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Preface

Natural convection heat transfer in domains containing superposed fluid and porous 
layers is a fundamental transport mechanism encountered in a wide range of engineer-
ing, geophysical, and scientific applications. In this framework, the porous sub-layer 
lies below a saturating liquid layer. Important engineering applications include packed 
bed solar energy storage, directional solidification of binary alloys, fibrous and gran-
ular insulation systems, water reservoirs, and post-accident cooling of nuclear reac-
tors. Thermal circulation in lakes and shallow coastal areas and contaminant transport 
in groundwater represent some of the geophysical applications. Although buoyant 
convection in this system was first studied about 40 years ago, there has lately been 
renewed interest in this problem owing to its importance in environmental and energy 
management problems in current scientific and geo-political contexts.

A major area of recent investigation has been the reconciliation of the several 
modeling approaches currently in use. Of particular interest are the boundary con-
ditions at the porous fluid-layer interface and the prediction of overall heat trans-
fer coefficients when convective currents are driven by a heat source of finite size 
on the lower boundary. While different modeling approaches give near-identical 
solutions for vertically layered systems, they disagree significantly for horizontal 
systems. Therefore, a significant amount of research has been aimed at identifying 
these issues and developing an accurate and consistent mathematical formulation. 
The dearth of measurements provides no validating experiments.

We have undertaken the present topic as it has neither been extensively 
explored nor resolved. A combination of numerical analysis and experiments has 
led us to this first comprehensive summary report and the first report of meas-
urements of convective heat transfer coefficients well above the onset point of 
convection. This work also represents a step toward validation of numerical pre-
dictions in the high Rayleigh number range. Such validation of theoretical studies 
is virtually absent in the literature owing to the difficulty encountered in designing 
experiments which allow heat transfer measurement in the Rayleigh number range 
accessible to simulation. Although numerical solutions of this problem were first 
published over 25 years ago, no accepted set of results is yet available even for 
the case of a uniformly heated base. This is especially true for the high Rayleigh 
number regime where the lack of experimental validation has made it impossible 
to verify the accuracy of any of the modeling approaches.
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Similarly, experimental studies have focused on studying very small sections of 
the entire convective heat transfer regime, partly because of the complexity of the 
dual layer problem and the large number of independent controlling parameters. 
Part of the reason that the overall nature of the problem is not yet well understood 
is that previous studies have focused on studying very specific aspects of it. Taken 
in this context, the combined numerical-experimental approach here represents an 
important step toward fundamentally understanding the problem over a large por-
tion of the entire heat transfer regime. Also, we have considered in-depth an exten-
sion of the superposed layer problem by investigating the effects of localized heat 
sources which are more relevant from an engineering perspective.

Somerset, NJ, USA Aniruddha Bagchi
Minneapolis, MN, USA  Francis A. Kulacki
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Fluid-superposed porous layers

A porous medium can be loosely defined as a solid with an interconnected void 
space. Figure 1.1a shows a schematic of an idealized porous medium comprising 
uniform spherical particles saturated with a single fluid. In general, porous media, 
especially those that occur naturally, have an irregular geometry as shown in 
Fig. 1.1b. Porous media are ubiquitous in nature and can also be found in several 
engineering applications. Examples of naturally occurring porous media include 
beach sand, sandstone, limestone, rye bread, wood, and the human lung, while engi-
neering applications include packed bed reactors, geothermal energy extraction, 
energy storage devices, and thermal insulation systems.

Owing to the wide range of situations in which porous media are encountered, 
the study of heat transfer in these systems has received a great deal of attention 
in the scientific and engineering communities. A problem that has attracted signifi-
cant attention is that of natural convection in horizontal porous layers uniformly 
heated from below. Beginning with the pioneering studies of Horton and Rogers 
(1945) and Lapwood (1948), this problem, which is the porous medium equivalent 
of  the Rayleigh-Bénard problem,  has  been  studied  extensively. Several  variations 
of this problem have also been studied in great detail. These include convection in 
multi-layered porous media, convection with localized heat sources, and convec-
tion in anisotropic porous media. These studies have been motivated by practical 
applications, such as the disposal of high level nuclear wastes in deep geological 
repositories, cooling of electronic devices, design of energy efficient buildings, and 
geothermal energy extraction. The problem also gains importance from a funda-
mental scientific perspective as this is an example of a system where a well-defined 
flow structure develops from an initial random disturbance and therefore allows 
for a fundamental investigation of stability modes. Additionally, the mathematical 
formulation of the problem is one of the simplest nonlinear elliptic systems. As a 
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2 1 Introduction

result, it has been an ideal test problem for numerous numerical studies. Reviews 
by Combarnous and Bories (1975) and Cheng (1978) give detailed accounts of 
the early advances in the field, and books by Nield and Bejan (2006) and Kaviany 
(1991) contain comprehensive overviews of the then current state of research.

An important variation of this problem is that of natural convection in a horizontal 
composite system comprising a fluid layer overlying a porous layer saturated with 
the same fluid. This problem is of great importance from a geophysical perspective. 
Mixing in ice covered lakes (Matthews 1998), flow in geysers and hot springs, flow 
of oil in underground reservoirs (Allen 1984; Ewing 1996), patterned ground forma-
tion under water, (Carr and Straughan 2003) and contaminant transport in sub-soil 
water reservoirs (Curran and Allen 1990, Allen and Khosravani 1992) are all natural 
examples. The problem also arises in several engineering and industrial applications 
such as fibrous and granular thermal insulation systems, water reservoirs, grain stor-
age installations, hydrothermal synthesis in the growth of crystalline materials (Chen 
et al. 1999), solidification of alloys (Worster 1992), and post-accident cooling of 
nuclear reactors (Rhee et al. 1978). In spite of this universality, the fluid-superposed 
porous layer convection problem has not been investigated in great depth.

Most existing studies of the topic deal with the onset of convection in the com-
posite system heated uniformly from below (Sun 1973; Nield 1977; Somerton and 
Catton 1982; Chen and Chen 1988, 1989, Chen and Hsu 1991; Chen et al. 1991; 
Chen and Lu 1992; Zhao and Chen 2001; Hirata and co-workers 2006–2009). 
These studies have identified several important aspects of this problem, the most 

Fig. 1.1  a An idealized 
saturated porous medium;  
b a naturally occurring 
porous medium
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important being that convection in such a composite system has a bimodal charac-
ter and that the wavelength of the convective mode at the onset point depends on 
the fluid-to-porous layer height ratio, η1. Even then, existing studies do not agree 
on the exact critical point primarily because there is no agreement on the most 
accurate approach to modeling fluid motion in this system. In particular, there has 
been extensive debate on the appropriate form of the boundary conditions at the 
porous-fluid layer interface. Three different modeling approaches have been pro-
posed, and all of them predict somewhat different critical onset points. Recently 
there has been much work on reconciling the different models and identifying rea-
sons for the observed discrepancy of the results (Zhao and Chen 2001; Hirata and 
co-workers 2006–2009). The lack of conclusive experimental studies has led to the 
problem being, as yet, unresolved.

Similarly, the overall heat transfer characteristics of the system at a high Rayleigh 
numbers are not well understood. Only a handful of studies have explored this prob-
lem from a theoretical perspective (Poulikakos and co-workers 1986; Chen and 
Chen 1992; Kim and Choi 1996), and they report widely different results. This can, 
in part, be attributed directly to the different modeling approaches adopted in these 
studies. A comprehensive set of experimental studies by Prasad and co-workers 
(Prasad and Tian 1990; Prasad et al. 1991; Prasad 1993) are available, but they have 
not been confirmed by other investigators. Moreover, no direct comparison of exper-
imental and theoretical results at a high Rayleigh numbers has ever been published 
and this further compounds the difficulty in validating numerical studies.

A major area of recent investigations has been the reconciling of several mod-
eling approaches that are available for theoretically studying the problem. In addi-
tion, there has been some progress toward validating numerical predictions with 
experimental results and developing the Nusselt-versus-Rayleigh number cor-
relations over a wide range of parameters. Therefore the literature on this topic 
is evolving continuously as newer studies keep exploring various aspects of this 
problem in greater detail.

The aim of this monograph is to present an up-to-date report on the current 
state of research on the problem of natural convection in horizontal composite 
fluid-porous domains. As mentioned earlier, this problem was first studied nearly 
40 years ago and since then, there has been an ever expanding body of literature. 
Therefore a need was felt to summarize the various aspects of this problem in a 
single volume that provides a comprehensive discourse on it. Similar attempts at 
summarizing this problem in the past have focused on giving a detailed literature 
review of past studies (Prasad 1991; Gobin and Goyeau 2008). In this monograph, 
a more comprehensive overview is presented by discussing in detail the current  
literature, underlying theoretical principles, controlling parameters, numerical 
solution techniques, and recent experimental investigations. A horizontal compos-
ite domain heated locally from below is selected as a test case for illustrating the 
various aspects of this problem. Considering the wide range of applications where 
this problem is encountered, we have presented the subject in a way that is acces-
sible to audiences in a variety of scientific and engineering backgrounds.

1 Introduction
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Keywords  Convective instability  •  Critical point  •  High Rayleigh number con-
vection  •  Bi-modal  convection  •  Short  wavelength  convection  mode  •  Long 
wavelength convection mode

In this chapter, the current status of research is presented. The progression of solu-
tions includes the problem of predicting the onset of convection for an initially 
motionless state to the calculation of velocity and temperature fields for two-
dimensional steady convection.

2.1  Current Status of Research

The prototypical problem for natural convection in horizontal fluid-superposed 
porous layers can be represented as shown in Fig. 2.1. A saturated porous layer 
with an overlying fluid layer is held between two impermeable surfaces. The lower 
surface is held at a higher temperature than the upper surface and side walls are 
adiabatic. The most commonly studied case is where the high temperature bound-
ary is maintained at a constant temperature. A few studies have also examined the 
case wherein the lower boundary is either heated by constant heat flux or when the 
underlying fluid layer is volumetrically heated.

A primary goal of the research in this field is to calculate the critical Rayleigh 
number and to understand the relation between the Nusselt and the Rayleigh 
numbers beyond the critical point. The Rayleigh number is a dimensionless 
parameter that defines the strength of the buoyancy force that drives fluid motion 
during natural convection. When the value of the Rayleigh number is below a criti-
cal value, there is no fluid motion and conduction is the dominant mode of heat 
transfer. Beyond the critical Rayleigh number, convection becomes the dominant 
mode of heat transfer due to buoyancy. On the other hand, the Nusselt number is 

Chapter 2
Literature Review

A. Bagchi and F. A. Kulacki, Natural Convection in Superposed Fluid-Porous Layers, 
SpringerBriefs in Thermal Engineering and Applied Sciences,  
DOI: 10.1007/978-1-4614-6576-8_2, © The Author(s) 2014
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a dimensionless parameter representing the ratio of convective to conductive heat 
transfer. The Nusselt number is therefore a measure of the increase in the rate of 
heat transfer due to fluid motion.

Sun (1973) was probably the first to examine the onset of convection in this 
composite system and conducted a comprehensive analytical and experimental 
study of convective stability. Using the perturbation method, he predicts the criti-
cal Rayleigh number for a variety of thermal and hydrodynamic conditions at the 
bounding surfaces. He considers the influence of various parameters such as the 
layer depth ratio, porosity, permeability, density, and diffusivity and finds that 
the critical Rayleigh number for various bed height ratios compares well with his 
experimental data for 0.82 < η < 1. He also finds that for a fixed Rayleigh number, 
the Nusselt number decreases with an increase in the height of the porous bed.

This problem was later studied analytically by Nield (1977) who uses lin-
ear stability theory to predict the onset of convection in a two-layer system that 
extends infinitely in the horizontal direction. He applies the Beavers-Joseph (1967) 
condition at the fluid-porous layer interface and includes the possibility of the 
Marangoni effect at a deformable upper surface. Nield, however, does not solve 
the resulting tenth-order eigenvalue problem because of the tedious nature of the 
required solution. Instead he considers the simplest case of constant heat flux at 
the lower boundary and obtains the stability criterion for limiting values of various 
parameters, such as the fluid viscosity, height ratio, and conductivity ratio.

Rhee, Dhir and Catton (1978) measure heat transfer rates in a composite sys-
tem consisting of a porous layer made up of heat generating particles cooled by 
a layer of fluid from above. Their experiments are conducted in a cylindrical 
test section with 6.35 mm diameter steel balls as the porous layer and distilled 
water as the saturating fluid. The sides and the bottom of the test section are kept 
insulated while the top surface is maintained at a constant temperature. The steel 
balls are heated by an induction coil that is placed around the lower section of 
the test section. Results show that the critical Rayleigh number for the porous 
layer, Ramc, decreases rapidly as η1 → 1, and above this value of η1, Ramc → 12 

Saturated porous 
layer 

x

y TH

TC

Overlying fluid 
layer 

Hm

Hf

Fig. 2.1  Problem domain for the composite layer heated uniformly from below. TH > TC



7

asymptotically. In the absence of the overlying liquid layer, however, the critical 
Rayleigh number is 46, indicating that the presence of the liquid layer facilitates 
the onset of convection. The presence of the liquid layer is also seen to increase 
the rate of heat transfer through the bed. For a liquid layer about one-fifth the 
height of the porous layer, there is a three-fold increase in the heat transfer coef-
ficient. They note that this is likely due to the inflow and outflow of fluid from the 
porous bed. They also observe that for η1 > 1, heat transfer data can be correlated 
with Num = 0.19 Ram

0.69.
The problem of a fluid layer overlying a volumetrically heated porous layer is 

investigated analytically by Somerton and Catton (1982), who conduct a linear sta-
bility analysis to predict the onset of convection. Brinkman’s extension of Darcy’s 
law is used to model fluid flow in the porous layer, which allows them to avoid 
using the Beavers-Joseph boundary condition at the interface and instead use more 
generalized boundary conditions describing the continuity of velocity and shear 
stress. They find: (i) the critical wave number is a function of the fluid-to-bed 
depth ratio, η1, the conductivity ratio, λ, and the Darcy number, Da; (ii) the sole 
parameter controlling the onset of convection is a single Rayleigh number for the 
entire system; (iii) a larger λ tends to a more stable fluid layer while a large Da 
tends to produce a less stable fluid layer; and (iv) the presence of the overlying 
fluid layer is destabilizing and can drive fluid motion in the porous bed. However, 
they do not calculate the heat transfer characteristics of the system.

Poulikakos, Bejan, Selimos and Blake (1986) solve the problem of flow insta-
bility in a horizontal composite layer beyond the critical Rayleigh number. They 
numerically solve the full set of conservation equations for two-dimensional 
transient flow and use the Beavers-Joseph boundary condition at the interface 
for fixed values of the Prandtl number (Pr = 7), thermal diffusivity ratio (ε = 1)  
and porous-to-total layer height ratio (η = 0.5). The parameters varied are the 
aspect ratio, A, (0.4–2), fluid Rayleigh number, Ra, (102–106) and Darcy num-
ber, Da (10−7–10−4). They obtain streamlines and isotherms for various values 
of these parameters and find that with increasing Rayleigh number, the velocities 
of the observed two-dimensional cellular rolls increase but their numbers remain 
fixed within the horizontal extent of the computational domain. The authors do 
not observe any significant change in the Nusselt number with an increase in the 
Darcy number but find that it decreases with increasing aspect ratio. They also find 
that the critical fluid Rayleigh number is in the range of 500–600. Beyond this 
range, the Nusselt number is given by Nu ≈ 0.129Ra0.33.

Poulikakos (1986) extends the above study by using a general flow model 
that incorporates the Brinkman and Forchheimer extensions to the Darcy 
model and a single set of conservation equations for both the fluid and 
porous layers. This duality is accomplished via a parameter which assumes 
the value zero in the fluid region, unity in the porous region, and avoids the 
explicit specification of boundary conditions at the porous-fluid layer inter-
face. Numerical solutions are obtained for two-dimensional flow by using a 
finite-volume technique for various values of parameters such as the aspect 
ratio, A, (1–5), height ratio, η, (0.1–0.8), fluid Rayleigh number, Ra (103–105), 

2.1 Current Status of Research
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the Darcy number, Da (10−5–10−3), and Forchheimer coefficient, F (0–1.0). 
Poulikakos finds that the velocity of convective motion increases with an 
increase in the Rayleigh number when all other parameters are held constant 
and that the number of cells doubles when the Rayleigh number attains the 
value of 2 × 105. With an increase in the height of the overlying fluid, a sig-
nificant increase in the overall Nusselt number occurs. Beyond a critical height 
ratio of η ≈ 0.75, the flow field ceases to have any effect on heat transfer and 
heat removal is primarily by conduction. An increase in Darcy number also 
increases the Nusselt number.

