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Chapter 1
General Introduction

Abstract This chapter serves as the introduction. In the sun, a static radiative zone
and turbulent convection zone exist. The convection zone is filled with turbulent
thermal convection that transports the energy and angular momentum. On account
of the significant change in the pressure scale height from the base of the convec-
tion zone (60,000km) to the photosphere (300km), the convection size drastically
changes along the radius. This change is the central issue of this thesis. The energy
transport is one of the most important factors in solar stratification models. The
angular momentum transport generates mean flows, such as differential rotation and
meridional flow. The drastic change in the time scale of the convection causes the
shear layer near the surface. In the introduction, we discuss the current understanding
on the basis of the previous studies and the remaining problems.

Keywords Solar interior · Solar large-scale flow · Reynolds stress

1.1 Solar Structure and Mean Flow

1.1.1 Solar Structure

The sun consists of the radiative zone (from the center to 0.715R�) and the convection
zone (from0.715R� to the surface),whereR� is the solar radius (= 6.960×1010 cm).
Figure1.1 shows the distribution of physical variables, i.e., gravitational acceleration,
density etc., which are taken from the solar standard model (Model S: Christensen-
Dalsgaard et al. 1996). Solar luminosity can be estimated from observations (L� =
3.84× 1033 erg s−1). The other variables in the solar interior are calculated by using
the observed luminosity and surface abundanceunder the assumptions of (1) spherical
symmetricity (one dimension), (2) hydrostatic equilibrium, i.e., the balance of the
pressure gradient and the gravity force, and (3) thermal equilibrium, i.e., the energy
balance between nuclear fusion and transport. The effects of rotation and magnetic
field are not included in the solar standard model. Because the plasma temperature
exceeds 107 K near the core, energy is continuously generated by nuclear fusion.

© Springer Japan 2015
H. Hotta, Thermal Convection, Magnetic Field, and Differential Rotation
in Solar-type Stars, Springer Theses, DOI 10.1007/978-4-431-55399-1_1
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Fig. 1.1 Various physical quantities in the solar interior from the center to the surface estimated
with the solar standard model: a gravitational acceleration, b absolute value of the specific entropy
gradient, c density, d gas pressure, e pressure scale height, f temperature, g radiative diffusivity,
h radiative luminosity. The values are obtained from Christensen-Dalsgaard et al. (1996) and his
website

In the radiative zone, this energy is transported by efficient radiation. From 0.2R�
to 0.715R� (the base of the convection zone), the radiative diffusion transports all
solar luminosity, i.e., L� (see Fig. 1.1h). This region is convectively stable. In the
convection zone, the radiation is no longer efficient and the atmosphere becomes
superadiabatically stratified, i.e., ds/dr < 0, where s is the specific entropy. Thus,
this zone is characterized by turbulent thermal convection and the convective energy
flux dominates over the radiative energy flux.

The convective energy flux, which is required to determine the temperature gra-
dient and accordingly the solar structure, is estimated with the mixing length model
(e.g. Stix 2004). In thismodel, themixing length (lmix),which is themean free path for
each convective parcel, is specifiedwith a constant parameterαmix as: lmix = αmixHp,
where Hp is the pressure scale height. It is assumed that each convective parcel is
accelerated by buoyancy along the mixing length. Then a certain type of averaged
vertical velocity and its convective energy flux can be estimated with the equation of
motion.Once the convective energyflux is estimatedone can solve equations to obtain
the distribution of entropy and the mixing length parameter simultaneously (αmix).

The results of the solar standardmodel are confirmedwith global helioseismology
data. The solar global oscillation observed at the photosphere is described with
spherical harmonics (Ylm) in horizontal space and Fourier transforms in time. The
harmonic components are compared with the oscillations that are computed with the
solar model after assuming linear and adiabatic perturbations. When the residuals of
themodelwith respect to observations are assumed linear, inversion can be performed
to obtain information on the solar interior (see also Stix 2004). Although there is an
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unexplained anomaly at the base of the convection zone, the residuals between the
solar standard model and helioseismology are small. δc2s /c2s is typically 10

−3 where
c2s is the square of the speed of sound and δc2s is its difference (Basu et al. 1997).

1.1.2 Observation of Solar Mean Flow, Differential Rotation
and Meridional Flow

Helioseismology has also revealed the mean structure of the solar flow such as differ-
ential rotation (global helioseismology) andmeridional flow (local helioseismology).

The solar differential rotation on the surface was first observed by Christoph
Scheiner as early as 1630 by using the motion of the sunspots. Then, in 1855
Carrington started the first quantitative observation of the solar rotation (see review
by Beck 2000). Although several researchers expected the existence of a shear layer
below the surface with different rotation rate between sunspots and Doppler velocity
(see the introduction in Chap. 4), the internal structure of the solar differential rota-
tion remained unknown until the advent of helioseismology. Solar rotation is fast
enough to break the spherical symmetry of global oscillation and causes frequency
splitting in terms of the azimuthal order m owing to the asymmetry in travel times
between the eastward and westward waves (see review by Christensen-Dalsgaard
2002). Figure1.2 shows the obtained result of the internal differential rotation esti-
matedwith data ofHMI (data fromHowe et al. 2011). The result shows five important
features regarding the internal rotation. First the equator region rotates faster than the
polar region. Note that the reliability of the data diminishes around the polar region.
Second the distribution of the angular velocity is not cylindrical but conical in con-
trast to the Taylor-Proudman theory (see the theoretical discussion in Sect. 1.2). Third
the radiation zone rotates almost rigidly at intermediate rate between the equator and
the pole. Forth, there is a thin shear layer between the convection zone and radiation
zone called tachocline. Although the details of the structure are controversial, the

Fig. 1.2 An inversion of the helioseismology from HMI data about the angular velocity in the unit
of nHz (Howe et al. 2011) a on meridional plane and b along the selected colatitude

http://dx.doi.org/10.1007/978-4-431-55399-1_4
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tachocline is thought to be ellipsoidal. For example, Charbonneau et al. (1999) show
that the center of the tachocline is rt/R� = 0.693 ± 0.003 at the equator which is
below the base of the convection zone and rt/R� = 0.717± 0.003 at the pole which
is slightly above the base. Although the thickness of the tachocline is still controver-
sial, Charbonneau et al. (1999) show that the thickness is from Δt = 0.016R� at the
equator to Δt = 0.038R� at the pole. The fifth important feature is the near surface
shear layer (NSSL). There are significant deviations from the Taylor-Proudman state
above r = 0.95R�. In this layer, the angular velocity increases along the radius (see
also the introduction of Chap.4). The detailed distribution of the NSSL is studied
by Corbard and Thompson (2002), using f modes from MDI data. They measured
the gradient of the NSSL as about −400 nHz/R�. The rotation rate was found to
vary almost linearly with depth (Howe 2009). We note that the deviation from the
Taylor-Proudman state in the NSSL is larger than that in the deep convection zone.
This shear layer is the one of the targets of this thesis.

The meridional flow, known as the mean flow on the meridional plane, i.e., 〈vr〉
and 〈vθ 〉, is also observed on the surface with Doppler measurements (Hathaway
et al. 1996; Hathaway 1996), where the parenthesis 〈〉 denotes the zonal average.
These observations show the poleward meridional flow with the amplitude of a
several 10m s−1 (Giles et al. 1997). Using the global helioseismology, i.e., global-
standing mode of the acoustic wave, it is difficult to distinguish the effect of the
meridional flow as a perturbation of the standing-mode from those of magnetic field

Fig. 1.3 The figure is from Zhao et al. (2013) with modifications. Meridional flow profile, obtained
with the acoustic travel time. Panel a shows a flow profile on the meridional plane, with positive
velocity directing northward. Panel b shows a flow profile as a function of latitude averaged over
0.90–0.93R� (red line) and 0.95–0.98R� (black line) (Color figure online)

http://dx.doi.org/10.1007/978-4-431-55399-1_4
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and the centrifugal force since the amplitude of themeridional flow is relatively small
(∼10m s−1) compared to the convection at the surface (∼1 km s−1) and the speed
of rotation (2 km s−1). Duvall et al. (1993) suggested a new technique to investigate
the flow structure in the solar interior; they called it “local helioseismology.” In the
time-distance method of local helioseismology, a correlation between two specific
points is estimated. The travel time difference between the forward and backward
waves is sensitive to the internal structure of the horizontal flow. Although the result
show only a fraction of the meridional flow in the solar convection zone (the upper
4% in radius and ±60◦ in latitude), there is a poleward meridional flow in both
hemispheres. Haber et al. (2002) also showed the asymmetry of the meridional flow
about the equator and its dependence on time. In a certain phase of the solar cycle
there is counter flow in the polar region.

Recent observation byZhao et al. (2013) shows a 2Ddistribution of themeridional
flow (Fig. 1.3a). Although the reliability in deeper layer is controversial, a return
(equatorward) flow is seen in themiddle of the convection zone and another cell exists
in the lower part of the convection zone, i.e., multi-cell structure. In the near surface
layer, the coherent poleward flow is observed, which is consistent with previous
studies. Figure1.3b indicates that the amplitude of the meridional flow increases
along the radius. This result is important for understanding of the NSSL in Chap. 4.

1.2 Theory and Numerical Calculation for Differential
Rotation and Meridional Flow

1.2.1 Gyroscopic Pumping and Thermal Wind Balance

To understand the maintenance mechanism of the mean flow, i.e., the differential
rotation and meridional flow, the gyroscopic pumping and thermal wind balance
equations, which we discuss in this section, are helpful (Rempel 2005; Miesch 2005;
Miesch and Hindman 2011).

In the beginning, the Reynolds stress is reviewed. First, we consider the equation
of motion in fluid dynamics:

ρ0
∂v
∂t

= −∇ · (ρ0vv) − ∇p, (1.1)

where ρ0, v, and p is time-independent density, fluid velocity and gas pressure,
respectively. Using a kind of ensemble average 〈〉, which is likely the zonal average
at following discussion, the quantities (Q) are divided into the mean part 〈Q〉 and the
perturbed part Q′, i.e., Q = 〈Q〉 + Q′. Then, the equation for the mean velocity 〈v〉
is expressed as

ρ0
∂〈v〉
∂t

= −∇ · (ρ0〈v〉〈v〉) − ∇ · (ρ0〈v′v′〉) − ∇〈p〉, (1.2)

http://dx.doi.org/10.1007/978-4-431-55399-1_4
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where 〈v′〉 = 0 is used. The terms−∇·(ρ0〈v〉〈v〉) and−∇〈p〉 represent the processes
from the mean quantities to the mean quantities. The term−∇ · (ρ0〈v′v′〉) represents
the effect from the perturbed part to the mean part via the nonlinear coupling of
the fluid velocity. The quantity ρ0〈v′v′〉 is called the Reynolds stress. In anisotropic
turbulence, nondiagonal terms in the Reynolds stress exist, which cause anisotropic
momentum transport.

To derive the equations for gyroscopic pumping and thermal wind balance, we
consider the equation of motion without the kinetic viscosity and the magnetic field
contributions.

ρ0
∂u
∂t

= −∇ · (ρ0uu) − ∇p1 − ρ1ger, (1.3)

where p1, ρ1, g, and er are the perturbed gas pressure, the perturbed density, the
gravitational acceleration, and the unit vector along the radial direction. In the fol-
lowing discussion u and v are the fluid velocities at the inertial reference system
and the rotating system, i.e., u = v + r sin θΩ0eφ , where Ω0 is the rotation rate of
the system. The background stratification, ρ0 and p0, is assumed to be in spherically
symmetric hydrostatic equilibrium, i.e.,

0 = −dp0
dr

− ρ0g. (1.4)

Gyroscopic pumping is derived from the conservation equation for the angular
momentum, i.e., originally from the zonal component of the equation of motion

ρ0
∂uφ

∂t
= − 1

r2
∂

∂r

(
r2ρ0uruφ

)
− 1

r sin θ

∂

∂θ

(
sin θρ0uθ uφ

)

− 1

r sin θ

∂

∂φ
(ρ0uφuφ) − ρ0uφur

r
− cot θρ0uφuθ

r

− 1

r sin θ

∂p1
∂φ

. (1.5)

The zonal component means the φ-component in the spherical geometry (r, θ, φ),
where r and θ are the radius and the colatitude, respectively. Then, wemultiply r sin θ

and define the specific angular momentum asL = uφr sin θ . The equation becomes

ρ0
∂L

∂t
= − 1

r

∂

∂r

(
r2 sin θρ0uruφ

)
− ∂

∂θ

(
sin θρ0uθ uφ

)

− ∂

∂φ
(ρ0uφuφ) − ρ0uφur sin θ − ρ0uφuθ cos θ − ∂p1

∂φ

= − 1

r2
∂

∂r

[
r2(r sin θρ0uruφ)

]
− 1

r sin θ

∂

∂θ

[
sin θ(r sin θρ0uθ uφ)

]

− 1

r sin θ

∂

∂φ

[
r sin θ(ρ0uφuφ + p1)

]

= − ∇ · [r sin θ(ρ0uuφ + p1eφ)]. (1.6)
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Gyroscopic pumping shows the balance of the angular momentum transport on the
meridional plane after the zonal average. When an anelastic approximation is valid
for the mean flow (∇ · (ρ0〈vm〉) = 0), Eq. (1.6) with zonal average is expressed as

ρ0
∂〈L 〉

∂t
= −ρ0〈vm〉 · ∇〈L 〉 − ∇ · (r sin θρ0〈v′

mv′
φ〉). (1.7)

Then the thermal wind balance equation is derived. The thermal wind balance equa-
tion is the originally zonal component of the vorticity equation. For a rotational sys-
tem with rotation rate Ω0, the equation of motion, after some algebra, is expressed
using the Coriolis force as

∂v
∂t

= −(v · ∇)v − ∇p1
ρ0

− ρ1

ρ0
ger + 2v × Ω0, (1.8)

where Ω0 = Ω0ez and ez = cos θer − sin θeθ is the unit vector along the rotational
axis (z-axis). Using the vector formula

(v · ∇)v = ∇
(

v2

2

)
− v × (∇ × v), (1.9)

and taking the curl of the equation of motion, the vorticity equation is obtained

∂ω

∂t
= ∇ × (v × ω) + ∇ ×

(
−∇p1 + ρ1ger

ρ0

)
+ ∇ × (2v × Ω0). (1.10)

In the thermal wind equation, the zonal component is focused. Then, the zonal com-
ponent of the second and third terms in the right-hand side is computed as

[
∇ ×

(
−∇p1 + ρ1ger

ρ0

)]

φ

= 1

ρ2
0r

dρ0

dr

∂p1
∂θ

+ g

ρ0r

∂ρ1

∂θ

= − g

ρ0r

[(
∂ρ

∂p

)

s

∂p1
∂θ

− ∂ρ1

∂θ

]

= g

ρ0r

(
∂ρ

∂s

)

p

∂s1
∂θ

, (1.11)

and

[∇ × (2v × Ω0)]φ = [2(Ω0 · ∇)vr − 2(v · ∇)Ω0]φ
= 2(Ω0 · ∇)vφ = 2r sin θΩ0

∂Ω1

∂z
, (1.12)
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respectively. Subsequently, the zonal average for the vorticity equation is

∂〈ωφ〉
∂t

= [〈∇ × (v × ω)〉]φ + 2r sin θΩ0
∂〈Ω1〉

∂z
+ g

ρ0r

(
∂ρ

∂s

)

p

∂〈s1〉
∂θ

. (1.13)

The equations for the mean flows are thus derived. The equations are originally
derived from the equation of motion, thus the gyroscopic pumping and the thermal
wind balance equation show the time evolution of the angular momentum and the
meridional flow, respectively. In the steady state (∂/∂t = 0), however, the gyroscopic
pumping and the thermal wind balance equations determine the meridional flow and
the differential rotation, respectively. In the steady state, gyroscopic pumping is

ρ0〈vm〉 · ∇〈L 〉 = −∇ · (r sin θρ0〈v′
mv′

φ〉). (1.14)

This equation indicates that when the Reynolds stress is given, the meridional flow
〈vm〉 can be determined. The thermal wind balance equation in the steady state is
expressed as

− 2r sin θΩ0
∂〈Ω1〉

∂z
= [〈∇ × (v × ω)〉]φ + g

ρ0r

(
∂ρ

∂s

)

p

∂〈s1〉
∂θ

. (1.15)

This also indicates that when the advection/stretching term ([〈∇×(v×ω)〉]φ) and the
latitudinal entropy gradient are given, the differential rotation 〈Ω1〉 is determined.
Note that there is a possibility that themean flows, 〈vm〉 and 〈Ω1〉, affect the Reynolds
stress in return.

