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Turbulence is the most important unsolved
problem of classical physics.

Richard P. Feynman,
The Feynman Lectures on Physics, 1964
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This thesis by Jennifer Jucha presents exciting new results on the time reversibility
and multiple particle dispersion in turbulent flows of simple and complex fluids. It
shows beautifully the connection between time irreversibility of the turbulent flow
and two and four particle dispersion. This, Jennifer Jucha achieved by combining
analytical theoretical calculations of the short-time evolution with careful experi-
mental investigations of multi-particle dispersion in which particles are tracked at
very high spatial and temporal resolution, and first-principle simulations of the
Navier-Stokes equation in a periodic box. The thesis comprehensively and con-
cisely reviews fluid turbulence as a whole and particle tracking in particular. An
analysis of the experimental methods is presented and the finite volume biases are
discussed in detail and methods of avoiding them are shown. The thesis presents the
very important discovery that short-time pair dispersion is faster backwards than
forwards in time. It convincingly connects this to the turbulent energy transfer
through scales (energy cascade). It is astounding that this quite weak effect O t3ð Þ is
clearly measurable in experiment. The tetrahedron analysis on the other hand gives
much clearer results at O tð Þ due to the non-vanishing intermediate eigenvalue of the
perceived rate-of-strain tensor. This finding is very important, as it allows a coarse
grained understanding of turbulence dynamics purely based on the evolution of four
particles. It is delightful to see the fearless theoretical analysis combined with a
beautifully done experiment and analysis. Then, Jennifer carries over her experi-
mental technique to very dilute polymer solutions. This adds elastic degrees of

vii



freedom to the energy transport through the turbulent cascade. She finds unexpected
new results that cry for a theoretical explanation. Overall, this is a truly exceptional
thesis—a must read for students and senior researchers alike.
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Chapter 1
Motivation

Throughout the centuries, many prestigious physicists andmathematicians have tried
to describe the dynamics of turbulent flows and predict their evolution (for a historical
overview, see e.g. Lumley and Yaglom 2001 and Davidson et al. 2011). In fluid
dynamics, the term “turbulence” usually describes a special state of a continuous
medium in which many interacting degrees of freedom are excited, leading to strong
and chaotic temporal and spatial fluctuations in velocity, pressure and other flow
properties. This behavior can be found in the atmospheric flows determining our
weather and climate, water flows in rivers and oceans, right down to the coffee we
drink and the air we breathe (Shaw 2003; Bodenschatz et al. 2010; Naveira Garabato
et al. 2004; Shraiman and Siggia 2000). Accordingly, turbulent flows are of large
interest from a practical viewpoint and many studies are conducted on the effect of
turbulence on drag, combustion, and sedimentation, to name only a few. From amore
fundamental perspective, the highnumber of excited degrees of freedom in a turbulent
flow lead to a complex physical state far from equilibrium, not characterizable with
the tools of equilibrium statistical mechanics. New theoretical approaches are needed
to describe the multitude of fascinating phenomena observed in experimental and
natural flows.

One of those phenomena is the time irreversibility of turbulent flows. This can be
easily seen when comparing the mixing of substances in turbulent and Stokes flow.
If a blotch of colored corn syrup is injected into a Couette cell filled with corn syrup
and the inner cylinder is rotated, the two components are spread into thin layers. The
formation of the layers can be easily reversed, however, by turning the inner cylinder
the other way around until the blotch has recollected at its original position, with
just a slight blurring due to diffusion (Heller 1960). If milk is stirred into coffee,
on the other hand, turbulent flow generates much more complicated, interwoven
layer structures of the two substances (Ottino 1989; Dimotakis 2005). Reversing
the stirring direction will not untangle the produced layers but rather enhance the
complexity of their structure, and the initial condition of two unmixedfluids can never
be reproduced. The irreversibility of turbulent flows arises from instabilities that lead
to a flux of energy through scales. For a three-dimensional flow, the spatial scale at
which energy is injected, L , is much larger than the scale at which it is dissipated, η.

© Springer International Publishing Switzerland 2015
J. Jucha, Time-Symmetry Breaking in Turbulent Multi-Particle Dispersion,
Springer Theses, DOI 10.1007/978-3-319-19192-8_1
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2 1 Motivation

Therefore, energy is transported from large to small scales with a constant transfer
rate ε > 0 in a cascade-like manner (Frisch 1995). A time-reversal transformation,
t → −t , leads to a change of direction of this energy flux, showing that turbulent
flows are not symmetric in time.

Since mixing is a good indicator for the irreversibility of a flow, it seems natural
to use the dispersion of particle clusters as a tool to analyze time asymmetry. The
simplest case is the dispersion of a set of two particles, called relative dispersion (for
an overview, see e.g. Sawford 2001 and Salazar and Collins 2009). Many investiga-
tions have been conducted concerning this topic, most of them focusing on the mean
squared separation forwards in time, 〈R(t)2〉, where R(t) is the separation vector
between the two particles for time t > 0 and all pairs start with an initial separation
|R(0)| = R0. For an initial separation much larger than the dissipative scale, but still
smaller than the injection scale, η � R0 � L , Batchelor (1952) showed that for
very short times the mean squared separation grows as

〈R(t)2〉 ∝ (εR0)
2
3 t2.

This expression communicates the idea that particles initially continue their path
ballistically according to x(t) ≈ x(0) + v(0)t . This leads to a quadratic, and thus
symmetric, dependence on time. For later times, when η � R0 � |R(t)| � L , it
is expected that the mean squared separation grows according to Richardson scaling
(Richardson 1926; Obukhov 1941; Batchelor 1952)

〈R(t)2〉 = gεt3,

where g is the Richardson constant. Due to the cubic dependence on time, this scaling
law is sensitive to a time asymmetry of the flow and it is assumed that there are two
different constants g f and gb for dispersion forwards (t > 0) and backwards in
time (t < 0), respectively (Sawford et al. 2005). First experimental and numerical
studies on the time asymmetry in relative dispersion indeed indicated that particles
separate faster backwards than forwards in time (Sawford et al. 2005; Berg et al.
2006; Bragg et al. 2014). This finding was attributed to Richardson scaling, and
attempts were made to obtain values for g f and gb. Richardson scaling is notoriously
hard to observe, however, and a rigorous, mathematical explanation for the observed
enhancement backwards in time is still lacking.

It is thus crucial to find a theoretical, reliable connection between the observed
time asymmetry in particle dispersion and the intrinsic time irreversibility of turbulent
flows due to the energy cascade. In this thesis, I show that this connection can be found
by investigating the evolution of clusters of two and four particles at very short times.
I confirm my theoretical findings with experimental data conducted in a turbulent
water flow produced by two counterrotating propellers. Additionally, I explore how a
change of the energy cascade, induced by the addition ofminute amounts of polymers
to the flow, is reflected in the particle dispersion. Using experimental data, I confirm
the theoretical framework recently proposed by Xi et al. (2013) which suggests that
the polymer-flow interactions severely alter the energy cascade as soon as the energy
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dissipated by the polymers equals the kinetic energy transfer of the turbulence. I then
present experimental data showing that the addition of polymers to the flow has a
significant impact on time asymmetry in both two- and four-particle dispersion.

Chapter 2 provides a brief introduction into the field of turbulence, including
a more detailed section about multi-particle dispersion forwards and backwards in
time.The experimental setup anddata-evaluation techniques are explained inChap.3.
Afterwards, the results on two-particle dispersion and four-particle dispersion are
given in Chaps. 4 and 5, respectively. In Chap.6, the impact of polymers on the
energy cascade is discussed and results for particle dispersion in this scenario are
shown. Finally, the presented results are evaluated in Chap.7 and some promising
further research possibilities are highlighted.

Parts of this thesis have been published in Physical Review Letters (Jucha et al.
2014).
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Chapter 2
Introduction and Theory

This chapter aims to convey the underlying theoretical concepts and the current state
of research in the field of turbulent multi-particle dispersion. Some of these concepts
are well known in the turbulence community and are described in detail in e.g.Monin
and Yaglom (2007), Frisch (1995), Argyris et al. (2010) and Pope (2000). Wherever
possible, however, I will rely on the excellent and historically important texts by
Richardson (1922), Kolmogorov (1941a, b) and Batchelor (1950) in order to present
these ideas.

Section2.1 describes the governing equations of a turbulent flow and explains
the necessity of a statistical description. Section2.2 focuses on the famous theory of
Kolmogorov (1941a) and the underlying picture of the turbulence energy cascade.
In Sect. 2.3, different aspects of turbulent dispersion for two or more fluid particles
are described and current theoretical and experimental findings are presented.

2.1 The Governing Equations

The first fundamental assumption when dealing with fluid dynamics is the continuum
approximation. This assumption implies that the fluid fills space continuously and
that its composition of molecules and ions can be neglected. This approximation is
valid as long as the smallest scales of the flow are much larger than the mean free
path in the fluid, a condition satisfied by the majority of flows. In a strongly turbulent
cumulus cloud, e.g., the smallest scales of the flow are of the order of η ≈ 10−3 m
and thus some orders of magnitude larger than the typical mean free path.1 Using the
continuum approximation, the equations for fluid motion can be derived from first
principles.

1The smallest turbulent scale is estimated frommeasurements in atmospheric clouds at an altitude of
approx. 2000m (Siebert et al. 2006). The atmospheric pressure at this height is about 65kPa for a sea-
surface temperature of 288K and an average molecular mass of the atmosphere of 0.02897kg/mole,
leading to a mean free path of λ ≈ 10−7 m.

© Springer International Publishing Switzerland 2015
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6 2 Introduction and Theory

2.1.1 The Navier-Stokes Equations

The evolution of a fluid element is governed by two conservation laws: the conser-
vation of mass and the conservation of momentum. Mass conservation leads to the
continuity equation

∂

∂t
ρ(x, t) + ∇ · (ρ(x, t)u(x, t)) = 0, (2.1)

with ρ(x, t) being the density of the fluid element and u(x, t) being its velocity.
Momentum conservation, together with the second Newtonian theorem, results in

d

dt
(ρ(x, t)u(x, t)) =

(
∂

∂t
+ u(x, t) · ∇

)
(ρ(x, t)u(x, t))

= ∇ · σ(x, t) + ρ(x, t)f(x, t), (2.2)

with the stress tensor σ(x, t) and f(x, t) being the body force (e.g. gravity or the
Coriolis force).

Most natural flows exhibit incompressibility, meaning that the density remains
constant along fluid trajectories, according to ∂

∂t ρ(x, t) + (u(x, t) · ∇)ρ(x, t) = 0.
In the case of low-intensity water flows, where only very small Mach numbers are
reached, it is justified to even assume a constant density, ρ(x, t) ≡ ρ, throughout the
flow. For the rest of this thesis, the density is assumed to be constant if not stated
otherwise. In this case, the above equations simplify to

∇ · u(x, t) = 0, (2.3)

ρ

(
∂

∂t
+ u(x, t) · ∇

)
u(x, t) = ∇ · σ(x, t) + ρf(x, t). (2.4)

For an incompressible viscous fluid, the stress tensor is given by

σi j (x, t) = −p(x, t)δi j + μ

(
∂ui (x, t)

∂x j
+ ∂u j (x, t)

∂xi

)
, (2.5)

where p(x, t) is the scalar pressure field, μ is the dynamic viscosity, and δi j is the
Kronecker delta. With this stress tensor and Eq. (2.4), one obtains the Navier-Stokes
equations (Navier 1827; Stokes 1845) for a fluid with constant density:

ρ

(
∂

∂t
u(x, t) + (u(x, t) · ∇)u(x, t)

)
= −∇ p(x, t) + μ�u(x, t) + ρf(x, t). (2.6)

Together with the continuity Eq. (2.3) and initial as well as boundary conditions,
the Navier-Stokes equations fully describe a fluid flow. It is informative to non-
dimensionalize Eq. (2.6) by introducing the new variables

x′ = x/L , u′ = u/U, t ′ = t U/L , p′ = p/(ρU 2) and f ′ = f L/U 2,

(2.7)
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with L and U being the characteristic length scale and velocity of the flow. Inserting
the new variables into Eq. (2.6), dividing by U 2/L and omitting the primes, one
obtains

∂

∂t
u(x, t) + (u(x, t) · ∇)u(x, t) = −∇ p(x, t) + 1

Re
�u(x, t) + f(x, t). (2.8)

The only free parameter in Eq. (2.8) is the Reynolds number, Re = U L
ν , with the

kinematic viscosity ν = μ/ρ (Reynolds 1883). For very small Reynolds numbers,
Re � 1, the viscous term is dominating and the flow is purely laminar, i.e. all stream
lines are in parallel. ForRe � 103, on the other hand, the viscous damping term is very
weak and turbulence can evolve (Reynolds 1883; Avila et al. 2011). For turbulent,
atmospheric flows one can find Reynolds numbers as high as Re ≈ 108 − 109.

The Navier-Stokes equations are nonlinear and, due to the pressure term, also
non-local. For turbulent flows, for which the damping term, 1

Re�u(x, t), becomes
relatively weak due to a high Reynolds number, this leads to a phenomenon called
deterministic chaos: Tiny differences in the initial conditions lead to very different
outcomes, making the flow unpredictable (see e.g. Lorenz 1963). Only averaged
quantities can be reproduced reliably, showing the necessity of a statistical approach
to turbulence.

2.1.2 Statistical Description of Turbulence

A natural first attempt for a statistical description of turbulent flows is the averaging
of the Navier-Stokes equations in order to obtain an expression for the mean flow.
This was first done by Reynolds (1895) using a time average. In this section, I will
use an ensemble average instead, but the concept remains the same.

Let us assume several independent statistical events, e.g. repetitions of the same
experiment, where for each event a random variable x is measured. The ensemble
average of x is then defined as

〈x〉 = lim
N→∞

1

N

N∑
n=1

xn, (2.9)

with xn being the values of x for the different events. Due to the chaotic behavior of
turbulent flow, the velocity field u(x, t) can be taken as such a random variable, more
precisely a random field. Using the ensemble average, one can split the velocity field
into a mean value and a fluctuating component in the form

u(x, t) = ū(x, t) + u′(x, t), (2.10)

with ū(x, t) = 〈u(x, t)〉. From this definition, it directly follows that 〈ū(x, t)〉 =
ū(x, t) and 〈u′(x, t)〉 = 0. Inserting the above decomposition into the continuity and
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Navier-Stokes Eqs. (2.3) and (2.8) and taking the ensemble average leads to

∇ · ū(x, t) = 0,

∂

∂t
ū(x, t) + (ū(x, t) · ∇)ū(x, t) + 〈(u′(x, t) · ∇)u′(x, t)〉 = −∇〈p(x, t)〉 + 1

Re
�ū(x, t)

+ 〈f(x, t)〉.

This new set of four equations comprises seven variables. Aside from the mean
flow variables ū(x, t) and 〈p(x, t)〉, the last term on the left hand side depends
quadratically on the velocity fluctuations u′(x, t). It is usually written in the form

〈(u′(x, t) · ∇)u′(x, t)〉i =
∑

j

∂

∂x j
〈u′

j (x, t)u′
i (x, t)〉, (2.11)

where the components of 〈u′
j (x, t)u′

i (x, t)〉 are knownas theReynolds stresses. Deter-
mining the mean velocity ū(x, t) thus requires the knowledge of the second moment
of the velocity fluctuations, meaning that the equations for ū(x, t) are not closed.
This closure problem prevents a statistical description of turbulence solely based on
the Navier-Stokes equations (Kraichnan 1961), and some modeling is required in
order to formulate results (for an overview, see e.g. Pope 2000, Chaps. 10–14).

2.2 Kolmogorov’s Theory (1941)

The works published by Kolmogorov in 1941 are amongst the most important
achievements in turbulence research (Frisch 1995; Kolmogorov 1941a). He built
the foundation of today’s understanding of turbulent flow and provided one of the
few exact results derived from the Navier-Stokes equations.

Kolmogorov refined the picture of the turbulence energy cascade, first promoted
by Richardson (1922), and used it as a foundation for his work (Kolmogorov 1941a).
According to this picture, energy injected into a three-dimensional (3D) turbulent
flow will form eddies2 of some large scale L (e.g. the size of a propeller stirring the
fluid). These eddies break up into smaller eddies, thereby transferring their energy
to smaller scales with an energy transfer rate ε. This process continues until a length
scale η is reached at which viscous dissipation dominates (Fig. 2.1). Kolmogorov
further assumed that a statistical decoupling happens during this energy transfer. As
a consequence, eddies much smaller than the injection scale L should be unaffected
by the nature of the injection. From this he concluded his first hypothesis of similarity:

Statistical quantities depending only on the smallest scales of the flow are fully
determined by the energy transfer rate ε and the kinetic viscosity ν.3

2An eddy is to be understood as “a component of motion with a certain length scale, i.e. an arbitrary
flow pattern characterized by size alone” (Batchelor 1950). It is not to be confused with a whirl as
seen near a drain.
3Due to the mathematical nature of the original hypotheses by Kolmogorov (1941a), a more verbose
formulation is chosen here.
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Fig. 2.1 Sketch of the
energy cascade as used by
Kolmogorov (1941a)

L

η

ε

It follows directly that these quantities need to be homogeneous and isotropic
because any preference of orientation of the largest eddies is lost at the small scales.4

Using only ε and ν, one is also able to construct universal time, length, and velocity
scales, the Kolmogorov microscales:

η =
(

ν3

ε

) 1
4

, τη =
(ν

ε

) 1
2
, uη = (νε)

1
4 . (2.12)

By construction, these are the scales corresponding to the smallest eddies of the
flow with a Reynolds number of Reη = uηη

ν = 1. While η represents the size of the
eddies, τη gives the eddy turn-over time and uη the resulting characteristic velocity.
Changes of the flow along distances much smaller than η or during time intervals
much shorter than τη are assumed to be smooth and differentiable. The scale ratio
between the large energy containing eddies and the small dissipative eddies is known

to grow as L/η ∝ Re
3
4 and TL/τη ∝ Re

1
2 with TL being the eddy turn-over time of

the large eddies. For very strong turbulence, and thus very high Reynolds number,
the scale separation L/η becomes very large. In this case, Kolmogorov suggested
that there exists a range of scales, η � r � L , which is unaffected both by the large
scales and by dissipation. This leads to his second hypothesis of similarity:

For very large Reynolds numbers, there exists an intermediate range of scales for
which any statistical quantity is fully determined by the scale r and the energy
transfer rate ε.

This intermediate range of scales, the inertial range, is therefore independent of the
underlying conditions of the flow field (i.e. forcing, geometry, and viscosity) and
should yield the same statistics for all flows with the same energy transfer rate. This
conclusion is of major importance to the entire field of turbulence research, since it
allows the comparison of results obtained from different flows.

4The concept of isotropic turbulence and its usefulness to compute exact relations had already been
presented earlier in the important works of Taylor (1935) and Von Kármán and Howarth (1938).
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Starting from these two hypotheses, one can use dimensional analysis to obtain
some useful results for the limit of Re → ∞. For the hypotheses to be applica-
ble, however, the statistical quantities under consideration need to be assignable to
a certain scale. A good choice for such a quantity are the longitudinal structure
functions,

Sp(r) =
〈(

(u(x + r, t) − u(x, t)) · r
r

)p〉
, (2.13)

with p being a positive integer. Due to homogeneity, the structure functions depend
only on the separation vector r, while isotropy can be used to further simplify this de-
pendence to the absolute value r = |r|. Using the second hypothesis and dimensional
analysis, it can be shown that

Sp(r) ∝ (εr)
p
3 . (2.14)

For the special case of p = 3, Kolmogorov even derived an exact result from the
Navier-Stokes equations (Kolmogorov 1941b). Only assuming homogeneity and
isotropy, he showed that in the limit of infinite Reynolds number, the third order
structure function behaves as

S3(r) = −4

5
εr, (2.15)

where r is in the inertial range. This 4/5-law is one of the few exact results in turbu-
lence research and therefore plays an important role in the description of turbulence.5

It was later shown that an alternative formulation to the 4/5-law can be obtained
by looking at the derivative of the squared relative velocity

1

2
〈 d
dt

[u(x + r, t) − u(x, t)]2〉 = 〈[u(x + r, t) − u(x, t)] · [a(x + r, t) − a(x, t)]〉
= −2ε. (2.16)

This result is exact for a homogeneous flow at a high Reynolds number and with r
in the inertial range (Mann et al. 1999; Falkovich et al. 2001; Pumir et al. 2001).
Since I will use Eq. (2.16) frequently in this thesis, I will from now on use the short
notation 〈δu · δa〉 = −2ε whenever referring to this expression.

5It is known for many years that the scaling law in Eq. (2.14) is actually not exact for p 
= 3 due to
intermittency effects. For a longer discussion of this topic see e.g. Frisch (1995), Chap.8.
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2.3 Turbulent Dispersion

Another area of turbulence research in which the theory of Kolmogorov can be put to
great use is turbulent dispersion. The separation statistics of clusters of n particles in
a turbulent flow are of crucial importance for the understanding of many fundamental
processes, like the spreading of clouds or turbulent mixing (Sawford 2001; Ottino
1989). Furthermore, as opposed to single particle diffusion, the characteristic length
scale of a cluster of particles dominates the statistics thereof so that Kolmogorov’s
theory can be applied (Batchelor 1950). The easiest case, the separation of pairs, of
course plays a special role in theoretical, experimental, and numerical investigations
(Sawford 2001; Salazar and Collins 2009).

2.3.1 Eulerian and Lagrangian Descriptions of Turbulence

Studying particle separation requires to follow particle trajectories through a flow.
This is best done by the so-called Lagrangian decription of turbulence (Yeung 2002;
Toschi and Bodenschatz 2009). As opposed to the Eulerian framework in which
the flow field is given at fixed points in space and time, the Lagrangian framework
describes flow properties along the trajectories of fluid particles. Here, I use the term
fluid particle, or fluid element, to describe a single point in the fluid continuumwhich
follows the velocity field. It is an abstract mathematical concept, not to be confused
with e.g. a molecule. If such a fluid particle starts at a position y at time t = 0, then
its position at a later time t will be denoted by X(t |y, 0) with X(0|y, 0) = y. By
construction, the velocity of a fluid particle is always identical to the velocity field
at its position, that is, d

dt X(t |y, 0) = U (t |y, 0) = u(X(t |y, 0), t). Experimentally,
tracer particles with the same density as the fluid and a diameter d � η much smaller
than the Kolmogorov scale can be treated as fluid particles.

2.3.2 Pair Dispersion

Thedisplacement statistics of a pair of fluid particles can be described by the probabil-
ity density function (p.d.f.) P(x1, x2, t |y1, y2, 0) of finding the particles at positions
x1 and x2 at time t under the condition that they have been at positions y1 and y2
at time t = 0 (Batchelor 1952). In the Lagrangian notation introduced above, this
means that X(t |y1, 0) = x1 and X(t |y2, 0) = x2. Separating the relative positioning
R = x2 − x1 and R0 = y2 − y1 from the general movement M = x1 − y1, we
obtain the more useful p.d.f. P(M, R, t |R0, 0), where the dependence on the initial
positions y1 and y2 is omitted under the assumption of a homogeneous flow. In many
cases, as for example the growth of a particle cloud, the collective motion of the two
particles is of no interest, and the separation p.d.f.
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Pr (R, t |R0, 0) =
∫

P(M, R, t |R0, 0)dM (2.17)

provides an adequate description. For an isotropic homogeneous flow, the first mo-
ment of this p.d.f. vanishes and the second moment is given by

〈[
X(t |y1, 0) − X(t |y2, 0)

]2〉 ≡ 〈R(t)2〉 =
∫

R2Pr (R, t |R0, 0)dR. (2.18)

This second moment, the mean squared separation, gives the relative dispersion of
the two fluid particles and its evolution can be written in the very general form

d

dt

〈
R(t)2

〉
= F(R0, t), (2.19)

where, due to the assumption of homogeneity and isotropy, the function F can
only depend on the absolute value R0 = |R0| of the initial separation. With this,
Kolmogorov’s hypotheses can be applied to learn more about the function F and I
will loosely follow Batchelor (1950) for this procedure.

As a prerequisite for the first similarity hypothesis, |R(t)| needs to be much
smaller than the energy injection scale L , which results in the requirement that t
and R0 be “not too large.” Under these conditions, Eq. (2.19) can be expressed more
precisely as

d

dt

〈
R(t)2

〉
= νF

(
R0ε

1
4

ν
3
4

,
tε

1
2

ν
1
2

)
, (2.20)

where the arguments of F are now dimensionless. In the case where R0, and thus
|R(t)|, is in the inertial range, the second similarity hypothesis states that F can only
depend on ε and the involved time and spatial scales. This leads to

d

dt

〈
R(t)2

〉
= εt2F

(
R0

ε
1
2 t

3
2

)
, (2.21)

where the only constructible dimensionless variable depends on both R0 and t . Aside
from restricting R0, we can of course also constrain the time variable:

very small t: The mean squared separation can always be rewritten in terms of the
particle velocities as

d

dt

〈
R(t)2

〉
= 2

〈(
R(0) +

∫ t

0
V(t ′)dt ′

)
· V(t)

〉
, (2.22)

with V(t) = U(t |y1, 0) − U(t |y2, 0) being the relative velocity between the two
particles. In his original work, Batchelor (1950) assumed the initial separation and
the velocity to be uncorrelated, so that 〈R(0)·V(t)〉 can be set to zero. Furthermore,
in the limit where t is very small, one finds that V(t ′) ≈ V(t) ≈ V(0) within
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the limits of the integration. This should be valid as long as the two velocities

are still strongly correlated, meaning that t � t0, where t0 = (
R2
0/ε

) 1
3 is the

characteristic Kolmogorov time for an eddy of size R0.6 For R0 in the inertial
range, Eq. (2.21) then reduces to

d

dt

〈
R(t)2

〉
≈ 2t

〈
V(0)2

〉
= 2

11

3
C2(εR0)

2
3 t. (2.23)

This scaling law for the particle separation is known as Batchelor scaling. Note
that the prescribed linearity in time as a result of t being small, together with the
assumption of R0 being in the inertial range, are sufficient to completely determine
F up to an unknown constant C2.

intermediate t: For a sufficiently high Reynolds number and R0 in the inertial
range, there is a range of intermediate times, t > t0, for which |R(t)| is still in
the inertial range but much larger than the initial separation. In this case, one can
argue that d

dt

〈
R(t)2

〉
does not depend on the exact value of R0, so that Eq. (2.21)

simplifies to
d

dt

〈
R(t)2

〉
≈ 3gεt2. (2.24)

Again, the evolution of the pair separation is fully determined except for a con-
stant g, termed Richardson constant. Equation (2.24) is respectively known as the
Richardson-Obukhov law (Richardson 1926; Obukhov 1941).

