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Preface

As M.V. Fedoryuk, a renowned expert in asymptotic analysis in the 1980s, once
lamented ([F]), global asymptotic analysis of higher order differential equations was
thought to be impossible to construct in his days. At such a time H.L. Berk, W.M.
Nevins, and K.V. Roberts published a remarkable paper in J. Math. Phys., 23
(1982), which shows that the traditional Stokes geometry cannot globally describe
the Stokes phenomena of WKB solutions of higher order differential equations; a
“new” Stokes curve is necessary for the complete description. Later T. Aoki,
T. Kawai, and Y. Takei discovered the notion of a virtual turning point by applying
microlocal analysis to Borel transformed WKB solutions; a “new” Stokes curve is a
Stokes curve emanating from a virtual turning point. An important point is that a
virtual turning point is intrinsically defined in the sense that it does not depend on
the argument of the large parameter contained in the equation. At the same time, as
the qualifier “virtual” indicates, a virtual turning point cannot be detected by a
cosmetic study of ordinary WKB solutions; we need the conversion of the study to
the one on a different space, the Borel plane on which the Borel transformed WKB
solutions are analyzed. This is the reason why a virtual turning point was not found
before the advent of the exact WKB analysis, the analysis of Borel transformed
WKB solutions.

The aim of the monograph is to explain the core part of this novel and important
notion so that it may be appreciated not only by mathematicians but also physicists
and engineers and be practically used in concrete problems. To be more concrete,
we present in Chap. 2 several concrete figures of Stokes geometry related to some
higher order Painlevé equations (the Noumi-Yamada system), and we analyze in
Chap. 3 the non-adiabatic transition problems for three-levels (the generalized
three-level Landau-Zener model). In both subjects, the reader will be impressed by
the importance of the role of virtual turning points in their analysis. We also note
that the employment of graph-theoretic notions in Chap. 2 is a natural and rea-
sonable approach in view of the practical way of locating virtual turning points
(Sect. 1.6). The results reported in Chaps. 2 and 3 are still in progress; for example,
much remains to be done in investigating the role of the total value integral of a tree
(Sect. 2.4) in the study of the Noumi-Yamada system, and the more precise study of
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connection coefficients with the help of the exact steepest descent method
(Appendix) has only just been instigated. We hope to come back to these problems
in the future, but we feel it important to publish this short monograph now so that
virtual turning points may find their proper place in the tool box of a mathematical
scientist.

In ending this preface we would like to thank several people for their help
without which this could not have been completed in this form. The most important
person is Prof. T. Aoki, whose collaboration with two of us (T.K. and Y.T.) is the
essential core of this monograph. We also thank sincerely Prof. T. Nishimoto, who
kindly called the attention of (some of) Aoki, Kawai, and Takei to the paper [BNR]
in a private conversation at the occasion of an RIMS conference; it was really an
excellent instruction. Further, we are gratefully indebted to Dr. Shinji Sasaki for
having allowed us to include in Sects. 3.2 and 3.3 his unpublished results on the
effect of the virtual turning points in calculating the transition probabilities for
three-levels. Therewith, we are most obliged to him for having drawn many figures
together with several important comments on the draft of this monograph. The
heartiest thanks of one of us, T. Kawai, also goes to Ms. K. Kohno for her excellent
typing.

Last but not least, we sincerely thank Mr. M. Nakamura of Springer Japan for
having invited us to write this monograph.

Kyoto Naofumi Honda
Takahiro Kawai

Yoshitsugu Takei
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Chapter 1
Definition and Basic Properties of Virtual
Turning Points

As we mentioned in Preface, global asymptotic analysis of higher order differential
equations was thought impossible to construct in 1980s among specialists in asymp-
totic analysis. In hindsight we find it reasonable, because neither new Stokes curves
nor virtual turning points were not in their toolboxes. At that time, physicists H.L.
Berk et al. observed in [BNR] that the totality of ordinary Stokes curves was insuffi-
cient to describe the Stokes phenomena forWKB solutions of higher order equations
and that “new” Stokes curves were needed. Unfortunately it seems that the impor-
tance of their observation was not properly appreciated by mathematical specialists
in asymptotic analysis as the publication date of the survey article [F] indicates. We
believe the reason was that they were not familiar with the Borel transformation
depending on parameters, whereas such notion is crucially important in formulating
the notion of virtual turning points. Thus we begin our discussion by recalling the
core part of “WKB analysis based upon the Borel transformation with parameters” of
the Schrödinger equation, a typical second order differential equation. Such analysis
is usually referred to as the “exact WKB analysis”; here the adjective “exact” is used
in contrast to “asymptotic”.

1.1 A Brief Survey of the Exact WKB Analysis of
the Schrödinger Equation

In this section we show the core part of the exact WKB analysis of the following
Eq. (1.1.1), the one-dimensional stationary Schrödinger equation:

(
d2

dx2
− η2Q(x)

)
ψ(x, η) = 0, (1.1.1)

where the potential Q(x) is a polynomial and η is a large parameter. See [KT2] for
the details. To fix the situation we assume η > 0 at the beginning, but eventually

© The Author(s) 2015
N. Honda et al., Virtual Turning Points, SpringerBriefs in Mathematical Physics,
DOI 10.1007/978-4-431-55702-9_1
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2 1 Definition and Basic Properties of Virtual Turning Points

η may be allowed to be a complex number. We use a large parameter, not a small
parameter like the Planck constant, as it naturally fits in with the framework of the
Borel transformation with parameters. WKB analysis of (1.1.1) begins by giving the
definition of a WKB solution ψ of (1.1.1); it is a formal solution that has the form

ψ(x, η) = exp

(∫ x

S(x, η)dx

)
, (1.1.2)

where S(x, η) has the following form

S(x, η) = ηS−1(x) + S0(x) + η−1S1(x) + · · · . (1.1.3)

It is clear that S(x, η) is a solution of the following Riccati equation

S2 + d S

dx
= η2Q(x), (1.1.4)

and an important point is that S j (x) ( j ≥ 0) is uniquely determined in a recursive
manner once we fix

S−1(x) = ±√Q(x). (1.1.5)

Furthermore, if we set

Sodd =
∑
l≥0

S2l−1(x)η−2l+1 (1.1.6)

and

Seven =
∑
k≥0

S2k(x)η−2k, (1.1.7)

the comparison of the odd degree (in η−1) part of (1.1.4) entails

Seven = − 1

2

(∂Sodd/∂x)

Sodd
= − 1

2

∂

∂x
log Sodd. (1.1.8)

Hence the right-hand side of (1.1.2) may be rewritten as

1√
Sodd

exp

(∫ x

Sodd dx

)
. (1.1.9)
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It is also evident by the way of constructing S j recursively that S2l−1 is a sum of
terms of the form

ap(x)
(√

Q(x)
)2p−1

, (1.1.10)

and hence the sign in (1.1.5) is shared also by S2l−1 (l ≥ 1). Therefore

ψ±(x, η) = 1√
Sodd

exp
(±
∫ x

x∗
Sodd dx

)
(1.1.11)

are linearly independent solutions of (1.1.1), where x∗ is an appropriately fixed
reference point. It is also clear ψ±(x, η) may be rewritten as

exp

(
±η

∫ x

x∗

√
Q(x) dx

)⎛⎝ ∞∑
j=0

ψ±, j (x)η−( j+1/2)

⎞
⎠ (1.1.12)

for some ψ±, j (x). WKB solutions expressed in this form are convenient to analyze
and often used in our subsequent discussion.

It seems that WKB solutions have not been very popular among mathematicians
despite their clean definition, and we imagine that one reason is that WKB solu-
tions are divergent in general. But, as several pioneering works ([BW, V, S] and
references cited therein) of physicists and chemists have shown, the divergence of
WKB solutions naturally leads to the algebraic analysis of WKB solutions via the
Borel transformation; Borel transformed WKB solutions define analytic functions
depending on the “parameter” x . To concretize this statement, let us first recall the
definition of the Borel transformation and the Borel resummation of WKB solutions
given in the form (1.1.12). First, the Borel transform ψ±,B(x, y) is, by definition,

∑
j≥0

ψ±, j (x)

Γ ( j + 1/2)
(y + y±(x)) j−1/2, (1.1.13)

where

y±(x) = ±
∫ x

x∗

√
Q(x) dx . (1.1.14)

It is known (e.g. [AKT1]) that ψ+,B(x, y) (resp., ψ−,B(x, y)) is convergent near
y = −y+(x) (resp.,−y−(x)) when Q(x) �= 0 and defines an analytic function there.
Furthermore it has recently been proved [KoS] that ψ+,B(x, y) can be analytically
continued to a neighborhood of

{
y ∈ C ; Im(y + y+(x)) = 0 and Re(y + y+(x)) > 0

}
(1.1.15)
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and that
∫ ∞

−y+(x)

exp(−yη)ψ+,B(x, y)dy (1.1.16)

is well-defined for η � 1, unless ψ+,B(x, y) has singularities on (1.1.15), and a
similar result also holds forψ−,B . When the integral (1.1.16) is well-defined, we say
it is the Borel sum of ψ+(x, η).

Remark 1.1.1 (i) The integration path of the integral (1.1.16) is a half line parallel
to the real axis; this is a counterpart of the fact arg η = 0.
(ii) We usually abbreviate the expression “Borel resummation” to “Borel summa-
tion”.
(iii) Borel resummation is a classical notion in mathematics, but one important novel
feature of the Borel sum of a WKB solution is that it depends on the “parameter” x .
At the same time one can readily confirm that ψ±,B(x, y) satisfies

(
∂2

∂x2
− Q(x)

∂2

∂y2

)
ψ±,B(x, y) = 0 (1.1.17)

outside {Q(x) = 0}, and the core of our analysis in this book is the study of the
Eq. (1.1.17) and its counterpart for higher order equations,where the roles of variables
x and y are symmetric. Parentheticallywe note thatmathematicians usually use (ξ, η)

as the dual variable of (x, y), and this is the reason we use the symbol η to denote
the large parameter in (1.1.1).

Let us now recall some terminologies in WKB analysis.

Definition 1.1.1 (i) A zero of Q(x) is called a turning point of the Eq. (1.1.1).
(ii) A Stokes curve emanating from a turning point a is, by definition, the curve
defined by

Im
∫ x

a

√
Q(x) dx = 0. (1.1.18)

In what follows we shed a new light upon these traditional notions from the
viewpoint of the exactWKB analysis, and our discussion naturally leads to the notion
of virtual turning points for higher order equations. To begin with, we consider the
case where the potential Q(x) is x . In this case Eq. (1.1.1) is normally referred to as
the Airy equation. For the Airy equation we can readily confirm S j in (1.1.3) has
the form

S j = c j x−1−3 j/2 (c j : a constant), (1.1.19)
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and, by making use of this expression, we obtain

ψ+,B(x, y) =
√
3

2
√

π

1

x
s−1/2F

(
1

6
,
5

6
,
1

2
; s

)
, (1.1.20)

ψ−,B(x, y) =
√
3

2
√

π

1

x
(s − 1)−1/2F

(
1

6
,
5

6
,
1

2
; 1 − s

)
, (1.1.21)

where

s = 3y

4x3/2
+ 1

2
(1.1.22)

and F(α, β, γ ; s) denotes Gauss’ hypergeometric function. (See [KT2, Sect. 2.2] for
the detailed computation. We note that the origin is chosen as the endpoint in the
integral (1.1.11), which is legitimate as a complex contour integral. We will explain
the details later in a general context after Theorem1.1.2.) Thanks to this explicit
expression of ψ±,B(x, y) we observe the following:

Fact A. ψ±,B(x, y) can be analytically continued to all over the y-plane with singu-
larities described in Fact B.

Fact B. ψ+,B(x, y) (resp., ψ−,B(x, y) ) has its singularity at s = 1, that is, y =
−y−(x) (= y+(x)) besides its obvious singularity at s = 0, that is, y = −y+(x)

(resp., at s = 0 besides its obvious singularity at s = 1).

Fact C. The growth order of ψ±,B(x, y) near y = ∞ is tame.

Fact B implies that the Borel summation of the series ψ+(x, η) in η−1, which is
given by the integral (1.1.16), may break down when the “parameter” x satisfies

Im
2

3
x3/2 = 0. (1.1.23)

We note that, as we are studying the case where Q = x , (1.1.23) is nothing but

Im
∫ x

0

√
Q dx = 0, (1.1.24)

that is, the defining equation of a Stokes curve emanating from a turning point
{x = 0}. This is our interpretation of a Stokes curve; a curve along which the Borel
summation may break down.

Next we let the “parameter” x move so that we may see how the Borel sum
ψ+(x, η) changes when x crosses the Stokes curve. Thus we encounter the con-
figurations of Fig. 1.1 that describes the relative location of the path of integration
in (1.1.16) and the singularities of its integrand. In Fig. 1.1 we set x = 1 + iε
( |ε| 	 1 ); as we change ε from a negative value to a positive one, the singular
point {y = 2x3/2/3} of the integrand hits the path of integration at ε = 0. Hence to
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(a)

Rey

Imy

×

×

>
−2
3

x3/2

2
3

x3/2

(b)

Rey

Imy

× × >

(c)

Rey

Imy

×

×>
γ̃

(d)

Rey

Imy

×

×

>

>
γ0

γ

Fig. 1.1 Relative locations of singularities of the integrand and the path of integration of (1.1.16)

perform the analytic continuation of the Borel sumψ+(x, η) from the region {ε < 0}
to {ε ≥ 0} we have to deform the path of integration to find γ̃ in Fig. 1.1c, which is
allowed by Cauchy’s theorem. We further decompose it as γ + γ0 in Fig. 1.1d, again
by using Cauchy’s theorem, where γ0 is a path that encircles the half line l0 given by

{(x, y) ∈ C
2; Im y = Im (2x3/2/3), Re y ≥ Re (2x3/2/3)}. (1.1.25)

Since the integral along the path γ gives the Borel sum ψ+(x, η) for ε > 0, we find
that the Borel sum ψ+(x, η) changes by

∫
γ0

exp(−yη)ψ+,B(x, y)dy (1.1.26)

as x crosses the Stokes curve. Thus our next task is to describe the discontinuity
(Δl0ψ+,B)(x, y), i.e., the difference ofψ+,B(x, y) evaluated above l0 and that below
l0. Fortunately, by usingGauss’ connection formula for hypergeometric functions,we
find the following discontinuity formula for the Borel transformed WKB solutions:

(Δl0ψ+,B)(x, y) = iψ−,B(x, y). (1.1.27)

(See [KT2, Sect. 2.2] for the detailed computation.) Since
∫

l0
exp(−yη)ψ−,B(x, y)dy (1.1.28)



1.1 A Brief Survey of the Exact WKB Analysis of the Schrödinger Equation 7

is theBorel sumofψ−(x, η), we thus find theBorel sumψ+(x, η) acquires iψ−(x, η)

as x crosses the Stokes curve from {ε < 0} to {ε > 0}. We note that in the current
configuration the point {y = −2x3/2/3} is located far away from the path of integra-
tion l0 that appears in the definition of the Borel sum ψ−(x, η), it is kept intact even
when x crosses the Stokes curve in question. We also note that it is exponentially
small compared with ψ+(x, η) as l0 starts from {y = 2x3/2/3} with x = 1 + iε
(|ε| 	 1). These phenomena are what we call “Stokes phenomena of WKB solu-
tions” in the exact WKB analysis. We emphasize that all relations we have used are
exact, versus asymptotic. At the same time, the reader might imagine that such exact
relations would be consequences of the simple form of the Schrödinger equation in
question, i.e.,

(
d2

dx2
− η2x

)
ψ(x, η) = 0. (1.1.29)

Fortunately we can find a counterpart of the exact relation (1.1.27) for a general
Schrödinger equation

(
d2

dx̃2
− η2 Q̃(x̃)

)
ψ̃(x̃, η) = 0 (1.1.30)

in a neighborhood of its simple turning point x̃ = a; here a simple turning point is,
by definition, a simple zero of Q̃(x̃), that is, a satisfies

Q̃(a) = 0,
d Q̃

dx̃

∣∣∣
x̃=a

�= 0. (1.1.31)

An important step in finding such an exact relation is to show Theorem1.1.1; with
the notation in it, we call the transformation

x̃ 
−→ x(x̃, η) (1.1.32)

a formal coordinate transformation.AsSilverstonefirst observed in [S], the chemistry
of the formal coordinate transformation and the Borel summation is excellent. An
important point is that a formal coordinate transformation determines an integro-
differential operator via the Borel transformation, as was emphasized in [AKT5].

Theorem 1.1.1 ([KT2, Theorem2.15]) Let x̃ = 0 be a simple turning point of the
Schrödinger equation (1.1.30). Then we can find a formal series

x(x̃, η) = x0(x̃) + x1(x̃)η−1 + x2(x̃)η−2 + · · · , (1.1.33)

which satisfies the conditions (1.1.34)–(1.1.38) below:
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There exists a neighborhood Ũ of x̃ = 0 and x j (x̃) is holomorphic on Ũ . (1.1.34)

Q̃(x̃) =
(

∂x

∂ x̃

)2
x(x̃, η) − η−2

2
{x; x̃} (1.1.35)

holds, where {x; x̃} stands for the Schwarzian derivative, i.e.,

∂3x/∂ x̃3

∂x/∂ x̃
− 3

2

(
∂2x/∂ x̃2

∂x/∂ x̃

)2
.

dx0
dx̃

�= 0 on U. (1.1.36)

x2p+1(x̃) (p ≥ 0) identically vanishes. (1.1.37)

For any compact set K in Ũ there exist some constants AK and CK for which

sup
x̃∈K

|x j (x̃)| ≤ AK C j
K j ! (1.1.38)

holds.

Referring the reader to [KT2] for the proof, we concentrate our attention on
explaining how this result is related to WKB analysis. First of all, we note the
following

Theorem 1.1.2 In the situation assumed in the precedent theorem, let us consider
the following two Riccati equations:

S̃2 + ∂ S̃

∂ x̃
= η2 Q̃(x̃), (1.1.39)

S2 + ∂S

∂x
= η2x . (1.1.40)

Assume that the branches of S̃−1 =
√

Q̃(x̃) and S−1 = √
x are chosen so that

S̃−1(x̃) = S−1(x0(x̃))
dx0
dx̃

. (1.1.41)

Then we find

S̃(x̃, η) =
(

∂x

∂ x̃

)
S(x(x̃, η), η) − 1

2

∂2x/∂ x̃2

∂x/∂ x̃
. (1.1.42)
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Remark 1.1.2 Comparing the degree 0 part in (1.1.35) we find

Q̃(x̃) =
(

dx0
dx̃

)2
x0(x̃). (1.1.43)

Hence the condition (1.1.41) concerns only with the signs.

We note that (1.1.42) combined with (1.1.37) entails the following

Corollary 1.1.1 We find

S̃odd(x̃, η) =
(

∂x

∂ x̃

)
Sodd(x(x̃, η), η). (1.1.44)

Proof of Theorem 1.1.2. In what follows we often abbreviate ∂x/∂ x̃ etc. to x ′ etc. It
follows from (1.1.40) that we obtain

(
x ′S(x(x̃, η), η) − 1

2

x ′′

x ′

)2
+
(

x ′S(x(x̃, η), η) − 1

2

x ′′

x ′

)′

= x ′2S(x(x̃, η), η)2 − x ′′S(x(x̃, η), η) + 1

4

x ′′2

x ′2

+ x ′′S(x(x̃, η), η) + x ′2
(

∂S

∂x

)
(x(x̃, η), η) + 1

2

x ′′2

x ′2 − 1

2

x ′′′

x ′

= x ′2η2x(x̃, η) − 1

2
{x; x̃}. (1.1.45)

Hence (1.1.35) implies

(
x ′S − 1

2

x ′′

x ′

)2
+
(

x ′S − 1

2

x ′′

x ′

)
= η2 Q̃(x̃), (1.1.46)

that is, we find

T =
def

x ′S(x(x̃, η), η) − 1

2

x ′′

x ′ (1.1.47)

satisfies (1.1.39). On the other hand, (1.1.41) guarantees the degree 1 (in η) part T−1
of T coincides with S̃−1. Hence, by the uniqueness of solutions of the form (1.1.3)
of the Riccati equation, we find

T = S̃. (1.1.48)

This completes the proof of Theorem1.1.2.

It is clear from the above proof that (1.1.35) follows from (1.1.42). In this sense,
the existence of formal series (1.1.33) is, in essence, equivalent to the existence of
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Fig. 1.2 The path of
integration used to define the
integral (1.1.50); the wiggly
line designates a cut that
fixed the branch of x̃ p−1/2

×
x̂

x̃
0
<

>

an appropriate transformation of solutions of the Riccati equation associated with
the Schrödinger equation. Hence it is natural to expect that some transformation of
WKB solutions may be determined by the series (1.1.33). However, some ambiguity
of multiplicative constant is anticipated in such relations because of the freedom in
choosing the endpoint x∗ of the integral in (1.1.11). Fortunately, thanks to (1.1.10),
we find that S̃2l−1(x̃) has the form

∑
p

ap(x̃)x̃ (2p−1)/2 (1.1.49)

with holomorphic functions ap(x̃) near the origin, which is, by the assumption, a
simple turning point, i.e., a simple zero of the potential Q̃(x̃). This fact enables us
to choose the origin as the endpoint x∗ of the integral in (1.1.11); we define

∫ x̃

0
S̃2l−1(x̃)dx̃ = 1

2

∫ x̃

x̂
S̃2l−1(x̃)dx̃ (1.1.50)

by using the contour integral on the Riemann surface of
√

Q̃(x̃) near the origin, as
is shown in Fig. 1.2. Here the integral in the right-hand side of (1.1.50) is given by
the integration along a path from x̂ to x̃ , where x̂ designates the point corresponding
to x̃ on a sheet of the Riemann surface which is different from the sheet on which x̃
lies. Then, by choosing the origin, i.e., the simple turning point in question, as the
endpoint of the integral in (1.1.11) both in ψ±(x, η) and in ψ̃±(x̃,η), we obtain the
following

Theorem 1.1.3 Let us consider the problem in the same situation as in Theo-
rem1.1.1, and assume that WKB solutions ψ±(x, η) and ψ̃±(x̃,η) are normalized
by choosing the origin as the endpoint of the integral in (1.1.11). Then we find

ψ̃±(x̃, η) =
(

∂x

∂ x̃

)−1/2

ψ±(x(x̃, η), η). (1.1.51)

Proof In view of (1.1.44) together with the choice (1.1.41) of the branches of the top
degree part of S and S̃, we find it is sufficient to show

∫ x̃

0
S̃odd(x̃, η)dx̃ =

(∫ x

0
Sodd(x, η)dx

) ∣∣
x=x(x̃,η)

. (1.1.52)
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First we note that (1.1.44) entails

∫ x̃

0
S̃odd(x̃, η)dx̃ = 1

2

∫ x̃

x̂
S̃odd(x̃, η)dx̃

= 1

2

∫ x̃

x̂
Sodd(x(x̃, η), η)

dx(x̃, η)

dx̃
d x̃ . (1.1.53)

To rewrite the right-hand side of (1.1.53) further, let us introduce

z(x̃, η) = x(x̃, η) − x0(x̃). (1.1.54)

Then, by using the Taylor expansion, we find

Sodd(x(x̃, η), η)
dx(x̃, η)

dx̃
=
⎛
⎝∑

n≥0

∂n Sodd
∂xn

(x0(x̃), η)
zn

n!

⎞
⎠(dx0

dx̃
+ dz

dx̃

)

=
∑
n≥0

∂n Sodd
∂xn

(x0(x̃), η)
zn

n! x ′
0

+
∑
n≥0

∂n Sodd
∂xn

(x0(x̃), η)
( zn+1

(n + 1)!
)′

. (1.1.55)

Here, and in what follows, x ′
0 etc. stand for dx0/dx̃ etc. To apply the technique of

integration by parts to the second sum in the right-hand side of (1.1.55), we note
the following fact: the holomorphy of x0(x̃) on a neighborhood of the origin entails
that the point x0(x̂), which is reached by x0(x̃) as x̃ moves along the contour (in the
reverse direction) in Fig. 1.2, is the point that corresponds to x0(x̃) on the sheet of
the Riemann surface of

√
x which is different from the sheet on which x0(x̃) lies.

This fact then implies

1

2

∫ x̃

x̂

d

d x̃

(
∂n Sodd
∂xn (x0(x̃), η)

zn+1

(n + 1)!
)

dx̃

= ∂n Sodd
∂xn

(x0(x̃), η)
zn+1

(n + 1)! . (1.1.56)

Hence it follows from (1.1.55) that we find the following:

1

2

∫ x̃

x̂
Sodd(x(x̃, η), η)

dx(x̃, η)

dx̃
d x̃

= 1

2

∫ x̃

x̂

(∑
n≥0

∂n Sodd
∂xn

(x0(x̃), η)
zn

n! x ′
0(x̃)
)

dx̃
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+
[∑

n≥0

∂n Sodd
∂xn

(x0(x̃), η)
zn+1

(n + 1)!

− 1

2

∫ x̃

x̂

(∑
n≥0

∂n+1Sodd
∂xn+1 (x0(x̃), η) x ′

0(x̃)
zn+1

(n + 1)!
)

dx̃
]

= 1

2

∫ x̃

x̂

[(∑
n≥0

∂n Sodd
∂xn

(x0(x̃), η)
zn

n! x ′
0(x̃)
)

−
(∑

m≥1

∂m Sodd
∂xm

(x0(x̃), η)
zm

m! x ′
0(x̃)
)]

dx̃

+
∑
n≥0

∂n Sodd
∂xn

(x0(x̃), η)
zn+1

(n + 1)!

= 1

2

∫ x̃

x̂
Sodd(x0(x̃), η) x ′

0(x̃)dx̃ +
∑
n≥0

∂n Sodd
∂xn

(x0(x̃), η)
zn+1

(n + 1)!

= 1

2

∫ x0(x̃)

x0(x̂)

Sodd(x, η)dx +
∑
n≥0

∂n Sodd
∂xn

(x0(x̃), η)
zn+1

(n + 1)! . (1.1.57)

If we set

R(x, η) =
∫ x

0
Sodd(x, η)dx, (1.1.58)

it is then clear, again by the Taylor expansion, that the rightmost side of (1.1.57) is
equal to

R(x, η)

∣∣∣
x=x(x̃,η)

. (1.1.59)

Hence, combining (1.1.53) and (1.1.57), we obtain

∫ x̃

0
S̃odd(x̃, η)dx̃ =

(∫ x

0
Sodd(x, η)dx

) ∣∣∣
x=x(x̃,η)

. (1.1.60)

This completes the proof of Theorem1.1.3.

Thus we can describe the relation between ψ̃±(x̃, η) and ψ±(x, η) in all orders
of η−1 with the help of the formal coordinate transformation constructed in The-
orem1.1.1. But, probably it is difficult for the reader to imagine how the relation
(1.1.51) is related to Stokes phenomena. As a matter of fact, application of the Borel
transformation to the both sides of (1.1.51) is an essential step in our reasoning.
As we will see below, the treatment of the factor (∂x/∂ x̃)−1/2 is a straightforward
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one, we first concentrate our attention on the computation of the second factor in the
right-hand side of (1.1.51), i.e., ψ+(x(x̃, η), η). Then by the Taylor expansion we
find

ψ±(x(x̃, η), η) =
∑
n≥0

1

n!

⎛
⎝∑

j≥1

x j (x̃)η− j

⎞
⎠

n (
∂n

∂xn
ψ±(x, η)

) ∣∣∣
x=x0(x̃)

. (1.1.61)

Using (1.1.36) we define the inverse function g(x) of x0(x̃), i.e.,

g(x0(x̃)) = x̃, x0(g(x)) = x . (1.1.62)

We also let x̃ j (x) denote

x j (g(x)). (1.1.63)

Then the right-hand side of (1.1.61) assume the form

∑
n≥0

1

n!

⎛
⎝∑

j≥1

x̃ j (x)η− j

⎞
⎠

n

∂n

∂xn
ψ±(x, η). (1.1.64)

As themultiplication operator η turns out to be ∂/∂y via theBorel transformation, it is
reasonable to imagine η−1 will turn out to be an integral operator (∂/∂y)−1 = ∫ y dy.
Thus, at least formally, the Borel transform of (1.1.64) is expressed as

∑
n≥0

1

n!

⎛
⎝∑

j≥1

x̃ j (x)

(
∂

∂y

)− j
⎞
⎠

n

∂n

∂xn
ψ±,B(x, y). (1.1.65)

Let C denote the integro-differential operator

∑
n≥0

1

n!

