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Preface

This book is concerned with the dynamics of subterranean flows in the natural
environment, with the transport and dispersal of contaminants that they may carry
and the chemistry of the interactions between the matrix and the fluid that perco-
lates through it in spatially random conduits or aquifer pores. It is intended for
anyone with a quantitative interest in the world around them, and particularly for
professionals and graduate students in hydrology, geology and environmental sci-
ence and engineering. Many of the basic concepts originated in the late nineteenth
or mid twentieth centuries, but they were usually developed in a very idealized and
simplified form because few field measurements of actual sub-surface seepage or
flow patterns had been attempted. Only recently have extensive and detailed hydro-
logical field measurements been undertaken and their findings contain surprises
that are re-defining the way we view this part of the natural world and begin to
understand how it works.

In writing this book, I have relied heavily on the guidance and advice of many
colleagues, friends and students who listened patiently, corrected gently and pointed
in new directions. In particular, I must thank Lawrence Hardy, John Ferry, Jim
Wood and Gordon Wolman, all colleagues, Robert Shedlock of the US Geological
Survey and Emory Cleaves of the Maryland Geological Survey and my Cambridge
colleagues, Andrew Woods and Herbert Huppert who always had something new
to show me. I am particularly grateful to my wife for her tireless reading of the
manuscript and her suggestions for improvement.

O. M. P.
Chestertown
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Introduction

The relatively new scientific field of Geological Fluid Mechanics is concerned with
applying the principles of fluid mechanics to the geological sciences. It is charac-
terized by close interaction between carefully conceived laboratory measurements
on geological flows and theoretical analyses that interpret the results in terms of
basic physical principles. It was given this name by Herbert Huppert in Cambridge,
one of its leading practitioners in a company that includes Andrew Woods, also in
Cambridge, George Veronis at Yale, Stewart Turner at ANU, Canberra, and many
other technically powerful and imaginative scientists. This present book concen-
trates on the part of Geological Fluid Mechanics that involves the flow of passive
and reacting fluids through porous or fractured geological media. In our planet, both
hot and cold aqueous fluids have flowed or seeped through sand and fractured rocks
for eons, modifying their composition by dissolution, chemical reaction and depo-
sition. Great crystalline formations and mineral deposits were formed by nature
during that time and modifications continue naturally. The study of these processes
was always an interesting intellectual challenge, but one of no particular urgency.
Yet within a couple of lifetimes the pace of change has exploded as a result of
human activity.

The contamination of our aquifers, and in turn the rivers and estuaries into which
the groundwater flows, is the result of both deliberate and inadvertent injection of
a variety of human, agricultural and industrial wastes, but our knowledge of the
extent of these changes is meager. How long does it take for the contaminants to
build up, where do they go and, if we remove the source, how long will it take for
the contamination to flush out? What happens to the effluents from coal mines and
paper mills, that are dumped into streams? Nuclear power plants help to satisfy
our gluttonous appetite for energy without generating the primary greenhouse gas,
carbon dioxide, but the bargain is Faustian – high-level, long-lived radioactive
wastes are being stored on site at the nuclear power plants that generated them.
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2 Introduction

The long-term disposal of these wastes requires that they be removed from human
contact for times much longer than all of human history.

Geological fluid dynamics is concerned with how these natural systems work,
with their patterns of flow and chemical reaction in a variety of geological media,
whether sandy aquifers, layered sediments or mosaics of fractured rocks. The first
geological fluid dynamicist was probably Henry Darcy (1803–58), although he
certainly did not think of himself as such. A very accomplished hydraulic engineer,
he worked on the Dijon water supply for a number of years, and towards the end of
his life, he and two assistants conducted a series of hydraulic experiments on the
flow of water through a vertical column partially filled with siliceous sand from
the Saone River and a flow of water from the Dijon hospital water supply. The
volume flux of water was measured in a gauging station, the pressure difference
across the sand bed was measured by using two mercury U-tube manometers, and
he found a very accurate linear relation between the two. His work was published
as an appendix to his extensive report (Darcy, 1856) on the public fountains of the
city of Dijon.

Darcy’s study exemplifies the three essential ingredients in the scientific explo-
ration of the nature of this world about us. The explorer needs to have (i) a detailed
and soundly based understanding of the basic rules, the “laws of nature” under
which the flows operate, (ii) a continuing contact with physical reality and famil-
iarity with the results of whatever careful experiments, observations and detailed
measurements that have been made on these flows, and (iii) the ability to put the
two together. Darcy obviously knew a lot about hydraulics, he performed the exper-
iment himself and he made the critical quantitative connection between flow rate
and pressure gradient.

In more recent times and on a larger scale we can discern these same three
attributes that have guided the remarkable progress during the past 50 years of
our sister science, Meteorology. The “laws of nature” that govern the motion and
properties of the atmosphere are essentially the same as those outlined in the next
chapter of this book, the conservation laws of thermodynamics, of Newtonian
continuum dynamics, of chemical reactions, etc., supplemented in the atmosphere
by the laws of radiation. The “physical reality” is the atmosphere itself, in constant
motion and burdened by its increasing load of carbon dioxide and other greenhouse
gases. Measurements of atmospheric pressure and temperature have been made for
over 200 years, but the pace increased in the 1970s when the Global Atmospheric
Research Program (GARP) stimulated a vast increase in the systematic observation,
measurement and monitoring of the atmosphere that continues today. This in turn
provided a strong stimulus to the development of “super-computers” that were
needed to handle the new floods of data and the numerical models of large-scale
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atmospheric motions being developed by Jules Charney and others. New techniques
were developed at the National Center for Atmospheric Research in Boulder,
Colorado, for airborne measurements while remote sensing systems such as the
atmospheric radar of David Atlas at NASA were becoming able to scan for clouds,
rain and atmospheric motions over larger and larger volumes of the atmosphere.
Today, on the evening TV weather report we see marvelous real-time, data-based
computer simulations of local and regional weather that are vivid, ongoing and
generally accurate. We receive warnings of rain tomorrow and impending dangers
such as hurricanes a thousand miles away.

In contrast, the quantitative base of data in the geological sciences is much
more sparse. It is probably safe to assert that more atmospheric measurements
are made every day, than have been made on geological flows in all of recorded
history. Subterranean flow measurements are difficult and expensive to acquire by
drilling and the data are sometimes classified for commercial reasons. The medium
is solid, often hard, opaque, and complex in structure and composition. Seismic
techniques are able to delineate internal structures, but most of the information that
we have still comes from surface exposures and patterns of seepage. As a result
of all these factors, the quantitative measurements that we do have are extremely
valuable but still severely limited in number and scope. Particularly notable are
the recent measurement programs on the dispersal of tagged fluids in aquifers,
conducted mainly by the US and state Geological Surveys and their analogs in
Europe. These have generated a leap forward in our understanding of the structure
of the variations in permeability in sandy substrates and the spatially random flow
field that percolates through them.

The relative paucity of field data on geological flows presents a mis-match
with the power and sophistication of modern digital computers. With few excep-
tions, numerical simulations of geological flows have little measured data input,
or quantitative comparison between the computer output and field measurements.
Parameters can be chosen without observational or experimental basis, but simply
to make the output “seem reasonable,” i.e. to be in accord with preconceptions.
Though often presented as factual, and generating their own air of reality, these
simulations are often quite misleading, and no more than digitally precise rendi-
tions of a mostly imaginary world. There is little doubt that a more fruitful approach
would include the development of relatively simple models with several essential
ingredients: (i) the powerful but often neglected physical constraints such as min-
imum dissipation, (ii) the use of measured parameters, (iii) the pertinent physical
and chemical balances involved and (iv) the flexibility for application to a variety
of possible structural configurations. The results must then be evaluated critically
by comparison with whatever laboratory or field data that does exist.
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In the next chapter of this book, the general geometrical characteristics of perme-
able media are described, together with the basic physical and chemical balances
that underlie the developments that follow. Two important general theorems con-
cerning uniqueness and minimum dissipation, dating from the nineteenth century
and often overlooked, provide useful insights into the structure of constant den-
sity flows in complex regions with variable matrix permeability. The first part of
Chapter 3 is a brief summary of some “classical” porous media flows, the basic
concepts of groundwater age and the various time scales for aquifer flows. Recent
measurements have shown that the spatially random, horizontally isotropic perme-
ability structure of a nominally uniform sandy aquifer is associated with highly
anisotropic dispersive characteristics of dissolved contaminants. Dissolved solutes
in fracture–matrix media disperse rapidly in the longitudinal direction, but much
more slowly in transverse directions. These findings can be understood best in
terms of the minimum dissipation constraint. Unsteady flows are also of interest.
Pressure pulses from explosions and seismic eruptions spread rapidly at acoustic
speeds, but the residual pressure then relaxes diffusively as interstitial gas and
liquids present flow out of fractured porous rock in seeps or geysers, at a rate that
diminishes in time.

Chapter 4 describes the nature of buoyancy-driven flows from convection plumes
to freshwater wedges and gravity currents. These flows are qualitatively different
from uniform-density flows and characteristically possess circulation in the trans-
port velocity field. In a given geological structure, the flow patterns are no longer
unique, which raises the possibility of instability and spontaneous evolution of one
flow pattern into another. The archetypical thermal instability is associated with
the name of Rayleigh (1916) and, since then, many variations of the basic theme
have been discovered that depend on the different rates of diffusion of heat and
dissolved salts in permeable media. These instability processes have been found
in laboratory measurements, in contemporary natural flows and their traces left in
ancient rocks.

Chapter 5 synthesizes these flow patterns with the patterns of reaction, depo-
sition and dissolution that the flow produces when the interstitial fluids and the
matrix interact chemically. There are three dominant flow-mediated reaction sce-
narios, reaction fronts, gradient reactions and mixing zones, each of which has
characteristic patterns of occurrence. In many geological scenarios, the rates of
reaction may be limited by the rate at which the flow can deliver dissolved solutes
to the reaction site. When dissolved contaminants in a surface aquifer are absorbed
into, or react with, the enclosing matrix, a patch of contaminant moves consider-
ably more slowly than does the interstitial fluid, centimeters per day, perhaps. An
extreme situation is found when the reaction involves replacement and the solutions
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are dilute compared with the mass per unit volume of the solid reactant. The propa-
gation speed of a reaction front may be smaller than the interstitial fluid velocity by
many orders of magnitude, possibly being only a few centimeters per millennium.
Application of these concepts and results can illuminate not only the formation of
mineral deposits in paleogeologic time, but also also the accumulation, transport
and dispersal of dissolved contaminants in present-day aquifers.



2

The basic principles

2.1 Pores and fractures

The geological materials with which we are concerned usually lie at one extreme
of the range of “porous media” encountered in nature and technology. The porosity,
the volume fraction of connected voids that allow fluid movement, may be as large
as 0.3 or 0.4 in a well-sorted sandbank or as small as 1% in natural calcite (Pryor,
1973). The skeletal remains of corals that abound in tropical reefs contain myriad
interstices on scales of up to a centimeter or so and may have a similarly large
porosity; Figure 2.1 shows a sample from Bermuda at approximately half-scale.
This kind of structure containing fluid conduits as well as more numerous smaller
pores is at the high-porosity extreme of those generally encountered. Compaction by
overlying sediments, the infilling of interstices by finer grains, and the precipitation
of cements from solution can reduce the porosity by an order of magnitude and
reduce the permeability, as we shall see, by three orders of magnitude or more.

Many large pores are also apparent in dolomite from the Latemar Massif in
northern Italy (Figure 2.2). Calcium ions from the original calcite mineral have
been replaced by magnesium, generating dolomite. The specific volume of the
dolomite produced in the reaction is less by 3–13% than that of the original calcite,
so that as the reaction proceeded, the porosity increased.

Networks of small cracks or fractures allow fluid percolation even when the
matrix itself is relatively impermeable. Seepage from fractures can often be dis-
cerned in roadside rock exposures. Figure 2.3 illustrates a smaller-scale network in
a sandstone cleavage plane, made visible by stain. Stained fluid moves relatively
rapidly through the fracture network but spreads laterally into the matrix blocks
only slowly. Note the progression of wider, older stains passing through the whole
sample, from which spring shorter, narrower and newer branches.

Fault systems also provide conduits for fluid motion. Even a cursory glance at
many field exposures often reveals layers of quartz or other minerals apparently

6



2.1 Pores and fractures 7

Figure 2.1. An extremely porous limestone from a Bermuda coral reef, approxi-
mately half-scale, containing shell fragments and many interstices with scales of
up to a centimeter or so, courtesy of Professor L. Hardie.

Figure 2.2. Pores in dolomite from the Latemar Massif in northern Italy. The
blocks in the scale are 1 cm long. (Photograph courtesy of Dr. E. N. Wilson.)

deposited along fractures in a larger matrix. Figure 2.4 shows a mosaic of small
scale fractures that have served as pathways for fluid motion until becoming filled
by deposition from the infiltrating solution, with subsequent fractures appearing
later.
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Figure 2.3. A network of plane fractures provided pathways for the flow of dyed
fluid in a sandstone cleavage plane, which then diffused into the matrix blocks,
courtesy of Professor L. Hardie. Approximately full scale.

Figure 2.4. In this calcite block, previous fractures have been filled with dolomite,
while more recent fractures remain partially open.

2.2 Geometrical characteristics

2.2.1 Porosity

A number of geometrical length scales are pertinent to flow through permeable
rocks and aquifer matrices. In aqueous solutions, the intermolecular or inter-ionic
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distances are of order 10−9 m, while the scale of the smallest interstices of hydro-
logical interest is possibly 1000 times larger, i.e. 1 micron or more. As a result,
the fluid can be regarded as a continuum whose motion through the passages
of the medium can be described in terms of the concepts and equations of con-
tinuum fluid mechanics. The photographs of the previous section indicate that in
porous limestone or partly cemented sandstone, the characteristic diameter δ0 of
the orifices or interstices may be as large as 10−4–10−3 m, with a relative few
even larger. In sand, the distance between the individual flow paths, the diameter
of the interstices and the grain size are all comparable. In more consolidated rocks
and granites, however, the size of the interstices is characteristically much smaller
than the microscale distance l0 between them. Media may also be extensively frac-
tured on scales from 10−2 to 10 m (see Figure 2.3) and such fracture networks are
potentially important flow conduits. Sedimentary deposits are frequently bedded,
with local variations in physical properties such as the porosity and permeability
occurring over vertical scales that are large compared with the grain size but small
compared with the overall thickness of the bed. Finally, there are the macroscopic
length scales h, which specify the thickness (or smallest dimension) of the porous
bed as a whole, and l, its lateral extent.

In order to relate the overall flow behavior to the average geometrical char-
acteristics of the rocks, we must consider carefully certain statistical aspects of
the microscopic flow through individual pores or regions of inhomogeneity, as in
Section 2.10 below. Our primary concerns are with flow patterns and velocities,
with the transports of heat and chemical solutes on the scale of structural variations
or on the macroscopic length scale h of the structure itself. Immense simplifications
are possible when the microscale l0 is sufficiently small compared with h that we
can find an intermediate local scale, the matrix averaging scale lAV, that is large
compared with the grain or matrix block size l0 yet small compared with the scale
h of the flow patterns that we wish to resolve. Thus we require that

δ0 ≤ l0 � lAV � h, (2.1)

where, as a rule of thumb, the � inequality signs can be interpreted to mean “is less
by a factor of at least 10 than.” Within a given stratum, properties of the medium
and characteristics of the flow through it, when averaged over the volume l3

AV are
expected to vary smoothly from one averaging volume to the next. When the system
is viewed on a macroscopic scale, it can again be regarded as a continuum, with
the “point” properties being, in fact, local averages of this kind, functions of three
spatial coordinates (x, y, z) and possibly time t.

When the locally averaged properties of the medium are independent of the
position of the averaging volume, the medium is said to be homogeneous. If all
locally averaged properties are independent of direction, the medium is described
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as locally isotropic. A well-mixed sand bed may be, on this averaging scale, both
homogeneous and locally isotropic. As mentioned previously, however, sediments
are frequently deposited in such a way that the fabric preserves a record in its
layering of the vertical direction, though there may be no differences discernible
in the two orthogonal horizontal directions. Seasonal variations in sedimentation
rate may produce, on a microscopic scale, a stack of horizontal laminations that, on
a macroscopic scale, lead to different percolation characteristics along and across
the laminations. Similarly, when elongated or plate-shaped sedimenting particles
tend to settle horizontally, the resulting fabric will preserve a record of the vertical
direction at the time of deposition. In general, when the medium has one preferred
direction but its properties are independent of rotation about that direction, it
can be described as locally axi-symmetrical. In spite of these caveats, a uniform
sandbank does provide the basic prototype of a classic hydrodynamical porous
medium, whose essential geometry, involving a three-dimensional web of minute
intersecting fluid pathways, is found in many porous rocks and other geologic
media at different scales and with different detailed topologies. It is convenient
to call these “sandbank-type” media to distinguish them from the fracture–matrix
media described later, which obey the same basic conservation laws but whose
geometry gives them quite different flow characteristics.

An important characteristic of a porous rock is the void fraction. The total
void fraction φT is that fraction of the total averaging volume represented by the
interstices; the solids occupy a fraction 1 − φT of the whole. This can be measured
by an examination of randomly taken thin sections; since a volumetric sample can
be considered to be a stack of plane slices, the ratio of void area to total area
in a typical thin section is equal to the ratio of void volume to total volume, φT.
Similarly, along a sampling line the average ratio of total length of the line segments
in voids to total line length is also φT. However, not all of the void spaces may be
active in fluid flow through the medium. Isolated cavities or “dead end” tubes can
contribute to φT but do not provide microscopic pathways to fluid motion. A more
significant measure for our purposes is the connected porosity φ, in which only
those voids that provide connections among the averaging volumes are considered.
In general, this quantity cannot be estimated from thin-section examination without
some additional information or assumption about the structure of the fabric, but
it can be measured by comparison of the mass of saturated and dried samples or,
as we shall see in the next section, by fluid observations. In this book, the term
“porosity” refers to the connected porosity, since this is the property of interest in
fluid motion, though in the petroleum industry it is commonly used as a synonym
for “void fraction.”

Clearly, φ ≤ φT < 1. At one extreme, in a material with the geometry of Swiss
cheese, such as pumice, all the voids are isolated so that φ = 0 while φT may
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be relatively large. In poorly cemented sandstone, there may be very few isolated
voids and φ ∼= φT ∼ 0.2 or 0.3. In consolidated rocks, φ ∼ 0.02–0.1, while in an
assembly of well-sorted grains, the porosity may be as large as 0.3 or 0.4.

A variety of textures are of interest in different contexts, and some simple
approximate relationships are frequently useful. If, on a microscopic scale, the
interstices consist of a complex of intersecting convoluted pathways, the porosity
can be represented as the number of pathways per unit area found in a thin section,
n, times the average area of their intersections with the thin section, which is
proportional to δ2

0. Thus,

φ ∼ nδ2
0 . (2.2)

2.2.2 Double porosity in a fracture–matrix medium

Not all hydrological flow media have the statistical geometry of a sandbank. Frac-
tures on many scales are ubiquitous in rock strata and even casual observation of
roadway cuttings after wet weather show them to provide pathways of significant
fluid flow. A fracture plane (the usual terminology) should not be considered as
an approximately uniform gap between two parallel rock surfaces, but as a more-
or-less planar network of intersecting, ribbon-shaped fluid pathways around areas
of close rock contact and possible accumulations of detritus. Let λ represent the
total area of the ribbon pathways in the fracture plane per unit volume of the
medium. By again visualizing the volume as a stack of slices, it can be seen that
λ also approximates the total length of the intersections of the ribbon pathway
network per unit area in any slice through the medium. If the mean width of the
fluid pathways is δF, the fracture porosity, the fraction of the total volume that they
occupy is

φF = λδF. (2.3)

Although δf is the appropriate measure of the fracture aperture for specifying
the fracture porosity, it is shown in Section 2.4 that it is far less relevant to the
magnitude of the mean fracture flow. For a given local pressure gradient, the flow
velocity depends on a high power of the gap width, and consequently upon the
distribution of fracture apertures; the fluid volume flux (velocity times gap width)
is disproportionately larger through the wider gaps.

It is interesting to compare typical numerical values of the fracture porosity
φF with values of the matrix porosity in the blocks between the fractures. In a
moderately consolidated porous rock, φ ∼ 0.2, while for the individual pathways,
δ0 may be 10−6–10−5 m, so that from (2.2), the number n of internal pathways
intersecting unit area is very large. Fractures produced by mechanical failure of the
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matrix may have an average gap δF of 10−5 or 10−4 m, and with a moderate density
of pathway intersections, λ ∼ 3 m−1 (length per unit area), the fracture porosity is
only about 10−4, which is smaller by a factor of order 2000 than that of the matrix
blocks. Clearly, the block porosity provides the dominant reservoir for interstitial
fluid, though as will be found later, the cracks can provide the dominant pathways
for flow.

2.3 The transport velocity and mass conservation

Consider the fluid flow in a sandbank-type medium in which the mean pore velocity
is represented by v. The porosity or active void fraction is φ, so that over the
fraction φ of a unit matrix volume, the mean flow velocity is v while over the rest,
the solids or inactive voids, it is zero. Consequently, averaged over the whole, the
volume flux or the fluid volume flow per unit cross-sectional area or the transport
velocity

u = φv. (2.4)

The velocity u can be interpreted as the velocity with which a fluid would be moving
if it occupied the whole space and had the same volume transport. Its direction is
parallel to v, but since for many geological materials φ is numerically small, u is
substantially smaller in magnitude than v.

The porosity of a rock sample is frequently estimated by comparing wet and
dry weights of a sample. It could also be measured directly by taking advantage
of equation (2.4), especially if the identification of active and inactive voids is
difficult. If water is forced under pressure through the sample, the volume of water
passing through per unit cross-sectional area per unit time is the transport velocity.
If a spot of dynamically passive dye or other marker (i.e. one that does not affect
the flow) is introduced, it will pass through the sample on average at the mean
interstitial speed, and the ratio of the two defines φ.

The transport velocity u is one of the primary field variables used in this book,
since transports, not simply of fluid volume but also of heat and chemical species,
are of primary interest. There are two important things to remember about it. First,
if we are concerned with the spreading of particular elements of fluid that can be
marked with salinity, dye, or other passive contaminants, then we are necessarily
concerned with the interstitial or pore velocity, not the transport velocity; this has
some profound consequences, as we shall see later. Secondly, note that because
of the particular averaging definition above, the transport velocity does not obey
the usual rule of vector addition. If the medium is moving, being subducted, say,
at velocity V, the interstitial fluid is indeed moving at velocity v + V, but only
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through the fraction φ of a transverse plane, so that the transport velocity relative
to a fixed reference frame is φ(v + V), or u + φV.

2.3.1 Mass conservation

One physical constraint on the flow patterns through porous fabrics that can be
expressed simply in terms of u is the conservation of total fluid mass. In a fixed
arbitrary finite region of the fabric, the mass of interstitial fluid is∫

φρdV ,

where φ is the porosity, ρ is the interstitial fluid density, and the integral is through-
out the volume of the region. This fluid mass may change as a result of net fluid
flow across the bounding surface, the net mass transport outward being∫

ρu · dS,

where the integral is over the surface of the region and the element of surface area
dS = ndS is directed outward. It may also change if water is generated internally
at the rate ρSW per unit fabric volume by chemical dehydration reactions among
the rock constituents. The net rate of change of fluid mass in the region is therefore

∂

∂t

∫
φρdV = −

∫
ρu.dS +

∫
ρSWdV

=
∫

{−∇ · (ρu) + ρSW}dV,

by the divergence theorem. Since the volume is taken as fixed, the initial time
derivative can be taken inside the integral:∫

{∂(φρ)/∂t + ∇ · (ρu) − ρSW}dV = 0, (2.5)

and since the volume is also arbitrary, the integrand itself must vanish. A local
statement of fluid mass conservation is then

∂

∂t
(φρ) + ∇ · (ρu) = ρSW. (2.6)

In this statement, the rate of change of interstitial water mass in the medium,
reduced by the divergence of the mass transport velocity field, is equal to the rate
of generation of water by rock reactions, represented by the final source term.
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2.3.2 The incompressibility condition

For many purposes, the complete version of (2.6) is unnecessarily general. It can
be rewritten in the somewhat disassembled form,

∇ · u = SW − ∂φ

∂t
−

(
φ

∂

∂t
+ u · ∇

)
ln (ρ/ρ0) , (2.7)

that sorts out those physical effects included in the general form (2.6) that are usually
less important. The first term on the right of (2.7), the source term, is significant only
when water is being generated by chemical reaction or absorbed into the matrix.
The next expresses the simple geometrical fact that if the porosity decreases with
time, (∂φ/∂t < 0), there is a flow divergence as fluid is expelled from the decreasing
fraction of voids. This can be important in tectonic events, but if the porosity of the
rock changes over geological time as cementation or dissolution occurs, the time
scales are long, and although the cumulative changes in φ may be large, the rates
of change are extremely small. During and following seismic events, significant
compaction may occur in clays or other unconsolidated sediments and φ may
change rapidly. It has sometimes been suggested that compaction is an important
process in driving interstitial fluid flow, but when such sediments compact, the total
volume of fluid expelled per unit volume of matrix is just the change in porosity,
necessarily a small fraction of unity. Natural geological fluids are generally dilute
and significant geochemical changes require movement through the matrix of
fluid volumes that are many times the matrix volume itself. The interstitial fluid
velocities associated with compaction are negligible compared with those produced
by maintained hydraulic or thermal forcing.

Variations in space and time of the density factors in the last term of equation
(2.7) are also usually negligible. Variations in fluid density occurring as a result of
temperature variations may be very important in producing variations in buoyancy
of the interstitial fluids which give rise to convective motion, but since the fractional
change in fluid density δρ/ρ0 is very small, its influence on the flow divergence
is minor. In geological flow fields, the individual terms in ∇ · u are of order u/l,
where u is the transport speed and l the overall flow dimension; the last term is
smaller by order δρ/ρ0 and is therefore negligible unless boiling occurs. Another
exceptional circumstance arises when the interstitial fluid pressure is suddenly
altered – for example, by a natural earthquake or artificially in a pressurized well.
The interstitial fluid is often much more compressible than the rock matrix, and
if the pressure is suddenly reduced by a nearby fracture, the un-fractured rock
porosity changes little but the interstitial fluid will seek to expand, forcing a time-
dependent, local flow, a process Sibson calls “seismic pumping,” but one that may
be more accurately described as pressure diffusion, considered in Section 3.6 of
this book.



2.3 The transport velocity and mass conservation 15

Subject to these provisos, the terms involving variations in φ and ρ will be
ignored unless they are centrally involved in the application at hand, and in the
absence of dehydration reactions as well, equation (2.6) simplifies to

∇ · u = 0. (2.8)

This equation expresses the statement that the volumetric divergence of the fluid
vanishes, and is usually called the incompressibility condition. In Cartesian coor-
dinates, with u = (u, v, w),

∇ · u = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (2.9)

An integral form of this statement is frequently useful. In a fixed region of arbi-
trary shape, the volume integral of the divergence of the velocity field is, by the
divergence theorem, equal to the normal efflux over the bounding surface. Thus,
from (2.8), ∫

∇ · udV =
∫

u · dS = 0, (2.10)

and the net volume flux into or out of the region vanishes.
A complementary conceptual approach is to view the conservation of fluid mass

in terms of individual fluid elements. As argued above, we can usually assume that
the porosity φ is constant in time. The balance (2.6) can be written alternatively in
terms of the mean interstitial velocity v of (2.4) as

dρ

dt
= ∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v + φ−1ρSW. (2.11)

The Lagrangian operator d/dt = ∂/∂t + v · ∇ in this equation is used widely in
considerations of fluid flow. The first part, ∂/∂t , represents the rate of change in time
at a fixed spatial point, while v · ∇ represents the rate of change that is observed at
a point moving with velocity v up the gradient of a spatially variable property. The
combination, written as d/dt, is then the rate of change observed in a the moving
frame of reference when the property itself varies both in space and time, and is
called “the derivative following the motion.” It is formally equivalent to the total
derivative in multivariate calculus, but its physical interpretation in this context is
useful and important. In (2.11), the rate of change of the fluid density following
the interstitial motion is equal to minus the divergence (i.e. the convergence) of
fluid mass plus the rate of generation of fluid mass from dehydration reactions, if
any. If the fluid density does not change following the motion, the left-hand side of
(2.11) vanishes and if there are no dehydration reactions, the last term also is zero.
So ∇ · v = 0 and since the porosity φ is constant, we recover (2.8).
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Figure 2.5. In two-dimensional flow, the fluid transport between neighboring
streamlines ψ and ψ + �ψ , the fluid transport u�z = �ψ is constant, so that as
their spacing increases, the fluid velocity decreases.

2.3.3 The stream function

In the special case of incompressible, two-dimensional flow, the stream function is
a quantity that provides a graphic and quantitatively accurate image of the flow, and
has the additional advantage in analysis of reducing the number of flow variables
by one. In two-dimensional flow, the incompressibility condition (2.8) becomes

∂u

∂x
+ ∂v

∂y
= 0, (2.12)

which is always satisfied by a function ψ(x, y, t) such that

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (2.13)

The function ψ is called the stream function. Clearly, if we choose a differ-
entiable but otherwise arbitrary function ψ , then (2.13) specifies a kinematically
possible flow field, i.e. one that satisfies the two-dimensional incompressibility
condition (2.12). The inverse statement is also true. The statement (2.12) is the
condition that uδx − vδy is an exact differential, δψ , say, from which (2.13)
follows.

The velocity component in any direction is thus represented as the gradient of
the stream function ψ in the orthogonal direction; in particular, in the direction
in which ψ = const., there is no transverse velocity, so that the contours ψ =
const. represent the directions of flow at each point. Moreover, if we choose local
coordinates with the origin at a point P, and with the x-axis chosen to lie along the
flow direction as in Figure 2.5, then at the neighboring point Q, a distance �z from
P, the stream function is

ψ + �ψ = ψ + ∂ψ

∂z
�z,

= ψ + u�z.
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The difference in the values of the stream function at the two points is then
�ψ = u�z, the volume flux across the line joining the two points. Streamline
patterns contain a great deal of useful and accurate information. In a distribution
of contours, for each of which ψ = const., the volume flux between any pair
of these curves remains constant. Where the streamlines are close together, the
volume transports are concentrated and the flow speed is relatively high; where they
are widely separated, the flow speed is low. Streamlines cannot begin or end in
the interior of a region. In re-circulating flow, the streamlines are closed; if fluid
enters or leaves a porous region across a bounding surface, streamlines originate
or terminate at that surface, whereas at an impermeable boundary (with no flow
across the surface) the stream function is constant along it. Figure 3.5 gives an
example of the use of the stream function for the representation of flow in a simple
surface aquifer with distributed infiltration from rainfall across the water table.

Note that the numerical value of the stream function is arbitrary to the extent
of an additive constant, since only differences in its value at different points have
physical significance. The value of the stream function can be assigned (usually
zero) for one particular streamline; the values of ψ along the other streamlines then
give the total volume transport between that streamline and the streamline ψ= 0.
In steady two-dimensional flow, the streamlines correspond to the transport paths
of marked fluid elements (except for diffusion), but in unsteady flow this is not
generally so.

In mathematical terms, use of the stream function enables us to represent the
two velocity components u(x, y, t), v(x, y, t) in terms of the single scalar function
ψ(x, y, t) while satisfying the incompressibility condition automatically. We then
have one variable fewer and one equation fewer – any such simplification is always
welcome!

A different stream function, the Stokes stream function, can be defined for
axially symmetrical flow, which has this same mathematical advantage but a slightly
different interpretation in terms of the flow pattern. In cylindrical polar coordinates
(r, θ , z), with corresponding velocity components (u, v, w), the incompressibility
condition is

∇ · u = 1

r

∂

∂r
(ru) + 1

r

∂v

∂θ
+ ∂w

∂z
= 0. (2.14)

When the flow is axially symmetrical, ∂/∂θ = 0, and this reduces to

1

r

∂

∂r
(ru) + ∂w

∂z
= 0, (2.15)

which is satisfied by the function ψS, the Stokes stream function, such that

u = 1

r

∂ψS

∂z
, w = −1

r

∂ψS

∂r
. (2.16)
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As before, lines ψS = const. indicate the direction of flow, so that their pattern
gives a good visual representation of the flow field. The total volume transport
between the axially symmetrical surfaces ψS = ψ1 and ψ2 is 2π (ψ1 − ψ2), but the
r−1 factors in (2.16) produce a geometrical distortion in the relationship between
fluid velocities and the gradients of ψS at different radial positions.

2.4 Darcy’s law

2.4.1 Hydrostatics

In a fluid at rest, the pressure increases with depth to support the weight of the
overlying fluid; the pressure gradient is vertically downward. For a change dz in
depth, the pressure changes by the amount ρ0gdz, where ρ0 is the local fluid density
and g the gravitational acceleration. The hydrostatic pressure gradient can therefore
be expressed as

∇ph = (0, 0, −ρ0g) = −ρ0gl, (2.17)

where l is a unit vector vertically upward. This remains true no matter what the
shape of the container enclosing the fluid and no matter whether the fluid as a
whole is over- or under-pressurized. In the present context, (2.17) holds true for
connected regions of single phase fluids at rest inside the interstices of permeable
rocks.

The water table is identified by the water level in an un-pumped well open to
the atmosphere. It is defined in this book as the surface at which the interstitial
water pressure is equal to the mean atmospheric pressure. If the groundwater is
not moving, the water table is horizontal. It does not generally coincide with the
upper interface of the water-saturated region, since surface tension can draw water
upward until the capillary suction from air–water interfaces, concave on the air-side,
supports the weight of water above the level of the water table. J. R. Philip has made
many important contributions on water movement in soils; specific references are
contained in his review (Philip, 1989). In rocks, liquid water may be immobilized
by some degree of chemical bonding with the minerals in the matrix. Because of the
randomness in the pore geometry of most permeable rocks, the interface between
the air and the liquid water region can be expected to be highly irregular with
isolated pockets of water and air in the unsaturated regions above and below. Its
geometry is self-adjusting and over short time intervals it is presumably essentially
static, like a raft of bubbles on water. For a clean air–water interface, the surface
tension coefficient TC is about 73 dynes/cm (or ergs/cm2) at 15 ◦C, though in
field conditions, dissolved surface-active and biological materials may reduce the
effective surface considerably. The capillary suction, the difference between the
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air pressure and the water pressure immediately below an interface is given by
Laplace’s formula,

δp = TC

(
1

R1
+ 1

R2

)
, (2.18)

where R1 and R2 are the principal radii of curvature, which in this context are of
the order of half the pore size. The finer are the pores, the greater is the capillary
suction and the thicker is this capillary zone. In an extremely fine matrix, its
maximum possible height above the water table may be limited by cavitation
when the absolute pressure of the liquid drops below the vapor pressure at that
temperature. In the laboratory under very clean and static conditions, cavitation in
water can be avoided over a significant range of negative absolute pressures, but
this would not be expected in natural rocks with an abundant supply of nucleation
sites such as sharp corners, specks of debris, etc.

2.4.2 Interstitial flow through a uniform matrix

If the interstitial pressure gradient ∇p is not hydrostatic and the weight of fluid
per unit volume ρg is not necessarily uniform, the fluid will flow at a rate deter-
mined by −∇p − ρgl, the driving force per unit volume. The signs express the
facts that fluid flow is driven down the pressure gradient and that the weight of
fluid ρg acts downwards while the unit vector is conventionally taken as verti-
cally upward. Once the interstitial fluid is in motion, internal viscous stresses are
generated that oppose the motion, and the resulting fluid velocity in the pores is
determined by the balance the driving and the resistive forces. In small-molecule
fluids such as water or aqueous solutions, the viscous stresses (force per unit area)
are proportional to the rates of strain in the fluid, the constant of proportional-
ity being the molecular viscosity μ, a property of the fluid. Fluids in which the
stress, rate-of-strain relation is linear are called Newtonian fluids. In the interstices,
the rates of strain depend on the local geometry but are of order v/δ, where v
represents the interstitial fluid velocity and δ the characteristic pore size, so that
the viscous stresses are proportional to μv/δ. In an individual fluid pathway, the
retarding viscous force acting along the walls (per unit length of path) is this
stress times the pore circumference, which is of order δ, i.e. μv. The driving
force is −(∇p + ρgl) times the pore area of order δ2 over which it acts. The
balance between them can be expressed in terms of the mean interstitial velocity
v as

μv ∝ −δ2(∇p + ρgl). (2.19)
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In terms of the transport velocity u = φv,

u = − k

μ
(∇p + ρgl), (2.20)

where k is called the intrinsic permeability. It is proportional to φδ2 with a numerical
constant of proportionality that incorporates the complicated statistical geometry
of the connected pore spaces in the medium. This relation is known as Darcy’s law.

An important comment should be made at this point. The linearity of the relation
found by Darcy (1856) between the driving forces and the transport velocity is a
consequence of both the linear viscosity relation in a Newtonian fluid (such as air,
water or aqueous solutions) and also the neglect of inertial effects in the pore fluid
as it moves along its convoluted pathways. If, at some point, its trajectory has a
radius of curvature r, the fluid inertia sets up an additional pressure gradient ρv2/r ,
where v is the pore velocity – this provides the centripetal acceleration associated
with the curved trajectory. Darcy’s law is accurate only when these inertial pressure
gradients are small compared with the viscous stress gradients μv/δ2, and since in
general r ∼ δ, this requires that

ρv2

δ
� μv

δ2
,

or that the combination

vδ

ν
= uδ

φν
= R � 1, (2.21)

where ν = μ/ρ is called the kinematic viscosity and R is the pore Reynolds number
which expresses the ratio of inertial to viscous effects in the flow. A corresponding
inequality is assumed in fracture flow. This condition is usually satisfied very
strongly in sub-surface flow except possibly for flow through coarse gravel beds
or in vigorous geothermal systems. For such cases, Forchheimer represented the
additional form drag by adding to the linear drag a term quadratic in the transport
velocity and containing an empirical form drag coefficient. Other less fortunate
embellishments of the Darcy equation include the subtraction of a term μ∇2u from
the pressure gradient in (2.20), the result being known as the Brinkman equation
(see Nield, 1984) and of the addition of a cubic drag term, giving what has been
called the cubic Forchheimer equation. Both of these, however, seem to be of more
mathematical than hydrological interest.

There are, however, situations in which the simple Darcy equation is inadequate.
If the interstitial fluid consists of two or more separate components or phases, such
as oil and water, or air and water, the radius of curvature of the interface can be
comparable with the pore size δ. From Laplace’s formula (2.18), surface tension
TC can support a pressure difference of order TC/δ across the interface without
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motion. If n represents the number of such interfaces per unit length along the
pores, an overall pressure gradient of order nTC/δ can be supported without fluid
motion. When this threshold pressure gradient is exceeded, fluids will begin to
move, first in the pathways with largest pores and, subsequently, as the pressure
gradient increases, in the pathways with the next largest and so on. The distribu-
tion of pore sizes, and not simply the mean, becomes crucial in determining the
flow characteristics, and the overall relation between pressure gradient and trans-
port velocity is certainly nonlinear. Interesting numerical experiments on capillary
displacement and percolation of immiscible fluids, showing fingering, trapping,
and incomplete displacement of one fluid by the other, have been conducted by
Chandler, Koplik, Lerman and Willemsen (1982), but this very important though
specialized topic will not be pursued in this book.

2.4.3 Permeability

The permeability is an intrinsic property of the medium, just as the viscosity is an
intrinsic property of the interstitial fluid. The permeability k has physical dimen-
sions L2 and is measured in units of cm2 or m2 and so forth. A curious unit, but one
still widely used in hydrology, is the darcy, defined as the permeability that allows
a transport velocity of 1 cm/s of a fluid with viscosity 1 centipoise (10−2 c.g.s.
units, close to that of water) under a pressure gradient of 1 atmosphere per cen-
timeter! Since mean atmospheric pressure is ∼106 c.g.s. units, a permeability of 1
darcy is about 10−8 cm2, or 10−12 m2. A related quantity also widely used when
pressures are expressed in terms of the equivalent hydraulic head is the hydraulic
conductivity

K = ρgk

μ
= gk

ν
(2.22)

where ν = μ/ρ is called the kinematic viscosity. The hydraulic conductivity
depends on both the permeable medium and the fluid; since its physical dimensions
are [LT −1] (as are those of velocity), it is expressed in units of cm/s, m/s, or m/yr,
etc. It is a particularly convenient quantity in nearly horizontal groundwater flow
in unconfined aquifers in which the pressure is close to hydrostatic (see below) and
the Darcy equation reduces to the simple two-dimensional form

u = −K∇Hζ, (2.23)

where ∇H = (∂/∂x, ∂/∂y) is the horizontal gradient operator and ζ (x, y, t) is the
water table configuration. In a water-saturated medium, the numerical value of K
in m/s is about 107 larger than the numerical value of k in m2.
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The formulation of the Darcy equation (2.20) does not involve assumptions about
any specific geometry of the fluid pathways in a three-dimensional medium, though
the derivation above does assume that the pathway scale can be represented by the
characteristic pore diameter δ alone. In the proportionality statement k ∝ φδ2, the
numerical values of the proportionality constant are found to be generally quite
small. Some simple geometries can be solved explicitly. If the interstices form an
ensemble of parallel tubes of diameter δ, the Poiseuille solution of 1840 (see, for
example, Batchelor, 1967) leads to a permeability of k = (φδ2/32) cos θ , where
θ is the angle between the axis of the tubes and the pressure gradient. With an
isotropic distribution of tube directions, the permeability is φδ2/96, even smaller
than the previous case because many of the tubes are transverse to the pressure
gradient. In more complex geometries, the permeability cannot be calculated so
simply (if at all!) but it is of interest to note that while the permeability in each
case is proportional to φδ2, the constant of proportionality is small, in the range
(1–3) ×10−2. If, in a particular sample, the porosity φ = 0.1 and the pore size δ =
0.1 mm, we would expect k to be in the range (1–3) ×10−11 m2, or (1–3)×10−7 cm2.
Most laboratory measurements of permeability or saturated hydraulic conductivity
involve the measurement of volume flux through a specimen under a large imposed
pressure gradient and the use of equation (2.20), or more recently, in a centrifuge
where the centrifugal potential gradient provides the driving force (Nimmo and
Mello, 1991).

Note also that the grain size per se is irrelevant; the porosity involves the size of
the pores. The two are proportional only in the case of well-sorted, un-cemented
grains, needles, or other particles of approximately uniform shape and size. In
spite of this, attempts have been made to express various sets of empirical data on
permeability in terms of porosity and grain size (see, for example, the summary
in Lerman 1979), but the empirical formulas obtained should be used for media
similar to those measured or, at most, only as a very general guide.

In a useful review (concerned mainly with crystalline rocks), Brace (1980) points
out that laboratory measurements of permeability in small samples give values for
sandstone of from 10−12 to 10−16 m2 and for limestone–dolomite, a wide range
from 10−14 to as small as 10−22 m2, reflecting the variations in micro-structural
characteristics. Metamorphic and granitic rocks have permeabilities from 10−16 to
10−21 m2. In situ measurements give generally higher values, 10−9–10−12 m2 for
chert and reef limestone, 10−12–10−18 m2 for granites or crystalline rocks, probably
reflecting flow through fractures rather than through the rock itself. Stober (1996)
reports similar values in Black Forest granites and gneisses. Fractures may be
sealed or absent in shale. Many limestones and sandstones are already so permeable
(∼10−15 m2) that fractures add little. In the face of these variations, it is clearly
rash to depend heavily on an a priori assumption or estimate of average values,
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Table 2.1. Characteristic magnitudes of permeability and porosity for some
common rocks, orders of magnitude only. The higher values for in situ

measurements probably result from flow through fractures,
rather than through the matrix itself

Permeability (m2)

Material Laboratory samples In situ measurements Porosity

Sandstone 10−12−10−16 10−10−10−14 5 × 10−2

Limestone Dolomite 10−14−10−22 10−10−10−12 (5−20) × 10−2

Metamorphic/Granitic 10−16−10−21 10−12−10−16 10−2

Data from Brace (1980) and Stober (1996).

but fortunately, as we shall see in subsequent chapters, flow patterns can often
be inferred without such numerical guesses. Estimate of flow magnitudes, which
are critical in many practical applications involving contaminant dispersion and
extraction, do usually involve directly the numerical values of k and their spatial
variability. Although field calibration is sometimes possible, this often remains a
primary uncertainty (see Table 2.1).

2.4.4 Reduced pressure and buoyancy

In many groundwater flow situations, the pressure remains quite close to hydrostatic
and in the Darcy equation (2.20), the two terms on the right are almost equal in
magnitude but opposite in sign. Their sum (which drives the flow) is much smaller
than the magnitude of either. It is often more accurate in calculations, and is also
conceptually revealing in flows driven by heat or salinity, to subtract out from
(2.20) the large term ∇pH = −ρ0gl representing the vertical pressure gradient in a
fluid whose density ρ0 is the average for the interstitial fluid in the domain of flow.
The difference between the actual or total fluid pressure pT and the hydrostatic
pressure referred to a convenient origin for z is called the reduced pressure or
the non-hydrostatic pressure. Since the total pressure is of little interest in flow
considerations (though important in thermodynamics), the unadorned symbol p
will henceforth refer to the reduced pressure pT − pH. With this understanding,
after division by ρ0, (2.20) becomes

u = k

ν
(−∇(p/ρ0) + bl), (2.24)
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where the kinematic viscosity ν = μ/ρ0 and the combination

b =
(

ρ0 − ρ

ρ0

)
g (2.25)

is the interstitial fluid buoyancy, a body force per unit mass that acts vertically
upward where the local fluid density ρ is less than the mean ρ0. Where ρ > ρ0,
the fluid has excess weight locally and the negative buoyancy is a body force
per unit mass acting downward. Buoyancy has the same physical dimensions as
acceleration (LT −2). This form (2.24) of the Darcy equation exhibits clearly on
its right-hand side the two major driving forces for sub-surface fluid motion. The
first term is the gradient of reduced pressure, generally associated with variations
in the water table level above, driving fluid flow down the gradient from higher
to lower pressure. The second expresses the buoyancy of the interstitial fluid. If,
because of variations in temperature or salinity in the medium (greater temperature
or lower salinity), ρ < ρ0, the fluid density is less than the mean and the buoyancy
is positive, providing a body force upward.

Note particularly that the gradients in any horizontal direction of reduced pres-
sure and total pressure are the same, since by definition the hydrostatic pressure
gradient is vertical.

To specify the reduced pressure p = pT − pH itself, rather than its gradient, we
must take a reference level, say z = 0, for the hydrostatic pressure and, relative
to this, the hydrostatic pressure pH = −ρgz, with z taken vertically upward. If
the water table is at z = ζ (x, y), where the actual pressure pT is atmospheric (i.e.
zero), then the reduced pressure at the water table is

p = ρgζ (x, y). (2.26)

This is equivalent to the potential introduced by Hubbert (1940), a somewhat
redundant concept that is used widely in the groundwater literature. Its usefulness
is limited to constant density flows in which the velocity is proportional to the
gradient of a scalar (the potential). In flows where buoyancy is important, the idea
of a potential is no longer useful, but the concept of reduced pressure remains
physically pertinent.

2.4.5 Boundary conditions

There are two general types of condition that must be satisfied at the boundaries
of a flow domain in order to define the flow. So-called kinematical boundary
conditions assert in general that fluid cannot be created nor disappear at a boundary.
Dynamical boundary conditions assert that, except for capillarity, the fluid pressure
is continuous across domain boundaries. A discontinuity in the pressure field
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would imply an infinite pressure gradient and infinite transport velocity, which is
physically unacceptable. Thermal boundary conditions specify either the boundary
temperature or heat flux, whichever is physically more appropriate. Some specific
examples follow.

(1) There can be no fluid transport across a fixed impermeable boundary, so that the
normal component of the transport velocity vanishes at the boundary. Symbolically,
u · n = 0 there. Streamlines cannot cross such a surface; in two dimensions the surface
must coincide with a streamline 
 = const. In the absence of buoyancy effects,
Darcy’s equation shows that the pressure gradient normal to the boundary also vanishes:
∂p/∂n = 0.

(2) At a submerged boundary, between a saturated sub-strate and a lake above, the pressure
is hydrostatic and the reduced pressure is the same as that at the water surface above.

(3) At internal boundaries between regions 1 and 2 of different permeability, say, the
normal component of velocity is continuous across the interface; u1 · n = u2 · n, where
the direction of the unit normal n is the same on each side. Consequently, from Darcy’s
law, k1 (∂p/∂n)1 = k2 (∂p/∂n)2 so that the normal pressure gradient on each side is
inversely proportional to the permeability on that side.

(4) At all points along an internal interface, the pressure is the same on each side. Conse-
quently the pressure gradient along the interface is the same on both sides, and from
Darcy’s law, the tangential velocity on each side is proportional to the permeability on
that side: u1 · t/k1 = u2 · t/k2, where t is a tangential unit vector. If the permeability is
discontinuous at an interface between two rock types, then so is the transport velocity
along either side. Conditions (3) and (4) can be combined to produce an analogue of
Snell’s law in optics, k sin θ = const, where θ is the angle between the direction of
flow and the normal.

However, if the boundary is “free,” i.e. an interface between two identifiable
bodies of fluid such as fresh and saline water, or air and water at the water table,
it may move through the matrix. The dynamical boundary condition is again that
the pressure is continuous across the moving interface, except for capillary effects.
The appropriate kinematical boundary condition however, is slightly more complex.
Consider the conservation of interstitial fluid at a free boundary z = ζ (x, y, t) with
the z-coordinate vertically upward, as illustrated in Figure 2.6. If fluid is flowing
beneath a fixed interface with slope ∇ζ , the vertical component of the fluid velocity
is vH · ∇ζ , where vH is the horizontal component. If, in addition, the interface is
moving upward with velocity

.
ζ , the total vertical velocity vZ of fluid at the interface

is

vZ = ζ + vH · ∇ζ (2.27)

or, in terms of the transport velocities (u, w),

w = φ
.
ζ + u · ∇ζ. (2.28)
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Figure 2.6. At a moving internal interface between saturated freshwater and
saltwater regions, for example, the fluid elements on either side must remain in
contact, with relative tangential motion in the interface and equal vertical motion
on both sides.

Equation (2.27) can be derived more formally by considering the total time
derivative or the derivative following the motion of z = ζ (x, y, t), which moves
with the interstitial fluid velocity. From the formula for the total derivative in
multivariate calculus,

dz

dt
= ∂ζ

∂t
+ ∂ζ

∂x

dx

dt
+ ∂ζ

∂y

dy

dt
,

and since vZ = dz/dt, and vH = (dx/dt, dy/dt), we recover (2.27).
If the “free” surface is in fact the water table, there may be the additional factor

of infiltration from rainfall at the rate W(t), measured in terms of length per unit
time, i.e. velocity. This is generally considered as positive even though the rain
comes from above, and represents an additional transport to the interface. Thus
(2.28) becomes

W (t) + w = φζ + u · ∇ζ. (2.29)

Some particular cases: with a horizontal surface and no internal flow,
.
ζ = W (t)/φ;

in a steady state (or over a time average) in an aquifer recharge region, the vertical
transport velocity just below the surface

w = −W (t) + u · ∇ζ, (2.30)
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both terms on the right-hand side being negative since the horizontal flow at the
free surface is directed down-slope.

2.5 Mechanical energy balances

2.5.1 Flow tubes and flow resistance

Useful and general hydrological insights can be obtained by considering the overall
forcing, flow, resistance and overall energetics in a thin flow tube extending from
the water table at a recharge region through a region of possibly inhomogeneous
permeability, to its discharge at a lower elevation. The lateral boundaries of the
flow tube are defined by streamlines of the flow. Let s be the distance along the
axis of the flow tube from the entry point and let A(s) be its cross-sectional area.
The permeability can vary along the length of the flow tube, so that k = k(s), in
general. Under steady conditions (or in the mean) the incompressibility condition
(2.9) ensures that the volume flux through the flow tube q = u(s)A(s) is constant
along its length. The Darcy equation (2.24) can be rearranged to express the force
balance among the driving pressure gradient, the buoyancy force and the flow
resistance,

−∇p/ρ0 + bl = νu/k(s). (2.31)

This can be integrated along a flow tube axis from any one designated point, 1, say,
to another, 2:

−
2∫

1

∇(p/ρ0) · ds +
2∫

1

bl · ds = ν

2∫
1

k−1u · ds. (2.32)

The first line integral involving the pressure, integrates to ρ−1
0 [p1 − p2], the

pressure difference between the two end points. If, in particular, points 1 and 2
are at an aquifer recharge point and discharge point respectively, this reduces to
g(ζ1 − ζ2), the hydrostatic head difference that drives the flow, as indicated in
Figure 2.7. The second integral, which involves the internal buoyancy distribution
that may arise from temperature or salinity variations in the flow region, can be
written as

B =
∫

b cos θ ds,

where θ is the angle between the flow direction and the upward vertical. This is
interpreted as the net buoyancy force along the flow tube axis, which is driving
when b and cos θ have the same sign (i.e. positive buoyancy in an upward flow or
negative buoyancy – excess weight – in a downward flow) or retarding when the
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Figure 2.7. A flow tube with cross-section A(s) and constant volume flux dis-
charging into a lake or stream is driven by the hydraulic head of the water table
in the infiltration region above the water level at discharge, plus any variations in
fluid buoyancy along the tube, and is resisted by the flow tube resistance along the
path.

signs are mixed. In the last term, u · ds = (q/A(s)) ds, where q is the volume flux,
which is constant along the length of the tube even though the cross-sectional area
may vary. Equation (2.32) then becomes

ρ−1
0 (p1 − p2) + B = qR, (2.33)

where the flow tube resistance along the streamline is

R = ν

∫
ds

k(s)A(s)
. (2.34)

Equation (2.33) therefore expresses the two driving forces, the pressure difference
between the two ends of the flow tube and the net internal fluid buoyancy B,
which balance the viscous retardation of the fluid in the medium, proportional
to the volume flux q. The flow tube resistance has the physical dimensions of
(length × time)−1. Four factors influence its magnitude: the fluid viscosity, the
matrix permeability, the path length and the flow tube area. With given hydraulic and
thermal driving forces, sections of high permeability provide small flow resistance,
even over long path lengths. A “retarding layer” of low permeability may separate
aquifers above and below, yet provide only moderate flow resistance if it is relatively
thin (a small path length) and if the cross-sectional area of the flow tube is able
expand sufficiently, as the fluid seeps across.

A useful quantity in many applications is the flow tube conductance C, which is
the reciprocal of the flow tube resistance:

C = R−1 =
{
ν

∫
ds

k(s)A(s)

}−1

. (2.35)

Equation (2.33) can be rewritten as

q = C
{
ρ−1

0 (p1 − p2) + B
}
, (2.36)
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which expresses the volume flux as the flow tube conductance times the sum of
the driving forces. If there are a number of flow tubes in parallel with the same
driving forces, the flux in each is proportional to the conductance and the total flux
is proportional to the sum of all the flow tube conductances. Low-permeability,
low-conductance inclusions may have very little effect on the overall volume
flux, provided the flow tubes can detour around them, as they may through a
gap in an otherwise confining layer. The flow simply avoids regions of the lowest
permeability. In any flow domain, the hydrologically important regions are those of
high conductance, whose permeability is greatest and connectivity most extensive.

2.5.2 Energy balances

The mechanical energy balance in the interior of the flow can be derived in a similar
fashion. The primary energy supply is the inflow of potential energy associated
with infiltration of the water at higher reduced pressure (or water table elevation)
relative to the discharge, and is given by ρ−1

0 q(p1 − p2). There may also be internal
energy sources or sinks associated with the buoyancy distribution. The internal
redistribution of this energy flux can be exhibited by taking the scalar product of the
transport velocity u with Darcy’s equation for the force balance in the form (2.31).
From elementary calculus, u · ∇p = ∇ · (pu) − p∇ · u and ∇ · u = 0 because of
incompressibility. This leads to the mechanical energy balance throughout the flow
region,

−ρ−1
0 ∇ · (pu) + b(l · u) = νu2/k. (2.37)

The first term in this equation specifies the spatial rate at which the potential energy
is decreasing in the flow direction, and the second expresses the rate at which energy
is supplied or extracted from the flow by buoyancy, according to the sign of the
buoyancy and the direction of flow. The final term, which is always positive, is the
rate ε at which energy per unit mass of interstitial fluid is dissipated by the viscous
flow through the interstices:

ε = ν
u2

k
, (2.38)

where ν is the kinematic viscosity.
The integrated version of the mechanical energy balance (2.37) over a thin flow

tube of cross-sectional area A(s) is also of interest. Since, again, the volume flux
q = u(s)A(s) is constant along the flow tube and with use of (2.24), the integrated
equation becomes

ρ−1
0 q(p1 − p2) + q

∫
b cos θ ds = q2R (2.39)
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in terms of the flow tube resistance R in (2.34). In this integral energy balance, the
rate of input of potential energy that drives the flow plus the rate of energy supply
from buoyancy is balanced by the internal rate of energy dissipation q2R. Note
that the internal pressure distribution has disappeared from this overall balance
since it provides for the flux of energy from one point to another throughout the
interior, but is not an internal energy source or sink. The overall energy balance is
the integral of (2.37) over the whole flow domain (i.e. over all the flow tubes):

−ρ−1
0

∫
pu · ds +

∫
bwdV =

∫
εdV . (2.40)

The three terms represent, in order, the net potential energy input associated with
infiltration into the region (u · ds < 0) at higher reduced pressures and discharge
at lower ones, the energy supplied by the upward motion of more buoyant fluid
in the interior, or by downward motion of denser fluid, or lost by the reverse, and
finally, the viscous dissipation throughout the entire domain.

In these derivations, the matrix and the fluid have been regarded as incompress-
ible. Transient compressibility effects can be important following seismic events
as discussed in Section 3.6, but usually, when compared with the gravitational
potential energy, the strain energy of a hydrological system (the energy of elastic
compression of the fluid) is a trivial part of the overall energy balance. The strain
energy per unit mass of water is defined as

ES = −p
dV

V
= p

dρ

ρ
,

where d V and dρ are the changes in specific volume and density produced by
the pressure p. Changes in pressure and density are related by dp = c2dρ, where
c is the speed of sound, which, for the most compressible constituent, water, is
about 1400 m/s. In a permeable formation extending to a depth h, the fluid pressure
is approximately ρgz, where z is measured down from the water table, and the
volumetric strain in the fluid at depth z is dρ/ρ = dp/ρc2 = gz/c2. Consequently
the mean strain energy of the water (occupying the volume fraction φ of the water
column) is

ES ∼ 1
2φρgh(gh/c2)

while the mean gravitational potential energy EP = 1
2ρgh (the numerical factor

arising because the mean pressure is half the base value). The ratio of mean strain
energy to mean gravitational potential energy is equal to φgh/c2. Even if the
vertical extent h of the aquifer is as large as 1 km, this ratio is less than 1%. The
fluid kinetic energy is far smaller still.
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2.6 Two theorems

This section concerns the application of two theorems that were established by
Helmholtz (see Lamb, 1932), concerning the flow of viscous fluid of constant
density at very low Reynolds number. For a modern discussion, see Batchelor
(1967). In principle, Helmholtz’s general results for flow in arbitrary connected
domains do cover interstitial flow in permeable media with arbitrary distributions
of (positive) permeability, but direct proofs for Darcy flow are very much simpler.
Despite their antiquity, the theorems seem to have been largely overlooked in this
area, though they do offer the potential for many conceptual insights and practical
applications.

2.6.1 The uniqueness theorem

The uniqueness theorem established below asserts that there cannot be more than
one Darcy flow solution for constant density flow with given boundary conditions –
the solution is unique. The immediate utility of this theorem is that, if one finds
a solution to such a problem, there are no others. The solution cannot develop
a bifurcation or an instability. The theorem is true no matter what the internal
permeability distribution may be. Note, however, that this uniqueness applies to
fluids of constant density; it does not extend to situations in which buoyancy forces
are involved. In fact, we know by examples that it is not true in these situations. One
simple such case involves a saturated permeable region with horizontal isopycnals
(lines of constant density). One solution is a state of rest – the velocity is everywhere
zero. When fresh water lies over more saline water, the density decreases with
height and the state of rest is stable – if it is disturbed slightly, it will return to its
initial state of rest. However, when the salinity and density increase with height,
the state of rest is unstable; tiny perturbations amplify and the system moves to a
new time-dependent or steady-state solution.

To prove the uniqueness for constant density Darcy flow, consider the flow
through a medium in which the permeability k(x) is an arbitrary (but positive)
function of position. In the absence of buoyancy forces,

u = −(k(x)/μ)∇p, (2.41)

where p is the reduced pressure. The incompressibility condition is ∇ · u = 0. Let
us suppose that the theorem is false, that two different patterns of flow and pressure
(u, p) and (u′, p′) are possible in a given region V, both satisfying (2.41) and
the incompressibility condition, with assigned distributions of either pressure or
normal component of transport velocity on the boundaries S;

p = p′ or u · dS = u′ · dS on the boundary surface S. (2.42)
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We prove that the two solutions are, in fact, the same. Consider the following
integral throughout the volume∫

k(x)[∇p − ∇p′]2dV

=
∫

k(x)[∇p − ∇p′] · [∇p − ∇p′]dV ,

= −μ

∫
(u − u′) · ∇(p − p′)dV , from (2.6.1),

= −μ

∫
∇ · [(u − u′)(p − p′)]dV , from incompressibility,

= −μ

∫
(p − p′)(u − u′) · dS, from the divergence theorem

= 0, (2.43)

the last step expressing the identity of boundary conditions (2.42). The first integral
(2.43) therefore vanishes and since k(x) is everywhere positive, it follows that the
integrand must be zero and consequently ∇p = ∇p′ everywhere. The two solutions
are identical and the theorem is true. Solutions are unique.

2.6.2 The minimum dissipation theorem

The minimum dissipation theorem is not only conceptually important but also use-
ful in some practical situations by providing a means of inferring, without detailed
calculation, the general nature of flow patterns in perhaps complex geological sit-
uations. The theorem statement is as follows. In a region occupied by a permeable
medium in which buoyancy effects are negligible, if the transport velocity distri-
bution over the boundary of the region is prescribed, then the actual internal flow
has a total rate of dissipation of energy that is less than any other conceivable,
kinematically possible flow in the same region with the same boundary conditions.
(A kinematically possible flow is any velocity field one might imagine that satisfies
the incompressibility condition, but not necessarily the Darcy equation. The actual
flow, of course, satisfies both.) For example, in a near-surface groundwater flow,
rainwater infiltrates downward to the water table at a rate that can be regarded as
given, moves a possibly significant distance as groundwater through a matrix with
a complex distribution of permeability and ultimately discharges into streams or
lakes. Whatever the internal permeability structure may be, this remarkable the-
orem asserts that the patterns of groundwater flow speed and direction are those
which minimize the overall dissipation rate.

The proof is as follows. Let u(x), p(x) represent the true solution with u pre-
scribed on the boundary S. Consider a kinematically possible alternative flow that
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one might dream up, u + u′, p + p′, with the same velocities at the boundary, so
that

u′ = 0 on S. (2.44)

This alternative flow also satisfies the incompressibility condition so that ∇ · u′ = 0,
but it may not satisfy the Darcy equation. From (2.36), the total rate of energy
dissipation in the alternative flow is∫

εdV = μ

∫ {
(u + u′)2/k

}
dV,

= μ

∫ {
(u2 + u′2)/k

}
dV + 2μ

∫
(u · u′/k)dV .

Since the true solution does satisfy the Darcy equation μu/k = −∇p, the last term
above becomes

2
∫

(∇p) · u′dV = 2
∫

∇ · (pu′)dV since ∇ · u′ = 0,

= 2
∫

pu′ · dS from the divergence theorem,

= 0, from (2.44).

Accordingly, the total dissipation rate in the alternative flow is

μ

∫
{(u2 + u′2)/k}dV , which is greater than that of the true flow, namely

μ

∫
(u2/k)dV . This establishes the theorem.

