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Preface 
This book is an attempt to present in a self-contained way those basic 
concepts in the transportation and traffic operations field that should be 
well understood by every transportation professional. This includes 
graduate students planning to pursue more advanced studies, as well as 
newcomers to the field who may be readying themselves for an in depth 
review of the literature. It is also hoped that academics will find parts of 
this book suitable for teaching material and/or reading assignments. 

The book has evolved from a set of course notes that were prepared 
for an introductory graduate course in transportation operations cur- 
rently taught in the transportation engineering division at U.C. Berke- 
ley. The goal of this course is to introduce the basics of transportation 
operations to a wide crossection of graduate students entering our 
interdisciplinary program, with backgrounds in civil engineering, city 
planning, operations research, economics, etc. 

The structure and level of the book, as that of the course, is dictated 
by the necessity to reach such a wide audience in a pedagogically 
sensible manner. For example, probabilistic concepts are avoided to the 
extent possible until chapter 6 in order to allow some students to take a 
concurrent course on probability theory. Elementary calculus concepts, 
however, are used from the beginning. It is also assumed that the reader 
has the basic modeling skills that one would develop in an introductory 
physics course. An effort has been made to represent different things by 
different symbols within each chapter, and to use a unique symbol for 
the most important variables used throughout the book. Notational 
inconsistencies across chapters could not be totally avoided, however, 
due to the variety of subjects. 

The book has chapters on tools (1, 2, 3, and the first part of 6) and 
others on applications (4, 5,  2nd part of 6, and 7). Very brief introduc- 
tions to graphical methods, optimization, probability, stochastic 
processes, statistics and simulation are provided as part of the “tool” 
chapters. Somewhat unorthodox, these discussions have been made as 
self-contained as possible, emphasizing the most useful aspects of each 
tool. This is not the emphasis one usually finds in more specialized 
books. Readers already familiar with these subjects may skip chapter 3 
and the first two sections of chapter 6, although they may find some 
portions of the discussion entertaining. Chapters 1 and 2 should not be 
skipped, however. 

The book covers some of the application topics in more depth than 
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would be necessary for an introduction in order to fill gaps in the 
existing literature. Most notably, “Fundamentals” includes a fairly de- 
tailed treatment of “traffic flow theory” in Chaps. 1, 2 and 4. The 
second half of Chap. 4, covering “traffic dynamics”, is more demanding 
than the rest of the book, but this was necessary for the sake of 
completeness. A more detailed treatment of this subtle topic is included 
because certain aspects of it are repeatedly missinterpreted in the 
published literature. The presentation of this topic stresses the simple 
traffic theories introduced in the fifties, whose successes and drawbacks 
are well understood, and ignores modern refinements which have not 
stood serious scrutiny. 

The remaining application topics, “control” (Chap. 9, “observation” 
(2nd part of Chap. 6) and “scheduled modes” (Chap. 71, use a “building 
block” approach. Basic ideas involving simple systems (e.g., the timing 
of a simple traffic signal, the estimation of a bottleneck’s “capacity”, 
and the evaluation of passenger delay at a bus stop) are presented in 
detail and more complicated ones (e.g., networks, estimation of an 
origin-destination table, and coordination of transit schedules) more 
qualitatively. An objective was to present the issues clearly, more than a 
list of specific techniques. As with the material on traffic flow theory, an 
effort has been made to point out various pitfalls so that they can be 
avoided. Here too, only that material which is definitely known and 
correct has been presented in the hope that a newcomer to the 
transportation field will find in this book a useful source of basic 
culture. 

The application subjects included do not represent a complete survey 
of those topics one could characterize as “transportation operations” 
because the book deemphasizes the description of facts (which change 
as technology changes) in favor of logic. Furthermore, only logical ideas 
which in my opinion have a solid grounding in physical reality have been 
included because those are the ones that have the best chance of 
standing the test of time. This seems appropriate for an introductory 
book (course) that attempts to prepare the reader for a critical under- 
standing of the field. Of course, many excluded topics deserve treatment 
in journals and in more specialized books/courses. The reader should 
turn to these for proper coverage of the current literature. 

“Fundamentals of transportation and traffic operations” may be used 
as a textbook if complemented with problems. A set of solved problems 
jointly developed with U.C. Berkeley colleagues will be available in the 
near future and can be ordered by writing to “Institute of Transporta- 
tion Studies, Publications Office, 109 McLaughlin Hall, University of 
California, Berkeley, CA 94720” or by sending e-mail to “its@its.berke- 
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1ey.edu”. The book can also be used as background reading in graduate 
and undergraduate courses on transportation and traffic operations. 
“Fundamentals” also describes a number of computer spreadsheets that 
can be used for various purposes, including class demonstrations. These 
can be downloaded from the INTERNET by looking up the book title 
at ‘‘m.ce.berkeley.edu/ * daganzo” and following instructions. The 
problems, but not the solutions can also be downloaded from the 
INTERNET. 

I would be interested in learning of any errors, and plan to issue an 
errata sheet in conjunction with the set of problems when/if significant 
ones are found; the errata will also be posted on the INTERNET. 
Comments may be sent by e-mail to “daganzo@ce.berkeley.edu”. 

I wish to thank my mentor and colleague Gordon F. Newel1 for his 
valued comments, both on the course and on the book. Professor Rod 
Troutbeck of Queensland University of Technology, Brisbane, Aus- 
tralia, hosted me graciously during a sabbatical leave which made 
possible preparation of a first draft. His comments and encouragement 
are also deeply appreciated; the title of the book was suggested by him. 
Thanks are also due to Prof. Mike Cassidy of U.C. Berkeley for 
furnishing valuable feedback on those portions of the book he has used 
in the classroom, to Mrs. Ping Hale for patiently putting up with me 
while preparing a first draft of the manuscript and to Ms. Esther 
Kerkmann for doing the graphics. A grant from the University of 
California Transportation Center made it all possible. Most of al1,how- 
ever, I want to thank my wife, friend and companion, Valery, for her 
support and understanding. 

Carlos F. Daganzo 
Berkeley, California 
December 29, 1996 
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C H A P T E R  O N E  

The time-space diagram 
Because the transportation field has not been developed to the point 
where many of the existing problems can be addressed with well 
established recipes, transportation professionals are often required to 
use basic modeling skills and think on their own. This, of course, can 
only be done effectively if one ‘owns’ a complete set of thinking tools. 
Since a basic set of tools is also necessary for a meaningful discussion of 
transportation operations, this book starts with brief introductions to 
those ‘deterministic’ tools that are not always covered in an undergradu- 
ate engineering curriculum: first the time-space diagram (Chapter 11, 
then cumulative plots (Chapter 2 )  and finally optimization (Chapter 3). 

The material in chapters 1 and 2 is necessary to describe and think 
about the collective motion of items over guideways. The diagrams 
presented in these chapters are ‘fundamental’ in that they shed much 
light on time and motion problems that one may be trying to under- 
stand. Chapters 4 (traffic flow theory) and 7 (scheduled systems) rely on 
these diagrams extensively. The material in chapter 3 is often useful for 
the design and/or control of systems that are already well understood. 

The present chapter introduces the time-space diagram and its appli- 
cation to the study of vehicular motion. It is organized in three sections. 
Section 1.1 discusses the motion of a single item, Sec. 1.2 that of many 
items sharing a guideway, and Sec. 1.3 some applications to more 
specific scheduled and unscheduled transportation problems. 

1.1 Trajectories for a single vehicle 

Very often in the analysis of a particular transportation operation one 
has to track the position of a vehicle over time along a 1-dimensional 
guideway as a function of time, and then summarize the relevant 
information in an understandable way. This can be done by means of 
mathematics if one uses a variable x to denote the distance traveled 
along the guideway from some arbitrary reference point, and another 
variable t to denote the time elapsed from an arbitrary instant. Then, 
the desired information can be provided by a function x(t) that returns 
an x for every t in the relevant range for our application.’ 



2 Fundamenta ls  of transportation and  traffic operations 

A graphical representation of x(t> in the (t,x) plane is a curve which 
we call a trajectory. As illustrated by two of the curves in Fig. 1.1, 
trajectories provide an  intuitive, clear and complete summary of vehicu- 
lar motion in one dimension. Curve ‘a’, for example, represents a 
vehicle that is proceeding in the positive direction, slows down and 
finally reverses direction. Curve ‘b’ represents a vehicle that resumes 
travel in the positive direction after nearly stopping. Curve ‘c’, however, 
is not a representation of a trajectory because there is more than one 
position given for certain t’s (e.g. t , , ) ;  such a curve is not the representa- 
tion of a (single-valued) function d t ) .  Valid vehicle trajectories must 
exhibit one and only one x for every t. For problems requiring a level of 
resolution comparable o r  finer than the vehicular length, e.g., when 
tracking the position of a mile-long train over a vertical curve, the curve 
x(t) should refer to  a particular point of the vehicle such as the vehicle’s 
front, rear or  center of gravity. Any point is valid, provided the diagram 
is interpreted in accordance with the choice. 

In some practical applications a vehicle’s trajectory must be devel- 
oped analytically from knowledge about the operating characteristics of 
the vehicle and the guideway such as: the vehicle mass, resistive forces, 
engine horsepower, guideway elevation profile, etc. Examples of such 
applications are: (1) determination of the minimum travel time between 
stations for a transit train when one is given the maximum operating 
speed, the maximum acceleration and the maximum allowable ‘jerk’?, as 
well as the distance between stations: (2) determination of a vehicle’s 

Figure 1.1 Time-\pace cune5:  ( a )  xiid ( b )  a rc  \ehiclc trajcctories: ( c )  i s  n o t .  
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initial speed from its skid marks and its estimated collision speed, given 
the vehicle’s coefficient of friction and the road geometry; (3) studies of 
runway length and taxiway exit location, which use as inputs airplane 
deceleration characteristics and an initial speed to predict the distance 
traveled to achieve a target speed; (4) similar studies for the length of 
acceleration and deceleration lanes of freeway on-ramps and off-ramps, 
(5) calculation of high-speed rail travel times over rugged terrain as a 
function of the engine power and the vertical profile of a proposed 
alignment. 

In other applications the trajectory of a vehicle can be recorded, e.g. 
with a video-camera, and the objective is to convert the raw data into a 
curve x(t) that can then be studied mathematically. Sometimes, as may 
happen for transit systems using an automated vehicle monitoring 
system, no conversion may be necessary at all. In other cases, however, 
data may only be available in the form of observed vehicle positions at 
discrete times, as happens for example in elevator and public 
transportation studies when only the times at which each vehicle arrives 
and leaves each stop are recorded. Then the full set of vehicle trajecto- 
ries may be approximated by interpolation. 

Later in this chapter we will see how representing multiple vehicle 
trajectories on the same time-space diagram, whether analytically or 
experimentally obtained, can help solve many problems. Before this can 
be done a more detailed look at single vehicle trajectories is in order, 
although it is with multiple vehicles that the technique really shines. 

We recall from elementary physics that the first and second time- 
derivatives of a vehicle trajectory (e.g. curve ‘a’ of Fig. 1.1) represent the 
velocity, v, and acceleration, a, of the vehicle; i.e., that v(t) = dx(t)/dt 
and a(t) = d*x(t)/dt’, or in abbreviated form: 

(1.1) 
Although Eq. (1.1) is widely known and its qualitative graphical 

consequences are rather obvious, it is worth emphasizing that steeply 
increasing (decreasing) sections of x(t) denote a rapidly advancing 
(receding) vehicle; horizontal portions of x(t) denote a stopped vehicle 
and shallow sections a slow-moving vehicle. Straight line segments 
depict constant speed motion (with no acceleration) and curving sec- 
tions denote accelerated motion; here, the higher the curvature, the 
higher the absolute value of the acceleration. Concave downwards 
curves (such as curve ‘a’) denote deceleration and concave upwards 
(convex) sections denote accelerated motion. 

The reader is encouraged not just to understand rationally these 
properties, but also to draw and study a large number of examples in an 

v = &/dt  and a = d ’ x / d t ’ .  



4 Fundamentals of transportation a n d  traffic operations 

effort to have the above qualitative properties become second nature. 
The  ability to look at an x(t) curve and tell immediately what is 
happening will turn out to be rather useful later on. 

The  five problems mentioned earlier all have in common that from a 
knowledge of the forces acting on a vehicle and some initial conditions 
a t  time t = 0, it is possible to write an  ordinary differential equation for 
the vehicle trajectory with x as the unknown, involving the acceleration. 
This can be done after calculating the resultant force, F, acting o n  the 
vehicle in the direction of travel and dividing it by the vehicle mass, m; 
i.e., invoking Newton's second law of motion: F = ma. Subsections 1.1.6 
and 1.1.7 will show how this is done. Earlier subsections give a brief 
qualitative description of the various components of F and how they 
depend on key attributes of the vehicle and the guideway.' 

Because for most problems i t  makes sense to assume that m is 
constant, we will express all the force components, F,, in terms of the 
acceleration that they would induce, a ,  = F, /m.  A further simplification 
is achieved by restricting our attention to longitudinal forces and 
accelerations; i.e., those acting in the direction of the guideway. This 
obviates the need for vector notation, since a + o r  - sign suffices to 
define the direction of each longitudinal component. For problems 
where vehicles don't reverse directions, we will take positive magnitudes 
to  denote forces acting in the direction of travel (imparting accelera- 
tion) and negative magnitudes, forces in the opposite direction. 

1.1.1 Propulsive force, Fl, 

This is a force that the guideway exerts on the vehicle (and vice versa). 
It usually varies with time as per the 'driver' input, but is always limited 
by the engine power and (for land vehicles) by the coefficient of friction 
in the following way: 

where g is the acceleration of gravity (about 32.2 ft/sec'), f is a 
dimensionless coefficient of friction (about 0.3 for cars and buses4, 
smaller for rail, and of no consequence for air and water vehicles), and 
K is the power to  weight ratio of the vehicle, which has units of speed. 

The  constant K can be calculated as the ratio of the engine power 
and the weight of the vehicle assembly in some consistent system of 
units. The  vehicle assembly must include any independent units pulled 
by the engine, and their loads; e.g. railroad cars pulled by a railroad 
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engine. Thus, care must be exercised in adopting a ‘rated’ power to 
weight ratio of a given power plant. 

Formula (1.2a) recognizes that more acceleration can be developed at 
lower speeds and that the maximum is limited by the adhesion between 
the vehicle and the ground. The formula is only a coarse approximation 
to the actual acceleration that can be elicited from real engines in that 
(1.2a) assumes that the engine can develop maximum power at every 
speed. (This approximation is better for electric motors than for inter- 
nal combustion engines, and realism of (1.2a) for the latter depends on 
the capability of the gearbox to keep the engine’s rpm’s near the 
optimum level at various speeds.) 

Counteracting the propulsive (positive) force of the engine there 
usually are various forms of resistive (negative) forces; i.e. fluid resis- 
tance, rolling resistance, braking resistance and guideway resistance. 
These are reviewed next. The discussion below assumes initially that the 
vehicle in question is traveling on a horizontal path. Corrections for 
climbing, descending and curving paths are introduced in Sec. 1.1.5. 

1.1.2 Fluid resistance, Ff 

This is the force that air and/or water exerts against the vehicle. 
Although more accurate expressions can be developed for specific 
vehicles and specific media, a good all-purpose approximation for this 
force is: 

- _ -  Ff - 
m Q up (1.2b) 

where v, is the vehicle speed relative to the fluid, and Q is a coefficient 
of drag. The coefficient of drag, which depends on the vehicle’s cross- 
section and its aero/hydro-dynamic shape, has units of (distance)- ’. 

Equation (1.2b) is based on Bernoulli’s principle that fluid resistance 
past a solid varies approximately with the square of the fluid speed. 
Although a more precise description of this law would involve the vector 
velocity and a vector force resultant, for most transportation applica- 
tions (airplanes excepted) our scalar equation suffices if the Ff is 
interpreted to act in the opposite direction as the vehicle motion in a 
coordinate system moving with the fluid. 

For the motion of a ground vehicle in still air, v, is the vehicle speed 
v, = v, and Eq. (1.2b) gives the force acting against the vehicle in the 
direction of travel. If the air is not still but cross-winds can be neglected, 
then v, = v - v,, where v, is the air-speed relative to the ground in the 
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direction of travel. It is important to note that if v, < 0 the sign of (1.2b) 
should be reversed. 

For water and air vehicles the analysis is easier if one works in a 
coordinate system that moves with the fluid (by definition then v = vI> 
and one later obtains the trajectory of the vehicle relative to the ground 
after composing the motions of the fluid and the vehicle (relative to the 
fluid) in the usual Galilean way. 

1.1.3 Rolling resistance, F, 
For ground transportation vehicles we must also consider rolling resis- 
tance, and this is usually approximated by a linear function of speed. At 
high speeds rolling resistance is not as important a factor as fluid 
resistance. 

1.1.4 Braking resistance, F ,  
For ground vehicles, this force depends on the force with which the 
brakes are applied, up to a maximum that depends on the friction 
coefficient between the wheels and the guideway. Thus, we can write: 

F J m r  -gf. (1.2c) 
Note that ( 1 . 2 ~ )  is a bound; in practical applications F, = 0 if Fp > 0 

(and vice versa), since the brakes and the throttle are rarely applied 
simultaneously. 

For air and water vehicles braking is achieved by increasing the 
coefficient of drag and/or reversing the engines so that the propulsive 
force applies in the negative direction; i.e., changing a and K .  In all 
cases, the braking force actually applied may be a function of time. 

1.1.5 Guideway resistance, F?: Motion along a profile 
We consider here the contribution toward acceleration of the earth’s 
gravity when the vehicle travels on a slanted path, and also the effect of 
path curvature. When the vehicle path is linear (e.g. a truck on a fixed 
grade) the force in question is negative (positive) if the vehicle is 
climbing (descending). If we let y denote the elevation of the vehicle at 
position x (y = y(x)), and we assume that the slope of the vehicle’s path 
(expressed as a dimensionless fraction, p(x) = dytx)/dx) is small com- 
pared with 1 we can write from a simple force diagram: 

F,/m= - g p .  (1.2d) 
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This formula is only an approximation because the dimensionless 
factor multiplying ‘-g’ is actually the sine of the angle made by the 
path and the horizontal and not the tangent, p.  Of course, for small 
angles (1.2d) is very close to the exact expression, which is 
- g  p/(1 + p’)1’2. For ground transportation, p is the slope of the 
guideway which is known a priori as a function of x. For air travel, ,O 
depends on ‘driver’ decisions, but these are usually prespecified in most 
practical applications. 

As all the previously introduced forces, Fg acts in the direction of 
travel. For ground transportation problems, however, where p << 1, it is 
customary to measure distances, x, in the horizontal direction and then 
study the motion of the horizontal projection of the vehicle. Although 
the horizontal projections of forces (1.1) and (1.2) would then have to be 
used in the equation of motion of the horizontal projection, this step is 
usually (and justifiably) omitted when p << 1. 

The use of a constant friction factor in expressions (1.2a) and (1 .2~)  
assumes that the full weight of the vehicle rests on the road at all times. 
This is not accurate when a vehicle is traveling fast on a sharp vertical 
curve since it ignores the vehicle’s centrifugal tendency, which has a 
levitating effect on crest vertical curves. The error can be corrected by 
replacing f by the following: 

f,, = f [ l+  u2c/gl (1.3) 

where c is shorthand for 4x1 = d2y(x)/dx2. The amount in brackets 
represents the factor by which the normal force between the vehicle and 
the guideway is increased due to the latter’s curvature. The expression 
can be easily derived from a force diagram.’ 

1.1.6 Analytical derivation of a trajectory 
Summation of Eqs. (1.1) and (1.2) results in an expression for the 
instantaneous acceleration of a vehicle. If the actions of the ‘driver’, and 
the characteristics of the driver and the guideway are given, then the 
instantaneous acceleration will be a function of v, x and t: F(v, x, t).‘ 

If the path followed by the vehicle is linear and homogeneous, and 
the driver inputs only depend on v (or are constant), then the instanta- 
neous acceleration will only depend on v and we can write: 

dv 
dt  - = F ( u ) ,  (1.4) 

after eliminating the irrelevant arguments from ‘F’. This is a differential 
equation that can be solved by separating variables; i.e., by integrating 
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the separated version of the equation, dv /Rv)  = dt, between some 
known initial conditions (v, t)  = (v,,, 0) and some unknown final (or 
intermediate conditions) (v,, t , 1: 

This result defines a relation between v ,  and t , ,  G(v , )  = t , ,  which 
indicates the times at  which various speeds are reached. Solving for v , ,  
we may also express the result as follows: 

U ,  = G - ’ ( r , ) ,  (1.5) 
where G - ‘  is the inverse of G. This equation can in turn be rewritten 
as: 

after eliminating the ‘dummy’ subscript ‘1’ from (1.5) and then substitut- 
ing dx/dt for v on the left side. 

Equation (1.6) can now be treated like Eq. (1.41, so that after 
separation of variables and another integration between initial and final 
limits (x,,, 0) and (x , ,  t , )  one obtains the vehicle trajectory in a form: 
(x, - x , , ) = H ( t , ) .  

If the effects of speed and time can be neglected but not the effects 
of position, e.g. in the braking of a car at low speeds on a vertical curve, 
we can express the instantaneous acceleration as a function of x alone, 
F(x), and the ordinary differential equation of motion becomes: 

du 
- = F ( x ) .  dt  (1.7) 

In this case the time variable can be eliminated from the equation by 
writing dv/dt as (dv/dx)(dx/dt) = vdv/dx. The result is an equation for 
v as a function of x that can be written in the separated form: 

udu = F ( x ) d r .  
Integration between initial and final values (v,,, 0) and (v, ,  x , )  now 
yields: 

1 / 2 ( u ; - u ; ) = z ( x , )  

where ‘I’ is the result of integrating ‘F’ between 0 and x , .  This 
expression can be solved for v , .  Then, on eliminating the subscript ‘1’ 
and replacing v by dx/dt we have: 

(1.8) 
dr 
dt - = ( u ;  + 2Z(x) ) ’  1, 
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which, again, can be integrated between initial and final limits after one 
more separation of variables. The result, 

= [ ‘d t  (1.9) 
dr 

is a relation between x ,  and t ,  which is the sought vehicle trajectory. 
If (1.9) cannot be integrated, or the equation dv/dt = F(v, x, t> is not 

of a form that can be easily solved, the solution can be found numeri- 
cally. 

1.1.7 Numerical derivation of a trajectoly 

Computer spreadsheets such as ‘LOTUS’, ‘QUATTRO’ and ‘EXCEL‘ 
can be used to solve differential equations of the type introduced here 
quite easily. The idea is to step through time (or distance) in steps of 
small and constant size, At (or Ax), recording at each step all the 
information that is necessary to calculate the information at the next 
step; i.e.: t, x, v, a, y, p = dy/dx and c = d2y/dx‘. 

To do this, one should reserve a separate column (properly labeled 
for future reference) for each of these seven pieces of information, and 
then should enter as data any columns that are known and the known 
information at t = 0, x = 0. Fig. 1.2 shows as an example the organiza- 
tion of a spreadsheet that calculates the travel times of a vehicle for 
different distances. The guideway profile is given and therefore the 
columns for x, y, p(x) and c(x) have been entered as data. Also, as part 
of the initial data we have t = 0 and v = vo. The remaining cells of the 
first and second rows of the spreadsheet contain recursive formulae that 
are the discrete equivalent of the equation: dv = F(v, x, tldt. Once 
copied across all rows the table is automatically filled with the approxi- 
mate solution to the problem. The formulas for this particular problem 
are displayed in Fig. 1.2; the arrows pointing to each of the three 
formulas indicate the source of the data for the arguments of the 
formulas. (The formula for v is the well-known expression for the final 
speed of a uniformly accelerated object over a fixed distance Ax.) The 
formula for F may use as inputs data (e.g. a ,  m, K.. . )  that may be stored 
in cells outside the range shown in the figure. 

To make sure that the approximation is sufficiently accurate it is good 
practice to reduce Ax (or At, in other cases) and check that the solution 
doesn’t vary appreciably. 

A spreadsheet ‘TRAJTRY.WK1’ has been made available to the 
public. (See preface for information on how to obtain this and other 



10 Fundamenta ls  of transportation a n d  traffic operations 

A X  

Data 
0.03 

Figure 1.2 
increment of 0.01 units. 

Organization of a vehicle-trajectory spreadsheet with a distance 

spreadsheets mentioned in this book.) It has the organization of Fig. 1.2, 
but the terrain profile has been entered as the formula: 

y = 100 -t ,3x + IOsin(x/200) 
which relates x and y (in meters). In this expression 6 is the user- 
specified average slope of the road. The  term 10sin(x/200) has been 
added to  mimic the profile of an undulating road with a slope that 
fluctuates in a +5% range about the average every 1200 meters or  so. 
Of course, a real vertical profile would be piece-wise parabolic, but if it 
undulated in the manner described it would be close to the one we have 
adopted and would generate similar vehicle trajectories. The advantage 
of defining the profile with a simple formula, for illustration purposes, is 
that the frequency and severity of the undulations may then be easily 
changed in the spreadsheet by substituting other values for the coeffi- 
cients ‘10’ and ‘200’ that appear in the formula. With .this goal in mind, 
the spreadsheet also includes a block of data with the parameters ‘P’, 
‘a’  (in meters - ’ ) ,  ‘ K ’  (in m/s), and ‘fg’ (in m/s’). It is then a simple 
matter to perform sensitivity analysis. The  graphical capabilities of 
spreadsheets allow the engineer to see at  the push of a button the 
resulting vehicle trajectory for a given set of conditions. For our 
particular illustration you might want to explore how vehicles with 
various power to weight ratios are affected by varying average slopes, 
‘p’. It  is also possible to replace the ‘y’ column by data corresponding to 
an actual profile and in this way solve a real problem. 

This example should serve to illustrate that spreadsheets can be used 
as powerful calculators that can solve integrals, and many kinds of 
equations if used properly. 
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1.1.8 Additional background 

Chapters 4 and 5 of Hay’s book (Hay, 1977), and other transportation 
texts, such as Mannering and Kilareski (1990) and Haefner (1986) 
contain extensive discussions of the performance characteristics of 
various types of vehicles. Texts on engineering mathematics, differential 
equations and/or elementary physics can be consulted for additional 
information and examples on ordinary differential equations of the type 
presented here. A concise description of numerical methods for differ- 
ential equations is given in Chapter 15 of Press et al. (1986). Spread- 
sheet implementation is discussed in Oris (1987). 

1.2 Trajectories for many vehicles 

The discussion on single vehicle trajectories focused on their derivation 
from available information, and it was understood that once derived one 
could look at the picture of the trajectory to ‘see’ what was happening. 
The true power of the time-space (t,x) diagram, however, cannot be 
appreciated until one has trained oneself to see what is happening by 
looking at a plot without hauing to rationalize why; and then using this 
skill to interpret plots including many vehicle trajectories. It is for the 
analysis of problems where many vehicles interact while proceeding 
along a common right-of-way that the time-space diagram becomes an 
invaluable tool. Three applications come to mind: (i) airplanes with 
various gliding speeds sharing a landing approach path subject to 
minimum spacing requirements, (ii) scheduling of freight (slow) and 
passenger (fast) trains along a single-track railroad line with passing 
allowed at predetermined sidings, and (iii) estimation of safe passing 
sight distances on two-lane bidirectional highways from the acceleration 
and speed characteristics of the passing, passed and opposing vehicles. 
Similar applications exist in all modes of transportation; e.g. public 
transit scheduling, elevator system design, etc. While most analyses can 
be done without the (t, x) diagram, it helps to identify and correct errors 
that may have been committed in the formulation. This is dramatically 
illustrated by the following puzzle. 

Three friends take a long trip using a tandem bicycle for 2 persons. 
Because the bike riders travel at 20 km/hr, independent of the number 
of riders, and all three persons walk at 4 km/hr, they proceed as 
follows: To start the journey, friends ‘A, B’ ride the bicycle and friend 
‘C’ walks; after a while, friend ‘A’ drops off friend ‘B’ who starts 
walking, and ‘A’ rides the bicycle alone in the reverse direction. When 
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‘A’ and ‘C’ meet, they turn the bicycle around and ride forward until 
they catch up with ‘B’. At that moment the 3 friends have completed a 
basic cycle of their strategy, which they then repeat a number of times 
until they reach their destination. What is their average travel speed? 

Although possible, very few people can solve this problem in less than 
5 to 10 minutes (about 5% in my experience) and this happens only 
because they haven’t identified the easy way to look at it ... the (t, x) 
diagram! If you plot the trajectories of the 4 moving objects (the bicycle 
and friends ‘A, B, C’) on a (t,  x) diagram you will find by inspection that 
the average speed is 10 km,/hr. To obtain this result, of course, you 
must make sure that the trajectories of the objects overlap with one 
another in a way that is consistent with our word description of the 
problem. You can arrive at the solution either by measuring the 
relevant slope in a (t, x) diagram drawn to scale, or analytically; in the 
latter case, the ( t ,  x) diagram will help you set up the equations 
correctly. 

The above exercise illustrates the usefulness of the (t, x) diagram for 
problem solving and design. The diagram, however, is also an excellent 
tool for diagnosing problems in existing systems because it includes all 
relevant information regarding the progress of the vehicles on the 
system during a study period and displays such information in a way 
that can be readily interpreted by the trained professional. 

1.2.1 Construction of the (t, x )  diagram from data: 
completeness 

The form of the data based on which trajectories can be built will 
depend on the application. For example, if one has some means of 
tracking the positions of the buses on a transit line then the trajectory 
of each individual vehicle can be constructed (e.g. from dead-reckoning 
navigation data if such technology is used), and it is then a simple 
matter to superimpose all the trajectories on the same diagram. A 
similar result would be obtained from logs kept by drivers. 

For other systems (e.g. elevators, pedestrians, autos, etc ... ) i t  is more 
convenient to record the times at which individual objects pass by 
stationary observers. When the data are displayed by means of tick 
marks on horizontal lines at the locations of the observers as shown in 
Fig. 1.3a, vehicle trajectories are retrieved by connecting the ticks for 
specific vehicles. For this to be possible each observer must identify 
each passage time with a vehicle ‘signature’, which in the case of an 
automobile could be its license plate or the electronic pattern it leaves 
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on an automatic detector. In most applications this is more easily said 
than done and often we have to work from the time-series alone. This 
would be fine if vehicles don’t pass because then (barring detector 
errors) as soon as one of the trajectories is identified the rest follow. It 
would also be fine if the observation stations were to be so closely 
spaced that only small vehicular speed changes over the detector 
spacing could arise because then it would also be obvious which vehicles 
are which. 

Another form of data (used in connection with freeway studies) arises 
from time-lapse aerial photographs. Because each photograph is taken 
at a specific time, t, it is associated with a ‘vertical’ line on the 
time-space diagram, as shown in Fig. 1.3b. One can then display by 
means of dots on the line the location of the ‘noses’ (or ‘tails’) of every 
vehicle at each sampled instant. The photographs automatically display 
vehicle ‘signatures’, thanks to their pictorial detail, and this makes it 
possible (although very tedious and impractical) to connect the ap- 
propriate points with smooth lines to develop the vehicle trajectories. 
This method of construction, however, illustrates that the time-space 
diagram is a complete summary of the 1-dimensional progress of our 
vehicles. We note that Fig. 1.3b could have been obtained by actually 
laying the strips of film side by side and that if these were viewed across 
a vertical slit that was moved from left to right at an appropriate rate, 
one would be replaying a movie of the system’s evolution! In other 
words the (t, x) diagram gives a complete description of the history of 
our vehicles’ longitudinal motion. 

Besides displaying field data in a complete way, the recipes for 
constructing Fig. 1.3a and b are also important because they indicate a 
reverse way in which the (t, x) diagram can be ‘read’. In particular note 
that a horizontal line through the diagram (e.g. at position xj in Fig. 
1.3a) identifies the times at which successive vehicles pass a stationary 
observer, and that a vertical line at a given abscissa (e.g. time t, in Fig. 
1.3b) identifies the vehicle positions at the given time. The truth of this 
statement does not depend on how the (t, x) diagram was developed. 
The times between consecutive vehicle observations at a fixed location, 
h i ,  are usually called headways, and the distance separations between 
consecutive vehicles at a given instant, s j ,  spacings. 

1.2.2 Definitions of trafJic stream features 

The number of vehicles observed by a stationary observer during a given 
time interval, m, divided by the length of the time interval, T, is the 
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Figure 1.3 Three ways of gathering (t, x )  trajectory data: (a )  roadside observers 
a t  various locations; (b) aerial photographs at  different instants; (c) moving 
observers. 
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flow, q = m/T, for the interval; e.g. the observer at x = x 3  in Fig. 1.3a 
observes a flow, q = 4/T, during 0 I t I T. It should be clear from Fig. 
1.3a that for long observation periods including many vehicles (m, T 
+ x> with comparable headways, 

m 

T =  C h , ,  
i =  I 

and therefore, on dividing both sides of this expression by m, we obtain 
the important relation: 

(1.10) 

i.e., under the conditions stated, the flow over an interval is approxi- 
mately equal to the reciprocal of the average headway seen by a 
stationary observer during the interval. We note that this relationship is 
exact if the observation period starts and ends immediately before the 
arrival of a vehicle. The concept of flow is equivalent to the terms 
‘volume’, used in certain traffic engineering circles, and ‘frequency’, used 
in connection with scheduled transportation modes. 

A similar treatment of the number of vehicles seen on a photograph, 
n, over a stretch of road of a given length, L, leads to the concept of 
density, k = n/L, over the stretch and a parallel relationship of the 
density with the average spacing: 

(1.11) 

As with headways, the quality of the approximation improves for L + x, 
and the relationship becomes exact when both ends of the interval are 
immediately ahead of a vehicle. 

It should be noted here that other vehicle characteristics (besides 
spacings and headways) can be averaged across space or time as well; 
e.g. vehicle occupancies, speeds, etc ... and that there is no a-priori 
reason to expect averages taken across space or time to be the same. 
Averages taken at a specific location (with time-varying over an interval) 
are called ‘time-means’, whereas those taken at an instant over a space 
interval are termed ‘space-means’; e.g. space-mean speed, V,, and time- 
mean speed, V t ,  are the terms used to denote the speed averages 
obtained in the aforementioned way. 

Fig. 1 . 3 ~  describes one more way in which trajectory data can be 
recorded (and in which the t, x diagram can be interpreted). It involves 
observers traveling at a constant speed vo that record the times at which 
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vehicles pass them. The observer trajectories are then plotted and used 
to locate points in the (t, x) plane through which the vehicle trajectories 
must pass. In Fig. 1 . 3 ~  traffic passes the slow-moving observer, but 
similar figures could be drawn for observers moving faster than traffic 
and moving against traffic; e.g. if observers on a fast-moving car pool (or 
contra-flow) lane record the times at which they pass individual vehicles 
on the general use lanes. Note that the interpretation of Fig. 1 . 3 ~  
generalizes the prior two interpretations because vo = 0 leads to Fig. 
1.3a and vo -+ to Fig. 1.3b. 

1.3 Applications of the (t, x) diagram 

Here we present two applications of the time-space diagram. The first 
application is a preview of traffic flow theory for an idealized case that, 
despite its simplicity, clearly reveals some interesting relationships 
between traffic flow variables; in this application, the (t, x) diagram 
helps in the mathematical development, but most importantly it shows 
physically why the derived expressions are true. The second application 
is a scheduling problem where vehicles compete for a common right-of- 
way; there the (t, XI diagram is also used as an aid for thinking that 
helps eliminate mistakes, and just as importantly, it can be used as an 
elegant way of displaying the solution that could be used in a profes- 
sional report. 

1.3.1 Traffic f low theoly with straight trajectories 

We consider a section of road length L that is observed for time T and 
assume that vehicles travel over the section (approximately) at constant 
speed without interacting with one another. This scenario could arise in 
lightly traveled multi-lane freeways with fast and slow vehicles, and in 
airport corridors with mechanical transportation devices that only a 
fraction of the people use. 

We will also assume that there are only a finite number of speeds v, 
that vehicles adopt and that the trajectories of each vehicle family are 
evenly spaced straight lines. This means that all the vehicles of family ‘1’ 
have the same headway within the family, h, .  Here, h,  denotes the time 
separation between two consecutive vehicles of family I ;  the headway 
between consecutive vehicles will in general be smaller and will not be 
constant. This can be seen clearly from the diagram of Fig. 1.4 for the 
special case where there are two vehicle classes, 1 = 1, 2. 
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Figure 1.4 Tirne-space trajectories of two vehicle families. 

It can be seen from the geometry of the figure that hivl = s 1  for each 
vehicle class, I, where s, is the spacing for the class. If the class flows, q,, 
and densities, k,, are defined over intervals containing many vehicles, 
we can accurately rewrite this relation as: 

by virtue of (1.10) and (l.ll).’ If (1.12) is now added across I ,  and we 
recognize that the total flow and density are: 

q = cq, and k =  C k , ,  
I I 

we find that: 
q = k x v , ( k , / k )  = C , k .  (1.13) 

1 

The second equality is justified on noting that the summation in the 
middle member of (1.13) defines a weighted average of the vehicle 
speeds where the weighting factors are the fraction of vehicles by type 
seen in an aerial photograph. (This statement follows from the definition 
of density, given earlier.) 
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The emphasis is given because the fractions of vehicle types seen in 
an aerial photograph are usually different from those that would be 
counted by a stationary observer (q,/q). To see this intuitively you 
should refer to Fig. 1.4 and note that a stationary observer sees 
approximately two fast vehicles for every slow one, but a photograph 
would show two slow ones for every fast one! You should ponder why, 
and realize that the stationary observer will invariably see higher 
fractions of fast vehicles than shown in the aerial photos, independent 
of the specific speeds, flows and densities of the vehicle families. (Can 
you imagine what would happen if one of the families had v, = 0; e.g. it 
corresponded to parked cars?). A related result which should come as 
no surprise is that the inequality Vl 2 V, is generally true8 for long 
observation intervals when traffic behaves as described in this section. 

A similar disparity should also be expected between time and space 
averages of other quantities that vary across families, but remain 
constant within a family. For example, if the fast vehicles of Fig. 1.4 are 
car-pools (with a 2 person vehicle occupancy) and the slow vehicles are 
driven without passengers, it should be clear that the average vehicle 
occupancy will be different depending on the method of observation. 
Can you figure out what the average vehicle occupancy measured by a 
moving observer with speed v3 (for vo = 0, v , ,  v2 and y-) would be in the 
example of Fig. 1.4? 

The same multiplicity of averages would be obtained for other mea- 
sures such as energy consumption and pollution generation that vary 
across vehicle classes with different speeds (e.g. buses and cars; 
commercial jets and private airplanes, etc ... ). Which is the ‘real average’ 
then? The answer to this question cannot be given absolutely. It 
depends on the practical problem that motivates your particular analysis 
and this is why it is important to understand the fundamentals. 

1.3.2 Closed loops 

It should also be noted that the (t,x) diagram can be used to describe 
closed loop systems. If we use x to denote the position of a vehicle 
within the loop (0 I x I L, where L is the length of the loop) then the 
vehicle’s trajectory will ‘disappear’ upon reaching the coordinate x = L, 
and will simultaneously reappear at x = 0. The trajectory of a vehicle 
that travels at a constant speed along the loop then adopts a ‘saw-tooth’ 
shape as shown in Fig. 1.5. 

The figure depicts the (parallel) trajectories of 4 vehicles equally 
spaced on the loop. Such a diagram could represent the behavior of 
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0 c 2c 
Figure 1.5 Vehicle trajectories on a loop. 

I 
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four buses serving a specific route, if the wiggles in the individual 
trajectories due to (random) fluctuations in speed and brief stops had 
been smoothed out. For such a system the average speed of a vehicle is 
(by definition) v = L/C, where C is the vehicle’s cycle time. If there are 
n vehicles on the route at all times, then, q = n/C is the vehicular flow 
during any given cycle (see figure) and k = n/L is the density on the 
route. This means that the definition v = L/C is equivalent to the 
relation v = q/k. 

A similar commentary could be made for two-way systems such as 
elevators, where on the way back the vehicles retrace the positions 
traveled on the way out (e.g. from point 0 to point P and then from 
point P to point 0.1 Then, if the variable x is defined as the distance 
traveled within a cycle, with point P located at x = L/2, Fig. 1.5 still 
applies. For two-way systems, however, it is also correct to define x as 
the distance from 0 (with 0s x I L/2) and work with a slightly 
different (t, x> diagram. Can you draw such a diagram for the system of 
Fig. 1.5? 

The relationships q = kV5 and V, 2 Vs also hold for closed loop systems 
with straight vehicle trajectories, since the mathematical arguments 
given about the superimposition of various vehicle classes also extend to 
this case. As an illustration, the reader may verify that if one has three 
vehicles on a 2 mile racetrack (k = 1.5) traveling at vk = 100, 120 and 
140 miles/hr (so that V, = 1201, then the vehicular flow seen by a 
spectator is q = (120X1.5) = 180 veh/hr (Hint: add the hourly frequen- 
cies of each car driver.) That Vt is greater than V, should be intuitive 
without any calculation since faster vehicles go by the spectator more 
often. 
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1.3.3 Applications to scheduling 

The time space diagram is not just useful to describe what is happening 
on a path, but also to coordinate the schedules of uan'ous uehicles that 
interact while traveling on the same path, so as to operate the system as 
efficiently as possible. The emphasized words summarize the real-life 
conditions under which one should suspect that some use of a 
(t, x)-diagram would be useful. Besides the examples mentioned earlier, 
the (t, x) diagram is also useful for traffic signal coordination on 
two-way arterial streets and for the determination of the maximum safe 
service frequency at a rapid transit station. The following problem and 
its solution deal with the evaluation/design of a waterway; a related 
problem arises in connection with temporary lane closures on two-lane 
bi-directional roads and in two-way railroad scheduling on a single track 
line. 

Problem: This problem illustrates use of the time-space diagram to 
analyze the interaction of vehicles in a narrow way. The waterway 
depicted in Fig. 1.6 is wide enough for one ship only, except in the 
central siding which is wide enough for two ships. Ships can travel at an 
average speed of six miles/hour; they must be spaced at least one-half 
mile apart while moving in the waterway and 0.25 miles apart while 
stopped in the siding. Westbound ships travel full of cargo and are thus 
given high priority by the canal authority over the eastbound ships 
which travel empty. Westbound ships travel in four ship convoys which 
are regularly scheduled every 3-1/2 hours and do not stop at the siding. 
Then, we should find: 

1. The maximum daily traffic of eastbound ships, and 
2. The maximum daily traffic of eastbound ships if the siding is 

expanded to one mile in length on both sides to a total of three 
miles. 

Note: We assume that eastbound ships wait exactly five minutes to 
enter either one of the one way sections after a westbound convoy has 
cleared it. We do this to take into account that ships do not accelerate 
instantaneously. 

Solution: We first draw the time-space diagram for the problem at an 
adequate scale. Next, we plot the trajectories of the high-priority 
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Figure 1.6 Sketch of a waterway with an intermediate siding for ship crossings. 

(westbound) convoys. These have been plotted in Fig. 1.7. The dashed 
band (width - 1 mile) represents the siding, where eastbound and 
westbound trajectories may cross. These dashed lines will help us draw 
the eastbound trajectories. 

Part 1: 
We start by drawing the trajectory of a ship entering the western end 

of the canal at 3:30 p.m. (the earliest possible time for that particular 
gap in between convoys). Note how it must stop at the eastern end of 
the siding to yield the right of way to the last ship for the westbound 
convoy; note also how it makes it within the 5 min. allowance to the 
eastern end of the canal. The same process is followed successfully with 
the second trajectory. In that case we must also watch for safe spacings 
while moving and stopped. The third ship, however, would not be able 
to arrive to the western end of the siding within the 5 min. allowance 
and it cannot be dispatched. Therefore, we find: 

Capacity = 2(ships per 3ihours) X 24(hours) = 13.71 ships/day 
3 ; (hours 1 

Part 2: 
Enlarging the siding diminishes the length of the one way sections 

and, thus, more ships can make it in time (see Fig. 1.8). The result is: 

24 Capacity = 4 X - = 27.42 ships/day 
3; 

The reader may now test his scheduling skills, by looking for a way of 
scheduling six ships per 3; hour period instead of the 4 depicted in the 
figure. (Hint: one may have to stop some of the eastbound ships in the 
siding). 
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Figure 1.7 Time-space diagram: a short siding. 

Notes 

1. 

2.  

As is conventional in some branches of mathematics, we use the same symbol 
‘ x ’  to denote the output of the function and >he function itself. 
T h e  jerk is defined as the absolute value of the derivative with respect to  
time of acceleration. If the time-derivative of acceleration is sufficiently high, 
standing passengers can’t adjust their position quickly enough to  avoid 
falling. T h e  motion of the transit vehicle is perceived as ‘jerky’. A maximum 
jerk of 0.lg per second (1 second to reach 1/10 of the acceleration of gravity) 
is reasonable for design purposes. 
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Time-space diagram; an enlarged siding. 

3. Additional details can be found in most introductory books on ‘Transporta- 
tion Engineering’. Section 1.1.8 includes some references. 

4. A smaller f is often used for design purposes to recognize that the ‘friction’ 
between passengers and vehicles is even smaller. A value of f = 0.2 for seated 
passengers and f = 0.1 for standing passengers is reasonable. 

5.  Examination of such a diagram reveals that the magnitude of the revised 
normal force is simply the sum of the centrifugal pseudo force experienced 
by the vehicle (which is approximately mv2c and is taken to be positive if 
c > 0) and the magnitude of the normal component of the vehicle weight. If 
the latter is approximated by the actual vehicle weight, which is quite 
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reasonable if /3 << 1, then Eq. (1.3) is obtained. 
6. This assumes that driver decisions only depend on v, x, and t. If this is not the 

case, the function 'F' would have a different set of arguments, and the 
analysis we are about to present needs modification. 

7. Note that (1.12) becomes exact in the limit of infinite sampling intervals, 
when q,  and k ,  no longer depend on interval length. 

8. A simple proof is obtained by expanding the product VsVt and seeing that it is 
greater than V,': 

The second equality is based on the equivalence of O,/q and l / k ,  and that of 
v lq l  and v f k , ,  for long observation intervals. The inequality is based on the 
fundamental principle stating that the average of the square is never less 
than the square of the average. 



C H A P T E R  T W O  

Cumulative plots 
A cumulative plot is the graph of a function N(t) that gives the 
cumulative number of vehicles (or other moving objects) to have passed 
an observer by time t starting from an arbitrary initial count, e.g., at 
t = 0. Cumulative plots are useful because the count in any interval ( t l ,  
t z )  is given by the change in N(t) across the interval, and this informa- 
tion can be seen at a glance from the graph of N(t). 

Cumulative plots are the tool of choice when one must analyze the 
flow of items past one or several restrictions. Their usefulness in 
hydrologic synthesis has been recognized for over a century; in that field 
they form the basis of a technique known as ‘mass curve analysis’ for 
determining the capacity of reservoirs (Linsley and Franzini, 1955). 
Cumulative plots appear to have been introduced to transportation by 
Caltrans engineer Karl Moskowitz (see Moskowitz, 1954) and then 
again by Gazis and Potts (196.5)’ but it was Gordon Newell who 
demonstrated their full potential as an analysis and thinking tool in 
connection with his queueing theory work (Newell, 1971 and 1982) and 
later in his reexamination of traffic flow theory (Newell, 1993). Our brief 
description in these notes cannot do justice to the subject but it should 
serve as an introduction. Pages 1-24 of Newell (1982) are a good 
complementary reading. 

Just like the time-space diagram is most useful in situations when 
more than one vehicle trajectory must be depicted, so the time-count 
diagram is most useful when it displays the cumulative curves upstream 
and downstream of a series of bottlenecks, and in particular the ‘arrival’ 
and ‘departure’ curves at a single bottleneck. Another way of thinking 
about the proper application context for cumulative plots is that while 
the (t, x) diagram is suited to describe how items compete for space over 
a transportation ‘link’, the cumulative count diagram is suited to de- 
scribe the competition for service time through a ‘node’. 

Our introduction to cumulative plots starts with some definitions 
(Sec. 2.11, continues with an application of these basic ideas to the study 
of bottlenecks (Sec. 2.2) and is completed with a discussion of stochastic 
fluctuations (Sec. 2.3). The chapter also includes a brief section (Sec. 
2.4) where the relationship between cumulative plots and time-space 
diagrams is examined. 
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2.1 Definitions 

We start by establishing the relationship between cumulative count 
curves and flow. To this end, note that N(t) is related to our earlier 
definition of average flow in an interval (0, T) by: 

(2.1) 

In most transportation applications cumulative count is made up of 
indivisible objects (passengers, buses, cars, etc ... ) and, thus, N(t) is a step 
function as in Fig. 2.1. However, in applications dealing with many 
moving objects, where predicting the exact number to the nearest 
integer is not important, it is preferable to work with a smooth approxi- 
mation of N(t) that can be differentiated, e.g., an interpolation passing 
through the crests of every step, such as the smooth curve shown in Fig. 
2.1. As in the current case, where fi(t) is the approximation of N(t), a 
tilde will be used to denote the smooth approximation of a given curve 
whenever the discussion refers to both versions of a particular set of 
counts. The tilde is not used in other cases. 

