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Preface 

There is a vast difference between a structural engineer and a 
geotechnical engineer in terms of the material being used. A structural 
engineer defines the properties of the concerned material, such as concrete or 
steel, and carries out only a limited number of control tests according to the 
required standards. In contrast, the material used by a geotechnical engineer 
is natural and thus, by definition, it can be spatially heterogeneous and, in 
composition, it can be multiphasic, discontinuous or even anisotropic. This 
leaves the geotechnical engineer with no choice but to accept it as it is and to 
accommodate themselves to it. Moreover, while developments in numerical 
modeling depend increasingly on specific advanced test parameters, soil 
testing programs remain limited because of the competition between 
contractors to reduce costs and time. 

Consequently, geotechnical survey programs are mainly based on 
commonly used tests that give basic parameters but not necessarily the 
required ones. To bridge this gap, designers ought to use correlations. The 
aim of this book is to help these designers in this critical operation; 
therefore, because the reader is considered a skilled geotechnician, no 
theoretical aspects are considered here. It must also be emphasized  
that correlations can never be a substitute for an adequate investigation or a 
field- or laboratory-testing program. This is particularly important for rocks 
whose characteristics depend significantly on their discontinuities. As a 
result, correlations between properties are few and not obvious and must be 
interpreted with caution. For rocks, the emphasis will be placed on 
“geological” aspects in order to be taken into account in the establishment of 
correlations. For both soils and rocks, correlations result from test programs 
on defined areas, either local or large, so they must be considered as site 
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specific. It must also be emphasized that the tests on which they are based 
have been performed by skilled practitioners and in full compliance with the 
standards and the state of the art. 

Given the above fact, it is well known that parameter measurements in 
the laboratory will differ from those obtained from field observations or 
in situ tests. Some of the common reasons for this are listed as follows: 

– sampling technique; 

– difference in sample orientation and anisotropy; 

– effect of sample size due to some discontinuities; 

– rate of testing; 

– softening or decompression by the removal of load due to excavation; 

– degree of saturation. 

Measured or interpreted parameter value Symbol Coefficient of variation (V) 
Unit weight γ 3–7% 

Buoyant unit weight γ' 0–10% 

Effective friction angle ϕ' 2–13% 
Undrained shear strength su 13–40% 

Undrained strength ratio  su/σ'v 5–15% 
Compression index  Cc 10–37% 

Preconsolidation stress σ'p 10–35% 
Hydraulic conductivity of saturated clay k 68–90% 
Hydraulic conductivity of partly saturated clay k 130–240% 
Coefficient of consolidation  cv 33–68% 
Standard penetration blow count N 15–45% 
Electric cone penetration test  qc 5–15% 
Mechanical cone penetration test  qc 15–37% 
Vane shear undrained strength suVST 10–20% 
Dilatometer tip resistance  q0 5–15% 

Table 1. Coefficients of variation for geotechnical parameters according to [DUN 00] 

Correlations amplify some scatter that is largely inherent in experimental 
test results. Duncan [DUN 00] compiled a wide range of coefficients of 
variation (V) for geotechnical parameters proposed by different authors, 
which are presented in Table 1. The coefficients of variation for which 
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sampling and testing conditions have not been specified must be considered 
as a rough estimation. 

The reader also has to keep in mind the words of Rankine [RAN 62] in 
his Manual of Civil Engineering: “The properties of earth with respect to 
adhesion and friction are so variable, that the engineer should never trust to 
tables or to information obtained from books to guide him in designing 
earthworks, when he has it in his power to obtain the necessary data either 
by observation of existing earthworks in the same stratum or by 
experiment”. 

It should be noted that when several correlations link the same 
parameters, we have to be careful of their respective domains of validity. 
Moreover, if these are entirely the same, it means that none of them is 
perfect. If so, there would be only one correlation. Therefore, the best thing 
is to use all of them and compare their results with a critical perspective 
based on the engineer’s experience. 

This clearly shows that a combination of experience and judgment is 
absolutely necessary to select the appropriate design parameters deduced 
from the correlation out of this book. 

It would be presumptuous of the authors to hope that almost all of the 
published correlations are presented in this book even though it took a large 
amount of time to complete it. However, it must be emphasized that it is 
only a very little part of the total time devoted to the research conducted by 
all those who published the correlations which are presented in this book. 
This book would not have been possible without all their works. Therefore, 
the work of the authors can be compared to gold washers who look for 
nuggets that are disseminated in geotechnical publications. 

Jean-Claude VERBRUGGE 
Christian SCHROEDER 

March 2018 

 



1 

Physical Parameters 

1.1. Unit weights and volumes 

While performing CPTs, the unit weights of soils are generally not 
measured, leading to imprecision in derived parameters. Mayne [MAY 07] 
proposed a formula that relates the saturated unit weight to the CPT sleeve 
friction and specific gravity of grains (units: kN/m³ and kPa): ߛ௦௔௧ = 2,6 log ௦݂ 	+ 15൫ߛ௦ ௪ൗߛ ൯ − 26.5 [1.1] 

He also suggested two simple alternative expressions: ߛ௦௔௧ = 26	 − ଵସଵାሾ଴.ହ௟௢௚(௙ೞାଵ)ሿమ [1.2] 

and ߛ௦௔௧ = 12 + 1.5݈݊( ௦݂ + 1) [1.3] 

Robertson et al. [ROB 15] proposed the following formula to estimate the 
total unit weight using CPT results: ߛ ⁄௪ߛ 	= ݃݋0.27ൣ݈ ௙ܴ൧ + 0.36ሾ݈ݍ)݃݋௧ ⁄௔݌ )ሿ + 1.236 [1.4] 

with Rf expressed in %. 
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For NC to low overconsolidated clays, Mayne and Peuchen [MAY 12] 
proposed the following method for a quick estimate of the total unit weight 
from the cone resistance–depth ratio: ݉௤ = ௧ݍ∆ ൗݖ∆ ≈ ௧ݍ ൗݖ  [1.5] 

As a rule-of-thumb estimate: ߛ = ௪ߛ +݉௤ 8⁄  [1.6] 

or with a little more refinement: ߛ = ൫10	௧଴.଴଻ଶݍ0.636 + ݉௤ 8⁄ ൯ [1.7] 

In addition, for 30 < mq < 70: ߛ = ௪ߛ + 0.056൫݉௤൯ଵ.ଶଵ	ݎଶ = 0.623 [1.8] 

If a seismic piezocone is used,	ߛ௦௔௧ can be estimated from the correlation 
between shear wave and depth, as given by Mayne [MAY 07]: ߛ௦௔௧ = 8,32 log ௦ܸ 	− ݖ	݃݋1,61݈ ଶݎ	 = 	0,808 [1.9] 

or the mass density [MAY 99]: ߩ௧ = 1 + ଵ଴.଺ଵସାହ଼.଻(୪୭୥ ௭	ାଵ.଴ଽହ) ௏ೞ⁄  [1.10] 

The total unit weight can be estimated from the DMT as follows  
[MAY 02]: ߛ = ௪ߛ1.12 ቀ ாವఙೌ೟೘ቁ଴.ଵ .  ஽ି଴.଴ହ [1.11]ܫ

From Vidalie’s [VID 77] research on French muds, peats and soft clays 
with 30 < wL < 180, 12 < γ < 20 (kN/m³), and all the soils being close to the 
A-line on the Casagrande chart, it is possible to derive a closed-form 
relationship between the total unit weight (kN/m³) and moisture content (%): ߛ = 	ܴଶ	଴.ଶଷଽିݓ42.42 = 0.9987 [1.12] 
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1.2. Soil behavior type index and soil classification index 

The soil behavior type index Ic is related to the boundaries of each SBTn 
zone, which is defined from CPT results as follows: ܫ஼ = ሾ(3.47 − ௧)ଶܳ݃݋݈ + ௥ܨ݃݋݈) + 1.22)ଶሿ଴.ହ [1.13] 

where ܳ௧ = ௧ݍ) − (௩଴ߪ ⁄௩଴ᇱߪ  [1.14] 

and ܨ௥(%) = ( ௦݂ ௧ݍ) − ⁄(௩଴ߪ ). 100 [1.15] 

This index is widely used for correlations. 

Based on CPTu results, Jefferies and Davies [JEF 93] introduced a cone 
soil classification index ∗ ௖ܫ , which can be used for soil classification if ܤ௤ < 1: 

∗ ஼ܫ = ቂ൛3 − ௧൫1ܳൣ݃݋݈ − ௤൯൧ൟଶܤ + ሼ1.5 +  ௥ሽଶቃ଴.ହ [1.16]ܨ݃݋1.3݈

1.3. Consistency or Atterberg limits 

Skempton [SKE 53] developed the Casagrande plasticity chart, including 
the influence of soil activity (A), which provides some information on the 
minerals constituting the clay (Figure 1.1). In this chart, the equations for the 
A- and U-lines are, respectively: 

A-line: ܫ௣ = ௅ݓ)0.73 − 20) [1.17] 

U-line: ܫ௣ = ௅ݓ)0.9 − 8) [1.18] 

Later, Biarez and Favre [BIA 76] proposed an alternative to the A- and 
U-lines: ܫ௣ = ௅ݓ)0.73 − 13) [1.19] 
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Based on oedometric test results, it is possible to deduce the consistency 
index (CI) for remolded sands or clays from the consolidation stress σc 
[FAV 02]: ܫܥ = ௖ߪ݃݋݈)0.46 − 0.54) [1.20] 

 

Figure 1.1. Casagrande’s plasticity chart (adapted from [SKE 53]). For a  
color version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 

1.4. Consistency and liquidity indices 

For normally consolidated clays with 20 < wL < 200, consistency and 
liquidity indices can be deduced from the total overburden pressure, as 
described by Biarez and Favre [BIA 76]: ܫ௅ = 0.46(1 −  ௩଴) [1.21]ߪ݃݋݈
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ܫܥ = ௩଴ߪ݃݋݈)0.46 + 1.2) [1.22] 

where ߪ௩଴ is expressed in bars (1 bar ~ 100 kPa). 

1.5. Rigidity index 

This index is defined by the ratio of the shear modulus to the shear stress. 
For undrained and drained conditions, it is, respectively, given by: ܫ௥ = ௦ீೠ ௥ܫ	ݎ݋	 = ீఙᇲ௧௔௡ఝᇲ [1.23] 

Keaveny and Mitchell [KEA 86] derived the rigidity index from the 
plasticity index and the OCR of the form: 

௥ܫ ≈ ௘௫௣ቀభయళష಺೛మయ ቁଵା௟௡൤ଵା(ೀ಴ೃశభ)య.మమల ൨బ.ఴ [1.24] 

From CPTu results, Mayne [MAY 01] proposed that: ܫ௥ = ݌ݔ݁ ቂቀଵ.ହெ + 2.925ቁ ቀ௤೟ିఙೡబ௤೟ି௨మ ቁ − 2.925ቃ [1.25] 

where ܯ = ଺	௦௜௡ఝᇲଷି௦௜௡ఝᇲ [1.26] 

Strictly speaking, the calculation of M thus needs CIU triaxial tests but 
can be approximated with the ϕ’ values presented in Chapter 4. 

1.6. Relative density of sands 

For clean sands with less than 15% fines and at medium compressibility, 
Jamiolkowski et al. [JAM 01] related the relative density to cone tip stress in 
the following way: 

(%)ோܦ = 100 ቎0.268 lnቌ ௤೟ ఙೌ೟೘⁄ටఙೡబᇲ ఙೌ೟೘⁄ ቍ − 0.675቏ [1.27] 
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For high or low compressibility of the sand, we have to add or subtract up 
to 15% of the value resulting from this formula. 

For preconsolidated sands, Mayne [MAY 09a] suggested multiplying the 
value 0.675 by OCR0.2 in the above formula. An alternative expression for 
quartz-silica sands [MAY 14] is: 

(%)	ோܦ = 100ඩ ଵଷ଴ହ.ை஼ோబ.మ ቌ ௤೟ ఙೌ೟೘⁄ටఙೡబᇲ ఙೌ೟೘⁄ ቍ [1.28] 

In addition, for carbonate sands, the author suggested that: 

(%)ோܦ = 0.87ቌ ௤೟ ఙೌ೟೘⁄ටఙೡబᇲ ఙೌ೟೘⁄ ቍ [1.29] 

Some refinements regarding the influence of compressibility and the 
OCR were derived by Kulhawy and Mayne [KUL 90] from tests performed 
in a calibration chamber: 

ோଶܦ = ቀ௤೎ ఙೌ೟೘ൗ ቁ௄൬ఙೡబᇲ ఙೌ೟೘ൗ ൰బ.ఱ [1.30] 

where DR in decimal form and K is given in Table 1.1. 

Soil K 
NC high compressibility 280 

NC medium compressibility 292 

NC low compressibility 332 

Average 350 

Low OCR (<3) 390 

Med. OCR (3–8) 403 

High OCR (>8) 443 

Table 1.1. K values after [KUL 90] 
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From DMT results of alluvial soils (clays, silts and sands), [TOG 15] 
proposed that: ܦோ = ஽ܫ	݂݅	(஽ܭ)43݈݊ ≥ 1. ! ܽ݊݀	4 ≤ ஽ܭ ≤ ோܦ [1.31] 7 = (஽ܭ)48݈݊ + ஽ܫ	݂݅	9 ≥ 1. ! ஽ܭ	݀݊ܽ ≤ 4 [1.32] 

An expression for the relative density of sandy soils was derived from 
SPT results by Natarajan and Tolia [NAT 72]: ܦோ = ቀ ଶ.଼଴.଴ଵఙೡబᇲ ା଴.଻ቁܰ + 30 [1.33] 

with DR expressed in % and ߪ௩଴ᇱ  in kPa. 

A simpler form was given by [KUL 90]: ܦோଶ = ேలబ଺଴ାଶହ	௟௢௚஽ఱబ [1.34] 

with Dr in decimal form and D50 in mm. 

Another expression was given by the same authors: ܦோ(%) =12.2	 + 0.75ሾ222ܰ + 2311 − ܴܥ711ܱ − ௩଴ᇱߪ)779 ⁄௔௧௠ߪ )  ௨ଶሿ଴.ହ [1.35]ܥ50−

with 1 < OCR < 3. 

Although more parameters are required, the precision is not significant as 
r2 = 0.77. 

1.7. Wave velocity 

Currently, the SCPT is uncommon. To estimate the shear wave velocity 
or to check the measured value, the correlations given below can be useful. 

According to Baldi et al. [BAL 89], for uncemented sands (units:  
m/s and MPa): 
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௦ܸ = .௧଴.ଵଷݍ277 ௩଴ᇱߪ) )଴.ଶ଻ [1.36] 

Moreover, for clays [MAY 95] (units: m/s and kPa): 

௦ܸ = ଶݎ	௧଴,଺ଶ଻ݍ1.75 = 0.736 [1.37] 

More generally, for all types of soils [HEG 95] (units: m/s and kPa): 

௦ܸ = ሾ10.1݈ݍ݃݋௧ − 11.4ሿଵ.଺଻. ቎ ௦݂ ௧ൗݍ . 100቏଴.ଷ [1.38] 

For clays, silts and sands, Mayne [MAY 06] directly relates Vs to the 
sleeve friction which is expressed in kPa: 

௦ܸ = ݃݋݈	118.8 ௦݂ + 18,5 [1.39] 

For uncemented Holocene- and Pleistocene-age soils, Robertson and 
Cabal [ROB 15] suggested that (units: m/s and kPa): 

௦ܸ = ሾߙ௩௦ ௧ݍ) − (௩ߪ ⁄௔݌ ሿ଴.ହ [1.40] 

where ߙ௩௦ = 10(଴.ହହூ೎ାଵ.଺଼) [1.41] 

For an alluvial site characterized by clay layers, which are sometimes 
weakly organic alternating with silt and sand [TOG 15], it is given by: 

௦ܸ =  ௔ [1.42](௩ᇱߪ)௖଴.ଵଷݍ277

where a= 0.22 if ߪ௩ᇱ ≤ 100 kPa, otherwise a=0.17. 

1.8. Cation exchange capacity 

Although widely used in soil chemistry and soil science, the cation 
exchange capacity (CEC) is quite unknown in soil mechanics. The cation 
exchange capacity of a soil is the number of moles of adsorbed cation charge 
that can be desorbed from the unit mass of soil under given conditions. This 
depends on the kind and amount of clay minerals present in the soil.  
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CEC is related to the swelling potential and the aptitude for lime 
stabilization of clayey soils. Table 1.2 gives the CEC values for most usual 
clay minerals [GRI 68]. 

Yilmaz [YIL 04] proposed the following relationship to yield the CEC  
from wL: ܥܧܥ	ݍ݁݉) 100݃⁄ ) = ݁(ଶ.଺ଷ	ା଴.଴ଶ௪ಽ)	ݎ = 0.97 [1.43] 

In addition, Vidalie [VID 77] proposed that: ܥܧܥ	ݍ݁݉) 100݃⁄ ) = .ߙ	  ௉ [1.44]ܫ

with 0.25 < ߙ	1 > and the accepted mean value being ߙ	0.5 =. 

Clay mineral CEC (meq/100 gr) 
Kaolinite 3–15 

Smectite 80–150 

Illite 10–40 

Chlorite 10–40 

Vermiculite 100–150 

Table 1.2. Clay minerals versus CEC values 



 

2 

Identification of Soil Types 

Soils are usually identified and classified using sieving tests and 
consistency limits. With the help of these tests, each country and relevant 
administrations have developed their own standards and regulations.  
As it would not be possible to present all of these details here, readers will 
have to refer to the one applicable to the country they are working in. 
Therefore, we consider only identifications and classifications made using  
in situ tests. 

2.1. From identification tests 

The Casagrande chart not only allows soil identification from consistency 
tests but also gives some idea about the associated clay minerals (Figures 1.1 
and 2.1). This could be interesting when swelling phenomena is likely to 
occur. It is possible to associate some refinement with activity Ac: 

– close under the U-line and 4 < A < 7: sodic montmorillonite; 

– close under the U-line and A ~ 1.5: calcic montmorillonite; 

– close above the A-line and 0.5 < A < 1.3: illite; 

– close under the A-line and 0.3 < A < 0.5: kaolinite; 

– close under the A-line and wL > 150: fibrous clays, attapulgites and 
halloysites. 

Geotechnical Correlations for Soils and Rocks, First Edition.
Jean-Claude Verbrugge and Christian Schroeder.
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Figure 2.1. Clay minerals related to the Casagrande chart. For a color  
version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 

2.2. From cone soil index *Ic 

Soil type *Ic 

Organic clays > 3.22 

Clays 2.82–3.22 

Silt mixtures 2.54–2.82 

Sand mixtures 1.90–2.54 

Sands 1.25–1.90 

Gravelly sands < 1.90 

Table 2.1. Cone soil classification index according to [JEF 93] 

2.3. From CPT 

Since the first publication of Begemann in 1953, many refinements have 
been made in the graphs by linking soil type and CPT results. Searle  
[SEA 79] published a rather complete graph, allowing the estimation of soil 
type, relative density or consistency, undrained shear stress or internal 
friction angle from the cone tip resistance and the local friction. 
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Figure 2.2. Soil identification from CPT results (adapted from [SEA 79]). For a  
color version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 

Based on the normalized cone resistance friction ratio associated with the 
SBT Index Ic, Robertson published and updated a chart [ROB 90, ROB 15] 
in accordance with the classification of Table 2.2, as shown in Figures 2.3 
and 2.4. 

 

Figure 2.3. Soil classification from CPT results (adapted from [ROB 15]). For  
a color version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 
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Figure 2.4. Soil identification from CPTu results (adapted from [ROB 15]). For a  
color version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 

Zone Soil behavior type (SBT) Ic 

1 Sensitive fine-grained NA 

2 Organic soil – clay > 3.6 

3 Clays – silty clay to clay 2.85–3.6 

4 Silt mixtures – silty sand to silty clay 2.60–2.85 

5 Sand mixtures – silty sand to sandy silt 2.05–2.60 

6 Sands – clean sand to silty sand 1.31–2.05 

7 Gravelly sand to dense sand < 1.31 

8 Very stiff sand to clayey sand, heavily OC or 
cemented 

NA 

9 Very stiff sand to clayey sand OC, heavily OC or 
cemented 

NA 

Table 2.2. Robertson chart describing the SBT  
classification of zones [ROB 90, ROB 15] 
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Based on the CPTu results, pore water pressure measurements give 
further information about the soil type (Figure 2.4). It should be noted that 
the use of these pore water values is only valid if the tests are conducted in a 
way that ensures perfect saturation and prevents the loss of saturation of 
filter elements. 

An alternative chart to Figure 2.4 for classification of soils using 
normalized values of cone resistance and pore water pressure was published 
by Schneider et al. [SCH 08]. 

 

Figure 2.5. Soil classification chart using CPTu results (adapted from [SCH 08]).  
For a color version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 

2.4. From PMT 

The limit pressure ݌	௟௠ and the ratio ܧெ ⁄௟௠݌  are required to classify the 
soils using PMT measurements. As shown in Table 2.3, the same value of 
the pressure limit can correspond to different soils. Therefore, a second 
criterion is required, which is given in Table 2.4. 



16     Geotechnical Correlations for Soils and Rocks 

Soil type Consistency ࢖  (MPa) ࢓࢒

Clay and silt Very soft – soft < 0.4 

 Firm 0.4–1.2 

 Stiff 1.2–2 

 Very stiff > 2 

Sand and gravel Very loose < 0.2 

 Mid loose 0.2–0.5 

 Loose 0.5–1 

 Dense 1–2 

 Very dense > 2 

Chalk Soft < 0.7 

 Weathered 0.7–3 

 Sound > 3 

Marl and marly clay Soft < 1 

 Stiff 1–4 

 Very stiff > 4 

Rock Weathered 2.5–4 

 Fractured > 4 

Table 2.3. Soil classification using ݌	௟௠ according to [AFN 13] 

࢓ࡱ ⁄ࡹࡸ࢖  Soil type 

< 5 Remolded soil 

5–8 Underconsolidated or slightly remolded clays 

8–12 Normally consolidated clays 

12–15 Slightly overconsolidated clays 

> 15 Overconsolidated clays 

6–8 Immerged sands and gravels 

> 10 Sands, dry and compact sands, and gravels 

Table 2.4. Soil classification using ܧெ ⁄௟௠݌  
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This table may be summarized by the following rule of thumb: 

– clays: ܧெ ௟௠ൗ݌ > 12; 

– sands: 7 < ெܧ ௟௠ൗ݌ < 12. 

Baud and Gambin [BAU 13] replaced these two tables with the graph of 
Figure 2.6. 

 

Figure 2.6. Soil identification chart using MPT (adapted from [BAU 13]). For a  
color version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 

2.5. From SPT 

The N values resulting from SPT test measurements are dependent on 
energy efficiency whose variation on a site is the main cause of scatter or 
even inconsistency and therefore corrected values are usually preferred. 

The sole N informs about density or consistency but is not sufficient for a 
full identification. Fortunately, it may be coupled to the sample visual 
identification or to laboratory tests. 
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According to AASHTO 1988 [AAS 88], the following correlations may 
be used for soil characterization from SPT N values, respectively, for 
granular (Table 2.5) and cohesive soils (Table 2.6): 

N Relative density 
0–4 Very loose 

5–10 Loose 

11–24 Medium dense 

25–50  Dense 

> 50 Very dense 

Table 2.5. Correlation between the N value and the  
relative density of sands [AAS 88] 

N Consistency 
0–1 Very soft 

2–4 Soft 

5–8 Medium stiff 

9–15 Stiff 

16–30 Very stiff 

31–60 Hard 

> 60 Very hard 

Table 2.6. Correlation between the N value and  
the consistency of clays [AAS 88] 

2.6. From DMT 

A first general classification of soils using the ID values was published by 
Marchetti [MAR 80]: 

– clays: ID < 0.6; 

– silts: 0.6 < ID < 1.8; 

– sands: ID > 1.8. 

This was extended by Guskov and Gayduck [GUS 15], as shown in  
Table 2.7. 
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[GUS 15] 
Soil type 

Plasticity 
index 

[GUS 15] 
ID 

Marchetti 
ID 

Marchetti 
Soil type 

Fat clay – heavy > 27 < 0.09 0.1–0.6 Clay 

Fat clay – silty 17–27 0.09–0.37 0.1–0.6 Clay 

Fat clay – sandy 17–27 0.37–0.43 0.1–0.6 Clay 

Lean clay – heavy silty 12–17 0.43–0.74 0.1–1.8 Clay/silt 

Lean clay – heavy 
sandy 12–17 0.74–0.84 0.6–1.8 Silt 

Lean clay – light silty 7–12 0.84–1.46 0.6–1.8 Silt 

Lean clay – light sandy 7–12 1.46–1.64 0.6–1.8 Silt 

Silty clay 1–17 1.64–1.88 0.6–(10) Silt/sand 

Silty clay – sandy 1–17 1.88–2.00 1.8–(10) Sand 

Fine sand – silty x 2.00–2.20 1.8–(10) Sand 

Fine sand x 2.20–2.50 1.8–(10) Sand 

Medium sand x 2.50 < 1.8–(10) Sand 

Table 2.7. DMT soil classification according to Guskov and Gayduk [GUS 15] 

For the PMT, some refinements are possible when ID and ED are 
combined, as shown in Figure 2.7 [MAR 01]. 

 

Figure 2.7. Soil classification using DMT according to [MAR 01]. For a  
color version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 
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The equation of the oblique lines shown in Figure 2.7 has the following 
general form: ܧ஽ = 10ሺ௡ା௠௟௢௚ூವሻ [2.1] 

The values of n and m are given in Table 2.8. 

Line n M 

A 1.737 0.585 

B 2.013 0.621 

C 2.289 0.657 

D 2.564 0.694 

Table 2.8. n and m coefficients 
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Hydraulic Parameters 

3.1. Hydraulic conductivity 

Hydraulic conductivity can be measured in two ways: either in the 
laboratory or in the field. Measurements conducted in the laboratory are 
accurate and refined but have limited applications compared to the field 
because they do not represent large discontinuities such as fractures, 
anisotropy and alteration. Therefore, correlations specified herein will be 
based only on the laboratory values of k. 

The well-known Kozeny formula [KOZ 27] will not be considered here 
because it requires the specific surface of soil to be measured, which is never 
done in standard geotechnical tests. 

For saturated clean sands with 0.1 < D10 < 3 mm and the percentage 
passing a No. 200 sieve being less than 5%, the Hazen formula [HAZ 11] 
relating hydraulic conductivity to a specific grain size can be used: ݇ = .ܥ  ଵ଴ଶ [3.1]ܦ

with k expressed in m/s and D10 in mm. The value of C ranges between  
0.4 and 1.5 depending on sand size and sorting, with a mean value of 1 being 
primarily used. 

For saturated sands with less than 3% particles finer than 20 µm at 40% 
porosity, Van Ganse [VAN 65] proposed that ݇ = 0.25.  ହ଴ଶ [3.2]ܦ

Geotechnical Correlations for Soils and Rocks, First Edition.
Jean-Claude Verbrugge and Christian Schroeder.
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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The influence of porosity on k at a void index e can be estimated using 
the Casagrande formula [TER 62]: ݇ = 1.4	݇଴.଼ହ. ݁ଶ [3.3] 

or more completely from Van Ganse [VAN 65]: ௞೙,ೄ௞బ.ర;భ = ସହ଼ −	 ௡³.ௌ³(ଵି௡ௌ)మ [3.4] 

where: 

k0.85 is the conductivity corresponding to a void ratio of 0.85; 

knS is the conductivity at porosity n and saturation ratio S (0 < S < 1); 

k0.4;1 is the conductivity at n = 0.4 and S = 1. 

For only the saturation ratio, we can use ݇ௌ = ݇ଵ(ೄషబ.మబ,ఴ )ଶ [3.5] 

where: 

kS is the conductivity at the saturation ratio S (0 < S < 1); 

k1 is the conductivity at saturation (S = 1). 