It is a very important and far-reaching result. Examination of the derivation above
confirms that it remains true if the permeability k(x) in the region is not uniform
provided only that the velocity distribution across the boundaries is specified.
Regions or lenses of low permeability are generally sites of proportionately low flow
velocities, and because of the quadratic dependence of the dissipation on u, they
contribute relatively little to the overall dissipation. The flow occurs preferentially
in the high-permeability, low-resistance regions, attesting to the accuracy of the
old adage that “flow follows the path of least resistance.” It is a robust theorem,
finding a number of applications in later sections of this book.

2.7 The thermal energy balance

The distribution of temperature in the fabric is constrained by an equation describing
the heat balance in each averaging volume – an expression of the first law of
thermodynamics. Let C represent the specific heat at constant pressure; we will use
subscripts “M” and “F” to refer to properties of the saturated matrix as a whole and
to those of the fluid, respectively. The rate of change in time of the heat content in
any element of unit volume is (ρCM)∂T /∂t , and this may come about as a result of
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heat addition (or subtraction) brought about by convective heat transport in moving
interstitial fluids, by molecular conduction through the matrix, and possibly by heat
generation (or absorption) in chemical reactions.

The convective heat flux across unit area of the fabric is given by the product
of the heat content per unit volume of the interstitial fluid (ρC)FT , times the mean
interstitial fluid velocity v with which it moves, times the fraction φ of the area
occupied by the fluid, that is, by (ρC)FuT . The rate of accumulation of heat in the
volume element associated with this is the net flux inwards, or minus the net flux
outwards across the surfaces of the element of volume,

−(ρCF)
∫

(T u) · ndS = −(ρCF)
∫

∇ · (T u)dV ,

from the divergence theorem. The convective heat input per unit volume is conse-
quently

−(ρC)F∇ · (uT ) = −(ρC)Fu · ∇T , (2.45)

in virtue of the incompressibility condition (2.8).
Heat is also transferred by conduction through the saturated matrix. The conduc-

tive heat flux down the gradient is proportional to the magnitude of that gradient –
this is Fourier’s law of heat conduction – and can be expressed as −κM∇T , where
κM is the thermal conductivity of the saturated medium. The rate of accumulation
of heat per unit volume is then minus the divergence of this, or

∇ · (κM∇T ) = κM∇2T , (2.46)

when the medium is thermally homogeneous. Finally, if chemical reactions are
taking place, heat may be added at the rate Q̂ per unit volume. Combining these
expressions, we have the thermal energy balance

(ρC)M
∂T

∂t
= −(ρC)Fu · ∇T + κM∇2T + Q̂. (2.47)

This can be rearranged slightly and divided throughout by (ρC)F to give

M
∂T

∂t
+ u · ∇T = κ∇2T + Q, (2.48)

where M = (ρC)M/(ρC)F, the heat source Q = Q̂/(ρC)F, and the thermal dif-
fusivity κ , with physical dimensions (length)2 × (time)−1, is the matrix thermal
conductivity divided by (ρC)F. The relative density of most crustal rocks is about
2.6, while the specific heats are between 0.19 and 0.21, so that M is generally
0.5 ± 0.1. Small glass beads are sometimes used as the porous medium in con-
vection experiments, and for them, M ∼ 0.4. The form of the advection term in
the heat conservation equation above indicates that in a permeable, water-saturated
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medium, the effective advection velocity for heat is u/M , somewhat larger than the
transport velocity but smaller than the interstitial fluid velocity u/φ. This is because
heat is diffused (or “leaked”) from the fluid pathways into the matrix solids, while
the interstitial fluids and inert solutes remain in the interstices.

While the advection of heat by the mean flow is always important in thermally
driven flows, the dispersion of heat about the mean flow streamlines by the ran-
dom excursions of fluid among the grains seems less so, except possibly in more
permeable media such as insulating material (Kvernvold and Tyvand, 1980). The
thermal diffusivity for saturated rock, κ is of the order 10−7 m2s−1 (MKS units),
about the same as that for water. Heat is conducted through the entire fabric, not just
along the fluid pathways, which occupy only the fraction φ of the area across which
thermal dispersion occurs. Molecular heat conduction through the fabric dominates
the random heat dispersion on the pore scale l about the mean streamlines when

κ 	 φvl, (2.49)

a condition that is usually satisfied in geological contexts. For example, even in a
sandy aquifer with porosity φ ≈ 0.3, pore diameters of order 10−3 m and a mean
interstitial fluid velocity of 1 km/yr ∼ 3 × 10−5 m/s (which for most aquifers is a
high value) the left-hand side of (2.49) is about 10 times larger than the right.

2.8 Dissolved species balance

The patterns of flow through sediments are of interest to the environmental engineer
in questions of the dispersal of reactive chemical wastes in surface aquifers and to
the geochemist largely because of the physical and chemical changes in the fabric
that are being produced or were produced in the distant past. Both are influenced
by cementation in which solid material is deposited from solution at the pore
boundaries, by dissolution when it is removed and carried away, or by various
chemical reactions between the solid constituents of the fabric and the solutes of
the interstitial fluid.

Equations for the balances of chemical constituents in the interstitial fluid will
be developed in the same way as in the preceding section. Since our interest is
in spatial distributions of chemical reactions and reaction products, the intersti-
tial fluid concentrations, c(x, t), are defined as mass of dissolved solute per unit
volume of solution, with dimensions [ML−3], rather than per unit mass, which is
dimensionless. The solute concentration balance, like the mass balance (2.11) and
the heat balance (2.48), has the same form regardless of the units in which it is
expressed, whether moles or mass per unit volume, provided they are consistent
throughout.
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The spatial distributions of fabric alteration involve processes on a wide range
of scales. (i) On the largest scales, from that of the formation itself to the matrix
averaging scale (Section 2.2), solutes are transported advectively by the mean
interstitial fluid flow v(x, t) through the pores and fractures in the medium. (ii)
Within the matrix averaging volumes, solute is dispersed in spatially random fluid
pathways and possibly by small-scale layering, while finally, (iii) on the scale
of the pores themselves, molecular diffusion to and from the pore walls allows
sorption or interfacial chemical reaction between the solid matrix and the pore
fluids, as described by Compton and Unwin (1990). Only the first of these is
resolved explicitly in the solute balance equations, with dispersion within the matrix
averaging volumes being expressed in terms of a dispersivity and the chemistry
being specified in terms of kinetic reaction rates and solution concentrations.

Thus, the mass of a particular solute in the interstitial fluid per unit volume
of the matrix is φc(x, t), where φ is the matrix porosity, and its rate of change
is the net result of (i) the advective flux convergence −∇ · {φv(x, t)c(x, t)} =
−∇ · (uc), where u = φv is the transport velocity, and (ii) small-scale dispersive
flux φD∇c, where D is the macroscopic dispersion coefficient (Section 2.10,
below). The dispersive flux divergence is then φD∇2c. Finally, (iii) for the present,
the sub-pore and molecular-scale processes will be expressed as an overall source
term φQC, where QC represents the mass of solute added per unit volume of
the fluid per unit time, which depends on the chemistry, the surface properties
of the internal fluid/solid interfaces and their microscale geometry. Accordingly,
the species balance for each dissolved constituent is represented by

φ
∂c

∂t
= −∇ · (uc) + φD∇2c + φQC. (2.50)

If the rate of generation of fluid in the reaction is zero or negligible compared with
the external fluid flux, then ∇ · u = 0 and the equation can be written in terms of
the mean interstitial fluid velocity as

dc

dt
= ∂c

∂t
+ v · ∇c = D∇2c + QC, (2.51)

The advection velocity for non-reacting dissolved species is the mean interstitial
velocity v = u/φ, and (2.51) states that for fluid elements moving with this veloc-
ity, the rate of change following the motion of solute concentration dc/dt is the
result of both dispersion and chemical reaction. Sorbtion and chemical reaction
with the matrix generally reduce the effective advection velocity, as described in
Chapter 5. The difference between the effective advection velocities for heat and
dissolved salts is brought about by the fact that advected heat changes the temper-
ature of the whole matrix whereas non-reacting advected salts remain in the fluid
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phase. This difference has profound consequences in the transport of dissolved
contaminants and in thermo-haline instabilities as described in Chapters 4 and 5.

The salinity S of the interstitial fluid is usually defined as the total dissolved
mass per unit mass of solution; when a number of dissolved species is present
S = ρ−1�c, summed over the concentrations c of the separate constituents. A
conservation equation for S follows from (2.51); since the equation is linear in c,
we have

∂S

∂t
+ v · ∇S = D∇2S + QS (2.52)

where the combined source term QS = ρ−1�QC may be nonlinearly dependent
upon the individual concentrations.

2.8.1 Rate-limiting steps and the solute source term

The generic expression QC in (2.50) and (2.51) may represent the addition of solute
to the interstitial fluid by one or more of a variety of physical, chemical or biological
processes. Dissolution of the solid phase adds solute to the interstitial fluid and
QC > 0, while precipitation depletes it, QC < 0. Oxidation or reduction reactions
or organic decomposition may provide both sources and sinks. Most of the reactions
of interest in this book occur at the solid/liquid interfaces at the surfaces of pores or
fractures, on scales much smaller than the averaging volume that is implied in the
continuum representation of equations like (2.52). This suggests that, among many
other factors, QC is proportional to the average area of reacting surface per unit
volume of fabric, or approximately, to the volume fraction of the reacting mineral.
Nevertheless, the Darcy-type averaging process distributes the sources throughout
the averaging volume and QC becomes a field variable, determined in detail by
interfacial surface morphology, the chemical kinetics (Lerman, 1979, Drever, 1982,
Helgeson, Murphy and Aagaard, 1984, and others) together with other molecular
processes.

Even in a process so apparently simple as dissolution, the accepted scheme, as
described by Compton and Unwin (1990), involves a sequence of steps including
(a) advective and diffusive transport of the reactant from its source to the reaction
location, (b) adsorption of the reactant onto the surface, (c) diffusion of the reactant
on the surface to a reactive site, (d) reaction, (e) diffusion of products away from
the immediate reaction site, ( f) product desorption, and (g) diffusive and advective
transport of the reaction products away from the reaction site. In the context of
reactions between a solid matrix and interstitial fluids, the processes (a) and (g) are
site-specific and specified explicitly by the advective and diffusive terms in equa-
tion (2.51). The ionic concentration of interstitial fluid is usually several orders
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of magnitude smaller than in the solid minerals with which reaction occurs, and
although it may take decades or centuries for interstitial aqueous solutions to pass
through a geological formation, the time required to supply mineralogically signif-
icant amounts of reactant is even greater by a further several orders of magnitude.
The time required to progress through the sequence of internal steps, (b) to (f ),
is determined essentially by the time scale over which the slowest or rate-limiting
step in the ladder occurs, and this is frequently much smaller than the reactant
transport time. The reactions occur more rapidly than does the transport of reactant
to the reaction site. In this circumstance, the reaction region is concentrated into a
relatively narrow zone or front that propagates through the region in the direction
of the mean interstitial flow and separates the region of unaltered rock ahead from
the region behind in which the reaction has completed. This important process is
described in quantitative detail in Section 5.4.

The speed at which the reaction front propagates is proportional to the supply
of reactant, but the internal structure of the front involves the sequence of internal
steps, (b) to (f ), listed above. Within these, the rate-limiting step seems frequently
to be determined by the reaction kinetics (a function of the activities involved)
at activated sites on the surface of the solid mineral, so that the active interstitial
surface area per unit volume of the fabric is also an important factor. In the present
context, molecular diffusive exchange between the pore or fracture volume and the
adjacent surface is rapid, taking only seconds or minutes in a 10 micron pore, and
only seldom may be limiting. The reaction progress can represented in terms of
an overall rate constant γ , which lumps together these factors and the temperature
dependence (and consequently varies widely), multiplied by a function of the
relative saturation c/cE, where cE is the equilibrium concentration:

QC = γ cEf (c/cE) (2.53)

where γ has dimensions (time)−1 and the function f is dimensionless. The form
of the function f can be determined experimentally; it may be dependent on pH or
the concentration of other ions present. Over restricted ranges of the argument, it
can sometimes be represented as a power-law relationship, and the power involved
is called the order of the reaction. For example, the experiments of Plummer and
Wigley (1976) show that calcite in water at 25 ◦C and 1 atmosphere partial pressure
of CO2 dissolves as a second-order reaction as the pH increases from 3.9 when
c = 0, to 5.9 as the calcite dissolves.

There are a few simple constraints on the form of the function f that determine the
reaction progress. When a solid is dissolving, the rate of dissolution, proportional
to f, is expected to be a maximum when the surrounding solution is extremely
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dilute, so that we can take

f (0) = 1, QC = γ cE when c/cE → 0. (2.54)

Note that this condition in fact defines γ as the actual dissolution rate in a very
dilute solution, divided by the equilibrium fluid concentration, both of which are
measured quantities. When the solution is saturated at a given temperature and
pressure, a state of equilibrium exists between solid and saturated solution and the
net source vanishes:

f (1) = 0; QC = 0 when c = cE. (2.55)

When a solution is supersaturated c > cE, the function f is negative, and solute
precipitates or crystallizes from the solution. A simple form of the distribution
function f that satisfies these conditions is

f (c/cE) = 1 − (c/cE)n, n > 0, (2.56)

though it has little other chemical justification. Near equilibrium, i.e. when c =
cE − �c, where �c/cE is small (2.56) reduces to

f (c/cE) ≈ n(�c/cE) and QC ≈ nγ (�c);

the rate of dissolution is proportional to the index n, the reaction rate and the
under-saturation �c. Since the overall rate “constant” γ is a lumped parameter in
geological applications, its value can vary widely even with the same mineralogy.
Lerman (1979) quotes values of γ from laboratory measurements on silicate min-
erals from 2 to 20 yr−1 or (0.6–6) × 10−7 s−1, whereas those inferred from deep
ocean cores in siliceous sediments are several orders of magnitude smaller!

In the species concentration balance, (2.51), the source or chemical reaction term
is of general order γ c since the distribution term is of order unity,f (c/cE) ∼ 1. The
advection term is of order ν̄c/ l where ν̄ is the mean interstitial fluid velocity and
l, the scale of variation of the fluid concentration in the flow direction. The ratio

Da = γ l

v
, (2.57)

known in chemical engineering as the Damköhler number, is the ratio of the time
(l/ν̄) taken for the interstitial fluid to move a distance l through the matrix, to
the time scale for chemical reaction γ −1. In a reaction front, these two quan-
tities are equal so that Da ∼ 1 and l ∼ v/γ characterizes the thickness of the
front.

During the 1990s it became increasingly apparent that unicellular microorgan-
isms, metal-reducing bacteria are common in groundwater and sediments, and are
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extremely efficient catalysts in a variety of geochemical reactions. Lovley et al.
(1989) showed that even under anoxic conditions, these organisms catalysed the
reduction of Fe3+ ions and the oxidation of aromatic hydrocarbons in groundwater.
Geologic Fe3+ oxides showed a large range of reducibility, approaching 100% in
some materials (Zachara and Rodin, 1996), and Russell et al. (2003) claim that
hydrolysis rate enhancements of order 106 can be achieved. A brief but useful
review has been given by Newman (2003). The mechanisms of electron exchange
are not yet entirely clear, and the range of materials in which they occur is some-
what uncertain. However, when reactions can be catalyzed effectively in this way,
the kinetic reaction rates may be so rapid that the reaction progress is limited by
other steps in the sequence. The principal consequence of this catalysis may well
be a widespread reduction in the thickness of reaction fronts with their propagation
rate unchanged, since the front propagation speed is dependent on the supply of
reactant, not the speed at which the reaction occurs.

Somewhat paradoxically, one geochemical reaction scenario in which the reac-
tions are clearly free of flow control involves the hot springs in places like Yel-
lowstone in Wyoming, Rotorua in New Zealand and Pamukkale in Anatolia. Here,
warm mineral-laden aqueous solutions bubble to the surface, depositing calcite in
pools and terraces at an easily observable rate. The species balance equation in
the spring waters is precisely identical to the balance (2.51) for interstitial fluids in
the porosity limit φ → 1, i.e. where the solid matrix disappears and the transport
velocity and the mean velocity of fluid elements become identical. Interstitial fluid
velocities in pores or fractures may be a few m/yr while the fluid velocities u = v

in the springs can be seen to be characteristically a few cm/s, greater by a factor
of about 3 × 109. The length scales of the reaction zones in the two cases may
generally be comparable, so that the time scales involved in reactant transport in
the hot springs are much smaller that in aquifer interstices and the rates are much
larger, by factors of order 109–1010. In spite of the generally warmer temperature
in the hot springs, the rate-limiting step in the reaction sequence there is very likely
to lie in the kinetics, not the flow.

2.8.2 First-order reactions

Near equilibrium, one might expect that the rate of addition of solute to the intersti-
tial fluid by dissolution is linearly proportional to the local concentration difference
from the equilibrium value:

QC = γ (cE − c), (2.58)

which also follows from (2.56) with n = 1. Reactions in which the rate of pro-
duction or disappearance of a dissolved species is linearly proportional to the
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difference between the local concentration and the equilibrium value are described
as first order.

Dissolution and precipitation may occur simultaneously when polymorphic
forms of a solid phase have different solubilities. In the case of silica, for example,
the solubility of amorphous silica (opal) is considerably greater than that of quartz,
those of other polymorphs being intermediate (see, for example, Lerman 1979,
p. 387). The silica concentration in the interstitial fluids is then described by

∂c

∂t
+ φ−1u · ∇c = D∇2c +

∑
n

γn(cnE − c),

where γn is the rate constant and cnE the saturation concentration of the nth poly-
morph. Alternatively,

∂c

∂t
+ φ−1u · ∇c = D∇2c + γ (C − c), (2.59)

where

γ =
∑

n

γn, C = γ −1

(∑
n

γncnE

)
. (2.60)

In a steady state with no flow, the interstitial fluid concentration stabilizes at c = C,
which is the arithmetical average of the saturation concentrations of the individual
polymorphs, weighted by their respective rate constants. Those for which cnE > C

are dissolving while polymorphs for which cnE < C are being precipitated.

2.9 Equations of state

The density of the interstitial fluid, usually an aqueous solution, depends on the
temperature T, pressure p, and the concentrations cn (mass per unit volume) of
dissolved solids. The salinity S (dissolved mass per unit mass) is defined as the
sum of the solute concentrations,

S = ρ−1
�
n

cn, (2.61)

where ρ is the solution density. The relationship among these quantities,

ρ = ρ (p, T , S) , (2.62)

is the equation of state. It is generally nonlinear and, for some fluids, it has not
been measured with great precision. The behavior of fresh or low-salinity water
in the range 0−10 ◦C is particularly anomalous. As the temperature decreases
from about 10 ◦C, water contracts and increases in density until at 4 ◦C a density
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maximum is attained. Below this, the water expands and its density decreases as
the temperature falls towards 0 ◦C. Ice forms first at the water surface.

In geological flow situations, variations in interstitial fluid density are most sig-
nificant in their influence on the fluid buoyancy – horizontal variations in buoyancy
necessarily lead to fluid motion, as will be seen in the next chapter. When the fluid
temperature and pressure are sufficiently far removed from the critical and freezing
points, and the temperature and salinity ranges in the field of flow are sufficiently
small, the equation of state can be represented with reasonable accuracy as a linear
function of temperature and/or salinity, such as

ρ = ρ0(1 − αT + βS), (2.63)

where ρ = ρ0(p) is the reference density at the ambient pressure and

α = −ρ−1
0 ∂ρ/∂T , β = ρ−1

0 ∂ρ/∂S (2.64)

are the coefficient of volumetric expansion and density coefficient for salinity,
respectively. For saline water in the range 10–20 ◦C, α ≈ 1.5 × 10−4(◦C)−1 and
β ≈ 0.78 when the salinity is expressed as the dissolved mass of salt per unit mass
of solution (Weast, 1972).

However, when significant variations in interstitial density are produced by
dissolution of a major fabric component or by ex-solution, the concentration may
be close to saturation at the local ambient temperature: c = cE(T ). The equation of
state can then be expressed as

ρ = ρ0(1 − αST ),

where

αS = − 1

ρ0

∂ {ρ (T , cE(T ))}
∂T

(2.65)

can be described as the thermal expansion coefficient of the continuously saturated
solution. Its magnitude and sign depend on the chemical nature of the solute. From
(2.65)

αS = − 1

ρ0

{
∂ρ

∂T
+ ∂ρ

∂cE

∂cE

∂T

}
,

and if the saturated solute (rather than any other that may be present) dominates
the variations in density,

∂ρ

∂cE
= − 1

ρ0

∂ρ

∂S
= β.
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Consequently, the thermal expansion coefficient for a continuously saturated
solution is

αS = α − β

ρ0

∂cE(T )

∂T
. (2.66)

Representative values of α, β and ∂cE/∂T can be found in the International
Critical Tables (Washburn, 1929) or the Handbook of Chemistry and Physics
(Weast, 1972). Solutes that saturate at very low concentrations have αS ≈ α, the
ordinary coefficient of expansion for water. For most solutions, ∂cE/∂T > 0,
though Ca2SO4 · 2H2O (natural gypsum) is an exception with cE decreasing from
2.4 × 10−2 g/cm3 at 20 ◦C to about 2.2 × 10−3 at 80 ◦C. Those whose saturation
concentration is large and increases rapidly with temperature may have αS < 0; as
the temperature increases, so does the density, since the volumetric expansion is
more than offset by the increased mass of solute in the concentrated solution.

The fluid viscosity μ is also a function of temperature and, to a lesser extent,
of pressure and salinity, and a detailed collation is given by Kestin, Khalifa and
Correia (1981). For example, the viscosity of water decreases by a factor of about
three from 0 ◦C (1.79 cp) to 40 ◦C (0.65 cp). However, the viscosity (appearing in
Darcy’s law) always occurs in combination with the permeability, whose variability
in natural formations is usually much greater than the variations in fluid viscosity.

2.10 Dispersion

The spatially random fluid motion in a porous medium with variable or random
permeability is much more tightly constrained than is turbulent motion in a river
or lake. In an Eulerian frame of reference, fixed with respect to the matrix, the
velocity field is essentially steady in time, although it may vary on seasonal or
climatic time scales. The constraint of uniqueness insists that, in the absence of
buoyancy effects, there is only one flow solution that cannot evolve in time to
another. The minimum dissipation theorem severely restricts the meandering of the
flow in a randomly permeable medium. Only when it offers lower overall dissipation
can a streamline deflect from the shortest path, in order to detour through a region
of higher permeability or to deflect around one of lower permeability. There are no
eddies in groundwater flow patterns.

Nevertheless, it is intuitively evident that as marked, interstitial fluid elements
move through an aquifer with randomly varying permeability or an extensive frac-
ture network, they will tend to disperse about their mean pathways. The velocity
field is spatially random but approximately steady in time. In a sufficiently large
and generally homogeneous domain, variations in local permeability produce dis-
tributions that tend to become Gaussian (Fickian) with the root mean square spread
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about the mean streamline that is asymptotically proportional to (Dt)1/2, where D
is the appropriate diffusivity and t is the elapsed time. This asymptotic state can
be attained with an effective diffusivity proportional to the product of the length
scale of the variations in permeability and the consequent fractional variations in
interstitial fluid velocity, provided the flow domain size is much larger than the
characteristic scale of the permeability variations.

The structural geology has a profound influence on dispersal. In a fracture–
matrix medium, fluid in the fractures moves and disperses more rapidly than fluid
in the blocks, so that a pattern of double dispersion emerges. When the dispersal
is a consequence of a more-or-less random distribution of more permeable lenses
that concentrate and redistribute the flow, the effective pathway intersection scale
may be comparable with the flow domain size, and the (Dt)1/2 asymptotic state
is not attained at all. In these circumstances, the dispersion is scale dependent,
with a root mean square particle displacement from the mean that increases in
time at rates between t1/2 and t. An understanding of dispersion when the scale
of inhomogeneity is not very small compared with the flow domain size, requires
much more detailed specification of the large-scale permeability structure than is
needed above. Important contributions to understanding the relationships between
dispersion and the statistics of large-scale anisotropy have been made by Dagan
(1982, 1984), who called the phenomenon “mega-dispersion.”

2.10.1 Kinematics of dispersion

Consider the dispersal of individual elements of fluid or contaminant as they
move through the spatially random permeability variations in a sandy aquifer
or the intersecting conduits in an extensively fractured medium. Two separate
questions are involved. The first concerns only the flow geometry or kinemat-
ics: what particular characteristics of the spatially random interstitial velocity
field determine this dispersal? This is considered below. The second question
involves the specific dynamical interactions between the flow and the random dis-
tribution of permeability as measured by Hess, Wolf and Celia (1992), and others.
What are the velocity variations produced by the largely horizontal mean flow
moving through this distribution? This is discussed in Section 3.3, below.

The basic Lagrangian analysis of fluid dispersal follows that of G. I. Taylor
(1921) on “diffusion by continuous movements” in turbulent flow, where the loca-
tions x of individual fluid elements in a small averaging volume were traced in
terms of their initial positions a and the elapsed time, t. The same approach can
be applied to the dispersion of an injected pulse of marked or contaminated fluid
by the spatially random but time independent velocity field in a natural geological
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x(a, t)

x(a, t)

y(a, t) = x − x

O

Figure 2.8. In the Lagrangian specification of fluid motion, each individual fluid
element is tagged by its initial position a relative to a fixed origin and its motion
expressed as the time derivative of its subsequent displacement x = x(a, t).

structure. As a marked fluid element moves through the medium, its trajectory is
a function of its initial position and the elapsed time, x = x(a, t), as illustrated in
Figure 2.8. Note that the initial instant, t = 0, the fluid element is at a, so that
x(a, 0) = a. The interstitial velocity of the fluid element is the time derivative of its
position:

d

dt
{x(a, t)} = v(a, t), (2.67)

and this is also a function of initial position and time as we follow it along. Equation
(2.67) can be expressed equivalently in a useful integral form:

x(a, t) − a =
∫ t

0
v(a, t ′)dt ′, (2.68)

where t ′ in the integral is the elapsed time. This gives the displacement of the fluid
element from its initial position as an integral of its velocity along its possibly
convoluted trajectory. This and other fluid elements in the same averaging volume
(which on the macroscopic resolution scale are at the same point) have trajectories
that diverge in time as some move one way around the local inhomogeneities and
others, another. From a given averaging volume, then, there is an ensemble of
trajectories, which is equivalent to the result of marking the entire fluid in the
volume and following the subsequent history of the cloud.

The mean streamline through the point a is defined by the mean displacement of
the centroid of the marked fluid from its initial position over a fixed time interval
t, and averaged over the cloud.

x(a, t) − a =
∫ t

0
v(a, t ′)dt ′

=
∫ t

0
v(a, t ′)dt ′,

= vt, (2.69)
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where the averaging process is denoted by the over-bar. The dispersion of a fluid
element about the mean streamline passing the locality a is found by subtracting
(2.69) from (2.68)

x(a, t) − x(a, t) =
∫ t

0

{
v(a, t ′) − v

}
dt ′ =

∫ t

0
v′(a, t ′)dt ′,

where v′ is the variation in velocity of the fluid element about its mean velocity as
it moves along its trajectory. More concisely,

y(a, t) =
∫ t

0
v′(a, t ′)dt ′, (2.70)

giving the displacement y of the fluid element relative to the mean position of the
ensemble (the cloud) in terms of its velocity v′ relative to the mean. The simplest
measure of its dispersion is the second moment of the distribution, or the mean
square value of y, and this can be expressed usefully in terms of the geometrical
and flow characteristics.

In aquifer flows with random spatial variations in permeability, the direction
of the mean streamline through a point is in the direction of the local pressure
gradient, and the dispersal characteristics in the longitudinal, transverse and ver-
tical direction may well be different (Hess et al., 1992). In the longitudinal, 1-
direction, say, the displacement of the fluid element relative to the centroid of the
cloud is

y1(a, t) =
∫ t

0
v′

1(a, t ′)dt ′,

or equivalently,

d

dt
y1(a, t) = v′

1(a, t), with y1(a, 0) = 0. (2.71)

When the two left- and right-hand sides of these equations are multiplied together,
there results

y1
dy1

dt
= 1

2

d

dt
y2

1 =
∫ t

0
v′

1(a, t)v′
1(a, t ′)dt ′.

Upon averaging over many fluid elements from the same initial resolution volume,
we have

dσ 2
1

dt
= d

dt

(
y2

1

)
= 2

∫ t

0
v′

1(a, t)v′
1(a, t + τ )dτ, (2.72)
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fL(t)
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Figure 2.9. The Lagrangian autocorrelation function fL(τ ) decreases from unity
when τ = 0 and its integral is assumed to converge to the integral time scale TL,
which is defined as the width of the rectangle of equal area.

where τ is the time interval between the two velocity variations (relative to the
mean) in the covariance of the integrand (Figure 2.9) and σ 2

1 = y2
1 is the variance

or mean square displacement in the x-direction about the centroid of the marked
fluid.

The velocity fluctuations of a marked fluid element are statistically steady in
time, so that this covariance depends on the time interval τ , rather than on t and t ′

separately. When τ = 0, the values of v′
1 in the covariance are taken simultaneously,

and it reduces simply to the mean square of the interstitial velocity component in the
longitudinal direction, v′

1
2. As the time interval increases, the interstitial velocity

variation at the end of the interval begins to differ in a random way from what
it was at the beginning as each element moves through the pores or along the
interstices. The velocity variations relative to the mean become less correlated –
they lose memory – and the covariance function decreases. Ultimately, when the
interval τ – t is large, the velocity variation at the later time is assumed to have
lost all dependence on what it happened to be initially. If this is so, the covariance
function drops to zero as τ → ∞, in the manner shown qualitatively in Figure 2.9
and the integral is assumed to converge.

The covariance can be expressed equivalently as

v′
1(t)v′

1(t + τ ) = v′
1

2fL(τ ) (2.73)

where fL(τ ) is the dimensionless longitudinal Lagrangian correlation function
(following the fluid elements) which has the value of unity when τ = 0 (the
fluctuation correlates perfectly with itself) and is assumed to decrease to zero (no
correlation) as the time interval becomes very large. The integral time scale TL, the
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area under the curve in Figure 2.9, is a useful measure of the time interval over
which the correlation persists.

The rate of increase of the longitudinal variance of the cloud of fluid elements
in the x-direction is therefore given from (2.71) and (2.72) as

dy2
1

dt
= 2v′

1
2

∫ t

0
fL(τ )dτ

→ 2v′
1

2

∫ ∞

0
fL(τ )dτ when the elapsed time τ 	 TL,

= 2v′
1

2TL, (2.74)

where

TL =
∫ ∞

0
fL(τ )dτ

is the integral time scale of the longitudinal velocity fluctuations following the
motion. Thus

y1
2 →

(
2v′

1
2TL

)
t = 2DXt, say, (2.75)

and DX = (2v′
X

2λT ) is the longitudinal macroscopic dispersion coefficient, with
physical dimensions [L2T −1]. Asymptotically, the variance in length of the marked
cloud increases linearly in time, and its average root mean square spread increases
as t1/2, factors common to most dispersive phenomena. The variances in lateral and
vertical spread of marked fluid can be expressed in the same form, and involve the
mean square lateral and vertical interstitial fluid velocities and the corresponding
integral time scales.

Under natural field conditions the locally averaged permeability may vary con-
tinuously on the scale of the flow domain itself, producing corresponding velocity
correlations that, albeit small, persist over considerable spatial intervals. Inte-
grals based on measured data may not converge and the classical description
above, though conceptually important, is less useful. An alternative approach using
structure functions or “variograms” that are insensitive to large-scale variations in
medium properties is described in Section 3.3.

2.10.2 Dispersion in a steady plume

In many applications the spatial distribution of contaminants from a discharge may
be of greater interest than their precise time of arrival, and the results of the analysis
above can be re-phrased to address this. Note that the Lagrangian analysis above is
asymptotically exact within its defining parameters – a homogeneous, statistically
steady, random velocity field, however it is generated. It contains no dynamics and
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makes no use of the defining property of interstitial fluid flow that the geometry
of the interstices does not change in time. A parallel Eulerian version argument is
only approximate, but does explicitly recognize this fact.

Consider a statistically steady plume of marked fluid arising from a local injec-
tion point in a statistically homogeneous aquifer. The total time derivative in (2.72)
reduces to the advective rate of change v · ∇, and in the time interval dτ , fluid
elements have moved an average distance dr1 = v1dτ , where v1 is the mean inter-
stitial fluid velocity in the 1-direction or mean flow direction, so that in terms of
the spatial covariance of the local interstitial velocity variations on scales of lAV or
greater,

Rij (r) = v′
i , (a)v′

j (a + r) (2.76)

we have

v1
d

dx1

(
y2

1

)
≈ 2

x1∫
0

v′
1(a)v′

1(a + r1)dr1/v = 2(v1)−1

x1∫
0

R11(r1)dr1,

Asymptotically,

d

dx1

(
y2

1

)
→ 2

(
v′

1
2/v2

) ∞∫
0

f11(r1)dr1 = 2
(
v′

1
2/v2

)
λ11−1, (2.77)

where f11(r1) is the dimensionless correlation function associated with the covari-
ance (2.76) and λ11−1 is the integral length scale of the velocity variations in the
1-direction along the direction of flow as in Figure 3.5 in the next chapter. The mean
square longitudinal dispersion of fluid elements therefore asymptotically increases
linearly with travel distance(

y2
1

)
→ 2

(
v′

1
2/v2

)
(λ11−1)x1 = 2

(
u2

1/U 2
)

(λ11−1)x1, (2.78)

where u1 represents the local variation in velocity about the mean U and x1 is the
distance from the source. Similarly, the lateral dispersion is given by(

y2
2

)
→ 2

(
u2

2/U 2
)

(λ22−1)x1, (2.79)

where λ22−1 is the integral length scale in the 1-direction of the velocity variations
in the lateral 2-direction. The vertical dispersion about the mean streamline is
expressed similarly, with 3 replacing 2 in (2.79). Since the variations in mean
interstitial fluid velocity are produced by spatial variations in permeability, they
are also proportional to the local mean velocity, and the first factor on the right of
these expressions is purely numerical, generally smaller than unity, independent of
the mean flow speed and dependent only on the local permeability structure.
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The expressions

αD−1 =
(
u2

1/U 2
)

λ11−1 αD−2 =
(
u2

2/U 2
)

λ22−1 αD−3 =
(
u2

3/U 2
)

λ33−1

(2.80)

have the physical dimensions of [length], and are called the longitudinal, transverse
and vertical dispersivities. They are the analogues of the macroscopic dispersion
coefficients such as D in equation (2.75) that specify the spreading in time of a
tagged fluid patch. Since the velocity ratios in (2.80) depend upon the permeability
structure but are independent of the mean flow speed, the dispersivities are proper-
ties of the medium, not of the flow. Thus, from (2.78) and (2.79), the asymptotic root
mean square spread of marked fluid in longitudinal and lateral directions increases
with distance x1 from the source as (αD−1x1)1/2 and (αD−2x1)1/2 etc.
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Patterns of flow

3.1 Flow in uniform permeable media

Typical patterns of flow in a saturated aquifer are qualitatively different from those
in a stream or lake. In the latter, flows are governed by a balance between gravity
and fluid inertia, they may be vortical with closed circulation paths or eddies that
range in scale from centimeters or less in a turbulent patch to the whole length of the
lake. In an aquifer, the flow is governed by a balance between the gravitationally
induced pressure gradients (or the internal buoyancy) on the one hand, and the
flow resistance of the medium on the other. Fluid makes its way from recharge
areas to discharge. We show below that circulating flows in a horizontal plane are
impossible and that closed vertical circulation can be driven only by buoyancy
variations, either positive or negative.

These flows are governed by the Darcy force balance (2.24):

u = k

ν
(−∇(p/ρ0) + bl), where the buoyancy b = g

(
ρ0 − ρ

ρ0

)
, (3.1)

p is the reduced pressure, and l is a unit vector vertically upward. This is, in
component form with axes (x, y, z) and velocity components (u, v, w) with z and
w being in the vertical direction,

u = −k

ν

∂(p/ρ0)

∂x
,

v = −k

ν

∂(p/ρ0)

∂y
,

w = −k

ν

{
∂(p/ρ0)

∂z
+ b

}
,

(3.2)
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where the permeability k and kinematic viscosity ν are here assumed to be constant.
The Cartesian form of the incompressibility condition ∇ · u = 0 is

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (3.3)

Note the structure of these equations. The buoyancy, associated with variations
in temperature and/or salinity, is a field variable determined by the conservation
equations (2.48) and (2.51), together with an appropriate equation of state. The
buoyancy appears only in the vertical force balance. A local region of positive
buoyancy drives the interstitial fluid vertically upward, yet the motion is generally
fully three-dimensional. Coupling with the horizontal motion occurs through the
incompressibility condition (3.3). As the buoyant region moves upward, adjacent
fluid moves inward near the bottom to replace the fluid driven vertically and outward
near the top.

3.1.1 Flow constraints

In the absence of buoyancy variations, the range of possible flow solutions in a
uniform medium is very tightly constrained. The Darcy equation reduces to its
classical form

u = − k

μ
∇p. (3.4)

Note that both the permeability k and viscosity μ = ρ0ν are positive and the
minus sign indicates that the transport velocity is always down the gradient of
reduced pressure. An immediate consequence of this is that:

(i) in constant density Darcy flow, no streamline can form a closed loop.

The proof of this statement by reductio ad absurdum is simple and quite general.
Let us assume that it is not true, that there is indeed a closed streamline, and we find
that this produces a contradiction. Start at some point on the streamline and move
in the direction of flow; the reduced pressure would continually decrease, and as
we complete the circuit and return to the same point, it would be less than it was at
the beginning. But this is not possible since the pressure is a single-valued function,
so that the assumption of a closed streamline must be false. Consequently, there
cannot be any closed streamlines in a constant density Darcy flow, either in two or
three dimensions, regardless of the non-uniformity or distribution of permeability.

A dynamical characteristic of permeable-medium flow pattern, second only in
importance to the transport velocity is its curl, the rotation vector,

� = (�x, �y, �z) = ∇ × u = curl(u). (3.5)
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dA

ds

uq

Ω

Figure 3.1. Illustrating Stokes’ theorem, equation (3.6).

The rotation vector has the same appearance as the vorticity in ordinary fluid
mechanics, but because it appears in the context of Darcy flow, it does not have
the important dynamical properties possessed by the vorticity. It is, nevertheless,
a useful property of flows driven by buoyancy and those in media of variable
permeability, considered later in this book. If the permeability is uniform, the curl
of the Darcy equation (3.1) is

� = ∇ × u = k

ν
{∇ × (bl)} .

Since l is a unit vector vertically upward, the vertical component of � vanishes, so
that

(ii) for Darcy flow with variable buoyancy in a uniform medium, the hori-
zontal flow field is irrotational.

A useful mathematical theorem due to Stokes provides an association between
the rotation vector and transport flow circulation, as illustrated in Figure 3.1. This
theorem (see Lighthill, 1966, pp. 55–57, or any good book on vector calculus)
states that for any vector field u(x), the line integral around an arbitrary closed
circuit (not a streamline circuit, because none exist) of the component of u(x) in
the direction of the circumference, is equal to the surface integral of the normal
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ds

ds

u

u

q

q

Figure 3.2. In constant density Darcy flow, the line integral around any closed
loop of u · ds/k vanishes; in particular, if the permeability is uniform, the rotation
vector is everywhere zero.

component of the rotation vector � = ∇ × u = curl u over any surface capping
the circuit ∮

u · ds =
∫

∇ × u · dA =
∫

� · dA, (3.6)

where ds is a differential element of the loop, a vector whose magnitude is the
length of the element and whose direction is always that of the tangent to the loop
in a consistent sense and dA is an element of area of the cap. With a small circular
contour of radius r, the left-hand side of (3.6) is equal to the mean azimuthal speed
u times the circumference 2πr, and the right-hand side is equal to the mean rotation
normal to the circuit times the area πr2. Thus πr2� = 2πru and so � = 2u/r .
The angular velocity associated with the distribution of transport velocity is u/r,
or, from the last equation, 1

2�. The rotation can thus be visualized as twice the
local angular velocity associated with the transport velocity field.

Further dynamical constraints can be established by considering the flow at
points along a closed loop in a constant-density flow region, as illustrated in
Figure 3.2. This loop cannot be entirely along a streamline in view of the proof
above, but must cut across streamlines over at least some part of the loop. Consider
(3.4) in the form

μ

k
u = −∇p,
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and integrate this around the closed loop. Notice from Figure 3.2 that u · ds =
u(ds) cos θ is positive around the top of the loop since θ < π/2, but negative
around the bottom where the angle θ is obtuse, so that contributions to the integral
around the whole loop include both positive and negative parts, which tend to
cancel out. In fact, they cancel out exactly, even if the permeability varies along
the path. The line integral around the complete loop is

μ

∮
u · ds

k
= −

∮
∇p · ds = p1 − p2,

which vanishes because the circuit is closed, the finishing point 2 being the same
as the starting point 1, and the pressure is single-valued. Thus,

(iii) even though the medium permeability k varies spatially (with the texture
or composition of the matrix), in the absence of buoyancy variations
the integral around any closed loop of the tangential velocity divided
by the permeability vanishes:∮

u · ds

k(x)
= 0. (3.7)

This is already a useful expression. Note that it is consistent with the flow boundary
condition at an internal interface described in Section 2.4, i.e. that the ratio of the
tangential velocity components on each side is equal to the ratio of the permeabil-
ities, as the reader may verify by taking a thin loop that runs along one side of the
boundary a distance ds, then across and back on the other side and across to the
starting point.

From Stokes’ theorem, equation (3.7) is equivalent to

∇ ×
{

u(x)

k(x)

}
= 0, (3.8)

whence, by writing out the components of the curl,

� = ∇ × u = ∇
(

ln
k(x)

k0

)
× u, (3.9)

where � is the rotation vector of the transport velocity field and k0 is any convenient
reference value of the permeability field. Note that if a different reference value is
chosen, the logarithm is different by an additive constant, which is immaterial since
the permeability appears only in the gradient of the logarithmic term. The rotation
vector theorem (3.9) demonstrates that variations in log-permeability generate
rotation in an otherwise uniform stream and provides a general but direct connection
between the velocity and permeability distributions without specific reference to
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the pressure distribution. It asserts, for example, that in a largely horizontal flow,
streamlines cutting across a log-permeability gradient induce rotation about the
vertical axis, attracting streamlines to regions of high permeability and repelling
them from regions of low permeability. It is used in Section 3.3 concerning fluid
flow dispersion in an extensive aquifer with spatially random permeability.

In a homogeneous region of constant density and permeability, (3.7) becomes∮
u · ds = 0, (3.10)

so that, from (3.6) or (3.9), all components of the rotation vector vanish, � = 0.
Thus,

(iv) constant-density Darcy flow in a homogeneous, uniform medium is
everywhere irrotational, with the circulation around any closed loop
vanishing, and the rotation vector everywhere zero.

This is a stronger constraint than (ii) above. It can also be seen directly from (3.5),
with b = 0. These statements (i)–(iv) limit substantially the range of dynamically
possible flow patterns in uniform permeable media.

3.1.2 Laplace’s equation

Let us return to the incompressibility and Darcy equations to show that a similar
direct connection can be found between the permeability and pressure fields. The
divergence of the Darcy equation (3.4) gives

∇ · u = −μ−1∇ · (k∇p) = −μ−1(∇k · ∇p + k∇2p) = 0,

because the fluid is regarded as incompressible and divergence-free. On rearrange-
ment, this becomes

∇2p + k−1∇k · ∇p = 0

or

∇2p + ∇ ln (k/k0) · ∇p = 0, (3.11)

where k0 is a reference value for the permeability distribution, frequently taken
as its geometric mean. Note that here, as well as in equation (3.9), the lack of
homogeneity in the medium is expressed by the log-permeability, rather than
the permeability itself. This equation specifies the distribution of pressure (and
thence, transport velocity) in flow through an aquifer with a prescribed internal
log-permeability distribution and appropriate pressure boundary conditions.
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If the medium is homogeneous, the second term in (3.11) vanishes and it reduces
simply to

∇2p = 0, (3.12)

which is known as Laplace’s equation. In Cartesian coordinates, it has the form(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
p = 0. (3.13)

It is one of the most basic and best-studied differential equations in all of physics,
with applications to field theories in electricity, magnetism, hydrodynamics, as well
as here, in flow in permeable media. Conventionally, in fluid flow situations, the
Cartesian x and y coordinates are taken in the horizontal plane with the z coordinate
vertically upward. In two-dimensional flow, the equation above reduces to(

∂2

∂x2
+ ∂2

∂y2

)
p = 0. (3.14)

In a uniform medium, the stream function (2.13), which automatically satisfies
the incompressibility condition, also satisfies Laplace’s equation in two dimensions.
For if u = (u, v) in the (x, y) directions, then since u = ∂�/∂y, v = −∂�/∂x, and
with use of Darcy’s equation, we have

∂2�

∂y2
= ∂u

∂y
= − ∂

∂y

(
k∂p

μ∂x

)
= − ∂

∂x

(
k∂p

μ∂y

)
= ∂v

∂x
= −∂2�

∂x2
,

so that
∂2�

∂x2
+ ∂2�

∂y2
= 0. (3.15)

This is often a more convenient alternative to (3.14).
Many analytical and numerical methods are available for solving Laplace’s

equation with a variety of boundary conditions reflecting the variety of possible
flow geometries. Once a solution for the pressure p or the stream function � has
been found, the transport velocity field (in our applications) can be found from
(3.4) or the definitions (2.13), but a few general properties of all such solutions are
worth keeping in mind. Among them are the following.

(i) The total fluid pressure pT = p + ph = p − ρgz (see Section 2.4) also satisfies
Laplace’s equation, since the hydrostatic pressure is linear in z and its second derivative
vanishes.

(ii) If the solution p for the reduced pressure has no singularities, it cannot have a maximum
in the interior of the flow domain. This can be seen most simply in two dimensions.
For a function p in two variables, x and y, in geometrical terms, the second derivatives
in the x and y directions are measures of its curvature in these directions. Where
the curvature is positive, the slope is increasing, and where negative, the slope is
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decreasing. At an interior maximum, the slope in both directions at that point is zero
and the curvatures in both directions are negative. This is inconsistent with Laplace’s
equation, (3.14), which asserts that the total curvature, the sum of the two principal
curvatures, is zero. Locally, the two-dimensional solutions must be saddle-shaped.
The solution cannot have an interior minimum either, for the same kind of reason. The
pressure maxima and minima must lie at points on the boundary of the domain.

This conclusion can be seen in physical terms as follows, which applies in three
dimensions as well. If there were a pressure maximum in the interior, the Darcy
equation (3.1) implies that fluid is flowing away from the maximum in all directions.
This violates the incompressibility condition, so that the assumption of an interior
pressure maximum must be false. The same argument can be used for a minimum.

(iii) Singularities are of more than mathematical interest in aquifer hydrology, however.
A pumped well in an aquifer constitutes a local singularity, a sink in the groundwater
flow pattern where the water table does have an interior minimum, toward which the
water flows. An injection well is a local source singularity where the water table is
locally highest with flow diverging outward. As described above, two-dimensional
solutions �(x, y) of Laplace’s equation have curvatures that are either both zero or
are equal and opposite in the two principal directions. In the stream function solution
for flow surrounding a source singularity, at every point the curvature is negative
in a radial plane (slope decreasing outwards), and positive in the vertical tangential
plane (zero in the direction perpendicular to the radius, curving upward on both
sides).

(iv) In two-dimensional solutions to Laplace’s equation, the length scales over which the
derivatives of p and � (the velocities) vary in the two orthogonal directions, are
the same. In three-dimensional solutions, the length scales in all three orthogonal
directions are generally comparable; no one length scale can be much less than the
other two. One may, however, be much greater than the other two, which are then
comparable; this is the case in “two-dimensional” flow.

(v) As discussed in Section 2.4, solutions to Laplace’s equation (3.12)–(3.14) are subject
to conditions that define the nature of the flow boundaries, and a little care is some-
times required to ensure that these boundary conditions are complete and mutually
consistent. Classical texts on potential theory and Laplace’s equation show that, in
general, either the solution variable (i.e. p or �) or its normal derivative, but not both,
must be prescribed at all points along the boundaries of the domain. Situations involv-
ing the water table have occasionally caused trouble in this field, since the water table
configuration and the infiltration rate cannot both be prescribed. When doubt exists,
it is probably best to use common sense, to imagine that a flow experiment is being
done and decide which variables one can control, and which will be a consequence of
the experiment. In experimenting on flow through a sand bed, one can control the rate
and distribution of water sprinkled on the top of the sand, while the position and con-
figuration of the water table inside the sand adjusts itself in the experiment. One can
prescribe the pressure at the discharge (usually atmospheric) but not the distribution
of flow. The mathematics should conform to these causalities.
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3.1.3 Some local flow patterns

A number of simple solutions for local perturbations to a uniform flow illustrate
the characteristics described above while also having geological interest. A fluid
inclusion in an almost impermeable rock matrix and the flow around an abraded
permeable rock in a sandy aquifer may share a common spherical geometry, with
radius a, say, and permeability k1 inside and k0 outside. Let the undisturbed ambi-
ent pressure gradient be 	 . Laplace’s equation specifying the reduced pressure
distribution in each region, has separate spherical harmonic solutions p1 and p0,
as described in books on potential theory, which are connected through the follow-
ing boundary conditions: (i) the internal and outside fluid pressures, p1 and p0,
respectively, must be the same at all points on the surface r = a; (ii) the normal
component of the transport velocity across the boundary, ur = −(k/μ)∂p/∂r must
also be the same on both sides; and (iii) far from the sphere the pressure distribution
must approach the undisturbed uniform gradient, −	 , say. Thus,

p1 = p0, k1
∂p1

∂r
= k0

∂p0

∂r
at r = a, (3.16a)

and

p0 → −	x = −	r cos θ as r → ∞, (3.16b)

where r is the radial coordinate and θ is the angle between this and the direction
of the external flow. The spherical harmonic solutions for the internal and external
pressure distributions are

p1(r, θ ) = −	
3k0

k1 + 2k0
r cos θ inside the sphere (3.17a)

and

p0(r, θ ) = −	

{
1 −

(
k1 − k0

k1 + 2k0

)
a3

r3

}
r cos θ outside. (3.17b)

Inside the sphere, the pressure (relative to that at the center) is proportional to
r cos θ = x so that for any permeability ratio, the interior flow u1 is uniform and
entirely in the x-direction. From the solution above, its magnitude is

u1 = −k1

μ

∂p1

∂x
= 	

3k1k0

k1 + 2k0
= 	

3k0

1 + 2(k0/k1)
,

which differs from that in the ambient fluid by the factor G = 3k1/(k1 + 3k0).
When the spherical region is less permeable than that outside, k1 < k0, this factor
is smaller than 1 and the flow is partially deflected around it, in accordance with
intuition. If it is much less permeable than the ambient as it is for a rock in
a sandy aquifer, the factor is near zero and almost no fluid passes through, as
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Figure 3.3. Stokes stream function solutions for the flow around and through
spherical inclusions. In the first figure (a), the permeability is much less than in
the surrounding matrix and the fluid flows around the inclusion; in the second (b),
the permeability inside and outside are the same; and in the third (c), the inclusion
is filled with fluid, which moves through the inclusion three times faster than in
the undisturbed state.

shown in Figure 3.3. When k1 > k0, the inside is now more permeable and fluid
is attracted to pass through the sphere. In the limit, when the interior is simply
fluid filled, it can be considered infinitely permeable, so that (mathematically)
k0/k1 → 0 and the focusing factor G = 3 precisely; the fluid passing through the
sphere moves just three times faster than the transport velocity in the undisturbed
surroundings.

Exact analytical solutions can also be found for the two-dimensional flows
attracted to thin isolated cracks of finite length or around similar cracks that have
been filled with impermeable precipitate. They are simple modifications of solu-
tions for potential flow in classical hydrodynamics given, for example, in Lamb’s
Hydrodynamics (1932, p. 86) and the salient flow properties are illustrated in
Figure 3.4. If the ambient flow velocity U is parallel to the plane of a highly perme-
able crack of length l, say, and perpendicular to its leading edge, fluid is attracted
to the crack from a depth range precisely equal to its length, passes through it
and is re-injected into the ambient. The volume flux inside the crack is zero at
the leading edge, increases to a maximum of Ul at the center, and returns to zero
at the end. If the stream is oblique to the flow direction as in Figure 3.4b, the
oncoming fluid turns towards the crack and moves some distance along it before
re-entering the medium and turning back to its original flow direction. A relatively
small amount of fluid passes beyond the leading edge before entering on the rear.
If the oncoming stream is perpendicular to the plane of the crack, it simply passes
through undeflected.

When the crack is sealed by deposition of minerals from solution (in Figure 2.4
for example), the flow patterns can contain stagnation points, where the streamlines
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(a) (b) (c)

(d) (e) (f)

Figure 3.4. Exact two-dimensional solutions of Laplace’s equations representing
flow streamlines near thin lenses. In the upper three panels, the lens is much more
permeable than the matrix or is a liquid-filled crack, and in the lower three, it is
impermeable.

divide and pass around the obstacle in opposite directions, as in Figures 3.4e
and f.

3.1.4 Two-dimensional surface aquifers

The exact solution to Laplace’s equation in a layer of thickness d above an imper-
meable basement with a uniform infiltration rate W across the upper surface is

� = (W/d)xz, x > 0, (3.18)

as illustrated in the top panel of Figure 3.5. This provides a reasonable first order
representation of the groundwater flow to the right of the groundwater divide in
a uniform aquifer, but it has some shortcomings. In nature, the pressure gradient
required to drive the interstitial fluid to the right is supplied by the slope of the
groundwater table from its maximum elevation at the point of divide, so that the
upper boundary of the flow is not, in fact, flat. Nevertheless, it represents accurately
the flow pattern through the main body of a uniform two-dimensional aquifer, with
streamlines that are equally spaced at each vertical section, indicating the uniformity
of the transport velocity with depth, and their reduced spacing with distance from
the groundwater divide indicating the increase of the horizontal flow with distance
from that divide. However, the flow in a natural aquifer fluid ultimately discharges
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Figure 3.5. The upper panel represents the exact solution (3.18); the center panel
shows streamlines in a two-dimensional aquifer with uniform infiltration from
above in the range 0 < x < 150 and constant-pressure discharge beyond (into a
lake bed, for example). The lowest panel shows the isobars, the lines of constant
reduced pressure, which slope forward near the groundwater divide where the
streamlines trend downward, and backward near the discharge to drive the fluid
upward.

by seepage upwards through a stream-bed and laterally through its banks, or through
the near-shore bed of a lake or estuary, and the exact solution above does not reflect
this.

The center panel shows streamlines from a numerical calculation in which the
upper boundary representing the water table terminates in a swamp or shallow
lake whose free surface to the atmosphere is horizontal. In this region, the upper
boundary condition with a prescribed infiltration rate W is replaced by a condition
of constant pressure, with fluid being free to discharge across the boundary into
the body of water above. Notice that in this discharge region, the flow spreads
horizontally beyond the shore line to a distance of the order of the aquifer depth,
as is characteristic of two-dimensional solutions of Laplace’s equation discussed
earlier. The lower panel shows isobars, or lines of constant reduced pressure, with
higher values to the left, beneath the water table maximum, and lower values in
the discharge region. Beyond the immediate vicinity of the groundwater divide,
the isobars are very nearly vertical but leaning slightly forward, consistent with
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the gradually deepening streamlines. In the central part of the aquifer, the flow is
very nearly horizontal and the isobars are nearly vertical. As the discharge region is
approached, the isobars begin to slope backward, the distribution of total pressure
is no longer hydrostatic, the reduced pressure at depth begins to exceed that above,
and the streamlines begin to rise towards the surface discharge, ultimately becoming
vertical at the interface.

Natural surface aquifers are usually much more complex than this schematic
model. Sedimentary deposits can be laid down as vertical sequences of approx-
imately horizontal layers having sometimes highly contrasting permeability. For
example, the entire Delmarva Peninsula between the Chesapeake Bay and the West-
ern North Atlantic Ocean, sectioned schematically in Figure 3.6, consists of a series
of permeable, sandy aquifers whose cementation increases with depth, interspersed
by much less permeable “retarding layers” of finer clay or silt. The permeability
of these is smaller than in the aquifers by factors of 10−3 to 10−4 (Shedlock et al.,
1999). Although the material in the individual layers may be locally isotropic in its
flow properties, the sequence of layers clearly influences the larger-scale flow in a
highly anisotropic way. Specifically, a structure of multiple layers with significantly
different permeability channels the flow into the layers of high permeability and
low flow resistance, thereby avoiding the low-permeability, high-flow-resistance
regions. For a sufficient permeability contrast, the actual value of the lowest per-
meability may become almost irrelevant since there is very little flow there. In
contrast, the topology or structural geometry of the region, specifically the con-
nectivity among the individual aquifer layers, is of considerable importance, but is
often not known well.

3.2 Three-dimensional surface aquifer flow

This section is concerned with the overall fluid dynamics of aquifer flows. The next
few pages are mostly qualitative, with simple physical descriptions and explanations
to introduce the phenomena and to prepare for the more quantitative discussion
that follows.

3.2.1 How do surface aquifers work?

Following a wet spell, water infiltrates through the unsaturated vadose zone and
into the water-saturated region below. Near the groundwater divide, the water table
elevation increases, but subsequently the horizontal pressure gradients relax with
spreading flow in continuous, near-hydrostatic adjustment. In spite of the smaller
permeability of any near-surface “confining layers,” the very slow downward ver-
tical flow requires a vertical pressure gradient only slightly less than hydrostatic.
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Figure 3.6. A schematic north/south section of the aquifer structure of the
Delmarva Peninsula, from Shedlock et al. (1999).
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In those flow tubes reaching to increasingly greater depths, the accumulating pres-
sure deficit (below hydrostatic) required for downward flow increasingly subtracts
from the pressure needed to move the groundwater along the aquifer toward dis-
charge, and the flow in these tubes begins to stagnate. In spite of the expected
complexity of realistic structural geometry, then, there usually does exist an “effec-
tive hydraulic depth,” above which the horizontal pressure gradient is still close
to that produced by the hydrostatic head of the water table vertically above, and
below which it becomes increasingly smaller.

As the fluid moves downward from the water table, individual fluid elements are
displaced by more recent infiltration from above, so that the time interval since they
crossed the water table and lost contact with the atmosphere (the “groundwater age”
of the fluid elements) continually increases with depth. The oldest groundwater is
found throughout an aquifer at points close to the effective hydraulic depth, as
indicated by the analysis and measurements to be described in more detail below.
This remarkable property continues to be generally true no matter where the water
column migrates; if it moves to a region where the aquifer is thinner or thicker,
the pattern is compressed or stretched like a concertina but the general ordering of
the groundwater ages remains the same. It does, however, depend to some extent
on the uniformity in aquifer permeability. The flow is predominantly in the more
permeable aquifer components but the few fluid elements that do drift into a less
permeable, retarding layer tend to stay there for a relatively long time, so that some
fluid elements from relatively shallow depth may be anomalously old. There is
some evidence for this in the field measurements shown in Figure 3.10, below.

The progression of fluid elements through the aquifer is clearly of interest in
questions of contaminant dispersal. A fluid element, crossing the water table, moves
downward and is advected (transported largely horizontally) in the general direction
of discharge by the mean groundwater stream that has been supplied by prior
infiltration upstream. It may also be dispersed by the small-scale inhomogeneity
of the medium. As the element moves downstream, its mean advection velocity
increases over the length of the aquifer because of the increasing total infiltration
along the lengthening flow path behind it – it accelerates constantly and drifts deeper
as it moves towards discharge. This effect can be seen in the schematic streamline
pattern in the central region of Figure 3.5. The uniformity of the streamline spacing
at any section reflects the uniform vertical profile of the downstream velocity, while
the convergence of streamlines reflects the longitudinal acceleration of the fluid
particles.

Packets of fluid elements that may have been marked by a dynamically passive
contaminant (one that does not affect the flow) are advected by the mean streaming,
distorted by the internal strain field and dispersed by the random geometry of the
internal flow paths and small-scale structural inhomogeneity. In a horizontally
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Figure 3.7. A diamond-shaped patch of marked fluid enters a two-dimensional
aquifer across the water table near the groundwater divide and its subsequent
positions and shapes are shown after elapsed multiples of 0.5 of the recharge time:
TRC = φd/W . Note the acceleration and the longitudinal stretching in this region
as the patch moves toward the basement.

uniform aquifer, the vertical component of the flow originating from infiltration
decreases monotonically with depth from its climatic value in the flow across the
water table, towards zero at the effective hydraulic depth. Shallower fluid elements
sink more rapidly than deeper ones. Vertical pairs of marked fluid elements converge
as they move downward at a rate ∂w/∂z determined by the local infiltration rate and
the local aquifer thickness. Because of incompressibility, this vertical convergence
must be accompanied by a net horizontal divergence, ∂u/∂x + ∂v/∂y, in the
orthogonal directions. As patches of contamination move through the aquifer over
time scales of possibly decades, they become flattened, thinner, more extended
longitudinally and sometimes laterally also, as they drift downward and toward
the discharge. This is illustrated in Figure 3.7. The total horizontal divergence is
determined by the local infiltration, but the directional partition of it, along the lines
of flow and transverse to them, is not determined locally, but by the shape of the
possibly distant aquifer boundaries from groundwater divide to lines of discharge.
Where flow lines are converging towards discharge, as can be seen in some areas
in the upper part of Figure 3.9 below, the longitudinal divergence is large enough
to overcome the lateral convergence, so that the net horizontal divergence remains
positive.

Some natural geometries are fairly simple. For example, Long Island, off the
coast of Connecticut, is a long, sandy aquifer in which the predominant groundwater
flow is lateral, towards Long Island Sound on the north-west side and towards the
Atlantic ocean on the south-east. As a first approximation, the flow field might be
considered two-dimensional in transverse north-west to south-east sections. With
(x, y) coordinates, the groundwater transport velocity v in the longitudinal direction
is very small, and the motion is essentially two-dimensional. The horizontal flow
divergence ∂u/∂x alone balances the infiltration rate. On the other hand, in a circular
island aquifer with uniform infiltration and discharge around the circumference,
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the water table contours are circular. A circular patch of marked fluid remains
circular, but expands as it moves toward the perimeter, so that the horizontal
divergence is isotropic with equal longitudinal and transverse components. Most
aquifer geometries are of course more complex than these.

3.2.2 Regional scale aquifer flow

In this section, we begin to take a more practical and quantitative approach. Consider
a surface aquifer or a system of aquifers in which the overall aspect ratio is large,
i.e. where is the typical length l of a flow path from groundwater divide to discharge
is very much larger than the effective hydraulic depth d, and where the surface relief
and the dip of embedded layers are both relatively gentle. A fully three-dimensional
calculation of the groundwater flow in a particular aquifer system would require a
detailed knowledge and specification of the structure of internal conduits, lenses
and layers that is not usually available, but a more modest alternative is attainable
that allows significant comparison with various kinds of field measurements. The
gentle relief, thin layer approximation is a powerful and accurate simplification
of the flow equations applicable to many aquifer situations. It concentrates our
attention on vertically integrated properties of the flow such as the total flux
distribution and distribution of groundwater levels, which do not require detailed
information on the internal structural geology. A basic parameter in this approach
is then the transmissivity, or vertically integrated hydraulic conductivity, which in
a given aquifer can be estimated with adequate accuracy from a little theory and
simple historical observations.

First, the incompressibility condition for the interstitial water (in effect, water
volume conservation) can be applied to a vertical column of the medium of unit
cross-section. It expresses the balance among surface infiltration from rainfall (W),
the rate of increase in fluid volume occasioned by the vertical rise of the water table
at the rate ∂ζ/∂t = ζ and the lateral volume flux divergence. The total volume
flux is the vertical integral of the horizontal transport velocity from the effective
hydraulic basement at depth d upward to the water table:

q(x, y) =
ζ∫

−d

u(x, y, z, t)dz. (3.19)

The divergence of this flux ∇ · q represents the net outflow from the sides of the
column, so that the balance described above is represented by

W (t) = φ
∂ζ

∂t
+ ∇ · q, (3.20)
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where W is the rate of infiltration across the water table, taken positive, and φ

is the porosity. This can be derived more formally by a vertical integration of
the incompressibility condition ∇ · u = 0 with the boundary condition (2.28) and
(2.30) at the water table and the condition of no flux across the basement, w(−d) =
uh(−d) · ∇h(−d).

