state solution of the time-independent
Schrodinger equation (Haryy = Ear)) is analytical and given by (2.177):

Y(riry) = De e (1 +1)2), (4.144)

where r = r; — 12,y = (r] +13)/2, and D = 1/[2n%*(5/ + 8)'/?]. The
corresponding ground state density p(r) is (see Appendix C)
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T2

r

D2 P{Tr 13 4 8/ 2m)re

p(r) =
+ 41+ rDerf(r/V2)},  (4.145)

where

erf(x) = %/ezzdz. (4.146)

0

For the Hooke’s molecule, N’ = 2, R; = —R;, and we choose k; = k, = %, so that
the external potential energy operator is

Loy g RZ)—12~|—1R2 (4.147)
on(r) = grit g R+ ) =g gk '
where |R;| = R. Thus, the Hamiltonian for Hooke’s molecule differs from that of
Hooke’s atom by only the constant éRz, thereby leading to the same ground state
wave function and density. However, the ground state energy of the two elements of
the species differ by éRZ.

The above example demonstrating the equivalence of the density of the Hooke’s
atom and molecule is for a specific value of the spring constant k£ for which the
wavefunction happens to be analytical. However, this conclusion is valid for arbitrary
value of k for which solutions of the Schrodinger equation exist but are not necessarily
analytical. For example, if we assume that for each element of the species (N > 2),
all the spring constants k;, j = 1,2, ..., N are the same and designated by k', then
for the three values of k for the Hooke’s atom corresponding to k = }‘, % 1, the values
of k' for which the Hooke’s molecule and molecular ion (N = 3) wavefunctions are

the same are k' = L, L: k' =1 L.k’ =1 1 respectively.
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Thus, for the case where the elements of the Hooke’s species are all made to

have the same ground state density p(r), the density cannot, on the basis of the HK
theorem, distinguish between the different physical elements of the species.

The corollary to the HK theorem, therefore, is as follows:

Corollary 1 Degenerate time-independent Hamiltonians {I:I } that represent differ-
ent physical systems, but which differ by a constant C, and yet possess the same
density p(r), cannot be distinguished on the basis of the Hohenberg—Kohn theorem.

4.8.2 Corollary to the Runge-Gross Theorem

We next extend the above conclusions to the Runge-Gross theorem. Consider again
the Hooke’s species, but in this case let us assume that the positions of the nuclei are
time-dependent, i.e. R; = R;(¢). This could represent, for example, the zero point
motion of the nuclei. For simplicity we consider the spring constant strength to be
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the same (k") for interaction with all the nuclei. The external potential energy v (rt)
for an arbitrary member of the species which now is

N
1 /

o (rt) = 5k Zl:(r —R; (1)), (4.148)

i

may then be rewritten as
1 N 1Y
_ 7.2 ’ ) . ~ 2

on(rt) = SNKP? — k ;R,(r) r+ ok ;R.I-(t), (4.149)

where at some initial time #,, we have R;(t)) = R} o. (Note that a spatially uniform
time-dependent field F(¢) interacting only with the electrons could be further incor-
porated by adding a term F(¢) - r to the external potential energy expression.) The
Hamiltonian of an element of the species governed by the number of nuclei N is
then

N
Hy(rirat) = Hyo — K D) [R;(1) = Rjol - (r +12) + C(K, N 1), (4.150)
j=1

where H .0 1s the time-independent Hooke’s species Hamiltonian (4.141):

Hy o= Hy(K), (4.151)
and the time-dependent function
N
CU . N.t)y =k D [R5(t) — R3 . (4.152)
j=1

Note that the function C(k’, N, t) contains physical information about the system:
in this case, about the motion of the nuclei about their equilibrium positions. It also
differentiates between the different elements of the species.

The solution of the time-dependent Schrodinger equation H NOW() = 0V
(t)/0t) employing the Harmonic Potential Theorem of Sect.2.9 is

W (r ryt) = exp{—i¢(t)}exp |:—i [EN,ot —28(@) — Zj—j yH
Wo(r 1), (4.153)

where I; =1; — z(¢),y = (r] +12)/2,
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S(r) = / Bi(t’)2 - %kz(t')z} dr, (4.154)

fo

the shift z(¢) satisfies the classical harmonic oscillator equation

N
i(1) + kz(t) — k' D [R;(1) = R; 0] =0, (4.155)

j=1
where the additional phase factor ¢ (¢) is due to the function C(k’, N/, 1),

1

$(1) = / CO N .1yt 4.156)

lo

and where at the initial time W (r;rfg) = ¥y which satisfies H v.oWo = EnoWo.
Thus, the wave function W (r;r,¢) is the time-independent solution shifted by a time-
dependent function z(z), and multiplied by a phase factor. The explicit contribution
of the function C(k’, N, t) to this phase has been separated out. The phase factor
cancels out in the determination of the density p () = (V¥ (£)|p|¥ (1)) = p(r —z(t))
which is the initial time-independent density p(rfy) = po(r) displaced by z(¢).

As in the time-independent case, the ‘degenerate Hamiltonians’ H '\ (rrat) of
the time-dependent Hooke’s species can each be made to generate the same density
p(rt) by adjusting the spring constant k’ such that k" = k, and provided the density
at the initial time f; is the same. The latter is readily achieved as it constitutes the
time-independent Hooke’s species case discussed previously.

Thus, we have a set of Hamiltonians describing different physical systems but
which can be made to generate the same density p(rt). These Hamiltonians differ
by the function C(k’, N/, t) that contains information which differentiates between
them. In such a case, the density p(rf) cannot distinguish between the different
Hamiltonians.

The corollary to the RG theorem, therefore, is as follows.

Corollary 2 Degenerate time-dependent Hamiltonians {ﬁ (t)} that represent differ-
ent physical systems, but which differ by a purely time-dependent function C (t), and
which all yield the same density p(rt), cannot be distinguished on the basis of the
Runge—Gross theorem.

4.8.3 Endnote

The proof of the HK/RG theorems is general in that it is valid for arbitrary local
form (Coulombic, Harmonic, Yukawa, oscillatory, etc.) of external potential energy
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Hohenberg-Kohn Case

c/e

— A/H(t) & p(r)/p(rt)
/ additive

v(r)/v(rt) —v'(r)/v' (rt) =C/C(t)
Hooke’s Species Case

c/c®)
— (HY/{H®)} > p(1)/p(rt)

intrinsic

Fig. 4.6 A schematic representation of the Hohenberg-Kohn (and Runge-Gross) theorems, and of
the corollary to these theorems

v(r)/v(rt). (In the time-dependent case, there is the restriction that v(rt) must be
Taylor—expandable about some initial time fy.) For their proof, HK/RG considered
the case of potential energies, and hence Hamiltonians, that differ by an additive
constant C /function C (¢) to be equivalent:

u(r) Ju(rt) — v/ (r) /v (xt) = C/C(1). (4.157)

By equivalent is meant that the density p(r)/p(rt) is the same. The fact that the
constant C/function C(¢) is additive means that although the Hamiltonians differ,
the physical system, however remains the same. The theorem then shows that there
is a one—to—one correspondence between a physical system (as described by all these
equivalent Hamiltonians), and the corresponding density p(r)/p(rt). The relation-
ship between the basic Hamiltonian H / H (1) describing a particular system and the
density p(r)/p(rt) is bijective or fully invertible. This case considered by HK/RG is
shown schematically in Fig. 4.6 in which the invertibility is indicated by the double—
headed arrow.

The case of a set of degenerate Hamiltonians {I:I A H (1)} that differ by a constant
C /function C(¢) that s intrinsic such that the Hamiltonians represent different physi-
cal systems while yet all possessing the same density p(r)/p(rt), was not considered
by HK/RG. In such a case, the density cannot uniquely determine the Hamiltonian,
and therefore cannot differentiate between the different physical systems. This case,
also shown schematically in Fig. 4.6, corresponds to the Hooke’s species. The rela-
tionship between the set of Hamiltonians {I:I Y {ﬁ (t)} and the density p(r)/p(rt)
which is not invertible is indicated by the single—headed arrow.

‘We conclude by noting that the Hooke’s species, in both the time-independent and
time-dependent cases, does not constitute a counter example to the HK/RG theorem.
The reason for this is that the proof of the HK theorem is independent of whether
the constant C /function C(¢) is additive or intrinsic. The Hamiltonians in either case
still differ by a constant C /function C(¢). A counter example would be one in which
Hamiltonians that differ by more than a constant C/function C(¢) have the same
density p(r)/p(rt).
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Chapter 5

Physical Interpretation of Kohn—-Sham
Density Functional Theory via Quantal
Density Functional Theory

Abstract As time-independent ground state Quantal density functional theory
(Q-DFT) is a description in terms of ‘classical’ fields and quantal sources of the
mapping from the interacting system of electrons as described by Schrodinger the-
ory to one of noninteracting fermions possessing the same nondegenrate ground state
density, it provides a rigorous physical interpretation of the energy functionals and
functional derivatives (potentials) of Kohn-Sham (KS) theory. The KS ‘exchange-
correlation’ potential is the work done in a conservative effective field that is the sum
of the Pauli-Coulomb and Correlation-Kinetic fields. The KS ‘exchange-correlation’
energy is the sum of the Pauli-Coulomb and the Correlation-Kinetic energies, these
energies being defined in integral virial form in terms of the corresponding fields. Via
adiabatic coupling constant perturbation theory applied to Q-DFT, it is shown that
KS ‘exchange’ is representative of electron correlations due to the Pauli Exclusion
Principle and lowest-order Correlation-Kinetic effects. KS ‘correlation’ in turn is
representative of Coulomb correlations and second- and higher-order Correlation-
Kinetic effects. The Optimized Potential Method (OPM) integro-differential equa-
tions are derived. As the OPM is equivalent to KS theory, Q-DFT thus also provides
a physical interpretation of the OPM equations. It further provides the interpretation
of the energy functionals and functional derivatives (potentials) of the KS Hartree
and Hartree-Fock theories.

Introduction

This chapter provides a mathematically rigorous physical interpretation of Kohn-
Sham density functional theory (KS-DFT) via Quantal density functional theory (Q-
DFT). Q-DFT and KS-DFT are both descriptions of the mapping from the interacting
system of electrons as described by Schrodinger theory to one of model noninteract-
ing fermions whereby the same nondegenerate ground state density p(r), the energy
E, and the ionization potential / (or electron affinity A) as that of the electrons is
obtained. Although both Q-DFT and KS-DFT are founded on the Hohenberg-Kohn
[1] theorems, their descriptions of the model S system are distinctly different. The
framework of KS—DFT [2] is strictly mathematical in basis. With the assumption
of existence of the model system, the theory is in terms of an energy functional
E[p] of the ground state density p(r). This energy functional is subdivided into a
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component representing the kinetic energy of the noninteracting fermions, the exter-
nal potential energy, and an electron-interaction potential energy component EX5[p]
in which all the many-body effects are incorporated. The local (multiplicative) poten-
tial energy of each model fermion is then defined through the variational principle
of the second Hohenberg-Kohn theorem as the functional derivative of the sum of
the potential energy components. The electron-interaction energy functional EX5[p]
and its functional derivative are implicitly representative of all the different many-
body correlations that the model S system must account for in order to reproduce the
density p(r), and thereby the energy via the functional E[p]. In KS—DFT, these elec-
tron correlations, as noted previously, are those due to the Pauli exclusion principle,
Coulomb repulsion, and Correlation—Kinetic effects. The explicit dependence of the
potential energy functional and of its functional derivative on the various electron
correlations, however, is not described by the theory.

As Q-DFT is adescription of the S system in terms of ‘classical’ fields and quantal
sources, it is possible then to provide a rigorous physical interpretation of the potential
energy functional and its various components, and of their respective functional
derivatives. Furthermore, as the fields are separately representative of the different
electron correlations, the physical interpretation allows for an explicit understanding
of the correlations these functionals and their derivatives are representative of.

In this chapter we describe the rigorous physical interpretation [3, 4] of Kohn—
Sham density functional theory. We begin with a description of the physics of the
KS electron—interaction energy functional E eKeS [p],its Hartree Ey[p] and ‘exchange—
correlation’ E )1(<cs [p] energy components, and of their respective functional derivatives
Vee (T), vu(r), and vk (r). The physics underlying the KS ‘exchange’ E,‘fs [p] and
‘correlation’ E fs [p] energy functionals and their derivatives vy (r) and v (r) is arrived
at by application of adiabatic coupling constant perturbation theory. Hence, prior
to describing this physics, we explain the adiabatic coupling constant scheme [5—
7] as well as the modifications of both Q-DFT and KS-DFT required within this
framework for application of the perturbation theory. In this chapter we also explain
the physics of the KS—DFT of Hartree—Fock and Hartree theories.

In addition to Q-DFT and KS—DFT, there is [8, 9] a third way [10-12], referred
to as the Optimized Potential Method (OPM), whereby the model S system of non-
interacting fermions may be constructed. The OPM is also entirely mathematical in
construct. The starting point of the time-independent OPM is the recognition that
the total energy is a functional of the § system orbitals: E = E[¢;]. The energy is
then minimized with respect to arbitrary variations of the S system effective poten-
tial energy v,(r) (see (4.72)—(4.75)). This minimization leads to an integral equa-
tion for v,(r) in terms of the orbitals. The integral equation must then be solved
self—consistently together with the S system differential equation. As an additional
component to this chapter, the equations of the stationary state OPM will be derived.
Having explained the physical interpretation of KS—DFT with all the correlations
present, we next provide a physical interpretation of the ‘exchange-only’ version of
the OPM.
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As in the time-independent case, a rigorous physical interpretation of the various
action functionals and functional derivatives of Runge-Gross [13] time-dependent
density functional theory in terms of the various electron correlations is also provided
via time—dependent Q—-DFT. In fact the time-independent theory interpretations con-
stitute a special case of the time-dependent explanations. The more general case of
the latter, however, is not described. The reader is referred to the original literature
[14] for the details.

5.1 Interpretation of the Kohn—Sham Electron-Interaction
Energy Functional E &S [p] and Its Derivative ve(r)

A comparison of the general (ground and excited state) Q—DFT expression for the
total energy E of (3.130) and the KS-DFT ground state energy functional E[p] of
(4.80) leads to

ES[pl = Eee + Te. (5.1)

Here E.. is the quantum—mechanical electron—interaction energy expressed in terms
of the electron—interaction field £..(r) of (4.56) as

Fe = / PO - Ece(r)dr, (5.2)

and 7, the Correlation—Kinetic energy which in terms of the Correlation—Kinetic
field Z, (r) is

T. = %/p(r)r - Z (r)dr, (5.3)

where
Z,(r) = Z4(r) — Z(r), (5.4)

with the kinetic field Z(r) defined in a manner similar to that of (4.58) for Z(r)
but in terms of the Dirac density matrix ~(rr’). Thus, the partition of EXS[p] into its
electron—interaction E. and Correlation—Kinetic 7. components is explicitly defined
via Q-DFT. Recall from Chap. 3, that the fields €. (r) and Z (r) are not necessarily
separately conservative. Their sum always is. However, the expressions for the energy
components are valid whether or not the fields are conservative.

Equating the Q-DFT and KS-DFT expressions (3.140) and (4.85) for the
electron—interaction potential energy we have

KS r
Vee (1) = OEe [P =— / Frw'y - ae, (5.5)
dp(r) o0
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with
F(r) = Eee(r) + 2 (1). (5.6)

Hence, the physical meaning of the functional derivative SEXS[p]/dp(r) is that it is
the work done to bring the model fermion from some reference point at infinity to its
position at v in the force of the conservative field F° (r). Since V x F* (r) = 0, this
work done is path independent. Once again, the electron—interaction and Correlation—
Kinetic contributions to the functional derivative ve.(r) are explicitly defined via
Q-DFT.

From the above interpretation of the potential energy v..(r) we have

KS
Vvee(r) =V (M) = —F°(p), (5.7)
dp(r)

or, equivalently employing (5.1) and (5.6) that

( 0Ece 0T,
op(r) ~ dp(r)

) = —(Eee(r) + 2 (r)). (5.8)

This equation relates the functional derivatives of E.. and T to the component fields
Ec(r) and Z, (r). Note, however, that

5Eee
v (5;)(1‘)) # —Eee(r), (5.9)

and 5T
\% (5p(r)) # —Z, (r). (5.10)

These inequalities hold whether or not the fields €. (r) and 2., (r) are conservative.
The equality of the functional derivatives to the fields is that given by (5.5) or (5.8).
Since the pair—correlation density may also be written as g(rr’) = p(r’) + px(rr’),
where py(rr’) is the Fermi—Coulomb hole charge, the electron—interaction field
E..(r) of (4.56) may be expressed as the sum of its Hartree £y (r) and Pauli-Coulomb

& (r) components:
Eee(r) = En(r) + Exc(r), (5.11)

where

En(r) :/Mdr’ and €. (r) :/wdﬂ. (5.12)

1P r—rp
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As the field Ey(r) is due to a static or local charge distribution p(r), it may be
expressed as

Eu(r) = —VWu(r), (5.13)

with the scalar potential energy Wy (r) being

Wi (r) = / PED g, (5.14)

r —r'|
Thus, V x Ex(r) = 0. Equivalently, the potential energy Wy (r) is the work done in

the conservative field Ey(r):

Wi(r) = —/r En(r)) - dt. (5.15)

[e¢]

A comparison of (4.91) and (5.14) shows that
vu(r) = Wy(r). (5.16)

Thus, the physical interpretation of the functional derivative 6 Ey[p]/dp(r) is that
it is the work done to move a model fermion from its reference point at infinity to its
position at t in the force of the conservative field Ey(r). Equivalently

dEulpl)
A\ ( 3p(0) ) = —Ey(r). (5.17)

The Hartree energy functional Ey[p] of (4.88), which is the energy of self—interaction
of the density, may also be expressed in terms of the Hartree field £y(r) as

Ey :/p(r)r~8H(r)dr. (5.18)

Again, employing the partitioning of the pair-correlation density g(rr’) into its
local and nonlocal components, we can write the quantum—mechanical electron—
interaction energy E.. as

Eee = Ey + Exc, (5.19)

where Ey. is the Pauli-Coulomb energy. Thus, the KS electron—interaction energy
functional (5.1) is

EXS — Ey + Ex + T.. (5.20)

Comparison with (5.19) then defines the KS ‘exchange—correlation’ energy functional
in terms of the Pauli and Coulomb correlations and Correlation—Kinetic effects as

ES[p] = Exc + T, (5.21)
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where Ej. is expressed in terms of the Pauli-Coulomb field £.(r) as

Exc Z/p(r)rfxc(r)dl', (5.22)

and with 7 as previously defined by (5.3).
The KS ‘exchange—correlation’ potential energy vy (r) is the work done to bring

the model fermion from a reference point at infinity to its position at r in the conser-
vative field F ¢, (r):

KS r
m®=éﬂiﬂ:—/fhﬂﬁdﬂ (523)
dp(r) o0
where
Fra () = Exe(t) + Z,(0). (5.24)

This follows from (5.5) using the fact that the Hartree field £y (r) is conservative so
that V. x Fye, (r) = 0. Equivalently,

EKS
me=V(iﬁgg=—wMﬂ+Zﬁ» (5.25)
dp(r)

Thus, the KS ‘exchange—correlation’ energy functional EXS[p] and its functional
derivative vy (r) can be expressed in terms of the Pauli-Coulomb &,.(r) and
Correlation—Kinetic Z (r) fields. Hence, the dependence of the functional EXS[p]
and its derivative vy (r) on the separate electron correlations due to the Pauli princi-
ple, Coulomb repulsion, and Correlation—Kinetic effects is explicitly defined within
the framework of Q-DFT.

Substituting (5.21) into (5.25) leads to

(5EXC 0T,

dp(r) 5p(r)) = —(Exe(r) + Z,.(1)), (5.26)

which relates the functional derivative of the quantum-mechanical exchange—
correlation Ey. and Correlation—Kinetic 7. energies to the fields E4.(r) and Z (r)
that give rise to them, respectively. Again, irrespective of whether the field €.(r) is
conservative or not

0Exc
v ( 5p(r)) £ —E(r). (5.27)

Thus, we see that the mathematical entities of KS—DFT, viz. the electron-interaction
energy functional EXS[p], its Hartree Ep[p] and ‘exchange-correlation” EX5[p]
components, and their respective functional derivatives v (r), vy (r), and v, (r) can
all be afforded a rigorous physical interpretation.
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We next turn to the physical interpretation of the KS ‘exchange’ EXS[p] and
‘correlation’ EXS[p] energy functionals, and of their respective derivatives vy (r) and
v.(r) in terms of the various electron correlations. This is achieved [15, 16] via
adiabatic coupling constant perturbation theory [17] as applied to both Q—-DFT and
KS-DFT. The interpretations then follow on comparison of terms of equal order. We
begin by first describing the adiabatic coupling constant scheme, and Q—-DFT and
KS-DFT within this framework.

5.2 Adiabatic Coupling Constant Scheme

In the adiabatic coupling constant (\) scheme [5—7], the Hamiltonian H* is defined
as
H =T+ V,+XU; 0<\<l, (5.28)

where 7" and U are the usual kinetic and electron interaction operators and where the
external potential energy operator vy = >, vA(r;). The corresponding Schrédinger
equation is

HYW(X) = M (X), (5.29)

where *(X) is the ground state wavefunction for interaction strength \. The real
interacting system corresponds to A = 1. In (5.28), the operator V), is constrained so
that its addition to AU leads to the density for the real system, i.e. the wavefunction
Y (X) is such that the expectation (p*|p(r)|)) = p*=!(r) = p(r). Equivalently,
the ground state density is independent of \. For each value of ), the energy E* is

EN=T"+ / p()vy(r)dr + E, (5.30)

where T = (¢A|7A“|1/)A) is the kinetic energy, and E?e = (w’\|)\0|1/ﬂ), the electron—
interaction energy. The equivalent constrained search definition of 1)*(X) is that it
is an antisymmetric wavefunction which yields the density p(r) and minimizes the
expectation (7T + AU |¢?).

The \ = 0 case corresponds to the S system of noninteracting fermions defined
by the differential equation (4.76). The potential energy (4.75) of these fermions is
Vs (r) = vA=1 (1) + vee (). Since the density p(r) is independent of A\, we may also
write

v, (r) = vy (1) + VA (r). (5.31)

The ground state energy E* may then be expressed as

EMN=T, + / p() vy (r)dr + E) 4 T (5.32)
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or as
EN = Z € — / p(X)dr + E) + T, (5.33)

where T} = T* — T is the Correlation—Kinetic energy for coupling strength .