Carrier and Beckman [CAR 84] presented a more general formula,  
which is also valid for cohesive soils and not limited to sands unlike the 
above cases: 

݇ = 0.0174. ൜௘ି଴.଴ଶ଻൫௪ಽି଴.ଶସଶூ೛൯ூ೛ ൠସ.ଶଽ 1 + ݁ൗ  [3.6] 

For soils with 10−10 < k < 10−3 (m/s), ranging from gravelly sands to 
organic clays, Robertson and Cabal [ROB 15] approximated the 
permeability from CPT results using the SBTn index IC: ݇ = 10(଴.ଽହଶିଷ.଴ସூ೎)	݂ݎ݋	1.0 < ஼ܫ < 3.27 [3.7] 

and ݇ = 10(ିସ.ହଶିଵ.ଷ଻ூ೎)	݂ݎ݋	3.27 < ஼ܫ < 4.0 [3.8] 
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Clay soils are often anisotropic, different hydraulic conductivity with in 
the horizontal (kh) and vertical (kv) directions. The ratio of the former to the 
latter is called the ratio of anisotropy. Baligh and Levadoux [BAL 80] 
suggested the following values that relate to the nature of clay: 

– no evidence of layering:  ݇௛ ݇௩⁄ = 1,2	 ± 0,2; 

– slight layering: ݇௛ ݇௩⁄ =  ;5	݋ݐ	2

– varved clays: ݇௛ ݇௩⁄ = 10	 ± 5. 

Mayne [MAY 07] proposed slightly different limits: 

– Homogeneous clay: ݇௛ ݇௩⁄ =  ;1.5	݋ݐ	1.0

– Clay with discontinuous lenses and layers: ݇௛ ݇௩⁄ =  ;4	݋ݐ	2

– Varved clays and silts, continuous permeable layers:  ݇௛ ݇௩⁄ =  .15	݋ݐ	1.5

In practice, a value of 3 is commonly used for the ratio of anisotropy. 

Water pressure dissipation during a CPTu can be recorded using a u2 
piezocone. When t50 corresponding to U = 50% is calculated, horizontal 
conductivity can be estimated as [MAY 01]: ݇௛ =  ଵ.ଶହ [3.9]ି(ହ଴ݐ251)

where kh is expressed in cm/s and t50 in seconds. 

3.2. Water storage capacity 

The water has a restricted movement when saturating the soil, and a part 
of it is retained by suction or water-holding capacity. Thus, the water that is 
free to move is not equal to the porosity except for very coarse materials. 
This is called the effective porosity ݊ᇱ , which decreases with grain size. 
Some orders of magnitude of ݊ᇱ are given below. 

3.2.1. For a free water table 
– coarse alluvial deposits without clay: 30–40%; 

– gravel: 20–25%; 
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– sand, sandy gravel: 15–20%; 

– fine sand: 5–10%; 

– clayey or cemented gravel: +/−5%; 

– silt, loam: 2–5%; 

– clay, sandy clay: 3%. 

3.2.2. For a confined aquifer ݊ᇱ = ுఊೢா  [3.10] 

where H is the thickness of the aquifer. 



4 

Strength Parameters of  
Saturated and Dry Soils 

4.1. Undrained shear strength and cohesion 

For short-term loadings on saturated cohesive soils, the undrained shear 
strength ݏ௨  and the undrained cohesion 	ܿ௨  are equal and equivalent. 
Therefore, the two symbols will be used here. The unsaturated case is 
examined in Chapter 10. It should also be kept in mind that the values of 
these parameters depend on some important factors such the testing 
procedures and devices used, the strain level, boundary conditions, the 
disturbance factor and the theoretical model used for interpreting 
measurements. Hence, the undrained shear strength obtained for the same 
site may be significantly different, depending on the in situ or laboratory 
tests used. 

Many relationships have been proposed to derive the undrained shear 
strength of clays using physical or mechanical parameters. 

4.1.1. From identification tests 

The most common relationship is the one proposed by Skempton  
[SKE 57]: 
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This is similar to that of Wroth [WRO 85], which is valid for isotropic 
compression: ܿ௨ ௩଴ᇱൗߪ = 0.129 +  (±20%) [4.2]	௣ܫ	0.00435

Bjerrum and Simons [BJE 60] formulated ܿ௨ ௩଴ᇱൗߪ = 0.045	ඥܫ௣	(±25%) [4.3] 

and ܿ௨ ௩଴ᇱൗߪ = 0.18/	ඥܫ௅ [4.4] 

which is valid for IL > 0.5, where IL is the liquidity index deduced from  
CI = 1 − IL. 

As the liquid limit can be determined more accurately, Karlsson and 
Viberg [KAR 67] used this parameter: ܿ௨ ௩଴ᇱൗߪ =  (±30%) [4.5]	௅ݓ	0.005

4.1.2. From laboratory tests 

This primarily involves the case of triaxial tests, where the correlations 
are made with the effective friction angle in the following general form 
[KUL 90]: ܿ௨ ௩଴ᇱൗߪ =  ᇱ [4.6]߮ߚ

where β = 0.0100 for the common case, and β = 0.0120 and β = 0.0117 for 
isotropic and anisotropic consolidations, respectively. 
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4.1.3. From CPT 

The correlations between the undrained cohesion or shear stress and the 
CPT tip resistance are usually represented in the following general form: ܿ௨ = ௤೎஺ 	ݎ݋	 = ௤೙஻ ݎ݋	 = 	 ௤೟஼  [4.7] 

From a practical point of view, the undrained shear cohesion is calculated 
by making the CPT tip resistance equal to the ultimate point resistance of a 
pile deduced from a formula for deep foundations ultimate stress calculation, 
and assuming that the friction angle is zero. Therefore, for the above A, B 
and C coefficients, we have: ܣ, ܥ	ݎ݋	ܤ = ௖ܰ [4.8] 

where ௖ܰ 	is the bearing capacity factor related to cohesion, which depends 
on the theoretical formula used as well as on the soil type (clay or silt), OCR, 
cone type used, the mode of laboratory testing, etc. 

As a rule of thumb, for a mechanical M1 cone, the values of these 
parameters are approximately 12–16 for sensitive clays, 15–20 for NC clays 
and up to 20–30 for hard overconsolidated clays, respectively. These values 
tend to increase with plasticity and decrease with sensitivity and increasing ܤ௤. About half of these values must be taken for an M4 cone. 

For an electrical cone, the values of the parameters are lower: 10–13 for 
sensitive clays and 12–15 for NC clays, silts, loams and peats. 

For stiff overconsolidated clays, sensitivity must be taken into account, 
according to Nuyens et al. [NUY 95a, NUY 95b]: ܿ௨ = 	 ௤೎ଵ଴	ௌ೟ [4.9] 

For the different tests used, more refined correlations are given below. 

According to Amar and Jezequel [AMA 72]: ܿ௨ = ௡ݍ 12ൗ ௡ݍ	ݎ݋ܨ	 < 	0.6	MPa [4.10] ܿ௨ = ൫ݍ௡ 30ൗ ൯ + ௡ݍ	ݎ݋ܨ	0,03 > 	0.6	MPa [4.11] 
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For Boom clay, De Beer [DEB 67] measured (ܿ௨)௏ௌ்	 by the vane shear 
test: (ܿ௨)௏ௌ்	 = ௖ݍ 11	ൗ ௖ݍ	ݎ݋ܨ	 	<  [4.12] ܽܲܯ	3	

According to Carpentier [CAR 70]: (ܿ௨)௏ௌ்	 = ௖ݍ 15	ൗ .0	ݎ݋ܨ	 8 < ௖ݍ <  [4.13] ܽܲܯ	1.6	

For soft clays, Low et al. [LOW 10] recommended the following 
approximation: 

௖ܰ = 13.6	 ± 1.9 [4.14] 

For cohesive soils, Robertson [ROB 12] suggested that: 

௖ܰ = 10.5 + 7. log  ோ [4.15]ܨ

In addition, for excess pore water pressure measured during the CPTu, 
the following correlation is proposed: ܿ௨ = ଶݑ) − (଴ݑ (6.8 ± 2.2)⁄  [4.16] 

Another correlation for the excess pressure is given by: ܿ௨ = ଶݑ) − (଴ݑ .௤ܤ ௖ܰ⁄  [4.17] 

By comparing the studies of other authors, Kulhawy and Mayne  
[KUL 90] evaluated ௖ܰ 	from the rigidity index: 

௖ܰ = 2.57 + ௥ܫ݈݊)1.33 + 1) [4.18] 

4.1.4. From PMT 

Cassan [CAS 05] proposed relationships from the PMT using the limit 
pressure ݌௅ெ  

For ݌௅ெ − < 0.3 MPa: ܿ௨	଴݌ = ௣ಽಾି௣బହ.ହ  [4.19] 
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For 0.3 < ݌௅ெ − < 1 MPa: ܿ௨	଴݌ = బଵଶ࢖ିࡹࡸ࢖ + 0.03 [4.20] 

Or also: ܿ௨ = ௣ಽಾି௣బଵ଴ + 0.025 [4.21] 

For 1 <݌௅ெ −  < 2.5 MPa: ܿ௨	଴݌ = ௣ಽಾି௣బଷହ + 0.085 [4.22] 

Or, using the creep pressure ݌௙, it is given by ܿ௨ = (0.30 ± ௩଴ᇱߪ)(0.05 )଴.ଶ൫݌௙ −  ଴൯଴.଼ [4.23]ݑ

4.1.5. From SPT 

From SPT results on clays, Hara et al. [HAR 74] suggested that: ܿ௨ = 0.29ܰ଴.଻ଶ. ଶݎ	௔௧௠ߪ = 0.865 [4.24] 

This was modified by Kulhawy and Mayne [KUL 90] as: ܿ௨ = 0.29 ଺ܰ଴଴.଻ଶ. ௔௧௠ [4.25] ܿ௨ߪ = 0.06 ଺ܰ଴ [4.26] 

4.1.6. From SCPT 

If ௦ܸ  is measured in m/s, Levesque et al. [LEV 07] proposed the 
correlation for intact clays: ݏ௨(݇ܲܽ) = ( ௦ܸ 7.93⁄ )ଵ.ହଽ	 [4.27] 
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4.1.7. From DMT 

The original correlation was proposed by Marchetti [MAR 80] from tests 
performed on Italian clays using a dilatometer, which is valid for ܫ஽ < 1.2: ܿ௨ ௩଴ᇱൗߪ =  ଵ.ଶହ [4.28](஽ܭ0.5)0.22

However, it seems that the coefficient 0.22 is not a constant value, but 
depends on the reference test type used for measuring shear stress which is 
generally less. Modified values are 0.14 for direct simple shear and 0.20 and 
0.19 for triaxial compression and field vane tests, respectively [LAC 88]. 

Schmertmann [SCH 81] derived the undrained cohesion directly from the 
first corrected pressure reading and hydrostatic pore water pressure as 
follows: ܿ௨ = ଴݌) − (଴ݑ 10⁄  [4.29] 

Slightly different equations were proposed by Cao [CAO 15]: ܿ௨ = ଴݌)0.12 − (௩଴ߪ = ଵ݌)0.09 −  ௩଴) [4.30]ߪ

According to Galas, cited in [MŁY 15], ܿ௨ = ௩଴ᇱߪ0.164 ଵ݌)஽଴.ଷସହሾܭ − (଴ݑ ⁄௩଴ᇱߪ ሿ଴.ହସସ [4.31] 

4.1.8. From VST 

It is commonly reported that the VST measurements of ݏ௨ are affected by 
soil plasticity and thus must be corrected: ݏ௨(݂݈݅݁݀) = .ߤ  ௨(ܸܵܶ) [4.32]ݏ

and with ܫ௣	in %: ߤ = 2.5൫ܫ௣൯ି଴.ଷ	 ≤ 1.1 [4.33] 

Even after this correction, the scatter remains significant. 
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4.1.9. Overconsolidated soils 

For overconsolidated soils, the following equation can be used: ܿ௨ ௩଴ᇱൗߪ =  ஃ [4.34]ܴܥܱ	ߚ

or ܿ௨ ௣ᇱൗߪ =  [4.35] ߚ

where Λ is the plastic volumetric strain potential defined as: ߉ = 1 − ௦ܥ ⁄௖ܥ  [4.36] 

Several authors have shown that both β and Λ vary with the test mode. 

According to Ladd et al. [LAD 77], β = 0.25, and β = 0.22 following 
Mesri [MES 75] and Mayne [MAY 07]. For varved clays, β may decrease as 
low as 0.16 [SAB 02]. Most β values are in the range of 0.15–0.30, including 
the domain ߚ = 0.23	 ± 0.04 suggested by [JAM 85]. For direct shear tests 
on overconsolidated intact clays, the recommended value is 0.23, which 
decreases to 0.21 if OCR < 2. 

For clays with medium to low sensitivity, Λ = 0.7 − 0.8, while for 
sensitive and structured clays, Λ = 0.9 − 1. Α typical value that is commonly 
used is 0.8. 

Skempton’s equation [4.1] is also valid for OC soils if ߪ௩଴	ᇱ is substituted 
by ߪ௣	ᇱ  [CHA 88]. 

Mayne [MAY 09a, MAY 09b] suggested the following relationship 
between the undrained shear resistance for uncemented soils (c′ = 0) 
measured in direct shear tests and the effective friction angle: ܿ௨ ௩଴ᇱൗߪ =  [4.37] ௸ܴܥܱ	(ᇱ߮݊݅ݏ)0.5

with Λ = 0.8. 
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4.1.10. Miscellaneous: peats and remolded soils 

Peats and muds generally contain organic matter which has an influence 
on their mechanical behavior. The amount of organic matter is usually 
measured by the percentage of humus carbon Ch present. According to 
Vidalie [VID 77]: log ܿ௨ = −0.63 log(ܥℎ) + 1.47 [4.38] 

where cu is expressed in kPa and Ch in %. 

According to Carrier [CAR 85], for remolded clays, the undrained shear 
strength cur (kPa) can be estimated from: 

ܿ௨௥ = 166 ௣ܫ ቊ0.163 + ଷ଻.ଵ	௘ା௪೛ସ.ଵସା భಲ೎ ቋൗ  [4.39] 

where e is the void ratio and Ac is the activity. 

For remolded clays, [LUN 97] suggested that: ݏ௨ = ௦݂ [4.40] 

The stress path history also has an influence on the unsaturated shear 
strength. Laboratory tests have related the cases of isotropic consolidation 
(subscript Iso) to K0, and shown that anisotropic consolidation (subscript 

Aniso) for NC clays in the domain ቀ ௖ೠఙೡబᇲ ቁூ௦௢ comprises between 0.25 and 0.7 

[KUL 90]: ቀ ௖ೠఙೡబᇲ ቁ஺௡௜௦௢ = 0.15 + 0.49 ቀ ௖ೠఙೡబᇲ ቁூ௦௢ ଶݎ	 = 0.761 [4.41] 

It is well known from triaxial testing that the strain rate influences the 
measured value of shear strength [LAD 74, GRA 83]. A corrected value can 
be estimated using: ௖ೠ௖ೠభ% = 1.00 +  ሶ [4.42]ߝ݃݋0.10݈

where ߝሶ is the strain rate in % per hour and ܿ௨ଵ%	is the undrained cohesion 
measured at a rate of 1% per hour. 
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4.2. Effective cohesion 

The effective cohesion c′ depends on the stress history and essentially on 
the preconsolidation stress. According to Mesri and Abdel-Ghaffar  
[MES 93], it can be estimated by: ܿᇱ = ௣ᇱߪ0.10 ௡ᇱߪ	 2	݁݃݊ܽݎ	ℎ݁ݐ	݊݅	 < ௣ᇱߪ ௡ᇱ൘ߪ < 5 [4.43] 

ܿᇱ = ௣ᇱߪ0.024 ௡ᇱߪ	 10	݁݃݊ܽݎ	ℎ݁ݐ	݊݅	 < ௣ᇱߪ ௡ᇱ൘ߪ < 20 [4.44] 

where ߪ௡ᇱ  is the effective stress normal to the shear plane. It seems 
conservative to recommend the latter correlation in any case. Both 
correlations are valid for short-term analyses. For long-term analyses 
involving uncemented sands, silts and insensitive clays, the value ܿᇱ = 0 can 
be taken to be on the safe side. 

4.3. Internal friction angle 

4.3.1. From identification tests 

Most of the proposed relationships relate ϕ or ϕ′ to physical parameters, 
especially to consistency limits. 

Caquot and Kerisel [CAQ 66] related ϕ′ to ௙݁, the void ratio at a peak 
value of	ߪଵᇱ ⁄ଷᇱߪ : 

௙݁. ᇱ߮݊ܽݐ = ܽ [4.45] 

with a = 0.3 for clays, 0.45 for silts and 0.5 for sands. For cohesionless soils, 
Graux [GRA 67] suggested a = 0.55 as a first estimation. 

For single-mineral soils, which is unusual, Koerner [KOE 70] proposed a 
basic value ϕ′ = 36° adapted by correction values depending on particle 
shape, size and gradation, relative density and mineral type: ߮ᇱ = 36° +	߮ଵ + ߮ଶ + ߮ଷ + ߮ସ + ߮ହ [4.46] 
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Shape correction ߮ଵ 

= −6° for high sphericity and rounded shape; 

= +2° for low sphericity and angular shape. 

Particle size correction ߮ଶ 

= −11° for ܦଵ଴> 2.0 mm (gravel); 

= −9° for 2.0 >  ;ଵ଴> 0.6 mm (coarse sand)ܦ

= −4° for 0.6 >  ;ଵ଴> 0.2 mm (medium sand)ܦ

= 0 for 0.2 >  .ଵ଴> 0.06 mm (fine sand)ܦ

Gradation correction ߮ଷ (Cu = uniformity coefficient) 

= −2° for Cu > 2.0 (well graded); 

= −1° for Cu = 2.0 (medium graded); 

= 0 for Cu > 2.0 (poorly graded). 

Relative density correction ߮ସ 

= −1° for 0 < ܦ௥< 0.5 (loose); 

= 0 for 0.5 < ܦ௥< 0.75; 

= +4° for 0.75 < ܦ௥< 1 (dense). 

Correction for mineral type ߮ହ 

= 0 for quarts; 

= +4° for feldspar, calcite, chlorite; 

= + 6° for muscovite, mica. 

Owers and Khera [OWE 90] proposed three relationships ߮ᇱ = 36° − ௣ܫ	for	௣ܫ0.25 < 20 [4.47] ߮ᇱ = 	31°	 − –	௉ܫ)	0.20	 	20)	for	20	 < 	 ௉ܫ < 50 [4.48] ߮ᇱ = 	25°	 − –	௉ܫ)	0.06	 	50)	for	50	 < 	  ௉ [4.49]ܫ
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For normally consolidated clays, Kenney [KEN 59] suggested that 

sin߮ᇱ= 0.82 – 0.24 log ܫ௉ [4.50] 

Mitchell [MIT 93] proposed a very close equation: 

sin߮ᇱ= 0.806 – 0.228 log ܫ௉ [4.51] 

This differs from that proposed by Mayne [MAY 80]: 

sin߮ᇱ = 0.656 – 0.409 ൫ܫ௣ ⁄௅ݓ ൯ [4.52] 

Ghembaza [GHE 04] made a summary of the numerous proposed 
relationships that relate ϕ′ to Ip (%). The scatter is important and covers a 
large domain that can be described by the following three equations: 

Lower limit:  ߮ᇱ= 37 – 12 log ܫ௉ [4.53] 

Mean value: 	߮ᇱ = 45 – 13 log ܫ௉ [4.54] 

Upper limit:  ߮ᇱ= 53 – 14 log ܫ௉ [4.55] 

Based on 109 tests on Belgian soils, Van Wambeke [VAN 75] proposed 
the following equation with a precision of +/−5°: ߮݊ܽݐ = 0.100 + ଵ଺.଼ூುାଵଽ.଴ [4.56] 

4.3.2. From CPT and CPTu 

From CPT tests performed on clean sands in a calibration chamber, 
Robertson and Campanella [ROB 83] suggested the following equation: ߮ᇱ = 	ሾ0.1݊ܽݐܿݎܽ + ௧ݍ)݃݋0,38݈ ⁄௩଴ᇱߪ )ሿ [4.57] 

Kulhawy and Mayne [KUL 90] gave an alternative and more appropriate 
value, which is as follows: 

߮ᇱ = 17.6	 + 11. ݃݋݈ ቎ (௤೟ ఙೌ೟೘⁄ )ටఙೡబᇲ ఙೌ೟೘⁄ ቏ [4.58] 
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From CPTu results, Mayne and Campanella [MAY 06] suggested the 
following equation for soils other than clean sands: ߮ᇱ = ௤଴.ଵଶଵܤ29.5 ቂ0.256 + ௤ܤ0.336 + ݃݋݈ ቀ௤೟ିఙೡబఙೡబᇲ ቁቃ [4.59] 

This equation is applicable in the range of 20° < ϕ < 45° and for  
0.1 < Bq < 1. If Bq < 0.1, correlations are preferable for clean sands. 

The results of the above correlation are very close to the following one 
given by Uzielli et al. [UZI 13]: 

߮ᇱ = 25 ቎ (௤೟ ఙೌ೟೘⁄ )ටఙೡబᇲ ఙೌ೟೘⁄ ቏଴.ଵ଴ ଶݎ	 = 0.92 [4.60] 

4.3.3. From SCPT 

Uzielli et al. [UZI 13] related the friction angle to the shear wave velocity 
from SCPTU tests by: 

߮ᇱ = 3.9 ൤ ௏ೞ൫ఙೡబᇲ ఙೌ೟೘⁄ ൯బ.మఱ൨଴.ସସ ଶݎ	 = 0.67 [4.61] 

4.3.4. From PMT 

For sands, the original correlation proposed by Menard [MEN 57] is: ߮ᇱ = 24 + ݃݋13.3݈ ቀ ௣೗ଵ଴଴.௕ቁ [4.62] 

where ݌௟ is expressed in kPa, and b = 1.8 for moist sands and 3.5 for dry 
sands, with the mean recommended value being 2.5. 

This was slightly modified by Van Wambeke [VAN 78]: ߮ᇱ = 18.7 + ௟݌)݃݋13.3݈ − (଴݌ 	+ ܾᇱ [4.63] 

where ܾᇱ = 2	for humid soils and ܾᇱ = −2 for dry soils. 
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For non-dilatant soils, Combarieu [COM 96a] suggested that: ߮݊݅ݏᇱ = ௟௢௚ሾ௣ಽಾ ௣బ⁄ ሿ௟௢௚ൣഏమ(ாಾ ௣ಽಾ⁄ )൧ [4.64] 

where ݌௅ெ is the conventional limit pressure, as defined by Menard, and not 
the abscissa of the asymptote of the pressiometer curve. 

For dilatant soils, Combarieu [COM 96b] presented the following 
hypothesis on the value of the angle of dilatancy in accordance with the most 
practical cases: ܭ଴ < 1 (1 + ൗ(߮݊݅ݏ  [4.65] 

ᇱ߮݊݅ݏ = ଽ଼ ൥ଵ଼ + ௟௡೛ಽಾషೠ೜బషೠ	௟௡೛ಽಾషೠ೜బషೠ ାቀయమቁయ൩ [4.66] 

4.3.5. From SPT 

From SPT results, Natarajan and Tolia [NAT 72] proposed the following 
empirical equation, which is valid for fine sands to gravel: ߮ = ቀ ଻଴.ଵఙೡబା଻ቁܰ + 28 [4.67] 

From data published by other authors, Sabatini et al. [SAB 02] derived 
the following two correlations: ߮ᇱ = (15.4 ଺ܰ଴)଴.ହ + 20 [4.68] 

߮ᇱ ≈ ݊ܽݐܽ ൥ ேలబ൬ଵଶ.ଶାଶ଴.ଷఙೡబᇲ ఙೌ೟೘ൗ ൰൩଴.ଷସ [4.69] 

The former is similar to that given by Ohsaki et al. reported by [FIG 15]: ߮ᇱ = (20. N)଴.ହ + 15 [4.70] 
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4.3.6. From DMT 

Marchetti [MAR 97] proposed a lower limit correlation for DMT results: ߮ᇱ = 28° + 14.6 ݃݋݈ ஽ܭ −  ஽ [4.71]ܭଶ݃݋2.1݈

Schmertman [SCH 82] proposed a method for determining the friction 
angle of sands if both blade resistance measurements during DMT ݍ஽ and 
CPT ݍ௖ are available: ߮ᇱ = 25൫2.3 − ஽ݍ ௖ൗݍ ൯ [4.72] 

For sands, an alternative correlation proposed by Campanella and 
Robertson [CAM 91] is: ߮ᇱ = 37.3° ቀ௄ವି଴.଼௄ವା଴.଼ቁ଴.ସ଻ [4.73] 

This relationship was later modified by Mayne [MAY 15] as: ߮ᇱ ≈ 37.3° ቀ௄ವି଴.଼௄ವା଴.଼ቁ଴.଴଼ଶ [4.74] 

Considering different lateral stress states, [MAY 15] suggested that: ߮ᇱ = 28.2 + (௄ವି଴.ହ)଴.଴଻ସା଴.଴଺ଷ(௄ವି଴.ହ)బ.వమ [4.75] 

߮ᇱ = 27.5 + (௄ವି଴.ହ)଴.଴଼଴ା଴.଴଺ଷ(௄ವି଴.ହ)బ.వర [4.76] 

߮ᇱ = 26.8 + (௄ವି଴.ହ)଴.ଵ଴ା଴.଴଺ଶ(௄ವି଴.ହ)బ.వఱ [4.77] 

These equations give overpredictions compared with the values derived 
by [MAR 97]. 

From a test performed on an experimental site in Italy, Togliani et al. 
[TOG 15] proposed that: 
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߮ᇱ = 17 + ஽ܫ	݂݅	଴.ଷଶ(஽ܭ஽ܫ)11 ≥ ஽ܭ	݀݊ܽ	1.2 ≤ 7 [4.78] 

From the critical state angle and ܭ஽, [ROB 12] suggested that: ߮ᇱ = ߮௖௦ᇱ + 15.84. log(25ܭ஽) − 26.88 [4.79] 

4.3.7. Peak, critical state and residual friction angles 

For sands, the relationship between the peak friction angle (࢖࣐ᇱ ), the 
critical state angle ࢙ࢉ࣐ᇱ  and the dilatancy angle	࣒ is given by: ࣐ᇱ = ᇱ࢖࣐ = ᇱ࢙ࢉ࣐ + β[4.80] ࣒ 

with 0.8 < β < 1. For sands, Bolton [BOL 86] recommended that β = 0.8. 

The critical state angle of sands can be estimated from particle roundness 
R [CHO 06]: ߮௖௦ᇱ = 42 − ଶݎ	17ܴ = 0.823 [4.81] 

with R = 1 for very rounded sands and R = 0 for very angular sands. 

Biarez and Favre [BIA 76] deduced the residual effective friction angle 
ϕ′r from wL: ߮݊ܽݐ௥ᇱ = 1.64 − ௅ݓ	ݎ݋݂	(௅ݓ)݃݋0.8݈ < ௥ᇱ߮݊ܽݐ [4.82] 50 = 0.78 − ௅ݓ	ݎ݋݂	(௅ݓ)݃݋0.3݈ > 50 [4.83] 

For clays, Kanji [ORT 04, p. 123] presented the following correlation, 
with ܫ௣ expressed in %: ߮௥ᇱ = 46.6 ൫ܫ௣൯଴.ସସ଺൘  [4.84] 

The values of [4.84] are represented by the trend lines of Figure 4.1, 
which is adapted from Abramson et al. [ABR 96]. 
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Figure 4.1. Residual friction angle versus plasticity index (adapted from [ABR 96]) 

4.3.8. Influence of intermediate stress 

It is well known that the plane strain friction angle ϕ′pl is greater than ϕ′tr, 
resulting from classical triaxial tests. Empirical relationships have been 
proposed by different authors. Of these relationships, four are given below 
with the respective authors: 

Bishop [BIS 66]: sinφ୮୪ᇱ + 3 ൬ ଵୱ୧୬஦౪౨ᇲ − ଵୱ୧୬஦౦ౢᇲ ൰ = 1 [4.85] 

Green [GRE 72]: 3 sinφ୮୪ᇱ − sinφ୲୰ᇱ (sinφ୲୰ᇱ + 	sinφ୮୪ᇱ ) 	= 2 sinφ୲୰ᇱ  [4.86] 

Lade and Lee [LAD 76]: 

ϕ′pl = 1.5 ϕ′tr – 17° if ϕ′tr > 34° and ϕ′pl = ϕ′tr if ϕ′tr < or = 34° [4.87] 

Hansen [HAN 79] for dense and very dense sands: 

ϕ′pl = 1.1ϕ′tr [4.88] 
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As ϕ′tr values are usually less than 45°, ϕ′pl values, obtained from the 
equations given above, differ by less than 7°. Green provides the highest 
values for 30° <ϕ′tr < 48°. The lowest result is given by Bishop for ϕ′tr > 41° 
and by Lade and Lee for 30° <ϕ′tr < 41°. The latter is thus a useful equation 
for obtaining a conservative value for ϕ′pl when ϕ′tr > 30° for silts and sands. 