Apart from these early findings, another more recent consideration shall be presented
here. As mentioned above, Batchelor (1950) assumed the initial separation and rel-
ative velocity to be uncorrelated. Without this assumption, Eq. (2.23) changes to

d

dt

〈
R(t)2

〉
≈ 2 〈R(0) · V(0)〉 + 2t

〈
V(0)2

〉

≈ 2 〈R(0) · V(0)〉 + C2(εR0)
2
3 t, (2.25)

which can be re-expressed in the form of the mean squared change of separation

d

dt

〈
δR2(t)

〉
≡ d

dt

〈
[R(t) − R(0)]2

〉
≈ C2(εR0)

2
3 t. (2.26)

For a perfectly homogeneous and isotropic flow, Eqs. (2.24) and (2.26) are iden-
tical. There is some evidence, however, that for real flows, both experimentally
and numerically, this condition is only approximately fulfilled. In this case, the
mean squared change of separation shows much clearer scaling than the origi-
nal expression by Batchelor and should be used instead (Ouellette et al. 2006).

6One can also think of t0 as the eddy-turn-over time of an eddy of size R0. After one turn-over, the
eddy looses its coherence and the velocities of two fluid particles belonging to the eddy become
uncorrelated.
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The Richardson-Obukhov law, on the other hand, is identical for both the mean
squared separation and the mean squared change of separation since an indepen-
dence from the initial separation was assumed in the derivation.

Please note that in the Lagrangian notation, the relation for 〈δu · δa〉 in Eq. (2.16)
can be conveniently written as

1

2

〈
d

dt
V(t)2

∣∣∣
t=0

〉
= 〈V(0) · A(0)〉 = −2ε, (2.27)

where A(t) = d
dt V(t) is the relative acceleration between the two particles. This

expression can be understood as the Lagrangian equivalent of the 4/5-law.

2.3.3 Backward Dispersion

I have thus far focused on the dispersion of particle pairs over time that start with
some fixed initial separation. Naming this process forward dispersion, one can dis-
tinguish another concept, where a fixed separation is prescribed at a later time and
the dispersion of particle pairs prior to that time is analyzed. This is called backward
dispersion. As shown above, the forward dispersion of a pair of fluid particles is
given by 〈R(t)2〉 = ∫

R2Pr (R, t |R0, 0)dR, with Pr (R, t |R0, 0) being the probabil-
ity that X(t |y2, 0) − X(t |y1, 0) = R for y2 − y1 = R0. Accordingly, the backward
dispersion can be written as

〈R(−t)2〉 =
∫

R2Pr (R,−t |R0, 0)dR =
∫

R2Pr (R0, t |R, 0)dR, (2.28)

where stationarity and incompressibility7 of the flow are used for the second equality.
The alternative formulations in Eq. (2.28) correspond to the two notions that the
particle pair is either tracked from its initial condition backwards in time towards an
earlier state, or from an earlier state towards a fixed end state. Both interpretations are
equally useful and show an important difference to forward dispersion as illustrated
in Fig. 2.2. Assuming that the fluid particles are part of a material cloud at t = 0,
forward dispersion describes the spreading of the cloudwhereas backward dispersion
describes its formation. The latter provides valuable information about how advected
material coming from different locations of a flow is brought together, which is
apparently closely connected to scalar concentration fields and turbulent mixing
(Corrsin 1952; Durbin 1980; Frisch et al. 1999; Thomson 2003; Celani et al. 2004;
Sawford et al. 2005).

7For an incompressible flow, it can be shown that the displacement probability of two particles
obeys P(x1, x2, t |y1, y2, 0) = P(y1, y2, 0|x1, x2, t) (Lundgren 1981), which directly leads to
Pr (R, t |R0, 0) = Pr (R0, 0|R, t).
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Fig. 2.2 Sketch of the
relative motion of two fluid
particles with a fixed
separation |R(0)| = R0 at
t = 0. If the particles are
located inside a cloud of
material at t = 0, forward
dispersion captures the
dispersion of the cloud with
time while backward
dispersion is connected to the
concentration field at t = 0

R(−t)

R(0)
R(t)

While forward dispersion has been studied extensively since the early works of
Taylor (1922) andRichardson (1926), backward dispersion has only recently become
focus of turbulence research. For the relative dispersion of fluid particles with an
initial separation R0 in the inertial range, recent studies found that dispersion happens
faster backwards in time than forwards (Sawford et al. 2005; Berg et al. 2006; Bragg
et al. 2014). Sawford et al. (2005) proposed that this time asymmetry can be captured
by extending Richardson scaling towards the backward case with

R2(t) =
{

R2
0 + g f εt3 for t > 0

R2
0 + gbε|t |3 for t < 0,

(2.29)

where the two scaling constants have been experimentally measured to be g f = 0.55
and gb = 1.15 (Berg et al. 2006). The reliability of these result will be discussed
later in this thesis.

2.3.4 Multi-particle Dispersion

In recent years, new experimental techniques and ever-growing computer clusters
have enabled us to go beyond pair statistics and take first steps in the direction
of multi-particle dispersion (Chertkov et al. 1999; Falkovich et al. 2001; Biferale
et al. 2005; Lüthi et al. 2007; Hackl et al. 2011; Xu et al. 2011; Pumir et al. 2013).
This overview will be restricted to the theoretical essentials for describing n-particle
dispersion with a focus on n = 4. Further developments and ideas will be covered
in Chap.5 as well as the discussion section of this thesis.

The major benefit of looking at clusters of n > 2 fluid particles is that beyond
the size of the cluster, there is a multitude of additional shape information. In order
to capture all of this information, a clever description of the cluster is needed. In a
homogeneous, d-dimensional flow, a cloud of n particles can be described by a set
of n − 1 position vectors. In the field of turbulence research, the usual notation for
this set of vectors is

http://dx.doi.org/10.1007/978-3-319-19192-8_5
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ρ(m)(t) =
√

m

m + 1

⎡
⎣X(t |y(m+1), 0) − 1

m

m∑
l=1

X(t, y(l), 0))

⎤
⎦ , m ∈ {1, 2, . . . , n − 1},

(2.30)
with ρ(m) being the mth ρ-vector. One can now construct a d × (n − 1) matrix

P(t) =
(
ρ(1)(t)ρ(2)(t) . . . ρ(n−1)(t)

)
, (2.31)

which contains the full geometrical information of the cluster. The singular value
decomposition of P(t) is then given by

P = U(t) diag(σ1(t),σ2(t), . . . ,σmin(d,n−1)(T ))WT (t). (2.32)

Here, W(t) is an (n − 1) × (n − 1) orthogonal matrix and gives the orientation
in pseudo-space, a vector space spanned by the numbering of the ρ-vectors. The
singular values, σi , contain the elongation of the cluster along different axes, and the
d ×d orthogonal matrix U(t) gives the orientation in real space. In an isotropic flow,
the orientation of the cluster in real space does not matter, so that the full cluster
can be described by min(d, n) singular values and (n − 1)(n − 2)/2 Euler angles in
pseudo-space. Since P does not transform as a tensor, however, it is helpful to define
the moment of inertia or shape tensor,

G(t)i j =
n∑

a=1

ρ
(a)
i (t)ρ(a)

j (t) = (P(t)PT (t))i j , (2.33)

with i, j ∈ {1, 2, . . . , d} being spatial indices.8 The eigenvalues gi (t) of the shape
tensor are given by the squares of the singular values of P(t) and thus must be real
and non-negative. With this definition, the shape of any cluster of n particles can be
fully described by the eigenvalues of the shape tensor together with (n −1)(n −2)/2
Euler angles. It is helpful to sort the eigenvalues by size, with g1(t) ≥ g2(t) ≥ · · · ≥
gn−1(t).

The size of the cluster can be described by the radius of gyration, which is defined
as the squared distances of the individual particles from the center of mass of the
cluster,Xcom(t). In terms of the shape tensor, the radius of gyration is simply given by

R2(t) =
∑

m

(
X(t |y(m), 0) − Xcom(t)

)2 = tr(G(t)) =
∑

i

gi (t). (2.34)

Four-Particle Clusters
A cluster of four particles in a 3D flow is of particular interest. Four points, forming
a tetrahedron, is the minimum constellation needed to describe a 3D volume. The

8Instead of the shape tensor, one can also define the dispersion tensor C(t) = PT (t)P(t) =
W(t) diag(σ2

1,σ
2
2, . . . ,σ

2
min(d,n−1))W

T (t). It has the same eigenvalues as G(t) and serves the same
purpose (Hackl et al. 2011).
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Fig. 2.3 A regular
tetrahedron formed by a
cluster of four fluid particles.
All edges have the same
length, l. Three ρ-vectors are
needed to fully describe the
tetrahedron in a
homogeneous flow

l

X(t|y(1),0)
X(t|y(2),0)

X(t|y(3),0)

X(t|y(4),0)

ρ (1)(t)

ρ (2)(t)

ρ (3)(t)

number of needed ρ-vectors to span the tetrahedron is given by n −1 = 3 and equals
the dimension of the flow. The ρ-vectors are given by

ρ(1)(t) =
√
1

2

[
X(t |y(2), 0) − X(t |y(1), 0)

]
,

ρ(2)(t) =
√
2

3

[
X(t |y(3), 0) − 1

2
X(t |y(1), 0) − 1

2
X(t |y(2), 0)

]
, (2.35)

ρ(3)(t) =
√
3

4

[
X(t |y(4), 0) − 1

3
X(t |y(1), 0) − 1

3
X(t |y(2), 0) − 1

3
X(t |y(3), 0)

]
.

Figure2.3 shows the special configuration of a regular tetrahedron, together with
the corresponding ρ-vectors. For a regular tetrahedron, all edges have the same length
l and the ρ-vectors are perpendicular to each other with ρ(n) · ρ(m) = l2

2 δnm , where
δnm is the Kronecker delta.

Due to (n − 1) = d = 3, one finds that there are exactly three eigenvalues
g1 ≥ g2 ≥ g3 and three Euler angles needed to fully describe the tetrahedron. The
eigenvalues alone suffice for some classification:

• For g1 = g2 = g3 the tetrahedron is regular.
• For g1 ≈ g2 � g3 the tetrahedron is close to two-dimensional (2D) (“pancake-
like”).

• For g1 � g2 ≈ g3 the tetrahedron is close to one-dimensional (1D) (“needle-
like”).

Recently, it was found that tetrahedra starting with a regular shape with edge length
l � L at t = 0 deform into elongated pancake-like shapes with g1 > g2 � g3 at
later times (Pumir et al. 2000; Biferale et al. 2005; Xu et al. 2008). This deformation
can be explained by the concept of the perceived velocity gradient tensor (Chertkov
et al. 1999). In analogy to the usual velocity gradient tensor, Ai j (x, t) = ∂ui (x,t)

∂x j
,
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the perceived velocity gradient tensor, M(t), is defined over the four points of a
tetrahedron by

v(a)(t) = ρ(a)(t)T M(t), (2.36)

with v(a)(t) = d
dt ρ

(a)(t) being the change in the ρ-vectors. From this, a perceived
rate of strain and perceived rate of rotation tensor can be derived as

S(t) = 1

2
[M(t) + M(t)T ] and �(t) = 1

2
[M(t) − M(t)T ]. (2.37)

For l in the dissipative range, these quantities are identical to the usual rate of strain
and rate of rotation tensors, SA(x, t) and �A(x, t), respectively. For an incompress-
ible flow, one can show that the velocity gradient tensor, and thus also the rate of
strain tensor, are traceless, that is tr(A(t)) = tr(SA(t)) = 0. This leads to the fact that
the largest eigenvalue of SA(t), s1, is positive and the smallest one, s3, is negative.
Most importantly, however, Betchov (1956) showed that, on average, the intermedi-
ate eigenvalue 〈s2〉 is positive as well. As a consequence, there exist two straining
directions and one compressing direction for most of the time, leading to a copla-
nar transformation of a fluid element. Even though this result was derived for the
dissipative range, it was also confirmed both experimentally and numerically for the
perceived rate of strain tensor, S(t), with a somewhat smaller but still positive value
of 〈s2〉 (Lüthi et al. 2007; Xu et al. 2008; Pumir et al. 2013). Consequently, also for
tetrahedra in the inertial range, a deformation into co-planar structures is expected.

Aside from the qualitative results for the shape deformation, a universal behavior
of the shape eigenvalues was observed. If time is rescaled with τη , for R0 in the
dissipative range, or t0, for R0 in the inertial range, the obtained results for various
values of initial separation and Reynolds number collapse onto one curve (Pumir

et al. 2000; Xu et al. 2008). Here, t0 = (
l2/ε

) 1
3 is again the characteristic time for an

eddy of size l. Furthermore, in analogy to pair dispersion, a Richardson t3 scaling is
expected for the eigenvalues gi and for the radius of gyration 〈R2(t)〉 at times t � τη .
So far, however, this scaling behavior was not observed unambiguously (Pumir et al.
2000; Biferale et al. 2005; Xu et al. 2008).
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Chapter 3
Experimental Methods

All experimental datasets used in this thesis were obtained by optical Lagrangian
Particle Tracking (LPT).1 In this measurement technique, a fluid flow is seeded with
tracer particles, whosemotion is recorded from at least two angles. From the obtained
videos, the trajectories of the tracer particles in 3D space are then reconstructed (Maas
et al. 1993; Malik et al. 1993). This reconstruction requires accurate, fast, and noise-
robust algorithms, which are explained in detail in Sect. 3.1. Once the particles have
been tracked, the velocity and acceleration of the flow are computed along each
trajectory. This step requires some care, and the procedure is explained in Sect. 3.2.

The experimental setup considered in this thesis consists of a turbulent water flow
produced by two counter-rotating propellers. As tracer particles, I used polystyrene
microspheres which were illuminated by a strong laser and then recorded by three
high-speed cameras. This setup, as well as the experimental procedure to record the
videos, is described in detail in Sect. 3.3. Section. 3.4 presents the datasets used in
this thesis by means of their recording parameters and some derived quantities (e.g.
the Reynolds number) and Sect. 3.5 covers the topic of measurement uncertainties.
All further data processing will be discussed in the results part of this work.

3.1 Lagrangian Particle Tracking

Over many decades, Eulerian measurement techniques have provided a host of
information on turbulent flows. The most widely used technique is surely hot-wire
anemometry, in which the flow speed of a fluid is obtained at a single point in space
by measuring the amount of heat that is carried away from a small heated wire (King
1914). More suited for the analysis of flow patterns is particle image velocimetry
(PIV). In the standard implementation of this technique, a 2D area of a densely

1Another often-used term is Particle Tracking Velocimetry (PTV). Historically, however, this term
was used for a technique measuring a Eulerian flow field (Adrian 1991), so that LPT should be used
in order to avoid ambiguities.
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seeded flow is illuminated by a laser sheet, and two pictures are taken in fast succes-
sion. These pictures are then divided into subareas, and the correlation between the
corresponding subareas of both images is computed. This can be used to reconstruct
the flow field at one instance in time (Adrian 1991).

It is apparent that, despite the importance of these techniques for understand-
ing turbulent flow, they do not provide a full picture. Especially for intrinsically
Lagrangian phenomena like turbulent mixing or dispersion, studying the trajectories
of fluid particles moving with the flow can provide great additional insight. Due to
this, Lagrangian measurement techniques like LPT were developed. While optical
LPT systems have been employed for more than 50 years (Chiu and Rib 1956),
widespread use only started in the early 1990s, when high-speed cameras and digital
image processing allowed for high temporal and spatial resolution and automated
data processing.

Indeed, the right choice of data processing algorithms for reconstructing the par-
ticle trajectories is at the core of LPT measurements and crucial to its accuracy. The
trajectory reconstruction can be split into three steps:

• Finding the particle centers on the image plane of each camera.
• Matching the particle centers from all cameras to reconstruct 3D particle positions.
• Tracking the particles in time.

In the next sections, I will describe each of these steps in detail and explain which
algorithmswere used for analyzing the recorded data.All three steps are implemented
in a C++ particle-tracking code.2 I loosely follow Ouellette et al. (2006a).

3.1.1 Particle Center Finding

In order to successfully reconstruct asmany particle trajectories as possible, it is most
crucial to locate the particles on the camera image planes with high precision. The
search algorithmmust thus identify the particle centerswith subpixel accuracy at non-
vanishing noise levels and with low computational costs. Furthermore, overlapping
particles must be distinguished.

The scattered light of a particle that is illuminated by a bright light source will
be represented by a certain intensity profile on each of the camera image planes.
Figure3.1 shows an image recorded by one of the high-speed cameras, as well as
two close-up views. If particles are close to each other or behind each other from
the perspective of one of the cameras, the intensity profiles will overlap and build a
cluster of bright pixels with several local maxima on the image plane of this camera.
I will use the common assumption that each intensity maximum corresponds to one
particle.

2I would like to acknowledge that all C++ codes for the LPT procedure presented in this section
were written by Nicholas T. Ouellette and Haitao Xu (Ouellette et al. (2006a); Xu (2008)).
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Fig. 3.1 A subsection of 320× 320 pixels from a frame of a recorded video. The image displays
approximately an area of (5cm)2. For better visibility, the color map is rescaled to the lowest 64
gray values. The original video has 640× 640 pixels and 256 gray values (8 bit). Close-up views of
the intensity profile for a single particle (top) and for two overlapping particles (bottom) are shown
on the right. Each pixel is labeled with its gray value and red circles indicate the intensity maxima.
For each of the pictures on the right, one center finding method is sketched exemplarily. For the
single particle profile, the pixels used for the Gaussian fit method are labeled in red (horizontal)
and yellow (vertical). For the two overlapping particle profiles, the edges of the pixel subgroups as
used for the weighted average method are shown in green

For the case of particles with an arbitrary intensity profile, a simple, weighted
average can be used to obtain the particle centers. To do this, however, pixel clus-
ters with more than one intensity maximum need to be separated into subgroups in
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order to distinguish the overlapping particle intensity profiles. Following Maas et al.
(1993), this division can be accomplished by assuming that the light intensity of
a particle profile should decrease monotonically. The pixels with the lowest inten-
sity are assigned to the neighboring pixel with the highest intensity (see Fig. 3.1).
For every subgroup, corresponding each to one particle, a weighted average can be
applied. With

∑
p being the sum over all pixels of a subgroup around an intensity

maximum, the particle center is given by

xc =
∑

p xp I (xp)∑
p I (xp)

. (3.1)

This center-finding method is very fast and has an acceptable robustness to noise,
but it comes at the cost of poor resolution (Ouellette et al. 2006a).

If a functional expression for the particle intensity profile were known, a corre-
sponding fit would of course yield a much better result for the particle center. Despite
the lack of such an exact functional expression, it was shown that the intensity pro-
file of a spherical particle can be approximated well by a 2D Gaussian function
(Westerweel 1993, Sect. 2.5). Since a Gaussian profile has only one intensity max-
imum, fitting 2D Gaussian profiles to each maximum of a group of bright pixels
already distinguishes overlapping particles, and a separate step to split the clus-
ter into subgroups is not needed. A 2D Gaussian fit, however, is computationally
expensive and needs a high number of involved pixels to produce accurate results. A
minimum of five pixels are needed to determine all fit parameters. It was shown by
Ouellette et al. (2006a) that two 1D Gaussian functions, one for the horizontal and
another for the vertical particle position, yield similar or better results for a noisy
image (see also Cowen and Monismith 1997). Additionally, when limiting the fits to
the intensitymaximum and its closest horizontal and vertical neighbors, an analytical
solution can be found. Fitting the intensity profile

I (xi ) = I0√
2πσ

exp

[
−1

2

(
xi − xc

σ

)2
]

(3.2)

to the intensities of the pixels at positions xi ∈ {x1, x2, x3} (see Fig. 3.1), one obtains
for the particle center in this direction

xc = 1

2

(x21 − x22 ) ln[I (x2)/I (x3)] − (x22 − x23 ) ln[I (x1)/I (x2)]
(x1 − x2) ln[I (x2)/I (x3)] − (x2 − x3) ln[I (x1)/I (x2)] . (3.3)

Since the intensities I (xi ) are digitized, e.g. with I (xi ) ∈ {0, .., 255} for an 8-bit
image, the logarithms in Eq. (3.3) can be precomputed once and reused as often
as needed during the image processing. Fitting the intensity profile with two 1D
Gaussian functions thus leads to a very efficient image analysis with excellent results.
Therefore, this center findingmethodwas used for all datasets presented in this thesis.
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3.1.2 Calibration

In order to reconstruct the 3D coordinates of the particles from their center points
on the image planes, it is necessary to know where a certain point in the measure-
ment volume would appear on the different camera image planes. For this purpose,
a relation between the world (or laboratory) coordinates of a point and its image
coordinates needs to be established. This can be accomplished by executing a cal-
ibration procedure before each series of recordings. For the work presented in this
thesis, a calibrationmethod developed by Tsai (1987) was used which shall be briefly
explained here. The procedure can be divided into four steps.

Step 1: From world coordinates to camera coordinates
The world coordinates of a point P in the measurement volume shall be given
by xw = (xw, yw, zw)T , where the origin, Ow, and the orientation of the world
reference frame can be arbitrarily chosen. One now defines a new 3D coordinate
system, whose origin Oc is at the optical center of the camera and whose xy-
plane is parallel to the camera image plane. In this camera reference frame, the
coordinates of the point P are given by

xc = R · xw + T, (3.4)

where R is a rotation matrix and T = (Tx , Ty, Tz)
T a translation vector. This

transformation requires the knowledge of six external parameters, three Euler
angles for R and the three components of T , in order to describe the arrangement
of the camera system.

Step 2: Undistorted projection onto the image plane
Assuming an ideal pinhole camera with an effective focal length f , the projection
of the point P onto the image plane yields

(
xu

yu

)
= f

zc

(
xc

yc

)
, (3.5)

with xu and yu being the undistorted image coordinates. The effective focal length
f is given by the distance between the image plane and the optical center Oc.

Step 3: Adding distortion
In addition to the projection in step 2, every real camera system introduces
some level of distortion. The resulting distorted image plane coordinates can
be written as (

xd

yd

)
+

(
Dx

Dy

)
=

(
xu

yu

)
, (3.6)

with some general distortion functions Dx (xd) and Dy(xd). According to Tsai
(1987), the full camera distortion can be well approximated by the leading order



26 3 Experimental Methods

term of a purely radial distortion, so that Dx ≈ κr2xd and Dy ≈ κr2yd with
r2 = x2d + y2d . The distorted image plane coordinates are thus given by

(
xd

yd

)
(1 + κr2) =

(
xu

yu

)
= f

zc

(
xc

yc

)
, (3.7)

whereEq. (3.5)was used at the second equality. Equation (3.7) contains two intrin-
sic parameters, the effective focal length, f , and the distortion parameter, κ .

Step 4: From image coordinates to computer coordinates
The last step deals with the transformation from the image plane coordinates to the
computer image coordinates as stored by the camera. Allowing different spacings
between the pixels in the horizontal and vertical direction, the final computer
coordinates are given by (

x f

y f

)
=

(
sx xd

yd

)
. (3.8)

For an ideal pixel array, the parameter sx should equal unity. In this case, sx can be
used later as a measure for the accuracy of the calibration. Note that Tsai (1987)
introduces several more parameters for the transformation in Eq. (3.8), some of
which can be absorbed into the effective focal length while some others do not
apply to the cameras used here.

Joining steps one through four, the relation between the world coordinates of point
P and its coordinates (x f , y f ) on the recorded computer image is given by

1

sx
(1 + κr2) x f = f

Rx · xw + Tx

Rz · xw + Tz
, (3.9)

(1 + κr2) y f = f
Ry · xw + Ty

Rz · xw + Tz
, (3.10)

with r2 = (
1

s
x f )

2 + y2f , (3.11)

using the notation R = (Rx , Ry, Rz)
T . Tsai (1987) pointed out that the lack of

tangential distortion, as given by step 3, leads to great simplifications in solving the
above equations. Since a pure radial distortion does not change the direction of the
vector xu on the image plane and, by construction, (xu , yu) has the sameorientation as
(xc, yc), one finds that xd and (xc, yc)must be parallel. This leads to themathematical
requirement of a vanishing cross product, xd × xc = xd yc − yd xc = 0, called the
radial alignment constraint. In terms of the world and computer coordinates, this
cross product can be rewritten as

1

sx
x f (Ry · xw + Ty) − y f (Rx · xw + Tx ) = 0. (3.12)
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With the correct choice of variables, this expression can be cast into a set of linear
equations with

(−xdxw, ydxw, yd) ·
⎛
⎝ Ry/Ty

sx Rx/Tx

sx Tx/Ty

⎞
⎠ = xd . (3.13)

For known world and computer coordinates of enough points P , the full rotation
matrix, as well as the parameters Tx , Ty , and sx , can be determined. The remain-
ing parameters, Tz , f , and κ , can then be obtained by iteratively solving Eqs. (3.9)
and (3.10).