To the thin layer approximation for the aquifer recharge regions, the total fluid
pressure is very nearly locally hydrostatic:

p = ρg(ζ (x, y, t)). (3.21)

The horizontal component of flow is driven by the horizontal gradient of the
pressure:

u(x, z, t) = −(k/μ)∇p = −K(z)∇hζ (x, t), (3.22)

where x = (x, y) is horizontal position and in a horizontally layered aquifer,
the hydraulic conductivity K = gk/ν may be a highly variable function of depth
but a much more gradually varying function of horizontal position. Note the very
important fact that the horizontal and vertical space variables x and z have separated
in (3.22), A vertical integration of this equation and use of (3.19) gives

q = −∇hζ

∫ ζ

−d

K(z)dz,

= −C∇hζ, say, (3.23)

where

C =
ζ∫

−d

K(z)dz (3.24)

is the vertically integrated hydraulic conductivity of the aquifer, called the trans-
missivity. The transmissivity C may vary on a basin-wide scale, though in the
applications considered here, it is generally considered constant, largely because
the simple observations used to estimate it provide not point values, but a local aver-
age. A most important observation is that the dependence on depth has disappeared
from the governing equations (3.20) and (3.23).

These two can be combined into a single equation by substitution of (3.23) into
(3.20):

φ
∂ζ

∂t
= ∇ · {C∇ζ } + W (t), (3.25)
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which is a slight generalization of the classical two-dimensional diffusion or heat
conduction equation with a possibly variable “diffusivity” C which here is the
transmissivity, and a distributed infiltration source W(t) that must be provided as
input data. For a given infiltration history, W(t), this is to be solved for ζ (x, t), the
water table elevation in horizontal space x, y and time t. The spatial distribution
of total flux in the aquifer q(x, t) is then found by substituting this solution into
(3.23).

If the detailed vertical distribution of hydraulic conductivity K(z) is known at
one or more locations as a result of core measurements (or is conjectured) the
right-hand side of (3.22) is determined completely, and the vertical distribution of
flow velocity at that location can be recovered. This procedure reduces the three-
dimensional, time-dependent calculation to a two-dimensional, time-dependent
calculation, with a great increase in computational efficiency.

When the geometry is particularly simple, analytical solutions for the mean
water table elevation ζ can be obtained from (3.25). For example, in an idealized
peninsula or isthmus with uniform C and constant width 2lA the aquifer flow is
unidirectional and in the x-direction. In the mean, or in a steady state, equation
(3.25) reduces to

0 = C
d2ζ

dx2
+ W,

with ζ = 0 at x = ±lA. The solution, specifying the distribution of water table
height ζ above the surrounding mean water level is given by

ζ = l2
AW

2C

{
1 −

(
x

lA

)2
}

= 1
2hW(1 − (x/lA)2), −lA < x < lA. (3.26)

This is sometimes called the Dupuit–Forchheimer solution. The maximum ele-
vation at the centerline above datum (i.e. the discharge level) is proportional to
hW = l2

AW/C, where lA is the path length of the aquifer flow. The height hW is
a natural scale for differences in aquifer water table level, while the factor 1/2
and the precise parabolic profile in x are properties of this particular geometry.
The groundwater transport velocity u increases linearly with distance from the
groundwater divide, since

u = −K
∂ζ

∂x
= KW

C
x, from the above,

= Wx

d
, (3.27)
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where d is the effective hydraulic depth. In this example with unidirectional flow,
at every section x, the prior upstream infiltration Wx is balanced by the outflow ud
at the section.

A similar expression can be found for a circular island in which x now repre-
sents radial position. The radial transport velocity also increases linearly from the
center to the circumference. The total infiltration over the catchment area increases
quadratically with radius, and to balance this, the circumference and the efflux
per unit length of circumference both increase linearly with radius. The numerical
factor involved in hW now turns out to be (1/4) rather than (1/2). It is again of
order unity, but is smaller in magnitude than in the previous example, since radial
advection in all directions spreads more rapidly than purely lateral advection in
one.

3.2.3 An example: the aquifer in Kent County, Maryland

The simplicity of the vertically integrated aquifer flow equations (3.25) and (3.23)
allows for the development of efficient numerical solutions for regional flows with
realistic aquifer configurations. They are, of course, subject to appropriate initial
and boundary conditions that characterize the domain. Along a running stream
where groundwater discharges upward from the river bed and from the banks just
above the water surface, the water table is close to the mean water level of the stream
(or a meter or so above). As seen earlier, discharge regions are usually very local,
with length scales of the order of the aquifer thickness. When the groundwater
discharges to a marsh or coastline or shallow lake, the deep streamlines in the
aquifer begin to turn upward as the horizontal pressure gradient provided by the
water table slope begins to weaken over a distance proportional to the aquifer
thickness. This is evident in the lower panel of Figure 3.5. The water level in the
lake is of course horizontal, but the increased pressure (above hydrostatic) needed
to force the water upward comes from the higher water table level just inland. The
discharge from the entire depth of the aquifer emerges over a distance offshore
that is again of the order of the aquifer thickness. This kind of near-shore, bottom
discharge of groundwater has been observed, notably by Tokunaga et al. (2002)
near the mouth of the Kurobe River, Japan, and has been simulated numerically
by Wilson (2005) and by Prieto and Destouni (2005). In the case of discharge at a
stream-bed draining the aquifer, the groundwater streamlines converge from both
sides, throughout the whole depth of the aquifer. The strong upward velocity at
the discharge is associated with relatively large near-surface hydraulic gradients
that have been measured in the Delmarva Peninsula by Böhlke and Denver (1995,
p. 2327). Apparently, these general flow patterns are fairly characteristic in natural
aquifer shoreline situations, though any strong internal layering can be expected to
stretch the horizontal scales somewhat.
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In a regional flow calculation, it is assumed that the water table elevation ζ

at any point cannot exceed the height ζS of the surface topography, which, like
W(t) must be provided as input data. This constraint anchors the water table level
to coincide with, or be a little above, the surface of an accumulating, running
stream along which discharge can occur. On the scale of the aquifer, the solution
will have discontinuities in slope along these discharge lines, with the water table
sloping upward from the stream as groundwater flux enters from one or both sides.
The discharge flow is significantly non-hydrostatic, but is restricted to boundary
regions whose width is again of the order of the aquifer thickness, at most. In
a typical numerical calculation of regional hydrological flow, this is usually less
than the horizontal grid spacing. The non-hydrostatic discharge region is therefore
a sub-grid scale phenomenon, parametrized by this constraint or inner discharge
boundary condition, which is, in fact, a principal determinant of the solution. In an
unsteady time-stepping calculation, the anchoring can be implemented simply by
an instruction at each step equivalent to:

“if at any point, ζ (x, y, t) > ζS(x, y) then put ζ (x, y, t) = ζS(x, y)”. (3.28)

Equation (3.25), with this constraint, allows calculation of the space-time evo-
lution of the water table configuration, given the infiltration history and the trans-
missivity of the aquifer. In the mean, or in a steady state, equation (3.25) reduces
to a balance between infiltration and lateral diffusion that allows a simple geo-
metrical interpretation. When the regional variations in transmissivity C are small,
∇2ζ = −W/C, where W is the mean infiltration rate, so that the water table curva-
ture in an infiltration region is uniform and negative, i.e. convex upward. The water
table therefore has the general form of flattened domes or barrel vaulting between
downwardly pointing cusps along the lines of discharge. Once the distribution of
water table elevation has been found, the pattern and magnitudes of the total fluxes
of groundwater are specified from (3.23) above.

This kind of analysis has been applied by the present author (Phillips, 2003)
to a calculation of the water table configurations and groundwater flow patterns
in a 13.5-km square region of the surface aquifer between the tidal Chester and
Sassafras Rivers in the Delmarva Peninsula, Maryland. The aquifer in this region
is fairly uniform with porosity φ ∼ 0.3, about 20 m thick and underlain by a thick
confining layer. The surface topography in the center of the region is essentially
flat but is intersected by natural creek beds a few meters below the general land
level. These flatten out towards the Chester River to the south. The northern part
of the region along the Sassafras River is generally higher, indented by small
bays and with shorter drainage streams. The infiltration history W(t) was inferred
by Reilly et al. (1994) from estimates of the average infiltration fraction and
historical rainfall records from Chestertown, near the south-west corner of the
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Figure 3.8. Calculated mean configuration of the water table in a 13.5-kilometer
square region of Kent County, Md, located between the Chester River (lower
boundary) and the Sassafras River (upper). The total curvature ∇2ζ is gener-
ally negative, convex upward or dome-shaped, with slope discontinuities at the
discharge lines along seasonal and semi-permanent streams.

region. The mean infiltration rate W was approximately 0.9 × 10−3 m/day. Values
of the transmissivity in the region were estimated from measured differences in
water table elevations along selected simple flow paths in the region and use of the
relation (3.31) below. This gave estimates from 340 to 510 m2/day, with an average
of 420.

The water table configuration in the region was calculated from (3.25) as a
function of time. As shown in Figure 3.8, it is clearly anchored to the surface
topography along the semi-permanent streams but its shape is characteristically
quite different from that of the topography, with convex-upward, flattened domes
between wedge-shaped valleys along the lines of discharge, as anticipated above.
Field measurements of water table levels at a series of test wells in the region were
generally within 1 m of those calculated, and this provides some assurance of the
usefulness of the analysis.

The calculated flow paths and mean groundwater contours are illustrated in
Figure 3.9, from which it is clear that the groundwater flow domains are of two
distinct kinds. The boundaries are defined by tracing back the flow lines from
the points of stream discharge into the estuary. One kind of domain originates
broadly from infiltration near the groundwater divide where the water table slope
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Figure 3.9. Contours of water table elevation as in Figure 3.8, with the pattern of
sub-surface flow direction defining flow domains that either (i) originate near the
groundwater divide and discharge into seasonal streams or (ii) receive their input
from the slope regions and discharge directly by seepage through the shoreline of
the estuary.

is small and the fluid moves relatively slowly. The flux is augmented by contin-
ued infiltration and accelerates (i.e. diverges longitudinally) along its path as it
converges laterally toward discharge into one or another of the semi-permanent
drainage streams. The other kind of domain avoids the streams, receives most of
its input from the slope regions, and discharges directly along the shoreline into
the estuary from springs or by seepage. They are exemplified by the uniformly
divergent flows in the peninsulas along the Sassafras River to the north and the
broad regions between the river catchment areas to the south. In this region, they
apparently provide about 30% of the total groundwater flux to the estuary.

3.2.4 Scales of water table elevation; relaxation, emergence
and recharge times

The structural simplicity of the governing equation (3.25) allows us to specify
useful and robust scales, or general magnitudes, of the difference in water table
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elevations between the groundwater divide and the discharge, and of relaxation
times of the water table following a pulse in infiltration rate, etc.

Let lF represent the distance along a flow path between the water table divide
and the associated discharge region, and hW the difference in water table heights at
the two ends following a time period over which the average infiltration rate is W .
In the mean, the time derivative term in (3.25) vanishes, and it becomes a balance
between infiltration from above and the groundwater flux divergence:

W = −∇{C∇ζ }. (3.29)

For scaling purposes, one can represent the derivatives in this equation as differ-
ences, so that ∇ζ ∼ −hW/lF and ∇ · {C∇ζ } ∼ ChW/l2

F. The balance represented
by this equation is approximated by W − ChW/l2

F ∼ 0, or hW ∼ l2
FW/C). In words,

the elevation of the groundwater divide above the discharge level is proportional to
the mean infiltration rate, the square of the groundwater path length, and inversely
proportional to the transmissivity C. The magnitude of the proportionality coef-
ficient depends on the detailed configuration of the discharge boundaries, but is
generally of order unity. The scale height of water table elevation above discharge
is then defined as

hW = l2
FW/C. (3.30)

We expect that the actual differences in water table elevations between groundwater
divide and discharge will differ from this scale height only by a numerical factor of
order unity, as exemplified by (3.26) and the corresponding calculation for circular
geometry.

Although the causality involved is appropriately expressed in (3.30), i.e. a given
mean infiltration rate, length of flow path and transmissivity produces a maximum
water table elevation above discharge given by this expression, a rearranged form
is probably of more practical use:

C = l2
FW/hW. (3.31)

In a field situation, it may be relatively easy to measure or estimate hW to within 10
or 20% from surveyed well-water levels and lF from the discharge boundary con-
figuration. This formula then allows a very simple and relatively accurate method
for determining the transmissivity C of the aquifer, avoiding the almost impossible
task of estimating it from permeability profiles.

The relaxation time is the time the system takes to recover from a sudden
perturbation. Time-dependent solutions to (3.25) (see, for example, Carslaw &
Jaegar, 1980) are more complex than the simple steady solutions given above but
the relaxation time scale can be found from the equation’s structure. Suppose that
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a steady-state situation is interrupted by an impulsive infiltration event such as
a drenching flood. The pulse of infiltration traverses the vadose zone relatively
quickly, and raises the water table elevation essentially uniformly in the basin. In
any diffusive (or conductive) system specified by an equation of the type (3.25),
where a first-order time derivative is balanced by second-order space derivatives,
the relaxation time is half the square of the length scale divided by the “diffusivity,”
here the combination C/φ of transmissivity and porosity. Thus

TRX = φl2
F

2C
, (3.32)

where lF is the maximum diffusion distance, the distance from the groundwater
divide to the discharge. A convenient and somewhat surprising formula expressing
the relaxation time in terms of the water table scale height and the mean infiltration
rate, both easily measured quantities, is found by combining (3.30) and 3.32):

TRX ∼ φhW

W
, (3.33)

with a constant of proportionality of about 1/2. This last expression has an interest-
ing physical interpretation of the relaxation time as the time required for the mean
infiltration to provide enough water to saturate the medium to the depth hW.

In the aquifer system between the Chester and Sassafras Rivers the aquifer path
lengths lF are about 3 km and with the transmissivity C ≈ 420 m2/day, from (3.32)
the relaxation time TRX is about 8.8 years. This is the time scale for the ground-
water level near the divide to return substantially towards its average configuration
following a prolonged wet spell, but for points closer to the discharge, the appro-
priate length scale in (3.33) is the distance to the discharge, rather than lF. At a
distance of 1 km, the relaxation time is about 1 year. In either case, the time taken
for the infiltration to traverse the vadose zone above the water table is consider-
ably shorter, so that fluctuations in water level in un-pumped wells, particularly
near the groundwater divide, are expected to be generally asymmetrical in time,
with rapidly rising levels in wet spells and much more gradual declines in dry
periods.

Another important time scale in aquifer flow is the emergence time, that is, the
time it takes for water, entering the water table at a particular location, to travel
to discharge. If a pulse of chemically passive but contaminated water is intro-
duced across the water table at some location, it moves with the interstitial fluid
toward the discharge at ever-increasing depths in the aquifer, because of the con-
tinuing infiltration from above. The time that it takes to travel along its streamline
to the discharge boundary, the emergence time, is a function of the infiltration
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rate, the aquifer thickness and the fractional distance of the point of injection
along the streamline from groundwater divide to discharge. One can see intuitively
that the closer the point of injection is to the divide, the longer it will take to
purge the contaminant from the aquifer.

Suppose that at some time t0, a soluble, but chemically passive tracer is injected
across the water table at a distance s0 from the groundwater divide. In general,
at any distance s from the divide, the upstream infiltration sW is balanced by the
volume flux along the aquifer, ud, where u is the longitudinal transport velocity. The
interstitial fluid velocity along the stream tube, ds/dt, is then φ−1u = φ−1(W/d)s,
so that

ds

dt
≈

(
W

φd

)
s.

Since s = s0 when t = t0, after the time (t − t0), the tracer pulse has moved to a
distance s from the groundwater divide given by

s(t) = s0 exp

(
W

φd
(t − t0)

)
. (3.34)

Contaminated fluid emerges at the discharge, a distance s = lF from the ground-
water divide, at what we call the emergence time TE, say, given from the solution
above as

TE = φd

W
ln

(
lF

s0

)
. (3.35)

The first factor TRC = φd/W , say, can be interpreted as the mean time it would
take for the infiltration to supply a volume of water per unit surface area equal to
the total pore volume per unit area throughout the depth of the aquifer. This, the
recharge time, is a generally useful characteristic time scale in aquifer flows by
setting not only the time scale for groundwater age and contaminant discharge, but
it also appears naturally in a number of other Lagrangian aquifer characteristics
discussed in the next section. The recharge times of aquifers in moderate climates
are usually of the order one or two decades. For example, in an aquifer of porosity
0.3 and thickness 20 m, with a mean annual infiltration rate of 0.5 m/s, the recharge
time is about 12 years. The second (logarithmic) factor is of course positive since
the distance lF from groundwater divide to discharge is always greater than the
distance s0 from the groundwater divide to the injection point. When the injection
point is near the discharge, lF/s0 in (3.35) is only a little larger than unity, the
numerical value of the logarithm is small and the emergence time is very short.
When the injection is in the upper one-third (approximately) of the aquifer length,
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as was the case in measurements on Cape Cod by Garabedian et al. (1991), the
emergence time is greater than the recharge time, φd/W . If the injection occurs
very near the groundwater divide, lF/s0 is large and the emergence time may be a
substantial multiple of the recharge time, TRC.

3.2.5 Groundwater age distribution in an aquifer

The “age” of a groundwater sample is defined as the time interval since it entered the
groundwater and lost contact with the atmosphere. Dissolved chemical or radiolog-
ical indicators will “follow the flow” with accuracy if dispersion or internal mixing
of the interstitial fluids can be neglected. In particular, some CFCs (chloroflurocar-
bons) are chemically stable, manmade compounds that have been manufactured
since about 1940, and their concentrations found in groundwater have been used
as indicators of the time interval since the infiltrating water was recharged and
isolated from the atmosphere. Dunkle et al. (1993) give an extensive discussion
and evaluation of their use in the Delmarva Peninsula in the Atlantic Coastal Plain
of the United States.

If the composition of a sandy aquifer is uniform except possibly for isolated
much less permeable silt or clay lenses, the dispersion about the mean streamlines
is small, and a very simple and again somewhat surprising relation can be found for
the age of the groundwater in terms of the mean infiltration rate, the porosity, the
aquifer thickness and the sampling depth. Remarkably, this relation is independent
of the geography of the groundwater flow region but does assume the gentle relief,
thin layer conditions, specifically that the aquifer thickness d from the water table
to the basement varies only gradually along the flow path and is small compared
with the longitudinal extent lF of the groundwater flow. The horizontal velocity
component is then independent of depth. The mean infiltration W is assumed
uniform over the domain and so the vertical component of the mean interstitial
velocity vZ is equal to –W/φ at the water table, decreases linearly with depth and
vanishes at the aquifer basement z = – d:

vZ = −W

φ

(
1 + z

d

)
. (3.36)

Now, express this equation in Lagrangian form in which the position of the fluid
element is z(t) and its vertical velocity vZ is dz/dt, so that it becomes

dz

dt
= −W

φ

(
1 + z(t)

d

)
. (3.37)
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The variables z and t are separable, and if time is measured from zero as the fluid
element crosses the water table, the solution provides the groundwater age τA for
fluid elements at the level −z (below the water table), in terms of the recharge time
scale and the fractional depth z/d:

τA = φd

W
ln

{
(1 + z/d)−1} = TRC ln

{
(1 + z/d)−1} . (3.38)

This is zero at z = 0 (at the water table, the interstitial water is always “new”)
and becomes indefinitely large at the basement, as z → −d. The singularity at the
bottom is artificial since no basement is perfectly smooth; the water age close to
the bottom of the aquifer may be very large, but not infinite. Note that the basement
depth d may vary gradually throughout the basin, but apart from that, the result
(3.38) is independent of the geographic configuration of the aquifer. The reason for
this somewhat counter-intuitive conclusion is that the thin layer geometry forces
the transport velocity along the aquifer to be uniform in depth. No matter where
they are, the older fluid elements continue to be displaced downward, driven by the
continuing infiltration across the water table, until they are released upward in the
discharge zone.

In Figure 3.10, the theoretical result (3.38) is compared with field measurements
of CFC-model groundwater ages at various locations and depths in the recharge area
of the Chesterville Branch, Kent County, Maryland, made by Reilly et al. (1994)
and Böhlke and Denver (1995), and in Cape Cod by Böhlke, Smith and Miller
(2006). Each aquifer region seems to be reasonably uniform with a depth from
water table to basement of 20–22 m in Maryland and about 40 m in Cape Cod. The
recharge times were about 17.5 and 25 years, respectively. Although there is a good
deal of scatter, as is characteristic of field measurements, the points from the two
sets of measurements fall into a reasonably consistent cloud about the continuous
curve representing the theoretical result (3.38). Some shallow, anomalously old
samples may have been taken in a discharge region or in a relatively impermeable
lens where the interstitial water is almost immobile, and deep, young samples may
have been associated with sloping, more permeable conduits that attract the flow
from the surroundings. The scaling uses measured values of the mean infiltration
rates and aquifer thicknesses, and, with no fitting parameters needed, the agreement
with the field measurements is surprisingly good.

3.3 Dispersion and transport of marked fluid

3.3.1 Measurements of permeability variations in sandy aquifers

As early as 1975, Freeze noted that in many field formations, the natural loga-
rithm of the permeability (referred to a convenient reference value) appeared to
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Figure 3.10. The distribution with depth of CFC water ages, referred to the
appropriate recharge time, as measured by Böhlke and Denver (1995) on the
Maryland Eastern Shore (+) and by Böhlke, Smith and Miller (2006) in Upper
(i.e. western) Cape Cod (o). The curve represents the theoretical result (3.38). The
recharge time TRC = φd/W , was estimated from independent measurements on
each aquifer; no curve fitting is involved.

be distributed in an approximately Gaussian manner. Subsequently, extensive and
important measurements by Hess, Wolf and Celia (1992) have established the
characteristic magnitude and geometrical structure of the hydraulic conductivity
variations in a sand and gravel aquifer on Cape Cod, Massachusetts, near Otis Air
Force Base. Their site was chosen because of the existence of contaminant plumes
where gasoline appears to have leaked into the groundwater during World War II.
Nearly 1500 permeability measurements were made in a carefully sited grid of
wells by both borehole flow-meter tests and permeameter analysis of extracted
cores. Some systematic differences were found between the two sets of measure-
ments, the values of hydraulic conductivity K found from the borehole flow-meter
tests being generally consistent with previous results from this aquifer, while those
found from measurements on the cores were consistently smaller. Hess et al.
suggest that the core samples may have been compacted during the coring and
retrieval processes, so that the two sets of data were analysed separately. The local
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Figure 3.11. In a normal or Gaussian distribution, the measured data over the
range −∞ < ξ < ∞ (lower panel) are defined by their standard deviation and
are distributed symmetrically about zero mean. Random variables in the range
0 < X < ∞ that are always positive are said be distributed log-normally when
the logarithm of the variable, ln(X), is distributed normally. Note the asymmetry
of the log-normal distribution (upper panel) with the most frequent occurrences
being smaller than the mean and a few being much larger than the mean.

hydraulic conductivity measurements from the flow meters had a geometric mean of
0.11 cm/s and those from the permeameter cores 0.035 cm/s.

The separate distributions were found to be closely log-normal at the 95% con-
fidence level. In the log-normal distribution of a variable that is always positive but
otherwise random (such as a permeability field), it is the logarithm of the variable
that is distributed normally. Log-normal and normal (or Gaussian) distributions
with standard deviation σ are illustrated in Figure 3.11, with the two median values
aligned vertically so that on either side there is an equal probability of occurrence.
In the log-normal distribution, the range of values less than the median is between 0
and 1 and the probability density is highest. High values of the variable continue to
occur over a wider range than in a normal distribution, although with increasingly
lesser frequency. The distribution is then characterized by the occurrence of a few
very large values amid a much larger number of relatively small values. The obser-
vation that in a natural aquifer, the permeability distribution is closely log-normal,
implies that a few highly permeable regions or conduits are characteristically dis-
tributed in a variable, but generally less permeable matrix, with possibly a few
distributed, almost impermeable nodules.
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Figure 3.12. Histograms of subsets of the natural logarithms of hydraulic con-
ductivity relative to 1 cm/s (upper scale), and to the geometric mean of the subset
(lower scale), measured by Hess et al. (1992) in a sand and gravel aquifer in Cape
Cod, Massachusetts. The left-hand panel shows the distribution from 194 flow
meter measurements and the right-hand panel shows results from 213 permeame-
ter measurements.

The log-permeability l(x) is found to be a dimensionless field variable

l(x) = ln (K(x)/K0) = ln (k(x)/k0) , (3.39)

in which the reference value of the hydraulic conductivity K0 was chosen arbitrarily
by Hess et al. to be 1 cm/s. Their measured distributions of l(x) from the two sets
of data are shown in Figure 3.12, and both are reasonably Gaussian. The variance
of l(x) from the flow-meter data was found to be 0.24 and that from the cores was
0.14. Note, incidentally, that the natural logarithm of the permeability fluctuations
is a field quantity that occurs in the basic relations (3.9) and (3.11) connecting
the velocity and pressure fields separately to the permeability field, so that log-
normality of the permeability is consistent with normal distributions of these other
fields.

Hess et al. expressed the spatial structure of the variations in hydraulic conduc-
tivity in terms of the “variogram” V (r) (in statistical hydrodynamics usually called
the structure function, c.f. Monin and Yaglom, 1975) of the spatial distribution l(x).
This is defined as half of the mean square difference in l(x) between two points x
and x + r in the medium, separated by the vector distance r:

V (r) = 1
2 [l(x + r) − l(x)]2, (3.40)

where the overbar denotes averaging. The structure function is a useful mea-
sure of meso-scale variability, being relatively insensitive to larger (aquifer-scale)
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Figure 3.13. Variograms or structure functions V(r) of log-permeability variations
for horizontal and vertical separations, measured by Hess et al. (1992) using flow
meters. The large separation values give the variance of the log-permeability and
the integral of the differences between this and the measurements closer to the
origin provides the horizontal and vertical integral length scales. Note that the
integral length scale of the log-permeability variations in the horizontal direction
is about an order of magnitude larger than in the vertical.

variations in local mean properties. Analysis of the measurements in terms of this
function provides two of the most significant measures of the randomness, the mean
square magnitude of the variations and their characteristic vertical and horizontal
integral length scales. It can be expressed in terms of the spatial correlation function
fLk(r) of the variations in log-permeability, which is the ratio of the covariance of
log-permeability, a function of the spatial separation r, to the variance:

fLk(r) = {l(x)l(x + r)}/{l(x)}2.

This is dimensionless, has the value 1 when r = 0 and is expected to decrease
to zero as the separation increases beyond the characteristic length scale of these
variations. From (3.40), the structure function or variogram assumes the form

V (r) = {l(x)}2[1 − fLk(r)]. (3.41)

Since fK = 1 when r = 0, from this definition, V (0) = 0 . Note, however, that field
measurements of local permeability differences between closely spaced points are
inherently inaccurate because of interference effects, as is evident from the first
few points of Figure 3.13. The magnitude of the mean-square log-permeability
variations on a local scale can be found from the value of V(r) at large separations
(when f is small) and the correlation length can be estimated from the distance over
which V(r) decreases towards zero as the origin is approached.
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Spatial horizontal correlation scales λ were estimated by fitting an assumed
exponential function 1 − exp(−r/λ) to the discrete measurement points along each
transect, and best fit values ranged from about 2.6 m from flowmeter data to 2.0 m
from permeameter data. In some measurements of the horizontal structure functions
or variograms, V(r) decreased at small separations but not to zero, possibly because
of unresolved small-scale variability (one meter or less). There was little evidence
of horizontal anisotropy. Vertical correlation scales, 0.18 m, were smaller by a
factor of about 15. Although these numerical values are specific to this site, their
dominant characteristics, with approximately equal horizontal correlation length
scales and a much smaller vertical correlation length, are expected to be generally
representative of other sandy aquifers as well. The results of these remarkable
pioneering measurements probably remain the best available characterization of
small-scale permeability variations in aquifers of this kind.

3.3.2 Measured dispersion of injected tracers over sub-kilometer scales

Spatial variations in the local mean interstitial velocity field in an aquifer contain-
ing random variations in log-permeability have not been measured directly, but a
number of flow and dispersion measurements have been made by injecting passive
tracers that move with the interstitial fluid velocity and following their movements
using arrays of sampling sites. The durations over which measurements contin-
ued (from 1 to 3 years) were small compared with the aquifer recharge times and
the path lengths involved were relatively short, 200–300 m, much smaller than
the total aquifer flow path lengths. The water table slope in each of the study
areas was very nearly uniform and the mean interstitial flow velocity approxi-
mately horizontal. Among the earliest of these measurements were those made in
an unconfined surface aquifer close to a landfill near Borden, Ontario, by Mackay
et al. (1986), by Freyberg (1986) and by Roberts, Goltz and Mackay (1986). This
aquifer was described as relatively homogeneous, with clean, well-sorted fine-
to medium-grained sand of hydraulic conductivity about (5 − 10) × 10−3 cm/s,
with generally horizontal bedding and some thin horizontal layers or lenses, less
permeable by a factor of about 10. A dense three-dimensional array of over 5000
sampling points was installed to track a pulse injection of 12 m3 of conservative
inorganic and organic solvents over a period of about 3 years. Freyberg noted
that the trajectory of the marked fluid through the aquifer was slightly curvilinear,
concave upward, as is consistent with the preceding discussion and the stream-
line shapes of Figure 3.5 that characterize continuous, distributed infiltration. At
this site, the dispersion was markedly non-Gaussian (non-Fickian) and in some
places bi-modal in the vertical, presumably because of the layering. Mackay et al.
found that the spreading in the horizontal longitudinal direction was much more
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pronounced than in the horizontal transverse direction and that vertical spreading
was very much smaller again. This finding of extreme anisotropy in the marked
fluid region has been confirmed by many others, and indeed has turned out to be a
ubiquitous property of aquifer dispersion, despite the approximate isotropy in the
structure of horizontal variations in aquifer permeability noted above.

Further field measurements have been made by LeBlanc et al. (1991), by Garabe-
dian et al. (1991) near Otis Air Force base on Cape Cod, Massachusetts, and by
Jensen, Bitsch and Bjerg (1993) in a sandy aquifer in Denmark. These have pro-
vided more quantitative estimates of the dispersion characteristics of various tracers
in media of this kind. In these measurements, after an initial interval the dispersing
clouds generally spread in time as t1/2, as in classical (Fickian) diffusion, and in
accordance with (2.75). The apparent dispersivity was quite anisotropic, Garabe-
dian et al. reporting average values of 0.96 m in the longitudinal flow direction,
1.8 cm in the transverse horizontal direction and 1.5 cm in the vertical, both smaller
than the longitudinal dispersivity by a factor of about 50. Corresponding measure-
ments from Hess et al. were 0.52 m and 0.018 m, again differing by a large
factor.

In the measurements reported by Leblanc et al. (1991), a non-reactive bro-
mide tracer cloud was injected just below the water table at a site approximately
10 km from the groundwater divide. It was followed for 461 days, during which
time the centroid of the cloud had moved about 200 m horizontally at the rate of
0.42 m/day, very close to the interstitial fluid velocity calculated from the water
table slope, the measured hydraulic conductivity (110 m/day) and the porosity
(0.39). As shown in Figure 3.14, redrawn from their paper, the bromide cloud had
spread over a distance of more than 80 m in the direction of flow after 461 days,
the end of the measurement period. The width of the cloud was then about 14 m
and the thickness only about 4–6 m. The cloud had also drifted downward about
2.3 m, as a result of rainwater infiltration and possibly also a slight excess density
in the bromide solution near the injection point.

These field measurements pose the following question. While the spatial dis-
tribution of log-permeability is almost isotropic in horizontal planes, why is the
longitudinal dispersion in flow through an aquifer so much larger than that in
transverse directions? This is clearly a robust phenomenon, whose salient char-
acteristics should be comprehensible in terms of Darcy flow characteristics in a
medium of variable permeability and the overall minimum dissipation constraint.
The variance σ 2 and the vertical and horizontal integral scales are the two most
important statistics of the log-permeability variations that influence the spreading
of dissolved solutes, but despite the considerable effort devoted to this problem by
Gelhar and Axness (1983), Gelhar (1986), Dagan (1988) and others, the detailed
connection does not seem to be widely understood.
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Figure 3.14. Downstream advection and spreading of an injected pulse of a passive
bromide tracer from the point source marked on the left, which is approximately
10 km south of the groundwater divide in south-western Cape Cod. In the region
shown, the mean interstitial fluid velocity was almost uniform over the 250 m
range. The vertical scale is exaggerated by a factor 2. Longitudinal dispersion
is very much greater than lateral dispersion, both horizontal and vertical. The
measurements were made by Leblanc et al. (1991).

3.3.3 Flow through a spatially random permeability field

Spatial variations in the transport velocity field are directly associated with the
mean velocity and the variations in the log-permeability field through the rota-
tion vector expression (3.9), according to which a random, rotational and pre-
sumably dispersive flow is induced when streamlines cut across local random
gradients of permeability. It is convenient in theoretical analyses to refer the per-
meability distribution k(x) to its geometric mean, k0, say. The log-permeability
field l(x) = ln{k(x)/k0} is then a stationary random function of position with
zero mean, as shown in the lower scale of Figure 3.12. The mean flow, U,
passing through this random permeability field, generates random, rotational pat-
terns of transport velocity that satisfy (3.9) which, for convenience is reproduced
here:

∇ × u = ∇l(x) × (U + u). (3.42)

Solving this equation is difficult and awkward to do in physical space because of
its structure, but when the variance of the log-permeability l(x) is fairly small, the
problem is much simpler in Fourier space since the differential equations become
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linear and transform to algebraic equations that are easily solved. The variances
measured by Hess et al. (0.24 and 0.14) are relatively small but not infinitesimal,
so that the accuracy of the theoretical results will be assessed by comparison with
field measurements.

When the log-permeability variances are small (compared to 1), the variations
in local velocity as a fraction of the mean are expected to be correspondingly small,
so that (3.42) can be approximated by

∇ × u = ∇ {l(x)} × U . (3.43)

This approximation neglects the rotation produced by the already scattered velocity
variation u, relative to that produced by the mean U, so that it constitutes in effect,
a first-order, single scattering approximation. In terms of its Cartesian components,
with the 1-direction being that of the flow, the 2-direction lateral and the 3-direction
vertically upward, this equation becomes

(∇ × u)1 = ∂u3

∂x2
− ∂u2

∂x3
= 0

(∇ × u)2 = ∂u1

∂x3
− ∂u3

∂x1
= U

∂l(x)

∂x3

(∇ × u)3 = ∂u2

∂x1
− ∂u1

∂x2
= −U

∂l(x)

∂x2
. (3.44)

The incompressibility condition is ∇ · u = 0.

The transport velocity variation and the log-permeability field are random func-
tions with zero mean, with Fourier–Stieltjes transforms defined as

ui(x) =
∫
κ

exp[iκ · x]dZi(κ), i = 1, 2, 3, (3.45)

l(x) = ln {k(x)/k0} =
∫
κ

exp[iκ · x]dλ(κ). (3.46)

The Fourier–Stieltjes transforms dZi(κ) and dλ(κ) are interpreted as the sums
of contributions to ui(x) and l(x) from an element of volume dκ near the point
κ in wave-number space, and the integral (or sum, or superposition) is over all
wave-number space. They are a particular variety of Fourier transform for random
functions whose basic mathematics was given by Kampé de Férier (1939) with
applications to analysis of random noise by Rice (1944) and to turbulence by
Batchelor (1953) and others. A detailed discussion is beyond the scope of this
book, though a few considerations may provide some plausibility. The transform
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itself, dλ(κ), is random and not differentiable with respect to κ – it resembles a
dense forest of delta-function spikes – but the definitions above can be differentiated
with respect to the spatial variables. Thus, in the first of the set (3.44),

∂u3

∂x2
= i

∫
κ

exp(iκ · x)κ2dZ3(κ), etc.,

so that this equation becomes

∂u3

∂x2
− ∂u2

∂x3
= i

∫
κ

exp(iκ · x) [κ2dZ3 − κ3dZ2] = 0.

The Fourier transform of zero is zero, and consequently

κ2dZ3(κ) − κ3dZ2(κ) = 0. (3.47a)

Likewise,

κ3dZ1(κ) − κ1dZ3(κ) = Uκ3dλ(κ)
κ1dZ2(κ) − κ2dZ1(κ) = −Uκ2dλ(κ)

(3.47b)

where dλ(κ) is the Fourier–Stieltjes transform (3.46) of the log-permeability field.
The simultaneous differential equations (3.44) have thus been transformed to the set
of simultaneous algebraic equations (3.47a,b) and the incompressibility condition
∇ · u = 0 similarly transforms to

κ1dZ1 + κ2dZ2 + κ3dZ3 = 0. (3.48)

Algebraic manipulation (i.e., multiply the first of (3.47b) by κ3, the second by κ2

and subtract, then substitute from (3.48)) gives(
κ2

1 + κ2
2 + κ2

3

)
dZ1(κ) = (

κ2
2 + κ2

3

)
Udλ(κ),

so that

dZ1(κ) =
{

1 − κ2
1

κ2

}
Udλ(κ), (3.49a)

where κ2 = κ2
1 + κ2

2 + κ2
3 . Substitution back into (3.47b) provides corresponding

expressions for the other two components,

dZ2(κ) = −κ1κ2

κ2
Udλ(κ) and dZ3(κ) = −κ1κ3

κ2
Udλ(κ) (3.49b)

These expressions give the Fourier–Stieltjes transforms of the three components
of the velocity field in terms of the corresponding transform of the log-permeability
field that generated them. They are building blocks for the construction of wave-
number spectra, covariances and variances of the velocity distribution in terms of
the log-permeability field. To do this, multiply (3.46) by its own complex conjugate
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taken at the point x – r, and then average the product to form the covariance of the
log-permeability field:

L(r) ≡ l(x)l(x + r) =
∫
κ

∫
κ ′

exp[i(κ ′ − κ) · x] exp i(κ ′ · r)
−−−−−−−−→
dλ∗(κ)dλ(κ ′).

Now, we assume that the log-permeability field is spatially homogeneous, so that
the double integral on the right-hand side must be independent of x. This can
occur if the Fourier–Stieltjes components at different wave-numbers κ and κ ′ are
uncorrelated, so that the only contributions to the double integral are from points
along the trajectory κ = κ ′. For these, the first exponential factor is just one, and
the last equation becomes

L(r) =
∫

exp(iκ · r)dλ(κ)dλ∗(κ) =
∫

�(κ) exp(iκ · r)dκ1dκ2dκ3, (3.50)

where the log-permeability spectrum,

�(κ) = dλ(κ)dλ∗(κ)

dκ1dκ2dκ3
(3.51)

is the Fourier transform of the log-permeability covariance, with physical dimen-
sions of L3. This function is called a spectrum because it specifies the distribution
in wave-number space of contributions to the total mean-square log-permeability,
just as a sound spectrum specifies the distribution in frequency of contributions to
total acoustic energy. From (3.50) with r = 0 and writing the element of volume in
wave-number space dκ1dκ2dκ3 as dκ , we have

L(0) = l(x)2 =
∫

�(κ)dκ ; (3.52)

the mean square (or variance) of the log-permeability distribution is the integral
of the spectrum over the entire three-dimensional wave-number space. The inverse
transform associated with (3.45) gives the wave-number spectrum in terms of
log-permeability covariance in the physical domain:

�(κ) = (2π )−3
∫

L(r) exp(−iκ · r)d r. (3.53)

Note the normalizing factor and negative imaginary exponent associated with the
inverse transform.

Similarly, the covariance tensor of the velocity field is

Rij (r) = ui(x)uj (x + r} =
∫

�ij (κ) exp(iκ · r)dκ (3.54)
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where, in terms of the Fourier–Stieltjes transform (3.45), the spectrum tensor is

�ij (κ) = dZi(κ)dZ∗
j (κ)

dκ1dκ2dκ3

= (2π )−3

∫
Rij (r) exp(−iκ · r)d r.

(3.55)

Thus �ij (κ) is also the inverse transform of the velocity covariance tensor.
The measurements of Hess et al. (1992) described earlier have established

the primary statistical structure of the three-dimensional log-permeability field in
the sand and gravel aquifer on Cape Cod, expressed by the covariance L(r) =
l(x)l(x + r), whose Fourier transform, �(κ), can be found from (3.53) and the
measurements of the variogram or structure function made by Hess et al. The
analyses above give the velocity spectrum tensor in terms of �(κ), from which we
can find the mean square velocity components and integral length scales in any
direction that pertain to the dispersion measurements of Leblanc et al. (1991) and
Garabedian et al. (1991). The most significant components of the velocity spectral
tensor are those of flow in the longitudinal and transverse directions. From (3.55)
and the solutions (3.49a), they are given by

�11(κ) = U 2
{
1 − (κ1/κ)2

}2
�(κ),

�22(κ) = U 2
{
κ2

1κ2
2/κ4

}
�(κ),

�33(κ) = U 2
{
κ2

1κ2
3/κ4

}
�(κ),

(3.56)

where �(κ) is the wave-number spectrum of the log-permeability distribution
(3.53).

(i) Velocity variances

Mean-square values of the random velocity field induced by the log-permeability
variations are found by integration of the spectra in (3.56) over all wave-numbers.
Note that the second factor on the right-hand side of each equation involves the
wave-number direction, not magnitude (in the first equation, for example, it is
(1 − cos2 θ ) = sin4 θ , where θ is the angle between the wave-number direction and
the flow). Consequently, the velocity variances in each direction are proportional
to the square of the mean velocity times the variance of the log-permeability, with
numerical constants of proportionality that depend on these directional factors as
well as on the degree of anisotropy of the permeability, but appear to be generally
of order one. For example, if the log-permeability is isotropic, the first equation in
(3.56) gives the mean square velocity variation in the flow or 1-direction. With the
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use of polar coordinates, the integration is

u2
1 =

∞∫
0

�11(k)k2dk

π∫
0

sin θ dθ

2π∫
0

dφ = U 2

∞∫
0

�(k)k2dk

π∫
0

sin5 θ dθ

2π∫
0

dφ

whence

u2
1

U 2
= 15

8
l(x)2 (3.57)

the variance of the longitudinal velocity compared with the mean is almost twice
the log-permeability variance! In contrast, from a similar calculation on the second
or third of (3.56) gives

u2
2

U 2
= u2

3

U 2
= 1

2
l(x)2. (3.58)

The corresponding variance of the transverse velocity referred to the mean is
only half of the log-permeability variance (from Hess et al., 1992, about 0.24).
The relative smallness of the transverse velocity components is one factor that
tends to reduce the lateral spreading of patches of chemically passive dissolved
contamination, but not the most important one.

(ii) Dispersivities

The dispersivity coefficients (2.80) are expressed in the kinematic dispersion anal-
ysis as products of spatial velocity correlation scales in the flow direction and
the ratios of mean square random flow velocities to mean velocity. In more basic
terms, however, they are properties of the permeability structure of the medium.
The connections can be found with the use of purely formal relations given by
Batchelor (1953) connecting certain partial covariances in physical space and inte-
grated spectra in Fourier space, together with our solutions (3.56) for the random
flow field in terms of the permeability variations.

Take the inverse transform of (3.54) with respect to the variable r1 only, and then
take i = j =1, as in Figure 3.15:

(2π )−1

∞∫
−∞

R11(r1, r2, r3) exp(−iκ ′
1r1)dr1

=
∫ ∫

�11(κ1, κ2, κ3) exp i(κ2r2 + κ3r3)dκ2dκ3

∞∫
−∞

exp{i(κ1 − κ ′
1)r1}dr1

=
∞∫

−∞

∞∫
−∞

�11(κ ′
1, κ2, κ3) exp i(κ2r2 + κ3r3)dκ2dκ3,
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Figure 3.15. Longitudinal and lateral velocity correlations R11(r1) and R22(r1)
between pairs of points in the direction of mean flow. The corresponding integral
length scales λ11,1 and λ22,1 define the base of a rectangle of area equal to that
under the curve; in the lateral correlation, this scale is very small or zero since the
positive and negative contributions balance.

since the second integral in the previous line is a form of the Dirac delta function
that replaces κ1 by κ ′

1. Now, assign the free variables r2 = r3 = 0 and κ ′
1 = 0, and

we have:

u2
1λ11−1 =

∞∫
0

R11(r1, 0, 0)dr1 = 1
2

∞∫
−∞

R11(r1, 0, 0)dr1

= π

∫ ∫
�11(0, κ2, κ3)dκ2dκ3

(3.59)

where, as illustrated in Figure 3.15, λ11−1 is the integral length scale in the 1-
direction of the velocity variations in this same direction. Similarly, for the log-
permeability field l(x),

l(x)2λ1 =
∞∫

0

L(r1, 0, 0)dr1 = π

∫ ∫
�(0, κ2, κ3)dκ2dκ3, (3.60)

where λ1 is the corresponding integral length scale.
The dynamical connection between these two is expressed by equations (3.56).

When κ1 = 0, the first of (3.56) reduces to

�11(0, κ2, κ3) = U 2�(0, κ2, κ3),
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so that, from (3.59) and (3.60),

αD−1 =
(
u2

1/U 2
)

λ11−1 = l(x)2λ1. (3.60a)

In words, the longitudinal dispersivity is equal to the mean-square value of
the log-permeability times its integral length scale in the flow direction. This
surprisingly simple result is apparently new and involves no arbitrary coefficients.

A similar calculation of the transverse dispersivity provides another surprise.
For velocity components in the lateral 2-direction, we have as in (3.59),

u2
2λ22−1 =

∞∫
0

R22(r1, 0, 0)dr1 = π

∫ ∫
�22(0, κ2, κ3)dκ2dκ3 = 0, (3.61)

since from (3.56), �22(κ) = 0 when κ1 = 0. To the first order, the lateral dispersiv-
ity vanishes! The correlation function R22(r1, 0, 0) is equal to u2 when r1 = 0 so that
the vanishing of its integral requires that the function be negative over a significant
range of r1 as illustrated in Figure 3.15. This result is consistent with the overall
minimum dissipation constraint. With the mean velocity in the 1-direction, the
transverse velocity variations tend to reverse as the separation increases, reducing
the lateral flow-path excursions that would add to the overall dissipation. The first-
order theory based on equation (3.43) neglects the nonlinear term in equation (3.45)
and becomes inaccurate when the mean-square variations in log-permeability are
large. Nevertheless, the solutions remain qualitatively correct, as seen below; the
lateral dispersivities are not precisely zero as predicted by equation (3.61), but are
found to be one or two orders of magnitude smaller than the longitudinal values.

(iii) Comparison with field measurements

The extensive investigation in Cape Cod by Hess et al. (1992), described earlier, pro-
vided nearly 1500 individual measurements of hydraulic conductivity from which
the mean intensity and scale of the log-permeability field were found. The flow
meter tests seem to have been more reliable than the permeameter tests on extracted
cores and gave a mean log-permeability variance of 0.24 and horizontal integral
length scale of 3.5 m. With these measured values, the theoretical expression (3.60)
predicts a longitudinal dispersivity of 0.84 m with no adjustable coefficients and
transverse dispersivities of zero in both the vertical and lateral directions. Tracer
measurements by Garabedian et al. (1991) found a mean longitudinal dispersivity
of 0.96 m, very close to the theoretical value, and transverse values of 0.018 m
horizontally and 0.0015 m vertically, both close to zero, as the theory predicts.
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3.4 Layered media

3.4.1 Anisotropy produced by fine-scale layering

Consider a multi-layered permeable medium in which the local permeability varies
in the vertical direction z but on a scale smaller than those we care to resolve.
Averages over a resolution volume will include a sufficient number of layers that
the overall effective permeability is expected to be anisotropic. Layered structures
like this offer high permeability conduits to Horizontal flow and obstacles to any
vertical flow that may be forced to traverse the retarding layers of low permeability.
Working on a relatively large scale, Sternlof et al. (2006) used aerial mapping to
identify patterns of dense, low-permeability compaction bands in outcrops of the
Aztec Sandstone in the Valley of Fire State Park, 60 km north-east of Las Vegas.
The highly laminated compaction bands, exposed over areas exceeding 160 000 m2,
have widths of order centimeters and individual lengths of order meters in which
the saturated permeability is reduced by several orders of magnitude.

The usual model (see, for example, Bear, 1979, or Barenblatt, Entov and Ryzhik,
1990) supposes that the permeability in the layers varies only in the vertical direc-
tion, that the individual high- and low-permeability layers are uniform and indefi-
nitely long. We assume also that the averaging scale, though large compared with
the scale of variations in k(z), is still much smaller than the formation thickness,
and consider separately the cases of horizontal and vertical flows. For horizontal
flow,

u(z) = −μ−1k(z)∇Hp,

so that within an individual averaging volume,

u(z)

k(z)
= −μ−1∇Hp, (3.62)

where the horizontal pressure gradient may vary on the formation scale, i.e., on
scales l horizontally and h vertically, but is essentially constant within the averaging
volume. In particular, in flow along the layering, the pressure gradient is assumed
to be independent of z. Within the fine-scale layers, the local permeability and
horizontal velocity vary proportionately and the flow is predominantly in the high
permeability layers. The mean horizontal transport velocity averaged over the
resolution height interval hR is

u(z) = h−1
R

∫ hR

0
u(z)dz = −μ−1(∇Hp)

(
h−1

R

∫ hR

0
k(z)dz

)

= μ−1kH∇Hp, say, (3.63)
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where the effective permeability for the horizontal flow averaged over the resolution
volume is simply the vertically averaged permeability in the interval hR:

kH = h−1
R

∫ hR

0
k(z)dz. (3.64)

In a binary medium with sub-intervals of high permeability kAQ alternating with
“retarding layers” of low permeability kRL 
 kAQ that occupy the fraction β of the
region, the resolution scale permeability

kH ≈ (1 − β)kAQ. (3.65)

This is independent of kRL, the permeability of the retarding layers, because little
fluid moves along them.

The expression (3.64) and the approximation (3.65) giving the average perme-
ability to flow along the layers, are expected to be quite robust. They do depend
on the assumption that at least most of the aquifer layers are continuous through
the averaging region, but only weakly upon the continuity of the retarding layers
since, again, almost all of the flow moves around them.

Purely transverse flow across the layering is a different matter. The crucial
assumption in the conventional model is that the retarding layers are indefinitely
long, uniform and continuous, though this may be geologically unrealistic. Under
this assumption, the channeling effect disappears and the vertical velocity within
the averaging volume is assumed independent of z. The vertical pressure gradient
needed to drive the flow now varies rapidly in z as k(z) does.

∂p

∂z
= − μw

k(z)
,

and the mean vertical pressure gradient, averaged over the interval hR is

∂p

∂z
= −μw

⎧⎨
⎩ 1

hR

hR∫
0

(k(z))−1dz

⎫⎬
⎭ = −μw/kV .

This relates the mean vertical flow to the mean vertical pressure gradient as in
Darcy’s equation W = −(kV/μ)∂p̄/∂z with an effective permeability

kV =
⎧⎨
⎩ 1

hR

hR∫
0

dz

k(z)

⎫⎬
⎭

−1

,

which, in a horizontally layered, binary medium with kAQ � kRL, reduces to

kV ≈ kRL/β, (3.66)
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where, again, β is the fraction of the total volume occupied by the retarding layers.
Unlike (3.65), this result cannot be regarded as robust, since it depends crucially
upon the assumptions of continuity and uniformity of the retarding layers and the
absence of fractures traversing them. The flow is assumed to be uniformly vertical
throughout the formation, an idealization may be satisfied only rarely in nature. It
asserts that the average permeability is dominated by that in the regions of least
permeability, that is, those that provide the greatest resistance to flow. In contrast,
the minimum dissipation theorem implies that the flow will by-pass such regions
wherever possible, and will follow a more circuitous but lower resistance path
threaded among them. This is discussed more quantitatively below.

Be that as it may, if we take (3.65) and (3.66) at face value, they can be written in
terms of the hydraulic conductivity (2.9). If the inverse of the hydraulic conductivity
is called the “hydraulic resistivity,” the expressions can be interpreted as asserting
that in horizontal flow (along the layers), the effective conductivity is, simply, the
average conductivity in the averaging volume, while in vertical flow (across the
layers), the effective hydraulic resistivity is the average of the resistivity values
over the averaging volume.

The expressions for the effective permeabilities averaged over the resolution
scale are frequently used in numerical simulations of aquifer flow to define a
permeability tensor

k =

⎛
⎜⎝

kH 0 0

0 kH 0

0 0 kV

⎞
⎟⎠ , (3.67)

so that when the small-scale layering is uniform, Laplace’s equation for the pressure
field is replaced by

kH
∂2p

∂x2
+ kH

∂2p

∂y2
+ kV

∂2p

∂z2
= 0. (3.68)

As described earlier, in non-trivial solutions of Laplace’s equation, the length scales
lH and lV for flow patterns in vertical and horizontal directions are essentially the
same, while in a uniformly layered medium represented by (3.68), the ratio of
scales is

lH/lV ∼ (kH/kV)1/2 . (3.69)

This is frequently postulated to be quite large, possibly as much as one or two
orders of magnitude.

The effective permeability expression (3.66), though commonly accepted and
used in numerical simulations, is in fact a lower limit to the transverse permeability
that depends crucially on the continuity and uniformity of the retarding layers
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throughout the entire flow domain. If a retarding layer is locally fractured, thinner,
or coarser in texture, or disappears altogether, these “defects” may offer a more
permeable pathway that is more circuitous, but still offers less flow resistance and
therefore attracts flow from the direct path. It is unlikely that we will ever know the
detailed topology of layering in an extensive flow domain with natural variability,
but considerable insights (and robust results) on the effects of defects can often
be gained from simple and approximate hydrological models based upon general
principles such as the minimum dissipation theorem, that require less restrictive
assumptions than those used above.

3.4.2 Flow across layering with scattered fracture bands or gaps

To examine the effect of scattered thinning or fracturing or other defects in retarding
layers whatever the scale, consider the generic geometry illustrated schematically
in Figure 3.16, in which aquifer layers of mean thickness hAQ and permeability
kAQ are separated by retarding layers of average thickness hRL and much smaller
permeability kRL. At various locations, these retarding layers are supposed much
thinner than the mean, or locally absent, or fractured, etc., and these defects can
allow local interstitial fluid to move from one aquifer layer to the next without
crossing the intact and much less permeable parts of the retarding layer. The
distances L separating the defects in adjacent retarding layers are expected to
vary substantially in nature but in general, the separations may be much greater
than the individual layer thicknesses. If large fracture zones traverse the whole
structure, the permeability to vertical flow may be greatly increased, at least
locally. The defects or gaps can be expected to be highly permeable, and offer
less flow resistance than that for flow across the intact retarding layers where
the permeability is low, and also for flow along the aquifers between separate
defects despite its longer path length. We therefore consider situations in which
kAQ � kRL and the average horizontal distance between gaps or defects is large
compared to the layer thicknesses, L � hAQ, hRL, both possibly by orders of mag-
nitude. Parameter ratios may vary among different sites by three or four orders of
magnitude.

It is fairly obvious that in the geometry illustrated schematically in the top panel
of Figure 3.16, with an even approximately horizontal mean pressure gradient,
the average (resolution scale) permeability is close to that given by (3.64) and
(3.65). Fluid moving along the aquifer layers can cross to an adjacent layer without
much penalty in energy dissipation, as the center panel of Figure 3.16 suggests.
On the other hand, in a discharge zone where the reduced pressure gradient is
primarily across the striations as in the lowest panel, the connectivity provided by
any gaps or defects would be expected to give an effective permeability significantly
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Figure 3.16. Flow patterns in a medium with less permeable lenses or finite-length
layers with gaps. In generally horizontal flow, the fluid moves along the more
permeable layers but may move among them without significant increase in flow
resistance. If the flow is on average vertical, the effective mean permeability (3.76)
involves the relative conductance of flow paths that traverse the less permeable
layers and those that skirt around them.

greater than (3.66). A simple, approximate analysis using the concept of flow tube
conductance (2.35), allows us to estimate the proportion of the total vertical flux
that (i) flows through the gaps avoiding the retarding layers, and the fraction that
(ii) seeps through them, despite their lower permeability. In this kind of physical
model, we identify the parameters that define the flow and sort out their mutual
interactions, but we ignore numerical coefficients that are expected to be of order
unity. The solution will reveal how the flow properties change with different ratios
in the individual defining parameters, but the end results will involve numerical
proportionality constants that are of order unity but not defined more precisely. In
many instances, the actual field values of the physical or geometrical parameters
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are also not known well, so that in the task of uncovering how the flow works, the
sacrifice of numerical accuracy may be of lesser concern.

Consider the flow through the characteristic module illustrated in the bottom
panel of Figure 3.16. As it threads its way through the medium, the flow may
be vertical on average, but more random in horizontal directions as it moves
between defects in adjacent retarding layers with an average horizontal spacing
specified by L. In a binary (two-permeability) medium such as this, the flow tube
resistance (2.34) can be represented as the path length divided by the product
of the permeability and the tube cross-sectional area, summed over the different
flow segments. In flow tubes that zig-zag approximately horizontally among the
segments of retarding layer, the path length in each module is on average L, the
tube cross-section is proportional to hAQ and the permeability is kAQ. The flow tube
resistance for these is

RAQ ∼ L

kAQhAQ
and the conductance CAQ ∼ kAQhAQ

L
. (3.70)

For a flow tube that traverses the retarding layer, there are two additive components
of the flow tube resistance in series, from (i), the part through the retarding layer
where the permeability is kRL, the path length is the layer thickness hRL and the
width of the tube is as large as it can be, that is, L, and (ii), the parts in the aquifer
material with permeability kAQ, width proportional to hAQ and length of order L

as it zig-zags to and fro. Because the permeability of the retarding layers is taken
to be much smaller than that of the aquifer material, the flow tube resistance is
dominated by the section through the retarding layer, so that

RRL ∼ hRL

kRLL
+ L

kAQhAQ
≈ hRL

kRLL
and CRL ∝ kRLL

hAQ
. (3.71)

For flow paths “in parallel”, i.e. that originate in one domain and travel by different
paths to another, with given driving force, the flux in each path is proportional to
the corresponding conductance, and as shown in Section 2.5, the total conductance
is the sum of the conductances of the individual flow paths. Consequently, the
fraction of the total flux that passes across the retarding layers and the fraction that
avoids them are, respectively,

CRL

CAQ + CRL
and

CAQ

CAQ + CRL
. (3.72)

If the conductance of the flow tube CRL that traverses the low-permeability, retard-
ing layer is greater than that of the flow tube which skirts it, i.e. if CRL > CAQ,
most of the flow does follow the shorter, lower-permeability path. From (3.70) and
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(3.71), this is so when

L >

(
kAQ

kRL

)1/2

(hAQhRL)1/2 ∼
(

kAQ

kRL

)1/2

h, (3.73)

where h is the harmonic mean of the two sub-layer thicknesses. Note that the
permeability ratio is assumed to be large, so that significant flow will traverse the
less permeable layers when the average distance L between gaps is a sufficiently
large multiple of the layer thickness, as one might have guessed. The overall
permeability to flow across the laminations is then approximated by the classical
(uniform layer) expression kRL/β given below equation (3.66), where β is the
fraction of the total section occupied by low-permeability layers. When the fractures
or gaps are denser and the intervals between them are smaller, the inequality is
reversed. Then

L 

(

kAQ

kRL

)1/2

(hAQhRL)1/2 ∼
(

kAQ

kRL

)1/2

h (3.74)

and the rising (or falling) fluid threads its way along the high-permeability path-
ways among the segments of the low-permeability layers. The overall permeability
is proportional to the aquifer layer permeability kAQ, with a geometrical propor-
tionality factor that expresses the tortuosity of the pathways.

The pressure distributions associated with the zig-zag mean vertical flow pattern
are of interest since their net effect determines the effective mean permeability
for flow across the layers. In the bottom panel of Figure 3.16, the fraction f =
CAQ/(CAQ + CRL) of the total flux Q percolates laterally from one defect to the
next one in the retarding layer above with transport velocity f Q/hAQ, and, from
Darcy’s equation, this requires a pressure drop from one to the other such that

�p

L
= μ

kAQ

f Q

hAQ
.

Thus

�p = μQfL/hAQkAQ = μQ
1

CRL + CAQ
(3.75)

after a little algebraic manipulation and use of (3.70). This is also the pressure
difference across an individual retarding layer (within a numerical factor of about
1 or 2), so that the overall mean vertical pressure gradient is �p/(hRL + hAQ).
The relation between this and the overall mean transport velocity Q/L defines the
effective mean permeability k for vertical overall flow in a layered medium with
scattered gaps or fracture zones.

μ

k

Q

L
≈ �p

�z
= �p

hAQ + hRL
≈ μQ

hAQ + hRL

{
CAQ + CRL

}−1
.
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Accordingly, the effective mean permeability for vertical mean flow is

k ≈
(

hAQ + hRL

L

) {
CAQ + CRL

}
. (3.76)

The first factor in this equation is purely geometrical, the ratio of total thickness
of a retarding layer/aquifer unit to the mean distance between defects. The second
factor asserts that the mean permeability k is dominated by the medium with greater
flow tube conductance or the smaller resistance (the aquifer material, as one might
expect). With use of (3.27) and (3.28), the previous equation can be rewritten in an
alternative form which offers additional physical insight:

k ≈ kRL

(
hAQ + hRL

hRL

) {
1 + kAQ

kRL

(
hAQhRL

L2

)}
. (3.77)

The inverse of the second factor in this expression is simply the fraction of the total
column occupied by the retarding layers, represented by β in (3.65) and (3.66).
These first two factors in (3.77) can therefore be recognized as the approximation
kRL/β for uniform layering of indefinite length without defects. The third factor
in (3.77) is the fractional increase in overall permeability produced by gaps or
fractured regions, which involves the large permeability ratio between the aquifer
and retarding layers and the generally small ratio of layer thicknesses to mean
interval between defects.

Whether or not the defects are important in vertical overall flow depends on
the competition between these two ratios and the transition involved in (3.73). For
example, if the ratio of permeability in the aquifer and retarding layers is 104, and
the mean interval between gaps is about 100 times the aquifer/retarding layer unit
thickness, the mean permeability to vertical flow is only twice that in the defect-
free case (L → ∞), whereas if they occur three times more frequently, the mean
permeability is about 12 times larger than given by the conventional expression
(3.64).

3.4.3 Confining layers in a surface aquifer

On a larger scale, the dispersal of contaminants introduced into the groundwater
across the water table of a surface aquifer may be influenced by the presence of
one or more “confining layers,” whose ability to restrict most of the infiltrating
rainwater flow to relatively shallow depths is of interest. The extent to which this
confinement occurs in a particular structure may not be obvious a priori. However,
a simple analysis using the minimum dissipation principle indicates that the flow
will be largely confined to the surface aquifer if the ratio of the confining layer
thickness to aquifer length, though small, is at least an order of magnitude greater
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Figure 3.17. A surface aquifer with a single “confining” layer above the base-
ment; the vertical scale is greatly exaggerated. From equation (3.78), effective
confinement of surface contamination requires that the ratio of retarding layer
permeability to aquifer permeability be much less than the ratio of retarding layer
thickness to aquifer length, which usually is already small. Contamination intro-
duced near the groundwater divide seeps into the lower aquifer and flushes much
more slowly than that which enters at points closer to the discharge.

than the ratio of confining layer to aquifer permeability. Any contaminant that
does leak through the confining layer originates near the groundwater divide as
indicated schematically in Figure 3.17, although the leakage is distributed along
most of its length. The upward flow to discharge is much more concentrated,
as earlier examples have shown, with a width expected to be of the order of the
aquifer depth, and the energy dissipation rate for the discharging flow upward across
the retarding layer can be significant in the overall energy balance. A somewhat
unexpected result from the analysis is the importance of the overall aquifer length
L in determining the qualitative nature of the flow pattern. For given permeability
parameters, depth of formation and layer thicknesses, it is shown below that when
the aquifer length is relatively small, the flow may be almost entirely confined to
the upper layer, although with the same vertical permeability structure in a long
aquifer, the flow can circulate more freely through the retarding layer to greater
depths.