In a series of studies, Chen and co-workers investigate the convective insta-
bilities and heat transfer characteristics of fluid-superposed porous layers, both 
analytically and experimentally. In connection to the problem of directional 
solidification of concentrated alloys, Chen and Chen (1988) first consider the 
problem of salt-finger convection and use linear stability analysis to determine 
the onset of finger convection. Darcy’s law is used to model fluid flow in the 
porous layer, and the Beavers-Joseph condition is applied at the fluid-porous 
layer interface. The additional effect of a salinity gradient is included in the con-
servation equations to model salt-fingering. They find that the parameters which 
affect the onset of flow are the fluid-to-porous layer height ratio, the Darcy num-
ber, the thermal diffusivity ratio, and the Beavers-Joseph constant. For fixed val-
ues of Da, ε, and α̂, they find that the marginal stability curve is bimodal. For 
η1 < 0.12, the long wave branch is most unstable and convection is dominated 
by the porous layer. For η1 > 0.12, the short wave branch is the most unstable 
and convection is dominated by the fluid layer. They also find that the critical 
Rayleigh number decreases precipitously with an increase in the depth ratio, η1, 
beyond the critical value.

In a subsequent paper, Chen and Chen (1989) report experiments to verify 
their earlier findings which were in disagreement with the experimental results of 
Sun (1973). For their experiments they use a rectangular test section with 3 mm 
diameter glass beads for the porous layer and water, 60 and 90 % glycerin-water 
solutions, and 100 % glycerin as the saturating fluids. The depth ratio η1 is varied 
from 0–1. Fluids of increasing viscosity are used for cases with larger η1 so as to 
keep the temperature difference across the test section within reasonable limits. 
The experiments show a precipitous decrease in the critical Rayleigh number as 
the depth of the fluid layer is increased from zero and an eight-fold decrease in the 
critical wavelength between η1 = 0.1 and 0.2. These findings confirm their earlier 
theoretical predictions. Convective cells are observed to be three-dimensional via 
flow visualization.

Vasseur, Wang and Sen (1989) investigate the onset of convection in a com-
posite system that is heated at the bottom by a uniform heat flux. Fluid flow in 
the porous layer is modeled using the Darcy-Brinkman equation and the continuity 
of velocity and shear stress is applied at the interface. To obtain an approximate 
analytical solution to the problem, they consider a shallow enclosure for which 
A → ∞. In addition, they assume that for this limiting case the velocity in the cen-
tral portion of the domain is parallel and is only directed in the vertical direction. 
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Solutions are obtained for the case where the upper surface of the fluid layer is 
either rigid or free. For the case of the rigid upper surface, the critical porous layer 
Rayleigh number is Ra∗

mc
= 720Da[ηκ + (1 − η)]/(1 − η)5.

Chen (1990) reports a linear stability analysis in the two-dimensional compos-
ite system with vertical through-flow. He finds that both stabilizing and destabi-
lizing factors can be enhanced due to vertical through-flow, thus allowing more 
precise control of the buoyancy-driven instability in either the fluid or the porous 
layer. For η1 = 0.1, the onset of convection occurs in both fluid and porous layers, 
the relation between the critical Rayleigh number for the porous layer, Ramc, and 
the through-flow strength, ζ, is linear, and the effect of the Prandtl number is insig-
nificant. For η1 > 0.2, the onset of convection is largely confined to the fluid layer, 
and the relation becomes Ramc ~ ζ2, except for Pr = 1, where Ramc ~ ζ3.

Chen et al. (1991) then consider the onset of convection in a system consist-
ing of a fluid sub-layer over a porous sub-layer with anisotropic permeability and 
thermal diffusivity. Flow in the porous medium is assumed to be governed by 
Darcy’s law and the Beavers-Joseph condition is applied at the interface between 
the two layers. The effects of anisotropy on convection onset are found to be most 
profound for small values of the depth ratio, η1. For fixed values of the vertical 
permeability, decreasing the value of the horizontal-to-vertical permeability ratio, 
ξ, leads to stabilization because of increased resistance to motion in the porous 
sub-layer. At larger values of η1, the onset of motion is increasingly confined to 
the fluid layer, with the transport of heat through the porous layer being primarily 
by conduction. The authors conclude that the influence of ξ on the stability char-
acteristics for larger η1 is less significant than the effects of anisotropic thermal 
conductivity.

Chen and Hsu (1991) extend this work to cover a wide range of depth ratios, 
horizontal-to-vertical permeability ratios, ξ, and horizontal-to-vertical thermal dif-
fusivity ratios, χ. For η1 < 0.1, the critical Rayleigh number, Ramc, is an explicit 
function of χ/ξ, and the corresponding critical wave number, amc, is a function 
of (ξχ)1/4. For η1 < 0.1, the porous sub-layer dominates the system by convec-
tion, and anisotropic and inhomogeneous effects are significant as demonstrated 
by a well-defined dependence of the critical Rayleigh number on the permeability 
and diffusivity ratios. For η1 > 0.1, however, the authors do not obtain any explicit 
function for Ramc or amc in terms of ξ and χ. They note that because the onset of 
convection is largely confined to the fluid sub-layer anisotropy and inhomogeneity 
in the porous layer are not significant.

Chen and Lu (1992) investigate the effect of the fluid viscosity on the onset of 
thermal convection. They use Darcy’s law to model fluid flow in the porous sub-
layer and apply the Beavers-Joseph boundary condition at the interface. The vis-
cosity variation is represented by the parameter � = log(νmax/νmin). They find that 
the stability characteristics (Ramc, amc, and flow structure) are profoundly influ-
enced by the viscosity variation. Intrinsic features of the critical flow are mainly 
determined by the values of � and η1. The authors also identify three critical flow 
patterns on the basis of varying � and η1 and find that the transition between any 
two of them is a bimodal instability.

2.1 Current Status of Research
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Chen and Chen (1992) further perform a computational analysis to determine 
the heat transfer characteristics of the two-layer system analyzed in their previous 
studies. For the porous sub-layer, they consider the Darcy-Brinkman-Forchheimer 
form of the momentum equation to account for viscous and inertial effects. 
Boundary conditions at the interface are the continuity of velocity, temperature, 
heat flux, normal stress, and shear. The flow is assumed to be two-dimensional and 
periodic in the horizontal direction with a wavelength equal to the critical value 
at convection onset. They find that convection remains steady for Ram ≤ 20 Ramc 
when the depth ratio, η1, is varied between 0.1 and 1.0. For η1 < 0.13 (the critical 
height ratio), the Nusselt number increases sharply with Ram, whereas at larger  
η1 the increase is moderate. Heat transfer coefficients predicted by the numerical 
scheme for η1 = 0.1 and 0.2 show good agreement with their experimental results.

Prasad and co-workers report a series of experimental studies to visual-
ize flow patterns and measure heat transfer characteristics of a fluid superposed 
porous medium uniformly heated from below (Prasad and Tian 1990; Prasad  
et al. 1991; Prasad 1993). In one set of experiments they use 12.7 and 25.4 mm 
diameter acrylic balls with 0 < η < 1. An immersion method is used to measure 
the refractive index of the acrylic spheres and match it with the refractive index 
of silicone oil which is used as the saturating fluid. Aluminum particles are used 
for visualizing the flow patterns and show that flow channels through large voids 
produce highly asymmetric and complicated flow structures. The number of con-
vective rolls in the fluid sub-layer is found to depend on η. The heat transfer coef-
ficient generally increases with the Rayleigh number, but its dependence on the 
non-dimensional particle size, γ, and height ratio, η, is found to be very complex. 
Generally, average Nusselt numbers increase with γ, but it is found that there may 
exist some values of η for which the heat transfer coefficient for a smaller γ is 
larger. Also, the Nusselt number first decreases with an increase in γ and reaches 
a minimum at γmin. Any further increase in porous layer height beyond this mini-
mum augments the heat transfer rate, and the Nusselt number curves show peaks 
at γmin < γ ≤ 1. A general correlation for the Nusselt number is obtained in the 
form Nu = Constant × Ran, where the constants are found to depend on η and γ.

In another set of experiments, Prasad et al. (1991) use 6, 15, and 24 mm diam-
eter glass beads saturated with distilled water and vary the height ratio in the range 
0.067 ≤ η ≤ 1. Extensive visualization studies using aluminum particles reveal a 
highly complex, three-dimensional flow field and active flow interactions between 
the overlying fluid and the packed bed beginning with Ram ~ O(1). Strong jet 
like vertical convective flows are seen to move from the porous sub-layer to the 
upper fluid layer and results in a sharp drop in the critical Rayleigh number for 
the porous layer from 4π2 when η < 1. The observed flow patterns qualitatively 
match those predicted by Poulikakos et al. (1986). For small bead diameters, the 
Nusselt number decreases with increase in η, and for larger bead diameters, it first 
decreases with η until a γmin is reached and then increases again. For the largest 
beads, a couple of inflexions on the Nu-versus-γ curve are seen.

Prasad (1993) extends these studies further to include the influence of Prandtl 
number and different solid–fluid conductivity ratios. Experiments are conducted 
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with acrylic, aluminum, and glass spheres for the porous bed and two kinds of 
silicone oils and ethylene glycol as the saturating fluid. He finds that the complex 
relation between Nusselt number and porous layer height remains unaltered with 
a variation in thermal conductivity ratio and/or the Prandtl number. An increase 
in thermal conductivity of the solid matrix enhances the heat transfer coefficient. 
Further, the composite fluid and porous layer can transport more energy than the 
fluid layer provided the porous matrix is highly permeable and the solid-to-fluid 
conductivity ratio is large. The effect of Prandtl number follows the trend reported 
for a cavity completely filled with a porous medium, particularly for large Darcy 
and Rayleigh numbers.

Kazmeirczak and Muley (1994) measure steady and transient heat transfer 
characteristics of fully porous and fluid-superposed porous layers. They use 3 mm 
diameter glass beads as the porous layer and de-ionized water as the saturating 
fluid. For the steady-state experiments the lower wall is maintained at a constant 
temperature while for the transient experiments the temperature of the lower wall 
is varied cyclically. In both cases the temperature of the top wall is constant. With 
η ≈ 0.96, their results show that the presence of even a very small layer of fluid 
above the porous layer significantly increases the heat transfer rate when com-
pared to the fully porous layer. This effect is seen for both steady and transient 
boundary conditions. Heat transfer coefficients in steady convection are correlated 
by Num = Ram

0.8145/13.02.
Kim and Choi (1996) numerically solve the stability problem for the onset of 

convection in an overlying fluid-porous layer composite system with the aim of 
validating the boundary conditions at the interface. Like Poulikakos (1986), they 
use a single set of conservation equations to model fluid flow and heat transfer in 
the composite domain. Their scheme is able to accurately predict the number and 
the wavelength of circulating cells formed at the onset point. They find that when 
η1 > 0.12, the number of circulating cells increases continuously as the Rayleigh 
number increases, which in turn increases the Nusselt number continuously. 
However for η1 < 0.1, the cellular flows constantly adjust their position and size 
as the Rayleigh number increases. They also confirm the abrupt and steep drop in 
the critical Rayleigh number with an increase in the height ratio, η1, beyond the 
critical value as observed by Chen and Chen (1992). The number of cells in the 
supercritical convection regime does not increase monotonically with the Rayleigh 
number and the corresponding Nusselt number variation is quite different.

Zhao and Chen (2001) re-examine the problem of the onset of thermal and 
thermo-solutal convection in the two-layer system studied earlier by Chen and 
Chen (1988). They use a one-domain model to describe fluid flow and heat trans-
fer, and the linear eigenvalue problem is solved using a finite-difference method. 
Results show that the overall trend of the change in the critical Rayleigh number 
and wave number with the depth ratio is similar for the two models, but predicted 
values of the critical parameters vary by ~30–40 % between the two models, e.g., 
the value of the critical height ratio predicted by the one-domain model is 0.095 as 
opposed to 0.13 predicted by the two-equation model. Streamlines and isotherms 
for the one-domain model show convective motion throughout the entire domain 

2.1 Current Status of Research
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as opposed to that of the two-domain model which predicts fluid motion primarily 
confined to the overlying fluid layer.

Straughan (2002) investigates the effect of fluid and porous layer property vari-
ation on the onset of convection. He uses Darcy’s law to model flow in the porous 
layer and applies the Beavers-Joseph boundary condition, and the generalized 
form proposed by Jones (1973) at the fluid-porous layer interface. The properties 
varied are the bulk porosity, the Beavers-Joseph constant, Darcy number, effec-
tive heat capacity ratio, and effective conductivity ratio. He finds that the critical 
Rayleigh number at a fixed height ratio decreases with a decrease in Darcy number 
and an increase the Beavers-Joseph constant.

Steven (2006) reports an experimental study of the heat transfer character-
istics of a fluid superposed porous layer system heated from below. His experi-
ments use a cylindrical test chamber with 6 mm diameter glass beads as the porous 
layer and water as the saturating fluid. Heat transfer coefficients are measured 
for four values of the height ratio, η, and temperature fluctuations are recorded 
within the system at various radial and vertical locations. He finds that for a given 
Rayleigh number, the overall Nusselt number is larger than that for a fully porous 
layer, indicating the overlying layer enhances the overall heat transfer coefficient. 
However, the overall Nusselt number does not change significantly with η for dif-
ferent Rayleigh numbers.

Hirata and co-workers (2006, 2007a, b, 2009) reexamine the problem of con-
vective stability in superposed fluid and porous layers. Their aim is to investigate 
how the modeling of fluid flow in the porous region and the boundary conditions 
at the fluid-porous layer interface affect the prediction of the onset of convection. 
Hirata et al. (2006) explore the linear stability problem using a one-domain model 
using the approach of Zhao and Chen (2001). They find that the marginal stabil-
ity curves exhibit the same bimodal character as that predicted by the two-domain 
model. They also obtain excellent agreement with the results of Zhao and Chen 
(2001) thus confirming the validity of the one-domain model.

In a subsequent study, Hirata et al. (2007a) examine the onset of convec-
tive instability via three different modeling approaches: a one-domain approach 
wherein the porous sub-layer is treated as a pseudo fluid and the entire com-
posite system is modeled with a single set of conservation equations, a two-
domain approach wherein flow in the porous layer is modeled by Darcy’s law 
with the Beavers-Joseph condition at the interface, and a modified two-domain 
approach wherein flow in the porous sub-layer is modeled with the Brinkman 
extension to Darcy’s law and continuity of velocity, temperature, heat flux, nor-
mal stress, and shear stress at the interface. The resulting eigenvalue problem in 
each case is solved with a generalized integral transform technique. They find 
that marginal stability curves obtained with the two-domain and modified two-
domain approaches are in close agreement but differ significantly from the curves 
obtained with the one-domain approach, indicating that the mathematical formu-
lation of the problem has great influence on the stability results. Their results also 
show that the effect of the including the Brinkman term in the momentum equa-
tion is minimal.
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In an extension of this study Hirata et al. (2007b) use a two-domain approach 
with a different set of interface conditions. Instead of considering the continuity 
of shear stress at the interface, a stress-jump boundary condition (Ochoa-Tapia 
and Whitaker 1995a, b) is used with continuity of velocity, temperature, heat flux, 
and normal stress. They find that the stress-jump coefficient strongly influences 
the bimodal marginal stability curves. For small fluid-to-porous layer height ratios, 
increasing the stress-jump coefficient causes the convection in the fluid layer to 
become unstable. Convection in the porous sub-layer, however, remains unaffected 
by the magnitude of the stress-jump coefficient, and because convection in the 
fluid layer occurs due to perturbation of large wave numbers, the stress-jump con-
dition induces a more unstable situation at large wave numbers.

Hirata et al. (2009) repeat their earlier study on stability analysis with the one-
domain, two-domain, and modified two-domain approaches to examine the cause 
for the differences in the marginal stability curves obtained with the one-domain 
and the two-domain approaches. The conservation equations and the boundary 
conditions for the three approaches are the same as that used in their earlier stud-
ies. However, in their problem formulation for the one-domain approach, they 
incorporate the hypothesis of Kataoka (1986) that the average properties of the 
porous medium (porosity, permeability, and effective diffusivity) are Heaviside 
step functions, and hence their differentiation must be considered in the mean-
ing of distributions. Using this approach they find that marginal stability curves 
for the one-domain and two-domain models are almost identical and show 
almost the same bimodal behavior irrespective of the depth ratio. Based on their 
results, the one-and two-domain approaches are identical provided that the one-
domain approach is properly interpreted mathematically, i.e., in the meaning of 
distributions.

2.2  Conclusion

From the foregoing, it is evident that the ratio of the fluid layer height to the 
porous layer height exerts a significant influence on the flow and temperature pro-
files in both the fluid and the porous layer. It also has a significant influence on 
overall heat transfer rate through the composite system. Numerical studies have 
shown that the boundary conditions at the fluid-porous layer interface have a great 
effect on the prediction of convective stability in such a system. Visualization 
studies of the flow patterns have also shown that there is significant interaction 
between the overlying fluid and the porous sub-layer. Interface effects are also 
likely to play a significant role in determining flow patterns, temperature distribu-
tions and heat transfer rates when only a fraction of the base of such a composite 
system is heated. Hence, careful attention must be paid in choosing the governing 
equations and boundary conditions during problem formulation.