Kulhawy and Mayne [KUL 90] proposed more ready-to-use 
relationships, taking into account the soil type. If β = ߮௦௧௥௘௦௦	௦௧௔௧௘ᇱ ߮௧௥௜௔௫௜௔௟ᇱ⁄ , 
for different stress states (the first value corresponding to cohesionless soils 
and the second to NC cohesive soils), we have: 

– triaxial extension:  β = 1.12 β = 1.22; 

– plane strain compression: β = 1.12 β = 1.10; 

– plane strain extension: β = 1.25 β = 1.34. 

The β values are influenced by the intermediate principal stress ߪଶᇱ , so a 
principal stress factor b is introduced: ܾ = ఙమᇲିఙయᇲఙభᇲିఙయᇲ [4.89] 

Here, b = 0 for triaxial compression, b = 1 for triaxial extension and  
b = 0.3–0.4 for plane compression. Although the data show a large 
dispersion, the friction angle increases with b until the value of b reaches 
0.5. Then, the evolution becomes more variable, depending on the soil type 
[KUL 90, BIA 94]. Thus, it is obvious that the use of the triaxial 
compression friction angle is conservative. 

4.4. The angle of dilatancy 

For sandy soils, with ܫ஽ > 1.2, Robertson [ROB 12] suggested that: ߰ = 0.56	 −  [4.90] (஽ܭ25)݃݋0.33݈

Cox and Mayne [COX 15] took into account the stress path for granular 
soils and the state of consolidation for cohesive soils. 
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Plane strain conditions: ߰ = ௥ܦ5)6.25 − 1) [4.91] 

Triaxial conditions: ߰ = ௥ܦ5)3.75 − 1) [4.92] 

NC or LOC: ߰ = 0 [4.93] 

OC: ߰ = ߮ᇱ 3⁄  [4.94] 

HOC: ߰ = ߮ᇱ 6⁄  [4.95] 

4.5. Sensitivity 

Sensitivity is generally considered for soft clays or silts and accurate 
measurements require laboratory tests. However, sensitivity can be estimated 
from the CPT using the relationship suggested by Mayne [MAY 07]: ܵ௧ = 0.073 ௧ݍ) − (௩଴ߪ ௦݂⁄  [4.96] 

As a guide value only, Robertson and Cabal [ROB 15] approximated 
sensitivity and the remolded strength by: ܵ௧ = 7 ⁄௥ܨ  [4.97] 

As a rule of thumb, soils with ܫ௅ > 1 can be considered to be sensitive. 



5 

Soil Deformations 

5.1. Compression and swelling 

5.1.1. Compression index 

Many correlations between the primary compression index Cc and 
physical parameters such as liquid limit, void ratio or moisture content have 
been published (units: w, wL, IP in %, e, e0 decimal). Some of them are 
general, while others refer to the state (remolded, NC or OC), the soil type 
(silt, clay or peat) and the origin (alluvial, marine, glacial or organic). 

Some of these correlations generally present a large data scatter up to 
30%. Therefore, their validity must be limited to the soil type or localization, 
whereon they are established. The best results are generally obtained with 
the liquid limit wL, as it integrates moisture, mineralogical aspects and grain 
size distribution. 

According to Terzaghi and Peck [TER 67], for NC clays: ܥ௖	 = 	௅ݓ	0.009 − 0.090 [5.1] 

This is close to that of Mayne [MAY 80] and Biarrez [BIA 94]: ܥ௖	 = 	௅ݓ	0.0092 − 	௖ܥ [5.2] 0.119 = 	௅ݓ	)0.009 − 13) [5.3] 
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Also, according to Mayne [MAY 80]: ܥ௖ = 	 ൫ܫ௣ + 26൯ 138⁄  [5.4] 

For clays from Greece and the USA, Azzouz et al. [AZZ 76] established 
three equations: ܥ௖	 = 	௅ݓ	0.006 − 0.054	for	ݓ௅ 	< 	௖ܥ [5.5] 100% = ݓ	0.01 − 	௖ܥ [5.6] 0.05 = 0.4	݁଴	 − 0.1 [5.7] 

For American clays, Rendon-Herrero [REN 80] obtained a different 
relationship versus e0: ܥ௖	 = 0.30(	݁଴	 − 0.27) [5.8] 

Both [5.7] and [5.8] are similar to the first equation proposed by Nishida 
[NIS 56]: ܥ௖	 = 0.54	݁଴	 − 	௖ܥ [5.9] 0.19 = ݓ	0.014 − 0.189 [5.10] 

The correlations, respectively, by Koppula and Morgenstern [KOP 81] 
and Herrero [HER 83] are very similar: ܥ௖	 = 	௖ܥ [5.11] ݓ	0.01 = ݓ	0.01 − 0.075 [5.12] 

For OC clays and, more precisely, for pornic clay, Moulin [MOU 89] 
proposed that: ܥ௖	 = 0,15݁଴ଶ + 1.25	݁଴	 − 0.025 [5.13] 

On the one hand, for remolded clays, respectively, from Skempton  
[SKE 44], Terzaghi and Peck [TER 67], Holtz and Kovacs [HOL 91], and 
Biarez and Favre [BIA 75], the first three correlations are very close: ܥ௖	 = 	௅ݓ	0.007 − 0.049 [5.14] 
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	௖ܥ = 	௅ݓ)	0.007 − 	௖ܥ [5.15] (10 = 	௅ݓ)	0.007 − 	௖ܥ [5.16] (7 = 	 ௣ܫ 0,81⁄  [5.17] 

On the other hand, for remolded loamy Belgian soils, according to Van 
Wambeke cited in [VER 68, p. 368]: ܥ௖	 = 	௅ݓ	0.0085 − 0.105	for	0 < ௣ܫ ≤ 	௖ܥ [5.18] 5 = 	௅ݓ	0.0077 − 0.085	for	5 < ௣ܫ ≤ 15 [5.19] 

Hereafter, the five correlations are specific for silts, low plastic soils, silty 
clays and inorganic soils: 

Dzwilewski and Richards [DZW 74]: ܥ௖	 = 0.34 + 	0.02 [5.20] 

Hough [HOU 57]: ܥ௖	 = 0.29	݁଴	 − 	௖ܥ [5.21] 0.08 = 0.4049(݁଴	 − 	௖ܥ [5.22] (0.3216 = ݓ	)0.0102 − 9.15) [5.23] 

Sowers [SOW 70]: ܥ௖	 = 0.75	݁଴	 − 0.38 [5.24] 

Ortiago [ORT 95] presented the following correlation as valid for soils of 
different geological origins: ܥ௖ = ௪ߛ)0.5 ⁄ௗߛ )ଶ.ସ [5.25] 

For alluvial clays, Rivard and Goodwin [RIV 78] proposed that: ܥ௖	 = 	௅ݓ	0.0047 − 	௖ܥ [5.26] 0.003 = 	ݓ	0.0102 − 0.004 [5.27] 
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Moreover, for alluvial clays and silts from Bangladesh, Serajuddin  
[SER 87] proposed that: ܥ௖	 = 	ݓ)0.01 − 7.548) [5.28] 

Dascal and Laroque [DAS 73] presented correlations, respectively, for 
lacustrine and marine clays: ܥ௖ = 1.34݁଴ − 1.11	ܴ = ௖ܥ [5.29] 0.86 = ݓ0.42 − 1.314	ܴ = ௖ܥ [5.30] 0.85 = 0.92݁଴ − 0.557	ܴ = 0.84 [5.31] 

For tropical lateritic and saprolitic soils with a non-negligible scatter 
[ORT 95]: ܥ௖ = 1.04 log ݁଴ + 0.357 [5.32] 

Although the use of the compression index is not strictly applicable for 
peats because of the importance of the secondary consolidation, some 
authors have also published correlations for these soils associated with 
others. 

For French muds, peats and soft clays with 30 < wL < 180, 12 < γ < 20 
(kN/m³), Vidalie [VID 77] proposed the following relationships, with all the 
soils being close to the A-line on the Casagrande chart (Figure 1.1): ܥ஼ = 0.575݁ − 0.241	ܴ = ஼ܥ [5.33] 0.966 = ݓ0.0147 − 0.213	ܴ = 0.963 [5.34] 

For peats and varved clays, Kougure et al. [KOG 77] proposed that: ܥ௖ = 0.370݁଴ଵ.ଵ଻	ܴ = ௖ܥ [5.35] 0.917 = 0.62݁଴ − 0.35	ܴ = ௖ܥ [5.36] 0.918 = ܴ	ଵ.଴଻ݓ0.00722 = ௖ܥ [5.37] 0.916 = ݓ)0.013 − 7)	ܴ = 0.918 [5.38] 
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According to Biarez and Hicher [BIA 94], it is possible to draw the linear 
part of the oedometric curve if the liquid and plastic limits are known. As 
shown in Figure 5.1, the compressibility path corresponds to the reference 
line between the two points of coordinates: ߪᇱ = ݓ	݀݊ܽ	ܽܲ݇	7 = ௅݁	ݎ݋	௅ݓ	 = ௦ߛ) ⁄௪ߛ ᇱߪ ௅ [5.39]ݓ( = ݓ	݀݊ܽ	ܽܲܯ	1 = ௣݁	ݎ݋	௣ݓ	 = ௦ߛ) ⁄௪ߛ  ௣ [5.40]ݓ(

 

Figure 5.1. Compressibility path according to [BIA 94] 

5.1.2. Constants of compressibility 

In some countries, the settlements are calculated using the constant of 
compressibility C. The correlations given above remain applicable thanks to 
the equation: ଶ.ଷ஼ = ஼೎(ଵା௘బ) [5.41] 

For French muds, peats and soft clays already presented above, Vidalie 
related C to w or γd [VID 77]: 
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ܥ = 2.3 ݓ0.0039) + 0.013)⁄ 	ܴ = 0.816 [5.42] 

Valid for w < 100%: ܥ = 2.3 ௗߛ0.0300−) + 0.554)⁄ 	ܴ = ܥ [5.43] 0.896 = 2.3 (ݓ)݃݋0.403݈) − 0.478)⁄ 	ܴ = 0.862 [5.44] 

For a large scope of soils [ORT 95]: ܥ = 	7 ൤1 + ଴.଴ଵଷଷூ೛൫ଵ.ଵଽଶା஺೎షభ൯ି଴.଴ଶ଻௪ಽିଵଵା଴.଴ଶ଻௪ ൨ൗ  [5.45] 

5.1.3. Swelling index 

When unloading a soil, the swelling index Cs must be used instead of Cc. 
For Japan soils, Nakase et al. [NAK 88] found that: ܥ௦ = 0.00084൫ܫ௣ − 4.6൯	ܴ = 0.94 [5.46] 

Both Cs and Cc are related to soil plasticity following the ratio: 

Cs/Cc = 8 for Ip = 0 and = 3 for Ip > 25. 

Intermediate values of Ip are obtained by linear interpolation. 

This is in accordance with the values commonly used; Cs/Cc = A with: 

– A = 3 for clays; 

– A = 4–6 for loams, silts, silty and clayed sands; 

– A = 7–8 for sands. 

5.2. Soil moduli 

Although soils are not linear elastic materials, the soil modulus is 
commonly used in deformation or settlement calculations. Therefore, if a 
modulus EM can be directly obtained from PMTs, this is not the case for the 
other tests. 
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5.2.1. From CPT 

When CPT results are only available, it is assumed that E or M = αqc, 
where the value of α is related to the soil type, as shown in Tables I  
[BAC 65] and II [GIE 69] and [SAN 72]. Moreover, α depends on the stress 
history of the soil, its mineralogy and the level of strain. When the latter 
increases, the modulus decreases. 

Soil type α 
Peat 0.75 

Sand 0–2 

Silty sand 1–2.5 

Clayey sand 3–6 

Soft clay 3–8 

Table 5.1. α from Bachelier and Parez [BAC 65] 

Soil classification and 
type 

qc (MPa) or w 
values (%) α CPT – M α CPT – E 

CL: Low plastic clay <0.7 4–6.5 3.7–10 

  0.7–2 3–4 2.5–6.3 

  >2 1.3–2.2 1.25–3 

ML: Low plastic silt <2 3–6 3.5–7.5 

  >2 1–3 1.25–3.7 

CH – MH: High plastic 
clay and silt <2 2.5–5 2.5–7.5 

OL: Organic silt <1.2 2–8 2.5–10 

  >1.2 0.5–4   

T – OH: Peat and very 
organic clay <0.7 and     

  50 < w < 100 1.5–4   

  100 < w < 200 1–1.5   

  w > 200 0.4–1   

Chalk <3 2–4   

  >3 1.5–3   

Sand <10 2   

Compact sandy gravel >10 2–3   

Table 5.2. α from Gielly [GIE 69] and Sanglerat [SAN 72] 
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Verbrugge [VER 81] collected a large number of published relationships 
between E and qc, which are given in Table 5.3. 

Relationship E vs qc (kN/m2) Soil Country 
E = 2qc  Cohesionless France 

E < 2.2qc  Cohesionless France 

E = 1.9qc Cohesionless Netherland 

E = 1.9qc Cohesive   

E = 1.5qc Cohesive Netherland, UK 

E = 1.5qc Cohesionless Belgium 

E = 1.5qc, qc >3,000 Cohesive Greece 

E = 3qc, qc <1,500 Cohesive Greece 

E = 6qc, qc <7,500 Cohesionless Portugal 

E = 2qc + 30,000, qc >7,500 Cohesionless Portugal 

E = 3qc + 1,000  Cohesionless   

E = (2.8 ± 0.3)qc + (26,500 ± 3,700), qc 
>3,000 Cohesionless Germany 

E = 2.5(qc + 3,000) 
Middle sand 
submerged South Africa 

E = 1.67(qc + 1,500), Ip <15 Clay sand South Africa 

E = 2(qc + 2,500) Clay sand South Africa 

E <2.5qc Cohesionless   

E = 5qc + 1,000 Cohesionless   

Table 5.3. Relationships between E and qc [VER 81] 

From a close analysis of all these values, [VER 81] proposed the 
following relationship as valid for values of qc greater than 400 kN/m2: ܧ = ௖ݍ2.2 + 3600	(݇ܰ ݉ଶ⁄ ) [5.47] 

This relationship has given good results for pile settlement calculations. 

For Belgian soils, Van Wambeke [VAN 75] suggested the following 
practical values: 

– α = 1.5 for sands; 
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– α = 2.3 for loams and silts; 

– α = 3 for clays. 

Robertson [ROB 09b] linked α to	ܳ௧ and to the SBT index ܫ௖. 

For Ic > 2.2 corresponding to fine-grained soils: ߙ = ܳ௧	݂ݎ݋	ܳ௧ < ߙ [5.48] 14 = ௧ܳ	ݎ݋݂	14 < 14 [5.49] 

In addition, for Ic < 2.2 corresponding to coarse-grained soils: ߙ = 0.0188ൣ10(଴.ହହூ೎ାଵ.଺଼)൧ [5.50] 

The values resulting from correlations [5.48]–[5.50] are higher than those 
from the previous ones because they are related to stress levels of 
approximately 0.1%, lower than those usually encountered for settlements. 

We also have to take into account the facts put forward by Sanglerat 
[SAN 77] that, for a given soil, Ε grows with a depth up to 30% and, for 
overconsolidated soils, we have to take twice the above-mentioned values 
and three times in the case of reloading the soil, which is in accordance with 
Gambin [GAM 63] and Cassan [CAS 66]. 

5.2.2. From DMT 

The basic equation of Marchetti that relates the constraint modulus M or 
E to the dilatometer modulus ED is given by: ܧ = ஽ெ்ܯ = ܴெܧ஽ [5.51] 

The value of the proportionality factor is not constant according to 
Monaco et al. [MON 99]: ܴெ = 0.14 + 2.36 logܭ஽ ஽ܫ	݂݅	 ≤ 0.6 [5.52] 
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ܴெ = 0.5 + 2 logܭ஽ ஽ܫ	݂݅	 ≥ 3 [5.53] ܴெ = ܴெ଴ + (2.5 − ܴெ଴) logܭ஽	݂݅	0.6 < ஽ܫ < 3 [5.54] 

with ܴெ଴ = 0.14 + ஽ܫ)0.15 − 0.6) [5.55] 

and ܴெ = 0.32 + 2.18 logܭ஽ ஽ܭ	݂݅	 > 10 [5.56] ܴெ = 0.85	if	ܴெ ≤ 0.85 [5.57] 

5.2.3. From SPT 

The scatter in the correlations between E and the SPT-N values has 
drawn considerable attention. The following values must be taken as rough 
estimations [KUL 90]: ܧ ⁄௔௧௠ߪ = ߚ ଺ܰ଴ [5.58] 

where β = 5 for sands with fines, β = 10 for clean NC sands and β = 15 for 
clean OC sands. 

By replacing ଺ܰ଴	 with ( ଵܰ)଺଴  in the previous equation, [SAB 02] 
suggested that: 

– for silts, sandy silts, slightly cohesive mixtures, β = 4; 

– for clean fine to medium sands, slightly silty sands, β = 7; 

– for coarse sands and sands with little gravel, β = 10; 

– for sandy gravels, β = 12. 

Poulos and Small [POU 00] suggested a correlation between the 
short-term Young modulus ES, the SPT-N value and the plasticity index 
(Figure 5.2). 
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Figure 5.2. Correlation between N, Ip and “short-term modulus” (adapted from  
Poulos and Small [POU 00]). For a color version of the figure, please  

see www.iste.co.uk/verbrugge/soils.zip 

5.2.4. From CBR 

In a pavement design, the proportionality between the E and CBR values 
is commonly established: ܧ	(ܽܲܯ) = ܭ ∙  [5.59] (%)ܴܤܥ

where K=10 if CBR<10% and decreases further. In many counties, a mean 
value of 5 is used for compacted soils [MAR 83]. Figure 5.3 shows equation 
[5.59] and the approximate correlation between the CBR and the “long-term 
Young modulus” according to [POU 00]. The difference between the two 
curves clearly shows the influence of the duration of loading. 

 

Figure 5.3. Correlation between the CBR and the modulus 
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5.2.5. Influence of loading rate 

For a very fast loading, the soil generally shows a stiffer behavior. This 
means that a higher value of E has to be used in calculation. Therefore, 
Poulos and Small [POU 00] suggested multiplying previous values of α by a 
mean factor of 5. More detailed adapted values of α are given in Table 5.4. 

Soil type α 
Loose sand 5 

Medium sand 8 

Dense sand 10 

Loam or silt 12 

Loamy clay 15 

Very plastic clay 20 

Table 5.4. α values for fast loading according to [POU 00] 

Wheel loadings are often applied on rafts and slabs during a short time, 
and the E value to be used is not the same as the “long-term modulus” given 
before for foundation. Poulos and Small [POU 00] proposed the following 
equation with β given in Table 5.5: 

E (long term) = β E (short term) [5.60] 

Soil type βo 
Gravel 0.9 

Sand 0.8 

Silt and silty clay 0.7 

Stiff clay 0.6 

Plastic clay 0.4 

Table 5.5. β values according to [POU 00] 

5.3. Small strain modulus 

It is well known that the behavior of soil is truly elastic only for very 
small strains (ε < ±10 µstrains = 10−5). In this domain, its modulus, E0, 
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generally derived from seismic velocity measurements, is quite higher than 
the usual values used for design calculations (Figure 5.4). 

 

Figure 5.4. Evolution of the soil modulus with strain 

The ratio of E and E0 depends on many factors but, as a first 
approximation, Simons et al. [SIM 02] suggested adopting: 

For soft clays: ܧ ≈  ଴ [5.61]ܧ0.50

and for stiff clays or weak rocks: ܧ ≈  ଴ [5.62]ܧ0.85

These values seem to be too high. For the foundation design, Sabatini et 
al. [SAB 02] refined the correlations given above by a closed-form equation: ܧ ⁄଴ܧ = 1 − ݍ) ⁄௨௟௧ݍ )଴.ଷ = 1 − (1 ⁄ܱܵܨ )଴.ଷ [5.63] 

where q and ݍ௨௟௧	are, respectively, the working and ultimate stresses, and 
FOS is the factor of safety. 

This ratio is in closer agreement with the values commonly established 
between 0.05 and 0.3 depending on the loading case. 



56     Geotechnical Correlations for Soils and Rocks 

Although the range of strains for the CPT largely exceeds 10−4, the results 
have been correlated with the small strain shear modulus. Robertson and 
Campanella [ROB 83] proposed the following relationship: 

ீబ௤೎ = ଵߚ ቀఙೌ೟೘௤೎ ቁ଴.ଷ଼ଽ [5.64] 

with ߚଵ = 50. 

Later, this was modified by Rix and Stokoe [RIX 91]: 

ீబ௤೎ = ଶߚ ቆ ௤೎ఙೌ೟೘ ටఙೌ೟೘ఙೡబᇲ ቇି଴.଻ହ [5.65] 

Here, ߚଶ = 290 

Lee et al. [LEE 09] showed that these two relationships give reasonably 
good predictions for clean sands, but overestimate G0 for silty sands. They 
suggested taking into account the silt content and thus: 

ீబ௤೎ = ଷߚ ቆ ௤೎ఙೌ೟೘ ටఙೌ೟೘ఙ೘బᇲ ቇି଴.଻ହ [5.66] 

ଵߚ = 25. ݁ି଴.ଶସ௦೎೚ + ଶߚ [5.67] 25 = 150. ݁ି଴.ଶଷ௦೎೚ + ଷߚ [5.68] 140 = 110. ݁ି଴.ଶଷ௦೎೚ + 160 [5.69] 

where ݏ௖௢ is the silt content in % and ߪ௠଴ᇱ  the in situ mean effective stress. 

From Sabatini et al. [SAB 02], with kPa units: ܩ଴ = ௩଴ᇱߪ)଴.ଶହ(௖ݍ)1.634 )଴.ଷ଻ହ [5.70] 

For Holocene-age uncemented coarse-grained soils [ROB 15]: ቀܩ଴ ௧ൗݍ ቁܳ௧௡଴.଻ହ = ீܭ	  [5.71] 

where 215 < KG < 330 and KG increases with age, cementation and bonding. 
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For Japanese clays, with some scatter [SHI 04]: ܩ଴ = ௧ݍ)50 −  ௩଴) [5.72]ߪ

The same author suggested the following from DMT results: ܩ଴ =  ஽ [5.73]ܧ7.5

According to Rocha et al. [ROC 15], with an important scatter: ீబெವಾ೅ = ஽ିܭ6.5 ଴.଺ଽଵ [5.74] 

A refined form of this equation was proposed by Marchetti [MAR 15]: 

For clays, ܫ஽ < 0.6: ீబெವಾ೅ = ஽ିܭ26.177 ଵ.଴଴଺଺	ݎଶ = 0.61 [5.75] 

For silts, 0.6 < ஽ܫ < 1.8: ீబெವಾ೅ = ஽ିܭ15.686 ଴.ଽଶଵ	ݎଶ = 0.81 [5.76] 

For sands, ܫ஽ > 1.8: ீబெವಾ೅ = ஽ିܭ4.5613 ଴.଻ଽ଺଻	ݎଶ = 0.65 [5.77] 

Wroth et al. [WRO 79] correlated the small strain shear modulus with the 
SPT-N value in the domain: 60ܰ଴.଻ଵ ≤ ଴ܩ ⁄௔௧௠ߪ ≤ 300ܰ଴.଼ [5.78] 

with a suggested correlation: ܩ଴ ⁄௔௧௠ߪ = 120ܰ଴.଻଻ [5.79] 

For the SPT N60 value [SAB 02]: ܩ଴ = 15,560( ଺ܰ଴)଴.଺଼ [5.80] 

with G0 expressed in kPa. 
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From tests with a resonant column, Hardin and Drnevich [HAR 72] 
established the following equation: ܩ଴ ௔௧௠ൗߪ = 321 (ଶ.ଽ଻ି௘)మଵା௘ ௔ܴܥܱ ቀ ఙ೘ఙೌ೟೘ቁ଴.ହ [5.81] 

where a is approximated by ܽ = (%)	௣ܫ0.0041 + ଶݎ	0.128 = 0.940 [5.82] 

and ߪ௠ = ଵߪ) + ଶߪ + (ଷߪ 3⁄  [5.83] 

Massarch reported a later version of the equation proposed by Hardin 
[MAS 04, p. 137], giving a reasonable agreement for soft clays and silts: ܩ଴ ௔௧௠ൗߪ = ଺ଶହ଴.ଷା଴.଻௘మ ௔ܴܥܱ ቀ ఙ೘ᇲఙೌ೟೘ቁ଴.ହ [5.84] ܽ = (%)	௣ܫ0.006 + ௠ᇱߪ [5.85] 0.045 = (1 + ௩ᇱߪ(଴ܭ2 3⁄  [5.86] 

5.4. Poisson’s ratio 

In numerical modeling, the Poisson ratio ν is often required. It is possible 
to deduce the value from the theoretical equation between K0 and ν, on the 
one side, and the well-known equation of Jäky [JAK 44] relating K0 to ϕ, on 
the other side. ܭ଴ = ߭ (1 − ߭)⁄ = 1 −  ᇱ [5.87]߮݊݅ݏ

For drained loading, Traurmann and Kulhawy [TRA 87] approximated ν 
by: ߥ = 0.1 + 0.3 (߮ᇱ − 25) 20⁄ 	25° ≤ ߮ᇱ ≤ 45° [5.88] 

As a rule of thumb, ν = 0.3 or 1/3 for the general case and 0.47–0.49 for 
saturated clays can also be considered. More refined values are given in 
Table 5.6. 
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The behavior of dilatant soils is inelastic and hence ν may exceed 0.5. 

Soil type Quick 
loading 

Slow 
loading 

Gravel 0.30 0.30 

Sand 0.35 0.30 

Silt and silty clay 0.45 0.35 

Stiff clay 0.45 0.25 

Plastic clay 0.50 0.40 

Compacted clay 0.45 0.30 

Table 5.6. Poisson’s ratio according to [POU 00] 

5.5. Modulus of subgrade reaction 

The modulus of subgrade reaction is widely used in the Winkler beam 
method on an elastic foundation. This simple method has the advantage of 
giving a rather good evaluation of the ground pressure and of shear and 
bending moments. However, inversely, the deflection shape differs from 
reality. Fortunately, the results of calculations are not very sensitive to the 
value of subgrade modulus because the bending moment is a function of 
only its fourth roots. 

We must keep in mind that the modulus of subgrade reaction is not an 
intrinsic property of soil. It depends on the experimental setup and mainly on 
the plate diameter. Therefore, its value is not unique for a given type of soil 
and we have to be careful when using this parameter if no information is 
available on how it was measured. For the design, we also have to take into 
account the differences between the plate diameter and the foundation width. 
Hence, no correlation for the plate test modulus is considered here. 

The most reliable estimation is given by Bowles [BOW 96] as it takes 
into account the dimensions of the foundation: ݇	(݇ܰ ݉ଷ⁄ ) = 120	 ×  [5.89] (ܽܲ݇)	݁ݎݑݏݏ݁ݎ݌	݃݊݅ݎܾܽ݁	݈ܾ݁ܽݓ݋݈݈ܣ

or ݇	(݇ܰ ݉ଷ⁄ ) = 40	 ×  [5.90] (ܽܲ݇)	݁ݎݑݏݏ݁ݎ݌	݃݊݅ݎܾܽ݁	݁ݐܽ݉݅ݐ݈ܷ
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Some refinement of this method is to know the allowable bearing 
pressure to calculate the related settlement. The ratio of the former to the 
later may be taken as an approximation of the subgrade modulus, reflecting 
the actual geometry of the foundation. 