5.2.1 Q-DFT Within Adiabatic Coupling Constant
Framework

The ‘Quantal Newtonian’ first law and integral virial theorem derived for the fully
interacting case are equally valid for the adiabatically coupled system. Thus, the
corresponding Q-DFT equations are the same as described in Chap. 3 but with the
appropriate \ dependence. (The S system components of these equations remain
unchanged.) The Q—DFT equations within the adiabatic coupling constant framework
are summarized below.

The pair—correlation density g*(rr’) quantal source is

g ar) = (W P@ar) [y /p(r), (5.34)
= p(r') + pl. (1), (5.35)
= p(r') + pe(rr)) + pl(rr'), (5.36)

where the Fermi—Coulomb pic (rr’), Fermi py (rr’), and Coulomb pﬁ (rr’) holes satisfy
the charge conservation sum rules

/ P (rr)dr’ = —1; / px(rr)dr’ = —1; / pX(rr')dr’ = 0. (5.37)

The Fermi hole py(rr’) = —|7,(rr’)|?/2p(r), where 7, (rr’) is the S system Dirac
density matrix. The spinless single—particle density matrix source of the adiabatically
coupled system is Y (rr’) = (¢ |J (1) ().

The electron—interaction field € je (r) is then

A / -
EX(r) =\ / %, (5.38)
= \Eu(r) + AEL (1), (5.39)

= AEu(T) + AEL(r) + AEX (D), (5.40)
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where
/ - A / -
En(r) :/wdl«’; &N (r) :/Mdr/; (5.41)
|I'—l"|3 Xc |I‘—l"|3
/ - A / -
E(r) = / Mcgr/; ENr) = / wdr’. (5.42)
Ir—r'|3 ¢ Ir—r'|?
The Correlation—Kinetic field Zﬁ (r)is
1
2 (1) = —[z,(r; [%,]) — 2@ (D1 (5.43)
p(r)

where the component z,(r) of the field z*(r) is 2 = 2 X" ; 91),(r) /Ors, and 1, (r)
is the kinetic energy density tensor tgﬁ (r) = }1(82 /Ol Orl} + 0% /0r;0rl))
AM@'Y")|p—p—r. The field z,(r) is similarly derived from the idempotent Dirac den-
sity matrix v, (rr’) via the S-system tensor 7, 3(r).

For the system of electrons defined by the Schrodinger equation (5.29), the
electron—interaction potential energy v, (r) of the S system is the work done to
move the model fermion in the conservative field FT(r):

Ve (r) = — / ' FrAw) -de, (5.44)

where
FAr) = EL(r) + Z(x), (5.45)

and V x feff’A(r) = 0. For systems of symmetry such that the fields Eée(r) and
Zt’\c (r) are separately conservative, the potential energy v2,(r) may be written as

V2 (r) = WL(r) + WA(r) (5.46)
= AWh(r) + AW (r) + WA (r) (5.47)
= AWh(r) + AWy (r) + AW (1) + W (), (5.48)

where W2 (r), Wi (r), Wy (r), Wy (r), W2(r), W(r) are, respectively, the work done
in the fields £, (r), £4(r), £3,(r), Ex(r), £}(r), and Z} (r). The work done Wy(r)
in the Hartree field £y (r) may also be expressed as Wy (r) = [dr/p(r)/|r —r'|.
The electron—interaction E é\e’ Hartree Eﬁ, Pauli—-Coulomb E fc, Pauli £ ;\, Coulomb
E?, and Correlation—Kinetic T, energies are expressed in integral virial form in terms

of the respective fields as:

E) = / drp(r)r - E0,(v); (5.49)
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E) = AEy, (5.50)
with
Ey :/drp(r)r~£H(r); (5.51)
EN =) / drp(r)r - EX.(r); (5.52)
E) = \E,, (5.53)
with
E, = /drp(r)r-é'x(r); (5.54)
E) =)\ / drp(r)r - E2(r); (5.55)
and
A 1 A
T = E/drp(r)r-ztc(r). (5.56)

Note that these energy expressions are valid irrespective of whether or not the indi-
vidual fields are conservative. Observe that the Hartree Ej} and Pauli E; energies
scale linearly with \.

5.2.2 KS-DFT Within Adiabatic Coupling Constant
Framework

KS-DFT employs the fact that the wavefunction /* (X) of the adiabatically coupled
system is a functional of the density p(r). Hence, the ground state energy E* as
obtained from the model S system is expressed as

EMNpl =T, + / drp(r)vy(r) + ES[pl, (5.57)

where EXSA[p] is the KS electron—interaction energy functional. The energy func-
tional Efes”\[p] is further divided into the Hartree Eé[p] and KS ‘exchange-
correlation” EXS:*[p] components, the latter functional being further subdivided into
an ‘exchange’ EXSA[p] and ‘correlation’ EXS*[p] component. Thus,

EXS[pl = Ej[p] + EXS[p), (5.58)
= Eplpl + ES pl + ESp). (5.59)
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Here E{_\I[p], the Coulomb self—energy, is

E}pl = AEulp], (5.60)
with | ,
Enlpl = = wdrdr/, (5.61)
Ir —r'|
and [18]
EXSA[p] = NEXS[p), (5.62)
with
EXS[p] = / PP g (5.63)
2 [r —1r’|

The Hartree functional Ey[p] is obviously equivalent to the Q—DFT Hartree energy
Ey of (5.51). The KS ‘exchange’ energy functional EXS[p] expression is also equiv-
alent to the Q—DFT Pauli energy Ex of (5.54) since the source for these energies—the
Fermi hole or Dirac density matrix—is the same provided the orbitals are the same.
As a consequence, the scaling of these functionals with A is also linear.

In KS-DFT, the electron—interaction potential energy vy, (r) of the S system is
defined as the functional derivative of EXSA(r), so that

A 5EKS /\[P]
v (r) = T (5.64)
= vjy(r) 4 v).(r) (5.65)
= vjy(r) + v} (r) + v (r), (5.66)
where 5E)
A Eglp]

- , 5.67
v (r) 5o(0) (5.67)

A OESALp]
v (r) = e (5.68)

Apon SEXSp]
v (r) = B (5.69)

Here v;\(r) and vé(r) are the KS ‘exchange’ and ‘correlation’ potential energies,
respectively. From the scaling relationships for E{}[p] and EXSA[p], we see that the
corresponding functional derivatives also scale linearly [18]:

vy (r) = Avu(r), (5.70)
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with SEulp) _ [ o)
() = 5 o (5.71)
and
v} (r) = Ay (1), (5.72)
" ooy = VL] (5.73)
i sp(r) '

As noted previously, the functional derivative vy (r) = Wy(r).

5.2.3 Q-DFT and KS-DFT in Terms of the Adiabatic
Coupling Constant Perturbation Expansion

The relationship between the KS ‘exchange’ EXS[p] and ‘correlation’ EX[p] energy
functionals, their functional derivatives vy (r) and v.(r), and the fields of Q-DFT
is achieved [15, 16] by expressing these fields in terms of the coupling constant
perturbation expansion. Thus, the wavefunction 1" (X) is expanded as

PANX) = D{i}(X) + Moy (X) + AN r(X) + ... (5.74)

where ©{¢; } is the Slater determinant of the S system. The resulting pair—correlation
density g*(rr’) and single—particle density matrix v (rr’) are

gr) = g, (rr)) + A\g () + N g5ar’) + ..., (5.75)
and
YNEE) = 75 (') + My () + A5y + (5.76)
where
gs(rr’) = p(r') + px(rr’), (5.77)

and O (rr') = (¥1]O|4) + (16| O|4), etc. The fields E2, (r) of (5.38) and Z; () of
(5.43), which arise from these sources, are then

EL(r) = AEu(r) + AEL(X) + NEc 1 (x) + N En(r) + ..., (5.78)

and
ZXm) = -AZ1(0) = N2 00 - N2 50—, (5.79)
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where €. 1(r) = [dr'g{(xrr’)(r —1')/|r — r'IPand Z(r) = z(r; [viD/p(r), etc.
The expansions of these fields can then be employed in the expressions for the
electron—interaction and correlation—kinetic energy and potential energy.

For systems with symmetry such that the individual fields are conservative, the
work done W2 (r) and W(r) in the fields £, (r) and Z})(r), respectively, may then
be expressed as

WA(r) = AWg(r) + AW, (r) + N We i (1) + NP Wear) + ..., (5.80)

and
W) = =AW 1 () = MW —..., (5.81)

where W, 1(r), W, 1(r), etc. are the work done in the fields €. (r), Z,_(r), respec-
tively, etc.

The scaling relationship for the KS-DFT functionals Ejj[p] and EXS*[p] are
given in the previous section. It has further been shown [17] that the KS ‘correlation’
energy functional EX5*[p] commences in second order:

ESSpl = NEX[p1 + NEX[p1 + ..., (5.82)
so that the KS correlation potential too commences in second order:
() = N (r) + Mo + ..., (5.83)
where v, »(r) = § Efg [p]/0p(r), etc.,and Ez(g [p]is the O (\?) KS correlation energy.
From (5.44) we have
Vol (r) = —FTA 1), (5.84)

so that on substituting for the field .’F'eff’A(r) from (5.45) and the KS definition for
the potential ve.(r) from (5.66), we have

V() + o3 (1) + v} (0] = ~[£5,(0) + 23 ()], (5.85)
On substitution of the expansions for the various terms as given in the previous

section, and on equating terms of equal order, we obtain the components of the KS
potential in terms of the fields as:

Vo (r) = =E4(1), (5.86)
Vue(r) = —=[E:(r) — Z1(1)], (5.87)
VUC,Z(r) = _[gc,l(r) - ZtC,Z(r)]’ (588)

Vi) = —[E.2(r) — 2 3(r)], etc. (5.89)
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We are now in the position to provide a rigorous interpretation of the KS ‘exchange’
and ‘correlation’ energy functionals and their functional derivatives in terms of the
electron correlations that contribute to them. However, prior to explaining the inter-
pretation, note that (5.86) is equivalent to (5.17). The physical reason for this equiv-
alence between the functional derivative vy (r) and the field € 4 (r) is that the latter
is due to the density p(r) which is a static charge distribution.

5.3 Interpretation of the Kohn—-Sham ‘Exchange’ Energy
Functional EXS[p] and Its Derivative vy (r)

The physical interpretation of the KS ‘exchange’ potential energy v, (r) follows from
(5.87). It is the work done to move the model fermion in a conservative field R (r):

KS
ooy = 2Bl [p 1 _ / R -de, (5.90)

where R(r) = €,(r) — Z:(r). Since V x R(r) = 0, this work done is path inde-
pendent. The field R (r), and hence the potential energy v, (r), is therefore represen-
tative both of Pauli correlations via the component field £, (r), as well as those due
to part of the Correlation—Kinetic effects through the field Z_;(r).

For systems with symmetry such that the fields £, (r) and Z,_;(r) are separately
conservative, we may write

vx(r) = Wi(r) + W 1 (r), (5.91)

where W, (r) is the work done in the field £, (r) due to the Fermi hole charge, and
W,..1(r) the work done in the field Z_;(r).

The KS ‘exchange’ energy functional EXS[p] is related to its functional derivative
v, (r) by the virial theorem of (4.99). Substituting (5.87) into this equation leads to

EXS[p] - / pO)r - [E,(r) — 2,1 (0)]dr = 0. (5.92)

Now as noted in Sect.5.2.2, E )1((5 [p] is equivalent to the Q—DFT Pauli energy Ex
provided the same orbitals are employed in their determination. Thus, using the
relationship [19] between E, and &€, (r) of (5.54) in the above equation, it follows
that

/p(r)r - Z1(r)dr =0. (5.93)

Therefore, although the Correlation—Kinetic field Z, _;(r) contributes explicitly to
the potential energy v, (r), it does not contribute directly to the KS ‘exchange’ energy
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E )Ifs [p]. Its contribution to the energy is implicit via the orbitals generated by v, (r).
Hence, the KS—-DFT ‘exchange’ energy functional E fs [p] and its functional deriv-
ative v, (r) are representative of Pauli correlations and lowest—order Correlation—
Kinetic effects.

5.4 Interpretation of the Kohn—-Sham ‘Correlation’ Energy
Functional E g(s [p] and Its Derivative v¢(r)

The interpretation of the KS ‘correlation’ potential energy v, (r) follows from (5.88)—
(5.89), etc. The components v.»(r), v 3(r), etc. are separately the work done in
a conservative field:

Ve2(r) = —/ [Eca () = 2 2()]-al, (5.94)
Ves(r) = — / [Eca(r)) — Z, 3] - de, etc. (5.95)

The work done in each order is path independent. Further, both Coulomb correla-
tion and correlation—kinetic effects contribute to each order of the KS correlation
potential energy.

Next, turning to the energy, observe from (5.56), (5.79) and (5.93) that the
Correlation—Kinetic energy T, also commences in O (\?);

1
T} = —E/drp(r)r N Z L) FNZ )+ (5.96)

Now the KS ‘correlation’ energy Efs”\[p] and its functional derivative v? (r) are
related by the virial theorem (see (4.100))

EXSApl + / drp()r - Vol (r) = —T[pl. (5.97)

On substituting the expansions for the potential energy vj (r) (5.83) and Correlation—
Kinetic energy TCA (5.96) into the virial theorem, we obtain

ESAp] + / drp(r - [NV o (r) + N Vu3(r) + ...

1 1
- EAzztc,z(r) — EA3ztc,3(r) —...]=0. (5.98)
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However, it has been proved [15] that

/drp(r)r - Vuea(r) =0. (5.99)

Employing (5.95) and (5.99) in (5.98), we then have

/\2
ﬁ“m=7/wmnzwm
+ A3 / drp(r)r - [56,2(1-) - %Zw(r)] +.... (5.100)

Comparison with (5.82) then shows that

1
ESIpl = E/drp(r)rztc,z(r), (5.101)

1
ESIpl = / drp(r)r - [86,2(r) — EZR,s(r)], (5.102)

etc. Thus to leading order, it is only the Correlation—Kinetic effects that contribute
to the KS correlation energy. The Coulomb correlations, which contribute explicitly
to the potential energy (see (5.94)), do not contribute explicitly to the KS correlation
energy in this order. For energy terms beyond the leading order, both Coulomb
correlation and Correlation—Kinetic effects contribute.

5.5 Interpretation of the KS—-DFT of Hartree—Fock Theory

In a manner similar to the representation of the Schrodinger theory of electrons,
there also is a density functional theory representation of Hartree—Fock (HF)
theory. In other words, a Hohenberg—Kohn theorem [20] and the constrained search
approach [21] can be formulated to prove that the ground state HF theory Slater
determinant wavefunction ¥ (X) is a functional of the corresponding ground state
density p(r). Thus, there exists an energy functional EHF[p] that achieves its min-
imum at the HF theory ground state energy for the HF ground state density p(r).
(Similar remarks are valid for the Hartree approximation).

In KS-DFT, it is assumed that an § system of noninteracting fermions exists
such that the density p(r) and energy E'F[p] equivalent to that of HF theory can
be obtained. Thus, it is possible to define an electron—interaction energy functional
EXSHE[ 9] such that the ground state energy may be written as

E“m=nm+/mmww+E§ﬂm (5.103)
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with the § system differential equation generating the density being (3.207)
12 HF - Ci=1 5.104
5 + o) + v, (1) |6i(X) =€¢i(x); i =1,...,N. (5.104)

Here T[p] is the kinetic energy functional of the noninteracting S System fermions
of density equivalent to that of HF theory. The corresponding electron—interaction
potential energy v!lF(r) of these model fermions that generates the HF theory
ground state density via p(r) = Zm |¢; (ro)|? is then the functional derivative
SEXSH[p]/5p(x).

Itis evident from (5.103) that the functional EXSHF[p] is representative of electron
correlations due to the Pauli exclusion principle, and Correlation—Kinetic effects that
arise due to the difference T''f in the HF theory and S system kinetic energies. The
physical interpretation of the functional EXSHF[p] and its functional derivative in
terms of these correlations then follows from the Q—DFT of HF theory described in
Sect. 3.8.4. A comparison of (5.103) with (3.219) shows that

EXSHR[p] = ENF 4 THF, (5.105)

where EHF and THF are the HF theory electron-interaction and Correlation—Kinetic
energy, respectively. These energies in turn are defined in terms of the corresponding
HF theory fields ng (r) and ZEF (r). These fields and energies representative of the
different correlations are defined in Sect. 3.8.4.

The functional derivative v?eF (r) (see (3.208)) is the work done to move the model
fermion in the conservative field FF (r):

5EKSHF r
U?eF(I‘) = ee—[P] = _/ FH @ . ae, (5.106)
dp(r) oo
where
FH(r) = e + 2 ). (5.107)

We thus have a rigorous physical interpretation of the KS-DFT of HF theory.

As stated in Sect. (3.8.4), and reiterated here, the S system orbitals ¢;(x) that
generate the HF theory density differ from the HF theory orbitals. Furthermore,
Correlation—Kinetic effects contribute to both the total and potential energy of the
model fermions.

5.6 Interpretation of the KS-DFT of Hartree Theory

The equations governing the KS—-DFT of Hartree theory, following the assumption
of existence of an S system such that the equivalent density p(r) and ground state
energy Ef[p] may be obtained, are
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Ef[p] = Ti[p] + / p@v(r)dr + E> [p], (5.108)

and
[—%Vz—f—v(r)—}—v (r)} oi(xX) =€¢¢;(x); i=1,...,N. (5.109)

T [p] is the kinetic energy functional of the noninteracting fermions of density p(r)
equivalent to that of Hartree theory, EXS#[p] the KS electron—interaction energy
functional, and v/ (r) the functional derlvatlve SEXSH[p]/6p(r).

The physical interpretation of EeKeSH[p] and v "(r) follows from the Q-DFT
description of Hartree theory given in Sect.3.8.6. Thus a comparison of (5.108)
and (3.251) shows that

EXSHIpl = ER +TH (5.110)

where Eff and TH are the Hartree theory electron—interaction and Correlation—
Kinetic energy defined in terms of the corresponding Hartree theory fields £ e’é (r)
and Zf (r). The functional derivative v (r) (see (3.241)) is the work done to move

the model fermion in the conservative field F* (r):

KSH
o (1) = OEe 1AL _ / FAw) . e, (5.111)
S op(r) p(r)
where
Fl)y=€Lw) + 2 (r). (5.112)

Once again note that the S system and Hartree theory orbitals differ, and that
Correlation—Kinetic effects are intrinsic to both the total and potential energy of
the model fermions to ensure the equivalence of their density to that of Hartree
theory.

5.7 The Optimized Potential Method

The optimized potential method (OPM) is yet another way of constructing the S sys-
tem of noninteracting fermions. In KS—DFT, the ground state energy E is expressed as
a functional of the density p(r), and the effective potential energy v, (r) of the model
fermions then defined via the variational minimization of the energy functional E[p]
with respect to arbitrary variations of the density. Now since the S system orbitals
¢; (x) are functionals of the density, the energy may also be expressed as a func-
tional of these orbitals: £ = E[¢;]. In the OPM, there is an integral equation that
defines the potential energy v, (r). This equation is obtained by minimization of the
functional E = E[¢;] with respect to variations of v, (r). The functional E = E[¢;]
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is, of course, unknown, and consequently the integral equation cannot be solved
exactly. However, this equation for the potential energy v(r) can be solved in the
‘exchange—only’ (XO) approximation, which is formally defined as follows [8, 9].
In the XO-OPM, the ground state energy is the expectation of the Hamiltonian:

EQQ i = (®|T + U + D v(x)| ), (5.113)

taken with respect to that single Slater determinant ®{¢;} which is constrained to be
a ground state of some noninteracting Hamiltonian of the form T+ > w(r;) and
which simultaneously minimizes the energy as defined by the above expectation.
Since this expectation is with respect to a Slater determinant, the expression for
EQSM[@] is the same as that of Hartree—Fock theory, and therefore known. As such
the integral equation is entirely in terms of the S system orbitals and eigenvalues,
and thereby solvable. (Note, however, that the Hartree—Fock theory determinantal
wavefunction differs from that of the XO—OPM since there is no additional constraint
on it.) To understand how the integral equation of the OPM comes about, we next
derive it in the spin unpolarized XO case.

5.7.1 The ‘Exchange-Only’ Optimized Potential Method

In the XO-OPM, the noninteracting fermions are subject to the external field
F*'(r) = —Vu(r), and the wavefunction is assumed to be a Slater determinant
®{¢;} of spin—orbitals ¢;(x) = ¥;(r)x;(c). The differential equation generating
these orbitals is further assumed to be

[—%vz + vs(r)i| i (r) = i(r); i =1,..., N, (5.114)

where the effective potential energy v, (r) of the noninteracting fermions is the sum
of the external v(r), Hartree Wy (r), and ‘exchange’ U?PM(I') potential energies:

vs(r) = v(r) + Wy () + ™M), (5.115)
where

Wi (r) = / %dﬂ, (5.116)

and p(r) =2, > |¢i(ro) |>. The expression for the ground state energy E%Mwi]
is the same as that of Hartree—Fock theory (see Sect.3.8.1), but in terms of the
XO-OPM orbitals. Thus,
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BB =3 [ (= 59)uwr

+ /p(r)v(r)dr +Epy+ EO™  (5.117)

where Ep and E9™™ are the Hartree and ‘exchange’ energies, respectively.
1 /
Ey =L [POPE) e (5.118)
lr —r'|
V7)Y 0 (0); (r’)
OPM
EV =— E / ] (5.119)

spin j_spm i

The basic idea of the OPM is to determine the potential energy v (r) by variational
minimization of the energy EQSM with respect to arbitrary variations of v,(r). That
is, vy (r) is varied by a small amount Jv,(r) such that v, (r) — vy(r) + dv,(r), and
the stationary condition determined at the vanishing of the first order variation of the
energy:

SEQO 4]

B0, (0 =0. (5.120)

This functional derivative may be rewritten using the chain rule for functional dif-
ferentiation as

SEQM[:(r)] / SEQM 01 (r')
C ou(r) Z 09 (r') dvg(r)

dr +c.c. = 0. (5.121)

The term 6 EQPM /§1; (r') is simply the Hartree—Fock theory variation so that

51/)1.(1-/) = 5 v(r H(T Uy,i i ) .

where v, ; (r) is the orbital-dependent exchange function of (3.201):

I SEOPy,]
TO nm
P ) )
= — dr’. 5.123
2 | oo & (5123

J
spin j=spini

vx,i(r) =

In the XO—OPM case, the function v, ; (r) is known explicitly in terms of the orbitals
1; (r). Rewriting the OPM differential equation (5.114) as
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[—%vz + () + WH<r)] P (r) = [6 — vO™M (1) ]9 (1), (5.124)
we have
OEXG" = [e; — vVOM@) 4+ v, () UF (1) (5.125)
oi(ey AR '

To determine the term d1); (r') /dv, (r) in (5.121), we introduce the variations §; (r’)
and 0v, (r’) in the OPM differential equation (5.114):

1
4 [_zvz + vs(l’/)] Vi (') = dleihi ()] (5.120)
To first order in §, we have
1
[—§V2 + v, (') — 61} o (r) = [de; — S, ()] (). (5.127)
The solution to this equation can be expressed in terms of the Green’s function
G;(x'r") as
(') = / G (r'r")[6e; — Svgs ()] ()dr”, (5.128)
where G;(r'r”), the solution of the differential equation

1 2 / - / /"
|:—§V + v, (r') — ei] G, @'ty =600 —1"), (5.129)

is
Gi(r'r") = Z M

J

(5.130)

€ — €

(The prime on the sum means that the sum over j is restricted to states for which
€; # €i.) The Green’s function G; (r'r”) is thus orthogonal to 1 (r"):

/ G ) (e = > @) / WY () = 0. (5.131)
F € — €
Thus, (5.128) reduces to

i (r') = —/Gi(r’r/’)évx(r”)w,- (x")dr”, (5.132)
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so that ,
o (')

50, () = —G,;(@'r)y;(r). (5.133)

Substituting (5.125) and (5.133) into (5.121) leads to the XO—OPM integral equation
> / [O™ () — vy, ()] (1) G (F) dy(Odr +c.c. =0, (5.134)
i

where the term proportional to ¢; in (5.125) vanishes as a result of the orthogonality
condition of (5.131). The integral equation (5.134) is then solved for the ‘exchange’
potential energy vSPM (r) self consistently with the OPM differential equation
(5.114). The energy EQSM[z/Ji] is obtained from (5.117) via the solutions ); (r).