It is clear that there now exists a significant body of literature pertaining to 
the problem of natural convection in fluid-superposed porous layers heated from 

2.1 Current Status of Research



14 2 Literature Review

below. These studies examine various fundamental aspects of the problem and 
have enabled a thorough understanding of the principal governing criteria. In par-
ticular they have identified how parameters, such as the solid-to-fluid conductivity 
ratio, fluid Prandtl number, and fluid-to-porous layer height ratio affect convective 
heat transfer. The majority of them consider the case where the heat source is uni-
formly distributed along the bottom of the system, i.e., a fully heated bottom. The 
few studies that consider a localized bottom heat source deal almost exclusively 
with saturated porous layers (η = 1). A localized bottom heat source is often a 
more realistic thermal boundary condition, and there are apparently no published 
studies of this class of problems.
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In this chapter, the mathematical formulation of the convective heat transfer prob-
lem is presented. The governing equations for natural convection in two-dimensional 
fluid and saturated porous layers are described first. Thereafter the boundary con-
ditions for the problem are elucidated. In particular, boundary conditions at the 
interface of the fluid and porous layers are discussed in detail. The one-domain  
formulation is then derived, and the governing equations are presented in dimension-
less form using the vorticity-stream function formulation.

3.1  Governing Equations

The fluid-porous layer system is shown schematically in Fig. 3.1. A horizontal 
fluid layer of thickness Hf extends over a saturated porous layer of thickness Hm. 
The two-layer system is confined to a two-dimensional enclosure of overall height 
H and length L, and is bounded on all four sides by impermeable boundaries. The 
two vertical walls are adiabatic, the upper horizontal wall is held at a constant 
temperature, TC, and the lower boundary has a centrally heated portion of length 
LH that is held a constant temperature, TH, while the remaining portion is kept  
adiabatic. The system is potentially unstable, i.e. TH > TC, causing a buoyancy 
driven flow instability.

Two sets of continuity, momentum and energy equations describe natural con-
vection in the system. For the fluid layer,

(3.1)∇ × uf = 0,

Chapter 3
Mathematical Formulation and Numerical 
Solution

A. Bagchi and F. A. Kulacki, Natural Convection in Superposed Fluid-Porous Layers, 
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DOI: 10.1007/978-1-4614-6576-8_3, © The Author(s) 2014
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where uf  is the fluid velocity vector (uf = uf i + vf j), ρ denotes the fluid density, t 
is time, Pf is fluid pressure, μf is the fluid dynamic viscosity, β is the coefficient of 
thermal expansion of the fluid, Tf is the fluid temperature, T0 is a reference temper-
ature, and αf is the fluid thermal diffusivity. The gravitational acceleration vector g 
points in the negative y-direction. In accordance with the Boussinesq approxima-
tion, the fluid density is assumed to be constant everywhere except in the buoy-
ancy term of the momentum equation where its dependence on temperature is 
assumed to be linear and is,

where ρ0 denotes the fluid density at T0. This linear assumption is valid when 
the temperature difference across the domain is not very large, as in the present 
problem. Hoewever, in many cases a non-linear relation between the density and 
temperature may be more appropriate. For example, in problems where water is 
the saturating fluid and the problem formulation involves the density maximum of 
water at T0 = 4 °C, a quadratic relation such as ρ = ρ0[1 − (β/2)

(

Tf − T0

)2
] may 

be more appropriate (Eklund 1963).
The corresponding continuity, momentum and energy equations for the porous 

sub-layer are,

(3.2)ρ

[

∂uf

∂t
+ (uf × ∇)uf

]

= −∇Pf + µf ∇
2uf + βρ

(

Tf − T0

)

g,

(3.3)
∂Tf

∂t
+

(

uf × ∇
)

Tf = αf ∇
2Tf ,

(3.4)ρ = ρ0

[

1 − β
(

Tf − T0

)]

,

Porous Layer 

Fluid Layer 

TC

TH

y = H

y = 0

y = Hm

x = 0 x = L

LH

g 

Fig. 3.1  Solution domain of superposed system. TH > TC. δ < 1
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where, um, Tm and Pm represent the volume averaged velocity, temperature, and 
pressure respectively, φ is the bulk porosity, K is the bulk permeability, μeff is the 
effective viscosity, and F is the Forchheimer coefficient. The heat capacity ratio is,

The effective thermal diffusivity is defined αm = km/(ρcp)f , and the effective con-
ductivity km is,

The values of K and F depend on the structure of the porous medium. For  
a porous medium comprising randomly packed spheres, for example, the perme-
ability and Forchheimer coefficient are,

It is instructive at this point to consider in some detail the form of the governing 
equations for transport through a porous medium as given above. The continuity, 
momentum and energy equations for the porous sub-layer are valid at the mac-
roscopic scale and represent the volume averaged forms of these equations over 
a representative elementary volume (REV). The REV includes both the solid and 
the fluid components of the porous medium and is chosen in a manner such that 
it is much larger than the pore volume but much smaller than the volume of the 
entire porous medium (Fig. 3.2). The volume-averaged equations are useful from 
an engineering standpoint but at the expense of detailed information concerning 
the microscopic structure of the porous medium. In particular, they do not account 
for tortuosity, the nature of the boundaries between the solid and fluid phases, and 
the actual variation of quantities, such as the pressure, within the pores. The gross 

(3.5)∇ × um = 0,

(3.6)

ρ

[

∂um

∂t

+ (um × ∇)
um

φ

]

= −∇Pm + µeff∇
2um −

(

µφ

K

)

um

−

(

ρφF

√
K

)

|um| um + βρ (Tm − T0) g,

(3.7)σ
∂Tm

∂t
+ (um × ∇) Tm = αm∇2Tm,

(3.8)σ =
φ(ρcp)f + (1 − φ)(ρcp)so

(ρcp)f

.

(3.9)km = φkf + (1 − φ) kso.

(3.10)K =
d2φ3

175(1 − φ)2
,

(3.11)F =
1.75φ− 3

2

√
175

.

3.1 Governing Equations
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macroscopic effects of these factors are retained in the form of parameters, such 
as the porosity, permeability and effective viscosity, and they can be related to the 
statistical properties of the porous medium. Thus the volume averaged equations 
can adequately capture the effects of the microstructure at a macroscopic level 
without making the problem mathematically intractable. For this reason, the vol-
ume averaged governing equations are generally of immense importance in engi-
neering analysis of transport in porous media.

Another important aspect that needs to be discussed is the form of the energy 
equation. By writing a single energy equation for both the fluid and the solid 
phases, it is implicit that a condition of local thermal equilibrium exists between 
the two phases. This is a reasonable assumption when the solid-to-fluid conductiv-
ity ratio, λ, is close to unity. For larger conductivity ratios, especially λ ≫ 1, this 
condition is not strictly true. In that case, separate energy equations are needed for 
the solid and the fluid phases, and the thermal resistance between the phases needs 
to be taken into account. This two-equation model however makes the numeri-
cal solution much more involved and for this reason, will not be considered here. 
An equilibrium model such as the present one can nevertheless highlight several 
important aspects of the problem for large conductivity ratios. As a result, this 
model will be used to study problems with conductivity ratios as high as λ = 100, 
though it must be borne in mind that the results are only for qualitative under-
standing and may not yield correct quantitative predictions.

3.2  Boundary and Initial Conditions

At the system boundaries,

(3.12)uf = 0, vf = 0, Tf = Tc, at y = H

Porous Medium 
(Macroscopic Scale) 

Pore Scale 

REV 
(Intermediate Scale) 

Fig. 3.2  A representative elementary volume (REV)
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The initial conditions for the problem can be written,

At the fluid-porous medium interface,

Unlike the thermal boundary conditions, however, the momentum boundary 
conditions at the interface do not have a unique formulation. Three different sets 
of boundary conditions are commonly used and there is as yet no consensus on 
which formulation accurately captures the fluid dynamics at the interface. The 
first, proposed by Beavers and Joseph (1967), postulates a discontinuity in the 
interfacial tangential velocity and shear stress but assumes the normal velocity and 
stress to be continuous. This is expressed as,

where α̂ is the Beavers-Joseph constant. It must be noted that the Beavers-Joseph 
boundary condition cannot be used with the full Darcy-Brinkman-Forchheimer 
formulation of the momentum equation in the porous layer (Eq. 3.6) but only in 
conjunction with the Darcy formulation which is,

A second formulation proposed by Neale and Nader (1974) assumes the conti-
nuity of velocity, normal stress and tangential shear stress at the interface given as,

(3.13)um = 0, vm = 0,

{

Tm = TH , |y = 0,
L−LH

2
≤ x ≤ L+LH

2
∂Tm

∂y
= 0, |y = 0, elsewhere

(3.14)u = 0, v = 0,
∂T

∂x

= 0, at x = 0, L.

(3.15)u = 0, v = 0, T = 0 at t ≤ 0.

(3.16)Tf = Tm,

(3.17)kf

∂Tf

∂y
= km

∂Tm

∂y
.

(3.18)vf = vm,

(3.19)−Pf + 2
∂vf

∂y
= −Pm,

(3.20)
∂uf

∂y
=

α̂
√

K

(

uf − um

)

,

(3.21)ρ
∂um

∂t

= −∇Pm −

(

µφ

K

)

um + βρ (Tm − T0) g.

(3.22)uf = um,

3.2 Boundary and Initial Conditions
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In addition to the above approaches, a third set of momentum boundary condi-
tions proposed by Ochoa-Tapia and Whitaker (1995a, b) replaces the continuity of 
shear stress in the Neale-Nader formulation by the stress-jump boundary condition,

where β̂ is the stress-jump coefficient and uint is the tangential velocity at the 
interface.

In spite of these different formulations, several studies have shown that all three sets 
of boundary conditions lead to near-identical solutions. Singh and Thorpe (1995) find 
that for buoyancy driven flow in fluid-superposed porous layers heated from the sides, 
both the Beavers-Joseph and Neale-Nader boundary conditions predict similar flow 
structures and overall heat transfer rates for Darcy numbers up to 10−3. Similar agree-
ment between the three different formulations was recently demonstrated by Hirata 
and co-workers (Hirata et al. 2007a, b, 2009). These results suggest that either of these 
approaches is adequate for the present problem. However the continuity conditions 
of Neale and Nader have some inherent advantages over the other two formulations. 
First, the continuity conditions do include an arbitrary empirical parameter like the 
Beavers-Joseph constant or the stress-jump coefficient. Secondly, unlike the Beavers-
Joseph formulation, the continuity conditions can be used in conjunction with the full 
Darcy-Brinkman-Forchheimer formulation of the momentum equation, thus allowing 
its application to porous media with a wide range of Darcy numbers. Finally, the con-
tinuity conditions have a key advantage in that they allow use of the one-domain for-
mulation in which the two sets of governing equations for the fluid and porous layers 
can be combined into a single set of equations. In other words, both the porous and the 
fluid layers can be modeled as a single domain by one set of equations, the solution of 
which satisfies the continuity of velocity, stress, temperature, and heat flux at the inter-
face. This greatly simplifies the numerical solution procedure especially during writ-
ing, debugging and compiling the computer code. Because of these advantages, the 
continuity boundary conditions of Neale and Nader have been adopted in this study.

3.3  One-Domain Formulation

The one-domain formulation requires a single set of governing equations for 
the entire composite domain. These equations are presented here using the 
stream function-vorticity representation for the momentum equation. With this 
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formulation, the pressure term in the momentum equation can be eliminated, which 
simplifies the numerical solution. To derive the one-domain formulation, we define,

where the superscript, ( )*, denotes a dimensionless quantity. The dimensionless 
stream function and vorticity are thus,

and the dimensionless stream function-vorticity equation is,

Note that Eq. (3.29) satisfies the continuity equation identically.
Using the above definitions, the non-dimensional governing equations for the 

fluid sub-layer are,

Similarly, the governing equations for the porous sub-layer are,

To derive the one-domain formulation for the vorticity transport equation, con-
sider the definitions of the permeability and Darcy number. In the fluid sub-layer, 
porosity has no meaning, i.e. φ ≡ 1, and the permeability and Darcy number are,
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3.3 One-Domain Formulation
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Substituting Eq. (3.34) into Eq. (3.32), the vorticity transport equation for 
the porous sub-layer reduces to that for the fluid layer in the limit φ → 1. Thus  
Eq. (3.32) alone is sufficient to represent vorticity transport in the composite fluid-
porous layer system. The porosity acts as a switching parameter that allows the 
vorticity transport equation to take on the appropriate form depending on the solu-
tion domain. This conditionality can be expressed,

The one-domain formulation for the energy equation can be derived in a similar 
manner. For the fluid sub-layer, the thermal conductivity ratio, stagnant conductiv-
ity, and the conductivity ratio can be written,

Thus when φ → 1, the energy equation for the porous sub-layer reduces to the 
energy equation for the fluid sub-layer. This equation is therefore the one-domain 
representation of the energy equation.

In summary, the dimensionless governing equations are,

where the superscript, ( )*, has been dropped for convenience. Dimensionless 
quantities will henceforth be written without any superscripts.

The corresponding dimensionless boundary conditions are,
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The initial conditions are,

The mathematical model contained in Eqs. (3.26)–(3.43) comprises a set of 
coupled partial differential equations which in general cannot be solved analyti-
cally. Therefore the governing equations are discretized and solved numerically 
using a control-volume formulation (Spalding 1972), which ensures that the con-
servation laws for mass, momentum and energy are satisfied for any group of 
control volumes, as well as over the entire solution domain. A uniform grid is 
used, with each control volume containing a grid point at its geometric center, 
and the grid is constructed in a manner such that no grid point is located along 
the porous-fluid layer interface. A central differencing scheme is used for all 
second-order derivatives. Advective terms in the vorticity transport and energy 
equations are discretized using the QUICK scheme (Leonard 1979, Hayase  
et al. 1992), and the Darcy, Forchheimer and buoyancy terms are treated as 
source terms. Linearization of the source terms is performed according to the 
general recommendations of Patankar (1980), and diffusion coefficients for the 
control volume faces located along the fluid-porous layer interface are obtained 
using the harmonic mean formulation. This formulation can handle abrupt 
changes in diffusion coefficients across control volumes without requiring an 
excessively fine grid.

The linear discretized equations are solved using a direct method based on 
the up-looking Cholesky factorization technique. Solution of the coupled set of 
discretized equations is started by first solving the vorticity transport equation. 
Thereafter the Poisson equation for the stream function and the energy equation 
are solved. This procedure is repeated iteratively until steady-state is attained 
under the convergence criterion,

where Θ denotes ω, ψ, or T, and r denotes the iteration number. Under relaxation 
of the stream function equation assures convergence of the iterative solution, and 
the value of the under relaxation parameter is 0.8. Grid fineness required to obtain 
a convergent solution depends strongly on Ra, η, and A. In general, a finer grid 
is required at high Rayleigh number and near the critical Rayleigh number. Finer 
grids are also needed to obtain convergent solutions at large values of η and A.  
The dimensionless time step is Δt = 0.1, and the solution is somewhat insensitive 
to the value of the time step because of the fully implicit time integration scheme. 
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Table 3.1 summarizes grid convergence behavior. Further details are given by 
Bagchi (2010).

Heat transfer results are expressed in dimensionless form using the average 
conduction-referenced Nusselt number over the heated surface,

where keff is the effective conductivity of the composite domain defined as,

A convergence test of the numerical scheme is carried out by evaluating the 
average Nusselt number for successively finer grids and calculating the percent-
age change with grid refinement. The solution is considered to be grid independent 
when any further change in grid size produces less than a one percent change in 
the Nusselt number. As an additional test on the accuracy of the numerical solu-
tion, an energy balance is computed,

where the Nusselt number along the top surface, NuT, is

Because of the integral energy conservation of the finite volume method, an 
exact solution would yield a zero value for the energy balance. However, due to 
the accumulation of numerical and round-off errors during the solution, the value 
of the energy balance is not zero but a very small number. For all simulations dis-
cussed below, the energy balance is satisfied to <2.5 percent.
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Table 3.1  Grid convergence of the numerical solution. Ra = 105, η = 0.5, δ = 0.5

Grid Nu % change Energy balance (%)

20 × 40 4.5064 – 0.82
40 × 80 4.3765 2.8813 2.63
52 × 104 4.3302 1.0583 2.44
64 × 128 4.2950 0.8135 2.32
80 × 160 4.2579 0.8635 2.17
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3.4  Verification of the Numerical Scheme

To verify the accuracy of the numerical solution technique, simulations are per-
formed with φ = 0.39, F = 0.5, η = 0.5 and λ = 1. These parameter values are 
suitable for a randomly packed layer of glass beads saturated with water and have 
been selected to facilitate the comparison of the numerical results with experi-
ments. The overall heat transfer coefficient is the quantity of engineering signifi-
cance, and verification of the solution method is obtained by comparing overall 
Nusselt numbers to accepted values for four classical porous media heat transfer 
problems. First, results are obtained for the Rayleigh-Bénard problem, which is a 
special case of superposed layer system with η = 0 and δ = 1. For this simulation, 
A = 4 and Pr = 0.71 (air). The critical Rayleigh number is found to be ~1920, six 
percent higher than the critical value of 1,810 obtained with linear stability theory 
for a domain with A = 4 (Platten and Legros 1984). Beyond the critical Rayleigh 
number, excellent agreement is obtained with the results of Soong et al. (1996, 
Fig. 3.3a) whose problem parameters are identical to ours. Our results also agree 
with the numerical results of Clever and Busse (1974) for an infinitely wide fluid 

Fig. 3.3  Comparison of numerical results to literature data for a the Rayleigh-Bénard problem, 
b the Horton-Rogers-Lapwood problem, c the Elder problem, and d the uniformly heated fluid-
superposed porous layer problem

3.4 Verification of the Numerical Scheme
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layer, as well as with the experimental results of various investigators compiled by 
Hollands et al. (1975).

