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Fiber-reinforced polymer (FRP) decks have been increasingly used for new construction 
and rehabilitation projects worldwide. The benefits of using FRP bridge decks, such as 
durability, light weight, high strength, reduced maintenance costs, and rapid installation, 
outweigh their initial in-place material costs when implemented in highway bridge 
projects. FRP Deck and Steel Girder Bridge Systems: Analysis and Design 
compiles the necessary information to facilitate the development of the standards 
and guidelines needed to promote further adoption of composite sandwich panels in 
construction. It also, for the first time, proposes a complete set of design guidelines.  
 
Providing both experimental investigations and theoretical analyses, this book covers 
three complementary parts: FRP decks, shear connectors between the deck and steel 
girders, and the behavior of bridge systems. The text presents stiffness and strength 
evaluations for FRP deck panels and FRP deck–girder bridge systems. While the FRP 
deck studies focus on honeycomb FPR sandwich panels over steel girder bridge systems, 
they can be adapted to other sandwich configurations. Similarly, the shear connection 
and bridge system studies can be applied to other types of FRP decks. Chapters discuss 
skin effect, core configuration, facesheet laminates, out-of-plane compression and 
sheer, mechanical shear connectors, and FRP deck–steel girder bridge systems.  
 
Based on the findings described in the text, the authors propose design guidelines 
and present design examples to illustrate application of the guidelines. In the final 
chapter, they also provide a systematic analysis and design approach for single-
span FRP deck–stringer bridges. This book presents new and improved theories and 
combines analytical models, numerical analyses, and experimental investigations to 
devise a practical analysis procedure, resulting in FRP deck design formulations.  
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Series Preface

Fifty years after their commercial introduction, composite materials have 
widespread use in many industries. Applications such as aerospace, wind-
mill blades, highway bridge retrofit, and many more require designs that 
assure safe and reliable operation for 25 years or more. Using composite 
materials, virtually any property, including stiffness, strength, thermal con-
ductivity, and fire resistance, can be tailored to the user’s needs by selecting 
the constituent material, its proportion and geometrical arrangement, and so 
on. In other words, the engineer is able to design the material concurrently 
with the structure. Also, modes of failure are much more complex in com-
posites than in classical materials. Such demands for performance, safety, 
and reliability require that engineers consider a variety of phenomena dur-
ing the design. Therefore, the aim of the Composite Materials: Design and 
Analysis Book Series is to bring to the design engineer a collection of works 
written by experts on every aspect of composite materials that is relevant to 
the design.

Variety and sophistication of material systems and processing techniques 
have grown exponentially in response to ever-increasing numbers and types 
of applications. Given the variety of composite materials available, as well 
as their continuous change and improvement, understanding of composite 
materials is by no means complete. Therefore, this book series serves not 
only the practicing engineer but also the researcher and student who are 
looking to advance the state of the art in understanding material and struc-
tural response and develop new engineering tools for modeling and predict-
ing such responses.

Thus, the series is focused on bringing to the public existing and devel-
oping knowledge about the material–property relationships, processing–
property relationships, and structural response of composite materials and 
structures. The series scope includes analytical, experimental, and numeri-
cal methods that have a clear impact on the design of composite structures.

Ever J. Barbero
West Virginia University, Morgantown
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Preface

In recent years, the demands in civil infrastructure have provided opportu-
nities for the development and implementation of fiber-reinforced polymer 
(FRP) decks, in both rehabilitation projects and new constructions, due to 
their reduced weight and maintenance costs as well as their enhanced dura-
bility and service life. Numerous bridges with FRP decks have been built all 
over the world. The number is still increasing due to the confidence gained 
from past examples, and new areas, such as applications in cold regions, are 
still being identified. Unlike other types of conventional decks, FRP bridge 
panels are usually more complicated in the form of sandwich or cellular 
shapes, which makes it challenging to predict their behavior. Therefore, sig-
nificant research, both theoretical and experimental, has been carried out 
since the 1990s, including the work by the authors and other collaborators.

In contrast to the increasing applications and extensive research on FRP 
bridge decks, the design process is still at a preliminary stage and not in 
a code format. Individual decks and bridges are designed on a job-by-job 
basis, usually using a combination of sample testing, numerical finite ele-
ment technique, and empirical judgment. Apparently, such approaches have 
hampered the wider acceptance of relatively new and innovative FRP bridge 
decks. Therefore, in order to promote wider acceptance and sound techni-
cal bases for FRP decks, there is a need to develop standards and guide-
lines, similar to those for other types of decks as detailed in the American 
Association of State Highway and Transportation Officials (AASHTO) speci-
fications, which can be readily used by design engineers.

The aim of this book is to address these concerns. It presents the analy-
sis and design of FRP bridge decks, illustrated specifically for a honeycomb 
FRP (HFRP) sandwich deck and steel girder bridge system. Three comple-
mentary parts are included: FRP deck, shear connectors between the deck 
and steel girders, and behavior of the bridge system. The section on the FRP 
deck focuses on (1) stiffness evaluation considering sinusoidal core geom-
etry, general core configuration, and skin effect (Chapter 2), and (2) strength 
evaluation for out-of-plane compression, out-of-plane shear, and facesheet 
laminates (Chapter 3). The section on shear connector focuses on its strength, 
stiffness, and fatigue performance (Chapter 4). At the bridge system level, 
studies are provided for effective flange width and load distribution factor 
for a FRP deck and steel girder bridge system (Chapter 5). Design guide-
lines are proposed based on the findings from Chapters 2 through 5, and 
design examples are provided to illustrate the applications of these design 
guidelines (Chapter 6). For completeness, a systematic analysis and design 
approach for single-span FRP deck-stringer bridges with a design example 
is also provided (Chapter 7). While the guidelines for FRP decks are focused 



xii Preface

on a specific sandwich panel, they can be adapted to other types of decks, 
and the guidelines for a shear connector and bridge system can be used for 
other types of FRP decks.

The unique feature of this book is a combination of analytical models, 
numerical analyses, and experimental investigations to formulate a practical 
analysis procedure, based upon which design formulations are proposed. 
Many new or improved theories are presented for the first time, including

• Homogenization theory to predict the stiffness of sandwich panels 
with sinusoidal core and furthermore with general configurations

• Skin effect, which can be decomposed as bending and shear warp-
ing effects, on the stiffness and strength of sandwich panels

• Buckling behavior of core sheets with elastically restrained loaded 
edges

• Experimental method to quantify the coefficient of elastic restraint 
between the core and facesheet of sandwich panels

• Behavior of bridge system with partial degree of composite action

Also, for the first time a complete set of design guidelines is proposed, 
including an FRP deck, shear connector, and bridge system. The unique 
combination of analytical and practical features makes this book useful for 
both professionals in the bridge industry, including design engineers and 
Department of Transportation officials who are interested in the application 
of FRP bridge decks, and researchers who are interested in the behavior of 
sandwich structures.
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1
Introduction

1.1 Background

According to a report from Market Development Alliance of the FRP 
Composites Industry (MDA 2003), today’s bridge owners are faced with 
unique challenges as a result of a severely deteriorating infrastructure, insuf-
ficient funding, and a demanding public. A released study (Ellis 2011) funded 
by the Federal Highway Administration (FHWA) estimates the annual direct 
cost of corrosion for highway bridges to be $6.43 billion to $10.15 billion. This 
includes $3.79 billion to replace structurally deficient bridges over the next 10 
years and $1.07 billion to $2.93 billion for maintenance and cost of capital for 
concrete bridge decks. In addition to these direct costs, the study’s life cycle 
analysis estimates indirect costs to the user due to traffic delays and lost pro-
ductivity at more than 10 times the direct cost of corrosion. Although most 
bridge owners continue to make decisions based on lower initial cost, it has 
become apparent that this approach does not work, and in the near future 
more money will be spent maintaining existing structures than building 
new ones. As a result, there are significant opportunities for fiber-reinforced 
polymer (FRP) bridge decks that are corrosion resistant, and can be rapidly 
installed.

Numerous bridges with FRP decks have been built in the world. In the 
United States, federal technology transfer initiatives taken to utilize compos-
ite manufacturing capacities by the military and aerospace industries have 
led to the proliferation of FRP use in the bridge industry. Some companies 
capitalized on the potential of the transportation market and helped advance 
the use of FRP on bridge structures. Based on NCHRP Report 564 (2006), 
more than 100 bridges with FRP bridge decks have been built since the mid-
1990s, and they are currently in good condition in general. The number is 
still increasing with the maturing of the technology.

Primary benefits of FRP decks include durability, light weight, high 
strength, rapid installation, lower or competitive life cycle cost, and high-
quality manufacturing processes under controlled environments. Compared 
with cast-in-place concrete decks, FRP bridge decks typically weigh 80% less, 
can be erected twice as fast, and have service lives that can be two to three 
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times greater. Although, based on initial in-place material cost, FRP bridge 
decks typically cost two to three times more than a conventional deck, life 
cycle costs, light weight, and rapid installation tend to be features that justify 
the use of FRP bridge decks.

FRP bridge decks commercially available at the present time can be classi-
fied according to two types of construction: sandwich and adhesively bonded 
pultruded shapes (Bakis et al. 2002). For sandwich constructions, cellular 
geometries are the most efficient use of core materials for weight-sensitive 
applications. Due to the ease with which facesheets and core materials can 
be changed in manufacturing, sandwich construction presents great flexibil-
ity in designing for varied depths and deflection requirements. Facesheets 
of sandwich bridge decks are primarily composed of E-glass mat or rov-
ing infused with polyester or vinylester resins. Current core materials are 
rigid foams of thin-walled cellular FRP materials. Figure 1.1 displays a hon-
eycomb fiber-reinforced polymer (HFRP) panel, with sinusoidal core con-
figuration in the plane extending vertically between face laminates, which 
was introduced for highway bridge decks by Plunkett (1997). More recently, 
a sandwich panel with I-beam-type core configuration (ZellComp® system; 
Figure 1.2) was developed by ZellComp, Inc. This system was installed on 
the Morrison Bridge in Portland, Oregon, and is the largest FRP bridge deck 
in the United States to date.

Adhesively bonded pultruded shapes can be economically produced in 
continuous lengths by numerous manufacturers using well-established 
processing methods. Design flexibility on this type of deck is obtained by 
changing the constituents of the defined shapes (such as fibers and fiber 

Longitudinal
direction

Transverse
direction

FIGURE 1.1
HFRP panels with sinusoidal core configuration (KSCI).
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orientations), but changes in geometry are very difficult to implement. 
Several decks constructed with pultruded shapes are shown in Figure 1.3. 
The pultruded shapes are typically aligned transverse to the traffic direction 
over supporting stringers. Each deck design has advantages in terms of stiff-
ness, strength, and field implementation. In laboratory testing, the observed 
failures in such decks are generally by local punching shear and crushing or 
large-scale delamination of the shapes constituting the cross section.

Bottom Section

Top Section

FIGURE 1.2
ZellComp® decking system. (From http://www.zellcomp.com/technology_n_markets.html. 
With permission.)

(d)

(c)

(b)

(a)

FIGURE 1.3
FRP decks produced from adhesively bonded pultruded shapes: (a) EZSpan (Atlantic 
Research), (b) Superdeck (Creative Pultrusions), (c) DuraSpan (Martin Marietta Materials), and 
(d) square tube and plate deck (Strongwell). (From Bakis, C. E. et al., ASCE Journal of Composites 
for Construction, 6(2), 73–87, 2002.)
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1.2  Implementation of HFRP Sandwich 
Deck Panels in Highway Bridges

A technical comparison of sandwich and pultruded decks is shown in 
Table 1.1, from which we can see that the honeycomb FRP (HFRP) sandwich 
panels provided by Kansas Structural Composites, Inc. (KSCI) excel in terms 
of weight, cost, and deflection among all commercial FRP decks. In addition, 
the flexibility of the manufacturing process permits custom production of 
panels of any depth, while a pultruded section has a fixed geometry dictated 
by the forming steel die used. The HFRP sandwich deck panels have been 
extensively used in both rehabilitation projects and new constructions, with 
several examples shown below.

Initially, the HFRP sandwich panel (Figure  1.1) was developed by KSCI 
for a short-span bridge deck superstructure, without supporting stringers, 
located near Russell, Kansas. It is approximately 7 m (23 ft) long by 8.53 m 
(28 ft) wide and consists of three 55.88 cm (22 in.) thick longitudinal pan-
els, with the sinusoidal core waves oriented along the traffic direction. The 
two exterior panels had the standard W-beam guardrail preinstalled (see 
Figure  1.4), and the wearing surface consisted of a 9.5 mm (3/8 in.) coarse 
aggregate polymer concrete that was co-cured with the top face of the panel 
at the manufacturing plant. The bridge superstructure was installed in 8 h. 
This bridge was designed for an American Association of State Highway 
and Transportation Officials (AASHTO) HS-20 truck loading and success-
fully load tested by the Kansas Department of Transportation. This bridge is 
the first all-FRP bridge installed on a public road in the United States.

In 1999, the concrete decks of two identical 13.72 m (45 ft) span steel stringer 
bridges in Crawford County, Kansas, were replaced with the KSCI honey-
comb panels. Because of the close 0.69 m (27 in.) spacing of the W21x68 steel 

TABLE 1.1

Summary of Deck Characteristic for Two Fabrication Methods

Deck System
Depth 

(in.) lb/ft2 Dollar/ft2

Deflection 
(reported)

Deflection 
(normalized)

Sandwich construction
Hardcore composites 7–28 20–23 53–110 L/785 L/1,120
KSCI 5–24 15 65 L/1,300 L/1,300

Adhesively bonded pultrusions
DuraSpan 7.5 18 65-75 L/450 L/340
SuperDeck 8 22 75 L/530 L/530
EZSpan 9 20 80–100 L/950 L/950
Strongwell 5–8 23 65 L/605 L/325

Source: From Bakis, C.E. et al., ASCE Journal of Composites for Construction, 6(2), 73–87, 2002.
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stringers, the transverse FRP panels were only 0.12 m (4.75 in.) thick, and 
to achieve the required elevation of the replaced concrete deck, honeycomb 
FRP “saddle” beams were placed as spacers over the steel stringers by means 
of an inverted FRP channel, which served as the bottom facesheet of the 
sandwich assembly (see Figure 1.5). These spacers allow the use of more eco-
nomical thinner deck panels to accomplish the required grade and profile. 
These bridges were designed for an AASHTO HS-25 truck loading.

The Hanover Bridge deck replacement project was completed in 2001 in 
West Virginia. The project consisted of two simply supported 17.07 m (56 ft) 
spans. The existing 8.53 m (28 ft) wide nail-laminated timber deck over steel 
stringers was replaced with an 0.2 m (8 in.) thick FRP honeycomb deck, 
which was installed over one-half of the bridge at a time to avoid traffic inter-
ruption during construction. A 6.35 mm (1/4 in.) neoprene bearing pad was 
placed over each stringer, and a 3.18 mm (1/8 in.) thick inverted FRP channel 

FIGURE 1.4
FRP sandwich deck with attached guardrail.

FIGURE 1.5
Placement of FRP sandwich deck.
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was secured over the bearing pad. The 4.27 m (14 ft) long half panels were 
placed transversely over the stringers and joined at 2.44 m (8 ft) intervals 
using a FRP box beam insert, which also served to connect the panels to the 
supporting stringers by a steel clamp-bar mechanism that secures the deck 
to the top flange of the stringer. In this project, the preinstalled polymer con-
crete surface was covered with a hot-mix asphalt to create required crown 
and superelevation.

Recently, extensive studies have been conducted on the HFRP deck panels 
subjected to low temperature (Nordin et al. 2010; Qiao et al. 2011). Further 
implementations in cold regions, such as Alaska and Washington state, are 
expected.

1.3 Objectives

Thus far, the design process for sandwich decks is not in a code format. 
Rather, individual decks are designed on a job-by-job basis since the bridge 
decks have been built using proprietary systems as shown in Figures  1.1 
to 1.3. The development of standards and guidelines is needed in order to 
promote wider acceptance of composite sandwich panels in construction. 
Characterizations of stiffness and strength properties of FRP decks, and FRP 
deck-girder bridge systems, are necessary to facilitate the development of 
design guidelines, which is the objective of this book. In particular, this book 
is focused on stiffness/strength evaluations for FRP deck panels and FRP 
deck-girder bridge systems, with a focus on HFPR sandwich panels with 
sinusoidal core geometry (Figure 1.1) because of its favorable advantages, as 
described in Section 1.2. The information presented includes both experi-
mental investigations and theoretical analyses. While the studies for FRP 
decks are focused on a specific sandwich panel, they can be adapted to other 
sandwich configurations, and the studies for shear connections and bridge 
systems can be used for other types of FRP decks.

1.4 Organization

There are seven chapters in this book. Chapter 1 includes the introduction 
and organization of the book. Chapter 2 is focused on stiffness evaluation of 
the FRP sandwich decks with sinusoidal core geometry, with general core 
configuration, and with skin effect. Equivalent orthotropic properties are 
developed representative of the complex honeycomb geometry. Equivalent 
properties of face laminates are obtained using micromechanics models, and 
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the effective orthotropic properties of honeycomb core are obtained from a 
homogenization process using a combined energy method and mechanics of 
materials approach. A simplified analysis procedure is presented that can be 
used in design applications.

Strength evaluation of the FRP deck with sinusoidal core geometry is pre-
sented in Chapter 3. Core materials for sandwich structures are primarily 
subjected to out-of-plane compression and shear, and the facesheet laminates 
sustain mainly membrane forces due to bending. Therefore, strength evalu-
ations are presented for out-of-plane compression, out-of-plane shear, and 
facesheet laminates, through a combination of analytical models, numerical 
analyses, and experimental investigations.

Chapter 4 is focused on a mechanical shear connector. A prototype mechan-
ical shear connector is presented that can accommodate any panel height for 
any type of FRP deck. Static and fatigue tests were conducted on push-out 
connection specimens, which were subsequently evaluated experimentally 
on an actual scaled bridge model. The strength, stiffness, and fatigue perfor-
mance characteristics of the connection are investigated.

Chapter 5 discusses FRP deck–steel girder bridge systems with special 
considerations for load distribution factors and effective flange width con-
sidering partial composite action. Extensive tests were conducted on a one-
third-scaled bridge model. The scaled bridge test specimen consisted of an 
FRP sandwich deck attached to steel stringers by the mechanical connector 
described in Chapter 4. A harmonic analysis is formulated to define effective 
width for FRP decks as an explicit solution.

Design guidelines are presented in Chapter 6 based on findings from 
Chapters 2 to 5. Examples are given to illustrate the use of the recommended 
guidelines to design the FRP deck, shear connector, and bridge system.

Finally, Chapter 7 presents a systematic analysis and design approach for 
single-span FRP deck-stringer bridges with a design example.
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2
FRP Deck: Stiffness Evaluation

2.1  Stiffness of FRP Honeycomb Sandwich 
Panels with Sinusoidal Core

2.1.1 Introduction

This section presents an approximate analytical solution verified by finite 
element modeling and experimental testing of fiber-reinforced polymer 
(FRP) honeycomb panels with sinusoidal core (Davalos et al. 2001).

In the aerospace industry, a high degree of refinement in theoretical mod-
eling and analysis of honeycomb structures has been achieved through its 
relatively long history of applications (Noor et al. 1996), with particular atten-
tion devoted to research and development of sandwich panels. The compu-
tational models available for sandwich panels and shells were reviewed by 
Noor et al. (1996), and numerous references were provided. The focus of this 
section is on modeling of a unique FRP honeycomb sandwich structure with 
sinusoidal core geometry; the goal is to develop equivalent elastic properties 
for the core structure in order to significantly simplify the modeling pro-
cess of the sandwich panel. The early research in this area includes the work 
of Kelsey et al. (1958), where the out-of-plane shear stiffness of a hexagonal 
honeycomb with higher/lower bounds was evaluated by the classical energy 
method. Gibson and Ashby (1988) presented the predictions for both in-
plane and out-of-plane shear stiffness properties of a hexagonal honeycomb 
using mechanics of materials and energy methods. Another relatively new 
technique is homogenization theory (Shi and Tong 1995a), which is generally 
effective and accurate for estimation of honeycomb properties.

For simplified analysis and design optimization of FRP sandwich struc-
tures, it is useful to define equivalent orthotropic properties representative 
of the complex honeycomb geometry. In this section, an analytical solution 
is presented for the evaluation of equivalent properties of a honeycomb 
core with sinusoidal wave configuration, which is based on energy method 
and mechanics of materials approach. The material properties of the face 
laminates and core walls are predicted by micro/macromechanics models 
(Davalos et al. 1996). With the equivalent properties proposed in this study, 
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the responses of both sandwich beams and panels are evaluated analytically 
and verified numerically and experimentally. Also, a brief summary is given 
of the field implementation of the sinusoidal core sandwich panel for bridge 
deck applications.

2.1.2 Modeling of FRP Honeycomb Panels

In this section, using a micro/macromechanics approach for face laminates 
and an energy method combined with a mechanics of materials approach 
for honeycomb core, the modeling of equivalent properties for face and core 
elements is presented.

2.1.2.1 Geometry of Honeycomb Core

The FRP panel for practical civil engineering applications (such as bridge 
decks) considered in this study was developed by Kansas Structural 
Composites, Inc. (KSCI) (Plunkett 1997). The geometry of the sandwich struc-
ture is intended to improve stiffness and buckling response by the continu-
ous support of core elements with the face laminates. Originated from the 
basic concept of sandwich structures, two faces composed of FRP laminates 
are co-cured with the core as shown in Figure 2.1. The core geometry consists 
of closed honeycomb-type FRP cells. It is noteworthy that the thermosetting 
property of resin distinguishes honeycomb cores from their metal coun-
terparts in both manufacturing and consequent corrugated shapes. Unlike 
traditional metal sandwich structures, the shape of the FRP corrugated cell 
wall is defined by a sinusoidal function in the plane. The combined flat and 
waved FRP cells are produced by sequentially bonding a flat sheet to a corru-
gated sheet, which is similar to the processing of the section resin sandwich 

FIGURE 2.1
FRP honeycomb sandwich panel.
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panel. The assembled cellular core is then co-cured with the upper and bot-
tom face laminates to build a sandwich panel (see Figure 1.1).

The waved flutes or core elements are produced by forming FRP sheets to 
a corrugated mold. As shown in Figure 2.2, the distance of adjoining crests 
represents the wavelength l, and the interval between two adjoining flats 
gives the amplitude 2h. In the coordinate system of Figure 2.2, the wavefunc-
tion of a corrugated core wall can be defined as

 y h x
l

(1 cos 2 )= − π
 (2.1)

and the dimensions of the sinusoidal core laminate are h = 25.4 mm (1 in.) 
and l = 101.6 mm (4 in.). The constituent materials used for the honeycomb 
sandwich panel (both face laminates and core) consist of E-glass fibers and 
polyester resin, and their properties are listed in Table 2.1.

2.1.2.2 Modeling of Face Laminates

The apparent engineering properties of laminated panels can be predicted 
by a combined micro- and macromechanics approach (Davalos et al. 1996). 
The prediction of ply properties by micromechanics is well defined (Chamis 
1984), and the stiffness properties of each layer can be computed from 

t1/2

t2

H = 4h + 2t1 + 2t2
t1

t1/2

l
RVE

FIGURE 2.2
Representative volume element (RVE) of honeycomb core.

TABLE 2.1

Properties of the Constituent Materials

Material E, GPa (×106 psi) G, GPa (×106 psi) v ρ, g/cm3 (lb/in.3)

E-glass fiber  72.4 (10.5)  28.8 (4.18)  0.255 2.55 (0.092)
Polyester resin  5.06 (0.734)  1.63 (0.237)  0.30 1.14 (0.041)
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existing micromechanics models such as rule of mixtures (ROM) (Jones 
1999), periodic microstructure (PM) (Luciano and Barbero 1994), and com-
posite cylinders (CCs) (Hashin and Rosen 1964), where each layer is modeled 
as a homogeneous, linearly elastic, and generally orthotropic material. Based 
on ply properties and lay-up, the apparent stiffness of the face laminate can 
be predicted by classical lamination theory.

2.1.2.2.1 Microstructure—Lay-Up

A typical face laminate may include the following four types of fiber layers 
(Figure 2.3):

 1. Chopped strand mat (ChSM), which is made of short fibers randomly 
oriented, resulting in nearly isotropic in-plane properties. This layer 
is placed at the inner face of the laminate and provides a uniform 
and resilient bond between the face plate and the core.

 2. Continuous strand mat (CSM), consisting of continuous randomly 
oriented fibers. This product is commonly used as backing material 
for nonwoven fabrics and can be modeled as an isotropic layer.

 3. Bidirectional stitched fabrics (SFs) with balanced off-angle unidirec-
tional fibers (e.g., 0°/90° or ±45°).

 4. Unidirectional layer of fiber bundles or rovings.

In general, the fiber architecture of upper and bottom face laminates is 
symmetric about the mid-surface plane of the sandwich panel, while each 

Bonding Layer (ChopSM) 

CM-3205 (0°/90° SF + ContSM) 

CM-3205 (0°/90°  SF + ContSM) 

UM-1810 (0° roving + ContSM) 

UM-1810 (0° roving + ContSM) 

UM-1810 (0° roving + ContSM) 

UM-1810 (0° roving + ContSM) 

UM-1810 (0° roving + ContSM) 

UM-1810 (0° roving + ContSM) 

Exterior Face 

Interior Face 

FIGURE 2.3
Lay-up of face laminates.
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face laminate may exhibit some extensional-bending coupling effect due to 
the presence of a ChSM bonding layer. In this study, the fiber system of the 
face laminate (see Figure 2.3) includes two layers of specified bi-ply combi-
nation mat (CM-3205) consisting of a 0°/90° SF and a CSM layer, six layers 
of unidirectional combination mat (UM-1810) consisting of a unidirectional 
layer and a CSM layer, and one bonding layer (ChSM). The details for these 
materials are given in Table 2.2. The resin used is polyester (UN1866).

2.1.2.2.2 Fiber Volume Fraction (Vf)

The stiffness properties of composite materials depend on the relative vol-
ume of fiber (Vf) and matrix used. For a fiber mat with nominal weight (ω), Vf 
can be determined from

 V
tf = ω

ρ⋅
 (2.2)

where t is the thickness of the layer, and ρ is the density of the E-glass fibers. 
For the face laminate given in Figure 2.3, the fiber volume fraction for each 
layer is computed from (2.2) and shown in Table 2.2.

2.1.2.2.3 Micromechanics

The stiffness of each ply can be predicted from micromechanics models. In 
this study, a micromechanics model for composites with periodic micro-
structure (Luciano and Barbero 1994) is used to obtain the elastic constants 
for each individual layer (Table 2.3). Based on the assumption that the mate-
rial is isotropic in the plane, the stiffness properties of the ChSM and CSM 
layers are evaluated by an averaging procedure for randomly oriented com-
posites (Harris and Barbero 1998).

2.1.2.2.4 Equivalent Properties of Face Laminate

After the elastic properties of each ply are obtained from micromechan-
ics, the equivalent stiffness properties of the face laminate are computed 
from classical lamination theory (Jones 1999). A set of equivalent laminate 

TABLE 2.2

Layer Properties of Face Laminates

Ply Name Ply Type
Nominal Weight, 

w, g/m2 (oz/ft2)
Thickness, 
t, mm (in.) Vf

Bonding Layer ChSM 915.5 (3.0)  2.08 (0.082) 0.1726
CM3205 0° 542.5 (16/9)  0.62 (0.0245) 0.3428

90° 542.5 (16/9)  0.62 (0.0245) 0.3428
CSM 152.6 (0.5)  0.254 (0.01) 0.2359

UM1810 0° 610.3 (2.0)  0.635 (0.025) 0.3774
CSM 305.2 (1.0)  0.335 (0.0132) 0.3582
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properties (Ex, Ey, Gxy, υxy ) can be defined for approximately balanced sym-
metric laminates (Davalos et al. 1996). These elastic constants represent the 
stiffness of an equivalent, orthotropic plate that behaves like the actual lami-
nate under in-plane loads. The equivalent moduli of the laminate are

 E A A A
tA

E A A A
tA

G A
t

A
A

, , ,x y xy xy
11 22 12

2

22

11 22 12
2

11

66 12

22
= − = − = υ =  (2.3)

where t is the thickness of the laminated face panel and Aij (i, j = 1,2,6) are the 
extensional stiffness coefficients. Based on (2.3), the equivalent properties of 
the face laminate are given in Table 2.4.

2.1.2.3 Modeling of Honeycomb Core

The elastic equivalence analysis of a sinusoidal-waved honeycomb core struc-
ture (see Figure 2.2) is based on a homogenization concept by a combined 
energy method and mechanics of materials approach. The homogenization 
process of periodic structures requires defining a representative volume 
element (RVE) or unit cell, for which the global properties can be obtained 
by periodical conditions and kinematical assumptions. Two different scales 
are defined in the homogenization process: one at the RVE level, where the 
mechanical properties vary from point to point within the local scale, and 
another at the global level, where the average properties vary smoothly over 
the structure. Periodical homogeneity implies that global averages and RVE 
averages are the same. Four fundamental concepts are applied in the analysis 

TABLE 2.3

Layer Stiffness Properties Obtained from Micromechanics Model

Ply Name Orientation
E1 

(GPa)
E2 

(GPa)
G12 

(GPa)
G23 

(GPa) ν12 ν23

Bond layer Random 9.72 9.72 3.50 2.12 0.394 0.401
CM3205 0° or 90° 27.72 8.00 3.08 2.88 0.295 0.390

Random 11.79 11.79 4.21 2.36 0.402 0.400
UM1810 0° 30.06 8.55 3.30 3.08 0.293 0.386

Random 15.93 15.93 5.65 2.96 0.409 0.388
Core mat Random 11.79 11.79 4.21 2.97 0.402 0.388

TABLE 2.4

Stiffness Properties of Face Laminates

Ex 
GPa (×106 psi)

Ey 
GPa (×106 psi) vxy

Gxy 
GPa (×106 psi)

Face laminate 19.62 (2.846) 12.76 (1.850) 0.302 3.76 (0.546)
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(Germain et al. 1983): (1) equilibrium equations, (2) the relation of averaging, 
(3) boundary conditions, and (4) local constitutive law.

For most sandwich cores, the RVE with regular spatial character in double 
symmetry gives orthotropic properties that can be defined by nine equiva-
lent stiffness constants. The structure of the sandwich core can be separated 
into a number of substructures. For instance, the sinusoidal core (Figure 1.1) 
contains the substructures of flat and curve walls, and the walls can be sim-
plified as series of simply supported elements without interaction with the 
top and bottom face laminates.

The minimum energy theory states that the strain energy calculated from 
the exact displacement distribution is a minimum. For a given simplified 
sandwich core, the averaging principle of the RVE technique can be gener-
ally expressed in parallel and series models according to Voigt and Reuss 
(see Christensen 1991):

 ∑σ
≤ + +

=
C
V U U U1

2
( )ij
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b s a k

k
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=
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where k accounts for individual substructures in the RVE (Figure 2.2), and 
Ub, Us, and Ua are, respectively, the strain energies related to bending, shear, 
and axial responses. Equations (2.4) and (2.5) define, respectively, the condi-
tions of lower and upper bounds for stiffness constants. In this study, only 
the energy due to bending, shear, and axial forces is included in the compu-
tation, which satisfies most periodic structures.

To obtain the elastic constants in (2.4) and (2.5), several types of loading 
arrangements for the lower or upper bound condition are applied to the RVE 
and produce a system of linear equations. The most obvious and simple load-
ing arrangement is the application of each single principal stress or strain 
to obtain the corresponding stiffness without other types of strain energy 
involved.

When a principal load/strain is applied, the strain energy in (2.4) and (2.5) 
can be written as

 U M N h V ds(
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where M11, N11, and V12 are the bending moment, axial force, and transverse 
shear force acting on the core wall (Figure 2.4), and δ11, α11, and h44 are the cor-
responding compliance coefficients. The subscripts 1, 2, and 3 denote local 
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Cartesian coordinates, with the one-axis tangent and the three-axis normal 
to the wave curve (see Figure 2.4).

For simplicity, there are several assumptions made in equivalence analysis 
of a sandwich core: the material behaves linear elastically; perfect bonding 
exists at face-to-core and core wall-to-wall contacts; and the ratio of thick-
ness of the core wall to the radius of the core wall is small, and the beam 
bending theory can be applied. In the following section, the core equivalent 
properties are derived.

2.1.2.3.1 Core Longitudinal and Transverse Young’s Moduli (Ex
e and Ey

e)

In this study, a basic element of honeycomb (RVE) is taken (Figure 2.2), and 
the wave function is defined by (2.1). The properties of CSM core wall can be 
obtained from micromechanics and are given in Table 2.3.

By applying a uniform stress q in the y direction (Figure 2.4), the internal 
energy U of the RVE in (2.6) becomes

 U t M N h V ds F l4 (
2 2 2

)
2

s
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q

y

RVE

(a) RVE under stress in y direction

(b) Coordinate and equilibrium condition
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FIGURE 2.4
Computation of Young’s modulus in y direction (Ey

e).
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where the bending moment, axial force, and shear force can be simply obtained 
by the equilibrium condition and geometric property as (see Figure 2.4)

 

= − − π − = −

=
π π +

+ π π
=

− π π

+ π π

M lx q h
l
x F M M l q hF

N
h

l
x q F

h
l l

x
V

ql h
l l

x F

h
l l

x

2
[1 cos( 2 )] ; /8

sin( 2 )

1 sin ( 2 )
; 2

2 sin( 2 )

1 sin ( 2 )

o11 0
2

11 2 2

2
2

12 2 2

2
2

 (2.8)

and for CSM core wall, the compliance coefficients are

 E t E t
h

G t
12 ; 1 ; 1

11
1 2
3 11

1 2
44

13 2
δ = α = =

κ
 (2.9)

where H = 4h+2t1+2t2 (Figure  2.2), s = one-half curve length of a sinusoi-
dal period starting from the origin of Cartesian coordinates, t1 = thickness 
of flat core wall, t2 = thickness of corrugated core wall, F = internal force, 
q = applied uniform stress parallel to the y axis, and κ = shear correction fac-
tor, 5/6 for a rectangular cross section.

The apparent strain value of RVE, εy , can be calculated through Castigliano’s 
second theorem. The theorem states that under the principle of superposi-
tion, a partial derivative of the strain energy with respect to an external force 
gives the displacement corresponding to that force. In this case, the displace-
ment (Δy ) in the y direction can be obtained as

 H U
ql( )y y∆ = ε = ∂

∂
  (2.10)

Before (2.10) is applied, the unknown internal force F can be found by impos-
ing the compatibility condition:

 l U
F

Fl
E tx x

1 1
∆ = ε = ∂ ′

∂
=  (2.11)

 U t M N h V ds2 (
2 2 2

)
s

2
11 11

2

0

11 11
2

44 12
2

∫′ = δ + α +  (2.12)

where U′ is the strain energy stored in one period of sinusoidal wave.
Once the strains are defined, the equivalent stiffness (Ey

e) in the y direction 
and the Poisson’s ratio (νyx

e) can be obtained as
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 =
ε

ν = − ε
ε

= ∆
∆

E q H
l

;y
e

y
yx
e x

y

x

y
 (2.13)

The above results based on the mechanics of materials approach lead to an 
exact solution, and the upper and lower bounds given in (2.4) and (2.5) result 
in the same solutions.

Similarly, the equivalent stiffness in the x direction can be obtained by 
applying a uniform stress in that direction. Based on the above formulation, 
the analysis indicates that the stiffness contribution of the curve beams is 
negligible in the x direction, and the equivalent stiffness, Ex

e, can be approxi-
mated as

 E t
H
E2

x
e 1

1=  (2.14)

2.1.2.3.2 Core Out-of-Plane Shear Moduli (Gxz
e and Gyz

e)

When a shear force is applied, the induced deformation at each core wall 
is due to the spatial nonuniformity of the honeycomb structure. Unlike the 
cases of Young’s moduli, the shear stiffness usually involves a complicated 
state of deformation, and it is relatively difficult to get an exact analytical 
solution. However, using the energy method, the lower and upper bound 
solutions can be obtained, and the lower bound usually provides a conserva-
tive solution in practical design.

When a shear stress τxz is applied in the x direction, the resulting apparent 
distributed shear flow is as shown in Figure 2.5. The equilibrium equation 
and compatibility condition are written as

 t ds t l Hl4 cos 2
s

xz2 2
0

1 1∫ τ θ + τ = τ  (2.15)

 G
ds

G
l2 s

s

s
2

120

1

12∫ τ = τ
 (2.16)

where

 ∫ θ =ds2 cos 1
s

0
.

Equations (2.15) and (2.16) lead to

 
H ds

lt t ds2

s

s xz1
0

2 1
0

∫
∫

τ =
+

τ  (2.17)
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H

t t ds l2 4 /
s xz2

2 1
0∫

τ =
+

τ  (2.18)

By applying (2.4), we can obtain:

 G
G

t
H

t l

H ds

2xz
e

s s
12

1 2

0∫
≥ +  (2.19)

where G12
s is the in-plane shear modulus of core wall (see Table 2.3). Similarly, 

applying a shear strain γxz and combining with the corresponding compat-
ibility conditions, we can express (2.5) as

 t l G G t ds Hl G2 1
2

4 1
2

( cos )
2xz

s
s

s
xz xz

e
xz1

2
12

0
12

2
2

2∫γ + γ θ ≥ γ  (2.20)

(b) Shear flow on core (plan view)

(a) Out-of-plane shear on RVE

z

x

y

τ1

τ2

τ2

τ1

τ2

τxz

τxz

l

RVE

τ2

τ1

FIGURE 2.5
Computation of out-of-plane shear modulus (Gxz

e).
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Simplifying (2.20) gives

 
G
G

t
H

t
Hl

ds2 4 cosxz
e

s

s

12

1 2 2

0∫≤ + θ  (2.21)

Following a similar analysis process, the out-of-plane shear modulus, Gyz
e, 

can be obtained as

 
t ds

lH
G G t h

lH ds
G

4 sin 16
s

s
yz
e

s
s

2
2

0
12

2
2

0

12
∫

∫
θ

≥ ≥  (2.22)

2.1.2.3.3 Summary of Core Equivalent Properties

Based on the formulations in Sections 2.1.2.3.1 and 2.1.2.3.2, the equivalent 
properties of FRP honeycomb core are computed and given in Table 2.5. In a 
similar fashion and based on a mechanics of materials approach, the Young’s 
modulus (Ez

e) in the z direction and in-plane shear modulus (Gxy
e) are derived. 

As shown in Table 2.5, the lower and upper bounds for the out-of-plane shear 
moduli are within a relatively narrow range.

2.1.2.4 Equivalent Stiffness Properties for Honeycomb Sandwich Panels

By modeling a honeycomb sandwich panel as a three-layer laminated sys-
tem of top and bottom faces and core and using classical lamination theory, 
the sandwich panel equivalent stiffness properties are computed and given 
in Table 2.6. The simulated layer properties for face panels and core are based 
on the results given in Tables 2.4 and 2.5, and for core properties, the values 
of lower bounds are used in the calculation.

2.1.3 Behavior of FRP Honeycomb Beams

To verify the accuracy of the equivalent stiffness properties of the FRP hon-
eycomb panel obtained in Section 2.1.2, the experimental testing and finite 
element modeling of FRP honeycomb beams are performed and correlated 
with analytical solutions, which are based on first-order shear deformation 
theory. The results and comparisons for two simple loading types—three-
point bending and four-point bending—are presented.

2.1.3.1 Analytical Model: Beam Theory

For a sandwich beam with thin faces, it is reasonable to assume a constant 
transverse shear strain through the thickness. Using Timoshenko beam the-
ory, the coupled governing differential equations are given as
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 D d
dx

GA dw
dx

( )( ) 0
2

2
ψ + κ − ψ =  (2.23)

 GA d
dx

d w
dx

q x( ) ( )
2

2κ ψ − =  (2.24)

where w denotes deflection, and y physically represents the first derivative 
of deflection due to bending. Beam bending stiffness D mainly consists of 
face in-plane tensile stiffness and core bending stiffness (Allen 1969) and is 
expressed as

 D b d t t E d t E( )
2

( 2 )
12f c

2 3
= − + −







  (2.25)

where b, d, and t denote beam width, and beam depth and face thickness, 
respectively. The shear stiffness (κGA) of the FRP honeycomb sandwich beam 
can be simplified by neglecting face shear deformation, and it is expressed as

 GA G bd( ) xz
eκ =  (2.26)

where κ is the shear correction factor and is assumed to be 1.0 for this study. 
By solving (2.23) and (2.24), the maximum mid-span deflections for three-
point bending and four-point bending are

 

PL
D

PL
GA

PL
D

PL
GA

48 4( )
, 3-point bending

23
1296 6( )

, 4-point bending

3

3

4

3

δ = +
κ

δ = +
κ

 (2.27)

where P is the total applied load, and L is the span length. The analytical 
predictions for sandwich beams with sinusoidal core oriented in the longitu-
dinal and also transverse directions are given in Tables 2.7 to 2.10. It should 
be noted that the assumption of thin faces is used in this study, and for thick 
faces, the modifications can follow the approach by Allen (1969).

TABLE 2.6

Equivalent Properties of FRP Honeycomb Sandwich Panel

Ex
p 

GPa (×106 psi)
Ey

p 
GPa (×106 psi)

Gxy
p 

GPa (×106 psi) νxy
p

In-plane 3.813 (0.553) 2.206 (0.320) 0.648 (0.094) 0.303
Bending 8.777 (1.273) 5.537 (0.803) 1.627 (0.236) 0.301

Note: p refers to quantities with panel properties.
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2.1.3.2 Finite Element Modeling

The finite element (FE) program ANSYS (version 5.5) was used to model the 
actual honeycomb sandwich beams. The face laminate consists of triangular 
six-node isoparametric shell elements that allow input of up to 256 compos-
ite layers. The sinusoidal and flat laminates of the core wall are modeled 
with rectangular eight-node isoparametric shell elements, and the sinusoidal 
wave shape of the core wall is defined by a polynomial function. The global 
size of each element is set at about 1 in., and for example, there are more than 
3,000 elements for the 8 in. wide and 8 ft long beam. The numerical predic-
tions are given in Tables 2.7 to 2.10 for various beams and load conditions. 
The experimental results and their correlations with finite element analyses 
and analytical predictions are presented next.

2.1.3.3 Experimental Study

To indirectly verify the accuracy of the equivalent orthotropic properties 
given in Table 2.6, which are obtained from homogenization analysis of core 
and micro/macromechanics analysis of face laminates, the longitudinal and 
transverse FRP honeycomb beams were tested. Two beam widths of 0.2032 m 
(8.0 in.) and 0.3048 m (12.0 in.) were provided by KSCI, and two beams for each 
beam type were tested under bending. At the mid-span for each sample, three 
strain gages were bonded along the width of the top face and one at the cen-
ter of the bottom face. Displacement transducers (Linear Variable Differential 
Transducers, LVDTs) were also placed at the center and one-third spans. The 
beams were tested under both three-point and four-point bending loads. In 
the three-point bending test, the load was applied at the mid-span, whereas 
for the four-point bending, the loads were applied at the third and two-third 
points of the span. To study the shear effect on deflection, various span lengths 
were tested, and the experimental results are summarized in Tables 2.7 to 2.10.

2.1.3.4 Comparison and Summary

As indicated in Tables  2.7 to 2.10, relatively good agreements among the 
experimental data, FE predictions, and analytical results are achieved. 
Especially, the deflections for both the longitudinal and transverse beams 
based on analytical predictions compare well with the experimental and 
finite element model results.

2.1.4 Behavior of FRP Honeycomb Sandwich Panel

As an application, a full-size FRP honeycomb panel of 2.36 × 4.57 × 1.52 m 
(7.75 ft × 15 ft × 5 in.) (Figure 2.6) is tested under bending and also analyzed 
by the finite element method. The panel deck is simply supported over a span 
of 4.57 m (15 ft) and subjected to a patch load (0.2413 × 0.6096 m) (9.5 × 24 in.). 
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Three load conditions are applied at mid-span to simulate symmetric and 
asymmetric cases (see Figure 2.6): (a) at the center of the deck, (b) at one-
fourth (w/4) of the width from one edge along mid-span section A-A, and (c) 
at w/4 from the opposite edge along mid-span section A-A. For each load con-
dition, the displacements were recorded at seven locations with LVDTs (see 
Figure 2.6(b)), and the strains in both longitudinal and transverse directions 
were obtained at three locations along the mid-span using bonded strain 
gages at the bottom of the deck (Figure 2.6(c)). From Figure 2.6, note that for 
the asymmetric load cases 2 and 3, the following displacement values should 
correspond to each other: δ1 and δ5, δ2 and δ4, and δ6 and δ7, since they are 

Honeycomb
panel

A´

24"× 9.5" patch

L = 15 ft
(1 in = 25.4 mm; 1 ft = 0.3048 m)

(a) Deck under patch loading

(c) Locations of strain gages at bottom

- Longitudinal strain gage

w/4

w/4w/4w/4w/4

w/4
254

L/4

L/4

L/4

3

7

21 15 ft
1

4

6

L/4

5 6

3

- Transverse strain gage
- LVDT

(b) Locations of LVDTs at bottom

A

w = 7.75 ft

P

FIGURE 2.6
Experimental setup of FRP honeycomb deck panel.
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symmetric with respect to the center of the deck. Similarly, the following 
strains should correspond to each other: ε1 and ε3, and ε4 and ε6.

In the finite element analysis, a sandwich panel with equivalent three lay-
ers (top and bottom faces and core) is modeled. For simplicity and verification 
purposes, the equivalent properties obtained for face laminates (Table 2.4) and 
core (Table 2.5) are used directly in the model, and the face laminates and core 
are each modeled as a single layer using eight-node shell elements. The mesh 
used with and the displacement contours obtained from ANSYS FE are shown 
in Figure 2.7. As shown in Table 2.11, the finite element predictions based on 
equivalent material properties compare favorably with experimental data. For 
the symmetric loading, the maximum difference for deflection is 8.56%, while 
for asymmetric cases, the maximum difference is about 11.62%.

2.1.5 Conclusions

In summary, this section presents a combined analytical and experimental 
characterization of FRP honeycomb panels. The core consists of in-plane sinu-
soidal cells extending vertically between top and bottom face laminates. The 
emphasis of this study is on evaluation of equivalent properties for both face 
and core components. A combined micro/macromechanics approach is used 
to predict face laminate elastic properties, and the core equivalent properties 
are obtained by a homogenization technique combined with an energy method 
and a mechanics of materials approach. The analytical model predictions cor-
relate well with finite element modeling and experimental results for both beam 
and plate specimens. In particular, the test results for a 2.36 × 4.57 m (7.75 × 15 ft) 
panel under symmetric and asymmetric patch loads match well with finite ele-
ment predictions obtained by modeling the specimen as a three-layer equiva-
lent plate. Thus, the equivalent orthotropic properties developed in this section 
can be used with confidence in design analyses of the FRP sandwich panel.

2.2  On the Transverse Shear Stiffness of Composite 
Honeycomb Core with General Configuration

In this section, the effective transverse shear stiffness properties of a generic 
composite honeycomb core configuration based on a homogenization tech-
nique (Xu et al. 2001) are presented.

2.2.1 Introduction

By observing the repetitive pattern of sandwich structures, it is practicable to 
approach the solution as a boundary value problem with effective stiffness 



29FRP Deck: Stiffness Evaluation

(b) Panel displacement contour under asymmetric loading

(a) Panel displacement contour under symmetric loading

ANSYS

MX

MX

MN
Y

Z

X

MN
YX

Z
1

1 ANSYS  5.5.1
MAY 24 2000
10:50:25
NODAL SOLUTION
SUB = 1
TIME = 2
UZ
RSYS = 0
PowerGraphics
EFACET = 1
AVRES = Mat
DMX = 1.479
SMX = 1.479

0

1.479
1.315
1.15
.986091

.164349

.328697

.493046

.657394

.821743

(AVG)

NODAL SOLUTION

5.5.1
May 24 2000

STEP = 1
SUB = 1
TIME = 1
UZ
RSYS = 0

EFACET = 1
AVRES = Mat

0
SMX = 1.068

.118677

.237354

.356031

.474707

.593384

.712061

.830738

.949415
1.068

DMX = 1.068

PowerGraphics

(AVG)

10:51:23

FIGURE 2.7
FRP sandwich panel (ANSYS).



30 FRP Deck and Steel Girder Bridge Systems

TA
B

LE
 2

.1
1

E
xp

er
im

en
ta

l a
nd

 F
in

ite
 E

le
m

en
t C

om
pa

ri
so

n 
fo

r 
a 

FR
P 

H
on

ey
co

m
b 

D
ec

k

L
oa

d
 T

yp
e

D
efl

ec
ti

on
 (m

m
)

S
tr

ai
n

 (μ
ε)

δ 1
δ 2

δ 3
δ 4

δ 5
δ 6

δ 7
ε 1

ε 2
ε 3

ε 4
ε 5

ε 6

C
as

e 
1

E
xp

er
im

en
t

24
.6

38
24

.7
90

25
.4

00
24

.6
89

24
.7

14
20

.8
03

21
.1

58
82

5
85

5
82

6
–1

13
28

3
–4

8
FE

26
.7

46
26

.6
19

27
.1

27
26

.6
19

26
.7

46
22

.4
28

22
.4

28
10

03
10

92
10

03
–1

75
16

8
–1

75
C

as
e 

2
E

xp
er

im
en

t 
33

.6
55

29
.2

35
24

.7
65

20
.8

03
17

.9
83

20
.7

01
21

.1
84

10
69

79
9

66
7

19
8

–1
20

–1
61

FE
37

.5
67

32
.2

07
26

.6
70

22
.0

47
18

.5
42

22
.5

55
22

.5
55

13
57

10
33

81
9

12
8

–2
36

–1
70

C
as

e 
3

E
xp

er
im

en
t

17
.8

56
20

.8
28

25
.1

46
29

.8
45

34
.4

42
20

.7
01

21
.2

34
66

4
84

4
10

19
–1

89
–1

12
10

3
FE

18
.5

42
22

.0
47

26
.6

70
32

.2
07

37
.5

67
22

.5
55

22
.5

55
81

9
10

33
13

57
–1

70
–2

36
12

8



31FRP Deck: Stiffness Evaluation

properties by treating a spatially heterogeneous structure as an equivalent 
homogeneous bulk material. The effective stiffness may be analytically pre-
dicted when the local problem on a characterized representative volume ele-
ment (RVE) or unit cell is reduced to a two-dimension case, and in general, 
thin-walled honeycomb core configurations with warping-free assumption 
may satisfy this condition. Since previous research was mainly focused on 
the traditional hexagonal honeycomb core made of metallic foil, there is lit-
tle literature available in the sense of general spatial configurations. With 
regard to computational models on sandwich structures, Noor et al. (1996) 
presented a review wherein most of relevant literature is listed. The early 
research in hexagonal honeycomb includes the work of Kelsey et al. (1958), 
where upper and lower bounds of transverse shear stiffness were obtained 
with the classical energy method. Among others, Gibson and Ashby (1988) 
presented the predictions for transverse shear stiffness of hexagonal honey-
comb using mechanics of materials and energy methods. Hohe et al. (1999) 
studied general hexagonal and quadrilateral grid structures by using an 
energy approach. All these classical mechanics approaches are effective for 
specific problems of isotropic grid honeycomb, but they become somewhat 
limited when applied to honeycomb problems with general shapes and 
anisotropic materials. In general, this limitation is partially related to con-
ventional methods themselves, which lack rigor of mathematical theory.

The mathematical description of micro-periodical composite materials 
has been well developed during the 1970s. The method of homogenization 
is believed capable of approximating the equivalent stiffness properties 
effectively and unrivaled by any other known methods in terms of accu-
racy and closeness. When applying homogenization techniques at micro 
and macro levels, there are basically no distinctions between problems of 
inhomogeneous materials and discrete network structures. The homogeni-
zation method for composite materials (Meguid and Kalamkarov 1994) can 
thus be analogically used in structural problems of thin-walled honeycomb 
cores. However, the application of the homogenization method to engineer-
ing problems is not easy, and little work has been done in this area. A crucial 
issue is the solution of a special local problem assisted by physical inter-
pretation of the localized variables, by means of which the homogenization 
process can thus be less cumbersome and more expedient. In the field of 
sandwich structures, a good attempt was made by Shi and Tong (1995a) in 
presenting an analytical solution for a hexagonal honeycomb core using the 
homogenization theory.