The XO-OPM is also referred to in the literature [8, 9] as ‘exchange—only density
functional theory.” The relationship between the XO-OPM and KS-DFT can be
established [12] as follows. If the ‘exchange’ energy E9PM[¢);] is a functional of
only the density, i.e. EO"M[v;] = EOPM][p], then from the definition of the density
in terms of the orbitals v); (r) and the chain rule for functional differentiation, the
orbital dependent exchange function vy ; (r) of (5.123) is

1 SEO™ 5p(r') ,  SEOPM[p]

_ , 5.135
v o ) 50w e = spm ©.135)

vx,i(r) =

independent of i. Substituting (5.135) into the integral equation (5.134) and employ-
ing the orthogonality condition (5.131) then yields

SEOPM[p]

OPM _
=T

(5.136)

upto a trivial additive constant. This is the definition of USPM (r) written within the
framework of KS-DFT as a functional derivative taken with respect to the density
p(r).

Note that the XO-OPM ‘exchange’ energy ESPM[w,-] and potential energy
vOPM(r) are not equivalent to the KS-DFT ‘exchange’ energy EX5[p] and potential
energy v, (r) = 6 EXS[p]/dp(r) of the fully—interacting system with all correlations
present. They would, however, be equivalent if the orbitals and eigenvalues of the
fully—interacting system were employed in the expression for E9PM[+;] and the
integral equation (5.134) for vO™(r) instead.

The OPM exchange energy E9™[¢);] and potential energy vO™ (r) satisfy [22]
the OPM ‘Quantal Newtonian’ first law and integral virial theorem:

F(r)  FOPM gy — (), (5.137)
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with
FOPM(py — g£OPM(p) — VyOPM(r) — DOPM(r) — ZOPM(y), (5.138)

and
EOM[y,] = / p)r - VoOPM(r)dr, (5.139)

where € j (r) is the Hartree field, D™ (r) = d(r)/p(r),d(r) = —1VV2p(r), ZOM
(r) = z(r; [YO™])/p(r), z(r) the kinetic force derived from the OPM kinetic—
energy—density tensor 7,5(r; [YOPM]), and vOPM(rr’) the OPM Dirac density matrix.
It is evident from (5.137) that since V x F"OPM(r) =0, and V x Ex(r) =0,
V x VoO™M(r) = 0,V x D(r) = 0, that V x Z9"(r) = 0. Thus, within the XO—-
OPM, each component of the field F"“OPM(r) is separately conservative.

The OPM ‘Quantal Newtonian’ first law and integral virial theorem equations
for the fully—correlated case are of the same form as that of XO theory. In these
equations, the ‘exchange’ potential energy vOP™(r) is replaced by vO™(r). The
ground state energy E is assumed to be a functional of the orbitals zb, (r), so that
in (5.117) EQEM[¢);:] is replaced by E[+;], and EO™[1;] by EXS[¢;]. That is the
KS ‘exchange—correlation’” energy is now assumed to be a functlonal of the orbitals
1;(r). The derivation of the integral equation for vOP M(r) is the same, but with
the explicit form of v, ; (r) replaced by the orbltal—dependent exchange—correlation

function vy ; (r) where
1 0ESS 0E il

Yi(r) 5% (r)

Uxe,i (r) = (5 140)

The function v, ; (r) is not known since the functional E [1/1, is unknown. Hence,
the OPM ‘exchange—correlation’ potential energy UOPM(I') cannot be determined via
solution of the OPM equations. Once again, if the KS ‘exchange—correlation’ energy
functional E} KS [¢;] is a functional of only the density, i.e. E KS[@/},] E }fcs[p], then
by repeating the steps leading to (5.136), it follows that

SELp]

OPM /1y _
Ve (1) = Ve (X) = 5P(1') ) (5.141)

to within a trivial additive constant. Thus, voP M(r) is the KS theory ‘exchange—
correlation’ potential energy v,.(r). The total energy E[v);] is, of course, the ground
state energy.
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5.8 Physical Interpretation of the Optimized Potential
Method

As was the case with KS—-DFT, the OPM is strictly a mathematical scheme for the
construction of the S system. It obtains the ground state energy E[v);] and the density
p(r) by determining the effective potential energy v,(r) of the S system through
self—consistent solution of an integral and a differential equation. It does not, for
example, describe how the various electron correlations contribute to this potential
energy. Consequently, when approximations to the OPM are made, it is not clear
what correlations are present. However, as KS—DFT and the OPM are intrinsically
equivalent the physical interpretation of the OPM ‘exchange—correlation’ energy
E)?CP M and potential energy v)?f M(r), in terms of the electron correlations is the same
as described in Sect.5.1. It is also possible to provide an understanding [22] of the
correlations that are intrinsic to the XO—-OPM ‘exchange’ energy £E9P and potential
energy vO"™(r), and this is described next.

5.8.1 |Interpretation of ‘Exchange-Only’ OPM

The XO-OPM ‘exchange’ energy E™ and potential energy v9"™(r) can also be
afforded the interpretation that they each are comprised of a Pauli and Correlation—
Kinetic component. This is derived from the Q-DFT perspective via the ‘Quantal
Newtonian’ first law and integral virial theorem. It may also be obtained directly
from the XO—-OPM integral equation. These derivations involve approximations,
and therefore they are not rigorous in the same sense as that of the interpretations of
the ‘exchange’ energy and potential energy of fully—interacting KS theory (Sect.5.3),
or of the corresponding energies of the KS representation of Hartree—Fock theory
(Sect.5.5). The approximations, made on the basis of applications that show them to
be extremely accurate, are therefore justified ex post facto.

5.8.2 A. Derivation via Q-DFT

Letus consider an S system of noninteracting fermions in which Coulomb correlation
and Correlation—Kinetic effects are absent. This is the Pauli—Correlated (PC) approx-
imation within Q-DFT discussed more fully in QDFT2 [23]. Thus, within this
approximation, only correlations due to the Pauli exclusion principle are considered.
Further, let us assume a symmetry such that the inhomogeneity in the density p(r) is
a function of only one variable. Examples of such systems are closed—shell atoms,
open—shell atoms in the central field approximation, and jellium and structureless
pseudopotential models of a metal surface.
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For such systems, the S system differential equation is

1
[—Evz +0(r) + W (1) + Wx<r)] GO =aui,  (5.142)
where .
W) = / £.0) -t (5.143)

is the work done in the field €, (r) = [ dr'p, (rr’)(r — r')/|r — r'|* due to the Fermi
hole p, (rr’) = —|v,(rr’)|?/2p(r), and where ~,(rr’) is the Dirac density matrix
constructed from the orbitals ; (r) of the differential equation (5.142). The corre-
sponding density p(r) = 7,(xrr). The work done W, (r) is path independent since
V x E,(r) = 0 for systems of this symmetry. The exchange energy E, and potential
energy W, (r) satisfy the integral virial theorem so that

E, = /p(r)r -E.(r)dr. (5.144)
The corresponding ‘Quantal Newtonian’ first law is
F(r) + FFC =0, (5.145)

where
FPe@r) = Epx) + E,(r) — D(r) — Z,(r), (5.146)

with the fields D(r), Z(r) defined in terms of the density p(r) and Dirac density
matrix 7, (rr’) in the usual manner. Since for the symmetry assumed V x £, (r) = 0,
it follows from (5.145) that V x Z;(r) = 0.

On equating (5.137) and (5.145) we have

VoOM(r) = — [£,(r) + ZOM(1)]
- D7) = DI+ [E5™M®) - Ex(0]  (5.147)

where
Z2M @) = Z0™ (r; [YO™M]) = 24 (5 1D - (5.148)

Equation (5.147) is an exact relationship between the XO—OPM and the PC approx-
imation of Q-DFT. Next, we assume the densities, and therefore the Hartree and
derivative density fields of these two schemes to be equivalent. We make no assump-
tions with regard to the fields Z?P M(r) and Z,(r) because ZSP M(r) depends upon
the difference between the off-diagonal matrix elements of the respective density
matrices. Equation (5.147) then reduces to

V™M) = —[E:(r) + ZO™M ()], (5.149)
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so that V"M (r) may be interpreted as the work done in the conservative field ROPM (r):

USPM(r) — _/ ROPM(r/) de, (5.150)
RO™M(r) = £,(r) + Z0™M(r). (5.151)

This work done is path independent. Since V x £, (r) = 0, we have from (5.149)
that V x ZSPM(r) = 0. Asboth £, (r) and ZSPM (r) are separately conservative, we
may write vOPM(r) as

VO™ (r) = Wi (r) + WM (), (5.152)

where

W, (r) = —/ E.(r)-dt and

[e¢]

r
WoM(r) = — / ZPM) - ar, (5.153)

oo

with W, (r) and Wt?PM(r) the work done in the fields &£, (r) and ZSPM (r), respec-
tively.

Next, on substituting for VoOPM(r) from (5.149) into (5.139), the XO-OPM
exchange energy may be expressed as

EO™ [y,] = / PO - [£,00) + ZOP ()] dr. (5.154)

Thus, the ‘exchange’ energy E"M[4);] and potential energy vO" (r) of the XO-OPM
are comprised of both a Pauli and a Correlation—Kinetic component. The approxima-
tions invoked to arrive at (5.152) and (5.154) are predicated by the results of appli-
cation to atoms, negative atomic ions, and jellium metal surfaces. For example, the
ground state energy of atoms in the PC approximation of Q—-DFT [23, 24], lie above
those of the XO—OPM [25] by less than 25ppm, the difference for 33 Br — 3¢ Rn being
less than 5ppm. The expectation value of single—particle operators are also essentially
equivalent. The structure of the exchange potential energies W, (r) and v (r) are
also essentially the same with both decaying as —1/r in the classically forbidden
region, and both being finite with zero slope at the nucleus. They differ only in the
intershell region where W, (r) is monotonic with positive slope whereas vf?P M(r)
possesses bumps. These bumps and the fact that the XO-OPM ground state ener-
gies lie slightly below those of the PC approximation of Q—DFT, are consequently
attributable to the Correlation—Kinetic effects. The Correlation—Kinetic energy is
therefore negligible [22]. For an analysis of the XO-OPM for arbitrary symmetry,
the reader is referred to the original literature [22].
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5.8.3 B. Derivation via the XO-0OPM Integral Equation

It is also possible to derive [22] an expression for VvOPM(r) in terms of its Pauli
field component SXOPM(r) and a correction term to it directly from the XO-OPM
integral equation (5.134) by invoking the Sharp—Horton approximations [10]. Once
again these approximations are justified ex post facto by the results of application
[23, 24] to atoms and atomic ions. Following Sharp and Horton, the first of these
assumes that the eigenvalues ¢; in the denominator of the Green’s function of (5.130)
do not differ significantly from some average value (¢;) # ¢; for all j. In the second
approximation, each denominator ({¢;) — ¢;) in the Green’s function is replaced by
a constant Ae independent of the indices i. Thus, the Green’s function becomes

1 /
Gi(rr') = = > ;) (5.155)
J

which on employing the closure relationship may be rewritten as

1
G;(r) = ~ [6(r — 1)) — () (x))]. (5.156)

Substituting this expression for the Green’s function into the XO-OPM integral
equation leads to

OPM o 2ui Vri (DY (D)3 (r)
) = S ()
1

= 2T i)
Zwmwnz
x/WWm?Wﬁ—mxwmuwﬂ (5.157)
On substituting for vy ; (r) from (5.123), the first term on the right hand side may be
written as OPM s
() = / L) (5.158)
[r —r'|

where pOP™M(rr’) = — 7™ (rr'|2/2p(r) is the XO-OPM Fermi hole charge. The
function v3 (r) is known in the literature as the Slater potential energy [26]. However,
as will be explained in Chap. 10, v3 (r) does not represent the potential energy of an
electron. Hence, it is more appropriate to refer to it as the Slater function. The
expression for vOPM(r) is then

@Wm=ﬁm+§£%ﬁﬁmm—wﬂML (5.159)


http://dx.doi.org/10.1007/978-3-662-49842-2_10

212 5 Physical Interpretation of Kohn—Sham Density Functional Theory ...

where p; (r) = 1} (r)1);(r), and the expectation ( ); taken with respect to 1; (r). On
taking the gradient of (5.159) we obtain

V™M) = -7 + [ / ey + Y (Vw)
— l"| -

Ir p(r)
% [P @) — v, @),] ] (5.160)
where 0P g )
OPM _ Px rr)(r —r ,
£ () = / R a— dr'. (5.161)

Equation (5.160) is similar to (5.149) derived via the ‘Quantal Newtonian’ first law.
Thus, the correction term in curly brackets may be thought of as being representative
of the kinetic field ZSPM(r). (Of course, there is nothing in this derivation that
identifies this term as a Correlation—Kinetic field. It is only via comparison with
(5.149) that one can relate this field to kinetic effects). Thus, once again vfc)P M(r) can
be interpreted as the work done in a conservative field [€,(r) — { }] representative
of Pauli and Correlation—Kinetic contributions. This work done is path independent
since V x [E,(r) —{ }] = 0. On substitution of (5.160) into (5.139) one obtains an
expression for E9"M[¢);] similar to (5.154). Finally, note thatif only the delta function

term in the approximate Green’s function of (5.156) is retained, then v)?PM(r) =

v3(r). Thus, the Slater function can be derived from the XO—OPM integral equation
[10]. Slater’s original derivation [26] of this function is described in Chap. 10.
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Chapter 6
Quantal Density Functional Theory
of the Density Amplitude

Abstract The Quantal density functional theory (Q-DFT) mapping from a system
of electrons in an external electrostatic field in any state as described by Schrodinger
theory to one of noninteracting bosons in their ground state but with the same density
is described. The corresponding Schrédinger equation of the model bosons is for the
density amplitude, with the sole eigenvalue being the negative of the ionization poten-
tial. Via the ‘Quantal Newtonian’ first law for the model system, the local potential
representative of the many-body effects in this equation is the work done in a conser-
vative effective field. The field is the sum of a component representative of electron
correlations due to the Pauli Exclusion Principle and Coulomb repulsion, and another
of Correlation-Kinetic effects—the difference between these effects for the interact-
ing fermionic and noninteracting bosonic systems. The corresponding components of
the total energy are expressed in integral virial form in terms of the respective fields.
The traditional density functional theory definitions of these energies and potentials
in terms of energy functionals of the density and their functional derivatives are given.
The Levy-Perdew-Sahni definition of the local potential in terms of the wave function
written as the product of a marginal and conditional probability amplitude is derived.
The maps to the model systems of noninteracting bosons and fermions having the
same density are related by the Pauli potential and Pauli kinetic energy. By Q-DFT,
it is shown that these energies are not a consequence of the Pauli principle but rather
a consequence of kinetic effects of the model systems. The Q-DFT definitions of
these energies is given. Finally, the mapping to the model of noninteracting bosons
is shown to be a special case of that to noninteracting fermions.

Introduction

In time-independent quantal density functional theory (Q-DFT) and Kohn—Sham
density functional theory (KS-DFT), the basic idea is the mapping to the model
S system of N noninteracting fermions whereby the density p(r), the total energy
E, and the ionization potential I (or electron affinity A) equivalent to that of the
interacting electronic system are obtained. In Q—-DFT, which is based on the ‘Quan-
tal Newtonian’ first law, both the total energy E and the local electron—interaction
potential energy ve.(r) of the model fermions, are defined in terms of ‘classical’
fields and quantal sources. The potential energy ve. (r) is the work done to move the
model fermion in a conservative effective field. The components of the total energy
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E are expressed in integral virial form in terms of fields associated with these com-
ponents. The highest occupied eigenvalue of the corresponding S system differential
equation is the negative of the ionization potential /. In time-independent KS—-DFT,
the energy E is expressed in terms of component energy functionals of the ground
state density p(r). The potential energy v (r) of the model fermions is then defined
as the functional derivative of the KS electron—interaction energy functional com-
ponent. Once again the negative of the ionization potential / is the highest occupied
eigenvalue of the S system differential equation. Irrespective of the definition of
the potential energy ve.(r) employed to generate the model fermion orbitals, the S
system differential equation must be solved N times to obtain the density p(r).

Now consider a system of N noninteracting bosons in an external field F**'(r) =
—Vu(r). This is the same external field as that of the interacting system of electrons.
Let us assume these bosons are in their ground state, and that they have the same
density p(r) as the interacting electronic system. As the bosons occupy the same
state, their wavefunction 5 (r) is defined by the equation

N[p@]* = p(r), (6.1)
so that 1
Pp(r) = —=+/p(r), (6.2)

VN

and the normalization condition is
/ [¢Yp(r)]*dr = 1. (6.3)

If the Schrodinger equation for the model boson system wavefunction g (r) which
is proportional to the density amplitude +/p(r) could be derived, then solution of this
differential equation would lead directly to the density p(r). Note that this differential
equation would have to be solved only once in order to determine the density. In
addition, since the bosons are in their ground state, the wavefunction is nodeless.
Furthermore, as the bosons are noninteracting, each has the same potential energy.
Therefore, in the differential equation, this potential energy is represented by a local
(multiplicative) operator. The total ground state energy E could then be determined,
for example, by employing the fact that the energy is a functional of the ground state
density. We refer to the system of noninteracting bosons whereby the density and
energy equivalent to that of the interacting system is obtained as the B system.

The simplest derivation [1] of the B system differential equation and the cor-
responding total energy expression is via traditional density functional theory, and
we describe this first. This derivation is restricted to ground states because density
functional theory is a ground state theory. The local potential energy of the nonin-
teracting bosons is vz (r) = v(r) + vi (r), with vi (r) defined in this framework as
a functional derivative. However, the differential equation may also be derived [1]
directly from the Schrodinger equation for the electrons. Thus, the B system differ-



6 Quantal Density Functional Theory of the Density Amplitude 217

ential equation is also valid for excited states of the interacting system. In this second
derivation which is described next, the potential energy vZ (r) is obtained in terms of
a conditional probability amplitude that describes the (N — 1) electron system when
the position of the remaining electron is fixed. Finally, via the ‘Quantal Newtonian’
first laws for the interacting and model boson systems, we derive the equations of
the corresponding Q—DFT mapping. In this framework, valid for both ground and
excited states of the interacting system, the total energy E and the potential energy
vE (r) are once again described in terms of ‘classical’ fields and their quantal sources,
with v (r) being the work done in a conservative effective field. The sole eigenvalue
of the B system differential equation is proved to be the chemical potential.

The model S and B systems, which both generate the density p(r), are related by
what is referred to in the literature [2] as the Pauli kinetic energy Tp and the Pauli
potential energy vp (r). These energies are not a consequence of the Pauli exclusion
principle as stated in the literature, but depend rather on the difference in the kinetic
aspects of the S and B systems as proved below. The traditional density functional
theory and Q—-DFT definitions of these properties are also given.

6.1 Density Functional Theory of the B System

In Hohenberg—Kohn (HK) density functional theory, the nondegenerate ground state
energy functional of the density p(r) is written as (4.23)

Elpl = /p(l‘)v(l‘)dl‘ + Fuxlpl, 6.4)
where v(r) is the external potential energy, and Fyk[p] the universal functional

Fuxlpl = (@IplIT + U1lp)). (6.5)

The ground state density is determined by the Euler-Lagrange equation subject to
the constraint [ p(r)dr = N:

J (E[p] — / p(r)dr) =0, (6.6)

or
dE[pl/dp(r) = p, (6.7)

where £ is the chemical potential.
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Recall that in the KS-DFT description of the S system, the expression for the
ground state energy functional is obtained by adding and subtracting from (6.5) the

kinetic energy T;[p] of noninteracting fermions with the same density p(r). Thus,
one obtains (4.80)

Elp]l = Tlp] + / pv(r)dr + ELX[p], (6.8)

with the KS electron—interaction energy functional EXS[p] defined as
Elpl = Fulpl — Tilpl. (6.9)
The Euler-Lagrange equation for the density is then

OTlp) , SEL[p]
5p(r) Top(r)

= . (6.10)

One could solve this equation if we knew the functional 7;[p]. However, as the
fermions are noninteracting, its solution is equivalent to solving the N single—particle
equations of the S system (see (4.76)):

1
[—§V2+vs(r)} ¢i(x) =€¢i(x); i=1...,N, (6.11)
with the Dirac density matrix being

%) =D ¢ ro)gi(r'o), (6.12)

whose diagonal matrix element is the density: p(r) = 7,(rr). The potential energy
v (r) of the noninteracting fermions is

Vg (1) = v(r) + vee (1), (6.13)
where (5EKS[ ]
0E[p]

Vee (1) = 5p(l') > (6.14)

is the electron—interaction potential energy.