⎛
⎝∑

j≥1

x̃ j (x)

(
∂

∂y

)− j
⎞
⎠

n

∂n

∂xn
(1.1.66)

and let C̃(x̃, ∂/∂ x̃, ∂/∂y) denote the operator written with (x̃, y). Then by denoting
by B̃(x̃, ∂/∂ x̃, ∂/∂y) the operator

(
∂x(x̃, ∂/∂y)

∂ x̃

)−1/2

, (1.1.67)

we find that the Borel transformed version of (1.1.51) is

ψ̃±,B(x̃, y) = Ã(x̃, ∂/∂ x̃, ∂/∂y)ψ±,B(x0(x̃), y), (1.1.68)
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where

Ã = B̃C̃ . (1.1.69)

Furthermore, as [AKT5, AppendixC] shows, the estimation (1.1.38) guarantees that
the operator Ã is an integro-differential operator of a special kind; it is called a
microdifferential operator in microlocal analysis [SKK] and it does not change the
location of the singularities of the operand. (See Fig. 1.3.) Once we obtain such an
operator Ã, we can locate the singularity of ψ̃+,B(x̃, y) in a neighborhood ω of the
origin (0, 0). Since Ã does not change the singularity of the operandψ+,B(x0(x̃), y),
and since the singular points of ψ+,B(x, y) are

y = ±
(
2

3
x

3
2

)
(1.1.70)

by Fact B about ψ+,B(x, y), they are confined to

± 2

3
x0(x̃)

3
2 with x̃ �= 0 (1.1.71)

in ω. Thus the singularity 2x0(x̃)3/2/3 hits the path of integration which defines the
Borel sum of ψ+(x, η), i.e.,

{
(x̃, y); Im y = Im

(
−2

3
x0(x̃)3/2

)
, Re y ≥ Re

(
−2

3
x0(x̃)3/2

)}
. (1.1.72)

This means that we observe Stokes phenomena in general if

Im

(
−2

3
x0(x̃)3/2

)
= 0, (1.1.73)

whereas (1.1.43) together with (1.1.41) implies

∫ x̃

0

√
Q̃(x̃) dx̃ =

∫ x̃

0

dx0(x̃)

dx̃

√
x0(x̃) dx̃

=
∫ x0(x̃)

0

√
x dx = 2

3
x0(x̃)3/2. (1.1.74)

Thus we may observe Stokes phenomena if

Im
∫ x̃

0

√
Q̃(x̃) dx̃ = 0, (1.1.75)
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i.e., if x̃ hits a Stokes curve defined by Definition1.1.1. Furthermore (1.1.68) enables
us to find a local counterpart of (1.1.27), a discontinuity formula for ψ̃+,B(x̃, y)

along

l̃0 =
{
(x̃, y) ∈ ω; Im y = Im

(
2

3
x0(x̃)3/2

)
, Re y ≥ Re

(
2

3
x0(x̃)3/2

)}

(1.1.76)
in the following manner. Combining (1.1.68) and (1.1.27) we find

Δl̃0
ψ̃+,B(x̃, y) = Δl̃0

Ãψ+,B(x0(x̃), y)

= ÃΔl̃0
ψ+,B(x0(x̃), y)

= Ãiψ−,B(x0(x̃), y)

= iψ̃−,B(x̃, y). (1.1.77)

This local discontinuity formula means that, barring the possible relevance of singu-
larities of ψ̃+,B(x̃, y) other than y = 2x0(x̃)3/2/3, the exponentially small term that
appears at the Stokes phenomenon is given by iψ̃−(x̃, η) (or −iψ̃−(x̃, η) depending
on the direction of the analytic continuation). Thus we have a clean picture of Stokes
phenomena along the Stokes curve defined in Definition1.1.1. Making this illustra-
tion as the primary aim, we have so far used x̃ as the target variable. However, as the
switchover of the variable x to x̃ in (1.1.66), the computation in (x̃, y) coordinate is
somewhat messy. Hence we now summarize basic results in the comparison of the
Airy equation and a Schrödinger equation with a simple turning point that is made
in the same variable. In order to fix our notation let L̃ denote

d2

dx̃2
− η2 Q̃(x̃) (1.1.78)

with the origin being its simple turning point, and let L̃ B denote its Borel transform.
Then, using the inverse function g(x) of x0(x̃) given by (1.1.62), we find

L̃ B

∣∣∣
x̃=g(x)

=
(

dg

dx

)−2 [
∂2

∂x2
− d2g/dx2

dg/dx

∂

∂x

]
− Q̃(g(x))

∂2

∂y2
. (1.1.79)

Let us define L by

L = ∂2

∂x2
− d2g/dx2

dg/dx

∂

∂x
−
(

dg

dx

)2
Q̃(g(x))

∂2

∂y2
, (1.1.80)

and letX denote the operator Ã in (1.1.63) written down in (x, y) coordinate. Then
the result we have obtained tells us that

LX ψ±,B(x, y) = 0 (1.1.81)
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Fig. 1.3 The path of
integration used in (1.1.84)

×

×

−2
3

x3/2

2
3

x3/2
y0 y

holds near the origin except for {x = 0}, i.e., the line corresponding to the turning
point. Further, by using the same computation as in [AKT5], we can concretely
describe the structure of X as follows: let U denote

{(x, y) ∈ C; |x |, |y| < δ}, (1.1.82)

where δ is a sufficiently small positive number, and let U∗ denote

U −
(
{(x, y)∈U ; x = 0}∪{(x, y)∈U ; y = 2x3/2/3}∪{(x, y)∈U ; y = −2x3/2/3}

)
.

(1.1.83)
Then, for a multi-valued analytic function ϕ(x, y) defined on U∗, we find

(X ϕ)(x, y) =
∫ y

y0
K (x, y − y′, ∂/∂x)ϕ(x, y′)dy′, (1.1.84)

where K (x, y, ∂/∂x) is a differential operator that is defined on {(x, y) ∈ C
2;

|x | < C and |y| < C ′} for some positive constantsC andC ′ and y = y0 is a reference
point that fixes the action of (∂/∂y)−1 as an integral operator. (See Fig. 1.3.)

Remark 1.1.3 The differential operator K is the so-called differential operator of
infinite order. An important property of such an operator is that it does not change
the location of singularities of the operand. To illustrate this point let us give a simple
example of such an operator;

cosh
(√

∂/∂x
) =∑

n≥0

∂n/∂xn

(2n)! . (1.1.85)

It is easy to confirm that the map

cosh
(√

∂/∂x
) : O(U ) −→ O(U ) (1.1.86)

is well-defined for any open set U , whereO(U ) stands for the space of holomorphic
functions on U .
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Since the meaning of a Borel transformed WKB solution at a turning point is
obscure because of the strong singularity it presents there, we have excluded the set
{x = 0} fromour consideration. Howevermicrodifferential operatorX itself is well-
defined in a full neighborhood of the origin. Hence we can obtain Theorem1.1.4,
which asserts the equivalence of the operator L and the Borel transform M of the
Airy operator.

Theorem 1.1.4 Let M stand for

∂2

∂x2
− x

∂2

∂y2
. (1.1.87)

Then there exist invertible microdifferential operators X and Y which satisfy

LX = Y M (1.1.88)

near the origin. Further the operator Y enjoys an integral representation similar to
(1.1.84), that is, there exists a differential operator K̃ for which

(Y ϕ)(x, y) =
∫ y

y0
K̃ (x, y − y′, ∂/∂x)ϕ(x, y′)dy′ (1.1.89)

holds.

We refer the reader to [AKT5] for the proof. We only note that the invertibility of
operatorsX andY are the counterpart of the fact that the reasoning in Theorem1.1.3
can be reversed thanks to (1.1.36), i.e., the fact that ψ+(x, η) can be represented as
(∂ x̃/∂x)−1/2ψ̃±(x̃(x, η), η).

Remark 1.1.4 In (1.1.88) we cannot expect X = Y , and this fact makes a clear
contrast to a similar and general result known in microlocal analysis; the general
result asserts that we can choose an appropriate operator Z that intertwinesL and
M , i.e.,LZ = ZM . This fact indicates that the operatorsX and Y are “WKB-
theoretic transformations”, and it is also clear from our reasoning in this section. In
this sense we often refer to the contents of Theorems1.1.1 and 1.1.4 by saying “the
WKB-theoretic canonical form of the Schrödinger equation near its simple turning
point is given by the Airy equation”.

In ending this section we summarize the results explained so far in a form of the
connection formula for the Borel resummed WKB solutions of (1.1.1), following
the presentation of A. Voros [V]; here we accept the Borel summability of WKB
solutions, leaving its proof to [KoS]. In what follows, an open setU inC is said to be
a Stokes region if its boundary consists of Stokes curves {Γ j } j=1,2,...,N emanating
respectively from turning points {a j } j=1,2,...,N of (1.1.1).
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Theorem 1.1.5 Assume that every turning point of (1.1.1) is simple. Suppose further
that for each pair (a, b) of turning points of (1.1.1) we have

Im
∫ b

a

√
Q(x) dx �= 0 (1.1.90)

by appropriately fixing the branch of
√

Q. Let us consider the situation where two
Stokes regions U1 and U2 share in their boundaries a Stokes curve Γ that emanates
from a turning point a, and let ψ

j
± = ψ

j
±(x, η) denote the Borel sum on U j of

ψ± = 1√
Sodd

exp

(∫ x

a
Sodd dx

)
. (1.1.91)

The ψ1± can be analytically continued to U2 and they are related to ψ2± as in either
(1.1.92a) or (1.1.92b), depending on the geometric situations explained below:

{
ψ1+ = ψ2+
ψ1− = ψ2− ± iψ2+

if Re
∫ x

a

√
Q(x) dx < 0 on Γ, (1.1.92a)

{
ψ1+ = ψ2+ ± iψ2−
ψ1− = ψ2−

if Re
∫ x

a

√
Q(x) dx > 0 on Γ. (1.1.92b)

Here the sign ± in the right-hand side of (1.1.92a) and (1.1.92b) is chosen as follows:
the sign + is chosen when the path of analytic continuation from U1 to U2 crosses
Γ anticlockwise (seen from the turning point a), and the sign − is chosen when it
crosses Γ clockwise.

Remark 1.1.5 The assumption (1.1.90) might be somewhat puzzling, as we have not
so far discussed its origin. The point is as follows: although in (1.1.71) we discussed
the location of singularities of ψ̃+,B(x̃, y) locally in ω, the general theory of linear
partial differential equations [SKK,Chap. II] guarantees that the statement there holds
globally, aswewill discuss later in Sect. 1.4. To bemore concrete,wefind that {(x̃, y);
y = ∫ x̃

0

√
Q̃(x̃) dx̃} is contained in the singularities of ψ̃+,B(x̃, y) even outside ω.

Hence, in particular, we see that ψ̃+,B(x̃, y) is singular at y = ∫ b
0

√
Q̃(x̃) dx̃ , where

b is a turning point different from 0. It is then evident from the discussion concerning
Fig. 1.1 that, if

Im
∫ b

0

√
Q̃(x̃) dx̃ = 0, (1.1.93)

then, in general, we cannot find an appropriate path of integration to define the Borel
sum of ψ̃+,B(x̃, η). This is the background of the assumption (1.1.90).
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Remark 1.1.6 It immediately follows from the definition of a Stokes curve that

Im
∫ b

a

√
Q(x) dx = 0 (1.1.94)

implies

the turning point b (resp., a) is contained in the Stokes curve

emanating from a (resp., b). (1.1.95)

The geometric situation described as in (1.1.95) is usually referred to as

a and b are connected by a Stokes segment. (1.1.96)

We also say that the Stokes geometry of (1.1.1) is degenerate, if the phenomenon
(1.1.96) is observed. The degeneration of the Stokes geometry will play an impor-
tant role in Chap.2.

1.2 WKB Analysis of Higher Order Differential Equations
in the Small

We have briefly reviewed in Sect. 1.1 the basic part of the exact WKB analysis of
differential equations of the second order. Having the results in mind, we prepare
some basic notions for differential equations of higher order, and show that the local
properties of Borel transformed WKB solutions are deduced from the results for the
second order equations.

The equation we want to study is the following equation with a large parameter η:

Pψ =
(

dm

dxm
+ q1(x)η

dm−1

dxm−1 + · · · + qm(x)ηm
)

ψ = 0, (1.2.1)

where q j (x) is a polynomial and η is a positive large number. If we set

ψ = exp

(∫ x

S(x, η)dx

)
, (1.2.2)

then S satisfies a non-liner differential equation of order (m − 1), which we call the
higher-order version of the Riccati equation. Further, if we assume

S(x, η) = ηS−1(x) + S0(x) + η−1S1(x) + · · · (1.2.3)

http://dx.doi.org/10.1007/978-4-431-55702-9_2
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with S−1(x) satisfying

(
S−1(x)

)m + q1(x)
(
S−1(x)

)m−1 + · · · + qm(x) = 0, (1.2.4)

then S j (x) ( j ≥ 0) are recursively determined in a unique way through the higher-
order version of the Riccati equation. In what follows we call ψ given in the form of
(1.2.2) (or possible its constant multiple as (1.2.5) below)

a WKB solution of (1.2.1).

In order to make the computation of the Borel transform of a WKB solution run
smoothly we consider

ψ = η−1/2 exp

(∫ x

x∗
S(x, η)dx

)
(1.2.5)

where x∗ is an appropriately fixed point, and in parallel with (1.1.12) we further
expand it as

exp

(
η

∫ x

x∗
S−1(x)dx

)⎛⎝∑
j≥0

ψ j (x)η− j−1/2

⎞
⎠ . (1.2.6)

Thanks to the extra factor η−1/2 in (1.2.5), its Borel transform is cleanly given by

ψB(x, y) =
∑
j≥0

ψ j (x)

Γ ( j + 1/2)

(
y +
∫ x

x∗
S−1(x)dx

) j−1/2
, (1.2.7)

and our central issue is to study the analytic properties of ψB(x, y). For this purpose
we first introduce the notion of the characteristic polynomial p(x, ξ, η) of Eq. (1.2.1);
it is, by definition, given by

ξm + q1(x)ξm−1η + · · · + qm(x)ηm . (1.2.8)

For the algebraic manipulation of the characteristic polynomial, it is often convenient
to introduce ζ and p̃(x, ζ ) given by the following:

ζ = ξ/η, (1.2.9)

p̃(x, ζ ) = ζm + q1(x)ζm−1 + · · · + qm(x). (1.2.10)

It is clear that

p̃(x, ζ ) = η−m p(x, ξ, η). (1.2.11)
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In what follows we assume for the sake of simplicity that the polynomial p̃(x, ζ )

has the simple multiplicity, that is, it does not have the form (q̃(x, ζ ))l (l ≥ 2) with
some polynomial q̃(x, ζ ). We also note that condition (1.2.4) is nothing but

p̃(x, S−1(x)) = 0. (1.2.12)

With some abuse of language we often call p̃(x, ζ ) as the characteristic polynomial
of (1.2.1).

To proceed further, we introduce appropriate cuts in the x-plane so that the solu-
tions ζ j (x) ( j = 1, 2, . . . , m) of

p̃(x, ζ ) = 0 (1.2.13)

may be single-valued on the cut plane. Then (1.2.12) means that we can choose j so
that

S−1(x) = ζ j (x) (1.2.14)

holds, and with this choice of ζ j (x), we let ψ j (x, η) denote the WKB solution
ψ given in (1.2.5). Moreover, by using thus defined single-valued solutions ζ j (x)

( j = 1, 2, . . . , m) we introduce the notion of turning points and Stokes curves for
Eq. (1.2.1) by the following

Definition 1.2.1 (i) A point x = a is said to be a turning point of (1.2.1) if (1.2.13)
has a multiple solution in ζ there. Further, if

ζ j (a) = ζk(a) ( j �= k) (1.2.15)

holds, the turning point is said to be of type ( j, k).
(ii) Let x = a be a turning point of type ( j, k). Then a Stokes curve of type ( j, k)

that emanates from a is, by definition, the curve given by

Im
∫ x

a

(
ζ j (x) − ζk(x)

)
dx = 0. (1.2.16)

Remark 1.2.1 If m = 2, the determiner “of type ( j, k)” is not necessary. It is
then clear that Definition1.2.1 coincides with Definition1.1.1 for the Schrödinger
equation.

Remark 1.2.2 We will later introduce the notion of a “virtual turning point”, and
after then we sometimes refer to the turning point in Definition1.2.1 as the “ordinary
turning point”. A Stokes curve emanating from a virtual turning point is referred to
in some references (e.g. [AKT2, AKoT], etc.) a “new Stokes curve”, and then it is
usual to refer to a Stokes curve emanating from an “ordinary turning point” as an
“ordinary Stokes curve”. We use in this article the wording a “new Stokes curve”
only in the discussion made from the historic viewpoint; in our later discussions, a
Stokes curve normally means either a new one or an ordinary one.
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Definition 1.2.2 Let x = a be a turning point of type ( j, k). Then each segment
of the Stokes curve emanating from x = a is labelled as ( j > k) or ( j < k),
according as

Re
∫ x

a

(
ζ j (x) − ζk(x)

)
dx > 0 (1.2.17)

or

Re
∫ x

a

(
ζ j (x) − ζk(x)

)
dx < 0 (1.2.18)

holds on the segment.

Definition 1.2.3 If exactly two solutions ζ j (x) and ζk(x) ( j �= k) of (1.2.13) coa-
lesce at x = a, and if

∂ p̃(x, ζ )

∂x

∣∣∣
x=a,ζ=ζ j (a)

�= 0, (1.2.19)

then the point x = a is said to be a simple turning point.

Remark 1.2.3 It is clear that the above definition of a simple turning point coincides
with that given in Sect. 1.1 for the Schrödinger equation.

In analyzing the local structure of WKB solutions with the help of these notions,
we make essential use of Theorem1.2.1. The theorem is basically a variant of the
Späth-type division theorem for holomorphic functions of several complex variables,
and we omit its proof here. To illustrate its content, we just note that a differential
operator P of WKB type on an open set U (⊂ Cx ) is, in an intuitive description,
an operator whose total symbol σ(P) (in the sense in microlocal analysis) is of the
following form:

σ(P) =
∑
j≥0

η− j Pj (x, ξ/η), (1.2.20)

where {Pj (x, ζ )} j≥0 are holomorphic in x inU and entire in ζ (actually polynomials
of ζ in our current context where the target operator P is an mth order differential
operator), and they satisfy the following growth order condition.

There exists a constant C0 > 0 for which the following holds: for each compact
set K in U × Cζ we can find another constant MK so that we have

sup
K

|Pj (x, ζ )| ≤ MK j !C j
0 . (1.2.21)

Remark 1.2.4 To avoid the possible confusion of the reader, we note that the above
growth order condition is more restrictive than that used in [AKKoT]. Concern-
ing the technicalities at this point we refer the reader to [AKT5, RemarkC.1]. The
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main reason we have strengthened the condition is that the strengthened version
enables us to obtain the concrete expression of a differential operator of WKB
type as an integro-differential operator given in (1.1.84). We also note that the tar-
get operator P in [AKKoT] is more general than the operator we are discussing
here; a linear differential operator of infinite order with a large parameter η such as
x − cosh(

√
η−1d/dx) = x −∑n≥0(η

−1d/dx)n/(2n)! (cf. (1.1.85)) is also covered
by [AKKoT, Theorem5.1].

Theorem 1.2.1 ([AKKoT, Theorem5.1]) Let P be the differential operator with a
large parameter η given in (1.2.1), and assume that x = a is a simple turning point
of (1.2.1) that is of type ( j, k). Then in a sufficiently small neighborhood of x = a
we can find differential operators Q and R of WKB type which satisfy the following
conditions:

η−m P = QR, (1.2.22)

Q =
∑

j≥0
η− j Q j (x, η−1d/dx) and R =

∑
j≥0

η− j R j (x, η−1d/dx)

are differential operators respectively of order (m − 2) and of order 2 in d/dx,

(1.2.23)

Q0(a, ζ j (a)) �= 0, (1.2.24)

R0(x, ζ ) = (ζ − ζ j (x))(ζ − ζk(x)), (1.2.25)

where Q0(x, ζ ) (resp., R0(x, ζ )) denotes the principal symbol of the operator Q
(resp., R), that is, Q0(x, ξ/η) (resp., R0(x, ξ/η)) with ξ/η being denoted by ζ .

Let us first show how Theorem1.2.1 enables us to clarify the local structure of
WKB solutions of (1.2.1) near its simple turning point: we denote by Tj a solution
of the Riccati equation associated with Rϕ = 0 whose top degree part is ζ j (x), and
let ϕ j denote the WKB solution of Rϕ = 0 that is determined by Tj . Then it follows
from (1.2.22) that

Pϕ j = ηm Q Rϕ j = 0. (1.2.26)

Henceϕ j coincideswithψ j givenby (1.2.5) up to amultiplicative constant. Therefore
we find

Tj = S (1.2.27)

for S satisfying (1.2.14). Thus the study of local structure of WKB solutions of
(1.2.1) is reduced to the study of WKB solutions of

Rϕ =
(
η−2 d2

dx2
+ A(x, η)η−1 d

dx
+ B(x, η)

)
ϕ = 0, (1.2.28)
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where the top degree part of A and B are respectively given by −(ζ j + ζk) and ζ jζk .
Although (1.2.28) is not of the form of equations studied in Sect. 1.1, basically the
same reasoning as in Sect. 1.1 applies to the study of (1.2.28) as is briefly described
below. We first note that, if we define

Todd = 1

2
(Tj − Tk) (1.2.29)

Teven = 1

2
(Tj + Tk), (1.2.30)

where Tk is a solution of the Riccati equation whose top degree part is ζk , then we
have

Teven = − 1

2Todd

∂Todd
∂x

− 1

2
ηA, (1.2.31)

and we can obtain the well-normalized WKB solution ϕ j and ϕk :

ϕ j = 1√
Todd

exp

(∫ x

a

(
Todd − 1

2
ηA
)
dx

)
(1.2.32)

and

ϕk = 1√
Todd

exp

(
−
∫ x

a

(
Todd − 1

2
ηA

)
dx

)
. (1.2.33)

Furthermore we can construct a formal coordinate transformation that transforms
(1.2.28) to the Airy equation with the additional gauge transformation

ϕ 
→
(
exp

(
1

2

∫ x

a
ηAdx

))
ϕ, (1.2.34)

which eliminates the first order part in d/dx in (1.2.28). Hence, by using the well-
normalized solutions ϕ j and ϕk given above, we find the following structure theo-
rem of singularities of Borel transformed WKB solutions ϕ j,B and ϕk,B . To state
the theorem we introduce functions y j (x) and yk(x) which stand for respectively
− ∫ x

a ζ j (x)dx and − ∫ x
a ζk(x)dx .

Theorem 1.2.2 Let x = a be a simple turning point of P of type ( j, k). Then in a
sufficiently small neighborhood ω of (x, y) = (a, 0), we find the following properties
on ω:
(i) ϕ j,B(x, y) and ϕk,B(x, y) are singular only along Γ j ∪ Γk outside {x = a},
where

Γ j = {(x, y) ∈ ω; y = y j (x)} (1.2.35)
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and

Γk = {(x, y) ∈ ω; y = yk(x)}. (1.2.36)

(ii) The singular part of ϕ j,B(x, y) (resp., ϕk,B(x, y)) along Γk (resp., Γ j ) coincides
with

√−1ϕk,B/2 ( resp.,
√−1ϕ j,B/2 ).

Theorem1.2.2 shows that the geometric situation is basically the same as that
observed for the Schrödinger equations, as far as x is confined to a neighborhood
U of a simple turning point. To make full use of this we now posit the following
Property [AC] as a guiding principle; it is a counterpart of Facts A and C observed
for the Borel transformed WKB solutions of the Airy equation.

Property [AC] The Borel transformed WKB solutions ϕl,B(x, y) (l = 1, 2, . . . , m)

of (1.2.1) can be analytically continued endlessly, i.e., without encountering the
natural boundaries. Further its growth order near y = ∞ is tame.

Remark 1.2.5 The above statement is too crude and more elaboration is certainly
needed. For example, no statement corresponding to Fact B is included. Hence, in
what follows, we content ourselves with using Property [AC] only as a guiding
principle in our reasoning. At the same time we note that a good supporting evidence
of Property [AC] is given when the integral representation of solutions of (1.2.1) is
available (AppendixA.1).

Accepting the above posit, we can define, except for particular values of x , the
Borel sum of ϕ j (x, η), and hence that ofψ j (x, η), by fixing the path γ j of integration
to define it:

γ j = {(x, y) ∈ U × C; Im y = Im y j (x),Re y ≥ Re y j (x)}. (1.2.37)

Barring the possible relevance of singularities other than y = y j (x) or y = yk(x) to
the path γ j , we find the Borel sum ϕ j (x, η) given by

∫
γ j

exp(−yη)ϕ j,B(x, y)dy (1.2.38)

is well-defined unless yk(x) lies on γ j . We clearly observe that the configuration of
the path γ j and the location of singularities of the integrand is the same as that in
Fig. 1.1. Therefore we find that the analytic continuation of the Borel sum ϕ j (x, η)

acquires or loses the exponentially small term
√−1ϕk(x, η) when x satisfies

Im y j (x) = Im yk(x), Re y j (x) < Re yk(x), (1.2.39)

that is, when x hits the Stokes curve of type ( j > k). Here we have used the fact that
ϕ j and ϕk are well-normalized as in (1.2.32) and (1.2.33). Thus we have confirmed
that the WKB analysis of higher order equations “in the small” is essentially the
same as the WKB analysis of the Schrödinger equation.
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1.3 The Impact of the Work [BNR] of Berk, Nevins
and Roberts

Berk, Nevins and Roberts published a decisively important paper [BNR] in 1982. In
this paper they studied where the Stokes phenomena of WKB solutions of

(
d3

dx3
+ 3η2

d

dx
+ 2i xη3

)
ψ = 0 (1.3.1)

are observed. Parenthetically we note that Eq. (1.3.1) is now called BNR equation
after Berk, Nevins and Roberts. Their discovery can be summarized as follows:

The totality of Stokes curves is not enough to describe the Stokes phenomena in
the large but the addition of some new Stokes curves is necessary for the concrete
description.

Let us briefly explain their reasoning in what follows.
One can readily confirm that x = ±1 are the simple turning points of (1.3.1), and

with the appropriately labelled solutions ζ j (x) of the equation

ζ 3 + 3ζ + 2i x = 0 (1.3.2)

we find its Stokes curves as in Fig. 1.4. The wiggly lines designate the cuts to fix the
branches of ζ j (x). Here we observe two crossing points C1 and C2 of Stokes curves.
It is clear that such crossing does not appear in the study of equations of the second
order.

Fig. 1.4 The Stokes curves
for BNR equation x

−1 1

C1

C2

(1< 2)(2< 3)
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Fig. 1.5 Paths of analytic
continuation near C1

BA

C1

γ+

γ−

1 −1

Let us consider the problem near C1 and fix the notations as in Fig. 1.5. Here
γ+ and γ− are paths of continuation from point A to point B as are shown there.
Assuming the Borel summability of WKB solutions we let α and β respectively
denote the Stokes multiplier, or what we call the connection constant, across Stokes
curves S1 and S−1; that is,

ψ3 
→ ψ3 + αψ2 across S1, (1.3.3)

ψ2 
→ ψ2 + βψ1 across S−1. (1.3.4)

Hence by the analytic continuation of ψ3 along γ+ we obtain

ψ3 + α(ψ2 + βψ1) (1.3.5)

near B, whereas, by the analytic continuation along γ−, we obtain

ψ3 + αψ2 (1.3.6)

near B. Since the Eq. (1.3.1) does not have any singularity near C1, this is a contra-
diction if αβ �= 0. To resolve this paradoxical problem [BNR] proposed to introduce
a new Stokes curve SC1 of type (1 < 3) that emanates from C1 with the connection
coefficient −αβ attached, after making a detailed study of the structure of solutions
of (1.3.1) represented in the integral form by the method of the steepest descent. (Cf.
AppendixA.1.) Their proposal is summarized as in Fig. 1.6.

Then we can readily find that the paradoxical problem observed in Fig. 1.5 is
cleanly resolved in Fig. 1.6.
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Fig. 1.6 Introduction of the
new Stokes curve SC1

C1

1 C1 −1
(1< 2)(1< 3)(2< 3)

1.4 A Virtual Turning Point—a Gift of Microlocal Analysis
to the Exact WKB Analysis

As is explained in Sect. 1.1, the notion of Stokes curves in the exact WKB analysis
is determined by the relative location of the singularities of the Borel transformed
WKB solutions and the path of integration that determines the Borel sum, which
is dependent on the choice of arg η (cf. Remark1.1.1(i)). Hence a crossing point of
Stokes curves is highly dependent on the way how the Borel resummation is per-
formed. Thereforewe should be happier ifwe could find somethingmore intrinsically
related to the operator P in (1.2.1) as the starting point of a new Stokes curve.

To think over this problem, let us first recall the situation discussed in Sect. 1.1.
The Stokes phenomena forWKB solutions of the Schrödinger equation are observed
through the interplay of two “cognate” singularities of the Borel transformed WKB
solutions, whichmerge at a turning point. Here “cognate singularities”mean that they
are mutually tied up with, as is observed in Fact B for the Airy equation and shown
to be so in general by Theorem1.1.4. To find out analogous “cognate singularities”
in the Borel transform ψB of WKB solution ψ of the Eq. (1.2.1), we employ the
following basic fact in microlocal analysis [SKK].

Fact D: The most elementary carrier of the singularities of solutions of the equation
PBu = 0, i.e., the Borel transform of (1.2.1), is a bicharacteristic strip, if the operator
PB is with simple characteristics. Further PB is with simple characteristics near a
simple turning point as is noted in Remark1.4.3. For the convenience of the reader
let us recall the definition of a bicharacteristic strip.
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Definition 1.4.1 A bicharacteristic strip associated with the operator PB(x, ∂/∂x,

∂/∂y) is, by definition, a curve {(x(t), y(t); ξ(t), η(t))} in the cotangent bundle
T ∗

C
2
(x,y) that is determined by the following Hamilton-Jacobi equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= ∂σ

∂ξ
(1.4.1.a)

dy

dt
= ∂σ

∂η
(1.4.1.b)

dξ

dt
= − ∂σ

∂x
(1.4.1.c)

dη

dt
= − ∂σ

∂y
(1.4.1.d)

σ (x, ξ, η) = 0 (1.4.1.e),

(1.4.1)

where σ denotes the symbol of the operator PB(x, ∂/∂x, ∂/∂y), i.e., PB(x, ξ, η).

Remark 1.4.1 As σ is free from y, (1.4.1.d) implies η is a constant, which we later
choose to be 1.