3.1.3 3D Matching

After a relation between laboratory and image coordinates has been established, the
matching procedure is straightforward (see Fig. 3.2). For each particle center found
on the image plane of camera 1, the line of possible positions in the measurement
volume is calculated. With some tolerance band, this line is then projected onto
all other cameras. For each particle center within this band, this particle’s line of
possible positions is then calculated as well. The minimum distance for all possible

Fig. 3.2 Reconstruction of the 3D particle coordinates from the particle centers on the image planes
of two cameras. The green line is the line of possible positions for one particle center on the left
image plane, which is then projected onto the right image plane (green band). For each particle
center in the band, a line of possible positions is constructed as well (blue lines). The “real particle
position” is chosen to be that combination of possible particle positions from both image planes for
which the distance di is smallest (circle)
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combinations of particle positions is calculated and the best hit is considered as the
real particle position.

Please note that with this method ambiguities can arise from particles that, in the
coordinate system of one of the cameras, are right behind each other and are thus
projected onto the same point on the image plane of this camera. These ambiguities
arise especially for high particle-seeding densities, and they can only be resolved
by using more than two cameras (usually three or four). Furthermore, Maas et al.
(1993) pointed out that more cameras also lead to a better accuracy of the particle
coordinates.

3.1.4 Particle Tracking

There are multiple algorithms for tracking particles in time, all with different advan-
tages and disadvantages. Several of these algorithms were compared by Ouellette
et al. (2006a), and a four-frame, predictive algorithm showed the best performance for
a numerically-simulated turbulent flow. This method is implemented in the particle-
tracking code used for this thesis and shall be explained briefly.

(b)(a)

Fig. 3.3 Sketch of the used tracking algorithm with a showing the nearest neighbour method and
b the four-frame best estimate. Black circles and black lines represent already connected particle
positions. Gray circles indicate possible particle positions at time step n + 1, while red circles
indicate possible particle positions at time step n +2. Open black circles indicate estimated particle
positions and large dashed circles represent the corresponding search area. The arrows indicate the
chosen particle positions at time step n+1. Adapted fromOuellette (2006) with friendly permission
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The first two time steps of a particle trajectory are linked together by the nearest
neighbor method (see Fig. 3.3a). Then, for any time step n with particle coordinates
xn , the position of the particle at time step n + 1 is estimated according to x̃n+1 =
xn + ṽn�t , where ṽn is a velocity computed from the frames n and n − 1, and �t
is the time lapse between two frames. For each particle occurrence in the vicinity of
this hypothetical position, a particle position at time step n + 2 is then estimated as
x̃n+2 = xn + ṽn(2�t)+ 1

2 ãn(2�t)2, where ãn is an acceleration computed from the
frames n−1 to n+1. For the continuation of a track, the particle position at time step
n + 1 for which the prediction at n + 2 is closest to a measured particle position is
picked (see Fig. 3.3b). The other considered positions are rejected and the algorithm
proceeds with the next time step. This algorithm can handle occasional loss of the
particle image for up to three frames.

If an ambiguity appears during the tracking process, the track is stopped at the
current frame and a new track is started at the next frame. The same happens if a
particle is lost for more than three frames due to insufficient illumination. Some
of these broken tracks can be reconnected after the completion of the main tracking
process. In this thesis, an algorithm similar to the one described byXu (2008) is used.
For each trajectory, the position and velocity for the first and last frame are used to
reconnect tracks in position-velocity space. Starting with a trajectory i , for which
the position and velocity at the end point te

i are given by xe
i and ue

i , respectively,
each other trajectory j with a starting point t s

j and 0 < t s
j − te

i < T is taken as
a hypothetical continuation. The chosen maximum search time T must be smaller
than the time in which the average distance traveled by a particle equals the average
separation between the particles in the flow. For each hypothetical continuation j ,
the trajectory i is extrapolated linearly for times te

i < t < t s
j . The extrapolated

position and velocity at time t are given by xp
i (t) = xe

i + 1
2 (u

e
i + us

j )(t − te
i )

and up
i (t) = ue

i , respectively.
3 The distance in position-velocity space at time t s

j

is then computed with di j =
√

|xp
i (t s

j ) − xs
j |2 + [|up

i (t j ) − us
j |(t s

j − te
i )]2. From all

hypothetical continuations which fulfill the condition di j < dm(t), the one with the
smallest distance di j is chosen (see Fig. 3.4). Here, the search radius grows with time
as dm(t) = δx + dmax−δx

T (t − te
i ), where the search radius at t = te

i , δx , is given
by the uncertainty of the position measurement. If two hypothetical continuations
yield the same distance in position-velocity space, the one with an earlier starting
point t s

j is picked. Once a continuation is chosen, the missing particle positions
between the initial trajectory and its continuation are filled by linear interpolation.
The interpolated points are marked accordingly in the data file.

All trajectories, reconnected or not, are stored in a specific binary data format,
with each file containing all trajectories from one video (see Appendix C.2).

3Xu (2008) showed that a more advanced computation method of up
i (t) using the acceleration at

time te
i slightly improves the reconnection procedure if the accelerations are well resolved.
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T

Fig. 3.4 Sketch of the reconnection of a broken trajectory. A broken trajectory (black line) and two
hypothetical continuations (green and yellow lines) are shown. Each dot on those lines represents
one particle position. For each hypothetical continuation, it is checked if the distance in position-
velocity space is smaller than a certain search radius (sketched as green and yellow cones). From
the continuations fulfilling this condition—here only the green one—the continuation with the
shortest distance is chosen. The missing points between the broken trajectory and its continuation
are spanned by linear interpolation (red dashed line)

3.2 Velocity and Acceleration Computation

After the completion of the tracking procedure, the particle velocities and accel-
erations can be computed along the trajectories. For ideal tracer particles, these
coincide with the flow velocity and acceleration at the particle position. Since the
particle tracks are only known at discrete time steps (i.e. every frame), there are
several options to obtain differentiated quantities: Approximating the derivatives by
finite differences; fitting the trajectory and differentiating the resulting function; or
using a convolution with a specified kernel. While finite difference methods are very
sensitive to noise, Voth et al. (2002) showed that parabolic fitting shows good results,
provided that the correct length scale for the fit is chosen. The same holds true for
the Gaussian convolution method, which is used in this thesis (Mordant et al. 2004).

For a Lebesgue integrable function f (s) ∈ L1(R), the convolution with a
Gaussian kernel g(s) = 1

σ
√
2π

exp[− 1
2 (

s
σ
)2] is given by

( f ∗ g)(s) ≡
∫ ∞

−∞
f (s − τ)g(τ )dτ. (3.14)

This convolution smooths out the function f (s) by averaging over all values of
f (s+τ), where theweighting decreases with |τ |. For the derivative of the convoluted
function, it can be shown that

( f ∗ g)′ = f ′ ∗ g = f ∗ g′, (3.15)
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so that taking the derivative of f (s) and subsequently performing a simple smoothing
is equivalent to convoluting f (s) with a differentiated kernel.

For a discrete function f [n] with n ∈ N, the convolution is defined as

( f ∗ g)[n] ≡
M∑

m=−M

f [n − m]g[m], (3.16)

where g[m] now represents a discretized convolution kernel with a finite support
m ∈ {−M,−M + 1, . . . , M} and the normalization condition

∑
m g[m] = 1. In

those circumstances where no functional expression of f [n] is known, the second
term in Eq. (3.15) can be used to obtain the derivative of f [n] for a known kernel
g[n]. For this purpose, the functional expression of the convolution kernel needs to
be differentiated, discretized over a finite support, and then correctly normalized. For
a Gaussian kernel g(s), discretization leads to

g[n] = 1∑
n exp[−( n

w )2] exp
[
−

( n

w

)2]
for n ∈

{
− l

2
,− l

2
+ 1, . . . ,

l

2

}
,

(3.17)

where w is the filter width, corresponding to
√
2σ , and l is the length of the support,

henceforth referred to as filter length. A usual choice for the filter length is l = 3w,
corresponding to about 4.2σ . The prefactor in Eq. (3.17) ensures that the kernel is
properly normalized, with (1 ∗ g[n]) = 1. The corresponding derivatives are then
given by

g′[n] = n∑
n −n2 exp[−( n

w )2] exp
[
−

( n

w

)2]
(3.18)

and g′′[n] = 1∑
n

n2
2 g′′

0 [n] − 1
l

∑
n g′′

0 [n] ∑
n

n2
2

(
g′′
0 [n] − 1

l

∑
n

g′′
0 [n]

)
,

(3.19)

with g′′
0 [n] = [1 − 2( n

w )2] exp[−( n
w )2]. The first derivative is normalized such that

(n ∗ g′) = 1 and (1 ∗ g′) = 0, while ( n2
2 ∗ g′′) = 1 and (1 ∗ g′′) = 0 for the second

derivative.
Figure3.5a shows a discretized Gaussian kernel, as well as its first and sec-

ond derivative, in comparison with the continuous case. An application to a noisy
test function is shown in Fig. 3.5b and illustrates an overall good result. Only the
extrema are slightly underestimated, which is to be expected from a smoothing ker-
nel. Figure3.5b also reveals that, by construction, the derivatives cannot be computed
for the last l/2 points at each end of the dataset due to the length of the kernel.

The next important step is to find the best filter length for the convolution kernel.
It can be easily deduced from Fig. 3.5b that for an overly short filter length, in this
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Fig. 3.5 a Discretized Gaussian convolution kernel ( ) and its first ( ) and second ( ) derivative.
The corresponding continuous kernels are represented by solid lines. The filter length is l = 15
and the width is w = 5. b For an analytical test function f (n) (black line), a corresponding noisy,
discrete function f [n] (�) was generated. The first ( ) and second ( ) derivativeswere then obtained
with the convolution kernels shown in (a). The blue and cyan lines represent the true derivatives
of f (n)

case e.g. l = 3, noise has a dominant contribution to the derivatives. On the other
hand, if the filter length is too long, e.g. l = 30, finer variations of the data are lost
to the smoothing. Analyzing the root mean square (rms) acceleration for a turbulent
flow as a function of the temporal filter length τ f = lδt , where δt is the time between
two frames, Voth et al. (2002) found that no range of τ f exists for which the result
is independent of τ f (see Fig. 3.6). They showed, however, that an approximate

exponential behavior can be observed for large τ f , while a τ
−5/2
f scaling due to

uncorrelated Gaussian noise is dominant at small τ f . Even though there is no filter
length forwhich the noise contribution is zero andno information is lost to smoothing,
there exists a crossover of the two effectswhere the contribution due to noise becomes
small and the loss of information is still acceptable. This is where τ f is chosen, the
exact value being worked out individually for each dataset. All trajectories of all
videos of one measurement are then stored in a single binary file, the velacc-file,
containing the full information about position, velocity and acceleration of the tracer
particles (see Appendix C.3).

Once the particle velocity and acceleration have been computed for all trajecto-
ries, some Eulerian flow properties are derived, e.g. the velocity and acceleration
moments as well as the structure functions Sp(r). Note that in the present case of a
homogeneous, stationary flow, all relative quantities are statistically independent of
position, x, and time, t , so that the average can be taken over all particle pairs which
have a separation | 	R| = R0 ± �R0 at any point in time.

From the flow statistics, one then calculates the energy transfer rate ε, the energy
injection scale L , the Reynolds number, and the Kolmogorov microscales η and
τη. There are several options to compute the energy transfer rate. In Sect. 2.2, it

http://dx.doi.org/10.1007/978-3-319-19192-8_2
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Fig. 3.6 Plot of the rms
acceleration in the x
direction of a real dataset as a
function of the temporal filter
length. The ideal filter length
is close to the crossover of
the shown exponential fit for
short τ f and the power-law
fit for large τ f
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was shown that for an isotropic flow at the limit of infinite Reynolds number, the
third-order longitudinal structure function is exactly given by S3(r) = − 4

5εr and

the second-order longitudinal structure function is approximately S2(r) = C2(εr)
2
3

with the Kolmogorov constant C2 ≈ 2.1 (Sreenivasan 1995). Furthermore, for a
homogeneous flow, 〈δu ·δa〉 = −2ε as given in Eq.2.16. With ε and the rms velocity

u′ = 〈 13u2〉 1
2 , the energy injection scale is simply given as L = u′3

ε
, and for the Taylor

scale Reynolds number,4 one finds

Rλ =
√
15

u′4
νε

. (3.20)

TheKolmogorovmicroscales are then computed as defined byEq.2.12: η = (ν3/ε)
1
4

and τη = (ν/ε)
1
2 .

4For homogeneous, isotropic flows, the Taylor scale Reynolds number, Rλ = u′λ
ν
, is often the

preferred parameter to describe the flow. This is due to the fact that Rλ depends on the Taylor scale,
λ = √

15νu′2/ε, which was historically easier to measure than the integral length scale, L (see.eg.
Pope 2000, Chap. 6.3).

http://dx.doi.org/10.1007/978-3-319-19192-8_2
http://dx.doi.org/10.1007/978-3-319-19192-8_2
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Fig. 3.7 A picture of the experimental setup. The lines of sight of the cameras are shown in white
while the path of the laser beam is sketched in green. The inset shows one of the propellers

3.3 Experimental Setup

The experimental setup consists mainly of three parts: A flow chamber, a laser
for illumination, and three high-speed cameras with corresponding computational
periphery, all depicted in Fig. 3.7. I will describe these hardware components briefly
in Sect. 3.3.1. The general measurement routine is described in Sect. 3.3.2 and an
overview of the calibration procedure is given in Sect. 3.3.3.

3.3.1 Hardware

Three PhantomV12.1 high-speed cameras fromVision Research were used to obtain
videos of the tracer particles. At a resolution of 640×640 pixels, videos can be taken
at frame rates of up to 20,000 frames per second (FPS). Since the cameras only contain
an internal storage capacity of 8 GB, it is necessary to download the videos after a
short recording time. For this purpose, the cameras are connected to a network switch
via a 1 Gbit/s Ethernet connection. From there, the data is transferred via a glass fiber
cable to the in-house Linux cluster. With a download rate between 40 and 50MB/s,
a video with a length of 1 s takes approximately 1min to download.
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For the illumination of the tracer particles, two different lasers with very similar
specificationswere used, ofwhich only onewill be described here: theMirage 100DY
fromDDCTechnologies.5 It is a frequency doubled Nd:YAG laser with a wavelength
of 532nm, used in a Q-switched mode with a pulse repetition rate of around 20kHz.
The laser is used at its highest power output of P = 38.0 ± 1.0W. After exiting
the laser head, the laser beam is collimated, expanded, and guided to an entrance
window of the flow chamber (see Fig. 3.7).

The body of the flow chamber consists of a stainless steel cylinder with an inner
diameter of 48cm and a height of 58cm. Two circular glass windows with a diameter
of 11cm serve as entrance and exit points for the laser beam, thus forming an upper
limit to the illuminable area. The laser beam passes horizontally through the center
of the cylinder. Four windows, one each above, below, to the left, and to the right of
the exit window, allow optical access of up to four cameras. For this thesis, cameras
were positioned in front of all but the top window (see Fig. 3.7). A last access point
is mounted at the side of the tank for maintenance purposes. All windows consist of
two parallel sheets of glass, joined by simple glass spacers. While one sheet seals
the tank, the other is positioned further inside, close to the inner tank surface. Water
can enter the volume between the two sheets but the flow velocity in this region is
close to zero. This way, the breaking of the rotational symmetry of the cylinder due
to the window flanges is minimized.

The tank is closed by two cooling plates at the top and bottom. The plates have an
internal spiral channel that is connected to an external chiller (ThermoFlex 2500 by
Thermo Scientific) in order to keep the fluid temperature at a constant value of 20.5±
0.5 ◦C. A thermometer in the top plate continuously measures the temperature inside
the tank. Several tubes are connected to the top and bottom plates to fill or drain the
tank and filter the water.Water may also be recirculated by a pump from the top to the
bottom of the tank through an open reservoir. This way, bubbles can be removed and
substances like additives or tracer particles can be introduced into the flow. cylinder
produce the desired flow field. They have a disk-like shape with eight symmetrically
distributed vanes (see insert in Fig. 3.7) and a total diameter of 25cm. Between the
propellers and the cylinder wall, eight plastic inserts are installed to suppress a large-
scale, rotational flow. The propellers are powered by two 7.5kW-motors and their
rotation frequency is varied from 0.50 to 1.10Hz for the experiments shown in this
work. The rotation frequency is recorded by proximity sensors at each propeller shaft.
The error bounds on the frequency measurement are ±0.01Hz. Figure3.8 shows the
characteristic flow field, a so-called Von Kármán Swirling Flow (for an overview
see e.g. Nore et al. 2003 and references there in). At the center region of the tank,
where our observation area is positioned, the mean velocity field is negligible, while
turbulent fluctuations are strong. Due to the finite size of the laser entrance window,
the diameter of the observation area cannot exceed 9–10cm.

5The other laser was a self-built replicate of the Mirage 100DY, constructed by Haitao Xu, Fabio
Di Lorenzo and myself. It generated a similar output power at the same wavelength and pulse rate.
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Fig. 3.8 Sketch of the flow chamber with the stainless steel cylinder removed. The flow field is
shown by the colored arrows. The dashed circle in the center indicates the measurement area

3.3.2 Data Collection

As described above, due to the limited internal storage of the cameras, only short
videos can be recorded, and they must be download before proceeding with the next
recording. It is thus beneficial to automate a repeating recording scheme and to use
the download time for preprocessing. To this end, three nodes of the in-house Linux
cluster are used to download and preprocess the videos, which are then stored on the
cluster’s internal hard drives. A server runs on each node to control communication
with the cameras. A sketch of the network is shown in Fig. 3.9.

During the experiment, a master computer is used to control the cameras, the
laser, and the communication with the nodes on the cluster. At the beginning of each
video, the master computer opens the shutter of the laser via a relay and, after a short
delay of approximately 2 s, sends the start signal to the cameras. The delay allows the
laser intensity to stabilize.6 The cameras and laser are synchronized by a frequency
generator. The frequency signal to the cameras is divided by a factor of either two or
three, leading to multiple laser pulses per frame. The frequency signal to the laser,
on the other hand, is delayed by 5µs to ensure that no laser pulse is lost between
frames. After a preset time of recording, usually 1 s, the computer sends the stop
signal to the cameras and closes the shutter. Then, the download of the videos to the
cluster nodes is started. To do so, each node communicates with one of the cameras.

6Since the pumping of the optical medium continues while the shutter is closed, the first pulse after
opening the shutter has a very high intensity and the optical medium becomes nearly depleted. From
there on, the laser intensity oscillates for some time until it stabilizes at a constant pulse intensity.
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Fig. 3.9 Sketch of the network connecting the laser, the cameras, and the computers. Controlled
by a computer (PC), a relay opens the shutter of the laser and, after some seconds, the PC starts
the recording of a video. A frequency generator synchronizes the laser pulses with the start of each
video frame. There are multiple laser pulses per frame with the first pulse shortly after the start of
the frame. The recorded video can then be downloaded to the cluster where it is preprocessed and
stored

The cameras return the videos in a format providing a gray value for each pixel.
For an 8 bit grayscale image, as used in this thesis, this results in a file size of
approximately 400kB per frame for a resolution of 640 × 640 pixels. Since the
images are sparse, a lot of space can be conserved by rewriting them in another
format. For this purpose the videos are transformed during the download into the
.gmv format (Göttingen Movie format, see Appendix C.1). In the .gmv format,
only bright pixels with an intensity above a chosen threshold7 are stored, together
with the pixel coordinates. Each bright pixel thus needs 24bit of storage (16bit for
the coordinates, 8bit for the intensity), compared to 8bit of storage for each of the
409,600 pixels of the uncompressed videos.

After completion of the download on all three nodes, the recording of a new video
is initiated by the master computer.

3.3.3 Calibration

In Sect. 3.1.2, the theoretical concept of the calibration procedure was described.
In order to obtain the calibration parameters from Eqs. (3.9), (3.10) and (3.13), the
world and computer coordinates of several points in the measurement volume must
be recorded. Experimentally, this is achieved by inserting a dot patterned mask into
the center of the tank. The mask is positioned parallel to the symmetry axis of the
tank and perpendicular to the laser path, thus defining the yz-plane of the world

7The threshold is set according to the intensity histogram of a short test video recorded at the
beginning of an experiment. This threshold is then used for all subsequent videos of that experiment.
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Fig. 3.10 Calibration images from all three cameras with the mask being positioned at xw = 0. The
three large, black dots are for orientation purposes inside the regular dot pattern. The dot pattern
has a spacing of 7.62mm in both the horizontal and vertical direction. The images correspond, from
left to right, to cameras 1, 2 and 3 in Fig. 3.7

reference frame. Figure3.10 shows images as recorded by the three cameras. Using
a micrometer screw, the mask is then moved along the xw direction, taking images
at fixed intervals. The coordinates of at least one hundred points, distributed in the
whole intended observation volume, are recorded during one calibration measure-
ment, leading to an over-determination of the calibration equations and thus very
high precision.

3.4 Datasets

For this thesis, several datasets were recorded and, together with an already existing
dataset, evaluated with respect to the dispersion of particle clusters, forwards and
backwards in time. These datasets are briefly presented below, concerning both their
experimental parameters and statistical properties.

As a fluid, deionized water was used, either pure or with minute amounts of added
polyacrylamide. The effect of the addedpolymerwill be discussed in detail inChap.6.
The kinematic viscosity of the pure deionized water is given by ν = 0.997 · 10−6 m2

s
at 20 ◦C.8

Datasets were recorded at three different propeller frequencies and three different
concentrations of polyacrylamide. A set of two measurements was performed for
each of the nine flow configurations: one with a small and one with a large mea-
surement volume. The large measurement volume allows to track particle positions
for a long time while the small measurement volume yields higher resolution data,
usable for computing time derivatives and other high-precision quantities like the

8The kinematic viscosity of the polymer solutions is close to the one of the water case. It’s exact
value is unimportant, however, since it is not needed for any further calculation.

http://dx.doi.org/10.1007/978-3-319-19192-8_6
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Table 3.1 Experimental recording parameters for the used datasets

∅V [ cm] resolution δx [ µm] δ t [ ms] d [ µm]

small Volume 2.7 640x640 10 0.10 45
large Volume 8.0 640x640 50 0.14 80

existing dataa 5.0 256x256 40 0.04 25

The diameter of the measurement volume, ∅V , is estimated by fitting the largest possible sphere
into the area visible by all three cameras. The accuracy of the 3D center finding is given by δx ,
which is obtained from the calibration measurement. For more than 90% of the 3D calibration
points, the maximum distance between the projections from the different cameras is smaller than
δx . The time lapse between two successive frames, δt , is a measure for the temporal resolution. The
mean diameter of the tracer particles, d, is given in the last column
aThis dataset was recorded by Nicholas Ouellette at a previous version of the French Washing
Machine described above. For further information see Ouellette (2006)

energy transfer rate. Table3.1 shows the recording parameters for the small and
large measurement volume as well as the already existing dataset.

As discussed in Sect. 3.2, there are three ways to compute the energy transfer rate.

One can use the structure functions, S2(r) = C2(εr)
2
3 and S3(r) = − 4

5εr , or the
relation 〈δu · δa〉 = −2ε. For the functional expressions of the structure functions,
homogeneity, isotropy, and a very largeReynolds numberwere assumed. For 〈δu·δa〉,
on the other hand, only homogeneity is required and it was shown experimentally
that moderate Reynolds numbers are sufficient (Ouellette et al. 2006b, see Fig. 7).

The experimental flow studied in this thesis is only approximately isotropic and
homogeneous,with themagnitude of themeanflowbeing up to 20%of themagnitude
of the turbulent velocity fluctuations in the measurement volume (see Appendix
B.1). Furthermore, only moderate Reynolds numbers are reached. This suggests that
〈δu · δa〉 should yield the best result for the energy transfer rate, ε. Figure3.11 shows
all three ways to obtain ε for a dataset with a propeller frequency of 0.9Hz and
without polymers. The measured quantities are compensated in such a way that they
should show a plateau with height ε in the inertial range. It can be clearly seen that,
while the structure functions do not display a plateau, 〈δu · δa〉 shows a constant, if
somewhat noisy, value for ε over a range of scales. The energy transfer rates for all
flowconfigurations studied in this thesiswere thus obtained byfitting a horizontal line
to the plateau of the compensated expression for 〈δu ·δa〉 in the range 50η ≤ r ≤ 1

5 L ,
using the data from the small measurement volume.9 The uncertainty on the energy
transfer rate is estimated to be 10% (see Sect. 3.5). Please note, however, that the
mean flow becomes more dominant with an increasing distance from the tank center,
so that the mean energy transfer rate measured from the large measurement volume

9For the already existing dataset, the fit range was 50η ≤ r ≤ 1
10 L . For the cases with added

polymers, the lower bound of the fit range was increased to account for a shift of the plateau to
higher values. Furthermore, since η may not be a valid quantity for the polymers, the bounds were
chosen in an uncompensated way with the lower bound in the range 9–13mm and the upper bound
at approximately 16mm.
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Fig. 3.11 Three different
ways to obtain the energy
transfer rate. The shown
dataset corresponds to a flow
with a propeller frequency of
0.9Hz and without polymers.
The horizontal line depicts
the mean value of
− 1

2 〈δu · δa〉 in the range
50η ≤ r ≤ 1

5 L
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experiment can differ up to 20% from the small measurement volume experiment.10

On the other hand, due to the larger volume, finite volume effects are smaller and
the plateau of 〈δu · δa〉 extends beyond 20mm (∼L/3), indicating the true extend of
the inertial range. All n-particle statistics discussed in this theses have initial particle
separations in the such defined inertial range. Since the statistics of n-particle clusters
increase with an increasing separation of the particles (as long as the separation is
smaller than approximately half the diameter of the measurement volume), I chose
to study clusters with initial particle separations of 14, 16 and 18mm for the large
measurement volume, and with initial separations of 8, 10, 12 and 14mm for the
small volume.11 This way, I ensure that my results are best possibly statistically
resolved with the only drawback that the overlap in scales between the large and
small measurement volume results is small.