The analysis proceeds as follows. We consider the family of kinematically
possible flow paths from infiltration to discharge and estimate the dissipation
rates in the various hydrologic regions of the overall flow pattern as a function
of the fraction f of the total flux that crosses the retarding layer in order to find
the one in which the total dissipation is least. In Figure 3.17, a two-dimensional
aquifer is supplied by a uniform average infiltration rate W over its length from the
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groundwater divide at the left of the figure to a discharge strip along a stream bed,
say, a distance L to the right. In this analysis, the flow is assumed two-dimensional.
The aquifer has permeability k1 to a depth d1. Below this, there is a retarding
layer of thickness δ and with a much smaller permeability, kRL, followed by a
second aquifer layer of thickness d2 and permeability k2 above an impermeable
basement. Characteristically, the total depth of the aquifer is very small compared
with its extent, L, and the permeability of the aquifers is much larger than that of
the retarding layer:

d1 + δ + d2 
 L and k1, k2 � kRL.

The general pattern of flow is obviously from the groundwater divide, with the trans-
port velocity very nearly uniform with depth in each aquifer region and increasing
linearly with distance from the groundwater divide. The upward discharge is con-
centrated within a distance of order d2 of the far end of the aquifer system and the
energy dissipation rate there turns out to be a significant part of the whole. From
(2.38), the total dissipation per unit transverse distance of the aquifer is

εTOT = μ

∫
(u2/k)dA ≈ μ

∑
(u2/k)Ai, (3.78)

where Ai represents the area and k the appropriate permeability of each of
the four domains specified above: the two aquifer regions with the longitudinal
velocity component generally much larger than the vertical component; the low-
permeability confining layer in which the flow is directly across it, not along; and
finally, the discharge region.

The dynamical characteristics of these regions are specified in Table 3.1. At
any section a distance x from the discharge, the infiltration W provides a total
horizontal flux Wx in the system, and let f represent the unknown fraction of the
total infiltration (to be determined) that leaks into the lower aquifer. We call this
the leakage fraction. The fraction 1 – f enters the system over the distance (1 – f )L
from the discharge, and remains in the upper aquifer throughout, moving laterally
with the transport velocity u1 = Wx/d1.

The flow across the low permeability layer is distributed and downward in the
infiltration region and equal to fW, but it is more concentrated and upward near
the discharge, with transport velocity of order fWL/d2. Because the dissipation
is quadratic in the velocity and in spite of the smallness of the discharge area,
the total dissipation here is larger by a factor L/d2 � 1 than along all the rest
of the confining layer. Consequently from (3.78), the total dissipation is, in essence,
the sum of that in the flow along the upper aquifer, along the lower aquifer and
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Table 3.1. Flow characteristics in the various sub-regions of the aquifer

Upper aquifer Retarding layer Lower aquifer Discharge

Longitudinal
flux

(1 − f )Wx Negligible f Wx (upward)

Longitudinal
velocity

(1 − f )Wx/d1 Negligible f Wx/d2

Vertical
velocity

∼ W −f W < W ∼ f WL/d2

Flow
resistance

(RAQ)1 = μL

k1d1
RRL = μδ

kRLL
(RAQ)2 = μL

k2d2

μδ

kRLd2

Area Ld1 Lδ Ld2 d2 δ

Regional
dissipation
rate

μ

k1

(
(1−f )W

d1

)2
d1L

3 ∼ μ

kRL
(f W )2Lδ

μ

k2

(
f W

d2

)2
d2L

3 μ

kRL

(
f WL

d2

)2
d2δ

Numerical coefficients of order unity and terms of relative order d/L in the accounting are
omitted. See Figure 3.17 for the geometrical specifications. W is the mean infiltration rate,
f is the fraction that crosses the retarding layer and enters the lower aquifer.

across the retarding layer in the discharge region, respectively,

εTOT

μ
≈

(
(1 − f )WL

d1

)2
Ld1

k1
+

(
f WL

d2

)2
Ld2

k2
+

{
f WL

d2

}2
d2δ

kRL
.

According to the minimum dissipation theorem, among all kinematically possible
flows satisfying given boundary conditions, the actual flow is the one in which
the total dissipation is least. The fraction f of the total flux that infiltrates into
the lower aquifer defines the family of conceivable flow patterns, and the member
of the family that also satisfies the dynamical equations is that which provides
the minimum total dissipation rate where ∂εTOT/∂f = 0. We then differentiate the
expression above, equate the result to zero and solve for f. After a little algebra,
and with the recollection that

Flow resistance = (Viscosity) · (Path length)/(Permeability) · (Path width)

it is found that the leakage fraction f at the minimum value of εTOT is

f = (RAQ)1

(RAQ)1 + (RAQ)2 + RRL
. (3.79a)

This expression can be usefully interpreted in term of the flow tube conductances
for the flow paths. For the pathways always above the confining layer, the con-
ductance is C1 = 1/(RAQ)1 ∼ kAQd/μL. The path traversing the confining layer
contains, sequentially (i.e. in series), the two resistance components (RAQ)2 along



104 Patterns of flow

the aquifer and RRL across it, with a total resistance (RAQ)2 + RRL and conductance
C2 = 1/[(RAQ)2 + RRL]. Thus the leakage fraction can be written

f = 1/C1

(1/C2) + 1/C1
= C2

C1 + C2
, (3.79b)

which is the ratio of the conductance through the lower layer to the total conduc-
tance, a result in accordance with network theory and with intuition.

Note that the leakage fraction f is always non-zero; some of the infiltrating
rainwater from a region close to the groundwater divide always seeps through to
the deeper aquifer. Deeper streamlines originate from closer to the groundwater
divide, as in Figure 3.17, and any contamination entering the water table near the
here finds its way to the lower aquifer as it moves towards the discharge region.
Because of the spatially uniform infiltration assumed in this example, the leakage
fraction f also specifies the fractional distance from groundwater divide to discharge
that provides the origin of the lower aquifer flow. Contamination flow paths that
enter the system across the water table at points more remote from the groundwater
divide than this and closer to the discharge, follow a shallower streamline that does
not enter the lower aquifer at all, but discharges directly from the upper aquifer.

Effective confinement of surface-induced contaminant to the upper aquifer
requires that the leakage fraction f, is small, or that RRL � (RAQ)1,2 and C1 � C2.
In terms of the basic parameters

f ≈ (RAQ)1,2

RRL
= kRLL

kAQδ

 1

by a factor of at least 10. Alternatively, effective containment requires that

δ

L
� kRL

kAQ
. (3.80)

i.e. that the ratio of the retarding layer thickness to aquifer length must be at least an
order of magnitude greater than the ratio of retarding layer permeability to aquifer
permeability.

It is important to note that the leakage fraction depends not only on the per-
meability of the aquifers and the thickness of the retarding layer, but also on the
aquifer length. In a short aquifer with a given vertical structure of layer thickness
and permeability, the retarding layer might confine the flow almost entirely to the
upper layer, while the same vertical structure in a much longer aquifer loses its
ability to confine and allows the flow to be distributed throughout. The physical
reason for this is that, as the aquifer length L increases from a relatively small
value, the flow resistance of the upper aquifer increases with the length while that
of the discharge flow across the retarding layer remains constant and therefore a
smaller fraction of the whole. Ultimately, it becomes more energy-efficient for a
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greater part of the flow to divert across the “retarding” layer and take advantage of
the low resistance flow path below.

For example, the surface aquifer in the Delmarva Peninsula, illustrated in
Figure 3.6 (from Shedlock et al., 1999, Bachman, 1984) consists of a major sand
unit about 30 m thick, overlain by complex layering of some 5 m of much less
permeable clay, silt and peat and another 10 m of sand. The permeability ratio
kRL/kAQ appears generally to be about 10−4. The overall aquifer consists of many
small watersheds with groundwater flow paths that range from 300 m to about 5 km
in length. For those with the shortest groundwater paths, δ/L ∼ 10−2 so that the
condition (3.80) is well satisfied and the leakage fraction is very small. The flow
in these watersheds is indeed largely confined to the aquifers above the retarding
or confining layers. For the longer aquifers having the same vertical structure but
with longer flow path lengths L ∼ 5 km, we have δ/L ∼ 10−3 and (3.80) is only
marginally satisfied, indicating rather poor confinement and about 10% leakage
from the upper to the lower aquifer.

3.4.4 Mixing in more permeable lenses

The concentration of flow through lenses that are more permeable than the sur-
rounding matrix enhances the lateral and vertical mixing of solutes. As fluid enters
a lens, any pre-existing vertical gradient of an unsaturated solute is amplified in the
convergence by a factor equal to the focusing ratio. Inside the lens, the longitudinal
interstitial flow speed v increases by the same ratio; vertical concentration gradients
are then very large and vertical dispersion inside the lens is greatly enhanced. If
the flow distance l through the lens is sufficiently large, i.e. if,

l ≥ δ2/αD

where δ is the thickness of the lens and αD its dispersivity (2.80), the fluid in the
lens may have become mixed before it emerges at the other end and spreads out
vertically. The final vertical gradient in concentration of the solute in the fluid that
has passed through the lens is then very much less than it had been initially.

For two-dimensional flow in a confined aquifer with total thickness d and perme-
ability kA as illustrated in Figure 3.18, the volume flux q is independent of distance
along the aquifer, although the longitudinal pressure gradient and the partition of
the flux among the lenses may vary. If lenses of permeability kL occupy the amount
δ of the aquifer thickness, then

q =
∫

udz = uLδ + uA(d − δ)

= −(kLδ + kA(d − δ))ν−1 (∂p/∂x) = const.,
(3.81)
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Figure 3.18. Isolated permeable lenses in a less-permeable matrix focus the flow
and the convergence amplifies any vertical gradient in dissolved solutes, promoting
accelerated vertical mixing.

where kL � kA. For increasing total lens thickness δ, more of the total volume
flux passes through the lenses, the longitudinal pressure gradient decreases and the
flow outside the lenses is correspondingly slower, as is evident from the streamline
spacing in Figure 3.18.

In a surface aquifer, the longitudinal pressure gradient is maintained by the water
table slope and, from (3.23),

q = −C∇Hζ = −C
∂ζ

∂x

in two-dimensional flow, where C is the vertically integrated hydraulic conductivity
(3.24). Physically, the flux q is determined by the upstream infiltration, and the
water table slope adjusts to variations in C along the flow path, being smaller
when the lenses occupy more of the section. If the interstitial fluid near the water
table contains chemically passive contaminants, the convergence and intermixing
inside the lens allow the contaminant to be distributed vertically down-stream of
the lenses.

3.5 Fracture–matrix or “crack and block” media

Fractures are almost ubiquitous in natural rock formations. The marble mountains
of Carrera in Italy have been famous since antiquity for the huge blocks of pristine
white marble that they yield, their rarity making them noteworthy. More commonly,
rock formations and lithified layers are fractured on scales of order meters or less,
as a legacy of stresses from tectonic movements or thermal gradients over time past.
The hydrological properties of fracture–matrix media have many interesting char-
acteristics that are becoming increasingly important in questions of contaminant
transport and mineral deposition.

As mentioned earlier, a fracture plane should not be considered as a gap between
parallel plane rock surfaces. It is, more realistically, an approximately plane net-
work of intersecting ribbon-shaped pathways, separating discrete close-contact
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areas of adjacent matrix blocks. As with a simple “sandbank” medium, averages
are defined over scales large compared with the microscale, which here is the rep-
resentative block size, or distance between fractures. This scale is assumed to be
small compared with the depth scale of the formation but this may not always be so;
the alternative is to consider the flow in separate and individual fractures interacting
with the matrix. If λ represents the mean total length of the ribbon pathway network
intersected per unit area of a slice through the medium with dimension [length]−1,
then the fracture porosity is φF = λδF, as in (2.3), where the mean gap width is
δF. Characteristically, δF ∼ 10−5 − 10−4 m (10–100 microns), with occasionally
much larger values, so that with a moderate density of active fracture segments,
λ ∼ 1 m/m2, say, the fracture porosity is also φF ∼ 10−5−10−4, very much smaller
than the matrix porosities in Chapter 2.

In contrast, the fracture permeability is often much greater than the bulk perme-
ability of many un-fractured rocks. If the fracture geometry is idealized as a set of
parallel ribbon-shaped apertures of thickness δF, the local Poiseuille flow solution
(see Batchelor, 1967) gives for the fracture permeability,

kF = 1
12φFδ

2
F = 1

12δ
3
Fλ (3.82)

when the channels are aligned in the direction of the pressure gradient. If their
directions differ by an angle θ , an additional factor cos2 θ is involved in (3.82),
because (a), the component of the pressure gradient is smaller by cos θ and (b), the
path length per unit slice normal to the pressure gradient (and flow resistance) is
greater by (cos θ )−1. This implies that in a relatively thin layer containing multiple
transverse fractures with random orientations in the plane of the layer, as shown
in Figure 3.19, the permeability is anisotropic, but not strongly so. For transverse
flow, the fracture paths are all in the flow direction as in (3.82), while for flow along
the layer the angle θ is distributed randomly and the cos2 θ dependence averaged
over all directions reduces the permeability for this flow direction, but only by
one-half. More realistically, if the aperture widths vary and the directions of active
fracture flow paths are distributed randomly in all directions, it can be shown that

kF = φFδ
2
F/36 = δFδ

2
Fλ/36, (3.83)

provided the connectivity of the fracture flow paths is sufficient to avoid significant
choking by local constrictions. Little data are available on distributions of fracture
aperture widths, but if the larger apertures have δF ∼ 10−4 m, and the length
of active aperture per unit area λ ∼ 1 m−1, the fracture permeability is about
3 × 10−14 m2, the same order of magnitude as found in field measurements on
granite and metamorphic rocks, given in Table 2.1. This provides some support to
Brace’s (1980) conjecture that at least some of the low permeability values inferred
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Figure 3.19. The overall permeability of a thin fractured layer is generally
anisotropic, with the permeability for flow across the layer being about twice
that for flow along it.

from field measurements in tight rocks are expressions of kF, rather than matrix
permeability kM.

In nature, the variations in fracture path aperture δF are certainly considerable
and because of the cubic dependence in (3.83) the distribution of flow is expected to
be something qualitatively like log-normal, concentrated disproportionately in the
relatively few widest pathways with the much more numerous, narrower pathways
contributing much less. Measurements on the distribution of flow paths by Abelin
et al. (1991) and Birgersson et al. (1995) in a fracture zone in granite and Salve and
co-workers (2001, 2003) in unsaturated, non-welded tuff showed this channeling
very clearly, with most of the flow taking place preferentially along relatively
few pathways. There is no reason to believe that this property is specific to those
particular sites. Casual observations of the distribution of stalactites in limestone
caverns suggest also that the thicker stalactites, associated with the largest fluid
pathways, are often separated by many smaller and incomplete ones along the lines
of roof fractures.

In hydrodynamically driven flow, such as that in a surface aquifer, the overall
mean pressure gradient is supplied by variations in water table elevation. The
pressure gradient inside any particular block must be influenced by its configuration,
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the connectivity of the surrounding fractures, etc., and the flow pattern is unlikely
to be straight through the block, from one side to the other. Nevertheless, the
minimum dissipation theorem assures us that the flow within the block will be
as efficient as possible, converging towards the interfaces that have the largest
connected apertures in the surrounding fracture, and avoiding the more resistive
regions. Consequently, the geometry of the contact areas is less pertinent to the
overall flow (on the scale of our averaging volume) than parameters such as λ,
the active connected area of ribbon pathways per unit volume of the fabric (c.f.
Section 2.2) and the fracture gap parameters above.

3.5.1 Reservoirs and conduits

Several representative ratios are illuminating in understanding the co-existing and
interacting flows in the saturated fracture network and matrix blocks. Assume here
that the matrix blocks have porosity φM = 10−1 and permeability kM = 10−14

–10−16 m2, while the fracture network has porosity φF ∼ 10−4 and permeability
kF = 10−13–10−14 m2. With these figures, we have the following.

(1) The ratio of fluid storage volume in the matrix blocks to that in the fracture network,
the ratio of the porosities, is φM/φF ∼ 103. There is about one thousand times more
fluid in the matrix blocks than there is in the fracture network. The size of this ratio is
at the heart of the behavior of fracture–matrix flow, also called double porosity flow.

(2) The ratio of transport velocities or volume fluxes through the fracture network to those
in the matrix blocks for a given pressure gradient or buoyancy force is generally quite
large: uF/uM = kF/kM ∼ 10−103.

(3) Because of the smallness of the porosity ratio, the ratio of interstitial fluid velocity in
the fractures, vF = uF/φF, to that in the matrix blocks, vM = uM/φM is very large, by
an additional two or three orders of magnitude:

vF

vM
=

(
kF

kM

) (
φM

φF

)
∼ 103−106. (3.84)

Fluid idles in the matrix blocks but moves a thousand to a million times faster in the
fracture network.

(4) If lB represents the characteristic block size, the time taken for fluid elements to move
through an individual block (the exchange time) is lB/vM, and reciprocal of this is the
exchange rate E = vM/lB, an important parameter for these flows.

(5) The characteristic distance λF that a fluid element moves along the fracture network
before being absorbed into a matrix block is large compared with the block size:
λF = (kF/kM)lB ∼ (10−103)lB. This is not immediately obvious, but is established in
(3.96) below.
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These ratios are central to understanding the distributions of dissolved solutes,
both chemically active and passive, in fracture–matrix media. They emphasize that
in a typical saturated fracture–matrix medium, the matrix blocks provide the dom-
inant storehouses for water and dissolved solutes, while the fractures provide the
dominant conduits for flow. The flow through the matrix blocks occurs throughout
most of the space, but is sluggish, and generally provides less volume transport
than the much higher-speed fracture flow through a tiny fraction of the domain.
Even in the fractures, though, the flow Reynolds number is small, so that the basic
Darcy balance persists between pressure gradient and viscous resistance, and equa-
tions can be written separately for the co-existing fracture networks and the matrix
blocks:

uM = −kM

μ
∇p, uF = −kF

μ
∇p. (3.85)

Although water is exchanged between the fractures and the matrix blocks, the
incompressibility condition assures that fluid leaving a fracture or matrix block is
simultaneously replaced by an identical volume entering. If the fluid entering and
that leaving the blocks are chemically indistinguishable, there is little point in the
separation (3.85), and the combined transport velocity is

u = uM + uF = − (kM + kF)

μ
∇p, (3.86)

with the effective permeability for the total flow being the sum of the individual
permeabilities of the blocks and the fracture network in parallel. In considerations
of solute transport and reactions, however, the matrix and fracture flows must be
considered separately as shown below, with provision for their mutual interactions.

All this has been concerned with fluid-saturated media. Above the water table, the
matrix is unsaturated with both air and water in the void spaces. The technological
questions involved in the long-term storage of radioactive wastes in underground
repositories located in an arid climate, such as Nevada, have stimulated many
important contributions to the understanding of water and solute transport in unsat-
urated fracture–matrix media. Some interesting phenomena might be noted briefly.
In an unsaturated hydrophilic fracture–matrix medium such as those which sur-
round the Nevada repository sites, capillarity draws water into the finer-scale pores,
leaving the fracture network to provide pathways for moist air flow and obstacles
to water flow from one matrix block to the next. The blocks can lose water by evap-
oration, with subsequent diffusion to neighboring fractures and advective transport
through the open fracture pathways. Occasional infiltration from rainfall produces
gravity-driven downward flux through the fracture network, generally in the form
of fingers, that diminish with depth as a result of “imbibition” or absorption into the
adjacent matrix blocks. Salve and co-workers (2001, 2003) and others have made
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interesting and important field measurements of these processes. The basic physics
is not entirely understood, and little quantitative testing of theoretical results has
yet been possible, so that most exploratory numerical models contain substantial
empiricism. Extensive numerical simulations by Preuss et al. (1997) illustrate the
variety of physical processes already identified and their interactions that need to
be considered.

3.5.2 Transport of passive solute in co-existing fracture and
matrix block flows

If a medium is saturated with fluid containing contaminants or reactants in solution,
these can be exchanged between the fracture network and the matrix blocks, where
they are advected at very different rates. Models to describe the co-existing, two-
phase immiscible flows were used many years ago by Muscat and Meres (1936) and
by Leverett (1939), while Barenblatt and his colleagues have developed ‘double
porosity’ models in a variety of important applications to hydrology (1960) and
the physics of oil recovery (1963, 1990). As usual, we consider averages over
volume elements large compared with the characteristic block size or distance
between fractures. The primary concept involves separate flow averaging of the
fluid velocities, solute concentrations, etc., over the fracture network and over the
matrix pores, allowing for interchange between them. This notion of co-existing
and interacting fracture and matrix block flows has many interesting applications.

First, let us consider the movement and dispersion of passive solutes in an aquifer
with this “crack-and-block” structure. The transport velocities for the matrix and
fracture networks are as specified in equation (3.85). The conservation equation
for a chemically passive solute, as specified in general by equation (2.50), is to be
applied separately to the fracture network and the fabric of matrix blocks.

Inside any individual matrix block, the solute balance per unit volume of fabric
is

φM
∂cM

∂t
+ uM · ∇cM = φMD∇ · (∇cM), (3.87)

where D is the internal solute diffusivity. The volume integral of this equation over
the block can be written as

φM

∫
(∂cM/∂t)dV +

∫
cMu · dS = φMD

∫
(∂cM/∂n) · dS,

with use of the incompressibility condition (2.8) and the divergence theorem. This
expresses the rate of change of total solute in the block in terms of the total flux
of solute and the diffusion of solute across the block surface. The first term can
be written as φM(∂cM/∂t)V where V ∼ l3

B is the volume and cM (here) is the
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mean interstitial concentration of solute in this particular matrix block. The second
integral, over the surface of the block, expresses the net advection of solute out of
the block, with the flow entering from the adjacent fracture with the concentration
cF, say, and leaving with concentration cM to rejoin the fracture flow. This can
similarly be approximated as φMvM(cM − cF)l2

B, in which the cross-sectional area
is represented as l2

B. The last term expresses the net flux of solute in and out of
the block by dispersion across the surface, but since the scale of the internal pores
is much smaller than the block size, this effect can be neglected compared with
advection. If we express the previous equation in these terms and average over all
the blocks in our resolution volume, the solute balance in the matrix blocks reduces
to

φM
∂cM

∂t
= −φME(cM − cF), (3.88)

where E = vM/lB is the exchange rate, the inverse of the mean time for fluid
elements to move through blocks of typical size lB. The exchange rate is not an
intrinsic property of the flow, but a useful parameter of solute advection through
matrix blocks.

In the solute balance for the fracture network, dispersion of solute in the convo-
luted pathways among the matrix blocks is much more important than it is within
the blocks themselves. The dispersion term in (2.50) should generally be retained
in the form φFD∇2cF, where the diffusivity D = vFαD ∼ vFl0. In this expression,
αD is the dispersivity of the fracture network (c.f. Section 2.10), which has the
physical dimensions of (length) and which is expected to be a moderate multiple
of (perhaps 2 to 5 times) the block size. The random fluid velocities involved in
the dispersion are expected to be proportional to vF, the interstitial fracture flow
speed, whatever its direction. The rate of increase of solute in the fractures per unit
volume of the fabric is equal to the rate of decrease in the matrix blocks, as given
by the term on the right of the previous equation, so that the solute balance in the
fracture network is

φF
∂cF

∂t
+ φFvF · ∇cF = φME(cM − cF) + φFvFαD∇2cF. (3.89)

Note that the matrix porosity φM is involved also in the exchange term of the
fracture network balance. Addition of the last two equations gives the overall
solute balance,

∂

∂t
(φFcF + φMcM) = −φF∇ · (vFcF) + φFvFαD∇2cF, (3.90)

in which the rate of change of total solute per unit volume of the fabric is given as
the divergence of the solute flux and dispersion in the fracture network alone. The
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matrix blocks provide for the storage of solute, the fracture network provides for
its transport and allows for its dispersal.

The coupled equations (3.88) and (3.89) can be expressed a little more conve-
niently as

∂cM

∂t
= −E(cM − cF), (3.91)

∂cF

∂t
+ vF · ∇cF = φM

φF
E(cM − cF) + vFαD∇2cF, (3.92)

where φM/φF � 1, αD represents the fracture network dispersivity and the incom-
pressibility condition for the fracture fluid, ∇ · vF = 0, has been used. The physical
balances involved in fracture–matrix solute transport are dominated by the large-
ness, in one guise or another, of the ratio φM/φF ∼ 103.

3.5.3 A passive contaminant front in a fracture–matrix aquifer

Suppose that, as a result of some local event, solute-laden water begins to infiltrate
laterally from a source region into an initially pristine aquifer, in which uniform
internal flow extends along the length of the domain from source to discharge. The
leading edge of the contamination forms a front that moves down-stream at a mean
speed that is very much smaller than the interstitial fluid velocity in the fractures,
because at any instant, most of the fluid is contained in the blocks and moving only
slowly. We consider here the advection and exchange processes of a solute that
is chemically passive, deferring to the next chapter the spatial characteristics of
patterns of dissolution, deposition, sorbtion and chemical reaction that leave their
imprint in the fabric.

The initial stage of contaminant dispersal is a relatively brief period less than
the exchange time t < lB/vM = E−1. Suppose that initially pristine water enters
the aquifer across the vertical plane x = 0, say, but from time t = 0, it contains
a water-soluble but chemically inert contaminant with concentration cF = c0, say.
This travels rapidly along the fracture network, gradually seeping into the matrix
blocks and at the same time being diluted by cleaner water leaving the blocks down-
stream, to join the fracture flow. During the time interval of this initial pulse, the
solute concentration in the blocks is still small cM 
 cF, and if for the moment we
neglect dispersion of the solute about the mean fracture velocity by the convolutions
of the fracture pathways, equation (3.92) reduces to

∂cF

∂t
+ vF

∂cF

∂x
≈ −φM

φF
EcF = −vF

λF
cF, say, (3.93)
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Figure 3.20. A pulse of passive contaminant in a uniform flow across the boundary
of a fracture-matrix medium at x = 0 produces a front that moves with the
interstitial (fracture) fluid and attenuates over the length scale λF (3.94) as solute
leaks from the fractures into the adjacent blocks.

in which vF is constant and the length

λF = φFvF

φME
(3.94)

is a small fraction (φF/φM ∼ 10−3) of the distance solute moves along the fractures
in the exchange time E−1. The first two terms in (3.93) represent (c.f. (2.11)) the
time rate of change of cF following the mean fracture-fluid motion, and the last
term expresses how the concentration changes as it moves along by fluid exchange
with the fabric blocks, with fluid of concentration cF entering from the cracks and
still-uncontaminated fluid leaving. The differential equation has the solution

cF(x, t) = c0F (x − vFt) exp(−x/λF), (3.95)

as can be established by substitution. The function F(. .) in this solution is arbitrary
as far as the equation is concerned, and is determined by the time history of
the infiltrating solute concentration, cF(t), at the source x = 0. If the solute (or
contaminant) with concentration c0 appears suddenly at time t = 0 and then remains
constant, the distribution F (x − vFt) = 0 for x > vFt and = 1 when x < vFt . The
factor F(. .) thus represents a step moving outward along the aquifer as a wave with
speed vF, while the final factor shows that the step size attenuates with distance on
the scale λF, as indicated in Figure 3.20.

The exponential attenuation length in this initial stage solution can be interpreted
in several useful ways. First, from the solution, λF is the characteristic distance that
a fluid element, identified in this case by contaminant, moves along the fracture
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network before being absorbed into a matrix block. Secondly, from the definition
of the exchange rate E = vM/lB and with use of (3.94) and the ratios given earlier
in this section, we can infer its characteristic magnitude:

λF = φF

φM

vF

vM
lB = uF

uM
lB = kF

kM
lB ∼ (10 − 103)lB, (3.96)

i.e. a moderate-to-large multiple of the block size. In a fracture–matrix medium, a
contaminant “front” may be very diffuse!

The duration of the initial infiltration pulse is very short. When t > λF/vF, the
step has moved out of the region of interest, the factor F(. .) = 1 in (3.95) and
the subsequent changes in the distribution of contaminant in the matrix blocks are
much slower. Continued solute inflow at the interface with the distributed seepage
gradually increases the solute concentration there. Fluid entering the blocks does
so at the incoming concentration c0 exp(−x/λF) and leaves with concentration cM,
so that from (3.91)

∂cM

∂t
+ EcM = c0 exp(−x/λF)

and

cM = c0 exp(−x/λF) {1 − exp(−Et)} . (3.97)

After a time E−1 = lB/vM, the exchange time for the matrix blocks, those near
the entry plane are becoming saturated with the solute-bearing incoming water, so
that cM ∼ cF ∼ c0 exp(−x/λF). With continued solute inflow, the saturated region
gradually extends further along the flow streamlines, forming a “front” of thickness
λF given by (3.96), separating the contaminated region from the pristine region
ahead. Near the leading edge of the “front,” blocks may be contaminated only along
the fracture walls, while near the trailing edge contamination may have advected
and dispersed more ubiquitously throughout the blocks. Both ahead of, and behind
the front, the solute loads in the fractures and the blocks are in equilibrium, zero
ahead and c0 behind. Only inside the front, over a distance of order λF, is cF > cM,
transferring solute from the fractures to the matrix.

The speed of advance V of this front through the medium can be established
simply from the overall solute balance (3.90). With a uniform stream in the
x-direction, the distributions cF and cM are each functions of (x – Vt), so that
∂/∂t = −V ∂/∂x, and (3.90) reduces to

−V
∂

∂x
(φFcF + φMcM) + vF

∂

∂x
(φFcF) = φFvFαD

∂2cF

∂x2
, (3.98)

On integration of this across the front, the diffusion term on the right vanishes since
the concentration gradients are zero both ahead of, and after the front, and because
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Figure 3.21. Cartoon of the distribution of passive solute (hatched) following
injection maintained over a distributed surface source. The active contaminant
front is parallel to the water table (approximately horizontal), moves downward
and towards discharge; dispersion is neglected.

cM = cF = 0 ahead and cM = cF = c0 behind it. The result is that

V = φFvF

φM + φF
≈ φFvF

φM
, (3.99)

since φM � φF. This result can also be obtained without calculation. In a frame
of reference moving to the right with the speed V of the front, the flow and solute
concentration fields are steady. The flux of solute in the blocks and fractures being
carried to the left by the motion of the medium in this frame is (φM + φF)V c0,
while that being carried to the right in the fractures by the fluid motion relative to
the medium is φFvFc0. Since there is no accumulation of solute in the frontal region,
these two must balance, so that (3.99) follows. Note that, unlike fronts of passive
contaminants in a simple “sandbank” medium, which move at the interstitial fluid
velocity, those in a fracture–matrix medium move much more slowly, because at
every instant, most of the fluid is relatively stagnant in the matrix blocks.

3.5.4 Distributed solute entering across the water table

Suppose that infiltration across the water table into an initially pristine fracture–
matrix aquifer becomes contaminated uniformly over a substantial area, possibly
by regional application of excessive fertilizer that continues at a constant rate. The
mean flow pattern with averaging volumes large compared to the characteristic
distance between fractures is illustrated schematically in Figure 3.21, though most
of the flow actually occurs in relatively few fracture conduits. In the mean, the
solute follows the streamlines except for dispersion, and moves uniformly down-
ward at a linearly decreasing rate, so that if the aquifer permeability and the aver-
age infiltration rate are both uniform, the advancing contamination front remains
approximately parallel to the water table as it moves downward and towards the
discharge region. The time derivative following the motion in equation (3.91) is
now the derivative along the streamlines, which intersect the concentration front
at a generally small angle. Although the mean solute concentration gradient near
the front is vertical, the flux of contaminant through the fracture network, (vF)cF,
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dips only slightly from the horizontal, as described in Section 3.1 and the aquifer
measurements of Section 3.3. Along any given mean streamline through the front,
the distance over which solutes in the fracture flow leak into more pristine matrix
blocks is much greater than the thickness of the front as measured in the vertical
direction.

The advection term in the Eulerian equation (3.92) then involves only the rel-
atively small vertical component of the mean interstitial velocity in the fracture
network, (vF)z = −(W/φF)(1 + z/D) = −(vF)0(1 + z/D), say, where (vF)0 (>0)
is the mean interstitial fluid fracture velocity associated with the infiltration at
the water table. If W ∼ 1 m/yr, and the porosity of the fracture conduits network
φF ∼ 10−3, then (vF)0 ∼ (2 − 3m)/day, decreasing linearly with depth. In contrast,
the dispersion of solute in (3.92) produced by the interstitial flow around the blocks,
is proportional to the total mean interstitial fracture fluid speed, which is approxi-
mately uniform in depth, predominantly along the aquifer and approximately equal
to Wl/D, where l is the distance from the groundwater divide. Consequently, the
effective solute diffusivity for this flow can be taken as

αD(W/φF)(l/D) = αD(vF)0(l/D),

where αD is the vertical dispersivity in essentially horizontal flow. (For dynamical
reasons, this is very small or zero in the sandy aquifers discussed in Section 3.3.)

In place of (3.92), the downward propagation of the contaminant front is
described by

∂cF

∂t
− (vF)0

(
1 + z

D

) ∂cF

∂z
= φM

φF
E(cM − cF) + (vF)0αD

∂2cF

∂z2
, (3.100)

where 0 ≥ z ≥ −D and the negative sign before the second term reflects the down-
ward direction of the advection. This equation differs from (3.93) in several ways.
Most significantly, the advection velocity, the coefficient of the space derivative
term is no longer constant, but varies linearly with depth between (vF)0 at the upper
surface z = 0 (the water table) to zero at the base, z = − D. After a time of order
E−1 the contamination front propagates downward at the speed

V = W

φF

(
1 + z

D

)
, (3.101)

which can be compared with (3.97). The speed at which the front propagates
downward through the fractures is initially large but decreases with depth until,
when it is close to the base, it is advancing so slowly that the vertical dispersion
of solute in the longitudinal motion close to the bed may begin to dominate the
distribution.
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3.6 Flow transients

3.6.1 Diffusion of pressure

Following a local, impulsive disturbance in a permeable rock medium, both the
stress field in the surrounding rock and the pressure in the interstitial fluid are
altered. The compressibility of most rock material is only about 3–4% of that
of water, a useful tabulation having been given by Daly (1951). An approximate
estimate of the ratio can be made simply by comparing the speeds of propagation
cP and cS of seismic P- and S-waves in rocks, to the speed of sound in water. In
rocks, the elastic compressibility modulus is

ec = {
ρ

(
c2

P − 4
3c

2
S

)}−1

where, from seismic measurements, cP ∼ 6 km/s and cS ∼ 3 to 4 km/s in sandstone
or limestone. The compressibility eW of water is (ρWc2)−1, where the speed c of
sound in water is about 1.5 km/s. These figures give a ratio eW/ec of about 30 –
water is much more compressible than rocks are. Care must be taken, particularly
in the case of saturated clay minerals, to distinguish between the compressibility
of the matrix as a whole and that of the clay mineral itself. When the porosity
is relatively large and the rigidity of the solid is small, the compressibility of the
overall matrix is dominated by that of the interstitial water. With this proviso, then,
to a reasonable accuracy the rock material can be regarded as incompressible and
its porosity φ as constant, whereas the interstitial fluid seeks to expand or contract
following pressure changes.

In the mass conservation equation (2.6) the changes in fluid density with time
are now important, but we can neglect the small nonlinear product of density and
velocity fluctuations, and without the source term it becomes

φ
∂ρ

∂t
= −ρ0∇ · u, (3.102)

where ρ0 is the mean water density. Since the thermal capacity of the rock matrix
is usually much greater than that of the interstitial water, the adjustment process in
the interstitial fluid is close to isothermal. Density and pressure changes are related
by the isothermal sound speed in water, cI, which in liquids is very close to the
usual adiabatic sound speed:

∂p = c2
I ∂ρ and ∂ρ = c−2

I ∂p.

Consequently, from (3.102),

φ
∂p

∂t
= −ρ0c

2
I ∇ · u. (3.103)
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Suppose, for simplicity, that the permeable medium is homogeneous and locally
isotropic and the fluid obeys Darcy’s equation u = −(k/μ)∇p so that the fluid
divergence

∇ · u = −(k/μ)∇2p.

Equation (3.103) then becomes

∂p

∂t
= kc2

I

νφ
∇2p = κP∇2p, say, (3.104)

where ν is the kinematic viscosity of the interstitial water. This is a classical
unsteady heat conduction or diffusion equation with the same structure as (2.48)
or (2.50) without the advection and source terms. The coefficient in front of the
Laplacian, the “pressure diffusivity” is

κP = kc2
I

νφ
. (3.105)

This is analogous to the thermal diffusivity in Fourier’s law and in the heat conduc-
tion equation, which expresses the capability of the medium to transmit heat and to
smooth out temperature variations. Similarly, the pressure diffusivity expresses the
ability of the pressure in the interstitial fluid to re-establish its equilibrium following
a change in the distribution of fracture and pore spaces. The structure of the expres-
sion (3.105) indicates the properties of the medium involved in the readjustment. In
the numerator, a greater permeability k (with a given porosity) allows the interstitial
fluid to move more readily through the pores, and the volumetric elasticity allows
it to expand or contract in response to pressure variations. Both factors increase
the pressure diffusivity. In the denominator, a larger viscosity reduces the freedom
to move through the pores and a larger porosity (with a given permeability) means
that more fluid must be moved in the readjustment, both reducing the pressure dif-
fusivity. For water with cI ∼ 1.4 × 103 m/s and ν ∼ 10−6 m2/s with φ = 0.2 and
k = 10−13 m2, it is found that κP ∼ 1 m2/s. By comparison, the thermal diffusivity
of saturated rocks is very much smaller, about 10−7 m2/s; pressure diffuses much
more rapidly than heat.

The analogy with heat conduction is very useful. The way that the internal
pressure field changes in the interstitial fluid in response to an impulsive change in
boundary pressure (resulting from a seismic event, perhaps) is exactly analogous
to the way that the internal temperature field would change in response to an
impulsive temperature change at the boundary, with the thermal conductivity equal
to κP. In a uniform “sandbank” medium, a pressure disturbance diffuses through a
characteristic distance d in time t given by

t = d2/2κP, (3.106)
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Figure 3.22. Examples of dilatational fault jogs, from Sibson (1987). At the top,
a small-scale jog in sandstone has been infilled with locally fibrous quartz. Below
is a segment of surface rupture traces of the 1968 Dasht-e-Bayaz earthquake in
Iran, after Tchalenko and Ambraseys (1970). Note the difference in scales.

as does heat, with the appropriate thermal diffusivity. When a pressurized permeable
layer has a pressure diffusivity κP = 1 m2/s, a sudden pressure release following
fracture diffuses approximately 4 cm in the first millisecond, 1 m in half a second
and 1 km in about 6 days.

The maintenance of overpressure in deeply buried strata over geological time
scales requires confinement by deep layers of very low permeability, possibly
combined with the formation of new fluid by chemical reaction. The time scale for
pressure diffusion varies, according to (3.106), as the square of the thickness of the
confining overburden; for a layer of depth 10 km with k ∼ 10−19 m2, the relaxation
time is some 2 million years, not long on a geological time scale.

3.6.2 Pressure diffusion and de-gassing following seismic release

A particularly noteworthy type of subterranean fluid conduit is the dilatational jog
structure between fault segments produced during seismic events. These have been
studied and described extensively by Sibson (1981, 1986, 1987). As illustrated in
Figure 3.22, from Sibson (1987), they are localized zones of dilatation between
laterally displaced fault segments that have undergone episodic relative displace-
ment. They range in scale from centimeters to 1 km or so and are in the form of
bundles of fissure veins or of bands of wall rock breccia (cemented rubble) that
provide low-resistance pathways for vertical flow between the fault segments. Their
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textural characteristics testify to episodic efflux of hot (220–270 ◦C) hydrothermal
fluids. Sibson estimates that as much as 107 m3 of fluid may have been ejected
in a major seismic rupture, almost all of it through dilatational fault jogs. The
strike-slip system itself is frequently almost free of mineralization, suggesting that
the resistance to vertical flow in the planar fractures is much greater there than it is
in the jogs themselves.

Fitzgerald and Woods (1994) and Tsypkin and Woods (2004, 2005) have dis-
cussed the dynamics of vapor fronts and precipitate formation, mainly in the con-
texts of geothermal circulation systems and reservoirs. Although the seismic events
described by Sibson seem to have been much more violent and the conditions more
extreme than those in established geothermal fields, the basic hydrogeology and
geochemistry are similar. In the milliseconds after the initial rupture, the sudden
reduction in pressure at the wall of the newly opened fissure in water-saturated
rock over depths of up to 1 km and temperatures of 220–270 ◦C would cause an
enormous transient pressure gradient in the interstitial fluid adjacent to the wall,
with flash boiling of the pore water. The high-pressure, hot vapor ejecting into the
fissure would produce, by its drag on the matrix, a tensile stress in the direction
of flow. This would combine with the compressive lithostatic load to produce high
shear stresses in the region near the fracture and a hydraulic implosion with rup-
ture of the adjacent matrix into rubble and subsequent precipitation and mineral
deposition. The outflow rate and its subsequent time history appear to be at least
initially determined by the subterranean reservoir structure rather than the hydraulic
resistance of the breccia-filled jog, which is generally small. Similar structures and
distributions of mineralization, cited by Sibson (1987), have been identified in the
Southern San Andreas fault system and in Waihi, New Zealand. Even though the
hydrothermal fluids are hot during these events, possibly de-gassing and emerging
from the surface as geysers, the dynamical effects of buoyancy on the flow are
insignificant – the flow is certainly pressure-driven. Mineralization associated with
the subsequent flow gradually reduces the porosity of the conduits within the jog,
and the flow rate ultimately decreases.

3.6.3 Diffusion of pressure in a fracture–matrix medium

If the medium is extensively fractured, the diffusion of pressure following a sud-
den perturbation is much more rapid than in a uniform Darcy medium since, in
essence, the characteristic block size replaces the domain size in determining the
response time. The perturbation may be of seismic origin or it may be produced
by a drilling bit as it breaks through an impermeable cap into a pressurized fluid
reservoir. Interest in this application led to the analysis of pressure diffusion in a
fracture–matrix medium pioneered by Barenblatt et al. (1960) using the concept



122 Patterns of flow

of co-existing and interacting pressure fields defined by local averages over the
resolution volume. It was they who developed many of the ideas used extensively
in this book. Let pM be the locally averaged pressure in the matrix blocks and pF

the average in the fracture network. Although on a microscopic scale, the pressure
is continuous across the interfaces between fractures and matrix blocks, the local
means pM and pF may differ. The internal pressure gradients in the matrix blocks
are of order (pM − pF)/l, where l is the characteristic block size, and this drives
fluid towards the fracture interface with transport velocity

u ∼ kM

μ

pM − pF

l

and flow divergence

Q = ∇ · u ∼ u/l ∼ kM

μ

pM − pF

l2
. (3.107)

This flow divergence represents a fluid sink (per unit volume) for the matrix blocks
and a source for the fracture network. For the matrix blocks, the flow divergence is
associated with decreasing fluid density and pressure as in (3.103):

φM
∂ρM

∂t
= −ρ0∇ · u = −ρ0Q

and, since again ∂p = c2
I ∂ρ,

φM

c2
I

∂pM

∂t
+ kM

ν

(pM − pF)

l2
= 0

where ν is the kinematic viscosity of the interstitial fluid. This equation can be
rearranged as

∂pM

∂t
+ c2

I kM

νφMl2
pM = c2

I kM

νφMl2
pF. (3.108)

The left-hand side of this equation specifies the pressure variations in the matrix
blocks of size l when driven by the pressure variations in the fracture network (on
the right). The fluctuations are damped with an attenuation time

tM = νφM

c2
I kM

l2 = l2/κP,M, (3.109)

where

κP,M = c2
I kM

νφM
. (3.110)
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This can be interpreted as the pressure diffusivity in the fracture-matrix medium
(c.f. equation (3.105)), but note that the permeability and porosity of the matrix
blocks are involved. In terms of the dimensionless time, τ = t/tM, equation (3.108)
is

∂pM

∂τ
+ pM = pF(τ ),

which is analogous to (3.91), with, here, the fluid pressure in the matrix blocks
responding to variations in the fracture network pressure with a memory function
that decays exponentially over the time scale tM, above, rather than E−1.

For the fracture network,

φF
∂ρF

∂t
+ ρ0∇ · uF = ρ0Q,

and since uF = −(kF/μ)∇pF, μ = ρ0ν, and ∂p = c2
I ∂ρ, this becomes

φF

c2
I

∂pF

∂t
− kF

ν
∇2pF = kM

ν

(pM − pF)

l2
(3.111)

or
∂pF

∂t
− κP,F∇2pF = φM

φF

pM − pF

tM
. (3.112)

The left-hand side of this equation is again the classical heat conduction or diffusion
operator with the fracture pressure diffusivity

κP,F = c2
I kF

νφF
= kFφM

kMφF
κP,M (3.113)

and on the right is the pressure leakage from the matrix blocks, amplified by
the ratio (φM/φF) ∼ 103 because of the matrix/fracture volume ratio. By compar-
ison with (3.110), it appears that the fracture pressure diffusivity is larger than
the matrix pressure diffusivity by a factor of order 103 to 106, so that the
distance that a pressure perturbation diffuses in a given time (i.e. (κt)1/2) through
the fracture network is from 30 to 1000 as far as it does through a matrix
block.

With these considerations in mind, one can infer the sequence of events that
occurs when the confining layer of a saturated fracture–matrix region, under pres-
sure from its overburden, is suddenly ruptured. The drop in fracture pressure dif-
fuses rapidly throughout the region in accordance with (3.112), adjusting quickly
to a quasi-steady state on a time scale L2/κP,F, where L is the largest dimension
of the region. The total fluid volume to be expressed from the fractures during
this initial phase is relatively small because of the disparity in fracture and matrix
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porosities, but once the fracture pressure drops, fluid begins to be expelled from the
matrix blocks over the longer time scale (3.109). Frequently, de-gassing accom-
panies the pressure drop with ejection of both steam and mineralizing fluids, as
Sibson (1981, 1989) has described. Many interesting and important applications
of fracture–matrix analysis to the extraction of hydrocarbons have been given by
Barenblatt et al. (1990), which contains useful references to previous work.



4

Flows with buoyancy variations

4.1 The occurrence of thermally driven flows

A fundamental difference between constant density Darcy flows and those influ-
enced by variations in buoyancy of the interstitial fluid is the absence of a uniqueness
theorem in the latter situation. This is not just a matter of our being unable to prove
such a theorem. In buoyancy-driven flows, different flow and temperature patterns
can in fact occur in a given geometry and the same boundary conditions, and this
raises new questions about the stability of flow patterns and the conditions under
which one pattern can evolve into another. Internal circulating flows are prohibited
in Darcy flows with uniform buoyancy, even though the permeability may vary
arbitrarily, but now, flow rotation becomes of great interest, both in theory and in
field observation.

Variations in buoyancy of interstitial fluids may be the result of variations in
salinity, but are more commonly associated with temperature. The temperature
variations that both drive subterranean flows, and are also modified by them, are
generally the result of the geothermal heat flux from the earth’s interior. The average
upward heat flux in continental areas is about 2 × 10−6 cal cm−2 s−1, a very small
fraction of the mean incident solar energy flux. The mean temperature gradient in
the earth’s upper crust is some 2–3 ◦C per 100 m, but this gradient and the local
heat flux are concentrated and augmented in volcanic and hydrothermal areas by
convective heat transfer associated with bodily fluid movements. Geothermal areas
in Iceland, the western United States, in Italy, New Zealand and elsewhere have
been studied extensively, although the detailed structure of these regions and their
internal plumbing is still to some extent conjectural.

Pure thermally driven flows are generally to be found only when the hydraulic
forcing is absent, in geothermal regions, in submerged banks, beds, or continental
shelf regions or in isolated, totally confined permeable strata. The total pressure
at the bed of the sea or a lake is very nearly equal to the hydrostatic head of the
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Figure 4.1. An oceanic temperature profile, measured by Hogg, Katz and Sanford
(1978) off Bermuda in October 1975, is typical of those found in the top 1000 m in
moderate latitudes. Note the shallow thermocline at 50–100 m depth. The ocean
temperature almost always decreases with depth, whereas the temperature in the
crust increases with depth at an average rate of about 30 ◦C/km.

water above, so that the reduced pressure at the sediment–water interface is usually
very small. It is the reduced pressure gradient that supports hydraulically driven
flow, and if a permeable region is isolated by impermeable rock on all sides with
no fluid entering or leaving it, any internal motion must be driven thermally. In
any of these regions, if for any reason the isotherms are not horizontal, interstitial
fluid will circulate within the permeable domain, as specified by the rotation vector
equation (4.3), below.

In marine sediments, the internal isotherms will slope when the sediment–water
interface slopes or when the geothermal heat flux varies or when both occur, and
the consequences can be discerned in ancient marine sediments, now uplifted and
long dormant. At the upper surface of a submerged bank or coral reef, the rapid
heat transfer from ocean mixing ensures that the interfacial temperature of the
sediment is close to that of the water above. In tropical or temperate latitudes, the
near-surface sea-water mixed by the wind has temperatures of approximately 20–
25 ◦C, varying somewhat with the season. Below this mixed layer, the temperature
decreases rapidly with depth in the thermocline (Figure 4.1), to values of only a few
degrees Celsius below depths of 1000 m or so. Here, the temperature remains nearly
constant at all latitudes throughout the year. In high latitudes, the oceanic water
column is cold throughout its depth; in fact, the cold, deep water in all the world’s
oceans is maintained by the subsidence of Arctic and Antarctic Ocean water from
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the surface to great depths, the gradual meander south and north, and the eventual
upwelling and incorporation into the oceanic surface layers. The geothermal heat
flux through the ocean floor has a generally imperceptible influence on this oceanic
temperature distribution except locally in the vicinity of thermally active vents.
In most of these particular areas, hot plumes from deep oceanic vents rise and
mix quite rapidly with the surrounding water, though in a few regions devoid of
deep ocean circulation (the Red Sea being a notable example) hot, dense brine
pools, fed by vents, fill the greatest depths. There is good geological evidence that
massive mineralogical changes have been produced in relatively shallow marine
sediments by long-lived and extensive convection patterns associated with tectonic
heat anomalies, as discussed by Bosellini and Rossi (1974), Gaetani et al. (1981),
Wilson et al. (1990) and others.

Relatively weak internal circulations may occur in coral reefs or islands that
are frequently composed of high-permeability reef limestone, interlayered with
approximately horizontal, lithified lagoon muds and silts of much lower perme-
ability. The internal temperature gradients there are much smaller than they are
in geothermal areas. The layered structure of the medium offers greater resistance
to interior vertical flow than it does to horizontal flow inward from the surround-
ing escarpments. Unless the structure contains fractures or internal conduits, the
convective circulation is dependent on the capacity of the thermally induced buoy-
ancy variations to drive vertical motion through the more-resistive, less-permeable
layers.

4.2 Buoyancy and the rotation vector

The basic dynamical statement, Darcy’s equation (2.24), expresses the transport
velocity in terms of the distributions of reduced pressure and interstitial fluid
buoyancy

u = k

ν
(−∇(p/ρ0) + bl) where the buoyancy b = g

(
ρ0 − ρ

ρ0

)
, (4.1)

ν is the kinematic viscosity, g represents the gravitational acceleration and ρ0 is
the reference density of the fluid, often the mean or the value beyond the region of
active flow. The buoyancy force b acts vertically upward or down. The buoyancy
itself is also a field variable, a function of temperature T and salinity S through an
equation of state such as (2.63):

ρ = ρ0(1 − αT + βS), so that b = g(αT − βS), (4.2)

though a nonlinear form may be more appropriate at low solute temperatures. In
the case of water and most dilute solutions, the coefficient of thermal expansion α
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is negative near 0 ◦C, about 9 × 10−5 ◦C−1 in a small temperature range around
10 ◦C, and increasing to 3.5 × 10−4 ◦C−1 near 35 ◦C. When the salinity S is mea-
sured in grams of solute in each kilogram of solution (parts per thousand), the
coefficient β ∼ 0.7 (Weast, 1972). The separate distributions of temperature and
salinity are coupled to the velocity field through the conservation equations (2.48)
for heat and (2.52) for salt. Chemically passive dissolved salts move through the
medium at the interstitial fluid velocity and can be transported much more rapidly
than heat through a classical Darcy “sandbank” medium as described in Sections
2.8 and 2.10, and even more so in a fracture matrix medium (Section 3.5). This dif-
ferential effect gives rise to a whole class of so-called double-diffusive instabilities
and other phenomena, described extensively by Turner (1973) and encountered in
permeable medium flows as well as in bulk fluids.

The general characteristics of buoyancy-driven flows differ in some important
respects from those of pure Darcy–Laplace flows described in the last section.
Buoyancy-driven flows are almost always rotational and the rotation vector of the
transport velocity field (3.5), i.e.

� = (�X, �Y , �Z) = ∇ × u = curlu

plays an important role in their dynamical behavior. The curl of the Darcy equation
(4.1) is

� = ∇ × u = k

ν
{∇ × (bl)}, (4.3)

where, again, l is a unit vector, vertically upward. The pressure term has disappeared
since curl(grad) is identically zero. In terms of Cartesian coordinates (x, y, z) with
the z-axis vertically upward, and velocity components (u, v, w)

�X = ∂w

∂y
− ∂v

∂z
= k

ν

∂b

∂y
,

�Y = ∂u

∂z
− ∂w

∂x
= −k

ν

∂b

∂x
,

�Z = 0. (4.4)

It is evident that the component of the rotation vector in each horizontal direction
is proportional to the slope of the lines of constant density or buoyancy (the
isopycnals) in the orthogonal horizontal direction. From the last equation in the set,
the vertical component of the rotation vanishes. This fact implies from (4.4) that
even in flows influenced by buoyancy, the circulation around every closed circuit
in a horizontal plane must vanish. In plan form, there can be no closed streamlines
or flow paths – the horizontal part of the flow pattern is irrotational. Rising plumes
in Darcy flow do not swirl.
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Figure 4.2. Cartoons of the flows induced in permeable media by horizontal tem-
perature gradients. In each diagram, T0 > T1. When the isotherms slope downward
to the right, the rotation vector is clockwise and when they slope upward, the rota-
tion is counter-clockwise.

Some simple two-dimensional cartoons of buoyancy-driven flows are shown
in Figure 4.2, in which the variations in buoyancy are the result of temperature
variations in the x–z plane. The rotational flow in this plane is given by (4.4) as

�Y = −k

ν

∂b

∂x
= −αgk

ν

∂T

∂x
, (4.5)

with use of the linear approximation to the equation of state. The isotherms are
dashed and in each sketch, T0 > T1. In Figure 4.2a the permeable region is bounded
by sloping impermeable layers and the isotherms slope downward to the right. Fluid
near the top of the porous layer is hotter and more buoyant than fluid in the interior
at the same level, so that ∂T/∂x < 0. It therefore moves upward and to the right
relative to the fluid near the bottom. Superimposed on this may be an arbitrary,
pressure-driven flow, uniform across the width of the porous layer, but even in the



130 Flows with buoyancy variations

combined flow, fluid near the top of the layer moves faster to the right than it does
near the bottom and the rotation is still clockwise. In Figure 4.2b, representing
a submerged permeable escarpment, ∂T/∂x > 0 so that the sense of rotation is
reversed. This distribution of isotherms results in anti-clockwise circulation, with
interstitial fluid being drawn into the escarpment near its base and leaving it near
the shelf break. In Figure 4.2c, the raising of the isotherms in the medium above a
hot pluton produces negative rotation on the left flank and positive rotation on the
right as the fluid rises in a plume above the heated basement region. The central
hottest interstitial water is the most buoyant and moves upward, while the outward
buoyancy gradients of opposite sign on either side produce the shear between the
plume and the ambient fluid that is of opposite sign on each side.

When variations in interstitial fluid density are associated with the dissolution
of major fabric constituents and the solution is close to local equilibrium with the
matrix, the appropriate equation of state is

ρ = ρ(cS(T )) ≈ ρ0(1 − αST ), (4.6)

as described in Section 2.9, where αS is the thermal density coefficient of the
continuously saturated solution. This may have either sign. For solutes that saturate
at low concentrations or those such as NaCl whose saturation concentration varies
little with temperature, αS ≈ α, the ordinary coefficient of expansion for water.
For those few solutes with αS < 0 such as Na2SO4 at temperatures below 32 ◦C,
the density of a continually saturated solution increases with temperature and the
senses of rotation shown in Figure 4.2 are reversed.

4.3 General properties of buoyancy-driven flows

In general hydro-geological flows, the temperature and salinity are field variables
that separately (i) satisfy conservation equations (2.48) and (2.52), (ii) enter into
the force balance through the buoyancy term in Darcy’s equation (2.20), (2.24) or
its counterparts in fracture–matrix media and (iii) are interconnected in an equation
of state such as (4.2). For convenience, these are reproduced below.

Heat conservation, first law of thermodynamics:

M
∂T

∂t
+ u · ∇T = κ∇2T + Q. (2.48, 4.7)

Salt conservation:

∂S

∂t
+ v · ∇S = D∇2S + QS. (2.52, 4.8)
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Force balance in Darcy flow:

u = k

ν
(−∇(p/ρ0) + bl) . (2.24, 4.9)

The incompressible form of mass conservation:

∇ · u = 0. (2.8, 4.10)

Linear equation of state:

ρ = ρ0(1 − αT + βS), (4.11)

where, in (4.9), the buoyancy b = g(ρ0 − ρ)/ρ0.

4.3.1 Heat advection versus matrix diffusion: the Peclet number

In many situations, particularly with the dilute solutions characteristic of natural
flows, internal heat sources from heats of reaction and salt sources from precipi-
tation or dissolution are quite negligible compared to the advective and diffusive
flux divergences of heat (for example, in the flow-controlled deposition of calcite,
the ratio is of order 10−6; see, for example, Bathurst, 1975, p. 258). When also the
distributions of temperature and salinity are close to steady state, the first and last
terms of equations (4.7) and (4.8) can be dropped, and finally, when the buoyancy
is the result of temperature variations alone, the set of balances reduces to

u · ∇T = κ∇2T

u = k

ν
{−∇(p/ρ0) + gαT l}

∇ · u = 0.

(4.12)

Recall that κ , the thermal diffusivity, is the matrix thermal conductivity divided by
ρCF, and the unit vector l is vertically upward.

These coupled equations for the transport velocity u, reduced pressure p and
temperature field T are slightly nonlinear through the advection term u · ∇T. The
pressure can be eliminated from them by cross-differentiation as in the rotation
vector expression (4.3), or expressed directly in terms of the buoyancy field by
taking the divergence of the second of (4.12):

∇2p = ρ0gα
∂T

∂z
. (4.13)

The anatomy of the first equation of the set (4.12) is of interest. In this heat
balance, the advection term on the left expresses the heat flux divergence as the
product of the fluid transport speed and the temperature gradient in the direction
of flow, and is of order u	T/l, where 	T is the characteristic magnitude of the
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temperature variations along the streamlines and l is the distance over which
this variation occurs. Individual terms in the isotropic Laplacian diffusive term
∇2T are of order κ	T/h2, where h is the smallest geometrical length scale in the
flow domain, usually the flow layer thickness. The advective heat transfer by the
interstitial fluid dominates thermal diffusion through the matrix when u	T/l �
κ	T/h2, i.e. when

Pe = uh

κ
� l

h
. (4.14)

The dimensionless ratio Pe = uh/κ, known as the Peclet number, expresses the
ratio of the advective to diffusive heat transport, and l/h is the aspect ratio of the
domain. When the Peclet number is large enough to satisfy the condition (4.14), a
situation generally involving highly permeable aquifers that are not too long and
having a large flow rate, heat diffusion is insignificant and the first equation in
(4.12) might perhaps be approximated by

u · ∇T = 0, (4.15)

which asserts that the temperature is constant along the lines of flow.
But this now poses a contradiction. In a closed region or along an impermeable

boundary, the fluid flow follows the boundary, yet heat must be conducted across
the boundary since the motion is generated thermally. In short, (4.15) does not
allow us to satisfy the thermal boundary conditions. This kind of problem is
characteristic of equations with the structure of (4.7) viewed as an equation for the
temperature field T in which a small parameter κ (or in dimensionless terms Pe−1)
multiplies the highest derivative term in the equation (∇2T is second order; ∇T is
first order). Equations of this type are called singular perturbation equations. If the
term of highest order is dropped, the order of the differential equation is reduced
and fewer boundary conditions can be satisfied. The solution to the dilemma lies
in the realization that the general scaling cannot be true everywhere – that there
must be regions of the flow, involving plumes or thermal boundary layers, which
are sufficiently thin compared with the layer thickness that the second-derivative,
thermal-diffusion term is locally comparable with the advection term, even though
over most of the fluid, it does indeed remain negligible. In these large Peclet
number flows, then, there are different domains – an interior region away from
boundary surfaces or plumes in which (4.15) is valid and the temperature does
remain very nearly constant along the lines of flow, together with relatively thin
boundary regions whose width self-adjusts to produce a balance between convective
and diffusive effects in the heat equation. The solution to the flow as a whole
involves matching these various regions to ensure that both the temperature and
velocity distributions join smoothly from one region to another, a procedure that is
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exemplified later in this chapter. The temperature and flow fields must therefore be
solved simultaneously rather than sequentially before patterns of fabric alteration
can be inferred.

At the other extreme, when the Peclet number is small, the advective effects
of heat transport on the temperature are negligible, and so within an aquifer the
temperature is determined solely by thermal conduction, as it may also be in the
underlying and overlying aquistads:

∇2T = 0, when Pe � (l/h). (4.16)

In either case, then, the temperature distribution can be found fairly simply; it is
only when advection and diffusion of heat are comparable that the groups of terms
on the two sides of the first equation in the set (4.12) are of the same order and a
detailed numerical or analytic solution may be necessary.

4.3.2 Thermally driven flows: the Rayleigh number

Just as hydraulic pressure gradients are generally dominant in the flow through
aquifers, so in isolated, fluid-saturated regions or in submarine sediments and
fracture regions where there are no hydraulically imposed pressure gradients, flow
will be induced unless the isopycnals (surfaces of constant density) happen to
be precisely horizontal. In a few cases, horizontal density variations can be the
result of horizontal variations in salinity, as in salt wedges, as described later.
Horizontal variations in salinity also occur flanking salt domes, as Evans and
Nunn (1989) have pointed out, and these may induce salinity-driven convective
motion. The interplay between salinity and temperature variations in driving a flow
field can be quite intricate, in some circumstances destabilizing a basic state that
would appear to be stable and in other circumstances stabilizing one that seems
unstable. These considerations will be deferred until later in this chapter. For the
present scaling purposes, let us consider flows that are thermally driven, those in
which the isotherms are not horizontal. The flow and temperature fields are more
intimately connected than they are in hydraulically driven flows, but again, scaling
considerations allow significant simplifications in many cases.