The distribution of the Reynolds stress is required in the direct numerical calcula-
tions, otherwise models have to be used (Kitchatinov and Rüdiger 1995; Küker and
Stix 2001; Rempel 2005; Hotta and Yokoyama 2011). The investigations that use
direct numerical calculations are reviewed in the next section.

1.2.2 Numerical Calculations for Differential Rotation
and Meridional Flow

There have been numerous studies about differential rotation using the mean-field
model in which the thermal convection is treated as the parameterized effect (e.g.
Kitchatinov and Rüdiger 1995; Küker and Stix 2001; Rempel 2005; Hotta and
Yokoyama 2011) and the three-dimensional model in spherical shell including ther-
mal convection using the anelastic approximation (Gilman and Miller 1981; Glatz-
maier 1984; Miesch et al. 2000; Brun and Toomre 2002; Miesch et al. 2006, 2008;
Brun et al. 2011). In this type of numerical calculations, the solar parameters in the
standard model are adopted as the background stratification.
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The latest conclusions from these studies are summarized as follows: (1) A banana
cell-like convective structure causes the equatorward angular momentum transport
(Miesch et al. 2000). (2) Radially inward angular momentum transport is established
in almost the whole of the convection zone (Brun and Toomre 2002). (3) A latitudinal
entropy gradient that corresponds to a temperature difference of ∼10K between the
pole and the equator is required to reproduce the conical profile (Miesch et al. 2006)
and the tachocline (Brun et al. 2011).

The banana cell is especially established outside the tangential cylinder (sin θ >

rbase/r, where rbase is the location of the base of the convection zone). Because the
Coriolis force is expressed as 2ρ0v×Ω0, the fluid parcel rotates around the rotational
axis when the disturbance from the boundary is not significant. This is analogous to
the Larmor motion of the plasma particle, where the Lorentz force is proportional to
v × B. A topological explanation for the equatorward angular momentum transport
is given in Miesch (2005). In the northern hemisphere, the prograde flow (v′

φ > 0)
is bent equatorward (v′

θ > 0) and the retrograde flow (v′
φ < 0) is bent poleward

(v′
θ < 0). As a result, the correlation is positive 〈v′

θ v′
φ〉 > 0 (see Fig. 1.4). This

implies equatorward angular momentum transport. More generally this is explained
with the equation of motion on the perturbed velocity along the λ-direction (v′

λ),
where λ is the direction perpendicular to the rotation axis. Note that the unit vector
in λ is eλ = sin θer + cos θeθ . The equation of motion is expressed as

∂v′
λ

∂t
= [· · · ] + 2v′

φΩ0. (1.16)

This shows that the banana cell is likely to generate positive correlation 〈v′
λv′

φ〉 > 0,
with outward angular momentum transport. This is the essential mechanism accel-
erating the equator.

Next we discuss the radial angular momentum transport. When the banana cell
is not well established, the correlation between the radial and zonal velocities is
generated from the radial component of the equation of motion.

Fig. 1.4 Figure is from
Miesch et al. (2000) with
some modifications. At low
latitude, there are banana
cells
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∂v′
φ

∂t
= [· · · ] − 2v′

rΩ0 sin θ. (1.17)

Thus, a negative correlation 〈v′
rv′

φ〉 < 0 is generated. This implies downward angular
momentum transport in the convection zone. In most of the calculations, the angular
momentum flux by the Reynolds stress peaks in amplitude around the middle depth
of the convection zone. This indicates that the value −∇ · (ρ0r sin θ〈v′

rv′
φ〉er) is

negative (positive) at the upper (lower) part of the convection zone. Even when the
differential rotation is conical, the distribution of the angular momentum is almost
cylindrical, i.e., ∇〈L 〉 ∼ d〈L 〉/dλ, because of the factor of (r2 sin2 θ ). Hence
gyroscopic pumping becomes

ρ0〈vm〉d〈L 〉
dλ

= −∇ · (ρ0r sin θ〈v′
rv′

φ〉er). (1.18)

Then poleward (equatorward) meridional flow is established at the upper (lower) part
of the convection zone with a positive value of d〈L 〉/dλ.

The discussion then moves to the thermal wind balance equation (1.15), i.e., the
conical profile, the tachocline, and the NSSL. Equation (1.15) indicates that the con-
tributions from the advection/stretching term and/or the entropy gradient are required
to maintain the conical profile, the tachocline, and the NSSL, because they are in the
non-Taylor-Proudman state (∂〈Ω1〉/∂z 	= 0) in steady state. In the convection zone,
the entropy gradient is considered critical (the role of the advection/stretching term is
discussed in Chap. 4). There are two possible mechanisms to generate the latitudinal
entropy gradient. The first is an anisotropic correlation of the velocity and entropy
〈v′

θ s′
1〉. In the convection zone, the flow is likely aligned along the rotational axis

and the correlation is negative 〈v′
rv′

θ 〉 < 0. In thermal convection, the radial velocity
and entropy fluctuation are well correlated 〈v′

rs′
1〉 > 0, because the hot (cool) plasma

moves upward (downward). As a result, a negative correlation 〈v′
θ s′

1〉 that transports
the positive entropy poleward is generated. Miesch et al. (2006) calculated that the
temperature difference between the pole and the equator generated by this process
is approximately 8K which is not sufficiently large to explain the solar differential
rotation. Thus,Miesch et al. (2006) added a latitudinal entropy gradient as a boundary
condition at the base of the convection zone. The second mechanism to generate the
latitudinal entropy gradient is the penetrating meridional flow originally suggested
by Rempel (2005) in his mean-field model. When the anticlockwise meridional flow
is established in the northern hemisphere, the downflow at the pole penetrates the
overshoot region and generates positive entropy perturbation. The same phenom-
enon occurs in the upflow at the equator region and negative entropy perturbation is
generated. Brun et al. (2011) simultaneously reproduced these two mechanisms and
established the conical profile and tachocline in a self-consistent manner.

Finally in this section, the latest numerical calculations are introduced. Miesch
et al. (2008) is a state-of-art study which considered the convection zone only. They
achieved the highest resolution and provided the latest understanding of the physics
in the convection zone. Their upper boundary is at r = 0.98R� and the resolution

http://dx.doi.org/10.1007/978-4-431-55399-1_4
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Fig. 1.5 Radial velocity vr at selected depths in Miesch et al. (2008). a 0.98R�, b 0.92R�,
c 0.85R�, and d 0.71R�

is Nr × Nθ × Nφ = 257 × 1,024 × 2,048, where Nr , Nθ , and Nφ are the number
of grid points in the radial, latitudinal, and longitudinal direction, respectively. The
horizontal grid spacing is approximately 2.2Mm at the top boundary. Figure1.5
shows the distribution of the radial velocity. The spectral peak of the radial velocity
is estimated at l ∼ 80, which corresponds to the horizontal scale of 55Mm. On
account of the low viscosity due to the high resolution, a relatively proper balance
of the angular momentum transport between the meridional flow and the Reynolds
stress is established. Figure1.6 shows the results for the differential rotation, the
meridional flow, and the temperature distribution. Miesch et al. (2008) added the
latitudinal temperature gradient as boundary condition and established the solar-like
conical profile of the differential rotation. The origin of the counter flows near the
boundary was not well discussed; nonetheless the prominent one-cell meridional
flow was reproduced in the convection zone.

Fig. 1.6 a Differential rotation, b angular velocity at selected latitudes, c meridional flow, and
d mean temperature perturbation in Miesch et al. (2008)
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1.3 Remaining Problems

As discussed in the previous sections, observations, theory, and the numerical
calculations have improved our understanding of the convection zone. There are
essentially two remaining problems in the numerical calculation: (1) The difficulty
in increasing the resolution. (2) The inaccessibility to the real solar surface. The
causes are explained in the next section. In this section, the reason why they are
required is explained.

There are several reasons why high resolution is required. Some are related to the
magnetic field. Zwaan (1987) reported that themagnetic flux of sunspots is from 1020

to 1022 Mx. At the base of the convection zone, the magnetic strength is estimated
to be 5 × 104 G to reproduce the tilt angle of the sunspot pair (Weber et al. 2011).
Several studies suggest that magnetic field with this strength can be generated by
explosion processes (Rempel and Schüssler 2001; Hotta et al. 2012a). These results
indicate that the radius of the magnetic flux tube at the base of the convection zone
is 2.5Mm for the largest sunspot. This is comparable with the grid spacing of the
current highest resolution calculation (Miesch et al. 2008). To avoid dissipation by
numerical diffusivity, at least 10 grid points are required to resolve the flux tube.
In addition, Cheung et al. (2006) suggested that the magnetic Reynolds number,
which is determined by the resolution, has a significant impact on the behavior of
the flux tube.

There is another requirement for the higher resolution owing to local (small scale)
dynamo action. The dynamo, especially the stretching, is most effective in small
scales. Although some numerical calculations in the local small box reveals the prop-
erties of the local dynamo on the photosphere (Vögler and Schüssler 2007; Pietarila
Graham et al. 2010), the turbulent effect on the generation and the transportation of
the magnetic field in the convection is unclear because it requires a huge number of
grid points to resolve the inertial scale of the turbulence.

A fundamental and important issue which requires high resolution, is the connec-
tion between the photosphere and the convection zone. The convection scale in the
photosphere is quite small (∼1Mm); hence, the calculation for both the solar global
scale (the sun’s circumference is 4,400Mm) and the photosphere’s small convection
also requires a huge number of grid points. This raises two important questions.
(1) How does small-scale convection in the near surface layer influence the structure
of large-scale convection? (2) How is the NSSL formed and maintained? Detailed
introduction to the NSSL is given in Chap.4. The NSSL is thought to be a layer
where the rotational influence drastically changes as the time scale of the convec-
tion changes. The requirement to address these problems are the accessibility to the
solar surface as well as higher resolution. Anelastic approximation, the currently
well-adopted method, however, has difficulties with both of them. A new method is
adopted in this thesis.

http://dx.doi.org/10.1007/978-4-431-55399-1_4
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1.4 Reduced Speed of Sound Technique

Before the problems with the anelastic approximation are explained, the reason why
the anelastic approximation is adopted for the numerical calculations of the solar
and stellar convection zone needs to be explained. One of the most significant dif-
ficulties arises from the large speed of sound, and the related low Mach-number
flows throughout most of the convection zone. At the base of the convection zone,
the speed of sound is approximately 200 km s−1, whereas the speed of convection is
thought to be 50m s−1 (e.g. Stix 2004). The time step must therefore be shorter on
account of the CFL condition in an explicit fully compressible method even when
we are interested in phenomena related to convection. To avoid this situation, the
anelastic approximation is frequently adopted in which the mass conservation equa-
tion is replaced with ∇ · (ρ0v) = 0, where ρ0 is the reference density and v is the
fluid velocity. In this approximation, the speed of sound is assumed infinite and one
needs to solve the elliptic equation for pressure, which filters out the propagation
of the sound wave. Because the anelastic approximation is applicable deep in the
convection zone and the time step is no longer limited by the high speed of sound,
the solar global convection has been investigated with this method in many studies
dealing with the differential rotation, the meridional flow, the global dynamo, and
dynamical coupling of the radiative zone (Miesch et al. 2000, 2006, 2008; Brun and
Toomre 2002; Brun et al. 2004, 2011; Browning et al. 2006; Ghizaru et al. 2010) as
explained in the previous section.

There are, however, two drawbacks in the anelastic approximation. The first is the
breakdownof the approximation near the solar surface.Because the convection veloc-
ity increases and the speed of sound decreases in the near surface layer (>0.98R�),
they have similar values and the anelastic approximation cannot be applied. The
connection between the near surface layer and the global convection is an ongoing
challenge (e.g. Augustson et al. 2011). A global calculation, however, which includes
all multiple scales, has not been achieved yet.

The second drawback is the difficulty in increasing the resolution. The pseudo-
spectral method based on spherical harmonic expansion is frequently adopted, espe-
cially for solving the elliptic equation of pressure. In this method, the nonlinear terms
require the transformation of physical variables from real space to spectral space and
vice versa at every time step. The calculation cost of the transformation is estimated
at O(N2

θ Nφ logNφ) owing to the absence of a fast algorithm for the Legendre trans-
formation, which is as powerful as the fast Fourier transformation (FFT), where
Nθ and Nφ are the maximum mode numbers in latitude and longitude, respectively.
Thus, the computational cost of this method is significant and limits the achievable
resolution. Owing to this, several numerical calculations of the geodynamo adopt the
finite differencemethod to achieve high resolution (Kageyama et al. 2008;Miyagoshi
et al. 2010). As explained above, when the near surface layer is included in the cal-
culations, the typical convection scale decreases and a large number of grid points
is required. The resolution is critical to assess the solar surface. Note that several
studies using the finite difference method have been performed in the stellar or solar
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context using a moderate ratio for the speed of sound and convection velocity by
adjusting the radiative flux and stratification (Käpylä et al. 2011, 2012). Although
this type of approach offers insight for the maintenance of the mean flow and the
magnetic field, proper reproduction using solar parameters, such as stratification,
luminosity, ionization effect, and rotation, and direct comparison with observations
cannot be achieved.

The reduced speed of sound technique (here after RSST, Rempel 2005, 2006;
Hotta et al. 2012b) can overcome such drawbacks while avoiding the severe time step
caused by the speed of sound. In the RSST, the equation of continuity is replaced by

∂ρ1

∂t
= − 1

ξ2
∇ · (ρ0v), (1.19)

where ρ0 and ρ1 are the background and perturbed density, respectively. Then the
speed of sound is reduced ξ times, but the dispersion relation for sound waves
remains; the wave speed decreases equally for all wavelengths. This technique
does not change the hyperbolic character of the equations, which can be integrated
explicitly. Owing to this hyperbolicity, only local communication is required. This
decreases the communication overhead in parallel computing. Simple algorithms and
low-cost communication significantly facilitate high-resolution calculations. Hotta
et al. (2012b) investigated the validity of the RSST in a thermal convection problem.
They concluded that the RSST is valid when theMach number, defined using the root
mean square (RMS) velocity and the reduced speed of sound ĉs, is smaller than 0.7.
Another advantage of this method is the accessibility to the real solar surface with
inhomogeneous ξ . The Mach number substantially varies in the solar convection
zone. When moderate or no reduction in the speed of sound is used in the near sur-
face layer while using a large ξ around the bottom part of the convection zone, the
properties of the thermal convection, even including the surface, is properly inves-
tigated without losing the physics. It is confirmed in Hotta et al. (2012b) that the
inhomogeneous ξ is valid when the Mach number is less than 0.7.

1.5 Thesis Goals

This thesis has three goals.

1. To develop the numerical code for effectively managing the huge number of
CPUs (∼105) in a good performance with the reduced speed of sound technique
in the spherical geometry. Even with the RSST, there are further requirements for
treating the near surface layer in spherical geometry, such as the partial ionization
effect of hydrogen and helium and the severe time step caused by the convergence
of the grid spacing around the pole. The development of such complex numerical
code with good scaling and performance requires sophisticated algorithms and
detailed tuning for specific supercomputers. These steps are shown in Chap.2.

http://dx.doi.org/10.1007/978-4-431-55399-1_2
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2. To achieve the unprecedented resolution and small-scale convectionwith unprece-
dented higher upper boundary and attain significant scale gap in the thermal con-
vection between the middle of the convection zone and the near surface layer.
This will enable us to address how small-scale convection in the near surface
layer influences the convection in the deeper layers. In addition, higher resolution
makes the convection significantly turbulent, which allows to better understand
the generation and transport of small-scale magnetic field. These are discussed
in Chap.3. Note that, in Chap. 3, no rotation is taken into account to focus on the
effects of turbulent convection.