The main advantage of working with smooth functions is that one can 
then use differential calculus as a powerful method of analysis. For 
example, it allows us to define the instantaneous flow at time t = 0 as 
the limit of (2.1) for T --f 0, assuming that N(t) has been substituted for 
N(t) in (2.1). This limit, of course, can be taken for any other time, t f 0. 
The result is the definition of instantaneous flow at time t, q(t): 

Note that this limit does not exist for the discrete data. From now on, 
the word ‘flow’ will be taken to mean ‘instantaneous flow’. It is impor- 
tant to make this distinction because in practice the word flow is used in 
the senses of both (2.1) and (2.21, and this can be a source of confusion. 
Let us now turn our attention to the relationship between the curves 
recorded by two different observers. 

We shall denote by A(t) and D(t) the exact (discrete) arrival and 
departure curves that might have been recorded by two observers 
upstream and downstream of some bottleneck-or any other location for 
that matter. Figure 2.2 shows those curves for a hypothetical example 
involving a long observation period and so many observations that the 
individual steps of the curves cannot be seen. (This is a typical applica- 
tion context of cumulative plots.) Then, if we define Q(t) to be the 
number of items in between the observers at time t, and choose the 
starting counts so that A(O) - D(O) = Q(O), we see that the vertical 
separation between the two curves will continue to represent the 
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t 
Figure 2.1 A curve of cumulative counts and  its continuous approximations. 

number of items between the observers provided that vehicles do not 
enter or leave the intervening space. (The letter '0' is used because this 
accumulation would be called a 'queue' in many cases.) The statement 
is justified by noting that the input to the system during (0, t) is 
A(t) - A(0) and, similarly, that the output is D(t) - D(0); then on noting 
that the difference between input and output is the change in accumula- 
tion, we can write: 

Q ( r )  = Q(0)  + [ A ( t )  -A(0)1 - [D ( r )  -D(O)l = A ( t )  - D ( r ) .  (2.3) 
We also note from Fig. 2.1 that the time at which the N r h  item is 

observed is obtained by finding the 't' where a horizontal line across 
ordinate N meets the crest of a step. We denote the function that 
returns t for a given N by means of the superscript ' - 1'; e.g., N-'(N).' 
Thus, A- ' (N) and D-  ' (N) describe the arrival and departure times of 
the N"' observation recorded at both locations. If items pass through 
our system in a first-in-first-out (FIFO) order, then these N r h  observa- 
tions correspond to the same individual, and the difference 

w ( N )  = D - ' ( N )  - A - ' ( N )  (2.4) 
represents the trip time through the system for the N"' individual. 
Graphically, this is the horizontal separation between the crests of 
curves A and D at ordinate N. Relation (2.4) is also true for properly 
smoothed curves. The letter 'w' is used in (2.4) because the trip time 
can be interpreted as waiting or delay in applications where the observers 
are close. The terms 'wait' and 'trip time' (between the observers) will 
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Figure 2.2 
tions. 

Hypothetical arrival and departure curves observed at  two loca- 

be used interchangeably until the next subsection. Finally, note that 
Equation (2.4) is not true if there is passing within the system. 

Since horizontal separations in the (t, N) diagram represent time and 
vertical separations represent accumulation, it should not come as a 
surprise that the area of the region enclosed by A(t), D(t> and any two 
vertical lines, t = t , ,  and t = t ,  ( t , ,  < t , ) ,  should be the total wait done in 
the system in the time interval ( t , , ,  t , ) .  As an example, the shaded area 
in Fig. 2.2 is the wait done between t = t , ,  and t = t , .  In this figure we 
have deliberately chosen t , ,  and t ,  to be instants when the system is 
empty, but the foregoing statement is always true. It is justified by 
noting that the total wait (e.g. in vehicle-hours) done in a time interval 
where the accumulation is constant is the product of said accumulation 
and the length of the interval. In  particular, the wait done in (t, t + dt) is 
Q(t)dt, and the (Riemann) summation of this elemental wait from t , ,  to  
t ,  is the aforementioned area: 

A similar argument (using horizontal elemental rectangles of area 
w(N)dN, and the exact discrete versions of A(t) and D(t)) reveals that 
the wait done by items N,, + 1 through N ,  , (N,, < N ,  1 in a F IFO system 
is given by the area of the region enclosed by curves A(t) and D(t) and 
by the two horizontal lines, N = N, ,  and N = N, .  Although this result is 
also intuitive it should be noted that it does not hold generally for 
systems with passing. 
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An exception arises if, as shown in Fig. 2.2, the arrival and departure 
curves ‘touch’ when N = N,, (at time to)  and also when N = N, (at time 
t,). In this special case, the area between the A(t) and D(t) curves 
enclosed by lines N = N,, and N = N,, which is shaded in Fig. 2.2, 
coincides with the area enclosed by lines t = t , ,  and t = t , ;  i.e. it is the 
wait done in the interval (t,,, t , ) .  However, we also know that all the 
items doing some waiting in the interval (t,,, t , )  must have arrived and 
departed in that interval because otherwise the system could not be 
empty at times t,, and t , .  This means that the set of arrivals from N,, + 1 
to N, matches the set of departures from N,, + 1 to N, ,  even if they do 
not occur in the same order, and that the shaded area in the figure is 
the wait done by this set of items. 

The result is also approximately true if one can be sure that the 
combined wait of those items that only arrived or only departed in the 
observation period is a small fraction of the total wait. In particular this 
is true of any system where the waits are either bounded or stationary 
(e.g. don’t grow with time) as t ,  - t,, + x .  We can now state as obvious 
an important result of queueing theory. 

For the conditions where (2.5) represents (approximately) the wait 
done by the items arriving between t,, and t ,  we can write the average 
wait as: 

where the overbar is used to denote the average over time of a quantity. 
As per (2.51, we see that the first term of the product on the right side 
of (2.6) is the mean value of Q(t) in the interval ( t , , ,  t , ) ;  i.e. the average 
number of items in the system, a. The second term is the reciprocal of 
the slope of the line connecting the two thick dots in Fig. 2.2; i.e. the 
time averaged arrival rate, h. (The Greek letter, A, is often used in 
queueing theory to denote an arrival rate). Thus, (2.6) is equivalent to 
the well known queueing formula among time averages: 

e = hw. (2.7) 

Just like the (t, x) diagram simplified the derivation of the relationship 
between flow, density and space mean speed, cumulative plots have 
made the derivation of (2.7) rather trivial; they have also helped us 
identify some rather general conditions under which it holds true.’ 

As with time-space trajectory plots, it will again be useful if the 
reader makes an effort to develop a ‘feel’ for the (t, N) plots, which at a 
glance show the time variation of accumulations and trip times. 
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2.2 Applications 

So far we have seen cumulative plots as an efficient way in which 
input-output data can be presented, but in practical applications the 
complete data are not always available. On the contrary, in any attempt 
to answer a practical question, one usually has to construct the plot 
from limited information; e.g. when, from knowledge of A(t) and the 
operating characteristics of the restriction, one tries to infer the maxi- 
mum accumulation in the system. This is the central question in the 
hydrologic synthesis problem mentioned earlier, and the question also 
arises in the design of ‘transportation reservoirs’ such as left turn 
pockets at traffic signals and transit station platforms. Of course, given 
the same data, we may be interested in other measures of (transporta- 
tion) performance such as average and maximum trip times. Restric- 
tions to which the technique can be applied appear in all transportation 
modes. Examples are: airport ticketing counters (people), signalized 
pedestrian crossings (pedestrians), bus stops (passengers), railroad yards 
(rail-cars), container cranes (containers), and 4-way highway stops (cars); 
the words in parentheses denote the counted items in each example. 

2.2.1 Restrictions with constant service rates: virtual am’uals 
and ‘delay’ 

In many cases knowledge of A(t)  and D(t) up to the present time 
( t  = t,,) allows us to predict (at least approximately) the evolution of the 
system in the very short term, to time t , ,  + I t .  If this is the case, one can 
then move the ‘present’ to time t , ,  + I t  and repeat the procedure to 
obtain A(t) and D(t) up to time t , ,  + 2 I t .  It is then possible to step 
through time, repeating this process with small At ,  to predict our 
system’s evolution in the study period (t , , ,  t ,  1. 

In the common case where A(t) is known for all times in the study 
period, but D(t) is unknown and a single restriction exists between the 
observers, the feasibility of the foregoing prediction method hinges on 
an understanding of the ‘service mechanism’; i.e. the rules under which 
items pass through the restriction. In applications where the observers 
are so close that the unrestricted trip time between them can be 
neglected, many service processes have the property that items (or 
customers in the queuing theory jargon) flow at a constant maximum 
rate p through the restriction whenever there is a ‘queue’, and pass 
through the bottleneck undisturbed (at a rate that cannot exceed p )  
otherwise. Using an overdot to denote the derivative with respect to 
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time, we can express these conditions in terms of the unknown D(t) as 
follows: 

d(t) = p if A ( t )  > D ( t )  (2.8a) 

and 

Equations (2.8) assume that the upstream and downstream observers 
of our system were very close to each other. When items take consider- 
able physical space, however, the physical queue may back-up past the 
upstream observer and this would prevent us from claiming a-priori 
knowledge of the A(t) curve. To restore this a-priori knowledge we must 
place the upstream observer beyond the reach of any effect of the 
restriction. This poses a problem, however, because then A(t) can 
exceed D(t) when there is not a queue directly upstream of the restric- 
tion, and this invalidates (2.8a). 

Fortunately, the difficulty can be resolved if we replace (2.8a) by the 
requirement that any delayed vehicles should discharge at the maximum 
rate. This new rule, however, is not completely general. An exception 
arises on ‘flared’ approaches to traffic signals when the queue is allowed 
to back up into the narrow part of the highway. In this case, the vehicles 
delayed in the narrow part cannot be discharged during the green at the 
maximum rate allowed by the flares because the constriction starves the 
signal for flow. The techniques presented in Chapter 4 can be used to 
address this kind of complication, e.g. for the analysis of vehicular flow 
on an inhomogeneous highway through a series of bottlenecks. Here we 
explore the (common) case where the highway is homogeneous and the 
proposed replacement for (2.8a) is reasonable. 

The analysis method about to be presented yields the accumulation 
between the observers, as well as the trip time and the delay for any 
vehicle. It is important to note that the latter is not the same as the time 
spent in the queue, and that the time in queue is always greater. It will 
be shown at the end of this section how to derive the time in queue and 
the queue length (expressed in distance units) in a special case that can 
be studied easily. The prediction method for delay and accumulation is 
now described. 

Let T denote the trip time between the observers for an isolated 
vehicle (no queue), and assume that this time is approximately the same 
for all the vehicles. In this case we can introduce a ‘virtual’ am’ual curue, 
Wt), giving the number of items that would have been seen directly 
upstream of the restriction by time t if the physical extent of the queue 
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had been eliminated. Obviously, V(t) = A(t - T I ,  so that the virtual 
arrival curve is a translation to the right of A(t) by the amount, T ;  see 
Fig. 2.3a. 

If customer Nil of the figure is delayed (i.e. it cannot depart the 
bottleneck at his/her desired time V-'(N,,)) then the departure curve 
must be strictly to the right and beneath point (V-'(Nil), N,l) since 
according to our assumptions the service rate for delayed customers 

Figure 2.3 Solution of t h c  single bottleneck problem with variable arrivals: ( a )  
construction of the virtual arrival and departure curves; (b)  construction of the 
curve of cumulative arrivals t o  thc  hack of the physical queue. 
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must be p.3 For customers that are not delayed, the server works at the 
rate required by the actual arrival curve at the bottleneck which, under 
our assumption of constant trip time when there is no queueing delay, 
must coincide with the virtual arrival curve. This means that the 
departure curve must track the virtual arrival curve when there is no 
delay. 

In summary, if A(t), T and p are known, a graphical construction 
recipe that is based on the above considerations is as follows: 

(i) Translate A(t) to the right by 7 to obtain V(t) 
(ii) Draw D(t) as close to V(t) as possible, but never exceeding it 

and making sure that D(t) I p; in other words, obtain D(t) 
from (2.8) as if A(t) was replaced by V(t). 

Figure 2.3a displays the result for our example. 
It should be noted that step (i) is not commonly taken by most 

practitioners, and thus the ‘standard’ approach is only valid when 
queues take little physical space. In cases where the extent of the queue 
cannot be neglected, step (i) allows the simple technique embodied in 
step (ii) to be used quite effectively and simplifies analyses that other- 
wise would be quite difficult. The interpretation of the results is still as 
in Sec. 2.1 in that the area of (t, N) regions between A(t) and D(t) 
represents time in the system. The term ‘wait’, however, is somewhat of 
a misnomer because it includes a significant free-flow travel time 
component that is positive even if there are no queues. 

We will use the term ‘delay’ in this book to denote that portion of the 
total ‘trip time’ that is due to the limited ability of the bottleneck to 
process vehicles; i.e. delay is the amount of time that can be saved by 
letting p + x .  For a FIFO restriction the delay for a specific vehicle, 
N,,, is D-’(N,,)  - V-I(N,,); i.e., the difference, w, between the vehicle’s 
actual departure time D-’(No) and the time at which the vehicle would 
have liked to have departed, V-I(N,,), (See Fig. 2.3a). It follows that 
total delay is measured by the area of relevant regions between V(t) and 
D(t) in the same way as total time is measured by the area of region 
between A(t) and D(t). As before, this result is true for non-FIFO 
systems when the study period begins and ends with customers that find 
no congestion (no delays/no queues), as in the case shown by a shaded 
area in Fig. 2.3a. 

The interpretation of vertical separation between the curves requires 
some care. While A(t) - D(t) still represents the number of vehicles 
between the two observers, the difference V(t) - D(t) does not corre- 
spond to anything real; it is the length of the vehicle (item) queue that 
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would have existed if vehicles (items) traveled in time T to the bottle- 
neck and formed a ‘point’ queue next to the bottleneck (as if they were 
stacked on top of one another) when delayed. As a result of their 
dimension, real queues contain more vehicles than point queues but the 
vehicles within them are not stationary; they move slowly. Later in this 
book (chapter 4) we will present more detailed methods of analysis for 
tracking queues. The brief subsection that follows examines a simple 
but important special case. What is important and rather remarkable 
about the simple procedure we have presented is that it allows us to 
predict delays and the time-varying vehicle accumulation between 
observers in a very simple way, and independently of the detailed behavior 
of the system between the observers.‘ 

2.2.1.1 Time in queue and the distance taken up by the physical queue 
In applications where varying arrivals cause a queue to grow and 
dissipate upstream of a constant-capacity bottleneck, it is possible to 
determine the length of the physical queue (in distance units), d,, as 
well as the queueing time, tQ,  of any vehicle. The method about to be 
presented assumes that: (i) the queue forms directly upstream of the 
bottleneck, (ii) vehicles travel at an average speed vQ within the queue, 
and (iii) vehicles travel at a ‘free” speed vf > vQ when approaching the 
queue. In practice, both speeds can be measured quite easily.’ 

We assume that the V(t) and D(t> curves have already been con- 
structed as explained earlier, so that the delay is known. Then, our first 
goal is obtaining formulae for the t Q  and d, of a given vehicle (No) in 
terms of its (known) delay, w, as well as vf and vQ. Our two unknowns 
can be determined from the relation t Q  = dQ/va and the following 
equation: 

w = t Q  - dQ/Vr. 

This relation expresses that the delay of vehicle N,, is the difference 
between its travel time inside the queue and the time that it would take 
to travel the same distance without any hindrance. 

On substituting dQ/vQ for t, in the above relation, and then solving 
for d, we find the desired information for vehicle N,,: 

and 
dQ = w / ( l / v ~  - 1/vf),  

t Q  = w / ( l  - V Q / V f ) .  

Since d, and t, are related to w by two factors that are the same for 
all vehicles, cy = ( l /vQ - l / v f ) - ’  and p = (1 - vQ/vf)-’  2 1, we see 
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that the sum of all the vehicle-miles (or vehicle-minutes) spent in queue 
by any collection of vehicles is simply the product of CY (or p )  and the 
sum of the delays experienced by said vehicles. This means for example 
that if the shaded area shown in Fig. 2.3a is multiplied by /3 one obtains 
the total time in queue. 

If desired, one can introduce two auxiliary, appropriately rescaled, 
horizontal axes in Fig. 2.3a, which would allow one to read the d, and 
t, for a particular vehicle by measuring the horizontal separation 
between the V(t) and D(t) curves on the relevant axis. The figure shows 
the measurement of tQ for vehicle No as an example. 

If we want to predict the queue length or the time in queue at a 
particular time (as opposed to those encountered by a particular vehi- 
cle) additional calculations are needed. It is then convenient to con- 
struct a curve B(t), such as that shown in Fig. 2.3b, that gives the 
cumulative count of vehicles having joined the queue at time t. Read in 
reverse, the curve should give the times, B-’(No), at which specific 
vehicles join the back end of the queue, so that its horizontal separation 
from D(t) is tQ. It should then be clear that the curve can be con- 
structed from the known D(t) and V(t) simply by extending every 
segment VD of Fig. 2.3b toward the left by a factor p to create segment 
BD, and that the locus of all points ‘By identified in this manner is the 
desired curve. 

Since the curve’s vertical separation with D(t) at a given time gives 
the number of vehicles in the queue at  that particular time, and the 
average vehicle spacing within the queue is vQ/p (see chapter 1, Eqs. 
(1.11) and (1.13)) the physical queue length is simply [B(t) - D(t)lvQ/k. 
Thus, if we read the vertical separations between the curves using an 
auxiliary vertical axis with a scale vQ/p times smaller than the original, 
we obtain the physical queue lengths. This is shown on Fig. 2.3b. 

Knowledge of the physical queue length is important in applications 
where the queue must be contained in order to avoid blocking upstream 
facilities. The method just described can then be gsed to evaluate the 
effectiveness of flow control strategies that would change A(t). The 
method can also be used to evaluate the effect of permanent changes in 
p, but in that case one must recognize that vQ will also change. 
Knowledge of the total number of vehicle-minutes and/or vehicle-miles 
traveling at an average speed V, is also important and necessary for the 
calculation of environmental impacts such as total vehicular 
emissions. 

Generalization of the physical queue calculations to bottlenecks with 
time-dependent capacity such as traffic signals is possible but requires 
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subtle manipulations that are beyond the scope of this introductory 
chapter. Fortunately, delay calculations do not require significant modi- 
fications and this is explained next. 

2.2.2 On-off service: trajj5c signal example 
Some bottlenecks have an on-off service mechanism. During the ‘on’ 
periods customers are served at a rate p and during the ‘off periods not 
at all. The on/off cycle can be periodic or variable, and either indepen- 
dent or dependent of the arriving traffic. Examples are: traffic signals 
(pre-timed or vehicle actuated), accesses to inland ports restricted by 
tides, highway railroad crossings and bus stops. 

The method of analysis is a minor variation on the two step process 
described in Sec. 2.2.1 for constant-rate bottlenecks. Given the virtual 
arrival curve at the bottleneck (or the actual arrival curve if the effects 
of physical dimensions are deemed to be unimportant), we simply 
determine D(t) by finding the ‘highest’ curve that does not exceed W t )  
while satisfying D(t) s p in ‘on’ periods and D(t) = 0 in ‘off periods. If 
the on-off periods are fixed, they should be labeled properly (e.g. ‘G’ for 
green and ‘R’ for red) on the time axis before deriving D(t>. If the 
on-off periods depend on the size of the queue, one must step through 
time in small increments deciding at each step if the server switches its 
on/off state and determining the D(t) that will be consistent with the 
resulting state. 

As an example we consider a pretimed traffic signal that operates on 
a cycle of C secs, a red (off) phase of R secs and a green (on) phase of 
G secs. We assume that portions of the amber phase have been 
appropriately included in R and G so that R + G = C, and that the 
maximum service rate during the green is p veh/sec. The reader can 
verify that if vehicles arrive at a constant rate A (assuming that A is so 
small that the arrivals in a cycle, AC, don’t exceed the number that can 
be served, pG) then a periodic diagram such as that shown in Fig. 2.4 is 
obtained. 

The shaded area in that figure represents the total delay during a 
cycle, which we denote by W. Also shown are the number of vehicles 
served in one cycle, n‘, and the number delayed, n. It should be clear 
from the geometry of the picture that R =  (n/A) - (n/p) ,  and thus 
n =  R/(A-’ - p - ’ ) .  On requiring that n < n’ = AC (to force the 
queue to dissipate at the end of each cycle) we recover the already- 
mentioned stability condition, AC < pG.  If this condition is not 
satisfied the signal is over-saturated and the queue would grow steadily 
cycle after cycle. 
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Figure 2.4 Delay at  a pre-timed traffic signal. 

Since the shaded area is W = nR/2, and n = R/(A-'  - p- '1, we 
obtain W = +ApR2/( p - A). The long-run average delay per car is 
thus: 

(2.9) 

It should be noted that (2.9) was obtained by prorating the delay in one 
cycle to all the cars arriving (and served) in one cycle, including those 
that were not delayed at all. Had W been divided by n, one would have 
obtained a larger value (R/2) that represents the average delay for 
delayed vehicles. 

Expression (2.9) can be traced back to 1927 and the New Jersey Dept. 
of Highways (Sloan, 1927), although it is often attributed to Matson 
(1929) and Clayton (19401h A more general discussion, encompassing 
time-dependent arrival rates, can be found in Sec. 2.6 of Newel1 (1982). 
Section 2.7(a) of that reference explains how (2.9) can be used to choose 
the phases of a signal to accommodate two competing traffic streams. 
We will return to this example in Chapter 3. 

The scope of application of cumulative plots is much broader than 
implied by the foregoing types of bottlenecks. The technique can be 
applied to rather complex service mechanisms and to systems of serial 
restrictions, where the output of one becomes the input to the next. 
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This latter application is particularly useful because a single diagram 
depicts the interconnection between the status of all the bottlenecks. 
We will return this idea in Chapter 5 .  

2.3 Stochastic fluctuations 
Generally one finds in analyzing queues for transportation systems, that 
the detailed behavior of a system is not reproducible. If one repeats the 
observation another day under what seem to be ‘identical conditions,’ 
the new curves A(t), V(t) and D(t) may, on a coarse scale, be nearly the 
same as the old curves, but the exact times of the steps will be different, 
and the curves will, in general, have wiggles in different places. 

If the magnitude of the wiggles is small compared with the separation 
between V(t) and D(t), then the queues and delays should not change 
much from day to day. In that case it should be possible to apply the 
approach of Sec. 2.2 with an average ‘F’  to the specific (virtual) arrival 
curve V,(t) on any given day, j ,  or to the average arrival curve, Vabg(t), 
over J days 

l J  y,$) = J c r / ; ( t> ,  
/ =  I 

and obtain a satisfactory approximation.’ Favorable conditions for this 
to happen arise if the arrival curves exhibit a strong ‘time-of-day’ 
pattern - or ‘seasonal effects’ if working on a larger time scale. 

If the queue length on a given day, Q,(t), is determined by the daily 
wiggles more than by the general shape of the arrival curve then Q,(t) 
will vary drastically from day to day and may be difficult to predict. In 
such a case, one would be interested in the average behavior of the 
queue over a number of days. In particular, one would like to make 
predictions that do not require knowledge of the specific V,(t)’s. Care 
must be exercised, however, because if the deterministic procedure of 
Sec. 2.2 is applied to the V,,,(t) curve when the daily variations in y ( t )  
are not small, then the effects of congestion will be underestimated, and 
perhaps severely. After this fact is demonstrated in Sec. 2.3.1 below, 
Sec. 2.3.2 will explain how the average delays and queues (across many 
days) can be correctly estimated for the special case when V,,,(t) is 
linear in t; i.e., if the arrival process is ‘stationav’. 

2.3.1 Relationships among averages 
If we define D,,,(t) as the average of D,(t) over many days, and define in 
the same way the averages for the ‘queue’ at a specific time and for the 
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total delay in a specific time interval, Q,,,(t) and Wdve, we find that the 
definitional linear relations: 

Q,(t> = I.;(t) - D,( t )  (2.10a) 
and 

(2.10b) 

also hold for the averages across days; i.e.: 

Q,,,(t> = CU,(t> - D,L,g(t>, (2.1 l a >  
and 

(2.1 lb)  

This is true because an average is a 'linear transformation' and Eqs. 
(2.10) are linear in V,(t> and D,(t). A third relation cannot be written for 
the average delay of a specific FIFO customer w,,,(N) because the 
averages of an inverse function, e.g., V,-](N) or D,-'(N), is not in 
general equal to the inverse of the average; thus, the average of 
w,(N) = D;'(N) - y- ' (N)  is not in general equal to Dd;i(N) - V,;$(N). 
Equations (2.11) show that if we could predict D,,,(t> from V,,(t) we 
could also estimate queues and total delay. Unfortunately, as is shown 
with the simple example below D,,,(t) does not follow the same rules as 
D(t) and one cannot in general determine it from Vdv,(t). Information 
regarding the arrival curves for every day is needed. 

Example: Consider the two-day sequence with (virtual) arrival curves 
V,(t> and V,(t> depicted in Fig. 2.5, parts a and b. From these and from 
the service rate p one can get D,(t> (part a>, D,(t) (part b) and then, by 
averaging the results, V,,,(t) and D,,(t> (part c). Note that the slope of 
D,,,(t> on the parts where it is rising is p /2  < p. This means that the 
actual delay is greater than would be predicted if the deterministic 
approach of Sec. 2.2 had been applied to V,,,(t>; as has been done in 
part (d). 

It can be shown mathematically that the result illustrated by the 
figure is general; i.e. both Wdvg and Q,,,(t) are larger when the arrival 
curves vary substantially from day to day. 

Because situations giving rise to the same average arrival curve will, 
in general, generate different average departure curves and different 
queue lengths, it is difficult to estimate delays and queue lengths when 
only V,,,(t) is known since one needs some additional information in 
order to obtain D,,,(t>. There are two instances, however, when obtain- 
ing average queue lengths is extremely easy: 
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1. We have already stated that if the queue lengths that develop on 
a typical day are large compared with the wiggles on V,(t) from 
day to day, one can neglect the wiggles and approximately obtain 
D,,,,(t) from V,,,(t) or from the arrival curves on an individual 
day. This is a valid technique since one can always draw the 
picture at a scale where the wiggles don't show but queue lengths 
and total delays do. 
When the average arrival curve is a straight line for long periods 
of time (i.e., when the average arrival rate, A,,,(t) = dV,,,(t)/dt, 
remains constant for long periods of time) and the system is 
(nearly) empty at the start of our observation period. This is done 
in the next subsection. 

2. 

Other instances can also be analyzed, but the theory is more involved. 
Cox and Smith (1971) and Newel1 (1982) provide excellent descriptions 
of the subject from two different perspectives. 
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2.3.2 Equilibrium queues 
In this subsection we explore the behavior of queues with time- 
independent average arrival rates, A,,,(t) = constant, over long periods 
of observation. The value of the average arrival rate is denoted A and 
the duration of the observation period T. It is assumed that the initial 
queue is of comparable magnitude to those that will develop, and that 
the latter are negligible when compared with the extra number of 
arrivals that could have been served in time T if the server had been 
busy all the time; i.e., compared with ( p - A)T. 

Since queues are small the V(t) and D(t) graphs for one typical day 
should look roughly as two superimposed straight lines; see Fig. 2.6. As 
shown in the inset, however, short-lived queues may arise due to 
fluctuations in the arrivals, and these generate delay. Although the 
timing and magnitude of these congested episodes varies from day to 
day because of the random nature of transportation phenomena, theo- 
retical analyses of queueing systems have shown that for most queueing 
systems with random arrivals and departures, the average of the queue 
length over a time period of long duration on any given day is given by: 

(2.12) 

where A is a constant capturing the variability of the arrival and service 
processes (how random they are) that is comparable with 1 whenever 
items do not arrive and are not served in groups.' 

The average waiting time per customer can be obtained as a byproduct 
of (2.12). We first note from (2.7) that on any given day W = Q / A  = G/A. 
(The approximate equality is justified because for long periods of 
observation, h = A.) Thus, we can write: 

- -  

(2.13) 

When A 2 p a formula like (2.12) cannot be developed because it is 
not possible to find a value of T for which V,,,(t) and D,,(t) look like 
two superimposed straight lines. Actually, if A > p and T + x ,  VdV,(t) 
and D,,,(t> look like the two lines with slopes A and p shown in Fig. 2.7, 
- and the average queue length depends on T in the following way: 
Q = (shaded area)/T = + ( A  - p)T. 

A rule of thumb to know whether T is so long that equation (2.12) 
can be applied (when A < p )  is: 

T >> T* = 4p/( p - A)', (2.14) 
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I 

T t  
Figure 2.6 Stationary arrikal and  departure curve5 for an undersaturated 
server. 

N 

T t  
Figure 2.7 Stationary arriLal a n d  dcparture curves for an obersaturated server. 

where it is assumed that the initial queue is of order a or smaller. The 
right side of (2.14) will be called the ‘relaxation time’. The greater the 
ratio T/T” the lesser is the variation of a across days and the more 
accurate (2.12) becomes; see Eq.(6.34) of Chapter 6 for more details.’ 
Note that as the system approaches saturation ( A  -+ p )  the necessary 
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period of observation increases rapidly. If T does not satisfy (2.14) then 
a precise description of the arrival process, together with some 
knowledge of the conditions a time t = 0, is necessary to make predic- 
tions. We could then apply (2.11) but to predict each Dj(t) we would 
need the corresponding Vj(t) and Qj(O>. 

Example: A toll booth can handle one vehicle every 6 seconds. Can 
you tell approximately what average delay per vehicle at the toll booth 
one should expect during an hour if the system is initially empty and 
then 

a. 300 vehicles arrive randomly during that hour? 
b. 580 vehicles arrive randomly during that hour? 

Solution: Since the exact arrival curve is not given, we try to use the 

Case a. 
equilibrium formulas for an observation period of one hour. 

p = 600 vph 
h = 300 vph 

Since 1 hour is much greater than 600/(600-300)* = 150- ' hours and 
the initial queue is small, we can use equation (2.12). The result is: 

- 1/2 Q=-- - 1  
1 - 0.5 

and 
- w = l / h  = 1/300 hrs = 12 sec. 

Case b. 
In this case 1 hour is not much greater than 600/202 hours and 

equilibrium theory cannot be used. A more detailed description of the 
arrival process would be needed. 

2.4 Relationship between (t, x) and (t, N) plots 

Suppose that vehicles (or items) move over a guideway without passing 
each other, as shown in the (t, x) diagram of Fig. 2.8a, and that they 
have been numbered in increasing order in the direction of increasing 
time starting with an arbitrary reference vehicle. We then let N denote 
the vehicle number and define a function N(t, x) that assigns to each 
point in the (t, x) plane the number of the last vehicle to have passed. 
This function will be discontinuous, exhibiting bands of constant N(t, x) 
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t 
Figure 2.8 
no-passing traffic; ( b )  passing traffic. 

Somc vehicular trnjcctorics and the associated N(t,x) function: (a )  

separated by ‘faults’ at the vehicle trajectories. If desired (and this is 
convenient for theoretical purposes) one can also define a smooth 
approximation of N(t, XI, N(t, XI, that coincides with N(t, x) on the 
vehicle trajectories; i.e. if x,( t)  is the trajectory of the N = j vehicle, then 
N(t, x,(t)) = N(t, x,(t)). 

It should be clear that for any fixed x,,, N(t, xl,) is the raw cumulative 
counting function N(t) that would be recorded by the observer at xi,, as 
in Fig. 2.1, and that N(t, x , , )  would be a smooth approximation passing 
through the crests of N(t), also as in Fig. 2.1. The same could be said for 
other locations, x,. We also recognize that the difference in the values 
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of either of the functions (N or I?) at the two locations at any given 
time, t,,, is (approximately in the case of N) the number of vehicles 
between the two locations (see Fig. 2.8a). Thus, a plot of I?(t, x0)  and 
I?(t, x l )  as t varies is nothing but the input-output plot of Sec. 2.1 and 
Fig. 2.2. 

It should also be clear that the partial derivatives of I?<t, x) can be 
interpreted as the instantaneous flow and (the negative of) local density: 

and 

(2.15a) 

prevailing at point (t, XI. The negative sign in (2.15b) arises because I? 
decreases in the direction of increasing x (see Fig. 2.8a). 

All the observations made in this section can be extended to passing 
traffic if one modifies what is meant by a vehicle number or  label. To 
see this consider Fig. 2.8b, which displays the trajectories of 5 consecu- 
tively numbered vehicles as per the labels on the bottom left part of the 
picture. Trajectories 2 and 3 intersect at a point P where a vehicle ‘3’ 
overtakes another ‘2’. Examination of the figure shows that the vehicle 
number does not increase monotonically with time for locations down- 
stream of ‘P’. Therefore, N(t, x , )  cannot be interpreted as a cumulative 
count curve for any x ,  downstream of point P. 

On the other hand, we also see from the figure that this difficulty is 
removed if we imagine that the two interacting vehicles exchange their 
labels ‘N’ after the passing maneuver at point P, with the parenthetical 
results displayed. It should perhaps be intuitive that if similar label- 
exchanges are used with every passing maneuver, then the difficulty is 
removed in general. 

This can be verified more formally by imagining that physical tags 
with a label are actually exchanged among vehicles and then defining 
our function N(t,x), or N(t,x), as that which describes the flow of tags. 
This eliminates the difficulty because tags never pass each other and 
there is at all times one and only one tag attached to every car. Thus, a 
tag count must always match the corresponding vehicle count. This 
change, of course, means that N now represents, not individual vehicles, 
but positions in the traffic stream; e.g., vehicle 3 advances to position (2) 
and 2 recedes to (3). Thus, only if there is no passing can the N and I? 
functions be used to track individual vehicles. 
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The functions N and k were proposed by Moskowitz (1965) and later 
examined in more detail by Makigami et al. (1971) as a convenient way 
of tying together (t, x) and (t, N) plots in a single 3-dimensional 
representation. They will be used in Chapter 4. 

Notes 

1. The inverse function of fi(t) also returns the observation time of item N if 
fi(t) passes through the crests of N(t). Otherwise. the returned value is a 
good approximation. 

2. If we use L to denote the separation between the observers and divide both 
sides of (2.7) by L, then the left side of the equality becomes the time 
average of the density and the right side the product of the average flow 7 
and (iC/L), which is the time average of the reciprocal speed. Thus, the new 
expression is a generalized version of the '(flow) = (density) x (speed)' rela- 
tionship introduced in chapter 1. Equation (2.7) can also be shown to be a 
special case of the more general relation (4.12) presented in Chapter 4. 

3. As an aside we note that the server must work at rate p as long as the 
customer is being delayed. This can be seen from the geometry of Fig. 2.3a 
on realizing that customers prior to N,, cannot define a V(t) curve that will 
touch the segment of D(t) lying between the two vertical dotted lines. 

4. An application and further elaboration on these issues can be found in 
Daganzo (1983). 

5 .  Experienced freeway drivers know that the queued speed depends quite 
heavily both on p, increasing with an increasing p, and on the geometry of 
the road upstream of the bottleneck, decreasing with increasing road width 
for a given p. These ideas will be revisited in chapter 4. 

6. A detailed historical review can be found in Stohr (1966). 
7. We are using the subscript 'avg' instead of an overbar to denote an average 

across days. This will allow us to highlight the difference between averages 
within a day and averages across days for variables, such as the queue length, 
that can vary both ways. 

8. We will see in Sec. 6.1.3 that h is related to the size of the batches in the 
arrival and service processes, and will discuss in Sec. 6.3.1 how it can be 
measured experimentally. 

9. If T is only a few times greater than T* the variations in 0 across days may 
be larger than acceptable, but Eqs. (2.12) and (2.13) can still be used. In this 
case, one should interpret their predictions as being the averages across days 
of the mean queue and the mean delay. 



C H A P T E R  T H R E E  

Optimization 
This chapter reviews elementary optimization concepts, which sometimes 
arise in connection with transportation system control problems. Unlike 
chapters 1 and 2, however, this is a purely ‘tools’ chapter with little 
emphasis on transportation. Thus, readers already familiar with op- 
timization or systems analysis at the level of an undergraduate course 
may skip the chapter and refer to it as if it was an appendix. This 
recommendation does not apply, however, to Sec. 3.2.2 on dimensional 
analysis because conventional books on systems analysis and optimiza- 
tion do not cover this material. 

The chapter introduces some of the terminology used in the optimiza- 
tion field and then shows how to formulate, analyze and solve simple 
problems. Optimization algorithms are not presented at all because the 
main goal of the chapter is helping the uninitiated reader to recognize 
various classes of optimization problems and their possible treatment. 
This coverage level is deemed sufficient because optimization concepts 
are not used extensively in this book. The chapter also introduces 
dimensional analysis, which is a technique whose modeling usefulness 
transcends the optimization field. 

The chapter is divided into three main sections that introduce: 
problem formulation and classification concepts (Sec.3.1), analytical 
solution of simple problems and interpretation of results (Sec. 3.21, and 
the numerical treatment of simple problems with spreadsheets (Sec. 
3.3). 

3.1 Definitions and basic concepts 

The tools presented in chapters 1 and 2 of these notes answered ‘what 
if?’ questions; i.e. given a hypothetical scenario, those tools allowed us 
to predict what would happen to a system. By applying the techniques to 
a variety of scenarios one could try to find a scenario that was ‘best’ in 
some sense. Such a process is called an optimization.’ 

For example, Eq. (2.9) can be used to predict the average delay per 
vehicle at a traffic signal as a function of the ‘red’ and ‘green’ phases 
offered to the approaching traffic. It should be intuitive that if such a 
formula is now applied to all the approaches of an intersection one can 
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obtain an expression for the average delay experienced by all the 
vehicles passing through the intersection during a long observation 
period. One could then predict what effect changes in the signal phases 
(i.e. changes in the basic scenario) would have on the overall delay so 
that, conceivably, one could identify the scenario that minimized delay. 
Section 3.1.1 below uses this simple problem as the venue to introduce 
the steps one should normally follow in formulating an optimization 
problem. Sections 3.1.2 and 3.1.3 then discuss the post-formulation 
analyses that should precede a solution attempt. 

3.1.1 Formulation, terminology and example 

As a specific illustration that will be used later we develop below the 
average delay formula for a simple intersection of two 1-way streets 
controlled by a traffic signal with cycle time C (in secs) that alternatively 
displays green phases G I  and G, (in secs.) to approaches 1 and 2. As in 
Chapter 2, we assume that during these phases queues 1 and 2 dis- 
charge at rates p ,  and pLz. Each cycle includes a positive lost time, 
L = C - G, - G, > 0, during which no vehicles discharge from either 
approach; effectively then, the red periods for approaches 1 and 2 are 
R ,  = L + G, and R 2  = L + GI.  If we associate subscripts 1 and 2 with 
the remaining variables of Eq. (2.9) that are not common to both 
approaches (e.g. A and W> and we assume that arrivals are stationary we 
can write: 

(3.la) 

provided that A,C 5 p,  G. 

site is the following weighted average, 
It should be clear that the total delay per unit time observed at the 

since A ,  vehicles of each type pass through the intersection per unit 
time. Thus, after replacing R ,  by (L + G2) ,  R z  by (L + G I )  and C by 
L + G I  + G2 in (3.11, we find the following expression for the average 
total delay per unit time: 

) .  (3.2) 
A, p , ( L  + G2)’ + A, p 2 ( L  + G I ) ’  

P2 - A 2  ] (  L + G ,  + G 2  
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If we work in a consistent system of units this expression will have units 
of veh-secs/secs; i.e., 'vehicles', which is logical since y also represents 
the sum of the average virtual queues on both approaches. Note as well 
that if (3.2) is divided by the number of vehicles passing through the 
system in a unit time ( A ,  + A,) we would obtain the average delay for a 
typical vehicle. If A, and A, are independent of GI and G, then the 
multiplying factor ( A ,  + A,)-'  is independent of G, and G,, and a 
choice of G, and G, that minimizes y will also minimize y/(Al + A,). 
Thus, in comparing various signal settings it does not matter whether we 
use y or y/( A, + A,) as a criterion for selection. If such criteria was 
acceptable, one could then evaluate (3.2) for many possible combina- 
tions of G, and G, and choose the one with the smallest y.* 

The field of optimization deals with the systematic search for 'best' 
scenarios, and the following terminology is standard: the levers on 
which the decision-maker can exercise control (such as variables GI and 
G, in our example) are called decision variables, the criterion which 
takes the form of a mathematical function with the decision variables as 
arguments is called the objectivefunction (e.g. Eq. (3.2) in our case), and 
any restrictions placed on the levers are called constraints. These usually 
take the form of a finite number of mathematical inequalities and/or 
equalities among functions of the decision variables. We have not yet 
introduced any constraints for our example but this is done now. 

We recall that Eq. (2.9) applied only if the arrivals in one cycle could 
be served in a green phase (AC s pG) because otherwise the delay 
grows without bound. Because this inequality must be true for both 
approaches, we specify the following two constraints: 

p,Gl 2 A,(G, + G, + L ) ,  (3.3a) 

and 
p2G2 2 &(GI + G, + L ) .  (3.3b) 

As part of the set of constraints one must also specify whether the 
decision variables should be non-negative or unrestricted, and integer 
or real. In our case the Gi are real and non-negative, but the non-nega- 
tivity requirement is obviated by the stronger requirement of a mini- 
mum phase length for safe pedestrian crossings: i.e. by the inequalities: 

G,  2 G;"'", (3.3c) 

and 

G, 2 G,"'" 

for some positive GFi", GFin. 

(3.3d) 
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It is also good engineering practice to limit the cycle length to avoid 
the appearance of a malfunctioning signal, and therefore we include 
one last constraint in our set: 

L + G ,  + G2 I C"". (3.3e) 

This last inequality completes the formulation of our idealized signal 
timing minimization problem. 

If this had been a practical problem, the parameters p, ,  A , ,  L, G,""" 
and CmdX would have been numerical data and the objective function 
and constraint set of our own problem would have only involved 
decision variables. 

Our problem is a minimization problem because the objective func- 
tion is to be minimized. One can also formulate maximization problems, 
but an alternative theory doesn't have to be developed; a maximization 
problem can always be converted into an equivalent minimization 
problem by changing the sign of the objective function. 

The set of equations defining an optimization problem (e.g. (3.2) and 
(3.3)) is called a 'mathematicalprogram'. When all the equations in the 
program are linear in the decision variables and these are real we say 
that we have a 'linear program' (or an LP). This is by far the most 
common application of Optimization, and powerful software exists for 
solving problems with many (thousands) of decision variables in the 
blink of an eye. Contemporary spreadsheets can solve L.P.'s of moder- 
ate size when fed the coefficients of the linear equations that define the 
program. 

In looking at our 'toy' example we recognize that both sides of each 
constraint are linear but that the objective function is not. This means 
that (2.2) and (2.3) define a non-linear program (NLP) with linear 
constraints. Of all possible types of NLP's those with linear constraints 
have received the most attention. General NLPs are more difficult to 
solve than LPS, and the degree of difficulty depends greatly on the 
properties of the functions in the formulation; i.e. whether they are 
convex, concave, linear, etc .... The subject is vast and Avriel (1976) is an 
excellent introduction. Press et al. (1986) contains 'canned' routines for 
both LP and NLP problems, and briefly describes their logic. 

Another degree of difficulty is introduced when one or more of the 
decision variables is restricted to be integer and we then have to resort 
to integer and mixed-integer programming techniques. Brief introduc- 
tions to these subjects can be found in specialized chapters of introduc- 
tory texts to operations research such as Hillier and Lieberman (19951, 
and also in more specialized books. The next two subsections show how 
NLP problems can be classified according to the properties of the 
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objective function, examined in Sec. 3.1.2, and the constraints. The 
latter are discussed in Sec. 3.1.3. 

3.1.2 Convex and concave functions 

Given a trial solution to an NLP, consisting of a set of decision variables 
satisfying the constraints (a feasible point), one would like to have a 
procedure for finding a small change of the current feasible point that 
would improve the objective function. Such a procedure would be very 
useful and general because it could then be applied iteratively to obtain 
a sequence of improved solutions to the NLP, the last of which could be 
adopted for implementation. For most problems, the limit of such a 
sequence is a point, called a local optimum, that cannot be improved 
further by additional infinitesimal perturbations. 

It turns out that efficient numerical perturbation schemes exist for 
finding local optima, so that the problem of finding a local optimum of 
an NLP can be considered ‘easy’. Unfortunately, this is not enough to 
be practical because there is no guarantee that the objective value 
obtained in this convenient way is close to the global optimum, or 
perhaps even satisfactory. 

Convex and concave functions are important in that, when they 
appear in certain ways in an NLP, they guarantee that a local optimum 
is also global. 

Y t 

Figure 3.1 Three smooth curves with different optimization properties. 
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Figure 3.1 illustrates the ideas of local and global optimality for a 
problem with a single decision variable defined by: min {f,(x)), subject to 
the constraint x 2 xi). The three objective functions displayed (i = 1, 2, 
3) have a local optimum at x = xi) because the only small perturbation 
allowed, x = xi) + dx, increases the value of the objective function in any 
of the 3 cases. In case i = 3, however, the minimum is not global 
because a large perturbation, e.g. x = x2,  reduces the objective value. 
We also note that f ,  does not have an unconstrained local optimum at xg  
because (in the absence of constraint x 2 x,,)  we could find a small 
feasible perturbation x = xil - dx that would reduce y. The remainder of 
this section discusses unconstrained problems, and in particular, ways in 
which one can check if their local minima or maxima are also global. 
Constrained problems are discussed in Sec. 3.1.3. 

As is well known from elementary calculus, a necessary condition for 
x = xi) to be an unconstrained local minimum of f(x) is that: 

d f ( x ) / d u l , = , ,  = 0 .  (3.4) 

d ' f (  ~)/du'I~=~, > 0 ,  (3.5) 
The condition becomes sufficient if in addition 

as happens for f ,  and f ,  in Fig. 3.1. 
Curve f3(x) of Fig. 3.1 illustrates that (3.4) and (3.5) are not sufficient 

conditions for global optimality. The mechanism for this failure is a 
change in the function's curvature, which allows it to start a sustained 
decline for large values of x. It should be clear in light of this observa- 
tion that if the second derivative of f,(x) had been positive for all x 2 
xiI then the curve would have continued to increase to the right of xi, at 
a faster and faster rate and that small values of f(x) could not be found 
to the right of xiI .  Something similar can be said to the left of xi , .  This 
justifies informally that the condition 

d ' f ( x ) / d r '  2 0 for all x (3.6) 
guarantees that if f(x,,) is an unconstrained local maximum it is also an 
unconstrained global minimum. Functions of 1 variable satisfying (3.6) 
are said to be convex.? It should be clear from this that establishing the 
convexity of the objective function of a minimization problem is highly 
desirable.' 

A more general definition of a convex function that does not require f 
to be differentiable is that the segment connecting any two points on 
the curve f(x) should lie above or on the curve. We don't prove here the 
equivalence of the two definitions here, but it should be intuitive on 
graphical grounds that curves obeying the second definition must 'bend 
upward' and cannot have multiple minima. 
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This definition of convexity also applies to functions of two and more 
variables where the ‘chord-above-the-curve’ property implies that the 
function is ‘bowl-shaped’. In this case the differential property equiva- 
lent to (3.6) pertains to the ‘definiteness’ of the matrix of second 
derivatives ( d2f /dx i  dxj}, which should be ‘positive semi-definite’ for all 
values of the x’s. We don’t explain what this means here because in 
many practical cases one can establish convexity in a far easier way 
from the following facts, which are given without proof 

(i) Linear functions are convex. 
(ii) Sums of convex functions are convex. 

(iii) A convex function multiplied by a positive constant remains 
convex. 

(iv) A convex function of a linear function is convex. 
(v) A product of two positive convex functions of single but 

different variables is convex if one of the functions is increas- 
ing and the other is decreasing. 

Finally we note that the negative of a convex function is defined to be 
concaue. Concave functions satisfy the reverse of (3.6) and share with 
convex functions properties (i) - (iv). 

Example: Consider the functions: (1) y = x + x-’,  (2) y = x(2 - x), (3) y 
= l / x ,  + 8/(x, +x , )  and (4) y = l / x ,  + 8/x, + x I x 2 .  Determine if 
they are concave, convex or neither for positive values of their argu- 
ments. 

Solution: Function (1) is convex for positive x’s because d’y/dx’ = 2x-3 
> 0 for x > 0. This can also be seen directly if one remembers that the 
curve x-’ bends upward for positive x ( i s . ,  is convex) and that the other 
term in the expression, x, is also convex (it is linear and thus convex); 
therefore their sum (i.e. function ‘1’) must itself be convex. 

Function (2) can be written as 2x - x2. We know that the curve x2 is 
convex for all x and therefore -xz is concave. Function (2) is therefore 
concave because it is the sum of two concave terms. This result is 
confirmed by the inequality d’y/dx2 = -2  < 0, which is true for all x. 

Function (3) is also the sum of two terms. The first term is convex for 
x I  > 0. The second term can be written as 8(zV I ,  where z = x I  + x,, 
and we have already seen that z - ‘  is convex for z > 0. Property (iii) 
ensures that 82-1 is a convex function of z for z > 0, and since 
z = x i  + x2 is linear (and z > 0 if x I ,x2  > 01, property (iv) ensures that 
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the second term is also convex if x l ,  x2 > 0. Therefore (by property ii) 
we conclude that function (3) is convex in the positive quadrant. 

Function (4) cannot be proven to be concave nor convex using any 
‘tricks’ because it isn’t. The easiest way to verify this is by observing how 
y varies along the segment x i  + x2 = 10 and noting that a graph of the 
relation between y and x l  (which is y = x;’ + 8(10 - x , ) - ’  + xJ10 - x,)) 
changes curvature in the interval 0 < x,  < 10 and therefore cannot 
satisfy the ‘chord-above-the-curve’ property. The interested reader may 
want to plot the graph in order to verify this statement pictorially. 
Function (4) is an example of a non-convex function that is convex in 
either one of its arguments when the other one is held constant. 