In order to construct the B system, let us add and subtract the kinetic energy
Tg[p] of N noninteracting bosons of density p(r) in their ground state to the energy
functional expression of (6.4). Assuming the mass of the bosons in atomic units is
unity, their kinetic energy Tg[p] is
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* 1 2
Tglpl = N [ ¢p(r) —EV Yp(r)dr
1
= / Vp(r) (—Evz) Vp)dr. (6.15)

Note that in this case the kinetic energy functional of the density is explicitly defined.
The B system ground state energy expression is then

Elp] = Tslpl + / p()v(r)dr + EZ[p] (6.16)

where
EZlp] = Fuxlpl — Tslpl. (6.17)

It is evident from (6.17) that the B system electron—interaction energy functional
EB[p] accounts for electron correlations due to the Pauli exclusion principle and
Coulomb repulsion as well as Correlation—Kinetic effects. The Correlation—Kinetic
effects in turn arise due to the difference in the kinetic energy of the interacting
system and that of the noninteracting bosons.

The B system differential equation is obtained by application of the Euler—
Lagrange equation to (6.16). Noting that

— ! 2
5o PP =~ 5 s VIV, (6.18)

substitution of the functional derivative of (6.16) into (6.7) then leads to the B system
differential equation for the density amplitude /p(r):

1
[—EVZ + vB(l')} Vo) = py/ p(r). (6.19)

The potential energy of the bosons vg(r) is
vp(r) = v(r) + vl (1), (6.20)

with its electron—interaction component vf;(r) obtained as the functional derivative
B
OElp]

. 6.21
dp(r) (621

vE(r) =

Thus, in traditional density functional theory, the B system is described by the equa-
tions (6.16) and (6.19), with the potential energy vei(r) defined by (6.21). The single
eigenvalue p is the chemical potential. Depending upon the direction in which the
functional derivative is taken, a statement to be explained more fully in the next
chapter, the chemical potential p is the negative of the ionization energy [3].



220 6 Quantal Density Functional Theory of the Density Amplitude

The B system differential equation (6.19) for the density amplitude /p(r) may
also be derived [2, 4-6] via the von Weizsicker [7] kinetic energy functional Ty [p]
defined as

1 [ Vo)
Twlpl = / %dn (6.22)

The functional Ty [p] is equivalent to the kinetic energy Ts[p] of the noninteracting
bosons. This is readily seen to be the case since

2
Vp(r) (—%vz) Vo(r) = —iv2p<r) + L VPwF (6.23)
8 p(r)
and the fact that the first term on the right hand side does not contribute to the energy
integral because the density vanishes at the surface.

As we have seen, in the construction of the model system, one is free to choose
the statistics of the noninteracting particles, as well as their masses and spins. The
advantage of choosing noninteracting bosons instead of fermions is that one then
obtains a differential equation directly for the density amplitude »/p(r). This equation
is solved once to obtain the density. The ground state energy E is then determined
from (6.16). The single eigenvalue x in turn gives the ionization potential. Thus, in
principle, the B system constitutes a more computationally efficient framework for
the determination of electronic structure than that of the S system.

6.1.1 DFT Definitions of the Pauli Kinetic and Potential
Energies

The relationship between the model B and S systems is expressed via the Pauli
kinetic energy Tp[p] defined as

Tplpl = EE[p] — EXS[p), (6.24)

which on substituting for EX%[p] and EZ[p] from (6.9) and (6.17), respectively,
leads to
Tp[p] = Ti[p] — Tslpl. (6.25)

Hence, it is evident that Tp[p] is representative only of kinetic effects. The Pauli
potential energy vp(r) is the functional derivative of Tp[p]:

0Tplpl _ 6Tlpl 1 )
_ _ v2,/ 6.26
v =5 T aem T adm VP (6:26)
= 02 (r) — vee(r) (6.27)

= vp(r) — v (r). (6.28)
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The Pauli kinetic and potential energies are also related by the integral virial expres-
sion [8]

1
Tplp]l = —E/p(r)r -Vup(r)dr. (6.29)

For additional properties of vp(r) and Tp, we refer the reader to [8, 9].

6.2 Derivation of the Differential Equation for the Density
Amplitude from the Schrodinger Equation

In this section we derive [1] the B system differential equation (6.19) for the density
amplitude /p(r) directly from the Schrodinger equation. As a consequence, the
potential energy vZ (r) is expressed as an expectation value taken with respect to a
conditional probability amplitude.

We partition the N—electron Hamiltonian of (2.131) as in (2.150):

N
. 1 1 .
H=—-V? - 4 HNL, 6.30
5 +v(r)+i§:2 F— + (6.30)

where HV=! is the (N — 1)—electron Hamiltonian (2.151). The ground or excited
state wavefunction 1(X) of the time-independent Schrédinger equation (2.133) is
factored as [10]

v(X) = fmeo XV olr), (6.31)

where f(r) is a marginal probability amplitude for an electron at r, and ¢V !
(XV=1, o|r) the conditional probability amplitude associated with the other (N — 1)
electrons at XV ~! when one electron is known to be at r. The conditional amplitude is
antisymmetric in the (N — 1) electrons, and depends parametrically on the position
vector r and spin coordinate o of that electron. The normalization condition for the
wavefunction then dictates the normalizations

Z/¢* (X olr) ¢ (XY, ofr) dXV ™' =1 for each , (6.32)

and

/f*(r)f(r)dr =1 (6.33)

Note that in the normalization condition (6.32), the integration is over the space—spin
coordinates of the (N — 1) electrons and the spin coordinate o of the electron atr. (We
will assume this to be the case for all the integrations below: ( ) = > [dX"~1)
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With the wavefunction (X) expressed as by (6.31), the density p(r) is (see
(2.144))

pr) =N / Y X)pX)dX !

=N fm Y [ 6 (X o) 6 (X, olr) ax !
= Nf*(r) f(r), (6.34)

so that the marginal amplitude f(r) is

fr) = ﬁ p(r). (6.35)

(Note that this is the B system wavefunction ¢ (r).)
Thus, the wavefunction may be expressed as

1
YX) = \/—va(r)w’*l(XN*l, alr). (6.36)

With A and 1(X) defined by (6.30) and (6.31) respectively, the Schrodinger equation
is

1 Yoo
i v 22
( > +v(r)+§2:|r_rI

l

+ ﬁ”‘) f@®eXN ! alr)
= EnyfmoXN! olr), (6.37)

where Ey is the energy of the N—electron system. Multiplying (6.37) by ¢*(XV~!,
o|r) and performing the integration described above leads to

1 1
(o] — EVZ + o) f(r) + (N — D{d|l——|9) f(r)
r—nr
+ (@AY 9) f(r) = Exf(r). (638
Consider next the kinetic energy term
1
(¢ (XML o) | = S V20 (XY, olr)) £ (r) =

1
(6 (X" olr) | = 2 V26 (XY, alr) £ (). (6.39)
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Using V2(AB) = AV?’B 4+ BV?A + 2V A - VB, we have
1 1
- §V2(¢f) =-3 [¢V2f(X) + f(r)V) +2V f(r) - Vo] (6.40)
so that
1 2 1 2 1 2
(ol — 7V lof) = —5 V@) =S f @V |9) = (@IV f - V). (6.41)

The last term of (6.41) on using (6.32) is

1
(PIVSf Vo) = EVf -V{(¢lp) =0, (6.42)
so that (6.38) becomes
1
[—EVZ + EB(I‘)] f(r)=Eyf(r), (6.43)

where

“N—1 (3
vp(r) = v(r)+/p—(r,)dr/ + (¢l — 1V2|¢)
Ir — 1’| 2
+ (¢l HY 116, (6.44)

and p"~!(r) the electron density of that (X" !, o|r) associated with the electron at
r. Subtracting Ey_; f (r) from (6.44), where Ey_; is the (N — 1)—electron system
energy, and noting that f(r) ~ +/p(r) we recover the B system differential equation

1
[—Evz + vB(r)} Vo) = p/p(o), (6.45)

with vp(r) = vp(r) — Ey_1, and u = Ey — Ey_1 the negative of the ionization
energy. In this manner, the potential energy v (r) is expressed in terms of expectation
values taken with respect to the conditional probability ¢(XV~!, o|r).

An important property of the potential energy v (r) is obtained as follows. Since

Vi(plg) =0 (6.46)

and

VH{glp) = 2(Vg - V) +2(6|V?]9), (6.47)

we have ) .
<¢| — 5v2|¢> =5(Vo- Vo) 20, (6.48)
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because the integrand is positive. Then rewriting the expression for vg(r) as

~N—1 (4
vp(r) = v(r) + / P g
[r —r’|
+ (XN o) AN — En_i|oXV !, olr)
+ %(w(xN—l,am -VoXNL alr)), (6.49)

we note that
vp(r) —v(r) >0, (6.50)

as none of the other terms are negative.
Finally, it can be proved that the kinetic energy 7 of the interacting system is
greater than that of the noninteracting bosons T with the same density p(r):

T > T. 6.51)

From (6.41), (6.42), and (6.48) we have that

1 1 1
(vX)| — EVZW(X)) =(fm| - §V2If(r)) +5 (Vo Vo), (6.52)

so that | |
(X)) — Evzw(xn > (f@)] - §v2|f<r>). (6.53)

Multiplying both sides of (6.53) by N and using the symmetry of the wavefunction
1(X) we obtain

A 1
(WEOI = > S VX)) = / Vo(r) (—Evz) Vp(rydr, (6.54)

i=1

which proves (6.51).

6.3 Quantal Density Functional Theory of the B System

As was the case of the Q—-DFT mapping to the S system, the Q—DFT of the B system
is in terms of quantal sources and ‘classical’ fields. The B system, of course, must
account for electron correlations due to the Pauli principle and Coulomb repulsion.
In addition, as we have seen, the kinetic energy of the noninteracting bosons is
different from that of the interacting system. Thus, the B system must also account
for Correlation—Kinetic effects. Hence again, the fields describing the B system must
be in terms of the properties of both the B and interacting systems. And again, there
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must exist an effective field F %ff (r) in which the electron—interaction potential energy
of the model bosons is vE (r).

Within Q-DFT the potential energy vZ (r) of the noninteracting bosons is the
work done to move a model boson in the conservative effective field J:erf(r):

vE(r) = - / Fliw'y - de. (6.55)

o0

Since V x F%ff(r) = 0, this work done is path—independent. The effective field
]:%ff (r) is the sum of the interacting system electron—interaction field £..(r), and a
Correlation—Kinetic field Z f (r):

FIr) = Eecr) + ZE (D). (6.56)

The field E..(r) is obtained from Coulomb’s law from the pair—correlation density
g(rr’) which constitutes its source:

£.(r) = / g —r) . (6.57)

Ir —r'|?

where g(rr’) = (Y(X)| P (rr") |y (X))/ p(r) with ¢ (X) the eigenfunctions of the time-
independent Schrodinger equation (2.133) and P (rr’) the pair operator of (2.28). The
field Z fj (r) is the difference of two kinetic fields, Z g (r) and Z(r) of the model boson
and Schrodinger systems, respectively:

Zl(r) = Z5(r) — Z(v), (6.58)
where . .
2y = 20D g = 20D (6.59)
p(r) p(r)

The B system kinetic ‘force’ zg(r; [vg]) is defined in terms of the corresponding
kinetic—energy—density tensor ¢g ,g(r) as

0
Zpa(r) =2 E a_”[B,u,B(r; [v&D), (6.60)
3 /
with
1 0? o?
af = - 't” r'=r'=r» 6.61
1B,a3(r) 1 |:8r(’l8rg + 8ré5r[{:| Yp(rr’)] (6.61)

and where the model boson system density matrix ~yp(rr’) quantal source is

Ye(rr') = NYp(0)Yp ) = /pr)y/p(r). (6.62)
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The kinetic ‘force’ z(r; [v]) is defined similarly in terms of the interacting system
density matrix y(rr’).
The interacting system energy E may then be written as

E=Tu+ [ pwyo(eds + B T, (6.63)

where the kinetic energy of the bosons Tp is given by (6.15), and the electron—
interaction E¢. and Correlation—Kinetic 7. energies expressed in integral virial form,
respectively, are

Fe = / PO - Ece(r)dr, (6.64)

and {
TF = 3 / p(r)r - Z2(r)dr. (6.65)

The expression for E.. and TCB are independent of whether the fields E..(r) and
Z f (r) are conservative or not. Equations (6.55) and (6.63) constitute the Q—-DFT of
the B system. These equations are valid for the transformation from both the ground
and excited states of the interacting system. Irrespective of the state of the interacting
system, the B system is always constructed to be in its ground state.

The proof of the Q—DFT mapping to the B system is as follows. The boson wave
function ¥ g (r) of (6.2) is the solution to the differential equation (6.19). It therefore
satisfies the ‘Quantal Newtonian’ first law:

F(r) + Fplr) =0 (6.66)
where the internal field experienced by each boson is
Fioir) = —VoE @) — D) — Z5(), (6.67)
with D(r) = d(r)/p(r), d(r) = —%szp(r), and Zp(r) is defined by (6.59). Note
that V. x Z5(r) = 0. The ‘Quantal Newtonian’ first law for the interacting electrons
is (see Sect. 3.4.1) A
F(r)+ F™(@r) =0 (6.68)

where the corresponding internal field is

F(r) = Eee(r) — D(r) — Z(1), (6.69)
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with the components of .7-'im(r) as defined above. Equating (6.66) and (6.68) leads
to
VoE(r) = -F5(r), (6.70)

with .’F%ff(r) defined by (6.56). The interpretation of vei(r) as the work done in the
field .’F%ff(r) is thus proved. Note that although f‘}ff(r) is conservative, the fields
Eee(r) and Zf_ (r) are in general not curl free. For systems of symmetry such that

V X Eee(r) =0and V x Zf (r) = 0, the potential energy vZ (r) may by written as
VE(r) = Wee(r) + W2 (r), (6.71)

where We.(r) and Wf (r) are respectively the work done in the fields £ (r) and
ZB(r):

Wee(r) = _/r gee(r/) . df/ and WI‘B(I') == _/r Zf(r/) . d-e’ (672)

o] o0

The work done We,(r) and W,f (r) are separately path-independent.
The kinetic energy Ty of the noninteracting bosons (6.15) may also be expressed
in terms of the kinetic field Z3(r) as

Tg = —% / p()r - Zp(r)dr. (6.73)

The integral virial expression for the Correlation—Kinetic energy 7,7 of (6.65) then
follows by subtracting 7 from the kinetic energy 7 of the interacting system as
given by (2.70).

For two electron systems such as the Helium atom, Hydrogen molecule, and the
Hooke’s atom, the S system in its ground state and the B system are equivalent. This
is because the spatial part of each S system orbital ¢p(x) is 1 (r) = Yp(r) x +/p(r)
(see Sect. 3.5). Hence, all the quantal sources, fields etc. of the two systems are the
same. The Q-DFT example of the ground state S system description of the ground
and first excited singlet states of the Hooke’s atom (Sect. 3.5) is therefore also that
of the Q-DFT B system representation of these states. The example thus clearly
demonstrates that B systems can be constructed for both ground and excited states
of the interacting system.

It is also possible to construct B systems whereby the density and total energy
of Hartree—Fock and Hartree theories is obtained. The basic Q—DFT equations are
the same but with the interacting system pair—correlation density g(rr’) and density
matrix y(rr’) replaced by the corresponding Hartree—-Fock and Hartree theory prop-
erties.
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6.3.1 Q-DFT Definitions of the Pauli Kinetic
and Potential Energy

The Q-DFT definition of the S system electron—interaction potential energy vee(Tr)
of (3.126) is given by (3.140):

Vee () = — / Fw'y - ae, (6.74)
where
FI(r) = Eee(r) + Z,.(1), (6.75)
with
Z,(r) = Z,(x) — Z(r). (6.76)

The S system kinetic field Z(r) is obtained from its quantal source, the Dirac
density density matrix -y, (rr’), from the corresponding kinetic—energy—density tensor
ts.03(T; [v5]). Employing the definition (6.27) for the Pauli potential energy vp(r),
we have then

vp(r) = — / ' [F$' @) — Fah] - de. (6.77)
But from (6.56) and (6.75)
Fr) — Fl(r) = Zp@r) — Z,(r) = Zp(v), (6.78)

so that vp(r) is the work done in the conservative kinetic field Z p (r):
r
vp(r) = —/ Zp')-de. (6.79)
o0

Note that the components Z 5 (r) and Z,(r) of Zp(r) are each separately conserv-
ative so that we may write

vp(r) = WE(r) — wir), (6.80)

where W2 (r) and Wks (r) are the work done in the kinetic fields Z5(r) and Z,(r),
respectively:

WE(r) = — / ' Zp()-dl and Wi (r) = — / rzx(r/) -de. (6.81)

o] o0
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Since the kinetic energy of the S system when expressed in terms of Z;(r) is

T,=—7 / PO - Z, (), (6.82)

we have on employing (6.73) and the definition (6.25) of the Pauli kinetic energy 7p
that

Tp = —% / p(m)r - Zp(r)dr. (6.83)

From their Q—DFT expressions, it is again evident that 7p and vp (r) are due entirely
to kinetic effects. They depend on the kinetic field Z p(r) which is the difference
between the kinetic fields Z 3 (r) and Z;(r) of the noninteracting boson and fermion
systems. Since for two electron systems, Zp(r) = Z,(r), then vp(r) =0 and
Tp = 0.

6.4 Endnote

As noted previously, for two—electron systems, the S and B model systems are
equivalent. It turns out, however, that the B system is a special case of the S system
[11]. To see this, let us write the spatial part 1; (r) of the S system orbital ¢; (x) as

vi(r) =+/p@)c), i=1,2,..., N, (6.84)

where the coefficients c¢; (r) satisfy

Zc,- r)?*=1. (6.85)

Then with the choice
¢i = 1/4/N, (6.86)

we see that 1); (r) oc o/p(r), and that consequently the model of noninteracting bosons
becomes a special case of the noninteracting fermion model.

A consequence of the above fact is that many general properties of the S system
then translate over to the B system. For example, it has been proved [11], [QDFT2]
that the S system electron—interaction potential energy ve. (r) is finite at the nucleus,
irrespective of whether the system is in a ground or excited state or whether the system
is an atom, a molecule, or a solid. (There is also a separate proof [12], [QDFT2] of
the finiteness of v (r) at the nucleus of spherically symmetric systems.) The same is
therefore the case for the B system electron—interaction potential energy vZ (r). As
another example, to be discussed more fully in the next chapter, the S system potential
energy v (r) is discontinuous as the electron number passes through an integer value.
Thus, the B system potential energy vZ (r) also exhibits such a discontinuity.
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For the application of the Q—DFT of the density amplitude to the Be and Mg atoms
see [13], [ODFT2]. A key result of the mapping from the interacting electrons to
one of noninteracting bosons that are all in the same ground state with density p(r)
is that the Correlation—Kinetic effects become very significant.
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Chapter 7

Quantal Density Functional Theory of the
Discontinuity in the Electron—Interaction
Potential Energy

Abstract In the mapping from an interacting system of electrons in an external field
to one of noninteracting fermions possessing the same density, the local electron-
interaction potential of the latter, which incorporates all the many-body effects,
exhibits a discontinuity as the electron number passes through an integer value.
The origin of the discontinuity is explained, and an expression for it derived in terms
of the eigenvalues of the corresponding noninteracting fermion Schrodinger equa-
tion. According to Kohn-Sham density functional theory, all the different electron
correlations, viz. those due to the Pauli Exclusion Principle, Coulomb repulsion, and
Correlation-Kinetic effects, contribute to the discontinuity. Via Q-DFT it is shown,
both analytically as well as by examples, that neither the Pauli principle nor Coulomb
correlations contribute, and that the discontinuity is solely an artifact of Correlation-
Kinetic effects.

Introduction

The Quantal and Kohn—Sham density functional theory descriptions of the local
effective potential energy theories of the previous chapters have been restricted to
the case of integer (N) electronic charge, i.e. f p(r)dr = N. However, in order to
understand phenomenon such as the dissociation of molecules [1, 2] so that appropri-
ate integer charge exists on the fragments, or properties such as the band structure of
semiconductors [2-5], the framework of these theories must be extended to include
the case of fractional charge (N + w; 0 < w < 1). As a consequence of this exten-
sion a fundamental property of the local electron—interaction potential energy ve. (r)
of the S system of noninteracting fermions emerges. It turns out that this potential
energy exhibits a discontinuity A as the electron number passes through an integer
value. Equivalently, as the fractional charge w vanishes from above

A= li%[véé\”’“)(r) — v m)]. (7.1)

(As the B system of noninteracting bosons is a special case of the S system, the
corresponding local electron—interaction potential energy vZ (r) also exhibits such
a discontinuity.) The existence of the discontinuity then explains the dissociation of
molecules and leads to the correct expression for the band gap of semiconductors.

Thus, for example, the band gap Eg,, which is defined as the difference between
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the lowest energy level of the conduction band and the highest energy level of the
valence band, can be shown to be given by the expression

Egp=cyi — €y + A, (12)
where €M) is the m th eigenvalue of the S system differential equation (3.126) for

M model fermions. It is evident, therefore, that solution of the S system differential
equation for the ground state of a semiconductor to determine the difference between
the first unoccupied orbital energy 65\],\2 1 and the last occupied orbital energy 6§VN> in
itself will not lead to a correct value for the band gap. The addition of the discontinuity
A is essential to determining the gap accurately.

In Kohn—-Sham density functional theory (KS-DFT), the electron—interaction
potential energy ve.(r) is defined as the functional derivative § EXS[p]/ dp(r), where
EKS[p] is the Kohn—Sham electron-interaction energy functional. As explained in
Chap. 5, this energy functional is representative of electron correlations due to the
Pauli exclusion principle, Coulomb repulsion, and Correlation—Kinetic effects. As
the dependence of the functional EXS[p] on the different electron correlations is
unknown, one must therefore conclude from the perspective of KS—DFT, that these
correlations all contribute to the discontinuity A. On the other hand, within Quantal
density functional theory (Q-DFT), the contribution of each of these correlations
to the potential energy v..(r) is delineated, and therefore their separate contribu-
tions to the discontinuity A can be studied. It will be shown [6] in this chapter that
Pauli and Coulomb correlations do not contribute to the discontinuity in the limit as
the fractional charge vanishes, and that the discontinuity is solely a consequence of
Correlation—Kinetic effects. Furthermore, for finite fractional charge, irrespective of
how small it is, there will always be a contribution to the discontinuity from each type
of correlation. The smaller the fractional charge, the smaller the Pauli and Coulomb
correlation and greater the Correlation—Kinetic contribution. An analytical expres-
sion for the discontinuity A in terms of fields representative of Correlation—Kinetic
effects for the fractionally charged and integer electron systems is consequently
derived.