With ν and ε known, further quantities can be computed as explained in Sect. 3.2.
Table3.2 finally summarizes the most important properties of the analyzed flows.

10The measured rms velocity has an estimated uncertainty of only 3% while the rms velocities
obtained from the small and large measurement volume can differ up to 10%.
11The already existing dataset is only used in the case of four-particle clusters. There, initial sepa-
rations of 12, 14, and 16mm are studied.
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Table 3.2 Physical properties of the used datasets

f [ Hz] c [ ppm]a u′ [ m/s] ε [ m2/s3] Rλ L [ mm] η [ µm] τη [ ms]

0.50±0.01 0 0.079 8.4 10−3 270 59 104 10.9
0.90±0.01 0 0.144 5.3 10−2 350 54 66 4.4
1.10±0.01 0 0.174 9.0 10−2 390 57 58 3.3

0.50±0.01 5.0+0.5
−0.2 0.074 (5.5 10−3)

0.90±0.01 5.0+0.5
−0.2 0.129 3.2 10−2 not defined

1.1±0.01 5.0+0.7
−0.2 0.164 6.7 10−2

0.50±0.01 10.0±0.3 0.062 (3.0 10−3)
0.90±0.01 10.0±0.3 0.126 2.8 10−2 not defined
1.10±0.01 10.0+0.4

−0.3 0.151 5.7 10−2

3.50±0.01 0 0.430 0.87 690 91 33 1.1

Propeller frequency f , polymer concentration c, rms velocity u′, energy transfer rate ε, Taylor scale
Reynolds number Rλ, andKolmogorovmicroscales η and τη. The error bounds for f and c are given

in the table. The uncertainties for u′ and ε are given by �u′
u′ = 3% and �ε

ε
= 10%, respectively,

leading to �Rλ

Rλ
= 8%, �L

L = 13%, �η
η

=3% and �τη

τη
=5%. For the 0.5Hz datasets with added

polymers, 〈δu · δa〉 doesn’t show a convincing plateau anymore. The ε-values for these datasets
have thus to be treated with caution (see Appendix A.1). The Reynolds number and Kolmogorov
microscales are computed for all three propeller frequencies for the water case and then adopted
without change for the flows with added polymers. The physical parameters for the already existing
dataset, given in the last row, have been computed in the same way
aThe varying error bounds for the concentration are due to a gradual improvement of the funneling
procedure. The bounds shown here are for the large volume measurements. The small volume
measurements, conducted afterwards, have error bounds of ±0.3 ppm for both concentrations. For
more details see Chap.6

3.5 Measurement Uncertainties

A rigorous calculation of the measurement uncertainties of the presented results
is not feasible with standard methods. This is due to a complicated confounding of
different uncertainties, aswell as a lackof statistical independencebetween individual
measurements, from now on called realizations. There are three main sources for
uncertainties:

1. Every 3D position comes with a measurement error of the order of δx (see
Table3.1).

2. Smoothing the trajectory with a Gaussian kernel, as described in Sect. 3.2, picks
up the position error and introduces a slight systematic error towards smaller
amplitudes of the trajectory.

3. Each studied quantity is computed from the positions of one or more particles
and then averaged over many realizations. This introduces a statistical uncer-
tainty. If each realization was taken from another recorded video, they would all
be statistically independent and the mean value would be Gaussian distributed

http://dx.doi.org/10.1007/978-3-319-19192-8_6
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according to the law of large numbers. For a turbulent flow, however, the number
of realizations averaged over must be very large in order to achieve a statistical
convergence. Therefore, all realizations from each video must be used in order to
collect sufficient data in a realistic timespan. This renders the realizations statis-
tically dependent and the mean value is not necessarily Gaussian distributed.

As an example for the effect of these sources on the uncertainty of a measured
quantity, I present a thorough analysis of the energy transfer rate obtained from
〈δu · δa〉 as was shown in Fig. 3.11. The three sources of uncertainties stated above
are discussed in the given order, and an optimistic and a very conservative estimate
will be discussed. Quantities with a possible uncertainty are marked with a tilde
while true values are written without.

1. Themeasured position of a particle at frame k can bewritten as x̃[k] = x[k]+ξx [k]
with ξx [k] the measurement error at frame k. The absolute value of ξx [k] should
be of the order of the accuracy of the 3D center finding. For the dataset shown in
Fig. 3.11, this is δx = 10µm (see Table3.1).

2. For 〈δu · δa〉, both the velocity as well as the acceleration need to be computed
from the particle positions. According to Sect. 3.2, this is accomplished by using
a convolution with the respective derivative of a Gaussian kernel. For the velocity
at frame k, one obtains

ũ[k] = 1

δt

M∑
m=−M

x̃[k − m]g′[m] (3.21)

= 1

δt

M∑
m=−M

x[k − m]g′[m] + 1

δt

M∑
m=−M

ξx [k − m]g′[m], (3.22)

where the notation for the position error from above was used at the second
equality. The first term in Eq. (3.22) leads to the true value of the velocity plus
an error due to the filtering process which I will write as ξu, f [k]. The second
term picks up the position errors and transforms them into a cumulated error,
ξu,x [k]. The error due to filtering, ξu, f , is unknown. However, using numerical
data, Ouellette (2006) showed that its effect on the velocity variance is less than
1% for a large range of filter lengths and can thus be neglected. The cumulated
position error, ξu,x , on the other hand, can be estimated analytically under the
assumption that the position error is white in time and stationary, meaning that
〈ξx [k + n] · ξx [k + m]〉 = (δx)2δnm with δnm being the Kronecker delta. The
variance of the cumulated position error is then given by

〈ξ2u,x 〉
1
2 = δx

δt

(
M∑

m=−M

−m2e
− m2

w2

)−1 (
M∑

m=−M

m2e
−2 n2

w2

) 1
2

= 0.0024
m

s
,

(3.23)
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where the parameters for the dataset in Fig. 3.11 were used at the second equality:
δx = 10µm, δt = 0.10ms, M = 15, and w = 10. The obtained cumulated
position error corresponds to approximately 2% of u′. For the acceleration one
finds similarly

〈ξ2a,x 〉
1
2 = δx

(δt)2

(
M∑

m=−M

m2

2
g′′
0 [m] −

M∑
m=−M

m2

2

M∑
m=−M

g′′
0 [m]

)−1

⎛
⎝ M∑

m=−M

[
g′′
0 [m] − 1

2M + 1

M∑
m=−M

g′′
0 [m]

]2⎞
⎠

1
2

= 5.9
m

s2
,

(3.24)

which is of the order of 20% of the rms acceleration. The filtering error for the
acceleration, ξa, f , is unknown but assumed to be negligible as for the velocity
case. Therefore, one obtains ũ(x̃, t) ≈ u(x̃, t)+ξu,x (x̃, t) and ã(x̃, t) ≈ a(x̃, t)+
ξa,x (x̃, t).

3. Averaging over many pairs with a certain separation ri yields

ε̃(ri ) = −1

2
〈[ũ(x̃ + r̃, t) − ũ(x̃, t)

] · [
ã(x̃ + r̃, t) − ã(x̃, t)

]〉|r̃|=ri

= −1

2
〈[u(x̃ + r̃, t) − u(x̃, t)

] · [
a(x̃ + r̃, t) − a(x̃, t)

]〉|r̃|=ri

+ 〈[ξu,x (x̃ + r̃, t) − ξu,x (x̃, t)
] · [

a(x̃ + r̃, t) − a(x̃, t)
]〉|r̃|=ri

+ 〈[u(x̃ + r̃, t) − u(x̃, t)
] · [

ξa,x (x̃ + r̃, t) − ξa,x (x̃, t)
]〉|r̃|=ri

+ 〈[ξu,x (x̃ + r̃, t) − ξu,x (x̃, t)
] · [

ξa,x (x̃ + r̃, t) − ξa,x (x̃, t)
]〉|r̃|=ri ,

(3.25)

where the average 〈·〉|r̃|=ri is taken over pairs with a separation between ri and
ri + δri . For the data shown in Fig. 3.11, the bin width, δri , was chosen to be
0.5mm. It can be assumed that the correlation between the cumulated position
error for the velocity, ξu,x , and the acceleration is negligible, and the same for
ξa,x and the velocity. For the last term, containing the mixed correlation between
the cumulated position errors, an analytical result can be found, again assuming
that the position errors are white in time. One finds that

〈ξu,x · ξa,x 〉 = (δx)2

(δt)3

M∑
m=−M

g′[m]g′′[m] = 0, (3.26)

where the last equality holds because (g′[m]g′′[m]) is asymmetric in m and the
sum is over a symmetric interval. Even if the position errors are not perfectly
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white in time but rather have a short but finite correlation time, the above mixed
term remains small. With these assumptions, Eq. (3.25) can be simplified to

ε̃(ri ) = −1

2
〈[u(x + r, t) − u(x, t)] · [a(x + r, t) − a(x, t)]〉|r|=ri . (3.27)

Here, I made also use of the fact that the deviations of the measured position
vector, x̃, and separation vector, r̃, from the true values has a vanishing effect
on the result due to homogeneity and the large bin size, δri . Note that the easy
solution found in Eq. (3.27) is the exception and not the rule. For any squared
quantity, like e.g. the squared relative velocity, 〈[ũ(x̃ + r̃, t) − ũ(x̃, t)

]2〉|r̃|=ri ,
the term with the squared uncertainties does not vanish but leads to a systematic
error towards larger values.

For an ensemble of N statistically independent realizations, the uncertainty of the
average in Eq. (3.27) is given by

σε(ri ) = 1√
N

〈[
−1

2

(
[u(x + r, t) − u(x, t)] ·

[a(x + r, t) − a(x, t)]
)

|r|=ri , j
− ε̃(ri )

]2〉 1
2

. (3.28)

A very optimistic estimate would be to say that all averaged over realizations of
particle pairs are statistically independent, leading to N = O (

106
)
for the data

set studied here. This is not true, however, since realizations from the same video
can be strongly correlated, depending on how far they are apart in space and time.
A much more conservative approach would thus be to only allow one (randomly
chosen) realization per video, leading to N = 400. It is clear that statistical
convergence at this small number of realizations is very poor. Figure3.12 shows
the results for ε̃(ri ) for both cases.Openblack circles and red error bars correspond
to N = O (

106
)
while filled black circles and blue error bars correspond to

N = 400. The error bars represent 2σε(ri ), so that they should include the true
value in 95.4% of the cases. Figure3.12 reveals that both methods agree with
each other within the given errors. While the N = 400 case clearly shows a
severe lack of statistical convergence, however, the N = O (

106
)
case seems

well converged but its error bars are utterly underestimated. They do not even
cover the fluctuations of the curve. As a result, the average value of the case
with N = O (

106
)
should be trusted, but its true uncertainties, σε(ri ), must

be somewhere between these two extremes. Since the true uncertainties remain
unknown, any display of error bars is misleading because it does not represent
the actual uncertainty of the shown value. I will thus refrain from showing error
bars in this thesis.
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Fig. 3.12 Twoways to estimate the uncertainty for the energy transfer rate computed from 〈δu ·δa〉.
The shown dataset corresponds to a flowwith a propeller frequency of 0.9Hz and without polymers.
a Data points (◦) and red error bars are computed from N = O (

106
)
realizations, assuming that

they are all independent. The black horizontal line represents the mean value of the compensated
squared relative velocities in the range 50η ≤ r ≤ 1

5 L . b Data points and blue error bars
are computed from N = 400 realizations, taking only one realization from each video to ensure
statistical independence. For comparison, the results from (a) are shown as well

One is left with the problem to find the value and uncertainty of the mean energy
transfer rate, ε̃. Using the data points from the N = O (

106
)
case, the value of ε̃

is given by ε̃ = 1
K

∑K
i=1 ε̃(ri ) = 0.05264 m2

s3
, with K the number of bins averaged

over. Taking error propagation into account, the uncertainty is given by

σε = 1

K

(
K∑

i=1

σε(ri )
2

) 1
2

. (3.29)

When using the case with N = O (
106

)
realizations, one obtains σε = 0.00006 m2

s3
which corresponds to a relative uncertainty of 0.1%.On the other hand, for N = 400,
one finds σε = 0.02 m2

s3
, leading to a relative uncertainty of 37%. These results rein-

force the finding from above that neither the conservative nor the optimistic estimate
for the uncertainties are very realistic. The total width of the curve fluctuations in the
inertial range might provide a more accurate estimate for the uncertainty of ε. The

standard deviation from the mean is given by σscatter =
(

1
K−1

∑K
i=1(ε̃(ri ) − ε̃)2

) 1
2
.

I will thus use 4σscatter = 0.005 m2

s3
, covering more than 99.99% of the fluctuations,

as an estimate for the uncertainty of ε̃. This corresponds to a relative uncertainty of
10%, as was stated above.
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Chapter 4
Two-Particle Dispersion

In this chapter, I analyze the relative dispersion of a pair of tracer particles with
respect to the time asymmetry induced by the irreversibility of turbulent flow. In
Sect. 4.1, I use a short-time expansion to obtain a mathematical connection between
themean squared relative separation of a particle pair and the derivative of the squared
relative velocity. I briefly explain how this connection can be understood in terms of
the irreversibility of the energy cascade and how it determines the time asymmetry
observed in pair dispersion. In Sect. 4.2, I describe how the recorded particle track
data is analyzed in order to obtain the required time-dependent pair statistics and
in Sect. 4.3, I present the experimental results and compare them with data from
direct numerical simulation (DNS).1 Furthermore, I discuss how the finite size of the
observation volume leads to a bias of the recorded data and explain which quantities
are least affected. Parts of this chapter have already been published in Jucha et al.
(2014).

4.1 Short-Time Expansion

Due to the elusive nature of Richardson scaling (Bourgoin et al. 2006; Salazar and
Collins 2009; Bragg et al. 2014), it seems prudent to focus on the short-time behavior
of pair dispersion instead. For this purpose, I examine the mean squared relative
separation of pairs of tracer particles,

〈
δR2(t)

〉 = 〈
[R(t) − R(0)]2

〉
, where the average

is taken over all pairs with the same initial separation |R(0)| = R0. In this thesis, R0
is always chosen to be in the inertial range.

1The numerical data was provided by Alain Pumir from the École Normale Supérieure, Lyon, and
was also used in our joint paper (Jucha et al. 2014). For more details see Sect. 4.3.

© Springer International Publishing Switzerland 2015
J. Jucha, Time-Symmetry Breaking in Turbulent Multi-Particle Dispersion,
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Recalling that the separation vector for a pair of particles is defined as R(t) =
X(t |y2, 0) − X(t |y1, 0), the short-time evolution of the mean squared relative sepa-
ration can be expressed by the Taylor series around t = 0 as

〈δR(t)2〉 = 〈V(0)2〉t2 + 〈V(0) · A(0)〉t3 + O
(

t4
)

. (4.1)

Here, V(0) = u(y2, 0)−u(y1, 0) is the initial relative velocity between the particles
and A(0) = a(y2, 0) − a(y1, 0) is the initial relative acceleration. In the case of an
isotropic turbulent flow, the first term on the right hand side corresponds to Batch-

elor scaling and can be replaced by 11
3 C2(εR0)

2
3 t2, in accordance with Eq. (2.23).

Furthermore, the second term can be recognized to be the Lagrangian expression for
〈δu · δa〉, with

〈V(0) · A(0)〉 = 1

2

〈
d

dt
V(t)2

∣∣∣
t=0

〉
= −2ε, (4.2)

as shown in Eq. (2.27). With this, Eq. (4.1) can be conveniently written as

〈δR(t)2〉 = 11

3
C2(εR0)

2
3 t2 − 2εt3 + O

(
t4

)
. (4.3)

Equation (4.3) can be non-dimensionalized with the use of the initial separation, R0,

and the characteristic time scale for that separation, t0 = (
R2
0/ε

)1/3
, leading to

〈δR(t)2〉
R2
0

= 11

3
C2

(
t

t0

)2

− 2

(
t

t0

)3

+ O
(

t4
)

. (4.4)

At very short times, the first term on the right hand side in Eq. (4.4) dominates the
separation of the particle pair. This term is equivalent to Batchelor scaling and, due
to being quadratic in time, does not reveal any irreversibility of the flow. The next
term in the expansion is the first to break time symmetry by having an odd power
in time. This can be easily seen when explicitly rewriting Eq. (4.4) for the case of
backward dispersion (t → −t),

〈δR(−t)2〉
R2
0

= 11

3
C2

(
t

t0

)2

+ 2

(
t

t0

)3

+ O
(

t4
)

. (4.5)

Studying Eq. (4.2) again, one finds that the t3 term arises from the fact that in a
turbulent flow, the derivative of the squared relative velocity does not vanish, as it
would be the case for a velocity field that is delta-correlated in time. Instead, for a
pair separation in the inertial range and at high Reynolds numbers, the initial change
in the squared relative velocity is fully determined by the rate of the energy flux
through scales, ε. The first term to break time symmetry can thus be directly linked
to the turbulence energy cascade. For a 3D turbulent flow, energy is transported from
large to small scales, leading to an energy transfer rate ε > 0. Equations (4.4) and

http://dx.doi.org/10.1007/978-3-319-19192-8_2
http://dx.doi.org/10.1007/978-3-319-19192-8_2
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(4.5) thus predict that the short-time particle separation forwards in time (t > 0) is
diminished while the separation backwards in time (t < 0) is enhanced by the energy
cascade in comparison to the case where ε = 0.

It is interesting to note that all previous studies on the asymmetry between for-
ward and backward dispersion also observed a faster separation backwards in time
(Sawford 2001; Berg et al. 2006; Bragg et al. 2014). These studies were however
concerned with the evolution at much larger times, corresponding to the Richardson
regime, so that the obtained observations cannot be traced back to Eq. (4.5).

Aside from the time asymmetry, another interesting aspect of the short-time ap-
proach is the timespan for which the Taylor series remains valid. If all terms of the
expansion in Eq. (4.4) could be written as functions of t/t0 with prefactors of order
one, as is the case for the first two terms, the Taylor series would converge for times
t < at0, with a also an order one constant. However, it can be shown that only
terms with odd powers of time can be consequently written in this form. For the even
terms, starting at t4, τη is the dominant time-scale, leading to a severe reduction of
the radius of convergence (Frishman 2013, a detailed proof is shown in Appendix
A.2). Due to the different convergence radii of the odd and even terms, I define the
symmetric and antisymmetric functions

Fs(t) = 〈δR(t)2 + δR(−t)2〉
2R2

0

= 〈V(0)2〉
R2
0

t2 + O (
t4

) = 11

3
C2

(
t

t0

)2

+ O (
t4

)
,

(4.6)

Fa(t) = 〈δR(t)2 − δR(−t)2〉
2R2

0

= 〈V(0) · A(0)〉
R2
0

t3 + O
(

t5
)

= −2

(
t

t0

)3

+ O
(

t5
)

.

(4.7)

Note that while Fa(t) converges for t � t0, the radius of convergence of Fs(t) cannot
be easily computed but is most probably of the order of τη. Furthermore, only Fa(t)
contributes to the breaking of the time symmetry.

4.2 Data Analysis

In order to compute all relevant pair statistics from the recorded datasets, a C++ code
written bymyself was used to successively analyze the particle tracks from all videos
stored in one velocity-acceleration file (see Appendix C.3). For each video, a nested
loop identifies all particle trajectorieswith a temporal overlap (i.e. shared frames). If a
pairwith an overlap is found, the separation |R| between the twoparticles is computed
for all shared frames. For each frame k for which R0 − �R0 ≤ |R| ≤ R0 + �R0,
with a fixed tolerance �R0, the pair statistics of all shared frames are stored with
frame k corresponding to t = 0 (Fig. 4.1). In the case that more than one frame
fulfills the condition R0 −�R0 ≤ |R| ≤ R0 +�R0, the statistics of the particle pair
are stored several times, always with a different frame corresponding to t = 0. This
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|R|
R0 ±�R0

k

−5 t −4 t −3 t −2 t −1 t 1 t 2 t 3 t 4 t 5 tt = 0
... ...

Histogram

store in
histogram

Fig. 4.1 Sketch of how each pair of trajectories is analyzed. The separation |R| is compared with
R0 ± �R0 for all temporally overlapping frames of the two trajectories. For each frame in which
|R| falls into the specified range (here frame k), the pair statistics of all overlapping frames are
stored in a histogram with frame k defining t = 0

increases statistics while eliminating any possible bias due to the choice of frame
k. This process is repeated until the final statistics contain the information of all
possible trajectory pairs from all videos recorded for an experiment. The computed
quantities are the mean squared relative separation (as well as some variations of
it), the mean squared relative velocity, and the mean relative velocity-acceleration
correlation, 〈δu · δa〉.

The tolerance on the initial separation, �R0, is chosen to be 5% of the value
of R0 for all experimental datasets. Furthermore, in order to ensure that all shown
results are statistically well converged, only datasets with more than 107 observed
pairs at t = 0 are shown. The time evolution is only shown up to a time t at which
the number of observed pairs drops below 106.

4.3 Experimental Results

Figure4.2 shows the experimental results for 〈δR(t)2〉 and 〈δR(−t)2〉 plotted
over |t |/t0 and compensated by both R2

0
11
3 C2(t/t0)2, according to Eq. (4.4), and

〈V(0)2〉t2, according to Eq. (4.1). Data at three different Reynolds numbers and sev-
eral initial separations in the inertial range are shown. It can be noticed that in both
cases the forward and backward dispersion show a plateau at a value near unity,
after which the forward dispersion data drops below the backward dispersion data,
exactly as predicted. While a collapse can be seen for the general case in Fig. 4.2b,
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Fig. 4.2 Mean squared separation 〈δR(t)2〉/R2
0 forwards and backwards in time as a function of

|t |/t0. For Rλ = 390, the initial separations are 241η ( ) , 276η ( ) and 310η ( ). For Rλ = 350,

the initial separations are 212η ( ) , 242η ( ) and 273η ( ), and for Rλ = 270, they are 135η
( ), 154η ( ) and 173η ( ). Filled and open symbols represent the results forwards (t > 0) and
backwards in time (t < 0), respectively. a The mean squared separation is compensated assuming
an isotropic flow with C2 = 2.1. b The mean squared separation is compensated according to the
more general Eq. (4.1)

the same is not true in Fig. 4.2a for which the measured mean squared dispersion
is compensated according to the formula for an isotropic flow. The value for C2
seems not to be constant over the range of initial separations studied here and its real
value is somewhat larger than the used value of C2 = 2.1. This is due to the fact
that the studied flow is not perfectly isotropic (see Appendix B.1). Especially at the
borders of the measurement volume, the mean flow has a non-negligible magnitude.
It is therefore not surprising that the more general case in Fig. 4.2b leads to a much
clearer collapse. Another observation that can be made from the good collapse in
Fig. 4.2b is that t0 seems indeed to be the correct scale for the time axis. Especially
the good agreement among the different curves of the point in time at which they
deviate from the plateau is a strong validation of this.

