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Preface

At very low temperatures and at certain filling factors ν, the ground state of a high
mobility electron gas exposed to a strong magnetic field becomes incompressible,
forming an integer quantum Hall (IQH) or fractional quantum Hall (FQH) state.
The ν ¼ 5=2 state is one of the most exceptional of these states, as it is believed to
exhibit non-Abelian quasiparticle excitations. This property makes it not only
interesting from a fundamental physics point of view, but also for possible appli-
cations in topological quantum computing.

In this book, we investigate the properties of the IQH and FQH states, using
transport measurements in the bulk, in quantum point contacts (QPCs) and through
quantum dots (QDs) or interferometers implemented in high mobility GaAs sam-
ples. One important goal of the work presented in this book has been to study the
properties of the ν ¼ 5=2 state by investigating its tunneling and confinement
properties and to make progress towards the realization of an experiment that allows
to probe the statistics of the quasiparticle excitations at ν ¼ 5=2.

This book gives an insight into the work on the ν ¼ 5=2 state that has been
conducted at ETH Zürich in a collaboration of the groups of Werner Wegscheider
and Klaus Ensslin, since 2010. The book is based on a dissertation written by
Stephan Baer in the group of Klaus Ensslin [1].

This book provides an overview of recent developments in experiments probing
the fractional quantum Hall (FQH) states of the second Landau level, especially the
ν ¼ 5=2 state. It summarizes the state-of-the-art understanding of these FQH states.
It furthermore describes how the properties of the FQH states can be probed
experimentally, by investigating tunneling and confinement properties. The progress
towards the realization of an experiment, allowing to probe the potentially
non-Abelian statistics of the quasiparticle excitations at ν ¼ 5=2 is discussed.
The book is intended as a reference for graduate students and postdocs starting in the
field. The experimental part of this book gives practical advice for solving the
experimental challenges which are faced by researchers studying highly fragile FQH
states.

We thank the following colleagues for their contribution to this work or for
discussions: Clemens Rössler, Thomas Ihn, Szymon Hennel, Werner Wegscheider,

v



Christian Reichl, Anastasia Varlet, Tobias Krähenmann, Ernst de Wiljes,
Per-Lennart Ardelt, Thomas Hasler, Hiske Overweg, Sebastian Butz, Dominic
Blosser, Bernd Rosenow, Rudolf Morf, Lars Tiemann and many others.

Zürich Stephan Baer
July 2015 Klaus Ensslin
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Chapter 1
Introduction

This work contains many things which are new and interesting.
Unfortunately, everything that is new is not interesting, and
everything which is interesting, is not new.

Lev Landau, not in reference to this book

Motivation

Some of the most intriguing physical phenomena, like superconductivity, superflu-
idity or Bose-Einstein condensation, are many-body effects. Here the interaction of
the particles that constitute the physical system can change the system’s behavior
dramatically. Many of these effects have been discovered unintentionally in experi-
ments which were conducted for example at very low temperatures and in very pure
or very regular systems. Under such conditions, interaction effects that otherwise do
not play a role and which often were not anticipated, become relevant.

Two-dimensional electron gases (2DEGs) are the ideal system for the experimen-
talist studying many-body effects in solid state physics. These systems are excep-
tionally pure and can be cooled to temperatures below 10 mK with state-of-the-art
experimental setups. The fractional quantumHall (FQH) effect is amany-body effect
that has been discovered under these conditions. Electrons in a two-dimensional sys-
tem exposed to a strong magnetic field interact with each other via the Coulomb
interaction. It turns out that under certain conditions electrons form a collective
ground state, described by a many-body wavefunction proposed by Laughlin [1].
The interacting electrons in this state can be understood as new quasiparticles, so-
called composite Fermions [2]. In this description, they are only weakly interacting
and have different physical properties than the original electrons. For example, the
charge of the quasiparticles no longer corresponds to the original electron charge,
but is only a fraction of it. Another far-reaching consequence of the correlations in
a two-dimensional system is that composite particles do not behave as Fermions or
Bosons. While a particle exchange of Fermions or Bosons changes the phase of the
wavefunction by 0 or π, it can be any value for the quasiparticles of the fractional
quantum Hall effect, making them “anyons”.

© Springer International Publishing Switzerland 2015
S. Baer and K. Ensslin, Transport Spectroscopy of Confined Fractional
Quantum Hall Systems, Springer Series in Solid-State Sciences 183,
DOI 10.1007/978-3-319-21051-3_1
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With the chase for new physics, samples have been further improved, revealing
new interesting phenomena. One of the most remarkable subsequent discoveries was
the ν =5/2 state [3], which could no longer be understood in the framework developed
for the ordinary FQH effect. A possible explanation for this groundstate suggests
a BCS-like p-wave pairing of composite Fermions [4]. However, alternative less
exciting explanations exist (see Sect. 3.6). The p-wave paired Moore-Read Pfaffian
groundstate would possess another property, which has tremendously increased the
interest in the ν =5/2 state: it is believed to exhibit non-Abelian anyonic excitations.
In a very simplified picture, this can be understood in the following way [5]: given
an ensemble of N quasiparticles, an exchange of two quasiparticles transforms the
total wavefunction to a different final state. The system is said to be non-Abelian,
if performing exactly the same exchange operations in a different sequence leads
to a different final state. By exchanging quasiparticles in a particular sequence, this
might allow to apply a desired unitary transformation to the wavefunction, which
could for example be used for quantum computation. Here, the exact trajectories on
which the quasiparticles are exchanged are irrelevant and the system is protected
from decoherence. Such a system is said to be “topologically protected”.

Though numerical and first experimental results favor the non-Abelian candidates
for ν =5/2, the definite proof is still missing. Also the nature of most of the other
FQH states in the second Landau level (LL), like the ν =7/3 and ν =8/3 FQH states
is not fully clarified yet. Given the large theoretical effort that is invested to explore
the potential properties of these states, answering the open questions is one of the
most important experimental tasks in the quantum Hall research community.

However, even without non-Abelian statistics, the FQH states in the second LL
contain interesting many-body physics and are worth studying. The physics in the
second Landau level is not only influenced by FQH states, but also by electron crystal
phases which compete with the FQH states. The properties of those states are still
largely unexplored and require further experimental study.

Impact of this work and outlook

An important goal of the experiments presented in this book was to investigate the
properties of the FQH states in the second LL, especially the ν =5/2 state. Our work
intends to advance towards the realization of an interference experiment that clarifies
the nature of the ν =5/2 state and its potential suitability for quantum computing.

This book is the result of the first Ph.D. project conducted on the ν =5/2 state in
the Ensslin group at ETH Zürich by Stephan Baer. Hence we describe the exper-
imental tasks, necessary for starting this project. For example, it was necessary to
improve a dry dilution refrigerator setup for low electronic temperatures and a new
low temperature cabling, filtering setup and silver cold finger had to be designed
and built. Furthermore the sample processing had to be carefully checked and opti-
mized, in order to avoid a degradation of the quality of the 2DEGs. Due to a close
collaboration with theWegscheider group, we could identify and characterize wafers
that exhibit a pronounced ν =5/2 state and which were suitable for the experiments
conducted by us. By accomplishing these tasks we were finally able to observe the
most fragile FQH states and could reach an electronic temperature of approximately

http://dx.doi.org/10.1007/978-3-319-21051-3_3
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12–13 mK at a cryostat temperature of approximately 9–10 mK. Compared to the
best electronic temperatures of around 50 mK that have been reached in the Ensslin
group before, this is a large improvement. This preliminary work paves the way for
future FQH experiments at very low temperatures in the Ensslin group. Starting from
the prototype cabling and filtering employed by us, cold filtering techniques have
been further improved. In the Ensslin group’s new cryostat with a base temperature
of less than 3.5 mK, these developments might allow the study of even more fragile
FQH states, like for example the ν =12/5 state.

Quantum point contacts (QPCs) allow a local manipulation of FQH states and
are a basic building block for interferometers that try to investigate the ν =5/2 state.
We have investigated the transport properties of QPCs fabricated on high-mobility
electron gases. Finite-bias measurements have allowed us to investigate the confine-
ment potential and its influence on the QPC transmission in magnetic fields. Here
correlation effects show up in the transport. They arise from an interplay of the
FQH states with localized states, which are described by single- or many-electron
physics. In the FQH regime, disorder has a large influence on the transmission and
we observe effects related to the localization of fractionally charged quasiparticles
in the constriction. We have investigated the transmission properties of QPCs, which
is necessary in order to be able to correctly interpret tunneling and interferometer
experiments using QPCs, especially at ν =5/2.

Gating high-mobility 2DEGs is experimentally challenging and requires optimiz-
ing the gating procedure to the doping scheme of the heterostructure. By doing this,
we succeeded to define QPCs, with a perfect transmission of the ν =5/2 state. We
have demonstrated that this state can survive fully gapped in a top-gate defined inter-
ferometer, with an energy gap exceeding 200 mK. This is a crucial prerequisite for
interference experiments at this filling factor. To our knowledge, this has not been
clearly demonstrated before.

Using the gating techniques, we were able to define a QPC in a weak backscat-
tering regime, where quasiparticle tunneling in the FQH states at ν =5/2, 7/3 and 8/3
could be observed. Previous experiments were only conducted with a single sample
andwere not fully conclusive regarding the questionwhether the tunneling properties
at ν =5/2 favor an Abelian (3,3,1)-state or the non-Abelian Anti-Pfaffian or SU(2)2-
states. Hence, repeating those experiments with a different sample, fabricated with
a different growth technique was desirable. Furthermore, a correct interpretation of
the experiment in terms of the weak tunneling theory might depend sensitively on the
experimental situation, like the backscattering strength and the local filling factor.We
have addressed these open questions in detail and found that the Abelian (3,3,1)- and
(1,1,3)-states describe our data best. Though this result is for example inconsistent
with numerical findings, the quality of agreement of our data and theoretical predic-
tions for the (3,3,1)- and (1,1,3)-states is astonishing. The nature of the ν =8/3 and
7/3 states is not fully clear and non-Abelian candidate states have also been proposed
here.We present the first systematic investigation of these states in a tunneling exper-
iment. We find that the ν =8/3 state is best described by a particle-hole conjugate
Laughlin state. This finding is not only relevant for ν =8/3, but is also an important
crosscheck for the tunneling experiments that have investigated the ν =5/2 state. Our
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quasiparticle tunneling experiments will be supplemented by further experiments at
ν =1/3 and ν =2/3, which are currently being performed in the Ensslin group. These
studies might reveal whether additional interaction effects which have not been taken
into account in the theory modify the quasiparticle tunneling signatures.

In addition to theQPCmeasurements, we have performed transportmeasurements
of large quantum dots and interferometers in magnetic fields. We have optimized
charge detection techniques, which allow a time-resolved single-electron charge
detection on micron-sized quantum dots, which are suitable for interference exper-
iments in the quantum Hall regime. In order to perform charge detection on such
large QDs, the sensitivity had to be greatly enhanced. We have shown how this
can be accomplished using localized states. These optimized charge detection tech-
niques might be employed in the future to study the behavior of Coulomb dominated
Fabry-Pérot interferometers in the FQH regime. Here, (time-resolved) charge detec-
tion techniques might allow to study quasiparticle charges and the inner structure
of edge states, which are only accessible by direct transport in very special cases.
Subsequently, we have investigated such a special case: here, the transport prop-
erties of a single QD were modified due to the presence of different compressible
and incompressible regions in the dot. The transport behavior of the system could
be described in analogy to the physics of a double quantum dot. Our results show
that the inner structure of a QD can strongly influence the charging spectrum, which
is relevant for Coulomb blockade experiments trying to investigate the statistics of
the ν =5/2 edge excitations. Finally, transport in top-gate defined interferometers has
been investigated. Herewe have used different high-mobility 2DEGs that employ dif-
ferent doping techniques. We have investigated the experimental problems that arise,
for example due to the lack of stability of the structures. We have demonstrated how
a fully gapped ν =5/2 state can be confined in a top-gate defined interferometer with-
out destroying the quantization, by careful choice of the 2DEG in combination with
gating and illumination techniques. This is one of the experimentally most challeng-
ing prerequisites for the implementation of an interference experiment at ν =5/2 and
has to our knowledge not yet been clearly demonstrated in literature. Unfortunately,
no interference could be found at ν =5/2. This was mainly attributed to an inappro-
priate QPC geometry. Implementing an optimized interferometer geometry with the
techniques described by us, might in the future allow interference experiments at
ν =5/2.

The physics of the second LL is not only influenced by FQH states, but also
by density modulated phases corresponding to the reentrant integer quantum Hall
(RIQH) effect. A better understanding of the density-modulated phases might also
improve our understanding of the physics of the second Landau level as a whole.
Hence we have investigated the RIQH phases in non-equilibrium transport. Due to
their extreme fragility and high requirements to the sample quality, only few research
groups were able to investigate those states. Because of this, many properties of these
phases are still unknown and are still under experimental study. Our results suggest
that either these phases are not electron-hole symmetric as expected from theory or
that they possibly are of a more complicated nature than anticipated. As these phases
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reside in the same LL as the ν =5/2 state, such a particle-hole asymmetry might be
of relevance for the physics at ν =5/2 and the groundstate that is formed at this filling
factor.

Organization of this book

This book is structured in five parts:
Part I gives an introduction to two-dimensional electron gases, the quantum Hall

effect and edge states. We discuss the possibility of non-Abelian statistics and how
this could be probed with interference experiments. Finally, we give a short overview
of experiments at ν =5/2 by other authors and discuss their relevance for our results
and whether they are compatible with our findings.

Part II describes how the measurement setup and samples were optimized, which
in the end allowed us to perform experiments with the most fragile FQH states.

Part III discusses the QPC experiments: we start with investigating transport at
zero magnetic field and the QPC confinement potential. Then we turn to the question
of the magnetic field transmission of QPCs and how to observe a ν =5/2 state in a
QPC. Finally, we discuss the quasiparticle tunneling experiments in the second LL.

Part IV shows the results of quantum dot and interferometer experiments. After
a discussion of how charge detection techniques can be pushed towards the techni-
cal limit, we investigate a quantum dot, where the transport properties are strongly
modified due to the presence of compressible and incompressible regions inside the
dot. Then we discuss progress towards an interference experiment at ν =5/2.

Part V summarizes the non-equilibrium transport measurements in the reentrant
integer quantum Hall phases of the second Landau level.
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Chapter 2
Two-Dimensional Electron Gases

Abstract We review the basic low magnetic field properties of two-dimensional
electron gases (2DEGs). The influence of growth techniques on the observation of
the most fragile fractional quantum Hall states is discussed.

2.1 Introduction

Two-dimensional electron gases (2DEGs) in Gallium Arsenide (GaAs) represent the
cleanest solid state system that is accessible to experimentalists. Continuous tech-
nological progress in molecular beam epitaxy (MBE) growth (Fig. 2.1), has allowed
fabricating 2DEGs of higher and higher mobilities. In these systems new single- and
many-body quantum phenomena, like the integer quantum Hall (IQH) effect and
the fractional quantum Hall (FQH) effect, have been discovered. The Nobel prizes
of 1985 (Klaus von Klitzing) and 1998 (Robert B. Laughlin, Horst L. Störmer and
Daniel C. Tsui) attest the great importance of these discoveries and the large interest
they have raised, not only in the solid state physics community.

More recent discoveries, like the exotic fractional quantum Hall (FQH) states at
ν = 5/2 and ν = 12/5 show that still many interesting many-body phenomena
remain to be studied in these systems. In the following, we will shortly review the
basic properties and characteristics of 2DEGs. We will quickly discuss the sophisti-
cated growth techniques that make the observation of exotic FQH states possible and
hence provide the foundation for the experiments described in this book. Further-
more, these techniques have a large influence on the gating properties of top-gated
structures, which is of great relevance for the experiments discussed later in this
book.

© Springer International Publishing Switzerland 2015
S. Baer and K. Ensslin, Transport Spectroscopy of Confined Fractional
Quantum Hall Systems, Springer Series in Solid-State Sciences 183,
DOI 10.1007/978-3-319-21051-3_2
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10 2 Two-Dimensional Electron Gases

Fig. 2.1 Electron mobilities
versus temperature for
state-of-the-art GaAs 2DEGs
grown in different years. The
main lever for the mobility
improvement is indicated for
each curve. The best
currently available 2DEGs
reach mobilities of more than
30 million cm2/Vs (Taken
from [1]. Reprinted by
permission from Macmillan
Publishers Ltd)

2.2 Basic Properties of Two-Dimensional Electron Gases

The growth of two-dimensional AlGaAs/GaAs heterostructures relies on the combi-
nation of layers of GaAs with layers of the ternary compound AlxGa1−xAs. GaAs
and AlAs have a small lattice mismatch of only 0.14% [2], but different band gaps
Eg (Eg = 1.424 eV for GaAs and Eg = 2.168 eV for AlAs [3]). Thus GaAs and
AlxGa1−xAs layers can be combined without creating significant strain, but creating
large discontinuities in the conduction band edge energy ECB. Figure2.2 illustrates
how this technique is used to specifically engineer the conduction band edge, in order
to create a two-dimensional electron gas. Figure2.2a shows a layer sequence of a
single-side doped heterostucture. A conduction band energy, obtained from numer-
ically solving Poisson and Schrödinger equations self-consistently, is shown on the
right hand side (Fig. 2.2b) as a function of the reversed growth direction z. The sur-
face of the heterostructure is capped by a thin layer of GaAs to prevent oxidation.
The conduction band bottom at the surface is raised due to surface reconstruction or
due to a Schottky barrier with a metallic top-gate and is far above the Fermi energy
EF = 0. Below the GaAs cap, a thick layer of Al0.24Ga0.76As is grown, which leads
to a discontinuity of the conduction band energy at the interface between these two
materials. At z = 250nm, the conduction band energy is pinned close to the Fermi
energy due to strong local doping with silicon (Si). At z > 320nm, another wide
region of GaAs has been grown. Due to the pinning of the conduction band edge at
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(a) (b)

(c) (d)

Fig. 2.2 a Layer structure of a single-side doped high-mobility heterostructure. The conduction
band edge, obtained from a numerical self-consistent solution of Poisson and Schrödinger equations
is shown in (b). The electron densities and square of the electronic wavefunctions of the two lowest
subbands are shown in c and d as a function of z. Here, only the lowest subband has a negative
eigenenergy and is occupied

the doping plane and due to the discontinuity of the conduction band at z = 320nm,
the conduction band edge is pulled below the Fermi energy at the interface between
AlxGa1−xAs and GaAs. Here, free states in the conduction band are filled by elec-
trons up to the Fermi energy, leading to a finite electron density close to the interface.
The calculated electron density of the sample is shown in Fig. 2.2c. The conduction
band electrons are confined in an approximately triangular confinement potential.
The calculated square of the electron wavefunction in z direction, χ2(z), is shown in
Fig. 2.2d for the two lowest subbands (χ2

0 and χ2
1). In this situation, only the lowest

subband, with an eigenenergy of E0 = −6.2 meV is occupied, while the second sub-
band with E1 = 3.6 meV remains empty. In this situation, the electron wavefunction
ψ(x, y, z) can be written as a plane wave for the in-plane directions x and y [4]:

ψ(x, y, z) = χ(z)ei(kx x+ky y) (2.1)

with a parabolic dispersion relation [4]:

En,k = En + �
2

2m∗ (k2x + k2y) (2.2)

We have used k = (kx , ky)
T . En is the eigenenergy of the nth subband and m∗ is

the effective mass of the 2DEG electrons. In this situation, the small z-extent of the
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volume occupied with electrons becomes negligible and we are dealing with a quasi
two-dimensional system.

The following list comprises the most important quantities for the description of
a 2DEG (partially taken from [4]). We give typical values of the quantities for a high
mobility 2DEG with ns ≈ 2.5 × 1011 cm−2 and μ ≈ 20 × 106 cm2/Vs.

Electron density The electron density mainly depends on the doping concentration
and the thickness of the AlGaAs spacer between 2DEG and doping plane. Typical
electron densities are of the order of 1.0 × 1011 cm−2–1.7 × 1011 cm−2 for single-
side doped heterostructures and 2.0 × 1011 cm−2–3.5 × 1011 cm−2 for double-side
doped quantum wells (QWs).

Electron mobility The electron mobility μ relates to the effective mass m∗ and the
momentum relaxation time τ via [4]:

μ = eτ

m∗ (2.3)

In the best samples available, typical magnitudes of themobility are 5×106 cm2/Vs–
10 × 106 cm2/Vs for single-side doped heterostructures and μ ≥ 15 × 106 cm2/Vs
for double-side doped QWs.

Elastic mean free path The elastic mean free path le is given as:

le = τvF (2.4)

where vF is the Fermi velocity. In the best samples, the elastic mean free path can be
as large as 175 µm.

Effective mass The in-plane effective mass m∗‖ is given by [4]:

1

m∗‖
= pA

m∗
A

+ pB
m∗

B
(2.5)

Here, pA and pB are the probabilities for finding the electron in material A or B
[4]. For typical 2DEGs, the envelope of the electronic wavefunction is small outside
the GaAs region in which the 2DEG is defined. Hence, the in-plane effective mass
corresponds with a good accuracy to the bulk GaAs effective mass: m∗‖ ≈ m∗

GaAs ≈
0.063 me [3].

Density of states The parabolic dispersion relation leads to a constant density of
states:

D2d(E) = gsm∗

2π�2
(2.6)

where gs denotes the spin degeneracy.
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Fermi energy The Fermi energy of the two-dimensional system is given as:

EF = 2πns�
2

gsm∗ (2.7)

In typical high-mobility 2DEGs, EF ≈ 30 meV is found.

Fermi wavevector The Fermi wavevector is defined as:

kF =
√
4πns

gs
(2.8)

It has a typical size of kF ≈ 1.3 × 108 m−1.

Fermi wavelength From this, the Fermi wavelength is obtained:

λF =
√

gsπ

ns
(2.9)

where typically λF ≈ 50nm in our samples.

Fermi velocity The Fermi velocity is the group velocity of an electron at the Fermi
energy and is given by:

vF = �kF
m∗ (2.10)

For our samples we find vF ≈ 2.4 × 105 m/s.

Classical cyclotron radius The cyclotron radius is the radius of a classical circular
orbit described by an electron in a magnetic field B due to the Lorentz force:

Rc = �kF
eB

(2.11)

At a given magnetic field B, we find: Rc × B ≈ 85 nmT.

Magnetic length The magnetic length at a given magnetic field B is given as:

lB = √
�/eB (2.12)

Typical magnetic lengths in quantum Hall experiments are of the order of 10nm:
lB × √

B = 25.6 nm
√
T.

Cyclotron energy Using the cyclotron frequency ωc = eB
m∗ , the cyclotron energy

Ecyc is given as:

Ecyc = �ωc = �eB

m∗ (2.13)
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Expressed in terms of thermal energy kBT , the cyclotron energy corresponds to:
Ecyc

B =̂ 20 K.

Coulomb energy The Coulomb energy is given as [5]:

ECoulomb = e2

4πεε0lB
(2.14)

Here, ε0 denotes the vacuum permittivity and ε the relative dielectric constant (in
our case GaAs: ε = 12.9). Expressed in terms of thermal energy, this corresponds
to: ECoulomb√

B
=̂ 50.8 K.

Zeeman energy The size of the Zeeman splitting is given as [6]:

EZ = 2gμBB · S = g

2

m∗

me
�ωc (2.15)

whereme is themass of a free electron. In bulk GaAs, the size of the Zeeman splitting
corresponds to: EZ

B =̂ 0.3 K. In reality, the effective g-factor and also the Zeeman
splitting can be strongly enhanced.

2.3 Low Field Magnetoresistance of Two-Dimensional
Electron Gases

A classical Hall measurement [7] at low magnetic fields can be performed in a setup
depicted in Fig. 2.3. Here, a four-terminal measurement scheme is used, where the
current is passed in the x-direction along the long axis of theHall-bar.Ahomogeneous
external magnetic field B is applied perpendicular to the 2DEG. The voltages Vxx

Fig. 2.3 Hall-bar measurement configuration. While a current ISD is passed along the long axis of
the Hall-bar, voltages Vxx and Vxy are measured. The voltage contacts define an area of a geometry
factor (W/L). An external magnetic field B is applied perpendicular the 2DEG plane
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and Vxy are measured on separate voltage contacts that define a geometry factor
(W/L).

In two dimensions, the electric field E = (Ex , Ey)
T and the current density

j = ( jx , jy)
T are related via:

(
Ex

Ey

)
=

(
ρxx ρxy

ρyx ρyy

)(
jx
jy

)
(2.16)

In the configuration of Fig. 2.3, we have jx = ISD/W and jy = 0. Hence we
can relate the components of the resistivity tensor to our measurement quantities via
ρxx = (W/L) Vxx

ISD
and ρxy = Vxy

ISD
.

Classical diffusive transport At low magnetic fields when quantization effects are
absent, the transport properties of the system can be well described by the Drude
model [8]. With an external electric field E and a magnetic field B, the equation of
motion of an electron between two scattering events can be written as [4]:

m∗ dv
dt

= −|e|(E + v × B) (2.17)

Scattering processes can be taken into account by assuming a statistical distrib-
ution of scattering angles and scattering times. Taking this statistical averaging into
account, the components of the drift velocity vD = (vx , vy)

T can be found [4]. At B
= 0, the following relation between the external electric field E and the drift velocity
vx is found:

vx = − eτ

m∗︸︷︷︸
μ

Ex = −μEx (2.18)

Here μ is the electron mobility. Using the definition of the current density, j =
−ns |e|vD and (2.16) we find [4]:

ρxx = m∗

nse2τ
(2.19)

ρxy = B

|e|ns
(2.20)

These measurement quantities are connected to the electron density and mobility
via:

ns = 1

|e|dρxy/d B|B=0
(2.21)

μ = dρxy/d B|B=0

ρxx (B = 0)
(2.22)
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2.4 Growth Schemes for High Electron Mobilities

High mobility quantum wells used for the experiments presented in this book were
grown in the group of Werner Wegscheider at ETH Zürich, by Christian Reichl and
Werner Wegscheider. The MBE system in use is optimized for highly pure MBE
growth and incorporates only a very small amount of residual background impurities
in the wafers. The technical challenges that arise for the growth of a high-mobility
2DEG, for example providing puremetal sources and optimized growth temperature,
-rate, etc. are far beyond the scope of this book. A discussion with respect to an
optimization of 2DEGs for the observation of the ν = 5/2 state can for example be
found in [9].

However, the doping schemes employed for the 2DEGs are of great experimental
relevance. Thus we will give a short overview of the different techniques used. The
details of the doping strongly influence the gating properties of a heterostructure
and hence influence the behavior of top-gate defined devices. The samples that have
been used for the experiments presented in this book employ either conventional DX-
doping or quantum-well doping and are optimized for the formation of a pronounced
ν = 5/2 state without the requirement of prior illumination with a light emitting
diode (LED) [9]. For DX-doping, a δ-doping plane of Si dopants is located in a wide
AlxGa1−xAs region. Apart from the shallow donors with hydrogenic energy levels,
deep donor levels, the DX-centers exist. Here, the binding of an electron involves a
lattice deformation and leads to a strongly bound electron state [10, 11]. The energy
difference between conduction band edge and DX energy level,�DX, scales linearly
for 0.22 < x < 0.4 (from �DX = 0 at x = 0.22 to �DX = −0.16 eV at x = 0.4)
[12]. Hence DX centers become shallow energy levels for a small Al mole fraction.
Illuminating a DX-doped sample at low temperatures ionizes the electrons bound in
DX-centers and enhances the electron density. We will discuss in the next section
why illumination is often necessary in such samples, in order to observe a quantized
ν = 5/2 state.

An example of a DX-doped structure is shown in Fig. 2.4a. The corresponding
schematics of the conduction band edge is shown in Fig. 2.4b. Here a 27nm wide
QW is defined approximately 200nm below the surface and a DX-doping scheme
in Al0.24Ga0.76As is used, at a setback distance of approximately 100nm. Within
the Al0.24Ga0.76As spacers, two 1.5nm wide GaAs QWs are defined, which are
expected to provide additional screening of theQW from long-range remote impurity
scattering. However, without illumination of the sample, these narrow QWs are not
expected to be occupied by charge carriers.1

Quantum well doping [13–15] is an efficient technique for screening the 2DEG
from long-range remote impurity scattering. Here, the doping region consists of
a narrow GaAs quantum well, defined between thin barriers of AlAs [9]. The δ-
Si doping plane lies in the center of the narrow GaAs QW, hence no DX centers
are formed [10]. When the layer thicknesses are chosen appropriately, the X-band
minima of theAlAs layers reside below the conduction band edge of the narrowGaAs

1C. Reichl, private communication.
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(a)

(b)

Fig. 2.4 a Layer sequence of a 27nm wide QW grown 200nm below the sample surface and using
a DX-doping scheme. b Schematic conduction band energy as a function of position. The dashed
red line indicates the Fermi energy

quantumwells (�-band) and excess electrons occupy theAlAsX-band [15]. The high
effective mass X-band electrons provide additional screening of the 2DEG from long
range potential fluctuations [9], but do not contribute to the 2DEG conductance if
the growth parameters are suitably chosen.

(a)

(b)

Fig. 2.5 a Layer sequence of a 30nm wide QW grown 250nm below the sample surface and using
a QW-doping scheme. b Schematic conduction band energy as a function of position. The dashed
red line indicates the Fermi energy
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Figure2.5 shows an example of a sample employing such a doping scheme.Here, a
30nmwide QW is formed approximately 250nm below the surface. The AlAs/GaAs
doping regions lie approximately 100nm below and above the 2DEG. Such a QW
doping scheme allows to reach extremely high mobilities, as high as 36 million
cm2/Vs [1, 15]. However, this doping scheme poses serious experimental challenges
for the gating. Experiments investigating gate induced density variations on such
samples [16] found pronounced hysteresis effects, which arise from the long time
constants for a density relaxation of the X-band screening layers. At millikelvin
temperatures, this density relaxation can take several days and makes working with
top-gates structures challenging. We will discuss in Chap.10, how this problem can
be dealt with by depleting the screening layers at higher temperatures where the
relaxation time constants are much shorter.

2.5 Impact of Disorder on the Gap of the ν = 5/2 State

With respect to experiments at ν = 5/2, the main goal for a sample optimization is
maximizing the energy gap �5/2 at this filling factor and not the electron mobility.
Contrary to what is naively expected, there is not always a clear correlation between
electron mobility and �5/2. Recent experiments showed that the contribution of
different scattering mechanisms is crucial for the size of �5/2, which seems to be
mainly limited by long-range scattering mechanisms [17–19].

An especially impressive demonstration of the different influence of scattering
mechanisms is shown in Fig. 2.6 (from [19]). In this work, the 2DEG mobility was
reduced intentionally by adding a finiteAlmole fraction to theGaAsQWregion. This
leads to alloy scattering, which is believed to be a short-range scattering mechanism
[19]. Figure2.6 shows the energy gap �5/2 as a function of the inverse mobility for

Fig. 2.6 Energy gap �5/2
versus inverse mobility 1/μ.
Samples with intentionally
reduced mobility due to alloy
scattering (blue dots) exhibit
a gapped ν = 5/2 state down
to much lower mobilities
than conventional high
mobility samples (red
symbols). (Reprinted figure
with permission from [19].
Copyright 2014 by the
American Physical Society)
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the alloy samples (blue dots), compared to gap values from literature (red symbols)
for samples where no intentional alloy scattering has been induced. Surprisingly,
a finite energy gap �5/2 is found for the alloy samples for mobilities as low as
2.2× 106 cm2/Vs, while for conventional samples the energy gap typically vanishes
for μ < 10 × 106 cm2/Vs. Hence the short range alloy scattering has only a small
influence on �5/2. Other recent experiments [15, 17, 18] indicate that the energy
gap �5/2 in very pure heterostructures is mainly limited by remote impurity (RI)
scattering.

As discussed in the previous section, the influence of RI scattering can be mini-
mized by using a QW doping scheme. However, due to the difficult gating proper-
ties, observing a ν = 5/2 state in more “simple” structures would be desirable. In
the experiments of Gamez et al., this has been achieved using conventionally DX-
doped QWs with mobilities μ < 10 × 106 cm2/Vs [18]. Figure2.7a–c shows the
magneto-transport signatures of a QW before illumination with a LED (Fig. 2.7a),
after intermediate illumination (Fig. 2.7b) and after strong illumination (Fig. 2.7c).
During the illumination process, the mobility rose from μ = 4 × 106 cm2/Vs to
μ = 4.8× 106 cm2/Vs [18], which alone cannot account for the improved visibility
of FQH features in Fig. 2.7c. A similar behavior is observed in Fig. 2.7d for samples
with different Al mole fractions (from x = 0.34−0.25). At x = 0.25, the ν = 5/2
state is clearly much more pronounced than for higher Al mole fractions.

The behavior observed is attributed to the properties of the DX centers in the
doping plane. Illumination at low temperatures is believed to lead to an ionization of

(a)

(b)

(c)

(d)

Fig. 2.7 Magnetotransport signatures of a QW for filling factors between 2 and 3 without illu-
mination (a), after intermediate illumination (b) and after strong illumination (c). d Shows the
longitudinal resistance Rxx versus the filling factor for different Al mole fractions x . At x = 0.25,
features related to FQH states are most strongly pronounced. (Reprinted figure with permission
from [18]. Copyright 2013 by the American Physical Society)
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the DX centers and transforming them in shallow donors [10]. Similarly, the energy
splitting of the DX centers from conduction band edge, �DX, shrinks for a reduced
Al mole fraction towards zero at x = 0.22. Hence donors are expected to occupy
more shallow energy levels at x = 0.25 than at higher values of x . In this situation,
the wavefunction of the bound electrons is less localized, which might lead to an
improved screening of remote impurity potentials and hence explain the enhanced
energy gap �5/2. The DX-doped samples used by us employ a reduced Al mole
fraction x = 0.24 compared to the typically employed values x = 0.30–0.33. Thus
these samples are optimized for a large energy gap at ν = 5/2.
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Chapter 3
The Quantum Hall Effect

Abstract We review the basics of the integer quantum Hall effect and the fractional
quantum Hall effect. We furthermore discuss the fractional quantum Hall states in
the second Landau level and their properties.

3.1 Introduction

More than 100 years after the discovery of the Hall effect [1], a quantum mechanical
version of this effect, the quantum Hall effect was discovered by Klaus von Klitzing
[2]. When von Klitzing realized that the quantized resistivities in a Hall measurement
are only related to the natural constants h, the Planck constant and e, the electron
charge, the importance of this discovery became obvious.

Only shortly afterwards, the FQH effect has been discovered by Tsui et al. [3].
These works have sparked a large number of theoretical and experimental stud-
ies, trying to understand the physics behind these effects. Though a huge progress
has been made in the field, new interesting phenomena still appear as experimental
methods and sample quality improve. Many of these phenomena are complicated
many-particle effects and are not yet understood, making the quantum Hall effect
still a “hot” research topic. In the following, we will give a short overview of the
understanding of the integer and fractional quantum Hall effect.

3.2 Energy Spectrum in a Magnetic Field

When a strong perpendicular magnetic field is applied to a 2DEG, the constant DOS is
strongly modified due to energy quantization of the in-plane motion of the electrons.
In the presence of a magnetic field B, the Hamiltonian of an electron with effective
mass m∗ in a parabolic band can be written as:

H = 1

2m∗ (p + |e|A)2 + V (z) (3.1)

© Springer International Publishing Switzerland 2015
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Here the canonical momentum is given as p = −i�∇, V (z) is the confinement
potential in z-direction and we have B = (0, 0, B)T = ∇ × A. In the Landau gauge
we choose: A = (−By, 0, 0)T .

The eigenvalue problem in the x − y plane can be solved making an Ansatz of
the following form [4]: ψ(x, y) = eikx xη(y). Introducing the new variables y′ =
y
lB

− lBkx and p′
y = lB py

�
the Hamiltonian can be rewritten as [5]:

H = Hx,y + Hz (3.2)

Hz = − �
2

2m∗
∂2

∂z2 + V (z) (3.3)

Hx,y = �ωc

[
1

2
y′2 + 1

2

(
p′
y

)2
]

(3.4)

where ωc = |e|B/m∗ is the cyclotron frequency. Hz is independent of the magnetic
field and describes the confinement in the z-direction. The Hamiltonian for the in-
plane motion, Hx,y , is independent of the confinement potential V (z). This is the
Hamiltonian of a one-dimensional harmonic oscillator with a center coordinate y0 =
l2
Bkx = �kx|e|B . The energy eigenvalues are given as [4]:

En =
(

n + 1

2

)
�ωc (3.5)

These energy levels are called Landau levels (LLs). The eigenmodes of the Hamil-
tonian have the structure of a plane wave in the x-direction and a localized harmonic
oscillator wavefunction in y-direction [5]:

ψn,kx (x, y) =
[
π22n(n!)2

]−1/4
eikx x exp

[
−1

2

(
y

lB
− lBkx

)2
]

Hn

(
y

lB
− lBkx

)
(3.6)

Here Hn are the Hermite polynomials. The harmonic oscillator wavefunction is
localized at y0 = �kx|e|B in y-direction with a semiclassical spread in the y-direction

Rc = √
2n + 1lB, the cyclotron radius [6].

We see that in the presence of a quantizing magnetic field, the constant DOS of
the 2DEG evolves into a discrete DOS with an energy spacing �ωc. If the Zeeman
splitting is included, the energy eigenstates are modified [4]:

E±
n = �ωc

(
n + 1

2

)
± 1

2
g∗μB B (3.7)

where μB = �|e|
2me

is Bohr’s magneton. Here, g∗ is the effective g-factor, which can
be substantially enhanced compared to the bare GaAs g-factor (see Sect. 9.4.4).

The degeneracy of the LLs can be found from the following consideration: the
center coordinate of the eigenmodes (3.6) y0 is required to lie within the width W of

http://dx.doi.org/10.1007/978-3-319-21051-3_9
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the sample: 0 ≤ y0 ≤ W . We find that the number of allowed kx states per unit area
increases with B and is given as:

nL = |e|B
h

= B

φ0
(3.8)

where φ0 = h/|e| is the flux quantum. Hence exactly 2nL electrons per unit area
are allowed to lie within one LL (for a spin degeneracy of two). The filling factor is
defined as ν = ns/nL = hns/|e|B and represents the number of electrons per free
state in a LL. A filling factor ν = 2 corresponds to the lowest LL completely filled,
whereas for ν = 1 only the energetically lower spin-split branch of the lowest LL is
filled.

The relation between the LL energy eigenvalues and the magnetic field is linear
and can be illustrated in a Landau fan (Fig. 3.1a). Here the LL energies are plotted

(a)

(b)

Fig. 3.1 a LL energies for n = 0, 1, 2,… versus the magnetic field. At a fixed electron density,
increasing the magnetic field increases the degeneracy of the LLs and thus subsequently depletes
higher LLs. This results in 1/B-periodic jumps of the electrochemical potential (red). b Electronic
density of states in a strong magnetic field. The δ-shaped DOS peaks are broadened by scattering
and disorder, leading to localized states in the tails of the DOS peaks. When the Zeeman splitting
is included, the spin degeneracy of the LLs is lifted and the DOS peaks split in energy by g∗μB B
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for n = 0, 1, . . . as a function of B or 1/ν. Increasing the magnetic field increases
the degeneracy of the LLs (3.8). Hence, at a fixed electron density ns , electrons are
transferred from higher LLs to lower LLs as the magnetic field strength is increased.
Decreasing the filling factor across ν = 2, 4, 6, . . ., the topmost LL is emptied,
causing 1/B-periodic jumps of the Fermi energy. When also the spin-splitting is
taken into account, jumps in the Fermi energy occur at ν = 1, 2, 3, . . ..

In this simplified picture, the DOS of the electrons is perfectly quantized (left
column, Fig. 3.1b). When disorder and scattering processes are present like in any
realistic sample, the δ-peaked DOS is broadened . The states which lie in the tails of
the broadened DOS are localized (red areas in Fig. 3.1b, middle column) and do not
contribute to the transport. In contrast states at the DOS maximum are extended and
span throughout the sample (black lines in Fig. 3.1b, middle column) [4]. When the
magnetic field is changed now, the Fermi energy no longer jumps between extended
states, but localized states are depopulated at certain B-field intervals. As the con-
ductivity σxx of localized states is expected to vanish at low T , this implies a van-
ishing longitudinal resistivity at low temperatures whenever only localized states are
(de)populated.

3.3 Shubnikov-De Haas Effect

A clear deviation of the ordinary Drude-model behavior can be seen when the LL
splitting becomes larger than the broadening due to disorder and scattering. This is
true when ωcτtot ≈ 1, where τtot is the total scattering time. Here, the quantized DOS
affects the longitudinal resistivity that can be measured in a Hall measurement. The
result of such a measurement is shown in Fig. 3.2a. At low magnetic fields (B < 40
mT), ρxx depends only weakly on the magnetic field. In this regime, the Drude model
is expected to be a good description. At B > 40 mT, 1/B-periodic oscillations in the
longitudinal resistivity due to the modulation of the DOS set in, the Shubnikov-de
Haas (SdH) oscillations. At low magnetic fields and assuming a Lorenzian DOS
broadening and dominant long-range scattering potentials, an expression for ρxx can
be found [4]:

ρxx (B, T ) = m∗

nse2τ

[
1 − 2e−π/ωcτq

2π2kBT/�ωc

sinh(2π2kBT/�ωc)
cos

(
2π

hns

2eB

)]
(3.9)

The Dingle factor 2e−π/ωcτq accounts for the finite lifetime broadening of the LLs [4].
The quantum lifetime τq can be obtained from temperature-dependent measurements
of the SdH oscillations and comparison with (3.9).
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(a)

(b)

(c)

Fig. 3.2 a Shubnikov-de Haas oscillations of the longitudinal resistivity ρxx at small magnetic
fields. At higher magnetic fields, ρxx develops distinct peaks and wide regions of ρxx ≈ 0 in
between the peaks (b). Whenever zeroes in ρxx are observed, the Hall resistivity ρxy develops a
plateau with a quantized resistance value described by ρxy = h

ie2 with an integer ν (c)

3.4 Integer Quantum Hall Effect

At low temperatures and in a strong magnetic field, where the energy quantization
of the DOS becomes dominant, the quantities measured in a Hall measurement
also become quantized. A measurement where this becomes obvious is shown in
Fig. 3.2b, c. As the magnetic field strength is increased, a transition from the Drude
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regime (B < 40 mT) to a regime where SdH oscillations are observed occurs. At
even stronger magnetic fields, ρxx no longer oscillates, but exhibits wide zeroes with
sharp peaks in between. Whenever ρxx exhibits a zero, a plateau in the Hall resistance
ρxy is observed. The plateau values correspond to resistances given by

ρ
plateau
xy = h

ie2 (3.10)

where i is an integer number. This effect is called (integer) quantum Hall effect (and
has been discovered by Klaus von Klitzing [2]). The quantization of ρxy was found
to be independent of the details of the sample and even of the material system in
which the measurement was implemented. The constant RK = h

e2 = 25812.807449
� is called the von Klitzing constant.

In the center of a quantum Hall plateau, ρxx is exponentially suppressed in tem-
perature. Here ρxx follows an Arrhenius law [7]:

ρxx ∝ exp

(
− Egap,xx

2kBT

)
(3.11)

The energy gap Egap,xx is the energy difference between the Fermi energy and the
energetically lowest unoccupied extended state. Similarly, the deviation of the Hall
resistance from the quantized plateau value is described by an activated behavior [7]:

�ρxy(T, B) =
∣∣∣∣ρxy(T, B) − h

νe2

∣∣∣∣ ∝ exp

(
− Egap,xy

2kBT

)
(3.12)

3.4.1 Landauer-Büttiker Formalism

Shortly after the discovery of the QHE, the importance of the sample edges has
been recognized [8]. The most simple picture in which transport in a multi-terminal
system in the QH regime can be described is the Landauer-Büttiker picture. Though
this model neglects complications arising from self-consistency of charge distribution
and potential at the edge, it is still very useful and accurately describes the physics in
many situations. The situation of a sample edge is shown schematically in Fig. 3.3.
At the boundary of the 2DEG to vacuum, LL energies are adiabatically lifted due to a
confinement potential Vconf (y) (thick black line). In the situation shown, the extended
states of the lowest three LLs are occupied in the bulk. Close to the edge, the LLs
intersect with the Fermi energy. Here, partially filled extended states contribute to
the conductance. In the simplest picture, the intersection of the non-interacting LLs
with the Fermi energy is referred to as “edge channel” and seen as one-dimensional
channel where the current flows. This current is dissipationless due to the chirality of
the edge states and the suppressed backscattering across the wide bulk of the sample.
Electrons in the edge states propagate with a group velocity of [4]:
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Fig. 3.3 Non-interacting LL
energies at the edge. Due to a
confinement potential
Vconf (y) (thick black line),
single-particle energies are
lifted towards the edge. In
the situation shown, the
extended states of three LLs
are fully populated in the
bulk. Towards the edge, they
intersect the Fermi energy,
defining one-dimensional
channels of partially filled
states

vx = 1

�

∂Vconf

∂kx
= ∂Vconf(y)

∂y

∣∣∣∣
y= �kx

eB

1

|e|B (3.13)

and contribute 2e2/h to the conductance. If the spin degeneracy is lifted by the
Zeeman splitting, each LL splits into two edge channels which each contribute e2/h
to the conductance. In the generalized multi-terminal Landauer-Büttiker formalism
[9–11], we can relate the currents I1, I2, . . . , In entering into the contacts 1, 2, . . . , n
with the potential V1, V2, . . . , Vn of the contacts via [4]:

⎛
⎜⎜⎜⎝

I1
I2
...

In

⎞
⎟⎟⎟⎠ = e2

h

⎛
⎜⎜⎜⎝

N1 − R1 −T12 . . . −T1n

−T21 N2 − R2 . . . −T2n
...

...
...

−Tn1 −Tn2 . . . Nn − Rn

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

V1
V2
...

Vn

⎞
⎟⎟⎟⎠ (3.14)

Here Nk modes are inserted in the contact k and we have used the reflection probabil-
ities Rk and the transmission probabilities Tk,l from contact l to contact k. Making
use of this framework, we will now try to understand the observations of the IQH
effect.

For this, we first look at a situation where the Fermi energy lies in the tails of
the DOS peaks in the bulk. This situation is depicted in Fig. 3.4a. In such a situation
where disorder is present, the LL energies are shown as a function of the spatial
coordinate y in the middle row of Fig. 3.4a. Intersections of Fermi energy and LL
energies occur close to the edge, but also in the bulk where the disorder potential
exhibits a minimum. A schematic configuration of edge states in such a situation
is shown in the rightmost row of Fig. 3.4a. Here, the edge state corresponding to
the lowest LL is flowing dissipationless along the edge and is decoupled from the
counterpropagating edge state at the other side of the Hall-bar. The second LL is
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(a)

(b)

Fig. 3.4 Landauer-Büttiker edge channel picture for different filling factors. The spin-splitting is
neglected in this picture. For ν ≈ 2, the Fermi energy is located in the tails of the DOS (a). In
this case, extended states are either localized in the bulk or propagate along the edge. In a situation
where the filling factor has been increased and no quantized Hall resistance is observed (b), the
Fermi energy lies near the DOS peaks corresponding to extended states. In this situation extended
states percolate through the bulk, connecting both edges and causing finite backscattering

occupied in certain areas of the bulk, leading to localized states and an additional
edge state encircling them.

We now consider a situation where current is only inserted or extracted via the
source or drain contacts of the Hall-bar (S or D in Fig. 3.4a, right column). Due to
the dissipationless flow of current along the edges, the potential of source, contact 1
and contact 2 are identical: VS = V1 = V2. The same is true for drain and contacts
3 and 4: VD = V3 = V4. Hence, ρxx measured between contacts 1 and 2 or 3 and
4 vanishes in this situation. The conductance from source to drain is contributed
by ν edge states, with a total conductance of ν e2

h . Without backscattering, we find
from (3.14) (see Appendix B) a quantized Hall resistance ρxy = h

e2
1
ν . Thus, we can

identify the integer number i (3.10) as the filling factor: i = ν.
When the Fermi energy lies at the center of the DOS maxima (Fig. 3.4b), the

second edge state is no longer confined to localized states but percolates throughout
the whole sample (rightmost row in Fig. 3.4). This leads to backscattering between
counterpropagating edge states and hence finite ρxx and a deviation of ρxy from the
plateau value.
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3.4.2 Many-Body Wavefunction of the Lowest Landau Level

In the lowest LL and in the symmetric gauge, the electron single-particle wavefunc-
tions can be written as [5]:

ηl(z) =
(

2π2l l!
)−1/2

zle− 1
4 |z|2 (3.15)

where z = x − iy is the complex coordinate and l is the angular momentum. A
many-body wavefunction �LLL can be written as the product of the single-particle
wavefunctions and the Slater determinant, which guarantees antisymmetry under
particle exchange [5]:

�LLL =

∣∣∣∣∣∣∣∣∣∣

1 1 1 . .

z1 z2 z3 . .

z2
1 z2

2 z2
3 . .

. . . . .

. . . . .

∣∣∣∣∣∣∣∣∣∣
exp

[
−1

4

∑
i

|zi |2
]

=
∏
j<k

(
z j − zk

)
exp

[
−1

4

∑
i

|zi |2
]

(3.16)

Here, and for the rest of this chapter, we have set lB = 1. The determinant is known
as Vandermonde determinant and equals

∏
j<k

(
z j − zk

)
. This factor takes account for

Pauli’s exclusion principle by demanding that the wavefunction vanishes for two
identical electron coordinates.

3.5 Fractional Quantum Hall Effect

The IQH effect is a single-particle effect and can be understood without taking
electron-electron interaction into account. In 2DEGs of even higher purity and
at even lower temperature than necessary for the observation of the IQH effect,
electron-electron interaction effects eventually become important. An effect where
this becomes obvious is the FQH effect.

One of the most impressive measurements of this effect available in literature
is shown in Fig. 3.5 (taken from [12]). There, the longitudinal resistance of a high
mobility electron gas has been measured as a function of the magnetic field B at very
low temperature (T ≈ 35 mK). At integer filling factors ν = 1, 2, . . . the longitudinal
resistance drops to zero, as seen before. However, for filling factors ν < 1, a large
number of new states with ρxx ≈ 0 appear. Also in the upper spin-branch of the
lowest LL, 1 < ν < 2, several states with ρxx ≈ 0 are visible. The zeroes of
ρxx appear at filling factors ν = p/q, where p and q are integers and q is odd.
At the same time, plateaus in the Hall resistance are observed at the corresponding
values Rxy = h

νe2 . The effect giving rise to these observations is called the fractional
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Fig. 3.5 Longitudinal resistance versus the magnetic field of a high-mobility electron gas at low
temperature. Many IQH and FQH states are observed. (Reprinted figure with permission from [12].
Copyright 2002 by the American Physical Society.)

quantum Hall effect. We point out some of the experimental observations that have
been made from transport measurements:

• The most prominent FQH states that are observed are ν = 1/3, 2/5, 3/7, . . . and
ν = 2/3, 3/5, 4/7, . . .

• Many FQH states are observed in the lowest LL (ν < 2). In contrast, only a few
FQH states are observed in the second LL (2 < ν < 4) and usually no FQH states
are observed in even higher LLs (4 < ν).

• The spectrum of the FQH states (Fig. 3.5) resembles a fractal pattern with a certain
self-similarity. For example, FQH states seem to occur symmetrically around ν =
1/2 and 1/4 and also around ν = 3/2. Furthermore, around ν = 1/2 for example,
the behavior of Rxx resembles its behavior around B = 0.

3.5.1 Laughlin’s Wavefunction

Much of the theory of the FQH effect developed from the wavefunction proposed by
Laughlin [13]:

�
1/m
Laughlin =

∏
j<k

(
z j − zk

)m exp

[
−1

4

∑
i

|zi |2
]

(3.17)
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where z j = x j + iy j is the complex coordinate. Theoretical and experimental
findings strongly suggest that this is the correct wavefunction for the FQH states at
ν = 1/m (also referred to as Laughlin sequence). Let us mention why this wave-
function is a good choice for the groundstate at ν = 1/m. The basic requirements
for a many-body wavefunction believed to be relevant at ν = 1/m are [6]:

• As the FQH effect is not a single-particle effect, pairwise correlations (i.e. the
Coulomb repulsion) have to be taken into account. This can be done via a term∏
j<k

f
(
z j − zk

)
.

• The many-particle wavefunction is required to be an eigenstate of the total angular
momentum, hence

∏
j<k

f
(
z j − zk

)
must be a polynomial of z1, z2, . . . , zN of

degree L [6], where L is the total angular momentum.
• The last requirement for a Fermionic wavefunction is the antisymmetry under

electron exchange. The only function f that fulfills all three criteria is given by
f (z) = zm [5] where m is an odd integer.

Overall, this wavefunction is able to explain the FQH states at ν = 1/m and the states
at ν = 1−1/m by particle-hole inversion. As a consequence of the electron-electron
interaction, the quasiparticle excitations of a 1/m FQH state carry a quasiparticle
charge e∗/e = 1/m.

So how can the other FQH states be explained? Early approaches have tried to
construct other filling factors iteratively from the Laughlin sequence in a hierarchi-
cal approach, like for example the Haldane-Halperin hierarchy [14, 15]. The most
successful approach that is able to explain most of the FQH states is however the
composite Fermion theory, which is discussed in the next section.

3.5.2 Composite Fermion Theory

The composite Fermion theory introduced by Jain (for an overview see [5]) allows
to draw an analogy between the FQH effect and the IQH effect and tries to unify
both phenomena. In this theory, we no longer consider the behavior of electrons, but
of quasiparticles called composite Fermions (CFs). When the Coulomb interaction
which is crucial for the FQH effect is taken into account, the system can be described
in terms of weakly interacting CFs. These quasiparticles have the same function for
the FQH effect as electrons have for the IQH effect [5].

Chern-Simons approach In order to motivate the CF theory, we consider interacting
electrons at a filling factor ν which are exposed to an external magnetic field B and
an interaction V . Following [16] we now would like to transform this system to a
description of only weakly interacting quasiparticles. This can be done by a Chern-
Simons gauge transformation where the electron wavefunction � is written as [5]:



32 3 The Quantum Hall Effect

� =
∏
j<k

(
z j − zk

|z j − zk |
)2p

�CS (3.18)

With this, the system can be described in terms of �CS [16]:

H ′�CS = E�CS (3.19)

H ′ = 1

2m∗
∑

i

(pi + eA(ri ) − ea(ri ))
2 + V (3.20)

where a(ri ) = 2pφ0
1

2π

∑
j 	=i ∇iθi j and θ jk = i ln

(
z j −zk
|z j −zk |

)
[5]. Naively, the vector

potential a(ri ) can be understood to attach 2p flux quanta to every electron at r j 	= ri ,
which are then experienced by the electron at coordinate ri . In order to be able to
construct an effective theory, we now use a mean-field approximation: the electron
at ri sees an uniform effective magnetic field B∗ instead of the flux quanta attached
to the other electrons. In this approximation, we can write [16]:

A − a = A∗ + δA (3.21)

from which we find the effective magnetic field experienced by the CFs:

B∗ = B − 2pnsφ0 (3.22)

In this approximation, the Hamiltonian can be now written as [16]:

H ′ = 1

2m∗
∑

i

(pi + eA∗(ri ))
2

︸ ︷︷ ︸
H ′

0

+V + V ′(δA) (3.23)

FQH effect as IQH effect of composite Fermions From this approximation we
see the following: the new quasiparticles, the CFs, can be described in analogy
to electrons in an effective magnetic field B∗ = B − 2pnsφ0, described by the
Hamiltonian H ′

0. In this effective field, CFs occupy the analog of LLs, commonly
referred to as �-levels. The CF filling factor ν∗ is related to the electron filling factor
ν via [5]:

ν = ν∗

2pν∗ ± 1
(3.24)

Here, the ± in the denominator corresponds to a positive or negative sign of B∗. We
furthermore notice that the effective magnetic field B∗ disappears at filling factors
ν = 1/2p. In these situations a “sea” of CFs (with 2p flux quanta) is observed, in anal-
ogy to an electron Fermi liquid. Looking back to Fig. 3.5, we now can understand the
fractal structure as a result of series of CF states around B∗ = 0 at ν = 1/2, 1/4, . . ..
Furthermore, the similarity of transport at ν = 1/2, 1/4, . . . to the transport at B = 0
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Table 3.1 Composite Fermion states 2pCFν∗ for different ν∗ and 2p and the corresponding electron
filling factors ν = ν∗

2pν∗+1

−5 −4 −3 −2 −1 ν∗ 1 2 3 4 5

5/9 4/7 3/5 2/3 1 ν =
2pCFν∗

1/3 2/5 3/7 4/9 5/11

2CF−5
2CF−4

2CF−3
2CF−2

2CF−1
2CF1

2CF2
2CF3

2CF4
2CF5

5/19 4/15 3/11 2/7 1/3 ν =
2pCFν∗

1/5 2/9 3/13 4/17 5/21

4CF−5
4CF−4

4CF−3
4CF−2

4CF−1
4CF1

4CF2
4CF3

4CF4
4CF5

3/17 2/11 1/5 ν =
2pCFν∗

1/7 2/13 3/19

6CF−3
6CF−2

6CF−1
6CF1

6CF2
6CF3

Adapted from [5]

is a result of the analogy of the physics of electron transport at B = 0 to the transport
of CFs at B∗ = 0.

Table 3.1 shows different CF states 2pCFν∗ , where 2p flux quanta are attached,
and CFs form �-levels with an integer filling factor ν∗. The corresponding electron
filling factors ν of those states are calculated from (3.24) and are given in Table 3.1.

Comparing the FQH states listed in Table 3.1 with experimental observations (for
example Fig. 3.5), we realize the power of the CF theory: it is able to predict (nearly)
all FQH states observed. Furthermore, FQH states that are very prominent in the
experiment arise from the “lowest orders” of the theory, i.e. for small p and ν∗.

From this approach, the CF wavefunction ψ ν∗
2pν∗±1

can be constructed from an

IQH wavefunction at filling factor ν∗ via [17]:

ψ ν∗
2pν∗±1

= φ±ν∗
∏
j<k

(z j − zk)
2p (3.25)

Here, φ±ν∗ is the many-body wavefunction of an IQH state at ±ν∗. Let us have a
look at the result that is obtained from this for the Laughlin sequence. Here we have
ν∗ = 1 and p = 1, 2, . . . . Inserting the many-body wavefunction of the lowest LL
(3.16) into (3.25), we find again Laughlin’s wavefunction (3.17).

Beyond the CF approach While most of the FQH states can be explained in the
picture of non-interacting CFs, there are a few exceptions where this cannot be done.
One example is the FQH states in the second LL, where the residual interaction
between CFs can no longer be neglected. We will discuss these states in the next
section. Another example is the FQH states at the filling factors ν = 4/11 (see
Fig. 3.5) and ν = 5/13 which are not described by the sequence of (3.24) [18, 19].
Also here, the residual CF interaction is believed to be relevant. These both FQH
states can be seen as a FQH effect of composite Fermions, with CF filling factors
ν∗ = 4/3 or ν∗ = 5/3 [5].
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3.6 Fractional Quantum Hall Effect in the Second Landau
Level

As we have seen, a large number of FQH states is found in the lowest LL. Most of these
states can be well understood in terms of the composite Fermion theory. In contrast,
only a small number of FQH states is observed in the second LL, even in samples with
mobilities exceeding 20 × 106 cm2/Vs and at extremely low temperatures T < 15
mK. Two exemplary measurements of longitudinal and Hall resistivities in high
mobility samples at an estimated electron temperature Tel ≈ 12–13 mK are shown
in Fig. 3.6a–d.

Reentrant integer quantum Hall effect The first big difference of this measurement
to the behavior in the lowest LL can be seen from the Hall resistance. At certain
B-field positions, the Hall resistance is strongly non-monotonic and reaches the
quantized resistance plateau of the neighboring IQH state. In these configurations,
longitudinal resistivity vanishes at the lowest temperatures, but does not exhibit
an activated behavior [20]. This effect is known as reentrant integer quantum Hall
(RIQH) effect. The RIQH effect is a result of the competition between the long
range repulsive and short range attractive contributions to the Coulomb interaction
[21]. In higher LLs, this can lead to a situation where the bulk breaks into regions

(c)(a)

(b) (d)

Fig. 3.6 Longitudinal and Hall resistance of two different high-mobility electron gases at Tel ≈
12–13 mK. The filling factors corresponding to minima in Rxx or plateaus in Rxy are indicated
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with different filling factors [22–24]. In the simplest charge density wave picture,
these density modulated phases appear as stripes or bubbles with a local filling factor
higher or lower by one than the background filling factor [21]. The bubble phase
in the bulk is insulating and localized by disorder. Hence the transport properties
are determined by the integer filling factor of the background. In the second LL,
the density modulated phases are believed to be one- or two electron or hole bubble
phases [25, 26]. In the second LL, these bubble phases lead to a lower ground-state
energy than FQH states at the corresponding filling factors. Hence FQH and density-
modulated phases compete, explaining why less FQH states are observed here. In
even higher LLs, the density-modulated phases are even more favorable compared to
FQH states, explaining why FQH states are absent. We remark that in more realistic
models of the density-modulated phases, quantum fluctuations have to be taken into
account. In the Electron Liquid Crystal picture, this leads to a modified phase diagram
of the density modulated phases [27]. For more details, we refer the reader to a review
article by Fogler [21].