Function (4) of the example also illustrates that non-convex functions 
can be‘unimodal’ in the sense that any unconstrained local minimum is 
also global. This can be shown in this case by changing the (positive) 
decision variables (xl ,  x,) to (z, ,  z,) by the smooth 1:l transformation 
x l  = ezl, x ,  = e‘l where - x < z,, z, < x .  It should be clear that such 
a transformation does not corrupt the optimization problem because 
every possible scenario defined by a combination of x l  and x2  has one 
and only one alternative representation in the new space. Thus, the 
original minimization problem y = F(x,, x , ), is equivalent to minimizing: 

y = f f ( z , , z , )  = ~ - Z I  +8e-z’+e-z1e-z> 

= e - z l  + g e - 2 :  + e - ( z l - z 2 )  

which is a convex function. (See if you can prove this to yourself using 
properties (i) to (v) after recognizing that e-‘ is a convex function of z.) 
Clearly, a local minimum of H corresponds to a local minimum of F and 
any such minimum must be global (since H is convex). Therefore 
convexity of H implies unimodality for F. 

The above illustrates that the desirable ‘unimodality’ property may be 
unveiled by a suitable change of the decision variables. Sometimes 
unimodality can be established after a monotonic-increasing change of 
variable for the dependent variable, u = g(y). The idea is to find a g(.) 
such that the composed function g(F(.)) is convex or concave. The 
change of variable is chosen to be monotonic-increasing to ensure that 
yl > yz if and only if the transformed values satisfy u I  > u2.  This in 
turn implies that the original and transformed objective functions have 
local and global minima (maxima) for the same decision variables. In 
that case convexity or  concavity of the transformed function ensures 
unimodality for the original. An example is the bell-shaped function 
y = e-’-, which becomes concave after the logarithmic transformation 
u = My) = -x2. 
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Example: Show that (3.2) is convex in the decision variables, G,  and 
Gz. w 

Solution: We see that (3.2) can be expressed in terms of new variables 
z1 = L + G I ,  z, = L + G2 and z = L + GI  + G2 as: y = az:z-’ + bzzz-’ 
where a and b are positive constants. The new expression is convex (for 
z > 0) because it is a sum of two terms of form zzz- that are convex 
for z > 0. This can be seen from property (v) because z’ and z -  satisfy 
the required condition; i.e. z’ is positive, increasing and convex and z -  
is positive, decreasing and convex (for z > 0). Since y is convex in the z’s 
and the z’s are linear in G,  and G, we can say that y is convex in G,  and 
G, (for z > 0). Because condition z > 0 is guaranteed by constraints 
(3:3c) and (3.3d) we can say that our objective function is convex over 
the feasible region defined by the constraints. The reader familiar with 
positive semi-definite matrices may also verify this statement directly, 
although in a considerably more tedious manner. 

3.1.3 Convex sets. Convex programming 
A related concept to that of a convex function is that of a conuex set. A 
region on the 2-dimensional plane is said to be a convex set if the chord 
connecting any two points within the region lies entirely within the 
region. Fig. 3.2 displays an example of two sets in the (xl ,  x,)-plane: set 
A is not convex because the shown segment is not entirely within ‘A’, 
but set B is convex. The ‘chord-within-the-region’ definition also applies 
to regions in n-dimensional space. For 1-dimension, in particular, we 
find that intervals are convex regions. In higher dimensions convexity of 
sets is more difficult to establish, but the following rules are useful for 
regions defined by sets of (idequality constraints such as Eqs. (3.3): 

(a) the intersection of convex sets is convex 
(b) a linear (idequality constraint defines a convex set 
(c) the inequality 

f ( x , ,  x 2  . . . x , ~  ) I constant 
defines a convex set if f is a convex function. 

f(x,, x 2 . .  . x , , )  2 constant 
defines a convex set if f is a concavefunction. 

(3.7a) 

(d) Similarly, 
(3.7b) 

As an example consider the inequality x; + x i  I 9 which defines the 
circle of radius 3 centered at the origin, i.e., a convex region. The 
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Figure 3.2 Examples of convex and non-convex sets 

convexity of the circle is confirmed by item (c) since the function xf + xi 
is convex. An important corollary of (a) is that a mathematical program 
in which each constraint satisfies either (b), (c) or (d) has a conuex 
feasible region. 

Minimization problems that involve a convex objective function and a 
convex feasible region are termed conuex programming problems. Note 
in particular that linear programs fall in this category. Convex programs 
exhibit the desirable unimodality property of unconstrained unimodal 
functions; i.e. that all local minima are global. This is important because 
on establishing that a problem falls in this category one can use 
standard perturbation searching schemes that have been (canned’ to 
solve the problem numerically; otherwise solutions are more difficult to 
find. 

As an exercise, the reader may want to show that the mathematical 
programing problem defined by (3.2) and (3.3) is a convex programming 
problem and therefore computationally ‘easy’. Let us now turn our 
attention to solution methods. 

3.2 Analytical solution methods 

Analytical solution methods are most likely to succeed with problems 
involving few decision variables. Our discussion starts with 1-variable 
problems because an understanding of this basic case will help us deal 
with more general problems. 
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3.2.1 One decision variable problems 
Unconstrained minimization of a smooth function f(x) is achieved by 
finding the roots x* of the equation df(x)/dx = 0, choosing the one with 
the smallest f(x”) and comparing the result with the values of f  for x -+ 
f x,’ If the function is known to be unimodal then we are only required 
to find one root, which will be a local minimum. The reader can verify 
using this method that function (1) of the first example in Sec. 3.1.2 is 
minimized for x* = 1 in the range of positive x. 

If the problem involves a feasible region that is a closed interval, i.e., 
a restriction of the form x, s x 5 x1 (for given x ,  < x,) and the 
objective function is convex we are in the ‘nice’ realm of convex 
programming and it suffices to identify a local optimum. Inspection of 
Fig. 3.3 reveals that if the unconstrained minimum of f(x>, x-, is in the 
feasible region (e.g., x ,  = x2 and xJ = X J  then xx is the sought global 
minimum. However, if x” is to the left of the feasible region (e.g. 
x, = x3, xJ = x4)  then the local minimum is the left end of the interval 
(e.g. x ,  = x3). The converse happens for the right side so that the 
location of the global constrained minimum, R, is the middle value of x , ,  
xI and x’: 

i = middle{ x ,  , x,  , x* } . (3.8) 

This simple formula also applies to the maximization of a concave 
function, but does not apply if the feasible region is not convex. If it is a 
collection of closed intervals, then one should find the R for each one of 
the intervals and select the one yielding the lowest (highest) f ( 3 .  

A simple recipe for minimizing concave (maximizing convex) func- 
tions also exists. As is illustrated by the behavior of f,(x) in Fig. 3.1 over 
the interval [ x l ,  x2  I, the minimum of a concave function over a closed 
interval, j i  is at one of its ends; and, specifically, the one yielding the 
lowest f(x). Again, if we are interested in the minimum over a collection 
of intervals, the various R should be compared. Note that this recipe 
doesn’t require any differentiation. 

The main advantage of an analytical approach is that if the objective 
function includes some parameters then the final result (2 and will be 
given by closed form formulae with the parameters as arguments, and 
by inspection of such formulae one may make statements about the 
dependence of the solution on the parameters that would be impossible 
to make from the results of a purely numerical approach. 

As an example suppose that we have determined the daily cost of 
providing shuttle bus service between two points to be: PC/h, where p 
is the cost of operating 1 bus for 1 day ($/day), and C/h is the number 
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Figure 3.3 Minimization of a convex function of one variable in a n  interval. 

of buses needed to operate the system with a headway of h (days) and a 
bus cycle of C (days). (The expression for the number of buses follows 
from the discussion on closed loops seen in Sec. 1.3.) Suppose as well 
that the average waiting time per passenger is h/2, that the passenger 
demand rate is A (pax/day) and that each passenger values waiting at a 
fixed rate of a ($/pax-day). If we then decide to choose an operating 
headway by minimizing the sum of the daily cost of providing service 
and the monetized waiting cost to passengers,‘ the following objective 
function ($/day) is obtained with h as the decision variable: 

y = ( 4 h c t ) h  + (PC1h- l  (3.9a) 
This expression should be minimized, subject to: 

h r O .  (3.9b) 
We note that convex function (1) of the example in Sec. 3.1.2 is a 

special case of (3.9a). Similar logic reveals that (3.9a) is also convex and 
that (3.9a and b) define a l-dimensional convex program. Its global 
solution can therefore be obtained from (3.81, and the result is: 

and 
h’ = fz = (2/3C/( ha))”’ 

y* = j  = (2AaPC)’”.  

(3.10a) 

(3. lob) 
These expressions indicate at a glance how the optimum cost and the 
optimum headway depend on the bus cycle, the bus operating cost and 
the passengers’ value of time. 
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3.2.2 Dimensional analysis and interpretation of results 
It is important in a problem like this to verify the units of the solution 
so as to make sure that no mistakes have been made. For example the 
right side of (3.10a) has units of 

[ ($/day>(days>(pax/day)- ‘($/day-pax)- ‘1 I ”  = (days). 

A dimensional argument can also be applied advantageously before 
optimization. To do this one should redefine the decision variables in 
dimensionless form and do the same for the objective function value 
and any constraints. One starts by looking for combinations of the 
parameters appearing in the formulation of the problem that have the 
same units as the objective function, the decision variables, etc. In our 
case, for example, we may recognize that ( AcrpC)”’ has the same units 
as the objective function ($/day). We can then divide y by this constant 
to define an equivalent new objective, u = y(Ac~pC) - ’ /~ .  The new 
objective function is obtained after dividing both sides of (3.9a) by this 
constant. The result can then be expressed as follows: 

u = u ( z )  = ;z + z - ’  (3.11) 

where z = ( h a / (  pC))’/’ h is the new (dimensionless) decision variable. 
Equation (3.1 1) is not the only dimensionless formulation possible. 

Instead, we could have used the constants C (days) and p ($/day) to 
define a new dimensionless decision variable w = h/C and a new 
objective variable v = y/p. The revised dimensionless objective function 
would then become: v = 1/2sw + w-’ which now includes the dimen- 
sionless constant s = (AaC/p) .  As we are about to see, one should 
usually try to eliminate as many constants as possible from a problem 
because this facilitates interpretation of the results. In our present case, 
s can be eliminated by multiplying both sides of the dimensionless 
formula by s-”’ and introducing ws’/’ as the new decision variable. 
The result is: (vs-’/*) = 1/2(ws’/’) + (ws’/’)-’; i.e., Eq. (3.11) again. 

The advantage of reducing a problem to dimensionless form with as 
few parametric constants as possible such as (3.11) cannot be overem- 
phasized. Once this has been done one can make statements about the 
nature of the solution even before a solution is obtained. If all parame- 
ters have been eliminated as in (3.11) we can exploit the fact that z’ and 
ux (or Z and U if the problem was constrained) are constants indepen- 
dent of any data. For example, because zy = (hc~/pC)’ /*  h* must re- 
main constant for our bus scheduling example, we can say that if the 
demand ( A )  were to quadruple it would be best to reduce headways (h) 
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by a factor of 2 (which will keep zy constant); and that this should be 
true independent of all other parameters of the problem. For example, we 
can make this assertion even if we don’t know people’s ‘value of time’, 
a .  This is a very general observation that could not be made from 
purely numerical analyses, and therein lies the significance of dimensio- 
nal analysis. Of course, the above is not the only statement possible; 
additional insights can be derived from further inspection of the formu- 
las for u and z. 

It should be noted that similar insights could be derived from inspec- 
tion of the analytical solution (3.10). What is attractive about the 
elimination of constants by suitable changes of variable prior to solution 
is that it allows one to make broad statements, euen before the solution 
to the problem is known! In our specific case the minimum of the 
dimensionless objective function u(z) could be found analytically (z- = 

(2)’12) but the statements that were made didn’t require the constant z’ 
to be known. They would have remained valid even if the equation 
du(z)/dz was transcendental and had to be approximated numerically. 
The idea of eliminating constants by suitable change of variables is 
particularly useful for problems with multiple decision variables, be- 
cause dimensional analysis can extend the generality of numerical 
solutions. 

3.2.3 Multiple decision variables 
For unconstrained minimization of a continuously differentiable func- 
tion f(xI,  ..., xn), the usual first order condition:’ 

f 3 f ( X , X 2  . . . x,,  1 
d X ,  

= O  ( i = 1 , 2 ,  . . .  n )  (3.12) 

identifies a global minimum, (x’,, x;, ..., xi )  if the function is convex, or if 
it can be made convex by a change of variable. As an example, consider 
the 4”’ objective function of the example in Sec. 3.1.2., y = x;’ + 8x2’ + 
x , x z ,  which is to be minimized over the set of positive x’s. This 
dimensionless function could be the final result of the parameter 
elimination efforts described in Sec. 3.2.2, applied to a transportation 
optimization problem with 2 decision variables. We saw in Sec. 3.1.2 
that this function could be transformed into a convex function (for x l ,  
x? > 0) by a change of (decision) variables. Thus, the solution of (3.12) 
f o r x , , ~ ,  >O, i .e . ,o f thesys tem -x;’+x,  = O a n d  -8x;’+xI  = 0 ,  
yields the global optimum. Elimination of x3 in these equations yields: 
x I  = 8x:. Thus, the solution for the global minimum is x; = 1/2, x; = 4, 
and y %  = 6. 
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Unfortunately, the ease with which the solution was identified in this 
example is the exception rather than the rule and one then has to treat 
problems numerically. In some cases it may not even be possible to 
establish unimodality. For problems with only 2 or 3 decision variables a 
conditional decomposition approach can sometimes be useful. It consists 
in 'freezing' all the variables except one, e.g. x l ,  and then obtaining an 
analytical solution for x; and y" with the other variables as parameters. 
The resulting function y*; = fl(x2, x,, ...I can then be treated likewise to 
eliminate x2 .  Successive steps can then (theoretically) lead to an analyti- 
cal solution. The approach is general in that it does not require the 
functions f, f , ,  f , ,  etc ... to be well-behaved in any particular sense, 
provided that the 1-dimensional global optimum can be identified at 
each step. 

The approach can be applied to the foregoing example. If we 'freeze' 
x, first, the optimum x; is the global minimum of x;' + 8x;' + x1 x2  
(treating x2 as a positive parameter). Because this expression is convex 
in x1 the global minimum is easy to find; it is x; = x i  ' I 2 ,  which yields y x  
= 2x:l2 + 8x2' as the new objective. The expression for y'; can now be 
'defrosted' and minimized with respect to x2 .  Although it is not convex, 
it is easy to see by inspection that it is unimodal and that its global 
minimum is the root of x;'I2 - 8 x i 2  = 0, which is x; = 4, as we had 
previously found. 

The conditional decomposition approach can be applied even if the 
problem is constrained and may be applied to groups of variables. For 
example, in mixed-integer programming problems it is sometimes useful 
to 'freeze' all the integer variables, in order to treat the conditional 
optimization with a powerful (continuous) optimization tool. One can 
then repeat this process for different combinations of the integer 
variables in the search for an ideal combination of the latter. The 
following section describes some basic ideas pertaining to numerical 
searches over continuous feasible regions.8 

3.3 Numerical approaches 
As you can imagine, an extensive literature exists on numerical solution 
methods. Entire courses at many universities are devoted to subsets of 
all possible methods. Libraries of optimization routines are also readily 
available. Even computer spreadsheets have significant capabilities in 
this respect. Here we can only introduce searching methods for 1-di- 
mensional problems. It is also shown how virtually all 2-dimensional 
problems can be solved quickly by numerical enumeration with spread- 
sheets. 
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3.3.1 One decision variable 

When the minimum of a function has to be found numerically just once 
and you have access to a computer, the best solution method is simply 
inspection of a graph produced with an  adequate resolution. 

When the human eye cannot be used (e.g. because the objective 
function is just one of many that must be systematically tried) automatic 
identification of the optimum is necessary. Interval reduction methods 
are sometimes useful in this context. They work by iteratively shorten- 
ing an  interval that straddles the optimum. The bisection method is the 
simplest of these methods. It can be used when the derivative of the 
function is known to change sign once in an initial interval. O n e  simply 
calculates the derivative at  the mid-point and retains for further con- 
sideration the side of the interval over which the derivative still changes 
sign. With this method, an additional digit of accuracy is obtained every 
3 o r  4 iterations. Faster and slower automatic methods exist depending 
on  whether additional (e.g. 2’Id derivative) or less information (e.g. no 
1’‘ derivatives) is available for use in the search.’ 

As an  aside, the remainder of this subsection describes a simple trick 
that can be used with both analytical and numerical approaches when 
one  wants to optimize a function for all values of a parameter, a ,  that 
appears in the objective function, f(x, a ) .  The trick is useful if the first 
order condition dff(x, a ) / d x  = 0 can be solved easily for a but not for 
x. This occurs for example if we seek the minimum of y = a x ’  + x - xlnx 
for all positive t i ’ s  over the range of positive x, because the first order 
condition is: “’ 

2crn - In x = 0, (3.13a) 
which cannot be solved for x in closed form but can be solved for CY to 
establish the following relationship between a and x’ : 

(Y = (In x*  ) / (2xx 1. (3.13b) 
Now, instead of finding xx for every a [with (3.13a) and a series of 

searches], which might have been our  first instinct, we can use the fact 
that a is known for every x* to eliminate all the searches. To d o  this, 
one generates a table of three columns with a suitable range of x r  as 
the independent column and then fills the two other columns with the 
corresponding values of u and y- .  These are obtained with (3.13b) and 
the objective function formula. The results can then be plotted, putting 
a on the horizontal axis and x? and y r  on the vertical axis, to display 
the sought result for all possible u’s. A computer spreadsheet can be 
used to d o  this rapidly. (One  simply needs to specify an  ‘xy-plot’ with 
the column for ‘u’  identified as the ‘x-range’ for the graph.) 
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As an exercise, see if you can develop a general solution of the 
unconstrained convex minimization problem min(x"' + x' + ax)  (for all 
a )  after verifying the convexity of the objective function. 

3.3.2 Two decision variables 

Independent of its complexity, any problem that includes only two 
decision variables (x, and x 2 )  can also be solved by evaluating its 
objective function in tabular form over the range of values allowed by 
the set of constraints (the feasible region). A computer spreadsheet can 
be used to fill a 2-way table with appropriate values of x, and x2 
assigned to each row and column of the table. Each entry of the table 
should contain the objective function formula using as arguments the 
headings of the corresponding row and column (x, and x?)  in a form 
suitable for copying. Constraints can be incorporated by including in the 

C E  211 EXAMPLE SIGNAL TIMINC.DETERMlNlSTIC 
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Figure 3.4 Spreadsheet solution of a 2-variable optimization problem. 
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formula a conditional statement which returns an error ‘ERR’ if any of 
the constraints is violated. [A convenient way of incorporating an 
inequality constraint of the form g(x,, x2 )  2 0 is adding the term 
‘O.(g(x,, x ~ ) ” ~ ) ’  to the objective function. Because the square root is 
multiplied by zero, the objective function is not corrupted by the 
modification. Other types of constraints can be treated similarly.] Then, 
when the spreadsheet is recalculated the cells including numerical 
values will form a pattern on the screen in the shape of the feasible 
region; e.g. a region that may look like those displayed in Fig. 3.2. One 
can then visually scan the result to identify the optimum. Alternatively, 
one can use the @MIN (or @MAX) functions to search for the 
minimum (or maximum) automatically. In this case, it is better to add 
(or subtract) a very large constant, M, to the objective function for each 
constraint that is violated to prevent the error messages from interfer- 
ing with the automatic search; the term ‘@IF(g(x,, x , )  2 0, 0, M)’ can 
be used instead of ‘0. (g(x I ,  x, )‘Iz )’. 

Figure 3.4 displays the res-ult of applying this procedure (with the 
square root option) to the traffic signal optimization problem defined by 
Eqs. (3.2) and (3.3). The formulas in the spreadsheet (named 
‘SIGNAL.WK1”) use the block of data on the top as arguments so that 
sensitivity analysis can be readily performed. Tine displayed solution, 
which exhibits a minimum delay of 9 car-secs per second for G,  = G2 
= 20, is typical in that (3.2) is usually minimized for the smallest 
possible values of G I  and G, for typical input data. 

Notes 

1. We should caution at this point that the results of an optimization are most 
useful when the problem at hand has been formulated in terms of an 
unambiguous objective, and that quite often this is not possible. Transporta- 
tion problems usually exhibit multiple objectives (e.g. reduction of travel 
time, cost, air pollution and noise) and a group of actors with different 
‘tastes“ for these objectives. In  such situations there appears to be no 
proper way of weighing the various impacts on different actors so as to 
obtain an Objective measure of the group’s well-being, as will be explained 
in Sec. 7.4.2. I n  these cases optimization techniques can only play the role 
of search tools for reamiable solutions. 

2. The example we are using rarely arises in practice because signals are 
usually part o f  a system and their arrivals are cyclic (non-stationary). 
Furthermore, one can question our  delay-minimization objective (or any 
other objective for that matter i n  the case of traffic signals) since it  is not 
clear that delay woidance is a good measure of society‘s welfare for city 
trave I .  
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3. If property (3.6) is only satisfied in an interval of x, then the function is said 
to be convex over that range; e.g. for x 2 0. 

4. Some non-convex functions (such as f ,  in Fig. 3.1) can be shown to share 
with convex functions the local/global equivalence property for their 
minima. This will be illustrated later in this section by means of two 
examples. 

5.  For more general functions one should also check the functions' behavior 
near singular (non-smooth) points; graphical examination of the curve is 
recommended. 

6. Although this approach may be pragmatic, it cannot be formally justified; 
see Sec. 7.4.2. 

7. Recall as well that local minima (or maxima) of equality constrained 
problems can be found by the method of Lagrange, covered in most calculus 
books, in  which the constraints are introduced into the objective function by 
introducing auxiliary (multiplier) variables. 

8. Although they exist, systematic search methods over discrete state spaces 
are beyond the scope of our discussion; as a rule, they are much slower than 
their continuous counterparts. 

9. Newton's method of elementary calculus uses 2'ld derivative information 
and converges much more rapidly. Although it sometimes fails to converge, 
this becomes quickly apparent. 

10. See if you can show that the objective function is unimodal 
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Traffic flow theory 
An objective of traffic and transportation engineering is to control the 
traffic streams on a set of roads (a network) so as to reduce delay or 
improve flow without inducing undesirable side effects to society at 
large. This is attempted for example when engineers change the signal- 
timing plan on a network in order to reduce both congestion and 
vehicular emissions. Some other times the objective is to achieve a 
societal goal, such as preventing traffic from flowing through neighbor- 
hoods, while inconveniencing as little as possible those who have to 
travel. In these two cases, and others as well, transportation engineering 
objectives are usually pursued by means of system control and redesign 
measures intended to affect traffic on the network in a desirable way. 

Clearly, in order to be capable of developing effective system designs 
and control strategies, engineers must understand thoroughly how the 
system in question might respond to possible engineering changes. In 
particular, they should be able to predict (e.g., by means of mathemati- 
cal models) any figures of merit that are relevant to the affected public, 
and should also have an intuitive ‘feel’ for the likely response of the 
system to a control or redesign. The latter skill is precious when the 
time comes to develop a short list of potential improvements for further 
evaluation. 

In an attempt to help the reader develop such skills, the present 
chapter discusses some elements of ‘traffic flow theory’. Highly relevant, 
this is the subject whose objective is predicting what would happen to a 
(set of) traffic streamk) if it (they) had to flow on a given (set of) road(s) 
under conditions not yet observed. The chapter examines in some detail 
the case of a single traffic stream flowing on a facility with a single 
entrance and a single exit. More complicated networks are discussed 
more qualitatively, together with control issues, in Chapter 5. The 
discussion in both chapters focuses on fundamental issues and is not 
complete. 

A deeper coverage of traffic flow theory, including theories now in 
vogue, is more appropriate for an advanced book and it is therefore not 
given here. As a result of this limited scope, Chapter 4 includes few 
references. Justice has not been done to the fundamental advances 
made in the 50’s and ~ O ’ S ,  but the reader can find a comprehensive 
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annotated bibliography, circa 1963, in Newel1 (1995). Since 1963 the 
field has continued to grow but publications have tended to emphasize 
computer modeling over experimental work and theoretical understand- 
ing; i.e., they have tended to be less ‘fundamental’. Thus, although some 
modern ideas have been included here, our coverage of this literature is 
even more sparse. 

On the other hand, the subtle nature of traffic flow calls for a more 
detailed and precise treatment of this subject than is used elsewhere in 
this book, especially since there exist a number of published errors on 
the subject. As a result, the present chapter is somewhat mathematical 
(Secs. 4.3, 4.4 and 4.5 in particular) and should be read slowly. Passages 
that could be skipped on a first reading have been noted. 

The chapter is organized as follows. Section 4.1 describes basic 
concepts, including generalized definitions of flow and density and the 
concept of stationarity. Section 4.2 presents tools for treating stationary 
traffic. These include several diagrams that are customarily used to 
depict the relationship between flow, density and speed under stationary 
conditions, as is done in manuals such as the Highway Capacity Manual 
(1994). Stationary analyses have some merit for design purposes but 
more detailed studies (of operations) often require an understanding of 
time-and-space varying phenomena; i.e., of traffic dynamics. This mate- 
rial is covered in the last three sections of the chapter: Section 4.3 
discusses the conservation equation and its applications, Sec. 4.4 some 
elementary ideas in traffic dynamics where traffic is treated continu- 
ously like a fluid, and Sec. 4.5 some aspects of discrete theories. 

4.1. Basic concepts 
This section introduces two main ideas: first some generalized defini- 
tions of flow, density and speed that describe the average behavior of a 
traffic stream over different locations and observation periods, and then 
the application of these ideas to homogeneous (stationary) traffic 
streams. 

The generalized definitions can be viewed as ways in which the 
measurements from various, many, or even an infinite number of 
locations should be averaged so as to maintain exactly the basic rela- 
tionship among flow, density and space-mean speed that was introduced 
in Chapter 1 as Eq. (1.13). A clear understanding of these ideas is useful 
to interpret traffic data. 

We will also see that if traffic is stationary then it is possible to 
predict the traffic stream features observed in a photograph from 
road-side observation, and viceversa. 
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1 1  

4. I .  1 Generalized definitions 
Figure 1 depicts a time-space diagram including the trajectories of nine 
vehicles that have been labeled by consecutive integer numbers, with 
the convention used in Fig. 2.8b of Chapter 2. Recall that labels 
represent positions in the traffic stream, and that they increase consecu- 
tively across the vehicles seen by a stationary observer or  decline 
consecutively across those seen on a photograph. 

Chapter 1 had introduced the concept of density over a section of 
road at a specific time as the number of vehicles observed in a 
photograph of the section at the given time divided by the length of the 
section. For the road section of length L shown in Figure 4.1, the 
density at time t , ,  is: k = n/L (where n = 5 ,  since vehicles 1 through 5 
would appear on the photograph). On multiplying the numerator and 
denominator of this expression by a small differential of time, dt, the 
formula for density becomes: 

b 

n ndt 
L Ldt' 

k = - = -  (4.1) 

(n=5) 

1 

(m=4) 

Figure 1.1 
apace. 

Vehicle trajcctories and  their intersection with a region of tirnc- 
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If we now refer back to Figure 4.1, we note that the denominator of 
(4.1) is the area of the thin vertical rectangle shown. If we ignore the 
possibility that one of the vehicle trajectories in the photograph may 
leave or enter the rectangle through its top or bottom side, which is 
logical for dt --j 0, we can say that every trajectory observed spends dt 
time units inside the rectangle. Because n trajectories are observed, the 
numerator of (4.1) represents the total vehicular time that is spent 
inside the rectangle (e.g., in vehicle-hours). Thus, we can write for our 
thin, rectangular time-space region: 

(4.2) 
total time in time-space region (veh-hrs.) 

‘area’ of time-space region (mile-hrs.) k =  ’ 

The word area is enclosed in quotation marks because its units of 
measurement are distance x time and not distance X distance. 

The advantage of Eq. (4.2) over (4.1) is that the former can be applied 
to arbitrary (not infinitesimally thin and not eve:i rectangular) time- 
space regions such as region A of Fig. 4.1. This capability will turn out 
to be important from an experimental point of view because it allows 
one to compare the behavior of two traffic streams even if they have 
been observed in different ways, and it also allows one to characterize 
the status of a single stream with the least expensive measurement 
techniques. We will return to these ideas in Sec. 4.1.2, below, and in 
Chapter 6. 

The result, k(A), is a generalized definition of density because, as 
wehave just seen, the original definition is recovered for suitably defined 
regions (thin rectangles). If we let l i i l  denote the area of region A and 
t(A) the total time spent in A by all vehicles, (4.2) can be written as: 

k ( A )  = t ( A ) / / A l .  (4.3) 

This generalized definition was proposed by Edie (1963). 
A useful interpretation of (4.3) in terms of averages can be obtained 

with the help of Fig. 4.2a. The total amount of time spent in the lightly 
shaded rectangle is equal to the product of number of vehicles in it, 
n(t), and dt (as in the numerator of Eq. (4.1)). Since the total time spent 
in A is the sum of the time in the component rectangles we can write: 

(4.4) 
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If we now use L(t)  to denote the length of the rectangle found at  time t 
(see Fig. 4.2) and k(t) to denote the conventional value of density at  
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time t, i.e., k(t) = n(t)/L(t), then (4.4) can be rewritten as follows: 

t ( A )  = / f u k ( t ) L ( r ) d t .  
f l  

The denominator of (4.3) can also be written as: 

lAl = j f "L ( r )d t  
tl 

so that (4.3) becomes: 

This seemingly more complicated expression is interesting because it 
indicates that the generalized density is simply the average across time 
of all the (conventional) densities encountered in region A, weighted by 
length. 

In the important case where a road section of given length, L, is 
observed for a fixed time the region of interest is a rectangle. Then 
Lit) = L, and we see from (4.5) that the generalized density is simply the 
unweighted time-averaged density observed in the road section. 

We also note, as a curiosity more than anything else, that it is 
possible to express the three quantities appearing in (4.3) in terms of 
the vehicle counting function, N(t, x), defined in Sec. 2.4. The advanced 
reader may want to verify that 

t ( A )  = -,( Ndt,  
Y 

and 

where '2' is the closed curve defining the boundary of A. It is assumed 
in these expressions that the line integrals are calculated in the clock- 
wise direction; i.e., leaving the region A to the right. 

There seems to be some confusion in the literature by what is meant 
by 'density'. Note that in all our definitions we have always defined 
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density as the ratio of two unambiguously defined quantities in a 
specific region of the time-space plane; and this is a precise definition. 
The problem arises when, in an analogy to models of continuous 
phenomena in the physical world, we attempt to define a point density 
by taking the limit of (4.21, (4.5) or (4.6) for a region A that shrinks 
around a specific point in time and space (e.g., point Q in Fig. 4.1). Such 
a definition would have practical appeal because for example we could 
then make simple statements to describe traffic at specific points in 
time-space such as ‘traffic density at the Hegenberger off ramp of 
freeway 1-880 was 100 veh/mile at 5:OO pm on Tuesday’ without any 
further qualification. Unfortunately, the result of such a limit would 
either be zero (as for point 0 in Fig. 4.1) or infinity (as for point P) and 
we must rethink more carefully what it is meant by a point density. 

Some practitioners define density at a point (t, x) as the density in a 
road segment of definite length with x at its center, but this requires 
mentioning the length of the segment in any statement; the method has 
the further disadvantage that the resulting function k(t, x) varies discon- 
tinuously with x and t, so that some smoothing is required if differential 
calculus methods are to be applied to the data. An alternative approach 
consists in smoothing the data, replacing N(t, x) by a smooth monotonic 
function 6Xt, x) as in Chapter 2, and then defining the density at a point, 
k(t, XI, as the limit of (4.2), (4.5) or (4.61, where A is a rectangle of 
vanishing dimensions enclosing point (t ,  XI. The advanced reader is 
encouraged to verify that this is equivalent to the equality: 

(4.7) 
d & t ,  x )  

dx ’ k ( t ,  x )  = - 

in agreement with the definition given in Sec. 2.4. 
The reader may complain that the results of (4.7) depend somewhat 

on the recipe that one uses for smoothing, i.e., on the chosen N(t, x), 
and that therefore the definition of a point density is ambiguous. This is 
true, but fortunately not too important for most practical questions. 
Practical questions can usually be answered with any of the possible &t, 
x> just as satisfactorily as with the exact N(t, x) because one rarely 
requires answers to an accuracy of a single vehicle. 

The exact same discussion, from (4.1) to (4.7), can be repeated for 
flow instead of density if the roles of time and distance are reversed in 
all the steps. Then, the generalized definition of flow in a region A 
becomes: 

q ( . 4 )  = d(A)/ lAl  (4.8) 
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where d(A) is the total distance traveled by vehicles in A. This is the 
analog of Eq. (4.3). Instead of (4.5) we now find from a summation of 
the total distance traveled in horizontal rectangles partitioning A (see 
Fig. 4.2b): 

where T(x) is the length of the rectangle found at position x and q(x) is 
the flow corresponding to said rectangle. Likewise, one finds that 

and that 

(4.10) 

(4.11) 

again in agreement with the definition of ‘instanteneous’ flow given in 
Sec. 2.4. 

As in the case of density, the generalized definition of flow can be 
interpreted as a weighted average of its conventional definition. We see 
from Eq.(4.9) that q(A) is the average across space of all the (conven- 
tional) flows encountered in region A, weighted by time of observation. 
And again, when a road section of given length is observed for a fixed 
time, T, so that the region A is a rectangle, then the generalized flow 
becomes the unweighted average of the flows measured at all the 
locations on the road section. In the special case where the road section 
is empty at the beginning and end of our study, so that the flow is the 
same at all locations, then q(A) is the conventional flow in the observa- 
tion interval. This quantity may be denoted ij if one wishes to stress that 
the conventional flow is the time-average of the instantaneous flow. 

Let us now consider a generalized definition of average ‘speed’. The 
ratio of (4.8) and (4.3) reduces to the ratio of the total distance traveled 
in A to the total time spent A, which is a measure of average speed in A: 

(4.12) 

When A is a vertical rectangle such as the one in Fig. 4.1, t(A) = ndt and 

d(A)  = C u,dt 
I 1  

i =  I 
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Thus, for instantaneous photos 

(4.13) 

i.e., v(A) is the average of the speeds seen in the photograph repre- 
sented by the thin rectangle, which matches our prior definition of 
space-mean speed. Thus, we can view (4.12) as a generalization of the 
space-mean speed concept to arbitrary regions of the time-space plane. 

For arbitrary regions, v(A) can also be interpreted as the average 
across vehicles of their (mean) speed in the region, weighted by the time 
spent in the region. To see this, let t ,  and d ,  denote the time and 
distance that vehicle i spends in region A, and then note that the last 
member of (4.12) can be expressed as follows: 

d( A ) / f  ( A 1 = [C, d, I/[C, r ,  3 = E, ( d , / t ,  )ti  I,”& t ,  I .  

The last expression is the weighted average of the observed mean 
speeds (d , / t , )  as claimed. Equation (4.13) is a special case of this 
formula because in a thin vertical rectangle all the vehicles spend the 
same time in the region and the average does not have to be weighted. 

In the special case where we observe a road section of length L that is 
initially empty, i.e., d ,  = L for all i, the above expression reduces to: 

u (  A )  = Ln/Cl t l  = L / i ,  

where tis the average across vehicles of the trip time in the ‘system’. We 
have also seen that in this case q(A) = q. Therefore (4.12) reduces to 
ijt = Lk(A). Since k(A) is the average of the conventional density, as per 
(4.5), we see that the second member of the equality is the average 
number of vehicles in the section during the observation period, E, and 
therefore we can write (li = E, which is just Eq.(2.7) in new notation. In 
other words, Eqi4.12) is also a generalization of an important queuing 
relation. This alternative derivation of Eq.(2.7) illustrates that both the 
(t, x) and the (t, N) diagrams can often be used to describe the same 
phenomena and/or solve the same problem. 

The above remarks also illustrate that the approximate relation, 
‘ f l o ~ ’ =  “density’ x ‘speed’, given by Eq.(1.13) of Chapter 1, becomes 
exact when applied to properly weighted averages of the three basic 
variables ’ . 

It is finally noted that it is also possible to characterize the general- 
ized average speed as the weighted time-average of the conventional 
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space-mean speeds measured over time, using as weights the number of 
vehicles appearing in each 'photograph'. The justification of this state- 
ment is left as an exercise for the reader. 

Some special cases. It is of particular interest to write the formulae for 
the flow in an instantaneous photograph of a road section of length L 
and for the density at a particular location for a specified time, T, in 
terms of the numbers of vehicles observed in each scenario (n or m) and 
their speeds (vi or vj). 

Since the total distance traveled in the photograph is 
n 

d(A) = C u , d t  
i = l  

the flow for that scenario is: 

(4.14) 

For a horizontal rectangle (corresponding to a stationary observer) 

1 "  
q ( A )  = d ( A ) / ( L d t )  = - c u, .  

L i = /  

the time spent in it by car j is dx/vj. Thus, 

and 

(4.15) 

For this scenario, d(A) = mdr and the (generalized) space-mean speed 
becomes: 

= l/[l/u] d( A )  1 
t ( A )  1 :: 1 v ( A )  = - = (4.16) 

m+U, 
Equation (4.16) states that the generalized space-mean speed at a 

fixed point in space is the reciprocal of the average of the reciprocal 
speeds, which is called the 'harmonic mean'. Since the harmonic mean 
never exceeds the arithmetic mean, this proves in a different way the 
statement made in Chapter 2 that the space-mean speed never exceeds 
the time-mean speed for situations, such as those that will be intro- 
duced in Sec. 4.1.2 (of which Chapter 1 is a special case), where the 
conventional and generalized space-mean speeds take on the same 
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values. We don’t pursue this any further here, because the time-mean 
speed is of little practical importance. 

Alternatively, we can think of l / v  as being a slowness or ‘puce’ (in 
the sense used by long distance runners who like to gauge their 
performance by a ‘pace’, p, measured in minutes per mile, i.e., p = l /v) 
and we could thus have expressed v(A) for observation at a fixed point 
in space as the reciprocal of the average pace. 

If we define the generalized mean pace by the reciprocal of (4.121, 
then we could also state for the same scenario that p(A) is the arithmetic 
mean of the observed paces. Conversely, the formula for p(A), if A is a 
thin vertical rectangle, would then be the harmonic mean of the paces 
in the corresponding photograph. 

Table 4.1 summarizes the results of this subsection. Each row corre- 
sponds to a different generalized variable, whose label is given in 
column 1. Column 2 gives the formulas that apply to a vertical slice, A, 
of the time-space diagram when the data come from an instantaneous 
photograph; the formulas assume that i = 1,. . . , n vehicles with speeds v, 
appear on the photograph. Column 3 gives the formulas for a horizontal 
slice of the time-space diagram when the data come from observation at 
a fixed location; it  is assumed that j = 1, ..., m vehicles with paces p, are 
observed. The boxed quantities are the conventional definitions of 
Chapter 1. The formulas are simpler if, as we have done, one uses ‘pace’ 
for the expressions corresponding to observation of a fixed location 
during a time interval and speed for the expressions pertaining to 
instantaneous observation of long road sections. Of course, the expres- 
sions remain valid if one replaces v, by p; I and p, by v,-I. 

We note that what Table 4.1 does not do is give formulas for the 
generalized definitions of a vertical slice when observation is at a fixed 
point in space, or for a horizontal slice when observation is at a fixed 
point in time. If this was possible, then we would be able to estimate the 
(conventional) density and space-mean speed that would be seen on a 
photograph without the expense of aerial surveillance, simply by taking 
measurements from a fixed location. The next section shows when and 
how this can be done. 

4.1.2 Stationary trajjic 

We say that traffic on a long stretch of road is stationary during a 
period of observation if you cannot get any clues as to what time it is or 
where you are by inspecting the time-space diagram through a small 
window in a template. Traffic is not stationary if conditions change over 
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Table 4.1.. Generalized formulas for various traffic characteristics using two 
observation methods. Boxed expressions correspond to the original definitions 
introduced in Chapter 1: 

Method of Observation 
Instantaneous Observation 
photograph from a fixed location 
(section length, L) (duration, TI 

Density, k(A) 

Flow, q(A) 

Space-mean speed, v(A) 

Average pace, p(A) 

ndt 

. in + CP, 
I =  I 

time as in Fig. 4.3a, where at a given time (e.g., the end of a hail-storm) 
everyone increases their speed; you can see that the pattern seen 
through the template changes before and after the critical time. 

Figure 4.3b and c include other examples where clues about your 
location in the time-space plane would be derived from the above form 
of observation. Case b is not stationary because all vehicles decelerate 
at a given location (perhaps because of a change in grade). Case c is not 
stationary either because flow and density increase behind the middle 
vehicle and this also yields clues as to when and where you are looking. 

Traffic is stationary, however, if all the vehicle trajectories are paral- 
lel and equidistant. And it is also stationary if it is a superposition of 
families of trajectories with these properties (e.g., of fast and slow 
drivers). Of course, by using a very small hole in the template one could 
sometimes view an empty region of the diagram and other times not, so 
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Figure 4.3 Three examples of non-stationary traffic. 

that even in these cases, one could say that traffic was not stationary. 
Clearly, for such fine level of observation, stationary traffic does not 
exist. Obviously, we must exclude such a microscopic level of observa- 
tion from our definition and must be satisfied if traffic ‘looks the same’ 
through larger windows. In fact, we relax the definition even further by 
only requiring that the quantities t(A) and d(A) be approximately the 
same regardless of where the ‘large’ window (A) is placed. It is in this 
sense that we will talk about stationarity in this chapter. 

A direct consequence of this definition is that t(A) and d(A) should 
only depend on A through the area hi; i.e.: 

t ( A )  = ~,,1,4) and d ( A )  = 6 , , l A / ,  (4.17) 

where T,, and 6,, are constants, representing the total time and distance 
traveled in a unit size rectangle of the (t, x) plane. That (4.17) is true 
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should be clear since A is made up of a large collection of identical- 
looking elementary rectangles of smaller size and the total time (dis- 
tance) in A is the sum of the time (distance) in the elementary 
rectangles. Since these are identical (by stationarity) only their number 
influences t(A) (or d(A)), and since the number is proportional to IAl, 
Eq. (4.17) follows. Eq. (4.17) could in fact have been used as our 
definition of stationarity. 

Aside from t(A) and d(A), all the remaining quantities in Table 4.1 are 
ratios of two of the following: t(A), d(A) and hi. As such, they don’t 
involve A in any way’. This is noteworthy because it entitles us to say 
that the limiting definitions (4.7) and (4.111, of q(t, x) and k(t, XI, are 
independent of (t, x). It also allows us to state that our generalized 
definitions of traffic characteristics for horizontal and vertical rectangles 
are equivalent; i.e., that the two columns of Table 4.1 yield the same 
values. We can therefore say, for example, that density (in the conven- 
tional sense) is given by the ratio of the sum of the paces and the period 
of observation recorded by a stationary observer; i s . ,  that the density 
can be estimated from easily obtained data. We will see later in this 
book how these concepts are useful in the analysis of highway traffic 
detector data. The concepts, of course, are totally general and apply to 
the movement of any type of objects. 

An equivalent definition of stationarity can be given in terms of the 
smoothed function N(t, x). Namely, we should not be able to tell where 
in the (t, x) plane we are by looking at fi through any template-even 
an infinitesimal one. This means that the limiting definitions of density 
and flow, k(t, x) and q(t, x), given by (4.7) and (4.11) must be indepen- 
dent of t and x, as was stated earlier. This, of course, can only happen if 
fi(t, x) is a plane, i.e., the following linear function of x and t: 

N ( t ,  X )  =N(O, 0) - x k  + tq,  (4.18) 

where k and q are constants3. Thus, we can also say that traffic is 
stationary in a (t, x) region if a plane is a good approximation for N(t, x> 
in said region. Since stationary regions are usually odd-shaped, and the 
N(t, x) not perfectly planar, the generalized definitions can be used to 
characterize an observed stationary traffic regime in a way that averages 
properly all the information in the (t, x) region of interest‘. The next 
section concerns itself with the behavior of a traffic stream when 
conditions do not change with time. 

4.2 Time-independent models 

It is often observed empirically that if traffic flow does not change with 
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time significantly at a given location for an extended period of time 
(e.g., 15 minutes), then the (space-mean) speed observed for the period 
tends to be reproduced whenever the same (stationary) flow is observed. 
Subsection 4.2.1, below, explores the consequences of such a belief. It 
introduces diagrams that can be used to predict two of the three basic 
traffic variables at a point in space given the third, and then shows how 
the diagrams are related. The section also discusses time-independent 
traffic over inhomogeneous road sections, and in particular the stable 
states that can exist in a section including a bottleneck. Section 4.2.2 
shows by means of an example how the diagrams appearing in manuals 
can be used for design, and discusses some issues pertaining to their 
use. Finally, Sec. 4.2.3 introduces a simple causal theory that explains 
why the relations observed for light traffic should be of a certain shape. 
Causal theories are important because, when a particular performance 
measure needs improvement, they suggest which causal factors should 
be changed. 

4.2.1 Diagrams 

It seems reasonable to postulate that if traffic conditions on a given 
road are stationary, there should be a relationship between flow and 
speed that will be a property of the road (e.g., number of lanes, grade, 
etc.), the environment (e.g., whether it is icy, sunny, raining, etc ...I and 
the population of travelers (e.g., percentage of heavy vehicles, com- 
muters in a hurry, etc ... ). This assumption is plausible since one can 
reasonably expect drivers to do the same on average under the same 
average conditions. Note, however, that we have not said whether flow 
influences speed or the reverse is true. This was done because both 
possibilities can arise. 

For example, if traffic enters the upstream end of a highway at rate q 
until a stationary state develops downstream, then we would expect the 
space-mean speed that develops (downstream) to be a consequence of 
the input flow and the behavior of drivers as they interact with one 
another while passing. As a result of the definitional relation (q = k,) 
for stationary traffic, we can also say that the downstream density would 
then be a consequence of the input flow. In this case, causality comes 
from upstream. 

On the other hand, if a stationary state develops behind a slow-mov- 
ing obstruction to traffic (e.g., a snow-plow), then through the repro- 
ducible behavior of drivers we would expect the average spacing inside 
the queue upstream of the obstruction to be a function of the travel 
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speed; and therefore for k and q to be a consequence of the obstruc- 
tion’s speed (with q = 0 if the speed is zero.) In this case, we see that 
causality comes from downstream. 

Be that as it may, one would expect the basic features of a given 
traffic state, q, k, and V,, for a given road and environment to vary with a 
single parameter, a ;  i.e., for the possible traffic states to define a 
parametric curve in the (4, k, V,> space: q( a 1, k( a 1, V,( a ). We also note 
that q cannot be the parameter because in practice a given flow is 
observed for more than one speed (e.g., with low flows arising for very 
low and very high speeds). On the other hand, because speed can be 
expected to be a declining function of density (and vice versa), either k 
or V, can serve as the parameter. 

The justification for this statement is usually given in terms of a 
‘car-following’ argument in which it is said that drivers keep wider 
spacings when traveling faster and therefore one would expect k to 
decline with speed. But one should not be surprised if experiments also 
show that a unique relation between v and k exists in situations where 
cars do not ‘follow the leader’; e.g., when traffic is very light and there is 
almost free passing or when there is active lane changing’ 

It should be stressed at this point that these relationships are only 
postulated to be true ‘on average’; i.e., for large stationary (t,x) regions 
containing many vehicles. If one measures flows (or densities) on small 
scales, then one should expect substantial deviations from our curve, 
e.g., because of driver differences. 

Because three-dimensional curves cannot be plotted on a sheet of 
paper, various two-dimensional representations of the postulated rela- 
tionship are often used. Some of those are shown in Fig. 4.4. Part (a) 
displays a diagram of speed vs. density, including a curve that represents 
the possible traffic states for a given highway. (We have dropped the 
over-bar and the subscript of V, for simplicity of notation and will 
continue to do so from now on.) Because q = kv, flow is represented on 
this diagram by the area of the rectangle with corners at the origin and 
at the point in question, and sides parallel to the axes of coordinates. 
Thus, the three state variables can be conveniently read from the 
diagram; e.g., for point ‘1’ of the figure. As in the figure, one would 
expect the curve to intercept both axes at coordinates that we label, vf 
and k,. The former represents the speed that arises when there is no (or 
very little) traffic, and is called the ‘free flow speed’. The latter repre- 
sents the maximum density observed, when traffic is bottled-up and at a 
stand-still; and it is normally called the ‘jam density’. 

In one of the earliest (if not the earliest) studies on this subject, 
Greenshields et al. (1947) proposed a linear relationship between v 
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Figure 4.4 Equivalent representations of possible stationary traffic states, 
using diagrams for: (a) speed vs. density; (b)  speed vs. flow; (c) flow vs. density; 
(d) pace vs. flow: and ( e l  speed vs, spacing 
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and k: 

(4.19) 

from limited field observations. We now know that a linear relationship 
is quite inaccurate, but (4.19) is of historical interest. It will be used 
here for the purposes of illustration only since its simplicity is appealing. 

