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Preface

The physics of liquids, solutions, glasses, and macromolecular materials comprises
a very large area of physical research. Nowadays these fields grow together and form
the rapidly expanding field of soft-matter physics, which also includes the investiga-
tion of colloids, liquid crystals, and biological materials. Within the large scientific
community of soft-matter research the liquid and/or macromolecular materials are
investigated mostly with physicochemical experimental techniques and by means
of computer simulations. The latter method has in the last 50 years grown from a
part of theoretical physics into what is now called computer experiment, because
the simulation data are analyzed in the same fashion as experimental data. The
only difference between simulational and experimental data is that the underlying
equation of motion (Newton’s or Schrödinger’s equation) is known, but that is in
principle also the case for the experiment. One advantage of the simulation is that
model systems can be studied, which are simpler than the real materials. Another is
that microscopic information can be obtained, which is out of scope of experiments.

However, a theoretical understanding of the behavior of complex materials
requires more than the knowledge of the underlying microscopic equations of
motions. Therefore theoretical concepts on a macroscopic level are required. A
number of such concepts are presented in these lecture notes.

The present lecture notes arose from two courses: “Theory of Liquids and
Polymers I and II,” held at the institute for functional materials (Prof. W. Petry
and Prof. P. Müller-Buschbaum, E13) at the Physics Department of Technische
Universität München in the academic year 2006/2007. The aim of these courses
was to create a mutual understanding and a common theoretical language among
students and scientists working in this institute on such different subjects as liquid
metals, glasses, polymers, and biological materials. The handouts presented at these
courses formed the backbone of the present lecture notes.

The division of the notes into structure/thermodynamics and dynamics arises
from the fact that in classical systems (i.e., materials in which quantum effects
are not dominant) the structural and thermal properties can be studied without the
knowledge of the dynamics. On the other hand, the dynamics of a liquid or other
soft-matter material is strongly dependent on its structure.
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Chapter 1
Introduction

From the standpoint of a crystallographer the term structure of a liquid is ill-
defined, as the crystal structure means the arrangement of the unit cell of a crystal,
which is then repeated by the lattice translations. However the term structure has
become common for liquid and amorphous materials describing the statistics of the
interatomic distances. As we shall see, this statistics can be measured by X-ray (and
neutron) diffraction as the crystalline structure.

We shall not give an introduction to the general statistical mechanics of an
interacting many-body system but take the knowledge of these concepts for granted.

For a thorough introduction to the statistical mechanics of liquids I refer to
the standard textbooks by Boon and Yip [2], Balucani and Zoppi [1], Egelstaff
[4], Hansen and McDonald [9], and March and Tosi [11]. Standard textbooks for
Polymer science are e.g., de Gennes [3] and Sperling [13].

Our starting point is the description of distribution functions which describe the
statistical arrangements of atoms or molecule in a simple liquid.1

The main concepts will involve mean field theories like the Perkus–Yevick theory
and the Random Phase Approximation which relate the forces to the distribution
functions.

The Random Phase Approximation (RPA) will also turn out to be the basis of the
thermodynamics of binary solutions, which has been used by Flory [5] and Huggins
[10] to discuss polymer melts and solutions, as we shall do in the end of Part I.

Before turning to the discussion of polymer melts and solutions we shall try to
get acquainted to scaling concepts by discussing random walks and fractals. On
this basis we then shall discuss the scaling concepts of polymer science. Because
the concept of a random walk is needed to discuss the statistics of a polymer chain,
the equation of motion for the statistics of a Brownian particle (diffusion equation)

1We are going to call a liquid simple if it can be described in terms of a set of pairwise
intermolecular forces or potentials.

W. Schirmacher, Theory of Liquids and Other Disordered Media, Lecture Notes
in Physics 887, DOI 10.1007/978-3-319-06950-0__1,
© Springer International Publishing Switzerland 2015
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2 1 Introduction

is already introduced and discussed in this context and not in the second part of the
present lectures, which is devoted to dynamics.

Part II of the lecture series is then entirely devoted to the discussion of the
dynamics of simple and complex liquids. A useful concept for such a discussion has
proved to be the generalized hydrodynamics introduced by Mori [12] and Zwanzig
[14] (see also Zwanzig [15] and Forster [6]). It will be demonstrated, that another
mean-field-like theory, the mode-coupling theory [7, 8] is capable to both describe
the salient features of the collective dynamics of a simple liquid (Chap. 8) and
the structural arrest with increasing density and/or decreasing temperature (glass
transition, Chap. 11). In Chaps. 9 and 10 different aspects of diffusive single-particle
motion and polymer dynamics are discussed.
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Chapter 2
Structure of Liquids

2.1 Molecular Distribution Functions

The structure of a liquid is governed by the statistical distribution of the centers of
gravity of the atoms or molecules. Of course the latter keep moving, but we can
ask about the atomic distributions if one could perform a snapshot of the atomic
arrangements. The average statistics of such snapshots is what we call the (static)
structure of the liquid.

We therefore pose the question of how a collection of N � 1023 atoms
or molecules (or much less in a computer simulation) are distributed inside a
certain volume V . The probability for these particles to occupy volume elements
d3r1; d3r2; : : : d3rN around positions r1; r2; : : : rN is given by

P.r1; r2; : : : rN /d3r1; d3r2; : : : d3rN : (2.1)

P.r1; r2; : : : rN / is the probability density of the configuration fr1; r2; : : : rN g and
is normalized to 1:

Z

V

NY
˛D1

d3r˛P.r1; r2; : : : rN / D 1 : (2.2)

If a physical quantity A depends on the position of the particles the configura-
tional average can be calculated as

hAi D
Z

V

NY
˛D1

d3r˛A.r1; r2; : : : rN /P.r1; r2; : : : rN / : (2.3)

W. Schirmacher, Theory of Liquids and Other Disordered Media, Lecture Notes
in Physics 887, DOI 10.1007/978-3-319-06950-0__2,
© Springer International Publishing Switzerland 2015
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6 2 Structure of Liquids

One can select n < N particles in order to define the reduced n-particle densities

�.n/.r1; r2; : : : rn/ D NŠ

.N � n/Š
Z

V

NY
˛DnC1

d3r˛P.r1; r2; : : : rN / : (2.4)

In the case of a complete random arrangement, which is realized in an ideal gas,
we have

�.n/.r1; r2; : : : rn/ D
�
N

V

�n
� �n0 : (2.5)

where �0 is called the homogeneous density. The deviation from this random
distribution is given by the n-particle correlation functions g.n/, which are defined
as follows

�.n/.r1; r2; : : : rn/ D �n0g
.n/.r1; r2; : : : rn/ : (2.6)

In all macroscopically homogeneous systems, especially in simple liquids, we
have

�.1/.r1/ D �0 (2.7)

g.1/.r1/ D 1 : (2.8)

In a material, which is homogeneous and isotropic on a macroscopic scale we
have

g.2/.r1; r2/ D g.jr1 � r2j/ (2.9)

g.r/ is called radial pair correlation function or radial pair distribution function
and can, as we shall see in the next section, be determined by neutron or x-ray
diffraction.
�04�r

2g.r/dr is the probability for a particle being present in a spherical shell
of width dr around a given particle at the origin with distance r . Consequently
Z.R/ D �04�

R R
0 drr2g.r/ is the mean number of particles around a given one

within a sphere of radius R. If R is chosen to be near the first minimum of
g.R/, Z.R/ is the (mean) number of nearest neighbors of a given particle (mean
coordination number). g.r/ can be represented mathematically as

g.r/ D 1

�0

X
˛¤0

˝
ı.r � r˛/

˛
; (2.10)

where r˛ is a vector from the particle 0 at the origin to another particle with label ˛.
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Ωd
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q = k2 k1

region where = 0

Fig. 2.1 Geometry for a
scattering experiment with
incoming plane wave and
outgoing spherical wave

2.2 Scattering Theory

We want to describe the (elastic) scattering of X-rays or neutrons from a simple
liquid sample. We study an ingoing plane wave (1st term) and an outgoing scattered
spherical wave (2nd term), as depicted in Fig. 2.1, of the following asymptotic form

 .r/
jrj!1D eik1�r C f .�/

1

r
eik2r (2.11)

The scattering cross-section into the solid angle element d� in the direction of
k2 is then given by the modulus-square of the scattering amplitude

d�

d�
D jf .�/j2 (2.12)

If the scattering potential (the potential between the scattered rays and the
particles) can be decomposed as

V.r/ D
NX
˛D1

v.r � r˛/ (2.13)

the scattering amplitude is given in lowest approximation

f .�/ D � m

2�„2 hk2jVjk1i D � m

2�„2V.q/ D � m

2�„2
NX
˛D1

eiq�r˛v.q/

�
NX
˛D1

eiq�r˛f .q/ ; (2.14)

f .q/ is called form factor and has the unit of length. In the case of energy unresolved
neutron or X-ray diffraction there is no net energy exchange with the sample, i.e.,
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jk1j D jk2j. In an isotropic material the form factor depends only on the modulus of
the exchanged momentum, which is given by

q D jk1 � k2j D k1
p
2Œ1 � cos.�/� D 4�

�
sin

�
�

2

�
; (2.15)

where � is the angle between k1 and k2 and � D 2�
jk1j is the wavelength.

In the case of neutrons, which scatter from the nuclei, whose potential v.r/ is
extremely short-ranged, f .q/ does not depend on q (in the range of interest q <
20Å�1) and is called scattering length and is denoted by the letter b.

Inserting (2.14) into (2.12) and averaging over an ensemble of different configu-
rations we obtain

d�

d�
D jf .q/j2

*
NX

˛;ˇD1
eiq�Œr˛�rˇ�

+
� jf .q/j2NS.q/ ; (2.16)

where S.q/ is the static structure factor

S.q/ D 1

N

*
NX

˛;ˇD1
eiq�Œr˛�rˇ�

+
(2.17)

By means of (2.17) the structure factor can be related to the radial pair
distribution as follows:

S.q/ D 1C 1

N

*
NX

˛;ˇD1
˛¤ˇ

eiq�Œr˛�rˇ�

+

D 1C 1

N

*Z
V

r.e
iqr

NX
˛;ˇD1
˛¤ˇ

ı
�
r � r˛ C rˇ

�+ D 1C �0

Z
V

dreiqrg.r/ (2.18)

where the last equality follows from (2.10) and recognizing that one of the
summations in the double sum is redundant. A complication arises by realizing that
the function g.r/ does not decay for large r but, instead, takes the value 1. If one
substracts this value and takes the Fourier transform of 1 separately one obtains

S.q/ D 1C �0

Z 1

�1
d3reiqrŒg.r/ � 1�C �0ı.q/ (2.19)

As the delta function cannot be measured one usually represents the structure
factor as

S.q/ D 1C �0

Z 1

�1
d3reiqrŒg.r/ � 1� (2.20)
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Fig. 2.2 Left: Structure factor of liquid titanium, measured by Lee et al. [4]. Right: Corresponding
pair distribution function calculated via Fourier-back transform from (2.21) with �0 D 0:05

We can now take advantage of the fact that g.r/ only depends on the modulus of
r and performing the angle integral (see (A.3) of the appendix) to obtain

S.q/ D 1C 4��0

q

Z 1

0

dr r sin.qr/Œg.r/ � 1� (2.21)

In Fig. 2.2 we show the example of the structure factor of liquid titanium, as
measured by Lee et al. [4] by means of X-ray diffraction, together with its Fourier
transform.

2.3 Thermodynamic Relations

We are now assuming that the liquid under consideration can be described by a
classical Hamiltonian

H D
NX
˛D1

1

2
mPr2˛ C 1

2

X
˛¤ˇ

	.jr˛ � rˇj/ : (2.22)

There are the following thermodynamic relationships (equations of state):
Potential Energy

1

N

˝
Epot

˛ D 2��0

Z 1

0

dr r2	.r/g.r/ (2.23)

Pressure

hP i V

NkBT
D hP i 1

�0kBT
D 1 � 2��0

3kBT

Z 1

0

dr r3	0.r/g.r/ (2.24)
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Number fluctuations and isothermal compressibility 
T

hN i2 � hN2i
N

D �0kBT

�
� 1

V

@V

@P

�
T

D �0kBT 
T

D S.q D 0/ D 1C 4��0

Z 1

0

dr r2Œg.r/ � 1� (2.25)

2.4 Direct Correlation Function

The static structure factor can be split in an obvious way into a self and distinct part
by separating the ˛ ¤ ˇ term in the summation over the particles:

S.q/ D 1

N

*
NX

˛;ˇD1
eiq�Œr˛�rˇ�

+
D 1C 1

N

*
NX
˛¤ˇ

eiq�Œr˛�rˇ�

+
� 1C �0h.q/ (2.26)

The self part is just equal to unity, and the distinct part is �0 times the Fourier
transform of the deviation of g.r/ from unity, i.e.,

h.r/ D g.r/ � 1 : (2.27)

We now sub-divide the correlation function h.r/ into a part which involves only
a particular pair of atoms, say r1 and r2 and a part which involves more than two
atoms. Following Ornstein and Zernike, the first term is called direct correlation
function. The second part can be generated by combining several direct functions in
the following way:

h.r12/ D c.r12/C �0

Z
d3r3c.r13/c.r32/

C �20

Z
d3r3

Z
d3r4c.r13/c.r34/c.r42/C : : : (2.28)

The terms under the r3 integral can be summed again to give the function h.r32/:

h.r12/ D c.r12/C �0

Z
d3r3c.r13/h.r32/ (2.29)

This is the so-called Ornstein–Zernike equation. It is the starting point for some
integral equation theories for g.r/ (see Sect. 3.7).

If we introduce the Fourier transform c.q/ of c.r/ and use the convolution
theorem we obtain

h.q/ D c.q/

1 � �0c.q/
(2.30)
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which finally leads to

S.q/ D 1

1 � �0c.q/
(2.31)

2.5 Density Response Function

We can be interested in the density change due to the presence of an external
potential

Vext.r/ D �
X
˛

	ext.r � r˛/ : (2.32)

The average density in the presence of Vext.r/ is given by1

h�.r/iVext
D 1

ZVext

Z
d3r0

V

Y
˛

d3r˛
X
˛

ı.r � r˛/

„ ƒ‚ …
�.r/

e�ˇV fr˛ge�ˇVext.r0/ (2.33)

with the configurational partition function as normalization factor

ZVext D
Z

d3r0

V

Y
˛

d3r˛e�ˇV fr˛ge�ˇVext.r0/ (2.34)

and

V fr˛g D 1

2

X
˛¤˛0

	.jr˛ � r˛0 j/ (2.35)

Defining h�i0 to be the density average with Vext D 0 and going over to Fourier
Transforms we obtain to lowest order in Vext D 0 (linear response)

ı�.q/ D h�.q/iVext
� h�i0 D ˇ

V
h��.q/�.q/i	ext.q/ � �.q/	ext.q/ (2.36)

the (static) response function or susceptibility is therefore given by

�.q/ D ˇ�0S.q/ (2.37)

This is a version of the famous fluctuation-dissipation theorem.

1ˇ D 1=kBT .
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2.6 Mean Field Potential and Random Phase Approximation

In order to formulate an approximate theory for S.q/ it is useful to represent the
interatomic interactions in terms of a mean field potential U.q/ which acts on the
individual atoms as an effective external polarization potential

	pol.q/ � U.q/ı�.q/ : (2.38)

One then can use the non-interacting Curie response function �0 D �ˇ�0
to write down the density change in terms of the real and the effective external
potential:

ı�.q/ D �0
�
	pol.q/C 	ext.q/

�
D �0 ŒU.q/ı�.q/C 	ext.q/�

D �.q/	ext.q/ (2.39)

from which follows

�.q/ D �0

1 � �0U.q/
(2.40)

If we compare this with (2.31) we find

c.q/ D �ˇU.q/ (2.41)

We conclude that �kBTc.r/ has the meaning of a mean-field potential. Iden-
tifying U.r/ with the true pairwise potential 	.r/ is called the Random-Phase
approximation. It gained its name from the theory of interacting electrons (or
nucleons) [6]. There the RPA involves the decoupling of electronic correlation
functions, which is only possible if the wave functions are assumed to have “random
phases”.

2.7 Integral Equation Theories for g.r/

We recall again the Ornstein–Zernike (OZ) relation between g.r/ D 1C h.r/ and
the direct correlation function c.r/ (in a slightly modified form):

h.r/ D c.r/C �0

Z
d3r0h.jr � r0j/c.r 0/ (2.42)

The function c.r/ can, on the other hand, be calculated by functional integral and
functional derivative techniques. Using such techniques and an appropriate diagram
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formalism [3] one can come up with a second relation between c.r/ and g.r/ which
is called the closure relation and constitutes a specific integral equation theory for
g.r/. The most popular closure relations are
Percus–Yevick (PY):

c.r/ D g.r/
�
1 � eˇ	.r/

�
(2.43)

Hypernetted-Chain (HNC):

c.r/ D �ˇ	.r/C h.r/ � ln g.r/ (2.44)

These closures together with the OZ relation constitute a self-consistent set of
integral equations for h.r/ or g.r/.

2.8 PY Solution for Hard Spheres

We now consider the hard-sphere (HS) potential

	HS.r/ D
� 1 r < d

0 r > d ;
(2.45)

where d is the hard-sphere diameter. In this case the PY integral equation can be
solved exactly. The solution is given in terms of the packing fraction

� D volume filled with spheres

total volume
D �

6
d3�0 (2.46)

and the dimensionless variable x D r=d

c.r/ D
8<
:
�1 � 6��2x C 1

2
��1x

3 x < 1

0 x > 1 ;

(2.47)

with

�1 D .1C 2�/2=.1� �/4 (2.48a)

�2 D .1C 1

2
�/2=.1� �/4 (2.48b)

If we compare the hard-sphere structure factors, plotted for different packing
fractions � in Fig. 2.3 with the structure factors of liquid metals, the prominent
examples of simple liquids (Figs. 2.2 and 2.5) we see that they are very similar.
We comment on this in Sect. 2.11 (Fig. 2.5).
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Fig. 2.4 Breakdown of a potential 	.r/ into a hard-sphere-like part 	0.r/ and a longer-range part
	1.r/

2.9 Hard-Sphere Reference System

We now want to relate the structure of a simple liquid, which is described by a
pairwise potential 	.r/, in terms of the structure of hard spheres. For doing so
we adopt the following procedure, due to Weeks et al. [9], Fig. 2.4. Denoting the
separation at the minimum r0 we define

	0.r/ D
�
	.r/� 	.r0/ r < r0

0 r > r0 ;
(2.49)

	1.r/ D
�
	.r0/ r < r0
	.r/ r > r0 :

(2.50)

We then relate a HS potential to 	0. This can be done “by hand”, but a more
systematical procedure is to require that some physical property of the hypothetical
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fluid described by 	0.r/ should coincide with a HS fluid with HS diameter d .
One can demand that the spatial integral over g0.r/ should coincide with that
over gHS .r/. This requirement is equivalent to demanding that the isothermal
compressibilities of the two fluids should coincide.

2.10 Mean-Spherical Approximation

A quite successful integral equation theory for the structure of simple liquids is the
mean-spherical approximation (MSA), which works with the procedure introduced
in the last section and introduces the two constraints

g.r/ D 0 r < d (2.51a)

c.r/ D � 1

kBT
	1.r/ r > d (2.51b)

i.e., we use a random-phase approximation for the longer-range part of the direct
correlation function and use the short-range part for just demanding that g.r/ should
be 0 for r < d . Together with the Ornstein–Zernike relation this constitutes an
integral-equation theory for g.r/ which in many cases is even more successful as
the PY or HNC theory. Of course it reduces to the PY theory for 	1 D 0.

2.11 Hard-Sphere Scaling of Liquid Metals

In Fig. 2.5 measured static structure factors of liquid metals [7] have been plotted
against the wavenumber, multiplied by a suitable hard-sphere diameter d . The black
line is the hard-sphere PY structure factor for the packing fraction � D 0:45.
Obviously the structure is essentially determined by the hard core of the interatomic
interactions. This hard core is produced by the Pauli exclusion principle, which
forbids that the atomic orbitals of the metallic core electrons may overlap. It is
further remarkable that almost all liquid metals near their melting point can be
essentially described by a hard-sphere fluid with packing fraction � D 0:45 [1]. This
is so, because there exists a maximum packing fraction for random close packing of
hard spheres, which is smaller than the cubic or hexagonal crystalline close packing
� D 0:74, namely � D 0:634 [8]. In this maximally packed state there is no mobility
left, because the spheres can no more pass each other. This is the glassy or jammed
state. In the liquid state of a material, which is dominated by short-ranged forces,
like a liquid metal, the effective packing fraction must be smaller than this value.
Obviously the equilibrium hard-sphere-like liquid needs a packing fraction as small
as 0.45, and this is approximately the same for all liquid metals near the melting
point.
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2.12 Perturbative RPA for the Compressibility of Liquids

As we have seen, the main features of the structure factors of simple liquids can
be roughly accounted for by a HS structure. This means that the repulsive part of
the potential 	0.r/ essentially acts as a HS potential, and that the long-ranged part
	1.r/ does not really play a major role for S.q/. However, this is only true for finite
values of q. In the long-wavelength regime q � q0, where q0 marks the maximum
of S.q/, the long-ranged part of the potential, 	1 turns out to be important.

We have noted above, that in the long-wavelength limit q ! 0 we have

lim
q!0

S.q/ D �0kBT 
T (2.52)

So our statement involves the hydrodynamic limit of S.q/, in which this quantity
is proportional to the compressibility. In this limit we can try the validity of the
RPA—but not for the entire direct correlation function, but rather for the long-
ranged part of the potential. So we write

c.r/ D c0.r/C c1.r/ (2.53a)

c0.r/ D cHS .r/ (2.53b)

with d chosen such that the 	0 system has the same S.q D 0/ as the 	HS system.
For c1.r/ we write

c1.r/ D � 1

kBT
U1.r/ (2.54)

For the mean-field potential U1.r/ we may apply the plain RPA or the extended
RPA (ERPA)
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U1.r/ D 	1.r/ RPA

U1.r/ D g.r/	1.r/ ERPA (2.55)

Both versions can be derived and motivated by a density functional formalism
[2].

Inserting either of Eqs. (2.55) into (2.31) leads to

S.q D 0/ D SHS.q D 0/

1C SHS.q D 0/
�0
kBT

U1.q D 0/
(2.56)

with

U1.q D 0/ D
8<
:

4�
R1
0 drr2	.r/ RPA

4�
R1
0

drr2g.r/	.r/ ERPA
(2.57)

We noted previously that simple liquids—predominantly liquid metals—could
be described near their melting point in terms of a HS fluid with packing fraction
� � 0:45. In HS-PY approximation such a packing fraction leads to a value of S.0/
of �0:025. From (2.57) we expect that materials with a predominantly attractive
long-range interaction S.0/ is larger than the HS value, and for the other case that
it is smaller.

Let us take a closer look at the interatomic potentials 	.r/ which characterize
insulating liquids and metals.

The interatomic potentials 	.r/ of Insulating simple liquids such as liquid rare
gases or CH4 are well described by the Lennard–Jones potential

	.r/ D 4


	
�
r

�12 �

�
r

�6�
: (2.58)

If we subdivide this potential in the way described above into a hard-core (hard-
sphere) part 	0 and a long-range part 	1 we realize that the latter is attractive in the
whole r range, from which follows that both in the RPA ad ERPA the correction
U1.0/ is negative definite. This leads to an increase of S.0/ as compared to the
hard-sphere value SHS.0/ as can be verified from Table 2.1.

Let us now turn our attention to the interatomic potential of a metal which does
not have unfilled d orbitals (i.e., not transition metals which have a complicated
interatomic potential). In such simple metals the interatomic potential is a sum of a
Coulomb repulsion of the ion cores of charge Ze (Z is the number of conduction
electrons per atom or valence) and a contribution which describes the screening
of the conduction electrons, featuring the electron-ion potential vi .q/ and the
electronic response function �e.q/:
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Table 2.1 The
long-wavelength limit of the
structure factor in insulating
and metallic liquids at their
triple points (taken from [2])

SRPA(0) SERPA(0) Sexp

Ne 0:056 0:055 0:052

Ar 0:044 0:044 0:050

Li 0:021 0:024 0:026

Na 0:024 0:024 0:023

K 0:026 0:027 0:024

Rb 0:027 0:028 0:022

Cs 0:028 0:028 0:024

Cu 0:021 0:021 0:021

Ag 0:022 0:022 0:019

Au 0:022 0:022 0:012

Mg 0:019 0:020 0:025

Zn 0:015 0:015 0:015

Cd 0:017 0:017 0:011

Hg 0:012 0:013 0:005

Al 0:014 0:014 0:017

Ga 0:007 0:007 0:005

In 0:012 0:012 0:006

Tl 0:015 0:015 0:010

Sn 0:010 0:009 0:007

Pb 0:012 0:012 0:009

Sb 0:010 0:010 0:020

Bi 0:008 0:008 0:009

	.r/ D Z2e2

4�
0r
C 1

.2�/3

Z
d3qeiqrjvi .q/j2�e.q/ (2.59)

For most simple liquid metals at their melting points the electron gas has a
Fermi distribution like that at T D 0, which has a sharp cutoff at the Fermi energy
EF D „2kF =2m, where kF D Œ3�2n�1=3 is the Fermi wavenumber,m is the electron
mass and n D Z�0 is the electron density. This is so, because the corresponding
temperature (Fermi temperature) TF D EF =kB is of the order of 12,000 K. This
leads to a sharp drop-off of �e.q/ near q D 2kF , which, in turn, leads in the r
dependence of 	.r/ to oscillations (Friedel oscillations) as depicted in Fig. 2.6. If
	.r/ is now divided into the hard-core and long-range parts it turns out that the r
integral of r2	1.r/ takes a positive value, which is small for Z D 1 (alkali metals)
but becomes large for Z > 1 (polyvalent metals). This leads to a decrease of the
compressibility of the liquid metals as compared to the hard-sphere fluid, which can
be checked in Table 2.1.
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Metal

Lennard−Jones

(r)

r

Fig. 2.6 Potentials 	.r/ for
metals and insulators

2.13 Relation to the van-der-Waals Equation of State

There exists a relation between the phenomenological equation of state of van der
Waals for the liquid-vapor phase separation and the perturbative RPA treated in the
previous section. The van-der-Waals equation of state for the pressure reads

�
p C A

V 2

�
.V � B/ D NkBT (2.60a)

or p D � A

V 2
C NkBT

V � B
(2.60b)

where A and B are phenomenological parameters called internal pressure and
covolume. This equation of state describes the quantities of state of expanded liquids
near their critical point very well, especially the liquid-vapor phase separation.

The perturbative RPA formula (2.57) can be written as

1

S.0/
D � 1

kBT

V 2

N

@p

@V
D 1

SHS.0/
C U1.0/

kBT
(2.61)

We take the derivative of the van-der-Waals pressure with respect to the volume

@p

@V
D 2A

V 3
� NkBT

.V � B/2 (2.62)

and insert it into the definition of 1=S.0/ displayed in the first part of (2.61):

1

S.0/
D � 1

kBT

V 2

N

@p

@V
D V 2

.V � B/2
� 1

kBT

2A

VN
(2.63)

We see that this equation has a similar structure as the perturbative RPA: If we
identify the first term with a hard-core repulsion (as done, in fact, by van-der Waals),
the second one is the interaction term with interaction parameterU.0/ D �2A=VN .
Therefore we expect that the perturbative RPA with negative (attractive) interaction
parameter U.0/ also describes a liquid-vapor phase separation.
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It is in fact well known that a hard-sphere fluid does not show any liquid-vapor
phase separation. Therefore it is called a “fluid”. These considerations will become
quite of importance in the next section which deals with binary solutions.

You might be asking how the liquid-vapor phase separation is to be described
in the case of liquid metals, where, obviously, the interaction parameter is positive.
The answer is that the equation of state of fluid metals near the critical point is
much more complicated as that of insulating liquids. It does, in fact, not obey
the law of corresponding states which can be described in terms of the van-der-
Waals equation. Between the condensed liquid state and the vapor state there is
a metal-nonmetal transition, which is until today not completely understood. The
main feature of this transition is the breakdown of the screening of the conduction
electrons due to the fact that at low densities the electron-electron repulsion becomes
dominant and leads to a localization of the electrons near the ionic cores [5]. This
leads to an instable regime in the pressure similar to the van-der-Waals mean-field
model. We shall describe below for the case of metal-salt solutions, how the change
of the metallic screening with concentration (metal density) can give rise to phase
separation without a negative interaction parameter (Sect. 3.11).