Although the results seem to agree well with the theoretical prediction, one major
difference can be seen. While Eq. (4.5) predicts that the t3 term leads to an enhance-
ment of backward dispersion over the t2 behavior, Fig. 4.2b shows that the backward
dispersion never actually rises above unity. This inconsistency with the theoretical
prediction can be explained by a bias of the recorded data due the finite size of the
measurement volume. A finite observation volume always entails a finite observa-
tion time of the studied tracer particles. This observation time is not equal for all
particles because particles with a larger velocity cross the volume more quickly than
slower particles do. The same holds true for particle pairs. A large relative velocity
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δR2(t)

0
t

Single events

finite
Volume

finite volume

infinite volume

Fig. 4.3 Sketch of the effect of a finite measurement volume on the average over an ensemble of
pair trajectories. Examples for individual pair trajectories are shown in black. The dashed part of
the trajectory is not visible in the case of a finite observation volume. The blue and red line show
the average over many pairs for the cases of an infinite and finite observation volume, respectively

V(t) usually leads to a short observation time and vice versa.2 Consequently, the
number of statistics varies with time in a biased manner, meaning that at later times
only slowly separating particles remain. For an ensemble average over an arbitrary,
time-dependent function, 〈k(t)〉, it thus matters whether the average is taken over all
pairs observed at time t or for example over those pairs observed at time t ′ > t as
illustrated in Fig. 4.3. Taking this time dependence into account, such an ensemble
average shall bewritten as 〈·〉t in the following, where the subscript t denotes the time
at which the ensemble is chosen. Experimentally, the average of the mean squared
separation at time t is taken over all trajectories observed at time t , so that in the new
notation Eq. (4.1) is given by

〈δR(t)2〉t = 〈V(0)2〉t t2 + 〈V(0) · A(0)〉t t3 + O
(

t4
)

. (4.8)

It becomes directly clear that the right hand side is changed in a significant manner. If
all pairs could be tracked indefinitely, the averages over the velocity and acceleration
at time t = 0 should be constant. In the case of a finite observation volume, however,
these averages become functions of time, always corresponding to the ensemble of
particle pairs observed at time t . One can explicitly capture this time dependence by
defining

〈δR(t)2〉t = 〈V(0)2〉0 f1(t)t
2 + 〈V(0) · A(0)〉0 f2(t)t

3 + O
(

t4
)

, (4.9)

2There exists of course the case that a slowly separating particle pair starts very close to the boundary
of the observation volume, thus also leading to a short observation time. The starting position at
time t = 0 is independent of the kinetic properties of the particle pair, however, and thus does not
contribute to any form of bias.
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with the bias functions f1(t) and f2(t) obeying f1(0) = f2(0) = 1 by construction.
The averages 〈V(0)2〉0 and 〈V(0) · A(0)〉0 are taken over all pairs observed at t = 0
and correspond to the case of an infinite measurement volume. The bias is thereby
shifted completely into the functions fi (t). By following each individual particle
pair for the same duration forwards and backwards in time, i.e. t ∈ [−t1, t1], the bias
functions can be made exactly time-symmetric, since at any time t ≥ 0 one obtains
the same ensemble of pairs as at time −t . For the experimental data presented in
this thesis, it can be found that both bias functions decrease with time and that
0.9 � fi (t) � 1.0 for |t | < 0.1t0, thus only leading to an error of up to 10% in each
term (see Fig. 4.4). Since the first term in the expansion in Eq. (4.9) is itself much
larger than the second term, a 10% error on the first term however fully obscures the
effect of the second one. This is exactly what is observed in Fig. 4.2. Although the
split between forward an backward dispersion due to the t3 term can be observed,
the enhancement of the backward dispersion above the t2 behavior is masked by the
decreasing value of f1(t).

One way to solve this problem is to subtract the t2 term before averaging and then
add an unbiased t2 term according to

〈δR(t)2 − V(0)2t2〉t + 〈V(0)2〉0 t2 = 〈V(0)2〉0 t2 + 〈V(0) · A(0)〉0 f2(t)t
3 + O (

t4
)
.

(4.10)

The leading term on the right hand side thus remains unbiased, allowing the effect
of the t3 term to be visible. Figure4.5 shows the mean squared separation corrected
in this way, compensated by the squared relative velocity. One can nicely see how
the backward dispersion is corrected towards higher values and even rises slightly
above the plateau while the forward dispersion remains clearly below it, as it was
predicted.
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Fig. 4.4 Bias functions f1(t) and f2(t) as obtained from the time-dependent averages 〈V(0)2〉t and
〈V(0) · A(0)〉t , respectively. The horizontal dashed line indicates an influence of the bias functions
of 10%. Datasets and color code are identical to those shown in Fig. 4.2 on p. 51
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Fig. 4.5 Experimental
results for the bias-corrected
mean squared separation.
Filled and open symbols
represent forwards and
backwards dispersion,
respectively. Datasets and
color code are identical to
those shown in Fig. 4.2 on
p. 51
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An even cleaner way of coping with the finite volume bias is to look directly at the
symmetric and antisymmetric functions, Fs

t (t) and Fa
t (t), for a biasedmeasurement:

Fs
t (t) = 〈δR(t)2 + δR(−t)2〉t

2R2
0

= 〈V(0)2〉0
R2
0

f1(t)t
2 + O

(
t4

)
(4.11)

and Fa
t (t) = 〈δR(t)2 − δR(−t)2〉t

2R2
0

= 〈V(0) · A(0)〉0
R2
0

f2(t)t
3 + O

(
t5

)

= −2 f2(t)

(
t

t0

)3

+ O
(

t5
)

. (4.12)

Here, the time symmetry of the bias functions was used to ensure the full cancel-
lation of the odd or even terms, respectively. Even though both Fs

t (t) and Fa
t (t)

still experience the effect of the bias functions, Fa
t (t) shows the symmetry-breaking

t3-term now at leading order with only a small diminishing effect of the bias function
by less than 10% for t < 0.1t0. Figure4.6 shows the asymmetric function, Fa

t (t)
compensated by −2(t/t0)3, for the same experimental data as above. All curves
show plateaus up to 0.1t0 and then drop together. The heights of the plateaus deviate
less than 25% from unity. Taking into account the large 10% uncertainty of the en-
ergy transfer rate (measured for the small measurement volume), together with the
even larger uncertainty of adopting this value for the large measurement volume, the
results in Fig. 4.6 are in good agreement with the theoretical prediction.

For comparison, the mean squared change of separation was also computed from
DNS data at a similar Reynolds number, Rλ = 300, and a scale separation between
largest and smallest scales of L/η = 250.TheDNSdatawaskindlyprovidedbyAlain
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Fig. 4.6 Experimental
results for the odd terms of
the mean squared separation,
compensated to yield a
plateau with a height of one.
Datasets and color code are
identical to those shown in
Fig. 4.2 on p. 51
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Pumir from the École Normale Supérieure de Lyon and was also published in Jucha
et al. (2014). For the DNS, the Navier-Stokes equations were solved directly with a
standard pseudo-spectral code (described e.g. in Voßkuhle et al. 2013) for periodic
boundary conditions. More than 3 · 104 fluid particle trajectories were processed.
Figure4.7 shows a comparison of the experimental and numerical results for the
compensated Fa

t (t). Due to the strong uncertainties of the energy transfer rates,
the directly measured value of 〈V(0) · A(0)〉0 is used for compensation. Very good
agreement between the experimental and numerical data can be found. Only at larger
times, t � 0.2t0, the experimental data drops slightly faster than the numerical
data. This difference may be attributed to the residual finite volume bias that only
affects the experimental but not the DNS data. All data sets show a rapid decrease
towards zero at sufficiently long times. This is the expected behavior, since the two
particles forming the pair become uncorrelated over time and no difference between
forward and backward dispersion should remain. For intermediate times, however,
a Richardson-like scaling is expected (Sawford 2001; Berg et al. 2006; Bragg et al.
2014). FollowingEq. (2.29), the difference between forward andbackward dispersion
in a Richardson-scaling regime is given by

Fa
t (t) = 〈δR(t)2 − δR(−t)2〉t

2R2
0

Richardson= 1

2
(g f − gb)

(
t

t0

)3

, (4.13)

where a value of g f − gb ≈ −0.6 has been proposed by Berg et al. (2006) based on
measurements at Rλ = 170. In Fig. 4.7, another plateau with a height of − 1

4 (g f −
gb) ≈ 0.15 should thus be visible, where I used the fact that 〈V(0) · A(0)〉0 = −2ε.
The numerical data clearly drops below this point without any indication of a plateau.

http://dx.doi.org/10.1007/978-3-319-19192-8_2
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Fig. 4.7 Experimental and numerical results for the odd terms of the compensated mean squared
change of separation. Datasets and color code for the experimental data are identical to those shown

in Fig. 4.2 on p. 51. For the DNS data at Rλ = 300, the initial separations are 19η ( ), 38η ( ),

58η ( ), 77η ( ), 92η ( ) and 123η ( ) . The dashed horizontal line indicates the prediction
by Richardson scaling as proposed by Berg et al. (2006)

The experimental data shown here does not reach that far since only times with more
than 106 observed pairs are shown. Lowering this very strict cut-off to 104, a very
rapid drop below 0.15 with no indication of a plateau is revealed (see Appendix A.3).
Even though a plateau at − 1

4 (g f − gb) ≈ 0.15 is not observed, it cannot be ruled
out that a plateau for a much smaller value of (g f − gb) might exist. This result will
be discussed in greater detail in Chap. 7.

Thus far, I found that the intrinsic time irreversibility of turbulent flows can be
tested by exploring the mean squared change of separation of a pair of tracer parti-
cles. Focusing on the short-time behavior, I confirmed that pair-dispersion is faster
backwards than forwards in time and I showed that this asymmetry is directly con-
nected to the directionality of the turbulence energy cascade. It can be first seen for
the t3 term and, if properly normalized, is fully determined by the value of the energy
transfer rate.

Although the results presented in this chapter are precise and significant, the effect
of the symmetry breaking is only small. In the next chapter, I will discuss a much
stronger manifestation of the intrinsic time irreversibility of turbulence by analyzing
the shape deformation of clusters of four particles. I will show that the symmetry-
breaking term there appears at first order in time and thus has a much larger effect.

http://dx.doi.org/10.1007/978-3-319-19192-8_7
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Chapter 5
Four-Particle Dispersion

In this chapter, I analyze the effect of the intrinsic time irreversibility of turbulent
flows on the shape deformation of clusters of four particles. In analogy to Chap. 4,
I perform a short-time expansion for the size and shape properties of the cluster in
Sect. 5.1. In Sect. 5.2, I briefly explain how the recorded videos are evaluated and
I present the experimental results in Sect. 5.3. Again, a comparison with DNS data
provided by Alain Pumir from École Normale Supérieure de Lyon will be shown.
Parts of this chapter have been published in Jucha et al. (2014).

5.1 Short-Time Expansion

Following Sect. 2.3.4, the shape tensor for a cluster of four particles, a tetrahedron,
is given by

G(t)i j =
3∑

a=1

ρ
(a)
i (t)ρ(a)

j (t), (5.1)

with the form of the ρ-vectors, ρ(a)(t), specified in Eq. (2.35). The shape tensor
is fully specified by its three eigenvalues, gi (t), and three Euler angles. No easy
relation exists to obtain the Euler angles, but the eigenvalues, sorted by size such
that g1 ≥ g2 ≥ g3, suffice for a classification of the shape of the tetrahedron (see
Sect. 2.3.4). Furthermore, the size of the tetrahedron is described by the trace of the
shape tensor in the form of the radius of gyration as given in Eq. (2.34).

In order to study the evolution of the shape tensor, an equation of motion needs
to be derived. Introducing the velocities v(a)(t) = d

dt ρ
(a)(t) as the change of the

ρ-vectors with time, and taking the time derivative of (5.1), one finds
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d

dt
G(t)i j =

3∑
a=1

ρ
(a)
i (t)v(a)

j (t) +
3∑

a=1

v(a)
i (t)ρ(a)

j (t) (5.2)

=
3∑

a=1

ρ
(a)
i (t)

[
3∑

k=1

ρ
(a)
k (t)Mkj (t)

]
+

3∑
a=1

[
3∑

k=1

ρ
(a)
k (t)Mki (t)

]
ρ

(a)
j (t).

(5.3)

At the second equality, the definition of the perceived velocity gradient tensor,
v(a)(t) = ρ(a)(t)T M(t), from Eq. (2.36) was used. Reinserting (5.1), one finally
obtains

d

dt
G(t) = G(t) · M(t) + MT (t) · G(t). (5.4)

This equation of motion links the shape evolution of a tetrahedron to the surrounding
flow field. It can be solved for short times by expanding both the shape tensor and
the perceived velocity gradient tensor around t = 0 with

G(t) = G0 + G1 t + G2
t2

2
+ G3

t3

6
+ O(t4), (5.5)

M(t) = M0 + M1 t + M2
t2

2
+ M3

t3

6
+ O(t4), (5.6)

where Gn = d
dt G(t)

∣∣
t=0 and Mn = d

dt M(t)
∣∣
t=0. As an initial condition, an isotropic

tetrahedron with edge length l is assumed, so that G(0) = G0 = l2
2 1. Inserting the

above Taylor series into (5.4) and comparing the left- and right-hand side for each
order in t , one finds

G0 = l2

2
1 (initial condition), (5.7)

G1 = MT
0 G0 + G0M0 = l2

2

(
MT

0 + M0

)
, (5.8)

G2 = MT
1 G0 + G0M1 + MT

0 G1 + G1M0

= l2

2

(
MT

1 + M1 + (MT
0 )2 + 2MT

0 M0 + M2
0

)
, (5.9)

G3 = MT
2 G0 + G0M2 + 2MT

1 G1 + 2G1M1 + MT
0 G2 + G2M0

= l2

2

(
MT

2 + M2 + (MT
0 )3 + 3(MT

0 )2M0 + 3MT
0 M2

0 + M3
0 + 2MT

1 MT
0

+ MT
0 MT

1 + 2M0M1 + M1M0 + 3MT
1 M0 + 3MT

0 M1

)
. (5.10)

One can further simplify the above results by using the perceived rate of strain
tensor, S(t) = 1

2 (M(t) + MT (t)), and the perceived rate of rotation tensor,

http://dx.doi.org/10.1007/978-3-319-19192-8_2
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�(t) = 1
2 (M(t) − MT (t)). Expanding both around t = 0, the nth derivatives at

t = 0 are then given by Sn = 1
2 (Mn + MT

n ) and �n = 1
2 (Mn − MT

n ), respectively.
The short-time evolution of the shape tensor can then be written as

G(t) = l2

2

(
1 + 2S0 t + (2S1 + 4S2

0 + 2[S0, �0]) t2 + (2S2 + 8S3
0 + 6[S2

0,�0]
+ 2[[S0, �0],�0] + 6S0 · S1 + 6S1 · S0 + 2[S1,�0] + 4[S0, �1]) t3 + O(t4)

)
.

(5.11)

Here, I introduced the commutator [A, B] = A · B − B · A, and made use of the fact
that the perceived rate of strain tensor is symmetric, ST

n = Sn , while the perceived
rate of rotation tensor is antisymmetric, �T

n = −�n .
Now, the size of the tetrahedron, expressed by the radius of gyration, can be easily

obtained by taking the trace of the shape tensor. With (5.11), one finds

〈R2(t)〉 = 〈tr(G(t))〉 = l2

2

(
3 + 2〈tr(S2

0)〉t2 +
(
4

3
〈tr(S3

0)〉 + 2〈tr(S0 · S1)〉
)

t3 + O(t4)

)
.

(5.12)

This result can be obtained by keeping in mind that the diagonal elements of com-
mutators are always zero. Furthermore, I used the circumstance that, on average,
the perceived rate of strain tensor is traceless, 〈tr(Si )〉 ≈ 0, even though this is not
true for each single realization. This can be understood when first thinking of the
real velocity gradient tensor, Ai j (x, t) = ∂ui (x,t)

∂x j
, whose trace is zero due to the

incompressibility of the flow,
∑

i Aii (x, t) = ∇ · u(x, t) = 0. The same is then of
course also true for the real rate of strain tensor since it is defined as the sum of the
velocity gradient tensor and its transpose. It is important to note here that if a tensor
is traceless at all times, it directly follows that all its time derivatives are traceless
as well. One can now imagine a perceived rate of strain tensor which is defined
over all points of the surface of a sphere. Such a tensor is clearly traceless as well
because the volume of the sphere is conserved and the incompressibility argument
still applies. For a perceived rate of strain tensor defined over only four points form-
ing a tetrahedron, on the other hand, the trace is not always zero since the volume
of the tetrahedron is not conserved. If one averages over many regular tetrahedra
with the same size, however, the corner points of the tetrahedra sample the surface
of a sphere, thus approximating the case above. For sufficiently many realizations,
the average 〈tr(S0)〉 thus vanishes. Assuming that the same holds true for a very
short time range around zero in which the tetrahedra remain basically undeformed,
|t | � τη, it directly follows that the derivatives of the strain tensor at t = 0, 〈tr(Si )〉,
are traceless too.

Aside from the approach using the shape tensor, the radius of gyration can also be
expressed directly in terms of particle velocities and accelerations, similar to Chap. 4.
With Xcom(t) = 1

4

∑4
m=1 X(t |y(m), 0), the definition for the radius of gyration in

Eq. (2.34) can be rewritten as

http://dx.doi.org/10.1007/978-3-319-19192-8_4
http://dx.doi.org/10.1007/978-3-319-19192-8_2
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R2(t) = 1

4

4∑
a=1

4∑
b �=a

|X(t |y(a), 0) − X(t |y(b), 0)|2, (5.13)

which is just the average over the edge lengths of the tetrahedron. For an initially
regular tetrahedron, with all edges of the length l, an average over sufficiently many
tetrahedra then leads to

〈R2(t)〉 = 6

4
〈R2

pair(t)〉, (5.14)

where 〈R2
pair(t)〉 is the mean squared separation between two particles with an initial

separation of l. The above result was obtained by noting that all six edges can be
interpreted as individual pairs of particles, all with the same statistical properties and
initial conditions. This implies that studying the size evolution of tetrahedra does not
provide more information than studying pair dispersion does.

Muchmore promising is the study of the shape deformation of the volume spanned
by the tetrahedron since it is intrinsic to 3D objects and cannot be observed for
two-particle statistics. As discussed earlier, the shape of a tetrahedron can be well
characterized by the eigenvalues gi of the shape tensor. In order to obtain those,
the shape tensor needs to be diagonalized. Since G(t) is symmetric and real, there
always exists a real rotation matrix U(t), such that

GD(t) = U(t) · G(t) · UT (t) (5.15)

is diagonal and G D
ii (t) = gi (t). All real rotation matrices are orthogonal, so that

U(t) · UT (t) = 1 and thus d
dt U(t) = R(t) · U(t), with a real antisymmetric matrix

R(t) for which RT (t) = −R(t). Similarly to the shape tensor, one can thus expand
the rotation matrix U(t) in a Taylor series around t = 0 and express it through the
antisymmetric matrix R(t) with

U(t) =
[
1 + R0 t + (R1 + R2

0)
t2

2
+ (R2 + 2R1 · R0 + R0 · R1 + R3

0)
t3

6
+ O(t4)

]
U(0).

(5.16)

Here, Rn = dn

dtn R(t)
∣∣
t=0 with RT

n = −Rn for all n. One can now use (5.15) to obtain
the diagonalized shape tensor. After some lengthy calculation, see Appendix A.4,
one finds

GD(t) = l2

2

(
1 + 2S0t + (

2D(S1) + 4S2
0

) t2

2
+

(
2D(S2) + 8S3

0 + 12D(S0 · S1)

+ 4D(R2
0 · S0) − 4D(R0 · S0 · R0) + 8D(R0 · S1)

) t3

6
+ O(t4)

)
.

(5.17)
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Here, D(X) indicates that only the diagonal elements of the matrix X are used.
Furthermore, all matrices in (5.17) are in the eigenframe of the perceived rate of
strain tensor at t = 0, S0. Denoting the eigenvalues of S0 with si , sorted such that
s1 ≥ s2 ≥ s3, the eigenvalues of the shape tensor are given by

〈gi (t)〉 = l2

2

(
1 + 2〈si 〉t + 〈S1,i i + 2s2i 〉t2 +

〈1
3

S2,i i + 4

3
s3i + 2(S0 · S1)i i

+ 2

3
(R2

0 · S0)i i − 2

3
(R0 · S0 · R0)i i + 4

3
(R0 · S1)i i

〉
t3 + O(t4)

)
.

(5.18)

It was discussed in Sect. 2.3.4, that the eigenvalues of the perceived rate of strain
tensor behave similarly to the eigenvalues of the real rate of strain tensor, in the
sense that 〈s1〉 > 〈s2〉 > 0 > 〈s3〉 (Lüthi et al. 2007; Xu et al. 2008; Pumir et al.
2013).

Figure5.1 shows the averaged eigenvalues of the perceived rate of strain tensor,
〈si 〉, as obtained from the data presented in this thesis. It can be seen that the interme-
diate eigenvalue is indeed positive, and furthermore, that when the eigenvalues are
non-dimensionalized with t0 = (l2/ε)1/3, they seem to be independent of Reynolds
number and initial edge length of the tetrahedron. Therefore, mean values over all
datasets are obtained with the additional requirement that the perceived rate of strain
tensor is traceless on average. Most of the fluctuation of the points around the mean

50 100 150 200 250 300 350 400

l /η

− 3

− 2

−1

0

1

2

3

〈 s i
〉t 0

2.27

0.21

-2.48

Fig. 5.1 Average eigenvalues of the perceived rate of strain tensor, 〈si 〉, as obtained from a regular
tetrahedron with edge length l. The eigenvalues are non-dimensionalized with the characteristic
time scale of an eddy of size l, t0 = (l2/ε)1/3. Open symbols represent experimental data sets with
Reynolds numbers Rλ = 690 (◦), Rλ = 390 (	), Rλ = 350 (�), and Rλ = 270 (
). DNS data at
Rλ = 300 (
) is shown as well (see Sect. 4.3 for details)

http://dx.doi.org/10.1007/978-3-319-19192-8_2
http://dx.doi.org/10.1007/978-3-319-19192-8_4
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values can be attributed to the large uncertainties of ε and l, introduced through t0.
The fact that the intermediate eigenvalue, 〈s2〉, is non-zero leads to a strong time
asymmetry of the evolution of the eigenvalues gi (t), as will be discussed in detail in
Sect. 5.3.

5.2 Data Analysis

The starting point for the analysis of the recorded videos with respect to tetrahedra
evolution is again the velocity-acceleration file inwhich the trajectories of all recoded
videos of one measurement are stored (see Appendix C.3). A C++ code written by
Haitao Xu is used to search for tetrahedra that, at least at one point in time, are regular
with a prescribed edge length l. This searching algorithm is analogous to the one
described in Sect. 4.2 with the sole difference that each possible set of four, instead
of two, particles is tested. As a consequence, the time needed to search for tetrahedra
is proportional to N 4, where N is the number of particles in one frame. Because
this search algorithm is very time-consuming, it is performed in an isolated program
and the found tetrahedra trajectories, the trajectories of the four particles spanning
a tetrahedron, are stored into binary files. The corresponding file format is given in
Appendix C.4, where each file contains all tetrahedra trajectories of one recorded
video.

These tetrahedra files are then processed by two evaluation programs written by
myself, one to compute relevant quantities concerning the shape deformation and one
to compute statistics of the perceived velocity gradient tensor. The shape deformation
quantities are computed for the large measurement volume experiments due to their
longer observation time, and the statistics of the perceived velocity gradient tensor
are obtained from the small measurement volume experiments due to their higher
spatial resolution.

Some of the large measurement volume datasets presented so far do not contain
enough tetrahedra trajectories for sufficient statistical resolution. Displaying only
datasets with more than 105 observed tetrahedra at t = 0, the remaining datasets are
Rλ = 350 (l = 273 η) and Rλ = 270 (l = 135 η, 154η, and 135η). Therefore, the
already existing dataset at Rλ = 690 (l = 364 η, 424η, and 485η)will be used aswell
in order to replace the Rλ = 390 dataset. The number of observed tetrahedra drops
quickly with time, however, so only points with more than 5 ·104 observed tetrahedra
are shown. Furthermore, the tetrahedra trajectories will not be symmetrized around
t = 0, as was done for the pair statistics. This means that each trajectory can be seen
for a different number of frames forwards and backwards in time, thus increasing the
number of statistics at larger times significantly. As a drawback, the finite volume
bias is not time-symmetric anymore. For the small measurement volume datasets,
all datasets show sufficient statistical convergence and can be used.

In order to analyze the shape deformation, the shape tensor is first computed
according to (5.1) for every tetrahedron and every frame. If the determinant of the
shape tensor is larger than a chosen minimal value, det(G(t)) ≥ 5 · 10−5, a singular

http://dx.doi.org/10.1007/978-3-319-19192-8_4
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value decomposition is used to obtain the eigenvalues. The minimal value of the
determinant is required to ensure the convergence of the algorithm for the singular
value decomposition. The eigenvalues are sorted by size according to g1 ≥ g2 ≥ g3
for each single frame. Further computed quantities are the radius of gyration, the
mean squared change of separation as well as the mean squared relative velocity.

For the statistics of the perceived velocity gradient tensor, the procedure is slightly
more complicated because all matrices have to be transformed into the eigenframe
of S0. In a first loop through all frames of one tetrahedron trajectory, the perceived
velocity gradient tensor is computed for every frame by means of Eq. (2.36), using
a singular value decomposition with the requirement that det(M(t)) ≥ 5 · 10−5.
Furthermore, the perceived rate of strain and rate of rotation tensor are obtained as
the symmetric and antisymmetric part of the perceived velocity gradient tensor. The
eigenvalues and eigenvectors of the perceived rate of strain tensor,S(t), are computed
using aHouseholder reduction. In a second loop through all frames, the just computed
eigenvectors of S(0) = S0 are used to transform S(t) and �(t) into the correct
eigenframe. Finally, a histogram is generated from all tetrahedra trajectories of one
measurement for the following quantities: 〈si 〉, 〈s2i 〉, 〈s3i 〉, 〈D(S1)i 〉, 〈D(S0 · S1)i 〉
and several traces of interest. For the time derivative, S1, a Gaussian filter with width
τη and length 3τη is applied to the perceived rate of strain tensor, S(t). Only then
a transformation into the eigenframe of S0 is performed. I would like to stress that
the width and length of the filter kernel were chosen solely by intuition since a
clear decision aid as used earlier (see Fig. 3.6) was not found. As a consequence, the
precision of S1 is uncertain.

5.3 Experimental Results

Figure5.2 shows the size evolution of tetrahedra in comparison to the mean squared
separation of particle pairs for the same flow and the same initial separation (resp.
edge length). It can be seen that the results for tetrahedra and pairs agree within 5%,
confirming that the size evolution of tetrahedra and the separation evolution of pairs
provide the same information. One also finds that the fluctuations of the tetrahedra
datasets are a bit larger due to the strong reduction in statistics, with approximately
20-times less realizations than seen for pairs. The tetrahedra statistics therefore do
not reach the same accuracy as the pair statistics, especially at later times. As a
consequence, the very small t3 effect is hardly detectable. As shown in Sect. 5.1,
however, the shape evolution of tetrahedra exhibits symmetry-breaking already at
first order in t . This is a much larger effect, and it can be well analyzed with the
obtained tetrahedra data and will be the focus of the following analysis.