It can be seen at a glance from Fig. 4.4a that q varies smoothly as the 
point denoting the state is moved along the curve and that its value 
must reach a maximum, denoted q,, at some point. Note as well that 
q = 0 for the extreme points. 

Alternatively, one could plot q versus v as the point moves along the 
curve; and one would obtain a graph such as part (b) of the figure. On 
it, the axes have been reversed as is customary, so that the maximum 
stationary flow (or capacity) is shown on the abscissa. In this (v vs. q) 
representation of the possible stationary states, density is the reciprocal 
of the slope of the radius connecting a point with the origin (since 
k-  ' = v/q). 

The equation corresponding to Fig. 4.4b can be obtained by substitut- 
ing q/v for k in the expression for v as a function of k and solving for q; 
the result for (4.19) is: 

(&) = ($ ) ( I  - $) (4.20) 

which is the equation of a parabola. The maximum flow is obtained 
when v/vf = 1/2 so that the capacity for the Greenshields et.al. (1947) 
model is q, = (1/4)k,v,. 

Part (b) of the figure also illustrates that although each v identifies a 
unique flow, the reverse is not true. For the relations typically postu- 
lated, in which the curve has an upper branch where v decreases with q 
and a lower branch where v increases with q, there are two possible 
speeds for every flow.' If the stationary state arises from traffic entering 
the upstream end of an empty homogenous highway that is free of 
downstream obstructions, where traffic reaches an equilibrium (q is 
given), then we would expect states on the upper branch of the curve to 
arise. This seems reasonable, since we assume that there are no down- 
stream restrictions to reduce traffic's speed, but cannot be formally 
justified without an accurate model of how people drive and an analysis 
of the problem; a theory of traffic dynamics-the subject of our next 
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section-is needed for this. We can say, however, that every reasonable 
theory proposed to date leads to equilibrium states on the upper 
portion of the curve if the highway is initially uncongested, and that this 
is consistent with observation. 

The bottom part of the curve describes states that can only persist if 
downstream conditions prevent traffic from moving faster (queued 
traffic). This can occur for example if a slow vehicle with speed v2 (see 
Fig. 4.4b) blocks the road and traffic is forced to follow. The state values 
q 2 ,  v2,  and k, = q,/v, then describe the conditions prevailing in the (t, 
x) region coniaining the queue behind the slow vehicle. A similar effect 
is obtained if a fixed partial obstruction restricts the passage of flow. 
Now too, models and experience predict that queued slow-moving 
traffic will be created in the region upstream of the restriction. The 
resulting (stationary) conditions will correspond to a point on the lower 
branch of the curve’. Because of these considerations, we will refer to 
the upper branch as the ‘unrestricted’ branch and to the lower branch 
as the ‘restricted’ or ‘queued’ branch. This terminology is not universal 
but is evocative of the underlying causes determining the branch that 
arises in a specific case. Theories of traffic dynamics (Sec. 4.4) are 
needed to describe how traffic moves from a stationary state on one 
branch to the other as conditions change. 

It is important to develop a ‘feel’ for how the diagrams in Fig. 4.4 (a) 
and (b) depend on road width. To a first level of approximation, we can 
say that traffic on neighboring freeway lanes interacts weakly and that 
therefore the flows that result for a given (average) speed should be 
roughly proportional to the number of lanes. And so should the densi- 
ties. This is recognized in traffic manuals (such as the Highway Capacity 
Manual, 1994) which often use flow per lane and density per lane as the 
basic inputs for determining operating conditions; in this manner, the 
same diagram can be used independent of the number of lanes. When 
engineers see diagrams such as those of Fig. 4.4 they often think of 
‘per-lane’ measurements. This convention is not adopted in this book so 
as to preserve maximum generality. Thus, we would expect k,  and q,  to 
be proportional to the number of lanes. You should try to imagine how 
the curves in the figure would change as you increase the number of 
lanes while holding everything else constant. 

The diagrams, of course, will also depend (although to a lesser extent) 
on other features of the highway and its environment, and this has been 
the subject of much research. Traffic manuals from various countries 
summarize it. I t  is important to note that most of the information 
determining the particular form of the curve comes from characteristics 
of the highway (e.g., the number of lanes) although some also comes 
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from the ‘quality’ of traffic that moves over it (e.g., the percentage of 
trucks). What does not enter in the determination of the curve is the 
‘quantity’ of traffic (i.e., q or k). It is thus useful to view the curve and 
its parameters, vf, q,, kj ,  etc ... as inherent properties of the highway 
that exist even in the absence of traffic. A particular amount of 
(stationary) traffic simply determines a point on the curve. 

Engineers like to think of Fig. 4.4b as a diagram that is useful for 
design but they prefer to work with a different representation, Fig. 4 .4~’  
for more detailed analyses of traffic operations. In this diagram flow is 
plotted versus density, and speed is given by the slope of the radius 
connecting a particular point with the origin. The equation of the curve 
in this diagram is obtained by substituting q/k for v in the relation of v 
vs. k and solving for q. The result of these manipulations for (4.19) is 
again a parabola: 

(4.21) 

which exhibits a maximum for an ‘optimum’ density k, that satisfies 
k,/k, = 1/2. The capacity, of course, is as before: q,, = 1/4v,k,. In 
reality, values of k,/k, for freeways, are close to 1/6 with q increasing 
rapidly toward q, as k increases toward k,, and then declining more 
gradually for k > k,. The parabola (4.211, symmetric about k = k,/2, 
does not exhibit these qualitative features. 

While (4.21) or its equivalent for a general v(k) equation defines a 
unique q for every k, i.e., a function q = Q(k), the reverse is not true. 
Fig. 4.4 shows that this curve also exhibits two branches, i.e., two k‘s for 
every q, corresponding the unrestricted and queued regimes8. It is 
reasonable to expect q to increase with k up to a point (k , )  and then to 
decrease toward zero again. Although there is some controversy in the 
field today as to whether the q vs. k curve is discontinuous (and even 
multi-valued) near capacity, it should be noted that the data supporting 
such a conjecture may correspond to the inadvertent measurement of 
non-stationary traffic conditions (Cassidy, 1995). Some of these ques- 
tions will be addressed in Chapter 6. 

Figure 4 . 4 ~  also displays a second point ‘2’ and denotes by ‘w’ the 
slope of the q vs. k curve at that point. Like any slope in the (k,q) plane, 
w has units of speed; this variable plays a significant role in the theory 
of traffic dynamics. 

Finally, we display two additional representations of the possible 
stationary states: a curve of ‘pace’ vs. ‘flow’ (d), and another curve of 
‘speed’ vs. ‘spacing’ (el. The former is the cousin of the increasing travel 
time vs. flow curves used in transportation planning and large scale 
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network models, since pace is simply the average travel time normalized 
by length. Curve (d) is obtained after replacing v by l / p  in case (b). In 
network models one normally assumes that p increases with q and 
ignores the top part of the curve; i.e., the part of the curve that 
corresponds to obstructed flow. This can lead to difficulties when 
modeling congested networks. 

Curve (el is obtained from case (a> after replacing k by s-I.  In this 
representation, flow is given by the slope of the radius from a point to 
the origin, q 1  = v,,s,; thus, the capacity, q,, is given by the slope of the 
tangent to the curve passing through the origin. Because they relate 
speed to spacing such curves have been used in studies of drivers’ 
car-following; see Sec. 4.5. 

Heterogeneous highways. The concepts in the present section can be 
extended to a heterogeneous highway (e.g., one whose width changes 
along its length) that is stationary in time. By time-stationarity we mean 
that flows and densities can only depend on location, or equivalently 
that the partial derivatives of fi are independent of t. The most general 
form of N(t, x> satisfying this condition is fi(t, x> = 6(x) + qt, where q is 
a constant. Thus, we see from (4.11) that q(t, x) = q; i.e., that the flow 
must be the same everywhere. 

If flow and density at each location are related to each other in a way 
that is independent of nearby traffic conditions (i.e., one can define 
curves of q vs. k for each point along the road) then it should be 
possible to plot curves depicting the values of k (or v> that would arise 
at each location for every level of system flow. To illustrate this idea, 
Fig. 4.5 shows a homogeneous road with a bottleneck, at location 2, and 
an accompanying diagram with two dashed (q,k)-curves. The small curve 
corresponds to the bottleneck, and the large one to any locations in the 
homogeneous part, such as xu and xd. Intermediate curves (not de- 
picted) should arise at intermediate locations. The collection of curves 
can be represented mathematically by means of a smooth function of 
both k and x: 

q = Q ( k , x )  (4.22) 

that gives the flow observed when the (time-independent) density at  x is 
k. 

We use $, to denote the capacity of the bottleneck (see Fig. 4.5) and 
note that this value is the maximum possible system flow. Thus, if 
(stationary) measurements of flow and density are taken at any location 
then only the portions of the corresponding curve lying below the 
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Relationship between flow and density on an inhomogeneous road 

horizontal line at level tio shown on Fig. 4.5 can be observed; i.e., the 
(q-k)-curve will appear to be truncated. Conversely, a horizontal line 
across the family of curves of Fig. 4.5 at any feasible height q < 6, can 
be used to identify two possible densities for each location, ‘unre- 
stricted’ or ‘queued’, that would be consistent with the given flow. 
Fortunately, as is explained below, it turns out that only a few combina- 
tions of queued and unrestricted states across all locations are ‘stable’, 
so that knowledge of q tells much indeed about the overall status of the 
section; e.g., the number of vehicles in it, their trip times, etc. 

It is generally believed and confirmed by observation that an ‘unre- 
stricted’ state cannot persist for an extended period of time downstream 
of a ‘queued’ state if there is nothing to hold the queue back. This 
should be intuitive to experienced drivers because queues do not 
develop and grow spontaneously. They are caused by a restriction. In 
fact, if they exist and the restriction is removed then the front of the 
queue begins to recede as the queued vehicles advance into the uncon- 
gested road ahead. Experienced drivers also know that a bottleneck is a 
restriction that can separate upstream queued traffic from downstream 
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unrestricted traffic for a long time. When this happens, experience 
shows that the bottleneck is serving traffic at its maximum sustainable 
rate; i.e., that the system flow is 4,. A bottleneck in this state will be 
said to be ‘active’ and to be working at ‘capacity’. The same principles 
and definitions should also apply to the ‘walking’ transportation mode. 

It is also possible, although unlikely, to observe a standing queue that 
does not grow or dissipate.’ Then, ‘unrestricted’ traffic would be 
observed upstream of the end of the queue and ‘queued’ traffic down- 
stream. If the possibility of standing queues is disregarded, only three 
stable states need to be considered in our inhomogeneous road section: 

1. unrestricted; with the densities and speeds everywhere obtained 
from the left portion of the diagram; 

2. queued; with the densities and speeds everywhere obtained from 
the right portion of the diagram; or 

3. mixed: with the densities and speeds upstream of the bottleneck 
obtained from the right portion of the diagram, all the down- 
stream data obtained from the left, and q = $,. 

We are now prepared to investigate the form of the relationship 
between q and the aggregate density for the whole highway section 
(0 I x I L) which we denote k,,,. 

Our discussion is relevant because manuals often define a single 
curve for a whole section of highway, even if it is inhomogeneous, based 
on the average features of the highway. While this is expedient, and 
may be needed on practical grounds, a direct extrapolation of the ideas 
presented up to this point without exercising care is rather dangerous. 
Let us now elaborate on this comment. 

In order to ‘construct’ representation (c) of Fig. 4.4 we shall evaluate 
kagg for every possible feasible q. Of course only q’s satisfying q I $, 
can be considered. If traffic is unrestricted, i.e., on the left branch of the 
q-k curve everywhere, then the density at x, k(x), is obtained from the 
inverse function corresponding to said branch at location x, which we 
denote Q-’(q,  x). The definite integral (sum) of these quantities from 
x = 0 to x = L is the total number of vehicles in the section and as a 
result we can write: 

(4.23) 

Note that this expression is just the average of the values of k that 
prevail at each specific point for the given (unrestricted) q. In Fig. 4.5, 
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this is represented by the increasing portion of the darkened curve. 
Each point on this branch of the curve is obtained by averaging the 
values of k obtained for the given (unrestricted) q by reading them off 
the (dashed) local q-k curves at different x. 

If traffic is queued, then one would obtain through similar considera- 
tions the dark decreasing branch on the right side of the figure; and we 
note that the two branches so obtained are separated by a gap. 

Intermediate values across the gap can sometimes also arise. A state 
corresponding to the dark dot shown on the figure, for example, would 
arise whenever the system is in the ‘mixed’ stable state (iii) mentioned 
above (with q = Q,). The location of this point across the diagram is a 
property of the study section. It is given by the location of the bottle- 
neck 2, since this determines the number of vehicles affected by the 
queue“’. Intermediate values could also be observed for q < $, if 
downstream (standing) queues were to spill back onto our study section, 
but in these cases the location of the point would be describing the 
length of the spillback and not an inherent property of our section. 

These results are intriguing because they suggest that the diagrams in 
design manuals should not be smooth at capacity whenever they de- 
scribe an extended heterogeneous highway section (e.g., over rolling 
terrain). The 1994 version of the Highway Capacity Manual explicitly 
states that the procedures and diagrams in Chapter 3 only pertain to 
homogeneous freeway sections, but the tables and adjustment factors 
(as those of the 1965 version) are not always consistent with this view. 

If we wish to use for design aggregate q vs. k,,, curves such as Fig. 4.5 
we may ask how the ratio q/k,,, should be interpreted. We recall that 
both q and k,,, correspond to the generalized definitions of traffic 
variables for the rectangle H defined by 0 I t I T and 0 I x I L. As a 
result q/k,,, can be interpreted as the (generalized) space-mean speed, 
and Lk,,,/q as the average vehicular trip time in the section. In 
essence, q/k,,, is the definition of ‘overall travel speed’ (1965 Highway 
Capacity Manual, HCM) or ‘average travel speed’ (1994 HCM); it is not 
equal to the 1994 HCM’s ‘average running speed’ which excludes 
stopped-vehicle delays. 

4.2.2 Manuals 
This section includes a couple of examples in which the recipes of the 
1965 HCM (Chapter 9) are applied. (The 1965 procedures are easy to 
explain and similar in philosophy to the 1994 procedures.) This will 
serve to illustrate how engineers go about evaluating the desirability of 
a particular highway design and will provide a focus for some discussion. 



90 Fundamentals of transportation and traffic operations 

For basic freeway sections without entering/leaving traffic, both 
versions of the HCM define a relationship between v and the vehicular 
flow per lane, q/l, where 1 is the number of lanes. The form of the 
relationship depends on the freeway’s design speed and also (slightly) 
on 1. The relationship is assumed to hold for ‘ideal’ conditions”. 
Adjustment factors for lane width and percent of heavy vehicles are 
then applied to the (forecasted) freeway flow per lane to determine an 
equivalent ‘ideal’ flow per lane, 9‘. This flow is then used with the 
underlying relationship to obtain a predicted operating speed. Based on 
the predicted speed, and on the ratio of the predicted equivalent ideal 
flow to the maximum possible ‘ideal’ flow per lane, q‘, (a measure of 
traffic intensity that is called the ‘volume/capacity’ ratio), the manual 
then identifies a ‘level-of-service’ that ranges from A (excellent) to F 
(fail). Level of service ‘C’ or better is achieved if v 2 45 mi/hr and 
q‘/q‘, I 0.7; and level ‘B’ or better if v L 55 mi/hr and q‘/q: I 0.5. 
These two levels are typical design targets. 

Example: Selection of a freeway’s number of lanes. Let us find the 
number of lanes needed to accommodate at level of service ‘C’ a design 
flow of 3000 veh/hr. The freeway, passing through rolling terrain with 
11 f t  lanes and 4 f t  shoulders, has a design speed of 65 mi/hr. There is 
a ditch and a median. 

The first step in the solution is converting the 3000 veh/hr into an 
equivalent ideal flow. For a freeway, design speed and side interference 
factors are not used. The adjustment factor for lane width w, (feet) and 
shoulder width w, (feet) given in Table 9.2 of the 1965 HCM obeys the 
approximate expression: 

(12 - w , ) ?  i (6 - w 1’ 
+ ( / )  --A. 170 , 9 I W ,  I 12, O I W ,  I 6 (4.24) 35 F, = 11 + 

where i is the number of obstacles (e.g., ditches, medians) at the outside 
edge of the shoulders (i = 1 or 2). For our design i = 2 and the formula 
yields F, = 1.044 for 1 = 3, F, = 1.04 for 1 = 4, and F, = 1.052 for 1 = 2. 
In view of the small differences among these values we choose to work 
initially with 1.044, which should be close to the actual factor for the 
number of lanes chosen. 

Trucks and buses are treated by converting each one of these vehicles 
into an ‘equivalent’ number of passenger cars. The equivalences are 
determined based on the type of terrain or, for short sections on an 
incline, based on the length and steepness of the grade. The truck 
equivalents for level, rolling and mountainous terrain are E, = 2, 4, 8. 
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For buses they are E, = 1.6, 3, 5. These equivalents are then converted 
into a multiplicative factor by considering the fractions of trucks and 
buses in the traffic stream, f, and f,, or more precisely, the fractions 
that would be seen by a stationary obseruer. (The method of observation 
needs to be specified because if passenger cars travel faster than heavy 
vehicles then the fraction of heavy vehicles is observer-dependent.) The 
multiplicative factor is: 

For our example the factor is 1 + (1X0.05) + (0.6)(0.05> = 1.08 passen- 
ger car units (or pcu’s) per vehicle, and the equivalent flow is: qe = 3000 
F, Fc = 3382 pcu/hr. 

To determine the number of lanes one would divide 3382 by a trial ‘I’ 
and then, from the curves in the HCM, would determine if the design 
criteria for level of service ‘C‘ are satisfied. In order to practice working 
with equations we will instead pretend that the HCM diagram obeys 
(4.20) with v, = 65 mi/hr and qo  = 2000 pcu/hr per lane.12 For the 
critical v corresponding to level of service ‘C’ (v = 55, v/vf = 55/65) the 
right side of (4.20) is 0.13. Since for the model of (4.20) q, = 1/4 k j  v,, 
the left side of said equation is 3382/(8000 1 )  = 0.42/1. Equating both 
sides, 0.42/1= 0.13, we find the critical number of lanes satisfying the 
speed criterion; i.e., 1 = 3.23. Because 1 must be an integer it should be 
increased to 1 = 4 which will further increase v; i.e., it will continue to 
satisfy the speed condition for level ‘C ’. This service level will be 
achieved if, in addition, the volume-capacity ratio satisfies qe/qt  I 0.7; 
i.e., if 3382/8000 = 0.42 I 0.7 in our caseI3. Had this inequality been 
violated, 1 would have to be increased one more notch. 

Discussion. The neat functional form of (4.24) illustrates that some of 
the curves and tables in the HCM (and other manuals as well) are the 
result of simple curve-fitting exercises (such as linear and non-linear 
regression) in which families of functions have been fit to available data, 
collected from many different freeways. Unfortunately, the manuals do 
not present the recipes in a form that makes their accuracy to be 
self-evident, and this makes it especially important to be very conscious 
of the types of errors that may arise. Errors in curve-fitting predictions 
can arise from (i) having chosen the wrong family of functions (specifi- 
cation errors), (ii) poor data fit (low correlation) and (iii) not enough 
data (low statistical reliability). There is little that can be done to guard 
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against type (i) errors, except perhaps ensuring that the best possible 
theories have been used to develop functional forms. This type of error 
is particularly severe when the desired inputs to the formulas or tables 
are not representative of the data that were used to generate the table. 
Type (ii) errors arise when the original data cannot be reliably predicted 
with the recipe. This is symptomatic of a recipe that does not include 
sufficient input information even if it is correct. Scatter-plots of the 
original data against the predictions one would have obtained with the 
recipe can give a rough idea of the magnitude of likely type (ii) errors 
(for a facility that it is similar to those in the original data). Examples of 
possible effects that are not included in these recipes but could be 
important include: condition of the pavement due to weather, whether 
the commute direction is into or away from the (raising, setting) sun, 
tunnel lighting, driver motivation due to proximity to merges, etc. Type 
(iii) errors can be corrected by gathering more data over a wider variety 
of facilities. 

Because the original data is rarely displayed in manuals (to avoid 
clutter presumably) the user is given no clue as to the magnitude of type 
(ii) and (iii) errors. This problem will be accentuated with the introduc- 
tion of calculation software in newer versions of the HCM. This is 
unfortunate because, as a result of the specific steps of the recipe, the 
inexperienced user may come away with a false sense of precision. It 
should be remembered that ‘factor of 2’ differences in lane capacities of 
similar freeways have been measured, and that such large discrepancies 
cannot be explained with the HCM’s (small) adjustment factors. 

This author believes that direct observation of a facility, or a facility 
as similar as possible to the one being studied, is a more reliable 
predictor of performance than a number found in a book. Nonetheless, 
a manual, coupled with practical experience and common sense, can be 
of use when the above course of action cannot be taken. 

One should also reiterate, and this will become clearer when we talk 
about traffic dynamics, that the performance of a freeway section when 
traffic is heavy is only as efficient as allowed by its ‘bottleneck’; this is a 
fact that remains despite the practical necessity to use input data that 
averages out some of the freeway’s features (e.g., ‘rolling terrain’ as a 
proxi for a detailed vertical profile) in capacity analysis. Bottlenecks are 
normally located at places where the freeway geometry changes such as 
sag vertical curves, tunnel entrances and lane drops; they deserve to be 
carefully considered because their impact is felt widely and not just at 
the bottleneck itself. 

An attempt to develop a causal theory of light traffic flow on freeways 
with an emphasis on stationary conditions was started more than four 
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decades ago by a number of authors, including Newel1 (1955 and 19951, 
Carlesson (1957) and Andrews (1970) among others. These theories 
predict a slow decline of freeway speeds with flow under unrestricted 
conditions with a particular form that depends on the number of lanes. 
(This will be explained in the next subsection, which introduces just the 
main idea at the core of these theories.) Although the 1994 HCM 
makes no use of these models, its new improved v-q diagrams now 
comply more closely with the theoretical predictions than those in the 
1965 version. Similar theories have been developed to predict the form 
of the (more sudden) decline in speed as a function of flow for two-lane 
bi-directional roads; see for example, Morse and Yaffe (1971) and 
Daganzo (1975). Clearly, progress over the last 40 years might have 
been faster if empiricists and theoreticians had communicated better; 
attention to theory can reduce the dangerous type (i) errors, that may 
be present in our handbooks’ recipes. 

4.2.3 Light trafic theory 

We are concerned here with a description of unrestricted flow on 
multi-lane freeways when vehicle delays due to an inability to pass are 
rare. It is assumed that vehicles enter he freeway section of interest and 
travel on it at a desired speed that varies from driver to driver. When 
the headway between successive cars becomes smaller than At (a 
minimum safe headway) we assume that they must occupy separate 
lanes. 

As long as the number of vehicle trajectories crossing a location x,i 
within an interval (t, t + A t )  is less than the number of lanes, I ,  we can 
assume that vehicles can proceed without interference; there is no 
delay. 

However, if on plotting the trajectories that vehicles would like to 
have followed (traveling at their desired speeds) we find that (1  + 1) 
trajectories intersect our interval (t, t + At), we must conclude that a 
delay should have arisen. Then, if we assume that vehicles do not 
accelerate to make room for those behind, vehicle trajectories can only 
be spaced properly by forcing one (or more) of the vehicles to cross our 
location later than they would have liked. Although the specific vehicle 
that is delayed and the amount of the delay will depend on the relative 
vehicle velocities and their desired time of arrival at xi), which would 
determine when and how the conflict first arose, the details of this 
process are unimportant for our purposes. We simply recognize that 
while a conflict is in progress one of the vehicles must reduce speed by 
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an amount comparable but smaller than the range of desired speeds 
(i.e., on the order of 5-20 km/hr). For typical desired speeds, on the 
order of 100-120 km/hr, the resulting increase in vehicle pace while 
the conflict is in progress will then range from 0.02 to 0.15 min/km. The 
average of these increments across all possible conflicts will be denoted 
Ap, which should be a quantity comparable with 0.1 min/km. 

If conflicts are so rare that the resolution of a conflict does not 
trigger additional conflicts (i.e., multi-vehicle queues are rare) then an 
approximation to the total vehicle delay can be estimated from the 
frequency and duration of conflicts in a (t, x) region, using the desired 
vehicle trajectories. 

To do this calculation in the easiest possible way we consider the 
infinitely thin rectangle (A) that includes (t, x) points with x,) I x I 
x,) + dx and 0 I t I T, as shown in Fig. 4.6, and look at the At interval 
behind each vehicle observation. The figure shows that 2 vehicles are 
found in such interval behind vehicle 1. If 1 = 2, this would mean a 
delay that would add on average Ap dx vehicle-min (if we measure time 
in minutes) to the total time spent by all vehicles in A. Without getting 
into too much probabilistic reasoning we can advance at this point that 
the desired vehicle arrival times at location xi,  can be expected to be 
described by a 'Poisson process' with rate q (see Chapter 6). This means 
that the fraction of vehicles that would be followed by a conflict 
involving 1 other cars (in less than A t )  is approximately 

e - y l r  

- (qAt 1'. I !  
If traffic is light, i.e., if the average number of arrivals per lane in time 
At is much smaller than 1, (q/l)At << 1, then the probability of 
conflicts with more than 1 cars can be neglected''. 

Let us now see how to write an approximate expression for the total 
time spent in A by all the vehicles. Letting t,,(A) and d,,(A) represent the 
total time and distance that would prevail in A if there were no delays, 
we can write (for T + x ) :  

and 
d ( A )  := d , , ( A )  = ( q T ) d r ,  

The first equality in these expressions expresses the delay due to the 
conflicts as the product of the probability of a conflict per car observed, 
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Figure 4.6 Example of a 3-car interaction of the type considered in a first 
order theory of light traffic flow on freeways. 

the average delay per conflict (Apdx) and the number of cars observed 
(qT). The ratio t(A)/d(A) is the generalized pace, which satisfies 

(4.25) 

where p, denotes the free-flow pace, to  (A)/d,, (A). 
Inasmuch as At represents a minimum headway, the term (q/l)At 

equals the ‘volume/capacity ratio’ introduced earlier, q/q,, and (4.25) 
can be written more intuitively as: 

(4.26) 

i.e., the pace cannot grow faster than the / I h  power of the 
volume/capacity ratio, with a coefficient of proportionality that is 
comparable with Ap. 

In terms of speeds (4.26) is equivalent to: 

u 2 u , ( ~  + cr(q/q,l)‘l-l ( q / q , ,  << I ) ,  (4.27) 

where a is a dimensionless constant, a =  (Ap/pf)  ( l i / l ! ) ,  that is 
comparable with 1. Qualitatively, this means that v vs. q curves for 
multilane freeways should be rather insensitive to flow and that this 
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insensitivity should be more pronounced for larger 1. In all cases, their 
slope for q = 0 should be zero. 

Yet, the old (1965) HCM depicted gradually declining relationships. 
(This seems to be partially rectified in the 1994 HCM.) A possible 
explanation for this outcome is that the curves in the manual were 
generated by pooling data from many similar facilities in different parts 
of the United States and choosing the curves that would best fit the 
pooled data. Even if one controls for differences in freeway design and 
motorist population characteristics when pooling the data, chances are 
that facilities included in the same data set may not exhibit the same vf. 
It is then possible for the data on which the curves are based to exhibit 
a pattern as in Fig. 4.7, where some freeways (whose data are denoted 
by crosses) might carry less flow at higher speeds than others (dots) for 
reasons not controlled for. This could happen for example if it turns out 
that people drive faster when traveling farther, as seems to be the case, 
and if western US freeways serve longer trips on average; this is the 
motivation for the labels used in the figure. Although the pattern for 
each individual freeway may obey (4.27), the combined data would 
suggest a relationship that declines too fast as is shown in the figure. 

It is beyond the scope of this book to extend the theory just presented 
to non-stationary traffic. It is in fact quite complicated, and to this 
author's knowledge it has not been done correctly. An exception is 
perhaps the limiting case with no vehicular interactions (i.e., qAt/Z + 0) 
treated in Section 3.1 of Prigogine and Herman (1971) and in Newel1 
(19951, Chapter 11. We now turn our attention to theories of non-sta- 
tionary traffic in the special case where passing is restricted (e.g., 

. Western 

Eastern 

I 

4 
Figure 4.7 Exaniplc of a n  incorrect speed-flow curve obtained by pooling data. 
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because the road is crowded). The explanation starts with the basic 
building block of all traffic theories: the conservation law. This law, 
which applies to both passing and no-passing traffic, simply states that 
in a road without entrances or exits vehicles can be neither lost nor 
created; i.e., that if the number of vehicles in a given road section has 
declined by a given amount in a given time, then the number of vehicles 
elsewhere must have increased by the same amount. Extended forms of 
the conservation law can also be defined for facilities with entrances 
and exits. These extended forms are implicitly or explicitly an integral 
part of every theory of network traffic dynamics. 

4.3 The conservation law 

Section 4.3.1 below will show that the conservation law can be expressed 
in terms of an equation relating the ‘point’ flows and densities in a road 
section q(t, x> and k(t, x), and also in terms of the N(t, x) function. 
Although additional assumptions are needed to specify a complete 
theory of traffic flow, the conservation law by itself can already be used 
to make certain predictions. As an illustration of this, Sec. 4.3.1 includes 
two examples: one yielding the flow past a moving observer in stationary 
traffic, and another one yielding the (t, x)-path of an interface separat- 
ing two (t, x)-regions with different stationary traffic states. Section 4.3.2 
introduces conservation concepts with exiting and entering traffic. 

4.3.1 No entering or exiting traffic 

Recall that for a highway without entering or exiting traffic there is a 
function N(t, x) that gives the latest vehicle label seen at time t and 
location x, and that the finite differences N(t, x , )  - N(t, x,) and N(t,, 
x) - N(t,, x) give the number of vehicles observed in the road section 
(x,, x? )  at time t, and the number observed during the time interval ( t , ,  
t,) at location x. Figure 4.8 depicts a few vehicle trajectories and the 
values of such a function, including those at the corners of a square. 
Recall as well that the value of the function remains constant on the 
bands between given vehicle positions such as the darkly shaded region 
in the figure (corresponding to N = 7), and that vehicles trade position 
labels if there is passing. 

It should be clear from observation of the figure that the aforemen- 
tioned differences in N represent the number of vehicles crossing the 
sides of the square (e.g., m, = 6 - 4, n ,  = -(4 - 7), etc ... ). However, if a 
vehicle were to enter the highway near (t , , ,  x,,) so that a trajectory was 
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Figure 4.8 Values adopted by the N(t, x) function when there is passing. 

created somewhere inside the square (e.g., dotted line) it would be 
impossible to assign a label to the bottom right corner of the square 
that would be true to both m, and n2. 

This means that our ability to define a function N(t, x) for all t, x in a 
region of interest implies no entering (or exiting traffic); its mere 
existence is a conservation condition that ensures vehicles are not 
created or  lost along the road. This is perhaps the simplest and most 
general way in which the conservation law can be stated. 

If we are dealing with the usual type of problems where N can be 
replaced by a smooth fi such that instantaneous flows and densities can 
be defined as dN/dt  and - -d f i /dx  at all points in time and space, 
then the existence of fi implies a relation between q and k. 

If fi has second derivatives (flow and density are smooth) then we 
know that d2N/dxd t  must be equal to d’N/dtdx which, in view of 
(4.7) and (4.11), means that dq(t, x)/dx = - dk(t, x)/dt; i.e., that: 

(4.28) 

For smooth q and k, (4.28) also implies the existence of N(t, x). In the 
literature, Eq. (4.28) is called the conservation equation; it ensures that 
the rates of variation of flow and density in space and time are 
consistent with the no entering/leaving traffic hypothesis. We show 
below that Eq.(4.28) can also be derived with a direct argument that 
sheds additional light on its interpretation. 

The reader will notice from Fig. 4.8 that the number of trajectories 
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entering the rectangle, m,  + n l ,  must equal the number leaving, m, + 
n,; in other words: (m, - m,)  + (n, - n l )  = 0. Of course, this must be 
true of any rectangle you may draw, including very small ones (of 
dimension dt and dx). Since for small rectangles we are using the 
approximations m = qdt and n = kdx, the identity (m2 - m,)  + (n, - n,> 
= 0 becomes: 

after division by dxdt. This, of course, is the same as (4.28). 
The two forms of the conservation equation just presented also apply 

if vehicle trajectories are allowed to slant both up and down; e.g., when 
traffic is bi-directional. Figure 4.9 shows the values of N(t, x> in a small 
region of the (t, x) plane where the trajectoq of a vehicle traveling in 
the direction of decreasing x crosses two other trajectories. We continue 
to assume that crossing vehicles trade labels, so that N continues to 
represent position in the traffic stream. The region with N = 3 is shaded 
darkly on the figure. Thus, N(t, x , )  - N(t, x,) still represents the 
number of vehicles in (xI,  x2)  at time t (for any x I  < x2). The N-value 
may increase or decrease with t for a given location, however, because 
the sign of the change depends on the direction of travel; see for 
example the result for x = x2 on the figure. As such, N(t,, x> -N(t,, x) 
represents now the excess number of vehicles seen traveling in the 
direction of positive x . Therefore, if N can be approximated by $J then 
the partial derivatives of the latter with respect to x and t will now 

t 
t 2  

Figure 4.9 Values 
traffic. 

adopted by the N(t, x) function when t h e r e  is two-way 
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represent the negative of the density (as before) and the net flow in the 
positive direction (not as before). This means that (4.28) still holds, if q 
is interpreted as the net positive flow passing a stationary observer. 

A third form of the conservation law can be written in terms of line 
integrals of the gradient of I?; i.e., the vector of partial derivatives 
( d  I?/dt, dI?/c;x) = (q, - k). It is well known from calculus (Green's 
theorem) that a line integral of the projection of the gradient along any 
curve joining two points is independent of the curve, and that the result 
equals the difference in I? at the extremes of the curve. In our 
particular instance, if C is a curve in the (t, x) plane between two points 
( t l ,  x , >  and ( t 2 ,  x,) we have: 

f i ( t 2 ,  x 2  ) - i'?(f I ,  xI = - kdr, for all C. (4.29) 

On taking C to be a closed loop, such as the loop 2 around A in Fig. 
4.1, or the perimeter of the square in Fig. 4.8, we find: 

qdt - Mx = 0, for any closed loop 2. (4.30) 

Evaluation of this integral clockwise and around the square of Fig. 4.9 
yields the familiar result: - n ,  + m 2  + n z  - m ,  = 0. 

Forms (4.29) and (4.30) of the conservation equation are useful 
because they apply even if q and k are discontinuous, when (4.28) could 
not be applied. As we shall see in the second example outlined below, 
the integral form of the conservation equation can be used to determine 
the speed of an interface between two stationary states in the (t, x> 
plane, even if the detailed behavior of traffic inside the interface is not 
known. The expression is also useful in continuum theories of traffic 
flow (Sec. 4.4) to trace the paths of these interfaces when conditions are 
not stationary. I t  should also be said that both of these feats can also be 
achieved from the requirement that the N(t, x) function be continuous 
and that, as we shall see in Sec. 4.4, this most basic form of the 
conservation law simplifies the theoretical calculations considerably. 

Example: Relative flow measured by a moving observer. Suppose that an 
observer travels a distance L during a time T with a variable speed that 
averages vo = L/T. Then we ask: If traffic is stationary with flow q and 
density k, how many more vehicles will have passed her than she will 
have passed? By definition of I?, the answer to this question is the 
difference in the vehicle labels at ( t  I + T, x ,  + L) and ( t  I ,  x l ) ,  which is 
independent of the details of the observer trajectory and can be evalu- 
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ated with (4.29). To do this easily we choose a curve C that goes first 
from (t , ,  x l )  to ( t l  + T, x l >  (keeping x constant) and then from ( t l  + T, 
xl) to ( t ,  +T, ,  x1 + L) (keeping t constant). Then, the line integral 
reduces to: 

['- Tqdt - / ' I +  Lkdx = qT - kL.  
I X I  

(4.31) 

which yields the answer to our question. 

On dividing this result by T, we obtain a useful formula for the net 
relativeflow q" measured by the observer during time T: 

4" = q - ku". (4.32) 

Since this expression is independent of T, q" is also the instantaneous 
flow passing the observer. Note that (4.32) holds whether or  not the 
observer maintains a constant speed, and that the relative flow is zero if 
v" = V,. If the observer travels faster, then she will see negative flows 
(meaning that she will pass more vehicles than will pass her). This result 
should be intuitive in the case where all vehicles travel at the same 
speed; then an observer traveling with the speed of traffic will obviously 
see no flow. 

The moving observer results can be displayed neatly for all the 
possible traffic states of a particular facility by means of a flow versus 
density diagram. If on a diagram containing the facility's q = Q(k) curve 
one plots a ray emanating from the origin with slope vo (see Fig. 4.10) 
then the vertical separation between the curve and the ray (positive or 
negative) is the relative flow predicted by (4.32). The reader is encour- 
aged to extend these results to the case of an inhomogeneous highway 
segment, such as that depicted on Fig. 4.5. 

Example: velocity of an interface. Suppose that, as occurred in the three 
parts of Fig. 4.3, traffic is stationary in two adjoining sections of the (t,x) 
plane. Is there something that can be said about the interface between 
these two regions when no traffic enters or leaves the highway if the 
upstream and downstream states are known and different; i.e., if (q",k") 
(qd,kd)? Yes, and the answer again can be obtained from (4.29) by 
placing points '1' and '2' on the interface between sections and noting 
that the result obtained from a curve that is entirely upstream, C " ,  must 
match the result from a downstream curve, Cd. 
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Figure 4.10 Geometrical depiction of the relative flow seen by a moving 
observer. 

If points '1' and '2' are separated by T time units and L distance units 
(as in the previous example) and the interface is very narrow, then Eq. 
(4.31) remains valid for both curves and we have: 

(4.33) q"T - k"L = q"T - k"L,  or q" - k"U = qd - kdU 

where U = L/T is the velocity (positive or negative) of the interface. 
Solving for U we find: 

(4.34) 

This result indicates that the interface's velocity is given by the change 
in flow across the interface over the change in density. 

Equation (4.34) is a direct consequence of the conservation equation. 
It holds true independent of the detailed behavior of drivers in each of 
the two stationary regimes, e.g., despite the presence of passing, 'tail 
gating' drivers, high frequency oscillations or any other phenomenon 
that would not rule out stationarity on the relevant scale of observation. 
The equation applies even if the interface between stationary traffic 
states has a 'characteristic width' where traffic is not stationary because 
vehicles are adjusting from one region to the other. This is true because 
one can always choose points '1' and '2' to be very far apart, in 
comparison with the characteristic width of the interface, and then 
choose two curves C, and C'? that are almost entirely outside of the 
interface so that (4.33) will hold in the limit. 
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Figure 4.11 Velocity of an interface: geometrical interpretation. 

An alternative, purely geometrical, derivation of (4.34) can be made 
for the special case where all the vehicles travel at the same speed in 
each of the two regimes and the interface has zero width. Since the 
traffic regimes are known it is possible to draw two families of vehicle 
trajectories, such as the two families of solid lines shown in Fig. 4.11. 
Then, if one of the vehicle trajectories is completely identified, e.g., the 
left-most solid line in the figure, we see that the extrapolation of the 
remaining trajectories (shown by dotted lines) identifies unique points 
where each vehicle would change speeds. These points uniquely define 
the interface trajectory. Its slope can be seen clearly to depend on the 
horizontal ( q - ' )  and vertical (k- ' )  separation of the trajectories in the 
figure. The result is again (4.34); can you show it? 

4.3.2 Entering and exiting trafic 
This section may be skipped without loss of continuity because the 
concepts about to be presented are not used for the remainder of this 
book. The ideas should be of value, however, for readers intending to 
study network traffic dynamics, which is a currently active research area. 

Conservation equations can be written if traffic enters and/or leaves 
at particular points on the hkhway. We have already seen that in such a 
case a function N(t, x) (or N) does not exist, but we can do something 
equivalent. If the dotted trajectory in Fig. 8 materializes, then the 
difference between the number of trajectories exiting the square (m? + 
n,)  and those entering (m,  + n , )  will be 1; i.e., the net number of 
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trajectories generated in the square. This statement, of course, is true of 
any region of the (t,x) plane enclosed by a loop (a simply connected 
region). For problems where instantaneous flows and densities can be 
defined, this observation can be expressed mathematically as an exten- 
sion of (4.30). 

To see this recall that (4.32) represents the relative net flow passing a 
moving observer. This expression is true for T + 0, so that it applies at 
all times for an observer moving along any curve (with t increasing) such 
as the lower or upper branches of 3 in Fig. 4.2a, which we denote C' 
and C " .  

Thus, the integral of q'dt = qdt - kdx along these curves represents 
the net number of vehicles entering (for C ' )  and leaving (for C " )  the 
enclosed region A along these curves. The total number of vehicles 
leaving the region, which must be the total net number generated in A, 
G(A), is given by the line integral along C" minus the line integral 
along C'; i.e., by the left side of (4.301, with 2 traveled clockwise. This 
allows us to write the generalized conservation relation: 

(4.35) 

which applies even if q and k are discontinuous. 
In applications where it would make sense to define g(t, x) as the 

traffic generation rate (in vehicles per unit time, per unit distance) at 
point (t, x) we can write: 

If q and k are smooth, then i t  is possible to rewrite the conservation law 
in a differentiated form. To see this, consider an elementary rectangle 
of dimensions dt and dx as in Fig. 8. Then, G(A) = g(t, x)dt& and we 
have already seen that the left side of (4.35) equals dq/dx + d k/dt, 
where q is the 'net' flow. Therefore, 

d q  d k  
d X  

-- + = g ( t ,  x ) ,  (4.37) 

which generalizes (4.28) to cases with entering and leaving vehicles. 
If there are intersections at specific locations, x , ,  where traffic enters 

or leaves the freeway with net generation rates g , ( t )  (in vehicles per unit 
time), then 

(4.38) 

where C I is the portion of the curve x = x, that is in A. 
In this particular case it is also possible to write the conservation law 
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for the singular points where traffic enters or leaves the road in terms of 
the N(t,x) functions that describe traffic on the highway segments 
between points of entry or exit; i.e., by defining an Ni+ , for the highway 
segment directly downstream of i and upstream of i + 1 (with the 
convention that x1  < x2 < x, ... 1. To do this we define for each 
intersection an (arbitrary) reference time t ,  when we choose N, = Ni+ , 
and note that at any other time the N must satisfy: 

where G,(t) is the cumulative number of (net) entries at x ,  between time 
zero and t (i.e., the integral of g,(t), G,(t)). One may choose the same t ,  
for all intersections, if desired. Equation (4.39) is simply another form 
of saying that the difference between the numbers of vehicles to have 
passed the downstream and upstream sides of location x ,  since the 
reference time must equal the net number to have entered at x , .  

In practical applications where instantaneous flows can be defined the 
time derivative of (4.39) may be written as: 

4r+l = 4 /  +s, (4.40) 

where the arguments t and x have been eliminated from the expres- 
sions. This equation simply states that the total flow leaving an intersec- 
tion at a given time must equal the sum of the flows entering it at the 
same time. The equation is used in network models, and is sometimes 
called the ‘node’ conservation equation. It can also be obtained from 
(4.35) if A is taken to be a thin horizontal rectangle straddling the line 
x =  x, between t and t , .  

The conservation law also applies to situations where different vehi- 
cle types move on the road. If ‘types’ is an inherent vehicle property 
(e.g., trucks vs. cars, destination, etc ...I the modification is simple. We 
just apply the conservation law, to each of the classes; e.g., by introduc- 
ing additional subscripts. If the type of a vehicle can change (e.g., we are 
keeping track of the vehicles by freeway lane), then we need to define 
the rates at which vehicles change from one type to another per unit 
time and unit distance (e.g., from j’  to j )  g‘J ](x, t )  and introduce such 
terms in the formula for calculating the right side of (4.35); essentially g 
should be replaced in (4.36) by gJ  + Z: g J. The differentiated form of 
the conservation equation (4.38) becomes then: 

(4.41) 
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4.4 Dynamic macroscopic models 
This section contains an introduction to continuum models of traffic 
flow dynamics. The presentation is somewhat long because in an at- 
tempt to make it  self-contained to typical first-year graduate students in 
transportation engineering, some concepts in the theory of partial 
differential equations had to be included as part of the explanation. 
And although the section only covers one model - the simplest and 
most useful traffic model in this author’s opinion - several application 
recipes have been covered in detail. The ideas are organized into 
subsections as follows: Section 4.4.1 reviews the kinds of problems that 
can be solved with continuum models and outlines the assumptions 
behind the simplest model; Section 4.4.2 describes the concept of a 
waue and then the nature of the solution in terms of such waves; Secs. 
4.4.3, 4.4.4 and 4.4.5 then describe solution methods for gradually more 
complicated problems; and finally Sec. 4.4.6 briefly discusses some 
numerical approaches, extensions and accuracy issues. 

4.4.1 Background 
The goal of a theory of highway traffic dynamics is to predict the 
evolution of traffic into the future from some set of initial conditions 
(e.g., the positions, types and speeds of all vehicles on the road at time 
t = 0) and some time-varying data (e.g., the times and speeds at which 
various vehicles, of known type, enter the road at its upstream end, for t 
> 0.) To make such predictions it would be necessary to know how each 
vehicle (driver) type reacts to a specified set of circumstances in its 
environment (such as its position and time, its headway, the relative 
speed with its leading vehicle and the evolution of these data for the 
recent past.) It should be easy to recognize that driver behavior is quite 
complicated and that a complete list of relevant stimuli would have to 
be much longer. In any case, if we knew what drivers did in every 
circumstance, then it would be possible to predict their future positions, 
speeds, etc ... over small time increments so that one could construct for 
every car a time-space trajectory much as we did for the example of Fig. 
1.2 in Chapter 1. The problem with such an approach is that we can 
never hope to have all the behavioral information to predict precisely 
‘what happens if and, even if we did, we cannot expect to have the 
detailed individual vehicle data that would be necessary to apply the 
theory. 

It is then logical to ask whether there are some coarse (macroscopic) 
measures of traffic behavior that can be predicted based on also coarse 
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information about current traffic conditions and future upstream inputs. 
For example we might like to be able to predict approximately the 
cumulative number of cars that pass various road locations as a function 
of time because we have already seen (Chapter 2) that such knowledge 
readily yields information about the accumulation of vehicles between 
locations and vehicular trip times. One would hope to be able to make 
such predictions based on coarse data such as the cumulative number of 
vehicles arriving at the upstream end of the road as a function of time, 
and the capacity of a downstream bottleneck. 

It should be noted that the method presented in connection with Fig. 
2.3b (Sec. 2.2.1) for predicting the extent of a physical queue upstream 
of a constant-capacity bottleneck on a homogeneous road qualifies as a 
traffic flow theory that solves this particular problem because the 
method can be used to predict the times at which each individual 
vehicle passes any particular location. The reader may also recall from 
the discussion of Sec. 2.2.1 that this particular method was not needed 
to predict vehicular delays because they were independent of spatial 
considerations, and that this property of delays was also true for 
time-dependent bottlenecks. The main added value of a more detailed 
model of traffic dynamics for the latter kind of problems lies in is its 
ability to predict where the delayed vehicles are stored. 

Models of traffic dynamics could for example be used to predict the 
evolution of traffic on a long inhomogeneous road when both the 
cumulative flow wishing to enter upstream and the initial distribution of 
cars along the road are specified. In the notation of Sec. 4.1, we would 
like to predict N(t, x> for various x’s, given that N(0, x> and N (t, 0) are 
known approximately for x > 0 and t > 0. We will call this problem ‘the 
semi-infinite highway problem’. 

Other problems of potential interest are ‘the infinite highway prob- 
lem’ (also called the initial value - or Cauchy - problem in mathe- 
matics) in which N(0, x) is specified for all x and we seek N(t, x) for t 
> 0; and ‘the 3-detector problem’ in which N(t, x> is specified for all t at 
the locations of hypothetical ‘upstream’ and ‘downstream’ detectors xu  
and xd (xu < xd), and we seek N(t, x> for x u  I x I xd. We call the 
latter problem the 3-detector problem because its solution yields the 
N(t, x m )  for the location x, of an intermediate detector. We will use 
the term boundary to denote the curve(s1 of the (t, x> plane on which 
the known data (or boundary conditions) are specified; e.g., lines x = xu 
and x = xd for the 3-detector problem. 

In general we can say that the goal of our theory is to find N(t, x> 
given some physically meaningful boundary conditions. An ability to 
make such predictions should help evaluate the efficiency of time-de- 
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pendent control schemes such as freeway ramp metering, the practical- 
ity of emergency evacuation measures, and the ability to monitor the 
state of a system continuously from detector data (e.g., detecting and 
diagnosing incidents). I t  should be noted that the system under con- 
sideration can be a passenger corridor, a bicycle lane or a freeway, and 
that the theory about to be presented is ‘mode-abstract’. Although (for 
historical reasons) we adopt a highway traffic terminology, since this was 
the context in which the theory has been developed, we advance here 
that the only requirements of the theory are ( i )  that it follows objects 
that obey the conservation law of Sec. 4.3 (a pretty mild requirement) 
and (ii) that i t  satisfies one more ‘local’ criterion. 