Remark 1.4.2 When PB = ∂2/∂x2 − x∂2/∂y2, the bicharacteristic strip b of PB

that emanates from (x, y; ξ, η) = (0, 0; 0, 1) is given by

(x(t), y(t); ξ(t), η(t)) = (t2,−2t3/3; t, 1). (1.4.2)

Hence the projection π(b) of b to the base manifold C2
(x,y) is given by

{(x, y) ∈ C
2; y = y−(x)} ∪ {(x, y) ∈ C

2; y = y+(x)}, (1.4.3)

where y±(x) = ± ∫ x
0

√
x dx given by (1.1.14) with x∗ = 0. Thus we find that

the “cognate singularities” in the Borel transformed WKB solutions for the Airy
equation, which are described in Fact B, are the two portions of one curve that is
a projection of a non-singular curve in T ∗

C
2, which is a carrier of singularities of

solutions of the equation PBu = 0. We also find that the turning point is nothing
but a kink in the projection of a non-singular curve. We note that the geometric
situation for a general Schrödinger equation with a simple turning point x = a is
basically the same, at least near x = a, as the above statement for the Airy equation;
the projected bicharacteristic strip (often referred to as a bicharacteristic curve in
classical analysis) is contained in

{(x, y); y = ±
∫ x

a

√
Q dx}, (1.4.4)

as (1.4.1.a) and (1.4.1.b) entail

(
dy

dx

)2
= Q(x). (1.4.5)
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(See (1.4.21) below, which gives a precise version of (1.4.5) for the higher order
operator P .)

Remark 1.4.3 It follows from Definition1.2.3

∂σ

∂x

∣∣∣
x=a,ξ=ξ j (a),η=1

�= 0 (1.4.6)

at a simple turning point x = a of type ( j, k). Hence (1.4.1.c) guarantees that the
bicharacteristic strip emanating from (x, y; ξ, η) = (a, 0; ξ j (a), 1) is locally non-
singular in T ∗

C
2.

Thus we have seen that a turning point is a singular point of the projection to the
base manifold C

2 of a non-singular curve in T ∗
C
2, which is the most elementary

carrier of singularities of solutions, that is, a bicharacteristic strip of PB . Other-
wise stated, a turning point appears as a confluent point of the loci of two cognate
singularities—or rather, one singularity in their origin whose projection only looks
like having two confluent components.

Then a natural question is:
Are there any other similar singular points in a bicharacteristic curve?

Fortunately the answer is:
Yes!

The most basic one among such singularities is a self-intersection point of a
bicharacteristic curve, to which two distinct points in a non-singular bicharacteristic
strip correspond in general. As we explain below, the x-component of such a point
plays a similar role in the exact WKB analysis as the turning point defined in Def-
inition1.2.1 (i); in particular, a new Stokes curve found by [BNR] is a portion of
a Stokes curve emanating from such a point. We coin the term a “virtual turning
point” to designate the x-component of a self-intersection point of a bicharacteristic
curve. We note a virtual turning point was called a “new turning point” when it was
first found in [AKT2].

Since the notion of a virtual turning point does not find any similar—or even
related—precedents in the traditional asymptotic analysis, we first illustrate the sit-
uation concretely for BNR equation. Although it may be redundant from the logical
viewpoint, we believe it to be useful for the reader to grasp the characteristic feature
of this novel notion.

Example 1.4.1 Let PB stand for the Borel transformed BNR operator, that is,

PB = ∂3

∂x3
+ 3

∂

∂x

∂2

∂y2
+ 2i x

∂3

∂y3
. (1.4.7)

Then its symbol σ is

σ = ξ3 + 3ξη2 + 2i xη3. (1.4.8)
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Let us now study the global behaviour of the bicharacteristic strip b(x0,ξ0) that
emanates from

(x, y; ξ, η) = (x0, 0; ξ0, 1) (1.4.9)

with

x0 = 1, ξ0 = −i. (1.4.10)

Then (1.4.1.e) is satisfied, and we can find that a global solution (x(t), y(t); ξ(t),
η(t)) of (1.4.1) satisfying (1.4.9) is given as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(t) = −4(t + 1/2)(t2 + t − 1/2)

y(t) = −6it2(t + 1)2

ξ(t) = −2it − i

η(t) = 1.

(1.4.11)

Then a straightforward computation shows that the relation

x(t) = x(t ′), y(t) = y(t ′), t �= t ′ (1.4.12)

entails

t2 + t = t ′2 + t ′ = 1/2 ; (1.4.13)

hence the self-intersection point of the bicharacteristic curve, i.e., the projection of
b(x0,ξ0), is given by

x = 0, y = −3i/2, (1.4.14)

as is shown in Fig. 1.7.
Therefore it follows from the definition that x = 0 is the virtual turning point of

BNR equation. Further, by using the same labelling of the characteristic roots {ξ j }
as in Sect. 1.3, we find

Im
∫ x

0
(ξ1 − ξ3)dx = 0 (1.4.15)

passes through C1 and C2. (Cf. Proposition1.4.1.) Otherwise stated, a Stokes curve
emanating from the virtual turning point x = 0 gives the new Stokes curves that
[BNR] proposed to introduce. Moreover, we can confirm that no Stokes phenomena
are observed in a neighborhood of the virtual turning point, as we show in Propo-
sition1.4.2. To emphasize this fact we designate the segment C1C2 of the Stokes
curve by a dotted line. Thus we obtain the following Fig. 1.8 to describe the Stokes
geometry of BNR equation, i.e., the location of the turning points, both ordinary and
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Fig. 1.7 The
self-intersection point of the
bicharacteristic curve in
question

x

Imy
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Fig. 1.8 The complete
Stokes geometry for BNR
equation
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0

1
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virtual, and the Stokes curves emanating, either from an ordinary turning point or
from a virtual turning point.

Before proceeding further, we show some basic properties concerning a Stokes
curve that emanates from a virtual turning point. To state the results, we prepare
some notations.

Let PB denote the Borel transform of the operator P in (1.2.1), and assume that
its symbol σ has the form
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m∏
r=1

(ξ − ζr (x)η), (1.4.16)

where ζr (x) is defined on an appropriately cut plane. The suffix r of a characteristic
root ζr (x) is used to designate the type of a turning point and a Stokes curve in what
follows. We also denote the characteristic variety of PB by V , i.e.,

V = {(x, y; ξ, η) ∈ T ∗
C
2; σ(x, ξ, η) = 0, η �= 0}. (1.4.17)

Then we find the following

Proposition 1.4.1 Let s1 (resp., s2) be a simple turning point of equation (1.2.1) of
type ( j, k) (resp., (k, l)). LetS1 (resp.,S2) designate the Stokes curve that emanates
from s1 and with type ( j, k) (resp., from s2 with type (k, l)), and suppose that S1 and
S2 cross at a point C. Assume further that x∗ satisfies the relation (1.4.18) below
for a triplet of mutually distinct suffixes ( j, k, l):

∫ x∗

s1
ζ j dx =

∫ s2

s1
ζkdx +

∫ x∗

s2
ζldx . (1.4.18)

Then x∗ is a virtual turning point of (1.2.1), and the Stokes curve S emanating from
x∗ with type ( j, l) passes through the point C.

Proof Let us first consider the part Vi of the characteristic variety V that is defined
by {ξ = ζi (x)η}. Then we find

∂σ

∂ξ

∣∣∣
Vi

=
(∏

r �=i

(ζi − ζr )
)
ηm−1 (1.4.19)

and

∂σ

∂η

∣∣∣
Vi

= −ζi

(∏
r �=i

(ζi − ζr )
)
ηm−1. (1.4.20)

Hence it follows from (1.4.1.a) and (1.4.1.b) that

dy

dx

∣∣∣
Vi

= −ζi (x). (1.4.21)

Therefore the bicharacteristic curves passing through (x, y) = (s1, 0) are given
either by

y = −
∫ x

s1
ζ j (x)dx (1.4.22)
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or by

y = −
∫ x

s1
ζk(x)dx . (1.4.23)

We note that the union of these curves is, in a neighborhood of (x, y) = (s1, 0), the
projection of a bicharacteristic strip of PB passing through

B1 =
def

{(x, y; ξ, η) = (s1, 0; ζ j (s1)η (= ζk(s1)η), η
)}, (1.4.24)

which is a non-singular curve in T ∗
C
2
(x,y). We further extend the bicharacteristic

strip so that it may pass through

B2 =
def

{
(x, y; ξ, η) =

(
s2,−
∫ s2

s1
ζk(x)dx; ζk(s2)η (= ζl(s2)η), η

)}
. (1.4.25)

It is clear that such an extension is possible because s2 is a simple turning point.
Then, after passing through B2, the bicharacteristic strip is described by

(x, y; ξ, η) = (x,−
∫ s2

s1
ζkdx −

∫ x

s2
ζldx; ζl(x)η, η

)
. (1.4.26)

Thus its projection crosses the curve (1.4.22) at (x∗, y∗) if x∗ satisfies (1.4.18) and
y∗ is given by

y∗ = −
∫ x∗

s1
ζ j (x)dx . (1.4.27)

Hence it follows from the definition that x = x∗ is a virtual turning point of (1.2.1).
Let us next confirm that the Stokes curve emanating from x = x∗ with type ( j, l)

passes through the point C . For this purpose let us consider the following integral I :

I =
∫ x∗

s1
(ζ j − ζk)dx . (1.4.28)

Then it follows from the definition of x∗ that we find

I =
∫ s2

s1
ζkdx +

∫ x∗

s2
ζldx −

∫ x∗

s1
ζkdx

= −
∫ x∗

s2
ζkdx +

∫ x∗

s2
ζldx . (1.4.29)
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We further rewrite I as

∫ C

s1
(ζ j − ζk)dx +

∫ x∗

C
(ζ j − ζk)dx . (1.4.30)

It follows from (1.4.29) that it can be also written as

∫ C

s2
(ζl − ζk)dx +

∫ x∗

C
(ζl − ζk)dx . (1.4.31)

Combining (1.4.30) and (1.4.31) we obtain

∫ C

x∗
(ζ j − ζl)dx =

∫ C

s1
(ζ j − ζk)dx +

∫ C

s2
(ζk − ζl)dx . (1.4.32)

On the other hand, C is a crossing point of Stokes curvesS1 andS2; hence we have

Im
∫ C

s1
(ζ j − ζk)dx = Im

∫ C

s2
(ζk − ζl)dx = 0. (1.4.33)

Therefore (1.4.32) entails

Im
∫ C

x∗
(ζ j − ζl)dx = 0. (1.4.34)

Thus we have confirmed the required result.

Remark 1.4.4 Using the labelling of the characteristic roots {ζr }m
r=1 given by

(1.4.16), we say the point x∗ in (1.4.18) is a virtual turning point of type ( j, l).

Remark 1.4.5 As ζr (x) does not depend on η, it is clear that the notion of a virtual
turning point is independent of η.

Remark 1.4.6 The geometric situation in Proposition1.4.1 is in exceptional har-
mony. In order to show this point, let us suppose the operator P has another simple
turning point s̃1 ( �= s1) of type ( j, k). Then by tracing the bicharacteristic strip, we
find

∫ x̃∗

s1
ζ j dx =

∫ s̃1

s1
ζkdx +

∫ s1

s̃1
ζ j dx +

∫ s2

s1
ζkdx +

∫ x̃∗

s2
ζldx (1.4.35)

will give another virtual turning point x̃∗. But, barring the case

Im
∫ s̃1

s1
(ζ j − ζk)dx = 0, (1.4.36)

we cannot expect the relation (1.4.34).
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Remark 1.4.7 The condition (1.4.36) indicates its relevance to the analysis of the
so-called fixed singularities of WKB solutions of the Schrödinger equation, i.e.,
the study of the periodic structure of the singularities of Borel transformed WKB
solutions. (Cf. [AKT5] and references cited therein.) Here we content ourselves only
with noting that we can formulate the periodic structure of singularities of Borel
transformed WKB solution for higher order equations also, by using the notion of a
bicharacteristic strip.

Let � denote the period integral
∮
γ

ζdx for a closed path γ in the Riemann
surface associated with p̃(x, ζ ) = 0. (Parenthetically we note that the Riemann
surface associated with BNR equation is simply connected, i.e., � vanishes then.)
In this setting it is known [AKT2, (2.4)] that there exists a constant c for which

� =
∫ c

0
ξ(t)

dx(t)

dt
dt (1.4.37)

holds for a bicharacteristic strip {(x(t), y(t); ξ(t), 1)}which emanates from (x(0), 0;
ξ(0), 1) with x(0) being a turning point and with ξ(0) being the corresponding dou-
ble root of σ = 0. It then follows from (1.4.37) and the definition of a bicharacteristic
strip that we find

� =
∫ c

0
ξ(t)

∂σ

∂ξ
dt

=
∫ c

0

(
−η

∂σ

∂η

)
dt

= −
∫ c

0

dy(t)

dt
dt = −y(c). (1.4.38)

Hence in what follows we assume

Im� �= 0, (1.4.39)

which is a generalized version of (1.4.36).

Now, by using the reasoning in Sect. 1.3 with the usual assumption of Borel
summability of WKB solutions, we find the following Proposition1.4.2. It explains
the psychological background of coining the name “virtual turning point”; we
cannot detect it by the local study of Stokes phenomena.

Proposition 1.4.2 Let x∗ be a virtual turning point of type ( j, l) which is described in
Proposition1.4.1. Assume that no other (ordinary or virtual) turning point coincides
with x∗. Then no Stokes phenomena are observed for WKB solutions ψ j and ψl on
the Stokes curve

Im
∫ x

x∗
(ζ j − ζl)dx = 0, (1.4.40)

if x is sufficiently close to x∗.
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Proof Let y j (x) (resp., yl(x)) stand for− ∫ x
s1

ζ j (x)dx (resp.,− ∫ x
s2

ζl(x)−∫ s2
s1

ζk(x)).
Since x∗ is supposed not to be coincident with a turning point, we find

dy j

dx
= −ζ j (x) �= −ζl(x) = dyl

dx
(1.4.41)

holds at x = x∗. Hence Re(y j (x) − yl(x)) changes its sign when x passes through
x∗ in moving in the curve given by (1.4.40). (Note that y j (x∗) = yl(x∗) holds thanks
to (1.4.18).) Then the analytic continuation of ψ j (x) across the portion of the curve
(1.4.40) where Re y j (x) > Re yl(x) remains intact, whereas that across the portion
where Re yl(x) > Re y j (x) assumes the form ψ j + γψl for some constant γ . Since
x∗ is a non-singular point of Eq. (1.2.1), γ should be 0.

Remark 1.4.8 Let us now investigate the relevance of Propositions1.4.1 and 1.4.2
from the viewpoint of the relative location of singularities of Borel transformedWKB
solutions. Let us consider the problem in the situation described in Proposition1.4.1,
and suppose that no turning point of (1.2.1) lies on the portion (x∗, C] in the Stokes
curve emanating from x∗. In order to fix the situation we assume

Re y j (x) < Re yl(x) (1.4.42)

holds on (x∗, C], where y j (x) and yl(x) are the functions given in the proof of
Proposition1.4.2. As is shown by Proposition1.4.2, the singular point y = yl(x)

does not cause any Stokes phenomena even when x lies in (x∗, C) despite the fact
that it lies on the path of integration defining the Borel sumψ j (x, η). However, when
x reaches the point C , the situation suddenly changes in general, as another singular
point y = yk(x) = − ∫ x

s1
ζkdx
(= − ∫ x

s2
ζkdx − ∫ s2

s1
ζkdx
)
may intervene between

y j (x) and yl(x) on {Im (y j − yl) = 0} as is shown in Fig. 1.9, depending on the
ordering of {Re y j , Re yk, Re yl}. Let us first consider the case where

Re y j (x) < Re yk(x) < Re yl(x) (1.4.43)

holds at C . Since the situation along the Stokes curves S1 and S2 are the same as
is observed in Fig. 1.1, when x reaches the point C the singularity y = yl(x) causes
a Stokes phenomenon for ψk(x, η) and the singularity y = yk(x) causes a Stokes
phenomenon forψ j (x, η). Otherwise stated, y = yl(x) causes a Stokes phenomenon
for ψ j (x, η) via the intermediator ψk(x, η). Hence the Stokes curve (1.4.40), which

Fig. 1.9 The location of
{y j (x), yk(x), yl (x)} at
x = C

y

× × ×
y j(x) yk(x) yl(x)
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is “inert” on the portion (x∗, C), turns out to be “active” after it passes over C . This
is the mechanism how the effect of a Stokes curve emanating from a virtual turning
point becomes visible. Next we consider the case where

Re y j (x) < Re yl(x) < Re yk(x) (1.4.44)

holds at x = C . In this case y = yk(x)may cause a Stokes phenomenon forψl(x, η),
but that is irrelevant to ψ j (x, η). Hence the Stokes curve (1.4.41) remains inert after
it passes over C .

Comparing (1.4.43) and (1.4.44) we are led to the following

Definition 1.4.2 Let a Stokes curveS1 of type ( j, k) and a Stokes curveS2 of type
(k′, l) cross at a point C . Suppose either

k = k′ and j > k > l (1.4.45)

or
k = k′ and j < k < l (1.4.46)

holds. Then, following [BNR], we say C is an ordered crossing point. Even k = k′,
if k is not sandwiched between j and l, we say C is a non-ordered crossing point.
We also say C is a non-ordered crossing point when ( j, k, k′, l) are mutually distinct
(and, in particular, k �= k′).

In describing the Stokes geometry involving virtual turning points, we usually
employ the following convention.

Definition 1.4.3 When no Stokes phenomena are observed near a point x0 in a
Stokes curve, we say that the Stokes curve is inert near x0 and we describe the
Stokes curve near x0 by a dotted line.

Now, having Remark1.4.8 in mind, we summarize Propositions1.4.1 and 1.4.2
in an explicit manner as follows:

Proposition 1.4.3 Let us consider the situation discussed in Propositions1.4.1 and
1.4.2, and assume

j > k > l. (1.4.47)

Let α, β and γ respectively denote the connection coefficient attached to each Stokes
curve near the ordered crossing point C. Suppose that their signs are chosen so that
they are consistent with the directions of the paths in Fig.1.10 along which WKB
solutions are analytically continued. Then we find

αβ + γ = 0. (1.4.48)

The proof is given by the same reasoning as in Sect. 1.3.
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Fig. 1.10 The path of
analytic continuation near
the ordered crossing point C

j > >k j l k > l

C

α γ β

Remark 1.4.9 The reasoning in Remark1.4.8 indicates that the Stokes curve of type
( j, l) emanating from the virtual turning point x̃∗ in Remark1.4.6 remains inert in a
domain where the topological configuration of Stokes curves in Proposition1.4.1 is
the only relevant one. Actually it is often the case that a Stokes curve emanating from
a virtual turning point is inert at any point in the curve. In such a case we say that the
virtual turning point is redundant. The simplest example is given by a virtual turning
point when the operator P is of the second order [AKT2, Example2.4], as there is
no-crossing point of Stokes curves. Probably this is the reason why the importance of
virtual turning points has not been recognized in the traditional asymptotic analysis.

1.5 The Relevance of Virtual Turning Points
and the Connection Formula for WKB Solutions
of a Higher Order Differential Equation

In this sectionwe summarize the observationsmade in Sect. 1.4 as a recipe for finding
the Stokes geometry for the Eq. (1.2.1), that is, the figure that describes the location
of turning points, both ordinary and virtual, and Stokes curves emanating from them.
We use a dotted line to emphasize that the part of the Stokes curve in question is
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inert. In what follows we assume that all ordinary turning points are simple. We also
assume (1.4.36) does not hold, that is, we assume

Im
∫ s2

s1
(ζ j − ζk)dx �= 0 (1.5.1)

for any pair of turning points (s1, s2) of the same type, say ( j, k). We note that this
assumption is a counterpart of the assumption (1.1.90) in Theorem1.1.5.

Recipe 1.5.1 We describe the Stokes geometry of Eq. (1.2.1) by the following pro-
cedures:
(R.i) Draw all Stokes curves that emanate from ordinary turning points.
(R.ii) Draw the Stokes curve that emanates from a virtual turning point.
(R.iii) The Stokes curve in (R.ii) is drawn by a dotted line until it hits an ordered
crossing point.
(R.iv) When the Stokes curve in (R.ii) is of type ( j > l) and it hits an ordered
crossing point C that is formed by a Stokes curve of type ( j > k) and a Stokes curve
of type (k > l), we use a solid line to draw the portion of the Stokes curve in (R.ii)
after passing over C .
(R.v) If three Stokes curves of type ( j > k), type (k > l) and type ( j > l) meet at
a point C , then we stipulate that the connection coefficients attached to them near C
should satisfy the following:
(R.v.a) The connection constant α (resp., β) attached to the Stokes curve of type
( j > k) (resp., of type (k > l)) are kept intact when the Stokes curves pass through
the point C .
(R.v.b) The connection constant γ (resp., γ ′) attached to the portion of the Stokes
curve of type ( j > l) before hitting the point C (resp., after passing over the point
C) may be different.
(R.v.c) The constants (α, β, γ, γ ′) should satisfy

αβ + γ = γ ′, (1.5.2)

when they are assigned to each portion of the Stokes curves in accordance with the
directions (designated by the arrows) of analytic continuation of WKB solutions,
which are described in Fig. 1.11. We note that the relative location of Stokes curves
in question near C is either (a) or (b) given there.

Remark 1.5.1 If in Fig. 1.11b the portion of the Stokes curve to which γ ′ is attached
contains a virtual turning point, then (1.5.2) reduces to (1.4.48).

Remark 1.5.2 In Recipe 1.5.1 (R.v) the change of the connection coefficient is
observed in a neighborhood of an ordered crossing point concerning those attached
to a Stokes curve of non-adjacent type ( j > l); this is consistent with Remark1.4.8.

Remark 1.5.3 In Recipe 1.5.1 (R.v) the three Stokes curves meeting at C may be
either Stokes curves emanating from ordinary turning points or the solid line part of
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(a)

γ

γ

α

−α
β

−β

k > l

j > l

j > k
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(b)
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−β

α

−α
γ
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j > l

k > l

j > k

C

Fig. 1.11 Two possibilities of the relative location of Stokes curves

Stokes curves emanating from virtual turning points. See [AKoT, Sect. 2] for some
illuminating example, which shows some portion of a Stokes curve emanating from
an ordinary turning point may turn out to be inert.

Remark 1.5.4 Practically speaking, we can normally find the global structure of
WKB solutions by Recipe 1.5.1; however, no rigorous algorithm for drawing the
complete Stokes geometry is yet available. See [H3, ShI] for some details. We will
come back to this point in Chap.2.

1.6 How to Locate a Virtual Turning Point with the Help
of a Computer

In order to put Recipe 1.5.1 into practice we present a method of locating a virtual
turning point with the help of a computer. We consider the situation in (R.v), suppos-
ing that the Stokes curve of type ( j > k) (resp., (k > l)) emanates from an ordinary
turning point s1 (resp., s2). Assume further that neither of these Stokes curves crosses
any cut introduced in Sect. 1.2 to make the solutions ζ j (x) ( j = 1, 2, . . . , m) of the
Eq. (1.2.13), i.e., p̃(x, ζ ) = 0, to be single-valued on the cut plane. Assuming all
these, we try to reverse the reasoning in the proof of Proposition1.4.1. For this pur-
pose we evaluate

ρ(x) =
def

Re
∫ C

x
(ζ j (x) − ζl(x))dx (1.6.1)

along

Im
∫ C

x
(ζ j (x) − ζl(x))dx = 0. (1.6.2)

http://dx.doi.org/10.1007/978-4-431-55702-9_2
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Since ρ(x) is the real part of a holomorphic function, it monotonically decreases or
increases. On the other hand, it follows from the definition of the point C that

Im
∫ C

s1
(ζ j (x) − ζk(x))dx = Im

∫ C

s2
(ζk(x) − ζl(x))dx = 0. (1.6.3)

Hence we normally find a point x∗ in the curve (1.6.2) where

ρ(x∗) =
∫ C

s1
(ζ j (x) − ζk(x))dx +

∫ C

s2
(ζk(x) − ζl(x))dx (1.6.4)

holds. Then, by comparing (1.6.4) with (1.4.32), we find that the point x∗ thus found
is a virtual turning point of type ( j, l).

When some cuts cross the Stokes curves in question, we should take their effect
into account and the reasoning becomes more involved. But the core idea in the
computation is described by the above reasoning.

1.7 The Relevance of a Virtual Turning Point
to the Bifurcation Phenomena of Stokes Curves

In Sect. 1.5 we have shown how a virtual turning point is relevant to the connection
formula for WKB solutions. In this section we present a result which manifests the
relevance of a virtual turning point to a geometric problem. The example discussed
is the most “elementary” part of the phenomena to be discussed in Chap.2.

The first example we study here is the Stokes geometry of BNR equation (1.3.1);
so far we have assumed the large parameter η to be positive, but we now change arg η;
we study the Stokes geometry when arg η is close to π/2. The virtual turning point,
together with ordinary turning points, remains unchanged, but Stokes curves move
as arg η changes; we show their concrete configuration in Fig. 1.12. We then observe
an interchange of the relative location of a Stokes curve emanating from a virtual
turning point and that emanating from an ordinary turning point before and after
the bifurcation of a Stokes curve occurs (cf. Fig. 1.12b). This clearly visualizes how
natural and important to incorporate virtual turning points in Stokes geometry. But a
careful reader might say: As Fig. 1.12b contains some degeneration (i.e., two turning
points are connected by Stokes segments), the situation may not be so universal. To
get rid of such concern, the best way is to consider the problem when the Eq. (1.2.1)
contains some parameter t other than η (cf. [AHKKoNSShT, AKSShT]). Actually
this is the situation discussed in Chap. 2.

Let us consider the situation when a Stokes curve of type (1 > 2) hits a simple
turning point s(t) of type (2, 3) for t = t1. Then the characteristic root ζ = ζ2(x)

has a square-root type singularity at x = s(t1), and the Stokes curve of type (1 > 2)
bifurcates there (cf. Fig. 1.13). We next suppose that the Stokes geometry for t = t2

http://dx.doi.org/10.1007/978-4-431-55702-9_2
http://dx.doi.org/10.1007/978-4-431-55702-9_2
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(a)

(b)

(c)

0 1−1

argη =
1
2
+

1
12

π

0 1−1

argη =
1
2
− 1

12
π

argη =
1
2

π

Fig. 1.12 The Stokes geometry of BNR equation when arg η is close to π/2

Fig. 1.13 Bifurcation of a
Stokes curve

1> 2 (2,3)

s(t1)

and t3 (with |t j − t1| 	 1 ( j = 2, 3)) is given respectively as in Figs. 1.14a and 1.15a
if we describe them ignoring virtual turning points. Then the Stokes curve of type
(1 > 2) abruptly changes its direction as t passes through t1. But, if we incorporate
a virtual turning point v(t) as in Figs. 1.14b and 1.15b, then the topological structure
of the Stokes geometry turns out to be stable. This observation is a starting point of
the discussion in Chap.2.

http://dx.doi.org/10.1007/978-4-431-55702-9_2
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(a) 2> 3

1> 2

(b) 2> 3

1> 2

1> 3

v(t2)

Fig. 1.14 Stokes geometry at t = t2 with, a the virtual turning point ignored, and b the virtual
turning point v(t) added

(a) 2> 3

1> 2
s(t3)

(b) 2> 3

1> 2
s(t3)

3> 2 2> 3

v(t3)

1> 3

Fig. 1.15 Stokes geometry at t = t3 with, a the virtual turning point ignored, and b the virtual
turning point v(t) added

1.8 s-Virtual Turning Points for Holonomic Systems

Since the structure theorem for (micro)differential equations in [SKK, Chap. II]
covers not only single equations but also over-determined systems, the reasoning
given so far can be applied to, for example, the system of differential equations
which is satisfied by the Pearcey integral

ψ(x, η) = ψ(x1, x2, η) =
∫

exp(ηS(x, t))dt, (1.8.1)

where

S(x, t) = S(x1, x2, t) = t4 + x2t2 + x1t. (1.8.2)

In this case ψ satisfies [A] the so-called Pearcey system:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
4

∂3

∂x31
+ 2η2x2

∂

∂x1
+ η3x1

)
ψ = 0

( ∂2

∂x21
− η

∂

∂x2

)
ψ = 0.

(1.8.3)

Ifwefix the parameterη, then (1.8.3) consists of twodifferential equations in (x1, x2)-
variables. Thus, for fixed η, (1.8.3) shares several properties with a linear ordinary
differential equation such as the finite dimensionality of the space of its local solu-
tions. Such a system is called a holonomic system, and hence we say that (1.8.3) is
a holonomic system with a large parameter η. Here we do not give the definition
of a holonomic system, but in a rough description it consists of n linear differential
equations defined on an n-dimensional space; for example, n = 2 for the Pearcey
system. Although too lengthy, the name originally used in [SKK, Chap. II, Sect. 4],
i.e., a maximally over-determined system, abbreviated as MOS, is more appealing
to the intuition of the reader. Naming issue apart, the structure theorem of [SKK]
applies to the Borel transformed Pearcey system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
4

∂3

∂x31
+ 2x2

∂

∂x1

∂2

∂y2
+ x1

∂3

∂y3

)
ψB(x, y) = 0

( ∂2

∂x21
− ∂

∂x2

∂

∂y

)
ψB(x, y) = 0,

(1.8.4)

and then we can study the bicharacteristic flow in T ∗
C
3
(x,y) to define the notion of

a virtual turning point. Similar holonomic systems with a large parameter η also
appear [A] in analyzing the Shudo integral

∫
· · ·
∫

exp
(
ηS(q0, q1, . . . , qn−1, qn)

)
dq1 · · · dqn−1, (1.8.5)

where

S(q0, q1, q2, . . . , qn−1, qn) =
n∑

j=1

1

2
(q j − q j−1)

2 −
n−1∑
j=1

V (q j ) (1.8.6)

for the potential V , say,

V (q) = − q3

3
− cq (1.8.7)

with c being a real constant. The Shudo integral is a basic quantity in the study of
the quantized Hénon map and Shudo [Sh] studied its analytic structure (for fixed q0)
using the notion of virtual turning points and new Stokes curves.