The second test problem is the Horton-Rogers-Lapwood problem which is 
a special case of the present problem for η = 1 and δ = 1. Figure 3.3b shows a 
comparison of the present results with numerical results of Caltagirone (1975) 
and Combarnous and Bories (1975). Excellent agreement is seen, and the critical 
Rayleigh number for the onset of convection predicted via the numerical scheme is 
40, very close to the theoretical value of 39.48. It is well known that for convection 
in saturated porous layers, there exists a second critical point (Ram ~ 380) beyond 
which oscillatory convection prevails, and no steady-state is attained. Here no 
attempt is made to evaluate this second critical Rayleigh number, although it must 
be noted that no unique steady solution is obtained for Ram > 400. Figure 3.3b also 
shows excellent agreement of the present results with the experiments of Elder 
(1967) and Buretta and Berman (1976) except at very high Ram. This trend has 
been reported in earlier numerical studies (Combarnous and Bories 1975).

Comparison of the present results to those of Prasad and Kulacki (1987) for the 
Elder problem is shown in Fig. 3.3c. Again, excellent agreement is obtained and 
the maximum difference between the two data sets is ~7 % except at Ram = 500 
where the Nusselt number predicted by the present calculations is about 15 % 
higher. The disagreement is most likely due to inertial effects which become sig-
nificant at high Rayleigh number. Because Prasad and Kulacki use Darcy’s law 
to model fluid motion in the porous layer, effects of fluid inertia which are now 
accounted for are not captured.

Comparison of results for the uniformly heated fluid-superposed porous layer 
problem with literature data is shown in Fig. 3.3d. Results for Da = 10−4 and 
10−6 are compared to those of Poulikakos (1986) and Poulikakos et al. (1986). 
Excellent agreement is obtained with the results of Poulikakos but differ sig-
nificantly from those of Poulikakos et al. This disagreement arises most likely 
because while Poulikakos uses a one-domain model, Poulikakos et al. use a two-
domain model with the Beavers-Joseph condition at the interface. The disagree-
ment between the different numerical results is an important issue to be discussed 
in Chap. 6.

http://dx.doi.org/10.1007/978-1-4614-6576-8_6


27

Keywords  Local  heating  natural  convection  •  Heater  length  ratio  •  Fluid-porous 
height ratio  •  Darcy number  •  Prandtl number  •  Aspect ratio  •  Conductivity ratio

The governing conservation equations contain seven dimensionless parameters 
that determine the heat transfer characteristics of the superposed fluid-porous layer 
system. They are the heater-to-base length ratio, δ, the porous layer-to-total height 
ratio, η, the overall aspect ratio, A, the Darcy number, Da, the fluid Prandtl num-
ber, Pr, the solid-to-fluid conductivity ratio, λ, and the overall Rayleigh number, 
Ra. To present a thorough parametric analysis of the problem, the effect of each 
parameter on the flow and temperature fields and on overall heat transfer coeffi-
cients is discussed in this chapter. This exposition of results will aid in identifying 
the most important parameters and developing a general heat transfer correlation 
that is applicable to a wide range of problems where this system is encountered. 
The values of the parameters used in the calculations are given in Table 4.1.

4.1  Effect of Heater Size

To clearly understand the effects of having a localized heat source at the base, 
it is important first to examine the flow and temperature fields. Figures 4.1, 4.2, 
and 4.3 show steady streamlines and isotherms for η = 0.5 and δ = 1, 0.5 and 
0.25, respectively at four Rayleigh numbers. For δ = 1 (a uniformly heated base), 
there is no convective motion at Ra = 103, and the system is in the conduction 
mode. Although streamlines show a cellular convective motion, these are meaning-
less as the gradient of the stream function is extremely low. When the Rayleigh 
number increases to 104, convective motion commences and two pairs of counter 
rotating cells are seen. The corresponding isotherms show a rising thermal plume. 
Convective motion is confined to the overlying fluid layer with some penetrative 
convection into the underlying porous layer. Penetrative convection in composite 

Chapter 4
Numerical Prediction of Convection

A. Bagchi and F. A. Kulacki, Natural Convection in Superposed Fluid-Porous Layers, 
SpringerBriefs in Thermal Engineering and Applied Sciences,  
DOI: 10.1007/978-1-4614-6576-8_4, © The Author(s) 2014
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systems has been the subject of a large number of numerical studies in the lit-
erature but no definitive conclusion can be drawn from the evidence available. 
Some studies report the occurrence of penetrative convection (Poulikakos 1986; 
Poulikakos et al. 1986) while others (Chen and Chen 1992; Kim and Choi 1996) 
report that convection is limited to only the upper fluid sub-layer with minimal or 
no penetration into the porous sub-layer. This lack of agreement cannot be simply 
attributed to the modeling of the interfacial boundary conditions given that studies 
using a particular boundary condition have reported different results.

Visualization studies by Prasad and co-workers show that penetrative convec-
tion does indeed occur (Prasad and Tian 1990; Prasad et al. 1991; Prasad 1993). 
However, due to the large pore diameters of the medium used in their studies, gen-
erality cannot be ascribed to this conclusion. It is sufficient to say that the present 
results are in accordance with the mathematical formulation of the problem which 
assumes the continuity of velocity components across the interface, and hence 
implicitly allows for penetrative convection. Thus, the present results indicate that 
beyond the critical Rayleigh number, a state of conduction with no fluid motion in 

Table 4.1  Parameters used for the numerical solution

Parameter Range Fixed parameters Grid size

Ra Ra = 103–106 δ = 0.5 40 × 80 (Ra < 104)
η = 0.5 52 × 104 (104 < Ra < 106)
A = 2 64 × 128 (Ra = 106)
Da = 10−6

η η = 0.25, 0.5, 0.75 Ra = 105 η = 0.25, 0.5:
δ = 0.5 40 × 80 (Ra < 104)
A = 2 52 × 104 (104 < Ra < 106)
Da = 10−6 64 × 128 (Ra = 106)

η = 0.75:
40 × 80 (Ra < 104)
80 × 160 (104 < Ra ≤ 106)

δ δ = 0.25, 0.5, 0.75 Ra = 105 40 × 80 (Ra < 104)
η = 0.5 52 × 104 (104 < Ra < 104)
A = 2 64 × 128 (Ra = 106)
Da = 10−6

A A = 2, 4, 6 Ra = 105 A = 2, 4:
η = 0.5 40 × 80 (Ra < 104)
δ = 0.5 52 × 104 (104 < Ra < 106)
Da = 10−6 64 × 128 (Ra = 106)

A = 6:
40 × 80 (Ra < 104)
64 × 128 (104 < Ra ≤ 106)

Da Da = 10−2, 10−4, 10−6 δ = 0.5 40 × 80 (Ra < 104)
η = 0.5 52 × 104 (104 < Ra < 106)
A = 2 64 × 128 (Ra = 106)
Ra = 105
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the underlying porous layer never exists. It must be noted that convective motion 
in the porous sub-layer occurs primarily in the vicinity of the interface. In the 
region away from the interface, there is little convective motion and heat transfer 
is mainly by conduction.

With an increase in the Rayleigh number to 105, the velocities of convective 
motion in the overlying fluid layer increase, though the extent of flow penetration 
into the porous sub-layer does not increase significantly. Individual cellular flows 
appear to be horizontally stretched, and isotherm patterns show a narrow plume ris-
ing along the centerline of the cavity. At a Ra = 106, the plume becomes narrower 
and two separate pockets of re-circulating flow can be seen within the same cell.

When the size of the heater covers only half of the base (δ = 0.5), isotherms 
change significantly (Fig. 4.2). However, streamlines show little noticeable change 

Fig. 4.1  Streamlines and isotherms. δ = l, and η = 0.5. a Ra = 103, b Ra = 104, c Ra = 105, 
and d Ra = 106. The dashed horizontal line indicates the location of the fluid-porous layer 
interface

4.1 Effect of Heater Size
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except that at Ra = 103, a cellular convective pattern is seen. Though the gradi-
ent of the stream function at this Rayleigh number is small, it is not negligible 
which indicates that a circulatory fluid motion with low velocity exists. Fluid 
motion does not, however, significantly enhance the overall heat transfer rate, and 
isotherms are essentially identical to those obtained for conduction. Thus, convec-
tion is not the dominant mode of heat transfer and cellular fluid motion cannot 
be attributed to the onset of flow. Circulatory fluid motion arises due to a hori-
zontal temperature gradient at the edges of the localized heat source which initi-
ates fluid motion. Such end cells have been observed in convection in porous and 
fluid layers with localized heat sources. It must be noted that the end cells are not 
located at the heater edges, but in the overlying fluid layer. This phenomenon can 
be explained by recalling that for convection in fluid-superposed porous layers, 
fluid motion is always confined to the overlying fluid layer except for large height 

Fig. 4.2  Streamlines and isotherms. δ = 0.5, and η = 0.5. a Ra = 103, b Ra = 104, c Ra = 105, 
and d Ra = 106
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ratio (η > 0.91). Thus, whether the source of instability is either latent in the sys-
tem or imposed by a local heat source, the mode of convection is essentially the 
same. The heat source, therefore, acts as a trigger for the onset of motion and the 
ensuing flow patterns remain unaffected by whether heating at the base is uniform 
or localized.

With increasing Rayleigh number, the overall flow structure remains essentially 
the same as that for a uniform heat source. Flow remains confined to the fluid 
layer, and the extent of penetration into the porous sub-layer does not increase. 
The isotherms, however, differ significantly from those for a fully heated bottom. 
With increasing Ra, the plume rising above the heat source is seen to become 
narrower. However, the porous sub-layer outside the plume and away from the 
interface remains essentially isothermal and does not participate significantly in 
energy transport. The temperature in this region is very close to the upper surface 

Fig. 4.3  Streamlines and isotherms. δ = 0.25, and η = 0.5. a Ra = 103, b Ra = 104, c Ra = 105, 
and d Ra = 106

4.1 Effect of Heater Size



32 4 Numerical Prediction of Convection

temperature, indicating that it essentially contains a pool of cold stagnant fluid. 
This situation is in contrast to the case of a uniformly heated base where the 
porous region away from the plume has heat transfer by conduction.

A further decrease in the heater length ratio to δ = 0.25 reveals much of the 
same characteristics as described above (Fig. 4.3). A circulatory pattern is seen to 
exist at Ra = 103, and its form is almost the same as that seen for δ = 0.5, further 
confirming that it is due to the instability created by a horizontal temperature gra-
dient at the heater edge. At higher Rayleigh numbers, streamline patterns are simi-
lar to those for δ = 0.5, which show that the flow patterns are unaffected by the 
heater size. Isotherms show a narrow plume rising from the center of the heater, 
and again the porous region outside the pluming zone remains relatively unaf-
fected and is essentially isothermal. Much of the fluid region, and therefore much 
of the composite domain, is essentially isothermal at Ra = 106. This is likely to 
become more pronounced as the heater size shrinks further until, in the limiting 
case of a point heat source, the region outside the rising plume is likely to be com-
pletely quiescent.

The effect of the localized heat source on the overall heat transfer coefficient 
is shown in Fig. 4.4. For a uniformly heated base, the critical Rayleigh number 
for the onset of convection is ~7.5 × 103, below which the average Nusselt num-
ber is unity indicating that heat transfer occurs solely by conduction. When the 
heater size is finite, the Nusselt number is no longer unity even at low values of 
Ra, a consequence of the fact that the presence of a localized heat source initi-
ates a circulatory motion due to the temperature gradient at the heater edge, as 
mentioned above. Hence, a pure conduction state never exists for a localized heat 
source. This, however, does not imply the dominant mode of heat transfer is con-
vection. Even for discrete heat sources, the Nusselt number remains approximately 
constant until the critical point is reached. While the pre-critical point heat transfer 
regime is not purely a conduction regime, it is conduction dominated. Also note-
worthy is that while the transition to the convective regime is discrete for δ = 1, 

Fig. 4.4  Nusselt-versus-
Rayleigh number. η = 0.5
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the transition to the convective regime is now a smooth one. This aspect has been 
previously observed for convection in fully porous and fluid layers with discrete 
heat sources and is a consequence of the existence of a base flow before convec-
tion becomes the dominant energy transport mechanism. As such, there is no sud-
den initiation of convective motion but a gradual strengthening of the existing base 
flow pattern.

Over the entire range of Rayleigh number, the average Nusselt number 
increases with a decrease in the size of the heat source. This has been previously 
observed with respect to convection in porous and fluid layers and can be under-
stood by recalling back the discussion on the flow and isotherm patterns. As men-
tioned earlier, for a uniformly heated base, heat transfer away from the pluming 
region is primarily by conduction, which for a low solid-to-fluid conductivity ratio 
(λ = 1 here) is fairly small. On the other hand, for δ < 1, most of the heater area 
falls within the pluming region, and almost all the energy input is carried away 
by convection. In this case, conduction occurs only near the edges of the heated 
section. Therefore with a decrease of heater size, more of the energy input is trans-
ferred to the top via the rising thermal plume and leads to higher Nusselt numbers 
for smaller heater lengths.

To conclude the discussion on the effects of a localized heat source, the temper-
ature profiles along the centerline of the cavity at Ra = 105 are shown in Fig. 4.5. 
It can be seen that with decrease in the size of the heated fraction of the base, 
the temperature profiles along the centerline of the plume change significantly. For 
example, the temperature at the interface (y/H = 0.5) decreases with a decrease 
in the heater length, which holds for temperatures throughout the entire cavity 
height. With decreasing heater size, much of the temperature drop along the plume 
occurs very close to the heater while in the rest of the plume, the temperature 
changes gradually. With decreasing heater size, the plume draws away more and 
more of the heat that is supplied to the system.

Fig. 4.5  Dimensionless 
temperature on the vertical 
centerline. η = 0.5, and 
Ra = 5 × 105

4.1 Effect of Heater Size
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4.2  Effect of Porous Sub-Layer Height

Similar to the approach adopted earlier, the description of the effect of the porous-
to-total height ratio begins with a discussion of the flow and temperature fields at 
different height ratios. In these simulations, all parameters are kept fixed except 
for the height ratio. Figures 4.2, 4.6, and 4.7 show streamlines and isotherms for 
η = 0.5, 0.25 and 0.75, respectively, and δ = 0.5, A = 2, Da = 10−6, Pr = 7, and 
λ = 1.

First, the case of η = 0.5 will be discussed as this case (Fig. 4.1) has already 
been encountered in the previous section. To briefly summarize the previous dis-
cussion, the salient feature is that the convective motion is restricted to the fluid 
sub-layer with some penetration into the porous sub-layer. A circulatory motion 
triggered by the presence of a localized heat source is seen at Ra ≤ 103, although 

Fig. 4.6  Streamlines and isotherms. δ = 0.5 and η = 0.25. a Ra = 103, b Ra = 104, c Ra = 105, 
and d Ra = 106
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convection is yet not the dominant mode of energy transport. These two observa-
tions point to the fact that conduction heat transfer never exists in the porous sub-
layer when a localized heat source is present. Thus, a sharp critical point for the 
onset of convection cannot be defined for a localized heat source; a critical point 
in this case merely indicates that convection becomes the dominant mode of heat 
transfer. The isotherms for η = 0.5 indicate that with increasing Ra, the plume ris-
ing from the central portion of the heater becomes narrower and the region outside 
the plume in the porous layer is essentially isothermal.

When the height ratio drops to η = 0.25 (Fig. 4.6), streamlines and isotherms 
are very much similar to those obtained for fluid convection with a localized heat 
source. With three-quarters of the entire domain occupied by the fluid layer, con-
vection exists in almost the entire cavity. At Ra = 103, circulatory motion driven 
by the localized heat source can be seen. A reduction in volume of porous matrix 

Fig. 4.7  Streamlines and isotherms. δ = 0.5 and η = 0.75. a Ra = 103, b Ra = 104, c Ra = 105, 
and d Ra = 106

4.2 Effect of Porous Sub-Layer Height
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in the domain reduces overall resistance to fluid motion and leads to higher fluid 
velocities. This trend is seen for all values of Ra. Based on this observation, it can 
be deduced that the overall heat transfer coefficient increases with a decrease in 
the height ratio due to a reduction in the resistance to fluid motion by the porous 
layer and an associated increase in convection. With an increase in the Rayleigh 
number, the velocity of fluid motion increases. The shape of the cellular motion, 
however, is different from that for η = 0.5. The cellular shape is almost square 
and noticeably larger as a direct consequence of the convection being domi-
nated by the overlying fluid layer. As fluid motion is restricted primarily to the 
fluid layer, the size, and shape of the circulating cells adjust to fit the fluid space. 
With the aspect ratio fixed, the width of the cells is thus constrained. At Ra = 106, 
there is an indication that the flow may switch from bicellular to quadricellular. 
Unfortunately, the limits of computation do not permit a verification of this trend 
at larger Rayleigh numbers. Isotherms are similar to those observed for η = 0.5. 
The central feature is a plume-like flow along the mid-section of the cavity, which 
becomes narrower as the Rayleigh number increases. With convective motion 
being prevalent almost throughout the entire cavity, no noticeable quiescent iso-
thermal region exists, even in the porous layer. The plume itself becomes wider 
at it approaches the upper surface, and has an umbrella like shape near the upper 
surface.