2.14 The Resistivity of Liquid Metals

We wish to evaluate the resistivity of liquid metals in the Drude model of nearly free
electrons. The resistivity is given in terms of the relaxation time � or relaxation rate
1=� as follows

� D m

ne2
1

�
: (2.64)

� is the mean time between collisions of electrons with ion cores, i.e., the
relaxation rate is also the collision rate with the ion cores, which can be calculated
from the transition probabilityWkk0 from states jk0 > to states jk > as follows:

1

�
D 1

.2�/3

Z
jkjDkF

d3kWkk0 .1 � cos �/ (2.65)

where cos � is the angle between k0 and k. Note that in the transport and scattering
processes only electrons at the Fermi level are involved for which jkj D jk0j D kF
holds.
Wkk0 can be evaluated in Born approximation in a similar way as the neutron or

X-ray scattering cross section. Denoting, again, q D k � k0 we have

Wkk0 D 2�

„ j< kjVi jk0 >j2 D 2�

„ n2S.q/ jvi .q/j2 (2.66)
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Fig. 2.7 Temperature
dependence of S.q/ and the
positions of 2kF for Z D 1

and Z D 2

from which follows (taking in mind jkj D jk0j D kF )

1

�
D 1

.2�/3

Z �

0

d� sin �W.q.�//Œ1 � cos�� (2.67)

Going over to the integration variable

q.�/ D
q
k2 C k20 � 2kk0 cos �

D p
2kF Œ1 � cos ��1=2

) dq D p
2kF

1

Œ1 � cos ��1=2
sin �d�

we have

1

�
D 1

8�„
n2

k4F

Z 2kF

0

dqq3S.q/jvi.q/j2 (2.68)

This formula is due to Edwards, Faber and Ziman [10–13]. The important
implication is that the temperature dependence is solely given by that of the static
structure factor. Moreover, the integral is strongly peaked at its maximum value
q D 2kF , so we can expect that the temperature dependence of the resistivity of
liquid metals is essentially given by that of S.q D 2kF /.

From Fig. 2.3 we see, how S.q/ depends on density, which decreases with
temperature. This temperature dependence is sketched also in Fig. 2.7. So for small
q S.q/ increases, for q � q0 (peak position) it decreases with temperature. From
this it follows that for liquid alkali metals the resistivity increases with temperature
as it does usually also for solid metals. In solids this is due to the increased scattering
from phonons. For liquid earth alkaline metals and for liquid alloys with Z D 2

kF turns out to approximately coincide with q0. This is, in fact, observed in the
experimental data.
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Chapter 3
Structure and Thermodynamics of Binary
Mixtures (Solutions)

3.1 General Definitions

As we now start dealing with mixtures of liquids we gradually cross the borderline
between physics and chemistry. Therefore we must introduce the concept of moles
which are lumps of NAvo D 6:022 �1023 particles (atoms or molecules). The number
of moles is just n D N=NAvo. We consider a mixture of two liquid phases A and B
(“species”) which are assumed to be in equilibrium with each other and consist of
NA D nANAvo and NB D nBNAvo particles, resp. If one is working at a given
temperature T and pressure p (as we shall do) the appropriate thermodynamic
potential is the Gibbs free enthalpy

G D H � TS D E � TS C pV : (3.1)

whereH D ECpV is the enthalpy. The fundamental thermodynamic equation for
G reads

dG D �SdT C V dp C
X
iDA;B

�idni (3.2)

from which follows

S D �@G
@T

entropy (3.3a)

V D @G

@p
volume (3.3b)

�i D @G

@ni
chemical potentials (3.3c)

W. Schirmacher, Theory of Liquids and Other Disordered Media, Lecture Notes
in Physics 887, DOI 10.1007/978-3-319-06950-0__3,
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For any physical variable X (like G, E , T , S , p, and V ) that characterizes the
total mixture one can introduce so-called partial quantities which are defined as

xi D @X

@ni
i D A;B (3.4)

from which follows (this is an exercise to be done!)

X D nAxA C nBxB (3.5)

X is also called an extensive quantity, and the xi are the corresponding intensive
quantities. We identify immediately the chemical potentials �i as the partial free
enthalpies of the mixture. We now introduce the so-called concentrations or mole
fractions ci D Ni=N D ni=n. Since cA C cB D 1 only one of these variables is
independent, and we define cA � c to be the independent variable, so that cB D
1 � c. For any extensive quantity X we have (exercises!)

@X

@c
D xA � xB (3.6)

and

xA
@xA

@c
C xB

@xB

@c
D 0 : (3.7)

In particular, we have

xA
@�A

@c
C xB

@�B

@c
D 0 ; (3.8)

which is the famous Gibbs–Duhem relation.

3.2 Cross-Sections and Partial Correlation Functions

Let us recall the scattering cross-section for energy unresolved neutron or X-ray
scattering from a liquid

d�

d�
D
*

NX
˛;ˇD1

f �̨.q/fˇ.q/eiq�Œr˛�rˇ�

+
; (3.9)

where we now have labelled the form factors with atomic indices ˛; ˇ. Let us
assume, that the atoms now belong to either species A or species B. We would
like to factorize (3.9) into a form and structure factor as done with the expression
(14) for the mono-atomic liquid. However, due to the heterogeneous character of
a mixture such a factorization is no more possible. All we can do is to come up
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with a linear combination of form and structure factors. In order to derive such an
expression we again separate the terms into self and distinct parts. Let us keep in
mind that the distinct correlation function h.q/ was defined as

h.q/ D 1

�0
ŒS.q/� 1� D V

N2

*X
˛¤ˇ

eiq�Œr˛�rˇ�

+
: (3.10)

We now define the corresponding quantities in which the ˛; ˇ sums are only over
A- or B-type atoms:

hij .q/ D V

NiNj

*
NiX
˛D1

NjX
ˇD1„ ƒ‚ …

˛¤ˇ

e
iq�Œr.i /˛ �r.j /ˇ �

+
i; j D A or B (3.11)

and obtain, since the incoherent ˛ D ˇ terms occur only linearly in the concentra-
tions ci

d�

d�
D N

0
@cAjfA.q/j2 C cB jfB.q/j2 C �0

X
iDA;B

X
jDA;B

ci cj f
�
i .q/fj .q/hij .q/

1
A

(3.12)

In the same way the Edwards–Faber–Ziman formula for a liquid metallic alloy is
given by

� D m

ne2
1

8�„
n2

k4F

Z 2kF

0

dq q3
�
cAjvA.q/j2 C cB jvB.q/j2

C �0
X
iDA;B

X
jDA;B

ci cj v
�
i .q/vj .q/hij .q/

�
(3.13)

One defines the so-called partial structure factors as

Sij .q/ D 1C �0hij .q/ i; j D A or B ; (3.14)

but, as we see from (3.12) and (3.13), this definition is not of much use, as the
functions hij .q/ and not Sij .q/ enter into the expressions. On the other hand, the
Fourier transforms of hij .q/ are related to the partial radial distribution functions
gij .r/

hij .r/ D 1

2�2r

Z 1

0

dq q sin.q/h.q/ D gij .r/ � 1 (3.15)

�04�r
2gij .r/dr gives the probability for the presence of a j particle inside a

spherical shell of thickness dr , if there is an i particle at the origin.
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3.3 Number and Concentration Fluctuations

Instead of working with the partial structure factors Sij .q/ or the functions hij .q/
one can define linear combinations of these functions which are the correlation
functions of the density fluctuations ı� and the concentration fluctuations ıc [1, 2]:

S��.q/ D c2ASAA.q/C c2BSBB.q/C 2cAcBSAB.q/ (3.16a)

S�c.q/ D cAcB fcA ŒSAA.q/� SAB.q/� � cB ŒSBB.q/ � SAB.q/�g (3.16b)

Scc.q/ D cAcB f1C cAcB ŒSAA.q/C SBB.q/� 2SAB.q/�g (3.16c)

In terms of these quantities (3.12) and (3.13) take the form

d�

d�
D N

�ˇ̌
ˇf
ˇ̌
ˇ2 S��.q/C jfA � fB j2Scc.q/C 2f �.fA � fB/S�c.q/

�
(3.17)

with X � cAXA C cBXB .

� D m

ne2
1

8�„
n2

k4F

Z 2kF

0

dq q3
h

jvj2 S��.q/C jvA � vB j2Scc.q/

C 2Refv�.vA � vB/gS�c.q/
i

(3.18)

At q D 0 the following relations hold:

S��.0/ D 1

N
h.�N/2i D � C ı2Scc.0/ (3.19a)

S�c.0/ D h�N�ci D �ıScc.0/ (3.19b)

Scc.0/ D N h.�c/2i D kBT=gcc (3.19c)

with the three thermodynamic quantities

� D �0kBT 
T (3.20a)

ı D 1

V

�
@V

@c

�
P;T;N

D vA � vB

nAvA C nBvB
(3.20b)

gcc D 1

N

�
@2G

@c2

�
P;T;N

(3.20c)

Here � is again related to the isothermal compressibility 
T , vi are the partial
molar volumina and gcc is the stability function. The free enthalpy of mixing is
defined to be

�G D G �NAG
.0/
A �NBG

.0/
B (3.21)
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S  = k  ln N  ! = k  N  ln N
S  = k  ln N  ! = k  N  ln NA A A AB B

B B B B B B
S = k  ln N! = k  N ln N
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Fig. 3.1 Red and blue
particles in the demixed and
mixed state
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Fig. 3.2 Entropy as a
function of concentration

where G.0/
i are the free enthalpies of the pure systems. As these quantities do not

depend on concentration we only need to know�G for calculating gcc .

3.4 Entropy of Mixing

Let us perform the classical gedanken experiment (Fig. 3.1) for defining the entropy
and showing that the entropy increases with mixing. For a system of N particles
the entropy is defined to be kB times the logarithm of the number of possible
configurations. We imagine that the particles can be distributed into N volume
“cells” in NŠ different ways. Then the entropy is just

S D kB lnNŠ
N!1D kBN lnN (3.22)

We now start the gedanken experiment at the left side of Fig. 3.1. The Entropy is
initially the sum of the red and blue terms. If we achieve a complete random mixture
the entropy is given by the black expression. The increase in entropy is

�S.0/ D kB Œ.NA CNB/ lnN �NA lnNA �NB lnNB�

D �kBN ŒcA ln cA C cB ln cB� (3.23)

The Graph of �S.0/.c/ is shown in Fig. 3.2.
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For non-interacting particles (for which �H D 0) the stability function
obviously is given by

gcc D 1

N

@2

@c2
Œ�T�S� D kBT

@2

@c2
Œc ln c C .1 � c/ ln.1 � c/�

D kBT

	
1

c
C 1

.1 � c/
�

D kBT

	
1

c.1 � c/
�

(3.24a)

) Scc.0/ D c.1 � c/ (3.24b)

3.5 Partial Structure Factors of Ideal Solutions

Ideal solutions are defined to be systems in which there are either no interactions or
all interactions are equal so that there are no excess interactions:

	AA.r/ D 	BB.r/ D 	AB.r/ (3.25)

In such a system the partial structure factors Sij are all equal and we have

S.0/�� .q/ � S.q/ S.0/�c .q/ D 0 S.0/cc .q/ D c.1 � c/ (3.26)

Inserting this into (3.17) we obtain

d�

d�
D
ˇ̌
ˇf
ˇ̌
ˇ2 S.q/C jfA � fB j2c.1 � c/ (3.27)

One obtains the same expression from (3.12) if all hij are set equal to
1
�0
ŒS.q/� 1�. In the case of X-ray diffraction on weakly interacting alloys the

second term is just a background which is q independent and is called Laue
background. Such a background is also observed in randomly mixed crystals.

3.6 Direct Correlation Functions

As in the single-component case one can define direct correlation functions by the
equations

hij .r/ D cij .r/C �0
X
`DA;B

c`

Z
d3r0hi`.r 0/c j̀ .jr � r0j/ (3.28)
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By applying the convolution theorem and a 2�2 matrix inversion one can derive
the following relations between their Fourier transforms Cij .q/ � �0d3reiqrcij .r/

and the number and concentration structure factors:

S��.q/ D ‚.q/C�2.q/Scc.q/ (3.29a)

S�c.q/ D ��.q/Scc.q/ (3.29b)

Scc.q/ D
	

1

cAcB
� �.q/2

‚.q/
� CAA.q/� CBB.q/C 2CAB.q/

��1
(3.29c)

‚.q/ D �
1 � c2ACAA.q/ � c2BCBB.q/� 2cAcBCAB.q/

��1
(3.29d)

�.q/ D ‚.q/ ŒcA .CAA.q/� CAB.q//� cB .CBB.q/� CAB.q//� (3.29e)

Here the quantities‚.q/ and�.q/ are the generalizations of � D ‚.q D 0/ and
ı D �.q D 0/ of (3.20).

3.7 Perturbative RPA for q D 0 and Regular Solution Model

As in the single-component case we now generalize the perturbative RPA as follows

Cij .q D 0/ D C
.0/
ij � 1

kBT
U
.1/
ij (3.30)

with

U
.1/
ij D

8<
:
�
R

d3r	ij .r/ RPA

�
R

d3rgij .r/	ij .r/ ERPA
(3.31)

We now define a Flory–Huggins interaction parameter [5, 8] by

! D kBT� D U
.1/
AB � 1

2

h
U
.1/
AA C U

.1/
BB

i
(3.32)

and obtain for Scc.0/

Scc.0/ D
	
1

S
.0/
cc

� ı20
�0

C ı21
�1

� 1

kBT
2!

��1
; (3.33)
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S   (q),S   (q)/c  cρρ cc A B

1

q

demixing

compound−
forming

Scc

ideal

Sρρ

Fig. 3.3 S��.q/ and the
different possible forms of
Scc.q/=cAcB for different
types of chemical order

where the index 0 refers to the hard-core system, and the index 1 refers to the
combination of the direct correlation functionsC .1/

ij .q D 0/ � �U .1/
ij .q D 0/=kBT

given by (3.29d) and (3.29e).
In the case ı D 0, S.0/cc .0/ D cAcB we have

Scc.0/ D
	

1

cAcB
� 1

kBT
2!

��1
(3.34)

The quantity Scc.0/ can be taken as a parameter which describes the degree of
chemical ordering (Fig. 3.3). In the non-interacting case, which is equivalent to the
case in which all three pair potentials are equal, there is no chemical ordering and
we have Scc.0/ D cAcB . If the A � B potential is more attractive than the average
of the A � A and B � B potentials we have a tendency towards forming an A � B

compound, and there will be a chemical ordering as in an antiferromagnet. This
establishes a superstructure (Überstruktur) and is accompanied by a pre-peak in
Scc.q/, which is situated half-way between the principle peak of S��.q/ and q D 0.
On the other hand, if the A � B potential is less attractive than the average of the
A�A andB�B potentials we have a tendency towards de-mixing, which can result
in a demixing phase transition if the quantity � D !=kBT becomes too large.

A tendency towards demixing is accompanied by an enhanced small-angle
scattering, i.e., an increase in the low-q part of Scc.q/.

We now call a model substance in which ı D 0; S
.0/
cc D cAcB holds, a regular

solution. Inserting (3.33) into (3.19c) and (3.20c) we obtain (with c � cA) for the
stability function

gcc D 1

N

�
@2�G

@c2

�
P;T;N

D �2! C kBT
1

c.1 � c/ (3.35)

If we integrate (3.35) twice with the boundary condition �G.cD 0/D�G

.c D 1/ D 0 we obtain the free enthalpy of mixing for a regular solution

1

N
�G D c.1 � c/! C kBT Œc ln c C .1 � c/ ln.1 � c/� (3.36)
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3.8 Activities and Activity Coefficients

The total Gibbs free enthalpy of an ideal solution, i.e., a regular solution with ! D 0,
can be written as

G D nA�A C nB�B D cG.c D 0/C .1 � c/G.c D 1/

C nRT Œc ln c C .1 � c/ ln.1 � c/� ; (3.37)

were R D NAvokB is the gas constant. Therefore the chemical potentials have the
form

�i D �
.0/
i CRT ln ci ; (3.38)

where �.0/i D G.ci D 1/=n, n being the number of moles. In a regular solution one
defines the absolute activities aA and aB as

�i D �
.0/
i CRT ln ai (3.39)

so that we have

1

Scc.q D 0/

@2

@c2

�
�G

nRT

�
D 1

RT

@

@c
.�A � �B/ D 1

RT

1

1 � c
@

@c
�A D 1

1 � c
@ ln aA
@c

(3.40)

The third equality follows from the Gibbs-Duhem equality @
@c
�B D � c

1�c
@
@c
�A.

These coefficients “mimic” the thermodynamic laws for ideal mixtures, in which
one has to replace the ci by the ai .

One can, furthermore, consider the ratio of the absolute activities, and their ideal
values, the concentrations

fi D ai=ci (3.41)

These are the activity coefficients. the free enthalpy of mixing becomes

�G

nRT
D Œc ln c C .1 � c/ ln.1 � c/�C Œc ln fA C .1 � c/ ln fB� (3.42)

So we can write for the enthalpy of mixing

�H

nRT
D c.1 � c/� D Œc lnfA C .1 � c/ ln fB� (3.43)
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We identify the quantities RT ln fi as the partial enthalpies. If the Flory–
Huggins-Parameter � does not depend on concentration we have

@2

@c2

�
�H

nRT

�
D �2� D 1

1 � c
@ ln fA
@c

(3.44)

3.9 Partial Vapor Pressures Above a Regular Solution

Let us suppose we have one mole of a binary liquid mixture inside a closed
container. In equilibrium the chemical potentials of the vapor and that of the liquid
of both species should be the same. Let us attach a semi-permeable membrane to
the vessel and change the partial pressure of species i . The change in the chemical
potential of the vapor of i , i.e., the change in the partial Gibbs free enthalpy will be

��i D
Z pi

pref

V.p/dp : (3.45)

Inserting the ideal gas law V.p/ D RT=p we obtain

��i D RT lnpi=pref (3.46)

so that we can write

�i D �i;ref CRT lnpi=pref : (3.47)

Taking for the reference chemical that of the pure species �.0/i and comparing
with expression (3.38) for the chemical potential of an ideal solution we obtain
Raoult’s law for the partial vapor pressure of an ideal solution

pi D cip0 (3.48)

For a regular solution we obtain by comparing with (3.39)

pi D aip0 (3.49)

3.10 Phase Separation in Regular Solutions

We now consider a regular solution with a free enthalpy of mixing (Fig. 3.4)

1

N
�G D c.1 � c/! C kBT Œc ln c C .1 � c/ ln.1 � c/� (3.50)



3.10 Phase Separation in Regular Solutions 33

0 0.2 0.4 0.6 0.8 1
c

-0.2

-0.15

-0.1

-0.05

0
ΔG

/N
ω

kBT/ω = 0.4

0.5

0.6

0 0.5 1
c

0

0.1

0.2

0.3

0.4

0.5

0.6

k B
T/

ω

Fig. 3.4 Left: free enthalpy of mixing for the three temperatures kBT=! D 0:4; 0:5.TC /; and 0.6.
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the temperatures of the left figure

and a corresponding stability function

gcc D 1

N

�
@2�G

@c2

�
P;T;N

D �2! C kBT
1

c.1 � c/ (3.51)

We immediately notice that there occurs an instability, once kBT=2! � c.1�c/.
Because c.1� c/ does not exceed 0.25, the critical temperature for separation into a
B-rich and an A-rich phase is given by kBTc=! D 0:5. Below this temperature the
line of instability, given by

kBT

!
D 1

�
D 2c.1 � c/ (3.52)

is called spinodal line. The equilibrium concentrations of the A-rich and B-rich
phases are obtained by the condition that the chemical potentials of both species
must coincide:

�A;rich D �A;poor �B;rich D �B;poor (3.53)

If these equations hold, we must also have

�A;rich � �B;rich D �A;poor � �B;poor (3.54)

Because the chemical potential difference is just proportional to the slope of
the curve �G.c/, the two equilibrium concentrations are given by the double-
tangent construction: in the instable region, where�G.c/ varies non-monotonically
with concentration one seeks a line which touches the curve at two points (double
tangent). In our case these concentrations co-incide with the positions of the minima
of �G.c/ and are given by

kBT=! D 2c � 1
ln c � ln.1 � c/ (3.55)
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3.11 Phase Separation in Metal-Salt Solutions

We consider a mixture of a metal with a halogen which we model by the following
set of interactions

	ij .r/ D 	
.0/
ij .r/CQiQj e

2 e
��r

r
i D A;B (3.56)

	ij .0/.r/ is a hard-core potential and the rest is a screened Coulomb potential
between chargesQie which are supposed to obey the global neutrality condition

cAQA C cBQB D 0 (3.57)

Although such a material is no more a system which is “weakly interacting” we
can still try to use the RPA, because the screened Coulomb terms are much smaller
than the repulsive ones. The interaction energy is

!.c/ D �1
2
e2
cB

cA
Q2
B�0

Z
r>d

d3r
1

r
e��r (3.58)

If we transform now from the concentrations cA; cB to the variable x which
appears in the chemical formula for the “pseudo-binary” metal salt mixture
Mx.MH/1�x via cAx D 1 � 2cB we arrive at an equation for the interaction
energy [6, 7]

!.x/ D �A.1 � x/e�.x/d (3.59)

Here A is an interaction parameter, which can in principle be calculated, using
the RPS or ERPA, and we have assumed that the main contribution to the interaction
comes from the contact value r D d .

We now introduce the essential feature of this system, namely the concentration
dependence of the screening � by assuming it to vary linearly around some arbitrary
intermediate concentration x0

�.x/ D �.x0/C 1

d
�0.x � xo/ (3.60)

where �0=d is the linear Taylor coefficient. The enthalpy of mixing of the pseudobi-
nary system with this �.x/ is

�H.x/ D E.x/ � .1 � x/E.0/ � xE.1/ D A.1 � x/
h
1 � e��0x

i
(3.61)

We now take for the entropy that of the ideal pseudobinary system and define
reduced quantities

f D Œ�H ��S.x/T �=A � .1 � x/
h
1 � e��0x

i
� ts.x/ (3.62)
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Fig. 3.5 Free enthalpy isotherms f .x/ for �0 D 0:2 (left) and �0 D 2:0 (right) from Holzhey and
Schirmacher [6]

with t D T=A and

s.x/ D �x lnx � .1 � x/ ln.1 � x/ (3.63)

We have calculated the free enthalpy isotherms f .x/ and phase diagrams for a
weak density dependence of the screening (�0 D 0:2) and a strong one (�0 D 2:0)
(Fig. 3.5). This may be thought to come from different electronegativities between
the metal and the halide. It should be emphasized that in this model the interaction
energy is attractive and the instability in the free enthalpy results entirely from
the concentration dependence of the screening length �.x/. We see that the strong
density dependence of the screening results in an asymmetric phase diagram, a
week density dependence in a symmetric one. In the measured phase diagrams
(Fig. 3.6) we see that the fluorine-potassium system has a very asymmetric one,
whereas the iodine-potassium diagram is symmetric. It is, in fact, known that the
electronegativity difference between I and K is much less than that between F and K.

3.12 Integral Equation Theories for gij .r/

Until now we have only exploited the thermodynamic q ! o limit of
the partial structure factors Sij .q/ D �0hij .q/ and the related quantities
S��.q/; S�c.q/; Scc.q/. In the same way as done for the single-component case we
can set up closure relations for the partial direct correlation functions, defined by

gij .r/ � 1 D hij .r/ D cij .r/C �0
X
`DA;B

c`

Z
d3r0hi`.r 0/c j̀ .jr � r0j/ (3.64)

Percus–Yevick (PY):

cij .r/ D gij .r/
�
1 � eˇ	ij .r/

�
(3.65)
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Fig. 3.6 Phase diagrams for the sodium halides [3] together with the model phase diagrams, for
�0 D 2:0 (top) and �0 D 0:2 from [7]

Hypernetted-Chain (HNC):

cij .r/ D �ˇ	ij .r/Cij h.r/� lngij .r/ (3.66)

Mean-Spherical Approximation (MSA):

gij .r/ D 0 r < d (3.67a)

cij .r/ D � 1

kBT
	
.1/
ij .r/ r > d (3.67b)

The PY approximation can—as in the single-component case—be solved ana-
lytically for a hard-sphere potential with hard-sphere diameters dij [9]. If these do
not differ too much from each other, the partial structure factors are similar to each
other, too, so that the quantities S�c.q/ and Scc.q/ � cAcB are quite small in the
whole q range.

As indicated in the beginning, the physics (and physical chemistry) of binary
mixtures is dominated by the ordering potential

	ord.r/ D �1
2
	cc.r/ D 	AB.r/ � 1

2
Œ	AA.r/C 	AA.r/� (3.68)
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The finite-q version of the regular solution model is a material with

�.q/ / cA .CAA.q/ � CAB.q//� cB .CBB.q/ � CAB.q// D 0 (3.69)

and

S�c.q/ / cA ŒSAA.q/� SAB.q/� � cB ŒSBB.q/� SAB.q/� D 0 : (3.70)

In this case the S��.q/ and Scc.q/ decouple completely. One can consider the

case in which the short-range potentials 	.0/ij are equal and for the long-range
potentials only the �� and the cc combinations (3.68) are non-zero. In this case
the function S��.q/ is completely fixed by the short-range potential, which can
be represented by that of a single-component model, i.e., the hard-sphere Percus–
Yevick model.

For the function

hcc.r/ D �0

.2�/3

Z
d3re�iqr

	
Scc.q/

cAcB
� 1

�
(3.71)

the MSA takes the form

hcc.r/ D 0 r < d (3.72a)

ccc.r/ D 2

kBT
	
.1/
ord.r/ r > d (3.72b)

with

ccc.r/ D cAA.r/C cBB.r/ � 2cAB.r/ ; (3.73)

and we have for the Fourier transform

cAcB

Scc.q/
D 1 � cAcB�0ccc.q/ D 1 � cAcB

�
CAA.q/CCBB.q/�2CAB.q/

�
(3.74)

As in the single-component case this version can be solved for a screened
coulomb potential

	
.1/
ord.r/ / 1

r
e��r : (3.75)

3.12.1 The Liquid Alloy Li4Pb

In the case of the liquid alloy Li4Pb one can prepare an isotopic mixture in such
a way that the measured diffraction intensity is just proportional to Scc.q/ because
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b D cAbA C cBbB D 0. In this case one can obtain the function ccc.q/ from the
measured Scc.q/. via the relation (3.74). Its Fourier transform is just ccc.r/, which
is—if one believes in the RPA/MSA relation (3.72)—proportional to the ordering
potential 	ord.r/ for r larger than the hard-core radius d .

As can be seen from Fig. 3.7, the part for r > 3Å is temperature independent and
can be fitted by an attracting ordering potential of the form (3.75) with � D 1:1Å�1.
In the paper of Copestake et al. [4] an Ansatz was now made for the interatomic
potentials just as in the case of the metal-halogen mixtures (3.56)

	ij .r/ D 	
.0/
ij .r/CQiQj e

2 e
��r

r
i D A;B (3.76)

The idea is that Pb is much more electronegative than Li and therefore acquires a
negative chargeQBe. This leads to a strong attractive ordering potential of the form
(3.75). If the global charge neutrality condition Q D cLiQLi C cPbQPb D 0 is
imposed the “regular solution conditions” (3.69) and (3.70) hold.

For this potential a MSA calculation with d D 3 Å has been performed [4],
which enabled to calculate Scc.q/, S��.q/ and from that the three partial structure
factors (Fig. 3.8).
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In this way one was able to gain a lot of insight into the structural properties of
this compound-forming alloy system.