When the variations in interstitial fluid buoyancy are the result of variations in
temperature, the three Cartesian components of the rotation vector (4.4) are

�X = ∂w

∂y
− ∂v

∂z
= gkα

ν

∂T

∂y
,

�Y = ∂u

∂z
− ∂w

∂x
= −gkα

ν

∂T

∂x
, (4.17)

�Z = 0.
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When thermally driven flows occupy an extensive region, i.e. when the regions
of significant horizontal temperature gradient driving the flow are of larger extent
horizontally than vertically, the flow may break up into a series of cells with
roughly comparable vertical and horizontal scales. Because of the form of the
incompressibility condition, the scale of horizontal and vertical transport velocities
are also generally comparable, u ∼ w. From (4.17), we note that the induced
transport velocity gradients are proportional to the horizontal temperature gradient,
so that the magnitude of the rotation vector is

|�| ∼ u

h
∼ gkα

ν

	T

l
,

where 	T is temperature difference over the horizontal distance l. Consequently,
the representative magnitude of the flow velocity is

u ∼ kgα(	T )

ν

(
h

l

)
= Kα(	T )

(
h

l

)
, (4.18)

where K = kg/ν is the hydraulic conductivity. In a compact flow domain, with
l ∼ h and u ∼ w, this reduces to

u ∼ kgα(	T )

ν
= Kα(	T ). (4.19)

These are very useful general velocity scales for steady, thermally driven flow.
In the numerator, one observes the physical quantities that promote the flow, the
permeability k and the buoyancy gα(	T ); in the denominator is the fluid viscosity
that impedes it. One also notes from the second equality that the transport velocity is
given by the hydraulic conductivity (which has the physical dimensions of velocity)
times the fractional density difference involved. In such a flow, the Peclet number
Pe = uh/κ (which expresses the ratio of advective to diffusive heat transport)
assumes the form

Pe = uh

κ
= gkhα(	T )

νκ
= Ra, say, (4.20)

where κ is the thermal diffusivity. The combination

Ra = gkhα(	T )

νκ
= Khα(	T )

κ
(4.21a)

is called the Rayleigh–Darcy number or simply the Rayleigh number if the context
is clear. An alternative form in terms of the vertical temperature gradient is

Ra = gkh2α

νκ

(
∂T

∂z

)
. (4.21b)
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It is only in compact thermally driven flows that the numerical values of the Peclet
and Rayleigh numbers are equal. The Rayleigh number appears later in this chapter
as an important parameter in questions of the structure and stability of thermally
driven flows, but here, because of its association (4.20) with the Peclet number, it is
also an index of the relative importance of heat convection and thermal diffusion.
In small Rayleigh number flows, the temperature distribution (and the consequent
velocity field) is determined primarily by thermal conduction through the matrix.
When Ra = Pe � 1, the flow and temperature fields are convectively coupled, as
shown above.

4.4 Steady low Rayleigh number circulations

4.4.1 Slope convection with large aspect ratio l/h

In a submerged permeable bank, the internal isotherms associated with the geother-
mal heat flux below the interface are generally parallel to the interface, being hor-
izontal when the sea-bed is flat and sloping upward inside an escarpment. The
slope of the isotherms generates a generally weak rotational flow, drawing fluid
in near the base of the escarpment and releasing it near the top, as illustrated in
Figure 4.2b. In this kind of flow, dissolution and dolomitization reactions may
occur near the base as the interstitial fluid is drawn into regions of higher inter-
nal temperatures, and reversing as the flow returns to the cooler interfacial region
above.

The general flow magnitude can be estimated without calculation from the
thermally induced velocity scale (4.18), in the form

u ∼ Kα(	T )

(
h

l

)
∼ κ Ra

l
. (4.22)

Recall that 	T is the temperature difference within the bank over the horizontal
distance l and that h/l (� 1) is the slope of the internal isotherms. Far from the
edge of the bank, the isotherms are horizontal and no flow is induced there. In a
two-dimensional bank such as illustrated in Figure 4.3, the total volume flux per
unit length is proportional to

q ≈ uh = Kh2α(∂T /∂z) = Ra
κh

l
,

but the numerical coefficients found from the calculation are small. A convenient
flow magnitude for comparison might be that in a surface aquifer in a temperate
climate with mean rainfall rate of 2 m/yr or somewhat more, with infiltration
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Figure 4.3. Calculated isotherms, streamlines and distributions of the alteration
index u · ∇T in a submerged escarpment with a “tanh” profile and height h above
an impermeable basement. The surrounding water contains a shallow thermocline
that abuts the escarpment. The vertical geothermal gradient G deep inside the
bank is constant and the temperature of the water–sediment boundary is that of
the adjacent water. The temperature scale is Gh, that of the stream function is
Ra(κh/l) and of u · ∇T is Ra(Gκh/l2).

(transport velocity downward) perhaps half of this. This enters the aquifer across
its upper surface and the total flux along the aquifer per unit width near the discharge
region is equal to the infiltration rate times the aquifer length, which may be 10 km
or 104 m . In a surface aquifer of moderate size, then, a representative volume flux
per unit width is of the order of 104 m2/yr. In a submerged bank like that shown
in Figure 4.3, the value of the stream function (the magnitude of the flux per unit
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Figure 4.4. Definition sketch.

width) is of order 0.1 in units of Ra(κh/l). The low Rayleigh number calculation is
for Ra(h/l) � 1, or about 0.1 at most. The thermal diffusivity κ of saturated sandy
material is about 10−7 m2/s ∼ 3 m2/yr, so that the thermally induced volume fluxes
are of order 3 × 10−2 m2/yr, which is very small. Unless there are internal conduits
that concentrate the flow, mineral alteration resulting from slope convection is
likely to be diffuse, and possibly of less mineralogical significance than other,
more intense and more localized flow processes.

4.4.2 Circulation in isolated, sloping permeable strata

Convective circulations driven by the geothermal temperature gradient may also
occur in isolated permeable strata, as shown qualitatively by Wood and Hewett
(1982) and quantitatively by Davis et al. (1985). These can redistribute the pattern
of mineral deposition even in an isolated closed region. Consider a gently sloping
layer of saturated permeable sandstone lying between impermeable layers of shale
(Figure 4.4). Circulating flow in the permeable layer is again produced by sloping
isotherms, resulting from differences between thermal conductivity of the matrix
and the layer, even when the ambient geothermal gradient is vertical. The steady
temperature distributions in the shale and, at low Rayleigh numbers, in the saturated
layer also, are determined by Laplace’s equation. With the neglect of terms of
relative magnitude (h/l)2 � 1, this reduces to

∂2T/∂z2 = 0 (4.23)

in each region. Note that in this example, l represents the length of a horizontal
traverse of the layer, so that h/l is the characteristic dip of the layer, which
we assume to be small. Across the upper and lower interfaces of the permeable
region, the temperatures and normal heat fluxes must be continuous, so that again
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neglecting slope terms of order (h/l)2, we have

at z = ζB, T1 = T2, κ1
∂T1

∂z
= κ2

∂T2

∂z
,

(4.24)
at z = ζT T2 = T3, κ2

∂T2

∂z
= κ3

∂T3

∂z
,

where the subscripts 1, 2, and 3 represent the regions below, in, and above the
permeable layer, respectively, and the κs are the respective matrix thermal con-
ductivities as defined by (2.48). If the upper impermeable region is of the same
mineralogy as the lower one, κ1 = κ3. Below the layer, the temperature distribution
is geothermal ∂T /∂z = −G, which will be supposed horizontally uniform. At the
overlying land surface z = Z, T = 0, say.

From (4.23), the temperature distribution in each region must be of the form

T = A(x) + zB(x), (4.25)

where A and B may be slowly varying functions of horizontal position. In the lowest
region, 1, the vertical temperature gradient is the undisturbed geothermal, so that
B1 = −G and

T1 = A1(x) − zG.

After substitution of expressions such as (4.25) into the conditions (4.24) and with
the condition that T3(z) = 0, we have in all five algebraic relations for the five other
coefficient functions A1, A2, A3, B2, B3. After a little algebra, the solution for the
temperature distribution in the upper, middle and lower regions is found to be

T1 = G {(z0 − z) − {(1 − κ1/κ2)(ζT(x) − ζB(x)}},
T2 = G {(z0 − (κ1/κ2)z − {(1 − κ1/κ2)ζT(x)}},
T3 = G(z0 − z),

(4.26)

as given by Davis et al. (1985).
Of greatest interest is the temperature distribution in the permeable layer, 2. If

the height of its upper surface varies in the horizontal direction, this permeable
region has a horizontal temperature gradient

∇HT = −G{1 − κ1/κ2}∇HζT (4.27)

that is proportional to the slope of the top of the layer and the ratio of thermal
diffusivities. In Figure 4.5, this slope is positive and if the layer has a higher thermal
diffusivity than its surroundings, κ2/κ1 > 1, and, from (4.27), ∇HT is negative
(temperature decreasing along a horizontal to the right). The rotation vector is then
positive into the paper and the circulation is clockwise. When κ2/κ1 < 1, the sense
of the circulation is reversed.
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Figure 4.5. Inclined isotherms in a sloping layer with a thermal conductivity
different from that in the matrix above and below and a uniform vertical heat flux.

The potential importance of this circulation is that in a chemically and hydro-
dynamically closed system, it provides a mechanism for the gradual increase in
concentration of mineral deposits from solution in some places and depletion in
others. In two dimensions, where the permeable layer is a sheet folded to form an
anticline, the circulation can be expressed in terms of the stream function ψ , and
from the rotation vector relation (4.4),

∂2ψ

∂z2
= −gkα

ν
∇HT = −Kα∇HT (4.28)

in terms of the hydraulic conductivity K and the thermal expansion coefficient α.
Since both upper and lower interfaces are streamlines,

ψ = 1

2
KαG (1 − κ1/κ2) (∂ζT/∂x) (z − ζB)(ζT − z). (4.29)

Streamline patterns calculated by Davis et al. from this expression, and distribu-
tions of the alteration index u · ∇T (c.f. Section 5.5) for this flow, are shown in
Figure 4.6 for a ratio κ2/κ1 = 1.25. Note that the stream function is proportional to
the vertical temperature gradient, so that the rates of mineral alteration are at least
quadratic in this quantity. If the equilibrium concentration of solute increases with
temperature, mineral deposition tends to occur in regions where the fluid is moving
to lower temperatures, that is, along the upper interface where the flow is down the
temperature gradient. Dissolution occurs in regions where fluid is moving to higher
temperatures, along the lower interface. The most active regions of diagenesis are
on the flanks, with regions of opposite sign occupying the upper and lower parts
of the permeable layer. Quartz, for example, tends to precipitate along the upper
flanks while dissolving along the lower slopes. When κ2 < κ1, the circulations and
patterns of precipitation/dissolution are reversed.

The processes of dissolution, transport and precipitation will presumably con-
tinue until the dissolving mineral is locally exhausted or some other geological
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Figure 4.6. Streamlines and (below) contours of the alteration index u · ∇T ,
in a permeable anticline when κ2 = 1.25κ1 (Davis et al., 1985). When κ1 > κ2,
the sense of the circulation is reversed and the regions of positive and negative
u · ∇T are interchanged.

change occurs. Within the overall pattern, flow and reaction sites are frequently
concentrated in smaller scale cracks or fractures.

4.4.3 Compact layered platforms and reefs at low Rayleigh numbers

In the foregoing examples of convectively driven flow at large aspect ratio l/h,
the large horizontal extent allowed fluid to traverse the relatively short vertical
distances more freely than over the large horizontal distances. In that case, the
circulating convection velocities were found to be proportional to the horizontal
gradient or differences of temperature but in compact flows, a different balance is
found. Carbonate reefs or sedimentary banks are frequently strongly horizontally
layered, so that their permeability kV to vertical flow is considerably less than kH for
horizontal flow, whereas their horizontal extent may be only a moderate multiple
of their thickness. Interstitial fluid can more freely move laterally from the ambient
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sea into the platform or over relatively short horizontal distances, but the convective
circulation in the interior is limited by the resistance to the more central rise of
buoyant fluid across the less permeable layers. When the permeability anisotropy
is large, then, one would anticipate that at any Ra the vertical velocity in an interior
flow (outside any boundary layers) is proportional to the temperature itself (above
ambient), not its gradient.

This expectation is supported by an examination of the relation between the rota-
tion vector and the buoyancy field in a medium with fine-scale, strong laminations
in permeability. The extension of (4.4) to this situation is

∂(w/kV)

∂y
− ∂(v/kH)

∂z
= ν−1 ∂b

∂y
,

∂(u/kH)

∂z
− ∂(w/kV)

∂x
= −ν−1 ∂b

∂x
. (4.30)

In this pair of equations, ν is the fluid viscosity. The horizontal and vertical dimen-
sions of the flow domain (x, y, z) are generally comparable as are the velocity
components (u, v, w), but kH � kV, so that the terms involving kH on the left are
very much smaller than the others. When they are ignored, the set (4.30) reduces
to

∇H(w/kV) = gα

ν
∇HT . (4.31)

Thus

w(x, z) = KVαT (x, z) + f (z), (4.32)

where KV is the hydraulic conductivity involving the permeability for vertical
flow and f(z) is an arbitrary function of z, which, physically, would represent the
contribution from any hydraulic forcing. If w = 0 when T = 0 at, say, the edges
of a bank, then f(z) = 0. It is evident from the Darcy balance (4.32) that in these
compact interior regions with fine-scale, strong horizontal laminations, the local
fluid buoyancy balances the local resistance to vertical flow. Note that this statement
depends only on the geometry of the flow domain and the inequality kH � kV and
so is independent of the Rayleigh number

When Ra is small, however, the vertical temperature gradient is unaffected by
the flow and

∂w

∂z
= −∇H · u = kVα

∂T

∂z
, (4.33)

where ∂T /∂z = −G . Thus ∂w/∂z < 0, the vertical flow is convergent and
∇H · u > 0, the horizontal flow is divergent; in the interior regions of compact
flows with fine-scale, strong laminations, when Ra and (h/l)2(kH/kV) � 1, the
rising vertical velocity always decreases upwards and the horizontal flow always



142 Flows with buoyancy variations

z
h

x

z

l(z)

l0

Figure 4.7. A compact platform; definition sketch.

diverges. These conclusions are qualitatively different from those found earlier in
this section for convective flows in domains with high aspect ratio l/h.

Suppose the submerged permeable reef or bank is on a horizontal, relatively
impermeable basement and that the configuration of the sediment–water interface
is specified by ζ (x) (see Figure 4.7). If the ratio of width to thickness is not too
small (i.e. not less than 5 or so) and the Rayleigh number is small, the internal
temperature distribution driving the convection is still given to sufficient accuracy
by the water temperature at the upper surface (0, say) plus the increase with depth
from the geothermal gradient: T (x, z) = G(ζ (x) − z).

The analysis of these compact flows is most revealing in terms of the reduced
pressure, which vanishes at the upper surface z = ζ (x) of the region. The horizontal
and vertical force balances expressed by the Darcy equations are

∇Hp = − μ

kH
u,

∂p

∂z
= − μ

kV
w + ρ0gαT ,

whence, by use of the incompressibility condition ∇H · u + ∂w/∂z = 0, we have

kH∇2
Hp + kV

∂2p

∂z2
= −ρ0kVgαG, (4.34)

where ∇H and ∇2
H represent the two-dimensional, horizontal divergence and Lapla-

cian operators. It is convenient to use dimensionless variables with l and h as
vertical and horizontal length scales so that (X, Y, Z) = (x/l, y/l, z/h). The scale
for the internal reduced pressure is chosen as

pS = ρ0gαGkVl2/kH, (4.35)

which involves the vertical buoyancy gradient gαG, the size of the region, l2, and
the permeability ratio kV/kH. In terms of the dimensionless pressure P = p/pS,
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equation (4.34) becomes

∂2P

∂X2
+ ∂2P

∂Y 2
+

{
l2

h2

kV

kH

}
∂2P

∂Z2
= −1, (4.36)

which is subject to the boundary conditions (i) on the interface between the bank
and the water above, the reduced pressure p vanishes so that P = 0 on z = ζ (x),
and (ii) that there is no flow across the lower boundary so that w = 0 on z = 0. On
this surface, the temperature relative to that of the ambient water is Gζ (x) where
G is the geothermal gradient, so that from the vertical Darcy balance above, this
boundary condition is

∂p

∂z
= ρ0gαGζ (x), (4.37a)

or, in dimensionless form

∂P

∂Z
=

{
h2

l2

kH

kV

}
ζ (x)

h
at Z = 0. (4.37b)

4.4.4 Two-dimensional reefs or banks

These geometries are the simplest. When the Y coordinate is taken along the bank,
the middle term on the left of (4.36) is zero, and when (l/h)2kV/kH � 1 the
coefficient of the third term is very small and can tentatively be neglected. The
equation reduces simply to

∂2P/∂X2 = −1,

The reduced pressure is a quadratic function of X, P = − 1
2X

2 + f (Z), where the
arbitrary function f(Z) depends on the shape of the bank. If the reef is symmetrical
about x = 0, the solution with the physical units restored has the form

p = ρ0gαGkV

2kH
(l2(z) − x2), (4.38)

where l(z) is the half-width of the reef at a height z above the basement as in
Figure 4.8 – p = 0 when x = l(z).

This is a fine solution for the interior flow but, fairly obviously, it cannot be
reconciled with the lower boundary condition (4.37a,b). The mathematical reason
for the difficulty is our neglect of the vertical derivative term in (4.36), which
reduces the order of the equation from second to zeroth in Z. As described in
Section 4.3, we have a singular perturbation situation that points to the existence
of an important lower boundary layer across which the pressure (in this instance)
adjusts rapidly to connect the interior distribution (4.38) to the boundary pressure
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Figure 4.8. Contours of reduced pressure in units of ρgh2αG, for low Rayleigh
number convection in a layered, two-dimensional bank, with the axis of symmetry
on the left and (kH/kV)(h/l)2 = 25. The corresponding streamlines in units of
κ(l/h)Ra are shown in Figure 4.9. Negative pressure near the base sucks fluid in
from the flanks while the positive buoyancy above the base lifts the fluid against
the pressure gradient, in an upwardly divergent flow.

gradient (4.37a,b). If the upper surface is flat, an upper boundary layer can also
develop, as will be seen later.

The lower boundary layer is necessary not only mathematically (to complete the
solution) but also physically, since it is necessary to drive the boundary layer flow
towards the center. In the interior region above the boundary layer, the pressure is
greatest along the axis of symmetry x = 0; its horizontal gradient drives the fluid
outward with the velocity

u = −kH

μ

∂p

∂x
= gαGkV

ν
x, (4.39)

which increases linearly with distance from the symmetry axis. This is consistent
with the more general conclusion following (4.33). Fluid is supplied to the interior
by convective upwelling from below, from the lower boundary layer, but in order
for the system to work, there must be a negative reduced pressure in the boundary
layer near the bottom so that fluid can be sucked in from the sides before being lifted
vertically by the buoyancy. The boundary layer pressure must then change rapidly
across its thickness as the force balance near the basement (where the vertical
velocity is small and the pressure gradient is established by the buoyancy) changes
to that in the interior (where the buoyancy is balanced by the flow resistance, the
vertical pressure gradient being smaller). The analysis of this lower boundary layer
proceeds by the assignment to it of a local vertical scale δ, the boundary layer
thickness in place of the bank thickness h, and insisting that in (4.36), the vertical
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Figure 4.9. See the caption for Figure 4.8. Note the concentration of flow in the
lower boundary layer.

pressure gradient term is balanced by the buoyancy force. This requires that

δ ≈ l

(
kV

kH

)1/2

. (4.40)

The reason that the bank width determines the boundary layer thickness is that the
interior flow is supplied by the lateral inflow in this region, as shown in Figure 4.9.

The solution can be completed analytically, but the details add little to the
discussion above. The total volume flux Q per unit length of the bank can be
estimated from the vertical flux out of the boundary layer, and it is found that

Q ≈ gkVαGA

ν
, (4.41)

where A is the cross-sectional area of the bank. Note (i) that kV is involved because
the dominant resistance is from the vertical interior flow, not the faster, horizontal
boundary-layer flow, and (ii) that the height of the bank is not involved, because
the buoyancy and flow resistance are in local equilibrium in the interior.

In an axially symmetric bank with circular height contours and radius R, a similar
boundary layer forms above the basement with radially inward flow and thickness
δ ∼ R (kV/kH)1/2 beneath the upward and outward interior flow. The total volume
flux passing through the bank is

QT ∼ gkVαGV

ν
, (4.42)

where V is the total volume of the bank. As in all of these low Rayleigh number
flows, the velocity and volume flux are proportional to the Rayleigh number based
on the geothermal flux with additional geometric factors.
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4.5 Intermediate and high Rayleigh number plumes

4.5.1 Two-dimensional numerical solutions

Many thermally driven, quasi-steady geological flows apparently involve interme-
diate Rayleigh numbers (i.e. larger than 2 or 3 but less than 50, say), which are
characterized by the formation of geothermal boundary layers, as well as internal
plumes and recirculation regions. The corresponding patterns of flow, temperature,
and so on, form families whose characteristics lie between those described in the
previous section and various asymptotic forms of solution appropriate for high
Rayleigh number flows. These are explored most conveniently by numerical analy-
sis, although numerical calculations often require the choice of particular parameter
values, and do not offer a clear sense of the ways in which the nature of the flow and
reaction patterns change continuously with continuous changes in these parame-
ters. In the second part of this section, simple scaling models are constructed from
the internal balances in the flow to provide these algebraic connections. However,
this kind of model can yield only an order of magnitude estimate of constants of
proportionality, and to develop a useful quantitative insight it often requires the
combination of the two approaches.

Consider a compact, two-dimensional, submerged, horizontally laminated plat-
form of width l and height h with parallel escarpments on each side and a distributed
heat flux from below. For two-dimensional Darcy flow in the x–z plane, the rotation
vector expression (4.4) in the horizontal y-direction normal to the flow plane is

�Y = 1

kV

∂2ψ

∂x2
+ 1

kH

∂2ψ

∂z2
= −gα

ν

∂T

∂x
. (4.43)

This can be expressed in a form suitable for calculation by defining dimensionless
horizontal and vertical coordinates X and Z, and temperature θ in terms of the
natural scales of the system:

x = Xl, z = Zh, T (x, z) = T0 θ (X, Z), (4.44a)

where T0 is the maximum basement temperature relative to the ambient. The
buoyancy force driving the flow acts vertically throughout the depth h of the
platform, and the flow resistance necessarily involves the permeability kV to vertical
flow. Accordingly, the stream function ψ is expressed as

ψ(x, z) = gαT0kVh

ν
ϕ = κ(l/h)Ra ϕ(X, Z), (4.44b)

where

Ra = gαT0kVh

νκ
(4.45)
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is the Rayleigh number based on the vertical permeability and the platform depth.
In terms of these variables, equation (4.43) becomes

∂2ϕ

∂X2
+ kV

kH

(
l

h

)2
∂2ϕ

∂Z2
= − ∂θ

∂X
, (4.46)

where the aspect ratio l/h is usually large and the permeability ratio kV/kH usually
small (< 1) in geological applications. From the definition of flow tube resistance
(2.34), the combination of parameters (kV/kH)(l/h)2 can be interpreted as the ratio
of the vertical to horizontal flow conductances, which may be large (in a wide,
un-layered platform, with l � h, kV ∼ kH), or small in one that is narrow and
heavily layered (l ∼ h, kV � kH). The temperature field is specified by

u
∂T

∂x
+ w

∂T

∂z
= ∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
= κ

{
∂2T

∂x2
+ ∂2T

∂z2

}
, (4.47)

and in terms of the same dimensionless variables, this becomes

Ra

{
∂ϕ

∂Z

∂θ

∂X
− ∂ϕ

∂X

∂θ

∂Z

}
=

(
h

l

)2
∂2θ

∂X2
+ ∂2θ

∂Z2
. (4.48)

Note that in (4.48), the horizontal and vertical advection terms on the left are
comparable, but because the inverse aspect ratio h/l is usually very small (� 1),
horizontal heat conduction is very small compared with that in the vertical direction.
Note also that in this dimensionless form, the governing equations (4.46) and (4.48)
and the boundary conditions below involve just three independent, dimensionless
parameters, the scale ratio (h/l)2, the permeability ratio (kV/kH) and the Rayleigh
number Ra, which contain the nine physical quantities that can be counted. The
nature of the solution therefore depends on the magnitude of these parameters only,
rather than the nine physical quantities separately.

For the purpose of illustrating the evolution of the flow patterns as the parameters
are varied, we will suppose that a submerged bank of rectangular cross section,
surrounded by and saturated with saline water, rests on an impermeable basement
at Z = 0. There is no flow across this lower boundary and the stream function
ϕ = 0 there. The plane X = 0 is the axis of symmetry, so that ϕ = 0 also when
X = 0. If the upper surface of the bank is exposed to the atmosphere, a shallow
freshwater lens may form that inhibits flow across the surface, so that ϕ = 0 at
Z = 1 also. If, however, the bank is awash or submerged, convecting fluid can move
freely across its upper surface. The pressure at the upper surface is constant and
fluid may rise vertically across it while the horizontal component of velocity along
it is zero: u = ∂ψ/∂z = 0 at Z = 1. In either case, fluid can enter or leave the
bank horizontally at the side-walls at X = ±2, and the vertical velocity component
∂ϕ/∂X = 0 there. In all of the calculations of this section, the scale l represents
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Figure 4.10. Purely conductive isotherms T/T0 in a bank with a temperature dis-
tribution T0 exp{−(x/l)2} along the basement and zero along the other boundaries.

the half-width of the temperature distribution at the base of the convection region
T = T0 exp{−(x/l)2}, so that θ = exp(−X2) at Z = 0. The bounding temperature
at the other interfaces is the ambient reference temperature, taken as zero and the
distribution of isotherms when there is no flow is illustrated in Figure 4.10. The
total width of the bank is 4l, and since the flows are symmetrical about X = 0, only
the right-hand half of each pattern is illustrated.

When the Rayleigh number is substantially less than unity, the flow field does not
significantly disturb the temperature distribution of Figure 4.10, but as Ra increases,
the isotherms become increasingly distorted by the flow – the temperature field and
the flow pattern become more strongly interdependent. Figure 4.11 shows the
results of calculations for Rayleigh numbers of 1 and 3, and Figure 4.12 for Ra
= 10 and 30 when the upper interface is regarded as impermeable to the internal
flow, being either capped by the water table or by the base of a freshwater lens, say.
At each Rayleigh number, the three panels show streamline patterns, temperature
distributions, and contours of the quantity u · ∇T = u(∂T /∂s). This quantity, called
the rock alteration index (see Section 5.5), expresses the variation in the patterns and
rates of reaction, precipitation or dissolution throughout the flow as the streamlines
cut across the isotherms, and is described in more detail later. Calculations are
shown at various values of Ra, taking kH/kV = 10 and h/l = 1. Compared with
Figure 4.10 for Ra → 0, the temperature field is distorted somewhat when Ra = 1,
the isotherms being drawn inward near the base and upward in the upper region as
a result of the flow. The rock alteration index is positive where fluid is moving to
a higher temperature; if the equilibrium concentration increases with temperature,
a positive alteration index indicates addition of solute to the interstitial fluid, and
therefore, dissolution. A region of negative index indicates loss of solute from the
interstitial fluid and therefore, deposition. For Ra = 1, the flow pattern is quite
diffuse, driven upward about the axis of symmetry (the left boundary in the figure)
by the distributed buoyancy, broadly outward near the top and inward above the
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Figure 4.11. Convection patterns at Rayleigh numbers of 1 and 3, with no flow
across the upper surface. Streamlines in units of κ Ra(l/h) × 10−1 are shown in
the two top panels (the flow becomes more vigorous as Ra increases, since the units
are larger in proportion), isotherms T/T0 in the center panels and distributions of
rock alteration index u · ∇T , in units of (κT0 Ra/h2) × 10−1 in the lower ones.

bottom. When Ra = 3, this thermal distortion is greater; hot fluid near the axis is
carried higher, so that the vertical temperature gradient along the axis is reduced in
the interior and increased near the surface as a surface conductive layer develops
that is not unlike that illustrated in Figures 4.8 and 4.9. On either side of the axis
(only the right-hand side is shown), the vertical temperature gradient in the interior
begins to reverse, as warmer fluid from the ascending stem turns outward, and cools.
This is reflected in the patterns of the rock alteration index, u · ∇T , where the more
intense negative region (indicating deposition) migrates upward. As the Rayleigh
number increases to 10 and 30 in Figure 4.12, the upward flow and the temperature
distribution become more concentrated near the plane of symmetry, even though
the basement heat flux and temperature distribution extend horizontally over the
same distance as before. The basement is overlain by a thermal boundary layer,
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Figure 4.12. Convection patterns as in Figure 4.11, but for Rayleigh numbers of
10 and 30.

above which the temperature is close to that of the ambient water at the sides of
the bank. The overall temperature pattern becomes increasingly more mushroom-
shaped, with the lower thermal boundary layer merging into the central stem,
then rising and spreading outward as an overhanging warm region, surrounding
on three sides the nearly isothermal interior. Except near the bottom and the top,
the isotherm shapes are close to those of the streamlines, so that the temperature
gradient in the direction of flow becomes small, as is characteristic of high Rayleigh
number flows in general (c.f. Section 4.3). Regions of significant negative values
of the rock alteration index u · ∇T become confined to the lower part of the plane
of symmetry where the fluid “turns the corner” and, more intensely, just below the
upper surface in the upper thermal boundary layer where heat is conducted upward
through the boundary and the vertical temperature gradient is large. At mid-depths
in the moderately high Rayleigh number flows, the patterns of isotherms and
streamlines are so similar that u · ∇T is small. Large positive and negative values
of u · ∇T are confined to the thermal boundary layers above the basement and



4.5 Intermediate and high Rayleigh number plumes 151

6

8

6
4

2
5432

1

0.8

−4 −10

10
20

−20

−30

4
8

12

Ra = 1 Ra = 3

0.6
0.4

0.2
0.1

u . ∇T u . ∇T

0.8

0.6
0.4

0.2
0.1

y

T

−8

Figure 4.13. Convection patterns as in Figure 4.11 at Rayleigh numbers of 1 and
3 when the fluid is free to move across the upper and side surfaces. The scales are
the same as in Figure 4.11.

below the upper surface, as fluid in these regions move essentially horizontally to
higher and lower temperatures respectively.

Along the axis of the plume, the temperature decreases monotonically with
height, but on the flanks if the flow is forced to spread laterally, the temperature
along a vertical traverse downward has a maximum in the spreading region, below
which it decreases until the lower thermal boundary layer is reached. The Florida
Plateau seems to be the site of a natural circulation of this kind, as pointed out by
Kohout (1965) and Kohout, Henry and Banks (1977).

Figures 4.13 and 4.14 show corresponding patterns found when the bank is
totally submerged and the fluid is free to move across the upper surface. When
Ra = 1, fluid is drawn into the bank mostly from the sides, but as Ra increases,
the outward flow through the upper boundary and the temperature field gather
increasingly into an upward plume above the temperature maximum. When the



152 Flows with buoyancy variations

8

7
6 5 4

3
2

0.1
0.2

0.1

< −30 < −50

−10

−20

10 10 515

0.2

0.4 0.4

0.6

1

4 3
2

1

y

T

Ra = 10 Ra = 30

u . ∇T u . ∇T

−10

Figure 4.14. Convection patterns as in Figure 4.13 at Rayleigh numbers of 10 and
30, when fluid is free to move across the upper and side surfaces.

Rayleigh number is 3, the isotherms are again somewhat distorted, inward near the
base and upward near the symmetry plane. When Ra = 10, the central truncated
plume or stem structure begins to emerge, and by Ra = 30 it is clearly evident; since
the fluid moves vertically across the upper surface, the plume is capped now by a
convective–diffusive layer of the same genre as that in a pressure-driven discharge
zone where the near-surface temperature gradient is large. The rock alteration index
u · ∇T has very large negative values (indicating rapid deposition from solution)
close to the surface over a horizontal region that corresponds to the plume width,
and a region of moderately large positive values and dissolution just above the
basement where fluid is being entrained into the hotter plume. In the interior, the
intensity of gradient reactions is very much smaller, as is characteristic of high
Rayleigh number flow. The horizontal extent of the regions of intense reaction
near the upper surface is notably very much less than those just above the heated
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basement, and less than that found when the surface is impermeable to convective
flow.

These calculations are intended to be illustrative but not exhaustive. The effect,
for example, of variations in permeability ratio at large Rayleigh number can be
inferred without further calculation. As kH increases with all the other quantities
remaining the same, the fluid moves horizontally much more readily than vertically,
so that in the isothermal interior, the streamlines are more nearly horizontal and the
lower thermal layer somewhat thinner. The central plume structure, including the
distribution of rock alteration, is not altered much since there, the flow is essentially
vertical and the overall distribution of u · ∇T is similar. In the interior region, the
flow may be quite different, but the temperature gradients along streamlines are
negligible, with much less rock alteration.

4.5.2 How do these flows work?

They are all driven by buoyancy forces associated with the temperature distribu-
tions, the connection being provided by the rotation vector relation (4.4), viz.

�Y = ∂u

∂z
− ∂w

∂x
= −k

ν

∂b

∂x
= −kgα

ν

∂T

∂x
. (4.49)

The velocity scale for convective flows in general, (4.19), is determined by the
ratio of buoyancy gα(	T ) to flow resistance ν/k. The temperature distributions
can be represented accurately by the patterns of isotherms and two-dimensional
flows by the patterns of streamlines. “Reading” these patterns in conjunction with
each other, allows us to answer the question.

The simplest examples are shown in Figure 4.13 and 4.14, in which fluid can
cross the upper bounding surface. At low Rayleigh numbers (1 and 3), the heat from
the distributed basement source is transmitted largely by conduction through the
matrix, and the isotherms are highest and horizontal at the axis of symmetry (the
left-hand boundary in each panel) and all slope downward to the lower boundary,
both on the right side (shown) and the left side mirror image. Near the axis of
symmetry, the horizontal temperature gradient ∂T /∂x and the rotation �Y are both
very small, the flow is locally almost irrotational, and the nearly equally spaced
streamlines show a uniform stream or jet rising vertically towards discharge across
the upper boundary. Near the lower boundary, the (negative) horizontal temperature
gradient is large and the velocity is negative (towards the left) and nearly horizontal
(w � u) so that locally,

∂u

∂z
≈ −

(
αgk

ν

)
∂T

∂x
> 0.
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The fluid speed towards the left is greatest at the lower boundary, then decreases
with height above the basement, as confirmed by the increasing spacing with height
of the streamlines in the lower-center of the top two streamline patterns. The broadly
distributed temperature field at low Rayleigh numbers with streamlines intersecting
isotherms, is associated with a broad distribution of the rock alteration index,
although the characteristic values of the index itself, proportional to κT0Ra, are
relatively small. Significant degrees of matrix alteration require a correspondingly
longer time.

At higher Rayleigh numbers, 10 and 30 in Figure 4.14, the streamline and
isotherm patterns are qualitatively different. The more vigorous advection has swept
the heat flux from the heated basement into a lower boundary layer and a central
plume, with largely constant temperature, irrotational-flow regions filling the rest
of the space. The flow patterns here have the same characteristics as the aquifer
flows of Section 3.2, with gently curved, nearly uniformly spaced streamlines. The
boundaries separating the rotational central plume and irrotational flow regions are
determined by the balance between the convergent inflow carrying heat inward and
the thermal diffusion outward; they lie somewhat below the rows of digits in the
streamline patterns of Figure 4.14. At higher Rayleigh numbers, the inflow becomes
relatively stronger and the diffusive regions (the central plume and the thermal
boundary layer along the basement) both become thinner, as the isotherm patterns
indicate. The flow in the central plume is very nearly vertical and uniform, with
a direct local vertical balance between the buoyancy and the viscous retardation.
Regions of significant matrix alteration are confined to the lower boundary layer and
the lower and upper parts of the plume, where the streamlines intersect isotherms. In
the central stem of the plume, the strong convection results in approximately parallel
streamlines and isotherms and consequently small values of the rock alteration
index.

Corresponding patterns of streamlines, isotherms and contours of the rock alter-
ation index for the right-hand half of the platform are shown in Figures 4.11 and
4.12, for conditions in which the fluid cannot cross the upper surface. Again, the
horizontal temperature gradient ∂T /∂x is negative and the rotation is clockwise
throughout this side of the flow. Below the upper boundary, the isotherms are now
deflected to the right by the discharge flow and at the larger Rayleigh numbers, the
heated region develops an overhang there. The constant temperature, irrotational
region in Figure 4.14 has disappeared, but again, the rock alteration index is small
in the interior flow at the larger Rayleigh numbers because the streamlines and
isotherms have similar shapes there. Most of the rock alteration occurs near the top
and bottom of the platform as the streamlines pass through the thermal boundary
layers.
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4.5.3 Scaling analysis for two-dimemsional flows

A characteristic property of these solutions at even moderate values of the Rayleigh
number is the existence of lower boundary regions where the temperature varia-
tions are large and flow is predominantly horizontal, converging toward the central
plume. Their dominant characteristics can be found by scaling analysis. This is a
technique for obtaining simple, approximate analytical expressions for the princi-
pal characteristics of complex fluid flows, such as (in this context) the parametric
dependences of boundary layer thickness, plume width and total volume transport,
etc., upon the geometry and the physical parameters contained in the dimension-
less ratios (h/l)2, (kV/kH) and Ra, above. With additional chemical parameters,
such as the temperature dependence of solute saturation, ∂cE/∂T , rates of mineral
redistribution can also be estimated.

Our interest here is to uncover parametric variations that are not evident from
numerical calculations, which can give accurate results but only for a limited
number of selected parametric values. The scaling analysis involves exploiting the
flow geometry to replace the differential equations by algebraic approximations,
which are much simpler to solve. Numerical coefficients in these balances (which
are generally of order unity) are usually ignored, although in this particular example,
it is worth while to recognize that the ratio kH/kV may be numerically large.
Submerged permeable banks may be significantly stratified, with kH/kV � 1, so
that the vertical and horizontal force balances are taken as

u = (u, v) = −kH

ν
∇Hp, w = kV

ν

(
− ∂

∂z
(p/ρ0) + b

)
. (4.50)

Consider cases in which Ra is at least moderately large and the bank is totally
submerged, the interstitial fluid being free to vent through the upper surface. In the
stem of the plume surrounding the central symmetry plane (the left-hand boundary
in Figure 4.14), when Ra > 10, the streamlines and the isotherms are very nearly
vertical. According to (4.44a,b), in the stem the buoyancy and the viscous flow
resistance are very nearly in local balance, the vertical reduced pressure gradient
being much smaller than either. In the plume center,

w0 ∼ kV

ν
b0 = kVgαT0

ν
= κ

h
Ra, (A)

where this Rayleigh number involves the vertical permeability. In the corner near
the symmetry plane and the basement, however, the vertical velocity is small and so
is the viscous drag. Here, the fluid buoyancy ρgαT0 acting upward must be balanced
by a negative vertical gradient in reduced pressure. If the thermal boundary layer
thickness there is δ, the central suction is

p ∼ ρgαT0δ,



156 Flows with buoyancy variations

Figure 4.15. A schematic illustration of the flow in a submerged bank at high
Rayleigh number, with a plume rising from a basement high. The heated region
lies inside the broken lines, while outside, the temperature is close to that of the
ambient seawater.

and from the Darcy balance, this produces an inward, approximately horizontal
velocity equal to the product of kH/μ = kHρν and the mean horizontal pressure
gradient (p/l). Thus close to the basement,

u ∼ kHgαT0δ

νl
= δ

h

κ

l
RaH, where RaH = gαT0kHh

κν
. (B)

As is evident from Figure 4.14, the low pressure in this corner acts as a sink for
the interior flow also, drawing in some additional cold fluid, which is heated as it
is incorporated into the lower thermal boundary layer and the stem.

The volume flux of heated fluid in the thermal boundary layer, approximately
uδ, must be the same as that in (half of) the rising plume, i.e. w0 d, where d is the
plume half-width (see the cartoon Figure 4.15), so that

uδ ∼ w0d. (C)

Finally, the basement heat flux is conducted across the lower thermal boundary
at the rate (in kinematic units) κ ∂T /∂z ∼ κT0/δ, where κ is the thermal diffusivity,
and the total heat flux over the half-width l is approximately κT0l/δ. Since at large
Ra, longitudinal heat conduction is negligible, this is equal to the heat convected
by flow in the plume, that is, w0dT0, so that w0dT0 ∼ κT0l/δ, and

w0d ∼ κl/δ. (D)

These four physical statements, (A)–(D), express the essential dynamics
involved in this flow. We wish to determine the flow parameters u, d and δ in
terms of the physical and geometrical properties of the region, the permeabilities
and the Rayleigh number. The vertical velocity w0 in the plume is already given
by (A). From (D) and (C),

u ∼ κl/δ2,

which connects the inward velocity in the boundary layer to its thickness, δ. From
substitution of this into (B), we obtain the lower boundary layer thickness scale as
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a fraction of the platform depth,

δ

h
∼

{(
l

h

)2
kV

kH

}1/3

Ra−1/3 = (l/h)2/3 Ra
−1/3
H (4.51)

in terms of a Rayleigh number containing the horizontal permeability, i.e. that for
the direction in which the boundary layer fluid moves. At even moderately large
Rayleigh numbers, then, the characteristic thickness of the lower boundary layer
as a fraction of the height of the platform increases as the 2/3 power of the aspect
ratio (l/h) and decreases as the inverse 1/3 power of the Rayleigh number. In
Figure 4.14, this decrease in boundary layer thickness is becoming evident when
Ra is 10 or 30, though the inverse one-third power variation could hardly have been
extracted from the calculation. The result (4.51) is expected to fail when the aspect
ratio (l/h) is very large, the structural stratification is weak and the upper surface
is submerged. Under these conditions, the flow pattern is more compact, with fluid
entering the platform across the upper surface over distances of the order of the
layer depth h on either side of the central plume. In this limit, the flow pattern is
independent of the platform width l and

δ/h ∼ Ra
−1/3
H . (4.52)

From the thermal heat balance (D), above, the plume thickness

d ∼ κl/w0δ ∼ l

RaV

(
l

h

)−2/3

Ra
1/3
H , from (A) and (4.50)

and the width of the plume stem d, again referred to the platform depth, is

d

h
∼

(
l

h

)1/3
kH

kV
Ra

−2/3
H , (4.53)

since

RaV = (kV/kH) RaH.

Note that in (4.53), field values of the ratio of the horizontal to vertical dimensions
of the region and the permeability ratio are usually large so that even if the Rayleigh
number is large, the stem of the two-dimensional plume circulation may be quite
squat. In the calculations shown in Figure 4.14, the ratio l/h = 1 and kH/kV = 10.
The decrease in plume width with increasing Rayleigh number, indicated by the
crowding of the streamlines on the left (the center of the platform), is evident in
the only when Ra = 30.

The geometrical patterns of mineral alteration in gradient reactions are seen from
the patterns of u · ∇T , but the total intensity of mineral alteration is determined
by the vertical temperature gradient, the geochemistry of Section 5.5 and the total
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volume of solute that has passed through the system. From (D) above and equation
(4.51) the volume of fluid FV passing through the system per unit time per unit
length of the platform containing the two-dimensional plume is

FV ∼ wd ∼ κl/δ ∼ κ

{
l

h
RaV

}1/3

(4.54)

for moderately large values of the Rayleigh number, and the total volume of fluid
per unit area that has passed through is given by this expression multiplied by
the time duration of the flow. The numerical coefficient of proportionality can be
found by fitting (4.54) to the results of numerical calculation and it is found to be
about 0.3.

4.5.4 Circular platforms

Wilson et al. (1990) have given a similar scaling analysis for axially symmetrical,
high Rayleigh number flows, considering a circular permeable platform of radius RP

and height h, heated from below, as before (see Figure 4.16 later). As in the previous
example, a few basic physical balances determine the dominant characteristics of
the flow. First, the almost vertical flow in the stem is again in close local balance
between the buoyancy and the viscous flow resistance, so that the vertical velocity
along the center of the stem,

w0 ≈ kVgαT0

ν
= κ

h
RaV. (4.55)

Next consider the heat balance, which equates the heat convection upwards in the
plume with a stem of radius RS, i.e. w0T0 · πR2

S, to the heat conducted upward
from the basement into the lower boundary layer, (κT0/δ)πR2

P. Thus

w0 ≈ κ

δ

(
RP

RS

)2

. (4.56)

The total volume flux of fluid Q up the stem is πR2
Sw0, so that

Q ∼ κ

δ
R2

P. (4.57)

Also, elimination of w0 between (4.55) and (4.56) defines the Rayleigh number of
the flow in terms of flow dimensions that are potentially measurable in the field

RaV ∼
(

RP

RS

)2
h

δ
, (4.58)

where δ is the thickness of the thermal boundary layer near the stem whose radius
is RS.
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These simple results are very useful for geological interpretation of paleo-
convection sites such as the Latemar Massif in the Italian Dolomites, discussed in
some detail in Section 5.8. The thermal diffusivity κ for most rocks is in the range
(4–10) ×10−3 cm2/s or (4–10) ×10−7 m2/s. If the platform radius can be estimated
from the regional geology and the lower thermal boundary layer thickness and stem
radius from the patterns of geochemical alteration, the vertical velocity in the stem
is given by (4.54), and the Rayleigh number characterizing the flow when it was
active, is found from (4.56) without further speculation.

4.5.5 Similarity solutions – two-dimensional plumes

Consider a saturated, semi-infinite, permeable region above an impermeable base-
ment with a long, narrow heat source. The thermally induced convective flow can
be considered two-dimensional in the transverse plane, and the stream-function
representation u = ∂ψ/∂z, w = −∂ψ/∂x is used to specify the flow. Thus,

∂ψ

∂x
= −gkαT

ν
(4.59)

and

∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
= κ

∂2T

∂x2
. (4.60)

An important, but unsurprising, result that can be established immediately is that
the convective heat flux in the plume, namely,

FH = (ρC)F

∞∫
−∞

wT dx (4.61)

is constant with height and equal to the total rate of heat input at the bottom. This
may be intuitively obvious, but can be shown formally shown by integration of
(4.60), which can be written as

∂

∂x

(
∂ψ

∂z
T

)
− ∂

∂z

(
∂ψ

∂x
T

)
= κ

∂2T

∂x2
, (4.62)

so that

− ∂

∂z

∞∫
−∞

∂ψ

∂x
T dx =

∞∫
−∞

∂

∂x

(
κ

∂T

∂x
− ∂ψ

∂z
T

)
dx = 0, (4.63)
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since T → 0 as x → ±∞ at all z. Consequently,

−
∞∫

−∞

∂ψ

∂x
T dx =

∞∫
−∞

wT dx = FH

(ρC)F
= Q, say; (4.64)

the total heat flux Q is independent of z, as anticipated above. The vertical velocity
is proportional to the temperature relative to the ambient so that this last equation
provides an integral constraint on the temperature distribution:

∞∫
−∞

T 2dx = νQ

kVgα
, (4.65)

which, again, is independent of height.
Wooding (1963) demonstrated that equations (4.61) and (4.62), subject to the

condition (4.65), allow similarity solutions, that is, solutions that are functions of a
single dimensionless combination of the physical variables, so that the partial dif-
ferential equations become ordinary differential equations and the solution profiles
have the same shape at each level. The procedure for finding similarity expressions
is explained in books on fluid mechanics, such as that of Batchelor (1967). In this
context, they are of the form

ψ = −κ(z/λ)1/3f (η), T = (Q/κ)(λ/z)1/3f ′(η), (4.66)

where the parameter

λ = νκ2

gαkVQ
(4.67)

is an intrinsic length scale for the plume (i.e. one determined by the physical
parameters of the flow, not the geometry) and the similarity variable in (4.66) is

η = x

(λz2)1/3
. (4.68)

Since T → 0 as x → ±∞ (far outside the plume),

f ′(η) → 0 as η → ± ∞. (4.69)

Clearly f(η) is constant outside the plume (though it has different values on the two
sides because of the upward net flux in the plume), so let

f (η) → 0 as η → ∞, f (η) → −c as η → −∞, (4.70)
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where the constant c is to be determined. Finally, the condition (4.65) requires that

∞∫
−∞

f ′2(η)dη = 1. (4.71)

The form of the function f(η) is found by substitution of (4.66) into (4.62), whence
after reduction,

ff ′′ + f ′2 + 3f ′′′ = 0. (4.72)

This nonlinear equation occurs in the analysis of a viscous two-dimensional jet
in fluid mechanics (see, for example, Batchelor, 1967, p. 345) and can be integrated
exactly. The solution is

f (η) = c tanh(cη/6). (4.73)

The constant c is determined by the condition (4.71); after a small calculation it
is found that c = (9/2) ≈ 1.65. Accordingly, the solutions for the stream function
and the temperature distribution are

ψ = −cκ(z/λ)1/3 tanh(cη/6),

T = c2

6

(
Q

κ

)
(λ/z)1/3 sech2(cη/6).

(4.74)

These are illustrated in Figure 4.16.
The total volume flux per unit horizontal length of the plume is the difference

between the values of ψ at η = ±∞, that is, 3.3κ(z/λ)1/3. Note that the internal
length scale λ depends not on any geometrical length, but on the physical parameters
of the situation as in (4.67). The plume width beyond which the temperature and
velocity fields drop off rapidly, is δ ≈ 7.3(λz2)1/3, increasing with height (as z2/3).
The temperature and the vertical velocity along the centerline decrease rather
slowly (as z−1/3), while the total volume flux increases as z1/3 as a result of fluid
being drawn into the plume from either side. It will be shown in the next chapter
that the quantity u · ∇T , the rate at which fluid is moving up the temperature
gradient and called the rock alteration index, is a measure of the reaction rate in
flow controlled, gradient reactions. In a plume of this kind, the general magnitude
of the rock alteration index is κT /δ2, where T is the axial temperature and δ the
plume half-width; it is positive on the flanks of the plume as cold water is drawn
into it and negative on the plane of symmetry as fluid moves upward, down the
temperature gradient.
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Figure 4.16. A two-dimensional, high Rayleigh number plume in a porous
medium above a line source of heat along x = z = 0, from Wooding (1963).
The streamlines are in units of κ , and the isotherms, shown as dashed lines, are
at intervals 0.05 Q/κ . Note how squat this pattern is, compared with a typical
atmospheric or laboratory plume.

4.5.6 The axi-symmetrical plume in a semi-infinite region

When the plume rises from a localized maximum in the basement heat flux or a
local basement high, it may be approximately axi-symmetrical, and solutions were
given by Wooding (1963) for this case also. The flow can now be represented in
terms of the Stokes stream function (2.16),

u = 1

r

∂ψS

∂z
, w = −1

r

∂ψS

∂r
, (4.75)

where r and z are the radial and vertical coordinates, respectively. The vertical
velocity is again proportional to the temperature relative to the ambient, as in
(4.43), and the cross-sectional profiles of temperature and vertical velocity are
similar

w = −1

r

∂ψS

∂r
= gkVαT

ν
. (4.76)
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The thermal energy balance becomes

∂ψS

∂z

∂T

∂r
− ∂ψS

∂r

∂T

∂z
= κ

∂

∂r

(
r
∂T

∂r

)
. (4.77)

The constancy of the vertical convective heat flux in the plume can be established
as before by integration over a horizontal plane intersecting the plume:

2π

∞∫
0

wT r dr = Q = const, (4.78)

where (ρC)FQ is the total heat flux in the plume (not the heat flux per unit length
as it was in the two-dimensional case previously).

Similarity solutions can again be found for this case. They are of the form

ψS = κzf (η), T = Q

κz
g(η), (4.79)

where the similarity variable, the scaled radius, is

η =
(

gkVαQ

νκ2

)
r

z
= λ−1

A (r/z), (4.80)

where, as suggested by the notation, λA is closely related to the length scale λ of
(4.67), but is here based on the total heat flux in the plume. The precise forms of the
profiles f and g are found by substitution of (4.80) into (4.76) and (4.77) (Wooding,
1963) and are illustrated in Figure 4.17.

The properties of the axi-symmetrical solutions differ somewhat from those
for the two-dimensional case. The half-width of the plume increases linearly with
height z above the origin

δ ≈ 16(Ra)−1/2z,

so that the region occupied by the plume resembles an inverted cone whose semi-
angle decreases as the Rayleigh number increases. The vertical velocity along the
axis decreases inversely with height in spite of a radial inflow proportional to
κ/r; the axial heat flux is, of course, constant. The temperature along the vertical
axis decreases inversely with height, more rapidly than the two-dimensional case
because the heat is advected and diffused in all horizontal directions, rather than
just on both sides.

Natural geothermal flows often occur along a segmented rift system such as the
Taupo Volcanic Zone in the North Island of New Zealand, discussed extensively
by Rowland and Sibson (2004). This is a region of active extension and productive
volcanism, having a vertical heat flux through the central part of the zone that is
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Figure 4.17. The axisymmetric plume above a point heat source at Ra = 100.
The temperature scale T0 is the temperature on the axis at an arbitrarily chosen
height h0. The distribution of Stokes stream function ψS on the left has units κh0;
equal increments of ψS specify equal increments of total transport through the
axi-symmetrical volume contained.

ten times the average continental heat flux. The geothermal fields have convec-
tive circulations, possibly similar to Wooding’s two-dimensional plume structures
described above, but extending to depths of 7–89 km. Parallel normal faults, frac-
tures and dikes dissect the convective flow regime and either enhance or restrict the
flow according to the relative permeability of the structure and the host rock. The
extensional fabric is partitioned into discrete rift segments, connected by accom-
modation zones. Rowland and Sibson point out that the maintenance of structural
permeability requires repeated brittle failure for the geothermal plumes to continue,
and that the pattern of flow is determined by the architecture of the flow paths, not
by the hydrodynamics.

4.6 Salinity-driven flows

There are two important dynamical differences between flows where the buoyancy
is the result of temperature differences and those produced by salinity variations.
Since saline water is essentially confined to the interstices, the advection velocity
for salt or other dissolved components is the mean interstitial velocity, whereas
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heat diffuses into the solid matrix and the advection velocity for heat is approx-
imately the same as the transport velocity. Secondly, the thermal diffusivity κ in
the heat balance is a material property of the matrix, while the dispersion of salt in
solution results predominantly from the structural randomness that exists in natu-
ral permeable materials. The solute dispersion coefficient D is proportional to the
interstitial flow speed and is of the form vαD, where αD is the dispersivity defined
in Section 2.10 and v is the mean interstitial speed. Since both transport processes,
solute advection and solute dispersal, are proportional to the interstitial fluid speed,
the balance between them depends only on the flow geometry, not on the flow
magnitude.

4.6.1 Freshwater lenses

A freshwater lens above a saline substrate offers an example in which the distribu-
tion of salinity S is an important determinant of the flow. Horizontal temperature
differences are likely to be small. In aquifers adjacent to saline water bodies such
as Long Island, New York, or many coral-based islands in deep water, rainwater
infiltration into the aquifer water table displaces denser interstitial saltwater below
the land surface, forming a freshwater lens. The upper surface of the lens is highest
along the groundwater divide and the internal flow discharges from the circumfer-
ence of the lens along the shore lines. Beneath the lens, the permeable substrate
is saturated with denser saline water usually over an impermeable basement, and
the outward freshwater flow is driven by the downward slope of the water table
towards discharge. Correspondingly, the lower surface of the lens is depressed by
the weight of the freshwater between water table and the seawater level outside.
Because of the approximate overall hydrostatic balance, the shape of the fresh–salt
water interface generally reflects that of the water table above, though inverted and
magnified, and possibly modified by the existence of low permeability, internal
retarding layers. The density contrast across the lower fresh–saline water interface
is characteristically about 3%, so that this interface extends about 30 times deeper
below sea level than the water table extends above it. In spite of this magnifi-
cation, the slope of the fresh–saline water interface usually remains numerically
small.

This interface, or transition layer, separating the more buoyant, fresh interstitial
water from the saline-saturated region below is an essential part of the circulation
pattern. It is deepest beneath the highest points of the freshwater table near the
center of the lens and slopes upward toward the discharge along its circumference,
as shown in Figure 4.18. From the isothermal equation of state (4.2) with T = 0, the
buoyancy of the fresh water in the lens relative to the salt water below is gβS. The
upward slope θ of the layer produces the horizontal buoyancy gradient generating
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Figure 4.18. A cartoon illustrating a freshwater lens beneath a permeable island
with surface infiltration, with the vertical scale exaggerated. The configuration
of the water table is reflected and amplified in the lower boundary shear layer,
separating regions of outwardly moving freshwater above and relatively stagnant
saltwater below. The slope of the shear layer and the density difference above it
balances the horizontal pressure gradient above, so that the interstitial seawater in
the medium below is in essence stagnant.

rotation and shear between the irrotational outward flow above and the essentially
stagnant seawater below, specified in two-dimensional flow by (4.4),

�Y ≈ ∂u

∂z
= −k

ν

∂b

∂x
= Kβ

∂S

∂z
sin θ, (4.81)

where K = gk/ν is the hydraulic conductivity. Note the correspondence between
the profiles of up-slope velocity and buoyancy in the transition layer. On integration,
we have

u(z) ≈ Kβ{S0 − S(z)} sin θ, (4.82)

where S0 is the salinity in the essentially stagnant interstitial fluid below the layer.
Just above the transition layer, in the aquifer flow, S(z) = 0 and

u ≈ KβS0 sin θ. (4.83)

The same relation holds in the axi-symmetrical case, with u now being the radial
velocity.

The profiles of the water table above sea level (and of the fresh–saline water
interface below) can be found simply using the small slope approximation of
the previous chapter. The effective hydraulic boundary of the flow is the line
of intersection of the water table and the fresh–saline interface; in nature, it is
necessarily offshore since freshwater may vent from the permeable medium both
above sea level from the banks and below, from the near-shore sea-bed. In the
case of a circular island of effective radius R enjoying uniform infiltration W ,
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conservation of water mass requires that, at any radius r < R, the radial outflow of
freshwater balances the total infiltration from above,

u · 2πrd(r) = πr2W,

where d(r) is the depth below sea level of the fresh–salt water transition layer at
radius r. To the small slope approximation, (4.83) can be expressed as

u ≈ −KβS0
∂d

∂r
.

The elimination of u between these two equations gives the lower profile of the
freshwater lens,

d(r) ≈
{

W

KβS0

}1/2 (
R2 − r2)1/2

. (4.84)

The height of the water table above sea level has the same form but is smaller
in magnitude by a factor of δρ/ρ = βS0 ∼ 0.03. The maximum depth of the
freshwater lens below sea level is at r = 0:

d(0) =
{

W

KβS0

}1/2

R. (4.85)

Tidal oscillations along a steep shore line may interact with the water table
configuration to a distance K/φn, where n is the diurnal tidal frequency, 2π/

(1 day), generally of order 100 m, or less. A more interesting tidal rectification
process occurs in shallow embayments with extensive beaches and sandbars that
are exposed at low tide. The saline tidal inflow at high tide “tops up” the water
table in the sandbanks along the shoreline and sinks into the sandbar on the ebbing
tide. The relaxation time (Section 3.2) for drainage from the interior of the sandbar
is

TRX = φR2

2Kd(0)
∼ φd(0)

W
,

which is generally measured in weeks and is always much larger than the tidal
period, so that the water table has relaxed only slightly from the previous high
tide level when the next arrives. As a consequence, the mean height of the water
table beyond the beach is significantly higher than the mean sea level and almost
as high as the highest diurnal or semi-diurnal tides. This tidal rectification effect
has been observed in a sandy spit south of the outflow of the Hawkesbury River
in New South Wales. Continuing freshwater outflow leads to the locally unstable
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situation described later in this chapter, with saline water of the tidal inflow over
the fresh interstitial water in the groundwater outflow and consequent local vertical
mixing.

Inland of the shoreline and above the tidal range, however, the groundwater
near the surface is fresh and the density difference across the transition layer is
dynamically stable with no obvious interior energy source to produce mixing along
the interface that defines the base of the freshwater lens. It is expected to remain
relatively sharp unless the medium is fractured or traversed by extensive conduits.
In any event, the mean flow in the transition layer is outward, so that mixed fluid
arriving near the shoreline moves generally towards the sea.

4.6.2 Gravity currents in porous media

The term “gravity current” is used to describe a flow that occurs when a denser fluid
intrudes into a fluid domain and, because of its greater density, spreads primarily
horizontally over the lower boundary of the domain.

Some of the early research on buoyancy driven flow in porous media has been
summarized in Bear’s (1979) classic text. More recently. Huppert and Woods
(1995), Woods and Mason (2000) and Lyle et al. (2005) have conducted interesting
laboratory experiments that are related to the flow in a freshwater lens described
above. In a natural freshwater lens, lighter water enters uniformly across the upper
boundary, spreads radially and discharges at the fixed circumference, while in
Lyle et al.’s experiment, the geometry is inverted. Denser fluid starts to flow from
an orifice at the base of a laboratory tank filled with a porous medium saturated
with less dense water. The denser saline water forms an axi-symmetric gravity
current that deepens and spreads across the floor of the tank. In each experimental
run, the volume flux of fluid, Q, commences at some initial time and thereafter
remains constant; its density is ρ + 	ρ and that of the surrounding interstitial
fluid is ρ. Initially, the intruding fluid was observed to flow from the orifice in all
directions because the internal Froude number u2/(	ρ/ρ0)gR is initially large,
where u is the outflow speed, (	ρ/ρ0)g is the fractional buoyancy difference
and R is the flow radius. However, as the radius increases, the density difference
causes the intrusion to spread horizontally more rapidly than it does vertically.
The height of the intruding body of fluid as a function of radius r in cylindrical
coordinates is represented as h(r, t) and one series of measured profiles is shown in
Figure 4.19.

When the interfacial slope has become small, the internal pressure distribution
is approximately hydrostatic in the vertical. The radial pressure gradient

∂p

∂r
= g(	ρ)

∂h

∂r
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Figure 4.19. The measured height profiles of an axi-symmetrical gravity current
as a function of radius and time, but with g′ = (δρ/ρ)g = 40 cm/s2 and volume
flux Q = 34.4 cm3/s, as measured by Lyle et al. (2005).

is independent of height in the intrusion and this, in turn, generates a horizontal
radial velocity

u(r) = − k

μ

∂p

∂r
= −K

	ρ

ρ

∂h

∂r
, (4.86)

where K is the hydraulic conductivity of the medium. This velocity is a function of
radius and time, but is independent of height in the intruding fluid above the floor
of the tank. The incompressibility condition (2.15) can be integrated from the tank
floor to the interface at z = h, and this gives the vertical velocity of the interface:

w(h) = φ
∂h

∂t
= 1

r

∂

∂r
(ruh) , (4.87)

where φ, assumed constant, is the porosity. Substituting (4.86) into (4.87), we
obtain the nonlinear partial differential equation governing the interfacial height
h(t) of the intruding region:

∂h

∂t
− K ′

r

∂

∂r

(
rh

∂h

∂r

)
= 0, (4.88)

where

K ′ = φ−1(	ρ/ρ)K (4.89)

is a form of the hydraulic conductivity for internal, porous media flow. The solution
for h(r, t) is subject to the condition that the volume of the intruding fluid is equal
to the total efflux from the orifice:

2π

rN(t)∫
0

rh dr = Qt, (4.90)

where rN(t) is the radial position of the nose of the intrusion, where h = 0.
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The main characteristics of the solution (but not its detailed shape, shown in
Figure 4.19) can be found without further calculation. Notice that there is no
physical length scale in the specification of the problem, only the parameters K ′,
the internal hydraulic conductivity, which has the physical dimensions [LT −1]
of velocity, and Q, the influx rate with dimensions [L3T −1]. This suggests that
equation (4.88) has similarity solutions, i.e. that the configuration of the intrusion
remains similar as it grows in size because of the continued influx. The solution
must also be dimensionally consistent, specifically, that the distance of the nose
from the orifice must be a combination of K ′, Q and time t that has the physical
dimensions of a length. Consequently, the location of the nose must be of the
form

rN(t) ∝ (K ′Q)1/4t1/2, (4.91)

spreading as t1/2. The area over which the intrusion has spread is then proportional
to t, i.e. to the total volume injected, so that when the slope of the interface has
become small, the mean vertical extent of the intrusion remains the same during
the subsequent spreading.

The laboratory measurements by Lyle and her colleagues (2005) confirmed these
expectations. The measured shape of the gravity current at different times (Figure
4.19) shows the central height increasing rapidly at first, and then stabilizing as
the interfacial slope reduces and the flow moves toward the similarity form (4.91).
The advance of the nose was found to follow (4.91) very closely over wide time
intervals with a constant of proportionality of 0.51.