3. To achieve the near surface shear layer with rotation. In this layer, the influence of
the rotation is significantly different from that in the deeper convection zone. This
means that the time and spatial scales of thermal convection change significantly.
Although including these scales in the numerical calculations is difficult and
challenging, the proposed high-performance method and numerical code can do
it. This is discussed in Chap.4.

In Chap.5, we summarize the thesis results and discuss the conclusion.
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Chapter 2
Basic Equations and Development
of Numerical Code

Abstract In this chapter, we show our development of numerical code. The detailed
setting for calculations in the solar convection zone is introduced. The near-surface
region (>0.98R�) is included for the solar global convection calculation for the first
time. Our new challenge for including the partial ionization effect of Hydrogen and
Helium is explained. In order to deal with large number of CPUs in the huge parallel
computer,we adopt efficient parallelizaionmethod, Peano-Hilbert space-filling curve
and Yin-Yang grid. These are explained. Finally the method for analyzing the huge
size data outputted by the calculations are introduced.

Keywords Yin-Yang grid · Artificial viscosity ·Managing huge data · Equation of
state including partial ionization

2.1 Model Setting

2.1.1 Equations

We solve the three-dimensional magnetohydrodynamic equations with the RSST in
the spherical geometry (r, θ, φ) as follows:

∂ρ1

∂t
= − 1

ξ2
∇ · (ρ0v), (2.1)

ρ0
∂v
∂t

= −ρ0(v · ∇)v − ∇
(

p1 + B2

8π

)
+ ∇ ·

(
BB
4π

)

− ρ1ger + 2ρ0v × Ω0, (2.2)

∂B
∂t

= ∇ × (v × B), (2.3)

ρ0T0
∂s1
∂t

= −ρ0T0(v · ∇)s1 + 1

r2
d

dr

(
r2κrρ0cp

dT0

dr

)
+ Γ, (2.4)

where ρ, p, s, T , v, and B are the density, gas pressure, specific entropy, temperature,
fluid velocity, and magnetic field, respectively. Subscript 1 denotes the fluctuation
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from the time-independent spherically symmetric reference state, which has sub-
script 0. g, κr, and Γ are the gravitational acceleration, the coefficient of the radiative
diffusivity, and the surface cooling term, respectively.Ω0 is the rotating vector of the
rotating frame. The setting of these values is explained in the following paragraph.
The equation of state required to close the MHD system is explained in Sect. 2.1.5.

Note that we do not have any explicit turbulent thermal diffusivity and viscosity
(Miesch et al. 2000) to maximize the fluid and magnetic Reynolds number but use
the artificial viscosity introduced in Rempel et al. (2009). This method is explained
in Sect. 2.2.2.

2.1.2 Background Stratification and Radiation

Figure2.1 shows the reference state used in this study in comparison with Model S
(Christensen-Dalsgaard et al. 1996). The reference stratification is determined by
solving the one-dimensional hydrostatic equation and the realistic equation of state

dp0
dr

= −ρ0g, (2.5)

ρ0 = ρ0(p0, s0), (2.6)
ds0
dr

= 0. (2.7)
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Fig. 2.1 The values at the reference state for a density, b gas pressure, c temperature, d gravitational
acceleration, e pressure scale height, f heat capacity at constant pressure. The black and red lines
show the reference state in this study and the values from Model S, respectively. The value of the
gravitational acceleration in this study is exactly the same as Model S (Color figure online)
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Equation (2.6) is calculated with the OPAL repository including partial ionization.
The adiabatic stratification is set as the reference state and initial state. The stratifica-
tion becomes superadiabatic after the development of convection as a consequence of
radiative heating near the bottom and radiative cooling at the top as described below.
The gravitational acceleration and the radiative diffusion are adopted fromModel S.
The boundary is set at r = 0.998R� with the values fromModel S and the equations
are integrated inward with the fourth-order Runge-Kutta method. A total of 3,072
grid points are used in the integration and stored. For each of the time-dependent
calculations in this study, the interpolated values to each grid (i.e., variables with
subscript 0 in Eqs. (2.1) and (2.4)) are from the stored data.

In the real sun, the surface is continuously cooled by radiation. Because the
adopted boundary is not located at the real solar surface even though it is unprece-
dentedly closer to the real surface, we add artificial cooling (Γ ) in Eq. (2.4)

Γ (r) = − 1

r2
∂

∂r
(r2Fs), (2.8)

r2Fs(r) = r2minFr(rmin) exp

[
−

(
r − rmax

dc

)2
]

, (2.9)

Fr(r) = −κrρ0cp
dT0

dr
, (2.10)

where rmin and rmax denote the location of the bottom boundary and top boundary,
respectively. This procedure ensures that the radiative luminosity inputted from the
bottom is released through the top boundary. The realistic simulation for the near
surface layer shows that the thickness of the cooling layer by radiation is similar to
the local pressure scale height (e.g. Stein et al. 2009). Typically, two pressure scale
heights are adopted for the thickness of the cooling layer, i.e., dc = 2Hp0(rmax),
where Hp0 = p0/(ρ0g) is the pressure scale height.

2.1.3 Setting for RSST

In this thesis, the factor of the RSST is set to make the adiabatic reduced speed of
sound uniform in space. The adiabatic speed of sound is defined as:

cs(r) =
√(

∂p

∂ρ

)

s
. (2.11)

Then the factor of the RSST is set as

ξ(r) = ξ0
cs(r)

cs(rmin)
. (2.12)
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In this thesis, we adopt ξ0 = 120 for calculations in Chap.3. Thus, the reduced
speed of sound ĉs ≡ cs/ξ = 1.88 km s−1 at all depths. Hotta et al. (2012) suggested
that the RSST is valid for thermal convection under the criterion of vrms/ĉs < 0.7,
where vrms is the RMS (root mean square) convection velocity. Thus, the we can
properly treat the convection with vrms < 1.3 km s−1 in this model. In Chap.4, since
ξ = 200 is adopted, the valid convection speed is less than 0.79 km s−1. Hotta et al.
(2012) suggest that the total mass is not conserved with inhomogeneous ξ and long-
term drift is not avoided from the reference state, i.e., mass continuously decreases
or increases. In this study, however, we adopt different way to avoid this type of
long-term drift. When the equation of continuity is treated as

∂

∂t

(
ξ2ρ1

)
= −∇ · (ρ0v) , (2.13)

the value M̂ is conserved in the rounding error with appropriate boundary conditions,
in which

M̂ =
∫

V

ξ2ρ1dV . (2.14)

Although the radial distribution of the density is different from the original, the
fluctuation remains small (e.g., ρ1/ρ0 ∼ 10−6) and does not affect the character of
the thermal convection. Hotta et al. (2012) confirmed that the statistical features are
not influenced by the inhomogeneous ξ .

2.1.4 Divergence Free Condition for Magnetic Field

The divergence free condition, i.e.∇·B = 0, is maintained with the diffusion scheme
for each Runge-Kutta loop. This was also introduced by Rempel et al. (2009). The
original idea for this is thatwhen the diffusion equation for the divergence ofmagnetic
field with an appropriate boundary condition, i.e.,∇ ·B = 0, the numerical generated
divergence error disappears. Thus the following equation is intended to be solved

∂

∂t
(∇ · B) = ∇ · [μ∇(∇ · B)], (2.15)

where μ is the diffusion coefficient and adopted as large as possible for the CFL
condition. In the numerical calculation, the equation:

∂B
∂t

= μ∇(∇ · B), (2.16)

is solved and is mathematically identical with Eq. (2.15).

http://dx.doi.org/10.1007/978-4-431-55399-1_3
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2.1.5 Equation of State

Since our upper boundary is at r = 0.99R� at maximum, in the near-surface region
partial ionization is important (see Fig. 2.1f) and is included in our treatment by using
the OPAL repository with solar abundances of X = 0.75, Y = 0.23, and Z = 0.02,
where X, Y , and Z specify the mass fraction of hydrogen, helium and other heavy
elements, respectively.

In the numerical simulations of the convection in the near surface layer, the ordi-
nary tabular equation of state is widely used (Vögler et al. 2005; Rempel et al. 2009).
However, this is not a good approach in our current simulations, because the devi-
ations from the reference state are small, e.g. ρ1/ρ0 ∼ 10−6 around the base of the
convection zone. Thus we adopt another way to treat the ionization effect in the near
surface layer. The fluctuations from the reference state are calculated as

p1 =
(

∂p

∂ρ

)

s
ρ1 +

(
∂p

∂s

)

ρ

s1, (2.17)

T1 =
(

∂T

∂ρ

)

p
ρ1 +

(
∂T

∂p

)

ρ

p1, (2.18)

e1 =
(

∂e

∂ρ

)

T
ρ1 +

(
∂e

∂T

)

ρ

T1, (2.19)

where e is the internal energy. The first derivatives, such as (∂p/∂ρ)s, are described by
the background variables, ρ0(r), p0(r) . . . and are regarded as functions of depth r. In
the OPAL routine (Rogers et al. 1996), the values (∂e/∂ρ)T , (∂e/∂T)ρ , (∂p/ log ρ)T

and (∂p/logT)ρ are provided for givenρ0,T0, and themass fractions of hydrogen (X),
helium (Y ) and other heavy elements (Z). The relations between the OPAL-provided
variables and the required variables derived from the first law of thermodynamics
are (Mihalas and Mihalas 1984):

(
∂p

∂ρ

)

s
= cp

κtρ0cv
, (2.20)

(
∂p

∂s

)

ρ

= βpT0

κtcv
, (2.21)

(
∂T

∂ρ

)

p
= − 1

ρ0βp
, (2.22)

(
∂T

∂p

)

ρ

= T0

/ (
∂p

∂ log T

)

ρ

, (2.23)

where βp, cv, cp and κt are the coefficient of thermal expansion, the specific heat
at constant volume and pressure, and the coefficient of isothermal compressibility,
respectively and they are defined as follows:
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βp = −
(

∂ log ρ

∂T

)

p
= 1

T0

(
∂p

∂ logT

)

ρ

/ (
∂p

∂ log ρ

)

T
, (2.24)

cv =
(

∂e

∂T

)

ρ

, (2.25)

cp = cv − T0βp

[(
∂e

∂ρ

)

T
−

(
p0
ρ2
0

)]
, (2.26)

κt =
(

∂ log ρ

∂p

)

T
. (2.27)

2.2 Numerical Method

2.2.1 Space Derivative and Time Integration

The numerical method used in this thesis is the same as that in the MURaM code
(Vögler et al. 2005). We use the fourth-order space-centered difference for each
derivative. The first spatial derivatives of quantity u are given by

(
∂u

∂x

)

i
= 1

12Δx
(−ui+2 + 8ui+1 − 8ui−1 + ui−2) , (2.28)

where i denotes the index of the grid position along a particular spatial direction. The
numerical solution of the system is advanced in time with an explicit fourth-order
Runge-Kutta scheme. The system of partial equations is written as

∂U
∂t

= R(U), (2.29)

for Un+1, which is the value at tn+1 = (n + 1)Δt. This is calculated in four steps as

Un+ 1
4

= Un + Δt

4
R (Un) , (2.30)

Un+ 1
3

= Un + Δt

3
R

(
Un+ 1

4

)
, (2.31)

Un+ 1
2

= Un + Δt

2
R

(
Un+ 1

3

)
, (2.32)

Un+1 = Un + ΔtR
(

Un+ 1
2

)
. (2.33)
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2.2.2 Artificial Viscosity

The artificial viscosity used in this thesis is introduced by Rempel et al. (2009). The
defined diffusive flux is

Fi+1/2 = −1

2
ci+1/2φi+1/2 (ur − ul, ui+1 − ui) (ur − ul), (2.34)

φ =
⎧⎨
⎩

[
(ur − ul)

(ui+1 − ui)

]2
for (ur − ul) · (ui+1 − ui) > 0,

0 for (ur − ul) · (ui+1 − ui) ≤ 0,
(2.35)

where ci+1/2 = cs+v+ca is the characteristic velocity which is the sum of the speed
of sound (cs), fluid velocity (v) and the Alfven velocity (ca). To decrease the effect of
viscosity, a multiplier less than unity is sometimes used. In the code, the physical
variables ui are defined at the center of the cell. To calculate the diffusive flux, the
variables ur and ul at a boundary of the cells are defined as:

ul = ui + 1

2
Δui, (2.36)

ur = ui+1 − 1

2
Δui+1, (2.37)

where the tilt of the variable (Δui) is defined as:

Δui = minimod

(
ε(ui+1 − ui),

ui+1 − ui−1

2
, ε(ui − ui−1)

)
, (2.38)

where ε is the factor for the minimod function (1 < ε < 2).
To conserve total energy, the heat from the dissipated kinetic energy and the

magnetic energy should be properly treated. The treatment for ensuring that the
dissipated kinetic and magnetic energies with artificial viscosity are converted to
internal energy is the following. The equation of motion and the induction equation
are expressed as

ρ0
∂v
∂t

= [· · · ] − ∇ · [ρ0Fdiff(v)],
∂B
∂t

= [· · · ] − ∇ · [Fdiff(B)], (2.39)

where Fdiff is the diffusive flux calculated with Eq. (2.35). The heat caused by the
artificial viscosity is estimated and added in the equation of entropy as

ρT
Ds

Dt
= −[ρ0Fdiff(v) · ∇] · v − 1

4π
[Fdiff(B) · ∇] · v. (2.40)
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2.2.3 Peano-Hilbert Space Filling Curve for MPI
Communication

For parallel computation by using the MPI library, the data for the spatial elements,
each of which corresponds to an MPI process, should be loaded to reduce the com-
munication among processes. For example, 64 MPI processes are used to divide
the calculation space in two dimensions as Sx × Sy = 8 × 8, where Sx , and Sy are
the number of data elements for the x-, and y-direction, respectively. As is often
the case, the communication between neighbors is more effective than that between
apart two, the communication in the x-direction is relatively effective, because the
neighborhood in the x-direction is also a neighborhood in the MPI process number.
Regarding the y-direction, it is not the case. In this case, the MPI processes are first
assigned in the x-direction, and after one line is filled in the x-direction, they move to
the y-direction. The neighborhood in the y-direction is always apart 8 inMPI process
numbers. When the computer system is one-dimensional, this assignment decreases
the efficiency of the communication cost. When the MPI process number becomes
more than 103, this becomes even more problematic.

To avoid this problem, the Peano-Hilbert space-filling curve is adopted for order-
ing the MPI rank numbers in the numerical code. This type of space filling curve is
typically adopted by codes using the adaptive mesh refinement (Matsumoto 2007).
The space-filling curve assigns the nodes whose MPI rank is close to the node num-
ber. In this section, the algorithmof the three-dimensional Peano-Hilbert space-filling
curve is introduced.