3.12.2 Critical Scattering in Mixtures with Demixing
Transition

We consider again a regular solution with a free enthalpy of mixing of the form

1

N
�G D c.1 � c/! C kBT ŒcA ln cA C cB ln cB� (3.77)

which corresponds to

1

Scc.0/

1

NkBT

@2�G

@c2
D 1

kBT
gcc D 1

cAcB
� 2!

kBT
(3.78)

We now make the RPA Ansatz

1

Scc.q/
D 1

cAcB
� 2	ord.q/

kBT
(3.79)

We expect that the ordering potential—just as all other direct correlation
functions—decay on an atomic scale, so we make the same Ansatz for 	ord.r/ as
in the Li4Pb case

	ord.r/ / 1

r
e��r , 	ord.q/ D 	ord.0/

1C q2

�2

D !

1C q2

�2

; (3.80)

where � is supposed to be of the order of an interatomic distance. For small q we
can expand 	ord.q/

	ord.q/
q!0D !

�
1 � q2

�2

�
(3.81)

We are now interested in the properties of the structure factor Scc.q/ for small q
near the critical point. Inserting (3.81) into (3.79) and take cA D cB D 1

2
we obtain

Scc.q/ D 1

4 � 2!
kBT

C 2!
kBT

q2=�2
D kBT

2!

�2

��2 C q2
(3.82)

which corresponds to

hcc.r/ / 1

r
e�r=� (3.83)
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Fig. 3.9 Flory–Huggins
model of a polymer as a
random walk on a lattice

� is the correlation length which has the temperature dependence

�.T / D ��1q
2kBT
!

� 1

D ��1q
2kBT
!
.T � TC /

(3.84)

In contrast to the microscopic quantity ��1 the correlation length � becomes
macroscopically large near the critical point. In the regime T > Tc one can observe
strong small-angle scattering as a precursor of the demixing transition.

3.13 Solutions of Polymers

We now consider Np polymer molecules consisting of N segments immersed in
a solvent consisting of Ns molecules. The total number of molecules1 is Nm D
Ns C Np. Following Flory [5] and Huggins [8] we imagine that we arrange the
monomers and the solvent molecules on a simple cubic lattice (volume V , lattice
constant a), (Fig. 3.9) which providesNV D V=a3 D NNpCNs sites. With respect
to the concentrations cp D c D Np=Nm, cs D 1 � c D Ns=Nm the Entropy of
mixing takes the form

�S.c/ D �NmkBŒc ln c C .1 � c/ ln.1 � c/� : (3.85)

Instead of working with the polymer concentration we want to work with the
volume fraction 	 occupied by the polymer. This number is given by

1This number was called N up to now. As in the polymer literature N is reserved to the number of
segments, we re-define N ! Nm.
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	 D N
Np

NV
D Ncp

Nm

Nv
: (3.86)

Consequently we have for c and 1� c

c D 	

N

NV

Nm
1 � c D .1 � 	/

NV

Nm
(3.87)

So that we obtain

�Sc D �NV kB
	
	

N
ln
	NV

NNm
C .1 � 	/ ln.1 � 	/NV

Nm

�

D �NV kB
	
	

N
ln 	 C .1 � 	/ ln.1 � 	/C 	

N
ln

NV

NNm
C .1 � 	/ ln

NV

Nm

�
:

(3.88)

With respect to the variable 	 we obtain the following entropy of mixing per lattice
site

�S D 1

NV
Œ�Sc.	/� 	�Sc.	 D 1/� .1 � 	/�Sc.	 D 0/�

D �kB
	
	

N
ln 	 C .1 � 	/ ln.1 � 	/

�
: (3.89)

Now we add an enthalpy term of the same form as that in the theory of regular
solution, except that we now work with the variable 	:

�H D 	.1� 	/
 D 	.1� 	/�kBT (3.90)

Here 
 is the energy difference


 D z

	

ps � 1

2

�

pp C 
ss

��
(3.91)

between p�s nearest-neighbors and the averaged p�p and s�s nearest-neighbors.
z is the lattice coordination number (i.e., z D 6). So we obtain the Flory–Huggins
expression for the free enthalpy per site and kBT

�g D 1

kBT
�G D 	.1 � 	/�C 	

N
ln	 C .1 � 	/ ln.1 � 	/ (3.92)

Of course this model embodies a very crude approximation to the reality, as the
different possible polymer chain conformations are completely neglected. However,
it has turned out that despite the model is more than 50 years old it still serves as
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a starting point for discussing the thermodynamics of polymer solutions. For the
spinodal value of � we obtain (Fig. 3.10)

2�sp D 1

N	
C 1

1 � 	 (3.93)

If we seek the minimum of this curve we obtain for the critical concentration

	c D
p
N � 1
N � 1

� 1p
N

(3.94)

We see that for large N the critical point becomes situated at very dilute volume
fractions, and the critical temperature approaches the so-called‚ limit:

lim
N!1�c D lim

N!1



kBTc
D 


kB‚
D 2 (3.95)

From the equality of the chemical potentials of the concentrated and the
dilute phase we have for the equilibrium volume fractions 	1;2: (double-tangent
construction)

�g1 ��g2
	1 � 	2 D @�g

@	

ˇ̌
ˇ̌
	1

D @�g

@	

ˇ̌
ˇ̌
	2

(3.96)

We know that the equilibrium volume fractions for the concentrated and the
dilute phase must be situated outside the spinodal curve. As for large N there is
not much of an interval left for the concentrated volume fraction, we conclude that

lim
N!1	1 D 0 ; (3.97)
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from which follows in the limit N ! 1:

0 D 	2
@�g

@	

ˇ̌
ˇ̌
	2

��g2 D �	22�C 	2

�
1

N
� 1

�
C ln

1

1 � 	2

� �	22�C ln
1

1 � 	2
� 	2 : (3.98)

This leads to a coexistence curve of the form

1

2�
D 	22

2

1

ln 1
1�	2 � 	2

D 	22
2

1
1
2
	22 C 1

3
	32 C 1

4
	42 C � � � (3.99)

We see that—according to the Flory–Huggins RPA theory—in the phase-
separated state the concentrated phase contains still a lot of solvent molecules,
whereas the dilute phase is entirely made up of polymer solute molecules.
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Chapter 4
Random Walk and Diffusion

4.1 Einstein’s Theory of Brownian Motion

In his famous article (one of four in 1905) “Über die von der molekularkineti-schen
Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten sus-
pendierten Teilchen”,1 Ann. Phys. (Leipzig) 17, 549, Einstein considers small solid
particles suspended in a solvent. He argues that from the standpoint of the kinetic
theory of heat such particles should behave just in the same way as a solute and
give—in particular—rise to an osmotic pressure felt by a membrane which is
permeable for the solvent and non-permeable for the particle. This pressure p�
stems from the collisions with the membrane, just as the gas pressure stems from
the collision of the gas molecules with the wall of the gas container (Fig. 4.1).

He then considers the influence of virtual changes in the coordinates ıx of the
suspended particles, the density of which is �.x/ D N=V inside of a box of length
` and cross-section 1. In thermodynamic equilibrium the free energy F D E � TS

should not be affected by ıx as the change in entropy �S due to �x should just
counterbalance that in the internal energy�E:

�E � T�S D 0 : (4.1)

In terms of a force F on a particle which suffers a virtual coordinate displacement
ıx �E is given by

�E D �
Z `

0

dx�.x/F ıx (4.2)

1On the motion of particles suspended in liquids at rest, which has been postulate by the kinetic
theory of heat.

W. Schirmacher, Theory of Liquids and Other Disordered Media, Lecture Notes
in Physics 887, DOI 10.1007/978-3-319-06950-0__4,
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l

(x)ρ

x

Fig. 4.1 Einstein’s box of
length ` and of
cross-section 1

The entropy S due to the distribution density �.x/ was calculated by him
assuming—as done in the theory of dilute solutions—that a partial gas equation
holds for the ensemble of the particles:

p� D R

NAvo
�T (4.3)

so that

S D
Z `

0

dx
p�

T
D R

NAvo

Z `

0

dx�.x/ (4.4)

If there is now a coordinate displacement ıx we have from a Taylor expansion of
�.x/ into the integrand and performs an integration by part to obtain

�S D R

NAvo

Z `

0

dx�.x/
@

@x
ıx ;D � R

NAvo

Z `

0

dx
@�.x/

@x
ıx ; (4.5)

where the second equality follows from an integration by part. As the variations ıx
are supposed to be arbitrary we can state

F� � RT

NAvo

@�

@x
D F� � @p�

@x
D 0 (4.6)

Einstein now turns his attention from the thermodynamic equilibrium to the dynamic
equilibrium of microscopic currents. Due to the force F the particle (assumed to be
spherical with radius r) acquires a velocity due to Stokes friction

v D F

6��r
(4.7)

where � is the viscosity. Inserting Fick’s law for the diffusion current

j D �v D �D @�

@x
(4.8)

we obtain for the dynamic equilibrium of currents

�
F

6��r
�D @�

@x
D 0 (4.9)
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Combining (4.6) and (4.9) we obtain the famous Einstein relation between the
diffusion coefficient and the viscosity

D D 1

NAvo

RT

6��r
(4.10)

In this paragraph we did not use the Boltzmann constant kB D R=NAvo for
the following reason: In 1905 neither Avogadro’s number was known nor was
the atomic hypothesis acknowledged by all of the physical community. Einstein
suggested to perform measurements of the diffusion coefficient of Brownian
particles to estimate NAvo.

4.2 Diffusion Equation and Mean-Square Displacement

We now deviate from Einstein’s original manuscript and consider the diffusion
process of Brownian particles as it is presented nowadays in textbooks.

We first consider—as above—only motions in the x-direction. We start with
the continuity equation for the time dependence of the particle density �.x; t/ and
the current density j.x; t/ D �v, which holds due to the conservation of the total
number of Brownian particles:

@�

@t
C @j

@x
D 0 ; (4.11)

if we then insert Fick’s law (4.8) we obtain the diffusion equation

@�

@t
�D

@2�

@x2
D 0 : (4.12)

Going over to a spatial Fourier transform

�.k; t/ D
Z 1

�1
dx eikx�.x; t/ (4.13)

and a temporal Laplace transform

�.k; s/ D
Z 1

0

dt e�st �.k; t/ (4.14)

we obtain from (4.12)

s�.k; s/ � �.k; t D 0/CDk2�.k; s/ D 0 (4.15)
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with the solution

�.k; s/ D �.k; t D 0/

s CDk2
D �.k; t D 0/G.k; s/ (4.16)

where we have introduced the special solutionG.k; t/ (Green’s function), which has
the initial condition

G.k; tD0/ D 1 (4.17)

corresponding to

G.x; x0t D 0/ D ı.x � x0/ (4.18)

where x0 is the initial position of the random walker. So this function obeys the
differential equation of motion2

sG.x; x0; s/ �D
@2

@x2
G.x; x0; s/ D ı.x � x0/ (4.19)

The Green’s function G.x; t/ can be interpreted as the probability density of a
Brownian particle which started his journey at t D 0 at the origin x D 0 (see
next section). The back transforms of G.k; p/ are

G.k; t/ D e�Dk2t (4.20)

and

G.x; t/ D 1p
4�Dt

e�x2=4Dt (4.21)

An important quantity is the mean square distance walked by the Brownian particle
at a certain time t . It can be calculated from the function G.x; t/ as

˝
x2.t/

˛ D
Z 1

�1
dx x2 G.x; t/ (4.22a)

D � @2

@k2

Z 1

�1
dx eikx G.x; t/

ˇ̌
ˇ̌
kD0

(4.22b)

2A function obeying a differential equation with a delta-function inhomogeneity like Eq. (4.19) is
called a Green’s function, because it is helpful to solve an inhomogeneous differential equation
with an arbitrary inhomogeneity j.x/. A theorem then states that a special solution of the
inhomogeneous equation is given by the convolution of the inhomogeneity and the Green’s
function.
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D � @2

@k2
e�Dk2t

ˇ̌
ˇ̌
kD0

(4.22c)

D 2Dt (4.22d)

This is the second formula in the theory of Brownian motion which carries Einstein’s
name. It states that the distance a Brownian particle moves away on the average from
its starting point grows with the square-root of time.

The diffusion equation and its solution are easily generalized to the three-
dimensional case. The diffusion equation reads

@�.r; t/
@t

�Dr2�.r; t/ D 0 ; (4.23)

with solution

G.k; t/ D
Z 1

�1
d3r eik�rG.r; t/ D e�Dk2t ; (4.24)

subject to the initial condition G.k; t D 0/ D 1 , G.k; t D 0/ D ı.r/. We now
have k2 D jkj2 D k2x C k2y C k2z . The solution in r space has the form

G.r; t/ D
	

1p
4�Dt

�3
e�r2=4Dt (4.25)

with r2 D jrj2 D x2 Cy2 C z2. For the three-dimensional mean-square distance we
obtain the Einstein relation

˝
r2.t/

˛ D
Z 1

�1
d3r

�
x2 C y2 C z2

�
G.r; t/ (4.26a)

D �
 
@2

@k2x
C @2

@k2y
C @2

@k2z

!Z 1

�1
d3r eik�rG.r; t/

ˇ̌
ˇ̌
ˇ
kxDkyDkzD0

(4.26b)

D �
 
@2

@k2x
C @2

@k2y
C @2

@k2z

!
e�Dk2t

ˇ̌
ˇ̌
ˇ
kxDkyDkzD0

(4.26c)

D 6Dt (4.26d)

4.3 Random Walk on a Lattice

The motion of a Brownian particle can be visualized by that of a “random walker”,
e.g., by a drunken person, who changes its direction at random after every step
(Fig. 4.2). The statistics of such a motion can be easily worked out on a lattice. We
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Fig. 4.2 A random walker on
a two-dimensional lattice
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Fig. 4.3 Pascal’s triangle for
a 1d random walk. The
number of ways a time-space
point can be reached from the
bottom is given by Pascal’s
algorithm, i.e., each number
is the sum of the two numbers
underneath

start with this on a one-dimensional array of points with lattice constant a, the time
steps are called � . The probabilities P.x D a; t D �/ and P.x D �a; t D �/ are
1=2, those for one time step for jxj > a are zero. The non-zero probabilities for the
�th time step are .1=2/� times the number of ways one can reach the site xn D na

on the triangle (Fig. 4.3).
This number increases from 1 at the maximum distance jxjmax D �a with k D

.jxjmax � jxj/=a as
�
n
k

�
, which can be represented as

P.xn; ��/ D
�
1

2

�� 
�
k

�
k D

	
1

2
.nC �/

�
; (4.27)

where Œ�� is the smallest integer 
 with 
 	 �. It is worth wile to note that at an
even/odd time step � only even/odd random walk sites xn can be reached (Fig. 4.3).

We consider now the recursion formula for the binomial coefficients
�
nC 1

k

�
D

n
k

�
C

 n

k � 1

�
(4.28)

We re-write this recursion formula with the help of the probabilities P.nx; ��/:

P.xn; t C �/ D
�
1

2

��C1 �
� C 1

kn;�C1

�
D 1

2
P.xnC1; t/C 1

2
P.xn�1; t/ (4.29)
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This can be re-written as

P.xn; t C �/ � P.x; t/
�

D D

	
P.xn C a/C P.xn � a; t/ � 2P.x; t/

a2

�
(4.30)

with

D D a2

2�
(4.31)

We take now the double limit � ! 0 and a ! 0 keeping the ratioD D a2=2� fixed.
This leads to

@P.x; t/

@t
D D

@2

@x2
P.x; t/ (4.32)

This is just the diffusion equation for the Brownian motion encountered in the
previous chapter. So the Function G.x; t/ is just the continuum limit of the random
walk probability.

4.3.1 Master Equation

We can establish another useful limit of the difference equation (4.29). We write
again

P.xn; t C �/� P.xn; t/

�
D 1

2�
ŒP.xnC1; t/C P.xn�1; t/ � 2P.xn; t/�

D
X
`D˙1

Wn`ŒP.x`; t/ � P.xn; t/� (4.33)

with Wn` D 1=2� � W . Here we have introduced the transition rate per unit time
Wn` D W`n for the walker to make a transition from n to `. For times t 
 � this
can be written as

d

dt
P.xn; t/ D W

X
`D˙1

ŒP.x`; t/ � P.xn; t/� (4.34)

This equation is called the master equation for the random walk probability
P.xn; t/. As initial condition we have

P.xn; t D 0/ D ın;0 (4.35)

(4.34) can readily be solved by taking the time-Fourier transform of P.xn; t/,
P.xn; !/ and applying Bloch’s theorem
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P.x; !/ D eikxuk.x; !/ (4.36)

where uk.x; !/ has the periodicity of the lattice. So we have for uk.!/ D uk.0; !/

i!uk.!/ D 2W Œcos kx � 1�uk.!/ (4.37)

For the Laplace transform uk.s/ D R1
0 dtuk.t/e�st we obtain

suk.s/� 1 D 2W Œcos kx � 1�uk.s/ (4.38)

with the solution

uk.s/ D 1

s C 2W.1� cos ka/
(4.39)

We now recognize that uk.s/ has the property

lim
k!0

uk.s/ D 1

s CWa2k2
(4.40)

We see that we can identify uk.s/ in this limit with the solution of the diffusion
equation G.k; s/ with diffusion coefficient D D a2W D a2=2� in agreement with
the result (4.32).

The three-dimensional generalization of (4.39) is

uk.s/ D 1

s CWf.k/
D G.k; s/ (4.41)

with the dimensionless “band structure” of the simple-cubic lattice

f .k/ D 6 � 2 coskxaC 2 coskya C 2 coskza/ (4.42)

In the k ! 0 limit one obtains (4.16) for G.k; s/ with D D a2W D a2=2� .

4.4 Disordered Lattice and the Coherent-Potential
Approximation (CPA)

An interesting situation arises, (which is quite relevant for diffusion in glasses or
other soft matter) when the random walk is affected by the presence of disorder,
which can be either that some bonds with concentration 1 � p are taken out of the
lattice or one has a statistical distribution of transition rates Wn`. The equation of
motion of this system is (4.34) but now in three dimensions (simple-cubic lattice)
and with differentWn`’s:
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Fig. 4.4 Effective-Medium
procedure for the two-site
coherent-potential
approximation (CPA)

d

dt
P.rn; t/ D

X
`

n:N:

Wn` ŒP.r`; t/ � P.rn; t/� (4.43)

If we set the left side of Eq. (4.43) equal to zero, we obtain the steady-state condition

X
`

n:N:

Wn` ŒP.x`/ � P.xn/� D 0 ; (4.44)

which can be interpreted as Kirchhoff’s equations for a network with nodes at the
sites rn with ingoing local currents P.r`/ and outgoing currents P.rn/. This means
that we can map a random-walk problem to a network problem, which is well
studied in electrical engineering [7].

Returning to the discussion of Eq. (4.43), we define now a lattice Green’s
function Gij .t; t 0/ which obeys the equation

d

dt
Gij .t; t 0/C

X
`

Wi`.Gij � G j̀ / D ıij ı.t � t 0/ (4.45)

Defining a “Hamiltonian Matrix”

Hij D
8<
:

�P`¤ı Wi` i D j

Wij i ¤ j

(4.46)

and going into frequency space with a complex frequency variable s D �i! C 


(where the very small number 
 has to be included for mathematical reasons), we
obtain the following matrix equation for the Green matrix < i jG.!/jj >D Gij .!/

.s � H/G D 1 (4.47)

One of the most powerful mean-field theories of disorder is the coherent-potential
approximation, CPA. The CPA is derived as follows:
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We invent an effective medium,3 which is not disordered (i.e., it has the cubic
symmetry), but the force constants are frequency dependent:

W eff
ij .s/ D �.s/: (4.48)

The effective-medium Hamiltonian is

H eff
ij D

8̂
<
:̂

�Pj W
eff
ij .s/ D �Z�.s/ i D j

W eff
ij .s/ D �.s/ i ¤ j

(4.49)

where Z.D6/ is the number of nearest neighbors (coordination number). The
Green’s function of the effective medium obeys the equation of motion

sGij � ıij D Z�.s/.G j̀ �Gij / ` arbitrary neighboring site (4.50)

As in the Lorentz theory of dielectric polarizability [2] we now consider a particular
region of the effective medium with the reading glass (Fig. 4.4), which just contains
a pair of sites .i0; j0/. Inside this region we replace the effective-medium force
constant �.s/ by the actual one Wi0j0 so that we obtain a “perturbation” vi0j0.s/ D
Wi0j0��.s/. The corresponding perturbing Hamiltonian matrix V has four non-zero
entries, namely Vi0i0 , Vj0j0 , Vi0j0 , and Vj0i0 . In the i0j0 subspace we have

V D
0
@�vi0j0.s/ vi0j0.s/

vi0j0.s/ �vi0j0.Qs/

1
A (4.51)

We now demand that introducing this perturbation should have on the average no
influence on the effective medium which is equivalent to demanding that the Green’s
function of the effective medium should be equal to the configurationally averaged
Green’s function of the disordered system. One can again reformulate this postulate
in demanding that the averaged T-matrix

hT i D



V

1 � VG
�

(4.52)

should vanish. Working out the 2� 2 inverse and using (4.50) with i D j we obtain
the following CPA self-consistent equation for �.s/

3The first version of the CPA effective-medium approach has been devised by Bruggeman [3] for
calculating the dielectric constant of composite dielectrica.
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*
W � �.s/

1C �
W � �.s/

�
2
Z

1

�.s/
.1 � sGii .s/

„ ƒ‚ …
ƒ.s/

+
D 0 (4.53)

with the local Green’s function

Gii .s/ D
X

k2BZ

1

s C �.s/f .k/
(4.54)

Equation (4.53) can be reformulated as

�.s/ D
*

W

1C �
W � �.s/

�
2
Z
ƒ.s/

+
(4.55)

and also the functionƒ.s/ can be simplified:

ƒ.s/ D 1

�.s/
.1 � sGii .s/ D

X
k2BZ

f .k/
s C �.s/f .k/

(4.56)

Because
P

k2BZ 1 D 1 one obtains in the s ! 0 limit

ƒ.0/ D 1

�.0/
; (4.57)

so that Eq. (4.55) in the dc limit reads

�.0/ D
*

W

1C 2
Z



W
�.0/

� 1
�
+

D Z

2
�.0/

*
1�

Z
2

� 1� �.0/
W

C 1

+
: (4.58)

4.4.1 Percolating Lattice

We assume now a distribution of local diffusivities of the form

P.Di / D pı.W �W0/C .1 � p/ı.W / (4.59)

where p is the volume fraction in which the transition rate Wi0j0 is non-zero. If
we just consider the statistics of the bonds, which are taken out of the lattice with
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concentration 1 � p, this constitutes the percolation model, which we are going
to discuss shortly in the chapter on fractals. Inserting the distribution given by
Eq. (4.59) into Eq. (4.58) one obtains

�.0/
2

Z
D �.0/

1�
Z
2

� 1
�
�.0/

W0
C 1

(4.60)

which has, like Eq. (4.58) always the trivial solution �.0/D 0. For the case �.0/¤ 0

we obtain from Eq. (4.60)

�.0/ D 2

3
W0.p � pc/=.1 � pc/ (4.61)

At the critical value pc D 2
Z

ZD6D 1
3

the transition rate �.0/ of the effective medium,
and hence the diffusivityD D W0a

2 vanishes. Beyond this value the trivial solution
W0 D D D 0 takes over. One easily verifies that right at p D pc the frequency-
dependent diffusivity (see Appendix C) varies with frequency as D.s/ D a2�.s/ /
s1=2, which implies that the mean square displacement grows with time as t1=2 at
criticality.

4.4.2 Continuum Limit: Activated Diffusion with Disorder

Now we can again take the continuum limit in order to obtain a continuum version
of the CPA [8]. We introduce local, spatially fluctuating diffusivities D.ri0j0 / D
a2W ri0j0 , where ri0j0 denotes the center of gravity of the bond i0; j0, an effective-
medium diffusivityD.s/ and a susceptibility function �.s/ D ƒ.s/=a2 and let a !
0. We further replace the BZ summation by the summation over k space up to the
Debye cutoff [1] kF D 3

p
6�2N=V j , i.e

X
k2BZ

! 1

N

X
jkj<kF

D 3

k3F

Z kF

0

k2dk

In the continuum limit the CPA now takes the form

D.s/ D
*

D.r/

1C �
D.r/ �D.s/

�
1
3
�.s/

+
D 0 (4.62)

with

�.z/ D 1

N

X
jkj<kF

k2

�z2 CD.s/k2
(4.63)
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We now consider a diffusing particle, which performs activated jumps over barriers
with a given distribution of activation energies P.E.r//. (“random barrier model”
[4]). So we write

D.r/ D D0e
E.r/=kBT (4.64)

and parametrize the dc effective-medium diffusivity as .Z
2

�1/D.0/ D D0e
Ea=kBT .

Then Eq. (4.58) takes the form

2

Z
D
Z
dEP.E/

1

e.E�Ea/=kBT C 1
(4.65)

The function to be integrated over together with the distribution function is the
Fermi function, which strongly suppresses the regime E > Ea. In the low-
temperature limit T ! 0 the Fermi function becomes a step function and we obtain

2

Z
D pc D 1

3
D
Z Ea

0

dEP.E/ (4.66)

which means that the parameter Ea becomes temperature independent. We can
understand this result with the percolation construction [5] for the random-
barrier problem. As we noted already, the problem of finding the dc conductivity
corresponding to the hopping process described by the equation of motion (4.43)
can be mapped to the problem of finding the global conductance of a conductance
network [7]. We now sort the conductances gi / D.ri / by their magnitude, which
is determined by the activation energyE.ri / and remove first all conductances from
the network. We then start soldering in the largest conductances with an activation
energy smaller than Ethreshold. If Ethreshold is small enough this will result in a set
of isolated clusters of connected nodes. If we now increase Ethreshold the clusters of
connected nodes will grow and constitute a percolation scenario. At a certain value
Ecritical percolation happens, and the network will essentially have the conductance
g / e�Ecritical=kBT , because all other (much larger) conductances are essentially
shortcuts. We can visualize this by saying that in the barrier mountain landscape
the conductivity is given by the height of the lowest pass, which has to overcome to
go across the mountain landscape.

The mathematical condition for obtainingEcritical is just Eq. (4.66) withEcritical D
Ea.

From our analysis it follows that in a disordered material like a ion-conducting
glass [9], where the moving ions have to overcome barriers with a broad distribution,
the net conductivity will be always of Arrhenius form

�.T / D �0e
�Ea=kBT (4.67)

This result can neither be obtained from averaging the local rates Wij nor from
averaging the inverse of them. This corresponds to the well-known result of network
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Fig. 4.5 ac conductivity for the random-barrier model, calculated in continuum CPA for temper-
ature parameters ˇ� D 20, 30, 40, 50 and 60

theory that the net conductance of a complex conductance network can neither be
represented by a parallel equivalent circuit nor a series one [7].

A considerable advantage of the CPA as compared to the old effective-medium
theories [7] is that one can calculate the ac conductivity as well. But now one must
decide definitely, which distribution of activation energies one wants to take. The
most simple model function is given by

P.E/ D const D 1

E� for E � E� (4.68)

One easily verifies by changing the integration variable from E to 
 D E=kBT ,
that the resulting CPA equation depends only on the single parameter ˇ� D
E � =kBT . In Fig. 4.5 we have plotted the result for the ac conductivity D0.!/ D
RefD.s/gsDi!C" for four values of this temperature parameter. It can be verified
easily that for the relative variance of the distribution of local diffusivity holds

1˝
Di2

˝
D2
˛ D 1

2
ˇ� (4.69)

So one can say that with decreasing temperature the disorder of the activated
diffusivities is increasing.

Frequency-dependent conductivity data in disordered semiconductors and ion
conductors look precisely as in Fig. 4.5, as can be verified from the corresponding
literature [4, 6, 9].
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Chapter 5
Fractals

5.1 Fractal Dimension

In his book “The fractal geometry of nature” [4], which appeared in 1977, the
French mathematician Benoit Mandelbrot coined the word fractal for geometrical
objects, which do not have an inherent length scale, i.e., they are self similar. They
just look the same at very different length scales. Such object are trees, sponges,
termination deltas of rivers, tidal streaming traces, clouds, mountains—and coast
lines. Although Mandelbrot made fractals a fashionable subject in physics, self-
similar objects have been studied much earlier, e.g., some 150 years ago by people
like David Hilbert, Giuseppe Peano or Georg Cantor.