Now, after writing down the holonomic systemwith a large parameter η explicitly
for the Shudo integral (with n = 3), Aoki [A, Sect. 3] comments that we can find
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another differential equation that it satisfies if η is also regarded as an independent
variable, not just as a large parameter; that is, the Shudo integral, as a function of
(x, η), satisfies a MOS. Inspired by this comment of Aoki, here we introduce the
notion of s-virtual turning points for a holonomic system with a large parameter η

that has a solution ψ which enjoys the integral representation (1.8.8) given below:

ψ =
∫

exp(ηS(x, t))dt (1.8.8)

for a polynomial S(x, t) that satisfies the following condition:

� :
{
(x, t) ∈ C

n
x × C

p
t ; ∂S

∂t1
= · · · = ∂S

∂tp
= 0

}
−→ C

n
x

is a finite proper map, (1.8.9)

that is, � maps a closed set to a closed set, and for each x0 in Cn
x there exist an open

neighborhood ω of x0 and vectors t ( j)(x) ( j = 1, 2, . . . , N ) whose components t ( j)
k

(1 ≤ j ≤ N , 1 ≤ k ≤ p) are continuous functions on ω for which we find

�−1(ω) ⊂
N⋃

j=1

{(x, t) ∈ ω × C
p; t = t ( j)(x)}. (1.8.10)

In contrast to the definition of a virtual turning point we introduce the notion of
an s-virtual turning point by directly using the geometry of the characteristic variety
of the MOS that is satisfied by the Borel transform ψB(x, y) of ψ given by (1.8.8),
that is,

ψB(x, y) =
∫

exp(−yη)

(∫
exp
(
ηS(x, t)

)
dt

)
dη

=
∫

δ
(
y − S(x, t)

)
dt. (1.8.11)

Actually the general theory of “integration (along fibers) of (over-determined) sys-
tems” [SKK, Chap. II] together with the conditions given by (1.8.9) and (1.8.10) tells
us that the characteristic variety in question is contained (outside the zero-section of
the cotangent bundle) in

V ={(x, y; ξ, η) ∈ T ∗(Cn+1
(x,y)) ; y = S(x, t) with gradt S(x, t) = 0 and

(ξ, η) = c(−gradx S(x, t), 1) for a non-zero complex number c
}
. (1.8.12)

Hence its projection to the base manifold Cn+1
(x,y) is contained in
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S ={(x, y) ∈ C
n+1; there exists t inCp for which

y = S(x, t) and gradt S(x, t) = 0 hold.
}

(1.8.13)

Since all points in (each connected component of) V , and hence those in S also,
are thought to be “cognate”, it is reasonable to introduce the notion of an s-virtual
turning point as in Definition1.8.1; it is the x-component of a confluent point of
the loci of two “cognate” singularities, just like a virtual turning point introduced in
Sect. 1.4.

Definition 1.8.1 A point x0 is said to be an s-virtual turning point of the system that
ψ in (1.8.8) satisfies, if there exist t and t ′ ( �= t) for which the following conditions
are satisfied:

S(x0, t) = S(x0, t ′) (1.8.14)

(gradt S)(x0, t) = (gradt S)(x0, t ′) = 0. (1.8.15)

Remark 1.8.1 An ordinary turning point of the system that ψ satisfies is not an
s-virtual turning point given above; an ordinary turning point is a point where

S(x, t ( j)(x)) = S(x, t (k)(x))
(
t ( j)(x) �≡ t (k)(x)

)
(1.8.16)

holds for t ( j)(x) and t (k)(x) used in (1.8.10), which are not holomorphic at the point
in question.

Remark 1.8.2 In a neighborhood of an s-virtual turning point x0 we can find t ( j)(x)

and t (k)(x) in (1.8.10) which satisfy

t ( j)(x0) = t and t (k)(x0) = t ′. (1.8.17)

Hence a (new) Stokes surface emanating from an s-virtual turning point x0 is given by

Im S(x, t ( j)(x)) = Im S(x, t (k)(x)) (1.8.18)

near x0.

Remark 1.8.3 We note that our study in this section only covers integrals of the form
(1.8.8); the integrand is always a single-valued function. Although this is a very
restricted situation, we still believe that analysis of such integrals is an important
subject in application.

Remark 1.8.4 Although we believe the union of all the ordinary turning points and
all the s-virtual turning points coincides with the totality of virtual turning points
defined with the help of the study of the geometry of bicharacteristic flows when both
notions are available, we have not confirmed the fact in full generality. Hencewe have
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coined the name “an s-virtual turning point” (cf. Remark1.8.5 for the background
information concerning this naming) so that we may avoid possible confusions. We
note, however, as we will see in Example1.8.2, the definition of a virtual turning
point for the Shudo integral with q0 fixed coincides with the definition of an s-virtual
turning point restricted to that particular value of q0.

Remark 1.8.5 We have used the prefix “s-” of s-virtual turning points just because
the theory of “integration of systems” is a counterpart of the stationary phase method
in microlocal analysis. Fortunately enough, the prefix “s-” is consistent with the
terminology “a saddle point”, which is basic in the study of the Shudo integral [Sh].

In order to validate our belief stated in Remark1.8.4, we study two important
examples in what follows.

Example 1.8.1 (Pearcey integral) If we use S(x, t) given by (1.8.2), then we have

∂S

∂t
= 4t3 + 2x2t + x1. (1.8.19)

Hence the finite proper mapping condition (1.8.9) is clearly satisfied. Further, a
straightforward computation shows that (1.8.14) and (1.8.15) entail x2 �= 0 for
t �= t ′ and that t and t ′ are solutions of the following equation in u:

4u2 + 6
x1
x2

u +
(
9

x21
x22

+ 2x2

)
= 0. (1.8.20)

Hence, by using (1.8.15) and (1.8.20), we further find that t and t ′ satisfy

6
x1
x2

u2 + 9
x21
x22

u − x1 = 0. (1.8.21)

Thus it is clear that a point (x1, x2) with x1 = 0 (and x2 �= 0) is an s-virtual turning
point. On the other hand, if x1 �= 0, we find

4u2 + 6
x1
x2

u − 2

3
x2 = 0. (1.8.21′)

Then the comparison of (1.8.20) and (1.8.21′) implies

27x21 + 8x32 = 0; (1.8.22)

it is then clear that t = t ′ holds in this case; that is, the point in question is an
ordinary turning point (cf. Remark1.8.1). These conclusions are consistent with the
observation of Aoki [A, (23)].
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Example 1.8.2 (Shudo integral) If we choose S(q) in (1.8.6) as S(x, t) with regard-
ing (q0, qn) as x and (q1, . . . , qn−1) as t = (t1, . . . , tn−1), then the condition

∂S

∂tl
= 0 (l = 1, 2, . . . , n − 1) (1.8.23)

reduces to

ql+1 = 2ql + q2
l − ql−1 + c (l = 1, 2, . . . , n − 1). (1.8.24)

Hence we can write down ql+1 (1 ≤ l ≤ n − 1) as a polynomial of (q0, q1); in
particular, we find

qn = q2n−1

1 + Qn(q0, q1), (1.8.25)

where Qn is a polynomial of (q0, q1) whose degree in q1 is less than 2n−1. Thus q1
satisfies an algebraic equation whose coefficients depend only on (q0, qn) = x , and
we locally (in x) find 2n−1 solutions q( j)

1 (x) ( j = 1, 2, . . . , 2n−1) of the algebraic
equation (1.8.25). Therefore the finite proper mapping condition (1.8.9) is clearly
satisfied; furthermore, by using q( j)

1 (x) given above, we find a point (q0, qn) is an
s-virtual turning of the MOS that the Shudo integral satisfies, if

S
(
q0, q( j)

1 (q0, qn), q2(q0, q( j)
1 (q0, qn)), . . . , qn−1(q0, q( j)

1 (q0, qn)), qn
)

=S
(
q0, q(k)

1 (q0, qn), q2(q0, q(k)
1 (q0, qn)), . . . , qn−1(q0, q(k)

1 (q0, qn)), qn
)

(1.8.26)

holds for j �= k. The point is located at the same point as the virtual turning point
(for a fixed q0) detected by Shudo [Sh].



Chapter 2
Application to the Noumi-Yamada System
with a Large Parameter

2.1 Introduction

It is known that a traditional Painlevé equation (of the variable t) is obtained by
the compatibility condition of a system of second order linear differential equations
of the variables x and t . Here, when we focus upon the underlying linear system,
the latter variable t is often called a deformation parameter. We can consider, with
the appropriate introduction of a large parameter η into these systems, the Stokes
geometry for both the linear and non-linear systems in the sameway as that described
in the previous chapter.

It is highly expected to have geometrical correspondence between the Stokes
geometry of the t-space for the Painlevé equation and that of the x-space for the
underlying linear differential equation. As a matter of fact, Kawai and Takei [KT1]
have shown that, in the Stokes geometry of the x-space, i.e., the one for the underlying
linear differential equation, a pair of ordinary turning points is directly connected by
a Stokes curve if the deformation parameter t of the linear differential equation is
located at a point in a Stokes curve of the t-space for the Painlevé equation. In other
words, when t belongs to the Stokes curve of the non-linear differential equation, the
Stokes geometry of the x-space becomes degenerate in the sense that two different
Stokes curves emanating from each turning point of the pair accidentally coincide.

Several families of non-linear equations are recently found as a higher order
extension of a traditional Painlevé equation. The Noumi-Yamada system (NY)m

(m = 2, 3, . . . ) is one of such a family, and like a traditional Painlevé equation
it can be obtained by the compatibility condition of a system of higher order linear
differential equations. Therefore, by introducing a large parameter into these systems,
the similar correspondence between the Stokes geometry of the t-space for (NY)m

and that of the x-space for the underlying linear system is expected as that for a
traditional Painlevé equation. In fact, Takei [T4] shows that, in the x-space, a pair
of ordinary turning points is directly connected by a Stokes curve if the deformation
parameter t is located in a Stokes curve T of the t-space and furthermore if t is
sufficiently close to a turning point from which the Stokes curve T emanates.

© The Author(s) 2015
N. Honda et al., Virtual Turning Points, SpringerBriefs in Mathematical Physics,
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Since the underlying linear system is a higher order one unlike that of a tradi-
tional Painlevé equation, if t ∈ T is located far from the turning point, one cannot
necessarily observe degeneration of the Stokes geometry of the x-space. That is, we
often encounter a configuration of the Stokes geometry of the x-space which has no
pair of turning points directly connected by a Stokes curve even if t is located at a
point in a Stokes curve of the non-linear system.

The bifurcation phenomenon of a Stokes curve (Sect. 1.7) is one of the origins of
such an unexpected situation; in some particular case of (NYL)2m , a linear system
that underlies (NY)2m (cf. (2.2.6) below), when a simple turning point s0 hits, at
t = t∗, a Stokes curve S which connects two ordinary turning points s and d, S
then bifurcates in general (depending on the type of s0 and that of S ) and after the
bifurcation no pair of ordinary turning points is connected by a Stokes curve even if
the parameter t lies in the Stokes curve of (NY)2m but each of the triplet {s0, s, d}
of ordinary turning points is connected by a Stokes curve with one of the triplet
{v j } j=1,2,3 of virtual turning points when the parameter t lies in the Stokes curve of
(NY)2m [AHKKoNSShT, Fig. 10].

In order to systematically understand the repeated bifurcation phenomena and
their relevance to virtual turning points, we introduce the notion of what we call
a bidirectional binary tree, which connects several ordinary turning points in a
manner specified later (Definition2.4.3). The appearance of such a tree in the Stokes
geometry of (NYL)2m is a counterpart of the appearance of a pair of ordinary turn-
ing points connected by a Stokes curve in the Stokes geometry of the underlying
Schrödinger equation of a traditional Painlevé equation [KT2, Chap.4]. Note that a
bidirectional binary tree of degree other than 2 always contains, by definition, a part
of a new Stokes curve as its edges, and hence, a virtual turning point is indispensable
in finding a bidirectional binary tree. As we want to explain the core part of the prob-
lem in a concise manner, we do not discuss in this article the procedure to find finitely
many virtual turning points needed for the description of the Stokes geometry; that
is, we start with the model of the Stokes geometry in the terminology of [H3]. As
a practical problem, finding the model of the Stokes geometry is an important step
in obtaining a concrete figure, and it requires much computational effort, as is seen
in [H1].

2.2 (NY)� and (NYL)� with a Large Parameter

The Noumi-Yamada system (NY)� (� = 2, 3, . . . ) is a system of non-linear dif-
ferential equations of unknown (� + 1)-functions u(t) = (u0(t), . . . , u�(t)) of the
variable t , which was first introduced by Noumi and Yamada [NY]. It is well-known
that the first member (NY)2 and the second member (NY)3 of (NY)� are equivalent
to the traditional Painlevé equations (PIV) and (PV), respectively. The corresponding
system with a large parameter was introduced in [T1] and intensively studied from
the viewpoint of the exact WKB analysis. Let us first recall the explicit form of the
Noumi-Yamada system with a large parameter η. As the structure of (NY)� depends

http://dx.doi.org/10.1007/978-4-431-55702-9_1
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on the parity of �, we concentrate our attention, in most cases, on the case where
� = 2m (m ∈ N), i.e., � is even. The system (NY)2m with a large parameter η is of
the following form:

η−1 du j

dt
= u j (u j+1−u j+2+· · ·−u j+2m)+ α̂ j ( j = 0, 1, . . . , 2m), (2.2.1)

where each index j of u j is considered to be an element of Z/(2m + 1)Z, i.e.,
u j+2m+1 = u j and α̂ j is a formal power series of η−1 with constant coefficients,
that is, α̂ j has the form

α̂ j = α
(0)
j + η−1α

(1)
j + η−2α

(2)
j + · · · ( j = 0, 1, . . . , 2m)

with α
(k)
j ∈ C. We sometimes denote by α j the leading term α

(0)
j ∈ C of α̂ j . In

addition, we assume that these α̂ j ’s satisfy the condition

α̂0 + α̂1 + · · · + α̂2m = η−1, (2.2.2)

which entails that the leading terms α j ’s satisfy

α0 + α1 + · · · + α2m = 0. (2.2.3)

Note that it follows from the condition (2.2.2) that, by summing up all the equations
of (NY)2m , we have

d

dt
(u0 + · · · + u2m) = 1. (2.2.4)

Hence we also put the following additional equation into those of (NY)2m as a
normalization condition:

u0 + u1 + · · · + u2m = t. (2.2.5)

Summing up, the system (NY)2m consists of (2m +2) equations, that is, Eqs. (2.2.1)
and (2.2.5).

As it is well-known, the non-linear equation (NY)� describes the compatibility
condition of a system of linear partial differential equations. In our case it consists
of a linear differential equation (NYL)� in x-variable that depends on a parameter t
(a deformation parameter) and another linear differential equation in t-variable that
controls the isomonodromic deformation of (NYL)�; the explicit form of (NYL)� is
as follows.

dψ

dx
= ηAt (x)ψ, (2.2.6)

where ψ = t (ψ0(x), . . . , ψ�(x)) and At (x) is a square matrix of the size � + 1 with
a parameter t defined by
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At (x) = −x−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ê0 u1(t) 1
ê1 u2(t) 1

. . .

. . .

ê�−2 u�−1(t) 1
x ê�−1 u�(t)

xu0(t) x ê�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2.7)

Here u(t) = (u0(t), u1(t), . . . , u�(t)) is a solution of (NY)� and ê j ( j =
0, 1, . . . , �) is a formal power series of η−1 with constant coefficients determined by
the relations

ê0 + · · · + ê� = 0, α̂ j = ê j − ê j+1 + η−1δ j,0 ( j = 0, 1, . . . , �). (2.2.8)

Here δ j,0 denotes the Kronecker’s symbol.

2.3 Stokes Geometry of (NY)2m

Now we define the Stokes geometry of the non-linear system (NY)2m . For this
purpose, we first construct a formal solution û(t) = (̂u0(t), û1(t), . . . , û2m(t)) of
(NY)2m in the form

û(t) = u(0)(t) + u(1)(t)η−1 + u(2)(t)η−2 + u(3)(t)η−3 + · · · . (2.3.1)

Here u(k)(t) = (u(k)
0 (t), . . . , u(k)

2m(t)) and each u(k)
j (t) is a multi-valued holomorphic

function over C except for a finite number of exceptional points. We say that û(t) is
a 0-parameter formal solution of (NY)2m if it satisfies (NY)2m as a formal power
series of η−1.

We briefly explain how to construct such a 0-parameter formal solution, which
does not necessarily exist for an arbitrary parameter of (NY)2m . We introduce some
subsets of the space of parameters (α0, α1, . . . , α2m) ∈ C

2m+1 to describe a con-
dition which assures the existence of a 0-parameter solution. By taking (2.2.3) into
account, let A2m ⊂ C

2m+1 denote the space of allowable parameters

{(α0, α1, . . . , α2m) ∈ C
2m+1; α0 + α1 + · · · + α2m = 0}. (2.3.2)

Then we define

E2m
cup :=

⋃
0 ≤ i ≤ 2m,

0 ≤ k ≤ 2m − 1

{(α0, α1, . . . , α2m) ∈ A2m; αi + αi+1 + · · · + αi+k = 0}.

(2.3.3)
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Note that the set E2m
cup consists of a finite number of hypersurfaces in A2m , and hence,

A2m\E2m
cup is an open dense subset in A2m .

By putting (2.3.1) into (2.2.1) and (2.2.5), we find that the leading term u(0)(t) of
(2.3.1) satisfies the system of algebraic equations

h j (u
(0)(t)) = 0 ( j = 0, . . . , 2m) and g(u(0)(t)) = 0,

where h j (u) and g(u) are the polynomials of u = (u0, . . . , u2m) respectively
defined by

h j (u) := u j (u j+1 − u j+2 + · · · − u j+2m) + α j ( j = 0, 1, . . . , 2m),

g(u) :=
2m∑
j=0

u j .

Then it follows from Theorem 6 in [AH] that, if α = (α0, α1, . . . , α2m) /∈ E2m
cup,

then u(0)(t) can be solved as a multi-valued holomorphic function of the variable t
with a finite number of branching points of finite degree. Furthermore, it is bounded
near the branching points and it is the unique solution as a multi-valued holomorphic
function. Thus we can get the leading term u(0)(t) when α /∈ E2m

cup.
Next let H(u) denote the Jacobian matrix

∂(h0, . . . , h2m−1, g)

∂(u0, . . . , u2m)
(2.3.4)

of polynomials h0, h1, . . . , h2m−1 and g of the variables u j ’s. Note that, since the
sum of h j ’s are identically zero, and thus, their Jacobian matrix is degenerate, we
substitute g for the last h2m of h j ’s in the above definition. Then the same theorem
says that det H(u(0)(t)) has an only finite number of zero points as a function of t ,
that is, det H(u(0)(t)) never vanishes identically if α /∈ E2m

cup.

Now we construct the lower order term u(k)(t) (k ≥ 1). By the normalization
condition (2.2.5) and the differential equations except for one corresponding to j =
2m in (2.2.1), we can obtain the following recursive relations:

H(u(0)(t))u(k+1) = R(k)

(
t, u(0)(t), . . . , u(k)(t),

du(k)

dt
(t)

)
(k = 0, 1, 2, . . . ).

(2.3.5)

Here R(k) consists of polynomials of the variables t , u(0), . . . , u(k) and
du(k)

dt
. Since

det H(u(0)(t)) does not vanish except for a finite number of points as we have already
noted, we can successively determine u(k)(t) by (2.3.5). Hence, for a generic para-
meter α̂, we have obtained a 0-parameter formal solution û(t) of (NY)2m .
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Let us now consider the linearized system of (NY)2m at the 0-parameter solution
u = û(t) thus obtained. By putting u = û(t) + Û (t) into the system (2.2.1) where
Û (t) = (Û0(t), Û1(t), . . . , Û2m(t)) are new unknown functions and by taking its
linear part with respect to Û , we obtain the system of linear differential equations

η−1 dÛ

dt
= Ĉ (t, η) Û , (2.3.6)

where Ĉ (t, η) is the squarematrix of size 2m+1 of a formal power series of η−1 with
coefficients in possibly multi-valued holomorphic functions of t , that is, Ĉ (t, η) has
the form

Ĉ (t, η) = C0(t) + η−1C1(t) + η−2C2(t) + · · ·

with Ck(t) being a matrix of multi-valued holomorphic functions. It is easy to see
that the leading matrix C0(t) is given by the Jacobian matrix of the polynomials h j ’s
at u = u(0)(t), i.e.,

C0(t) = ∂(h0, . . . , h2m)

∂(u0, . . . , u2m)
(u(0)(t)). (2.3.7)

Definition 2.3.1 A turning point and a Stokes curve of (NY)2m are, by definition,
those of the linearized system (2.3.6) of (NY)2m at the 0-parameter solution u = û(t).

Remark 2.3.1 In this section we use the words “a turning point” and “a Stokes
curve” in the traditional sense. Since the linearized system (2.3.6) of (NY)2m is of
size (2m + 1) × (2m + 1), the complete description of its Stokes geometry requires
the introduction of “virtual turning points” and “new Stokes curves emanating from
virtual turning points”. Although no satisfactory study in this direction has yet been
done for (NY)2m , we believe that the study of the Stokes geometry of (NYL)2m ,
particularly the introduction of the functionΦ(T ), whichwewill do in the subsequent
sections, should play a basic role in such study. See [S2, H1] for supporting evidences
of the belief. We also note that the study of the Stokes geometry of higher order
Painlevé equations (PI)m etc. also supports such a belief, although the underlying
linear equations are of size 2 × 2 (cf. [KKoNT1, KKoNT2]).

Let N (ν, t) be a characteristic polynomial of the matrix C0(t), i.e.,

N (ν, t) = det (ν I2m+1 − C0(t)) . (2.3.8)

Then it follows from the definition of a turning point that a turning point of (NY)2m

is a point t∗ ∈ C at which a pair of roots of the polynomial N (ν, t) of ν merges. The
characteristic polynomial N (ν, t) of (NY)2m has the following specific feature:

Lemma 2.3.1 ([T4]) The Ñ (ν, t) := ν−1N (ν, t) is a polynomial of ν2.

By the lemma, the roots of N (ν, t) consist of m-pairs (νk(t), −νk(t)) (k =
0, 1, . . . , m − 1) and the extra root ν = 0. The extra root comes from the fact that
polynomials h j ’s are linearly dependent, and hence, it is almost irrelevant to the
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Fig. 2.1 Stokes curves
emanating from a turning
point of the first kind

Fig. 2.2 Stokes curves
emanating from a turning
point of the second kind

Stokes geometry of (NY)2m . In fact, if we eliminate the unknown function u2m from
the equations of (2.2.1) with j = 0, 1, . . . , 2m − 1 by the normalized condition
(2.2.5) and apply the same argument to the system consisting of these 2m-equations
(where we forget the last equation of (2.2.1)), then the corresponding characteristic
polynomial coincides with Ñ (ν, t) and the extra root never appears. Hence, in what
follows, we ignore the extra root of N (ν, t).

Let t∗ ∈ C be a turning point of (NY)2m . Then, by these observations, we have
the following two possibilities at t∗:

1. There exists k such that νk(t∗) = −νk(t∗), that is, νk(t∗) = 0. In this case, t∗ is
said to be a turning point of the first kind.

2. There exist i �= j such that either νi (t∗) = ν j (t∗) or νi (t∗) = −ν j (t∗) holds. We
say that t∗ is a turning point of the second kind.

It is known (Sect. 2.4 in [AH]) that the set of the branching points of the leading
term u(0)(t) of the 0-parameter solution exactly coincides with that of turning points
of the first kind.

Let t∗ be a turning point of the first kind, that is, νk(t∗) = 0 for some k. It is also
known (Sect. 5.3 in [AH]) that, for generic α, the ramification degree of u(0)(t) at t∗
is 2, that is, u(0)(t) has a Puiseux expansion of (t − t∗)1/2 at t = t∗. Then, by (2.3.7),
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Fig. 2.3 The starting Stokes geometry of (NY)4 (drawn with ordinary turning points and Stokes
curves). The point t∗ is, for example, a turning point of the first kind. For the other points t0, t1, t2
and t3 located in a Stokes curve emanating from t∗, see Example2.4.3

the Ñ (0, t) has also a Puiseux expansion of (t − t∗)1/2 there, and its leading term is
of order 1/2 for generic α, i.e.,

Ñ (0, t) = c1/2(t − t∗)1/2 + c1(t − t∗) + · · · (c1/2 �= 0).

Therefore the root νk(t) has a Puiseux expansion of (t − t∗)1/4 at t = t∗:

νk(t) = d1/4(t − t∗)1/4 + d1/2(t − t∗)1/2 + · · · (d1/4 �= 0).

As a Stokes curve emanating from t∗ is defined by

Im
∫ t

t∗
(νk(s) − (−νk(s))) ds = 0 ⇐⇒ Im

∫ t

t∗
νk(s)ds = 0,
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which is equivalent to, by a Puiseux expansion of νk(t),

Im

(
4d1/4
5

(t − t∗)5/4 + 2d1/2
3

(t − t∗)3/2 + · · ·
)

= 0,

we conclude that 5-Stokes curves emanate from a turning point of the first kind
(cf. Fig. 2.1).

When t∗ is a turning point of the second kind, then u(0)(t) is holomorphic near t∗
and, for generic α, Ñ (0, t) has a simple root at t = t∗. Hence, by the same argument
as that for a turning point of the first kind, we see that 3-Stokes curves emanate from
a turning point of the second kind in general (cf. Fig. 2.2).

Remark 2.3.2 The number of turning points of the first kind is less than or equal to
m22m+1. That of the second kind is less than or equal to

2m(2m + 1)2mCm − 3m22m .

These estimates are strict for generic α. See [AH, AHU] for details.

2.4 A Bidirectional Binary Tree

We now study the Stokes geometry of the linear system (NYL)2m . Let t1 be a point
in a Stokes curve of (NY)2m which is different from a turning point. We denote by
G := G(t1) the Stokes geometry of (NYL)2m with t = t1. As stated before, when t
lies in a Stokes curve of (NY)2m , the corresponding Stokes geometry of (NYL)2m

takes a specific configuration, in particular, there exists a so-called bidirectional
binary tree in G whose definition is given now.

We first recall some conventions. LetS be a closed curve inC, and let p1, p2, q1
and q2 be points in S . We assume that, hereafter, a relevant curve does not form a
loop. Then we denote by [p1, q1]S or simply by [p1, q1] the closed portion between
p1 and q1 of the curve S . Furthermore, we write [p1, q1] ⊂ [p2, q2] if and only if
p2, p1, q1, q2 are located in this order onS . Hence the notation [p1, q1] ⊂ [p2, q2]
used in this article has the stronger meaning other than inclusion of sets.

Let V (resp. W ) be a Stokes curve emanating from a turning point v (resp. w) in
G. Here, and in what follows, “a turning point” means either an ordinary one or a
virtual one; when necessary, we always write so expressly. Assume that v and w are
connected by both V andW , that is, [v, w]V = [v, w]W holds. Note that the Stokes
curves V and W have the same type.

Definition 2.4.1 We say that a closed portion � of [v, w] is a bidirectional segment
between turning points v and w in G if there exist points p and q in [v, w] satisfying
the following conditions:
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Fig. 2.4 Bidirectional segments

1. � = [p, q] ⊂ [v, w].
2. The points p and q are either v orw or a point where another Stokes curve crosses.

We often write � = (p, q; v, w; V , W ) to describe this situation (Fig. 2.4), and we
call p and q to be the end points of �.

Note that (p, q; v, w; V , W ) implies that, in particular, points v, p, q,w are located
in this order on the curve V orW . Now let us recall the definition of a binary tree in
the graph theory.

Definition 2.4.2 A binary tree T = (B, E, L) consists of E : a set of leaf nodes,
B: a set of branching nodes and L: a set of edges whose end points are in B ∪ E ,
which satisfy the following conditions.

1. The degree of each leaf node is one (the degree of a node p is the number of
edges with p in their end points).

2. The degree of each branching node is three.
3. For any two nodes in B ∪ E , they are connected by a path and such a path is

unique. Here a path is, by definition, a subset of edges which forms a polygonal
chain.

The degree of a binary tree T is, by definition, the number of leaf nodes. We
also define the depth of a binary tree T to be the number of edges of a maximal
path in the tree T .

Fig. 2.5 Binary trees T1 and T2.
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Example 2.4.1 Let us see the binary trees T1 and T2 in Fig. 2.5.
For examples, T2 consists of 4-leaf nodes {e1, e2, e3, e4}, 2-branching nodes {b1,

b2} and 5-edges {e1b1, e3b1, e2b2, e4b2, b1b2}.
The degree of T1 is 3 and that of T2 is 4. The depth of T1 is 2 and that of T2 is 3.

Definition 2.4.3 A triplet T = (B, E, L) is called a bidirectional binary tree in
the Stokes geometry G if the following conditions are satisfied:

1. (B, E, L) is a binary tree where L consists of bidirectional segments in G whose
end points are contained in B ∪ E .

2. Let � = (p, q; v, w; V , W ) ∈ L (cf. Definition2.4.1 for the notation). Then
p ∈ E if p = v and p ∈ B otherwise, and similarly q ∈ E if q = w and q ∈ B
otherwise.