We begin the chapter by explaining the origin of the discontinuity in the electron—
interaction potential energy ve. (r). Next, an expression for the discontinuity for finite
systems is derived in terms of the § system eigenvalues. The Q-DFT of the discon-
tinuity, together with numerical examples explicating the theory, is then described.

7.1 Origin of the Discontinuity of the Electron—Interaction
Potential Energy

The understanding of the origin of the discontinuity in the S system electron—
interaction potential energy ve.(r) is due to Perdew et al. [1, 2]. Accordingly, the
definition of the ground state energy functional E[p] of (4.23) must be extended to
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densities integrating to fractional particle number. Hence, consider a system with a
fractional number of electrons N + w whose density is p¥*%)(r) so that

/ pN T (r)dr = N +w, N =integer; 0<w < 1. (7.3)
The corresponding ground state energy functional E™+<)[p] is then

ENH[ 5] = / PN (e + FON 1, (7.4)

with the universal functional F g}’:w) [p] in turn defined as

Fidlpl = min tr{D(T + 0)). (7.5)

D—)/)(N“")

In (7.5), the search for the minimum is over all ensemble density matrices D con-

structed from an N- and an (N + 1)-electron function (¢p™), yN+D) which yield

the density p"++)(r). (Note that the functions )™ and 1Y+ are not necessarily

the exact ground state wavefunctions of the N- and (N + 1)-electron systems.)
The density matrix is thus defined as

D= a(N)|w(N))<¢(N)| + a(N“)Iz/}(NH))(?/J(NH)I, (7.6)

with
a®™ 4 WD =1, (7.7)

It yields the density pV++)(r) via

p N (r) = tr{Dp)
= a™ (Nl N) 4 VD (VD 5l D)
= a™MpM (@) + oMV N D (r), (7.8)

where p™(r), p D (r) correspond to the N- and (N + 1)-electron system ground
state densities. Integration of (7.8) then leads to

N+w=a™N+a¥ DN +1)
_ (a(N) +a(N+1)) N + a®™+D, (7.9)

which on employing (7.7) yields

a™D =u and o™ = (1 —w). (7.10)
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The ensemble density matrix D is therefore
D = (1= W)™ ™|+ w0 (VD (7.11)
and the density pV <) (r) is
PN = (1= w)p™ ) +wp™ (). (7.12)
The ground state energy EV+“)[p] of the (N + w)-electron system is then obtained

by minimizing the energy functional (7.4) with respect to all densities p¥*<)(r) that
integrate to (N + w) electrons.

Thus
EN+)p] = min [/ pN T (v (r)dr + Fg\%w)[p]] (7.13)
P “(r
J pN+O (r)dr=N+w
= min min
PN () P N+D

S NI @) dr=N4w  (1=w)p™ (£)+wp®¥+D (£)=pWN+) (r)

x [ =)@V AR + o@D ARY) ] @14

The energy minimum is obtained when |¢)¥)) and [)/‘N+D) are the exact ground
state wavefunctions of the N-and (N + 1)-electron systems. The minimizing density
pNF9) (r) is then given by (7.8) and the energy minimum of (7.14) is given by

EN+w) (- w)E(N) +wE(N+1), (7.15)

where E™) and EV*D are the ground state energies of the N- and (N + 1)-electron
systems. Rewriting (7.15) as

EN+W) — (E(N+1) _ E(N))w + EWM
= —Ayw+ EW, (7.16)
where Ay = E®™) — EWVFD s the electron affinity of the N-electron system, we see
that EN*) as a function of w is an equation of a straight line. Thus, the energy E ™ ++)
as a function of the fractional charge consists of straight line segments with possible
derivative discontinuities at integer N. Equation (7.16) is plotted [7] in Fig.7.1 in
the range 0 < w < 1. In the range —1 < w < 0, the corresponding equation is
EWN) = (EW) — EN-D) 4 EW)
=—Iyw+ EW, (7.17)
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Fig. 7.1 The energy EWV+<)
of a finite system such as an ) E
atom with (N + w) electrons T
as a function of the fractional
charge w [7]

(N-1)

where Iy = EN=D — EW) s the ionization potential of the N-electron system. The
straight line of (7.17) is also plotted [7] in Fig.7.1.

The chemical potential p(N) which is the change in the energy as a function of
particle number is then (see also Fig.7.1)

GEN+w)
WN)y=————=—Iy for —1<w=<0

Ow
=—Ay for 0<w<1. (7.18)

Thus, the chemical potential is discontinuous with discontinuities at integer particle
numbers N. As shownin Sect. 4.1, the chemical potential corresponds to the Lagrange
multiplier in the Euler—Lagrange equation (4.22) for the density:

)
7 [E[p] - u(N)/p(r’)dr/] =0. (7.19)

(Note that this equation has now been extended to the case of noninteger charge.)
Since the chemical potential is discontinuous, the functional derivative 6 E[p]/dp(r)
is discontinuous as the electron number passes through an integer value. With the
energy functional E[p] written as within KS-DFT (4.80), we see that the S sys-
tem electron-interaction potential energy ve (r) = § EXS[p]/dp(r) is discontinuous.
Thus, the origin of the discontinuity in ve.(r) is the discontinuous nature of the
chemical potential as a function of electron number.
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7.2 Expression for Discontinuity A in Terms of S System
Eigenvalues

We next derive [8, 9] an expression for the discontinuity A of (7.1) for finite systems.
This expression is in terms of the S system eigenvalue of the charge—neutral (N + 1)-
electron system such as an atom, and that of the corresponding N-electron positive

ion. We show A to be the difference between the highest occupied eigenvalue e%vjll)

of the (N + 1)-electron system and the (N + 1) th eigenvalue e;,NJi , of the N-electron
system. The proof follows.

Consider a fractionally charged (N 4 w) S system with local potential energy
vV ) (r). Such a system is defined by the equations

1 , w
|:_ 5 VZ + U§N+u}) (I')] ¢§N+W) (X) — E§N+w) ¢§N+w> (X) , (720)

with

2 2
¢1§N+w)(l‘)} +w‘¢§\1’\’:lw)(r)) , (7.21)

N
PN =

i=

where the highest occupied orbital has the fractional charge w. (The spin index o is
suppressed in (7.21).) Equation (7.21) may equivalently be expressed as

N 2 N+1 )
PN = (1—w) > (qbe*“) (r)‘ tw> )qﬁfw‘” (r)‘ : (7.22)
i=1 i=1

Writing US(N +9)(r) in terms of its Hartree U;IN’L‘”) (r) and KS ‘exchange—correlation’

vV (1) potentials, we have

VN (r) = v(r) + v (r)

= () + v 1) + oV (p), (7.23)

where Nty s
oV () = / PO gy, (7.24)

r —r|

Equations (7.23) and (7.24) then define vXN 9 (1), Assuming the system under con-

c
sideration to be finite, we impose the condition that v **)(r) vanishes at infinity:

lim vV (r) = 0. (7.25)
r—oo
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Since the external and Hartree potential energies also vanish in this limit we then
have
lim vV (r) = 0. (7.26)
r—oo

With this result, the S system orbital densities in general decay asymptotically as
i) 5 e 20 (7.27)

The highest occupied fractionally charged orbital QSE\I,VJF’L]”) (r) has the slowest decay
so that the asymptotic structure of the (N + w)-electron system density is

p(Ner) (I') e 672(7255\?/:[@)1/2}”. (728)
On the other hand, the asymptotic decay of the N- and (N + 1)-electron system
densities from (2.163) is o
pM () e (7.29)
and
p(N+1) (r) e 8*2(21N+1)1/2r’ (7.30)
where Iy and Iy, are the ionization energies for the N- and (N + 1)-electron
systems, respectively. Because the ionization energy for an (N + 1)-electron system
is smaller than that of an N-electron system we have

Iny < Iy, (7.31)

and the fact (see (7.12)) that p™*<)(r) is a linear combination of p™¥)(r) and
p™*D(r), we have
(N+w)

(N+1)(r) e 672(21N+1)1/27’. (7.32)

p

r—00 p

A comparison of (7.32) with (7.28) leads to

N+ N+1
ew? = Iy = e, (7.33)

where the second equality is a consequence of the fact that the highest occupied
eigenvalue of the S system is minus the ionization potential (see Sect. 3.4.8). Equation
(7.33) also shows that the highest occupied eigenvalue is independent of the fractional
charge w.

In order to show that v{"*)(r) differs from v{¥) (r) as w approaches zero from
above, let us consider a radius R(w) such that

wp™V(RW)) = (1 = w)p™ (RW)), (7.34)
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for » = R(w). As a consequence of (7.31), p¥+V(r) asymptotically decays more
slowly than p™ (r) (see (7.29) and (7.30)). Thus, as w approaches zero, R(w)
becomes infinite. For r < R(w) and w approaching zero, the density p™)(r) domi-
nates the ensemble density p¥ ) (r) of (7.12). Thus, in this region

lim PNy = pM(r) for r < R(w). (7.35)

Therefore, in the region r < R(w), both v¥*<)(r) and vV (r) generate the same
density. As such these potential energies can differ at most by a constant A in this
region. Since by definition both vV *)(r) and v{™(r) become zero in the limit
r — 00, we have

VN () — M (r) = A for r < R(w)
=0 for r> R(w). (7.36)
In the limit w — O the radius R(w) becomes infinite and both potentials differ by
a constant A everywhere. Employing (7.36) in the differential equation (7.20) for

the (N + w)-electron system, and the fact that for small w in the region r < R(w)
the orbitals ¢5N+”) (x) ~ QﬁfN) (x), we obtain

[—%vz + v () + A] oM x) = MM (x) for r < Rw).  (1.37)
The corresponding equation for the N-electron system is
[—%vz + vég’)(r)] oM (x) = Mo (x). (7.38)
A comparison of (7.37) and (7.38) shows that

eNFD — N LA for w— 0. (7.39)

In particular fori = N + 1 we have
A= tim [ =] = —dvn = s (7.40)
where in the last step we have used (7.33). Since

VW) =0 ) =0 for r— oo, (7.41)
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we finally have
: N+ N
A = lim [v ) () — v ()]

w—>

= hm [v ) () — v ()]

w—0
N+1 N
= ey — Enans (7.42)
where we have employed eg\],\fll) = —Iy41. We thus see that the discontinuity A is

finite. Equation (7.42) is the desired result.

7.3 Correlations Contributing to the Discontinuity
According To Kohn—-Sham Theory

If in (7.1) one employs the KS-DFT definitions of the potential energies v{¥ ™) (r)
and v\ (r) (or V¥ ) (r) and v'Y)(r)) as the functional derivatives SEX5[p]/dp(r)
v+ and SEES[p] /6p(0) | (or SEXS[p1/6p() -4 and SEXS[p]/6p(r) ), respec-
tively, one is led to the conclusion that all the correlations present—Pauli, Coulomb,
and Correlation—Kinetic—contribute to the discontinuity. That this is the case may
also be surmised from (7.42), since these eigenvalues are generated via the full KS
potential energy. In earlier Q—DFT literature [10, 11], it was also implicitly assumed
that all the correlations contribute to the discontinuity. What we prove [6] via Q-DFT
in the sections to follow is that Pauli and Coulomb correlations do not contribute to the
discontinuity, and that this intrinsic property of the S system is solely a consequence
of Correlation—Kinetic effects.

7.4 Quantal Density Functional Theory of the Discontinuity

For this chapter to be self—contained, we next redefine the fields and potential energies
within Q-DFT with minor notational changes in order to distinguish between the
N-and (N + w)-electron systems.

The N-electron Schrodinger equation and that for the corresponding S system
are, respectively,

——ZV2+Zv(r,)+ Z| i M (X)

= EMyM(x), (7.43)
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and
1
[—Evz o) + véﬁ”] oM (x) = Mo (x), (7.44)

where W) (X) is the wavefunction, E the ground state energy, and ¢, (x) and ¢; the
single particle orbitals and eigenenergies. The density p™¥) (r) = (UM |5(r)| W M) =
(¢{¢§N)}|ﬁ|<b{¢f’v)}) => |¢5§N) (x)|%, where j(r) is the density operator (2.12),
and <I>{(/§§N) } the Slater determinant of the orbitals (bl(N) (x).

The work v{)"(r) done to move the model fermion from a reference point at

infinity to its position at r in the force of the conservative effective field ™ (r) is
VM (r) = — / FMy . ae, (7.45)
oo

where
FM@)= &M w) + 2N (r). (7.46)

The electron—interaction component field £ (r), which is representative of Pauli
and Coulomb correlations, is obtained by Coulomb’s law from its nonlocal source
charge distribution g™ (rr’), the pair—correlation density. Thus,

(N) / -
[P,

where g™ (rr') = (WM | P(xr')|[ ¥ ™) /p™(r), and P(rr’) is the pair—correlation
operator (2.28). The Correlation—Kinetic component field 2 EN) (r) is defined in terms

of the kinetic ‘forces’ z™)(r; [v]) and z( (r; [7;]) for the interacting and S systems,
respectively, as

ZMa) = 2™ @5 1) — 2V @5 1}/ PN (). (7.48)

The nonlocal sources of the kinetic ‘forces’ are the spinless single—particle v (rr’)
and Dirac v (rr’) density matrices, respectively, where

AN @r) = (W3 ar) v ) (7.49)
and

AN (') = (@[} () | D (o))
=> ¢V oo (o), (7.50)

and where 4 (rr’) is the density matrix operator (2.17). The kinetic ‘forces’ are
defined such that the component zg\' ‘r)=2> 3 Oto3(r; [v])/Ors, where t,5(r) =
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(DI&*/ o, orly + 0?/ 6ré8r[¥’]7("’ )(r'r") |y —p—r is the kinetic—energy—density tensor.
The ‘force’ zﬁN (r; [vs]) is similarly defined in terms of the S system tensor #; 3(r)
and Dirac density matrix vV (rr’).

Within the Schrédinger theory framework, the fractionally charged (N + w) case
is treated in terms of an ensemble of the N- and (N + 1)-electron systems. Thus,
with the ensemble density matrix defined as in (7.11), the pair—correlation density,
and the density matrix can be shown to be

gV er'y =1r(D P}/ p™V ) (r)
=[1 = w)p™ g™ )
+ wp™ DM )] /p ), @.51)

and

AN (rr'y = tr{DX}
=1 —wyMar) +wy ¥ D r). (7.52)

The local potential energy véé\' ) (r) in (7.23) can be rewritten as the work done in
a conservative field FV ) (r):

r
vt = - / FNFI 'y - ad, (7.53)
o0
with v
FWN+w) r) = géle\’w) (r) + Ztc (r). (7.54)

The electron—interaction field £/Y™(r) is obtained by Coulomb’s law from its
source charge gV <) (rr’) as

EXT@) = [(1=w)pM®ED ()
+ wpM P OELTI W]/ PN ). (7.55)

The Correlation—Kinetic field Z;{{Vw) (r) is defined as

2:V+w)(r) _ Z§N+w) (r; [;?X(Nﬁ-w)])

Y ) VR
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where the kinetic “force’ z(¥*%)(r) is obtained from its source YN (rr’). The
S system kinetic ‘force’ ZEN +9)(r) is similarly obtained from the density matrix
constructed from the orbitals (bl(N“’) (x) and is

N
:-Y,S(N+w) (I’l‘/) =(1-w) z ¢§N+w)*(ro_)¢§N+w) (I"U)

o,i=I
N+1
+w Z ¢EN+W)*(I‘U)¢)§N+W)(I‘/U). (1.57)

o,i=1

We next prove that the discontinuity as defined by (7.1) is due to Correlation—Kinetic
effects.

7.4.1 Correlations Contributing to the Discontinuity
According To Q-DFT: Analytical Proof

A. Electron-Interaction Component

We first prove that correlations due to the Pauli exclusion principle and Coulomb
repulsion do not contribute to the discontinuity A.
From (7.45) and (7.53) we have

V [ ) — v ()] = —A&ee(r) — AZ, (1), (7.58)
where
A& (r) = ELF(r) — X (), (7.59)
and Nt
AZ,0) =2, @©-2"®. (7.60)

From (7.47) and (7.55), we have

A€ee(rD) = [{(1 = w)p™ @) — p¥ (@)} €L (1)
+ wp™@EX TV ]/ PN (). (7.61)

Substituting for (1 — w)p™ (r) = pN*+) (r) — wp™*V(r) into (7.61) leads to
AEee(r) = wp™V (@) [EXTV () — €]/ p M (). (7.62)
It follows from (7.62) that lim,,_ .o A€..(r) = 0. To see this consider the radius

R(w) defined by (7.34). Forr < R(w) and small w, the density p¥) (r) dominates the
ensemble density p¥ ) (r). Thus, in this region pV*<) (r) ~ p™)(r), and A& (r) is
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linear in w, and vanishes asw — 0.Forr > R(w), the ensemble density pV ) (r) ~
wp™ D (r). Substitution into (7.62) shows that the w’s cancel. But in this region the
difference [€ ég’ Dy - & éé\' )(r)] ~ 1/r%sothat AE..(r) once again vanishes. In the
region r ~ R(w), A€ (r) vanishes essentially linearly with w. We note, however,
that AE..(r) is finite for positive definite w, irrespective of how small w is. It is only
in the limit of vanishing w that the Pauli and Coulomb correlation contributions to
the discontinuity vanish.

Finally, since the pair-correlation density may be writtenas g™ (rr') = p™ (r') +
oM (rr’), where p™(rr’) is the Fermi-Coulomb hole charge distribution, we
have Ae(r) = AEy(r) + A, (r), where AE(r) = [EX ™ (r) — €Y (r)] and
A& (r) = [8&12'*”) (r) — 8)((12') (r)]. Here ng) and S;f)(r) are the Hartree and
Pauli-Coulomb fields arising from the component charge distributions p™)(r’)
and p') (rr'), respectively. Since A€y (r) = w[E ZVH) r)—& (Iy) (r)], it follows that

lim,_,o A€ (r) = 0, and, consequently, the lim, .o AE,.(r) = 0.
B. Correlation—Kinetic Component

Since the quantum—mechanical electron—interaction contribution A& (r) in (7.58)
vanishes in the limw — 0, we have

lim v [V @) — v m] = -AZ, (), (7.63)

which proves the fact that the discontinuity is strictly a Correlation—Kinetic effect.
The discontinuity A is then the work done

0

A= / [ZfN“’) a)— 2™ (r/)] Ldv. (7.64)
o0

From (7.63) it also follows that this work done is path—independent. Equation (7.64)

is an alternate expression for the discontinuity A, in which it is evident that the

correlations that contribute to it are solely those due to Correlation—Kinetic effects.

To understand more fundamentally how Correlation—Kinetic effects contribute to

the discontinuity, we next explain the structure of AZ, (r) for small w. We rewrite
AZ, (r) as

~ (N+w)
Az, =2 "m-2Z"m (7.65)
=A+B, (7.66)
where
1
_ = ({NN+w e 0.}
= W) (r) % (r) (7.67)
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and
1
- - _ (N) (N+1)
=~ m [ —w)z™ (@) +wz™ V()]
——z™ ). 7.68
+ poy (r)z (r) (7.68)
For r < R(w), the region where p™(r) dominates, FN+v
ar) ~ 3N oM oo™ (o), so that ZV ) (r) ~ 2V (r). Therefore, A = 0.

The term B = 0, since the terms linear in w are negligible. Thus, in this region,
AZ, (r)=0.

In the r — oo limit, both ZENJM) (r) and fov)(r) vanish, so that in this region
AZ, (r)=0.

For r> R(w), we have ¢§N+w) (r) —> ¢§N *D(p), so that FNF (pr')
~ w3V oM o) (o) and ZNFO(r) ~ wz™HD(r). Thus A ~
M@/ PN )] = 2V @) /p™M ®]) and B ~ {[—zN D (@) /pN D (0] +
™ (@) /p™ (©)]}, so that AZ, (r) = ZV(r) — ZV(r). Thus, in this region,
A Zt.(r) is finite. In this limit, as w — 0, the radius R(w) becomes infinite, and the
difference AZ, (r) stabilizes. We next demonstrate the above conclusions via two
numerical examples.

7.4.2 Numerical Examples

Example 1. As a demonstration of the above conclusions, we consider the
example where the integer system is the He™ ion (atomic number Z = 2, electron
number N = 1). Its wavefunction, which is hydrogenic, is known, as is the density
pN=D(r) = pV(r). The ensemble density p!!*)(r) of (7.12) is then

P = (1= w)p ) +wp? (@), (7.69)

where p@ (r) = p™*D(r) is the density of the He atom. For the He atom, a highly
accurate 491-parameter correlated wavefunction [12] is employed. This wavefunc-
tion is accurate upto r = 24 a.u. from the nucleus, which in essence is infinity for
the atom. Smaller and smaller fractional charge w is added to the 1s shell of the He™
ion. For the corresponding S system, there is therefore only one orbital ¢!+« (r).
Thus, the ensemble density p!**)(r) in terms of the S system orbitals as given by
(7.22) is

P10 ) = (1 = w) ") * + w2]p" ) ()2
= (1 +w)|p"™ @) (7.70)
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Thus, from (7.69) and (7.70), we have

_ ) @ 1/2
(1= w)p(r) +wp (r)} . 771)

(14w) oy
) (r) = [ —
As the wavefunctions for He™ and He, and consequently the orbital d)(”‘*’) (r), are
known, all the requisite sources and fields can then be determined for different values
of the fractional charge w.

In Fig.7.2(a) we plot the Hartree field difference A€y (r) for w = 107!, 1072,
and 1073, As the fractional charge diminishes, the difference AE ; (r) becomes neg-
ligible. The corresponding work AWy (r) = — f oro AE (1) - de’ is constant in the
interior as expected (Fig.7.2(b)), but becomes smaller with decreasing fractional
charge, although it is still finite at w = 107>, As w is decreased further, however,
both A€y (r) and AWy (r) vanish. Thus the Hartree component of the Coulomb
interaction does not contribute to the discontinuity.