Let us start with coast lines. How long is the coast line of England/Scotland?
You may measure it with conventional geodesic wooden sticks to come up with a
number of about ten thousand km. (The figure given by www.coastalguide.org is
13,560 km.) However, if you make your measuring device smaller, so that you can
follow all small wrinkles you might be able to double the number: The length of the
coast line depends on the scale of the measuring device, or, in other words, if you
want to draw the coast line its length depends on the thickness or the sharpness of
the pencil. In fact a coastline is a typical fractal object: It has similar wrinkles at
different length scales.

In discussing the length of the coast line we found that there is some difficulty to
identify it as a one-dimensional object, as it has a typical property of an object with
dimensionality greater than one: It length depends on something else: For an area
this is the width, for the coast line it is the thickness of the pencil. In fact fractals turn
out not to have an integer dimensionality. Its dimensionality is a non-integer number
df , which is called fractal dimension. Let us resume, how in “normal” geometry the
dimension is defined: If we multiply the linear size L of a d -dimensional object by
a factor b the mass of the object changes by a factor bd :

M.bL/ D bdM.L/ (5.1)

W. Schirmacher, Theory of Liquids and Other Disordered Media, Lecture Notes
in Physics 887, DOI 10.1007/978-3-319-06950-0__5,
© Springer International Publishing Switzerland 2015
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Fig. 5.1 Left: Four iterations of the Koch curve. Right: Sierpinski sponge

Let us discuss a regular geometric coast line, which is the Koch curve depicted
in the left part of Fig. 5.1. A straight line is divided into three and the inner part
is replaced by the upper part of an equilateral triangle. This procedure is repeated
for all four new sides. As the Koch curve is iteratively constructed from lines, i.e.,
one-dimensional objects its “mass” is just its length. This length steadily increases
as the iteration is continued, just as in the coastline example. For the Koch curve we
can deduce the value of the fractal dimension: Every time the length is increased by
a factor of 3 its length increases by a factor of 4. If we call the length of the Koch
curve also M we have

M.3L/ D 4M.L/ (5.2)

We want to define the fractal dimension just as in (5.1)

M.bL/ D bdf M.L/ (5.3)

comparing (5.2) with (5.3) we obtain

df D ln 4= ln 3 D 1:26185954 � � � (5.4)

One even can generate fractals with dimensions below 1. These are point-like
objects, called dusts by Mandelbrot. The Cantor set is iterated by taking just the
middle third out of the unity interval, and then this procedure is repeated for every
remaining interval. For the remaining dust we have the scaling relation

M.3L/ D 2M.L/ , df D ln 2= ln 3 D 0:630929768 � � � (5.5)
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Fig. 5.2 Box-counting
determination of the fractal
dimension

One can show that from a topological point of view the Cantor set has the
Lebesgue measure 0, but its elements are not countable, i.e., it can not be mapped
onto the set of integers.

A similar procedure can also carried out with a square or a cube. For the latter
(“Sierpinski sponge”, Fig. 5.1, right part)

M.3L/ D 20M.L/ , df D ln 20= ln3 D 2:72683311 � � � (5.6)

Note that this number is now between 2 and 3.
In cases, in which the scaling law is not obvious one can calculate df empirically

by the so-called box counting algorithm. For this we need to define the imbedding
dimension, which is just called d . The imbedding dimension is the dimension of
the space, in which the defining algorithm of the fractal is formulated. So for the
Cantor set d D 1, for the Koch curve d D 2 and for the Sierpinski sponge d D 3.
For the fractal, for which one wants to determine df one sets up a mesh of boxes
inside a big hypercube of length L, which are hypercubes of “mass” .
L/d , where

 D L=N and N is the number of boxes along one edge of the big box (Fig. 5.2).

The box-counting dimension is then defined as

df D lim

!0

lnŒM.
L/=M.L/�

ln 

(5.7)

An important fractal, which we encountered in the last sections and which we
shall find useful as a simplified model for a polymer coil is a random walk. If
we interpret the trace of the random walk as a wrinkled one-dimensional object,
imbedded into a higher-dimensional space of dimension d , the mass of the object
will obviously be proportional to its length M D Na D t=� , where a is the lattice
constant,N is the number of steps leading from one end to the other and t is the time
this itinerary would take with time steps � . On the other hand, the linear dimension
of the randomly coiled trace is proportional to the square-root of the mean-square
distance of the walk

L.N/ / N1=2 , N.L/ / L2 ; (5.8)
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Fig. 5.3 Percolation clusters for three different concentrations p

which means that the fractal dimension of a random walk is df D 2 in any
imbedding dimension d . In contrast to the regular fractals encountered previously
in this section the random walk is an example of a random fractal, i.e., the self-
similarity and scaling law holds only on the average. This is true for almost all real
fractals like mountains, trees and sponges.

One can show that the static structure factor has a small-q dependence according
to

S.q/ / q�df (5.9)

This means that we can measure the fractal dimension of a real fractal by X-ray
or neutron diffraction.

5.2 Percolation

An important model for a metal-nonmetal transition in a random mixture of a metal
with a nonmetal is the Percolation model. At the same time it is a “toy model” for
a thermodynamic phase transition. It has two versions, namely the site percolation
model and the bond percolation model. In the site percolation model the sites of
a d -dimensional lattice is occupied randomly by metal atoms according to the
concentration p. If two neighboring sites are occupied they are called connected.
Connected sites form a cluster. If a cluster extends through the system of linear
extension L it is called percolation cluster. The critical concentration pc for the
metal-nonmetal transition is defined to be the smallest concentration for which a
percolation cluster exists in the limit L ! 1 (Fig. 5.3).

In the bond percolation model bonds are randomly distributed on the elementary
bonds on the lattice. All sites belonging to a bond are metallic sites and belong to a
cluster of connected sites.

The percolation concentrations pc depend not only on dimensionality but on the
type of lattice and whether we have site percolation [5].

Right at p D pc the percolation cluster forms a fractal. The fractal dimension is
universal as it depends only on the embedding dimension. For d D 2we have df D
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Table 5.1 Fractal
dimensions df of the site
and bond percolation model
[5]

Site Bond

d D 1
Square l. 0.6 1

2

Triangular l. 1
2

0.35
Honeycomb l. 0.7 0.65

d D 3
Simple c. 0.31 0.25
f.c.c 0.20 0.12
b.c.c 0.25 0.18
Simple c. 0.31 0.25
Diamond 0.43 0.39

Table 5.2 Critical exponents ˇ and � corresponding
to the order parameter P.p/ and correlation length
�.p/. (Bond percolation model [5])

Lattice ˇ �

Quadratic 5
36

4
3

Simple c. 0.417 0.875

1:9, for d D 3 df D 2:55. The fractal dimensions for site and bond percolation for
some selected lattices are given in Table 5.1

As in thermodynamic phase transitions one can define an order parameter P.p/,
which is the probability of a site to belong to the percolation cluster. Obviously
P.p/ D 0 for p < pc (Tables 5.1 and 5.2). For p 	 pc we have

P.p/ / .p � pc/
ˇ (5.10)

for p near pc .
For p � 1 the percolation cluster is obviously not a fractal, as there are only a few

vacancies which do not involve a scaling law. As in the theory of phase transitions
one can define a correlation length �.p/, which has the property that for length
scales L < � the percolation cluster looks like a fractal, i.e.,M.L/ / Ldf , whereas
for L > � M.L/ / Ld holds. Near pc we have the critical law

�.p/ / .p � pc/
�� (5.11)

Some critical exponents for bond percolation are shown in Table 5.2.

5.3 Random Walk on a Fractal

One can define a random walk on a fractal just like that on a lattice by defining paths
on the fractal which are allowed for the walker. For the Koch curve the path is just
the “coast line”. For the percolation cluster the paths are along the metallic bonds.
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It turns out that the mean-square distance walked on a fractal does, in general,
not increase linearly with time but according to

˝
Œr.t/ � r.0/�2

˛ / ta (5.12)

with a < 1. Such a behavior is called anomalous diffusion.

5.3.1 Vibrations on a Fractal and Spectral Dimension

Suppose we fix masses m at the nodes of a fractal network, which are connected by
springs along the bonds of the network.

Then we have an equation of motion for vibrational elongations un.t/ (which are
assumed to be scalar quantities):

d2

dt2
un.t/ D � 1

m

X
`

n:N:

Kn`Œun.t/ � u`.t/� : (5.13)

For the Fourier transform ui .!/ we have

� !2un.!/ D � 1

m

X
`

n:N:

Kn`Œun.!/� u`.!/� : (5.14)

We can compare this to the master equation for the Fourier transform of the
random walk probability Pi.!/, Eq. (4.43)

i!P.xn; !/ D �
X
`

n:N:

Wn`ŒP.xn; !/ � P.x`; !/� (5.15)

Obviously the equations are the same for the random walk and the vibration
problem, only the spectral parameter for the random walk is E D i!, that for the
vibrations is E D �!2.

We can therefore expect that the spectral parameter for both problems obeys the
same scaling relation, namely

E.L/ / 1

t
.L/ / L

�2
a ) !.L/ / L

�1
a (5.16)

where the relation on the right holds for the vibration problem.
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We now define a spectral dimension ds for the vibrational density of states as
follows:

�.!/ / !ds�1 (5.17)

For the integrated density of states F.!/ D R !
0 d Q!�. Q!/ we obviously have

F.!/ / !ds (5.18)

This quantity is just the number of states with frequencies less or equal !. As the
total number of states must be equal to the total number of masses, the number of
sites participating with vibrations up to ! must also scale with the mass:

F.bL; !/ D bdf F.L; !/ (5.19)

On the other hand, we have

F.L;!/ D F.bL; b�1=a!/ D bdf F.L; b�1=a!/ (5.20)

Taking b D A!a we obtain

F.L;!/ D Adf !df aF.A/ ; (5.21)

from which follows

ds D adf (5.22)

If the random-walk exponent a is less than 1 we have ds < df .

5.3.2 The Vibrational Spectrum of Percolation Networks

The spectral dimension ds is never found to be larger than 2. For percolation in
d D 2; 3 one has ds � 1:3, which led Alexander and Orbach [1] to the conjecture
that ds D 4=3 might be an exact relation, but they were rebutted by numerical
simulations. However, in many fractal models and realistic fractals there is some
evidence that very often ds � 1:3. An extensive numerical study of vibrations on
percolation clusters in d D 2 and d D 3 has been performed by Nakayama and
Yakubo (see Fig. 5.4). At p D pc they obtain for both systems a density of states
�.!/ / !ds�1 with df � 1:3.

It is interesting that the correlation length, which is finite for p > pc is reflected
in the density of states. For length scales larger than �.p/ one expects a density of
states �.!/ / !d�1 (Debye law). In the homogeneous medium sound waves of a
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Fig. 5.4 Density of vibrational states for a d D 2 percolating network for (a) p D pc D 0:593

(right at percolation, p D pc) and (b) p D 0:67 (away from percolation, p > pc). (c) Density of
vibrational states for a d D 3 system, p D 0:4 > pc , from Nakayama et al. [5]

certain sound velocity v are expected to exist, so that the �.!/ / !d�1 law should
be valid above !� � 2�v=�. One can state [1, 5]

�.!/ /
8<
:
!d�1 ! < !�

!ds�1 ! < !�
(5.23)

This is clearly observed in the simulations, both in d D 2 and d D 3. In d D 3

pc � 0:3. Alexander and Orbach [1] called such a crossover a phonon-fracton
crossover. The fractal vibrational excitations were called fractons.

5.4 The ac Conductivity of a Fractal

The functionD.!/ can be related to the dynamic conductivity (Appendix C)

�.!/ D i!
.!/ D � 0.!/C i� 00.!/ : (5.24)
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.!/ D 
0.!/ � i
00.!/ is the complex permittivity. The real part � 0.!/ is the
ac conductivity. For �.!/ we have the generalized frequency dependent Nernst–
Einstein relation

�.!/ D e2
n

kBT
D.!/ : (5.25)

We have noted that in a fractal the mean-square distance of a random walker does
not increase linearly but sublinearly with time with a characteristic exponent a

˝
�r.t/2

˛ / ta (5.26)

with a D ds=df . For the Laplace transform of the mean square distance one obtains

�r2.s/ /
Z 1

0

e�stdt ta D 1

saC1 �.aC 1/ (5.27)

For the frequency dependent diffusivity we obtain

D.!/ / s1�a (5.28)

From this we obtain an ac conductivity of the form

� 0.!/ / !1�a (5.29)

We have now described the ac conductivity, due to the polarization phenomena,
which is produced by a charged random walker on a fractal. This result holds,
however, only if the random walker can reach all parts of the fractal, as it is true, for
example, in the Sierpinski sponge. However, on a percolating lattice, as pointed out
by Gefen et al. [3], there exist isolated clusters, even if the bond or site concentration
is above the percolation threshold. If one places a charged random walker on such
an isolated cluster, it does not contribute to the dc conductivity, because, via the
Einstein relation, the dc conductivity is related to diffusion across the whole sample.
At finite frequencies, however, the motion of charges on the isolated clusters do
contribute to the ac conductivity. Gefen et al. [3] estimated the influence of the
finite clusters as

Q̨ D ˛

�
1C ˇ

2�

�
: (5.30)
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Fig. 5.5 Log-log
representation of the X-ray
small-angle scattering curves
of porous silicon with three
different porosities (volume
fraction of “holes”): (a) 55 %,
(b) 68 %, (c) 85 %; from
Vezin et al. [6]

5.5 ac Conductivity of Porous Silicon

Porous silicon was investigated extensively in the 1990s of last century, hoping for
photovoltaic applicability, as the porous material has a wider band gap than the
crystalline one (see [2] for references).

In Fig. 5.5 the structure factor S.q/, measured by X-ray diffraction by Vezin
et al. [6], is shown, which reveals a self-similar (fractal) structure of the investigated
materials. The observed fractal dimensionality depends on the porosity, controlled
by the etching procedure.

Let us now look at the ac conductivity data of porous silicon, measured by Ben-
Chorin et al. [2], as depicted in Fig. 5.6 at different temperatures. It is remarkable (as
can be seen from the right figure) that the � 0.!/ can be scaled such that the curves
fall on top onto each other. Such a behavior is called time-temperature superposition
property. It helps to obtain a larger frequency window for � 0.!/.

For small frequencies one observes an ac conductivity � 0.!/ / !1=2. Such a
behavior corresponds to anomalous diffusion with a D 1=2.1 From the small angle
data (Fig. 5.5) we see that in porous silicon one can only speak of “decent” fractal
properties for porosities less than �70%. For those materials the fractal dimension
lies between 2 and 3. According to the ac data the spectral dimension should lie
between 1 and 2, which is consistent with what one expects.

It is interesting to note that—like in the vibrational spectrum of a fractal—there
exists a fractal-non-fractal crossover due to the finite correlation length � above this
crossover a � 0.!/ / !1 law (“constant loss 
00) is observed:

1As there are no isolated clusters supposed to be in a porous material, Q̨ D ˛.
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Fig. 5.6 ac conductivity data of porous silicon at different temperatures as measured (left); scaled
(right) from Ben-Chorin et al. [2]

� 0.!/ /
8<
:
!1�a ! < !�

!1 ! < !�

(5.31)

The ac behavior in the “non-fractal” regime can be explained in terms of
activated hopping between defect pairs with distributed activation energies. The
crossover frequency !� can be related to the time in which the anomalous h�r.t/i
increases from a microscopic length to the correlation length. From the small-angle
data we estimate this length difference to be roughly one order of magnitude. Using
h�R.t/2i / t1=2 we obtain a “fractal” time or frequency window of four orders of
magnitude. This corresponds nicely with the experimental findings.

5.6 The Fractal Dimension of a Self-avoiding Walk

In Sect. 5.1 we mentioned that the random walk if studied as a function of the steps
N is, in fact a fractal with df D 2 in any imbedding dimension d . Such an object
might be a model for a polymer, if—and this is an important if—it were not for the
fact that a polymer cannot intersect itself, i.e., the chain cannot occupy more than
once the same portion of space. A random walk which never uses the same site is has
already used is called a self-avoiding random walk. In a real polymer the excluded-
volume property is, of course, due to a repulsive potential 	.jr � r0j/ between two
monomer units at locations r and r0. Flory has calculated the relation between the
length N and the extensionR of a self-avoiding random chain by a thermodynamic
argument. The probability density for the end of the chain of length N to be a
distance R from the other end (origin) is, using (4.25) with 2Dt D a2t=� D a2N :

P.R;N / D Œ2�a2N ��3=2e�R2=2a2N (5.32)
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The number of random walks with N steps leading from the origin to any point
inside a sphere of radius R� is then given by

�.R�; N / D 4�

Z R�

0

R2P.R;N / (5.33)

From this we can calculate the number of random walks having exactly the
distance R from the origin as

Z.R;N / D d�

dR�

ˇ̌
ˇ̌
R�DR

D 4�R2P.R;N / (5.34)

The corresponding entropy is

S.R;N / D kB lnŒZ.R;N /� D �kB R2

2a2N
C kB lnŒ4�R2� � .3=2/kB lnŒ2�a2N �

(5.35)

We now estimate the mean repulsive energy as follows:

E D �20

Z

V

d3r
Z

V

d3r0g.jr � r0j/	.jr � r0j/ (5.36)

Here V D R3, g.r/ is the radial pair distribution function of the monomers and
�0 D N=V D NR�3 is their density. As g.r/ is 0 for jr � r0j < d (where d � a is
the distance of nearest approach) and 	.r/ is supposed to drop quickly to 0 beyond
d we can make the approximation

g.r/	.r/ � 
ı.r � d/ ; (5.37)

where 
 has the dimension of an energy times a volume. We obtain

E D �20V
 D 
N 2=R3 (5.38)

We can now write down the free energy

F D E � TS
D 
N 2=R3 C kBT lnŒZ.R;N /�

D 
N 2=R3 C kBT
R2

2a2N
� kBT lnŒ4�R2� � .3=2/kB lnŒ2�a2N � (5.39)

We now seek the equilibrium value ofR for a self-avoiding random walk ofN steps,
which, is obtained by that value of R which minimizes F , i.e.,
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Fig. 5.7 DLA cluster from
the original paper of Witten
and Sander [7]

0 D @F.R;N /

@R
D �3
N

2

R4
C kBTR

a2N
� 2kBT

R
; (5.40)

from which follows

R2

Na2
D 3

N 2


R3kBT
C 2 (5.41)

In the limit of large N and R (and for temperatures equal or smaller than 
N 2=R3)
the constant term 2 is negligible, and we obtain

N.R/ D
	
kBT

3
a2

�1=3
R5=3 (5.42)

5.7 Diffusion-Limited Aggregation

An interesting “random” fractal object is obtained in the following way: Consider a
large two-dimensional square lattice with an approximately spherical boundary on
which random walkers are started with equal probability. If these walkers reach the
boundary, a further walker is started. If one of the walkers reaches the origin, the
site from which it arrived at the origin is attached to the origin as a second site of
a beginning cluster. If another walker reaches one of the cluster sites the site from
which it arrives is added to the cluster. The cluster, which grows in this way looks
like a tree and is a fractal object with fractal dimension dF � 1:7 in d D 2 and
dF � 2:5 in d D 3 (Fig. 5.7).

The “crumpled” form of the cluster arises because there exists an intrinsic growth
instability at the surface of the cluster: The local growth rate is much larger if the
local surface is curved, i.e., if a site on the cluster can be reached by more than one
free site. This situation is common to dendritic growth of a crystal from a liquid
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with temperature below the melting temperature or from a solution with a slowly
diffusing solvent.
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Chapter 6
Structure of Polymers

6.1 Single Ideal Polymer Chain

On a microscopic level a polymer chain mainly consists of a backbone of beads
to which some side groups are attached. In addition there can be branching and
cross-linking.

There is usually a very limited range of possible bond angles between the beads.
The angle � between the beads is usually fixed, but the azimuthal or dihedral angle
	 can have different values, e.g., 	 D 0ı (cis), 	 D 60ı (gauche), or 	 D 180ı
(cis), where the latter is usually the most stable position (Fig. 6.1). Between the bond
angle positions there are energetic barriers�
, which the chain has to overcome for
changing the angle. If the temperature is much higher than these energy barriers,
the chain will acquire some freedom to form a curvature, i.e., the directions of the
beads will start to fluctuate statistically. Let us denote by an the vector pointing from
one chain connection to another. Let us assume that they have all the same length a.
Then we can be interested in the following correlation function

C.�/ D hanC� � ani (6.1)

This function will decay exponentially with increasing � with a characteristic
decay constant �0 D `0=a, where `0 is the decay length. For length scales larger
than `0 the chain will behave as an ideal polymer chain i.e., like a random walk if
we for a moment disregard the volume exclusion condition.

In particular, we can calculate the radius of gyrationR0, which is the square-root
of the mean square end-to-end distance:

R20 D
*"

NX
nD1

an

#2+
D Na2 C

NX
nD1

�maxX
�D1
ŒC.�/C C.��/� D Na2 (6.2)
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x

θ

yFig. 6.1 Three segments of a
polymer chain with bond
angles � and azimuthal angle
	 by which the bond can be
directed into the trans and the
gauche direction

The second equality holds, because the correlations have all values between a2

and �a2 with equal probability, i.e they average to zero.
So we can state that a polymer chain at a temperature above the typical energy

barriers for bond-angle torsion behaves like an ideal chain as modelled by a random
walk.

As starting point for a thermodynamic treatment of a polymer chain we can
therefore take the number of possible random walks with N steps and end-to-end
distance R as calculated in the previous subsection:

Z.R;N / D 4�R2Œ2�R20�
�3=2e�R2=2R20 (6.3)

with corresponding entropy

Sid.R;N / D kB lnŒZ.R;N /� D �kB R
2

2R20
C kB lnŒ4�R2� � .3=2/kB lnŒ2�R20�

(6.4)
and free energy

Fid D �TSid D kBT
R2

2R20
� kBT lnŒ4�R2� � .3=2/kB lnŒ2�R20� D F0 C kBT

R2

2R20
(6.5)

From this we can calculate the distance x the chain will be elongated if an
external force f in x direction is applied. The corresponding potential is 	f D �f x
so that the free energy is

Ff D �f x C F0 C kBT
x2 C y2 C z2

2R20
(6.6)
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Minimizing Ff with respect to x yields

x D f
R20
kBT

D f
Na2

kBT
(6.7)

This equation can also be obtained by a scaling argument:

(i) As we suppose that the force f acts on the entire polymer chain we expect that
the elongation x is a linear function of N .

(ii) The only relevant variables x may depend on are R0, f and T .

As R0 is the only relevant length scale we can write

x D AR0

�
fR0

kBT

�˛
(6.8)

The exponent ˛ is fixed by the requirement .i/ which states that x should be
proportional to R20, i.e., ˛ D 1. The proportionality constant A cannot be fixed by
the scaling argument.

Next we are interested in the behavior of a polymer chain which is confined
between two parallel plates of distance D. We assume that the inner walls of the
plates repel the polymer so that there are no adsorption effects.

Now, as our model for an ideal chain is a random walk as introduced in the last
section, the walk in three dimensions is a superposition of three independent walks
in x-, y- and z direction. If the confining plates are parallel to the x-y plane we
expect that the mean extension r0 of the polymer in the x-y plane is given by

r0 D R0 (6.9)

By the same token the extension x0 of an ideal polymer chain inside a tube of
diameter D is expected to be

x0 D R0 : (6.10)

We now try to estimate the free energy required to squeeze the polymer between
the two plates of diameterD. We use a scaling argument similar to that for the force
and start by stating that the only relevant quantity will be the entropy change�S :

(i) �S should be a linear function of N .
(ii) The only relevant variables are R0 andD, so

�S D �A
�
R0

D

�ˇ
(6.11)
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Again, from requirement .i/ we obtain the exponent, namely ˇ D 2, so that the
free energy of squeezing is

�F D AkBT

�
R0

D

�2
(6.12)

Let us now consider a single plate and consider the possibility that an ideal
polymer chain may be adsorbed to its surface by means of a contact energy 
 which
is gained if a monomer unit is attached to the plate. We assume that by this action
a confinement of thickness D occurs so that a fraction of a=D monomers have the
chance to contact the plate. The free energy for this situation is

F D �N a

D

 C kBT

R20
D2

; (6.13)

where the second term is again the free energy of squeezing. Minimizing this
expression with respect to D we obtain (with A D 1)

D D 2kBT
R20
Na


D 2kBT
a



; (6.14)

from which follows

F D �1
4
N


2

kBT
(6.15)

We see that, as to be expected, the free energy of adsorption decreases, and the
layer thickness increases with increasing temperature.

Another quantity of interest is the radial pair correlation function of monomers
Qg.r/which is just the counter part of this quantity in simple liquids. In simple liquids
g.r/ was defined in such a way that for large r the integral

�04�

Z Rmax

0

dr r2g.r/ D 4

3
R3max

N

V
D N (6.16)

where �0 D N=V is the number density of molecules. Here we identify �0 with
the number density of monomers and include the factor �0 in the definition of the
correlation function:

Qg.r/ D �0g.r/ (6.17)

so that we have

4�

Z 1

0

dr r2 Qg.r/ D N (6.18)
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We now try to figure out a scaling form of Qg.r/. As this function has the
dimension Length�3 we make the ansatz

Qg.r/ D A
N

R30
f .

r

R0
/ (6.19)

We now realize that inside a sphere of radius r� we must have

4�

Z r�

0

dr r2 Qg.r/ D n ; (6.20)

where n is the number of monomers inside the sphere of radius r�. According to the
random walk rule of the ideal chain we must have

.r�/2 / na2 ; (6.21)

which can only be reconciled with (6.20) if the function f .x/ is proportional to x�1.
We therefore obtain

Qg.r/ D A
N

R30

R0

r
D A

1

ra2
: (6.22)

This is the so-called Debye correlation function. It has the Fourier transform

QS.k/ D 4�A
1

q2
: (6.23)

6.2 Swollen Polymer Chains

We now return to a discussion of more realistic polymer chains in taking the
excluded-volume interaction into account (section 5.6). In terms of the repulsive
excluded-volume energy 
 the free energy is given by

F D Fid C 
N 2

R3
F D F0 C kBT

R2

2Na2
C 
N 2

R3
(6.24)

which was minimalized to obtain the Flory law

RF .N / D
	
kBT

3
a2

�1=5
N 3=5 ; (6.25)

where the index F denotes “Flory”. This yields a free energy of the form

F D F0 C 1

2
kBT

R2F
2Na2

.1C 3/ D 2kBT
R2F
R20

(6.26)
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The exponent 3=5 D 0:6 is considerably larger than the free-chain exponent 0.5.
One therefore speaks of chains which are “swollen” through the excluded-volume
interaction.

We are now going to repeat the scaling calculations of the last section for the
case of “real” or “swollen” polymer chains. The scaling argument for the external
force f now proceeds as follows: We write the elongation x.f / as

x.f / D ARF'

�
fRF

kBT

�
(6.27)

As we expect that x / f for small f the universal function '.x/ must start
linearly. On the other hand, for large x we expect x to be proportional to N as the
force is assumed to act on all monomer units. So '.x/ / x� and we must have

1 D 3

5
.1C �/ from which follows � D 5

3
� 1 D 2

3
. We obtain

x.f / D
8<
:

Af
R2F
kBT

f < kBT=RF

ARF



fRF
kBT

�2=3
f > kBT=RF

(6.28)

We see that in the limit of small f the force to pull the swollen coil apart must
be larger than that to pull an idea coil apart. For f > kBT=RF the “swelling
interaction” is negligible and we have a cross-over to the ideal behavior (which
we, of course, put into the scaling argument on the first place!). We now turn to the
size of a “sausage” inside a tube of diameterD. We write

x0 D RFˆ.RF =D/ (6.29)

ForD ! 1 we must haveˆ.0/ D 1. For large arguments of the scaling function
we obtain a one-dimensional object so that x0 must be proportional toN / R

5=3
F )

ˆ.x/ / x2=3 for x ! 1. In this limit we obtain

x0 / N

D2=3
: (6.30)

The size of a “real sausage” (fixed volume V ) scales, of course, as x0 / D�1. We
now estimate the entropy of a swollen polymer between two plates of distance D.
Again we postulate that S should be a universal function of RF =D and proportional
to N . Therefore it must scale as

S D �A
	
RF

D

�5=3
(6.31)

so that
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F D AkBT

	
RF

D

�5=3
: (6.32)

From this we write down the free energy of an adsorbed polymer pankake as

F D �N a

D

 C AkBT

	
RF

D

�5=3
(6.33)

Minimization of this expression with respect to D leads to a thickness of the
adsorbed layer which scales as

D /
	
kBT




�3=2
(6.34)

We see that all the scaling laws now have changed due to the fact that the fractal
dimension of the self-avoiding walk is dF D 5=3 instead of dF D 2 in the case of
the ideal random walk.