First, we define the connection vectors for the first-order Peano-Hilbert curve as:

B2 = (0, 1, 0), (2.41)

B3 = (1, 0, 0), (2.42)

B4 = (0,−1, 0), (2.43)

B5 = (0, 0, 1), (2.44)

B6 = (0, 1, 0), (2.45)

B7 = (−1, 0, 0), (2.46)

B8 = (0,−1, 0). (2.47)

The first-order Peano-Hilbert curve has eight points that are connected with the
connection vectors as follows:

1P1 = (0, 0, 0), (2.48)
1Pi = 1Pi−1 + Bi for i = 2, 3, . . . , 8. (2.49)

The first-order Peano-Hilbert curve only consists of connection vectors. The first-
order curve is shown in Fig. 2.2a.
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Fig. 2.2 a First-order,
b second-order, and
c third-order Peano-Hilbert
space-filling curve. The
connection vectors are shown
in red (Color figure online)

(a) (b)

(c)

The second-order Peano-Hilbert curve is made by rotating and connecting the
first-order curve. The rotation matrices are defined as

A1 =
⎛
⎝
1 0 0
0 0 1
0 1 0

⎞
⎠ , A2 =

⎛
⎝
0 0 1
0 1 0
1 0 0

⎞
⎠ ,

A3 =
⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ , A4 =

⎛
⎝

0 0 1
−1 0 0
0 −1 0

⎞
⎠ ,

A5 =
⎛
⎝

0 0 −1
−1 0 0
0 1 0

⎞
⎠ , A6 =

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ ,

A7 =
⎛
⎝

0 0 −1
0 1 0

−1 0 0

⎞
⎠ , A8 =

⎛
⎝
1 0 0
0 0 −1
0 −1 0

⎞
⎠ . (2.50)

Then, the eight rotated first-order curves are prepared as

1Qi
j = Ai

1Pj, (2.51)

Then the second-order curve is defined by connecting them as follows:

2Pi =
⎧⎨
⎩

1Q1
i for i = 1, 2, . . . , 8

2Pi−1 + Bn for m = 1 (i �= 1)
2P8(n−1) + 1Qn

m for others
, (2.52)
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where m = i mod 8 and n = (i − m)/8 + 1. The second order curve is shown in
Fig. 2.2b. The connected vector is highlighted in red. Then, the same procedure is
repeatedly applied and the higher-order curves are generated. The third-order curve
is shown in Fig. 2.2c. We prepare the smallest Peano-Hilbert curve that covers all the
nodes.

2.2.4 Yin-Yang Grid

To include the entire spherical shell, we adopt theYin-Yang grid (Kageyama and Sato
2004). The Yin-Yang grid is a set of two congruent spherical geometries combined in
a complementary way to cover the whole spherical shell. The boundary condition for
each grid is calculated using the interpolation of the other grid. In all calculation, each
grid covers 0.715R� < r < rmax,π/4−δθ < θ < 3π/4+δθ , and−3π/4−δφ < φ <

3π/4 + δφ , where δθ and δφ are the margins for interpolation. We use δθ = 3Δθ/2
and δφ = 3Δφ/2 for the interpolation with the third-order function, where Δθ

and Δφ are the grid spacings in latitudinal and longitudinal directions. Although
the boundary condition for the Yin grid is applied on the edge of the Yin grid, the
boundary condition for the Yang grid is applied on the edge of the Yin grid to avoid
the double solution in the overlapping area of the Yin-Yang grid (Fig. 2.3). The red
thick lines show the location of the horizontal boundary for both Yin and Yang grids.

2.2.5 Big Data Management

The largest number of grid points in this thesis is 512(r) × 1,024(θ) × 3,072(φ) ×
2(Yin Yang). For each output, the data is reorganized from the Yin-Yang grid to the
ordinal spherical geometrywith 512(r)×2,048(θ)×4,096(φ) grid points.With eight
single-precision variables, it costs 512×2,048×4,096(grid points)×8(variables)×
4(single precision) ∼137GB per time step and ∼27TB for 200 steps. Thus, the
treatment of such large number of data is no longer trivial. We adopt two strategies.
First, the two-dimensional data in each layer with constant r is output to one file.
Second, statistical values are calculated in the supercomputer and only the results
that are likely smaller than the original are output. Figure2.4 summarizes the first
strategy. In the calculations, on account of the ordering using the Peano-Hilbert curve,
the data distribution is rather complex which makes the analysis difficult. It is almost
impossible to construct three-dimensional full data on a personal computer after the
data transfer because of the computer memory requirements and reduction time.
Thus, by using the first strategy, we can draw a two-dimensional map of the entire
sphere with small tasks for download and reproduction. In the second strategy, the
required statistical data are almost always the zonal average or at least the horizontal
average, which can be generated from the layered data obtained by using the first
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(a)

(b)

Fig. 2.3 Red lines and Black lines indicate the Yin and Yang grid, respectively. a and b shows the
geometry on the Mollweide projection in the different view points. The thick red lines show the
boundaries for both Yin and Yang grids (Color figure online)

Fig. 2.4 Schematic for the first strategy. The complexly distributed data are reordered for analysis

strategy. We choose the required data in each two-dimensional layer, such as the
RMS velocity, the energy flux and so on. This procedure significantly suppresses the
required storage, analysis time, and the required memory a personal computer.
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Fig. 2.5 a Performance for updating the grid point per second versus the number of cores and
b peak floating point performance

2.2.6 Code Performance

Using a hybrid MPI and automatic intra-node parallelization approach, and the
method explained above, the code efficiently scales up to 105 core counts with almost
linear weak scaling and achieves 14% performance at maximum on the RIKEN
K-computer in Japan. The performance tests are shown in Fig. 2.5. Because the code
includes almost no global communication among cores, this linear scaling is expected
to hold further with larger cores. The code performs 3 × 105 grid update/core/s,
which allows to investigate the interaction of small-scale and large-scale convection
in the spherical shell.
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Chapter 3
Structure of Convection and Magnetic Field
Without Rotation

Abstract Using the developed numerical code, we perform non-rotating high-
resolution calculations of solar global convection, which resolve convective scales
of less than 10Mm. The main conclusions of this study are the following. (1) The
small-scale downflows generated in the near surface layer penetrate down to deeper
layers and excite small-scale turbulence in the region of >0.9R�, where R� is the
solar radius. (2) In the deeper convection zone (<0.9R�), the convection is not
affected by the location of the upper boundary. (3) Using an LES (Large Eddy Sim-
ulation) approach we achieved small-scale dynamo action and maintained a field of
0.15− 0.25Beq throughout the convection zone, where Beq is the equipartition mag-
netic field to the kinetic energy. (4) The overall dynamo efficiency significantly varies
in the convection zone as a consequence of the downward directed Poynting flux and
the depth variation in the intrinsic convective scales. For a fixed numerical resolution
the dynamo relevant scales are better resolved in the deeper convection zone and are
therefore less affected by numerical diffusivity, i.e. the effective Reynolds numbers
are larger.

Keywords Small-scale dynamo · Large eddy simulation · Reduced speed of sound
technique

3.1 Introduction

The purpose of the study in this chapter is achievingmulti-scale convection including
scales from 10Mm (smaller than supergranulation) up to ∼200Mm (global scale).
We achieve this by approaching the solar surface up to 0.99R� using unprecedented
resolution and study in particular the influence of the location of the upper boundary
on the convective structure in the deeper parts of the convection zone. In addition we
use our setup to study the transport and the generation of magnetic field by turbulent
convection in the absence of rotation, i.e., we study the operation of a small-scale
dynamo in the highly stratified convection zone.

The chapter is organized as follows: We introduce our numerical setting in
Sect. 3.2 and show the result in Sect. 3.3: The properties based on the obtained spatial

© Springer Japan 2015
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distributions are shown in Sect. 3.3.1. The discussion about the energy balance using
the integrated flux is given in Sect. 3.3.2. In Sect. 3.3.3, the analysis for the properties
of the convection in cases without the magnetic fields using the spherical harmonic
expansion is shown. Then the analysis for the cases withmagnetic fields using spheri-
cal harmonic expansion and the probability density function are shown in Sect. 3.3.4.
The investigation of the transportation and the generation of the magnetic field in the
convection zone is done in Sect. 3.3.5. In Sect. 3.4, we summarize this chapter.

3.2 Model

In this chapter the rotation is not included, since we focus on the connection of
thermal convection between the small and large scales and its local dynamo action
in the global scale. The rotation with the thermal convection generates differential
rotation and this causes the global dynamo action, such as the Ω-effect. It is difficult
to distinguish the local dynamo action caused by turbulence and the global dynamo
caused by the global mean flow. The calculationwith the rotation is shown in Chap.4.
We use the stress-free and the inpenetrative boundary condition for the fluid velocity,
vr , vθ , and vφ . The free boundary condition is adopted for the density and the entropy.
Themagnetic field is vertical at the top boundary and the perfect conductor boundary
condition is used at the bottom boundary.

ρ1, Br , Bθ , Bφ and s1 are zero initially. The fluid velocities vr , vθ , and vφ has small
random values. After the convection reaches statistically steady state, the uniform
magnetic field (Bφ = 100G) is added. Although the net flux exists initially using
this condition, this disappears through upper boundary around 75 days at all. Thus,
we do not have to consider the influence of the net flux for our local dynamo study.

We carry out three calculations named H0, H1 and H2, with the different setting
which is firstly hydrodynamic (see the Table3.1). In the case H0, the top boundary
locates at r = 0.99R� and the density contrast ρ0(rmin)/ρ0(rmax) exceeds 600. To
our knowledge, this is the largest value in the numerical calculation achieved so far
in numerical simulation of solar global convection. In the cases H1 and H2, the top
boundary is at r = 0.96R� and the density contrast is around 40. In the case H1, the
thickness of the cooling layer is the same as the case H0, i.e. dc = 3,740 km which
is the two pressure scale heights at r = 0.99R�, while the case H2 adopt two scale

Table 3.1 Important
parameters in our studies

Case H0 H1 H2

Nr 512 456 456

rmax/R� 0.99 0.96 0.96

ρ0(rmin)

ρ0(rmax)
613 36 36

Hp0(rmax) (km) 1,870 9,390 9,390

dc (km) 3,740 3,740 18,780

http://dx.doi.org/10.1007/978-4-431-55399-1_4
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heights at its top boundary (rmax = 0.96R�) for the thickness (dc: see Chap.3).
After the uniform magnetic field is added, the calculations are newly named M0,
M1 and M2, which use the results of H0, H1, and H2, respectively. We note that the
thickness of the cooling layer (dc) has almost the same role as the value of the turbulent
thermal diffusivity on the entropy that is adopted in ASH simulation (Miesch et al.
2000, 2008). After the uniform magnetic field is added the calculations are newly
named M0, M1 and M2, which use the results of H0, H1, and H2, respectively.

The horizontal grid spacing is 1,100km at the top boundary and radially 375km.
Using the Yin-Yang geometry, the number of grid points is 1,024(Nθ ) × 3,072
(Nφ) × 2. The last factor 2 indicates a pair of the Yin and Yang. The number of grid
points in the radial direction is shown in the Table3.1. Since this resolution in theYin-
Yang geometry has almost the same quality as that of 512(r)×2,048(θ)×4,096(φ)

in ordinary spherical geometry in the case H0 and M0, we succeed in doubling the
resolution in each direction from the previous study (Miesch et al. 2008).

3.3 Results

3.3.1 Structure of Convection and Magnetic Field

Figure3.1 shows the RMS velocities in the case H0, H1, and H2. The maximum
RMS velocity is 5× 104 cm s−1 at the top boundary in the case H0. Since the Mach

Fig. 3.1 RMS (root mean
square) velocities as a
function of the depth are
shown. The black, blue, and
red lines show the results in
the case H0, H1, and H2,
respectively (Color figure
online)
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Fig. 3.2 The radial velocity
(vr ) in the case H0 on the
orthographic projection

number determined with the reduced speed of sound ĉs is always under 0.3 all over
the convection zone, the requirement for the validity of the RSST in this study is
well satisfied (Hotta et al. 2012b).

Figure3.2 shows the radial velocity (vr ) around the top boundary in the case H0
(rmax = 0.99R�, which is 7Mm below the photosphere) in the orthographic projec-
tion. Note that since the shown location is close to the impenetrable top boundary,
the value of the radial velocity is rather small. Since near the upper boundary the
pressure scale height is less than 2Mm, the convection pattern shows small cells of
about (∼7Mm). The typical cell size is slightly smaller than supergranulation that is
observed on the photosphere. This is the first work that well resolves the 10Mm-scale
convection pattern in a calculation of the solar global convection zone. Figure3.3a–c
shows the radial velocity at r = 0.99R�, r = 0.95R�, and r = 0.85R� in the case
H0 by using the orthographic projection. In deeper layer the pressure scale height
increases and the convection pattern becomes larger. The detailed analysis using the
spherical harmonic expansion of the convective structure is shown in Sect. 3.3.3.

Figure3.4a, d, and g show the zoomed-up contour of the radial velocity in the
case M0, i.e., after the inclusion of the magnetic field in H0. The region is indicated
by the white rectangle in Fig. 3.3a–c. Figure3.4c, f, and i show the vorticity (ωr =
(∇ × v)r ) at r = 0.99R�, 0.95R�, and 0.85R�, respectively. As already seen in
the case H0 (Fig. 3.3), it is clear that the scale of the thermal convection pattern
significantly depends on the depth. In addition, the large-scale downflow is associated
with small-scale and strong vorticity in the deeper layer (especially in r = 0.85R�).
Figure3.5a shows ρ0[s1(r, θ, φ = 0)−〈s1〉] in the meridional plane, where 〈〉 shows
the horizontal average in this chapter. The low and high entropymaterials correspond
to the downflow and upflow, respectively. In the near surface region, the convection
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Fig. 3.3 The radial velocities (vr ) are shown at r = rmax (a, d, g), r = 0.95R� (b, e, h) and
r = 0.85R� (c, f, i). The results in the cases H0, H1, and H2 are shown in (a–c), (d–f), and (g–i),
respectively. The black circle around each panel show the location at r = R�

structure shows a combination of broad upflows and narrow downflows ∼7Mm
forming at the top boundary. These small-scale downflows merge in the middle of
the convection zone and build large-scale downflow. Although the overall structure
of such convection is large, there is a superimposed turbulent pattern especially in
the downflow region which is shown in Fig. 3.4.

Figure3.3d–f show the results of the case H1 with different location of the top
boundary (rmax = 0.96R�) at r = rmax, r = 0.95R�, and r = 0.85R�, respectively.
Since the location and the pressure scale height of shown images is different between
the case H0 in Figs. 3.3a (r = rmax = 0.99R�) and H1 in d (r = rmax = 0.96R�),
it is natural that the convective structures are much different, i.e., those in H0 has
smaller scale convection than in H1. It is more important that the structures at the
same depth, 0.95R�, are significantly different with each other between these cases
(H0 in Fig. 3.3b and H1 in Fig. 3.3e). The small-scale downflow plumes penetrate
near surface layer and influence its structure (see also Fig. 3.5a). When the downflow
goes deeper, the influence becomes smaller. This is seen in comparison of Fig. 3.3c
(rmax = 0.99R� and r = 0.85R�) and f (rmax = 0.96R� and r = 0.85R�), where
the difference of convection structure seems insignificant. Figure3.3g–i show the
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Fig. 3.4 The zoomed-in contour of the radial velocity (vr : left panels), the radial magnetic field (Br :
middle panels) and the radial vorticities (ωr : right panels) in different depth. The field of view is 30◦
both in the latitude and the longitude that corresponds to the size of 370Mm at the top boundary.
The result is from the case H0, a ±60 (ms−1), b ±50 (G), c ±1 × 10−4 (s−1), d ±300 (ms−1),
e ±500 (G), f ±1 × 10−4 (s−1), g ±300 (ms−1), h ±2000 (G), i ±4 × 10−5 (s−1)

results in the case H2 in which the location of the top boundary is the same as H1
but the thickness of the cooling layer is larger. The convective structure around the
top boundary shows the largest scale (Fig. 3.3g), while again the difference becomes
smaller in the deeper layer (Fig. 3.3c, f, and i). This is also shown in Fig. 3.6 by
comparing the occupied area by the upflow and the downflow, i.e., positive and
negative radial velocities (vr ). Up to the middle of the convection zone (<0.9R�),
all the cases H0, H1 and H2 show similar behavior, i.e., fractional area by the upflow
is larger (∼65%) but decreases below ∼0.85R� to equal to that of the downflow.
Interestingly, this behavior is quantitatively the same in spite of significant difference
between H0 and H1 in the density contrast (see Table3.1).
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Fig. 3.5 a ρ0[s1 − 〈s1〉], and
b B/

√
4πρ0 on the

meridional plane at φ = 0,
where 〈s1〉 is the horizontal
average of the entropy. The
result is from the case H0