3. Let b ∈ B and let � be (p, b; v, w; V , W ) in L with b in its end points. Suppose
that �1 = (p1, b; v1, w1; V1, W1) and �2 = (p2, b; v2, w2; V2, W2) are the
other two bidirectional segments in L with b in their end points. Then we have
(cf. Fig. 2.6):

(a) The Stokes curves V1 and V2 form an ordered crossing at b with the Stokes
curve W . That is, there exist mutually distinct indices i , j and k such that
the type of V1 (resp. V2 and W ) near b is (i, j) (resp. ( j, k) and (i, k)) and
either

“i < j onV1 and j < k onV2”

or

“ j < i onV1 and k < j onV2”

hold (see Definition1.2.2 for the meaning of the labels i < j , etc. used
here).

Fig. 2.6 The condition 3. of
a bidirectional binary tree

http://dx.doi.org/10.1007/978-4-431-55702-9_1
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(b) w is a turning point obtained from v1 and v2 by the method given in the proof
of Proposition1.4.1 (cf. (1.4.32)). That is, we have the integral relation

∫ v1

b
(λi (x)−λ j (x))dx +

∫ v2

b
(λ j (x)−λk(x))dx =

∫ w

b
(λi (x)−λk(x))dx .

4. Each point in E is an ordinary turning point.

Remark 2.4.1 It follows from the conditions 3(a) and 3(b) of Definition2.4.3 that,
if i < j on V1 and j < k on V2 hold, we have i < k on W . Similarly, j < i on V1
and k < j on V2 imply k < i on W .

We will give a few examples of bidirectional binary trees.

Example 2.4.2 The simplest bidirectional binary tree is that of degree 2 (Fig. 2.7). It
is nothing but a pair (s, d) of ordinary turning points connected by a Stokes curveS

Fig. 2.7 The Stokes
geometry of (NYL)4 at
t = t0, where only relevant
Stokes curves and ordinary
turning points are drawn for
simplicity

Fig. 2.8 The magnification of Fig. 2.7 near s2

http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
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(resp. D) emanating from s (resp. d). As a matter of fact, the bidirectional segment
(s, d; s, d; S , D) and its end points form a bidirectional binary tree of degree 2.

Example 2.4.3 We give some concrete examples of bidirectional binary trees
observed in the Stokes geometry of (NYL)4. Let t∗ be a turning point of (NY)4
and let T denote a Stokes curve of (NY)4 that emanates from t∗. We take points
t0, t1, t2 and t3 in T so that t∗, t0, t1, t2 and t3 are located in this order on T (cf.
Fig. 2.3) .

Let us see the Stokes geometry of (NYL)4 when t = tk (k = 0, 1, 2, 3). Note
that, in all figures, s1, s2, s3 and s4 are ordinary turning points and v1, v2, . . . , v6 are
virtual turning points. Figures2.7 and 2.8 describe the Stokes geometry of (NYL)4
at t = t0. As t0 in T is located quite near the turning point t∗, we can observe that
ordinary turning points s1 and s2 are directly connected by a Stokes curve, and they
form a bidirectional binary tree of degree 2 as it is explained in the previous example.

We also find another ordinary turning point s3 close to the portion [s1, s2]. As a
matter of fact, when t moves from t0 to t1, s3 hits against [s1, s2]. As we already
mentioned in Sect. 2.1, when s3 crosses [s1, s2], a bifurcation phenomenon occurs
and consequently the tree of degree 2 becomes the higher one: The tree T1 (resp. T2) of
Figs. 2.9 and 2.10 (resp. Figs. 2.11 and 2.12) is the bidirectional binary tree of degree
3. The tree T1 consists of 3-leaf nodes {s1, s2, s3} (s1 is a double turning point, and s2,
s3 are simple turning points), 1-branching node {b1} and 3-bidirectional segments
{s1b1, s2b1, s3b1}. For example, the bidirectional segment s1b1 lies in a common
portion of two Stokes curves emanating from s1 and v1. In this way, each bidirectional
segment of T1 lies in a common portion of two Stokes curves. An important feature
of T1 is, for example, the Stokes curve emanating from s2 and that from s3 form
an ordered crossing at b1 and a virtual turning point v1 is obtained from s2 and s3
(cf. (1.4.32)). In the same way, the Stokes curve emanating from s1 and that from s2
(resp. s3) form an ordered crossing at b1 and these turning points determine a virtual
turning point v3 (resp. v2).

When t moves from t1 to t2, the tree T1 changes its shape continuously and is
deformed to the tree T2 in Fig. 2.12. Note that, in the figure, the simple turning point
s4 is located quite near the edge s3b1 of T2. Then, when t moves from t2 to t3 on T ,
the turning point s4 really crosses the edge s3b1 and the tree T2 grows.

The degree of T3 in Figs. 2.13 and 2.14 becomes 4 because the turning point s4
joins in the tree as a new leaf node after s4 hits against the edge of the tree. The tree
T3 consists of 4-leaf nodes {s1, s2, s3, s4}, 2-branching nodes {b1, b2}, and 5-edges
{s1b1, s2b1, s3b2, s4b2, b1b2}. In particular, the segment b1b2 is in a common portion
of two Stokes curves emanating from virtual turning points v5 and v6. Although it is
not trivial, a careful study of the Stokes geometry G guarantees that branching nodes
b1 and b2 satisfy the condition 3. of Definition2.4.3.

For a bidirectional binary tree T inG, we can define its total integral valueΦ(T ) as
in Definition2.4.4 below. The valueΦ(T ) is closely tied upwith the Stokes geometry
of (NY)2m , as Corollary2.5.1 below shows. We also note that it is a counterpart of
the function φJ (t) (J = I, II, . . . ,VI) used in constructing instanton-type solutions

http://dx.doi.org/10.1007/978-4-431-55702-9_1
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Fig. 2.9 The Stokes geometry of (NYL)4 at t = t1 [H1, Fig. III-1–6]

Fig. 2.10 Extract related Stokes curves and turning points of T1 from Fig. 2.9 (t = t1)
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Fig. 2.11 The Stokes geometry of (NYL)4 at t = t2 [H1, Fig. III-1–7]

Fig. 2.12 Extract related Stokes curves and turning points of T2 from Fig. 2.11 (t = t2)
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Fig. 2.13 The Stokes geometry of (NYL)4 at t = t3 [H1, Fig. III-1–9]

Fig. 2.14 Extract related Stokes curves and turning points of T3 from Fig. 2.13 (t = t3)
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of the traditional Painlevé equation (PJ ). (See [KT2, Chap.4] for the construction
of instanton-type solutions of (PJ ).)

Definition 2.4.4 Let T = (B, E, L) be a bidirectional binary tree in G. We define
the total integral value Φ(T ) of T as follows:

Φ(T ) =
∑
�∈L

∣∣∣∣
∫

[�]
(λi� (x) − λ j� (x))dx

∣∣∣∣ , (2.4.1)

where, for � = (p, q; v, w; V , W ) ∈ L , we set [�] := [p, q] and denote by
(i�, j�) the type of the Stokes curve V or W .

Remark 2.4.2 Let � = (p, q; v, w; V , W ) ∈ L . Then, as [p, q] is a part of the
Stokes curve V or W and p �= q, each integral

∫
[�]

(λi� (x) − λ j� (x))dx

takes a non-zero real value. Hence, if we equip each edge in L with an appropriate
orientation, we can write (2.4.1) in a much simpler form

Φ(T ) =
∑
�∈L

∫
[�]

(λi� (x) − λ j� (x))dx .

The following lemma gives us the most basic property of a bidirectional binary tree.

Lemma 2.4.1 For any edge � = (p, q; v, w; V , W ) ∈ L, we have

Φ(T ) =
∣∣∣∣
∫ w

v
(λi� (x) − λ j� (x))dx

∣∣∣∣ . (2.4.2)

In particular, the integral value of the right hand side of the above equality does not
depend on the choice of the edge � of the tree T .

Proof We consider, as a bidirectional binary tree, a tree T = (B, E, L) which
satisfies all the conditions in Definition2.4.2 except for the last condition 4, that is,
a virtual turning point is also allowed as a leaf node. Then we show the claim for
such a tree. We prove the claim by the induction on the number of edges in such a
T , which is denoted by #T in this proof.

When #T = 1, the only edge has the form (v, w; v, w; V , W ). Hence the claim
is trivial.

Now assume that the claim is true for T with #T ≤ k (k ≥ 1). We will show the
claim for T with #T = k + 1. Let � = (p, q; v, w; V , W ) ∈ L . We assume that
p �= v and q �= w, that is, p and q are branching nodes, and we will show the claim
only in this case because the other cases can be proved in the same way.
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Suppose that

�1 = (p, q1; v1, w1; V1, W1), �2 = (p, q2; v2, w2; V2, W2) ∈ L

are the other two edges with p in their end points and suppose also that

�3 = (p3, q; v3, w3; V3, W3), �4 = (p4, q; v4, w4; V4, W4) ∈ L

are the other two edges with q in their end points. Note that T \� (the tree T without
the edge �) consists of 4-connected components. We denote by T1 (resp. T2, T3 and
T4) the connected component of T \� containing the point q1 (resp. q2, p3 and p4).
Now we define the bidirectional binary tree T̃1 by T1 where the edge �1 is replaced
with

�̃1 = (v1, q1; v1, w1; V1, W1),

i.e., �̃1 is obtained by substituting v1 for p in �1. In the same way, T̃2 is the tree T2
where �2 is replaced with

�̃2 = (v2, q2; v2, w2; V2, W2).

Then, as #T̃1 ≤ k and #T̃2 ≤ k by the induction hypothesis, we obtain

Φ(T̃1) =
∣∣∣∣
∫ w1

v1
(λi�̃1

(x) − λ j�̃1
(x))dx

∣∣∣∣
and

Φ(T̃2) =
∣∣∣∣
∫ w2

v2
(λi�̃2

(x) − λ j�̃2
(x))dx

∣∣∣∣ .
Hence, by noticing that the path [v1, p] (resp. [v2, p]) appears in both sides, we have

∑
�′∈T1

∣∣∣∣
∫

[�′]
(λi�′ (x) − λ j�′ (x))dx

∣∣∣∣ =
∣∣∣∣
∫ w1

p
(λi�̃1

(x) − λ j�̃1
(x))dx

∣∣∣∣

and

∑
�′∈T2

∣∣∣∣
∫

[�′]
(λi�′ (x) − λ j�′ (x))dx

∣∣∣∣ =
∣∣∣∣
∫ w2

p
(λi�̃2

(x) − λ j�̃2
(x))dx

∣∣∣∣ ,

where we write �′ ∈ T1 (resp. T2) when �′ is an edge of T1 (resp. T2). The condition
that W1 and W2 form an ordered crossing at p entails that pairs of indices (i�̃1, j�̃1)
and (i�̃2 , j�̃2) share one and only one common index, and thus, we may assume
j�̃1 = i�̃2 (denote it by k) and i�̃1 �= j�̃2 �= k. Furthermore, the same condition
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implies that both
∫ w1

p
(λi�̃1

(x) − λk(x))dx and
∫ w2

p
(λk(x) − λ j�̃2

(x))dx have the

same signature. Therefore we get

∣∣∣∣
∫ w1

p
(λi�̃1

(x) − λk(x))dx

∣∣∣∣ +
∣∣∣∣
∫ w2

p
(λk(x) − λ j�̃2

(x))dx

∣∣∣∣
=

∣∣∣∣
∫ w1

p
(λi�̃1

(x) − λk(x))dx +
∫ w2

p
(λk(x) − λ j�̃2

(x))dx

∣∣∣∣
=

∣∣∣∣
∫ v

p
(λi� (x) − λ j� (x))dx

∣∣∣∣ ,

where the last equality comes from the fact that v is a virtual turning point obtained
from w1 and w2. Summing up, we have

∑
�′∈T1∪T2

∣∣∣∣
∫

[�′]
(λi�′ (x) − λ j�′ (x))dx

∣∣∣∣ =
∣∣∣∣
∫ v

p
(λi� (x) − λ j� (x))dx

∣∣∣∣ .

By applying the same argument to T3 and T4, we also have

∑
�′∈T3∪T4

∣∣∣∣
∫

[�′]
(λi�′ (x) − λ j�′ (x))dx

∣∣∣∣ =
∣∣∣∣
∫ w

q
(λi� (x) − λ j� (x))dx

∣∣∣∣ .

Then, as v, p,q,w are located in this order on theStokes curve, bynoticing � = [p, q],
we have

∣∣∣∣
∫ v

p
(λi� (x) − λ j� (x))dx

∣∣∣∣ +
∣∣∣∣
∫ w

q
(λi� (x) − λ j� (x))dx

∣∣∣∣ +
∣∣∣∣
∫
[�]

(λi� (x) − λ j� (x))dx

∣∣∣∣
=

∣∣∣∣
∫ w

v
(λi� (x) − λ j� (x))dx

∣∣∣∣ ,

and hence, we obtain

Φ(T ) =
∑

�′∈T \�

∣∣∣∣
∫

[�′]
(λi�′ (x) − λ j�′ (x))dx

∣∣∣∣ +
∣∣∣∣
∫

[�]
(λi� (x) − λ j� (x))dx

∣∣∣∣

=
∣∣∣∣
∫ w

v
(λi� (x) − λ j� (x))dx

∣∣∣∣ .
Therefore the claim is true for T with #T = k + 1, and thus, it is true for any T by
the induction. This completes the proof.
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2.5 Growing and Shrinking of a Bidirectional Binary Tree

Let t∗ be a turning point of (NY)2m and let T denote a Stokes curve emanating
from t∗. We take the parameterization t = t (θ) (θ ≥ 0) of T by the length θ of the
curve from t∗ to t ∈ T . We denote by G(t) the Stokes geometry of (NYL)2m for a
fixed t . Let θ2 > θ1 > θ0 > 0 and set tk = t (θk) ∈ T (k = 0, 1, 2). Assume that
a bidirectional binary tree T = (B, E, L) exists in G(t1). We first give sufficient
conditions which guarantee that T is continuously deformed when θ moves in a
neighborhood of θ1. We denote by ST the set of all the Stokes curves appearing in
edges of T .

C-1. An ordinary turning point of non-disjoint type never hits against a Stokes curve
in ST . Here a turning point is said to be of non-disjoint type when the type
of the turning point and that of a Stokes curve which the turning point touches
share a common index.

From the conditionC-1, each Stokes curve inST continuouslymoveswhen θ moves.
Hence ST forms a continuously moving family of Stokes curves.

C-2. Each Stokes curve in ST intersects transversally with other related Stokes
curves when they have some point in common.

Here, and in what follows, “a related Stokes curve” or “a related turning point”
means that it appears in an element (p, q; v, w; V , W ) ∈ L . It follows from C-1
that all the related Stokes curves and turning points continuously move with θ , and
C-2 makes it sure that, in particular, a branching node also continuously moves. As
a result of these conditions, each point in B ∪ E is regarded as a continuous function
of θ , for which we also assume:

C-3. Any pair of points in B ∪ E never merges.

As the origin is a regular singular point for the system (NYL)2m , to simplify our
consideration, we prevent a point in B ∪ E from falling into the origin. Hence, in
what follows, we always assume the following condition:

(†) Each point in B ∪ E stays in a compact region of C\{0}.
Then we obtain:

Theorem 2.5.1 Assume that the conditions C-1–C-3 hold for every θ0 < θ < θ2.
Then, for any θ ∈ (θ0, θ2), there exists a bidirectional binary tree Tθ in G(t (θ))

satisfying that Tθ1 = T and Tθ is continuously deformed when θ moves in (θ0, θ2).
Furthermore the total integral value Φ(Tθ ) of Tθ is an analytic function of θ ∈
(θ0, θ2).

Proof As a related Stokes curve and a point in B ∪ E continuously move by the
conditions C-1 and C-2, it suffices to show that bidirectionality of each segment
is really preserved. Let (p, q; v, w; V , W ) ∈ L where p, q, v and w are known
to be continuous functions of θ . By the condition C-3, we have p �= q for any
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θ ∈ (θ0, θ2). If q is a branching node, i.e., q �= w at θ = θ1, then we will show
q �= w for any θ ∈ (θ0, θ2). To confirm this, let �1 = (p1, q; v1, w1; V1, W1) and
�2 = (p2, q; v2, w2; V2, W2) be the other two edges with q in their end points.
Since p1 �= q and p2 �= q hold by the condition C-3 and since V1 and V2 form an
ordered crossing at q, we get

∣∣∣∣
∫ q

v1
(λi − λ j )dx +

∫ q

v2
(λ j − λk)dx

∣∣∣∣ ≥
∣∣∣∣
∫ q

p1
(λi − λ j )dx +

∫ q

p2
(λ j − λk)dx

∣∣∣∣ �= 0,

where the type of V1 (resp. V2) near q is assumed to be (i, j) (resp. ( j, k)). As w is
a virtual turning point obtained from v1 and v2, we have

∫ q

w
(λi − λk)dx =

∫ q

v1
(λi − λ j )dx +

∫ q

v2
(λ j − λk)dx �= 0.

Hencewe have obtainedw �= q. As a conclusion, for any θ ∈ (θ0, θ2), the points v, p,
q,w are located in this order onV orW , and hence, they form a bidirectional segment
in G(t (θ)). Therefore we find a bidirectional binary tree Tθ at every θ ∈ (θ0, θ2)

which is continuous deformation of T .

Let us show that Φ(Tθ ) is an analytic function of θ . Take an edge � =
(p, q; v, w; V , W ) ∈ L . Then, by Lemma2.4.1, we have

Φ(Tθ ) =
∣∣∣∣
∫ w

v
(λi� (x) − λ j� (x))dx

∣∣∣∣ ,

and hence, it suffices to show
∫ w

v
(λi� (x) − λ j� (x))dx to be an analytic function of

θ . Since roots λi� and λ j� analytically depend on θ outside ordinary turning points,
we may consider the problem only near v and w, that is,

∫ v

v′
(λi� (x) − λ j� (x))dx

(
resp.

∫ w

w′
(λi� (x) − λ j� (x))dx

)

is analytic for a fixed v′ (resp. w′) sufficiently close to v (resp. w).

We only show that
∫ v

v′
(λi� (x) − λ j� (x))dx is an analytic function of θ . If v is a

simple turning point, then we have

∫ v

v′
(λi� (x) − λ j� (x))dx =

∫
C

λi� (x)dx,

where C is a closed path which starts from v′ and turns around v once with an
appropriate orientation. Hence the integral is an analytic function of θ in this case.

If v is a double turning point or a virtual one, then λi� and λ j� analytically depend
on θ near v. Therefore it is enough to show that v itself analytically depends on θ .
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When v is a double turning point, v is a simple root of the equation
d D

dx
(x) = 0where

D(x) is the discriminant of the polynomial det(λI2m+1 − At (x)) of λ, from which
analyticity of v on θ follows. When v is a virtual turning point, v is, by definition, a
solution of the equation of x defined by

F(x) =
∫ x

x∗
(λi� (z) − λ j� (z))dz + h(θ) = 0,

where x∗ is a fixed point near v and h(θ) is some analytic function of θ . As we have

d F

dx
= λi� (x) − λ j� (x)

which does not vanish near x = v because v is not an ordinary turning point, we
know that v also analytically depends on θ . This completes the proof.

Assume that θ1 > 0 is an exceptional point in the sense that either C-1 or C-2
or C-3 does not hold in G(t (θ1)). That is, one of the following cases happens in
G(t (θ1)):

A. For an edge � = (p, q; v, w; V , W ), an ordinary turning of non-disjoint type
hits against [v, w].

B. For an edge � = (p, q; v, w; V , W ), the end points p and q of � merge.
Z. At a branching node b, some edges with b in their end points become tangent at

b; to be more precise, the Stokes curves containing these edges are tangent at b
each other.

By taking the above theorem into account, we find that continuous deformation
of T may fail at θ1. We will investigate discontinuity of the Stokes geometry for
the major cases which we often encounter in the study of the Stokes geometry of
(NYL)2m .

Remark 2.5.1 We have not observed Case Z alone in our concrete computations of
the Stokes geometry of (NYL)2m , although there is a theoretical possibility of an
occurrence of such a case. Hence, in subsequent observations, we focus only on
Cases A and B.

Case A: Let us consider a situation where an ordinary turning point s of non-disjoint
type hits against the interior of [p, q] for an edge � = (p, q; v, w; V , W ) in
G(t (θ1)). We assume that s is not a leaf node of Tθ for θ < θ1 and that s hits
transversally against V (or W ) when θ tends to θ1 from below. Case A is classified
into the following 3 sub-cases A-1–A-3.

A-1. The type of � and that of s are the same.
This is the most destructive case where the bidirectional segment � is snapped
by s (see Fig. 2.15). As a result, the corresponding bidirectional binary tree
Tθ does not exist for θ > θ1. The situation is a counterpart of the Nishikawa
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Fig. 2.15 Case A-1

Fig. 2.16 Case A-2-1

phenomenon [KKoNT1] in the Noumi-Yamada system and it is intensively
studied by Sasaki [S1, S2]. An important consequence of the vanishing of the
bidirectional binary tree is that the relevant Stokes curve of (NY)2m becomes
inert on the portion {t = t (θ); θ > θ1}; no Stokes phenomena for the solutions
of (NY)2m are anticipated there, although it has not yet been proved.

A-2. The ordinary turning point s is simple, and the type of s and that of � have one
and only one common index.
When s touches �, a bifurcation phenomenon described in Sect. 1.7 occurs,
and thus, Tθ has a discontinuous change at θ = θ1. Let us consider the case
A-2 in detail. When s is sufficiently close to �, the geometry near s, in a
generic situation, becomes graphically equivalent to A-2-1 or A-2-2 described
respectively in Fig. 2.16 or Fig. 2.17, that is, either one or two Stokes curves
emanating from s intersect with � in a sufficiently small neighborhood of s for
θ < θ1. (In Fig. 2.16 for θ < θ1, we have omitted, for the sake of simplicity, a

http://dx.doi.org/10.1007/978-4-431-55702-9_1
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Fig. 2.17 Case A-2-2

new Stokes curve irrelevant to the structure of the tree in question. However,
in Fig. 2.17 for θ < θ1, we have included its counterpart to make the figure
look well-balanced.) After s hits against �, as shown in the same figure, still the
bidirectional binary tree Tθ continues to exist where s becomes a new leaf node
of Tθ and the degree of Tθ increases. That is, the tree Tθ (θ > θ1) is obtained
from the tree Tθ (θ < θ1) in which the edge � = (p, q; v, w; V , W ) is
replaced with the following 3-edges �1, �2 and �3 having the same branching
node b as their end points:

�1 = (s, b; s, s′; S , S ′), �2 = (p, b; v, w′; V , W ′),
�3 = (q, b; w, v′; W , V ′).

A-3. The geometric situation is similar to that of A-2 for θ < θ1, but s is a double
turning point.
The bidirectional binary tree Tθ continues to exist near θ = θ1 where degree
of Tθ is unchanged. This is because the vector field which defines the related
Stokes curve of � is non-degenerate near s, and hence, no bifurcation phe-
nomenon happens and the tree Tθ is continuously deformed when θ moves
near θ1.

Case B: Let us consider a situation where end points of an edge � = (v, b; v, w;
V , W ) merge in G(t (θ1)), that is, b coincides with v. Here we only consider the
case when one of the end points of � is a leaf node. See [H2] for the other cases.

B-1. v is a double turning point d.
The � has the form (d, b; d, d ′; D, D ′) (cf. Fig. 2.18). Since all the roots
are holomorphic near d, related Stokes curves also continuously move when θ

moves near θ = θ1. Therefore no discontinuous phenomenon happens in this
case. Note that, when θ = θ1, that is, b and d coincide, the other two edges with
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Fig. 2.18 Case B-1

b in their end points, i.e., [p, b] and [q, b] in Fig. 2.18, become tangent at b.
To be more precise, the Stokes curves containing these two edges are tangent
at b. Therefore the configuration of the relevant part of Tθ becomes the one
described in Fig. 2.18, and hence, the bidirectional binary tree Tθ continues to
exist after θ1 and the degree of Tθ remains constant.

B-2. v is a simple turning point s.
This is the reverse case of A-2, that is, configurations at θ > θ1 in Figs. 2.16
and 2.17 are the initial ones in this case, and the resulting configurations are
those at θ < θ1 in the same figures. Hence the leaf node v will be removed from
the bidirectional binary tree Tθ , and the degree of Tθ decreases when θ > θ1.

As an immediate consequence of these observations, we have the following propo-
sition.

Proposition 2.5.1 Assume that, for each exceptional point θ > 0, only one of the
cases A-2, A-3, B-1 or B-2 occurs in G(t (θ)). Then there exists a bidirectional binary
tree Tθ (θ > 0) satisfying that Tθ is continuously deformed when θ moves and its
total integral value Φ(Tθ ) is an analytic function of θ .

Proof When θ > 0 is sufficiently small, it follows from Theorems 2.1 and 2.2 in
[T4] that there exists a pair of ordinary turning points which are connected by a
Stokes curve. Hence a bidirectional binary tree of degree 2 exists for a sufficiently
small θ > 0. Then the first part of the proposition follows from Theorem2.5.1 and
the above observations. Hence it suffices to show Φ(Tθ ) to be an analytic function
of θ at θ = θ1 where one of the cases A-2, A-3, B-1 or B-2 occurs in G(t (θ1)). Here
we show the claim for A-2. The other cases can be proved by modifying the path of
integration in the same way as that of A-2.

Suppose that a simple turning point s hits on an edge � = (p, q; v, w; V , W ) ∈
L at t = t (θ1). Further we assume that the type of s is (i, j), the type of V is ( j, k)

and j > k holds on V . By Lemma2.4.1, we have, for θ < θ1,
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Φ(Tθ ) =
∣∣∣∣
∫ w

v
(λ j (x) − λk(x))dx

∣∣∣∣ =
∫ w

v
(λ j (x) − λk(x))dx

=
∫

C j

λ j (x)dx −
∫

Ck

λk(x)dx,

where the pathsC j andCk are [v, w]with orientation from v tow. The last expression
is still valid for θ > θ1 by modifying the path C j so that the ordinary turning point
s avoids hitting against C j .

On the other hand, when θ > θ1, the tree Tθ is obtained from the tree Tθ (θ < θ1)
in which the edge � is replaced with the following 3-edges having the same branching
node b (cf. Figs. 2.16 and 2.17):

�1 = (s, b; s, s′; S , S ′), �2 = (p, b; v, w′; V , W ′),
�3 = (q, b; w, v′; W , V ′).

Here we may assume that the type ofS (resp. V andW ) near b is (i, j) (resp. ( j, k)

and (i, k)). Then it follows from Lemma2.4.1 and the fact j > k on V , and hence,
k > i on W and j > i on S ′ ( ⇐⇒ i > j on S ) that we have

Φ(Tθ ) =
∣∣∣∣
∫ b

v
(λ j − λk)dx

∣∣∣∣ +
∣∣∣∣
∫ b

s
(λi − λ j )dx

∣∣∣∣ +
∣∣∣∣
∫ b

w
(λk − λi )dx

∣∣∣∣
=

∫ b

v
(λ j − λk)dx +

∫ b

s
(λi − λ j )dx +

∫ b

w
(λk − λi )dx

=
∫ b

v
(λ j − λk)dx +

∫
C

λ j dx +
∫ b

w
(λk − λi )dx

for θ > θ1, where the path C is a closed path which starts from b and turns around
s once. Then it is equal to

(∫ b

v
λ j dx +

∫
C

λ j dx +
∫ w

b
λi dx

)
−

(∫ b

v
λkdx +

∫ w

b
λkdx

)
.

As λ j is changed to λi after the analytic continuation along C , we find

(∫ b

v
λ j dx +

∫
C

λ j dx +
∫ w

b
λi dx

)
=

∫
C j

λ j (x)dx

and

(∫ b

v
λkdx +

∫ w

b
λkdx

)
=

∫
Ck

λk(x)dx .

Hence we have obtained, for θ > θ1,
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Φ(Tθ ) =
∫

C j

λ j (x)dx −
∫

Ck

λk(x)dx,

which entails that Φ(Tθ ) is analytic at θ = θ1. This completes the proof.

Let ν1 and ν2 be a pair of roots which defines the turning point t∗ of (NY)2m ,
that is, ν1(t) and ν2(t) merge at t = t∗. Then, as a corollary of Proposition2.5.1, we
have:

Corollary 2.5.1 Assume the same conditions as those in Proposition2.5.1 hold.
Then we have

Φ(Tθ ) = 1

2

∣∣∣∣∣
∫ t (θ)

t∗
(ν1(s) − ν2(s))ds

∣∣∣∣∣ (θ > 0). (2.5.1)

Proof When θ > 0 is sufficiently small, Tθ is of degree 2, that is, two ordinary
turning points are connected by a Stokes curve. In this case, the equality was shown
in Theorems 2.1 and 2.2 in [T4]. Then both sides of (2.5.1) are analytic functions of
θ . Hence the equality holds for any θ > 0.



Chapter 3
Exact WKB Analysis of Non-adiabatic
Transition Problems for 3-Levels

Aswe have observed so far, virtual turning points and (new) Stokes curves emanating
from them play a crucially important role in discussing the Stokes geometry of a
higher order ordinary differential equation and/or a system of ordinary differential
equations of size greater than two. Once all the non-redundant virtual turning points
are provided, then we can explicitly calculate the analytic continuation of solutions
of an ordinary differential equation in view of its complete Stokes geometry and
connection formulas discussed in Sect. 1.4. Adopting this approach, we consider the
non-adiabatic transition problem for three levels and compute transition probabilities
of solutions in this chapter. This is a good application of the exact WKB analysis for
a higher order ordinary differential equation to a physical problem, illuminating the
role of virtual turning points in the calculation of analytic continuation of solutions.