When the porous layer occupies three-quarters of the cavity, streamlines and 
isotherms change significantly (Fig. 4.7). At Ra = 103, instability causes a pair 
of cells to form. However, the maximum absolute value of the stream function is 
extremely low, making velocities almost negligible. Hence, it can be concluded 
that there is little or no fluid motion in the system at this Rayleigh number. When 
the Rayleigh number increases to 104, fluid velocity remains very low. The iso-
therms show practically no change indicating that heat transfer is primarily by 
conduction. With further increase in Ra to 105, isotherms change slightly indicat-
ing that convection begins to take over as the dominant heat transfer mechanism. 
As mentioned earlier, the transition to convection dominated heat transfer takes 
place gradually for discrete heat sources, and gradual transition can be seen here. 
Finally, when the Rayleigh number increases to 106, a convection dominated flow 
can be seen with the accompanying plume-like flow. It must be noted that the 
plume-like flow has not fully developed even at Ra = 106. It can be anticipated 
that with further increase in the Rayleigh number, a narrow plume-like flow will 
eventually develop.

For large values of height ratio, several important aspects can be seen. The first 
is that at Ra = 106, convective flow occurs with fairly low velocities over most 
of the domain. Another important aspect of the flow is that with an increase in 
the Rayleigh number, flow penetration into the underlying porous layer increases. 
In contrast, at lower values of η, the degree of flow penetration is independent of 
Rayleigh number. The reason for this is not entirely clear. It may be that penetra-
tion takes place simply to accommodate the flow pattern which does not have suf-
ficient space within the fluid layer to develop. An important aspect that must be 
noted is that because of the values of the height ratio chosen no bimodal behavior, 
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indicated by a sudden change in the value of the critical Rayleigh number, is 
observed. The value of the critical height ratio at which this sudden change occur 
is ≈0.89 (Chen and Chen 1988, 1989), which is well beyond the maximum height 
ratio examined here.

Further insight into the effects of the flow field can be gained from the overall 
heat transfer coefficient. Figure 4.8 shows Nusselt-versus-Rayleigh number with 
height ratio as a parameter. The results mirror the inferences that can be drawn 
from an analysis of the flow and temperature fields. The onset point for convec-
tion dominated heat transfer increases with the increase in the fraction of the 
cavity occupied by the porous layer given that Ram ~ Raη3κ. It has been shown 
using linear stability theory that with an increase in η, the critical value of Ram 
increases (Sun 1973; Chen and Chen 1988). This implies that with an increase in 
the height of the porous layer, much larger values of Ra are needed to induce con-
vective motion of higher intensities. However, the Nusselt number in the conduc-
tion regime remains the same at all height ratios and is expected as the heater size 
remains fixed.

At Rayleigh numbers larger than the critical value, overall heat transfer coef-
ficients are larger for lower height ratios. This is a direct consequence of the fact 
that convective motion for a given Rayleigh number is stronger when the value of 
η is lower, i.e., when the thickness of the overlying fluid layer is higher. This trend 
has also been noticed in numerical and experimental studies (Poulikakos 1986; 
Chen and Chen 1992; Prasad and Tian 1990; Prasad et al. 1991). Finally, it must 
be noted that the Nusselt number curves all have the same shape irrespective of 
the height ratio. A close look at the curves will show that they are almost parallel 
indicating a common mechanism of heat transfer with a different point of origin 
that is dictated by the height ratio. This can be further confirmed by looking at the 
dimensionless temperature profiles along the centerline of the cavity as shown in 
Fig. 4.9. It can be seen that the temperature profiles for all height ratios converge 

Fig. 4.8  Nusselt-versus-
Rayleigh number. δ = 0.5

4.2 Effect of Porous Sub-Layer Height
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to the same value within the porous layer and the difference among them is notice-
able only in the fluid layer. Within the fluid layer, centerline temperatures increase 
with the height ratio leading to higher heat flux at the upper boundary.

4.3  Porous Structure Effects

The Darcy number is a dimensionless measure of the permeability of the porous 
medium and it is of vital importance in understanding how heat transfer coefficients 
change with the permeability of the system. It must be noted that the Darcy number 
in the present study is defined as Da = K/H2, where H is the overall height of the 
composite system. This definition of the Darcy number thus depends on the system 
under consideration and does not express the intrinsic Darcy number of the porous 
sub-layer which would be based on a length scale suitable for it. However, a Darcy 
number based on a different length scale can be derived directly from the current 
definition of Da. For example, a Darcy number based on the pore diameter, d, can be 
written Dap = γ2Da. Conclusions based on the current definition of the Darcy num-
ber are therefore applicable to alternative definitions of the Darcy number.

Consider solutions for Da = 10−6, 10−4, and 10−2. Figures 4.2, 4.10, and 4.11 
show the streamline and isotherm patterns at four Rayleigh numbers. Comparing 
the flow patterns for Da = 10−4 and 10−6 it can be seen that there is not much dif-
ference between them. At Ra = 103, localized heater driven convection patterns 
can be seen. Fluid velocities for Da = 10−4 are slightly higher than those for 10−6 
as indicated by the slight difference in the value of the stream function. This trend 
is expected as a porous medium with a higher Darcy number offers lower resist-
ance to fluid motion, and hence allows for higher flow velocities. Isotherms, how-
ever, show that heat transfer is yet conduction dominated at this value of Ra.

Fig. 4.9  Dimensionless 
centerline temperature. 
δ = 0.5, Ra = 5 × 105. The 
three horizontal lines indicate 
the locations of the fluid–
porous interface for different 
height ratios
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With an increase in Rayleigh number to 104, convection dominated flow can be 
seen for both values of the Darcy number. Fluid velocities increase and a pluming 
pattern can be seen to start forming in both cases. The values of the stream func-
tion indicate that flow velocities are almost identical in both cases. This is also 
the case when the Rayleigh number is increased to 105. The flow and tempera-
ture fields are virtually identical indicating that an increase in the Darcy number 
from 10−6 to 10−4 has little effect on the overall flow field, and hence heat trans-
fer coefficients. When the Rayleigh number increases to 106, however, there is a 
noticeable difference between the two cases. The streamlines show that while flow 
velocities are comparable, there is increased penetration of flow into the under-
lying porous layer for Da = 10−4. Isotherms also show that temperatures in the 
fluid sub-layer increase with an increase in Darcy number. Significant differences 
in flow patterns, and as a consequence overall heat transfer coefficients, between 
these two cases can be seen only at very high Rayleigh numbers.

Fig. 4.10  Streamlines and isotherms. Da = 10−4, δ = 0.5 and η = 0.5. a Ra = 103, b Ra = 104, 
c Ra = 105, and d Ra = 106

4.3 Porous Structure Effects
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When the Da = 10−2, significant changes can be seen. Most importantly, the 
flow is now no longer confined to the upper fluid layer but is instead of spread 
out across the two layers, a direct consequence of the increased permeability of 
the porous layer which allows much higher levels of flow penetration. The higher 
value of the Darcy number also means that the porous sub-layer offers mini-
mal resistance to convective flow which leads to higher flow velocities. With an 
increase in Rayleigh number, the intensity of the convective motion increases, and 
the convective cells acquire an almost square shape, indicating that convective 
motion in the fluid and porous layers is comparable. Flow patterns at Ra = 106 
bear  a  great  resemblance  to  those  seen  in  Rayleigh-Bénard  convection.  Further 
insight can be gained by looking at the isotherms. At Ra = 103, isotherms show 
that the system is yet in the conduction mode. At Ra = 104, a plume-like flow is 

Fig. 4.11  Streamlines and isotherms. Da = 10−2, δ = 0.5 and η = 0.5. a Ra = 103, b Ra = 104, 
c Ra = 105, and d Ra = 106
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seen which is much more developed as compared to the isotherms for lower Darcy 
number. Interestingly, the thermal plume has an almost uniform character through-
out the height of the cavity, whereas at lower Darcy numbers, the plume had dif-
ferent characteristics in the fluid and porous regions. Thus, it can be deduced that 
the temperature profile along the plume will be significantly different from the 
profiles for lower Darcy numbers.

Overall heat transfer results for different Darcy numbers are shown in 
Fig. 4.12. The Darcy number has an effect on both the onset of convection and 
on heat transfer coefficients beyond the critical point. As the Darcy number 
increases from 10−6 to 10−4, the critical Rayleigh number decreases slightly, 
although this is not very clearly visible. With further increase in Da, however, the 
critical Rayleigh number drops noticeably. The Nusselt number in the conduc-
tion dominated heat transfer regime, however, is the same for all Darcy numbers 
as the heater length is kept fixed. Once convection starts dominating, Nusselt 
numbers for Da = 10−6 and 10−4 are very close to each other except at very 
high Rayleigh numbers where the effects of lower permeability can be seen. It is 
likely that this effect is due to the increased effect of inertia. Heat transfer coeffi-
cients for Da = 10−2 are, however, much higher than those at lower Darcy num-
bers. This result is expected based on the prior discussion of flow patterns which 
shows that high levels of convective penetration into, and reduced resistance to 
fluid motion by, the porous sub-layer lead to increased heat transfer coefficients. 
Dimensionless temperature profiles along the centerline (Fig. 4.13) also indicate 
that the temperature distribution for Da = 10−2 is significantly different from 
the temperatures at lower Darcy numbers. This is especially true for temperature 
within the porous sub-layer and clearly shows that at such high values of the Da 
it has an almost fluid-like character. These results may be important in applica-
tions where the porous layer is either loosely packed or a material with a foam-
like microstructure.

Fig. 4.12  Nusselt versus 
Rayleigh number relation. 
δ = 0.5, and η = 0.5

4.3 Porous Structure Effects
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4.4  Effect of Aspect Ratio

Aspect ratio is a very important parameter in determining the overall heat trans-
fer coefficient, especially when the heat source is localized. Prior investigations 
of convection in fluid and porous layers with localized heat sources have shown 
that there is a complex relation between aspect ratio and the heater length (Prasad 
and Kulacki 1987; Rajen and Kulacki 1987; Papanicolau and Gopalakrishna 
1995). It is, therefore, worthwhile to investigate whether such a relation exists 
for convection in fluid superposed porous layers. Figures 4.2, 4.14, 4.15, and 

Fig. 4.14  Streamlines and isotherms. A = 4, δ = 0.5, and η = 0.5. a Ra = 103, b Ra = 104,  
c Ra = 105, and d Ra = 106

Fig. 4.13  Dimensionless centerline temperature. δ = 0.5, η = 0.5 and Ra = 5 × 105
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4.16 show streamlines and isotherms at four Rayleigh numbers for A = 2, 4, and 
6. The parameters held constant are η = 0.5, Da = 10−6, λ = 1, and Pr = 7. In 
Figs. 4.2a and 4.14a, it can be seen that the aspect ratio does not have any signifi-
cant influence on the flow and temperature fields at Ra = 103. The circulating flow 
triggered by the heater edge temperature gradient is seen for both aspect ratios. 
Interestingly, the cells for A = 4 are far apart from each other and are almost cen-
tered on the vertical lines drawn at the edges of the heater, further indicating their 
origin point. This feature cannot be seen at lower aspect ratios due to the smaller 
horizontal extent of the domain. The velocity of convective motion is also slightly 
higher at A = 4. The corresponding isotherms indicate that convection dominated 
heat transfer has not yet commenced in either system.

At Ra = 104, convection dominated heat transfer can be seen for both aspect 
ratios. It can be seen that the shape and the position of the circulating cells 
changes once convective flow is underway. The cells move away from their 
original positions and toward each other. This change in position can be better 

Fig. 4.15  Streamlines and isotherms. A = 6, δ = 0.5 and η = 0.5. a Ra = 103, b Ra = 104,  
c Ra = 105, and d Ra = 106

Fig. 4.16  Streamlines and isotherms. A = 6, δ = 0.75 and η = 0.5. a Ra = 103, b Ra = 104,  
c Ra = 105, and d Ra = 106

4.4 Effect of Aspect Ratio
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understood by considering the isotherms which show a plume-like flow in an early 
stage of development. Because the cells are associated with the thermal plume, 
they move toward the center of the heater to align themselves with the developing 
convective flow. The flow, however, largely remains confined to the fluid sub-layer. 
As the Rayleigh number increases further to 105, the cells stretch outwards toward 
the lateral walls. This behavior can be more prominently seen for the larger aspect 
ratio domain. Values of the stream function, however, are nearly the same for both 
aspect ratios indicating that the flow velocities are comparable in the two cases. 
The isotherms show that the rising thermal plume becomes narrower and takes 
on a well-defined shape in both the long and short domains. Further increase in 
the Rayleigh number causes the circulating cells to stretch further and the thermal 
plume to become narrower. An interesting aspect of the flow is that the number 
of cells does not increase with an increase in the aspect ratio, in contrast to the 
case of a uniformly heated base where the wavelength, and hence the number of 
the cells is determined by the aspect ratio. Thus for A = 4, there would be four 
circulating cells when the base is uniformly heated. However when the heating is 
localized, the number of cells is a function of both A and δ. This dependence has 
been observed also in convection in porous layers (η = 1) with localized heating 
(Prasad and Kulacki 1987; Rajen and Kulacki 1987). In the present case, values of 
δ and A are such that only two cells are observed.

When the aspect ratio increases to A = 6 (Figs. 4.15, 4.16), several interest-
ing flow patterns are seen. At Ra = 103, circulatory cells triggered by the heater 
edge temperature gradient can be seen. As seen for lower aspect ratios, the flow 
is conduction dominated which can be clearly seen from the isotherm patterns. 
With an increase in the Rayleigh number to 104, convection dominated flow com-
mences and two pairs of circulating cells are seen. This is a further example of 
how the number of cells depends on both the heater length and the aspect ratio. 
Within each pair of cells, there is, however, a conspicuous lack of symmetry, and 
the cells toward the center of the domain are smaller while those near the lateral 
walls are larger. This is primarily a consequence of the readjustment of the size 
and position of the cells due to the particular combination of the heater length 
and aspect ratio. With further increase in the Rayleigh number to 105, the same 
flow pattern is seen with higher flow velocities. Cells near the lateral walls lead 
to flow restructuring, and at Ra = 106, a single pair remains. These cells span the 
entire horizontal extent of the cavity, although the largest fluid velocities are in the 
overlying fluid layer. Isotherms show that with an increase in Rayleigh number, 
the number of plumes decreases progressively. These results show that when the 
heat source at the base is localized, the number of cells is a function of the aspect 
ratio, heater length ratio, and the Rayleigh number. This flow restructuring is bet-
ter illustrated in Fig. 4.16 which shows a domain with A = 6 and δ = 0.75. As 
the Rayleigh number increases from 103 to 106, the number of convection cells 
decreases from six to two while the number of thermal plumes decreases from 
three to one. Poulikakos (1986) has reported the occurrence of flow restructur-
ing at high Rayleigh numbers in fluid-superposed porous layers heated uniformly. 
However, no such phenomenon is observed here for δ = 1.
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The Nusselt-vs-Rayleigh number relation for different aspect ratios is shown 
in Fig. 4.17. As can be seen, the curves for all aspect ratios have the same pat-
tern across the entire range of Rayleigh numbers, although the overall heat transfer 
coefficient decreases with an increase in the aspect ratio. In each case, the critical 
Rayleigh number for the onset of convection dominated heat transfer is approxi-
mately the same. The curves also show several interesting features which are a 
direct consequence of the flow patterns discussed earlier. For A = 2 and 4, it can 
be seen that beyond the onset of convection dominated flow, Nusselt numbers for 
A = 4 increase at a higher rate than that for A = 2 until Ra ≈ 5 × 104, after which 
they remain approximately parallel indicating that the overall heat transfer coeffi-
cient increases at approximately the same rate for both cases. This can be explained 
by considering the flow patterns in the two systems. At low Rayleigh numbers, a 
fraction of the domain for A = 4 does not have any fluid motion, while for A = 2 
fluid motion covers almost the entire horizontal extent of the domain. Hence, the 
system with a lower aspect ratio is able to more efficiently transfer heat by con-
vection. However, with an increase in Ra, the flow spreads further toward the side 
walls with the larger aspect ratio, and the stagnant fluid near the walls now partici-
pates in convection. For smaller aspect ratio domains, however, the flow cannot fur-
ther spread laterally as it has already reached its maximum extent. As such, the heat 
transfer coefficient for A = 4 increases more rapidly. Once the flow has spread to 
its maximum lateral extent for the longer system, the rate of increase of the Nusselt 
number becomes identical for both the aspect ratios. For A = 6, the curve is almost 
parallel to that of A = 2 until Ra ≈ 2.5 × 105. Above this Rayleigh number, there is 
an abrupt change in the slope of the curve, and Nusselt numbers beyond this point 
are much closer to those for lower aspect ratios—a direct consequence of flow 
restructuring that creates a single pair of cells. When the number of cells is larger, 
there are pockets of stagnant fluid between the cells which do not participate in 
convection. However, when the cells merge, all of the fluid within the domain par-
ticipates in convective motion leading to higher overall rates of heat transfer.