Fig. 3.6 The occupied
fraction of area of upflow
(solid line) and downflow
(dashed line). The black,
blue and red lines show the
results in the case H0, H1,
and H2, respectively (Color
figure online)
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Fig. 3.7 The integrated fluxes are shown. The panels a, b, and c show the result in the cases H0,
H1, and H2, respectively. The black, blue, green, red, and light blue lines show the total, enthalpy,
radiative, surface cooling, and kinetic fluxes, respectively (Color figure online)

3.3.2 Integrated Energy Flux

Figure3.7 shows the integrated fluxes. The integrated enthalpy flux (Le), the inte-
grated kinetic flux (Lk), the radiative luminosity (L r) and the luminosity form of the
surface cooling (Ls) are defined as
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Le =
∫

s

[
ρ0e1 + p1 − p0ρ1

ρ0

]
vr d S, (3.1)

Lk =
∫

s

1

2
ρ0v2vr d S, (3.2)

L r =
∫

s

Fr(r)d S, (3.3)

Ls =
∫

s

Fs(r)d S. (3.4)

The radiative flux (Fr) and surface cooling flux (Fs) are defined in this chapter.
Figure3.7a shows the integrated fluxes in the case H0 (rmax = 0.99R� and dc =
3,740 km). The total integrated flux L t = Le+ Lk+ L r+ Ls is almost constant along
the depth. This indicates that the convection zone in our calculation is in the energy
equilibrium.Note that sincewe do not use a conservative form for the total energy nor
estimate the energy flux contributions caused by the artificial diffusivity, the total flux
is not completely constant. The enthalpy flux transports twice the solar luminosity
upward at maximum and the kinetic flux transports almost the same amount of the
energy as the solar luminosity downward at maximum. Although the kinetic energy
flux is frequently ignored in the one-dimensional mixing length model (e.g. Stix
2004), our result shows the importance of the kinetic flux. This has been already
suggested by Miesch et al. (2008). Figure3.7b, and c show the results in the case H1
and H2, respectively. The integrated fluxes show almost the similar behavior as those
in the case H0, but the maximum absolute values of the enthalpy and kinetic flux are
smaller. Since these absolute values gradually decrease from H0 to H2, we conclude
that both the thickness of the cooling layer and the location of the upper boundary
contribute to this issue. It is possible that, when the upper boundary becomes closer
to the real solar surface and the cooling layer becomes thinner, the absolute values
of the enthalpy flux and kinetic flux become even larger than our case H0.

Figure3.8 shows the integrated enthalpy flux and kinetic flux transported by
upflow (Leu, Lku) and downflow (Led, Lkd), respectively. Note that the enthalpy flux
by upflow and downflow is estimated with the perturbation from the reference state.
Regarding the enthalpy flux, both upflow and downflow transport energy upward.
The downflow transports most of energy (>70%). We note that the enthalpy flux
of the upflow shows the negative value near the bottom boundary, since the cool
fluid bounces at the boundary and moves upward. Regarding the kinetic energy flux,
upflows (downflows) transport energy upward (downward). The larger kinetic energy
flux of the downflow makes the kinetic energy flux negative. These results show that
downflows play a key role in the transports of energy in the solar convection zone.
While we find a significant difference in the overall amplitude among cases H0–H2,
the ratio of contributions from up- and downflows does not change much despite the
significant difference in the density contrast.
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Fig. 3.8 The enthalpy and kinetic flux transported by the upflow (Leu and Lku) and the downflow
(Led and Leu) are shown. The black, blue and red lines show the result in the cases H0, H1, and
H2, respectively. The solid and dashed lines indicate the enthalpy flux in upflow and downflow
respectively and the dash-dot and dash-dot-dot-dot lines indicate the kinetic energy flux in upflow
and downflow respectively (Color figure online)

3.3.3 Analysis Using Spherical Harmonics
for Hydrodynamic Cases

In this section, the results of the analysis using the spherical harmonics expansion are
shown.We focus on the question: How do the location of the upper boundary and the
thickness of the surface cooling layer influence the convective structure throughout
the convection zone?

A real function f(θ, φ) can be expressed in spherical harmonics as

f (θ, φ) =
lmax∑
l=0

l∑
m=−l

flmYlm(θ, φ), (3.5)

where Ylm(θ, φ) is the spherical harmonics for degree l and order m. In the analyses
the absolute total value along m without m = 0

f̄l =
√√√√

l∑
m=−l

| flm |2, (3.6)

is shown. The value is normalized in order to satisfy the relation:

∫
Ω

( f(θ, φ) − 〈 f (θ, φ)〉)2 sin θdθdφ

4π
=

lmax∑
l=1

f̄ 2l . (3.7)

Our spherical harmonic analyses are performed using the freely available software
archive SHTOOLS (shtools.ipgp.fr).
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Fig. 3.9 Spectra of the radial velocity at a r = rmax, b r = 0.95R�, c r = 0.90R�, d r = 0.85R�,
e r = 0.80R�, f r = 0.715R�. The black, blue, and red lines specify the results in the case H0,
H1, and H2, respectively (Color figure online)
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Fig. 3.10 Spectra of the latitudinal velocity at a r = rmax, b r = 0.95R�, c r = 0.90R�,
d r = 0.85R�, e r = 0.80R�, f r = 0.715R�. The black, blue, and red lines specify the results in
the case H0, H1, and H2, respectively (Color figure online)

Figures3.9 and 3.10 show the spectra of the radial velocity (vr ) and the latitudinal
velocity (vθ ), respectively as a function of the horizontal wavelength (Lh = 2πr/ l),
where l is the spherical harmonic degree, i.e., the horizontal wavenumber. The black,
blue, and red lines show the results in the case H0 (rmax = 0.99R� and dc =
3,740 km), H1 (rmax = 0.96R� and dc = 3,740 km), and H2 (rmax = 0.96R�
and dc = 18,780 km), respectively. The black line in Fig. 3.9a shows a peak around
Lh ∼ 7–8Mm (see also Fig. 3.2). This peak moves to the larger scale Lh, with
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increasing depth. At r = 0.80R�, the peak is around Lh ∼ 300Mm (Fig. 3.9f,
black line). This reflects the variation of the pressure scale height, in the solar model,
Hp = 1.9Mm at r = 0.99R� and Hp = 44Mm at r = 0.8R�. Again the peak
is in the smaller scale (∼7Mm) at the bottom boundary r = rmin = 0.715R�.
This is caused by the collision between the downflow and the impenetrable bottom
boundary. In this process a thin boundary layer whose thickness is determined by the
numerical resolution is formed. The scale of turbulence near the boundary (Fig. 3.9f)
is a consequence of this boundary layer. Comparison of black lines in Figs. 3.9a
and 3.10a indicates that the peak of the latitudinal velocity is at a much larger scale
(∼400Mm) than the radial velocity even close to the upper boundary. We note that
almost all the spectra have this feature around Lh ∼ 400Mm, i.e., the peak or
the bended feature in which power-law index varies. The scale 400Mm is the length
twice the thickness of the convection zone, i.e., the radial extent of our computational
domain. This result is consistent with our previous study (Hotta et al. 2012a) which
argues that the typical scale of the convection is determined by the pressure (or
density) scale height or the height of the computational domain. Figure3.10a shows
that the horizontal velocity ismore likely to be influenced by the large-scale structure.

The influences from the location of the boundary and the thickness of the cooling
layer are discussed by comparing the black, blue and red lines in Figs. 3.9 and 3.10.
The common feature is that the spectra do not depend on these two factors in the
deep layer (r ≤ 0.85R�: panels d–f). This suggests that the small-scale convection
caused by the short pressure scale height or the thin cooling layer cannot influence
the convection in the deeper region. On the top boundary (Figs. 3.9a and 3.10a), the
small-scale convection is suppressed gradually from the case H0 to H2. This is the
confirmation of our understanding from the appearance of the convection pattern
in Sect. 3.3.1. In the near surface layer (r = 0.95R�), the difference still remains
unchanged. While the upper location of the boundary increases the amplitude of the
fluid velocity in all the scale (the black line), the thin cooling layer excites only the
small-scale convection (<50Mm) and the larger scale remains. We point out that
when the surface layer (0.96R� < r < 0.99R�) is included, the spectrum of the
latitudinal velocity (vθ ) is flat from the middle to the small scale (10 < Lh < 40Mm
in Fig. 3.10b). This is caused by the penetration of the corresponding-scale plume
from the near surface layer.

3.3.4 Analysis Using Spherical Harmonics and Probability
Density Function for Magnetohydrodynamic Cases

In this subsection, we analyze the results of the magnetohydrodynamic calculation in
the cases M0, M1, and M2 using the spherical harmonics and the probability density
function. We focus on the influence of the location of the boundary layer and the
thickness of the cooling layer on the structure of the magnetic field.
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Fig. 3.11 The time
evolution of the average
magnetic energy is shown.
The black, blue and red lines
show the result in the case
M0, M1 and M2,
respectively. The dashed line
shows the magnetic energy
in the case M0 averaged over
rmin < r < 0.96R�. t = 0 is
time at which the magnetic
field is inputted (Color figure
online)
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Figure3.11 shows the time evolution of the magnetic energy (B2/(8π)) averaged
over the simulation domain at each time step. The initial linear growth stops around
10 days after the input of the seed field in every case. Even after that the magnetic
energy continues to increase graduallywith a rather small growth rate until it saturates
after around 150 days in all cases. The comparison between cases is done using the
data from t = 115 day to t = 162 day in which the generation of the magnetic field
is almost saturated. Basically the differences between the cases are insignificant,
although the case M0 saturates with a slightly smaller average magnetic energy.
Since the equipartition magnetic field strength in the near surface region is smaller
due to the small density (ρ0), the increase of the volume in the case M0 causes the
slight decrease in the average magnetic energy. This can be supported from the fact
that average value over rmin < r < 0.96R� in M0 is larger as shown by the dashed
line in Fig. 3.11. This indicates higher growth rate of the average magnetic energy
there than those in cases M1 and M2. The time scale of the convection in the near
surface layer is short. The generated magnetic field is transported downward (see
also the discussion about the pumping in Sect. 3.3.5).

Figure3.12 shows the spectra of the magnetic energy B2/(8π) at selected depth.
Similar to the results introduced in the previous sections, the difference can be seen
in the near surface layer, and this difference becomes insignificant as we go to the
deeper layers.

Figure3.13 shows the probability density functions (PDFs) for the three compo-
nents of velocity (vr , vθ , and vφ) and the three components of magnetic field (Br ,
Bθ , and Bφ), the radial vorticity ωr , the horizontal divergence ζ and the temperature
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Fig. 3.12 Spectra of the magnetic energy (B2/8π ) at a r = rmax, b r = 0.95R�, c r = 0.90R�,
d r = 0.85R�, e r = 0.80R�, f r = 0.715R�. The black, blue, and red lines specify the results in
the case M0, M1, and M2, respectively (Color figure online)
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Fig. 3.13 The probability density function of a the radial velocity, b the latitudinal velocity, c the
longitudinal velocity, d the radial magnetic field, e the latitudinal magnetic field, f the longitudinal
magnetic field, g the radial vorticity, h the horizontal divergence, and i the temperature perturbation
are shown using the result in the case M0 at t = 115 day (Color figure online)

perturbation T1 in the case M0 at t = 115 day. Although the rotation is not included
in this study, some features of the PDFs are similar to findings from previous studies
including rotation (Brun et al. 2004; Miesch et al. 2008). In this study the PDF is the
normalized histogram on a horizontal surface, corrected for the grid convergence at
the poles. Figure3.13a shows the significant asymmetry in the radial velocity. This
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Fig. 3.14 The kurtosis (the forth central moment of the PDF defined in Eq. (3.8): a, b and the
skewness (the third central moment of the PDF defined in Eq. (3.9): c, d for the three components
of velocity and magnetic field are shown. The black, blue and red lines show the results in the case
M0, M1, and M2 (Color figure online)

reflects the asymmetry between up- and downflows due to stratification (see also
Figs. 3.6 and 3.8). The horizontal velocities (vθ and vφ) show almost the Gaussian
distribution (see also Fig. 3.14). The magnetic fields have high intermittency com-
pared with the velocities (Brandenburg et al. 1996). Despite our asymmetric initial
condition for the longitudinal magnetic field Bφ = 100G, the PDFs show a close
to symmetric distribution peaked at zero after a sufficiently long temporal evolu-
tion. The maximum value of the strength of the magnetic field is around 104 G. The
PDF for the radial vorticity is similar to that of the magnetic field, i.e., with high
intermittency. This is expected from the similarity between the induction and vor-
ticity equations. The horizontal divergence has similarity to the radial vorticity ωr

in the convection zone with high intermittency, while ζ shows the asymmetry near
the top boundary similar to the radial velocity vr . The temperature perturbation has
significant asymmetry, which also reflects the asymmetry between the upflow and
downflow.

In order to evaluate the influence of the location of the boundary condition and the
thickness of the cooling layer, we investigate the moments of the PDF, in particular
the kurtosis K and the skewness S as
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K = 1

σ 4

∫
(x − 〈x〉)4 f (x)dx, (3.8)

S = 1

σ 3

∫
(x − 〈x〉)3 f (x)dx, (3.9)

where f(x) is the PDF, x is each variable, and σ is the standard deviation as

σ =
√∫

(x − 〈x〉)2 f (x)dx . (3.10)

The kurtosisK and the skewnessS denote the intermittency and the asymmetry of
the distribution, respectively. We note that the PDF is normalized as

∫
f (x)dx = 1.

For example the Gaussian PDF is characterized byK = 3 andS = 0. Figure3.14
shows the distribution of the kurtosis and the skewness for the velocity and the
magnetic field. As explained above the horizontal velocities (vr and vφ) have almost
the Gaussian distribution, i.e.,K ∼ 3 andS ∼ 0 all over the convection zone. The
radial velocity has high intermittency and asymmetry in the convection zone. The
magnetic field has intermittency and almost symmetric distribution. These features
are common among the cases M0, M1, and M2. Quantitatively the kurtosis and
skewness agree with each other in all cases. While the values in the near surface
region (r > 0.85R�) are influenced by the two factors, the location of the upper
boundary and the thickness of the cooling layer, in the deeper region the values
converge.

3.3.5 Generation and Transportation of Magnetic Field

In this subsection we investigate the generation and transportation of magnetic
field by turbulent thermal convection. The global structure of the mutual interac-
tion between the plasma and the magnetic field is our interest.