3.1 Non-adiabatic Transition Problems for Three
Levels—Generalization of the Landau-Zener Model

The argument in this chapter mainly follows that employed in [AKT4].
We first explain the non-adiabatic transition problem for three levels in a more

specific manner. Let H(t, η) be a 3× 3 matrix with polynomial entries that depends
on a large parameter η in the following manner:

H(t, η) = H0(t) + η−1/2H1/2, (3.1.1)

where H0(t) is a diagonal matrix of the form

H0(t) =

⎛
⎜⎜⎝

ρ1(t) 0
ρ2(t)

0
ρ3(t)

⎞
⎟⎟⎠ (3.1.2)

© The Author(s) 2015
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whose diagonal entriesρ j (t) ( j = 1, 2, 3) are real polynomials, and H1/2 is a constant
Hermite matrix of the form

H1/2 =
⎛
⎝ 0 c12 c13

c12 0 c23
c13 c23 0

⎞
⎠ . (3.1.3)

In what follows we assume the following condition:

(ρ1 − ρ2)(ρ2 − ρ3)(ρ3 − ρ1) = 0 has only real and simple zeros. (3.1.4)

A non-adiabatic transition problem for three levels is then to consider

i
d

dt
ψ = ηH(t, η)ψ (3.1.5)

for a 3-vector ψ = ψ(t, η) and, in particular, to relate the behavior of ψ(t) for
t → −∞ and that for t → +∞, that is, to compute the transition probabilities.

Usually a non-adiabatic transition problem (3.1.5) with ρ j (t) being a linear func-
tion of t is called the Landau-Zener model and (3.1.5) is its generalization. The
original Landau-Zener problem is that for two levels of the form

i
d

dt
ϕ = η

[(−t 0
0 t

)
+ η−1/2

(
0 μ

μ 0

)]
ϕ (3.1.6)

with a 2-vector ϕ and a complex constant μ ∈ C (cf. [L, Z]). Since the pioneering
work of Landau and that of Zener, many researches have been done not only for two
level problems but also for three level problems from both physical andmathematical
viewpoint (cf., e.g., [CH, H, BE, J1, J2, CLP, JP], and references cited therein). In
our approach we use WKB solutions of (3.1.5) to describe asymptotic behaviors of
ψ(t) for t → ±∞ and then apply the connection formulas given in [AKT4] to relate
the behavior of WKB solutions near t = −∞ with that near t = +∞.

Remark 3.1.1 The particular η-dependence of H(t, η) described by (3.1.1) and
(3.1.6) guarantees the non-adiabatic character of the problem. See [H] for an intrigu-
ing discussion that explains the non-adiabatic character in the case of two level
problems.

Here we briefly review the construction of WKB solutions of (3.1.5). One way
of constructing WKB solutions for a system of ordinary differential equations like
(3.1.5) is to use the formal diagonalization (cf. [W]). That is, we formally transform
unknown functions ψ of (3.1.5) by

ψ = R(t, η)ϕ (3.1.7)
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with
R(t, η) = R0(t) + η−1/2R1/2(t) + η−1R1(t) + · · · (3.1.8)

in such a way that a differential equation for ϕ becomes a diagonalized system. A
straightforward calculation tells us that ϕ should satisfy

i
d

dt
ϕ = ηH̃(t, η)ϕ, (3.1.9)

where

H̃(t, η) = R(t, η)−1(H0(t) + η−1/2H1/2)R(t, η) − iη−1R(t, η)−1 ∂

∂t
R(t, η).

(3.1.10)

Since the top order part H0(t) of (3.1.5) with respect to η is already diagonal, we
can take R0(t) = Id. Then, using the expression

R(t, η)−1 = (Id + η−1/2R1/2(t) + η−1R1(t) + · · · )−1

= Id − (η−1/2R1/2(t) + η−1R1(t) + · · · )
+ (η−1/2R1/2(t) + η−1R1(t) + · · · )2 − · · · , (3.1.11)

we find that

H̃(t, η) = H0 + η−1/2 ([H0, R1/2] + H1/2
)+ · · · + η−n/2 H̃n/2 + · · · (3.1.12)

where [A, B] = AB − B A denotes the commutator of two matrices A and B, and
H̃n/2 has the form

H̃n/2 = [H0, Rn/2] + (terms depending only on H0, H1/2, R1/2, . . . , R(n−1)/2)

(3.1.13)

(n = 1, 2, . . .). Note that the ( j, k)-entry of [H0, Rn/2] is (ρ j − ρk)(Rn/2) jk , where
(Rn/2) jk is the ( j, k)-entry of Rn/2 ( j, k = 1, 2, 3). Hence, if we define each diagonal
entry (Rn/2) j j of Rn/2 to be zero and also determine the other off-diagonal entries
(Rn/2) jk ( j �= k) of Rn/2 so that all the off-diagonal entries of H̃n/2 may vanish,
Eq. (3.1.9) for ϕ becomes a diagonal system. For example, the first few terms of the
transformation R(t, η) and those of the coefficient matrix H̃(t, η) of the diagonalized
system (3.1.9) are given as follows:

R0 = Id =
⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠ , (3.1.14)
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R1/2 =

⎛
⎜⎜⎝

0 c12
ρ2−ρ1

c13
ρ3−ρ1

c12
ρ1−ρ2

0 c23
ρ3−ρ2

c13
ρ1−ρ3

c23
ρ2−ρ3

0

⎞
⎟⎟⎠ , (3.1.15)

R1 =

⎛
⎜⎜⎝

0 c23c13
(ρ2−ρ1)(ρ2−ρ3)

c12c23
(ρ3−ρ1)(ρ3−ρ2)

c23c13
(ρ1−ρ2)(ρ1−ρ3)

0 c12c13
(ρ3−ρ1)(ρ3−ρ2)

c12 c23
(ρ1−ρ2)(ρ1−ρ3)

c12c13
(ρ2−ρ1)(ρ2−ρ3)

0

⎞
⎟⎟⎠ , (3.1.16)

H̃0 = H0 =
⎛
⎝ρ1 0 0

0 ρ2 0
0 0 ρ3

⎞
⎠ , (3.1.17)

H̃1/2 = 0, (3.1.18)

H̃1 =

⎛
⎜⎜⎝

|c12|2
ρ1−ρ2

+ |c13|2
ρ1−ρ3

0 0

0 |c12|2
ρ2−ρ1

+ |c23|2
ρ2−ρ3

0

0 0 |c13|2
ρ3−ρ1

+ |c23|2
ρ3−ρ2

⎞
⎟⎟⎠ . (3.1.19)

As system (3.1.9) is now diagonalized, it can be readily solved and consequently we
obtain a WKB solution

ψ( j) = η−1/2 exp

(
η

i

∫ t

t0
ρ j (t) dt + 1

i

∫ t

t0

( |c jk |2
ρ j − ρk

+ |c jl |2
ρ j − ρl

)
dt

)(
e( j) + O(η−1/2)

)

(3.1.20)

( j = 1, 2, 3) of (3.1.5) by substituting a solution of (3.1.9) into the right-hand side
of (3.1.7), where t0 is an appropriately fixed reference point, e( j) = t (e( j)

1 , e( j)
2 , e( j)

3 )

is a unit vector satisfying

e( j)
k = δ jk ( j, k = 1, 2, 3), (3.1.21)

and { j, k, l} is a permutation of {1, 2, 3} (i.e., { j, k, l} = {1, 2, 3} holds as sets). Here
and in what follows, in parallel with the case of higher order scalar equations, we
add an extra factor η−1/2 to a WKB solution so that its Borel transform is cleanly
defined.

Although the top term (with respect to η)

1

i

∫ t

t0
ρ j (t) dt (3.1.22)

of a WKB solution (3.1.20) is single-valued and pure-imaginary, the next term

1

i

∫ t

t0

( |c jk |2
ρ j − ρk

+ |c jl |2
ρ j − ρl

)
dt (3.1.23)



3.1 Non-adiabatic Transition Problems for Three Levels—Generalization … 83

and lower order terms are in general multi-valued and not necessarily pure-imaginary
near t = ±∞. Taking this situation into account, we introduce additional normal-
ization factors N±,( j) to define new fundamental systems of solutions

ψ±,( j) = N±,( j)ψ( j) (3.1.24)

of (3.1.5) so that the following asymptotic conditions may be satisfied near t = ±∞:

lim
t→±∞

∣∣∣ψ±,( j)(t)
∣∣∣ = e( j) ( j = 1, 2, 3). (3.1.25)

Under these notations the S-matrix for Eq. (3.1.5) is described as

S =
⎛
⎝ N+,(1) 0 0

0 N+,(2) 0
0 0 N+,(3)

⎞
⎠

−1

M

⎛
⎝ N−,(1) 0 0

0 N−,(2) 0
0 0 N−,(3)

⎞
⎠ , (3.1.26)

where M is the connection matrix for the WKB solutions ψ( j) of (3.1.5) from
t = −∞ to t = +∞:

(ψ(1), ψ(2), ψ(3)) near t = −∞ �−→
analytic

continuation

(ψ(1), ψ(2), ψ(3)) M near t = +∞.

(3.1.27)

In particular, the square of themodulus of each entry S jk of S represents the transition
probability for (3.1.5).

Our task is then to compute the connection matrix M by applying the exact WKB
analysis to Eq. (3.1.5), i.e., by using the connection formula given in [AKT4]. A key
step is to find the complete Stokes geometry of (3.1.5) based on the fundamental
results explained in Chap.1 to obtain the correct connection formula. Note that, since
all the turning points of the non-adiabatic transition problem (3.1.5) are not simple
but double turning points, we need some modifications for the basic definitions and
results of Chap. 1. Having in mind this different character of the problem in question,
we consider several concrete examples of complete Stokes geometries of (3.1.5) in
Sect. 3.2 and then calculate transition probabilities in Sect. 3.3.

3.2 Examples of Complete Stokes Geometries
for Non-adiabatic Transition Problems

In this section, using some concrete examples, we discuss how to obtain complete
Stokes geometries of non-adiabatic transition problems (3.1.5).

http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
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In the case of (3.1.5) the characteristic equation det(ζ +i H0(t)) of−i H0(t) and its
diagonal entries −iρ j (t) ( j = 1, 2, 3) play the role of the characteristic polynomial
(1.2.13) and its roots ζ j (x) for a higher order differential Eq. (1.2.1), respectively.
Thus turning points and Stokes curves for (3.1.5) are defined as follows:

Definition 3.2.1 (i) A point t = τ is said to be a turning point (of type ( j, k)) of
(3.1.5) if

ρ j (τ ) = ρk(τ ) (3.2.1)

holds for some j and k with j �= k.
(ii) A Stokes curve (of type ( j, k)) is the curve given by

Im (−i)
∫ t

τ

(
ρ j (t) − ρk(t)

)
dt = 0, (3.2.2)

where t = τ is a turning point of type ( j, k).

Thanks to the assumption (3.1.4) all the turning points of (3.1.5) are located on
the real axis. Furthermore every turning point t = τ of (3.1.5) is a double turning
point in the sense that τ is a double zero of the discriminant (with respect to ζ )
of the characteristic equation det(ζ + i H0(t)). (Note that a simple turning point of
(1.2.1) is a simple zero of the discriminant of the characteristic polynomial (1.2.13)).
Virtual turning points of (3.1.5) can be also defined similarly to those of a higher
order Eq. (1.2.1) with slight modifications.

Remark 3.2.1 In Sect. 1.4, taking into account the fact that the Borel transform of
(1.2.1) is with simple characteristics and that the most elementary carrier of singu-
larities of solutions of a differential equation with simple characteristics is a bichar-
acteristic strip, we define a virtual turning point of (1.2.1) to be the x-component
of a self-intersection point of a bicharacteristic curve, i.e., the projection to the base
manifold C

2 of a bicharacteristic strip, of (1.2.1). In the case of (3.1.5) in ques-
tion, however, it has double turning points and hence its Borel transform is not with
simple characteristics but rather with multiple characteristics. As is shown in, e.g.,
[KKO], singularities of solutions of such an equation propagate along the so-called
bicharacteristic chain. Here a bicharacteristic chain b(κ, T ) is, by definition, the
collection of bicharacteristic curves defined by

b(κ, T ) = b1(k1; t (1)) ∪
⎛
⎝n−1⋃

j=2

b j (k j ; t ( j−1), t ( j))

⎞
⎠ ∪ bn(kn; t (n−1)), (3.2.3)

where κ = (k1, . . . , kn) is a multi-index with kl ∈ {1, 2, 3} (l = 1, . . . , n) such
that kl �= kl+1 (l = 1, . . . , n − 1), T = (t (1), . . . , t (n−1)) is a set of turning points
satisfyingρkl (t

(l)) = ρkl+1(t
(l)) (l = 1, . . . , n−1), b1(k1; t (1)) (resp., bn(kn; t (n−1)))

is a bicharacteristic curve in C2
(t,y) defined by

http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
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t

y

t(1) t(2) t(3)

Fig. 3.1 Schematic figure of a bicharacteristic chain

dy

dt
= iρk1

(
resp.,

dy

dt
= iρkn

)
(3.2.4)

emanating from t = t (1) (resp., t = t (n−1)), and b j (k j ; t ( j−1), t ( j)) ( j = 2, . . . ,
n − 1) are bicharacteristic curves defined by

dy

dt
= iρk j (3.2.5)

that connects two turning points t = t ( j−1) and t = t ( j) such that b j and b j+1 are
tangent at t = t ( j) ( j = 1, . . . , n − 1) (cf. Fig. 3.1). In other words, singularities
of solutions of the Borel transform of (3.1.5) bifurcate along two mutually tangent
bicharacteristic curves at a double turning point, i.e., at a point where the simple
characteristic condition is violated.

Thus virtual turning points of (3.1.5) are defined similarly to those of (1.2.1) with
a bicharacterisitc curve being replaced by a bicharacteristic chain in their definition.
For more details see Sect. 3 of [AKT4].

Remark 3.2.2 Although it is needed to replace a bicharacteristic curve by a bichar-
acteristic chain in defining virtual turning points of (3.1.5), the important properties
similar to Proposition1.4.1 does hold also for virtual turning points of (3.1.5). That
is, if a Stokes curveS1 of type ( j, k) of (3.1.5) that emanates from a (double) turning
point t (1) crosses at a point C with another Stokes curveS2 of type (k, l) emanating
from a (double) turning point t (2), and further if t∗ satisfies the relation

∫ t∗

t (1)
ρ j dt =

∫ t (2)

t (1)
ρk dt +

∫ t∗

t (2)
ρl dt (3.2.6)

for a triplet of mutually distinct suffixes ( j, k, l), then t∗ is a virtual turning point of
(3.1.5) and the Stokes curve S emanating from t∗ with type ( j, l) passes through

http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
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the crossing point C . More generally, if S is a new Stokes curve of type (k, l) of
(3.1.5) that emanates from a virtual turning point t∗ determined (by repeating this
procedure successively) by the relation

∫ t∗

t (1)
ρk dt =

n−1∑
l=1

∫ t (l+1)

t (l)
ρkl dt +

∫ t∗

t (n)

ρl dt, (3.2.7)

and if S crosses at a point C with a Stokes curve S̃ of type ( j, k) emanating from
a double turning point t (0), then a point t∗∗ satisfying

∫ t∗∗

t (0)
ρ j dt =

∫ t (1)

t (0)
ρk dt +

n−1∑
l=1

∫ t (l+1)

t (l)
ρkl dt +

∫ t∗∗

t (n)

ρl dt (3.2.8)

is a virtual turning point of (3.1.5) and the (union of) Stokes curve emanating from t∗∗
with type ( j, l) passes through C . (The situation where S̃ is also a new Stokes curve
can be discussed in a similar manner.) These properties can be verified by replacing
bicharacteristic curves by bicharacteristic chains in the proof of Proposition1.4.1.
For more details see [AKT4, (3.5)] and its proof in pages 2413–2414 of [AKT4].

Thus, practically speaking, we can deal with virtual turning points and the Stokes
geometry of the non-adiabatic transition problem (3.1.5) in a completely parallel way
with those of a higher order differential Eq. (1.2.1) in view of Remark3.2.2. In what
follows we discuss several concrete examples to illustrate how to obtain a complete
Stokes geometry of (3.1.5).

Example 3.2.1 First we consider a simple example discussed in [AKT4, Sect. 2]:

i
d

dt
ψ = η

⎡
⎣
⎛
⎝ b1t + a 0 0

0 b2t 0
0 0 b3t

⎞
⎠+ η−1/2

⎛
⎝ 0 c12 c13

c12 0 c23
c13 c23 0

⎞
⎠
⎤
⎦ψ, (3.2.9)

that is, the three-level Landau-Zener problem with

ρ1(t) = b1t + a, ρ2(t) = b2t, ρ3(t) = b3t. (3.2.10)

Here we assume that a and b j ( j = 1, 2, 3) are real constants satisfying

0 < b1 < b2 < b3 and 0 < a. (3.2.11)

Equation (3.2.9) is a straightforward generalization to three levels of the original
Landau-Zener model (3.1.6) for two levels.

Let t jk denote the unique solution of the equation ρ j (t) = ρk(t), i.e., t jk is a
turning point of type ( j, k) of (3.2.9). It then follows from assumption (3.2.11) that

http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
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3 < 2 3 < 1 2 < 1 2 < 1 2 < 3 2 < 3 1 < 3 1 < 2

2 < 3 1 < 3 1 < 2 1 < 2 3 < 2 3 < 2 3 < 1 2 < 1

t∗ t̃∗
t23 t13 t12

A B

C

Ā B̄

C̄

Fig. 3.2 Complete Stokes geometry of system (3.2.9)

t23 < t13 < t12
‖ ‖ ‖
0

a

b3 − b1

a

b2 − b1
.

(3.2.12)

Each Stokes curve of (3.2.9) emanating from a turning point t jk

Im (−i)
∫ t

t jk

(
ρ j (t) − ρk(t)

)
dt = Re

(bk − b j )(t − t jk)
2

2
= 0 (3.2.13)

is a straight line, as is shown in Fig. 3.2. In Fig. 3.2 a turning point is designated by
a small dot and the type of each Stokes curve is also specified.

As Fig. 3.2 clearly visualizes, there are four ordered crossing points (A, B and their
mirror images Ā, B̄) and two non-ordered crossing points (C and C̄) for Eq. (3.2.9).
Among them the ordered crossing point A (together with its mirror image Ā) should
be resolved by a newStokes curve emanating from a virtual turning point that satisfies
(3.2.6) corresponding to the crossing point A, that is,

∫ t∗

t13
ρ1 dt =

∫ t23

t13
ρ3 dt +

∫ t∗

t23
ρ2 dt. (3.2.14)

The explicit form of (3.2.14) is

(b2 − b1)(t∗)2 − 2a t∗ + a2

b3 − b1
= 0. (3.2.15)

We then find that a new Stokes curve emanating from
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t∗ = a

b2 − b1

(
1 −

√
b3 − b2
b3 − b1

)
, (3.2.16)

which is one of the solutions of (3.2.15), resolves the ordered crossing points A and
Ā simultaneously.

Similarly, the ordered crossing points B and B̄ are resolved by a new Stokes curve
emanating from a virtual turning point

t̃∗ = a√
(b2 − b1)(b3 − b1)

(3.2.17)

which is a solution of

∫ t̃∗

t12
ρ2 dt =

∫ t13

t12
ρ1 dt +

∫ t̃∗

t13
ρ3 dt. (3.2.18)

Thus, adding two virtual turning points t∗ and t̃∗ and (new) Stokes curves emanat-
ing from them, we resolve all the ordered crossing points of ordinary Stokes curves
and obtain a complete Stokes geometry of (3.2.9), where there are no further ordered
crossing points. See Fig. 3.2 for a complete Stokes geometry of (3.2.9). (The virtual
turning points t∗ and t̃∗ are designated by small rectangles there.)

Remark 3.2.3 In the above discussionwe have obtained the complete Stokes geome-
try of (3.2.9) by locating relevant virtual turning points through the integral relations
(3.2.14) and (3.2.18). On the other hand, the complete Stokes geometry of (3.2.9)
can be obtained also by pursuing Recipe 1.5.1 more faithfully. As a matter of fact, in
the case of Eq. (3.2.9), all possible virtual turning points are analytically determined
and it turns out that there exist infinitely many virtual turning points and they form
a discrete subset of Ct . Then the discreteness of the set of virtual turning points
enables us to pursue Recipe 1.5.1 and consequently we obtain the same complete
Stokes geometry of (3.2.9) as Fig. 3.2. For more details about the application of
Recipe 1.5.1 to Eq. (3.2.9) see Remark2.1 of [AKT4].

Example 3.2.2 Next we consider a more complicated example, which was discussed
in [AKT4, Example3.1]:

i
d

dt
ψ = η

⎡
⎣
⎛
⎝ 1 0 0
0 t/2 0
0 0 t2

⎞
⎠+ η−1/2

⎛
⎝ 0 c12 c13

c12 0 c23
c13 c23 0

⎞
⎠
⎤
⎦ψ, (3.2.19)

that is, the example with ρ1 = 1, ρ2 = t/2 and ρ3 = t2. This example has the
following five turning points:

t = 2 of type (1,2),
t = −1, 1 of type (1,3),
t = 0, 1/2 of type (2,3),

http://dx.doi.org/10.1007/978-4-431-55702-9_2
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1 < 2

1 < 3
2 < 3

Fig. 3.3 Ordinary Stokes curves of system (3.2.19)

and the configuration of ordinary Stokes curves is given by Fig. 3.3. (As was pointed
out byDr. Sasaki, the types of Stokes curves in [AKT4, Example3.1]weremisprinted
and all the inequalities used there in describing the types of Stokes curves should
be replaced by opposite ones. For example, “type 1 < 3” of [AKT4, Example3.1]
should be replaced by “type 3 < 1”, etc. In what follows we use the correct symbols.)
From Fig. 3.3 we find that the Stokes geometry is symmetric with respect to the real
axis (because of the reality of ρ j ) and that there exist several ordered crossing points
of ordinary Stokes curves in the upper half-plane in Fig. 3.3. In what follows we
explain how to find relevant virtual turning points and new Stokes curves by using
the relations (3.2.6) and (3.2.8) to obtain a complete Stokes geometry of (3.2.19).

Let us start with an ordered crossing point A in the second quadrant. This is a
crossing point of a Stokes curve of type 3 < 1 emanating from t = −1 and a Stokes
curve of type 2 < 3 emanating from t = 0. Hence in this case (3.2.6) reads as

∫ t∗

−1
ρ1 dt =

∫ 0

−1
ρ3 dt +

∫ t∗

0
ρ2 dt, (3.2.20)

that is,
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Fig. 3.4 A new Stokes
curve resolving ordered
crossing points A and Ā

-1

1

-2

A

Ā

t∗ + 1 = 1

3
+ 1

4
t2∗ . (3.2.21)

Thus, adding a newStokes curve of type (1, 2) emanating froma root tA = 2−√
20/3

of (3.2.21) to Fig. 3.3, we find that the ordered crossing point A together with its
mirror image Ā (complex conjugate of A) is resolved simultaneously (cf. Fig. 3.4).

Similarly, an ordered crossing point B of a Stokes curve of type 2 < 3 emanating
from t = 1/2 and that of type 3 < 1 emanating from t = 1 in the first quadrant is
resolved, together with its mirror image B̄, by a new Stokes curve emanating from a
virtual turning point of type (1, 2) defined by

∫ t∗

1/2
ρ2 dt =

∫ 1

1/2
ρ3 dt +

∫ t∗

1
ρ1 dt, (3.2.22)

or,
1

4
t2∗ − 1

16
=
(
1

3
− 1

24

)
+ (t∗ − 1), (3.2.23)

that is, t∗ = tB = 2 − √
17/12. See Fig. 3.5 for the configuration in the upper half-

plane of the new Stokes curve of type 2 < 1 emanating from the virtual turning point
tB = 2 − √

17/12.
As is observed in Fig. 3.5, this newly added new Stokes curve passes through a

crossing point C of a Stokes curve emanating from t = 1/2 and that emanating from
t = 1, and also creates an ordered crossing point D with a Stokes curve of type 3 < 2
emanating from t = 0. A new Stokes curve that resolves this ordered crossing point
can be specified by using (3.2.8) in the following manner: As D is a crossing point
of a new Stokes curve emanating from a virtual turning point tB = 2 − √

17/12
defined by (3.2.22) and a Stokes curve emanating from t = 0, the explicit form of
(3.2.8) in this case reads as

∫ t∗∗

0
ρ3 dt =

∫ 1/2

0
ρ2 dt +

∫ 1

1/2
ρ3 dt +

∫ t∗∗

1
ρ1 dt, (3.2.24)
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Fig. 3.5 A new Stokes curve resolving an ordered crossing point B

that is,
1

3
(t∗∗)3 = 1

16
+
(
1

3
− 1

24

)
+ (t∗∗ − 1). (3.2.25)

Thus, if we add a new Stokes curve emanating from a root tD = 1 − ε (ε > 0)
of (3.2.25), we find that the ordered crossing point D is successfully resolved
(cf. Fig. 3.6) and, further, these new Stokes curves do not create any more ordered
crossing points.

Let us now study other ordered crossing points E and F in the first quadrant. The
point E is a crossing point of a Stokes curve of type 3 < 2 emanating from 0 and
that of type 2 < 1 emanating from 2. Hence it should be resolved by a new Stokes
curve emanating from a virtual turning point defined by

∫ t∗

0
ρ3 dt =

∫ 2

0
ρ2 dt +

∫ t∗

2
ρ1 dt, (3.2.26)

that is,
1

3
t3∗ = 1 + (t∗ − 2). (3.2.27)

As a matter of fact, we can check that a new Stokes curve that emanates from a
solution tE of (3.2.27) (near 1.1 + 0.7

√−1) passes through E , resolving ordered
crossing (cf. Fig. 3.7).
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Fig. 3.6 A new Stokes curve resolving an ordered crossing point D
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Fig. 3.7 A new Stokes curve resolving ordered crossing points F and G

Similarly, solving

∫ t∗

1/2
ρ3 dt =

∫ 2

1/2
ρ2 dt +

∫ t∗

2
ρ1 dt, (3.2.28)
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i.e.,
1

3
t3∗ − 1

24
= (1 − 1

16

)+ (t∗ − 2), (3.2.29)

we can confirm that a new Stokes curve emanating from a solution tF of (3.2.29)
(near tE ) resolves the ordered crossing point F (cf. Fig. 3.7). Note that the defining
equation for a virtual turning point needed to resolve another ordered crossing point
G is the same as (3.2.28). In fact, a new Stokes curve emanating from tF also passes
through G (and a non-ordered crossing point t = a; cf. Fig. 3.7). Thus both F and
G are simultaneously resolved by one new Stokes curve emanating from tF .

Finally, the ordered crossing point H , together with its mirror image H̄ , in Fig. 3.3
is resolved by a new Stokes curve emanating from a virtual turning point defined by

∫ t∗

1
ρ3 dt =

∫ 2

1
ρ1 dt +

∫ t∗

2
ρ2 dt, (3.2.30)

that is,
1

3
t3∗ − 1

3
= (2 − 1) +

(
1

4
t2∗ − 1

)
. (3.2.31)

The new Stokes curve emanating from a real root tH of (3.2.31) (near 1.3) also
passes through a (non-ordered) crossing point t = b of an ordinary Stokes curve
emanating from 2 and that emanating from 1 (cf. Fig. 3.8). Hence the new Stokes
curve emanating from tH creates no more ordered crossing points.

We have thus obtained a complete Stokes geometry of (3.2.19) described by
Fig. 3.9, resolving all the ordered crossing points of ordinary Stokes curves and all
the newly created ones by the addition of new Stokes curves.

In this way, starting from the configuration of ordinary Stokes curves and adding
virtual turning points and newStokes curves necessary to resolve the ordered crossing
points of Stokes curves based on the use of (3.2.6) and (3.2.8), we obtain a com-
plete Stokes geometry of a non-adiabatic transition problem (3.1.5). In the case of

Fig. 3.8 Three Stokes
curves meeting at b

G

b
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Fig. 3.9 Complete Stokes geometry of system (3.2.19). (Here ordinary Stokes curves are designated
in red while new Stokes curves are designated in blue)

Examples3.2.1 and 3.2.2 we can observe in Figs. 3.2 and 3.9 that all the new Stokes
curves are inert (i.e., expressed by dotted lines) near the real axis, although several
virtual turning points and new Stokes curves emanating from them have been added
along the above procedure. This property does hold for any non-adiabatic transition
problem (3.1.5) thanks to the ‘reality’ assumption (3.1.4). As a matter of fact, we
have the following

Proposition 3.2.1 Suppose the assumption (3.1.4). Then a new Stokes curve ema-
nating from a non-real virtual turning point for a non-adiabatic transition problem
(3.1.5) never crosses the real axis.

Proof Let t∗∗ be a non-real virtual turning point of type ( j, l) determined by (3.2.6)
or, more generally, (3.2.8). We rewrite (3.2.8) in the following manner:

∫ t∗∗

0
(ρ j−ρl) dt =

∫ t (0)

0
ρ j dt+

∫ t (1)

t (0)
ρk dt+

n−1∑
l=1

∫ t (l+1)

t (l)
ρkl dt+

∫ 0

t (n)

ρl dt. (3.2.32)

Note that, since all ρ j (t) ( j = 1, 2, 3) are real polynomials and (3.1.4) is sup-
posed, the right-hand side of (3.2.32) is a real number. Hence (3.2.32) is an algebraic



3.2 Examples of Complete Stokes Geometries for Non-adiabatic Transition Problems 95

equation for t∗∗ with real coefficients and consequently the mirror image t∗∗ of t∗∗
also becomes a virtual turning point.

Let S be a new Stokes curve emanating from t∗∗:

Im (−i)
∫ t

t∗∗

(
ρ j − ρl

)
dt = 0, (3.2.33)

that is,

Re
∫ t

t∗∗

(
ρ j − ρl

)
dt = 0. (3.2.34)

The reality of the polynomials ρ j and ρl entails that the mirror image S̄ of S is a
new Stokes curve emanating from t∗∗.