By this we mean that the traffic conditions at time t and location x, 
should only depend on the traffic conditions in the interval (x i- Ax) 
during the time interval ( t  - I t ,  t); and that both Ax and A t  can be 
considered to be ‘small’, in some sense. In continuum models of traffic 
flow (a better word than ‘macroscopic’ to describe what they actually 
do) it is assumed that I x  and I t  can be replaced by differentials, which 
opens the door to the world of calculus. This assumption is very 
appealing because the laws of traffic might then be reduced to a partial 
differential equation (or a system thereof) that may be studied as 
elegantly and simply as those of other physical phenomena that are also 
governed by partial differential equations; e.g., water flow in rivers, gas 
dynamics, elasticity, etc.. .. 

To be able to do this, however, we must be able to say that the 
variables appearing in the formulation of the model (i.e., N) must be 
unambiguously defined for a level of description where Ax and A t  can 
be treated as differentials. While this may be true for physical systems 
consisting of elements with very many molecules, even if the elements 
are made very small on a human observation scale, it may not be always 
appropriate for traffic. We had stated earlier in this chapter that the 
discontinuous function N(t, x) may be approximated by a smooth N(t, x) 
in many different ways and that the forms of the conservation law that 
involve fi and its derivatives (k and q) are only relevant for a level of 
description where all the smooth N(t, XI give equivalent answers. The 
same can be said now; only if the answers to our questions involve 
quantities of vehicles evaluated over periods of time and lengths of 
highway such that all smooth approximations of N give the same 
answer, can we be confident that a continuum model will be of some 
use. 

In this chapter we will present one such model (Lighthill and 
Whitham, 1955 and Richards, 19561, which we shall call the LWR 
model.” This model is in fact the simplest dynamic model ever formu- 
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lated and is intended to describe only quite coarsely the evolution of 
traffic. Because of the model’s coarseness and some inaccuracies it is 
known to possess, (discussed later) various refinements have been 
proposed. Unfortunately, these refinements have often borrowed lines 
of thought from physical disciplines such as gas dynamics and the 
kinetic theory of gases where a more detailed description of the system 
can be achieved by complicating the partial differential equations that 
govern it. Unlike in the physical analogies, however, the additional 
phenomena that these ‘improved’ models try to capture is measured on 
space (and time) scales that are comparable with the vehicular spacing 
(or headway) where the notions of density (or flow) and its derivatives 
are ill-defined. At that level of description, for example, we may need to 
recognize that a driver reacts differently to the spacings and relative 
speeds in front of it than to those behind, which is difficult to do with 
partial derivatives. It is this author‘s opinion that detailed models of 
traffic flow that are formulated as partial differential equations should 
be regarded with suspicion, and one should not be surprised if they do 
not have the desired effect. This point will be discussed again in Sec. 
4.4.6. 

The LWR model arises from the assumption that the stationary 
relationships of Fig. 4.4 also apply when traffic is not stationary. This 
means that we take q to be a function of k (and t and x perhaps), 
q = Q(k, t, XI, independently of the flows densities and speeds prevailing 
upstream and downstream of x, and also independently of these condi- 
tions at prior times. That is, we ignore whether the vehicles currently at 
x have incurred any delays, sudden decelerations, etc. While this may be 
inaccurate for a detailed description it seems like a reasonable thing to 
try for long crowded roads examined on a coarse scale. 

The next three subsections show how the LWR problem can be 
solved for (homogeneous) highways whose features do not change in 
time or space. In these cases the function Q(k, t, x) can be treated as if 
it had only one argument so that we shall write q = Q(k> instead. The 
inhomogeneous highway problem is addressed in Sec. 4.4.5. The next 
two subsections present in some detail an unconventional but practical 
way of solving the homogeneous highway problem with general data. 
Because the material is more difficult to read, most first time readers 
should probably read only the introductory remarks of Sec. 4.4.2 upto 
the section entitled ‘The LWR trajectories and the entropy condition’ 
(where the concept of a wave is introduced) and then proceed directly 
to Sec. 4.4.4. This latter section shows in a less mathematical way how to 
solve in the conventional way problems with piecewise constant 
data. 
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4.4.2 Solution methods using waves: nature of the solution. 

We know from conservation that if two regions of the time-space plane 
are neighboring they must be separated by an interface that satisfies 
(4.34); i s . ,  for traffic states A and B, the interface velocity U,, is given 
by: 

(4.42) 

This of course is the slope of the segment joining the representative 
points A and B on the q - k curve; see Fig. 4.12. 

For a case where vehicles do not pass, the right side of that figure 
depicts a few vehicle trajectories that pass through different states: ‘A’ 
near the bottom, and ‘B’ and ‘ B ’  immediately above. If the scales on 
the axes have been chosen so that parallel segments on the (k, q) and (t, 
x) planes represent the same velocity, then for the diagram on the right 
to be consistent with LWR theory the vehicle trajectories in any of the 
regions (e.g., B) must be parallel to the segment connecting the corre- 
sponding state on the q-k curve and the origin. The reader should 
verify that this is approximately so in Fig. 4.12.‘’ Similarly, as a conse- 
quence of (4.421, the interfaces between any two states (e.g., A and B) 
should be parallel to corresponding segments on the (k, q) plane (e.g., 
AB). The reader should also verify that this is true for all five interface 
segments of our example. If all the (t, x) lines are drawn with the proper 
slope, then the vehicular densities and flows appearing in the (t, x) plane 
after filling it with continuous equidistant trajectories in every region 

t k 

Figure 4.12 A ’wave’ propagating through a set of vehicle trajectories. 
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will automatically be those corresponding to the velocities used for 
those regions (i.e., those of states A, B and B’ for our example), except 
for a multiplicative constant. This should be clear after reconsideration 
of Fig. 4.11 and its discussion. 

The solution displayed on Fig. 4.12 could have arisen by specifying 
that our semi-infinite highway is in state B at time t = 0, k(0, x) = k,, 
except for a little disturbance of slightly higher density somewhere 
downstream, with k = k,., and a short segment of much lower density 
near the entrance, with k = k,; and also specifying that the entering 
flow for t > 0 is that of state A. It should be clear from the geometrical 
construction we have described that: (i) the solution displayed in Fig. 
4.12 is the only one that satisfies these specifications and (ii) the 
solution could be extended to x and t -+ x .  These two properties 
(uniqueness and completeness) are only satisfied if one formulates a 
problem that makes physical sense. We then say that the problem is 
well-posed. ” 

As an example of an ‘ill-posed problem’, consider again the same 
initial data for the semi-infinite highway of Fig. 4.12 but pretend now 
that state A is located elsewhere on the q-k curve. If point A is moved 
up slightly so that q A  > q, (and k, < k,) the problem becomes 
ill-posed because the interface between A and B issued at t = 0 will 
slant down and intersect the abscissa at some time t* > 0. Physically 
this would mean that a queue of slow-moving vehicles had backed-up to 
the highway entrance so that from that time on we could no longer 
specify an entering flow; thus the problem is ‘ill-posed’ for t > t*. 

Although rigorous proofs are difficult to provide, it turns out as a rule 
that the initial value problem is well-posed. Likewise, the semi-infinite 
highway problem is well-posed if no interfaces reach back to the 
highway entrance. The conditions that make ‘engineering sense’ for the 
3-detector problem will be introduced later. 

In Fig. 4.12 we used an initial state for t = 0 that included a small 
‘disturbance’ in density (B’) on a uniform background (B). This distur- 
bance propagates into the time-space solution as a band moving with 
the slope of segment m’ of the (k, q) plane. If we imagine that B is 
very close to B we see that the velocity of propagation of an infinitesi- 
mal disturbance must be the slope of the tangent to the q-k curve at B, 
w,. We also see from the figure that the (infinitesimal) band of slope wB 
contains traffic state B ,  with speed (v,.), flow (q,.) and density (kB,). If 
another small disturbance B (vey  close to B) is introduced somewhere 
else in the highway, we also see that that disturbance will travel parallel 
with the first and will therefore not affect the traffic state in the original 
band. Furthermore, if the value of B on the boundary is changed just a 
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little to B”’ (also close to B) the state inside the band would then 
change to B”’ while the state outside would remain unchanged. Thus, 
we can view the band as a signal or waue that tells the traffic stream 
reached by the wave to adopt the state prevailing at the source of the 
signal; B‘ or B”’. A simple mathematical proof of this statement is 
given below. It establishes that the solution to the LWR problem on a 
homogeneous highway is determined by straight lines issued from the 
boundary on which q, k and v are constant and equal to the values at 
the boundary. (For non-homogeneous highways this statement needs to 
be modified). These lines are called characteristics in mathematics 
books. In the fluids literature they are called ‘waves’ or ‘signals.’ The 
argument is as follows. 

Where the solution k(t, x) is smooth (4.28) applies. Then, by virtue of 
the LWR hypothesis, we can replace q(t, x) by Q(k(t, x>) in (4.28) to 
obtain the LWR form of the conservation condition: 

(4.43) 

where we have used subscripts to denote partial derivatives. This 
condition must be satisfied everywhere in the (t, x> plane where the 
solution is smooth”. We now note that the left side of (4.43) is the rate 
at which k(t, x) varies with time along the line with slope wb = Q,(k(t,, 
x,)) passing through boundary point ( tb,  xb>; i.e., (4.43) is the total 
derivative, dk/dt = k, + k,[dx/dt], for dx/dt = wb. Therefore, the LWR 
conservation condition implies that dk/dt = 0 along such a line; i.e., 
that the density is constant. This, of course, is just a more formal way of 
restating the graphical argument given earlier. 

This result is very useful because if a problem is well-posed and Q(k) 
is concave, then it turns out that the characteristics emanating from the 
boundary cover the space of the solution, and that every point in the 
region of interest is reached by at least one characteristic that de- 
termines q, k and v at the point. It should be thus possible to construct 
a solution by drawing a characteristic from every point on the boundary 
and assigning the appropriate (k, q, v) to all the points on each line. 
Because there are some technical problems that need to be solved with 
this approach, it is instructive to see how the characteristics can be used 
to obtain vehicle trajectories, and from these the desired solution N(t, 
x). Some readers may prefer to proceed directly to Sec. 4.4.4 now and 
return to the skipped material in a second reading. 

The LWR trajectories and the ‘entropy’ condition. The thin lines of Fig. 
4.13a depict a family of characteristics (emanating from the t = 0 line) 
corresponding to a hypothetical infinite highway problem. To be some- 
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C H A P T E R  F I V E  

Control 
In contrast to Chapter 4, which answered ‘why’ and ‘what-if questions, 
the current chapter is more ‘engineering’. By means of some simple 
examples it illustrates how engineers and other practitioners exercise 
control over unscheduled transportation systems. Scheduled systems are 
discussed in Chapter 7. 

Although it is tempting to formulate control problems in terms of 
mathematical optimization, we will see in this chapter that this is only 
seriously possible for small ‘toy’ problems that rarely arise in practice. 
In our discussion, which starts with simple problems and gradually 
complicates them, we will see that once a certain level of realism is 
reached the formulation of the problem must include elements that 
usually: (i) are very difficult to quantify, (ii) may not be perfectly 
understood and (iii) may complicate the numerical solution. 

In view of this, this chapter will only give a peek into the types of 
control problems that engineers face in practice. The hope is that 
armed with this basic knowledge, you will be able better to pass an 
educated judgment on the practical control tools that you may one day 
learn, and will thus have some sense on what they can and cannot do. 

For unscheduled transportation systems one does not have the option 
of choosing the vehicle routes, and control over the system can only be 
exercised by changing the rates at which vehicles are allowed to flow 
over specific points of the networks (perhaps in a time-varying fashion) 
as with a traffic signal. In doing this we assume that we can discriminate 
across certain vehicle types, although not all types. For example, we may 
treat buses and car-pools differently, but cannot expect to apply differ- 
ent controls to identical cars that go to different destinations. 

Flow control can also be applied to scheduled transportation modes 
and an example involving the flow of containers through a port will be 
used just to show that a way of thinking that is natural for unscheduled 
transportation modes is also useful in other contexts. This should 
illustrate that even if you have an exclusive interest in a particular 
transportation mode, you will be well served by expanding your horizons 
since analysis methods developed for one purpose are often trans- 
ferrable with little modification. And furthermore, the best solution 
ideas to resolve particular problems are often found, not in the litera- 
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ture of the transportation mode in question, but in the literature of 
modes for which the particular problem is most pressing and difficult; 
e.g. crowdedness reduction under highway traffic, sorting problems 
under railroads, multi-stop vehicle routing under trucking, efficient 
vehicle loading under water transportation, and personnel scheduling 
under air transportation. 

The chapter starts with a discussion of control schemes for systems 
involving only two traffic streams, and then uses this information to 
introduce some important issues that arise with more complicated 
systems. The presentation deemphasizes computer heuristic approaches 
to control, and stresses instead a few basic qualitative ideas that should 
be more ‘fundamental’ and lasting. 

Section 5.1, below, introduces the concept of intersection capacity 
and explains how the service between two competing streams should be 
alternated when conditions vary with time in a predictable way. The 
focus is on adjusting the settings so as to maximize the combined service 
rate of the intersection. Sections 5.2 and 5.3 examine in more detail the 
case of an undersaturated isolated intersection under stationary condi- 
tions, including unpredictable (random) fluctuations. The focus there is 
on obtaining settings that minimize ‘delay’, and on contrasting the 
performance of pretimed control (Sec. 5.2) vs. actuated control (Sec. 
5.3). Sections 5.4 and 5.5 then deal with systems of intersections: section 
5.4 with systems, such as an arterial street, where only one route exists 
between each origin and destination, and section 5.5 with more general 
networks. 

5.1 Two interacting traffic streams 

Section 5.1.1, below, introduces the notions of intersection capacity, 
‘saturation’ flow, oversaturation and undersaturation. It also describes 
why it is often advantageous to alternate the right of way between two 
traffic streams instead of giving it permanently to one of them. Sections 
5.1.2 and 5.1.3 then show how the allocation should be varied over time 
in the simple case where the cumulative virtual arrival curves at both 
approaches are known (deterministic) and slow-varying: Sec. 5.1.2 dis- 
cusses the case of light traffic and 5.1.3 heavy traffic. 

5.1.1 Intersection ‘capacity’: saturation limit 

Suppose that we are analyzing the behavior of traffic at an unsignalized 
intersection of two one-way streets in which one of the streams has to 
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yield the right of way to the other. We ask: given the amount and 
character of traffic on the main (high priority) road, what is the 
maximum possible flow (the capacity) of the minor road over an 
extended period of time? The answer to this question, of course, 
depends on the behavior of drivers at the stop (or yield) sign. In the 
simplest possible theory one would assume that all drivers are identical 
and that they enter the intersection if, at decision time, the next main 
vehicle is not due for at least H, time units. In the jargon of the field we 
would say that a driver accepts a gap (i.e. a headway or a portion 
thereof) if the gap is greater than the driver's critical gap, H,. To 
evaluate the capacity of the secondary approach we must imagine that a 
driver is ready to move into position as soon as the prior one enters the 
intersection, as if there was an infinite queue. In this simplest theory the 
time interval in between successive vehicles, or move-up time, M, would 
also be assumed to be equal for all. Values of H, = 7 secs and M = 2 
secs for a yield sign or M = 4 secs for a stop sign are comparable with 
those one would measure in the field. 

Suppose now that we have a collection of headways, h , ,  e.g.: 

{h,} = (6 ,7 ,10 ,2 ,2 ,4 ,9 ,3 ,4 ,8 ,2 ,  . . . } ,  (secs) 

and that we wish to evaluate the number of minor street vehicles that 
could have used them. The solution is simple if one arranges the data as 
shown in the first two columns of Table 5.1 and fills additional columns 
for TI (the elapsed time from the beginning of the experiment to the 
end of the ith main street headway), n ,  (the number of minor street 
vehicles that fit in each headway) and N, (the accumulated number of 
fitted vehicles immediately after the ith headway). The columns have 
been filled for our problem with H, = 7 secs and M = 2 secs as could be 
the case for a yield sign. It was assumed that a headway satisfying 
h ,  - H, 2 0 will include at least 1 vehicle,' a headway satisfying 
h ,  - H, - M 2 0 will include at least 2, and a headway satisfying 
h ,  - H, + M - n,M 2 0 will include at least n,. This means that n,  is 
the largest integer smaller than (h, - H, + M)/M, provided that it is 
positive. Thus, n ,  may be expressed as follows: n,  = max{O, [(h, - H, + 
M)/M]-}, where the symbol [ 1- denotes the largest integer smaller 
than the quantity in brackets. Armed with information, one can use a 
spreadsheet to automate the calculations of a table such as 5.1, and in 
this way treat large data sets-the reader is encouraged to do so. It is 
then easy to produce a plot of TI (on the abscissa) vs. i and N,, which 
gives the cumulative number of vehicles observed to enter the intersec- 
tion from both approaches. 

People have developed formulae for the ratio N,/T, for i + = as a 
function of the average flow on the main street if the sequence {h,} 
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Table 5.1: Sequence of headways on a major street and the throughput it allows 
on a secondary street controlled by a yield sign. 

I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

hi  Ti "i  Ni 

6 
7 

10 
2 
2 
4 
9 
3 
4 
8 
2 
2 

6 
13 
23 
25 
27 
31 
45 
48 
52 
60 
62 
64 

- 

1 
2 
- 

- 
1 
3 
3 
3 
3 
5 
5 
5 
6 
6 
6 

varies in certain random ways. Such formulae allow one to make 
predictions even before actual data become available. Of course, if 
actual data exist, and the problem is important enough to deserve the 
extended observation effort, then the procedure of Table 5.1 may be 
preferable because it does not assume any particular form of variation 
in {hi) .  

In our case, even though only 10 cars arrive on the main road during 
one minute, they are enough to restrict the outflow of the secondary 
approach to 6 vehicles during the first minute.* This is not atypical of 
unsignalized intersections since we know from experience that it does 
not take much main street flow to choke almost completely a minor 
street. It should also be intuitive that the degree to which this happens 
depends on the level of bunching in the traffic, and that the lesser the 
bunching the lesser the secondary flow. For example, if the 10 cars 
arriving in the first minute of our example had instead arrived regularly 
with 6 sec headways, then no secondary vehicles would have been 
served at all. 

What happens is that in the sequence of cars observed over time, 
every switch from a low-priority vehicle to a high-priority one requires a 
traffic-less interval of H, s e a ,  whereas a low-priority to low-priority 
combination only requires an interval of M secs. A distribution of 
high-priority traffic that allows large numbers of low-priority vehicles to 
cross in succession is clearly advantageous. This is the reason why an 
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on/off control on the main road can be effective. It artificially creates 
gaps in the main stream to achieve the desired effect. 

If in the above example we had bunched the first 10 mainstream 
vehicles at 2 second intervals at the end of our minute (from t = 42 to 
t = 60) they would have created a 42 second gap, which 18 vehicles 
could have used if M = 2  second^.^ 

It is fair to ask then: if we bunch traffic in this manner, what is the 
maximum bunching possible? If the main street has only one lane so 
that the minimum headway on it approximately equals M (M = 2 secs), 
then the total number of vehicles entering the intersection from both 
approaches in time T will be equal to the effective portion of T (not 
wasted by switches from low to high priority) divided by M. In essence, 
if the average cycle between low/high switches lasts C time units there 
will be T/C switches of this type, and if each switch of this type wastes 
approximately (H, - M) time units, then the maximum total number of 
vehicles observed in time T will be: 

Thus, the maximum flow into the intersection from both approaches 
combined is: 

The second term inside the bracket represents the reduction in maxi- 
mum possible flow that results from the switches. Clearly, the larger the 
cycles the lesser the waste. 

If gaps are introduced in a one-lane traffic stream by means of a 
control device, the above expression still applies, although the time lost 
per cycle is no longer related to the gap acceptance parameter H,. 
Instead it depends on the duration of the ‘all-red’ phases during a full 
signal cycle (and on local driver’s habits) and we call it the ‘lost time’, L. 
In traffic lingo, the (maximum) flow corresponding to a headway of size 
M is called the saturation pow, p = 1/M, and with this new notation 
(5.1) becomes 

capacity = .[ 1 - ;I. (5.2) 

Although this expression only applies to the case where the saturation 
flow is the same on both approaches, it is interesting because it shows 
that by making C large one can approach the maximum theoretical flow 
p independently of the ratio in the flows of the two approaches. In 
contrast, if the intersection is unsignalized the combined maximum 
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flows will be significantly less than p unless the flow ratio is very 
unbalanced. This should be intuitive from the behavior of Table 5.1 
where only 18 vehicles (instead of 32) used the intersection in 64 secs. 

It is possible to design an intersection, called a roundabout or frufic 
circle in various parts of the world? whose capacity in the case of two 
intersecting one-way one-lane streets is still close to p independently of 
the distribution of traffic on the approaches. These intersections are 
appealing because they increase capacity without stopping traffic to 
create gaps. Their main disadvantages are: (i) that they take up more 
physical space than signal controlled intersections (thus, they are only 
suited for low to medium population density areas where lack of space 
is not a problem) and (ii) that the ratio of entering flows cannot be 
exogenously controlled. 

When the saturation flows on different approaches are not the same 
it is no longer meaningful to define an ‘intersection capacity’ since the 
maximum flow possible will depend on the flow ratios allowed in from 
the two (or more) approaches. But before we look at this case it is 
worthwhile to examine the lost time L in more detail. 

The effective green. It has been known for a long time (e.g. Webster, 
1958) that when a traffic signal turns green the headways at the stop 
line do not adopt the value M suddenly, but instead increase toward this 
value gradually with successive vehicles. This effectively creates an 
additional lost time due to starting. 

Webster used a (t ,  x) diagram such as the one on the top part of Fig. 
5.1 to argue that this additional lost time was given by t ,  - t,); i.e., by 
the difference between the time that it takes for the first vehicle to 
accelerate to cruising speed, vf, (from point P to point Q) and the time 
that it would need to cover the distance traveled (d) at speed vf. This is 
logical because if vehicles accelerated instantaneously and the first one 
were to do it at point E instead of point P, then the resulting idealized 
vehicle trajectories would coincide with the original ones, after the 
latter had reached speed vf. The vehicle departure times would also 
match the original times after the first few headways. 

We saw in Chapter 1 that under uniform acceleration the time 
( t ,  - t,) is one half of the time that it takes to reach cruising speed. For 
cruising speeds of 30 MPH and typical accelerations this time should be 
on the order of 10 secs so that the lost time due to acceleration should 
be about 10/2- 2/2 = 4 secs - of course, more on uphill sections and 
less on downhills. 

For the above conclusions to be exact we have to assume, as was done 
in the construction of Fig. 5.1, that every vehicle trajectory is an exact 
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‘Beginning of Green 

Figure 5.1 Hypothetical set of vehicle trajectories discharging from a traffic 
signal. 

replica of the prior one, translated down by the jam spacing, s j  , and to 
the right by the reaction time, 7; i.e. that every vehicle does the same as 
its predecessor precisely T time units later.5 If this is accurate, then 
additional information can be obtained from the figure; e.g. expressions 
for the headways a given distance downstream of the stop line. Of 
particular interest is the sequence of headways at the stop line {hi), 
which declines toward M = sj/vf + T and reaches this value after the 
wave passing through Q arrives at the stop line.’ 

The usefulness in what we have described, as opposed to a purely 
empirical approach based exclusively on observation of headways, is 
that the causal explanations given allow one to make predictions for 
situations that have not yet been observed, involving for example 
changes in grades, the location of the stop line,’ etc .... 

Finally note that the number of vehicles that can discharge during the 
green phase can be related to the saturation flow ( = 1/M) by the 
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approximate expression, G p ,  where G denotes the length of the green 
time starting from t = t,. This effective green phase is ( T  + t ,  - t o>  time 
units shorter than the actual green, and will be the phase duration to 
which the symbols G, ,  G, and Gi will refer in this chapter8. 

Saturation and undersaturation. Let us now consider a pretimed 
traffic signal with effective green phases G I  and G2. We saw earlier in 
Chapter 3, Eqs. (3.31, that any feasible stationary flows passing through 
the intersection must satisfy the inequalities: 

(5.3) 
If this happens, we say that both signal phases, and hence the intersec- 
tion too, are undersaturated. 

If for a given set of flows {q,,  q2} we can find green phases that satisfy 
the above inequalities, we say that the combination {ql ,  q,} is below 
capacity. This can be checked easily by eliminating G ,  and G, from the 
above 3 relations. Recognizing from the first two that G, /C 2 q , /p ,  
(i = 1, 2) and introducing these inequalities into the third expression we 
find: 

where y, = q , / p ,  ( i  = 1, 2). The dimensionless variables, y, represent the 
degree of saturation of each approach when the flow is not interrupted; 
as such, they represent the minimum fraction of time that their ap- 
proach must have the green light. They will be called here the minimum 
cycle shares or demand pressures, although the term ‘flow ratio’ is often 
used in the field. Our derivation implies that if (5.4) is satisfied for some 
C then green phases of the required length can be found. Furthermore, 
we see from (5.4) that if the overall demand pressure satisfies: y1 + y2 
< 1, then one will be able to find a long enough cycle to satisfy (5.41, 
regardless of L. Thus, this latter inequality (free of all timing variables) 
defines the theoretical capacity of an intersection controlled by a traffic 
signal. Notice that ‘capacity’ is no longer a number but a condition that 
is applied to a set of flows. 

q,C I p,G,;  q,C I p2G2; with G, + GZ + L = C.  

y ,  + Y ? + L / C I  1 (5.4) 

5.1.2 Timing plan for variable and detemzinistic trajfic: light 
trafJic case 
In this subsection we extend these ideas to the time-dependent case. 
We shall see how the timing plan of an isolated traffic signal should be 
changed over time when the arrival rates q ,  and q 2  vary in a known 
way, in order to avoid oversaturation and reduce delay. As in the 
foregoing discussion and the rest of this Chapter we only consider a 
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simple intersection of two one-way streets with no turns. This suffices to 
illustrate many of the issues and solution approaches without complicat- 
ing the subject beyond the scope of our book. 

In the simplest possible case one might choose a fired timingplan in 
which C, G,  and G, are constant throughout the study period (e.g. a 
day). This may make sense if ql(t) and q2(t) are never so great that they 
violate (5.4); then, it may be possible to find a single timing pattern (G,, 
G,, C) that will remain undersaturated for all t; i.e. will satisfy (5.3) for 
all t. These conditions can be written as: 

and 

The above inequalities are equivalent to: 

where ii denotes the maximum value of yi(t> during the day. These 
inequalities can be substituted into the equality to yield: 

y i ( t )  I G,/C, ( i  = 1,2) Vr 

( G , / C )  + (G2/C) + ( L / C )  = 1. 

yi I G , / C ,  ( i  = 1,2) 

9 ,  +j$ + ( L / C )  21. 
As before, the condition: 

9 ,  + 9 2  1 (5.5a) 
ensures that a fixed timing plan exists, with cycle time: 

c 2 L/(1 - 9 ,  - j 2 ) .  
Since the ii’s are the maximum cycle shares required by each approach 
during the day, the denominator of this expression will be called the 
slack. Note that the smaller the slack the longer the cycles necessary to 
overcome the lost time. 

If qi(t) varies slowly with time so that it remains (nearly) constant 
within each cycle, then the average delay during any cycle can be 
approximated by the New Jersey/Clayton formula (see Chapter 3). For 
any undersaturated flow, the result of this formula for approach i is 
always greater than iRT/C. Since R i  > Gj for i # j ,  the average delay 
is in turn greater than i G f / C  = iC(Gj/C>* 2 iq,’. This last inequal- 
ity follows from the condition Gj /C 2 f j  introduced earlier. Thus, the 
quantity iqf is a time-independent lower bound for the average 
vehicle delay on approach i throughout the study period. If the bound is 
high, then delays would be high even during periods of very low flow. 
This is clearly inefficient, since one could have chosen a shorter cycle 
and shorter signal phases during periods of little flow with an ensuing 
reduction in delay. 
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If the daily pattern of variation is predictable, it may be possible to 
divide the day into a few periods (long compared with the cycle time) 
with different maximum flows but little flow variation within each 
period. For example, we may choose to have one timing pattern each 
for nighttime, off-peak daytime, morning peak and afternoon peak. This 
would allow the average delay per car experienced in each period to 
depend on the available slack for the period, and thus to be significantly 
reduced. 

In deciding the number of timing plans and the times at which they 
should come into effect one can look at a diagram of the two saturation 
levels vs. time, as shown in Fig. 5.2. The diagram shows at a glance how 
a selection of times ( t l ,  t z ,  t3...) influences the maximum demand 
pressures in each time interval, given by the two step curves in the 
figure. We have chosen to plot the two saturation levels in opposite 
directions along the ordinate axis because then the separation between 
steps is the overall pressure, which subtracted from 1 yields the slack.'') 
The slack, in turn, can be used to choose C and the green phases for 
each period. The idea then, is to introduce t,'s where the steps could be 
made closer. In our case, four discrete steps allowed us to improve from 
the dashed to the solid lines. 

Although it is possible to formulate the problem more rigorously as a 
delay minimization problem, we chose to present it in this graphical way 
better to highlight the issues. After all, total delay is only a coarse 
approximation of what society wants and in many cases the solution is 
relatively insensitive to the objective function used. This may occur for 
example if, as often is the case, the curves q,(t) and qz(t> increase or 
decrease significantly only during short, well defined periods of the day, 
and remain nearly constant at other times. Then, good locations for t ,  
may become readily apparent. 
In closing this discussion about undersaturated intersections we note 

that variable timing plans may keep an intersection undersaturated even 
if condition (5.5a) is violated. This could occur for example if the 
vertical separation between the dashed lines of Fig. 5.1 had exceeded 1 
but the maximum vertical separation between the step curves, which is 
what matters for a variable timing plan, had been less. In other words, 
one will be able to find a feasible variable timing plan if the maximum 
vertical separation between the solid data curves satisfies: 

rnax,Iy,(t> + y 2 ( t ) l  5 1. (5.5b) 

This, of course, is a less restrictive condition than (5.5a). The improve- 
ment is most noticeable if flows are directional so that when q l  = q?"';, 
q 2  << qTdx and when q ,  = qT", q ,  << qydx. 
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Figure 5.2 Time-dependent traffic patterns, and the selection of a timing plan. 

5.1.3 Timing plans for variable and deterministic trafic: hea y 
trafic case 
What if condition (5.5b) is not satisfied? Then there will be times where 
queues will overflow from one cycle to the next and the selection of a 
timing plan is more complicated". There is a large body of literature 
dealing with this problem, with most of the effort aimed at developing 
delay formulae that incorporate the effects of stochastic fluctuations in 
the flows. Fortunately these complications can be ignored for a qualita- 
tive description of the issues since, as shown in Newel1 (1971, 1982) 
stochastic fluctuations only play a minor role during the brief times that 
the signal is transitioning between under and over-saturation; therefore, 
a rather good prediction can be obtained by ignoring the stochastic 
fluctuations altogether. When this is done it is easier to find and 
evaluate reasonable control strategies. 

Although it is beyond the scope of this introductory book to present a 
detailed timing recipe for a general problem, as is done in Gazis and 
Potts (19651, we can say that during oversaturated periods one would 
want to operate with the maximum practical cycle (so as to reduce as 
much as possible the portion of idle time), favoring the approach with 
greatest saturation flow." If that approach was undersaturated, one 
could set the signals to maintain it on the verge of oversaturation and 
could then allocate the rest of the green to the other approach. This 
would have the effect of maximizing the sum of the flows that pass 
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through the intersection during the period of oversaturation thereby 
reducing the overall delay. 

The reader should recognize that the total number of vehicles present 
at the intersection on both approaches can be studied with the input- 
output method of Chap. 2, treating both approaches as a single arrival 
stream with a combined flow, q ,  + q2 ,  and a service rate equal to the 
combined flow through the intersection. This combined rate is: p = q, 
+ p2 [l - L/C,,, - q I / p I ] ,  if approach (1) is the one with the largest 
saturation flow, i.e., if p ,  > p 2 .  The suggested strategy should achieve 
the desired effect since the combined delay during oversaturation 
decreases with p, which has been made as large as possible. 

Furthermore, by favoring the efficient approach (1) we are also 
encouraging users of the less efficient approach (2) to change routes, 
which may be a sensible thing to do if the alternative routes are 
reasonable options. Although one may be tempted to temper this 
strategy in order to be ‘fair’ to both approaches, this should only be 
done after carefully weighing the system-wide consequences. We will 
see later in this chapter that ‘fair’ signal setting strategies can be 
unstable and make things worse. 

Let us now turn our attention to the effects of unpredictable fluctua- 
tions in traffic flow that cannot be anticipated in a timing plan. Stochas- 
tic fluctuations have little effect on the average delay over many days if 
a signal phase is well under the saturation level, or if it is well 
oversaturated;13 Random effects only really matter when (under- 
saturated) traffic is so close to saturation that a fluctuation has a 
reasonable chance of creating an overflow from one cycle to the next. 
Such a situation is depicted in Fig. 5.3. Part (a) of the figure shows the 
average behavior of the signal in terms of an average (virtual) arrival 
and departure curve and part (b) depicts a fluctuation with the same 
number of total arrivals as in part (a). We can see clearly that the first 
two cycles of part (b) are quite undersaturated, and that the rush of 
arrivals during the third cycle causes an overflow on that cycle and the 
next. Note that some vehicles remain unserved, even though the same 
number arrived, and that the total number of vehicle-hours spent in 
part (b) is greater than in part (a). [The reader can verify graphically 
that this is also true if the surge of arrivals occurs earlier in the time 
interval shown.] Clearly, oversaturated cycles have an effect that 
propagates from one cycle to the next and their occurrence increases 
delay. 

The following section introduces a simple formula that quantifies this 
delay.We have already stated that this (isolated intersection) problem is 
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Figure 5.3 Input-output diagrams for a pre-timed traffic signal: (a) undersatu- 
rated, stationary arrivals; (b) a fluctuation causing a spillover; (c) a larger 
fluctuation. 

not particularly common or important, but a description of its solution 
has pedagogical value in that it illustrates how stochastic delays come 
about physically. Section 5.3 will then show how the delay due to the 
fluctuations can be reduced with traffic-responsive control schemes. 
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5.2 The isolated traffic signal with stationary traffic and 
fluctuations 

We consider initially one leg of a pretimed intersection and explain the 
logic behind a formula that predicts the average delay per car when the 
arrivals are random but stationary; i.e., when a realization of the arrival 
process yields no clue as to the time of day. Starting with the elegant 
early work of Winsten, who contributed Chapter 1 in Beckmann et al. 
(1956), this is a problem that has received a great deal of attention in 
the queueing literature. Although at this stage the reader may not yet 
have the probability background needed to understand all the develop- 
ments that eventually led to its exact solution, she should be able to 
appreciate the qualitative arguments that led to a well-known approxi- 
mate formula (Webster, 1958) that has come to be known as ‘Webster’s 
formula’. The arguments presented here will be more general than 
those in the original work since we shall not specify the properties of 
the arrival process in so much detail. 

We have already said that if a signal phase is substantially undersatu- 
rated, then stochastic fluctuations matter little and one can use the New 
Jersey formula, Eq. (2.91, for delay. To do this properly one should use 
the average arrival rate across many days (without fluctuations) as an 
input, which we denote q. (The subscript ‘i’ will be omitted from the 
notation as long as our discussion refers to a generic phase.) The 
average delay across all cars can then be written as follows: 

where y is the average demand pressure q / F  and the subscript ‘det’ 
stresses that (5.6) is a deterministic approximation. Recall that this 
formula was based on a linear virtual arrival curve as in Fig. 5.3a. 

To measure the saturation level of a given phase it is convenient to 
introduce the dimensionless parameter p = qC/sG = yC/G, which we 
call the degree ofsaturation. Note from (5.3) that if p =‘l then the phase 
is perfectly saturated. Equation (5.6) holds if p << 1. As p + 1, 
however, the signal will receive on average almost as many vehicles as it 
can handle. This means that small fluctuations will have more of a 
chance to cause spillovers, and that the effects of any such fluctuation 
will be longer lived since the ability of the signal to dissipate a queue is 
quite limited for p close to 1. (Dissipation happens at a rate of about 
(1 - p ) k G  vehicles per cycle on average.) In this case, Eq. (5.6) will 
underpredict delay significantly. 

Fig. 5 . 3 ~  depicts on a larger scale a possible realization of a process 
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with p close to 1 for many cycles, where it can be seen that the majority 
of the delay can be attributed to fluctuations and the effects of spillovers. 
This component of delay is the unshaded area between curves V(t) and 
D‘(t). It can be visualized as the delay that would have arisen if the 
traffic signal, instead of operating in cyclical pulses, had operated at an 
even rate ji = sG/C. 

We saw in Chapter 2, Eq.(2.13), that the average per car of such a 
delay, for random arrival processes observed for a long time, was 
i(A/q)/(l  - q/ji), where A was a measure of the variability in the 
arrival and service processes. Since q/ji is the degree of saturation, this 
expression can be rewritten as follows: 

w, I: i A / [ ( l  - p ) q ]  for p -+ 1. (5.7) 
The subscript ‘s’ is used with w to emphasize that this is the delay due to 
the stochastic fluctuations when the service rate is smooth. We will see 
in Sec. 6.1.3 that if the service rate has no variability the parameter A 
can be written in the form yp, where y is the ‘index of dispersion’ of 
the arrival process; i.e., a parameter with units of ‘vehicles’ that mea- 
sures the size of the wiggles in the arrival curve. It is well known that 
y = 1 vehicles for the Poisson process. 

The shaded area is the delay due to the pulses. For p + 1 the 
process of Fig. 5 . 3 ~  spends most of the time in an overflow regime and 
(5.6) is a good approximation for the shaded area; thus, we can express 
the average delay with fluctuations and pulses as the sum of Eqs.(5.6) 
and (5.7); i.e., 

- w = w,,, + w, = [ R ’ / ~ C ] ( I  - y ) - ’  + + A / ( I  - p ) q ,  for p + I. 
This formula is not accurate for p = 0, however, because the second 

term does not vanish for p -+ 0, which it should.” An accurate formula 
for p + 0 and p + 1 can be obtained by multiplying the second term 
by any smooth function of p that, both, approaches 0 faster than q as p 
+ 0, and approaches 1 as p + 1. For example, using the factor p we 
obtain: 

w = [R’/2C](1 - y ) - ’  + i p A / ( l -  p ) q .  (5.8) 
Inasmuch as (5.8) is a monotonic function of p (the form of the true 
dependence between E and p )  that gives reasonable results for p + 0 
and p -+ 1 one would expect it to give reasonable results for intermedi- 
ate p’s. The interpolation factor used ( p ) ,  however, could have de- 
pended on the remaining variables of the problem and one should not 
be surprised to find moderate errors for intermediate p’s. 

In fact, Webster found through simulation experiments (using Pois- 
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son arrivals and regular services) that an overprediction on the order of 
10% occurred when one puts A = p in (5.8). By statistical analyses of 
the simulation output he proposed the following additive correction 
term (w): 

(5.9) 

Although an approximate correction to (5.8) for more general arrival 
processes (with arbitrary y )  has already been obtained,I5 it is educatio- 
nal to see how (5.8) can be extended to this case with very little effort by 
means of dimensional analysis. The following paragraph, which contains 
this explanation, can be skipped without loss of continuity. 

Because the evolution of the system can be described approximately 
by a set of equations that are invariant to changes in the units used for 
measuring vehicular quantity,” y can be used as the unit of choice 
without changing the numerical prediction for the average waiting time. 
This modification is equivalent to keeping the original units and replac- 
ing the arrival and service processes with ones described by appropri- 
ately rescaled parameters; i.e.: 

q ’ = q / y ,  y ’ =  y / y = l  and p ’ = p / y .  (5.10) 

Since the scaling transformation preserves the character of the arrival 
process as a process with ‘independent increments’ (see Chapter 6) and 
also changes its index of dispersion to 1, it makes it behave like a 
Poisson process.” Thus, Webster’s formula applies to the new problem. 
Its prediction, of course, is the average waiting time for the new as well 
as the old problem. It is given by (5.8) and (5.91, after substituting q’, y ‘  
and F’ for q, y and p. The result in the original units is then obtained 
after replacing q’, y ’  and p‘ by the right sides of (5.10). The reader can 
verify that these manipulations leave (5.8) unchanged but transform 
(5.9) into: 

(5.11) 

which is the sought generalization. Equation (5.11) should be as good an 
approximation to the general case as (5.9) is to the continuum model 
with y =  1. Note for example that it tends to 0 as y + 0, which is 
reasonable since all stochastic effects should disappear with smaller 
fluctuations. Dimensional analysis, however, has told us more; e.g. the 
rate at which (5.11) goes to zero when y + 0. 
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5.2.1 Warnings and comparisons: the relaxation time 

First of all we should emphasize that the delay calculated with any of 
the prior expressions is not the time in queue but the extra time caused 
by the existence of the intersection, and that this delay is always smaller 
than the time in queue. This delay interpretation is correct because the 
V(t) curves in our analysis (Fig. 5.3) represented 'virtual' or  desired 
arrivals. To obtain the time in queue, one would have to use a traffic 
flow model, such as the simple two-wave speed model of Chapter 4. Of 
course, the delay calculated in that manner must coincide to the level of 
accuracy in Webster's approximation with the previous formulae. The 
remainder of this subsection discusses the applicability of the delay 
expressions. Because some elementary probabilistic reasoning could not 
be avoided, some readers may prefer to skip this material and return to 
it after reading Sec. 6.1. 

Not given here, the derivation of Eqs. (5.8) and (5.11) assumes that 
our queue with stationary arrivals has been observed for a time that is 
long compared with the system's relaration time, T". Briefly introduced 
in Chapter 2, the relaxation time is the time that a stochastic system 
needs to 'forget' its present state, in the sense that if one samples the 
system regularly every T* time units then past observations cannot be 
used to predict future ones. 

If traffic is so light that there are no oversaturated cycles, then the 
events in successive cycles (e.g. delays) will be unrelated and we can 
assume that T" = C. At the other extreme, when the system behaves as 
in Fig. 5 . 3 ~  with p + 1, we see that most of the delay is due to the 
fluctuations and that the pulses do not matter significantly. Therefore, 
Eq. (2.14) of Chapter 2 applies, and since jl E: q, we can write: T' = 
A/[( l  - p)*q]. This expression can be justified informally without writ- 
ing many equations from our knowledge, Eq. (2.12), that the average 
queue length is approximately +A(l - PI-'. Simply note that at the 
(rare) times when the queue is several times longer than the average, 
the deviation will be proportional to A(1  - PI-'. Since the average time 
needed to reduce the queue length by one unit is [ p(1 - p ) ] - ' ,  the time 
to return to the average from an extraordinary position must be propor- 
tional to T" = A / [ ( l  - p>'p] = A/[( l  - p)'q]. Thus, the effect of an 
extraordinary event can only be felt for a time comparable with T". 
This, of course, is the significance of the relaxation time. 

A simple argument cannot be given for intermediate values of p ,  but 
it should be intuitive that a period of observation that is long compared 
with the largest of C and A/[(l - p)'q] should do the job in this case. 

It is interesting to evaluate the relaxation time when R - 4 C and p 
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is so close to 1 that the stochastic delay (5.7) is comparable to the 
deterministic component (5.6). Under these conditions T’ can be ex- 
pressed as T‘ - C( p.C/16),’8 i.e., as the product of a time constant 
equal to one cycle and a number comparable with the number of 
vehicles that can be served in one sixteenth of a cycle. For typical values 
of p. and C, T” should last for a few cycles. Therefore Webster’s 
formula applies if the average demand is constant for a time long 
compared with T‘, e.g., 20 or 30 cycles. 

In order to solidify these concepts, it is useful to compare the 
analytical predictions with those of a spreadsheet simulation that can be 
applied to observation periods of various lengths. An efficient way of 
doing this consists in tracking the (continuum) number of vehicles left 
at the end of the green, n, from cycle to cycle with a recursive formula 
that involves the number of arrivals, a, in the cycle. The delay can then 
be retrieved from the simulated sequence of a’s and n’s. 

It is postulated that the following formula is reasonable: 

(5.12) 

The expression simply says that if more than p.G vehicles want 
service in a cycle (the sum of ‘a’ and n u l d )  then the excess over pG must 
overflow; otherwise the overflow is zero.” 

We also claim that the average delay experienced over all possible 
arrival patterns in a cycle with a given noid  and a given ‘a’ is approxi- 
mately equal to the delay that would be obtained if the arrivals were 
evenly distributed throughout the cycle. This turns out to be: 

total delay in cycle = ( n u i d  + a/2)C - G$/2 + ;(a-)?/( p - a / C )  
(5.13) 

where n- is the extra number of cars that could have been served in the 
cycle, but were not; i.e. n-= max(0; pG - (nuld + a)}. Note that n-= 0 if 
nnext  > 0 and nney l  = 0 if n-> 0. These two cases are shown in Fig. 5.4 (a 
and b). 

Equation (5.13) is based on a linear V(t) curve, and can be easily 
derived from the geomety of the cumulative count diagrams displayed 
in Fig. 5.4. When n- = 0, as in Fig. 5.4a, (5.13) is the exact average. [The 
reason is that the area between the curves depends linearly on the times 
at which each of the successive arrivals occurs in the cycle, and the 
average of a linear function is a linear function of the averages.] The 
same cannot be said for part (b) but the non-linear effects are minor. 

The function @RAND in most spreadsheets returns a different 
number between zero and 1 each time that the spreadsheet is recalcu- 
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Two possible V(t)  curves .i /I 

Figure 5.4 Effect of variable arrivals during a traffic cycle: (a) queue does not 
clear (n- = 0, n ncI t  > 0); (b) queue clears (n- = 0, n nc,t = 0). 

lated. And each time all the possible numbers (with a given number of 
significant digits) have an equal chance of being drawn. This allows us 
to simulate a random draw for the number of arrivals in each cycle. We 
shall use: 

u =qc+ m ( u ,  f u ,  t u ,  +u, - 2) (5.14) 
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where u ,  represents a random number generated with @RAND. The 
parenthetical expression in (5.14) would then read in the spreadsheet: 
@RAND + @RAND + @RAND + @RAND - 2. On average, each u ,  
is 0.5 and the parenthetical expression is zero; thus, the average ‘a’ 
generated in this manner is qC, as desired. The quantity in parenthesis 
will vary with each calculation of the spreadsheet and its fluctuations 
must obviously be of a magnitude comparable with 1. This implies that 
the fluctuations in ‘a’ are comparable with (qC)’12. An objective mea- 
sure for their size is their ‘root mean square’; i.e. the square root of the 
average of the squared deviations from the mean, also called the 
‘standard deuiation’ and denoted ud. Experimentation with the spread- 
sheet (or equivalent statistical calculations) would show that the mean 
squared fluctuation of (5.141, also called the uan’ance is: ud’ = qC. This 
result is satisfactory because it means that the simulated arrivals behave 
like a Poisson process; see Chapter 6. 

It is now easy to create a three-column spreadsheet that recursively 
calculates Eqs. (5.141, (5.12) and (5.13). (Our version, called 
WEBSTER.WK1, has been made available to the public.) With one 
column allocated to each equation, the spreadsheet should also include, 
a block of six cells containing the five parameters of our problem and an 
initial queue nlIr lg .  In the columns corresponding to (5.12) and (5.13) the 
value of nold is taken from the previous row, except for the first row 
which must use nurlg.  In this way, each row simulates one traffic cycle. 
The sum of a range of cells for the column corresponding to (5.13) 
divided by the sum of the equivalent range corresponding to (5.14) 
yields W. This can be compared with the theoretical predictions, which 
can be included in the spreadsheet as well. 

It is instructive to see how the results depend on norlg,  and the 
various parameters of the problem for a fixed number of cycles, N,. We 
can verify numerically that if one chooses nor lg  to be smaller than the 
maximum queues that are likely to develop hurls < lOqW), the results 
are insensitive to nor+, as long as CN, >> T“.  For p = 0.5 and smaller 
we also find that the deterministic formula (5.6) is a good approximation 
and that the simulated results do not vary greatly from day to day (e.g. 
from one simulation of N, - 200 cycles to the next). As p tends to 1, 
however, the stochastic fluctuations increase and for sufficiently large 
values, when T‘ is no longer small relative to CN,, the results eventu- 
ally become sensitive to n,,,,. These effects, of course, are what one 
would expect in view of the theoretical discussion. 

5.2.2 Pretimed control 
We are now ready to discuss the control strategy for a signal that 
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regulates (stationary) traffic at an isolated intersection of two one-way 
streets, If minimization of total delay can be justified as the objective 
one could simply replace the deterministic objective function of Chapter 
3, Eq. (3.2), by a weighted average of (5.81, perhaps including the 
correction term (5.10, and then could repeat the optimization process. 
A similar objective function can be defined for more complicated 
intersections with two-way traffic and turning movements, provided that 
each movement is only handled during one of the green phases in the 
cycle. In such an event the left side of (5.8) would still apply to each 
movement, and the overall average delay would continue to be a 
weighed average of (5.8). Here we restrict our attention to the simplest 
case with two conflicting movements, since this scenario suffices to 
illustrate the issues"'. 