Figure3.4 shows the radial velocity vr , the radial magnetic field Br , and the
radial vorticity ωr at the different depth (r = 0.99R�: a, b, and c, r = 0.95R�:
d, e, and f, r = 0.85R�: g, h, and i). As introduced in Sect. 3.3.1, there is good
coincidence between the downflow and the region with the large amplitude of the
radial vorticity. This means that downflows, especially in the deeper region, include
most of the turbulent small-scale horizontal motion. We can also see the preferential
association of strongmagnetic field with downflows and regions with strong vorticity
in the constant-depth plane (middle and right columns of Fig. 3.4) and also in the
meridional plane (Fig. 3.5). In order to investigate this aspect quantitatively, we take
the correlation between the radial velocity vr and the absolute value of the magnetic
field B i.e., 〈vr , B〉 in Fig. 3.15a, where our definition of the correlation between
quantity A and B is defined as
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Fig. 3.15 a The correlation between the radial velocity and the strength of the magnetic field
(〈vr , B〉), b the horizontal average of the generation rate of the magnetic energy by the stretching
(〈Wstr〉: solid lines) and the compression (〈Wcmp〉: dashed lines), c the correlation between the radial
velocity and the generation rate of the magnetic energy (〈vr , Wstr〉), d the correlation between the
strength of the magnetic field and the generation rate of the magnetic energy (〈B, Wstr〉) are shown

〈A, B〉 =
∫

ABd S√∫
A2d S

√∫
B2d S

. (3.11)

Note that the definition is different from that in Chap.4. Figure3.15a shows the
negative value in the most of the convection zone. This means that the magnetic
field is preferentially found in downflows. This is also seen in the joint PDFs of vr

and B in Fig. 3.16. The figure shows the asymmetric distribution about the vr = 0
axis in the convection zone. Strong magnetic field is more likely to be located in
downflow region. We note that a symmetric distribution is found at r = rmin, which
corresponds to 〈vr , B〉 ∼ 0 in Fig. 3.15a.

http://dx.doi.org/10.1007/978-4-431-55399-1_4
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Fig. 3.16 Joint PDFs with the radial velocity (vr ) and the strength of the magnetic field (B) in
the case M0 at a r = rmax, b r = 0.95R�, c r = 0.90R�, d r = 0.85R�, e r = 0.80R�,
f r = rmin = 0.715R�. The black lines shows vr = 0, which distinguish the upflow and the
downflow (Color figure online)

There are two possibilities for the preference of the magnetic field to downflow
regions. One is that themagnetic field is generated uniformly in space and transported
to the downflow region by converging motion. The other is that the magnetic field
is generated in the downflow region. In order to answer this question, we define
and evaluate the generation rate of magnetic energy by the stretching (Wstr) and the
compression (Wcmp) as

Wstr = B
4π

· [(B · ∇)v] , (3.12)

Wcmp = − B2

4π
(∇ · v). (3.13)

The estimations for the horizontal averages, 〈Wstr〉 and 〈Wcmp〉, are shown in
Fig. 3.15b. It is clear that the value of the stretching 〈Wstr〉 is much larger than that of
the compression all over the convection zone and the generation of the magnetic field
is basically done by the stretching in the turbulent motion. This is also seen by the
realistic calculation in the photosphere (Pietarila Graham et al. 2010) in which they
suggest that 95% of the gain of the magnetic energy is done by the stretching. We
also take the correlation with the radial velocity vr and the energy generation rate by
the stretching Wstr (Fig. 3.15c). The distribution of this correlation is similar to that of
〈vr , B〉, i.e., the effective stretching prefers the downflow region. Thus we conclude
that the reason why the strong magnetic field prefers the downflow region is that the
magnetic field is more likely to be generated there. The correlation between B and
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Wstr is also taken. This shows a larger value of (>0.4) throughout the convection
zone (Fig. 3.15d). These features discussed above are basically common among the
studied cases.

In order to investigate the magnetic field transport in the convection zone, we
evaluate the Poynting flux given by:

Fm = c

4π

(
Eθ Bφ − Eφ Bθ

)
, (3.14)

where the electric field is defined as E = −(v × B)/c and c is the speed of light (see
Brun et al. 2004). Figure3.17 shows the horizontally integrated Poynting flux Lm
as a function of the depth. Since the absolute value (∼1031 erg s−1) is much smaller
than the solar luminosity (L� = 3.84 × 1033 erg s−1), the Poynting flux does not
contribute significantly to the total energy flux balance. The Poynting flux is negative
in the most of the convection zone, since strong magnetic field is concentrated in
downflow regions. This is suggested by previous study as the turbulent pumping
effect (Tobias et al. 1998, 2001). Within the convection zone, the flux has a positive
value only in the thin layer (∼0.01R�) close to the bottom. This is caused by the
bounced motion from the bottom boundary. The magnetic energy is transported
upward and this provides the magnetic flux in the upflow region. This can be one of
the reasons why the absolute values of the correlation 〈vr , B〉 is small in the deeper
region (Fig. 3.15a) andwhy the distribution of the joint PDF in the bottom (Fig. 3.16f)
is symmetric.

Fig. 3.17 The integrated
radial Poynting flux as a
function of the depth is
shown. The black, blue and
red lines show the results in
the case M0, M1, and M2,
respectively (Color figure
online)
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Fig. 3.18 The spectra of the kinetic energy (Ekin = ρ0v2/2: solid black lines) and the magnetic
energy (Emag = B2/(8π): solid red lines) in the case M0. The dashed black lines show the kinetic
energy in H0, i.e., without the magnetic field. The dashed red lines show the magnetic energy
at t = 5.8 days, a r = rmax, b r = 0.95R�, c r = 0.90R�, d r = 0.85R�, e r = 0.80R�,
f r = 0.715R� (Color figure online)

In the following discussion, we investigate the scale of the magnetic field gener-
ated. Figure3.18 shows the spectra of the kinetic energy (black lines: Ekin = ρ0v2/2)
and the magnetic energy (red lines: Emag = B2/(8π)) in the case M0 averaged from
t = 173 day to t = 237 day in which the generation of the magnetic field is close
to be saturated. The dashed black and red lines show the kinetic energy without the
magnetic field and the magnetic energy at t = 5.8 days, respectively. In the upper
convection zone (≥0.85R�), the spectra of the magnetic energy peaks at the smallest
scale, which is typical for the kinematic phase of a local dynamo. Finding this fea-
ture in the saturated phase indicates that the local dynamo is likely not very efficient
for our resolved scales (>7Mm). We see also no indication that the kinetic energy
spectrum changed due to the presence of the dynamo near the top of the domain. This
situation is different in the lower half of the domain. Figure3.18e, f show some peak
shift of the magnetic energy to larger scales and some feedback on thermal convec-
tion, i.e., the kinetic energy is suppressed on the smallest scales. Here the magnetic
energy slightly exceeds the kinetic energy near the smallest scales. This shows a
more efficient local dynamo can be achieved to some extent for our resolution in
lower part of the convection zone (<0.85R�).

Figure3.19 shows the spectra of the horizontal divergence (ζ ) and the radial
vorticity (ωr ) which show the similar distribution to that of the magnetic field with
the peak at small scales. Moffatt (1961) suggested that the power spectrum varies as
Db(k) ∝ k2Dv(k), when the magnetic field is proportional to (∇ · v) or (∇ × v),
where Db(k) and Dv(k) aremagnetic andkinetic spectra.Recently thiswas confirmed
through solar observations in the photosphere using the Hinode satellite (Katsukawa
and Orozco Suárez 2012). Since in our calculation there is similarity between the
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Fig. 3.19 The spectra of the horizontal divergence ζ (red lines) and the radial vorticity ωr (black
lines) using the result in the case M0, a r = rmax, b r = 0.95R�, c r = 0.90R�, d r = 0.85R�,
e r = 0.80R�, f r = 0.715R� (Color figure online)

magnetic field and the vorticity or the divergence, the magnetic energy peaks at
smaller scales than that of the kinetic energy. We note that differences can be seen
between shear of the velocity (ωr and ζ ) and the magnetic energy (Emag) at the base
of the convection zone (Figs. 3.18f and 3.19f), where the feedback from the magnetic
field is stronger.

Even though the numerical resolution does not vary much with depth, the effec-
tiveness of the local dynamo is not expected to be depth independent. There are two
reasons for this: The intrinsic convective scale varies with depth and a downward
Poynting flux exists almost everywhere in the convection zone. In the upper half of
the convection zone the divergence of the Poynting flux provides an energy sink,
while at the same time the dynamo is not very efficient on the resolved scale [(sim-
ilar discussion can be found in Stein et al. (2003)]. In the lower convection zone
(<0.85R�), the radial gradient of the Poynting flux is negative, thus the magnetic
energy is accumulated. At the same time the intrinsic scale of convection is larger and
better resolved, leading to amore efficient dynamo. It should be noted that Vögler and
Schüssler (2007) found that in even near surface the small-scale convection repro-
duced with the high resolution has short time scale enough to amplify the magnetic
field against the pumping effect.

In order to confirmour idea about the generation and transportation of themagnetic
field in our calculation, we evaluate the effective shear for the magnetic field,

feff = 〈Wstr〉
〈B2/(8π)〉 . (3.15)

feff has the unit of s−1 and indicates the time scale of the amplification. Figure3.20a
shows the time evolution of log feff and indicates that regardless of the phase of
the generation of the magnetic field, the larger value of feff is seen in the upper
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Fig. 3.20 The time
evolution of the effective
shear a log feff and
b feff (t)/ feff (t = 5.8 day)
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convection, which reflects the short time scale of the thermal convection there. At
later times with stronger field, the effective shear feff is reduced and after t ∼ 150,
it remains constant. Figure3.20b shows the ratio to the value at t = 5.8 day, i.e.,
feff(t)/ feff(t = 5.8 day). The suppression of the effective shear depends on the
depth. It is more suppressed in the deeper region. This might be caused by the
feedback of the magnetic field on the velocity seen in Fig. 3.18 (the solid and dashed
black lines) as well as a misalignment between shear and magnetic field around the
base of the convection zone. Ineffective suppression of feff in the upper convection
zone confirms our idea in previous paragraph. The local dynamo saturates there with
little nonlinear feedback (suppression of feff ), since the pumping effect works well
in the upper region and the dynamo is not very efficient on the resolved scales to
begin with.

Figure3.21 also shows the variation of dynamo efficiency in the convection zone.
Figure3.21a shows the equipartition magnetic field Beq = √

4πv2rms and the RMS
magnetic field Brms as functions of the depth. The solid and dotted lines show the
values at the downflow and upflow regions, respectively. Basically both Beq and
Brms increase with the depth and Fig. 3.21b shows an increase of Brms/Beq with
depth which is caused by the ineffectiveness of the local dynamo in the upper region
due to the pumping effect and our insufficient resolution.



3.4 Discussion and Summary 55

Fig. 3.21 a The distribution
of the equipartition field Beq
(red lines) and the RMS
magnetic field Brms (black
lines). b The ratio of the
RMS magnetic field and the
equipartition magnetic field
(Brms/Beq). The solid and
dashed show the values at
the downflow and upflow
region, respectively (Color
figure online)
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3.4 Discussion and Summary

We carry out the high-resolution calculations of the solar global convection which
resolve the 10Mm-scale convection smaller than the supergranulation using the
RSST (described in Chap.1). The RSST leads to a simple algorithm and requires
only local communication in the parallel computing. In addition, this method has
the capability to access the real solar surface without loosing the important physics.
This enables us to capture near surface small-scale convection while keeping a global
domain. Our main conclusions are listed as follows: (1) Small-scale convection is
excited close to the surface (>0.9R�), when we expand our domain upward to
0.99R� to capture the near surface layers with small pressure scale heights. (2) In
deeper convection zone (<0.9R�) the convection flow is not influenced by the loca-
tion of the top boundary and the assumed thickness of the thermal boundary layer.
We do not find significant differences in the convective structure and properties of the
local dynamo. (3) Using an Large Eddy Simulation (LES) approach we can achieve
small scale dynamo action and maintain a field of about 0.15–0.25Beq throughout

http://dx.doi.org/10.1007/978-4-431-55399-1_1
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the convection zone. (4) The overall dynamo efficiency varies significantly in the
convection zone as a consequence of the downward directed Poynting flux and the
depth variation of the intrinsic convective scales. For a fixed numerical resolution
the dynamo relevant scales are better resolved in the deeper convection zone and are
therefore less affected by numerical diffusivity, i.e., the effective Reynolds numbers
are larger.

The conclusion 2 is one of the most important results in this study, since it means
that previous calculations (e.g. Miesch et al. 2008) are physically reasonable in the
deeper convection zone even if the top boundary condition is placed significantly
below the solar surface.

We summarize our simulation results in a schematic shown in Fig. 3.22. Sev-
eral aspects, in particular with regard to the local dynamo require higher resolution
before directly applicable to the solar convection zone. High resolution simulations
of a local dynamo in the solar photosphere Vögler and Schüssler (2007) suggest
that efficient dynamo action is possible even in the presence of the pumping effect.
These simulations use however a grid resolution of about a factor of 100 larger than
our setup, which is currently out of reach for global scale convection simulations.
Therefore the dynamo RMS field strength of 0.15–0.25Beq can likely be considered
a lower limit.

One issue we cannot address in this study is the problem about the small magnetic
Prandtl number (Pm ∼ 10−3) in the solar convection zone, since we adopt numerical
diffusivity which assumes that the magnetic Prandtl number is around unity. Several
authors argued that smaller magnetic Prandtl numbers make local dynamos less
efficient (e.g. Schekochihin et al. 2004;Boldyrev andCattaneo 2004). In otherword, a
smallmagnetic Prandtl number requires a largemagneticReynolds number in order to
achieve a super-critical dynamo.While this can be a significant problem for numerical
simulations with rather moderate Reynolds numbers, this is less likely an issue in the
solar convection zone with Reynolds numbers as large as Rm ∼ 1011 (Brandenburg
2011). Thus, we believe that our approach relying only on the numerical diffusivity
can capture the physics of the local dynamo in the solar convection zone.

Fig. 3.22 The schematic
view of our calculation. The
arrows show the convection
flow

Magnetic field is generated 
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by the returning upflow
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and generates large scale flow
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Rotation is not included in this study but is a crucial effect on the generation of
the coherent magnetic field. The small-scale convection pattern reproduced in this
study may influence the interaction between the convection and the rotation and may
improve our previous understanding. This is reported in Chap. 4. By using the RSST,
the resolution will be increased following the development of the super computing.
The global calculation including the photosphere will be achieved near in the future.
Of course the non-uniform grid, such as the nested grid or the adaptive mesh is useful
in order to overcome the significant difference in the dynamic scale. These methods
are already implemented in our numerical code (Hotta and Yokoyama 2012).
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Chapter 4
Reproduction of Near Surface Shear
Layer with Rotation

Abstract We carry out high-resolution calculation of thermal convection in the
spherical shell with rotation to reproduce the near surface shear layer (NSSL). It is
thought that the NSSL is maintained by thermal convection for small spatial scales
and short time scales, which causes a weak rotational influence. The calculation with
the RSST succeeds in including such a small scale as well as large-scale convection
and theNSSL is reproduced especially at high latitude. Themaintenancemechanisms
are the following. The Reynolds stress under the weak influence of the rotation
transports the angular momentum radially inward. Regarding the dynamical balance
on the meridional plane, in the high latitude positive correlation 〈v′

r v′
θ 〉 is generated

by the poleward meridional flow whose amplitude increases with the radius in the
NSSL and negative correlation 〈v′

r v′
θ 〉 is generated by the Coriolis force in the deep

convection zone. The force caused by the Reynolds stress compensates the Coriolis
force in the NSSL.

Keywords Solar differential rotation · Solar meridional flow · Near-surface shear
layer

4.1 Introduction

Howard et al. (1984) compared the rotation rate estimated from Doppler velocity
measurements and the tracking of sunspots. It was found that the rotation rate of
the sunspots is coherently faster than the Doppler velocity. This indicates that the
sunspots are anchored in a faster-rotating deeper layer. Later, the existence of the
NSSL was confirmed with global helioseismology (Thompson et al. 2003).

The purposes of this section are: First, to reproduce the NSSL in the numerical
calculations and second, to understand the generation and maintenance mechanism
of the NSSL.

According to Miesch and Hindman (2011), the mean flows in the convection
zone are described by two equations, which are the gyroscopic pumping and the
thermal wind balance equations. We discuss the NSSL using these two equations.
Gilman and Foukal (1979) suggest that when the convection is not much influenced

© Springer Japan 2015
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Fig. 4.1 Schematic of the
inward angular momentum
transport by the radial
velocity under the weak
influence of rotation

by the rotation, the radial velocity in the thermal convection transports the angular
momentum radially inward (Fig. 4.1).When the influence from the rotation is weak
and the radial motion conserves the angular momentum, the correlation 〈v′

r v′
φ〉 is

negative and its corresponding Reynolds stress transports the angular momentum
radially inward. Gilman and Foukal (1979) argued that this is the process for gener-
ating and maintaining the NSSL. There have been several attempt to reproduce the
NSSL with this (De Rosa et al. 2002; Rempel 2005; Brandenburg 2007; Guerrero
et al. 2013).