We now assume that S meets with the real axis. Then S̄ meets S on the real
axis. We further assume thatS ∪ S̄ is a non-singular curve as t ranges from t∗∗ to
t∗∗ along it. Under these assumptions we find

Im
∫ t

t∗∗

(
ρ j − ρl

)
dt is monotonically increasing or decreasing (3.2.35)

along the portion ofS ∪S̄ under consideration. Since both t∗∗ and t∗∗ are solutions
of (3.2.32) and hence ∫ t∗∗

t∗∗

(
ρ j − ρl

)
dt = 0 (3.2.36)

holds, (3.2.35) implies t∗∗ = t∗∗, contradicting with the non-reality assumption for
t∗∗. Thus S ∪ S̄ should contain a singular point, which will be designated by α in
what follows.

The singular point α lies on the curveS ∪S̄ defined by (3.2.34) (and its complex
conjugate). Then it follows from the analyticity of the integral

∫ t
t∗∗(ρ j − ρl) dt that

ρ j (α) = ρl(α) should hold. Hence α is a turning point of (3.1.5) and located on the
real axis thanks to the assumption (3.1.4). In particular,

∫ α

t∗∗
(ρ j − ρl) dt =

∫ α

0
(ρ j − ρl) dt −

∫ t∗∗

0
(ρ j − ρl) dt (3.2.37)

becomes a real number, while it is pure imaginary as α is a point on the new Stokes
curve S ∪ S̄ . Thus the integral

∫ α

t∗∗(ρ j − ρl) dt must be zero and hence, by the
same reasoning as above, α should coincide with t∗∗. This contradicts again with the
non-reality assumption for t∗∗, as α lies on the real axis. It concludes that S does
not cross the real axis, completing the proof of Proposition3.2.1.

Proposition 3.2.2 Under the assumption (3.1.4) it holds that a new Stokes curve of
(3.1.5) emanating from a real virtual turning point does not cross the real axis except
at the virtual turning point where it emanates.
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Proof Let t∗∗ be a real virtual turning point of type ( j, l) defined by (3.2.32) andS
a new Stokes curve emanating from t∗∗. We readily find that S is symmetric with
respect to the real axis, i.e., S = S̄ . Hence, if S crosses the real axis at a point α
( �= t∗∗) and S is non-singular there, S forms a loop. Then similar reasoning as in
the proof of Proposition3.2.1 verifies (3.2.35) along S . This contradicts with

∫
alongS

(
ρ j − ρl

)
dt = 0. (3.2.38)

(Note that (3.2.38) follows from the single-valuedness of
∫ t

t∗∗(ρ j −ρl) dt.) ThusS is
singular at t = α and hence ρ j (α) = ρl(α) holds. Again, similar reasoning as in the
proof of Proposition3.2.1 verifies that α should coincide with t∗∗, that is,S does not
cross the real axis except at t = t∗∗. This completes the proof of Proposition3.2.2.

Combining Propositions3.2.1 and 3.2.2 together with the fact that a new Stokes
curve is inert near a virtual turning point (cf. Recipe 1.5.1, (R.iii)), we can conclude
that, under the assumption (3.1.4), all the newStokes curves are inert near the real axis
for any non-adiabatic transition problem (3.1.5). This property prevents the analysis
of non-adiabatic transition problems (3.1.5) from becoming too complicated. For
example, as we will see in the subsequent Sect. 3.3, it assures that all virtual turning
points are irrelevant to the calculation of transition probabilities for (3.1.5) along the
real axis.

In contrast with this, if the reality assumption (3.1.4) is violated, virtual turning
points and new Stokes curves play a more important role. The following example,
which is discovered by Sasaki [Sa], clearly shows that virtual turning points are
inevitable in the calculation of transition probabilities for (3.1.5) in general situations
(that is, without assuming the reality assumption (3.1.4)).

Example 3.2.3 Let ρ1(t) = t3, ρ2(t) = −t and ρ3(t) = −t +c+c3 with a non-zero
complex constant c. That is, we consider

i
d

dt
ψ = η

⎡
⎣
⎛
⎝ t3 0 0

0 −t 0
0 0 −t + c + c3

⎞
⎠+ η−1/2

⎛
⎝ 0 c12 c13

c12 0 c23
c13 c23 0

⎞
⎠
⎤
⎦ψ. (3.2.39)

Figure3.10 shows the configuration of ordinary Stokes curves of (3.2.39) with
c = 0.4.

In this case (3.2.39) has three turning points of type (1, 2) at t = 0 and t = ±√−1,
three turning points of type (1, 3) (one of which is t = c), and no turning points of
type (2, 3). Note that the assumption (3.1.4) is not satisfied for (3.2.39). Now, to
avoid possible degeneracies, we add a small perturbation and let c = 0.4 + iε
with a sufficiently small positive number ε. (Here we are taking ε = 0.01.) Then,
starting from Fig. 3.10 and following similar procedures as in Examples3.2.1 and
3.2.2, we obtain Fig. 3.11 which describes a complete Stokes geometry for (3.2.39)
with c = 0.4 + iε. (In Fig. 3.11 a virtual turning point is designated by a square. To



3.2 Examples of Complete Stokes Geometries for Non-adiabatic Transition Problems 97

-2

 2

-2 -1  0  1  2

1 < 3

1 < 2

2 < 1

3 < 1

1 < 3 1 < 2 3 < 1 2 < 1

1 < 2

1 < 3

3 < 1

2 < 1

1 < 21 < 32 < 13 < 1

Fig. 3.10 Ordinary Stokes curves of system (3.2.39)

distinguish ordinary Stokes curves from new Stokes curves, we designate ordinary
Stokes curves by thick (solid) lines there.)

Although Fig. 3.11 is a little bit complicated, it can be observed that we cannot
go from t = −∞ to t = ∞ along the real axis without crossing active portions
(i.e., portions expressed by solid lines) of new Stokes curves. This implies that we
need to take into account the effect of virtual turning points and new Stokes curves
emanating from them to calculate transition probabilities along the real axis for
(3.2.39).

3.3 Computation of Transition Probabilities

In the preceding section we discussed how to obtain a complete Stokes geometry
for a non-adiabatic transition problem (3.1.5). In this section, based on the complete
Stokes geometry thus obtained and using the connection formula for Borel resummed
WKBsolutions of (3.1.5),we compute the S-matrix and transition probabilities along
the real axis for a non-adiabatic transition problem.
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Fig. 3.11 Complete Stokes geometry of system (3.2.39). (As in Fig. 3.9, ordinary Stokes curves
and new Stokes curves are designated in red and in blue, respectively)

In Sect. 3.1 we outlined a recipe for computing transition probabilities for (3.1.5);
our task is to calculate the connection matrix M from t = −∞ to t = +∞
(cf. (3.1.27)) for WKB solutions ψ( j) given by (3.1.20). Since, as we have observed
in Sect. 3.2, all the new Stokes curves are inert near the real axis for a non-adiabatic
transition problem (3.1.5) under the assumption (3.1.4), it then suffices to calculate
the connection matrix across an ordinary Stokes curve emanating from a double
turning point of (3.1.5) located on the real axis.

To obtain the connection formula on an ordinary Stokes curve emanating from a
double turning point, we make use of the technique of “block-diagonalization”:

Theorem 3.3.1 ([W, Theorem 25.2], [T3]) Suppose (3.1.4) and let t = τ be a
turning point of (3.1.5) with type ( j, k), that is, ρ j (τ ) = ρk(τ ) �= ρl(τ ) holds for a
permutation { j, k, l} of {1, 2, 3}. Then, near t = τ , (3.1.5) is decomposed as

i
d

dt
ϕ = ηK (t, η)ϕ (3.3.1)
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with

K (t, η) =

⎛
⎜⎜⎝

ρ j (t) 0
ρk(t)

0 ρl(t)

⎞
⎟⎟⎠+ η−1/2

⎛
⎜⎜⎜⎜⎜⎜⎝

K̃ ( j,k)(t, η) 0

0 K̃ (l)(t, η)

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.3.2)

by a formal transformation

ψ = S(t, η)ϕ =
(
Id + η−1/2S1/2(t) + η−1S1(t) + · · ·

)
ϕ, (3.3.3)

where K̃ ( j,k)(t, η) =∑n η−n/2 K̃ ( j,k)
n/2 (t) is a formal power series of η−1/2 with 2×2

matrix coefficients, K̃ (l)(t, η) = ∑n η−n/2 K̃ (l)
n/2(t) is a scalar formal power series,

and all the coefficients K̃ ( j,k)
n/2 (t), K̃ (l)

n/2(t) and Sn/2(t) are holomorphic functions in
a neighborhood of t = τ .

Remark 3.3.1 Theorem3.3.1 is a formal counterpart of Theorem1.2.1. The formal
series S and K , together with μ, ν, etc. below, are actually symbols of microdiffer-
ential operators, that is, they satisfy some appropriate growth order conditions like
(1.2.21) so that we may discuss the problem exactly on the Borel plane. Although
here we do not go into the details of this issue, we refer the reader interested in this
point to [T3, KKoT] for the basic ideas used in discussing such a problem.

Thanks to Theorem3.3.1 the connection problem near an ordinary turning point
of type ( j, k) for (3.1.5) is reduced to that for a 2 × 2 system

i
d

dt
ψ = η

[(
ρ j (t) 0
0 ρk(t)

)
+ η−1/2

∞∑
n=0

η−n/2 K̃ ( j,k)
n/2 (t)

]
ψ. (3.3.4)

Furthermore, for a 2× 2 system of the form (3.3.4) the following theorem, which is
a counterpart of Theorem1.1.1 for (3.1.5), does hold:

Theorem 3.3.2 Let

i
d

dt
ψ = ηH(t, η)ψ, H(t, η) =

(
ρ1(t) 0
0 ρ2(t)

)
+ η−1/2

∞∑
n=0

η−n/2Hn/2(t)

(3.3.5)

be a 2 × 2 system for a 2-vector ψ = ψ(t, η) = t (ψ1(t, η), ψ2(t, η)) and t = τ a
simple zero of ρ1(t) − ρ2(t), that is, t = τ is a turning point of (3.3.5). Then, in a
neighborhood of τ , (3.3.5) is transformed to a Landau-Zener model for two levels

http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
http://dx.doi.org/10.1007/978-4-431-55702-9_1
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i
d

dz
ϕ = η

[(−z 0
0 z

)
+ η−1/2

∞∑
n=0

η−n/2
(

0 μn/2
νn/2 0

)]
ϕ (3.3.6)

by a formal transformation

ψ = exp

(
η

2i

∫ t

(ρ1 + ρ2) dt

) ∞∑
n=0

η−n/2Tn/2(t)ϕ (3.3.7)

and a change of variables

2z
dz

dt
= ρ2(t) − ρ1(t), i.e., z =

(∫ t

τ

(ρ2 − ρ1) dt

)1/2
. (3.3.8)

Here Tn/2(t) (n = 0, 1, 2, . . .) is a 2× 2 matrix each entry of which is holomorphic
near t = τ with det T0(τ ) �= 0, and (μn/2, νn/2) (n = 0, 1, 2, . . .) is a pair of
constants that are uniquely determined by the original system (3.3.5).

In view of Theorems3.3.1 and 3.3.2 we find that at each turning point a system
(3.1.5) can be reduced to a Landau-Zener model for two levels

i
d

dz

(
ϕ1
ϕ2

)
= η

[(−z 0
0 z

)
+ η−1/2

(
0 μ

ν 0

)](
ϕ1
ϕ2

)
(3.3.9)

with two ‘invariants’ μ = μ0 + η−1/2μ1/2 + · · · and ν = ν0 + η−1/2ν1/2 + · · · . For
the proof of Theorem3.3.2 see, for example, [AKT4, Appendix]. It also follows from
the construction of the transformation (3.3.7) that, in the case of a turning point t = τ

of (3.1.5) with type ( j, k), the top order part (μ0, ν0) of the invariants is explicitly
given by

μ0 =
√
2

λ
c jk, ν0 =

√
2

λ
c jk with λ = d

dt

(
ρk − ρ j

)∣∣∣
t=τ

. (3.3.10)

It is readily confirmed that (3.3.9) is equivalent to the Weber equation for the first
component ϕ1 of (3.3.9):

d2

dw2 ϕ1 = η2
(

w2

4
− η−1σ

)
ϕ1, (3.3.11)

where

w = √
2eiπ/4z and σ = −1

2
(1 + iμν). (3.3.12)

The structure of Borel transforms and Borel sums of WKB solutions of (3.3.11) is
studied in, e.g., [T2, Sect. 3]. In particular, if we adopt the following WKB solution
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φ± = 1√
Sodd

(
η1/2w

)∓σ

exp±
{
η

w2

4
+
∫ w

∞

(
Sodd − η

w

2
+ σ

w

)
dw

}
(3.3.13)

(wherewechoose thebranchofw∓σ= exp(∓σ logw) so that−3π/4 < Im (logw) <

5π/4 holds, that is, we place a cut on {arg w = −3π/4} and take the principal branch
of logw) as a fundamental system of solutions of (3.3.11), the connection formula
on each Stokes curve of (3.3.11) can be described as follows:
On { w ∈ C | argw = 0} we have

{
φ+ = φ+ + C0φ−
φ− = φ−

with C0 = i
√
2π

Γ (σ + 1/2)
, (3.3.14)

on { w ∈ C | argw = π/2} we have
{

φ+ = φ+
φ− = φ− + C1φ+

with C1 = i
√
2π

Γ (−σ + 1/2)
eiπσ , (3.3.15)

on { w ∈ C | argw = π} we have
{

φ+ = φ+ + C2φ−
φ− = φ−

with C2 = i
√
2π

Γ (σ + 1/2)
e−2iπσ , (3.3.16)

and on { w ∈ C | argw = −π/2} we have
{

φ+ = φ+
φ− = φ− + C−1φ+

with C−1 = i
√
2π

Γ (−σ + 1/2)
e−iπσ , (3.3.17)

where it is assumed that we cross each Stokes curve in an anticlockwise manner
(viewed from the origin w = 0). As a consequence, letting

ϕ(+) = η−1/2
{(

1
−η−1/2ν

2z

)
+ O(η−1/2)

}
eiηz2/2ziμν/2(1 + O(η−1/2)),

ϕ(−) = η−1/2
{(

η−1/2μ
2z
1

)
+ O(η−1/2)

}
e−iηz2/2z−iμν/2(1 + O(η−1/2)),

(3.3.18)
which correspond to (a common constant multiple of) solutions

(2iη)σ/2φ+ and
1

2
η−1/2μ(2iη)−σ/2φ− (3.3.19)

of the Weber equation (3.3.11), respectively, we obtain the following connection
formula for a Landau-Zener model (3.3.9) for two levels:
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When we cross a Stokes curve { z ∈ C | arg z = π/4} of (3.3.9) anticlockwise, we
have

ϕ(+) �−→ ϕ(+), ϕ(−) �−→ ϕ(−) + (2η)iμν/2 μ
√

π

Γ (iμν/2 + 1)
eπ(i+μν)/4ϕ(+),

(3.3.20)
and when we cross a Stokes curve { z ∈ C | arg z = 3π/4} anticlockwise, we have

ϕ(+) �−→ ϕ(+) + (2η)−iμν/2 ν
√

π

Γ (−iμν/2 + 1)
e3π(i−μν)/4ϕ(−), ϕ(−) �−→ ϕ(−).

(3.3.21)
Note that the Stokes curves { w ∈ C | argw = π/2} and { w ∈ C | argw = π} of
(3.3.11) correspond to the Stokes curves { z ∈ C | arg z = π/4} and { z ∈ C | arg z =
3π/4} through (3.3.12), respectively. Hence, if we consider the analytic continuation
of solutions of (3.3.9) from the left to the right (i.e., clockwise) in the upper half-plane
across the two Stokes curves { z ∈ C | arg z = π/4} and { z ∈ C | arg z = 3π/4},
the following connection formula holds:

ϕ(+) �−→ e−πμνϕ(+) − (2η)−iμν/2 ν
√

π

Γ (−iμν/2 + 1)
e3π(i−μν)/4ϕ(−),

ϕ(−) �−→ ϕ(−) − (2η)iμν/2 μ
√

π

Γ (iμν/2 + 1)
eπ(i+μν)/4ϕ(+). (3.3.22)

Here we have used the relation

1 − πμν

Γ (iμν/2 + 1)Γ (−iμν/2 + 1)
e−πμν/2 = e−πμν. (3.3.23)

Let us now return to the calculation of connection matrices for the original non-
adiabatic transition problem (3.1.5). Theorems3.3.1 and 3.3.2 imply that (3.1.5) can
be reduced to a Landau-Zener model for two levels (3.3.9) by composition of the
two WKB type formal transformations (3.3.3) and (3.3.7) near a turning point of
(3.1.5). Furthermore, the connection formula (3.3.22) holds for (3.3.9). Thus, by the
same reasoning as in Sect. 1.1, we can expect that the same connection formula as
(3.3.22) also holds for (3.1.5) near a turning point when we adopt WKB solutions
corresponding to (3.3.18) as (part of) a fundamental system of solutions of (3.1.5)
and consider their analytic continuation from the left to the right in the upper half-
plane across the two Stokes curves that emanate from a turning point in question. To
be more specific, let t = t jk be a turning point of (3.1.5) with type ( j, k). Here we
assume that the indices j and k are chosen in such a way that

λ jk
def= d

dt

(
ρk − ρ j

)∣∣∣
t=t jk

> 0 (3.3.24)

http://dx.doi.org/10.1007/978-4-431-55702-9_1
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holds. We further let ψ
( j)
0 and ψ

(k)
0 be WKB solutions of (3.1.5) of the following

form:

ψ
( j)
0 = η−1/2 exp

[
η

i

∫ t

t jk

ρ j dt + 1

i

∫ t

t jk

{
|c jk |2

(
1

ρ j − ρk
+ 1

λ jk(t − t jk)

)

+ |c jl |2
ρ j − ρl

}
dt

](
λ jk(t − t jk)

2

2

)i |c jk |2/(2λ jk ) (
e( j) + O

(
η−1/2)) ,

ψ
(k)
0 = η−1/2 exp

[
η

i

∫ t

t jk

ρk dt + 1

i

∫ t

t jk

{
−|c jk |2

(
1

ρ j − ρk
+ 1

λ jk(t − t jk)

)

+ |ckl |2
ρk − ρl

}
dt

](
λ jk(t − t jk)

2

2

)−i |c jk |2/(2λ jk ) (
e(k) + O

(
η−1/2)) ,

(3.3.25)

where { j, k, l} is a permutation of {1, 2, 3}. Note that (ρ j − ρk)
−1 has a simple pole

at t = t jk while (ρ j −ρk)
−1+ (λ jk(t − t jk))

−1 is holomorphic and can be integrated

from t = t jk . In fact, ψ
( j)
0 and ψ

(k)
0 are ‘well-normalized’ WKB solutions of (3.1.5)

in the sense that they respectively correspond to theWKB solutions ϕ(+) and ϕ(−) of
(3.3.9) through composition of theWKB type transformations (3.3.3) and (3.3.7) that
reduces (3.1.5) to (3.3.9). In terms of ψ

( j)
0 and ψ

(k)
0 , when we consider the analytic

continuation from the left to the right in the upper half-plane across the two Stokes
curves of (3.1.5) emanating from t jk , it is expected that the following connection
formula holds:

ψ
( j)
0 �−→ e2iπκ jk (1 + O(η−1/2))ψ

( j)
0

−(2η)−κ jk

√
2π

λ jk

c jk

Γ (1 − κ jk)
e3iπ(1+2κ jk)/4(1 + O(η−1/2))ψ

(k)
0 ,

ψ
(k)
0 �−→ ψ

(k)
0 − (2η)κ jk

√
2π

λ jk

c jk

Γ (1 + κ jk)
eiπ(1−2κ jk)/4(1 + O(η−1/2))ψ

( j)
0 ,

(3.3.26)

where κ jk = i |c jk |2/λ jk . Note that, using the relation (3.3.10), we have replaced μ

and ν by
√
2/λ jk c jk and

√
2/λ jk c jk , respectively, in deriving (3.3.26).

Remark 3.3.2 (i) Being different from the transformation to the Airy equation
discussed in Sect. 1, the transformation to the Landau-Zener model for two lev-
els discussed here contains the invariants μ = μ0 + η−1/2μ1/2 + · · · and ν =
ν0 +η−1/2ν1/2+· · · which are, in general, formal power series of η−1/2. Very rigor-
ously speaking, since in [T2, Sect. 3] only the Weber equation (3.3.11) with σ being
a genuine constant is studied, the current situation is not completely covered by the
above argument. On the other hand, it is known that these invariants are given in the
form of contour integrals of WKB solutions and the result for the Borel summability
of such contour integrals for second order equations (cf. [KoS]) strongly suggests
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that these invariants should be Borel summable. Once the Borel summability of the
invariants are established, by the general theory for the Borel resummation we can
expect that the connection formula (3.3.26) should hold even when the invariants are
infinite series. It is desirable that, related to these problems, the general theory for
the Borel resummation should be refined and become more accessible, especially
in the setting of singular perturbations, that is, in the case where divergent series in
question depends on a parameter.
(ii) We also remark that the connection formula at a double turning point discussed
here is also studied in [DP, Sects. 4 and 5] from the viewpoint of the theory of
resurgent functions à la Ecalle.

In conclusion we now obtain the following recipe for computing transition prob-
abilities for a problem (3.1.5) under the assumption (3.1.4):

Recipe 3.3.1.

(R.i) As a fundamental system of solutions we take WKB solutions ψ( j) given by
(3.1.20). We also choose normalization factors N±,( j) so that ψ±,( j) = N±,( j)ψ( j)

may satisfy (3.1.25).
(R.ii) We list up all the turning points of (3.1.5). Thanks to the assumption (3.1.4),
they are all located on the real axis. We arrange them in an increasing order like
{t [n]

jn ,kn
}n=1,...,N , that is, we number the turning points as t [1]j1,k1

, t [2]j2,k2
, . . . from the left

(i.e., from t = −∞), where t [n]
jn ,kn

is of type ( jn, kn). Here we assume that

λ
[n]
jn ,kn

= d

dt

(
ρkn − ρ jn

)∣∣∣
t=t [n]

jn ,kn

> 0 (3.3.27)

holds for any n. (We may assume (3.3.27) without loss of generality by exchanging
the indices jn and kn if necessary.)
(R.iii) At each turning point t [n]

jk (in what follows we abbreviate ( jn, kn) to ( j, k)

if there is no fear of confusions) we introduce ‘well-normalized’ WKB solutions
defined by

ψ [n],( j) = η−1/2 exp

⎡
⎣η

i

∫ t

t [n]
jk

ρ j dt + 1

i

∫ t

t [n]
jk

⎧⎨
⎩|c jk |2

⎛
⎝ 1

ρ j − ρk
+ 1

λ
[n]
jk (t − t [n]

jk )

⎞
⎠

+ |c jl |2
ρ j − ρl

}
dt

]⎛
⎝λ

[n]
jk (t − t [n]

jk )2

2

⎞
⎠

i |c jk |2/(2λ[n]
jk ) (

e( j) + O
(
η−1/2)) ,

ψ [n],(k) = η−1/2 exp

⎡
⎣η

i

∫ t

t [n]
jk

ρk dt + 1

i

∫ t

t [n]
jk

⎧⎨
⎩−|c jk |2

⎛
⎝ 1

ρ j − ρk
+ 1

λ
[n]
jk (t − t [n]

jk )

⎞
⎠

+ |ckl |2
ρk − ρl

}
dt

]⎛
⎝λ

[n]
jk (t − t [n]

jk )2

2

⎞
⎠

−i |c jk |2/(2λ[n]
jk ) (

e(k) + O
(
η−1/2)) ,

(3.3.28)
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where e( j) is a unit vector satisfying (3.1.21) and { j, k, l} is a permutation of {1, 2, 3}.
Comparing WKB solutions ψ( j) given by (3.1.20) with (3.3.28), we compute the
constants β

[n]
jk , γ

[n]
j and γ

[n]
k satisfying

ψ [n],( j) = γ
[n]
j ψ( j), ψ [n],( j) = γ

[n]
k ψ(k) and β

[n]
jk = γ

[n]
j

γ
[n]
k

. (3.3.29)

Then ψ( j) ( j = 1, 2, 3) should satisfy the following connection formula when they
are analytically continued from the left to the right across the two Stokes curves
emanating from t [n]

jk in the upper half-plane:

ψ( j) �−→ (1 + α
[n],−
jk α

[n],+
jk )ψ( j) − α

[n],−
jk ψ(k), ψ(k) �−→ ψ(k) − α

[n],+
jk ψ( j),

ψ(l) �−→ ψ(l), (3.3.30)

where

α
[n],±
jk = (2η)

±κ
[n]
jk

√
2π

λ
[n]
jk

c±
jk

Γ (1 ± κ
[n]
jk )

eiπ(1/2∓1)(κ [n]
jk ∓1/2)

(β
[n]
jk )±1

(
1 + O

(
η−1/2))

(3.3.31)
with

c+
jk = c jk, c−

jk = c jk, κ
[n]
jk = i |c jk |2

λ
[n]
jk

. (3.3.32)

(The constant κ [n]
jk is called the Landau-Zener parameter at t = t [n]

jk .)

(R.iv) The connection formula (3.3.30) can be described with a 3 × 3 matrix M [n]
in the following form:

(
ψ(1), ψ(2), ψ(3)

)
�−→

(
ψ(1), ψ(2), ψ(3)

)
M [n]. (3.3.33)

Then

⎛
⎝ N+,(1) 0 0

0 N+,(2) 0
0 0 N+,(3)

⎞
⎠

−1

M [N ] · · · M [1]
⎛
⎝ N−,(1) 0 0

0 N−,(2) 0
0 0 N−,(3)

⎞
⎠ (3.3.34)

gives the S-matrix for a system (3.1.5).

Remark 3.3.3 By the same reasoning as in the proof of Proposition3.2.2, we can
confirm that a Stokes curve emanating from an ordinary turning point on the real
axis never crosses the real axis again under the assumption (3.1.4). This fact together
with Propositions3.2.1 and 3.2.2 validates the above recipe.
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Example 3.2.1 (revisited) Making use of Recipe 3.3.1, we compute the S-matrix for
the system

i
d

dt
ψ = η

⎡
⎣
⎛
⎝b1t + a 0 0

0 b2t 0
0 0 b3t

⎞
⎠+ η−1/2

⎛
⎝ 0 c12 c13

c12 0 c23
c13 c23 0

⎞
⎠
⎤
⎦ψ (3.3.35)

discussed in Example3.2.1. For (3.3.35) we can take the following WKB solutions
ψ( j) ( j = 1, 2, 3) as a fundamental system of solutions:

ψ( j) = η−1/2 exp

(
η

i

∫ t

0
ρ j (t)dt

)
(ρk −ρ j )

−κk j (ρl −ρ j )
−κl j

(
e( j) + O

(
η−1/2

))
,

(3.3.36)

where { j, k, l} is a permutation of {1, 2, 3} and

καβ = i |cαβ |2
bβ − bα

(3.3.37)

(α, β = 1, 2, 3) denotes theLandau-Zener parameter.Herewe assume that the branch
of multi-valued analytic functions (ρα − ρβ)−καβ is determined in such a way that

As t → −∞ arg(ρα − ρβ) = 0 forα < β,

arg(ρα − ρβ) = π forα > β. (3.3.38)

As t → +∞ arg(ρα − ρβ) = −π forα < β,

arg(ρα − ρβ) = 0 forα > β. (3.3.39)

This choice of the branch immediately implies (3.1.25) if we define normalization
factors N±,( j) by

N−,(1) = e−iπ(κ12+κ13) + O
(
η−1/2

)
,

N−,(2) = e−iπκ23 + O
(
η−1/2

)
,

N−,(3) = 1 + O
(
η−1/2

)
,

(3.3.40)

N+,(1) = 1 + O
(
η−1/2

)
,

N+,(2) = e−iπκ12 + O
(
η−1/2

)
,

N+,(3) = e−iπ(κ23+κ13) + O
(
η−1/2

)
.

(3.3.41)

Now, as we have already observed in Sect. 3.2, system (3.3.35) has three turning
points. We number them as follows:

t [1]23 = 0 < t [2]13 = a

b3 − b1
< t [3]12 = a

b2 − b1
. (3.3.42)

We first compute the connection formula at t [1]23 = 0. At t = t [1]23 = 0 the well-
normalized WKB solutions of (3.3.35) are defined by



3.3 Computation of Transition Probabilities 107

ψ [1],(2) = η−1/2 exp
( η

2i
b2t2

)

×
(

(b3 − b2)t2

2

)κ23/2 (
1 − b2 − b1

a
t

)−κ12 (
e(2) + O

(
η−1/2

))
,

ψ [1],(3) = η−1/2 exp
( η

2i
b3t2

)

×
(

(b3 − b2)t2

2

)−κ23/2 (
1 − b3 − b1

a
t

)−κ13 (
e(3) + O

(
η−1/2

))
.