The argument that led to the scaling law (6.22) of the pair correlation function
now leads to the general scaling law for any fractal

g.r/ / rdF �d / r�4=3 (6.35)

and

S.k/ / k�dF / k�5=3 : (6.36)

6.3 Polymer Melts

The arguments to the last sections related to a single polymer chain. Such single
chains (or rather coils) appear in dilute solutions of polymers in good solvents
(i.e., solvents with small or negative interaction parameters). On the other hand
in concentrated solution and melts it turns out that the self-avoiding interaction is
suppressed, so that their scaling behavior is almost that of an ideal random walk.
This fact is referred to as “Flory’s theorem” and can be made plausible by means of
the following argument.

Let us consider a spaghetti-like arrangement of many different polymer chains
and consider one particular of these chain, the “tagged chain” or “tagged coil”.
We consider the repulsive potential energy U experienced by the tagged coil. This
energy must be proportional to the concentration ctagged.r/ of monomers of the
tagged coil. This concentration is maximal near the center of mass of the tagged
coil. Therefore a force is effective towards the outward direction. This force leads to
the swelling of the coil in dilute solutions. Now we are in a situation that everywhere
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the total concentration ctot of monomers of any coil is essentially constant, so that
the concentration cother D ctot � ctagged of the other coils becomes depleted in the
spatial region of the tagged coil. This leads to a force inwards into the direction
of the center of mass of the tagged coil which exactly cancels the force considered
previously. In simple words, the tagged coil cannot swell because of the presence of
the other ones which claim the same right.

6.4 Polymer Solutions in Good Solvents

In the last section we presented an argument according to which melts of polymers
behave like ideal random-walk chains, whereas dilute solutions of polymers are
swollen, i.e., they scale like self-avoiding walks. It is reasonable that concentrated
solutions of polymers, i.e., a large amount of polymer solute together with a small
amount of solvent will also essentially behave ideally, because the “screening
argument” will still hold. However, going from the dilute to the concentrated regime
there will be a volume fraction 	� which marks the crossover from the dilute to
the concentrated regime. This crossover volume fraction can, of course, also be
estimated by a scaling argument.

Let us assume the ideal coils occupy a sphere of radius R0, the swollen coils a
sphere of radius RF If the packing fraction

�F D �

6
�pR

3
F (6.37)

reaches a value near 0.5 the concentrated limit is reached. �p D Np=V is the
number density of polymers. Because 	 D a3�pN we have for the crossover
volume fraction

1 � �pR
3
F D 	�

a3N
a3N 9=5 D 	�N4=5 ) 	� D N�4=5 (6.38)

The dilute limit in which the polymers are swollen is obviously a very dilute
regime. The regime in which 	� < 	 � 1 holds is called semi-dilute regime. In
the dilute limit the Flory–Huggins free Enthalpy �g D �G=kBT , which we now
re-formulate as a free energy�f D �F=kBT can be expanded

�f D 	.1 � 	/�C 	

N
ln	 C .1 � 	/ ln.1 � 	/ � 	

N
ln	 C .� � 1/	 C 1

2
.1 � 2�/	2

(6.39)

It is revealing to relate this to an important physical quantity if one deals with
dilute solutions. This is the osmotic pressure. It is the pressure due to the dissolved
molecules. One usually performs a Gedankenexperiment with a semipermeable
membrane which is impermeable for the solute but permeable for the solvent. The
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construction is to add solvent together with the solution volume but leave the number
Np of polymer molecules fixed. The osmotic pressure is defined as the derivative
of the free energy in the total volume �F=	 with respect to the inverse volume
fraction:

a3… D �@�F=	
@1=	

D 	2
@�F=	

@	
(6.40)

which becomes

a3

kBT
… D 1

N
	Cln

�
1

1 � 	
�

�@�F=	
@1=	

�	��	2 � 1

N
	C1

2
.1�2�/	2 (6.41)

As 	 D a3NNp=V the first term is the osmotic version of the ideal gas equation
of state. In the theory of interacting gases the quadratic term in the density expansion
(virial expansion) is called the second virial coefficient and gives the correction to
the ideal gas equation of states due to interactions. However, it turns out that the
Flory–Huggins form of the second virial coefficient is not correct.

In the dilute limit 	 < 	� the polymers are swollen and do not want to
interpenetrate each other. This leads in the case of an ideal (“athermal”) solution
with � D 0 to an equation of state of the form

a3…

kBT
D 	

N
C
�
	

N

�2 �
RF

a

�3
D 	

N

"
1C 	

N

�
RF

a

�3#
(6.42)

As the second virial coefficient is obviously proportional to N�1=5 it is strongly
reduced in comparison with that of the mean-field expression (6.41). We now look
for an extension of the equation of state of the athermal polymer solution into the
semi-dilute regime 	 > 	�. Inspired by (6.42) we write

a3…

kBT
D 	

N
fs

�
	R3F
Na3

�
(6.43)

In the very dilute limit 	 < 	�, according to (6.42) the universal function fs
behaves as fs.x/ D 1 C x. As in the semi-dilute regime 	 > 	 the material
behaves as a “monomer soup” of volume fraction 	, all dependence on the degree
of polymerization N should drop out of the equation of state. Writing fs.x/ / xı

we obtain

a3…

kBT
/ 	ıC1N Œı.9=5�1/�1� (6.44)

If the exponent of N is to be 0 we must have ı D 5=4 and the volume fraction
dependence of the osmotic pressure in the semi-dilute regime becomes
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a3…

kBT
/ 	9=4 : (6.45)

In semi-dilute athermal polymer solutions one can introduce a correlation length
�, just as we did in the case of real fractals, i.e., fractals which exhibit their self-
similar scaling law only below a length scale �:

M.L/ /
8<
:
Ldf L < �

Ld L > �

(6.46)

As for 	 > 	� the coils (which for 	 	 	� would have radius RF ) are
overlapping we expect that there exists a length scale �, for which

R.N/ /
8<
:
N3=5 L < �

N1=2 L > �

(6.47)

� can be measured by small-angle neutron or X-ray scattering (see below). We
now construct a scaling law for this correlation length. For 	 � 	� where the single
polymer coils just touch, but not yet interpenetrate each other, � should be of the
order of the Flory length RF . We write

�.	/ D RF

�
	

	�

�

(6.48)

Again we require that in the semi-dilute regime the correlation length should be
independent of N . Therefore the exponent 
 should be such that the exponent of

RF / N3=5 and the exponent of .1=	�/
 / N
4
5

 cancel, which leads to 
 D �3=4,

and we have in the semi-dilute regime

�.	/ / 	�3=4 : (6.49)

We see that the correlation length decreases rapidly, albeit with a power law, from
RF to 0 in the more and more concentrated regime.

It is interesting to note that the scaling law for the osmotic pressure (6.43), (6.44),
and (6.45) can be taken together by writing

a3…

kBT
D
�
a

�

�3
(6.50)

The pair distribution function of monomers for separations r < � in semi-dilute
solutions must decay according to the fractal law g.r/ / rdf �d D r�4=3, whereas
for r > � it should decay according to a Debye law g.r/ / r�1. The corresponding
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Fig. 6.2 Left: radial pair distribution g.r/ of monomer units for a semi-dilute polymer solution.
Right: the corresponding static structure factor S.q/

small-angle static structure factor should behave as q�2 for q < 2�=� and as
q�df D q�5=3 for q > 2�=� (see Fig. 6.2).

6.5 Poor Solvents and Segregation

We now return to the discussion of the segregation properties of the Flory–Huggins
model

�f

kBT
D 1

N
	 ln	 C .1 � 	/ ln.1 � 	/C 	.1� 	/� : (6.51)

The spinodal curve, i.e., the � which marks the borderline of stability is given by

0 D @2

@	2
�f

kBT
D �2�spinodal C 1

N	
C 1

1 � 	 (6.52)

Instead of the spinodal and the coexistence temperatures Tspinodal and Tcoex

(double-tangent construction) we have plotted in the picture (Fig. 6.3) its inverse,
i.e., 2�spinodal D !=kBTspinodal; 2�coex D 2!=kBTcoex. We see that in the segregation
regime the dilute phase has a volume fraction below 	�, indicating that the dilute
phase consists of swollen coils, whereas the concentrated phase does not.

We would like to emphasize here that the swelling is an excluded-volume effect
(like the hard-core repulsion of the simple liquid constituents), whereas the phase
separation is an effect of the Van-der-Waals attraction.
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Fig. 6.3 Inverse spinodal
�c.	/ for N D 10000
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In fact, if we write

Uij D �A˛i˛j (6.53)

where A is a proportionality constant and the ˛i are the polarizability of the solute
monomer units (i D 1) and the solvent molecules (i D 2) we obtain

! D kBT� D A

2
.˛1 � ˛2/2 : (6.54)

So that we conclude that good solvents have the same polarisability as the solute,
bad solvents have a different one.

6.6 Polymer Mixtures

Of course the Flory–Huggins model can be generalized to the case of a liquid
mixture of two polymer species with chain lengths NA and NB . One can consider
both the situation of two polymer species dissolved in a good solvent as well as a
binary polymer melt.

In both cases the free energy of mixing can be written, according to the Flory–
Huggins model, as

�f

kBT
D 1

NA
	 ln 	 C 1

NB
.1 � 	/ ln.1 � 	/C 	.1 � 	/� ; (6.55)

where 	 is the volume fraction of the A species, 1 � 	 that of the B species. In the
case of a solution of the two species in a solvent 	 and 1 � 	 are the fractions
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occupied by monomer units relative to the total volume occupied by polymer
material. The stability function is given by (c D cA D 	A=NA)

fcc D Scc.q D 0/ D @2

@c2
�f

kBT
D 1

NA	
C 1

NB.1 � 	/
� 2� : (6.56)

The spinodal is given by

2�spinodal D 1

NA	
C 1

NB.1 � 	/ (6.57)

from which we obtain a critical concentration of

	c D N
1=2
B

N
1=2
A CN

1=2
B

(6.58)

The critical � is given by

�c D !=kBTc D 1

2

 
1

N
1=2
A

C 1

N
1=2
B

!2
(6.59)

For NA=NB D N the model is very similar to the conformal solution model. In
this case we obtain a critical � parameter of

�c D 2

N
(6.60)

Obviously one can work with a conformal solution model of �eff D .N=4/�.
Generalizing the random phase approximation which led to the Flory–Huggins

theory we can write

Scc.q/ D S0.q/

1 � 2�S0.q/
, 1

Scc.q/
D 1

S0.q/
� 2� (6.61)

For S0.q/ we can take a Debye law 1=S0.q/ / q2 from which we get

Scc.q/ / 1

q2 C ��2
c

(6.62)

where the correlation length �c describes the critical fluctuations due to the vicinity
of the demixing phase transition and is given by

�c / .�c � �/�1=2 / .T � Tc/�1=2 : (6.63)
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Fig. 6.4 Phase diagram for
equilibrium
diblock-copolymer phases as
a function of the � parameter
and the volume fraction 	A

The critical exponent � D 1=2 is the mean-field exponent. In the vicinity of
the critical point it can be different from 0.5. The correlation function takes the
Ornstein–Zernike form

gcc.r/ / 1

r
e�r=�c : (6.64)

6.7 Diblock Copolymers

If n polymer species are linked together chemically one speaks of block copolymers
The molecules in the special case of n D 2 are called diblock copolymers. As any A
molecule is tied to a B molecule, the volume fraction of the A species is just given
by

	A D NA

NA CNB
(6.65)

and can only be changed by the chemist, not by the physicist. As the van-der-Waals
interactions of different polymers will still be different in the case of linking two
species together, Eq. (6.54) for the monomer-monomer interaction will hold and
one expects a segregation tendency as in the case of polymer mixtures. The overall
thermodynamics for � < �c including the critical small-angle scattering law (6.62)
will be the same. However for � > �c the molecules cannot segregate, because they
are tied together. Instead they can (and do) form regular structures.

These structures differ for different volume fractions. So one obtains a rich phase
diagram (see Fig. 6.4). For small concentrations 	A � 1 or 	B � 1 spheres
are formed with the minority species inside. This situation is quite comparable
to solutions of polymers with large � parameter but with a hydrophilic end
group (lipids) in water. The spherical structures form a bcc lattice. For larger
fractions cylinders are formed, which are arranged in a hexagonal 2 � d lattice.
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For NA � NB layered structures are formed. In the concentration range 	 � 0:3

two interpenetrating diamond-type filament structures (ordered bicontinuous double
diamond, OBDD) are formed. As the thermodynamic and interaction parameters are
A� B symmetric, so is the phase diagram.

From (6.60) one would estimate for 	A D 0:5, i.e., NA D NB D N a critical �
parameter of �c D 2=N . However empirically it was found that the transition is at
� � 5=N .

6.8 Solid Polymers

In principle, given a polymer material with molecular weight N and a certain
preferred bond-angle configuration, one can form single crystals. These crystals
will have very low symmetry, due to the steric arrangements. If one has achieved to
form a crystal from macromolecules one can evaluate the molecular structure from
the Bragg line patterns. This was the method used by Watson and Krick to reveal
the spiral structure of DNA and is until now the basis of biomolecular structure
determination.

However, in most cases solid polymer materials are not crystalline. This is so,
because the crystallization kinetics would take too much time, or, in other words,
the free energy barriers between the disordered and the crystalline state are too high.

The structure of solid polymer materials is therefore highly disordered. In
many cases they can be classified to be amorphous. One can distinguish X-ray
amorphous from Raman amorphous by the method from which one has drawn
the conclusion that the material is amorphous. X-ray amorphous material does
not exhibit any Bragg peaks. Instead S.q/ looks quite that of a simple liquid
with a peak near q0 � 2�=a, where a is a mean distance between monomers.
The vibration spectrum of Raman amorphous material has a very broad spectrum
between 100 and 2,000 cm�1, where no allowed vibrational Raman excitations of
the crystal are present. Whereas the interpretation of the X-ray diffraction patterns
is straightforward, the interpretation of the Raman spectra of glasses has only been
achieved very recently [5].

In both cases one finds that generically solid polymer materials are in a mixed
crystalline-amorphous state. One introduces the crystallinity

	c D Vc

V
(6.66)

as the volume fraction of crystalline material. Quite different from crystalline
materials formed by elemental atoms or small molecules crystallites are not
separated by each other by grain boundaries but more or less large amorphous
regions. Grain boundaries in the usual sense only exist for 	c � 1.

If a polymeric material is quenched from the melt it usually goes into a complete
amorphous state, namely the glassy state. The phenomenology as well as the
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theoretical description of the glass transition will be subject to the lectures in the
summer (Part II, section 11). Starting with the glassy “as-quenched” state one can
try to induce relaxation processes which leads to energetically “more comfortable”
positions of the monomer units. If such processes are induced by thermal treatment
one calls this procedure annealing. They, however also occur at room temperature
just as time goes on (relaxation by waiting). The result will be increasingly more
and larger crystalline regions in which polymer chains are arranged parallel in a
hexagonal lattice.

6.9 Gelation

We now no more consider polymers with monomer units that have bonds to Z D 2

nearest neighbors but branched macromolecules with Z > 2. Of course the
branching may occur in reality only every Nmth monomer unit with Nm 
 1.
This can be easily incorporated into the considerations by rescaling the fundamental
length scale.

One can take a d -dimensional lattice with coordination number Z, which is for
a hypercubic lattice just Z D 2d and consider the case that only a fraction of p
nearest-neighbor bonds are completed. This just defines a bond percolation model
as discussed in Sect. 5.2, if p is very small, only isolated clusters appear. A system of
network-forming polymer units, in which only a small fraction has formed clusters
of finite size is called a sol. Beyond a critical concentration pc the network extends
through the entire system and a gel is formed. The percolation transition in the
gelation process is called sol-gel transition and is—as the percolation transition—a
second-order phase transition, although the control parameter is not the temperature
but the bond concentration. However, if one considers a bond-breaking mechanism,
which is thermally activated

q D 1 � p / e�EA=kBT (6.67)

one has transformed the p controlled phase transition to an ordinary T controlled
transition, in which the sol phase is the high-temperature phase. In other important
gelation processes (e.g., rubber vulcanisation egg boiling, baking) the bond forming
is thermally activated, which leads to gelation at high temperatures.

The first mean-field-type ideas in discussing this transition have been formulated
by Flory and Stockmayer [4, 6], who considered a network without closed loops.
Such a network is called a Bethe lattice (or Cayley tree, see the Fig. 6.5) with
branching order (or functionality)Z: One starts with a point from whichZ branches
start. These branches lead at every vertex to Z � 1 further outgoing branches. The
number of nodes N increases with the number n of generations as

�N.n/ D N.n/�N.n� 1/ D Z.Z � 1/n�1 (6.68)
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Fig. 6.5 Left: Bethe lattice or Cayley tree with Z D 3 and n D 4. Right: Cayley tree as drawn by
de Saint-Exupéry [2]

One can now consider the case in which the bonds are formed with probability
p. In this case �N is given by

�N.p; n/ D pZŒp.Z � 1/�n�1 (6.69)

If p < pc D 1=.Z � 1/ the series N.n/ can be summed, i.e., on the average one
obtains only a finite Cayley tree of size

hN i D 1C pZ

1 � p.Z � 1/ D 1C p

1 � p.Z � 1/
D pc

1C p

pc � p : (6.70)

For p ! pc hN i diverges, which is then identified with the gelation threshold.
As we did not make any assumption for the angles between successive bonds they
are to be taken randomly, so that the size of the cluster will obey the random walk
rule and is proportional to

phN i:
RZ / � / .pc � p/�� (6.71)

with � D 1=2, which is the Flory–Stockmayer mean-field correlation length
exponent.

We are now going to discuss the regime inside the gel phase. Let Q be the
probability for the termination of a branch which emanates from a certain node. If
the bond is absent (probability 1 � p) Q D 1. If the bond is present (probability p)
Q is equal to the probability for the termination ofZ�1 further branches. Therefore
we have

Q D 1 � p C pQZ�1 ; (6.72)

which is a closed equation for Q, albeit a nonlinear one. Obviously Q D 1 for
p < pc . For p > pc Q must be smaller than one. For p ! pc the deviation from 1
will be infinitesimally small:

Q D 1� 
 (6.73)
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so that we can linearize (6.72):

1 � 
 D 1 � p C pŒ1 � .Z � 1/
� (6.74)

Equating the coefficients of 
 yields again pc D 1=.Z � 1/.
The numerical solution of (6.72) for Q.p/ is depicted in the left part of Fig. 6.6.

For Z D 3 the self consistent equation (6.72) can be evaluated analytically, as it is
in this case a quadratic equation. The two solutions are

Q1.p/ D 1 Q2.p/ D 1 � p
p

D 1 � 2p � pc
p

(6.75)

They coincide at p D pc D 1=2. As Q cannot be larger than one and must be
smaller than one for p > pc the physical solution is Q1.p/ for p < pc and Q2.p/

for p > pc .
In the gel phase p > pc we can be interested in the probability P for a given

node to be part of an infinite cluster. This probability together with its critical
exponent ˇ has already been introduced in the section on percolation. It is the order
parameter of the percolation transition. In the Flory–Stockmayer Cayley-tree model
this probability is, of course, zero forp < pc . For p > pc there is a finite probability
that all three branches terminate, which is just

1 � P D QZ ) P D 1 �QZ : (6.76)

In the case Z D 3 we obtain from (6.75)

P D 6
p � pc

p
CO.jp � pcj2/ ; (6.77)

i.e., ˇ D 1. As one can see from the right part of Fig. 6.6, obviously ˇ D 1 holds
also for Z > 3. This result can be obtained rigorously in the following way: From
(6.72) we can obtain the inverse of the functionQ.p/ � 1 � 
:

p.Q/ D 1 �Q
1 �QZ�1 D 


1� .1 � 
/Z�1

� 1

Z � 1
1

1 � 1
2
.Z � 2/
 � 1

Z � 1

�
1C 1

2
.Z � 2/


�
(6.78)

From P D 1 � .1 � 
/Z � Z
 we obtain

P D 2Z

Z � 2

p � pc

pc
; (6.79)

which, interestingly enough, becomes independent of Z for large Z.
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Fig. 6.6 Left: probability Q for termination of a branch for Z D 3 to Z D 9. Right: probability
P for a node to be part of an infinite cluster for Z D 3 to Z D 9

The critical exponent of the mean-field theory of the Flory–Stockmayer model
are, of course, quite different from those of the lattice percolation model, which
includes closed loops. However, in the vulcanization transition of rubber both the
chain length Nm in between the cross-linking nodes as well as the functionality
Zeff is so high that the effect of closed loops in the network is negligible. So the
Cayley-tree model gives quite realistic results for this case. In other cases the lattice
percolation theory is more adequate.

6.10 Elasticity of a Gel

We now turn to another interesting quantity, which is the elasticity of the gel
phase. We here make the simplifying assumption that there is only one type of
elastic response (no differentiation between longitudinal and transverse degrees of
freedom) and consider the elasticity in such a way as if the mean mass m0 of the
network per node would be concentrated at the node. Then the equation of motion
for the vibrations are

d2

dt2
ui .t/ D �

X
j¤i

Kij Œui .t/ � uj .t/� �
X
j

Dij uj .t/ ; (6.80)

withKij D fij =m0 where fij are the Hookean force constants corresponding to the
bond (ij ) (present or absent). Dij are the elements of the dynamical matrix, which
is defined by

Dij D
8<
:

�Pm Kim i D j

Kij i ¤ j

(6.81)
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Table 6.1 Bond-percolation thresholds pc compared with the Cayley-tree value 1=.Z � 1/ and
the CPA value 2=Z

Honeycomb Square Triangle sc bcc fcc

Z 3 4 6 6 8 12
pc 0.65 0.5 0.35 0.25 0.18 0.12
1=.Z � 1/ 0.5 0.33 0.2 0.2 0.14 0.09
2=Z 0.66 0.5 0.33 0.33 0.25 0.16

As noted already in the discussion of the vibrational properties of a fractal,
Eq. (6.80) is mathematically analogous to a master equation of type (4.43), (5.15),
which describes a single-particle random walk. There the double time derivative is
replaced by a single one, or in frequency space the frequency parameter �!2 is
replaced by i!.

In the dc limit one obtains just the equivalent of Eq. (4.44), which means, that
the determination of the elasticity of a polymer gel is mathematically equivalent to
the determination of the conductance of the network with individual conductances
Kij [1]. At first glance one would think that the conductance of a percolating
network would just follow the critical law of the order parameter. But this is not
so, as noted in Sect. 5.4, because all dangling ends in the course of the gelation
process contribute to the order parameter, whereas only paths which lead through
the total system contribute to the conductance and the elasticity. Therefore the
conductance/elasicity exponent � (sometimes called t , but we need this letter for
the time)

K / .p � pc/
� (6.82)

is larger than ˇ and obeys the scaling relation of Gefen et al. [3]

� � ˇ
2�

C 1 D df

ds
D 1

˛
(6.83)

In order to discuss the elasticity in the vicinity of the percolation threshold we
take advantage of the mathematical analog between Eqs. (6.80) and (4.43). So we
can take over the results for �.0/, which now has to be interpreted as the elasticity
near the percolation threshold:

�.0/ D p � pc
1 � pc (6.84)

with the percolation threshold given in CPA pc D 2=Z and a conductivity/elasticity
exponent � D 1.

It is important to note that the CPA includes closed loops explicitly, so that the
CPA approach is complementary to the Flory–Stockmayer Cayley-tree model. We
see from Table 6.1 that the critical values given in CPA compete well with the
Cayley-tree ones.
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Part II
Dynamics



Chapter 7
Time-Dependent Correlation and Response
Functions

7.1 Correlation Functions

The first three sections of this chapter, which comprise the foundation of the
description of liquid dynamics by means of time and space dependent correlation
functions [2, 6] is formulated in the language of quantum mechanics. Afterwards
we take the classical limit, which is accomplished by considering time scales much
larger than �quantum D „=kBT or frequency scales much smaller than ��1

quantum.
We study a many-body system with a Hamiltonian

H D
NX
˛D1

p2˛
2m˛

C 1

2

NX
˛¤˛0

	.r˛˛0/; (7.1)

where 	.r/ is the pair potential,m˛ are the masses of theN particles, r˛˛0 Djr˛�r˛0 j,
and p˛; r˛ are the quantum-mechanical momentum and position operators. If the
system is in equilibrium the canonical density operator has the form

� D expf�ˇHg=Trfe�ˇHg„ ƒ‚ …
Z

; (7.2)

where Z is the partition function and ˇ D „=kBT . Then the expectation value of a
dynamical variable A.t/ is given by

hAi D Trf�Ag
D
X
i

< i j�ji >< i jAji > (7.3)

D
X
i

e�ˇEi Aii

W. Schirmacher, Theory of Liquids and Other Disordered Media, Lecture Notes
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A(t)

t

<A>
}A(t)

Fig. 7.1 Fluctuations of a dynamical variable A.t/

Here ji > are the eigenstates of the Hamiltonian, Ei the eigenvalues corresponding
to the characteristic equation

H ji >D Ei ji > (7.4)

In the present lectures the most important dynamical variable we are going to
consider will be the particle density

�.r; t/ D N�1=2
NX
˛D1

ı.r � R˛.t// (7.5)

and its Fourier transform

�q.t/ D
Z

d3reiqr�.r; t/ D N�1=2
NX
˛D1

eiqR˛.t/ (7.6)

We now want to study fluctuations of dynamical variables (Fig. 7.1)

QA.t/ D A.t/ � hAi (7.7)

Such fluctuations can be characterized by the van-Hove type correlation function

SAB.t/ D h QA�.t C t0/ QB.t0/i (7.8)

The quantum-mechanical time dependence of A.t/ is given by

d

dt
A.t/ D i ŒH; A.t/� � iLA.t/; (7.9)
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where ŒA;B� D AB � BA is the quantum-mechanical commutator and L is the
Liouville operator. Eq. (7.9) has the solution

A.t C t0/ D eitLA.t0/ D eitHA.t0/e�i tH: (7.10)

From the invariance of the trace with respect to cyclic permutations we deduce

SAB.�t/ D SB�A�.t � iˇ/; (7.11a)

which implies for the density correlations

S�q�q.�t/ D S�
�q��q.t � iˇ/ D S�q�q.t � iˇ/ (7.11b)

(7.11a) and (7.11b) are the detailed-balance relations in the time domain. We now
introduce the Fourier transform

SAB.!/ D
Z 1

�1
dtei!tSAB.t/ (7.12)

and, in particular

S.q; !/ D
Z 1

�1
dtei!t S�q�q.t/„ ƒ‚ …

S.q;t/

; (7.13)

The Fourier transform of the density-density correlation function S.q; t/ is related
to inelastic neutron scattering in which between the incident beam (k vector k0) and
the outgoing one (k vector k1) an amount of energy is transferred, which is given by

�E D „! D „2
2mn

�
k20 � k21

�
(7.14)

while „q D „jk1 � k0j is, as in the static case, the momentum transfer. mn is the
neutron mass. The double-differential cross-section for scattering into a solid angle
element d� around k1 per energy interval dE is given by

d2�

d�dE
D b2

k1

k0
S.q; !/ (7.15)

where b is the scattering length. S.q; !/ is therefore also known as neutron
scattering law, S.q; t/ as intermediate scattering function. The corresponding cross-
section for inelastic X-ray scattering with incident energy E0, outgoing energy E1
is given by Sette et al. [5]

d2�

d�dE
/ jf .q/j2 E1

E0
S.q; !/ (7.16)
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where f .q/ is the form factor due to the fact that X-ray scattering occurs not from
the nuclei, as in the case of neutrons, but from the electronic shell of the atoms.