Of all the effective stiffness properties of the honeycomb sandwich core, 
the transverse shear properties are most difficult to predict. Also, due to 
the relatively low shear moduli of polymer resins in composite materials, 
an accurate prediction of effective transverse shear stiffness of a compos-
ite honeycomb core becomes more important. In this section, the transverse 
shear stiffness of a honeycomb core with a general configuration is inves-
tigated, and a two-scale homogenization method is used to obtain explicit 
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formulas for general configurations of thin-walled honeycomb structures. 
The analytical lower bound formula of effective transverse shear stiffness is 
formulated by means of the homogenization method. The approach adopts 
basic mathematical concepts of homogenization theory, and the 3D partial 
differential equations are solved with the assumption of free warping and 
constant variables through core wall thickness. This approach can be fur-
ther extended to other honeycomb core structures, by implementing certain 
modifications when required; e.g., the effect of core wall thickness can be 
added for thick core wall structures. The basic mechanics concepts of the 
homogenization method are used in this section, and details can be found in 
a number of relevant references (Kalamkarov 1992; Parton and Kudryavtsev 
1993). Several practical examples of honeycomb cores with different configu-
rations are solved with the derived formula, which is validated by existing 
approaches (e.g., the solutions given by Kelsey et al. (1958) and Shi and Tong 
(1995a) for hexagonal honeycomb core) or is verified by finite element analy-
ses presented in this section.

2.2.2 Application of Homogenization Theory

Honeycomb sandwich structures usually consist of two outer facesheets and 
a honeycomb core with double periodicity in the plane normal to the thick-
ness direction. In the homogenization process, a parallelepiped unit cell is 
first defined and selected to characterize the spatial periodicity of a sandwich 
structure. We consider a body of honeycomb sandwich (Figure 2.8) occupy-
ing a bound region Ω in R3 space, defined by coordinates x1, x2, and x3, with 
a smooth boundary under body force Pi. The region Ω consists of a doubly 
periodic unit cell Y with in-plane dimensions of εy1, εy2, and thickness y3 

x1

x2

x3
Ω

FIGURE 2.8
A body of honeycomb sandwich structure.



33FRP Deck: Stiffness Evaluation

in the same order. It should be pointed out that the homogenization of a 
3D periodicity body is different from that of plates with a thickness dimen-
sion much smaller than that of the other two. However, when we neglect the 
warping constraints of a sandwich facesheet, the estimate of transverse shear 
stiffness can be considered independent of thickness dimension. Therefore, 
we can rescale the thickness dimension to attain the same periodicity param-
eter ε, by which the 3D asymptotic expansion (Parton and Kudryavtsev 1993) 
can be simply adopted in the following derivations, wherein the notation is 
given with small Latin indices h, i, j, k, l = 1, 2, 3 and small Greek indices α, 
β, λ = 1, 2. The equations of equilibrium and the boundary conditions of the 
linear elasticity problem may be written as

 
x

P

u u

n T

0, in

ˆ , on

, on

ij

j
i

i i

ij j i

( )

( )
1

( )
2

∂σ
∂

+ = Ω

= ∂ Ω

σ = ∂ Ω

ε

ε

ε

 (2.28)

where

 

c x e

e u
x

u
x

1
2

ij ijkl kl

kl
k

l

l

k

( ) ( )

( )
( ) ( )

σ =
ε







= ∂
∂

+ ∂
∂







ε ε

ε
ε ε

 (2.29)

And the coefficient cijkl(y) should satisfy the elliptical symmetry condition
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It is noted that the variables with superscripts 1 and 2 are Y-periodic in y. 
Substituting (2.32) and (2.33) into (2.28) and retaining the terms of O(ε–1) and 
O(ε0), we have
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In (2.36), we may introduce the Y-periodic functions by
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Thus, (2.36) becomes
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Since the function is Y-periodic in y, (2.35) will have a unique solution if the 
following condition is satisfied;
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where Y represents a parallelepiped unit cell, and nj is the unit vector in the 
outward normal direction to the surface ∂Y.

Applying a volume averaging procedure to (2.35) over Y and considering 
the conditions given in (2.32), (2.33), and (2.41), we have
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and
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The effective elastic constants of a unit cell are defined by cijkl . Based on 
the so-called zeroth-order approximation given in (2.28) to (2.44), the equiva-
lent elastic coefficients can be computed with the solution of the local func-
tion y( )ij

klτ .

2.2.3 Derivation of Effective Transverse Shear Stiffness

2.2.3.1 Description of 2D Periodic Thin-Walled Honeycomb Core

A unit cell of a general honeycomb core structure (in a coordinate system of 
y1, y2, and y3) is shown in Figure 2.9, where the whole domain and the region 
of composite laminates inside are designated as Y and Ys, respectively, and 
the thickness of honeycomb is denoted as δ. Within Ys, a segment AB with 
arbitrary in-plane curve function is selected for analysis. Due to periodicity, 
the ends A and B are located at the opposite side of the unit cell. Let s and η 
denote two local in-plane coordinates, one tangential along the curve seg-
ment and the other in the normal direction. For simplicity, the composite 
core material is assumed to be orthotropic and defined by nine elastic con-
stants, where GL and GT denote the in-plane and transverse shear stiffness 
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properties, respectively. Obviously the material shear stiffnesses c1313, c2323, 
and c1323 in the y coordinate system (Figure 2.9) can be calculated by transfor-
mations of GL and GT.

For thin-walled structures, the thickness of core wall t(s) is assumed small 
compared with the size of the unit cell. Therefore, it is reasonable to assume 
constant variables through the wall thickness. When we apply (2.44) to a 
honeycomb core consisting of discrete structures, the averaging integration 
can be made by a summation of all segments:

 c
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where K itemizes the segments.
To calculate the effective shear stiffness by (2.45), we may first obtain ana-

lytical solutions for individual segments. It is observed that the transverse 
shear stiffnesses GL and GT of the unit cell material are zero in Y\Ys and con-
stant in Ys. This situation by nature is similar to that of periodically distrib-
uted holes in a bulk material. The local boundary condition can be written as

 n 0(0)σ ⋅ =  (2.46a)

Applying (2.33) and (2.37), (2.46a) can be expressed as

 c y y n , Y( ) ( ) 0 atij ij j s3
3( )+ τ ⋅ = ∂α

α  (2.46b)

where n is the unit vector normal to the core vertical wall ∂Ys. Physically, the 
above boundary condition represents traction-free on the vertical surface of 
the core wall.

The condition of periodicity (i.e., duplication of local function N y( )i
3α  on A 

and B) is expressed as

y3

y1

y2

B

η

s

Y

A

FIGURE 2.9
Unit cell element of a general honeycomb core.
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 N y N y( ) ( )i A i B
3 3  =  

α α  (2.47)

As given in Equations (2.45) to (2.47), the homogenization process actually 
reduces to solving the unknown local function y( )ij

klτ  with the application of 
local periodic boundary conditions.

2.2.3.2 Determination of Local Function

Based on the warping-free assumption that the local variables are indepen-
dent of thickness dimension y3, (2.40) may be specifically expressed as follows:
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Note in (2.49) that the term 
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is taken to zero by the warping-free assumption. Further (2.48a) can be 
rewritten in local coordinates (s, η) as
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As is the case for thin-walled structures, the gradient through the thick-
ness η is approximately zero; thus the second terms of Equation (2.50) disap-
pear, and (2.50) reduces to
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where θ denotes the anticlockwise angle from y1 to s, and constα1 and constα2 
are constants.

The consideration of local boundary conditions in (2.46) results in the condi-
tion of constant shear flow and constα1 = constα2 = constα. Then, (2.51) becomes
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13 3τ + = θα
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α  (2.52a)

 s c s const( ) ( ) sin23
3

23 3τ + = θα
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α  (2.52b)

Physically, the above equations can be interpreted as constant shear flows 
along a segment. To further take into account the wall thickness function t(s) 
along the segment, (2.52) may be modified as

 s c s const
t s

( ) ( ) cos
( )13

3
13 3τ + = θα

α

α

 (2.53a)

 s c s const
t s

( ) ( ) sin
( )23

3
23 3τ + = θα

α

α

 (2.53b)

To determine constα in the above expressions, we use the relations given 
in (2.49):

 s G N
s

G N( ) cos sinL T13
3 3

3
3
3

τ = θ ∂
∂

− θ ∂
∂η

α
α α

 (2.54a)

 y G N
s

G N( ) sin cosL T23
3 3

3
3
3

τ = θ ∂
∂

+ θ ∂
∂η

α
α α

 (2.54b)

with coordinate transformations

 c G Gcos sinL T1313
2 2= θ + θ  (2.55a)

 c G Gsin cosL T2323
2 2= θ + θ  (2.55b)

 c G G( )sin cosL T1323 = − θ θ  (2.55c)
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Substituting (2.54) and (2.55) into (2.53) and after several steps of transforma-
tion, we can finally have

 
N
s

const
t s G( )

cos
L

3
13 1∂

∂
= − θ  (2.56a)

 
N sin3
13∂

∂η
= θ  (2.56b)

 
N
s

const
t s G( )

sin
L

3
23 2∂

∂
= − θ  (2.56c)

 
N cos3
23∂

∂η
= θ  (2.56d)

For a simple curve AB without ramification, the substitution of (2.55a) and 
(2.55c) into (2.47) results in

 
N
s
ds const

t s G
ds

( )
cos 0

A

B

L
A

B
3
13 1

∫ ∫∂
∂

= − θ






=  (2.57a)

 
N
s
ds const

t s G
ds

( )
sin 0

A

B

L
A

B
3
23 2

∫ ∫∂
∂

= − θ






=  (2.57b)

If a segment is ramified, constα becomes piecewise constant, and the conti-
nuity of shear flow should be considered at joints. For a segment with rami-
fication, (2.57) can thus be modified as

 
N
s
ds const

t s G
ds

( )
cos 0

A

B m

L
A

B
3
13 1

∫ ∫∂
∂

= − θ






=  (2.58a)

 
N
s
ds const

t s G
ds

( )
sin 0

A

B m

L
A

B
3
23 2

∫ ∫∂
∂

= − θ






=  (2.58b)

where m is the number of ramification joints along the segment AB, and const1m 
and const2m denote the piecewise constant shear flow along the segment.

Since the plane arrangement of segments in a unit cell is generally doubly 
symmetric, the problem of ramified segments can be simplified and is shown 
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for the hexagonal honeycomb core of the succeeding section. For the cases of 
nonramification, (2.57) is directly solved as

 const d
T
GL=α α  (2.59)

where

 d ds d ds T
t s

dscos ; sin ; 1
( )

A

B

A

B

A

B

1 2∫ ∫ ∫= θ = θ =  (2.60)

Substituting the solution (2.59) into (2.53), we can finally obtain the local 
functions as

 s c s d
Tt s

G( ) ( ) cos
( ) L13

3
13 3τ + = θα

α
α  (2.61a)

 s c s d
Tt s

G( ) ( ) sin
( ) L23

3
23 3τ + = θα

α
α  (2.61b)

2.2.3.3 Results and Applications

By substituting the local functions (2.61) derived above into (2.45), the explicit 
formula of effective transverse shear stiffness can be expressed as

 c
Y

c y t s ds dy G d d
T

1 ( ( ) ) ( ) , , 1,2
A

B

KK

L

KK
3 3 3 3 3

3
3∫∫∑ ∑= + τ













=
Λ









 α β =α β α β α

β

δ

α β  (2.62)

where

 d ds d ds T
t s

dscos ; sin ; 1
( )

A

B

A

B

A

B

1 2∫ ∫ ∫= θ = θ =

and Λ denotes the area of unit cell in the plane of y1 and y2, and ds represents 
the infinitesimal length of segment K.

As described in (2.62), the contribution of each segment to the effective 
shear stiffness depends on the term

 
d d
T
α β .

If a segment is straight with constant thickness t and aligned with the coor-
dinate yα, then dβ = 0, dα = Tt; thus, its contributions to c c c, ,3 3 3 3 3 3α α α β β β  
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are dαt, 0, 0, respectively, which are exactly identical to those familiar forms 
used for I-section beams in beam theory.

To demonstrate the generality of formula (2.62), three typical honeycomb core 
structures with different core configurations are studied and discussed next.

2.2.3.3.1 Reinforced Sinusoidal Honeycomb Core

The configuration of a sinusoidal corrugation between horizontal flat sections 
is shown in Figures 2.8 and 2.10. The thicknesses of the core wall segments 
are assumed to be constant, and they are given as t1 and t2 for flat and curve 
segments, respectively. The function of OB (see Figure 2.10(b)) is written as

 y b y
a

y a
2
(1 cos ), 0

22
1

1= − π ≤ ≤  (2.63)

(a) Honeycomb structure 

A

B

O

E

C
D

F

y2
y1

b
b/2

a/2

a

(b) Unit cell 

FIGURE 2.10
Sinusoidal core: (a) honeycomb structure and (b) unit cell.
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For segment AOB, it follows from (2.60) that d1 = a, d2 = b, and T = S/t2, where 
S denotes the length of segment AOB. Similarly, we have d1 = a, d2 = –b, and 
T = S/t2 for segment EOF, and d1 = 2a, d2 = 0, and T = 2a/t1 for segment COD. 
By substituting these results and the area Λ = 2ab into the summation of 
(2.62), the effective shear stiffness properties are easily calculated as

 c t
b

at
bS

G c bt
aS
G c( ) ; ; 0L L1313

1 2
2323

2
1323= + = =  (2.64)

where S is the length for the segment,

 S ds
A

B

∫= .

2.2.3.3.2 Tubular Honeycomb Core

The configuration of a tubular honeycomb core is shown in Figure 2.11. The 
radius of curvature is equal to R. As noticed, segments AE and BF are not 
continuous within the unit cell; we imagine a virtual segment CD connect-
ing them. Thus, using (2.60), we can have the calculated values of d1, d2, and 
T (see Table 2.12).

Using the area R2 3 2Λ =  and (2.62), the effective shear stiffness properties 
for tubular honeycomb core are calculated as

 c t
R

G c t
R
G c(51 24 3)

2 3
; 9

2 3
; 0L L1313 2323 1323= −

π
=

π
=  (2.65)

2.2.3.3.3 Hexagonal Honeycomb Core

Hexagonal honeycomb geometry is commonly used for sandwich core, for 
which the effective transverse shear stiffness properties were evaluated 

A

B

O
C D

RE

F

FIGURE 2.11
Tubular core.
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early by Kelsey et al. (1958). In this study, we take this configuration as an 
example to illustrate the simplification procedure for ramification problems. 
As shown in Figure 2.12, there are two joints C and D where ramifications 
begin. The thickness of horizontal and inclined walls is given as t1 and t2, 
respectively. For computation of c1313 , segments ACDB and ECDF are simu-
lated as two separate ones due to geometrical symmetry. Therefore, by direct 
application of (2.60), we have d1 and T for the two segments as

 

d a b

T a
t

b
t

cos

2

1

1 2

= + θ

= +
 (2.66)

Using the summation given in (2.62), we obtain

 c G
A

a b
a
t

b
t

2( cos )
2

L
1313

2

1 2

= + θ

+
 (2.67)

A

B

C D

a

b/2 F

E

α

FIGURE 2.12
Hexagonal core.

TABLE 2.12

Constants for Tubular Honeycomb Core

AOB EOF A(CD)B E(CD)F

d1 R3 R3 − R(2 3) − R(2 3)

d2 R –R R –R

T
πR
t

2
3

πR
t

2
3

πR
t3

πR
t3
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For the computation of c2323 , we can directly apply (2.58) to obtain piece-
wise constant shear flow along ACDB/ECDF; however, with the consider-
ation of double symmetry the approach can be further simplified as follows. 
Since segment CD is geometrically neutral, segments ACE and BDF can be 
instead taken as periodic segments. Then, for either of these segments, d2 and 
T can be expressed as

 

d b

T b
t

sin2

2

= θ

=
 (2.68)

Then, using (2.62), we can simply write

 c G
A

t b2 sinL
2323 2

2= θ  (2.69)

2.2.4 Verification Using Finite Element Analysis

The formulas given in (2.67) and (2.69) for hexagonal honeycomb core con-
figuration lead to identical results given by Kelsey et al. (1958), Gibson and 
Ashby (1988), and Shi and Tong (1995a). Thus, we only performed finite ele-
ment (FE) analyses to confirm the results for the honeycomb core configura-
tions with sinusoidal and tubular geometries.

The commercial finite element program ANSYS 5.5 is used, and eight-
node isoparametric layered shell elements (SHELL 99) are selected to model 
the thin-walled cores. To minimize the computational effort, the FE model 
is developed with a special consideration of periodicity. Based on the peri-
odic nature of honeycomb core structures, one-quarter of a unit cell (see 
Figures  2.13 and 2.14) is modeled with boundary conditions specified in 
Tables 2.13 and 2.14 for sinusoidal and tubular cores, respectively. The bound-
ary conditions are specified as prescribed displacements vi corresponding to 
coordinates yi (i = 1, 2, 3). In the FE model of the sinusoidal core (Figure 2.13), 
a uniform displacement of v1 is applied to all the nodes at the top surface 
defined by the curve line EO, and the resulting shear force F1 along E′O′ can 
be correspondingly obtained. To keep a periodic boundary condition and 
obviate the bending effect, the displacement component along the vertical 
boundary EE′ and OO′ must remain linear from top to bottom by imposing 
v2 = 0. In the numerical simulation, the parameters assumed for the sinusoi-
dal core curve are listed in Table 2.15, and their physical meanings are given 
in the preceding section.

Similarly for the FE model of tubular core (Figure  2.14), either v1 or v2 
is applied to all the nodes at the top surface (i.e., for the curve lines EO 
and EC), and the resulting shear force, F1 or F2, along the E′O′ and E′C′ is 
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O´

E

E´

O

y3 y2

y1

FIGURE 2.13
FE model of a quarter of unit cell for sinusoidal core.

y3 y2

y1

E

E´

C

C´

O

O´

FIGURE 2.14
FE model of a quarter of unit cell for tubular core.

TABLE 2.13

Boundary Conditions in FE Mode of Quarter Unit Cell of Sinusoidal Core

Specified Displacement 
on Boundary v1 v2 v3

EE′/OO′ Linear 0 0
EO 0.0001 0 Free
E′O′ 0 0 Free

Note: For the computation of c1313 .
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correspondingly computed. Again, to prevent the bending effect, the dis-
placement component at vertical boundaries EE′, OO′, and CC′ must remain 
linear from top to bottom by imposing v2 = 0. The parameters used in the FE 
model for a tubular core are specified in Table 2.16.

The elastic properties of the core wall of the shell elements (SHELL 99) can 
be modeled as orthotropic, and a simple parametric study of elastic stiffness 
shows that the resulting shear force Fi (i = 1, 2) is only dependent on the vari-
able GL. This is consistent with the derivation of (2.53) through (2.57).

By obtaining the resulting shear force from the FE models, the effective 
shear stiffness can be calculated, and comparisons are made with the analyt-
ical solution. The equations and calculations for sinusoidal and tubular cores 
are shown in Tables 2.15 and 2.16, respectively, which illustrate the accuracy 
of formula (2.62). From a structural mechanics point of view, the exactness 
of results is well expected once the appropriate boundary constrains are 
applied; i.e., the condition of constant shear flow is imposed so that identical 
solutions result from both the analytical and numerical approaches.

2.2.5 Summary and Discussions

With the application of (2.62), the formulas of transverse shear stiffness for 
arbitrary periodic cellular honeycomb cores can be easily obtained, and they 

TABLE 2.14

Boundary Conditions in FE Model of a Quarter Unit Cell of Tubular Core

Specified Displacement 
on Boundary v1 v2 v3

EE′/OO′/CC′ Linear 0 0
EO/EC 0.0001 0 Free
E′O′/E′C′ 0 0 Free

Note: For the computation of c1313 .

TABLE 2.15

Comparison between Analytical and Numerical Predictions 
for Sinusoidal Core

Parameters c1313

Numerical =

=

= =

=

v

h

a b

t

0.0001

0.5

2

0.01

1 = =

= =

=

A ab

y u
h

F

2 8;

2
0.0002;

1.3664;

1
1

1

γ
=F

A
4 34161

1

Analytical S = 2.9274; GL = 106 =at
bS
G 3416L

2

Note: The computation is based on the curve portion shown in Figure 2.13.
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would be valuable for design and optimization of honeycomb shape con-
figurations (Qiao et al. 2008a,b). As a summary, the transverse shear stiffness 
formulas for several common core configurations are given in Table 2.17, and 
they are expressed in terms of apparent core density ρc.

It must be noted that the formulation based on the above homogenization 
process actually corresponds to the lower bound of transverse shear stiffness 
of sandwich structures, for which the facesheet warping constraints have 
not been taken into account. As indicated by other researches on hexagonal 
honeycombs (Grediac 1993; Shi and Tong 1995a), the facesheet effect is quite 
localized, especially for sandwich cores with a moderate ratio of unit cell size 
to core height. The upper bound of transverse shear stiffness can be obtained 
by the assumption of infinitely stiff facesheets and the principle of minimum 
energy theorem (e.g., for hexagonal cores by Kelsey et al. 1958; Gibson and 
Ashby 1988). The upper bound of transverse shear stiffness for general core 
configuration can be expressed as

 

c G t ds

c G t ds

cos

sin

L

A

B

k

L

A

B

k

1313
2

2323
2

∫∑

∫∑

=
Λ

θ

=
Λ

θ

 (2.70)

As an illustration, the upper bounds of transverse shear stiffness are also 
given in Table 2.17 for common core configurations. Note that in Table 2.17 
the exact solutions are attained for several core configurations (e.g., for trian-
gle and rectangular grid cores) due to the identical lower and upper bounds 
of transverse shear stiffness, as one would intuitively expect.

To further precisely evaluate the facesheet effect or obtain a narrow bound 
solution range, the energy method can be used as an effective approach 
whenever the additional local energy is rationally weighed. Based on the 

TABLE 2.16

Comparison between Analytical and Numerical Predictions for Tubular Core

Parameters c1313 c2323

Numerical

= =

=

=

=

v v

h

R

t

0.0001;

0.5;

1;

0.02;

1 2

= =

= =

=

=

A R

y y

F

F

2 3 2 3 ;

0.0002;

3.0020;

2.8649

2

1 2

1

2

γ
=F

A
4 173321

1 γ
=F

A
4 165412

2

Analytical =G 10L
6 −

π
=t

R
G(51 24 3)

2 3
17332L π

=t
R
G9

2 3
16540L



48 FRP Deck and Steel Girder Bridge Systems
TA

B
LE

 2
.1

7

Tr
an

sv
er

se
 S

he
ar

 S
ti

ff
ne

ss
 o

f C
om

m
on

 H
on

ey
co

m
b 

C
or

e 
C

on
fig

u
ra

ti
on

s

H
on

ey
co

m
b

 
c

G/
Lo
w
er

L
13
13

E
q

u
at

io
n

 (2
.6

2)
c

G/
U
pp
er

L
13
13

E
q

u
at

io
n

 (2
.7

0)
c

G/
Lo
w
er

L
23
23

E
q

u
at

io
n

 (2
.6

2)
c

G/
U
pp
er

L
23
23

E
q

u
at

io
n

 (2
.7

0)
2D

 S
h

ap
e 

D
ia

gr
am

(c
on

st
an

t c
or

e 
w

al
l t

h
ic

k
n

es
s)

R
eg

ul
ar

 h
ex

ag
on

 (a
 =

 b
)

θ
ρ

8 9
co
s
2

c
4

θ
+

ρ
2c
os

1
3

c

2
θρ

2 3
sin

c
2

θρ
2 3
sin

c
2

A

B
C

D
a

b/
2

F

E
θ

2
1

3

R
eg

ul
ar

 r
e-

en
tr

an
t

θ
ρ

8 9
co
s
2

c
4

θ
+

ρ
2c
os

1
32

2
θρ

2 3
sin

c
2

θρ
2 3
sin

c
2

θ
2

1

3

R
ei

nf
or

ce
d

 
si

nu
so

id
al

a 
=

 0
.5

b
0.

43
39

 ρ
c

0.
45

55
 ρ

c
0.

52
51

 ρ
c

0.
54

45
 ρ

c

A

B

O

E

C
D

F

b
b/

2

a/
2

a

2
1

3

a 
=

 b
0.

68
32

 ρ
c

0.
69

63
 ρ

c
0.

27
73

 ρ
c

0.
30

37
 ρ

c

a 
=

 2
b

0.
87

73
 ρ

c
0.

88
03

 ρ
c

0.
10

25
 ρ

c
0.

11
97

 ρ
c

Tr
ia

ng
le

 g
ri

d
co

sθ
ρ c

co
sθ

ρ c
θ

ρ
2s
in

2
c

2
θ

ρ
2s
in

2
c

2
q

2
1

3

Sq
ua

re
 p

ac
ki

ng
 tu

bu
la

r

π
ρ

4
c

2
ρ
1 2

c
π

ρ
4

c
2

ρ
1 2

c
2

1

3

H
ex

ag
on

al
 p

ac
ki

ng
 tu

bu
la

r
−

π
ρ

51
24

3
2

c
2

ρ
1 2

c
π

ρ
9 2

c
2

ρ
1 2

c

A

B
O

C
D

R
E

F

2
1

3

R
ec

ta
ng

ul
ar

 g
ri

d
 

+
ρ

a a
b

c
+

ρ
a a
b

c
+

ρ
b a
b

c
+

ρ
b a
b

c
a

b

2

1
3



49FRP Deck: Stiffness Evaluation

principle of minimum energy theorem, the consideration of complex interac-
tions between facesheets and core can be simplified by assuming an appro-
priate displacement field, which can result in an improved upper bound 
solution estimation. By the Raleigh–Ritz method, there are basically two 
approaches, one to specify the facesheet displacement field, and the other 
the core internal displacement field. The latter, successfully implemented by 
Penzien and Didriksson (1964) for the hexagonal core, seems more effective 
and is suggested to apply for the present formulation for all general core 
configurations.

2.2.6 Conclusions

In this section, an analytical approach using a two-scale asymptotic homoge-
nization technique is presented for effective transverse shear stiffness evalua-
tions of honeycomb structures, and an explicit formula is provided for general 
shapes of thin-walled honeycomb cores. Three typical core configurations are 
subsequently solved with the developed formula, which is validated by exist-
ing or numerical solutions. The derived formula (2.62) can be efficiently used 
to predict the effective transverse shear stiffness of honeycomb cores with 
any general core configurations and can be applied to optimization of honey-
comb core structures (Qiao et al. 2008a,b). Further, this approach, with certain 
modifications, can be extended to other sandwich structures, including the 
consideration of wall thickness effect for thick wall cores.

2.3  Homogenized Elastic Properties of Honeycomb 
Sandwiches with Skin Effect

In this section, the homogenized elastic properties of a hexagonal honeycomb 
core with consideration of skin effect (Xu and Qiao 2002; Quao and Xu 2005) 
are evaluated, and as in most existing studies of honeycomb core properties 
in sandwich construction, the skin effect is mostly not accounted for.

2.3.1 Introduction

The natural efficiency of cellular structures has thus attracted many investi-
gations (e.g., Gibson and Ashby 1988; Warren and Kraynik 1987; Fortes and 
Ashby 1999) on periodic and disordered cells, wherein the book of Gibson 
and Ashby (1988) is the first systematic literature in the field. Of the funda-
mental equivalent elastic properties, the in-plane elastic properties of honey-
comb were first obtained with the standard beam theory (Gibson and Ashby 
1988; Masters and Evans 1996). Further refinements, e.g., as introduced by 
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Masters and Evans (1996), have been attempted considering stretching and 
hinging effects and the extension to a finer scale of molecular modeling. 
It must be pointed out that all these mathematical models on honeycomb 
cores are built based on pure cellular structures, and the usual presence 
of strengthening skin faces has not been taken into account. In classical 
sandwich theory (Allen 1969), the global skin-core interaction is identified 
as the result of the antiplane core assumption. Since the constraints of two 
skin faces significantly alter the local deformation mechanism of a hetero-
geneous core, the homogenized core stiffness properties become sensitive 
to the ratio of core thickness to unit cell size, which is called skin effect in 
this chapter or thickness effect by Becker (1998). The ignorance of skin effect 
has been prevalent in today’s sandwich research and design, wherein the 
equivalent core properties are simply taken from those formulas based on 
pure cellular models. Besides other unscrupulous uses causing erroneous 
Poisson’s ratios and singularities, this ignorance yields an underestimate 
of stiffness and subsequent inconsistencies between modeling and real-
ity, though only a few of them were noticed in experiments (e.g., the study 
by Cunningham and White (2001)). A common example is the antiplane 
core assumption in sandwich beam analysis, where skin effect and edge 
effect of anticlastic bending have been too simply ignored. As observed in 
experiments (e.g., Adams and Maheri 1993; Daniel and Abot 2000), skin con-
straints were demonstrated by the phenomenon of skin lateral contraction 
and expansion.

The skin effect, induced by a high gradient of material change between 
two skin faces and a heterogeneous core, can be analogous to heterogeneous 
multiphase interactions in micromechanics of composites. The homogeniza-
tion theory, well applied in 3D microscale periodic composite materials, has 
been adapted into the heterogeneous plate and shell theory since the 1970s 
(Duvaut 1977; Caillerie 1984). The theoretical efforts made in obtaining plate 
equivalent properties are highly dependent on the simplifications given by 
the constraint assumptions of a corresponding plate theory, i.e., Kirchhoff, 
Reissner–Hencky, or Reddy plate theories (Lewinski 1991). And the approxi-
mations are processed based on the ratio of a plate’s two small parameters, 
i.e., characteristic thickness δ and characteristic periodicity ε. When δ/ε ~ 0, 
such as lattice plate, the plate assumption of a unit cell results in simple ana-
lytical formulas (Lewinski 1991; Caillerie 1984). When δ/ε >> 1, as in the case 
of fiber composite laminates, the equivalent stiffness properties of laminates 
are derived from the micromechanics between fiber and a matrix in each indi-
vidual sublayer, such as classical laminate plate theory (CLPT) resulting from 
the plane stress assumption. In the case of δ/ε ~ 1, the asymptotic expansion 
method or G convergence technique generates the Caillerie–Kohn–Vogelius 
plate model, which is difficult to apply analytically (Lewinski 1991). Hence, 
honeycomb sandwiches (e.g., for the one shown in Figure  2.1), fallen into 
the domain of δ/ε ~ 1, have been conventionally treated by laminate theory, 
where a honeycomb core is first homogenized into a continuum equivalent 
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layer separately, and then the skin-core interactions are modeled with CLPT 
or higher-order laminate theories. Clearly, even with higher-order terms, the 
conventional approach fails to realize the heterogeneity of cores and the con-
sequent high through-thickness mechanical variables.

In conventional sandwich analysis, the three-layer sandwich theory 
requires equivalent properties of a pure core, which should be accountable 
for real skin-core interactions in both a global and a local sense; i.e., the 
interactions must be energetically equivalent prior to and posterior to the 
homogenization of the core. There have been many refined theories and 
finite elements proposed to overcome the complicated interaction problem. 
In this section, a straightforward approach is proposed to homogenize a 
unit cell, including both skin faces and core, by which skin effect cannot 
only be accounted for locally, but also be assessed precisely. A homoge-
nized single-layer plate model then can be constructed with the proper-
ties derived based on shear deformable plate theory. Further, with this 
approach the sandwich local behaviors can be accurately predicted by 
using an inverse or unsmearing procedure, which is expected as an impor-
tant advantage over any conventional refined theories. One example is of 
the local stability problem, where the critical wrinkling load is strongly 
dependent on the in-plane stiffness (Vonach and Rammerstorfer 1998). The 
diagram of comparison between conventional and proposed approaches is 
shown in Figures 2.15 and 2.16.
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FIGURE 2.15
Diagram of two approaches for honeycomb sandwich analysis.
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2.3.2 Literature Review

The phenomenon of honeycomb skin effect was first assessed by Kelsey et 
al. (1958), and the equivalent transverse shear stiffness of the hexagonal hon-
eycomb core was investigated. The skin effect on the transverse shear defor-
mation was theoretically expressed by two bounds of derived equivalent 
shear stiffness, whereas the lower and upper bounds correspond to zero and 
an infinitely large skin effect, respectively. Later, Penzien and Didriksson 
(1964) improved Kelsey’s upper bound by formulating a closer displacement 
field than Kelsey’s uniform field, and the solution consistently showed the 
trend of the diminishing skin effect with the increase of core thickness ratio 
δ/ε. More recently, Shi and Tong (1995a) applied a 2D homogenization tech-
nique to obtain Kelsey’s lower bound value, and Xu et al. (2001) extended it 
to general honeycomb configurations. Numerical approaches on transverse 
shear stiffness were attempted by Shi and Tong (1995a) and Grediac (1993). 
Shi and Tong (1995a) used a specialized hybrid element; however, the results 
found are consistent with neither Penzien and Didriksson’s (1964) conclu-
sion nor Saint-Venant’s theorem explained by Grediac (1993). In the study 
by Grediac (1993), the applied unit cell boundary conditions actually corre-
spond to those of the analytical approximations of Penzien and Didriksson 
(1964); thus, the results only numerically verify the latter’s work without giv-
ing more accuracies.

Unlike the evaluations of equivalent shear stiffness of honeycomb cores 
(Qiao and Xu 2005), the skin effect on other stiffness tensors has received 
few attentions. Both Parton and Kudryavtsev (1993) and Shi and Tong (1995b) 
solved the honeycomb equivalent in-plane stiffness by a two-scale method; 
however, the skin effect was not considered in their study. Through an energy 
minimization implementation, Becker (1998), for the first time, assessed the 
skin effect on equivalent in-plane moduli. Further expansion was attempted 
recently by Hohe and Becker (2001), to include all elastic tensors and general 

Unit cell 

Unit cell 
Conventional

approach 

New approach 

FIGURE 2.16
Comparison of two approaches for honeycomb sandwich analysis.
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honeycomb cores, but with lengthy and implicit calculations. For a sand-
wich panel, the very important concern is the flexural stiffness contributed 
from a honeycomb core. Among few existing literatures, only Parton and 
Kudryavtsev (1993) gave a formula for flexural stiffness of honeycomb cores, 
which is simply derived from in-plane stretch stiffness and does not include 
skin effect. In this section, the flexural stiffness is distinguished from stretch 
stiffness, since the displacement field varies when loading is changed from 
symmetry to antisymmetry about the panel middle plane.

There are several engineering investigations (Bourgeois et al. 1998; Chamis 
et al. 1988; Vougiouka and Guedes 1998; Takano et al. 1995) on the homog-
enization of honeycomb sandwiches; however, they are case limited without 
further insight. Besides addressing the aforementioned unsolved issues, this 
section aims to introduce an effective approach to homogenize general hon-
eycomb cells and to provide a comprehensive approach in three aspects: the 
mathematical statement of the sandwich homogenization theory, the analyti-
cal solution of a multipass homogenization (MPH) technique, and a 3D unit 
cell Finite Element Analysis (FEA) homogenization technique.

The MPH technique originates from the meditation that the homogeniza-
tion of an object can be processed by its principal axes one by one; i.e., the 
homogenized results obtained along one axis can be well applied to the next 
pass along another axis. In this section, the MPH technique includes a two-
pass procedure to homogenize 3D geometrical heterogeneous honeycomb 
media in orthogonal directions. The first pass involves the building of a 
geometry-to-material transformation model (GTM), by which the compli-
cated 3D spatial analysis is simplified into a 2D plane stress or plane strain 
case. The first pass, i.e., the GTM model, is mathematically equivalent to the 
coordinate transformation in combination with energetic averaging. The 
coordinate transformation has been conventionally applied by all the rel-
evant research referenced in this section, but the process is inconvenient and 
lengthy. The MPH technique and sandwich homogenization formulation 
introduced here can efficiently simplify the process and be applicable for all 
general sandwich structures with periodic cores. In the second pass, with 
the resulting intermediate core equivalent properties, the appropriate dis-
placement field is constructed by satisfying field equations either exactly or 
weakly. With the homogenization formulation given in Section 2.3.3, or with 
the energy minimization theorem, the homogenized stiffness can be analyti-
cally solved in the form of Fourier series. In Section 2.3.5, the FEA numerical 
results verify the semianalytical solutions, which further complementally 
show the influence of skin rigidity. A specialized FE modeling technique 
is introduced at the end of this section by appropriately imposing periodic 
boundary conditions in unit cell FEA modeling. This technique can be eas-
ily used in commercial FEA packages without writing specialized code for 
hybrid elements (Manet et al. 1998), the principle of which is extendable to all 
periodic media of unit cell FEA.
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2.3.3 Formulation of Honeycomb Homogenization Problem

2.3.3.1 Asymptotic Expansions about Plate Thickness δ

The asymptotic expansion for plates with δ/ε ~ 1 was first given by Caillerie 
(1984). Hereby the expansion is repeated, and the notations are made con-
sistent with the derivation of the Kirchoff-Love plate model by Parton and 
Kudryavtsev (1993), where small Latin indices denote 1, 2, 3 and small Greek 
indices for 1, 2. To extend the homogenized plate model to transverse shear 
deformation theory, the formulation of homogenized transverse shear stiff-
ness is attempted in Section 2.3.3.2.

For common honeycomb sandwiches (see Figure 2.8) of which the body 
force is ignored, the 3D elasticity field equations and boundary conditions 
can be written as
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And the coefficient cijkl should satisfy the elliptical symmetry condition

 c c c cijkl jikl ijlk klij= = =

The transverse thickness of the sandwiches is denoted δ, and hereby the 
local coordinates of the unit cell are introduced to rescale the problem:
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Thus, the rescaled unit cell domain is in {–1/2 < y1, y2, z < 1/2}. The external 
traction T is assumed to only be applied in the transverse direction, which 
can be written in the function of δ by

 T x q x y( ) ( , )z z
3

3= δ± ±  (2.74)
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By matching the expansion terms, the boundary traction conditions are 
known:
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With the two-scale expansion method about the small parameter δ, the series 
are expressed as
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where the strain-displacement law is
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and the constitutive equations are
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Note the variables with superscript l > 0 are all Y-periodic in y. Substituting 
(2.76), (2.77), and (2.78) into (2.71) and matching the power order of δ results
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With the substitution of (2.76), (2.77), and (2.78) into (2.79) and the consid-
eration of the boundary conditions in (2.75), the following can be derived as 
detailed by Parton and Kudryavtsev (1993):
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from which the displacements can be expressed by global in-plane and flex-
ural variables as
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Note in Parton and Kudryavtsev (1993) that the transverse shear deforma-
tion is ignored, while in this section the additional term u x( )2

3
(2)�δ  in (2.81) is 

obtained by the modification of Equation (19.51) of Parton and Kudryavtsev 
(1993) as follows:
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3
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In the above equations, the commonly called homogenization functions U(y, z) 
and V(y, z) are the local periodic displacements induced by in-plane strain 
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(1)εµν  and flexural curvature (0)κµν , respectively, which should satisfy the local 
equilibrium equations:
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and uniqueness conditions
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2.3.3.2 Homogenized Transverse Shear Plate Model

To take into account the transverse shear deformation, instead of (2.86), the 
uniqueness conditions are redefined as
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By applying the averaging process to (2.79) for l = 2, it gives
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Assume material properties are monoclinic, that is, cαβμ3 = cα333 = 0. Using 
(2.77) and (2.78), we have
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and define equivalent transverse shear stiffness <Cα3β3> by
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Then, by (2.83), (2.87), and (2.90) through (2.92) and even about z, Cα3β3 can be 
written as
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Thus, (2.85) and (2.92) give all the stiffness required for transverse shear 
deformation theory of plates. And the stress and moment resultants can be 
written as
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For transversely symmetric honeycomb sandwiches, clearly the in-plane 
and flexural couple disappears, i.e., zC C 0*= =αβµν αβµν . From (2.81), the 
global strain variables are correspondingly given by
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Further for symbolic consistence with the classical laminate plate theory and 
by (2.94) and (2.95), the plate macroscopic equivalent stiffness may be finally 
expressed as
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or more clearly for sandwich panels with three planes of symmetry:
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where contracted notation is introduced with ααββ = αβ, 2323 = 3232 = 44, 
1313 = 3131 = 55, and 1212 = 2121 = 66.

2.3.3.3 Field Equations of Three Local Problems

From (2.85) and (2.93), it is obvious that the homogenized stiffness can be 
obtained once the solutions of the homogenization functions U(y, z), V(y, z), 
and P(y, z) are known. These periodic functions then have to be solved by 
the local elastic equilibrium equations as given in (2.79), combined with unit 
cell periodic boundary conditions. It should be noted that in all the following 
equations, the material properties (c) are a function of spatial coordinates, 
and assumed monoclinic that cαβμ3 = cα333 = 0.

2.3.3.3.1 Transverse Shear Local Problem P(y, z)

Assume a pure shear case where e = k = 0. Combining (2.79), (2.90), and (2.91), 
the equilibrium equations become
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60 FRP Deck and Steel Girder Bridge Systems

From (2.75), the boundary conditions are specified as
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2.3.3.3.2 In-Plane (Stretch and Shear) Local Problem U(y, z)

Assume a pure in-plane case that γ = κ = 0. Equations (2.79) and (2.85) lead to
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The boundary conditions are
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2.3.3.3.3 Flexural Local Problem V(y, z)

Similarly, the equilibrium equations and boundary conditions are given as
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2.3.4  Analytical Approach—Multipass 
Homogenization (MPH) Technique

In engineering applications of the homogenization theory, the exact ana-
lytical solutions are seldom obtainable and the approximations are usually 
made either by a semianalytical method or by pure numerical techniques, 
such as the finite element method. In the problem of honeycomb cells, there 
are 3D local functions (see Equations (2.98) through (2.103)) physically inter-
preted as a complicated combination of local warping, stretching, bending, 
shearing, twisting, etc. The exact mathematical expression for each of the 
functions is almost impossible to derive analytically. As demonstrated in 
(2.94), weak solutions are sufficient when the homogenized properties are 
sought in a variational sense.

For even a weak solution of the local problem as (2.98) through (2.103), 
their 3D deformations are difficult to deal with, and the direct construc-
tion of cell plates’ displacement (Hohe and Becker 2001) involves a relatively 
complicated and implicit numerical process. Hereby in the first pass of the 
MPH, a simplified geometry-to-material transformation model (GTM) is 
proposed that a spatial heterogeneous problem can be transferred into a 
material heterogeneous problem with consequent intermediate equivalent 
properties. By this way, the strain energy of cell walls can be completely 
expressed by the resulting intermediate equivalent stiffness without omit-
ting small higher-order terms, as exemplified by Φ1 and Φ2 in Equations 
(2.135) and (2.140) of Section 2.3.4.2.3. Note in the GTM model there is no 
restriction about the thickness of cell walls, as long as energy equivalence is 
satisfied with appropriate derivations of intermediate equivalent stiffness. 
In the second pass, the 2D heterogeneous problem then can be analytically 
homogenized in a unit cell by the variational approximations of the dis-
placement field with the Rayleigh–Ritz method or partition method, etc. The 
weak form solution of the partial differential equations is finally verified 
with the FEA results in Section 2.3.5.

The MPH technique originates from the idea that the homogenization of 
an object may be processed by its principal axes one by one; i.e., the homog-
enized results obtained along one axis can be well applied to the second pass 
along another axis. There are several engineering applications of the MPH 
technique (e.g., Astley et al. 1997). The separation of the process is found very 
effective in the homogenization of honeycomb cells, as evidenced in this 
section. To illustrate the whole process explicitly, a better way is to follow 
an analytical example as given in Section 2.3.4, rather than a general proce-
dure description. Hereby the most used hexagonal honeycomb is taken as an 
example (Figures 2.12 and 2.17), which has been given the most interest in the 
honeycomb family, with much available theoretical and experimental data.
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2.3.4.1 First Pass—GTM Model

In principle of the GTM model, a doubly periodic sandwich panel is trans-
formed into a one-dimensional periodic panel. For hexagons shown in 
Figure 2.17, the plate thus consists of two alternative thin sandwich beams 
with their intermediate equivalent material properties. In the first pass the 
GTM homogenization is made along, say x2, so that the information of spatial 
periodicity along x2 is stored in the consequent intermediate equivalent stiff-
ness. The resulting 2D heterogeneous composite then can be conveniently 
assessed in the second pass along x1.

For simplicity, the cell walls and skin faces are assumed both made of iso-
tropic materials, where Young’s modulus, shear modulus, and Poisson’s ratio 
are denoted Ec, Gc, nc and Ef, Gf, nf, respectively. Geometrical notations of the 
hexagon are illustrated in Figure 2.12. It should be pointed out that for aniso-
tropic materials the procedure is kept identical. The example is confined in 
transversely symmetric sandwiches with a thin-walled hexagonal core to 
which the thin beam model (Gibson and Ashby 1988) can be applied.

With the above assumptions, the faces of the two thin sandwich beams are 
known to be homogeneous, so that structural homogenization only needs 
to be processed on two types of beam cores, I and II (Figure 2.17). The inter-
mediate equivalent properties may be obtained following the principle of 
structural mechanics, and the derivation refers to similar problems detailed 

II 

x2

x1

x3

x1

I

FIGURE 2.17
GTM—first pass of MPH technique.
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in Gibson and Ashby (1988) and Masters and Evans (1996). The properties of 
core II consisting of parallel cell walls are
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And the properties of core I with folded cell walls are
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where the superscript h denotes intermediate core equivalent properties, and 
c, 1, and 2 are for the core and its types I and II, respectively.

Note that unscrupulous calculation of in-plane Poisson’s ratios, with such 
equations as (4.13) and (4.14) in Gibson and Ashby (1988), would result in in-
plane stiffness much deviated from true values, and even produce singulari-
ties. The correct way is to further consider the stretch deformation, as noticed 
by Warren and Kraynik (1987) and Masters and Evans (1996). The formulas of 
Poisson’s ratios in (2.105) are derivable from (4.50) in Gibson and Ashby (1988).

The generalized Hooke’s law for the above hexagons with three planes of 
the elastic symmetry can be written in terms of the intermediate properties 
of principal elastic constants (Lekhnitskii 1968):
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And the inverse of (2.106) results in the expression of stress variables:
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2.3.4.2 Second Pass—2D Unit Cell Homogenization

After cores I and II are homogenized in x2 as done in the first pass, a 3D 
local problem is thus simplified into a 2D problem, as shown in Figure 2.18. 

r2/2 r2/2 r1

II I

III 

z

y1

FIGURE 2.18
Second pass of MPH technique.
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There are three regions, i.e., core I, core II, and two skin faces III, forming 
a three-phase homogenization problem with governing equations (2.98) 
through (2.103). The material properties of regions I and II are orthotropic 
and region III isotropic, which henceforth are expressed by engineering 
constants, Young’s modulus E, shear modulus G, and Poisson’s ratio ν. Note 
for sandwich panels the following analyses in plane y1-z are of plane strain 
deformations.

2.3.4.2.1 Homogenized Transverse Shear Stiffness

Denote the period of the honeycomb as l a bcos0 = + θ (Figure 2.12), and define 
the ratio r b l r a l r r r rcos / , / , 0 , 1, 11 0 2 0 1 2 1 2= θ = < < + = . Here h1 for hexagons 
equals l /0 δ. From (2.98) and (2.107) with 0h

2ε = , the field equations for regions 
I and II may be given as
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where α denotes region I or II.
The left and right boundary conditions for regions I and II are the continu-

ity and the periodicity conditions for both stress and displacement fields. The 
top and bottom boundary conditions are the interactions between core and 
skin faces, which are involved with faces’ internal fields. To simplify them, 
the approximation is made that faces are assumed infinite rigid, as those of 
Kelsey et al. (1958) and Penzien and Didriksson (1964), by which becomes 
zero at the top and bottom interfaces. Among all admissible displacement 
fields satisfying the above conditions, the following one in Fourier series is 
given based on the symmetric material and the antisymmetric loading about 
the panel middle plane:
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Substituting (2.109) into the second equation of (2.108) results in eigenvalues
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And the first equation of (2.107) is satisfied by the variational partition 

method in a weak form since
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To find the coefficients an, we impose displacement continuity conditions 

between regions I and II:

 at y r /23
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and the equilibrium condition of shear stress
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Note the continuity condition of normal stress is satisfied variationally by 

(2.111). With conditions (2.112) and (2.113), the coefficients are obtained:
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From (2.93), (2.96), (2.97), and (2.107), the homogenized transverse shear 
stiffness is expressed:
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And the integration of (2.115) results:
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The formula of (2.116) can be easily calculated with a symbolic mathemati-
cal program such as Mathematica or Maple. Hereby the numerical results are 
given in Table 2.18 for two configurations of hexagons in the function of core 
thickness ratio h1.

For regular hexagons with t2 = 2t1, a = b, θ = 60°, the ratio of r2 = 2/3, and the 
isotropic material with a Poisson’s ratio of 0.3, the intermediate equivalent 
properties of regions I and II are obtained from (2.104) and (2.105):
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Further consider a group of irregular hexagons with t2 = 2t1, a = b, θ = 30°, 
and the ratio of r2 = 0.536. The properties of regions I and II are the same as 
in (2.117), wherein the value of

 
1
1

hc hc
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[1]
− ν ν

− ∆

does not change. The results of two groups are shown in Table  2.18 and 
graphically in Figures 2.19 and 2.20.

2.3.4.2.1.1 Remarks
 a. The variational principle leads to the lower bound (LB) and upper 

bound (UB) of shear stiffness as derived first by Kelsey et al. (1958), 
and later by Gibson and Ashby (1988) and Shi and Tong (1995a). With 
the simple application of the Reuss model and Voigt model for the 
2D unit cell in Figure 2.18, respectively, the formulas for UB and LB 
can be written as
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FIGURE 2.19
Transverse shear stiffness G13

H with r2 = 2/3.
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 Note the two bounds are not functions of h1. The substitution of 
(2.104), (2.105), into (2.118) leads to the formulas of LB and UB in func-
tions of geometrical parameters.
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 which are identical to those formulas in literature (Kelsey et al. 1958; 
Gibson and Ashby 1988).

 b. Penzien and Didriksson (1964) gave a result similar to (2.116); how-
ever, its assumption of infinite Young’s modulus in the y1 axis is not 
right, which is corrected in this study by the GTM model and the 
weak form solution. Further, we should point out that the semiana-
lytical approximation in Section 2.3.4.2.1 gives an improved upper 
bound (IUB) since skin faces are assumed infinite rigid. As shown 
in Figures 2.19 and 2.20, the IUB value converges to the two bounds 
when h1 → 0 or ∞, which confirms the solution.

  The FEA results in Section 2.3.5 have two cases (h1 = 1 and ½) 
illogically a little higher than IUB values, as modified in Table 2.18. 
The reason is attributed to the inconsistency between the IUB dis-
placement field (2.109) and FEA modeling on the rigid assumption 
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FIGURE 2.20
Transverse shear stiffness G13

H with r2 = 0.536.
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of skin-core joints. This influence, however, is quite small, and 
therefore IUB approximation of (2.116) is recommended as an effec-
tive formula that can be further combined with Equation (2.161) for 
design and optimization. For common hexagons that h1 < 1, the LB 
value can be conservatively used in preliminary design. For refined 
sandwich analysis, such as FEA modeling, the more accurate shear 
stiffness is necessary; thus (2.116) and (2.161) or the unit cell FEA 
approach can be useful.

 c. When skin effect is not taken into account (i.e., there is no normal 
constraint at the top and bottom boundaries), with continuity condi-
tions (2.112) and (2.113) the exact solution of (2.108) may be simply 
known as
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 It can be easily checked that the substitution of (2.120) into (2.115) 
results in the identical expression of (2.119), which in turn validates 
the IUB approach.

 d. From the GTM model in Section 2.3.4.1, the other homogenized 
transverse shear stiffness can be derived with the parallel model or 
Reuss model:
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 and the substitution of (2.104) and (2.105) into (2.121) gives
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 Clearly there is no skin effect for the case of GH
23 , which can also be 

intuitively seen from the GTM model in Figure 2.17.
 e. For common honeycomb sandwiches, the thickness of skin faces is 

small relative to that of the core, while the shear modulus of the for-
mer is much higher. Owing to this fact, the equivalent shear stiffness 
of the sandwiches is overwhelmingly determined by core properties. 
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To further take the thickness of skin faces tf into account, the unit 
width transverse shear stiffness of a sandwich panel can be written 
as per Allen (1969):
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2.3.4.2.2 Homogenized In-Plane Stretch Stiffness

The governing field equations and the boundary conditions are the same as 
(2.108) and those of Section 2.3.4.2.1:
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 (2.124)

Due to the loading condition, the solution approximation is made contrary 
to the case in Section 2.3.4.2.1; i.e., in this case the displacement is ensured to 
satisfy governing equations strictly in y1 and weakly in z. By the double sym-
metry of material and loading, the displacement field is constructed as
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The substitution of (2.125) into the first equation of (2.124) results in 
eigenvalues
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Note in (2.125) there are three unknown coefficients, and the second equa-
tion of (2.124) cannot be simply satisfied by the partition method in weak 
form as (2.111). An effective approach is to follow the Rayleigh–Ritz method 
that is convenient to treat orthonormal series. The quadratic energy func-
tional of (2.124) is given by

 

U Q Q Q

Q G U
z h

U
y

dy dz

G U
z h

U
y

dy dz

Q E U
z h

U
y h

U
y

dy dz

E U
z h

U
y h

U
y

dy dz

Q E
h

U
y

U
z

U
z
dy dz

E
h

U
y

U
z

U
z
dy dz

( )

2 1
2

( 1 )

2 1
2

( 1 )

2 1
2 1

( ) (1 )( 1 1) ( 1 1)

2 1
2 1

( ) (1 ) 1 1 ( 1 1)

2 1
2 1

( )( 1 1) (1 )

2 1
2 1

( )( 1 1) (1 )

s y z

s
hc

r

hc
r

y

hc
hc hc hc hc hc

r

hc
hc hc hc hc hc

r

z

hc
hc hc hc hc hc

r

hc
hc hc hc hc hc

r

13
2 1

[2]

1

3
[2]

1

2

0

2
1
2

1
2

1

13
1 1

[1]

1

3
[1]

1

2

2

1
2

1
2

1
2

1

1
2

[2] 31
2

21
2
32
2 3

[2]

23
2
32
2

1

1
[2]

1 1

1
[2]

10

2
1
2

1
2

1

1
1

[1] 31
1

21
1
32
1 3

[1]

23
1
32
1

1

1
[1]

1 1

1
[1]

12

1
2

1
2

1
2

1

3
2

[2] 13
2

12
2
23
2

1

1
[2]

1
21
2
12
2 3

[2]
3
[2]

0

2
1
2

1
2

1

3
1

[1] 13
1

12
1
23
1

1

1
[1]

1
21
1
12
1 3

[1]
3
[1]

2

1
2

1
2

1
2

1

2

2

2

2

2

2

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

Ι = + +

= ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

=
− ∆

ν + ν ν ∂
∂

+ − ν ν ∂
∂

+










∂
∂

+

+
− ∆

ν + ν ν ∂
∂

+ − ν ν ∂
∂

+










∂
∂

+

=
− ∆

ν + ν ν ∂
∂

+ + − ν ν ∂
∂











∂
∂

+
− ∆

ν + ν ν ∂
∂

+ + − ν ν ∂
∂











∂
∂

−

−

−

−

−

−

 (2.127)

where Qs, Qy, and Qz denote strain energy in shear, y1-normal, and z-nor-
mal, respectively.