(3.3.43)

In what follows we omit the symbol (1 + O(η−1/2)) for the sake of simplicity.
Comparing these WKB solutions with (3.3.36), we find

ψ [1],(2) = (2(b3 − b2))
−κ23/2 aκ12ψ(2), ψ [1],(3) = e−iπκ23 (2(b3 − b2))

κ23/2 aκ13ψ(3),

(3.3.44)
that is,

γ
[1]
2 = (2(b3 − b2))

−κ23/2 aκ12 , γ
[1]
3 = e−iπκ23 (2(b3 − b2))

κ23/2 aκ13 (3.3.45)

and
β

[1]
23 = eiπκ23 (2(b3 − b2))

−κ23 aκ12−κ13 . (3.3.46)

Hence the connection formula (3.3.30) at t [1]23 = 0 reads as

ψ(1) �−→ ψ(1), ψ(2) �−→ (1 + α
[1],−
23 α

[1],+
23 )ψ(2) − α

[1],−
23 ψ(3),

ψ(3) �−→ ψ(3) − α
[1],+
23 ψ(2), (3.3.47)

where

α
[1],±
23 = (2η)±κ23

√
2π

b3 − b2

c±
23

Γ (1 ± κ23)
eiπ(1/2∓1)(κ23∓1/2)(β

[1]
23 )±1,

β
[1]
23 = eiπκ23 (2(b3 − b2))

−κ23 aκ12−κ13 . (3.3.48)

That is, we have

(
ψ(1), ψ(2), ψ(3)

)
�−→

(
ψ(1), ψ(2), ψ(3)

)
M [1] (3.3.49)

with

M [1] =
⎛
⎜⎝
1 0 0
0 1 + α

[1],−
23 α

[1],+
23 −α

[1],+
23

0 −α
[1],−
23 1

⎞
⎟⎠ . (3.3.50)
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In a similar manner, at t [2]13 we have

ψ(1) �−→ (1 + α
[2],−
13 α

[2],+
13 )ψ(1) − α

[2],−
13 ψ(3), ψ(2) �−→ ψ(2),

ψ(3) �−→ ψ(3) − α
[2],+
13 ψ(1), (3.3.51)

where

α
[2],±
13 = (2η)±κ13

√
2π

b3 − b1

c±
13

Γ (1 ± κ13)
eiπ(1/2∓1)(κ13∓1/2)(β

[2]
13 )±1,

β
[2]
13 = eiπ(−κ12+κ23+κ13)(2(b3 − b1))

−κ13

(
b3 − b2
b3 − b1

a

)−κ12−κ23

eiηa2/(2(b3−b1)).

(3.3.52)
That is, we have

(
ψ(1), ψ(2), ψ(3)

)
�−→

(
ψ(1), ψ(2), ψ(3)

)
M [2] (3.3.53)

with

M [2] =
⎛
⎝ 1 + α

[2],−
13 α

[2],+
13 0 −α

[2],+
13

0 1 0
−α

[2],−
13 0 1

⎞
⎠ . (3.3.54)

Furthermore, at t [3]12 we have

ψ(1) �−→ (1 + α
[3],−
12 α

[3],+
12 )ψ(1) − α

[3],−
12 ψ(2), ψ(2) �−→ ψ(2) − α

[3],+
12 ψ(1),

ψ(3) �−→ ψ(3), (3.3.55)

where

α
[3],±
12 = (2η)±κ12

√
2π

b2 − b1

c±
12

Γ (1 ± κ12)
eiπ(1/2∓1)(κ12∓1/2)(β

[3]
12 )±1,

β
[3]
12 = eiπκ12(2(b2 − b1))

−κ12

(
b3 − b2
b2 − b1

a

)κ23−κ13

eiηa2/(2(b2−b1)). (3.3.56)

That is, we have

(
ψ(1), ψ(2), ψ(3)

)
�−→

(
ψ(1), ψ(2), ψ(3)

)
M [3] (3.3.57)

with

M [3] =
⎛
⎝ 1 + α

[3],−
12 α

[3],+
12 −α

[3],+
12 0

−α
[3],−
12 1 0
0 0 1

⎞
⎠ . (3.3.58)
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Thus we conclude that (the top order part with respect to η−1 of) the S-matrix for
system (3.3.35) is given by

⎛
⎝ 1 0 0
0 e−iπκ12 0
0 0 e−iπ(κ23+κ13)

⎞
⎠

−1

M [3]M [2]M [1]
⎛
⎝ e−iπ(κ12+κ13) 0 0

0 e−iπκ23 0
0 0 1

⎞
⎠ =

⎛
⎜⎝

eiπ(κ12+κ13) α−
23α

+
13eiπ(2κ12−κ23) − α+

12eiπκ23 −α+
13e2iπκ12 + α+

12α
+
23

−α−
12eiπκ13 −α−

12α
−
23α

+
13eiπ(κ12−κ23) + eiπ(κ12+κ23) (α−

12α
+
13 − α+

23)e
iπκ12

−α−
13eiπ(−κ12+κ23) −α−

23eiπκ13 eiπ(κ23+κ13)

⎞
⎟⎠ .

(3.3.59)
(Here we have abbreviated α

[1],±
23 = α±

23 etc.)
In this waywe can calculate the S-matrix and transition probabilities for a problem

(3.1.5) by using the exact WKB analysis.

Remark 3.3.4 Our recipe for the computation of the S-matrix is based on the reduc-
tion to a Landau-Zener model for two levels at a turning point. In this computation
the Landau-Zener parameters naturally appear as (the top order part of) the invariants
at a turning point.

Under the assumption (3.1.4) virtual turning points are irrelevant to the calculation
of transition probabilities along the real axis thanks to Propositions3.2.1 and 3.2.2.
However, when (3.1.4) is violated, virtual turning points and new Stokes curves
emanating from them also play an essentially important role in the calculation of the
S-matrix and transition probabilities.

Example 3.2.3 (revisited) To see the effect of virtual turning points to the calculation
of transition probabilities for (3.1.5) in a more general situation, let us consider the
system

i
d

dt
ψ = η

⎡
⎣
⎛
⎝ t3 0 0

0 −t 0
0 0 −t + c + c3

⎞
⎠+ η−1/2

⎛
⎝ 0 c12 c13

c12 0 c23
c13 c23 0

⎞
⎠
⎤
⎦ψ (3.3.60)

discussed in Example3.2.3. As was already observed in Sect. 3.2, some new Stokes
curves emanating from virtual turning points cross the real axis for (3.3.60).
Figure3.12 shows the configuration of Stokes curves of (3.3.60) near the real axis;
only active Stokes curves are written and inert Stokes curves are all omitted there.
There are eight ordinary Stokes curves, which emanate from two turning points near
the real axis, and additional two Stokes curves that cross the real axis in Fig. 3.12.
The latter two are new Stokes curves emanating from non-real virtual turning points
(cf. Fig. 3.11).

Let α j ( j = 1, . . . , 4) be the Stokes constants attached to the four ordinary Stokes
curves specified in Fig. 3.12 and βk (k = 1, 2) the Stokes constants attached to the
two new Stokes curves. Then, if we consider the analytic continuation of ψ(3) from
t = −∞ to t = +∞ along the real axis through the upper half-plane, we readily
find that ψ(3) should be changed as
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β1 β2
α1

α2 α3 α4
Re t

0

3 < 2 2 < 3

1 < 2 2 < 1 1 < 3 3 < 1

Fig. 3.12 Active Stokes curves of (3.3.60) near the real axis

ψ(3) �→ ψ(3)

�→ ψ(3) + β2ψ
(2)

�→ ψ(3) + β2(ψ
(2) + α1ψ

(1))

= ψ(3) + β2ψ
(2) + α1β2ψ

(1)

�→ ψ(3) + β2ψ
(2) + α1β2(ψ

(1) + α2ψ
(2))

= ψ(3) + β2(1 + α1α2)ψ
(2) + α1β2ψ

(1)

�→ (ψ(3) + α3ψ
(1)) + β2(1 + α1α2)ψ

(2) + α1β2ψ
(1)

= ψ(3) + β2(1 + α1α2)ψ
(2) + (α1β2 + α3)ψ

(1)

�→ ψ(3) + β2(1 + α1α2)ψ
(2) + (α1β2 + α3)(ψ

(1) + α4ψ
(3))

= (1 + α3α4 + α1α4β2)ψ
(3) + β2(1 + α1α2)ψ

(2) + (α1β2 + α3)ψ
(1).

(3.3.61)

In particular, the transition probability fromψ(3) near t = −∞ toψ(2) near t = +∞
is described by β2(1 + α1α2), to which the Stokes constant β2 attached to the new
Stokes curve of type 2 < 3 (i.e., the second one from the left in Fig. 3.12) gives the
main contribution. We can thus conclude that the effect of new Stokes curves and
virtual turning points is inevitable for (3.3.60).

Remark 3.3.5 System (3.3.60) has six ordinary turning points: two near the real axis,
two in the upper half-plane and two in the lower half-plane. Let us denote them by
t (0)j , t (+)

j and t (−)
j ( j = 1, 2), respectively. It is observed in Fig. 3.11 that the new

Stokes curve of type 2 < 3 crossing the real axis, i.e., the second one from the left
in Fig. 3.12, is a new Stokes curve passing through ordered crossing points of Stokes
curves emanating from t (−)

1 and t (−)
2 . In view of (R.iii) and (R.v) of Recipe 1.5.1,

we then find that the Stokes constant β2 in question is completely determined by
the Stokes constants attached to Stokes curves emanating from t (−)

1 and t (−)
2 . Hence

it can be said that the new Stokes curve of type 2 < 3 in question and the Stokes
constant β2 attached to it represent an effect of the turning points t (−)

j ( j = 1, 2) to

the transition probabilities. Note that any Stokes curve emanating from t (−)
j does not

cross the real axis and hence t (−)
j does not directly affect the transition probabilities.

We can thus conclude that the new Stokes curve in question and the virtual turning
point it emanates from visualize the indirect effects of the non-real turning points
t (−)

j ( j = 1, 2) to the transition probabilities along the real axis.



Appendix A
Integral Representation of Solutions
and the Borel Resummed WKB Solutions

A.1 The Case of Laplace Type Equations

In the case of higher order ordinary differential equations with a large parameter, the
Borel summability of WKB solutions and the endless continuability of their Borel
transforms (i.e., Property [AC]) are not established yet. However, when an integral
representation of solutions is available, these important properties can be confirmed
by making full use of the integral representation. In this Appendix, considering a
higher order differential equation of Laplace type

Pψ =
(

dm

dxm
+ (cm−1x + dm−1)η

dm−1

dxm−1 + · · · + (c0x + d0)η
m
)

ψ = 0,

(A.1.1)

where c j , d j ∈ C are constants, we explain this fact and give a characterization of
(ordinary and new) active Stokes curves of (A.1.1) in terms of the integral represen-
tation.

The (inverse) Fourier-Laplace transform with a large parameter

ψ(x) =
∫

exp(ηxξ)ψ̂(ξ)dξ (A.1.2)

transforms a Laplace type equation (A.1.1) into a first order equation

P̂ψ̂ = ηm
[
−C(ξ)η−1 ∂

∂ξ
− η−1C ′(ξ) + D(ξ)

]
ψ̂ = 0 (A.1.3)

with

C(ξ) = cm−1ξ
m−1 + · · · + c0 and D(ξ) = ξm + dm−1ξ

m−1 + · · · + d0. (A.1.4)
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Hence, by solving (A.1.3) explicitly, we obtain the following integral representation
of solutions for (A.1.1):

ψ(x) =
∫

Γ

eη f (x,ξ) 1

C(ξ)
dξ, (A.1.5)

where

f (x, ξ) = xξ + g(ξ), g(ξ) =
∫ ξ D(ξ)

C(ξ)
dξ. (A.1.6)

In what follows we take a steepest descent path of Re f passing through a saddle
point of f as an integration path Γ . For the sake of reader’s convenience we here
recall the definition of a saddle point and a steepest descent path.

Definition A.1.1 (i) A saddle point of f (x, ξ) (or a saddle point of (A.1.5)) is a
(non-degenerate) critical point of f (x, ξ), that is, a simple zero of ∂ f/∂ξ = 0.
(ii) A steepest descent path of Re f (or a steepest descent path of (A.1.5)) is a
solution curve of the vector field −grad(s,t) Re f (x, ξ), where s and t denote the real
part and the imaginary part of ξ .

Let Σs and Σ∞ denote the set of saddle points of f (x, ξ) and that of singular
points of (A.1.5), respectively. It is clear that

Σ∞ = {zeros ofC(ξ)} ∪ {∞}, (A.1.7)

while a saddle point of f is a zero of

∂ f

∂ξ
= x + dg

dξ
= x + D(ξ)

C(ξ)
. (A.1.8)

Hence we readily obtain the following

Lemma A.1.1
Σs = {ζ1(x), . . . , ζm(x)}, (A.1.9)

where ζ j (x) ( j = 1, . . . , m) is a root of the characteristic polynomial

ζm + (cm−1x + dm−1)ζ
m−1 + · · · + (c0x + d0) = 0 (A.1.10)

of (A.1.1).

Here and in what follows, unless specifically mentioned, we consider the problem
in a generic situation, that is, we assume that the zeros of C(ξ) and those of D(ξ)

are mutually distinct and further that every ζ j (x) is a simple root of (A.1.10) (i.e., x
does not belong to the set of turning points of (A.1.1)).
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Let ζ j (x) ( j = 1, . . . , m) be a saddle point of f (x, ξ) and consider a solution of
(A.1.1) given by

Ψ j (x) =
∫

Γ ( j)
eη f (x,ξ) 1

C(ξ)
dξ, (A.1.11)

where Γ ( j) is a steepest descent path of Re f (x, ξ) passing through ζ j (x). If we
apply the saddle point method to (A.1.11), we obtain the asymptotic expansion of
(A.1.11) for η → ∞ of the form

ψ j (x) = η−1/2eη f (x,ζ j (x))
∞∑

n=0

ψ j,n(x)η−n . (A.1.12)

(Oneway of deriving (A.1.12) from (A.1.11) will be discussed later.) Themain claim
of this appendix is then the following

Theorem A.1.1 (i) The right-hand side of (A.1.12) is a (suitably normalized) WKB
solution of (A.1.1) with the top term S−1(x) = ζ j (x).
(ii) Suppose that the steepest descent path Γ ( j) does not pass any other saddle point
and can be extended to a singular point of (A.1.5) (i.e., a point in Σ∞). Then the
WKB solution (A.1.12) is Borel summable and the integral (A.1.11) provides the
Borel sum of (A.1.12).

To prove Theorem A.1.1, we first rewrite the integral (A.1.11) by using a change
of variable y = − f (x, ξ) = −(xξ + g(ξ)) as follows:

Ψ j (x) =
∫

Γ ( j)
eη f (x,ξ) 1

C(ξ)
dξ

=
∫

Γ̃ ( j)
e−ηy

⎡
⎣(

C(ξ)
dy

dξ

)−1
∣∣∣∣∣
Γ

( j)
+

−
(

C(ξ)
dy

dξ

)−1
∣∣∣∣∣
Γ

( j)
−

⎤
⎦ dy

=
∫

Γ̃ ( j)
e−ηy

[
− 1

C(ξ)x + D(ξ)

∣∣∣∣
ξ=ξ+(x,y)

+ 1

C(ξ)x + D(ξ)

∣∣∣∣
ξ=ξ−(x,y)

]
dy,

(A.1.13)

where Γ̃ ( j) is a path emanating from −y j (x) = − f (x, ζ j (x)) and running parallel
with the positive real axis (cf. Fig. A.1). Note that, since ζ j (x) is a non-degenerate

critical point of f (x, ξ), two steepest descent paths (denoted respectively by Γ
( j)
±

in Fig. A.1) emanate from ζ j (x) and the inverse change of y = − f (x, ξ) has two
branches ξ = ξ±(x, y) with the following Puiseux expansion there:

ξ±(x, y) = ζ j (x) +
∞∑

n=1

(±1)nΞn/2(x)
(
y + y j (x)

)n/2
. (A.1.14)
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ξ

Γ(j)
+Γ(j)

−

ζj(x)
y = −f(x, ξ)

ξ = ξ±(x, y)

y

Γ̃(j)

−yj(x)

Fig. A.1 Steepest descent paths Γ
( j)
± and a change of variable y = − f (x, ξ)

Let ϕ±(x, y) denote

ϕ±(x, y) = − 1

C(ξ)x + D(ξ)

∣∣∣∣
ξ=ξ±(x,y)

. (A.1.15)

Then it follows from (A.1.14) that at y = −y j (x)

ϕ+(x, y) − ϕ−(x, y) = (
y + y j (x)

)−1/2
χ(x, y), (A.1.16)

where χ(x, y) is consisting only of terms with non-negative integral powers of (y +
y j (x)) (and hence holomorphic in (x, y)), as ϕ+ − ϕ− becomes −(ϕ+ − ϕ−) after
the analytic continuation along a tiny circle around y = −y j (x). Hence, applying
the so-called Watson’s lemma (cf., e.g., [C, Sect. 3.4]) to the Laplace integral of the
form

Ψ j (x) =
∫

Γ̃ ( j)
e−ηy (

y + y j (x)
)−1/2

χ(x, y) dy, (A.1.17)

we obtain an asymptotic expansion for η → ∞ of the form (A.1.12). This is one
of the explicit derivations of (A.1.12) from the integral (A.1.11) or, equivalently,
(A.1.17). Note that only the local behavior of χ(x, y) near y = −y j (x) contributes
to the asymptotic expansion (A.1.12).

Now a key step to prove Theorem A.1.1 is to show the following

Proposition A.1.1 Let

PB = ∂m

∂xm
+ (cm−1x + dm−1)

∂m

∂xm−1∂y
+ · · · + (c0x + d0)

∂m

∂ym
(A.1.18)

be the Borel transform of P (with respect to η). Then ϕ±(x, y) satisfy

PBϕ±(x, y) = 0. (A.1.19)
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Proof As the argument below runs in the same manner for both ϕ±, we omit the
suffix ± in this proof. Using Cauchy’s integral formula, we write ϕ(x, y) as

ϕ(x, y) = − 1

2π i

∮
1

C(ξ)x + D(ξ)

∣∣∣∣
ξ=ξ(x,y′)

dy′

y′ − y

= − 1

2π i

∮
1

C(ξ)(y + xξ + g(ξ))
dξ, (A.1.20)

where we have employed a change of variable y′ = − f (x, ξ) = −(xξ + g(ξ)) to
obtain the second equality and hence a path of the second integration is a tiny circle
around ξ†, the point corresponding to y through this change of variable.

If we let φ(ξ, z) denote (C(ξ)(z + g(ξ)))−1, (A.1.20) can be written also as

ϕ(x, y) = − 1

2π i

∮
φ(ξ, y + xξ) dξ. (A.1.21)

We then find

∂m

∂xm− j∂y j

∮
φ(ξ, y + xξ)dξ =

∮ (
∂

∂y

)m (
ξm− jφ(ξ, y + xξ ′)

)∣∣∣∣
ξ ′=ξ

dξ,

(A.1.22)

and

x
∂m

∂xm− j∂y j

∮
φ(ξ, y + xξ)dξ

=
∮ (

∂

∂y

)m (
xξm− jφ(ξ, y + xξ)

)
dξ

=
∮ (

∂

∂y

)m−1
∂

∂ξ ′
(
ξm− jφ(ξ, y + xξ ′)

)∣∣∣∣∣
ξ ′=ξ

dξ

=
∮ (

∂

∂y

)m−1 (
− ∂

∂ξ

) (
ξm− jφ(ξ, y + xξ ′)

)∣∣∣∣∣
ξ ′=ξ

dξ. (A.1.23)

Here, to obtain the last equality, we have used the integration by parts based on the
relation

∂

∂ξ

(
ξm− jφ(ξ, y + xξ)

)

= ∂

∂ξ ′
(
ξm− jφ(ξ, y + xξ ′)

)∣∣∣∣
ξ ′=ξ

+ ∂

∂ξ

(
ξm− jφ(ξ, y + xξ ′)

)∣∣∣∣
ξ ′=ξ

. (A.1.24)
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Hence

PBϕ(x, y)

= − 1

2π i

∮ (
∂

∂y

)m−1 [
−C(ξ)

∂

∂ξ
− C ′(ξ) + D(ξ)

∂

∂y

]
φ(ξ, y + xξ ′)

∣∣∣∣
ξ ′=ξ

dξ

= − 1

2π i

∮ (
∂

∂y

)m−1 [
− ∂

∂ξ

(
1

z + g(ξ)

)
+ D(ξ)

C(ξ)

∂

∂z

(
1

z + g(ξ)

)]∣∣∣∣
z=y+xξ

dξ

= 0. (A.1.25)

This completes the proof of Proposition A.1.1.

Once Proposition A.1.1 is verified, Theorem A.1.1 can be proved as follows: We
first note that

d

dx
f (x, ζ j (x)) = d

dx

(
xζ j (x) + g(ζ j (x))

) = ζ j (x) + (
x + g′(ζ j (x))

)
ζ ′

j (x) = ζ j (x).

(A.1.26)

Hence f (x, ζ j (x)) can be written as
∫ x

ζ j (x)dx , that is, the phase function of
(A.1.12) has the same form as that of the WKB solution with the top term S−1(x) =
ζ j (x). Furthermore, since (A.1.12) is obtained from (A.1.17) byWatson’s lemma, the
right-hand side of (A.1.12) coincides with the inverse Borel transform of ϕ+ −ϕ− =
(y + y j (x))−1/2χ(x, y), i.e.,

η−1/2eη f (x,ζ j (x))
∞∑

n=0

ψ j,n(x)η−n = B−1 (ϕ+ − ϕ−) , (A.1.27)

where B−1 stands for the inverse Borel transform. It then follows from Proposi-
tionA.1.1 that the right-hand side of (A.1.12) satisfies a differential equation (A.1.1).
Hence, thanks to the uniqueness of WKB solutions of (A.1.1) (that is, the fact that
the higher order terms Sn(x) (n ≥ 0) of WKB solutions are uniquely determined
by the top term S−1(x)), we can conclude that the right-hand side of (A.1.12) is a
(suitably normalized) WKB solution of (A.1.1) with the top term S−1(x) = ζ j (x).
This verifies the assertion (i) of Theorem A.1.1.

The above reasoning also entails that ϕ+ −ϕ− is the Borel transform of (A.1.12).
In view of the definition of ϕ±(x, y), i.e.,

ϕ±(x, y) = − 1

C(ξ)x + D(ξ)

∣∣∣∣
ξ=ξ±(x,y)

=
(

C(ξ)
dy

dξ

)−1
∣∣∣∣∣
Γ

( j)
±

, (A.1.28)

we readily find that ϕ±(x, y) is singular only at points in Σs ∪ Σ∞. Among them
a point of Σ∞, i.e., a zero of C(ξ) (and the point at infinity), is a singular point
of the integral representation (A.1.5) and corresponds to the point at infinity in the
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y-variable, while a point of Σs, i.e., a saddle point of (A.1.5), corresponds to a finite
singular point of ϕ±(x, y) inCy under the change of variable y = − f (x, ξ). Hence,
if Γ ( j) does not pass any other saddle point, then ϕ+ − ϕ− (i.e., the Borel transform
of (A.1.12)) can be analytically continued to y = ∞ along Γ̃ ( j). This together with
the boundedness of (C(ξ)x + D(ξ))−1 at each point of Σ∞ assures that (A.1.12)
is Borel summable under the above condition and that (A.1.11) (or, equivalently,
(A.1.13)) provides its Borel sum. This completes the proof of Theorem A.1.1.

The proof of the assertion (ii) of Theorem A.1.1 immediately implies the
following:

Criterion for detecting active Stokes curves of Laplace type equations
The Borel resummed WKB solution (A.1.12) of a Laplace type equation (A.1.1)
obtained through the integral representation (A.1.5) presents a Stokes phenomenon
at x (that is, x belongs to an active Stokes curve of (A.1.1)) if and only if a steepest
descent path of (A.1.5) connects two saddle points ζ j (x) and ζ j ′(x).

A.2 Exact Steepest Descent Method

As was explained in Sect. A.1, the steepest descent method for integral representa-
tions of solutions is closely related to the Borel resummation technique for WKB
solutions and provides a criterion for their Borel summability and the detection of ac-
tive Stokes curves. Although the extension of this approach tomore general equations
is far from being trivial, an intriguing generalization that is called “exact steepest
descent method” is invented in [AKT3]. In this section we give an outline of this
new method.

Let us consider the following differential equation with polynomial coefficients:

Pψ =
∑

0≤ j≤m
0≤k≤n

a jk xkηm− j
(

d

dx

) j

ψ = 0, (A.2.1)

where n denotes the largest degree of the coefficients of ηm− j (d/dx) j . In this case,
if we apply the Fourier-Laplace transform (A.1.2) to (A.2.1), we obtain an nth order
equation

P̂ψ̂ =
∑
j,k

a jkη
m−k

(
− d

dξ

)k

(ξ j ψ̂) = 0, (A.2.2)

which cannot be explicitly solved in general when n ≥ 2. A key idea of the exact

steepest descent method is to use a WKB solution ψ̂k = η−1/2 exp(η
∫ ξ

(−xk(ξ))

dξ + · · · ) (k = 1, . . . , n) of (A.2.2) and regard, instead of (A.1.5),

∫
eηxξ ψ̂k dξ = η−1/2

∫
exp

[
η

(
xξ −

∫ ξ

xk(ξ)dξ

)
+ · · ·

]
dξ (A.2.3)
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as an integral representation of solutions of (A.2.1). Here −xk(ξ) (k = 1, . . . , n)
denotes a root of the characteristic polynomial of P̂ . Note that, in view of (A.2.2),
the characteristic polynomial of P̂ is essentially the same as that of P and, in fact,
xk(ξ) is a root of

p(x, ξ) =
∑
j,k

a jk xkξ j = 0, (A.2.4)

i.e., the characteristic polynomial of P , with respect to x . Ignoring the lower order
terms (with respect to η), we find that (A.2.3) has the same form as (A.1.5) and that
its phase function is given by

fk(x, ξ) = xξ −
∫ ξ

xk(ξ)dξ. (A.2.5)

Thus, if we take a saddle point of fk(x, ξ), which is nothing but a root ζ j (x) ( j =
1, . . . , m) of p(x, ξ) = 0 with respect to ξ (and hence there exist m saddle points),
and let Γ

( j)
k denote a steepest descent path of Re fk(x, ξ) passing through ζ j (x), it

is expected that ∫
Γ

( j)
k

eηxξ ψ̂k dξ (A.2.6)

should provide the Borel resummed WKB solution of (A.2.1) with the top term
S−1(x) = ζ j (x). As a matter of fact, considering ψ̂k in (A.2.6) to be the Borel sum
of a WKB solution of (A.2.2) and rewrite (A.2.6) as

∫
Γ

( j)
k

eηxξ ψ̂k dξ =
∫

Γ
( j)

k

eηxξ

(∫
z=∫ ξ xk(ξ)dξ+v,v≥0

e−ηzψ̂k,B(ξ, z)dz

)
dξ

=
∫ ∫

exp(−ηy)ψ̂k,B(ξ, y + xξ)dξdy (A.2.7)

by using the definition of the Borel sum of ψ̂k and employing a change of variable
y = z − xξ , where ψ̂k,B(ξ, z) denotes the Borel transform of ψ̂k(ξ, η), we can verify
that

χ(x, y) =
∫

ψ̂k,B(ξ, y + xξ)dξ (A.2.8)

is the Borel transform of a (suitably normalized) WKB solution ψ j of (A.2.1) when
y + ∫ x

ζ j (x)dx is sufficiently small. This implies that the assertion (i) of Theo-
rem A.1.1 holds also for a differential equation (A.2.1) with polynomial coefficients.

However, the situation is much more complicated than the case of n = 1, i.e., the
case of Laplace type equations. When n ≥ 2, Stokes phenomena occur with Borel
resummed WKB solutions ψ̂k on a Stokes curve of (A.2.2) and we need to take the
effect of Stokes curves and Stokes phenomena for (A.2.2) into account. For example,
suppose that a steepest descent path Γ

( j)
k crosses a Stokes curve of (A.2.2) with type
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Fig. A.2 A new steepest
descent path Γ

( j)
k′ bifurcates

at a crossing point of Γ
( j)

k
with a Stokes curve of type
k > k′

ξ0

ζj(x)

Stokes curve of type k > k

Γ(j)
k

Γ(j)
k

k > k′ at a point ξ0, as shown in Fig. A.2. Then a Stokes phenomenon occurs at
ξ = ξ0 and the Borel sum of ψ̂k picks up the Borel sum of another WKB solution
ψ̂k′ of (A.2.2) after crossing the Stokes curve. As its consequence,

∫
Γ

( j)
k′

eηxξ ψ̂k′ dξ (A.2.9)

appears in the description of the Borel sum of a WKB solution ψ j of (A.2.1) in

question, where Γ
( j)

k′ denotes a steepest descent path of Re fk′(x, ξ) emanating from
ξ0 (cf. Fig. A.2).

Thus we are led to the following definition:

Definition A.2.1 We call the union Γ
( j)

k ∪ Γ
( j)

k′ an exact steepest descent path

passing through a saddle point ζ j (x). More generally, if Γ
( j)

k′ (or Γ
( j)

k again) crosses
another Stokes curve of type k′ > k′′ (or of type k > k′′), we further bifurcate another
steepest descent path Γ

( j)
k′′ of Re fk′′ at the crossing point in the same manner. We

continue this procedure until no steepest descent path crosses aStokes curve anymore.
Then the unionΓ ( j) = Γ

( j)
k ∪Γ

( j)
k′ ∪Γ

( j)
k′′ ∪· · · of steepest descent paths thus obtained

is called an exact steepest descent path passing through a saddle point ζ j (x).

Then, as a generalization of the criterion for detecting active Stokes curves of
Laplace type equations, we naturally obtain the following conjecture:

ESDP Ansatz (Exact Steepest Descent Path Ansatz).
A Stokes phenomenon for a Borel resummed WKB solution of (A.2.1) occurs at x
(that is, x belongs to an active Stokes curve of (A.2.1)) if and only if an exact steepest
descent path connects two saddle points ζ j (x) and ζ j ′(x).

This is an outline of the exact steepest descent method, which is a natural general-
ization of the steepest descentmethod for Laplace type equations. Formore detailswe
refer the reader to [AKT3], where several concrete examples are discussed through
the exact steepest descent method.
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Transition probability, 83
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