The initial value of S.q; t/ is just the static structure factor S.q/, which has been
discussed in Chap. 2.

In the frequency domain the detailed-balance relations (7.11a) and (7.11b) take
the form

SAB.�!/ D e�ˇ!SB�A�.!/

S.q;�!/ D e�ˇ!S.q; !/: (7.17)

7.2 Linear Response and Fluctuation-Dissipation Theorem

Let us suppose we add the following perturbation to our system at t D t0:

ıHb.t/ D �Bb.t/; (7.18)

where B is, as before, a dynamical variable. For the coupling to density fluctuations
we can use a q dependent potential vq:

ıHq D ��qvq (7.19)

By means of the time-dependent perturbation theory [4] one can show that the
change in the expectation value of the variable A due to the perturbation ıHb is
given by (we send t0 ! �1)

hıA�.t/i D lim
t0!�1 i

Z t

t0

d�hŒ QA�.t � �/; QB�i0b.�/

�
Z 1

�1
d��AB.t � �/b.�/; (7.20)

where h� � � i0 denotes an average with respect to H0 (which is the Hamiltonian
without ıH).
�AB is the response function

�AB.t/ D i�.t/hŒ QA�.t/; QB.0/�i0 ; (7.21)

Here �.t/ is the Heaviside step function, which is defined by �.t/ D 1for t 	 0 and
0 for t < 0. The Fourier transform of �AB.t/

�AB.!/ D
Z 1

�1
dtei!t�AB.t/

D lim

!0

i

Z 1

0

dtei!t e�
t hŒ QA�.t/; QB.0/�i0 (7.22)
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(where we inserted a convergence factor e�
t ) is the dynamical susceptibility. The
Heaviside step function �.t/ in front of the response function (7.21) takes care of the
causality, which means that there can be no answer hıA�.t/i before a question b.�/
has been asked. By the convolution theorem of the Fourier transform (see Appendix
A) we have

ıhA�.!/i D �AB.!/b.!/; (7.23)

which, for a magnetic perturbation ıHB D �MB.t/, whereM is the magnetization,
reads

ıhB�.!/i D �MM .!/B.!/; (7.24)

from which the dynamic susceptibility has its name. For our density perturbation
(7.19) we have

ıh��.!/i D ��q�q.!/vq.!/;� �.q; !/vq.!/ (7.25)

We now define a commutator correlation function

KAB.t/ D hŒ QA�.t C t0/; QB.t0/�i0: (7.26)

Furthermore we define a modified Laplace transform (see Appendix B)

f .z/ � LT Œf .t/�z � i

Z 1

0

dteizt f .t/I =mfzg > 0 (7.27)

so that we have

�AB.!/ D LT ŒKAB.t/�zD!Ci
 (7.28)

From (B.12c) of the Appendix and (7.28) it follows

�00
AB.!/ D 1

2
KAB.!/ D 1

2
.SAB.!/ � SB�A�.�!// (7.29)

If we now remember the detailed-balance relation (7.17) we obtain the celebrated
fluctuation-dissipation theorem

�00
AB.!/ D 1

2

�
1 � e�ˇ!�SAB.!/ (7.30)

For the density fluctuations we have

�00.q; !/ D 1

2

�
1 � e�ˇ!�S.q; !/ (7.31)
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In the classical limit ˇ! � 1 this goes over to

�00
class.q; !/ D ˇ!

2
Sclass.q; !/ (7.32)

The inverse of relation (7.31)

S.q; !/ D 2

1 � e�ˇ! �
00.q; !/ (7.33)

is the starting point of all discussions of inelastic scattering experiments. �00.q; !/
is also referred to as the excitation spectrum. The locus of the maxima of �00.q; !/
gives the dispersion relations of the quasiparticles in a solid. In a liquid it provides
the dispersion of the sound modes which, however, becomes strongly broadened
outside the hydrodynamic regime.

7.3 Kubo’s Relaxation Function

Let us suppose that the time dependence of b.t/ in ıHb is of the following form

b.t/ D
8<
:
b0 t � t1

0 t > t1

; (7.34)

i.e., we turn the constant field b0 down at t D t1. From time-dependent perturbation
theory [4] it then follows that the quantity ıhA�.t/i has the following time
dependence

ıhA�.t/i D ˆAB.t � t1/b0 (7.35)

with

ˆAB.t/ D � i
2

Z 1

t

d�KAB.�/ (7.36)

In other words, we can state

1

2
KAB.t/ D �AB.t/ D i

d

dt
ˆAB.t/ (7.37)

Applying (B.3) of the Appendix we obtain

�AB.z/ D �AB C zˆAB.z/ (7.38)
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where �AB D ˆAB.t D 0/. Usually this quantity is the same as �AB.z D 0/

(but see the paragraphs on non-ergodicity in Chap. 11 on the glass transition). The
fluctuation-dissipation theorem can be formulated for the relaxation function in the
time domain as follows

ˆAB.t/ D
Z ˇ

0

d�SAB.t � i�/; (7.39)

a formal relation which is only of use if one knows how to analytically continue
SAB.t/ into the complex time domain. On the other Hand, we have the following
relation in the classical limit t 
 ˇ:

ˆAB.t/
t � ˇ�! ˇSAB.t/ (7.40)

7.4 Moment Sum Rules and Continued-Fraction Expansions

We want to study the modified Laplace transform of the classical density relaxation
function for a liquid1

S�q�q .z/ D 1

ˇ
ˆ�q�q .z/ � S.q; z/ D 1

�

Z 1

�1
d N!S

00
q . N!/
N! � z

D 1

2�

Z 1

�1
d N! S.q; N!/

N! � z
(7.41)

For large enough z we can make the expansion

S.q; z/ � 1

2�

1

z

Z 1

�1
d N! S.q; N!/
1 � N!=z

D �
1X
�D0

c�.q/

z�C1 ; (7.42)

where c�.q/ are the moments of S.q; !/

c�.q/ D 1

2�

Z 1

�1
d!!�S.q; !/ D .i

@

@t
/�S.q; t/

ˇ̌
ˇ̌
tD0

(7.43)

This expansion is equivalent to a short-time expansion of Sq.t/ and S.q; t/. Because
Sq.t/ is an even function in time, so is S.q; t/ in the classical limit and consequently

1As a liquid is isotropic its spatial correlations depend only on the modulus q D jqj of the
momentum.
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only the even moments are nonvanishing. For a liquid with Hamiltonian (7.1) the
first moments can be calculated exactly (taking for simplicity m˛ � m)

c0 D S.q/ D 1C �0

Z
d3reiqrŒg.r/ � 1� (7.44a)

c2 D q2

ˇm
(7.44b)

c4 D 3.
q2

ˇm
/2 C �

m

q2

ˇm

Z
d3rg.r/Œ1 � cos.qz/�

@2	.r/

@z2
(7.44c)

On the other hand2 S.q; z/ can be expanded into a continued-fraction as follows:

S.q; z/ D �c0
z C ��2

1

z C ��2
2

z C � � �

(7.45)

and it is easy to show by comparing (7.42) with a 1=z expansion of (7.45)

�2
1 D c2=c0 D q2

S.q/ˇm
(7.46a)

�2
2 D c4=c2 � c2=c0 � �21 ��2

1 (7.46b)

with

�21 D 3
q2

ˇm
C �

m

Z
d3rg.r/Œ1 � cos.qz/�

@2	.r/

@z2
(7.47)

We can introduce residual functions, called Memory functionsM�.z/; � D 1; 2; � � � ,
so that we have, for example,

S.q; z/ D �c0
z C ��2

1

z C ��2
2

z CM2.z/

(7.48)

The meaning of the term Memory function becomes clear if we recognize that

S.q; z/ D �c0
z C ��2

1

z CM1.z/

(7.49)

2See next section.
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is the formal solution3 of the following differential equation for S.q; t/ (“general-
ized Langevin equation”):

d2

dt2
S.q; t/C

Z t

0

d�M1.t � �/ d

d�
S.q; �/C�2

1S.q; t/ D 0 (7.50)

with the initial conditions S.q; 0/ D S.q/ and PS.q; 0/ D 0. This is a damped
harmonic oscillator equation with the damping constant replaced by the memory
function. The “true” damped harmonic oscillator is obtained for

M1.t/ D �ı.t/: (7.51)

7.5 Projection Formalism of Mori and Zwanzig

We would like to find a way to, at least formally, give a physical meaning to the
residual functions, i.e., Memory functions, introduced in the last section. This can
be done by the famous projector formalism of Mori and Zwanzig [1, 3, 7, 8].

In the present section we deal with classical correlation functions

SAA.t/ D 1

ˇ
ˆAA.t/

D ˝ QA�.t/ QA.o/˛ D ˝ QA�.0/ QA.�t/˛
D ˝ QA�e�iLt QA˛ (7.52)

We now define a scalar product

.AjB/ � ˝ QA� QB˛ (7.53)

The “kets” jB/ (and their dual “bras” .Bj ) are vectors in a generalized Hilbert
space, which features operators one of which is the classical Liouville operator

L D ifH; � � � g (7.54)

where { .. , .. } is the Poisson bracket, the classical counterpart of the commutator
[1]. As in the quantum formalism we have

SAA.t/ D ˝ QA�e�iLt QA˛ D .Aje�iLt jA/ (7.55)

3For showing this we need formula (B.7) of the Appendix.
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and for the modified Laplace transform

SAA.z/ D LT ŒSAA.t/�z D .Aj 1

L � z
jA/ (7.56)

The whole idea of the projection formalism consists in classifying dynamical
variables A;B and their correlation functions, determining whether or not their
static mutual correlations are finite or not. One distinguishes between principle
variables like density, current, pressure, which are also called hydrodynamical
variables, and others, which are (at least statically) uncorrelated with them.

One defines a projection operator PA as

PA D jA/ 1

.AjA/.Aj (7.57)

and its complement

QA D 1 � PA (7.58)

where 1 is the unit operator. In the sense of our vector calculus PA projects into the
direction of jA/ and QA projects rectangular to jA/. In what follows, we suppress
the index A in PA and QA to simplify the formalism.

The projectors P and Q have the properties

P2 D P Q2 D Q P C Q D 1 PQ D 0 (7.59)

We now apply the algebraic identity

1

U C V D 1

U

�
1 � V

U C V

�
(7.60)

to (7.56) with U D LQ � z and V D LP

SAA.z/ D .Aj 1

LP„ƒ‚…
V

C LQ � z„ ƒ‚ …
U

jA/

D .Aj
	

1

LQ � z
� 1

LQ � z
LP 1

L � z

�
jA/ (7.61)

The first term can be shown to give � 1
z .AjA/ as follows

1

LQ � z
D �1

z

1

1 � LQ=z
D �1

z

�
1C .LQ=z/C .LQ=z/2 C � � � � (7.62)
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All the terms except the first, applied to jA/ give zero, which gives the desired result.
Multiplying (7.61) with z we obtain

zSAA.z/C .AjA/

D .Aj�z C LQ � LQ
LQ � z

ŁjA/ 1

.AjA/.Aj 1

L � z
jA/

D .Aj
	
L � LQ 1

LQ � z
L
�

jA/ 1

.AjA/SAA.z/ � Œ�A �MA.z/� SAA.z/

(7.63)

Via the transformation rule

iLT Œ
d

dt
SAA.t/� D zSAA.z/C SAA.t D 0/ D zSAA.z/C .AjA/ (7.64)

we can re-write this equation in the time domain

d

dt
SAA.t/C i�ASAA.t/C

tZ

0

d�MA.�/SAA.t � �/ D 0 (7.65)

We call this the generalized Langevin equation of the projector formalism. The
characteristic frequency is given by

�A D .AjLjA/=.AjA/ (7.66)

and the memory function by

MA.z/ D .AjLQ 1

QLQ � z
QLjA/=.AjA/ (7.67)

where we have repeatedly used the relation Q D Q2 D Q3; � � � . We now define the
generalized fluctuating force FA as

FA D QLjA/ (7.68)

ObviouslyMA.t/ is the correlation function of the fluctuating force under the action
of the Liouville operator QLQ which acts in the Hilbert space rectangular to the
space spanned by jA/.

On the other hand we can use (7.63) to solve for SAA.z/:

SAA.z/ D � SAA.t D 0/

z ��A CMA.z/
(7.69)
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Now one can repeat the projection technique for the variable FA:

MA.z/ D SFAFA.z/ D � MA.t D 0/

z ��FA CMFA.z/
(7.70)

Inserting (7.70) into (7.69) we obtain

SAA.z/ D � SAA.t D 0/

z ��A � MA.t D 0/
z ��FA �MFA.z/

(7.71)

If we now compare (7.71) with (7.45) we see a similar structure for the case that the
quantities �A and �FA vanish. This is, indeed the case for the dynamical variable
A D �q . With the help of the Mori-Zwanzig technique we are able—without
making any approximations—to derive expressions for the memory functions in
the continued fraction expansion (7.45).
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Chapter 8
Collective Excitations in Simple Liquids

8.1 Linear Hydrodynamics

If we consider the dynamics of a simple liquids it is most important to first observe
the conservation laws, which are valid. These conservation laws are

• particle number conservation
• momentum conservation
• energy conservation.

In the present treatment we are not interested in energy fluctuations, so we shall
neglect the contributions of these quantities to the liquid dynamics.

If we denote �.r; t/ the number density, j the corresponding current density,
g.r; t/ the momentum density, �ij the components of the tensor of the momentum
current density, we have from the first two conservation laws the continuity
equations

@

@t
�.r; t/C r � j.r; t/ D 0 (8.1a)

@

@t
gj .r; t/C

X
i

ri �ij .r; t/ D 0 (8.1b)

In addition one has the constitutive relations between �; j; g; and
$
� :

g.r; t/ D mj.r; t/ (8.2a)

�0�im D p.r; t/ıim � �S

	
ri jm C rmji � 2

3
r � jıim

�

��Br � jıim (8.2b)

rp.r; t/ D mc2r�.r; t/ (8.2c)
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Here p is the pressure, c the sound velocity, �S is the shear viscosity and �B the bulk
viscosity. The latter are the coefficients of internal friction for shear and dilatational
(volume) distortions.

Equations (8.1) and (8.2) are the linearized Navier–Stokes equations without tak-
ing energy fluctuations into account. They are also called hydrodynamic equations
as they are the basis of linear hydrodynamics. They are only valid on a length scale
much larger than the atomic scale, i.e., the dynamical variables are “coarse-grained”
variables, which means they are to be considered to be averaged over a meso- or
macroscopic volume. “Hydrodynamic” also means that only slowly time variations
of the dynamical variables are taken into account. The Brownian type irregular
motion all molecules perform due to the presence of equilibrated heat motion is
discarded.

We now split j and g into longitudinal and transverse contributions

g D g` C gt D m.j` C jt / (8.3a)

r � g` D 0 D r � j` r � gt D 0 D r � jt (8.3b)

By this procedure the hydrodynamic equations (8.1) and (8.2) decouple as follows

	
m
@

@t
C �S

�0
r2

�
jt .r; t/ D 0 (8.4)

@

@t
�.r; t/C r � j`.r; t/ D 0 (8.5a)

	
m
@

@t
C 1

�0
.
4

3
�S C �B/r2

�
j`.r; t/C c2r�.r; t/ D 0 (8.5b)

Introducing now spatial and temporal Fourier transforms

A.r; t/ D
�
1

2�

�4 Z
dt
Z

d3re�i Œ!t�q�r�A.q; !/ (8.6)

we obtain from (8.4) and (8.5)

	
�m i! � q2

�S

�0

�
jt .q; !/ D 0 (8.7)

� i!�.r; t/C iq � j`.q; !/ D 0 (8.8a)

	
�i m! C 1

�0
.
4

3
�S C �B/q

2

�
j`.q; !/C iqmc2�.q; !/ D 0 (8.8b)
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Combining (8.8a) and (8.8b) we get

	
!2 � q2

�
c2 � i!

m�0
�`

��
�.q; !/ D 0 (8.9)

where we have introduced the longitudinal viscosity

�` D 4

3
�S C �B (8.10)

We now introduce the correlation function of the transverse and longitudinal current

Ct;l .q; t/ D hjt;l .q; t/�jt;l .q; 0/i (8.11)

We have

Ct.q; t D 0/ D C`.q; t D 0/ D c2 D q2
kBT

m
(8.12)

The equations of motion for the modified Laplace transforms of Ct.q; t/ and S.q; t/
take the form

	
mz C iq2

�S

�0

�
Ct.q; z/ D �mCt.q; t D 0/ (8.13)

	
z2 � q2

�
c2 � iz

m�0
�`

��
S.q; z/ D �S.q/

�
z C iz

m�0
q2�`

�
(8.14)

(where we have taken d
dt S.q; t/jtD0 D 0) We can solve these equations to obtain

Ct.q; z/ D � kBT=m

z C iq2�
(8.15)

S.q; z/ D �S.q/
z � c2q2

z C iq2�

(8.16)

where we have introduced the kinematic transverse and longitudinal viscosities
� D �S

m�0
, � D �`

m�0
, which is at the same time the sound attenuation constant.

We see that these expressions are the “beginning” of the continued-fraction type
expressions for the correlation function. So this formalism together with the
projection formalism gets the physical meaning of a generalized hydrodynamics
as the moments and residual memory functions have a counterpart in the so-called
hydrodynamic limit q ! 0.
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With the help of the dynamic susceptibility or response function

�.q; t/ D 1

2kBT
i

d

dt
S.q; t/ (8.17)

we can re-write (8.16) as

�.q; z/ D 1

2kBT
ŒzS.q; z/C S.q/� D S.q/

2kBT

	 �c2q2
z2 C izq2� � c2q2

�
(8.18)

In all these expressions one has to use the hydrodynamic limit of the static structure
factor

S.q/ D S.q ! 0/ D �0kBT 
T D kBT

mc2
(8.19)

We can also express (8.16) or (8.18) in terms of the longitudinal current correlation
function, which is related to the density correlation function by the continuity
equation (8.1), which gives

q2C`.q; t/C .
d

dt
/2S.q; t/ D 0 (8.20)

So we have (with d
dt S.q; t/jtD0 D 0)

C`.q; z/ D z

q2
ŒzS.q; z/C S.q/� D 2kBT z

q2
�.q; z/ D z

�kBT=m
z2 C izq2� � c2q2

(8.21)

Equations (8.15) and (8.16)–(8.21) comprise the collective excitations of a simple
liquid in the hydrodynamic regime. The collective excitations of the transverse
current fluctuations are of a diffusive type, which leads to a central peak in the
transverse current fluctuation spectrum

C 00
t .q; !/ D ImfCt.q; z/g D kBT

m

q2�

!2 C q4�2
(8.22)

The collective excitations of the longitudinal current fluctuations/density fluctua-
tions are propagating damped waves, which lead to peaks in the current fluctuation
spectrum at finite frequency ! D cq (Brillouin peak)

C 00
` .q; !/ D ImfC`.q; z/g D !

kBT

m

q2�

.!2 � c2q2/
2 C !2q4�2

(8.23)
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8.2 Generalized Hydrodynamics

We now come back to the continued-fraction and memory function formalism
introduced in the last section. The important feature of this formalism is that before
any theory is made for the memory functions, one is sure that the first important
moment sum rules are automatically obeyed.

Within the continued-fraction formalism we write the transverse current and
density correlation function as

Ct.q; z/ D � kBT=m

z CMt
1.q; z/

(8.24)

S.q; z/ D � S.q/

z � �2
1.q/

z CM1.q; z/

(8.25)

These equations are the formal solutions of the following integro-differential
equations (see (7.50))

d

dt
Ct .q; t/C

Z t

0

d�M t
1.q; �/Ct .q; t � �/ D 0 (8.26)

d2

dt2
S.q; t/C

Z t

0

d�M1.q; �/ PS.q; t � �/C�2
1S.q; t/ D 0 (8.27)

Obviously we can state

lim
q!0

ImfMt
1.q; z/g D iq2� lim

q!0
ImfM1.q; z/g D iq2� lim

q!0
�1.q/2 D c2q2

(8.28)

The validity of the last equality is obvious from (7.46a), whereas the two first
equalities impose a limiting condition to any theory for the memory functions. As
these relations are frequency independent they should be obeyed in the ! ! 0 limit.
So the hydrodynamic limit involves large spatial and time scales.

A generalized hydrodynamic theory is a theory in which theoretical expressions
for the memory functions for any value of q and ! are derived or assumed which
obey the relations in (8.28) are obeyed and in which the exact expressions for the
frequencies�i.q/ in terms of the moments of the spectra are used.

Some of the existing generalized hydrodynamic approaches go one step further
in the continued fraction

M1.q; z/ D ��2
2

z CM2.q; z/
(8.29)
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Fig. 8.1 �.q/�1 as obtained
by Rowe and Sköld [6] by
fitting (8.25) with (8.31) to
inelastic neutron S.q; !/ data
for liquid Ar

so that the fourth-moment sum rule is obeyed, but use for M2 a phenomenological
Ansatz [6]

M2.q/ D i=�.q/ (8.30)

which is equivalent to

M1.q; t/ D �2
2e

�t=�.q/ (8.31)

The function �.q/ was then determined from the measured data by fitting
(Fig. 8.1).

A much more ambitious theoretical scheme for obtaining explicit expressions
for the memory functions is the mode-coupling approximation. Such approximate
schemes have been proposed both for M`;t

2 .q; t/ and M1.q; t/. We shall here treat
only the latter, as it has become famous in predicting and describing the liquid-
to-glass transition (see Chap. 12), but, as we shall see in Sect. 9.4, does also a very
good job in describing the collective dynamics of simple liquids away from the glass
transition near the melting point.

8.3 Mode-Coupling Theory (MCT)

The idea of the mode-coupling approach [1–5] is to express the memory function
M1.q; t/, which appears in Eq. (7.50) or (8.27) again in terms of the density
correlation function S.q; t/. This is then a dynamic closure relation such as the ones
for the direct correlation function in Sect. 3.7. Dealing with the memory function
M1.q; !/ we have to project rectangular to the density j�/ and the longitudinal
current jj`/.q/ � jq , so that we can write for the projector
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P D 1 � Q D j�q/.�q j
.�qj�q/ C jjq/.jq j

.jqjjq/ (8.32)

The memory function is given by

M1.q; t/ � M.q; t/ D m

N
.Fj je�iQLQt jFj /; (8.33)

with the fluctuating forces

Fj D QLjq (8.34)

The decoupling procedure leading to the mode-coupling mean-field equations now
proceeds performing the following steps:

1. Projecting the fluctuating forces onto pair modes of density fluctuations �p�k .
2. Factorizing the resulting four-point density correlation functions into products of

two-point functions.
3. Factorizing the static projection vertex (static three-point correlation function)

into a triple product of radial pair correlation functions (Kirkwood approxima-
tion).

4. Replacing the rest of M.q; /, which is not proportional to products of density
correlation functions by a damping term M.q; t/ D �qı.t/.

The result forM.q; t/ is

M.q; t/ D �1.q/
2mq.t/ D �2

1

1

2V

q1Cq2DqX
qCq1Cq2D0

V .q;q1;q2/S.q1; t/S.q2; t/

(8.35)

The vertex (in a version where the three-body static correlation functions are
decoupled by the Kirkwood approximation) is given by

Vqq1q2 D 1

n
S.q/W 2

qq1q2 (8.36)

with n D N=V and

Wqq1q2 D 1

q2
q � Œq1nc.q1/C q2nc.q2/� (8.37)

where

c.q/ D 1

n

�
1 � 1

S.q/

�
(8.38)
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is the direct correlation function (Sect. 2.4). The “vertex” Vqkp depends only on the
static structure factor S.q/ and on the other known functions of q. Equation (8.35)
together with (8.27) constitute a closed set of equations which can be solved for
S.q; t/.

8.4 Calculation of S.q; t/ for Simple Liquids with MCT

Although mode-coupling theory (MCT) was devised and has been become famous
for describing the liquid-to glass transition (see Chap. 11) it turned out [7, 8],
that the theory in its original form [1], as described in the previous section, quite
accurately describes the collective excitations in simple liquids, i.e., liquid metals.
As emphasized in Sect. 3.11, the static structure factors of most simple liquids,
especially those of liquid metals, can be well described in terms of the hard-
sphere static structure factor in Percus–Yevick (HS-PY) approximation. However, at
wavenumbers larger than the principle peak of S.q/ the HS-PY structure factor does
not decay as rapidly towards the uncorrelated value S.q/ D 1 as the experimental
data. This corresponds to the fact that the radial pair distribution function g.r/ D
1 C n

R dq
2�

3

eiqrŒS.q/ � 1� in PY approximation abruptly jumps from 0 to its
maximum value at r D � , where � is the hard-sphere diameter. This is, of course
not the case for simple liquids in which g.r/ rises continuously in a smooth way
towards its maximum at a value of r , which is slightly larger than � . We found
that the experimentally measured S.q/ data of several liquid metals can be quite
satisfactorily described in the total q range by the formula

S.q/ D 1C ŒSHS.q/ � 1�e� 1
2 .�q�/

2

(8.39)

with � � 0:05, where SHS.q/ is the HS-PY structure factor. This corresponds to a
convolution of gHS .r/ � 1 with a Gaussian of width �� (see Fig. 8.2).

There is another, in fact, more important reason for using (8.39) instead of the
HS-PY structure factor. Using the hard-sphere structure factor for calculating the
memory function in (8.35) (or (11.11), resp.) leads to a vertex function Vqq1q2 which
decays very slowly for large wavenumbers Q D 1

2
jq1 � q2j, so that there are

convergence problems in the numerics.
Equations (8.27) and (8.35) have been solved by Schirmacher and Sinn [8]

numerically, using the structure factor given by (8.39) with � D 0:05, and � D 0:45

as input. As length scale we used � as in the scaling plot of Fig. 8.2. As frequency
scale we used the scale

!0 D vth

�
p
S.q D 0/

D vT

�
(8.40)
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Fig. 8.2 Scaling plot for the structure factors of 6 liquid metals as in Fig. 2.5, but now including
the modified HS structure factor as given by Eq. (8.39)
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Fig. 8.3 QS.q; !/ � S.q; !/=S.q/, Q�00.q; !/ � ! QS.q; !/ and QC.q; !/ � !2 QS.q; !/ for � D
0:45 and for (from bottom to top) q � � D 1; 2; : : : ; 10

with the isothermal sound velocity vT D p
1=m�0
T . It should be noted that in

these units the unrenormalized (isothermal) sound velocity is fixed to unity. This
can be problematic for materials in which S.q D 0/ differs from the value given by
HS-PY theory (see Sect. 2.12).

In Fig. 8.3 we have plotted the normalized functions QS.q; !/ � S.q; !/=S.q/

Q�00.q; !/ � ! QS.q; !/ D n�!
kBTS.q/

S.q; !/ and QC.q; !/ � !2 QS.q; !/ for integral
values of q� . It can be seen that there is both a central line and side lines that refer to
collective excitations, which, for small q correspond to acoustic longitudinal waves.
The dispersions (i.e., the loci of the frequency maxima of QC.q; !/) are plotted vs. q�
in Fig. 8.4 together with the corresponding data extracted from measured dynamic
structure factors, compiled by Scopigno et al. [9]. Not only the good agreement
of MCT with the measured data is remarkable, but also that the structure-factor
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of !2 times the measured
dynamic structure factors,
collected in [9], as a function
of q� , together with the
corresponding curve extracted
from the maxima of the
!2 QS.q; !/ curves in Fig. 8.3

scaling obviously leads to a dispersion scaling in the collective dynamics of the
liquid metals.
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Chapter 9
Diffusive Motion in Simple Liquids

9.1 Inelastic Neutron Scattering with a Mixture of Isotopes

It can be shown [3], that the double-differential inelastic neutron scattering cross-
section from an elementary liquid with a mixture of isotopes (with different
scattering lengths bi ) can be written as

@2

@!@�
/ b2incohSS.q; !/C b2cohS.q; !/ (9.1)

The incoherent and coherent squared scattering lengths are given by

b2incoh D ˝
b2
˛ � hbi2 b2coh D hbi2 (9.2)

where the averages are done with respect to the statistics of the isotopes. S.q; !/ D
S.q; !/ is the dynamical structure factor, i.e., the Fourier transform of the density-
density correlation function as discussed in the previous section. Its double Fourier
transform

G.r; t/ D
�
1

2�

�4 Z Z
d3r dteiŒ!t�qr�S.q; !/ (9.3)

G.r; t/d3r can be interpreted as the probability for a particle appearing inside the
volume element d3r around r if there was at t D 0 another particle (or the same) at
the origin r D 0.