The three equations for three unknown coefficients are the displacement 
continuity condition between region I and II:

 U U at y r /21
[1]

1
[2]

1 2= =  (2.128)

and the differentiation of functional I(U) about any two unknowns, say 
two bn:
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The substitution of (2.125) and (2.127) into (2.128) and (2.129) solves the 
three coefficients, where the symbolic calculation can be conveniently car-
ried out by Mathematica or Maple. The results of the coefficients bn and cn are 
omitted here due to their lengthy symbolic expressions.

From (2.85), (2.96), (2.97), and (2.107), the homogenized in-plane stretch 
stiffness is given:
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And the integration of (2.130) results in
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Let all the geometrical properties be the same as those of Section 2.3.4.2.1, 
with r2 = 2/3, then the intermediate equivalent properties expressed by Ehc1 2  are
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The substitution of (2.132) and (2.133) into (2.131) results in the homoge-
nized stretch stiffness in terms of thickness ratio h1, and the numerical data 
are given in Table 2.19 and shown in Figure 2.21.

2.3.4.2.3 Remarks

 a. With Becker’s (1998) investigation of thickness effect on honeycomb 
in-plane stiffness, there seems to be no further attentions on its 
influence on honeycomb sandwich computations. Actually, almost 
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FIGURE 2.21
Stretch stiffness E11

H with t1/b = 0.05.
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all of today’s sandwich computations follow the three-layer theories 
where equivalent core properties are obtained without skin effect 
considered. The conventional approach just has its value corre-
sponding to the LB, either implicated in FEA modeling or explicated 
in the formulas. As shown in Figure 2.22, this may result in stretch 
stiffness underestimated by about 3 to 25% when h1 is increased 
from 0.1 to 1.0, the range of common honeycomb applications. It is 
also found that the cell wall thickness ratio t1/b has little influence 
on skin effect, particularly when its value is less than 0.05.

 b. By applying the Reuss model and Voigt model in this case, the for-
mulas of LB and UB are
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 Note that to be consistent with the stationary variational principle, 
in (2.134) Poisson’s effect along the z axis is considered for UB but not 
for LB (i.e., ε = ε = 0h h

2 3  and ε = σ = 0h h
2 3  for UB and LB, respectively). 

The substitution of (2.104) and (2.105) into (2.134) finally results in
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 where Poisson’s effect is represented by the existence of νc.

  When the regular hexagon is considered with parameters t2 = 2t1, 
a = b, and θ = 60°, then for small t1/b, (2.135) is approximated as
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 which agree with the results of 

 t b E3
5

/ c1( )

 given by Shi and Tong (1995b) and Becker (1998), whereas the for-
mula of Parton and Kudryavtsev (1993) seems to overestimate stretch 
stiffness.

  The formula (2.131) is an improved upper bound (IUB) because the 
skin faces are assumed infinite rigid. Note the strain is allowed in 
three directions so that the derivation is consistent with real situ-
ations such as in compression buckling. It can be seen that when 
h1 → 0, the IUB of this study converges to the LB in (2.135) when the 
cell wall thickness ratio is not higher than 0.025. The IUB does not 
converge to the UB of (2.135) when h1 → ∞ because the UB formula 
in (2.135) assumes zero strain in the three directions.

 c. Another homogenized in-plane stiffness EH21  is readily obtainable 
with the same displacement field (2.124)
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 By considering =E 0hc
2
2  in (2.104), the integration of (2.137) results:
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 The eigenvalues and coefficients in (2.138) are the same as those of 
(2.131).

  In converse to the case of EH11 , the formula (2.138) is an improved 
lower bound (ILB) with the assumption of infinite rigid skin faces, 
which is also noted by Hohe and Becker (2001). The numerical results 
are omitted here.

 d. Similar to the case of GH
23 , from the GTM model in Section 2.3.4.1, the 

third homogenized in-plane stiffness EH22  can be easily derived with 
the parallel model or Reuss model considering 0h
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 And the substitution of (2.104) and (2.105) into (2.139) finally gives
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  For regular hexagons with t2 = 2t1, a = b, θ = 60°, and small t1/b, 
(2.140) is approximated as
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 The real value of EH22  should be between zero and the full Poisson’s 
effect, i.e., between 
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8

)
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.

 Compared with (2.136), it can be found that the stretch stiffness 
becomes little anisotropic due to skin effect.

 e. The unit width stretch stiffness of a honeycomb sandwich thus can 
be calculated with
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2.3.4.2.4 Homogenized Flexural Stiffness

Similar to Sections 2.3.4.2.1 and 2.3.4.2.2, from (2.102) the governing equa-
tions of cylindrical bending are given below:
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Based on the symmetry of material and loading about the z axis, and the 
antisymmetry of loading about the y1 axis, the displacement field is con-
structed as
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 (2.144)

Note in (2.144) the first term of V3 expression is added to ensure displacement 
continuity. As the equilibrium condition along the y1 axis is more important 
than that along the z axis, (2.144) is substituted into the first equation of (2.143) 
to obtain eigenvalues
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 (2.145)

The solving of three unknown coefficients in (2.144) just repeats those done 
in Section 2.3.4.2.2 by the Rayleigh–Ritz method. The expression of strain 
energy is given below, while the symbolic calculation and expressions of dn 
and fn are omitted here.
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From (2.85), (2.96), (2.97), and (2.107), we can have homogenized flexural 
stiffness as
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The integration of (2.147) results in
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The alternative way is to use the form of energy equivalence E I V12 2 ( )H
11
* = × × .

With the hexagon configuration data as before, the numerical results for 
the flexural stiffness are given in Table 2.20 and shown in Figure 2.23.

2.3.4.2.4.1 Remarks
 a. The flexural stiffness is distinguished from the stretch stiffness, i.e., 

E EH H
11
*

11≠ . The difference can be as high as 25% for the case h1 = 1, as 
shown in Figure 2.24. It is interesting to note that when h1 → 0 or ∞, 
the two stiffnesses converge to each other.

  Most current sandwich computational approaches have the errors 
in the continuum modeling of the honeycomb core because skin 
effect has never been taken into account. For regular hexagons, as 
shown in Figure  2.25, the flexural stiffness is 5 to 40% underesti-
mated when h1 increases from 0.05 to 1.0. The consequence of the 
errors has to be evaluated in particular cases; however, it is sug-
gested that all computational modeling use the corrected homog-
enized properties since the required efforts are minimum.

 b. The formula of the panel unit width cylindrical flexural rigidity is
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 When t1/b increases from 0.01 to 0.1, the hexagon core can have more 
than 20% contribution in total flexural rigidity if δ/tf = 50. The anti-
plane assumption should thus be carefully used in computations of 
honeycomb sandwiches. By using an equivalent antiplane assump-
tion, the core shear stiffness was defined by Allen (1969) as
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* 2 2=
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 (2.150)

  It is found that the transverse shear stiffness can be much overes-
timated by ignoring the core’s flexural stiffness. This may partially 
explain the long existing contradiction that shear stiffness obtained 
from testing is always larger than the theoretical upper bound, 
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especially for three-point bending testing where shear stiffness is 
highly sensitive to the accuracy of flexural rigidity.

 c. With similar derivation, another flexural stiffness E H
21
*  is given below:
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 and the integration of which results in
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 since E 0hc
2
2 = .

  For the case of E H
22
* , as seen from the GTM model in Figure 2.17, the 

only skin effect is due to Poisson’s effect. Therefore, its value is the 
same as EH22  per Equation (2.140), i.e.,
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Percentage difference between stretch and flexural stiffness.



87FRP Deck: Stiffness Evaluation

2.3.5 Periodic Unit Cell Finite Element Analysis

2.3.5.1 Periodic Boundary Conditions

To verify the variational approach given in the preceding section, the method 
of unit cell FEA is used, which is much more effective than actual detailed 
modeling in terms of computations and the manifestation of size and edge 
effects. Besides the verification of the improved upper bound (IUB) of semi-
analytical solutions in Section 2.3.4, the unit cell FEA can further demon-
strate the effect of skin rigidity on the homogenized properties, by which 
Equations (2.161) and (2.162) and the correction coefficients, which are later 
shown in Table 2.24, are proposed.

The technique of unit cell modeling is on how to impose periodic bound-
ary conditions in both displacement and stress fields, whereas most FEA 
homogenization problems have to be treated with specialized hybrid ele-
ments. In this study with common elements of a commercial FEA package 
(ANSYS5.5), a unit cell modeling technique is developed, due to the trans-
verse symmetry of sandwiches.

First, the stress function Ψ is introduced by

 z y y zy z zy

2

2

2

2

2

σ = ∂ Ψ
∂

σ = ∂ Ψ
∂

τ = − ∂ Ψ
∂ ∂

 (2.154)

In Figure 2.26, the displacement and stress are continuous with regard to the 
boundary AB and A′B′, i.e.,
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 (2.155)

where Q represents the homogenization function Π, U, or V for the mode of 
shear, tension, and bending, respectively.

c–bendingb–tensiona–shear

B
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y y y

z z z

O O O

FIGURE 2.26
Deformation of periodic unit cell.
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2.3.5.1.1 Pure Transverse Shear Mode

In the case of transverse shear mode, there is clearly an antisymmetric rela-
tion between AB and A′B′, i.e.,
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It is found that 
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By (2.157) the periodic boundary condition for FEA modeling can be finally 
implicated in the form of

 z z( 1
2
, ) (0, ) 03 3Π ± = Π =  (2.158)

2.3.5.1.2 Pure Tension and Bending Mode

With similar deduction, the periodic boundary conditions for tension and 
bending mode are, respectively, given as

 U z U z( 1
2
, ) (0, ) 01 1± = =  (2.159)

and

 V z V z( 1
2
, ) (0, ) 01 1± = =  (2.160)

The deformations of the three modes are illustrated by the dashed line in 
Figure 2.26.
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2.3.5.2 Three-Dimensional Modeling and Results

With the deduction of 2D periodic boundary conditions in Section 2.3.5.1, 
actual hexagons can be modeled by extending 2D conditions to 3D ones. As 
shown in Figure 2.27, there are two periodic sections ABCD and A′B′C′D′, and 
the displacement constraints are imposed as listed in Table 2.21. For all three 
modes, plane strain globally occurs in the x-y plane, i.e., no displacement in z 
for two lateral cell walls. In the transverse shear mode, the nodes at the lines 
DOD′/CO′C′ have zero displacement in UY and UZ due to double symmetry, 
which is additionally imposed to ensure the accuracy of the modeling.

SHELL ELEMENT 93 in ANSYS 5.5 is used for the modeling of core walls 
and skin faces. The refinement study indicates that the convergence can be 
quickly achieved, and the final mesh is illustrated in Figure 2.27 for the case 
of h1 = 1.

2.3.5.2.1 Nonlinear Effect

The nonlinear effect, mainly due to the membrane force of skin faces, is 
assessed. The assessment is conducted for three modes separately, though 
not the combination of them. It is observed that the nonlinear effect becomes 
more evident with the increased ratio
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FIGURE 2.27
Unit cell FE modeling.
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and the nonlinear cases are modeled to assess the sensitivity of the ratio Rn. 
As shown in Table 2.22, for the case of Rn = 5/3 and shear strain up to 1000 
me, the resulting difference of GH

13  is less than 0.08%. Since the ratio Rn of 
practical applications is mostly less than 0.1, the nonlinear effect can be over-
looked particularly in the elastic range, and it is not considered in this study.

2.3.5.2.2 Transverse Shear Stiffness

It may be conjectured that the effect of skin rigidity can be expressed by the 
skin rigidity ratio
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and an approximate equation (2.161) is thus developed by interpolating 
groups of FEA results for GH

13  of regular hexagons, which complements the 
IUB solution of (2.116)
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where GH
IUB13  is calculated by (2.116) and listed in Table 2.18. For those hexa-

gons R < 0.1, the GH
13  value can approximately take the lower bound value 

of Equation (2.119). Equation (2.161) is validated for those of h1 < 1, the range 
of which is sufficient for general honeycomb sandwiches. Further note for 
anisotropic skin faces, Ef in (2.161) can be approximately replaced with Ef1. 
The closeness of (2.161) to FEA results is shown in Figure 2.28 and Table 2.23 
with less than 1/750 of difference. The deformations of the unit cell shear 
are illustrated in Figure 2.29.

2.3.5.2.3 Tension and Flexural Stiffness

The formulas (2.131) and (2.147) developed in Section 2.3.4 for tension and 
flexural stiffness are based on the assumption of infinite rigid skin faces, 
which result in the improved upper bound (IUB). In this study, by using 
FEA, the effect of skin rigidity can be further assessed, and it is expressed 

TABLE 2.22

Nonlinear Effect on GH
13  (Unit: Ghc131)

Shear Strain 100 με 200 με 350 με 575 με 9,125 με 1,000 με

Rn = 5/3 Nonlinear 1.5844 1.5844 1.5845 1.5849 1.5845 1.5846
Linear 1.5836 1.5836 1.5836 1.5836 1.5836 1.5836
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(a) Shear stress τxy (d) UY (c) UX (b) UZ

FIGURE 2.29
Pure transverse shear mode.
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FIGURE 2.28
Effect of skin rigidity: Equation (2.161) vs. FEA.

TABLE 2.23

GH
13 : Equation (2.161) vs. FEA Results (Unit: Ghc131)

R 0.1 0.125 0.25 0.5 1 10

h1 = 1 Equation (2.161) 1.528 1.537 1.558 1.569 1.576 1.583
FEA 1.528 1.536 1.556 1.569 1.576 1.584

h1 = 1/2 Equation (2.161) 1.516 1.521 1.531 1.537 1.540 1.543
FEA 1.515 1.519 1.529 1.536 1.540 1.544

h1 = 1/4 Equation (2.161) 1.519 — — — 1.507 1.521
FEA 1.519 — — — 1.506 1.521
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by two correction coefficients K and K* for tension and flexural stiffness, 
respectively.
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The correction coefficients are listed in Table 2.24 with respect to the ratios 
of t1/b, Ef /Ec , and tf /δ that cover most common sandwiches. It is found that 
when h1 < 1/8 and 1/4, respectively, the correction coefficients K and K* can 
be approximated to be 1.00. For the higher value of h1, the correction coef-
ficients in Table  2.24 can be used in combination with (2.131) or (2.147) to 
include the rigidity of skin faces. The deformations of tension and bending 
are illustrated in Figures 2.30 and 2.31.

TABLE 2.24

Correction Coefficients K and K*

t1/b Ef  /Ec tf  /d K K*

h1 = 1

0.1
1 ~ 2 1/12 0.86 ~ 0.90

0.93 ~ 0.94
1 ~ 2 1/6 0.91 ~ 0.93

Others
1 ~ 2 1/60 ~ 1/24 0.86 ~ 0.91 0.90 ~ 0.93

1 ~ 2 1/12 ~ 1/6 0.91 ~ 0.92 0.94 ~ 0.97

h1 = 1/2
0.1

1 1/24 ~ 1/12 0.88 ~ 0.91 0.94 ~ 0.96

2 1/12 ~ 1/6 0.93 ~ 0.95 0.97 ~ 0.99

Others 1 ~ 2 1/24 ~ 1/6 0.91 ~ 0.92 0.97 ~ 0.99

h1 = 1/4

0.1
1 ~ 2 1/48 ~ 1/24 0.89 ~ 0.91

0.97 ~ 1.00
1/12 ~ 1/6 0.92 ~ 0.94

Others
1 1/120 ~ 1/24 0.89 ~ 0.91 0.97 ~ 0.99

2 1/24 ~ 1/6 0.91 ~ 0.93 0.99 ~ 1.00

h1 = 1/5
0.1 1 ~ 2 1/60 ~ 1/6

0.91 ~ 0.96

≈ 1.00

Others 1 ~ 2 1/120 ~ 1/12

h1 = 1/6
0.1 1 ~ 2 1/72 ~ 1/6

0.93 ~ 0.98
Others 1 ~ 2 1/120 ~ 1/12

h1 = 1/8 0.1 and others 1 ~ 2 1/120 ~ 1/12 0.97 ~ 1.00

h1 < 1/8 0.1 and others 1 ~ 2 1/120 ~ 1/12 ≈ 1.00

Note: Others represents t1/b = 0.05, 0.025, and 0.01.
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2.3.6 Summary and Concluding Remarks

In this section, constitutive modeling of honeycomb sandwiches is devel-
oped, and an effective theoretical approach is proposed to derive elastic stiff-
ness tensors for general honeycomb sandwiches. The usually neglected skin 
effect is given particular attention, and is found to play an important role in 
both sandwich local fields and global behaviors.
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FIGURE 2.30
Pure tension mode.
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The adaptation of the homogenization theory to periodic plates is intro-
duced and extended to include transverse shear deformation theory, by 
which the field equations of three local problems are deduced. Then, a mul-
tipass homogenization technique is applied to solve the 3D homogenization 
functions. With the first pass of the geometry-to-material transformation 
model (GTM), the spatial heterogeneity is conveniently transformed into the 
material anisotropy. And in the second pass, the unit cell is 2D homogenized 
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FIGURE 2.31
Pure bending mode.
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by global plane strain, where the solution is analytically sought in a vari-
ational sense. The stiffness tensors are finally formulated in the form of 
Fourier series that is easily calculated with a symbolic program. Finally, the 
finite element analysis is conducted to verify and complement the analytical 
solutions with the additional assessment on the effect of skin rigidity.

In this study, there are several observations, as follows:

 1. The multipass homogenization technique is successfully applied 
in periodic cellular structures, while the engineering application 
of the technique is sought for structural homogenization. Further, 
with the geometry-to-material model, the 3D anisotropic elasticity 
is practiced on real engineering problems, among very few cases in 
the literature. Honeycomb constitutive modeling, after incorporat-
ing these concepts, thus has much more flexibility in the improve-
ment of computational accuracy and expense. It should be noted 
that the approach introduced in this section is readily applicable 
for all general 2D cellular configurations. The adaptation of the 
homogenization theory in periodic plates is introduced and modi-
fied to include the transverse shear deformable plate theory. And 
the homogenization function of transverse shear stiffness is, for the 
first time, derived with an analytical solution, which, besides other 
stiffness, is validated with FEA results and literature. It is advised 
that for general computations the accurate calculations of stiffness 
follow the formulas (2.116), (2.131), (2.138), (2.147), and (2.152) derived 
in this study complemented with the FEA-based equations (2.161) 
and (2.162) and the correction coefficients in Table 2.24.

 2. The refiner analysis may choose unit cell FEA with the specialized code 
or periodicity modeling technique that is developed in this section.

 3. The flexural stiffness and stretch stiffness are distinguished for 
the honeycomb sandwich structures, the mechanism of which is 
demonstrated through their symmetric and antisymmetric nature. 
Although the impact of this divergence on sandwich computational 
modeling needs further evaluations, the careful use of equivalent 
core properties is hereby emphasized, which include the sensitive 
Poisson’s ratios.

 4. The skin effect plays an important role in all sandwich stiffnesses 
for general practical honeycomb sandwiches, particularly when 
the thickness ratio e/d is not so small. Since in sandwich computa-
tions the skin effect has not been taken into account much, there is a 
strong recommendation to include this effect in refined analysis and 
to have further investigations on current applications. The particu-
lar one is of sandwich beams, on which many tests and investiga-
tions are based.
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 5. Nonlinear effect is briefly assessed in this study, and it is found neg-
ligible in the elastic range. However, a thorough study is required 
for more understanding on nonlinear behavior and coupling among 
shear, stretch, and bending modes. Also, the assessment of size and 
edge effects in cellular modeling can be a relevant topic, especially 
for the justification of divergence between theoretic and experimen-
tal results.
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3
FRP Deck: Strength Evaluation

3.1 Overview

This chapter is focused on strength evaluation of honeycomb fiber-rein-
forced polymer (HFPR) sandwich panels with sinusoidal core geometry, in 
terms of both experimental investigation and theoretical analysis. The sand-
wich structures consist of core and facesheet components, where core mate-
rials are primarily subjected to out-of-plane compression and shear, and the 
facesheet carries mainly membrane forces. Therefore, the first objective is 
to study the core material under out-of-plane compression. Chopped strand 
mat (ChSM) is used for the core material, which is composed of E-glass fibers 
and polyester resin. The facesheet is made of several layers of ChSM, 0°/90° 
E-glass fiber, and polyester resin. The ChSM material is used at the interface 
between the core and facesheet as a bonding layer. These component parts 
are joined by the contact molding manufacturing process. As a result, the 
number of the ChSM bonding layers and core thickness plays an important 
role on the compressive strength of the panel. Analytical models are pro-
vided to predict the pure compressive and buckling strength, which are veri-
fied through finite element (FE) results. Compression tests are further carried 
out to correlate with the analytical results. The number of the ChSM bonding 
layers and panel core thickness define each specimen type. Different failure 
modes are obtained for different parameter combinations, and their linear 
and failure responses are described.

The second objective is to study the core materials under out-of-plane 
shear. Analytical models are provided for shear buckling, pure shear fail-
ure, and debonding. Shear buckling can be solved using the Rayleigh–Ritz 
method, and the other two failure modes are characterized based on accu-
rate description of shear stiffness and stress distribution considering skin 
effect. Design formulas are provided to predict the failure strength. To verify 
the analytical models, a series of four-point bending tests are further carried 
out by varying the number of bonding layers and core thickness, both along 
longitudinal and transverse directions.

The final objective is to study the strength properties of the facesheet. A 
finite element (FE) progressive failure model is developed, which is validated 
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by the existing test results, and is further used to carry out a parametric 
study by varying material properties, layer thickness, and layer sequences. 
Compression and bending tests are carried out on selected layer configura-
tions, and an optimized facesheet configuration is recommended.

3.2 Literature Review

3.2.1 Introduction

As stated in Section 3.1, the objective of this study is to evaluate the strength 
of core materials, facesheets, and the interface between core and facesheet. 
Much effort has been devoted to the stiffness modeling and optimization of 
the honeycomb fiber-reinforced polymer (HFRP) sandwich panel. In Chapter 
2, equivalent orthotropic properties representative of the complex honey-
comb geometry are developed, a simplified analysis procedure that can be 
used in design applications is presented, and an analytical solution for the 
transverse shear stiffness of a composite honeycomb with general configura-
tions is derived. However, only a few studies are available on the strength 
properties of sandwich structures, and particularly HFRP, partly due to their 
complicated honeycomb core geometry. A previous study by DeTeresa et al. 
(1999) indicated that core materials for sandwich structures are primarily 
subjected to shear and through-the-thickness compression. Thus, this sec-
tion reviews failure mechanisms under such loading conditions to evaluate 
the behavior of HFRP sandwich panels. To this end, Section 3.2.2 reviews 
the previous work on core materials under out-of-plane compression, and 
Section 3.2.3 is focused on out-of-plane (transverse) shear. Section 3.2.4 exam-
ines significant issues related to facehsheet studies.

3.2.2 Out-of-Plane Compression

3.2.2.1 Compressive Strength of Core Materials

Chopped strand mat (ChSM) is used for the core materials that are composed 
of E-glass fiber and polyester resin. The modeling of ChSM can be dated back 
to the 1970s. Hann (1975) defined the random composite by an equivalent 
laminate consisting of unidirectional plies in the plane of the laminate. Using 
a maximum stress criterion, the strength of the random composite was given 
in terms of uniaxial strength of the unidirectional composite through a sim-
ple relation. Halpin and Kardos (1978) modeled the random fiber composites 
as a quasi-isotropic laminate consisting of (0°/90°/±45°)s plies. A maximum 
strain failure criterion was considered to predict the ultimate strength. They 
provided several examples illustrating the use of the model. Both of these 
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studies treated the ChSM as lay-ups of laminate in a balanced condition, 
which are still used currently (Barbero 1999).

3.2.2.2 Core Crushing

One of the common failure modes for sandwich structures under out-of-
plane compression is core crushing. Theotokoglou (1996) offered an analyti-
cal determination of the ultimate strength of sandwich beams considering 
the core failure in compression, tension, and shear using the maximum fail-
ure strength method. He also performed a pull-out test to verify his model. 
However, his study only gave an indication of the failure modes that took 
place in a T-joint under pull-out load, and further research was required 
in order to predict accurately the failure modes. Cvitkovich and Jackson 
(1998) studied the compression failure mechanisms in composite sandwich 
structures. The specimens in their study were tested with no damage, with 
a 6.35 mm diameter hole and three levels of impact damage. Mouritz and 
Thomson (1999) investigated the compression, flexure, and shear properties 
of a sandwich composite containing defects. They concluded that determin-
ing the compressive properties of a large sandwich structure was difficult 
because the strength and failure mechanism were dependent on the gage 
length. Core crushing under compression was observed in all these studies.

3.2.2.3 Buckling

For HFRP sandwich panels used for bridge deck applications, the following 
distinct features characterize them from their counterparts in other fields; 
they have relatively larger and sparsely distributed honeycomb cells, and 
the core and facesheets are manufactured separately and subsequently con-
nected by contact bonding, using a ChSM and polymer resin at the interface. 
Due to the relatively low material stiffness and thin-walled sectional geom-
etries of structural components, two possible instability problems for sand-
wich panels may result under different compression loading conditions. One 
is the wrinkling of the facesheet under in-plane compression (Niu and Talreja 
1998), and the other is the instability of the core due to out-of-plane com-
pression (Zhang and Ashby 1992). Out-of-plane compression is unavoidable 
in civil engineering applications, such as local compression on bridge decks 
exerted by wheel loads. The buckling of the honeycomb core becomes more 
significant due to the sparsely distributed thin-wall core panels. As reported 
by Kumar et al. (2003), local buckling of the thin walls precipitated most fail-
ure modes in their bending tests of tube bridge decks. Thus, it is beneficial to 
have a solution for transverse buckling of core elements, with loaded edges 
partially restrained by the interface bond with the facesheet panels.

Zhang and Ashby (1992) concluded that two possible failure modes for 
out-of-plane compression were buckling and material crushing, referred 
to as pure compression failure. In their study to predict buckling strength, 
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they assumed the two edges of the core wall perpendicular to the loading 
direction as simply supported, while the other two loaded edges were 
rigidly constrained. Their solution was later applied by Lee et al. (2002) 
to study the behavior of the honeycomb composite core at elevated tem-
perature. Both of these studies assumed a completely rigid connection 
at the facesheet-core interface, which is seldom the case in practice. The 
partial constraint offered by the interface bond has a significant effect on 
the behavior of FRP sandwich panels. This effect may vary due to dif-
ferent materials and manufacturing techniques used, with the clamped 
and hinged conditions as two extreme cases for the connection. In gen-
eral, the quality of the bonding effect can be improved by either select-
ing compatible bonding materials or increasing embedment of the core 
into the bonding layer. The latter method is analogous to increasing the 
contact depth, or increasing the bonding layer thickness, which in turn 
produces larger fillets of excess adhesive, which formed at honeycomb 
interfaces, effectively increasing the bonding area. This facesheet-core 
interaction is typically called the bonding layer effect. Burton and Noor 
(1997) used detailed FE models to examine the effect of the adhesive joint 
on the load transfer and static responses of sandwich panels. However, 
they used strain energy for discrete components to discuss the effect of 
various parameters, a method that cannot be readily used in practice. Up 
to now, the bonding effect on the behavior of honeycomb sandwich pan-
els has not yet been clearly defined. It is the objective of this study to 
quantitatively study this effect on the behavior of sandwich panels under 
compressive load.

By considering the bonding layer effect, the problem can be interpreted as 
the instability of a partially restrained plate. The research on this topic can be 
traced back to the 1950s (Bleich 1952). Qiao et al. (2001) performed a study on 
the local buckling of composite FRP shapes by discrete plate analysis. They 
provided an explicit solution for the problem with elastic constraint along the 
unloaded edges, and also provided detailed references on this topic. Their 
research was further explored by Kollar (2002) and Qiao and Zou (2003). All 
of the previous studies are focused on the buckling of plates or panels with 
elastic restraint along the unloaded edges; this restraint is provided by con-
nection of flange-to-web elements for beam-type members. However, for the 
HFRP core under out-of-plane compression, the two edges in contact with the 
facesheet panels (Figure 1.1) can be treated as partially constrained; i.e., the 
elastic restraint is along the loaded edges. And this restraint results from the 
degree of connectivity between the facesheet and core. At present, there are 
only limited studies (Shan and Qiao 2008) for this problem, and it is there-
fore advantageous to develop an analytical solution for compression buckling 
capacity of a plate with two loaded edges partially constrained.

In this chapter, analytical models are provided for the two failure modes: 
core crushing and buckling. The coefficient of elastic restraint is intro-
duced to quantify the bonding layer effect. A comprehensive approach is 
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developed to study the buckling behavior of the HFPR core with varying 
degrees of boundary restraints, and an analytical solution is proposed 
by solving a transcendental equation. The bonding layer effect is evalu-
ated experimentally by compression tests, which are designed such that 
buckling failure and pure compression failure can occur distinctly and 
separately. A novel testing method to predict the elastic constraint coef-
ficient is also described; a parametric study is carried out to study the 
aspect ratio effect on the buckling behavior, and finally, design guidelines 
are proposed.

3.2.3 Out-of-Plane Shear

It is commonly believed that two failure modes may occur for a sandwich 
panel under out-of-plane shear: shear crushing (Allen 1969; Vinson 1999) and 
shear buckling (Qiao et al. 2001; Papadopoulos and Kassapoglou 2004; Qiao 
and Huo 2011). Chen and Davalos (2005) pointed out that the skin effect can 
significantly affect interfacial stress distribution, yielding a coupled stress 
state, where the normal stress may even be larger than the shear stress. They 
concluded that, unlike the common belief that only shear stress occurs when 
the structure is under pure shear force, tensile force at the interface arises 
for a sandwich core, especially at the intersections of core elements, making 
such locations critical for debonding. Therefore, debonding may occur well 
before shear crushing or buckling is achieved.

To predict the shear strength of a sandwich panel, an accurate description 
of the stiffness is required. The computational models on honeycomb sand-
wiches are generally based on the equivalent replacement of each component 
with homogeneous continuum, due to expensive computation of 3D detailed 
properties. Therefore, to accurately represent the equivalent properties has 
been a perennially challenging topic that has attracted a lot of investigation. 
From Figure  1.1, one can intuitively conclude that honeycomb sandwich 
structures behave like I-beams: the outer facesheets correspond to the flanges, 
and carry most of the direct compression/tension bending load, and the 
lightweight core corresponds to the I-beam web. The core supports the skins, 
increases bending and torsional stiffness, and carries most of the shear load 
(Noor et al. 1996). This characteristic of a three-layer arrangement leads to the 
classical sandwich theory (Allen 1969; Zenkert 1995). Unlike the facesheet, 
which can even be a laminated plate, the equivalent properties of honey-
comb cores are more complicated, as illustrated and discussed in Chapter 2.

3.2.3.1 Stiffness Study on Equivalent Properties of Honeycomb Cores

A comprehensive review of the computational models on honeycomb sand-
wiches was given by Noor et al. (1996), where numerous references were cited. 
Basically, all existing studies can be organized into two major groups, with 
each either neglecting or including skin effects, as explained in Chapter 2.
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3.2.3.2 Interfacial Stress Distribution

Several studies (e.g., Chen and Davalos 2003) have shown that delamination 
of the core from the facesheet is a typical failure mode for sandwich panels. 
The fracture mechanics method is usually applied to study this problem, 
including studies by Ungsuwarungsri and Knauss (1987), Cui and Wisnom 
(1992), El-Sayed and Sridharan (2002), Blackman et al. (2003), Wang (2004), 
and other numerous works. It is shown by all these previous works that a 
crack is initiated when the interface traction attains the interfacial strength, 
and the crack is advanced when the work of traction is equal to the mate-
rial’s resistance to crack propagation. Therefore, stress concentration at the 
interface can act as a criterion to predict the onset of the delamination, and 
there is a need to further investigate the stress field at the interface. Chen 
and Davalos (2005) presented an analytical model allowing the calculation 
of the stiffness of honeycomb cores as well as the interfacial stress distribu-
tion considering skin effect, both under in-plane and out-of-plane forces, for 
hexagonal cores. To the authors’ knowledge, accurate description of stiffness 
and interfacial stress distribution remains an open topic for HFRP sandwich 
panels with a sinusoidal core. It is noted that the hexagonal cores (Figure 3.1) 
are different from the sinusoidal cores (Figure 1.1) in that, for the hexagonal 
core, both the straight and inclined panels are affected by the skin effect. 
However, for the sinusoidal core, due to the existence of the flat panel, only 
the sinusoidal panel is affected. The two geometries of closed-cell (hexago-
nal) and open-cell (sinusoidal) configurations represent two major types that 
can be considered for sandwich cores. Thus, as a further contribution to this 

Adhesive film

Honeycomb core

Adhesive film

Top skin

Bottom skin

FIGURE 3.1
Sandwich panel with hexagonal honeycomb core. (From Noor, A. K., Burton, W. S., and Bert, C. 
W., Applied Mechanics Reviews, ASME, 49(3), 155–199, 1996.)
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field, the behavior of a honeycomb sandwich panel with a sinusoidal core 
geometry considering skin effect is presented in this chapter.

3.2.3.3 Shear Crushing and Shear Buckling

The concept of shear failure consisting of shear crushing or shear buckling is rel-
atively straightforward. Allen and Feng (1998) defined three categories of sand-
wich panels: (1) composite beam theory (CBT), where the sandwich is treated as 
an ordinary composite beam and there is no shear deformation; (2) elementary 
sandwich theory (EST), where stresses and deflections are calculated by com-
posite beam theory, but there is an additional shear deflection associated with 
shear strains in the core; and (3) advanced sandwich theory (AST), where the 
faces must bend locally in order to follow the shear deformation of the core. 
Most of the sandwich panels, including HFRP sandwich panels in this study, 
fall into the category of EST. One basic assumption used for EST is that the core 
resists the shear force and the facesheet carries the membrane forces caused 
by the bending moment (Allen 1969; Vinson 1999). It is shown (Caprino and 
Langella 2000) that if the Young’s modulus of the core is negligible with respect 
to the facing elastic modulus, and the facing thickness is small compared to 
the height of the core, the shear stress field in the core is practically uniform. 
Therefore, it is reasonable to assume that once this uniform shear stress exceeds 
the material shear strength, the panel will fail due to shear crushing.

The research on the shear buckling problem has a relatively long history. 
Bleich (1952) first studied the shear buckling strength of metal structures. 
Timoshenko and Gere (1961) refined this theory and studied buckling of rect-
angular plates under action of shear stresses. Barbero and Raftoyiannis (1993) 
used the first variation of the total potential energy equation to study the shear 
buckling of FRP structures. Qiao et al. (2001) further applied this theory to study 
the local buckling of webs under shear loading. More recently, Papadopoulos 
and Kassapoglou (2004) developed a method based on a polynomial expan-
sion of the out-of-plane displacement of the plate and energy minimization and 
studied the shear buckling of rectangular composite plates with two concen-
tric lay-ups. Most recently, Qiao and Huo (2011) developed the explicit closed-
form local buckling solution of in-plane shear-loaded orthotropic plates with 
two opposite edges simply supported and the two opposite edges either both 
rotationally restrained or one rotationally restrained and the other free. In all 
these studies, energy method was employed, and therefore it is also adopted 
in this study. As pointed out earlier, two edges of the core panel are partially 
restrained. As a result, the potential energy will be given based on this bound-
ary condition, and the Rayleigh–Ritz method will be used to solve this problem.

3.2.3.4 Testing Method

To study the shear behavior of the sandwich core, the American Society for 
Testing and Materials (ASTM) (ASTM C273-00) specifies a testing method. 
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However, this method cannot be directly applied to this study since the core 
is very strong in shear. Trial tests using this method illustrated that the fail-
ure is intralaminar delamination, instead of pure shear failure of the core. 
Another method, four-point bending test, is also recommended by ASTM 
(ASTM C393-00) to study shear strength and shear stiffness of sandwich 
cores since pure shear and bending regions will result from this loading con-
dition. This method is adopted in this study for the HFRP sandwich. Many 
researchers have performed bending tests on sandwich beams. Lingaiah and 
Suryanarayana (1991) carried out experimental vs. analytical correlation of 
the mechanical properties of a sandwich beam specimen. Four-point and 
three-point load tests were conducted. It was observed that generally the 
failure load was higher for the case of the four-point bending test than for the 
three-point bending test. The failure of most specimens was due to debond-
ing between the core and the facing and at loads that were less than the theo-
retical estimated based on the allowable core shear stress or the allowable 
facing tensile/compressive stress, whichever was lower, depending on the 
test condition. But they did not specify the position where the debonding ini-
tiated and did not provide an in-depth discussion of the mechanism behind 
the observed failure mode, where skin effect produces a tensile force in the 
pure shear region, causing the facesheet to debond from the core before the 
facesheet reaches its material strength. Mouritz and Thomson (1999) carried 
out four-point bending tests to study shear properties of a sandwich com-
posite containing interfacial cracks subjected to impact load. They found that 
the composite containing the interfacial crack failed at a lower load than the 
defect-free specimen. The former failed due to a shear crack initiated near the 
interfacial crack tip, and upon loading grew into the foam until it reached the 
opposing skin, while skin wrinkling was a common failure mode in defect-
free sandwich samples. The defect-free sandwich composite did not fail by 
a shear- or bending-dominated process. The stiffness and strength of the 
sandwich composite decreased with increasing impact energy and impact 
damage area except when the composite was loaded in bending tension. 
However, their tests were based on small coupon samples and did not trans-
late well to predict the properties of large structural components. Zenkert 
(1991) also observed the same type of shear failure in polymer foam sand-
wich composites containing interfacial cracks. Zenkert (1991), Triantofillou 
and Gibson (1989), and Thomson et al. (1989) showed that the load needed 
to cause the onset of shear cracking can be predicted with good accuracy 
using analytical FE models based on the mode II fracture mechanics theory 
applied to layered anisotropic materials. Caprino and Langella (2000) per-
formed three-point bending tests on a sandwich beam for the shear charac-
terization of foam core. The special feature of their specimen was that they 
inserted rigid blocks in proximity to the concentrated load. They concluded 
that this method allowed for an accurate measurement of the shear modulus 
and shear strength compared to ASTM standards. However, this method 
was very complicated, and a lot of parameters needed to be calculated to 
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design the test setup. Further test methods need to be generated to assess 
their applicability to core materials different from foam core.

In this chapter, analytical models are presented to predict the strength due 
to pure shear crushing, shear buckling, and the delamination of the core from 
facesheet. The skin effect can be described by considering both shear and 
bending warping effects. All previous studies on skin effect only considered 
the membrane force, which corresponds to shear warping defined herein. The 
bending warping effect is for the first time presented. The analytical models 
are verified through FE analysis. To further understand the behavior of core 
material under out-of-plane shear, four-point bending tests are carried out.

3.2.4 Facesheet Study

3.2.4.1 Progressive Failure Analysis

A lot of research has been done in the area of progressive failure analysis. 
The conventional strength analysis, called total ply discount (Vinson and 
Sierakowski 1987), does not recognize that ply failure is localized, and there-
fore it underestimates laminate strength. First-ply failure (FPF) can be used 
to predict the onset of the damage (Barbero 1999) as long as the stresses in 
each laminate are computed accurately. The objective of progressive failure 
analysis is focused on post-FPF analysis. According to Kim (1995), there 
are two approaches to include damage: (1) modifying the stiffness matrix 
directly (Lee 1982; Ochoa and Engblom 1987; Hwang and Sun 1989; Tolson 
and Zabaras 1991) and (2) degrading the material properties (Tan 1991; Tan 
and Perez 1993; Reddy and Reddy 1993; and Kim et al. 1996).

Using the stiffness modification approach, Lee (1982) developed a three-
dimensional FE computer program to analyze a fiber-reinforced composite 
laminate. The program could calculate the detailed stress distribution, identify 
the damage zone and failure mode, analyze the damage accumulation, and 
determine the ultimate strength. He defined three types of damage: breakage 
of fibers, failure of matrix, and delamination. The stresses at the center of each 
element were taken as the representative of that element for fiber breakage and 
matrix failure, and the stresses at the center of the interface between two layers 
were taken as the representative stress for delamination. Based on the three 
damage types, the stiffness matrix was modified accordingly. He applied this 
program to study damage accumulation in composite laminate containing cir-
cular holes subjected to in-plane loading. However, due to mesh coarseness 
at the edge of holes, delamination could not be captured. Further refinement 
of the finite element mesh was practically impossible due to computational 
limitations. Ochoa and Engblom (1987) used a higher-order plate element and 
computed transverse stresses from equilibrium equations. The failure analy-
sis procedure was similar to that used by Lee (1982). Hwang and Sun (1989) 
developed an iterative 3D finite element analysis with a modified Newton-
Raphson scheme for the failure prediction of laminates. Tolson and Zabaras 
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(1991) followed a procedure similar to that used by Ochoa and Engblom (1987), 
using a higher-order plate element. Tsau and Plunkett (1993) investigated a 
square plate made of a layered composite material, with a centered circular 
hole subjected to in-plane biaxial loading, using a family of eight-node ele-
ments. Hashin failure criteria were adopted in their study and mesh size of 
the FE model in laminates was carefully considered. In their analysis, at each 
increment of load, only one element, which was the one with the largest func-
tion value of the criterion in either fiber or matrix mode, was assigned to fail.

Using the material degradation approach, Tan (1991) investigated the pro-
gressive failure with cut-out holes under in-plane tension testing. Different 
degradation factors were used for a longitudinal modulus due to fiber break-
age and transverse shear moduli due to matrix failure. The same approach 
was adopted by Tan and Perez (1993) to study the compressive loading case. 
Reddy and Reddy (1993) developed a three-dimensional progressive failure 
algorithm where the layer-wise laminate theory of Reddy was used for kine-
matic description. The stiffness of reduction was carried out at the reduced 
integration gauss points of the FE mesh depending on the mode of failure. 
Two types of stiffness reduction methods were used: independent, i.e., each 
stress would contribute only toward degradation of the corresponding stiff-
ness property; and interactive method, i.e., coupling was assumed between 
normal and shear stiffness properties. However, material properties were 
degraded by the same factor regardless of failure modes. They concluded 
that further investigation was required to apply their approach to laminates 
under compressive and bending load. Kim et al. (1996) formulated a beam 
element with layer-wise constant shear (BLCS) based on layer-wise lami-
nated beam theory. Two schemes to predict load-displacement paths were 
used: load controlled and displacement controlled. The stiffness degrada-
tion factors were evaluated through parametric studies and correlation with 
experimental results. The BLCS predictions for ultimate loads and displace-
ments were accurate compared to experimental results. However, when 
experimental responses showed nonlinear load-displacement behavior, the 
prediction for displacement could not exactly match experimental results.

Most of the previous progressive failure analysis using FE is based on in-
house programs, which requires a lot of effort and time, and also the code 
developed by one researcher cannot be readily used by others. Nowadays, 
some general purpose FE analysis tools, such as ABAQUS, ANSYS, etc., are 
widely used in the academic and industrial fields. These programs allow 
users to define their own subroutines in the analysis to fulfill the functions, 
such as stiffness reduction and material degradation, as described above. 
After evaluating all the possibilities, we choose to develop a progressive fail-
ure model through a user-defined subroutine using ABAQUS.

One important issue in the progressive failure analysis is to find an appro-
priate failure criterion. Various failure criteria for isotropic or composite 
materials have been proposed. In general, the failure criteria are categorized 
into two groups: independent and polynomial failure criteria. A review of 
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failure criteria of fibrous composite materials was given by Echaabi et al. 
(1996). The maximum stress and strain criteria belong to the first category, 
and they are simple to apply and can tell the mode of failure, but they neglect 
the stress interaction. An interactive criterion such as Tsai-Wu, Hoffman, or 
Hill includes stress interaction in the failure mechanism, but it does not tell 
the mode of failure, and it requires some efforts to determine parameters 
such as F12 in the Tsai-Wu criterion. Among others, Hashin (1980) provided a 
three-dimensional failure criterion, which includes fiber tension, fiber com-
pression, matrix tension, and matrix compression. This criterion not only 
considers the stress interaction, but also provides the failure mode. Therefore, 
it is widely used (Spottswood and Palazotto 2001; Kroll and Hufenbach 1997) 
and is adopted in this study. However, Hashin (1980) did not specify the 
delamination criterion, which becomes significant when the laminate fails 
due to interlaminar shear failure. This issue was recently addressed by 
Elawadly (2003). Lee (1982) proposed a delamination mode in his 3D analy-
sis, and it is adopted in this study as an addition to Hashin’s failure criterion.

Most commonly used FE models are 2D (Kim et al. 1996) and 3D analyses 
(Reddy and Reddy 1993). For 2D analysis, based on plane stress assump-
tion, the transverse shear stresses, σ13 and σ23, and normal stress, σ33, are 
neglected. As a result, the failure mode of delamination cannot be consid-
ered. Progressive failure 3D analysis was successfully developed by several 
researchers. However, the disadvantage is apparent. Take a 32-layer laminate 
as an example; the element will be expanded 32 times more than that in 
2D modeling, resulting in challenging work for both modeling and com-
putation, which hampers its use for a parametric study. Therefore, it is the 
objective of this study to develop a model that uses a 2D element and can 
still predict the delamination failure. Since σ33 is negligible considering the 
thickness-to-length ratio for each layer, only σ13 and σ23 can be considered for 
delamination. In ABAQUS (2002), transverse shear stresses are not readily 
available in the output stress components for a shell element. Instead, they 
are stored in the result file as TSHR13 and TSHR23. Therefore, a user-defined 
subroutine is first employed to retrieve the transverse shear stresses from 
the result file. Combining with another subroutine to implement the failure 
criterion, the progressive failure analysis can be carried out.

3.2.4.2 Testing Method

A lot of tests have been carried out for failure evaluations of laminates. 
Standardized test methods (ASTM designations) were adopted in most stud-
ies. Cui et al. (1992) compared three- and four-point bending tests both ana-
lytically and experimentally. They concluded that in all three-point bending 
tests, damage was observed under the loading roller in addition to the inter-
laminar shear failure, while in four-point bending tests, only interlaminar 
shear failure was observed. Kim and Crasto (1992) carried out a series of tests 
on a novel miniature sandwich specimen developed to measure composite 
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compressive strength. The mini-sandwich beam specimens consisted of thin 
composite skins on both sides of a core made of materials similar to matrix 
resin. The advantage of this method was that it can avoid the premature 
buckling failure, and they concluded that the compressive strength deter-
mined in their study was approximately equal to the tensile strength. But 
the sandwich panel fabrication was a two-step process and required more 
time and effort than conventional testing methods. Grief and Chapon (1993) 
conducted three-point bending tests on laminated composite beams and 
attempted to predict successive failures. Five composite laminate types were 
used with different lay-ups. Fiber breakage, matrix damage, and delami-
nation were observed during the test. They tried to use total ply discount 
failure analysis, that is, after a ply failure the analysis was repeated for a 
new laminate, in which the stiffness of a failed ply was set to nearly zero, to 
predict subsequent failures. However, their analytical predictions did not 
match the experimental results. Lopez-Anido et al. (1995) performed three-
point bending tests, both flatwise (out-of-plane) and edgewise (in-plane), on 
rectangular lay-up angle ply (±45°) beam elements. They concluded that the 
analysis based on the computation of the apparent lamina moduli provided 
a lower bound, and that based on plane strain assumptions represented an 
upper bound for the beam stiffness. The threshold aspect ratio that limits the 
range of application of various analytical methods was provided. Barbero 
et al. (1999) developed a fixture for testing compressive strength of coupon 
samples and pultruded structural shapes. Using this fixture, splitting at the 
end of the sample was prevented while reducing stress concentration at the 
ends, yielding compression failures within the center section of specimens. 
All the fiber reinforcements of structural shapes (Continuous Strand Mat 
[CSM], ±45°, and roving) were tested individually and combined to support 
the development of a simple model for compressive strength of structural 
shapes. Waas and Schultheisz (1996) provided a good review of experimen-
tal studies on compressive failure of composites. The factors affecting the 
compressive strength, such as matrix effects, interface effects, void content, 
etc., were discussed in detail through experimental results. They also cor-
related compressive strength with other properties and recommended test-
ing techniques that may provide further insight into the mechanisms that 
control composite compressive failures, including methods such as micro-
scopic observation, sensitive interferometry, and acoustic emission. Unlike 
bending and compression, tension tests are less reported due to their easy 
implementation.

For HFRP sandwich panels, the face laminate may be subjected to tensile, 
compressive, or bending forces depending on the loading conditions, where 
compressive force is more critical. Therefore, it is necessary to evaluate the 
strength properties of face laminate through a combination of compressive 
and bending tests, and the test results can be used to verify the accuracy of 
the proposed progressive failure model described in the preceding section.
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3.3 Out-of-Plane Compression

3.3.1 Introduction

A combined analytical and experimental study of an FRP sandwich panel 
under out-of-plane compression is presented in this section (Davalos and 
Chen 2005). Two analytical models, corresponding to pure compression and 
elastic buckling failure, respectively, are provided first. The sandwich panel 
consists of top and bottom laminated facesheets bonded to the honeycomb 
core, which extends vertically between facesheets. The facesheet and core are 
attached by contact molding and are therefore not rigidly connected. Thus, 
the buckling problem can be described as the instability of an FRP core panel 
with two rotationally restrained loaded edges. An elastic restraint coefficient 
is introduced to quantify the bonding layer effect between the facesheet and 
core, and a simple and relatively accurate test method is proposed to obtain 
the restraint coefficient experimentally. By solving a transcendental equa-
tion, the critical compression buckling stresses are obtained, and a simpli-
fied expression to predict buckling strength is formulated in terms of the 
elastic restraint coefficient. The analytical solution is verified by FE analysis. 
Compression tests were carried out to evaluate the effect of the bonding layer 
thickness and core thickness, and the experimental results correlate closely 
with analytical and FE predictions. A parametric study is conducted to study 
the core aspect ratio effect on the buckling load. Finally, design equations are 
provided to calculate the compressive strength.

3.3.2 Analytical Models

Based on the literature review in Section 3.2, we conclude that there are 
two failure modes for HFRP sandwich panels under out-of-plane com-
pression: pure compression and buckling. Correspondingly, two models 
are provided.