5.6. Resilient modulus 

Resilient modulus is related to the recoverable deformation behavior of 
soils or granular materials under repetitive triaxial loading (>105 cycles). It is 
the secant modulus at unloading, which is calculated as the ratio of deviator 
stress to axial recoverable strain. This modulus is largely used in pavement 
design. 

Arm [ARM 96] tested soils with 10–100% contents of <60 µm fines 
(clays, silts, sands) and obtained the following: 

For silts with a coefficient of uniformity CU between 3 and 9: ܯோ = 43.74	 − 1.98ܿ௨	ݎଶ = 0.56 [5.91] 

For clays: ܯோିௗ௘௩ = ଶݎ	ௗ௘௩ିଵ.଴଻ߪ2724.39 = 0.88 [5.92] 

where the subscript “dev” refers to the deviatoric stress state. 

5.7. Collapse and expansion 

Many equations have been published for estimating soil volume changes 
mainly from identification tests (where S is the swell in %): 

Seed et al. [SEE 62]: ܵ =  ௉ଶ.ସସ [5.93]ܫ0.00216

[RAN 65]: ܵ = ௅ݓ)0.00413 −  ௌ)ଶ.଺଻ [5.94]ݓ
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Nayak and Christensen [NAY 71]: ܵ = ܿܿ)௉ଵ.ସହܫ0.0229 ⁄ݓ ) + 6.38 [5.95] 

where cc is the clay content and w is the initial moisture content. 

[CHE 75]: ܵ = 0.2558݁ை.଴଼ଷ଼ଵூು  [5.96] 

Weston [WES 80]: ܵ =  ଶ.ଷଷ [5.97]ିݓ௅ସ.ଵ଻ݓ0.000195

According to Elarabi [ELA 05], large differences may appear between 
measured values and those predicted by the correlations. Information about 
the mineralogy seems to be of paramount importance. From Figure 2.1, it is 
possible to estimate the eventual presence of swelling clay minerals. 

Combining the dry density and the liquid limit, Sabatini et al. [SAB 02] 
plotted the graph shown in Figure 5.5, which is a guide to evaluating the 
susceptibility of collapse or expansion for cohesive soils. 

 

Figure 5.5. Collapsibility and expandability of cohesive soils (adapted  
from [SAB 02]). For a color version of the figure, please  

see www.iste.co.uk/verbrugge/soils.zip 
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Figure 5.6 shows the swelling potential of remolded soils related to the 
clay fraction and the activity, as described by Seed et al. [SEE 62]. 

 

Figure 5.6. Chart for evaluating the swelling potential (adapted from [SEE 62]).  
For a color version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 

The swelling potential of clayey soils can also be estimated from the 
cation exchange capacity (CEC), as suggested by Yilmaz [YIL 04].  

CEC 
(meq/100 gr) 

Swelling 
classification 

<27 Low 

27–37 Medium 

37–55 High 

>55 Very high 

Table 5.7. Swelling classification from CEC [YIL 04] 



6 

Soil State Parameters 

6.1. Preconsolidation pressure 

The effective preconsolidation pressure, ߪ௣ᇱ , is very important for an 
accurate calculation of settlements which requires oedometer tests. Owing to 
lack of information, the overburden pressure is often used instead although 
this is not recommended. 

For peat and varved clays, Kogure and Oshira [KOG 77] developed two 
equations: ߪ௣ᇱ = 165݁଴ି ଴.ଽ଼଼	ܴ = ௣ᇱߪ [6.1] 0.810 = ܴ	଴.ଽଵଷିݓ43.9 = 0.821 [6.2] 

In addition, for disturbed clays, Peters and Lamb [PET 79] proposed the 
following equation: ߪ௣ᇱ = 107. 10ି(ூಽି଴,଺଼)/଴,଼଼ [6.3] 

In these equations, ߪ௣ᇱ  is expressed in kPa and w in %. 

Other correlations with the liquidity index are given by Stas and 
Kulhaway [STA 84]: ߪ௣ᇱ ௔௧௠ൗߪ = 10(ଵ.ଵଵିଵ.଺ଶூಽ) [6.4] 

Geotechnical Correlations for Soils and Rocks, First Edition.
Jean-Claude Verbrugge and Christian Schroeder.
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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as well as by Wood [WOO 83]: ߪ௣ᇱ ௔௧௠ൗߪ = 0.063.10ଶ(ଵିூಽ) [6.5] 

For intact and fissured clays, Kulhawy and Mayne [KUL 90] suggested a 
relationship based on the rigidity index: ߪ௣ᇱ = .	௨ݏ	0.76 ଶݎ	௥ܫ݈݊ = 0.895 [6.6] 

Many authors correlated the preconsolidation pressure with the CPT point 
resistance, qc, as done by Mayne [MAY 86] for intact and fissured clays: ߪ௣ᇱ 	= ܴ	௖ݍ0.29 = 0.858 [6.7] 

as well as by Mesri [MES 01]: ߪ௣	ᇱ = ௤೟ିఙೡబ஺  [6.8] 

where A = 3.57 for inorganic clays and silts and A = 4.24 for organic clays 
and silts. This is in close agreement with the results of Mayne [MAY 95] and 
Demers and Leroueil [DEM 02], which proposed the first order of estimate 
for intact clays: ߪ௣ᇱ 	= ௧ݍ)0.33 − ܴ	(௩଴ߪ = 0.904 [6.9] 

This was later refined by Mayne [MAY 14] as follows: ߪ௣ᇱ 	= ௧ݍ)0.33 − ௔௧௠ߪ)௩଴)௠ᇱߪ 100⁄ )ଵି௠ᇱ [6.10] 

where m’ is related to the CPT material index ܫ௖	: ݉ᇱ = 1 − ଴.ଶ଼ଵା(ூ೎ ଶ.଺ହ⁄ )మఱ [6.11]	
For 1.5 ≤ ௖ܫ ≤ 3.5, this corresponds to m′ ≅ 0.72 for sands, 0.8 for silty 

sands, 0.85 for silts, 0.9 for organic and sensitive fine-grained soils and 1 for 
intact clays. In this case, the two equations for ߪ௣ᇱ  are the same. 
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Following Mayne [MAY 05] for piezocones, depending on the type of 
cone used: 

– For a type 1 piezocone with a midface filter element: ߪ௣ᇱ 	= ௧ݍ)0.75 −  ଵ) [6.12]ݑ

– For a type 2 piezocone with a shoulder filter element: ߪ௣ᇱ 	= ௧ݍ)0.60 −  ଶ) [6.13]ݑ

For soft to stiff intact clays, Chen and Mayne [CHE 96] proposed 
relationships between the preconsolidation pressure and the water pressure 
measured by the piezocone independently of tip resistance. 

– For type 1 piezocone: ߪ௣ᇱ 	= ଵݑ)0.47 − ܴ	(଴ݑ = 0.838 [6.14] 

– For type 2 piezocone: ߪ௣ᇱ 	= ଶݑ)0.54 − ܴ	(଴ݑ = 0.827 [6.15] 

From the SCPT, small strain shear modulus G0 is obtained, and according 
to Mayne [MAY 07], for all types of soils, preconsolidation stress can be 
evaluated as: ߪ௣ᇱ = .଴଴.ସ଻଼ܩ0.161 ௩଴ᇱߪ) )଴.ସଶ	ݎଶ = 0.919 [6.16] 

From the SPT and DMT results, respectively, we have [KUL 90]: ߪ௣ᇱ = 0.47ܰ. ଶݎ	௔௧௠ߪ = ௣ᇱߪ [6.17] 0.699 	= ଴݌)0.51 − ଶݎ	(଴ݑ = 0.896 [6.18] 

A ratio of the preconsolidation pressure to the limit pressure of the 
self-boring pressure meter obtained as a result of compilation by different 
authors is given by Kulhawy and Mayne [KUL 90]: ߪ௣ᇱ = ଶݎ	௟݌	0.45 = 0.908 [6.19] 
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For Swedish clays, Hanbo [HAN 57] suggested a correlation with the 
shear strength measured in the vane test: ߪ௣ᇱ = ௨ݏ222 ⁄௅ݓ  [6.20] 

and according to Mayne and Mitchell, cited in [KUL 90], ߪ௣ᇱ = ௣ିܫ22 ଴.ସଽ	ݏ௨	ݎଶ = 0.569 [6.21] 

with wL and IP expressed in %. 

For medium and soft clays, Mayne [MAY 88] established that ߪ௣ᇱ = ܴ	௨଴.଼ଷݏ	7.04 = ௣ᇱߪ [6.22] 0.89 = ܴ	௨ݏ	3.45 = 0.88 [6.23] 

Correlation [6.23] is close to that proposed by Kulhawy and Mayne 
[KUL 90]: ߪ௣ᇱ = ଶݎ	௨ݏ	3.54 = 0.832 [6.24] 

We may also use the definition that links the preconsolidation and 
overburden stresses: ߪ௣ᇱ = .ܴܥܱ ௩଴ᇱߪ  [6.25] 

where OCR is deduced from one of the correlations presented below. 

6.2. Overconsolidation ratio 

For insensitive soils at the critical state, Wood [WOO 83] developed the 
following equation: ݈ܴܥܱ݃݋ = ሾ2 − ௅ܫ2 − ௩଴ᇱߪ15.87)݃݋݈ ⁄௔௧௠ߪ )ሿ 0.8⁄  [6.26] 

This can be used as an approximation for uncemented soils with 
low-sensitivity. 
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The results of chamber tests on sands reported by Mayne [MAY 05] 
allow the evaluation of the OCR using the following expression: 

ܴܥܱ = ൤ ଴,ଵଽଶ(௤೟ ఙೌ೟೘⁄ )బ,మమ(ଵି௦௜௡ఝᇲ).൫ఙೡబᇲ ఙೌ೟೘⁄ ൯బ,యభ൨ቀ భೞ೔೙കᇲషబ,మళቁ
 [6.27] 

Balachowski [BAŁ 06] proposed a less sophisticated relationship in the 
following general form: ܱܴܥ = ௔(௤೟ିఙೡబ)ఙೡబᇲ  [6.28] 

where a ranges from 0.2 to 0.5 and decreases with the plasticity index  
and void ratio. An average value of 0.3 is generally assumed. Similar 
equations were proposed by Robertson [ROB 09a, ROB 09b] and 
Rabarijoely et al. [RAB 13]: ܱܴܥ = 0,24 ቂ௤೟ିఙೡబఙೡబᇲ ቃଵ.ଶହ [6.29] 

ܴܥܱ = 0,28 ቂ௤೎ିఙೡబఙೡబᇲ ቃ଴.଼ଶ [6.30] 

According to Karlsud et al. [KAR 05], and taking into account the 
sensitivity, with a large scatter: ܱܴܥ = 	 (ܳ௧ 3⁄ )ଵ.ଶ଴	݂ݎ݋	ܵ௧ < 15 [6.31] 

and ܱܴܥ = 	 (ܳ௧ 2⁄ )ଵ.ଵଵ	݂ݎ݋	ܵ௧ > 15 [6.32] 

For SPT results for intact and fissured clays, the OCR is correlated with 
N by [KUL 90]: ܱܴܥ = 0.58. ܰ. ௔௧௠ߪ ⁄௩଴ᇱߪ 	ଶݎ	 = 	0.661 [6.33] 

From vane test results, for medium and soft clays we have  
[MAY 88]: ܱܴܥ = ௨ݏ)3.55 ⁄௩଴ᇱߪ )଴.଺଺	ܴ = 0.80 [6.34] 
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ܴܥܱ = ௨ݏ)4.31 ⁄௩଴ᇱߪ )	ܴ = 0.81 [6.35] 

Similar to [KUL 90]: ܱܴܥ = ௨ݏ)3.22 ⁄௩଴ᇱߪ )	ܴ = 0.806 [6.36] 

Marchetti [MAR 80] related the OCR to the horizontal stress index KD 
from the DMT as: ܱܴܥ = 0.2	ݎ݋݂	ଵ.ହ଺(஽ܭ0.5) ≤ ஽ܫ ≤ 2 [6.37] 

However, the coefficient 0.5 seems to depend on the soil type, such that 
[KUL 90]: ܱܴܥ =  ଵ.ହ଺ [6.38](஽ܭߚ)

with β = 0.27 for glacial tills, β = 0.35 for sensitive clays and β = 0.75 for 
fissured clays. 

From tests on Polish soils, Rabarijoely and Garbulewski [RAB 13] 
proposed a modified form: ܱܴܥ =  ஽ଵ.ଶ [6.39]ܭ0.48

This is an evolution of an earlier equation developed by Lechowicz and 
Rabarijoely [BAL 06] for organic Polish soils: ܱܴܥ =  ଵ.ସ଴ [6.40](஽ܭ0.45)

For the DMT, Cao et al. [CAO 15] proposed alternative correlations with 
the measured pressures: ܱܴܥ = 2 ቂ௣బିఙೡబସ.ଵଷఙೡబᇲ ቃଵ.ଵ଼ [6.41] 

and ܱܴܥ = 2 ቂ௣భିఙೡబସ.଻଻ఙೡబᇲ ቃଵ.ଵ଼ [6.42] 
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Consolidation 

7.1. Primary consolidation coefficient 

Carrier [CAR 85] suggested the following relationship between the 
primary consolidation coefficient cv and some physical parameters: ܿ௩	 = ൬ଶ଼.଺଻ூ೛ ൰ . {(1.192 ௖ିܣ	+ ଵ)଺.ଽଽଷ. (ସ.ଵଷହூಽାଵ)ర.మవ(ଶ.଴ଷூಽାଵ.ଵଽଶା	஺೎షభ)ళ.వవయ} [7.1] 

where cv is expressed in m2/year and Ac is the activity. 

This equation is valid for remolded clays. As remolding reduces ܿ௩	, the 
calculated values must be seen as a lower bound for intact clays. 

Sabatini et al. [SAB 02] correlated the consolidation coefficient with the 
liquid limit of the soil, as shown in Figure 7.1, taking into account the state 
of the soil. 

 

Figure 7.1. cv versus wL (adapted from [SAB 02]). For a color version  
of the figure, please see www.iste.co.uk/verbrugge/soils.zip 
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For clays exhibiting some anisotropy, the horizontal coefficient of 
consolidation ܿ௛ differs from the vertical one. As the latter is more currently 
and easily measured, it is possible to derive the former using the following 
equation: ܿ௛ = ܿ௩ ௞೓௞ೡ [7.2] 

Some values for the ratio 
௞೓௞ೡ are given in section 3.1 of Chapter 3. 

An approximation for ܿ௛  was presented by Robertson et al.  
[ROB 92], where ݐହ଴ can be obtained from a CPTu dissipation test: ܿ௛ = (1.67. 10ି଺)10(ଵି୪୭୥ ௧ఱబ) [7.3] 

7.2. Secondary consolidation coefficient 

The secondary compression index Cα is related to the long-term evolution 
for very plastic soils (wL > 100) and organic soils such as peats, after the 
hydraulic primary consolidation is completed. Only a few relationships are 
available, which are mostly related to ܥ௖ as a ratio: ܥఈ ௖ܥ = ⁄ܤ  [7.4] 

where: 

– for inorganic silts and clays, ܤ = 0.04; 

– for organic silts and clays, ܤ = 0.05	 ± 0.01; 

– for peats, ܤ = 0.06	 ± 0.01. 

For peats, B may increase up to 0.08 or even up to 0.1. More refined 
relationships are given, respectively, by Mesri [MES 73], Mesri and 
Godlewski [MES 77], Mesri and Castro [MES 87], Mesri [MES 94], which 
was reported by [ROB 15], and Mesri et al. [MES 97]: ஼ഀ஼೎	 = 1)	ݓ	0.01 +	݁௣) [7.5] 

஼ഀ஼೎	 = ଴.଴ସଵା	௘బ [7.6] 
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஼ഀ஼೎	 = 0.04	 ± ఈܥ [7.7] 0.01 ≈ ௩ᇱߪ)0.1 ⁄ܧ ఈܥ [7.8] ( =  [7.9] ݓ0.0001

where ep is the void index at the end of the primary consolidation and w is 
given in %. 

Monnet [MON 15] reported that the applied vertical stress influences the 
value of Cα, and suggested that: ܥఈ = ௭ᇱߪ)0.44 ⁄௢௘ௗܧ )(1 + ݁) [7.10] 

Secondary consolidation is negligible if the applied stress ݍ < ௣ᇱߪ0.8 . 
7.3. Consolidation of peats 

For peats, the primary settlement is almost negligible compared to the 
secondary one, and the equations given above are valid. However, peats are 
characterized by a high water content associated with an important 
percentage of organic matter. The major part of their deformational behavior 
results from the evolution under loading of these two elements. Based on 
laboratory tests on Netherlands peats, Den Haan [DEN 89] suggested a set of 
two correlations to estimate the ultimate settlement by taking this specificity 
into account: 

௪ூಽ೚ೞೞ = 27.7	 ቀ ఙᇲఙೌ೟೘ቁି଴.ସଷ଻ [7.11] 

and ∆௛௛ = (௪೔ି௪)௪೔ାଷ଻.ଵା଴.ଷ଺ଶ.ூಽ೚ೞೞ [7.12] 

where: 

– w is the water content after loading (%); 

 ;௜ is the initial water contentݓ –

– ILoss is the ignition loss after five hours at 550°C (%); 
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– σ′ is the effective stress applied to the peat; 

– h is the thickness of the peat layer; 

– ∆ℎ is the settlement of the peat layer. 

7.4. Degree of consolidation 

In Terzaghi’s theory, the degree of consolidation U for a constant initial 
excess pore pressure distribution with depth is calculated from a serial 
development depending on the time factor	 ௩ܶ . Some correlations between 
these two parameters may be useful. 

If the time factor is less than 0.2, corresponding to the degrees of 
consolidation under 0.50 (50%), the correlation of Terzaghi is very simple: 

ܷ = ටସ ೡ்గ = 1.128ඥ ௩ܶ [7.13] 

Other authors [ATK 78] have proposed equations valid in larger domains: ܷ = 1.155ඥ ௩ܶ [7.14] 

This is close to the previous one and valid for U < 0.33 (33%). For  
U > 0.33: ܷ = 1 − 0.67. 0.25)݌ݔ݁ − 3 ௩ܶ) [7.15] 

The following correlation is valid for 0 < U < 0.95, and the divergence 
from the theoretical solution does not exceed 1%: 

ܷ = ቂ ೡ்యೡ்యା଴.ହቃଵ ଺ൗ
 [7.16] 
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Coefficient of Earth Pressure at Rest 

To evaluate the coefficient of earth pressure at rest, Jaky [JAK 44] 
published the first relationship, which is still largely used today: ܭ଴ = 1 −  ᇱ [8.1]߮݊݅ݏ

However, slightly different values were later published by Fraser in 1957 
and Kezdi in 1962, reported by [VER 71] and [BRO 65]: ܭ଴ = 0,9ሺ1 − ଴ܭ ᇱሻ [8.2]߮݊݅ݏ = ൫1 + మయ߮݊݅ݏᇱ൯ ଵି௦௜௡ఝᇲଵା௦௜௡ఝᇲ [8.3] ܭ଴ = 0,95 −  ᇱ [8.4]߮݊݅ݏ

According to Kenney [KEN 59], cited in [VER 71], K0 depends on the 
plasticity index of soil: ܭ଴ = 0,19 +  ௣ [8.5]ܫ݃݋݈	0,233

All of these equations are only valid for normally consolidated soils and 
mainly for sands or sandy soils. For NC clays, Massarck [MAS 79] proposed 
that: ܭ଴ = ௉ܫ0.0042 + 0.44 [8.6] 
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The above correlations have been extended for cases of overconsolidation 
in a general form: ܭ଴ = ሺ1 − .ᇱሻ߮݊݅ݏ ሺܱܴܥሻఈ [8.7] 

where α = 0.5 according to Schmidt [SCH 66] or α = 0.46  ± 0.05 according 
to Jamiolkowski [JAM 79]. According to Mayne and Kulhawy [MAY 82], ܭ଴ = ሺ1 − .ᇱሻ߮݊݅ݏ ሺܱܴܥሻ௦௜௡ఝᇲ  [8.8] 

Higher values are sometimes found for cemented soils, which are also 
influenced by sensitivity. 

For practical applications, the last two equations often reduce to: ܭ଴ = 0.5. ሺܱܴܥሻ଴.ହ [8.9] 

Overcompaction of backfills or embankments partly induces 
overconsolidation, and horizontal stress can be two or three times the NC 
value of ܭ଴. 

From regression analyses of the results obtained from the laboratory and 
in situ tests, Kulhawy and Mayne [KUL 90] deduced the following three 
equations for CPT, CPTu and SPT, respectively: ܭ଴ = 0.10 ሺݍ௧ − ௩଴ሻߪ ⁄௩଴ᇱߪ ଶݎ	 = ଴ܭ [8.10] 0.816 = 0.24 Δݑଶ ⁄௩଴ᇱߪ ଶݎ	 = ଴ܭ [8.11] 0.827 = 0.073ܰ. ௔௧௠ߪ ⁄௩଴ᇱߪ ଶݎ	 = 0.771 [8.12] 

From the equation of Kulhawy et al. [KUL 90] that yields horizontal 
stress obtained from tests performed on sands in a calibration chamber, by 
combining CPT result and relative density, it is possible to deduce K0 as 
follows: ܭ଴ = ሺ௤೎ ఙೌ೟೘⁄ ሻభ.మఱଷହ൫ఙೡబᇲ ఙೌ೟೘⁄ ൯.௘௫௣ሺ஽ೝ ଶ଴⁄ ሻ [8.13] 
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Mayne [MAY 07] suggested another expression for K0 derived from CPT 
results of chamber tests on quartz sands: 

଴ܭ = 0.192൫ݍ௧ ௔௧௠ൗߪ ൯଴.ଶଶ ∙ ൬ߪ௔௧௠ ௩଴ᇱൗߪ ൰଴.ଷଵ ∙ ሺܱܴܥሻ଴.ଶ଻ [8.14] 

Based on DMT results, according to Marchetti [MAR 80]: ܭ଴ = ሺܭ஽ 1.5⁄ ሻ଴.ସ଻ − 0.6 [8.15] 

Kulhawy and Mayne [KUL 90] suggested the substitution of 1.5 in the 
above equation with β to obtain: ܭ଴ = ሺܭ஽ ⁄ߚ ሻ଴.ସ଻ − 0.6 [8.16] 

with β = 0.9 for fissured clays, β = 2.0 for sensitive clays and β = 3.0 for 
glacial tills. 

For organic soils, Lechowicz and Rabarijoely, cited in [BAŁ 06], 
suggested the following correlation: ܭ଴ = 0.32ሺܭ஽ሻ଴.ସ଼ [8.17] 

Based on both DMT and CPT results, Baldi et al.  
[BAL 86] suggested the following correlation: ܭ଴ = 0.376 + 	஽ܭ0.095 − ܾ. ௤೎ఙೡబᇲ  [8.18] 

where b = 0.00093 for artificial sands, b = 0.005 for seasoned sands and  
b = 0.002 for freshly deposited sands. 

For sands, an alternative correlation was suggested by [KUL 90]: ܭ଴ = 0.359 + 	஽ܭ0.071 − 0.00093 ௤೎ఙೡబᇲ  [8.19] 

as well as by Tuna et al. [TUN 08]. ܭ଴ = 0.376 + 	஽ܭ0.024 − 0.00172 ௤೎ఙೡబᇲ  [8.20] 
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Soil Compaction Tests 

9.1. Proctor tests 

Proctor tests are widely used to define compacting criteria in soil 
constructions such as roads, embankments and earth dams. Despite this, 
correlations giving the optimal values of water content and density have 
seldom been published. For the standard and modified Proctor tests, the 
published correlations link the optimal dry unit weight or dry density and 
water content to the liquid limit of the soil. Their validity of soil types is 
defined by a domain of wL values. Some authors have also mentioned 
correlations for the capillary pressure uc at optimum. In the equations 
presented in this chapter, the units are expressed as follows: % for w, t/m³ for 
ρ, kN/m³ for γ and kPa for uc. 

9.1.1. Standard Proctor test 

As order of magnitude for soils with 20 < wL < 100 is not recommended 
for design, Biarez and Favre [BIA 76] proposed that: ߛௗି௢௣௧ = 22.00 − ௢௣௧ݓ ௅ [9.1]ݓ0.01 = 3.00	 +  ௅ [9.2]ݓ0.35

The former equation was later modified by Biarez and Hicher [BIA 94] 
for non-plastic soils with ܦ଺଴ ⁄ଵ଴ܦ ≥ ௗି௢௣௧ߛ .10 = 22.00 −  [9.3] ܨ0.06
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where F is the percentage of particles finer than 0.08 mm. 

The correlations of Popovic and Sarac [POP 80] are valid for soils with 
25 < wL < 70: ߩௗି௢௣௧ = 	 ଶ.଻ଵ.ଶ଼ଷ	ା଴.଴଴଼ଵ଼௪ಽ [9.4] ݓ௢௣௧ = 8.14	 +  ௅ [9.5]ݓ0.257

According to Gress and Autret [GRE 02], for soils with wL values in the 
range of 20 and 60: ߩௗି௢௣௧ = 2.09 − ௢௣௧ݓ ௅ [9.6]ݓ0.00927 = 7.92 + 0.  ௅ [9.7]ݓ268

The largest validity domain is given by Fleureau et al. [FLE 02] for soils 
with 17 < wL <170: ߛௗି௢௣௧ = 21.00 − ௅ݓ0.113 + r²	௅ଶݓ0.00024 = ௢௣௧ݓ [9.8] 0.86 = 1.99 + ௅ݓ0.46 − r²	௅ଶݓ0.0012 = ௖ି௢௣௧ݑ [9.9] 0.94 = r²		௅ଵ.ଽ଼ݓ0.118 = 0.88 [9.10] 

9.1.2. Modified Proctor test 

Here, the only correlations are those from Fleureau et al. [FLE 02] for the 
same soil domain as for the SPO: ߛௗି௢௣௧ = 20.56 − ௅ݓ0.086 + r²	௅ଶݓ0.00037 = ௢௣௧ݓ [9.11] 0.77 = 4.55 + ௅ݓ0.32 − ଶ	௅ݓ0.0013 	r²=0.88 [9.12] ݑ௖ି௢௣௧ = r²	௅ଵ.଺ସݓ1.72 = 0.88 [9.13] 
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For mixtures of sands, kaolinite and montmorillonite, Acar and Nyeretse 
[ACA 92] related the capillary pressure (in kPa) at the optimum of the 
modified Proctor tests (OPM) to the plasticity index: ݑ௖ି௢௣௧ =  ௣଴,ହ଼ [9.14]ܫ69.7

9.2. CBR 

As shown in section 5.2.4, the CBR and the soil modulus are related: ܴܤܥ	ሺ%ሻ = ሻܽܲܯሺ	ܧ ⁄ܭ  [9.15] 

where K = 10 if CBR <10%, decreases beyond and a mean value of five is 
commonly used for compacted soils. A similar equation is given for ED 
based on the DMT: ܴܤܥ	ሺ%ሻ =  ஽ି଴.ସ଻ହ [9.16]ܧ	0.058	

with ED expressed in bars (1 bar = 100 kPa). 

If the compaction and the bearing capacity of an embankment are tested 
with a PANDA light dynamic penetrometer, the CBR is correlated with the 
dynamic tip resistance, as established by Gourves [in WEL 17]: ݈݃݋ሺܴܤܥሻ = 0.35 +  ௗሻ [9.17]ݍሺ݃݋1.057݈

with qd in MPa. 
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Unsaturated Soils 

Suction and moisture content significantly influence the properties, 
parameters and behavior of unsaturated soils. 