Fig. 4.17  Nusselt versus 
Rayleigh number. δ = 0.5, 
and η = 0.5

4.4 Effect of Aspect Ratio
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Dimensionless temperature profiles on the centerline of the cavity at Ra = 105 
are shown in Fig. 4.18. It can be seen that along the cavity height, centerline 
temperatures increase with the aspect ratio. This pattern is remarkably similar to 
the centerline temperature profiles for different values of the heater length ratio 
δ, shown earlier in Fig. 4.5. It can be seen that for A = 2, the temperature drops 
much more rapidly within the porous layer than for A = 4 and 6, implying that the 
temperature gradient near the heater increases with a decrease in the aspect ratio. 
This leads to a more efficient channeling of the energy input and causes the lower 
aspect ratio domain to have higher heat transfer coefficients.

4.5  Effect of Conductivity Ratio

All simulations discussed thus far have been carried out for the case where the 
conductivities of the solid and fluid phase are the same, i.e., λ = 1. In reality, how-
ever, this condition is rarely satisfied, and many practical applications involve high 
solid-to-fluid conductivity ratios. Modeling of convection in porous media with 
high conductivity ratios, however, poses several challenges. First, a suitable model 
for the effective stagnant conductivity must be selected as improper representation 
of this parameter can significantly affect the overall results. Second, for very high 
conductivity ratios, the assumption of thermal equilibrium between the fluid and 
solid phases breaks down and, as a result, a single energy equation can no longer 
be used. Instead, a two-equation model that accounts for the thermal resistance at 
the solid–fluid interface must be used which makes the numerical solution of the 
problem highly involved.

To systematically study the effect of the conductivity ratio, it is important to 
look first at the modeling of the effective conductivity. Aichlmayr and Kulacki 
(2006) have shown that the effective conductivity data from the various literature 

Fig. 4.18  Dimensionless 
centerline temperature. 
δ = 0.5. Ra = 5 × 105
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sources can be grouped into three categories based on the conductivity ratio: small 
conductivity ratio (1 ≤ λ < 10), intermediate conductivity ratio (10 ≤ λ < 1,000), 
and high conductivity ratio (λ ≥ 1,000). They postulate that these ranges demar-
cate the relative importance of interfacial effects between the solid and fluid 
phases. High conductivity ratio systems typically have strong interfacial effects 
and, as a result, require the consideration of separate models for the solid and fluid 
phases. Due to the difficulty of solving two-equation models, high conductivity 
ratio systems will not be considered here. Instead, the study will focus on low and 
intermediate conductivity ratios. Three values of the conductivity ratio are consid-
ered here: λ = 1, 50, and 100. These values have been chosen based on the effec-
tive conductivities of glass–water (λ = 1.08), glass–air (λ = 48), and steel–water 
(λ = 102) systems, all of which are very relevant for practical application. To cal-
culate the effective conductivity, two different models are used. For λ = 1 the mix-
ture model is used, and for λ = 50 and λ = 100, the model of Kunii and Smith 
(1960) is used.

Streamline and isotherm patterns for λ = 1, 50, and 100 for different Rayleigh 
numbers are shown in Figs. 4.2, 4.19, and 4.20 wherein η = 0.5, δ = 0.5, A = 2, 
Da = 10−6, and Pr = 7. The case of λ = 1 has been discussed previously and will 
be discussed only with respect to the results for the other conductivity ratios. As 
before, for Ra = 103, circulation patterns created by the presence of a localized 
heat source are seen in all cases and the heat transfer is primarily by conduction. 
Isotherms, however, show significant differences. For λ = 1, a gradual tempera-
ture change occurs across the entire domain. On the other hand, for λ = 50 and 
λ = 100, the temperature gradient across the porous layer is very small and the 
entire layer is approximately at a constant temperature. The major temperature 
drop takes place in the fluid layer, a direct consequence of the larger conductivity 
of the porous sub-layer. Expressed differently, the saturated porous sub-layer has a 
lower conduction resistance than the overlying fluid layer. As a result, a small tem-
perature difference exists across the porous sub-layer.

When the Rayleigh number is increased to 104, convection dominated flow is 
seen in all three cases. The flow patterns for λ = 1 appear slightly different than 
that for λ = 50 and 100 in terms of the direction of the velocity vectors. Another 
interesting feature that can be seen is that flow penetration into the underlying 
porous layer is much higher for λ = 50 and 100. Isotherm patterns, however, dif-
fer significantly for the low (λ = 1) and high (λ = 50, 100) conductivity ratios. 
For λ = 1 a developing plume-like pattern can be seen at Ra = 104. However, 
for λ = 50 and 100, no clear plume-like flow pattern is visible. Instead, the iso-
therms, especially those in the fluid layer, indicate that heat transfer is still pri-
marily by conduction. In addition, the isotherms crossing the interface show an 
abrupt change in slope. This deduction has been observed previously in studies on 
layered porous media with conductivity contrasts (Lai and Kulacki 1987) and is a 
direct consequence of the difference in conductivities of the sub-layers.

With further increase in the Rayleigh number to 105, a well-defined convec-
tive flow is seen in all the three cases. Streamlines indicate that the flow in all the 
three cases is generally identical. Isotherms patterns show a rising thermal plume 

4.5 Effect of Conductivity Ratio
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for all conductivity ratios, although the plume for λ = 1 is more developed than 
that at the higher conductivity ratios. For the higher conductivity ratios, there is 
a very rapid drop in temperature from the top of the plume to the upper isother-
mal surface indicating the presence of strong temperature gradients near the upper 
surface, and thus much higher heat transfer coefficients. When the Rayleigh num-
ber increases to 106, identical flow patterns are seen in all the three cases. Flow 
penetration from the fluid layer to the porous sub-layer is higher for the larger 
conductivity ratios. Isotherms indicate a well-formed rising thermal plume in all 
cases. As noted earlier, large temperature gradients exist near the top of the plume 
for the higher conductivity ratios, but the abrupt changes in isotherm gradients at 
the interface that are seen at lower Rayleigh numbers are much less pronounced  
at higher Rayleigh numbers. This is another indication that convection is the 

Fig. 4.19  Streamlines and isotherms. λ = 50, δ = 0.5 and η = 0.5. a Ra = 103, b Ra = 104,  
c Ra = 105, and d Ra = 106
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dominant mechanism of heat transfer and helps to smooth out the effects of con-
ductivity mismatch between the upper and lower sub-layers.

The Nusselt versus Rayleigh number relation for different conductivity ratios 
is shown in Fig. 4.21. The figure clearly shows that an increase in the conductiv-
ity ratio increases the overall rates of heat transfer through the system as can be 
expected. A more interesting observation is that the curves for λ = 50 and 100 are 
almost similarly indicating that a 2-fold increase in the conductivity ratio does not 
significantly increase the overall heat transfer coefficient. This can be much bet-
ter understood by considering the effective conductivity ratio for the two cases. 
For λ = 50, κ = 6.1 whereas for λ = 100, κ = 7.5. The effective conductivity is 
an independent parameter in the governing equations, and the close value of κ is 
responsible for nearly identical Nusselt versus Rayleigh number curves. Another 
interesting feature of the graphs is that the curves for λ = 1, 50, and 100 are not 

Fig. 4.20  Streamlines and isotherms. λ = 100, δ = 0.5 and η = 0.5. a Ra = 103, b Ra = 104,  
c Ra = 105, and d Ra = 106

4.5 Effect of Conductivity Ratio
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parallel to each other, indicating that it is simply not the higher conductivity of the 
solid matrix which contributes to the higher heat transfer rates for the higher con-
ductivity ratios.

Temperature profiles along the centerline of the cavity at a Rayleigh number 
of 5 × 105 are shown for the three conductivity ratios in Fig. 4.22. As can be 
expected, the profiles for the higher and lower conductivity ratios are widely dif-
ferent. For small values of λ, there is rapid drop in temperature across the porous 
sub-layer after which the temperature drop in the fluid sub-layer is very low 
except near the upper surface. However, for higher values of λ, there is a rela-
tively small drop in temperature across the porous sub-layer and practically no 
drop in the temperature in the fluid sub-layer. Almost all the temperature change 
occurs near the upper surface where there exists a very large temperature gradient 
as is seen in previous isotherm patterns. Conduction has a greater influence on 
the temperature distribution for low conductivity ratios, 1 ≤ λ ≤ 10. Large values 

Fig. 4.22  Dimensionless 
centerline temperature. 
δ = 0.5, η = 0.5 and 
Ra = 5 × 105

Fig. 4.21  Nusselt number 
and effective conductivity 
ratio. δ = 0.5, and η = 0.5
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of λ tend to diminish the temperature drop across the porous sub-layer, and the 
fluid sub-layer exhibits a well-mixed core temperature profile. This inference can 
also be drawn from isotherm patterns at high Rayleigh number and large conduc-
tivity ratio.

4.6  Prandtl Number Effect

The effect of the Prandtl number has been very briefly covered in prior studies 
(Chen and Chen 1992) of convection in fluid-superposed porous layers heated 
from below, and thus there is no benchmark with which to compare the present 
results. As such, wherever possible, results will be compared with prior stud-
ies of convection in fluid and porous layers. Two Prandtl numbers are considered 
here: Pr = 0.7 and 7. These are approximately equal to the Prandtl numbers of 
air (Pr = 0.71 at 25 °C) and water (Pr = 6.26 at 25 °C), respectively. These flu-
ids have been selected for two primary reasons. First, they are most commonly 
encountered in laboratory studies of fluid and porous media convection, and there 
are several references available in the literature for comparison. Also, for these 
fluids, there is no significant change in the fluid viscosity, and hence the Prandtl 
number, with temperature. For fluids with higher viscosity, the temperature 
dependence of Prandtl number cannot be ignored. However, the present model is 
valid only for constant Pr, and high viscosity fluids, though very important in a 
large number of applications, are not considered.

Flow and temperature fields for Pr = 7 and 0.7 are shown in Figs. 4.4 and 4.23, 
respectively. At Ra = 103, the flow patterns for both fluids are nearly identical. 
Two circulating cells produced due to end effects at the heater are seen, and the 
fluid velocities are identical. Similarly, the isotherms indicate that heat transfer 
is conduction dominated. With increase in the Rayleigh number to 104, flow pat-
terns seen earlier in the chapter (initiation of convection dominated heat transfer, 
strengthening of the existing cellular flow patterns, and confinement of the flow to 
the upper fluid layer) are seen for both fluids. Fluid velocities are almost the same 
in both cases as seen from the value of the stream function. Similarly, isotherms 
show a gradually developing thermal plume as convection heat transfer rates start 
increasing.

When the Rayleigh number is increased further to 105, however, different 
streamline patterns are seen. For Pr = 0.7, velocities within the core of the circu-
lation cells are at an angle to the fluid-porous layer interface. On the other hand, 
for Pr = 7, flow velocities within the core of the cellular flows are parallel to the 
interface. This effect occurs due to lower shear resistance in the low Prandtl num-
ber fluid and is also seen in simulations of Rayleigh-Bénard problem with the flu-
ids of different viscosities. The maximum absolute values of the stream function 
are almost identical in both cases. Thus velocities, though having different direc-
tions within the core, have approximately the same value. Isotherms, however, 
appear nearly identical indicating that heat transfer rates for the two fluids are 

4.5 Effect of Conductivity Ratio
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almost same. When the Rayleigh number is increased to 106, streamline patterns 
for Pr = 0.7 become highly skewed. The core of the convection cells is seen to 
become narrow near the rising plume, i.e., near the vertical centerline of the cav-
ity. Isotherms show a narrow rising plume while the region outside the plume is 
largely isothermal, especially in the porous sub-layer.

The Nusselt versus Rayleigh number relation for the two Prandtl numbers is 
shown in Fig. 4.24. The curves are almost identical indicating that the Prandtl 
number has little effect on the overall heat transfer coefficient. This observation 
is  in  accordance  with  the  results  of  both  the  Rayleigh-Bénard  problem  and  the 
Horton-Rogers-Lapwood problem. The only noticeable difference in the overall 
heat transfer coefficients can be seen when Ra > 105 and can be attributed to the 
difference in the flow field, e.g., at Ra = 106. The centerline temperature profiles 

Fig. 4.23  Streamlines and isotherms for Pr = 0.7, δ = 0.5 and η = 0.5. a Ra = 103, b Ra = 104, 
c Ra = 105, and d Ra = 106
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for Ra = 105 do not show much difference for the two fluids (Fig. 4.25). Thus the 
Prandtl number in this range  is not a significant parameter in determining overall 
heat transfer coefficients.

4.7  Evolution of Temperature Fields

To get a fundamental understanding of the mechanism by which the convective flow 
develops from an initial disturbance, we investigate convection with uniform (δ = 1) 
and localized (δ = 0.5) heating. For these two simulations, Ra = 105, η = 0.5, 
Da = 10−6, A = 2, λ = 1, and Pr = 7. The evolution of the flow and temperature 

Fig. 4.24  Nusselt versus 
Rayleigh number. η = 0.5, 
and δ = 0.5

Fig. 4.25  Dimensionless 
centerline temperature. 
δ = 0.5 and Ra = 5 × 105

4.6 Prandtl Number Effect
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fields for the two cases is shown in Figs. 4.26 and 4.27 at various values of the 
dimensionless time starting from t = 0 to the final steady state. For δ = 1, the solu-
tion is initiated by introducing a small sinusoidal perturbation to the temperature 
field at t = 0 (Fig. 4.26a). At t = 1, two convective cells are seen, and flow is almost 
entirely restricted to the overlying fluid sub-layer. The corresponding isotherms cor-
roborate this observation. The temperature field inside the porous sub-layer resem-
bles a conduction heat transfer mode, but some convective motion can be seen in the 
fluid layer. At t = 40, a much more well-defined flow pattern emerges. Circulatory 
fluid motion exists in the entire fluid layer and signs of flow penetration into the 
porous layer appear. The corresponding isotherms exhibit a plume-like flow in an 
early stage of development. When t = 60, an increase in the velocities of convec-
tive motion accompanied by further flow penetration into the porous layer occurs. 
Simultaneously, the thermal plume becomes better defined. As time progresses, this 
process continues until steady state is attained and flow patterns do not exhibit oscil-
latory motion. This is consistent with earlier findings on convection in uniformly 
heated fluid-superposed porous layers (Chen and Chen 1989).

When δ = 0.5, the flow evolution progresses in a slightly different manner. In 
this case, no initial perturbation is given to initiate the iterative solution. Rather the 
horizontal temperature gradient at the edge of the heater triggers the onset of con-
vective motion. This can be seen in Fig. 4.27a, where two small end cells are seen 
at the edge of the heater. Once the onset of convective motion is triggered, a weak 
circulatory fluid flow is seen in the upper fluid layer at t = 1. The correspond-
ing isotherms show only a small disturbance to the conduction temperature field 
indicating that convective motion has not yet commenced. At t = 5, the first signs 
of the onset of convective motion can be seen. A non-negligible circulatory flow 
pattern develops in the fluid layer and rising thermal plume begins to take shape. 
Thereafter, evolution of the flow field follows the same path toward steady state 
as for δ = 1: fluid velocity increases, there is a flow penetration into the underly-
ing porous layer, and a narrow thermal plume rises from the center of the heater. 
Thus, the presence of localized heating does not affect either steady-state convec-
tion or the path to steady state; rather, it provides a different trigger for the onset of 
convection.

4.8  Summary

Flow and temperature fields for a wide range of parameters that govern heat trans-
fer coefficients have been determined computationally for two-dimensional lami-
nar flow at Rayleigh numbers up to 106. The presence of a localized heat source 
does not affect the mode of convective motion but provides a different trigger for 
the onset of convection. Fluid motion is primarily confined to the fluid sub-layer 
with penetrative convective motion into the porous sub-layer.