In Fig.7.3(a), the difference in the Pauli-Coulomb fields A&,.(r) is plotted
for fractional charges w = 107>, 1078, and 107'°. As expected, it vanishes in the
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interior, and is peaked in the surface region. It diminishes with decreasing w, while
simultaneously the peak moves further into the classically forbidden region where
A&,.(r) decays as (1 — w)/r? for finite w. Thus, the corresponding work (Fig. 7.3(b))
AW, (r) = — f ; AE . (r') - dl is constant in the interior, with the region where
this difference is constant increasing with decreasing w. Furthermore, as expected
the constant value of AW,.(r) also diminishes with decreasing w. For w = 10-10
the constant value of AW,.(r) in the interior is 0.052 a.u., Asymptotically, A W, (r)
decays as (1 — w)/r. With vanishing fractional charge, the Pauli-Coulomb contri-
bution to the discontinuity will also vanish.

In Fig.7.4 we plot the difference AZ, (r) of the Correlation—Kinetic fields, for
fractional charges w = 1072, 107>, 1078, and 10~'* a.u., As expected, this differ-
ence vanishes in the interior region. However, in the surface region, these curves
are dramatically different from those of Figs.7.2 and 7.3 in that as the fractional
charge w is decreased, the magnitude of these curves increases (Fig.7.4(a)). With
a further decrease in w, the structure essentially stabilized (Fig.7.4(b)) and remains
finite, while simultaneously moving further out into the classically forbidden region.
Thus the constant value of the work AW, (r) = — f:o AZ, (') - d¥ increases with
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decreasing fractional charge (Fig.7.5), approaching the exact value of the dis-
continuity A from below. This value may be determined from the known result
A= 65\1{\/;;1) — 6%\21 of (7.42), and the fact the highest occupied eigenvalue of the
S system corresponds to minus the ionization potential. Taking into consideration
the double occupancy of the 1s orbital, and that the ionization potentials of He and
Het are 0.903 and 2 a.u., respectively, we have A = 1.097 a.u., The value of AW,
forw = 10719 is 1.035 a.u., Adding the value of AW, = 0.052 a.u. for the same w
value, we obtain A = 1.087 a.u., which is essentially exact. In the limit of vanishing
w, the contribution from AW, will vanish, and that due to AW, will equal A. This
confirms that the discontinuity in the electron—interaction potential energy is solely
due to Correlation—Kinetic effects.

Example 2. The calculations in this second example are performed within the
Pauli—correlated approximation of Q-DFT [13] as described in Sect.5.8.1. (see
Chap. 6 of ODFT?2) (This is also the lowest—order of Q-DFT many-body pertur-
bation theory. See Chap. 18 of ODFT2.) In this approximation, only correlations
due to the Pauli exclusion principle are considered beyond the Hartree term. Thus,
the corresponding pair—correlation density g™)(rr’) is determined from a Slater
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determinant d>{¢fN)} of the S system orbitals (be) (x). The local electron—interaction

potential energy v{Y)(r) of the S system is then v (r) = v;,N) (r) + WV (r), where

WM (r), is the work done in the conservative field £ (r)due to the S system Fermi
hole charge p™ (rr’). For the (N + w)—electron system the Fermi hole charge is

(N+w)

PVt (er') = gV (er') — p NI (1),

(7.72)
where gS(N @) (rr') is defined in a manner similar to (7.51) but in terms of the
g™ (xr’) and g+ (rr’). This is the ensemble definition of the Fermi hole. (The
use of the nonensemble definition [14] of the Fermi hole: pN*) (rr') = —|§N+)
(rr')[2/2pN+) (1), where YN+ (rr') is given by (7.57), is inappropriate and will
not [10] lead to a discontinuity.)

The integer system we consider in this case is the Na™ ion (atomic number
Z = 11, electron number N = 10). In Fig.7.6 we plot the difference AE,(r) =
ENTI(r) — EM(r) for the Na* ion for fractional charge of w = 107>, 10717,
10~ 1 filling the empty 3s subshell. These calculations are performed within the spin—
unpolarized central field approximation [13]. Observe that the difference vanishes
except in the asymptotic region of the atom where it is peaked. Note also that as the
fractional charge decreases, this peak moves further into the classically forbidden
region as it must. The difference AE, (r) also decays asymptotically as 1/r>.
In Fig.7.7 we plot the corresponding Pauli potential W, (r) for the Na* ion for
the case of the empty 3s subshell (dashed curve), and for the fractionally charged
ion with fractional charge w = 107 in the 3s subshell (solid curve). The difference
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Fig. 7.6 Variation of 0.025 e — q -
th%v difference Aﬁx = !
eNT (r) — 5)(( ) (r) of the 0.020 Atomic number Z=11 i i
Pauli fields £¥ ) (r) and ' Electron number N=10 i

(N —_ 1
Ex )(r) for the (N + w) 3 0015k Fractional charge o £ d
fractionally charged and 8 S 107 ]
N-electron Nat ions, S, ......... 10710
respectively. The fractional - 0.010 — 10 1

charge of w = 1073, 10710,

10~15, partially fills the 0.005 |- 2
empty 3s subshell L i N

0.000

aaal PRSP | i s assnal A s s sl
0.001 0.01 0.1 1 10
r(a.u.)

LA B B L N L R L S

Fig. 7.7 The Pauli potential
for the Na™ ion with integer
number (N = 10) of
electrons (dashed curve),
and with fractional charge
(10 + 1079) (solid curve).
The fractional charge 107>
fills the empty 3s subshell

Wx (r)(a.un.)

--I"I"- ey e B LT T
0.001 001 0.1 1 10
r(a.u.)

AW, (r) = W) (r) — W™ (r) of the Pauli potentials for the (N + w) fractionally
charged and N-electron ions for w = 107>, 10719, 10~ is plotted in Fig.7.8. As
is evident, the difference AW, (r) is constant except in the asymptotic region where
it decays as 1/r. However, note that the constant value of AW, (r) continues to
diminish with decreasing w as was the case for AW,.(r) of Fig.7.3(b). In the limit
w — 0, the difference AW, (r) will vanish.
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Fig. 7.8 Variation of the 0.20 ——rrrr—rrrTm— Ty
difference AW, =
W) @y = w™N (1) of I ———— Y
the Pauli potentials 0.16 i |
w9 (r) and WY (r) for ' :
the fractionally charged :
(N + w)—and N-electron i
Na™ ions respectively E 0.12 i 7
= ]
3 \
3 0.08 i E
Fractional charge o
-5
0.04 - o
....... 10 -
T S, 10 -15
0.00 s " R
0.001 0.01 0.1 1 10
r(a.u.)

7.5 Endnote

As we have seen, the discontinuity in the S system electron—interaction potential
energy ve.(r) as the electron number passes through an integer value is solely due
to Correlation—Kinetic effects. The discontinuity is therefore expressed as in (7.64)
entirely in terms of fields representative of these correlations. The magnitude of the
discontinuity is determined as the work done in a conservative field. Correlations due
to the Pauli principle and Coulomb repulsion do not contribute to the discontinuity.
Note however, that for finite fractional charge, irrespective of how small it is, there
are contributions to the discontinuity from all the three different types of electron
correlations. It is only in the limit of vanishing fractional charge that the contributions
due to Pauli and Coulomb correlations vanish. Thus an accurate approximation to the
discontinuity may be obtained, as in the example above, by summing the contributions
of the various correlations as determined for a small value of the fractional charge.
The analysis presented in this chapter also leads to a better understanding of the
correlations that contribute to the discontinuity exhibited by the KS-DFT ‘exchange’
v, (r) and ‘correlation’ v, (r) potential energies. The existence of the discontinuity in
v, (r) has been demonstrated [14] via calculations performed within the ‘exchange—
only’ optimized potential method (see Sect.5.7.1). As proved in Sect. 5.3, the poten-
tial energy v, (r) is representative of electron correlations due to the Pauli exclusion
principle and lowest—order Correlation—Kinetic effects. Since Pauli correlations
do not contribute to the discontinuity, it is the lowest—order Correlation—Kinetic
component that is responsible for it. The KS-DFT ‘correlation’ potential energy
v.(r) is in turn representative (Sect.5.4) of Coulomb correlations and higher—order
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Correlation—Kinetic effects. Thus, as Coulomb correlations do not contribute to
the discontinuity, the discontinuity in v.(r) is due to the higher—order Correlation—
Kinetic contributions.
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Chapter 8
Generalized Hohenberg-Kohn Theorems
in Electrostatic and Magnetostatic Fields

Abstract The Hohenberg-Kohn theorems for a system of N electrons in an external
electrostatic field are generalized to the added presence of a uniform magnetosta-
tic field. The theorems are proved for Hamiltonians of both spinless electrons and
electrons with spin. It is thereby shown that the basic variables in each case are
the nondegenerate ground state density p(r) and physical current density j(r), i.e.
knowledge of {p(r), j(r)} uniquely determines the external scalar v(r) and vector
A(r) potentials to within a constant and the gradient of a scalar function, respectively.
The proofs differ from the original HK proof because the relationship between the
potentials {v(r), A(r)} and the nondegenerate ground state wave function is no longer
one-to-one but many-to-one. Further, in addition to the constraint in the original HK
proof of fixed electron number N, the constraint of fixed canonical orbital angular
momentum L (for spin less electrons) and the added constraint of fixed spin angular
momentum S (for electrons with spin) is required. The consequence of these proofs
to the existing spin and current density functional theories is remarked upon.

Introduction

This chapter is concerned with the generalization [1] of the Hohenberg-Kohn (HK)
theorems to the presence of both an external electrostatic £(r) = —Vu(r) and a
magnetostatic B(r) = V x A(r) field, where v(r) and A(r) are the scalar and vector
potentials. The added presence of a magnetostatic field in the context of density
functional theory is an active area of theoretical research whose origins lie in the
original Kohn-Sham [2] paper. We provide here our most recent understandings and
proofs of the corresponding HK theorems. This then leads to the Q-DFT in the
presence of these fields as described in the following Chap.9.

The physics of electrons differ in the added presence of a magnetic field. The
corresponding ‘Quantal Newtonian® first law for each electron is thus modified
[3, 4]. In the law, there is of course the additional Lorentz field contribution to
the total external field experienced by each electron. Further, in addition to the com-
ponents of the internal field representative of the kinetic effects, the density, and the
correlations due to the Pauli exclusion principle and Coulomb repulsion, there is also
an added component due to the magnetic field. The Schrédinger theory of electrons
in the presence of a magnetostatic field B(r) in terms of ‘classical’ fields and their
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quantal sources based on the ‘Quantal Newtonian’ first law will be described fully
in the following chapter.

There is yet another fundamental difference in the physics of the electrons in the
presence of a magnetostatic field, one that has a particular bearing on the proofs of the
corresponding generalized HK theorems. In the case when the only external field is
the electrostatic field £(r) = —Vu(r), HK prove in their first theorem (see Chap. 4),
that there is a bijective or one-to-one relationship between the external potential v(r)
and the nondegenerate ground state wave function . This fact is important because
it is then employed to prove a bijective relationship between the wave function ) and
the nondegenerate ground state density p(r). Thus, there is a bijective relationship
between the external potential v(r) and the density p(r). The proof of this theorem
is predicated on the constraint of fixed electron number N [5]. Knowledge of the
density p(r) then uniquely determines the external potential v(r) to within a constant.
Since the kinetic 7 and electron-interaction W operators are known, the Hamiltonian
is known. Solution of the Schrédinger equation then leads to the ground and excited
state wave functions of the system. As such the wave functions of the system are
functionals of the nondegenerate ground state density: 1 = ¥[p]. (The wave function
1 is also a functional of a gauge function o(R) because when written as a functional,
it must be gauge variant. (See Chap.4)) The one-to-one relationship between p(r)
and the external potential v(r) then defines the gauge invariant property of the density
p(r) as a basic variable of quantum mechanics. As the wave function 1, and hence
the energy E,[p] are functionals of the density p(r), the second HK theorem develops
an energy variational principle for arbitrary variations of v-representable densities.
The corresponding Euler-Lagrange equation is solved for fixed v(r) subject to the
constraint of known electron number N (see Table 8.1 for a summary of the theorems).

When both an electrostatic £(r) = —Vv(r) and a magnetostatic B(r) = V x A(r)
field are present, the relationship between the external potentials {v(r), A(r)} and
the nondegenerate ground state wave function ) is different from that of the orig-
inal HK case. It turns out that the relationship between {v(r), A(r)} and 1) can be
many-to-one [6-10] and even infinite-to-one [11, 12]. It is evident then that the
proof of bijectivity between any gauge invariant properties and the external poten-
tials {v(r), A(r)} must also be different. Furthermore, the proof must account for
this many-to-one relationship of the potentials {v(r), A(r)} and the wave function ).
Such a proof [1] of the bijectivity between the external potentials {v(r), A(r)} and
the gauge invariant properties of the nondegenerate ground state density p(r) and
the physical current density j(r) is provided for a uniform magnetic field. The proof
is for (v, A)-representable densities {p(r), j(r)}. Since the magnetic field consti-
tutes an added degree of freedom, there must be another constraint imposed. When
the interaction of the magnetic field is only with the orbital angular momentum,
the additional natural constraint imposed is that of fixed canonical orbital angular
momentum L. In the case when the interaction of the magnetic field is with both
the orbital and spin angular momentum, the constraint is that of fixed canonical
angular momentum L and spin angular momentum S. Knowledge of {p(r), j(r)}
then uniquely determines {v(r), A(r)} to within an arbitrary constant and the gradi-
ent of a scalar function, respectively. With the kinetic T and electron-interaction W


http://dx.doi.org/10.1007/978-3-662-49842-2_4
http://dx.doi.org/10.1007/978-3-662-49842-2_4

8 Generalized Hohenberg-Kohn Theorems ... 255

Table 8.1 Comparison of Hohenberg-Kohn and Generalized Hohenberg-Kohn theories

Theory Hohenberg-Kohn DFT Generalized HK DFT
Parameters characterizing | Electron Number N Electron Number N
ground state Angular momentum L
Relationship between One-to-one between v(r) Many-to-one between {v(r), A(r)}
potentials and wave function | and W and W
Properties characterizing Electron density p(r) Electron density p(r)
ground state Physical current density j(r)
Angular momentum L
Bijectivity theorem For fixed N For fixed N and L
p(r) < v(r) {p(), j(O} < {v(r), A(r)}
Wave function and energy | ¥ = ¥[p, a] U =Y[p,j,a]
functionals For fixed v : E = E,[p] For fixed
{v,A}: E = Eyalp, il
Euler equations and Variational principle for Variational principle for fixed
constraints fixed v and known N: {v, A} and known N, L:
OE, : N .
% =0 6Ev<§plﬂ,JJ =0 oEv,gjlp,u 0
[ p(r)dr =N ) J P
Jp(®dr =N
Jrx (m—1pmAr)dr =L
V.jr) =0

operators assumed known, the Hamiltonian is known. Solution of the Schrodinger
equation then leads to the wave functions of the system. This then is the HK path
from the gauge invariant properties {p(r), j(r)} to the wave functions ). The wave
functions v are thus functionals of the properties {p(r), j(r)}, i.e. ¥ = ¥[p, j]. Via
a density preserving unitary or gauge transformation, it can be shown that the wave
functions ¥ must also be a functional of a gauge function a(R). This ensures that
when 1 is written as a functional it is gauge variant. The basic variables of the quan-
tum mechanics of electrons in the presence of a uniform magnetic field and constant
canonical angular momentum are thus {p(r), j(r)}.

As the ground state energy is a functional of the basic variables: E = E, A[p, j], a
variational principle for E, o[p,j] exists for arbitrary variations of (v, A)-
representable densities {p(r), j(r)}. The corresponding Euler-Lagrange equations
for p(r) and j(r) follow, and these must be solved with the constraints of charge
conservation, constant angular momentum, and the vanishing of the divergence of
the physical current density via the equation of continuity. Implicit in this variational
principle, as in all such energy variational principles, is that the external potentials
remain fixed throughout the variation.

With the knowledge of the properties that constitute the basic variables, a Percus-
Levy-Lieb (PLL) [13] type constrained-search path from the {p(r),j(r)} to the
nondegenerate or degenerate ground state wave function ¢ is then possible. One
searches over all N-representable v, ; that reproduce {p(r), j(r)} and the fixed angu-

lar momentum. The minimum of the expectation (T + W) then yields the true
function ).
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Finally, it is possible to map the interacting system of electrons to one of nonin-
teracting fermions within both a Kohn-Sham-type framework and Q-DFT. The latter
mapping is described in the following Chap. 9. The generalized HK theorems proved
for both spinless electrons and electrons with spin are of particular value for yrast
states. These are states of lowest energy for fixed angular momentum. These states
have been studied experimentally and theoretically for both bosons and fermions,
e.g. rotating trapped Bose-Einstein condensates [ 14], and harmonically trapped elec-
trons in the presence of a uniform perpendicular magnetic field [15]. The theorems
derived are also applicable to all experimentation with a uniform magnetic field such
as the magneto-caloric effect [16], the Zeeman effect, cyclotron resonance, magne-
toresistance, the de-Haas—van Alphen effect, the Hall effect, the quantum Hall effect,
the Meissner effect, nuclear magnetic resonance, etc. The chapter begins with defi-
nitions and properties of electrons in a magnetic field. It continues with the proofs
of the generalized HK theorems for uniform magnetostatic fields for the cases of the
interaction of the field with only the orbital angular momentum, and with both the
orbital and spin angular momentum. The chapter concludes with remarks on spin,
paramagnetic and other current density functional theories, and an endnote for future
work.

8.1 The Classical Hamiltonian and Properties

To obtain the Hamiltonian and other relevant properties of electrons in an external
electrostatic and magnetostatic field, we begin with a description of a classical par-
ticle in the presence of these fields. This material is in various texts [17—-19], but is
presented here for purposes of completeness. With this understanding of the classical
physics, we then apply the correspondence principle to obtain the resulting properties
within quantum mechanics.

8.1.1 Classical Physics

Consider a classical particle of charge Q, mass M, velocity v in an electrostatic
E = —V¢ and magnetostatic B = V x A field where ¢ and A are the scalar
and vector potentials, respectively. The magnetic field definition follows from the
Maxwell equation V - B = 0.
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Canonical and Physical Momentum

The total or canonical momentum p is comprised of the sum of its kinetic or
physical momentum
Pphysical = MV, 8.1

and its potential or field momentum

Pfield = gA, (8.2)

with ¢ the velocity of light. Thus, the canonical momentum is

0
pP= pphysical + Pfield = Mv + ?A, (83)
and the physical momentum is
0
Pphysical = H=p- ?A (8.4)

(It is the canonical momentum p on which we impose the canonical commutation
relations when we write the quantum mechanical Hamiltonian.) Whereas the physi-
cal momentum is gauge invariant, the canonical momentum is gauge variant.

Field Momentum

In the electromagnetic field, the field component of the momentum is obtained
from the Poynting’s vector [18, 19]:

1
Pficld = —/E x Bdr. (8.5)
4mc

The field E at r due to the charge Q at r’ is E = —V¢, and satisfies Poisson’s

equation:
V2 = —4mQ6(r — ). (8.6)

Thus,
1
Piea = ——— | Vo x (V x A) dr. 8.7
4mc

Using a standard vector relation, the above volume integral may be written as

/V¢ x (V x A) dr = —/[A x V x (V§) —AV - (V¢) — (VA)V - Aldr. (8.8)
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Since V x (V¢) = 0, and we can choose the Coulomb or transverse gauge V-A = 0,
we have

Phield = —L/Av% dr = g/Aé(r —r)dr = 2 (8.9)
4mc c c

as noted in (8.2).
In a magnetic field, the kinetic energy of the particle is unchanged. Thus, from (8.3)
the kinetic energy is

1 1 1 0\’
M= —Mv)?=—(p-=A) . 8.1
oMV = 5y MY) 2M(p c ) (8.10)

Thus, the total energy or Hamiltonian, which is the sum of the kinetic and potential
energies of the particle is

_ (¢
_w(p CA)+Q¢. (8.11)

Rigorous Derivation of Hamiltonian

To determine the Hamiltonian in a more rigorous and general manner, we first
require the appropriate Lagrangian for the particle in the electromagnetic field. The
Lagrange function in generalized coordinates is [17]

1
L= EW — 00(q) + gq -A. (8.12)

That this Lagrangian is correct is proved by the fact that the Euler-Lagrange equation

d (0L\ OL
Y Bl D 1
d;(aq) 5q = ®-13)

then leads to the correct Lorentz force equation of motion for a charge Q in the
electromagnetic field:

1
F:Q(E+—VXB), (8.14)
c
where
1 0A
E=-Vp—-— and B=V xA. (8.15)
c Ot
The momentum p is then
oL
P=—.=MQ+QA, (8.16)
0q c
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in agreement with (8.3). The Hamiltonian H (p, q) is [17]

Hp,qQ)=p-q—-L (8.17)
=Mq* +Qq A— Mq + Q00— Q -A (8.18)
R QA2 8.19

as obtained in (8.11).
Canonical and Physical Angular Momentum

The canonical angular momentum is defined in terms of the canonical momen-
tum as

L=rxp, (8.20)

and the kinetic or physical angular momentum as
Q
A=rxII=rx|p—=A). (8.21)
c

Whereas the canonical angular momentum is gauge variant, the physical angular
momentum is gauge invariant.

8.2 The Quantum-Mechanical Hamiltonian and Properties

Consider a system of N electrons in an external electrostatic £(r) = —Vu(r) and
magnetostatic B(r) = V x A(r) field, where {v(r), A(r)} are scalar and vector
potentials, respectively. In atomic units where we assume the charge of the electron
Q = —e, with |e] = h = m = 1, the Hamiltonian operator, on application of the
correspondence principle to the classical Hamiltonian of (8.19), is

A A

H=T,+W+V, (8.22)
where T is the physical kinetic energy operator:

L1 ! g
=52 (pk + ;A(rk)) (8.23)

k

A 1
=T+262[pk AGr) + A - pk]+ ZA%rk) (8.24)

k
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with 7" the canonical kinetic energy operator:
1 2. & ;
T=3 Zk:pk, P = —iVy,, (8.25)

with P the canonical momentum operator.
The electron-interaction potential energy operator is

/

W = 12 ! (8.26)

9
2 P Iry — 1y

and scalar potential energy operator is

V=> v (8.27)
k

The time-independent Schrodinger equation is then
HR)Y(X) = Eyp(X) (8.28)
where {1(X), E} are the eigenfunctions and eigenergies of the system with R =
ry,...,ry; X = Xy,...,Xy; X = ro, {r, o} being the spatial and spin coordinates
of the electron.
The Hamiltonian operator of (8.22) can be expressed in terms of the physical
current density operator j(r). To define this operator we revert to the definition

of the current density j(r) of (2.39). In terms of the physical momentum operator
Pohysicas = (P + 1A), the physical current density j(r) is defined as

1
i) =NRY / ' (ro, XM (f) + —A(r)) wire, XN HaX* ! (8.29)
c
with XV~! = x,, ..., xy. Separating the terms we have
Coo A(r) . N—1 N=1y N1
J) =jp(r) + ——N9 > v, XV e, XVHaX (8.30)

1
=jp(r) + ;p(r)A(r) (8.31)
= jp(r) +ja(r), (8.32)

where j,(r) is the paramagnetic component

ip (@) :N?RZ/z/J*(ra, XN Hpy(ro, XV HaxN !, (8.33)
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(which is the same as that of (2.39)), and j,(r) the diamagnetic component.