FQH states FQH states at ν = 14/5, 8/3, 7/3 and 11/5 are clearly observed in the
measurements of Fig. 3.6a–d. Furthermore, a pronounced FQH state is observed at
ν = 5/2. This even-denominator state obviously cannot be explained by a theory
of non-interacting CFs, which predicts a compressible CF sea at ν = 5/2. In the
following sections, we will discuss certain candidate wavefunctions that have been
proposed for the FQH states in the second LL and their properties.

3.6.1 Candidate States for ν = 5/2

The ν = 5/2 state has been discovered by Willett and coworkers [28] and has caused
a lot of excitement among theorists and experimentalists since then. One reason
lies in the fact that a state with quasiparticle excitations that possess non-Abelian
statistics might be realized at ν = 5/2 [29, 30]. This property would make that state
potentially interesting for topological quantum computing applications [31]. We will
explore the implications of this possibility in more detail in Chap. 5.

The ν = 5/2 state is extremely fragile and is only observed in the best high
mobility electron gases and at very low temperatures. We have already discussed in
Chap. 2 how growth techniques can be optimized in order to maximize the energy
gap of this state.

In the following, we will discuss the candidate wavefunctions that have been
proposed for the ν = 5/2 state and some of their properties. In Chap. 6 we will
review the most important experiments at ν = 5/2 and discuss which candidate
wavefunctions are compatible with the experimental findings. An overview of the
candidate wavefunctions at ν = 5/2 can be found in Table 3.2. Here, we quote
the quasiparticle charge e∗/e and the Coulomb interaction parameter g that will be
relevant for the quasiparticle tunneling experiments discussed later in this book (g is
twice the scaling dimension of the quasiparticle creation and annihilation operators
[32]). In a tunneling experiment, g describes the scaling of the quasiparticle tunneling

http://dx.doi.org/10.1007/978-3-319-21051-3_5
http://dx.doi.org/10.1007/978-3-319-21051-3_2
http://dx.doi.org/10.1007/978-3-319-21051-3_6
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Table 3.2 Overview of the theoretically proposed parameter pairs g and e∗/e for ν = 5/2, the
proposed edge modes and the spin-polarization for different states. (‘n-A’ non-Abelian; taken from
[32–36])

FF State e∗/e g n-A? Edge modes Spin-pol.

ν = 5/2 K = 8 1/4 1/8 No 1ρD + 2ρD ↑↑ or ↑↓
1/2 1/2 No

MR Pf 1/4 1/4 Yes 1ρD + 1ψD + 2ρD ↑↑
1/2 1/2 No

(3,3,1) 1/4 3/8 No 2ρD + 2ρD ↑↑ or ↑↓
1/2 1/2 No

(1,1,3) 1/4 ≈3/8a No 1ρD + 1ρ̃U + 2ρD (?) ↑↑ or ↑↓
1/2 1/2 (?) No

Pf 1/4 1/2 Yes 1ρD + 3ψU + 2ρD ↑↑
1/2 1/2 No

SU(2)2 1/4 1/2 Yes 1ρD + 1ρ̃D + 1ψD +
2ρD (?)

↑↑

1/2 1/2 No

(3, 3, 1) 1/4 5/8 No 1ρD + 4ψU + 2ρD ↑↑
1/2 1/2 No

SU(2)2 1/4 3/4 Yes 1ρD + 5ψU + 2ρD ↑↑ (?)

1/2 1/2 (?) No

Majorana-gapped
edge-rec. Pf

1/4 1/2 Yes 2ρD + 1ψU + 2ρD (?) ↑↑

1/2 1/2 No

Majorana-gapped 1/4 0.55–0.75 Yes ? ↑↑
Pf 1/2 0.5–0.7 No

Question marks denote entries that could not (or not with full certainty) be identified from the
literature
aIn a gate-defined geometry [34]

conductance gtun as a function of the temperature via gtun ∝ T 2g−2. The relevant edge
excitations, i.e. the edge excitations which are expected to be dominant in tunneling
at low temperatures, are the edge excitations which possess the smallest g.

All candidate wavefunctions shown in Table 3.2 possess e/4 edge excitations,
with g between 1/8 and 3/4. Furthermore, all candidate wavefunctions possess
Abelian e/2 edge excitations, which have a scaling parameter g = 0.5 (apart from
the Majorana-gapped Anti-Pfaffian where g = 0.5 − 0.7 and the Anti-SU(2)2-state
where we are not aware of the size of g for the e/2 excitations). Hence tunneling of e/2
quasiparticles might be present at low temperatures for all candidate wavefunctions
with g ≥ 0.5 for the e/4 quasiparticle excitations.

In the column “Edge modes”, we specify the edge modes expected for each of
the wavefunctions. Here, ρD denotes a downstream charge mode, which propagates
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in the direction expected in a simplified Landauer-Büttiker edge-state picture. ψD or
ψU denote downstream or counterpropagating upstream Majorana Fermion modes
and ρ̃D or ρ̃U denote electrically neutral Bosonic modes, propagating downstream or
upstream. For example the Anti-Pfaffian state is expected to exhibit one downstream
charge mode and three upstream Majorana Fermion modes (plus two downstream
charge modes from the additional IQH edge channels). Finally, the rightmost col-
umn of Table 3.2 indicates if the corresponding state is spin-polarized (↑↑) or spin-
unpolarized (↑↓). Some states may be both, spin-polarized or spin-unpolarized.

3.6.1.1 K = 8 State, Anti-K = 8 State

The K = 8 state is a strong pairing state, where electrons first pair in Bosons of charge
2e and then condense in a Laughlin state [32, 37]. Here single-electron excitations
are gapped and tunneling of single electrons in the ν = 5/2 edge is not possible at
low energies [36]. The wavefunction is given as:

� ({zi }) =
∏
i< j

(
zi − z j

)8
e− 1

4

∑
i |zi |2 (3.26)

The particle-hole conjugate of this state, the anti-K = 8 state does not exhibit a
universal behavior in tunneling experiments [36]. Also, no quantized conductance
at 5/2 × e2/h is expected at low temperatures and voltages where QP tunneling
properties become relevant [36]. Hence the anti-K = 8 state is most likely not of
any practical relevance for the physics at ν = 5/2.

3.6.1.2 Moore-Read Pfaffian State, Anti-Pfaffian and Relatives

The probably most widely recognized state for ν = 5/2 is the Pfaffian state, proposed
by Moore and Read [29]. The reason for this is that it is the exact ground state for a
three-body repulsive interaction [29] and that numerical studies strongly favor this
state, or closely related states (see Sect. 6.2). The Moore-Read Pfaffian (MR Pf) state
is a p-wave paired state of composite Fermions and is fully spin-polarized. The
wavefunction can be written as [29]:

�Pf ({zi }) = Pf

(
1

zi − z j

)∏
i< j

(
zi − z j

)2
e− 1

4

∑
i |zi |2 (3.27)

where the Pfaffian Pf
(
Mi j

)
of an antisymmetric N ×N (N even) matrix M is defined

by [29]:

Pf
(
Mi j

) = 1

2N/2(N/2)!
∑
σ∈SN

sign(σ)

N/2∏
k=1

Mσ(2k−1),σ(2k) (3.28)

http://dx.doi.org/10.1007/978-3-319-21051-3_6
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which is the antisymmetrized sum over all pairs 1
(zi −z j )

[30]. The anti-Pfaffian state
[38, 39] is obtained from the MR Pf state by particle-hole conjugation. The anti-
Pfaffian state is also spin-polarized and possesses edge excitations with non-Abelian
statistics.

Edge reconstruction in a smooth confinement potential can change the edge prop-
erties of FQH states [40]. These states share the bulk properties with their parent
state, but may possess different edge modes and show different signatures in a tun-
neling experiment. This leads for example to the edge-reconstructed Pfaffian state,
which shares the bulk properties of the Pfaffian state but shows different edge modes
[32].

It has been shown that an interaction involving charge transfer between edge
modes can lead to an opening of a gap for a pair of left- and right-moving Majo-
rana Fermion modes [32]. This leads to the Majorana-gapped edge-reconstructed
Pfaffian state and the Majorana-gapped anti-Pfaffian state, which have different edge
properties than Pfaffian and anti-Pfaffian states (see Table 3.2).

3.6.1.3 (3,3,1)-State, Anti-(3,3,1)-State

The (3,3,1)-state [41] is an Abelian candidate state for ν = 5/2. It exists as a spin-
polarized and as a spin-unpolarized state, which share the same edge properties but
are of a different physical origin [36]. The spin-unpolarized (3,3,1)-state at ν = 5/2
is an analog to the bilayer (3,3,1)-state originally proposed by Halperin [41]. Here,
spin-up and spin-down electrons take the role of the electrons in the two different
layers [36]. Halperin’s (n, n, m)-wavefunction can be written as:

�n,n,m =
∏
k<l

(zk − zl )
n
∏
α<β

(wα − wβ)n
∏
k,α

(zk − wα)m exp

⎡
⎣−1

4

∑
l,α

(
|zl |2 + |wα|2

)⎤⎦
(3.29)

where zk = xk + iyk and wα = xα + iyα are the positions of the two flavors of
electrons [34]. Hence in the case of the spin-unpolarized (3,3,1)-state, zk and wα

denote coordinates of spin-up and spin-down electrons.
The spin-polarized (3,3,1)-state in contrast arises when charge 2e/3 quasiparti-

cles, on top of a ν = 1/3 Laughlin liquid, condense [36].
The particle-hole conjugate state, the anti-(3,3,1)-state is also a potential candidate

for ν = 5/2. However, here only the spin-polarized version has the correct filling
factor ν = 5/2 [36].

3.6.1.4 (1,1,3)-State

Very recently it was argued that the Abelian (1,1,3)-state is a possible candidate
wavefunction for ν = 5/2 and is in best agreement with the existing experimental
results [34]. This state possesses a similar topological order as the (3,3,1)-state and
is expected to show similar signatures in a tunneling experiment [34]. However,
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in contrast to the (3,3,1)-state, it possesses a (Bosonic) counterpropagating neutral
mode and is hence in agreement with experiments that found evidence for this (see
Chap. 6). A wavefunction for the (1,1,3)-state can be constructed from (3.29), in
analogy to the (1,1,2)-state which is believed to describe the spin-singlet state at
ν = 2/3 [42]. With this, the following wavefunction is found for the (n,n,m)-state
[34]:

�n,n,m = P̂ exp

⎡
⎣−1

4

∑
l,α

(
|zl |2 + |wα|2

)⎤⎦∏
k<l

(∂zk − ∂zl )
m−n

∏
α<β

(∂wα − ∂wβ )m−n

×
∏
k<l

(zk − zl )
m
∏
α<β

(wα − wβ)m
∏
k,α

(zk − wα)m

where P̂ antisymmetrizes the wavefunction with respect to the flavor degree of
freedom [34].

3.6.1.5 SU(2)2 State, Anti-SU(2)2 State

The SU(2)2 state has been proposed by Blok and Wen [43, 44]. Here, electrons are
split in three partons, a charge e/2 Fermion and two e/4 Fermions with respective
filling factors one and two. For decoupled partons, the resulting wavefunction would
simply be a product of three IQH wavefunctions [36]. However, an independent
motion of the partons gives rise to unphysical degrees of freedom, which is resolved
by demanding identical coordinates for the partons [43]. With this, the following
wavefunction is found [32]:

� ({zi }) = [χ2({zi })]2
∏
i< j

(
zi − z j

)
e− 1

4

∑
i |zi |2 (3.30)

Here χ2({zi }) is the Fermion wavefunction of two filled LLs [32]. The anti-SU(2)2
state has been treated in literature and is a possible candidate for ν = 5/2 (see
Table 3.2). Here, the disorder-dominated particle-hole conjugate of the SU(2)2 state
was considered, as the non-equilibrated state does not exhibit universal physical
properties [36].

3.6.2 Candidate States for ν = 7/3 and ν = 8/3

In the following, we will discuss different candidate wavefunctions for ν = 7/3 and
8/3. Possible states are (particle-hole conjugate) Laughlin states (L1/3, L1/3), dif-

ferent (particle-hole conjugate) Bonderson-Slingerland states (BS2/3, BSψ
1/3, BS2/3,

BS
ψ
1/3) or the four-clustered Read-Rezayi state (RRk = 4) and its particle-hole

http://dx.doi.org/10.1007/978-3-319-21051-3_6
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Table 3.3 Overview of the theoretically proposed parameter pairs g and e∗/e for different states
at ν = 7/3 and 8/3 (‘n-A’ non-Abelian; taken from [35])

FF State e∗/e g n-A?

ν = 7/3 L1/3 1/3 1/3 No

BS2/3 1/3 23/24 Yes

1/3 1/3 No

BSψ
1/3 1/3 17/24 Yes

1/3 1/3 No

RRk = 4 1/6 1/3 Yes

ν = 8/3 L1/3 1/3 2/3 No

2/3 2/3 No

BS2/3 1/3 7/24 Yes

1/3 2/3 No

2/3 2/3 No

BS
ψ
1/3 1/3 13/24 Yes

1/3 2/3 No

2/3 2/3 No

RRk = 4 1/6 1/6 Yes

conjugate (RRk = 4). An overview of the edge modes of the candidate states is given
in Table 3.3. We would like to stress that at ν = 7/3, only the tunneling of the lowest
quasiparticle excitations is relevant, while for ν = 8/3, all candidate wavefunctions
possess an e∗/e = 2/3 edge mode with g = 2/3, which thus might also lead to
the observation of e∗/e = 2/3 quasiparticle tunneling for a particle-hole conjugate
Laughlin state.

3.6.2.1 (Particle-hole Conjugate) Laughlin State

The simplest explanation for the FQH states at ν = 7/3 and 8/3 would be a (particle-
hole conjugate) Laughlin state, i.e. a ν = 1/3 or 2/3 state, residing on top of a
completely filled LL. The wavefunction is the well-known Laughlin wavefunction
(3.17). Numerical studies have indicated that ν = 7/3 and 8/3 might not be well
described by this Laughlin wavefunction [45–48].

3.6.2.2 Bonderson-Slingerland States

The Haldane-Halperin hierarchy [14, 15] is used to construct hierarchical FQH states
in the lowest Landau level.1 Here, the fundamental quasielectrons and quasiholes of
a FQH state in the first Landau level themselves form a new FQH state. In a gen-

1It should be noted that it is not clear whether this hierarchy is actually implemented in reality, as
there are inconsistencies with experiment and theory, see for example [5].
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eralized approach, Bonderson and Slingerland [49] showed that hierarchical states
that are constructed over the Moore-Read Pfaffian state can reproduce all important
filling factors of the second Landau level, hence creating a closed scheme that might
comprise all the physics of the second Landau level. The Bonderson-Slingerland
states are expected to be px − i py paired and non-Abelian, like the MR Pf state. The
most simple hierarchy wavefunctions are found by building on the I (vacuum) fusion
channel of the fundamental quasielectrons and quasiholes of the Moore-Read Pfaf-
fian state. Here, the wavefunctions can be written as composite Fermion construction
[49]:

ψBSν = PLLL

[
Pf

(
1

zi − z j

)
χ

2p+1
1 χ±n

]
(3.31)

where χn is the wave function of n filled Landau levels and PLLL is the projection
onto the lowest LL. This can be written in good approximation as [49, 50]:

ψBSν = ψ
(MR)
1 ψ

(CF)
n

2pn±1
(3.32)

where ψ
(MR)
1 is the Bosonic ν = 1 MR Pf wavefunction and ψ

(CF)
n

2pn±1
is the CF

wavefunction at ν = n
2pn±1 . The states BS2/3 and BS2/3 are hence the respective

candidates for ν = 7/3 and ν = 8/3.
Building on a fundamental quasihole and quasielectron gas with the ψ (Majorana

Fermion) fusion channel, other hierarchical states (denoted as BSψ
ν ) can be con-

structed [49]. Here, the candidate states for ν = 7/3 and 8/3 are BS 
1/3 and BS

ψ
1/3.

3.6.2.3 Read-Rezayi State

In the k-clustered Read-Rezayi states (RRk), clusters of k Anyons are expected to
form effective Bosons and to condense in a liquid of filling factor ν = k/(k + 2)

[30, 51]. The k = 2 Read-Rezayi state is identical to the Moore-Read Pfaffian state.
The interest in this state is particularly large, as universal quantum computation might
be possible here (for k = 3) [52].

The RRk = 4-state and its particle-hole conjugate, the RRk = 4-state are potential
candidates for the wavefunctions at ν = 7/3 and 8/3. Here we expect e∗/e = 1/6
quasiparticle excitations to show up in a tunneling experiment.

3.6.3 Candidate States for ν = 12/5

The ν = 12/5 state is even more fragile than the ν = 5/2 state [53–55] and has not
been investigated by us. A measurement where the ν = 12/5 state is slightly visible
in one of our samples is shown in Fig. 3.7. Due to the potentially interesting physics
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Fig. 3.7 Longitudinal resistivity of a high-mobility Hall-bar, measured at an electronic temperature
Tel ≈ 12–13 mK. The ν = 12/5 state (identified by the B-field position) is weakly visible as a dip
in ρxx

involved, we nevertheless would like to discuss possible ground states. At ν = 12/5,
numerical calculations indicate that a non-Abelian Read-Rezayi state [30, 56] or a
Bonderson-Slingerland state [50] might be realized at this filling factor, making it
even more interesting for topological quantum computing than ν = 5/2 due to the
potential possibility of universal quantum computation.

Potential candidates for ν = 12/5 are an Abelian, hierarchical Haldane-Halperin-
state (HH2/5) [14, 15], two different non-Abelian Bonderson-Slingerland states

BS2/5 and BS
ψ
3/5, and the non-Abelian particle-hole conjugate Read-Rezayi 3-

clustered state (RRk = 3). The respective quasiparticle excitations and their para-
meters are cited in Table 3.4.

Table 3.4 Overview of the theoretically proposed parameter pairs g and e∗/e for different states
at ν = 12/5 (‘n-A’ non-Abelian; taken from [35])

FF State e∗/e g n-A?

ν = 12/5 HH2/5 1/5 3/5 No

2/5 2/5 No

BS2/5 1/5 9/40 Yes

1/5 3/5 No

2/5 2/5 No

BS
ψ
3/5 1/5 19/40 Yes

1/5 3/5 No

2/5 2/5 No

RRk=3 1/5 2/5 Yes

2/5 2/5 No
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3.7 Conclusion

In this chapter, we have given a review of the basics of quantum Hall physics.
We have discussed the properties of the FQH states in the second LL, especially
their interaction parameters that become important in tunneling experiments, their
edge modes and their spin-polarization. These are the most important characteristics
that allow a comparison with experiments. In Chap. 6 we will give an overview of
experiments at ν = 5/2 by other authors. There, we will compare the experimental
outcomes to the properties that we have discussed here. In Chap. 11, we will discuss
quasiparticle tunneling experiments performed by us, which then are compared to
the candidate states reviewed in the present chapter.
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Chapter 4
Physics at the Edge

Abstract We review the most important theoretical findings about edge states in the
IQH and FQH regime. In the first part of this chapter, we discuss the spatial structure
of edge states, which is strongly influenced by interaction effects at the edge. Then
we discuss a theoretical approach developed byWen, which describes excitations of a
FQH edge as a chiral Luttinger liquid. Finally we discuss the experimental signatures
of tunneling across a QPC in a chiral Luttinger liquid.

4.1 Introduction

God made the bulk; surfaces were invented by the devil.
Wolfgang Pauli

The behavior of most physical systems can be understood more easily, if the system
is assumed to be infinitely large and if edge or surface effects are neglected. In
contrast, edge effects are crucial for our understanding of the quantum Hall effect.
Furthermore, edges reflect the properties of the bulk FQH state and allow us to
probe its properties in transport measurements. In the following, we will give a short
review about edge properties of quantum Hall systems. We start by theories which
discuss the spatial behavior of density distribution and energy levels, which we refer
to as “spatial edge state picture”. Then we discuss the theory of the chiral Luttinger
liquid by Wen. This picture tells us something about the dynamical properties of
the edge, which will become especially important for the quasiparticle tunneling
experiments performed by us (Chap.11). We refer to those theories as “energetic
edge state picture”.

4.2 Spatial Edge State Picture

Top-gate defined structures on 2DEGs provide a smooth confinement potential which
defines the edge of a FQH liquid. In a realistic system, interactions at the edge
strongly change the properties of the edge, compared to the properties of the bulk.
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In this section, we discuss the spatial structure of edge states in the IQH and FQH
regimes. This structure will be of importance for the experimental results discussed
later in this book, especially Chap.10. For further details we refer the reader to the
comprehensive review article by Deviatov [1].

4.2.1 Self-consistency at the Edge

The Landauer-Büttiker edge state picture which we have discussed in the preceding
chapter does not take electron-electron interaction into account and is hence not
sufficient for describing the edge structure of a realistic sample. In this picture,
LL energies are lifted adiabatically towards the edge (Fig. 4.1a). Each LL hosts
nL = 2 |e|B

h electrons, resulting in jumps of the density bynL whenever aLL intersects
the Fermi energy (Fig. 4.1b). Such discontinuities in the density are energetically very
unfavorable in reality, where electron-electron interaction leads to screening and a
self-consistent potential and density distribution at the edge. The self-consistent
picture has been pioneered by Chklovskii et al. [2]. They investigated the problem
in a mean-field approximation, including electron-electron interaction. Instead of
the one-dimensional intersections of the LL energies with the Fermi energy as in
Fig. 4.1a, they found strips of finite width where the Landau level is pinned to the
Fermi energy (Fig. 4.1d). In those strips, the potential gradient is well screened by
the extended states [3] and the density increases smoothly towards the center of
the sample (Fig. 4.1e). We refer to those regions as “compressible”, as unoccupied
extended states exist at the Fermi energy. In contrast, in the incompressible regions,
no extended states lie at the Fermi energy. As a result, potential fluctuations are
no longer screened here, leading to a varying confinement potential, but constant
electron density (Fig. 4.1e). In this picture, the density distribution in the QH regime
is only slightly changed compared to the density distribution at zero magnetic field
(dashed line in Fig. 4.1e).

Let us now turn to the question of the current distribution at the edge. For a self-
consistent edge channel picture in equilibrium, there are two contributions to the
current [4]. The first contribution arises due to regions with a finite potential gradient,
like incompressible stripes at the edge and around localized states [1]. Due to the
finite electron group velocity, this leads to dissipation-free paramagnetic currents [1].
A second contribution arises from the density gradient in the compressible stripes,
leading to diamagnetic currents that flow in the opposite direction (Fig. 4.1f) [4]. In an
equilibrium situation where no bias is applied to the system, the equilibrium currents
at both edges of the sample exactly cancel out, due to the different sign of density and
potential gradients [1, 5].When a bias is applied to either source or drain of aHall-bar,
the electrochemical potential of one edge is lifted with respect to the electrochemical
potential of the other edge. When the electrochemical potential on one side is lifted
by �μ, the width of compressible regions decreases, while incompressible regions
become wider [1] (see Fig. 4.2a, b). By changing the relative width of these both
regions with inverse current directions (see Fig. 4.2c), the total current on both sides

http://dx.doi.org/10.1007/978-3-319-21051-3_10
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(a) (d)

(b) (e)

(c) (f)

Fig. 4.1 LL energies for non-interacting electrons (a) and in a self-consistent picture with electron-
electron interaction (d). In the first case, edge states are defined by intersections of the LLs with
the Fermi energy. This leads to jumps in the electron density at the edge (b) and one-dimensional
chiral edge channels with dissipationless current flow (c). In the second case, the system separates
into compressible and incompressible regions of finite width, leading to an only slight change of
the density distribution, compared to the density distribution at B = 0 (e). In this picture, potential-
and density gradients drive equilibrium currents in both regions (f). Adapted from [2, 3].

of the Hall-bar is no longer equal and a net current flow (“excess current”) has been
induced. It turns out that the value of this current is exactly given by the difference of
the electrochemical potential on both edges [1, 5], multiplied with e/h. This explains
why the Landauer-Büttiker formalism can still be successfully applied. Regarding
the spatial distribution of the excess current, we quote [1]: “Therefore, the “eternal”
question of whether the edge current flows through compressible or incompressible
strips can be answered as follows: the current flows through any areawith a gradient of
the potential, while the nonequilibrium (“excess”) current flows along the boundary
between compressible and incompressible areas and can be attributed to any of
them, depending on whether the areas are considered before or after introducing
nonequilibrium conditions.” We note that we have only discussed edge currents and
neglected possible bulk current contributions (see [6] for an overview).
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(b)

(a)

(b)

Fig. 4.2 a Schematic LL energies at the edge in equilibrium (black) and after varying the electro-
chemical potential by �μ (dashed red). When the electrochemical potential is lifted, the width of
the compressible regions decreases while the width of incompressible regions increases. This leads
to a redistribution of the density at the edge (b). c Schematic distribution of the equilibrium current
with and without an applied bias �μ. An effective “excess” current is created due to the change in
the width of compressible and incompressible regions

After having clarified these details, we would like to use the following convention
in the rest of this book: if we talk about an “edge state”, we are referring to a
compressible region.

4.2.2 FQH Edge States

Many concepts which apply to the edge states in the IQH regime have been extended
to the FQH regime. We will start with the simplest case, a very sharp confinement
potential at the edge. As it turned out, this case is not satisfied in most realistic
systems. In reality, a description by a smooth confinement potential, leading to the
formation of alternating compressible and incompressible strips like in the IQH
regime, is more appropriate. Finally we will discuss edge state pictures which are
based on the composite Fermion theory.
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4.2.2.1 Steep Confinement Potential

MacDonald has investigated edge states in the FQH regime [7] in a situation that
is believed to correctly describe the system with a steep confinement potential [8].
Similar to the Landauer-Büttiker picture, an edge state is defined by the intersection
of an energy level with the Fermi energy (Fig. 4.3). For the FQH states with ν = 1

m ,
a similar construction as in the IQH regime can be applied. While adding an electron
increases the area of theQH liquid in order to enclose one additional flux quantum for
ν =1, it increases in order to enclosem additional flux quanta for ν = 1

m . In analogy to
a LL this can be symbolized by an energy level where (for ν =1/3) every third angular
momentum state is occupied (Fig. 4.3b). Similar to the IQH case, the nonequilibrium
current I in this case can be written as [1]: I = e∗

h �μwhere e∗ = e/m and�μ is the
potential difference between the edges. Formore complicated states, this construction
is less straightforward. The example of the ν = 2/3 edge is shown in Fig. 4.3c. This
state is obtained by particle-hole inversion of the ν = 1/3 edge state, i.e. by adding

Fig. 4.3 Edge states for ν =
1, 1/3 and 2/3 for a steep
confinement potential. The
ν = 2/3 edge state is
constructed by adding a ν =
1/3 droplet of holes to a
filled LL spin branch of
electrons. In this picture, the
spin degeneracy has been
neglected. Adapted from [7]

(a)

(b)

(c)
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a droplet of holes with ν = 1/3 to a ν = 1 IQH edge state.1 In such a construction
with N branches, the Hall conductance was found to be: GH = e2

h

∑N
i=1 fi [7] where

fi = 1/mi . This approach allows the application of the Landauer-Büttiker formalism
to “simple” FQH states [7].

4.2.2.2 Smooth Confinement Potential

A more realistic smooth edge potential has been considered by Beenakker [12] and
Chang [13]. Here, the density towards the edge decreases slowly. Given that the
change of the confinement potential over the magnetic length is small compared
to the energy gaps of the FQH states [3], a sequence of alternating compressible
and incompressible stripes (similar to the picture of Chklovskii et al. [18]) may
form. In this case, the incompressible regions possess constant fractional filling
factors ν1, ν2, . . .. When a bias is applied to the system and the chemical potential is
changed by�μ, the electron density between the incompressible regions with filling
factors ν1 and ν2 changes by �n. Beenakker showed that the current contribution
resulting from this change in density only depends on the adjacent filling factors and
is independent of the details of the edge. It is given by:

I = −|e|
h

�μ�ν (4.1)

where �ν = ν2 − ν1 is the difference of the filling factors of two adjacent incom-
pressible regions. This allows a generalization of the edge channel picture of Büttiker
to a general situation where only the individual filling factors of the incompressible
regions at the edge have to be known.

4.2.2.3 Composite Fermion Picture of Edge States

Edge states in the lowest LL can be interpreted in terms of composite Fermion
models [14–19]. In the following, we will follow the argumentation of [18, 19].
Here, we discuss the system shown schematically in Fig. 4.4, where a smooth con-
finement potential U (y) defines the edge. For a sufficiently smooth potential, the
electron density is gradually reduced towards the edge and alternating compressible
and incompressible stripes are formed [12]. In a CF picture with 2p flux quanta per

electron, the (fractional) bulk filling factor νb can be written as: νb = ν∗
b

2pν∗
b+1 , where

ν∗
b is the CF filling factor in the bulk. At the edge, multiple incompressible regions
with fractional filling factors may be formed. For simplicity we consider the case,

1This edge structure would be expected to exhibit nonuniversal conductance. Later [9–11] it was
argued that the interaction between the counterpropagating edge states leads to the formation of a
downstream charged mode and an upstream neutral mode, resolving the problem of non-universal
conductance.
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(a)

(b)

(c)

Fig. 4.4 CF energy levels for different filling factors, at the edge of the sample shown on top.
Incompressible bulk and edge regions (III and V) are separated from each other and the edge by
compressible regions (II and IV). Electron and CF filling factors in bulk (νb and ν∗

b ) and edge (νe
and ν∗

e ) are indicated in (a–c). “S” denotes silent edge modes. Adapted from [18]

where only one incompressible region at the edge is defined (region III in Fig. 4.4),

with a filling factor νe = ν∗
e

2pν∗
e +1 , where ν∗

e is the corresponding CF filling factor.
This region is separated from bulk and edge by compressible regions (regions II and
IV in Fig. 4.4). Within these compressible regions, the density drops towards the
edge, while the density is constant in incompressible regions.

In a mean-field theory approach, CFs experience an effective magnetic field B∗ =
B − 2pφ0ns and an effective electric field E∗ = 1

e ∇U +〈v〉× 2pφ0ns ẑ [18], where
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〈v〉 is the average drift velocity. With this, the effective CF potential can be written
as Ueff = U (y)+2pφ0

∫
y d I and the non-interacting CF energies in incompressible

regions are given by Sim et al. [18]:

Eν∗ =
(

ν∗ + 1

2

)
�ω∗

c + Ueff (4.2)

where ω∗
c = |eB∗|

m∗
CF

.

An example of a simple situation is shown in Fig. 4.4a. Here, bulk and edge CF
filling factors are ν∗

b = 2 and ν∗
e = 1, corresponding to νb = 2/5 and νe = 1/3.

Towards the edge, the effective CF potential rises until the CF energy levels intersect
the effective CF electrochemical potential μeff in the compressible regions.

This picture does not hold whenever the effective magnetic field B∗ changes sign,
i.e. when a position y1/2p with a local filling factor ν = 1

2p exists in a compressible
region at the edge [18]. In the following, we will restrict the discussion only to cases
where p = 1, i.e. a CF picture with two flux quanta per electron. At y1/2, Eν∗ = Ueff
is found due to the diverging CF effectivemass [16, 17, 19]. Hence at those positions,
a whole Landau fan of CF energy levels emanates from the CF potential. A situation
where this occurs is shown in Fig. 4.4b. Here we have ν∗

b = −2. Hence B∗ in the bulk
points in the inverse direction of the external magnetic field. Towards the edge, the
density is reduced in the neighboring compressible region (IV in Fig. 4.4). Here, a
position with a local filling factor ν = 1/2 exists, fromwhich many CF energy levels
emanate (marked by “S” in Fig. 4.4b, c). In the incompressible region III, density
is again constant and ν < 1/2, corresponding to a positive effective magnetic field
B∗. Here an example with ν∗

e = 1 is shown. This case corresponds to bulk and edge
filling factors νb = 2/3 and νe = 1/3.

Overall, three different types of CF modes appear in this picture [16, 17, 19]: the
first type of CF modes (“Type 1” in Fig. 4.4) corresponds to ν∗ > 0, i.e. a positive
effective magnetic field B∗ > 0. Towards the edge, the electron density and hence
ν∗ are reduced and the energy levels corresponding to the type 1 modes are bent up.
In contrast, “type 2” CF modes correspond to ν∗ < 0, i.e. an effective magnetic field
oriented antiparallel to the external field: B∗ < 0. Here, the energy levels towards
the edge are bent down, until ν = 1/2, where they emanate from the effective CF
potential Ueff. The “type 3” modes correspond to a whole CF Landau fan emanating
from Ueff at positions of the edge y1/2, where ν = 1/2. At y1/2, μeff − Ueff(y)

depends only on the local electron density [16], which is fixed. Hence we have
dUeff(y1/2) = dμeff [18], which means that type 3 modes do not contribute any
excess current. These modes are called “silent modes” and can be interpreted as the
neutral modes that we have mentioned earlier.

Let us now look at the current carried by the CF modes in this model. It has been
shown that the propagation direction of the CF edge states is equal to the propagation
direction for example expected in a simple Büttiker edge state picture [16, 17]. For
this, many-body effects like the divergence of the effective CF mass at ν = 1/2
have to be taken into account, which has not been done in the earlier approaches of
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[14, 15]. When the electrochemical potential of the system is changed by �μ, this
leads to an effective change of the effective CF electrochemical potential �μeff. It
turns out that the current change �Ik , in between two incompressible regions with
filling factors νk and νk+1, can be written as [18]:

�Ik = −|e|
h

�νk�μ (4.3)

where �νk = νk+1 − νk , in agreement with the result of Beenakker for the smooth
edge (see preceding section). This allows a generalization of the Landauer-Büttiker
formalism, where we can write [18]: G = e2

h

∑
k �νkTk , where Tk is the fraction of

the current change �Ik that is transmitted.

4.3 Energetic Edge State Picture

In the last section, we have discussed edge state pictures thatmay for example explain
qualitatively the substructure of the edge in a QPC. However, this description does
not allow quantitative predictions about the dynamical properties of the edges, like
the tunneling properties. In the following, we will give a short review of the chiral
Luttinger liquid model developed by Wen [20–22] and Stone [23]. At the end of
this Chapter, we will discuss the signatures of a chiral Luttinger liquid in QPC
tunneling experiments. The review in this section will mainly follow references
[24–28].

4.3.1 Hydrodynamic Theory

The dynamical properties of a FQH liquid can be found from a hydrodynamical
approach developed by Wen [29]. Here, a droplet of a FQH liquid is investigated.
In the bulk, low-energetic excitations are not allowed, as the FQH state is gapped.
In contrast, at the edge of the droplet, the degeneracies of the LLs are lifted and
excitations are possible, as the edge becomes gapless. The FQH droplet is confined
by a confinement potential Vconf, giving rise to an electric field E . The low-lying
excitations of this liquid to not change the overall charge of the droplet and corre-
spond to deformations of its boundary [25]. A corresponding situation is shown in
Fig. 4.5. Here, the function h(x) parametrizes the edge, such that the density of the
droplet can be written as: ρ(x, y) = �(h(x) − y)ns , leading to ρ(x) = nsh(x) by
integration [26].

A density wave propagates with a velocity v ∝ E
B due to the Lorentz force and

satisfies the wave equation: ∂tρ(x, t) − v∂xρ(x, t) = 0.
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Fig. 4.5 Edge of a FQH
droplet. The function h(x)

describes the displacement of
the edge from its equilibrium
position. Adapted from [26]

The classical Hamiltonian for such a situation can be written as [29]:

H =
∫

dx
1

2
eh(x)ρ(x)E = π�v

ν

∫
dxρ2(x) (4.4)

where ν = E
B and ν = ns h

eB . In Fourier space this corresponds to the classical
Hamiltonian [25]:

H = 2π

ν
�v

∑
k>0

ρkρ−k (4.5)

The full theory of the edge excitations can be constructed by identifying the
canonical coordinates and momenta: qk ≡ ρk and πk ≡ − 2π i

νk ρ−k for which the
Hamiltonian equations hold: q̇k = ∂ H

∂πk
and π̇k = − ∂ H

∂q [25]. The canonical coordi-
nates andmomenta satisfy commutation relations [qk, πk′ ] = i�δk,k′ and the classical
Hamiltonian can be written as: H = iv

∑
k>0

qkπk [24].

Hence the “phonon operators” ρk satisfy the commutation relations [25]:

[ρk, ρk′ ] = ν

2π
kδk+k′,0 (4.6)

With this, we have constructed a theory of electrically neutral excitations where the
overall charge of the FQH droplet is not changed.

Charged excitations Now we would like to construct charged excitations of the
system, for the case of the most simple FQH states at ν = 1/m. Apart from electrons,
we expect quasiparticles of charge e∗/e = 1/m to be present. We start by looking
for the electron creation and annihilation operators of the system. For the electron
creation operator, we require the following property [25]:

[
ρ(x),�†

e (x ′)
]

= δ(x − x ′)�†
e (x ′) (4.7)

which means that the operator �
†
e (x ′) creates a charge e particle at position x ′.

Such operators can be constructed by a technique called “bosonization”. We start by
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defining a Boson field φ(x) by:

ρ(x) = 1

2π
∂xφ(x) (4.8)

The Kac-Moody Algebra defined in (4.6) reads in real space [26]:

[
ρ(x), ρ(x ′)

] = i
ν

2π
∂xδ(x − x ′) (4.9)

which gives by integration:

[
ρ(x), φ(x ′)

] = −iνδ(x − x ′) (4.10)

From (4.7) and (4.10) we see that an electron operator has to be of the following

form [25]: �e(x) ∝ e
i
ν
φ(x).

Now we turn to the quasiparticle creation and annihilation operators. They can be
found from realizing that m QP creation operators must fuse to one electron creation
operator [24]. Hence we find: �QP ∝ eiφ(x). Furthermore, we have [25]:

[
ρ(x),�

†
QP(x ′)

]
= 1

m
δ(x − x ′)�†

QP(x ′) (4.11)

which implies that �†
QP(x ′) creates a charge e∗/e = 1/m QP at x ′.

Electron and QP propagators For the tunneling properties of the FQH liquid, the
propagators of the electrons and QPs will turn out to be crucial (see Sect. 4.3.3).

The electron propagator is calculated as follows [28]:

Ge(x, t) = 〈T (�†
e (x, t)�e(0, 0))〉 (4.12)

= 〈T (e− i
ν
φ(x,t)e

i
ν
φ(0,0))〉 (4.13)

= e
1
ν2

〈φ(x,t)φ(0,0)〉 (4.14)

∝ 1

(x − vt)m
(4.15)

where T denotes time-ordering and 〈. . .〉 = 〈0| . . . |0〉 with |0〉 being the ground
state. Furthermore we have used the propagator of a free phonon field [25]:
〈φ(x, t)φ(0, 0)〉 = −ν ln(x − vt) + const. Similarly we find for the QP operator
[25]:

GQP(x, t) = 〈T (�
†
QP(x, t)�QP(0, 0))〉 ∝ 1

(x − vt)1/m
(4.16)
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4.3.2 Hierarchical States and Bulk-Edge Correspondence

The above hydrodynamic approach can be extended to hierarchical FQH states.
For this however, assumptions about the construction of the FQH states have to be
made. A more elegant way of constructing an edge theory is the so-called bulk-
edge correspondence. In the bulk, the hierarchical FQH states are described by a
Chern-Simons effective theory [27]. Here the most general Abelian FQH liquids are
classified by a symmetric matrix K with integer elements and odd diagonal elements.
It was shown that the bulk topological order, described by K , is directly related to the
physics at the edge [20, 22] and that the behavior of the edge reflects the topological
order in the bulk. This does not require a specific construction of the edge but only
relies on bulk properties. All physical quantities of the edge, like the charge and
statistics of the possible QP excitations and their propagators can be calculated from
K . A detailed discussion of this construction is beyond the scope of this book and
we refer the interested reader to [24, 25].

4.3.3 Tunneling in a QPC

Qualitative discussion With the help of the formalism developed so far, we are now
able to investigate the tunneling properties of a FQH edge at a QPC. In order to
allow a perturbative treatment of the situation, we will investigate the system in a
weak tunneling situation. Here we will look at two different configurations: first, we
consider the tunneling between two FQH edges, separated by vacuum (Fig. 4.6a), i.e.
across a pinched-off QPC. In this situation only electrons tunnel. Assuming a point-
like interaction between lower and upper edge at x = 0, the tunneling Hamiltonian
will consist of terms of the form �

†
e,L(0, t)�e,U(0, t)+ h.c., where �

†
e,L/U or �e,U/L

are the electron creation or annihilation operators on the lower or upper edge. These
terms hence annihilate an electron on one edge, while creating an electron on the
other edge.

The second situation we consider is depicted in Fig. 4.6b. Here, left- and right-
moving edge states areweakly backscattered at aQPC. In this situation, quasiparticles
tunnel between left and right edge and the tunneling Hamiltonian consists of terms of
the form�

†
QP,L(0, t)�QP,R(0, t) + h.c.,where�

†
QP,L/R or�QP,R/L are the quasiparticle

creation or annihilation operators on the left or right edge.

(b)
FQH liquid

Depleted 2DEGDepleted 2DEG

(a)

Top gate Top gate

FQH liquid

Fig. 4.6 a Weak electron tunneling. b Weak quasiparticle tunneling
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Calculation of the tunneling conductance at ν = 1/m Let us look at the specific
situation at ν = 1/m, where we have calculated the electron and quasiparticle propa-
gators. The tunneling density of states (TDOS) for quasiparticles, NQP(ω), evaluated
atω = eV

�
is found from the imaginary part of the Fourier transform of the propagator

[30], which yields [24]:

NQP(ω) ∝ Im lim
x→0+

∞∫
−∞

dtGQP(x, t)eiωt ∝ |ω|1/m−1 (4.17)

Similarly we find for the electron TDOS: Ne(ω) ∝ |ω|m−1.
The full Hamiltonian of the QP tunneling system (Fig. 4.6b) can be written as

[24]:

H = HR + HL + �eiω∗
0 t�

†
QP,L(0, t)�QP,R(0, t) + h.c. (4.18)

where HR and HL are the Hamiltonians of the left and right edge, � is the tunneling
matrix element and ω∗

0 = (e∗/e)V/�. The term eiω∗
0 t arises from the potential dif-

ference V between left and right edge. Using Fermi’s golden rule, the QP tunneling
current can be written in the following form [24]:

IQP(V ) = 2π
e

m�
|�|2

0∫
−eV

d E NQP(E, T )NQP(E + eV, T ) ∝ V 2/m−1 (4.19)

From this we see that the quasiparticle tunneling current diverges for V → 0 (at
zero temperature). Similarly we find for electron tunneling: Ie(V ) ∝ V 2m−1, which
means that electron tunneling is suppressed at low biases.

In experiments the QP tunneling conductance gtun is typically measured. It also
exhibits a characteristic power-law scaling at zero temperature: gtun(V ) = d IQP

dV ∝
V 2/m−2.

General case For FQH states which are not described by ν = 1/m, the tunneling
conductance is related to the scaling behavior of the QP creation and annihilation
operators in a similar way. Here we assume a scaling with an exponent g [25]:

〈T (�
†
QP(t, x = 0)�QP(0, 0))〉 ∝ t−g (4.20)

Here g is called Coulomb interaction parameter. For the most general Abelian FQH
states, g can be directly calculated from the K -matrix describing the topological
order in the bulk. Edge theories for the most important non-Abelian FQH states have
been developed in literature (see for example [31, 32] for an overview). Here, QP
operators can be constructed and g is then obtained from their scaling properties. A
summary of the different g for the edge modes of the FQH states in the second LL
is given in Tables3.2, 3.3 and 3.4.

http://dx.doi.org/10.1007/978-3-319-21051-3_3
http://dx.doi.org/10.1007/978-3-319-21051-3_3
http://dx.doi.org/10.1007/978-3-319-21051-3_3
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From the scaling of theQPpropagator (4.20),wefind for theQPTDOS: NQP(ω) ∝
|ω|g−1 and for the QP tunneling current: IQP(V ) ∝ V 2g−1, which leads to gtun(V ) ∝
V 2g−2 at zero temperature.

Performing the above calculation for finite T and V , the following expression was
found for the tunneling conductance [33, 34]:

gtun(V, T ) ∝ |�|2 × T (2g−2) × F

(
g,

e∗/e V

kB T

)
(4.21)

where F is a function of g and (e∗/e V ) /(kB T ):

F (g, x) =B
(
g + i

x

2π
, g − i

x

2π

)
×

{
π cosh

( x

2

)
− 2 sinh

( x

2

)
Im

[
�

(
g + i

x

2π

)]}
(4.22)

Here, B(x, y) is the Euler beta function and �(x) is the digamma function. This
expression will be used to investigate the properties of the FQH states in the second
Landau level in Chap.11 and allows the extraction of the characteristic parameters
g and e∗. From the power-law temperature dependence gtun(V, T ) ∝ T (2g−2), we
see that the edge modes with the smallest g dominate the QP tunneling at the lowest
temperatures. We note that for edge states with counterpropagating modes, g can be
non-universal and depend on the strength of the interactions between the modes.

Physical meaning of g The Coulomb interaction parameter g can be seen as analog
to the Luttinger liquid coupling constant: two chiral Luttinger liquid edges coupled
with an interaction parameter g are equivalent to having one non-chiral Luttinger
liquid with coupling constant gLutt = g [30], called “Luttinger parameter”.2

The coupling constant can be written as [35]: g = π�
√

ρκ/m∗ where κ = ∂ρ/∂μ

is the compressibility. A more simple interpretation of g can be found from the ratio
of the Coulomb interaction energy in the edge U to the Fermi energy of the non-
interacting system [36]:

g ≈
(
1 + U

2EF

)−1/2

(4.24)

Hence g = 1 corresponds to the non-interacting Fermi liquid, while g < 1 or g > 1
indicate a repulsive of attractive interaction in the edge [37].

2The Luttinger liquid Hamiltonian can be written as [30]:

H = �vF

2π

L∫
0

[
gLutt

(
∂ϕ(x)

∂x

)2

+ 1

gLutt

(
∂θ(x)

∂x

)2
]

dx (4.23)

where ϕ(x) is the phase field and θ(x) is the phonon displacement field.

http://dx.doi.org/10.1007/978-3-319-21051-3_11
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Chapter 5
Non-Abelian Statistics and Its Signatures
in Interference Experiments

Abstract We review the concept of anyon statisics and how non-Abelian anyons
arise in the Moore-Read Pfaffian state at ν = 5/2. Furthermore, we give a short
overviewof complications that arise in real systems due toCoulombblockade physics
and the expected signatures of non-Abelian physics in an interference experiment.

5.1 From Fermions to Anyons

Fermi and Bose statistics are the two fundamental cases that describe the equilibrium
properties of quantum mechanical particles. Exchanging two particles multiplies the
wavefunction with a phase factor exp(iδ), while it is multiplied with exp(2iδ) for a
closed loop of one particle around the other [1]. For Bosons and Fermions (δB = 2nπ
and δF = (2n +1)π, n ∈ Z), this phase just multiplies the wavefunction by ±1 upon
exchange.

An exchange of particles in two dimensions is distinct from the exchange in three
dimensions. While in the latter any exchange trajectory can be continuously trans-
formed into an infinitesimally small loop, this is not possible in two dimensions,
where loops encircling different numbers of other particles are topologically distinct
(Fig. 5.1). It was soon realized that this opens the possibility for Anyonic statistics,
where other values of δ are allowed than for Fermions and Boson [2–4]. A system
where Anyonic statistics is realized is the FQH effect. Arovas et al. [5] have inves-
tigated the statistical phases arising here, by calculating the Berry phase of an e/m
quasiparticle (for a filling factor ν = 1/m), encircling another quasiparticle on a
closed loop C. This consideration can be described in the following simplified way
[6]: we start with a Laughlin state ψ1/m and add a charge e/m quasihole (QH) to the
system while the external magnetic field is fixed. Then we move the QH clockwise
around a closed loop C. By this, an Aharonov-Bohm phase γ arises [6]:

γ = −e∗

�

∮
C

A · dr = −2π
e∗

e

φ

φ0
(5.1)
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3d 2d

Fig. 5.1 Trajectories for a closed loop of a single particle around another particle in three and two
spatial dimensions. The dashed line in two dimensions is topologically distinct from the solid lines

where φ = −2πm Nencl is the total flux enclosed by C and Nencl is the number
of enclosed electrons. Adding an e/m QH in the interior of the contour, the net
charge encircled changes to −eNencl + e/m with a total Aharonov-Bohm phase of
γ′ = −2π(Nencl − 1/m) [6]. From this we find that the statistical phase of one
quasiparticle encircling the other quasiparticle is given as:

δ 1
m

= ± π

m
(5.2)

For general FQH states at ν = ν∗
2pν∗+1 , the statistical phase is found to be [7]:

δ ν∗
2pν∗+1

= ±
(
2p(ν∗ − 1) + 1

2pν∗ + 1

)
π (mod 2π) (5.3)

5.2 Non-Abelian Anyons in the Moore-Read Pfaffian State

We have seen in the last section that the correlations in the FQH effect can change the
particle statistics and hence change the phase of a wavefunction upon QP exchange.
With the discovery of the Moore-Read Pfaffian (MR Pf) wavefunction, it was real-
ized that this wavefunction might allow quasiparticles which behave as non-Abelian
Anyons [8]. When two QPs are exchanged here, not only the phase of the wavefunc-
tion changes, but a unitary transformation acts on the wavefunction itself [9]. If these
transformations do not commute, the system is said to be non-Abelian. Performing a
particular sequence of QP exchangesmight transform thewavefunction of the system
into a desired final state, which might be exploited for quantum computation.

TheMRPf state can be seen as aBCS-like condensate ofCooper-paired composite
Fermions. In the following, we will motivate how non-Abelian statistics can arise
in such a system, following [10, 11]. The situation of the MR Pfaffian state can
be analyzed starting from a common BCS mean-field Hamiltonian (see for example
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[12]). ThisHamiltonian can be diagonalized by aBogoliubov transformation, leading
to the BCS Hamiltonian [12]:

HBCS = EBCS +
∑
kσ

Ek�
†
kσ�kσ (5.4)

Here �
†
kσ and �kσ define the Bogoliubov quasiparticles with positive energy eigen-

values. They are a superposition of electrons and holes and are electrically neutral
at the Fermi Energy [12]. Let us turn to the p-wave pairing case: here the angular
momentum eigenvalues L = −1 break the spin- and spatial rotation symmetries [10].
When vortices are present in the superconductor (i.e. when the filling factor deviates
slightly from ν = 5/2), the mean field Hamiltonian has zero-energy eigenvalues and
its ground state becomes degenerate [10]. These vortices can be identified with the
zero-energy modes γi which define the non-Abelian quasielectrons and quasiholes
at ν = 5/2. The zero energy solutions can be written in the following form [11]:

γi = 1√
2

∫
dr

[
F(r)e− i

2�i ψ(r) + F∗(r)e
i
2�i ψ†(r)

]
(5.5)

whereψ(r) andψ†(r) are the (composite) Fermion field operators, F(r) is a decaying
function for large r and �i = ∑

j �=i
arg(R j − Ri ). Each solution γi corresponds to a

single vortex and is localized near the core of the vortex atRi [11]. These zero energy
solutions possess two important properties: they satisfy Fermionic anti-commutation
relations and can be seen as their own anti-particles:

{
γi , γ j

} = 2δi j (5.6)

γi = γ†
i (5.7)

Here
{
γi , γ j

}
denotes the anti-commutator of γi and γ j . These properties make them

Majorana Fermions.
Let us turn to the exchange statistics of the Majorana Fermions: when vortex

i encircles vortex j , arg(R j − Ri ) changes by 2π and we have: γi → −γi and
γ j → −γ j (see 5.5). This corresponds to a unitary transformation of the groundstate
of the system, which transforms the operators (up to a phase) according to [11]:

γk → U †
i jγkUi j (5.8)

where Ui j = γiγ j = exp(πγiγ j/2). These transformations do not necessarily com-
mute, giving rise to non-Abelian exchange statistics.
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5.3 Interferometry with Non-Abelian Anyons

The implications of non-Abelian statistics for interference experiments have been
studied intensively in theory [13–22]. The basic prediction of these studies is that
the interference pattern depends critically on the parity of the number of charge e/4
QPs that is enlosed in the interference path, denoted by Nencl.

Following [15] we discuss the expected outcome for the situation that is depicted
schematically in Fig. 5.2a. Here a quasiparticle moves from left to right along the
lower edge of the system. The QP is either reflected at the left or right QPC of the
Fabry-Pérot interferometer (with tunneling amplitudes tL and tR) or is transmitted
through the interferometer. The partial waves reflected at the left or right QPC apply
unitary transformations UL or UR to the initial ground state of the system |ψi 〉 [15].
To lowest order, the backscattered current of this situation can be written as [15]:

I e/4 ∝ 2Re
[
t∗LtRe2πi�〈ψi |U−1

L UR|ψi 〉
]

(5.9)

where � denotes the relative phase of the interfering partial waves and satisfies
∂�
∂ A = B/4φ0 with A being the area of the interferometer.

The unitary transformation acting on the system depends on the Majorana mode
γa of the charge e/4 quasiparticle that is moving along the edge of the interferometer
and the Majorana modes γi of the Nencl charge e/4 QPs that are localized within the
interference path [15]:

Ua = U−1
L UR = γNencl

a γint (5.10)

where γint = ∏Nencl
j=1 γ j and Ua has eigenvalues ±1 or ±i .

The fact that γa is a Majorana operator leads to two distinct behaviors, depending
on if Nencl is even or odd. If Nencl is even, γNencl

a = 1 and Ua does not depend on
the Majorana operator γa . Hence an interference (5.9) characteristic for e/4 charge
quasiparticles is observed, as the operatorsUa ,Ub, ... are identical for all incidentQPs

(a) (b)

Fig. 5.2 Schematic interferometers in an idealized Aharonov-Bohm regime (a adapted from [20])
or in a Coulomb-dominated regime (b) where QPCs and bulk possess different filling factors
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with Majorana modes γa , γb, ... . The two different eigenvalues of γint correspond to
two different interference patterns shifted by π.

If Nencl is odd,γ
Nencl
a = γa and the unitary transformationsUa ,Ub for twodifferent

incoming QPs are different and do not necessarily commute. For a large number
of QPs, this randomizes the interference phase (5.9) and hence no interference is
observed [15].

To summarize, to lowest order the backscattered current can be written as [23]:

I e/4 ∝
{
cos

(
2π φ

4φ0
∓ Nenclπ

4 + Nψπ
)

Nencl even

0 Nencl odd
(5.11)

where φ is the magnetic flux penetrating the interferometer. Here only the lowest-
order interference terms have been considered and Nψ = 0 or 1, depending on
whether the eigenvalue of γint is ±i or ±1. The minus in (5.11) corresponds to the
case of theMRPf and SU(2)2 states, whereas the plus corresponds to the anti-Pfaffian
state. For the analysis, it was furthermore assumed that the Nencl localized QPs in
the interferometer are sufficiently far away from the edge, such that their coupling
to the edge is weak [15].

The “even-odd effect” captured in (5.11) opens a way to probe the non-Abelian
statistics experimentally. If the side-gate voltage of an Aharonov-Bohm interferom-
eter is changed, the area of the interference loop varies. Hence we either observe
oscillations with a periodicity characteristic for e/4 quasiparticles, or no oscillations
(in lowest order), depending on the parity of Nencl. For a sufficient variation of the
side-gate voltage, changes in Nencl may appear, leading to a characteristic on/off-
switching of the interference. Such a behavior is only expected for non-Abelian states
and is a strong indication for non-Abelian statistics. In a system where the bulk-edge
coupling of QPs is not weak, the experimental signatures might be more compli-
cated and (5.11) no longer holds. We furthermore note that certain two-component
states, like the (3,3,1)-state might mimic the signatures of the even-odd effect (see
discussion in the last paragraph of this chapter).

5.4 Aharonov-Bohm Versus Coulomb-Dominated Physics

In the above considerations, the system has been examined in a perfect Aharonov-
Bohmcase,whereweakbackscatteringonlyoccurs at the entrance and exit of an inter-
ferometer and one-dimensional edge channels define the interference paths. However
in a realistic system, the situation can be much more difficult. Here, regions of differ-
ent filling factorsmay form throughout the interferometer, for example a filling factor
νQPC in theQPCs, smaller than the bulk filling factor νbulk (which is assumed to be the
same in the bulk of the sample and in the center of the interferometer, see Fig. 5.2b).
In such a situation different tunneling paths may connect the isolated puddle in the
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Fig. 5.3 a Conductance oscillations as a function of the magnetic field and a side-gate voltage of
an interferometer. Oscillations in the Coulomb-dominated (a) and Aharonov-Bohm case (b) exhibit
a different dependence on both parameters. (Reprinted figure with permission from [25]. Copyright
2009 by the American Physical Society)

center of the interferometer to the bulk and the surrounding compressible region
[24] (blue, red and green dashed lines in Fig. 5.2b). Here the lowest-order interfer-
ence picture discussed above no longer holds. Transport through the isolated puddle
in the interferometer can lead to Aharonov-Bohm like oscillations, which however
arise due to Coulomb-blockade physics. In the IQH regime, a distinct behavior of
Aharonov-Bohm (AB) and Coulomb-dominated cases appears [25, 26]. In the pure
AB case, conductance oscillations arise at a fixed magnetic flux enclosed by the
interfering paths. When the magnetic field strength is increased, a side-gate voltage
of the interferometer has to be biased more negatively in order to decrease the area of
the enclosed path and in order to stay on resonance. This is exactly the behavior that
has been observed in large Fabry-Pérot type interferometers [25] (see Fig. 5.3b). For
small interferometers (Fig. 5.3a), a contrary behavior has been observed. Here, the
number of electrons on the isolated puddle in the interferometer is quantized, hence
this case is called “Coulomb-dominated”. A conductance resonance occurswhenever
configurations with N and N + 1 electrons are energetically degenerate. Adding a
single flux quantum to the interferometer area increases the total degeneracy of the
LLs underlying the isolated puddle in the interferometer. Hence an increase of the
B-field transfers electrons from the island to the lower LLs, which can be compen-
sated by applying a more positive voltage to the side-gate of the interferometer. This
explains the slope observed in Fig. 5.2a. For the AB case, the B-field periodicity�B
is independent of the filling factor in the IQH regime. However, for the Coulomb-
dominated case, �B ∝ 1

νQPC
is expected [24–26]. The reason lies in the fact that

adding a single flux quantum to the interferometer region enhances the degeneracy
of each LL underlying the island by two and hence expels νQPC electrons from the
QD.

Similar systems have been studied experimentally in the FQH regime [27–29],
where periodicities depend on QP charges and on the edge structure.
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Signatures of non-Abelian statistics in Coulomb blockade experiments
Several authors have investigated signatures of non-Abelian statistics that arise in
Coulomb blockade experiments [15, 19, 20, 30–32] andmight allow to determine the
nature of the QP excitations at ν = 5/2 (and at other FQH states, like the ν = 12/5
state).

The general idea behind these proposals is the following: in a large QD, we expect
to add or remove one electron whenever the area changes by �A ∝ e

n0
, where n0 is

the average electron density in the dot. When a paired state is formed in the bulk of
the QD, transport signatures again depend on the parity of Nencl. When Nencl is even,
we expect that a lower energy is needed to add an electron whenever the electron
number on the dot is odd compared to an even number of electrons occupying the dot
[15], as the total energy isminimized by forming a paired state. Thus the peak spacing
is expected to vary between alternating values. When Nencl is odd, electrons tunnel
to the dot via the zero energy mode on the edge and an alternation of the periodicity
is absent [11]. In this consideration it was assumed that the coupling between the
edge and the QPs localized in the bulk is weak [32] (such that no relaxation between
bulk and edge zero energy modes occurs on the timescale of the measurement). For
ν = 5/2, the Coulomb blockade signal was found to be identical for most important
candidate states [32]: the non-Abelian MR Pf, anti-Pfaffian, SU(2)2 states and the
Abelian (3,3,1)-state are expected to show alternating CB peak spacings that vary
between the following values:

�A = e

n0

(
1 ± vn

2vc

)
(5.12)

where vc and vn are the velocities of charge and neutralmodes. Typically vc is approx-
imately one order of magnitude larger than vn [33, 34], thus a good experimental
resolution is required to unambiguously identify the alternation. For sufficiently
strong bulk-edge relaxation, the alternation disappears and the original �A = e

n0
is

found again [32]. Coulomb blockade signatures that are expected for other candidate
states and other filling factors in the second LL have been discussed in literature. An
overview of the expected peak spacings can be found in [32].