4.7 Thermal instabilities

Instability can arise in porous media flows when variations in fluid density are
present as a result of variations in temperature, salinity, or both. A clear distinction
must be drawn between, on the one hand, buoyancy-driven flows that necessarily
occur when the interstitial fluid isopycnals slope relative to the horizontal and,
on the other hand, the self-generating and self-patterning instability flows that
may develop from a state of rest or steady motion even when the isopycnals
are horizontal. For example, a local hot spot at the basement of a horizontal
permeable layer generates a convective circulation above it whose strength is
roughly proportional to the temperature excess. In contrast, above a uniformly
heated horizontal basement, interstitial fluid can remain in equilibrium at rest, with
the heat flux being purely conductive. If, however, the Rayleigh number associated
with the uniform heating becomes too large, an organized cellular motion can
appear and grow as a result of an internal instability, so that the self-generated
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Figure 4.20. The initial steady state at rest with a Newtonian fluid between the
plates, as considered by Rayleigh (1916), or with a saturated porous medium,
considered by Lapwood (1948).

convective heat flux becomes significant. It is important to be able to recognize the
conditions under which these instabilities can occur.

The geometries that we consider are usually simplifications of nature: interfaces
between different regions are never quite smooth, nor the regions themselves quite
homogeneous – random perturbations abound. The general question of dynamical
stability concerns the response of the flow patterns and temperature distributions
to such perturbations: are the temperature and flow perturbations suppressed or
smoothed out, or do they amplify and grow to the extent that they seriously modify
the original state, which then moves to a different, more stable configuration?

Mathematical solutions that, when disturbed by a certain class of perturbations,
always return to the original solution are said to be dynamically stable to those
perturbations. If, however, any member of the class of perturbations is found to
amplify in time (even though all others may decay), the solution is unstable.

The technique for deciding whether a given solution is stable (or under what
conditions it is stable), involves three essential steps. (i) The basic state that we
wish to examine, the distribution of flow, temperature, etc., must be specified as a
solution to the governing equations and the appropriate boundary conditions. (ii)
The solution is perturbed slightly in as general a manner as possible consistent
with the boundary conditions. The combined basic state and perturbations must
also satisfy the governing equations. Finally, (iii) we follow the time evolution of
the perturbations to determine the conditions under which they all decay or fail to
grow, that is, the conditions for stability.

4.7.1 Rayleigh–Darcy instability

The archetypical thermal stability situation is illustrated in Figure 4.20. Consider a
horizontal layer of viscous, heat-conducting fluid confined between parallel plane
surfaces with separation h. The temperature of the lower surface is higher by the
amount 	T than the upper surface; in the steady state at rest there is a uniform heat
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flux κ	T/h upward. Now, the fluid near the lower surface is hotter, less dense, and
so more buoyant than the fluid near the top, so that it may tend to rise. However, fluid
motion is resisted by viscosity, and hot spots tend to be diffused away by thermal
conductivity. Under what conditions will the destabilizing buoyancy variations
overcome the stabilizing viscous and conductive effects?

The case in which the gap is entirely filled with viscous fluid was the subject of
Rayleigh’s (1916) classical study; the somewhat more pertinent situation in which
the gap is occupied by a porous medium saturated with an interstitial fluid of
uniform composition was solved by Horton and Rogers (1945) and in more detail
by Lapwood (1948). The equations governing any motion in the layer are Darcy’s
equation, the incompressibility condition, the heat balance without internal heat
sources, and the equation of state for a homogeneous fluid:

∇Hp = −μ

k
uH,

∂p

∂z
= −μ

k
w − ρg,

∇ · u = 0,

M
∂T

∂t
+ u · ∇T = κ∇2T ,

ρ = ρ0(1 − αT ),

(4.92)

where M = (ρC)M/(ρC)F ∼ 0.5 is the matrix-to-fluid specific heat ratio in (2.48),
κ is the thermal diffusivity and u = (uH, w). The mass balance for dissolved
material is satisfied trivially since c = const. At the lower boundary z = 0, the
normal velocity component u · n = w = 0 and the temperature T = T0 + 	T, while
at the top boundary, z = h, we have that w = 0 and T = T0. The steady state of rest
with uniform temperature gradient is

uH = w = 0, p = p0(z), ∂p0/∂z = −ρg, (4.93)

T = T0 +
(

1 − z

h

)
	T.

The expressions (4.93) satisfy the equations above without restrictions on the
parameters, but under what condition is this state of rest stable?

To examine this question, we do what an experimentalist would do – disturb the
basic state slightly. The small perturbations are marked with primes.

u = (uH, w) = u′(x, y, z, t),

p = p0(z) + p′(x, y, z, t),

T = T0 +
(

1 − z

h

)
	T + T ′(x, y, z, t).

(4.94)
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The now evolving flow, temperature, and pressure distributions must also satisfy
(4.92). Substitution of (4.94) into (4.92) gives, after subtracting out the basic state
pressure balance,

∂p′

∂z
= −μ

k
w′ + ρ0gαT ′,

∇Hp′ = −μ

k
u′

H,

∇ · u′ = 0,

(4.95)

and

M
∂T ′

∂t
+ u′ · ∇T ′ − w′ 	T

h
= κ∇2T ′,

with w′ = T ′ = 0 on z = 0 and h. The equation of state has here been incorporated
into the last term of the first equation.

These equations govern the evolution of the perturbations that we have imposed.
An important simplification occurs when the perturbations are small, in particular
when T ′ � 	T ; as long as this remains valid, the term u′ · ∇T ′, being the product
of two small quantities, is very much less than w′ 	T/h and can be neglected in
the last equation of (4.95). If that term is omitted, the set of equations has important
characteristics: it is a set of coupled partial differential equations that is linear in
the field variables primed (no squares or products), and all the coefficients are
constant (independent of x, y, z, and t). Just as in the theory of ordinary linear
differential equations with constant coefficients, the general solutions of such a set
are exponential in form, so that we should be able to find solutions for each of the
variables that are proportional to

exp(nt) exp i(kx + ly + mz). (4.96)

This choice is not arbitrary. In our perturbation, we are free to impose at the
initial instant any spatial distribution of disturbance consistent with the boundary
conditions, but by Fourier’s theorem this can be represented quite generally as
the superposition of spatially oscillatory terms, as in a Fourier series or a Fourier
integral. There is consequently no loss of generality in this spatial representation
of the disturbance – if any one of these Fourier modes is unstable, the disturbance
will grow. The quantity n (which is to be determined) may be complex, but if its
real part is negative for all (k, l, m), all disturbances will die away. If it is positive
for at least some (k, l, m), those modes will grow exponentially in time until the
neglected term u′ · ∇T ′ in (4.95) becomes comparable with the others, and some
new, more complex stable state may evolve.

Two final simplifications are useful. First, spatial periodicity in the horizontal
direction represents an oscillation in the direction of the wave-number vector
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k = (k, l). There is no preferred horizontal direction in the geometry of the problem,
so that we can choose our x-axis in the direction of k, causing the dependence on
y to disappear and the problem to become two-dimensional. We can then use the
stream function representation of Section 2.3 and eliminate the pressure from the
first two equations of (4.95):

0 = −μ

k

{
∂2ψ ′

∂x2
+ ∂2ψ ′

∂z2

}
− ρ0gα

∂T ′

∂x
. (4.97)

The linearized heat balance becomes

M
∂T ′

∂t
+ ∂ψ

∂x

′ 	T

h
= κ∇2T ′, (4.98)

where � ′ represents the stream function of the perturbed flow and (2.13) is used.
The boundary conditions are now

T ′ = ∂ψ ′

∂x
= 0 on z = 0, h. (4.99)

Second, to satisfy these boundary conditions without further ado and to use the
separation h as a natural geometrical length scale, (4.96) can be particularized
further by letting

T ′ = T̂ sin
mπz

h
exp(ilx/h) exp(nt),

ψ ′ = ψ̂ sin
mπz

h
exp(ilx/h) exp(nt),

(4.100)

where m is now a non-zero integer and the wave-number l is dimensionless.
The rest of the calculation is straightforward algebra. The substitution of (4.100)

into (4.97) and (4.98) gives, after cancellation of terms, a pair of simultaneous
homogeneous linear algebraic equations for ψ̂ and T̂ . The condition for existence
of a non-trivial solution (i.e. one other than ψ̂ = 0, T̂ = 0) is that the determinant
of the coefficients vanishes, and this leads to a determination of the single quantity
we want to know – the growth rate, n:

nh2

κM
= l2

l2 + m2π2
Ra − (l2 + m2π2), (4.101)

where

Ra = gkhα(	T )

νκ

is the Rayleigh number (4.21a).
It is apparent from (4.101) that in this context, the growth or decay rate n in

the specification (4.96) is purely real. For stability the disturbance must die away,
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Figure 4.21. The Rayleigh stability curve for saturated porous media. At low
Rayleigh numbers, the rest state is stable on all scales, but as the Rayleigh number
increases to a value of 39.48, disturbances with horizontal wave-number π as
indicated by the broken lines first becomes unstable. As the Rayleigh number
increases beyond the critical value, so does the width of the band of unstable
wave-numbers.

n < 0, and this requires that

Ra ≤ (l2 + m2π2)2

l2
= f (l2, m2), say, (4.102)

for all values of l and integral values of m. For any given choice of m, the function
on the right of (4.102) increases as l2 for large l and as (mπ )4l−2 for small l, and
so has a minimum at some intermediate value, as seen in Figure 4.21. Points with
coordinates (wave-number, Rayleigh number) above the curve specify unstable
conditions and points below, stable. At the minimum

∂

∂l
f (l2, m2) = 0;

this occurs when l2 = m2π2, at which point the function f has the value 4m2π2.
This stability limit is most restrictive when m = 1, so that the critical Rayleigh
number based on the horizontal permeability at which instability can first occur is

(Ra)CRIT = 4π2 = 39.48, (4.103)

as found by Lapwood (1948). Below this Rayleigh number, all infinitesimal dis-
turbances are stable. The most unstable motion when Ra just exceeds its critical
value is in the form of alternately rotating square roll cells whose width is equal to
the depth of the layer. The speeds of the fluid motion in these first unstable modes
at slightly supercritical Rayleigh numbers gradually increase with time at the rate
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exp(nt), where

n = κM

h2
{Ra − (RaCRIT)} , (4.104)

as can be seen from (4.101). (The specific heat ratio M is defined following equa-
tion (4.92)). At slightly supercritical Rayleigh numbers, the cells ultimately sta-
bilize with a finite speed that was shown by Joseph (1976) to be proportional to
{Ra − RaCRIT}.

If the medium contains fine scale horizontal layering represented by permeabil-
ities kV and kH � kV, the Rayleigh number assumes the form

Ra∗ = ghα 	T

νκ

kHkV(
k

1/2
H + k

1/2
V

)2 ,

and the condition for stability is Ra∗ ≤ π2, which reduces to (4.103) when the
medium is isotropic. When kH > kV, interstitial fluid can move more freely in
horizontal directions than in the vertical and, despite the fact that the buoyancy
driving the instability acts vertically, the horizontal scale of the cells in this case is
greater than the layer depth.

Experiments on the onset of Rayleigh–Darcy instability have been conducted
by Elder (1967), Katto and Masuoka (1967), Combarnous and LeFur (1969), and
by Murray and Chen (1989), all in isotropic media. Measured values of the critical
Rayleigh number were generally within 20% of the value 4π2 predicted by the
theory, the major uncertainties, as Murray and Chen pointed out, being in the
precise determination of the permeability k. The convection cells that developed
were in each case two-dimensional, and approximately square in cross section.

When the Rayleigh number is substantially supercritical, an increasingly wide
band of wave-numbers becomes unstable. Notable contributions by Palm, Weber,
and Kvernvold (1972), Rudraiah and Srimani (1980), Borkowska-Pawlak and
Kordylewski (1985), and others have shown that in the isotropic case at least,
the patterns of convection become less regular and much more complicated as
newly unstable modes grow to larger amplitudes than the roll cells and supplant
them.

4.7.2 A physical discussion

The basic physics of the Rayleigh–Darcy instability may be somewhat obscured
by the algebraic details of the calculation above, but the essence of it can be
understood more clearly from the structure of the physical balances involved. In
this discussion, we will ignore numerical factors and coefficients of order unity
in order to concentrate on the physical content of these balances to answer the
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question: why is there no sustained interstitial fluid motion until the temperature
difference exceeds a critical value?

The primary physical statements are (i) the relation between the horizontal
gradient of interstitial fluid buoyancy and the rotation vector of the transport velocity
field. With flow in the (x, z) plane in the form of approximately square cells and
the perturbation fields indicated by primes, the second component of (4.4) gives

−k

ν

∂b′

∂x
= �Y ∼ −∂w′

∂x

to within a factor of about 2, which we neglect. Thus

w′ ∼ k

ν
b′ = gk

ν
αT ′. (4.105)

The instantaneous vertical velocity distribution is directly proportional to the tem-
perature perturbation from the undisturbed linear distribution.

(ii) The evolution of the two fields is specified by advection/diffusion balance in
the field equation (4.98) for this temperature perturbation, which will be positive
in some places, negative in others. Rewritten slightly, it becomes

∂T ′

∂t
= 	T

h
w′ + κ∇2T ′,

since the temperature gradient is negative upward. Multiply this last equation
throughout by T ′ to form an equation for the mean square temperature perturbation,
which is everywhere positive:

∂T ′2

∂t
∼ 	T

h
w′T ′ + κT ′∇2T ′,

and then form the average by integrating over the domain. Note that T ′∇2T ′ =
∇ · (T ′∇T ′) − (∇T ′)2. Either the perturbation temperature T ′ or temperature gra-
dient ∂T ′/∂n vanishes on the boundaries. Substitute from (4.105) and it follows
that

∂

∂t
T ′2 ∼ 	T

h

gk

ν
αT ′2 − κ(∇T ′)2,

(4.106)

∼ gkα	T

hν
T ′2 − κ

h2
T ′2.

This is an equation for the growth or decay of the (always positive) mean square
temperature perturbation T ′2 with purely numerical factors omitted. The first term
on the right represents the rate of production of T ′2 resulting from any buoyancy-
driven vertical motion that distorts the basic constant gradient, and the second term
represents the rate of dissipation of T ′2 resulting from the smoothing effect of
thermal diffusivity. The balance between them is independent of the magnitude
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of the perturbation T ′2. The first term on the right is positive. If it is larger in
magnitude than the second term, T ′2 is increasing exponentially as a result of the
distortion more rapidly than it is being smoothed out by the thermal diffusivity, the
temperature perturbations will grow and the system is unstable. If the last term is
larger in magnitude but negative, the sum of the two is negative and the mean square
temperature perturbations die away exponentially as the system returns to rest. The
ratio of the first term to the second is the Rayleigh number, whose numerical value
at the point of balance, that is, of marginal instability, depends on the numerical
constants that have been ignored.

4.7.3 Related configurations

The numerical value 4π2 for the critical Rayleigh–Darcy number in an isotropic
medium is specific to the particular boundary conditions of constant temperatures
and zero volume fluxes at the upper and lower surfaces. Nield (1968) found the
critical values appropriate to a variety of other circumstances, showing, for example,
that when the heat flux rather than the temperature is prescribed at upper and lower
impermeable boundaries, the critical Rayleigh number is 17.7. Also, when the
upper surface is at constant pressure (so that fluid can enter or leave across it) while
the lower is impermeable, if the upper and lower temperatures are fixed, the critical
value is 27.1.

When the porous layer slopes at an angle θ to the horizontal, the basic fluid
state is not one at rest unless the isotherms happen to be horizontal. The particular
case in which the temperatures at the upper and lower surfaces are uniform but
with a temperature difference 	T between them, has been studied extensively, both
theoretically and experimentally (see, for example, Bories and Combarnous 1973,
Combarnous and Bories 1975, and Caltagirone and Bories 1985). In this case, the
isotherms also slope at the same angle, and in a uniform isotropic medium, the
undisturbed flow is one of uniform shear with the rotation given by (4.5):

� = −αgk

ν

∂T

∂x
= −αgk 	T sin θ

νh
,

where h is the layer thickness.Various types of instability have been found to be
possible, the simplest being longitudinal roll cells with their axes upslope. For
these, the equations governing the transverse motions are identical to (4.97) and
(4.98) (since ∂/∂y, the derivative upslope, vanishes) except that g cos θ replaces g.
This type of instability then sets in when, for a uniform isotropic medium,

Ra cos θ ≥ 4π2, (4.107)
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as confirmed experimentally by Bories and Combarnous (1973). At much higher
values of Ra cos θ , the flows become oscillatory and geometrically more complex;
the various states and transitions among them having been considered in detail by
Caltagirone and Bories (1985). When the layer is vertical and a constant temperature
is maintained across it, the steady motion has uniform shear and is entirely stable,
as shown by Gill (1969).

These analyses by Lapwood and later authors have been concerned with the
problem of pure thermal convection, but the results can be extended immediately to
the case of continuously saturated solutions in equilibrium with a major constituent
of the fabric. The equation of state (2.65) replaces the last of the set (4.92); in the
equations and therefore in the conclusions, the thermal density coefficient αS of the
continuously saturated solution replaces the ordinary thermal expansion coefficient
α. For stability

gαS 	T h

νk
≤ 4π2.

Here, however, αS may be negative, as it is for potassium salts and for Na2SO4 over
a range of temperatures less than 32 ◦C, and if T is positive (heated at the bottom)
the basic state is unconditionally stable! The increased density resulting from
increased dissolution at the higher temperature overcomes the effect of thermal
expansion. When αS < 0, however, the basic state can be destabilized by heating
at the top, so that 	T < 0, αS	T > 0, and again the critical value of above can be
exceeded if the temperature difference is sufficiently large.

Another configuration of geological interest is that of a fluid layer of uniform
depth above a saturated porous layer, heated from below. The stability characteris-
tics of this system were studied theoretically by Falin Chen and C. F. Chen (1988)
and experimentally in a series of measurements by the same authors in 1989. When
the ratio d̂ of the fluid layer depth to the porous layer thickness was close to zero,
the upper surface was barely awash and the critical Rayleigh number was only
slightly less than the value of 39.48 found by Lapwood. However, as the depth
of the fluid layer was increased, the critical Rayleigh number (defined in terms
of the porous layer parameters) showed a “precipitous decrease” to 21 when the
depth ratio was 0.1. The physical reason for this appears to be the decrease in flow
resistance in the fluid layer, which “shorts” the rising and falling fluid at the top
of the porous medium cells. A further decrease to 2.71 at a depth ratio ∼0.2 was
accompanied by an abrupt decrease in the critical wavelength by a factor of about 8
as the convective motion became more and more confined to the upper fluid layer,
the porous medium Rayleigh number becoming less pertinent. Flow visualizations
showed that the convection cells were generally three-dimensional. Figure 4.22,
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Figure 4.22. The critical Rayleigh number as a function of the depth ratio in a two-
layer system with a liquid layer above a saturated porous medium. Measurements
by Chen and Chen (1988 and (1989). Even a thin liquid layer short-cuts the
circulation, reducing the flow resistance and reducing the critical Rayleigh number,
defined in terms of the porous layer parameters.

re-drawn from the 1989 paper, compares results from their linear stability analysis
with points from their measurements.

4.8 Thermo-haline circulations

In thermo-haline circulations, the local buoyancy of interstitial fluid is a function
of both temperature and concentration of dissolved solutes, frequently salt, and
these have different diffusion and advection characteristics in saturated permeable
media. Recall that heat is conducted through the solid/fluid matrix with a thermal
diffusivity (c.f. Section 2.7) κ ∼ 1.5 × 10−3 cm2/s. Heat is advected through the
medium with an effective velocity u/M , where u is the transport velocity and
the specific heat ratio M = (ρC)M/(ρC)F ∼ 0.5. The effective advective velocity
is larger than u because of the high heat capacity of the moving water, but less
than the mean interstitial fluid velocity v because of heat leakage into the matrix.
If the interstitial fluid is not moving relative to the matrix, dissolved salts can diffuse
through the matrix pores, but very slowly, because of three separate factors: (i),
the porosity fraction φ < 1, (ii) the tortuosity of the pathways, and (iii) the small
molecular diffusivity of salt in water (c. 1.5 × 10−5 cm2/s, smaller by a factor of
about 100 than that for heat). If the interstitial fluid is moving through the medium,
chemically passive, dissolved salts move through the medium at the mean intersti-
tial fluid velocity v and are dispersed about the mean streamlines by mechanical



4.8 Thermo-haline circulations 181

(or geometrical) dispersion, though as Griffiths (1981) noted in his experiments, at
the pore scale the mixing is initially local and sporadic until pore scale diffusion
can smooth out the salinity variations. If there is significant interstitial fluid motion,
the effective longitudinal diffusivity D ∼ vαD (§§ 2.10, 3.3) may be very much
larger than the molecular value and, in an accelerating flow, increases as the flow
speed does.

In order to explore the interplay among the differences in advective velocities
and diffusivities for heat and salt, it is instructive to reconsider the Rayleigh–
Lapwood problem with a uniform temperature gradient ∂T /∂z = −	T/h and a
coexisting salinity gradient ∂S/∂z = −	S/h. This problem was first considered
by Nield (1968) although, as Murray and Chen (1989) pointed out, his formulation
unfortunately contained several slips. The equations describing small perturbations
about a state of rest are the same as (4.97) and (4.98) with additional salinity terms

∂2ψ ′

∂x2
+ ∂2ψ ′

∂y2
= K

(
−α

∂T ′

∂x
+ β

∂S ′

∂x

)
,

M
∂T ′

∂t
+ 	T

h

∂ψ ′

∂x
= κ∇2T ′, (4.108)

φ
∂S ′

∂t
+ 	S

h

∂ψ ′

∂x
= φκS∇2S ′,

where K is the hydraulic conductivity of the medium. It simplifies the algebra to
use the physical characteristics of the system as scales to define dimensionless
variables. We note that K has the physical dimensions of velocity and that the flow
speeds are proportional to the buoyancy variations. Accordingly, let

S ′ = (	S)σ, T ′ = (	T )θ, (x, z) = h(ξ, η),
ψ ′ = Kα(	T )hψ = (κRa)ψ, t = (h2/κ)τ,

(4.109)

where the un-primed Greek symbols are dimensionless and Ra is the Rayleigh
number (4.21a). In terms of these, (4.108) becomes

generation of rotation:
∂2ψ

∂ξ 2
+ ∂2ψ

∂η2
= −∂θ

∂ξ
+ Rρ

∂σ

∂ξ
,

thermal energy balance: M
∂θ

∂τ
+ (Ra)

∂ψ

∂ξ
= ∇2θ, (4.110)

salt balance: φ
∂σ

∂τ
+ (Ra)

∂ψ

∂ξ
= φκS

κ
∇2σ,

where the density ratio (Turner, 1973)

Rρ = β	S

α	T
= β∂S/∂z

α∂T /∂z
, (4.111)
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and the Laplacian operators are in dimensionless space variables. It is interesting
to note that in the scaled set (4.110), all the coefficients are generally of order unity
except for the diffusion term in the salt balance in which κS/κ ∼ 10−2.

The simplest boundary conditions are that the temperature and salinity are fixed,
and that the normal component of the velocity vanishes at the upper and lower
boundaries of the flow. This implies that θ = 0, σ = 0 and ψ = 0 when η = 0
and 1.

To examine the stability characteristics of this system, the procedure is the same
as in Section 4.7, but the algebra is somewhat more extensive. Since the coefficients
in (4.110) are independent of ξ , η, and τ , solutions representing a typical Fourier
component of the disturbance field are of the form

exp(nτ ) sin(mπη) exp(ilπξ ).

Note that the vertical half-wavelength of the disturbance is 1/m, and the horizontal
wavelength is 2/l, where l and m are positive integers. The temporal growth rate,
to be determined, is n. Substitution into (4.110) now leads to a quadratic equation
for the growth rate n:

an2 + bn + c = 0, (4.112)

where

a = M ∼ 0.5,

b = π2(l2 + m2) − l2

π2(l2 + m2)
(1 − MRρ/φ)Ra, (4.113)

c = π4(l2 + π2)2 κS

κ
+ l2 Rρ

φ
Ra,

and φ is the porosity. A term κS/κ ≈ 10−2 has been neglected compared with unity
at one point.

The growth rate for the disturbance is determined by the nature of the roots of
the quadratic equation (4.112), i.e.

n = (2a)−1{−b ± (b2 − 4ac)1/2}. (4.114)

These roots are not necessarily real and there are four different cases that must
be considered separately, corresponding to the two-layer situation illustrated in
Figure 4.23.
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Figure 4.23. Cartoon of isohaline (solid lines) and isotherm displacements
(dashed lines) in diffusive, saturated permeable media with the associated sta-
bility characteristics.

4.8.1 Temperature destabilizing, salinity stabilizing,
∂T/∂z < 0, ∂S/∂z < 0, Rρ > 0

In this case, cooler, fresher interstitial water lies above warmer, more saline water.
When the salinity contrast is zero, it reduces to the Rayleigh–Lapwood problem
of the previous section; one would expect intuitively that a distribution of salinity
decreasing upward would enhance the stability, and this can be shown simply. The
factors a and c are both positive and if b2 > 4ac, the two roots are real and with
sign opposite from b; if b2 < 4ac, the roots are complex but the sign of the real
part is still opposite to that of b. In either event, then, the condition b > 0, or

π4(l2 + m2)2/l2 >

(
1 − MRρ

φ

)
Ra
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guarantees that the real part of n is negative and the physical state is stable to a
particular disturbance of horizontal wave-number l and vertical mode m. This is of
precisely the same form as (4.102) except for the additional factor on the right-hand
side, so that, as before, the condition is most restrictive when m = 1 and the state
is stable to all wave-numbers l when

Ra < 4π2

(
1 − M

φ
Rρ

)−1

. (4.115)

The term in parentheses exhibits the role of the density ratio Rρ = β	S/α	T

in salinity stabilization. Note the negative index. The specific heat ratio is generally
somewhat larger than the porosity, but they are usually of the same order, so that
the critical value of Ra increases from its value of 4π2 when 	S = 0, to infinity
as Rρ exceeds φ/M, so that stability is ensured for any Ra. When the density
ratio Rρ < φ/M , the motion that first develops as the Rayleigh number becomes
supercritical is again in the form of the large cells of filling the layer. In summary,
the effect of salinity variation in this case is simply to delay (when Rρ < φ/M)
or avert (when Rρ > φ/M) the onset of instability as Ra increases, without any
change in its basic nature.

Murray and Chen (1989) have described important experiments with a destabi-
lizing temperature gradient and a stabilizing salinity gradient. A linear temperature
distribution with ∂T/∂z < 0 was maintained by separate baths above and below
the upper and lower conducting boundaries, whose temperatures were controlled;
the salinity gradient was produced by filling the box in four layers, which were
allowed to diffuse. The internal salinity interfaces disappeared fairly rapidly, but
since there was no salt flux across the upper and lower surfaces, the salinity gradi-
ent ∂S/∂z = 0 there, and almost isohaline layers slowly developed and thickened
gradually. Since the region of constant salinity gradient occupied only the cen-
tral region of the depth interval, the result (4.115) cannot be applied directly, but
in any event, the salinity stabilization effect was evident. With a strong salin-
ity gradient, the critical Ra increased fourfold. When Ra was large enough to
induce instability, large three-dimensional cells were formed and the heat flux
increased dramatically. To account quantitatively for the measurements on the
onset of instability, it was necessary to take into account both the nonlinear salin-
ity profile and the temperature dependence of the thermal expansion coefficient –
a reminder that the simple criteria such as (4.115) are important conceptually but
probably unreliable numerically if applied to geological situations in which the
conditions envisioned in the theory (both gradients constant) are not precisely
satisfied.
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4.8.2 Both temperature and salinity stabilizing,
∂T/∂z > 0, ∂S/∂z < 0, Rρ < 0

In this situation, hot, fresh interstitial water lies over cold, more saline water; in
terms of the problem definition, α	T < 0, β	S > 0. Consequently, Ra < 0 and
Rρ < 0. In (4.114), c is then positive for all l, m, as is b. The two roots (4.114) then
have negative real parts, and the equilibrium is, not surprisingly, always stable.

4.8.3 Both temperature and salinity destabilizing,
∂T/∂z < 0, ∂S/∂z > 0, Rρ < 0

Now cold, more saline water lies over fresher, hotter water; α	T > 0 and β	S <

0, so that Ra > 0 and Rρ < 0. From (4.114) both roots are negative (or have negative
real parts) if c < 0 and b > 0 for all l, m, and this can be shown again to require the
condition (4.115). Since, however, Rρ < 0 in this case, the factor in parentheses is
larger than unity, so that the critical Rayleigh number decreases toward zero as the
negative term MRρ/φ becomes larger in magnitude – diffusive smearing is less
and less able to maintain stability.

4.8.4 Temperature stabilizing, salinity destabilizing,
∂T/∂z < 0, ∂S/∂z > 0, Rρ < 0

This situation, when hot, saline interstitial water lies over cooler, fresher water, is
possibly the most interesting, being associated with the phenomenon of double-
diffusive fingering. The latter is similar in its basic dynamics to the double-diffusive
instability in ordinary viscous fluids described by Turner (1973) in his fine book
Buoyancy Effects in Fluids. If an element of interstitial fluid is displaced downward,
it loses heat by diffusion but hardly any salt; it is then denser than the surrounding
fluid and tends to continue downward. If displaced upward, it becomes warmer than
its surroundings but remains fresher, and so is less dense and continues upward.
Interleaving fingers or vertical sheets then form and continue as long as the salt
flux downward is maintained. This instability was predicted theoretically by Nield
(1968), but has not yet been demonstrated in the laboratory in a porous medium,
heat–salt system because of the experimental difficulties associated with lateral
heat losses in an apparatus of limited horizontal dimensions. Imhoff and Green
(1988) have shown, however, that this kind of fingering develops in the much less
efficient double-diffusive system using gradients of sugar and salt in the interstitial
fluid. Salt (NaCl) has a higher molecular diffusivity than does sugar, but by a factor
of only 3, and the effective advection velocities are the same for the two species,
whereas in the heat–salt system, the thermal diffusivity is greater than that for
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salt by a factor of 100 and the salt advection velocity is larger by the factor M/φ.
Nevertheless, even in this less efficient case (the more diffusive species, salt, having
the same dynamical influence as cold and the less diffusive one, sugar, playing the
same role as salt in the heat–salt system), fingers developed that were about ten
times as long as they were wide. The net vertical fluxes were about two orders
of magnitude larger than the molecular diffusion in a motionless interstitial fluid.
In a heat–salt system, the motion would be expected to be more vigorous and the
fingers relatively longer in view of the greater diffusivity contrast together with the
more rapid salt advection compared with that of heat.

Algebraically, one of the roots of (4.114) is real and positive (indicating insta-
bility) when c < 0. In the present situation, α	T < 0 and β	S < 0, so that the
density ratio Rρ is positive and Ra < 0. For small-scale, vertical disturbances
m = 0 and from (4.112),

c = l2

{
l2 κS

κ
+ Ra

(
Rρ

φ
− κS

κ

)}
, (4.116)

and c < 0 when

l2 κS

κ
< |Ra|

(
Rρ

φ
− κS

κ

)
.

Accordingly, when

Rρ = β	S

α	T
> φ

κS

κ
, (4.117)

the basic state is unstable to some wave-numbers at any Rayleigh number |Ra|.
The right-hand side of (4.117) is numerically very small. When Rρ< 1, the density
of the interstitial fluid decreases in the vertical and the basic state is apparently
statically stable; however, it is unstable in this double-diffusive manner when

φ
κS

κ
< Rρ < 1.

In practical terms, since φκS/κ is so small, unless the salinity gradient is vanishingly
small, a situation of hotter, more saline interstitial fluid lying over cooler, fresher
fluid is always unstable even if the overall fluid density decreases in the vertical
direction. The resulting circulations are in the form of interleaving small vertical
fingers or sheets, providing effective vertical transport of dissolved ions in the
interstitial fluid. The case of cooler, more saline water overlying fresher, warmer
water is also highly unstable, so that as a general rule, instability and vertical
transport are almost inevitable when more saline interstitial water overlies a fresher
interstitial fluid region, whatever the temperature structure. Geological scenarios
of this kind are not at all uncommon, particularly in evaporite situations discussed
in Chapter 5.
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4.8.5 Brine invasion beneath hypersaline lagoons

When a coastal embayment in an arid climate becomes landlocked, the excess of
evaporation over precipitation leads to an increasing salinity in the lagoon water,
and it becomes hypersaline relative to a seawater-saturated fabric below. Even if
the possibly hot lagoon water is less dense than that in the substrate, the stage is
set for double-diffusive fingering of the interstitial water, leading to vertical solute
transfer and geochemical alteration of the host rock. This may well have occurred
in the formation of certain bedded dolomites by the post-depositional alteration of
limestone shelves of the Permian Basin in the southwestern United States.

The origin of dolomites was regarded as enigmatic for many years. The principal
problems, as listed by Adams and Rhodes (1960), included (i) the existence of an
adequate source of chemically active magnesium to allow the degree of dolomitiza-
tion observed, (ii) the existence of a plausible and natural internal flow system that
can transport the magnesium into, and distribute it throughout, the host limestone,
while at the same time removing the displaced calcium ions, and (iii) the provision
of a chemically favorable environment in which the reaction can occur. Commonly,
dolomite is associated with beds of evaporite such as salt, gypsum, or anhydrite.
Often, however, there is no such association. Some coral atolls are extensively
dolomitized at depth. This suggests that there is no unique physical or geological
environment associated with dolomitization – the chemistry may be the same, but
the internal flow systems needed for magnesium transport may be of several kinds,
the circulation beneath hypersaline lagoons being only one.

The Permian Basin of western Texas and New Mexico is a huge area, rich in
petroleum, natural gas, and potash, with excellent outcrops as a result of uplift and
erosion. It has been extensively drilled. The economic importance of the region has
stimulated many studies reconstructing the Permian geography. Some 250 millions
years ago, this region was the site of a partly landlocked embayment extending more
than 1500 km into the continental interior with shell- and skeleton-forming shallow-
water fauna building the basin floor upward as subsidence lowered it. Adams and
Rhodes (1960) visualized extensive shallow lagoons perhaps 300 km wide and 3 m
deep, evaporating in an arid climate but sporadically replenished by new seawater,
so that the salinity gradually increased from that of normal seawater (35‰) to
values five or even ten times higher when halite (rock salt) deposits began to form.
The hot, saturated solution with excessively high concentrations of magnesium,
potassium, sodium, and chlorine provides the chemical source of dolomite, but in
order to distribute the solutes through the carbonate substrate, Adams and Rhodes
were forced to postulate a dynamically implausible, density-driven flow pattern
(which they called “seepage refluxion”). This hypothesis is clearly unnecessary
in the light of the results above. The substrate with hypersaline interstitial fluid
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at the top and less saline fluid below is unstable to double-diffusive fingering,
whatever the vertical temperature profile. This provides a natural (and inevitable)
mechanism for the vertical transport downward of magnesium and other solutes in
the downward-moving fingers and the transport up of calcium ions released in the
dolomite reaction in the upward-moving ones. The brine that provides the chemical
source also drives the flow. These simultaneous counterfluxes offer a conceptual
solution to the transport problem in this environment, but the question remains as
to whether the magnitudes of the fluxes are sufficient to provide the magnesium
needed in a reasonable time interval.

In convective instabilities, the flow pattern that develops is in essence that of
the most rapidly growing unstable mode. In a permeable matrix, as the disturbance
grows, the diffusivity for salt increases as macroscopic dispersion replaces molec-
ular diffusivity, and this relaxes the driving force for double-diffusive convection;
the instability evolves toward a steady circulation. In a uniform medium, the fingers
are vertical, but in a natural geological environment, the flow, though on average
vertical, follows conduits or higher-permeability layers and is considerably less
regular. Nevertheless, an order-of-magnitude estimate of the vertical fluxes can be
found simply from the first of equations (4.4), or by balancing the vertical driving
force (the horizontal variation in buoyancy produced by salinity variations) with
the resistance to flow in the medium:

μ

k
w = ρ0gβS ′.

If 	S represents the difference in salinity between the downward- and upward-
moving fingers or sheets, the magnitude of the vertical velocities up or down is

w ≈ kVgβ	S

ν
= Kβ	S, (4.118)

where kV is the permeability for vertical flow and K is the corresponding hydraulic
conductivity (with the physical dimensions of velocity). The total volume of fluid
entering (and leaving) the matrix per unit horizontal area per unit time is then also
given by (4.118), and in a layer of thickness h, the volumetric replacement time, or
the time required for a volume of water equal to the volume of the system itself to
pass through the system is

TV ≈ h

w
≈ h

K β	S
. (4.119)

Numerical values are of interest. In the west Texas, New Mexico basin, the thickness
h ∼ 500 m, and K may be as small as 10−7 m/s. Now β	S represents the fractional
difference in densities resulting from salinity differences in the downward- and
upward-moving columns. This is of the same order but somewhat less than the
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density difference between the hypersaline lagoon water and the interstitial water
deep in the bank. As time passes, both become more saline, but the flow continues
as long as the difference remains. If, for example, we take β	S ∼ 0.05 and
ν = 10−6 m2/s, then

w ∼ 5 × 10−9 m/s = 15 cm/yr,

and

TV ∼ 3000 yr,

a very short time.
The time required to complete the conversion of limestone to dolomite is, of

course, greater than this, since the molar concentration of magnesium in even
saturated brine is less than that of the dolomite produced. An accurate calculation
requires a detailed chemical model of the sort outlined by Wilson et al. (1990),
but the thermodynamic parameters in this case are not yet well established. A
lower limit for the time interval can be obtained by assuming that all of the
magnesium in the fluid is available for conversion to dolomite. One liter of dolomite
contains about 11 moles of magnesium, and if the concentration in the convecting
fluid is about ten times that of normal seawater, as Adams and Rhodes (1960)
suggest, its concentration is about 0.5 molal. Some twenty-two flushing times
are thus required, giving a lower limit of about 70 000 years. Because of the
expected inhomogeneity of the medium and internal channeling, the actual time
for dolomitization is certainly much greater than this, but even if this estimate is too
small by a factor of 10, it is still sufficiently high to provide the needed magnesium
within a geologically short time.

Another example of apparent thermohaline overturn has been described by Hanor
(1987). Preferential dissolution near the top of the Iberia salt dome, Louisiana,
combined with bleeding of less-saline water from a geopressurized region below,
provides salinity destabilization with hot, saline water over cooler, fresher water,
as described in the preceding section. Hanor used the simple (incorrect) criterion
of a decrease in density of pore fluids with depth to infer the existence of con-
vective instability, but the results earlier in this section indicate that instability and
convective circulation will occur more widely than he anticipated.

4.9 Instability of fronts

A quite different kind of instability, very important in the petroleum industry,
occurs when one interstitial fluid of viscosity μ1 and density ρ1 is displaced by
another of viscosity μ2 and density ρ2. Though its existence seems to have been
known in the oil industry for some time, the first account of it was published in
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Figure 4.24. A definition sketch for a perturbed moving interface between satu-
rated regions of differing density and viscosity.

the scientific literature by Hill in 1952. Saffman and Taylor (1958) gave a clear
explanation of the basic mechanism so that the instability is generally associ-
ated with their names. Dynamically identical but geologically very different is
the infiltration instability of dissolution fronts along which a minor constituent of
the matrix is dissolving, producing a change in the matrix porosity and perme-
ability across the front. These have been discussed extensively by Merino (1984),
Ortoleva et al. (1987a), Ortoleva et al. (1987b), and their co-workers. To avoid
repetition of the analyses, we also allow the permeability and porosity, as well as
the viscosity and density to change across the front, allowing them to be equal
or not, as appropriate to the geological application. In each application, capillary
forces will be neglected for the moment, and the medium supposed to be locally
isotropic.

The nature of the instability can be seen most simply by supposing that the
interface between the two fluid domains is sharp and initially plane, with its normal
at the angle θ to the vertical. The interstitial fluid is moving through the matrix with
uniform velocity W in the z-direction, normal to the plane. The transport velocity
on either side is U = φW, also normal to the interface. Suppose now that the
interface is not quite planar, but develops a small corrugation ζ = a exp(imx + nt),
as shown in Figure 4.24, with wavelength 2π/m. The fluid is moving into the
region with suffices “1”. The disturbance grows in amplitude if n is positive and
diminishes if negative. Since the perturbation is small (am � 1), the boundary
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moves through the medium with the interstitial velocity component on either side
and the kinematical boundary condition (2.28) between the two regions simplifies
to

.
ζ = w1 = w2 = na exp(imx + nt). The corresponding pressure distribution in

front of and behind the interface satisfies Laplace’s equation, and the disturbance
pressures must vanish at infinity; with use of the condition above, they are found
to be

p1 = ρ1gz cos θ − μ1φ1

k1

(
Wz − na

m
exp(imx − mz + nt)

)
, z > 0,

p2 = −ρ2gz cos θ − μ2φ2

k2

(
Wz + na

m
exp(imx + mz + nt)

)
, z < 0,

where m > 0 since the disturbances vanish far from the interface. These pressures
must be the same on either side of the interface where z = ζ = a exp(imx + nt),
and when am � 1, it follows after some manipulation that

n

m

(
μ1φ1

k1
+ μ2φ2

k2

)
= (ρ1 − ρ2)g cos θ +

(
μ1φ1

k1
− μ2φ2

k2

)
W. (4.120)

A number of interesting and physically comprehensible special cases can readily
be extracted from this equation. The term in brackets on the left and the spatial
decay rate m are always positive. The growth rate n is real and the motion is unstable
(n > 0) if the right-hand side is positive and stable if it is negative (n < 0). In the
Saffman–Taylor instability, the porosity and permeability are the same on each
side, so that φ1 = φ2 = φ, k1 = k2 = k and the question of stability or instability
then depends only on the relative magnitudes of the densities and the viscosities.
The condition for instability (n > 0) is then

(ρ1 − ρ2)g cos θ + (μ1 − μ2)
φW

k
> 0. (4.121)

When the two viscosities are equal and cos θ > 0, the interface is unstable when
the upper fluid is denser and stable otherwise, in accordance with intuition. Alter-
natively, when buoyancy forces are negligible, that is, when the fluid densities on
each side of the interface are the same, or when the interface is vertical, the criterion
for instability is, from (4.121), very simply that μ1 > μ2, that more viscous fluid
is being displaced by less viscous fluid. In physical terms, this instability develops
when a local indentation or finger of less dense fluid occurs in a moving interface,
the pressure gradient normal to the interface forces the less viscous fluid inside the
finger to move faster than the more dense fluid surrounding it, so that the finger
grows.
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More generally, when the fluid densities on either side differ, buoyancy effects
may also be significant. When, again, μ1 > μ2, the interface is unstable when

W > − (ρ1 − ρ2)

(μ1 − μ2)

gk cos θ

φ
(4.122)

and this now depends on the orientation and speed of advance of the front, as well
as the density and viscosity differences. For an interface moving upward, cos θ >

0. When the upper fluid is more viscous but less dense, μ1 > μ2 but ρ1 < ρ2,

and the gravitational (buoyancy) effect promotes stability whereas the difference
in viscosities promotes instability. The interface is then unstable when the speed of
advance W is greater than a critical value,

W > WC = (ρ2 − ρ1)gk cos θ

(μ1 − μ2)φ
,

and stable when W < WC. When the upper fluid is more dense as well as more
viscous, both the gravitational and viscous effects promote instability; the right-
hand side of (4.122) is negative and the interface always unstable. There are
various other cases depending on the signs of (ρ1 − ρ2), (μ1 − μ2) and cos θ

which the reader can explore. A curious one is the viscous stabilization of a
gravitationally unstable, downward-moving interface when heavy, more-viscous
fluid above displaces lighter, less-viscous fluid below.

Dynamically identical but geologically very different is the infiltration instability
of dissolution fronts that form when unsaturated interstitial fluid encounters a
region containing soluble minerals which then dissolve. It will be seen in the
next chapter that these fronts characteristically move much more slowly than the
initially unsaturated interstitial fluid, which becomes saturated as it moves through
the front. The dissolution process increases the medium permeability and porosity,
but the interstitial fluid densities and viscosities are now virtually identical on either
side of the front. In (4.120), the condition for instability of the frontal region, that
n > 0, reduces to

φ1

k1
− φ2

k2
> 0.

For a particular medium geometry, the permeability k ∝ φn, where n > 1, the
condition above is equivalent to k2 > k1 and φ2 > φ1. For infiltration instability, the
permeability and porosity must be greater behind the front than ahead of it, and as
the perturbations grow into fingers, flow continues to be focused into the advancing,
more permeable intrusions, increasing the rate of dissolution. A precipitation front,
or indeed any front in which the reaction reduces the permeability, is, in contrast,
stable and perturbations of the frontal surface tend to disappear. A more detailed
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analysis of the stability of an acid dissolution front moving through porous rock
has been given by Hinch and Bhatt (1990).

Some measurements in porous media have been made, notably by Slobold and
Thomas (1963), using X-rays to observe the spreading and by Habermann (1960)
using a relatively thin slice of permeable medium; they also show similar fingering
phenomena. Observations are made difficult by the opacity of the medium, but
Chouke, Van Meurs and van der Poel (1959) and Wooding and Morel-Seytoux
(1976) describe observations with fluids having the same index of refraction as
the medium, so that dye streaks in the interior become visible. Many numerical,
random-walk simulations, following those by Sherwood (1986), have been inter-
preted in terms of fractals, presumably reflecting the absence of natural length
scales in these processes.



5

Patterns of reaction with flow

5.1 Simple reaction types

A variety of chemical reactions can occur as water, carrying various dissolved
chemical species, moves through a permeable matrix or a network of fissures or
fractures. The nature of the resulting dissolution, precipitation, and fabric alteration
depends on the reaction kinetics and the influence of temperature, pressure, and
other factors on them. Their spatial distribution depends largely upon the flow.
Compton and Unwin (1990) identify a series of about ten sequential steps that may
be involved in any particular reaction. Of these, the controlling, or rate-limiting
steps may be those in which reactants in solution are delivered from their source
to the reaction site by advection and dispersion in the interstitial flow, and reaction
products are carried away. Typical fluid velocities may be only 1 m/yr. In these
flow-controlled reaction scenarios, there are two sets of balances to be considered:
the chemical balances that operate at the molecular or ionic scale and define the
nature of the reaction, and the physical balances that specify the spatial transport
of dissolved reactant to the reaction site, and of fluid reaction product from it. In
laboratory experiments and chemical engineering processes, the physical processes
can be accelerated by stirring, but in many geochemical reactions in rock fabrics
the natural transport processes can be so slow that they control the rate at which the
overall reaction can proceed. Nevertheless, their detailed spatial distributions must
reflect the chemistry, so that it is useful to review briefly a few of the simplest and
most common chemical reaction types. In our discussion of chemical transport and
reactions, it is convenient to express concentration in terms of molarity, moles per
unit volume, a mole being a mass unit equal to the molecular weight of the species
involved, so that the ratios of moles produced or consumed per unit volume are
simple integral multiples. The flux of chemical species in physical space is given
by the molarity times the fluid transport velocity through the medium. In precise
geochemical calculations, the molality (moles of solute per unit mass of water) is a

194
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Figure 5.1. (a) A conventional solubility diagram and (b) the corresponding phase
diagram, with the solid phase below and to the right of the curve cE, and liquid
solution to the left and above.

more convenient quantity, but unless the temperature and pressure are near critical,
the difference is minor. A clear discussion of these matters is given in Garrels and
Christ’s classic book (1965).

5.1.1 Dissolution

The simplest type of chemical reaction is pure dissolution or precipitation, in which
a solid mineral S dissociates reversibly into dissolved constituents or ions D1 and
D2 though even this involves a sequence of perhaps ten intermediate chemical
products. Overall, the reaction might be summarized as

S ←→D1 + D2, (5.1)

and is exemplified by the dissolution or precipitation of halite

NaCl ←→ Na+ + Cl−.

At equilibrium, where saturated solution and solid can coexist indefinitely, the
saturation or equilibrium concentration cE1 of ion D1 is a function of temperature,
pressure, and also the concentration of ion D2 – an excess of chloride ions drives the
reaction above to the left and reduces the equilibrium concentration of sodium ions.
With the other quantities held constant, the variation of saturation concentration
with temperature can be represented by a solubility diagram, as in Figure 5.1a, or
by an equivalent phase diagram, as in Figure 5.1b, in which c represents the molar
concentration of one of the dissolved ions (say, D1) in the interstitial fluid. At a
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given temperature, when the ion concentration lies along the curve c = cE, solid
and liquid phases can coexist in equilibrium; when c < cE, the liquid (dissolved)
state is in equilibrium only when no solid is present. Water may enter the soluble
matrix with an initially negligible concentration of the ions involved, and its state
is therefore represented by point A of Figure 5.1b. In the presence of the solute, it
is no longer in equilibrium and the point representing its state moves to the right
toward B, toward saturation, as simultaneously the physical processes of advection,
dispersion and diffusion occur.

As described in Section 2.8, the rates at which the molecular processes of
dissolution occur depends on the chemical kinetics and the surface morphology,
and is expressed parametrically by the term QC in equations such as (2.51). On the
flow scale, this is a function of temperature and pressure as well as (i) the proportion
of active interstitial area per unit volume of the fabric or the mass fraction r of
dissolving mineral present in the fabric, (ii) the relative concentration (X, Greek
capital chi), the ratio of the concentration of solute to the equilibrium concentration
cE at the same temperature and pressure

X = c/cE, (5.2)

and (iii) the concentration of other solutes. In this definition, cE = cE(T ,

p, c1, c2, . . .) is the saturation or equilibrium concentration and c1, c2 and so on,
represent the molar concentrations per unit volume of interstitial fluid, of the other
dissolved species influencing the reaction (including possibly the hydrogen ion
concentration, the pH). Thus, the source term per unit volume of fluid for either
ionic constituent in the species balance equation can be written generally as

QC = γ cEf (r, X) , (5.3)

where the “rate constant” γ has dimensions [T −1]. In nature, the mass fraction
r and relative concentration X both generally vary in space throughout the flow
region and also possibly in time so that the source term QC varies correspondingly.
The precise form of the dimensionless function f depends very much on the kind
of reaction, on surface properties, etc and is not known in general.

In dissolution, the dissolution rate is a maximum when the solute concentration
is very small and decreases as the solute concentration increases. Without loss of
generality, we can take ∂f/∂X = −1 when X = 0. This fixes the numerical value
and the interpretation of γ in (5.3) as the reaction rate for dilute solutions. The
dissolution rate is zero when the interstitial fluid is in equilibrium with the matrix
or when there is no dissolving mineral left, so thatf (r, X) = 0 when X = 1 or r =
0. In pure dissolution, then, the balance equation for either dissolved ion (assuming
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that it is not involved in another simultaneous reaction) is

∂c

∂t
+ v · ∇c − D∇2c = γ cEf (r, X), (5.4)

where v is the mean interstitial fluid velocity and D the effective diffusion coef-
ficient, the product of the dispersivity αD (defined in Section 2.10) and the mean
interstitial fluid speed, i.e. D = αDv. In an isothermal situation, the saturation con-
centration cE is often independent of position, and the previous equation then has
the same form in terms of the relative concentration X = c/cE of (5.2),

∂X

∂t
+ v · ∇X − D∇2X = γf (r, X). (5.5)

An interesting asymmetry can be expected when precipitation occurs from a
locally supersaturated solution (X > 1) since the rate of precipitation does not nec-
essarily vanish when the mass fraction r of mineral already precipitated is small –
a finite density of active nucleation sites for precipitation must be expected to exist
even when r = 0, so that, in this case, f(0, X) �= 0.

5.1.2 Combination

A second type of reaction involves the dissolution of two solid minerals S1 and S2,
with the formation of a third solid mineral S3 and a single dissolved species D:

S1 + S2 ←→ S3 + D. (5.6)

This is exemplified by the formation of wollastonite (calcium pyroxene) from
calcite and silica in the sequence of reactions summarized by

CaCO3
Calcite

+ SiO2
Silica

←→ CaSiO3
Wollastonite

+ CO2(Aq). (5.7)

The silica may exist as impurities of quartz silt or chert in limestone, or the
calcite may be an impurity in sandstone. In either case, the phase diagram can be
represented in terms of the molar concentration of the dissolved solute (CO2 in
the example). At a given pressure and concentration of other ions influencing the
reaction, the phase diagram for the reaction is as illustrated in Figure 5.2, where the
equilibrium boundary T = TE(c) separates the (temperature–concentration) region
below, in which S1 + S2 is stable, from that above, in which S3 + D is stable. Along
the line T = TE(c) the four can coexist in equilibrium with aqueous interstitial fluid.
The equilibrium is stable. At a fixed c a small increase in temperature above the
line causes the balance in the reaction (5.6) to move to the right as long as both S1

and S2 are present, generating additional dissolved solute. The point representing
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c

Figure 5.2. Phase diagram for the reaction S1 + S2 ←→ S3 + D. The abscissa c
represents the concentration of the dissolved solute D. All four phases can coexist
in equilibrium along the curve T = TE(c).

the state of the system in Figure 5.2 then also moves to the right, back to the
equilibrium curve T = TE(c).

Here again, the rate of generation of the dissolved species D can be represented
by the expression (5.3), where r now represents the molar fraction of the less
abundant mineral S1 or S2. If r = 0, only one of the two minerals on the left of
(5.6) or (5.7) is present, the reaction cannot proceed, and no dissolved solute is
generated. The spatial distribution of the reaction progress is monitored by the
production and transport of the mobile solute D (carbon dioxide in the example
above), whose distribution of relative concentration in space and time is specified
by

∂X

∂t
+ v · ∇X − D∇2X = QC = γ cEf (r, X). (5.8)

Again, f = 0 when either the solution is saturated and X = 1 or when one of the
initial minerals is exhausted and r = 0. Except for this circumstance, as each mole
of the solute is generated in the reaction and carried away by the moving fluid, 1
mole of the mineral S3 is being deposited and left behind. In (5.8), QC represents
moles of solute generated per unit volume of the fluid, so that φQC is the number
per unit volume of the fabric, and if s represents the moles of the immobile mineral
S3 (e.g. wollastonite) per unit volume of matrix, the rate of deposition of this
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mineral is

∂s

∂t
= φnSQC = φnSγ cEf (r, X). (5.9)

The functions f (r, X) in (5.8) and (5.9) are the same and nS is the number of moles
of the mineral deposited per mole of solute. We also have equations for the rate
of disappearance of minerals 1 and 2 in the reaction. For the reaction-limiting,
less-abundant species, with r moles per unit volume of fabric,

∂r

∂t
= −φnRQC = −φnRγ cEf (r, X), (5.10)

where nR is the number of moles of mineral dissolved per mole of solute generated.
If the variation of r is significant, (5.10) and (5.8) are a pair of coupled equations
for the concentration c (or, equivalently, the relative concentration X) of the fluid
reaction product and the amount r of the less abundant solid species, whose solution
in turn specifies the rate of deposition of S3 by means of equation (5.9).

5.1.3 Replacement

A third type of reaction is replacement, in which aqueous ions D1 entering the
matrix replace another in the solid mineral S1 to form S2, as the new dissolved
species D2 is advected away. This can be represented as

S1 + D1 ←→ S2 + D2 (5.11)

an example being the dolomite replacement reaction,

2CaCO3 + Mg2+ ←→ CaMg(CO3)2 + Ca2+ (5.12a)

or albitization of potassium feldspar,

KAlSi3O8 + Na+ ←→ NaAlSi3O8 + K+. (5.12b)

The phase diagram for this type of reaction is illustrated in Figure 5.3, the abscissa
representing the molar concentration of ion 2 as a fraction of the total molar
concentration c1 + c2. When the concentration c1 of entering fluid is zero, S1 is
stable at all temperatures since there is nothing to react with, so that the equilibrium
curve slopes upward to the right. If, however, seawater containing Mg2+ but little
Ca2+ (in the first example) enters a calcite bed, the reaction proceeds to the right
of (5.12a), magnesium is lost from solution as calcium is added, and the reaction
point moves horizontally to the right in Figure 5.3 until equilibrium is attained at
that particular temperature. Again, as in the case of pure solution, the equilibrium
concentration of solute D1, i.e. cE1, is a function not only of temperature and
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Figure 5.3. Phase diagram for the reaction S1 + D1 ←→ S2 + D2, where c1 and c2
represent the molar concentrations of D1 and D2 in solution.

pressure but also of the concentration of the product D2. As before, the spatial
distribution of reaction progress is monitored by the generation and spatial transport
of the solutes involved in the reaction.

The flow equations for the dissolved species are similar to those already
described, but now the source terms for the rates of change of the molar con-
centrations of solutes D1 and D2 in the interstitial fluid are equal and opposite. If
the respective concentrations of magnesium and calcium ions are designated by c1

and c2,

∂c1

∂t
+ v · ∇c1 − D∇2c1 = −QC,

∂c2

∂t
+ v · ∇c2 − D∇2c2 = QC.

(5.13)

When the reaction proceeds to the right (as it does when magnesium-rich sea-water
enters calcite), the sink of magnesium ions from solution is dependent on the surface
density of mineral S1 undergoing reaction and on the extent of disequilibrium, so
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that again

QC = γ n1cE1f1(r1, X). (5.14)

Since two molecules of CaCO3 per molecule of solute are involved in the reaction
(5.12a), n1 = 2, and r1 represents the number of moles per unit volume of S1 as
a fraction of the total solid moles per unit volume. X is the relative concentration
(5.2) of D1 (<1 if c1 < cE1). The rate of deposition of S2 per unit volume of the
matrix is again given by an equation such as (5.9).

In more complex reactions, similar balance equations can be written for the
concentrations and transports of dissolved species, the main elaboration occurring
in the specification of the equilibrium concentration cE of each, which depends on
the concentration of the others in the reaction. Note that in the balance equation for
any particular species, the left-hand sides represent rates of change of concentration,
so that the addition of an excess of any other species to the system simply affects
the source term through the equilibrium concentration cE.

When water is produced or consumed by the reaction, the rate of fluid generation
produces a flow divergence,

∇ · u = φnWV QC, (5.15)

where u = φv is the transport velocity, nW is the number of moles of water gener-
ated per mole of solute, V is the fluid molar volume. When fluid is continually being
driven through the matrix by either hydraulic or thermal forces, the incremental
water addition may be slight, and in such cases, the modification to the flow velocity
is insignificant, but there are important situations to be discussed later, involving
dehydration reactions in only slightly permeable rocks, in which this represents the
major water source.

In these expressions for the solute source terms QC, the reaction rates and the
forms of the functions f for particular reactions are often not known to any degree
of accuracy, but fortunately, even in this state of ignorance, useful results can be
obtained, as demonstrated later in this chapter. Some limiting cases, however, do
provide valuable simplification. When r is small, that is, when the reacting or
dissolving mineral constitutes only a small fraction of the whole matrix, f can be
expressed as the first (linear) term in a Taylor series expansion about r = 0 (for
which f = 0), so that

f (r, X) ≈ rg(X), when r � 1. (5.16)

Note that g = 0 when X = 1, the solute being already saturated. Near equilibrium,
again, when X is slightly smaller than one,

Qc ≈ γ cEr(1 − X). (5.17)
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In precipitation or deposition, however, f (r, X) does not generally vanish when the
molar fraction r of the less abundant mineral is depleted, so that in this case

f (r, X) ≈ f (0, X) = f (X), say. (5.18)

When r is small and if the solution is near equilibrium,

QC ≈ −γ cE(1 − X). (5.19)

Finally, when r is large (nearly unity), the reacting solid constitutes almost the
whole matrix, and the dependence of f (r, X) on r can probably be neglected.

5.2 An outline of flow-controlled reaction scenarios

When solutes permeate through and react with a rock matrix, there are several
characteristic physical scenarios that influence the spatial distributions of reaction,
dissolution or deposition. The chemical reactions themselves may be the same
under different physical scenarios, but the rates of mineral deposition and their
spatial characteristics may be very different from one scenario to another. One
of the main themes of this book involves the ways in which flow influences the
rates of overall reaction, limiting them differently in different flow locations and at
different evolution times in the history of a chemically active hydrological region.
In nature, the growth of a sedimentary deposit and its chemical alteration may
proceed simultaneously, or they may occur sequentially when, for example, the
hydrothermal structure of an already existing region is modified in one way or
another. For pedagogical rather than geological reasons, let us suppose that at some
initial instant, a uniform stream of fluid containing reactive solutes enter the matrix
across one of the boundary surfaces (or the water table) and continues to flow
uniformly as the spatial pattern of geochemical alteration develops.

In this context, it is important to keep in mind the distinction between the
(Eulerian) time derivatives at a fixed point and the (Lagrangian) time derivatives
following the fluid motion, as specified in Section 2.3 (cf. equation (2.11)). The
fact that a distribution of interstitial solute concentration remains steady in time
(∂/∂t = 0), does not imply that there are no fluid–matrix reactions occurring.
When the solute concentration varies spatially in a steady hydrological system, the
solute load of individual fluid elements changes as they move through the fabric
(d/dt = u · ∇), indicating that fluid-matrix reactions are occurring. Consequently,
the spatial pattern of interstitial solute concentration may not be changing as the
chemical composition of the matrix alters. In this section, a brief survey is given of
the several scenarios as an introduction to the more detailed discussion following.



5.2 An outline of flow-controlled reaction scenarios 203

5.2.1 The equilibration or reaction length

Consider an initially pristine water-saturated, permeable region of silica sand or
carbonate sediment, say, and suppose that at some initial time, a uniform stream of
chemically distinct water enters the region and as it percolates through, it begins
to dissolve, or react with the solid matrix. The incoming fluid infiltrates into the
region at the mean interstitial fluid velocity v, characteristically a few decimeters
or meters per year, and gradually tends toward a local equilibrium with the solid
phase as Palciauskas and Domenico (1976) have pointed out in detail. If the kinetic
rate constant defined in the previous section is γ , the interstitial fluid which is
dissolving or reacting with the matrix, approaches equilibrium with it within a
contact time of γ −1, during which time the fluid elements have moved a distance

lE = v/γ. (5.20)

This is called the equilibration length or the reaction length. Measurements of the
overall rate constant γ , reported by Lerman (1979) and others, scatter widely over
several decades about 1 yr−1, so that field values of equilibration lengths may be
of the order of meters or a few tens of meters. Near the boundary, the incoming
fluid is far from saturation, the relative saturation is small (X � 1 in equation
(5.3)) and the rate of dissolution of the matrix or generation of reactant is greatest,
but it decreases with distance from the interface as the interstitial fluid approaches
saturation.

For definiteness, let us consider the arch-typical calcite–dolomite replacement
reaction that occurs when sea-water, rich in magnesium, seeps through a calcite
or limestone bed. The pattern of decreasing magnesium ion Mg2+ in solution
is set up within the time that it takes for the individual fluid elements to move
through the matrix a distance of two or three times the equilibration length, that
is, over a time span of a few to a few tens of years. Then the distribution of
concentration of the Ca2+ in solution produced in the reaction also stabilizes, being
essentially zero at the entry point, increasing with increasing path length, and
ultimately reaching equilibrium with the matrix after a travel distance of the order
of the equilibration length. The solute distribution is then steady in time, though the
reaction continues. Calcium ions derived from the reaction are carried downstream,
and are continually augmented as the following fluid elements continue to interact
and approach saturation. Once the fluid has moved beyond the equilibration length,
it is close to equilibrium with the matrix and no further reaction or dissolution
occurs.

Meanwhile, the initial solid reactant – the calcite CaCO3 in the dolomite reaction
(5.12a) – gradually becomes depleted and is replaced by dolomite, most rapidly near
the interface where the incoming fluid is least saturated with respect to Ca2+. This
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continues until most of the solid reactant accessible to the incoming, magnesium-
rich fluid has already undergone reaction. At this stage, which occurs first near
the entry interface or along permeable fractures that intersect it, the solid medium
is primarily dolomite and unable to support further reaction, so that the incoming
fluid begins to move unchanged past the interface and the reaction zone or front
begins to move downstream.

5.2.2 The reaction front scenario

An order-of-magnitude estimate of the time needed to develop a separate front is
given by considering the amount of water it takes to flush the products of reaction
from the slice of the matrix adjacent to the boundary with thickness lE = v/γ and
unit cross-sectional area. If 2s0 is the number of moles of calcite per unit volume
initially in the solid medium, then the number per unit area in the slice is

2s0lE ≈ 2s0v/γ.