10.1. Suction 

Matrix suction, also simply called the suction, is a very important concept 
and parameter when dealing with unsaturated soils. It is defined as the 
difference between air and water pressures, with the latter being negatively 
related to the atmospheric pressure. Thus: ݑ௖ 	= ௔ݑ	  ௪ [10.1]ݑ	−	

In most practical cases, ua is close to σatm and is thus generally neglected. 

The suction varies with moisture content and is represented by the  
soil–water characteristic curve. Many equations have been published to 
describe this curve [FRE 94], and the most commonly used one is that of  
van Genuchten [VAN 80], which links soil volumetric water content θ and 
the suction: ߠ = ோߠ + ௌߠ) − ோ)ሾ1ߠ +  ௡ሿି௠ [10.2](௖ݑߙ)

Subscripts R and S, respectively, indicate residual and saturated moisture 
contents in % and the suction is expressed in cm of water column  
(1 kPa = 10 cm of water column). 
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α, n and m are parameters, n and m are dimensionless and α is expressed 
in cm−1. Vereecken [VER 89] derived correlations from simple test results of 
intact samples to obtain the following parameters: ߠோ = 	0.015 + ܫܥ0.005 + ଶܴ	ܥ0.014 = ௌߠ [10.3] 0.703 = 0.81 − 0.283ρ + ܱ. ଶܴ	ܥ1ܱܱ = (ߙ)݈݊ [10.4] 0.848 = −2.486 + 0.025ܵܽ − ܥ0.351 − 2.617ρ − ଶܴ	ܫܥ0.023 = 0.68 [10.5] ݈݊(݊) = 0.053 − 0.009ܵܽ − ܫܥ0.013 + 0.00015ܵܽଶ	ܴଶ = 0.56 

 [10.6] ݉ = 1 [10.7] 

where: 

– Sa is the sand content (50–2,000 µm) in %; 

– CI is the clay content (< 2 µm) in %; 

– C is the carbon content in %; 

– ρ is the bulk density in g/cm³. 

Currently, in situ suction measurements are performed at low depths  
(<  ±2 m) in agronomy, but very seldom deeper for construction purposes. In 
this domain, Terzaghi and Peck [TER 62] were the first to propose a 
correlation: ݑ௖	(ܽܲܯ) = 1,5(100	  ௥) [10.8]ܪ	−

where Hr is the relative humidity of the surrounding air in equilibrium with 
the soil (in %). The validity domain is within a temperature range of  
10–30°C and a relative humidity range of 70–100%. According to 
Verbrugge [VER 74], at 25°C and for Hr > 95%: ݑ௖	(ܽܲܯ) = 1,4(100	  ௥) [10.9]ܪ	−

The error is less than 3%. 



Unsaturated Soils     83 

10.2. Bishop’s coefficient 

The coefficient χ was introduced by Bishop [BIS 59] to derive effective 
stress from total stress and the suction: ߪᇱ = ߪ − ௔ݑ +  ௖ [10.10]ݑ߯

Although largely discussed, this formula remains widely used for 
practical purposes even though other equations, sometimes very close to this 
one, have been published [CRO 61, RUS 67, FRE 77]. 

The coefficient ߯ is not an intrinsic parameter but depends, for a given 
soil, on the moisture content or suction. 

Two correlations are mostly used because of their simplicity. The first 
proposed by Donald [DON 61] and the second by Aitchison [AIT 61]: ߯ = ܵ௥ [10.11] ߯ = 0.22 + 0.78ܵ௥ [10.12] 

The first overestimates σ’, and the error increases with the percentage of 
particles finer than 2 µm. The second is convenient for sands and silts, but 
leads to gross errors for clays. Moreover, as χ and Sr must be simultaneously 
equal to zero, it is not valid close to saturation. 

We have to keep in mind the large scatter observed between the values 
derived from these correlations and the experimental results. Based on tests 
on a loam, Verbrugge [VER 78] related χ to the suction by the relation: ߯ = 2.333	 −  [10.13] (௖ݑ)݃݋0.473݈

with uc expressed in cm of water column, and χ with a deviation less than 
0.05 if the suction is lower than 6 MPa. 

It is also often related to the formula proposed by Fredlund [FRE 78], but 
different from that of Bishop, by relating the parameter φb to χ by the 
relation: ݊ܽݐФ௕ =  ᇱ [10.14]߮݊ܽݐ߯
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Near saturation, χ is very close to 1, which, for practical purposes, may 
be convenient to adopt this value. Therefore, two domains must be 
considered for	߯,	as suggested by Loret and Kalili [LOR 00]: ߯ = 1	 for 	ݑ௖ <  ௖௔௘ [10.15]ݑ

and ߯ = ቀ௨೎ೌ೐௨೎ ቁ଴;ହହ	 for ݑ௖ >  ௖௔௘ [10.16]ݑ

where ucae is the suction at the air entry of the soil. This value depends on 
many factors, but corresponds to the limit of the quasi-saturated domain. 

10.3. Quasi-saturated domain 

In the quasi-saturated domain, saturated equations remain valid, but the 
pore pressure is negative. The limits were defined by Zerhouni [ZER 91] and 
related to the suction for soils containing at least 60% of particles smaller 
than 80 µm by the following relation (uc in kPa; wL and Ip in %): ݑ௖ ≤ ௅ݓ33 − ܴଶ	ℎݐ݅ݓ	522.4 = 0.836 [10.17] 

or ݑ௖ ≤ ௉ܫ48.9 − ܴଶ	ℎݐ݅ݓ	27.9 = 0.805 [10.18] 

10.4. Stress dependency of suction 

As discussed previously, the suction influences stress in the soil, but this 
is reciprocal and their interactions are complex. However, some authors  
have suggested a simple approximation for the isotropic stress increase 
[CRO 61]: ∆ݑ௖ = ߪ)∆ߚ − (௔ݑ ≈  [10.19] ߪ∆ߚ

 

 



Unsaturated Soils     85 

According to various authors, β is related to the plasticity index: 

– Croney and Coleman [CRO 61]: ߚ = ௣ܫ0.0231 + 0.007 [10.20] 

– Aitchison et al. [AIT 66]: ߚ =  ௣ [10.21]ܫ0.03

– and Russam [RUS 67]: ߚ = ௣ܫ0.027 − 0.12	݂݅	5 < ௉ܫ < ߚ [10.22] 40 = ௉ܫ	݂݅	0 < ߚ [10.23] 5 = 1	݂݅	40 <  ௉ [10.24]ܫ

For deviatoric stress states, Bishop [BIS 61] extended the above equation 
as follows: ∆ݑ௖ = ଷߪ)∆ሾߚ − (௔ݑ − ଵߪ)∆ଵߚ −  ଷ)ሿ [10.25]ߪ

where ߪଵ and ߪଷ are the major and minor principal stresses, respectively. 

This is similar to the empirical equation proposed by Skempton  
[SKE 54]. As a result of this similarity, ߚଵ	 = 0.33  for unconfined 
axisymmetric compression, but ߚ depends on the degree of saturation and 
drops very significantly for a small decrease in it. For instance, ߚ	0.3 ,0.5 =, 
0.2 and 0.15 for ܵ௥ = 95, 90, 80 and 50%, respectively [BLA 73]. 

10.5. Drying path of quasi-saturated soils 

As established by Fleureau et al. [FLE 02], it is possible to obtain the 
drying path by using the reference lines derived from those proposed by 
Biarez and Favre [BIA 75] for the compressibility of saturated soils  
(Figure 5.1): ݓ = ݁	ݎ݋		௅ݓ = ௦ߛ) ⁄௪ߛ ௖ݑ	ݎ݋݂	௅ݓ( = ݓ [10.26] 7݇ܲܽ = ݁	ݎ݋	௉ݓ = ௦ߛ) ⁄௪ߛ ௖ݑ	ݎ݋݂	௉ݓ( = 1000	݇ܲܽ [10.27] 
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After performing tests on 24 soils with 6 < IP < 110, [FLE 02] suggested 
the following for the wetting path: 

– From the SPO: 

௠௦ܥ = ሿ(௖ݑ)݃݋ሾ݈߂݁߂− = 0.029 − 	௅ݓ0.0018 + 5. 10ି଺	ݓ௅ଶ	ݎଶ	 = 0.97 

 [10.28] 

௠௦ܦ = ሿ(௖ݑ)݃݋ሾ݈߂ݓ߂− = −0.54 − 	௅ݓ0.030 + 3.3. 10ି଺	ݓ௅ଶ	ݎଶ	 = 0.85 

 [10.29] 

– From the MPO: ܥ௠௦ = ି௱௘௱ሾ௟௢௚(௨೎)ሿ = 0.0040 − 	ଶݎ		௅ݓ0.0019 = 0.74 [10.30] 

௠௦ܦ = ି௱௪௱ሾ௟௢௚(௨೎)ሿ = −1.46 − 	ଶݎ		௅ݓ0.051 = 0.40 [10.31] 

In equation [10.31], the low value of r2 indicates that there is no 
correlation. 

10.6. Capillary or apparent cohesion 

Unsaturated soils exhibit an additional cohesion ca due to capillary forces 
induced by the suction. A good estimation of it is given by [VER 83]: ܿ௔ = ߯. .௖ݑ  ᇱ [10.32]߮݊ܽݐ

In agronomy, field capacity (FC) is a widely used concept for moisture 
profiles of in situ top soils, where no groundwater complicates the profile. 
Although a true equilibrium is rarely or never reached, for practical 
purposes, FC is defined as the soil moisture content after infiltration when 
drainage has ceased. This induces the suction, and thus it is possible to 
approximate an in situ value of ca using the above equation and the uc value 
at field capacity. However, we have to keep in mind that rainfall reduces the 
suction and consequently the apparent cohesion. The common values of the 
suction at field capacity for Belgian and surrounding soils are given in  
Table 10.1. 
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Soil Suction at FC 
(kPa) 

Sandy soil 10 

Sandy loam 30 

Plastic loam 50 

Clay soil 100 

Table 10.1. Suction at FC [VER 08] 

10.7. Estimation of porosity and degree of saturation from 
compression wave velocity 

If undisturbed samples are not available, then the porosity and the degree 
of saturation of an unsaturated soil can be reasonably estimated from wave 
velocity measurements, as suggested by [WAT 72] and [CON 09], 
respectively: ݊ = 0.175݈݊ ௣ܸ + 1.56 [10.33] 

where ௣ܸ	is expressed in m/s ܵ௥ = 2 ଴.ହ௏೛మି௏ೞమ௏೛మି௏ೞమ  [10.34] 
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Cross Relations between  
In Situ Test Parameters 

11.1. CPT 

11.1.1. Correction factors and correlations between different CPT 
tests or parameters 

Mechanical or electrical cones may be used for performing CPT tests, 
and the results differ slightly for qc. According to [KUL 90], the following 
correlation is valid for Delft, Begemann and Gouda mechanical cones: ሺݍ௖ ⁄௔௧௠ߪ ሻா௟௘௖. = 0.47ሺݍ௖ ⁄௔௧௠ߪ ሻ௠௘௖௛.ଵ.ଵଽ ଶݎ	 = 0.965 [11.1] 

The difference is narrower for CPTu tests if the corrected tip resistance qt 
is used. 

The major difference between M1 and M4 mechanical cones is that the 
former has a sleeve behind the tip. The force measured for M1 cones is thus 
higher than for M4, which are in the ratio [NUY 95a]: ݍ௖	ெଵ ெସൗ	௖ݍ = ሾ9ܿ௨ + ሺ0	݋ݐ	10ሻܿ௨ሿ 9ܿ௨⁄ =  [11.2] 1.9	݋ݐ	1

More refined values of M1, M2 and M4 cone resistances versus electrical 
cone resistances for Belgian soils, according to Whenham et al. [WHE 04], 
are listed in Table 11.1 (V is the coefficient of variation). 
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Soil M point CPTM/CPTE V (%) 
Clay M1 1.23 8 

 M2 1.27 20 

 M4 1.08 13 

Sand M1 0.97 12 

 M2 0.9 11 

 M4 1.07 12 

Others M1 0.99 19 

 M2 1.01 19 

 M4 1.01 18 

Table 11.1. Ratios of mechanical to electrical cone resistances [WHE 04] 

It must be noted that fs is more influenced by the type of the cone, and the 
differences are sometimes affected by a factor up to 3. This may have a great 
influence on soil identification. 

Because of boundary effects, the field and calibration chamber values of 
qc often differ. Jamiolsky et al. [JAM 85] suggested the following 
relationship for sands: ݍ௖ሺܿℎܾܽ݉݁ݎሻ = ௖ሺ݂݈݅݁݀ሻݍ ⁄௤ܭ  [11.3] 

with ܭ௤ = 1 + ሺܦ௥ − 30ሻ 300⁄  [11.4] 

When the local sleeve friction is not measured, correlations can be 
derived from the tip resistance. 

For cohesionless quartz sands (Carpentier in [NUY 95b, p. 9]): 

௦݂ = ௖ݍ 200ൗ 	 for ݍ௖ ≥  [11.5] ܽܲܯ20

௦݂ = ௖ݍ 150ൗ 	 for ݍ௖ ≤  [11.6] ܽܲܯ10

Intermediate values can be obtained by a linear interpolation. 
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For cohesive soils with a small rigidity index [NUY 95b]: 

௦݂ = ௖ݍ 15ൗ  [11.7] 

and for stiff clays: 

௦݂ = ௖ݍ 36.6ൗ  [11.8] 

For alluvial clays, expressed in kPa [TOG 15]: 

௦݂ = ௩ᇱሾ0.106ሺߪ0.4 ௦ܸଵ.ସ଻ሻ ⁄௩ᇱߪ ሿ଴.଼ [11.9] 

௦݂ =  ௖଴.ହ [11.10]ݍ

11.1.2. CPT and DPT 

Dynamic probe testing (DPT) is a kind of penetrometer that is commonly 
used in some European countries and elsewhere in the world. For the CPT, 
the number of different cones is rather limited and testing processes vary 
little, but their variability is large for the DPT. Therefore, it is of paramount 
importance to know the device and the process used for the tests before 
attempting any interpretation of results. Therefore, only if this information is 
available should the correlation given here be regarded as evaluations. As a 
first rule of thumb: ૙. ૜ ≤ ࢊࢗࢉࢗ ≤ ૚. [11.11] 

According to Pilot [PIL 83], the most frequent value of the ratio is 1, 
except for sandy clays and clayey sands, where 0.5 < a < 0.9 indicates above 
the water table and 0.1 < a < 0.4 indicates below the water table: ௤೎௤೏ = ܽ [11.12] 

This differs from the values recommended by Waschkowski [WAS 82]:  
a = 1 for NC clays, silts and muds, loose and low dense sands, 0.5 < a < 1 
for OC clays and silts and 1 < a < 2 for dense to very dense sands, silty 
sands, clayey sands and gravels. 
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The values recommended by Cassan [CAS 88] are in close agreement 
with those of Pilot, which are given by: ݍௗ = ௖ݍ	ܽ + ܾ [11.13] 

where a = 0.93 for clayey sands, 0.79 for clayey silts, 0.4 for saturated sands 
and gravels, and 0.3 for silty sands and sandy silts; b is zero except for 
clayey sands, where b = 1.88 MPa. 

11.1.3. CPT and PMT 

Many authors have suggested correlations between the CPT tip  
resistance and the limit pressure of PMT. All of these present the same 
general form: 	ݍ௖ ௟ൗ݌ 	ݎ݋	 	ሺݍ௖ − ௩଴ᇱߪ ሻ ሺ݌௟ − ௩଴ሻ൘ߪ =  [11.14] ߚ	

As demonstrated by Van Wambeke [VAN 75], whether '
voσ 	and voσ   

are taken into account or not, no significant difference is observed  
because of the scatter of measurements. Therefore, they are generally 
neglected. 

Vaillant and Aubrion [VAI 14] analyzed the values recommended by 
different authors for the ratios qc/pl and EM/qc. They synthesized the domain 
that corresponded to each type of soil and concluded with a proposal of 
mean values (Tables 11.2 and 11.3). 

Soil type ࢉࢗ ⁄࢒࢖ ࡹࡱ   ⁄ࢉࢗ  
Clay 1–5.3 1–8 

Loam 1–7 0.5–4.9 

Sand and 
gravel 5–12 0.3–2 

Chalk 2.8–3.5 1–2 

Table 11.2. Dispersion of values from various authors according to [VAI 14] 
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Soil type ࢉࢗ ⁄࢒࢖ ࡹࡱ  ⁄ࢉࢗ  
 Mean St. Dev. Mean St. Dev. 

Clay 3.1 0.7 4.3 0.6 

Loam 5.4 0.8 2.5 0.7 

Sand and gravel 9 1.1 1.1 0.3 

Chalk 3.2   1.5   

Table 11.3. Mean values according to [VAI 14] 

As a rule of thumb, [VAN 75] suggested that qc/pl is equal to 3  
for clays, 6 for loams and 9 for sands. Vaillant and Aubrion [VAI 14] 
proposed to include EM/qc = 1.5–3 for sands and 4.5–6 for clays. 

Results on alluvial sandy gravels near to the river Meuse in Belgium 
show two linear correlations [NUY 77]: ܧெ	௠௔௫ = ௖ݍ	0.585 + 10	ݎ݋݂	4.9 ≤ 	௖ݍ ≤ ௠௜௡	ெܧ [11.15] ܽܲܯ	60 = ௖ݍ	0.583 − 10	ݎ݋݂	5.833 ≤ 	௖ݍ ≤  [11.16] ܽܲܯ	70

11.1.4. CPT and DMT 

Robertson [ROB 09a, ROB 09b] established that the horizontal earth 
pressure index KD is correlated with qc and thus proposed that: ܭ஽ = 0.8 ቀ࢜࣌ିࢉࢗబ࢜࣌బᇲ ቁ଴.଼ [11.17] 

or ݍ௖ = ௩଴ᇱߪ1.25 . ஽ଵ.ଶହܭ +  ௩଴ [11.18]ߪ

and different equations: ܭ஽ = 2.1 ቀ௤೎ିఙೡబఙೡబᇲ ቁ଴.ସ [11.19] 

 



94     Geotechnical Correlations for Soils and Rocks 

or ݍ௖ = ௩଴ᇱߪ0.45 . ஽ଶ.଴ܭ +  ௩଴ [11.20]ߪ

As a first evaluation, Togliani et al. [TOG 15] proposed, for qc and  
Qt (units: kPa): ݍ௖ = 6.6ሺ݌ଵ − ܴܥܱ	݂݅	஽଴.ଷହܭ଴ሻ݌ < ௖ݍ [11.21] 4 = 3.3ሺ݌ଵ − ܴܥܱ	݂݅	஽଴.ଶܭ଴ሻ݌ ≥ 4 [11.22] ܳ௧ = ஽ܫ	݂݅	஽ଵ.଻ܭ ≤ 1.8 [11.23] ܳ௧ = ஽ܫ	݂݅	஽ܭ஽ܫ9 > 1.8 [11.24] 

also: 

௦݂ = ሺ݌ଵ −  ଴ሻ଴.଺଼ [11.25]݌

11.1.5. CPT and SPT 

Since 1951, when Huizinga [HUI 51] suggested a value of 4 for the ratio 
of qc to the N blow count from the SPT, numerous values have been 
proposed, which largely vary depending on the soil type. Verbrugge  
[VER 76] compiled these values and they are listed in Table 11.4. From this 
and based on some theoretical considerations, he established the following 
equation by expressing the ratio qc/N as a function of the depth and the soil 
type that is taken into account via the local friction coefficient fs: ݍ௖ ܰ	ൗ = 	9350 + ݖ225.7 ሾሺ10.7 + ோሻሺ70.5ܨ825 + ሻሿൗݖ6.3  [11.26] 

The units are expressed as bar (= 100 kPa) for qc and m for z. The values 
of FR related to the soil type are given in Table 11.5. The ratios qc/N 
calculated from equation [11.26] are in good accordance with those given in  
Table 11.4. 
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qc/N Soil type Reference 

2 Clay [SCH 57] 

  Silt, sandy silt [SCH 70b] 

  Clayey silt, silty clay [DES 74] 

3 Clay, silt, silty sand [BEL 67]  

  Dense sand, clay, shale [CAQ 66]  

  Silty clay [SAN 65] 

4 Silty sand, sand [MEY 56]  

  Middle sand, silt [CAQ 66]  

  Fine sand, silty sand [MEI 61]  

  Sandy clay [SAN 65] 

5 Fine to middle sand [ROD 61]  

  Loose sand [CAQ 66]  

  Grove sand, gravel sand [SCH 70b] 

  Sandy silt [SAN 65] 

6 Clayey sand [SAN 65] 

Table 11.4. Ratio ݍ௖ ܰ	ൗ according to various authors [VER 76] 

Soil type FR qc/N 
Clay, peat >0.04 2 

Silt 0.025< – < 0.04 3 

Fine silty sand 0.017< – <0.025 3–4 

Sand 0.012< – <0.017 4–5  

Grove sand 0.007< – <0.012 5–8 

Gravel < 0.007 > 8 

Table 11.5. Range of the ratio ݍ௖ ܰ	ൗ related to the soil type 

For characterizing the soil type instead of FR, Robertson et al. [ROB 83] 
proposed the relationship between the ratio of CPT to SPT and the mean 
grain diameter passing at 50% (Figure 11.1). 
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Figure 11.1. CPT–SPT ratio related to the grain size, adapted  
from [ROB 83] and the curve of equation [11.27] 

As a result of a regression analysis of the points shown in Figure 11.1: ሺݍ௖ ⁄௔௧௠ߪ ሻ ଺ܰ଴⁄ = ଶݎ	ହ଴଴.ଶ଼ܦ75 = 0.858 [11.27] 

This is different from the one by Kulhaway and Mayne [KUL 90]: ሺݍ௖ ⁄௔௧௠ߪ ሻ ܰ⁄ = ଶݎ	ହ଴଴.ଶ଺ܦ5.44 = 0.702 [11.28] 

The values derived from this equation are less than those obtained from 
Figure 11.1. 

Also: ሺݍ௖ ⁄௔௧௠ߪ ሻ ܰ⁄ = 4.25 − ܨ 4.6ൗ ଶݎ	 = 0.414 [11.29] 

where F is the percentage passing on a No. 200 sieve, with  
D = 74 µm. 
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First, the low value of r2 indicates a very poor correlation. Second, if F 
vanishes, the CPT–SPT ratio has an upper limit of 4.25 compared to the 
values up to 10 and above, as given in Table 11.4. 

For very loose soils, the N values are often underestimated because of the 
effects of the weight of rods and accessories, resulting in overestimated 
values of qc. Because of this and the low repeatability of the SPT, some 
authors such as [JEF 93] and [ROB 12] have suggested replacing N with N60 
and characterizing the soil by the SBT index. Their equations are, 
respectively, given by: ሺݍ௖ ⁄௔௧௠ߪ ሻ ଺ܰ଴⁄ = 8.5	ሾ1 − ௖ܫ 4.6⁄ ሿ [11.30] 

and ሺݍ௖ ⁄௔௧௠ߪ ሻ ଺ܰ଴⁄ = 10ሺଵ.ଵଶ଺଼ି଴.ଶ଼ଵ଻ூ೎ሻ [11.31] 

The last equation may overestimate N60 for fine-grained sensitive soils. 

11.2. PMT 

11.2.1. PMT and DPT 

Waschowski [WAS 82] proposed values for the ratios of DPT to PMT 
depending on the soil type: ݍௗ ௟௠ൗ݌ = ܽ [11.32] 

and ݍௗ ௠ൗܧ = ܾ [11.33] 

where for: 

– NC clays, silts and muds, loose and low dense sands: 1.4 < a < 2.5 and 
0.1 < b < 0.3; 

– OC clays and silts: 3 < a < 5 and 0.2 < b < 0.4; 

– dense to very dense sands, silty sands, clayey sands, gravels: 5 < a < 10 
and 0.4 < b < 1.5. 
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Depending on the soil type, two correlations were proposed by Zhou 
[ZHO 97]: 

– For loams: 6 = ௗݍ ሺ݌௟௠ − ⁄௛ሻߪ  [11.34] 

– For clays: ૝. ૟ = ࢊࢗ ሺ࢓࢒࢖ − ⁄ሻࢎ࣌ . [11.35] 

For clays, Pilot [PIL 83] suggested a slightly lower value between 3 and 4. 

11.2.2. PMT and DMT 

For clays, Schmertmann in [MAR 01] suggested as a first evaluation: ݌଴ ௅ൗ݌ = 0.8 [11.36] 

and ݌ଵ ௅ൗ݌ = 1.2 [11.37] 

A value closer to 1.25 was later proposed by Kalteziotis et al. [KAL 91], 
who also suggested that: ܧெ௉் =  ஽ [11.38]ܧ	0.4

11.2.3. PMT and SPT 

Some published correlations between the pressuremeter modulus and  
N values are of the general form: ܧெ ௔௧௠ൗߪ = ܽܰ௕ [11.39] 

where a = 20.215 and b = 0.6253 for a fitting of data from Martin [MAR 77], 
a = 19.3 and b = 0.63 for clays and a = 9.08 and b = 0.66 for sands from 
[OHY 82]. All data present a large scatter as seen for the last two: r2 < 0.5. 
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According to Pilot [PIL 83], with units expressed as MPa: 

଺ܰ଴ ሺ݌௅ − ௩଴ሻൗߪ = ܽ [11.40] 

and 	 ଺ܰ଴ ெൗܧ = ܾ [11.41] 

For different soils: 

– clays: 15 < a < 20 and b = 1–1.5; 

– silts: a = 30 and b = 3; 

– sands: a = 20 and b = 1.5–2. 

Extended ranges of a and b values, including those of Pilot, were 
established by Monnet [MON 15]. 

Soil type a b 
Clay 15–30 1–2.5 

Silt 30–35 2.5–3 

Sand 15–25 1.5–3 

Marl 20–25 1.5–2.5 

Chalk 5–20 0.7–1 

Table 11.6. a and b values according to [MON 15] 

11.3. DMT 

11.3.1. DMT and SPT 

The DMT is a more reliable test than the SPT, so values hereunder must 
be taken for evaluation. 

From tests on sandy sites, Tanaka and Tanaka [TAN 98] suggested that: 

ௌܰ௉் =  ሻ [11.42]ܽܲܯሺ	஽ܧ	0.4
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According to [ISS 01], with the unit expressed as MPa: 

ௌܰ௉் = ஽ெ்ܯ 3⁄ = ܴெܧ஽ 3⁄  [11.43] 

From tests on sandy sites in the USA and Italy and from back 
calculations, with some scatter [SAB 02]: ܧ஽ ௔௧௠ൗߪ = 0.22	ܰ଴.଼ଶ [11.44] 

11.4. SPT 

11.4.1. SPT and DPT 

Cassan [CAS 88] reported correlations established by Waschkowski 
between these two dynamical tests and depending on the soil type: ݍௗ	ሾܽܲܯሿ = ܾ	 ௌܰ௉் [11.45] 

where b = 0.2 for overconsolidated clays and loams, b = 0.3 for sandy clays 
and loams, b = 0.4 for sands and b = 0.8 for gravelly sands. 

11.5. PANDA dynamic penetration test 

The “PANDATM” test is a light dynamic penetration test with variable 
energy commonly used in some Western European countries (France, 
Belgium, etc.) in the field of roads and highway construction. It allows 
control of the compaction and the bearing capacity of backfills and 
embankments up to a depth of 3–5 m. This specificity explains this separate 
treatment. 

11.5.1. PANDA and CPT 

The correlation has the same formulation as that between the CPT and the 
DPT: ݍௗ ௖ൗݍ = ܽ [11.46] 
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For sandy silts or silty clays, 1.0 < a < 1.1 for an electric tip [CHA 03, 
WEL 17] and a = 1.0 for a Gouda 20 kN penetrometer [ZHO 97]. 