Coulomb blockade and interference “doppelgänger” states Following the argu-
mentation of Bonderson et al. [32], the identical outcomes for different candidate
states might indicate that a Coulomb blockade experiment is not suitable to distin-
guish between the candidate states at ν = 5/2 (and similarly for other filling factors)
and might not even allow to distinguish between an Abelian and a non-Abelian state.
However, Stern et al. have pointed out [20] that although Abelian and non-Abelian
states might show similar experimental signatures in some cases, Abelian states are
sensitive to local perturbations, which is not true for the non-Abelian states which
are of topological origin. This might hence enable to distinguish between both cases.
The same argumentation holds for a lowest-order interference experiment, where
the Abelian (3,3,1)-state might mimic the even-odd signatures of a non-Abelian
state [20], at the point of symmetry between the two different electron flavors. Stern
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et al. showed that lowest-order interference experiments and Coulomb blockade
experiments contain the same information about the quasi-particle statistics of the
system and hence both regimes offer a promising approach for testing non-Abelian
statistics experimentally.
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Chapter 6
Overview of Experiments Probing
the Properties of the ν = 5/2 State

Abstract We give an overview of methods that try to probe the properties of the
ν = 5/2 state, with emphasis on experiments that probe directly or indirectly the qua-
siparticle statistics. The different implications of the experiments and their relevance
for the work presented in this book are discussed.

6.1 Introduction

The potential realization of a non-Abelian state at ν = 5/2 has raised a great interest
in this state, experimentally as well as theoretically. In this section, we will review
some important experiments and numerical calculations that might shed light on the
question weather a non-Abelian state is realized at ν = 5/2.

We begin by giving an overview of numerical studies. Experiments trying to
measure the quasiparticle charge are mostly in agreement with e∗/e = 1/4. We then
proceed to discuss experiments that investigate the spin polarization. Here, contra-
dictory results were found, though most experiments support a full spin polariza-
tion. Properties which are related to the edge have also been studied experimentally.
Here, we emphasize neutral mode spectroscopy and quasiparticle tunneling exper-
iments. Finally, we discuss implementations of interferometry experiments which
might allow to directly investigate the quasiparticle statistics.

Other approaches which we will not discuss investigate for example thermody-
namic properties of the bulk. The large degeneracy of non-Abelian FQH states, which
is exponential in the number of quasiparticles, has an effect on the low temperature
entropy of the system. Theoretical predictions for probing this effect by thermopower
measurements [1] or bymeasuring themagnetization density and the electrochemical
potential [2] exist.

For a more detailed discussion of experiments at ν = 5/2, we refer the reader to
the review paper of Willett [3].
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6.2 Numerical Studies

Numerical calculations in the FQH regime make use of the fact that in the limit
B → ∞ where only the lowest Landau level is occupied, finite systems have a
finite number of many-body ground-states [4]. The exact solution can be found
by numerical diagonalization of the Hamiltonian, taking Coulomb interaction into
account. Typically, experimental complications like finite thickness effects, Landau
level mixing and disorder are neglected. In contrast to experiments where only single
observables are accessible, the numerical approach offers the advantage of being able
to calculate the overlap of the numerical solution with explicitly known candidate
wavefunctions and hence verifying all observables at once [4].

One of the first numerical treatments of the physics at ν = 5/2 has been presented
by Morf [5]. He investigated spin-polarized and spin-unpolarized ground-states in
systemswith N ≤ 18 electrons by numerical diagonalization. The systemwas treated
in a spherical geometry [6] and Landau level mixing was neglected. It was found
that the ground-state is spin-polarized and incompressible and has a large overlap
(approximately 0.8–0.9) with paired FQH states like the Moore-Read Pfaffian state
[5]. Evidence for a spin-polarized, paired ground-state leading to an energy gap has
been found by a number of other authors [7–16].

However, these numerical studies have certain limitations, for example because
they often neglect Landau level mixing or disorder. This might explain why the
calculated energy gaps are much larger than the actually measured energy gaps
[8, 12, 17, 18].

The question whether the ground state is better described by the Moore-Read
Pfaffian state or the Anti-Pfaffian state has recently raised interest. Both states cannot
be distinguished when particle-hole symmetry is assumed [19, 20]. Particle-hole
symmetry breaking by Landau level mixing was taken into account in different
numerical studies, and was found to substantially complicate the problem. The MR
Pf state [21], as well as the Anti-Pfaffian state [22] have found support in studies
employing different numerical approaches. Finite thickness effects, whichmight also
have to be taken into account for a correct description of the ground state, have been
found to stabilize the Pfaffian ground state [23–25] and to significantly enhance the
overlap with the numerical solution. To our knowledge, only the spin-unpolarized
version of the (3,3,1)-state has been investigated in numerical studies. We are not
aware whether a description of the ν = 5/2 state by this Abelian state is physically
favorable.

An interesting recent development that we would like to mention are numerical
studies of bilayer FQH systems. At a total filling factor νtotal = 1/2, the FQH state
for weak tunneling and an intermediate layer separation d is thought to be well
described by the Abelian Halperin (3,3,1)-state [26]. For this system, it was found
that a sizable energy gap only occurs for the (3,3,1)-state but not for the MR Pf
state [27] which is expected for a smaller layer separation and stronger inter-layer
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tunneling. In contrast, at νtotal = 5/2 results suggest that both the (3,3,1)-state (at
weak inter-layer tunneling and large d) and the MR Pf state (at strong inter-layer
tunneling and small d) might be gapped [27], which might lead to a quantum phase
transition that could be probed in experiments.

6.3 Detecting the Quasiparticle Charge

The quasiparticle charge alone does not tell us anything about the statistics of the
underlying FQH state and all candidate wavefunctions have edge excitations with
an expected quasiparticle charge of e∗/e = 1/4 (see Table3.2). Nevertheless, the
verification of the e∗/e = 1/4 quasiparticle charge is important as verification and
for the interpretation of other experiments. We will mainly discuss two approaches
here: shot noise measurements and local compressibility measurements.

6.3.1 Shot Noise Measurements

In these experiments, shot noise generated by partitioning of electrons or quasi-
particles at a QPC is measured. The zero frequency spectral density of the current
fluctuations S, which is generated in this process, depends on the driving current I ,
the charge of the partitioned charge carriers q and the transmission t of the QPC (at
T = 0):

S ∝ 2q I × t (1 − t) (6.1)

Hence, measuring S as a function of I gives access to q. Taking finite temperature
effects and transmission of underlying edge states into account, a more complicated
expression is found [28], but the principle of the determination of q is the same.
Using this shot noise approach, e∗/e = 1/3 has been found at ν = 1/3 [29, 30].
In the second Landau level, quasiparticle charges of e∗/e = 1/4 for ν = 5/2 and
e∗/e = 1/3 for ν = 8/3 have been found by Dolev et al. [31].

Subsequent experiments revealed that extracted quasiparticle charges depend sig-
nificantly on the transmission of the QPC [32]. The quasiparticle charge at ν = 5/2
is shown in Fig. 6.1 for different average transmission of the QPC. The expected
quasiparticle charge e∗/e = 1/4 is only found in a range of transmissions from
approximately 0.4 to approximately 0.6, but is much larger otherwise. The reason
for this effect and the implications for the underlying physics are not understood,
but might be of great importance for tunneling and interference experiments where
QPC transmission is typically very small or close to one.

http://dx.doi.org/10.1007/978-3-319-21051-3_3


76 6 Overview of Experiments Probing the Properties of the ν = 5/2 State

(d) T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2
qu

as
ip

ar
tic

le
ch

ar
ge

,
e*

(e
)

sample 1

sample 2

sample 3

sample 4

~10mK

average transmission, t
5/2−2

Fig. 6.1 Extracted quasiparticle charge at ν = 5/2 for different average transmission of the QPC.
At high or low transmission, e∗/e clearly deviates from the expected value of 0.25. (Reprinted figure
with permission from [32]. Copyright 2010 by the American Physical Society.)

6.3.2 Local Compressibility Measurements

Scanning SET experiments have been used to investigate localization in the quantum
Hall regime [33, 34]. When the bulk is tuned to an incompressible state, charge is
localized in puddles which arise from the disorder potential in the sample [33]. The
occupation of these localized states is governed by Coulomb blockade physics, when
the disorder broadening is small compared to the energy gap of the FQH state [33].
Using a scanning SET, jumps of the local chemical potential, associated with adding
or removing charge from the compressible puddles, can be detected. Venkatachalam
et al. have used a SET, fabricated on the surface of a high mobility 2DEG, to detect
these discontinuities in the chemical potential [35]. Varying the density, jumps in
the local chemical potential are observed. The periodicity is expected to scale with
the quasiparticle charge, which is associated with the incompressible FQH state
surrounding the compressible puddle (i.e. the bulk FQH state).

Venkatachalam et al. have used a comparison of the FQH states at ν = 7/3 and
ν = 5/2 to estimate the quasiparticle charge at ν = 5/2. From the periodicity of
the jumps of the electrochemical potential when the backgate is varied, they found:
e∗
7/3/e∗

5/2 = 1.31. Assuming e∗
7/3 = e/3, this corresponds to e∗

5/2 = 0.254 e.

6.4 Bulk Experiments: Probing the Spin Polarization

The spin-polarization of the ν = 5/2 state has been investigated with different tech-
niques. Transport methods employ a density variation or in-plane fields and try
to find signatures of the spin-polarization by its influence on the energy gap of
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the ν = 5/2 state. We will also discuss experiments that have used optical or nuclear
magnetic resonance methods to probe the spin-polarization in a more direct way.

6.4.1 Transport: Density Dependence of the Gap

Many authors have reported studies investigating the density dependence of the
energy gap at ν = 5/2. A fundamental experimental challenge faced by these studies
lies in the fact that the density of conventionally doped heterostructures can only be
tuned over a relatively small range. Furthermore the mechanism limiting the energy
gap of the ν = 5/2 state is not fully understood. A change of the gap as a function
of the density might arise from a combination of several effects, especially also due
to the contribution of different scattering mechanisms at different densities. Though
the density dependence of the energy gap is not directly connected to the nature of
the ground state at ν = 5/2, such studies potentially give important information about
phase transitions and mechanisms limiting the gap.

An example of such a measurement is shown in Fig. 6.2a. Here the energy gaps
at ν = 5/2 and ν = 8/5 obtained by Pan et al. [36] is shown for a large range of
electron densities. They have used a heterojunction insulated gate field-effect tran-
sistor (HIGFET), i.e. a structure without intrinsic doping, where the 2DEG is only
induced via a biased gate. With this structure, density could be changed over a large
range and a surprisingly pronounced ν = 5/2 state was observed given a mobility of
μ ≤ 5.5 × 106 cm2/Vs.

(a)

(b)

Fig. 6.2 a Energy gaps at ν = 5/2 and ν = 8/5 versus perpendicular magnetic field. The energy gap
at ν = 8/5 shows a non-monotonicity due to a spin transition at B ≈ 7.5 T. In contrast, the energy
gap of ν = 5/2 only shows a weak variation over the whole density range. (Reprinted from [36] with
permission from Elsevier.) b Energy gap at ν = 5/2 versus electron density. A non-monotonicity
in the energy gap, which might be interpreted as a spin transition, was found at very low densities
of n ≈ 0.5 × 1011 cm−2. (Reprinted figure with permission from [37]. Copyright 2014 by the
American Physical Society.)
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The FQH state at ν = 8/5 is thought to be spin-unpolarized [38, 39]. The strength
of the external magnetic field changes the Zeeman energy of the ν = 8/5 state, which
might lead to a phase transition and hence a non-monotonic dependence of the energy
gap on density. The kink observed in Fig. 6.2a has been interpreted as such a spin
transition. The comparably weak dependence of the energy gap of ν = 5/2 on the
density was interpreted as evidence for spin polarization, as here a linear or negligible
dependence on magnetic field is expected.

Other experiments that report systematic investigations of the energy gap as a
function of density include for example the data of Nuebler et al. [40]. Compared
to the experiment of Pan et al. [36], their sample showed much higher energy gaps
and mobilities. They found a roughly linear increase of the ν = 5/2 energy gap with
density, with no non-monotonicity that could be interpreted as phase transition in the
sense of a spin-unpolarized ground state.

Though most of the experiments investigating the density dependence of the
energy gap have been interpreted as to support spin-polarization [36, 41], Das Sarma
et al. have argued in their work [42] that a spin-unpolarized ground-state cannot be
ruled out from the experimental data. They argue that the energy gap of a spin-
unpolarized state should show a maximum at perpendicular magnetic fields B⊥≈
4.5 T. The reason for this is that for the spin-unpolarized case, Coulomb energy
increases with

√
B⊥, which increases the energy gap. On the other hand, the Zeeman

term (∝ Btot) decreases the energy gap.
Figure6.3 shows a collection of energy gap values for ν =5/2, reported by different

authors (filled symbols), versus the respective magnetic field B⊥ where ν = 5/2
occurs. Bent curves represent fits of a gap model which assumes a spin-unpolarized
ground state, while the red dotted-dashed linewith a roughly linear slope corresponds
to the spin-polarized case. The authors argue that the increase of energy gaps with
density was only observed in a too limited density range to be fully conclusive.
Furthermore, some experiments are in agreement with a maximum of the energy
gap at intermediate densities [36, 41]. Hence, the conclusion that the groundstate at
ν = 5/2 is spin-polarized cannot be drawn from these experiments. The inset shows a
comparison of energy gaps versus magnetic field (i.e. density) for the spin-polarized
state at ν = 1/3. Here, experiments (empty symbols) and gap models for a spin-
polarized ground-state (solid lines) agree well.

Very recently, Pan et al. have reported an increase of the energy gap at ν = 5/2
when lowering the electron density in a very low density regime [37]. The energy
gap as a function of the electron density is shown in Fig. 6.2b. This non-monotonicity
could be interpreted as a spin transition occurring at low densities. The data points
have only been reported after the study of Das Sarma et al. (Fig. 6.3) and might
change the overall interpretation.

To summarize, studies investigating the density dependence of the energy gap
might potentially shed light on spin transitions at ν = 5/2. However, the problem
that the degree of spin-polarization is only non-trivially connected to the energy gap
remains. A more direct probe of the spin polarization is desirable. We will discuss
later, how this can be implemented using NMR or optical experiments.
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Fig. 6.3 Energy gapof the ν =5/2FQHstate versus perpendicularmagnetic field B⊥.Filled symbols
are energy gap values reported in the literature (in [42]). The red dotted-dashed line represents a
fit of a spin-polarized gap model, while the bent curves are a fit of spin-unpolarized gap models.
A definite agreement with neither case is not found. The inset shows the situation for the spin-
polarized state at ν = 1/3, where energy gap values from literature (empty symbols, in [36, 41])
are plotted versus the perpendicular magnetic field B⊥ and are compared with spin-polarized gap
models (solid lines). Here, a good agreement between model and experiment is found. (Reprinted
figure with permission from [42]. Copyright 2010 by the American Physical Society.)

6.4.2 Transport: In-Plane Magnetic Fields

Transport measurements in tilted magnetic fields rely on the fact that the Zeeman
energy gap depends on the total magnetic field applied, while the filling factor of
the 2DEG is only determined by the carrier sheet density and the perpendicular
magnetic field B⊥. For a spin-unpolarized state, the energygap is expected to decrease
monotonically with the Zeeman energy splitting, while the energy gap of a spin-
polarized state should either increase with Zeeman energy splitting or not show any
dependence at all [42].

Experiments investigating transport in the second Landau level in tilted magnetic
fields have shown many stunning results which are not fully understood yet. Adding
an in-plane field creates a large transport anisotropy in the second Landau level
(Fig. 6.4c, 45◦ tilt) and reduces the energy gap of the ν = 5/2 state [43–47] (Fig. 6.4a).
In contrast, the energy gap of the ν = 7/3 state was found to increase with moderate
tilt angles (Fig. 6.4b) [44, 45], which was very surprising, as a similar behavior of
ν = 5/2 and 7/3 would be expected if they both are spin-polarized.
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(a)

(b)

(c)

Fig. 6.4 Energy gap at ν = 5/2 as a function of the in-plane magnetic field B‖ for samples A and
B of [45]. The energy gap is substantially reduced by an in-plane component of the magnetic field.
b Energy gap at ν = 7/3 as a function of the in-plane magnetic field B‖ for samples A and B of
[45]. Sample A shows a surprising increase of the energy gap with increasing B‖, similar to earlier
observations [44]. In sample B, the energy gap of ν = 7/3 is reduced with increasing B‖. c Rxx and
Ryy between ν = 3 and ν = 2 for three different tilt angles. The initially isotropic incompressible
phase at ν = 5/2 is transformed to an anisotropic incompressible phase (45◦). When the tilt angle
is further increased, a reentrant isotropic compressible phase occurs (64◦) [45]. (Reprinted figure
with permission from [45]. Copyright 2010 by the American Physical Society.)

As the in-plane component of themagnetic field is further enhanced (Fig. 6.4c, 64◦
tilt), a transition back to an isotropic phase was found. Here, ν = 5/2 is completely
absent, while ν = 7/3 and 8/3 are still visible [45]. Overall, the structure of this
“reentrant isotropic compressible (RIC) phase” is very similar to that of the lowest
Landau level.

Generally, the decrease of the energy gap of the ν = 5/2 state for larger in-plane
fields cannot be seen as proof for a spin-unpolarized ground state. Also other FQH
states which are generally believed to be spin-polarized, like the ν = 1/3 and 2/5 states
disappear as the in-plane field strength is increased [42]. Das Sarma et al. proposed
that the reason for the disappearance of the gap is not a proof for a spin-polarized
ground state, but is rather due to an increase of the effective disorder broadening
because ofmagneto-orbital coupling [42].Also a competing stripe phase at increasing
tilt angles might be responsible for the breakdown of the energy gap [48].

6.4.3 Optics

Recent optical approaches tomeasure the electron spin polarization at ν = 5/2 include
polarization resolved photoluminescence spectroscopy experiments by Stern et al.
[49] and resonant inelastic light scattering experiments by Wurstbauer et al. [50].
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Stern et al. measured the energy splitting between the σ+ and σ− emission lines,
which depends on the sum of Zeeman energies of conduction band electrons and
valence band holes and an interaction term that is proportional to the electron spin
polarization [49]. Close to ν = 5/2, this interaction term disappears from which the
authors concluded the absence of spin polarization. It was later pointed out by Jain
[48] that skyrmion-like excitations due to valence band holes (as proposed by Wójs
et al. [51]) might lead to a local spin depolarization, which might influence the
outcomes of the experiment.

Wurstbauer et al. have found evidence for gapped low-lying excitations at ν = 5/2
by resonant inelastic light scattering. The intensity of spin-wave modes at ν = 5/2
and 7/3 (but not 8/3) was found to depend on the population of the spin-up branch of
the N = 1 Landau level, which might indicate a full spin polarization at these filling
factors.

6.4.4 Nuclear Magnetic Resonance Techniques

Recent experiments havemade use of nuclearmagnetic resonance (NMR) techniques
for the detection of the electron spin polarization [52, 53]. A non-zero electron spin-
polarization represents an effective local magnetic field, which reduces the nuclear
resonance frequency, the “Knight shift”.

In the work by Tiemann et al. [52], the Knight shift was detected by using a
resistively detectednuclearmagnetic resonance technique [54]. This techniquemakes
use of the fact that resonant absorption of radio frequency (rf) magnetic fields leads
to a detectable change in Rxx , as hyperfine interaction couples the nuclear spin bath
and the electron Zeeman energy. Here, a backgate was used to switch to a filling
factor where Rxx is finite and the rf absorption can be seen as a change in Rxx .
Figure6.5b shows the degree of nuclear spin polarization P that has been obtained
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Fig. 6.5 a Rxx versus the filling factor under rf exposure. b Degree of spin polarization P for
various filling factors. Here ν = 5/3 was chosen as fully spin-polarized reference. (Taken from [52].
Reprinted with permission from AAAS.)
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by Tiemann et al. for the different FQH states shown in Fig. 6.5a, as a function of
the filling factor. The FQH state at ν = 5/3 was chosen as fully polarized reference
state for the calculation of P . The results suggest that the second Landau level and
especially the ν = 5/2 state is fully spin-polarized. Similar conclusions have been
found by Stern et al. [53].

6.4.5 Conclusion

We have discussed several experiments, trying to investigate the spin polarization at
ν = 5/2 with different approaches. While some experiments find indications for
spin polarization [41, 50, 52, 53], others interpret ν = 5/2 as spin-unpolarized
[49, 55]. Apart from the experimental complication that all experiments slightly
disturb the ν = 5/2 state and hence might not probe the equilibrium spin polarization,
the possibility that different spin phases of the ν = 5/2 state exist has to be considered
[48].

6.5 Probing the Edge Properties

We have seen that the spin polarization, a bulk property of the FQH states, can
be probed in experiments with different techniques. However, most of the candi-
date wavefunctions possess a full spin polarization, thus other methods have to be
employed in order to discriminate between them. One possibility is to probe the
edge properties, which are a more unique signature of the underlying FQH state.
Different edge mode parameters for the different FQH states have been worked out
theoretically (see Table3.2), which allows a comparison with experiments.

6.5.1 Quasiparticle Tunneling

Quasiparticle tunneling experiments investigate a system where edge states are
weakly backscattered at a nearly completely open quantum point contact. As we
have seen in Sect. 4.3.3, quasiparticles tunnel between the counterpropagating edge
states in this case, giving rise to a tunneling conductance gtun. Scaling parameters
for this tunneling conductance can be extracted from the edge models that have been
proposed by theory. The Coulomb interaction parameter g (see Table3.2) describes
the temperature dependence of the tunneling conductance via gtun ∝ T 2g−2, where
T is the temperature. Hence measuring gtun in a weak tunneling situation as a func-
tion of the temperature allows extracting g. A finite bias measurement furthermore
gives access to the quasiparticle charge e∗/e. The application of this method will be

http://dx.doi.org/10.1007/978-3-319-21051-3_3
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discussed in much more detail later (see Chap. 11), hence we will restrict ourselves
to a discussion of the results of related experiments.

In the first work applying this method to ν = 5/2 by Radu et al. [56], the authors
found that the measured tunneling conductance at ν = 5/2 can be very well fitted
by the theoretical Luttinger liquid tunneling conductance (4.21) that depends on g
and e∗/e (see Fig. 6.6a). The parameters that are extracted from the fit were g =
0.35 and e∗/e = 0.17. When the fit error is plotted versus g and e∗/e (Fig. 6.6b), a
comparisonwith the parameters cited in Table3.2 becomes possible. Agreement with
the candidate wavefunctions that share g = 0.5, i.e. the anti-Pfaffian, the SU(2)2 state
and theMajorana-gapped edge-reconstructed Pfaffian, is best. For the experiments of
Radu et al., a QPCwith a short channel geometry has been used (Fig. 6.6c, Device 1).

Subsequent experiments by Lin et al. [57] have investigated twoQPCs of different
geometry, fabricated on the identical sample as used by Radu et al. The two QPCs
are defined by either biasing the gates A1, G3, and G4 (Fig. 6.6c, Device 2, geometry
A) or the gates G1, G2, G3, and G4 (geometry B). For the geometries A/B, best fit
parameters g = 0.42/0.34 and e∗/e = 0.25/0.22 were found, thus favoring the Abelian
(3,3,1)-state and no longer the non-Abelian states that were the favorite candidates
for the experiment of Radu et al.

The seemingly contradictory results of the experiments of Radu et al. and Lin
et al. were later addressed by Yang and Feldman [58]. They investigated theoretically
the influence of Coulomb interaction across the QPC gate on the scaling of the
tunneling conductance.They found that anunscreenedCoulomb interaction enhances
the effective parameter g that is probed in a tunneling experiment. While in an
experiment with a long QPC channel Coulomb interaction across the QPC gate has
a negligible influence, it was found to enhance g by 0.04 for geometry A and by

(a) (b)

(c)

Fig. 6.6 a Measured diagonal resistance RD versus the DC current at ν = 5/2 for different tem-
peratures (black). A fit of the theoretical weak-tunneling expression (pink) fits well the data for the
parameters g = 0.35 and e∗/e = 0.17. b Normalized fit error versus g and e∗/e. c Different device
geometries for the experiments. (Taken from [56]. Reprinted with permission from AAAS.)
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0.08 for the short QPC (device 1 used by Radu et al.). Taking this into account, Yang
et al. argue that both experiments by Radu et al. and Lin et al. agree best with an
Abelian (3,3,1)-state. Later, it was argued that the Abelian (1,1,3)-state might also
be a viable candidate for ν = 5/2 [59]. The quasiparticle tunneling signatures of this
state are expected to be identical with those of the (3,3,1)-state [59]. Hence also the
(1,1,3)-state is in agreement with the described experiments.

The discussed weak tunneling experiments at ν = 5/2 give important insight in the
physics at ν = 5/2. Especially the fact that the weak tunneling conductance can be so
well reproduced by a theoretical expression gives confidence about the significance
of the weak tunneling theory.

However, there are certain open questions that need to be addressed in order to
make a clear statement about the validity of these experiments. The weak tunneling
approximation itself is a strong assumption and needs justification. The influence
of the tunneling strength on the fit parameters should be investigated. This can for
example be done by varying the backscattering strength of the QPC with a gate volt-
age. Furthermore, the reentrant integer quantum Hall states have a very strong tem-
perature dependence that could strongly influence the extracted parameters. Hence,
repeating the tunneling experiments at different magnetic field strengths would be
an important validity check. Lastly, a comparison to other FQH states of the second
Landau level would be desirable. Though the nature of the most prominent states
in the second Landau level, the ν = 7/3 and 8/3 states, is not fully clear, they are
an important comparison in order to assess the general applicability of the weak
tunneling approximation. We will address these open questions in Chap. 11.

6.5.2 Neutral Mode Experiments

The edge properties of the ν = 2/3 state have been studied theoretically for a long
time. For a steep edge potential, the ν = 2/3 edge was predicted to consist of a ν = 1
IQH edge state and a counterpropagating hole edge state with filling factor ν = 1/3
[60, 61]. However, under such circumstances the two-terminal conductance of the ν
= 2/3 edgewould be non-universal, whichwas not observed in the experiments. It was
then realized that electron interactions and disorder mix these modes, resulting in a
collective charge mode and a neutral mode which propagates in the inverse direction
[62–64]. In this configuration, the correct two-terminal conductance of 2/3×e2/h is
found. The neutral mode does not carry any charge, but noise which could eventually
be detected in an experiment.

The detection of a neutral mode would be a worthy goal alone, but there are even
more reasons why we are interested in it: among the candidate wavefunctions at ν =
5/2, only the Anti-Pfaffian (with and without edge reconstruction) and the Pfaffian
(with edge reconstruction) were initially believed to allow a counterpropagating
neutral mode [19, 20, 65, 66] (see Table3.2). Hence an observation of a neutral
mode at ν = 5/2 would be a strong (indirect) sign for a non-Abelian state. Later it
was recognized [58, 59] that also the Abelian anti-(3,3,1) and (1,1,3)-states and the

http://dx.doi.org/10.1007/978-3-319-21051-3_11
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non-Abelian anti-SU2(2) state allow a counterpropagating neutral mode. Hence, also
the detection of a neutral mode is not sufficient as proof for a non-Abelian state.

An experiment trying to detect neutral modes has been performed by Bid et al.
[67]. The authors have used a measurement scheme where the counterpropagating
neutral mode is partially reflected at a QPC and fragmented in charge carriers, which
then are detected in a shot noise measurement.

Similar as in the shot noise experiments discussed before, a current bias is used
to drive the neutral mode through the partially transmitting QPC (called neutral
current). The charged mode (which carries the current) is sent to ground via an
additional Ohmic contact and hence is not expected to influence the noise. If no
neutral mode is present, no excess noise should be observed, even as the neutral
current is increased. However, if a neutral mode is present, excess noise is expected
to increase with neutral current. (The peculiar dependence of the current depends
on the quasiparticle charge, the temperature and the QPC transmission, for details
see [67].)

The latter was exactly what was observed in the experiments of Bid et al. Fig. 6.7
shows the excess noise as a function of the neutral current for two different filling
factors—the conventional ν = 2/5, where no neutral mode is expected and ν = 5/2.
For ν = 5/2 and for ν = 2/3, the excess noise was found to increase with neutral
current, which is a strong indication for the presence of a neutral mode. No such
behavior was found for ν = 2/5, where increasing the neutral current did not generate
excess noise.

Later experiments could confirm the presence of neutral modes at ν = 5/2 and also
found a neutralmode at ν = 8/3while it was absent at ν = 7/3 [68]. Thiswould exclude
the non-Abelian Read-Rezayi state for ν = 7/3. Furthermore, it was argued that the
ν = 7/3 state is not edge reconstructed (as the neutral mode is absent), hence edge
reconstruction could also be expected to be absent for ν = 5/2. In this case, the only
valid candidate wavefunctions for ν = 5/2 would be the anti-Pfaffian, together with
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Fig. 6.7 Excess noise as a function of the neutral current for ν = 2/5 (a) and ν = 5/2 (b). While
the neutral current does not induce excess noise for the conventional ν = 2/5 state, an increased
excess noise for increased neutral current at ν = 5/2 is an indication for the presence of a neutral
mode. (Taken from [67]. Reprinted by permission fromMacmillan Publishers Ltd: Nature 466, 585,
copyright 2010)
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the only later described Abelian anti-(3,3,1)- and (1,1,3)-states and the non-Abelian
anti-SU2(2) state [58, 59].

Overall, the neutral mode experiments seem to give convincing evidence for the
presence of a counterpropagating neutral mode at ν = 5/2 and rule out some candidate
wavefunctions. However, recent experiments [69] have shown some puzzling results
that put our understanding of the neutral modes into question. It was found that
also ordinary, non-particle-hole conjugate FQH states, like the ν = 1/3 state, show
neutralmodes. Evenmore surprising, neutralmodeswere found to propagate through
the incompressible bulk of the sample. These findings possibly suggest that edge
reconstruction, even for “simple”FQHstates, ismuchmore complex than anticipated.
Furthermore, unknown mechanisms coupling the bulk and edge might exist.

Given the current lack of knowledge of these processes and neutral modes in
general, the observation of a neutral mode alone seems not to be sufficient evidence
for definitively demonstrating that one particular candidate wavefunction for ν = 5/2
is correct. Further experiments which probe other aspects of the ν = 5/2 FQH state are
needed. Furthermore, Yang et al. have argued very recently that the Abelian (1,1,3)-
state is a candidate for ν = 5/2, which similar to the non-Abelian states, exhibits a
counterpropagating neutral mode [59].

6.6 Interference Experiments at ν = 5/2

We have discussed the basic principle of examining the statistic of the ν = 5/2 state
with interferometry in Sect. 5.3. A number of experiments [70–73] have tried to
implement the theoretical proposals. In the following, we will give a short overview
of the experiments of Willett et al., which have attracted most attention. Willett et al.
have investigated transport through top-gate defined interferometers [70–72]. These
interferometers (see Fig. 6.9a) are approximately 2 µm long with 1 µm wide QPCs.
In a configuration where a negative top-gate voltage is applied to the 2DEG, the
resistance longitudinally across the interferometer, Rlong, is measured. Figure6.8a, b
shows the longitudinal resistance for two different sets ofmeasurements as a function
of themagnetic field.While Rlong drops to zero for IQHfilling factors, Rlong ≈ 200�

(Fig. 6.8a) and Rlong ≈ 380 � (Fig. 6.8b) is observed at ν = 5/2.
In this configuration, the magnetic field has been set to a certain bulk filling

factor and the longitudinal resistance has been measured as a function of the voltage
applied to the side-gate of the interferometer (large gates in Fig. 6.9a). For this,
side-gate voltages have been swept very slowly (400mV/24 h) and measurement
signals have been integrated using very long lock-in time constants (30–100s) [71].
Exemplary traces of the longitudinal resistance versus the side-gate voltage are shown
in Fig. 6.9c–e. Insets show the Fourier spectra of the individual traces.

Close to a bulk filling factor ν = 2, a side-gate period of 2.5mV is observed. At ν =
7/3 and 5/2, 9.4 and 12mVare found for the side-gate period.At ν =5/2, also a smaller
periodicity is observed for a certain side-gate voltage interval (Fig. 6.9e). Looking
at the Fourier spectra of the two different side-gate voltage regions (Fig. 6.9f, g) one

http://dx.doi.org/10.1007/978-3-319-21051-3_5
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Fig. 6.8 Resistance
measured longitudinally
across the interferometers of
[70] (a) and [71] (b) as a
function of the magnetic
field. While Rlong drops to
zero for IQH states, a finite
Rlong is observed for ν = 5/2.
(a From [70]. Copyright
2009 by the National
Academy of Sciences, USA.
b Reprinted figure with
permission from [71].
Copyright 2010 by the
American Physical Society.)
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can see that their frequencies differ by a factor of approximately two. Willett et al.
have argued that the periodicities observed are compatible with an Aharonov-Bohm
behavior. A change of the side-gate voltage �Vs is expected to lead to a variation
of the area of the interferometer, �A. Willett et al. argue that in such an Aharonov-
Bohm situation,�Vs is expected to be proportional to the inverse of the quasiparticle
charge e∗: �Vs ∝ �A ∝ (h/e∗ B). A plot of �Vs × B is shown in Fig. 6.9b. When
e∗ = e is fixed at ν = 2, the periodicities are compatible with e∗/e = 1/3 at ν = 7/3
and e∗/e = 1/4 or 1/2 at ν = 5/2.

Another exemplary measurement of the longitudinal resistance versus the side-
gate voltage of Willett et al. is shown in Fig. 6.10a [71]. Over a larger voltage range,
different regimes, with oscillation amplitudes either corresponding to e∗ = e/4 or
e∗ = e/2 are observed. The Fourier components for periodicities corresponding
to e∗ = e/4 and e∗ = e/2 are shown in Fig. 6.10b. Here, an alternation between
e∗ = e/4 and e∗ = e/2 dominated behavior is observed for different side-gate
intervals. In the peak-to-peak spacing of maxima in Rlong (Fig. 6.10c), a similar
alternation is observed.

As we have discussed in Sect. 5.3, theoretical predictions for lowest-order inter-
ference processes of FQH states with non-Abelian statistics propose an even-odd
pattern for the conductance through an interferometer. For a non-Abelian state at ν =
5/2, periodic conductance oscillationswith a side-gate period corresponding to a qua-
siparticle charge e∗ = e/4 are expected when an even number of e/4 quasiparticles

http://dx.doi.org/10.1007/978-3-319-21051-3_5
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Fig. 6.9 a Interferometer used for the experiments by Willett et al. (c–e): Resistance measured
longitudinally across the interferometer as a function of the side-gate voltage for filling factors 2
(c), 7/3 (d) and 5/2 (e). Side-gate voltage periodicities �Vs of (c–e), multiplied by the magnetic
field are shown in (b). The behavior is consistent with an Aharonov-Bohm behavior with �Vs ∝
�A ∝ (h/e∗ B), where �A is the induced interferometer area change and e∗ is the quasiparticle
charge. Insets show the Fourier spectra of the curves. (Reprinted figure with permission from [71].
Copyright 2010 by the American Physical Society.)

is localized within the interference path [74–78]. For an odd number of e/4 quasi-
particles localized within the interference path, the interference pattern is expected
to vanish.
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Fig. 6.10 a Longitudinal resistance close to ν = 5/2 as a function of the side-gate voltage. White
and shaded blue regions indicate two different regimes. The supposed periodicities corresponding
to e∗ = e/4 and e∗ = e/2 are indicated. The Fourier components for periodicities corresponding
to e∗ = e/4 and e∗ = e/2 are shown in (b). Here, an alternation between e∗ = e/4 and e∗ = e/2
is observed. In the peak-to-peak spacing of maxima in Rlong (c), a similar alternation is observed.
(Reprinted figure with permission from [71]. Copyright 2010 by the American Physical Society.)

The observation of the alternation between e∗ = e/4 and e∗ = e/2 side-gate
voltage periodicities has been interpreted byWillett et al. as support for non-Abelian
statistics [70, 71]. The authors argue that the disappearance of the e/4 oscillations
could be understood as a result of the even-odd behavior predicted by theory. A
change between the e/4 and e/2 periodic oscillations then would occur whenever the
side-gate voltage has been sufficiently varied to change the number of localized e/4
quasiparticles within the interferometer by one. The appearance of the e/2-periodic
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oscillations is not completely understood. They might arise from processes, where a
quasiparticles makes two loops around the interferometer [71]. Another possibility
might be that they arise from the e/2 Laughlin-type edge excitations that exist for all
proposed wavefunctions at ν = 5/2 [74].

Though the results ofWillett et al. might constitute the first demonstration of non-
Abelian statistics, open questions about the validity of the implementation and the
interpretation remain. For example, Abelian states like the (3,3,1)- and (1,1,3)-states
might produce a similar even-odd interference pattern as expected for non-Abelian
FQH states [59, 79].

6.7 Summary

Wehave discussed experiments, numerical simulations and theoretical proposals that
investigate the properties of the ν = 5/2 state. Numerical studies largely agree on a
fully spin-polarized ground state which is closely related to theMoore-Read Pfaffian
state [42].

Shot noise, local compressibility and quasiparticle tunneling experiments agree
on a quasiparticle charge of e∗/e = 1/4. However, this alone does not allow to
discriminate between the candidate wavefunctions, as they all are expected to possess
e∗/e = 1/4 quasiparticle excitations.

The spin polarization is not directly connected to the Abelian or non-Abelian
nature of the ν = 5/2 state, but might help to exclude certain candidate states. Exper-
iments have yielded inconsistent results for the spin polarization, though a spin-
polarized state seems to be more likely, especially given the recent experiments of
[37, 50, 52].

A better discrimination of the different states proposed can be achieved, at least in
principle, by probing certain properties of the edge. Tunneling experiments employ-
ing QPCs allow extracting interaction parameters that reflect the topological order
of the bulk and can be directly compared to expectations for the candidate wave-
functions. Here, experiments agreed closest with the non-Abelian anti-Pfaffian and
SU2(2) FQH states [56] or the Abelian (3,3,1)-state [57]. When intra-edge Coulomb
interaction is taken into account, all experiments favor theAbelian (3,3,1)-state. Later,
it was argued that the Abelian (1,1,3)-state might also be a viable candidate for ν =
5/2, consistentwith quasiparticle tunneling experiments [59].However, certain points
of the tunneling experiments remain unclear. Especially the validity of the weak tun-
neling assumption and influence of density-modulated phases, backscattering, etc.,
should be carefully checked. A comparison to presumably better understood FQH
states of the second Landau level is highly desirable. We will address these points
experimentally in Chap.11.

Another possibility to probe the edge properties is to probe the presence of a
neutral mode. Such a neutral mode is only supported by certain candidate wavefunc-
tions and was found for ν = 5/2 and ν = 8/3, but not for ν = 7/3. This might suggest
that ν = 5/2 indeed is a non-Abelian state, though also the Abelian anti-(3,3,1) and

http://dx.doi.org/10.1007/978-3-319-21051-3_11
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(1,1,3)-states cannot be ruled out. However, recent experimental observations chal-
lenge our general understanding of neutral modes. With this lack of understanding, it
might not be possible to draw strong conclusions from the presence of a neutralmode.
Furthermore, the Abelian (1,1,3)-state [59], which agrees well with the quasiparticle
tunneling experiments, also is expected to possess a neutral mode.

The most direct and most convincing demonstration of a non-Abelian state would
be the realization of quasiparticle braiding in an interferometer. We have given an
overview of experiments trying to accomplish this. Though the results might indicate
non-Abelian statistics, many open questions remain. For example, similar interfer-
ence patterns as observed might be caused by the Abelian (3,3,1)- and (1,1,3)-states
[59, 79]. Further experiments are needed to definitely clarify the question of the
nature of the ν = 5/2 state.
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21. A. Wójs, C. Tőke, J.K. Jain, Phys. Rev. Lett. 105, 096802 (2010).doi:10.1103/PhysRevLett.
105.096802

22. E.H. Rezayi, S.H. Simon, Phys. Rev. Lett. 106, 116801 (2011). doi:10.1103/PhysRevLett.106.
116801

23. M.R. Peterson, T. Jolicoeur, S.D. Sarma, Phys. Rev. Lett. 101, 016807 (2008). doi:10.1103/
PhysRevLett.101.016807

24. M.R. Peterson, T. Jolicoeur, S.D. Sarma, Phys. Rev. Lett. 78, 155308 (2008). doi:10.1103/
PhysRevB.78.155308

25. J. Biddle, M.R. Peterson, S.D. Sarma, Phys. Rev. Lett. 84, 125141 (2011). doi:10.1103/
PhysRevB.84.125141

26. M.R. Peterson, J. Phys. Confer. Ser. 402, 012021 (2012). doi:10.1088/1742-6596/402/1/
012021

27. M.R. Peterson, S.D. Sarma, Phys. Rev. B 81, 165304 ( 2010). doi:10.1103/PhysRevB.81.
165304

28. T. Martin, R. Landauer, Phys. Rev. B 45, 1742 (1992). doi:10.1103/PhysRevB.45.1742
29. L. Saminadayar, D.C. Glattli, Y. Jin, B. Etienne, Phys. Rev. Lett. 79, 2526 (1997). doi:10.1103/

PhysRevLett.79.2526
30. R. de Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, D. Mahalu, Nature 389,

162 (1997). doi:10.1038/38241
31. M. Dolev, M. Heiblum, V. Umansky, A. Stern, D. Mahalu, Nature 452, 829 (2008). doi:10.

1038/nature06855
32. M. Dolev, Y. Gross, Y.C. Chung, M. Heiblum, V. Umansky, D. Mahalu, Phys. Rev. B 81,

161303 (2010). doi:10.1103/PhysRevB.81.161303
33. S. Ilani, J. Martin, E. Teitelbaum, J.H. Smet, D. Mahalu, V. Umansky, A. Yacoby, Nature 427,

328 (2004). doi:10.1038/nature02230
34. J. Martin, S. Ilani, B. Verdene, J. Smet, V. Umansky, D. Mahalu, D. Schuh, G. Abstreiter, A.

Yacoby, Science 305, 980 (2004). doi:10.1126/science.1099950
35. V. Venkatachalam, A. Yacoby, L. Pfeiffer, K. West, Nature 469, 185 (2011). doi:10.1038/

nature09680
36. W. Pan,H.L. Stormer,D.C. Tsui, L.N. Pfeiffer,K.W.Baldwin,K.W.West, Solid StateCommun.

119, 641 (2001). doi:10.1016/S0038-1098(01)00311-8
37. W. Pan, A. Serafin, J.S. Xia, L. Yin, N.S. Sullivan, K.W. Baldwin, K.W. West, L.N. Pfeiffer,

D.C. Tsui, Phys. Rev. B 89, 241302 (2014). doi:10.1103/PhysRevB.89.241302
38. J.P. Eisenstein, H.L. Stormer, L. Pfeiffer, K.W. West, Phys. Rev. Lett. 62, 1540 (1989). doi:10.

1103/PhysRevLett.62.1540
39. J.P. Eisenstein, H.L. Stormer, L.N. Pfeiffer, K.W. West, Phys. Rev. B 41, 7910 (1990). doi:10.

1103/PhysRevB.41.7910
40. J. Nuebler, V. Umansky, R. Morf, M. Heiblum, K. von Klitzing, J. Smet, Phys. Rev. B 81,

035316 (2010). doi:10.1103/PhysRevB.81.035316
41. C. Zhang, T. Knuuttila, Y. Dai, R.R. Du, L.N. Pfeiffer, K.W.West, Phys. Rev. Lett. 104, 166801

(2010). doi:10.1103/PhysRevLett.104.166801
42. S. Das Sarma, G. Gervais, X. Zhou, Phys. Rev. B 82, 115330 (2010). doi:10.1103/PhysRevB.

82.115330
43. M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 83, 824

(1999). doi:10.1103/PhysRevLett.83.824
44. C.R. Dean, B.A. Piot, P. Hayden, S.D. Sarma, G. Gervais, L.N. Pfeiffer, K.W.West, Phys. Rev.

Lett. 101, 186806 (2008). doi:10.1103/PhysRevLett.101.186806
45. J. Xia, V. Cvicek, J.P. Eisenstein, L.N. Pfeiffer, K.W.West, Phys. Rev. Lett. 105, 176807 (2010).

doi:10.1103/PhysRevLett.105.176807
46. J.P. Eisenstein, R.L. Willett, H.L. Stormer, L.N. Pfeiffer, K.W. West, Surf. Sci. 229, 31 (1990).

doi:10.1016/0039-6028(90)90824-R
47. J.P. Eisenstein, R. Willett, H.L. Stormer, D.C. Tsui, A.C. Gossard, J.H. English, Phys. Rev.

Lett. 61, 997 ( 1988). doi:10.1103/PhysRevLett.61.997
48. J.K. Jain, Physics 3, 71 (2010). doi:10.1103/Physics.3.71

http://dx.doi.org/10.1103/PhysRevLett.105.096802
http://dx.doi.org/10.1103/PhysRevLett.105.096802
http://dx.doi.org/10.1103/PhysRevLett.106.116801
http://dx.doi.org/10.1103/PhysRevLett.106.116801
http://dx.doi.org/10.1103/PhysRevLett.101.016807
http://dx.doi.org/10.1103/PhysRevLett.101.016807
http://dx.doi.org/10.1103/PhysRevB.78.155308
http://dx.doi.org/10.1103/PhysRevB.78.155308
http://dx.doi.org/10.1103/PhysRevB.84.125141
http://dx.doi.org/10.1103/PhysRevB.84.125141
http://dx.doi.org/10.1088/1742-6596/402/1/012021
http://dx.doi.org/10.1088/1742-6596/402/1/012021
http://dx.doi.org/10.1103/PhysRevB.81.165304
http://dx.doi.org/10.1103/PhysRevB.81.165304
http://dx.doi.org/10.1103/PhysRevB.45.1742
http://dx.doi.org/10.1103/PhysRevLett.79.2526
http://dx.doi.org/10.1103/PhysRevLett.79.2526
http://dx.doi.org/10.1038/38241
http://dx.doi.org/10.1038/nature06855
http://dx.doi.org/10.1038/nature06855
http://dx.doi.org/10.1103/PhysRevB.81.161303
http://dx.doi.org/10.1038/nature02230
http://dx.doi.org/10.1126/science.1099950
http://dx.doi.org/10.1038/nature09680
http://dx.doi.org/10.1038/nature09680
http://dx.doi.org/10.1016/S0038-1098(01)00311-8
http://dx.doi.org/10.1103/PhysRevB.89.241302
http://dx.doi.org/10.1103/PhysRevLett.62.1540
http://dx.doi.org/10.1103/PhysRevLett.62.1540
http://dx.doi.org/10.1103/PhysRevB.41.7910
http://dx.doi.org/10.1103/PhysRevB.41.7910
http://dx.doi.org/10.1103/PhysRevB.81.035316
http://dx.doi.org/10.1103/PhysRevLett.104.166801
http://dx.doi.org/10.1103/PhysRevB.82.115330
http://dx.doi.org/10.1103/PhysRevB.82.115330
http://dx.doi.org/10.1103/PhysRevLett.83.824
http://dx.doi.org/10.1103/PhysRevLett.101.186806
http://dx.doi.org/10.1103/PhysRevLett.105.176807
http://dx.doi.org/10.1016/0039-6028(90)90824-R
http://dx.doi.org/10.1103/PhysRevLett.61.997
http://dx.doi.org/10.1103/Physics.3.71


References 93

49. M. Stern, P. Plochocka, V. Umansky, D.K.Maude, M. Potemski, I. Bar-Joseph, Phys. Rev. Lett.
105, 096801 (2010). doi:10.1103/PhysRevLett.105.096801

50. U. Wurstbauer, K.W. West, L.N. Pfeiffer, A. Pinczuk, Phys. Rev. Lett. 110, 026801 (2013).
doi:10.1103/PhysRevLett.110.026801

51. A. Wójs, G. Möller, S.H. Simon, N.R. Cooper, Phys. Rev. Lett. 104, 086801 (2010). doi:10.
1103/PhysRevLett.104.086801

52. L. Tiemann, G. Gamez, N. Kumada, K.Muraki, Science 335, 828 (2012). doi:10.1126/science.
1216697

53. M. Stern, B.A. Piot, Y. Vardi, V. Umansky, P. Plochocka, D.K. Maude, I. Bar-Joseph, Phys.
Rev. Lett. 108, 066810 (2012). doi:10.1103/PhysRevLett.108.066810

54. W. Desrat, D.K. Maude, M. Potemski, J.C. Portal, Z.R. Wasilewski, G. Hill, Phys. Rev. Lett.
88, 256807 (2002). doi:10.1103/PhysRevLett.88.256807

55. T.D. Rhone, J. Yan, Y. Gallais, A. Pinczuk, L. Pfeiffer, K. West, Phys. Rev. Lett. 106, 196805
(2011). doi:10.1103/PhysRevLett.106.196805

56. I.P. Radu, J.B. Miller, C.M. Marcus, M.A. Kastner, L.N. Pfeiffer, K.W. West, Science 320, 899
(2008). doi:10.1126/science.1157560

57. X. Lin, C. Dillard, M.A. Kastner, L.N. Pfeiffer, K.W. West, Phys. Rev. B 85, 165321 (2012).
doi:10.1103/PhysRevB.85.165321

58. G. Yang, D.E. Feldman, Phys. Rev. B 88, 085317 (2013). doi:10.1103/PhysRevB.88.085317
59. G.Yang,D.E. Feldman, Phys.Rev.B 90, 161306(R) (2014). doi:10.1103/PhysRevB.90.161306
60. A.H. MacDonald, Phys. Rev. Lett. 64, 220 (1990). doi:10.1103/PhysRevLett.64.220
61. M.D. Johnson, A.H. MacDonald, Phys. Rev. Lett. 67, 2060 (1991). doi:10.1103/PhysRevLett.

67.2060
62. C.L. Kane, M.P.A. Fisher, J. Polchinski, Phys. Rev. Lett. 72, 4129 (1994). doi:10.1103/

PhysRevLett.72.4129
63. C.L. Kane, M.P.A. Fisher, Phys. Rev. B 51, 13449 (1995). doi:10.1103/PhysRevB.51.13449
64. C.L. Kane, M.P.A. Fisher, Phys. Rev. B 55, 15832 (1997). doi:10.1103/PhysRevB.55.15832
65. B.J. Overbosch, X.-G. Wen. arXiv:0804.2087 [cond-mat] (2008)
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Part II
Setup and Sample Optimization



Chapter 7
Measurement Setup Optimization for Low
Electron Temperatures

Abstract The main steps for improving a dry dilution refrigerator setup for low
electron temperatures are discussed. The pulse tube refrigerator (PTR) and the still
turbo-pump are the main sources of vibrations, which couple to the sample via the
magnetic field and cause heating. This effect was minimized by decoupling the PTR
from the cryostat top-plate, 77K and 4Kplates. The still turbo-pump could efficiently
be decoupled via a T-bellows construction. A customized frame has been constructed
to avoid vibrations caused by the experimentalist. Using awell-considered grounding
scheme and insulation transformers, low electronic noise levels, necessary for low
electron temperatures, are achieved. To be able to reach the lowest electron tempera-
tures, advanced filtering and thermal anchoring are necessary. We describe how this
is accomplished in our setup, using different filtering and thermalization elements.

7.1 Introduction

Experiments that probe the ν = 5/2 state and other FQH states in the second LL
require extremely low electronic temperatures. Activation energies of these states
of as low as approximately 100–150mK are found in even the best high mobility
quantum wells grown at ETH Zürich [1]. The proposed interference experiments for
the ν = 5/2 state require electronic temperatures of below 20mK, because of the
short and temperature-dependent quasiparticle coherence lengths [2] (see Sect. 14.2).
Though dilution refrigerators with base temperatures below 10mK are commercially
available, cooling 2DEG electrons still is experimentally challenging.

Phonon-mediated heat transfer across an interface between two solids is described
by the Kapitza thermal resistance RK [3]. The Kapitza resistance occurs due to an
acoustic mismatch at an interface between two solids. Here, an incident phonon has
a finite probability of being reflected, because of a discontinuity of the refractive
index at the interface [4]. Overall, this leads to a large thermal boundary resistance
RK ∝ T −3 [5]. The electron-lattice thermal resistance Rep is even larger at low
temperatures. Here, Rep ∝ T −4 [6] or Rep ∝ T −5 [7] is found for pure or dirty
metals. Thus the cold phonon bath is only extremely weakly coupled to the electron
bath at these low temperatures, which results in a very small cooling power that
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reaches the sample 2DEG. Even small heat sources lead to an electronic temperature
that is significantly larger than the phonon (bath) temperature. The sample cabling,
which necessarily forms an electric connection to the room temperature environment,
is one of the main heat sources. It transmits high frequency radiation from the room
temperature side to the sample, which results in electronic temperatures of Tel >

60mK for typical cryostat cablings.
For the work presented in this book, a new cryostat filtering setup had to be

designed and built and the existing dilution refrigerator had to be modified to allow
for low-noise measurements at low electronic temperatures. To accomplish this,
first heating sources as electronic noise or vibrations had to be minimized. The
experiments were conducted in a dry dilution refrigerator, which is pre-cooled to
temperatures below 4Kwith a pulse-tube refrigerator [8]. The mechanical vibrations
caused by the expanding gas in the cold head and vibrations of the rotary valve set
an experimental challenge compared to traditional wet dilution refrigerators.

The second step towards decreasing the electronic temperature is done by heavily
filtering the DC lines that connect the sample. High-frequency radiation in the GHz
and THz range has to be efficiently blocked. As every filtering element emits ther-
mal noise by itself, this filtering has to be done at different temperature stages and
especially at the lowest temperature. Lastly, the thermal contact of the sample to the
mixing chamber has to be optimized, to allow for efficient cooling of the electron
gas. This has been accomplished by integrating a cold-finger made of high-purity,
thermally annealed silver, providing an extremely high thermal conductivity. Heat
sinks ensure thermalization of the cables, which are directly coupled to the electron
bath of the 2DEG. Contact resistances are another bottleneck for the thermal cou-
pling between the mixing chamber and the electron gas. In Chap.8, we will discuss
how contacts of mesa-defined structures were optimized in this respect. An overview
of the experimental problems that prevent low electron temperatures and possible
solutions is given in Table7.1.

7.2 Dilution Refrigerator Setup

Most experiments presented in this work have been performed in a dry VeriCold1

dilution refrigerator,with a base temperature of approximately 9–10mK.The cryostat
and the setup frame are shown in Fig. 7.1a. An overview of themixing chamber plate,
seen from below is shown in Fig. 7.1b. Different filtering components are arranged
around the silver cold-finger, which points in the bore of a superconducting 5T mag-
net. On top of the base-plate, cold-plate (T ≈ 80mK) and still-plate (T ≈ 800mK)
are visible.

1Now part of Oxford Instruments.
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Table 7.1 Overview of different problems that prevent us from reaching low electron temperatures,
their effect on the sample and possible solutions

Problem Effects on sample Solution

Mechanical vibrations from:

• Pulse tube head and rotary
valve

• Heating of the mixing
chamber by friction

• PT head has been decoupled
from 4K plate

• Turbo molecular pump • Induces noise and currents in
the sample cabling by
vibrations in the magnetic
field, and hence sample heating

• Rotary valve as been
mounted to ceiling

• Experimentalists, etc. • Turbo molecular pump is
decoupled via bellows
construction

• More stable cryostat frame
has been installed

Environment noise:

• Electric and magnetic noise
from pumps, power supplies,
etc. (mainly 50Hz and higher
order)

• Sample heating, noisy
measurement signals

• High frequency radiation (f >
1 kHz) is removed by several
filtering stages in the cabling

• High frequency noise from
screens, radio transmitters,etc.

• Low frequency noise is hard
to filter out. Noise is reduced
by using insulation
transformers, opto-couplers
and keeping power supplies
etc. far away from the cryostat

Thermal radiation

• Sample heating by
absorption of high frequency
radiation

• Filtered out by several cold
filtering stages in the cabling.
For very high frequencies
Thermocoax cables are highly
efficient

• Sample and cabling on the
mixing chamber are double
shielded by massive high
thermal conductivity silver
shields

Weak thermal coupling of the
sample

• Equilibrium temperature of
the sample is higher for a given
heat leak

• Coupling is optimized by
using quartz heat sinks and by
thermalizing copper cables on
the silver cold finger

• Optimized thermal coupling
by high thermal conductivity
silver cold finger

(continued)
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Table 7.1 (continued)

Problem Effects on sample Solution

• Contact resistances of the
samples are minimized with an
optimized contact recipe

• Cold ground may contribute
additional thermal coupling

Heating by eddy currents and
adiabatic magnetization

• Electron temperature is
enhanced after and during
sweeps of the B-field

• Adiabatic (de-)
magnetization is minimized by
using a silver cold finger

• Eddy current heating only
depends on the geometry of
the cold finger. We have
favored optimized shielding
over geometry optimized for
small eddy currents
→ B-field has to be swept
sufficiently slow

Fig. 7.1 a Overview of the dilution refrigerator setup and the setup frame. The cryostat OVC is
wrapped in thick neoprene mats for vibration damping. b View on the mixing chamber plate of the
cryostat from below. The individual components of the filtering setup are described later
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(a) (b)

(d)(c)

Fig. 7.2 Vibration spectra for different orientations of a piezo acceleration sensor on the tail and
the base-plate. Compared to the reference measurements (blue), where PTR and TMP are switched
off, substantial additional noise sets in, as PTR (red) or TMP (green) are switched on

7.2.1 Vibration Minimization and Insulation

The advantage of not having to refill liquid Helium comes for a price—significantly
increasedvibrations, compared to a traditionalwet system.Figure7.2 showsvibration
measurements before the decoupling of the PT head. Thesemeasurements were done
with a piezo acceleration sensor for different orientations on the cold-finger and on
the base-plate. Here, the amplitude δV is linearly proportional to the acceleration for
the displayed frequency range. Comparing measurements where PTR and TMP are
running with the reference measurement (blue) reveals strongly enhanced vibrations
due to the PTR and the TMP. The TMP mainly causes vibrations at its operation
frequency of 820Hz, whereas the PTR induces a whole range of vibrations from
1.4Hz to more than 1kHz.

Figure7.3 shows the power spectral density of the current through aQPC (R ≈ 22
k� and R ≈ 40k� for B = 4.4 T), measured with an IV converter with a feedback
resistance of 10 M�. As a finite magnetic field is applied, PTR and TMP vibrations
are translated into substantial electronic noise, which might cause significant heating
of the sample.
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Fig. 7.3 Power spectral density of the voltage output of an IV-Converter (RF = 10M�), connected
to a cold QPC. As the magnetic field is switched on, TMP and PTR vibrations are visible as
pronounced electronic noise

The components which are responsible for the biggest part of the vibrations are
discussed in the following.

7.2.1.1 Pulse Tube Cryocooler

The pulse tube cryocooler itself is integrated in the OVC of the dilution refrigerator.
In the initial configuration, the room temperature side of the head was fixed to the
top-plate of the cryostat. Both cold stageswere decoupled from their respective plates
by short and stiff copper braids. For vibration reduction, the fixed connection on the
room temperature side has been replaced by a flexible bellows-ring (Fig. 7.4b). For
this, it was necessary to completely open the mixing circuit which is soldered to the
cold head for pre-cooling.

The thermal anchoring to 4K and 70K plates has been replaced by much longer
and more flexible copper braids. In Fig. 7.4a, the two cold head stages with the new
thermal anchoring can be seen. A comparison of the initial and the new, self-made
copper braids is shown in Fig. 7.5.