In accordance with the chemical balance (5.12a), half of the calcium has to be
removed from the reaction site in the form of aqueous Ca2+ with concentration
(number of moles of Ca2+ per unit mass of water) c0. This requires a volume V
of water per unit cross-sectional area such that c0V = s0lE, so that V = (s0/c0)lE,
which is very much greater than the equilibration length. Since the transport velocity
is φv where φ is the porosity, the requisite volume V of water per unit cross-sectional
area is supplied in a time T such that V = φvT . Consequently, the time needed for
a front to form is

T ∼ V

φv
= s0

c0

lE

φv
∼ s0

φγ c0
(5.21)

since lE = v/γ as in (5.20). This is independent of the mean interstitial fluid
velocity since the equilibration length is proportional to v. Now s0 is the number
of moles of the solid reactant, calcite, per unit volume, and c0 is the number of
moles of calcite in aqueous solution, smaller by a factor of order 10−5–10−6. Thus
s0/c0 ∼ 105–106, the porosity φ ∼ 0.2–0.3 and the reaction rate γ ∼ 1 yr−1 with
much scatter. The time for the formation of a reaction front is then estimated from
(5.21) to be about 105–106 yr, a huge multiple of the time it takes for the fluid
elements to travel a distance equal to the equilibrium length. The reason for this is
that the number of moles per unit volume of solid reactant initially in the matrix
is so large compared with the number of moles per unit volume of even saturated
aqueous solutions – were this not so, it would have leached out eons ago!

If the carbonate bed is extensively fractured, the incoming sea-water moves
relatively rapidly along the fractures, as described in Section 3.6, reacting with the
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CaCO2 both along the fracture walls and also internally as it seeps into the interior
of the matrix blocks. In hydrodynamic terms, the matrix blocks with higher overall
porosity but lower permeability are the solute store-houses, the fractures with low
fracture porosity and high permeability are the flow express-ways. Magnesium ions
in solution move relatively slowly through each block where they are gradually
exchanged with calcium ions at the kinetic reaction rate γ and are ultimately lost
from the block by flushing back into the fracture network at the exchange rate E.
Solute in the fractures moves, on average, much more rapidly and so is capable
of traveling farther within the kinetic reaction time. On the other hand, since the
overall volume fraction of fractures is small, with a given exchange rate, the mean
residence time of fluid elements in fractures is much less than it is in the matrix
blocks.

This description suggests that, in a fracture–matrix medium at a given distance
into the reaction zone, the concentration of magnesium ions in the interstitial fluid in
the blocks will be less than that in the fractures since the fluid elements in the blocks
have had a longer time for the replacement reaction to proceed. We would anticipate
on dimensional grounds that the thickness of the reaction zone, analogous to the
equilibration length above, is proportional to the mean interstitial fluid velocity in
the fractures (where the transport occurs) and inversely proportional to the reaction
and exchange rates. This expectation is confirmed in Section 5.3 later.

The dissolution or reaction front that forms as described above, advances in the
direction of the flow streamlines, but moves much more slowly than the interstitial
fluid. The actual speed can be found from a simple mass balance (Figure 5.4) of
the material entering the frontal region in solution where it undergoes reaction
to form a solid product that remains as the moving front advances. The simplest
case is exemplified by the dolomite reaction described chemically by (5.12a),
namely,

2CaCO3 + Mg2+ ←→ CaMg(CO3)2 + Ca2+ (5.12a)

In physical space, magnesium ions in saline solution are in equilibrium with
dolomite as they move towards the reaction front between the dolomite and the
calcite region. Here, the reaction above can proceed to the right, releasing calcium
ions that flow away and forming the dolomite, which remains. The number of moles
of magnesium per unit area per unit time that is incorporated as dolomite is Us0,
where s0 is the moles per unit volume of magnesium in the solid mineral and U is
the speed with which the front advances through the matrix. This is provided by the
net influx of magnesium ions φ(c0 − cE)(v − U ) that move through the interstices
with concentration c0 as they catch up with the front and concentration cE (= 0) as
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Figure 5.4. A flux diagram for simple leaching or dissolution of a solute in an
inert permeable matrix. With interstitial fluid moving to the right with speed v,
fluid and mass balances determine the speed of advance, U of the dissolution
front. In a frame of reference moving with this speed U, the flow pattern is steady,
with the flux of solid undergoing dissolution is Us0 to the left (towards the front)
balancing the net flux of solute φ(v − U )(cE − c0) to the right.

they leave it. Equating these two expressions leads to φ(c0 − cE)(v0 − U ) = Us0,

and so U = φv0(c0 − cE)

s0 + φ(c0 − cE)
≈ φv(c0 − cE)

s0
(5.22)

since φc0 � s0 by several orders of magnitude in these applications. Results equiv-
alent to these have been given by by Lichtner (1985, 1991, 1992), Engesgaard and
Kip (1992) and others, though not always correctly.

The ratio of molar concentrations appears again, but is now inverted, and c0/s0 ∼
10−5–10−6 so that the propagation speed of the front is a tiny fraction of the mean
interstitial fluid velocity. For example, if as assumed previously, the mean interstitial
fluid velocity v0 is of the order of a few meters per year and the porosity is 0.2–0.3,
then the speed of advance of the front is of order 10−5 m/yr. It would take a time
interval of about 107 yr for the front to traverse a distance of 100 m.

5.2.3 The gradient reaction scenario

The term “gradient reaction” describes a different scenario. Imagine that in a water-
saturated permeable region the matrix and the interstitial fluid are everywhere in
local equilibrium. The equilibrium concentration of solute is generally a function
of temperature and, to some extent, total pressure, and if the temperature and total
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pressure vary spatially throughout the region, so does the local concentration of
dissolved species. If the interstitial fluid is at rest relative to the medium with local
equilibrium between matrix and solute, no net dissolution, precipitation or other
net reaction will occur. However, if the interstitial fluids begin to move through
the matrix, the fluid elements find themselves in regions of different temperature
and pressure, and for the fluid to move towards a new local equilibrium with the
matrix, reactions must occur between the fluid and the surrounding matrix. For
example, if interstitial fluid in a silica sand bed, initially in equilibrium with its
surroundings, moves to a region of higher temperature, the fluid elements become
unsaturated and silica must dissolve from the pore walls to restore equilibrium. If
it moves to a lower temperature, silica is deposited on the walls. In general, the
concentration of solute in each fluid element must change at a rate proportional to
(i) the interstitial fluid velocity, (ii) the variation of equilibrium concentration with
temperature (for example), and (iii) the spatial temperature gradient along the flow
path. This is called the gradient reaction scenario, identified by Wood and Hewett
(1982).

It has a number of particular characteristics that distinguish it from the pas-
sage of a reaction front in permeable-medium flow. Reaction occurs throughout
the flow region simultaneously, but more rapidly along cracks or fractures that
provide effective flow paths across isotherms. Gradient reactions can be expected
particularly in geothermal regions where the temperature field may provide both
the buoyancy distribution that drives the flow and the spatial temperature gradient
that alters the equilibrium concentration along flow paths. Reactions proceed more
slowly in relatively less permeable inclusions where the interstitial flow is reduced.

An analogy to the development of hidden internal reaction patterns in a perme-
able medium is provided by the very visible surface flow and reaction patterns in
many geothermal areas. For example, the famous limestone terraces of Pamukkale,
Western Turkey, are fed by a number of warm springs (about 35 ◦C) whose waters
cascade through a series of fan-shaped pools and gradually cool as they spill from
each level to the one below. The spring water contains many minerals in solution,
including much calcium bicarbonate, which decomposes into calcium carbonate,
carbon dioxide and water as the solution descends. The calcium carbonate is pre-
cipitated throughout the length of the cascade in the form of travertine (Ekmekci
et al., 1995, Altunel and Hancock, 1996), which has the appearance of gathered fab-
ric. The rim of each spilling pool remains remarkably horizontal as the deposition
proceeds, evidently stabilized by the increased flow and consequently increased
deposition at any low points of the rim.

Just as the surface flow in this scenario continues to produce mineral alteration
as long as the flow continues and the source minerals are not exhausted, so also
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does the interstitial fluid in a permeable-medium, gradient reaction scenario grad-
ually modify the mineral composition, though less visibly. In a closed circulating
flow, the processes of dissolution in some regions and deposition in others can
redistribute minerals spatially along the flow paths as discussed in more detail in
Section 5.5.

5.2.4 Mixing zones

Alterations in mineral composition or precipitation or dissolution can also occur
by the mixing of different interstitial waters, although in the pores of a permeable
medium, mixing at the molecular level required for chemical reaction is a much
slower process than it is in a lake or in the sea. Mixing in rivers or the ocean is
achieved by the almost-universal existence of a sequence of turbulent eddy sizes
that strain the fluid elements on all scales, drawing them out into thinner filaments,
increasing the concentration gradients and facilitating molecular diffusion. There
is no analogue of this in a classical permeable medium, though the fracture–matrix
structure does provide pathways for rapid flow and local mixing in the fractures.
Simple mixing of water types inside a permeable medium appears to be a less
universal phenomenon, occurring predominantly in a few particular flow situations,
such as mixing zones in freshwater–saltwater interfaces, the vertical convergence
of flow as in the aquifer flows described in Section 3.2, or by the focusing of flow
into highly permeable lenses in which vertical gradients of solute concentration
are amplified. When the equilibrium concentrations of a solute are different in
fresh and saline waters, their mixture may produce dissolution or deposition, as
described in Section 5.6.

5.3 Leaching or deposition of a mineral constituent

In the next few sections, these flow and reaction scenarios are described quantita-
tively in greater detail.

5.3.1 Dissolution in a uniform flow

The distribution of reaction (or dissolution or precipitation) in space and time
depends not only on the solute balance equation (5.5), but also on the pattern of
flow. The simplest case is presented by infiltrating water entering a permeable
limestone bed across one of its bounding surfaces and moving uniformly through
it, as illustrated schematically in Figure 5.5. As indicated in the previous section,
the characteristic length scale of the reaction pattern is the equilibration length
and if this is larger than the dispersivity of the medium, the advective solute
transport by the mean flow generally dominates the random dispersion in the pores.
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Figure 5.5. Initial distributions of solute concentration and dissolution rate when
infiltrating fluid enters a permeable matrix with a soluble or reactive constituent.
The pore fluid concentration increases and the dissolution rate decreases, on the
scale of the equilibration or reaction length.

Equation (5.5) reduces to

dX

dt
≡ ∂X

∂t
+ v · ∇X = γf (X) (5.23)

It is instructive to compare the Lagrangian and Eulerian descriptions of this
simple situation. In a Lagrangian description, the mean distance that a fluid element
has moved into the bed in time t is

x̄ =
∫ t

0
vdt = vt

from (2.68). The rate of change following the motion of the relative concentration
of such a fluid element is given from (5.23) as

dX

dt
= γf (X), (5.24)

where rate of reaction γ and the form of the function f (0 < f (X) < 1) are determined
by the kinetics. In general, this equation cannot be solved explicitly in the form
X = X(t), but with a given f (X), it can be integrated numerically. An implicit
solution t = t (X) with an initial concentration of zero is

t = γ −1

X∫
0

[f (X)]−1dX.

Simpler and more informative explicit solutions can be found when the function
f is linear in X. Since f = 0 when X = 1 (the solution being saturated), and
f = 1 at X = 0 (the dissolution rate in very dilute solutions being simply γ ),
we takef (X) = 1 − X. The solution of (5.24) with the initial condition that when
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t = t0, X = 0 is then

X = 1 − exp {−γ (t − t0)} . (5.25)

Note that, except for the prescription that the fluid entered the matrix at time zero,
this solution is independent of the flow field, i.e. of where the fluid element is at
time t. The solute concentration depends only upon the time that the fluid has been
in contact with the dissolving mineral, no matter where it has gone in this time
interval.

If, in particular, the flow is steady, uniform, and normal to the boundary, the
expected distance the fluid element has traveled x = vt and the spatial distribution
of interstitial fluid concentration is therefore

c/cE = X = 1 − exp(−γ x/v) = 1 − exp(−x/lE). (5.26)

where the equilibration length lE = v/γ . This solution can also be found (more
simply) from the steady, one-dimensional Eulerian form of (5.23),

v
∂X

∂x
= γ (1 − X), (5.27)

as can be verified by substitution.
As anticipated in the previous section, in a uniform flow, the equilibration length

is the characteristic distance from the incoming flow boundary over which the
interstitial fluid is substantially under-saturated. It is the mean distance from the
boundary that the fluid elements move in the reaction or dissolution time γ −1.
Because of the very great ranges in possible values of both the mean interstitial
fluid velocity (of order 1 m/yr in un-fractured limestone to 100 m/yr in a sandy
aquifer) and kinetic reaction rates, the equilibration length can assume almost any
value in different formations; direct field observations of distributions of mineral
alteration may provide the best measurement opportunities.

The solution (5.26) shows that in steady uniform flow, the rate of dissolution
(mass per unit volume of the medium per unit time) at a point distant x from the
entry surface, is constant in time and is distributed spatially as

φv
∂c

∂x
= φγ cE exp(−γ x/v) = φγ cE exp(−x/lE), (5.28)

where φ is the porosity. This is illustrated in Figure 5.5 also. When the distance
from the incoming flow boundary is very small, x � lE, the rate of dissolution is at
its maximum, approximately φγ cE, and is virtually independent of the flow speed.
The dissolution process is here kinetically controlled. The dissolution rate (5.28)
declines with increasing distance from the boundary as the solute concentration
in the interstitial fluid increases, so that when x = lE = v/γ , the dissolution rate
is only about 0.37 of that at the boundary and the solute concentration has risen
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to about 0.63 of its saturation value cE. Since in a given mineral with a given
kinetic reaction rate γ , the dissolution length scale or the equilibration length
lE ∝ v, and the rate of dissolution at an interior point depends strongly on the mean
interstitial fluid velocity v, the process has become largely flow controlled. If the
flow regime continues over distances large compared with lE, the interstitial fluid
concentration in the interior approaches its equilibrium or saturated value, c → cE,
and the rate of dissolution is choked off, becoming exponentially small. The total
rate of dissolution is the integral of (5.28) from the entry point to the discharge.
When the flow path length through the dissolving mineral is much longer than the
equilibration length,

total rate of dissolution = φγ cE

∫ ∞

0
exp(−x/lE)dx,

= φγ cElE = φvcE = ucE, (5.29)

where u is the transport velocity. This result is independent of the kinetic reaction
rate γ , but is proportional to the flow velocity; it provides an overall check on the
calculation. Water enters the region solute-free and leaves it saturated, so that the
solute transport out is ucE, as given by (5.29).

5.3.2 Leaching in aquifer flow with infiltration across the water table

The particular spatial distribution of dissolution (5.28) depends in detail on the
assumption that f is a linear function of relative concentration X, but it depends
far more on the uniformity of the pattern of flow. A more interesting kind of
flow is exemplified by the two- and three-dimensional aquifer flows discussed in
Section 3.2. Rainwater, infiltrating more or less uniformly across the upper surface
z = 0, seeps vertically downward and at the same time spreads horizontally over
distances proportional to the aquifer length l that is usually much greater than the
effective flow depth d, and the patterns of dissolution or leaching are quite different
from those given above. An important characteristic of these flows, established in
Section 3.2, is that in an extensive aquifer with l 
 d, the distribution in dimension-
less depth of the water “age,” the time interval since the infiltrating fluid entered
the region, is proportional to the recharge time but is independent of the plan form,
or geographical shape of the flow region.

τA = −TRC ln(1 + z/d), (5.30)

where the recharge time TRC = φd/W as in (3.38), the basement is at z = −d and
the upper surface at zero. On average, the infiltration is equal to the discharge, so
that the inverse of the recharge time can be interpreted as the flushing rate γF. The
equilibration length lE is the distance fluid elements have moved downward into
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the medium in the reaction time τA = γ −1. By inverting of the last equation, we
then have

lE

d
= 1 − exp{−γF/γ }. (5.31)

The general nature of the distributions of interstitial solute concentrations can
be inferred without further calculation. In a relatively rapid reaction, γ 
 γF the
equilibration length is small compared to the depth to the basement, so that below
the infiltration surface the concentration of dissolving solute increases rapidly
and reaches equilibrium at a relatively shallow depth. With a slower reaction in
which the equilibration length may be of the same order as, or larger than, the
depth, one would expect that the unsaturated region would extend more deeply,
but a new consideration emerges. As is evident from (3.26) and (3.27) above,
the mean interstitial velocity downward decreases with depth – the age of the
infiltrating water becomes logarithmically large near the basement, and even though
the reaction is slower, there is more time for equilibrium to be attained. One would
then expect that under these conditions, most of the interstitial fluid in the upper
part of the aquifer would be unsaturated with respect to the matrix where it is
moving downward relatively quickly, while most of the more highly saturated fluid
would be found in a relatively thin layer close to the aquifer basement.

Some simple calculations confirm these expectations. The vertical distribution
of interstitial fluid concentration is found by eliminating (t − t0) from (5.25) and
(5.30); after a little calculation, one finds that

X(z) = 1 − exp

{
γ

γF
ln

( z

d

)}
, (5.32)

for −d < z < 0. This solution does satisfy the required boundary conditions since,
at the upper surface z = d, the logarithmic factor is zero, exp(0) = 1 and the
relative saturation of the infiltrating fluid is zero, while near the basement as z →
0, the logarithmic factor is large but negative and the exponential term vanishes.
The interstitial liquid at the basement has been in contact with the medium for a
long time and is virtually saturated so that, whatever the value of the ratio R =
γ /γF of reaction rate to flushing rate, the relative concentration X → 1 there. An
alternative form of the vertical distribution X can be given with use of the formula
from elementary calculus, ab = exp(b · ln a):

X(z) = 1 − (z/d)R. (5.32a)

This form of the solution satisfies the boundary conditions somewhat more obvi-
ously. The vertical distributions of rates of mineral alteration or dissolution under
steady-state conditions can be found from these expressions, and they are illus-
trated in Figure 5.6 as functions of height above the basement for various values
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Figure 5.6. Vertical distributions of interstitial fluid concentration for flow reacting
with the matrix in an aquifer with thickness d, porosity φ, mean infiltration rate W.
The distributions depend on the ratio of the kinetic reaction rate γ to the aquifer
flushing rate γF = W/φd. When the reaction rate is rapid, and the infiltration
rate is small, γ /γF is large and the fluid reaches equilibrium with the matrix at a
relatively shallow depth, and vice versa.

of R. They confirm the distributions of interstitial solute concentrations anticipated
above.

When the dimensionless reaction rate f(X) is linear in the relative concentration
X, the distributions of dissolution rate are in essence the mirror images of the
distributions of solute concentration. In a steady state with c = c(z), the distribution
of dissolution rate per unit volume of matrix is given by (5.3) as

QD = φγ cEf (r, X) = φvz

∂c

∂z
. (5.33)

In an aquifer, the distribution of vertical transport velocity is given in Section 3.2
as

φvz = −W (z/d),

while from differentiation of (5.32a),

∂c

∂z
= −cEγ

dγF

( z

d

)(γ /γF)−1
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so that the rate of mineral alteration or dissolution per unit matrix volume is

QD = γφcE(z/d)γ /γF . (5.34)

This can be compared with the family of solutions representing concentra-
tion distributions (5.32a). When γ /γF 
 1, lE /d � 1 (rapid reaction kinetics,
deep aquifer basement, slow flushing), most of the mineral alteration occurs in
a relatively shallow, kinetically controlled layer as the downward-moving fluid
interacts with the matrix and approaches a new equilibrium as shown by the top
right curve of Figure 5.6. The rock alteration rate is small and the interstitial
fluid is approximately uniform in a relatively thick layer above the basement. On
the other hand, when γ /γF � 1 (slow reaction rates and rapid flushing), inter-
stitial fluid is carried downward and the reactions have little time to move to
completion until the fluid approaches the basement and its vertical descent slows.
In this limit, the zone of mineral alteration or dissolution is limited to a rela-
tively shallow region just above the basement, as shown in the lowest curve of
Figure 5.6. The boundary between the two characteristic patterns occurs when
γ /γF = 1, along which, according to (5.32a), the relative concentration X = c/cE

increases linearly from zero at the water table at z = 0 to 1 at the basement,
z = – d. The rate of dissolution decreases linearly with depth in the complementary
way.

Numerical values are of some interest. Take γ /γF = 1 as the boundary between
the two reaction patterns; of the other factors, assume as representative values
an infiltration rate W ∼ 1 m/yr, and φ ∼ 0.2, give or take a factor of 2 in
each. The thicknesses of aquifer formations are quite variable. If it is taken to
be 500 m, we find that kinetic reaction rates that are faster than 10−2 yr−1 have
lE/d < 1 and a relatively thin, under-saturated, kinetically controlled surface layer,
beneath which the interstitial fluid is close to equilibrium with the dissolving
mineral. With kinetic reaction rates slower than this, lE/d ∼ 1 and the corre-
sponding surface layer is deeper. For a 100 m depth, the boundary occurs at
5 × 10−2 yr−1. Values of kinetic reaction rates measured in the laboratory and
cited in Section 2.8 (Lerman, 1979, Compton and Unwin, 1990) are much larger
than these, being of order (2 − 20) yr−1. However, the laboratory and field sit-
uations are probably not comparable. In the laboratory studies, the dissolution
surfaces are cleaned carefully to ensure repeatability, while in the field under nat-
ural conditions, the surface characteristics are unknown, but almost sure to be
unclean with consequently slower kinetic reaction rates. Also, we must remind
ourselves that natural aquifers are structurally variable (c.f. Section 3.3), so that
these patterns must be interpreted as averages about which individual profiles
scatter.
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5.3.3 Dissolution in a fracture–matrix medium

As described in Section 3.5, freshwater entering a fracture–matrix medium moves
relatively rapidly through the network of pathways in fracture planes, dissolving
solute directly from the surfaces of the matrix blocks on either side. Water in the
matrix blocks are also acquiring solute, presumably at the same rate, by dissolution
inside the permeable blocks, but it is moving much more slowly, so that a given
distance from the interface, the fluid in the matrix blocks has become more con-
centrated than that in the adjacent fracture network. At the same time, under the
influence of the overall pressure gradient, less concentrated solution is entering the
matrix blocks as more concentrated solution leaves them to rejoin the fracture flow.

The solute balances involved are essentially the same as those of Section 3.6,
with additional source terms expressing the dissolution, which we assume to be
linear in the degree of under-saturation, (1 − X). Inside any individual matrix block,
solute dispersion is small compared with advection, and by extension of (3.87), the
solute balance per unit volume of fabric is

φM
∂cM

∂t
+ uM · ∇cM = φMγ (cE − cM), (5.35)

where cE is the equilibrium or saturation concentration of the fluid in the interstices
of the block and γ is still the kinetic reaction rate. As in Section 3.6, the volume
integral of (5.35) over the block can be written as

φM

∫
(∂cM/∂t)dV +

∫
cMu · dS = φMγ

∫
(cE − cM)dV,

with use of the incompressibility condition (2.8) and the divergence theorem. The
first two terms can be represented as in equation (3.108) and, in the same spirit,
the last term expressing the rate of addition of solute to the fluid in the block by
dissolution per unit volume of the block can be approximated as φMγ (cE − cM). If
we now average over all the blocks in our resolution volume, the solute balance in
the matrix blocks reduces to (3.108) with an additional dissolution term.

φM
∂cM

∂t
= −φME(cM − cF) + φMγ (cE − cM), (5.36)

where E = vM/l is the exchange rate, the inverse of the mean time for fluid
elements to move through blocks of typical size l, and γ is the kinetic reaction rate.
In terms of the relative saturation X = c/cE, this last equation is

∂XM

∂t
= −E(XM − XF) + γ (1 − XM).

By the time the entering fluid has moved through a distance of the order of the
equilibration length (whose form is still unknown), the mean solute concentration
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in the fabric has become steady in time and the first term vanishes. The balance
between production of solute by dissolution in any block is, in the steady state,
balanced by the advective flushing expressed in the last two terms, so that the sum
of the terms on the right vanish. A rearrangement of them gives

XM − XF = γ

E + γ
(1 − XF). (5.37)

Note that the relative saturation in the matrix blocks, XM, is greater than that in the
fractures, XF, although the difference diminishes with increasing distance into the
medium.

In the solute exchange between fractures and matrix blocks, the rate of increase
of solute in the fractures per unit volume of the fabric is equal to the rate of decrease
in the matrix blocks, given by the first term on the right of (5.36), so that

φF
∂cF

∂t
+ φFvF · ∇cF − φFD∇2cF = φME(cM − cF) + φFγ (cE − cF).

In terms of the relative saturation, this is

∂XF

∂t
+ vF · ∇XF − D∇2XF = φM

φF
E(XM − XF) + γ (1 − XF),

= γ

{
φM

φF

E

E + γ
+ 1

}
(1 − XF), (5.38)

with use of (5.37).
As we saw earlier in this section, the flow controls the spatial distributions

of reaction and dissolution rate. With unidirectional mean flow into the domain,
the distributions of solute and dissolution rate become independent of time and
equation (5.38) reduces to

∂XF

∂x
− αD

∂2XF

∂x2
= γ

vF

{
φM

φF

E

E + γ
+ 1

}
(1 − XF) = C

γ

vF
(1 − XF), say,

(5.39)
where αD is the dispersivity and C is the factor in the large curly brackets whose sig-
nificance will be explored shortly. When the fracture relative solute concentration
XF varies only on a scale much larger than αD as would be expected with diffuse
dissolution regions, the net effect of the dispersivity is small and the solution for
the distribution of solvent concentration in the fractures becomes

cF/cE = XF = 1 − exp(−Cγx/vF), (5.40)

so that in this context, the equilibration distance is

lE = vF/Cγ, (5.41)
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and the rate of dissolution per unit volume, concentrated in the fracture network,
is

vF
∂cF

∂x
= γ cEC exp(−Cγx/vF).

The form of these solutions is the same as the corresponding solutions for a
“sandbank” medium (see equation (5.26)) except for the large factor C, in the curly
brackets of (5.39). One would expect the fluid exchange rate in typical blocks,
E, may be somewhat larger than the kinetic reaction rate γ for minerals like
calcite, but the dominant factor contained in C is the porosity ratio φM/φF ∼ 103.
The equilibration length scale is decreased in a fracture–matrix medium about
a thousand fold when compared with a “sandbank” medium, and the effective
reaction rate is increased by the same factor. The physical reason for this effect
is that most of the fluid is in the interstices of the matrix blocks, it moves slowly
and has time to move toward equilibrium with the host rock before it has traveled
far. Direct dissolution from the fracture network surfaces, represented by the last
term in C, is expected to be negligible by comparison, although micro-cracks in the
matrix blocks may convey fresher fluid some distance into the fracture walls. The
mean concentration in the matrix blocks is, from (5.37), always somewhat larger
than in the adjacent fracture pathways, since the solute concentration continues to
increase because of dissolution during its sojourn there. Water in the fractures is a
little fresher, but occupies a tiny fraction of the total void space, and moves into
the fabric relatively rapidly, constantly acquiring and transporting solute from the
surrounding blocks.

For aquifer flow with infiltration from above, the equilibration length is again
smaller in a fracture–matrix medium by a factor of order φM/φF than it is in a
“sandbank” medium with the same kinetic reaction rate, so that the ratio lE/d

governing the vertical distribution of dissolution is almost certainly much less than
one in most aquifers. This suggests that, as a general rule, the interstitial fluid in
a fractured calcite aquifer is generally close to saturation except for a thin surface
layer, where most of the dissolution takes place.

5.3.4 The depletion time

If the dissolving mineral is contained in an inert matrix, the number s of moles per
unit volume of the fabric decreases in the same manner as described by equation
(5.10):

∂s

∂t
= −φnSγ cEf (s, X), (5.42)
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where nS is the number of moles of mineral dissolved per mole of solute produced.
The distribution function f (s, X) is of order unity when X = c/cE � 1 (when
the solution is not close to saturation) and s is not near zero (when the dissolving
material would be depleted). If TD represents the depletion time, the time derivative
is of order s0/TD, so that from equation (5.42),

TD ∼ (φnSγ )−1 s0

cE
. (5.43)

The initial solid molar fraction is generally larger than the molar interstitial fluid
equilibrium concentration, cE, by many powers of 10, so that these distributions
persist for times enormously longer than the reaction time γ −1. When, finally, the
original mineral does approach depletion in the region where the fluid is entering,
a reaction front develops, as described in the next section.

Parallel multiple reactions may involve more than one equilibration length.
Those that are more rapid produce concentration distributions that change rapidly
near the surface, whereas slower reactions have an influence distributed over greater
depths. Examples of such profiles are given by Toth and Lerman (1977) and Lerman
(1979).

5.4 The isothermal reaction front scenario

The reaction front scenario provides a physical setting that allows the chemical
kinetics to transform large volumes of one mineral to another if it has a large
enough source of fluid reactant, a mechanism to drive fluid through the matrix,
and if it persists for a long enough time. Characteristically, calcite was deposited
in shallow seas as shells over tens or hundreds of million years. Some magnesium
may have been incorporated into the deposit at the time of its formation, but not
nearly enough to account for the proportion of dolomite found in the deposits
extant today. Continuing circulation with the “right” chemistry did not occur in all
calcite deposits. Nevertheless, it is conceivable that, with the accumulation of the
deposit, the geothermal temperature field inside may have been distorted in such a
way as to generate internal convection patterns of flow. In the case of the Latemar
Massif in Northern Italy, there is evidence discussed by Wilson et al. (1990), to
suggest that this has happened, that the onset and continuation of local volcanic
activity drove internal convective motions, circulating sea-water through advancing
reaction fronts over a substantial length of time.

The nature of the mineral alteration and of the reaction products are conse-
quences of the reaction kinetics, but certain overall properties such as the speed
and direction of front propagation, the spatial patterns of mineral alteration in lay-
ered and fracture–matrix media and the fluid–rock ratios are independent of the
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reaction kinetics and can be found in a variety of chemical contexts. Three physical
balances are involved – water mass conservation, the dissolved species balance,
and an expression of the rate of deposition or dissolution of solid reactant.

In some reactions, water is produced or consumed, so that the incompressibility
condition is (5.15), which we write in terms of the mean interstitial velocity v:

∇ · v = nWV QC, (5.44)

where QC is the rate of generation of solute per unit volume of fluid in the reaction,
nW is the number of moles of water generated per mole of solute generated and
V is the water molar volume. The concentration of solute per unit volume of fluid
produced in the reaction (in the case of the dolomite reaction (5.12a), Ca2+ in
solution) is specified by (5.8), namely,

∂c

∂t
+ ∇ · (vc) − D∇2c = QC, (5.45)

where the dispersion term is retained in anticipation that the solute concentration
may vary abruptly inside the reaction zone. If one mole of incoming solute is
removed from solution per mole of solute produced, an identical equation with
the sign of QC reversed applies to that solute. Finally, the rate of change of
molar concentration (per unit volume of the matrix) of the immobile solid material
consumed by the reaction is specified by (5.9):

∂s

∂t
= −φnSQC, (5.46)

where nS is the moles of solid consumed per mole of solute produced in the reaction
and φ is the porosity, the fraction of the matrix volume occupied by reactant. The
porosity may change during the course of the reaction, a process considered later.

5.4.1 The front propagation speed and the fluid–rock ratio

Assume that the mean interstitial flow is locally unidirectional, with the local
mean streamline taken to define the x direction. In the present context, the rate of
generation of liquid water is extremely small compared with the hydrological flux
divergences, so that v can be taken constant. The concentration pattern of the ions
entering the region and undergoing reaction is specified by

∂c

∂t
+ v

∂c

∂x
− D

∂2c

∂x2
= QC (5.47)

and (5.46) remains the same. Since QC is a function of c and s at given pressure
and temperature, these equations permit solutions of the form c = c(ξ ). S = s(ξ ),
where ξ = x – Ut, representing distributions that move through the matrix in the
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direction of the streamlines, with a speed U that is to be determined. Since, from the
chain rule of differentiation, ∂/∂t = ∂/∂ξ (∂ξ/∂t) = −U∂/∂ξ and ∂/∂x = ∂/∂ξ ,
equations (5.46) and (5.47) become

−Uc′ + vc′ − Dc′′ = QC,

Us ′ = φnSQC, (5.48)

the primes denoting differentiation with respect to ξ . Since the source QC of solute
involved in the reaction (Mg2+ in the dolomite reaction) is a function of the local
molar concentrations, c of dissolved solute and s of solid reactant, these are coupled
differential equations that specify the spatial distributions of c, and s, as well as the
speed U of propagation of the pattern through the matrix.

The distributions of solute concentration and mineral formation through the
reaction zone certainly involve the chemical kinetics, represented by QC in the
equations (5.48), but integral or overall properties such as the speed of propagation
of the reaction front and the fluid-rock ratio (the volume of solute needed to produce
unit volume of altered rock) depend only on the total changes that occur across
the reaction front and are independent of the kinetics. To show this, the balance
equations (5.48) are integrated along a streamline through the reaction front to
obtain statements about the total changes or “jumps” in fluid volume flux, solute
concentration and molar abundance of solid minerals involved. The suffix 0 is used
to denote quantities upstream of the reaction zone and E is used to denote those
downstream where the fluid has returned to its new equilibrium with the altered
matrix.

As illustrated in the flux diagram in Figure 5.7, far upstream of the reaction
zone, the concentration c of dissolved solute is c0, the unaltered concentration of
the source of fluid (i.e. the magnesium ions in the dolomite reaction). Moreover,
upstream of the reaction zone, the mineral involved in the reaction (calcite) has
already been replaced (by dolomite), so that c → c0, s → 0, and v → v0 as x
(or ξ ) → −∞. Ahead, or downstream of the zone, the fluid has reached its new
equilibrium with the unconsumed mineral, so that c → cE, say, while s → s0, the
initial molar concentration (of calcite), and since the rate of chemical generation of
water is small compared with the through-flow, v = v0 throughout. In the reaction
front, Mg2+ is disappearing from solution and if this goes to completion cE = 0, but
in any event, an integration of the solute balance with these boundary conditions
gives

(v0 − U )(c0 − cE) = [QC], (5.49)

which equates the net flux the of the active ions into the front to the rate at which
they are reacting (to produce dolomite). Note that on either side of the reaction
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Figure 5.7. Mineral and solute balances across a reaction front, in a frame of
reference moving to the right with propagation speed U through the matrix. In this
frame, the flow and fluxes are steady in time. Horizontal arrows indicate physical
fluxes and vertical arrows indicate chemical reactions.

zone, the fluid concentration gradients along the streamlines are zero, so that the
integral of the second derivative, diffusion term vanishes. Within the reaction zone,
reactant may be redistributed in space by dispersion but not generated nor destroyed
by dispersion. Also, from the second of (5.48),

s0 = (φnS/U )[QC], (5.50)

which specifies that the reaction is complete when all of the accessible original
solid solute has been consumed in the reaction.

The kinetic term [QC] can be eliminated between the two equations (5.49),
and with (5.50), this yields a balance among the flux of solute into and out of the
reaction zone and the rate at which the solid reactant is overtaken by it, as illustrated
in Figure 5.7.

(v0 − U )(c0 − cE) − U

φnS
s0 = 0. (5.51)

Finally, this can be rearranged to give for the ratio of the front speed to the mean
interstitial fluid velocity behind the front

U

v0
= c0 − cE

(c0 − cE) + (s0/φnS)
≈ φnS(c0 − cE)

s0
, (5.52)
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since c0, cE � s0 in the denominator of the middle term. The ratio of front propa-
gation speed to the transport velocity u is

U

u
= nS(c0 − cE)

s0
, (5.53)

which is very small.
The fluid–rock ratio r in these reactions is defined as the volume of fluid with

which a unit volume of rock has reacted during the passage of the reaction front.
Relative to the reaction front the interstitial fluid moves with speed (v0 − U ) but
only over the fraction φ of the cross-sectional area, so that the fluid flux per unit
area into the front is φ(v0 − U ). The rate at which rock volume is overtaken by the
front per unit area is simply U, so that the fluid–rock ratio is

r = φ(v0 − U )

U
= u0

U
− φ, (5.54)

where u0 is the Darcy transport velocity. This is numerically very large. Note that
some authors, unmindful of the fact that u0 does not transform to a moving frame
in the same manner as a true velocity vector does (see Section 2.3), give 1 rather
than φ as the last term, but since u0/U 
 1, the numerical error is small. From
(5.54), the fluid–rock ratio can be expressed to sufficient accuracy as

r ≈ s0

nS(cE − c0)
,

=
(

φ[Q]

U

)
1

cE − c0
,

from (5.46). Now φ[Q] dt represents the total production of volatile solute in the
zone in the time interval dt and the volume of reaction is U dt so that φ[Q]/U
represents the moles nV of volatile species released per unit volume of rock during
metamorphosis and the fluid-rock ratio is given alternatively by

r = nV

cE − c0
, (5.55)

which is operationally equivalent to the expression given by Ferry (1987). If the
generation of water in the reaction is regarded as significant, an additional factor
(1 − nWV c0) is included in the numerator, where nW is the number of moles of water
generated in the reaction per unit volume of fluid, V represents the molar volume
of water and c0 and cE are the initial and final equilibrium molar concentration of
the reacting solute far upstream and far downstream of the front. In this context
these are generally numerically very small while nV is of order unity.
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5.4.2 Profiles in the reaction front

Although, as we have seen, many important aspects of the reaction front scenario are
independent of the detailed reaction kinetics, the initial formation and propagation
can be illustrated by a numerical calculation in which the reaction kinetics are
(necessarily) prescribed. Suppose for the purpose of this illustration (i) that no
water is produced by the reaction, nW = 0, so that v = const., and (ii) that the
source of solute per unit volume of fluid is a bilinear function of the relative
concentration of fluid reactant generated in the front X = c/cE and of SN = s/s0,
the number of moles s per unit volume of the reacting solid at any point as a fraction
of the number initially present, s0. Thus,

QC = −γ nScE(1 − X)SN (5.56)

where SN = s/s0. Equations (5.47) and (5.46) then become

∂X

∂t
+ ∂

∂x
(vX) − D

∂2X

∂x2
= γ (1 − X)SN (5.57)

and
∂S

∂t
= − (φnSγ cE/s0) (1 − X)SN. (5.58)

Suppose that the fluid starts moving through the matrix at time t = 0, so that initially
SN = 1 throughout. The incoming fluid has X = 0 at x = 0 for all times t, and far
from the interface the fluid is in equilibrium with the matrix, so that c = cE and
X = 1.

The simultaneous solution of the coupled nonlinear equations (5.57) and (5.58)
specifies the evolution of the distribution s(x, t) = s0 SN (x, t) of the solid reactant
and that of the relative concentration X(x, t) of the interstitial fluid. The equations
can be rewritten in a form suitable for computation by taking as a time scale,
the depletion time (5.43), i.e. TD = (nSφγ )−1(s0/cE), and as a length scale the
equilibration length lE = v/γ . Note, incidentally that the velocity scale for the
front

lE

TD
= vnSφ(cE/s0) = U, (5.59)

in accordance with (5.52) with cE = 0. With τ = t/TD and ξ = x/lE, these equa-
tions reduce to (

U

v

)
∂X

∂τ
+ ∂X

∂ξ
−

(
D

vlE

)
∂2X

∂ξ 2
= (1 − X)SN (5.60)

and
∂SN

∂τ
= −(1 − X)SN. (5.61)
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Figure 5.8. The development of an isothermal reaction front, with successive
distributions of solid reactant is shown on the left and interstitial fluid concentra-
tion, on the right. The distance scale is the equilibration length and the time scale
is the depletion time (5.43). Initially, at time τ = 0, the solid mineral is uniform
in the matrix and the interstitial fluid approaches equilibrium with the mineral over
the equilibration or reaction length, as in Figure 5.5. Profiles are shown for equal
time intervals TD = s0/nSφγ cE; by the time τ = 2, the solid mineral is becoming
seriously depleted near the interface and by τ = 4, the depletion is vertically
complete. The profiles of c/cE and s/s0 have become essentially identical, and
they subsequently move away to the right without further change in shape, as the
reaction front propagates through the fabric.

In this pair of dimensionless equations, the terms without coefficients are numer-
ically of order unity, but the bracketed coefficients are small. From (5.56), it is
evident that the front propagation speed U is very much less than the interstitial
fluid speed v, essentially because the solute concentrations are very much less
than the abundance of the dissolving mineral. Also, in a “sandbank” medium, the
dispersion coefficient is vαD, where in a natural medium αD is the autocorrelation
length scale of the random variations in local permeability of the medium, the “dis-
persivity.” Measurements in sandy aquifers on Cape Cod and in Denmark (Hess
et al., 1992, Jensen et al., 1993) described in Section 3.3 gave values generally
of the order of 0.01–1 m, considerably smaller than the equilibration length lE so
that D/vlE = αD/lE � 1, though it is not known how representative these mea-
surements are. Nevertheless, the second derivative term represents the smoothing
effect of dispersion on the internal profiles and can probably be neglected without
overall loss.

The evolving patterns, calculated from (5.60) and (5.61) are shown in Figure 5.8.
Incoming fluid crosses the interface at x = 0 from the left, and the curves represent
profiles of SN = s/s0 and X = c/cE after equal time intervals TD. Initially, at times
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very short compared with the depletion time, the upper line and the curve marked
0, the entering interstitial fluid concentration quickly approaches its equilibrium
value within a distance of the order of the equilibration length lE as described in
Section 5.3, but the abundance of the dissolving mineral is essentially unchanged.
After a time t ∼ TD, (τ ∼ 1), however, the solid mineral is becoming depleted
near the interface and the interstitial fluid concentration profile is flattening and
beginning to move inward. By the time t/TD ∼ 3 or 4, the solid reactant is essentially
depleted near the interface and both profiles have assumed an elongated S-shape
which then moves through the matrix without further change in shape. The steadily
propagating profiles of s/s0 and c/c0 can, in fact, be found analytically with the
terms in parenthesis neglected. It is found that

c

c0
= s

s0
=

{
1 − exp

[−γ (x − Ut)

v

]}−1

. (5.62)

These profiles are indistinguishable from those of Figure 5.8 when the dimension-
less time τ is greater than about 4.

In these calculations, the particular form of these profiles once they have sepa-
rated from the boundary (but not their propagation) involves the assumption that
the dimensionless reaction rate is of the form (1 − X)SN. Other assumptions will
modify the profile somewhat, but more far reaching variations are produced by
different flow patterns and in fracture–matrix media.

5.4.3 Reaction fronts in fracture–matrix media

One of the basic fluid scenarios involved in the formation of dolomite in the Triassic
Latemar massif in Northern Italy is believed to involve the propagation of reaction
fronts through an extensively fractured medium, a belief that is reinforced by a
comparison between the expected characteristics of reaction fronts of this kind and
the patterns of rock alteration observed and measured in the field.

The analysis combines the balances used earlier in simple reaction fronts with the
flow characteristics of fracture–matrix media. Suppose that magnesium-rich sea-
water enters an extensively fractured limestone bed and develops a reaction front
as described earlier. As again illustrated in Figure 5.7, the sea-water containing c0

moles per unit volume of magnesium ions Mg2+ moves at the interstitial, fracture
network velocity vF and passes through the newly created dolomite behind the
reaction front before catching up with the front itself. As it enters the front region,
the fluid encounters unaltered limestone along the fracture walls, where it loses
Mg2+ and acquires Ca2+ as the limestone is replaced by dolomite in the reaction
(5.12a). Emerging from the front, the fluid is now depleted of magnesium but is
calcium-rich, and so passes through the limestone ahead of the front without further
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reaction. Fluid moves much more slowly into and through the lower porosity, lower
permeability matrix blocks. The more rapid fracture flow exchanges fluid and
solutes with the blocks, which contain most of the fluid. There, it is moving much
more slowly so that the reaction can proceed further toward equilibrium before the
solution is discharged into the next fracture downstream.

There is no net water generated or absorbed in this reaction, so that the mean
velocity through the system is uniform and prescribed by external dynamics. There
are three balances that do need to be considered – the flow of magnesium ions in
the fracture system and in the blocks (and the exchanges between the two) and
the rate of deposition of dolomite. The patterns of calcium ion flow and limestone
depletion are the mirror images of the other three, and do not need to be considered
separately.

The physical fluxes involved in the reaction (5.12a) above are also illustrated in
Figure 5.7. The magnesium ion balance in a matrix block expresses, as in (3.108),
the rate of change of ion concentration (moles per unit volume of the medium) in
the block as the sum of the net exchange of solute with the surrounding fracture
network – influx at concentration cF and efflux at concentration cM – together
with the depletion of magnesium ions inside the block as a result of the reaction
summarized above:

φM
∂cM

∂t
= φM

vM

lB
(cF − cM) − φMQ, (5.63)

where vM/lB = E is the exchange rate, the inverse of the mean time taken for fluid
to traverse a block of mean dimension lB. The source term Q is given by the kinetics
as a function such as (5.60) of the relative concentrations, the density of reaction
sites and proportions of reacting minerals, temperature, etc.

The magnesium ion balance in the connected fracture network, (3.109), also
per unit volume of the medium, includes (a) advection through the network by
the interstitial fluid (b) the net gain of solute from the blocks, which is equal in
magnitude but opposite in sign to the exchange in the previous equation, as well as
(c) ion depletion by reaction in the fractures

φF
∂cF

∂t
+ φFvF

∂cF

∂x
= −φM

vM

lB
(cF − cM) − φFQ. (5.64)

The first term involving φF (∼ 10−4) is very small and often omitted (Barenblatt
et al., 1990). Note particularly that the porosity φM and transport velocity φMvM

of the matrix blocks is involved in the exchange term. The sum of the last two
equations, in the form

∂(φMcM + φFcF)

∂t
= −(φM + φF)Q − φFvF

∂cF

∂x
, (5.65)
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expresses the rate of change of total Mg2+ ions in any unit volume of fabric as the
rate of loss of ions from the fluid in the dolomite reaction and the net efflux rate
from the volume by advection in the fractures. The exchange terms balance out, as
they must.

Finally, the rate of increase of the number of moles of solid dolomite
CaMg(CO3)2 formed per unit volume is equal to the number of moles of mag-
nesium ions per unit volume disappearing from the solution, as given in the last
equation:

∂s

∂t
= (φM + φF)Q. (5.66)

The propagation speed of the front can be found in essentially the same way
as for a classical “sandbank” medium. The fracture storage component in the first
term of (5.64) can be neglected, and with the insertion of (5.66), it becomes

∂

∂t
(φMcM + s) = −φFvF

∂cF

∂x
, (5.67)

which is a conservation statement that the rate of increase at any point of the
number of moles containing magnesium is equal to the negative gradient of the
flux of magnesium ions in the fractures per unit volume. If the distributions are all
functions of ξ = x − Ut , this equation can be integrated as before to give

−U (φMcM + s) + vFφFcF = const.

Downstream of the front (ahead of it), there is no magnesium from the seawater
and no dolomite, so that cM = cF = s = 0, and the constant is zero. Upstream, the
entering seawater has not yet reacted and cM = cF = c0, its initial molar concentra-
tion of Mg2+ ions, while s = s0, the number of moles per unit volume of dolomite
produced in the passage of the front. (This may be somewhat less than the number
of moles of calcite originally present, since some may have been embedded deeply
inside blocks and were inaccessible to the incoming solution.) Thus the propagation
speed of the front is

U

vF
= φFc0

φMc0 + s0
≈ φFc0

s0
, (5.68)

where c0 � s0. This equation is structurally similar to, but different in detail from
the corresponding result (5.52) and (5.53) for a “sandbank” medium. In this case,
no water is produced in the reaction and nW = 0, while the number of moles
of dolomite produced per mole of Mg2+, nS = 1. In both cases, the numerator
specifies the change in solute moles being transported to and from the front; in the
fracture–matrix flow, this occurs almost entirely in the fractures.
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The thickness l∗E of the front, the fracture–matrix equilibration length, can also
be estimated simply. In the overall solute balance (5.65) applied to the region of the
front, the time derivative is of order U/l∗E, so that the first term is of order UφMc0/l

∗
E,

while the flux gradient represented by the last term is of order φFvFc0/l
∗
E, much

larger in view of the smallness of the ratio (5.68). The balance in (5.65) must then
be essentially between the sink of Mg2+ ions, proportional to φMγ c0 and the solute
flux gradient, φFvFc0/l

∗
E. On equating these, we obtain

l∗E = φF

φM

vF

γ
= uF

φMγ
. (5.69)

Implicit in this result is the assumption that the kinetic reaction rate γ is larger
than the exchange rate between blocks and fractures E, so that when fluid enters a
block, the reaction has time to approach completion before rejoining the fracture
flow beyond. If, on the contrary, E > γ , similar arguments applied to (5.64) lead
to

l∗E = uF

φME
.

Compare these with the previous expression (5.26) for the equilibration length in
a “sandbank” medium, namely

lE = v

γ
= u

φγ
,

where u is the Darcy transport speed. In the fracture–matrix medium, the transport
occurs in the fractures and the storage in the matrix blocks, so that it is no surprise
that the fracture–matrix equilibration length scale depends on the transport speed
in the fractures and the porosity of the matrix blocks, as (5.69) shows. Note also
that when nS = 1 (one mole of mineral dissolved per mole of solute produced) the
front thickness scale (5.69) divided by the front speed U = uFc0/s0, from (5.68),
is just the depletion time (5.43), namely,

TE = s0

φMγ c0
, (5.70)

again involving the matrix porosity.

5.4.4 Sorbing contaminant plumes

Reactive groundwater contaminants such as ammonium from wastewater and nitro-
gen or phosphorus from excess fertilization are retarded by their attachment and
interaction with the solid matrix and move more slowly then the interstitial fluid
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velocity. The retardation factor, usually defined (in the inverse form) as the ratio of
the mean interstitial fluid velocity to the speed of advance of a contaminant front,
is therefore larger than one. The retardation effect has been demonstrated in field
measurements by Ceazan, Thurman and Smith (1989) and measured in greater
detail by Böhlke, Smith and Miller (2006) in work described below. The simplest
of the physical-chemical processes involved is sorption, in which dissolved ions
are temporarily bound to the matrix when the solution concentration is large, and
flushed from it when small. Microbially induced transformations that depend upon
the aquifer geochemistry and configuration may have similar consequences. The
“retardation factor” is essentially equivalent to the fluid–rock ratio (5.58) in geo-
morphology, which specifies the volume of fluid with which unit volume of rock
has reacted since the passage of a reaction front, and is generally of order 104 or
so. In groundwater contamination on the other hand, involving much more soluble
phosphate and ammonium ions, the immobile ions in the matrix are derived from
the interstitial solution by sorption, the contaminant mass per unit volume in the
liquid and solid phases are comparable and the retardation factors are usually in
the range 2–10.

The physical-chemical balances involved in this context have the same general
form as (5.44), (5.45) and (5.46), but with simplifications. No water is generated
geochemically, so that nW = 0 and the continuity equation is ∇ · v = 0. The total
mass cL of solute in the liquid per unit volume of the fabric (solid plus pores) is
φcL, so that the solute balance is

φ

{
∂cL

∂t
+ v · ∇cL − D∇2cL

}
= −Q, (5.71)

where the macroscopic dispersion coefficient D = vαD is the product of the mean
interstitial fluid velocity and the dispersivity αD, the characteristic scale of medium
variability (as in Sections 2.10 and 3.3), which in a sandy aquifer is usually of order
a meter or less (Hess et al., 1992). The source term Q is the rate of sorption of ions
from solution to the solid matrix (mass of solute per unit volume of matrix per unit
time).

The absorbed solute balance for the fraction (1 − φ) of the fabric volume, is

(1 − φ)
∂cS

∂t
= Q (5.72)

where cS is the mass per unit volume of absorbed solute in the matrix. The sum of
these does not, of course, involve the exchange rate Q. If the absorbed solute does
not penetrate throughout the individual grains, the coefficient in this last equation
should properly be somewhat smaller than (1 − φ).
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The exchange rate Q from fluid to solid vanishes when cL = cS, is positive when
the interstitial fluid is more concentrated, cL > cS, and is negative when cL < cS,
suggesting that, near equilibrium, Q ≈ γ (cL − cS), where γ is here the reaction
rate for sorbtion. Thus

φ

{
∂cL

∂t
+ v · ∇cL − D∇2cL

}
= −γ (cL − cS) = −(1 − φ)

∂cS

∂t
(5.73)

which are respectively of order

cLv/l cFαDv/l2 γ�c cSv/l.

The salient characteristics of the reacting plume or contaminated region can
be found without detailed calculation from the structure of these balances. In
a sandy medium, the porosity is about 0.4, which is of order unity, and inside
the curly brackets, the first two (advective) terms are of order cLv/l, where l is
the characteristic dimension in the flow direction of the contaminant cloud. The
macroscopic dispersion term in a typical aquifer is of relative order αD/l ∼ 10−3.
Although the characteristic aquifer-scale horizontal flow divergence and spreading
(Section 3.3) extends a contaminant cloud primarily in the flow direction, Fickian
dispersion is usually negligible in this balance and will henceforth be neglected.
Relative to the first terms, the central transfer term is of order

γ l

v

�c

cL
= l

lE

�c

cL
, (5.74)

where lE is the equilibration length (5.20) and �c represents the (as yet unknown)
general magnitude of the difference in concentration (cL − cS) between interstitial
fluid and solid matrix.

Consider the anatomy of these balances. When l/ lE = γ l/v � 1, the contami-
nant cloud is so small compared with the equilibration length and the sorption rate
so slow that contaminant in the interstitial fluid scarcely affects the matrix even if
the concentration difference �c is comparable with cD – the interstitial fluid and
the matrix are chemically uncoupled, as discussed in Section 3.3.

The transfer term alone cannot be an order of magnitude larger than the other
terms if the equation is to balance, so that in all interesting cases,

γ l

v

�c

cL
= 0(1) so that

�c

cL
∼ v

γ l
= lE

l
. (5.75)

The quantity γ l/v also expresses the ratio of the reaction rate γ to the rate
v/l at which interstitial fluid moves through the contaminant patch of dimension
l in the flow direction. If γ 
 v/l, the reaction is fast to respond to changing
conditions. The equilibration length lE = v/γ as in (5.20), and when this is small
compared with the dimension of the contaminant cloud in the direction of flow,
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Figure 5.9. The mechanism of retardation produced by sorption and desorption.
An injected pulse of interstitial fluid is advected at the interstitial fluid velocity to
the dashed profile, labeled 2. However, the solute concentration at this point has
been decreasing and solute has been partly absorbed by the matrix (3) producing
a phase lag so that the profile advances more slowly.

the relation (5.75) asserts that the matrix and the interstitial fluid are close to
equilibrium everywhere, with only small concentration differences (mass per unit
volume) between interstitial fluid solid matrix, �c = |cL − cS| � cD. The cloud
moves more slowly than the interstitial fluid, and at the rear of the patch, the
concentration of the entering interstitial fluid is somewhat less than the value for
local equilibrium with what has already been sorbed into the matrix, cL < cS, as
illustrated in Figure 5.9. Solute is desorbed from the matrix to the fluid and its
concentration increases as it moves forward. At the centre of the patch the two are
in equilibrium and in the leading sections cL > cS so that contaminant is sorbed
from the fluid to the surrounding matrix and the distribution of cS also moves
ahead.

These considerations can be quantified readily. In a contaminant release over a
finite time interval TR, a cloud of length l ≈ vTR is produced; the length increases
as the flow moves toward discharge. When the equilibration length is small (say
10−2) compared with the patch length, the concentration differences are also small,
�c = |cL − cS| � cF, and

φ

{
∂cL

∂t
+ v

∂cL

∂x

}
= (1 − φ)

∂cS

∂t
= (1 − φ)

∂cL

∂t
(1 + O(lE/l)) , (5.76)

where the x-direction is that of the flow and the interstitial velocity v can be
considered to be constant over distances small compared with the aquifer length.
The first and last groups involving first derivative space and time terms constitute
a wave equation in the fluid concentration cL, with the solution

cL = ĉLf (x − UCt), cS = ĉSg(x − UCt), (5.77)

where the contamination profiles f and g are determined not by the equation (5.76)
but by the spatial distribution and the time history of the contaminant release. If it
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occurred at a single site over a limited time duration, then f and g are non-zero for
a limited space-time interval with maximum values that can be taken as one. The
expression (5.77) then represents a cloud with maximum concentration ĉL in the
interstitial liquid and ĉS in the solid matrix, moving in the x-direction with speed
UC. This propagation speed is determined by substitution into (5.76), whence, after
cancellation,

UC

v
= φcL

φcL + (1 − φ)cS
, (5.78)

In words,

wave speed

fluid speed
= mass of dissolved (mobile) solute per unit volume of fabric

total mass of solute per unit volume of fabric
.

The propagation speed of the contaminant cloud is clearly less than the mean
interstitial fluid velocity. The “retardation factor” is defined as the inverse of this:

R = v

UC
= 1 + (1 − φ)cS

φcL
= 1 + Kd, (5.79)

where

Kd = mass of sorbed solute p. u. vol

mass of mobile solute p. u. vol
.

Kd is called the “volumetric distribution coefficient.” These expressions are given
by Freeze and Cherry (1979) and by Böhlke et al. (2006) in slightly different
notation. They can be obtained alternatively by considering the mass balances
across a moving contaminant front.

Note that when the sorption reaction time γ −1 is small compared with the time
l/v for interstitial fluid to pass through the length l of the cloud of contaminant (in
the field, a decade, possibly), the concentrations (mass per unit volume) cL in the
fluid and cS in the solid matrix are almost equal and close to mutual equilibrium:

cS = cL {1 + O(lE/l)}
(where lE/l �1). In this limit, there is very little net interchange of solute between
the fluid and solid. When cL = cS, the retardation factor (5.79) reduces to

R ≈ 1/φ, (5.80)

and UC ≈ φv, the propagation speed of the cloud is approximately equal to the
usual transport velocity within the same fractional error bound.

Ceazan et al. (1989) and Böhlke et al. (2006) describe valuable and informative
sets of measurements on ammonium transport and reaction in the contaminated
groundwater plume created by the injection of treated wastewater into the aquifer
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Figure 5.10. Vertical longitudinal sections through the wastewater plume from the
Massachusetts Military Reservation in 1994, showing the concentrations (μmol/l)
of boron in the upper panel and ammonium ion in the lower one. The boron, which
is not reactive, delineates the plume boundary, while the ammonium cloud moves
more slowly because of sorption with the solid matrix. The top curves represent
the approximate land surface above the water table, which is indicated by the
triangle.

beneath the Massachusetts Military Reservation in western Cape Cod over the
period 1936 to 1995. The aquifer is largely glacial outwash, with quartz and feldspar
grains and having a porosity of about 0.4. The crest of the water table in this region
is approximately 6 km NNE of the decommissioned sewage infiltration beds shown
in Figure 5.10 (beyond the left of the region shown). The mean groundwater flow
is generally radial from this crest and moves through the measurement site in a
south-south-westerly direction. Because of rainwater infiltration the mean flow
speed might be expected to increase very roughly linearly with distance from
the groundwater crest, although there are considerable variations because of flow
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fingering from inhomogeneity in the medium (LeBlanc et al., 1991) and local flow
deflection by ponds.

The extent of the plume in 1994 shown in the upper panel of this figure was
delineated by high concentrations of boron, a common constituent of domestic
wastewater that is both stable and mobile and therefore a useful tracer. The ver-
tical longitudinal sections through the plume are reproduced from Böhlke et al.
(2006). The boron plume that defined the wastewater boundary was continuous,
and gradually deepened with increasing distance from the source as a result of
aquifer recharge and also possibly a water density in the plume slightly greater
than that in the ambient. The plume was largely anoxic. Inside the wastewater
pulse or cloud, ammonium is concentrated in a well-defined cloud that has left the
infiltration beds but has lagged behind the boron plume front. The rate of disposal
of treated wastewater containing NH+

4 was highest (c. 2 × 106 m3/yr) between 1941
and 1945, continuing at a lower level until 1970, and the longitudinal distribution of
ammonium apparently reflects this. The apparent rate of advance of the ammonium
cloud was 0.25 ± 0.10 of the average groundwater velocity of 120 m/yr. The large
range about the mean reflects the longitudinal dispersion.

Interstitial fluid velocities in the aquifer were measured in several different ways.
Groundwater age measurements made within 3 km of the infiltration beds, in and
adjacent to the boron plume provided long-term average values of 90–120 m/yr,
while bromide injection tests over short ranges (3–15 m) near the midpoint of
the plume gave 0.36–0.56 m/day (130–200 m/yr). Paired samples of ammonium
concentration in both the groundwater and the associated aquifer sediments were
taken at several points in and adjacent to the cloud. Böhlke et al. reported their
concentration data in terms of μmol per gram of solid or of water, whereas Ceazan
et al. use μg N per gram of dry sediment for the sorbed ammonium and μg N
per ml for the aqueous ammonium. When the results are expressed in consistent
concentration density units, such as μmol/cc, the measured points from both sets
of measurements group reasonably well, as shown in Figure 5.11, lying close to
but slightly above the 45◦ line along which cF = cS. Although the amount of data is
limited, this result appears to be consistent with the “fast reaction” limit γ 
 v/l,
with cF slightly smaller than cS. This may be characteristic of the trailing edge of
the cloud where the solid is losing ammonium to the fluid.

Retardation factors inferred by Böhlke et al. from the migration of the con-
centration maximum and of the front scattered between 2.8 and 6.4, apparently
reflecting medium inhomogeneity. Ceazan et al. estimated from the regional scale
retardation of the ammonium front that R ≈ 2, while from batch concentration
measurements and the use of (5.79) they obtained R ≈ 2.5. These are generally
consistent with, but on average larger than the value 2.5 that would be expected
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Figure 5.11. Paired measurements of NH+
4 in groundwater samples (horizontal

axis) and associated aquifer sediment extracts by Böhlke et al. (2006), “o”, and
Ceazan et al. (1989), “×”.

from the “fast reaction” expression (5.80) with a porosity of 0.4. The reason for
this difference is unclear, although it is possible that some biological processes
may have contributed to the retardation in at least some cases.

5.5 The gradient reaction scenario

The reaction fronts described in the preceding section arise at mineralogical bound-
aries or interfaces and propagate in the flow direction; they separate an unaltered
region ahead of the front from the region behind where the reaction has produced
a different equilibrium between the altered host rock and the interstitial fluid. A
second flow reaction scenario is found when the temperature and/or pressure vary
along the streamlines of the flow domain, and even if the medium is chemically
homogeneous, the equilibrium solute concentration varies as these ambient con-
ditions change along the lines of flow. These variations promote flow-controlled
reactions of another type, termed gradient reactions, that can occur simultaneously
throughout the whole matrix or along systems of cracks at rates proportional to
the flow speed and to the gradients of temperature and pressure in the direction of
flow.
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Figure 5.12. Solubility of quartz in supercritical water as a function of temperature
and pressure, after Anderson and Burnham (1965) and Philpotts (1990). Note: a
pressure of 1 GPa is equal to the weight of about 30 km of crustal rock.

If the pressure and the temperature vary along the flow path, the local equilibrium
point also varies. As the fluid elements move through the medium, they interact
with the matrix in response to the gradually varying conditions. Even though the
composition of interstitial fluid may remain the same in time at each spatial point,
it varies along the flow trajectory so that, as the fluid elements move along their
paths, solute is continually being added to or taken from solution. As a consequence,
the mineral composition is gradually altered along the flow path by reaction with
the moving fluid, by dissolution of the matrix or mineralization of solute into it.
In general, the equilibrium concentration of the interstitial fluid depends on the
environmental variables of temperature, pressure and the dissolved concentrations
c1, c2, . . . of other species (including hydrogen ions) that may influence the reaction.
With few exceptions, the equilibrium concentration increases with temperature and
pressure, ∂cE/∂T > 0 and ∂cE/∂p > 0 as shown in Figure 5.12. Below the surface
of the earth the fluid temperature and pressure both generally decrease with vertical
position, so that the vertical gradient of equilibrium concentration is generally
negative, ∂cE/∂z < 0. In the mean, fluid elements move through the geochemical
environment at the interstitial flow speed v, and when the length scales of the
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environmental variations are large compared with the equilibration length v/γ ,
one would expect intuitively that the actual chemical composition of the moving
fluid elements would remain close to local equilibrium in their slowly varying
environment. Wood and Hewett (1982) recognized this explicitly and assumed that
c ≈ cE to sufficient accuracy. This assumption is, in fact, faulty, but it has become
known as “the equilibrium hypothesis” and, despite some conceptual difficulties
(see Lichtner, 1991), it has been used extensively and successfully.