Miesch and Hindman (2011), however, showed that the radially inward angular
momentum transport by the Reynolds stress is the only necessary condition and
that the thermal wind balance should be considered. When the advection/stretching
and baroclinic terms in Eq. (1.15) are neglected, the thermal wind balance equation
becomes

∂〈ωφ〉
∂t

= 2r sin θΩ0
∂〈Ω1〉

∂z
, (4.1)

where parenthesis 〈〉 means the zonal average in this chapter. This means that when
the radially inward angular momentum transport generates the NSSL especially from
mid to high latitudes, i.e., negative ∂〈Ω1〉/∂z, it creates an anticlockwise meridional
flow. This meridional flow continues to be accelerated and transport the angular
momentum until ∂〈Ω1〉/∂z becomes zero. This is why the contribution from the
baroclinic term and/or the advection/stretching term is required to maintain the non-
Taylor-Proudman state (∂〈Ω1〉/∂z �= 0). It is thought that from themiddle to the base
of the convection zone, the baroclinic term plays an essential role to maintain the
non-Taylor-Proudman state, i.e., the conical distribution of the differential rotation
and the tachocline (Rempel 2005; Miesch et al. 2006; Brun et al. 2011; Hotta and
Yokoyama 2011).

Regarding the NSSL, it is unlikely that the baroclinic term is larger than that
in the middle of the convection zone. The advection/stretching term could play an
essential role inmaintaining theNSSL. In the near surface layer, the convection speed

http://dx.doi.org/10.1007/978-4-431-55399-1_1
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increases and the spatial scale decreases. This causes the large Rossby number, i.e.,
weak influence of the rotation on the convection flow.

Thus, the reproduction of the NSSL in the numerical calculations requires wide
spatial and temporal scales, which must cover the giant cell to supergranulation.
Chapter3 shows that this study succeeds in reproducing convection smaller than the
supergranular scale convection in the global simulation domain including the near
surface layer with the reduced speed of sound technique without rotation. In this
chapter, we include the rotation to reproduce the NSSL in the global convection
calculations. The main issue is to clarify the generation and maintenance mechanism
of the NSSL in the view of the dynamical balance on the meridional plane as well
as the angular momentum transport.

4.2 Model

The numerical model is shown in Chap.2. We adopt the reduced speed of sound
technique (Hotta et al. 2012) and the equation of state including the partial ionization
effect for the sun.

We include the effect of rotation with a rate of Ω0/(2π) = 413 nHz, which is
the solar rotation rate. The radiative diffusivity is 18 times smaller than that calcu-
lated with Model S; thus, the inputted luminosity is also 18 times smaller than the
solar luminosity. When we use the low viscosity with solar rotation and luminosity,
the polar region is accelerated rather than the equator (Fan et al. 2013). The forma-
tion of the NSSL, however, requires the small-scale convection pattern which can
be achieved with low viscosity. Thus we adopt this radiative diffusivity to decrease
the Rossby number in the convection zone in which the acceleration of the equa-
tor is reproduced. We assume that the numerically unresolved thermal convection
transports substantial energy in the real sun (see the discussion in Chap.5 in detail).

The top and bottom boundaries are at rmax = 0.99R� and rmin = 0.715R�,
respectively. In both boundaries, the impenetrate and stress-free boundary condi-
tions are adopted. The resolution is 384(Nr ) × 648(Nθ ) × 1944(Nφ) × 2 in the
Yin-Yang grid.

4.3 Results

The simulated period is 4,500 days. From around t = 4,000 day, the distribution
of the angular velocity is in statistically steady state in which the angular veloc-
ity distribution does not change significantly. In this chapter, the time average is
between t = 4,000 day and t = 4,500 day. To increase the statistical validity, we
average the north and south hemispheres considering the symmetry. Figure4.2 shows
a snapshot of the radial velocity vr at t = 4,000 day and selected depths. The white
lines show the location of the tangential cylinder r sin θ = rmin. We can reproduce
the supergranulation scale convection at r = 0.99R� without any influence of the

http://dx.doi.org/10.1007/978-4-431-55399-1_3
http://dx.doi.org/10.1007/978-4-431-55399-1_2
http://dx.doi.org/10.1007/978-4-431-55399-1_5
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Fig. 4.2 Contour of the radial velocity vr at a r = 0.99R�, b r = 0.92R�, c r = 0.85R�, and
d r = 0.72R�. The white lines show the location of the tangential cylinder r sin θ = rmin

rotation in which we cannot see any clear alignment of the convection pattern along
the rotational axis (the banana cell). At r = 0.92R�, the banana cell like feature
begins to appear and at r = 0.85R�, we can see clear banana cell patterns. In addi-
tion, the banana cell pattern is seen outside the tangential cylinder. This dependence
of the convection pattern on depth is basically determined by the Rossby number.
Figure4.3a, b show the radial profile of RMS velocity vrms and the Rossby number
defined here by Ro = vRMS/(2Ω0Hp), respectively. Three components of the RMS
velocity monotonically increase along the radius. This and the decrease in the pres-
sure scale height Hp cause the significant increase of the Rossby number around the
surface. Especially above r = 0.93R�, the Rossby number exceeds unity indicating
weak rotational influence on the convective flow.

Figure4.4 shows the distribution of the zonally averaged angular velocity
〈Ω〉/(2π), where Ω = Ω1 + Ω0 and Ω1 = vφ/(r sin θ). The NSSL’s features
are clearly seen, especially in the high latitude (θ > 45◦) and low latitude (θ < 30◦).
In the convection zone at mid to high latitude, the differential rotation is almost in the
Taylor-Proudman state (∂〈Ω1〉/∂z ∼ 0). Note that the angular velocity has similar
values to the solar one, i.e., 460 and 340nHz at the equator and the polar regions,
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Fig. 4.3 Radial profile of a the RMS velocity b vRMS/(2Ω0Hp). The black, blue, and red lines
show the radial (vr ), latitudinal (vθ ), and zonal (vφ) values, respectively. The dashed line in panel
b indicates the values at unity (Color figure online)

Fig. 4.4 The angular
velocity (〈Ω〉/(2π)) on the
meridional plane in the unit
of nHz

respectively (see Fig. 1.2). Figure4.5 shows the radial profile of the angular velocity
at selected colatitudes. At high latitude (θ = 30◦), we can clearly see the decrease
of the angular velocity from r = 0.95R� − 0.985R�, which is the feature of the
NSSL. At θ = 45 and 60◦ the tendency is reversed. The angular velocity increases
more steeply than that in the convection zone. At the low latitude, although the rapid
increase remains, the decrease from r = 0.91R� − 0.97R� is seen.

Figure4.6 shows the mean meridional flow. Figure4.6b clearly shows that in the
near surface area (>0.9R�), there are a prominent poleward flow and an equatorward
meridional flow around the base of the convection zone. Only in the thin layer near
the surface at the mid- to low latitude, an equatorward meridional flow is seen. In the
convection zone, the multi-cell structure of the meridional flow is generated, which
is similar to the recent finding by the local helioseismology (Zhao et al. 2013).

http://dx.doi.org/10.1007/978-4-431-55399-1_1
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Fig. 4.5 The profile of the angular velocity on the selected latitudes along the radius is shown.
Here θ denotes the colatitude

Fig. 4.6 The radial and latitudinal velocity multiplied by the background density ρ0 and averaged
in time and zonal direction. a ρ0〈vr 〉 and b ρ0〈vθ 〉 in the unit of g cm−2 s−1

Figure4.7a, b show the correlations between the velocities, i.e., 〈v′
r v′

φ〉 and 〈v′
θ v′

φ〉.
We note that these correlations are not normalized by the RMS velocity (different
from the definition in Chap.3). The negative correlation of 〈v′

r v′
φ〉, speculated by

Fig. 4.1, is reproduced, which causes the radially inward angular momentum trans-
port. This negative correlation is not confined to the NSSL. In the convection zone
at the low latitude, the positive correlation of 〈v′

θ v′
φ〉 is reproduced, which is gener-

ated by the banana cell like feature (Miesch 2005). Figure4.7c, d show the values
−∇ · (ρ0r sin θ〈v′

mv′
φ〉), and ρ0〈vm〉 · ∇〈L 〉, respectively, i.e. the balance of the

http://dx.doi.org/10.1007/978-4-431-55399-1_3
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Fig. 4.7 The values a 〈v′
r v′

φ〉, b 〈v′
θ v′

φ〉 in the unit of 106 cm2 s−2 and c −∇ · (ρ0r sin θ〈v′
mv′

φ〉),
and d ρ0〈vm〉 · ∇〈L 〉 in the unit of 106 g cm−1 s−2 are shown on the meridional plane

angular momentum transport (see Eq.1.14). The angular momentum transports by
the Reynolds stress and the mean meridional flow are roughly balanced in the con-
vection zone. The difference between these indicates the longer-time evolution of
the differential rotation as well as the effectiveness of the artificial viscosity which
is not estimated in this study.

As introduced in Sect. 4.1, the discussion regarding the thermal wind balance is
required to understand the maintenance mechanism of the NSSL in addition to the
angular momentum transport shown in Fig. 4.7. We divide the contribution of the
dynamical balance on the meridional plane as

− T = B + C̃ + C ′, (4.2)

where

T = 2r(sin θ)Ω0
∂〈Ω1〉

∂z
, (4.3)

B = g

ρ0r

(
∂ρ

∂s

)

p

∂〈s1〉
∂θ

. (4.4)

http://dx.doi.org/10.1007/978-4-431-55399-1_1
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The term T is caused by the Coriolis force and contributes when the differential
rotation is away from the Taylor-Proudman state (∂〈Ω1〉/∂z �= 0). The term B is
caused by the pressure gradient and the buoyancy (baroclinic term) and is effective
when the latitudinal entropy gradient is generated. The detailed form of the C ′ and
C̃ are found in Appendix. These two are caused by the momentum transport on the
meridional plane. C ′ and C̃ are contribution by the mean flow (〈vr 〉 and 〈vθ 〉) and
the nonaxisymmetric flow (v′

r and v′
θ ), respectively. Figure4.8 shows the distribution

of (a) −T , (b) B, (c) C̃ , and (d) C ′. According to the distribution of −T in
Fig. 4.8a, we divide the meridional plane to four regions (I, II, III, and IV as shown
in Fig. 4.8a). Region I is maintained by the latitudinal entropy gradient B from the
middle to the bottom of the convection zone (see panel b). In the other regions (II, III,
and IV), the deviation from the Taylor-Proudman state cannot be compensated by the
entropy gradient. Themean flow (C̃ : Fig. 4.8c) has negligible role almost everywhere
including the NSSL. We see that the contribution from the non-axisymmetric flow
(C ′: Fig. 4.8d) almost compensates the term−T at the regions II, III, and IV.We note
that the region III is not well balanced between −T and C ′, indicating long-time
evolution or the lack of sampling in averaging especially for C ′. To investigate the
origin of the distribution of C ′, which can maintain the NSSL, we divide the term C ′
to three asC ′ = C ′

d +C ′
θ +C ′

r . Their detailed forms are found inAppendix. The term
C ′
d is caused by the diagonal component of the momentum flux Frr , Fθθ , and Fφφ .

Fig. 4.8 The values a −T , b B, c C̃ , and d C ′ are shown in the unit of 10−12 s−2 are shown on
the meridional plane
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Fig. 4.9 The values a C ′
d, b C ′

θ , and c C ′
r in the unit of 10−12 s−2 are shown on the meridional

plane

The terms C ′
θ and C ′

r are caused by the nondiagonal components of the momentum
flux Frθ . The difference between these two terms is explained as follows: the termC ′

θ

(C ′
r ) is caused by the transport of the latitudinal momentum ρ0vθ (radial momentum

ρ0vr ) in the radial (latitudinal) direction. Figure4.9 shows the distribution of (a) C ′
d,

(b) C ′
θ , and (c) C ′

r . The diagonal term C ′
d has contribution to some degree and the

contribution from the term C ′
r is negligible. The essential contribution is by the term

C ′
θ , i.e., the transport of the latitudinal momentum in the radial direction.
Next we investigate the origin of the distribution of theC ′

θ by estimating the value

D′
θ(n) = − 1

ρ0

[
1

r2
∂

∂r
(r2F ′

rθ ) − F ′
θr

r

]
, (4.5)

and the correlation 〈v′
r v′

θ 〉, where F ′
i j = ρ0〈v′

i v
′
j 〉 and

C ′
θ = 1

r

∂

∂r
(r D′

θ(n)). (4.6)

Figure4.10 shows (a) Dθ(n) and (b) 〈v′
r v′

θ 〉. Dθ(n) indicates the direction of the lati-
tudinal force by the momentum transport. The direction is equatorward (poleward)
in the top (bottom) of the NSSL in the high latitude (Region II). This force compen-
sates the Coriolis force there. The origin of this force by the momentum transport
is shown in Fig. 4.10b. Around the high latitude NSSL, the positive correlation is
reproduced. In the high latitude deeper convection zone, the correlation is nega-
tive. This increases (decreases) the latitudinal momentum in the upper (lower) part
of the NSSL (Fig. 4.10a). The positive and negative correlations are the essential
maintenance mechanism of the NSSL in the high latitude.

Before discussing on the generation of the correlation in the high-latitude NSSL,
let usmention the low-latitude deeper layer feature. From themid- to the low-latitude,
the negative correlation is reproduced in the near surface layer. The positive corre-
lation is generated in the middle of the convection zone at the lower latitude. This
positive correlation is generated by the banana cell. In the banana cell region, the
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Fig. 4.10 The values a Dθ(n) in the unit of 10−3 cm s−2 and b 〈v′
r v′

θ 〉 in the unit of 106 cm2 s−2

are shown on the meridional plane

Coriolis force is effective and the zonal velocity vφ significantly generates the radial
and latitudinal velocities. When both radial and latitudinal velocities are generated
by the Coriolis force, the correlation 〈v′

r v′
θ 〉 can be positive. In the NSSL, however,

the banana cell is unlikely to exist under the high Rossby number condition. This
means that a positive correlation 〈v′

r v′
θ 〉 in the high latitude NSSL is generated by

different mechanism(s).
From here, we discuss the origin of correlation between the velocities. Basically,

the existence of the mean flow is a cause of the anisotropic correlated flow. The
other terms are likely to cause the correlation to be zero. We retain the terms that can
generate a positive or negative correlation as follows:

∂v′
r

∂t
= −v′

θ

r

∂〈vr 〉
∂θ

+ 2v′
φΩ0 sin θ + [· · · ], (4.7)

∂v′
θ

∂t
= −v′

r
∂〈vθ 〉
∂r

+ 2v′
φΩ0 cos θ + [· · · ], (4.8)

∂v′
φ

∂t
= −2v′

rΩ0 sin θ − 2v′
θΩ0 cos θ + [· · · ]. (4.9)

The first term in each of the Eqs. (4.7) and (4.8) is that due to the mean meridional
flow that is themost important element in this discussion. In this discussion, we focus
on the correlation between v′

r and v′
θ . When the typical time scale is estimated to be

τ = Hp/vRMS, we obtain the relation

v′
φ ∼ −2τv′

rΩ0 sin θ − 2τv′
θΩ0 cos θ, (4.10)

from Eq. (4.9). We substitute this relation to Eqs. (4.7) and (4.8), and only retain the
terms that can generate a nonzero correlation between v′

r and v′
θ :

∂v′
r

∂t
= [· · · ] − v′

θ

r

∂〈vr 〉
∂θ

− 2v′
θ τΩ2

0 sin(2θ), (4.11)
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∂v′
θ

∂t
= [· · · ] − v′

r
∂〈vθ 〉
∂r

− 2v′
rτΩ2

0 sin(2θ). (4.12)

This means that the terms from the Coriolis force (i.e. the last term in each equation)
generate a negative correlation between v′

r and v′
θ . This is understood by thinking that

when the Coriolis force is strong, the fluid is likely to move along the rotation axis.
The sign of the correlation by the mean flow depends on the sign of ∂〈vr 〉/(r∂θ) and
∂〈vθ 〉/∂r . Figure4.11 shows the distribution of (a) ∂〈vr 〉/(r∂θ), and (b) ∂〈vθ 〉/∂r . It
is clear that the contribution from the term related to ∂〈vr 〉/(r∂θ) is small compared
with the term of ∂〈vθ 〉/∂r . Interestingly we find that the negative value of ∂〈vθ 〉/∂r
in region II and the positive value is found in region IV. Only when ∂〈vθ 〉/∂r has
negative value, the correlation 〈v′

r v′
θ 〉 can have a positive value in Eq. (4.12). The

effectiveness of the generation of the positive correlation by the mean meridional
flow over the Coriolis force can be estimated as follows:

M = − ∂〈vθ 〉/∂r

2τΩ2
0 sin(2θ)

∼ − 1

sin(2θ)Ω0

∂〈vθ 〉
∂r

Ro. (4.13)

Because the positive correlation is found at θ = 20–40◦, we estimate sin(2θ) ∼ 0.5.
Ro = vRMS/(2Ω0Hp) ∼ 4 which is estimated in Fig. 4.3 at the base of the NSSL and
|∂〈vθ 〉/∂r | ∼ −5 × 10−7 s−1 at this region (around r = 0.96R�).M at the base of
NSSL is around 1.5. This shows that the generation of the positive correlation by the
mean poleward flow begins to be effective in the base of the NSSL. When the value
∂〈vθ 〉/∂r is positive both terms of the meridional flow and the Coriolis force generate
the negative correlation. This cannot generate the solar-like NSSL even under the
large Rossby number situation (region IV).