The quantity SS.q; ! (incoherent scattering law) can also be represented as

GS.r; t/ D
�
1

2�

�4 Z Z
d3r dteiŒqr�!t�SS.q; !/ (9.4)
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GS.r; t/d3r can be interpreted as the probability for a particle appearing inside
the volume element d3r around r if it started initially at t D 0 at the origin
r D 0. S.q; !/ contains information about the collective dynamics of the liquid as
discussed in the previous section, whereas SS.q; !/ describes the individual motion
of particles in the liquid.

9.2 Individual-Particle Motion

In the hydrodynamic, i.e., the low-q-low-! regime the individual motion can be
described as a random walk as introduced in Chap. 4, i.e., GS.r; t/ obeys the
diffusion equation

@

@t
GS.r; t/ D Dr2GS.r; t/ (9.5)

The solution is given in terms of the intermediate incoherent scattering function

SS.q; t/ D
Z

d3re�iqr D e�Dq2t (9.6)

so that we have

SS.q; !/ / Dq2

!2 C ŒDq2�2
(9.7)

i.e., we have a Lorentzian spectrum with half width Dq2. Such a scattering law is
called quasi-elastic scattering.

We are now interested in the form of SS.q; !/ outside the hydrodynamic regime.
For very large q, i.e., values much larger than q0 D 2�=a, where a is the mean

interparticle distance the motion is a ballistic one, i.e., a motion like in an ideal
gas. This motion is characterized by a free flight with a Maxwellian distribution of
velocities of variance < v2 >D v2th D kBT=m

SS.q; t/ D e�q2v2tht 2 (9.8)

In the intermediate regime near q0 the motion is dominated by the motion of the
molecules through the “cage” of the other ones. As the particle under consideration
has the same size and mass as the others, it does no more behave like a Brownian
colloidal particle. This motion can occur in form of jumps (see next section), in form
of double or avalanche-like multiple jumps or by “gate opening” of the cage, as has
been studied in detail by means of molecular-dynamics simulations.
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9.3 Jump Diffusion

It has been suggested by Chudley and Elliot [1] that this motion may take place in
steps of size a like a random walk on a lattice. As shown in Sect. 5.3 this random
walk can be characterized by

SS.q; z/ D � 1

z C if .q/
(9.9)

with

f .q/ D 2W Œ3 � cos.qxa/ � cos.qya/ � cos.qza/� (9.10)

whereW is the jump rate. In the hydrodynamic regime we have

f .q/ D Wa2q2 D Dq2 ; (9.11)

so that (9.9) reduces to the ordinary diffusion propagator. Performing an angular
average we obtain the Chudley–Elliott half-width function (Fig. 9.1).

f .q/ D hf .q/iangles D 6W Œ1 � sin.qa/=qa� (9.12)

and we have an incoherent scattering law of the form

S.q; !/ / f .q/

!2 C f .q/2
(9.13)

where, again, f .q/ ! Dq2 for q ! 0.
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This is, of course, a very schematic way of describing the microscopic particle
motions. The only important conclusion by this model calculation is that outside the
hydrodynamic regime the width of the quasielastic line will certainly deviate from
the q2 behavior and will eventually level off in some way. Such a behavior is, in fact,
observed in a number of liquids, giving evidence for a jump-wise diffusion process.
From the first maximum of the width of the quasielastic line (plotted against q) the
spatial extension a of the jumps can be extracted [2].

9.4 The Diffusivity of Interacting Colloidal Particles

In colloidal suspensions particles of diameter of several 100 nanometers are
suspended in a solvent. Due to the interaction with the solvent the particles perform
a diffusive motion. Therefore the dynamic structure factor of the ensemble of the
particles (which can be measured with inelastic light scattering) is given by

S.q; !/ D 1

�
S.q/

Dcq
2

!2 C ŒDcq2�2
(9.14)

which is equivalent to

S.q; z/ D �S.q/
z C iDcq2

(9.15)

The dynamic susceptibility1 is given by

Q�.q; z/ D ��c�.q; z/ D ��ŒS.q/C zS.q; z/� D � �c

kBT

iDcq
2

z C iDcq2
(9.16)

where S.q/ is the static structure factor of the colloidal particles and Dc the
collective diffusivity.

Q�.q; z/ D � �c

kBT
S.q/

iDcq
2

z C iDcq2
(9.17)

The self motion of the colloid, on the other hand, can be described as in a simple
liquid by

SS.q; z/ D �1
z C iDSq2

(9.18)

1This is the definition in the non-MCT literature.



9.4 The Diffusivity of Interacting Colloidal Particles 125

and

Q�S.q; z/ D � �c

kBT

iDSq
2

z C iDSq2
(9.19)

The structure factor can—as in a simple liquid—be written in terms of a direct
correlation function c.q/

S.q/ D 1

1 � �cc.q/ D 1

1C �c
kBT

Ueff.q/
(9.20)

where �c is the number density of the particles.
We are now going to generalize the RPA for the dynamic susceptibility Q�.q; z/,

Q�.q; z/ D Q�S.q; z/
1� Ueff.q/ Q�S.q; z/ (9.21)

which can be put into the form, using the � instead of the Q�
kBT

�.q; z/
� kBT

�S.q; z/
D �c

kBT
Ueff.q/ D ��cc.q/ D 1

S.q/
� 1 (9.22)

We now utilize the continued-fraction representations of S.q; z/ and SS.q; z/

S.q; z/ D �S.q/
z � q2kBT=mS.q/

z CM.q; z/

I SS.q; z/ D �1
z � q2kBT=m

z CMS.q; z/

(9.23)

from which follows

kBT

�.q; z/
D 1

S.q/
� zŒz CM.q; z/�

q2kBT=m
I kBT

�S.q; z/
D 1� zŒz CMS.q; z/�

q2kBT=m
(9.24)

Taking the difference we see that the RPA is equivalent to setting the two memory
functions M.q; z/ and MS.q; z/ equal to each other. If we compare (9.15), (9.18)
with (9.23) we can define generalized wavevector and frequency dependent diffu-
sivities

Dc.q; z/ D i
kBT=mS.q/

z CM.q; z/
I DS.q; z/ D i

kBT=m

z CMS.q; z/
(9.25)

Of course in the q ! 0 and z ! 0 limit these function must become equal to
the hydrodynamic diffusivities Dc and DS . If we now set the memory functions
M and MS equal to each other we obtain the RPA expression for the collective
hydrodynamic diffusivity

Dc D 1

S.q ! 0/
DS D 1

�C kBT 
T
DS D fcDS (9.26)
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where 
 is the isothermal compressibility of the colloid particles,


T D � 1

Vc

�
@VC

@…

�
T

(9.27)

where VC is the volume occupied by the colloid particles and … is the osmotic
pressure. The correlation factor fc D 1=S.0/ can be rather large, because the colloid
structure factor can be well approximated by a hard-sphere structure factor, which
at q D 0 has values of the order of 0.02 for packing fractions near � D 0:45 (see
Sect. 2.12).
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Chapter 10
Polymer Dynamics

10.1 Dynamics of a Single Polymer: Rouse Model

We now would like to derive a simple model for the dynamics of an ideal polymer
chain, i.e., the mean conformational changes as a function of time. The chain
conformation is given by N monomer vectors ri .t/, (i D 1 � � �N ) which point
along the chain and have the length a of a bead.

The elastic free energy of the chain is given by (see Chap. 6)

Fel D 1

2
KjrN � r1j2 (10.1)

with the global force constant

K D 3kBT

R20
(10.2)

where R0 D p
Na is the radius of gyration. Every monomer shares 1=N of this

force, so that one can write down with k D K=N D 3kBT=a
2

mRrn.t/ D �k
X
`¤n
.rn.t/ � r`.t// � ˛H Prn.t/ (10.3)

Herem is the mass of a monomer and we have introduced the hydrodynamic friction
with the coefficient

˛H D 6��SRH (10.4)
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128 10 Polymer Dynamics

where �S is the viscosity andRH the so-called hydrodynamic radius, which controls
the effective Einstein relation between the diffusivity DH of a part of the polymer
and �S

DH D kBT

6��SRH
(10.5)

We now assume that the elastic and friction forces are much stronger than the inertial
forces fn D mRrn. If we further assume that the elastic forces act only among nearest
neighbors we obtain

Prn.t/ D W .rnC1 C rn�1 � 2rn/ (10.6)

with the “hopping” rate

W D 3DH

a2
(10.7)

If we now introduce a coordinate � along the chain and go into the continuum limit
a ! 0 we obtain

Pr.�; t/ D 3DH„ƒ‚…
QD

@2

@�2
r.�; t/ (10.8)

We see that a given “excitation”, described by r.�; t/ performs a diffusive motion
along the chain. One can think of a kink produced at time t D 0 in the middle of the
chain at a chain position � D �0. If the chain is very long, the probability P.�; t/
to find an excitation caused by the perturbation is for times, before the excitation
becomes aware that the chain is finite:

P.�; t/ D 1

4� QDT e
�.���0/2=4 QDt (10.9)

For the chain ends we have the boundary conditions

PP .� D 0; t D 0/ D PP.� D L; t D 0/ D 0 (10.10)

and P.�; t/ obeys the same equation of motion as r.�; t/

PP.�; t/ D QD„ƒ‚…
QW a2

@2

@�2
P.�; t/ (10.11)

To solve this equation with the boundary conditions (10.10) we make the separation
ansatz

P.�; t/ D u.t/w.�/ (10.12)
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If we multiply the “diffusion wave equation” (10.11) from the left with 1=u.t/w.�/
we obtain

1

W u.t/

@

@t
u.t/ D a2

v.�

@2

@�2
w.�/ D ��2 (10.13)

��2 must be a constant because the term on the left of the first equality sign depends
only on the time, whereas the term on the right of the first equality sign depends only
on �. For the function u.t/ we obtain the differential equation

d

dt
u.t/ D ��2W u.t/ (10.14)

which has the general solution

u.t/ D u.0/e��2W t (10.15)

For the function w.�/ we obtain the second-order differential equation

 
d2

d�2
C �2

a2

!
w.�/ D 0 (10.16)

which has the general solution

w.�/ D A cos.k�/C B sin.k�/ (10.17)

with

k D �

a
(10.18)

The first boundary condition in (10.10) excludes the sine term. From the second
boundary condition we find that only discrete values of k and � are possible

k� D ��

a
D ��

L
, �� D ��

N
� D 1; 2 � � �N (10.19)

For the general solution including the boundary conditions we obtain

P.�; t/ D A�u�.0/e
��2�W t cos.k��/ (10.20)

which has the modified Laplace transform (see Appendix B)

P�.�; z/ D �A�u�.0/ cos.k��/

z C i�2�W
(10.21)
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The relaxation spectrum is given by

1

�
Im f	.z/g D 1

�
Im

(X
�

�1
z C i�2�W

)
D 1

�

X
�

1

1C !2�2�
(10.22)

with the mode relaxation times

1

��
D �2�W D


��
N

�2
W (10.23)

The dynamic susceptibility is given by

�.z/ D 1C z	.z/ D
X
�

1

1 � i!�� (10.24)

from which follows

�00.!/ D
X
�

!�

1C !2��2
(10.25)

The Rouse model suffers from being too “mean-field like”, i.e., it does not contain
the effect of interactions between the monomers, except the elastic spring constants.

10.2 Rouse Dynamics with a Distribution of Interaction
Constants

The unrealistic feature of the equations of motion of the rouse model is not the
mathematical structure but the assumption that every bead is subject to the same
transition rate W. In reality this is not so because of the chain-chain interactions.
To include these interactions one must in principle deal with non-linear equations
which are usually very difficult to solve. Instead we shall introduce a statistical
distribution of transition rates and write

PPi.t/ D Wi;iC1.PiC1 � Pi/�Wi;i�1.Pi�1 � Pi/ (10.26)

or, for the Laplace transform with Laplace parameter s D �i!

sPi .t/ � ıi i0 D Wi;iC1.PiC1 � Pi/ �Wi;i�1.Pi�1 � Pi / (10.27)

where we imposed the initial condition

Pi .t D 0/ D ıi i0 (10.28)
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If we now define the quantities

gi D Wi;iC1
�
Pi � PiC1

Pi

�
(10.29)

we obtain for i; i C 1 ¤ i0 the recursion relation [1]

gi D 1

1

Wi;iC1
C 1

giC1 C s

(10.30)

This equation can be easily iterated in a computer simulation for a given distribution
of ratesWi;iC1.

Instead of such a simulation we shall, instead, again use a mean field approach,
which is the CPA introduced Sect. 4.4. There we considered as effective medium a
simple cubic lattice in d D Z=2 dimension, where Z is the coordination number.
Taking Z D 2 we obtain from (4.53)

h W � �.s/
1C .W � �.s/ 1

�.s/
.1 � sGii .s/

i D 0 (10.31)

As we now do not deal with a stretched-out chain but a wrinkled polymer chain,
we cannot take (4.54) for the local Green’s function Gii . Instead we just take the
Green’s function of an effective medium, where only hops away from a given site i
is possible:

Gii .s/ D 1

s C �.s/
(10.32)

From these equations we obtain the simple equation

hGii .s/i D 1

s C �.s/
D h 1

s CW
i (10.33)

This equation can be interpreted in the following way: Let us consider a chain of
conductancesWi;iC1 in series the leads of which are grounded with unit capacitance.
The set of Kirchhoff’s equations of such a circuit network is just the set (10.27). The
complex impedance of the network is then given by s C � which is the serial sum
given by (10.33). In particular the dc limit of (10.33) is given by the serial formula

1

�.0/
D h 1

W
i (10.34)

We now introduce a model for a distribution of transfer rates W , which is very
common in the literature, which deals with structural relaxation of soft matter.
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We assume that each unit has to overcome a certain free energy barrier E to go
to its neighboring conformational state:

Wij D �0e
�E=kBT (10.35)

and assume that the barriers are distributed according to a distribution density g.E/.
To be specific we assume

g.E/ D 1

E� �.E
� � E/ (10.36)

i.e., a constant distribution with a cutoff E� in order to have a normalized
distribution.

The average in (10.33) can be easily performed to obtain

�.s/ D s
kBT

E� = ln

"
s C �0e

�E�=kBT

s C �0

#
� s (10.37)

For s D 0 we obtain (using l’Hopital’s rule)

�.0/ D kBT

E�
�0

eE
�=kBT � 1 � kBT

E� �0e
�E�=kBT (10.38)

We now introduce scaled variables

Qs D s=�.0/ Q�.s/ D �.s/=�.0/ (10.39)

where we take the second expression for �.0/ in (10.38).

Q�.s/ D Qs
�

kBT=E
�

ln .Qs C 1/� ln .Qs e�E�=kBT C 1/
� 1

�
(10.40)

For all frequencies smaller than �0 � 1THz the second term in the denominator
of (10.40) is negligible and we obtain

Q�.s/ D Qs
�
kBT=E

�

ln .Qs C 1/
� 1

�
(10.41)

We see that the dynamics obeys a scaling law, i.e., the time dependence of the
generalized scaled relaxation rate Q�.Qs/ is completely determined by the universal
function (10.41), which is depicted in Fig. 10.1. Such a scaling law is called time-
temperature scaling law.

This law is also obeyed by the dynamic susceptibility

Q�.Qs/ D . Q�.Qs/
Q�.Qs/C Qs (10.42)
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Fig. 10.1 Real part of the “self energy” �.Qz/ for the random barrier model (10.37)

From Fig. 10.1 we see that for Qs 
 1 the universal function can be approximately
described by

Q�.Qs/ � QAQsn (10.43)

with n � 0:75. For the dynamic susceptibility we obtain

Q�.Qs/ � 1

1C QA�1 Qs1�n (10.44)

Such a frequency dependence is frequently found empirically for the dynamics of
soft matter and is called Cole-Cole behavior. It is revealing to compare the original
Rouse expression for �.!/ with our model expression

�.z/ D
X
�

1=��1

�i! C 1=��
�.z/ D

Z
g.E/dE

W.E/

�i! CW.E/
(10.45)

The mean-field expression for the dynamic susceptibility is obviously just the aver-
age of the single-bead susceptibilities. The integral over the continuous distribution
of the relaxation rates removes the artificial discreteness of the Rouse dynamics. Of
course, for large � the Rouse spectrum is almost continuous, but not for small �.
Moreover in the Rouse model the aspect of activated barrier motion induced by the
inter-chain interactions is not taken into account.

The present model treats the inter-chain interactions as a source of static disorder.
If one wants to take the dynamics into account in a self-consistent way one must
utilize a suitable version of mode-coupling theory.
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10.3 Incoherent Relaxation Dynamics

We now treat a phenomenological model for the relaxation dynamics of soft matter
which is very popular in the community dealing with dielectric and optical response
techniques [2].

One assumes that the relaxation function of the material is an incoherent sum of
individual relaxation functions with a relaxation time characterized by an activation
free energyE (as in the generalized Rouse model)

	.z/ D
Z

dEg.E/
�1

z C i=�.E/
(10.46)

with

1

�.E/
D �0e

�E=kBT (10.47)

Different from the generalized Rouse model we now leave the distribution of
activation energies g.E/ unspecified. The quantity of interest in dielectric or optical
absorption measurements is the imaginary part of the dynamical susceptibility (loss
function, out-of-phase susceptibility)

�00.!; T / D !Im f	.z D ! C i
/g D
Z

dEg.E/
!�.E/

1C Œ!�.E/�2
(10.48)

we now define a characteristic energy E! as

E! D �kBT ln.!=�0/ (10.49)

which, of course, is positive, because ! � �0. We obtain for the loss function

�00.!; T / D
Z

dEg.E/
eŒE�E! �

1C e2ŒE�E! � (10.50)

Because the exponential varies very rapidly with energy we can write

eŒE�E!�

1C e2ŒE�E! � � 1

�kBT
ı.E � E!/ (10.51)

from which follows

�00.!; T / � 1

�kBT
g.E!/ (10.52)
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This means that if one can justify the assumption of individual relaxation processes
(which is not always the case) then one can “measure” the distribution g.E/ from
the temperature dependence of the out-of-phase susceptibility.

10.4 Hydrodynamic Interaction

One type of the interactions, which are present in a polymer solution (as well as
in any solutions of macromolecules) is the interaction which is mediated by the
solvent. As we describe the motions of the solute in terms of the local velocity
of the segments we need to know the effect of a force on the velocity field of the
solvent. Treating the solvent as incompressible and assuming that all the velocity
excitations are transverse we have the Navier–Stokes equation

�m Pv � �srr � v D f r � v D 0 (10.53)

Here �m is the solvent mass density and f is an external force. The solution of (10.53)
in wavevector and frequency space is given by

v.q/ D 1

�i!�m C �sq2

	
1 � q

1

q2
q�
�

f � T .p;q/f (10.54)

The projector inside the square bracket projects rectangular to q to take care of the
condition q � v D 0.

If we compare (10.54) with (8.15) we see that the matrix elements of the tensor T
are proportional to the Laplace transforms of the diagonal and off-diagonal current-
current correlation functions of the solvent:

T˛ˇ.!;q/ D kBT �0

Z 1

0

dteŒi!�
�t hj˛.q; t C t0/jˇ.q; t/i (10.55)

where �0 is the number density of the solvent. The time integral over T .t;q/, i.e.,
T .! D 0;q/ � T .q/ is the so-called Oseen tensor, which has the real-space
representation

T .r/ D 1

8��sr

	
1C r

1

r2
r�
�

(10.56)

so that the velocity response at r due to a force at r0 is given by

v.r/ D
Z

d3r0T .r0 � r/f.r0/ (10.57)

We see that the hydrodynamic interaction T .r � r0/ is a long-range interaction like
the Coulomb interaction.
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10.5 Zimm Model

In order to incorporate the important hydrodynamic forces into the Rouse model
Zimm1 inserted the Oseen tensor into the dynamics in the following way:

Pri D �
X
j

Hij .ri � rj / (10.58)

where Hij .r/ is the mobility matrix

H˛ˇ
ij .r/ D W ıij ı˛ˇ C .1 � ıij /T˛ˇ.r/ (10.59)

The Zimm equation (10.58) is a nonlinear equation for the ri .t/ and can only be
solved numerically. If in a so-called pre-averaging approximation the Oseen tensor
is replaced by its thermal average one retains a linear problem. The pre-averaged
Zimm dynamics has, as the Rouse dynamics, a discrete relaxation spectrum.

10.6 Diffusivity of a Single Polymer Chain in Solution

We now want to apply the Kubo relation (C.11) to the diffusivity of a single chain
in solution. We represent the polymer velocity as

V.t/ D 1

N

X
n

vn (10.60)

and identify the local velocity vn.t/ with the local solvent velocity times the
monomer concentration at rn:

v.rn; t/ D c.rn; t/v.rn; t/ (10.61)

so that we have

V.t/ D 1

N

Z
drc.r; t/v.r; t/ (10.62)

We now insert this into the Kubo relation and obtain

D D 1

N 2

Z
d3r1

Z
d3r2

Z 1

0

dthc.r1; t C t0/c.r2; t/v.r1; t C t0/v.r2; t/i
(10.63)

1B.H. Zimm, J. Chem. Phys. 24, 269 (1956).
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Now two simplifications are done: First the averages over the concentrations and
those over the velocities are decoupled, so that we obtain the product of the
concentration correlation function and the solvent velocity correlation function.
Secondly the time dependence of the concentration correlation function is neglected.
For the concentration correlation function one takes the polymer pair correlation
function Qg.r/ (6.22) of Sect. 7.1. We finally arrive at

D D kBT

3N

Z
d3r Qg.r/

X
˛

T˛˛.r/ D 1

N

Z
d3r Qg.r/DH.r/ (10.64)

with the hydrodynamic diffusion coefficient

DH.r/ D kBT

6��sr
(10.65)

We now remind ourselves the scaling law for Qg.r/

g.r/ D N

R3
f

 r
R

�
(10.66)

Here R D R0 / N1=2 in a ‚ solution and R D RF / N3=5 for a dilute solution.
From this we obtain for the diffusivity

D D kBT

6��sR

Z 1

0

dxf .x/x D C0
kBT

6��sR
(10.67)

So the polymer diffuses as if it were a colloidal sphere with effective radius
Rrmeff D R=C0.
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Chapter 11
Glass Transition and Glass Dynamics

11.1 Non-ergodicity and Glass Transition Phenomenology

In statistical mechanics the ergodicity hypothesis is very important as it states that
during the time evolution of a dynamical variable A.t/ it explores all the available
phase space. This implies that a time average is equivalent to an ensemble average
(performed with the statistical operator �). If a dynamical variable explores all the
phase space as the time goes to infinity it is called ergodic, and this is the case if and
only if [10]

lim
t!1ˆAA.t/ D lim

z!0
Œ�zˆAA.t/� D 0: (11.1)

where ˆAA.t/ is Kubo’s relaxation function (7.36). For a classical dynamical
variable A the ergodicity condition (11.1) can be reformulated as

lim
t!1SAA.t/ D lim

z!0
Œ�zSAA.t/� D 0: (11.2)

On the other hand, one can imagine situations in which a dynamical variable is
not able to explore the total phase space. Obviously the density variable �q.t/ (7.6),
which describes the motion of the positionsR˛.t/ of the atoms becomes non-ergodic
if the liquid starts to freeze. As the phase transition towards the crystalline state
is a first-order one, usually a barrier (of nucleation processes) must be overcome
to reach this state once its free energy is lower than that of the liquid one. In
many situations this barrier is high enough that either the material cannot reach the
crystalline state or the experimentalist avoids crystallization by rapidly quenching.
In this situation the liquid can be undercooled below the crystallization temperature,
and can eventually also undergo a freezing transition, which is the glass transition
and leads to a frozen disordered structure. As the crystalline state is believed
to be that of lowest free energy the glassy state must be a metastable one. As
there are overwhelmingly many possibilities to form the glassy structure and the
corresponding free energy should be almost the same, this state is believed to be

W. Schirmacher, Theory of Liquids and Other Disordered Media, Lecture Notes
in Physics 887, DOI 10.1007/978-3-319-06950-0__11,
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free energy

different atomic configurations

Fig. 11.1 “Free-energy
landscape” of a glass in
configuration space �

1

highly “quasi-degenerate”, and it is believed to be composed to be formed of a
“free-energy landscape” in configuration space (Fig. 11.1).

A convenient order parameter for monitoring structural arrest (, “freezing”) is
the value the density relaxation function takes for t ! 1:

fq � lim
t!1

S.q; t/

S.q; t D 0/
D lim

t!0
Œ�z

S.q; z/

S.q; t D 0/
� (11.3)

We can call the corresponding contribution to the density correlation function
S1.q; t/ � S.q/fq and have for the (classical) dynamical structure factor

S1.q; !/ D 2�S.q/fqı.!/ (11.4)

We see immediately that the non-ergodicity parameter fq is the Debye–Waller
factor of the glass. The presence of a “zero-phonon line” / ı.!/ in the density
fluctuation spectrum indicates the advent of structural arrest.

A non-zero non-ergodicity parameter fq has also an important implication for the
static density susceptibility �.0/. Inserting ˇS1.q; z/ D ˆq;1.z/ D �ˇS.q/fq=z
into (7.38) we obtain

lim
z!0

�.z/ D ˇS.q/Œ1 � fq� (11.5)

If (as we shall show to be the case) the glass transition is a discontinuous one, the
static susceptibility �.0/ can therefore be expected to exhibit a jump from a “glass
value” ˇS.0/Œ1� f0� to a “liquid value” ˇS.0/ D �0
T , where 
T is the isothermal
compressibility of the liquid (Fig. 11.2). At any finite frequency (and experiments
are always effectively made at a finite frequency) this transition is blurred. In a
real glass-forming liquid this transition is, however, not only blurred by the finite
experimental time but also by solid-type activated molecular jump processes, which
restores ergodicity at an exponentially large time. The corresponding activation
energy is the low-temperature activation energy EA of the viscosity, which has
values of several eV per molecule.
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Fig. 11.2 Schematic behaviour of the static susceptibility at a (idealized) glass transition
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Fig. 11.3 Left: temperature dependence of the viscosity of a “strong” and a “fragile” glass-forming
liquid. Right: temperature dependence of the relaxation time of a “strong” and “fragile” glass-
forming liquid

In Fig. 11.3 we have plotted schematically the temperature dependence of the
viscosity of supercooled liquids. According to Angell [1] one calls the glass-forming
liquid “strong” if the viscosity exhibits an Arrhenius-type temperature dependence

�S.T / D �0e
�EA=kBT (11.6)

which gives a straight line in an Arrhenius-type graphical representation log
�S vs. 1=T . If �S in an Arrhenius plot shows a curved graph one calls the
material “fragile”. In this case it is very often possible to represent the temperature
dependence of the viscosity by the phenomenological Vogel–Fulcher–Tammann
formula

�S.T / D �0e
�EB=kB ŒT�T0� (11.7)

whereEB and T0 are adjustable parameters. Of course one can only use this formula
for temperatures T > T0. The cross-over to the steep Arrhenius behavior of fragile
glasses in the glassy temperature regime is not described by this equation.