Figure5.3 shows the experimental results for the evolution of the eigenvalues
gi (t) as a function of time, for both positive and negative times, together with the
theoretical prediction up to order t2. For the theoretical prediction, the measured
strain quantities 〈si 〉, 〈S1,i i 〉, and 〈s2i 〉 from the small measurement volume dataset
with Rλ = 350 and l = 182 η have been inserted into (5.18). Only the first two orders

http://dx.doi.org/10.1007/978-3-319-19192-8_2
http://dx.doi.org/10.1007/978-3-319-19192-8_3
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Fig. 5.2 The average radius of gyration computed for tetrahedra (filled symbols) and pairs (lines).
For Rλ = 350, the initial edge lengths l, or respectively the initial separations R0, are 212η ( ,
only for pairs), 242η ( , only for pairs), and 273η ( , ). For Rλ = 270, the initial edge lengths
and separations are 135η ( , ), 154η ( , ), and 173η ( , )

in time could be used since the parameters needed for the t3-term could not be fully
resolved by the available data. Strain parameters fromdifferent initial separations and
Reynolds numbers differ little and yield the same theoretical predictions. A complete
list of the obtained strain quantities is given in Appendix B.2.

It can be seen that, despite the large variation of the presented datasets concern-
ing Reynolds number and initial edge length, all datasets collapse very well. The
theoretical prediction agrees with the experimental results for 0.08t0 � |t | � 0.2t0.
Discrepancies are observed for very short and very large times. The latter can be
attributed to the negligence of the t3-term as well as the unknown and possibly large
uncertainty of the first time derivative of the strain tensor, S1. The discrepancy at
very short times is due to a deviation of the experimental initial conditions from the
regular shape assumed in the theoretical prediction in (5.18). For an initially regular
tetrahedron, all three eigenvalues should have a value of l2

2 at t = 0, as shown by
the theory curve in Fig. 5.3. This is not the case for the shown experimental data,
however, because the tetrahedra found experimentally are not perfectly regular. As
stated earlier, in order to obtain sufficient statistical convergence, the lengths of the
edges of a tetrahedron only need to fall into the range [0.9l, 1.1l] for the tetrahedron
to be counted as regular. Therefore, the three shape eigenvalues can deviate by a
fair amount from the prescribed value. However, the initial eigenvectors of the shape
tensor are randomly distributed and have no reason to be correlated with the eigen-
vectors of the perceived rate of strain tensor. Therefore, the tetrahedra deformation at
t = 0 only influences the evolution of the gi (t) for a very short time after which the
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Fig. 5.3 Experimental results for the eigenvalues of the shape tensor, G(t), obtained from initially
nearly regular tetrahedra with edge length l. The eigenvalues are non-dimensionalized with l2, and
the variation range of the edge length, �l/ l, is as large as 10%. For Rλ = 690, the initial edge
lengths are l = 364 η ( ), 424η ( ), and 485η ( ). For Rλ = 350, l = 273 η ( ) and for Rλ = 270,
l = 135 η ( ), 154η ( ), and 173 η ( ) are shown. A theoretical prediction up to order t2 as
obtained from (5.18) is shown for comparison ( ). For this prediction, measured strain quantities
from the small measurement volume dataset at Rλ = 350 and l = 182 η were used. More details
can be found in the text

theoretical behavior described in (5.18) is recovered. This was carefully confirmed
by using DNS data at Rλ = 4301 and Rλ = 300.2 Figure5.4 shows the evolu-
tion of initially (nearly) regular tetrahedra, with the acceptance range for the initial
edge lengths varied from 0% (perfectly regular) to 10% (experimental conditions).
For comparison, an experimental dataset and the theoretical prediction are shown in
the same plot. One finds that the experimental data agrees very well with the DNS
dataset with �l/ l = 10%, while the DNS dataset with �l/ l = 0% corresponds to
the expected theoretical behavior for perfectly regular tetrahedra. It can be seen that
after t/t0 ≈ 0.08, all experimental and DNS curves with different �l/ l agree with
each other.

It is educational to also look at the full p.d.f. of the eigenvalues gi (t) instead of
only their mean value. Figure5.5 shows the initial distribution of the three eigenval-
ues. Due to

∑
gi (t) = R2(t), only two of the three eigenvalues are independent.

1This dataset was obtained by using a numerical simulation of a turbulent flow field from the Johns
Hopkins University database (Li et al. 2008; Yu et al. 2012), and seeding it with regular tetrahedra.
Then, the evolution of the particle positions forwards and backwards in time was computed and the
desired statistics were obtained. This was done by Alain Pumir from École Normale Supérieure de
Lyon.
2This is the same DNS dataset as used in Sect. 4.3.

http://dx.doi.org/10.1007/978-3-319-19192-8_4
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Fig. 5.4 Effect of the variations of the edge length,�l/ l, on the evolution of the eigenvalues of the
shape tensor G(t). Lines show numerical results for the eigenvalues of the shape tensor obtained
from initially (nearly) regular tetrahedra with edge length l. The variations of the edge length,�l/ l,
are varied from 0 to 10%. For �l/ l = 0%, the Reynolds number is Rλ = 430 and the initial
edge length is l = 167 η. For the other curves, Rλ = 300 and l = 123 η. An experimental dataset
at Rλ = 690 with l = 364 η ( ) and the theoretical prediction up to order t2 ( ) are shown for
comparison

For the normalized shape eigenvalues, gi (t)
R2(t)

, one therefore finds that all possible

combinations have to be on the plane g1(t)
R2(t)

+ g2(t)
R2(t)

+ g3(t)
R2(t)

= 1, where 0 ≤ gi (t)
R2(t)

≤ 1.
Due to the sorting of the eigenvalues, g1(t) ≥ g2(t) ≥ g3(t), the plane of possible
combinations is further reduced to a triangular surface, depicted in blue in Fig. 5.5.
While a regular tetrahedron has g1(t)

R2(t)
= g2(t)

R2(t)
= g3(t)

R2(t)
= 1

3 (the upper corner of the
triangle), one can see that the distribution of the initial shape of the tetrahedra peaks
a little away from this symmetry point.

In order to see the time evolution of the shape p.d.f. more clearly, it is useful
to only display the plane onto which the shape configurations are confined. This is
done in Fig. 5.6, where the new variables, g1(t)−g3(t)

R(0)2
and 0.5(g1(t)+g3(t))−g2(t)

R(0)2
, are

two orthogonal vectors spanning the plane. It can be seen that both forwards and
backwards in time, the shape of the tetrahedra become nearly coplanar with the
distinction that for t < 0 the values of (g1 − g3)/R2 are larger. This means that for
negative times, the coplanar shape is slightly more needle-like than for t > 0. Similar
findings were also reported by other studies (Pumir et al. 2000; Biferale et al. 2005;
Xu et al. 2008; Hackl et al. 2011), but with a different choice of projection plane.

This observed time asymmetry can also be seen from the mean eigenvalues of the
shape tensor, as shown in Figs. 5.3 and 5.4. As discussed earlier, the major influence
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Fig. 5.5 Probability distribution of the measured shape eigenvalues gi (t) at t = 0, normalized
by the radius of gyration. The computed histogram covers the whole shown volume with a bin
size of (0.005)3. Only points with non-vanishing probabilities are depicted. The shown dataset was
recorded at Rλ = 690 and with l = 364 η. The variation of the edge length, �l/ l, is 10%

on the short time evolution of the eigenvalues gi (t) stems from the eigenvalues of
the perceived rate of strain tensor at t = 0, si (0). More explicitly, at first order in
t , one has 〈gi (t)〉 = l2

2

(
1 + 2〈si 〉t + O(t2)

)
. It is furthermore crucial to note that

〈s2〉 > 0. Due to the sorting of the shape eigenvalues by size, it is clear that 〈g1(t)〉
grows with 〈s1〉 for t > 0, while it grows with 〈−s3〉 for t < 0. The total asymmetry
amounts to the difference between the two, with

〈g1(t) − g1(−t)〉
l2(t/t0)

= 〈s1 + s3〉t0 + O(t) = −〈s2〉t0 + O(t), (5.19)

where I used that 〈s1+s2+s3〉 = 0. Note that the eigenvalues of the strain tensor have
been non-dimensionalized with t0 in order to make them independent of Reynolds
number and initial edge length. An analogous expression can be found for the third
eigenvalue, 〈g3(t)〉. It is important to note that the asymmetry found in (5.19) is a
direct consequence of the non-zero intermediate eigenvalue of the perceived rate of
strain tensor. It does not occur in artificial flows with Gaussian or otherwise time-
symmetric flow profiles, but reflects an intrinsic property of turbulent flows.

An even larger time asymmetry can be found for the intermediate eigenvalue of
the shape tensor, for which
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Fig. 5.6 Evolution of the probability distribution of the measured shape eigenvalues gi (t) at t = 0,
projected onto the triangular plane to which the shape configurations are confined. The special cases
of regular (g1 = g2 = g3), pancake-shaped (g3 = 0) and needle-shaped (g2 = g3 = 0) tetrahedra
can be found at the corners of the triangle. Evolution forwards and backwards in time is shown
in the top and bottom row, respectively. The computed histogram has a bin size of (0.005)2. Only
points with non-vanishing probabilities are depicted. The shown dataset was recorded at Rλ = 690
and with l = 364 η. The variation of the edge length, �l/ l, is 10%

〈g2(t) − g2(−t)〉
l2(t/t0)

= 〈s2 + s2〉t0 + O(t) = 2〈s2〉t0 + O(t). (5.20)

Figure5.7 shows relation (5.20) as a function of time for all analyzed experimental
and numerical datasets. The solid horizontal line represents the value 2〈s2〉t0 = 0.42
as obtained from Fig. 5.1. It can be seen that while for very short times, t < 0.05t0,
all curves with a non vanishing variation of the edge length, �l

l �= 0, show a steeply
rising slope, a plateau is observed for intermediate times with a value close to the
prediction. Thewide extension of the plateaumight be explained by the argument that
by taking the difference 〈g2(t)− g2(−t)〉, all higher order terms with an even power
in t , especially the t2-term, cancel out.3 Therefore, the dominating, non-vanishing
t-term is followed by a much weaker t3-term. Similar to the two-particle case, it
can be shown that all odd terms have an intrinsic timescale of t0, so that the t3-term
only becomes important at t ≈ t + 0. The fact that all experimental curves stay
slightly below the predicted plateau height might be attributed to the finite volume

3In contrast to the two-particle case in Chap.4, the observation length of the tetrahedra trajectories
forwards and backwards in time were not symmetrized. Therefore, the bias effect due to the finite
measurement volume is not fully time-symmetric and cannot be expected to cancel out exactly when
taking the difference 〈g2(t) − g2(−t)〉. Since the focus is on the non-vanishing first-order term,
however, the finite volume bias is assumed to have no qualitative effect on the presented tetrahedra
data.

http://dx.doi.org/10.1007/978-3-319-19192-8_4
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Fig. 5.7 Asymmetry of the intermediate shape eigenvalue, compensated by t/t0. For experimental
data at Rλ = 690, the initial edge lengths are l = 364 η ( ), 424η ( ), and 485η ( ), for Rλ = 350,
l = 273 η ( ) and for Rλ = 270, l = 135 η ( ), 154η ( ), and 173 η ( ). Solid lines represent
DNS data at Rλ = 300 with l = 123 η. The variations of the edge length, �l/ l, are 10% ( ), 5%
( ) and 2.5% ( ). The dashed line represents DNS data at Rλ = 430 with an initial edge length
of exactly l = 167 η (�l/ l = 0%, ). The horizontal gray line depicts the value of 2〈s2〉t0 = 0.42
from Fig. 5.1

effect. Since the trajectories are not symmetrized around t = 0 and fast separating
tetrahedra are tracked for shorter periods than slowly separating tetrahedra, some
of the asymmetry is lost at later times. In Fig. 4.4, I showed that the impact of the
bias becomes of the order of 10% at t/t0 ≈ 0.1. Therefore, also taking into account
the measurement uncertainty of ε, a plateau at values 10–20% below the theoretical
prediction is reasonable. In total, Fig. 5.7 confirms the theoretical prediction that the
asymmetry of the evolution of the intermediate eigenvalue of the shape tensor to
leading order is given by 2〈s2〉, even for tetrahedra which are only approximately
regular at t = 0.

So far, I studied the time asymmetry in pair dispersion and in the shape evolution
of tetrahedra. I found that in both cases, the observed asymmetry is directly linked to
intrinsic properties of turbulent flows. For pair dispersion, the symmetry-breaking t3

termwas found to be directly proportional to the energy transfer rate of the turbulence
energy cascade. For tetrahedra, I found that symmetry breaking already occurs at
leading order in t due to a non-vanishing intermediate eigenvalue, s2, of the perceived
rate of strain tensor. As discussed by Betchov (1956) for the true strain tensor in the
dissipative range, the non-zero value of s2 arises directly from a positive, non-zero
viscous term. It seems plausible that this relation carries over to some extent into
the inertial range, therefore linking the asymmetry in tetrahedra deformation to the
energy cascade. As a next step, it thus seems prudent to change the energy cascade

http://dx.doi.org/10.1007/978-3-319-19192-8_4
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and analyze how this affects the observed time asymmetry. This change of the energy
cascade will be realized by adding minute amounts of polymers to the flow, as will
be discussed in detail in the next chapter.
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Chapter 6
The Effect of Polymers

It is known formore than sixty years (Toms 1948) that the addition ofminute amounts
of polymers to a turbulent flow, even as lowas someparts permillion, strongly reduces
the drag as shown in Fig. 6.1. Partly owing to the great usefulness of this finding,
especially for the reduction in power consumption when pumping fluids through
pipes, a lot of research has been focused in this direction (a comprehensive overview
can e.g. be found in Lumley (1969), Hoyt (1972), Virk (1975), White and Mungal
(2008), and Procaccia et al. (2008)). The underlying fundamental processes of this
effect are, however, still unclear.

Long-chain polymers usually possess a high degree of flexibility and, in their
basic state, coil up to an approximately spherical shape. In a turbulent flow, the
polymers become stretched and some of the kinetic energy of the fluid is stored in
the elastic degrees of freedom of the polymer. Since the stretched polymers are still
much smaller than the Kolmogorov length scale and only minute amounts are added,
it is a great puzzle how they can so profoundly alter the properties of the flow.

In this chapter, I study the effect of polymers on a turbulent flow as observed from
the dispersion of clusters of two and four particles. In Sect. 6.1, I briefly describe
how the polymer solution was produced and filled into the tank. In Sect. 6.2, I present
some important theories on polymer-flow interactions and show experimental results
for the explicit flow considered in this thesis. In Sects. 6.3 and 6.4, I finally show
how polymer-flow interactions can be analyzed with the methods introduced in the
previous two chapters.

6.1 Preparation of the Experiment

In order to study the effect of polymers on the flow, the cylindrical tank of the
experimental setup is first filled with deionized water and then a high-concentration
polymer solution is added so that the resulting mixture had the desired polymer con-
centration. For the concentrated polymer solution, small amounts of polyacrylamide
with a molecular weight of 18 ·106u (Polysciences 18522) are mixed into a specified
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Fig. 6.1 This picture shows two water jets from identical fire hoses. Both hoses were aligned at the
same angle and, for pure water, produced jets of equal reach. Then, a diluted solution with 30ppm of
high molecular weight poly(ethylene oxide) was used for the left hose. As a result, the jet exited at
a higher speed, was more coherent, and had a significantly enhanced reach. (Reprinted from Bailey
and Koleske 1976, Chap. 4, p. 81.)

amount of deionized water (1–2 l) with a stirrer. For the first minute, the rotation
rate of the stirrer is set to 450 rpm, then it is decreased to 300 rpm and the solution is
stirred for another approximately 30min. This way, a good dispersion of the poly-
mers is achieved without exerting too much force on the polymer chains for them
to break. This is important since the length of the polymers is a determining factor
for the influence of the polymers on the flow properties. Then, the polymer solution
is filled into bottles and rotated slowly over night (Fig. 6.2a). Due to the long and
slow mixing, the polymers disperse very well in the solution, building only very few

Fig. 6.2 a Picture of the self-built rotation device, used for gently mixing highly concentrated
polymer solution. b Picture of the small bucket mounted on top of the tank. The bucket can be used
for introducing substances into the tank via small tubes connected to the top and bottom plate of
the tank. If the water level in the bucket drops below a certain level, marked “dead volume”, air
bubbles may enter the tank
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clumps of entangled polymers. It is expected that these clumps dissolve at the latest
when the concentrated polymer solution is mixed into the 120 l of the tank content
and the clumps are exposed to the turbulent flow.

The polymer solution is filled into the tank through the small bucket on the top-
plate (Fig. 6.2b). The little pump connected to the bucket is not used to pump the
polymer solution into the tank since the polymer chains could be damaged. Instead,
some of the deionized water in the tank is drained through a valve in the bottom plate
so that the polymer solution in the bucket is sucked in. When filling the polymer
solution into the bucket, some rest amount of deionized water, Vb = 400 ± 10ml,
needs to remain in the bucket to avoid that air is sucked into the tank. It is assumed,
that when filling in the polymer solution, the rest amount of water is always drained
first. Since this is not certain, the remaining water in the bucket poses a large source
of uncertainty in the determination of the polymer concentration in the tank. In order
to reduce this error, the amount of the remaining water in the bucket is reduced to
Vb = 200 ± 10ml by inserting a large, heavy weight into the bucket, thus displacing
some of the water.1 Furthermore, after draining the first full bucket of solution into
the tank, the bucket is filled with the remaining solution which is stirred carefully
into the remainder of the first filling. This way, the worst possible case, namely that
no residual water is drained, is replaced by the case that only a small part of the
water, corresponding to a well mixed solution, is not drained.

The amount of polyacrylamide in the tank, min, is finally given by

min = mpol

(
1 − Vw

V

)
, (6.1)

withmpol the amount of polymers in the concentrated polymer solution,V the amount
of water used for the concentrated polymer solution and Vw the amount of the remain-
ing water in the bucket that is also drained into the tank. In the expected case that
all the residual water is drained, one has Vw = Vb. The value of Vw can however
vary between Vw = Vb + 10ml, taking into account the measurement uncertainty of
Vb, and Vw = VbV

V +Vb
, corresponding to the worst case in which the solution is well

mixed, and a small fraction of the water is not drained.2 The error bounds on Vw are

thus given by �Vw = + 10ml
− V 2

b /(V +Vb)
. With an accuracy for the weight measurement

of �mpol = 0.005g and for the volume of the mixing water of �V = 50ml, the
measurement error on the amount of polymers inserted into the tank is given by

�min =
∣∣∣∣ V − Vw

V
�mpol

∣∣∣∣ +
∣∣∣∣mpol

Vw �V

V 2

∣∣∣∣ +
∣∣∣∣mpol

�Vw

V

∣∣∣∣ . (6.2)

1This was only done after some time. For the first two datasets, it was Vb = 400ml.
2Here, the small uncertainty of Vb is neglected.
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The error on the concentration is then simply given by

�c/c = |�min/(Vtank ρw)| +
∣∣∣min/(V 2

tank ρw)�Vtank

∣∣∣ , (6.3)

with Vtank = 120 ± 2 l the full volume of the tank and ρw the density of water
(assumed to be exact). The resulting concentration errors for the individual datasets
are given in Table3.2.

Aside from the addedpolymers, themeasurement procedure is exactly as described
in Chap.3.

6.2 Effect of Polymers on the Energy Cascade

Flexible polymer chains in a turbulent flow are stretched by straining regions of the
flow (DeGennes 1986; Smith et al. 1999; Tabor andDeGennes 1986), thus removing
some of the energy from the flow field and storing it in the elastic degrees of freedom
of the polymers (see Fig. 6.3). This energy is then released at the size scale of the
polymers, which is much smaller than the Kolmogorov scale η. With this known,
the question arises of how objects of such a small size can have such a profound
influence on the flow properties as observed in experimental studies. This is even
more puzzling taking into consideration the very small amounts of polymers needed
to obtain an effect (only a few parts per million).

The first to propose a well accepted explanation to this riddle was Lumley (1969)
who reasoned that one has to look at the time scales involved, not at the length
scales. He argued that the polymers can be stretched by all eddies with time scales
τr faster than the relaxation time τp of the polymer, where τp is the time that a
stretched polymer chain needs to relax back into its energetically preferable coil
configuration (Zimm 1956). For a linear polymer chain with N monomers of length

a, the relaxation time can be given by τp ≈ μ
kT (N

3
5 a)3, with k = 1.38 · 10−23J/K

(a) (b)

Fig. 6.3 Sketch of the transition from a coiled a to a stretched state b of a single polymer molecule
due to a straining flow pattern

http://dx.doi.org/10.1007/978-3-319-19192-8_3
http://dx.doi.org/10.1007/978-3-319-19192-8_3
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being the Boltzmann constant, and μ and T the dynamic viscosity and temperature
of the solution. From Lumley’s time-criterion, one then obtains a maximum eddy

size r∗ ∝ (ετ 3p)
1
2 below which polymer-flow interactions could occur. This length

scale is much larger than the Kolmogorov scale, thus providing some explanation
for the large effect of polymers on the flow. Lumley, however, did not incorporate
the effect of different polymer concentrations.

About a decade later, de Gennes and Tabor constructed a more complete model
(De Gennes 1986; Tabor and De Gennes 1986). They suggested that for r < r∗,
which are those scales involved in polymer stretching according to Lumley, the

polymer elastic energy per volume is given by Ee(r) ∝ cpkT (r∗/r)
5n
2 with cp being

the number of polymer chains per unit volume and n being an unknown constant.3

They then argued that below a scale r∗∗, at which the polymer elastic energy equals
the turbulence kinetic energy,

Ee(r
∗∗) = Ek(r

∗∗) = ρu2(r∗∗), (6.4)

the turbulence energy cascade will be truncated since most of the energy is absorbed
by the polymers. This scale is obtained from Eq.6.4 to be

r∗∗ ∝
(

kT cp

ρ
ε(5n/4−2/3)τ

15n/4
p

)1/(2/3+5n/2)

. (6.5)

Note that the resulting scale r∗∗ is naturally always smaller than the Lumley scale r∗.
According to this theory, the turbulent energy cascade is thus assumed to be

unchanged at scales larger than r∗∗. This, however, contradicts the initial assumption
of the theory that polymers gain elastic energy from all eddies with sizes r < r∗,
ergo including eddies in the range r∗∗ < r < r∗, and thereby already remove some
kinetic energy from the flow at scales larger than r∗∗. Xi et al. (2013) concluded
from this that it is not the energy balance itself one should look at but the balance of
energy flux. Assuming that the characteristic polymer time scale to dissipate energy
is τp, they defined the elastic energy flux as

εp(r) ∝ Ee(r)

ρτp
∝ kT cp

ρτp

(
r∗

r

)5n/2

. (6.6)

One can then derive a new length scale rε at which the turbulent energy flux, ε, equals
the energy flux due to the polymers, εp(r). This scale is given by

rε = A

(
kT

ρ

)2/(5n)

c2/(5n)
p ε1/2−2/(5n)τ

3/2−2/(5n)
p , (6.7)

3The expression for the polymer elastic energy is derived based on polymers in elongational laminar
flow fields under the assumption that the stretching behavior of the polymers is similar in a turbulent
flow (De Gennes 1986).



78 6 The Effect of Polymers

Fig. 6.4 Measured values for− 1
2 〈δu ·δa〉 as a function of scale for three different polymer concen-

trations. All three data sets are recorded with the same propeller frequency of 0.9Hz, corresponding
to the pure water dataset with Rλ = 350 and η = 0.058mm. Solid horizontal lines represent the fit
to obtain ε

where A is an unknown proportionality constant that depends on the polymer type.
They showed that experimentally measured second order structure functions at dif-
ferent polymer concentrations and Reynolds numbers can be made collapse on one
curve when the spatial scale is normalized with rε, indicating that this is indeed the
right length scale for the problem. Furthermore, for the constants n and A, they obtain
n = 1.0 ± 0.2 and A = 101 ± 17 (for polyacrylamide) (Xi et al. 2013).