3.3.2.1 Pure Compression Failure

For this case, the nominal failure load can be calculated as

 F f Ac c c= ×  (3.1)

where fc is the material compressive strength of ChSM, and Ac is the total in-
plane area of the core walls.
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3.3.2.2 Buckling of Plate with Partially Constrained Loaded Edges

3.3.2.2.1 Analytical Model

The local buckling of core panels under uniformly distributed compression 
loading is analyzed in this section. Clearly, the core flat panels are more 
sensitive to buckling than the sinusoidal panels (Figure 3.1). Therefore, the 
problem can be simplified as the buckling response of the flat panel under 
in-plane compression. As the flat panel extends along the length of the core, 
it is reasonable to assume the connection edge between the flat panel and 
sinusoidal panel to be simply supported, as the natural location of a contra-
flexure point. The boundary conditions are shown in Figure 3.2. Two edges 
parallel to the loading direction are simply supported and the other two 
loaded edges are partially constrained.

The governing differential equation for buckling of a symmetric anisotro-
pic plate under in-plane axial loading is expressed as
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where Dij (i, j = 1, 2, 6) are the plate bending stiffness coefficients, Ny is the in-
plane uniformly distributed compressive stress resultant, and w(x, y) is the 
buckled shape function of the plate. If the balanced symmetric condition is 
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FIGURE 3.2
Boundary condition of FRP plate.
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considered and no bending-twisting coupling exists, then (3.2) can be simpli-
fied as
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Considering the boundary condition in Figure  3.2, we can assume the 
shape function to be

 w y n x
a

sin= π
 (3.4)

Then (3.3) can be further simplified to
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Introducing the following coefficients as
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Equation (3.5) becomes
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Apparently (3.7) is a typical fourth-order differential problem, and the cor-
responding characteristic equation is
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a

r n
a

2( )( ) ( ) 04 2 2 2 4+ µ − α π + π β =  (3.8)

The final form of the solution to (3.7) depends on the value of ( )2 2µ − α − β.
We can assume

 ( ) 02 2µ − α − β =  (3.9)

Substituting (3.6) into (3.9), we can get
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Solving for (3.10), we have

 N n
a

D D D D2 ( 2 )y

2 2

2 11 22 12 66= π + +   (3.11)

This is a well-known expression for the critical local buckling strength of a 
simply supported plate with n half waves in the x direction (Reddy 1999). For 
the problem considered in this study, for a given n, we always have Ncr ≥ Ny, 
and therefore we always have

 ( ) 02 2µ − α − β ≥  (3.12)

Then the four roots of (3.8) are the complex numbers

 r k n
a
i k n

a
i;1 2= ± π ± π

 (3.13)

where k1, k2, and k3 are defined as

 

k k

k k

k ( )

1
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3

2
2

3

3
2 2

= µ − α +

= µ − α −

= µ − α − β

 (3.14)

Then the solution for (3.7) takes the form

 w x y n x
a

C k n y
a

C k n y
a

C k n y
a

C k n y
a

( , ) sin ( cos sin cos sin )1
1

2
1

3
2

4
2= π π + π + π + π  (3.15)

As indicated in Figure 3.2, the origin of the coordinates x and y is located 
at the mid-point of the left edge. Assuming equal elastic constraint on both 
loaded edges, the deflection function of w is a symmetric function of y when 
the plate reaches the critical buckling load. Therefore, (3.15) reduces to

 w x y n x
a

C k n y
a

C k n y
a

( , ) sin ( cos cos )1
1

3
2= π π + π

 (3.16)

The boundary conditions can be described as

 w 0y h/2 ==±  (3.17)
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The rotational angle is assumed to be proportional to the edge moment,

 My h/2 = −ζϕ=±  (3.18)

where ϕ  is the rotation of the plate along the edges y = h/2.
Based on the constitutive equation of a laminated panel, and considering 
w x( / ) 0y h
2 2

/2∂ ∂ ==± , the moment My is expressed as

 M D w
y

( )y h y h/2 22

2

2 /2= − ∂
∂=± =±  (3.19)

Combining (3.18) and (3.19), we have

 
D w

y
22

2

2ϕ =
ζ

∂
∂  (3.20)

A nondimensional factor or coefficient of elastic restraint (CER) is defined as

 
D

h
222ζ = −

ζ
 (3.21)

Considering w y/ϕ = ∂ ∂ , the boundary condition along the edges y = ±h/2 
becomes

 
w
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h w
y2

2

2
∂
∂

= ζ ∂
∂

 (3.22)

The buckled shape function of (3.16) in combination with (3.17) and (3.22) 
results in homogeneous equations in terms of two constants C1 and C3. When 
the determinant of the coefficient matrix equals zero, the buckling criterion for 
a plate under equal elastic constraint on both loaded edges is established as
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Furthermore, (3.23) is simplified to a transcendental equation as
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01
1 2
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2 1

3
1 2π π − π π + ζ π π π =  (3.24)

A Fortran program is compiled to solve this equation. As pointed out by 
Reddy (1999), for a simply supported plate under uniaxial compression, the 
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buckling load is a minimum when the half wave along the unloaded direc-
tion is 1. The theory also applies to this model. It is found out that n = 1 
always gives the minimum buckling load, while the number of half waves 
along the other direction can be calculated by the program for a correspond-
ing buckling load.

3.3.2.2.2 Verification with FE Simulation

To verify the model derived in Section 3.3.2.2.1, both (3.24) and the FE method 
are used to predict the local buckling strength of the core panel under out-
of-plane compression. The structure is a typical single cell of the honeycomb 
sandwich structure. This cell is 10.16 × 10.16 cm square and 5.08 cm deep, 
and the core thickness is t = 2.29 mm, as shown in Figure 3.3. Table 3.1 lists 
stiffness properties of the core wall.

ABAQUS (2002) is adopted for FE analysis, and FEMAP (2001) is used for 
the pre- and postprocessing. The modeling of the complex shape of a sinu-
soidal wave is accomplished by exporting the geometry from AUTO-CAD. 
The core walls are modeled with a four-node shell element, S4. The global 
element size is chosen as 5.08 mm. It was checked through a convergence 
study that the mesh used provided accurate values. In the FE analysis, the 
CER introduced in Section 3.3.2.2.1 is adopted to account for the bonding 

Sinusoidal panel 

Flat panel

t

t

t

t

102 mm 

102 mm 

FIGURE 3.3
In-plane core specimen dimensions.

TABLE 3.1

Properties of the Core Material

Ply name Orientation
E1 

(GPa)
E2 

(GPa)
G12 

(GPa)
G23 

(GPa) ν12 ν23

Core Random 11.79 11.79 4.21 2.97 0.402 0.388
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layer effect, and a spring model is used to simulate the elastic constraint. 
Each node between the facesheet and the core is duplicated, and six spring 
elements, representing the constraints in six directions, are placed in 
between. The normal spring stiffness is set to be a very large value. This 
dummy value prevents the core from detaching from the facesheet. The 
rotational stiffness is varied to represent the relative constraining condition, 
corresponding to a particular elastic restraint coefficient. An eigenvalue 
analysis is carried out, where the load corresponding to the first buckling 
mode is considered as the buckling load. It is shown that the buckling load 
is dependent on CER, and by varying CER, denoted as ζ, we can plot the 
buckling load as shown in Figure 3.4, with the first buckling mode from the 
FE analysis illustrated in Figure 3.5.

Solving for (3.24), we can obtain the buckling load Ny for the flat panel in 
the cell, which is 10.16 cm wide and 5.08 cm deep. If the compressive stress is 
assumed to be evenly distributed for the whole structure, multiplying Ny by 
the total length of all the core walls, we can plot the buckling load vs. elastic 
restraint coefficient in Figure 3.4, from which it is shown that the analytical 
model fits the FE result quite well. When the coefficient of elastic restraint 
is assumed to be very large, which approaches a hinged connection, (3.24) 
gives the result of μ2 = 3.125, and substituting this value into (3.6), Ny can be 
calculated as

 N D
a

D
a

2 6.25
y

2
2

22
2

2
22

2= µ π = π
 (3.25)

which corresponds to the solution given by Reddy (1999) for a plate under in-
plane compression with four sides simply supported, leading to the solution

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5
Elastic Restraint Coefficient ξ 

Bu
ck

lin
g 

Lo
ad

 (k
N

)

Analytical result
FE result

FIGURE 3.4
Buckling load vs. elastic restraint coefficient.
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2= π + = π

 (3.26)

which is identical to (3.25), thus indirectly verifying the accuracy of the 
above formulation.

For a given CER ζ, we can get the buckling load correspondingly from the 
curves shown in Figure 3.4. To simplify this procedure, we provide an explicit 
expression to predict the buckling load, which can also act as a design equa-
tion. Previous investigations (Qiao et al. 2001) showed that the buckling load 
vs. ζ curve shown in Figure 3.4 can be fitted using the following equation:

 
F F
F F p

1
1

cr cr

cr cr
q0

−
−

=
ζ +

∞

∞  (3.27)

where Fcr0  and ∞Fcr  are critical loads corresponding to the hinged (ζ = ∞) and 
clamped (ζ = 0) boundary conditions, respectively. They can be obtained 
from the analytical solution and FE analysis and are listed in Table 3.2. The 
parameters p and q can be determined from (3.24) by a regression tech-
nique, and the results from both the FE and analytical solutions are given 
in Table 3.2.

To further verify the analytical solution, panels composed of 2 × 2 = 4 
(20.32 × 20.32 cm) and 3 × 3 = 9 (30.48 × 1 30.48 cm) cells with the same core 
height are analyzed under compressive load. For simplicity, only the two 
extreme cases of hinged and clamped conditions are illustrated, and the 

FIGURE 3.5
The first buckling mode for clamped condition.
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results given in Table  3.3 show that the analytical solution correlates well 
with FE results.

3.3.3 Experimental Investigation

To further study the behavior of sandwich panels under out-of-plane com-
pression, an experimental investigation was carried out by two types of tests, 
stabilized and bare compression, to correspondingly achieve pure compres-
sion and buckling failures, as described in Section 3.3.2.

3.3.3.1 Naming Conventions

Throughout this study, the naming conventions are defined in Figure 3.6, 
where B and C represent, respectively, number of chopped strand mat 
(ChSM) bonding layer and core thickness, and different values for i and j 
correspond to different nominal weights of the ChSM.

1- 900 g/m2 (3.0 oz/ft2)
2- 1,800 g/m2 (6.0 oz/ft2)
3- 2,700 g/m2 (9.0 oz/ft2)

B i C j 

Bonding layer

1- 900 g/m2 (3.0 oz/ft2)
2- 1,350 g/m2 (4.5 oz/ft2)
3- 1,800 g/m2 (6.0 oz/ft2)

j = i = 

Core thickness 

FIGURE 3.6
Naming conventions.

TABLE 3.2

Comparison between FE and Analytical Result

∞∞F (kN)cr F (kN)cr
0 p q

FE result 45.36 140.34 2.94 1.01
Analytical result 50.04 145.62 3.48 1.07

TABLE 3.3

Comparison between FE and Analytical Result for Multicell Panel

∞∞F (kN)cr F (kN)cr
0

2 × 2 = 4 cells FE result 186.91 541.62
(203 × 203 mm2) Analytical result 183.82 533.35

3 × 3 = 9 cells FE result 397.81 1,093.90
(305 × 305 mm2) Analytical result 397.97 1,161.64
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3.3.3.2 Test Description

The specimen is a typical single cell cut from the sandwich structure, which 
represents the weakest part of the structure when under compression. It 
is 10.16 × 10.16 cm and 5.08 cm deep, as shown in Figure 3.3. To assess the 
effect of bonding layers and minimize the influence of the other layers of 
the facesheet, only three layers are selected for the facesheet, as shown in 
Figure 3.7. The thickness of bonding layers is varied from one bonding layer 
to three bonding layers, and the core thickness of specimens is varied from 
one to two core thickness. The constituent materials of the facesheet are 
given in Figure 3.7. The properties of the constituent materials are provided 
in Table 3.4, and Table 3.5 lists the properties of each component material.

Two cases of compression tests were carried out. For the first case, an elas-
tic pad was placed between the loading block and the specimen; this method 
is known as bare compression test. For the second case, the specimen was 
bonded to top and bottom steel plates, and the load was applied directly over 
the steel plate; this method is called stabilized compression test. The bare 
compression test is more representative of actual patch loading conditions. 
The stabilized compression test is intended to minimize the buckling effect 
and induce primarily compression failure.

UM – 1810 (0° roving + ContSM) 

Bonding layer (ChSM) 

FIGURE 3.7
Lay-up of facesheet.

TABLE 3.4

Properties of Constituent Materials

Material E (GPa) G (GPa) ν ρ (g/cm3)

E-glass fiber 72.4 28.8 0.255 2.55
Polyester resin 5.06 1.63 0.3 1.14

TABLE 3.5

Layer Properties of Face Laminate and Core Materials

Ply Name Ply Type
Nominal Weight

(g/m2)
Thickness 

(mm) Vf

Each bonding layer ChSM 915.5 2.08 0.1726
UM1810 0° 610.3 0.635 0.3774

CSM 305.2 0.335 0.3582
Core ChSM 1373.4 2.28 0.2359
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All tests were carried out according to ASTM standards (see Figure 3.8). 
They were performed in a universal testing machine with an 889.6 kN capac-
ity. A load cell was placed between the loading block and the specimen to 
record the load, and linear variable differential transducers (LVDTs) were 
used to record the displacements. Four strain gages were bonded at the mid-
height of the core to obtain compressive strains, two on the sinusoidal wave 
panel and two on the side flat panel (Figure 3.3). The load was controlled at 
such a rate that the failure occurred within 3 to 6 min.

3.3.3.3 Test Results and Discussion

3.3.3.3.1 Bare Compression Test

When the load is applied to the specimen, both side flat panels bend out-
wards, and this deformation can be interpreted as a geometric imperfection. 
As the load increases, the specimens with distinct bonding layers display 
different behaviors. For B1C2, the side panels buckle and delaminate from 
the specimen well before ultimate failure occurs. While for other types, the 
side panels do not delaminate. For all specimen types, upon sudden crush-
ing of the side panel, the specimen does not fail immediately but contin-
ues to carry load for several event failures, until collapse of the specimen. A 
typical failure mode is shown in Figure 3.9. The maximum loads for speci-
mens with distinct bonding layers are shown in Figure 3.10, and the aver-
age value and standard deviation for six samples each are given in Table 3.6, 
which shows that the magnitudes of failure loads are in the same order as 
the number of bonding layers and core thickness; i.e., the specimen with 
three bonding layers is much stronger than that with one bonding layer, and 

FIGURE 3.8
Compression test setup.
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FIGURE 3.10
Failure load for bare compression test.

FIGURE 3.9
Bare compression test specimen.

TABLE 3.6

Average Value and Standard Deviation of Failure Load for Bare Compression Tests

B1C2 B2C2 B3C2 B3C1

Average value (kN) 74.60 93.46 101.86 31.74
Standard deviation (kN) 3.89 8.47 9.43 3.45
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the specimen with two core thicknesses is stronger than that with one core 
thickness, clearly showing that the bonding layer effect and core thickness 
play an important role on the failure load. Figure 3.11 shows the load-dis-
placement curve. Figure 3.12 shows the transverse strain vs. load curve for 
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FIGURE 3.11
Load-displacement curve for bare compression test.
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Strain-load curve for bare compression test.
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the sinusoidal panel. As the elastic pad is placed between the loading block 
and the specimen, this displacement does not represent the actual deforma-
tion of the specimen. However, from these figures we can conclude that the 
specimen exhibits an approximate linear behavior up to failure.

3.3.3.3.2 Stabilized Compression Test

In this test, all three types of samples show the same failure mode. They all 
fail by crushing of the core panels. The sinusoidal wave panel fails first, fol-
lowed by the crushing of the remaining components of the core, where the 
failure mode is shown in Figure 3.13. No apparent damage can be observed 
prior to ultimate failure.

The failure loads for three specimens each are given in Table 3.7, which 
shows much higher values than what we obtained for the bare compres-
sion tests. Figure 3.14 shows a typical load-displacement curve for the inside 
sinusoidal wave panels, and Figure 3.15 gives the strain-load curve. Again, 
we can see that the specimens follow a nearly linear behavior until failure 
occurs.

FIGURE 3.13
Stabilized compression test specimen.

TABLE 3.7

Average Value of Failure Load for Stabilized Compression Test

B1C2 B2C2 B3C2

Average value (kN) 155.54 163.07 177.22
Range (kN) 148.73–162.36 156.71–171.83 158.13–201.59
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3.3.3.4 Discussion of Experimental Results

From previous studies, we can estimate the compressive strength for the 
ChSM to be about 153.1 MPa for the present fiber volume fraction (Barbero 
et al. 1999). From the same test method, as will be described in Section 3.5, 
the compressive strength is found to be 95.64 kN, as shown in Appendix 
3.A. Halpin and Kardos (1978) suggested a model to predict the compressive 
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FIGURE 3.14
Load-displacement curve for stabilized compression test.
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Strain-load curve for stabilized compression test.
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strength for ChSM using a pseudoisotropic lamination method. Following 
their method, if the compression failure strains for the equivalent uni-
directional composite are assumed to be ε1c = 0.015 and ε2c = 0.006, we can 
obtain the stress-strain curve to failure as given in Figure 3.16. Therefore, it 
is reasonable to assume the compressive strength for ChSM material to be 
148.2 MPa. The total in-plane area of the core walls with two core thicknesses 
is 13.74 cm2. Then, the nominal failure load can be calculated as

 F f A 148.2 13.74 203.49kNc c c= × = × =  (3.28)

where fc is the compressive strength of ChSM and Ac is the total in-plane area 
of the core walls.

The stabilized test gives the failure load ranging from 148.7 to 201.2 kN. If 
the unevenly distributed load effect is considered, we can conclude that the 
stabilized compression test results in a typical compression failure. For the 
bare compression test, the failure load is much lower than the nominal com-
pressive load. This indicates that local buckling probably occurs before the 
structure gains its maximum compressive strength. Once the local buckling 
occurs, the buckled parts of the specimen lose their function and the com-
pressive load is redistributed among the other parts. Finally, the structure 
fails in compression or a combination of bending and compression.

The two types of tests resulted in two distinct failure modes. Buckling 
occurred for the bare compression test, while the stabilized compression 
test induced material compression failure. As a matter of interest, the two 
failure modes were the same as those reported by Zhang and Ashby (1992) 
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FIGURE 3.16
Stress-strain curve for ChSM.
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under out-of-plane compression. As expected, the failure loads of stabilized 
compression tests are much higher than those for the bare compression tests.

3.3.4 FE Analysis

The same technique as described in Section 3.3.2 is used to carry out the FE 
analysis to correlate with test results. As discussed in the previous section, 
the stabilized compression test leads to compression failure, and the bare 
compression test is initiated by local buckling. Therefore, two types of analy-
ses are carried out: static analysis and buckling analysis.

3.3.4.1 Load-Strain Curve

A linear static analysis is used for the stabilized compression test; a buckling 
analysis is carried out for the bare compression test. As the bending of the 
side panels is observed in the bare compression test, geometric imperfec-
tion is included in the model for the bare compression test to account for this 
deformation. The core wall thickness is used as a scale factor for geometric 
imperfection: 0.5 t for the side panels. After extracting the fourth eigenmode 
(Figure 3.17), the modified Riks method is used in the analysis (ABAQUS 2002). 
As the compressive load in the test is applied through a rigid loading block, 
the facesheet should displace downward at the same rate. Thus, a multiple-
point constraint (MPC) condition is used to allow the nodes in the same hori-
zontal plane to move at the same displacement. Figures 3.18 and 3.19 show 

FIGURE 3.17
Imperfection mode.
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Load-strain curves for bare compression test.
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comparisons of FE analysis results and test results for strain-load responses, 
showing good correlation between the two results.

3.3.4.2 Analysis Results and Discussion

The FE results indicate that the buckling load is 135.08 kN for the clamped 
condition and 48.13 kN for the hinged condition. The failure load of bare 
compression tests falls within this range, which indicates that the actual con-
nection lies between simply supported and fully restrained conditions.

CER is dependent on the constrain element between the facesheet and 
core, such as the bonding layer thickness and core stiffness. If this coefficient 
can be determined, the local buckling strength can be computed. Therefore, 
a necessary step is to independently define the elastic restraint coefficient, 
which will be given in Section 3.3.5 through a cantilever plate test.

3.3.5 Determination of the Coefficient of Elastic Restraint

As pointed out earlier, the facesheet and core are not rigidly connected, and 
therefore CER is defined to quantify the degree of connectivity at the interface. 
To determine this coefficient, a testing method is developed in this section. The 
test setup is schematically shown in Figure 3.20, with the core wall embedded 
into the facesheet. Figure 3.21 displays a photograph of the test setup.

If the connection is rigid, considering the line load acting at the end of this 
cantilever plate and neglecting the shear deformation of the thin plate, the 
deflection at the end for a rigid boundary condition is given as

 
wb
D31

3

22
∆ =  (3.29)

Facesheet

Core

b

w

l

x

y

z

FIGURE 3.20
Test setup to determine the elastic restraint coefficient.



132 FRP Deck and Steel Girder Bridge Systems

where w is the distributed line load acting at the end of the plate. However, 
as the core element is not rigidly connected, there is a rotation at the connec-
tion, which can be calculated as

 
M wbϕ =
ζ

=
ζ

 (3.30)

The relative deflection at the end of the plate corresponding only to this rota-
tion is
 b2∆ = ϕ  (3.31)

where b is the length of the panel, as shown in Figure 3.20.
Then the total deflection becomes

 
wb
D

b
31 2

3

22
∆ = ∆ + ∆ = + ϕ  (3.32)

Following the same procedure, if w is acting at the mid-span of the plate, the 
deflections at the end of the plate, for rigid connection and due to the relative 
rotation, can be respectively calculated as

 
wb
D

5
481

3

22
′∆ =  (3.33)

FIGURE 3.21
Photo of test setup.
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wb b
2 22′∆ =

ζ
= ϕ

 (3.34)

 
wb
D

b5
48 21 2

3

22
′∆ = ′∆ + ′∆ = + ϕ

 (3.35)

Solving simultaneously for (3.32) and (3.35), we obtain

 b
3.2
0.6

ϕ = ′∆ − ∆
 (3.36)

Substituting (3.36) into (3.30), using (3.32), and based on the definition of ζ 
in (3.21), we can obtain the coefficient of restraint ζ through some simple 
transformations as

 
16 5
12 24

ζ = ′∆ − ∆
∆ − ′∆

 (3.37)

This expression (3.37) shows that this coefficient is only related to the two 
deflections, irrespective of the dimensions of the plate and the applied load. 
Thus, the accuracy of this testing method depends only on the measurement 
of tip displacements for the two load cases. We can test the validity of (3.37) 
by considering two extreme cases. If the connection is completely rigid, only 
the deflection corresponding to a rigid end is present as Δ = 3.2Δ′, resulting 
in ζ = 0. While for a hinged connection, the flexural deflection is negligi-
ble compared with the tip displacement, due to the hinge rotation, which 
becomes Δ = 2Δ′, and results in ζ = ∞. These results correspond to the range 
of values defined previously for ζ.

Tests were carried out for the three cases of distinct bonding layer thick-
ness. The specimens were cut from the same samples as used in the compres-
sion tests described above, with l and b (Figure 3.20) both equal to 5.08 cm. 
A standard weight of 2 kg was used to apply the load at both the end and 
mid-span of the plate, and a dial gage with a precision of 0.00254 mm was 
used to measure the displacement at the end of the plate. The test results are 
listed in Table 3.8.

TABLE 3.8

Average Value of CER with b = 5.08 cm

One Bonding 
Layer

Two Bonding 
Layers

Three Bonding 
Layers

Average value 0.84 0.41 0.29
Range 0.81–0.87 0.40–0.41 0.27–0.33
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3.3.6 Comparisons of Test Results with Analytical and FE Predictions

Using the CER value obtained from the cantilever plate test described above 
in (3.24), we can predict the buckling load. Two sets of p and q are used, 
one from the analytical solution and the other from the FE analysis, and 
their corresponding critical loads for hinged and fixed conditions, as listed 
in Table 3.2. The results are summarized in Table 3.9, showing good correla-
tions of test results with analytical and FE predictions.

3.3.7 Parametric Study

In practice, it is common to vary the core height to meet the requirement for 
the panel depth. Using the analytical model derived and the CER obtained, 
we can carry out a parametric study by varying the core height for the speci-
men studied. The critical buckling stress vs. core height curve is illustrated 
in Figure 3.22 for a = 10.16 cm, from which it can be seen that the buckling 
stress is quite sensitive to variation of cell height up to about 10.16 cm, and 
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Critical buckling stress vs. core height.

TABLE 3.9

Comparison of Analytical, FE, and Test Results for Buckling Load

B1C2 B2C2 B3C2

Analytical result (N) 74,641 90,971 99,809
FE result (N) 72,764 88,600 96,864
Test result (N) 74,596 93,457 101,864
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within this range there is a notable difference among the buckling stresses 
for a different number of bonding layers. The buckling stress decreases as 
the core height increases, and the stress reaches nearly a plateau when the 
core height is higher than 20.32 cm. Beyond this limit point the bonding 
layer thickness does not affect the result much. The reason for this behavior 
is that when the aspect ratio of height over width is less than 1, the num-
ber of the half waves parallel to the loading direction is one, and therefore 
the boundary condition will affect the buckling load. But as core height 
increases, more half waves along the loaded direction will result, and in this 
case, the buckling load will be determined by the wavelength in between 
the two loaded edges. As a result, the boundary condition does not affect 
the buckling load much. If we keep the height fixed, we can find the rela-
tionship between the buckling stress and length of the flat panel, as shown 
in Figure 3.23. The buckling stress increases as the length increases, and it 
is anticipated that when the length increases to infinity, i.e., the aspect ratio 
approaches zero, the plate will not buckle. Clearly, Figures 3.22 and 3.23 also 
illustrate the relationship between the critical buckling stress and the aspect 
ratio of the core wall.

Multiplying the buckling stress by the total core wall length, the buckling 
load vs. core height curve is given in Figure  3.24 for a = 10.16 cm case for 
different bonding layers. For a given height, we can easily find the buckling 
load for a single cell from these curves.
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3.3.8 Design Equations

Design equations can be developed based on the analytical model derived 
above. Only the two-core thickness case, i.e., t = 2.286 cm, which is most com-
monly used, is considered, while the other core thicknesses can be included 
following the same manner.

Considering buckling failure, the three curves shown in Figure 3.24 can be 
fitted using the following equation:

 F A e A e F4.4482 ( )h B h B
1
[ /( 25.4)]

2
[ /( 25.4)]

0
1 2= × + +− × − ×  (3.38)

The parameters corresponding to each bonding layer are listed in Table 3.10. 
It is noted that (3.38) gives the failure load for a single cell, and if it is divided 
by the in-plane area for a single cell, which is 10.16 × 10.16 = 103.23 cm2 for 
this case, the buckling compressive strength can be obtained.
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Buckling load vs. core height.

TABLE 3.10

Parameters for Design Equation

A1 B1 A2 B2 F0

One bonding layer 957,515 0.2363 124,742 0.7464 8,081
Two bonding layers 87,639 1.0105 95,4711 0.2917 8,136
Three bonding layers 1,038,189 0.2985 88,384 1.0765 8,152
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Either (3.1) or the stabilized compression test can be used to find the 
failure load corresponding to core crushing, where the average value of 
Fc = 164.58 kN from the test results is adopted herein. Based on the failure 
modes of core crushing and buckling, we can propose a design equation as 
shown in Figure 3.25, where hT is the height where the failure mode transits 
from core crushing to core buckling, as listed in Table 3.11.

3.3.9 Concluding Remarks

Two analytical models, corresponding to pure compression and elastic buck-
ling failure, respectively, are provided for panels subject to out-of-plane com-
pression. A combined analytical and experimental study of elastic buckling 
analysis is given for FRP panels with elastic restraint at the loaded edges. By 
solving a transcendental equation, the critical compression buckling stresses 
are obtained. An elastic restraint coefficient is employed to quantify the elas-
tic restraint effect, namely, the bonding layer effect. Buckling loads are cal-
culated in terms of the elastic restraint coefficient. The analytical predictions 
are verified by FE analysis. The compression test is carried out to study the 
behavior of sandwich panels under out-of-plane compression. A cantilever 
plate test is conducted to define the coefficient of elastic restraint. Both the 

Core HeighthT

Defined by
Equation (3.1)

Defined by Equation (3.38)

Core
buckling

Core
crushing

Failure Load

Fc

FIGURE 3.25
Design diagram.

TABLE 3.11

Transition Height

One Bonding 
Layer

Two Bonding 
Layers

Three Bonding 
Layers

hT 32 mm 36 mm 38 mm
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closed-form solution and FE analysis are used to predict the buckling load 
for the given test samples, and the results are in good correlation. A paramet-
ric study is carried out to study the aspect ratio effect on the buckling load. 
Based on the study presented in this section, the following conclusions can 
be drawn:

 1. The closed-form solution derived in this chapter can predict the 
buckling strength of a plate with partially restrained loaded edges. 
Unlike existing solutions for eigenvalue analysis, where the number 
of half waves should be predefined when calculating the buckling 
load, this solution can give the minimum buckling load and the cor-
responding number of half waves. The accuracy is verified by FE 
analysis and experimental results.

 2. Typically there are two failure modes for HFPR core under out-of-
plane compression, buckling, and pure compression failure. The 
buckling load is sensitive to the bonding layer effect. Specimens 
with three bonding layers fail at a higher load than those with one 
bonding layer. While for pure compression failure, the failure loads 
are not affected much by the number of bonding layers.

 3. Bonding layer effect can be interpreted through a coefficient of elas-
tic restraint (CER). It plays an important role on the buckling behav-
ior. However, rigid connection is commonly used in the analysis of 
sandwich structures, corresponding to ζ = 0 in this study. It is shown 
that this assumption can lead to a significant error if the aspect ratio 
is within a certain limit.

 4. CER can be predicted using the testing method provided. Only two 
deflections are required to calculate this coefficient. Thus, the accu-
racy is increased. This method, together with the interface shear test 
and interface tension test, can be used as the criteria to define the 
bonding quality of a given connection.

 5. A parametric study is carried out by varying the core height. The 
result indicates that if the core height is relatively low, there is a nota-
ble difference of the buckling stress for different numbers of bond-
ing layers. The buckling stress decreases as the core height increases 
and reaches nearly a constant value once the core height reaches a 
certain limit. The buckling load is no longer sensitive to the bonding 
layer effect at this stage.

 6. Practical design equations are provided to calculate the compressive 
strength, and these guidelines can be easily implemented.

The bonding layer effect not only affects the buckling load, but also influ-
ences the behavior of the sandwich panels under out-of-plane shear. This 
will be presented in the following section. The method described in this 
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chapter can be further applied to other structures with elastic restraint at the 
loaded edges, like the web buckling in FRP or even steel girders.

3.4 Out-of-Plane Shear

3.4.1 Introduction

A combined analytical and experimental study of FRP sandwich panel under 
out-of-plane shear is presented in this section (Chen and Davalos 2007). 
Analytical models are provided for delamination considering skin effect, 
shear crushing, and shear buckling. Two factors are addressed that contrib-
ute to the skin effect: shear warping and bending warping. A closed-form 
solution, based on proper description of a displacement field at the interface, 
is derived considering shear warping. The accuracy of this method is veri-
fied by FE results. The FE model is then applied to study bending warping 
effect. The stiffness and the stress distribution subject to skin effect are pre-
sented. Critical structural sections are identified, and suggestions for future 
design considerations are given. Based on the stress distribution, design 
formulas for delamination and shear failure are presented. The Rayleigh–
Ritz method is employed to study the shear buckling of core panels with 
two sides elastically restrained. Four-point bending tests were carried out 
according to ASTM standards to study shear strength and shear stiffness of 
the core materials. The number of bonding layers and core thickness were 
varied to study their effects on strength. Two types of beam samples were 
manufactured by orienting the sinusoidal wave: (1) along the length (longi-
tudinal) and (2) along the width (transverse). Different failure modes were 
observed for different types of specimens. Design equations are developed 
to predict the failure load due to different failure modes, and good correla-
tions are obtained with test results.

3.4.2 Analytical Model Including Skin Effect

3.4.2.1 Origin of Skin Effect

As shown in Chapter 2, the lower bound of the transverse shear stiffness for 
this sinusoidal core can be provided neglecting skin effect. There is no study 
on accurate description of the transverse shear stiffness and stress distri-
bution, partly due to the complex displacement field, especially for curved 
panels, such as the sinusoidal panel in this study. Chen and Davalos (2005) 
pointed out that the displacement field in cell walls for sandwich core can be 
described by two distinct modes:
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 1. Directly at the face-core interface, if facesheet is assumed to be rigid, 
which is reasonable considering the stiffness ratio between the 
facesheet and core. This is defined by displacement compatibility, 
where strain transformation can be used to find the relationship 
between local and global strain.

 2. At a position sufficiently far away from the interface, i.e., such as at 
the mid-depth where the effect of rigid facesheet dissipates. This is 
defined by force equilibrium.

Therefore, the purpose of the analysis is to find a displacement field that 
can accurately describe these two distinct modes and the transition field in 
between. In order to achieve this, the displacement field at the interface has 
to be properly described first. A basic assumption for all previous studies on 
the equivalent properties of the sandwich core is that the cell walls predom-
inantly carry load through membrane strain, and that the bending forces in 
the cell walls are neglected. However, the bending effect should play a role 
when defining the shear stiffness and shear distribution, especially when 
the core height is low. Therefore, we believe that shear and bending warp-
ing effects are better descriptors of these phenomena, where shear warp-
ing corresponds to the assumption adopted in the previous studies, and 
the bending warping describes the additional bending effect offered by the 
skin. Furthermore, it is found out that shear warping corresponds to cases 
with hinge connection between facesheet and core, and when both warping 
effects are considered, it corresponds to a rigid connection. The actual cases 
usually lie in between these two conditions. Detailed descriptions of skin 
effect are as follows.

3.4.2.2 Skin Effect

A unit cell of a honeycomb sandwich panel and its dimensions are shown in 
Figures 3.26 and 3.27, respectively. Two factors may contribute to skin effect: 
shear and bending warping.

3.4.2.2.1 Shear Warping

The resulting distributed shear flow for a typical cell and its representative 
volume element (RVE) are shown in Figures 3.28 and 3.29. The equilibrium 
equation and compatibility condition for a longitudinal wave configuration 
without considering skin effect can be written as

 t ds ta Ha4 cos 2 xz

l

2 1
0∫ τ θ + τ = τ  (3.39)

 ds G a G2 / /
l

2 12 1 12
0∫ τ = τ  (3.40)
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FIGURE 3.26
Unit cell.
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Dimensions of a unit cell.
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where

 ds a2 cos
l

0∫ θ = ,

G12 is the material shear modulus, l is the curved panel length, and t, a, and H 
are defined in Figure 3.27. Solving for (3.39) and (3.40), we have

 
H ds

at t ds2

l

l xz1
0

0

∫
∫

τ =
+

τ  (3.41)
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Shear flow in the unit cell.
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H

t t ds a2 4 /
l xz2

0∫
τ =

+
τ  (3.42)

From (3.41) and (4.4), we have

 ds a/ 2 /
l

1 2
0∫τ τ =  (3.43)

and correspondingly, we can obtain

 ds a/ 2 /
l

1 2
0∫γ γ =  (3.44)

where γ1 and γ2 are the shear strains in the flat and curved panels, respec-
tively. Apparently, the flat panel will deform along a straight line, while the 
curved panel deforms along a curved shape as shown in Figure 3.30 (only 
half of the top curve is shown). However, in most practical cases, the face and 
the core are constrained so that they remain essentially plane during defor-
mation. Therefore, to compensate the deformation shown in Figure 3.30, the 
shear warping occurs at the top and bottom of a curved panel. The expres-
sion of shear warping will be given in Section 3.4.2.3.

3.4.2.2.2 Bending Warping

Pure shear strain in the curved wall will induce a displacement in the x direc-
tion, as shown in Figure 3.31. However, if we assume core-facesheet is rig-
idly connected, the rotation at the top and bottom of the core is constrained, 
resulting in a deformed shape, as shown in Figure 3.31. This phenomenon 
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Shear warping (plan view).
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can be termed bending warping. Apparently, an additional moment at both 
the top and bottom will result due to this effect.

It should be noted that although both effects are local, they can signifi-
cantly affect the stress distribution at both the top and bottom of the core, 
i.e., the interfacial stresses, as discussed below.

3.4.2.3 Theoretical Analysis

Consider the element ABCD in Figure 3.32, which is cut from the unit cell 
shown in Figure 3.27, subject to a shear strain γ. The equilibrium equations 
for the stresses acting on the ξη plane in the absence of body forces are

 / / 0∂σ ∂ξ + ∂σ ∂η =ξ ξη  (3.45)

 / / 0∂σ ∂ξ + ∂σ ∂η =ξη η  (3.46)

Considering the stress-strain relationship, Chen and Davalos (2005) fur-
ther reduced (3.45) and (3.46) into the form (see Appendix 3.B)

 G v E v( / ) ( / ) 02 2 2 2∂ ∂ξ + ′ ∂ ∂η =  (3.47)

where E′ = E/(1 – ν2). The stress components can be defined as

 E v( / )σ = ′ ∂ ∂ηη  (3.48)

 G v( / )τ = ∂ ∂ξξη  (3.49)
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FIGURE 3.31
Bending warping (elevation view).
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 vE v( / )σ = ′ ∂ ∂ηξ  (3.50)

Equations (3.47) to (3.50) act as the basis for this analytical study. The 
boundary conditions considering shear warping are

 

η = η =

ξ η = ξ −η

ξ = ϕ ξ

v v l

v v

v h

(0, ) ( , ) 0

( , ) ( , )

( , /2) ( )

 (3.51)

where l is the curved panel length and h is the height. Then, φ(ξ), caused by 
shear warping as shown in Figure 3.30, can be defined as

 x s( ) ( ) ( )1 2ϕ ξ = γ ξ − γ ξ  (3.52)

where x(ξ) = length of flat panel, and s(ξ) = length of curved panel.
The solution of (3.47) can be described using Fourier series as
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where

 E G/µ = ′  (3.54)
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FIGURE 3.32
Model used for theoretical analysis.
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n
l
d( )sin( )n

l

0∫ϕ = ϕ ξ πξ ξ  (3.55)

The normal stress ση can be obtained using (3.48) as
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Equation (3.49) gives
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The normal stress σξ can be obtained using (3.50).
Next, the total strain energy is defined as

 U
G

dV
E
dV

2 2

2

12

2

∫ ∫= τ + σ
 (3.58)

in order to obtain the equivalent shear modulus Gxz:

 G U
V
2

xz 2=
γ

 (3.59)

where U is total strain energy, V is the volume corresponding to the RVE, 
and γ is the shear strain applied to the structure, which is equal to γ1 in value. 
The above equations can be incorporated into any mathematical software, 
such as MATHCAD.

3.4.2.4 Description of FE Model

The FE method is employed to verify the analytical model derived in Section 
3.4.2.3. A unit cell of a honeycomb sandwich panel and its dimensions are 
shown in Figure 3.26. Due to the symmetric structure, we can further reduce 
the cell into a quarter cell, as shown in Figure 3.33. This quarter cell will be 
used in the FE analysis. Based on symmetry, the thickness is t/2 for the flat 
panels and t for the sinusoidal panel. The height of the core is half of the unit 
cell dimensions. The dimensions and properties of the core materials are 
listed in Table 3.12.
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In the FE analysis, all the nodes at the top face translate at a uniform dis-
placement in the x direction. The shear force can be computed by summing 
up the reaction force along the x direction for all the nodes at the top. Thus, the 
equivalent shear stiffness Gxz and shear stress distribution can be obtained. 
The boundary conditions are listed in Table 3.13, where CB/AO is defined 
according to the restraint condition assumed. In particular, free, pinned, and 
fixed boundary conditions correspond to free, hinge, and rigid connections.

3.4.2.5 Application

3.4.2.5.1 Equivalent Shear Stiffness

Figure 3.34 plots shear stiffness vs. aspect ratio, where aspect ratio is defined 
as h/a. The lower bound is given in Chapter 2 without considering skin effect. 
From Figure 3.34, we can observe that the analytical solution, considering 
shear warping, corresponds to hinge connection. There is a significant dif-
ference between hinge and rigid cases when the aspect ratio is low, whereas 
all the solutions approach the lower bound value as aspect ratio increases. 
This proves that, as pointed out by several researchers (Xu et al. 2001), the 
skin effect is localized, and its effect on stiffness, which is a global parameter, 
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FIGURE 3.33
Model used for FE analysis.

TABLE 3.12

Properties of Core Mat

H, mm a, mm t, mm E (GPa) G (GPa) ν

102 102 2.29 11.79 4.21 0.402
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is negligible when the core is high enough. However, the skin effect does 
affect the stresses significantly, as will be discussed next.

Using the regression technique, we can express the transverse shear stiff-
ness as

 G e e315.85 247717.08 5.73xz

R R0.1127
0.2136

0.1127
1.2393= + +

− − − −

 (3.60)

for rigid connection, where R is the aspect ratio, and

 G e e315.15 15.15 0.99xz

R R0.1144
0.6438

0.1144
9= + +

− − − −

 (3.61)

for pinned connection from FE result, and

 G e e313.88 5.23 0.99xz

R R0.1113
0.7987

0.1113
20= + +

− − − −

 (3.62)

for pinned connection from analytical result.
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Stiffness vs. aspect ratio.

TABLE 3.13

Boundary Conditions of FE Model

ux uy uz

OO′/BB′ Free 0 0

CC′/AA′ Free 0 0
CB/AO Constant — —
C′B′/A′O′ 0 0 Free
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Therefore, the stiffness is a function of the aspect ratio R. The expression 
(3.62) acts as a lower limit, and can be used in the analysis and design for 
safety considerations.

It is also interesting to point out that, as concluded by Kelsey et al. (1958), 
the theory of minimum potential energy, a kinematically compatible uni-
form strain field, gives an upper bound, and the theory of complementary 
energy, a statically compatible uniform stress field, gives a lower bound, 
corresponding to infinitely large and zero skin effects, respectively. Voigt 
and Reuss (see Christensen 1991) expressed this theory in parallel and series 
models as
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 (3.63)

 C V U U U1
2

( )ij ij b s a k
k

n
2

1
∑ε ≤ + +

=

 (3.64)

where k accounts for individual substructures in the RVE, and Ub, Us, and 
Ua are, respectively, the strain energies related to bending, shear, and axial 
responses. Expressions (3.63) and (3.64) define, respectively, the conditions of 
lower and upper bounds for stiffness. As shown in Chapter 2, these two equa-
tions give an upper (328.05 MPa) and lower (315.6 MPa) bound. Comparing 
these two values with the results shown in Figure 3.34, we can note that the 
lower bound still applies, while the upper bound does not exist anymore. This, 
once again, can be explained by the fact that bending warping was neglected 
in previous studies, and therefore the stiffness was underestimated.

3.4.2.5.2 Stress Distribution

Both the analytical method and the FE method are applied to a particu-
lar example; the core panel height is h = 5.08 cm. The results are listed in 
Figures 3.35 to 3.38.

3.4.2.5.2.1 Shear Warping In order to illustrate the shear warping effect, 
all stresses are plotted in Figure 3.35 for both flat and curved panels. From 
Figure  3.35, we can note that, in the flat panel, the stress distribution is 
not affected, and the shear stress remains constant and the normal stress 
is essentially zero. While for the curved panel, the shear warping effect is 
significant, the minimum shear stress occurs at the center of the curved 
panel, and the distribution of normal stress is as shown in Figure 3.35.

Figure 3.36 plots the stress distributions along the top of the curved panel, 
as calculated from both analytical and FE results, showing good correla-
tions. The same phenomenon can be observed for stress distribution along 
the height at the panel intersection, as shown in Figure 3.37. This proves the 
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accuracy of the analytical method for predicting the behavior of the curved 
panel under shear warping.

3.4.2.5.2.2 Bending Warping Figure 3.38 shows the stress distributions for the 
curved panel assuming a rigid connection between core and facesheet, from 
which we can note that, due to the bending effect explained above, the normal 
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stress is no longer constant along the thickness t of the core wall. Stresses, 
positive at the top and negative at the bottom of the core wall section, result 
from the extra bending moment due to the rotation incompatibility. The shear 
stress distribution is also affected, the value of which decreases compared to 
the hinge connection, illustrating the benefits that rigid connection can offer.

3.4.2.5.2.3 Discussion From Figure 3.36, we observe that the ratio between 
the interfacial shear stress (81.84 MPa) and the interfacial tensile stress 
(27.11 MPa) is approximately 3. If bending warping is considered, the tensile 
stress can be even larger than the shear stress, as shown in Figure 3.38. Based 
on the results from the flatwise tension test and interfacial shear test, Wang 
(2004) pointed out that a typical interfacial shear strength (12.06 MPa) is four 
to five times the interfacial tensile strength (2.76 MPa). Therefore, it is rea-
sonable to assume that the delamination is caused by the tensile force at the 
interface (corresponding to mode I fracture). The tensile force can be used to 
predict the onset of the delamination. Once the crack occurs, there is a stress 
singularity at the crack tip, and the fracture mechanics method should be 
used to predict crack growth, using parameters such as fracture toughness, 
crack length, J-integral, etc.

3.4.2.6 Parametric Study

Using the closed-form solution derived in this chapter, a parametric study 
is carried out for the interfacial normal stress, S22, at the panel intersection 
under a shear strain of 0.02, as shown in Figure  3.39, from which we can 
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observe that S22 increases as the aspect ratio increases, and reaches a con-
stant value beyond a certain limit, for instance, h ≈ 2 in. for this case. The 
curve shown in Figure 3.39 can be fitted using

 S e33.12 33.128 h
22

[0.09123 )]1.0221= − −  (3.65)

Equation (3.65) is based on a shear strain of 0.02. For a unit shear strain, (3.65) 
can be normalized as

 S e(1655.78 1655.78 )h
22

[0.09123 )]1.0221= γ − −  (3.66)

where γ is the shear strain.

3.4.2.7 Summary

In this section, the skin effect, composed of shear and bending warping, 
on the behavior of HFRP sandwich sinusoidal core panels is for the first 
time investigated. An analytical solution is given for shear warping, and 
FE analyses are carried out for both shear and bending warping cases. It is 
concluded that:

 1. The analytical solution can successfully predict the behavior of curved 
panels considering shear warping, which is verified by FE results.

 2. Skin effect includes two parts: shear and bending warping. Shear 
warping corresponds to cases with hinge connection between 
facesheet and core, and when both warping effects are considered, 
it corresponds to a rigid connection. Actual cases lie between these 
two conditions.

 3. The skin effect is a localized phenomenon. The lower bound of the 
equivalent stiffness can thereby be adopted if the aspect ratio is high 
enough. However, it can significantly affect interface stress distribu-
tion, yielding a coupled stress state for the curved panel, where the 
normal stress may even be larger than the shear stress. This indi-
cates, unlike the common belief that only shear stress occurs when 
the structure is under pure shear force, that tensile force at the inter-
face arises, making it a potentially critical component. Therefore, 
special considerations are suggested for design purposes.

 4. The skin effects described herein only affect the stress distribution 
of the curved panel and have no effect on the flat panel. This effect 
on the stress distribution becomes less significant in the area away 
from the interface.
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 5. Practical formulas to calculate equivalent shear stiffness and interfa-
cial normal stress are provided. Together with flatwise tension test 
results, they can be used for failure predictions, as will be shown in 
Section 3.4.7.

3.4.3  CER Effect on Shear Stiffness and Interfacial 
Shear Stress Distribution

In Section 3.3, we concluded that the CER effect will greatly affect the buck-
ling strength of core panels under out-of-plane compression. It is interest-
ing to find out that this effect can also contribute to the shear stiffness and 
interfacial shear distribution. The same model shown in Section 3.4.2.4 is 
employed, and spring elements, as described in Section 3.3, are placed at the 
interface to simulate the partially constrained condition.

Figure 3.40 plots the FE results for Gxz vs. CER curve, from which we can 
note that completely rigid boundary conditions (CER = 0) correspond to 
the largest value of Gxz. The FE results fall within the range of the lower 
(315.44 MPa) and upper (328.05 MPa) bound solutions given by Davalos et 
al. (2001). However, the absolute maximum difference is 1.2%, which is neg-
ligible. From FE analysis, the shear stress contour indicates that the shear 
stress at top nodes is uniform except in the area adjacent to the connection 
of the flat and sinusoidal wave panels, where the shear stress decreases. 
Therefore, this nearly uniform stress can represent the interfacial shear 
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stress. Figure 3.41 displays the relationship between CER and interface shear 
stress, from which we can see that shear stress increases as CER increases, 
with maximum values for near hinged conditions (CER ≥ 1.0). Therefore, the 
shear stress corresponding to the hinged condition can be adopted to predict 
shear crushing failure for design purposes.

3.4.4 Shear Buckling

The core may buckle due to shear loading if the core is deep and thin. The 
solution for shear buckling is provided. Following the approach given by Qiao 
et al. (2001) and considering the boundary conditions shown in Figure 3.42, 
the following first variation of the total potential energy equation is used to 
define the problem:
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Using the Rayleigh–Ritz method, the displacement w(x, y) that satisfies the 
boundary conditions (excluding the case when the boundary conditions are 
clamped, (i.e., ζ = ∞), can be defined as

 w A i x
a

j y
h

sin sinij
j

n

i

m

11
∑∑= π π

==

 (3.68)

Substituting (3.68) into (3.67), a typical eigenvalue problem results. The 
results of the eigenvalues are in the form of pairs of ± quantities, which 
means there is no direction requirement for the shear stress. The smallest 
eigenvalue can be taken as the critical shear stress resultant. Figure  3.43 
shows the critical shear stress of shear buckling for one bonding layer and 
two core thicknesses. An asymptotic value can be assumed for the aspect 
ratio h/a > 5, when a sufficient number of terms (e.g., m = n = 6) is included 
(Qiao et al. 2001). The critical buckling stress for different bonding layers is 
shown in Figure 3.44, from which we can observe that the difference for the 
bonding layers effect on shear buckling capacity is negligible.

The curves shown in Figure 3.44 can be fitted using

 N A e A e N0.175( )
R
t

R
t

1 2 0
1 2= + +

− −
 (3.69)

where N is the critical shear stress and R is the aspect ratio. The parameters 
corresponding to different bonding layers are listed in Table 3.14. The shear 
stress can be expressed as
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− −
 (3.70)

where t is the core wall thickness.
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TABLE 3.14

Parameters for Design Equation

A1 B1 A2 B2 N0

One bonding layer 2,103 0.5326 34,611 0.1388 448
Two bonding layers 2,661 0.5097 37,093 0.1355 449
Three bonding layers 3,015 0.4970 38,734 0.1339 450
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3.4.5 Proposed Method to Predict Failure Load

It is shown (Caprino and Langella 2000) that if the core Young’s modulus is 
negligible with respect to the facing elastic modulus, and the facing thickness 
is small compared to the height of the core, the transverse shear stress field 
in the core is practically uniform. Therefore, the following basic assumptions 
are adopted in this model:

 1. Transverse shear stress is carried by the core only.

 2. Transverse shear stress is uniformly distributed along the core height.

 3. The structure is considered to fail once the transverse shear stress 
exceeds the critical shear strength, either shear strength of the mate-
rial or buckling strength.

3.4.5.1 Core-Face Delamination

From the discussion above, we can observe that when under pure shear 
force, tensile force at the interface arises, making it a potentially critical 
component. Therefore, special considerations are suggested for design 
purposes. Based on the analytical model derived in this section, we can 
propose the following design guidelines using the failure criterion of maxi-
mum stress:

 1. For a given loading condition, calculate shear strain based on the 
equivalent shear modulus by (3.62).

 2. Find the interfacial tensile stress from (3.66) using shear strain calcu-
lated from step 1.

 3. Compare this interfacial tensile stress with the interfacial tensile 
strength from the flatwise tension test.

This method will provide a conservative result since (1) the shear stiffness 
corresponding to the hinged connection between the core and facesheet is 
adopted, and (2) it is shown (Wang 2004) that a crack is initiated when the 
interface traction attains the interfacial strength, and the crack is advanced 
when the work of traction equals the material’s resistance to crack propaga-
tion. Therefore, a nominal interfacial tensile strength will be used in order 
to propose a more reasonable criterion. The validity of the proposed method 
will be discussed through the correlation with four-point bending test 
results, as will be shown in Section 3.4.7.

3.4.5.2 Core Shear Failure and Shear Buckling

From the analysis shown above, it is found that the shear stress in the flat 
panel is higher than that in the curved panel. Therefore, the flat panel is more 
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critical when considering pure shear failure and shear buckling. Following 
the same method for compressive strength, we can propose a design equa-
tion as shown in Figure 3.45, where hT is the height where the failure mode 
transits from core crushing to core buckling, as listed in Table 3.15.