An approximate result of the optimization is: 

G, = ( C  - L ) y , / ( y ,  + y ? )  ( i  = 1 ,2 )  (5.15a) 

and 
C* = (1.5L + l , i ) / [ l  - ( Y I  + y 2 ) ]  (5.15b) 

where 1,' = 5 secs. The reader can verify algebraically that the choice 
(5.15a) satisfies the constraints y, I G,/C in (5.3) if C is greater than 
the minimum value allowed by (5.4): 

(5.16) 

Note that the recommended cycle exceeds C,,,,,, by about 100% for 
typical values of L. Delay is not minimized for C - C,,,, because then 
all approaches would be close to saturation and there would be frequent 
overflows; the stochastic component of (5.8) would be large. The over- 
flows can be eliminated with C >> C,,,,, but this is not recommended 
either because long phases mean long delays for the vehicles affected; 
the deterministic component of (5.8) would then be large. If there are 
two phases but more movements, e.g., because one or both streets are 
two-way, the same formulas can be used although the results should be 
less accurate; Webster recommended using the movement with the 
largest demand pressure for approach i to define y , .  As an exercise, the 
reader may want to find a timing plan for an intersection without turns, 
L = 10 secs. and the following N, S, E, W average flows and saturation 
flows: ( q i )  = (600, 500, 1200, 200) and { p , )  = (1800, 1800, 3600, 1800). 
(Answer: C = 60 secs; G I  = G z  = 25 secs.) 

Although more elaborate approaches can and have been developed to 
time an isolated intersection, we stop our discussion here. We have 
already said that delay is a somewhat arbitrary measure of performance 
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for signal timing since it only measures the impact of traffic on those 
who are part of it; and it does so imperfectly. [Recall the extreme 
policies to which delay minimization leads when the objective is applied 
to the oversaturated case.] Clearly, other criteria could be used. The 
U.S. Highway Capacity Manual, for example, uses a percentage of 
oversaturated cycles as one of the criteria for intersection design. 

5.3 Actuated control 

We have seen in Sec. 5.1.2 that changing a timing plan in response to 
predictable hourly changes in flow can reduce delay. We will show here 
that changing it in response to unpredictable fluctuations is also ben- 
eficial. As in the pretimed case, we base our discussion on an intersec- 
tion of two one-way streets with no turns because this is the simplest 
case that can illustrate the issues. More complicated intersections are 
appropriate for a course on traffic engineering, in which all the possible 
configurations can receive the deserved attention.*’ 

We recall that the phases and cycles of Webster’s recipe are about 
twice as large as the minimum possible in order to reduce overflow 
delay, and that this choice roughly doubles the deterministic component 
of delay. Clearly then, if it were possible to operate with cycles and 
phases close to the minimum while avoiding overflows, traffic delay 
would be reduced by more than a factor of 2. We shall see that this goal 
can be achieved with actuated systems that end the green phase on each 
approach as soon as its queue dissipates. 

Consider Fig. 5.5, which depicts two cumulative (virtual) arrival curves, 
V,(t) and V,(t), starting at an instant (t = 0) when the queue at ap- 
proach 2 has vanished and the queue of approach 1 is Q,(O) > O .  
Although it is not necessary we have set the intercept of both arrival 
curves at t = 0 equal to the initial queues; thus, both departure curves 
start from the origin, as shown. If the saturation flows and the lost times 
for both approaches ( p i ,  Li )  are known the departure curves can be 
easily constructed for any pair of V,(t)’s. (Note that L ,  + L, is the 
combined lost time, L, used in Sec. 5.2.) The complete solution is 
displayed on Fig. 5.5, where arrowheads indicate the order in which 
points along the departure curves are obtained. 

Starting at the origin ‘0’ the signal turns and a lost time of duration 
L,  begins. Both departure curves then remain horizontal until t = L,,  
which locates point ‘A’ of the figure. At such time the signal turns green 
for approach 1 and remains red for 2. This phase is characterized by 
departure curves slopes p ,  and 0; it terminates when queue 1 vanishes 
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Figure 5.5 The  actuated traffic signal. Strategy in which the green phases a re  
terminated as soon as  the queue  vanishes. 

at point ‘B’ of the figure. The duration of the phase, G , ,  is the length of 
segment AC. The system is now in a position identical to that in which it 
was at t = 0, with the approaches reversed. Therefore, the construction 
method from now on is a continuation of what we have described with 1 
and 2 interchanged. It goes on with a lost time L, which causes both 
departure slopes to equal zero; this identifies point D. Green phase 2 
then begins, etc ... The reader should try and trace the remaining steps 
through completion, following the arrows shown on the figure. 

As long as the arrival curves rise moderately, every phase in the 
construction of Fig. 5.5 comes to a definite end and we say that the 
signal is undersaturated. We will now derive an expression for the 
average length of each phase and from it will obtain a condition for 
undersaturation. Note that our analysis is rather general for we are not 
placing any formal restrictions on the Vi(t) curves. 

Let N, (a large number) be the number of cycles through which the 
system is observed and T the duration of the experiment. The average 
cycle therefore lasts T/N, time units. On dividing the total amount of 
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time that the signal has been green for approach i, by N, we obtain the 
average duration of a green phase for approach i, GI. Because each 
cycle has a total lost time L = L ,  + L z ,  the total time lost in the N, 
cycles is N,L. This means that the duration of the experiment is 
NJG, + G, + L). If we now let ti, denote the ratio of the number of 
arrivals on approach i during the experiment to its duration T, which is 
the conventional definition of average flow in an interval, the total 
number of arrivals may be expressed as: 

number of arrivals on i = N c ( c ,  + c2 + L ) q ,  ( i  = 1,2) .  (5.17a) 

Because all the green phases are saturated, the number of services on 

(5.17b) 

Let us now examine what happens to (5.17a) and (5.17b) for large N,. 
We choose for the beginning and end of our experiment two instants 
where one of the queues has just dissipated, and this means that for 
that approach (5.17a) and (5.17b) are equal. For the other approach the 
two expressions will differ by an amount that equals the difference 
between its initial queue on the approach and the number of arrivals 
during its last red period (see Fig. 5.5). If this quantity is small 
compared with the left sides of (5.17) when N, is large, as should 
happen if the signal is able to serve the demand during the study 
period,** then we can equate the right sides of (5.17a) and (5.17b) for 
this approach too. The result is a system of two equations that yields G,,  
and G, in terms of q , ,  p, ,  and L. Let us see. 

Since the ratio of (5.17a) and (5.17b) is 1 (and we defined y, = i j , / p , )  
we can write: 

y,=G,/c ( i = 1 , 2 )  (5.18) 

where c is the average cycle, (G,  + G2 + L). This says that the proposed 
strategy allocates green time to both approaches in the same ratio as 
recipe (5.15a). If we now use (5.18) in the identity: 

i can be expressed as: 

number of services on i =&GI p l  ( i  = 1 , 2 ) .  

we obtain the familiar condition for a pretimed signal on the verge of 
oversaturation (see Eq. (5.4)): 
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Finally, on solving for c we find: 

(5.19) 

which matches the minimum cycle of a pretimed signal (5.16) as we had 
conjectured. Thus, the resulting average phases are as in Webster’s 
method with C‘ replaced by Cmin. We note that Equations (5.18) and 
(5.19) also apply to an intersection with more than 2 phases, but the 
verification of this statement is left as an exercise for the reader. 

Since phase durations have been cut by a factor of 2 and overflows 
have been eliminated one would expect a proportional reduction in 
delay or even greater. This is true, but we should warn that the result 
predicted by the New Jersey/Clayton approximation: 

wd,,= i L [ 1 +  (qly2 + q 2 y , ) / [ ( q I  + q , ) ( l  - y l  - y ~ > l l ,  (5.20) 
which assumes that the V,(t) are linear, underestimates the actual delay 
in this case. This happens because our phases vary over time, and the 
longer cycles (with the longer phases and delays) tend to entrap more 
vehicles. This phenomenon also occurs with waiting times at bus stops, 
which will be studied later in this book; we will find that the average 
waiting time of randomly arriving passengers exceeds one half of the 
average headway (the average waiting time one might expect) because 
more people experience long headways than short. This phenomenon is 
called the ‘length bias’ effect in statistics and it arises often in 
transportation applications. For example, it is the reason why the 
time-mean speed is always greater than the space-mean speed. 

An exact calculation of delay for random but stationary traffic can be 
given, but is beyond the scope of these notes; results for intersections 
with two-directional traffic (Newel1 and Osuna, 1969) and for general 
arrival processes with more than two phases have been obtained 
(Daganzo, 1990). The problem is of general interest because the mathe- 
matical equations also describe the behavior of other systems such as 
computer token rings, container cranes and shuttle systems (buses, 
elevators). As an exercise, the reader may want to explore the equiva- 
lence between what we have described and an elevator that shuttles 
between two floors. She may also want to answer the following ques- 
tions: How is a bus line with n stops equivalent to a hypothetical signal 
with n successive phases? What are the correspondences between the 
variables and parameters of the two problems? Being able to see the 
analogy in situations like these allows one to make the connections 
between what it is known for different transportation modes and be a 
more competent analyst. 
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A spreadsheet simulation similar to the one built for the pretimed 
case can be constructed, but the logic is more complicated since G,  and 
G, are not fixed. The one that has been made available to the public 
(ACTUATED. WK1) uses some ‘macros’ to construct a sequence of 
simulated phases and waits for random stationary traffic. Its results 
illustrate how these vary over time and that W is much smaller than the 
average wait for the pretimed signal, although greater than (5.201, as 
stated. 

The actuated strategy presented here is suitable for isolated traffic 
signals controlling intersections of major streets with substantial (under- 
saturated) traffic levels but should be modified in other cases. For 
example, if traffic becomes oversaturated for an extended period of 
time, the strategy does not proactively allocate more green to the 
approach with the highest saturation flow. Clearly, a mechanism that 
promotes this behavior needs to be introduced, e.g., by placing different 
limits on the maximum green phases allowed for both approaches. 

If traffic is very light on one of the approaches the strategy can also 
be improved slightly by extending the green on the major approach until 
a small queue has built on the minor approach. (This is also true for the 
pre-timed control with deterministic constant flows as the reader can 
verify by numerical experimentation with the spreadsheet of Chapter 3.) 
One may in fact want to use a semi-actuated form of control, where the 
signal is green on the major approach until the minor approach has 
accumulated a certain number of veh-secs of delay. 

If both approaches have very little traffic, e.g., during nighttime when 
capacity is not an issue, it may be better to show an all-red phase by 
default and allow approaching vehicles to turn the signal green prior to 
their arrival so as to avoid a stop. The signal at Colusa and Tacoma in 
Berkeley, California operates in this form. 

It should also be noted that the various strategies mentioned here 
require different placement of detectors so as to ensure that the 
pertinent information can be gathered in a timely way.. The basic 
scheme requires the detectors to be somewhat upstream of the stop line 
so that when a drop in flow has been detected, indicating that the green 
should be terminated, the last vehicles of the saturated platoon should 
still be on their way toward the stop line23. The semi-actuated scheme 
requires in addition a detector that is well upstream on the minor 
street, beyond the reach of any queues, in order to construct a virtual 
arrival curve and keep track of delay. The ‘nighttime’ strategy requires 
upstream detectors as well. The exact locations can be determined 
through judicious use of the time-space diagram. It should be said too 
that the strategies we have presented are not always used and that on 
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C H A P T E R  S I X  

Observation and 
measurement 
Earlier in this book we saw how to predict the behavior of simple, 
unscheduled transportation systems from their basic laws and relevant 
data (Chapter 41, and also how to affect the performance of these 
systems in a positive way with various control schemes (Chapter 5). The 
present chapter addresses one last topic in our review of unscheduled 
transportation systems. It presents an introduction to the observation 
and measurement methods that can be used to obtain relevant input 
data, estimate the parameters of the basic laws, and monitor a system’s 
performance. 

Because the world around us is not perfectly reproducible, an under- 
standing of observation and measurement issues requires working 
knowledge of the theories of probability, stochastic processes and statis- 
tical estimation. It is assumed here that the reader is already familiar 
with the theory of probability at the level of a typical undergraduate 
engineering course on the subject but not necessarily with the latter two 
subjects. As a result, the two first sections of this chapter cover the 
elementary aspects of stochastic process and estimation theory that are 
necessary for understanding the results of simple observation and 
measurement experiments. Section 6.1 covers probability, stochastic 
processes and simulation, and Section 6.2 the procedures for estimating 
a single quantity (e.g. the capacity, average flow, etc ... ) from simple 
experiments that generate data in the form of a stochastic process. 
Because some of the material in Secs. 6.1 and 6.2 is not always included 
in conventional courses, the advanced reader may want to skim these 
sections before proceeding to Sec. 6.3 and then treat them as if they 
were an appendix Section 6.3 discusses observation procedures for 
traffic streams, and the statistical treatment of the data so generated. 
Subjects covered include estimation of capacity, interpretation of detec- 
tor data, use of moving observers for monitoring serial systems with 
entering and exiting flows and the estimation of 0 - D  tables in various 
ways. 
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6.1 Probability and stochastic processes 

The goal of this section is to present essential information on stochastic 
processes and probability theory. Although the reader is assumed to 
know the latter, it should be useful to highlight some of the points that 
come up most often in our field; especially, since some of them are 
often not emphasized enough in formal courses, and sometimes are not 
even mentioned at all. The explanation here (and in Sec. 6.2) will also 
be different from others you may have seen in that it will emphasize the 
experiments that probability laws try to describe rather than the mathe- 
matical laws themselves. We shall see that the mathematical laws in a 
complicated situation are sometimes obvious if one thinks about the 
experiments in a particular way. 

Probability is a measure that describes the results of repeatable 
experiments that are not perfectly reproducible. It is applied to circum- 
stances (called ‘events’) which either happen or do not happen each 
time an experiment is performed; the measure is intended to capture 
the likelihood of an event’s occurrence before the experiment is per- 
formed. If one imagines that the experiment can be repeated any 
number of times, N, probability is then defined as the limit of the 
fraction of times that the event would occur in a infinite sequence of 
experiments (as N + XI. ’  Note that the word ‘imagines’ has been 
emphasized. A probability can be assigned to the events of an experi- 
ment that is only performed once if we can imagine a repetition of some 
sort; it is only in the context of such a repetition (imagined or not) that 
probability can be interpreted physically and intuitively.* 

In order to describe a non-reproducible (probabilistic, or random, or 
stochastic) experiment completely one would have to give the collection 
of probabilities for all the possible events associated with the experi- 
ment. When the result of an experiment can be described by a single 
number 6.e. the number contains all the information that interests us) 
the experiment is called a random variable. The particular number that 
is obtained when a random variable is ‘realized’ is called an outcome; 
i.e., an outcome of a random variable is a number that describes the 
result of the random experiment. To describe a random variable, X, 
completely it suffices to give the probability of each of its possible 
outcomes, x. (Whenever possible capital letters will be used to describe 
random variables and lower case for outcomes.) Then, from the rules by 
which probability is manipulated-the same obvious ways in which one 
would manipulate frequencies-one can construct the probability of any 
event of interest. 
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Suppose that we want to assign a probability to the event ‘the number 
of transit passengers that will use BART tomorrow will not exceed x’. If 
tomorrow is Tuesday we can imagine a long sequence of Tuesdays, or 
otherwise identical days to tomorrow with slightly different riderships, 
from which the value x would be drawn. Then, the act of observing on 
any given day is our random variable X. The notation {X I x} is used to 
denote the event of interest, and Pr{X I x } is used for its probability. 
Since we have defined our experiment clearly, a probability of 0.7 would 
have the unambiguous meaning that our critical value would not be 
exceeded on 70% of the Tuesdays. Always think about the experiment. 

What does the weatherman mean when he says that there is 50% 
chance of rain tomorrow? What set of identical experiments is he 
basing his percentage on? Although the weatherman does not say so, it 
seems reasonable to assume that he bases his statement on the weather 
outcomes experienced over all past days in which a prediction had been 
made based on ‘similar’ data. In this example, thus, the experiment is 
living through another day with similar weather data. 

Although events of interest can take many complicated forms (e.g. 
the number of BART riders is an even number that does not exceed x) 
it turns out that the probability of any practical event can be calculated 
if we know the value of either P r { X s x  } or Pr{X=x } for all x 
Consider first the case where the possible x’s can be counted, as 
happens in our BART ridership example, and where each possible value 
of x, xi ,  has a positive probability: Pr{X = xi)  > 0. Random variables of 
this type are said to be discrete. The functions returning the probabili- 
ties P r{Xs  x} and Pr{X=x} for all values of x are respectively called 
the cumulative distribution function (or c.d.f.), F,(x), and the probability 
massfunction (or p.m.f.1, f,(x). It should be obvious from the manipula- 
tion of proportions or percentages that the probability of any event is 
the sum of the probabilities of the outcomes from which it is composed 
and, thus, that the p.m.f. suffices to describe completely a random 
variable. It should also be clear on the same grounds that one can 
calculate the p.m.f. from the c.d.f. (i.e., that f,(xi) = F,(xi) - F,(xi- 
if we take x i  > x i - ,  for all i) and thus that the c.d.f. also gives a 
complete description. This quick derivation illustrates that remembering 
the connection of probability to frequencies of success with repeatable 
experiments makes many things rather obvious. 

Something similar can be said for continuous random variables, where 
F, varies continuously without jumps. Then the mass function is zero 
but one can define a probability density function (p.d.f.1 based on the 
ratio of F,(x) - F,(x - E )  and E for small E :  f,(x) = dF,(x)/dx. The 
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probability of any event of interest can be calculated by ‘adding’ the 
probabilities of all the elementary events (x - E ,  x> in the event of 
interest; i.e., by integrating f,(x) over the values of x in the event of 
interest. This is the well-known ‘area under the curve’ rule for calcula- 
tion of probabilities. 

Before proceeding, something must be said about units. The out- 
comes of a random variable have physical units (e.g. ‘riders’ in our 
BART example) but probabilities do not, since they are the ratio of two 
counts. A formula for a p.m.f. or a c.d.f. must thus be dimensionless. 
The p.d.f on the other hand is a ratio of dF,(x) and dx, which has the 
reciprocal units of X (‘riders”’ in our example). 

When F, or f, are not known in detail it is sometimes useful to 
know two numbers that can be used to identify a range of x where most 
observations are likely to occur. Although there are many ways in which 
this could be done, in practical applications one always uses the mean 
to identify the center of the range and the standard deviation to identify 
its size. These choices are very convenient because these two values, 
unlike others that could have been used, change in a simple way when 
random variables are linearly combined. We will return to this idea 
soon. 

The reader will recall that the mean or expectation of X, written m, 
or E(X), is defined as the sum (or the integral if X is ‘continuous’) of 
xf,(x> over the possible values of x. This is the ‘center of gravity’ of the 
probability distribution along x. As such, the mean has the same units as 
x Since f,(x) is the fraction of observations with X = x in an infinite 
sequence, we see that the formula for E(X) yields the arithmetic 
average of the values in such a sequence. Thus, the expectation notation 
EO is also shorthand for the arithmetic average of an infinite number of 
observations of the random variable enclosed in parenthe~is .~ 

The standar,d deviation is defined as the square root of the ‘moment 
of inertia’, or variance, of the probability distribution. The latter is given 
by the sum (or the integral) of (x - m,>2f,(x) over the relevant set of 
x’s, which can also be written as E((X - rn,)’). It should be clear from 
this formula that the variance has the same units as x2. Therefore, the 
standard deviation has the same units as x and m,. A range of 3 or 4 
standard deviations on each side of the mean contains most of the 
probability for the distributions that one typically encounters in prac- 
tice, although the range can be wider for unusual distributions. 

The importance of means and variances lies in their behavior for 
linear combinations of random variables. If Z is the revenue collected 
on a transit route during one morning commute, a ,  is the fare paid by 
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those patrons boarding at i, and X ,  is the ridership from i, we can write: 

z =  ca,x, (6.1) 

because this linear expression is deterministically true for the values of 
X ,  and Z obtained on any given day. As such, Z is itself a random 
variable: the imagined experiment in a general case would consist in 
observing one set of X,’s and then calculating Z with (6.1). In our 
particular example we can simply imagine running the bus on another 
similar day and counting the money. Although it is generally very 
tedious to find the p.m.f. of Z even if one knows enough about the XI to 
be able to calculate it, which is unlikely, the mean of Z can be obtained 
rather easily with the following relation: 

E ( Z )  = C a , E ( X , ) ;  (6.2) 

i.e.: the mean of a linear function of random variables is the same linear 
function of the means.J Note that the units in this expression are 
consistent if the units of (6.1) are consistent. In our BART example the 
left sides of (6.1) and (6.2) have units of (dollars/day), and the terms on 
the right hand side units of (dollars/trip) (trip/day). 

Before introducing a similar expression for the variance we need to 
recall the concept of statistical independence. Two random variables are 
said to be independent if the probability distribution of one of the 
variables does not change when one only considers in its definition the 
subset of (imagined) joint experiments where the other variable takes a 
specific value (or is in a specific narrow range). The ‘filtered’ set of 
experiments is called a conditional random variable. In physical terms, 
independence means that knowing the value of one of the variables 
does not change the probability distribution of the other. In our BART 
example we would not expect pairs (X,, X,) to be independent because 
external factors (such as football games, weather, etc ...I can act to 
increase or decrease them jointly on different days. (If XI was higher 
than average on a given day we would then expect other X,’s also to be 
higher than usual on that day.) In applications where the X,’s are 
pairwise independent the variance of (6.1) obeys: 

var(Z)  = La: var(X,); (6.3) 

i.e. the variance of a linear function of independent random variables is 
(almost) the same linearfunction of the means. The only difference is the 
exponent ‘2’ of the coefficients. The modification is easy to remember 
because the squared coefficients are needed to make the units come out 
right: (dollars/day)’ = (dollars/trip)2 (trip/day)*. 

1 

1 

I 
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6.1. I The normal random variable 

The normal random variable is the most important in all of statistics 
because a linear combination of n independent random variables such 
as (6.1) behaves approximately like a normal random variable for large 
n. This theorem, called the central limit theorem, is true if none of the 
terms in the sum contribute significantly toward the total variance, e.g., 
if the Xi  are independent and the terms a: var(X,) are bounded by the 
same constant. In practical cases one does not need n to be large for the 
approximation to be rather good. The result is remarkable because, 
combined with (6.2) and (6.3), it allows detailed probabilistic statements 
to be made about a variable comprised of many parts (such as Z) 
despite an incomplete knowledge of its components. 

Before giving an example let us briefly review the most important 
properties of the normal family of random variables. It is a two 
parameter family where members are characterized by their mean, m, 
and variance a 2 ;  we denote them by v(m, a * )  or 77 for short. The 
normal p.d.f. is: 

which defines the well-known Gaussian bell-shaped curve. Note that f, 
has the proper units since it is the ratio of an exponential, which can 
have no units, and (27~)’/*0 which has the same units as x. 

An important property of the normal family is that any linear combi- 
nation of independent members is itself normal’. Therefore, the dimen- 
sionless random variable q* = (v(m, a’) - m ) / a  is normal; we call it 
the standard normal variable and see from (6.2) and (6.3) that its mean 
and variance are E(v*) = 0 and var(v*) = 1. Note that the standard 
normal density 4(x> is given by (6.4) with m = 0 and 0 

The normal c.d.f. is not available in closed form, but the standard 
normal c.d.f., @(x), has been tabulated and can be approximated in 
various ways. Since the event {v(m, u 2 )  I x) happens if and only if {q* 
I (x - m>/o) ,  as you can see from the definition of ?*, both probabili- 
ties are the same, and this allows us to express the (general) normal 
c.d.f. in terms of @: 

F,(x) = @((x - m ) / a  1. (6.5) 

= 1. 

This is the standarization property of the normal family. It says that 
the cumulative probabilities of any normal variable can be obtained by 
reading from the @-table the value corresponding to the number of 
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standard deviations by which x is away from the mean (the normal 
deviate). 

Example: The first 4 columns of Table 6.1 give hypothetical data for 
the transit morning commute problem described earlier. We seek the 
probability of collecting more than $100 during the study period when 
the fare from stop i is a , ,  given that we know ( e g  from a demand study) 
the mean and the variance of the number of trips made, XI, from each 
stop. 

Since the total revenue, Z, is given by (6.1) we start by calculating 
a ,E(X,)  and afvar(X,) for all the stops and then arrange the informa- 
tion on columns 5 and 6 of Table 6.1. Assuming that (6.3) holds, we see 
that the variance of the total revenue is the sum of the entries on the 
last column. The mean of Z, of course, is the sum of the 5th column. 
The answers are: 

E (Z)  = 95.4$ and var(Z) = 31.86 $’. 
Since it was argued earlier that the XI are unlikely to be independent, 

we recognize that the result for var (Z) is only approximate. (Can you 
tell intuitively by imagining the result of several days of data, i.e., 
several observations of Z, whether var(Z) would be larger or smaller if 
the X i  were influenced in the same direction by an exogenous cause? 
An answer to this question should help you understand the sign of the 
error in our final answer.) 

Under our assumptions the largest contribution to the variance is 
about 1/4 of the total, and the central limit theorem should be roughly 

Table 6.1 

Train Fare E(X,)  Var(X, 1 a ,  E(X,)  afVar(X,)  
stop a ,  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.5 
0.6 
0.7 
0.8 
0.9 
1 
1.1 
1.2 
1.3 
1.4 

10 
12 
10 
14 
10 
12 
8 
8 

10 
9 

4 
4 
4 
2 
4 
4 
4 
2 
2 
4 

5.00 
7.20 
7.00 

11.20 
9.00 

12.00 
8.80 
9.60 

13.00 
12.60 

1 .oo 
1.44 
1.96 
1.28 
3.24 
4.00 
4.84 
2.88 
3.38 
7.84 
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true. Therefore the c.d.f. of Z is approximated by that of the normal 
variable q(E(Z), var(Z)) and (6.5) can be used to calculate the sought 
probability: 

100 - 95.4 i d r n  l = o . 2 1  ' Pr{Z > loo} = 1 - FJ100) = 1 - @ 

6.1.2 Stochastic processes 

The theory of stochastic (point) processes concerns itself with random 
fluctuations in the evolution of one or more numerical values over time 
or space. Earlier chapters showed that certain cumulative curves (the 
N-curves) described quite comprehensively the behavior of some sys- 
tems over time and space. Yet, if any such system were to be observed 
on a different day (or a different study period) one would expect to 
obtain a similar but not identical set of curves. The variation of the 
curves across observation efforts (e.g. days) is analogous to the variation 
of a random variable across experiments. 

By analogy to the outcome of a random variable we call the picture of 
a (set of) curve(s) the realization of a stochastic process. Fig. 6.1 depicts 
two realizations n(')(t) and n(,)(t) of a process N(t). Note that each curve 
is made up of the contributions (or counts) over non overlapping 
intervals of time.6 For curve j these counts are denoted &ti, t i+ ,> ,  as 
shown in the figure. 

If one is only interested in asking questions that involve a scale of 
measurement that is large compared with At = t i +  - t i ,  a sufficient 
description of the process is achieved by giving the (joint) probability 
density/mass function of the random variables Ni = N(ti, t i +  ,I; i.e., by 
specdying the fraction of days in which the 'elementary joint event' 
Inl  < N, s n, + dn, ; n2 < N, I n, + dn2; ...} happens for any {nl,  nz...}. 
One can then answer (at least in principle) any question about the 
process, i.e., how often it is found in any given condition, by adding the 
probabilities of all the elementary events exhibiting the condition. This 
is all there is to the theory of stochastic processes; much of it deals with 
the machinery for carrying out the computations in special cases when 
the task is easy. This section describes the special case where the Ni are 
identically distributed and mutually independent random variables;' i.e., 
what mathematicians would call a stationary or homogeneous' process 
with independent increments. One would expect to find stationary 
processes (i.e., identically distributed Ni 1 during periods of observation 
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t' 

Figure 6.1 Two hypothetical realizations of a counting process. 

without rush hours, but we must be careful with the independence 
condition because it can be broken in subtle ways; e.g., if there are 
minimum time separations between discrete jumps in N(t) and At is not 
large compared with this minimum time, or if there is an underlying 
schedule which tends to keep N(t) close to the value on the schedule. 

6.1.3 The Brownian process 
If the N, of a process with mutually independent increments are 
specified to have a normal distribution with a given mean and variance, 
m(At) and a ' ( J t ) ,  the process is completely defined because one can 
then calculate the probability of any event of interest. A process like 
that is called a Brownian process, or a Brownian motion process.' 
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The Brownian process is to stochastic processes like the normal 
random variable is to general random variables in that the Brownian 
process is the limiting form (for sufficiently large At) of nearly all 
processes with independent increments.“’ To see this, note from Fig. 6.1 
that for any t ,  and t ,  (t, < t,) on our lattice we can write: 

N ( t , , f , ) = N ( t , , t , + l )  + N ( t , + l , t , + 2 )  + . . .  + N ( f  ,-,, t , ) .  (6.6) 

According to the central limit theorem, N(t,, t , )  will be approximately 
normal if the number of terms in (6.6) is large enough. Then, if 
(t, - t , )  = At‘ is used as the new minimum interval, the process becomes 
approximately Brownian on the new scale of observation.’ 

Equation (6.6) says that the count during any interval (on the lattice) 
is made up of (t, - t,)/At independent components. By virtue of (6.2) 
and (6.3) we can thus write: 

E ( N ( t , , t , ) )  = (ti - t ,>[m(Af)/Atl = (f, - f , ) p  (6.7a) 

var(N(f, , t , ))  = ( f ,  - t , ) [ ~ ~ ~ ( A t ) / h t ]  = Cf, - f , ) p y .  (6.7b) 

The terms containing At have been grouped in brackets because 
these ratios, which are denoted p and p y ,  should be independent of 
At .  (To see this note that if At is increased by an integer factor, using a 
subset of the original lattice, then m(At) and u2(At)  also increase by 
the same factor.) This means that both the mean and the variance of a 
Brownian count are proportional to the length of its interval, as ex- 
pressed by (6.7). 

The proportionality constants, p and p y ,  have units of 
‘count/parameter’ and ‘count2/parameter’. For example, if a process 
describes the liters of oil entering a reservoir in a port terminal over 
time, then the units of these factors might be: liters/day and liters*/day. 
The first parameter, p, is the average counting rate of the process, or 
more simply, its ‘rate.’ The second one is the rate at which the variance 
grows with time; it is usually related to the first rate by a constant y 
which is called the index of dispersion. The index of dispersion has units 
of ‘count’, e.g., liters, and it will change if we change our counting units. 
Note that y is also the ratio of (6.7b) and (6.7a). Thus, it is also the 
variance to mean ratio of the counts in an interval of any length (for a 
Brownian process). 

It is quite fortunate that just two constants ( p and y )  should suffice 
to describe completely the behavior of so many processes on a suffi- 
ciently coarse scale of observation because this means that (where a 
coarse scale can be used) the world can be described in a simple way. 

To illustrate this more tangibly, let us return to Eq. (2.12) of Chapter 
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2, which applies to queueing systems in which the arrival and service 
processes are independent Brownian processes.” The parameter A 
appearing in that expression is the weighed sum of the indices of 
dispersion of the arrival and service processes, ya and ys, where the 
index of dispersion for the arrival process is weighed by the saturation 
level p =  A/p;  i.e, A = pya + ’y,. 

Since crowded systems can be studied on a coarse scale of measure- 
ment and queueing systems become crowded as they approach satura- 
tion ( A  + p )  we conclude that steady state queues can be studied on a 
coarse scale if A + p. And since all practical processes with indepen- 
dent increments look Brownian on a coarse scale, it follows that any 
queue with independent arrival and service processes made up of 
independent increments can be studied as a Brownian queue when h 
+ p. Thus, we see that EqX2.12) can be applied in this case too. It is 
indeed fortunate that such a simple result should hold for so many 
systems independently of their detailed probabilistic structure. 

One useful property of Brownian processes is that they obey a 
superposition principle; ie. ,  any linear combination of independent 
Brownian processes is itself a Brownian process. The result, which 
should be intuitive to you, is based on the fact that any linear combina- 
tion of independent normal variables-e.g., the counts of the various 
processes in each elementary interval-define a normal variable. In view 
of this, can you figure out the formulas for the rate and index of 
dispersion of a linear combination of Brownian processes? 

The inverse process: This subsection is provided for completeness and 
may be skipped without loss of continuity. The reader already familiar 
or planning to study stochastic processes may appreciate seeing the 
simple dimensional arguments given here as an alternative to the 
lengthier and less general mathematical proofs that are given in stan- 
dard textbooks. Given a process N(t) with posiriue independent incre- 
ments, one is concerned here with the asymptotic properties of the 
inverse process T(n), i.e., the process that indicates the ‘time’ when N(t) 
reaches n. 

Without loss of generality, it is assumed that the units of measure- 
ment for time have been chosen so that the rate of N(t) is one, = 1. 
It is also assumed that the scale of observation uses increments suffi- 
ciently large for N(t) to be approximately Brownian. 

An equivalent mechanism for generating Brownian realizations with 
p = 1 consists in sampling two independent sequences of random 
outcomes from a small positive random variable, i.e., (x,, x2 ,  x3,  ...I and 
(xl’, xz’,  x3’ ... ), and then plotting on the (t, n) plane the piecewise linear 
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curve 

with m as the parameter. To see this note that if our random variable is 
chosen to be very small, in the sense that its maximum possible value is 
negligible compared with At, then the increments in n for each At will 
be nearly independent. This means that the process is approximately 
Brownian on any scale At‘ B At. Since At’, At and the random variable 
can be chosen to be as small as one wishes, the approximation can be 
improved as much as desired on any scale of observation. 

What is interesting about this method of generating N(t) is that it is 
symmetric to interchanges of t and n. This immediately establishes that 
the inverse process must have the same statistical properties as N(t); 
i.e., that if it is observed on a scale where each An contains many little 
segments, T(n) will be Brownian with unit rate and the same index of 
dispersion as N(t). 

If the time scale is now changed to restore the rate of N(t) to its 
original value, p, several things happen; (i) the ‘Brownianesses’ of N(t) 
and T(n) are preserved; (ii) the rate of the inverse process changes from 
1 to p- ’  by purely dimensional reasons; (iii) likewise, y remains 
unchanged (dimensions of ‘quantity’), and (iv) the index of dispersion of 
the inverse process (dimensions of ‘time’) changes from y to y / p .  This 
establishes that the following relations hold for a process with positive 
independent increments and its inverse, on coarse observation scales: 

P , n ,  = 1 / P  and Y , n v  = Y / F  

6.1.4 The Poisson and Binomial processes 

These are two processes that come up very often in applications. Both 
have independent increments and dimensionless integer counts; they 
look Brownian on a coarse scale. The Poisson process is taken up first. 

We say that N(t) is a stationary Poisson process with rate p (in 
occurrences/time or occurrences/distance) if the process has indepen- 
dent increments for any At, no matter how small, and the count in any 
short interval satisfies to first order in At: 

Pr(N(t ,  t + At) = 1) = p A t  (6.8a) 

Pr{N(t, t  + A t )  = O }  = 1 - w A t  (6.8b) 
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A random variable like N(t, t + A t )  that is 1 with a certain probability 
(pAt  in our case) and 0 otherwise is called a Bernoulli trial with 
probability of 'success' pAt. The reader may remember (or can deduce 
from (6.8)) that 

E ( N ( t ,  t + A t ) )  = pit; (6.9a) 

this confirms that p can be interpreted as the rate of the process. She 
can also check that (to first order in At) 

var (N( t , t  + A t ) )  = p l t ( l  - p A t )  = p A t  (6.9b) 

and thus, the index of dispersion of the Poisson process is 1. 
Although we already know that on infrequent observation it will look 

approximately Brownian (normal counts), in this case the exact p.m.f. of 
the count is available in closed form for intervals of any length. The 
result13 is: 

which is called the Poisson p.m.f. Its mean is p( t j  - ti), which is 
consistent with the interpretation of I.L as the 'rate' of the Poisson 
process. The reader may have been introduced to this distribution in 
other courses and may be familiar with its properties. Some of these 
should now be fairly obvious without any derivation. In particular, if P, 
and P, are two independent Poisson random variables with means m ,  
and m,, it should be clear that 

1. 
2. 

PI + P, is Poisson with mean m,  + m2,14 and 
P, becomes normal as m,  + x (m, > 20 is good), and Bernoulli 
as m ,  + 0 (m,  < 0.1 is good). 

The Poisson process also obeys a (limited) superposition principle in 
that a sum of independent Poisson processes is itself P o i s s ~ n . ' ~  This 
means that if the vehicle counting processes on the lanes, i, of a freeway 
are independent Poisson processes NJt) then the aggregate freeway 
counts N(t) = Z,N,(t) form a Poisson process too. 

The Poisson process arises often in practice because it can be 
generated by a superposition of many independent non-Poisson 
processes. This happens for example if each one of these processes has 
a very small probability of landing a single count in the observation 
interval [0, T) and the probability density of the landing point is evenly 
distributed in said interval. It should be emphasized that the probabili- 
ties of landing a single count do not have to be equal for all the 
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processes.” Clearly then, a Poisson process should be a good approxi- 
mation for light highway traffic whenever one can imagine every auto- 
mobile owner in the world generating a simple process whereby (s)he is 
either counted somewhere in our study period [0, T) with very small 
probability, or not at all. Inasmuch as all points in [0, TI are equally 
likely and people have the ability to be seen any time in the interval 
independently of each other, e.g., there is no congestion and there are 
no metering devices nearby, we should expect the observed realization 
to be Poisson. This is the reason why the Poisson process comes up so 
often in the study of ‘rare events’ such as accidents and lightning 
strikes. 

The superposition origin of the Poisson process also suggests that a 
realization with n points in a given interval should look as if the n points 
had been chosen at random and independently in the interval (e.g., by 
throwing darts). Obvious on physical grounds, this relationship between 
the uniform distribution and the Poisson process can also be established 
mathematically. But the mathematical route is more laborious. Hope- 
fully the above remarks will help you develop a ‘feel’ for the Poisson 
process and help you recognize when it might be used to describe a 
practical situation. 

6.1.5 Forge@lness. Interuals 

Any process with independent increments, such as the Brownian or the 
Poisson process, is ‘forgetful’ in the following sense: if one looks at the 
system at t = t,,, i.e., the present if one imagines that the parameter of 
the process is time,” then the future of such a process is independent of 
the past. This means that if one is observing a Poisson process, e.g., the 
number of airplane accidents in the U.S. as a function of time, the 
probability of observing an accident in the next time interval is unaf- 
fected by how long it has been since the last accident. 

The forgetfulness property alone can be used to derive the distribu- 
tion of the intervals between occurrences (headways) of a Poisson 
process but the following argument is more direct. Simply, let H be the 
interval following any randomly chosen observation of a Poisson process 
(at t = t , , )  and then write for the c.d.f. of H, F,(t): 

1 - F,, ( t 1 = Pr{ H > t ) = Pr{ N (  t ,, , t ,, + t = 0) = e - + ‘ ( t 2 0 ) . ( 6.1 1 ) 

The first equality is simply the definition of F,(t). The second 
equality is justified because events prior to t , ,  have no relevance, and an 
interval longer than t is equivalent to having no counts in a period of 
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duration t following t,). The last equality follows from (6.10) with i = 0. 
Note that the mental experiment underlying the definition of Pr(H > t) 
in (6.11) could consist in looking at all the occurrences of the event in a 
single realization of the Poisson process. Viewed in this manner, (6.11) 
is saying that the distribution of headways must be the same for all 
(infinite) realizations that come up.18 

It should be emphasized that H is a continuous random variable with 
units equal to ‘parameter’, and that the notation ‘t’ in (6.11) can 
represent distance or something else depending on the context. Note 
that a dimensionless combination ‘pt’ appears in the exponential of 
(6.111, as must always be the case, and that the result has no dimensions 
since it is a probability. On taking the derivative of F,(t) one finds the 
density: 

f H ( t )  = p e - p “ ( t  2 0). (6.12) 
which has units of ‘t-’‘ as any density should. Thus, if you remember 
that the p.d.f. and c.d.f. of the intervals are negative exponential func- 
tions, as this random variable is usually called, you should be able to 
write the expressions correctly by ensuring that the formulas are dimen- 
sionally correct. 

It should also be intuitive without any need for derivations that the 
mean of this random variable must be close to the ratio of the 
combined length of all the intervals found in a long observation period 
[0, T), i.e., T, and the number of intervals. To an accuracy of ‘rl the 
latter number is also the Poisson count in the interval. Because the 
standard deviation of N(0,T) only increases with TI/*, the ratio N(O,T)/T 
approaches p as T -+ x in every realization. Therefore, it follows that: 

E ( H )  = p - l  (6.13) 
and the units again come out right”. If the above argument sounds 
familiar you are right! It was used in Chapter 1 to relate the concept of 
average flow (or density) to that of average headway (or spacing). 
Equation (6.13) and the expression var(H) = ,u-’ also follow directly 
form the formulae for g,,, and -y,””. Applied to the Poisson process, 
these expressions say that both the rate and the variance to mean ratio 
of 

n 

T ( n )  = c H, 
/ =  1 

must be p- ’  . Therefore, E(H) = p - ’  and var(H) = ,I.-*. 
The forgetfulness property of the Poisson process manifests itself 

through the negative exponential distribution in the following way: the 
proportion of intervals larger than t that are themselves longer than 
t + A t  only depends on At ;  i.e., how long one waits for an occurrence is 
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independent of how long one has already waited. (This is the way it 
should be because otherwise we would have found a statistical depen- 
dence between future and past, which is impossible by assumption.) The 
validity of this assertion can be verified by writing the relevant propor- 
tion with the help of (6.11) as e-K(l+At)/e-!-’t, which is indeed just a 
function of At. As one would expect, the result is the same as if the 
prior wait, t, had been zero: e-KA1. 

A curious consequence of forgetfulness is that if we jump in the 
realization of a Poisson process at  an arbitrary time and measure the 
forward and backward time intervals to the next and last occurrences, 
the durations of said intervals, H, and H,, must each have the same 
distribution as H. On  the surface this seems like a paradox: why should 
the interval in which we land (of length H, + H,) be twice as long on 
average as a typical headway? The reason lies on the sampling method 
and can be understood if one goes back to the experiment. In defining 
the distribution of H we imagine selecting obsemations at random and 
examining the interval that followed them. In the current case, however, 
we are selecting random points and observing the interval around them. 
Obviously, this introduces a ‘length bias’ because long intervals are 
observed more frequently. For the Poisson process the effect is strong 
enough to double the mean interval length; can you demonstrate this 
algebraically? 

The effect, which arises with other processes too, illustrates the need 
for explaining carefully what one means in terms of a sampling experi- 
ment when defining a random variable. The already encountered fact 
that the average vehicular speed measured on a road depends on the 
method of observation (time-mean speed greater than space-mean 
speed) can be explained in terms of a ‘length-bias’. 

Let us now bring up another random variable (called ErZang or 
gamma) which describes the time of the Poisson process until the ith 
occurrence. This material is less applicable and can be skipped. 
Nonetheless, some readers may find it interesting to see how this family 
of random variables is physically connected to the Poisson, negative 
exponential and normal random variables, and how its properties can be 
derived with relatively little algebra. 

If E, is used to denote the time interval following a randomly chosen 
observation of a Poisson process realization until the ith observation2”, 
then using the same logic of (6.11) we can write for the c.d.f. of Ei:  

1 - FE ( t  1 = Pr{ E > t }  = Pr{N(t,, , t , ,  + t 1 < i - I} 

(6.14) 
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where the last equality follows from (6.10). Note that (6.11) is recovered 
for i = 1, as expected, since by definition E, = H. As in (6.111, p also 
appears here in the dimensionless combination ( pt). 

Note that E,  has been defined as the duration of i consecutive H’s 
and thus it is the sum of i independent negative exponential variables. 
This is the definition of the Erlang (gamma) variable sometimes found 
in books. Thus, we see from (6.2) and (6.31, and without using any 
derivations, that the mean and variance of E i  are i times those of H, 
i.e.: i / p  and i/p’. Furthermore, the central limit theorem guarantees 
that Ei becomes normal for large i (i = 20 is good). 

The density of Ei ,  f,(t), can be obtained by taking the derivative of 
(6.14) and changing its sign, or more directly by noting that it must 
satisfy the following relation: f,(t)dt = Pr( (i - 1) events in (0, t> and 
one event in (t, t + dt)}. Thus, 

(6.15) 

6.1.6 Multidirnensions 

The interpretation of the Poisson process as a superposition of many 
independent processes with a uniform (small) probability of observation 
in the interval of interest, suggests how it can be extended to multidi- 
mensions. All one has to do is imagine that these independent processes 
choose a point in a multidimensional region, R, rather than in an 
interval and that the probability of landing in a subregion A of R is 
proportional to the ‘size’ (or measure) of that subregion. 

The region R, for example, could be the relevant part of the time-space 
diagram that one would draw to represent a certain road during a given 
year, and the subregions portions corresponding to specific sections 
during specific months. (One may do this for a study of accident data.) 
Just as we associated a measure of ‘length’ with each interval in the one 
dimensional case ( t j  - t i )  we must now associate a measure L4l with any 
subregion of interest in R. If p is used to denote the proportionality 
constant of the landing probability in a subregion we can write for the 
probability of finding one observation in a small subregion AA, Pr(N(AA) 
= 1) = p/AA/ .  And this is our multidimensional extension. The indepen- 
dence of the counts on non-overlapping regions, together with some 
combinatorics, again produce expression (6.10) for large regions. In the 
current case we simply have to substitute ( t i ,  t j )  by A and ( t j  - t i )  by hl 
in (6.10). The functional form of the count probabilities, means and 
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variances is also the same if the dimensionless term p( t j  - t i )  is 
replaced by the dimensionless combination phi. 

Note that we have not said anything specific about how one would 
define the measure hi. You may think that a measure such as area 
would do the job, but this is not necessarily so. What we want is a 
measure that will be proportional to the real world probabilities. In an 
application, for example, where we are interested in the number of 
single-vehicle accidents on a long road with entrances and exists (or 
even a system of roads) it is reasonable to expect the probability to be 
proportional to the vehicle-miles traveled (VMT) in A, rather than to 
the time-distance size of A, at least if the road is homogeneous and 
driving conditions such as weather do not vary over time. Thus, L4 
should be chosen as the VMT in A. Alternatively, one can keep the 
original interpretation of A and allow p to vary within R. This is called 
an inhomogeneous Poisson process. In the accident analysis literature, 
the measure hl is called an ‘exposure’ factor because it multiplies the 
(constant) accident rate, p. A great deal of effort is spent by accident 
specialists studying exposure measures because a reliable one allows 
them to see whether the accident patterns that develop over time and 
space depart significantly from what the multi-dimensional Poisson 
process would predict. These discrepancies help identify dangerous 
locations (black spots) that need improvement. 

Another instance where one would expect a 3-dimensional Poisson 
process to be a good model of reality is for the occurrence of special 
purpose telephone calls over a residential geographic area. These calls 
could be for the request of rarely used special services such as ambu- 
lances, taxis or express package collection services. If people act inde- 
pendently and request these services very infrequently, then the super- 
position principle would guarantee the Poisson law. Of course, one still 
needs to define the measure for time-space subregions, A, but this is an 
experimental issue that must be determined by observation. For an A 
that corresponds to a time slice of small duration (e.g., 15 m i n d  and a 
given geographical sub-area one would expect the measure to be some- 
thing like the product of the population in the sub-area and the average 
regional demand in the time-slice. Models of this type have been used 
in the analysis of emergency delivery, physical distribution, and taxicab 
operation systems. 

6.1.7 The Binomial process 
This is a process with independent increments of single counts that 
arises much in the same way as the Poisson process. But now the (time 
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or  distance) parameter is discrete and is numbered, t = ... - 1, 0, 1, 2... 
Each observation act at a given time is called a Bernoulli trial. The 
process is specified by giving the probability (0 I p I 1) of a single 
count (or ‘success’) occurring in any given trial. If by analogy to 
continuous parameter processes one lets N(t, t + t’) denote the count of 
successes for trials t to t + t‘ - 1 (i.e., not including t + t’), the following 
is true: 

Pr (N( t , t  + 1) = l} = p  (6.16a) 
Pr{N( t , t  + 1) = 0) = 1 - p  (6.16b) 

which is the direct analog of Eq. (6.8) for discrete time. Thus, the 
Binomial process (sometimes also called the random walk) can be 
viewed as a sequence of Bernoulli trials with probability of success p. It 
is a simple exercise to verify that the mean and variance of a Bernoulli 
trial are p and p(1 - p). 

The following two examples involving vehicle sequences use different 
definitions of success. For vehicles lined up at a red traffic signal (i) one 
may define success as turning left, while for railcars arriving at a 
classification yard (ii) one may define it as nor being sent to a specific 
classification track. In both cases one might be interested in the average 
length of a consecutive sequence (or run) of ‘failures’ because a long 
run postpones (i) the blockage of a lane by a left turner if the turn is 
unprotected or (ii) the lost time arising from the switching procedure 
from one track to another. The length of such a run, G, is the discrete 
time equivalent of the negative exponential interval, H. It is defined 
here as the number of trials up to, and including, the first success. Some 
books define it as the number of failures. 