The effect of the decoupling of the PTR head is shown in Fig. 7.6. Here, vibration
spectra, measured with a piezoelectric vibration sensor on the base-plate, before and
after decoupling are shown. After decoupling, the overall background is reduced
and the wide dominant peak at approx. 12Hz is less visible. It should be noted that
a quantitative comparison is difficult, as the recorded vibration spectrum depends
strongly on the exact position of the piezo sensor and how it is fixed, which is not
necessarily comparable for two different measurements. However, the overall flatter
vibration spectrum after decoupling suggests that this measure was highly efficient.
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Fig. 7.4 a The pulse tube cryorefrigerator, installed in the dilution refrigerator system with
improved thermal anchoring. b A newly installed bellows-ring reduces vibration transfer from
the cold head to the cryostat. c A very stiff Kanya frame has been chosen for mounting the cryostat.
For minimal vibration sensitivity, the frame is anchor bolted to the concrete bottom plate of the
building. d The still turbo-pump is anchor bolted to the building wall (left). The still line is con-
nected to the cryostat via a T-bellows construction which efficiently avoids vibration transfer. The
still line is also wrapped with thick neoprene mats (black)

7.2.1.2 Pulse Tube Rotary Valve

The rotary valve of the pulse tube cooler is connected to the cold head by an approxi-
mately 0.7m long high pressure tube, which is contracting and expanding. The rotary
valve has been placed in a noise insulating box, which is flexibly mounted to the lab
ceiling. This step strongly reduced low frequency vibrations which were visible in
the measurements when the rotary valve was fixed on top of the cryostat frame. Com-
pared to the initial configuration of the system, the motor driver of the rotary valve
has been replaced. Initially, the rotary valve was controlled by the Cryomech pulse
tube compressor, which applied a sinusoidal voltage pulse to drive the rotary valve.
The resolution of the voltage output of the compressor was found to have a very poor
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Fig. 7.5 The standard thermal anchoring of the PTR (upper column) was very stiff and also too
short after the installation of the PTR head bellows ring. The self-made replacement of the thermal
anchoring is shown below. By using longer and more flexible copper braids, the vibration transfer
could be significantly reduced

Fig. 7.6 Vibration spectra on base-plate, before and after decoupling of the PTR head

resolution, which “chops” the sinus pulse in coarse rectangular pulses and with this
generates significant electronic noise and also mechanical vibrations.We have added
an external driver (Precision Motion Controls LNX-G) to our setup, which resolves
this problem by applying a much smoother voltage signal. The new driver was found
by other groups2 to significantly reduce vibrations and electromagnetic emission.

2C.L. Degen, private communication.



7.2 Dilution Refrigerator Setup 105

7.2.1.3 Turbomolecular Pump

As discussed earlier, the TMP mainly causes vibrations at its operation frequency of
820Hz. In order to get rid of these vibrations, a T-bellows construction (Fig. 7.4d)
has been implemented. This construction avoids an asymmetric contraction under
vacuum and insulates the cryostat from the transversal still line vibrations at the
same time. After the installation of the T-bellows, no 820Hz noise could further be
observed in any measurement.

7.2.1.4 Forepump

The rotary forepump and the compressor are kept outside of the laboratory, mainly
for noise reasons. The forepump is connected to the still TMP via a long vacuum
tube. In order to prevent vibration transmission from the forepump to the TMP and
hence to the cryostat, the long vacuum tube is partially buried in a sand box, which
efficiently damps the low-frequency vibrations (see Fig. 7.7).

7.2.1.5 Cryostat Frame

The initially used frame of the cryostat turned out not to be stable enough against
vibrations causedby the experimentalists andhad to be scaled down for space reasons.
The final frame, built out of Kanya profiles with multiple connections to stiffen the
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Electrical
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Fig. 7.7 Schematic overview of the pumping circuit of the dilution refrigerator setup
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construction can be seen in Fig. 7.1a. The frame itself is not free-standing any more,
but is anchor bolted to the 3m thick concrete bottom plate of the building (Fig. 7.4c).
With this frame it is possible to work on the devices and cabling on the top-plate of
the cryostat, without heating the mixing chamber and the sample by vibrations.

Figure7.7 shows an overview of the most important components of the vibration
optimized dilution refrigerator setup, including the decoupled still pumping line and
the dilution circuit connections.

7.2.2 Electronic Noise

As low electron temperatures require low electronic noise, a large emphasis has been
put on the electronic noise reduction of the setup. Noise mainly couples in the system
via AC electric and magnetic fields. In our labs, typical background AC magnetic
fields of some 10−9 T were observed. The shielding of these magnetic fields is very
difficult. Tries to shield the OVC of our cryostat with mu-metals have not improved
the noise level. Thus the only possibility is to keep the area of the cabling as small
as possible, for example by winding the Thermocoax cables non-inductively and
keeping their cross-section small. Furthermore, possible electric and magnetic noise
sources, as power supplies, are kept away from the cryostat as far as possible. In
contrast, shielding (low frequency) electric fields is much easier by using grounded
metal shields. (A good overview of grounding concepts and noise can be found in
[9]). For this, the grounding concept of the cryostat has been optimized, in order
to connect all vital parts of the measurement setup to a well-defined measurement
ground (see Fig. 7.8). For all measurement devices, a low-impedance connection

Fig. 7.8 Schematics of the grounding connections of the setup. Pumping and measurement lines
from the cryostat to the gas handling system are insulated, the cryostat top-plate is connected to a
well-defined grounding plate in the racks
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Fig. 7.9 New rack design with low-impedance ground connections for all measurement devices

to the measurement ground is supplied via newly designed racks (Fig. 7.9). The
setup power is supplied via an insulation transformer that decouples the system from
possible high-frequency noise on the mains. Measurement device GPIB ports are
only contacted via opto-couplers, to avoid the transmission of high frequency noise
from the PC switching power supplies to the setup. Ground loops in the setup, in
the gas-handling system and in the pumping circuits were removed by introducing
insulating elements. Compared to the initial status of the setup, a big improvement
of the noise level could be achieved by removing all ground-loops in the pumping
lines. Large circular currents were found to build up in a network of interconnected
pumping lines. Though these lines were not directly connected to the cryostat, noise
cross-talk was sufficient to be noticeable in the measurement setup.

As a qualitative criterion for the noise of the setup, we have investigated the
strength of rectification via noise in a single quantum dot. Figure7.10 shows the
current through the QD as a function of the plunger gate voltage, for different applied
DC voltages. Rectification is only visible for |VSD,DC| ≤ 1µV. In typical dilution
refrigerator setups, this noise-induced effect is visible for biases |VSD,DC| of up to
approximately 10–20µV [10], indicating an excellent noise level of our setup.
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Fig. 7.10 Rectification via noise of a single quantum dot, for different applied DC voltages

7.3 Cryostat Cabling and Cold Filtering

Many research groups have successfully reached low electron temperatures, using
various different filtering techniques. The interested reader is referred to the literature
[11, 13–15, 17–26] for an overview of different filtering techniques. The filtering
setup used by us is shown in Fig. 7.11. The cabling is set up in a modular way, where
different filtering components filter out different parts of the noise spectrum. Cabling
down to the cold-plate (T ≈ 80mK) is done using standard Loomwire. On the cold-
plate, wires are thermally anchored with a quartz heat sink. From the cold-plate to
the silver cold-finger, cabling is done using Thermocoax cables. On the bottom of
the base-plate, additional RC filters, Pi filters and heat sinks (Fig. 7.11) are installed.

7.3.1 General Remarks

For a low temperature setup, materials and joining techniques have to be well chosen.
References [27–29] are excellent references for this purpose. Thermal conductivities
at millikelvin temperatures are extremely small for many insulators (Fig. 7.12). Thus
insulators should be avoided wherever possible, especially ceramic and glass com-
ponents which have a large heat capacity in addition to the poor thermal conductivity.
Cases of our home-made filters and heat sinks were designed from oxygen free cop-
per, which offers a high thermal conductivity even at low temperatures. The filters
were screwed on the base-plate. At low temperatures, the thermal conductance of
screwed solid-solid joints depends roughly linearly on the force that is applied at the
joint. Furthermore, the heat transfer across gold-plated interfaces works much better
than across two copper surfaces (see Fig. 7.13). Thus filter caseswere gold-plated and
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Fig. 7.11 Overview bottom side of the mixing chamber plate. Different components of the cabling
are indicated

Fig. 7.12 Thermal conductivity of different materials at temperatures below 1 K. Quartz (green
curve) is the thermally best conducting, electrically insulating solid at these temperatures, nearly
one order of magnitude better than sapphire. Adapted from [28]
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Fig. 7.13 Overview of the thermal conductance of different joints between solids at different
temperatures. (Taken from [27]. By permission of Oxford University Press)

fixed to the mixing chamber plate using stainless steel screws.3 These connections
used in our setup provide a good thermal conductance, even at the lowest temper-
atures (see green curves in Fig. 7.13). In addition to the mechanical connections,
electrical connections of cables have to be made. Unfortunately for this we have
to cope with the problem that all common soft solders become superconducting at
millikelvin temperatures [30].4

Presumably, the thermal conductivity of a superconducting solder joint still is
sufficiently high for the use in our cabling (Fig. 7.13). Still, superconducting junctions
have been avoided by wrapping cables around each other or around contacts before
soldering. Due to the small critical field (Hc = 80 mT at 1.3K for 60Sn/40Pb [27]),
most of the solder joints will be normally conducting as soon as a magnetic field
is applied. When installing the cables, we want to avoid noise coupling in via AC
electric and magnetic fields. Electric fields can be shielded. This is accomplished
by using shielded Thermocoax cables from the cold-plate to the silver cold-finger.
Inside the cold-finger, cables are shielded by an additionally mountable cover. All

3Note that if no sufficient force can be applied to a screwed connection, the thermal conductivity
can be enhanced by adding a thin film of vacuum grease in between.
4Bismuth solder is the only soft solder that does not become superconducting [31] but has been
disregarded because of its bad mechanical stability.
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Fig. 7.14 Non-inductive
winding of measurement
cables. Adapted from [27]

filtering and heat sinking cases are designed to be high frequency radiation tight, by
the use of notched covers and additional sealing with conductive silver.

Magnetic fields cannot be easily shielded. However, cabling can be installed such
that areas for inductive coupling are minimized. This is accomplished by keeping
cables tightly together and winding them non-inductively (see Fig. 7.14).

7.3.2 Thermocoax Cables

Thermocoax cables are coaxial cables made of NiCr, filled with compacted MgO
powder. Due to the large surface of the MgO powder, high frequency radiation, up to
the THz range, is efficiently filtered out due to skin effect damping [18]. The main
advantage of these cables is that they are relatively compact and already have a
strong filter integrated. However, they are difficult to handle and soldering of these
cables is a real pain. In our setup, we have integrated 24 DC lines, with approx. 3 m
long Thermocoax segments for each line, from the cold-plate down to the mixing
chamber plate. The soldered cables have to be sealed, in order to prevent the MgO
filling to absorb water vapor. This leads to a leakage current between inner and outer
conductor, which however freezes out at low temperatures. The sealing is done, by
heating the cable for approx. 20min to 120 ◦C. Then, the ends of the cable are sealed
with Stycast 2850 FT epoxy, which hardens over night.

7.3.3 π-Filters

In addition to the Thermocoax cables, commercial Minicircuits VLFX-80 π-low-
pass filters have been integrated. These filters work at low temperatures and provide
40 dB insertion loss from approximately 200 MHz up to frequencies of 20 GHz.
The complete array of 24 of these filters can be seen in Fig. 7.15. These components
provide additional filtering at the lowest temperature stage.
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Fig. 7.15 Array of 24 Minicircuits VLFX-80 Pi-filters. In- and output are connected via Thermo-
coax cables

7.3.4 Quartz Heat Sinks

For the thermalization of the inner conductor, heat sinking elements, using quartz
single crystal wafers have been built. Similar designs have been described in
[11, 12]. Quartz is the best thermally conducting insulator at low temperatures,
nearly one order of magnitude better than sapphire (see Fig. 7.12). Quartz wafers
have been gold-coated on the back. Then, meandering gold lines (R ≈ 50 �) were
defined on the front, using a photolithography step, metal evaporation and lift-off.
The quartz wafer then is integrated in a casing (see Fig. 7.16) and inner conductors
are soldered to the meandering gold lines. It is important to know that standard Pb/Sn
solder rapidly dissolves thin gold films, thus a lot of caution or soldering with indium
is advised. Using small amounts of lead-free solder, we could successfully connect

Fig. 7.16 Quartz heat sinks for thermally equilibrating the Thermocoax inner conductor. Mean-
dering gold lines are evaporated on a quartz wafer with a gold-plated backside



7.3 Cryostat Cabling and Cold Filtering 113

Fig. 7.17 Measured attenuation of the standard RC filter at room temperature

the gold lines. Two of these thermalization elements were used in the final setup: one
on the cold-plate, one on the mixing chamber plate.

7.3.5 RC Low-Pass Filters

To filter out noise in the kHz range, a simple home-built RC low-pass filter has
been added to the cold part of the wiring, realized with SMD components on a
printed circuit board. This filter is expected to attenuate effectively in the kHz range,
while high-frequency MHz and GHz radiation is not attenuated effectively, due to
stray capacitances and resistances of the components. The measured attenuation
for a capacitance of 10 nF (Kemet C0805 X103J5GACTU Ceramics MLCC SMD,
flexible termination) and a resistance of 1 k� (Sumusu RR 122OP-102-D thin-film
SMD) is shown in Fig. 7.17. An attenuation of more than 20 dB is reached at f =
100 kHz. The components in use have been characterized at T = 4 K, where their
characteristics are only minimally changed compared to room temperature. It should
be noted that only thin-film resistors are suitable for low temperature applications,
as the characteristics of other resistor types vary strongly for T < 77 K. Capacitors,
other than the component in use, have been found to vary in capacitance up to a
factor of two when cooled down to T = 4 K.

7.3.6 Silver Cold-Finger

The cold-finger in the setup should provide good thermal contact between the sam-
ple, situated in the bore of the magnet, and the mixing chamber plate. Additionally,
it should be stable against vibration and be designed such that heating via eddy
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Fig. 7.18 Longitudinal resistance of a high-mobility 2DEG for two subsequent magnetic field
sweeps (copper cold-finger installed in the system). In both cases, the sweep rate is identical, only
the direction is reversed. In the filling factor region between ν = 6 and ν = 8 (shaded region), the
longitudinal resistance looks qualitatively different. As the magnetic field is lowered, characteristic
signatures of the RIQH state are observed, indicating a lower electronic temperature

currents and adiabatic magnetization effects is minimal. For this, a customized silver
cold-finger has been designed. It then has been built in the D-PHYSworkshop, using
high-purity silver (99.97% Ag). Compared to the original Cu cold-finger used in the
setup, heating via adiabatic magnetization could be reduced. Adiabatic magnetiza-
tion means that the (J = 3/2 for Cu) nuclear spins are polarized when the magnetic
field is increased, thus heating the system via a decrease of the entropy. The effect
of this process is shown in Fig. 7.18 for the Cu cold-finger, where the magnetic field
is swept in different directions. Temperature-sensitive features, associated with the
RIQH effect in higher Landau levels are much more pronounced when the magnetic
field strength is lowered (red shaded regions in Fig. 7.18), indicating a lower electron
temperature in this case (but still higher than the steady-state electron temperature,
due to eddy current heating). For the new Ag cold-finger, this asymmetry is strongly
reduced, due to the lower (J = 1/2) nuclear spin of the silver. Heating due to eddy
currents cannot be circumvented, as long as an electrically conducting cold-finger
material is used. To minimize this heating, singly-connected metal cross-sections in
the bore of the magnet should be as small as possible. This has been achieved by
slicing the pole of the cold-finger (see Fig. 7.19). In this aspect, a trade-off between
mechanical stability and high thermal conductivity, and a small cross-section has
to be made. The design of our silver cold-finger (Fig. 7.19) has been optimized for
mechanical stability and high thermal conductivity. The sample is doubly shielded
by massive silver shields. This design has the drawback of strong eddy current heat-
ing, which is not a big issue for us, as most experiments are conducted in a small
B-field interval and excessive B-field sweeps are only needed for sample charac-
terization. The cabling from the mixing chamber plate down to the sample is done
using copper wire, which has a thermal conductivity nearly three orders ofmagnitude
larger thanManganin wire [27]. The wire is glued on the inner part of the cold-finger
using GE varnish to allow for ideal thermalization (see Fig. 7.11). To achieve a good
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Fig. 7.19 High-purity,
thermally annealed silver
cold-finger, before the
installation in the system.
The sample chamber is
double-shielded and
extremely well thermally
anchored to the mixing
chamber plate due to the
high thermal conductivity of
the annealed silver

thermalization with the chip carrier (mounted on the tip of the silver cold-finger in
an additional shield), all free pins of the socket were electrically connected to the
silver cold-finger by 99.999%Agwire. These grounded pins were then bonded to the
gold-plated chip carrier bottom, using multiple bonds. The samples were glued in the
chip carrier with conductive silver. The thermal conductivity of the silver cold-finger
has been increased by thermally annealing the material, after brazing the individual
parts with non-superconducting solder. The annealing process which is conducted in
an oxygen atmosphere (for details see Appendix E) leads to a clustering of impurities
in the silver solid. This can be seen by eye as millimeter-sized glittering grains (see
Fig. 7.19). By use of this method, [32] reports an increase of the residual resistivity
ratio (RRR) of a silver specimen from 140 before annealing to 9500 after repeated
treatment.

7.3.7 Filter Attenuation

The filter attenuation in the frequency range from 10 MHz to 40 GHz has been mea-
sured with a Rohde & Schwarz Vector Network Analyzer. The results for different
filtering components are shown in Fig. 7.20a. 1 m of Thermocoax cables (blue curve)
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(b)

(a)

Fig. 7.20 a Attenuation of different components of the cold filtering setup. As all components
(without RC low-pass-filter) are combined, the noise floor is reached at a frequency of approx. 200
MHz. b Spectral specific blackbody emission at different temperatures

leads to a strong attenuation at high frequencies, reaching the noise floor attenuation
>90 dB at approximately 1 GHz. Adding the heat sinks does not change the atten-
uation performance (green curve). Thermocoax cables are slightly more efficient in
blocking high frequency radiation than copper tape filters [13, 15] (black curve),
which we found to be less robust and less suitable for our applications. The com-
mercially available VLFX-80 filters (red curve) show an attenuation >40dB for fre-
quencies larger than approximately 200MHz. The combination of all those elements
(purple curve) leads to an attenuation reaching the noise floor at approximately 200
MHz. With this, thermal radiation (compare to spectral specific blackbody emission,
Fig. 7.20b), even from low temperature stages is efficiently blocked. In combination
with the simple RC filter (Sect. 7.3.5), noise from several tens of kHz up to THz is
efficiently blocked from entering the sample.
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7.4 Estimation of the Electronic Temperature

Measuring temperature in the millikelvin range is a difficult business. Resistive ther-
mometers generally need to be calibrated and suffer from heating from the necessary
electric connections made to read them out. Nuclear orientation thermometers [16]
are reliable, but less practical due to the use of radioactive materials and the involved
export restrictions and safety regulations. In our setup, the temperature of the mix-
ing chamber plate is measured by a SQUID-based noise thermometer, which gives
reliable results down to temperatures below 10mK and is based on the linear charac-
teristics of theNyquist theorem [33, 34]. After the noise spectrum has been calibrated
at approximately 100mK, it reflects reliably the mixing chamber plate temperature
of the cryostat.

However, we are interested in the electronic temperature of our sample, which is
yet more difficult to estimate. One possibility is measuring the FWHM of a (only
temperature broadened) Coulomb blockade peak [24, 25, 35, 36], which scales
linearly with electron temperature and serves as a primary thermometer without the
necessity to calibrate. Thedrawbackof thismethod is that a very highwafer stability is
crucial, in order to avoid peak broadening. Furthermore, there is always a contribution
of tunneling broadening, thus only an upper bound of the temperature can be given.
Lastly, the impedance of a Coulomb blockaded quantum dot strongly differs from the
impedance of a quantum Hall interferometer. Thus, electronic temperatures might
be different in both cases.

Due to the strong temperature dependence of the electron-lattice thermal resis-
tance, the electron gas is expected to be warmer than the phonon bath at the low-
est temperatures. At slightly higher temperatures, their coupling grows rapidly and
temperatures are expected to equilibrate. A schematic dependence of the electronic
temperature on the bath temperature of the cryostat is shown in Fig. 7.21. Hence,
measuring the known temperature dependence of a physical effect at temperatures
where bath and electron temperatures are equal allows the interpolation to the lowest
electron temperature. In our experiment, we use the temperature evolution of sev-
eral temperature-sensitive (fractional) quantum Hall features to give an estimate of
the electronic temperature, similar to [24, 37]. Figure7.22 shows the temperature
dependence of Rxy (Fig. 7.22a) and Rlong (Fig. 7.22b) measured in a high mobility
quantum well in a van der Pauw geometry, with Ge/Au/Ni ohmic contacts. The most
temperature-sensitive features are the reentrant integer quantum Hall states. Here,
even heating themixing chamber from9.4 to 13.2mK leads to a visible change in Rxy.
This is already an indication that the electronic temperature is not fully saturated and
is relatively close to the bath temperature. Due to the complicated temperature depen-
dence of the RIQH states [38], a more quantitative statement cannot be made. Other
temperature-sensitive features in the measurement are the FQH states at ν = 11/5
and 14/5, with small activation gaps of 37 and 48mK (compared to approx. 130mK
at ν = 5/2).

When an activated behavior for Rlong is assumed at these fillings, we expect

Rlong ∝ e
− Egap

2kB T . Hence a linear slope is expected in an Arrhenius plot, as long as
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Fig. 7.21 Schematic dependence of the electronic temperature on the bath temperature of the
cryostat

Fig. 7.22 Temperature
dependence of Rxy (a) and
Rlong (b) measured in a high
mobility quantum well in a
van der Pauw geometry. The
B-field range for filling
factors between 2 and 3 is
shown. Different FQH states
are indicated and show a
strong temperature
dependence in the plotted
temperature range

(a)

(b)
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(a)

(c) (d)

(b)

Fig. 7.23 Arrhenius plots for ν = 11/5 (b), ν = 14/5 (c) and of the edges of ν = 2 (a) and ν = 3
(d). The respective B-field positions where the temperature dependence is plotted are indicated in
Fig. 7.22 as dashed lines

electron and bath temperature are identical and the activated behavior is not violated.
This is observed for temperatures down to 15mK (see Fig. 7.23), indicating closely
similar electron and phonon temperatures. As the phonon temperature is further
decreased, Tel and hence Rlong saturate. Interpolating the minimum of Rlong on the
fitted activated behavior (Fig. 7.23b, c), an estimate of the electron temperature at
the lowest phonon temperature can be found. The same method can be applied to
the edges of ν = 2 and 3, where Rlong nearly vanishes at the lowest temperatures
(Fig. 7.23a, d). For all cases, an electron temperature of approximately 12–13mK has
been extrapolated. Consistent results have been obtained with other samples, where
the electron temperaturewas also equal the phonon temperature above approximately
15mK.

Unfortunately, this method of estimating the electronic temperature requires cer-
tain assumptionswhich are not necessarily true.As argued in [39], dominant contribu-
tions of variable range hopping may violate the assumption of an activated behavior.
Different mechanisms of hopping transport generally contribute to the conductivity
via an expression of the following form [40]:

σxx = σ0
xx exp

[
−

(
T0
T

)p]
, (7.1)

where p = 1 for thermally activated hopping, p = 1/3 for variable range hopping in 2
dimensions [40] and p = 1/2 for variable range hopping in the presence of Coulomb
interaction [41, 42]. This transport regime describes the transport in the conductivity
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minima of the quantum Hall regime [40], when σxx is much smaller than the value of
σxx when the thermal energy exceeds the gap energy. Due to the small gap of the ν =
11/5 and 14/5 states, we do not reach a temperature regime where states in the bulk
are completely localized and thus expect an activated behavior to be valid. Similarly,
at the ν = 2 and 3 edges, the extracted electron temperature does not depend on the
exact B-field position and hence the value of Rlong at the lowest temperature.

To summarize, we conclude that the electronic temperature achieved with the
filtering setup is approximately 12–13mK, at a bath temperature of 9–10mK. As the
bath temperature is increased to more than approximately 15mK, bath and electronic
temperatures coincide. Limitations in the method used for estimating the electron
temperature exist, thus an uncertainty, especially at the lowest temperatures, remains.

7.5 Outlook

To allow for a more simple and more reliable setup, a new low temperature filter
has been designed by P. Märki (Fig. 7.24). Here, RC-filters, Pi-filters and Ther-
mocoax cables have been replaced by several stages of conventional RC and LC
filters, integrated in a radiation sealed casing. Components used are standard SMD
resistors (Panasonic Metal Film Thin Film Chip Resistors, type ERA 6A), induc-
tors (WE-CBF SMD EMI Suppression Ferrite Bead) and capacitances (Kemet
C0805X223J5GACTU). Attenuation measurements suggest that the performance
of the filter is similar or superior to the filtering setup described earlier, however in
a much smaller package.

Fig. 7.24 Prototype of a
new cold filter which
includes all different filter
components in one device
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7.6 Conclusion

We have investigated mechanical and electronic noise that affects low temperature
measurements in a dry dilution refrigerator. Mechanical noise could be significantly
reduced by decoupling moving parts, like the pulse tube head or the turbomolecular
pump, from the sample stage and by making the cryostat frame very stiff. Electronic
noise was mainly improved by an optimized grounding scheme for cryostat and
pumping lines.

Components of our self-built filtering setup have been discussed and character-
ized. The final setup blocks efficiently high-frequency radiation from entering into
the sample. Utilizing the optimized setup, an electronic base temperatures of approx-
imately 12–13mK could be reached.
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Chapter 8
Optimization of Samples and Sample
Fabrication

Abstract In this section, we describe how our sample fabrication processes are
checked for non-invasiveness, by measuring densities, mobilities and the energy
gap of (integer) quantum Hall states. We describe an optimized mesa geometry and
contact annealing process, which results in samples with a consistently quantized
ν = 5/2 state for all contact pairs.

8.1 Introduction

For the experiments presented in this book, the observation of fragile FQH states
in fully processed Hall-bar samples with contacts defined by optical lithography
is required. Thus a fabrication process which does not degrade the 2DEG quality is
required. In the fabrication process, the Ohmic Au/Ge/Ni contacts play a crucial role.
The contact and mesa geometry have to be well chosen to allow for the observation
of the most fragile FQH states. Furthermore, the contact resistance which depends
on the geometry of the contact and the annealing process used, is a bottleneck for
efficiently cooling the electrons in the 2DEG and should be as small as possible.

8.2 Non-invasive Processing

To exclude any negative influence of the individual photolithography processing
steps on the 2DEG quality, several samples, treated with different processing steps,
have been measured. These steps are (for the full recipe see Appendix D):

• Spin-coating with photolithography resist (AZ5214E) and subsequent removal
with acetone and isopropanole

• Spin-coating with photolithography resist, illumination,
development (MF319) and subsequent resist removal

• Etching of a photolithographically defined Mesa (Piranha: H2O:H2O2:H2SO4 =
100:3:3)

© Springer International Publishing Switzerland 2015
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• Deposition of a photolithographically defined Au top-gate
• Contacting with photolithographically defined Au/Ge/Ni contacts

If not stated otherwise, samples and reference samples are contacted via Indium
soldering and are measured in a van der Pauw geometry. Densities and mobilities
of the processed samples and unprocessed reference samples show a large variation
(Fig. 8.1), in the dark, as well as under illumination (T = 1 K). For the samples in
study, higher mobility is correlated with lower carrier sheet density. This comes from
the fact that growth is optimized for the central part of the wafer. Towards the corners
of the wafer, all layer thicknesses decrease and density increases. Mobility depends
sensitively on the layer thicknesses and decreases towards the edge where they are
no longer in the optimal range.

Figure8.2 shows the normalized energy gaps (left) and onset-field of the
Shubnikov-de Haas oscillations (right) for samples treated with different processing
steps. Overall, the large sample-to-sample variation makes it hard to identify poten-
tially harmful processing steps, which could affect the energy gaps, carrier density
or mobility of the electron gas (the onset of the SdH oscillations is mostly limited
by temperature in this regime). However, the properties of all processed samples
lie within the variance of the reference samples (the standard deviation is indicated
in Fig. 8.2), excluding at least a massive degrading of the 2DEG by the processing.
Later performed transport measurements on fully processed Hall-bar structures at
millikelvin temperatures have revealed energy gaps of the ν = 5/2 state which are of
similar size as energy gaps obtained with bare In contacted wafer pieces. We con-
clude that the processing steps presented in Appendix D do not degrade the 2DEG
quality within our sample-to-sample variation.

Fig. 8.1 Densities and mobilities for processed and reference samples, before (blue) and after
illumination with a red LED (red)
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Fig. 8.2 Normalized energy gaps (left) and onset-field of the Shubnikov-deHaas oscillations (right)
for samples treated with different processing steps. The average reference value from several cool-
downs is indicated with solid lines. Dashed lines indicate the average, plus or minus the standard
deviation

8.3 Mesa and Contact Geometry

When designing the mesa and contact geometry, certain guidelines have to be fol-
lowed to allow for low contact resistances and the observation of fragile FQH states.
Two common contact geometry problems that should be avoided are shown in
Fig. 8.3. In the first case, the cross-section between mesa and contact is too small,
resulting in weak coupling of contact and 2DEG. Experimentally, the contact resis-
tance was observed to scale inversely with the cross-section length w [1]. Another
common problem is denoted as Corbino contact: here, the contact does not over-
lap with the edge of the 2DEG. As the magnetic field strength is increased and a

Fig. 8.3 Two examples of unsuitable contact geometries. A small cross-section between contact
and 2DEG (left) leads to a high contact resistance due to unsufficient coupling of the edge to the
contact. In a Corbino geometry (right), the contact resistance increases drastically in high magnetic
fields, as the edge is no longer connected to the contact



126 8 Optimization of Samples and Sample Fabrication

(a)

(b)

Fig. 8.4 a Traditional Hall-bar geometry used in the Ensslin group. b Optimized geometry for
experiments at ν = 5/2. Contacts possess a large linear cross-section with the 2DEG and overlapping
edges. Furthermore, contacts are placed directly at the edge of the wide bulk of the Hall-bar,
minimizing the influence of density in homogeneities

compressible region, separated by an incompressible region from the contact, is
running around and the contact resistance increases drastically.

Thus, we have chosen the contact geometry such, that there is a large overlap
between contact and 2DEG and a maximized linear cross-section (see Fig. 8.4b) by a
meandering contact boundary. Another reason for the meandering contact boundary
is that the contact resistance is anisotropic regarding the orientation of the cross-
section line and the GaAs crystal [2]. Another important influence on the mesa
and contact design comes from the fact that there are density in homogeneities and
density gradients in the employed 2DEGs, of the order of several percent.1 Fragile
FQH states like the ν = 5/2 state exist only in a very narrow density range �n at
a given magnetic field. Thus, the experimental observation of a fully gapped ν =
5/2 state requires that the contacts used for the measurement are connected via a
percolating path of equal density (and a width ≤ �n). Experimentally, this effect
was found to be relevant in large van der Pauw samples. There, nicely quantized
FQH states could be observed using contacts in close proximity (approx. 500 µm
apart), but not when using contacts several mm apart from each other.

Figure8.5 shows the two-terminal resistance (minus the Hall resistance) of two
different contact pairs of the Hall-bar shown in Fig. 8.4a. The total cable resistances
are of the order of 2 k�, thus contact resistances at B = 0 are small in both cases.
When the two-terminal resistance is measured through two 10 µm narrow arms

1C. Reichl, private communication.
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(a) (b)

Fig. 8.5 Two-terminal resistance between contacts of different geometry (the Hall resistance has
been subtracted). The two-terminal resistance of contacts connected via thin mesa arms increases
drastically as the magnetic field strength is increased (left). In contrast, large contacts connected
via wide 2DEG regions (right) do not exhibit such a monotonous increase

(Fig. 8.5a), it increases with the magnetic field. In contrast, a two-terminal mea-
surement through the wide bulk of the Hall-bar does not show this increase, apart
from the B-field dependence of Rxx which results in variations of the two-terminal
resistance. In the geometry of Fig. 8.5a, even a small density inhomogeneity on a
micron lengthscale can induce backscattering of an edge state, whereas this would
not influence measurements in the geometry of Fig. 8.5b. This observation suggests
that the cross-section of contact and 2DEG should be as long as possible to enhance
coupling and placed at a wide section of the Hall-bar, to avoid an influence of den-
sity inhomogeneities in mesa arms. In the final mesa geometry shown in Fig. 8.4b,
contacts are directly placed at the 400 µm wide bulk of the Hall-bar.

8.4 Ohmic Contacts and Contact Resistance

Fabricating Ohmic contacts with low contact resistance is more tricky than onemight
expect and gets increasingly difficult with increasing 2DEG depth and decreasing
carrier sheet densities. Since the first description of Au/Ge/Ni ohmic contacts [3],
several groups have investigated and improved different recipes (see for example
[1, 2, 4–7] for further information). An eutectic mixture of Au and Ge (88% Au,
12% Ge by weight [3]) melts at a temperature of 360 ◦C [8], substantially smaller
than the melting points of the individual alloy components. Above the melting point,
the eutectic mixture diffuses in the GaAs crystal and contacts the electron gas. The
addition of Ni is crucial, as it improves diffusion of Ge into GaAs [7]. The recipe
used by us is based on a recipe reported in [1, 7], which has been optimized for a
320nm deep 2DEG with an electron density of approximately 1.5 × 1011 cm−2. For
an eutectic mixture, Ge and Au with a thickness ratio 1 : 2.03 are evaporated in high
vacuum on the sample surface. Before this, the surface oxide has been removed by
a dip-etch in HCl. The sequence of evaporated metals reads Ge/Au/Ge/Au/Ni/Au
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with thicknesses 52.8/107.2/52.8/107.2/80/100nm. The topmost Au layer is added
to allow for easier wire bonding of the contacts. After lift-off, the samples are thor-
oughly cleaned in warm acetone and isopropanole and with UV ozone cleaning (see
Appendix D), in order to remove resist residues which might burn or damage the
substrate during annealing. The sample finally is heated in order to melt the eutectic
mixture and to allow for diffusion in the GaAs crystal. We have found that contact
is reliably made for temperatures of ≥500 ◦C, whereas single contacts may fail for
temperatures of 475 ◦C or lower. Thus, samples are annealed at 500 ◦C, using a
200 sccm H2/N2 (5%) flow (p ≈ 10 mbar). Measured contact resistances (at T =
4 K) for different samples, annealed for different times at T = 500 ◦C are shown in
Fig. 8.6. For short annealing times, contact resistances and contact resistance varia-
tions are large, as the eutectic mixture has not diffused sufficiently in the crystal. For
long annealing times (tanneal ≥ 8 min), diffusion is sufficient but the metal reservoir
on the surface is used up, hence the doping concentration in the crystal decreases.
Smallest contact resistances with a small standard deviation were found for tanneal =
4 and 6min. The high-mobility quantum wells used for the experiments at ν = 5/2
are typically approximately 200nm below the surface. For these samples, contact
resistances <200 � were consistently achieved with the described recipe and an
annealing time of 5min.

Fig. 8.6 Measured contact resistances for different annealing times at T = 500 ◦C. Contact resis-
tances and their variance are minimal for annealing times between 4 and 6min
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8.5 Conclusion

The non-invasiveness of the photo-lithography fabrication steps used by us has been
verified. It was found that initially poorly quantized quantumHall states were related
to the contact and mesa geometry. We have discussed an optimized geometry, suit-
able for experiments with the most fragile fractional quantum Hall states. Finally,
we have optimized a recipe for Au/Ge/Ni ohmic contacts on deep high mobility het-
erostructures. Using this recipe, we could reproducibly achieve contact resistances
of around 200 � or lower.
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Chapter 9
Quantum Point Contacts

Abstract Quantumpoint contacts (QPCs) are a basic building block formany exper-
iments in mesoscopic physics. Interference and tunneling experiments in the quan-
tum Hall regime require detailed control and understanding of QPC confinement
and transmission properties. A short review of the basic properties of QPCs is given.
Optimized growth techniques allow the gating and study of QPCs on high-mobility
two-dimensional electron gases, where the influence of disorder is strongly reduced.
In these clean systems, the energy spectrum can be accessed via finite-bias transport,
which allows us to characterize the shape of the confinement potential of theQPC.As
the formation of compressible and incompressible stripes in the (fractional) quantum
Hall regime depends sensitively on the steepness of the edge potential, understanding
the confinement parameters is crucial for a further investigation of QPCs in finite
magnetic fields.

9.1 Introduction

For the “birth” of mesoscopic physics, two-dimensional electron gases defined in
GaAs/AlGaAs heterostructures played a crucial role. Here, the Fermi wavelength is
of the order of 10–100nm, two orders of magnitude larger than in a metal. Further-
more, these structures are available in such high purity that electron transport at the
Fermi energy is ballistic on even much longer length scales. Using state-of-the-art
nanofabrication procedures, van Wees and co-workers and Wharam and co-workers
were able to implement what is known as quantum point contact (QPC) [2, 3]. The
device is shown schematically in Fig. 9.1. By applying a negative voltage to metal-
lic top-gates, the electron gas underneath the gates is depleted. A current passed
in between the two contacts therefore has to travel through the narrow constriction
with a width comparable to the Fermi wavelength. It was found that the conductance
exhibited pronounced steps described by

The results shown in this chapter have been partially published in the article [1].

© Springer International Publishing Switzerland 2015
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Fig. 9.1 Schematic illustration of a QPC on GaAs/AlGaAs heterostructure. Adapted from [4]
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Fig. 9.2 Conductance of a QPC on a high mobility quantumwell. Conductance plateaus are visible
up to more than 35 × 2e2/h

G = 2e2

h
N (9.1)

where N is an integer number and depends on the QPC gate voltage. Experiments
were carried out at cryogenic temperatures, where the thermal energy does not wash
out the quantization of the energy levels due to the lateral confinement. A similar
measurement with a QPC fabricated on a state-of-the-art high mobility wafer is
shown in Fig. 9.2. In this structure, influence of disorder is minimal and conductance
quantization up to more than 35 × 2e2/h is observed.

Despite more than 25 years have passed since the first realization, QPCs are
still widely studied and used in experiments. They are for example employed to
realize tunneling barriers in quantum dots or as charge detectors [5–8]. Interesting
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many-body phenomena in QPCs, like tunneling in the quantum Hall regime [9–12],
the 0.7 anomaly [13–18] and spin-orbit interaction effects [19] are current research
topics of great interest.

9.2 Conductance of Ideal and Non-ideal QPCs

In the following, we will discuss how quantized conductance arises in a two-dimen-
sional system, where electron energies are quantized due to a confinement in one
dimension. After a discussion of the simplest case, an ideal one-dimensional wire,
we will progress to a more general case and sketch how the Landauer formula can
be obtained. Finally, the particular case of a saddle-point potential and the resulting
conductance curve will be discussed.

9.2.1 Transmission of an Ideal Quantum Wire

The simplest model to study the quantized conductance of a QPC is an ideal quan-
tum wire (Fig. 9.3a). In the following discussion we will use the coordinate system
sketched in Fig. 9.1, where x points along the QPC channel and y points perpendic-
ularly to the QPC channel. The origin x = y = 0 resides in the center of the QPC
channel.

For simplicity we first assume the wire to be infinitely long in x-direction, such
that energy quantization is only important in y-direction. The wave functions in the
wire can be written as [20]:

ψn,k(r) = χn(y, z)
1√
L
expikx x (9.2)

µL µR

µR
µL

E0

E1

E2

E

kxx

(a) (b)

eVSD

Fig. 9.3 a Schematic sketch of the ideal quantum wire connecting two reservoirs with electro-
chemical potentials μL and μR. b Subband energy versus wavevector for the parabolic dispersion
relation. All subbands below μR contribute to the left-moving current, while subbands below μL
contribute to the right-moving current. Adapted from [20]
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where the transverse modes of the wire χn(y, z) are assumed to be normal-
ized. The energy dispersion along the x-direction is assumed to be parabolic,

En(kx ) = En + �2k2x
2m∗ (Fig. 9.3b). Here, En is the energy of the nth subband due

to the transversal confinement.
With this, the differential current density of the mode n and wave vector kx can

be written as [20]:

djn,kx (r) = −exgs
|e|
h

|χn(y, z)|2 ∂En(kx )

∂kx
dkx (9.3)

Here gs denotes the spin degeneracy. We are now interested in the total current
through the wire, depending on the electrochemical potentials μL and μR at the
entrance and exit of the wire (Fig. 9.3a). The total current is found by summing over
all occupied modes n and integrating over the wavevectors kx :

Itot =
⎛
⎜⎝∑

n

∫
kx >0,occ.

d jn,kx

⎞
⎟⎠ −

⎛
⎜⎝∑

n

∫
kx <0,occ.

d jn,kx

⎞
⎟⎠ (9.4)

Hence all subbands below μR contribute to the left-moving current, while subbands
below μL contribute to the right-moving current (Fig. 9.3b).

Left-moving (second term) and right-moving (first term) charge carriers contribute
with a different sign to the net current, hence the total current cancels out in an
equilibrium situation. Using the fact that left- and right-moving states are occupied
with theFermi-Dirac distribution of the right or left reservoir, fR or fL , the expression
can be rewritten in terms of an energy integral [20]:

Itot = gs
|e|
h

⎛
⎜⎝∑

n

∞∫
En

d E [ fL(E − μL) − fR(E − μR)]

⎞
⎟⎠ (9.5)

In the linear response regime where the applied voltage is small,1 the integrand can
be expanded:

fL(E−μL)− fR(E−μR) ≈ −∂ fL(E − EF )

∂E
|e|VSD

T →0−−→ |e|VSDδ(E−EF ) (9.6)

where μL − μR = |e|VSD. We find [20]:

G = Itot

VSD
≈

⎧⎨
⎩

gs
e2
h

∑
n

fL(En − EF ), T > 0

gs
e2
h N , T → 0

(9.7)

1|e|VSD � kBT .
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where T is the temperature. For a spin degeneracy of two the conductance is quantized
in multiples of 2e2/h for T → 0.

9.2.2 Non-ideal QPC

In the previous section, the transmission through an ideal quantum wire was dis-
cussed. Due to the simplifying assumptions, the energy eigenvalues En were not
dependent on the spatial position in the wire. In a more realistic QPC geometry, both
the width of the channel and the confinement potential change as a function of posi-
tion. Hence the Schrödinger equation is no longer separable and finding a solution
becomes more difficult. Nevertheless, more realistic systems were investigated suc-
cessfully in what is called the “adiabatic approximation”. Here, the length scale on
which the confinement potential changes ismuch longer than the relevant dimensions
for the energy quantization, i.e. the Fermi wavelength [21]. Under those simplifying
conditions, it was shown that the wave functions are locally separable [22] and a
position dependent En(x), which takes the function of an effective potential, can be
found. Similar to before, the total current can be expressed as:

Itot = gs |e|
∑

n

∞∫
−∞

dkx

2π
vx (kx ) fn(kx ) (9.8)

where vx (kx ) = �kx/m∗ is the group velocity of the charge carriers. Here, fn(kx ) is
a function that describes the contribution of mode n at wave vector kx to the current
density and hence depends on the transmission. This can be applied to calculate the
current transmitted through a QPC with a finite reflection probability. Right-moving
electrons (kx > 0) originate from the left contact and are thus occupied with the
Fermi-Dirac distribution of the left lead, fL(E). Left-moving electrons (kx < 0)
are either reflected (with a probability 1 − Tn(E)) and thus are occupied with the
Fermi-Dirac distribution of the left lead or are transmitted from the right lead (with
a probability Tn(E)) and are occupied with the Fermi-Dirac distribution of the right
lead. Thus we can write [21]:

Itot = gs |e|
∑

n

[ ∞∫
0

dkx

2π
vx (kx ) fL(E) (9.9)

+
0∫

−∞

dkx

2π
vx (kx ) [(1 − Tn(E)) fL(E) + Tn(E) fR(E)]

]
(9.10)

= gs |e|
∑

n

∞∫
0

dkx

2π
vx (kx )Tn(E) [ fL(E) − fR(E)] (9.11)
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Here Tn(E) = ∑
m

|tmn(E)|2 is the probability of transmitting through channel n

from all possible channels m at energy E . When modes are decoupled in an adiabatic
system, this is simplified to: Tn(E) = |tnn(E)|2. Changing the integration variable
to energy, one obtains:

Itot = gs |e|
2π

∞∫
0

d E
∑

n

Tn(E) [ fL(E) − fR(E)] (9.12)

Expanding again in the linear response regime gives [20]:

G = Itot

VSD
=

⎧⎪⎨
⎪⎩

gs
e2
h

∞∫
−∞

d E
∑
n

Tn(E)
(
−∂ fL (E)

∂E

)
, T > 0

gs
e2
h

∑
n

Tn(EF ), T → 0
(9.13)

This is the famous Landauer formula, which is the foundation of the Landauer-
Büttiker theory.

9.2.3 Saddle-Point Potential

In order to work out the conductance through an arbitrary QPC potential, solutions to
(9.13) have to be found. However in most cases, exactly calculating the transmission
probabilities Tn(E) is not possible. A simple QPC potential, where transmission
probabilities can be calculated is the saddle-point model [23, 24]:

V (x, y) = −1

2
m∗ω2

x x2 + 1

2
m∗ω2

y y2 + V0 (9.14)

Here, the QPC potential is modeled as a saddle point, with parabolic confinement in
the y-direction and a parabolic drop-off in the x-direction. As before, x = y = 0 lies
in the center of the QPC channel and x and y have the direction indicated in Fig. 9.1.

We will see later that this model potential is a good description of a realistic QPC
in most cases. The saddle point potential leads to a separable Hamiltonian, where
the y-confinement leads to equidistant energy eigenstates: En = �ωy(n + 1

2 ), where
n = 0, 1, 2, . . . is the mode number. The transmission probability for the mode n at
energy E can be calculated [23, 24]:

Tn(E) = 1

1 + e
−2π
�ωx

εn
, n = 0, 1, 2, . . . (9.15)
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with an energy parameter:

εn = E − �ωy(n + 1/2) − V0, n = 0, 1, 2, . . . (9.16)

Using (9.13) and (9.15), the conductance through the saddle point potential can be
calculated once ωx , ωy and V0 are known. Typical conductance steps are found if
ωy/ωx ≥ 1 and steps become more pronounced when the ratio increases.

9.2.4 Magneto-Electric Depopulation

The saddle-point potential also leads to an analytically solvable transmission in an
external magnetic field. Here, the transmission takes a similar form:

Tn(E) = 1

1 + e−πε̃n
, n = 0, 1, 2, . . . (9.17)

with a changed energy parameter that takes the effects of the magnetic field into
account [24]:

ε̃n = E − E2(n + 1/2) − V0

E1
, n = 0, 1, 2, . . . (9.18)

The parameters E1 and E2 now play the role of �ωx/2 and �ωy at zero B-field
and are given as [24]:

E1 = �

2
√
2

[(
�4 + 4ω2

xω
2
y

)1/2 − �2
]1/2

(9.19)

E2 = �√
2

[(
�4 + 4ω2

xω
2
y

)1/2 + �2
]1/2

(9.20)

where � = ω2
c + ω2

y − ω2
x and ωc = |e|B/m∗ is the cyclotron frequency. The

effect of an increasing B-field can be seen in Fig. 9.4: conductance steps become
more pronounced while they are lifted to higher energies. This effect is referred to
as magneto-electric depopulation.

9.3 QPC Simulations

To gain insight in a reasonably realistic density distribution and potential profile
of the QPCs investigated by us, we have conducted numerical simulations using
the software package “nextnano3”. Here, the Poisson and Schrödinger equations
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Fig. 9.4 Evolution of the saddle point conductance for a change in the cyclotron frequency ωc.
In stronger magnetic fields, subbands are lifted in energy and conductance steps become more
pronounced. (Reprinted figurewith permission from [24]. Copyright 1990 by theAmerican Physical
Society.)

were solved self-consistently in two dimensions for T = 1K, for a GaAs/AlGaAs
(x = 0.24) heterostructure with a 320nm deep 2DEG (wafer D110504A). For sim-
plicity, the 700nm wide QPC was assumed to be infinitely long in x-direction. The
doping concentrations were adjusted to compensate for surface charges and to repro-
duce the gate depletion voltages correctly. Figure9.5a shows the eigenfunctions that
were obtained for a relatively open QPC, when a voltage of −1.94V is applied to
the top-gates. Here, the square of the electron wavefunction is plotted as a function
of the transversal direction y and the growth direction −z. Higher energy modes are
off-set in −z direction by multiples of 50nm.

The resulting electron volume density is shown in Fig. 9.5b. The interface between
GaAs and AlGaAs at z = 320nm is indicated by the white dashed line. A finite
density is found over a width of approximately 200nm. The electron density spreads
approximately 15–20nm in z-direction and only the lowest subband for quantization
in z-direction is occupied. The integrated sheet electron density is shown in Fig. 9.5c
for different voltages applied to the top-gates. For a QPC voltage of −1.94V, the
maximumdensity in the center of the channel is already reduced compared to the bulk
electron density of approximately 1.5×1011 cm−2. The fine-structure in the density
distribution originates from contributions of different subbands with different spatial
probability density [25].

In addition to the density distribution, the electrostatic potential has been calcu-
lated. Results are shown in Fig. 9.6a. Here, the electrostatic potential (at z = 320nm)
is plotted versus the spatial coordinate y. The potential energy is flat in the central
region of the QPC when the QPC is open and is not well described by a parabolic
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potential. Closer to pinch-off, when only a small number of modes is occupied, the
conduction band gets lifted and a quadratic fit agrees well with our calculations.
The energies of the five lowest subbands relative to the Fermi energy are shown in
Fig. 9.6b, as a function of the voltage applied to the QPC. Subband energies increase
towards pinch-off. As soon as subbands lie above the Fermi energy, they are rapidly
lifted in energy when the gate voltage decreases, while the subband spacing then
changes only by little. Similar results have been found by Laux et al. [25].

9.4 Transport Properties of Clean QPCs

Tunneling and interference experiments in the quantumHall regime require a detailed
understanding of the transmission properties of QPCs. Thus, understanding and con-
trolling the confinement and disorder potential is crucial. Here we present measure-
ments that try to address these points. By shifting the QPC channel, we can show that
disorder does not affect transport at B = 0 T. Applying a finite source-drain voltage
to the QPC, we observe half-plateaus in the conductance and are able to characterize
the QPC confinement potential. We furthermore study two QPC geometries, where
the confinement potential can be varied by using gate voltages. After characterizing
the confinement potential, we investigate its effect on the QPC transmission in the
quantum Hall regime.

9.4.1 Lateral Shifting of the QPC Channel

Figure9.7a shows the transconductance of a 250nm wide QPC, when the voltages
applied to each of the two top-gates defining the QPC are varied individually. Black
regions denote pinch-off or regions of quantized conductance with conductance val-
ues of G = 2, 4, 6, . . . e2/h. Bright regions of increasing conductance bend around
the pinch-off region. As soon as the electron gas under either of the gates is no longer
depleted (at approximately −1.3V), the conductance strongly increases (white bor-
ders in Fig. 9.7a). By varying the ratio of the voltages applied to right or left QPC
gate, the potential minimum of the channel is shifted in the lithographically defined
channel. Thus by moving along a conductance plateau in Fig. 9.7a, spatial variations
of the QPC background potential are mapped out [26]. A static disorder potential, for
example created by dopants, is fixed in space and influences the transmission of the
QPC channel, when the channel is moved across the static scattering center. Thus,
localizations are expected to show up as lines intersecting the conductance steps. No
such behavior is visible in Fig. 9.7a, apart from charge-rearrangements which create
shifts parallel to the Vl axis. This confirms the cleanliness of the samples studied,
where the gate-defined confinement potential is expected to be mainly responsible
for the transmission properties, with negligible influence of disorder. An example of
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Fig. 9.7 a Transconductance of a 250nm wide QPC, as a function of the voltages Vl and Vr
applied to the left and right finger gates of the QPC. Conductance is quantized in values of
G = 0, 2, 4, . . . × e2/h (black regions). Regions where the conductance increases (bright) bend
around the pinch-off region. The white borders arise when the electron gas under either of the gates
is no longer depleted (at approximately −1.3V) and thus the conductance strongly increases. b
Transconductance of a 600nm wide QPC with clear signs of localizations in the constriction (green
arrows)

a QPC with clear signs of localizations is shown in Fig. 9.7b. Here, disorder-induced
resonances (marked by green arrows) modulate the QPC conductance.

The magnitude of the spatial shift can be estimated from the number of conduc-
tance plateaus nl and nr that are observed when the gate voltages Vl or Vr are varied:
�y ≈ λF/2× (nl − nr) /2 [1, 27] where λF = √

2π/ns is the Fermi wavelength. In
Fig. 9.7a, the largest shift of�y corresponds to:�y ≈ 21 nm×(11 − 1) /2= 105nm,
which roughly corresponds to a shift from the center to the edge of the lithographi-
cally defined channel.

9.4.2 Finite Bias Transmission

In order to characterize the confinement potential of a QPC, the knowledge of its
energy spectrum is essential. By applying a finite source-drain voltage VSD, we
can access the QPC’s subband spacing �SB which arises due to the transversal
confinement [28–31] (see Sect. 9.2.3).

Figure9.8b shows the conductance of the 250nmwide QPC in the linear response
regime, with VSD ≈ 0 mV. The schematic image on the right-hand side depicts the
situation that applies here. Source and drain electrochemical potentials are aligned.
The dispersion relation in the QPC is parabolic and different subbands are ener-
getically separated by the subband spacing �SB. On the first conductance plateau,
the bottom of the lowest (spin degenerate) subband lies below source and drain
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Fig. 9.8 a Numerical transconductance ∂G/∂VQPC as a function of the source-drain bias VSD and
the QPC voltage VQPC. b At zero source-drain bias, a conductance quantized in multiples of 2e2/h
is found in diamond-shaped regions (black). The width of the regions is determined by the subband
spacing �SB. c As the source-drain bias is increased, half-plateaus at 1.5, 2.5, 3.5, . . . × 2e2/h
are found. At even higher bias where two subbands fit in the bias window, conductance plateaus at
2, 3, 4, . . . × 2e2/h are found again (d)

electrochemical potentials and contributes 2e2/h to the conductance. Transport via
higher subbands is suppressed, as the thermal energy kBT is small compared to�SB.

For a source-drain bias VSD = 3.4mV, conductance plateaus at G = 1.5, 2.5, . . .
× 2e2/h are observed (Fig. 9.8c). The scheme on the right-hand side reflects a situ-
ation with a conductance G = 1.5× 2e2/h. Here, the bottom of the lowest subband
lies below source and drain electrochemical potentials, and thus contributes 2e2/h
to the conductance. In contrast, the bottom of the second subband falls in the bias
window and thus only contributes 0.5 × 2e2/h to the conductance.

Similarly, at even higher source-drain biases (VSD = 7.2mV in Fig. 9.8d), two
subbands fit in the bias window and a quantization in integer multiples of 2e2/h is
found again.

The full dependence of the conductance on source-drain bias and QPC voltage is
shown in Fig. 9.8a. Here, the transconductance is plotted, with dark diamond shaped
regions corresponding to conductance plateaus. The conductance values are indicated
(white) as multiples of 2e2/h.
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9.4.2.1 Interpreting the Confinement Potential

Conductance plateaus and steps span a regular pattern in the VSD–VQPC plane. Close
to pinch-off, applying a large source-drain bias across theQPC leads to a deformation
of the confinement potential. This self-gating is responsible for the finite slope of
the pinch-off line and a deviation from a regular chessboard pattern of conductance
steps [1, 14]. In contrast, far away from pinch-off, self-gating is not expected to play
a role. Here, higher-order conductance steps appear at the same QPC voltage as the
lowest order steps (white circles in Fig. 9.8a).

At the lowest order conductance step of the QPC, the nth subband is aligned
with source and drain electrochemical potentials when VSD = 0mV. As the bias
is increased symmetrically to VSD >�SB/e, a second order conductance step is
observed. Here, the nth subband lies in the bias window, while (n+1)th and (n−1)th
subbands are aligned with μS or μD. Thus, the subband spacing between (n − 1)th
and nth subband equals the subband spacing between nth and (n + 1)th subband.
Such an equidistant energy spectrum is characteristic for a harmonic potential. This
configuration is exactly valid for the situation marked by white circles in Fig. 9.8a.

Closer to pinch-off, the pattern of conductance steps is distorted (green circles,
Fig. 9.8a). Here, �SB seems to increase with the subband index n, which is charac-
teristic for a confinement potential which is steeper than a harmonic potential.

We now would like to extract characteristic parameters for the shape of the con-
finement potential from a finite-bias measurement (Fig. 9.8a). Due to the energet-
ically equidistant subbands, the QPC potential is expected to be qualitatively well
described by a harmonic confinement potential, apart from very close to pinch-off.
Thus, the QPC transmission can be compared to a saddle point-model (Sect. 9.2.3).
Figure9.9 shows the subband spacing for QPCs of different width, as a function
of the QPC voltage. The subband spacing is larger for QPCs of smaller width and
increases towards pinch-off.

Fig. 9.9 Subband spacings
for QPCs of different width
w. �SB is smaller for QPCs
with larger w and increases
towards pinch-off
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By fitting the saddle-point potential transmission, we can deduce the lateral con-
finement potential, and the shape of the potential barrier formed by the QPC, i.e.
ωx and ωy . Figure9.10 shows a fit of (9.15) (blue) to a measured conductance curve
(black).When a linear dependence of the confinement parametersωx ,ωy on the QPC
voltage is assumed, a good agreement is found (red).

For investigating the formation of FQH states in strong magnetic fields, we are
interested in the steepness of the confinement potential of the QPC. Due to self-
consistency effects, the steepness strongly influences the formation of compressible
and incompressible stripes in the quantum Hall regime. Figure9.11a illustrates the
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influence of the QPC voltage on the transversal confinement potential of a 300nm
wide QPC. The confinement potential becomes steeper towards pinch-off, which
can be seen from the increase in �SB. The effect of the QPC width on the potential
steepness is illustrated in Fig. 9.11b. Here, the transversal confinement potential is
plotted as a function of the spatial coordinate y when the first subband is aligned
with the Fermi energy. As expected, a wider QPC results in a less steep confinement
potential.

To summarize this section, finite-bias transport gave us access to the subband
spectrum of a QPC. From the pattern spanned by higher-order transmission in the
VSD–VQPC-plane, we conclude that the QPC confinement potential is harmonic,
except when many QPC modes are occupied. Close to pinch-off, the confinement
potential becomes increasingly steep and subband spacing increases. Here, the regu-
lar pattern of conductance plateaus andhalf-plateaus becomes distorted by self-gating
effects.

9.4.3 Tuning the QPC Confinement Potential

The steepness of the confinement potential influences the formation of compress-
ible and incompressible regions in the quantum Hall regime. Thus, a tunable QPC
confinement potential is desirable in order to study this effect. For this, a QPC con-
sisting of six individually tunable gates has been investigated (see inset Fig. 9.12a).
Figure9.12a shows the conductance of the QPC as a function of voltages applied
to the different gates. Four different configurations are shown: left QPC (VL: gates
1,2), right QPC (VR: gates 5,6), middle QPC (VM: gates 3,4) and diagonal QPC
(Vdiag: gates 2,5). As expected, pinch-off voltages are more negative for wide QPCs
(diagonal) than for narrow QPCs (middle).

Finite bias measurements have been conducted with this QPC in different gate
voltage configurations:

• In the simplest case only one of the QPCs is varied (VL, VM or Vdiag).
• Then a QPC has been defined by mainly using right and left gate pairs (VL = VR),
while the middle gate pair was used to lower (VM = −0.05× VR = −0.05× VL)
or increase (VM = 0.1 × VR = 0.1 × VL or VM = 0.7 × VR = 0.7 × VL) the
height of the potential barrier in the center of the QPC.

• Last, mainly the central gate pair voltage VM is varied, while left or right gate pairs
are used to lower (VL = VR = −0.07× VM) or to lift (VL = VR = 0.7× VM) the
potential at the entrance of the channel.