The material shear strength can be obtained from a V-notched test 
(Iosipescu test, ASTM D5379-98), as shown in Appendix 3.A. The average 
value of five specimens is σ6 = 10,239 MPa.

Following the same approach described in Section 3.3.8, the following 
design guidelines are proposed for the shear capacity of a flat panel:

 1. For a given loading condition, calculate shear strain based on the 
equivalent shear modulus by (3.62).

 2. Calculate shear stress in the flat panel.

 3. Compare the shear stress with the strength obtained from Figure 3.45.

This method will be illustrated in Section 3.4.7.

3.4.6 Experimental Investigation

It is generally recommended that ASTM C273-00 be used for shear properties 
of sandwich core materials, as shown in Figure 3.46, which was also initially 

Material shear
strength

Core
crushing

hT

Failure
Strength

Core Height 

Core
buckling

Defined by Equation (3.70) 

σ6

FIGURE 3.45
Design diagram.

TABLE 3.15

Transition Height

One Bonding 
Layer

Two Bonding 
Layers

Three Bonding 
Layers

hT 88 mm 94 mm 99 mm
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adopted in this study. It was finally abandoned because it was found from 
trial tests that, due to high shear strength of the core material, the delamina-
tion in the facesheet, i.e., intralaminate delamination, occurred well before 
the shear failure of the core material can be achieved. An alternate method, 
four-point bending test (ASTM C393-00), is also recommended by ASTM for 
the study of core shear strength and shear modulus, which was used by a lot 
of researchers, as shown in the literature review, and is also adopted herein.

3.4.6.1 Test Description

The dimensions of the specimen were 71.12 cm long by 10.16 cm wide by 
5.08 cm deep. There were seven single cells along either the longitudinal or 
transverse direction, as shown in Figure 3.47. To minimize the influence of 
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FIGURE 3.46
Plate shear specimens. (Reprinted from ASTM C273-00 (2011), copyright ASTM International, 
100 Barr Harbor Drive, West Conshohocken, PA 19428. With permission. A copy of the com-
plete standard may be obtained from ASTM International, http://www.astm.org.)
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the layers of the facesheet other than the bonding layer on the strength of 
the specimen, only a combined 0°/continuous strand mat (CSM) layer was 
placed over the ChSM bonding layer, as shown in Figure 3.7. The constituent 
materials of the facesheet are given in Figure 3.7, and their properties are 
provided in Table 3.15, with the properties of each component material given 
in Table 3.16.

The core of the sandwich panels was embedded into the facesheet using 
a ChSM contact layer and resin. The number of these bonding layers was 
varied from one to three to study their effect on strength. Two types of beam 
samples were manufactured by orienting the sinusoidal wave: (1) along the 
length (longitudinal) and (2) along the width (transverse). All tests were 
carried out in accordance with ASTM standards. Figure  3.47 displays the 
test setup, where L = 60.96 cm and s = 30.48 cm. An external load cell was 
placed between the loading block and the specimen to record the load, and 
LVDTs were used to record the displacements. Two strain gages on the top 
and two on the bottom facesheets were bonded at the mid-span of the beam 
(Figure 3.47). The test was performed at a displacement rate of 1.524 cm/min. 
A photograph of the test setup is shown in Figure 3.48.

3.4.6.2 Test Results and Discussion

3.4.6.2.1 Longitudinal Test

The beams under static loadings showed nearly linear elastic behavior up 
to failure. The number of bonding layers affects the mechanical behavior of 
the specimens. For the range of one to three bonding layers, the failure of the 
specimens was due to a sudden debonding between the facesheet and the 
core material, as shown in Figure 3.49. The energy stored in the specimen 
was released in a relatively short time, resulting in a loud failure. For the 
excessive bonding layers, the facesheet did not delaminate from the core, and 
a typical shear failure of the core under the loading point occurred instead, 
as shown in Figure 3.50.

The average values of the maximum loads of three specimens for excessive 
bonding layers and five specimens for each of the other types are given in 
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FRP Core 
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FIGURE 3.47
Test setup.



162 FRP Deck and Steel Girder Bridge Systems

Table 3.16, which shows that the magnitudes of failure loads are in the same 
relation as the number of bonding layers and core thickness; i.e., the speci-
men with three bonding layers is much stronger than that with one bonding 
layer, and the specimen with three core thicknesses is much stronger than 
that with one core thickness, clearly showing that the effect of the number 
of bonding layers and core thickness plays an important role on the failure 
load. This is due to the fact that, by increasing the number of the bonding 
layers and the core thickness, larger fillets of excess adhesive are formed at 
the honeycomb interface, and this increases the bonding area. Figure 3.51(a) 

FIGURE 3.48
Photo of test setup.

FIGURE 3.49
Failure due to delamination.
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and (b) shows the displacement at mid-span vs. load curves for specimens 
with two bonding layers and two core thicknesses. Figure 3.52(a) and (b) 
shows the load-strain curves for the same specimens. From these figures we 
can conclude that the specimens exhibited an approximate linear behavior 
up to failure.

3.4.6.2.2 Transverse Test

All types of specimens tested displayed the same failure mode. The fail-
ure in the core was initiated by debonding at the contact area between the 
sinusoidal panel and flat panel, as shown in Figure  3.53. The specimens 
continued to carry some load until the delamination between the facesheet 
and core material occurred. Unlike longitudinal specimens, the failure was 
not as sudden, and several rises and drops of load were observed during 
the test.

The failure loads for five specimens each are given in Table  3.17, which 
shows much lower values compared with what we obtained for the longitu-
dinal samples. Therefore, the transverse specimens should not be used when 

FIGURE 3.50
Shear crushing of the core.

TABLE 3.16

Average Value of Failure Load for Longitudinal Samples

B1C2 B2C2 B3C2 B2C1 B2C3 B3C1 B3C3

Excessive 
Bonding 
Layers

Average value (N) 16,681 24,176 30,159 17,637 23,509 23,620 41,413 70,460
Standard deviation (N) 890 2,180 3,737 1,668 3,559 1,824 3,292 17,726
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high shear stresses are expected. Figure 3.54(a) and (b) shows typical load-
displacement curves for specimens with two bonding layers and two core 
thicknesses. Figure 3.55(a) and (b) shows typical load-strain curves for the 
same specimens. We can observe that the specimens followed a nearly linear 
behavior until first failure occurred.

3.4.6.3 Summary

An investigation on the strength properties of HFRP specimens in bend-
ing is conducted through four-point bending tests. In particular, the influ-
ence of facesheet-core interface bonding effect is examined by varying the 
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bonding layers of the specimen. Two cases of bending tests are carried out: 
longitudinal and transverse bending tests. It is found that:

 1. All specimens followed an approximate linear behavior prior to fail-
ure in bending. The failure load for the longitudinal specimens is 
much higher than that for the transverse specimens. For longitudi-
nal samples, the specimens with excessive bonding layers failed in 
shear, and the other specimen types failed by debonding. All of the 
transverse specimens failed by debonding. Transverse-type beams 
should be avoided when high shear stresses are expected.

 2. The failure load is sensitive to the bonding layer effect and core thick-
ness effect. Specimens with more bonding layers and core thickness 
failed at a higher load than those with less bonding layer and core 
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thickness. The failure load may vary for the same type of specimen 
due to the variability of bonding quality, which indicates the impor-
tance of quality control during manufacturing of the panels.

From the test result, we can observe, as expected, that the longitudinal 
samples are much stronger in shear than the transverse samples. The num-
ber of bonding layers and core thickness correspond clearly to the maxi-
mum strengths achieved. However, there is variability in results even for 
specimens with the same number of bonding layers, especially for the type 
with excessive bonding layer. One of the factors that may contribute to this 
variability is the bonding quality. For some specimens, the fillets are not well 
formed at the core-facesheet interface, resulting in minor cracks. This indi-
cates the importance of quality control during the manufacturing process.

3.4.7  Correlations between Test Results and 
Prediction from Design Equations

For longitudinal specimens, two types of failure modes were observed, pure 
shear failure and delamination. In this section, the models derived in Section 

FIGURE 3.53
Core separation.

TABLE 3.17

Average Value of Failure Load for Transverse Samples

B1C2 B2C2 B3C2 B2C1 B2C3 B3C1 B3C3

Average value (kN) 5.25 6.98 11.19 5.29 7.16 6.78 11.03
Standard deviation (kN) 0.71 1.27 2.67 0.33 0.76 0.87 1.82
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3.4.5 are used to predict the failure strength corresponding to these two dis-
tinct failure modes.

3.4.7.1 Shear Failure of Flat Panel

The model described in Section 3.4.5 is applied to the longitudinal specimen 
with excessive bonding layers. Based on basic assumptions, we have
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 (3.71)

where b and d are given in Table 3.18, and Gxz is the equivalent shear modulus 
given by (3.62). For d = 5.08 cm, we have

 Gxz = 318.06 MPa (3.72)
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Since the shear strain of the flat panel is the same as the global shear strain, 
the shear stress in the flat panel can be calculated as

 G12τ = γ  (3.73)

where G12 is the material shear modulus from Table 3.1. The transition height 
hT equals 9.75 cm for three bonding layers; therefore, h < hT, and shear crush-
ing controls. Substituting into (3.73) and (3.71), we can obtain the failure load 
as P = 62,008 N, which is in good correlation with the load from the test, 
P = 70,460 N.

To further predict the response of the specimen, the following equation 
is employed to calculate the maximum mid-span deflections for four-point 
bending (Davalos et al. 2001):
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δ = +

κ
 (3.74)

where κ is the shear correction factor and is approximately 1.0 for this study, 
Gxz is the equivalent core shear stiffness, P is the applied load, L is the span 
length, and the bending stiffness D is defined as
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and Ef, Ec, b, d, and tf denote, respectively, facesheet bending stiffness (com-
puter aided design environment for composites [CADEC]; Barbero 1999), 
equivalent core bending stiffness (Davalos et al. 2001), beam width, beam 
depth, and face thickness, as listed in Table 3.18.

Substituting all the values into (3.75), we can obtain

 7.50 10 P5δ = × −  (3.76)

The result is illustrated in Figure 3.56, up to Pmax = 62,008 N.

3.4.7.2 Delamination

Based on the discussion in Section 3.4.2.5.2, the design equation proposed 
in Section 3.4.5 is adopted to predict the onset of the delamination. The flat-
wise tension test (FWT) (ASTM C297-94) is a standard method to measure 

TABLE 3.18

Parameters for Sandwich Beam Specimen with Excessive Bonding Layers

Ef (×102 MPa) Ec (×102 MPa) b (mm) d (mm) tf (mm)

133.8 5.3 114 50.8 7.22
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the interfacial tensile strength of honeycomb sandwich structures. A series 
of FWT tests were carried out by Wang (2004), and the test results are sum-
marized in Table 3.19.

It is expected that the specimen with more bonding layers should result in 
higher interfacial tensile strength, while this is not the case, as observed from 
Table 3.19. They are somehow randomly distributed, probably due to the vari-
ance in the manufacturing process. However, it can be reasonably concluded 
that the interfacial tensile strength falls within the range of 3.45–6.89 MPa.
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FIGURE 3.56
Load-displacement curve.

TABLE 3.19

Interfacial Tensile Strength

Specimen Type Interfacial Tensile Stress (MPa)

B1C2 6.26
B2C1 4.62
B2C2 4.92
B2C3 4.03
B3C1 5.90
B3C2 5.78

Source: From Wang, W., Cohesive Zone Model for Facesheet-Core Interface Delamination in 
Honeycomb FRP Sandwich Panels, PhD dissertation, Department of Civil and 
Environmental Engineering, West Virginia University, Morgantown, 2004. With 
permission.
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Substituting these lower and upper bounds of interfacial tensile strength 
into (3.66) and (3.71), and using the proposed method as described in Section 
3.4.5, we can get the lowest and highest failure loads for the specimen under 
the four-point bending test, as described in Section 3.4.7, to be 6.89 and 
13.78 kN. When comparing with the test data, with a lowest value of 16.68 kN 
and a highest value of 41.41 kN, we note that the safety factor is from 2.4 to 
3.0. Therefore, the method presented in Section 3.4.5 provides a lower bound 
of the failure load. The reason for this difference is as explained in Section 
3.4.5. Since the results are too conservative for design, we may, however, pre-
dict the nominal interfacial tensile strength based on the four-point bending 
test, as shown in Table 3.20.

3.4.8 FE Simulation

As concluded from the experimental results, debonding is a typical failure 
mode for specimens under four-point bending, where the concept of frac-
ture mechanics should be used for FE modeling. Wang (2004) successfully 
developed a user-defined element using the cohesive zone model (CZM) and 
applied it to the four-point bending test. To the best of the authors’ knowl-
edge, this is the only work done for the analysis of HFRP sandwich struc-
tures, and it is listed here for completeness.

FE modeling of the four-point bending test is performed applying CZM 
with the mixed-mode linear-exponential constitutive law. The interfacial 
properties for the cohesive interface element, as listed in Table 3.21, are based 
on previous experimental measurements. Without experimental data for 
fracture toughness of modes II and III, it is assumed that GcII = GcIII = 3 GcI.

A 3D finite element model is formulated with ABAQUS. Due to symmetry, 
only half of the sandwich beam is modeled. The facesheets are modeled with 
shell elements, and the core is modeled entirely with solid elements. Material 
degradation within the facesheet-core interfaces during delamination propa-
gation is modeled by embedding cohesive interface elements between the 
facesheet shell elements and core solid elements.

TABLE 3.20

Nominal Interfacial Tensile Strength

B1C2 B2C2 B3C2 B2C1 B2C3 B3C1 B3C3

Nominal interfacial 
tensile strength

8.3 12.1 15.1 8.8 11.8 11.8 20.7

TABLE 3.21

Fracture Toughness and Interfacial Strength for the Four-Point Bending Test

GcI GcII = GcIII σc3 σc1 = σc2

4.38 N/mm 13.13 N/mm 5.52 MPa 10.34 MPa
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With resorting to CZMs, crack initiation and growth could be successfully 
predicted. As shown in Figure 3.57, the delaminated region is found to be 
located in the shear loading section of the beam, which is consistent with 
the observation in the experiments. In Figure 3.58, the finite element result 
of mid-span deflection vs. applied load is compared to experimental data 
of the four-point bending test. We can observe that the failure load due to 
facesheet delamination is accurately predicted. In the numerical simulation, 
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FIGURE 3.57
Finite element model of the four-point bending test of an HFRP sandwich panel with sinu-
soidal wave core configuration. (From Wang, W., Cohesive Zone Model for Facesheet-Core 
Interface Delamination in Honeycomb FRP Sandwich Panels, PhD dissertation, Department 
of Civil and Environmental Engineering, West Virginia University, Morgantown, 2004. With 
permission.)
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Finite element results compared to experimental data of the four-point bending test. (From 
Wang, W., Cohesive Zone Model for Facesheet-Core Interface Delamination in Honeycomb 
FRP Sandwich Panels, PhD dissertation, Department of Civil and Environmental Engineering, 
West Virginia University, Morgantown, 2004. With permission.)
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severe snapback is induced right after delamination initiation, which could 
not be captured in the experiment when delamination propagated very 
quickly, leading to catastrophic sudden collapse of the specimen. Because 
of the lack of more sophisticated numerical solution methods, the finite ele-
ment analysis was terminated prematurely, since the global response was 
successfully captured.

3.4.9 Conclusions

A combined analytical and experimental study of an FRP sandwich panel 
under out-of-plane shear is presented in this chapter. Analytical models are 
provided that include delamination considering skin effect, shear crushing, 
and shear buckling.

Two factors are addressed that contribute to the skin effect: shear warping 
and bending warping. A closed-form solution, based on proper description 
of displacement field at the interface, is derived considering shear warping. 
The accuracy of this method is verified by FE results. The FE model is then 
applied to study the bending warping effect. The stiffness and the stress dis-
tribution subject to skin effect are presented. Critical structural sections are 
identified, and suggestions for future design considerations are given. Major 
findings are summarized in Section 3.4.2.

The Rayleigh–Ritz method is employed to study the shear buckling of core 
panels with two sides elastically restrained. Based on the analytical models, 
design equations are provided considering delamination, shear crushing of 
the core, and shear buckling.

Four-point bending tests are carried out according to ASTM standards to 
study shear strength and shear stiffness of the core materials. In particular, 
the influence of the facesheet-core interface bonding effect is examined by 
varying the bonding layers of the specimen. Two cases of bending tests are 
carried out: longitudinal bending test and transverse bending test. Distinct 
failure modes were observed for different types of specimens. Design equa-
tions are used to predict the failure load due to different failure modes, and 
good correlations are obtained with experimental results.

3.5 Facesheet Study

3.5.1 Introduction

This section is devoted to studying the strength properties of the facesheet and 
developing an optimized facesheet configuration (Chen and Davalos 2012). 
A progressive failure model is developed using the FE method to predict the 
behavior of laminated composite plates up to failure, where the failure criteria 
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are introduced through prescribed user-defined subroutines. The accuracy 
of the model is verified through correlations between FE results and existing 
experimental data. This model is then applied to carry out a parametric study 
on facesheet. Three variables are included: material properties, including bidi-
rectional stitched fabrics, unidirectional layer of fiber roving, and chopped 
strand mat; layer thickness; and layer sequences. The quality of each alterna-
tive is evaluated based on stiffness and strength performance. In order to fur-
ther investigate the behavior of facesheet experimentally, coupon samples on 
selected configurations to evaluate compressive and bending strengths were 
tested in accordance with ASTM standards. The strength properties in both 
the longitudinal and transverse directions were evaluated. The dimensions of 
the coupon specimens vary for different types of tests. The test results are also 
used to validate the progressive failure model developed in this study. Through 
this combined experimental and analytical study, the strength properties of 
facesheet are obtained, which permit the optimization of facesheet design.

3.5.2 Progressive Failure Model

3.5.2.1 Failure Criteria

Various failure criteria for isotropic or composite materials have been pro-
posed. A review of failure criteria of fibrous composite materials was given 
in Section 3.2. In general, the failure criteria are categorized into two groups: 
independent and polynomial failure criteria. The maximum stress and strain 
criteria belong to the first category; they are simple to apply and can define 
the mode of failure, but they neglect the stress interaction. An interactive 
criterion such as Tsai-Wu, Hoffman, or Hill includes stress interaction in the 
failure mechanism, but it does not tell the mode of failure, and it requires 
some efforts to determine parameters such as F12 in Tsai-Wu criterion. Among 
others, Hashin (1980) provided a three-dimensional failure criterion, which 
includes fiber tension, fiber compression, matrix tension, and matrix com-
pression. This criterion not only considers the stress interaction, but provides 
the failure mode, and is therefore adopted in this study. However, Hashin 
(1980) did not specify the delamination criterion, which becomes significant 
when the laminate fails due to interlaminar shear failure, as will be shown 
in Section 3.5.3. Lee (1982) proposed a delamination mode in his 3D analysis, 
and it is adopted in this study as an addition to Hashin’s failure criterion, as 
shown below.

For a plane stress problem, when considering the transverse shear compo-
nents, the failure criteria take the following forms (Hashin 1980; Lee 1982):

Tensile fiber mode:
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Compressive fiber mode:

 X 0C11 11σ = σ <  (3.78)

Tensile matrix mode:
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Compressive matrix mode:
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Transverse shear mode:
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where σij = stress tensor, XT = tensile failure stress in fiber direction, XC = com-
pressive failure stress in fiber direction, YT = tensile failure stress transverse 
to fiber direction, YC = compressive failure stress transverse to fiber direction, 
S12 = axial failure shear, S23 = transverse failure shear, and SDS = interlaminar 
failure shear.

The material state corresponding to each type of damage is listed in 
Table 3.22.

TABLE 3.22

Material State

Material State Elastic Properties

No failure Ex Ey νxy Gxy Gxz Gyz

Matrix failure Ex 0 0 0 0 0

Fiber failure 0 0 0 0 0 0

Matrix/fiber failure 0 0 0 0 0 0

Transverse shear damage Ex Ey νxy Gxy 0 0

Matrix failure/shear damage Ex 0 0 0 0 0

Fiber failure/shear damage 0 0 0 0 0 0

All damage modes 0 0 0 0 0 0
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3.5.2.2 Progressive Failure Analysis

Significant research has been conducted on this topic, as described in the 
literature review above, in Section 3.2. The objective of this section is to 
develop a model that uses 2D elements and can still predict the delamina-
tion failure, as in the case of a 3D model. Since σ33 is negligible considering 
the thickness-to-length ratio for each layer, only σ13 and σ23 are considered 
for delamination, using ABAQUS (2002). A user-defined subroutine is first 
employed to retrieve the transverse shear stresses from the result file in 
ABAQUS. Combining with another subroutine to implement the failure cri-
terion displayed in the previous section, the progressive failure analysis is 
carried out. Due to the nonlinearity after the first-ply failure, displacement 
control is adopted with the following algorithm.

Obtain stresses for each material point from the previous increment, and 
retrieve the transverse shear components from the result file:

 1. Use Hashin’s failure criterion to calculate failure index.

 2. Update the field variable according to Table 3.22.

 3. Increase the displacement by a given time step.

 4. Repeat steps 1 through 4 until ultimate failure is reached.

3.5.3 Verification Study

Greif and Chapon (1993) conducted three-point bending tests of composite 
beams made of AS4/3502 graphite-epoxy pre-preg tape; the material proper-
ties and strength parameters of the test specimens are listed in Table 3.23. 
Five different laminate types were tested, with two specimens for each type, 
and the test beam specifications are given in Table 3.24. The reliability of the 
results was shown by Kim et al. (1996), and these tests are evaluated herein 
for verification of the progressive failure model.

First, a convergence study is carried out to define the mesh as 30 × 6 ele-
ments. Shell element (S4) in ABAQUS is employed. The predicted vs. experi-
mental load-displacement diagrams for selected graphite-epoxy laminates 
are shown in Figure 3.59, where good agreement can be observed, although 

TABLE 3.23

Material Properties and Strength Parameters

Material Properties Elastic Properties

E1 = 141.2 GPa
E2 = 11.5 GPa
G12 = 6.0 GPa
υ12 = 0.3

XT = 2.343 GPa
Xc = 1.723 GPa
YT = 0.051 GPa
Yc = 0.223 GPa
S12 = 2.343 GPa
SDS = 0.011 GPa (assumed)
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TABLE 3.24

Beam Specifications

Laminate Lay-Up
No. of 
Plies

Length 
(mm)

Width 
(mm)

Thickness 
(mm)

A1 [908/08]s 32 139.7 25.84 4.468
A2 [908/08]s 32 152.4 25.65 4.547
B1 [08/908]s 32 127.0 24.13 4.597
B2 [08/908]s 32 152.4 24.69 4.674
C1 [(0/90)8]s 32 152.4 25.65 4.470
C2 [(0/90)8]s 32 152.4 24.33 4.470
D1 [(45/0/–45)5]s 30 152.4 24.26 4.166
D2 [(45/0/–45)5]s 30 152.4 24.26 4.166
E1 [(0/45/0/–45)3/90/0/01/2]s 29 152.4 24.49 4.039
E2 [(0/45/0/–45)3/90/0/01/2]s 29 152.4 25.30 4.039
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some discrepancies for post-failure paths can be noticed. Figure 3.60 com-
pares the ultimate loads and ultimate displacements from FE prediction and 
test results, illustrating relatively good correlations.

It is worth pointing out that as concluded by Greif and Chapon (1993), 
beam type B failed due to delamination, which can be easily characterized 
through a free edge analysis. The other types of laminates followed approxi-
mately a progressive failure behavior. As interlaminar shear strength, SDS, 
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is not available in the literature, a value of 0.011 GPa is assumed, as shown 
in Table 3.23. From the FE analysis, a higher shear stress results at the 0°/90° 
interfaces. The failure load of type B is highly dependent on the value of SDS, 
while other types of laminates are not affected too much, which corroborates 
the relative accuracy of the FE model developed in this study.

3.5.4 Parametric Study on Facesheet

In a sandwich panel, the two stiff facesheets carry the membrane force and 
the lightweight core resists the out-of-plane shear. As composite action is 
not considered for an FRP sandwich bridge deck panel, the top and bottom 
facesheets are respectively subjected to compression and tension of approxi-
mate equal magnitude, or vice versa, depending on whether the panel is in 
the positive or negative bending region. Therefore, the in-plane force is the 
major concern when designing a facesheet. Since the facesheet can be charac-
terized by longitudinal and transverse directions, four conditions should be 
considered: tension along the longitudinal direction (TL), compression along 
the longitudinal direction (CL), tension along the transverse direction (TT), 
and compression along the transverse direction (CT).

Three variables are included in the parametric study: material properties, 
including bidirectional stitched fabrics, unidirectional layer of fiber roving, 
and chopped strand mat; layer thickness; and layer sequences, as listed in 
Table 3.25. It is noted that Laminate 7 is the facesheet that was being used 
in industry prior to this study. The material properties given in Table 3.26 
are obtained from a previous study by Davalos et al. (2001). The strength 
parameters given in Table 3.27 are calculated using CADEC (Barbero 1999). 
As delamination is not a concern for all laminates, SDS = S12 is assumed for 
all the calculations.

TABLE 3.25

Laminate Configuration

Laminate #1 #2 #3 #4 #5 #6 #7

1-Bia 1-Bi 1-Bi 1-Bi 6-Bi 1-Bi 1-Bi
2-Unib 1-ChSM 2-ChSM 1-ChSM 4-ChSM 6-Uni 8-Uni

1-Bi 1-Bi 1-Bi 4-Uni 1-Bi 1-Bi
2-Uni 1-ChSM 2-ChSM 1-ChSM 2-ChSM 2-ChSM
1-Bi 1-Bi 1-Bi 1-Bi

4-ChSMc 1-ChSM 4-ChSM 4-ChSM
1-Bi

4-ChSM
Thickness (mm) 12.45 13.21 12.95 13.21 13.21 10.92 12.95

a Bi: CM 3205.
b Uni: UM 1810.
c 1-ChSM: nominal weight = 457.7 g/m2.
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Either tensile or compressive loads, acting along either longitudinal or 
transverse directions, are applied to simulated specimens of 20.32 × 5.08 cm 
of laminates with different configurations. Typical curves for a balanced 
laminate (#3) and an unbalanced laminate (#7) are respectively shown in 
Figures 3.61 and 3.62, where we can see that the compressive load is more 
critical for both cases. Apparently Laminate 7, which was being used by 
industry, is not optimized, as the tensile strength along the longitudinal 
direction is much higher than the compressive strength, whereas the com-
pressive load controls the final design.

Since the axial load is mainly carried out along the longitudinal direction, 
the CL case is further considered for all configurations. Load-displacement 
curves are illustrated in Figure 3.63. CL strength for #7 is 219.76 MPa, and 
the normalized strength based on #7 is shown in Figure 3.64. To illustrate 
the change of stiffness for each laminate, a static analysis is carried out for a 
patch load of 88.96 kN acting at the center of a 2.44 × 2.44 m sandwich panel 
with a 20.32 cm thick core. The deflection of #7 is 2.54 mm, and the normal-
ized defection based on #7 is shown in Figure 3.65.

From the analysis above, it is shown that when ChSM is introduced into 
the facesheet, the strength is not affected much, while the stiffness reduces a 
lot. Consider #3 as an example, the strength is 9% lower and the deflection is 
36% higher than those of #7. However, the deflection for #3, which is L/700, 
where L is the span of the deck, is still in the acceptable range.

TABLE 3.26

Material Properties

Type E1 (GPa) E2 (GPa) G12 (GPa) G23 (GPa) ν12 ν23

CM 3205 0°/90° 27.75 8.00 3.08 2.88 0.295 0.39
CM 3205 CSM 11.79 11.79 4.21 2.36 0.402 0.4
UM 1810 0° 30.06 8.55 3.30 3.08 0.293 0.386
UM 1810 CSM 15.93 15.93 5.65 2.96 0.409 0.388
Bond layer ChSM 9.72 9.72 3.50 2.12 0.394 0.401

TABLE 3.27

Strength Parameters (MPa)

Type XT XC YT YC S12 S23

CM 3205 0°/90° 1341 404 46 66 46 46
CM 3205 CSM 152 152 152 152 76 83
UM 1810 0° 1452 409 46 65 46 46
UM 1810 CSM 159 159 159 159 79 83
Bond layer ChSM 147 147 147 147 73 83
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3.5.5 Experimental Investigation

Based on the results from the parametric study, three configurations are 
selected to further study the strength behavior of facesheet, as shown in 
Table 3.28. Three-point bending tests and compression tests are carried out. 
Since Laminate 1 is not balanced, the tests are carried out along both longi-
tudinal and transverse directions, resulting in four different types, labeled 
1L, 1T, 2, and 3. For completeness, shear test results and stiffness for facesheet 
laminates are provided in Appendices 3.C and 3.D, respectively.
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3.5.5.1 Three-Point Bending Test

3.5.5.1.1 Experimental Setup

The three-point bending test was chosen for the following reasons: (1) the test-
ing apparatus has a simple test setup—no complicated hardware or equipment 
is required, and (2) the results are relatively easy to interpret. As pointed out 
by Greif and Chapon (1993), the three-point bending test usually yields good 
results for material characterization of composites, such as laminate moduli of 
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elasticity, laminate stresses, etc. The test setup is shown in Figure 3.66, which 
consists of a simply supported beam between two supports with the load 
applied at the mid-span. The photograph of the setup is shown in Figure 3.67. 
The dimension of the specimen is 38.1 cm long and 5.08 cm wide. According to 
ASTM standards (ASTM D790-99), the span is chosen to be 30.48 cm. Four dif-
ferent types were tested, with five specimens for each type. The tests were car-
ried out in a Material Testing Systems, Inc. (MTS) machine. A strain gage was 
bonded on each specimen at the bottom of the mid-span; the displacement and 
load were recorded using the internal displacement and load cell transducers. 
The loading rate was controlled at 8 mm/min.

TABLE 3.28

Plate Configurations

Laminate 1(#7)a (current) Laminate 2 (#3)a Laminate 3 (#5)a

2 layers 3.0 oz ChSM 2 layers 3.0 oz ChSM 2 layers 3.0 oz ChSM
1 layer biaxial 1 layer biaxial 8 layers biaxial
9 layers uniaxial 1 layer 3.0 oz ChSM
1 layer biaxial 1 layer biaxial

1 layer 3.0 oz ChSM
1 layer biaxial
1 layer 3.0 oz ChSM
1 layer biaxial
1 layer 3.0 oz ChSM

Thickness 15 mm 16.5 mm 14.2 mm

a The number used in parametric study.
Note: Biaxial: CDM 3208 

Uniaxial: CM 1708. 
ChSM: Chopped strand mat.

15.2 cm 15.2 cm

30.5 cm3.8 cm 3.8 cm

38.1 cm

FIGURE 3.66
Three-point bending test setup.
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3.5.5.1.2 Experimental Results

All results are given in terms of applied load vs. displacement or strain 
at mid-span. For each case, there is good correlation of results, and the 
failure mechanism observations are reproducible. Therefore, only one plot 
is shown for each sample. Since there is a ChSM layer at the bottom of 
the specimen in each configuration, which is the weakest layer, the failure 
always initiated from this layer and ended by crushing of the top face, as 
shown in Figure 3.68.

The failure loads are summarized in Table 3.29, where we can see that 
Laminate 1L is the strongest, followed by Laminate 2, and Laminate 1T 
has the lowest failure load. It can be seen that when ChSM layers are intro-
duced into the laminate, the strength is not affected much. For Laminates 
1L, 2, and 3, the responses showed nearly linear elastic behavior up to fail-
ure, as shown in Figure 3.69. At failure initiation, a loud sound of ChSM 
layer failure was observed with a sudden drop of load. Then the load was 
redistributed among other layers; the specimen regained some load up to 
a value that was slightly less than the previous peak load, and then fol-
lowed by an abrupt failure. For Laminate 1T specimens, after the ChSM 
layer failed, the sample did not regain any load, which indicated that most 

FIGURE 3.67
Photo of test setup.
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of the layers failed roughly at the same time. The post-failure path was due 
to the residual stiffness.

From the above observations, it is concluded that all specimens assume 
a successive failure mode. The peak load is always associated with the fail-
ure of ChSM, which can act as the limiting failure strength of the laminates 
under bending.

3.5.5.2 Compression Test

Unlike other materials, such as concrete, compressive strength of composite 
materials is more difficult to measure due to broom-like splitting (termed 
brooming) at both loaded ends, causing premature failure that is not rep-
resentative of the actual compressive strength. Therefore, a lot of effort has 
been devoted to develop appropriate compression test fixtures in order 
to provide proper boundary conditions. ASTM specifies two methods for 
compression test: for specimens thinner than 3.175 mm, a support jig is rec-
ommended to prevent buckling; and for those thicker than 3.175 mm, the 
specimen can be tested without any support, which applies to this study. 
However, the direct application of this method cannot avoid brooming, as 
will be shown in this section. To solve this problem, Barbero et al. (1999) 
developed a new fixture. This fixture has been used successfully to deter-
mine compressive strength of composites (Makkapati 1994; Tomblin 1994) 

Top

Bottom (ChSM layer) 

FIGURE 3.68
Failure mode.

TABLE 3.29

Experimental Results for Bending Test

Laminate 1L Laminate 1T Laminate 2 Laminate 3

Failure load (N) 7,251 4,657 7,157 6,561
Standard deviation (N) 467 294 343 249
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and is also adopted herein (see Figures 3.71 and 3.72). The specimens were 
cut into the dimension of 5.08 × 2.54 cm.

3.5.5.2.1 Experimental Setup

Each half of the compression fixture has two identical 12.7 × 12.7 cm plates, 
one of which has a rectangular opening in it, so that the specimen can be 
positioned in the grips using the side support shims that fit in these open-
ings and are at the sides of the specimen. Once the specimen is in position, 
the specimen’s movement is locked by using screws that move the side sup-
port shims onto the specimen. The top grip of the fixture can slide on four 
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guiding posts, which gives a perfect positioning and parallel alignment of 
the top grip with respect to the bottom grip. Thus, brooming of the ends is 
avoided by a restraint around the cross section of the sample on the surface 
of contact with the plate only. A detailed description of the fixture was given 
by Makkapati (1994).

All specimens were tested in a Baldwin universal testing machine, as 
shown in Figure 3.73. The fixture uses a cylindrical loading rod, and two 
rectangular guiding plates, which keep the ends of the specimen intact while 
loading. When the machine is set for loading, the loading rod pushes the 
upper half of the compression fixture onto the specimen, to apply the load on 
the sample. LVDTs were used to measure the movement of the loading block. 
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FIGURE 3.70
Load vs. strain.
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Top fixture 

Bottom fixture 

Guide posts 

Specimen 

Base

Cross head of Baldwin machine 

Cylinder loading rod 

FIGURE 3.71
Experimental setup for compression test.

FIGURE 3.72
Close shot of compression fixture.
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Strain gages were bonded at the mid-height of the specimens to measure the 
compressive strain.

3.5.5.2.2 Experimental Results

Table  3.30 gives the average failure load and standard deviation for five 
specimens of each type. It shows that the results obtained from the experi-
mental program are fairly consistent, and the standard deviation is within 
10% of the strength of the specimens. As expected, Laminates 1L and 1T cor-
respond to the highest and lowest failure loads, respectively, with Laminates 
2 and 3 in between. This corroborates the conclusions drawn from Section 
3.5.2, that the strength is not affected much when ChSM is introduced into 
the face laminates.

During the test, the specimen was intact until the maximum load 
was reached. It failed with a loud sound and a sudden drop of the load. 
Figures 3.74 and 3.75 plot the load vs. displacement and load vs. mid-span 
strain, respectively, showing a typical linear behavior up to failure except 
for Laminate 3, where some nonlinear behavior can be observed. A typical 
failure mode is shown in Figure 3.76, indicating that the compressive failure 
for the laminate was successfully achieved.

FIGURE 3.73
Test setup.

TABLE 3.30

Experimental Results for Compression Test

Laminate 1L Laminate 1T Laminate 2 Laminate 3

Failure load (kN) 118.63 61.97 104.05 97.43
Standard deviation (kN) 6.42 5.40 6.84 4.96
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As a matter of interest, three specimens were tested according to ASTM 
standards, i.e., without the end support offered by the compression fixture. 
The comparison between these two failure modes is shown in Figure 3.77, 
where we can see an apparent end brooming of the unconstrained speci-
men and a premature failure by the laminate separation, and as a result, the 
specimens failed at a much lower load.

3.5.6 Correlation between FE and Experimental Results

The properties of constituent materials used in this study are listed in 
Table 3.31. The stiffness of properties of composite materials depends on the 
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relative volume of fiber (Vf) and matrix used. For a fiber mat with nominal 
weight (ω), Vf can be determined from

 = ω
ρ⋅

V
tf  (3.82)

where t is the thickness of the layer and ρ is the density of E-glass fibers. 
For the face laminates considered, the fiber volume fraction for each layer is 
computed from (3.82) and shown in Table 3.32. The stiffness of each ply can 
be predicted from micromechanics models (Luciano and Barbero 1994) and 

Unrestrained specimen

(a) Side View (b) Top View

Restrained specimen

FIGURE 3.77
Failure mode comparison.

TABLE 3.31

Properties of Constituent Materials

Material E (GPa) G (GPa) ν ρ, g/cm3

E-glass fiber 72.4 29.65 0.22 2.56
Polyester (isophthalic) resin 3.65 1.32 0.38 1.1

TABLE 3.32

Layer Properties of Face Laminates

Ply Name Ply Type
Nominal Weight

(g/m2)
Thickness 

(mm) Vf

CDM 3208 0°
90°

ChSM

531
601.1
256.3

0.49
0.55
0.25

0.4241
0.4251
0.3962

CM 1708 0°
ChSM

521.8
256.3

0.69
0.25

0.2947
0.3962

Bonding layer ChSM 915.5 1.91 0.1877
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is listed in Table 3.33. The strength parameters shown in Table 3.34 are calcu-
lated using CADEC (Barbero 1999).

3.5.6.1 Three-Point Bending

Using the progressive failure model developed in this chapter, predictions of 
the compressive strength may be determined, as shown in Table 3.35, from 
which we can see that predictions from the FE model closely approximate 
the experimentally obtained results, with a maximum difference of 7.7%. 
Figure 3.78 compares maximum loads from FE predictions and test results, 
illustrating a good correlation.

The predicted vs. experimental load-displacement and load-strain curves 
are shown in Figures 3.69 and 3.70, where good agreement can be observed, 
although some discrepancies for post-failure paths can be noticed. It is 
noted that the load-strain curve correlates better than the load-displace-
ment curve, due to the fact that the displacement recorded is the movement 

TABLE 3.33

Material Properties

Type E1 (GPa) E2 (GPa) G12 (GPa) G23 (GPa) ν12 ν23

CDM 3208 0°/90° 35.89 11.10 3.32 3.03 0.305 0.599
CDM 3208 CSM 17.42 17.42 6.20 6.20 0.406 0.406
CM 1708 0° 23.91 7.39 2.30 2.16 0.333 0.599
CM 1708 CSM 17.42 17.42 6.20 6.20 0.406 0.406
Bonding layer 9.82 9.82 3.51 3.51 0.397 0.397

TABLE 3.34

Strength Parameters (MPa)

Type XT XC YT YC S12 S23

CM 3205 0°/90° 1,564 556 51 68 44 44
CM 3205 ChSM 279 279 279 279 139 139
UM 1810 0° 1140 342 50 69 44 44
UM 1810 ChSM 279 279 279 279 139 139
Bond layer ChSM 157 157 157 157 79 79

TABLE 3.35

Comparison of Failure Load for Three-Point Bending Test

Laminate 1L Laminate 1T Laminate 2 Laminate 3

Test result (N) 7,255 4,657 7,157 6,561
FE result (N) 7,789 4,969 7,655 6,050
Difference (%) 7.4 6.7 6.9 7.8
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of the loading head, and therefore, it cannot represent the actual deflection 
of the specimen.

3.5.6.2 Compression Test

Following the same approach as described for three-point bending, predic-
tions of the compressive strength are listed in Table 3.36 together with those 
from tests. Once again, predictions from the FE model closely approximate 
the experimental results obtained except for Laminate 1T, with a difference 
of 24.0%. Two factors may contribute to this difference: (1) some nonlinearity 
was observed during the test, and (2) the compressive strength along the 
transverse direction is very difficult to predict for a lamina. Figure 3.79 com-
pares maximum loads from FE predictions and test results, illustrating a 
good correlation.

The predicted vs. experimental load-displacement and load-strain dia-
grams for selected Laminate 3 are shown in Figures  3.74 and 3.75, where 
good agreement can be observed.
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Comparison of failure load.

TABLE 3.36

Comparison of Failure Load for Compression Test

Laminate 1L Laminate 1T Laminate 2 Laminate 3

Test result (kN) 118.63 61.97 104.05 97.43
FE result (kN) 116.40 76.84 94.36 87.73
Difference (%) 1.9 24.0 9.3 9.9
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3.5.7 Discussions

To illustrate the change of stiffness for each laminate shown in Section 3.4.5, 
using the updated material properties, the same static analysis as described 
in Section 3.4.4 is carried out for a patch load of 88.96 kN acting at the center 
of a 2.44 × 2.44 m sandwich panel with a 20.32 cm thick core. The results 
are shown in Table 3.37; the normalized deflection based on Laminate 1L is 
shown in Figure 3.80. Using the compression test data, the normalized com-
pressive strength based on Laminate 1L is shown in Figure 3.81. The stiffness 
and strength comparisons provided in Figures 3.80 and 3.81 can be used for 
design purpose.

3.5.8 Conclusions

A progressive failure model is developed using the FE method to predict 
the behavior of laminated composite plates up to failure. A parametric study 
is carried out on strength properties of the facesheet for a sandwich panel 
using this model. Compressive and bending tests are carried out on selected 
configurations. From this study, the following conclusions can be drawn:
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Comparison of failure load.

TABLE 3.37

Deflection under Patch Load for 2.44 × 2.44 m Plate

Laminate 1L 1T 2 3

Deflection (mm) 2.31 2.98 2.54 2.39
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• The progressive failure model developed in this section can be suc-
cessfully used to predict the behavior of laminated composite plates, 
as illustrated by the close correlation between FE results and exist-
ing experimental data. It is much more efficient than full 3D models 
and offers great potential for economic parametric studies.
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FIGURE 3.80
Normalized deflection under patch load.
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• Interlaminar shear strength should be carefully considered when 
the delamination occurs prior to other failure modes.

• From the parametric study, it is shown that, for a composite lami-
nate, the compressive strength is lower than the tensile strength. If it 
is used for the facesheet of a sandwich bridge deck panel, as the top 
and bottom facesheet are in compression or tension with approxi-
mate equal magnitude, the compressive strength of the facesheet is 
more critical and controls the design.

• If chopped strand mat layer is introduced into the facesheet, the 
strength is not affected much, while the stiffness is reduced, result-
ing in a larger deflection under the same loading condition.

• Three-point bending tests were conducted where a progressive fail-
ure mode was observed. Compression tests were carried out using a 
new fixture, where the end brooming is avoided and the true com-
pressive strength is obtained. The results from the bending and 
compression tests on selected configurations further validate the 
progressive failure model derived.

• Results from this study can be used for design of facesheets.

Appendix 3.A: Strength Data of Core Materials

3.A.1 Compressive Strength

The same method as described in Section 3.5 is used to carry out the com-
pression test on core material. The results are shown in Table A.1. A typical 
failure mode is given in Figure A.1.

3.A.2 Shear Strength

A V-notched test is used to find the shear strength. The results are given in 
Table A.2. A typical shear failure mode is illustrated in Figure A.2, and the 
test setup is shown in Figure A.3.
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TABLE A.1

Compressive Strength

Specimen
Ultimate Load 

(N)
Thickness 

(mm)
Width
(mm)

Compressive 
Strength 

(MPa)

1 27,899 7.125 26.289 148.95
2 26,841 7.074 26.365 143.91
3 28,882 7.455 26.314 147.23
4 30,915 0.762 26.276 154.40
5 27,899 7.099 26.340 145.82

Note: Average strength = 148.06 MPa, standard deviation of strength = 3.99 MPa.

FIGURE A.1
Failed specimen under compression.

FIGURE A.2
Failed specimen under shear.

TABLE A.2

Shear Strength

Specimen
Ultimate Load 

(N)
Thickness 

(mm)
Width
(mm)

Shear Strength 
(MPa)

1 5769 6.833 11.735 71.95
2 5609 7.074 11.659 68.02
3 6405 7.391 11.709 74.01
4 5774 7.366 11.621 67.45
5 6081 7.226 11.760 71.55

Note: Average strength = 70.60 MPa, standard deviation of strength = 2.79 MPa.



200 FRP Deck and Steel Girder Bridge Systems

Appendix 3.B: Derivation of Equilibrium Equation

Consider the element ABCD in Figure B.1, which is cut from the unit cell 
subject to a shear strain γ. The equilibrium equations for the stresses acting 
on the ξη plane in the absence of body forces are

 0∂σ
∂ξ

+
∂τ
∂η

=ξ ξη  (B.1a)

 0∂τ
∂ξ

+
∂σ
∂η

=ξη η  (B.1b)

FIGURE A.3
Test setup for V-notched test.
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The stress–strain relationships are
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where

 E E
1 2′ =

− ν
, G

E
2(1 )

=
+ ν

,

E = Young’s modulus, and ν = Poisson’s ratio.
The strains can be found through

 
uε = ∂

∂ξξ  (B.3a)

 
vε = ∂

∂ηη  (B.3b)

 
u vγ = ∂

∂η
+ ∂

∂ξξη  (B.3c)

where u and v are the displacement in the ξ and η directions, respectively. For 
the consideration of shear warping, we can assume that there is no stretch-
ing in the ξ direction. Then we have

C

D

O

B

A

η = h/2

η, v

ξ, u

ξ = 1

η = –h/2

ξ = 0

h

l

FIGURE B.1
Model cut from the structure.
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 u u( ) 0= η ε =ξ  (B.4)

Equation (B.3) can then be reduced to

 Eσ = ν ′εξ η  (B.5a)

 Eσ = ′εη η  (B.5b)

 Gτ = γξη ξη  (B.5c)

Differentiating (B.5b) and (B.5c) with respect to η and ξ, respectively, substi-
tuting into (B.1b), and using (B.3b) and (B.3c), one obtains

 G v E v 0
2

2

2

2
∂
∂ξ

+ ′ ∂
∂η

=  (B.6)

From the boundary conditions shown in Figure 3.31, u(η) = 0 at both η = h/2 
and η = −h/2, and therefore u is negligible throughout the panel. Equation 
(B.5) becomes

 E v( / )σ = ν ′ ∂ ∂ηξ  (B.7a)

 E v( / )σ = ′ ∂ ∂ηη  (B.7b)

 G v( )τ = ∂ ∂ξξη  (B.7c)

Appendix 3.C: Shear Test for Facesheet Laminates

3.C.1 Experimental Setup

A shear test (Iosipescu test) was carried out on facesheet laminates for com-
pleteness. Due to the challenging efforts and time needed for the specimen 
preparation, only two types were chosen: Laminate 1L (current configura-
tion) and Laminate 2 (recommended configuration) from Table 3.28, with five 
specimens each. All specimens were sanded to be around 12.7 mm thick to 
fit in the fixture. The dimensions of the specimen are given in Figure C.1. 
The sketch of the test setup is shown in Figure C.2, with two photos given in 
Figure C.3. All tests were carried out in an MTS machine. Shear strain gage 
was bonded between the two V-notched sections, and the displacement and 
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load were recorded using the internal displacement and load cell transduc-
ers. The loading rate was controlled at 1.27 mm/min.

3.C.2 Experimental Results

All results are given in terms of applied load vs. displacement at mid-span 
and applied load vs. strain at mid-span, as shown in Figures C.4 and C.5, 

L

L/2

90° (typ)

45° (typ)

r (typ) 

w d1

d2

h

SideFront

Nominal specimen
dimensions:
d1 = 19.1 mm 
d2 = 3.8 mm 
h = as required 
L = 76.2 mm 
r = 1.3 mm 
w = 0.45 in. 

FIGURE C.1
Specimen dimensions.
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Specimen

P

FIGURE C.2
Iosipescu test setup.
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which indicates that the specimen followed roughly linear elastic behavior 
before the failure occurred at the V-notched area. After the specimens failed, 
the load dropped slowly until the displacement reached the capacity of the 
testing fixture. Figure C.6 displays several failed specimens, showing a typi-
cal shear failure.

The shear strengths for each specimen of Laminates 1L and 2 are given 
in Tables C.1 and C.2, respectively, from which we can see that when 
ChSM layers are introduced into the facesheet laminate, the shear strength 
becomes slightly higher, due to the higher in-plane shear strength provided 
by random fibers.

FIGURE C.3
Photos of test setup.
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Load-strain curves.

FIGURE C.6
Failure mode.

TABLE C.1

Shear Strength for Laminate 1L

Specimen
Ultimate Load 

(N)
Thickness 

(mm)
Width
(mm)

Shear Strength 
(MPa)

1 11,245 12.497 11.125 80.88
2 11,966 12.510 11.328 84.43
3 11,405 12.522 11.43 79.68
4 10,782 12.179 11.176 79.21
5 12,130 12.446 11.303 86.23

Note: Average strength = 82.09 MPa, standard deviation of strength = 3.09 MPa.
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Appendix 3.D: Stiffness of Facesheet 
Laminates and Core Materials

Based on the strain and stress data collected from the compression and shear 
tests on core materials and facehsheet laminates (Table 3.28), the stiffness can 
be obtained by fitting the data between 1,000 and 6,000 microstrain, with one 
example shown in Figure D.1 for determining shear stiffness. The results 
based on two specimens for each type are listed in Table D.1.

TABLE C.2

Shear Strength for Laminate 2

Specimen
Ultimate Load 

(N)
Thickness 

(mm) Width (mm)
Shear Strength 

(MPa)

1 12,371 12.522 11.138 88.69
2 12,824 12.471 10.731 95.82
3 12,851 12.497 11.379 90.37
4 12,206 12.370 10.998 89.71
5 12,015 12.471 11.316 85.13

Note: Average strength = 89.95 MPa, standard deviation of strength = 3.85 MPa.

TABLE D.1

Stiffness of Facesheet Laminates and Core Materials

Type
Shear Modulus

(MPa)
Compressive Stiffness 

(MPa)

1L 3,554.9 16,666.7
1T — 10,835.8
2 4,577.4 13,007.7
3 — 16,002.0

Core materials 3,865.9 9,156.2



207FRP Deck: Strength Evaluation

References

ABAQUS user’s manual. Version 6.3. (2002). HKS, Inc., Providence, RI.
Allen, H.G. (1969). Analysis and design of structural sandwich panels. Pergamon 

Press, Oxford.
Allen, H.G., and Feng, Z. (1998). Mechanics of sandwich structures. Kluwer Academic 

Publisher, Dordrecht, Netherlands, pp. 1–12.
ASTM Designation: C273-00. Standard test method for shear properties of sandwich core 

materials. (2000). ASTM, West Conshohocken, PA.
ASTM Designation: C297-94. Standard test method for flatwise tensile strength of sandwich 

constructions. (2000). ASTM, West Conshohocken, PA.
ASTM Designation: C393-00. Standard test method for flexure properties of sandwich con-

structions. (2000). ASTM, West Conshohocken, PA.
ASTM Designation: D5379-98. Standard test method for shear properties of composite mate-

rials by the V-notched beam method. (2000). ASTM, West Conshohocken, PA.
ASTM Designation: D790-99. Standard test method for flexure properties of unreinforced 

and reinforced plastics and electrical insulating materials. (2000). ASTM, West 
Conshohocken, PA.

Barbero, E.J. (1999). Introduction to composite materials design. Taylor & Francis, 
Philadelphia, PA.

Barbero, E.J., Makkapati, S., and Tomblin, J.S. (1999). Experimental determination 
of compressive strength of pultruded structural shapes. Composite Science and 
Technology, 59, 2047–2054.

Barbero, E.J., and Raftoyiannis, I.G. (1993). Local buckling of FRP beams and col-
umns. ASCE Journal of Material in Civil Engineering, 5(3), 339–355.

Blackman, B.R.K., Hadavinia, H., Kinloch, A.J., and Williams, J.G. (2003). The use of 
a cohesive zone model to study the fracture of fiber composites and adhesively-
bonded joints. International Journal of Fracture Mechanics, 119, 25–46.

Bleich, F. (1952). Buckling strength of metal structures. McGraw-Hill, New York.
Burton, W.S., and Noor, A.K. (1997). Structural analysis of the adhesive bond in a hon-

eycomb core sandwich panel. Finite Elements in Analysis and Design, 26, 213–227.
Caprino, G., and Langella, A. (2000). Study of a three-point bending specimen for 

shear characterisation of sandwich cores. Journal of Composite Materials, 34(9), 
791–814.