11.5.2. PANDA and DPT 

From comparisons with some heavy DPT, Welter et al. [CHA 03,  
WEL 17] concluded that: 0.93 < ௣௔௡ௗ௔	ௗݍ ஽௉்ݍ < 1.02⁄ . [11.47] 

11.5.3. PANDA and PMT 

For loamy and clayey soils from [ESC 94, WEL 17]: 3.7 < ௗݍ ௅݌ < 4.2⁄ . [11.48] 

A good approximation is thus ݌௟ = ௗݍ 4ൗ  [11.49] 

11.5.4. PANDA and VST 

Correlations between PANDA and VST depend on whether the tests have 
been performed in the laboratory or the field [ESC 94, CHA 03]: 

– From laboratory tests: ݍௗ = 11.4	ܿ௨ [11.50] 

– From field tests: ݍௗ = 20.9	ܿ௨ [11.51] 

The scatter is important, and the lateral friction on rods has a significant 
influence. Therefore, it is commonly agreed that [WEL 17]: 

12 < 	ௗݍ ܿ௨ < 20⁄  [11.52] 
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Rocks 

12.1. Introduction 

“Rocks” are multi-scale materials with associated representative 
elementary volumes (REVs) 1  at millimetric scales (crystals), centimetric 
scales (rock material, rm) and metric or other scales (rock mass, RM). 

At each scale, the properties of a “rock” depend on the properties of its lower 
scale constituents as well as on the properties of discontinuities between them. 
Hence, rock mechanics is defined as “non-continuous materials mechanics”2: 

– The properties of a mineral depend not only on the mineralogical 
characteristics of the intact crystal but also on discontinuities, for example 
dislocations, glide, cleavage, twinning, micro- and nano-fissures, etc. This 
scale is increasingly being researched (micro- and nano-mechanics) but has 
not been used in daily engineering practices until now; hence, it will not be 
considered here. 

– The properties of a rock material depend on those of the constituting 
minerals and fluids as well as on the properties of discontinuities, for 
instance fabric (texture, structure), porosity, microfissuration, etc. 

– The properties of rock mass depend on those of a rock material as well 
as on the characteristics of joints, for example stratification, schistosity, 
diaclases, fractures, faults, etc. 

                                       
1 The smallest volume over which a measurement can be made, which is representative of the 
whole [HIL 63]. 
2 Rock mechanics is “The scientific discipline that studies the response of jointed rocks when 
subjected to forces”. L. Müller and F. Pacher; broadcast interview 24 May 1962. 

Geotechnical Correlations for Soils and Rocks, First Edition.
Jean-Claude Verbrugge and Christian Schroeder.
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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In addition, different parameters do not necessarily react in the same way 
as the variations of a “geological” characteristic. 

For example, in a stratified rock material, the unconfined compressive 
strength (UCS) is maximum when the load is applied perpendicularly to the 
stratification, whereas Young’s modulus, E, and the sonic velocity, Vl, are 
minimum. 

Therefore, it is difficult to provide relationships between different 
properties of a rock material or mass even though sharing the same REV. 

The use of relationships that do not take into account the “geological” 
and “discontinuous” dimensions, which are not necessarily compulsory in 
soil mechanics, is thus extremely hazardous and can lead to serious errors. 

If the “geological” dimension is not considered, scattering can be huge 
and the resulting correlation can be misleading, especially when the results 
are presented in the form of interpretations (regression curves or equations) 
(Figure 12.1). In all cases, it is important to know the coefficient of 
correlation, R (or r), or the coefficient of determination, R2 (or r2). 

Even when the geological dimension is considered, the amount of causes 
of scattering is so important that, except in cases of homogeneous, isotropic, 
unweathered, non-fissured rock on the same lithology, the correlations must 
be considered with a critical look. 

This is perfectly noted by Aydin [AYD 15] in the ISRM “Orange Book” 
[ULU 15]: 

“…it becomes obvious that correlations should ideally be 
established for a given rock type whose response falls within a 
single response domain. Nonlinear correlations simply indicate 
significant microstructural changes in that seemingly identical 
rock type…. When the aim is to derive a generic correlation 
function involving a large group of rock types (e.g. carbonates, 
mudrocks) it is essential to ensure that there are no large gaps 
across the entire range and all distinct microstructural varieties 
of each rock type are represented”. 
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In contrast, the as-complete-as-possible description of the rock can lead 
to the distinction between rock classes and to a considerable reduction in the 
scattering [SCH 75]. 

 

Figure 12.1. The regression curve or its equation (a) sometimes does not reflect the 
scattering of the results, as shown in (b), mainly due to geological conditions that are 
not taken into account periodically. It is dangerous to trust the (a) model without 
seeing (b) (adapted from Moroney [MOR 51], cited in [COR 90]) 

However, considering the role of constituents and discontinuities, it is 
possible to improve the value of the interpretation of laboratory or field tests 
by taking into account the “geological” characteristics. 

For a rock material, the correlations between the results of different types 
of test performed on the same lithological type, in order to determine the 
same characteristic (modulus, strength, etc.), are often (but not always) 
more reliable because they only present different approaches to obtain the 
required parameter on a given rock. 

For rock masses, in situ measurements are the best way to obtain the 
information (if tests are correctly processed). Indirect methods can be used if 
there is a lack of in situ tests or in order to confirm the range of the results. 
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The “rock” part presented in this book considers three REV scales: 

– fundamental properties of intact minerals; 

– rock materials (rm); 

– rock masses (RM). 

12.2. Fundamental properties of intact minerals 

For geomechanical purposes, the main properties of minerals such as 
density, hardness and elastic properties are considered. The strength in itself 
is kept in the background. 

Hardness is usually given by Mohs’ arbitrary relative scale. There are 
other units of hardness based on mechanical measurements. The Vickers 
hardness is commonly used in mineralogy. 

As the Vickers hardness scale is more extended than the Mohs’ one, it is 
able to characterize the minerals more accurately and to make a clear 
distinction between them. 

Therefore, using the Vickers hardness, it is possible to describe 
(obviously, in an approximate way) the mineralogical composition of a rock 
using only one figure. This parameter is called the “weighted average 
hardness” (WAH). Similarly, another parameter is defined using the Vickers 
hardness of constitutive minerals, that is, the “hardness contrast” (Hc). They 
are defined as follows [TOU 71b]: ܹܪܣ = ∑ ܿ௜	. ܸℎ௜௜ ܿܪ [12.1]  = ∑ ܿ௜	. |ܸℎ௜ − ܸℎ௕|௜  [12.2] 

where Vhi is the Vickers hardness of the ith mineral in the rock, ci its 
proportion and Vhb is the Vickers hardness of the most present mineral. 

The elastic properties considered here are as follows: 

– Young’s modulus (the elastic modulus, not the tangent one); 

– Poisson’s ratio; 

– seismic wave velocities: compression wave, “sonic”, Vp (or Vl) and 
shear wave Vs (or Vt). 
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Table 12.1 summarizes the values of density, hardness indices and the 
four elastic parameters for the major minerals. 

Minerals Density Hardness Young’s 
modulus

(GPa) 

Poisson’s 
ratio 

Velocity of seismic 
waves 

  Mohs Vickers
(kgf/mm2)

  Compression 
Vp (km/s) 

Shear  
Vs 

(km/s) 
Plagioclase 
(Albite) 2.62 6.3 700   5.69  

Amphibole 3.25 5.5 650 128.8 0.28 7.21 3.99 

Apatite 3.2 5 600     

Augite 3.4 5.5 650 143.7 0.24 7.20 4.17 
Biotite 3 2.8 90 69.6 0.25 5.13 2.98 
Calcite 2.71 3 110 81 0.28 6.66 3.39 

Chlorite 2.7 2.5 730   6.50  

Corundum 4 9 2,080     

Diamond 3.51 10 10,000 1,050 0.1–0.2 18  

Dolomite 2.87 3.7 210   7.10  

Epidote 3.3 6.5 730 154.2 0.26 7.42 4.25 

Fluorite 3.2 4 200   6.03  

Galena 7.58 2.5 80 71.7 0.3 3.58 1.92 

Gypsum 2.3 2 70     

Hornblende 3.3 5.5 730   7.08  

Magnetite 5.17 6.0 1,100 230.8 0.26 7.41 4.20 
Muscovite 2.9 2.8 90 78.9 0.25 5.01 3.36 
Olivine 3.3 6.7 820 200.1 0.24 8.40 5.16 
Orthoclase 
feldspar 2.54 6 720 67.2 0.27 5.69 3.26 

Plagioclase 
(Oligoclase) 2.7 6.3 700 80.8 0.28 6.26 3.45 

Pyrite 5 6.3 1,050   7.41  

Pyroxene 3.5 5.5 650   7.30  

Quartz 2.65 7 1,200 96.4 0.2 6.03 4.11 

Talc 2.7 1 20     

Topaz 3.5 8 1,600     

Table 12.1. Values of physical and elastic properties of main minerals 
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Data are obtained from various sources: Taylor [TAY 49], Alexandrov  
et al. [ALE 66], Tourenq [TOU 66], Calembert et al. [CAL 81a] and 
Shuvalov [SHU 88]. 

It should be noted that measurements on crystals are extremely delicate and 
that the values given by different authors could slightly differ. The values 
presented here are a practical “isotropic” average order of magnitude. 

12.3. Rock material (rm) 

rm is composed of minerals of a given size, disposed in a given way 
(texture, including anisotropy) and including different voids: pores and 
(micro)fissures. 

The behavior of rm thus depends on these parameters. Correlations between 
mechanical and physical properties must take all of them into account. 

Ideally, a mechanical property of an rm can be expressed as: ܲ = ܽ	. ܶ݉ + ܾ	. ݏܶ + ܿ	. ݐܶ + ݀	. ܶ݀+. . .. [12.3] 

where: 

– P is the considered property; 

– Tm, Ts, Tt, Td, etc. are the values of several parameters: mineral 
composition, size, texture, voids (pores and fissures), etc.; 

– a, b, c, d, etc. are empirical or theoretical factors. 

This expression is rarely possible, but the following example shows how 
correlations can be made. 

Le Berre [LEB 75] established a relationship between the traction 
strength (measured by the Brazilian test) and the mineralogical 
characteristics of a series of silicate rocks: log(ܴ௧ − 40) = 0.7	 ∑ ܿ௜ log ܸℎ௜ − 0.4	log	(∅௠) − 0.29	݊௙ + 1.18௜  [12.4] 

where Rt is the traction strength in kgf/cm2 and, for the ith mineral, Vhi is the 
Vickers hardness in kgf/mm2, ci is the volumic proportion, øm is the average 
grain size in microns and nf is the porosity induced by fissures. 
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In this chapter, some correlations between parameters and lithology and 
mechanical parameters of rock materials (cores or aggregates) will be 
presented. As this chapter does not aim to explain in detail, only some main 
parameters will be considered. 

12.3.1. UCS 

12.3.1.1. Relationship between UCS and mineralogical composition 

For “intact” rocks, that is, in which no void (mostly no microfracture) is 
present, the strength depends on the mineralogical composition and the 
texture, especially when phyllitic materials are present. 

An attempt to establish the correlation between mineralogical 
composition and UCS was made by Polo-Chiapolini [POL 74] and 
Calembert et al. [CAL 80, CAL 81b] for several rocks types (Figure 12.2). 
All experimental factors were identical (orientation of load vs. stratification, 
size of samples, loading rate, moisture content, device, etc.). The 
mineralogical composition is given by the parameter WAH that clearly 
distinguishes the different lithological compositions. 

 

Figure 12.2. Correlation between UCS and WAH (adapted from [CAL 81b]).  
For a color version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 
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For limestones, all the tested samples are composed of only calcite, and 
the UCS values are not correlated with mineralogy. The UCS varies between 
25 and 230 MPa, which is the same value as that of the WAH. This is 
explained by another geological factor: the intensity of microfissuration. 

For carbonate sandstones, the increase in the amount of quartz shows a 
quasi-linear relationship with UCS, except for small values where the effect 
of microfissuration is important. 

For sandstones with “clayey” cement, a nonlinear relationship exists; in a 
domain limited by two curves, the difference between them depends on the 
intensity of microfissuration [POL 74]. 

So, even if mineralogy is an important factor, its influence on the UCS 
can be hidden by other geological or experimental factor. 

12.3.1.2. Relationship between UCS and microfissuration 

The intensity of microfissuration can be estimated by the “continuity 
index”, CI [TOU 71a], based on Hill’s theory [HIL 63]: an elastic constant 
of a multi-crystalline material in an (weighted) average (in practice, 
arithmetic) of those of its constituents. For instance, 

௣ܸ	௧௛௘௢௥௘௧௜௖௔௟ = 	∑ ܿ௜	. ௣ܸ	௜௜  [12.5] 

where Vp theoretical is the velocity of compression waves deduced from Hill’s 
theory. 

Vp I is the velocity of compression waves of the ith constitutive mineral 
and ci its proportion. 

The “continuity index”, CI, is the ratio between the theoretical value and 
the measured one: ܫܥ = 100	. ௏೛	೘೐ೌೞೠೝ೐೏௏೛	೟೓೐೚ೝ೐೟೔೎ೌ೗ [12.6] 

where Vp measured is the measured velocity of compression wave in the sample. 
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CI indicates the proportion of pores and fissures in the total porosity and 
thus the degree of microfissuration: ܫܥ = 100 − 1.6	݊௣ − 22	݊௙ [12.7] 

where n is the total porosity, np is the porosity due to pores and nf is the 
porosity due to fissures. 

12.3.1.3. Relationship between UCS and traction strength 

A good way to check whether the results of compression (UCS) and 
traction (Rt) tests are coherent is to use the Griffith criterion [GRI 24] in a 
large sense. If ௎஼ௌோ೟ ≈  [12.8] 12	݋ݐ	8

it is highly probable that there is no discrepancy. 

Using a large database of French rocks, Serratice and Durville [SER 97] 
obtained an average ratio of 10. 

12.3.1.4. Relationship between UCS and porosity 

For high-porosity carbonate rocks (chalks and high porosity limestones), 
in the case of purely porous materials (no microfissuration), the UCS is 
correlated with a dry density, as shown in Figure 12.3. After eliminating the 
values which are obviously two low, the relation is written as: ܷܵܥ = ߩ	29 − 36	(ܴଶ = 0.64) [12.9] 

with UCS in MPa and ρ in 103 kg/m3. 

However, for a given density, the UCS value could vary in a ratio of 1 to 2. 

If all types of carbonate rocks are considered, with a density up to  
2.7 103 kg/m3, the relation, shown in Figure 12.4, becomes ܷܵܥ = 0.08	݁ଶ.଼଼	ఘ	(ܴଶ = 0.90) [12.10] 

Although this correlation looks fine (R2 = 0.90), caution has to be taken 
for high values of density because, as expected, for high densities, the effect 
of (micro)fissuration becomes dominating. 
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Figure 12.3. Relationship between UCS and dry density, ρ, of an intact rock for six 
types of UK and France chalks (adapted from Duperret et al. [DUP 05]) and with the 
addition of data of carbonate rocks (blue-gray circles) from Datarock (database on 
rock and aggregate laboratory tests by the Laboratoire central des Ponts et 
Chaussées [DUR 91]) – density limited to 2.1. For a color version of the figure, 
please see www.iste.co.uk/verbrugge/soils.zip 

For other rocks, the relationship is less evident [DEE 66], which results 
from the major importance of microfissuration on the strength of a rock 
while the amount of porosity induced by microfissuration remains small. 

However, some data are reported by [FJÆ 08]. 

For sandstone, the upper bound of the UCS (in MPa) is [PLU 94] ܷܵܥ = 357	(1 − 2.8	∅) [12.11] 

where ø is the porosity. 
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Figure 12.4. Relationship between UCS and dry density, ρ, for carbonate rocks 
(adapted from Duperret et al. [DUP 05] and Serratice and Durville [SER 97]).  

For a color version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 

For North Sea chalk, Andersen, Havmøller, Foged and Engstrøm, cited in 
[FJÆ 08], gave (UCS in MPa): ܷܵܥ = 174	݁ି଻.ହ଻	∅ [12.12] 
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For shales, Lashkaripour and Dusseault [LAS 93] gave the following 
relation: ܷܵܥ = 193	∅ିଵ.ଵସ [12.13] 

with UCS in MPa and ø in %. 

12.3.1.5. Relationship between UCS and E 

The UCS is well correlated with Et (tangent modulus). This relation 
reflects the fact that the deformation at rupture is more or less constant with 
an order of magnitude of 2.10−3 to 4.10−3. 

This value is in accordance with the values of the modulus ratio 
(MR = Et/UCS of intact rock) given by Deere [DEE 68] and Palmtröm and 
Singh [PAL 01] that ranges from 200 to 500, with an average of about 400. 

The relationship between Deere and Miller [DEE 66], for all types of 
lithologies, is in imperial units (UCS in 103 psi and Et in 106 psi), which is 
given by: ܷܵܥ = 0.0033. ௧ܧ − 2.886 [12.14] 

As the independent term is small, it can be neglected and the relation can 
be rewritten (in IS units) as ܧ௧ = 0.286	.  [12.15] ܵܥܷ

with Et in GPa and UCS in MPa. 

For carbonates, the relation is [SAC 90] ܧ௧ = 0.3752	. ܵܥܷ + 4.428 [12.16] 

with Et in GPa and UCS in MPa. 

For chalk, Monjoie and Schroeder [MON 89] obtained ܧ௧ = 0.483	. ܵܥܷ − 0.39 [12.17] 

with Et in GPa and UCS in MPa. 
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12.3.1.6. Relationship between UCS and indirect measurements 

Other methods are commonly used to determine faster strength of the rm. 

The two main ones are the Point load strength index (Franklin test), Is, 
and the Schmidt hammer rebound, N. Their values are more or less well 
correlated with UCS. 

12.3.1.6.1. UCS–Is 

The basic relation between Is and UCS (both in MPa) is ܷܵܥ = ݂	.  ௦(ହ଴) [12.18]ܫ

where “f” is an experimental factor and Is (50) indicates that the measurement 
is done on NX core (54 mm) samples. Occasionally, a constant term is added 
to the equation. 

In the case of a different diameter of the tested sample, a corrective factor 
must be applied [ISR 85]: ܫ௦(ହ଴) = .௦ܫ ቀ஽௘ହ଴ቁ଴.ସହ [12.19] 

where De is the (equivalent) diameter of the tested sample, in mm. 

Torabi et al. [TOR 10] identified 42 different values in 30 publications. 
For the value of “f”, the following will be retained: 

– Broch and Franklin [BRO 72] and Bieniawski [BIE 74] proposed the 
value of 24; 

– Singh et al. [SIN 12] obtained somewhat different correlations.  
The proposed value varies from 21 to 24 for hard rocks (Is(50) > 5 MPa) and 
from 14 to 16 for soft rocks (Is(50) < 5 MPa); 

– Deere and Miller [DEE 66] found ܷܵܥ = ௦(ହ଴)ܫ	21.2 + 3.179 [12.20] 

In imperial units (103 psi), a value of 21.2 for “f” was obtained, 
neglecting the constant term. 
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As with the others, these correlations should be applied carefully, 
considering the effect of the sample size, among other things. 

12.3.1.6.2. UCS–N 

Schmidt’s hammer rebound is a fast and inexpensive way to determine 
the strength of a material. 

Torabi et al. [TOR 10] identified 22 different relationships between N 
and UCS, some of which are linear or exponential, take the rock density into 
account, are applicable to all lithologies or are dedicated to a specific one. 
Some are presented in Figure 12.5. 

 

Figure 12.5. Some correlations exist between UCS and  
rebound N, cited in [TOR 10]. For a color version of the  
figure, please see www.iste.co.uk/verbrugge/soils.zip 

This amount of relations requires caution when using them. This has been 
underlined in the ISRM suggested method [AYD 15]. 
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The relation that seems to be mainly used is the oldest one [DEE 66]: ܷܵܥ = 	10(଴.଴଴଴ଵସ	.ఊ.ேାଷ.ଵ଺) [12.21] 

where the UCS is expressed in psi and γ, and the weight per unit of volume, 
in pcf. 

In SI units, for γ = 27 kN/m3, with Et in GPa and UCS in MPa, the 
relation becomes ܷܵܥ = 10	. ݁଴.଴ହ଺.ே [12.22] 

12.3.2. Abrasiveness 

Practically, the different methods for measuring abrasiveness are 
correlated as follows: 

Description 
Abrasiveness index 

AIN value ABR value FPMs value 

Extremely abrasive >4 > 2,000 > 400 

Very abrasive 2–4 1,500–2,000 150–400 

Abrasive 1–2 1,000–1,500 50–150 

Low abrasiveness 0.5–1 500–1,000 5–505 

Very low abrasiveness < 0.5 0–500 0–5 

Table 12.2. Classes of hardnesses and index values according to different  
methods [AFT 04]. AIN (CAI): CERCHAR-INERIS abrasiveness, ABR  

(LAC): LCPC abrasivity and FPMs (University of Mons) abrasivity [TSH 97] 

The relationship between AIN and ABR is more accurately described by 
the diagram in Käsling and Thuro [KÄS 10] (Figure 12.6). The correlation 
obtained by these authors is ܴܤܣ = 273	.  [12.23] ܰܫܣ

A linear regression made on the whole data gives: ܴܤܣ = 277	. ܰܫܣ − 25	(ܴଶ = 0.82) [12.24] 
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Figure 12.6. CERCHAR and LCPC abrasivity index results – adapted from [KÄS 10] 
(squares: data from [BÜC 95], circles: data from [KÄS 10], in red linear  
regression [12.24]). For a color version of the figure, please see 
www.iste.co.uk/verbrugge/soils.zip 

Other abrasion measurement methods exist in northern Europe [MAC 17] 
and Russia [OPA 15] but are not considered here. 

The abrasiveness is linked to the mineralogical characteristics and 
expressed as a “Wear Factor”, Fschim, defined by Schimazeck and Knatz 
[SCH 70a], cited in [CAL 74], as ܨ௦௖௛௜௠ = ௧ଵ଴଴	 . ∅	. ܴ௧	. 1.4 [12.25] 

where: 

Fschim is the Schimazeck Factor, in N/mm; 

t is the quartz or abrasive mineral (feldspars) content, in %; 

ø is the mean diameter of grains, in mm; 

Rt is the traction strength, in MPa (N/mm2); 

1.4 is a corrective factor for the grain dimensions. 
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12.3.3. Attrition 

Many tests exist for testing attrition. In fact, almost every country has its 
own methods and standards. 

However, the two commonly known tests are Los Angeles (LA), 
aggregate impact value (AIV) and Micro-Deval (MD or MDe) followed by 
several ways of dynamic and static fragmentation and other wear tests, 
including durability tests (for example, magnesium and sodium sulfate 
durability tests). 

An extensive literature review (16 authors from 1991 to 2006) supported 
by experimental tests has been made by Cuelho et al. [CUE 08]. From this, it 
appears that the relationship between LA and MD is rather poor 
(Figure 12.7) when simultaneously considering all types of rocks. 

 

Figure 12.7. Relationship between LA and MD from more than 500 experimental 
results – adapted from the results presented by Cuelho et al. [CUE 08] (blue: 
literature results, red: results from Cuelho et al.). For a color version of the figure, 
please see www.iste.co.uk/verbrugge/soils.zip 
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The linear regression on this set of points is ܣܮ = ܦܯ	0.48 + 22 [12.26] 

but with a very low determination coefficient, R2, less than 0.2. 

On the other hand, when lithology is taken into account, the relation 
LA/MD becomes a little more reliable. Benediktsson [BEN 15] made a 
distinction between the six types of tested rocks (Figure 12.8). 

 

Figure 12.8. Relationship between LA and MD for several types of rocks  
(adapted from the results presented by Benediktsson [BEN 15]). For a  

color version of the figure, please see www.iste.co.uk/verbrugge/soils.zip 

From these data, relationships can be established. 

Monzonites, coarse-grained rocks, have a small correlation coefficient. 

For other lithologies, the relations are as follows: 

Mylonite: ܣܮ = ܦܯ	1.36 + 29	(ܴଶ = 0.88) [12.27] 
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Graywacke: ܣܮ = ܦܯ	1.10 + 8.2	(ܴଶ = 0.89) [12.28] 

All types of igneous rocks except monzonites: ܣܮ = ܦܯ	0.9 + 39	(ܴଶ = 0.68) [12.29] 

The average value of the angular coefficient (around 1) is similar to the 
one which could be intuitively deduced from the diagram of Figure 12.7. 

The relationship between AIV and LA is given by Senior and Rogers 
[SEN 91] (Figure 12.9): ܣܮ = ܸܫܣ	1.36 − ܸܫܣ	ݎ݋݂)	4 > 10)	(ܴଶ = 0.64) [12.30] 

 

Figure 12.9. Relationship between AIV and LA for several types of rocks  
(adapted from the results presented by Senior and Rogers [SEN 91]) 
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The same authors [SEN 91] present a relationship between magnesium 
sulfate soundness (MSS) and MD (Figure 12.10): ܦܯ = ܵܵܯ	0.63 + 11.3	Rݎଶ = 0.72) [12.31] 

 

Figure 12.10. Relationship between MSS and MD for several types of rocks  
(adapted from the results presented by Senior and Rogers [SEN 91]) 

12.3.4. Polished stone value (PSV) 

Apparently, no direct correlation with other parameters exists for PSV. 

Nevertheless, a rather good correlation exists with the mineralogical 
composition expressed by Hc, the hardness contrast and the average 
weighted hardness WAH. 
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For a set of various rocks (limestones, sand and siltstone), Tourenq and 
Fourmaintraux [TOU 71b] proposed (Figure 12.11) the following relation: ܸܲܵ = 0. ܿܪ	075 + 35 [12.32] 

 

Figure 12.11. Relationship between PSV and Hc (adapted from [TOU 71b]) 

Another relation is given by Fourmaintraux [FOU 70], including the 
WAH: ܸܲܵ = ܽ + ܪܣܹ.	ܾ + ܿ	.  [12.33] ܿܪ

with a, b and c being experimental parameters. 

Table 12.3 lists the values of a, b and c: 

– for all kinds of rocks: Fourmaintraux [FOU 70]; 

– for limestones: Archimbaud and Tourenq [ARC 74]; 

– for several Belgian rocks (limestone to sandstone): Schroeder and 
Vanden Eynde [SCH 78], [VAN 83]. 
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Description 
Empirical factor values 

a b c 

All types of rocks [FOU 70] 30 0.015 0.07 

Limestones [ARC 74] 33 0.009 0.062 

Belgian rocks [SCH 78], [VAN 83] 30 0.02 0.03 

Table 12.3. Values of the empirical factors a, b and c 

12.4. Rock masses (RMs) 

Rock masses (RMs) are composed of rock materials (rm) separated by 
discontinuities (families of discontinuities). 

The behavior of the RM is determined by the characteristics of the 
different constituting rm (considered in the previous section) and several 
discontinuities affecting the RM: 

– when the amount of discontinuity families is small, the stability 
analyses are based on geometrical considerations, and the most important 
mechanical parameter is the shear strengths of the different discontinuity 
families; 

– on the other hand, and/or for practical problems (tunnels, slopes, etc.), 
the RM (or each distinct RM part of the total studied area) can be considered 
as a homogeneous whole. The RM has thus global mechanical properties 
that can be used for calculations and modeling with the soil mechanic tools 
or with empirical methods. 

This characterization of RM is made by the classification systems that 
describe the geological (l.s.), and, for some of them, other geotechnical and 
hydrogeological conditions. The RM quality is then described by only one 
“global” figure. Mechanical properties of the RM are thus calculated from 
these parameters. 

12.4.1. Shear strength of discontinuities 

The major characteristic of discontinuities is their shear resistance, 
depending on their geological conditions. The compression strength is not  
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taken into account. If it must be considered in computation, the traction 
strength is generally considered to be equal to zero. 

Shear resistance is generally based on the Coulomb criterion where, for 
safety reasons, cohesion is often neglected. 

12.4.1.1. Barton–Bandis approach 

The internal friction angle is measured in situ or in the laboratory, and 
can also be calculated from some geological parameters [BAR 90]: ߬ = .	௡ߪ ݊ܽݐ ቂܥܴܬ	. ଵ଴݃݋݈ ቀ௃஼ௌఙ೙ ቁ + ߮௥ቃ [12.34] 

where: 

JRC is the joint roughness coefficient [BAR 73, BAR 76] determined by 
abacus or direct measurements; 

JCS is the joint wall compressive strength; 

φr is the residual friction angle [BAR 77]: ߮௥ = (߮௕ + 20°) + 20	. ቀே೑ೝೌ೎೟ೠೝ೐ே ቁ [12.35] 

φb is measured by the tilt test on a freshly sawed surface (normal range  
25–35°); 

N is the Schmidt hammer rebound on a dry non-weathered surface; 

Nfracture is the Schmidt hammer rebound on a fracture surface. 