9.4.3.1 Saddle Point Potential Fitting Procedure

The parameters �ωx and �ωy are obtained from finite-bias measurements in this
configuration and a subsequent fit of the saddle point transmission (9.15) to the
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Fig. 9.12 a Conductance of a six-gate QPC (inset, sample D110504A-9B) as a function of voltages
applied to the different gates. Four different configurations are shown: left QPC (gates 1,2), right
QPC (gates 5,6), middle QPC (gates 3,4) and diagonal QPC (gates 2,5). b Measured QPC conduc-
tance and fitted saddle-point conductance as a function of the QPC voltage. c Parameters of the QPC
potential for different gate voltage configurations. ωy is extracted from finite bias measurements.
ωx is obtained from a fit of (9.15) to the QPC conductance curves

measured conductance. The method used for the fitting is described in [1]: Here, the
Fermi energy is set as a reference to zero, and (9.16) then reads:

εn = −�ωy(n + 1/2) − V0, n = 0, 1, 2, . . . (9.21)

The conduction band bottom V0 is assumed to depend linearly on the QPC gate
voltage:

V0
(
VQPC

) = E0 + αVQPC (9.22)

The lever arm α can be found from realizing that the following equation holds for
the nth conduction step:

0 = −�ωy(n + 1/2) − E0 − αVQPC, n = 0, 1, 2, . . . (9.23)

Hence, the lever arm αn in between the nth and (n + 1)th conductance step is given
by:

αn = �ωy,n+1(n + 1/2) − �ωy,n(n − 1/2)

VQPC,n − VQPC,n+1
, n = 1, 2, 3, . . . (9.24)
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Here,ωy,n is theωy of the nth conductance step (extracted from the subband spacing)
and VQPC,n is the QPC voltage at which the nth conductance step occurs. Now,
only E0 and ωx,n remain as fitting parameters while the QPC voltage VQPC is the
independent variable. Measured pinch-off curves are well-fitted using this procedure
(see Fig. 9.12b).

9.4.3.2 Variation of Potential Parameters

Figure9.12c shows the parameters �ωx and �ωy that are obtained in the different gate
voltage configurations for the first three conductance plateaus. �ωx changes over a
large energy range, from approximately 0.05 to 1.5 meV. As expected intuitively, a
longer channel, accomplished by using several gates at a time, results in a smaller
�ωx and hence a smoother potential barrier in the x-direction.

In the configuration where the left and right QPC pairs are used to lower (VL =
VR = −0.07 × VM) or to lift (VL = VR = 0.7 × VM) the potential at the entrance
of the channel, �ωx can be changed from approximately 0.1 meV to more than 0.8
meV.

For the single QPCs (middle, left, diagonal) the obtained �ωx are larger than when
multiple gates are used (approximately 0.6–1.5meV) and of similar magnitude. In
contrast, �ωy is of the same energy range (between 1.6 and 2.8meV) for all gate
configurations. Here, the dependence on the respective conductance plateau is much
stronger than the geometry dependence.

We conclude that the QPC shown in the inset of Fig. 9.12a does not allow the
desired tuning of the confinement potential ωy . However, by using left and right
QPC at entrance and exit of the middle QPC, ωx and hence the adiabaticity of the
QPC can be tuned.

9.4.3.3 Effect of Potential Variation in B-field Transmission

The effect of the variation of �ωx is studied by measuring the transmission of the
six finger QPC when an external magnetic field has been applied, in order to set the
bulk filling factor νbulk to one. Figure9.13 shows the conductance as a function of
the middle QPC pair voltage VM.

Voltages on left and right QPC pairs, VL = VR = β × VM, are used to lift
(β > 0) or to lower (β < 0) the potential at the entrance of the channel. Different
conductance curves in Fig. 9.13 correspond to values of β from −0.05 to 0.86. For
the situation where a steep potential barrier in x-direction is defined (β = −0.05),
conductance is smooth and a monotonic function of VM. Conductance plateaus at
1/3× e2/h and 2/5× e2/h are observed. As β is increased and hence the potential
barrier in x-direction is falling off less steeply, conductance curves are shifted to the
right due to the mutual capacitive coupling of the QPC gates. In addition to the still
observed conductance plateaus, peaks or kinks in the conductance occur (red arrows
in Fig. 9.13). Qualitatively, the quantization of fractional quantum Hall states in the
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Fig. 9.13 Conductance of the six gate QPC versus voltage applied to the middle QPC gate pair. The
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6.6 T. Voltages on left and right QPC pairs, VL = VR = β × VM, are used to lift (β > 0) or to
lower (β < 0) the potential at the entrance and exit of the channel

QPC does not improve as β is increased. The strong visibility of conductance reso-
nances for a smoother potential barrier in x-direction is contrary to what is expected
when no external magnetic field is present. Here, a smooth and adiabatic potential is
expected to suppress backscattering and conductance resonances. However, in strong
magnetic fields, localization in compressible and incompressible regions due to the
disorder potential in the channel becomes relevant. The influence of localizations on
the conductance is stronger for a smoother confinement potential here. This effect
will be discussed in detail in Chap.10.

A different example of a QPC with gate-tunable confinement potential is shown
in Fig. 9.14a. The 700nm wide QPC is defined by two finger gates. In addition to
that, a third top-gate resides on top of the QPC channel. With the same approach as
before, we have extracted the potential parameters �ωx and �ωy for the three lowest
subbands (at B = 0 T) and at different voltages of the channel top-gate VTG. The
resulting energies are shown in Fig. 9.14b. A similar size of �ωx is found for all
configurations, while �ωy again shows a strong dependence on the subband number.
In addition, �ωy shows a tendency to increase with more positive channel top-gate
voltage. The effect of the channel top-gate on the QPC transmission is demonstrated
in Fig. 9.14c. Here, νbulk has been set to one, while the voltage of theQPCfinger gates
has been varied. Different conductance curves correspond to different voltages VTG
applied to the channel top-gate. Here, VTG has been varied from +100 to −545mV.
Close to pinch-off, conductance resonances are pronounced. Conductance plateaus at
1/3×e2/h and 2/3×e2/h are observed for all channel top-gate voltages. However,
as VTG is decreased, the plateau at 1/3× e2/h becomes much more pronounced and
conductance for 1/3×e2/h < G < 2/3×e2/h becomes smoother and less disorder
is visible. As discussed in Chap.10, applying a negative voltage to the channel top-
gate increases the width of the incompressible region in the center of the channel.

http://dx.doi.org/10.1007/978-3-319-21051-3_10
http://dx.doi.org/10.1007/978-3-319-21051-3_10
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b Energies �ωx and �ωy of the first three conductance plateaus (B = 0 T) for different top-gate
voltages VTG. c Conductance of the top-gate QPC versus voltage applied to the QPC gate pair
(VQPC), for different voltages applied to the channel top-gate (VTG). The bulk filling factor νbulk
has been set to 1 by applying a perpendicular magnetic field of approximately 6.6 T

This might explain the better pronounced conductance plateau at 1/3 × e2/h.2 The
more prominent conductance oscillations at VTG = +100mV might stem from the
fact that very negative voltages VQPC < −3.5V have to be applied to the QPC gates
in this situation. For such voltages, sample stability is typically strongly reduced due
to tunneling events between gates and doping plane or charge rearrangements close
to the QPC channel.

9.4.4 Spin-Resolved Transport

Applying a perpendicular magnetic field lifts the electrons’ single particle energies
and thus leads to magneto-electric depopulation [24, 32] (see Sect. 9.2.4), which

2As we will see later, the visual quality of the plateau does not reflect directly the energy gap of the
corresponding FQH state in the QPC, see Chap.10.

http://dx.doi.org/10.1007/978-3-319-21051-3_10
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Fig. 9.15 a Transconductance of the 250nm wide QPC as a function of the QPC voltage, when
an external B-field of 2T is applied. Large conductance plateaus at G = 2, 4, . . . × e2/h are
observed (large black diamonds). The spin degeneracy is lifted in this situation and leads to the
observationof conductanceplateaus atG = 3, 5, . . .× e2/h (small black diamonds).Atfinite biases,
conductance plateaus at G = 2.5, 3.5, . . .× e2/h are observed (black stripes). b QPC conductance
at VSD = 0mV. The configuration giving rise to G = 3× e2/h is shown schematically on the right-
hand side. c QPC conductance at VSD = 2mV. The configuration giving rise to G = 2.5 × e2/h
is shown schematically on the right-hand side

effectively resembles an increase in the subband spacing of the QPC. Further-
more, at sufficiently strong magnetic fields the spin degeneracy of the subbands
is lifted. At small magnetic fields, where the extent of the conductance plateaus
in the source-drain bias is still limited by the subband spacing and not dominated
by breakdown effects of the quantum Hall effect, this allows to study correlation
effects in the QPC. In this configuration, we measure the resistance longitudinally
across the QPC, which relates to QPC and bulk filling factors νQPC and νbulk via
Rlong = h/e2

(
1/νQPC − 1/νbulk

)
. In Fig. 9.15b, the QPC conductance G = e2/h ×

νQPC is plotted as a function of the QPC voltage VQPC at zero source-drain bias, now
in units of e2/h. The conductance plateaus at 2e2/h and 4e2/h are much wider in
VQPC direction than for the measurement at B = 0 T (Fig. 9.8), due to the increased
subband spacing. Furthermore, new plateaus at 3, 5, . . . × e2/h are observed.

The situation that gives rise to the conductance plateau at 3 × e2/h is shown
schematically on the right-hand side.Now the subbands are no longer spin-degenerate.
The two spin branches are separated in energy by g∗μBB, where g∗ is the effective
g-factor and μB is the Bohr magneton. In this situation, the lowest subband and
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the energetically lower spin-branch of the second subband lie below source and
drain electrochemical potentials, each contributing e2/h to the conductance. The
energetically higher spin-branch of the second subband lies above source and drain
electrochemical potentials and does not contribute to the conductance.

For a source-drain bias of 2mV (Fig. 9.15c), additional so-called half-plateaus at
2.5, 3.5, . . . × e2/h occur. These are observed whenever a single spin branch of a
subband lies in the biaswindow and hence contributes 0.5× e2/h to the conductance.

Figure9.15a shows the full bias and voltage dependence of the transconductance
of the 250nm wide QPC. Large black diamonds indicate regions where the conduc-
tance is quantized in G = 2, 4, . . . × e2/h. Spin-split plateaus show up as much
smaller black diamonds with conductance values of G = 3, 5, . . .× e2/h. A plateau
at G = 1 × e2/h is obscured by the presence of the 0.7 anomaly. Higher-order
plateaus appear as dark regions neighboring the large conductance plateaus, with
conductance values G = 2.5, 3.5, . . . × e2/h. Close to pinch-off, a conductance
half-plateau related to the 0.7 anomaly is observed at G = 1.8 × e2/h.

The extent �VSD of the spin-split conductance plateaus allows for an extraction
of the effective g-factor g∗ in the QPC via �VSD = 2g∗μBB/e. From this, we find
g∗ = 4.4 for G = 3 × e2/h and g∗ = 3.8 for G = 5 × e2/h. Compared to the bulk
GaAs value of g = −0.44, the effective g-factor is strongly enhanced. Increases of
the effective g∗-factor towards lower subbands have for example been reported in
[13]. Here, g∗ ≈ 1.3 has been found for an in-plane B-field in a QPC at the first
conductance plateau. As argued in [1], disorder might reduce the spin enhancement
and hence explain the stronger effect observed in our high-mobility samples.

9.4.5 Bias Dependence in the Quantum Hall Regime

Transmission through the QPC is no longer governed by the subband spacing when a
strong perpendicularmagnetic field is applied and the cyclotron radius becomesmuch
shorter than the QPC width. When a source-drain bias is applied in this situation,
transmission does not vary due to shifting source and drain electrochemical potentials
with respect to the subbands, but due to a breakdown of the quantum Hall effect in
the constriction. Here, the critical current is much smaller than in the bulk due to
the smaller width [33]. The microscopic origin of the breakdown in the QPC is
not understood and might depend on the details of the current distribution and Hall
potential drop across the channel.

Figure9.16a shows the transconductance of a 800nm wide QPC, where the QPC
voltage and the source-drain voltage have been varied. The bulk filling factor has been
tuned to two by the application of an external magnetic field (B = 3.45 T). Pinch-off
and a conductance plateau at e2/h show up as black regions. Conductance curves at
three different biases are shown in Fig. 9.16b. Close to pinch-off, the conductance is
strongly modulated by resonances and no further conductance plateaus are visible.

The conductance plateau at e2/h (Fig. 9.16a) shrinks slightly in width as soon as
the source-drain bias is increased. At VSD ≈ 1mV, it then suddenly disappears.
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Fig. 9.16 a Transconductance of a 800nm wide QPC as a function of the QPC voltage and the
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are observed. b Conductance curves at VSD = 0mV, VSD = −0.5mV and at VSD = −1mV

A similar situation is shown in Fig. 9.17a for νbulk = 2/3. The transconductance
is plotted as a function of the QPC voltage and the source-drain bias. Black regions
indicate the conductance plateaus at 1/3× e2/h and 2/5× e2/h, while conductance
is dominated by disorder for G < 1/3 × e2/h and exhibits various conductance
resonances. The QPC conductance has been plotted in Fig. 9.17b as a function of
VQPC and for three different values of VSD. As the source-drain bias is increased,
conductance plateaus atG = 1/3×e2/h andG = 2/5×e2/h continuously disappear.
Close to pinch-off,we are in theweak electron tunneling regimebetween twoν = 2/3
FQH liquids (seeChap. 4). In this regime, a bias dependenceG ∝ V 2ge−2

SD is expected,
where ge = 3 for ν = 1/3 and ge = 2 for ν = 2/3 [34]. The dependence of
the conductance on VSD is shown in Fig. 9.17c for different QPC voltages. The
corresponding voltages are indicated in Fig. 9.17a, b as dashed red lines. Conductance
isminimal at VSD = 0mVand increases sharply, as the source-drain bias is increased.
The conductance �G(VSD) = G(VSD) − G(VSD = 0) is shown in a log-log plot

http://dx.doi.org/10.1007/978-3-319-21051-3_4
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in Fig. 9.17d. Neither �G ∝ V 4
SD (ge = 3) nor �G ∝ V 2

SD (ge = 2) fit the data
over a large voltage range. Due to the apparent disorder close to pinch-off, resonant
tunneling processes which involve different filling factor regions might contribute
to the tunneling, thus making an interpretation in terms of weak tunneling theory
impossible.

9.5 Conclusion

Wehave reviewed basic properties of quantumpoint contacts.Numerical calculations
for one of our samples have allowed us to extract a realistic density and potential
profile in the channel. By spatially shifting theQPCchannel,we could show that static
localizations do generally not influence transport in the high-mobility samples used
by us. Finite bias measurements revealed a regular pattern of conductance plateaus
and half-plateaus and indicate that the QPC confinement potential is harmonic. From
finite-bias measurements, we were able to extract parameters that describe the QPC
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confinement potential. We demonstrate how the confinement potential can be varied
in gate-tunable geometries and the resulting effect on the QPC transmission in the
quantum Hall regime. We have investigated the bias dependence of the transmission
for a QPC filling factor νQPC < 1/3. We find that a comparison to the expected
power-law scaling of the conductance is difficult, presumably due to the influence
of disorder in the channel.
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Chapter 10
Integer and Fractional Quantum Hall
States in QPCs

Abstract We investigate integer and fractional quantumHall states in quantumpoint
contacts (QPCs) of different geometries, defined in AlGaAs/GaAs heterostructures
employing different doping and screening techniques. We find that, even in the high-
est mobility samples, interference and localization strongly influence the transport
properties. We propose microscopic models for these effects, based on single- and
many-electron physics. For integer quantum Hall states, transport is modulated due
to the self-consistent formation of compressible regions of enhanced or reduced
density in the incompressible region of the constriction. In the fractional quantum
Hall regime, we observe the localization of fractionally charged quasiparticles in the
constriction and an interplay of single- and many-electron physics. At low electron
densities and in comparatively weak magnetic fields, single-electron interference
dominates transport. Utilizing optimized growth and gating techniques, the ν = 5/2
state can be observed in a QPC, conserving the bulk properties in an unprecedented
quality. Our results might improve the understanding of the influence of localization
on the transmission properties of QPCs, which is necessary for the interpretation of
interference experiments employing QPCs, especially at ν = 5/2.

10.1 Introduction

Localization plays a crucial role for understanding the exact quantization of the quan-
tum Hall effect. In strong magnetic fields, electronic transport can be described in
terms of narrow edge channels, leading to the well-known observations of Rxx ≈ 0
and Rxy = h/(e2νbulk). In this case, varying the magnetic field only (de)populates
localized states in the bulk, which do not affect transport because backscattering of
the chiral edge states across the wide bulk region is negligible. Alternative pictures,
where the current is believed to flow in the bulk, exist (see for example [2] for an
overview). Also in this case, the (de)population of localized states plays the key role
for the conductance quantization. These theoretically predicted localized states have
been investigated in various experiments using spatially resolved imaging techniques

The following chapter is based on the article [1].
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[3, 4, 6–8] or single-electron transistors fabricated on top of a two-dimensional
electron gas (2DEG) [9]. In a pioneering work by Ilani et al. [4], the equilibrium
properties of such localized states have been investigated in the bulk of a 2DEG with
scanning single-electron transistor (SET) techniques. The behavior of the bulk local-
izations was shown to be dominated by Coulomb blockade physics. This picture can-
not be explained as a single-electron effect, but requires the formationof compressible
and incompressible regions in the bulk, in analogy to an edge state picture that takes
self-consistent screening into account [10–12]. Here, the system is decomposed into
compressible regions, in which potential fluctuations are screened and the density
varies, and incompressible regions of constant density but varying background poten-
tial. Apart from the aforementioned experiments which probe localizations on a very
local scale in the bulk, conductance fluctuations in the quantumHall regime, believed
to be related to localized states, have been studied in direct transport experiments
[13–21]. They have been investigated for example in Si-MOSFETs [15], Graphene
[22–24], InGaAs quantum wells [25] and in narrow AlGaAs/GaAs heterostructures
[13, 14], where localized states couple to the edge and thus become accessible. In
the latter experiments [13, 14], resistance fluctuations have been interpreted as mag-
netically bound states. As pointed out later [26–28], Coulomb blockade effects are
of great importance for such experiments and have to be taken into account for the
interpretation of B-field and gate-voltage periodicities. In the work of Cobden et al.
[15], conductance fluctuations in the quantum Hall regime span a distinct pattern
in the density versus magnetic field plane, with resonances parallel to neighboring
conductance plateaus, similar to the phase diagram obtained by Ilani et al. This has
been interpreted as Coulomb charging of localized states in the bulk of the employed
small structures. The absence of a clear periodicity suggests either the contribution
of many localized states or the validity of other interpretations [16], which are based
on the presence of a network of compressible stripes.

More recently, scanning gate experiments have tried to combine spatial resolu-
tion with transport [29–31]. Hackens et al. have investigated Coulomb-dominated
islands inside quantum Hall interferometers [29]. Modulations of transport, due to
the coupling of the localized islands to the edge states were found. In contrast to
this behavior dominated by Coulomb charging, recent experiments [31] report phase
coherent tunneling across constrictions in the quantum Hall regime.

Quantum point contacts are one of the conceptually most simple, though interest-
ing systems studied in mesoscopic physics. The possibility to locally probe transport
allows us to employ QPCs in the quantum Hall regime for investigating the influ-
ence of disorder-induced localizations on transport. The influence of localized states
on (fractional) quantum Hall states confined in QPCs is not fully understood. Fur-
thermore, the influence of individual localizations on non-equilibrium transport was
not accessible in the mentioned transport experiments. In contrast, scanning SET
experiments provided information about individual localizations, but not about their
influence on transport. For the interpretation of interference experiments in the quan-
tum Hall regime [32–36], a detailed understanding of the transmission properties of
single QPCs is necessary. Even in 2DEGs with the highest mobilities technologi-
cally achievable at the moment, disorder significantly influences transport through
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the QPC, as soon as a perpendicular magnetic field is applied. We show that even in
simple QPCs complicated behavior can be observed, which is interpreted in terms of
single- and many-electron physics of individual disorder-induced localizations. We
argue that the influence of localizations can be minimized by employing growth and
gating techniques, which result in a very steep QPC confinement potential (perpen-
dicular to transport direction) and low disorder in the channel. By this, the ν = 5/2
state can be confined to a QPC without noticeable backscattering and preserving
the bulk properties in an unprecedented quality, giving a good starting position for
tunneling- and interference experiments in the second Landau level.

10.2 Experimental Details

The QPCs used in this chapter are defined by electron-beam lithography and sub-
sequent Ti/Au evaporation on photolithographically patterned high-mobility wafers.
Constrictions with different geometries have been studied here (see Table. 10.1 for an
overview). For the 250nmwide QPC I.a and the 500nmwide QPC I.b, a 30nmwide
quantum well with a carrier sheet density ns ≈ 3.04 × 1011 cm−2 and a mobility
μ ≈ 13×106 cm2/Vs has been used. In this structure the 165nm deep quantum well
is neighbored by two δ-Si doped GaAs layers, enclosed in 2nm thick layers of AlAs.
These screening layers reside 70nm below and above the 2DEG. The electrons in the
AlAs wells populate the X-band and provide additional low-mobility electron layers,
which screen the�-electrons in the 2DEG from remote ionized impurities. Due to the
screening layers, hysteretic and time-dependent processes make gating difficult. The
gating properties of these wafers have been studied earlier [38]. The 1.2 µm wide
QPC III.a has been fabricated on a wafer which employs a similar growth technique
(μ ≈ 17.8×106 cm2/Vs, ns ≈ 2.13×1011 cm−2, 250nm deep, 30nmwide quantum
well, screening layers 100nm below and above the 2DEG). The high mobility struc-
tures used for QPCs I.a,b and III.a,b,c are optimized for the ν = 5/2 state without

Table 10.1 Overview of the different samples used in this chapter

QPC w (nm) Heterostructure ns (1011 cm−2) μ (106 cm2/Vs)

QPCI.a 250 30nm QW, δ-Si screening 3.0 13.0

QPCI.b 500

QPCII.a 700 Single-side doped 1.5 8.0

QPCII.b 700 GaAs/Al0.24Ga0.76As

QPCII.c 900 heterostructure

QPCII.d 800

QPCIII.a 1200 30nm QW, δ-Si screening 2.1 17.8

QPCIII.b 1000

QPCIII.c 1700

Channel width w, electron sheet density ns and mobility μ are indicated for the different QPCs
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the requirement of prior LED illumination [40]. QPC II.a, QPC II.b (both 700nm
wide), QPC II.c (900nmwide) and QPC II.d (800nmwide) were fabricated on a sin-
gle side doped GaAs/AlxGa1−xAs heterostructure with a mobility of approximately
8×106 cm2/Vs and a 320nm deep 2DEG with an electron density of approximately
1.5 × 1011 cm−2. Hysteresis effects are much less pronounced in these structures
which employ a reduced proportion of Al in the spacer layer between the doping
plane and the 2DEG (x = 0.24 compared to typically x = 0.30–0.33). Long-range
scattering is therefore reduced, thus facilitating the formation of the ν = 5/2 state
and other fragile FQH states [41, 42]. The measurements have been conducted in a
dilution refrigerator at a base temperature of approximately 85 mK and in magnetic
fields up to 13 T. Measurements of QPC III.a have been performed in a dry dilution
refrigerator with an electronic temperature of approximately 12–13 mK, achieved by
massive filtering and thermal anchoring at every temperature stage. Standard four-
terminal lock-in measurement techniques have been used to measure Rxx and Rxy of
the bulk 2DEG and the differential conductance the QPC, G = ∂ IAC/∂Vdiag, which
gives access to the effective QPC filling factor νQPC [43]. Here, the voltage drop
Vdiag is measured diagonally across the QPC.

10.3 Results and Discussion

The main part of this chapter will be organized as follows: First, an exemplary
quantum Hall phase diagram will be discussed (Sect. 10.3.1). The influence of dif-
ferent QPC geometries on the width of the incompressible region separating the
edge states and the density distribution is discussed in Sect. 10.3.2. In the main part
of this chapter, Sect. 10.3.3, QPC resonances are characterized and explained via a
microscopic model. A short summary of this central Section is given afterwards. The
resonances’ dependence on the spatial position of the conducting channel inside the
QPC is investigated in the following (Sect. 10.3.4). At the end, methods for confining
the most fragile fractional quantum Hall states are discussed (Sect. 10.3.5).

10.3.1 Quantum Hall Phase Diagram of a QPC

Figure10.1a shows the differential conductance G (plotted: numerical derivative
∂G/∂VQPC in colorscale) of QPC I.a as a function of the voltage applied to the
QPC gates (VQPC) and a perpendicular magnetic field B. At zero magnetic field, the
well-known QPC conductance quantization in multiples of 2×e2/h is found. As the
magnetic field is increased, conductance steps (or plateaus), seen asmaxima (or black
areas) of ∂G/∂VQPC, bend to more positive QPC voltages, due to magneto-electric
depopulation of the QPC channel [43, 46]. The quantized conductance plateaus
successively develop into regions of constant effectivefilling factor of theQPC (νQPC)
with a diagonal resistance Rdiag = h/(e2νQPC). In this regime the spin splitting
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(a)

(b) (c)

Fig. 10.1 a Transconductance of QPC I.a as a function of the QPC voltage and the magnetic field.
Conductance plateaus at multiples of e2/h can be seen as black regions. Resonances, bending in
the B − VQPC-plane are indicated by white dashed lines. The 1/B periodic kinks (white arrows)
are believed to originate from a change of the filling factor in the bulk. A possible combination of
bulk filling factors is indicated. Inset full B-field and voltage dependence of the system. Here, the
voltage was swept from −1.3 V → −2.7 V → −1.3 V repeatedly and the B-field was stepped
from 0 T → 13 T → 0 T. b The B = 0 QPC conductance plateaus at multiples of 2 × e2/h
spin-split for increasing magnetic fields (magnetic field from 0 to 3 T). For 0 < G < 2× e2/h and
2 × e2/h < G < 4 × e2/h, local minima in the slope of the conductance are marked by green
diamonds or red circles. In contrast to the second and third subband, the spin-splitting of the lowest
subband starts at conductance values of approx. 0.7 × 2 × e2/h and approaches 1 × e2/h as the
magnetic field strength is increased [44, 45]. c At strong magnetic fields (with bulk filling factors
νbulk), conductance plateaus corresponding to different integer and fractional filling factors can be
observed in the QPC. (Reprinted figure with permission from [1]. Copyright 2014 by the American
Physical Society.)

is sufficiently strong to also observe conductance plateaus at G = 1, 3, 5, . . . ×
e2/h [44, 45]. The low-field behavior of the spin-splitting is shown in Fig. 10.1b.
Numerically extracted local minima of the slope of the conductance curve have
been marked with green diamonds/red circles. As B → 0, the G = 1 × e2/h
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plateau seems to join the 0.7 × 2 × e2/h anomaly [47]. No similar behavior can be
observed at G = 3 × e2/h and G = 5 × e2/h (data not shown). In the quantum
Hall regime, conductance curves of the QPC (Fig. 10.1c) show fractional effective
filling factors at νQPC = 2/3 and νQPC = 4/3 for different integer and fractional
filling factors of the bulk (νbulk). The shape of the boundary of the G = 0 region of
Fig. 10.1a is determined by different effects: first, an increasing magnetic field leads
to magneto-electric depopulation due to an increase of the single-particle electron
energy, thus moving the pinch-off region to less negative gate voltages. In addition,
time-dependent and hysteretic processes of the X-electron screening layers lead to an
additional drift of the pinch-off line towards less negative QPC voltages. Figure10.2
shows the full time- and voltage dependence of the system. Here, the voltage was
swept from −1.3 V → −2.7 V → −1.3 V repeatedly (horizontal axis) and the

Fig. 10.2 Transconductance of QPC I.a as a function of the QPC voltage and the magnetic field,
for changing the QPC voltage from −2.7 V → −1.3 V → −2.7 V and the B-field from 0 T → 13
T → 0 T
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B-field was stepped from 0 T → 13 T → 0 T (vertical axis). Upper and lower
part of the figure are not mirror symmetric—over the time of the measurement, the
pinch-off-line drifts towards less negative voltages, indicating a time-dependence
of the system. Furthermore, changes of the filling factor in the bulk can lead to an
abrupt decrease of the Fermi energy of the system as observed in quantum dots (QDs)
[48]. This effect is believed to cause the 1/B-periodic kinks in the pinch-off line.
When increasing the B-field across the kinks, the pinch-off line suddenly moves
towards more positive QPC voltages (marked by white arrows in Fig. 10.1a), though
an assignment to the individual filling factors in the bulk is not uniquely possible,
probably due to a reduced density in the bulk near the QPC, which governs the local
coupling of bulk states into the QPC.

In the regions of Fig. 10.1a where the QPC filling factor changes, the QPC con-
ductance does not vary monotonically. For G > 1 × e2/h, resonances which are
parallel to the boundary of one of the neighboring conductance plateaus are observed
(green arrows). In contrast, the region G < 1×e2/h shows resonant features without
any preferred slope, or even with varying slope at different B-fields (a set of bending
resonances is indicated by the white dashed line). Very similar resonances have been
found in several QPCs in different cooldowns. The origin of these resonances will
be discussed later in the framework of single- and many-electron physics.

10.3.2 Influence of QPC Geometry on Incompressible
Separating Region and Density Distribution

To be able to understand the mechanisms behind the resonances in more detail, we
have investigated two different QPC designs, fabricated on a 2DEG of lower density.
QPC II.a is 700nm wide with a top-gate above the conducting channel (see inset
Fig. 10.3a). QPCs II.b (inset Fig. 10.3b) and II.c are standard 700/800nmwideQPCs.
Density profiles in the y-direction (along the lateral confinement potential) for the
two QPC designs (at B = 0) have been obtained from a self-consistent bandstructure
calculation using nextnano. The doping concentration was adjusted to account for
surface charges and to reproduce the gate pinch-off voltages correctly. The applied
voltages to the gateswere chosen such that the calculated density at B =0 corresponds
to the density necessary for νQPC = 2 at B = 1.71 T, as in the measurements. Using
the calculated density profile at B = 0, we have calculated the altered density profile
when a compressible region is formed in the center of the QPC (Fig. 10.3) and the
width �a of the incompressible region for different QPC filling factors, using the
electrostatic model of Chklovskii et al. [49]. In this model, perfect metallic screening
in the compressible regions is assumed. For the gap energies, �ωc and g∗μB B with an
exchange enhanced g∗ ≈ 4 (see Sect. 9.4.4) have been used as estimates for ν = 2
and ν = 1. The energy gap at ν = 1/3 has been measured (see Sect. 10.3.6). In
Fig. 10.3, the resulting self-consistent densities (for νQPC = 2) are shown as solid
lines. The original density at B = 0 (dashed blue line, second row) is modified

http://dx.doi.org/10.1007/978-3-319-21051-3_9
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(a) (b)

Fig. 10.3 Calculated density distributions in the channels of QPCII.a (a) and QPCII.b (b). The
original zero magnetic field density distribution (dashed(blue), blow-up in second row) has been
altered by the formation of an incompressible region in the center of the constriction at B = 1.71 T
(νQPC = 2), resulting in a region of constant density n0. The width�a of the incompressible region
is indicated for different filling factors νQPC in both QPCs. (Reprinted figure with permission from
[1]. Copyright 2014 by the American Physical Society.)

by the formation of an incompressible stripe (constant density n0) in the center
of the channel. When a negative voltage is applied to the channel top-gate (CTG)
of QPC II.a, the subband minimum is lifted. In this situation, the curvature of the
electron density in the center of the constriction is small. When QPC II.b is tuned to a
similar density in the constriction, the density curvature in the center is much greater,
leading to a narrower compressible region (Fig.10.3b). Comparing �a of the two
QPCs, we conclude that for QPC II.a, a significantly wider incompressible region
is expected according to the model of Chklovskii et al. [49]. The widths �a range
from approximately 20–90nm. Disorder potential fluctuations have typical length
scales of the order of 100nm [4, 50]. If the amplitude of such a disorder potential
fluctuation in the incompressible region in the center of the QPC is large enough to
create an intersection of the Landau level with the Fermi energy (Fig. 10.6b, c, left
column), compressible regions of enhanced or reduced density (Fig. 10.6b, c, middle
column) are formed. Thus, the small width of the incompressible region in QPCII.b
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(and hence in the QPCII.c with similar geometry) makes it less likely that a disorder
potential fluctuation leads to the formation of a localization in the constriction (see
also Fig. 10.4). Furthermore, the coupling to such a localization is strongly varied as
the width of the separating incompressible region changes, making the observation
of periodic charging of a single localization impossible. To observe periodicities and
study resonances in more detail, we now investigate electronic transport in QPC II.a,
where a much stronger influence of disorder-induced localizations is expected. Here,
a periodic behavior is expected over a larger parameter range, as the width of the
incompressible regions separating edge and localizations is sufficiently wide.

10.3.3 Characterization of QPC Resonances and Microscopic
Model

10.3.3.1 Periodic Conductance Oscillations in QPCs of Different
Geometries

The filling factor spectra of QPC II.a and QPC II.c are investigated similarly to the
measurement of Fig. 10.1a, by varying theQPCgate voltage versus themagnetic field
B. First, the channel top-gate voltage VCTG has been varied (Fig. 10.5a). This gate
varies the density of the channel roughly linearly with applied voltage (neglecting
filling-factor dependent capacitances), as seen from the slope d B/dVCTG ∝ 1/νQPC
of the conductance plateaus, which show up as black areas of quantized conductance.
In addition to the full series of integer filling factors, fractional states at νQPC = 1/3,
2/3, 4/3 and 5/3 can be observed. Close to the low- and high density edges of the
conductance plateaus, sets of conductance oscillations with a slope parallel to the
boundaries are observed, similar to the ones observed in small Hall-bars [15, 16].
The slope and number of these resonances are independent of density and magnetic
field strength.

(a) (b)

Fig. 10.4 Calculated density distributions in the channels of QPCII.a (a) and QPCII.b (b). While
the density increases slowly towards the channel center for QPCII.a, a sharp increase is found for
QPCII.b.
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(a)

(c)

(b)

(d)

(e) (f)

Fig. 10.5 a Transconductance of QPC II.a as a function of the voltage VCTG and magnetic field
B. Here, the density is tuned roughly linearly by the gate voltage. b Transconductance of QPC
II.c as a function of VQPC. Pronounced fractional and integer filling factors are observed (black
regions A.1, A.2, etc.). Apart from these regions of nearly-perfect transmission, disorder modulates
transport in other regions: for small transmission (C.0, C.1), small backscattering (B.1) and at the
low density, low B-field end of the conductance plateaus (D.1). A similar behavior is found when
one underlying edge state is perfectly transmitted (regions B.2–D.2). c Transconductance of QPC
II.a, when −400 mV are applied to the CTG. d Zoom of Fig. 10.5c: transition from νQPC = 2 to
νQPC = 1. Two distinct slopes (green solid/white dashed lines), parallel to the boundary of the
neighboring conductance plateaus, are observed. e, f Close-ups of the conductance oscillations for
νQPC = 1 and νQPC = 1/3 (enframed areas in c). (Reprinted figure with permission from [1].
Copyright 2014 by the American Physical Society.)

A qualitatively similar behavior can be found for QPC II.c as VQPC is varied
(Fig. 10.5b). Here, regions of perfect transmission have been marked (A.1). Modu-
lations occur at the low-density side (B.1) and high-density side of the conductance
plateaus (C.1) or pinch-off (C.0). Furthermore, resonances at the low-density and
low-B-field end of conductance plateaus are observed (D.1). These resonances dis-
appear as the density and B-field strength increase. Similar regions can be attributed
to higher filling factors, for which underlying edge states are perfectly transmitted
(A.2–D.2).
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As mentioned above, a much stronger influence of a disorder-induced localiza-
tion is expected for QPC II.a, as the wider incompressible region is much more
likely to accommodate one or several extrema of the disorder potential. Here, quasi-
periodic conductance modulations should occur over a larger parameter range, as the
width of the incompressible regions separating edge and localizations is sufficiently
wide. In order to verify this expectation, Fig. 10.5c shows the transconductance of
QPC II.a, obtained by keeping VCTG fixed while varying VQPC and B. Compared
to Fig. 10.5b, more pronounced conductance oscillations are observed (red empty
arrow). Especially gate voltage regions close to pinch-off are now dominated by
equidistant conductance peaks parallel to the magnetic field axis. Regions C and D
overlap, which can be seen from the coexistence of two different distinguishable
slopes (indicated by green solid arrows). In the integer quantum Hall regime (for
example in Fig. 10.5d), conductance oscillations with distinct slopes are observed
between neighboring conductance plateaus. The resonances are parallel to either of
the two neighboring plateau boundaries (Fig. 10.5d, green solid/white dashed line).
Close to νQPC = 1/3, strong resonances, parallel to the conductance plateau occur
(Fig. 10.5f). At lower B-fields, between νQPC = 1/3 and νQPC = 1, weak modula-
tions with an intermediate slope are observed.

10.3.3.2 Screening and Localization Model

The mechanism which gives rise to the different resonances in regions A-D can
be understood in terms of an edge-state picture which takes non-linear screening of
potential fluctuations into account (Fig. 10.6). Similar models have been employed to
understand bulk localizations in scanning SET and scanning capacitance experiments
[4, 6, 7, 51]. Regions of locally enhanced or reduced density are formed on top of the
background density, associated with different extended quantum Hall states. These
localizations in the constriction couple to the edge states and give rise to conductance
oscillations. In Fig. 10.6, the guiding center energies of two extended quantum Hall
states are shown as a function of the spatial direction y, intersecting the QPC channel
(Fig. 10.6a, left column). Empty/filled circles symbolize empty or occupied states.
The extended states could for example be associated with Landau levels (in this case
�ext = �ωc), spin-split Landau levels (�ext = g∗μB B with an exchange enhanced
g∗), or �-levels of composite Fermions, corresponding to a FQH state at ν = 1/m
[52, 54, 55](�ext = �1/m is the energy gap of the FQH state). For simplicity, wewill
constrain the discussion in the following to the situation, where extended states arise
from a Landau level splitting. If spin-split Landau levels or �-levels are considered,
an analog picture can be constructed.

In Fig. 10.6a, energies of the second Landau level are far above the Fermi energy.
In themost simple edge state picture [56, 57], Landau level energies are bent up by the
confinement potential of the QPC, giving rise to chiral edge states at the intersections
with the Fermi energy, thus leading to a step-wise density increase towards the bulk
of the sample. However, self-consistency of the Poisson and Schrödinger equations
at a smooth, electrostatically defined edge [10] leads to a screened potential and
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(a)

(b)

(c)

(d)

Fig. 10.6 Schematic guiding center energies of extended states and densities within a QPC. a–d
correspond to the different transmission situations A-D, as indicated in Fig. 10.5b. Empty/filled cir-
cles symbolize empty or occupied states. In the case of perfect transmission (a), adding an exemplary
disorder potential does not alter the density distribution within the channel. As density fluctuations
in the transmitted (b) or energetically lowest reflected (c) Landau level lead to partially occupied
states at the Fermi energy, compressible regions of enhanced (c, green area) or reduced density
(b, red striped area) are formed within the incompressible region. This gives rise to a quantized
charge on the compressible regions of enhanced or reduced density formed in the incompressible
region which separates the edge states. For smaller magnetic fields or stronger disorder fluctua-
tions, wide compressible regions are absent and only states below the Fermi energy are occupied.
Here, compressible regions of enhanced and reduced density modulate the transport in the constric-
tion at the same time (d). As wide incompressible regions are absent, the compressible regions of
enhanced or reduced density are no longer governed by Coulomb-dominated physics. Here, single-
electron resonances arise from localized states, encircling a certain number of magnetic flux quanta.
In contrast to the Coulomb-dominated mechanism, such single-electron resonances give rise to a
dependence in the B − VQPC plane which may differ from the slope of the conductance plateaus.
(Reprinted figure with permission from [1]. Copyright 2014 by the American Physical Society.)
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smooth density variations in compressible regions of finite width (Fig. 10.6a, middle
column). In this compressible region, partially filled states (half-filled circles) reside
at the Fermi energy. The density of electrons in the lowest Landau level is constrained
via n ≤ n0 = 2eB/h, due to its finite degeneracy. Where the Landau level energy
lies below the Fermi energy, all states are occupied (filled circles) and this maximum
density is reached. Potential fluctuations can no longer be screened, in contrast to the
ideally perfect screening in compressible regions where the potential is flat. In this
picture, compressible regions in between regions of constant filling factors ν1 and ν2
contribute G = e2/h ×�ν to the conductance, where �ν = ν2 −ν1 [58]. Alternate
models exist, where the current is flowing in the bulk (see for example [2] for an
overview). In our case however, the details of the current distribution in the QPC are
not important, as only the total conductance through the QPC can be measured. A
schematic spatial density distribution within the QPC is shown in the right column of
Fig. 10.6a. Here, the boundaries between compressible and incompressible regions
are indicated as black arrows. For simplicity, these will be referred to as “edge states”
from now on. In this picture, the edge state is perfectly transmitted through the
QPC constriction (between black polygons) and both counterpropagating directions
are separated by a wide incompressible region [49] (white), yielding a quantized
QPC conductance. Far away from the QPC, additional Landau levels eventually
fall below the Fermi energy, leading to additional compressible regions where the
density increases towards its bulk value (green area). Adding schematic potential
fluctuations (Fig. 10.6a, left column) does not change the overall situation, as long as
no states in the second Landau level become occupied. This is the analog situation
to the regions A.1 and A.2 of Fig. 10.5b. As the magnetic field strength is increased,
Landau levels are lifted in energy, leading to a narrower incompressible region in the
center of the QPC between the edge states. The density is locally reduced (Fig. 10.6b,
middle column)wheremaximaof the potential fluctuations intersect theFermi energy
(Fig. 10.6b, left column). This leads to the formation of a compressible region of
reduced density (red striped) that is separated from the edge states via incompressible
stripes.

For an increasing disorder amplitude or decreasing Landau level splitting, com-
pressible regions of enhanced or reduced density can occur in the constriction at
the same time, explaining the simultaneous visibility of resonances with a different
slope in Fig. 10.5c (indicated by solid green arrows). When disorder dominates over
the Landau level splitting, i.e. when the gradient of the background potential ∂V/∂y
becomes comparable to Egap/ lB [59], where lB is the magnetic length, the system
is no longer described by a many-electron picture with screening via compressible
and incompressible regions (Fig. 10.6d). In that confinement-dominated case, single-
electron states localized around a potential minimum ormaximum in the constriction
enclose a fixed number of flux quanta [60] (Fig. 10.6d, solid blue line). As the area
of the localized state is tuned non-linearly with the QPC gate voltage, resonances
with varying slope in the B − VQPC plane are expected [4].

Different tunneling paths that lead to a qualitatively similar behavior have been
proposed [5]. Here, non-adiabaticity of the QPC potential leads to enhanced tunnel-
ing between the edge channels at the entrance and exit of the constriction (Fig. 10.6d,
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red dashed lines). In contrast, the situation of Fig. 10.6b is described by Coulomb-
dominated physics of the compressible region of reduced density inside the constric-
tion. Here, electron-electron interactions lead to a potential with compressible and
incompressible regions. The charge of the compressible region of reduced density
is quantized, leading to resonances with a certain slope in the B − VQPC plane [4],
whenever an electron is added or removed from the compressible region of reduced
density. The slope is uniquely determined by the filling factor of the incompressible
region in which the compressible region of enhanced or reduced density is formed
and equals the slope of the corresponding conductance plateaus in the VQPC-B-field
plane. This explains why resonances only occur with one of the slopes of the neigh-
boring conductance plateaus (Fig. 10.5d). Conductance resonances are only visible
in the transport data when the incompressible region between the edge states and
the compressible region of reduced density is sufficiently small, allowing for res-
onant backscattering across the constriction. This is the case as the conductance
starts to decrease below the plateau value, as in Fig. 10.5b B.1 and B.2. Similarly,
potential minima of the second Landau level fall below the Fermi energy, as the
magnetic field strength is decreased (Fig. 10.6c, left column), leading to compress-
ible region of enhanced density within the incompressible region separating the edge
states. As additional transmission sets in (Fig. 10.5b, C.1 and C.2), the coupling of
these compressible region of enhanced density leads to a periodic modulation of the
transmission.

In this discussion, the additional complication of possible edge reconstruction
of integer quantum Hall (IQH) edge states [61] has not been taken into account.
Furthermore, we observe faint conductance plateaus at G = 2/3× e2/h in the QPC.
This state is clearly visible in the QPCII.c (Fig. 10.5b) and in QPCII.a when the
voltage applied to the CTG is swept (Fig. 10.5a). Surprisingly, the ν = 2/3 state is
not observed, when the QPC voltage of QPCII.a is swept while a constant voltage is
applied to the CTG (Fig. 10.5c). The edge structure of the ν = 2/3 state is still not
understood in detail. Theory and experimental findings suggest that this state may
consist of a δν = 1 IQH edge state and a counterpropagating δν = −1/3 edge state
of holes which are equilibrated by interaction, resulting in a single chiral charged
mode and a counterpropagating neutral mode [52, 53, 62, 63]. Even more advanced
theoretical proposals exist [64], which can explain the experimental findings of these
states. How to interpret localizations in the case of such a complicated edge structure
remains an open question. The weak visibility of the ν = 2/3 state could be due to
this complicated edge structure and suggests a smaller energy gap than observed for
the ν = 1/3 state.

As mentioned before, resonances with bending slopes in the B-field−VQPC plane
are expected for single-electron resonances [4, 60]. The detailed behavior of the slope
depends on the disorder potential intersecting the Fermi energy. This suggests that
the resonances in the FQH regime of Fig. 10.1a (marked by white dashed line) could
be interpreted as single-electron effects. In [14], a model for a disorder potential
maximum in a constriction is proposed, leading to magnetically bound states which
could qualitatively reproduce the bending of the resonances. In this situation, disorder
dominates over the smaller FQH gaps and the formation of wide compressible and
incompressible regions in the constriction is no longer possible (Fig. 10.6d). Thus,
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the slope in the B-field - VQPC plane depends on the influence of the QPC voltage on
the enclosed area, which depends on the shape of the disorder potential maximum.

10.3.3.3 B-field and Voltage Periodicities

Within this framework, we may now investigate the periodicities of the reso-
nances in Fig. 10.5c–f. For a Coulomb-dominated quantum dot, a distinct behav-
ior of the periodicities �B(νQPC) and �VQPC(νQPC) is expected. These period-
icities depend on the filling factor of the incompressible region, in which the
Coulomb-dominated region is formed, in our case this is νQPC. From theoret-
ical models [27, 28] for Coulomb-dominated Fabry-Pérot interferometers it is
expected that �B(νQPC = 1) ≈ 2�B(νQPC = 2) ≈ �B(νQPC = 1/3) and
�VQPC(νQPC = 1) ≈ �VQPC(νQPC = 2) ≈ 3�VQPC(νQPC = 1/3),1 which has
been observed in lithographically defined quantum dots [35]. In the IQH regime,
our periodicities for νQPC = 2 (�B ≈ 30 mT, �VQPC ≈ 62 mV) and νQPC = 1
(�B ≈ 55 mT, �VQPC ≈ 60 mV) are in good agreement with these predictions.
Periodicities for νQPC = 1/3 (�B ≈ 73 mT, �VQPC ≈ 24 mV) are at least com-
patible with a Coulomb-dominated localization of fractional e/3 charges. The area
which can be extracted from these periodicities (A ≈ 0.075µm2) is compatible with
a localization in the channel of the QPC. However, it should be noted that the geome-
try of the compressible region of enhanced or reduced density within the constriction
might change as the B-field is varied, because it is not lithographically defined but
might change self-consistently. A different behavior is observed in the low-n/low-B-
field end of conductance plateaus (“D” in Fig. 10.6), where single-electron physics
is expected to dominate. In the measurement of Fig. 10.5c (regions encircled by
white dashed line), periodicities for νQPC = 1 (�B ≈ 200 mT, �VQPC ≈ 53
mV) and νQPC = 1/3 (�B ≈ 360 mT, �VQPC ≈ 48 mV) are incompatible with
a Coulomb-dominated mechanism and indicate single-electron behavior. Similar
enhancements of�B for ν = 1/3 have been interpreted asmagnetically bound states
in earlier experiments [13]. However in this interpretation, finite temperature effects
or an interplay with Coulomb blockade mechanisms might have to be taken into
account [26].

10.3.3.4 Summary

To summarize, the most important findings of this section are: periodic conductance
oscillations with a slope, parallel to either of the neighboring conductance plateaus
were observed. They were interpreted to originate from the Coulomb-dominated
charging of compressible region of enhanced or reduced density, formed in a

1For the voltage periodicity at νQPC = 1/3, the gating effect of the background electrons has to be
taken into account, as described in [35]. In our case however, this only gives a negligible correction
from �VQPC(νQPC = 1) ≈ 3�VQPC(νQPC = 1/3).
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constant filling factor background. This filling factor determines the slope. B-field
and gate voltage periodicities agree with expectations for a Coulomb-dominated
Fabry-Pérot interferometer. At low densities and in weak magnetic fields, disorder
prevents the formation of compressible and incompressible regions.Here, resonances
are interpreted as single-electron effects, where electronic states are dominated by
confinement and encircle a local potential maximum and enclose a certain number
of flux quanta. In the fractional quantum Hall regime where energy gaps are smaller
than in the integer quantum Hall regime, an influence of both mechanisms can be
seen. At the plateau boundaries of the νQPC = 1/3 state, conductance oscillations,
compatible with Coulomb-dominated charging of fractionally charged quasiparti-
cles, are observed. For 1/3 < νQPC < 1, modulations of the conductance with an
intermediate slope (in-between slopes of the νQPC = 1 and νQPC = 1/3 plateaus)
are observed. These slopes move with the local filling factor of the QPC, i.e. corre-
spond to a certain number of flux quanta per electron. This indicates the importance
of single-electron interference, where resonances are expected to emanate from the
B = 0, n = 0 origin of the Landau fan [50].

10.3.4 Spatial Dependence of QPC Resonances

Byapplying different voltages to the twodifferentQPCgates, it is possible to laterally
shift the QPC channel in the lithographically defined constriction (this technique was
for example used in [65–67]). For QPCs similar to QPC I.a, this shift was found to be
of the order of the lithographic QPCwidth [65, 68]. Figure10.7 shows the numerical
derivative of G in diagonal direction (transconductance ∂G/∂Vl&r), as the voltages
Vl and Vr of the left and right QPC gate are varied. In these measurements, the 2DEG
far away from the QPC (bulk) is tuned to a fixed filling factor νbulk with Rxx ≈ 0.
Regions of constant conductance and pinch-off show up as black areas, bright regions
of increasing conductance bend around the pinch-off region. Figure10.7a, c shows
the asymmetry-dependence of resonances (the diagonal of Fig. 10.7a is a cut across
the resonances of Fig. 10.1a indicated by the dashed line) in the low-density low-B-
field end of the νQPC = 1 plateau for three different QPCs (Fig. 10.7a, b: QPC I.a,
Fig. 10.7c:QPC II.d, Fig. 10.7d:QPC II.a) on 2DEGsof different density.Resonances
believed to originate from single-electron effects (indicated by white arrows), are
observed at the low-density end of the G = 1 × e2/h conductance plateau. The
resonances showup as two or three parallel lineswith a varying slope clearly different
from the conductance plateaus’ slope and sit deep in the G = 1× e2/h conductance
plateau. Such resonances, occurring mainly in symmetric configurations, have been
observed in most of the QPCs in study. Additional modulations of the conductance
can be observed between the conductance plateaus. These many-electron resonances
bend roughly in the same way as the pinch-off line but vary in intensity, as the
asymmetry is varied.

Figure10.7b, d shows the asymmetry behavior in strong magnetic fields. For a
bulk filling factor νbulk = 1, conductance plateaus in the QPC at G = 1/3 × e2/h
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(a) (b)

(c) (d)

Fig. 10.7 a–d Transconductance (numerical derivative in diagonal direction) of QPCs on a high-
density sample (QPC I.a, a, b) and a low-density sample (QPC II.d, c, QPC II.a, d) as the voltages of
left and right QPC gates Vl and Vr are varied. White arrows mark resonances that are believed to be
due to single-electron interference. These resonances move with a more complicated dependence
as the asymmetry is varied, in contrast to many-electron resonances which bend parallel to the
conductance plateaus. (Reprinted figure with permission from [1]. Copyright 2014 by the American
Physical Society.)

are observed. In Fig. 10.7b, mainly resonances bending with the pinch-off line are
observed. In contrast, in Fig. 10.7d, non-regular resonances without any preferred
slope are observed.

With our model (Fig. 10.6) we can now try to distinguish the asymmetry-behavior
of the two different types of resonances: on the one hand, the confinement dominated
resonances (Fig. 10.6d) for the situation where compressible and incompressible
regions are absent and the system is described by single-electron physics, on the
other hand the many-electron resonances (Fig. 10.6b, c) where a compressible region
of enhanced or reduced density, situated in an incompressible region, is charged.
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Confinement-dominated single-electron resonances are expected to occur as a
result of a localized state at a certain position in the channel, to which both edges
couple. As the asymmetry and thus the background potential is varied, single-particle
energy levels are shifted in energy, which changes the position in gate voltages of the
resonance relative to pinch-off. Thus, single-electron resonances are expected to pos-
sess a dependence on gate voltage which is not parallel to the respective conductance
plateau as the asymmetry is varied. They should disappear, as soon as the coupling to
one of the edges is lost. Here, the gate voltage dependence is influenced by the details
of the confinement and disorder potential. The proposed gate voltage dependence of
the single-electron resonances (which causes a bending not necessarily parallel to
the pinch-off line) and the disappearance of the resonances with increasing asym-
metry are indeed observed (Fig. 10.7a, b, white arrows). A similar behavior might
be expected from an Aharonov-Bohm mechanism, where non-adiabaticity of the
QPC saddle-point potential leads to enhanced tunneling between the edge channels
at the entrance and exit of the constriction and thus defines a QPC-voltage dependent
area [5].

In the ideal model of many-electron resonances, the charge of the compressible
island of reduced or enhanced density is quantized and changeswhen the total density
in the constriction is varied (i.e. whenmoving perpendicular to pinch-off in the Vl−Vr
plane). When the asymmetry is varied parallel to pinch-off, we expect to change
mainly the width of the incompressible regions separating the compressible island of
reduced or enhanced density from the edge. Thereby the resonance amplitude which
highly depends on the width of the incompressible region [69] is changed. At the
same time, the occupation of the compressible region of reduced or enhanced density
is expected to be approximately constant, as long as the picture of compressible
and incompressible regions does not break down. In this scenario, resonances are
thus expected to run parallel to the conductance plateau edges, as observed in the
measurements (Figs. 10.7a–c).

Because the conductance varies strongly in-between the plateaus, resonances
cannot be attributed to individual localizations as it was possible for example in
Fig. 10.5c. Thus, in a yet different scenario, conductance oscillations could also
originate from single-electron effects, where we only probe localizations that couple
to both edges for a given voltage asymmetry. At this asymmetry, they possess a local
gate voltage dependence, shifting them parallel to the conductance plateaus. The
overall behavior of the resonances could result from averaging the contributions of
many single-electron resonances.

Summarizing, we may state that the bending resonances of Fig. 10.7a, c (marked
by white arrows) are compatible with a confinement dominated single-electron
effect, whereas resonances parallel to the conductance plateaus (Fig. 10.7a–c) are
compatible with amany-electron effect. However, other mechanisms leading to simi-
lar observations cannot be excluded. The fact that in Fig. 10.7d no resonances bending
with the conductance plateaus are observed may indicate that in Fig. 10.7d transport
is dominated by single-electron physics, while many-electron effects dominate in
Fig. 10.7b, where the applied magnetic field is much stronger and the disorder poten-
tial is smaller due to a higher mobility 2DEG.
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10.3.5 Fragile Fractional Quantum Hall States in QPCs

Figure10.8a shows the transmission of QPC I.b (light/dark blue) and QPC II.d (red)
as a function of applied QPC voltage. The conductance of QPC II.d as a function of
VQPC (red) shows conductance oscillations on the low-density side of the νQPC = 1
plateau. These are those resonances of Fig.10.7c, which were interpreted as single-
electron effects.

(a)

(b)

Fig. 10.8 a In strong magnetic fields (B = 13 T), the transmission of QPC I.b strongly fluctuates
close to pinch-off (light/dark blue). The dashed red curve depicts a situation in which a transmitted
edge state is weakly backscattered in QPC II.d (see inset). b Transmission of QPC III.a for 2 ≤
νbulk ≤ 3. In the bulk, νbulk = 7/3, 8/3 and 5/2 are fully quantized with a strong minimum in Rxx
(solid black line) and a plateau in Rxy (dashed green line). In addition, pronounced reentrant integer
quantum Hall (RIQH) states are observed. The diagonal resistance across the QPC, Rdiag (solid
blue line), shows a plateau at ν = 5/2, indicating nearly perfect transmission through the QPC. The
density within the constriction is very similar to the bulk density. (Reprinted figure with permission
from [1]. Copyright 2014 by the American Physical Society.)
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QPC I.b exhibits conductance plateaus at 2/3, 3/5, 2/5 and 1/3 × e2/h in strong
magnetic fields (B = 13 T, νbulk = 1). Close to pinch-off, the conductance strongly
fluctuates. Unfortunately the observation of νQPC = 2/3, 3/5, 2/5 and 1/3 does
not allow to draw conclusions about the edge reconstruction of the νbulk = 1 edge
state. Over the whole QPC voltage range, not only the transmission, but also the
channel density and the shape of the QPC confinement potential strongly vary [65].
Themeasurement in dark blue shows the first VQPC sweep after the cool-down.When
closing the channel for a second time (light blue), fractional filling factors are still
visible, but a more negative gate voltage has to be applied to pinch off the channel.
As the QPC is subsequently opened again, a pronounced hysteresis is visible and
the more fragile conductance plateaus at G = 2/5 × e2/h, G = 3/5 × e2/h,
G = 1/3 × e2/h and G = 2/3 × e2/h disappear. This behavior can be understood
considering the time- and voltage-dependent density in the X-electron screening
layers. After the screening layers have been depleted, the density only relaxes with
long time constants. The electron density of the 2DEG is inversely proportional to
the charge carrier density in the X-electron bands due to capacitive coupling. Thus,
depleted screening layers lead to a increased 2DEG electron density at the sameQPC
voltage, explaining why the QPC conductance is higher for opening the QPC than for
closing it. A measurement of the time-dependence of the channel density is shown
in Fig. 10.9, where the QPC voltage is changed starting at t = 0. When voltages are
applied at T ≈ 1.3 K, density relaxes back to the bulk density over time constants
of several minutes. This process is much faster at T ≈ 3.6 K.

Fig. 10.9 Time dependence of the density in the QPC constriction of QPC III.b, extracted from
the slope of Rdiag at B ≈ 0.1 T. Starting at t = 0, the QPC voltage is swept from 0 to −3.2 V. After
that, the QPC voltage is kept fixed. At T = 1.3 K, the density drops until the QPC voltage remains
constant. After that, density relaxes back towards the bulk density over several minutes. At T = 3.6
K, the density is nearly already saturated after the sweeping of the gate voltage has been finished.
Here, relaxation processes are much faster. (Sample D120427C-1D)
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(a) (b)

Fig. 10.10 a Bulk Hall resistance Rxy and Rdiag measured diagonally across QPC III.c versus
magnetic field (at T ≥ 50 mK). QPC III.c is a 1700nm wide and 1500nm long channel, formed
by two plunger gates. Here, top-gate voltages of −2.3 V have been applied to the QPC at T < 100
mK. The density in the QPC channel is reduced compared to the bulk density, as seen from the
shift of the plateaus in Rdiag towards smaller magnetic fields. b At T ≈ 10 mK, pronounced RIQH
states and a plateau corresponding to ν = 5/2 are observed in Rxy (here: VQPC = −2.2 V). While
RIQH states are completely absent in Rdiag, a weakly pronounced resistance plateau is found at
Rdiag = 2

5h/e2 (see inset), while νbulk = 3 at the same magnetic field. (Sample D120427C-1C)

At millikelvin temperatures, a saturation of the QPC density does not set in within
realistic time scales of an experiment. The effect of biasing a QPC top-gate at T <

100 mK is shown in Fig. 10.10. Here, the density in the QPC channel is reduced
compared to the bulk density. Quantization of the FQH states is nearly completely
lost in the QPC, apart from aweakly pronounced resistance plateau at Rdiag = 2

5h/e2

corresponding to ν = 5/2 (see inset), while νbulk = 3 at the same magnetic field.
Figure10.8a demonstrates that many different fractional filling factors νQPC can

be transmitted by applying an appropriate QPC voltage and keeping the magnetic
field fixed.However, relaxation of the barelymobileX-band screening layer electrons
makes the observation of the most fragile fractional quantum Hall states difficult. To
overcome this limitation, the fact that the X-band screening layers becomemobile for
temperatures above approximately 1K can be used [38, 39]. By applying top-gate
voltages at higher temperatures, the screening layer density can relax in a steady
state and density fluctuations in the constriction are avoided (see Fig. 10.9). By this
relaxation, additional screening is provided, which is believed to result in a much
steeper QPC confinement potential. To allow a full relaxation of the screening layers,
the system is kept at T ≈ 4 K for several hours.