Chen, A., and Davalos, J.F. (2003). Bending strength of honeycomb FRP sandwich 
beams with sinusoidal core geometry. At Proceedings of the Fourth Canadian-
International Composites Conference, CANCOM 2003, Ottawa, Canada, 
August 19–22.

Chen, A., and Davalos, J.F. (2005). A solution including skin effect for stiffness and 
stress field of sandwich honeycomb core. Submitted to International Journal of 
Solids and Structures, 42(9), 2711–2739.

Chen, A., and Davalos, J.F. (2007). Transverse shear with skin effect for composite 
sandwich with honeycomb sinusoidal core. Journal of Engineering Mechanics 
ASCE, 133(3), 247–256.

Chen, A., and Davalos, J.F. (2012). Development of facesheet for honeycomb FRP 
sandwich panels. Journal of Composite Materials, 46(26), 3277–3295.

Christensen, R.M. (1991). Mechanics of composite materials. Krieger, Malabar.



208 FRP Deck and Steel Girder Bridge Systems

Cui, W., and Wisnom, M.R. (1992). A combined stress-based and fracture-mechan-
ics-based model for predicting delamination in composites. Composites, 24(6), 
467–474.

Cui, W.C., Wisnom, M.R., and Jones, M. (1992). Failure mechanism in three and four 
point short beam bending tests of unidirectional glass/epoxy. Journal of Strain 
Analysis, 27(4), 235–243.

Cvitkovich, M.K., and Jackson, W.D. (1998). Compression failure mechanisms in 
composite sandwich structures. At American Helicopter Society 54th Annual 
Forum, Washington DC, May 20–22.

Davalos, J.F., and Chen, A. (2005). Buckling behavior of honeycomb FRP core with 
partially restrained loaded edges under out-of-plane compression. Journal of 
Composite Materials, 39(16), 1465–1485.

Davalos, J.F., Qiao, P., Xu, X.F., Robinson, J., and Barth, K.E (2001). Modeling and char-
acterization of fiber-reinforced plastic honeycomb sandwich panels for high-
way bridge applications. Composite Structures, 52, 441–452.

DeTeresa, S.J., Freeman, D.C., Groves, S.E., and Sanchez, R.E. (1999). Failure under 
multiaxial stresses of component materials for fiber composite sandwich con-
struction. In Proceedings of Twelfth International Conferences on Composite Materials 
(ICCM-12), Paris, France, July 5–9, 1999, p. 198.

Echaabi, J., Trochu, F., and Gauvin, R. (1996). Review of failure criteria of fibrous com-
posite materials. Polymer Composites, 17(6), 786–798.

Elawadly, K.M. (2003). On the interlaminar shear stress response for E-glass/epoxy 
composite. Journal of Composite Materials, 37(23), 2149–2158.

El-Sayed, S., and Sridharan, S. (2002). Cohesive layer model for predicting delamina-
tion growth and crack kinking in sandwich structures. International Journal of 
Fracture Mechanics, 117, 63–84.

FEMAP user’s manual. Version 8.1. (2001). Enterprise Software Products, Exton, PA.
Greif, R., and Chapon, E. (1993). Investigation of successive failure modes in graphite/

epoxy laminated composite beams. Journal of Reinforced Plastics and Composites, 
12, 602–621.

Halpin, J.C., and Kardos, J.L. (1978). Strength of discontinuous reinforced composites. 
I. Fiber reinforced composites. Polymer Engineering and Science, 18(6), 496–504.

Hann, H.T. (1975). On approximation for strength of random fiber composites. Journal 
of Composite Materials, 9, 316–326.

Hashin, Z. (1980). Failure criteria for unidiretional fiber composites. Journal of Complied 
Mechanics, 47, 329–334.

Hwang, W.C., and Sun C.T. (1989). Failure analysis of laminated composites by using 
iterative three-dimensional finite element method. Computers and Structures, 
33(1), 41–47.

Kelsey, S., Gellatly, R.A., and Clark, B.W. (1958). The shear modulus of foil honey-
comb cores. Aircraft Engineering, 30, 294–302.

Kim, R., and Crasto, Y. (1992). A longitudinal compression test for composites using a 
sandwich specimen. Journal of Composite Materials, 26(13), 1915–1929.

Kim, Y. (1995). A layer-wise theory for linear and failure analysis of laminated 
composite beams. PhD dissertation, Department of Civil and Environmental 
Engineering, West Virginia University, Morgantown.

Kim, Y., Davalos, J.F., and Barbero, E.J. (1996). Progressive failure analysis of lami-
nated composite beams. Journal of Composite Materials, 30(5), 536–560.



209FRP Deck: Strength Evaluation

Kollar, L.P. (2002). Buckling of unidirectional loaded composite plates with one free 
and one rotationally restrained unloaded edge. Journal of Structural Engineering, 
128(9), 1202–1211.

Kroll, L., and Hufenbach, W. (1997). Physically based failure criterion for dimension-
ing of thick-walled laminates. Applied Composite Materials, 4(5), 321–332.

Kumar, P., Chandrashekhara, K., and Nanni, A. (2003). Testing and evaluation of com-
ponents for a composite bridge deck. Journal of Reinforced Plastics and Composites, 
22(5), 441–461.

Lee, H.S., Lee, J.R., and Kim, Y.K. (2002). Mechanical behavior and failure process 
during compressive and shear deformation of honeycomb composite at ele-
vated temperatures. Journal of Materials Science, 379(6), 1265–1272.

Lee, J.D. (1982). Three dimensional finite element analysis of damage accumulation in 
composite laminate. Computers and Structures, 15(3), 335–350.

Lingaiah, K., and Suryanarayana, B.G. (1991). Strength and stiffness of sandwich 
beams in bending, Experimental Mechanics, 3, 1–7.

Lopez-Anido, R., Davalos, J.F., and Barbero, E.J. (1995). Experimental evaluation 
of stiffness of laminated composite beam elements under flexure. Journal of 
Reinforced Plastics and Composites, 14, 349–361.

Luciano, R., and Barbero, E.J. (1994). Formulas for the stiffness of composites with periodic 
microstructure. International Journal of Solids and Structures, 31(21), pp. 2933–2944.

Makkapati, S. (1994). Compressive strength of pultruded structural shapes. Master’s 
thesis, Department of Mechanical and Aerospace Engineering, West Virginia 
University, Morgantown.

Mouritz, A.P., and Thomson, R.S. (1999). Compression, flexure and shear properties 
of a sandwich composite containing defects. Composite Structures, 44, 263–278.

Niu, K., and Talreja, R. (1998). Modeling of wrinkling in sandwich panels under com-
pression. Journal of Engineering Mechanics, 125(8), 875–883.

Noor, A.K., Burton, W.S., and Bert, C.W. (1996). Computational models for sandwich 
panels and shells. Applied Mechanics Reviews, ASME, 49(3), 155–199.

Ochoa, O.O., and Engblom, J.J. (1987). Analysis of progressive failure in composites. 
Composites Science and Technology, 28, 87–102.

Papadopoulos, L., and Kassapoglou, C. (2004). Shear buckling of rectangular com-
posite plates with two concentric layups. Journal of Reinforced Plastics and 
Composites, 23(1), 5–16.

Qiao, P., Davalos, J.F., and Wang, J. (2001). Local buckling of composite FRP shapes by 
discrete plate analysis. Journal of Structural Engineering, 127(3), 245–255.

Qiao, P., and Zou, G. (2003). Local buckling of composite fiber-reinforced plastic 
wide-flange sections. Journal of Structural Engineering, 129(1), 125–129.

Qiao, P.Z., and Huo, X.P. (2011). Explicit local buckling analysis of rotationally-restrained 
orthotropic plates under uniform shear. Composite Structures, 93(11), 2785–2794.

Reddy, J.N. (1999). Theory and analysis of elastic plates, Taylor & Francis, Philadelphia, PA.
Reddy, Y.S., and Reddy, J.N. (1993). Three dimensional finite element progressive 

analysis of composite laminates under axial extension. Journal of Composites 
Technology and Research, JCTRER, 15(2), 73–87.

Shan, L.Y., and Qiao, P.Z. (2008). Explicit local buckling analysis of rotationally 
restrained plates under uniaxial compression. Engineering Structures, 30(1), 
126–140.

Spottswood, S.M., and Palazotto, A.N. (2001). Progressive failure analysis of a com-
posite shell. Composite Structures, 53(1), 117–131.



210 FRP Deck and Steel Girder Bridge Systems

Tan, S.C. (1991). A progressive failure model for composite laminates containing 
openings. Journal of Composite Materials, 25, 556–577.

Tan, S.C., and Perez, J. (1993). Progressive failure of laminated composite with a hole 
under compressive loading. Journal of Reinforced Plastics and Composites, 12, 
1043–1057.

Theotokoglou, E.E. (1996). Analytical determination of the ultimate strength of sand-
wich beams. Applied Composite Materials, 3, 345–353.

Thomson, R.S., Shah, K.Z., and Mouritz, A.P. (1989). Shear properties of a sandwich 
composite containing defects. Composite Structures, 11, 101–120.

Timoshenko, S.P., and Gere, J.M. (1961). Theory of elastic stability. McGraw-Hill Book 
Company, New York.

Tolson, S., and Zabaras, N. (1991). Finite element analysis of progressive failure in 
laminated composite plates. Computers and Structures, 38(3), 361–376.

Tomblin, J.S. (1994). Compressive strength models for pultruded glass fiber rein-
forced composites. PhD dissertation, Department of Mechanical and Aerospace 
Engineering, West Virginia University, Morgantown.

Triantofillou, T.C., and Gibson, L.J. (1989). Debonding in foam-core sandwich panels. 
Materials and Structures, 22, 64–69.

Tsau, L.-R., and Plunkett, R. (1993). Finite element analysis of progressive failure 
for laminated FRP plates with inplane loading, Engineering Fracture Mechanics, 
45(4), 529–546.

Ungsuwarungsri, T., and Knauss, W.K. (1987). The role of damage-soften material 
behavior in the fracture of composites and adhesives. International Journal of 
Fracture Mechanics, 35, 221–241.

Vinson, J.R. (1999). The behavior of sandwich structures of isotropic and composite material. 
Technomic Publishing Company, Lancaster, PA.

Vinson, J.R., and Sierakowski, R.L. (1987). The behavior of structures composed of compos-
ite materials. Martinus Nijhoff Publishers, Dordrecht, Netherlands.

Waas, A.M., and Schultheisz, C.R. (1996). Compressive failure of composites. II. 
Experimental studies. Progress in Aerospace Sciences, 32, 43–78.

Wang, W. (2004). Cohesive zone model for facesheet-core interface delamination in 
honeycomb FRP sandwich panels. PhD dissertation, Department of Civil and 
Environmental Engineering, West Virginia University, Morgantown.

Xu, X.F., Qiao, P., and Davalos, J.F. (2001). Transverse shear stiffness of composite 
honeycomb core with general configuration. Journal of Engineering Mechanics, 
127(11), 1144–1151.

Zenkert, D. (1991). Strength of sandwich beams with interface debondings. Composite 
Structures, 17, 331–350.

Zenkert, D. (1995). An introduction to sandwich construction. Chamelon Press, London.
Zhang, J., and Ashby, M.F. (1992). Out-of-plane properties of honeycombs. International 

Journal of Mechanical Sciences, 34(6), 475–489.



211

4
Mechanical Shear Connector for FRP Decks

4.1 Introduction

There are two major types of connections for fiber-reinforced polymer (FRP) 
decks to steel girders: adhesive connection, which is formed by applying 
adhesive glue at the deck-stringer interface; and mechanical connection, 
which is formed by connecting FRP decks to steel girders using steel clamps, 
bolts, or shear studs.

A series of experimental studies on adhesive connections were conducted 
by Keller and Gürtler (2005). Two large-scale T-beams were constructed with 
pultruded cellular FRP decks and steel girders, and their stiffness, strength, 
and fatigue responses were investigated by static and cyclic tests. It was 
shown that composite action could be achieved using the adhesive bond, 
leading to increases in stiffness and strength of the FRP deck–steel girder 
system. No stiffness degradation was observed under fatigue loading. It 
is noted, however, that the quality of the adhesive bond can be affected by 
environmental exposure to moisture and temperature. Also, it is difficult to 
achieve proper contact and an effective bond in the field, and to implement 
quality control measures.

For bolted and clamped connections, the installation process is quite labor-
intensive, as the work must be performed from underneath the bridge deck 
(Righman et al. 2004). Therefore, shear stud connections are more favorable, 
and their function is conceptually related to studs used for concrete decks. 
Moon et al. (2002) developed a shear stud-type connection (Figure 4.1) for a 
trapezoidal sandwich panel, known as Martin Marietta Composites (MMC) 
Gen4 FRP deck. The connector was designed to resist the shear force at the 
deck-stringer interface and to develop composite action. The connector con-
sisted of shear studs and enclosures within the deck. The shear studs were 
prewelded on the steel stringers, with two or three studs in one group. An 
opening was cut out from the FRP deck to accommodate the studs, and after 
the FRP deck was in place, the opening was filled with expansive concrete 
grout. Static tests on push-out specimens showed that for the specific con-
figuration shown in Figure 4.1, this connection could sustain a load of up 
to 347 kN with 12.7 mm displacement. A substantial inelastic deformation 
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occurred before failure, due mainly to yielding of the shear studs. The speci-
mens were further subjected to a 56 kN fatigue load of up to 10.5 million 
cycles, which was considered to be equivalent to 75 years of bridge design 
life span. The specimens did not show any obvious damage throughout the 
loading history, and the stiffness remained almost constant. These results 
indicated that the shear connection had adequate fatigue resistance.

In 2004, Keelor et al. conducted a field test on a short-span bridge with an 
FRP deck in Pennsylvania, using a similar connection as the one shown in 
Figure 4.1. The bridge had a pultruded FRP deck that was attached to steel 
stringers using the same conceptual shear connection developed by Moon et 
al. (2002), and it was designed as fully composite. The span was 12.6 m long, 
and there were five steel girders equally spaced at 1.8 m. The spacing of the 
shear connections was 0.6 m, and each connection consisted of two-headed 
shear studs welded side by side on the top flange of the girders. The field test 
showed that at service load, this bridge system was able to achieve full compos-
ite action. The effective width was close to 90% of the girder spacing for inte-
rior girders and approximately 75% of half girder spacing for exterior girders.

Section B-BSection A-A
Load Direction

Load Direction

Test V

Test VI
Plan View

B

A A

B

FIGURE 4.1
Schematic of connection. (From Moon, F. A., Eckel, D. A., and Gillespie, J. W., Journal of Structural 
Engineering, 128(6), 762–770, 2002.)
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The stud-type connection described above can transfer the required shear 
force and develop composite action for FRP decks, but it requires labor-
intensive and careful placement of grout. Since this connection is expected to 
achieve full composite action, there is a concern with high stress concentra-
tion within the enclosed grout area, and potential for cracking and degrada-
tion, causing a negative impact on the integrity of the deck and connection.

To address the above concerns, a prototype shear stud sleeve-type connec-
tion was developed by Davalos et al. (2000) and further studied by Righman 
et al. (2004), as shown in Figure 4.2, which reported that this connection can 
be easily manufactured and can satisfy requirements for structural perfor-
mance and field assembly and implementation. This connection can prevent 
lifting of the FRP deck, and it offers versatility of applications to most FRP 
decks, ease of installation and replacement, and structural efficiency. The 
connection consists of a threaded shear stud welded to the top flange of the 
supporting steel girder and housed inside of steel sleeves that are installed 
within a hole drilled through the FRP deck. It can provide a secure connec-
tion, preventing uplift of the bridge deck by way of the top washer of the 
steel sleeve; i.e., as the nut is tightened, the top washer exerts a downward 
force on the FRP deck. Another important feature is that this connection has 
the ability to be used in conjunction with any type of commercially available 
FRP bridge deck, including pultruded and sandwich decks. The height of the 
sleeves can be easily adjusted, creating a functional connection for various 
deck thicknesses. Construction of this connection would involve welding 
the threaded studs to the girder (similar to what is done in the construction 
of reinforced concrete bridge decks), placing the FRP deck with the sleeves 
installed, placing and tightening the nuts on the studs to secure the deck, 
and then covering the cavities within the sleeves using a granular material 
(sand) for accessibility, or a polymer binder, or a cap. The installation of this 
connection is fabricated by allowing all labor to be performed from above the 
bridge deck. As a result, construction time can be reduced, providing some 
cost savings. In the event there is a need for the replacement of the deck, the 
connection can easily be released by removing the nut and washer. An addi-
tional attribute of this connection is its structural efficiency. Since composite 
materials have relatively low compressive and shear strength properties, this 
connector minimizes these stresses by way of the protective steel sleeves 
within the relatively large contact surfaces between the oversized hole and 
surrounding steel tubing. Moreover, steel shear studs have shown favorable 
fatigue performance characteristics (Slutter and Fisher 1966).

Because of the advantages mentioned above, this connection has been 
implemented in the field, and more recently applied to the Wildcat Creek 
Bridge, Indiana (Machado et al. 2008). Following the promising developments 
of the initial conceptual preliminary design (Davalos et al. 2000; Righman 
et al. 2004), this chapter presents an experimental study to evaluate stiff-
ness, strength, and fatigue performance characteristics of this connection, to 
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connector
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(b) Section cut of connection assembly
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Top view

Bottom view
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75.0 mm
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FIGURE 4.2
Shear connection details.
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develop design criteria based on component level evaluation, and to define 
the degree of composite action based on testing at the system level.

The three most common major testing methods for shear connection eval-
uation are push-out test, beam test, and scaled-bridge test. A push-out test 
specimen consists of a bridge deck section attached to a single shear con-
nector. Beam and scaled-bridge test specimens are considered representa-
tive of full-scale bridges, and consist of assemblies of steel beams, bridge 
decks, and shear connectors. Slutter and Fisher (1966) conducted fatigue tests 
on 56 push-out specimens, and they used both stud and channel connec-
tors. Mainstone and Menzies (1967) conducted fatigue tests on both push-
out specimens and T-beams, and they studied three common types of shear 
connectors: stud, channel, and bar. Oehlers and Bradford (1995) proposed an 
alternative test method on beam specimens, where the static strength and 
fatigue resistance of shear connections were integrated and related; the beam 
test specimens were subjected to fatigue loading of a predetermined number 
of load cycles, and then statically loaded to failure. This method was used to 
recommend a design approach for shear connections. Righman et al. (2004) 
tested a scaled bridge with an FRP deck that incorporated sleeve-type shear 
connectors. The bridge was subjected to static load tests, and the resulting 
reactions and deflections from these tests were compared with finite element 
models of the system. Recently, Majumdar et al. (2009) constructed a two-bay 
section (9.45 × 6.7 m) of a bridge with an FRP deck and tested it under differ-
ent probable loading scenarios to explore its construction feasibility, service-
ability, and durability using stud connectors.

To limit testing variables, push-out tests are suitable to study a connec-
tion system at a component level, to evaluate typically the static and fatigue 
strengths of a single connector, where a section of the deck and the attach-
ment are subjected to in-plane shear loading by avoiding in-plane twisting 
and out-of-plane bending. Both beam-type and scaled-bridge test models are 
suitable to study a connection at a system level, to evaluate, for example, 
degree of composite action, load distribution factor, and effective flange 
width. This chapter is focused on the connection system at a component 
level, while the connection system at the system level based on scaled-bridge 
tests will be covered in Chapter 5.

4.2 Prototype Shear Connection

The shear connection consists of two steel sleeves, designated as top and bot-
tom sleeves, as shown in Figure 4.2. The top sleeve is 90 mm long and consists 
of a 75 mm diameter tubing with two welded washers. The top washer has a 
130 mm outside diameter, and the bottom washer has a 32 mm inside diam-
eter. The bottom sleeve is a 90 mm long and 75 mm diameter tubing welded 
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to a bottom washer with a 130 mm outside diameter. The height of the tubing 
can be varied in order to accommodate FRP panels of different thicknesses. 
The function of the tubing, or sleeve, is to provide a protective enclosure for 
the panel and to allow mechanical attachment to the welded shear stud. The 
top exterior washer serves to clamp the panel to the stringer, while protecting 
the FRP panel by distributing the stresses over an adequate contact area. The 
smaller washer inside the tubing, fitted with an additional pressure washer 
under the nut, is used to secure the sleeves to the welded shear stud. During 
installation, the steel sleeves are tightly fitted into drilled holes in the FRP deck 
panel without using any bonding, and then the deck panel is placed over the 
girders and through the prewelded shear studs. Then the pressure washer 
and nut are installed for all connectors. The interface shear force is transferred 
from the FRP panel to the inside washer and tubing through the bearing, and 
then to the shear stud and steel girder. Details of the interface shear transfer-
ring mechanism are discussed in the following section.

4.3 Push-Out Test

4.3.1 Specimen and Test Setup

As shown in Figures 4.3 and 4.4, the push-out specimen consisted of a hon-
eycomb FRP (HFRP) sandwich panel, fitted with a single shear connection 
at the center (Davalos et al. 2011). The 0.2 m deep panel was manufactured 
by Kansas Structural Composites, Inc. (KSCI) with an in-plane dimension of 
0.9 × 0.9 m2. The sandwich configuration is schematically shown in Figure 1.1. 
The core was 0.17 m high and each facesheet was 15 mm thick. The push-out 
specimen was attached to a floor beam connected to the laboratory’s strong 

Rubber roller

FIGURE 4.3
Shear connection test setup.
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floor. The specimen was loaded horizontally, using a 245 kN actuator as 
shown in Figure  4.4, to simulate the interface shear transfer in composite 
bridge decks. The vertical position of the actuator was adjusted to minimize 
eccentricity and avoid out-of-plane bending during the loading. In order to 
prevent the panel from in-plane rotation and to distribute the horizontal 
force more evenly, an aluminum frame was installed around the FRP panel 
and then connected to the actuator head fitted with a swivel to avoid bend-
ing. The side channels of the aluminum frame were constrained by hard rub-
ber-covered steel rollers on ball bearings that were attached horizontally to 
side steel plates to provide lateral support with minimum frictional effects. 
Two linear variable displacement transducers (LVDTs) were used to record 
the horizontal displacement of the specimen.

4.3.2 Test Procedures

The tests were conducted in two phases. Phase I included eight specimens, 
numbered S1 through S8, statically loaded until failure. A preliminary test 
was first conducted on specimen S1 to study its failure mode and evaluate 
its damage evolution. The specimen was disassembled at a load increment of 
11 kN, and then was reassembled and reloaded to the next load level. Tests 
on specimens S2 to S8 were conducted continuously using a displacement 
control at a rate of 3 mm/min up to failure.

In phase II, fatigue tests were conducted on 10 similar specimens num-
bered F1 through F10. The two control parameters used were stress ranges 

LVDT

LVDT

LVDT

(b) Plan view

(a) Elevation

Floor beam

FRP section 245 kN actuator Triangular
reaction

Aluminum bracket

FRP section 245 kN actuator

FIGURE 4.4
Schematic shear connection test setup.
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on the shear stud and corresponding fatigue life cycles. A pilot test on speci-
men F1 was conducted to obtain preliminary data and define subsequent 
testing protocols, with a load range corresponding to 30% of the connec-
tion’s ultimate strength. Subsequently, tests on F2 to F10 were conducted at 
five different loading ranges, with details shown in Table 4.1. All specimens 
were subjected to cyclic loading with a loading frequency of 4 Hz, which was 
within the range of fundamental frequency of 2 to 5 Hz for typical highway 
steel bridges induced by cyclic standard truckloads.

4.3.3 Test Results and Discussions

For static strength and load-displacement formulation (P-Δ curve), prelim-
inary tests and inspections on specimen S1 revealed the deformation and 
failure mechanism of the connection. After initial slip, the force transfer 
mechanism was bearing between the FRP deck and top sleeve. The top sleeve 
displayed warping for both outside and inside washers, and continued to 
deform as loading increased, as shown in Figure 4.5(a) and (b). The effect of 
friction force between the FRP deck and steel girder was negligible because 
both the bottom washer and the resin-coated surface of the FRP deck were 
very smooth. The deformation for the bottom sleeve was first observed at the 
contact zone between the bottom sleeve and the shear stud, at about 22 kN. 
And then it continued to deform as the load increased, with a more signifi-
cant deformation than the top sleeve, as shown in Figure 4.5(c) and (d).

For the FRP deck, there was virtually no damage for the top facesheet. For 
the bottom facesheet, significant deformation was observed at the location 
where the FRP made contact with the shear stud and sleeve, as shown in 
Figure 4.5(e) and (f). The connection’s failure mode was a fracture of the root 
of the shear stud, as shown in Figure 4.6, and delamination of the bottom 
facesheet, as shown in Figure 4.7.

TABLE 4.1

Fatigue Test Results

Test

Fatigue Load (kN)
Stress Range 

(MPa)
Load 
Ratio

Rate 
(Hz)

Life Cycles 
(million)Min Max

F1 11 47 93 30% 4 2.58
F2 11 29 46 15% 4 13.84
F3 11 35 62 20% 4 8.36
F4 11 35 62 20% 4 10.25
F5 11 59 124 40% 4 1.01
F6 11 59 124 40% 4 1.55
F7 11 83 186 60% 4 0.39
F8 11 83 186 60% 4 0.69
F9 11 95 217 70% 4 0.13
F10 11 95 217 70% 4 0.25
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Specimens S2 through S8 were tested continuously without any interrup-
tion, with load-displacement curves shown in Figure  4.8, which displays 
three load-displacement stages. The stiffness is very low at the first stage up to 
about 22 kN, and then increases significantly at the second stage after the bot-
tom sleeve makes contact with the shear stud. At the third post-yielding stage, 
the specimen continues to deform at almost a constant load until failure, dis-
playing a ductile behavior, which comes mainly from the shear stud yielding.

(a) Top view of top sleeve   

(c) Top view of bottom sleeve   (d) Side view of bottom sleeve 

(e) Bottom FRP facesheet at
yield of shear stud

(f) Bottom FRP facesheet at failure 

(b) Bottom view of top sleeve

FIGURE 4.5
Deformations of components of shear connection.
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FIGURE 4.6
Fracture of shear studs.

FIGURE 4.7
Delamination of bottom FRP facesheet.
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FIGURE 4.8
Load-displacement curves for specimens S2–S8.
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The connection yielding and ultimate loads are listed in Table 4.2. Although 
the curves in Figure 4.8 are scattered due to the initial gap between the steel 
sleeves and FRP deck, the strength values at the three stages are within a 
close range. The yielding load varied from 103 to 125 kN, with a coefficient 
of variation (COV) of 6.6%, and the ultimate load varied from 123 to 161 kN, 
with a COV of 11.7%. The discrepancies in strength values were mainly due 
to (1) the manufacturing and material nonuniformity of the facesheets and 
(2) the manufacturing imperfection of the steel sleeves. To be conservative, 
the lower bound values were taken as design values. Therefore, the recorded 
load-displacement curves can be idealized as a segmentally linear model, as 
shown in Figure 4.9, with three ranges that can be described as

 

= ∆ =

= ∆ =

= ∆ >








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k

k

k

1.5 kn/mm, 0–15 mm

7.9 kn/mm, 15–25 mm

1.4 kn/mm, 25 mm

where k is the stiffness of the connection.
To avoid damage to the FRP deck and to simulate field operations com-

monly used in practice for bolted connection, the torque applied to the shear 
stud bolt during the shear connection installation was not a variable in this 
study. Rather, the bolt was only “snug tightened,” corresponding to the defi-
nition that the installed torque is attained by full effort of an ironworker with 
an ordinary spud wrench.

For fatigue strength and the S-N curve, by inspection of the pilot test spec-
imen F1, the fatigue crack was initiated around the perimeter of the stud 
shank and weld area. As the load cycles increased, the crack extended into 
the steel base plate (e.g., steel beam flange), causing a concave depression, 
and eventually the shear stud was sheared off, as shown in Figure 4.6. Local 

TABLE 4.2

Static Strength of Shear Connections

Specimen Yield Strength (kN) Ultimate Strength (kN)

S2 112 123
S3 113 126
S4 109 123
S5 103 124
S6 122 153
S7 125 161
S8 115 141
Average 114 136

Standard deviation 7.5 15.9
COV 6.6% 11.7%
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crushing of the bottom FRP facesheet was observed at the contact point with 
the shear stud root, as shown in Figure 4.7, which was similar to the failure 
mode from static testing.

The fatigue test results are shown in Table  4.1 and Figure  4.10 in terms 
of fatigue load cycles and stress ranges, which can be fitted by a logarithm 
function as

 logN = 7.6 − 0.01096S (4.1)

where N is number of load cycles and S is the stress range of the shear con-
nection in MPa.

0

50

100

150

200

250

5 6 7 8
Load Cycles N (million)

St
re

ss
 R

an
ge

 S
 (M

Pa
)

log N = 7.604 – 0.01096S

FIGURE 4.10
S-N curve of shear connection.

0, 0

15, 22

25, 102

38, 120

0

50

100

150

3020100
Displacement (mm)

Lo
ad

 (k
N

)

Displacement

Load

FIGURE 4.9
Segmentally linear load-displacement curve.



223Mechanical Shear Connector for FRP Decks

Moon et al. (2002) reported that a load cycle of 10.5 million corresponded to 
75 years of bridge service life span. Based on this criterion, the threshold for 
the stress range can be calculated as 53 MPa from (4.1). The shear connection 
detail is defined as category A from AASHTO specifications (2004).

4.4 Conclusions

This chapter presents a detailed experimental study of a mechanical shear 
connection for FRP bridge decks supported by steel girders at the component 
level using a push-out test.

Static and fatigue tests were conducted on push-out specimens, which 
consisted of a honeycomb FRP sandwich deck panel fitted with a sin-
gle shear connection at the center. The interfacial shear force transfer 
mechanism was bearing between the deck and shear connector. The P-Δ 
(load-displacement) curve was approximately simulated as a three-stage 
segmentally linear model based on results obtained from the static tests. 
The stiffness was very low at the first stage, and then increased signifi-
cantly at the second stage after the bottom sleeve made contact with the 
shear stud. At the third post-yielding stage, the specimen continued to 
deform at almost a constant load until failure, displaying a ductile behav-
ior. Based on the results from the fatigue test, the S-N (stress range–fatigue 
life) curve can be fitted by a logarithm function. Both the P-Δ and S-N 
curves were used to develop design formulas, which can be used to define 
the spacing of shear connections and the size of the shear stud for given 
static and fatigue loads.
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5
FRP Deck–Steel Girder Bridge System

5.1 Overview

For conventional concrete deck-over-steel stringer bridges, full composite 
action is usually preferred and achieved due to the efficiency of the materi-
als used. In the American Association of State Highway and Transportation 
Officials (AASHTO) code slab-on-girder bridges can be designed for either 
noncomposite or full composite actions. No partial composite action is 
defined. However, fiber-reinforced polymer (FRP) decks are usually designed 
in practice for partial composite action. Several limiting practical factors lead 
to this behavior: (1) The hollow core configuration of FRP panels and lack of 
continuous connection at the panel-stringer interface do not allow develop-
ment of perfect contact and attachment between decks and connections. (2) 
The high modulus ratio between the steel girder and FRP panel (about 30 
compared to 8–10 for a conventional concrete deck-over-steel girder) makes 
the contribution of the FRP deck to the overall bridge stiffness much less 
significant. (3) The practical connection spacing of about 0.6 to 1.2 m for FRP 
decks, compared to conventional concrete deck connection spacing of 0.15 to 
0.25 m, is too large to develop full composite action. All these factors in turn 
lead to less shear force to be transferred at the deck-girder interface, leading 
to slippage and achieving a partial degree of composite action. On the other 
hand, it may actually be desirable to allow for some degree of deck-stringer 
relative displacement to account for differential thermal expansions between 
FRP and steel.

A number of design issues related to partial composite action in FRP deck 
systems need to be investigated, including: (1) transverse load distribution 
factors, (2) degree of composite action, (3) effective deck width, and (4) service 
limit and ultimate limit capacities, such as fatigue resistance and ultimate 
failure mode. Other design issues that are distinct for FRP decks include: (1) 
local deck deflections and (2) deck connection installation procedures. These 
issues will be studied in this chapter by experimental testing and verifica-
tion by both finite element (FE) analysis and analytical method.
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5.2 Experimental and FE Study on Scaled Bridge Model

5.2.1 Introduction

Although extensive research has been conducted on stiffness and strength 
evaluations of various types of FRP decks (Bakis et al. 2002; Davalos and 
Chen 2005; Chen and Davalos 2010), as shown in Chapters 2 and 3, only lim-
ited studies are available on FRP deck-on-steel girder bridge systems, which 
were mostly evaluated based on field- or lab-scale testing.

Keelor et al. (2004) conducted a field study on a short-span bridge located in 
Pennsylvania. This bridge had a pultruded FRP deck over five steel girders 
equally spaced at 1.75 m; the span length was 12.6 m and the deck thickness 
was 195 mm. The FRP deck was assumed to achieve full composite action 
through grouted stud connections welded to the stringers. Their results 
showed that under service load conditions, full composite action resulted 
in effective widths corresponding to about 90% for interior stringer spacing 
and 75% for exterior half stringer spacing.

Keller and Gürtler (2005) conducted lab tests on two large-scale T-sections to 
study composite action and effective flange width. Each test model was 7.5 m 
long with a pultruded FRP deck section of 1.5 m wide adhesively bonded to 
the top flange of a steel supporting beam. The in-plane normal strain distri-
bution, i.e., strain parallel to the bonded surface, across the width of the FRP 
section was recorded at both upper and lower FRP facesheet components. The 
results showed that under the service limit state, the normal stress was almost 
uniform across the panel section. While under the failure limit state, the nor-
mal stress decreased toward the panel edges, indicating a more pronounced 
effect of shear lag under ultimate load. Later, two reduced scale T-sections 
were tested to service limit state and ultimate limit state (Keller and Gürtler 
2005). One of the T-sections was fatigue loaded to 10 million cycles. The FRP 
pultruded flanges, which were adhesively bonded to the steel stringers, were 
able to achieve full composite action. At ultimate limit state, the failure mode 
was deck compression failure with the yielding of steel stringer. The struc-
tural behaviors of this full composite model were established at service and 
ultimate limit states. The deflection and ultimate strength could respectively 
increase by 30% and 56% by considering composite action. There were strain 
differentials between top and bottom facesheets due to low in-plane shear 
stiffness of the core. The strain distribution of top and bottom facesheets 
showed that the top facesheet fully participated as a top cord, while the bot-
tom facesheet showed a more shear lag phenomenon. The effective flange 
width was smaller than that evaluated for a comparable concrete deck. Also, 
the T-section could sustain 10 million cycles of fatigue loading, which was 
comparable to the Eurocode 1 fatigue load on a reference bridge.

Fatigue tests on two T-beams with 7.5 m span length and adhesively 
bonded FRP deck to steel stringers were conducted by Keller and Tirelli 
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(2004). The pultruded FRP flange was fully and compositely connected to 
the steel stringers, and the FRP flange participated as the top cord of this 
T-section. The fatigue limit was considered to be 25% of static failure load 
at 10 million load cycles, which was far above the actual fatigue load in FRP 
bridges. The adhesive bond connection was proved to be able to sustain the 
fatigue loading.

The aforementioned studies were focused on FRP deck-on-steel girder 
systems with full composite action. However, in actual bridges, because of 
the low equivalent modulus of the FRP deck, the contribution of the deck to 
the bridge system is not as significant as for concrete, even for full composite 
action. Also, because of the difference in coefficient of expansion between 
the FRP and steel, where FRP has a typical coefficient of thermal expansion 
(CTE) in the range of 1.6 to 2.7 × 10–5/°C and steel has a CTE of 1.2 × 10–5/°C, 
full composite action may induce an adverse effect on the bridge system if 
the shear connection is fully constrained. The prototype shear stud sleeve-
type connection, as shown in Chapter 4, can address the above concerns. 
Since the practical spacing for this connection is about 0.6 to 1.2 m, com-
pared to conventional concrete deck connection spacing of 0.15 to 0.25 m, 
only a partial degree of composite action can be achieved between the deck 
and stringers.

In the AASHTO standard (1996) and LRFD (2004) specifications, slab-on-
girder bridges can be designed with either noncomposite or full compos-
ite action, but there is no provision for a partial degree of composite action. 
Bridges with partial composite action are typically designed as noncom-
posite, which is not economical since the contribution of the deck based on 
partial composite action is neglected. Therefore, this section will study the 
behavior of an FRP deck on a steel girder bridge system with a partial degree 
of composite action and provide design parameters, using a combined exper-
imental investigation and FE analysis. In particular, the objectives are to (1) 
evaluate the performance of the prototype shear connection at the bridge 
system level, (2) evaluate the performance of the bridge system under static 
and fatigue loads, and (3) study the degree of composite action of the bridge 
system and its influence on the design parameters, including the transverse 
load distribution factor and effective flange width.

5.2.2 Test Plan

The test consisted of three phases. In phase I, static load tests were conducted 
on a 1:3 scaled bridge model to investigate transverse load distribution fac-
tors and local deflections of the FRP deck. In phase II, the same bridge model 
was subjected to a cyclic loading to evaluate the fatigue resistance of both 
shear connection and the bridge system. In phase III, a T-section was cut out 
from the bridge model and then loaded under three-point bending for linear 
and ultimate responses to investigate its effective flange width, degree of 
composite action, strength, and failure mode.
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5.2.3 Test Models

5.2.3.1 Bridge Model Description

A 1:3 scaled bridge model with a span of 5.5 m was constructed consisting 
of three steel stringers (W16x36, Gr50) spaced at 1.22 m apart (Figures  5.1 
and 5.2), based on a reference bridge designed according to AASHTO speci-
fications (Zou 2008). A 5.5 × 2.74 × 0.13 m FRP deck, consisting of three 
1.8 m wide and 2.74 m long individual FRP honeycomb panels, as shown 
in Figure  1.1 and assembled by tongue-and-groove connections along the 
two 2.74 m transverse joints, was attached to the stringers using a prototype 
stud-sleeve connector. The longitudinal direction of the honeycomb core 
(Figure 1.1) is perpendicular to the traffic direction.

As shown in Figure 5.3 the FRP honeycomb panels consisted of top and 
bottom facesheets and a sinusoidal core. The facesheet had three layers of 
CDM 3208 laminate and two layers of chopped strand mat (ChSM) com-
posed of E-glass fiber and polyester resin, with the material properties 
shown in Tables 5.1 and 5.2. Another layer of ChSM (0.256 kg/m2) was placed 
in between the facesheet and core as a bonding layer. The total thickness of 
the FRP panel was 125 mm, where the facesheet and the core were 12.5 and 
100 mm thick, respectively.

FIGURE 5.1
Photo of scaled bridge model.
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FIGURE 5.3
Facesheet lay-up.

TABLE 5.1

Properties of Constituent Materials

Material E, GPa (×106 psi) G, GPa (×106 psi) v ρ, g/cm3 (lb/in.3)

E-glass fiber  72.4 (10.5)  28.8 (4.18) 0.255  2.55 (0.092)
Polyester resin  5.06 (0.734)  1.63 (0.237) 0.30  1.14 (0.041)

TABLE 5.2

Material Properties of Facesheet

Nominal Weight 
(kg/m2)

Thickness 
(mm) Vf

CDM 3208 0° 0.531 0.49 0.424

90° 0.601 0.55 0.425
ChSM 0.256 0.25 0.396

Bonding layer ChSM 0.915 1.91 0.188
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During construction, the steel girders with prewelded shear studs at 
0.6 m apart were first erected and braced at the supports and mid-spans. 
FRP panels, with 80 mm circular holes cut at corresponding locations, were 
installed on the top of the steel girders, and then snug-fitted by transverse 
tongue-and-groove connections, which were joined using polymer resin and 
bonded at the top and along the joints using fiber glass sheets, as shown in 
Figure 5.4. The tongue-and-groove honeycomb core connection was about 
0.15 m wide and was filled with polymer concrete to strengthen the joint, as 
shown in Figure 5.5. Finally, the shear connections were installed, as shown 
in Figure 5.6.

5.2.3.2 T-Section Model Description

After completing the tests on the scaled bridge model, a T-section was cut out 
with a flange width of 1.22 m, as illustrated in Figures 5.2 and 5.7, which was 
supported by a steel girder. Three brackets were placed on each side of the 
flange to provide lateral support to the flange section.

FIGURE 5.4
Tongue-and-groove connection with FRP sheet covered.

13
0 

m
m

Filled with
polymer concrete

1.8 m1.8 m 1.8 m

FIGURE 5.5
Tongue-and-groove connections.



232 FRP Deck and Steel Girder Bridge Systems

1

2
3

5

6
7
8

4

FIGURE 5.6
Installations of shear connection to FRP decks.

FIGURE 5.7
T-beam test model.
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5.2.4 Test Procedures

5.2.4.1 Phase I Test—Static Behavior of Bridge Model

Three load cases were used for the bridge model (Figure 5.1) with shear con-
nection spacing of either 0.6 or 1.2 m, as shown in Figure 5.8 and Table 5.3. 
The model was first tested with shear connections at 0.6 m intervals. The 
1.2 m spacing was achieved by removing the top sleeves of every other 
shear connections. Load case 1 (LC1, Figure 5.8) was designed to study the 
transverse load distribution factor. A concentrated load was applied over an 
area of 0.6 × 0.25 m, using a 245 kN actuator to simulate truck wheel load, at 

TABLE 5.3

Load Case Designation

Load Case Transverse Load Position
Connection 
Spacing (m) Label

1 Aligned with girder 2 0.6 LC1
1 Aligned with girder 2 1.2 LC1
2 Aligned with mid-point of girders 1, 2 0.6 LC2
2 Aligned with mid-point of girders 1, 2 1.2 LC2
3 Aligned with mid-point of girders 2, 3 0.6 LC3
3 Aligned with mid-point of girders 2, 3 1.2 LC3

1.2 m1.2 m

LC2 LC3

0.6 m0.6 m

LC1

FIGURE 5.8
Load cases on scaled bridge model.
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mid-span and over the middle girder, as shown in Figure 5.8. The bridge was 
loaded to 50% service limit load by a displacement control rate of 1 mm/min. 
The 50% service load was based on the level calculated for the reference full-
scale bridge. Based on AASHTO specification (2004), the service stress limit 
for a service II load combination can be calculated as

 f R F0.8f h yf=  (5.1)

where Rh is the hybrid factor, which is 1.0 for the homogenous section used 
in this model, and Fyf is the yield strength of the flange. Therefore, the service 
stress limit ff was 275 MPa (0.8 Fyf) for grade 50 (Fyf = 344 MPa) steel girders 
used in this model, and the model was loaded until the flange stress reached 
138 MPa (0.5 ff), corresponding to a 178 kN patch load.

Load cases 2 and 3 were used to study the local deflection of the FRP deck 
(Figure 5.8). A 36 kN patch load, corresponding to a rear wheel load of an 
HS20 truck, was respectively applied at the mid-point between girders 1 and 
2 and girders 2 and 3 (Figure 5.8). Since load cases 2 and 3 were symmetrical, 
the local deflection of the deck was calculated as the average values of these 
two load cases.

A transverse deflection profile was obtained by the measurements from 
five LVDTs across the mid-span section, as shown in Figure 5.9, where LVDTs 
1 through 3 were placed directly under girders 1 through 3, respectively, and 
LVDTs 4 and 5 were placed under the FRP deck at mid-span. The local deflec-
tion was defined as the relative displacement of the panel between the two 
supporting girders by linear interpolation.

5.2.4.2 Phase II Test—Fatigue Behavior of Bridge Model

Similar to the static test, a patch load was applied at the mid-span of the mid-
dle girder. The load range was 0–112 kN. The model was subjected to 10.5 
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million cycles loading, which was equivalent to 75 years bridge service life 
span (Moon and Gillespie 2005). The fatigue load was calculated as compa-
rable to the corresponding design load for a reference full-scale bridge, where 
the stress range was 3.3 MPa for induced shear stress at each shear connection 
(Zou 2008), which corresponded to a cyclic load of 0–25.1 kips at the mid-span 
of the center girder. The loading was stopped at every 2 million cycles, and the 
static deflection of the model was measured to calculate the stiffness.

5.2.4.3 Phase III Test—T-Beam Behavior

A patch load was applied at the mid-span of the T-beam over an area of 
0.6 × 0.25 m2 using a 490 kN actuator to study its effective flange width, as 
shown in Figure 5.7. The system was subjected to three-point bending loading 
with displacement control at a rate of 1 mm/min within the service load limit, 
and the load-displacement relation was recorded. A total of 20 strain gages 
were attached at the top and bottom surfaces of the deck, with 10 at quarter 
span and 10 at mid-span, as shown in Figure 5.10, to measure the longitudinal 
normal strain of the FRP flange and evaluate the effective flange width.
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In addition, strain gages were bonded along the depth of the girder to mea-
sure the longitudinal normal strains, as shown in Figure 5.11. Based on the 
strain distributions, the neutral axis of the system can be determined, and 
subsequently, the degree of composite action can be calculated, as will be 
shown in the next section.

5.2.5 Test Results

5.2.5.1 Phase I Test Results of Bridge Model

5.2.5.1.1 Load Distribution Factor

As suggested by Eom and Nowak (2001), the expression
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is adopted to obtain load distribution factor (LDF), where Mi = bending 
moment at the ith girder, E = modulus of elasticity, Si = section modulus of 
the ith girder, Sl = typical interior section modulus, εi = maximum bottom-
flange static strain of the ith girder, which can be obtained from the test 
results, wi = ratio of the section modulus of the ith girder to that of a typical 
interior girder, and N = number of girders. If the girders have the same sec-
tion modulus, which is the case in this study, (5.2) can be simplified as
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where k is the number of lanes loaded.
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Instrumentation of T-beam girder (see Figure 5.10 for locations of cross sections).
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Based on (5.3), the load distribution factors under the service load for the 
middle girder were calculated to be 0.647 and 0.644, respectively, for the 0.6 
and 1.2 m connection spacing, as shown in Table 5.4. The values calculated 
from AASHTO standard specification (1996) and AASHTO LRFD specifica-
tions are also listed in Table 5.4. It can be seen from Table 5.4 that the load dis-
tribution factor from the test result with a connection spacing of 0.6 m is 1.2 
and 12.3% higher than values from AASHTO LRFD and AASHTO standard 
specifications, respectively. Although the two specifications do not consider 
bridges with a partial degree of composite action, it seems that they can still 
provide reasonable accuracy in predicting the load distribution factor for a 
bridge system that has a partial degree of composite action.

5.2.5.1.2 Local Deck Deflection

As shown in Figure 5.12, the induced deflection profile clearly displays the 
localized effect, where the largest deflection occurs at the loading position. 
The local deflections were calculated to be 1.65 mm (L/727) and 1.75 mm 
(L/686) for the connection spacing of 0.6 and 1.2 m, respectively, as shown 
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Deflection profile corresponding to load case 2 (see Figure 5.8 for load case definition).

TABLE 5.4

Load Distribution Factor (LDF) of Test Model

LDF from 
AASHTO 

Specifications

Test Results

0.6 m Connection Spacing 1.2 m Connection Spacing

LDF
Difference 

(%) LDF
Difference 

(%)

0.647 — 0.644 —
AASHTO standard 0.727 — 12.3% — 12.9%
AASHTO LRFD 0.655 — 1.2% — 1.7%
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in Table 5.5. In AASHTO LRFD specifications (2004), there is no deflection 
limit for FRP bridge decks, although there is a provision for an orthotropic 
bridge deck, which is intended for steel orthotropic deck with ribs. However, 
some researchers suggested L/400 as the deflection limit (Demitz et al. 2003; 
Zhang and Cai 2007). Therefore, the local deflection for this FRP panel is 
considered to be acceptable.

5.2.5.2 Phase II Test Results of Bridge Model

5.2.5.2.1 Fatigue Resistance

No apparent damage on the shear connection and the bridge system was 
observed for the static test. For the fatigue test, the stiffness remained nearly 
constant throughout the loading history, as shown in Figure 5.13, which was 
not surprising as the applied stress range was much lower than the threshold 
value obtained from the single-connector push-out test of 53 MPa (Davalos 
et al. 2010). The test results indicated that the shear connection and the bridge 
system can meet both strength and fatigue requirements established by the 
AASHTO LRFD specifications (2004).

5.2.5.3 Phase III Test Results of T-Beam

5.2.5.3.1 Degree of Composite Action

Based on the strain distributions from the test, with one example shown 
in Figure  5.14 at 100% service load, the neutral axis of the system, which 
determines the degree of composite action, can be plotted as in Figure 5.15. 

TABLE 5.5

Deflection Profile of Test Model

LVDT #  
(see Figure 5.8)

Deflection  
(mm)

Local Deflection  
(mm)

0.6 m Connection Spacing
1 1.91
4 3.31 1.65
2 1.45
5 0.20
3 0.076

1.2 m Connection Spacing
1 1.93
4 3.40 1.75
2 1.40
5 0.20
3 0.10
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Subsequently, the degree of composite action (DCA) can be calculated as 
(Park et al. 2005)

 DCA
N N
N N

(%) 100p 0

100 0
=

−
−

 (5.4)

where N0 and N100 are predicted neutral axes corresponding respectively 
to non- and full composite actions, which can be calculated respectively as 
202 and 256 mm (Zou 2008), and Np is the neutral axis for partial composite 
action, which is about 213 to 218 mm from Figure 5.15. Thus, the degree of 
composite action of the system can be calculated to be about 25%. It is inter-
esting to observe that the effect of connection spacing is only marginal for 
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both 0.6 and 1.2 m spacing, as the neutral axes are very close, as shown in 
Figure 5.15. Further study is necessary to evaluate the effect of spacing on the 
degree of composite action.

5.2.5.3.2 Effective Flange Width

The strain profiles at mid-span are plotted for both top and bottom surfaces 
in Figures 5.16 and 5.17, respectively. These strain values are curve-fitted by 
approximate functions. In bridge engineering, the three-dimensional behav-
ior of a bridge system is usually reduced to the analysis of a T-beam sec-
tion with a reduced width of deck in relation to center-to-center spacing of 
stringers, over which the longitudinal normal stresses are assumed to be 
uniformly distributed, which is termed effective flange width. This con-
cept will be further discussed in Section 5.3. Based on definition of effective 
flange width, the longitudinal normal stress is assumed to be uniformly dis-
tributed along the panel section. The effective flange width can be expressed 
as the integral of normal stress distribution divided by the maximum stress 
at the panel-stiffener intersection as

 b

dx dx2

e

x

b

b

x

b

/2

/2

max

0

/2

max

∫ ∫
=

σ

σ
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σ

σ
−  (5.5)

The average normal stress, σx , which can be assumed uniform along its 
segmentally discrete width h, can be obtained from the results of the strain 
gages. The integral of the in-plane normal stresses, i.e, normal stress parallel 
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to the deck, can be approximated as the summation of the discrete values 
over the panel section, which can be expressed as

 dx hx

b

b

x i i
i

n

/2

/2

,
1

∫ ∑σ = σ
− =

 (5.6)

where σx,i is the normal stress calculated from the normal strain at strain 
gage i, σmax is the stress value at the panel-girder centerline, hi is the width for 
each block, and n is the total number of blocks.
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Based on (5.5) and (5.6), the effective flange width was calculated to be 
about 0.63 m, which is about 50% of the actual flange width. Therefore, a 
reduction factor needs to be introduced to calculate the effective flange 
width for bridges with a partial DCA vs. the effective flange width for full 
composite action, which will be discussed in Section 5.3.

5.2.5.3.3 Failure Mode at Strength Limit

The T-section displayed nearly linear elastic behavior until the load reached 
about 220 kN, and then the load-deflection curve showed a shallow nonlin-
ear behavior, as shown in Figure 5.18. The maximum load was about 356 kN. 
The T-section failed by local buckling of the flange of the steel girder, as 
shown in Figure 5.19, which indicated that the FRP deck cannot brace the 
steel girder as effectively as a concrete deck. This also corroborates the find-
ing of partial composite action (estimated as 25%), as described before.

5.2.6 Finite Element Model

An FE model was created to simulate the tests described above using 
ABAQUS (Dassault Systèmes 2007), as shown in Figure 5.20. The model con-
sisted of three parts: steel stringers, FRP deck, and shear connections.

The steel was modeled as a linear elastic isotropic material with the modu-
lus of elasticity equal to 200,000 MPa and the Poisson’s ratio equal to 0.3. The 
elements used consisted of four-node general purpose shell elements, with 
reduced integration, hourglass control, and finite membrane strains. These 
elements in ABAQUS are commonly referred to as S4R (Dassalt Systems 
2007). The cross-bracings were modeled by two-node beam elements.