) 1
Ja(r) = ;p(r)A(r)- (8.34)
Thus, the physical current density operator is (see Sect.2.2.4)

i) =, + Ja(r), (8.35)

with the paramagnetic and diamagnetic component operators defined as

2 1
By =7 > |:f)k6(rk —r) +0(r — r)ﬁk} (8.36)

k

. 1
Ja(r) = ;ﬁ(r)A(r), (8.37)

and where p(r) is the density operator of (2.12).
Employing the commutator relationship between the momentum operator and any
function of the coordinates, we have

P-A—A.p=—iV.A. (8.38)

Thus, in the Coulomb gauge V - A = 0, we see that p and A (r) commute. Using this
fact, the physical kinetic energy operator may be written as

a1 X 1 )
Ty=T+- Zk:A(rk) Pt 5o Zk:A (rp). (8.39)

In terms of the paramagnetic jp (r) and diamagnetic jd (r) current density operators,
the Hamiltonian of (8.22) is then

A

H

T+W4+V+ % / jp(®) - A(r)dr + % / H(r)A(r)dr. (8.40)

From this expression it is evident that in the presence of a magnetic field, one can
define the physical current density operator j(r) of (8.35) as

°( ) = ﬁ — H 8.41)
Jr)=c 9A(T) = jp(r) + ju(r). Q.

In terms of the operator j(r), the Hamiltonian (8.40) is

A

HefiWwivs+l / j@) - A(r)dr — % / H(r)A(r)dr. (8.42)
Cc C
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Hence, the system energy E which is

E = ($|Hp) (8.43)

may be written in terms either of the paramagnetic j,(r) or physical j(r) current
densities as

E=T+E.+V+ % / jp(X) - Ar)dr + 2%2 / p(r)AX(r)dr, (8.44)
or as
E=T+E.+V+ é / j(r) - A(r)dr — 2%2 / p(r)A2(r)dr. (8.45)

Here the kinetic T, electron-interaction potential E,, and external scalar potential V
energies are the expectations (see Sect.2.4)

T = ($ITIY), (8.46)
E.o = (W|W[Y), (8.47)
V= @|VIy), (8.48)

and the paramagnetic j,(r) and diamagnetic j(r) current densities the expectations

i@ = Wli,®), (8.49)

and

i) = @)y, (8.50)

respectively.
Finally, as the system is time-independent, the continuity equation for the physical
current density j(r) is

V)=V -j,+V-jar) =0. (8.51)

Unitary Transformation

We next perform a density and physical current density preserving unitary trans-
formation [20]. The unitary operator we consider is

U=e"®; a®) = o), (8.52)
J
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where «(r) is an arbitrary smooth function of position. The transformed (see
Sect.4.2) wave function ¢/’ (X) and Hamiltonian H'(R) of (8.28) are, respectively,

¢ (X) = UTp(X), (8.53)
and
H =U'HR)U (8.54)
= % > (B + Ao + Vam)) + W+ V. (8.55)
k

The transformed Schrodinger equation is then
H Ry (X) = E'¥'(X) (8.56)
with
E' =E. (8.57)

Equivalently, if one performs a gauge transformation of the vector potential A(r)
such that

A'(r) = A(r) + Va(r) (8.58)

but let v'(r) = v(r), the Hamiltonian of (8.22) changes to that of (8.55). Thus,
the Hamiltonian is gauge variant. Because the physical system remains the same,
the wave function ¢ (X) must be multiplied by a phase factor exp[—ia(R)], which
is (8.52). The system wave function is therefore also gauge variant. However, all
the physical properties of the system such as the energy E and its individual com-
ponents Ty, E,., V, the density p(r) and physical current density j(r) which are all
expectations of Hermitian operators remain the same and are gauge invariant. The
component paramagnetic j,(r) and diamagnetic j;(r) current densities, on the other
hand, are gauge variant. The choice of gauge function a(R) is arbitrary because the
physical properties of the system remain unchanged: the infinite number of Hamilto-
nians for different phase factors «;(R) correspond to the same physical system (see
Fig. 1 of [20]). Thus, one can conclude that the wave function ¢(X) is a functional
of the gauge function a(R) : ¥(X) = Y[a(R)](X).

Canonical and Physical Angular Momentum

The canonical angular momentum operator L is defined in terms of the canonical
momentum operator @ as

A

L=rxp=rx(—iV), (8.59)
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and the physical angular momentum operator A in terms of the physical momentum
Operator Popysical aS

A 1
A=rx f’physical =rXx (f’ + —A) (8.60)
c
The canonical L and physical A angular momentum are defined as the expectations

L = (¢|L}y), (8.61)

and

~

A = (|Af), (8.62)

respectively.
It is readily seen that the canonical angular momentum is gauge variant. Employ-
ing the transformed wave function of (8.53) for a single electron, the transformed

property

L = WIEW) = [ (e x pruvar (8.63)
_ / Wt lr x pildr (8.64)
= / e r x {e"Pp) + Vau)'}]dr (8.65)
- / YH(r x P)bdr + / ¥ (r x Va)ydr (8.66)
L +/¢*(r x Va)dr. (8.67)

On the other hand, the physical angular momentum is gauge invariant. Employing
the transformed wave function of (8.53) for a single electron, and the transformed
vector potential of (8.58), the transformed property

A = (W |A[Y) (8.68)

= /w*e’ia [r X (f) + %A’) ]w’dr’ (8.69)
= /q/)*e_i“' [r x e (f) + %A) w}dr (8.70)
=/¢*[rx (ﬁ+éA)}¢dt:A. (8.71)
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8.3 Generalized Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems for N electrons in an external electrostatic field
E(r) = —Vu(r) are extended here to the case of the added presence of a magne-
tostatic field B(r) = V x A(r). It is proved that for a uniform magnetic field and
fixed canonical angular momentum L, there exists a one-to-one or bijective relation-
ship between the external potentials {v(r), A(r)} and the nondegenerate ground state
density p(r) and physical current density j(r). In other words, the basic variables
of quantum mechanics in the presence of a uniform magnetic field are the densities
{p(r), j(r)}, and the system wave functions 1 are thus functionals of these properties:
1 = ¢Y[p, jl. The proof is for {v, A}-representable densities. The proof, however, dif-
fers in fundamental ways from that of the proof of the first HK theorem. In order to
elucidate these differences, let us first briefly summarize the proof of the first HK
theorem of Sect. 4.1 for the Hamiltonian of (4.1)).

In the HK proof, it is first proved (Maps C and C~') that there is a bijective rela-
tionship between the external potential v(r) and the nondegenerate ground state wave
function +/(X). Employing this relationship, it is then proved (Maps D and D~!) that
there is a bijective relationship between the wave function v)(X) and the nondegen-
erate ground state density p(r). Maps D and D~! are established for v-representable
densities. (The manner by which this is accomplished is via the assumption that
there exists a {t, E} and a {1/, E'} generated via different potentials v(r) and v'(r),
respectively, that lead to the same density p(r). This in turn leads to the contradic-
tion E 4+ E' < E + E/', thereby proving the bijectivity between ¥ (X) and p(r). The
assumption of existence of a ¢(X) and a ¢’ (X) that differ, because they arise from
different external potentials v(r) and v’(r), is based on and a consequence of Maps
C and C~'. Such an assumption would be invalid without the existence of Maps C
and C~!.) Thus, knowledge of p(r) determines the external potential v(r) to within
an additive constant, and thereby the Hamiltonian of the system. In the proof, the
electron number N is kept fixed.

In the presence of a magnetic field B(r) = V x A(r), the Hamiltonian in terms
of the gauge invariant properties {p(r), j(r)} is given by (8.42). It would appear that
one could prove a one-to-one relationship between these properties and the external
potentials {v(r), A(r)} along the lines of the HK path. However, no such proof is
possible as the relationship between the potentials {v(r), A(r)} and the nondegenerate
ground state wave function ¥ (X) can be many-to-one [6—-10] and even infinite-to-
one [11, 12]:

{v(r), A(M} N\
VD), A} —
{v'(r), A" (1)} — v (X)
a (8.72)
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Hence, in these cases, there is no equivalent of the Maps C and C~', and therefore the
original HK path is not possible. The proof that {p(r), j(r)} are the basic variables
must then differ from the original HK proof. Furthermore, any proof of the bijectivity
between {p(r), j(r)} and {v(r), A(r)} must account for the many-to-one relationship
between {v(r), A(r)} and the nondegenerate ground state ) (X). Finally, because the
added presence of a magnetic field B(r) constitutes an added degree of freedom,
there must exist an additional constraint beyond that of fixed electron number N.
The constraint is that of fixed canonical angular momentum L.

In the next subsection, we first consider the case of spinless electrons in which the
interaction of the magnetic field is only with the orbital angular momentum L of the
electrons. In the subsection that follows we consider the case of electrons with spin.
In this case, there is an added term to the Hamiltonian corresponding to the interaction
of the magnetic field with the spin angular momentum S. Corresponding to this term
of the Hamiltonian, there is (for finite systems), a contribution to the physical current
density j(r) viz. the magnetization current density j,,(r) component.

8.3.1 Proof of Generalized Hohenberg-Kohn Theorems:
Case I: Spinless Electrons

The proof of the first generalized HK theorem of the bijectivity between the nonde-
generate ground state {p(r), j(r)} and the potentials {v(r), A(r)} is also by reductio
ad absurdum. The proof is for (v, A)-representable densities {p(r), j(r)}. Consider
the Hamiltonian H of (8.22) or equivalently (8.42) for fixed electron number N and
canonical angular momentum L. Let us then consider two different physical systems
{v, A} and {v’, A’} that generate different nondegenerate ground state wave functions
1 and 1)’. We assume the gauges of the unprimed and primed systems to be the same.
Let us further assume that these systems lead to the same nondegenerate ground state
{p(r), j(r)}. We prove this cannot be the case.
From the variational principle for the energy for a nondegenerate ground state

E = (WHIY) < (|HIW). (8.73)

Now the term on the right hand side of the inequality may be written as

~ n N ~ 1 ~ 1
AN = 1T+ 04V / Jo - A@dr - 5 / AOA2 @)
+ (V= V'Y
1 ~ n
- / G- A®) =@ - A'()1dr )

1
- @@M / PIA*(r) — A*(r)ldr|y)). (8.74)
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For the primed system, the physical current density operator s
O =500+ L pOA®), (8.75)
so that
J®© = WHOR) =50 + -/ OA®. (8.76)
Employing the original assumption that ¢) and ¢/’ lead to the same p(r), we have
WO = 5,0+ pA®D. (8.77)
and
WFO) = §,0 + - pOA ). (8.75)
Therefore
w1 i awani) = [im-Awdr [poaiwdr. 79
and
w1 [ 5 Awdr) = [ G- A+ : [pwntwar. 350
so that in (8.74) the term
L1 [0 A = § @) A el
= é / J,@) - [A(r) — A'(r)]dr + ciz / p(r)[A*(r) — A%(r))dr.  (8.81)
Finally, employing again that ¢'(r) = p(r), the last term of (8.74) is
303 (0 [ P E) = A0l

=53 p(r)[A%(r) — A%(r)]dr. (8.82)
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Therefore, the inequality of (8.73) is

1
E<E +/p(r)[v(r) —v'(r)]dr + - /j‘;(r) -[A(r) — A'(r)]dr
1
+=— [ p()[A*(r) — A”(r)]dr.
2c
On interchanging the primed and unprimed quantities,

1
E <E +/p(r)[u/(r) —v(r)]dr + p /jp(r) -[A'(r) — A(r)]dr

!
2c2

/ p(r)[A?(r) — A*(r)]dr.
On adding the previous two equations one obtains the inequality
1
E+E <E+E 4+ / 1,00 — J(0)] - TA) — A1)l

The inequality of (8.85) is a general result.

(8.83)

(8.84)

(8.85)

ConsideAr next the third term on the right hand side of (8.85). With B(r) = Biz,
B'(r) = B'i,, and the symmetric gauge A(r) = %B xr,A'(r) = %B/ x r, this term is

1= [liw = 5,0] - [A@) - A@)ar
1
= / i) —j,(o] - [EAB x rldr
1 " .
= 5AB : /r x [§, @) — jp(r)]dr,
where AB = (B — B’)fz. First consider the integral
I = /r X jp(r)dr

= —%Z/rx {/\I’*(X)[Vrk(s(r_rk)
k

+6(r — ) Vy, | W (X)dX}dr

= _% Z/dX/dr\P*(X)[r X Vi, 0(r —ry)
k

+6(r —rr x Vi, JU(X)

(8.86)

(8.87)

(8.88)

(8.89)

(8.90)

(8.91)
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Next consider the second integral of /; of (8.91):

Ip = —% Zk:/dX\IJ*(X)[/dré(r —r)r x Vi, [¥(X) (8.92)

=32 / XU (X)r x Vi, W(X) (8.93)
k
1
= E/dX\If*(X)(Zk:rk X pr) ¥(X) (8.94)
1 . .
=5 / dXw (X)%Lk\lf(X) (8.95)
_ 8.96
- oL (8.96)

where I:k = I; X P is the canonical orbital angular momentum operator, and L the
total canonical orbital angular momentum defined by (8.95).
The first integral of I, of (8.91) is

I = _% Zk:/dx/drw*(X)r X Ve 6(r — 1) W (X) (8.97)
__! > / dX / dr\If*(X)€ag~,i(rﬁ5(l' —TO¥X).  (8.98)
2 i 8rk7

On integrating the inner integral by parts and dropping the surface term, one obtains

j ov*(X
L= —%Zk:/dx[— ea“%,/dr 5 ( )mé(r—rk)\l-’(X)] (8.99)

rkv,

i ov*(X)
=— dX[ — eup ——— 15 W (X)]. 8.100
2;/ [ = com =, 1o ¥ ] (8.100)
On integrating by parts again, one obtains
Iy = —iZw /dX\IJ*(X)i(rkﬁ\IJ(X)) (8.101)
2 T 7 8}”/{7
i *
=—3 Zk:/dxw X) (e x V)W (X) (8.102)

1
= -L. 8.103
3 ( )
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Hence, the integral I of (8.88) is
1 7
1= EAB - (L' = L). (8.104)

If one imposes the constraint that the total canonical orbital angular momentum is
fixed so that L = L/, then the integral I of (8.88) vanishes. Hence, (8.85) reduces to
the contradiction

E+E <E+E. (8.105)

What this means is that the original assumption 1) and ¢’ differ is erroneous, and

that there can exist a {v, A} and a {v’, A’} with the same nondegenerate ground state
wave function. The fact that 1) = 1)’ means that

pm], =p ]|, (8.106)

However, the corresponding physical current densities are not the same:

o, #J (8.107)
This is because the diamagnetic components are not the same
Jam], #§a @], (8.108)

if one hews to the original assumption that A(r) is different from A’(r). This proves
that the assumption that there exists a different {v’, A’} (with the same N and L) that
leads to the same {p, j} as that due to {v, A} is incorrect. This step takes into account
the fact that there could exist many {v, A} that lead to the same nondegenerate
ground state 1. Hence, there exists only one {v, A} for fixed N and L that generates
a nondegenerate ground state {p, j}. The one-to-one relationship between {p, j} and
{v, A} is therefore proved.

The statement of the first generalized HK theorem is then as follows:

Theorem 1 For electrons in an external electrostatic field and a uniform magneto-
static field, and for fixed electron number N and orbital angular momentum L, the
nondegenerate ground state density p(r) and physical current density j(r), determine
the external scalar v(r) and vector A(r) potentials to within an additive constant
and the gradient of a scalar function, respectively.

With the kinetic 7 and electron-interaction W operators of the electrons known,
knowledge of {p, j} determines the potentials {v, A} and thereby the Hamiltonian H.
Solution of the Schrodinger equation (8.28) then leads to the wave function ¢ (X) of
the system. Thus, the HK path to the wave function is

p(r), jr) — v(r), A(r) — HR) — (X). (8.109)
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The wave functions 1 (X) are therefore functionals of {p, j}. As shown in the previous
section, the wave functions are also functionals of a gauge function a(R). Hence,
the wave functions 1 (X) are functionals of {p, j, a} : ¥(X) = ¢¥[p, j, a]. As p(r)
and j(r) are gauge invariant, it is the presence of the gauge function a(R) in the
wave function written as a functional that ensures it is gauge variant. As a conse-
quence of the path of (8.109) the basic variables of quantum mechanics in a uniform
magnetostatic field are {p(r), j(r)}.

With the choice of a(R) = 0, the ground state energy for fixed angular momentum
can be written as a functional of {p, j}. Thus,

Eyalp, §1 = @lp, IH®)¥Ip, j]) (8.110)
1
= Flp, il +/p(l‘)v(r)dl'+ Z/‘i(r) - A(r)dr

~ 53 p(r)A2(r)dr, (8.111)

where . .
Flp, jl = (lp, JIT + Wdlp, 1) (8.112)

is the universal internal energy functional. As the ground state energy is a functional
of {p, j}, a variational principle exists for arbitrary variations of (v, A)-representable
densities {p(r), j(r)}. Implicit in such a variational principle, as in all such energy
variational principles, is that the external potentials remain fixed throughout the
variation. The variational character of the energy functional of (8.110) follows from
the variational principle:

Eyalp'.§1 > Eyalp.§1 for {p',j'} # {p.j} (8.113)
E,alp'.§1 = Eyalp.jl for {¢,j'} = {p.j} (8.114)

Equivalently, the Euler-Lagrange equations that must be solved self-consistently for
p(r) and j(r) are

5Ev,A[p9j] — 6Ev,A[p7 j] — O (8 115)
IO P ) [ S PP
subject to the constraints
/p(r)dr =N, (8.116)
1
/r x [j(r) — —p(r)A(r)Jdr =L, (8.117)
C

V. jr) =0. (8.118)
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The statement of the second generalized HK theorem is then as follows:
Theorem 2 The nondegenerate ground state density p(r) and physical current den-
sity j(r), can be determined from the ground state energy functional E, Alp, j] via
the variational principle by variations only of these densities. The constraints on
the corresponding Euler-Lagrange equations are the conservation of charge and
canonical angular momentum, and the satisfaction of the equation of continuity.
That the properties {p(r), j(r)} for fixed orbital angular momentum L are the basic
variables is most readily seen for the case of N = 1. Writing the wave function in
polar form

PY(r) = d(r)e®", (8.119)

with ®(r), O (r) real valued, we see that p(r) = ®*(r) and j(r) = Jp(@) + Ja(r),
Jp(®) = p(r)VO(r),ju(r) = Lp(r)A(r),sothat LA(r) = f)%—V@(r).Thus knowl-
edge of {p(r), j(r)} determines the potential A(r) to within the gradient of a scalar
function. Employing this and the fact that one can perform a gauge transformation
to eliminate the phase, the one-electron Schrodinger equation can be written as

1/. j®)° '
[—(p—l——) +v(r>—E]pz(r>=0, (8.120)
2 p(r)

from which the potential v(r) can be obtained to within the constant E since
{p(r), j(r)} are known. (This example is given in [21] but without the added constraint
on the angular momentum.)

What is interesting about this example is that the {p(r), j(r)} as basic variables
are not restricted to being solely the nondegenerate ground state densities. The above
arguments are equally valid for {p(r), j(r)} corresponding to any state and angular
momentum.

For a summary of the generalized HK theorems, and a comparison with the original
HK theorems, see Table 8.1.

For other recent work see [22, 23]. The conclusions in [23] are based on the
assumption of existence of a HK theorem but one without the requirement of the
constraint on the angular momentum.

8.3.2 Proof of Generalized Hohenberg-Kohn Theorems:
Case I11: Electrons with Spin

When the interaction of the magnetic field is with both the orbital and spin moment
of the electrons, the Hamiltonian is

N 1 2 o~ a1

H = p —A(r W+V+ - Sy - B(ry), 8.121

ij[pk+c(k)]+ + +Czkjk (r) (8.121)
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where sy, is the electron spin angular momentum vector operator of the kth electron.
(The last term is 2 D, Sk - B(rx), where pg = efi/2mc is the Bohr magneton. We
employ the atomic units |e] = A = m = 1.) In nonrelativistic quantum mechanics,
this term was originally added on ad hoc by Pauli to account for the interaction of
the magnetic field with the electron spin magnetic moment. Hence, the designation
as Schrodinger-Pauli theory. However, for a spin % particle, the Hamiltonian can be
rigorously derived [24] if one starts with the definition of the kinetic energy operator
in the presence of a vector potential to be

—

YA-‘A = E (0' . f’phys) (0' . f)phys)v (8.122)

where o is the spin matrix and Pphys = P + %A, the physical momentum operator.
Substituting this operator, we have

f4=%a~(ﬁ+%A)a-(ﬁ+%A). (8.123)
Employing the vector relation

(c-A)(oc-B)=A -B+ioc-(AxB) (8.124)
which holds even with A and B being operators, the kinetic energy operator is

. 1 1 \> i 1 1
Foo L ( + —A) +io. |:(p+ —A) y (p+ —A)] (8.125)
2 c 2 c c

1 1.\> i 1 1
(p+2A) +i0 | -Axp+-pxAl. (8.126)
2 c 2 c c

Using the operator relation

PxA=—-iVxA—Axp, (8.127)
we then arrive at
| 1.\ 1
Th=-|{p+-A) + —0c-B (8.128)
2 c 2c
1/, 1.\* 1
=—-({p+-A) +-s-B, (8.129)
2 c c

where we have employed B = V x A and s = %o-. The spin magnetic moment
generated in this way has the correct gyromagnetic ratio g = 2 [25]. (Note that
the operator T, of (8.122) reduces to p?/2 in the absence of vector potentials.)
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The Hamiltonian of (8.121) can also be obtained from the Dirac equation in its
nonrelativistic limit.