In this thesis, I do not use the second order structure function but 〈δu · δa〉 = −2ε
as a measure for the energy flux. Nevertheless, the above arguments should still
hold. Figure6.4 shows the curves for − 1

2 〈δu · δa〉 as functions of r for datasets with
different polymer concentrations. All shown datasets were recorded at a propeller
frequency of 0.9 Hz, corresponding to a Reynolds number of Rλ = 350 for the water
case. One observes that− 1

2 〈δu ·δa〉 decreases at all resolvable scales with increasing
polymer concentration. In principle, the difference between the curves with andwith-
out polymers is a measure for the elastic energy flux εp(r). However, the polymers
can also interfere with the energy injection into the flow due to boundary effects,
and they have been shown to reduce large-scale velocity fluctuations (Ouellette et al.
2009; Xi et al. 2013). Since these boundary and large-scale effects are not the focus
of this study, the reduction of the overall turbulence energy flux is taken into account
by defining a different value of ε for each curve, using a horizontal fit to the plateau
in the inertial range.4

4The resulting values for all polymer datasets are given in Table. 3.2.

http://dx.doi.org/10.1007/978-3-319-19192-8_3
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(a) (b)

Fig. 6.5 a Measured values for − 1
2 〈δu · δa〉 rescaled with the respective value of ε as a function

of scale for three different polymer concentrations. Datasets recorded with a propeller frequency
of 1.1Hz, corresponding to Rλ = 390, are shown as circles ( , , ). Datasets with a propeller
frequency of 0.9Hz, corresponding to Rλ = 350, are shown as stars ( , , ). b Here, the
spatial scale is compensated by rε and only datasets with added polymers are shown

Figure6.5a shows the same datasets rescaled by the heights of the plateaus. Fur-
thermore, datasets at Rλ = 390 were processed in the same way and are also shown
here. The datasets at Rλ = 270 will be omitted in this chapter because 〈δu · δa〉
shows no sufficient plateau anymore if polymers are added (see appendix A.1 for the
respective figures and a discussion). Now, the difference between the water-dataset
and the different polymer-datasets indeed provides ameasure for εp(r). A shift of the
onset of the plateau to higher scales with increasing polymer concentration is clearly
visible here. In comparison, the effect due to the small difference in the Reynolds
numbers is negligible. The general decrease of the plateau height and its shift to
higher scales have also been seen for similar studies on the second order structure
function (Ouellette et al. 2009; Xi et al. 2013). Further studies also observed a sup-
pression of the small scales when adding polymers (Berti et al. 2006; Bonn et al.
1993; Crawford et al. 2008; Liberzon et al. 2006, 2005; Tong et al. 1992).

As a next step, I rescale r with rε as suggested by Xi et al. (2013). For the
polyacrylamide used in this study, the radius of gyration of a polymer chain is given

by Rg = N
3
5 a = 0.5µm. At T = 293K and with a dynamic viscosity of water of

μ(20◦ C) = 1.0 · 10−3 Pa s, this leads to a polymer relaxation time of τp = 43ms.
Using the respective ε from the plateau fits and the measured values of A = 101 and
n = 1.0 from Xi et al. (2013), one finds

Rλ = 350 : rε(5 ppm) = 7.6mm =̂ 115 η, rε(10 ppm) = 10.0mm =̂ 152 η,

Rλ = 390 : rε(5 ppm) = 8.2mm =̂141 η, rε(10 ppm) = 10.7mm =̂184 η,
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where the values for η where obtained from the water datasets with the respective
Reynolds number. The results are shown in Fig. 6.5b. Please note that for the case
without polymers, no rε is defined so that these datasets are not shown. One finds a
very good collapse for the different polymer concentrations, with the plateau being
reached at r ≈ 1.2rε for all datasets. These results support the theory by Xi et al.
(2013) and confirm the values for A and n.

It should be stated that the theory used here is based on the assumption that for all
scales below the Lumley scale r∗, which is by constructionmuch larger than the scale
rε, some of the kinetic energy flux of the flow is diverted into the scale-dependent
elastic energy flux of the polymers, εp(r). Only above the Lumley scale, which in
our case is assumed to lie at scales beyond the analyzed range, 〈δu · δa〉 should
yield the unchanged, constant energy transfer rate ε. As a consequence, the plateaus
shown in Fig. 6.5 should not be perfectly flat but are indeed believed to exhibit a
small increase with growing scales, meaning that a small r/rε dependence of the
datasets can remain, especially for scales at the lower boundary of the plateau. A
second consequence is a possibly slightly too low value for ε since the fit to 〈δu · δa〉
is done in a region where 〈δu · δa〉 did not yet reach its true plateau value. This
difference is assumed to be negligible small in comparison to the overall uncertainty
on ε of 10%, however.

So far, I found that adding small amounts of polymers has a noticeable effect on
the energy transfer of the studied flow. This effect can be explained by a “redirection”
of some of the kinetic energy flux of the flow to small scales by elastic stretching
and relaxation of the polymers. In the next two sections, I want to analyze how this
effect influences the dispersion of clusters of two and four particles.

6.3 Two-Particle Dispersion

As discussed in detail inChap. 4, the time asymmetry in pair dispersion can be studied
by looking at the antisymmetric function

Fa
t (t) = 〈δR(t)2 − δR(−t)2〉t

2R2
0

= 〈V(0) · A(0)〉0
R2
0

f2(t)t
3 + O

(
t5

)

= −2 f2(t)

(
t

t0

)3

+ O
(

t5
)

, (6.8)

with t0 =
(

R2
0

ε

) 1
3

. Figure6.6 shows the experimental results, where lines indicate

the pure water case, and symbols indicate polymer concentrations of 5ppm (a) and
10ppm (b).Asmotivated in the previous section, different values for ε for the polymer
datasets were used. All curves are again compensated with 〈V(0)·A(0)〉0

R2
0

t3, leading to

a fixed plateau height of exactly one.

http://dx.doi.org/10.1007/978-3-319-19192-8_4
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(a) (b)

Fig. 6.6 Time-asymmetry in pair dispersion as seen from the compensated antisymmetric function
Fa

t (t) for two different polymer concentrations (symbols), 5ppm (a) and 10ppm (b), in comparison
to the water case (lines). Datasets at three different propeller frequencies (0.5Hz ↔ Rλ = 270,
0.9Hz ↔ Rλ = 350, 1.1Hz ↔ Rλ = 390) are shown. For the datasets with added polymers,
different initial separations of 14mm, 16mm, and 18mm are shown. In terms of the scale rε defined
in the previous section, the initial edge lengths for a concentration of 5ppm and Rλ = 390 are
R0 = 1.7rε ( ), 2.0 rε ( ), and 2.2 rε ( ) and for Rλ = 350 they are R0 = 1.8 rε ( ), 2.1 rε

( ), and 2.4 rε ( ). For a concentration of 10ppm, the initial edge lengths for Rλ = 390 are
R0 = 1.3 rε ( ), 1.5 rε ( ), and 1.7 rε ( ) and for Rλ = 350 they are R0 = 1.4 rε ( ), 1.6 rε

( ), and 1.8 rε ( ). For the water case, the same datasets as in Fig. 4.6 on p. 55 are shown, but
they are all colored blue for better contrast to the polymer datasets ( , , )

It can be seen that all curves for a certain polymer concentration nearly collapse
on top of each other, with a possibly weak dependence on r/rε, while there is a clear
difference between the caseswith andwithout polymers. Forwater,most curves show
a plateau up to t ≈ 0.05t0, whereas the datasets with added polymers deviate already
at t ≈ 0.005t0, a factor of 10 earlier. For the two different polymer concentrations,
on the other hand, no significant difference can be observed.

These observations can have several reasons.One argument could be that the effect
is caused artificially by using different ε-values for the water and polymer datasets,
leading to different values of t0 and thus of the deviation time. This argument can
easily be refuted by noting that the difference between ε0ppm and ε10ppm for the

same propeller frequency is at most a factor of two. Since t0 ∝ ε− 1
3 , this leads to

t0,10ppm ≈ 1.3 t0,0ppm, which is much too small to explain the observed effect.5

Assuming that ε is chosen sufficiently precisely, the only other possibility is that
the higher order terms, notably the t5-term, are changed by the polymer-flow inter-
action. This change can be in terms of a modified prefactor or in the form of a new
timescale. So far, I based my explanations of the convergence radius of the used
Taylor-Expansion fully on the assumption that, in a turbulent flow, two-point func-
tions do only involve the time-scale t0 (Frishman 2013). With the addition of poly-
mers, this assumption might not be valid anymore and the convergence of the Taylor

5The same reasoning of course also dismisses the measurement error on ε as an explanation.

http://dx.doi.org/10.1007/978-3-319-19192-8_4
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expansion, especially of the odd terms, could be severely reduced. If the addition of
polymers indeed introduces a new timescale, Fig. 6.6 indicates that this timescale,
compensated by t0, weakly depends on r/rε. The lacking difference between the two
polymer concentrations also suggests that there is a critical concentration smaller than
5ppm beyond which any further addition of polymers does not lead to a change as
long as the scales under consideration are chosen in the plateau range of 〈δu ·δa〉 and
the corrected value for ε is used. This roughly agrees with the findings of Ouellette
et al. (2009) who see a critical concentration around 5ppm, using the same polymer
type. Within the uncertainties of the concentration measurements, it is reasonable
to assume that the datasets presented here are both above the critical concentration
observed by Ouellette et al. (2009).

Looking at the much richer statistics of four-particle clusters can help to gain
further inside in this complex problem.

6.4 Four-Particle Dispersion

Since it was shown in Sect. 5.3 that the size evolution of initially regular tetrahedra
does not offer any additional information in comparison to pair dispersion, I will
directly proceed with the analysis of the eigenvalues of the shape tensor. Figure6.7
shows the evolution of eigenvalues 〈gi (t)〉, compensated with the initial edge length
squared, as a function of t/t0 for polymer concentrations of 5ppm (a) and 10ppm (b).
For the computation of t0, the value for ε as obtained from the fit to 〈δu ·δa〉was used
again. In Fig. 6.7, a small difference between the cases with and without polymers
can be observed. While the curves for 〈g1(t)〉 and 〈g3(t)〉 agree within the scatter
of the curves, the intermediate eigenvalue suggests that the datasets with polymers
(symbols) show a slightly enhanced slope at t = 0 compared to the datasets without
polymers (blue lines), indicating a higher value of 〈s2〉.

In order to verify this finding, Fig. 6.8 shows the strain eigenvalues for datasets
with added polymers (symbols) and the average strain eigenvalues for datasets with-
out polymers as obtained from Fig. 5.1 (blue lines). For the polymer datasets, a slight
dependence on rε is visible, especially for 10ppm. As discussed earlier, such a small
r/rε dependence is expected for initial edge lengths at the beginning of the plateau
of 〈δu ·δa〉 since εp(r) at these scales is non-zero and leads to a deviation of 〈δu ·δa〉
from its final value. As a result, a scale dependent t0(r) arises which becomes smaller
for increasing length scales. Since the same value for t0 is used for different l, how-
ever, the absolute values of all eigenvalues 〈si 〉t0 seem to growwith increasing scales.
Due to this, no horizontal fit for an average value was performed. In the analyzed
range of scales, Fig. 6.8 confirms that the addition of polymers leads to a higher inter-
mediate eigenvalue 〈s2〉, and shows that the absolute values of 〈s1〉 and 〈s3〉 become
smaller. It can be observed that the eigenvalues 〈s1〉 and 〈s3〉 approach the values of
the water case for increasing length scales. This might be a reason why this effect
was not observable in Fig. 6.7. Since the value of 〈s1〉 rises slower than 〈s3〉 drops,
the intermediate eigenvalue 〈s2〉 also needs to increase slightly, thus getting further

http://dx.doi.org/10.1007/978-3-319-19192-8_5
http://dx.doi.org/10.1007/978-3-319-19192-8_5
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(a)

(b)

Fig. 6.7 Eigenvalues of the shape tensor, G(t), obtained from initially nearly regular tetrahedra
with edge length l. The eigenvalues are non-dimensionalized with l, where the variation range of
the edge length, �l/ l, is 10%. Datasets with a polymer concentration of 5ppm (a) and 10ppm
(b) are shown in comparison to the pure water case. For the polymer datasets, different initial edge
lengths of 14mm, 16mm, and 18mm are shown. In terms of the scale rε defined in the previous
section, the initial edge lengths for a concentration of 5ppm and Rλ = 390 are l = 2.0 rε ( )
and 2.2 rε ( ) and for Rλ = 350 they are l = 1.8 rε ( ), 2.1 rε ( ), and 2.4 rε ( ). For a
concentration of 10ppm, the initial edge lengths for Rλ = 390 are l = 1.3 rε ( ), 1.5 rε ( ), and
1.7 rε ( ) and for Rλ = 350 they are l = 1.4 rε ( ), 1.6 rε ( ), and 1.8 rε ( ). All water
datasets are shown in blue for a better contrast ( , , ). See Fig. 5.3 for a color coded
version and a listing of the used initial edge lengths

http://dx.doi.org/10.1007/978-3-319-19192-8_5
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(a) (b)

Fig. 6.8 Eigenvalues of the perceived rate of strain tensor for datasets with added polymers for two
different Reynolds numbers: Rλ = 390 ( , ) and Rλ = 350 ( , ). Datasets with a polymer
concentration of 5 ppm are shown as filled symbols, datasets with 10 ppm as open symbols. Blue
lines indicate the value for the pure water case as obtained from Fig. 5.1. Only initial separations
inside the plateau range of 〈δu · δa〉 for the small measurement volume are shown. For a list of all
values, see Appendix B.2. a Eigenvalues 〈si 〉 b Details of 〈s2〉

away from the value 0.21 obtained for pure water (see Fig. 6.8a). With 〈s1〉 and 〈s3〉
approaching the water case, however, the value of 〈s2〉 is also bound to return to a
value of 0.21 at sufficiently large scales. As a consequence, there needs to be a maxi-
mum value of 〈s2〉 at some intermediate scale. Furthermore, the close-up in Fig. 6.8b
suggests that there might be a dependence of 〈s2〉 on the polymer concentration.
The large difference between the water and polymer datasets can also be seen more
clearly.

The observed increase of the intermediate eigenvalue of the perceived rate of strain
tensor should also result in an enhancement of the time asymmetry of the evolution
of the intermediate shape eigenvalue 〈g2(t)〉, as already indicated in Fig. 6.7. For
a better display of this asymmetry, Fig. 6.9 shows the difference 〈g2(t) − g2(−t)〉
compensated with l2(t/t0). The same datasets as in Fig. 6.7 are shown. As discussed
in Sect. 5.3, the studied quantity should display plateaus with heights of 2〈s2〉. Since a
rε-dependence was observed for the datasets with added polymers, no unique plateau
height but rather a range of plateaus is expected. One finds that for all datasets, a
steep rise at short times, being a remnant of the fact that the studied tetrahedra are
only nearly regular at t = 0, is followed by the expected stable plateau at larger
times. As before, the difference between the pure water case and the polymer cases
is apparent. For the datasets with 5ppm and 10ppm of added polymers, however,
one finds a large scatter of the different curves but no systematic variation with rε or
polymer concentration. This might be explained with the deviations from a regular
shape at t ≈ 0. It was found in the previous section that there is a strong influence
of polymers on the short time evolution of pair dispersion as early as t ≈ 0.01t0.
These early times are very strongly affected by the shape deformations at t = 0,

http://dx.doi.org/10.1007/978-3-319-19192-8_5
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Fig. 6.9 Time asymmetry in the intermediate eigenvalue of the shape tensor for three different
polymer concentrations. The same datasets as in Fig. 6.7 on p. 83 are shown. The gray horizontal
lines represents the expected plateau height for the water case

and possible trends concerning polymer concentration and rε-dependence could be
obscured.

In summary, I find that polymers increase the time-asymmetry in the shape evo-
lution of tetrahedra, specifically in the intermediate eigenvalue of the shape tensor.
As for the pair dispersion, a convincing trend that the effect becomes stronger with
rising polymer concentration could not be seen. This indicates again that a critical
polymer concentration below 5ppm exists, above which no further changes to the
time-asymmetry in particle dispersion can be observed. A slight dependence on r/rε

was observed, however. Further experimental runs with more tetrahedra trajectories
can help to strengthen the results by increasing the overall statistical resolution and,
with a stricter bound on the initial deformation of the tetrahedra, by decreasing the
deviation from the theoretical prediction at small times.
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Chapter 7
Discussion and Perspectives

The time irreversibility of turbulent flows is an indicator for their non-equilibrium
character, and a better understanding of this connection is important to obtain a
complete picture of turbulence. Even though it was already observed a decade ago
that pairs of tracer particles separate faster backwards than forwards in time (Sawford
et al. 2005; Berg et al. 2006; Bragg et al. 2014), a rigorous explanation for this
behavior was not given.

In Chap.4 of this thesis, I showed that the short-time evolution of the relative
separation of a pair of tracer particles with an initial separation in the inertial range
is given by

〈δR(t)2〉 = 〈V(0)2〉t2 + 〈V(0) · A(0)〉t3 + O
(

t4
)

= 11

3
C2(εR0)

2
3 t2 − 2εt3 + O

(
t4

)
,

where the first line is a purely kinematic expression, valid for a large range of flows,
and the second line corresponds to homogeneous, isotropic turbulence. In the latter
case, the time-asymmetric cubic term is found to be directly proportional to the
energy flux through scales, ε. For a 3D turbulent flow, the energy cascade goes from
large to small scales, leading to a positive value of the energy transfer rate ε and thus,
according to the above formula, to a faster separation backwards than forwards in
time. This agrees with the previous findings and was also confirmed in Chap.4 using
both experimental and numerical data.

Future studies on the time-asymmetry in pair-dispersion in 2D turbulent flows
could provide a good way to further test the presented results. For 2D turbulence, it
is known that there exists a range of scales with an inverse energy cascade. In this
range, the energy transfer rate is negative, meaning that energy is transported from
small to large scales (Kraichnan 1967; Tabeling 2002; Boffetta and Ecke 2012).
For ε < 0, the above theoretical relation predicts that the separation of a pair of
tracers grows faster forwards than backwards in time, contrary to the 3D case. An
observation of this effect would further strengthen the results presented in this thesis.

© Springer International Publishing Switzerland 2015
J. Jucha, Time-Symmetry Breaking in Turbulent Multi-Particle Dispersion,
Springer Theses, DOI 10.1007/978-3-319-19192-8_7

87

http://dx.doi.org/10.1007/978-3-319-19192-8_4
http://dx.doi.org/10.1007/978-3-319-19192-8_4


88 7 Discussion and Perspectives

Another important conclusion that can be drawn from the above relation is that
a clear, time-asymmetric behavior in pair dispersion can already be observed at
very short times, long before Richardson scaling is observable. In earlier attempts
to explain the observed time-asymmetry, it was stated that at larger times, the rel-
ative separation of a particle pair should grow according to Richardson scaling,
〈δR(t)2〉 = g f/bεt3, butwith different constants g f and gb for the evolution forwards
and backwards in time (Sawford et al. 2005; Berg et al. 2006; Salazar and Collins
2009). Plotting the difference between the evolution backwards and forwards in time
and dividing by εt3 should thus lead to two plateaus: For the short-time evolution
one expects a plateau with height 4, while for later times a plateau with a height of
(gb − g f ) should be visible. Berg et al. (2006) extracted a value of (gb − g f ) = 0.6
from their experimental data at Rλ = 172 by using a controversial time-shifting
procedure (Ouellette 2006, pp.144–145). Even though the Reynolds numbers used
in this thesis are much larger, all presented experimental and numerical datasets only
showed a clear plateau for the short-time evolution and then quickly dropped below
a value of 0.6 without the indication of a second plateau. It cannot be fully ruled out
however, that a second plateau at a much smaller value of (gb − g f ) might exist.
Further experiments with longer observation times are needed to reliably test for the
existence of a second plateau at later times.

While the symmetry-breaking term in pair dispersion was found to behave like
t3, the time-symmetry in the shape evolution of clusters of four particles is already
broken by a term linear in time. Using the perceived rate of strain tensor as defined
by Chertkov et al. (1999), I showed in Chap.5 that the evolution of the eigenvalues
of the shape tensor can be expressed by

〈gi (t)〉 = l2

2

(
1 + 2〈si 〉t + 〈S1,i i + 2s2i 〉t2 +

〈1
3

S2,i i + 4

3
s3i + 2(S0 · S1)i i

+ 2

3
(R2

0 · S0)i i − 2

3
(R0 · S0 · R0)i i + 4

3
(R0 · S1)i i

〉
t3 + O

(
t4

) )
,

where both the eigenvalues of the shape tensor, 〈gi (t)〉, and the eigenvalues of the
perceived rate of strain tensor, 〈si 〉, are sorted by size. Here, the symmetry-breaking,
linear term is proportional to the eigenvalues of the perceived rate of strain tensor
which, similarly to the true rate of strain tensor, obey 〈s1〉 > 〈s2〉 > 0 > 〈s3〉. If the
intermediate eigenvalue equals zero, as it is e.g. the case for a Gaussian flow field, the
shape evolution is time-symmetric. For the turbulent flow and the range of tetrahedra
sizes studied in this thesis, however, the intermediate eigenvalue was found to have
a value of 〈s2〉t0 = 0.21, with t0 being the timescale corresponding to the size of the
tetrahedron. The predicted asymmetry of 〈gi (t) − gi (−t)〉 = 2l2〈s2〉t was observed
with experimental and numerical data for intermediate times. For very short times,
the fact that the experimentally observed tetrahedra are not perfectly regular, as was
assumed in the theoretical derivation, obscures the effect. Only a drastic increase in
tracked tetrahedra can alleviate this problem by allowing a stricter selection of the
initial shape at t = 0. Further high-precision experiments are therefore desirable.
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Another attractive continuation of this work is the study of single-particle statis-
tics.While simpleLagrangian velocity increments of the type 〈(U(t + τ |y, 0) − U(t |
y, 0))n〉 can be shown to be invariant under time reversal (Falkovich et al. 2012), it
was recently found that the kinetic energy of single tracer particles indeed captures
the irreversibility of the flow (Xu. et al. 2014). Furthermore, the same behavior was
observed for 2D and 3D turbulence. This implies that the time-asymmetry observed
in single-particle statistics might be directly connected to energy dissipation, and
not, as it was shown for multi-particle statistics in this thesis, to the flux of energy
through scales. It will be of great interest to find the relation and differences between
the time irreversibility observed in single- and multi-particle dispersion.

In Chap.6, I lastly studied what effect a change to the energy cascade, induced by
the addition of small amounts of polyacrylamide, might have on the time-asymmetry
in the above processes. Since polymers not only influence the bulk flow but also ham-
per the energy injection into the flow due to drag reduction effects at the propellers,
for each dataset with added polymers, the energy transfer rate was obtained by a fit to
the plateau of 〈δu·δa〉. I then confirmed that the length scale rε , introduced byXi et al.
(2013), at which the turbulence energy flux and the elastic energy flux through the
polymers are equally strong, is able to collapse all datasets with added polymers onto
a single curve. Looking at the dispersion of two particles and rescaling everything
with the measured value of ε, a distinct difference between the water and polymer
datasets could be observed whereas the results for two different polymer concen-
trations, 5 and 10ppm, agreed within the uncertainty of the data. This implies that
there is a critical polymer concentration smaller than 5ppm above which different
polymer concentrations lead to the same effect, as long as everything is normalized
correctly and the chosen initial separations are in the inertial range. Furthermore,
the main difference between the water and polymer cases consisted of an earlier
deviation from the t3 scaling. I argued that this early deviation could be caused by
the introduction of a new time scale which affects the higher order terms.

For the shape deformation of tetrahedra under the influence of added polymers,
I found a significant enhancement of the time-asymmetry for the dilute polymer
solutions. For the two different polymer concentrations, a small difference in the
intermediate eigenvalue of the perceived rate of strain tensor was observed. This
difference was not reflected in the asymmetry shown by 〈gi (t) − gi (−t)〉, however.
Under the assumption that polymers indeed introduce a new time scale, the expected
effect should be visible at small times. As discussed before, the shape evolution
at very short times is again obscured by the small deformations of the tetrahedra
at t = 0. Further measurements with a stricter shape selection at t = 0 can help
to increase the non-obscured range of scales and help to investigate the existence
of a new time scale. Additionally, experiments at different polymer concentrations,
especially below the supposed critical concentration of approximately 5ppm, are
needed to clarify the existence of a critical concentration and its exact value.

In summary, the theoretical and experimental results obtained in this thesis
open new ways to investigate turbulent flows and reveal many new questions to
be answered.
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Appendix A
Supplementary Figures and Derivations

This appendix contains supplemental plots as well as detailed versions of arguments
and derivations that are indispensable parts of this thesis but were moved to the
appendix for better readability of the main text.

A.1 Measuring ε for Rλ = 270

FigureA.1 shows 〈δu · δa〉 for three different polymer concentrations at Rλ = 270
(a) and for comparison also at Rλ = 350 (b). Horizontal lines show the fits to obtain
the energy transfer rate.While nice plateaus can be seen for all three datasets with the
higher Reynolds number in figure (b), the datasets with the lower Reynolds number
show only very short plateaus. For the pure water case, the plateau is very noisy and,
since theKolmogorov length scaleη is very large for this dataset (η = 104µm), the fit
extends into the rangewhere the influence due to thefinite volumeof themeasurement
volume interferes with it (approximately r � 10mm). However, one can argue that
the obtained value of ε should remain valid with only a slightly increased uncertainty.
Adding polymers however, the plateau is shifted towards larger scales (as explained
in Sect. 6.2) making the influence of the finite measurement volume more dominant.
It is not certain that the true plateau height is ever reached before the diminishing
effect of the finite observation volume takes over. The datasets at Rλ = 270 with
added polymers will thus only be used in cases where the measured value of ε does
not have a significant impact.
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(a) (b)

Rλ = 270 Rλ = 350

Fig. A.1 Fits to obtain the energy transfer rate ε from 〈δu · δa〉 = −2ε for two different Reynolds
numbers: Rλ = 270 ↔ 0.5Hz (a) and Rλ = 350 ↔ 0.9Hz (b). Three different polymer concen-
trations are shown with black circles for 0ppm (pure water), magenta circles for 5ppm, and cyan
circles for 10ppm. Fits are indicated by horizontal lines

A.2 Convergence Radius of the Short-Time Expansion
for the Mean Squared Change of Separation

This appendix presents a more detailed version of a proof by Anna Frishman from
the Weizmann Institute of Science, Israel (Frishman 2013). It is founded on many
fruitful discussions we had about this topic.