As shown in Figure  5.3, the FRP deck consisted of top and bottom 
facesheets, and a core with sinusoidal shape. It is demanding to model the 
actual geometry of the FRP deck. Therefore, the FRP deck was simplified 
into an equivalent FRP plate. The properties of the FRP plate, as shown in 
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Table 5.6, were obtained using a stiffness analysis based on homogenization 
theory as shown in Chapter 2 and verified by bending tests on discrete FRP 
panels, as shown in Section 5.2.9. The same S4R elements were used to model 
the equivalent FRP plate.

The most important characteristic of this model is to simulate the interac-
tion between the FRP deck and the steel girder. This was achieved using mul-
tiple-point constraint connector elements (CONN3D2 in ABAQUS) among the 

FIGURE 5.19
T-section prior to failure.

FIGURE 5.20
FE bridge model.
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common nodes over the center contact section between the top flange of the 
beam and the bottom of the deck, as shown in Figure 5.21. Each connector 
element extended between the centerline of the beam flange thickness and 
the centerline of the deck thickness. The following boundary conditions for 
the connector element were specified: (1) all three rotational degrees of free-
dom are coupled between the beam and the deck (no relative rotation), (2) the 
vertical displacement in the z direction is coupled (no relative displacements), 
and (3) elastic displacements are prescribed in the x and y directions, by vary-
ing the elastic displacement constants, to simulate partial composite behavior 
between the deck and the girder, where the stiffness was 1.46 kN/mm based 
on the testing results from Chapter 4 and Davalos et al. (2011).

The patch load on the physical test specimen consisted of a 600 × 250 mm 
area, which was applied as a pressure load over the elements. Pin-roller con-
straint was used to represent the simply supported boundary conditions 
from the test.

5.2.7 FE Analysis Results

Figure 5.22 displays the displacement contour of the FRP panel subjected to 
load case 2 as shown in Figure 5.8. The deflections are shown in Table 5.7, 
where good correlations can be observed between the FE and testing results 
as shown in Table 5.5. Using the data reduction techniques as shown in (5.3) 

a

y

x

FIGURE 5.21
Illustration of connector element.

TABLE 5.6

Equivalent Properties of FRP Panel

Ex (Mpa) Ey (Mpa) vx Gxy (Mpa)

In-plane 2,560 2,300 0.303 560
Bending 5,640 5,640 0.303 1,400
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and (5.5), the LDF and effective flange width for the connection spacing at 
0.6 m are 0.621 and 0.75 m, respectively, which are close to the testing results 
of 0.647 and 0.63 m, illustrating the relative accuracy of the FE model formu-
lated herein. The FE model can be used to carry out parametric studies.

5.2.8 Conclusions

In this section, a one-third scaled bridge model consisting of an FRP sand-
wich deck attached to three steel girders by a mechanical connector was 
constructed and tested. A T-beam section was cut out from the scaled bridge 
to be tested under three-point bending until failure. An FE model was con-
structed to simulate the tests. Since the practical spacing for the connectors 
was about 0.6 to 1.2 m, compared to conventional concrete deck connec-
tion spacing of 0.15 to 0.25 m, there is a partial degree of composite action 
between the deck and stringers. In the AASHTO standard (1996) and LRFD 
(2004) specifications, slab-on-girder bridges can be designed with either 

FIGURE 5.22
Deformed shape of panel.

TABLE 5.7

Deflection Profile of Bridge Model

Deflection 
Point

Deflection 
(mm)

Local Deflection 
(mm)

0.6 m Connection Spacing
1 1.77
2 2.81 1.12
3 1.54
4 0.45
5 0.12
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noncomposite or full composite action, but there is no provision for a partial 
degree of composite action. Therefore, this section was directed to study the 
effect of the partial composite action on the performance of the bridge sys-
tem. Based on this study, the following conclusions can be drawn:

 1. The bridge system and shear connections were able to sustain a cyclic 
fatigue loading equivalent to a 75-year bridge service life span, and 
showed nearly no stiffness or strength degradation for both static 
and fatigue tests. Therefore, the prototype shear connection used 
can adequately perform at a bridge system level and be applicable in 
practice. About 25% degree of composite action can be achieved with 
the prototype shear connection.

 2. It is possible to use AASHTO LRFD specifications (2004), and 
AASHTO standard specifications (1996) can be used to predict load 
distribution factors for FRP decks on steel girder bridges with par-
tial degree of composite action, where the former provides better 
predictions for the bridge system considered in this study.

 3. The effective flange width for bridges with partial DCA can be cal-
culated from the effective flange width for full composite action, 
with the introduction of a reduction factor R, for a specified percent 
of composite action, which will be discussed in Section 5.3.

 4. The two different connection spacings used in the present model, 0.6 
and 1.2 m, do not have a significant impact on the structural behav-
ior or performance, such as load distribution factor or degree of com-
posite action, for the FRP deck on the steel girder system considered 
in this study. Further study is required to evaluate the effect of con-
nection spacing.

 5. The panel local deflection ratio is about L/700, which is considered to 
be acceptable. The failure mode of the bridge system was local buck-
ling of the top flange of the steel girder, while the deck remained 
relatively intact.

 6. Good correlations can be observed between the testing and FE results.

5.2.9 Evaluation of FRP Panel Properties

5.2.9.1 Equivalent Material Properties Based on Homogenization Theory

Equivalent properties of the FRP panel were obtained following the method 
presented in Chapter 2. First, the layer properties of the facesheet were calcu-
lated based on constitute materials as shown in Table 5.1 and the volume frac-
tions from Table 5.2, with the results shown in Table 5.8. The stiffness of the 
facesheet was then predicted using lamination theory, as shown in Table 5.9. 
Stiffness evaluation of the core was based on a homogenization concept and 
mechanics of materials approach, with the results shown in Table 5.9. Finally, 
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the equivalent 2D orthotropic properties of the sandwich panel were calcu-
lated by modeling it as a three-layer laminated system of top and bottom faces 
and core using the lamination theory, with the results shown in Table 5.10.

5.2.9.2 Test Setup

To evaluate the accuracy of the equivalent properties obtained in Table 5.10, 
the three FRP panels, which were used as a deck for the scaled bridge, were 
tested to obtain their stiffness prior to the installation of the scaled bridge. As 
described earlier, the panels were 1.8 m wide (transverse direction as shown 
in Figure 1.1) and 2.74 m long (longitudinal direction as shown in Figure 1.1). 
As shown in Figure 5.23, the panels were supported along the longitudinal 
direction. A patch load was applied using a 245 kN actuator over an area of 
0.6 × 0.25 m2, as shown in Figure 5.23. The panels were loaded up to 45 kN 
with force control at a loading rate of 9 kN/min at five different locations, 
numbered 1 through 5, as shown in Figure 5.24. For panel 1, 10 unidirectional 
strain gages were bonded at the five locations to measure longitudinal and 
transverse strains. Five LVDTs were installed below the deck to measure ver-
tical displacements at these locations. For panels 2 and 3, only the displace-
ments at the center of the panel, i.e., at location 3, were measured.

TABLE 5.8

Stiffness Properties of Facesheet Lamina

E1 (MPa) E2 (MPa) G12 (MPa) G23 (MPa) v12 v23

CDM 3208 35,900 11,100 2,810 3,030 0.305 0.509
CDM 3208 CSM 17,400 17,400 6,200 6,200 0.406 0.406
Bonding layer 9,820 9,820 3,510 3,510 0.397 0.397

TABLE 5.9

Stiffness Properties of Facesheet and Core

Ex (MPa) Ey (MPa) vx Gxy (MPa)

Facesheet 13,600 14,100 0.304 3,500
Core 530 1.0 0.431 0.7

TABLE 5.10

Equivalent Properties of FRP Panel

Ex (MPa) Ey (MPa) vx Gxy (MPa)

In-plane 2,940 2,641 0.303 648
Bending 6,488 6,488 0.303 1,600
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5.2.9.3 Test Results

The measured deflections and strains are presented in Tables 5.11 and 5.12. The 
units for the displacement and strain are mm/kN and microstrain/kN, respec-
tively. L represents longitudinal strain, and T represents transverse strain. The 
transverse strain gage at location 4 failed and no strain data were available.

5.2.9.4 FE Analysis

The testing results as shown in Tables 5.12 and 5.13 cannot be directly used 
to evaluate the accuracy of the equivalent properties as shown in Table 5.10. 

FIGURE 5.23
Panel test setup.
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FIGURE 5.24
Loading positions and instrumentations.
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TABLE 5.11

Test Results—Deflections

Test Deflection (10–2*mm/kN)

Load Case
1 

(LVDT1)
2 

(LVDT2)
3 

(LVDT3)
4 

(LVDT4)
5 

(LVDT5)

1 –15.3 –15.4 –15.9 –15.7 –12.6
2 –14.2 –24.4 –17.5 –12.8 –15.4
3 –16.7 –18.2 –19.8 –18.3 –16.9
4 –14.1 –12.4 –17.5 –25.0 –15.3
5 –12.2 –15.7 –16.1 –16.1 –16.3

Panel 2 –15.0 –18.8 –20.6 –19.4 –17.4
Panel 3 –17.1 –19.6 –21.5 –20.0 –18.4

TABLE 5.12

Test Results—Longitudinal and Transverse Strains

Test Longitudinal Strain (microstrain/kN)

Load Case 1L 2L 3L 4L 5L

1 19.5 13.8 9.6 13.2 8.4
2 15.7 27.1 16.6 12.5 15.2
3 13.2 19.4 24.1 19.9 12.9
4 12.4 13.1 14.8 25.4 11.3
5 8.9 14.6 9.1 12.8 18.9

Test Transverse Strain (microstrain/kN)

Load Case 1T 2T 3T 4T 5T

1 13.9 2.0 7.0 N/A 2.5
2 2.4 10.4 3.1 N/A 2.1
3 6.2 2.8 14.8 N/A 6.2
4 1.7 3.8 2.5 N/A 1.7
5 1.4 1.2 6.8 N/A 13.5

TABLE 5.13

Deflection Correlations between Test and FE Results

Location

LC 1 LC 2 LC 3 Panel 2 Panel 3

Test FE Test FE Test FE Test FE Test FE

1 15.9 14.0 14.2 13.6 16.7 13.8 15.0 13.8 11.4 13.8
2 15.5 13.6 24.7 23.4 18.2 16.8 18.8 16.8 19.6 16.8
3 16.0 13.8 17.5 16.8 19.8 18.2 20.6 18.2 21.5 18.2
4 15.9 13.6 12.6 11.9 18.3 16.8 19.4 16.8 20.0 16.8
5 12.4 10.2 15.4 13.6 16.9 13.8 17.4 13.8 18.4 13.8

Difference (%) 16.7 6.7 13.9 15.0 13.9
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Therefore, an FE model was constructed to simulate the bending test. Similar 
to the FE model for the scaled bridge, the FRP panel was modeled as an 
equivalent FRP plate using S4R shell elements, with 2D orthotropic prop-
erties as shown in Table 5.10. The pin-roller boundary condition and load-
ing conditions as those used in the test were simulated in the FE model. 
Since load cases 1 and 2 are symmetric to load cases 4 and 5, only results for 
load case 1 through 3 are reported in Tables 5.13 and 5.14 for deflections and 
strains, respectively.

5.2.9.5 Correlations between Testing and FE Results

As can be seen from Tables 5.11 and 5.12, although load cases 1 and 2 are 
symmetric to load cases 4 and 5, the deflections and strains obtained from 
the tests are not symmetric with minor differences, due to geometric imper-
fections and manufacturing errors of the samples. Therefore, average values 
of load cases 1 and 5, and load cases 2 and 4 are shown in Tables 5.13 and 5.14.

As can be seen from Tables 5.13 and 5.14, the differences between the test-
ing and FE results are consistent for both deflections and strains. For deflec-
tion, the differences between FE and testing range from 6.7 to 16.7%, with an 
average value of 13%. For strain, the difference between test and FE analysis 
varies from 7 to 20%, with an average value of 13%, except for load case 2, 
since the strains are small in the transverse direction. To compensate for the 
differences between the testing and FE model, the equivalent properties, as 
shown in Table 5.12, are reduced to 87%, as shown in Table 5.13, which are 
subsequently used in the FE model of the scaled bridge.

TABLE 5.14

Strain Correlations between Test and FE Results

Strain Location

LC 1 LC 2 LC 3

Test FE Test FE Test FE

1L 19.2 18.3 14.0 11.4 13.2 12.1
2L 14.2 11.7 26.3 24.8 19.4 16.3
3L 9.4 12.1 15.7 16.1 24.1 20.8
4L 13.0 11.7 12.8 10.6 19.9 16.3
5L 8.6 7.1 13.2 11.4 12.9 12.1

Difference (%) 7.7 12.6 14.7

1T 13.7 12.7 2.1 1.2 6.2 5.0
2T 1.6 2.2 10.4 10.1 2.8 2.3
3T 6.9 5.0 5.3 0.9 14.8 13.0
4T N/A 2.2 –3.8 –0.7 N/A 2.3
5T 1.9 1.7 1.9 1.2 6.2 5.0

Difference (%) 7.2 207.3 20.7
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5.3  Evaluation of Effective Flange Width by Shear Lag Model

5.3.1 Introduction

In bridge engineering, a deck-and-girder system acting compositely is usu-
ally reduced to the analysis of a T-beam section characterized by the ele-
mentary beam theory, and called beam-line analysis. In this approach, and 
consistent with beam theory, the longitudinal normal stress on the deck sec-
tion is assumed to be constant. However, due to in-plane shear flexibility of 
the deck, the longitudinal normal stress over a center-to-center bridge deck 
section is nonuniform along its transverse cross section, with the maximum 
value occurring at the mid-line junction with the girder, and gradually 
decreasing toward the center spacing line. This nonuniform distribution of 
stress is known as shear lag. The stress distribution depends on several fac-
tors, such as cross-sectional dimensions and stiffness of the deck (flange) and 
girder and loading conditions, resulting in analytical solutions not easily 
applicable in practice. Therefore, an effective flange width is used in design 
practice to simplify the problem. The effective flange width is defined as 
a reduced width of deck, in relation to center-to-center spacing of girders, 
over which the normal or longitudinal stresses are assumed to be uniformly 
distributed, based on the premise that the stress resultant over the effective 
width should be equal to the stress resultant over the actual flange width. 
This concept was adopted in both AASHTO standard (1996) and AASHTO 
LRFD specifications (2004), defined primarily for concrete decks in composite 
steel bridges. The Canadian highway bridge design code CSA (2000) defined 
the effective flange width in a similar manner as AASHTO (1996), with for-
mulas primarily developed by Cheung and Chan (1978). Both AASHTO and 
Canadian specifications consider span length and girder spacing as the most 
important parameters that can affect effective flange width. The AASHTO 
LRFD code additionally includes slab thickness and girder dimensions.

Numerous studies have been conducted on this topic, most of which were 
focused on concrete decks. Moffat and Dowling (1975) studied the effective 
flange width for steel box girder bridges using FE analysis. The bridges were 
loaded with both uniform load and point load. They concluded that the ratio 
of girder spacing to span length was the most significant factor, and load-
ing types and positions were other factors that affected the effective flange 
width. Moffat and Dowling (1978) later studied the effective flange width 
provisions in the British bridge code and pointed out that the nondimen-
sional ratio of flange width to span length was the most dominant parameter, 
and girder size and deck thickness had little effect on the effective flange 
width for most practical bridges. Cheung and Chan (1978) used the finite 
strip method to study a wide range of steel bridges and box girder bridges. 
It was also concluded that girder spacing and bridge span length were major 
factors, while slab thickness and girder sections had little effect on effective 
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flange width. Also, the effective flange width was found to be independent 
of the number of traffic lanes, and upper and lower bound values could be 
provided from models for multiple girder bridges under a uniformly distrib-
uted load and single T-beam sections under a point load, respectively.

Ahn et al. (2004) used a simply supported reference bridge to compare the val-
ues of effective flange width from several design specifications/codes, including 
AASHTO, BS5400, Canadian code, Japanese code, and Eurocode 4. Amadio et al. 
(2004) evaluated the effective flange width according to Eurocode 4 at ultimate 
strength state, by testing four composite T-beams until failure. They found that 
the effective flange width approached the whole slab width when the T-beam 
was close to failure. They concluded that it was conservative to define the same 
effective flange width for both service limit and ultimate limit states, but pro-
vided separate formulas for service limit and ultimate limit states.

For analytical solutions, Adekola (1968) developed a method that accounted 
for both plane stress and bending stress effects in the shear lag phenomenon, 
where the effective flange width was subsequently divided into the shear 
flange effective width and bending effective flange width. Adekola (1974) 
proposed a more rational basis for defining effective flange width, based 
on girder deflection rather than flange stress. In his definition, the deflec-
tion response of the equivalent T-section was the same as that of the actual 
T-section. By adopting this new definition, he studied the shear lag phenom-
enon with a partial interaction for concrete deck-on-steel stringer bridges, 
and the results showed that effective flange width increased with an increase 
in the degree of interaction or composite action. Song and Scordelis (1990a, 
1990b) conducted harmonic shear lag analysis using plane stress for the 
flanges of simple or continuous beams with different girder cross sections, 
and he presented simplified empirical formulas and diagrams for determin-
ing the shear lag effects in simple beams under various loading conditions.

For timber bridges, Davalos and Salim (1993) studied effective flange width 
for 125 stress-laminated timber bridges by FE analysis. Empirical equations 
for effective flange width were proposed, considering major variables, includ-
ing girder spacing, bridge span length, ratio of girder depth to deck thickness, 
and ratio of longitudinal girder elastic modulus to deck elastic modulus.

There are only limited studies available for effective flange width of FRP 
deck panels accounting for orthotropic behavior. Tenchev (1996) conducted an 
FE parametric study on the shear lag phenomenon for orthotropic plates, based 
on which empirical equations for effective flange width were proposed. Keelor 
et al. (2004) conducted a field study on a short-span bridge in Pennsylvania. 
The bridge was 12.6 m long with five steel girders equally spaced at 1.8 m, and 
had a pultruded FRP deck with a thickness of 19.5 cm, and the design was 
based on full composite action. Their results showed that under service load 
conditions, the effective flange widths corresponded to about 90% of girder 
spacing for interior girders, and 75% of half girder spacing for exterior gird-
ers, respectively. Keller and Gürtler (2005) conducted lab tests on two large-
scale T-sections to study composite action and effective flange width. Each test 
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model was 7.5 m long with a pultruded FRP deck section of 1.5 m wide adhe-
sively bonded to the top flange of a steel supporting beam. The normal strain 
distribution across the width of the FRP section was recorded at both top and 
bottom FRP facesheets. The results showed that under service limit state, the 
normal stress was almost uniform across the panel section. While under fail-
ure limit state, the normal stress decreased toward the panel edges, indicating 
a more pronounced effect of shear lag.

Considering the increasing field implementation of FRP decks, it would 
be advantageous to develop an analytical model to calculate effective flange 
width for orthotropic bridge decks, which is the objective of this section. 
Using a harmonic analysis developed for FRP thin-walled sections (Salim 
and Davalos 2005), a shear lag model is proposed, as described next.

5.3.2 Shear Lag Model

For an orthotropic deck supported by steel girders with full composite 
action, the deck panel can be assumed to be stiffened by the two girders, as 
shown in Figure 5.25. The following assumptions are adopted in this model 
to simplify the problem: (1) the axial force Ny and moment My are assumed 
to be zero, and (2) the twisting moment in the plate is neglected (Mxy = 0). 
When the bridge is subjected to out-of-plane load, the stress distribution due 
to out-of-plane moment is shown in Figure 5.26a, where the deck is under 
compression and the steel girder is under tension, and the compression force 
in the deck is transferred through shear connections at the interface between 
the deck and steel girder. Therefore, only edge shear tractions Nxy and axial 
force Nx are acting on the panel, as shown in Figure 5.27, and the constitutive 
and compliance matrices can be given as
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FIGURE 5.25
Typical panel element with two stiffened edges.
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Based on force equilibrium for an infinitesimal section of the panel as 
shown in Figure 5.28, the equilibrium equations can be expressed as
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The compatibility equation is given as
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Neglecting transverse normal strain and assuming that remains constant 
along the y direction, the governing differential equation can be obtained by 
substituting (5.9) and into (5.8) as
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Equation (5.11) can be reduced to an ordinary differential equation by using 
harmonic analysis proposed by Salim and Davalos (2005), which was used 
to analyze shear lag for thin-walled open and closed composite beams. The 
panel in Figure 5.25 is simply supported at x = 0, a. Thus, the axial panel force 
can be define as
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FIGURE 5.28
Isolated panel elements.
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where Nj(y) is an amplitude function. Substituting (5.12) into (5.11) leads to
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The general solution for (5.13) is given as

 N y C y C y( ) cosh( ) sinh( )j j j j j1 2= ξ + ξ  (5.14)

where C1j and C2j are coefficients that can be determined by boundary condi-
tions and loading conditions at the stiffened edges of the panel. Therefore, 
the variation of shear flow can be expressed as
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The in-plane shear variation can be defined as (Barbero et al. 1993)
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where A  is the extensional stiffness of the cross section, B is the bending-
extension coupling stiffness, which can be neglected since the orthotropic 
FRP panel is usually designed as symmetric and balanced, e(y) is the dis-
tance between the neutral axis of the cross section and the middle surface of 
the flange, V(x) is the resultant shear force acting on the cross section, D is 
the cross section bending stiffness, and φ is the orientation of nonhorizontal 
flange. The in-plane variation of shear 
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And the coefficient in (5.17) can be defined as
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Substituting (5.16) into (5.18), we have

 Q Ae y
aD

I2 ( )
j j= −  (5.19)

where Ij depends on loading condition. If the origin of the y axis is located 
at the center of the cross section, then C2j = 0 due to symmetry, and (5.14) can 
be reduced to

 N y C y( ) cosh( )j j j1= ξ  (5.20)

By ensuring compatibility of shear flow at the junction of flange and web 
(y = −b/2, b/2), C1j can be obtained by equating (5.15) and (5.17). Therefore, the 
normal force resultant and normal stress along the panel can be obtained as
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Based on definition of effective flange width, the longitudinal normal 
stress is assumed to be uniformly distributed along the panel section, as 
shown in Figure  5.2b. The effective flange width can be expressed as the 
integral of normal stress distribution divided by the maximum stress σmax at 
the panel-stiffener intersection as
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Finally, substituting (5.21) and (5.22) into (5.23), and taking only the first-
term approximation for simplicity, the expression for effective flange width 
is given as
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5.3.3 Finite Element Study

5.3.3.1 FE Model Descriptions

To verify the shear lag model developed in the previous section, FE mod-
els for 44 simple-span FRP deck-over-steel girder bridges were constructed 
using ABAQUS (2002) (Zou et al. 2011). The bridge deck was an FRP hon-
eycomb panel produced by Kansas Structural Composites, Inc. (KSCI), 
which can be idealized as a structurally orthotropic panel with homoge-
neous equivalent engineering properties, as shown in Table  5.15 (Davalos 
et al. 2001). The bridge configurations considered are shown in Figure 5.29 
and Table  5.16. Two and three lanes were considered, with widths of 9.31 
and 12.97 m, respectively. Other varied geometric parameters included span 
length, with 11 lengths selected from 15.24 to 91.44 m at increments of 7.62 
m; and girder spacing, with 1.98, 2.59, and 3.51 m for two-lane bridges, and 
3.51 m for three-lane bridges. The FRP panel and steel I-beam components 
were modeled using shell elements (S4R), and beam elements were used to 
model cross-frame bracings. Multiple-point constraint (MPC) rigid elements 
were used to simulate the interaction between the panel and girders.

The following assumptions are adopted in the FE study to simplify the 
analysis effort while retaining adequate accuracy: (1) The bridge deck is ide-
alized as a homogeneous, elastic, and orthotropic slab with uniform thick-
ness. (2) The slab is supported by equally spaced I-shaped steel girders. (3) 
The edges of the slab-and-girder ends are simply supported at the abut-
ments. (4) Full composite action is assumed between the supporting girders 
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FIGURE 5.29
Typical cross section of bridge model.

TABLE 5.15

Equivalent Properties of FRP Panel

Ex (MPa) Ey (MPa) vx Gxy (MPa)

In-plane 2,560 2,300 0.303 560
Bending 5,640 5,640 0.303 1,400
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and slab, i.e., no interface slip at the girder-slab interface. (5) Based on design 
guidelines, no truck wheel load can be placed closer than 0.61 m from the 
roadway edge. For simplicity, the assumption of full composite action is 
adopted in the FE modeling, with the purpose of verifying the accuracy of 
the shear lag model developed in the previous section. In general, however, 
and as noted by Machado et al. (2008), most FRP deck-on-steel girder systems 
are characterized by partial composite action. In that case, a reduction factor 
may be applied to full composite action given by the present shear lag model 
in order to estimate effective flange width for partial composite action, as 
will be shown later.

5.3.3.2 Live Load Position

The AASHTO HS20 truckload from AASHTO LRFD specifications (2004) 
was adopted. It was positioned longitudinally at a selected location to induce 
maximum moment in the bridge models. For three cross-sectional bridge 
cases, one- and two-lane load conditions were selected, and for one cross-
sectional case, one-, two-, and three-lane load conditions were evaluated, as 
shown in Figure 5.30.

5.3.3.3 Data Reduction from FE Results

Similar to the shear lag model, (5.23) was used to calculate effective flange 
width. The average normal stress, σx , which can be assumed uniform along 
its segmentally discrete width h, can be obtained from the output for each 
shell element, as shown in Figure 5.31. The integral of the normal stresses, or 
normal stress resultant, can be approximated as the summation of the dis-
crete values over the panel section, which can be expressed as
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TABLE 5.16

Parameter for Each Cross Section*

Parameter CS1 CS2 CS3 CS4

A 9.3 m 9.3 m 9.3 m 13.0 m
B 8.53 m 8.53 m 8.53 m 12.2 m
S 3.51 m 2.60 m 1.98 m 3.51 m
ds 1.15 m 0.77 m 0.69 m 1.23 m
ts 0.24 m 0.20 m 0.20 m 0.24 m
N 3 4 5 4

* See Figure 5.29 for definition of parameters.
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where σx,i is the normal stress for the shell element i, and n is the total number 
of elements. In (5.23), σmax is the stress value at the location of the panel-girder 
intersection.

5.3.3.4 Comparison between Shear Lag Model and FE Analysis

Effective flange widths from both shear lag model and FE analysis are 
shown in Table 5.17. Both results show similar trends; i.e., the effective width 
increases as the spacing-span aspect ratio, S/L, decreases. When the aspect 
ratio is less than 0.1, the effective width is close to 96% of flange width. The 
largest difference is found for the model with 7.62 m span length, which is 
about 8 to 14%. Overall, the effective flange widths predicted from the shear 
lag model are close to the FE results, and the shear lag model overestimates 
the effective flange width by an average of 6%.
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FIGURE 5.30
AASHTO HS20 truck live load.
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FIGURE 5.31
Stress integration along flange width.
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5.3.4 Comparison between Shear Lag Model and Empirical Functions

Tenchev (1996) conducted a parametric FE study on effective width for ortho-
tropic plates considering pin-roller and fixed-fixed boundary conditions, 
concentrated and uniformly distributed loading conditions, and different 
cross sections. A total of 640 FE models were analyzed to obtain the effective 
flange width, based on which empirical functions were proposed using the 
regression technique as
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where be = effective flange width, b = actual beam flange width, L = span 
length, E = beam flange Young’s modulus in longitudinal direction, and 
G = beam flange in-plane shear modulus.

TABLE 5.17

Comparison of Shear Lag Model and FE

Cross Section Span (m) S/L

be /S Be /S

Difference (%)Shear Lag FE

CS1 7.62 0.460 0.626 0.551 11.997
38.1 0.092 0.974 0.912 6.354
68.6 0.051 0.992 0.941 5.127
91.4 0.038 0.995 0.930 6.541

CS2 7.62 0.340 0.744 0.642 13.667
38.1 0.068 0.986 0.925 6.179
68.6 0.038 0.995 0.962 3.315
91.4 0.028 0.997 0.923 7.502

CS3 7.62 0.260 0.829 0.762 8.004
38.1 0.052 0.991 0.966 2.525
68.6 0.029 0.997 0.975 2.209
91.4 0.022 0.999 0.911 8.774

CS4 7.62 0.460 0.626 0.537 14.172
38.1 0.092 0.974 0.892 8.436
68.6 0.051 0.992 0.955 3.749
91.4 0.038 0.995 0.935 6.023



262 FRP Deck and Steel Girder Bridge Systems

Both the proposed shear lag model and the empirical function of (5.26) were 
used to study a simulated T-beam model with varying modulus ratio E/G and 
aspect ratio b/L. Three modulus ratios were selected: 1, 10, and 30. The aspect 
ratio was varied from 0.1 to 1 for E/G = 1, from 0.08 to 0.88 for E/G = 10, and 
finally from 0.03 to 0.60 for E/G = 30. The boundary condition was assumed to 
be simply supported and the loading was assumed to be uniformly distributed.

The results are compared in Tables  5.18 to 5.20 for E/G = 1, 10, and 30, 
respectively. For E/G = 1, the shear lag model consistently overestimates the 

TABLE 5.18

Comparison between Shear Lag Model and Empirical 
Function for E/G = 1

be /b

b/L Empirical Shear Lag Difference (%)

1.00 0.502 0.584 16.29
0.90 0.551 0.628 14.06
0.80 0.608 0.676 11.29
0.70 0.673 0.728 8.19
0.60 0.743 0.781 5.13
0.50 0.812 0.835 2.85
0.40 0.867 0.886 2.18
0.30 0.901 0.932 3.42
0.20 0.933 0.968 3.75
0.10 1.000 0.992 –0.81

Average 6.63

TABLE 5.19

Comparison between Shear Lag Model and Empirical 
Function for E/G = 10

b/L

be /b

Difference (%)Empirical Shear Lag

0.88 0.244 0.229 –6.20
0.78 0.270 0.258 –4.58
0.69 0.300 0.291 –2.91
0.60 0.338 0.334 –1.15
0.52 0.381 0.383 0.38
0.43 0.448 0.455 1.67
0.34 0.544 0.553 1.58
0.26 0.670 0.665 –0.67
0.17 0.850 0.815 –4.13
0.08 0.940 0.950 1.08

Average –1.49
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effective width. The average difference is about 6.6% between the two models. 
The results are very close for b/L < 0.5, as shown in Table 5.18. For E/G = 10 
and 30, the average differences are 1.5 and 3.8%, respectively. Overall, there 
is a good correlation between the two models, which can further verify the 
accuracy of the shear lag model developed in Section 5.3.2. It is noted that, 
because of the nature of the regression technique, the applications of the 
empirical functions are limited, while the present shear lag model can be 
applied to a wider range of problems and is more suitable for design and 
parametric study purposes.

5.3.5 Application of Shear Lag Model to FRP Deck

The proposed shear lag model was further used to calculate effective flange 
width for the scaled FRP deck-on-steel girder bridge model as shown in 
Section 5.2. Using the shear lag model, the effective flange width is predicted 
to be 1.01 m, which is higher than the testing results because full compos-
ite action is assumed in the present model. Therefore, a reduction factor R 
is suggested in order to account for the effect of partial composite action. 
Accordingly, based on (5.24), we can define be , for partial composite action, as
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TABLE 5.20

Comparison between Shear Lag Model and Empirical 
Function for E/G = 30

b/L

be /b

Difference (%)Empirical Shear Lag

0.60 0.214 0.193 –9.53
0.54 0.234 0.215 –8.09
0.48 0.258 0.242 –6.48
0.41 0.295 0.282 –4.51
0.35 0.338 0.330 –2.37
0.29 0.397 0.395 –0.42
0.22 0.500 0.504 0.77
0.16 0.646 0.639 –1.06
0.10 0.852 0.809 –5.08
0.03 0.993 0.978 –1.49

Average –3.83
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For the scaled bridge model described above, R = 0.62 based on a correla-
tion between testing and analytical results, corresponding to a 25% com-
posite action as reported in Section 5.2. Thus, based on an approximate 
regression of limited data, the following equation is proposed to calculate R 
for a given DCA as

 R 1.025(1 0.0244 )DCA= −  (5.30)

which is shown in Figure 5.32.

5.3.6 Conclusions

In this section, a shear lag model is proposed to calculate effective flange 
width for orthotropic decks on steel girder bridges. To verify this solution, 
a finite element parametric study is conducted on 44 simply supported FRP 
deck-on-steel girder bridges assuming full composite action. By comparing 
effective flange widths from FE analysis and a shear lag model, it is found 
that the shear lag model predicts the effective flange width fairly well for 
interior girders, with an average difference of about 6%. The accuracy of this 
model is further verified by favorable correlation with an existing empirical 
solution, with average differences of 6.6, 1.5, and 3.8% for E/G = 1, 20, and 30, 
respectively.

By comparison between the analytical and testing results for the T-beam 
model shown in Section 5.2, it is illustrated that the proposed shear lag 
model can be further applied to predict effective flange width for bridges 
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with partial DCA, with the introduction of a reduction factor R, for a speci-
fied percent of composite action. To this effect, an empirical relation between 
DCA and R is suggested.
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6
Design Guidelines for FRP Deck–
Steel Girder Bridge Systems

Based on research findings presented in previous chapters and Chen (2004), 
design guidelines are proposed in this chapter for all three bridge compo-
nents: fiber-reinforced polymer (FRP) deck, shear connector, and bridge 
system. A design example is provided to illustrate the use of the proposed 
design guidelines. While the recommendations given for FRP decks are 
focused on a specific sandwich panel, the guidelines for a shear connector 
and bridge system can be used for other types of FRP decks.

6.1 Design Guidelines

6.1.1 FRP Deck

As shown in Figure 6.1, core materials for sandwich structures are primar-
ily subjected to out-of-plane compression and shear, and the facesheet lami-
nates sustain mainly membrane forces due to bending. As pointed out in 
Chapter 3, pure compression and elastic buckling are two failure modes for 
out-of-plane compression. Shear crushing, shear buckling, and delamination 
can occur for out-of-plane shear. The facesheet and core of the honeycomb 
fiber-reinforced polymer (HFRP) sandwich panels are attached by contact 
molding, and are therefore not rigidly connected. Thus, the buckling of the 
core can be described as the instability of an FRP core panel with two rota-
tionally restrained edges, where the degree of the restraint is dependent 
on the bonding layer thickness between the core and facesheet. Therefore, 
the core strength is controlled by two parameters: bonding layer effect and 
core thickness (t, as shown in Figure 6.3). The strength of the facesheet is 
dependent on the configuration of the lay-ups. As shown in Chapter 3, three 
bonding layers and three core thicknesses are considered, with the nam-
ing convention defined in Figure 3.6, where the letters B and C represent, 
respectively, chopped strand mat (ChSM) bonding layer numbers, and core 
thicknesses. The integers i and j (i = j = 1, 2, 3) correspond to their respective 
nominal weights of ChSM layer used. Three different types of facesheet lam-
inates are considered, as shown in Table 6.1. Design guidelines are proposed 
considering various failure modes as follows.
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6.1.1.1 Out-of-Plane Compression

Two distinct failure modes may occur for a panel under out-of-plane com-
pression: pure compression and elastic buckling, where the final failure load 
depends on the lowest value from these failure modes. Figure  6.2 can be 
used to predict compression failure load. The following method is proposed:

Longitudinal
direction 

Transverse 
direction

Straight
component

Sinusoidal
component

h

a

b

FIGURE 6.1
HFRP panel with sinusoidal core configuration.

TABLE 6.1

Plate Configurations for Facesheet Laminate

Laminate 1 Laminate 2 Laminate 3

2 layers 900 g/m2 ChSM 2 layers 900 g/m2 ChSM 2 layers 900 g/m2 ChSM
1 layer biaxial 1 layer biaxial 8 layers biaxial
9 layers uniaxial 1 layer 900 g/m2 ChSM
1 layer biaxial 1 layer biaxial

1 layer 900 g/m2 ChSM
1 layer biaxial
1 layer 900 g/m2 ChSM
1 layer biaxial
1 layer 900 g/m2 ChSM

Thickness 15.0 mm (0.59 in.) 16.5 mm (0.65 in.) 14.2 mm (0.56 in.)

Note:  Biaxial: CDM 3208. 
Uniaxial: CM 1708. 
ChSM: Chopped strand mat.
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 1. In relation to the interface bonding layer thickness (number of lay-
ers), a transition height hT is defined, above which the core undergoes 
buckling failure. Thus, we compare the height of the panel h with the 
transition height hT, as shown in Table 6.2. If h < hT, the failure mode is 
pure compression failure, and we use material compressive strength 
fc, which can be obtained from coupon test results in Chapter 3, as 
controlling strength; otherwise, buckling dominates the failure, and 
we evaluate strength according to

 
A e A e F

A
4.4482

h B h B
1
[ /( 25.4)]

2
[ /( 25.4)]

0
1 2

σ = × + +− × − ×

 (6.1)

 where h is the height of the panel, and all the other parameters are 
listed in Table 6.3.

 2. We calculate the compressive stress based on the most critical load-
ing condition as

 
F
Ac
c

σ =  (6.2)

 where F is the out-of-plane compression force, and Ac is the total in-
plane area of the core walls (Figure 6.3). This stress can be compared 
with the compressive strength obtained from step 1 to find the safety 
factor.

Core
crushing

hT

Fa
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re
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tr
en

gt
h

Core Height

Core
buckling

FIGURE 6.2
Design diagram for compression and shear.

TABLE 6.2

Transition Height for Compression

One Bonding Layer Two Bonding Layers Three Bonding Layers

hT 32 mm 36 mm 38 mm
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6.1.1.2 Out-of-Plane Shear

Three distinct failure modes may occur for a panel under out-of-plane 
shear: shear crushing and shear buckling for the flat component, and inter-
face debonding for the sinusoidal component, where the final failure load 
depends on the lowest value from these failure modes. Figure  6.2 can be 
schematically used to define failure strength for the flat core component. The 
following method is proposed:

 1. We compare the height of the panel h with the transition height hT, as 
shown in Table 6.4. If h < hT, the failure mode is pure shear failure, and 
we use the material shear strength as a controlling strength; other-
wise, buckling dominates the failure, and we define strength as

 
A
t
e A

t
e N

t
0.175 ( )

R
B

R
B1 2 01 2τ = × + +

− −
 (6.3)

TABLE 6.3

Parameters for Equation (6.1)

A1 B1 A2 B2 F0

One bonding layer 957,515 0.2363 124,742 0.7464 8,081
Two bonding layers 87,639 1.0105 954,711 0.2917 8,136
Three bonding layers 1,038,189 0.2985 88,384 1.0765 8,152
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Flat panel 
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t/2

t/2 

a

H
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FIGURE 6.3
Unit cell dimension.
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 where R = h/a is the aspect ratio, t is the thickness of the core wall, 
and all other parameters are given in Table 6.5. The debonding needs 
to be evaluated separately in step 3.

 2. Equivalent shear modulus Gxz can be calculated based on the homog-
enization theory proposed in Chapter 2. For two core thicknesses 
(C2), a more accurate Gxz can be calculated based on Chapter 3 con-
sidering skin effect as

 G e e313.88 5.23 0.99xz

R R0.1113
0.7987

0.1113
20= + +−

− − −

 (6.4)

 where R is the aspect ratio. Next, we calculate shear strain based on 
induced shear load per unit transverse core area:

 
V
G bhxz

γ =  (6.5)

 where b and h are the width and height of the cross section, respec-
tively, as shown in Figure 6.1, and Gxz is the equivalent shear stiffness 
from (6.4). It is noted that the shear strain for the flat core component 
is the same as the global shear strain. Therefore, the shear stress in 
the flat core component is

 G12 12τ = γ  (6.6)

 where G12 is the material shear stiffness. And we compare this stress 
with the shear strength obtained from step 1 to get the safety factor.

 3. Using shear strain obtained from step 2, we can find the interfa-
cial tensile stress for the curved core component based on warping 

TABLE 6.4

Transition Height for Shear

One Bonding Layer Two Bonding Layers Three Bonding Layers

hT 88 mm 94 mm 98 mm

TABLE 6.5

Parameters for Equation (6.3)

A1 B1 A2 B2 N0

One bonding layer 2,103 0.5326 34,611 0.1388 448
Two bonding layers 2,661 0.5097 37,093 0.1355 449
Three bonding layers 3,015 0.4970 38,734 0.1339 450
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theory, as shown in Chapter 3. For two core thicknesses (C2), the 
interfacial tensile stress can be calculated as

 e(1655.78 1655.78 )h
interface

[0.09123 )]1.0221σ = γ − −  (6.7)

 where γ is the shear strain, and h is the height of the panel. We then 
compare the interfacial tensile stress σinterface with the nominal inter-
facial tensile strength in Table 6.6 to define the safety factor.

6.1.1.3 Facesheet Check

The bending moment is carried through the membrane forces of the 
facesheet, as shown in Figure 6.4. And the compressive and tensile force can 
be calculated as

 C T M
h

= =  (6.8)

Compressive force usually controls the design. This force can be compared 
with experimental results as given in Table 6.12 to find the safety factor.

6.1.2 Shear Connector

The prototype shear stud sleeve-type connection as described in Chapter 4 
will be adopted. To design for the shear connector, the interfacial shear 
for each connector needs to be calculated and compared with the strength 
obtained experimentally in Chapter 4, as described below.

C

T

MFacesheet Core

FIGURE 6.4
Forces acting on facesheet.

TABLE 6.6

Nominal Interfacial Tensile Strength

B1C2 B2C2 B3C2 B2C1 B2C3 B3C1 B3C3

Nominal interfacial 
tensile strength (MPa)

8.3 12.1 15.1 8.8 11.8 11.8 20.7
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6.1.2.1 Static Strength and Load-Displacement Formulation (P-Δ Curve)

For the sleeve-type connector as shown in Figure 4.2, the load-displacement 
curves are segmentally linear, as shown in Figure 4.9, with three ranges that 
can be described as

 

= ∆ =

= ∆ =

= ∆ >










k

k

k

1.5 kN/mm, 0–15 mm

7.9 kN/mm, 15–25 mm

1.4 kN/mm, 25 mm

where k is the stiffness of the connection. The yield strength is 102 kN and 
the ultimate strength is 120 kN.

6.1.2.2 Fatigue Strength and S-N Curve

The fatigue test results are shown in Figure  4.10 in terms of fatigue load 
cycles and stress ranges, which can be fitted by a logarithm function as

 N Slog 7.6 0.01096= −  (6.9)

where N is number of load cycles and S is stress range of the shear connec-
tion in MPa.

6.1.3 Bridge System

6.1.3.1 Effective Flange Width

Based on findings from Chapter 5, the effectively flange width beff for the honey-
comb FRP sandwich deck section connected to a steel girder, using the mechan-
ical shear connector with a partial composite action, can be calculated as

 b R

y dy

b a
A
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cosh( )
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2
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, ( )eff
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11

66

∫
=

ξ

ξ ξ = π
 (6.10)

R is a reduction factor as

 R 1.025(1 0.0244 )DCA= −  (6.11)

where DCA = degree of composite action. For design purposes, (6.10) can be 
simplified as
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 b b Reff eff AASHTO= ×  (6.12)

where beff AASHTO is the effective flange width calculated from AASHTO speci-
fications. As pointed out in Chapter 5, (6.12) provides a conservative result.

6.1.3.2 Load Distribution Factor

As shown in Chapter 5, the load distraction factor can be calculated based on 
AASHTO LRFD specifications.

6.2 Example

An example is provided to illustrate the use of the proposed design guide-
lines. The design is based on AASHTO LRFD specifications (2007). The con-
figuration of the example bridge (Figure  6.5) and design assumptions are 
described below:

 1. Simply supported 21.33 m span.
 2. 10.97 m wide accommodating two design lanes.
 3. Five W40 × 199 grade 50 rolled steel girders at 2.44 m on centers, with 

a yield strength fy = 345 MPa.
 4. 254 mm thick FRP honeycomb sandwich deck panel connected to 

steel girders, using the shear connection as described in Chapter 4. 
Assume the spacing is 1.22 m on centers and a DCA of 25%.

 5. The deck configuration is shown in Figure  6.6. The properties of 
facesheet and core material are listed in Table 6.7 through Table 6.9. 
Assume using Laminate 1L as facesheet, one bonding layer, and two 
core thicknesses (B1C2).

2.44 m (8 ft)

254 mm (10 in)

2.44 m (8 ft)

10.97 m (36 ft)

2.44 m (8 ft)2.44 m (8 ft)

FIGURE 6.5
Cross section of the example bridge.
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CM 3205 (0°/90°+ContSM)

CM 3205 (0°/90°+ContSM) 

9 layers UM 1810 (0°/90°+ContSM)

Bonding layer    

9 layers UM 1810 (0°/90°+ContSM)

Bonding layer    
CM 3205 (0°/90°+ContSM)    

CM 3205 (0°/90°+ContSM)    

FIGURE 6.6
FRP deck configurations.

TABLE 6.7

Material Properties of Facesheet

Nominal Weight 
(g/m2)

Thickness 
(mm) Vf

CM 3205 0° or 90° 542.5 0.620 0.3428
CSM 152.6 0.254 0.2359

UM 1810 0° 610.3 0.635 0.3774
CSM 305.2 0.335 0.3582

Bonding layer ChSM 600 3.175 0.1726

TABLE 6.8

Stiffness Properties of Facesheet Lamina

Orientation
E1 

(GPa)
E2 

(GPa)
G12 

(GPa)
G23 

(GPa) v12 v22

CM 3205 0 or 90° 27.72 8.00 3.08 2.88 0.295 0.390
Random 11.79 11.79 4.21 2.36 0.402 0.400

UM 1810 0° 30.06 8.55 3.30 3.08 0.293 0.386
Random 15.93 15.93 5.65 2.96 0.409 0.388

Bonding layer Random 9.72 9.72 3.50 2.12 0.394 0.401

TABLE 6.9

Stiffness Properties of Facesheet and Core

Ex (GPa) Ey (GPa) vx Gxy (GPa)

Facesheet 19.3 12.35 0.32 3.812
Core 0.529 0.000986 0.431 0.000705
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 6. Compressive strength of the facesheet is assumed to be 50% of the 
compressive strength from Table 6.12 for Laminate 1L, i.e., 2.33 kN/mm 
(13.4 kips/in.).

 7. For simplicity, calculations are only provided for an interior girder 
under flexural conditions to meet the requirements of strength, ser-
vice; and shear connector to meet the requirements of strength.

6.2.1 FRP Deck

Using the design guidelines provided in the previous section, we can evalu-
ate the strength of an HFRP sandwich panel for a bridge under a patch load. 
The height of the panel h = 254 mm, the core wall thickness for both curved 
and flat is t = 2.3 mm, the length of the component a = 102 mm, and the aspect 
ratio R = h/a = 2.5. One bonding layer is used at the interface between the core 
and facesheet. The HFRP panel can be treated as a one-way slab supported by 
floor beams, with two sides simply supported and two sides free, as shown 
in Figure  6.7. The maximum applied load corresponds to AASHTO HS20-
44 (AASHTO 2007) design truck wheel load (71,171 N) with a dynamic load 
allowance of 33%:

 P N71,171 1.33 94,658max = × =  (6.13)

According to AASHTO LRFD specifications (2007), the width of the contact 
area between the wheel and bridge deck is 508 mm (20 in.), and the length 
can be calculated as (AASHTO 2007, Section 3.6.1.2.5):

 ℓ = 6.4γ(1 + IM/100) = 6.4(1 + 33/100) = 8.512  in. = 216 mm (6.14)

508 mm
(20 inch)

216 mm
(8.5 inch)

2.44 m (8 ft) 
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Traffic direction
(Longitudinal direction)

FIGURE 6.7
Panel layout.
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where γ, the load factor, is assumed to be 1.0 for safety reasons; IM = dynamic 
allowance percent. It is assumed that the wheel load is evenly distributed over 
the contact area. It is worth pointing out that when designing a bridge deck, 
further distribution along the longitudinal direction is allowed (AASHTO 
2007, Section 4.6.2), which is not considered because the purpose of this 
example is to illustrate how to evaluate the strength of the panel for a given 
loading condition. Proper code/specifications shall be followed in order to 
calculate the design forces, which is beyond the scope of this chapter.

6.2.1.1 Compressive Strength

The compressive stress can be calculated as

 
P MPa

216 508
94,658
216 508

0.86c
maxσ =
×

=
×

=  (6.15)

The panel height is 254 mm. From Table 6.12, we find that the transition 
height for one bonding layer is 32 mm, which is less than 254 mm, and there-
fore buckling controls the design. Substituting all the values into (6.1), the 
buckling strength is found to be 3.48 MPa, which gives a safety factor of 
3.48/0.86 = 4.0. The calculation can be repeated for other core heights, and 
the results are given in Table 6.10.

6.2.1.2 Shear Strength

For convenience, we define a 25.4 mm wide beam with a distributed load q 
acting at mid-span, i.e., b = 25.4 mm, as shown in Figure 6.8. The distributed 
load q can be calculated as

 q P N mm
216 508

94,658 25.4
216 508

21.9 /max=
×

= ×
×

=  (6.16)

TABLE 6.10

Compressive Strength Check

Core Height 
(mm)

Pure 
Compressive 

Strength 
(MPa)

Buckling 
Strength 

(MPa)

Controlling 
Strength 

(MPa) Safety Factor

13 15.9 80.7 15.9 18.5
51 15.9 7.3 7.3 8.4

102 15.9 3.7 3.7 4.3
203 15.9 3.5 3.5 4.0
254 15.9 3.5 3.5 4.0
305 15.9 3.5 3.5 4.0
508 15.9 3.5 3.5 4.0

1016 15.9 3.5 3.5 4.0
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The maximum moment and shear can be obtained by placing the distributed 
load at the mid-span and also close to the support, respectively, as shown in 
Figure 6.8.

The height of the panel is 254 mm, and therefore the aspect ratio

 R 254
102

2.5= =

Using (6.4), we can find the equivalent shear stiffness Gxz = 315 MPa. Based 
on (6.5), the shear strain can be approximated as

 V
G bh

4519
315,000 25.4 254

0.00222
xz

γ = =
× ×

=  (6.17)

q = 21.9 N/mm (125 lb/in) 

216 mm
(8.5 inch)
2.44 m (8 ft) 

2, 768 kN-mm (24,503 in-lb) 

(a) Moment diagram

+

q = 21.9 N/mm (125 lb/in) 

216 mm 
(8.5 inch) 

2.44 m (8 ft) 

4,519 N (1,016 lb) 

209 N (47 lb) 

(b) Shear diagram 

–
+

FIGURE 6.8
Unit width panel loading condition.
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Therefore, according to (6.6), the shear stress in the flat core component is

 G MPa psi4,206 0.00222 9.4 (1,354 )12 12τ = γ = × =  (6.18)

where G12 (4,206 MPa) is the material shear modulus from material test data 
as shown in Chapter 3. From Table 6.3, we find hT = 88 mm, and thus h > hT, 
and buckling controls the design. From (6.3), the shear buckling strength is 
found to be 29.1 MPa, giving a safety factor of 3.8.

To find whether interface delamination is of concern, the shear strain is 
substituted into (6.7), and the interfacial shear stress is found to be 3.7 MPa. 
Comparing with the nominal interfacial strength of 8.3 MPa from Table 6.6, 
it gives a safety factor of 2.3. The procedures can be repeated for other core 
heights, as shown in Table  6.11. It is interesting to note that several other 
panel heights, as shown in Table 6.11 in shaded areas, will fail due to inter-
face delamination.

6.2.1.3 Facesheet Check

The bending moment is carried through the membrane forces of the facesheet, 
as shown in Figure 6.4. From Figure 6.8, we have

 M = 2,768 kN-mm (6.19)

And the compressive and tensile forces (Figure 6.4) can be calculated as

 = = = =C T M
h

2,768
254

10.9 kN  (6.20)

From experimental results, the compressive strength for the facesheet with 
a current configuration is 118.6 kN for b = 25.4 mm, giving a safety factor of 
10.7. Safety factors for other laminate lay-ups (Table 6.1) are given in Table 6.12.

In conclusion, the example panel configuration is sufficient to sustain the 
given patch load.