The c.d.f. of G is obtained by noting that G > i if and only if the first i 
trials were failures. (This is the same logic that was used in the 
derivation of H.) This happens with probability (1 - p)’ and thus we can 
write: 

l - F , ( i ) = P r ( G > i ] = ( l - p ) ’  ( i = 1 , 2 , 3  ...I (6.17a) 
Note that the range of possible values starts with i = 1.’’ The mass 

function is obtained by subtracting consecutive values of FG (or 1 - FG 1, 
and this leads to 

( i =  1,2 ,3 . )  (6.17b) 
The easy way to calculate the mean is by adding the complementary 

c.d.f. (6.17a) for all i (this shortcut formula can be used with any 
non-negative, integer-valued random variable). Because (6.17a) is a 
geometric series the answer follows from the standard recipe for such 
series; it is: E(G) = l /p .  

f,(i) = (1 - - p ) ’ - ’  - (1 -p) ’=p( l  - p ) ‘ - ’ .  
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Although the variance can also be calculated by adding a series using 
similar manipulations, an analogy to the Poisson process is used here 
instead to guess what the result must be. It should be clear that if p is 
small and we imagine that the trials are spaced 1 time unit apart, the 
binomial process will look like a Poisson process with rate p = p on a 
scale of measurement that is large compared with t = 1. Thus one would 
expect (6.17a) and (6.11) to be close approximations to each other with 
the substitution p w p,22 and the same thing to happen for the means 
and variances of H and G. It should be reassuring to see that, indeed, 
E(H) = 1 / p  and E(G) = l / p  match after the substitution. For the 
variance, the formula corresponding to var(H) = l/p2 is var(G) = l / p2 ,  
but this can only be correct for small p since var(G) must be close to 0 
for p + 1. In this case the probability of a run of failures longer than 1 
is negligible, and the geometric variable is like a Bernoulli trial. Its 
variance should be p(1 - p) = (1 - p), for p --f 1. The simplest 
expression that varies like (1 - p) for p + 1 and like l / p 2  for p + 0 
is (1 - p)/p2. This guess is in fact the correct expression for vadG). The 
same expression can also be readily obtained from the Brownian inver- 
sion formulae by repeating the steps used earlier to find the variance of 
the negative exponential distribution. Can you do it? 

The random variable N(t, t + n), representing a count in n trials, is 
called binomial and denoted B, for short. In the above-mentioned two 
examples, the binomial random variable can be used to study the length 
of a left turn pocket (if one wishes to segregate left-turning cars out of 
the through lane) or the length of a classification track to avoid 
overflow23. The probability that n trials result in a specific ordered 
sequence of i successes and (n - i) failures is p'(1 - P)"-~.  This is true 
independent of the order. We know from combinatorics that there are 
n!/i!(n - i)! different such sequences-this is the number of combina- 
tions of i specific positions from n possible slots. Thus, the aggregate 
probability for all possible sequences is the familiar formula: 

Let us now see what can be said about this distribution from its 
physical relationship to our stochastic processes, without any mathemat- 
ics. First B, is a sum of n independent Bernoulli trials B,, whose mean 
and variance were p and p(1 - p). Therefore, E(B,) = np and var(B,) = 
np(1 - p). Furthermore, for large n the distribution function must be 
close to the normal distribution with the same mean and variance by 
virtue of the central limit theorem. This approximation works well if the 
tails of the normal distribution function do not extend much out of the 
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range [0, n]; i.e., if 3(np(l - p))1’2 s min(np, n(1 - p)). Finally, for the 
case with low p (p - 1/20 is very good) the binomial distribution can be 
approximated by the Poisson distribution with the same mean. The 
reason is the same as that used earlier to justify the approximation of G 
by H. 

The random variable denoting the number of trials until the ith 
success is called negative binomial, but we do not examine it here 
because it does not arise much in applications. Its mass function can 
either be derived from the binomial p.m.f., much as the gamma density 
was derived from the Poisson, or directly from combinatorial arguments. 
Since it is a sum of i independent geometric variables its mean and 
variance are i times larger than those of G, and it will tend to the 
normal for large i. Can you guess what distribution it will resemble for 
low values of p? 

6.1.8 Simulation 

This review of applied probability ideas is ended here with a description 
of simulation; i.e., the act of generating artificial data with a computer 
to mimic a real life (stochastic) process. Although whole courses can be 
given on this subject, its basic principles are so simple that they can be 
summarized in just a few pages. This knowledge should suffice to write 
simple simulations and interpret their results. The author believes that 
running simple simulations is important because such an exercise can 
solidify one’s understanding of previously introduced, abstract concepts 
such as ‘realization’, ‘relaxation time’ and ‘index of dispersion’; it should 
also help with concepts not yet introduced, pertaining to data interpre- 
tation and statistical theory. 

The art of simulation consists in taking a real world system and 
reducing it to a set of variables that are tracked over time. This set of 
variables, which shall be called the state, must contain at any given time 
(the present) enough information to make the state’s future evolution 
statistically independent of the state’s history.24 Then, the computer 
only has to keep the state of the system in memory, updating it as time 
is advanced. No other information about the system needs to be kept. 

In general, the state of a system is not uniquely defined, and one can 
choose to simulate at various levels of detail. The trick is to choose the 
simplest, relevant state representation. To achieve relevance, the state 
of the system must include one (or more) variableh) from which one 
can calculate the desired figureb) of merit. Simplicity is important 
because it reduces the need for gathering input data, simplifies the 
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programming task and minimizes the chances that data/programming 
errors will corrupt the final results. Simplicity also facilitates the inter- 
pretation of results. 

A simulation produces a stream of numbers that in the end must be 
summarized into one or just a few figures of merit. Such results do not 
reveal completely how the solution depends on the parameters of the 

The significance of this fact was mentioned in Chapter 3, 
where numerical and analytical optimization approaches were com- 
pared. The issues are the same now: one cannot expect computer 
simulations to yield insight into the way a system should be manipulated 
to achieve a specific goal. Instead, the role of simulation should be that 
of an evaluation tool, able to discriminate among a few well defined 
system configurations. [Although a great deal of effort has been in- 
vested to date on simulation models of freeways and arterial surface 
street networks, it seems fair to say that the impact these tools have had 
on improving ramp metering or signal optimization policies has been 
small; see Chapter 51. 

Once the state of the system has been defined, developing the 
simulation is easy. We need to produce a program logic that will change 
the state of the system and update a ‘clock’ according to the rules 
prevailing in the real world. In the simulation jargon the resulting state 
changes, occurring at an instant of time, are called euenfs. Thus the 
program logic must specify for every possible state which events are 
likely to occur next, and when. When the rules are not deterministic, 
the simulation program must have a way of duplicating the random 
experiment taking place in the real world. This can be accomplished by 
generating random numbers with suitable distribution functions with 
the computer. Although the mechanism that generates the numbers is 
deterministic, the sequences can be made to have all the statistical 
properties one would expect of ‘true’ random numbers. 

To see how these ideas can be put to use let us consider a single sever 
queue with FIFO discipline (see Chapter 2) to which customers arrive 
as a stationaxy Poisson process with rate A. We assume that the service 
times are mutually independent and identically distributed random 
variables, and that the arrival and service mechanisms are both, inde- 
pendent of each other and independent of everything else that may be 
included as part of the state. Our goal is determining the steady state 
average waiting time for this system. 

The advantage of choosing such a simple system for our simulation is 
twofold: (i) one can construct and run the simulation in less than 5 
minutes, with access to a computer spreadsheet, and (ii) the output can 
be compared with the exact analytical solution, which is known. In this 
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way one can experience in a short time all the steps of building a 
simulation and interpreting its results. The difference in more compli- 
cated cases only lies in the conventions of the particular language 
chosen for the application. 

For our particular problem the number of customers in the system at 
any given time should be part of the state. Events connected with this 
definition of the state would be customer arrivals and departures. We 
know that the occurrence of an arrival in the immediate future after a 
time t,, is independent of anything that might have been observed in the 
past by assumption, because the Poisson process has independent 
increments. The occurrence of the next departure, however, not only 
depends on the state (whether the system is empty or not) but also on 
the amount of time that the current customer has been in service. 
Therefore, this elapsed service time (or a proxy thereof) should also be 
part of the state. Consideration of our assumptions shows that the pair 
of variables, ‘number of customers in the system’ and ‘elapsed service 
time’, is a proper state because any changes to these two variables in 
(to,  t,, + 40 are independent of events prior to t,,. 

Sometimes the logic of a simulation can be simplified if some auxil- 
iary variables are introduced in the state, provided the new variables do 
not introduce dependences with the past. In our case it is convenient for 
spreadsheet implementation to include as part of the state the service 
times of all the customers in the queue, or equivalently their projected 
departure times. One can then step through time one customer at a 
time, recursively calculating their departure times. The logic of our 
simulation is based on the observation that a customer’s departure time 
is the sum of its service time and the (clock) time when its service 
began; the latter being the latest of its arrival time or the departure 
time of the previous customer. 

Letting A,  and D, be the arrival and departure times of customer n 
according to the clock, and S, its service time, we can write: 

D,, = S, + m a {  A ,, ; D,, - I }  ( n  = 1 , 2 .  . . ) (6.19) 

assuming that successive customers are numbered in order of increasing 
n and that D,, is given. In order to iterate (6.191, ways of generating the 
A, and S, are needed. The A,, obey the recursion. 

A ,  =A, ,  - + H,, (n = 1 , 2 . ,  . I  (6.20a) 

A,,  = 0 (6.20b) 

where the headway of customer n, H,, is a negative exponential random 
variable which, like S, ,  is independent of everything else observed. A 
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Figure 6.2 The inverse c.d.f. method for generating random numbers. 

method for generating observations from a random variable with an 
arbitrary distribution function would allow us to generate the desired 
data. 

The inverse c.d.f. method described below is quite general although 
not always easy to implement. It assumes that the user can generate 
random draws, U, from a continuous random variable that is uniformly 
distributed between 0 and 1. Most computer languages have functions 
that return a random U when called; the function @RAND in most 
spreadsheets is an example. In many cases it is also possible to select 
from a menu of often used distributions, but we prefer here to stick to 
fundamentals. 

To generate a random draw, xi ,  from a random variable with c.d.f. 
F(x) one simply takes a draw, u i ,  from U and then finds the xi  that 
satisfies F(xi) = u i  as in Fig. 6.2. The relationship between random 
variables and U and X is: 

X = F - ' ( U ) .  (6.21) 

That this is a proper recipe is seen by noting that a draw of U can be 
below the horizontal dashed line of the figure (U < ui} if and only if the 
corresponding value of X is to the left of the vertical dashed line 
{X < xi) .  Since these two events have the same probability we can write, 
Pr {X I xi} = Pr {U I ui} = u i  = F(xi), which establishes that F(x) is the 
c.d.f. of X. 
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EXAMPLE: SIMULATING A QUEUE 

Poisson arrival rate (cusdsec) = 

Service time range (sec) = 

RESULTS 
Avg. delay = 3.76 secs. 
Sd. delay = 2.29 secs. 

Customer # Arrival Headway Arrival Time Service time Departure Time Dwell Time 

0.3 
2 

0.5 
Service time mean (sec) = 

1 0.00 0.00 2.14 2.14 2.14 
2 0.95 0.95 2.05 4.19 3.24 
3 0.85 1.80 1.87 6.06 4.26 
4 8.29 10.09 I .I9 11.88 1.79 
5 0.93 11.03 2.23 14.11 3.08 
6 1.68 12.71 2.04 16.15 3.43 
7 1.01 13.72 1.82 17.97 4.25 

Example and discussion: Let us see now how the above-mentioned 
simulation can be implemented in a spreadsheet. The result of this 
process is displayed in Fig. 6.3. 
As a prelude to the explanation, let us first derive a spreadsheet 

formula that generates a negative exponential draw with mean ,I-’, 
assuming that the arrival rate is stored in cell ‘D3’. In this case the 
curve of Fig. 6.2 is: u = 1 - exp {-Ax) for x 2 0; see Eq.(6.11). This 
equation can be solved for x to yield: x = - ( l / A )  In (1 - u) for 0 I u 
5 1. Hence, the solution implied by Eq.(6.21) becomes: -(1/$D$3) * 
@LN (1 - @RAND). Because (1 - U) is also a uniform variable it is 
more elegant to write: 

- @LN(@RAND)/$D$3, (6.22) 
which is the desired formula. 

Let us also see how a random variable with a uniform density in the 
interval [m k r/2] can be generated. (This procedure will be used for 
the service times.) We assume that the value of m is contained in cell 
‘D4’ and the value of r in cell ‘D5’. In this case the c.d.f. is u = 0.5 + 
(x - m)/r for x E [m k r/2]. Solving for x we find the intuitive result: 
x = m + r(u - 0.5) for 0 5 u 5 1. The formula in our spreadsheet would 
thus read: 

$D$4 + $D$5 *(@RAND - 0.5).  (6.23) 
We are now ready to write the simulation. In the implementation of 
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Fig. 6.3 it is assumed that the service times are uniformly distributed. 
Rows 1 through 6 contain labels and data, with cells D3, D4 and D5 
reserved for the numerical inputs of the procedures that have just been 
described. Rows 7 through 10 are reserved for result summaries, and 
rows 11 through 13 for labels of the spreadsheet’s columns. Column A 
contains the customer number n, column B formula (6.22) for the 
arrival headway H,, column C formula (6.20a) for the arrival time A,,  
column D formula (6.23) for the service time S,, and column E formula 
(6.19) for the departure time D,. To keep track of the customer waits 
we include a column (F) with a formula for D, - A,,. 

Rather than erasing the information for each customer once it has 
been calculated with a ‘macro’, it is easiest to keep it in memory. All 
one has to do is copy the second or third row of the spreadsheet over a 
range including as many rows as customers. In the implementation that 
has been made available to the public (as spreadsheet QUEUE.WK1) 
1000 customers were simulated and the mean and standard deviation of 
our last column were written to cells B8 and B9. 

It is instructive to plot A ,  and D, vs. n and see how these curves 
change with each ‘recalculation’. One such picture is displayed in Fig. 
6.4 for a range of 50 customers.” A recalculation, is equivalent to 
observing another realization of the process with new draws for all the 
random variables, i.e., viewing another day under the same initial 
conditions. 

For the input data of Fig. 6.3 the relaxation time is on the order of 
lo2  secs, or approximately 30 customers, which is much less than the 
lo3  customers simulated. Thus, we would expect the simulated average 
delay (3.76 secs) to be representative of the true mean. The result, 
however, does not match well the prediction of Eq. (2.13) (2.5 secs.) for 
the choice of A that corresponds to our Poisson input and regular 
service process ( A  = 0.61.’’ The discrepancy is not due to statistical 
error in the simulation, which will be shown in Sec. 6.2.3. to be less than 
+0.3 secs with high probability, but to the approximation in the 
theoretical formula which is usually comparable with the average ser- 
vice time (2 secs in our case). The exact result for this problem is 
actually 3.5 secs, which is within the error range of the simulation.28 
Repeated recalculations of the spreadsheet reveal that the simulated 
average delay indeed fluctuates about the theoretical mean. Thus, we 
have successfully simulated a queue! You may now want to change the 
input data and repeat the exercise with p -+ 1. You will find that as the 
relaxation time approaches the length of observation (about 2000 secs) 
the simulated values underpredict more and more drastically the theo- 
retical equilibrium average. This occurs, because the system has not had 
the time to ‘forget’ that it started empty. 
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Figure 6.4 Graphical result of a simulation r u n .  

The same spreadsheet can be used to simulate a queue in which the 
arrival process follows an underlying schedule subject to uncertainty. 
These processes do not have independent increments and therefore the 
approximate queueing expressions (2.12) and (2.13) no longer apply. For 
regular schedules the variability in the counts N(t, t’) when (t‘ - t) is 
large is much less than for processes with independent increments and 
equally variable headways. Therefore queues and delays are also much 
smaller. This can be verified with our simulation if we interpret column 
B as ‘lateness’ relative to the schedule and then include in the cells of 
column C a formula with the sum of the scheduled time for the 
customer and the corresponding cell of column B. For a homogenous 
schedule with the same arrival rate as before the formula for cell ‘C15’ 
should read: + B15 + A15/$D$3. The reader is encouraged to make 
this change and note the remarkable difference in the results of the two 
spreadsheets for p = 1. 

6.2 Data interpretation 

This section reviews those aspects of statistical theory that are most 
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relevant to the study of transportation and traffic operations. Whereas 
the theory of probability/stochastic processes is concerned with the 
evaluation of event frequencies given an underlying probabilistic model, 
the goal of estimation is the opposite. One is normally given some 
observations, or sample data, and from these one must guess (estimate) 
an underlying feature of the real world. 

It goes without saying that the first step in a statistical study must be 
to define unambiguously the quantity or quantities to be estimated. Yet, 
perhaps because certain definitions of world quantities are ambiguous 
in subtle ways this is not always done, even in published works. There- 
fore, the importance of thoroughly looking at the question that is being 
asked before embarking in a statistical study cannot be stressed too 
much. Questions are sometimes improper because they do not specify 
the population of interest in cases where the answer depends markedly 
on it; two examples of this type are: ‘what is the average car occupancy 
in Berkeley in a typical day?’ and ‘what is the average speed on San 
Pablo Ave?’. The first question is improper because car occupancy may 
depend on trip length. Therefore, the ratio of all the person-trips to 
car-trips made in Berkeley will in general be different of the ratio of 
person-miles to car-miles. The second question is improper for the same 
reason: it does not specify whether the average is taken across all 
drivers using the street in a day or across all driver-miles driven in the 
street. A properly defined statistical goal often has the added benefit of 
suggesting an experimental approach to sampling, e.g., whether passen- 
ger/car counting stations along a freeway corridor should be placed on 
the entry ramps or on the freeway links. 

Because data gathering schemes are problem-dependent they can 
only be described partially. This will be done later, in Secs. 6.3 and 
Chapter 7, when addressing particular problems. The goal of the cur- 
rent section is only to present some elementary methods for estimating 
the average of a properly defined quantity whose experimental measure- 
ments fluctuate. The fluctuations could be due to measurement error, 
real world variations in the quantity, or both. Section 6.2.1 will intro- 
duce the main ideas, stressing situations with non-independent observa- 
tions. Section 6.2.2 shall then discuss an application to the observation 
of queues and Sec. 6.2.3 some accuracy issues. 

6.2.1 Estimation Concepts 
For the remainder of this section we show how one can estimate the 
mean, 8 ,  of a random variable, X, recognizing that the observations of 
X may be correlated. 
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Let us consider a sample of N observations (n = 1, 2...N) {x,}, and 
write for each of these: 

x,I = 8 + E,, 

where 8 = E(X). Note that only the term x, of this relation is observed. 
The 'parameter' 8 is fixed but unknown, and E ,  is both variable and 
unknown. The latter varies across observations, and in so doing fluctu- 
ates around zero. Accordingly, one can take the view that each x, is a 
measurement of 8 with error E , .  

We can think of a sample as a multidimensional random variable 
{X,) that takes a numerical value {X,) when one goes to the field and 
assembles the data. The sample mean X = 2, X,/N (or any other 
function of the data) can likewise be considered as a random variable 
since its value would change across data sets; in other words, the 
particular value happening for our data set is simply an outcome of this 
random variable. In statistics, a random variable such as ?z that is used 
to estimate an unknown parameter is called an estimator; and its 
specific value for the sample at hand an estimate. A good estimator is 
one that produces estimates close to 8 for most samples. This will 
happen if its mean is 0, when the estimator is said to be unbiased, and 
its variance is small. Let us now see how the mean and variance of 
can be evaluated. 

If one can write 8 = E(X,) for all the observations in the sample, as 
would be the case if the X, were identically distributed, then the sample 
mean turns out to be an unbiased estimator for 8. This is true because: 

E ( X )  = E(C,,X,,/N) = C,E(X,)/N = 8, (6.24) 

where the linearity of the expectation operation (6.2) justifies the 
second equality, and the definition of 8 as the average of each X, is the 
basis for the third one. If the observations X, can be assumed to be 
mutually independent with the same variance u 2 ,  as would be the case 
if they were counts of a stationary process with independent increments, 
then the variance of X follows from (6.3) in a similar way: 

- 1 U 2  
var(X)  = C,, var(X,) = 7. 

N 
(6.25) 

Under these conditions we also expect to be normally distributed 
for large samples because of the - _  central limit theorem. This means that 
the absolute estimation error in X, IX - 81, should be less than 2a N-'12 
for most samples, and that the quantity a N - ' / '  can be interpreted as a 
typical or standard error." 
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6.2.1.1 Correlated samples 
The typical error may be larger or smaller than UN-''' if the observa- 
tions in our sample are not independent. This might come about for 
example if one takes measurements of a steady state queue (e.g., its 
length) at time intervals that are closely spaced relative to the relax- 
ation time. It should be easy to appreciate that in such an example 
observations will tend to be serially correlated, with large observations 
usually followed by large observations and viceversa. Because (6.3) does 
not apply in such a case, a correction to (6.25) is needed. Equation 
(6.24) on the other hand still holds true because (6.2) does not rely on 
independence. Thus, is unbiased but its variance needs to be de- 
termined.. 

To this end note that if the unknown constant 0 is subtracted from 
all the data the means of % and X, become zero but var(X,) and vad% 
= var(% - 0 )  remain the same. Therefore, we can assume that 8 = 0 
in a general derivation of var(X), and the result still is the variance of 
the error in the general case. For zero mean, a variance is the average 
of the squares and we can write: 

After expanding the product of the sums appearing in the last 
member of the above equalities, and remembering that the average of a 
linear function is a linear function of the average, we find: 

(6.26) 

If the expectations in (6.26) only depend on the difference between m 
and n, as if the sample was obtained by sampling at regular intervals a 
stationary process, the following series of unknown constants can be 
defined: 

E ( X , , X , )  = cI = u'pI ( I  = m - n )  (6.27) 

where the pI are dimen~ionless.~" For the present case, where E(X,) = 
E(X,) = 0, these constants are called correlations and the products 
c ,  = a$, couan'ances. It should be clear that po = 1 and that pI and p- l  
must be equal. It also turns out that c ,  = pI = 0 when X, and X, are 
inde~endent .~ '  

In applications where p ,  is negligible if 111 is greater than some 
integer I, Eq.(6.26) can be rewritten as follows when the sample is so 
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large that N/I >> 1:32 

where R is used to denote the sum of the correlations: R = Z, p , .  Note 
that it is consistent with (6.25) because for independent variables R 
= 1. 

In practical applications one is unlikely to know the quantities a 2  
and/or R appearing in (6.25) or (6.28). Therefore, we now explore the 
consequences of using certain guesses in their place. Let us take up first 
the case of an identically distributed sample without correlations, where 
p ,  = 0 if 1 # 0, and again imagine that 8 = 0. Then (6.26) becomes: 

where X denotes one generic observation of the sample. The third 
member of these equalities can be evaluated approximately for large N 
by inserting the square of each sample value in place of each expecta- 
tion. The central limit theorem then guarantees that the approximation 
to the bracketed expression (i,e., the arithmetic average of the sample 
squares) is close to E(X2), and thus that the result is close to the fourth 
member of the above equation. Therefore,: 

(for large N ,  and 8 = 0) 

In the general case with 6 # 0, x, should be replaced by (x, - 8) in 
the above expression. And since 6 is unknown, 6 too should be 
replaced by the sample estimate, X = 8. Thus, we can use: 

N 

v a r ( g )  = 4 { & C ( x , ,  . (for large N a n d  8 =  0) (6.29) 
t i =  I 

The term in braces, usually denoted by the symbol S2, is called the 
sample variunce. Although S2 varies across samples, we have just seen 
that it will likely be close to (T' when N is large. 

If there are sample correlations, a guess for the correlation sum R 
appearing in (6.28) is also needed. We study here the case where the 
correlations have a limited range, p ,  = 0 for 111 > I, and where the 
sample is so large that N/I >> 1. As before, one can estimate the 
covariance c ,  from the average of the relevant products in our sample; 
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i.e., by: 
1 N - l  

S[ = ~ x ,  - X > ( x , + ,  -X> = ci (for large N -  I )  (6.30) 

where the substitution 8 - f has already been made in this expression. 
(Note that so = S 2 . )  If cr2R is now approximated by the sum of the 
relevant s ,  we can write: 

v a r ( X > =  [ f: s , ] / N  ( fo rN/ I>>I ) .  (6.31) 

In this formula the quantity in brackets may vary across samples 
significantly if N/I is not large.33 Thus, one should limit to the extent 
possible the number of terms included in the numerator of (6.31). 
Improved estimates of var(X) can be obtained if p ,  is known to have a 
particular functional form (e.g., exponential) and the theories of time- 
series analysis and filtering can be useful in this respect. 

If you are going to analyze time-series data, it is also useful to 
develop a feel for the ‘look’ of data sets with various levels of (auto) 
correlations and how these translate into increased errors. To this end, 
Figs. 6.5, 6.6 and 6.7 depict three data sets arising from a model with 
E(X,) = 0 ,  var(X,> = 1 and p I = p l  (for p = 0 ,  0.4 and 0.8). The 
figures also apply to other values of E(X,) and var(X,) if we just 
imagine the ordinate axis to give the data in terms of number of 
standard deviations away from the mean. In comparing the time series 
data (part (a) of each figure) we see that as p is increased the data tend 
to carve out a narrower swath on the picture. Similarly, when we look at 
the lag-1 scatterplots (part (b) of each figure) we also see that the 
observations tend to bunch more closely around the diagonal for the 
higher p’s .  For our particular form of the auto-correlations the correla- 
tion sum is R = Z, p ’  = (1 + p ) / ( l  - p ) ,  which yields R = 1, 2.33 and 5 
for each one of the figures. This means that correlations such as those 
seen in Fig. 6.6 increase the standard error in j2  by a factor of (2.33)’/* 
= 1.5 and those of Fig. 6.7 increase it by a factor of 5]12  = 2.2. 
Alternatively, for the same level of accuracy, one would have to increase 
the sample size by factors of 2.33 and 5 respectively. These results 
indicate that effect of correlations should be insignificant if the ‘eye’ 
cannot see them.34 

( N - Z )  n =  ‘( 1 

l =  - I  

6.2.2 Illustration: observation of stationary processes and queues 
This subsection may be skipped on a first reading. It shows that if a 
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Figure 6.5 Identically distributed serial observations with zero correlation: 
(top) ‘time’ series; (bottom) lag1 scatterplot. 

stationav stochastic process in continuous time {X(t>) is observed for a 
fixed amount of time T, then the sample variance of N evenly spaced 
observations, (X, = X(nAt>} where n = 1,2 ... N and A t  = T/N, ap- 
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proaches a non-zero limit as N + x and At + 0. This means that the 
mean E(X) of a stationary process cannot be estimated arbitrarily 
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accurately by just increasing the sampling frequency if the period of 
observation is fixed. The estimation error can be reduced as much as 
desired by increasing N for a given I t ,  however. A formula for the 
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C H A P T E R  S E V E N  

Scheduled transportation 
systems 
Let us now turn our attention to ‘scheduled transportation systems.’ By 
this we mean systems with fixed routes and schedules whose moving 
components are operated by an external authority. Examples are sub- 
ways, airlines, the postal system, railroads, and shipping lines. Agency- 
operated systems with flexible routes and schedules such as ambulances, 
taxicabs, paratransit and couriers are not discussed here. ‘ 

Scheduled systems should be further classified as being either passen- 
ger or freight conveying because the items using the system (e.g., 
people, parcels, containers, etc.) choose their own routes in the first 
case but not in the latter. For freight transportation systems the 
external authority typically chooses the routes and schedules of both the 
vehicles and the items, and its overall goal is well defined: e.g., minimiz- 
ing the overall logistics cost for a given transportation task. Optimiza- 
tion techniques can then be used for system design and control. For 
passenger transportation the situation is more aptly described as a game 
in which the authority chooses the system structure, and then passen- 
gers find their best individual routes and times of departure. Involving 
numerous players, the authority’s overall goal is more difficult to 
quantify in this case, and the system design/control game is just as 
complicated as for unscheduled transportation modes (see Sec. 5.5). 
Therefore, one needs to watch out for the same type of pitfalls. 

As in the case of unscheduled transportation modes, it is beyond the 
scope of this book to examine the overall structure of these systems. 
Now too, only an elementary description of the system’s basic building 
blocks will be given. This will be accomplished rather briefly because all 
the relevant methodologies (time-space diagrams, cumulative plots, 
simulation, etc.) have already been introduced. 

The presentation is further abbreviated by not covering issues that 
are simple extensions of things the reader already knows. Most notably, 
the chapter does not describe recipes for estimating the vehicular 
capacity of a right-of-way or the feasibility of a schedule because the 
details vary greatly from mode to mode and an elementary application 
of the time-space diagram readily yields the desired results in almost all 
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cases.’ This is true, for example, if one wishes to determine the 
maximum vehicular flow that can be accommodated by a link or series 
of links when vehicles must undergo certain motions (e.g., stop at 
certain location for specified time duration) while satisfying the particu- 
lar minimum separation rules of the system in question. This would 
have to be done in order to find the maximum number of BART trains 
that can operate per hour on a given route, the maximum number of 
airplanes that can use an airport runway for both landings and depar- 
tures, and the maximum number of ships that can move through a 
system of locks. The (t, x) diagram is also useful to determine whether a 
particular timetable satisfies the safety requirements. This was illus- 
trated in Sec. 1.3.3. with an example that showed how to develop a 
two-way schedule on two ‘single track‘ links connected by a two-way 
‘siding.’ 

In view of this, this chapter only describes how passengers/freight 
interact with a scheduled system, and what an agency must do to 
operate on a chosen schedule. Only simple systems in which route 
choice is not an issue are treated. The chapter also introduces some 
basic ideas on control, design and evaluation that the reader may find 
intriguing. Section 7.1 examines customer waits caused by the discrete- 
ness of a schedule. Section 7.2 shows how the number and size of the 
vehicles on a multi stop route should be chosen in order to achieve a 
given service frequency, and then explains why, when and how it is 
necessary to build a fair deal of ‘slack’ into the schedule. Section 7.3 
shows how the necessary performance parameters may be estimated 
from data, and Sec. 7.4 discusses some design and evaluation issues. 
Rather basic, the latter ideas also apply to unscheduled transportation 
systems. 

7.1 Passenger waiting time 
This section considers the time spent waiting by the items using a 
scheduled transportation system. It shows for example that the average 
passenger waiting time at a stop with stationary arrivals and uneven 
headways is always greater than one half of the average headway. The 
discussion is usually phrased in terms of ‘passengers,’ ‘buses’ and ‘bus 
stops,’ as in the above statement, but it should be remembered that 
everything said applies to other transportation modes if these words are 
replaced by pertinent ones, for example ‘containers,’ ‘ships’ and ‘ports.’ 

In addition to waiting, a customer’s trip usually includes some in- 
vehicle travel and some access (walking). The in-vehicle travel time is 
not studied now because it is just a weighed sum of the vehicular trip 
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times between relevant stops, which will be discussed in Sec. 7.2. The 
access time is not examined separately either because it is related to the 
location of the stops much as the waiting time is related to the 
schedule,3 and because it can be calculated easily if the distribution of 
the population along the line is given. The waiting time on the other 
hand involves enough complicating issues, e.g., deviations from a sched- 
ule, transfer passenger waits and schedule coordination, to deserve a 
more detailed treatment. 

Before starting the technical discussion it should be noted that the 
observed wait at a passenger’s inbound stop and any transfer points 
does not include any delay that the passenger may accrue at the 
destination because the bus does not arrive there exactly when the 
passenger wants. Although important this ‘exit’ delay is often ignored in 
passenger transportation studies because (i) travelers cannot be observed 
easily after leaving the system, and (ii) they usually prefer not to wait 
for their scheduled activity at the exit bus stop. Transit patrons may 
avoid exit delays if the activity at the trip end does not require a precise 
arrival time; e.g., for the trip to work of an employee that has ‘flex-time’ 
or  the reverse trip home if the worker does not have scheduled activities 
such as picking up children from the nursery at a specific time. Other- 
wise we would expect this ‘exit’ delay to be comparable with a headway 
and similar to the inbound ‘waiting’ experienced by passengers that do 
not know the schedule.‘ 

Waiting time for uninformed passengers: The formula for the mean 
(inbound) waiting time can be derived with the help of the cumulative 
count diagrams of Fig. 7.1. The top part of the figure displays the special 
case where the passengers arrive at a constant rate A,  without fluctua- 
tions. Arrows on the time axis display the bus departure times and the 
headways {hk}. This construction ignores the bus loading time, and 
assumes that nobody is left behind after a bus departure. This is why 
the departure curve increases in steps at the times indicated by the 
arrows all the way up to the arrival curve. 

The total waiting time, e.g., in passenger-hours, accumulated in the 
time period corresponding to the first ‘ K  headways can now be written 
as the sum of the triangular areas in the figure; i.e.: 

where T denotes the duration of the period, T = Xkhk .  Similarly, the 
total number of passengers served, N(T), can be expressed as: 

K 

N ( T ) =  Ah, 
k =  I 

(7.2) 
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Figure 7.1 
arrival rate; bottom: variable arrival rate. 

Cumulative curves of passenger count at a bus stop. Top: constant 

The average waiting time of the observed patrons, W is given by the 

$ = SC - k h? k I E . k h k .  (7.3a) 
ratio W(T)/N(T); i.e.: 

Note that it is independent of A. 
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If an over-bar is used to denote the arithmetic mean, then (7.3a) may 

iT = + [ h ’ / Z ] .  (7.3b) 

And since the average of the squares is the sum of the sample variance 
and the square of the average we can also write:’ 

(7.4) 

also be written as: - 

w = ;[z + s:/Th] 2 $, 
where S t  is the sample variance of the (h,]. This shows that W can equal 
g h  only if S i  = 0; i.e., only if the service is perfectly regular with h,  = 
h. 

An explanation for inequality (7.4) may be found in the fact that 
longer headways entrap more passengers and therefore must receive a 
larger weight in the computation of average wait. This is yet another 
example of the so-called ‘length-biased sampling’ mentioned in earlier 
chapters. The length-bias effect is one of the reasons why transportation 
agencies and firms try to operate on regular schedules. 

It will now be shown that the same formulas apply to the average wait 
across many observation periods (e.g., days) despite fluctuations in the 
arrival process, provided that this process is stationary in the observa- 
tion interval of interest, ( to,  to  +TI. To this end, consider Fig. 7.1 
(bottom), which shows by means of a curved line a realization of the 
process on one day, and by means of a slanted dashed line its average 
across many days. Let us also use N(t,, t ,)  to denote a random variable 
that gives the number of arrivals in a given time interval ( t , ,  t,) for 
every realization (day). As before, W(T) and N(T) are used for the 
(random) total wait and total number of passengers in the complete 
observation interval, ( to ,  t o  + TI. We stress that both W(T) and N(T) 
may vary from day to day but that they are deterministically related to 
the arrival curve. In particular, W(T) can be expressed as the sum of the 
areas of horizontal slices of the cumulative count diagram such as the 
shaded region on the bottom part of the figure. This area, which 
corresponds to the arrivals in (t’, t’ + dt), is: 

(7.5) 
where d t ’ )  is a function that gives the waiting time that would be 
experienced by an arrival at t = t’. This function is a property of the 
schedule and is not random; the only part of (7.5) that varies from day 
to day is N(t’, t’ + dt). Therefore, W(T) is the following linear combina- 
tion of the random counts: 

1- 

area of slice for (t’, t’ + dt) = w(t’)N(t’, t’ + dt) 

(7.6) 
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and N(T) is also linear in the counts: 

(7.7) 

The linearity of the expectation operation (6.2) allows us to replace 
the N(t’, t’ + dt) in these formulae by their averages, which equal hdt, 
in a calculation of the averages of W(T) and N(T) across many days. 
This, of course, is the same as replacing the realized arrival curve by its 
straight-line average across days in the computations, which would yield 
(7.1) and (7.2) again. If we now denote by E(w) the expected wait of a 
randomly selected passenger, i.e., the ratio of the total wait after an 
infinite number of days to the total number of passengers served, we see 
on dividing the numerator and denominator of this ratio by the number 
of days that E(w) is also the ratio of the expectations of W(T) and N(T). 
Therefore, (7.3) and (7.4) still hold for the expected wait of a randomly 
chosen passenger. 

In the above derivation the assumption of stationarity was only used 
to replace N(t’, t‘ + dt) by hdt in (7.6) and (7.7). In a general case one 
would simply have to replace it by the time-dependent expectations, 
A(t)dt, which again would be equivalent to replacing the solid curve in 
Fig. 7.1 (bottom) by its average across many days and repeating the 
construction of the figure. This means that the average delay in the 
general case can be calculated rather simply and without much input 
data. For example, in the special case where h(t)  vanes slowly from 
headway to headway and where the headways are similarly distributed 
during the day, it turns out that (7.4) still holds approximately, even if 
the total variation in A during the observation period is very large.6 

The c.d.f. of the waiting time across all customers, F,(w), can be 
obtained from the given schedule and h(t) by evaluating the fraction of 
all the customers that arrive at a time for which the wait does not 
exceed w. If the expected demand rate is independent of time, this 
fraction equals the proportion of the time during a long observation 
interval in which an arrival would wait w or less. This happens for a 
time w inside headways longer than w, and for the whole duration of the 
headway in headways shorter than w. Therefore, the total time is 
C,min{w, h,}, and F,(w) is: 

F, (w)  = Lk min{w, h k l / C k h ,  (7.8) 

if the expected demand is stationary. 
It has been assumed so far that vehicles are large enough to accom- 

modate everyone who arrives in any headway. If overflows due to 
fluctuations arise from headway to headway, the relationship between 
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W(T) and N(T) and the arrival counts is no longer linear and the delay 
for a realization with typical fluctuations will tend to be larger than the 
delay without fluctuations. This statement should not come as a surprise 
after our discussion of the (analogous) traffic signal problem with 
fluctuations given in Sec. 5.2.’ 

Advertised schedules: For scheduled transportation systems with in- 
frequent service, such as airlines, the observed wait can be reduced 
greatly by advertising the schedule and sticking to it. Passengers and/or 
freight may then choose to arrive just in time to meet their vehicle.8 It 
is shown below that if passengers choose their arrival times so as to 
minimize their wait, then their average waiting time is proportional to 
the average vehicular deviation from the schedule. This general result 
explains the importance of transportation service punctuality. 

It is assumed in the explanation that vehicles are not allowed to 
arrive before their scheduled time and that the deviations from the 
schedule can be modeled as draws from a random variable S ,  called the 
schedule lateness. As we shall see in Sec. 7.2, the lateness of successive 
departures at a given stop tend to be negatively correlated, and this will 
be taken into consideration. It is also assumed that S never exceeds the 
length of a scheduled headway and that its density function, fsO, is 
non-increasing; i.e., that longer latenesses are less probable than short 
ones, as shown in Fig. 7.2. It is finally assumed that each passenger 
chooses an arrival time T in a scheduled headway [0, hk] so as to 
minimize his/her expected wait, E(w(T )), taking into account the possi- 
bility of missing the ‘bus.” In order to stress that this expectation is a 
function of 7 ,  it will be written w,,~(T). 

Let us now see how to determine the chosen T by looking at the 
derivative of w,,~(T) in the usual way, and then evaluate the correspond- 
ing wdYg. A perturbation argument is used to write this derivative 
directly, without first writing the formula for wdvglv,(~) in terms of inte- 
grals. The result, Eq. (7.9) below, can also be derived in the standard 
more laborious way. 

If a passenger delays her arrival time from T to T + dT, as shown in 
Fig. 7.2, and bus (k - 1) arrives outside the time interval ( 7 ,  T + d.r) 
then the passenger has won her bet and saves d r  units of wait. This is 
true whether she was early or late to begin with. Otherwise, with a 
probability given by the shaded area f,(T)dT, the passenger wait in- 
creases by 6 ( ~ ) .  This is the expected time until the next bus arrival, k, 
when it is known that bus k - 1 arrived in ( 7 ,  T + dT). It follows that the 
expected change in wait is (to a first order in d r ) :  

~ w , , ~ ( T )  = - d ~ +  S ( T ) ~ , ( T ) ~ T ,  
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Figure 7.2 
pected delay of a passenger arriving at time T .  

Relationship between the lateness density function, and the ex- 

or 

dw,,,(T)/dT= - 1 + 6 ( 7 ) f s ( T ) .  (7.9) 

Note that the function 6(~) decreases if the lateness of bus k is 
independent of S, -  ,, and also if an increased lateness for bus (k - 1) 
induces a reduced lateness for k as may happen if buses have a tendency 
to pair (see Sec. 7.2). As a result, the second derivative of w,,~(T) 
satisfies: 

d*w,, ,(T)/dr'= s d f , / d . r + f , d S / d r <  0 .  

The inequality is justified because 6 and f ,  are nonnegative and 
decreasing. This means (see Chap. 3) that w,,,(T) is concave, and 
therefore that it must have a global minimum at one of the extreme 
points of the interval. Since the wait at these two points is equal, 
wav,(0) = wav,(h,) = E(S), either point is acceptable. According to this 
theory, thus, passengers should arrive shortly before the scheduled time 
and experience E(w) I: E(S)."' Bowman and Turnquist (1981) com- 
pared the waiting time predictions of a model similar to the one just 
presented with those observed in the Chicago transit system and re- 
ported good agreement with the data. 
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Transfers: Another important case where one cannot assume that the 
arrivals are independent of the schedule arises when they come from 
another system that is synchronized with ours. In that case it may be 
reasonable to describe the passenger cumulative arrival curve at our 
(transfer) stop by a step function that increases by amounts (nk} at 
times {ak]. These times should match the departure times of the 
connecting system (dfk) ,  except for a delay that should be comparable to 
the walking time, t,, from one vehicle to the other; i.e., a, = t, + d r k .  
If one is also given the departure schedule of our bus line Idk}, then it is 
possible to calculate the total and average delay of the transferring 
passengers with the usual graphical construction. 

Fig. 7.3 is the result for a case where vehicles have sufficient capacity 
to clear the queue after every departure. In this case the delay on any 
given day may be expressed as: 

(7.10) 

where wk is the time elapsed between a k  and the next departure. 
If vehicles adhere to the schedules so that the wI are fixed, the only 

random variables in Eq. (7.10) are the nk .  Since (7.10) is a linear 
function of the n k ,  it also applies to the average W(T) if the random n k  
are replaced by their averages. 

Of particular interest is the case where the two schedules are regular 
with headways h’ for the arriving batches and h for the departing trains 
because if h’ and h are both integer multiples of a time quantity, h ,  
then it is possible to synchronize the schedules to reduce delay. Fig. 7.3 
displays the case with h‘ = h“ and h = 2h“. We can see at once from 
the picture that if the positive offset between the two schedules (defined 
as the smallest wk, wmin) is reduced a little by displacing one of the 
schedules relative to the other, then all the wk are reduced by the same 
amount. Thus, a minimum delay is obtained when the offset is zero. For 
the example of Fig. 7.3 this selection yields w,, = w2 = w, = ... = h’ = h/2 
and w, = w3 = wj = ... = 0. The minimum average delay is then h/4 if 
the n k ,  or  their averages across realizations, are independent of k. 

It is a simple matter to show from these graphical arguments that one 
should always choose a zero offset, and that the resulting average delay 
is: 

E ( w )  = + ( I 2  - h”), (7.11) 

if the E(nk)  are independent of k. By contrast, if connecting passengers 
had arrived independently of the schedule the average delay would have 
been h/2. Therefore, we see that coordination can save th” time units, 
with a maximum benefit achieved for h“ = h; i.e., when the arrival 
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between two transit lines. 

Cumulative arrival and departure curves of passengers transferring 

headway is an integer multiple of the departure headway. Waiting can 
then be eliminated altogether. 

In order to ensure that significant savings are achieved at transfer 
terminals of scheduled systems involving many lines with different 
headways it makes sense to pick operating headways for each line from 
a menu of the form (h2P) with p integer. This ensures that every 
headway is either an integer multiple or  submultiple of every other 
headway. Hence, if the offsets between all line pairs are set to zero, e.g., 
by forcing all the schedules to coincide at some time, one of the transfer 
directions between any two lines will always have zero wait. Remark- 
ably, this menu still retains enough flexibility for choosing cost-effective 
service frequencies.’ ’ 

An interesting optimization problem that cannot be addressed here in 
detail consists in finding the offset between two schedules {dk} and (d’k} 
that minimizes the total wait for two-way transfers, while recognizing 
that people take t, time units to walk in either direction; i.e., that 
a ,  = d‘, + t, and a’, = d, + t,. A simple practical solution can be 
obtained for systems with long headways relative to t, if the scheduler 
has the option to delay the vehicles of both lines for a short while in 
order to allow the connections to be made. In this case one should 
distinguish between the times when a vehicle, k, opens its doors, d,, and 
the retarded times, r,, at which it closes them. If (6, 6’) 2 t, are the 
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vehicle delays in this scenario, then r, = d,  + E and r‘h = d ‘ ,  + E ’ .  

Therefore, if the door-opening schedules {d,} and {d’k) are synchro- 
nized with zero offset as was just explained, the actual schedule pairs 
{aL}, {r,) and {a’k}, I f k }  will be similarly synchronized, albeit with 
(small) offsets E - t, and E ’  - t, = 0. The net result is that all 
transferring passengers save a time comparable with $ h  (experiencing 
virtually no wait if h = h’ = h 1 but through passengers experience ( E ,  

E ’ )  = t, units of increased trip time. Obviously, the strategy will be 
appealing if the proportion of transfers is large and h” >> t,, i.e., for 
systems with long headways such as airlines and other intercity transit 
and freight transportation systems. 

Let us now change our focus from passengers to vehicles. 

7.2 Multi stop routes 
Here we shall determine the type and number of vehicles that are 
needed to meet a target schedule on a given route (Sec. 7.2.1), and how 
they should be operated so as to ensure that the service is punctual 
(Sec. 7.2.2). We will see among other things that the three main 
determinants of fleet and vehicle size are the route ‘cycle time’, the 
operating frequency and the 0 - D  table, and that a certain amount of 
‘slack’ must be built into the typical schedule so as to avoid instabilities. 

7.2.1 The vehicle fleet needed for a given task 
This subsection examines the performance of a single closed-loop route 
with n stops that is served with regular headways by V vehicles of 
capacity C. We are particularly interested in the values of V and C that 
are needed to serve a given set of origin-destination demands with a 
given headway, h. As in Sec. 7.1 a bus route will be used as our 
metaphor, but the results are general. They apply to any transportation 
mode with a regular schedule on a fixed route; e.g., to rapid transit 
systems, sea routes covered by liner-type container ships and to some 
trucking, railroad and airline services. It will be assumed that the 
vehicles do not skip stops for lack of demand, although this excludes bus 
routes with low demand from the domain of application. A more 
general derivation could be given but this is beyond the scope of an 
introductory book. It will also be assumed that vehicles keep to their 
schedule, although this may require a control scheme such as the one 
described in Sec. 7.2.2. 

Fig. 7.4 depicts the (t, x) trajectories of three buses that serve a 3-stop 
loop. The space axis ranges from x = 0 to x = L and contains the 
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locations of the three stops, x i  (i = 1, 2, 3). Because the route is a 
closed loop, each vehicle trajectory reappears at x = 0 immediately 
after crossing x = L. Buses cruise at an average speed vi on the link 
leading to stop i, and take T, time units to complete a cycle.I2 

Accurate bus trajectories near each stop would have to include 
curved sections corresponding to acceleration and deceleration por- 
tions, but this is only shown for bus 3 in the neighborhood of x = xl. 
Note that the trajectory of bus 3 at future times remains the same if we 
replace the curved sections near x 1  by the piecewise linear dotted lines 
shown; i.e., if we imagine that bus 3 changes speed instantaneously and 
remains stopped for a longer time. Because it is simpler to work with 
piecewise linear trajectories, the rest of the diagram has been con- 
structed in this manner. The times t i  shown in the figure, which will 
become an important part of the calculations, should therefore be 
interpreted as the delay experienced by a bus that stops at i. 

This delay includes two parts: a variable component that elapses 
while passengers are entering and/or leaving the bus, and a fixed part 
T~~ that arises from: (i) the acceleration and deceleration maneuvers, 
(ii) the time needed to open and close the doors, and (iii) the time spent 
waiting for the passengers to be seated. Components (ii) and (iii) of the 
fixed delay are shown by darker sections on the figure. 

varies greatly from mode to mode, being compara- 
ble with one hour for airlines and on the order of seconds for buses. 
The subscript ‘i’ is used in connection with this parameter because it 
can change across stops. Accurate estimates for T ~ , ~  can be obtained if 
one knows the acceleration and jerk characteristics of the vehicle in 
question as well as the guideway geometry near the stop. 

It will be assumed below that the variable portion of the bus delay is 
proportional to the number of passengers or items using the stop, 
although this may not be very accurate for passenger systems in which 
separate doors are used for boarding and alighting, or for freight 
systems (such as container seaports) whose cranes may ‘double-cycle.’ In 
these instances it may be better to express the variable delay as a term 
proportional to the maximum of the times needed to load inbound and 
unload outbound passengers/items. 

The fixed delay 

7.2.1. I The stationary, deterministic problem 
In a general case, the origin-destination demand data for our problem is 
a set of cumulative count curves that give the number of people, Nij(t, 
t’), who arrive at origin i for destination j in the time interval (t, t’). It is 
assumed for now that the Nij(t, t’) are known and that the time-depen- 
dent flows qij(t) corresponding to the Nij(t, t’) vary little during time 
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Figure 7.4 Idealized trajectories of three buses operating on a closed loop. 

intervals comparable with the bus round trip time. The effects of rapidly 
varying q,](t) will be examined in the next subsection and those of 
uncertainty in Sec. 7.2.2. 