Another expression for φr is φ௥ = φ௕ + ߰ [12.36] 

where Ψ is the dilatancy angle (range 0° to 10°). 

The dilatancy angle can be estimated by [SET 09] ߰ = 0.8	.  ௠௔௫ [12.37]ߜ

where δmax is the maximum slope of asperities on an average fracture plane. 
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12.4.1.2. RMR correlation 

The frictional strength of discontinuities can be inferred from RMR 
[BIE 89] or rather from the component “Rating for Conditions of 
Discontinuities”, JCond89 (Table 12.4). 

JCond89 30 25 20 10 0 

Completely dry 45 35 25 15 10 

Damp 43 33 23 13 <10 

Wet 41 31 21 11 <10 

Dripping 39 29 19 10 <10 

Flowing 37 27 17 <10 <10 

Table 12.4. Frictional shear strength of discontinuities (°) 

12.4.2. RM classification systems 

More than 30 different classification systems have been reported by 
several authors, among them are Palmström [PAL 95], Hack [HAC 02], 
Edelbro [EDE 04], Aksoy [AKS 08] and Hashemi et al. [HAS 10]. 

This huge amount of RM classification systems proves that the problem 
is not solved and enhancements of the classification systems are still in 
progress. 

Nevertheless, some systems are more widely used. Only the important 
ones will be considered here even though many others are useful3: 

– RQD (Rock Quality Designation): Deere and Miller [DEE 66]; 

– RMR (Rock Mass Rating): Bieniawski [BIE 73], [BIE 89]; 

– Q (Quality index): Barton et al. [BAR 74], [NGI 15]; 

– GSI (Geological Strength Index): Hoek et al. [HOE 95], [HOE 02], 
[MAR 00]. GSI is not only a classification (description) of the RM but  
also the main element of the Hoek and Brown criterion [HOE 97], 
[HOE 02], [HOE 07b]. 

                                       
3 a.o.: RMS, Rock Mass Strength, Stille et al. [STI 82]; SMR, Slope Mass Rating, Romana 
[ROM 93]; RMi, Rock Mass index, Palmström [PAL 95]; SSPC, Slope Stability Probability 
Classification, Hack [HAC 97]. 
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The theory and methods of determination of RQD, RMR, Q and GSI will 
not be presented here. 

12.4.2.1. Note on RQD 

RQD is the commonly used basic quantification of the amount of 
discontinuities, even though it has to be used with caution, especially when 
the rock is highly fractured [PEL 17] and/or when the core size differs from 
NX standard samples. 

When no coring has been made, RQD can be calculated from the outcrop 
observations (working face, slope face, etc.) [PRI 76]: ܴܳܦ = 100	݁଴.ଵ	ఒ	(0.1	ߣ + 1) [12.38] 

where λ is the average number of discontinuities per meter. 

Another relation is given by Palmström [PAL 05]: ܴܳܦ = 110 −  ௩ [12.39]ܬ	2.5

where Jv is the volumetric joint count, a measure of the number of joints 
within a unit volume of rock mass [PAL 95]: ܬ௩ = ∑ 1/ ௜ܵ௜  [12.40] 

where Si is the joint spacing in meters for the ith joint set. 

12.4.2.2. Correlations between RM classification indices 

12.4.2.2.1. Correlation between RMR and Q 

The correlation between RMR and Q is the subject of many publications. 
Overall, there are more than 20 correlations. Hashemi et al. [HAS 10] 
presented 11 of them; Palmström and Broch [PAL 06] added their own data 
and some data from Bieniawski [BIE 84] and Jethwa [JET 81]. 

A few correlations that are different from them are presented in 
Figure 12.12, as well as in [PAL 06]. 
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Figure 12.12. Correlations between RMR and Q. For a color version  
of the figure, please see www.iste.co.uk/verbrugge/soils.zip 

The equations corresponding to the presented relations are as follows: 

Bieniawski [BIE 76]: ܴܴܯ = 9	݈݊(ܳ) + 44 [12.41] 

Rutledge and Preston [RUT 78]: ܴܴܯ = 5.9	݈݊(ܳ) + 43 [12.42] 

Kumar et al. [KUM 04]: ܴܴܯ = 6.4	݈݊(ܳ) + 49.6 [12.43] 

Barton [BAR 95]: ܴܴܯ = (ܳ)݃݋݈	15 + 50 [12.44] 

Al-Harthi [ALH 93]: ܴܴܯ = 9	݈݊(ܳ) + 49 [12.45] 
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Abad et al. [ABA 84]: ܴܴܯ = 10.5	݈݊(ܳ) + 41.8 [12.46] 

A least-square logarithmic regression on the whole of the presented data 
has been added, where the equation is given by: ܴܴܯ = 7.8	ln(ܳ) + 44.7	(ܴଶ = 0.79) [12.47] 

12.4.2.2.2. Correlation between RMR and GSI 

Hoek and Diederichs [HOE 06] proposed that: ܫܵܩ = ଽ଼ܴܯܴ − 5 [12.48] 

In [SET 09], the RMR89 index is replaced in the same equation by 
RMR’89, that is, RMR89 without the adjustment function of the orientations 
of discontinuities and with the score for the “water conditions” being equal 
to 5. 

Cebalos et al. [CEB 14] concluded that the relationship comprises the 
following two values: ܫܵܩ = ଽ଼ܴܯܴ + ܫܵܩ [12.49] 5 = ଽ଼ܴܯܴ − 15 [12.50] 

In addition, these authors made a distinction between lithological types: 

Igneous: ܫܵܩ = ଽ଼ܴܯܴ	1.08 − 10.44 [12.51] 

Metamorphic: ܫܵܩ = ଽ଼ܴܯܴ	0.95 − 10.44 [12.52] 

Sedimentary: ܫܵܩ = ଽ଼ܴܯܴ	1.30 − 20.19 [12.53] 
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12.4.2.2.3. Correlation between GSI, RMR and RQD 

GSI (written GSI2013 by Pells et al. [PEL 17]) is correlated [HOE 13] with 
a part of the RMR and RQD definitions [HOE 13]: ܫܵܩ = ஼௢௡ௗ଼ଽܬ	1.5 +  [12.54] ܦܴܳ	0.5

where JCond89 is the joint condition rating of the RMR classification [BIE 89]. 

12.4.2.3. RM deformability 

12.4.2.3.1. RQD 

There is no direct relationship between Emass and RQD. Nevertheless, 
Coon and Merrit [COO 70], cited in [DEE 89], gave the relationship with 
RMR, which they call the “modulus ratio” (written in lower case and which 
should not be confused with the Modulus Ratio, MR, used by other authors 
in different contexts) defined as: ݉ݏݑ݈ݑ݀݋	݋݅ݐܽݎ = ா೘ೌೞೞ	(೔೙	ೞ೔೟ೠ)ா೎೚ೝ೐	(೗ೌ್)  [12.55] 

of course, for an RM composed by only one rm! 

These authors also indicate the relationship with the “velocity index”, 
which is defined as the square of the ratio between velocities of compression 
waves measured, respectively, in situ (MR) and on samples, in the laboratory 
(mr) (Table 12.5). 

ݔ݁݀݊ܫ	ݕݐ݅ܿ݋݈ܸ݁ = ൬ ௏೛	೔೙	ೞ೔೟ೠ௏೛	೚೙	ೞೌ೘೛೗೐൰ଶ [12.56] 

RQD RM 
quality 

Velocity 
index 

Modulus 
ratio 

0–25 Very Poor 0–0.20 < 0.20 

25–50 Poor 0.20–0.40 < 0.20 

50–75 Fair 0.40–0.60 0.20–0.50 

75–90 Good 0.60–0.80 0.50–0.80 

90–100 Excellent 0.80–1.00 0.80–1.00 

Table 12.5. Velocity index and “modulus ratio” function of RQD [COO 70] 
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A more precise estimation of the RM modulus was given by Zhang and 
Einstein [ZHA 04] in [ZHA 16]: ݉ݏݑ݈ݑ݀݋	݋݅ݐܽݎ = 10଴.଴ଵ଼଺	ோொ஽ିଵ.ଽଵ [12.57] 

12.4.2.3.2. RMR 

There are many relationships between Emass and RMR. Hoek and 
Diederichs [HOE 06] presented eight of them. In Figure 12.13, the data, 
some of the relations presented in [HOE 06] and a relationship from data 
with RMR > 50 are shown. Emass is expressed in GPa. 

 

Figure 12.13. Some relationships between RMR and Emass (Em)  
(partially adapted from [HOE 06]). For a color version of  
the figure, please see www.iste.co.uk/verbrugge/soils.zip 

The equations corresponding to these graphs are as follows: 

Bieniawski [BIE 78]: ܴܴܯ > ௠௔௦௦ܧ		58 = ܴܯܴ	2 − 100 [12.58] 
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Sefarim and Pereira [SEF 83]: ܴܴܯ < ௠௔௦௦ܧ	58 = 10ೃಾೃషభబరబ  [12.59] 

Read et al. [REA 99]: ܧ௠௔௦௦ = 0.1	 ቀோெோଵ଴ ቁଷ [12.60] 

For RMR > 50, the authors of this book established that: ܧ௠௔௦௦ = ܴܯܴ	1.7 − 80	(ܴଶ = 0.90) [12.61] 

12.4.2.3.3. Q 

Using the normalized index, Qc [BAR 02], Q is defined as: ܳ௖ = ܳ	 ఙ೎ଵ଴଴ [12.62] 

where σc is the uniaxial compressive strength (UCS) in MPa 

The relation is given by [BAR 02]: ܧ௠௔௦௦ = 10	ܳ௖భయ [12.63] 

or it is given by [BAR 92], cited in [HOE 95]: ܧ௠௔௦௦ =  [12.64] (ܳ)݃݋݈	25

where Emass is expressed in GPa. 

The deformation modulus of the RM can also be calculated from the value 
of the compression sonic wave velocity Vp, which is correlated with Q. 

Attention! The relation Q/Vp assumes that Vp is > 3.5 km/s, which is often 
the case for igneous RM but seldom for sedimentary RM. 

Using Q [BAR 91], it is valid only for a hard rock: 

௣ܸ = 3.5 + logܳ [12.65] 
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Using Qc [BAR 02], it is valid for all types of rocks: 

௣ܸ = 3.5 + logܳ௖ [12.66] 

௠௔௦௦ܧ = 10	. 10ೇ೛షయ.ఱయ  [12.67] 

with Emass in GPa and Vp in km/s. 

If Vp is calculated from field measurements, the relation Emass/Vp remains 
significant. 

12.4.2.3.4. GSI 

The relation between the modulus of the RM and Emass (in GPa) is given 
by Hoek [HOE 02]. 

For σci ≤ 100 MPa: 

௠௔௦௦ܧ = ቀ1 − ஽ଶቁ	ටఙ೎೔ଵ଴଴	 . 	10ಸೄ಺షభబరబ  [12.68] 

For σci > 100 MPa: ܧ௠௔௦௦ = ቀ1 − ஽ଶቁ . 10ಸೄ಺షభబరబ  [12.69] 

D is the disturbance factor (depending on the roughness of the excavation 
process). 

Palmström and Singh [PAL 01] gave ܧ௠௔௦௦ =  ௜ [12.70]ߪ	ܴܯ	0.5

MR is the modulus ratio defined [DEE 68] as ܴܯ = ா೔ఙ೔ [12.71] 

Ei and σi being, respectively, the deformation modulus (tangent modulus) 
and the UCS of the intact rock. 
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12.4.2.4. RM strength 

12.4.2.4.1. RQD 

Peck et al. [PEC 74], cited in [DEE 89], provided the values of the 
allowable contact pressure for jointed rocks for a 0.5" settlement as a 
function of RQD, which are given in Table 12.6. 

RQD Allowable contact pressure for 
05” settlement 

 psi MPa 

100 4,170 28.8 

90 2,780 19.2 

75 1,660 12.4 

50 970 6.70 

25 410 2.83 

0 140 0.97 

Table 12.6. Allowable contact pressure 

12.4.2.4.2. RMR 

A correlation between RMR and c and φ of the RM is given by 
Bieniawski [BIE 89] using the data, among others, from [SER 83] in 
Table 12.7. 

RMR 100–81 80–61 60–41 40–21 <20 

Cohesion c (kPa) >400 300–400 200–300 100–200 <100 

Friction angle (°) >45 35–45 25–35 15–25 <15 

Modulus (GPa) >56 18–56 5.6–18 1.8–5.6 <1.8 

Table 12.7. Geomechanical classification (adapted from [BIE 89]) 

It is also presented in the form of the following equations: ߮ = 5 + ோெோଶ  [12.72] ܿ = 5	.  [12.73] ܴܯܴ

with ϕ in ° and c in kPa. 
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12.4.2.4.3. Q 

The global UCS of the RM is given by [BAR 02], cited in [EDE 04]: ߪ௥௠ =  ௖భయ [12.74]ܳ	ߩ	5

In this relation, σrm is in MPa and ρ, the rock density, is in tons/m3. 

Barton [BAR 07] proposed the following values of the Coulomb criterion 
parameters, based on the components of the Q definition: 

– cohesive component (c in MPa): ܿ = ቀோொ஽௃೙ × ଵௌோி × ఙ೎ଵ଴଴ቁ [12.75] 

– frictional component (φ in): ߮ = ଵି݊ܽݐ ቀ௃ೝ௃ೌ × ௃ଵೢ ቁ [12.76] 

where: 

Jn is the rating for the number of joint sets; 

SRF is the rating for faulting, strength/stress ratios, squeezing and 
swelling; 

Jr is the rating for joint surface roughness; 

Ja is the rating for joint alteration and discontinuity filling; 

Jw is the rating for water softening, inflow and pressure effects. 

12.4.2.4.4. GSI and Hoek and Brown criterion 

The Hoek and Brown failure criterion [HOE 97], [HOE 02], [HOE 07b] 
is given as follows: ߪ′ଵ = ଷ′ߪ + ௖௜ߪ ቀ݉௕ ఙᇱయఙ೎೔ +  ቁ௔ [12.77]ݏ

where: 

σ’1 and σ’3 are the major stresses; 

σci is the UCS of intact rock sample; 
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mb is a parameter for the rock mass: ݉௕ = 	݉௜݁ቀಸೄ಺షభబబమఴషభర	ವቁ [12.78] 

mi is a characteristic of the intact rock (function a.o. of the UCS); 

D is the disturbance factor; 

s and a are constants depending on the RM characteristics, GSI and D: ݏ = ݁ቀಸೄ಺షభబబవషయ	ವ ቁ [12.79] ܽ = ଵଶ + ଵ଺ ൬݁ିಸೄ಺భఱ − ݁ିమబయ ൰ [12.80] 

The compression strength (UCS) of the RM is ߪ௖௠ = .	௖௜ߪ  ௔ [12.81]ݏ

The traction strength (UCS) of the RM is ߪ௧௠ = − ௦	.ఙ೎೔௠್  [12.82] 

For RM with very poor quality (GSI < 25), the Hoek and Brown criterion 
can be used [HOE 97]: ݏ = 0 [12.83] ܽ = 0.65 − ீௌூଶ଴଴ [12.84] 

The parameters mb and s can also be calculated from RMR [HOE 88]: 

For disturbed rock masses: 

௠್௠೔ = ݁ೃಾೃషభబబభర  [12.85] 

ݏ = ݁ೃಾೃషభబబల  [12.86] 
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For undisturbed or interlocking rock masses: 

௠್௠೔ = ݁ೃಾೃషభబబమఴ  [12.87] 

ݏ = ݁ೃಾೃషభబబవ  [12.88] 

The Coulomb criterion can match the Hoek and Brown constitutive law 
for a given stress interval (see, for instance, [HOE 02], [HOE 07b] or 
RocLab™). 

12.4.2.5. Hydraulic conductivity of RM 

The hydraulic conductivity K is related to the intensity of fracturation, 
which can be expressed by RQD, RMR or Q. However, it should be noted 
that the hydraulic conductivity in fractured media is proportional to the 
thickness of the power three; therefore, it is subject to changes of two or 
even three orders of magnitude, even for a tough rock. 

12.4.2.5.1. RQD and RMR 

El-Naqa [ELN 01] gave correlations between RMR and K and RQD and 
K, with K in UL (Lugeon units) using data obtained from boreholes (bh) or 
from field mapping (fm). 

1 UL ≈ 10-7 m/s (in hard, jointed, clay-free, rock masses): ܭ = 5. 10଺. ݁ି଴.ଵଽଷ	ோெோ	(ܴ = 0.74)(ܾℎ) [12.89] ܭ = 3166	. ݁ି଴.଴଻ହହହ	ோெோ	(ܴ = ܭ [12.90] (݂݉)(0.84 = 177.45	. ݁ି଴.଴ଷ଺ଵ	ோொ஽	(ܴ = 0.64)(ܾℎ) [12.91] ܭ = 890.9	. ݁ି଴.଴ହହଽ	ோொ஽	(ܴ = 0.87)(݂݉) [12.92] 

Qureshi et al. [QUR 14] proposed the following relation with K, in cm/s: ܭ = 0.01382 − 0.003	.  [12.93] (ܦܴܳ)݈݊

After unit conversions, values closer to this are presented in [ELN 01] (bh). 
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However, as shown in Figure 12.14, the scattering is too important for 
practically using this formula. The scattering is mainly due to limestones 
which exhibit a high hydraulic conductivity for RQD = 100. Perhaps it is due 
to the presence of the karstic phenomenon that increases the hydraulic 
conductivity strongly but locally. 

 

Figure 12.14. Relationship between hydraulic conductivity, K,  
and RQD (adapted from [QUR 14]). For a color version of  
the figure, please see www.iste.co.uk/verbrugge/soils.zip 

If the limestones and two obviously incorrect points are excluded, the 
whole of the 61 points from both publications [ELN 01] and [QUR 14] gives  
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a rather satisfactory correlation that allows the comparison of the results 
obtained by different methods. This is shown in Figure 12.15. 

 

Figure 12.15. Relationship between RQD and hydraulic conductivity,  
K, in m/s (data from [ELN 01] and [QUR 14]). For a color version  

of the figure, please see www.iste.co.uk/verbrugge/soils.zip 

The exponential regression is shown in the equation (K in m/s): ܭ = 3	. 10ିହ	݁ି଴.଴ଷସ	ோொ஽	(ܴଶ = 0.41) [12.94] 
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12.4.2.5.2. From Q 

Barton [BAR 07] gave the following relation: ܭ ≈ ଵொ೎ [12.95] 

where K is expressed in UL and Qc is the normalized index. 

In the same paper, generally, when the depth/stress dependence is taken 
into account and the wall strength JCS is considered, the Q index is modified 
in QH2O: ܳுଶை = ோொ஽௃௡ × ௃௔௃௥ × ௃௪ௌோி × ଵ଴଴௃஼ௌ [12.96] 

From this, the hydraulic conductivity, K, is given by ܭ ≈ ଴.଴଴ଶொಹమೀ	.஽ఱ యൗ  [12.97] 

with K in m/s and D, the depth, in m. 
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Usual Values of Soils and Rock 
Parameters 

It is important to consider the fact that the name given to a soil depends 
on the standards used and can therefore vary from one country or 
administration to another. Hence, some differences may arise between the 
values given in the tables of this chapter, depending on the sources. 
Therefore, the name of a soil type must be seen as a generic one and the 
associated value as an order of magnitude. Values are also given in the 
chapters dealing with soil and rock identification. 

13.1. Physical parameters 

13.1.1. Plasticity, unit weights and porosity 

Soil type  wL (%) IP (%) γ  (kN/m³) n (%) 
Gravel Clean NA NA 19–20 30–32 

 Silty 15–20 <5 21–22 28–30 

 Clayey 20–30 5–10 19.5–22 28–32 

Sand  Clean NA NA 17–20 36–38 

 Silty 15–25 <5 18–21 32–40 

 Clayey 20–30 5–10 19–21 32–40 

Silt  30–60 5–25 18–20 32–60 

 Clayey 20–35 15–25 18–21 35–50 

Clay  >35 >25 15–20 45–70 

Table 13.1. Plasticity, unit weights and porosity (orders of magnitude) 

Geotechnical Correlations for Soils and Rocks, First Edition.
Jean-Claude Verbrugge and Christian Schroeder.
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.



142     Geotechnical Correlations for Soils and Rocks 

13.1.2. Consistency and related strength parameters 

13.1.2.1. Granular soils 

Consistency DR (%) γ (kN/m³) qc (MPa) N 
(blows/ft) 

ϕ' (*) 
(°) 

ϕ' (**) 
(°) 

E (*) 
(MPa) 

Very loose 0–15 11–16 0–2.5 0–4 26–30 29–32 <10 

Loose 15–35 14–18 2.5–5 5–10 28–34 32–35 10–20 

Medium 35–65 17–20 5–10 11–24 30–40 35–37 20–30 

Dense 65–85 17–22 10–20 25–50 33–46 37–40 30–60 

Very dense 85–100 20–23 >20 <50 40–50 40–42 60–90 
*Eurocode 1997-3/B1 [DYS 01]; **AASHTO 1988 [SAB 02]. 

Table 13.2. Consistency and related parameters for granular soils 

13.1.2.2. Cohesive soils 

Consistency CI γ (kN/m³) Su (kPa) N 
(blows/ft) qc (MPa) 

Very soft <0.5 <14 0–25 0–1 <0.5 

Soft 0.5–0.75 14–17 25–50 2–4 0.5–1.5 

Medium 0.5–0.75 16–19 50–100 5–8 0.5–1.5 

Stiff 0.75–1 18–21 100–200 9–15 1.5–3 

Very stiff 1–1.5 19–22 200–400 16–30 3–6 

Hard >1.5 21< >400 >30 >6 

Table 13.3. Consistency and related parameters for cohesive  
soils according to the AASHTO [SAB 02, p. 110] 

13.1.3. Soil indices 

Soil type Ic *Ic 
Organic soil – clay >3.6 >3.22 

Clays – silty clay to clay 2.85–3.6 2.82–3.22 

Silt mixtures – silty sand to silty clay 2.60–2.85 2.54–2.82 

Sand mixtures – silty sand to sandy silt 2.05–2.60 1.90–2.54 

Sands – clean sand to silty sand 1.31–2.05 1.25–1.90 

Gravelly sand to dense sand <1.31 <1.25 

Table 13.4. Soil types according to Ic and *Ic indices 
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13.1.4. Soil and rock resistivity 

Material Resistivity (Ω−m) 
Sea water 0.25 

Drinking water 12–18 

Clay 0.5–30 

Marl 10–60 

Silt, loam 20–100 

Sand and gravel (dry) 400–2,000 

Sand (moist) 50–200 

Sand (sea water) 2–15 

Gravel 150–500 

Shale (compact) 100–300 

Shale (weathered) 50–100 

Sandstone (compact) 1,000–3,000 

Sandstone (fissured) 500–1,500 

Limestone (compact) 2,000–5,000 

Limestone (weathered) 50–2,000 

Table 13.5. Soil and rock resistivity 

13.1.5. Wave velocity 

Material  Velocity (m/s) 
Sand and gravel Moist 200–900 

 Immerged 1,400–2,300 

Clay, clay mixtures  800–2,300 

Shale Sound 2,500–4,500 

 Weathered 500–2,000 

Sandstone Sound 1,500–4,300 

 Weathered 600–3,000 

Limestone, chalk Sound 1,800–6,000 

 Fractured 800–2,000 

Igneous rock Sound 3,600–6,000 

 Fractured 1,000–2,500 

Metamorphic rock Sound 3,000–5,000 

 Fractured 600–3,000 

Table 13.6. Compressive wave velocity 
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The shear and compressive wave velocities are related to the equation: 

௣ܸܸ௦ = ඨ2ሺ1 − ሻ1ߥ − ߥ2  

13.1.6. Clay minerals and CEC 

Clay mineral CEC (meq/100 g) 
Kaolinite 3–15 

Smectite 80–150 

Illite 10–40 

Chlorite 10–40 

Vermiculite 100–150 

Table 13.7. Clay minerals versus CEC values 

13.2. Hydraulic parameters 

13.2.1. Hydraulic conductivity 

Soil type Ic k (m/s) 
Sensitive fine-grained NA 3.10−10 to 3.10−8 

Organic soil – clay >3.6 1.10−10 to 1.10−8 

Clay 2.95–3.6 1.10−10 to 1.10−9 

Silt mixture – silty sand to silty clay 2.60–2.95 3.10−9 to 3.10−7 

Sand mixture – Silty sand to sandy silt 2.05–2.60 1.10−7 to 1.10−5 

Sands – clean sand to silty sand 1.31–2.05 1.10−5 to 1.10−3 

Gravelly sand to dense sand <1.31 1.10−3 to 1 

Very dense or stiff soil NA 1.10−8 to 1.10−3 

Very stiff fine-grained soil NA 1.10−9 to 1.10−7 

Table 13.8. Hydraulic conductivity related to soil index [ROB 90] 
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13.2.2. Water storage capacity 

For a free water table n' < n: 

– Coarse alluvial deposits without clay: n' = 30–40%; 

– Gravel: n' = 20–25%; 

– Sand, sandy gravel: n' = 15–20%; 

– Fine sand: n' = 5–10%; 

– Clayey or cemented gravel: n' = +/−5%; 

– Silt, loam: n' = 2–5%; 

– Clay, sandy clay: n' = 3%. 

For a confined aquifer: ݊ᇱ = ௪ߛܪ ⁄ܧ  [13.1] 

where H is the thickness of the aquifer. 

13.3. Strength parameters 

For details, the reader is referred to section 13.1.2. 