6.2.2 Bridge System

6.2.2.1 Step 1: Equivalent Stiffness Properties of the FRP Deck

The equivalent properties of an FRP panel are listed in Table 6.13 based on 
procedures to obtain the equivalent engineering properties in Chapter 2 and 
Davalos et al. (2000).
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6.2.2.2 Step 2: Effective Flange Width

For interior girders, the effective flange width for a concrete deck based on 
AASHTO specification (2007) is the smaller value of:

 1. One-fourth the effective span length: 0.25 × 21,330 = 5,333 mm
 2. 12 times the average thickness of the slab, plus the greater of the web 

thickness or half the width of the top flange of the girder: 12 × 254 
± 201 = 3,249 mm

 3. The average spacing of adjacent beams: 2,440 mm

Therefore, beff AASHTO = 2,440 mm. Substituting this value and a DCA of 25% 
into (6.10) and (6.11), we have

 = × = × =b b R 2440 0.62 1513 mmeff eff AASHTO  (6.21)

6.2.2.3 Step 3: Section Properties

Based on beff calculated from (6.21), the total compression force that can be 
provided by the FRP deck can be calculated as

 = × × = × × =−F b f2 1513 2 2.33 7051 kNdeck full eff d  (6.22)

where fd is the compressive strength of the facesheet. It is assumed that the 
compressive force is carried by the two facesheets only. However, based 
on the spacing of the connector, there are a total of 18 connectors along the 
beam. The shear resistance for each connector is

 = ϕ × = × =Q Q 0.85 102 86.7 kNr sc n  (6.23)

TABLE 6.12

Facesheet Check (see Table 6.1 for Laminate Descriptions)

Laminate 1L Laminate 1T Laminate 2 Laminate 3

Failure load (kN) 118.6 62.0 104.0 97.4
Safety factor 10.7 5.7 9.7 9.0

TABLE 6.13

Equivalent Properties of FRP Panel

Ex (GPa) Ey (GPa) vx Gxy (GPa)

In-plane 2.747 1.475 0.321 0.741
Bending 6.417 3.896 0.32 1.422
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where Qn is the nominal capacity of the shear connector as described above 
and φsr is the resistance factor. The total shear force that can be transferred 
through the connectors is

 = × = × =F Q9 9 86.7 780.3 kNd r  (6.24)

The smaller value of Fdeck-full and Fd will be used in the design.
The plastic moment considering contribution from the FRP deck and steel 

girder can be calculated based on dimensions shown in Figure  6.9(a) and 
Table 6.14. By inspection, the plastic neutral axis (PNA) lies in the web of 
the steel beam, which is located a distance from the top of the deck; can be 
calculated to be 677 mm. Therefore;

FRP Deck 

559 mm

PNA 

Pd
Ptfc

Pwt

Pbft

Beam mid
section 

1236
mm68 mm

Pwc
yPNA = 677 mm

(a) Plastic forces for composite section

W 40×199 Steel girder 

8.9 mm 

1236 mm 

526 mm 

35 mm NA

Beam mid
section 

254
mm

(b) Section properties

yNA = 710 mm

FIGURE 6.9
Partial composite sections.
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• Bottom flange in tension:

 = = =

=

P F b t

d

Force : (345)(400)(27) 3731 kN

Moment arm: 546 mm

bft y f bf

bft

 (6.25)

• Top flange in compression:

 = = =

=

P F b t

d

Force : (345)(400)(27) 3731 kN

Moment arm: 409 mm

tfc y f tf

tfc

 (6.26)

• Tension web:

 = = =

=

P F b t

d

Force : (345)(532)(16.5) 3032 kN

Moment arm: 266 mm

wt y wt w

wt

 (6.27)

• Compression web:

 = = =

=

P F b t

d

Force : (345)(396)(16.5) 2251 kN

Moment arm: 198 mm

wc y wc w

wc

 (6.28)

• FRP deck:

 =

=

P

d

Force : 780.3 kN

Moment arm: 550 mm

d

d

 (6.29)

The plastic moment is the sum of the moments of the plastic forces about 
the PNA.

 = + + + + = ×M P d P d P d P d P d 5.245 10 kN-mmP bft bft tfc tfc wt wt wc wc d d
6  (6.30)

TABLE 6.14

Dimensions of W40 × 199

Designation
Area 

(mm2)
Depth 
d (mm)

Web 
Thickness 
tw (mm)

Flange Moment 
of Inertia 
I (mm4)

Plastic 
Modulus 
Zx (mm3)

Width 
bf (mm)

Thickness 
tf (mm)

W 40 × 199 37,677 982 17 400 27 6.202E+9 1.422E+07
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The modular ratio of n is calculated as

 = = =n E
E

GPa
GPa( )

200
1.475

136steel

y deck
 (6.31)

Therefore, the transformed width of the FRP deck is

 = = =b b
n

1513
136

11.2 mmtransformed
eff  (6.32)

The transformed area is

 = × =A b 254 2845 mmtransformed tranformed
2  (6.33)

Based on the shear force transferred through the shear connector, the cor-
responding transformed area of the FRP deck is

 = = × =A F
F

780.3 10
345

2262 mmdeck
d

y

3
2  (6.34)

Since Adeck is less than Atranformed, Adeck will be used to calculate the section 
properties, as shown in Table 6.15, based on dimensions shown in Table 6.14 
and Figure 6.9(b).

The centroid of the section is calculated from the top of the FRP deck as

 = × =y 2.836 10
39941

710 mmNA

7
 (6.35)

The parallel axis theorem is used to get the moment of inertia of the compo-
nents about this centroid, as shown in Table 6.15.

TABLE 6.15

Partial Composite Section Properties (n = 136, DCA = 25%)

Component
Width 
(mm)

Area 
(mm2)

y 
(mm)

Ay 
(mm3)

y-NA 
(mm)

A(y-NA)2 

(mm3)
I0 

(mm4)
Ix 

(mm4)

FRP deck 8.9 2263 127 2.874E+05 –583 3.029E+07 1.217E+07 7.816E+08
Steel 37677 745 2.807E+07 35 1.820E+06 6.202E+09 6.248E+09
Sum 39941 2.836E+07 7.030E+09
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6.2.2.4 Step 4: Load Combinations

Strength I limit state:

 U = φ[1.25DC + 1.50DW + 1.75(LL + IM)]

Service II limit state:

 U = 1.0(DC + DW) + 1.0(LL + IM)

Fatigue and fracture limit state:

 U = 0.75(LL + IM)

where DC = dead load of FRP deck and girders, DW = dead load of wearing 
surface, and LL + IM = live load with dynamic allowance (impact).

6.2.2.5 Step 5: Live Load Effect

For this bridge with 9.75 m horizontal clearance, the number of lanes is 
selected as 2. The multiple presence factor is 1.0.

6.2.2.5.1 Strength Limit State

The dynamic allowance is 33%. The distribution factor for the moment can 
be calculated as 0.66 for interior girder with two lanes loaded following 
AASHTO specifications.

As shown in Figure 6.10, live load moments for truck, tandem, and lane 
load can be calculated as

 

= + + = − −

= + = − −

= = − −

M kN m kips ft

M kN m kips ft

M kN m kips ft

145(5.33) (145 35)(3.2) 1328.7 (980 )

110(5.33 4.72) 1118.5 (825 )

9.3(21.3)
8

531.5 (392 )

tr

ta

ln

2

Therefore, a design moment for the interior girder is

 = + = − −+M kN m kips ft0.66[1328.7(1.33) 531.5] 1517.2 (1119.0 )LL IM

6.2.2.5.2 Service Limit State

The distribution factor for live load deflection is DF = m(NL/Nb) = 1*(2/5) = 0.4.
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6.2.2.6 Step 6: Dead Load Effect

The dead load of a steel girder is 2.90 kN/m (0.199 kip/ft). The bridge FRP deck 
is assumed as 0.718 kN/m2 (15 psf) with a wearing surface of 1.17 kN/m2 (25 psf).

DC: Slab = 0.718*2.44 = 1.75 kN/m (0.12 kips/ft)
Steel girder = 2.90 kN/m
DW: Wearing surface = 1.17*2.44 = 2.92 kN/m (0.2kip/ft)

The induced maximum moments will be

 = = − −M kN m kips ft4.65(21.3)
8

265.7 (196.0 )DC

2

 = = − −M kN m kips ft2.92(21.3)
8

166.1 (122.5 )DW

2

35 kN
(8 kips)

145 kN
(32 kips)

145 kN
(32 kips)

110 kN
(25 kips)

110 kN
(25 kips) 

9.3 kN/m (0.64 kips/ft) 

1.2 m (4 ft) 

21.3 m (70 ft) 

4.3 m
(14 ft)

4.3 m
(14 ft)

FIGURE 6.10
Truck, tandem, and lane load placement for maximum moment.
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6.2.2.7 Step 7: Strength Limit State Check for Interior Girder

Factored strength I moment:

 = + + = − −M kN m kips ft1.0[1.25(265.7) 1.50(166.1) 1.75(1517.2)] 3236.4 (2387 )u

This rolled beam satisfies the compact section requirements. The plastic 
moment is

 = − >M kN m M5245n u

6.2.2.8 Step 8: Service Limit State Check for Interior Girder

6.2.2.8.1 Live Load Deflection Control

 1. From design truck alone:
The front wheel load is P1 = 0.4*35*(1 + 0.33) = 19.12 kN (4.3 kips).
Each of the rear wheel loads is P2 = P3 = 0.4*145*(1 + 0.33) = 72.62 kN 

(17.0 kips).
The corresponding deflection can be obtained from the AISC man-

ual (2005).

The live load deflection is ∆ = < =
span22 mm (0.86 in)
800

27mmtr .

 2. For 25% of design truck the design lane load is:
The live load deflection due to 25% truckload is Δ25%tr = 5 mm (0.21 in).
The live load deflection due to lane load is Δln = 7 mm (0.28 in).

The total deflection is ∆ = ∆ + ∆ = < =
span12mm (0.45in)
800

27mmtotal tr25% ln .

6.2.2.8.2 Permanent Deflection Controls

Since no provision is provided for partial composite action for a permanent 
deflection check, noncomposite sections are assumed to be conservative. For 
both flanges of noncomposite sections

 = <f R f MPa0.80 275.8f h yf

The service II moment is

 = + + = − −M kN m kips ft1.0(265.7 166.1) 1.3(1517.2) 2404.2 (1773.2 )s

 = = ×
×

= <f M
S

MPa ksi MPa ksi2404.2 10
1.25 10

192.3 (27.6 ) 275.8 (40 )f
s

6

7
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6.2.3 Discussions

Fatigue of the shear connector can be checked using the S-N curve shown in 
Figure 4.10, by assuming proper average daily truck traffic (ADTT). As illus-
trated from this example, an FRP deck with a low stiffness can still contrib-
ute to the stiffness and strength of the system. With 25% DCA and n = 136 
(n = 6~10 for normal weight concrete), the stiffness and strength can be 
increased by 16 and 7%, respectively. Therefore, it is advantageous to include 
an FRP deck in the design by properly considering its DCA.

6.3 Conclusions

Design guidelines are provided for an HFRP sandwich panel with sinusoi-
dal core geometry, and an example is given to illustrate the application of 
guidelines. It is expected that this study will not only contribute to the devel-
opment of design specifications and facilitate the acceptance of this inno-
vative lightweight structure, but also provide a base for developing design 
guidelines for other types of FRP sandwich structures.
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7
Systematic Analysis and Design Approach 
for Single-Span FRP Deck-Stringer Bridges

7.1 Introduction

Previous chapters deal with fiber-reinforced polymer (FRP) deck–steel girder 
bridge systems. FRP decks can also be supported by FRP stringers. Therefore, 
in this chapter, a systematic approach for analysis and design of all FRP deck-
stringer bridges (Qiao et al. 2000) is presented. This approach (Figure 7.1) is 
based on analyses at the microlevel (material), macrolevel (structural com-
ponent), and system level (structure) to design all FRP deck-stringer bridge 
systems. First, based on manufacturer’s information and material lay-up, ply 
properties are predicted by micromechanics. Once the ply stiffness proper-
ties are obtained, macromechanics is applied to compute the panel mechani-
cal properties. Beam or stringer stiffness properties are then evaluated from 
mechanics of thin-walled laminated beams (MLB). Using elastic equiva-
lence, apparent stiffness properties for composite cellular decks are formu-
lated in terms of panel and single-cell beam stiffness properties, and their 
equivalent orthotropic material properties are further obtained. For design 
analysis of FRP deck-stringer bridge systems, an approximate series solution 
for the first-order shear deformation orthotropic plate theory is applied to 
develop simplified design equations, which account for load distribution fac-
tors for various load cases. As illustrated in Figure 7.1, the present systemic 
approach, which accounts for the microstructure of composite materials and 
geometric orthotropy of a deck system, can be used to design and optimize 
efficient FRP deck and deck-stringer systems.

To introduce this systemic approach shown in Figure 7.1, this chapter is orga-
nized in the following three main sections: (1) panel and beam analyses by 
micro/macromechanics and mechanics of thin-walled laminated beams, (2) 
FRP cellular decks by elastic equivalence analysis, and (3) analysis of a deck-
stringer system by an approximate series solution technique. To verify the 
accuracy of the equivalent orthotropic material properties, a multi-box-beam 
deck fabricated by bonding side-by-side box FRP beams is experimentally 
tested and analyzed by a finite element model. To validate the approximate 
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series solution, the multi-box-beam deck is attached to FRP wide-flange (WF) 
beams and tested and analyzed as a deck-stringer bridge system. The box 
beams for decks and WF beams for stringers were both produced by pultru-
sion. Both deck and bridge systems are tested under static loads for various 
load conditions. To illustrate the systematic design procedures developed in 
this chapter, an example of an FRP deck-stringer bridge is presented.

7.2 Panel and Beam Analysis

Extensive research has been conducted in the area of analysis and design 
of composite materials at micro- and macrolevels. The analysis of FRP 
beams from micro/macromechanics to beam response has been presented 

Macromechanics

Microstructure & Lay-up

Ply Mechanical Properties

Micromechanics

Panel Mechanical Properties Beam Stiffness Coefficients

Beam Displacements
& Max. Stresses

Beam Equations

Deck Stiffness Properties

Equivalent Orthotropic
Plate Properties

Deck/Stringer
Bridge System

MLB

Elastic
Equivalence

Approximate Series
Solution

FIGURE 7.1
Systematic analysis protocol for FRP bridge systems.
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in Davalos et al. (1996a). In this section, the analyses of micro/macrostruc-
ture and beam component are briefly reviewed and include (1) constituent 
materials and prediction of ply properties, (2) laminated panel engineering 
properties, and (3) beam or stringer stiffness properties.

7.2.1 Panel Analysis by Micro/Macromechanics

Although pultruded FRP shapes are not laminated structures in a rigorous 
sense, they are pultruded with material architectures that can be simulated 
as laminated configurations. A typical pultruded section mainly includes 
the following three types of layer (Davalos et al. 1996a) (see Figures  7.2 
and 7.3): (1) continuous strand mats (CSMs), (2) stitched fabrics (SFs), and 
(3) rovings or unidirectional fiber bundles. Each layer is modeled as a 
homogeneous, linearly elastic, and generally orthotropic material. Based 
on information provided by the manufacturer, the fiber volume fraction 
(Vf) can be evaluated and used to compute the ply stiffness properties from 
micromechanics models (Luciano and Barbero 1994). For the box section of 
Figure 7.2 and wide-flange section of Figure 7.3, the predicted ply proper-
ties are given in Tables 7.1 and 7.2, respectively, computed using the micro-
mechanic model from Luciano and Barbero (1994). Once the ply stiffness 

101.6 mm (4")

203.2 mm (8")

6.35 mm (1/4")

15.5 oz 90° SF

1/2 oz CSM

208.3/m (62.5/ft) – 61 yield roving

12 oz +/–45° SF 
1 oz CSM

208.3/m (62.5/ft) – 61 yield

15.5 oz 90° SF
1 oz CSM

Total # of 61 yield rovings = 250

Nexus veil

Nexus veil

FIGURE 7.2
Microstructure and dimensions of FRP box beam section.



292 FRP Deck and Steel Girder Bridge Systems

properties for each laminate (panel) of an FRP beam are computed, the 
stiffness properties of a laminated panel can be computed from macrome-
chanics (Barbero 1999). For example, for the box beam shown in Figure 7.2, 
the panel properties (Ex, Ey, νxy , and Gxy ) predicted by the micro/macrome-
chanics models (Luciano and Barbero 1994) correlate well with experimen-
tal results for coupon samples (Table 7.3) tested in tension and torsion.

3/4oz. CSM & 17.7oz. SF
54 rovings (62 yield)

I-section
304.8 × 304.8 × 12.7 mm (12 × 12 × 1/2")

3/4oz. CSM & 17.7oz. SF
54 rovings (62 yield)

3/4oz. CSM & 17.7oz. SF
54 rovings (62 yield)

3/4oz. CSM & 17.7oz. SF
54 rovings (62 yield)

3/4oz. CSM & 17.7oz. SF
54 rovings (62 yield)

3/4oz. CSM & 17.7oz. SF
54 rovings (62 yield)

3/4oz. CSM & 17.7oz. SF

13 layers through the thickness of each panel
Fiber volume fraction: Vf = 44.3%

FIGURE 7.3
Panel fiber architectures of wide-flange beam.

TABLE 7.1

Ply Material Properties of Box Section (Figure 7.2)

Lamina E1 (× 104 MPa) E2 (× 104 MPa) v12 G12 (× 104 MPa)

½ oz CSM 1.4 1.4 0.407 0.5
1 oz CSM 1.2 1.2 0.402 0.4
15.5 oz 90° SF 2.8 0.8 0.389 0.3
12 oz ± 45° SF 2.4 0.7 0.396 0.3
61 yield roving 5.9 2.3 0.343 1.0

TABLE 7.2

Material Properties of Wide-Flange Section (Figure 7.3)

Lamina E1 (× 104 MPa) E2 (× 104 MPa) v12 G12 (× 104 MPa)

¾ oz CSM 1.2 1.2 0.402 0.4
17.7 oz ± 45° SF 2.9 0.8 0.294 0.3
62 yield roving 4.7 1.4 0.278 0.6
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7.2.2 Beam Analysis by Mechanics of Laminated Beams

The response of FRP shapes in bending is evaluated using the mechanics of 
thin-walled laminated beams (MLB) (Barbero et al. 1993). In MLB, the stiff-
ness coefficients (axial, A; bending, D; axial-bending coupling, B; and shear, 
F) of a beam are computed by adding the contributions of the stiffness prop-
erties of the component panels, which in turn are obtained from the effective 
beam moduli. Based on MLB, engineering design equations for FRP beams 
under bending have been formulated (Davalos et al. 1998), and they can be 
easily adopted by practicing engineers and composite manufacturers for the 
analysis, design, and optimization of structural FRP beams or bridge string-
ers. MLB is suitable for straight FRP beams or columns with at least one axis 
of geometric symmetry and can be used to evaluate the stiffness properties 
and response of bridge stringers. As an example, the bending (D) and shear 
(F) stiffnesses of box beam (Figure  7.2) and wide-flange beam (Figure  7.3) 
by MLB are listed in Table 7.4, and experimental results for deflections and 
strains compared favorably with MLB predictions (Salim et al. 1995a; Davalos 
et al. 1996a, 1998).

The panel and beam properties obtained above by micro/macromechanics 
and MLB can be efficiently implemented in deck and deck-stringer system 
design, as described in Sections 7.3 and 7.4.

TABLE 7.3

Panel Properties of Box Section (10.16 × 20.32 × 0.635 cm (4 × 8 × ¼ in.))

Ex Ey vxy Gxy

Experimental 2.3 × 104 MPaa 1.7 × 104 MPaa 0.269a 59.5 × 104 MPa
Micro/macromechanics 2.3 × 104 MPa 1.8 × 104 MPa 0.285 60.6 × 104 MPa
% difference +2.6% +5.2% +5.9% +1.9%

a From tension tests.
b From torsion tests.

TABLE 7.4

Strong-Axis Beam Bending and Shear Stiffness Coefficients by MLB

Beam Stiffness Db (N/m2-m4) Fb (N/m2-m2)

Box (10.16 × 20.32 × 0.635 cm (4 × 8 × ¼ in.)) 5.16E+05 1.55E+07

WF (30.48 × 30.48 × 1.27 cm (12 × 12 × ½ in.)) 4.91E+06 2.24E+07
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7.3 FRP Cellular Decks: Elastic Equivalence

A multicellular FRP composite bridge deck can be modeled as an ortho-
tropic plate, with equivalent stiffnesses that account for the size, shape, and 
constituent materials of the cellular deck. Thus, the complexity of material 
anisotropy of the panels and structural orthotropy of the deck system can be 
reduced to an equivalent orthotropic plate with global elastic properties in 
two orthogonal directions: parallel and transverse to the longitudinal axis of 
the deck cell. These equivalent orthotropic plate properties can be directly 
used in design and analysis of a deck-stringer bridge system, as presented in 
Section 7.4, and they can also serve to simplify modeling procedures in either 
numerical or explicit formulations. The design equations necessary for such 
a model are presented in this section, along with numerical and experimen-
tal verification of the results.

In this section, the development of equivalent stiffnesses for cellular decks 
consisting of multiple FRP box beams is presented. Multicell box sections 
are commonly used in deck construction because of their light weight, effi-
cient geometry, and inherent stiffness in flexure and torsion. Also, this type 
of deck has the advantage of being relatively easy to build. It can be either 
assembled from individual box beams or manufactured as a complete sec-
tion by pultrusion or vacuum-assisted resin transfer molding process. The 
elastic equivalence approach (Troitsky 1987) used in this chapter accounts 
for out-of-plane shear effects, and the results for a multicell box section are 
verified experimentally and by finite element analyses.

7.3.1 Equivalent Stiffness for Cellular FRP Decks

As an illustrative example, we derive the bending, shear, and torsional equiv-
alent stiffnesses for a deck composed of multiple box sections (Figure 7.4).

7.3.1.1 Longitudinal Stiffnesses of Cellular FRP Deck

The bending stiffness of the deck in the longitudinal direction, or x axis in 
Figure 7.4, is expressed as the sum of the bending stiffness of individual box 
beams (Db; see Table 7.4):

 =D n Dx c b  (7.1)

where nc = number of cells. For the section shown in Figure 7.4, b = width of 
a cell, h = height of a cell, tf = thickness of the flange, and tw = thickness of the 
web. If all panels have identical material lay-up and tf = tw = t, (7.1) becomes

 ( )= + +D n E h t h b h t3( ) ( )( )
6x c x

2 2  (7.2)
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where Ex = modulus of elasticity of a panel in the x direction computed by 
micro/macromechanics or obtained experimentally (Table 7.3).

The out-of-plane shear stiffness of the deck in the longitudinal direction, 
Fx, is expressed as a function of the stiffness for the individual beams (Fb):

 =F n Fx c b  (7.3)

where Fb is given in Table 7.4, and nc = number of cells. This expression can 
be further approximated in terms of the in-plane shear modulus of the panel, 
Gxy (see Table 7.3), and cross-sectional area of the beam webs:

 =F n G t h(2 )x c xy  (7.4)

7.3.1.2 Transverse Stiffnesses of Cellular FRP Deck

An approximate value for the deck bending stiffness in the transverse 
direction, Dy, may be obtained by neglecting the effect of the transverse 
diaphragms and the second moment of area of the flanges about their own 
centroids. For a deck as shown in Figure 7.4, with tf = t:

 =D E w t h1
2

( )( )y y
2  (7.5)

where w is the length of the deck in the longitudinal direction and Ey is the 
modulus of elasticity of the panel in the y direction (Table 7.3).

For multiple box sections, the simplest way to obtain the deck’s out-of-
plane transverse shear stiffness is to treat the structure as a Vierendeel 
frame in the transverse direction (Cusen and Pama 1975). For the Vierendeel 
frame (Figure 7.5), the inflection points are assumed at the midway of top 

h

b

2twtftw

tf
w

x

y

z

FIGURE 7.4
Geometric parameters of multicell box deck.
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and bottom flanges between the webs. The shear stiffness in the transverse 
direction, Fy, for the cross section shown in Figure 7.4 may be written as

 =
θ

=
+








F V E

b h
I

b
I

12

2

y
y

w f

 (7.6)

where the moments of inertia I are defined as

 = =I wt I w t
12

; (2 )
12f

f
w

w
3 3

 (7.7)

h

b
2

b
2

q

q

V1

V2

V2

V1

V1 + V1 = V

If

Iw

(a)  Cell distortion

(b) Distortion parameters 

h

b

FIGURE 7.5
Vierendeel distortion in multicell box beam.
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For tf = tw = t, (7.6) can be simplified as

 =
+





F E wt

b b h
2

4

y
y

3

 (7.8)

where Ey is the modulus of elasticity of a panel in the y direction (Table 7.3).

7.3.1.2.1 Torsional Stiffness of Cellular FRP Deck

The torsional rigidity of a multicell section, GJ, is evaluated by considering 
the shear flow around the cross section of a multicell deck. For a structure 
where the webs and flanges are small compared with the overall dimensions 
of the section, Cusens and Pama (1975) have shown that the torsional rigidity 
may be written as

 

∑ ∑ ( )= +GJ A G
ds
t

G ds t4
3

xy
xy

2 3
 (7.9)

where A = area of the deck section including the void area and is defined as 
A = ncbh, and Σ ds/t represents the summation of the length-to-thickness ratio 
taken around the median line of the outside contour of the deck cross section. 
For a constant panel thickness t, the torsional rigidity can be simplified as

 =
+

+ +GJ n bh G t
n b h

n b h G t2( )
( )

2
3
( )c xy

c
c xy

2
3  (7.10)

The above approximate equation is justified by the fact that for a multicell deck, 
the net shear flows through interior webs are negligible, and only the shear flows 
around the outer webs and top and bottom flanges are significant. The second 
term in (7.10) is relatively small compared to the first term and can be ignored.

If the deck is treated as an equivalent orthotropic plate, its torsional rigidi-
ties depend upon the twist in two orthogonal directions. Thus torsional stiff-
ness Dxy may be taken as one-half of the total torsional rigidity given by (7.10) 
divided by the total width of the deck:

 =D GJ
n b2xy
c

 (7.11)

Substituting (7.10) into (7.11) and neglecting the second term in (7.10), we get

 =
+

D n G bh t
n b h( )xy
c xy

c

2

 (7.12)

where Dxy is the torsional stiffness per unit width (N-m3/m2 (lb-in.3/in.2)).
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7.3.2  Verification of Deck Stiffness Equations by Finite Element Analysis

The formulas for bending and torsional stiffnesses obtained in Section 7.3.1 
are based on the assumption that the deck system behaves as a beam and 
does not account for the Poisson effects of the deck. To verify the accuracy 
of the above deck stiffness equations, a finite element analysis of the deck 
system is performed. The model is shown in Figure 7.4 and consists of box 
beams (Figure 7.2) bonded side by side to form an integral deck. The com-
puter program NISA (1994) is used, and the panels are modeled with eight-
node isoparametric layered shell elements. The cellular decks subject to line 
loading for longitudinally supported and transversely supported conditions 
are shown in Figures 7.6 and 7.7, and the model for torsional loading is given 
in Figure 7.8.

7.3.2.1 Verification of Bending and Shear Stiffnesses

The deck bending and shear stiffnesses in the longitudinal and transverse 
directions are used to evaluate mid-span deflections from the following:

 δ = +
κ

PL
D

PL
F48 4

(3-point bending)
i i

3

3
 (7.13)

 δ = +
κ

PL
D

PL
F

23
1296 6

(4-point bending)
i i

4

3
 (7.14)

where P = total applied load, L = span length, κ = shear correction factor 
(κ ≅ 1.0 is assumed in the analysis), and Di and Fi = bending and shear stiff-
ness (i = x for longitudinal or y for transverse directions). The deflections by 
(7.13) and (7.14) in terms of stiffness properties are compared with results 
from the finite element model for actual cellular systems under line loading 
(Figures 7.6 and 7.7). For the longitudinal stiffness verification, the length of 
the decks is kept constant (L = 274.32 cm (108 in.)), and the deflection in terms 
of bending and shear stiffnesses is a function of the number of cells. Each deck 
is simply supported and subjected to either three-point or four-point bend-
ing due to uniformly distributed line loads. The comparisons between the 
predictions of (7.13) and (7.14) based on simplified stiffness formulas and the 
finite element results for actual decks are presented graphically in Figure 7.9.

Similarly, the mid-span deflections in the transverse direction are found by 
modeling several multicellular decks comprised of 10.16 × 20.32 × 0.635 cm 
(4 × 8 × ¼ in.) box sections (Figure 7.7). For these models, the width (w) is kept 
constant (w = 30.48 cm (12 in.)), and the deflection is a function of the number 
of cells. The model is simply supported and subjected to either three-point or 
four-point bending due to uniformly distributed line loads. The results of the 
finite element models and theoretical predictions are shown in Figure 7.10.
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7.3.2.2 Verification of Torsional Stiffness of the Deck

The simplified formula for the torsional rigidity, GJ, of the deck system was 
also verified using finite element analyses, which indirectly serve to verify 
the torsional stiffness of the deck (Dxy). The model shown in Figure 7.8 con-
sisted of a multicellular deck with one end fixed, by constraining displace-
ments and rotations in all three principal directions and all three rotations, 
and the other end subjected to a uniform torque. The longitudinal torsional 
rigidity of a deck is expressed in terms of the angle of twist ϕ and the torque 
applied at the end of the section as

L = 108" ncby

z

x

P

(a) Deck under 3-point bending

L = 108" ncb

P/2

P/2

y

z

x

(b) Deck under 4-point bending

FIGURE 7.6
FE model for verification of longitudinal bending and shear stiffness equations.
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 =
φ

GJ TL
 (7.15)

where T = 2qncbh (as shown in Figure 7.8) is the applied torque. The speci-
men length L is held constant (L = 274.32 cm (108 in.)), and the number of 
cells is used as the design variable. The finite element results are compared 
with the theoretical predictions of (7.10), and the results are presented in 
Figure 7.11.

w = 12"

L = ncb
y

z

x

P

w = 12"
L = ncb

P/2

P/2

y

z

x

(a) Deck under 3-point bending

(b) Deck under 4-point bending

FIGURE 7.7
FE model for verification of transverse bending and shear stiffness equations.
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7.3.2.3 Comparisons and Remarks

As shown in Figures 7.9 to 7.11, a good correlation is obtained between the 
theoretical predictions based on the simplified stiffness formulas and the 
finite element analyses of an actual deck. For the deflection in terms of lon-
gitudinal stiffnesses (Dx and Fx), the maximum percent difference is 4%, and 
for the deflection in terms of transverse stiffnesses (Dy and Fy ), the maximum 
difference is about 10%. For the longitudinal torsional stiffness, the discrep-
ancy of results increases steadily from 6% for one1 cell to 22% for 15 fifteen 
cells. Some limited experimental data available for one and two cells (Salim 
1997) match closely the analytical results. The favorable deflection compari-
sons between beam equations and finite element results indirectly verify 
the accuracy of the deck bending stiffness equations. Similarly, the torsion 
results indicate that the simplified torsional stiffness equations are accept-
able for practical applications. Therefore, the proposed relatively simple stiff-
ness equations account for both shape and material anisotropy of the deck 
and can be used with relative confidence in design analysis of cellular bridge 
deck systems.

φ

φ

L = 108"

ncb

z

x

y

q
h

FIGURE 7.8
Model for verification of torsional rigidity equation.
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Transverse central deflection of a multicell deck (Figure 7.7).
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7.3.3 Equivalent Orthotropic Material Properties

Once the stiffness properties of an actual deck are obtained, it is a simple 
matter to calculate effective material properties for an equivalent orthotropic 
plate. To obtain the equivalent orthotropic plate material properties for an 
actual deck, we can further simplify the design analysis of deck and deck-
stringer bridge systems.

To calculate the moduli of elasticity (Ex)p and (Ey)p for the equivalent ortho-
tropic plate, the relationship D = EI is used, leading to

 = − ν νE D
t b

( ) 12 (1 )x p
x

p p
xy yx3  (7.16)

 = − ν νE D
t l

( ) 12 (1 )y p
y

p p
xy yx3  (7.17)

where the subscript p indicates property related to the equivalent orthotropic 
plate, tp = thickness of the plate (= h for the actual deck, Figure 7.4), bp = width 
of the plate (= ncb for the actual deck), and lp = length of the plate (= w for the 
actual deck). The Poisson’s ratios νij are defined as
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FIGURE 7.11
Torsional rigidity vs. number of cells (Figure 7.8).
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 ν = −
ε
εij
j

i
 (7.18)

where ε is the strain in the i or j direction. For orthotropic materials, the 
Poisson’s ratio must obey the following relationship:

 
ν

=
ν ν

=
ν

E E D D
orij

i

ji

j

xy

x

yx

y
 (7.19)

In this study, we use the approximation νxy = 0.3, which is typically used 
for pultruded composites.

To calculate the out-of-plane shear moduli (Gxz)p and (Gyz)p, the relationship 
F = GA is used, leading to

 =G F
t b

( )xz p
x

p p
 (7.20)

 =G F
t l

( )yz p
y

p p
 (7.21)

Finally, to calculate the in-plane shear modulus (Gxy)p, we use

 =G D
t

( ) 6xy p
xy

p
3  (7.22)

With these equivalent material properties, it is now easy to use explicit 
plate solutions (see Section 7.4) for analysis and design of cellular decks.

7.3.4  Experimental and Numerical Verification 
of Equivalent Orthotropic Material Properties

To indirectly verify the accuracy of the equivalent orthotropic material prop-
erties given in (7.16) through (7.22) (see Section 7.3.3), a multi-box-beam deck 
of 1.524 m × 2.74 m × 20.32 cm (5 ft × 9 ft × 8 in.) (Figure 7.12a) subjected to a 
patch load is tested and analyzed for three load conditions: (1) at the center 
of the deck, (2) at 16 in. to one side from the center along the line AA′, and 
(3) at 16 in. to the other side from the center along the line AA′. The finite 
element program NISA (1994) is used to conduct two distinct analyses: (1) 
the actual deck (Figure 7.13) is modeled using eight-node isoparametric lay-
ered shell elements and the material properties of Table 7.1; (2) an equivalent 
solid orthotropic plate of the same global dimensions as the actual deck is 
modeled using the same elements and the equivalent material properties 
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FIGURE 7.12
Experimental setup of multicell box deck (1.52 m ´ 3.05 m ´ 20.32 cm (5 ft ´ 10 ft ´ 8 in.)).
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computed from (7.16) through (7.22) and given in Table 7.5. The experimental 
results and correlations with finite element analyses are presented next.

7.3.4.1 Experimental Details

The test sample was fabricated by bonding FRP box beams side by side with 
epoxy (Brown 1998). For each load condition, the displacements are recorded 
at several locations with linear variable displacement transducers (LVDTs) (see 
Figure 7.12), and the strains in the longitudinal and transverse directions are 
obtained at three locations by bonding 350 Ω strain gages at the bottom of the 
deck (Figure 7.12(c)). Note from Figure 7.12 that for the asymmetric load cases 
2 and 3, the following displacement values should be approximately equal: 
δ1 and δ5, and δ2 and δ4. Similarly, the following strains should correspond to 
each other: ε1 and ε5, and ε2

2E–02
(Band × 1.0E-3)

View: –.0165238

Z – DisplacementDisplay III – Geometry Modeling System, (6.0.0) Pre/Post Module

Range: 2.040E-05
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0.0
x
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z

Composite Deck

FIGURE 7.13
FE simulation and deflection contour of multicell box deck.

TABLE 7.5

Deck Stiffness Properties and Orthotropic Material Properties for Cellular Deck 

1.5 m × 2.7 m × 20.3 cm (5 ft × 9 ft × 8 in.)

Dx (N-m4/m2) Dy (N-m4/m2) νxy Dxy (N-m4/m2) Fx (N-m2/m2) Fy (N-m2/m2)

7.74E+06 6.47E+06 0.3 3.32E+04 2.18E+08 1.63E+06

Ex (MPa) Ey (MPa) νyx Gxz (MPa) Gxz (MPa) Gyz (MPa)

6.72E+03 3.12E+03 0.25 9.34E+02 4.65E+01 2.16E+01
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7.3.4.2 Experimental Results and Correlation

Comparisons of experimental results and finite element analyses for FRP 
decks under centric loading (load case 1) and asymmetric loading (load cases 
2 and 3) are shown in Tables 7.6 and 7.7, respectively. Tables 7.6 and 7.7 indicate 
that the measured displacements and strains compare relatively well with 

TABLE 7.6

Experimental and Finite Element Comparison for Multicell Box Deck  
under Load Case 1 (Centric)

Parameter Experiment FE (Actual Deck) FE Equivalent Plate

δ1 (mm/kN) 0.04107 0.03572 0.03429

δ2 (mm/kN) 0.05531 0.04904 0.05394

δ3 (mm/kN) 0.11598 0.09365 0.10823

δ4 (mm/kN) 0.05491 0.04904 0.05394

δ5 (mm/kN) 0.04044 0.03560 0.03435

δ6 (mm/kN) 0.08795 0.05884 0.07075

δ7 (mm/kN) 0.08094 0.05884 0.07075

ε1 (με/κΝ) 6.30420 6.38314 7.12073

ε2 (με/kN) –3.29686 –1.30789 –1.75215

ε3 (με/κΝ) 15.38071 13.68956 16.49193

ε4 (με/κΝ) –3.42357 –5.9478 –5.30220

ε5 (με/κΝ) 6.36027 6.38314 7.12073

ε6 (με/κΝ) –2.90777 –1.30789 –1.75215

TABLE 7.7

Finite Element Comparison for Multi-Cell Box Deck under Load Cases 2 and 3 
(Asymmetric)

Load Cases 2 and 3
Load Case 

2
Load Case 

3
Load Cases 

2 and 3
Actual 
Deck

Equivalent 
Plate

δ1 and δ5 (mm/kN) –0.0109 –0.3082 –0.1596 0.0054 –0.0067

δ2 and δ4 (mm/kN) 0.0170 0.0235 0.0203 0.0201 0.0144

δ3 and δ3 (mm/kN) 0.0510 0.0621 0.0566 0.0490 0.0513

δ4 and δ2 (mm/kN) 0.1218 0.1327 0.1273 0.1105 0.1284

δ5 and δ1 (mm/kN) 0.1062 0.1083 0.1073 0.0985 0.1198

δ6 and δ6 (mm/kN) 0.0455 0.0567 0.0227 0.0347 0.0360

δ7 and δ7 (mm/kN) 0.0431 0.0497 0.0464 0.0322 0.0360

ε1 and ε5 (με/κΝ) 5.5285 5.3262 5.4273 2.8764 1.8674

ε2 and ε6 (με/κΝ) –3.7259 –5.2246 –4.4754 –0.4880 –0.1552

ε3 and ε3 (με/κΝ) 6.2497 6.5684 6.4092 6.3977 6.7301

ε4 and ε4 (με/κΝ) –4.8333 –6.9983 –5.9158 –1.1406 –1.3774

ε5 and ε1 (με/κΝ) 17.9507 18.6780 18.3145 15.7153 19.0180

ε6 and ε2 (με/κΝ) –6.0712 –7.7296 –6.9005 –6.6031 –6.0084
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FE models of actual deck and equivalent plate for both the symmetric load-
ing (case 1) and asymmetric loading (cases 2 and 3) cases. For the symmetric 
load case (case 1), the difference of deflection (δ3) under load point between 
the experiment and the FE equivalent plate model is about 6.5%, whereas 
there is a 6.7% difference for longitudinal strain (ε3) at the center of the deck 
(Figure 7.12). As noted in Table 7.7, values for the asymmetric loading (cases 
2 and 3) also compare favorably between the average experiment data and 
FE equivalent plate model when the measurements are close to the applied 
load; the differences are about 0.9% for deflection and 5.0% for longitudinal 
strain under applied load. The good correlation between experiment and 
FE models validates the orthotropic plate material properties obtained by 
elastic equivalence analysis, which can be used next in analysis of an FRP 
deck-stringer system.

7.4 Analysis of FRP Deck-Stringer Bridge System

The equivalent properties for cellular decks and stiffnesses for FRP beams 
can be efficiently used to analyze and design deck-stringer systems. We 
present in this section an overview of a series solution for stiffened ortho-
tropic plates based on first-order shear deformation theory and transverse 
interaction of forces between the deck and the stringers. The solutions 
for symmetric and antisymmetric load cases are used to obtain the solu-
tion for asymmetric loading. Based on deck-stringer transverse interac-
tion force functions, wheel load distribution factors are derived, which 
are used later to provide design guidelines for deck-stringer bridge sys-
tems. Finally, the approximate series solution is verified by testing a 
3.048 m × 3.048 m × 20.32 cm (10 ft × 10 ft × 8 in.) multi-box-beam deck sup-
ported by WF 30.48 × 30.48 × 1.27 cm (12 × 12 × ½ in. FRP) beams; this system 
is also analyzed by the finite element model (NISA 1994).

7.4.1 First-Order Shear Deformation Theory for FRP Composite Deck

A first-order shear deformation theory (Reddy 1984) is applied to analyze 
the behavior of a geometrically orthotropic FRP composite deck. Instead of 
direct modeling of the actual deck geometry, an equivalent orthotropic plate, 
as discussed in Section 7.3, is used to simplify the analysis. The formulas 
for equivalent orthotropic material properties accounting for deck geometry 
and panel-laminated material properties are given in Section 7.3. The equi-
librium equations accounting for first-order shear deformation of an ortho-
tropic plate are:
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 (7.23)

where Aij (i, j = 4, 5) are the intralaminar shear stiffnesses, and Dij (i, j = 1, 2, 6) 
are the bending stiffnesses for an orthotropic material.

The deck-stringer bridge system can first be analyzed as an orthotropic 
plate stiffened by edge stringers (or beams) (Salim et al. 1997). Then the con-
tributions of interior stringers are accounted for in the formulation by con-
sidering the interaction forces and the comparability conditions along rib 
lines between the deck and stringers. The analysis is general with respect 
to (1) size and stiffness of the deck, and (2) type of loading (uniform or con-
centrated). The formulation is concerned first with symmetric and antisym-
metric loading conditions.

7.4.1.1 System under Symmetric Loading Case

A Fourier polynomial series is employed to obtain the solutions for the equi-
librium equations (7.23). The solution for a symmetric loading is
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 (7.24)

where α = iπ/a and β = jπ/b, and Wij , Xij , and Yij are the coefficients to be 
determined to complete the solution. Note that these series approximations 
satisfy the essential boundary conditions. The generalized loading can be 
written as the following infinite double series:

 ∑= α β
=

∞

q x y Q x y( , ) sin sinij
i j, 1

 (7.25)
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Qij are the Fourier coefficients in the representation of the load q(x, y). By 
substituting the general solutions (7.24) and (7.25) into (7.23) and reducing by 
orthogonality conditions (Salim et al. 1995b; Salim 1997), we obtain the fol-
lowing system of equations for any number of terms (i, j):
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where Kij are the deck stiffness coefficients (for a symmetric loading) (Brown 
1998). For a one-term approximation, the constants W0 and X0 are obtained 
by satisfying the boundary conditions of the edge-stiffened orthotropic plate 
(Figure 7.14(b)):
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FIGURE 7.14
Deck-stringer bridge system.
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where
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κ = the stringer shear correction factor, and F and D are, respectively, the 
shear and bending stiffnesses of the stringer and are obtained based on 
mechanics of laminated beams (MLB) (Table  7.4) (Barbero et al. 1993). For 
any interior stringer at any location r (r = 0, 1, . . . , n) (see Figure 7.14(c)), the 
generalized deflection function for any symmetric loading is (Brown 1998)
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7.4.1.2 System under Antisymmetric Loading Case

Analogous to the symmetric case, (7.24) and (7.25) are modified for a first-
term approximation of an antisymmetric loading as
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By substituting (7.29) into (7.23), we obtain the stiffness matrix for an ortho-
tropic deck under antisymmetric loading (Brown 1998). The constants W1 
and X1 are determined as
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where c is the same as given in (7.27). The generalized deflection function for 
antisymmetric loading is
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α κ

+
α







π π + π



w x r R

F D
x
a

r
n

W r
n

( , ) 1 1 1 sin sin 2 cosR
12 2 2 1  (7.31)

where

 =

α κ
+

α




 + +

π






R Q

F D
Q
W

n
b

W1 1 1 4 1 2
3

12
12

2 2
12

12

1

The asymmetric case is obtained by superposition of the symmetric and anti-
symmetric load conditions. By simply adding the symmetric and antisym-
metric responses, the generalized deflection function for an interior stringer 
under an asymmetric load is written as
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7.4.2 Wheel Load Distribution Factors

The above solution is used to define wheel load distribution factors for any 
of the stringers. The load distribution factor for any interior stringer ith is 
defined as the ratio of the interaction forces R(x, r) for the ith stringer to the 
sum of interaction forces for all stringers. The general expressions of load 
distribution factors in terms of the number of stringers m (where m = n + 1) 
for symmetric and asymmetric loads (Brown 1998) are, respectively,
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7.4.3 Design Guidelines

Based on the wheel distribution factors obtained above, the number of 
stringers necessary for a given bridge deck can be determined. The dimen-
sions of the deck are used to evaluate the maximum allowable moment per 
lane (Mmax) according to AASHTO (1989). Then, an equivalent concentrated 
load (Pe) is calculated as (Salim 1997; Brown 1998)

 =P M
L

4
e

max  (7.34)

where L is the length of a stringer (span of the bridge).
The equivalent deck properties (Section 7.3) and the bending and shear 

stiffnesses (D and F) for a given type of stringer (Section 7.2) are then used 
to calculate the edge deflection coefficient Wo or W1. Next a design load (Pd) is 
defined for either a symmetric or asymmetric load case as

 =P P N W( )d e L f max  (7.35)

where NL is the number of lanes and (Wf )max is found from (7.33) as a function 
of number of stringers m. Two design criteria based on the performance of 
stringers and deck can be used to design the system.

7.4.3.1 Design Criterion Based on Performance of Stringer

The mid-span deflection δLL of a stringer is evaluated as

 δ = +
κ





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+P L
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F
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48 4

(1 )LL d

3
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where DLA is the dynamic load allowance factor, and for short-span bridges 
DLA ≅ 0.2 (Salim et al. 1997). Equation (7.36) is then set equal to the maxi-
mum allowable deflection (from AASHTO 1989) to determine the number of 
stringers required for the bridge deck. Once a suitable system is chosen, the 
maximum moment due to live load (MLL) is calculated from

 = +M P L DLA
4
(1 )LL

d  (7.37)

Finally, the approximate maximum extreme fiber normal stress (σc ) in the 
stringer can be found from

 σ = ′M y
Ic
LL  (7.38)

where y′ is the distance from the neutral axis of the stringer to the top surface 
of the stringer and I is the moment of inertia of the stringer. This stress can 
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then be compared with the material compressive or tensile strength to con-
firm that the system will be effective. Also, as an approximation, shear stress 
in the stringer can be estimated as

 τ = +P
A

DLA
2

(1 )d

w
 (7.39)

where Aw is the area of the web panels. The shear stress in (7.39) should be 
less than the shear strength of the stringer.

7.4.3.2 Design Criterion Based on Performance of Deck

Excessive local deck deformation and punching-shear failure may be 
observed in FRP bridge applications. Thus it is necessary in the design pro-
cess to check the local deck deflection and bending and shear stresses in a 
deck section between two adjacent stringers (Davalos and Salim 1993, 1995). 
Further research is needed to address these issues.

7.4.4  Experimental Testing and Numerical Analysis 
of FRP Deck-Stringer Systems

To validate the approximate series solution presented above, an FRP deck 
3.048 m × 3.048 m × 20.32 cm (10 ft × 10 ft × 8 in.) is fabricated by bonding 
side-by-side box beams of 10.16 × 20.32 × 0.635 cm (4 × 8 × ¼ in.) (Figure 7.2); 
the deck is attached to FRP I-beams 30.48 × 30.58 × 1.27 cm (12 × 12 × ½ in.) 
(Figure 7.3) and tested and analyzed as a deck-stringer bridge system. The 
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deck with either three or four stringers is subjected to various static load con-
ditions (Brown 1998). The finite element model with NISA (1994) is shown in 
Figure 7.15 for a three-stringer system under a concentrated centric loading. 
The comparisons among the FE, series solution, and experiments for both 
three-stringer and four-stringer systems under centric loading are shown 
in Figure 7.16, and relatively consistent trends are observed. The maximum 
differences of stringer deflections between experiments and series approxi-
mation are about 16% for a three-stringerr system and 23% for a four-stringer 
system. The detailed study on the experimental program and comparisons 
for various cases can be found in Brown (1998).
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7.5 Design Analysis Procedures and Illustrative Example

General guidelines for the applications of the above series approximation 
solution for design analysis of FRP composite deck-and-stringer bridge sys-
tems and several illustrative design examples are given in Brown (1998).

7.5.1 General Design Procedures

The following step-by-step design procedures are recommended:

 1. Define bridge dimensions and allowable loads.
 2. Obtain deck panel and bridge stringer properties by micro/mac-

romechanics (Luciano and Barbero 1994; Davalos et al. 1996a; 
Barbero 1999) and mechanics of laminated beams (MLB) (Barbero 
et al. 1993).

 3. Determine deck equivalent material properties by the equations 
derived in Section 7.3.

 4. Perform the series approximation analysis and determine the num-
ber of stringers m based on the required deflection limit.

 5. Check the stress level on the stringers.
 6. Check the local stresses, deflections, and other details.

7.5.2 Design Example

As an illustration, a single-lane short-span bridge of 0.48 m (15 ft) width and 
0.79 m (25 ft) span is designed using side-by-side 10.16 × 20.32 × 0.635 cm 
(4 × 8 × ¼ in.) bonded FRP box sections for the cellular deck assembly and 
optimized FRP winged box beams 30.48 × 60.96 cm (12 × 24 in.) (Qiao et al. 
1998; Davalos et al. 1996b) for the stringers (Figure 7.17). The material prop-
erties for the stringers are D = 3.590 × 107 N-m4/m2 (1.248 × 1010 lb-in4/in.2) 
and F = 8.651 × 107 N-m2/m2 (1.940 × 107 lb-in.2/in.2), which are computed 
by micro/macromechanics and MLB. The deflection limit of L/500 and the 
loading of AASHTO HS20 (1989) are considered, and the number of stringers 
(m) is used as a design variable. The edge deflection coefficient for symmetric 
loading is evaluated from (7.27) as Wo = 1.691, and the deflection limit is writ-
ten as a function of the number of stringers m:
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where NL = 1.0 and κ = 1.0. In this example, the dynamic load allowance 
DLA = 0.20 and AASHTO lane moment Mmax = 28,188 kN-m (207.4 kip-ft) are 
used. Solving for the number of winged box beams (stringers) (m) required for 
this single-span bridge, we get m = 6.15, and therefore m = 7 is used, which cor-
responds to 76.2 cm (30 in.) center-to-center spacing of seven longitudinal string-
ers. The maximum stress in the stringer becomes σc = 1.02 kN/cm2 (1.48 ksi), 
which is below the allowable stress of 14.64 kN/cm2 (21.2 ksi) (Qiao et al. 1998).

7.6 Conclusions

As described in this chapter, a systematic approach for design analysis of 
FRP deck-stringer bridge systems is proposed, and the constitutive material 
properties and micro/macrostructure of a composite system are accounted 
for in the design. This design approach (Figure 7.1) includes the analyses of 
ply (micromechanics), panel (macromechanics), beam or stringer (mechanics 
of laminated beam), deck (elastic equivalence model), and finally, combined 
deck-stringer system (series approximation technique). This relatively sim-
ple and systematic concept accounts for the complexity of composite materi-
als and the geometry of the bridge system. The approximate series solution, 
which is used to obtain wheel load distribution factors for symmetric and 
asymmetric loading, is an efficient way to analyze and design single-span 
FRP deck-stringer systems. The present design analysis approach can be effi-
ciently used to design bridge systems and also develop new design concepts 
for single-span FRP deck-stringer bridges.
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Fiber-reinforced polymer (FRP) decks have been increasingly used for new construction 
and rehabilitation projects worldwide. The benefits of using FRP bridge decks, such as 
durability, light weight, high strength, reduced maintenance costs, and rapid installation, 
outweigh their initial in-place material costs when implemented in highway bridge 
projects. FRP Deck and Steel Girder Bridge Systems: Analysis and Design 
compiles the necessary information to facilitate the development of the standards 
and guidelines needed to promote further adoption of composite sandwich panels in 
construction. It also, for the first time, proposes a complete set of design guidelines.  
 
Providing both experimental investigations and theoretical analyses, this book covers 
three complementary parts: FRP decks, shear connectors between the deck and steel 
girders, and the behavior of bridge systems. The text presents stiffness and strength 
evaluations for FRP deck panels and FRP deck–girder bridge systems. While the FRP 
deck studies focus on honeycomb FPR sandwich panels over steel girder bridge systems, 
they can be adapted to other sandwich configurations. Similarly, the shear connection 
and bridge system studies can be applied to other types of FRP decks. Chapters discuss 
skin effect, core configuration, facesheet laminates, out-of-plane compression and 
sheer, mechanical shear connectors, and FRP deck–steel girder bridge systems.  
 
Based on the findings described in the text, the authors propose design guidelines 
and present design examples to illustrate application of the guidelines. In the final 
chapter, they also provide a systematic analysis and design approach for single-
span FRP deck–stringer bridges. This book presents new and improved theories and 
combines analytical models, numerical analyses, and experimental investigations to 
devise a practical analysis procedure, resulting in FRP deck design formulations.  
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