The solute balance equation (5.4), repeated here,

∂c

∂t
+ v · ∇c − D∇2c = γ cEf (r, X),

specifies the distribution of reacting solute in space and time in a given pattern of
flow and it can be used to examine the accuracy of this hypothesis. To avoid extra-
neous complications, consider the simplest physical environment that combines the
essential elements of an interstitial fluid undergoing reaction as it moves through
a matrix of variable temperature and pressure. The pattern of solute concentration
is assumed to be steady in time as it evolves in space, so that the first term is
neglected. The solute dispersion effect is merely smooths out small-scale spatial
solute irregularities, and we neglect this also. The solute balance is then between
advection and the chemical kinetics of the solute–matrix interactions which are
sensitive to spatial variations in temperature and pressure.

Accordingly, consider hot fluid rising steadily and, on average, vertically in the
crust through fractures or through a permeable inclined layer, with the temperature
and pressure both decreasing approximately linearly with height over intervals
large compared with the equilibration length. Consequently, as in Figure 5.12, the
equilibrium solute concentration also decreases in the vertical, ∂cE/∂z < 0. The
solute balance above therefore reduces to one between vertical advection of solute
and chemical deposition from solution,

v
∂c

∂z
= Q = γ cEf (c/cE), (5.81)

where Q represents the source, the rate of addition of solute (mass per unit volume
of fluid per unit time) from the reaction, and −Q represents the corresponding rate
of deposition of solid mineral from the solution. From the kinetics of the reaction,
the dimensionless function f = 1 when c/cE is small (very dilute solutions), f = 0
when c/cE = 1 (saturated solutions) and negative when c/cE > 1 (supersaturated).
We are most interested in conditions near local equilibrium, and a suitable form
for f that has these properties is

f = 1 − c/cE.
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Thus, near equilibrium, (5.81) becomes

v
∂c

∂z
= γ (cE − c). (5.82)

Let �c = c − cE represent the difference between the solute concentration at any
point and the equilibrium concentration for the temperature and pressure at that
point, i.e. the “error” in the equilibrium hypothesis. Rewrite equation (5.82) in
terms of (�c):

∂

∂z
(�c) + l−1

E (�c) = β, (5.83)

where β = −∂cE/∂z > 0, the rate at which the equilibrium concentration decreases
with vertical position because of decreasing temperature and pressure. The solution
to (5.83), starting off the flow with complete equilibrium, (�c) = 0, at an arbitrary
level z = 0, is

(�c) = βlE {1 − exp(−z/lE)} > 0. (5.84)

This was assigned the value zero at the initial level z = 0, but as the fluid moves
upward, the fluid concentration relative to the local equilibrium increases towards
βlE as z increases beyond the equilibration length.

Thus, in upward fluid flow, even though the fluid is assumed to be in local
equilibrium at the initial level, it becomes increasingly super-saturated as it rises
and its temperature and pressure both decrease, as illustrated in the right-hand
panel of Figure 5.13. The equilibrium concentration cE(z), indicated by the broken
line, decreases with elevation and the actual concentration in the rising fluid (the
continuous line) becomes super-saturated by the amount

c − cE = βlE =
∣∣∣∣∂cE

∂z

∣∣∣∣ v

γ

leading to continuing mineral deposition in response to the vertical decrease in
temperature and pressure as the solution moves through. After the fluid has risen
a distance of the order of the equilibration length, the degree of super-saturation
stabilizes at βlE as the lines c(z) and cE(z) become parallel. The actual concen-
tration of interstitial fluid and the equilibrium concentration are different (as is
necessary for deposition), but after the initial adjustment, their vertical gradients
become equal. If the flow is downward as shown in the left-hand panel, the fluid
is unsaturated by the same amount and the species concentration is augmented by
dissolution from the walls.

The most important property of this solution is that on scales large compared with
the equilibration length, the actual fluid concentration of interstitial fluids moving
either upward or downward differ from the equilibrium concentration, but the
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Figure 5.13. When interstitial fluid is at rest relative to the matrix containing a
reactive solid, its concentration tends towards equilibrium at the local temperature
and pressure. If the equilibrium concentration decreases with height, upwardly
moving fluid becomes super-saturated and solute is deposited, while downwardly
moving fluid becomes unsaturated and solid mineral dissolves from the matrix
walls. The concentrations are offset from the equilibrium values, but the vertical
gradients are the same.

vertical gradients of the two are the same. In (5.81), the rates of exchange between
the solid matrix and the moving interstitial fluid involve the concentration gradients
in the flow direction, rather than the concentrations themselves. Consequently, the
“equilibrium hypothesis” that c = cE, though erroneous, is not necessary and does
not invalidate the Wood–Hewett statement that

Q = v · ∇c = v · ∇cE, (5.85)

where Q is the mass of solute added per unit volume of the fluid per unit time and
the vertical gradients of c and cE are equal.

5.5.1 Dissolution and deposition rates in gradient reactions

Re-written in terms of the transport velocity u = φv, equation (5.85) now becomes
a prescription for the source term Q – the rate of addition of species to the solution
(moles per unit volume of the fabric per unit time). Correspondingly, the rate of
mineral deposition or precipitation per unit volume from the solution is

QM = −u · ∇cE(T , p, c1, c2, . . .)

= −u ·
{

∂cE

∂T
∇T + ∂cE

∂p
∇p +

∑
n

∂cE

∂cn

∇cn

}
(5.86)
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from the chain rule for partial differentiation. The summation is over whatever
other species n = 1, 2, . . . influence the equilibrium.

The first term in this expression, involving the variation of equilibrium concen-
tration of the interstitial solution with temperature, is usually dominant. It expresses
the rate at which solute is exchanged between the matrix and the interstitial fluid
when the flow moves across isotherms. The equilibrium concentration of most
solutions increases with temperature, so that when the flow is towards higher
temperatures (generally downward), the interstitial fluid is unsaturated, the scalar
product u · ∇T is positive, QC > 0 and solute is transferred from the matrix to
the interstitial fluid. When the flow is down the temperature gradient, i.e., upward,
u · ∇T is negative, the solution becomes supersaturated and QC < 0; the chemical
species is lost from the solution and deposited on the pore surfaces.

As Figure 5.12 shows, the equilibrium concentration of solutes generally
increases also with the fluid pressure. Even though the total fluid pressure may
be close to lithostatic, the local gradient in total pressure in a connected region is
primarily hydrostatic, so that u · ∇p = −ρguZ where u is the vertical component
of mean interstitial fluid velocity. The middle term on the right of equation (5.86)
becomes

−
(

∂cE

∂p

)
ρguZ,

which is generally small compared with the first term.
The last term, involving the concentration gradients of other solutes, can be

simplified considerably. If they do not enter into the reaction but may be purely
inhibitory, their concentration remains the same along the flow path and this term
vanishes. If any of them, say the nth, does enter, a separate species balance can be
written for this species with a source term equal to −QC times the moles consumed
per mole of the solute in (5.86) generated, i.e.

u · ∇cn = −mnQC.

The rate of mineralization (moles per unit volume per unit time) QM = −QC

becomes

QM = −
{

1 + mn

(
∂cE

∂cn

)}−1 {(
∂cE

∂T

)
u · ∇T −

(
∂cE

∂p

)
ρguZ

}
. (5.87)

At first sight it is perhaps surprising that the rate at which reaction or dissolution
or precipitation occurs in this gradient reaction scenario is independent of the
chemical kinetics, provided only that the equilibration length is small compared
with the size of the region. The limiting factor in the overall process is the rate at
which fluid moves through the system, providing fluxes of dissolved species into
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and out of each volume element at the matrix. Note that QC represents the rate
of addition of the species to the solution (moles per unit volume per unit time) so
that in dissolution, QC > 0, and in precipitation, QC < 0. In gradient reactions,
mineralization is produced throughout a region both by interstitial flow in the
direction of the local temperature gradient and by interstitial flow in the direction
of the total pressure gradient, both of which are usually essentially vertical.

The applicability of the expression (5.87) is not limited to flow in permeable
media and indeed the most visible evidence of mineral deposition by flow is the
presence of networks of veins, largely of quartz, in many metamorphic rocks. The
same formula can be applied to flow in a network of fractures or conduits, with
u, uZ representing the volume flux in the plane of the fracture or along the conduit
and with QC and QM interpreted as the rate of exchange of solute with the matrix
per unit area of the fracture or per unit length of the conduit, respectively. The
result (5.87) can also be integrated over time and it retains the same form with Qtot

M

now representing the total density of mineralization (moles per unit volume) and
V the total volume of fluid per unit cross sectional area that has moved through the
region.

Qtot
M = V

{
−

(
∂T

∂z

) (
∂cE

∂T

)
+ ρg

(
∂cE

∂p

)}
, (5.88)

where cE is the molar concentration of the infiltrating fluid at equilibrium, a gener-
ally increasing function of temperature and pressure.

For example, quartz, SiO2, is an extremely common vein material in metamor-
phic rocks. Although relatively insoluble in surface waters, its solubility increases
significantly with increasing pressure and temperature, as shown in Figure 5.12.
At a temperature of 650 ◦C and pressure of 0.375 GPa, the equilibrium con-
centration cE is about 0.28 g-mol/l SiO2, its rate of variation with temperature,
∂cE/∂T ∼ 1.6 × 10−2 g-mol/l per ◦C and with pressure, ∂cE/∂p ∼ 0.83 g-mol/l
per GPa. Saturated fluid becomes supersaturated as it rises toward the surface
because of the decreasing temperature and pressure, both of which reduce cE. As
a result, quartz is precipitated simultaneously along the length of the flow path,
and in a previously fractured medium, a network of quartz veins is developed as
described by Haszeldine, Samson and Cornford (1984) and McBride (1989).

In the calcite dissolution reaction

CaCO3 + CO2 + H2O ⇔ Ca2+ + 2HCO3

the rate of generation of Ca2+ ions per unit volume of interstitial fluid is equal
to the rate of dissolution of calcium carbonate. Carbon dioxide in solution is
consumed by the reaction and the term ∂cE/∂cn = (∂cn/∂cE)−1 represents the
variations in equilibrium concentration of Ca2+ ions with concentration of dissolved
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CO2. The equilibrium concentration of Ca2+ is smaller when CO2 is depleted,
so that ∂cE/∂cn > 0. Measured values for the variation of saturation solubility
with temperature and total pressure are summarized by Barnes (1979). Calcite
is an unusual solute whose equilibrium concentration decreases with increasing
temperature. At a partial pressure of CO2 of one atmosphere, at about 100 ◦C
(∂cE/∂T ) ∼ −6 × 10−6 g-mol/l per ◦C. The variation with pressure (∂cE/∂p) is
positive, but its magnitude is insufficient to overcome the increase in solubility of a
rising fluid moving down the geothermal temperature gradient. The sum of the two
flow terms in (5.87) is therefore positive, and in upward flow, calcite dissolution
will tend to occur.

5.5.2 The rock alteration index

In many reactions, the pressure term in (5.87) appears to be subordinate to the
temperature term, and the pattern of mineral alteration within a given structure is
determined primarily by the distribution of u · ∇T associated with the flow. As
suggested by Dr. James Wood (1987a,b), this quantity can conveniently be called
the rock alteration index, or RAI. Distributions of this index are illustrated in
Figures 4.11 to 4.14 and elsewhere in this book for various flow patterns. Regions
where it is relatively high indicate sites of more rapid alteration by gradient reactions
and, over time, sites of denser mineral accumulation or depletion.

Fault zones, particularly dilatational fault jogs connecting offset planes along
which shear displacement has occurred, provide especially favorable sites for gra-
dient reactions. Newly opened dilatational cracks attract fluid through flow focus-
ing and allow concentrated, relatively high fluid velocities across isotherms. Sibson
(1987) has recognized the importance of these fault structures in mineral deposition,
citing examples from the Camp Bird vein system, Colorado, and the Chuquicamata
copper deposit in Chile. Sibson, Robert and Poulsen (1988) likewise associate the
formation of many mesothermal gold–quartz deposits in high-angle fault veins to
fluid discharges following fracture.

In summary, in the gradient reaction scenario, rising interstitial fluid becomes
uniformly supersaturated and downwardly infiltrating fluid uniformly unsaturated
relative to fluid in equilibrium with the suite of minerals in the surrounding fabric.
As time goes by, the relative abundance of these minerals changes, some increasing
and some decreasing as the reaction continues. The process is ubiquitous, occurring
throughout those parts of the fabric where the fluid flow crosses isotherms or isobars.
In a fracture–matrix medium, the interstitial fluid velocities are much greater in the
fractures than in the matrix blocks so that, from (5.83), the rate of mineralization is
concentrated there. The original minerals in the blocks may persist in the blocks for
times of the order of the exchange time E−1, proportional to the sizes of individual
blocks. As long as all the minerals are present, the interstitial solution is buffered
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close to this equilibrium value for the ambient temperature and pressure. However,
if locally, one of the minerals involved in the reaction say S1 disappears entirely,
the interstitial fluid there moves to a new equilibrium among the remainder of
the minerals present. As this fluid moves into an adjacent region where S1 is not
yet depleted, a reaction front may develop between the now distinct mineralogical
regions and start to propagate as described in the preceding section (see also Hewett,
1986).

5.5.3 Enhancement and destruction of porosity

These reactions gradually lead to changes in porosity and consequently, in perme-
ability. Even if the driving forces are maintained, the flow patterns evolve as the
distributions of permeability change. In simple cementation, the flow is faster in
regions of high permeability, so that if the equilibration length lE is small com-
pared with the flow dimensions, the rate of cementation is greater there and the
porosity and permeability decrease more rapidly than in regions where they are
already low and the flow slower. Cementation, therefore, tends to make the poros-
ity more uniform throughout the region as the permeability and porosity gradually
decrease with time – the deposit is disseminated. With dissolution (e.g. of car-
bonate rocks), the reverse occurs. Regions of initially relatively high porosity and
permeability attract flow focusing, with enhanced dissolution producing enlarge-
ment of the pores, further local increase in the permeability, and ever-increasing
flow. Merino, Ortoleva and Strickholm (1983), Merino (1984), Chadham et al.
(1986), and Ortoleva et al. (1987a) have discussed this kind of geochemical self-
patterning or infiltrative instability in considerable detail. Ortoleva et al. (1987b)
ascribe many instances of textural patterns such as cement bands, metamorphic
layering, and oscillatory zoning to the process and give a linear instability analysis
showing that a plane dissolution front is indeed unstable, small perturbations to the
front developing into long fingers.

Replacement reactions, such as the conversion of limestone to dolomite, are also
generally associated with volume changes that can be of either sign. The dolomite
reaction

2CaCO3 + Mg2+ ⇔ CaMg(CO3)2 + Ca2+

is accompanied by about a 15% decrease in volume of the solid phase, with
consequent enhancement in porosity, increase in local flow speed, and increased
reaction rate. It is natural to expect, then, that the distribution of dolomite deposited
into a limestone matrix by this reaction will occur bi-modally, with dolomite layers
interbedded between layers of unaltered limestone. This kind of structure is indeed
found in atolls and in once-submerged carbonate banks such as the Latemar Massif
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in the Dolomites (Wilson, Hardie and Phillips, 1990). The same general principle
applies to ores or other minerals deposited by reaction in a permeable or fracture-
matrix flow environment. If the mineral formation involves a decrease in volume
of the solid, the mineral will generally be deposited in veins or lodes; if it involves
an increase in volume of the solid, the deposit is generally disseminated.

An estimate of the rates at which these physical alterations proceed can be found
simply, as shown by Wood and Hewett (1982) and Lichtner (1985). Let Q represent
the rate of addition of species to the solution (mass per unit volume of the fabric
per unit time). Suppose that mineral with density ρ1 is replaced mole for mole by
another with density ρ2. The rate of disappearance of mineral 1 into solution results
in a rate of increase in the porosity

ρ1
∂φ

∂t
= m1Q, (5.89)

where m1 is the molecular weight of this mineral. The deposition of mineral 2 leads
to a rate of decrease in porosity

ρ2
∂φ

∂t
= −m2Q, (5.90)

so that the net rate of change is

∂φ

∂t
=

(
m1

ρ1
− m2

ρ2

)
Q. (5.91)

The initial rate of change in porosity in a single-mineral fabric gives a measure of
the time scale in these processes. If the initial porosity is designated as φ0, then
from (5.89) its rate of change with time is given by

∂

∂t

(
φ

φ0

)
= mQ

ρφ0
(5.92)

with Q > 0 for dissolution and Q < 0 for deposition. The time scale for fabric
alteration can be taken as

τ = ρφ0/mQ, (5.93)

where ρ is the density of the mineral undergoing alteration, m its molecular weight,
and Q represents the rate of dissolution (moles per unit volume of the fabric per
unit time), This geological time scale can be quite short, of order 106–107 years.

Boles and Ramseyer (1987) have described an example of very rapid carbonate
cementation in the San Joaquin Basin of California. The extraction of gas appears
to have produced in the limestone such a rapid interstitial flow of isotopically light
water that a dolomite cement, rich in iron, has precipitated within the past twenty
years! McBride (1989) reviewed quartz cementation in sandstones, and another
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study documenting calcite and iron sulfide cementation along the margins of salt
domes is that of McManus and Hanor (1988).

Over time intervals of order τ or longer, the changing porosity modifies the flow
field. The relationship between permeability and porosity depends on the geometry
of the fluid pathways. Generally, from Section 2.4, k ∼ 10−2φδ2, where δ is the
characteristic diameter of the fluid pathways. If they are predominantly tubular,
then from (2.2), φ ∼ nδ2 where n is the number of tubes per unit cross-sectional
area, so that as the pore diameter changes, k/k0 = (φ/φ0)2 where k0 and φ0 are
initial values. If, however, the fluid flows along an intersecting network of cracks or
fissures, φ ∼ λδ from (2.3), where λ is the length of crack per unit cross-sectional
area and so k/k0 = (φ/φ0)3. More generally, it might be asserted that

k

k0
=

(
φ

φ0

)n

,

where the power n lies between 2 and 3.
If both the pressure gradient and temperature field are maintained, the flow

velocity u is proportional to k and therefore to φp. In a gradient reaction, the rate of
dissolution or mineralization per unit volume is also proportional to the infiltrating
fluid velocity,

(Q(t)/Q(0)) = (u(t)/u(0)) = (φ(t)/φ(0))n (5.94)

and (5.92) becomes

d

dt

(
φ

φ0

)
= 1

τ

(
φ

φ0

)n

, (5.95)

where the fabric alteration time scale τ of (5.93) is positive for dissolution and is
to be taken negative for cementation. Since p �= 1, the solution to (5.95) is

φ

φ0
= 1

{1 − (n − 1)(t/τ )}1/(n−1) , (5.96)

which is illustrated in Figure 5.14.
When Q and therefore τ is negative, cementation proceeds ever more slowly as

the pores clog. The porosity is reduced to half its initial value in a time interval
between τ and 3τ , to one-tenth between 9τ and 50τ according to the geometry of
the structure. In dissolution conditions, with τ positive, however, a calamity occurs
when t = τ/(1 − p) (that is, between τ/2 and τ ) since φ(t) → ∞! Within a finite
time, the porosity increases dramatically; in reality, the fabric may collapse.
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Figure 5.14. Variations in porosity in a flow under conditions of dissolution and
cementation, with a maintained pressure gradient. The time scale τ is given by
(5.93). Fabrics with primarily tubular interstices have n ∼ 2; if they are in the form
of cracks or fissures, n ∼ 3.

The time scales for replacement reactions can be found similarly. From equation
(5.91) (

m1ρ2 − m2ρ1

ρ2

)−1
∂φ

∂t
= Q

ρ1
, (5.97)

which is identical to (5.95) except for the additional modifying factor on the
left, which simply changes the time scale but does not alter the structure of the
solution (5.96), illustrated in Figure 5.14. The time scale for fabric alteration is
then somewhat longer:

τ = ρ1φ0

m1Q(0)

{
1 − m2ρ1

m1ρ2

}−1

= φ0

Q(0)

{
ρ1ρ2

m1ρ2 − m2ρ1

}
. (5.98)

Note the singularity in this expression when (m1ρ2 − m2ρ1) = 0, which makes
sense mathematically, but not physically. It derives from (5.97), which is singular
when the deposition and dissolution rates are exactly equal and ∂φ/∂t = 0.

A number of authors have documented the reduction of porosity by physical
compaction. Wilson and McBride (1988) analysed the variations in porosity with
depth in sandstones of the Ventura Basin, California, those most deeply buried
having lost a total absolute porosity of 26% from a presumed initial value of 40%,
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or 0.4. In compaction, the expelled interstitial fluid moves generally upward relative
to the matrix, though if the compaction is the result of continued sedimentation
and the rate of sedimentation is greater than the interstitial velocity produced by
compaction, the depth of individual fluid elements below the depositional interface
may increase. Bonham (1980) has explored the consequences of this effect on the
migration of hydrocarbons.

5.6 The mixing zone scenario

Alterations in mineral composition or precipitation or dissolution can also occur
by the mixing of different interstitial waters. One common example is provided
by a coastal salt wedge, where sea-water infiltrates beneath the freshwater outflow
of a coastal aquifer and mixing occurs across the interface. Fluid dispersion is
necessarily involved, and this is greatly augmented by the presence of lenses or
more permeable layers, as described in Section 3.4. If one is concerned with the
structural details of the reaction patterns, it is necessary to resolve the flow details
on the scale of the lenses, but if one is content with a description of only the general
characteristics of the region, it may be adequate to represent the mixing in terms
of the dispersivity αD. It should be remembered, though, that this is a fairly coarse
approximation. The overall mixing behavior can be represented only asymptotically
in terms of a dispersion coefficient when the lens scale is small compared with the
scale of the overall flow, and this may not be so in many applications. Usually,
however, the lens structures or the distributions of permeability variations are not
known in detail, and this approximation may be the best available.

In any event, when the equilibration length lE is small, the source term is again
specified by (5.81), but now the length scale over which the fluid composition
varies may be small, of the order of the lens thickness or the local dispersivity. The
equilibrium concentration cE of any particular species may depend on the local
mixing ratio of the two fluids, and it will be seen that reactions occur when cE is
other than a linear function of this ratio.

For the sake of definiteness, consider the dissolution or precipitation of calcium
carbonate in a coastal freshwater, salt-water mixing zone. The equilibrium concen-
tration of dissolved CaCO3 in the freshwater of the aquifer is generally less than
that in sea-water, and although the concentration of dissolved NaCl may not enter
the dissolution process directly, the salinity S is a useful index of the mixing ratio.
The equilibrium concentration cE is therefore a function of S (Figure 5.15). When
sea-water and freshwater, each initially saturated with respect to CaCO3, are mixed,
the resulting concentration of CaCO3 lies along the straight line joining (cE)S and
(cE)f in this figure. Unless cE(S) is precisely linear in S, the mixture may be unsat-
urated or supersaturated over the whole range of the mixing ratio S if the curvature



248 Patterns of reaction with flow

1

Fresh
water

(a) (b)

Sea
water

c

S

2
(cE)

f

(cE)
S

Fresh
water

Sea
water

c

S

(cE)
f

(cE)
S

Figure 5.15. When sea-water and freshwater, both saturated with respect to
CaCO3, are mixed, the resulting concentration lies along the straight line joining
the fresh and salt water equilibrium concentrations (cE)f and (cE)S. The salinity S
(of dissolved NaCl) may not influence the dissolution process, but it does provide
a useful index of the mixing ratio. If cE(S) lies above the straight line in (a),
∂2cE/∂s2 < 0 (curve 1), the solution is unsaturated with respect to CaCO3 and
dissolution occurs. If it is below, as in curve 2, the reverse occurs. If the curvature
changes sign as in (b), dissolution occurs at high salinities and deposition at low.

of cE(S) is everywhere concave downward or upward (Figure 5.15a) or unsaturated
over parts of the range and supersaturated over others (Figure 5.15b). When the
solution is unsaturated, we would expect local dissolution; when supersaturated,
precipitation.

The rate of dissolution of CaCO3 per unit volume of fluid is specified by (5.85)
with the additional dispersion term

QC = v · ∇cE − vαD∇2cE, (5.99)

where now cE = cE(S) and v is the mean interstitial flow speed. The distribution of
salinity S is governed by the steady advection–diffusion balance (2.52) but without
a source term:

0 = v · ∇S − vαD∇2S. (5.100)

Now, since cE = cE(S),

∇cE =
(

∂cE

∂S

)
∇S

and

∇2cE =
(

∂2cE

∂S2

)
(∇S)2 +

(
∂cE

∂S

)
∇2S,
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from the chain rule for partial differentiation. Consequently,

QC =
(

∂cE

∂S

){
v · ∇S − vαD∇2S

} − vαD

(
∂2cE

∂S2

)
(∇S)2 ,

= −vαD

(
∂2cE

∂S2

)
(∇S)2 , (5.101)

in virtue of (5.100).
This very simple and important result shows explicit dependence on the mixing

parameter and also (a) that the rate of dissolution when (∂2cE/∂S2) < 0, or precip-
itation when (∂2cE/∂S2) > 0, is proportional to the curvature of the function cE(S),
which is determined by the solution kinetics; (b) that the rates are proportional
to the square of the salinity gradient and are therefore greatest when this gradi-
ent is largest, at the sea-level outflow in the salt wedge situation; and (c) that the
rates increase linearly with the interstitial flow velocity. The formation of sea-level
caverns in the limestone Yucatan aquifer can possibly be interpreted in these terms.

More generally, when fluid in an aquifer is drawn into a more permeable lentic-
ular inclusion as described in Section 3.4, the interstitial flow speed is amplified by
the focusing ratio G, as is any vertical gradient in interstitial fluid concentration, so
that the curvature ∂2cE/∂S2 increases as G2. The reaction rate, then, from (5.101)
increases by the factor G3, which can be very large. If (∂2cE/∂S2) �= 0, mixing zone
reactions are especially concentrated in the most permeable layers – the rate of
gradient reactions and the speed of advance of isothermal reaction fronts increase
only linearly with the flow velocity.

5.7 Isotherm-following reactions

Many metamorphic reactions are not driven by interstitial fluid flow but by the
history of temperature variations of a mineral assemblage, following either volcanic
intrusion or tectonic events that force the matrix to a greater depth. Water may be
produced by the reaction and subsequently move through the matrix; in these
dehydration reactions

S1 ⇔ S2 + H2O. (5.102)

An example is the dehydration of muscovite (white mica):

KAl3Si3O10 (OH)2
Muscovite

+ SiO2
Quartz

⇔ KAlSi3O8
K-feldspar

+ Al2SiO5
Sillimanite

+ H2O
water

, (5.103)

where S1 and S2 of the preceding equation represent the assemblages on the left and
right, respectively. The equilibrium diagram for this reaction is of the general form
illustrated in Figure 5.16, the equilibrium temperature being almost independent
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Figure 5.16. The equilibrium diagram for a dehydration reaction with a discrete
TE(p), almost independent of pressure; contrast this with Figure 5.17.

S2 + H2O

T2 

T1 

S1 

a

b

T

A B

Figure 5.17. The equilibrium diagram for dehydration reactions in low-grade
metamorphosis, with a range of transition temperatures.

of pressure, so that as the temperature of a block of the assembly S1 increases,
it remains stable until its temperature exceeds the equilibrium value TE and the
reaction moves to the right. In spatial terms, the isotherms move through the fabric
and the reaction zone follows behind the moving equilibrium isotherm.

In low-grade metamorphism, which usually involves complex assemblages and
a dense sequence of reactions, the equilibrium line may be replaced by a transition
zone (Figure 5.17). At a given ratio A/B of major constituents in S1, reaction
commences when the temperature exceeds T1 and is complete when it exceeds
T2. At intermediate temperatures, the assemblage containing both S1 and S2 is in
local equilibrium, the proportion of S1 being a/b in Figure 5.17 or approximately
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(T – T1)/(T2 – T1), so that as the temperature gradually increases – in a dehydration
reaction, for example – water is gradually released. In terms of the spatial distribu-
tion of fluid generation, for the case illustrated in Figure 5.16, the source zone will
be found to be limited to a restricted region following the equilibrium isotherm,
whereas for that of Figure 5.17, it is more diffuse.

In either case, if water is produced by the reaction, the interstitial fluid pressure
increases. If the generation rate of fluids is sufficiently rapid and the vertical
permeability in the sequence above the reaction zone is sufficiently small to form
a seal or cap, the interstitial fluid pressure below the cap may be significantly
above hydrostatic, providing a large vertical pressure gradient and a scenario for
local rock fracture, chemically induced. If the rock permeability above the reaction
zone is initially relatively large, the excess pressure can be released by upward
fluid migration, although this process tends to be self-sealing. The rising interstitial
fluids contain solutes in approximate equilibrium with their surroundings, and
if the equilibrium concentration decreases with temperature and pressure (as is
the case for dissolved silica), mineral deposition will occur in accordance with
equation (5.87). The porosity and permeability of the rock above the reaction zone
will therefore decrease in time, increasing the vertical pressure gradient if the fluid
generation rate remains even approximately constant. Under appropriate conditions
and after sufficient time, local fracture may occur in the less permeable layers. This
temporarily relieves the excess pressure until further deposition in veins along the
fractures reseals the matrix and the cycle recurs. The same cycles of events can
occur when the fracturing is induced seismically, as Sibson et al. (1988) indicate,
a sequence they call “seismic pumping.”

It is of interest to establish the general conditions necessary for the buildup of
significant overpressure in the interstitial fluids and for the occurrence of chemically
driven rock fractures. This dynamical process requires the movement of isotherms
through the matrix, as may occur during and following active overthrusting. How
long does it take to develop pressures that approach the lithostatic value, where
relative to the isotherms does this occur first, and how long do the pressures persist
once the tectonic processes have become inactive?

5.7.1 The reaction zone

When the isotherms move through the matrix, the general pattern of the reaction
is the same whether or not dehydration is involved. Let s be the number of moles
of solid veactant S1 per unit volume. In the reaction, this decreases from its initial
value s0 to zero as S1 is replaced by S2.

ds

dt
= −QS. (5.104)
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In the situation illustrated in Figure 5.16, when the temperature T is less than the
equilibrium temperature TE there is no reaction and QS = 0, but when T > TE the
rate of disappearance of S1 is proportional to the amount per unit volume present
and, near equilibrium, to the temperature difference T − TE. Accordingly, QS can
be represented as γ s(T − TE)/TE where the kinetic reaction rate γ has dimensions
of (time)−1. Thus,

ds

dt
= 0, T < TE,

= −γ s(T − TE)/TE T > TE.
(5.105)

In volcanically active regions the equilibrium isotherm can advance vertically
through the mineral assemblage with a speed WE of order centimeters or meters
per year but in regions that are subsiding because of accretion above, WE may be
smaller by a factor of order 10−5. Nevertheless, at a point near and beneath the
level of the equilibrium isotherm and fixed with respect to the medium,

T − TE = (GWE)t, (5.106)

where G = −∂T /∂z is the local geothermal gradient and t is the time interval since
the isotherm passed that point. Alternatively, the speed of advance is

WE = (∂T /∂t)/G, (5.107)

i.e. the rate of change of temperature at a fixed point divided by the local geothermal
temperature gradient. Thus, behind (and below) the equilibrium isotherm,

∂s

∂t
= −γWEt

(
G

TE

)
s < 0,

while ahead of and above it, no reaction has yet occurred and s = 0. In terms of
vertical distance Z = WEt behind the rising equilibrium isotherm,

WE
∂s

∂Z
= −

(
γG

TE

)
Zs Z > 0, below,

= 0 above. (5.108)

Ahead of and above the reaction zone, s = s0, so that the distribution of the reactant
S1 is

s = s0 exp −(Z/lS)2 below

= s0 above (5.109)

where the thickness scale of the reaction zone

lS =
(

WETE

2γG

)1/2

(5.110)
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Figure 5.18. The dehydration reaction zone behind the equilibrium isotherm that
is moving vertically upward through the matrix with speed U = WE. The fraction
of the hydrate S/S0 is equal to 1 above, or ahead of, the reaction zone and zero
behind it. The fraction of the dehydrate is its mirror image, and the thickness scale
of the reaction zone is given by equation (5.110).

These distributions are illustrated in Figure 5.18. When the speed of advance WE of
the equilibrium isotherm is small, as in geothermally inactive regions, the thickness
of the reaction zone decreases and the boundary between the assemblages S1 and
S2 approaches a discontinuity.

In lower-grade metamorphism (Figure 5.17) the thickness scale of the reaction
zone is greater, since the sequence of reactions occurs over the finite temperature
range (T1, T2). Regions of contact metamorphism surrounding magmatic intrusions
frequently show gradations in mineral assemblages rather than sharp contacts,
reflecting this sequence of reactions, or possibly an episode of rapid frontal advance.

5.7.2 Dehydration

If the reaction involves dehydration, with 1 mole of the mineral or mineral assem-
blage S1 releasing nW moles of water, the volumetric rate of fluid generation
QW = nWV QS , where V is the molar volume of the fluid at the ambient pressure.
Thus,

QW = nWV QS = −nWV
ds

dt
, (5.111)
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from (5.104), and in the case of a discrete equilibrium temperature (Figure 5.16),
the rate of fluid generation per unit volume is

QW = −nWV WE
∂s

∂Z
, (5.112)

which is positive since ∂s/∂Z is negative, as specified by (5.109). This rate is a
maximum at a distance 21/2lS behind the moving isotherm, decreasing to zero with
increasing distance beyond (Figure 5.18). The total rate of fluid generation per unit
area of the front is the vertical integral of (5.111), i.e.,

Q̂W = nWV s0WE (5.113)

which involves the molar density s0 of the dehydrating mineral, the moles of water
released by each of them, the molar volume and the speed at which the equilibrium
isotherm advances. It is independent of the reaction rate γ and the local geothermal
temperature gradient G. As (5.110) shows, these quantities, together with the speed
at which the equilibrium isotherm rises through the assemblage, determine the
thickness of the dehydration zone, but not the total amount released.

In lower-grade metamorphism (Figure 5.17), the distance over which the reaction
occurs is greater but (5.113) remains valid. This can be seen either by considering
the overall process as a sequence of small steps of the kind just described, or
alternatively as follows. At a temperature T intermediate between T1 and T2, the
moles of water that can still be produced by dehydration is

nWs0

(
T2 − T

T2 − T1

)
.

As the temperature increases at each point, the volumetric rate of fluid generation
is minus the time derivative of this, above, times the molar volume V, or

nWs0V

(T2 − T1)

∂T

∂t
.

If, again, the isotherms move with speed WE through the assemblage, the rate of
generation is therefore approximately uniform with distance between the isotherms
T1 and T2 and equal to

nWs0V

(T2 − T1)
WEG (5.114)

where G(> 0) is the local temperature gradient. The distance between these two
isotherms is approximately (T2 − T1)/G. The total rate of fluid generation per unit
area of the zone is the product of (T2 − T1)/G and (5.112), which recovers (5.113).
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5.8 Paleo-convection and dolomite formation in the Latemar Massif

A particularly striking and well-documented example of the consequences of paleo-
convection is provided by the intensity and distribution of dolomite formed in the
Middle Triassic Latemar Buildup of the Dolomites in northern Italy. The Latemar
Massif itself is a small, isolated carbonate platform, about 5 km in diameter and
some 700 m thick, that preserves a stratigraphic record of shallow marine car-
bonate deposition from the middle Triassic (c. 200 million years ago) in its ver-
tically stacked “layer cake” deposits. Preferential erosion has revealed a remark-
able exposure that has been studied extensively by Bosellini and Rossi (1974),
Gaetani et al. (1981), Bosellini (1984), Goldhammer (1987), Wilson et al. (1990),
and others. The Latemar Buildup is unusual in its proximity to the Predazzo
volcanic–intrusive complex that was active late in its formation, at which time
lava flows filled basins adjacent to the Latemar and a ring–dike complex intruded
into it.

The stratigraphy of the formation is evident (to the trained eye) in the remarkable
cliff exposures. The lower portion, consisting of approximately 300 m of horizon-
tally bedded grainstones (averaging about 0.5 m in thickness), exhibits abundant
early calcite cementation and represents periods of shallow-water subtidal depo-
sition punctuated by intervals of submarine cementation. Gaetani et al. (1981)
refer to the lower Middle Triassic portion as the “Lower Edifice.” Above it, the
upper platform consists of some 400 m of horizontal cyclically bedded carbonates
containing evidence of repeated sub-aerial exposure (Hardie, Bosellini and Gold-
hammer, 1986; Goldhammer, Dunn and Hardie, 1987) alternating with shallow
submergences. At the top of each cycle there is a thin (5–15 cm) layer contain-
ing dolomite with evidence of incipient soil formation. Cross-cutting these layers
are small dispersed veinlets of dolomite cement, but the total volume of dolomite
in these microstructures is insignificant. There is almost no lateral variation in
lithography in the interior of the Latemar Platform until, at its edges, it is bounded
by steeply sloping foreslope breccias and grainstones deposited as the platform
aggregated.

The original limestone of the formation has been massively but incompletely
converted to dolomite in a zone restricted to the core of the massif, and having well-
defined boundaries with the unconverted limestone. It is possible to map the geom-
etry of the dolomite body that cross-cuts the primary bedding and fans out toward
the top. A total of 2–3 km3 of massive porous dolomite has been generated over a
time interval estimated to be a few million years (certainly not more than 10 or 20) –
this represents roughly 2 × 1013 moles of dolomite. The most credible source of the
magnesium required for the conversion of limestone to dolomite is the sea-water
that surrounded the platform. Assuming an initial magnesium concentration in the
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sea-water of 5.3 × 10−2 molal (Garrels and Thompson, 1962), Wilson et al. (1990)
calculate that about 500 km3 of sea-water would be required to furnish the neces-
sary amount of magnesium if all of it were available for conversion to dolomite –
several hundred times the total pore volume of the Latemar. A more refined calcu-
lation based on the amount of magnesium present in excess of the Mg2+/Ca2+ ratio
at calcite–dolomite equilibrium leads to a rather larger value of sea-water needed –
some 1000 km3 at an internal temperature in the massif of 100 ◦C. Quite evidently,
a continuing circulation of sea-water from the surroundings, through the platform
and continuing over a considerable time period, is required to account for the extent
of this replacement.

The existence of the volcanic intrusions that occurred after the formation of
the platform indicates the presence at the time of elevated temperatures near the
basement that would drive a convective circulation in the permeable bank of one
kind or another, as described in Chapter 4. The questions of interest are (i) whether
the pattern of circulation, as evidenced by the pattern of the massively dolomitized
region, can unambiguously indicate the type of flow-controlled reaction involved,
(ii) whether the pattern points to values of the Rayleigh number and flow speed
during convection that are consistent with the overall geometrical and geological
constraints, and (iii) whether, with these values, the convection can deliver sufficient
Mg2+ ions to provide for the extent of the dolomite formation in a geologically
reasonable time interval, a few million years.

Figure 5.19 is a simplified map given by Wilson (1989) of the present hori-
zontal extent of the dolomitized region in relation to the depositional facies of
the Latemar Buildup (omitting dikes and volcanic breccias) indicating its gener-
ally centered configuration in the larger limestone platform. Figure 5.20 gives the
distribution of intense dolomitization projected onto a cross section showing the
overall mushroom-shaped distribution. At the base, massive dolomite is in vertical
contact with the limestone and a core of brecciated dolomite. This grades upward
into a zone of large, closely spaced pods of massive dolomites, which become more
widely spaced in the mushroom cap. On a smaller scale, it is seen in Figure 5.21
that while the dolomite pods clearly cross-cut the depositional bedding, fingers of
dolomite reach out along more permeable bedding planes, the transition surfaces
from limestone to dolomite remaining sharp. These characteristics indicate clearly
that the reactions occurred in isothermal reaction fronts (Section 5.4) that went to
completion and moved through the fabric at speeds proportional to, but much less
than, the local flow speeds and, consequently, proportional to the local permeability.
In some places, these left behind pockets of less permeable, unaltered limestone.
The pattern is quite inconsistent with what would be produced by gradient reactions
alone, in which the reactions are more diffuse and ubiquitous, though more intense
in high-flow regions than in those where the flow is slow. The more generalized and
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Figure 5.19. A schematic geological map of the Latemar Buildup near Predazzo
in the Italian Dolomite region, after Wilson (1989). The dolomite region is cross-
hatched. Key: 1, the Ladinian Platform of Latemar limestone, whose margin is
indicated by the double line; 2, the Lower Edifice; 3, foreslopes (Marmolada
limestone); 4, volcanics. Faults are indicated by the single lines, with the direction
of relative displacement (up, down).
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Figure 5.20. The intensity of dolomite formation in the Latemar buildup, projected
onto a cross section, after Wilson (1989). In region 1, massive dolomite is in vertical
contact with limestone having a core of brecciated dolomite. Region 2 contains
large, closely spaced pods of massive dolomite, grading into region 3, above,
where the pods are more widely spaced. Region 4 contains limestone, with only
sparse dolomite.

dispersed centimeter-scale veinlets noted earlier are probably the result of gradient
reactions.

Isothermal reaction fronts follow the streamlines, so that the pattern of massive
dolomitization indicates the pattern of the ancient flow – a central rising core of
fluid fanning out toward the top. The general mushroom shape of the configuration
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Figure 5.21. A field photograph by Wilson (1989), showing sparse dolomite
lenses in the upper zone (#3 in Figure 5.20) and more continuous layers below
(D).

is evidence that the circulating fluid did not generally move freely across the upper
surface of the platform and is consistent with the geological indications of repeated
subaerial exposure.

More quantitative estimates of the flow characteristics can be made by the use
of the scaling relations of Section 4.5 together with the measured geometry of
the massively dolomitized region. The total platform is about 700 m thick. In this
ancient flow, the thickness of the inaccessible lower boundary layer δ was close
to that of the cap, which in the Latemar is about 300 m. The stem diameter 2RS

shown in Figure 5.20 is about 1300 m and the radius RP of the platform is some
2500 m. With these values, the Rayleigh number of the paleo-convection, given by
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(4.58), was

RaV ∼
(

RP

RS

)2
h

δ
∼ 35. (5.115)

This value is certainly sufficient to produce significant advective distortion of the
isotherms and the warm mushroom-shaped structure described in the previous
section. From (4.55), the dimensions above and a thermal diffusivity κ ≈ 6 ×
10−7 m2/s, the vertical transport velocity up the stem is found to be

w0 ∼ 3 × 10−8 m/s ∼ 1 m/yr.

The cross-sectional area of the stem was close to 1.5 km2, so that the volume flux
was about 1.5 × 10−3 km3/yr, so that in one million years, about 1500 km3 would
have passed through the system, which is surprisingly consistent with the estimate
made by Wilson et al. (1990) from geochemical evidence.

If the primary deposits of dolomite have resulted from the passage of reaction
fronts, the front propagation speed UF referred to the fluid transport velocity u0 ∼
w0 is given by (5.53). In that equation,

UF

w0
≈ UF

u0
= nS(cE − c0)

s0
,

nS = 1 (one mole of product per mole of solute) and c0 = 0 (negligible Mg2+ ahead
of the reaction front). Consequently, the ratio of the speed of advance of the front to
the fluid transport velocity is equal to the ratio of solute concentration entering the
front to the concentration of solid Mg2+ that the front leaves behind, as illustrated in
Figure 5.7. Since the concentrations enter as a ratio, any units can be used, provided
they are consistent. The concentration cE of Mg2+ in sea water is 1.3 × 10−3 kg/l
(Weast, 1972). Dolomite has a relative density of 2.8 and a molecular weight of
184, of which 24 represents Mg2+, so that the mass of magnesium per liter of
dolomite is

s0 = 2.8 × (24/184) = 0.36 kg/l.

Thus

UF ≈ w0(cE/s0) = 1 × (1.3 × 10−3/0.36) = 3.6 × 10−3 m/yr,

about 3.6 millimeters per year or 3.6 kilometers in one million years. Although
approximately equal to the flow path length in the Latemar Massif, this is a lower
limit which presupposes that the matrix is uniform and un-fractured. Bosellini and
Rossi (1974) and Wilson (1989) describe it as extensively layered and fractured,
where the fluid transport can be expected to occur most rapidly in localized conduits
that thread through, and feed into the matrix blocks.
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The Rayleigh number for the convection and this total transport rate can be
found fairly accurately from the geometry of the massive dolomite formation, but
the temperatures cannot, since T0 occurs in Ra in combination with kV, whose
explicit value is much more uncertain than is the temperature. However, since from
(5.115),

Ra = αgT0kVh

νκ
∼ 35,

then

T0kV ∼ 35
κν

αgh
∼ 1.2 × 10−13 m2K,

with ν ≈ 0.12 × 10−6 m2/s and α ≈ 3 × 10−3 K−1. Fluid inclusion data described
by Wilson et al. (1990) indicate homogenization temperatures (a lower limit for
that at the time of formation) of 75 ◦C near the top of the formation and 220 ◦C
in the stem. If we take the temperature at the base T0 ∼ 300 ◦C, then kV ∼ 4 ×
10−16 m2 = 4 × 10−12 cm2, which is a reasonable value for a limestone structure
such as this. It is important to recognize that in this example, the flow characteristics
and the numerical value of the total transport rate were found without having to
guess the appropriate values of the permeability, which may be uncertain to one
or two orders of magnitude. It is therefore gratifying to find that the flow rate
found accounts so easily for the transport required in the formation of this massive
dolomite body.

5.9 Distributions of mineral alteration in Mississippi Valley-type deposits

Consider now several general examples that illustrate the relationships between
mineralization and flow, the first being the distribution of lead–zinc deposits in
the Mississippi Valley. The Paleozoic sediments of the greater Mississippi Valley
provide the locale for extensive major and minor deposits of galena, sphalerite,
barite, and fluorite, all of which possess such striking geochemical and geological
similarities among themselves and to those in similar regions on other continents
that they are all generally known as Mississippi Valley-type deposits. They have
been studied extensively and are the subject of a fine review by Sverjensky (1986).
It appears to be well established that they are formed from hot, saline aqueous
solutions some time after the lithification of the host rock, but the detailed geo-
chemical processes involved in their formation have been a matter of some dispute
(i.e. whether the precipitation reactions involved sulfate reduction or pH changes or
dilution, etc.); different possibilities are reflected in differences in the chemically
determined coefficients in equations such as (4.25).

Nevertheless, the outstanding characteristics of Mississippi Valley-type deposits,
as listed by Sverjensky, include the following.
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(i) They occur principally in the limestone or dolostone that forms a relatively thin cover
over an igneous or highly metamorphosed basement.

(ii) They consist of bedded replacements, vuggy ores, and veins, the ore being strongly
controlled by individual strata; they are generally not associated with igneous rocks.

(iii) They always occur in areas of mild deformation, expressed in brittle fractures, broad
domes and basins, and gentle folds.

(iv) The ore is never in the basement rocks, but its distribution is often spatially related
to basement highs, with the ore located within sandbanks, ridges, and reef structures
that surround the basement highs.

(v) The ore is generally at shallow depths, generally less than 600 m relative to the present
surface, and was probably never at depths greater than 1200 m.

(vi) Fluid inclusions remaining in sphalerite, fluorite, barite, and calcite always contain
dense, saline aqueous fluids and often oil and/or methane.

All these characteristics seem to be consistent with the dissolution of dispersed
minerals, fluid transport, and local deposition and concentration, probably by gra-
dient reactions. An important clue is provided by the absence of ore deposits
in undeformed regions. Here, any fluid flow is essentially horizontally along the
isotherms, u · ∇T ≈ 0 and there is no fabric alteration. In flow through regions of
deformation or over basement highs, the flow crosses the isotherms, so that on the
flanks of these highs, both u · ∇T and w in (5.87) are non-zero. Local deposition
occurs in regions of rising fluid when the chemical coefficients in (5.87) are pos-
itive or in regions of sinking fluid when they are negative. The fact that they are
associated with more permeable regions near basement highs is again consistent
with flow focusing there and more rapid deposition in gradient reactions. It does
not appear to be known whether the formation of these shallow deposits was in
fact associated with fluid discharge regions, where the near-surface temperature
gradient would be anomalously large, although Cathles and Smith (1983) argue
persuasively that episodic discharges would appear to account for the colorbanding
observed in sphalerite (ZnS) in these deposits resulting from variations in iron
content.

Nevertheless, the qualitative consistency between the characteristics listed by
Sverjensky and those that would be expected from the theory does suggest strongly,
though not quantitatively, that gradient reactions associated with basin-wide flow
were responsible for the ore deposition. More highly quantitative studies are needed,
however, before the association can be regarded as tight. The rate at which minerals
were deposited depends on the chemical coefficients involved in equations such
as (5.87), but the estimation of these for particular reactions is beyond the scope
of this book. Some systems have been considered recently. The well-known work
of Garrels and Christ (1965) considers the carbonate system, and Wood (1987b)
presents detailed calculations for the calcite–dolomite system saturated either with
initially freshwater or with brine having the composition of sea-water. Wood gives
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Figure 5.22. Time-integrated fluxes during metamorphism from the limestone
member of the Waterville formation, calculated by Baumgartner and Ferry (1991)
from Ferry’s field samples. The fluxes are constant along the bedding but vary
significantly from one bed to another, indicating strong flow channeling.

calculations for both isothermal fronts and gradient reactions (which he terms
irreversible and reversible, respectively), taking care to distinguish between them.
In either case, however, he finds that the capacity of a sea-water brine to dissolve or
produce calcite and dolomite is several hundred times greater than that of initially
pure water, so that dolomitization occurs in less time and involves less volume flux
when brine is involved.

Finally, the close association between the spatial distribution of metamorphism
and paleo-flow has been demonstrated in an important field study by Ferry (1987)
on regionally metamorphosed biotite- and garnet-grade rocks of the Vassalboro
Formation and the limestone member of the Waterville Formation in south central
Maine. The biotite-forming reaction involves decarbonation:

KAl3Si3O10 (OH)2
Muscovite

+ 3 CaMg(CO3)2
Ankerite

+ 2 SiO2
Quartz

⇔ KMgAlSi3O10(OH)2
Biotite

+ CaAl2Si2O8
Plagioclase

+ 2 CaCO3 + 4CO2
Calcite

.

The geometrical distribution of reaction products, with gradual variations through
the fabric rather than abrupt transitions, suggests that gradient reactions were
involved, rather than the movement of isothermal reaction fronts. Baumgartner
and Ferry (1991), interpreting the metamorphism in terms of gradient reactions
and using the appropriate stoichiometric coefficients, showed that the total time-
integrated volume transports over the period of formation were in the range 104–
106 cm3/cm2. Although the variations among different lithological layers were con-
siderable (reflecting variations in permeability), the calculated fluxes from samples
at different points in the same layer are very similar (Figure 5.22), indicating the
channeling of fluid flow along it. By taking 107 years as an upper limit for the time
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interval involved, Baumgartner and Ferry calculated volume fluxes or transport
velocities of order 10−2 cm/yr at least.

Another important example of metasomatism (change in the composition of
a metamorphic rock) has been discussed by Ferry and Dipple (1992a,b). This
involves the alteration of peridotite from the Ivrea zone, northern Italy, with the
loss of calcium and magnesium from the rock and the gain of potassium relative
to silicon. Thermodynamic calculations indicated that the influence of pressure on
the equilibrium concentration cE in equation (5.87) could be neglected, and the
changes in element ratios gave three independent constraints on the two unknown
variables, time-integrated volume flux and dissolved chlorine molality (influencing
∂cE/∂T ). They found it possible to choose these two variables so that the three ratios
predicted by (5.87) were consistent with those measured. This strongly indicates
that gradient reactions were indeed responsible for the alteration.



6

Extensions and examples

6.1 Extensions

The following works supplement and extend the text in various directions. Citations
are listed in the References.

Ceazan, M. L., Thurman, E. M. and Smith, R. L. Retardation of ammonium and
potassium transport through a contaminated sand and gravel aquifer: the role of
cation exchange, 1989. The contamination of groundwater by NH+

4 and NO−
3 , gen-

erally from fertilizer application and the disposal of human and animal wastes, is of
growing concern. This paper describes pioneering measurements on the composi-
tion and movement of these contaminants in a groundwater plume in south-western
Cape Cod.

Cvetkovic, V and Dagan, G. Transport of kinetically sorbing solute by steady
random velocity in heterogeneous porous formations, 1994. This is a theoretical
study using a Lagrangian approach, different from the one given in this book. The
second author has made many important contributions to our understanding of the
dispersal characteristics of heterogeneous geological formations.

Fitzgerald, S. D. and Woods, A. W. The instability of a vaporization front in
hot porous rock, 1994. Another frontal instability of the general type described in
Section 4.9, this one having particular interest in the context of geothermal energy
production.

Lyle, S., Huppert, H. E., Hallworth, M., Bickle, M. and Chadwick, A. Axisym-
metric gravity currents in a porous medium, 2005. A theoretical and laboratory
study with applications to the problems of carbon dioxide sequestration.
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Masterson, J. P., Hess, K. M., Walter, D. A. and Leblanc, D. R. Simulated
changes in the sources of ground water for public-supply wells, ponds, streams and
coastal areas on western Cape Cod, Massachusetts, 2002. This USGS publication
is a very readable survey paper illustrating the circulation patterns described in
Section 3.2, by some of the leading hydrologists who have worked on the aquifers
of Cape Cod.

Tsypkin, G. G. and Woods, A. W. Precipitate formation in a porous rock through
evaporation of saline water, 2005. Evaporation fronts of saline water in hot fractures
and porous layers involve a variety of processes including advective and diffusive
heat transfer, decrease of porosity and sealing, with applications to the natural
venting of steam in high temperature geothermal systems.

6.2 Examples

6.2.1 Coastal salt wedges

A freshwater aquifer discharges along the shoreline of a salt lake. Beneath the
discharge, saline water from the lake has infiltrated under the fresh water discharge,
forming a salt-water wedge above the basement. The volume flux of fresh water
per unit length of shoreline Q and the hydraulic conductivity K of the aquifer can
be considered constant and the densities of the fresh and saline water are ρ and
ρ + �ρ. Show that the interface between the fresh and saline regions is at a depth
d below the lake water level given by

d(x) ≈
{

2ρ

�ρ

Qx

K

}1/2

,

where x is measured inland from a virtual origin some distance offshore. The height
of the water table above the lake surface level is smaller than this by a factor �ρ/ρ,
which is typically about 30.

The fluid mechanics involved here is the same as in (4.84) but the flow geometries
differ.

6.2.2 Permeability variations and the rotation vector

The expression

� = ∇ × u = ∇
(

ln
k(x)

k0

)
× u (3.9)

relating the rotation vector of the transport velocity field can be established and
verified in a variety of alternative ways. Most simply but somewhat tediously,
take the curl of the Darcy equation in the form ∇p = −νu/k. The curl of the
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gradient vanishes; show by writing out the Cartesian components that the curl of
u/k gives (3.9). Alternatively, express Darcy’s law in Cartesian tensor notation
∂p/∂xj = −νuj/k and take the curl εijk∂(..)/∂xk of both sides.

Testing it: consider a horizontally laminated medium; the gradient of the log-
permeability is vertical, and for vertical flow, the pressure gradient is vertical, the
right-hand side is zero, no rotation. For horizontal flow, the rotation is perpendicular
to the flow

1

u

∂u

∂y
= ∂

∂y
ln

(
k

k0

)
, and so u ∝ k.

Draw diagrams.

6.2.3 Confined aquifers

When a permeable aquifer layer is sandwiched between two impermeable strata,
there is no flow across the upper and lower bounding surfaces, z = ζ1 and ζ2,
and the aquifer is said to be confined. Its thickness is characteristically much
smaller than its length so that transverse velocities and pressure gradients are much
smaller than those along the layer. The volume flux along the aquifer is the integral
across the layer of the internal transport velocity:

q(x) = (qX, qY ) =
ζ2∫

ζ1

u(x, z)dz,

a two-dimensional vector function of position (x, y) in the aquifer ‘plane’.
Using the incompressibility condition (2.8) and the boundary condition (2.28)

with _ζ = 0, show (i) that

∂qX

∂x
+ ∂qY

∂y
= 0.

Therefore (ii) we can define a transport stream function

qX = ∂ψ/∂y, qY = −∂ψ/∂x.

(iii) Show also that

q = −μ−1(kh)∇p,

where μ is the fluid viscosity, k is the mean permeability, averaged across the aquifer
of thickness h. Consequently, the aquifer flow is attracted to more permeable and
thicker conduits in the aquifer and avoids less permeable and narrower regions, in
accordance with the minimum dissipation theorem.
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Figure 6.1. Original images from Hele-Shaw (1898) of flow through an abrupt
expansion and contraction in an analog of potential or porous medium flow. The
image on the right is of “colour bands” (streamlines) in a gradually enlarging and
contracting channel and on the left, a sudden enlargement. Note the absence of
eddies or circulating flow.

(iv) If the aquifer has a “throat” somewhere along its length where the cross-
sectional area or the mean permeability is significantly less than elsewhere, how
does this affect the pressure distribution along its length?

6.2.4 An unconfined or surface aquifer with a locally fractured
confining layer

An approximately two-dimensional aquifer has a low-permeability retarding layer
separating more permeable sub-aquifers above and below. Can the location of
a recent fracture zone in the retarding layer significantly influence the degree
of confinement? Consider the separate cases of a fracture zone located near the
groundwater divide and one close to the discharge region.

6.2.5 The Hele-Shaw cell

One of the most challenging problems in laboratory experimentation on flows in
porous media is that of visualizing the patterns of internal streamlines and the
onset of instabilities. The flow cell devised by Hele-Shaw (1898) is an extremely
useful and accurate analog device that achieves this for two-dimensional pressure
or buoyancy driven flows. It consists of two closely spaced, transparent, parallel
plates, the gap being filled with viscous fluid. When fluid is introduced around the
edges of the cell or when the internal buoyancy varies, motion is generated between
the transparent plates. The photographs in Figure 6.1 are from his original report
to the magazine Nature, which is of historic importance and interesting to read.
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Show that the mean velocity, averaged across the gap, u is specified by

∇ · ū = 0, ū = δ2

12ν
{−∇(p/ρ0) + bl}

where p is the reduced pressure and b the buoyancy of the fluid in the gap of width
δ. (If necessary, see the derivation in Batchelor, 1967).

These equations are precisely analogous to those describing two-dimensional
Darcy flow in a uniform isotropic porous medium with permeability δ2/12, so
that flow visualization, using dye to mark the streamlines, provides a technique
for examining the patterns and evolution of two-dimensional flow through porous
media. If the cell is horizontal, the buoyancy term vanishes and from the incom-
pressibility condition, ∇2p = 0, as in potential flow. With the cell walls vertical,
buoyancy-driven flows can be simulated, using variations in salinity. See the review
by Homsy (1987) and papers by Saffman and Taylor (1958), Wooding (1962),
(1969) and Huppert and Woods (1995). Thermal convection in a Hele-Shaw cell is
complicated by heat losses through the transparent call walls, though Hartline and
Lister (1977) showed that corrections are possible.

Finger instabilities in fronts between different fluids in a Hele-Shaw cell have
been described by Park and Homsy (1984, 1985). These are dynamically analogous
to the Saffman–Taylor instabilities in porous media considered in Section 4.9.
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Brace, W. F. 1980. Permeability of crystalline and argillaceous rocks. Int. J. Rock Mech.
Min. Sci., 17, 241–251.

Caltagirone, J. P. and Bories, S. A. 1985. Solutions and stability criteria of natural
convective flow in an inclined porous layer. J. Fluid Mech., 155, 267–287.

Carslaw, H. S. and Jaeger, J. C. 1959. Conduction of heat in solids. Oxford: Clarendon
Press.

Cathles, L. M. 1977. An analysis of the cooling of intrusives by ground-water convection
which includes boiling. Econ. Geol., 72, 804–826.

Cathles, L. M. and Smith, A. T. 1983. Thermal constraints on the formation of Mississippi
Valley-type lead–zinc deposits and their implications for episodic basin dewatering
and deposit genesis. Econ. Geol., 78, 983–1002.

Ceazan, K. L., Thurman, E. M. and Smith, R. L. 1989. Retardation of ammonium and
potassium transport through a contaminated sand and gravel aquifer. The role of
cation exchange. Environ. Sci. Technol., 23, 1402–1408.

Chadham, J., Hoff, D., Merino, E., Ortoleva, P. and Sen, A. 1986. Reactive infiltration
instabilities. IMA J. Appl. Math., 36, 207–221.

Chandler, R., Koplik, J., Lerman, K. and Willemsen, J. F. 1982. Capillary displacement
and percolation in porous media. J. Fluid Mech., 119, 249–267.



Bibliography 271

Chen, F. 1991. Throughflow effects on convective instability in superposed fluid and
porous layers. J. Fluid Mech., 231, 113–133.

Chen, F. and Chen, C. F. 1988. Onset of finger convection in a horizontal porous layer
underlying a fluid layer. Trans. ASME C: J. Heat Transfer 110, 403–409.

Chen, F. and Chen, C. F. 1989. Experimental investigation of convective stability in a
superposed fluid and porous layer when heated from below. J. Fluid Mech., 207,
311–321.

Chouke, R. L., van Meurs, P. and van der Poel, C. 1959. The instability of slow,
immiscible viscous liquid–liquid displacements in permeable media. Trans. AIME,
216, 188–194.

Combarnous, M. A. and Bories, S. A. 1975. Hydrothermal convection in saturated porous
media. Adv. Hydrosci., 10, 231–307.

Combarnous, M. A. and LeFur, B. 1969. Transfert de chaleur par convection naturelle
dans une couche poreuse horizontale. C. R. Acad. Sci. Paris B, 269, 1009–1012.

Compton, R. G. and Pritchard, K. L. 1990. The dissolution of calcite at pH > 7: kinetics
and mechanism. Phil Trans. R. Soc. Lond., 330, 45–70.

Compton, R. G. and Unwin, P. R. 1990. The dissolution of calcite in aqueous solution at
pH < 4: kinetics and mechanism. Phil Trans. R. Soc. Lond., 330, 1–45.

Cvetkovic, V. and Dagan, G. 1994. Transport of kinetically sorbing solute by steady
random velocity in heterogeneous porous formations. J. Fluid Mech., 265, 189–215.

Dagan, G. 1982. Stochastic modeling of groundwater flow by unconditional and
conditional probabilities, Part 1. Water Resources Res., 18, 813–833; Part 2, Ibid, 18,
835–848.

Dagan, G. 1984. Solute transport in heterogeneous porous formations. J. Fluid Mech.,
145, 151–177.

Dagan, G. 1988. Time-dependent microdispersion for solute transport in anisotropic
heterogeneous aquifers. Water Resources Res., 24, 1491–1500.

Daly, R. A. 1951. Elastic properties of materials of the earth’s crust. In Internal
Constitution of the Earth, ed. B. Gutenberg, pp. 50–86. New York: Dover.

Darcy, H. 1856. Les fontaines publiques de la ville de Dijon, pp. 647 + Atlas. Dalmont,
Paris.

Davis, S. H., Rosenblat, S., Wood, J. R. and Hewett, T. A. 1985. Convective fluid flow and
diagenetic patterns in domed sheets. Amer. J. Sci., 285, 207–223.

Drever, J. I. 1982. The Geochemistry of Natural Waters. Englewood Cliffs, NJ:
Prentice-Hall.

Dunkle, S. A., Plummer, L. N., Busenberg, E., Phillips, P. J., Denver, J. M., Hamilton,
P. A., Michel, R. L. and Coplen, T. B. 1993. Chlorofluorocarbons (CCl3 F and CCl2
F2) as dating tools and hydrologic tracers in shallow groundwater of the Delmarva
Peninsula, Atlantic Coastal Plain, United States. Water Resources Res., 29,
3837–3860.
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