The Taylor expansion for the mean squared change of separation around t = 0,
as shown in Eq. (4.1), can be written in a more systematic form as

〈δR(t)2〉 =
[
2
〈
V(0)2

〉]
t=0

t2

2
+

[
3
d

dt

〈
V(t)2

〉]

t=0

t3

6

+
[
8
d

dt

〈
V(t) · dV(t)

dt

〉
− 2

〈(dV(t)

dt

)2〉]

t=0

t4

24

+
[
5
d

dt

〈(dV(t)

dt

)2〉 + 10
d

dt

〈
V(t) · d

2V(t)

dt2

〉]

t=0

t5

120
+ O

(
t6

)
,

(A.1)

where the first five orders have been computed explicitly. Here, V(t) is the relative
velocity between the particles. In order to determine the radius of convergence of this
series, it is educating to first investigate which time scales can appear. It is intuitively
clear that for any two-point function, a function depending on the separation R
between two points, the Kolmogorov time t0 of an eddy of this size is the relevant
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time scale. Another quantity that may appear is τη, which is the defining time scale
of spatial derivatives and which can be several orders of magnitude smaller than t0.
In Eq. (A.1), τη enters through the squared relative acceleration

〈(
dV(t)/dt

)2〉 in the
t4 term. Using the Navier-Stokes equations, it can be shown that this correlation
function contains expressions only depending on the spatial derivatives of single-
particle velocities, thus introducing τη. The same happens for many higher order
terms, therefore reducing the convergence radius of the full series to approximately
τη. One can show, however, that a series of only the odd terms in Eq. (A.1) has a
much larger convergence radius of approximately t0. For this purpose, we will show
that the odd terms do not contain single-point functions.

Let us assume we have a statistical quantity that does not explicitly depend on the
particle separation R(t),

〈F[V(t), d
dt V(t), . . .]〉

=
∫

PR(t)[V(t), d
dt V(t), . . .] F[V(t), d

dt V(t), . . .] dV(t) d
(
d
dt V(t)

)
. . . .

(A.2)

There still persists an implicit dependence on R(t) through the p.d.f. of the velocity
derivatives, PR(t)[V(t), d

dt V(t), . . .]. For a stationary, incompressible and homoge-
neous flow, the full time derivative at t = 0 for such a quantity can be written as

d

dt

〈
F[V(t), d

dt V(t), . . .]
〉∣∣∣

t=0
=

3∑
i=1

d

dRi (t)

〈
Vi (t) F[V(t), d

dt V(t), . . .]
〉∣∣∣

t=0
.

(A.3)

This means, that even for the case where F(V, d
dt V, . . .) contains contributions from

single point functions, they will not contribute to the time derivative since they are,
by definition, independent of R(t). As a consequence, any term in Eq. (A.1) which
can be expressed solely by total time derivatives is free of single point functions and
thus introduces a time scale t0 and not τη. At a first glance, it can be seen that this
is both true for the t3 and the t5 term, and we can show analytically that this is also
true for any other odd term. For the nth term in Eq. (A.1), the prefactor is given by

dn

dtn
〈δR(t)2〉

∣∣∣
t=0

= 2
dn−1

dtn−1 〈δR(t) · V(t)〉
∣∣∣
t=0

= 2
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dtn−2

〈
V(t)2
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+ 2
dn−2

dtn−2

〈
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dt
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t=0
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dn−2

dtn−2

〈
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+ 2
dn−3

dtn−3

〈
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dt
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dtn−3
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= 2
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dtn−2
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dt
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(A.4)

It can be seen that all but the very last term are already in the form of Eq. (A.3),
meaning that they do not introduce single-point functions. The last term apparently
still depends on δR(t) and thus needs further investigation. Taking the final derivative,
one finds

d

dt

〈
δR(t) · dn−2

dtn−2 V(t)
〉∣∣∣

t=0
=

〈
V(t) · dn−2

dtn−2 V(t)
〉∣∣∣

t=0
+

〈
δR(t) · dn−1

dtn−1 V(t)
〉∣∣∣

t=0
,

(A.5)

where the second term vanishes for t = 0 since δR(0) = 0 by definition. It remains
to explore if the first term can be written as a total derivative according to Eq. (A.3).
Using the product rule, one finds

〈
V(t) · dn−2

dtn−2 V(t)
〉
= d

dt

〈
V(t) · dn−3

dtn−3 V(t)
〉
−

〈 d
dt

V(t) · dn−3

dtn−3 V(t)
〉
, (A.6)

where the product rule can be applied again to the last term and so forth. For n being
even, this process finds an end when the last term has the form

〈( d(n−2)/2

dt (n−2)/2
V(t)

)2〉
, (A.7)

which can not be rewritten as a total derivative. For n being odd however, at the end
of this procedure the last term is given by

〈 d(n−1)/2−1

dt (n−1)/2−1
V(t) · d(n−1)/2

dt (n−1)/2
V(t)

〉
= 1

2

d

dt

〈( d(n−1)/2

dt (n−1)/2
V(t)

)2〉
, (A.8)

which has the form (A.3). As a result we find that every odd term in the expansion in
Eq. (A.1) can be written exclusively in terms of total derivatives of the form (A.3),
so that an expansion of only the odd terms must have a radius of convergence of the
order of t0.

A.3 Elusive Richardson Scaling in Pair Dispersion

FigureA.2 shows the same data as Fig. 4.7, with the only difference that for the
experimental datasets, all pointswithmore than104 observedpairs are shown (instead
of 106) in order to observe the evolution at later times. It can be seen that the data
drops rapidly towards zero and always stays below the numerical datasets.
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Fig. A.2 Experimental and numerical results for the odd terms of the compensated mean squared
change of separation. For experimental data at Rλ = 390, the initial separations are 241 η ( ), 276 η

( ) and 310 ( ). For Rλ = 350, the initial separations are 212 η ( ), 242 η ( ) and 273 η ( ),
and for Rλ = 270, they are 135 η ( ), 154 η ( ) and 173 η ( ). For the DNS data at Rλ = 300,
the initial separations are 19 η ( ), 38 η ( ), 58 η ( ), 77 η ( ), 92 η ( ) and 123 η ( ). The
dashed horizontal line indicates the prediction by Richardson scaling as proposed by Berg et al.
(2006)

A.4 Diagonal Form of the Shape Tensor

Following Sect. 5.1, the short time evolution of the shape tensor is given by

G(t) = l2

2

(
1 + 2S0 t + (2S1 + 4S2

0 + 2[S0,�0]) t2

+ (2S2 + 8S3
0 + 6[S2

0,�0] + 2[[S0,�0],�0] + 6S0 · S1 + 6S1 · S0

+ [S1,�0] + 4[mat S0,�1]) t3 + O
(

t4
) )

. (A.9)

With the rotation matrix U(t), the shape tensor can be diagonalized as

GD(t) = U(t)G(t)UT (t) = diagonal. (A.10)

Using that rotation matrices are orthogonal, U(t)UT (t) = 1, one finds d
dt U(t) =

R(t)U(t) with RT (t) = −R(t). Expanding U(t) in a Taylor series around t = 0 and
expressing it through the antisymmetric matrix R(t) leads to

http://dx.doi.org/10.1007/978-3-319-19192-8_5
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U(t) =
[
1 + R0t + (R1 + R2

0)
t2

2

+(R2 + 2R1 · R0 + R0 · R1 + R3
0)

t3

6
+ O

(
t4

)]
U0. (A.11)

where Rn = dn

dtn R(t)|t=0 with RT
n = −Rn for all n. I again use the short notation

for the Taylor expansions,

G(t) = G0 + G1t + G2
t2

2
+ G3

t3

6
+ O

(
t4

)
(A.12)

and GD(t) = GD
0 + GD

1 t + GD
2

t2

2
+ GD

3
t3

6
+ O

(
t4

)
, (A.13)

and insert them together with Eq. (A.11) into Eq. (A.10). Below, each order in t is
analyzed separately to obtain the missing Gn . Thereby, all appearing terms of the
type RnU01UT

0 + U01UT
0 RT

n = Rn + RT
n = 0 are directly omitted.

Zeroth Order

GD
0 = U0G0UT

0 = U0
l2

2
1UT

0 = l2

2
U0UT

0 = l2

2
1. (A.14)

First Order

GD
1 = U0G1UT

0 = l2U0S0UT
0 . (A.15)

Here,U0 must be chosen such thatGD
1 is diagonal, which corresponds to a rotation

into the eigenframe of S0. In all higher order terms discussed below, each term is
framed by U0 and UT

0 . Therefore, I will omit U0 from now on and expect every term
to be understood in the eigenframe of S0.

Second Order

GD
2 = G2 − 2[G1, R0]

= l2

2
(2S1 + 4S2

0 + 2[S0,�0]) − 4
l2

2
[S0, R0] (A.16)

where [S0, R0] = S0 · R0 − R0 · S0 is purely off-diagonal. With the right choice of
R0, this term can thus be used to cancel any off-diagonal terms in Eq. (A.16). Since
all matrices are given in the eigenframe of S0, one finds that S2

0 is diagonal whereas[S0,�0] is purely off-diagonal. The derivative of the perceived rate of strain tensor,
S1, can have diagonal and off-diagonal terms. Denoting the diagonal part of a general
matrix A by D(A), noting that D(AT ) = D(A), the condition on R0 for GD

2 to be
diagonal is given by
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4[S0, R0] = 2 (S1 − D(S1)) + 2[S0,�0]. (A.17)

Choosing R0 such that Eq. (A.17) is fulfilled, the second order for the diagonalized
shape tensor is found to be

GD
2 = l2D(S1) + 2l2S2

0. (A.18)

Third Order

GD
3 = G3 + 3R0 · G2 + 3G2 · RT

0 + 6R0 · G1 · RT
0 + 3(R1 + R2

0) · G1

+ 3G1 · (R1 + R2
0)

T

= G3 − 3[G2, R0] − 3[G1, R1] + 3
(

R2
0 · G1 + G1 · R2

0 − 2R0 · G1 · R0

)
.

(A.19)

SinceG1 is diagonal in the eigenframeofS0 andR1 is antisymmetric, the commutator
[G1, R1] is purely off-diagonal and can be used to eliminate all other off-diagonal
terms. Similar to Eq. (A.17), a condition for R1 can be derived. I will omit this step
here and just assume this condition to be fulfilled. One then finds that

GD
3 = D(G3) − 3D([G2, R0] + 3D(R2

0 · G1 + G1 · R2
0 − 2R0 · G1 · R0). (A.20)

In more detail, the first term is given by

D(G3) = l2

2

(
2D(S2) + 8S3

0 + 4D(S0 · �2
0) − 4D(�0 · S0 · �0)

+ 12D(S0 · S1) + 4D(S1 · �0)
)
,

and for the second term one finds

D([G2, R0]) = l2

2

(
D([GD

2 , R0]) + 4D([[S0, R0], R0]) = 8D(R2
0 · S0)

− 8D(R0 · S0 · R0)
)
,

where I used at the second equality that [GD
2 , R0] is purely off-diagonal. The last

term in Eq. (A.20) finally yields

D(R2
0 · G1 + G1 · R2

0 − 2R0 · G1 · R0) = l2

2

(
4D(R2

0 · S0) − 4D(R0 · S0 · R0)
)

.
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The complete third order term of the diagonalized shape tensor is thus given by

GD
3 = l2

2

(
2D(S2) + 8S3

0 + 12D(S0 · S1) + 4D(S0 · �2
0) − 4D(�0 · S0 · �0)

+ 4D(S1 · �0) − 12D(R2
0 · S0) + 12D(R0 · S0 · R0)

)

= l2

2

(
2D(S2) + 8S3

0 + 12D(S0 · S1) + 4D(R2
0 · S0) − 4D(R0 · S0 · R0)

+8D(R0 · S1)) , (A.21)

where I used Eq. (A.17) in the second line.
The full diagonalized shape tensor is now obtained by inserting the above results

into Eq. (A.13).
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Appendix B
Flow Properties

In this appendix, some properties of the experimental flow are presented. InAppendix
B.1, the homogeneity and isotropy of the flow are studied. Appendix B.2 gives an
overview of the properties of the perceived velocity gradient tensor for all datasets.

B.1 Isotropy and Homogeneity

In order to measure the isotropy and homogeneity of the flow, the mean velocity
field was computed by dividing the whole measurement volume into several bins
and time-averaging over the velocities of all tracer particles detected in each bin.
The time average was taken over all videos in one experiment, corresponding to
approximately seven hours, and is denoted by an overline.

FigureB.1 shows the absolute value (plots a, c, e) and direction (plots b, d, f) of the
radial velocity, normalized by the r.m.s radial velocity at the origin, (u2

x + u2
y)

1/2
∣∣
O .

Cuts at three different heights are shown (z = 20mm, 0mm, and –20mm) with all
tracer particles within z ± 5mm taken into account. The large measurement volume
dataset with Reynolds number Rλ = 350 was chosen representatively.

One finds that the deviations of the r.m.s. radial velocity from its value at the
origin are below 20% in most of the measurement volume. Close to the borders
of the measurement volume, the values are lowest. Part of this effect could be an
artifact of the low statistics in this region (all bins with at least 100 detected particles
are shown). In the vector plots, a directional flow towards negative x-values can be
seen. This indicates that the windows (probably especially the flanges of the top and
bottom window) disturb the rotational symmetry of the flow.

It can thus be seen that while the flow shows sufficient homogeneity, especially
for the small measurement volume datasets with a measurement volume diameter of
only 27mm, isotropy cannot be assumed.

© Springer International Publishing Switzerland 2015
J. Jucha, Time-Symmetry Breaking in Turbulent Multi-Particle Dispersion,
Springer Theses, DOI 10.1007/978-3-319-19192-8
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(a) (b)

(a) (b)

(a) (b)

Fig. B.1 Root mean square value (left) and direction (right) of the radial velocity at three different
heights, normalized by the r.m.s value at the origin. The large measurement volume dataset at
Rλ = 350 is shown. See text for more details. This figure has been modified with respect to the
original thesis in order to correct a small error
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B.2 Perceived Velocity Gradient Tensor

In this appendix, several quantities derived from the perceived velocity gradient
tensor are presented. Different initial separations for all datasets have been analyzed,
only using the small measurement volume data and tetrahedra fulfilling the regularity
condition.1 The results are summarized inTableB.1 for flowswithout addedpolymers
and TablesB.2 and B.3 for flows with a polymer concentration of 5ppm and 10ppm,
respectively.

Table B.1 Quantities derived from the perceived velocity gradient tensor for datasets with no added
polymers (0ppm)

Dataset 0.5Hz ↔ Rλ = 270 0.9Hz ↔ Rλ = 350 1.1Hz ↔ Rλ = 390

R0 8mm 10mm 12mm 8mm 10mm 12mm 8mm 10mm 12mm

R0/η 77 96 115 121 152 182 138 172 207

〈s1〉 t0 2.27 2.26 2.30 2.17 2.21 2.23 2.21 2.25 2.28

〈s2〉 t0 0.22 0.22 0.24 0.21 0.22 0.23 0.21 0.22 0.23

〈s3〉 t0 −2.44 −2.49 −2.54 −2.36 −2.42 −2.45 −2.42 −2.46 −2.49

〈tr(S0)〉 t0 0.05 0.00 −0.01 0.01 0.01 0.02 0.01 0.02 0.01

〈s21 〉 t20 6.41 6.37 6.56 5.90 6.11 6.22 6.16 6.33 6.43

〈s22 〉 t20 0.94 0.93 0.97 0.87 0.89 0.92 0.90 0.93 0.95

〈s23 〉 t20 7.85 8.10 8.39 7.40 7.72 7.86 7.72 7.92 8.09

〈tr(S20)〉 t20 15.20 15.40 15.92 14.16 14.72 14.99 14.79 15.19 15.46

〈tr(S0)2〉 t20 4.26 4.28 4.39 4.05 4.13 4.21 4.18 4.30 4.36

〈s31 〉 t30 21.54 21.12 21.98 19.08 19.98 20.42 20.36 21.03 21.31

〈s32 〉 t30 0.58 0.63 0.64 0.52 0.56 0.61 0.54 0.59 0.59

〈s33 〉 t30 −30.66 −31.72 −33.08 −28.21 −29.59 −30.20 −29.87 −30.69 −31.44

〈tr(S30)〉 t30 −8.53 −9.98 −10.46 −8.61 −9.05 −9.17 −8.97 −9.08 −9.53

〈tr(S0)tr(S20)〉 t30 −1.78 −2.53 −2.68 −2.30 −2.35 −2.15 −2.37 −2.17 −2.44

〈(S0 · S1)11〉 t30 −7.62 −6.50 −6.99 −6.14 −6.36 −6.36 −7.43 −7.38 −7.77

〈(S0 · S1)22〉 t30 −0.05 0.04 0.08 0.12 0.05 0.02 0.04 0.02 0.06

〈(S0 · S1)33〉 t30 9.58 9.30 10.07 9.32 9.36 8.95 9.87 10.30 10.53

〈tr(S0 · S1)〉 t30 1.91 2.84 3.16 3.31 3.05 2.61 2.49 2.94 2.82

〈tr(S0)tr(S1)〉 t30 0.07 0.81 0.69 1.42 0.70 0.27 0.64 0.59 0.56

〈tr(�2
0)〉 t20 −9.98 −10.49 −10.59 −9.62 −9.96 −10.05 −10.16 −10.50 −10.58

〈tr(S0 · �2
0)〉 t30 1.38 1.82 2.04 1.57 1.77 1.80 1.62 1.85 1.93

〈tr(S0)tr(�2
0)〉 t30 −1.16 −0.64 −0.37 −0.64 −0.32 −0.48 −0.52 −0.55 −0.52

〈tr(�0 · �1)〉 t30 −0.98 −1.18 −0.07 −0.47 −1.18 −0.85 −0.46 −1.37 −1.45

For time derivatives such as S1 and �1, a Gaussian convolution filter was used with a filter length
of 3τη and a width of τη

1The dataset with Rλ = 690 was omitted since it only consists of a large measurement volume
dataset.
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Table B.2 Quantities derived from the perceived velocity gradient tensor for datasets with a poly-
mer concentration of 5ppm

Dataset 0.9Hz ↔ Rλ = 350 1.1Hz ↔ Rλ = 390

R0 8mm♦ 10mm 12mm 14mm 8mm♦ 10mm 12mm 14mm

R0/rε 1.1♦ 1.3 1.6 1.8 1.0♦ 1.2 1.5 1.7

〈s1〉 t0 1.77 1.89 1.98 2.03 1.87 1.99 2.08 2.13

〈s2〉 t0 0.26 0.29 0.30 0.31 0.28 0.29 0.31 0.32

〈s3〉 t0 −2.05 −2.16 −2.24 −2.29 −2.13 −2.25 −2.34 −2.37

〈tr(S0)〉 t0 −0.03 0.03 0.03 0.05 0.02 0.02 0.04 0.07

〈s21 〉 t20 3.85 4.37 4.76 5.01 4.32 4.85 5.26 5.51

〈s22 〉 t20 0.51 0.60 0.65 0.70 0.58 0.67 0.73 0.77

〈s23 〉 t20 5.28 5.87 6.35 6.61 5.74 6.41 6.90 7.11

〈tr(S2
0)〉 t20 9.64 10.83 11.76 12.33 10.64 11.92 12.89 13.38

〈tr(S0)
2〉 t20 1.46 1.82 2.12 2.35 1.74 2.13 2.44 2.74

〈s31 〉 t30 9.97 11.94 13.45 14.45 11.88 14.01 15.73 16.75

〈s32 〉 t30 0.38 0.48 0.54 0.59 0.46 0.56 0.60 0.66

〈s33 〉 t30 −16.27 −19.00 −21.34 −22.63 −18.62 −21.73 −24.12 −25.18

〈tr(S3
0)〉 t30 −5.92 −6.57 −7.36 −7.59 −6.28 −7.17 −7.79 −7.76

〈tr(S0)tr(S2
0)〉 t30 −0.53 −0.17 −0.37 −0.19 −0.26 −0.24 −0.21 0.13

〈(S0 · S1)11〉 t30 −2.33 −2.62 −2.89 −3.17 −2.72 −3.29 −3.82 −3.74

〈(S0 · S1)22〉 t30 0.06 0.14 0.18 0.22 0.15 0.25 0.26 0.21

〈(S0 · S1)33〉 t30 3.49 3.81 3.98 4.58 3.45 4.40 5.55 5.71

〈tr(S0 · S1)〉 t30 1.23 1.33 1.28 1.62 0.88 1.35 1.99 2.18

〈tr(S0)tr(S1)〉 t30 −0.29 −0.49 −0.30 −0.39 −0.51 −0.23 −0.14 0.20

〈tr(�2
0)〉 t20 −6.86 −7.71 −8.22 −8.56 −8.01 −8.89 −9.46 −9.70

〈tr(S0 · �2
0)〉 t30 1.65 1.74 1.92 1.90 1.80 2.02 2.15 2.11

〈tr(S0)tr(�2
0)〉 t30 0.19 −0.43 −0.43 −0.86 −0.20 −0.43 −0.58 −0.91

〈tr(�0 · �1)〉 t30 −1.03 −0.97 −0.82 −0.67 −0.96 −1.15 −1.43 −0.89

For time derivatives such as S1 and �1, a Gaussian convolution filter was used with a filter length
of 3τη and a width of τη, with τη taken from the corresponding dataset without polymers. Initial
separations marked with a diamond (♦) lie outside the plateau range of the energy transfer rate of
the respective dataset. The used value of t0, however, is always based on the plateau value
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Table B.3 Quantities derived from the perceived velocity gradient tensor for datasets with a poly-
mer concentration of 10ppm

Dataset 0.9Hz ↔ Rλ = 350 1.1Hz ↔ Rλ = 390

R0 8mm♦ 10mm♦ 12mm 14mm 8mm♦ 10mm♦ 12mm 14mm

R0/rε 0.8♦ 1♦ 1.2 1.4 0.7♦ 0.9♦ 1.1 1.3

〈s1〉 t0 1.70 1.85 1.98 2.07 1.67 1.81 1.93 2.03

〈s2〉 t0 0.27 0.30 0.33 0.35 0.28 0.30 0.32 0.34

〈s3〉 t0 −1.97 −2.15 −2.29 −2.40 −1.93 −2.10 −2.23 −2.33

〈tr(S0)〉 t0 0.01 0.00 0.02 0.02 0.01 0.01 0.02 0.03

〈s21 〉 t20 3.60 4.22 4.78 5.21 3.45 4.04 4.56 5.00

〈s22 〉 t20 0.44 0.53 0.62 0.69 0.44 0.53 0.61 0.68

〈s23 〉 t20 4.84 5.78 6.53 7.13 4.71 5.53 6.19 6.77

〈tr(S2
0)〉 t20 8.88 10.54 11.92 13.03 8.60 10.10 11.35 12.45

〈tr(S0)
2〉 t20 1.12 1.35 1.58 1.98 1.12 1.14 1.71 1.88

〈s31 〉 t30 9.11 11.45 13.31 15.36 8.60 10.76 12.77 14.56

〈s32 〉 t30 0.34 0.45 0.55 0.64 0.35 0.45 0.53 0.61

〈s33 〉 t30 −14.20 −18.40 −21.97 −24.92 −13.73 −17.33 −20.35 −23.16

〈tr(S3
0)〉 t30 −4.74 −6.51 −7.80 −8.92 −4.78 −6.12 −7.05 −7.99

〈tr(S0)tr(S2
0)〉 t30 0.28 0.10 0.16 −0.04 0.15 0.10 0.14 0.09

〈(S0 · S1)11〉 t30 −1.82 −2.30 −2.81 −2.94 −1.95 −2.30 −2.82 −2.90

〈(S0 · S1)22〉 t30 0.11 0.14 0.16 0.23 0.10 0.15 0.19 0.20

〈(S0 · S1)33〉 t30 2.35 2.93 3.24 3.84 2.21 2.95 3.60 3.78

〈tr(S0 · S1)〉 t30 0.65 0.78 0.59 1.13 0.35 0.80 0.97 1.08

〈tr(S0)tr(S1)〉 t30 −0.55 −0.55 −0.67 −0.54 −0.54 −0.48 −0.54 −0.54

t20 〈tr(�2
0)〉 −6.81 −7.76 −8.45 −9.48 −6.69 −7.76 −8.68 −9.23

t30 〈tr(S0 · �2
0)〉 1.54 2.01 2.30 2.76 1.48 1.85 2.15 2.42

t30 〈tr(S0)tr(�2
0)〉 −0.10 −0.07 −0.07 −0.24 −0.10 −0.12 −0.25 −0.30

t30 〈tr(�0 · �1)〉 −0.88 −1.27 −1.13 −1.55 −0.76 −1.15 −1.21 −1.33

For time derivatives such as S1 and �1, a Gaussian convolution filter was used with a filter length
of 3τη and a width of τη, with τη taken from the corresponding dataset without polymers. Initial
separations marked with a diamond (♦) lie outside the plateau range of the energy transfer rate of
the respective dataset. The used value of t0, however, is always based on the plateau value
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In this appendix, the used binary data formats are presented. Each line represents
a variable that is written to the binary file in the order given below if not indicated
otherwise by the comments. The first column gives the C++ data type and length of a
variable, the second column gives its name. Double slashes “//” indicate comments.
As an example,

unsigned int[5] test; // numbers one to five

would mean that the array “test” is made of five positive integers which contain the
numbers from one to five.

© Springer International Publishing Switzerland 2015
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C.1 Göttingen Movie (.gmv)
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C.2 Trajectory Data Format
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C.3 Velocity-Acceleration Data Format
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C.4 Tetrahedra Data Format
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