Regarding the low-latitude NSSL (region III), the positive correlation 〈v′
r v′

θ 〉
generated by the banana cell have a role with some contribution of the poleward
meridional flow there (Fig. 4.10b). Around the tangential cylinder (white line) the
effect by the banana cell and the meridional flow is ineffective and the correlation

Fig. 4.11 The values a ∂〈vr 〉/(r∂θ), and b ∂〈vθ 〉/∂r in the unit of 10−7 s−1 are shown on the
meridional plane
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〈v′
r v′

θ 〉 is negative. In the boundary of the effective and ineffective layers of these
mechanisms, the fluid is accelerated poleward, which compensates the Coriolis force
in the low-latitude NSSL.

4.4 Calculation with High Rotation Rate and Solar
Luminosity

In this section, we show an additional calculation with 2.4 times of the solar rotation
(Ω0/2π = 989 nHz) andwith the solar luminosity. In this calculationwe adopt rather
low resolution 256(Nr ) × 432(Nθ ) × 1,296(Nφ) × 2. Even with this resolution,
convection pattern around upper boundary can have supergranulation scale. The
radiative diffusivity calculated in Model S is adopted in this calculation, i.e., the
solar luminosity is imposed from the bottom boundary. The main purpose of this
section is to investigate the relation between imposed luminosity, rotation rate, and
obtained NSSL pattern. Figure4.12a, b show the RMS velocity and the Rossby
number, respectively with the same manner as Fig. 4.3. Figure4.12a shows that the
RMS velocity increases from the result in the previous section with factor of 2.7
due to the increased luminosity. Since the rotation rate is larger in this case than the
previous, we have similar distribution of the Rossby number (Figs. 4.3b and 4.12b).
Figure4.13a, b shows the mean meridional flow, i.e., ρ0〈vr 〉 and ρ0〈vθ 〉, respectively.
The differential rotation is shown in Fig. 4.14. Comparison with Figs. 4.4 and 4.6
indicates that the essential features do not change and the NSSL is established also
with this setting. We conduct same analysis as the previous section and conclude that
the NSSL in this setting is also maintained by the same mechanism.
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Fig. 4.12 Radial profile of a the RMS velocity, b vRMS/(2Ω0Hp) for the calculation with 2.4×
of the solar rotation and with 1.0× of the solar luminosity. The black, blue, and red lines show the
radial (vr ), latitudinal (vθ ), and zonal (vφ) values, respectively. The dashed line in panel b indicates
the values at unity (Color figure online)
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Fig. 4.13 The radial and latitudinal velocity multiplied by the background density ρ0 and averaged
in time and zonal direction for the calculation with 2.4× of the solar rotation and with 1.0× of the
solar luminosity. a ρ0〈vr 〉 and bρ0〈vθ 〉 in the unit of g cm−2 s−1

Fig. 4.14 The angular
velocity (〈Ω〉/(2π)) on the
meridional plane in the unit
of nHz

This result shows that even with different imposed luminosity, i.e., different con-
vection velocity, and different rotation rate, the NSSL pattern is obtained with a
similar distribution of the Rossby number. This means that when we investigate
different star with different luminosity and rotation rate, the Rossby number is an
essential value to understand the differential rotation.

4.5 Summary and Discussion

We conduct the high-resolution calculation of the thermal convection in the spherical
shell with rotation in the highly stratified layer for the purpose of reproducing the
NSSL. It is thought that the NSSL is maintained by the thermal convection with the
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small spatial scale and the short time scale which causes weak rotational influence.
By calculation with the reduced speed of sound technique, we succeed in including
such small-scale as well as large-scale convection and in reproducing the NSSL.

With regard to the angular momentum transport, the maintenance mechanism is
the same as that suggested byGilman and Foukal (1979). The radially inward angular
momentum transport caused by the convection with weak rotational influence main-
tains the NSSL. Because the NSSL is significantly away from the Taylor-Proudman
state (∂〈Ω1〉/∂z �= 0), a mechanism(s) is required to compensate the Coriolis force
which tends to break the NSSL.

Figure4.15 summarizes the mechanism. In the high-latitude NSSL, the positive
correlation is generated by the poleward meridional flow whose amplitude increases
with the radius (∂〈vθ 〉/∂r < 0). In the deeper convection zone, the Coriolis force
produces the negative correlation 〈v′

r v′
θ 〉 with the alignment of the flow along the

rotational axis. The positive correlation 〈v′
r v′

θ 〉 in the NSSL transports latitudinal
momentum upward, and thus, the top (bottom) of the NSSL is accelerated equa-
torward (poleward). This is shown in Fig. 4.15b. This acceleration compensates the
Coriolis force in the NSSL.

In the low latitude, the banana cell generates the positive correlation, which
increases along the radius and accelerates the fluid poleward. When the equator-
ward meridional flow with increasing amplitude (∂〈vθ 〉/∂r > 0) is effective, i.e.,
with the large Rossby number, the correlation 〈v′

r v′
θ 〉 becomes negative. At the layer

where this effect begins to occur, the fluid is accelerated equatorward. Then, the neg-
ative correlation multiplied with the background density becomes zero, which then
accelerates the fluid poleward again. This complicated transport of the momentum
maintains the distribution of the NSSL at the low latitude in our calculation.

Fig. 4.15 The summary of our findings is in the schematic. The panel a shows the distribution
of the correlation 〈v′

r v′
θ 〉. The gray area indicates the strong influence of the rotation. The panel b

shows the force balance on the meridional plane. The gray and red arrows show the direction of
the Coriolis force and the force by the momentum transport. The dashed lines are the contour line
of the angular velocity (Color figure online)
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Most important finding in this study is that the radial gradient of the latitudinal
meridional flow, i.e., ∂〈vθ 〉/∂r , has an essential role for themaintenance of theNSSL.
In this study, the equatorwardmeridional flow in the very near surface layer in themid
and low latitude is generated.Although the origin of this equatorwardmeridional flow
is unknown, this type of feature is seen in the previous study (Miesch et al. 2008). The
equatorward meridional flow is mainly generated where the difference in the angular
momentum transport by theReynolds stress and themeanmeridional flow is seen (see
Fig. 4.6c, d). This indicates the contribution of the artificial viscosity on this issue.
The distribution of the NSSL especially in the low latitude should be confirmed
with higher-resolution calculations in the future. In the sun, it is thought that the
meridional flow is basically poleward from low to high latitude with increasing its
amplitude (Zhao et al. 2013). This can generate a positive correlation 〈v′

r v′
θ 〉 at all

the latitudes. It can be thought that this is the reason why the sun has the NSSL at all
latitudes.
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Chapter 5
Concluding Remarks

Abstract The achievements and the important findings in this thesis are summarized
in this chapter. In this thesis we focus on the interaction of the small-scale and
large-scale convection in the solar and stellar interior. Although this requires huge
numerical resources and technical innovation, we succeed in simultaneously repro-
ducing them. Then the achievements of this thesis provide significant understanding
in the convection zone, such as the convection structure itself, the generation and
transport of the magnetic field and the maintenance mechanism of the differential
rotation. Finally we show remaining problems for the future.

Keywords Solar pole’s acceleration problem · Weak solar convection · Solar
sear-surface region

5.1 Summary of Thesis

5.1.1 Achievements

1. We significantly improve the ability of the numerical calculation of the solar and
stellar global convection.
Taking advantage of the reduced speed of sound technique as well as some other
numerical techniques introduced in Chap.2, we develop the efficient numerical
code for the solar global flow.The numerical code efficiently scales up to 105 cores
and shows a good performance (14% to the peak and 3×105 grid update/core/s).
This is able to cover the broad spatial and temporal range of the plasma in the
solar and stellar convection zone.

2. 10Mm-scale convection is reproduced in the solar global convection for the
first time.
In the previous study, on account of lack of the resolution and large diffusiv-
ity, only the ∼50Mm-scale convection is achieved around their upper boundary
(Miesch et al. 2008). Because we succeed in increasing the resolution and adopt-
ing the higher upper boundary, we can establish the 10Mm-scale convection even
in the global computation domain for the sun. This is reported in Chap.3.
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3. The NSSL is reproduced for the first time. The reproduction of the NSSL requires
simultaneous establishment of the small- and large-scale convection. This means
that reproduction requires a large number of time integration and the grid points.
This challenging purpose is achieved in this thesis taking advantage of the good
efficiency of our developed numerical code. This is reported in Chap. 4.

5.1.2 Findings

1. The small-scale convection generated near the surface layer influences the rel-
atively shallower layer in the convection zone (>0.9R�). In the deeper layer
(<0.9R�) the influence is negligible.

2. The magnetic field preferentially appears in the downflow, because strong mag-
netic field is likely generated there. This causes the downward Poynting flux in
the convection zone. Around the base of the convection zone (<0.85R�), the
magnetic energy is accumulated by the Poynting flux. The local dynamo even in
the large scale is effective.

3. The NSSL is maintained by the Reynolds stress. The convective motion under the
small influence of the rotation transports the angular momentum radially down-
ward. This causes the poleward meridional flow with increasing the amplitude
along the radius in the upper convection zone. This meridional flow again causes
a positive correlation 〈v′

r v′
θ 〉 in the near surface layer, which then transports the

latitudinalmomentum radially upward. In the deeper convection zone, the correla-
tion 〈v′

r v′
θ 〉 is negative owing to the Coriolis force, which transports the latitudinal

momentum radially downward. The force by this momentum transport maintains
the NSSL in our calculation. We argue that this is a possible mechanism for the
solar case.

5.2 Remaining Problems and Future Work

5.2.1 Comparison with Helioseismology

Most recent observation by Hanasoge et al. (2012) using the local helioseismology
technique estimates the internal structure of the thermal convection. They constraint
the amplitude of the horizontal velocity associated with the solar convection for the
modes with horizontal harmonics � < 60. The flow speed in this scale is substan-
tially smaller than the result with the ASH code (by two orders of magnitude at
maximum). The spectra in this thesis show similar amplitude to that of the ASH
code results even with higher resolution and the higher upper boundary. In the cur-
rent situation, both results of numerical simulation and helioseismology are under
debate. A sophisticated comparison between them should be continued to understand
the real structure of the solar global convection.
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5.2.2 Proper Reproduction of Solar Differential Rotation

There is another problem still remaining for the differential rotation reported from
the ASH code group. They investigated the dependence of the differential rotation
on the thermal diffusivity and the kinetic viscosity, which is believed to be very small
in the real solar interior. They found that if the thermal diffusivity is small (<3 ×
1012 cm2 s−1), the polar region is accelerated, i.e. anti-solar differential rotation is
obtained. When the thermal diffusivity is small, the entropy gradient near the surface
becomes large and the generated thermal convection velocity becomes larger. This
means the Rossby number becomes large. Because in the sun, the Rossby number is
thought to be around unity, i.e., the effects of the Coriolis force and the convection
are similar, the slight change in the convection velocity can cause significant change
in the correlation terms (〈v′

r v′
φ〉 and 〈v′

θ v′
φ〉), the meridional flow and the differential

rotation.
This problem might be caused by the limited resolution in the solar global con-

vection simulations. The turbulence in the thermal convection is thought to have the
power law distribution from the injection scale to the Kolmogorov dissipation scale.
Although the unresolved scale convection can also transport the energy, we ignore
them. As a consequence, our resolved scale must transport too much energy and
must have too large an amplitude in the velocity. The improvement in this thesis for
increasing the resolution will contribute to this fundamental issue in the future.
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Appendix

Dynamical Balance on Meridional Plane

In the appendix, we derive the equations for the dynamical balance on the meridional
plane.We start with the hydrodynamic equation with the Coriolis force used andwith
the equation of continuity with the RSST, we obtain,

∂v
∂t

+ ξ2v
ρ0

∂ρ1

∂t
= − 1

ρ0
∇ · (ρ0vv) − ∇ p1 + ρ1ger

ρ0
+ 2v × Ω0. (A.1)

The zonal component of the curl of the second and third terms in the left hand side
of Eq. (A.1) are shown in Chap.1. We define the momentum flux on the meridional
plane as follows:

〈Fi j 〉 = F̃i j + F ′
i j , (A.2)

F̃i j = ρ0〈vi 〉〈v j 〉, (A.3)

F ′
i j = ρ0〈v′

i v
′
j 〉, (A.4)

where i and j correspond to r , θ , and φ. For this definition, we divide the velocity
as vi = 〈vi 〉 + v′

i . Then the divergence of the fluxes are divided to several terms as
follows:

D = − 1

ρ0
∇ · F = Dr er + Dθeθ , (A.5)

Dr = Dr(d) + Dr(n), (A.6)

Dθ = Dθ(d) + Dθ(n), (A.7)

Dr(d) = − 1

ρ0

[
1

r2
∂

∂r
(r2Frr ) − Fθθ + Fφφ

r

]
, (A.8)
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Dr(n) = − 1

ρ0r sin θ

∂

∂θ
(sin θ Fθr ), (A.9)

Dθ(d) = − 1

ρ0

[
1

r sin θ

∂

∂θ
(sin θ Fθθ ) − cot θ Fφφ

r

]
, (A.10)

Dθ(n) = − 1

ρ0

[
1

r2
∂

∂r
(r2Frθ ) − Fθr

r

]
. (A.11)

We use the notation of D̃ = D(F̃) and D′ = D(F ′). Then the zonal component of
the curl of the 〈D〉 is also divided to several terms as follows:

C = (∇ × 〈D〉)φ = Cr + Cθ + Cd. (A.12)

Then each term is dividedCi = C̃i +C ′
i , where i corresponds to r , θ , d. The terms are

C̃r = −1

r

∂ D̃r(n)

∂θ
, (A.13)

C ′
r = −1

r

∂ D′
r(n)

∂θ
, (A.14)

C̃θ = 1

r

∂

∂r

(
r D̃θ(n)

)
, (A.15)

C ′
θ = 1

r

∂

∂r

(
r D′

θ(n)

)
, (A.16)

C̃d = 1

r

∂

∂r

(
r D̃θ(d)

)
− 1

r

∂ D̃r(d)

∂θ
, (A.17)

C ′
d = 1

r

∂

∂r

(
r D′

θ(d)

)
− 1

r

∂ D′
r(d)

∂θ
. (A.18)

Then the Eq. (A.1) is averaged in time and zonal direction We assume ∂/∂t = 0 then
the equation of the balance is obtained as follows:

− T = B + C , (A.19)

where

T = 2r sin θΩ0
∂〈Ω1〉

∂z
, (A.20)

B = g

ρ0r

(
∂ρ

∂s

)

p

∂〈s1〉
∂θ

. (A.21)
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