Overall heat transfer coefficients increase with decrease in the heater length 
fraction. A similar trend is noticed with an increase in the Darcy number. Both of 
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Fig. 4.26  Evolution of the flow and temperature. a t = 0, b t = 1, c t = 5, d t = 10, e t = 20,  
f t = 40, and g t = 60. Ra = 105, δ = 1, η = 0.5, Pr = 7, Da = 10−6, A = 2, λ = 1

4.8 Summary
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Fig. 4.27  Evolution of the flow and temperature fields. a t = 0, b t = 1, c t = 5, d t = 10,  
e t = 20, f t = 40, and g t = 60. Ra = 105, δ = 1, η = 0.5, Pr = 7, Da = 10−6, A = 2, λ = 1
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these effects can be attributed to the same fundamental cause: a decrease in the 
resistance to fluid motion offered by the porous sub-layer. An increase in the solid-
to-fluid conductivity ratio leads to significant enhancement of the overall heat 
transfer coefficient. This is not only due to higher conductivity of the solid matrix 
but also due to an increase in the intensity of the convective motion with increase 
in the conductivity ratio. The Prandtl number over the range 0.7 < Pr < 7 has very 
little effect on the overall heat transfer coefficient except at very high Rayleigh 
numbers.

The effect of the aspect ratio on the flow structure and heat transfer coeffi-
cients is complex and depends also on the heater length and the Rayleigh num-
ber. For a given heater length fraction, heat transfer coefficients decrease slightly 
with an increase in the aspect ratio. Also the number of convective cells at a given 
aspect ratio and heater length fraction is found to change with increasing Rayleigh 
number.

4.8 Summary
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In this chapter, measurements of steady-state Nusselt numbers in superposed fluid-
porous layers with η < 1 and δ < 1 are discussed and compared to computed val-
ues. These measurements point to the need for more exhaustive experimentation 
over an extended range of Rayleigh number, but they also provide entirely new 
data for that case where δ < 1 and η < 1.

5.1  Design of the Experiment

A laboratory apparatus that is the thermal equivalent of the computational domain 
of Fig. 3.3 is shown in Fig. 5.1. The superposed porous and fluid sub-layers are 
bounded by the top and bottom walls with a fixed total height of H = 3.81 cm. The 
porous sub-layer comprises a level bed of 3 mm diameter spherical soda-lime glass 
beads (ks = 0.764 W/m K, ρs = 2500 kg/m3, cp,s = 918.2 J/kg K). The relative 
height of the porous sub-layer is varied in several increments so that 0.5 ≤ η ≤ 1. 
The minimum height of the porous sub-layer is six bead diameters to assure mini-
mal wall effects.

Resistance heaters on the bottom of the porous sub-layer provide a constant 
heat flux boundary condition. Measurements of average heater temperature, TH, 
are obtained with an array of thermocouples fixed to the heater surface. Overall 
heat losses are limited to one percent of input with a guard heater on the back of 
the bottom wall.  The top of the apparatus is held at a constant temperature, TC, 
with an attached heat exchanger. The top wall temperature is monitored by five 
thermocouples attached to its inner surface. In addition temperature measurements 
within the system are made at selected locations 1.9 cm above the base of the cell 

Chapter 5
Measurement of Heat Transfer Coefficients
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by thirteen thermocouples attached to nylon filaments along the longitudinal and 
transverse centerlines. Additional details of the design and construction of the 
apparatus are given by Bagchi and Kulacki (2011).

In terms of the known heat flux and measurable quantities, the Nusselt and 
Rayleigh numbers are recast,

There are six primary independent parameters: η, δ, A, Da, λ, and Pr. In addi-
tion, the following parameters, which are assumed constant in the numerical 
simulations, must also be considered: φ, F, and σ. There are thus a total of nine 
independent controlling parameters for heat transfer. However, as seen in the 
numerical results, only the Rayleigh number, height ratio and heater length ratio 
significantly affect the overall heat transfer coefficient. As such, the effects of only 
these parameters are investigated (Table 5.1).

Four height ratios (η = 0.5, 0.67, 0.75, 1) and two heater length ratios 
(δ = 0.11, 0.44) are addressed, and for each case 5 × 106 < Ra < 108. Because 
a single working height and solid–fluid combination is used, aspect ratio, 

(5.1)Nu =
(q′′ − q′′

loss )H

keff

(

TH ,avg − TC,avg

) ,

(5.2)Ra =
gβH3(TH ,avg − TC,avg)

υ f αf

.

H L
Bottom Wall

Cooling Water

Support 
Plate

Top Wall

Cooling Coil

Side Wall

Main Heater

Guard Heater

Insulation

Fig. 5.1  Experimental apparatus. L = 22.9 cm, and H = 3.81 cm
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conductivity ratio and the Prandtl number remain constant (temperature variation 
of the thermal conductivity and Prandtl number are neglected). The porosity of the 
porous sub-layer varies from 0.36 to 0.39 and is therefore taken to be constant at 
≈ 0.38, thus fixing the Darcy number at 4 × 10−6. The Nusselt number is based 
on the effective thermal conductivity of the composite domain,

It must be noted that the range of Rayleigh numbers used in the experiments does not 
overlap with the Rayleigh numbers used in the numerical calculations. The minimum 
Rayleigh number in the experiments could have been reduced further by either reduc-
ing the working height or reducing the temperature difference across the domain. 
However, the working height is fixed to ensure that the porous layer is at least six 
bead diameters thick at the lowest height ratio (η = 0.5). Similarly, the minimum 
temperature difference that is reliably measured is 3 °C. Therefore a few numerical 
simulations are performed up to Rayleigh numbers of 4 × 107 for comparison with 
experimental results. The comparison is discussed in detail in the next chapter.

Total heat loss is calculated by summing heat losses through the bottom and 
side walls using one-dimensional conduction models. Fluid properties are evalu-
ated at the mean temperature across the total height of the system. The overall 
uncertainty in the Nusselt and Rayleigh numbers change with the Rayleigh num-
ber. Total uncertainties (~15 %) are higher at low Rayleigh number because of the 
small temperature difference between the heater surface and the top wall, as well 
a higher fraction of energy lost by conduction. For large Rayleigh numbers, uncer-
tainties decrease to ~5–6 % in Ra and ~3–4 % in Nu. An analysis of experimental 
uncertainty is given by Bagchi (2010).

To validate the present experimental setup, heat transfer coefficients are 
measured for a fully porous layer (η = 1) and δ = 0.44 and 0.11. Results of the 
experiments are shown in Fig. 5.2 with the numerical and experimental results 
of Rajen and Kulacki (1987), Kulacki and Rajen (1991) and Lai and Kulacki 
(1991). Specific parameters are listed in Table 5.2. Above the critical point, agree-
ment with the numerical simulation results of Rajen and Kulacki (1987) is very 
good over the entire Rayleigh number range with a maximum difference of ~4.5 
percent at Ra∗

m = 620. The present results also agree well with the experimental 

(5.3)keff = kf

[

(1 − η) +
η

φ (1 − φ) λ

]−1

.

Table 5.1  Experimental parameters

δ η H1 (cm) ΔT (oC) Ra

Verification 0.44 1 3.81 3–40 5 × 106—108

Effect of η 0.44 0.5 1.91 3–40 5 × 106—108

0.67 2.54
0.75 2.86

Effect of δ 0.11 0.5 1.91 3–40 5 × 106—108

0.44

5.1  Design of the Experiment
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results of Kulacki and Rajen (1991). This latter difference is to be expected 
considering that the heater length ratio in the present experiments (δ = 0.44) is 
slightly less than that used by Rajen and Kulacki (δ = 0.5). Figure 5.3 shows the 
comparison of the present results for δ = 0.11 and it can be seen that the agree-
ment is very good over the entire range of Rayleigh numbers. It must be noted 
that the heater length ratio in the present study is slightly smaller than that used 
by Lai and Kulacki (1991). The results also agree well with the results of their 
numerical simulations.

5.2  Measured Nusselt Numbers

Heat transfer results for the present problem are shown in Figs. 5.4 and 5.5. 
Figure 5.4 shows Nusselt-Rayleigh number data with regression fits for δ = 0.44 
and η = 0.5, 0.67, 0.75 and 1. The heat transfer data is adequately correlated by 
a power-law relation of the form Nu = C × Ran, where C and n are constants. 
Table 5.3 summarizes values of C and n for several geometric parameters. 

Fig. 5.2  Comparison of 
current experimental data 
with the numerical and 
experimental results of Rajen 
and Kulacki (1987) and 
Kulacki and Rajen (1991)

Table 5.2  Parameters 
used for studies on 
validation

Present 
experiments

Rajen and Kulacki 
 (1987)

Lai and Kulacki 
(1991)

Height ratio, η 0 0 0
Heater length 

ratio, δ
0.44, 0.11 0.5 0.14

Aspect ratio, A 6 6 21
Darcy number, 

Da
4.04 × 10−6 2 × 10−6 3.4 × 10−6
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Fig. 5.3  Comparison of 
current experimental results 
with the numerical and 
experimental results of Lai 
and Kulacki (1987). η = 1

Fig. 5.4  Nusselt-versus-
Rayleigh number. δ = 0.44

Fig. 5.5  Nusselt-versus-
Rayleigh number. η = 0.5

5.2 Measured Nusselt Numbers
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Figure 5.6 also shows that the overall Nusselt number increases with a decrease in 
η at a given Rayleigh number. This result is attributed to the tendency toward more 
vigorous fluid motion in the fluid sub-layer with its increasing height and is also 
in qualitative agreement with the numerical simulation and prior numerical and 
experimental results for natural convection in uniformly heated fluid-superposed 
porous layers (Poulikakos 1986; Chen and Chen 1992; Prasad and Tian 1990; 
Prasad et al. 1991). There is some overlap in the Nusselt number data near at the 
lower Rayeligh numbers and is most likely due to larger uncertainty in the Nusselt 
number (~15 %). Given the observed trends in Nusselt number with η and δ, a rea-
sonable conjecture is that the effect of η is decoupled from the horizontal extent of 
the heat source.

Figure 5.5 shows the Nusselt-versus-Rayleigh number data for η = 0.5 and 
δ = 0.11 and 0.44 with regression fits. At low Rayleigh number, Nusselt num-
bers for δ = 0.11 are larger than those for δ = 0.44. At higher Rayleigh numbers 
however, the trend is reversed and the Nusselt numbers for δ = 0.44 are larger. 
Overall, however, the data sets are fairly close to each other indicating that a 
change in the size of the heater does not have a significant effect on the heat trans-
fer coefficients. This observation is in qualitative disagreement with the results 
of the numerical simulation results which show that the Nusselt number over the 
heater surface increases with a decrease in the size of the heater. The increase in 
the Nusselt number with decreasing heater size has been observed in prior studies 

Table 5.3  Curve fit parameters

Parameters Curve-fit equation R2

δ = 0.44, η = 0.5 Nu = (3.964 × 10−5) × Ra0.7121 0.9823
δ = 0.44, η = 0.67 Nu = (5.017 × 10−5) × Ra0.6866 0.9891
δ = 0.44, η = 0.75 Nu = (3.934 × 10−4) × Ra0.5557 0.9727
δ = 0.11, η = 0.5 Nu = (2.831 × 10−4) × Ra0.59 0.9749

Fig. 5.6  Non-dimensional 
horizontal temperature 
profiles cell at the horizontal 
mid-plane. The position of 
the heater is also shown on 
the x-axis



65

of natural convection in both porous and fluid layers heated locally from below 
(Rajen and Kulacki 1987; Lai and Kulacki 1991; Papanicolau and Gopalakrishna 
1995). However a clear trend has only been seen in numerical studies while 
observable differences are much less clear in experimental data, particularly at 
high Rayleigh number. Because the current data is well within the super-critical 
regime, a lack of noticeable increase in the Nusselt number with decrease in the 
heater length ratio may not represent a direct contradiction of the numerical pre-
dictions, especially as the simulations explore a much lower Rayleigh number 
regime. Thus further experiments are essential to clarify the effect of the heater 
length.

5.3  Temperature Profiles

Temperature profiles are measured along the horizontal mid-plane above the 
heater surface along the heater length and in the transverse direction. Figure 5.6 
shows the transverse direction dimensionless temperature profiles for A = 6, 
η = 0.67 and δ = 0.44 at three Rayleigh numbers. The profiles show a distinct 
plume like flow at the centerline that is more pronounced as Rayleigh number 
is increased. A single plume is present, which is in agreement with the numeri-
cal simulation. The most important aspect of the temperature profile, however, is 
the vertical location of the thermal plume within the composite domain. Because 
the thermocouples are located at the horizontal mid-plane of the apparatus and 
η = 0.67, they are embedded within the porous sub-layer below the interface. The 
presence of a plume like flow inside the porous sub-layer is evidence that convec-
tive motion is present and confirms the presence of penetrative convection. It also 
shows that the flow inside the porous sub-layer is not conduction dominated.

Fig. 5.7  Non-dimensional 
temperature profiles along the 
depth of the convection cell 
at the horizontal mid-plane

5.2 Measured Nusselt Numbers
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Longitudinal temperature profiles shown exhibit a complex flow pattern 
(Fig. 5.7). Interestingly, the temperature field changes with increasing Rayleigh 
number. For Ra = 1.6 × 107, a single well developed thermal plume and another 
partially developed thermal plume are seen. At Ra = 3.39 × 107, only a single 
plume can be seen. Further increase in Ra creates two well developed thermal 
plumes. It also reveals a flow structure that is highly asymmetric and suggests 
three-dimensionality. These observations are in agreement with the experiments of 
Chen and Chen (1989).
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In this chapter numerical and experimental results are compared in order to vali-
date the numerical model and its solution. The discrepancies between the numeri-
cal and experimental results are analyzed to understand the underlying cause of the 
disagreement. In particular, the validity of the one-domain formulation is discussed. 
Numerical results available in the literature are compared, and the discrepancies 
among different modeling approaches are reviewed. Thereafter the importance of 
the present study in the context of the overall problem of convection in composite 
fluid-porous systems is discussed.

6.1  Comparison of Numerical and Experimental Results

To accurately compare the results of the numerical and the experimental studies, 
numerical solutions have been obtained with independent controlling parameters of 
the experiments. These are: A = 6, Da = 4.04 × 10-6, φ = 0.36, δ = 0.44, λ = 1, 
F = 0.52, σ = 0.5, η = 0.5, 0.75. Figures 6.1 and 6.2, and Table 6.1, show a com-
parison of the numerical and experimental results. For both η = 0.5 and η = 0.75, 
the difference between the numerical predictions and experimental measurements 
is significant in the Rayleigh number range where the two data sets overlap. This 
mismatch is more pronounced for η = 0.5 than for η = 0.75, but in both cases the 
percentage difference between the numerical and experimental data is ≥ 60 %. It 
can also be seen that the slope of the experimental data fit line is much steeper than 
that of the numerical data. The fundamentally different nature of the two curves 
indicates that there is a fundamental underlying discrepancy between the numeri-
cal and experimental results. This discrepancy is also seen for the other two sets of 
experiments.

Chapter 6
Discussion
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The nature of the discrepancy between the numerical and experimental results 
indicates that the mismatch cannot be simply attributed to factors such as the 
uncertainty in the measurements and the grid convergence of the numerical solu-
tion. Simulations with finer grids and a more stringent convergence criterion pro-
duce no significant change in the results. Further, because both the computer code 
and the experimental setup are verified by comparison with literature results for 
well-established  test  cases  (Rayleigh-Bénard  convection  and  the  Horton-Rogers-
Lapwood problem), the observed difference cannot be attributed errors in post-
processing of the data. It can therefore be concluded that the observed difference 
points to a discrepancy that is fundamental in nature. To investigate the cause 

Fig. 6.1  Comparison of 
numerical and experimental 

data for δ = 0.44, η = 0.5
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Table 6.1  Comparison of 
experimental and numerical 
Nusselt numbers

η Ra Nu  
(Experimental)

Nu  
(Simulation)

% Error

0.5 5.47 2.219 7.52 70.5
7.5 2.79 7.86 64.5

0.75 7.45 1.789 4.45 59.82
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behind the observed difference, attention is focused on the problem definition, the 
experimental setup, and the mathematical formulation.

The first reason for the observed discrepancy between the numerical predictions 
and experimental results may be due to the differences in the boundary conditions 
for the two studies. In particular, attention needs to be focused on the boundary con-
ditions along the lower surface. The problem investigated via numerical simulation 
is that of two-dimensional natural convection in a fluid-superposed porous layer 
with a localized isothermal heat source at the base. The experiments on the other 
hand are conducted in a three-dimensional enclosure with a strip heater supplying a 
constant heat flux to the porous layer. The boundary conditions at the heater surface 
are therefore different for the two problems. The difference in boundary conditions 
can be better understood by comparing the temperature distributions at the heater 
and top surfaces for a single experiment (δ = 0.44, η = 0.5; Table 6.2). It can be 
seen that while a nearly isothermal condition exists at the top plate, the same is not 
true for the heater surface. For most runs, the percentage standard deviation (SD in 
Table 6.1) of the heater surface temperature is >10 %. This variation in temperature 
across the heater, which is in part responsible for the high uncertainties in Nu and 
Ra is one source of the mismatch. Another point of discrepancy lies in the bound-
ary conditions at the base outside the heater area. The formulation of the numerical 
solution assumes that base area outside the heated region is adiabatic. This condi-
tion is, however not replicated in the apparatus. A numerical solution of the conduc-
tion problem in the base plate shows that there is a small heat flow from the area 
outside the strip heater into the porous layer. Although this heat flow is a very small 
fraction of the total energy supplied by the heaters, it nevertheless causes a part of 
the area outside the strip heater to be non-adiabatic.