Figure10.8b shows the diagonal resistance of the 1.2 µm wide QPC III.a for 2
≤ νbulk ≤ 3. Here, −4 V have been applied to the QPC gates at T ≈ 4 K. The
electron gas below the metallic top-gates is depleted at approx. −3.2 V. At a base
temperature of 9mK (electronic temperature≈ 12–13mK), the filling factors 7/3, 8/3
and 5/2 are fully quantized in the bulk, with a strong minimum in Rxx and a plateau
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in Rxy. In addition, pronounced reentrant integer quantum Hall states are observed.
The density in the constriction is nearly identical to the bulk density, as seen from
the overlap of different filling factors. At a magnetic field of approx. 3.6 T, the
plateau in Rdiag shows that the ν = 5/2 state is nearly perfectly transmitted through
the QPC, without significant backscattering. Here, the applied QPC voltage of -4
V has been kept fixed while cooling down to the base temperature. The deviation
of Rdiag and Rxy at B ≈ 3.4 T originates from a small longitudinal component
in Rdiag due to an asymmetry of the sample geometry. The optimized growth and
gating procedure allow the definition of a QPC without decreasing the density in
the constriction and without destroying the quantization of the ν = 5/2 state, which
is otherwise not possible. Interference experiments at ν = 5/2 [36, 37, 70–74]
require a filling factor ν = 5/2 in the center of the employed QD, while edge
states are only partially transmitted. Here, the diameter of the QD is constrained to
a few µm (due to the finite quasiparticle coherence length [75]), thus making the
conservation of the bulk density and ν = 5/2 quantization on a μm length-scale
crucial. The steep confinement potential of QPCIII.a leads to a decreased width of
the compressible regions in the QPC and a wider separating incompressible region,
thus reducing backscattering across. The anticipated complex edge structure of the
ν = 5/2 state (which was experimentally found to occur only in QPCs of rather
large width [76]) might facilitate its formation in a steeper confinement potential.
Furthermore, the additional screening of the disorder in the constriction via X-band
electrons reduces the amplitude of the disorder potential fluctuations. Hence, the
influence of conductance oscillations as discussed in Sect. 10.3.3 is expected to be
reduced. The main drawback of the utilized gating method is the low tuneability of
gate voltages at mK temperatures. Here, the gate voltages have to remain in very
small range around the voltage that has been applied at T = 4 K. Otherwise, slow
relaxation processes of the X-band screening layers destroy the quantization of the
ν = 5/2 state. Growthmethods which utilize conventional DX-doping and a reduced
Al molar fraction might help to overcome this problem, while still providing a good
quantization of ν = 5/2 [40–42].

Having demonstrated that we can confine a fully gapped ν = 5/2 state to a QPC,
we are at a good starting point for conducting tunneling and interference experiments
with the fragile fractional quantum Hall states at ν = 7/3 and 5/2.

10.3.6 Energy Gap of the νQPC = 1/3 State

Activation measurements have been performed on the νQPC = 1/3 states in the two
QPCsQPCII.a andQPCII.b. Themeasured diagonal resistances Rdiag of bothQPCs at
a magnetic field of 10.25T are shown in Fig. 10.11a, b. Here, a two-terminal AC volt-
agemodulation ofVAC =40µV, corresponding to anACcurrent IAC of approximately
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(a)

(b)

Fig. 10.11 a Diagonal resistances for different temperatures at νbulk = 2/3 for QPC II.a (here
VCTG = −0.47 V) and QPC II.b (b). The insets show the energy gap as a function of the QPC gate
voltage, which has been extracted from the activated behavior of �Rdiag. The shaded area depicts
an estimate of the fit error for Egap. (Reprinted figure with permission from [1]. Copyright 2014 by
the American Physical Society.)

0.5 nA has been applied. The plateau at Rdiag = 3× RK (RK = h/e2), corresponding
to νQPC = 1/3, is much wider for QPC II.a (Fig. 10.11a). Temperature-dependent

measurements reveal an activated behavior �Rdiag ∝ e
− �diag

kB T of the deviation of the
diagonal resistance from its plateau value, �Rdiag. The energy gap values, extracted
at different QPC voltages, are shown as insets in Fig. 10.11a, b. Extracted energy
gaps (Egap = 2�xy) correspond to thermal energies between 0.6 and 1.0 K for these
two QPCs, compared to an energy gap of 3.2K for the bulk ν = 2/3 state at the
same magnetic field (see Fig. 10.12). Thus, Rxx ≈ 0 has been maintained in the bulk
(νbulk = 2/3) over the whole temperature range which was used for extracting the
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(a)

(b)

(c)

Fig. 10.12 Rxy (a) and Rxx (b) near νbulk = 2/3 for different temperatures. Rxy and Rxx are
measured in the bulk of the sample with the QPCs II.a and II.b. The energy gaps of the νbulk = 2/3
state, extracted from either Rxy (Egap = 2�xy) or Rxx (Egap = 2�xx ) are plotted in (c) as a
function of the magnetic field. From the activated behavior of Rxx , an energy gap Egap ≥ 3 K is
found. Close to the center of the νbulk = 2/3 plateau, the temperature-dependence of Rxy is too
small to extract an energy gap. The shaded area is an estimate of the uncertainty of the fit to an
activated behavior. Further away from the center of the plateau, �xy is slightly larger than �xx

energy gap of the νQPC = 1/3 state, meaning that we probe only the temperature-
dependence of the QPC. In contrast to activation measurements of Rxy in the bulk
(see Fig. 10.12 and [77]), deviations from the quantized resistance value do not occur
symmetrically around the center of the plateau. This effect, which is believed to be
due to electron-electron interactions [78], is much more pronounced in the QPCwith
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the CTG. The similar size of these energy gaps suggests that the different widths and
shapes of the νQPC=1/3 plateau (as VQPC is varied) mainly stem from different shapes
of the confinement potential.

10.4 Conclusion

In conclusion, we have investigated the interplay of electronic transport and localiza-
tion in quantum point contacts of different geometries and based on 2DEGs utilizing
different growth techniques. In these systems, various integer and fractional quantum
Hall states were observed. Using a QPC with a top-gate, we were able to investigate
conductance resonances in greater detail. In this sample, edge states are separated
by a wide incompressible region thus leading to a significant influence of localiza-
tions due to disorder potential fluctuations. Regions of perfect QPC transmission
are surrounded by periodic conductance oscillations with an identical slope in the
VQPC − B-field plane. Within a many-electron picture, the resonances on the high
(low) density end of the plateau can be interpreted as regions of enhanced or reduced
density formed within incompressible regions between the counterpropagating edge
states. As the charge of these regions is conserved, changing the density or magnetic
field leads to periodic conductance oscillations, whenever an electron is added or
removed. B-field and VQPC-periodicities agree with expectations for a Coulomb-
dominated quantum dot in strong magnetic fields and are determined by the filling
factor background in which the compressible region of enhanced or reduced den-
sity is formed. At low densities and in weaker magnetic fields, resonances within
the conductance plateau occur. In this regime, disorder broadening becomes com-
parable to the Landau level separation, thus compressible regions of reduced and
enhanced density, situated in different Landau levels modulate transport at the same
time. Here, the many-electron picture is not valid anymore and resonances with a
dependence in the B−VQPC plane, not necessarily equal to the conductance plateaus’
dependence, are observed. These resonances are interpreted as confinement domi-
nated single-electron interference effects. In the fractional quantum Hall regime, the
behavior of the system seems to be influenced by both, single- and many-electron
physics. Due to the much smaller gaps of the FQH states, disorder becomes more
important. Close to perfect transmission, resonances similar to those associated with
compressible regions of reduced or enhanced density in a many-electron picture can
be observed. Periodicities at νQPC = 1/3 are compatible with the localization of frac-
tionally charged quasiparticles in a Coulomb-dominated quantum dot. However, for
intermediate transmissions, weak resonances with a slope different from the slopes
of the neighboring conductance plateaus are observed, indicating the importance
of single-electron physics where the formation of compressible and incompressible
regions breaks down. Single-electron resonances have been studied as a function
of the position of the conducting channel in the constriction. In contrast to many-
electron resonances, single-electron resonances are expected to possess slopes in the
gate-voltage plane, not necessarily parallel to the conductance plateaus. Here, the
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slope depends on the details of the disorder potential. Using optimized growth tech-
niques and gating procedures, we are able to form QPC constrictions with extremely
weak backscattering and a density equal to the bulk density. This allows us to observe
the ν = 5/2 state in the QPCwith a fully developed plateau. The bulk properties, like
the reentrant integer quantum Hall states, are fully conserved in the QPC, making
this system promising for future tunneling and interference experiments at ν = 5/2.
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Chapter 11
Quasiparticle Tunneling in the Second
Landau Level

Abstract Wemeasure weak quasiparticle tunneling across a constriction in the sec-
ond Landau level. At ν = 7/3, 8/3 and 5/2, comparison of temperature and DC bias
dependence to weak tunneling theory allows extracting parameters that describe
the edges’ quasiparticle excitations. At ν = 8/3, our results are well described by
a particle-hole conjugate Laughlin state, but not compatible with proposed non-
Abelian quasiparticle excitations. For ν = 5/2, our measurements are in good agree-
ment with previous experiments and favor the Abelian (3,3,1) or (1,1,3)-states.
At these filling factors, we further investigate the influence of the backscattering
strength on the extracted scaling parameters. For ν = 7/3, the backscattering strength
strongly affects the scaling parameters, whereas quasiparticle tunneling at ν = 8/3
and 5/2 appears more robust. Our results provide important additional insight about
the physics in the second Landau level and contribute to the understanding of the
physics underlying the fractional quantum Hall states at ν = 7/3, 8/3 and 5/2.

11.1 Introduction

Numerical studies of the fractional quantum Hall (FQH) states at ν = 7/3 and 8/3
have indicated that these states might not be well described by the Laughlin wave
function [2–5]. Thus, the underlying physics which creates the energy gap might be
different for ν = 1/3, 7/3 and 8/3. Subsequently, alternative wave functions with
non-Abelian quasiparticle (QP) excitations have been proposed for ν = 7/3 and 8/3
[6, 7], making these states, along with the 5/2 state [8–11], potentially interesting
for topologically protected quantum operations [12–14].

Most current experimental findings for both the ν = 7/3 and 8/3 states are compat-
ible with non-Abelian candidate states and a (particle-hole conjugate) Laughlin state.
For instance, local electrometer [15] and shot noise measurements [16, 17] suggest

The following chapter is based on the article [1].
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(a) (b)

Fig. 11.1 Conceptual difference between weak and strong backscattering [19–21], in the simplest
case without edge reconstruction. a For a quantum point contact (QPC) close to pinch-off, we
have strong backscattering and weak electron tunneling (dotted line). b For an open QPC, weak
backscattering and weak quasiparticle tunneling (dotted line) govern the transmission. (Reprinted
figure with permission from [1]. Copyright 2014 by the American Physical Society.)

a QP charge e∗/e = 1/3. The latter experiments furthermore show that a neutral
mode is present for ν = 8/3 but absent for ν = 7/3. From activation measurements,
the ν = 7/3 and 8/3 states were found to be consistent with Jain’s non-interacting
composite Fermion model [18], hence supporting a (particle-hole conjugate) Laugh-
lin state. Nevertheless, further experiments are necessary, which allow a more direct
discrimination of the proposed wave functions.

Tunneling experiments employing quantum point contacts (QPCs) [22] or struc-
tures made by cleaved-edge overgrowth [23] have been used to study the characteris-
tic power-law scaling of the chiral Luttinger liquid tunneling conductance: a ν = 1/3
edge was weakly tunnel-coupled to another FQH edge or to a bulk metal across vac-
uum. Thus measured conductances arose from the tunneling of electrons (Fig. 11.1a,
dotted line), which is strongly suppressed at low temperatures. In the case where
counterpropagating edge states are weakly coupled across a FQH liquid (in the sim-
plest case without edge reconstruction, Fig. 11.1b, dotted line), QPs tunnel between
the edges [19–21]. In contrast to the previous case, this process is strongly enhanced
at low T . Weak QP tunneling has been used as a probe for edge properties of the
ν = 5/2 state [24, 25]. This situation recently also has been studied theoretically
[26–29]. The DC bias and temperature dependence of the tunneling conductance
across a QPC was employed to extract the QP charge e∗/e and the Coulomb inter-
action parameter g, which describes the strength of electron-electron interaction in
a FQH edge and reflects the topological order in the bulk [30]. These parameters
characterize the edge excitations of proposed wave functions for ν = 5/2, 7/3 and
8/3 and hence allow probing the nature of these states experimentally.

In this chapter, we use this technique for the investigation of the most prominent
filling factors of the lower spin branch of the second Landau level (LL): ν = 7/3,
8/3 and 5/2. To the best of our knowledge, our results constitute the first detailed
experimental investigation of scaling parameters g and e∗/e for the 7/3 and 8/3 state.
1 We provide a comparison to theoretical proposals. At ν = 5/2, our extracted scaling
parameters are very similar to those reported earlier [24, 25], though measured in a
quantum well with a different growth technique and an approximately 12 % lower

1In [31], two groups of zero bias peaks were observed for 7/3 < ν < 8/3. These were attributed
to ν = 5/2 and ν = 8/3. At ν = 8/3 the data was not conclusive, whereas for ν = 5/2 similar
conclusions as in [24] were reached.
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electron sheet density. Finally, we study the effect of the backscattering strength
of the QPC on the QP tunneling and the extracted parameters, and investigate the
breakdown of weak QP tunneling.

11.2 Experimental Details

The measured QPCs are approximately 1.1 µm wide and are defined by electron-
beam lithography and subsequent Ti/Au evaporation on photo-lithographically pat-
terned high-mobility wafers. These high mobility structures (ns ≈ 2.3×1011 cm−2,
μ ≈ 2.3 × 107 cm2/Vs) are optimized for the observation of the ν = 5/2 state
without prior LED illumination [32]. The 27nm wide quantum well lies approxi-
mately 200nm below the surface. A DX doping scheme has been used. Experiments
have been conducted in a cryogen-free dilution refrigerator, with an electronic base
temperature Tel ≈ 12–13mK, achieved by low-pass filtering and thermal anchoring
at every temperature stage. The bath temperature (Tbath ≈ 10 mK) is measured with
a SQUID-based noise thermometer, which gives reliable results down to tempera-
tures below 10 mK [33, 34]. Top-gated structures have been cooled down from room
temperature to 4K with a positive pre-bias. Subsequently, top-gates have been neg-
atively biased at 4K to allow for density relaxation in the screening layers and the
QPC channel [24, 35, 36]. The electron gas underneath the top-gates is depleted at
a gate voltage of −1.4 V.

11.3 Measurement Results

Figure11.2 shows the bulk Hall resistance Rxy measured far away from the top-gate
defined QPCs and the resistance measured diagonally across one of the QPCs, Rdiag,
for filling factors in the bulk 2 ≤ νbulk ≤ 4 at base temperature. Here, the QPC2
gates (see inset of Fig. 11.2) are biased to−1.65 V (at the onset of weak quasiparticle
tunneling), while all other gates are grounded. A constant AC current IAC = 1.0nA is
applied at f = 13.333Hz, while IDC = 0. Rdiag and Rxy aremeasured in a standard 4-
terminal configuration (see inset of Fig. 11.2) using lock-in measurement techniques.
In addition to the integer quantum Hall (IQH) states, FQH states at ν = 8/3, 5/2,
7/3 and strong reentrant integer quantum Hall (RIQH) states are observed in the
bulk. Whenever an IQH plateau is observed in Rxy, Rdiag is quantized at exactly the
same resistance value, indicating very similar bulk and QPC electronic densities. In-
between the IQH plateaus, Rdiag ≥ Rxy, indicating reduced transmission through the
QPC. In this situation, weak backscattering of edge states through the QPC occurs
via weak QP tunneling between counter-propagating edge states (Fig. 11.1b). We
measure the tunneling conductance across the QPC, gtun ≈ (Rdiag − Rxy)/R2

xy [24]
for different bulk filling factors νbulk (see Appendix B). The power-law temperature
dependence of the zero-bias tunneling conductance [30, 37] gtun|ISD=0 ∝ T 2g−2 then
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Fig. 11.2 Rdiag (blue) and Rxy (black) measured in a Hall-bar geometry (upper inset) as a function
of the magnetic field. Here, −1.65 V have been applied to QPC2 (left inset). In between integer
filling factors, Rdiag ≥ Rxy, indicating a reduced transmission of the QPC. (Reprinted figure with
permission from [1]. Copyright 2014 by the American Physical Society.)

allows extracting the Coulomb interaction parameter g, which can be compared to
theoretical predictions. With an additional DC bias between the counter-propagating
edges, the tunneling conductance takes the form [37–40]:

gtun = A × T (2g−2) × F

(
g,

e∗/e IDCRxy

kB T

)
+ g∞, (11.1)

Here, a heuristic background conductance g∞ has been introduced. F is a function
of g and

(
e∗/e IDCRxy

)
/(kB T ) [24]:
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2π
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x

2π

)
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2

)
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2

)
Im

[
�

(
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x

2π

)]}

Here, B(x, y) is the Euler beta function and�(x) is the digamma function. A deriva-
tion of this formula can be found for example in [39, 40].

This formula is the result of a perturbative calculation which assumes a point-like
interaction of the counter-propagating edge states in the QPC [37–40]. It relies on
the scaling dimensions of the most relevant quasiparticle creation and annihilation
operators of the individual edges. The exact form of these operators depends on the
FQH edge modes and their interactions. Edge theories and corresponding quasipar-
ticle operators have been developed for all the relevant candidate wavefunctions in
the second LL (an overview can be found for example in [29]). As long as the inter-
action between the counter-propagating edge modes is weak and can be treated in a
perturbative approach, we expect (11.1) to be valid.
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Fig. 11.3 Tunneling conductance gtun as a function of B and IDC. At ν = 7/3, 5/2 and 8/3, QP
tunneling peaks are observed at small DC biases

Measuring the full DC bias and temperature dependence of the tunneling con-
ductance gives access to g and e∗/e via comparison to (11.1). The tunneling
conductance gtun is shown as a function of DC current and magnetic field B in
Fig. 11.3. Here, a strong bias dependence is observed close to the RIQH phases,
visible as diamond-shaped structures in the IDC − B-plane. This behavior is a bulk
effect and will be discussed in Chap. 15. At filling factors ν = 5/2, 8/3 and 7/3, an
enhanced tunneling conductance is observed at small biases (marked by arrows in
Fig. 11.3).

In the following, this QP tunneling is studied in different configurations. First, the
B-field is fixed to the center of the bulk filling factors and the QPC transmission is
kept constant (similar to [24, 25]). In this configuration, ν = 5/2 (Sect. 11.3.1) and
ν = 8/3 (Sect. 11.3.2) are investigated. Backscattering for ν = 7/3 is much weaker
than for ν = 5/2 and 8/3. For the QPC voltages chosen, a reliable parameter extrac-
tion was not possible for ν = 7/3 (data not shown). In Sect. 11.3.3, the influence
of the magnetic field strength on the tunneling parameters is investigated. Finally,
the influence of the QPC transmission is investigated (Sect. 11.3.4). In the latter two
sections, also backscattering at ν = 7/3 is observed in narrow parameter windows.

11.3.1 Tunneling Conductance at ν = 5/2

Figure11.4a shows the temperature dependence of the measured gtun of QPC1 when
VQPC1 is fixed to −1.8 V. At this gate voltage, backscattering is sufficiently strong
to be observed up to temperatures of ≈65mK. A narrow peak of the tunneling
conductance is observed at zero DC current. Adjacent to the QP tunneling peak,
undershoots of the tunneling conductance are observed. Such undershoots of the

http://dx.doi.org/10.1007/978-3-319-21051-3_15
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(a)

(b)

(c) (d)

Fig. 11.4 a Zero-bias backscattering peak at ν = 5/2 and fixed VQPC1 = −1.8 V. The peak height
is strongly temperature-dependent. b Measured (black) and fitted (red) tunneling conductance for
different electronic temperatures (fit parameters: e∗/e = 0.18, g = 0.32). c Normalized fit error as a
function of fit parameters e∗/e and g. Parameters of Abelian (green circles) and non-Abelian (green
dots) candidate wavefunctions are indicated. d PDF of the measured residuals {δk} as a function
of e∗/e and g. The maximum probability is found for e∗/e = 0.19, g = 0.33 with σg = 0.0026,
σe∗/e = 0.0019 and σg,e∗/e = 0.0022. (Reprinted figure with permission from [1]. Copyright 2014
by the American Physical Society.)
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tunneling conductance are only expected for g < 0.5 [25, 40]. The B-field is set
to the center of the bulk ν = 5/2 plateau for this measurement, and an AC current
IAC = 0.4nA is applied. Decreasing the AC current below this value does not narrow
the gtun peak, but only reduces the signal to noise ratio. A small constant background
of approx. 0.1 × e2/h is removed from the data, by subtracting the saturation gtun
at IDC ≥ 10 nA. When the temperature is increased to approx. 65 mK, the zero-bias
peak vanishes almost completely. A fit of the weak tunneling expression (11.1) to the
measured gtun is shown inFig. 11.4b (six out of 13measured temperatures are shown).
The parameters g∞, A, g and e∗/e are identical for all T and are fitted to the data.With
e∗/e = 0.18 and g = 0.32, excellent agreement of experiment and QP tunneling the-
ory is obtained. These parameters are close to those reported in [24, 25]. There, best
fit parameters e∗/e = 0.17, g = 0.35 [24] and e∗/e = 0.25 / 0.22, g = 0.42/0.34 ([25],
for two different geometries) were found. Suitable parameter ranges can be deduced
from the fit residuals δk of the kth measurement point. We plot the relative fit error,

i.e. �δ = min
A,g∞

(∑
k

δ2k

)
(normalized by its minimum, �δ,min), as a function of e∗/e

and g (Fig. 11.4c), similar as it has been done in [24, 25]. With this plot, the agree-
ment with parameters for the proposed wave functions can be assessed qualitatively.
Parameters for different wave functions are cited in Table11.1 and are indicated in
Fig. 11.4c, d as green circles (Abelianmodes) or green dots (non-Abelianmodes). All
QP excitations are expected to possess a minimum e∗/e = 0.25. The Abelian K = 8
state [41–43]with g = 0.125 does clearly not agreewell with our experimental obser-
vations. Very recently, it was shown that the (1,1,3)-state is also a viable candidate
for ν = 5/2 [44]. It is Abelian and is expected to possess g ≈ 0.375 in a gate-defined
geometry. Closest agreement of our data seems to be found with this (1,1,3)-state and
the Abelian (3,3,1)-state [42, 43, 45] for which g = 0.375 is expected. The parame-
ters of this state reproduce the experimental gtun qualitatively well (see Appendix:
“Fits for proposed parameter pairs—ν = 5/2”). The non-Abelian Moore-Read Pfaf-
fian [46] (g = 0.25), Anti-Pfaffian [47, 48] (Pf, g = 0.5), SU(2)2 state [49, 50] (g =
0.5) and Majorana gapped edge-reconstructed Pfaffian state [51] (g = 0.5) seem
less likely and also do not fit as well qualitatively (see Appendix: “Fits for proposed
parameter pairs—ν = 5/2”), though they cannot be excluded completely. For the
Majorana-gapped anti-Pfaffian [51] and the particle hole conjugate states, (3, 3, 1)
and SU(2)2 [29], g > 0.5 is expected and they hence are not indicated in Fig. 11.4c,
d. For the best fit, χ2 = �δ,min/(Nσ2

meas) = 2.14 is found, where N is the number of
measurement points and σ2

meas is the measurement noise (variance). This indicates a
slight systematic disagreement between measurements and model function.

A more quantitative assessment can be gained from the probability distribution
for g and e∗/e, p (g, e∗/e|{δk}), which is calculated from the Gaussian probabil-
ity density function (PDF) of our fit residuals, leading to the posterior probability
p (σ, A, g∞, g, e∗/e|{δk}) by marginalization of the variables σ, A and g∞ [53] (for
details see Appendix C). The maximum probability is found for e∗/e = 0.19 and
g = 0.33 with very narrow standard deviations σg = 0.0026, σe∗/e = 0.0019. The
positive covariance σg,e∗/e = 0.0022 indicates that we are more sensitive to the



194 11 Quasiparticle Tunneling in the Second Landau Level

Table 11.1 Overview of the theoretically proposed parameter pairs g and e∗/e for different states at
ν = 5/2 (‘n-A’: non-Abelian; taken from [29, 44, 51, 52]) and our results for different measurement
configurations

ν = 5/2

Theory [29, 44, 51, 52]

State e∗/e g n-A?

K = 8 1/4 1/8 No

MR Pf 1/4 1/4 Yes

(3,3,1) 1/4 3/8 No

(1,1,3) 1/4 ≈3/8a No

Pf 1/4 1/2 Yes

SU(2)2 1/4 1/2 Yes

(3, 3, 1) 1/4 5/8 No

SU(2)2 1/4 3/4 Yes

Majorana-gapped
edge-rec. Pf

1/4 1/2 Yes

1/2 1/2 No

Majorana-gapped Pf 1/4 0.55–0.75 Yes

1/2 0.5–0.7 No

Experiment

Config. e∗/e g

I. 0.18 0.32

II. 0.25 0.42

III. 1/4 0.42

IV. 0.15–0.21 0.24–0.32

V. 1/4 0.37

Only edge modes with the lowest QP charge are quoted, as they dominate the tunneling in our
experiment. [Config. I .: B and VQPC constant (see Figs. 11.4 and 11.5), II .: VQPC varied (Fig. 11.7),
III .: VQPC varied, e* fixed to e/4 or e/3 (Fig. 11.7), IV .: B varied (Fig. 11.6), V .: B varied, e* fixed
to e/4 or e/3 (Fig. 11.6)]
aIn a gate defined geometry [44]

difference g − e∗/e than to the individual parameters g and e∗/e. Overall, we can
conclude that our measurements are well described by the weak tunneling expres-
sion of (11.1), with only a small systematic deviation. However, when comparing
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the “best fit” parameters to the proposed parameter pairs, the small size of the stan-
dard deviations suggest that there is clearly a systematic deviation. Here, none of the
proposed parameter pairs lie within our statistical error.

11.3.2 Tunneling Conductance at ν = 8/3

A similar analysis can be conducted at a bulk filling factor νbulk = 8/3. For this
the B-field is set to the center of the bulk 8/3 plateau. Here, the tunneling peak
has a qualitatively different shape (Fig. 11.5a) with a larger full width at half maxi-
mum (FWHM) in IDC direction and absent gtun undershoots. The absence of these
undershoots is a sign for g > 0.5 [25, 40]. Also in this case, the weak tunneling
expression (11.1) fits the data well over a large temperature range (six out of nine
measured temperatures are shown in Fig. 11.5b). From the fit we obtain: e∗/e =
0.22, g = 0.62. A plot of the relative fit error as a function of the parameters g and
e∗/e is shown in Fig. 11.5c. For the best fit, χ2 = 1.20 is found here, thus indicat-
ing only a small systematic disagreement. Marginalization of σ, A and g∞ reveals
that the maximum probability does not exactly coincide with the minimum relative
fit error, but is slightly shifted to e∗/e = 0.23, g = 0.65 (Fig. 11.5d). Parameters
of the candidate wave functions for ν = 8/3 are cited in Table11.2 and are indi-
cated as (green) circles (Abelian modes) or (green) dots (non-Abelian modes) in
Fig. 11.5c, d. All candidate states furthermore exhibit Abelian 2e/3 QP excitations
with g = 2/3, which were not observed in the experiment. Apart from a particle-
hole conjugate Laughlin state (L1/3), two types of Bonderson-Slingerland states

(BS2/3 and BSψ
1/3) and a four-clustered Read-Rezayi state are possible candidates.

The Bonderson-Slingerland states are constructed hierarchically over a Moore-Read
Pfaffian state. This construction allows to produce the most important filling factors
in the second Landau level [6]. In the four-clustered Read-Rezayi state (RRk=4),
clusters of k Anyons are expected to form effective Bosons and to condense in a

liquid of filling factor ν = k/(k + 2) [7, 54]. The BS2/3 and BSψ
1/3 states support

two e/3 edge modes with g = 2/3 and 7/24 (BS2/3) and g = 2/3 and 13/24 (BSψ
1/3).

Due to the gtun ∝ T 2g−2 temperature dependence, we expect to probe mainly the
smallest g of the edge modes. From Fig. 11.5c, d we can see that the RRk=4 state
and the non-Abelian edge modes of the BS2/3 state are not in agreement with our
measurements. The fit parameters are closest to the particle-hole conjugate Laughlin

state (L1/3), which fits much better than the non-Abelian edge modes of the BSψ
1/3

state. The experimental gtun is qualitatively well reproduced by the L1/3 parame-
ters (see Appendix: “Fits for proposed parameter pairs—ν = 8/3”). Quantitatively
however, none of the candidate states lies within statistical error bars, also in this
case. Similar to the previous case, “best fit” parameters can be found that lead to
only a statistic deviation of theory and experiment. Again, the deviation of proposed
parameter pairs and “best fit” parameters indicates a systematic deviation.
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(a)

(b)

(c) (d)

Fig. 11.5 a Zero-bias backscattering peak at ν = 8/3 and fixed VQPC1 = −1.8 V. b Measured
(black) and fitted (red) tunneling conductance for different electronic temperatures (fit parameters:
e∗/e = 0.22, g = 0.62). c Relative fit error as a function of fit parameters e∗/e and g. Parameters
of Abelian (green circles) and non-Abelian (green dots) candidate wave functions are indicated. d
PDF of the measured residuals {δk} as a function of e∗/e and g. The maximum probability is found
for e∗/e = 0.23, g = 0.65 with σg = 0.0029, σe∗/e = 0.0028 and σg,e∗/e = 0.0028. (Reprinted
figure with permission from [1]. Copyright 2014 by the American Physical Society.)
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Table 11.2 Overview of the theoretically proposed parameter pairs g and e∗/e for different states
at ν = 7/3 and 8/3 (‘n-A’: non-Abelian; taken from [52]) and our results for different measurement
configurations

ν = 8/3

Theory [52]

State e∗/e g n-A?

L1/3 1/3 2/3 No

BS2/3 1/3 7/24 Yes

1/3 2/3 No

BSψ
1/3 1/3 13/24 Yes

1/3 2/3 No

RRk=4 1/6 1/6 Yes

Experiment

Config. e∗/e g

I. 0.22 0.62

II. 0.21–0.25 0.55–0.72

III. 1/3 0.67–0.82

IV. 0.19–0.28 0.62–0.84

V. 1/3 0.76–0.88

ν = 7/3

Theory [52]

State e∗/e g n-A?

L1/3 1/3 1/3 No

BS2/3 1/3 23/24 Yes

1/3 1/3 No

BSψ
1/3 1/3 17/24 Yes

1/3 1/3 No

RRk=4 1/6 1/3 Yes

Experiment

Config. e∗/e g

I. – –

II. 0.21–0.29 0.34–0.45

III. 1/3 0.47

IV. 0.28 0.49

V. 1/3 0.54

Only edge modes with the lowest QP charge are quoted, as they dominate the tunneling in our
experiment. [Config. I .: B and VQPC constant (see Figs. 11.4 and 11.5), II .: VQPC varied (Fig. 11.7),
III .: VQPC varied, e* fixed to e/4 or e/3 (Fig. 11.7), IV .: B varied (Fig. 11.6), V .: B varied, e* fixed
to e/4 or e/3 (Fig. 11.6)]
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(a)

(b)

(c)

Fig. 11.6 a, b B-field and DC bias dependence of the tunneling conductance near ν = 8/3, 5/2
and 7/3. c B-field dependence of fitting parameters e∗/e (red diamonds), g (blue circles) and g for
e∗/e fixed to 1/3 or 1/4 (green squares). The vertical dashed lines in (b) and (c) indicate the center
of the bulk filling factor plateaus. (Reprinted figure with permission from [1]. Copyright 2014 by
the American Physical Society.)

11.3.3 Effect of Varying the Coupling via the Magnetic Field

The discussed measurements leave the question of how the extracted parameters
e∗/e and g depend on the strength of QP tunneling. To investigate this, the QPC
transmission has been varied by changing the B-field. The tunneling conductance
gtun is shown as a function of DC bias and B-field in Fig. 11.6b. The B-field has been
varied in a small window around the bulk filling factors 8/3, 5/2 and 7/3 (gray shaded
areas in Fig. 11.6a). Here, QPC2 instead of QPC1 was used in a different cool-
down and VQPC2 was fixed at −2.96 V. As the magnetic field strength is increased,
backscattering and hence gtun continuously increase. At the same time we move out
of the B-field range where the FQH states are fully gapped in the bulk. Hence the
interpretation of the QP backscattering peak only makes sense in narrow B-field
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regions around the bulk filling factors observed in Rxy. At the high magnetic field
end of the graphs, reentrant integer quantum Hall (RIQH) states enter and dominate
the temperature dependence of the conductance, resulting in a zero-bias peak with
increased FWHM. Due to the complicated and dominant temperature-dependence
of the RIQH states [55], a qualitative description via (11.1) breaks down as soon as
they contribute to the conductance. Away from these states, the FWHM of gtun is
constant over a wide B-field interval (see Appendix: “FWHM of tunneling peaks”).
The parameters g and e∗/e are extracted from temperature dependent measurements
of Fig. 11.6b. They are shown in Fig. 11.6c for the B-field interval in which the peak
FWHM is constant. Fits of gtun (11.1) yield g (blue circles) and e∗/e (red diamonds).
When e∗/e is not used as a fitting parameter but fixed at 1/3 (ν = 7/3, 8/3) or 1/4
(ν = 5/2), another set of g (green squares) is obtained.

11.3.3.1 ν = 8/3

For ν = 8/3 (Fig. 11.6b, c, left column), a continuous decrease of g is observed for
an increasing B-field. When the B-field moves away from the bulk 8/3 plateau (at
B > 3.56 T), the zero-bias peak shape changes (similar to Fig. 11.8a) and hence is
not well described by weak tunneling theory any more. In the B-field range where
the peak FWHM is constant and no flat peak is observed (Fig. 11.6c), g varies from
0.82 to 0.62 with g = 0.77 in the center of the bulk ν = 8/3 plateau (indicated by
dashed line, Fig. 11.6c). At the same time, e∗/e decreases from 0.28 to 0.20 where
it saturates. If e∗/e is fixed to 1/3, we find slightly higher values for g in the range
0.88–0.76.

11.3.3.2 ν = 5/2

For ν = 5/2 (Fig. 11.6b, c, middle column), a large region of negative differential
tunneling conductance gtun is observed towards the low-field end of the ν = 5/2
plateau. The origin of this is not clear. In this case, the undershoots of gtun dominate
the fit, yielding small values for g. Towards the center of the ν = 5/2 plateau, g and
e∗/e take values of g = 0.24–0.32 and e∗/e = 0.15–0.21. If e∗/e is fixed to 1/4, g
saturates at approximately 0.37.

11.3.3.3 ν = 7/3

For ν = 7/3 (Fig. 11.6b, c, right column), a zero-bias peak with constant FWHM is
only observed in a very narrow B-field window (Fig. 11.6c). Also the amplitude of
gtun is much smaller than for ν = 8/3 and 5/2. At the low-field side of this window,
the amplitude of the zero-bias peak is too small for a reliable fit of the data over the
whole temperature range. At the high-field side, neighboring RIQH states dominate
the temperature-dependence of the conductance and broaden the zero-bias peak. In
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(a)

(b)

Fig. 11.7 a Dependence of the tunneling conductance at ν = 8/3, 5/2 and 7/3 on the QPC voltage.
b Fitting parameters e∗/e (red diamonds), g (blue circles) and g for e∗/e fixed to 1/3 or 1/4 (green
squares) as a function of VQPC. (Reprinted figure with permission from [1]. Copyright 2014 by the
American Physical Society.)

between those regimes (where also the bulk plateau center is located, dashed line
Fig. 11.6c), g and e∗/e are approximately constant, with g = 0.49 and e∗/e = 0.28.
Fixing e∗/e to 1/3, a plateau value of g ≈ 0.54 is obtained.

11.3.4 Effect of Varying the Coupling via the QPC
Transmission

When the magnetic field is varied, we vary the transmission but might also move out
of the gap of the investigated FQH states. Instead, the transmission can be controlled
by changing the QPC split-gate voltage while the B-field is fixed to the center of the
νbulk = 8/3, 5/2 and 7/3 plateaus.When the QPC is closed (Fig. 11.7a), the amplitude
of gtun increases. For ν = 5/2 and 8/3, its FWHM is constant over the whole voltage
range, whereas at ν = 7/3, the FWHM increases due to the neighboring RIQH state.
The voltage range in which the FWHM is constant is indicated by the gray shaded
area in Fig. 11.7b. Parameters g and e∗/e, extracted from the temperature dependence
of Fig. 11.7a, are shown in Fig. 11.7b.



11.3 Measurement Results 201

11.3.4.1 ν = 8/3

At ν = 8/3 (Fig. 11.7, left column), e∗/e is approximately constant at 0.21–0.25 over
the whole gate voltage range. For g, constant values of approx. 0.72 are found for
small gtun, which start to decrease at VQPC ≈ −3.0 V down to g = 0.55. If e∗/e is
fixed to 1/3, a similar evolution of g, with slightly higher values (g = 0.67–0.82) is
found.

11.3.4.2 ν = 5/2

Here (Fig. 11.7, middle column), the FWHM of gtun is constant over the whole volt-
age range. At VQPC ≈ −3.15 V and VQPC ≈ −2.9 V (marked by white arrows),
the gtun peak is locally enhanced and neighbored by negative differential conduc-
tance undershoots. This behavior could be caused by resonant tunneling through a
localization in the QPC. Here, the gtun undershoots dominate the fit, yielding small
values for e∗/e and g. Towards VQPC = −3.5 V, e∗/e and g saturate at 0.25 and 0.42
respectively. For e∗/e fixed to 1/4, g varies from approx. 0.28 at the onset of the zero
bias peak to approx. 0.42 at VQPC = −3.5 V.

11.3.4.3 ν = 7/3

For ν = 7/3 (Fig. 11.7, right column), e∗/e = 0.21–0.29 are observed in the narrow
region of constant FWHM (shaded gray). At the same time, we find g = 0.34–0.45.
Towards more negative VQPC, the RIQH temperature dependence again dominates
and a reliable fit is not possible. Fixing e∗/e to 1/3, an approximately constant g =
0.47 is found.

11.3.5 Breakdown of the Weak Tunneling Regime

As the QPC is pinched off further, a situation can arise in which QPC and bulk
have different filling factors. This intermediate tunneling regime has been studied
theoretically [56] and experimentally [57, 58] in detail. Figure11.8a, b shows Rdiag
as QPC 2 is biased very negatively at bulk filling factors 8/3 and 5/2. When QPC 2 is
relatively open (meaning the absence of QP tunneling at VQPC = −2.5 V), Rdiag is
approximately constant at a value slightly higher than expected for the respective bulk
filling factor. As the QPC voltage is decreased, a QP tunneling peak at zero DC bias
develops. At higher DC biases, Rdiag drops close to the flat background value where
it is approximately constant. For νbulk = 8/3, the QP tunneling peak grows, until
Rdiag ≈ 0.42 h/e2, where Rdiag develops a plateau in IDC direction. The difference
in diagonal resistance between those two values corresponds to gtun ≈ 1/6 × e2/h
(Fig. 11.8a). It should be noted that this is equal to (8/3 − 5/2) × e2/h. Thus the
situation of Fig. 11.8a might be interpreted as the case where the ν = 8/3 edge state
is partially reflected from the QPC, leaving a gapped ν = 5/2 state within. As the DC
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(a)

(b)

Fig. 11.8 Diagonal resistance across QPC2 (a νbulk = 8/3, b νbulk = 5/2) for different QPC
voltages as a function of DC bias. (Reprinted figure with permission from [1]. Copyright 2014 by
the American Physical Society.)

bias is increased, the gap is destroyed and the QPC filling approaches 8/3 again. At a
bulk filling factor of 5/2, a transition to a RIQH state is observed (Fig. 11.8b). Here,
Rdiag is quantized at exactly 2×e2/h. As theDCbias is increased, strong undershoots
in Rdiag are observed. Then Rdiag saturates again at around Rdiag ≈ 2/5 × h/e2.

11.4 Interpretation and Discussion

11.4.1 ν = 8/3

For ν = 8/3, all results (see Table11.2 for an overview) favor the proposed parameters

g = 2/3 and e∗/e = 1/3. The BS2/3 and BS
ψ
1/3 states support additional non-Abelian
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e/3 edgemodeswith g = 7/24 (BS2/3) and g = 13/24 (BSψ
1/3)which should dominate

the temperature dependence. Thus the measurements agree best with an Abelian
particle-hole conjugate Laughlin state (L1/3), which qualitatively well reproduces
our measurements (see Appendix: “Fits for proposed parameter pairs—ν = 8/3”). In
the VQPC dependent measurement, a constant g of approximately 0.72 is observed at
the onset of QP tunneling. As the tunneling strength increases, g decreases to 0.55.
This might either be caused by additional coupling due to a second edge mode, or
the breakdown of the weak tunneling assumptions.

11.4.2 ν = 5/2

Here the interpretation of the results is less clear. If VQPC and B are kept constant,
we find e∗/e = 0.18 and g = 0.32, close to values reported earlier [24, 25]. For the
case of a varying B-field, g of 0.29–0.32 and e∗/e of 0.19–0.21 are observed close
to the center of the Rxy = 2/5 × h/e2 plateau. If e∗/e is fixed to 1/4, g saturates at
around 0.37. This agrees best with the (1,1,3)- and (3,3,1)-states. As the QPC voltage
is changed, an evolution of g with a saturation at g ≈ 0.42 is observed. This would
also be best described by the parameters of the (1,1,3)- and (3,3,1)-states. The origin
of the strong modulation of the parameters might be the coupling to a localized state
in the QPC, which can substantially influence the transmission [36]. However, at the
onset of the QP tunneling peak (VQPC ≈ −2.9 V), g ≈ 0.30–0.31 is found. This
parameter lies in-between the expectation for the Moore-Read Pfaffian (g = 0.25)
and the (3,3,1) and (1,1,3)-states (g = 0.375). Overall, our results agree best with
the Abelian (3,3,1) and (1,1,3)-states, which qualitatively fits the measurements (see
Appendix: “Fits for proposed parameter pairs—ν = 5/2”). In [24], the Pf and SU2(2)
states were found to be the states with the lowest fit error, whereas [25] also found
the (3,3,1)-state to be the best fit. As argued in [29], electron-electron interaction
within the edge modifies the effective Coulomb interaction parameter g. In this case,
both experiments would also be best described by the (3,3,1) and (1,1,3)-states. For
a geometry similar to the QPC geometry used by us, the measured g is expected to
be enhanced by approximately 0.04 compared to the actual g of the FQH state [29].
Taking this into account would improve the agreement with the (3,3,1)-state in the
case where e∗/e is fixed to 1/4 (Fig. 11.4c, d).

It should be noted that the (3,3,1)-state is not compatible with all results obtained
by other authors, while the (1,1,3)-state seems to be compatible with all experimen-
tal observations. Numerical diagonalization studies however, favor the Moore-Read
Pfaffian state or its particle-hole conjugate (Pf) [59–69]. To our knowledge, only the
spin-unpolarized version of the (3,3,1)-state has been investigated numerically. The
question whether the ground state is better described by the Moore-Read Pfaffian
or the Anti-Pfaffian has recently raised interest. Both states cannot be distinguished
when particle-hole symmetry is assumed [47, 48]. The Pfaffian [70], as well as
the Anti-Pfaffian [71] have found support in studies employing different numerical
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approaches. Finite thickness effects, which might also have to be taken into account
for a correct description of the ground state, have been found to stabilize the Pfaffian
ground state [72–74] and to significantly enhance the overlap with the numerical
solution. Recent interference experiments [75–77] might indicate non-Abelian sta-
tistics. Still, this does not rule out the Abelian (3,3,1) and (1,1,3)-states, as theymight
show similar signatures in the interference pattern [44, 78]. Experiments probing the
spin polarization at ν = 5/2 [79–84] obtained contradicting results for the polar-
ization. Recent experiments suggest a spin transition of the ν = 5/2 state at very
low densities [85], similar to ν = 8/3 [86]. Nevertheless, the (3,3,1)-state exists
both in a spin-polarized and spin-unpolarized type [29, 51] with identical Coulomb
interaction parameter g. In contrast, only the spin-polarized version of the (3, 3, 1)
state is allowed for ν = 5/2 [29]. The physical origin of the spin-polarized and spin-
unpolarized versions of the (3,3,1)-state is however different. The spin-unpolarized
version can be understood as Halperin’s bilayer (3,3,1)-state [87], where spin up or
down electrons take the function of the two different layers [29, 51]. In contrast, the
spin-polarized version arises when charge 2e/3 quasiparticles condense on top of a
ν = 1/3 Laughlin state [29]. Also the (1,1,3)-state might occur with andwithout spin
polarization [44]. Shot noise experiments report the observation of a neutral mode
for ν = 5/2 [88]. Such a counterpropagating neutral mode is not expected for the
(3,3,1)-state, but for the (1,1,3)-state. However, recent experiments [89] suggest the
presence of neutral modes, even for non-particle-hole-conjugate FQH states. Thus,
the existence of a neutral mode might not directly allow to draw conclusions about
the wave function of the corresponding FQH liquid.

As pointed out earlier [25, 90], these inconsistencies might indicate that the ν =
5/2 state might form different wave functions, depending on the physical situation.

11.4.3 ν = 7/3

For ν = 7/3, the problem arises that e∗/e = 1/3 and g = 1/3 are proposed for
the L1/3 state and the non-Abelian edge modes of the BS2/3 and BSψ

1/3 states.
Here, the dominant temperature dependence is expected to be due to the Abelian
edge modes (smallest g), in contrast to the case at ν = 8/3. This makes the
discrimination of these states in this experiment impossible. Experimentally, we
observe g > 1/3 (g saturates at approximately 0.49 when the B-field is varied and
g = 0.34–0.45 when changing VQPC), which might stem from a contribution of a
second (non-Abelian) edge mode. The fact that the FQH state at ν = 8/3 is best
described by a particle-hole conjugate Laughlin state (L1/3) does not imply that the
7/3 state must be the corresponding non-conjugate partner state (L1/3). As argued in
[52], particle-hole symmetry might for example be broken by LL mixing, or other
effects.
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11.4.4 Experimental Limitations and Origin of Systematic
Errors

In an ideal system, density is homogeneous and edge states are brought in close
proximity by theQPC, untilQPs tunnel between twopoints of the counterpropagating
edge states. However, in a realistic system, density is not perfectly homogeneous.
The coexistence of different FQH states in the bulk and the constriction strongly
modifies the system’s behavior. For the system studied here, densities of constriction
and bulk are sufficiently similar to avoid the coexistence of different FQH states in
the second LL (Fig. 11.2). However, density-modulated RIQH states are observed
in close proximity to ν = 5/2, 7/3 and 8/3. If such states are formed within the
constriction, they might strongly modify the temperature scaling of the conductance.
At ν = 5/2 and 8/3, a pronounced zero-bias peak is visible, sufficiently far away
from the parameter rangeswhere a contribution of theRIQH states to the conductance
becomes visible (Figs. 11.6b and 11.7a). Thus we here expect a negligible influence
of the density modulated phases. However, for ν = 7/3, a zero-bias peak is only
visible in close proximity to the parameter ranges where the neighboring RIQH
state clearly dominates the conductance (Figs. 11.6b and 11.7a). Although tunneling
parameters have been extracted in the regionswhere the FWHMof the zero-bias peak
is constant, a contribution of the neighboring RIQH state cannot be fully excluded.

Another question is the validity of the weak tunneling assumption. In the second
LL, the FQH states contribute G = 2 e2

h + δG to the conductance. For the weak
tunneling approximation to hold, gtun � δG is required (if edge reconstruction is
present, additional complication might occur). At ν = 8/3 (gtun ≈ 0.1 × e2/h,
δG = 2/3 × e2/h) and ν = 7/3 (gtun ≈ 0.05 × e2/h, δG = 1/3 × e2/h),
this condition is well satisfied within the experimental possibilities. At ν = 5/2,
we have δG = 0.5 × e2/h. As the temperature is lowered, gtun increases from
gtun < 0.05 × e2/h to gtun ≈ 0.15 × e2/h. Over the whole range, the amplitude
of gtun is well described by a power law T 2g−2. When crossing from the weak
tunneling regime to the strong tunneling regime, a continuous change of the Coulomb
interaction parameter g is expected [91]. This is not observed at ν = 5/2. Thus we
conclude that also in this case we are in, or sufficiently close to the weak tunneling
regime.

Other effects that might cause a systematic measurement error are for example a
drift of the QPC transmission and errors in the temperature measurement. However,
both of these effects are expected to have a small influence and cannot account for the
systematic deviation between measurements and theoretically predicted parameters
(Figs. 11.4c, d and 11.5c, d).

Furthermore, the tunneling conductance gtun ≈ (Rdiag − Rxy)/R2
xy is an approx-

imation that is only valid in the weak tunneling regime when Rdiag ≈ Rxy. For
extracting the bias dependence of gtun, we have assumed that the current reflected
at the QPC is much smaller than the current transmitted. These approximations are
expected to give an error less than approximately 5% for gtun.
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11.5 Conclusion

In conclusion, we have measured weak quasiparticle tunneling across a QPC at ν =
8/3, 5/2 and 7/3. Comparison with theory allowed the extraction of tunneling para-
meters and comparison with proposed wave functions for these states. A summary
of theoretical predictions [29, 51, 52] and of our findings can be found in Tables11.1
and 11.2. Quantitatively, none of the proposed wave functions for ν = 5/2, 7/3 and
8/3 lies within the statistical error. Qualitatively, the ν = 5/2 state is well described
by an Abelian (3,3,1) or (1,1,3)-state. However, other experimental findings pose
the question of whether the ν = 5/2 state can manifest in different wave functions,
depending on the physical situation. Furthermore we show that the QP tunneling
strength has an impact on extracted tunneling parameters, especially for ν = 5/2.
For ν = 8/3, an ordinary particle-hole conjugate Laughlin state reproduces our data
best, while proposed non-Abelian edge modes are much less likely. At ν = 7/3,
extracted values for g are not in agreement with the predicted parameters for non-
Abelian edge modes. However, the observed parameters g are higher than expected
for an ordinary Laughlin state or other Abelian edge modes, which might indicate
the presence of several edge modes, in which case identical parameters for different
edge modes make a discrimination of the wave functions for ν = 7/3 impossible.

(a) (b) (c)

Fig. 11.9 FWHM of QP tunneling peaks (green crosses) as a function of the B-field. Parameters
g, extracted only from the IDC = 0 scaling of gtun are shown as blue circles
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(a) (b) (c)

Fig. 11.10 FWHM of QP tunneling peaks (green crosses) as a function of VQPC. Parameters g,
extracted only from the IDC = 0 scaling of gtun are shown as blue circles

Appendix

FWHM of Tunneling Peaks

Figures11.9 and 11.10 show the FWHM of the zero-bias peaks at ν = 8/3, 5/2 and
7/3. For ν = 7/3, only a small parameter region with constant FWHM is found. As
soon as a neighboring RIQH state contributes to the conductance, the peak FWHM
is drastically increased (Figs. 11.9b, c and 11.10c). Parameters g which are indicated
in Figs. 11.9 and 11.10 are extracted solely from the gtun|IDC=0 ∝ T 2g−2 temperature
scaling, in contrast to fits of the whole expression (11.1) used in the previous sections
(Figs. 11.6 and 11.7). Resulting values for g are similar for both methods.

Fits for Proposed Parameter Pairs—ν = 5/2

A qualitative evaluation of the agreement with proposed wave functions can be
performed by fixing the parameters g and e∗/e to parameters proposed for different
states (see Tables11.1 and 11.2) and fitting A and g∞. For ν = 5/2, g = 0.375
and e∗/e = 0.25, corresponding to the (3,3,1)-state, produce a (qualitatively) good
agreement with measurement and calculation (Figs. 11.11 and 11.12).
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Fig. 11.11 Comparison between experimental and calculated gtun for proposed parameter pairs
(ν = 5/2)

Fits for Proposed Parameter Pairs—ν = 8/3

As before, we compare the calculated gtun for theoretically proposed parameters with
our measurements. For g = 2/3 and e∗/e = 1/3, a (qualitatively) good agreement is
found (Figs. 11.13 and 11.14).
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Fig. 11.12 Comparison between experimental and calculated gtun for proposed parameter pairs
(ν = 5/2)

Additional Fits—VQPC Dependence

The tunneling conductance measured at different QPC voltages (see Fig. 11.7) and
fitted curves are shown in Figs. 11.15, 11.16, 11.17, 11.18, 11.19, 11.20 and 11.21
for ν = 8/3, 5/2 and 7/3.
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Fig. 11.13 Comparison between experimental and calculated gtun for proposed parameter pairs
(ν = 8/3)
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Fig. 11.14 Comparison between experimental and calculated gtun for proposed parameter pairs
(ν = 8/3)
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Fig. 11.15 Measurement data (black) and fitted weak tunneling conductance (red) for ν = 8/3 and
VQPC = −2.9 V. The temperature is varied between T = 12.5 mK and T = 55 mK

Fig. 11.16 Measurement data (black) and fitted weak tunneling conductance (red) for ν = 8/3 and
VQPC = −3.3 V. The temperature is varied between T = 12.5 mK and T = 55 mK
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Fig. 11.17 Measurement data (black) and fitted weak tunneling conductance (red) for ν = 5/2 and
VQPC = −3.0 V. The temperature is varied between T = 12.5 mK and T = 55 mK

Fig. 11.18 Measurement data (black) and fitted weak tunneling conductance (red) for ν = 5/2
and VQPC = −3.08 V. The temperature is varied between T = 12.5 mK and T = 55 mK
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Fig. 11.19 Measurement data (black) and fitted weak tunneling conductance (red) for ν = 5/2 and
VQPC = −3.48 V. The temperature is varied between T = 12.5 mK and T = 55 mK

Fig. 11.20 Measurement data (black) and fitted weak tunneling conductance (red) for ν = 7/3
and VQPC = −2.804 V. The temperature is varied between T = 12.5 mK and T = 55 mK
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Fig. 11.21 Measurement data (black) and fitted weak tunneling conductance (red) for ν = 7/3
and VQPC = −2.956 V. The temperature is varied between T = 12.5 mK and T = 55 mK
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Quantum Dot and Interferometer

Experiments



Chapter 12
Quantum Dots and Charge Detection
Techniques

Abstract We briefly introduce the basics of quantum dots and charge detection
techniques. Interferometry experiments in the quantum Hall regime rely on the use
of large quantum dots that are operated as analog of a Fabry-Pérot interferometer.
Charge detection techniques are a powerful tool that provides additional insight
about the internal dynamics of such a system. We discuss how the sensitivity of
charge detectors can be further improved by reducing screening and by inducing
a localized state in the quantum point contacts’ confinement potential. Exploiting
these techniques, we are able to perform fast and well-resolved charge detection of
a micron-sized quantum dot in the quantum Hall regime.

12.1 Introduction

In the preceding chapters, we have discussed physical effects that arise due to quanti-
zation effects in (correlated) electron liquids withmany charge carriers. Quantization
effects for single electrons become accessible once electrons are confined to a suffi-
ciently small area (in the case of GaAs/AlGaAs heterostructures of the order of 1µm
× 1 µm). A system where an insulated island of material (Fig. 12.1a) is capacitively
andweakly tunnel-coupled to two reservoirs is called quantum dot (QD). An electron
that tunnels onto the island has to overcome a certain Coulomb potential, which can
be large due to the small size and hence capacitance of the quantum dot. Ground
state energies of configurations with N and N + 1 electrons on the QD are split
by the charging energy, which is an effect of this Coulomb potential. Being able to
shift the energy spectrum with a capacitively coupled plunger gate (PG, Fig. 12.1a),
the occupation of the QD can be controlled one-by-one. In such systems various
interesting phenomena can be studied, as for example Kondo physics [2–5], spin
physics [6–11], interaction with nuclear spins [12–14], electron-phonon coupling
effects [15–17] and others.

Results shown in the following chapter have been partially published in the article [1].

© Springer International Publishing Switzerland 2015
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(a)

(b)

Fig. 12.1 a Schematic circuit diagram of a quantum dot (QD). The QD island is capacitively and
tunnel coupled to source (S) and drain (D) reservoirs, while coupling to the plunger gate (PG)
is only capacitive. Tunneling barriers are represented by a parallel circuit of a capacitor and a
resistor. b Schematic energy levels for a QD population of N0 − 1, N0 and N0 + 1 electrons. The
electrochemical potential is the energy difference between the corresponding ground states, i.e., the
QD’s total change in energy for the addition of one electron. Adapted from [18]

12.2 Basics of Quantum Dots

In the following, basic properties of quantum dots like their energy spectrum,
Coulomb blockade, Coulomb diamonds and charge detection techniques will be
reviewed.

12.2.1 Energy Scales

A schematic energy spectrum of a QD is shown in Fig. 12.1b. Here, energy levels are
plotted for N0 − 1, N0, N0 + 1,… electrons on the QD. Ground state energies E (0)

N0

(for N0 electrons) lie at higher energies for a larger occupancy. Excited states (E
(1)
N0
,

E (2)
N0
,…) are labeled according to their energy eigenvalues. Mainly two different

contributions determine this spectrum, the charging energy and the confinement
energy.
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Charging energy The energy required to add one electron to a QD populated with
N0 electrons is given by the total change in the electrostatic energy [18]:

Ec(N0 + 1) = Eelstat(N0 + 1) − Eelstat(N0) (12.1)

Modeling the QD as a metallic disk of radius r , Ec(N0+1) ≈ e2
8εε0r N0 is found [18].

Here, ε0 denotes the vacuum permittivity and ε the relative dielectric constant. The
charging energy then is defined as the difference �Ec = Ec(N0 + 1) − Ec(N0) =

e2
8εε0r .

Confinement energy Additionally to the charging energy, electrons need to have a
certain energy to fill the quantum mechanical energy levels. In the simplest case of
a two-dimensional system and a parabolic confinement potential, the total energy

(without electrostatic energy) of the system is given as Econf(N0) = E∗
Ry

(
a∗
B
r

)2
N 2
0

[18]. Hence, the energy required for adding an electron to the dot occupied with N0

electrons is given as ε(N0+1) ≈ 2E∗
Ry

(
a∗
B
r

)2
N0 with a single-particle level spacing

� = 2E∗
Ry

(
a∗
B
r

)2
[18]. In a realistic system, the structure of the single-particle level

spacing can bemuchmore complicated, due to non-harmonic confinement potentials,
electron-electron interaction effects, etc.

Experimentally, we only probe relative energies for different populations of the
QD. Hence the notion of the electrochemical potential makes sense. It is defined as
the energy difference between ground state energies of different population: µN0 =
E (0)

N0
− E (0)

N0−1. If an electron in source or drain reservoirs resides at an energy equal
to µN0 , it provides enough energy to populate the dot which was initially filled with
N0 −1 electrons. The addition energy is defined as the sum of charging and confine-
ment energies and corresponds to the difference of the electrochemical potentials of
N0 or N0 + 1 electrons on the QD: E (N0)

add = µN0+1 − µN0 = �Ec + � and is
approximately independent of the electron number.

12.2.2 Coulomb Blockade

Coulomb blockade and Coulomb resonances can be understood from a simplistic
picture illustrated in Fig. 12.3a, b. Here, source and drain reservoirs are labeled with
their electrochemical potentials µS and µD. Electronic states in these reservoirs are
filled from the conduction band bottom up to roughly µS and µD with an occupation
described by theFermi-Dirac distribution. TheQD(middle) isweakly tunnel-coupled
to source and drain. Vertical bars illustrate the tunneling barriers between QD and
source or drain. The tunneling conductance G tun is much smaller than e2/h such
that the charge on the island is quantized.

The occupation of the QD is determined by the position of the energy levels in the
dot. In Fig. 12.3a,µN−1 lies belowµS andµD whileµN lies above. Hence the QD is
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Fig. 12.2 Conductance of a laterally defined QD as a function of the plunger gate voltage. Sharp
conductance peaks and Coulomb blockade become visible once the QD tunneling barriers are
sufficciently closed (at VPG < −1.55 V)

occupied with N −1 electrons, given the broadening of the Fermi-Dirac distribution
in the leads is much smaller than µN − µN−1. Tunneling in the energy level µN is
not possible, as it lies above µS and µD in energy. Furthermore, electrons occupying
the QD cannot leave it, as all electronic states in the leads are occupied at energies
below µS and µD. This situation is referred to as Coulomb blockade.