If the 0 -D  flows do not vary much during a study period that is long 
compared with the round trip time then a stationary approximation may 
be used in which the 0 -D  flows are treated as constants, q,,(t) = q,,. 
This simplification is also useful if flows vary significantly during the 
study period but not much within one round trip time. Then, one can 
break the study period into stationary subperiods that can be analyzed 
separately; e.g., the morning rush, midday, etc. (One could also recog- 
nize just one subperiod and set each 0 -D  flow equal to the maximum 
observed, but this approach would be less precise.) The analysis method 
described below can be applied to any stationary (~ub)period. '~  

First note from Fig. 7.4 that the vehicle cycle time can be put in the 
form: 

T, = T, + C:= I r! = T,,, + C:= ,( T, , ,  + T ,  M ,  1 (7.12) 

where T, is the time spent cruising (i.e., T, = Zy= L,/v, where L, is 
the length of the link leading to stop i), MI is the number of passenger 
boarding and alighting movements at i, and T~ is the average time per 
passenger movement. Because under stationary conditions the number 
of boardings and alightings in every bus trip must be equal, the total 
number of movements experienced in one round trip Z,M, should be 
twice the number of boardings. Therefore, if we use q = C,,ql, for the 
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total system flow, then Z l M l  = 2qh and (7.12) becomes: 
Tc = Tf + 2q7,h. (7.13) 

where Tf = T,,, + Z , T , ~ ,  denotes the fixed component of the bus round 
trip time. Equation (7.13) is quite useful because it expresses T, as a 
function of readily obtainable data. (We will see in Sec. 7.3.1. that q is 
much easier to estimate than {q,,}.) 

It is now a simple matter to obtain the required fleet size. It should 
be clear from inspection of Fig. 7.4, and from the explanation of closed 
loop systems included in Sec. 1.3.2, that the number of vehicles, V, must 
satisfy: 

V'2 [Tc/Hl+, (7.14) 

where the operation '[ 3 + ' denotes rounding up to the next integer. 
Next, we should ensure that a vehicle's capacity exceeds its maximum 

number of occupants. In our stationary, deterministic approximation the 
maximum number of occupants is the same on every run, and is always 
reached on the inter-stop link that carries the maximum flow. This 
location is called the critical link or the man'mum load point. It can be 
found by assigning the 0 - D  flows to the links 1 as explained in Chap. 5 
and looking for the largest link flow, q*. The assignment recipe for the 
link flows, q l ,  may be expressed compactly with the help of indicator 
constants A,, ,  that are 1 if a trip from ij uses link 1 and 0 otherwise: 

q1 = C, ,q , ,A , , ,  (for all I )  (7.15) 
and 

q x  = max{q,}. (7.16) 
An alternative way of obtaining {q,}, which does not require knowledge 

of the 0 - D  table and therefore is much more practical, can be used if 
one knows the flow past one location of the route, e.g., at a terminus 
where the flow is zero. The procedure only requires knowledge of the 
input and output flows at each stop, F, = 2Jq ,J  and G, = 2, q,,. It can be 
stated very simply if we assign to each link the same label as the stop to 
which it leads (i.e., 1 = i if 1 leads to i) and use I '  to denote the link 
visited after 1. Then, by virtue of the flow conservation law, we can 
write: 

(7.17) 

which can be used recursively to calculate all the link flows q l .  
Finally, note that the critical flow and the location of the maximum 

load point can also be estimated from observed link flows if the system 
is already in operation and is undersaturated. This is the most direct 
and accurate method. 

q, = q, + ( F ,  - G, 1 (for all 1 )  



Scheduled transportation systems 299 

The {q,} are important because if the system is not oversaturated (our 
design goal) then each flow must equal the actual number of passengers 
that pass each link per unit time. Since the flows are steady the bus 
occupancy on link 1 must be: 0, = q ,  h. This should not be a problem if 
C 2 0, = q,h  for all 1. Therefore, our condition for undersaturation is: 

C 2 q*h. (7.18) 

Equations (7.13), (7.14) and (7.18) are the sought recipe, which as of yet 
ignores stochastic fluctuations. 

If the storage capacity of a stop’s platform, Pi, is comparable or 
smaller than C, one should also make sure that the maximum number 
of accumulated passengers/items does not exceed Pi. Fortunately, said 
accumulation can also be expressed as a function of easily obtainable 
data; e.g., if passengers leave the ‘bus’ before others board, then the 
maximum accumulation is simply: (Fi + Gi)h - in this case one would 
then have to check that h satisfied Pi 2 (Fi + Gi)h for the relevant i, in 
addition to (7.18). 

Example: We seek the fleet size and vehicle capacity needed to 
operate the system of Fig. 7.5 with a 4 minute headway. The route is 10 
miles long and has three stops. In a real problem encompassing a 
10-mile route one would have more than 3 stops but this would 
complicate the numerical illustrations unnecessarily. To give the results 
a semblance of realism we have chosen T~~ = 3 min for i = 1, 2, 3 so 
that the fixed stop delay accrued during a round trip (9 min) will be in 
line with what would be expected for a line with many stops. We have 
also chosen an O-D table that would correspond to a busy route serving 
700 passengers per hour; the entries of an O-D table with many stops 
would be much smaller. 

The assignment procedure, Eq. (7.151, yields for the link flows: 

( q l ,  q 2 ,  q3)  = (350,420,450)pax/hour 

and according to (7.16) q* = 450; thus, 1 = 3 is the critical link. The 
required bus capacity is therefore C 2 30 passengers, as per (7.18). The 
required fleet size is obtained from (7.13) and (7.14). The former yields 
T, = (10/15) + (3 X 5 X X4/60) = (.666) + 
(.150) + (0.093) = 0.909 hrs, i.e., 55 min. Therefore, V = [55/4]+ = 14 
buses. 
As an additional exercise you may want to apply Eq. (7.17) to our 

data in order to identify the critical link assuming that only the Fi and 
Gj  are known. Although the link can be identified, you will notice that 
q* cannot be determined because our problem has no terminus. 

+ (2 X 700 X 
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L =  1 0 m i  

Figure 7.5 Route geometry and 0 - D  table of a simple example. 

Equations (7.131, (7.14) and (7.18) can also be used to find the fleet 
size needed and the headway that can be provided with vehicles of a 
given size. A quick calculation for lines with many vehicles can be made 
by ignoring the rounding up operation in (7.14). Then, on multiplying 
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(7.18) and (7.14) we find that CV 2 q*T,; i.e., that the total seating 
capacity of our fleet must exceed the system demand during a complete 
bus cycle. If T, is insensitive to h, as it is in our case (T, = 1 hour), this 
expression says that the number of vehicles can be halved if we double 
their size. Although this choice would cut operating costs in half 
(approximately), it would also double the headway and decrease the 
level of service. Section 7.2.4. discusses some delicate issues that arise 
when one attempts to resolve such tradeoff from a ‘welfare’ perspective. 

7.2.1.2. Time-dependent 0 - D  ’s 
The vehicle size recipe, Eq.(7.18), can be easily extended to O-D tables 
that vary rapidly compared with a ‘bus’ cycle in the special case where 
the bus schedule and the bus trip times between all O-D pairs are fixed 
and known. 

To this end, it is convenient to number all the bus cycles (or runs) 
consecutively (k = 1, 2, 3,J in the order seen from a fixed location. 
Because it is assumed that buses do not pass one another, this is the 
same order in which runs would be seen from all other locations. For 
the example of Fig. 7.4, each continuous portion of a bus trajectory 
could be defined as a separate run, with fresh run labels issued at x = 0. 
Note that runs and buses are not the same thing: in the example the run 
number of a particular bus increases by 3 on crossing location x = L. 

From now on, t,, will be used to denote the time at which run k 
arrives at stop i and Tlj to denote the bus trip time from stop i to stop j. 
The latter are defined to include the stop time at the origin, i, but not at 
the destination, j. The two sets of variables are related in the sense that 
for every i, j and k the difference t,, - T,, must be an arrival time for stop 

The best way to solve the problem is by working directly with the 
cumulative curves of O-D counts, N,,(t, t’). If the bus fleet can carry 
everyone without overflow, i.e., every bus clears the queues, we can say 
that the passengers riding toward stop j in run k must include all those 
that arrived at the other stops in time to catch that bus. More formally, 
if we assign the same label to a link and to the stop at which it ends (i.e,, 
1 = i if 1 leads to i, as in Fig. 7.5) and then let N,(t, t’) denote the 
number of passengers that wish to exit link 1 in the time interval (t, t’], 
including t’ but not t, we can write: 

* 14 1. 

O ! k ~ N I ( t i k - I , f i k ) = C l , ~ , ( t , k - i  - q ! , t , k -  q , ) A , , !  (forall l k ) ,  
(7.19) 

where the identity on the left introduces the shorthand notation olr  for 
the number of passengers actually leaving 1 on run k; i.e., for the bus 
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occupancy on that particular run and location. The second equality is 
true because the bus occupancy must equal the number of passengers 
who: (i) show up at all other stops in time to meet our bus, and (ii) wish 
to travel on this link. Clearly then, the particular schedule can be met 
without overflows if the largest occupancy calculated with (7.19) does 
not exceed the bus capacity. This condition is the time-dependent 
analog of (7.18). 

A transit/carrier, of course, has the flexibility to design a schedule 
where vehicles are brought and withdrawn from service as the demand 
varies. This has the effect of changing the schedules but does not 
change the philosophy behind (7.19); i.e., one would still calculate the 
occupancy data by assigning people to bus runs in a sensible way and 
would then check that none of the Olk exceed the bus capacity. Section 
7.3 describes how the N,O link count data can be obtained. 

The effects of oversaturation can be predicted from the N,,(t, t’) if 
one introduces an assumption about the number of people that are 
allowed to board the bus at each stop when queues exist. In cases 
without exogenous controls it is reasonable to assume that people 
boarding at an oversaturated stop will fill the vehicle if all cannot get on 
board, and that no destinations are favored in this process. One could 
then predict the cumulative number of people that would have departed 
from i for destination j in the time interval (0, tl, Dij(O, t), with a 
simulation. Since the buses have definite schedules, the simulation 
could simply step through time from (system wide) scheduled stop to 
scheduled stop, updating a state that only needs to include: (i) the 
numbers of passengers currently present in each run k stratified by 
destination j, bkj(t>, and (ii) the Dij(O,t). 

The simulation procedure can also be used (with a revised logic) to 
evaluate “metering’ strategies that one may try in an attempt to reduce 
the transient queues at the oversaturated stops as rapidly as possible. 
Not yet solved completely, this optimization problem is rather similar to 
that faced by traffic engineers in charge of roundabouts or congested 
freeways where the goal is to restrict entry so as to favor those origins 
that send the least flow through the most heavily demanded links. 

7.2.2 Management of headway and occupancy fluctuations 

This subsection considers the effects of imperfectly known 0 - D  counts 
Nij(t, t’). It explores the effect that fluctuations in the realized counts on 
any given day, i.e., the deviations from a predicted average, have on 
both occupancy and on-time performance. The effects and prevention 
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of unpunctuality are examined after a brief description of the fluctua- 
tions in occupancy that can be expected for a ‘bus’ that adheres to a 
schedule. Fluctuations in occupancy are important because their magni- 
tude influences the bus capacity required to avoid oversaturation. 

If one lets let Z‘k’ denote the (critical) link-run combination with the 
maximum average flow and OlSkJ  the corresponding (random) bus occu- 
pancy, it makes sense as a first approximation to choose the bus 
capacity with the rule: C 2 0’ + 2 a ’ ,  where of  and a’ are the mean 
and standard deviation of O I j k , .  Since O,,,. is a sum of the N,,(t, t’) 
counts indicated by (7.19) its mean equals the sum of the means of said 
counts. This means that 0‘ can be calculated with Eq.(7.19) if the 
predicted (average) count curves are used as inputs in this expression. 
Although one could also relate a’ to the covariances of the O-D 
counts, it is more pragmatic to estimate it directly from past experience 
with similar systems. The choice (a’>* = 0’ may be reasonable in many 
cases, if historical data are not available.” 

The proposed rule ensures that our system would fail to carry the 
desired loads on the critical link-run combination infrequently. A more 
refined criterion for the selection of C would use the probability of 
overflow, pf.  The following shows how pf can be approximated. 

If the occupancy on the critical link-run combination is a normal 
random variable, a reasonable first approximation when the average 
occupancy is large, then one knows the overflow probability on the 
critical link-run and this result can be used as a proxy for pf;  i.e.: 

pf= @((o’ - C ) / a ’ )  (7.20a) 

where CI, is the standard normal c.d.f. We recognize that this expression 
will tend to underestimate the true probability of overflow since it 
ignores that fluctuations may cause non-critical links to overflow. The 
approximation is very good, however, because it is unusual for a 
non-critical link to overflow when the critical link-run does not. This 
statement is true because the occupancies on all the links for a given 
run are usually highly correlated variables due to the sharing of trips. 

If desired, an upper bound to pf (or a lower bound to 1 - pf)  can be 
obtained by ignoring the correlation and calculating the probability that 
none of the links overflows. This is illustrated now for the stationary 
case. If one uses 0, and u, for the mean and variance of 0,, where Z 
denotes a generic (non-critical) link, the result is: 

(1 n,c1 - @,I (7.20b) 

where the symbol @, has been used instead of @((o, - C)/a, ) .  This 
bound will usually be close to (7.20a) because in most cases only a few 
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CP, will be close enough to CP, ,  to be significantly different form zero 
and contribute to the product. For example, for the average occupancies 
of the previous example (23.3, 28, 30) a reasonable choice for C is C 
= 30 +2(30)'/2 =41 seats if one assumes that the occupancies are 
Poisson random variables. Since uI = o;", our data yield (@, , Q 2 ,  
C P 3 )  = (.0002,.0070,.0222) and (.97) I (1 - pf)  < (.98). This type of 
approximation suffices for most practical purposes because small 
changes in C usually change the probabilities by more than the differ- 
ence between the two bounds." 

It has been assumed in the above that the vehicles adhere to their 
schedule and that the variations in occupancy only arise from the 
fluctuations in demand. Yet, fluctuations in occupancy can also be 
induced by day-to-day variations in the schedule because buses that 
follow a long headway will tend to collect more passengers and those 
that follow a short headway will tend to collect fewer. These effects can 
be expressed by a simple formula when: (i> the number of passenger 
trips that want to use the critical link is a stationary process with 
independent increments and index of dispersion y ,  and (ii) the headway 
of a given run is relatively constant across its stops but varies across 
days with a mean h and standard deviation uH. Then it is possible to 
show that: ( = ?(or) + ( o ' ( ~ , / h ) ~ . ' ~  The first term of this expres- 
sion captures the effect of demand variability and the second term that 
of unpunctuality. When y = 1 (our first simple guess) we see that the 
unpunctuality effect can be ignored if the expected occupancy is small 
compared with the square of the ratio of the mean headway to its 
standard deviation. For example, if the average occupancy on a link is 
25 passengers then the deviations from the schedule can be ignored if 
they are typically small compared with 1/5 of a headway. 

7.2.2.1. Schedule instability and control l8 

While variable vehicle occupancies can be handled by choosing larger 
vehicles, variable headways are much more difficult to manage. This 
happens because a scheduled system with multiple vehicles is inherently 
unstable. If a vehicle has to wait for a longer time than usual at a stop 
to collect a large number of arrivals, it will fall behind schedule. The 
delay will increase its headway relative to the prior vehicle, which will in 
turn increase the expected number of passengers collected at future 
stops and the related stop times. As a result, the vehicle will tend to fall 
further and further behind schedule, and at a more rapid rate the 
further behind it is. At the same time, the bus trailing our vehicle will 
find shorter headways and will tend to gain on the schedule. For this 
bus the shorter its headway, the stronger the tendency to gain further. 
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Figure 7.6 Simulated space-time trajectories of six buses susceptible to ‘pair- 
ing’. 

The end result of this process is a pair of buses. If you have ever waited 
for a long time for a bus, only to find that two of them came together at 
long last, you have been a victim of this bunching phenomenon. 

Fig. 7.6 depicts the simulated space-time trajectories of six buses 
running on a line with 25 stops where the first bus keeps to the schedule 
but the following ones are susceptible to bunching. Note that the first 
bus is the one on the bottom of the picture because time has been 
plotted as the ordinate. You can see that as the buses progress the 
headways become irregular and buses 4 and 5 eventually pair. Pairing is 
less rapid for buses 1 and 2 because bus 1 keeps to its schedule, 
although these buses could also pair. The reader can check this for 
himself by running a simulation. This is fairly easy to do as is shown 
below. 

Fig. 7.7 displays the spreadsheet data corresponding to Fig. 7.6. Rows 
3 to 6 contain the input data. The passenger arrival processes are 
assumed to be independent, stationary and Poisson, with an average 
demand rate F, = C,ql, that is equal for all the stops; this value, F, 
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EXAMPLE: BUS PAIRING SIMULATION 

Demand rate (pax/sedstop) = 0.05 Slack on (10,20)= 0.00 
Non-stop travel time (secs/stop)= 50.00 Std dev (set.)= 5.00 
Lost time per passenger (set.)= 
Desired headway (seconds)= 100.00 

1 .00 

Stop 
(W 

0.00 
1 .00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

10.00 
11.00 
12.00 
13.00 
14.00 
15.00 
16.00 
17.00 
18.00 
19.00 
20.00 
21.00 
22.00 
23 .00 
24.00 
25.00 

Time in seconds for bus nu rnbers.... 
1.00 2.00 3.00 4.00 5.00 6.00 

0.00 100.00 200.00 300.00 400.00 500.00 
55.00 159.05 261.38 363.61 459.13 561.85 

110.00 219.25 311.01 426.83 511.04 617.19 
165.00 268.66 354.06 483.35 561.92 670.24 
220.00 324.57 406.91 533.83 610.40 731.23 
275.00 381.41 464.83 591.57 659.76 778.56 
330.00 429.10 524.45 647.63 710.59 835.28 
385.00 489.11 570.46 702.96 767.75 890.53 
440.00 543.70 630.13 757.33 814.25 946.81 
495.00 604.40 686.03 811.30 866.42 1oM.54 
550.00 658.10 752.41 871.24 950.00 1056.84 
605.00 709.76 796.11 922.37 1007.07 1120.58 
660.00 757.22 858.54 981.64 1071.89 1180.77 
715.00 803.53 919.28 1039.82 1128.63 1247.50 
770.00 864.88 974.83 1095.18 1170.72 1302.96 
825.00 922.53 1033.39 1158.07 1230.08 1368.33 
880.00 980.94 1085.41 1219.63 1285.33 1424.84 
935.00 1031.78 1137.19 1278.73 1341.66 1472.97 
990.00 1089.46 1185.31 1336.23 1388.94 1531.68 

1045.00 1141.50 1242.88 1387.74 1440.12 15%.23 
1100.00 1200.00 1300.00 1450.42 1500.00 1647.89 
1155.00 1255.08 1353.61 1504.08 1543.27 1707.02 
1210.00 1309.40 1417.61 1559.25 1591.30 1755.88 
1265.00 1366.94 1467.02 1615.65 1641.86 1818.05 
1320.00 1427.64 1514.46 1675.84 1694.97 1874.03 
1375.00 1483.96 1556.95 1733.26 1744.30 1923.80 

Figure 7.7 Spreadsheet organization of the bus trajectory simulation. 

= 0.05 pax/sec, is included in cell ‘E3.’19 We also imagine that every- 
one travels past stop 25 because such a simple 0 - D  pattern suffices to 
illustrate the bunching effect and also simplifies the simulation. The 
travel time between stops, excluding passenger boarding, is assumed to 
be equally distributed on all the links with a known mean (mi = 50 sec, 
contained in cell ‘E4’) and standard deviation (q = 5 sec, contained in 
cell ‘H4’). (Again, this could be generalized as explained in the previous 
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footnote.) The lost time per passenger movement is assumed to be T, 
= 1 sec, and the desired headway, hd  = 100 sec. These values are 
included in cells ‘ES and ‘E6.’ We ignore for now the data contained in 
cell ‘H3.’ 

Still in the form of data, column ‘A’ includes the stop number, and 
row 11 the times at which the buses are released into the system. Our 
goal is filling columns C through H with the arrival times of buses 1 
through 6 at the different stops. To this end, range ‘C12.. H36’ contains 
formulae from which the arrival times are calculated. On column C the 
formula corresponds to the (regular) schedule of the first bus, which is 
assumed to travel between stops in the average time (m, + F,hdTl) 
without any deviations. If the formula is written in cell ‘C12’ as: + C11 + 
$E$5* $E$3* $E$6 + $E$4, it can be copied to fill the column. A similar 
formula can then be written in cell ‘D12’ and copied to the range ‘D12.. 
H36’, but the mean travel time, $E$4, must now be replaced by a draw 
from a (normal) random variable with mean $E$4 and standard devia- 
tion $H$4.’” Likewise, the mean number of arrivals ($E$3* $E$6) must 
be replaced by those that would materialize in the actual headway 
(Dll-Cll)  from a process with index of dispersion, 1. Again, this can be 
approximated by generating another random draw from a normal vari- 
able with mean $E$3*(Dll-C11) and standard deviation equal to the 
square root of this value. You may now run the simulation for different 
values of the input parameters and explore how they influence the 
pairing tendency. 

A schedule can be met without pairing if one designs it with longer 
vehicle trip times than would be possible on average, and then makes 
sure that vehicles never depart before the scheduled time. The differ- 
ence between the scheduled and average trip times is called the slack. 
Airlines and railroads use variations of this approach. Since vehicles 
adhere to the schedule the expected travel time between stops is 
m,  + T,E(M,),  where M I  is the number of passenger movements in a 
regular headway, and the standard deviation of the trip time is: (aI2 + 
T:var(M,))’ ”. Late departures can be largely avoided by introducing 
slack between every two consecutive stops in an amount equal to a 
small multiple of this standard deviation. This means that the total 
vehicular round trip time would be increased over the average uncon- 
trolled time by a small multiple of AT= Z,(tr,’ + T,’var(M,))I/’. Let us 
now see how the amount of slack can be related to some easily 
observable data. 

If vl’ and var(M,) do not vary much across 1, we can write AT = 
(n’/’)(L,u,’  + r;var(M,))*”, where n is the number of stops.” If we 
now introduce vt(:, for the variance of the round trip time excluding 
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passenger loading/unloading Gee., a,:, = Ci ui2 since inter-stop trip times 
can be expected to be independent), and then approximate the sum of 
var(Mi) by the variance of the total number of passenger movements in 
a scheduled round trip time, T,, i.e., by four times the variance of the 
number of passenger arrivals in T,, which we denote ( (+N(Tr)I2,  we can 
write: 

(7.21) 

As a first approximation in some cases we may use ( ( T ~ ( ~ , ) ) *  = qT, in 
this expression. Then, if we expect AT to be small in comparison with 
the (known) average cycle time (T,) excluding slack, so that T, = T,, 
we may substitute qTc for ( (TN(T, ) )~  in (7.21), in order to determine AT. 
This information can then be used to select an appropriate amount of 
slack, since the slack should be a small multiple of AT; e.g., 2AT. If AT 
is not small, or more precision is desired in the calculation, we could 
use (o ,~~ , , ) *  = q(T +2AT) in (7.21) and then solve for AT. 

It is interesting to see from (7.21) that the amount of slack increases 
with n112. Slack translates directly into higher costs for the operating 
agency because of the larger fleet sizes needed to accommodate long 
cycle times; see (7.14). It also induces longer travel times for those on 
board. Thus, when AT is a significant part of the total cycle time it may 
make sense to reduce the number of points at which control is exer- 
cised. 

If one could exercise it every kth stop and still maintain regular 
schedules at the intermediate stops, then one would expect (7.21) still to 
apply, with a factor (n/k)'12 instead of (n)'12. And this is what many 
well-run transit agencies try to do. First they devise a target schedule 
for the stops in between each consecutive pair of control points as- 
suming on time departures from the control point and slightly optimistic 
bus trip times following the control point. Then they stick to it in the 
sense they never dispatch a bus before the target time. Because the 
schedule is optimistic, buses tend to run late and rarely have to be 
delayed in order to avoid early departures. The scheme works if enough 
slack is added at the control points to be reasonably sure that a 
late-running bus following one on schedule (the worst possible case) can 
arrive at the control point in time to depart on schedule.22 

Although the calculations needed to evaluate the probability of 
arriving too late at the control point can become complicated, simple 
modifications to a spreadsheet such as that of Fig. 7.7 can also be used 
to evaluate the robustness of proposed schedules. As an exercise, see if 
you can reprogram the spreadsheet of Fig. 7.7 to test and refine a 
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Figure 7.8 Simulated trajectories when control is exercised at stops 10 and 20. 

strategy that will avoid pairing while minimizing the scheduled bus trip 
time from stop 0 to stop 24. Fig. 7.8 shows a realization of the process 
with the modified logic, after introducing 15 seconds of slack at stations 
10 and 20, and using optimistic bus trip times of 50 seconds per stop.23 
In practical situations the control points should be located where the 
bus is lightly loaded and/or would have to wait for another reason. 
Major transfer nodes are logical choices. 

The specific formulas that have been presented do not apply to 
systems in which vehicles are allowed to skip stops because then the 
term 2i70i in (7.12) is no longer fixed. For suburban bus routes and 
elevators, which are examples of these kinds of systems, this term is the 
main contributor to the variance of the vehicle cycle. Fortunately, 
pairing can still be avoided for most of these systems, with schemes 
similar to the one just described. Exceptions are systems such as 
elevators in which the stop time is a significant part of the round trip 
time. Then, pairing can be so forceful that control strategies to avoid it 
are a worse remedy than the problem. 
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7.3 Observation issues 

The expressions of Secs. 7.1 and 7.2 include decision variables h, V and 
C, as well as parameters that need to be estimated. Some of these, such 
as Li and n, can be measured rather accurately and others, such as the 
0 - D  table, can be estimated with methods already explained, e.g., from 
passenger surveys, input and output counts, etc. In view of this we only 
discuss here the estimation of those parameters that can benefit from 
different experimental setups, and de-emphasize the statistical proce- 
dures which would not be new. Section 7.3.1. explains how the time-de- 
pendent demand on the system’s links N,(t, t’) can be obtained, and Sec. 
7.3.2. does the same for the vehicle operating characteristics (vi, ‘ T ”~  and 
7, ) .  

7.3.1 Link flow estimation 

Knowledge of the time-dependent demand on the system’s links is 
important because fleet size decisions depend on the 0 - D  table only 
through the N,. Fortunately, this information is much easier to obtain 
than the 0 - D  table. 

The method about to be described applies to undersaturated systems 
that adhere to their schedule. It consists in determining the uctual 
cumulative number of passengers El, that have exited each link imme- 
diately after the passage of each run, k, i.e., at the times t lk  when each 
run k arrives at stop i = 1. Since the system is punctual and undersatu- 
rated we know that the desired departures in the time interval (t,,, t lk , )  
must equal those that have been observed; i.e., that N,(t,,, t , , , )  = E,kf - 
Elk.  This means that the cumulative number of desired link departures 
can be approximated by a smooth curve passing through the observed 

The El, can be obtained either by stationary observers working at 
each stop, e.g., by automatic turnstiles, or by observers on the ‘buses.’ In 
the first case we would record at each stop (i = I )  the number of 
passengers boarding and alighting each run k, f l k  and gIk. These data 
can then be used with the flow conservation relation 

points (ti,, Elk). 

E,+I,k = 4, + f i k  - g / k  

to obtain the complete collection of the exit counts {Elk}, provided one 
knows the exit counts from a reference link such as a terminus or a 
location where the bus occupancies can be readily seen and counted. 
For example, if i = 0 is a terminus where everyone gets off the bus then 
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E,, = C,.  ~ g,,,, and the known set of exit counts at the terminus (EOk} 
suffices to obtain the complete set of counts. 

Alternatively, an observer in each bus (e.g., the driver) can record the 
bus occupancy on each link 1 during each run k. It is then possible to 
obtain from the complete collection of occupancies {Olk} the E,,, by 
adding the observed occupancies for a given 1 up to a given k; i.e., 

Elk = elk, (for all I,  k ) .  
k ‘ s  k 

The preferred data gathering method should depend on the relative 
magnitude of the number of stops on the route and the number of 
vehicles serving it. Repeated observations of the {Elk} in successive days 
may be treated statistically as usual in both cases. 

The observed data can be used to calculate the maximum bus 
occupancy o* = max,,(o,,} in a day and the observed variations in o* 
across days can then help us make decisions about vehicle size.24 
Different schedules may also be evaluated similarly. One would assign 
the smoothed N, curves estimated for a given day to the proposed set of 
runs-using the definitional identity on the left side of (7.191-and then 
would check whether the resulting occupancies (and their variation 
across days) are acceptable. 

If the vehicle size can be changed across runs, as happens with train 
systems such as the BART rapid transit system in the San Francisco Bay 
Area, then one may choose to work with run-based occupancies 0; = 
max,(o,,} to decide which runs should have long or short trains. If one is 
interested in a time of day where the demand may be considered to be 
stationary, less data are necessary. Then, one does not need to distin- 
guish across runs and the variations in 0; within a given study period 
may suffice to determine an appropriate vehicle size. 

If the system is oversaturated the approaches just described are not 
very useful because we can no longer claim that bus occupancies are a 
reflection of current demand. Although it is possible to determine the 
cumulative input flows at each stop from data collected by observers 
stationed at the stops, one would need additional information regarding 
the 0 - D  table in order to obtain the desired demand curves Nij(t) and 
N,(t). The problem is similar to that described in Sec. 6.3.3. 

7.3.2 Trip time estimation 
Let us now see how to estimate the constants, T, , , ,  T ~ ,  and ( l /vi)  that 
are used to describe a vehicle’s motion. To this end note that the dotted 
extension of the vehicle trajectories shown in Fig. 7.4, and the darker 
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sections also shown in the figure are idealizations used for illustrative 
purposes only; in reality there are no observable events along a vehicle's 
trajectory that allow us to measure T ~ ~ ,  T ~ ,  and ( l /vi)  directly. 

If we let M i - l ,  Li and Ti.-l,i be the (random) number of passenger 
movements at stop i - 1 for a specific bus run, the length of the route 
link preceding stop i, and the (random) time spent by the bus on the 
link from the start of stop (i - 1) to the start of stop (9, we expect these 
variables to be (approximately) related by 

q- TI' -t T1, i -  1M;- 1 ( l / U l ) L ; ,  (7.22) 
where T ~ '  represents the time wasted accelerating from stop i - 1 and 
decelerating to stop i; i.e: T ~ '  = ( T " ~ -  + ~ " ~ ) / 2 .  The second and third 
terms of (7.22) represent respectively the loading/unloading time at 
stop i - 1 and the (cruising) trip time from i - 1 to i.2j The expression is 
reasonable and consistent with our earlier assumptions since the sum of 
(7.22) across stops yields (7.12). 

The unknown constants of (7.22) can be estimated quite accurately if 
observable events can be used to divide Ti-l , i  into two parts: one that 
depends only on L i  and another that depends only on Mi-1 .  One can 
argue that opening and closing doors are such events since the part of 
Ti- I , i  in which the vehicle doors are closed T," should only depend on 
Li,  while the part in which they are open Tio should only depend on 
Mi -  Therefore we can write: 

To a; + 7 1 . ~ -  I (7.23a) 
and 

qc = pi + (l/LJJL;, (7.23b) 
where ai and p,  are two constants such that ai +pi = T ~ ' .  Each of 
these equations can be estimated by least squares. Equation (7.22) is 
then obtained from the sum of (7.23a) and (7.23b). 

7.4 Design and evaluation 

Although design and evaluation issues are somewhat outside the scope 
of an introductory book on 'operations', it seems worthwhile to present 
here some basic ideas that appear not to be widely known. 

7.4.1 Design 
The most basic decision in the design of scheduled transportation 
systems, perhaps, is deciding on a desirable schedule for a given route, 
We have seen already that in cases where the demand does not change 
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rapidly with time, one should attempt to operate a system with regular 
headways. Therefore, the selection of h is discussed first. 

This problem was already addressed in Chapter 3 as an example that 
ran through Secs. 3.2.1 and 3.2.2. The choice involved a trade-off 
between waiting time for customers, captured by the first term of Eq. 
(3.9a), and the agency’s operating cost, captured by the second term. 
[Note that, except for the notation used in Chap. 3, these terms 
correspond to formulae (7.4) and (7.14) of the present chapter]. 

For ‘closed’ systems in which both types of costs are paid by the same 
entity (e.g., a firm carrying its own products on its vehicle fleet) it is 
possible in principle to assign numerical values to the constants a and 
/3 weighting the two terms of (3.9a) and to derive a ‘best’ design. (The 
constants a and /3 are usually difficult to quantify, however.) Although 
the assignment of values to a and /3 is rather questionable for ‘open’ 
systems in which an agency carries other people’s items (see Sec. 7.4.21, 
the terms of a Zogistic cost function such as (3.9a) do reveal how the 
various players in the game are affected by changes in h, and this 
can help the agency reach a desired balance between the two types 
of cost. 

Two properties often found in logistic cost functions are: (i) that 
deviating from the ‘optimum’ decision variables substantially does not 
change the value of the objective function appreciably, dthough its 
various terms may change considerably, and (ii) that that the objective 
value is not very sensitive to the weights assigned to the terms (e.g., CY 
and PI. To see that this is the case with (3.9a) let us consider its 
dimensionless counterpart (3.11). The latter is ‘insensitive’ because it 
increases by only 6% when the decision variable z is changed by a factor 
of 2lI2 from the optimum (z* = 2’/2). And, since (3.9a) is just a 
dimensional version of (3.111, the same statement can be made about 
(3.9a) for all possible combinations of its parameters a ,  p ,  etc.26 It is 
this author’s experience that insensitivity to the decision variables and 
the data is the rule rather than the exception in design problems. 

If (3.9a) referred to a closed system, this insensitivity would mean that 
the chosen headway could be varied by a factor of 2 in an interval 
around the optimum h and this would not affect the bottom line 
significantly. This kind of flexibility in the choice of the decision vari- 
ables can be quite useful in practice. It allows one for example to 
coordinate the schedules of various routes serving a terminal by using a 
headway menu of the form {k2P}. Open systems require more thought. 
One must recognize that changes in the decision variables can induce 
large changes in the various terms of the objective function (even if the 
sum total remains nearly constant) and that these changes represent 
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transfer payments that should not be ignored in an e~aluation.~’ 
Some of the tricky issues that arise as a result are discussed in 
Sec. 7.4.2. 

At the next level of complexity, one may be interested not just in 
scheduling, but also in route structure and layout. For a single route, 
the spacing between stops influences the access distance (which in- 
creases with the spacing) and also the vehicular trip times (which 
decrease with the spacing). Vehicular trip times in turn influence the 
operating cost, see (7.141, and the in-vehicle travel times, T,j, experi- 
enced by the goods or passengers carried. As in the previous case, it is 
now also possible to express the various measures of performance of the 
system (such as the operating cost and the mean access, waiting and 
riding times) in terms of our decision variables: the headway and the 
spacing. In this case, too, a weighted average of these measures is 
insensitive to the input data and to the precise values of the headways 
and spacings chosen, provided they are reasonable. 

There is an extensive literature on vehicle routing and scheduling 
that addresses not just the simple problems just described but also those 
with time- and space-dependent decision variables and data. Although 
most of the works are numerical in scope, some are designed to use less 
data by incorporating analytical principles. The interested reader may 
want to take a look at the paper by Clarens and Hurdle (1975) which 
introduced a clever design technique for space-dependent problems 
using continuum approximations. Analysis techniques using the building 
blocks of this chapter have been developed for complex problems 
involving transfers and network design.** 

7.4.2 Evaluation 

For both scheduled and unscheduled transportation systems, it has been 
an objective of this book to present tools that can be used to estimate 
basic system performance measures such as the vehicle-miles or 
vehicle-hours of travel in a system, and even the detailed vehicle 
trajectories in cases where these can be predicted. If one can estimate 
how these basic measures change when the system is redesigned or 
controlled in a particular way, then one should be able to predict the 
changes in the measures normally used for evaluation purposes (e.g., 
delay, cost, air pollution, noise, etc.) because these are directly related 
to the former. It should be clear from the discussion in this and earlier 
chapters that transportation user costs such as delay are linked to the 
basic measures. In this chapter for example we explained how passenger 
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delay depended on the vehicular schedule, and in earlier chapters how 
it could be derived from the N-curves. 

Transportation impacts on its non-users, such as air pollution, noise 
and to a certain extent energy consumption can also be linked to the 
vehicle trajectories, and in cases with many vehicles where these cannot 
be obtained individually (such as freeway traffic) to the macroscopic 
characteristics of traffic derivable from the N-curves. Chapters 30-32 of 
Homburger et.al. (1992) supply the necessary charts and formulae; this 
reference also includes more detailed information sources. 

7.4.2.1. Some remarks on welfare maximization 
The ability to predict, albeit coarsely, how a given system (scheduled or 
not) distributes its impacts/outputs, i, across all the population seg- 
ments, j, of users and non-users is important because the change in 
those impacts when we alter the character of our transportation system, 
e.g., by expanding its size, changing its control scheme, putting a price 
on it or doing some other such thing, should be the basis for society’s 
final choice. We warn, however, that serious difficulties arise if we try to 
anticipate what society wants by constructing an overall welfare measure 
from the impact levels affecting different groups of people. This means 
that welfare-based approaches for the evaluation and selection of 
open/public systems must be taken with a grain of salt. 

Let y,, be the amount of output i affecting population segment j; e.g., 
the amount of time (i) spent by middle-income Berkeley residents Cj) on 
the facility. (We assume that the segmentation is so fine that the y,] do 
not vary significantly across the people in a segment and that all the 
people in a segment are alike, in the sense that they value the yIJ 
similarly.) Then, if the system in question has been thoroughly analyzed, 
one could arrange all the outputs as shown in Table 7.1.29 

Although such a table would describe how everyone in the population 
is affected by the system, we shall soon see that there is no practical way 
in which the y,, can be combined to form a measure of society’s welfare. 

In conventional micro-economics one essentially assumes that wel- 
fare, i.e., our society’s objective function U, is the sum of the levels of 
satisfaction or utility experienced by each individual, and then it is 
postulated that individuals only derive utility from their own consump- 
tion of the various outputs;30 i.e., U = ZJ n,u, if we use u, to denote the 
level of utility achieved by population segment j and n, to denote the 
size of that population group. It is also assumed here (for simplicity 
only) that the u, can be expressed as a linear function of the yu’s 
experienced by the segment in question; i.e.: 

u, = L ~ l , Y l ,  (7.24) 
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0, cost 

2 ,  fuel 
3, noise 

1, time 

Table 7.1. A hypothetical distribution of impacts. 

. . .  Y i I I  Yo2 Yo3 

Y.1 Y.2 Y a  
Y31 Y32 Y33 ... 

. . .  Y I I  Y l ?  Y 13 

. . .  

.I= 1 2 3 4 . . .  
Berk N. Oak N. Oak 

poor rich poor rich 
I 

where aij is the ‘value’ (positive or negative) of one unit of the ith 
output to the individuals in the j t h  population segment. We have not 
specified a unit for this ‘value’ (economists use the word ‘util’), but this 
should not be a problem as long as we use the same unit for all the j’s. 
Let us assume that this has been done in (7.24). 

Although it should be intuitive that one can determine through 
experiment the ratio between any two weights, aij, for any specific 
group of people (j), e.g., aij/amj, there is no way in which the aij’s 
themselves may be determined. [ We can determine the ratio between 
the coefficients of time, i = 1, and money, i = 0, for example by seeing 
how people choose between cheap but slow, and fast but expensive 
transportation options.] Since the a’s are unknowable it is often pro- 
posed to use the dollar denominated version of (7.24) (which is know- 
able) as a substitute for (7.24); i.e.: 

(7.25) 

and then to evaluate society’s benefit by the sum of (7.25) for all people: 

$ = C,n,$, (7.26) 

where n j  is the number of people in group j .  This measure is called 
consumers’ surplus. 

It should be intuitive that, for the same token, one could have chosen 
to refer utilities to time, and therefore instead of (7.253 we could have 
proposed: 

(7.27) 
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as an equivalent measure of ‘time benefit’, whose aggregation across 
classes would have led to a time-denominated consumers’ surplus 

B = C, n, B, (7.28) 

that has as much right to be valid as (7.26). 
Each one of our three welfare measures (U, $ and B) weighs utilities 

in a different way, although according to assumption only the first one is 
right. If we were so fortunate that the aq and/or the a lJ  were 
independent of j ,  as if all the population groups had the same need/de- 
sire for time and money, then there wouldn’t be a problem because the 
uj’s and the $,’s (or the B,’s) would only differ by a positive multiplica- 
tive constant that does not have to be known for the purposes of 
determining which system design has the highest U. Unfortunately, the 
lack of ‘need/desire variations’ cannot be verified because the a’s 
cannot be determined through experiment. The most one can hope to 
check is for the ‘value of time’ ratios rj  = I aol~/~al l l  to be independent 
of j ;  i.e., that there are no relative ‘taste variations’ across the popula- 
tion. If this happens then Equations (7.25) and (7.27) would only differ 
by a constant factor (r) for all population groups, as would (7.26) and 
(7.28). This is somewhat gratifying because then either definition of 
surplus would yield the same result when comparing  alternative^.^^ 
Unfortunately, even in this fortuitous case the choice cannot be ex- 
pected to maximize the ‘true’ welfare U = Z,u.,. 

In most cases, however, $ and B do not coincide. In fact, we should 
not be surprised if in a particular application all three measures 
recommend a different alternative. This possibility is illustrated by the 
following example, in which alternative 1 (transit) is either equal, better 
or worse than alternative 2 (highway) depending on the measure used. 

Example: Imagine a world with only two population subgroups, j = 1 
(rich) and j = 2 (poor), for whom we have to supply one of the following 
two transportation alternatives: 1 (TRANSIT, slow and cheap) and 2 
(HIGHWAY, fast and expensive). Let us assume that our analysis of 
these alternatives yields the matrices of y,]’s included in Table 7.2 (in 
some reasonable units of cost and time). 

Let us now assume that the utilities for poor and rich people are: 

u1  = - ~ O Y , , ,  - y l l  and u 2  = -y,,, - 10yl2 

$, = -yo, - Jy, ,  and s2  = -yI)? - 1Oy,, 

Therefore, the dollar- and time-denominated utilities are: 

B,  = - lOy,,, - y l l  and B, = - . ly , , ,  - y12  
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1 

0, cost 
1, time 

Table 7.2. Hypothetical impact matrices for two transportation projects 

Poor Rich 

1 1 
0 0 

1, TRANSIT 
I =  1 2 

i Poor Rich I 
0, cost 
1, time 

0 
1 

0 
1 

2 ,  HIGHWAY 
J =  1 2 

A simple algebraic substitution yields the overall measures U, $ and 
B in Table 7.3 (where we assumed that n1 = n2 = 100). 

You can clearly see that the winning alternative depends on the 
measure used. Unfortunately, there is no way of resolving this discrep- 
ancy objectively. W 

Matters are further complicated because the ratios of a’s appearing 
in (7.25) and (7.27) represent how people value their own experience, 
and because in many cases some people derive ‘utility’ from the travel 
of others; e.g., if a person wants good public transportation so other 
people’s children have access to libraries and schools. This means that it 
is not possible to calculate what society wants in terms of transportation 

Table 7.3. Evaluation results for the example 

U $ B 

1, TRANSIT - 1100 - 1010 - 200 
2 ,  HIGHWAY - 1100 - 200 - 1010 
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alternatives and that the selection process should be left to the public. 
In the end the evaluation of an ‘open’ system boils down to politics, 
which the transportation professionals should inform; e.g., by providing 
the matrix of yij7s for the alternatives under consideration in as clear 
and accurate a way as possible. An understanding of the transportation 
and traffic operations field should facilitate this task. 

Notes 

1. Background material on the design and operation of’ these types of systems 
may be found in Larson and Odoni (1981) and Daganzo (1991). 

2.  This author believes that the basic ideas of Chap. 1 are all that is needed in 
order to understand the rationale for the formulas appearing in more 
specialized publications (perhaps even to derive them) given the particular 
details. 

3. In one case we are interested in the average distance of our customers to 
the nearest point on the distance line, and in the other case in their 
separation from the nearest (future) point on the time line. 

4. This should be clear by symmetry since in both cases we look for the 
average ‘distance’ of randomly distributed points o n  the time line to the 
nearest time on the bus schedule (in either the forward or backward 
direction). Of course, there is no a priori reason to expect that the ensemble 
of possible distributions of demand points and scheduled times should favor 
either the forward or backward direction. 

5 .  This statement follows from the identity: C,h?, = X k ( h  , -5)’ + K(Th)’. 
6. The reason for this is that one can partition the obsewation period into 

non-overlapping intervals of near-constant A with many headways for which 
(7.4) applies approximately. Since (7.4) only depends on the headways, it 
should be the same for every interval, and therefore for the overall study 
period. 

7 .  The bus stop delay problem with regular headways is a special case of the 
pretimed traffic signal problem in which the signal cycle is the headway, the 
green phase is the time when the bus doors are open and the saturation 
flow is the rate at which passengers board the bus. 

8. Note, however, that this does not eliminate the exit delay for trips in which 
this is an issue. This is one of the inherent disadvantages of discretely 
dispatched vehicles vis-a-vis the automobile. 

9. This behavioral model is not reasonable for trips in which there is a 
deadline, but the qualitative results are similar in  both cases. 

10. If vehicles have a (small) probability of arriving early so that f ,  is not 
decreasing the analysis following (7.9) will lead to a different arrival time. 
This is also true if passengers choose their arrival times imprecisely. None 
of these complications should change the fact that E(w) is comparable with 
E(S) and significantly smaller than h,. 
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11. This is discussed in Sec. 7.4.1. A menu of the form h p }  is less restrictive, 
but it is also less beneficial for coordination. It may be appropriate for lines 
with few transfers. 

12. The average cruising speed may include fluctuations exogenous to the 
system, eg. ,  due to variable traffic conditions, and may also vary across links 
due to physical reasons, such as links with different vertical profiles and 
lengths. None of these variations in speed are shown in the figure. 

13. It was proposed in Hauer (1969). 
14. If fresh run  labels are not issued between i an j then t jk  - Tij = ti,. This 

should be clear from inspection of Fig. 7.4, where we can see that the 
identity holds if j > i. If j < i ,  however, then we also see from the figure 
that the run number of the bus increases by 3 during its trip from i to j so 
that the relationship becomes tjk - Tij = t ik -3 .  

15. If a significant portion of the trips on the system are repeated every day, 
then the variability should be smaller. If, on the other hand, a significant 
fraction of the arrivals are affected in groups by exogenous causes such as 
sporting events and unpunctual feeder vehicles then the variability should 
be higher. We do not theorize any further about this issue because a 
definite answer can only be obtained through observation. 

16. In our case, for C = 42 seats we obtain 1 - pf > ,985 and for C = 45 seats 

17. If the headway is not constant during a r u n  then the formula is an upper 
bound because the fluctuations in occupancy are smaller. Note as well that 
the formula applies approximately to the non-stationary case if, as is usually 
the case in public transportation applications, the expected demand varies 
slowly during a headway. 

18. Newell and Potts (19641, Potts and Tamlin (1964) and Newell (1974) 
describe analytically the bus schedule instability phenomenon, and present 
methods of headway control aimed at preventing it. Gamse and Newell 
(1982) have explored the elevator problem and showed that it is more 
serious. These references are recommended as further reading for the 
reader interested in schedule control problems. 

19. Different demand rates could be incorporated into the simulation by 
including a column of data next to the stop number. 

20. In our implementation, which has been made available to the public as 
spreadsheet ‘PAIRING.WKl’, the formula 2*(@RAND + @.RAND + 
@RAND - 1.5)*a+ m with a =  $H$4 and m = $E$4 was used to approxi- 
mate a normal draw with mean m and standard deviation a ,  since the sum 
of 3 uniform random bariables has a c.d.f. that is quite close to the normal. 

21. The approximation is justified upon noting that the exact expression for 
(AT/n)* is the square of the arithmetic mean of (ai), where a i  = (ai’+ 
Tfvar(Mi))’/’, and that the approximation for (AT/n)’ is the mean of the 
squares. You can easily verify that the approximation is exact if ai2 and 
var(Mi) are independent of i .  

22. The advanced reader may see that the headway of the late-running bus as a 

(1 - pt)  = 1.00. 
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function of the distance (XI from the last control point can be approximated 
by a stochastic process with independent increments, and more specifically 
by a Brownian process with a drift that increases with the current headway. 
Although this process is unstable (the headway tends to ~3 as x + x with 
probability 1 because the drift becomes positive for sufficiently large head- 
ways), the probability that the headway will violate the schedule for any 
finite x (e.g., the distance to the next control point) is always small if the 
slack is large. 

23. These effectively allow buses to run as early as they can. Spreadsheet 
‘PAIRING.WK1’ allows the user to include slack at stops 10 and 20 by 
changing the data in cell ‘H3’. 

24. Note that the occupancies are available even if one has used the stationary 
observer method because olk = El, - El,- ,. 

25. The subscript i - 1 used in connection with rl can be deleted if one 
believes that the average time per passenger movement does not vary 
significantly across stops, as has been assumed so far in this chapter. 

26. A similar dimensional argument can be made to show that moderate errors 
in the parameters of (3.9a) have even less of an impact on the final 
objective. 

27. Note for example that changing h by a factor r changes the two terms of 
(3.9a) by the same factor (increasing one and decreasing the other). 

28. A survey of this literature can be found in Langevin, Mbaraga and Camp- 
bell (1996). 

29. To make comparisons easy, one should use the same denominator for all 
categories of output; e.g., quantity per year, or quantity per life of the 
project, or quantity per year per family in the region. 

30. This assumption ignores basic human traits such as generosity and envy. Its 
validity can be debated for goods such as transportation that provide a basic 
societal function. We accept it here just to show that difficulties with the 
concept of ‘welfare’ would arise even in a very simple world. 

31. There is an economic theory specifying the conditions under which r, = r 
but in our particular case the theory does not apply; after all, we do know 
that different people have different values of time. 
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