13.4. Deformation parameters 

13.4.1. Compression index 

Compressibility Cc 
Uncompressible <0.02 

Very low 0.02–0.05 

Low 0.05–0.1 

Medium 0.01–0.2 

Very compressible 0.2–0.3 

High 0.3–0.5 

Very high >0.5 

Table 13.9. Compressibility versus compression index 
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13.4.2. Soil modulus 

Soil type Compactness E (MPa) 
Clay Soft 2.5–15 

 Medium 15–50 

 Stiff 50–100 

Silt  2–20 

Fine sand Loose 8–12 

 Medium 12–20 

 Dense 20–30 

Sand Loose 10–30 

 Medium 30–50 

 Dense 50–80 

Gravel Loose 30–80 

 Medium 80–100 

 Dense 100–200 

Table 13.10. Soil modulus values adapted  
from AASHTO 1996 [SAB 02, p. 148] 

13.4.3. Poisson’s ratio 

Soil type Quick loading Slow loading
Gravel 0.30 0.30 

Sand 0.35 0.30 

Silt and silty clay 0.45 0.35 

Stiff clay 0.45 0.25 

Plastic clay 0.50 0.40 

Compacted clay 0.45 0.30 

Table 13.11. Poisson’s ratio after Poulos and Small [POU 00] 

The behavior of dilatant soils is inelastic so ν may exceed 0.5. 
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13.4.4. Small strain modulus 

Soil type G0 (MPa) 
Soft clays 2.75–13.75 

Firm clays 7–34.5 

Silty sands 27.5–138 

Dense sands, gravels 69–345 

Table 13.12. Order of magnitude of small strain  
modulus for cohesive and granular soils 

13.5. Consolidation parameters 

13.5.1. Primary consolidation 

Liquid limit 
wL (%) 

Intact  
(10−8 m2/s) 

Remolded 
(10−8 m2/s) 

40 30 6 

60 10 2 

80 4 1.5 

100 2 1 

120 1.2 0.7 

140 0.7 0.6 

Table 13.13. Order of magnitude of ܿ௩ for clays 

Material cv (10−8 m2/s) 

Kaolinite 20–40 

Illite 10–20 

Montmorillonite 2–10 

Sandy clays ±10 

Table 13.14. Order of magnitude of ܿ௩ for clay minerals 
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13.6. In situ test parameters 

13.6.1. CPT 

Soil type qc (MPa) FR (%) 
Soft clay <0.8 4< 

Sandy silt 0.4–3 1–7 

Silt 0.7–2 1.5–4 

Clayey silt <1 3–9 

Clayey silt 1< <3 

Sand 1.5< <2 

Silty sand 0.8–4 1.1–5 

Clayey sand 0.3–6 0.5–8 

Sandy gravel 20< <2 

Clayey gravel 10< <5 

Table 13.15. Domains of CPT cone resistance and friction ratio for various soils 

13.6.2. PMT 

Soil type EM(MPa) pL  
(MPa) 

Mud, peat 0.2–1.5 0.02–0.15 

Soft clays 0.5–3 0.05–0.3 

Plastic clays 3–8 0.3–0.8 

Stiff clays 8–14 0.6–2 

Marls 5–10 0.6–6 

Muddy sands 0.5–2 0.1–0.5 

Silts, loams 2–10 0.2–1.5 

Sands, gravels 8–100 1.2–5 

Sedimentary sands 7.5–40 1–5 

Chalks 8 < 3–10 < 

Recent embankments 0.5–1 0.05–0.3 

Old embankments 4–15 0.4–1 

Gravely embankments 20–15 1–2.5 

Table 13.16. Domains of pressuremeter modulus  
and limit pressure for various materials 
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13.6.3. DMT 

[GUS 15]  
Soil type 

Plasticity 
index 

[GUS 15] 
ID 

Marchetti 
ID 

Marchetti 
Soil type 

Fat clay – heavy >27 <0.09 0.1–0.6 Clay 

Fat clay – silty 17–27 0.09–0.37 0.1–0.6 Clay 

Fat clay – sandy 17–27 0.37–0.43 0.1–0.6 Clay 

Lean clay – heavy 
silty 12–17 0.43–0.74 0.1–1.8 Clay/silt 

Lean clay – heavy 
sandy 12–17 0.74–0.84 0.6–1.8 Silt 

Lean clay – light silty 7–12 0.84–1.46 0.6–1.8 Silt 

Lean clay – light 
sandy 7–12 1.46–1.64 0.6–1.8 Silt 

Silty clay 1–17 1.64–1.88 0.6 - (10) Silt/sand 

Silty clay – sandy 1–17 1.88–2.00 1.8 - (10) Sand 

Fine sand – silty x 2.00–2.20 1.8 - (10) Sand 

Fine sand x 2.20–2.50 1.8 - (10) Sand 

Medium sand x 2.50< 1.8 - (10) Sand 

Table 13.17. DMT soil classification according to  
Guskov and Gayduk [GUS 15] 

13.6.4. SPT 

For details, the reader is referred to section 13.1.2. 

13.7. Rock parameters 

The values presented herein are those of intact, dry and assumed isotropic 
rock samples unless otherwise mentioned. An accurate and reliable 
determination of rock properties requires a complete geological and 
experimental definition, as, for example, made in the catalogue of French 
rocks published by the LCPC [HAB 69]. 
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13.7.1. Rock materials 

13.7.1.1. Strength 

13.7.1.1.1. Field estimation (Hoek) 

Term UCS (MPa) Is (MPa) Field estimate of strength Examples 

Extremely 
strong >250 >10 

Specimen can only be chipped 
with a geological hammer 

Basalt, chert, 
diabase, gneiss, 

granite, quartzite 

Very 
strong 

100–250 4–10 
Specimen requires many blows 

of a geological hammer to 
fracture it 

Amphibolite, 
sandstone, 

gabbro, gneiss, 
granodiorite, 
limestone, 

marble, rhyolite, 
tuff 

Strong 50–100 2–4 
Specimen requires more than 

one blow of a geological 
hammer to fracture it 

Limestone, 
marble, phyllite, 
sandstone, schist, 

shale 

Medium 
strong 

25–50 1–2 

Specimen cannot be scraped or 
peeled with a pocket knife, but 
can be fractured with a single 
blow of a geological hammer 

Claystone, coal, 
concrete, schist, 
shale, siltstone 

Weak 5–25 NA 

Specimen can be peeled with a 
pocket knife with difficulty, 

shallow indentation made by a 
firm blow with a point of a 

geological hammer 

Chalk, rock salt, 
potash 

Very 
weak 

1–5 NA. 

Specimen crumbles under firm 
blows with a point of a 

geological hammer, and can be 
peeled by a pocket knife 

Highly 
weathered or 
altered rock 

Extremely 
weak 

0.25–1 NA 
Specimen can be indented by 

thumbnail 
Stiff fault gouge 

NA: Point load tests (Is) on rocks with uniaxial compressive strength less than 25 MPa are likely to  

yield highly ambiguous results. 

Table 13.18. Field estimates of uniaxial compressive strength  
(modified from Hoek [HOE 07a] and RockLab 2007™) 
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13.7.1.1.2. Laboratory results 

 

Traction strength σt 

No. of 
samples 

Mean 
(MPa) 

Stand 
dev. 

(MPa) 
CV (%) 

Shales 15 2.9 0.6 20 

Sandy shales 17 6.2 2.7 44 

Sandstones 22 11 3.2 30 

Table 13.19. Traction strength of several carboniferous Belgian  
rocks (intact rocks) (adapted from Calembert et al. [CAL 74]) 

 
Compression strength σc Mean 

σc/σt No. of 
samples

Mean 
(MPa) 

Stand dev. 
(MPa) 

CV 
(%) 

Shales 14 25 16.3 65 8.6 

Sandy shales 32 54 27.9 52 8.7 

Sandstones 27 152 39.1 26 13.8 

Table 13.20. Compression strength of several carboniferous Belgian  
rocks (intact rocks) (adapted from Calembert et al. [CAL 74]) 

 

Traction strength σt 

No. of 
samples 

Mean 
(MPa) 

Min 
(MPa) 

Max 
(MPa) 

Stand dev. 
(MPa) 

CV 
(%) 

All rocks 46 11.6 4 37.4 6.8 58 

Sandstones 16 17.0 5.0 37.4 7.9 46.2 

Limestones 24 8.1 4.2 15.3 3.5 43.0 

Dolomites 3 12.4 11.0 15.3 2.5 20.0 

Table 13.21. Traction strength of several Devonian Belgian rocks  
(intact rocks) (data from author's personal database) 
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Compression strength σc  

No. of 
samples 

Mean 
(MPa)

Min 
(MPa)

Max 
(MPa)

Stand 
dev.(MPa)

CV 
(%)

Mean 
σc/σt 

All rocks 205 132 22 387 71 54 11.3 

Sandstones 48 154 34.4 387 68.6 45.1 8.9 

Limestones 88 100 22 233 50.3 50.5 12.3 

Dolomites 6 140 59 205 54.2 38.7 11.3 

Porphyry 28 206 100 365 70.2 34.1 - 

Table 13.22. Compression strength of several Devonian and igneous  
Belgian rocks (intact rocks) (data from author's personal database) 

13.7.1.2. Deformation and sonic velocity 

 

Deformation modulus Ed 

No. of 
samples 

Mean 
(MPa) 

Stand dev. 
(MPa) CV (%) 

Shales 14 6.0 3.8 64 

Sandy shales 32 13 7.4 57 

Sandstones 27 31 7.8 26 

Table 13.23. Deformation modulus of several carboniferous Belgian  
rocks (intact rocks) (adapted from Calembert et al. [CAL 74]) 

 

Deformation modulus Ed 

No. of 
samples 

Mean 
(GPa) 

Min 
(GPa) 

Max 
(GPa) 

Stand 
dev. 

(GPa) 

CV 
(%) 

All rocks 269 38 13.6 64.1 8.8 23.3 

Sandstones 54 30.6 15.4 54.2 8.4 27.4 

Limestones 101 40 19.5 64.1 8.9 22.3 

Dolomites 2 35 22.7 46.4 16.7 48.4 

Porphyry 42 40 26.2 53.2 6.0 15.1 

Table 13.24. Deformation modulus of several Devonian and igneous  
Belgian rocks (intact rocks) (data from author's personal database) 
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Compression wave velocity Vp 

No. of samples Mean (m/s) Min 
(m/s) 

Max 
(m/s) 

Stand dev. 
(m/s) 

CV 
(%) 

All rocks 210 5,500 2,270 6,900 670 12.2 

Sandstones 37 4,720 2,270 6,000 780 16.5 

Limestones 75 5,790 3,700 6,900 510 8.8 

Dolomites 2 4,910 4,210 5,600 980 20.0 

Porphyry 46 5,550 4,340 6,080 370 6.7 

Table 13.25. Compression wave (sonic) velocity of Devonian and igneous  
Belgian rocks (intact rocks) (data from author's personal database) 

13.7.2. Rock masses 

13.7.2.1. Shear strength of discontinuity surfaces 

13.7.2.1.1. Barton–Bandis 
Rock Moisture σn (MPa) ϕb (°) 

Amphibolite Dry 0.1−4.2 32 

Basalt 
Dry 0.1−8.5 35−38

Wet 0.1−7.9 31−36

Conglomerate Dry 0.3−3.4 35 

Chalk Wet 0−0.4 30 

Dolomite 
Dry 0.1−7.2 31−37

Wet 0.1−7.2 27−35

Gneiss (schistose) Dry 0.1−8.1 26−29

 Wet 0.1−7.9 23−26

Granite (fine g.) Dry 0.1−7.5 31−35

 Wet 0.1−7.4 29−31

Granite (coarse g.) Dry 0.1−7.3 31−35

 Wet 0.1−7.5 31−33

Limestone 
Dry 0−0.5 33−39

Wet 0−0.5 33−36

Dry 0.1−8.3 37−40

 Wet 0.1−8.3 35−38

Porphyry Dry 0−13.3 31 

Sandstone 
Dry 0−0.5 26−35

Wet 0−0.5 25−33

Wet 0−0.3 29 
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Dry 0.3−3.0 31−33

Dry 0.1−7.0 32−34

Wet 0.1−7.3 31−34

Shale Wet 0−0.3 27 

Siltstone 
Wet 0−0.3 31 

Dry 0.1−7.5 31−33

Wet 0.1−7.2 27−31

Slate Dry 0−1.1 25−30

Table 13.26. Basic friction angle for various rocks, obtained from sand-blasted, 
rough-sawn and residual surfaces (data from Barton [BAR 71, BAR 76]) 

13.7.2.1.2. Shear strength of filled discontinuities and filling materials 

Rock Description of joint 
and filling 

Peak Residual 

c' φ' c' φ' 

MPa  MPa  

Basalt 

Clayey basaltic 
breccia, wide 

variation from clay to 
basalt content 

0.242 42   

Bentonite Bentonite seam in 
chalk 

0.015 7.5   

Bentonite Thin layers 0.09–0.12 12–17   

Bentonite Triaxial tests 0.06–0.1 9–13   

Bentonitic shale Triaxial tests 0–0.27 8.5–29   

Bentonitic shale Direct shear tests   0.03 8.5 

Chalk 

80 mm seams of 
bentonite 

(montmorillonite) 
clay in chalk 

0.016–002 7.5–11.5   

Clay shale Triaxial tests 0.06 32   

Clay shale Stratification surfaces   0 19–25 
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Clays 
Overconsolidated, 

slips, joints and 
minor shears 

0–0.018 12–18.5 0–0.003 10.5–16 

Coal measure 
rocks 

Clay mylonite seams, 
10–25 mm 

0.012 16 0 11–11.5 

Diorite, 
granodiorite and 

porphyry 

Clay gouge (2% clay, 
PI = 17%) 

0 26.5   

Dolomite Altered shale bed, 
±150 mm thick 

0.04 15 0.02 17 

Granite Clay-filled faults 0–0.1 24–45   

Granite Sandy loam fault 
filling 

0.05 40   

Granite 

Tectonic shear zone, 
schistose and broken 

granites, 
disintegrated rock 

and gouge 

0.26 45   

 

Greywacke 1–2 min clay in 
bedding planes 

  0 21 

Lignite Layer between lignite 
and underlying clay 

0.014–.03 15–17.5   

Lignite/marl Lignite/marl contact 0.1 10   

Limestone 6 min clay layer   0 13 

Limestone 
10–20 mm clay 

fillings 
0.1 13–14   

Limestone < 1 mm clay filling 0.05–0.2 17–21   

Limestone 
Marlaceous joints, 20 

mm thick 
0 25 0 15–24 

Limestone, lignites 
Interbedded lignite 

layers 
0.08 38   
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Quartz/kaolin / 
pyrolusite 

Remolded triaxial 
tests 

0.042–.09 36–38   

Schists, quartzites 
100–250 mm thick 

clay filling 
0.03–0.08 32   

Siliceous schists 
Stratification with 

thin clay 
0.61–0.74 41   

Siliceous schists 
Stratification with 

thick clay 
0.38 31   

Slates 
Finely laminated and 

altered 
0.05 33   

Table 13.27. Peak and residual values of cohesion and internal friction angle of filled 
discontinuities and filling materials (from Barton [BAR 73] and Hoek [HOE 07a]) 

13.7.2.2. Classification of rock masses: Hoek and Brown criterion 

Nature Class Group Coarse Medium Fine Very fine 

Sedimentary

Clastic  Conglomerates* Sandstones Siltstones Claystones 

  (21 ± 3) 17 ± 4 7 ± 2 4 ± 2 

  Breccias  Greywackes Shales 

  (19 ± 5)  (18 ± 3) (6 ± 2) 

     Marls 

     (7 ± 2) 

Non-
clastic 

Carbonates Crystalline Sparitic Micritic Dolomites 

  Limestone Limestones Limestones (9 ± 3) 

  (12 ± 3) (10 ± 2) (9 ± 2)  

 Evaporites  Gypsum Anhydrite  

   8 ± 2 12 ± 2  

 Organic    Chalk** 

     7 ± 2 

 

Metamorphic

Non-
foliated 

 Marble Hornfels Quartzites  

  9 ± 3 (19 ± 4) 20 ± 3  

   Meta-   
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sandstone 

   (19 ± 3)   

Slightly 
foliated 

 Migmatite Amphibolites   

  (29 ± 3) 26 ± 6   

Foliated  Gneiss Schists Phyllites Slates 

  28 ± 5 12 ± 3 (7 ± 3) 7 ± 4 

 

Igneous 

Phaneritic 

Light 

Granite Diorite   

32 ± 3 25 ± 5   

Granodiorite    

(29 ± 3)    

Dark 

Gabbro Dolerite   

27 ± 3 (16 ± 5)   

Diabase Peridotite   

(15 ± 5) (25 ± 5)   

Porphyriti
c 

 
Porphyries 

(20 ± 5) 
   

Aphanitic 
and 

glassy 

  

Rhyolite  
(25 ± 5) 

Dacite 
(25 ± 3) 

Obsidian 
(19 ± 3) 

Andesite  
25 ± 5 

Basalt 
(25 ± 5) 

 

Pyroclastic 
Agglomerate 

(19 ± 3) 
Breccia  
(19 ± 5) 

Tuff 
(13 ± 5) 

 

*Conglomerates and breccias may present a wide range of mi values depending on the nature of the 

cementing material and the degree of cementation, so they may range from values similar to sandstone to 

values used for fine-grained sediments. 

**Strongly depending on porosity. 

NB: These values are for intact rock specimens tested normal to bedding or foliation. The value of mi will 

be significantly different if the specimen is tested in a different orientation and/or if failure occurs along a 

weakness plane. 

Table 13.28. Hoek and Brown criterion for estimating mi values  
(modified from Hoek [HOE 07a] and RockLab 2007™) 



 

List of Symbols 

Some symbols are the same for both soils and rocks, but differ in their 
definition. In such cases, to avoid any confusion, an (*) indicates the valid 
definition for rocks. 

(N1)60 Normalized SPT blow count at 60% efficiency 

*IC SBT classification index including Bq 

A or AC Activity 

a or an Net cone tip area ratio (0.70<a<0.85) 

a Parameter of the Hoek and Brown criterion (*) 

Bq Normalized pore water pressure parameter [= ሺݑଶ − ଴ሻݑ ⁄ݍ ௡] 

c’ Effective cohesion intercept 

ca Capillary cohesion 

Cc Virgin compression index 

CF Clay fraction (<2µm) 

CI Consistency index 

CV Coefficient of variation 

Geotechnical Correlations for Soils and Rocks, First Edition.
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Cs Swelling compression index 

cu or c Apparent cohesion intercept, equivalent to su 

CU Coefficient of uniformity 

cv Coefficient of primary consolidation 

Cα Rate of secondary consolidation 

D Depth 

D Disturbance factor (*) 

D Grain diameter 

De Equivalent diameter of the tested sample (in mm) in  
 the Franklin test 

Dn n percentage diameter 

DR Relative density of sand 

E or M Modulus of linear deformation, vertical drained constraint  
 modulus 

e Void ratio 

E Young’s modulus (*) 

E’ Young’s modulus of the soil skeleton 

e0 Initial void ratio 

E0 True elastic modulus (very small strains, ε<+/−10−5) 

ED DMT dilatometer modulus 

Ee Young’s modulus of elasticity (*) 

Ei Modulus for intact rock (*) 
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Em Pressuremeter modulus 

Emass Modulus (tangent) of rock mass 

Es Short-term Young’s modulus 

emax Void ratio at the loosest state 

emin Void ratio at the densest state 

Et or Ed Tangent Young’s modulus or deformation modulus 

Eu Undrained modulus 

F or FOS Factor of safety 

F Normalized sleeve friction 

FC Field capacity 

FR or Rf Friction ratio of CPT 

fs Measured cone sleeve friction 

Fschim Schimazeck factor (abrasiveness) 

g Gravitational constant (9.8 m/s2) 

G Modulus of shear deformation 

G0 Small strain shear modulus (very small strains, ε<+/−10−5) 

h Hydraulic head or potential 

i Hydraulic gradient 

IC Soil behavior type index (SBT index) for soil classification  
 from CPT 

ID Density index (*) 

ID Material index from DMT 
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IL or LI Liquidity index 

IP or PI Plasticity index 

Ir Rigidity index 

Is Point load strength index (Franklin test) 

Is (50) Point load strength index measured on NX core (54 mm) 

Ja Q rating for joint alteration, discontinuity filling 

JCond89 Joint condition rating 

Jn Q rating for the number of joint sets 

Jr Q rating for joint surface roughness 

Jv Volumetric joint count 

K Hydraulic conductivity (*) 

k Hydraulic conductivity 

K0 Coefficient of earth pressure at rest 

KD Lateral/horizontal stress index from DMT 

ln Natural logarithm 

log Logarithm base 10 

M or E Modulus of linear deformation, vertical drained constraint  
 modulus 

MR Resilient modulus 

mb Parameter of the Hoek and Brown criterion 

mq Cone resistance depth ratio ሾ= ௧ݍ∆	 ⁄ݖ∆ 	≅ ௧ݍ	 ⁄ݖ ] 
mv Coefficient of volume change 
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N Schmidt hammer rebound (*) 

N Blow count from SPT 

n Porosity 

N60 SPT blow count at 60% efficiency 

Ndc Dynamic cone blow count 

nf Part of porosity due to fissures 

np Part of porosity due to pores 

ø Diameter (of grains) (*) 

ø Porosity (*) 

p0 First DMT corrected reading 

p1 Second DMT corrected reading 

pl or pL Pressuremeter limit pressure 

q0 Dilatometer tip resistance 

qc Measured static cone tip resistance 

qd Dynamic probe resistance 

qe Effective static cone tip resistance [= ௧ݍ −  [ଶݑ
qn Net cone resistance [= ௧ݍ −  [௩଴ߪ

qt Corrected cone tip resistance [= ௖ݍ + ሺ1 − ܽ௡ሻݑଶ] 

Qt Normalized cone resistance for n=1 

qt1 Normalized cone tip resistance 

Qtn Normalized cone resistance 

R or r Coefficient of correlation 
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R Particle roundness (very angular = 0<R<very round = 1) 

R2 or r2 Coefficient of determination 

Rc or σc Compression strength 

Rt or σt Traction strength 

S Joint spacing 

s Parameter of the Hoek and Brown criterion (*) 

s Time in seconds 

Sr Degree of saturation 

St Sensitivity 

su Undrained shear strength, equivalent to cu 

t Quartz or abrasive mineral content (*) 

t Time 

Tv Time factor 

U Degree of consolidation 

u Pore pressure 

u* Normalized pore water pressure 

u0 Initial pore pressure 

u1 Pore water pressure measured at the midface of the cone tip 

u2 Pore water pressure measured behind the cone tip 

ua Pore air pressure 

uc or s Matrix suction 

uw Pore water pressure 
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v Flow velocity 

Vp or Vl Sonic wave velocity (compression, primary, longitudinal  
 wave) 

Vs or Vt Sonic wave velocity (shear, secondary, transversal wave) 

Vs1 Overburden corrected shear wave velocity 

w Water content by weight 

wL or LL Liquid limit 

wopt Proctor optimum moisture content by weight 

wP or LP Plastic limit 

ws Shrinkage limit 

γ Weight per unit of volume (density) 

λ Average number of discontinuities per meter 

σc or Rc Compression strength 

σi or σci Compression strength of intact rock 

σrm Compression strength of rock mass 

σt or Rt Traction strength 

σtm Traction strength of rock mass 

Λ Plastic volumetric strain potential 

α Ratio of soil modulus to cone tip resistance 

γ’ Submerged unit weight 

γs Dry unit weight 

γs Unit weight of solid particles 
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γs Unit weight of water 

γsat Saturated unit weight 

γ or γt Total unit weight 

ϕ or φ Apparent angle of internal friction 

ϕ’ or φ’ Effective angle of internal friction 

φb Basic friction angle for rock discontinuities 

ϕcs’ or φcs’ Critical state angle of internal friction 

ϕp’ or φp’ Peak angle of internal friction 

ϕr’ or φr’ Residual angle of internal friction 

ν Poisson’s ratio 

θ Water content by volume 

ρ Density 

ρ’ Submerged density 

ρd Dry density 

ρd(max) Maximum dry density 

ρd(min) Minimum dry density 

ρs Density of solid particles 

ρsat Saturated density 

ρt Total moist density 

ρw Density of water 

σ' Effective normal stress 
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σ Total normal stress 

σ’p Effective preconsolidation pressure 

σ’v0 Effective overburden pressure 

σatm Atmospheric pressure (100 kPa) 

σc Compressive strength 

σt Tensile strength 

σv0 Total overburden pressure 

τ Shear stress 

τf Peak shear strength 

τr Remolded shear strength 

τR Residual shear strength 

ψ Angle of dilatancy 



 

List of Equations 

Cone resistance depth ratio: ݉௤ = ௧ݍ∆ ⁄ݖ∆ ≈ ௧ݍ ⁄ݖ  

Continuity index: ܫܥ = ௏೛	೘೐ೌೞೠೝ೐೏௏೛	೟೓೐೚ೝ೐೟೔೎ೌ೗ 
Corrected tip resistance: ݍ௧ = ௖ݍ + (1 − ܽ௡)ݑଶ 

DMT dilatometer modulus: ܧ஽ = ଵ݌)34.7 −  (଴݌
DMT horizontal stress index: ܭ஽ = ଴݌) − (଴ݑ ⁄௩଴ᇱߪ  

DMT material index: ܫ஽ = ௣భି௣బ௣బି௨బ 
Effective cone resistance: ݍ௘ = ௧ݍ −  ଶݑ

Friction ratio: ܨோ = ௦݂ ൘(௡ݍ) 	≅ ௦݂ ௧ൗݍ  

Hardness contrast: ܿܪ = ∑ ܿ௜	. |ܸℎ௜ − ܸℎ௕|௜  

Net cone resistance: ݍ௡ = ௧ݍ −  ௩௢ߪ

Normalized blow count at 60% efficiency: ( ଵܰ)଺଴ = ቀఙೌ೟೘ఙೡబᇲ ቁ௡ ଺ܰ଴ 

with n = 1 for clays and 0.5 < n < 0.6 for sands. 
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Normalized cone resistances: 

௧ଵݍ = ቀ ௔௧௠ቁߪ௧ݍ ൬ ௔௧௠൰଴.ହ൚ߪ௩଴ᇱߪ  

ܳ௧௡ = ൬ݍ௧ − ௔௧௠ߪ௩଴ߪ ൰ ቆߪ௔௧௠ߪ௩଴ᇱ ቇ௡ 

where 

݊ = ௖ܫ0.381 + 0.05൭ߪ௩଴ᇱ ௔௧௠ൗߪ ൱ − 0.15	 ≤ 1 

If n=1, ܳ௧ = ௧ݍ) − (௩଴ߪ ௩଴ᇱ൘ߪ  

Normalized pore water pressure: ݑ ∗= 	 ௱௨ఙೡబᇲ  

Modulus ratio: ܴܯ = ா೔ఙ೔ 
Modulus ratio: ݉ݏݑ݈ݑ݀݋	݋݅ݐܽݎ = ா೘ೌೞೞ	(೔೙	ೞ೔೟ೠ)ா೎೚ೝ೐	(೗ೌ್)  

Overburden corrected shear wave velocity: ௦ܸଵ = ௦ܸ ൭ߪ௩଴ᇱ ௔௧௠ൗߪ ൱଴.ଶହ 

Plastic volumetric strain: Λ = 1 − ௦ܥ ௖ൗܥ  

Pore pressure ratio: ܤ௤ = ଶݑ) − (଴ݑ ⁄௡ݍ  
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Qc: ܳ௖ = ܳ	 ఙ೎ଵ଴଴ 

Velocity index: ܸ݈݁ݕݐ݅ܿ݋	ݔ݁݀݊ܫ = ൬ ௏೛	೔೙	ೞ೔೟ೠ௏೛	೚೙	ೞೌ೘೛೗೐൰ଶ 

Volumetric joint count: ܬ௩ = ∑ 1/ ௜ܵ௜  

Vp theoretical: ௣ܸ	௧௛௘௢௥௘௧௜௖௔௟ = 	∑ ܿ௜	. ௣ܸ	௜௜  

Weighted average hardness: ܹܪܣ = ∑ ܿ௜	. ܸℎ௜௜  

Young’s modulus versus constraint modulus: ܧᇱ = (ଵାఔ)(ଵିଶఔ)(ଵିఔ)  ܧ	



 

List of Abbreviations and Acronyms 

ABR or LAC LCPC abrasivity 

AIN or CAI CERCHAR-INERIS abrasiveness 

AIV Aggregate Impact Value index 

ASTM American Society for Testing and Materials 

CCT Calibration Chamber Tests 

CI Continuity Index 

CPT Cone Penetration Test 

CPTu Piezocone Test 

DMT Dilatometer Test 

DPT Dynamic Probe Test 

DSS Direct Simple Shear test 

ECPT Electric CPT 

GSI Geological Strength Index 

Hc Hardness contrast 

HOC Heavily Overconsolidated 
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JCS Joint Wall Compression Strength (in Q classification) 

Jw Q rating for water softening, inflow and pressure effects 

LA Los Angeles index 

LCPC Laboratoire Central des Ponts et Chaussées 

LOC Lightly Overconsolidated 

MD or MDe Micro-Deval index 

MPO Modified Proctor Optimum 

MR Modulus Ratio 

MSS Magnesium Sulfate Soundness 

NC Normally Consolidated 

NGI Norwegian Geotechnical Institute 

OCR Overconsolidation Ratio 

PMT Pressuremeter Test 

PSV Polished Stone Value 

Q Quality index 

Qc Normalized Q index 

QH2O Modified Q index for hydraulic conductivity 

REV Representative Elementary Volume 

RM Rock Mass 

rm Rock Material 

RMR Rock Mass Rating 

RMR89 Rock Mass Rating (1989 revision) 
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RQD Rock Quality Designation 

SBMPT Self-Boring Pressuremeter Test 

SBT Soil Behavior Type 

SCPT Seismic Cone Penetration Test 

SDMT Seismic Dilatometer Test 

SPO Standard Proctor Optimum 

SPT Standard Penetration Test 

SRF Q rating for faulting, strength/stress ratios, squeezing, 
swelling 

UCS Unconfined Compressive Strength 

UL Lugeon Unit 

Vh Vickers hardness 

VST Vane Shear Test 

WAH Weighted Average Hardness 
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