By applying a voltage to the PG, energy levels of the QD can be shifted in energy
due to the mutual capacitive coupling between QD and PG. In the simplest case, a
linear relation is assumed and changing the PG voltage by �VPG shifts energy levels
on the QD (relative to source and drain electrochemical potentials) by −αPG�VPG.
Here αPG is called lever arm of the PG and describes the strength of the capacitive
coupling to the QD.

Applying a suitable voltage to the PG, one can arrive in a situation illustrated in
Fig. 12.3b. Here, µS and µD are aligned with the dot electrochemical potential µN .
The total energy is conserved when electrons tunnel elastically between source or
drain and the QD. Therefore conductance through the QD increases resonantly in
this case. An exemplary measurement of conductance versus voltage applied to the
PG is shown in Fig. 12.2. Intervals of zero conductance correspond to the Coulomb
blockade situation (Fig. 12.3a), while sharp conductance peaks correspond to elastic
transport through the QD (Fig. 12.3b).

If a finite voltage VSD is applied symmetrically between source and drain, we
can arrive in the situation depicted in the upper left of Fig. 12.3. Here, the conduc-
tance is sketched schematically as a function of VPG and VSD. The conductance
approaches zero in white diamond-shaped regions, while a finite current is observed
in the gray regions. At zero source-drain bias Coulomb blockade (a) or Coulomb res-
onances (b) are observed. As VSD is increased, the voltagewindow inwhichCoulomb
blockade is observed shrinks linearly. At the boundaries of the Coulomb blockaded
regions, either µS or µD are aligned with the electrochemical potential in the QD
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(a) (b)

(c.1) (c.2) (c.3)

Fig. 12.3 Schematic of Coulomb blockade diamondswhen VPG and VSD are varied simultaneously.
Gray or white regions indicate finite or zero current. At zero source-drain voltage VSD, Coulomb
blockade (a) or Coulomb resonances (b) are found. At finite source-drain biases, current flows
whenever the electrochemical potential of the QD lies in the bias window (c.2). The diamond
shaped boundary of zero current is determined by alignment of the electrochemical potential of the
QD with source (c.1) or drain (c.3) electrochemical potentials

(Fig. 12.3c.1, c.3). The slope of this boundary in the VSD–VPG plane is determined by
the lever arm αPG (the slope is negative for alignment with µS and positive for align-
ment with µD). Whenever the electrochemical potential of the QD lies within the
bias window (Fig. 12.3c.2), transport from source to drain or vice-versa is possible
and a finite conductance is observed.

12.2.3 Principle of Charge Detection

In the view of full counting statistics where all measurable physical quantities can
be deduced from probability distributions [19], a time-resolved measurement of the
QD occupation is a powerful tool that can give additional insight into correlations
and internal structures. Transport processes in QDs where a resonant current can
be measured (Fig. 12.2) are extremely fast and cannot be individually resolved in
an experiment. Hence a different approach has to be chosen, in order to track the
QD occupation as a function of time. This is accomplished by charge detection
techniques. Here, the conductance of a QPC in close proximity to theQD ismeasured
[20–23]. Due to the capacitive coupling of this charge detector (CD) to the QD,
adding an electron to the QD will shift the CD conductance curve to more positive
gate voltages. This situation is depicted schematically in Fig. 12.4. Here, the CD
conductance is plotted versus the dot’s PG voltage. Lowering VPG decreases the QD
population, resulting in an abrupt shift of the CD conductance curve to the left and
hence an increase of GCD. In addition to changing the QD population, lowering VPG
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Fig. 12.4 Charge detector conductance as a function of the PG voltage and the occupation N − 1,
N , N + 1,…of the QD. Whenever the QD occupation changes by one, the CD conductance curve
is shifted to a more positive VPG voltage, due to the capacitive coupling between CD and QD. This
leads to a detectable change �GCD in the charge detector conductance

also closes the CDdue to the capacitive cross-talk. Overall, a QPC conductance curve
with sharp jumps (Fig. 12.4) is observed. Here, the tunneling coupling between QD
and source and drain can be arbitrarily small, as the signal strength �GCD depends
only on the CD sensitivity. Measuring �GCD as a function of time gives access to a
time-resolved probe of the occupation of the QD.

12.3 Improving the Charge Detection Sensitivity

Charge detection experiments which rely on an extremely fast time-resolution, like
the read-out of charge qubits [24, 25], require a high charge detector sensitivity. The
charge detector response�GCD to a variation�µQD of the electrochemical potential
of the QD is given in linear approximation as:

�GCD ∝ Ctot

CQD−CD

dGC D

dµCD
�µQD (12.2)

Here, dGC D/dµCD is the slope of the charge detector conductance andCtot/CQD−CD
describes the strength of capacitive coupling between QD and CD, where Ctot is the
total capacitance of the QD and CQD−CD is the cross capacitance between CD and
QD. Hence the CD slope and the strength of the capacitive coupling are the main
two levers for improving the CD sensitivity. If a QPC is employed as CD, the slope
dGC D/dµCD depends on the QPC confinement potential and is difficult to vary (see
Chap.9). Several experiments hence have used single-electron transistors [26–28] or
QDs [29] as charge detectors. Here the slope is only limited by thermal broadening.

http://dx.doi.org/10.1007/978-3-319-21051-3_9
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The simplest way to enhance the capacitive coupling between CD and QD is
by placing them in close proximity. However, in transport experiments employing
large QDs in the quantum Hall regime this is not possible. The diameter of the
QDs is typically greater than 1 µm, hence the lower limit of the average QD-CD
distance is already greater than 500nm. The high-mobility 2DEGs employed in this
chapter (µ = 10 × 106 cm2/Vs, nS = 1.3 × 1011 cm−2) are defined 320nm below
the surface. Thus gate depletion lengths are of comparable magnitude and further
decrease the capacitive coupling strength. It has been shown that the capacitive
coupling between CD and QD can be increased by reducing lateral screening due to
metallic top-gates [1]. In practice this is accomplished by leaving a slit on the side-
barrier of the QD, which points in the direction of the CD. Furthermore, coupling
can be enhanced by utilizing floating top-gates that connect CD and QD [1], however
at the price of decreased stability of the investigated QD.

Here, we present charge detectionmeasurements on a QDwith a greatly enhanced
CD sensitivity, achieved by forming a localized state in the CD in close proximity
to the QD. An atomic force micrograph of the device is shown in Fig. 12.5a. The

(a)

(c)

(b)

(d)

Fig. 12.5 a Atomic force micrograph of a quantum dot with two neighboring charge detectors.
Bright gates are used to form CD and QD while dark gray gates are kept grounded. The QD (red)
is defined by four gates. In the first configuration, CD1 is defined as a QPC channel (blue area). b
Conductance of CD1 as a function of the plunger gate voltage. Steps related to Coulomb charging
of the QD modulate the conductance curve. VCD is tuned to the steepest point of the conductance
curve. At the ideal operating point, �G ≈ 0.009 × 2e2/h is obtained. When CD2 is tuned such
that a localized state forms (c, blue area), a sharp conductance resonance with shifts related to QD
Coulomb charging is observed in the CD2 conductance (d). Here, the sensitivity is significantly
enhanced to approximately 0.035 × 2e2/h
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approximately 1 µm × 1 µm large QD is defined by the four inner gates (bright
gray). Dark gray gates are not used and are kept grounded. Bright gray gates at the
top or bottom are either used to define a CD, or as PG of the QD. The top-gate layout
is optimized such that the QD barrier is opened on the side pointing towards the CD
(red arrow).

Figure12.5a illustrates the situation in which a QPC is defined in the upper CD1.
The CD sensitivity has been optimized by applying a more negative voltage to the
CD gate than to the QD gates, which pushes the CD channel (blue area) closer to
the QD (red area). Due to the local minimum in the confinement potential which
is defined by the three neighboring gates, the conductance of CD1 versus CD gate
voltage (Fig. 12.6) drops more sharply close to pinch-off than for an ordinary QPC
with a smooth saddle-point potential.

In this situation, the measured CD conductance versus PG voltage is shown in
Fig. 12.5b. The CD gate voltage has been chosen in order to set the CD at its optimal
working point with the steepest slope in GCD. Due to the resonant conductance close
to pinch-off, the steepest slope of the CD was found at around 0.2× 2e2/h and not
at 0.5 × 2e2/h as usually. For this well-tuned situation, �GCD ≈ 0.009 × 2e2/h
is obtained. This is comparable to sensitivities achieved in other experiments using
QPCs as charge detector [29–32]. In a different configuration (Fig. 12.5c), where the
confinement potential of CD2 has been tuned such that a localized state forms in
the CD in close proximity to the QD, a (tunneling-broadened) Coulomb resonance
is found in the conductance of the CD (Fig. 12.5d) when the PG voltage is varied.
Sharp kinks related to Coulomb charging of the QD modulate the CD conductance.
Here, �GCD ≈ 0.035 × 2e2/h, nearly six times larger than for an optimized QPC
charge detector, is found.

In order to tune the CD to such a resonance, VL and VR (see Fig. 12.5c) are var-
ied, while VCD is kept fixed. The CD transconductance obtained in this situation

Fig. 12.6 Conductance of CD 1 versus CD gate voltage. Here, the CD is not deliberately tuned in
a situation with a strong localization. However, close to pinch-off, the CD conductance is steeper
than an ordinary QPC due to the confinement potential which creates a local minimum
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(a)

(b)

(d)

(c)

Fig. 12.7 a Transconductance of the charge detector versus left and right gate voltages VL and
VR. Charging events of the neighboring QD appear as faint white lines intersecting the sharp CD
resonances (green arrows). b Charge detector conductance versus voltage applied to the CD gate.
For single-electron counting, VCD is set to the steepest point of the conductance curve (red arrow).
c Charge detector conductance versus plunger gate voltage. Distinct steps at Coulomb charging
events are visible. The charge detector is kept at the ideal operation point by adjustment of the CD
voltage VCD, which explains the small kinks in the CD conductance, which arise due to the finite
resolution of the voltage source. An exemplary time-resolved measurement of the CD conductance
is shown in d. Single-electron charging events can clearly be resolved

is plotted in Fig. 12.7a. For the charge detection, VL and VR are set such that the
transconductance is maximal (red arrow Fig. 12.7a). Apart from the Coulomb reso-
nances in the CD, charging events in the QD are visible as faint white lines (green
arrows). Coulomb resonances in CD and QD have non-identical slopes in the VL–VR
plane, which indicates different coupling strengths of these two gates to the QD and
the CD localization.

Figure12.7b shows the CD conductance as a function of the CD gate. To allow
(time-resolved) charge detection across several Coulomb peaks, the CD voltage is
set to the steepest point of the CD resonance (red arrow, Fig. 12.7b). Any change of
the PG voltage is compensated by a smaller change of the CD voltage, in order to
stay in the regime of the optimal sensitivity. A measurement of the CD conductance
versus the PG voltage is shown in Fig. 12.7c. Here, large jumps in GCD correspond to
charging events from or to the QD,while small jumps arise due to the finite resolution
of the voltage source when adjusting the CD voltage. The bulk filling factor νbulk is
tuned to twoby application of an externalmagnetic field B = 2.81T.A time-resolved
measurement of the CD conductance at a jump of GCD (red arrow in Fig. 12.7c) is
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(a) (b)

Fig. 12.8 a Current through the QD shown in Fig. 12.5a as a function of VPG and VSD. A charging
energy of approximately 350µeV is found. b Single-electron tunneling rate as a function of plunger
gate voltage and source-drain bias in a more pinched-off situation

shown in Fig. 12.7d. Two distinct levels, separated by �GCD ≈ 0.006× 2e2/h can
be resolved, which allows to extract tunneling-in and -out rates. In this measurement,
the CD bandwidth, which is mainly given by the I–V converter feedback resistance
(here RF = 100 M�), is of the order of 1 kHz.

Making use of the enhanced CD sensitivity, single-electron tunneling rates of
several hundred Hertz can be clearly resolved, as demonstrated in the measurement
of a Coulomb diamond in the counting signal shown in Fig. 12.8b. Here, the loga-
rithmic single-electron tunneling rate is plotted versus PG voltage and source-drain
voltage. For comparison, Coulomb diamonds in a less pinched-off regime are shown
in Fig. 12.8a. Here, the direct current through the QD is plotted versus PG voltage
and source-drain bias.

12.4 Conclusion

We have investigated methods for enhancing the charge detection sensitivity, for
experiments that employ large quantum dots and high-mobility heterostructures in
the quantum Hall regime. Introducing a gap in the barrier between QD and CD
allowed us to enhance the capacitive coupling due to reduced screening and lead to
a steeper QPC conductance slope of the CD.

The CD sensitivity could be even further enhanced by utilizing a localized state
in the CD, which was defined in the gap of the QD barrier gates. Compared to
when an ordinary QPC is used as CD, the sensitivity could be enhanced by nearly a
factor of six. Finally, we demonstrated the applicability of this method by performing
time-resolved charge detection on a large QD in the quantum Hall regime.
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Chapter 13
Quantum Dots in the Quantum Hall Regime

Abstract We investigate magneto-transport through a 1.6 µm wide quantum dot
(QD) with adjacent charge detector, for different integer filling factors in the QD
and constrictions. When this system is operated at a high transmission, it acts as
a Fabry-Pérot interferometer, where transport is governed by a Coulomb blockade
mechanism. For lower transmissions where the barriers are in the tunneling regime,
we can directly measure the charge stability diagram of two capacitively and tunnel
coupledLandau levels. The tunneling regimehas been investigated in direct transport,
aswell as in single electron counting. The edge stateswithin the dot are non-cyclically
depopulated, which can be explained by a simple capacitivemodel and allows to draw
conclusions about the edge state geometry within the quantum dot.

13.1 Introduction

Two-dimensional electron systems at low temperatures and in strong magnetic fields
show a rich spectrum of highly degenerate, incompressible ground states [2, 3].
Fractional quantum Hall states, occurring at a fractional filling factor ν with an odd
denominator, are well described by the Laughlin wavefunction [4]. There exists a
prominent exception from this hierarchy: the ν = 5

2 state [5], which is believed
to obey non-Abelian statistics [6, 7]. This remarkable property could make it an
interesting candidate for the realization of a topological qubit [8]. Theoretical ideas
for probing the statistics of the ν = 5

2 state are based on quantum dots, operated as
Fabry-Pérot interferometers as a basic building block [9–13].

Quantum dots exposed to a magnetic field also offer other interesting fields of
study, as the investigation of the spin configuration [14] or few-electron addition
spectra [15]. In the presence of a strong magnetic field, Coulomb blockade (CB)
oscillations can no longer be described within a single-particle picture. Alternat-
ing compressible and incompressible regions are formed inside the dot, which can
strongly modify the CB oscillations [16]. Previous experiments have allowed the
extraction of mutual capacitances of these regions for different filling factors [17]. In

The following chapter is based on the article [1].
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those experiments, alternating high and low CB peak currents have been observed,
which was attributed to a double dot-like behavior of two edge states inside the dot.
However, for the interpretation of recent experiments using quantum dots as Fabry-
Pérot interferometers [19–21], it is important to understand the detailed structure of
edge states inside the QD and the parameter range, where this description is valid.

Here we present investigations of a large quantum dot with a quantum point con-
tact (QPC) serving as a charge detector. When the QD is operated as a Fabry-Pérot
interferometer, we find resonances with a slope in voltage—magnetic field space and
a periodicity characteristic for a Coulomb dominated effect, as already observed in
previous experiments [19–21]. When the system is operated at a lower transmission
where the barriers are in the tunneling regime, we observe a similar effect as in [17].
However, the amplitude modulation can be observed over a large parameter range
for different filling factors, allowing the direct measurement of the charge stability
diagram of capacitively and tunnel coupled edge states. As a consequence, we can
estimate the width of the incompressible region separating the edge channels inside
the QD. In contrast to previous experiments, this is accomplished by using capaci-
tances, directly extracted from the measured charge stability diagram. Furthermore
we are able to investigate the CB amplitude modulation by using (time-resolved)
charge detection techniques, where it shows up as an increased/decreased tunneling
rate. To our knowledge, single electron counting has never been performed with
a QD of similar size. Direct transport measurements do not always reflect the full
complexity of the edge state substructure inside a QD. In future experiments, single
electron counting might provide additional important insight to charge localization
and transport in micron-sized Fabry-Pérot interferometers. Most proposed Fabry-
Pérot interferometry experiments for probing properties of fractional quantum Hall
states assume edge states to be one-dimensional electron or composite Fermion chan-
nels with negligible interaction between compressible regions. We show, that when
the edge states are confined to the QD, a complex behavior with compressible and
incompressible regions is observed. The observed tunnel-coupling between the dif-
ferent compressible regions, i.e. the presence of tunnel-coupled alternative paths,
might influence the outcomes of the proposed interferometry experiments.

13.2 Experimental Details

The quantum dot has been fabricated on a Hall-bar, defined by wet-etching of a
single-side doped GaAs/AlxGa1−xAs heterostructure with a mobility of 8.1 × 106

cm2/Vs and an electron density of 1.15 × 1011 cm−2. These structures employ a
reduced proportion of Al in the spacer layer between the doping plane and the 2DEG
(x = 0.24 compared to x = 0.30 or x = 0.33 which are most widely used), which
was shown to favor the formation of the ν = 5

2 state [18]. The electron gas resides
340nm below the surface. Optical lithography, combined with chemical etching and
metal evaporation are used to define the mesa, Ohmic contacts and topgate leads.
The quantum dot and charge detector gates are defined by electron-beam lithography
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with subsequent metal evaporation. Applying a negative voltage of VG ≈ −0.5 V to
the topgates depletes the electron gas underneath. Compared to double-side doped
quantum wells with δ-doped screening layers, this structure allows for a much better
gateability [22]: the conductance of a single QPC is non-hysteretic and stable in
time. Measurements have been conducted in a dry dilution refrigerator at a base
temperature of TMC ≈ 10 mK and in magnetic fields between B = 0 T and B =
5 T, using standard four-terminal lock-in measurement techniques. A constant AC
voltagemodulation of an amplitude<20µVhas been applied via a current-to-voltage
converter.

13.3 Results and Discussion

13.3.1 Zero Magnetic Field Transport

Figure13.1a shows the topgate layout of the quantum dot that has been used for the
measurements. The two 800nm wide QPCs with a channel length of 600nm serve
as tunnel barriers of the 1.6 µmwide quantum dot. The employed QPCs have shown
to result in an almost harmonic confinement potential, apart from the regime very
close to pinch-off [22]. The special geometry ensures a smooth QPC potential which
is believed to favor the self-consistent formation of separated edge states.

In addition to the plunger gate (PG) that allows for the tuning of the electrochemi-
cal potential of the QD, a QPC that serves as a charge detector (CD) [23, 24] has been
implemented. When QPC1 and QPC2 are in the tunneling regime, finite-bias mea-
surements give rise to characteristic Coulomb diamonds (Fig. 13.1b), fromwhich we
extract charging energies of about 100 µeV. The Coulomb diamond measurement
also demonstrates the good stability and control of the QD. Sharp kinks in the CD
current ICD (Fig. 13.1d), aligned with peaks in the dot conductance GQD indicate
addition/depletion of a single electron from the quantum dot. By pinching off the
tunnel barriers even more, time-resolved single electron counting [24–26] is possible
for rates below approx. 50 Hz.

13.3.2 Non-cyclic Depopulation of Edge Channels

For a bulk filling factor of νbulk = 2, a filling factor in the quantum dot of νQD ≈ 2
and νQPC ≈ 0, i.e. when two spin-split edge states that are formed in the bulk, as well
as in the dot are tunnel-coupled across the QPCs (see schematic inset Fig. 13.2a), CB
oscillations are distinctly different from zero magnetic field measurements: the peak
height of adjacent CB peaks alternates between two different values (Fig. 13.2a). Af-
ter five peaks of high amplitude (marked by diamonds) and 6 peaks of low amplitude
(squares), two peaks of similar height (filled circles) appear. The alternating peak
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(a) (b)

(c)

(d)

Fig. 13.1 a Topgate layout of the quantum dot. The two 800nmwideQPCs (QPC1 andQPC2) were
designed to provide a smooth saddle-point potential. A third, 600 nm wide QPC serves as a charge
detector (CD). The sample stability is sufficient for measuring regular and stable Coulomb blockade
diamonds (b). Despite of the dot’s large size, single electron charging events can be resolved in the
charge detector (d) small as well as in the direct current (c)

height can also be seen in the single electron counting regime (Fig. 13.2b). Here, the
rate of tunnelling events between dot, source and drain (black line, extracted from a
time-resolved measurement of the charge detector current) is plotted as a function of
the plunger gate voltage VPG. The contrast between peaks of high and low amplitude
is lower than in the direct transport measurements. However, taking into account
the amplitude dependence on the plunger gate voltage (decreased Coulomb peak
height as VPG is decreased), we still have a peak height difference of roughly 15%,
bigger than our detection error. Tunneling-in (Γin) and tunneling-out (Γout) rates
have been extracted from time-resolved measurements of the charge detector con-
ductance. Apart from the different event rate at the Coulomb peakmaxima, no further
evidence of additional levels contributing to transport or more complex processes,
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(a)

(b)

Fig. 13.2 a Coulomb blockade peaks for a bulk filling factor of two. When depleting the dot
with the plunger gate (PG), Coulomb peaks with a high/low peak current (diamonds/squares) are
observed, interrupted by two peaks of similar magnitude (filled circles). The alternating pattern also
shows up in the number of single electron charging events in a more pinched-off regime (b). Here,
the rate of events is shown in black, with the corresponding charge detector current IC D (shifted
and scaled) in green. Tunneling-in (Γin) and tunneling-out (Γout) rates for different Coulomb peaks
are shown below

like electron bunching [27], could be found. As argued later, thismeans that tunneling
processes within the dot are much faster than processes between the quantum dot and
the leads. Measuring the CB oscillations as a function of PG voltage and magnetic
field, a complex pattern of peak maxima is found (Fig. 13.3a). By extracting the peak
amplitude minima (empty circles) and maxima (filled circles) numerically, it can be
seen that they are distributed according to a tilted chessboard pattern, as indicated by
the filled and empty circles in Fig. 13.3a. Along a Coulomb peak (black or blue line
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(a)

(b)

Fig. 13.3 a Coulomb blockade peaks, measured as a function of magnetic field and voltage applied
to the plunger gate. Minima and maxima of the Coulomb peak current are extracted numerically
and indicated by filled/empty circles. b Amplitude of two neighboring Coulomb peaks (position
indicated in black/blue in (a) as a function of the magnetic field

in Fig. 13.3a, b), the peak current is modulated as a function of the magnetic field
(Fig. 13.3b). Neighboring Coulomb peaks show opposite amplitude dependencies.
Dominant shifts and drifts of the CB peaks in the measurement of Fig. 13.3a, make
it impossible to investigate the absolute position of the peaks. However, modula-
tions in the voltage spacing �VPG of two adjacent peaks can clearly be observed
(Fig. 13.4c). Here, we plot �VPG of two successive CB peaks, offset in x-direction
for better visibility. Similar measurements can be conducted for a bulk filling factor
νbulk ≈ 4. In this case, bulk transport measurements suggest two spin-degenerate
edge states separated by an incompressible region. Figure13.4d shows the voltage
distance between adjacent CB peaks for this case.

The described behavior can be explained by a capacitive model [17]: at a filling
factor of νQD = 2 in the quantum dot, the edge states corresponding to the spin-
split lowest Landau level (LL) form compressible regions inside the quantum dot.
We denote the lower/upper spin branch of the lowest Landau level by LL1 and LL2.
The width of these regions is dictated by self-consistency of the edge potential and
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the electrostatic potential contribution of the electron density [28]. In-between the
compressible rings (shown schematically in Fig. 13.4a as thick lines), an incompress-
ible region with a magnetic field dependent width is formed (hatched region). In this
situation, electrons in both LL1 and LL2 populate the whole disk-shaped area in the
quantum dot. However, only the compressible regions contribute to electron trans-
port. Both spin-split levels inside the QD are tunnel coupled to source and drain and
capacitively coupled to the plunger gate, as well as to the leads. In addition there is
mutual capacitive coupling between the two spin-split levels. Although they overlap
spatially, the electronic states are only tunnel-coupled via the compressible regions of
both discs. This configuration is an analogy to a double quantum dot system, which
in this case is formed by energetically separated, but spatially overlapping electronic
states. Here, two main effects determine the configuration of the quantum dot: first,
increasing the magnetic field increases the degeneracy of the Landau levels. For a
constant number of electrons in the dot, this corresponds to a redistribution of elec-
trons between LL1 and LL2. In addition to that, an increasedmagnetic field also leads
to an increased spin splitting, translating to a larger separation and therefore reduced
tunnel coupling in between the compressible regions. However, for themagnetic field
ranges studied here, this tunnel coupling variation can be neglected. Second, the total
population of the QD can be tuned via the plunger gate, which couples to both LL1
and LL2. Due to the spatial overlap and common center of mass of LL1 and LL2, we
expect that the capacitive coupling of both regions to the plunger gate is similarly
strong. The conversion factors between energy and gate voltage, the lever arms α1
and α2 for discs 1 and 2 thus are expected to be very similar, with a slightly bigger
α1, considering the larger contribution to the capacitive coupling at the edge closer
to the plunger gate. In this configuration, each spin-split level, LL1 and LL2, can be
seen as a separate QD with single-particle energies 1

2�ωc ± 1
2gμB B and charging

energies of e2
C1

and e2
C2

, where C1 and C2 are the self-capacitances of discs 1 and 2.
With the mutual capacitance C1−2, the total energy of the double quantum dot with
N1 electrons in LL 1 and N2 electrons in LL 2 can be expressed as:

E(N1, N2) = 1

2
�ωc(N1 + N2) − 1

2
gμB B N1 + 1

2
gμB B N2

− eα1VPGN1 − eα2VPGN2

+ e2

2C1
N 2
1 + e2

2C2
N 2
2 + e2

C1−2
N1N2

whereωc = eB
m∗ is the cyclotron frequency. The charge configuration of such a double

quantum dot system can be described by a charge stability diagram with hexagonal
regions of constant charge configuration (N1, N2) [29, 30]. From the total energy,
we may find conditions for the magnetic field and plunger gate voltage values along
the boundary lines of this diagram (constant terms have been omitted):
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Transition B − VPG dependence
(N1, N2) → (N1 + 1, N2 − 1) B ∝ e

gμB
(α2 − α1)︸ ︷︷ ︸

≈0

VPG

(N1, N2) → (N1 + 1, N2) B ∝ 2e
�e
m∗ −gμB

α1︸︷︷︸
>0

VPG

(N1, N2) → (N1, N2 + 1) B ∝ 2e
�e
m∗ +gμB

α2︸︷︷︸
>0

VPG

In Fig. 13.4b, such a charge stability diagram is shown schematically for given
electron numbers in LL1 and LL2, (N1, N2), as a function of the magnetic field B
and the plunger gate voltage VPG. Due to the comparable size of the capacitances
C1, C2 and C1−2, the hexagons have a nearly rectangular shape (from the measured
charge stability diagrams explained later, it can be extracted that C1−2 ≈ 0.87×C1).
Coulomb peaks occur, whenever charge configurations of Ni and Ni + 1 electrons
on LL1 (i=1) or LL2 (i=2) are energetically degenerate. A high CB peak current
is observed if the electrochemical potential of LL1 is aligned with the Fermi en-
ergy in source and drain, a low peak current corresponds to the alignment of the
electrochemical potential of LL2 with the Fermi energy. The reason for this peak
height modulation is the different lateral tunneling distance. The dashed (red) line
in Fig. 13.4b indicates a VPG trace, in which the amplitude difference between ad-
jacent peaks is maximal (alternating transport via LL1 or LL2). Along this line, the
charge degeneracy lines are crossed at a maximum distance from the triple points. In
contrast, the dotted (green) line corresponds to a case, where charge configurations
that contribute to high and low amplitude are energetically close. From the slope of
these lines, we can conclude α1 < α2, which might indicate a nonsymmetric charge
distribution in the QD. Traversing the boundaries of the charge stability diagram
near a triple point leads to thermal averaging of these two configurations, resulting
in peaks of approximately equal height (as marked by the filled circles in Fig. 13.2a).
Due to the slightly tilted hexagons, the high-low pattern is found again by further
varying VPG. In addition, slightly different charging energies of the two LLs lead to
a distorted hexagon pattern.

A change of magnetic field has two effects: for a situation with a constant total
number of charges, the addition of flux quanta to the interior of the QD increases the
degeneracy of LL1 and LL2 and their energy splitting, thus redistributing electrons
between LL1 and LL2. A change of the magnetic field also influences the total
population of the dot, as it shifts QD energy levels relative to the Fermi energy
in the leads. The red dashed line in Fig. 13.4c corresponds to the position of CB
peakswithmaximallymodulated amplitudes. In agreementwith themodel illustrated
in Fig. 13.4b, these lines correspond to approximately equal separation of adjacent
peaks. For the second case, where the amplitude difference is thermally averaged
(dotted green line in Fig. 13.4b), we expect and observe in Fig. 13.4c (along the
green dotted line) alternating high and low �VPG.
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(a) (b)

(c)

(d)

(e)
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�Fig. 13.4 a Capacitive model for two coupled edge channels. The discoidal energy levels LL1 and
LL2 are separated in energy, but overlap spatially. Tunneling of charges is possible in between the
compressible regions where the Landau levels cross the Fermi energy. b Exemplary charge stability
diagram for a double quantum dot. Along the magnetic field axis, electrons mainly are redistributed
in between LL1 and LL2 aswell as slightly changing the total population by varying the total energy.
A variation of the plunger gate voltage VPG mainly influences the total electron population of the
dot. The dashed red line indicates a situation in which the edge channels are cyclically depopulated,
giving rise to a maximal height difference between neighboring peaks, as transport takes place
alternatingly via LL1 or LL2. Along the dotted green line, neighboring Coulomb peaks lie close
to the triple points and thus are thermally averaged and equally high. The plunger gate voltage
difference between successive Coulomb peaks is shown in (c) for νQD ≈ 2 and (d) for νQD ≈ 4.
The lines have been shifted closer together for better visibility. The dotted green line marks the
position of Coulomb peaks of equal height, along the dashed red line, the peak height difference of
neighboring peaks is maximal. e Visibility of two Coulomb peak pairs as a function of the charge

detector bias (GCD≈ 0.25 e2
h ). Increasing the bias lowers the peak height difference visibility, while

increasing the inelastic current through the quantum dot

To distinguish if the amplitude modulation is caused by only different lateral
tunneling distances, or an activated tunneling process, we can look at Fig. 13.4e:
here we measure the relative visibility (GLL1 − GLL2)/(GLL1/2 + GLL2/2) of two
thermally broadened pairs of Coulomb peaks, as a function of the bias that has
been applied to the charge detector QPC at its maximum sensitivity (in our case
G ≈ 0.25 e2

h due to a localization in the QPC). The amplitude difference is observed
to vanish when the bias is increased. The CD back-action is expected to increase the
broadening of the Fermi-Dirac distribution of the leads. We are in the multilevel-
transport regime (hΓ � �E � kB T , however not �E � kB T ).1

The tunneling rate to both regions increases, as additional levels lie within the
broadening of the Fermi-Dirac distribution. The broadening also leads to an increased
occupation of the excited states of LL1 compared to the ground state of LL2 and
thus an increased activated tunneling rate to LL2, which could explain the why
the amplitude difference vanishes. From the 40% maximum amplitude modulation
between neighboring peaks, we can extract an energy-level separation of �E ≈
3 µeV, using exp (−�E/kBT ) ≈ 0.6 and assuming a typical electron temperature
of 60 mK. This is the order of magnitude expected for a dot of the given size.

One may ask, if there is any direct evidence that the second compressible region
LL2 is involved in transport. In the situation where the electrochemical potential
of LL2 is aligned with the potential of the leads (with a tunneling rate between
LL1 and LL2 which is much slower than the tunneling rate between the leads and
LL1), there are two sequential processes involved in an electron transfer from the
leads to the QD: first, the fast activated tunneling of an electron to LL1 and back
to the leads, second, slow tunneling from LL1 to LL2. Due to the very similar
capacitive coupling of LL1 and LL2 to the charge detector, we are not able to resolve

1In this regime, the Coulomb peak conductance is expected to have a small temperature dependence
[31, 32], until either kB T � �E or kB T ≈ e2/C . (Note however, this does not hold whenever
hΓ ≈ �E , where the amplitudes may have irregular and even nonmonotonic dependence on
temperature [33].).
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charge redistributions between those regions. FromLL2, the electron can only escape
with activated tunneling through LL1. While the electron has not left LL2, LL1 is
blocked for further electron tunneling, due to the strong capacitive coupling C1−2.
The two tunneling processes would lead to electron bunching in the charge detector
signal. However, such bunching is not observed in the experiment, suggesting that
the interdot tunneling rate is very high (compared to the tunneling rate between QD
and the leads) in our case.

Using the extracted interdot capacitance C1−2 ≈ 0.87 C1, we can make a rough
statement about the spatial extent of the QD wave function. Modeling the interdot-
capacitance as a simple plate-capacitor with a capacitance proportional to the plate
area, we expect the area of LL2 to be roughly 87% of the area of LL1. The area
of LL1 can be estimated from the lithographic size and the gate depletion lengths
of the quantum dot, yielding A ≈ 0.64 (µm)2. For rectangular QDs, this results in
a difference of the side lengths of 54 nm. When the finite width of the edge states
is neglected, this corresponds to a width of 27nm of the incompressible region.
Numerical calculations of bulk samples have predicted a width of approximately
20nm for the incompressible region corresponding to a local filling factor of two
[34]. The enhanced value for our case could be a result of the simplicity of the model
usedwhich just allows for an order ofmagnitude estimate, or a smoother confinement
potential and increased electron-electron interaction due to confinement. Similarly,
a width of approximately 50nm can be extracted from C1−2 ≈ 0.77 C1 in the case
of νQD ≈ 4. The increased width in this case is expected, as LL1 and LL2 are split
by the larger cyclotron energy.

13.3.3 Transport in the Fabry-Pérot Regime

The Hall voltage drop across the QD (Vdiag, see inset Fig. 13.5a) gives access to the
conductance through both constrictions [19]. When both QPCs are tuned to the same
transmission (G ≈ 10 e2

h at B = 0) by applying a negative topgate voltage and the
magnetic field is varied, we find conductances through the constrictions quantized
in multiples of e2

h (Fig. 13.5a). In this configuration, edge states are formed in the
bulk, in the QD and in the QPCs. In the QPCs, the filling factor is lower than in bulk
and QD: νQPC < νQD, νbulk (for our large dot νQD ≈ νbulk). We note that νQPC edge
states pass the QD and contribute to the diagonal conductance, while (νQD − νQPC)

edge states are confined inside the QD. On the riser of the conductance-plateaus
(i.e. the low magnetic field side), periodic conductance oscillations are observed
(Fig. 13.5b for νQPC ≈ 2, Fig. 13.5c for νQPC ≈ 1). The peaks of these oscilla-
tions are shifted to lower magnetic fields as the plunger gate voltage is decreased
(Fig. 13.5b, c). The strength of this shift depends on the filling factor inside the
QPCs (�B ≈ 1.0 mT for νQPC ≈ 2, �B ≈ 1.9 mT for νQPC ≈ 1, a smooth
background has been subtracted in Fig. 13.5b, c). However, the plunger gate spacing
�VPG is similar for both cases (�VPG ≈ 7.2 mV for νQPC ≈ 2, �VPG ≈ 7.9 mV for
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(a)

(b) (c)

(d) (e)

Fig. 13.5 a From the Hall voltage drop Vdiag diagonally across the QD (inset), the effective con-
ductance through the QD can be extracted. Here, we show Gdiag for a fixed voltage applied to the

topgates, as a function of magnetic field. Gdiag is quantized in multiples of e2
h . Shaded regions indi-

cate the filling factor νbulk of the bulk at the corresponding magnetic field values. On the riser of the
conductance plateaus, magnetoresistance oscillations are observed. Their dependence on magnetic
field and plunger gate voltages is shown in (b) for νQPC ≈ 2, νbulk ≈ 4 and in (c) for νQPC ≈ 1,
νbulk ≈ 2. Increasing the bias and the power applied to the charge detector QPC respectively, greatly
reduces the peak height of the observed magnetoresistance oscillations (d, e)

νQPC ≈ 1). This scaling with the QPC filling factor, as well as the direction of the
shift are both contrary to what is expected for an Aharonov-Bohm interferometer
[35]. Instead, the results are consistent with previous experiments and show that
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transport is governed by a Coulomb blockade mechanism [19–21]. In this picture,
the slope of themagnetoconductance oscillations is caused by the capacitive coupling
of confined and transmitted edge states in the QD instead of a direct effect of the
plunger gate on the interferometer area as in the Aharonov-Bohm case. Increasing
the bias applied to the charge detector QPC (G ≈ 0.2 e2

h , Fig. 13.5d) decreases the
amplitude of the oscillations, while the background of the conductance approaches
its plateau value.

13.4 Conclusion

In summary, we have investigated transport through a large quantum dot, fabricated
on a high-mobility wafer. Single-electron counting techniques, as well as direct cur-
rent transport have been used to better understand the inner structure of the quantum
dot for different filling factors. The periodic modulation of the conductance peak
amplitude and spacing can be explained by a capacitive model, involving compress-
ible and incompressible regions inside the dot. The high tunability of the device
allowed the investigation of transport in the tunneling regime, as well as in a regime
with edge states, perfectly transmitted through the dot (see Sect. 13.3.3). In this case,
conductance oscillations, governed by a Coulomb blockade mechanism have been
observed.
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Chapter 14
Preliminary Results of Interference
Experiments in the Second Landau Level

Abstract Possible ways to implement a Fabry-Pérot interferometer for the inves-
tigation of the properties of the ν = 5/2 state are discussed. Defining structures
on top of high mobility heterostructures is an experimental challenge and requires
detailed study. The geometry of an interferometer has to be carefully chosen in order
to be able to perform the envisioned experiments. In the present chapter, we give an
overview of progress that we have made towards such an interference experiment at
ν =5/2.Wepresentmagnetotransportmeasurements of three different samples, based
on heterostructures fabricated with different growth and doping techniques. Exper-
imental challenges that arise and possible solutions are addressed. We demonstrate
how a top-gate defined interferometer can be defined, transmitting a fully gapped
ν = 5/2 FQH state with an energy gap exceeding 200mK.

14.1 Introduction

“The noise is the signal.”
Rolf Landauer—unfortunately not always true

Interference experiments employing Fabry-Pérot or Mach-Zehnder interferometers
are expected to shed light on the nature of the FQH states in the second LL. We
have discussed the physical foundations for these experiments in Sect. 5.3. In this
chapter, we will approach the problem from a purely practical approach, i.e. how
such a proposal could actually be implemented.

In order to implement a Fabry-Pérot interferometer with lowest order interference,
the design of the interferometer and the 2DEG have to be optimized. The 2DEG
should of course exhibit a pronounced ν = 5/2 state, with a large energy gap. Ideally
this should be achieved without illumination, as illumination typically degrades the
gating properties. Furthermore, the 2DEG should allow to define top-gated structures
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without leakage from the top-gates to the electron gas or charge fluctuations due to
charge rearrangements in the doping or screening layers. Unfortunately, heterostruc-
tures that show a pronounced ν = 5/2 state are a precious and rare asset and aremostly
not easily gateable. Thus experimental techniques that nevertheless allow working
with the wafers available have to be developed. We have discussed in Sect. 10.3.5,
how high-mobility heterostructures can be successfully gated by applying voltages
at T ≥ 4K. Using this, we have implemented Fabry-Pérot interferometers on three
different heterostructures, employing different growth and doping techniques. We
will discuss the experimental challenges that arise when working with these struc-
tures. The most promising results were obtained using a conventionally DX-doped
quantum well in combination with illumination. Here, a fully gapped ν = 5/2 state
could be observed for transport through a top-gate defined interferometer, with an en-
ergy gap of more than 200mK. Our results might open the way to future interference
experiments at ν = 5/2.

14.2 Design Considerations

In order to guarantee a lowest-order interference process and the absence of Coulomb
dominated physics, a puddle of filling factor ν = 5/2, strongly coupled to source and
drain, has to be formed in the center of the interferometer. In an idealized interferome-
ter (Fig. 14.1a), the density increases stepwise from n = 0 to n = n5/2 = 5/2 × eB/h
towards the center of the interferometer and disorder is absent. Here, the confinement
potential is assumed to be infinitely steep. Edges are coupled weakly at the entrance
and exit of the QPCs (dashed lines in Fig. 14.1a), leading to weak quasiparticle tun-
neling. In between the edge states (blue area), the density is homogeneous in the
bulk, the center of the interferometer and the QPCs. This ensures that no compress-
ible region, separated by an incompressible region from other compressible regions,
can be formed in the interferometer. In this situation, we expect Coulomb dominated
physics to be absent.

In a more realistic interferometer (Fig. 14.1b), the confinement potential is less
steep and the density increases from n = 0 to n = n5/2 over a finite length scale

Fig. 14.1 Ideal
interferometer with infinitely
steep confinement potential
(a) versus realistic interfero-
meter (b). Here, the density
increases to the bulk value
n5/2 only over a length scale
dc away from the top-gates

(a) (b)

http://dx.doi.org/10.1007/978-3-319-21051-3_10
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dc. In this transition region, different compressible and incompressible regions may
exist. If the density is not completely homogeneous throughout the QPCs and the
interferometer, compressible puddles, which are insulated from other compressible
regions by incompressible regions, may exist (see for example Chap. 13). In this case,
the behavior of these puddles is described by Coulomb blockade physics, given their
size is small enough [1, 2].

Thus we need to guarantee that the density in the QPCs and the interferometer is
equal.We have discussed in Chaps. 10 and 11 how this is done for single QPCs and in
weak quasiparticle tunneling experiments, by applying the top-gate voltages at T ≥
4K. The diameter of the quantum dot is mainly determined by two critical length
scales: first the length scale over which the bulk density is reduced towards the top-
gates, dc, and second the coherence lengths of the candidate wavefunctions at ν = 5/2.
The first length scale is crucial, as we need to guarantee a filling factor ν = 5/2 puddle
in the center of the interferometer, aroundwhich quasiparticles can be braided. Aswe
have seen in Chap.11, weak backscattering in our high-mobility heterostructures is
observed in QPCs of a width of approximately 1.1µm.Hence, the central width of an
interferometer should be much wider than this, as no backscattering of quasiparticles
should occur here. In order to guarantee this crucial point, we have only implemented
interferometer designs with a central width of at least approximately 2 µm. Ideally
wewould like tominimize the length dc, thatmeanswe require an interferometerwith
a very steep confinement potential. We will discuss later, how this can be achieved
by using an illumination technique. The second length scale, the coherence length
of the candidate wavefunctions at ν = 5/2, limits the size of the interferometer.
The backscattered current due to lowest order interference of quasiparticles depends
exponentially on a characteristic coherence length Lφ(T ) or coherence temperature
T ∗(L) [3]:

I (QP)
12 ∝ e−T/T ∗(L) = e−L/Lφ(T ) (14.1)

Hence, for a given electronic temperature, limited by our setup, the characteristic
length L of the interferometer should be kept as short as possible. The coherence
length Lφ(T ) and coherence temperature T ∗(L) of the edge excitations depend on
the scaling parameters of the charge and neutral scaling expontents, gc and gn (see
[3]) and the velocities of charge and neutral modes vc and vn and can be written as
[3]:

Lφ(T ) = 1

2πT

(
gc

vc
+ gn

vn

)−1

(14.2)

T ∗(L) = 1

2πL

(
gc

vc
+ gn

vn

)−1

(14.3)

The coherence length Lφ scales linearly with the inverse temperature. Coherence
lengths for the different e/4 edge excitations of the candidate wavefunctions have
been calculated in [3], using the numerically calculated values for the velocities of
charge and neutral modes vc and vn of [4].

http://dx.doi.org/10.1007/978-3-319-21051-3_13
http://dx.doi.org/10.1007/978-3-319-21051-3_10
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Table 14.1 Coherence lengths Lφ (at T = 12.5mK) and coherence temperatures T ∗ (for L = 1
µm) for the e/4 quasiparticle excitations of the different candidate wavefunctions at ν = 5/2

e/4 MR Pf. Pf, SU(2)2 K = 8 (3,3,1) e/2

Lφ in µm at T
= 12.5 mK

2.8 1.0 38 1.4 9.6

T ∗ for L = 1
µm

36 13 484 19 121

The right column shows coherence length and coherence temperature of the Laughlin-type e/2
quasiparticles that are allowed for all candidate wavefunctions. Adapted from [3]

The Lφ (at a temperature T = 12.5mK) and coherence temperatures T ∗ (for L
= 1 µm) are shown in Table14.1 for the different states. At our lowest electronic
temperature Lφ is between 1 µm for the Pf and SU(2)2 states and 38 µm for the K
= 8 state. We remark that the results depend on the exact magnitude of the velocities
of charge and neutral modes vc and vn and are thus also influenced by the steepness
of the confinement potential and other effects. The rightmost column in Table14.1
shows the coherence length and coherence temperature of the e/2 Laughlin type
quasiparticles, which are common to all the candidate wavefunctions [3].

The interferometers used by us have a characteristic length L of approximately
2–2.5µm. Hence the interference signal is already expected to be damped because
coherence lengths are of comparable magnitude. Since the lateral distances need to
be larger than the QPC gap of typically 1.1 µm, this cannot be circumvented, if we
want to guarantee a gapped ν = 5/2 state in the center of the interferometer. Hence
it would be desirable to reduce the length scale dc, by implementing a confinement
potential of maximal steepness. We will discuss later, how this can be achieved by
illumination and applying gate voltages at high temperatures. In this case, a fully
gapped ν = 5/2 state could be observed in QPCs as narrow as 950nm.

14.3 Transport Measurements

In the following, we will present magnetotransport measurements through three dif-
ferent Fabry-Pérot interferometers, defined on heterostructures employing different
growth techniques. Heterostructures employing quantum well doping, DX doping
with screening quantumwells and ordinaryDXdoping have been studied. Thewafers
D120427C (sampleA, ns ≈ 2.2×1011 cm−2, µ ≈ 1.9×107 cm2/Vs, quantumwell
doping) and D120702A (sample B, ns ≈ 2.3×1011 cm−2, µ ≈ 2.3×107 cm2/Vs,
DX-doping with screening quantum wells) are optimized for the observation of the
ν = 5/2 state without prior LED illumination [5]. The wafer D110726B (sample
C, ns ≈ 3.1 × 1011 cm−2, µ ≈ 1.8 × 107 cm2/Vs after illumination, conventional
DX-doping) has to be illuminated at T ≈ 10 K using a red LED, to allow for the
observation of a fully quantized ν = 5/2 state and pronounced RIQH states.
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We discuss the two main problems that make the experimental realization of a
Fabry-Pérot interferometer at ν = 5/2 difficult: first the insufficient stability of the
heterostructures when voltages are applied to the top-gates or when those voltages
are varied. The second difficulty is defining the interferometer area without reducing
the density in the constrictions and hence inducing Coulomb dominated effects and
strong backscattering.

14.3.1 Sample Stability Issues

The sample A uses a quantum well doping scheme, where X -band electrons pro-
vide additional screening. As we have seen in Sect. 10.3.5, screening electrons may
lead to strong hysteretic processes when top-gate voltages are applied. This can be
circumvented by applying gate voltages at T ≥ 4 K, which has been done here.
Figure14.2a, b shows Rxy and Rxx measured in the bulk, and Rdiag and Rlong mea-
sured diagonally or longitudinally across the interferometer of sample A, versus the
magnetic field B. Apart from IQH states, FQH states at ν = 5/2, 7/3 and 8/3 and
RIQH states are observed in the bulk. The interferometer is shown schematically in
the inset of Fig. 14.2a. It is defined by applying negative top-gate voltages of –3.63V
(QPCL) or –3.8V (QPCR) to the 1.2 µm wide QPCs and applying –3.2V to the
plunger gates PG1 and PG2. The electron gas underneath the wide plunger gates is
depleted at a top-gate voltage of approximately –2.5V, while approximately –3.1V
have to be applied to deplete the electron gas underneath the narrow QPC gates.

In this configuration wide regions of vanishing Rlong indicate the transmission
of IQH states through the interferometer. The density in the constrictions is slightly
reduced compared to the bulk density. This can be seen from the shift of the center
of the IQH minima in Rlong towards lower magnetic fields, compared to the center
of the minima in Rxx .

In this situation, the top-gate voltages have been applied at T ≥ 4 K and have
not been changed at lower T . In this situation, conductance fluctuations for transport
through the interferometer are only weak. However, for the observation of periodic
conductance oscillations tuning the transmission of the QPCs is crucial. After the
voltages of both QPCs have been changed at millikelvin temperatures in order to
look for conductance oscillations, strong fluctuations in the longitudinal resistance
appear. Figure14.3 shows the longitudinal resistance, as a function of the magnetic
field for different voltages applied to the left QPC, while the voltages applied to the
other gates are not changed. Strong resistance fluctuations modulate the longitudinal
resistance, making the observation of periodic conductance oscillations impossible.

The second Fabry-Pérot interferometer under study, sample B, uses a DX-doping
scheme with additional quantum wells. The interferometer with 1.1 µm wide QPCs
has been defined by applying –1.9V to all top-gates at T ≥ 4 K. The electron gas un-
derneath the top-gates is depleted at voltages of approximately –1.5V. Figure14.4a,
b shows Rxy in the bulk and Rlong measured longitudinally across the interferometer.
As before, IQH states are perfectly transmitted through the interferometer, whereas

http://dx.doi.org/10.1007/978-3-319-21051-3_10
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(a)

(b)

Fig. 14.2 a Rxy measured in the bulk and Rdiag measured diagonally across the interferometer
as a function of the magnetic field. The QPCs at the entrance and exit of the interferometer are
1.2 µm wide and are biased to –3.63 and –3.8V. b Rxx measured in the bulk and Rlong measured
longitudinally across the interferometer as a function of the magnetic field. (Sample D120427C-1C)

backscattering occurs in between IQH filling factors. At ν = 5/2, Rlong ≈ 260 � is
found. On the high magnetic field side of the IQH minima in Rlong, resistance fluc-
tuations are observed (Fig. 14.4c–e). In contrast, on the low magnetic field side of
the IQHminima no such behavior is observed. Similar observations have been made
in [6]. At the magnetic fields where these resistance fluctuations occur, transport
through the bulk is still quantized, whereas the filling factor of the QPCs is slightly
reduced. This is exactly a configurationwherewewould expect lowest-order interfer-
ence processes to occur. Here the transport through the interferometer is particularly
sensitive to electrostatic fluctuations close to the QPCs, as counterpropagating edge
states are only separated by a narrow incompressible region. The time-dependence
of the fluctuations in the longitudinal resistance is shown in Fig. 14.5. Here, strong
telegraph noise has been observed, even without changing the gate voltages at mil-
likelvin temperatures. With this sample, no periodic conductance oscillations could
be observed, even after intensive tuning of the QPCs. We have looked for periodic
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Fig. 14.3 Longitudinal resistance versus the magnetic field B, for different voltages applied to the
left QPC. All other gate voltages are kept constant (VPG1 = VPG2 = –3.2V, VQPCR = –3.67V). After
the gate voltages have been varied at millikelvin temperatures, strong telegraph noise is observed.
(Sample D120427C-1C)

conductance oscillations at the low- and high-magnetic field ends of IQH and FQH
plateaus. In those configurations, the total transmission of the QPCs, as well as the
asymmetry of the individual transmissions has been varied. In none of the configura-
tions we were able to observe periodic conductance oscillations, neither by varying
the B-field nor by varying the QPC voltage. Most likely the wafer stability is not
sufficient for the observation of lowest-order interference. Tuning the system to a
Coulomb dominated regime by strongly reducing the density in the QPCs was not
possible either. The voltages that could be applied to the top-gates without damaging
the sample were not sufficient for a substantial reduction of the density in the QPCs.

14.3.2 Optimizing the Transmission by Sample Illumination

The third sample that we investigated, sample C, utilizes a heterostructure with con-
ventional DX-doping. The top-gate layout is shown in the inset of Fig. 14.6. Here,
950nm wide QPCs and an interferometer with a maximum width of approximately
2.2 µm have been defined by electron beam lithography and subsequent metal evap-
oration and lift-off. In the first measurements, the sample has not been illuminated
before cooling it down to millikelvin temperatures. Negative voltages have been ap-
plied to the top-gates at T ≥ 4 K, in order to allow a relaxation of the density in
the QPCs (VQPCL = –1.5V, VQPCL = –1.6V,VPG1 = VPG2 = –1.4V). The electron gas
underneath the top-gates is depleted at approximately –1.1V. The Hall resistance
Rxy and longitudinal resistance Rxx are measured in the bulk, far away from the top-
gates. In addition we measure the resistance longitudinally (Rlong) and diagonally
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(a)

(b) (c) (d) (e)

(c) (d) (e)

Fig. 14.4 a Rxy measured in the bulk versus the magnetic field B. b Rlong, measured longitudinally
across the interferometer with 1.1 µm wide QPCs (inset). While Rlong ≈ 0 for IQH states, Rlong ≈
260 � is observed at ν = 5/2. Close ups of the shaded regions in b are shown in (c–e). Non-periodic
conductance fluctuations are observed at the high magnetic field end sides of the IQH minima in
Rlong, while being absent on the low magnetic field end sides. (Sample D120702A-2C)

(Rdiag) across the biased interferometer gates. Figure14.6 shows Rxx (blue), Rxy

(red), Rdiag (turquoise) and Rlong (green) as a function of the magnetic field. In the
bulk, integer quantum Hall states with a quantized plateau in Rxy and vanishing
Rxx are observed. Close to ν = 5/2, Rxx drops, but does not reach zero (without
illumination). The diagonal resistance Rdiag exhibits plateaus, which are shifted to
lower magnetic fields than the resistance plateaus in Rxy , indicating a reduced den-
sity within the constrictions. An effective filling factor of the QPCs, νQPC can be
extracted from Rdiag via the relation Rdiag = 1

νQPC
h/e2 [7]. A similar relation can

be found for the longitudinal resistance: Rlong =
(

1
νQPC

− 1
νbulk

)
h/e2. Hence, Rlong

exhibits a plateau in a situation where transport in bulk and QPC is quantized and the
respective filling factors differ by one (Fig. 14.6). At the low-magnetic field ends of
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Fig. 14.5 Time dependence of the longitudinal resistance at B = 5T. Strong telegraph noise mod-
ulates the resistance. (Sample D120702A-2C)

Fig. 14.6 Four-terminal resistances as a function of the magnetic field B. Rxy and Rxx indicate
the filling factors of the bulk. Rlong and Rdiag are measured longitudinally and diagonally across
the biased gates of the interferometer, which is shown in the inset. The filling factor of the QPCs is
reduced compared to the filling factor of the bulk. At the low magnetic field sides of the resistance
plateaus in Rdiag, conductance oscillations are found (encircled areas). Rlong reaches a quantized
value whenever both Rxy and Rdiag are quantized at a conductance plateau and bulk and QPC filling
factors differ by one. (Sample D110726B-1A)

the resistance plateaus of Rdiag, conductance oscillations are observed in Rdiag and
Rlong (encircled in gray in Fig. 14.6). Such conductance oscillations are observed for
QPC filling factors νQPC of 2, 3, 6, 8, 10, 12, 14, 16. The magnetic field period�B of
the oscillations is extracted from a Fourier transformation of the data and is shown in
Fig. 14.7a, as a function of 1/νQPC. Clearly, a linear dependence of �B and 1/νQPC
is observed, with a slope �B × νQPC = 1.91 mT.
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(a)

(b) (c)

(d) (e)

Fig. 14.7 a Magnetic field periodicity of the conductance oscillations in Fig. 14.6 as a function
of the inverse QPC filling factor, 1/νQPC. Oscillations for various filling factors are found. The
periodicity scales linearly with 1/νQPC. b–e Oscillations of the longitudinal resistance as a function
of the magnetic field B for QPC filling factors 2, 3, 6 and 10. The width of the magnetic field interval
of each individual plot is identical. (Sample D110726B-1A)

Assuming a circular QD, this corresponds to a dot diameter of 1.66µm, consistent
with the top-gate layout and realistic gate depletion lengths. Conductance oscillations
in Rlong are shown for QPC filling factors νQPC = 2, 3, 6 and 10 in Fig. 14.7b–e.
Here, the width of the magnetic field axis of each individual plot is identical. With
the heterostructure in use, it was not possible to observe conductance oscillations
as a function of the voltage applied to the plunger gate at a fixed magnetic field.
Here, changing the gate voltages created conductance fluctuations that made an
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observation of the conductance oscillations impossible. Thus it was not possible to
observe the characteristic signature of a Coulomb dominated process, which is the
positive slope of the conductance oscillations when they are plotted as a function of
plunger gate voltage and the magnetic field (see for example Fig. 13.5). However,
from the reduced filling factor in the QPCs, the scaling of �B with 1/νQPC and the
size of the interferometer, a Coulomb dominated mechanism is strongly indicated.
Although conductance oscillations could not be observed as a function of the plunger
gate voltage, the fact that conductance oscillations with magnetic field periods as
small as 130 µT could be observed makes the sample promising for further study.
Furthermore, magnetic field stability seems not to be an issue for our setup, down to
small B-field periodicities.

In order to tune the interferometer to a situation where we expect lowest order
interference and where the density is approximately constant through the QPCs, the
system has been illuminated at T ≥ 4 K using a red LED. By doing this, the density
of the 2DEG has been increased from ns ≈ 2.8 × 1011 cm−2 to ns ≈ 3.1 × 1011

cm−2, while the mobility remained practically unchanged (µ ≈ 1.8× 107 cm2/Vs).
Gate voltages of –1.45V have been applied to all top-gates at T ≥ 4 K. After
illumination, the electron gas underneath the gates is depleted at approximately –
1.4V. In this situation, we again measure Rxy in the bulk and Rdiag and Rlong across
the interferometer (Rxx could not be measured due to a defective contact). The
measured resistances are shown in Figs. 14.8a (Rlong) and b (Rxy and Rdiag). The
quantization of FQH states has been drastically improved by the illumination—fully
quantized FQH states with a clear plateau in Rxy are observed at ν = 8/3, 5/2 and 7/3
in the bulk. Furthermore, pronounced RIQH states are observed. Comparing Rxy and
Rdiag, we see that resistance plateaus of the IQH states overlap, indicating perfect
transmission and equal densities in bulk and QPCs. In between ν = 2 and ν = 3,
we find Rdiag ≥ Rxy , which indicates an enhanced backscattering in the QPCs. At
ν = 8/3, 5/2 and 7/3, we observe Rdiag = Rxy and Rlong ≈ 0, indicating a perfect
transmission of those FQH states through the interferometer. This is exactly the
starting situation that is required for a lowest-order interference experiment. Due to
the vanishing Rlong for transport through the whole interferometer (with all top-gates
biased to –1.45V), the ν = 5/2 can be expected to remain fully gapped in the much
wider central region of the interferometer, even if the QPCs are further closed.

Transport through the interferometer has also been investigated in a non-equi-
librium situation. Here, a finite DC current IDC has been added on top of the small
AC current IAC that was used for the lock-in measurement: ISD = IAC + IDC. The
differential longitudinal resistance d Rlong/d ISD is plotted in colorscale as a function
of the magnetic field B and the DC current IDC in Fig. 14.8c. Close to the RIQH
states, bright diamond-shaped regions of large differential longitudinal resistance
are found. This effect arises from the properties of the RIQH phases and is also
observed in pure bulk measurements. This will be discussed in detail in Chap.15.

The FQHstates at ν =5/2, 7/3 and 8/3 showup as black diamond-shaped regions of
small differential longitudinal resistance. The ν = 5/2 and 7/3 states remain quantized
until IDC ≈ 3.9 nA or IDC ≈ 4.4 nA, whereas the ν = 8/3 state already disappears
at IDC ≈ 1.5 nA. These currents correspond to Hall voltage drops across the QPC

http://dx.doi.org/10.1007/978-3-319-21051-3_13
http://dx.doi.org/10.1007/978-3-319-21051-3_15
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(a)

(b)

(c)

Fig. 14.8 a Longitudinal resistance, measured across the interferometer with –1.45V applied to all
top-gates, versus the magnetic field B. The transport through the interferometer is fully quantized at
ν = 8/3, 5/2 and 7/3.b Rxy and Rdiag versus themagnetic field B.While Rxy and Rdiag overlap for ν =
2 and 3, Rdiag ≥ Rxy is found in between those two filling factors. At magnetic fields corresponding
to the filling factors ν = 8/3, 5/2 and 7/3, Rxy and Rdiag are identical, indicating perfect transmission.
c Differential longitudinal resistance versus DC current and the magnetic field. The FQH states at ν
= 5/2, 7/3 and 8/3 show up as black diamond shaped regions with vanishing differential longitudinal
resistance. At ν = 5/2, 7/3 and 8/3 they remain fully quantized until IDC ≈ 3.9 nA, IDC ≈ 4.4 nA
or IDC ≈ 1.5 nA, which corresponds to a Hall voltage drop of approximately 52 µV, 44 µV or
15 µV. This energy scale is of the same magnitude as the energy gap of these states. (Sample
D110726B-1A)
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of approximately 15 µV (ν = 8/3), 40 µV (ν = 5/2) and 49 µV (ν = 7/3). In
similar measurements of d Rxx/d ISD in the bulk (see for example Fig. 15.1a), FQH
states remain fully quantized until much higher DC currents and FQH states show up
as black stripes in the differential longitudinal resistance. Also, the bright diamond
shaped regions in Fig. 14.8c which are related to the RIQH states are much more
sensitive to temperature than the FQH states. We conclude that the FQH states are
destroyed most likely by either local heating or a local breakdown effect in the QPC,
but not due to heating the complete sample.