The Schrodinger-Pauli Hamiltonian of (8.121) may also be written in terms of
the density A(r), physical current density j(r), and local magnetization density ri(r)
operators as

A

H=T+W+V, — /ﬁl(r) .B(r)dr, (8.130)
where the total external potential operator Vi is
N A~ 1 [, 1 R )
Vo=V + - [j) A(r)dr — 72 p(r)A=(r)dr, (8.131)
c c

and m(r) is defined as

1
m(r) = - Zské(rk —r). (8.132)

The physical current density operator j(r) is the sum of its paramagnetic jp(r) and

diamagnetic jd(r) components as in (8.35) or (8.41). With the same assumptions
made regarding the two different physical systems {v, A; ¢} and {v/, A’; ¢’} leading
to the same {p(r), j(r)} one obtains the inequality

E+E <E+E+ / 1,00 — (0] - [AGY) — A'(6)Jdr
— /[m’(r) —m(r)] - [B(r) — B'(r)]dr, (8.133)
with m(r) the magnetization density being the expectation

m(r) = (Y[m(r)[1)). (8.134)

The inequality is once again a general result.

The third term on the right hand side of (8.133) vanishes if, as in the previous
section, a uniform magnetic field is assumed, and the constraint that the orbital
angular momentum of the unprimed and primed systems are the same is imposed.
Hence next consider the last term of (8.133). With B(r) = sz, the term

/m(r) -B(r)dr = B/mz(r)dr, (8.135)
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where, with s; - 1, = 5,4,

m(r) = ! S, xk0(rg — 1)
c
o k

x *(rxo, XN Do, XV Hd XN dry, (8.136)
1
— _Zz/zsz,k/uﬁ(ra, XV
o k
x P(ro, XN "HaXN-! (8.137)
1
= ~N S.y(ro, ro), (8.138)

where S, = >, 5.« is the z-component of the total spin S, and y(xx') = N [ ¢*
(ro, XN "Hy(r'o’, X¥N=1)dX !, the density matrix. Since in the primed system, the
spin vectors are different, i.e. some s;(, we have

/ [m'(r) — m(r)] - AB(r)dr
= AB / [m.(r) — m.(r)]dr (8.139)

AB
TN Z / [S}7/(xo, ro) — Sy (ro, ro)]dr, (8.140)
- ,

where AB = B — B'. Employing the original assumption that the diagonal matrix
elements ~(ro, ro) of the density matrix v(xx’) are the same for the unprimed and
primed systems we have the right hand side of (8.140) to be

% Z/ [S; — Sz]"y(rcr, ro) =0 (8.141)

provided S} = S.. Hence, the last term of (8.133) vanishes.
Another way of arriving at this conclusion is by rewriting m,(r) as [26, 27]

1
m(r) = —Z[pa(r) — pp(0)], (8.142)

with p,(r), pg(r) being the spin-up and spin-down spin densities. The last term of
the inequality of (8.133) is then

1
/[m/(l‘) —m(r)] - AB(r)dr = —?CAB/[{pﬁ,(r) - P/g(r)} —{pa(r) — pp(r)}ldr.
(8.143)



276 8 Generalized Hohenberg-Kohn Theorems ...

If the z-component of the total spin angular momentum S, for the unprimed and
primed systems are the same, the corresponding spin densities are the same, so that
the last term of (8.133) vanishes. More generally, the magnetization densities m(r)
and m’(r) are the same if the total spin angular momentum S and S’ are the same.

The vanishing of the last two terms of (8.133) once again leads to the contradiction
E + E' < E + E’. Employing the same reasoning as in the previous section one
concludes that the original assumption that ¢ and ¢’ differ is erroneous, and that
there can exista {v, A} and a {v’, A’} with the same nondegenerate ground state wave
function. With ¢ = /', we have p(r) = p'(r), but j(r) # j'(r) since A(r) # A'(r).
This proves that the original assumption that there exists a {v’, A’} with the same
N, L, and S as that of {v, A} but leads to the same {p, j} to be incorrect. Thus, there
can exist only one {v, A} for fixed N, L, and S that can generate the nondegenerate
ground state {p, j}. The bijective relationship between {p, j} and {v, A} for systems
defined by the Schrodinger-Pauli Hamiltonian is therefore proved. Note that the proof
explicitly accounts for the many-to-one relationship between the potentials {v, A}
and the nondegenerate ground state ).

In the above proof of bijectivity for the Schrodinger-Pauli Hamiltonian, the def-
inition of the physical current density j(r) employed was that of (8.29) or equiva-
lently (8.32), viz. one in terms of its paramagnetic and diamagnetic components.
However, for finite systems, yet another component—the magnetization current
density—due to the electron spin can be introduced [29]. Consider the last term
of the Hamiltonian of (8.130):

/ (r) - B(r)dr = / m(r) - (V x A(r))dr (8.144)
= / A(r) - (V x (r))dr
+/V - (A(r) x m(r))dr, (8.145)
where the vector identity
V- (CxD)=D-(VxC)—C-(VxD) (8.146)

is employed. The last term of (8.145) may be converted to an integral over a surface:
f V- (A xm)dr = f (A x ) - dS, which vanishes in the usual way for an infinitely
distant surface. Thus, the Hamiltonian of (8.130) can be written as

A

AU BN 1
H:T+W+V+E/j,,(r)-A(r)dr+z—cz/ﬁ(r)Az(r)dr

+ l/./]:m(r) -A(r)dr, (8.147)
C
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where the magnetization current density operator jm (r) is defined as
jm(@) = —cV x M(r). (8.148)

Hence the physical current density j(r) may also be defined as [29]

i) = = Jp(®) + ja(r) + ju(r), (8.149)

OH
“OA(r)
the sum of the paramagnetic, diamagnetic, and magnetization current densities. Even
for this definition of the physical current density j(r), the proof of bijectivity between
{p,j} and {v, A} is valid provided the angular momentum L and S are fixed. (For
spin-compensated systems, the magnetization current density j,, (r) vanishes.) The
corresponding energy variational principle for arbitrary variations of (v, A) repre-
sentable densities {p(r), j(r)} follows together with the constraints of fixed N, L,
and S, and the satisfaction of the equation of continuity for the physical current
density j(r).

8.4 Remarks on Spin and Current Density
Functional Theories

In the previous section we provided proofs of the generalized HK theorems in the
presence of a uniform magnetic field for the cases of both spinless electrons and
electrons with spin. There it was shown that for each type of electron, the basic
variables were the nondegenerate ground state density p(r) and physical current
density j(r), and a subsequent variational principle formulated in terms of these
properties. These theorems then constitute a { p(r), j(r)} functional theory in a generic
sense not to be confused with other existing theories. In the following subsections,
we make a few remarks on spin density functional theory (SDFT) [2, 6, 26-28] and
the paramagnetic current j,(r) density functional theory (CDFT) [30-32]. In neither
of these or other similar extensions is the added constraint on the orbital L or spin S
angular momentum considered.

8.4.1 Remarks on Spin Density Functional Theory

In SDFT it is assumed that the basic variables are the nondegenerate ground state
density p(r) and the magnetization density m(r). Equivalently, the assumed basic
variables are the density p(r) and the electron spin density which is the difference
between the spin-up p, (r) and spin-down pg(r) densities (see [26, 27] and (8.142)).
The basis for this choice is that these properties appear in the corresponding assumed
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SDFT Hamiltonian or energy functional. A proof that these properties are the basic
variables is then attempted. We comment here on the proof. The Hamiltonian of
SDFT is an approximation to the Schrodinger-Pauli Hamiltonian of (8.121) and is
assumed to be

R
H gzk:P§+W+V+(l/c)Zk:B(rk)~sk (8.150)

T+W+V-— /m(r) -B(r)dr. (8.151)

The Hamiltonian corresponds to the energy functional E[p, m] originally proposed
by Kohn and Sham [2] to obtain a theory of spin susceptibility. The functional
proposed was

E[p, m] =/p(r)v(r)dl'+EH[P] —/m(l') -B(r)dr + G[p(r), m(r)], (8.152)

where Eg[p] = % [ drdr'p(r)p(r)’/|r — r'| is the Coulomb self-energy, and G[p,
m(r)] a universal functional that includes contributions of the kinetic energy and
of the many-body effects. Both the Hamiltonian of (8.150) and energy functional
of (8.152) are ad hoc and not derivable from first principles: The expressions do
not include the field component of the electron momentum, and hence ignore the
interaction of the magnetic field with the orbital angular momentum. The contribution
of this component to the energy is not insignificant, and is of the same order of
magnitude as that of the interaction of the field with the spin angular momentum.
In writing the energy functional of (8.152) it is assumed that the wave function
corresponding to the Hamiltonian of (8.150) is a functional of {p, m}. This, of course,
is based on the assumption that there is a one-to-one relationship between {p, m}
and {v, B} along the lines of the original HK theorem. Subsequently, von Barth and
Hedin [6] showed that for noninteracting fermions, the relationship between {v, B}
and the nondegenerate ground state wave function was many-to-one, and as such
there was no equivalent of Map C for the Hamiltonian of (8.150). Ignoring this
fact, and assuming the basic variables to be {p, m} these and other authors [6, 28]
then focused on Map D between v and {p, m}. As in all reductio ad absurdum type
proofs, they begin with the assumption that there exists a {v, B} and a {v/, B’} that
generate the same {p, m}. One then has to prove that this statement is incorrect.
(Comment: Because the relationship between {v, B} and ¢ is many-to-one, there do
exist other {v’, B’} that lead to the same {p, m}.) They next assume that there is a ¢
and a ¢ with ¢ # 1/, where H(v, B)¢) = Ev) and H'(v/, B')y)/ = E't/. (Comment:
This assumption presupposes the existence of a Map (C, C~!). But there is no Map
(C, C™1Y. Furthermore, there do exista {v, B} and a {v/, B} that generate the same 1).)
Employing the above two assumptions then leads to the contradiction E+E" < E+E'.
Thus, these authors conclude (a) that the original assumption that there exists a
{v, B} and a {v’, B’} that lead to the same {p, m} to be incorrect, and (b) that two
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different nondegenerate ground state ¢ and ¢’ always lead to {p, m} # {p’, m’}.
Hence, Map (D, D~') between 1) and {p, m} is proved, and consequently v is a
functional of {p, m}. It is evident that the error in this solely Map (D, D™!)-type
proof is the presupposition of the existence of a Map (C, C~') between {v, B} and 7).
Equivalently, the error is in neglecting the many-to-one relationship between {v, B}
and the nondegenerate ground state i) There is no one-to-one relationship between
{p, m} and {v, B}, and therefore {p, m} are not basic variables in the rigorous HK
sense.

With the assumption that the basic variables are {p, m}, a PLL-type proof [26, 27,
33] can, of course, now be formulated. One searches over all antisymmetric functions
p,m constrained to reproduce the ground state {p, m}. The true ground state wave
function ¢ is that which minimizes the expectation of the operators T + W. (Note
that in this minimization process, the magnetic field B(r) is kept fixed.) But there
is an inherent inconsistency in the PLL path for SDFT. Knowledge of the ground
state {p, m} does not uniquely determine {v, B}, and thus does not determine the
Hamiltonian.

For completeness, we note that with the assumption of {p, m} as the basic vari-
ables, there exists a “potential functional” theory [34], and a Legendre transform
approach [35, 36] to SDFT.

We conjecture that because of the fundamental significance of the concept of basic
variables to a physical system, no HK-type proof can exist for Hamiltonians that are
not derivable from the tenets of quantum mechanics.

8.4.2 Remarks on Paramagnetic Current Density
Functional Theory

Paramagnetic current j, (r) density functional theory (CDFT) [30-32] is with respect
to the spinless Hamiltonian of (8.22), which may be rewritten in terms of j,(r) as
in (8.40). The claim here is that the basic variables are the nondegenerate ground
state density p(r) and the paramagnetic current density j, (r). We remark here on the
rational for this choice, and the subsequent proof provided.

(a) At the outset, the choice of physical current density j(r) as a basic vari-
able is rejected. The reasoning [32] for this is the following: According to the first
Hohenberg-Kohn theorem, proved for the B(r) = O case, there is a unique one-
to-one relationship between the nondegenerate ground state density p(r) and the
ground state wave function ¥ (X). However, in the case of B(r) # 0, because the
wave function is gauge variant and can be multiplied by a phase factor, there can be
no one-to-one relationship between the physical current density j(r) which is gauge
invariant and the wave function v (X). Hence, j(r) cannot be a basic variable. How-
ever, as shown in Sect.4.2 and [37], density preserving gauge transformations can
also be applied to the HK Hamiltonian and wave function of (4.1) for the B(r) =0
case. The uniqueness of the one-to-one relationship between the density p(r) and
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the wave function ¢ (X) is for each choice of gauge function «(R). If the above
reasoning were applied to this case, the corresponding statement would be that there
can be no one-to-one relationship between the density p(r) which is gauge invari-
ant and the wave function ¢ (X) which is gauge variant. As a consequence there
would be no density functional theory. The reason for rejecting j(r) as a basic vari-
able is thus inconsistent with quantum mechanics and the generalization of the first
Hoheneberg-Kohn theorem of Sect.4.2.

(b) As in SDFT, the proof within CDFT that {p(r), j,(r)} are the basic variables
ignores the fundamental physical fact that the relationship between the potentials
{v(r), A(r)} and the nondegenerate ground state wave function ¥ (X) is many-to-one.
As such the proof, as in SDFT, is based solely on a Map (D, D~")-type argument
of a one-to-one relationship between the assumed variables {p(r), j,(r)} and ¥ (X).
Hence, the proof is not rigorous in the HK sense as a one-to-one relationship between
the variables {p(r), j,(r)} and the potentials {v(r), A(r)} is not proved.

(c) The fact [7-10] that there is no one-to-one relationship between {p(r), j,(r)}
and {v(r), A(r)} means that the former are not basic variables in the rigorous HK
sense. Equivalently, the wave function 1 (X) is not a functional of {p(r), j,(r)}.
As such {p(r), j,(r)} cannot determine uniquely all the properties of a system. For
example, knowledge of {p(r), j,(r)} cannot determine the physical current density
J(r). This is because j(r) = j,(r) + ja(r); ja(r) = p(r)A(r)/c and there are many
A(r) that generate the same ¢(X) and j, (r), but not the same j(r).

(d) Again, as in SDFT, the proof presupposes [38, 39] the existence of the gener-
alization of Map (C, C~') of HK to the B(r) # 0 case. In other words, the starting
point of the Map (D, D™')-type proof is the assumption that such a Map (C, C™")
exists. That, of course, is not the case. (A justification [40] of the validity of solely
Map (D, D~')-type proofs in fact begins with the assumption of existence of a Map
(C, C™").) (A similar Map (D, D~")-type proof for {p(r), j(r)} as the basic variables
has also been given [41].)

(e) Finally, for CDFTs corresponding to the Schrodinger-Pauli Hamiltonian
of (8.121), the basic variables are assumed [42] to be {p(r), j,(r), m(r)} or [43]
{p(r), jp(r), m(r), j,.(r)}, where j, ,,(r) are the gauge variant paramagnetic cur-
rents of each component of the magnetization density. Once again, these conclusions
are based on solely Map (D, D™!)-type proofs with no relationship between these
properties and the external potentials {v(r), A(r)} proved.

In summary, the proofs on which SDFT and the various CDFTs are based (a) do
not account for the many-to-one relationship between the potentials {v(r), A(r)} and
the nondegenerate ground state wave function (X), and (b) assume the existence
of a Map (C, C™!). Thus, although these theories are extensively employed in their
respective Kohn-Sham versions, they are not foundationally as strong as the original
Hohenberg-Kohn theorems or their generalizations to uniform magnetostatic fields
proved here.
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8.5 Endnote

For completeness we note that the idea of employing {p(r), j(r)} as the basic variables
goes back to the work of Ghosh-Dhara [44, 45] who employ these properties without
proof that they are basic variables. The relativistic case is discussed by Rajagopal-
Callaway [46]. Methods to circumvent the many-to-one relationship between the
external potentials and the ground state wave function employing the optimized
potential approach have been proposed [47, 48], but the underlying formal issues
still persist. Additionally, these methods employ the paramagnetic current density
Jp(r) as abasic variable instead of the physical current density j(r). However, in none
of this or other prior work is the issue of the constraint on the angular momentum
considered. Finally, although most experimentation with magnetic fields is done for
uniform fields for which the proofs of the generalized Hohenberg-Kohn theorems
provided in this chapter are applicable, it would be best to have a more general proof
of {p(r), j(r)} as the basic variables for arbitrary magnetostatic field. What is learned
via the proofs provided here, however, is that the constraint on the constancy of the
angular momentum will play a critical role in any such more general proof. The
present generalized Hohenberg-Kohn theorems for uniform magnetic fields would
then constitute a special case.
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Chapter 9
Quantal-Density Functional Theory
in the Presence of a Magnetostatic Field

Abstract Quantal density functional theory (Q-DFT) of electrons in an external
electrostatic field is generalized to the added presence of a magnetostatic field. This
Q-DFT constitutes the mapping from the interacting system of electrons in an exter-
nal electrostatic and magnetostatic field in any state as described by Schrodinger the-
ory to one of noninteracting fermions with the same density, physical current density,
electron number, and canonical orbital and spin angular momentum. To formulate
this Q-DFT, Schrodinger theory from the perspective of the individual electron via
the corresponding ‘Quantal Newtonian’ first law is developed. It is shown that in
addition to the external fields, each electron experiences an internal field which is
comprised of components representative of electron correlations due to the Pauli
exclusion principle and Coulomb interaction, the density, the kinetic effects, and a
contribution due to the external magnetic field. These fields are derived from quantal
sources that are expectations of Hermitian operators taken with respect to the sys-
tem wave function. As such the intrinsic self-consistent nature of the Schrodinger
equation is demonstrated. With the Schrodinger equation written in self-consistent
form, the magnetic field, (in addition to the vector potential of the field component
of the momentum), now appears explicitly in it. The *Quantal Newtonian’ first law
for the model system of noninteracting fermions is derived. It is shown that if the
model fermions are subject to the same external potentials, then the only electron
correlations that must be accounted for in the Q—-DFT mapping are those of the
Pauli principle, Coulomb repulsion and Correlation-Kinetic effects. The resulting
local electron-interaction potential within Q-DFT is the work done in an effective
field that is the sum of fields representative of these correlations. The corresponding
many-body components of the total energy can be expressed in integral virial form in
terms of the separate fields. To explicate this Q—-DFT, it is applied to a quantum dot
as represented by the exactly solvable two-dimensional Hooke’s atom in a magnetic
field. A key observation is that as a result of the reduction in dimensionality due to
the presence of the magnetic field, Correlation-Kinetic effects are significant.
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Introduction

As noted in the previous chapter, the study of the electronic properties of matter in the
presence of both an external electrostatic field £(r) = —Vuv(r) and a magneotostatic
field B(r) = V x A(r), where v(r) and A(r) are the scalar and vector potentials,
continues to be of interest. Properties such as the Zeeman effect in atoms and mole-
cules, and the magneto-caloric effect, the de Haas - van Alphen effect, the Hall
effect, and magnetoresistance in solids, have been studied. The more recent interest
has focused on electrons confined to two-dimensions: metal-oxide-semiconductor
structures, quantum wells and super lattices, the integer and fractional quantum Hall
effects, and quantum dots.

In this chapter, we generalize [1] the Q-DFT of a system of electrons in an exter-
nal electrostatic field £(r) = —Vu(r) to now include an external magnetostatic
field B(r) = V x A(r). The first issue that must be addressed is what properties
constitute the basic variables of quantum mechanics in this case. As shown in the
previous chapter (and in [2]), for an external magnetic field that is uniform, the
basic variables for fixed electron number N and canonical angular momentum L, are
the nondegenerate ground state density p(r) and the physical current density j(r).
In other words, a bijective relationship between the properties {p(r), j(r)} and the
potentials {v(r), A(r)} (to within a constant and the gradient of a scalar function)
was proved. There is at present no such proof for arbitrary magnetic field B(r).
However, in the presence of an external time-dependent electromagnetic field, it has
been proved [3, 4] the basic variables are {p(rt), j(rt)} with j(rt) the physical cur-
rent density, i.e., there is a one-to-one relationship between {p(rt), j(rt)} and the
potentials {v(rz), A(rt)}. Extending this conclusion to the time-independent case,
we assume that for an arbitrary magnetic field B(r) and fixed angular momentum L,
that the basic variables are {p(r), j(r)}.

Q-DFT in the presence of a magnetic field B(r), constitutes the mapping from the
true interacting system of electrons in a nondegenerate ground or excited state to a
model S system of noninteracting fermions having the same density p(r), physical
current density j(r), and angular momentum L. From the model system, the same
total energy E as that of the interacting system may be obtained. The state of the
model system is arbitrary in that it may be in a ground- or excited-state configuration.
The existence of the model fermionic system is an assumption.

To develop this Q-DFT, one needs to first derive [1, 5] the ‘Quantal Newtonian’
first law for the individual electron for both the interacting and noninteracting sys-
tems. For the interacting system, as a result of the presence of the magnetic field
B(r), the total external field F=*'(r) experienced by each electron now has the addi-
tional Lorentz field component. The magnetic field B(r) also contributes a term to
the internal field ™™ (r) seen by each electron. For the mapping to the S system, it is
assumed that the model fermions are subject to the same external field F*'(r). The
S system is of course designed to reproduce the same {p(r), j(r)} and L as that of
the interacting system. With these constraints, it turns out that the contribution of the
magnetic field B(r) to the corresponding internal field F i,“‘(r) experienced by each
model fermion, is the same as that of the interacting system. The significant further
consequence of these constraints is that the only correlations the model system must
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account for are those due to the Pauli exclusion principle, Coulomb repulsion, and
Correlation-Kinetic effects. These correlations are exactly the same as that of the
Q-DFT for the case of B(r) = 0. (In fact [6], irrespective of the external fields expe-
rienced by the interacting electrons, if the model fermions (a) experience the same
external fields, and (b) are constrained so as to reproduce the basic variables, then in
each case it is only Pauli and Coulomb correlations, and Correlation-Kinetic effects
that must be accounted for by the model system. The version of Q-DFT presented
here thus differs from that of [1] in that there are no Correlation-Magnetic effects to
account for, and is thus simpler. Recall that in time-dependent Q-DFT, the application
of these conditions eliminates Correlation-Current-Density effects).

In the sections to follow, we first describe Schrodinger theory from the perspective
of the ‘Quantal Newtonian’ first law. In classical electromagnetic theory, the vector
potential A(r) is introduced to simplify the writing of equations. It is assumed that
the magnetic field B(r) derived from this vector potential is a physical real quantity.
In quantum mechanics, it is the vector potential A(r) that appears explicitly in the
Hamiltonian (see (8.22)). (This fact is emphasi