In the glass community the glass transition temperature Tg is defined in a sloppy
way as that temperature at which the material does not flow any more, i.e., at which
the viscosity exceeds some 1012 Ps.
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Fig. 11.4 Left: schematic sketch of the temperature dependence of the entropy of a supercooled
liquid and the corresponding crystal. Right: schematic representation of the behaviour of the
specific heat at the glass transition

In the glass-forming temperature regime one finds that, although the viscosity
might be still finite, the material reacts to sudden external perturbations elastically.
Following J.C. Maxwell one calls such a behavior visco-elastic behavior. The elastic
shear modulus corresponding to rapidly time dependent perturbations is called G1
and Maxwell’s relaxation time is defined as

�.T / D �S.T /=G1 (11.8)

For times t < � the material acts as a liquid, for times t > � as a solid. If � is much
larger than a minute or so, the material is for all practical purposes a solid.1 The glass
transition temperature Tg corresponds to a relaxation time of an hour or so. It has to
be emphasized that this definition of a glass transition temperature is an operational
one and has nothing to do with a thermodynamic phase transition temperature. In the
next section we shall call the temperature at which in an idealized glass transition
the non-ergodicity parameter becomes non-zero the critical temperature Tc . We
shall, however, see that this transition is very different from a thermodynamic phase
transition. Tc is found to be some 20ı higher than Tg in many glass-forming liquids.

If the cooling or heating rate of a differential scanning calorimetry (DSC)
apparatus exceeds the inverse of the relaxation rate one usually observes a kink and
even a maximum of the specific heat (Fig. 11.4). The corresponding “calorimetric
glass transition temperature” is also called Tg and depends on the cooling rate. (Both
definitions usually agree to each other to within a few degrees.) The entropy S ,
which is related to the specific heat by C / dS=dT may then have the temperature
dependence as depicted in Fig. 11.4. The right branch of the curve is the equilibrium
branch, the left one is the out-of equilibrium one, which is history dependent.
One speculates that for infinitely slow cooling the temperature dependence of S
might follow the extrapolated equilibrium curve and might eventually cross the
curve that corresponds to the crystalline state. As the perfect (insulating) crystal

1In this connection some people say that windows of old churches have been found to be thicker
at the bottom than at the top and ascribe this to the finite viscosity of the window glass. This
is, however, a fairy tale. The relaxation time of window glass at room temperature is orders of
magnitudes larger than the age of the churches.
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has only vibrational entropy and no configurational frozen-in disorder, its entropy
must be always smaller than that of the glass, so that something must happen if
the extrapolated liquid entropy approaches the crystalline one. This temperature is
called Kauzmann temperature TK and is smaller than Tg.

Recent theories of the glass transition, which focus on the regime below Tc [3,
15], have come up with a model of a thermodynamic-like ideal glass transition near
TK , but this approach is questioned by models [4, 5], in which the structural arrest
below Tc occurs via kinetic constraints [16].

11.2 Idealized Glass Transition as Described
by Mode-Coupling Theory

In the following we shall study the normalized density-density correlation function

	.q; t/ D S.q; t/=S.q/ (11.9)

which, of course, obeys the same equation of motion (8.27) as S.q; t/

d2

dt2
	.q; t/C

Z t

0

d�M.q; �/ P	.q; t � �/C�2
1	.q; t/ D 0 (11.10)

with

M.q; t/ D �1.q/
2mq.t/ D �2

q

1

2V

q1Cq2DqX
qCq1Cq2D0

V .q;q1;q2/S.q1; t/S.q2; t/

(11.11)
subject to the initial conditions

	.q; 0/ D 1I P	.q; 0/ D 0 : (11.12)

The remarkable feature of these equations is that they not only give a fair description
of the collective dynamics of simple liquids, as we have seen in Sect. 8.4, but,
beyond a critical value of the packing fraction �c � 0:52 the solution 	.q; t/
does no more decay towards 0 but towards a finite value fq . This transition is
called the idealized glass transition, and the corresponding temperature the idealized
glass transition temperature Tc . The remarkable feature of this transition is that the
structure fracture S.q/ changes smoothly with increasing � while going through the
glass transition at � D �c .

On the liquid side this implies the vanishing of the particle diffusion coefficient
and the inverse of the viscosity according to a power-lawD / 1=� / ŒT �Tc�� with
� � 2:6 which fits measured viscosity and diffusivity data in the liquid range quite
well. However, the most interesting feature of the solutions of the mode-coupling
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equations are their highly nontrivial asymptotic long-time behaviour including two
different scaling laws. It turns out that this behaviour is universal in a sense that
its characteristic features do not depend on the details of the coupling vertex, but
the predicted (and measured) critical exponents are non-universal, i.e., they slightly
depend on the control parameters.

Near the glass transition, on the liquid side the function 	.q; t/ develops a
characteristic plateau as depicted in Fig. 11.5. In our present lecture we shall not
discuss these features in terms of the full mode-coupling equations but by means of
simple schematic equations, which, however exhibit the same asymptotics.

11.3 Phenomenological Mode-Coupling Theory
and Schematic Model

11.3.1 Phenomenological Mode-Coupling Theory

From the foregoing it is clear that the derivation of the mode-coupling
equations (11.11) together with (11.10) applies for simple hard-sphere-like one-
component liquids. It has been tested against computer simulations of such liquids
as well as experiments on hard-sphere colloid solutions [7].

However, many experimental data on quite more complicated glass-forming
liquids like ortho-terphenyle, Potassium-Calcium Nitrate or Glycerol show the same
critical behavior as predicted by the original mode-coupling equations. Götze [8]
therefore proposed the following generalized phenomenological mode-coupling
theory (MCT):

mq.t/ D Fqf EV ; 	.k; t/g (11.13)

with

Fqf EV ; xkg D
m0X
mD1

1

mŠ

X
k1���km

V .m/.q; k1 � � �km/xk1 � � �xkm (11.14)
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Fig. 11.6 A fold singularity
as defined in catastrophe
theory

i.e., we have

mq.t/ D
X
k

V .1/.q; k/	.k; t/C 1

2

X
k1;k2

V .2/.q; k1; k2/	.k1; t/	.k2; t/C � � �

(11.15)

The search for non-ergodic solutions with 	.q; t ! 1/ D fq ¤ 0 within
this generalized set of mode-coupling equations can be shown to be equivalent to
the search of topological singularities in the parameter space of the coefficients
V .m/.q; k1 � � �km/. Such singularities are the subject of the mathematical discipline
“catastrophe theory”, or, more modestly, the theory of bifurcations, developed by
Thom [21] and Arnol’d [2]. The singularities relevant for the MCT glass transition
are of the simplest type, namely the fold singularity or A2 singularity, which can
be visualized by crumpling a piece of paper (Fig. 11.6). Near the singularity the
dynamics is dominated by a single eigenvalue of the stability matrix (“reduction
theorem”), from which follows that the critical fluctuations are governed by a single
function G.t/, and the wavevector q appears only in a prefactor (“factorization
theorem” [6, 8])

	.q; t/ D f c
q C hqG.t/ (11.16)

11.3.2 Schematic Model

Instead of going into more detail of these considerations we study the bifurcation
scenario with the following schematic model (“F12 model”) for a q-independent
correlation function 	.t/ (with boundary condition 	.0/ D 1 and P	.0/ D 0)

d2

dt2
	.t/C �0

d

dt
	.t/C�

Z t

0

d�m.t � �/ d

d�
	.�/C�2	.t/ D 0; (11.17)
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with the following memory function

m.t/ D �1	.t/C �2	.t/
2 (11.18)

(11.17) and (11.18) can be reformulated for the Laplace transforms as follows:

	.z/

1C z	.z/
� z C i�0

�2
D m.z/ D �1	.z/C �2LT Œ	.t/

2�z (11.19)

We are now looking for non-ergodic asymptotic solutions f � 	.t ! 1/ D
�z	.z/jz!0 of (11.19). Such solutions must obey the equation

f

1 � f D �1f C �2f
2 (11.20)

(the z C i�0 term becomes negligible in comparison with f

z ).
We observe immediately that f � 0 is always a solution of this equation.

However it can be shown that if there are several solutions to the mode-coupling
equations, it is always the largest one which will be taken by the physical system
(and also by the mathematical iteration). This implies also that f cannot be smaller
than 0, so that we are looking for nonergodic solutions with f > 0 which are the
solution of

1

1 � f
D �1 C �2f (11.21)

If we inspect Fig. 11.7 in which the function �1.f / D 1
1�f � �2f is plotted for

different values of �2 we see that for �2 < 1 the minimum is situated at negative
values of f , whereas for �2 > 1 the minimum is in the positive f regime. If we
now increase �1 for a certain fixed value of �2 and look for the largest value of f
at a given pair (�1; �2) we see that for �2 < 1 there is a continuous transition to a
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nonergodic state (“Type A transition”) whereas for �2 > 1 we have a discontinuous
one (“Type B transition”).

In Fig. 11.8 we show the phase diagram in the �1 � �2 parameter plane. The
type-A transition line is just given by �1.�2/ D 1. The type-B line is given by
�1.�2/ D �1.fmin/ D 2

p
�2 � �2.

We would now like to study the dynamics right on the B-type transition line. In
order to do so we divide the correlation function up as follows:

	.z/ D fc C hG.z/ (11.22)

and treat jzG.z/j as a small parameter. Expanding both sides of (11.19) w.r. to
jzG.z/j, and setting � � 1 � fc D p

1=�2 we obtain the following equation of
motion:

zG2.z/C �LT ŒG.t/2�z C �3.z C i�0/ D 0 (11.23)

We make now the ansatz

G.t/ D A.t=t0/
�x , G.z/ D �1

z
�.1� x/.�izt0/x (11.24)

The right-hand side follows from (B.5) of the Appendix. We have also

LT ŒG.t/2�z D �1
z
�.1 � 2x/.�izt0/2x (11.25)

We see that for z ! 0 the “regular term” in (11.23) �3.z C i�0/ can be neglected as
z ! 0. Then (11.24) provides an asymptotic solution of (11.23) provided

� � �.x/ D �.1 � x/2=�.1� 2x/ (11.26)

It is important to note that the solution—once the regular terms can be neglected—is
not affected by changing the time scale t0 (scale invariance).
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In Fig. 11.9 we have plotted the function �.x/ and see that if we require x �
a>0 and � > 0 the value of a must be less than 0.5.

The “critical” relaxation law

	.t/ D fc C A.t=t0/
�a (11.27)

is called “ˇ relaxation” and holds on both sides of the (idealized) glass transition.
Now we want to study the dynamics a little bit away from the critical line. In

order to do so we define a “separation parameter” � , which measures the distance
from the critical line

� / j�1 � �1;cj or � / jT � Tcj (11.28)

and we have now the equation (neglecting the “regular term”)

zG2.z/C �LT ŒG.t/2�z D 1

z
�4.1 � �/� (11.29)

We now are asking at which time scale the system realizes that it is away from the
critical line and at which one it doesn’t. The characteristic time which separates
these regimes is obviously

t� D 1

!�
D Qt0

j� j 1
2a

(11.30)

where we now have defined a “microscopic” time scale Qt0 which must be actually
fixed by solving the MC equations numerically (which is most efficiently done in
the time domain, solving (11.17) iteratively). As in the critical regime the time scale
doesn’t matter we can formulate the first scaling law or ˇ scaling law

G.t/ D c�g.t!� / c� D
p

j� j; (11.31)
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if first � ! 0 and then t ! 1 one has

g.t/ / t�a (11.32)

Let us now consider the liquid phase in which we know that eventually the function
	.t/ drops from the vicinity of f to 0. If we consider the vicinity of f by Eq. (11.29)
there must be a dynamics leading away from f , which means that the z dependence
of G.z/ must be stronger than 1=z for z ! 0. Such a solution exists (see Fig. 11.9)
and introduces the second critical exponent x D �b and we have

G.t/ / �.t=�/b (11.33)

where the time scale � is that at which the system realizes that it is not at criticality
but in the ergodic liquid state. It turns out that the time scales � and t� separate
strongly from each other approaching the critical line (� ! 0):

t�=� j� j 1
2b (11.34)

which implies

1=� D 1

Qt0 j� j� � D 1

2a
C 1

2b
: (11.35)

Note that the two critical exponents are related by (11.25), i.e.,

� D �.1 � a/2=�.1� 2a D �.1C b/2=�.1C 2b/ (11.36)

The critical law (11.35) is that corresponding to structural relaxation, i.e., the
diffusivity and the inverse viscosity go to zero accordingly.

It turns out that the entire remaining time dependence is governed by the scale �
which is the ˛ relaxation scale and that the scaling function outside the �tb regime
can be well approximated by a stretched exponential

	.t/ / e�.t=�/ˇ (11.37)

where the exponent ˇ must be determined numerically and has values near 0.5.

11.3.3 Summary of Anomalous Features Predicted by MCT

As stated in the beginning all the asymptotic properties of the schematic mode-
coupling equations near the glass instability are the same as that of the full mode-
coupling equations (11.10), (11.11) or (11.10), (11.15) by the reduction theorem.
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Let us now summarize the salient features of the glass-transition scenario
predicted by the mode-coupling equations:

• factorization

	.q; t/ D f c
q C hqG.t/

• ˇ scaling

G.t/ / g.t=t� / t� D 1

!�
D Qt0

j� j 1
2a

� D T � Tc

$

�00.!=!�/
�00

min

D
8<
:
.!=!�/

�b ! < !�

.!=!�/
a ! > !�

• critical behavior of fq and �00
min

fq D f c
q C hq

p
j� j �00

min /
p

j� j

• ˛ scaling

	.t/ / e�.t=�/ˇ 1

�
/ D / 1

�
/ �� � D 1

2a
C 1

2b

� D �.1� a/2=�.1 � 2a D �.1C b/2=�.1C 2b/

As stated above a large number of glass-forming materials exhibit this scenario.
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11.4 Harmonic Vibrational Dynamics in Glasses

The anomalous vibrational features of glasses [9] cover a huge amount of literature.
Here we just want to demonstrate that the glassy state with its frozen-in disorder
produces some unusual features. On the other hand we would like to demonstrate
once more the usefulness of the CPA.

11.4.1 Disordered Cubic Lattice and the Boson Peak

We consider again the model (6.80) on a simple cubic lattice [18]:

d2

dt2
ui .t/ D �

X
j¤i

Kij Œui .t/ � uj .t/� �
X
j

Dij uj .t/ ; (11.38)

The equation of motion of this system is

d2

dt2
ui .t/ D �

X
j

Kij .ui .t/ � uj .t// (11.39)

and we have the CPA equation with s being replaced by �z2

h K � �.z/
1C .K � �.z/ 2

Z�.z/ .1C z2Gii .z/
i D 0 (11.40)

which can be reformulated as

�.z/ D h K

1C .K � �.z/ 2
Z�.z/ .1C z2Gii .z/

i (11.41)

with the local Green’s function given by (see (4.54)).

G.z/ D
X

k2BZ

1

�z2 C �.z/f .k/
(11.42)

The density of states is obtained from the Green’s function according to

g.!/ D 2!g.!2/ D �2!
�

=mfG.z/g (11.43)

in Fig. 11.10 we have plotted the so-called reduced density of states g.!/=!2

resulting from a numerical diagonalization of a model with a Gaussian P.K/ with
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width-to-mean ratio �=K0 D 0:6 together with the CPA calculation. Clearly the
CPA gives a good account of the data. It is also seen that there are no van-Hove
singularities as in the ordered system (see the curve “� D 0” in Fig. 11.11), but
instead a maximum, which can be identified as the so-called boson peak.

We are now giving a physical explanation of the forming of such a peak in the
reduced density of states of disordered solids. First we note that if we increase
the width of the distribution P.K/ the system becomes unstable, because in the
presence of negative values of K some atoms are now sitting on top of a potential
hill instead at the bottom of a potential well. This instability manifests itself by
the existence of negative eigenvalues !2i in the numerics, or, in the CPA, by the
appearance of a portion of the density of states for negative values of !2. To have
a “fine-tuning” of this instability we introduced a lower cutoffKmin in the Gaussian
and put � D K0. The result is shown in Fig. 11.11.

It is seen that the more negative force constants we put in, the stronger becomes
the boson peak. So it looks as if the boson peak is the precursor of the mentioned
instability. This conclusion will be thoroughly corroborated in the rest of the present
lectures.

11.4.2 Continuum CPA and Self-consistent Born
Approximation, SCBA

We would like to simplify the CPA by the following steps:

(i) Getting rid of the unphysical cubic lattice by replacing the dispersion by a
Debye law
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f .k/ ! a2k2�.k � kD/

(ii) Expanding the CPA equation with respect to the fluctuationsK.r/� hKi.

Step .i/ leads to the continuum CPA equations, derived in Sect. 5.4 with the
replacementsD ! QK D a2K andD.s/ ! Q.z/ D a2�.z/:

0 D
* QK.r/�Q.z/
1C � QK.r/�Q.z/� 1

3
�.z/

+

”

Q.z/ D
* QK.r/
1C � QK.r/�Q.z/� 1

3
�.z/

+
(11.44)

with

�.z/ D 1

N

X
jkj<kF

k2

�z2 CQ.z/k2
(11.45)

In step .i i/ we define

QK.r/ D QK0 �� QK.r/ Q.s/ D QK0 �†.z/ (11.46)

Now (11.44) and (11.45) take the form

0 D
*

� QK.r/ �†.z/
1 � �

� QK.r/�†.z/
�
1
3
�.z/

+
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”

†.z/ D
* QK.r/
1 � �

� QK.r/�†.z/
�
1
3
�.z/

+
(11.47)

with

�.z/ D 1

N

X
jkj<kF

k2

�z2 C k2ŒK0 �†.z/ (11.48)

If we limit the expansion to second order in ı QK and † we obtain the self-consistent
Born approximation, SCBA [12]

†.z/ D K2
0��.z/ (11.49)

with the disorder parameter � D 1

3K2
0

D�
�K

�2E
In Fig. 11.12 we compare the CPA for a Gaussian P.K/ with the SCBA with

the same width parameters. As the results are not very different, one can use the
SCBA for weakly fluctuating elastic constants2 safely the SCBA instead of the CPA,
especially if we don’t want to compare our results to a simulation on a lattice. It
is clear from Fig. 11.12 that the boson peak has nothing to do with a broadened
van-Hove singularity as claimed sometimes in the literature [22], because all lattice-
specific features have been removed from the theory. To understand the origin of the

2There exists a fully elaborated elasticity theory based on the SCBA with fluctuating shear
modulus, which gives very similar result as the scalar model K.r/ [11, 17, 19].
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Fig. 11.13 Imaginary part of the “self energy” †.!2/ for the simplified SCBA equation (11.50).
If � becomes larger than unity the system becomes unstable

boson peak we further simplify the SCBA equation (11.49) by replacing the sum
over k by its dominant term at the maximum jkj D kD . If we use frequency units
whereK0 D kD D 1, we obtain

†.z/ D 1 �Q.Qz/ D �
1

�z2 CQ.Qz/ (11.50)

which is a quadratic equation forQ.Qz/.
The solution of this equation yields a semicircular law in terms of the eigenvalues

!2 for the imaginary part of the self energy � (Fig. 11.13) which is proportional to
the enhancement of the “density of levels” g.!2/ D g.!/. If the variance-to mean
square ratio � (“disorder parameter”) becomes comparable to unity, namely larger
than �c D 0:25, the system becomes unstable [14]. If the disorder parameter is just a
bit smaller than �c , a rapid rise of the spectrum occurs for!2 D 1�2p� , which in a
plot g.!/=!2 D 2g.!2/=! becomes a peak, which is actually the boson peak. The
gap below this value occurs, because we omitted the k summation. If included, there
is a crossover from the Debye behavior to the semicircular behavior. However, as
one knows from random matrix theory [13, 20], the occurrence of a semicircular
spectrum with width proportional to the mean of the distribution density of the
matrix elements is a generic property of any random matrix.

So we can state that the boson peak marks the crossover from Debye’s law
(which is actually dictated by the translational symmetry of the equation of motion)
to the semicircular law of the random Hamiltonian. The boson peak marks the
crossover from wave-type vibrational excitations to disorder-dominated vibrations,
characterized by a random Hamiltonian.
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Chapter 12
Conclusions: Take-Home Messages

12.1 The Structure of Simple Liquids Is Essentially
Determined by the Hard Core of the Potential

The prominent examples for simple liquids have been shown to be liquid metals.
The structure factors of liquid metals are well described by a hard-sphere fluid,
as demonstrated in Fig. 2.5. This means that the structure factor S.q/ (at nonzero
wavenumber q) and its Fourier transform, the radial pair distribution function g.r/
are mainly determined by the hard-sphere-like core of the interatomic potential.

12.2 The Long-Wavelength Limit of the Structure Factors
S.0/ Gives a Relation to the Thermal Properties
of Soft Materials

In one-component liquids the long-wavelength limit of the structure factor is related
to the isothermal compressibility (compressibility equation of state). In binary and
multicomponent systems this statement remains true for the number fluctuations.
The structure factor of the concentration fluctuations gives a relation to the stability
of the multicomponent system.

12.3 The Perturbative Random-Phase Approximation (RPA)
Describes Well the Deviations from the Hard-Sphere
Structure

In contrast to the structure factors S.q/ at finite q their long-wavelength limit S.0/
is not only sensitive to the hard core of the interatomic potential but also to its
longer-rage tail. This can be formally taken care of by the perturbative RPA. This

W. Schirmacher, Theory of Liquids and Other Disordered Media, Lecture Notes
in Physics 887, DOI 10.1007/978-3-319-06950-0__12,
© Springer International Publishing Switzerland 2015
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mean-field theory describes well the deviations of the compressibilities of simple
liquids as calculated with the hard-sphere diameters taken from the finite-q structure
factors. In liquid metals the predominantly repulsive nature of the interatomic
potential leads to a relative hardening of the compressibility, whereas in liquids with
(attractive) van-der-Waals forces one has a softening with respect to the hard-sphere
compressibility.

12.4 In Binary Mixtures the Perturbative RPA Forms
the Basis of the Regular-Solution Theory

The analog of the hard-sphere reference system of the number fluctuations is the
non-interacting concentration-fluctuation structure factor in binary mixtures. This
corresponds to the enthalpy of mixing of an ideal solution, derived from the ideal
entropy of mixing. The perturbative RPA is equivalent to the Flory theory of regular
solutions and—properly generalized—to the Flory theory of the thermodynamics of
polymer solutions.

12.5 A Random Walk Is a Path of a Walker in Which the
Direction Is Changed at Every Time Step Randomly
and Is Described by the Diffusion Equation

Starting with a one-dimensional random walk using the combinatorial laws to go
randomly to the left or right we derived the discrete master equation of random
walk and from this in the continuum limit the one-dimensional diffusion equation.
The two- and three-dimensional random walk and diffusion equation follow by
superposition of the one-dimensional motion in the three Cartesian directions.

12.6 Fractals Have Non-integer Dimensionality

Fractals are self-similar objects, which can be ascribed a (Haussdorffian) dimension-
ality, which is smaller than the imbedding dimensionality. A prominent example is a
percolating lattice, in which either sites or bonds are omitted randomly. At a certain
site or bond concentration a phase transition from a connected to a disconnected
object occurs. Right at the transition the percolation cluster (the cluster of remaining
sides or bonds) is a fractal.
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12.7 A Random Walk Is a Fractal with Fractal Dimension 2

Because the length (“time”) along the random walk grows with the square of its
spatial extension (mean-square displacement), its effective (i.e., fractal) dimension-
ality is 2. The corresponding fractal scaling properties become important for the
structural properties of polymers.

12.8 The Thermodynamics of Polymers Are Governed
by Their Fractal Scaling Properties

The de Gennes scaling theory of polymers is based on the fact that an idealized
polymer is a random walk. The repulsive interaction, which is due to the non-
intersecting property can be taken care of by adding a interaction term to the
polymer’s free energy. This changes the fractal dimension from 2 to 5/3.

12.9 The Dynamical Properties of Liquids Can Be
Conventionally Described by Time Correlation
Functions

The principal correlation function characterizing the dynamics of a liquid is van
Hove’s density-density correlation function G.r; t/. Its time and space Fourier
transform, the dynamical structure factor S.q; !/ can be measured by inelastic
neutron or X-ray scattering. It is related with the dynamical response function of the
density to an external potential perturbation by the fluctuation-dissipation theorem.
Using a projection technique invented by Mori and Zwanzig a set of generalized
Langevin equations for the van-Hove functions can be derived, which look like
damped-harmonic oscillator equations, in which the damping constants is replaced
by a memory functions.

12.10 The Collective Excitations of a Simple Liquid Can Be
Well Described by Mode-Coupling Theory

By establishing a closure relation between the memory functions and the van-Hove
functions a self-consistent theory (due to Götze) is obtained, which describes the
collective sound-like excitations of liquid metals quite well. A remarkable property,
which follows from this theory is the scaling with respect of the effective hard-
sphere diameter is obeyed by the experimentally measured data.
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12.11 Incoherent Liquid Dynamics Is Governed by Diffusion

Incoherent liquid dynamics, i.e., the individual-particle motion in a liquid is a
modified random walk. The modifications can arise to step-wise motion (jump
diffusion) and interactions, which can be described by a generalized random-phase
approximation (RPA).

12.12 The Basic Polymer Dynamics Is Described by the
Rouse Model, But a More Realistic Description
Involves Disorder and Interaction

The dynamics of configurational changes occurs essentially along the chains. In
the Rouse model it is described by the elastic vibrations along the changes, which
are damped by the viscosity of the solvent. The inertial forces are neglected. More
complicated models involve quenched disorder, activated motions and interactions
via the response of the solvent (hydrodynamic forces).

12.13 The Liquid-to-Glass Transition Is a Transition
from an Ergodic to a Nonergodic State

An ergodic system relaxes (by definition) towards its unique thermodynamic
equilibrium state. In a non-ergodic state the system is caught inside a “pocket” of
phase space from which it cannot escape. A liquid, frozen in a glassy structure,
represents such a state. The dynamics near the transition involves algebraic time
dependences and scaling laws, which are well described by a mean-field-like
selfconsistent approximation (mode-coupling approximation).

12.14 Inside the Glassy State the High-Frequency Vibrations
Show Irregularities Produced by the Quenched
Disorder

The fact that on a microscopic scale the translational and rotational invariance are
broken inside the glass leads to an irregular vibrational spectrum (“boson peak”) in
the THz range.



Appendix A
Fourier Transforms

In the present lecture notes the following convention for the Fourier transform is
used1:
One-dimensional space

f .k/ D
Z
dx eikxf .x/ f .x/ D 1

2�

Z
dk e�ikx f .k/ (A.1)

Three-dimensional space
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Time

f .!/ D
Z
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1The boundaries of the integrals of the Fourier transforms are always �1 and C1.
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Convolution theorem
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Appendix B
Laplace Transforms

Common Laplace transform

f .s/ D
Z 1

0

dte�st f .t/ D LŒf .t/� Refsg > 0 (B.1)

Modified Laplace transform
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Convolution theorem for the Laplace transforms
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Hilbert–Stieltjes transform: We now derive the following important properties of the
(modified) Laplace transform: Inserting for f .t/ in (B.2) the Fourier back transform
in (A.4) we obtain

f .z/ D 1
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Z 1

�1
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1
2
f . N!/
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(B.8)

which is the Hilbert–Sijeltjes transform of 1
2
f . N!/. If we now insert the relation
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we obtain from (B.8)
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Taking these relations together we have
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Appendix C
Velocity Autocorrelation, Diffusivity
and Mean-Square Displacement

We would like to establish a connection between the velocity autocorrelation
function

Z.t/ D hvx.t/vx.0/i D ˝
vy.t/vy.0/

˛ D hvz.t/vz.0/i (C.1)

and the mean distance square walked by a random walker (mean-square displace-
ment), who started at r.0/ (on any medium, be it fractal or not)
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where vx.t/ D d
dt x.t/, from which follows
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so that we have
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where we have made the substitution � 0 D � � Q� in the second step. We now
introduce the Laplace transformZ.s/ of Z.t/ and use the identity
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which finally yields
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We now apply the theorem
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to the function
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For the case of normal diffusion we obtain
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which is the Kubo relation for the diffusivity. We now recall the Nernst–Einstein
relation for the conductivity � of charge carriers who perform a random walk
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We can define a generalized frequency dependent diffusivity as
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where we have included an exponential factor with an infinitesimal (but positive)

 > 0 for guaranteeing the convergence of the integral. D.!/ which is just the
Laplace transform of Z.t/ with the complex Laplace frequency s D ı! C i
.

The dynamic conductivity �.!/ is related to D(!) by the Nernst-Einstein relation

�.!/ D e2
n

kBT
D.!/ (C.14)
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