We have performed temperature-dependent measurements of the longitudinal
resistance, in order to extract an energy gap of the FQH states in the QPC. Fig-
ure14.9a shows Rlong as a function of the magnetic field for temperatures from
approximately 10mK to approximately 120mK. Close to the FQH minima in Rlong,
an activated behavior Rlong ∝ e−Egap/2kBT is observed (Fig. 14.9c, e, g). The energy
gap Egap/kB reaches maximum values of approximately 100mK (Egap = 17.2 µeV)
for ν = 8/3, 200mK (Egap = 34.5 µeV) for ν = 5/2 and 270mK (Egap = 46.5 µeV)
for ν = 7/3. The dependence of the extracted energy gap on the magnetic field is
illustrated in Fig. 14.9b, d, f for the different filling factors. The size of the energy
gaps is of the same magnitude as the Hall voltage drop at which the FQH states
disappear. This might indicate that it is the voltage drop across the QPC and not a
heating effect that destroys the FQH states.

In order to investigate if this is an activated process or a breakdown effect with a
different voltage dependence, we investigate the dependence of the logarithm of the
longitudinal resistance at ν = 5/2, 7/3 and 8/3 versus the inverse Hall voltage 1/VH
(Fig. 14.10). For this the longitudinal resistance has beenmeasured at afixedmagnetic
field as a function of the DC current. The Hall voltage then is found from VH =
IDC× Rxy . For an activated behavior versus the Hall voltage drop, a behavior Rlong ∝
e
− Egap

eVH would be expected. Using the energy gaps extracted from the temperature
measurements, we expect the logarithm of Rlong to drop linearly with 1/VH, with
the slopes indicated by the black dashed lines in Fig. 14.10. While the agreement is
still reasonable for ν = 8/3, the longitudinal resistance for ν = 5/2 and 7/3 falls off
much faster and only agrees well with an activated behavior in a narrow Hall voltage
range.

http://dx.doi.org/10.1007/978-3-319-21051-3_15
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 14.9 a Temperature dependence of the resistance measured longitudinally across the interfer-
ometer with all top-gates set to –1.45V, versus the magnetic field. The longitudinal resistance at
filling factors ν = 8/3, 5/2 and 7/3 shows an activated behavior (c, e, g) when varying the tempera-
ture. Maximum energy gaps of approximately 100mK (ν = 8/3), 200mK (ν = 5/2) and 270mK
(ν = 7/3) are found. The extracted energy gap values are maximal in a small region around the
corresponding filling factor and are shown in b, d, f as a function of the magnetic field B. (Sample
D110726B-1A)
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Fig. 14.10 Logarithm of the
longitudinal resistance
versus the inverse Hall
voltage, 1/VH, for filling
factors ν = 5/2, 7/3 and 8/3.
Here the magnetic field is
kept fixed and the Hall
voltage is varied by changing
the DC current:
VH = IDC × Rxy . Dashed
lines indicate the slope that
is expected for an activated
behavior with the energy
gaps extracted from the
temperature measurements.
(Sample D110726B-1A)

14.4 Conclusion and Outlook

To summarize, we have presented magnetotransport measurements of three Fabry-
Pérot interferometers, employing three different heterostructures based on different
growth and doping techniques. We have discussed experimental challenges that arise
due to the difficult gating properties of highmobility electron gases. In one sample,we
have observed a fully gapped ν = 5/2 state for transport through a top-gate defined
interferometer, with an energy gap exceeding 200mK. Here, the steepness of the
confinement potential was enhanced by illumination, allowing a ν = 5/2 state through
950nm wide QPCs without backscattering. Unfortunately the transmission through
the QPCs was even too high for the implementation of a lowest-order interference
experiment in this device: even at QPC gate voltages as low as approximately –4V,
IQHandFQHstateswere perfectly transmitted through theQPC.Pinchingoff further,
transmission was reduced, but also telegraph-noise due to the very negative gate
voltages started to set in. Hence in this device no periodic conductance oscillations
were observed.

Further experiments with a similar sample layout, but more narrow QPCs seem
promising. Our results show how small interferometers could be defined, using op-
timized illumination and gating techniques. We have demonstrated that the ν = 5/2
state may survive fully gapped in an approximately 2 µm wide interferometer and
even in 950nm wide QPCs.
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Chapter 15
Non-equilibrium Transport in Density
Modulated Phases of the Second
Landau Level

Abstract We investigate non-equilibrium transport in the reentrant integer quantum
Hall phases of the secondLandau level. At high currents, we observe a transition from
the reentrant integer quantum Hall phases to isotropic conduction. Surprisingly, this
transition is markedly different for the hole- and electron sides of each spin-branch
of the second Landau level. While the hole bubble phases exhibit a sharp transition to
an isotropic compressible phase, the transition for the electron side occurs gradually
via an intermediate phase. This behavior might be understood in terms of a current-
driven two-dimensional melting transition, either taking place as a first order phase
transition or as two continuous transitions involving an intermediate phase. The
breaking of the particle-hole symmetry might have consequences for the physics at
ν = 5/2 and other fractional quantum Hall states in the second Landau level.

15.1 Introduction

The properties of the lowest Landau level (N = 0) are strongly influenced by frac-
tional quantum Hall (FQH) physics, which gives rise to a large number of highly
degenerate, incompressible ground states with a vanishing longitudinal resistance
Rxx and a quantized Hall resistance Rxy = h/νe2 at the corresponding filling factor
ν. In contrast, the physics of higher Landau levels (LLs), N ≥ 2, is dominated by
density-modulated quantumHall phases. Close to half-filling, highly anisotropic and
nonlinear transport properties were found [2–4]. At ν ≈ 4 + 1/4 and ν ≈ 4 + 3/4,
Rxx was found to vanish, while Rxy was restored to the value of the neighboring inte-
ger quantumHall (IQH) plateau [2–4]. This effect was referred to as reentrant integer
quantum Hall (RIQH) effect. Theoretical [5–10] and experimental [2–4, 11–14] evi-
dence points to density modulated stripe or bubble phases which are responsible for
the resistance anisotropy or the RIQH effect.

In the second Landau level, N = 1, a competition between FQH states and RIQH
states is observed [15–22]. Here, theory suggests the existence of two electron and

Results shown in the following chapter have been partially published in the article [1]: Non-
equilibrium transport in density modulated phases of the second Landau level.
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two hole bubble phases, which provide a lower ground-state energy than FQH states
or an isotropic liquid [23, 24] at certain filling factors and are occupied with one or
two electrons or holes per bubble.

The underlying physics of the FQH states in the second Landau level, like the
ν = 5/2 and ν = 12/5 states is an open issue under intensive theoretical [25–42]
and experimental [22, 43–48] investigation.

Experiments which investigate the RIQH phases of the second LL require very
low temperatures and two-dimensional electron gases of very highmobility. Recently
temperature-dependent measurements have revealed the importance of Coulomb
interactions for the formation of RIQH states and indicated that a particle-hole asym-
metry of the energy scales for the formation of electron and hole bubble phases
occurs [18, 19]. Such a particle-hole symmetry breaking might have far-reaching
consequences, for example for the ground-state wave function at ν = 5/2. Hence a
deeper understanding of the competing bubble phases in the second LL is desirable.

We report on magneto-transport measurements of high mobility two-dimensional
electron gases. We investigate the RIQH states of the second LL in non-equilibrium
transport bydriving afiniteDCcurrent bias through the system.For largeDCcurrents,
RIQH states disappear and the Hall resistance approaches its high-temperature limit,
where no density modulated phases are formed. We denote this phase as isotropic
compressible phase. Surprisingly, the qualitative form of the transition from RIQH
phases to isotropic compressible phases is different for electron and hole bubble
states. While hole bubble states exhibit a sharp transition to the isotropic compress-
ible phase, a gradual transition involving an intermediate phase is found for the
electron bubble states. Qualitatively similar findings were obtained with three dif-
ferent samples, made from different high mobility heterostructures which employ
different growth techniques. We furthermore extract and compare energy scales for
the different RIQH states of the second LL. The local formation of RIQH states has
been investigated by measuring transport through a quantum point contact (QPC).
Here, signatures of the hole bubble states are completely absent, whereas signatures
corresponding to the electron bubble states are most likely a pure bulk effect, while
no RIQH phases are formed in the QPC channel. Finally, we investigate the direc-
tion dependence of the breakdown of the RIQH phases with respect to the current
orientation. We observe that qualitative features of the transition to the isotropic
compressible phase do not depend on the current orientation.

15.2 Experimental Details

Measurements have been performed on photolithographically defined Hall-bars con-
tacted with Au/Ge/Ni Ohmic contacts in a standard four-terminal measurement
scheme. A constant AC current (typically IAC ≈ 0.5 nA) is passed from source
to drain and dVxx/d ISD and dVxy/d ISD are measured using lock-in techniques. In
non-equilibrium situations, an additional DC current is passed from source to drain,
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on top of the AC current: ISD = IDC + IAC. Currents are defined by applying a
voltage across large resistors with typically R = 100 M�–1 G�.

Three different high mobility structures have been used for the experiments. The
wafers D120427C (ns ≈ 2.2× 1011 cm−2, μ ≈ 1.9× 107 cm2/Vs) and D120702A
(ns ≈ 2.3 × 1011 cm−2, μ ≈ 2.3 × 107 cm2/Vs) are optimized for the observation
of the ν = 5/2 state without prior LED illumination [49]. The wafer D110726B
(ns ≈ 3.1 × 1011 cm−2, μ ≈ 1.8 × 107 cm2/Vs after illumination) has been
illuminated at T ≈ 10 K using a red LED, to allow for the observation of a fully
quantized ν = 5/2 state and pronounced RIQH states (see Appendix F).

Experiments have been conducted in a cryogen-free dilution refrigerator, with an
electronic base temperature Tel ≈ 12–13 mK. This has been achieved by low-pass
filtering and thermally anchoring the cabling at every temperature stage (seeChap. 7).

The filling factors of the RIQH states have been calculated from their magnetic
field position relative to the center of the ν = 5/2 plateau in Rxy . From this, we
estimate an uncertainty in the filling factors of �ν = ±0.007.

15.3 Results and Discussion

In an equilibrium transport situation, only an AC current of typically 0.5 nA is passed
along the long axis of a Hall-bar, from source to drain. In this situation, we measure
the longitudinal voltage drop Vxx and the Hall voltage drop Vxy . Figure15.1c, d
(blue curves) show the differential longitudinal and Hall resistances, dVxx/d ISD and
dVxy/d ISD, for filling factors between 2 and 3 in the bulk. The longitudinal resistance
vanishes for the FQH states at ν = 8/3, 7/3 and 5/2, while the Hall resistance shows
a plateau at the same time.

Turning to a non-equilibrium transport situation, a DC current from source to
drain is added on top of the AC current: ISD = IDC + IAC. Figure15.1a shows in
colorscale the differential longitudinal resistance as a function of the magnetic field
B and the DC current IDC. The FQH states at ν = 8/3, 7/3 and 5/2 show up as black
stripes (small differential longitudinal resistance) at a constant magnetic field. When
the differential Hall resistance is plotted as a function of the magnetic field B and the
DC current IDC (Fig. 15.1b), RIQH stateswith a quantized resistance of h/(2e2) (red)
or h/(3e2) (blue) show up as diamond-shaped regions. We denote the RIQH states in
the upper spin branch by R1A-R4A and in the lower spin branch by R1B-R4B. The
RIQH state R1B is not observed in the measurement of Fig. 15.1. The width of the
regions shrinks, as the DC current is enhanced, until an isotropic background is found
at large currents (IDC ≥ 12 nA).On the highmagnetic field side of ν = 5/2, theRIQH
states are neighbored by strong side-peaks of smaller differential Hall resistance.
Comparing Fig. 15.1b with Fig. 15.1a, we see that the boundaries of the RIQH phases
in the longitudinal resistance are defined by two strong side peaks, with a region of
small differential longitudinal resistance in-between. As IDC is increased, the side-
peaks move together, resulting in a diamond shaped region. The outer boundary
spanned by the side peaks at B ≈ 3.48 T coincides with the extent of the RIQH

http://dx.doi.org/10.1007/978-3-319-21051-3_7


268 15 Non-equilibrium Transport in Density Modulated Phases …

(a) (b)

(c) (d)

(e) (f)

Fig. 15.1 a Differential longitudinal resistance versus magnetic field and DC current bias. Minima,
associated with FQH states at ν = 7/3, 8/3 and 5/2 show up as black stripes. The RIQH states
appear as a minimum in the longitudinal resistance with strong side-peaks and span diamond-
shaped regions in the B-field - IDC- plane. At larger IDC biases, negative differential resistance is
found (turquoise areas). Cuts in B-field and bias direction are shown in (c, e). b In the differential
Hall resistance, RIQH states are visible as diamond-shaped regions, where the Hall resistance
tends towards the quantized resistance value of a neighboring IQH plateau. As the current bias
is increased, the RIQH states which we denote as R3B and R4B exhibit a strong decrease of the
differential Hall resistance before they disappear in an isotropic background, corresponding to the
isotropic compressible phase. In contrast, a sharp transition to the isotropic compressible phase is
found for the RIQH state R2B. Traces of the differential longitudinal and Hall resistances in B-field
and in current bias direction are shown in (d, f). (Sample D120427C-1C)
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phase at ν = h/(2e2) in the differential Hall resistance. In contrast, the RIQH phase
at ν = h/(3e2) is defined by the inner boundary of the side peaks in dVxx/d ISD.
At large currents where no RIQH phase is observed any more, regions of negative
differential resistance are visible in dVxx/d ISD (turquoise areas in Fig. 15.1a). We
remark that the ordinary resistance remains positive and that the negative differential
resistance and the overall formof thismeasurement can be reproduced bynumerically
deriving a pure DC measurement (Fig. 15.11).

Figure15.1c, d shows traces of the differential longitudinal and Hall resistance
for three different DC currents. While the FQH states or the isotropic compressible
phase show a weak dependence on current, differential resistance varies strongly
close to the RIQH states. The DC current dependence of dVxx/d ISD and dVxy/d ISD
in the center of the RIQH phases is shown in Fig. 15.1e, f. dVxx/d ISD is small
at zero DC current, then grows rapidly as IDC is increased. Finally, a region of
negative differential resistance is found after which dVxx/d ISD returns to a constant
background.dVxy/d ISD showsadifferent behavior for theRIQHphases onboth sides
of the ν = 5/2 state. For the RIQH state R2B (indicated in Fig. 15.1b), dVxy/d ISD
increases sharply close to the classical background value, with only slight overshoots
when the RIQH state is destroyed. In contrast, for the RIQH state R3B, dVxy/d ISD
showsverypronouncedundershoots, before it reaches the classical backgroundvalue.
The RIQH state R4B even shows a more complicated current dependence, where
dVxy/d ISD first undershoots and then overshoots, before it reaches the classical
background value.

Similar results have been obtained from measurements with other 2DEGs (Sam-
ple D120702A-2C, Fig. 15.2) and subsequent cooldowns (Sample D120427C-1C,
Fig. 15.3). The differential longitudinal resistance dVxx/d ISD shows strong peaks at
the boundaries of the RIQH phases (presumably due to a small density gradient in
the sample [50, 51]). In the differential Hall resistance, a similar behavior as before
is seen. The RIQH states at more than half filling of each spin branch of the second
Landau level (R1A, R2A, R1B, R2B) show an abrupt transition to a classical Hall
resistance (Fig. 15.2). On the other hand, RIQH states at less than half filling (R3A,
R4A, R3B, R4B) have a less abrupt transition to a flat background, involving distinct
undershoots of the differential Hall resistance.

15.3.1 Phase Diagram of Reentrant Integer Quantum Hall
Phases

The DC current dependence of the Hall resistance allows us to extract a phase dia-
gram for the different RIQH states. The critical current, IDC,crit , for which an RIQH
state disappears is extracted from the measurements of Figs. 15.1, 15.2 and 15.3.
The critical current is reached when the amplitude of the RIQH peak or dip in the
differential Hall resistance has reached 30% of its maximum amplitude (i.e. 30% of
the difference between the classical Hall background resistance and the quantized
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(a)

(b)

Fig. 15.2 Differential Hall (a) and longitudinal resistance (b), for a bulk filling factor 2 ≤ ν ≤ 4.
The pair of RIQH states at the low-magnetic field sides of ν = 5/2 and ν = 7/2 show a sharp
threshold to an isotropic compressible phase in the differential Hall resistance. RIQH states on the
high-magnetic field side of ν = 5/2 and ν = 7/2 show a less abrupt transition which involves a
region of smaller differential Hall resistance. (Sample D120702A-2C)

resistance of the neighboring IQH plateau). The same threshold, but with different
sign is used for the intermediate current bias phase of the RIQH states R3A, R4A,
R3B and R4B. As the relevant energy scale for the breakdown is the Hall voltage and
not the current, we define a critical Hall voltage via VH,crit = IDC,crit × Rxy,quant..
Here, Rxy,quant. = h/(νe2) is the quantized Hall resistance, corresponding to the
RIQH state. The resulting critical Hall voltage is plotted as a function of the filling
factor in Fig. 15.4.

The critical Hall voltage of the RIQH states R2A/B and R4A/B is larger than for
R1A/B and R3A/B. In contrast to the critical current, the critical Hall voltage does
increase monotonically with decreasing filling factor over ν = 7/2 and ν = 5/2.
The critical current exhibits a non-monotonic behavior. A similar non-monotonic
behavior has previously been observed for the critical temperatures Tc at which the
RIQH states start to form [18, 52] and gives evidence for a particle-hole asymmetry
in the corresponding energy scales.
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(a)

(b)

Fig. 15.3 Differential Hall (a) and longitudinal resistance (b), for a bulk filling factor 2 ≤ ν ≤ 4.
The pair of RIQH states at the low-magnetic field sides of ν = 5/2 and ν = 7/2 show a sharp
threshold to an isotropic compressible phase in the differential Hall resistance. RIQH states on the
high-magnetic field side of ν = 5/2 and ν = 7/2 show a less abrupt transition which involves a
region of smaller differential Hall resistance. (Sample D120427C-1C, second cooldown)

15.3.2 Transition from RIQH Phase to Isotropic Compressible
Phase

We now turn to the question why the transition from a RIQH phase to an isotropic
compressible phase occurs in a qualitatively different way for the RIQH states at
both sides of ν = 5/2 and ν = 7/2. The behavior of the differential Hall resistance
can be better understood from looking at the Hall voltage Vxy versus the DC current
IDC, Vxy(IDC).

We schematically show the expected dependence of Vxy on IDC in Fig. 15.5b.1
for a continuous transition between a RIQH phase and an isotropic compressible
phase. For a constant filling factor, a linear slope Vxy = h/(νe2) × IDC is expected.
Hence at a small DC current, where the RIQH state exists, the RIQH states R3B
and R4B (with a plateau value of h/2e2) exhibit a slope of h/2e2 in the IDC-Vxy

diagram (green dashed line in Fig. 15.5b). Similarly, a slope of h/3e2 is expected
for the RIQH states R1B and R2B (red dashed line in Fig. 15.5b). In the limit of
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(a)

(c)

(b)

(d)

Fig. 15.4 a, c Critical Hall voltage for the breakdown of the RIQH states with Rxy = 1/4 × h/e2

(green) and Rxy = 1/3 × h/e2 (red) and for the transition to an isotropic background (black). b,
d Critical Hall voltage for the breakdown of the RIQH states with Rxy = 1/3 × h/e2 (red) and
Rxy = 1/2 × h/e2 (blue) and for the transition to an isotropic background (black)

large currents, the RIQH phase no longer exists, and a background Hall resistance,
which is determined by the corresponding filling factor, is found (grey dashed lines
in Fig. 15.5b). Thus, the curve Vxy(IDC) is expected to possess a slope of h/νe2 for
large DC currents, where ν ≈ 2.43 or 2.30 for the RIQH states R3B and R4B and
ν ≈ 2.71 or 2.58 for R1B and R2B. In between the low- and high-current regime,
a continuous transition occurs, while all linear slopes are expected to interpolate
to the origin of the diagram. In order to satisfy these conditions, an intermediate
regime with a smaller slope of Vxy(IDC) (hence smaller differential Hall resistance)
is expected for the transition from ν = 2 to the isotropic liquid. In contrast, for the
transition from ν = 3, we expect an intermediate regime with a greater slope in
Vxy versus IDC. In the differential resistance, this would be visible as pronounced
undershoots of the differential resistance for the RIQH states R3B and R4B, while
strong overshoots should be visible for R1B and R2B. The expected Vxy(IDC) for
such a continuous transition are shown schematically as black lines in Fig. 15.5b,
where ν1 and ν2 denote the non-quantized “background” filling factors.
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(a) (b.1) (b.2)

(c) (d)

Fig. 15.5 a Differential Hall resistance for different filling factors. At large DC currents ≥10–15
nA, a constant differential resistance is found. b.1 Schematic scenario for a continuous transition
to the isotropic compressible phase with non-quantized filling factors ν1 and ν2. b.2 Schematic
illustration of Vxy(IDC) as obtained from the measurement. For the RIQH state R2B, the linear
slope corresponding to the isotropic compressible phase is offset in Vxx by �E/e. c Hall voltage
versus the DC current. For better visibility, a linear slope corresponding to Vxy = 1

3h/e2 × IDC
or Vxy = 1

2 h/e2 × IDC has been subtracted from the DC Hall voltage. d Energy offset �E as a
function of the filling factor. At the center of the RIQH phase, a maximum of �E of approximately
13 µeV is found. (Sample D120427C-1C)

In order to compare this scenario with our measurements, we calculate Vxy(IDC)

from the differential Hall resistance via integration:

Vxy(IDC) ≈
IDC∫
0

(
dVxy

d ISD
( ĨDC)

)
d ĨDC + C (15.1)

where C is an unknown integration constant. The result obtained by this is schemat-
ically depicted in Fig. 15.5b.2. For the RIQH states R3B and R4B we indeed observe
a similar behavior as expected for the scenario of a continuous transition, with a
smooth transition between two different linear slopes, interpolating through the ori-
gin. In contrast, Vxy for the RIQH state R2B first moves with a slope corresponding
to ν = 3. As the DC current is increased, no gradual transition to the slope corre-
sponding to the isotropic compressible phase is observed, but Vxy sharply changes
slope at a certain DC current and moves with the slope of the isotropic compressible
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phase. Surprisingly, the slope of this background resistance no longer interpolates to
the origin of the Vxy–IDC diagram when C is chosen such that Vxy(IDC = 0) = 0.

The corresponding data, obtained by integrating the differential Hall resistance
is shown in Fig. 15.5c. Here, a linear slope corresponding to Vxy = 1

3h/e2 × IDC
(R2B) or Vxy = 1

2h/e2 × IDC (R3B, R4B) has been subtracted to guarantee better
visibility of the important features. A distinct behavior of the RIQH states R3B and
R4B (blue and orange solid lines), and R2B (black solid line) is observed. All slopes
are close to zero at IDC ≈ 0 due to the subtraction of the linear slope corresponding to
ν = 2 or ν = 3. At large currents, Vxy(IDC) reaches a slope, close to the expectation
for the isotropic compressible phase at the given filling factor. When the slope of
the isotropic compressible phase is linearly interpolated, it reaches zero voltage at
zero DC current for the RIQH states R3B and R4B. This is clearly not the case for
the RIQH state R2B, where the linear part of Vxy(IDC) does not interpolate to the
origin of the Vxy–IDC diagram. This voltage shift is the largest for the filling factor
corresponding to the center of the RIQH phase (black solid line in Fig. 15.5c) and
decreases as the filling factor is increased or enhanced (for example black dashed line
in Fig. 15.5c). The dependence of this energy shift on the filling factor is depicted in
Fig. 15.5d. A maximum energy shift of approximately 13 µeV is found in the center
of the RIQH phase.

We have investigated the transition fromRIQHphases to the isotropic background
in another sample using AC and DC measurements. The corresponding differential
Hall resistance versus the magnetic field is shown in Fig. 15.6a. As the DC current
is increased at the magnetic field values corresponding to the RIQH states R2B
and R3B, a transition to an isotropic compressible background occurs at IDC < 20
nA and the differential Hall resistance is constant at higher currents (Fig. 15.6b).
The measured DC Hall and longitudinal voltages, Vxy,DC and Vxx,DC are shown in
Fig. 15.6c–f. For better visibility, a linear slope corresponding to Vxy = 1

3h/e2× IDC
or Vxy = 1

2h/e2 × IDC has been subtracted from the DC Hall voltage. With this,
the RIQH phases are seen as plateaus at �Vxy,DC = 0. Dashed lines are fitted to
the linear parts of the Hall voltage (for –150 nA < IDC < 75 nA and 75 nA < IDC
< 150 nA). In contrast to before, slopes interpolate approximately through zero for
all RIQH states (within the fit uncertainty). DC currents for the transition to the
isotropic compressible phase are much larger for the RIQH state R2B than for R3B
and R4B. In the longitudinal DC voltage, Vxx,DC, sharp jumps are observed for the
RIQH states R2B (marked by red arrow in Fig. 15.6e), occurring at the DC current
value where the RIQH phase is left. In contrast, Vxx,DC varies smoothly as a function
of DC current for the RIQH states R3B and R4B.

15.3.3 Discussion of the Bias Dependence

Let us turn to the question of a possible mechanism of the transition from the RIQH
phases to the isotropic compressible phase. In the RIQH phase, the density of states
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(a)

(b)

(c) (d)

(e) (f)

Fig. 15.6 a Differential Hall resistance versus DC current and the magnetic field. b Differential
Hall resistance for the RIQH states R2B and R3B versus the DC current. At IDC > 20 nA, the
differential Hall resistance is approximately constant. c, d DC Hall voltage versus the DC current.
Here, a linear slope corresponding to Vxy = 1

3h/e2 × IDC (c) or Vxy = 1
2 h/e2 × IDC (d) has been

subtracted. e, f DC longitudinal voltage Vxx,DC versus the DC current. For the RIQH state R2B,
jumps in the DC voltage ((e), marked by red arrows) are observed. (Sample D110726B-3D)

exhibits a small quasi-gap [9, 10]. In the bulk of the Hall-bar, the Fermi energy is
pinned in the center of the quasi-gap by disorder, resulting in transport properties
which are identical to those of an IQH state. These transport signatures are expected
to survive as long as the Hall voltage drop across the bubble phase is smaller than
the quasi-gap. Driving a DC current through the system in a RIQH state induces
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a transition to an isotropic compressible phase, either by heating the system or by
increasing the Hall voltage drop, until the Hall voltage drop becomes larger than the
quasi-gap of the RIQH phase. These two possibilities cannot be easily distinguished.

The Kosterlitz, Thouless, Halperin, Nelson, Young (KTHNY) theory [53–56]
predicts that an intermediate “hexatic” phase exists for a two-dimensional melting
transition between a hexagonal solid and an isotropic liquid. In the electron liquid
crystal picture, stripe crystal and Wigner crystal phases are expected to melt at finite
temperatures, either via a first order phase transition, or by two sequential continuous
transitions [57]. For the Wigner crystal, this intermediate phase is such a hexatic
phase with short-range positional and quasi long-range orientational order [58]. The
transition from the crystalline phase to the hexatic phase occurs via a dislocation
unbinding transition [57]. Further increasing the temperature leads to a continuous
disclination unbinding transition to the isotropic phase. For the bubble phases of
the second LL, energy calculations indicate that such density modulated phases
are formed via first order quantum phase transitions [24]. To our knowledge the
possibility of a continuous transition from the bubble phase to an isotropic phase has
not been studied in literature for such a system. However, KTHNY theory suggests
that a hexatic phase might in principle exist for such a system.

The DC current dependence of the RIQH states R3B, R4B (and R3A, R4A)
might be interpreted as a continuous transition, where the quasi-gap of the RIQH
phase gradually disappears until finally an isotropic compressible phase is reached.
The abrupt transition of the RIQH state R2B (and R1B, R1A, R2A) might in contrast
be explained as a first-order phase transition with a discontinuous change of the
electrochemical potential. This discontinuity might explain the energy offset �E ,
which in this interpretation can be seen as a measure for the quasi-gap of the RIQH
phase. The jump that has been observed in Vxx,DC might be caused by the jump of
the electrochemical potential in such a transition.

15.3.4 Reentrant Integer Quantum Hall Phases in a QPC

The local formation of RIQH states can be investigated by utilizing a QPC.
Figure15.7a, b shows the differential Hall resistance, measured in the bulk of a
high mobility Hall-bar (D120702A-2C). As before, R1B and R2B show a sharp
threshold to an isotropic compressible phase, while a transition via an intermediate
phase is observed for R3B and R4B. Now we turn to a situation, where a 1.1 µm
wide QPC, fabricated on top of the 2DEG is defined by applying negative voltages
to the top-gates (VQPC = −2.3 V). We measure the voltage Vdiag diagonally across
the QPC, from which an effective filling factor of the QPC, νQPC, is obtained via
Rdiag = h

e2νQPC
[59]. The system is tuned to a weak backscattering situation, where

bulk and QPC densities are identical, which can be seen from the overlap of the
IQH plateaus in Rxy and Rdiag (see Chap.11). Figure15.7c, d shows the differen-
tial diagonal resistance for this situation. While the IQH plateaus are still clearly

http://dx.doi.org/10.1007/978-3-319-21051-3_11
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(a) (c)

(b) (d)

(e)

Fig. 15.7 a Differential bulk Hall resistance as a function of the DC current. b Differential Hall
resistance at IDC = 0. The RIQH states R1B–R4B are clearly visible. c Differential diagonal
resistance across a 1.1 µm wide QPC. Here, –2.3 V are applied to the top-gates. At zero DC
current, the RIQH states R1B and R2B are no longer visible (d), whereas R3B and R4B are even
more pronounced than in the bulk. e Schematic density distribution in the QPC and the bulk for the
different RIQH states. (Sample D120702A-2C)

visible (Fig. 15.7d), FQH states can no longer be clearly identified. The reason for
this is weak quasiparticle tunneling which destroys the FQH plateaus and gives rise
to a power-law tunneling conductance between counterpropagating edge states (see
Chap.11). In this situation, the RIQH states R1B and R2B have vanished and are
no longer seen in the diagonal resistance. In contrast, R3B and R4B are even more
pronounced than in the bulk. The regions corresponding to a quantization at h/(2e2)
have a larger extent in the IDC direction than in the bulk.

The observation of the RIQH states R3B and R4B in the diagonal resistance
however does not imply that they are formed in the QPC constriction. The relation
Rdiag = h

e2νQPC
is only valid, if νQPC ≤ νbulk, which is not necessarily the case

for the density modulated bubble phases. In this case, the following relation holds:
Rdiag = h

e2min(νQPC,νbulk)
. A schematic of this situation is shown in Fig. 15.7e. For the

RIQH states R1B and R2B, the innermost edge state (corresponding to ν = 3) is

http://dx.doi.org/10.1007/978-3-319-21051-3_11
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partially backscattered at theQPCand hence the quantization is lost, even if theRIQH
states persist in the bulk. For the RIQH states R3B and R4B however, the innermost
edge state of the bulk corresponds to ν = 2. If a compressible region is formed in the
QPC, it has a larger filling factor than two, and hence the ν = 2 edge state is protected
from backscattering. Hence, the quantized value of dVdiag/d IDC = h/(2e2) can be
interpreted as a bulk signature,whereνbulk = 2describes the bulk transport properties
and where a compressible phase is formed in the QPC, leading to νQPC > 2.

We conclude that most likely no density modulated phases persist in the QPC
channel. The different characteristics of the RIQH states R3B and R4B when mea-
sured in the bulk and across a QPC might result from a density gradient close to the
QPC or from a variation in the current distribution and hence a partial local Hall
voltage drop in the center of the QPC channel.

15.3.5 Orientation Dependence

In contrast to stripe phases in higher LLs, we expect the bubble phases of the sec-
ond LL to be isotropic. However, it was shown that a large DC current can induce
anisotropies in density modulated phases which are isotropic at small currents [60].
Figure15.8 shows the differential Hall resistance for different orientations of the
AC and DC current as a function of magnetic field and DC current. Insets show
schematically the current configurations and the contact configuration used for each
measurement. For parallel AC and DC currents, breakdown signatures of the RIQH
states of the second LL are isotropic (Fig. 15.8a, b). When AC and DC current are
passed either along the long axis of the Hall-bar (x-direction, Fig. 15.8a) or perpen-
dicular to the long axis (y-direction, Fig. 15.8b), critical currents are of comparable
magnitude. As before, R3B and R4B exhibit a transition to an isotropic phase with
strong undershoots in the differential Hall resistance, while only weak overshoots
are observed for R1B and R2B. Qualitatively, the breakdown for both current orien-
tations looks similar, while details like the critical Hall voltage of the RIQH phases
change slightly. In configurations where AC and DC currents are driven in perpen-
dicular directions (Fig. 15.8c, d) the RIQH states R1B and R2B show an anisotropic
behavior: here, the breakdown current depends strongly on the orientation of the DC
current. In contrast, R3B and R4B only show a weak current direction dependence.
This observation again highlights the different physical behavior of the electron and
hole density modulated phases.
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(a)

(c)

(b)

(d)

Fig. 15.8 Differential Hall resistance for different directions of DC andAC currents. The respective
contact configurations and current directions are shown schematically as insets. Contacts used for
measuring Vxy are emphasized in orange. Measurements where AC and DC currents flow in the
x-direction (a) or the y-direction (b) show similar energy scales for the transition to an isotropic
background. In configurations where AC and DC currents are applied perpendicular (c, d), critical
currents for the RIQH states R1B and R2B are different. In a configuration with a small current
density (c), R1B and R2B have larger critical currents than for a configuration with a higher current
density (d). Critical currents for R3B and R4B are similar in both cases. (Sample 110726B-1D)

15.4 Conclusion

In conclusion, we have investigated magneto-transport in the RIQH phases of the
second LL. Applying large DC currents induces a transition from density modu-
lated bubble phases to an isotropic compressible phase. This transition is markedly
different for hole and electron bubbles in both spin branches of the second Landau
level. While hole bubbles exhibit a sharp transition to the isotropic compressible
phase, a gradual transition involving an intermediate phase is found for the elec-
tron bubbles. This might be explained by different routes for a two-dimensional
melting transition, either by a first-order phase transition or by two continuous
transitions via an intermediate phase. We furthermore have investigated the break-
down of the RIQH phases in QPCs and their dependence on the current orientation.
While the transport through the QPC is dominated by the bulk signatures of the
RIQH phases, a distinct behavior of electron and hole bubble phases is observed for
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different current directions. Further experiments are necessary in order to definitely
clarify the physical origin of the different transitions of the RIQH phases. Our obser-
vations suggest that the particle-hole symmetry is broken for the density modulated
phases in the second Landau level. This symmetry breaking has a strong influence
on the properties of the density modulated phases and might also have an important
impact on the physics of the FQH states in the second LL, like the ν = 5/2 FQH
state.

Appendix

Dependence on Magnetic Field Direction

Changing the magnetic field direction does not change the qualitative behavior of
the RIQH phases (see Fig. 15.9). However, details of the transition to the isotropic
background may change.

Hysteresis of Current Sweeps

Figure15.10 demonstrates that no strong hysteresis is observed for the transition from
RIQH phases to the isotropic compressible phase. Here, three consecutive sweeps of
the DC current (IDC was changed from –57.5 nA → 57.5 nA → –57.5 nA → 57.5
nA) are shown for the RIQH states R2B, R3B and R4B.

Negative Differential Resistance from DC Measurement

To exclude a measurement problem owing for example to unexpected frequency
dependencies in an AC measurement, the longitudinal voltage drop Vxx has been
measured in a pure DC measurement as a function of the magnetic field and the
DC current. From this, the differential longitudinal resistance has been obtained by
numerically derivingVxx with respect to the current. The result is shown inFig. 15.11.
Apart from the increased noise level, this measurement perfectly agrees with the AC
measurement of Fig. 15.1, excluding a problem with the AC measurement technique
employed by us. Also here, pronounced regions of negative differential resistance are
found (turquoise areas in Fig. 15.11). It should be noted that the ordinary resistance
always remains positive.
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Fig. 15.9 Differential Hall resistance measured in two different magnetic field directions. (Sample
D110726B-3D)

Bias Dependence of the Longitudinal Resistance

The bias dependence of the longitudinal resistance is shown in more detail in
Fig. 15.12. At zero DC bias, Rxx shows a minimum at the B-field corresponding
to the center of the RIQH phase, which is neighbored by two resistance maxima.
When IDC is increased, the minimum in Rxx is lifted and the magnetic field spacing
between the side-peaks begins to shrink. At large biases, the side-peaks join to a sin-
gle peak in Rxx , which then shrinks with subsequent increase of IDC. This behavior
is qualitatively similar to what is obtained when the temperature is increased [18,
52]. When the temperature is increased, the side-peaks move together until only a
single peak is observed. The resistance peak shrinks as the temperature is further
increased. This behavior is in sharp contrast to the activated behavior of FQH states.
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Fig. 15.10 Differential Hall resistance versus the DC current for RIQH states R2B, R3B and R4B.
For each magnetic field, three consecutive sweeps of the current are shown (IDC: –57.5 nA →
57.5 nA → –57.5 nA → 57.5 nA). All curves lie nearly perfectly on top of each other. (Sample
D110726B-3D)

Fig. 15.11 Differential longitudinal resistance ∂Vxx,DC/∂ IDC versus the magnetic field and the
DC current. ∂Vxx,DC/∂ IDC has been obtained by numerically deriving Vxx,DC with respect to the
applied DC current. The measurement agrees with Fig. 15.1, excluding a measurement problem as
reason for the regions of negative differential resistance. (Sample D120427C-1C)
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Fig. 15.12 DC current dependence of the RIQH minima in Rxx . At zero DC bias, Rxx shows a
minimum at the B-field corresponding to the center of the RIQH phase, which is neighbored by
two resistance maxima. When IDC is increased, the minimum in Rxx is lifted and the magnetic field
spacing between the side-peaks begins to shrink. At large biases, the side-peaks join to a single
peak in Rxx , which then shrinks with subsequent increase of IDC. (Sample D120427C-1C)
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Chapter 16
Conclusion

In this book, we have presented experiments that investigated the properties of
integer and fractional quantum Hall states by measurements in the bulk, using QPCs
and QDs. By carefully optimizing our measurement setup and samples (Part II) we
were able to investigate FQH states at extremely low electronic temperatures. This
furthermore enabled us to study the RIQH states in the second LL in non-equilibrium
transport (Part V). A detailed control and understanding of the transmission proper-
ties of single QPCs has allowed us to study the local formation of FQH states, their
interaction with localization and their tunneling properties (Part III). Making use of
this knowledge, we have investigated transport in QDs and interferometers in the
quantum Hall regime (Part IV).

In the following we give a short conclusion of the individual experimental chap-
ters of this book:

Chapter7—Measurement Setup Optimization for Low Electron Temperatures
and Chap.8—Optimization of Samples and Sample Fabrication These two chap-
ters described the considerable preliminary workwhichwas necessary for the experi-
ments presented in this book andmight be of use for other experimentalists beginning
in the field. We have removed heating sources, which arise in the cryostat due to vi-
brations and electronic noise. Furthermore, we have implemented a highly effective
low-temperature filtering and thermal anchoring setup, which enabled us to reach
electronic temperatures of approximately 12–13mK. We have studied the influence
of the sample processing on the 2DEG quality and could identify a suitable process
which does not degrade the mobility. We found that the Ohmic contact fabrication
process and contact geometry were crucial in order to observe fragile FQH states,
like the ν = 5/2 state, in processed samples.

Chapter9—Quantum Point Contacts In this chapter, we have investigated the
transport properties of clean QPCs, which are the basic building block for the mag-
netotransport experiments discussed later in this book. Shifting the QPC channel
position, we could demonstrate the absence of impurities and localizations. In finite
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bias transport, conductance plateaus and half-plateaus were observed. The confine-
ment potential was extracted and found to be well described by a harmonic potential,
in agreement with numerical calculations. We have demonstrated how the confine-
ment potential can be varied and have investigated the influence of this on the trans-
mission of FQH states. Applying a finite magnetic field revealed interaction effects
in the QPCs, like a strong g-factor enhancement or a large bias-dependence of the
transmission in the FQH regime.

Chapter10—Integer and Fractional Quantum Hall States in QPCsHerewe have
investigated the formation of integer and fractional quantumHall states in QPCs.We
found that the transmission properties of QPCs were strongly influenced by inter-
ference and localization effects, which we could explain in terms of single- and
many-electron physics. In the FQH regime, we found indications for the localization
of fractionally charged QPs in the QPC. Understanding these effects was impor-
tant for the interpretation of tunneling and interference experiments in the quantum
Hall regime.We furthermore demonstrated, how fragile quantumHall states, like the
ν = 5/2 state, can be observed inQPCs using optimized growth and gating techniques.

Chapter11—Quasiparticle Tunneling in the Second Landau Level In this chap-
ter, we have investigated the most prominent FQH states at ν = 7/3, 8/3 and 5/2,
which are of great interest due to potential non-Abelian edge excitations. The bias
and temperature dependence in a weak QP tunneling regime could be well described
in terms of the chiral Luttinger liquid theory, which allowed us to extract charac-
teristic properties of the edge excitations. For the ν = 5/2 state, we found the best
agreement with the Abelian (3,3,1) and (1,1,3)-states, for different backscattering
strengths and in a finite range of magnetic fields. At ν = 8/3, the tunneling behavior
is best described by a particle-hole conjugate Laughlin state, while at ν = 7/3 a rapid
crossover to strong backscattering, where the theory is no longer applicable, occurs.
Here, none of the candidate states was in preferential agreement with the experiment.

Chapter12—Quantum Dots and Charge Detection Techniques Here we have
described how charge detection techniques can be optimized to allow for a time-
resolved detection of single electron charges in large quantum dots. With this, we
were able to reach substantially higher charge detector sensitivities than reported in
literature for dots of comparable size, making those techniques potentially interest-
ing for the study of Coulomb-dominated interferometers in the quantumHall regime.

Chapter13—Quantum Dots in the Quantum Hall Regime This chapter describes
transport experiments studying a large QD in a strong perpendicular magnetic field.
For a high transmission of the QD barriers, the system was found to act as a Fabry-
Pérot interferometer with a behavior governed by aCoulomb-dominatedmechanism.
When the barriers are in the tunneling regime, the transmission of the QD was found
to be influenced by the presence of compressible and incompressible regions inside
the QD. We could explain the behavior of the QD in analogy to the physics of a dou-
ble QD, formed by two edge states. The corresponding charge droplets are cyclically
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depopulated and are coupled to each other. We have extracted the charge stability
diagram of this system and could draw conclusions about the edge state geometry
within the QD.

Chapter14—Preliminary Results of Interference Experiments in the Second
Landau Level In this chapter, we have discussed experimental challenges that arise
for the implementation of interference experiments with the FQH states of the sec-
ond Landau level. We found that especially the gating of high mobility structures
is experimentally challenging. We described how a fully gapped ν = 5/2 state can
be observed in an interferometer, with an energy gap of more than 200mK. This
is an important experimental step for the implementation of an interferometry ex-
periment at ν = 5/2, where the FQH state should be fully gapped in the center of
the interferometer. This has to our knowledge not yet been demonstrated in literature.

Chapter15—Non-equilibrium Transport in Density Modulated Phases of the
Second Landau Level The last chapter discusses the transport properties of the
RIQH phases in the second LL. We found that a transition to an isotropic compress-
ible phase can be induced by applying large DC currents. This transition is markedly
different for electron and hole bubble phases, which might indicate that the particle-
hole symmetry in the second LL is broken or that the electron and hole bubble
phases are more complex than currently anticipated by theory. A possible breaking
of the particle-hole symmetry in the second LL might also have consequences for
our understanding of the ν = 5/2 FQH state.
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Appendices

A. Van der Pauw Measurement Method

The van der Pauw method allows the measurement of the sheet resistivity ρ� and
hence mobility of a sample with an arbitrary geometry (see Fig.A.1a). By switch-
ing the current direction the following resistances are measured: R12,34 = V34/I12
(see Fig.A.1a) and R23,41 = V41/I23. Using conformal mapping methods, van
der Pauw could show that the following relation holds independent of the sample
geometry [1]:

exp

(
− π

ρ�
R12,34

)
+ exp

(
− π

ρ�
R23,41

)
= 1 (A.1)

Then the sheet resistivity can be calculated:

ρ� = π

ln 2

R12,34 + R23,41

2
f
(
R12,34/R23,41

)
, (A.2)

where f is a correction factor that is plotted in Fig.A.1b. A higher precision can be
achieved by making use of reciprocity relations. The following conditions have to
be met in order to apply the van der Pauw method [2]:

• Contacts are located at the edge of the sample
• The sample has to be singly connected (i.e. no holes)
• Contacts have to be small in size compared to the sample size
• Sheet resistivity is homogeneous
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(a)

(b)

Fig. A.1 a Schematic setup for a van der Pauw measurement. b Correction factor f as a function
of R12,34/R23,41. Adapted from [2]

B. Four-terminal Measurements in a Hall-bar

Four-terminal Measurement Across a QPC In order to relate the measured
resistances in a Hall-bar measurement to the filling factors in bulk and QPC, we
can treat the schematic Hall-bar depicted in Fig.A.2 with Landauer-Büttiker formal-
ism. We assume that there are ν edge states in the bulk, each contributing e2/h to
the conductance. At the QPC, t edge states are transmitted while (ν − t) edge states
are reflected. Here, the current I is assumed to be flowing between contacts 1 and 4.

Applying the generalized multi-terminal Landauer-Büttiker formalism [3–5] to
this case, we can write:

⎛
⎜⎜⎜⎜⎜⎜⎝

I
0
0

−I
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

= e2

h

⎛
⎜⎜⎜⎜⎜⎜⎝

ν 0 0 0 0 −ν
−ν ν 0 0 0 0
0 −t ν 0 −(ν − t) 0
0 0 −ν ν 0 0
0 0 0 −ν ν 0
0 −(ν − t) 0 0 −t ν

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

V1
V2
V3
V4
V5
V6

⎞
⎟⎟⎟⎟⎟⎟⎠

(A.3)

From (A.3) we find: V1 = V2 and V4 = V5. Using Vk,l = Vk − Vl and choosing
without loss of generality V4 = 0, we obtain for the resistances Rm,n;k,l = Vk,l

Im,n
in

agreement with [6]:
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Fig. A.2 Hall-bar contact configuration. In the bulk, ν edge states contribute ν × e2
h to the con-

ductance. t edge states are transmitted through the QPC, while the rest (ν − t) is reflected

Fig. A.3 Currents in a weak tunneling setup. ISD + Itun is inserted via contact 1.A current Itun
is backscattered at the QPC and only the current ISD leaves the sample via contact 4, which is
grounded

Rxy := R1,4;3,5 = R1,4;6,2 = h

e2

(
1

ν

)
(A.4)

Rlong := R1,4;6,5 = R1,4;2,3 = h

e2

(
1

t
− 1

ν

)
(A.5)

R+
diag := R1,4;2,5 = h

e2

(
1

t

)
(A.6)

R−
diag := R1,4;6,3 = h

e2

(
2

ν
− 1

t

)
(A.7)
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When the transport in the system is quantized, the definition of an effective QPC
filling factor νQPC can be made via νQPC = t .

Tunneling conductance We now look at a QPC in a weak backscattering regime
(Fig.A.3). Here, pin 4 is grounded, while a current ISD + Itun is inserted at contact
1. At the QPC, the current Itun (which is small compared to ISD) is reflected.

The tunneling conductance can be derived analog to [7]: The voltage drop diag-
onally across the QPC is given by:

V2,5 = Rxy
(
ISD + Itun(V2,5)

)
(A.8)

where the tunneling current Itun depends on the potential difference V2,5. The dif-
ferential diagonal resistance is measured and using (A.8) can be written as:

R+
diag =

(
∂V2,5

∂ ISD

)
=

(
∂ ISD
∂V2,5

)−1

=
(

∂

∂V2,5

(
V2,5

Rxy
− Itun(V2,5)

))−1

(A.9)

= Rxy

1 − Rxy

(
∂ Itun
∂V

)
|V2,5

(A.10)

In the weak tunneling approximation, we have V2,5 ≈ Rxy ISD, where we have
used ISD + Itun ≈ ISD. Using this and (A.9), we can now express the tunneling
conductance gtun as:

gtun =
(

∂ Itun

∂V

) ∣∣∣∣
V =Rxy ISD

≈
(

∂ Itun

∂V

) ∣∣∣∣
V2,5

(A.11)

= R+
diag − Rxy

R+
diagRxy

≈ R+
diag − Rxy

R2
xy

(A.12)

This result is used to extract the tunneling conductance in the weak tunneling exper-
iments ([8, 9] and Chap.11). We note that an exact measurement of the tunneling
conductance is possible by grounding contacts 4 and 6 simultaneously [10, 11]. Due
to the cold grounding scheme used for our experiments (see Chap.7) we did not use
this measurement scheme to prevent possible thermovoltage effects.

C. Calculation of the Probability Density Function
of Residuals (for Chap. 11)

The residuals {δk,l} of measurement points {xk,l} (measured at Tk at IDC,l ) are given
by:

δk,l = x̃k,l − g∞ − Agtun(Tk, IDC,l , e∗/e, g) (A.13)

where x̃k,l = xk,l − µ are offset measurement points, such that δk,l = 0.

http://dx.doi.org/10.1007/978-3-319-21051-3_7
http://dx.doi.org/10.1007/978-3-319-21051-3_11
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Assuming a statistical error, the residuals follow a Gaussian distribution:

p
({δi }|σ, g, e∗/e, A, g∞

) ∝ exp

⎛
⎝− 1

2σ2

∑
k,l

δ2k,l

⎞
⎠ (A.14)

After marginalization of the standard deviation σ, a Student-t distribution is
obtained for the residuals [12]:

p
(
g, e∗/e, A, g∞|{δi }

) ∝
⎛
⎝∑

k,l

δ2k,l

⎞
⎠

− N−1
2

= 1(∑
k,l

(
x̃k,l − g∞ − Agtun(Tk, IDC,l , e∗/e, g)

)2)
N−1
2

= 1(
α − 2g∞β − 2Aγ + Ng2∞ + 2g∞ Aδ + A2ε

) N−1
2

Here, we have used:

N =
∑
k,l

1

α =
∑
k,l

x̃2k,l

β =
∑
k,l

x̃k,l

γ =
∑
k,l

x̃k,lgtun(Tk, IDC,l , e∗/e, g)

δ =
∑
k,l

gtun(Tk, IDC,l , e∗/e, g)

ε =
∑
k,l

g2tun(Tk, IDC,l , e∗/e, g)
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With this:

p
(
g, e∗/e, A, g∞|{δi }

) ∝ 1

(
Ng2∞

) N−1
2

(
1 + 1

2
N−1

N (α−2g∞β−2Aγ+2g∞ Aδ+A2ε)
N−1
2 g2∞

) N−1
2

≈
(

Ng2∞
)− N−1

2
exp

(
− 1

2g2∞
N − 1

N
(α − 2g∞β − 2Aγ + 2g∞ Aδ + A2ε)

)

Here, the Student-t distribution has been approximated by an exponential expression
for the limit of large N . To the end, we are looking for the posterior probability
density function:

p
(
g, e∗/e|{δi }

) =
∞∫

−∞

∞∫
−∞

p
(
g, e∗/e, A, g∞|{δi }

)
d Adg∞ (A.15)

The first integration can be computed analytically, yielding:

∞∫
−∞

p
(
g, e∗/e, A, g∞|{δi }

)
d A ∝

√
2πN

3
2− N

2 |g∞| g1−N∞ exp

(
(N−1)

(−αε+γ2+δ2g2∞+2βg∞ε−2γδg∞
)

2g2∞ Nε

)
√

(N − 1)Nε
(A.16)

A second, numerical integration over g∞ yields the desired result, p (g, e∗/e|{δi }).

D. ν = 5/2 Sample Fabrication Recipe

The following process is a based on the standard photolithography recipe of the
Ensslin group. Somemodifications were made to minimize degradation of the 2DEG
mobility for experiments at ν = 5/2. Other processes which seem to yield good results
can for example be found in [13, 14].

Cleave

• Typical sample size: 4.5mm × 4.5mm
• Leave at least 300µm space from the structure to the edge

Initial cleaning

• Leave sample for approx. 3min in acetone, 3min in isopropanole, rinse for 30 s in
water. No ultrasound, samples break easily! Blow dry with N2



Appendices 299

• Heat for 2min, 120 ◦C, to remove water vapor and to prevent sticking problems
of the resist. This might otherwise cause underetching.

Mesa lithography

• Spin with resist AZ5214E: 3 s at 2000 rpm, 45s at 4500 rpm, use minimal ramp
time

• Bake 2min at 90 ◦C
• Align mesa structure with Karl Süss MJB3 mask aligner, soft contact mode. Illu-
minate for 12 s with CH2, 10.0mW/cm2 (at λ = 405nm).

• Develop in MF319, 30 s. Rinse in water, 20 s.
• Check result in microscope. There should be no resist residues outside the mesa.

Mesa etching

• Etch using highly dilute Piranha: H2O:H2O2:H2SO4 = 100 : 3 : 3
• Calibrate etching rate with dummy chip. Typical rate: 2–3nm/s (depends on age
of the etching solution).

• Target etching depths: For single side-doped heterostructures: depth of doping
plane, for double-side doped structures: 2DEG depth.1

• After etching: rinse in water, at least 1min
• Resist removal: leave sample for approx. 3min in warm acetone (50 ◦C), 3min in
warm isopropanole (50 ◦C), rinse for 30 s in water. No ultrasound! Blow dry with
N2

• Measure etching depth with step profiler. Do not scratch over vital parts of the
mesa! Ideally measure at alignment markers.

Contact lithography

• Clean again: leave sample for approx. 3 min in acetone, 3 min in isopropanole,
rinse for 30 s in water. No ultrasound! Blow dry with N2

• Spin with resist AZ5214E: 3 s at 2000 rpm, 45 s at 4500 rpm, use minimal ramp
time

• Bake 2 min at 90 ◦C
• Align contact structure with Karl Süss MJB3 mask aligner, soft contact mode.
Illuminate for 3 s with CH2, 10.0 mW/cm2.

• Bake 2 min at 115 ◦C
• Illuminate whole sample surface for 30 s with CH2, 10.0 mW/cm2.
• Develop in MF319, 30 s. Rinse in water, 20 s.
• Check result in microscope. There should be no resist residues inside the contact
pads. (Residues burn during the contact annealing and degrade the 2DEG)

Au/Ge/Ni evaporation

• Dip etch to remove oxide layers before evaporation: 3 s in HCl (38%), rinse 60 s
in water, blow dry with N2.

1Comment: if the mesa structure is too high, it is difficult to evaporate connected gate leads over
the edge.
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• Lose no time and try to bring the samples in the evaporator vacuum as fast as
possible!

• Evaporate eutectic mixture with Plassys II: (Ge/Au/Ge/Au/Ni/Au) (52.8/107.2/
52.8/107.2/80/100nm).

• Liftoff in warm acetone (50 ◦C). Rinse in water, 60 s.
• Clean again thoroughly: leave sample for approx. 3 min in warm acetone (50 ◦C),
3 min in warm isopropanole (50 ◦C), rinse for 30 s in water. No ultrasound! Blow
dry with N2

• Check under microscope if the surface is sufficiently clean. This is crucial before
the annealing step.

• Leave for 30 min in Ultra Violet Ozone Cleaning system (UVOCS).

Au/Ge/Ni annealing

• Use J.I.P.Elec JetFirst 100 rapid thermal annealing oven.
• Important: use carrier spacer to avoid scratching the sample surface. The sample
is covered by the upper part of the carrier.

• First step: Flush chamber, then leave 5 min at 120 ◦C to remove water vapor, 200
sccm H2/N2 (5%) flow

• Second step: 5 min at 500 ◦C, 200 sccm H2/N2 (5 %) flow
• Ramp speeds: 60 s–120 ◦C, 40 s from 120 ◦C to 450 ◦C, 20 s from 450 ◦C to 500

◦C to avoid overshoot

Gate lead lithography

• Clean again: leave sample for approx. 3min in acetone, 3min in isopropanole,
rinse for 30 s in water. No ultrasound! Blow dry with N2

• Spin with resist AZ5214E: 3 s at 2000 rpm, 45s at 4500 rpm, use minimal ramp
time

• Bake 2min at 90 ◦C
• Align gate lead structures with Karl Süss MJB3 mask aligner, soft contact mode.
Illuminate for 3 s with CH2, 10.0mW/cm2.

• Bake 2min at 115 ◦C
• Illuminate whole sample surface for 30 s with CH2, 10.0mW/cm2.
• Develop in MF319, 30 s. Rinse in water, 20 s.
• Check result in microscope

Gate lead evaporation

• Evaporate topgate leads with Plassys II: (Ti/Au) (10/80nm)
• Liftoff in warm acetone (50 ◦C). If the gold film does not flake by itself, use a
pipette and blow carefully acetone to the surface (while the sample remains fully
in the liquid). Rinse in water, 60 s.

• Before e-beam lithography, again thoroughly clean the surface: leave sample for
approx. 3min in warm acetone (50 ◦C), 3min in warm isopropanole (50 ◦C), rinse
for 30 s in water. No ultrasound! Blow dry with N2
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E-beam lithography

• Spin with PMMA 950K in pure anisol, 45 s at 6000 rmp, minimal ramp time.
• Bake 5min at 180 ◦C.
• E-beam exposure (RAITH150, 30kV): aperture 10, doses: 2400pC/cm (single
pixel line) or 280µC/cm2 (polygons).

• Develop in MIBK:isopropanole 1:3, 60 s, rinse in isopropanole, 30 s.
• Check under microscope (µm-sized structures should be visible).

E-beam gate evaporation

• Evaporate e-beam leads with Plassys II: (Ti/Au) (2/28nm)
• Liftoff in warm acetone (50 ◦C). If the gold film does not flake by itself, use a
pipette and blow carefully acetone to the surface (while the sample remains fully
in the liquid). In the worst case, quickly use ultrasound (<1min, minimum power).
Rinse in water, 60 s.

• Clean again: leave sample for approx. 3min in acetone, 3min in isopropanole,
rinse for 30 s in water. No ultrasound! Blow dry with N2

Bonding

• Cleave samples if necessary.
• Glue sample in chip carrier using conductive silver. Heat to 120 ◦C for approx.
2min to dry.

• Bond with aluminum wire. Gold offers a better thermal conductance, but sticks
much worse. The risk of breaking the sample is just too high!

E. Silver Annealing Process

The silver cold finger has been brazed fromdifferent parts using non-superconducting
solder. Subsequently, it has been thermally annealed, in order to improve the thermal
conductivity. The respective processes are shown in the following (Fig.A.4):
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Fig. A.4 a Silver brazing process, b Silver annealing process, 6h at 820 ◦C

F. LED Illumination Recipe

The following procedure was used to illuminate samples made from the wafer
D110726B:
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Fig. A.5 2DEG electron density as a function of time for an LED illumination process at T = 4K.
(Sample D110726B-3B)

• Setup: use redLED,model numberHLMP-3201.A constant current is appliedwith
a Yokogawa current/voltage source. Distance from LED to sample: approximately
5–10mm

• Cool sample to 4K.
• Set B-field to 100mT and measure the Hall resistance to monitor the density.
• t = 0: Open pin connection from LED to Yokogawa, ILED = 0nA.
• t = 30 s: Set ILED = 100nA.
• t = 80 s: Set ILED = 300nA.
• t = 230 s: Set ILED = 500nA.
• t = 290 s: Set ILED = 700nA.
• The density increases now quickly (see Fig.A.5). Wait until the density has satu-
rated.

• t = 1000 s: slowly set ILED to zero.
• t = 1280 s: close LED pin.
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