These differences in the boundary conditions indicate that a difference between 
the numerical and experimental Nusselt numbers can be expected. However, it is 
worthwhile investigating whether all of the observed discrepancy occurs solely 
because of this reason. As there are no published studies on convection in fluid 
superposed porous layers with a constant heat flux boundary condition at the base, 
a direct estimation of the effect of the boundary conditions on the Nusselt and 
Rayleigh numbers is not possible. There are, however, several studies of natural 
convection in porous layers with localized isothermal and constant flux heat sources 
at the base. Because the porous layer convection problem is a special case of the 

Table 6.2  Temperatures on the heater and upper surfaces with standard deviation 
(SD). η = 0.75, δ = 0.44

TH,avg SD (%) TC,avg SD (%)

29.57 4.28 23.53 0.24
33.98 9.99 22.83 0.38
39.11 13.08 22.94 0.61
43.84 13.66 23.23 0.90
52.28 13.37 25.04 1.08
61.79 14.3 24.65 1.61

6.1  Comparison of Numerical and Experimental Results
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present problem for η = 1, results from these studies can be used to understand the 
effect of the boundary conditions on the overall heat transfer coefficients.

A comparison between the numerical results of Prasad and Kulacki (1987) with 
the numerical and experimental results of Rajen and Kulacki (1987) and Kulacki 
and Rajen (1991) is chosen to investigate the effects of the boundary conditions. 
The simulations of Prasad and Kulacki are performed with A = 10, δ = 0.5, and 
a centrally positioned isothermal heater. The numerical and experimental results 
of Rajen and Kulacki use A = 9.6, δ = 0.5, and a centrally positioned constant 
flux heater. Except for the boundary condition at the heater surface, the two stud-
ies have nearly identical problem formulations and boundary conditions and are 
ideally suited for comparison. It must be noted that Prasad and Kulacki define 
the Rayleigh number, Ram, based on the temperature difference across the heated 
and cooled surfaces, and Rajen and Kulacki use a flux-based definition for the 
Rayleigh number Ra∗

m. The two Rayleigh numbers are related, Ra∗
m = Ra × Num,  

where Num is based on the stagnant conductivity of the porous sub-layer. Thus the 
Num-versus-Ra∗

m data of Rajen and Kulacki (1987) and Kulacki and Rajen (1991) 
are converted to Num-versus-Ram data for comparison. This step is similar to the 
experimental data reduction procedure adopted in the experiments where the tem-
perature-based Rayleigh number is used for the constant flux heater.

Comparison of the data for the above studies is shown in Fig. 6.3. The differ-
ences in the data sets are readily apparent, confirming that heat transfer coeffi-
cients change with a change in the boundary conditions. Although the data sets 
are different, the Num-versus-Ram curves have almost identical overall char-
acter although the slope of the curve for the constant heat flux data is higher. In 
addition, for a given Ram, the value of Num is higher for the constant heat flux 
boundary condition data. If these observations are extrapolated to the present 
problem, one would expect to see identical characteristics in the numerical and 
experimental Nu-versus-Ra curves and experimental data over predicting Nu over 
the entire range of Ra. It can be immediately seen that none of these characteris-
tics is observed. Thus, it can be concluded the observed discrepancy between the 

Fig. 6.3  Numerical and 
experimental results of 
Prasad and Kulacki (1987) 
and Rajen and Kulacki (1987)
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numerical and experimental results of this study cannot be attributed to the differ-
ences in the boundary conditions of the two studies.

The other possible source of discrepancy between the simulation and experi-
mental data may be the mathematical formulation of the problem for the numerical 
solution. In particular, attention must be focused on the one-domain formulation 
that is used here. It may be well that the limitations of this particular formula-
tion are responsible for the observed lack of agreement with the experimental 
results.To further explore this issue, it is important to first understand the validity 
and accuracy of the one-domain formulation. An extensive review of the literature 
reveals that there has been no thorough experimental validation of the one-domain 
formulation for the present problem. The only reported comparison of simulations 
using this formulation to experimental data has been reported by Kim and Choi 
(1996), who determine the critical wave number for different height ratios and find 
good agreement with the experimental data of Chen and Chen (1992).

They also determine the Nusselt numbers for Rayleigh number up to two times 
the critical value at η = 0.91 and find good agreement with the Chen and Chen 
results. However, they do not validate their numerical solution at Rayleigh num-
ber much higher than the critical point. Thus, it is quite possible that the model 
may have some deficiencies, especially in the high Rayleigh number range 
where its validity is yet to be demonstrated. To explore this possibility, simula-
tions are performed with the present code for the case of convection with a uni-
formly heated base and the results are compared with the experimental results of 
Prasad and Tian (1990). The parameters are A = 2, Da = 3.71 × 10−6, φ = 0.396, 
λ = 6.8, Pr = 8835, F = 0.56, σ = 0.7, η = 0.5, 0.8, and are suitable for a ran-
domly packed layer of 6 mm diameter glass beads saturated with Dow Corning 
200 Silicone oil.

Comparison of the results of the simulations with the data of Prasad and Tian 
(1990) is shown in Fig. 6.4 and Table 6.3. The marked discrepancy between the 
two sets of data is clearly apparent. Although Prasad and Tian do not provide 
information on the uncertainties in their measurements, it can be safely said that 

Fig. 6.4  Comparison of 
simulations results for δ = 1 
and η = 0.5, 0.8 with the 
experimental results of 
Prasad and Tian (1990)

6.1  Comparison of Numerical and Experimental Results
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such a large disagreement cannot be simply due to the uncertainties. In Table 6.3 
it can be seen that the difference between the simulation and experimental data is 
larger for η = 0.5 than for η = 0.8. This is identical to what is observed for the 
present experimental measurements. It can therefore be said that the discrepancy 
between the theoretical and experimental results is higher at lower height ratios. 
The comparison with the data of Prasad and Tian (1990) indicates that the present 
implementation of the one-domain model gives physically unrealistic data in the 
high Rayleigh number range.

To get a better idea of the influence of the effect of the modeling on the heat 
transfer results, results from all numerical studies available in the literature are com-
pared with the present simulation for δ = 1 in Fig. 6.5. The parameters used in each 
of the compared studies are listed in Table 6.4, and it can be seen that the simulation 
parameters used in all the studies are more or less identical. The only parameters that 
differ somewhat among all studies are the aspect ratio, A, and the Darcy number, Da. 
However, as seen in Chap. 4, these parameters do not significantly affect the overall 
heat transfer coefficients. As such, the comparison can give a good idea of the effect 
of the modeling approach. It must be noted that three modeling approaches are com-
pared here: (i) the two-domain approach which uses Darcy’s law in the porous layer 
and the Beavers-Joseph slip boundary condition at the interface, (ii) a two- domain 
formulation which uses Brinkman’s extension to Darcy’s law in the porous layer 
and the continuity of shear stress and tangential velocity at the interface (Neale and 
Nader 1974), and (iii) a one-domain formulation which does not involve any explicit 
specification of the interfacial boundary conditions (Poulikakos 1986).

Figure 6.5 shows how a given modeling approach drastically affects the over-
all Nusselt-versus-Rayleigh number relation. In particular, it can be seen how dif-
ferent results are obtained using the one-domain formulation. While, the present 
results show excellent agreement with the results of Poulikakos (1986), they dif-
fer significantly from those of Kim and Choi (1996) although all three studies use 
the one-domain formulation. This indicates that the limitations of the one-domain 
model may lie not in the mathematical formulation of the model but rather in its 
numerical implementation.

The most conclusive evidence for this hypothesis can be found the publica-
tions of Hirata and co-workers (2006, 2007a, b, 2009). This fact was pointed out 
earlier in Chap. 2, but its significance can be best understood in the present con-
text. To briefly recall the earlier discussion. Hirata et al. (2006) first published a 

Table 6.3  Comparison of numerical simulations with data of Prasad and Tian (1990)

Ra η = 0.53 η = 0.78

Nu (Sim.) Nu (Expt.) % Diff. Nu (Sim.) Nu (Expt.) % Diff.

1 × 106 8.08 3.11 61.42 4.51 2.45 45.60
1.5 × 106 8.67 3.27 62.25 4.81 2.60 45.95
2.5 × 106 9.48 3.48 63.21 5.17 2.80 45.86
3.5 × 106 10.04 3.63 63.81 5.41 2.94 45.62
5 × 106 10.66 3.79 64.42 5.64 3.09 45.06

http://dx.doi.org/10.1007/978-1-4614-6576-8_4
http://dx.doi.org/10.1007/978-1-4614-6576-8_2
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study in which they investigated the effect of the mathematical formulation on the 
prediction of the stability criterion for the onset of convection. They compare the 
three different modeling approaches mentioned above and show that the modeling 
approach adopted has a profound effect on the prediction of the stability criterion. 
They find that while both the two-domain formulations give almost identical mar-
ginal stability curves, the curves obtained using the one-domain formulation are 
markedly different. The stability curves for the one-domain formulation do not 
exhibit the signature bi-modal character that is unique to the problem of convection 
in fluid-superposed porous layers. Also the critical Rayleigh numbers predicted 
by the one-domain formulation differ from those predicted by the two-domain 
approaches by 30–40 % at different height ratios. This is contrast to the findings of 
Zhao and Chen (2001) who investigate the stability problem using the one-domain 
formulation and find that the stability curves show the expected bi-modal charac-
ter. These findings further point to the fact that the results obtained using the one-
domain formulation strongly depend on the particular solution technique adopted.

To further investigate the source of this discrepancy, Hirata et al. (2009) 
re-examine the same problem with a different approach to the numerical treat-
ment of the interface conditions. They incorporate the hypothesis proposed by 
Kataoka (1986) that the average properties of the porous medium, such as the 
porosity, permeability, and effective diffusivity are Heaviside step functions and 
hence their differentiation must be considered in the meaning of distributions. 
Using this approach they find that marginal stability curves for the one domain 
and two domain approaches are almost identical and show almost the same 

Fig. 6.5  Comparison of 
present results for δ = 1 
with all published numerical 
studies

Table 6.4  Parameters used in the different numerical studies

Parameter Poulikakos  
et al. (1986)

Poulikakos 
(1985)

Chen and Chen 
(1992)

Kim and Choi 
(1996)

Present study

Da 10−6 10−4 2.2 × 10−6 2.2 × 10−6 10−6

η 0.5 0.5 0.5 0.5 0.5
Pr 7 7 6.26 6.26 7
λ 1 1 1.62 1.62 1

6.1  Comparison of Numerical and Experimental Results
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bimodal behavior. Based on their results, Hirata et al. conclude that the one- and 
two-domain approaches are identical provided that the one-domain approach is 
properly interpreted mathematically, i.e., in the meaning of distributions. Based 
on this evidence it can be concluded that the limitation of the one-domain for-
mulation lies in its implementation in a numerical code. This conclusion is fur-
ther supported by the fact that mathematical formulation of the one-domain 
model is identical to that of the two-domain model which assumes continuity of 
velocity, normal stress, shear, heat flux, and temperature at interface. The model 
is different only in the sense that it does not involve the explicit specification of 
the interface boundary conditions.

It can therefore be concluded that special care must be taken while numeri-
cally implementing the one-domain formulation. In particular, the discretization 
equations for the interfacial control volumes must be treated separately so that the 
differentiations of the Heaviside step functions are correctly performed. It must 
be mentioned here that the approach adopted by Hirata et al. (2009) must not be 
considered as an integral part of the one-domain model. Other reported results 
obtained using the one-domain model obtain good agreement with experimental 
results without using specific mathematical constructs (Kim and Choi 1996). Also, 
their approach has not been verified by any subsequent study. Of special note is 
that their study is restricted to the determination of the stability criterion. The 
extension of this approach to the high Rayleigh number domain of the problem 
remains for investigation. Most importantly though, all existing studies devoted 
to the stability problem rely on a single set of validating experiments (Chen and 
Chen 1992). These experiments have not been replicated. Therefore, it cannot be 
conclusively said that the mathematical approach proposed by Hirata et al. (2009) 
can resolve the conundrum regarding the most accurate mathematical model for 
the fluid-porous layer interface.

It must be pointed out that the discrepancies observed between the results of the 
one-and two-domain models seem to be restricted to the particular problem of nat-
ural convection in horizontal composite fluid-porous domains heated from below. 
In other studies on natural convection heat transfer in composite fluid-porous 
domains, the validity of both formulations has been demonstrated appropriately. 
For example Beckerman and co-workers (Beckerman et al. 1987, 1988) used the 
one-domain formulation to investigate natural convection in horizontal and verti-
cal composite domains heated on the sides and obtained excellent agreement with 
experimental measurements. Similarly, Singh and Thorpe (1995) studied natural 
convection in horizontal fluid-superposed porous layers heated on the sides using 
the two-domain (with both the Beavers-Joseph and continuity conditions) and 
the one-domain formulations and found that all three modeling approaches gave 
nearly identical results. Thus, it appears that the issues associated with the imple-
mentation of the one-domain formulation are not inherent in the method itself but 
its application to the present problem.

A question that must be answered at this point is why the one-domain model 
is chosen, considering the confusion that exists regarding its implementation. The 
reasoning behind using the model is two-fold. First, the model is much simpler to 
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use and implement than other modeling approaches as a single set of governing 
equations can be used for the entire domain and discretization equations for the 
boundary conditions do not have to be separately derived. Second, from a physi-
cal perspective, the one-domain concept is a generic model. It may be recalled that 
the crux of the model is that the porosity of the porous layer acts as a switch-
ing parameter that selects the applicable form of the governing equations based on 
whether the solution domain lies in the fluid or porous layers. Here, the porosity 
is a binary parameter and can only assume the values zero and unity, but there is 
no restriction mathematically on the values that it can take. This allows problems 
involving nonhomogenous, fissured, and layered porous media to be handled eas-
ily by simply assigning spatial or functional values to the porosity. This analytic 
property makes the one-domain formulation very powerful. When coupled with 
its ease of programming and implementation, it is easily seen why this technique 
is so attractive and why so much research has been devoted to reconcile this for-
mulation with existing two-domain models. However, before the one-domain for-
mulation can be universally applied its validity must be clearly demonstrated by 
showing its equivalence to the two-domain formulations and comparison to exper-
imental measurements. The authors are currently involved in developing a math-
ematically consistent and physically realistic implementation of the one-domain 
formulation that can be validated by experimental measurements.

6.2  Summary

Our objective has been to develop a more complete picture of convection in super-
posed fluid and porous layers. The combination of numerical and experimental 
methods is apparently the first attempt at validation of the one-domain formulation 
of the governing equations. Such a validation of theoretical studies is generally 
absent in the literature owing to the difficulty in designing experiments which can 
measure heat transfer rates at Rayleigh numbers accessible to simulation. Further 
our numerical simulations have highlighted some of the challenges that arise when 
implementing the one-domain formulation.

The contributions of this study can be better understood by considering the 
results in the overall context of the problem of convection in fluid-superposed 
porous layers. As can be gathered from the discussion in the preceding section, the 
vast differences in the predictions of different numerical studies highlight some of 
the challenges that exist in accurately modeling the superposed system. Although 
the first numerical solution was published over 25 years ago, no accepted set of 
results is yet available even for the case of a uniformly heated base. This is espe-
cially true for the high Rayleigh number regime where lack of any experimental 
validation has made it impossible to verify the accuracy of any of the proposed 
modeling approaches.

Similarly experimental studies have focused on studying very small sections 
of the entire convection heat transfer regime (Table 6.5). This is best illustrated in 

6.1  Comparison of Numerical and Experimental Results
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Fig. 6.6 which shows a compilation of existing experimental data. It can be readily 
seen that the data are scattered over a wide range of Rayleigh numbers and do not 
conform to any well-defined pattern. This is in contrast to the Rayleigh-Bénard and 
Horton-Rogers-Lapwood problems for which the experimental data follow a coher-
ent pattern which has suggested a fundamental underlying relation between Nusselt 
and Rayleigh numbers. Part of this can be attributed to the complexity of the super-
posed problem because of the large number of independent controlling parameters. 
However, part of the reason why the overall nature of the problem is not yet well 
understood is that previous studies have focused on studying very specific aspects 
of it. Taken in this context, the combined numerical and experimental approach 
reported in this monograph represents an important step toward fundamental under-
standing over a large portion of the entire heat transfer regime.

Table 6.5  Parameters of the existing experimental studies

Study A Da Pr λ

Prasad et al. (1990) 2 3.27 × 10−6 8835 6.81
Prasad et al. (1991) 2 1.3 × 10−5 578 1.19
Prasad (1993) 2 8.2 × 10−5 8835 1
Chen and Chen (1992) 6 2.2 × 10−6 6.26 1.62
Steven (2006) 0.5 3.1 × 10−6 6.26 1
Present study 6 4.4 × 10−6 6.26 1
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Fig. 6.6  Comparison of existing experimental studies
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